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Abstract
The widespread use of the Internet and mobile devices has sparked a rapid growth
in digital communication and, in turn, made the use of cryptography an integral
part of everyday life, as countless applications are only enabled through the pro-
tection of confidentiality, integrity, and authenticity of sensitive data. In this
thesis, we focus on two particular aspects of cryptography in the real world.

In the first part, we focus on authenticated key exchange (AKE), which is a
fundamental building block for many cryptographic protocols deployed in practice.
More specifically, we concentrate on the concrete security of the well-known key
confirmation paradigm. Adding key confirmation to an AKE protocol crucially
enhances the security of the protocol, upgrading it from weak to full forward
security and from implicit to explicit authentication. In this thesis, we show that
for a large and natural class of protocols, this upgrade comes at the cost of non-
tight security proof. More precisely, we propose a novel meta-reduction technique,
which we employ to prove that almost all key confirmation protocols must have
at least a linear security loss in the number of users. Additionally, we construct a
highly efficient key confirmation protocol with a linear security loss, yielding AKE
protocols with full forward security and optimal tightness.

In the second part, we turn our attention to instant messaging, a highly relevant
application, where end-to-end encryption (E2EE) has become the de facto security
standard. While the security of the data in transit has received a lot of attention,
the security of the data at rest has so far been somewhat neglected. In this thesis,
we conduct the first formal security analysis of the E2EE backup protocol deployed
by WhatsApp, which is built on top of the OPAQUE password authenticated key
exchange. We show that, by relying on a hardware security module (HSM), the
protocol provides strong security guarantees for the users’ passwords and chat
histories even against a maliciously acting WhatsApp server.

Finally, we explore how we can design E2EE backup protocols with a tradeoff
between simplicity and efficiency of protocols on the one hand and minimal trust
assumptions on the other hand. We propose three different protocols that lie on
a spectrum reaching from fully trusting an HSM, assuming that it is completely
incorruptible, to not trusting the HSM at all and assuming that all data and
cryptographic keys maintained by the HSM may be corrupted. For each scenario
we aim to give minimal solutions, achieving a simple yet efficient protocol design.
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1 Introduction
Cryptography is ever present in today’s society, having become a cornerstone of
digital communication. According to Statista, the number of worldwide Internet
users as of July 2024 is around 5.5 billion,1 constituting roughly two-thirds of
the entire global population. As the number of individuals utilizing the Internet
continues to grow, the amount of private and sensitive data transmitted over
the Internet on a daily basis rises steadily. In 2017, Cisco evaluated the global
amount of daily Internet traffic to be around 4 Exabytes, equivalent to 4 000 000
Terabytes. Furthermore, they estimated that the Internet traffic would more than
triple within five years and would reach more than 13 Exabytes per day in 2023.2
Given that the Internet is inherently an insecure network where adversaries can
eavesdrop, intercept, and modify exchanged data, protecting these vast amounts
of private data against unauthorized access is critical.

In order to enable the exchange of data over insecure networks, cryptographic
techniques must be employed to safeguard the confidentiality, authenticity, and
integrity of the exchanged data. As such, cryptography is a vital tool for count-
less everyday-use applications. To illustrate, consider the case of online banking,
where the confidentiality of login data, as well as the integrity and authenticity of
financial transactions, must be ensured. Similarly, contactless payment systems—
which according to the European Central Bank already made up approximately
75% of all non-cash payments in 20223—require that the customer’s device, which
may be a bank card, smartphone, or wearable, and the terminal accepting the
payment authenticate towards each other to prevent, for example, payment fraud.
As a final example, let us highlight instant messaging apps, which have a total
monthly active user base exceeding 6.6 billion.4 Instant messaging apps are used
not only by private individuals but also by companies to communicate with cus-
tomers and business partners, requiring their conversations to be kept private to
protect their businesses.

These data and statistics emphasize the significant global demand for protec-
tion against unauthorized access to transmitted data. In the absence of cryptogra-
phy, the aforementioned applications, in addition to numerous other applications,
would not exist, and people would lose access to many technologies that they have

1See https://www.statista.com/statistics/617136/digital-population-worldwide/
2See https://cloud.report/Resources/Whitepapers/eea79d9b-9fe3-4018-86c6-

3d1df813d3b8_white-paper-c11-741490.pdf
3See https://data.ecb.europa.eu/blog/blog-posts/contactless-payments-euro-area
4See https://www.statista.com/statistics/258749/most-popular-global-mobile-

messenger-apps/
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become accustomed to.

1.1 Key Confirmation in Authenticated Key
Exchange

One of the essential cryptographic mechanisms in this landscape is authenticated
key exchange (AKE), which allows two parties to establish a shared secret over
an insecure channel [BR94]. Subsequently, the shared secret is used in other
cryptographic building blocks to ensure security properties such as confidentiality
while exchanging the data. In this way, AKE forms the basis for securing many
of the above applications.

The most prevalent AKE protocol in practice is the Transport Layer Security
(TLS) protocol [Res18]. Its most recent version 1.3 was released in 2018 and is
used to secure many application protocols, such as HTTP [TB22], IMAP [ML21],
and SMTP [Kle08]. Approximately 80% of all webpages accessed with the Mozilla
Firefox browser are secured via TLS5, highlighting the practical relevance of AKE
protocols.

Security of AKE. The fundamental security property of AKE protocols is that
the shared secrets established by the protocol appear to be random to any adver-
sary. A more advanced security property is forward security, which refers to the
ability of an AKE protocol to maintain the apparent randomness of previously es-
tablished shared secrets even after an adversary compromises the long-term secret
key of some party [Gün90]. Given the prevalence of threats such as compelled ac-
cess by law enforcement, global surveillance programs as exposed by the Snowden
revelations, and vulnerabilities in software implementations, which all could allow
an adversary to compromise secret keys, forward security is considered a standard
security goal of modern cryptography.

Forward security essentially comes in two different flavors. For weak forward
security, we only consider passive adversaries who merely observe the protocol
messages, while for full forward security, we consider active adversaries who may
actively interfere with the messages. Full forward security clearly provides stronger
security properties, making it the preferred version for protocols deployed in prac-
tice. TLS 1.3 as the most common AKE protocol in practice indeed provides full
forward security [Die23].

Key Confirmation. It is naturally easier to develop AKE protocols achieving
only weak forward security instead of full forward security since they do not need
to provide as strong security guarantees. Therefore, a common approach for the
design of fully secure protocols is initially to construct a weakly secure protocol
and then apply a generic transformation that upgrades it to full forward security

5https://letsencrypt.org/stats/
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Alice Bob

Πk, t, t′ k, t, t′

t

t′

abort if received t
is not valid

abort if received t′

is not valid

Figure 1.1: Visualization of the key confirmation paradigm. Alice and Bob exe-
cute the weakly secure protocol Π, deriving a shared secret k and two
additional values t and t′, which they exchange to confirm that they
computed the same shared secret k.

[BWJM97, BWM99, Kra05]. A well-studied approach for this is the key confirma-
tion paradigm [BPR00, Kra05, Yan13a, FGSW16, CCG+19, DFW20, GGJJ23],
which is used in several protocols, such as the STS protocol [DvW92], different
Oakley modes [Orm98], or SKEME [Kra96], cf. also [BMS20]. When applying the
key confirmation paradigm, the parties derive additional values from the weakly
secure protocol besides the shared secret itself and exchange these values in addi-
tional key confirmation messages, which essentially serve as a confirmation that
both parties computed the same key. We visualize this process in Figure 1.1.

Now, actively interfering with the messages of the weakly secure protocol is of no
advantage for the adversary since this would lead to the parties deriving different
key confirmation messages and aborting the protocol. This means the adversary
would have to interfere with the key confirmation messages as well and compute
the correct messages such that the parties remain oblivious to the interference;
however this would require knowledge of the long-term secret key already at the
time of protocol execution. In this way, the key confirmation paradigm essentially
reduces active adversaries to being passive, thereby carrying the weak forward
security guarantees of the underlying protocol over to full forward security for the
extended protocol.

Concrete Security of Key Confirmation. Although key confirmation is a well-
known paradigm and has been deployed in several protocols, its concrete security
has not yet been studied much. Concrete security [BR09] aims to obtain exact
security bounds for cryptographic schemes. More specifically, the goal is to relate
in precise, quantitative terms how difficult it is to break a scheme relative to some
underlying mathematical problem. Informally, a cryptographic scheme is said to
have tight security if the probability of breaking its security is the same as the
probability of solving the underlying problem up to a small constant factor. On

3



the other hand, a scheme has non-tight security if these probabilities differ by a
non-constant, polynomial factor.

To instantiate the parameters of a cryptographic protocol in a theoretically
sound way, we need to consider whether it has tight or non-tight security and
potentially compensate with larger parameter choices in the latter case. As larger
parameters usually directly translate to an increased computational load, tight
security is highly desired. For an illustration of the impact that non-tight security
proofs can have, we refer the reader to the work by Davis and Günther [DG21],
who compare the concrete security of TLS 1.3 for tight and non-tight proofs. This
leads us to the central question for Part I of this thesis:

Is it possible to construct simple and efficient key confirmation protocols with
tight security?

Our contributions, Part I. In the first part of this thesis we make the following
contributions to explore the above question:

• We demostrate that a key confirmation protocol given by Cohn-Gordon et al.
[CCG+19] that the authors claimed to be tightly secure is actually non-tigth
by revealing a bug in their security analysis.

• We develop a simple, yet highly efficient (albeit non-tight) key confirmation
protocol and prove its security.

• We show that a large class of protocols are inherently unable to achieve tight
security, proving that no protocol with tighter security than our protocol can
exist.

1.2 End-to-End Encrypted Backups
In the second part of this thesis, we turn to a prominent application that is built
from AKE, namely instant messaging (IM) apps, which are some of the most
popular applications on the Internet with billions of active users6 and hundreds of
billions of messages delivered per day.7 They usually deploy (a generalized variant
of) AKE to achieve end-to-end encryption (E2EE), meaning that the confidential-
ity, authenticity, and integrity of exchanged messages are provided even in the
event that the IM service provider is compromised [CCD+17, BSJ+17, RMS18,
ACD19, JMM19, CPZ20, VGIK20, BFG+22, CJSV22]. The widespread adoption
of E2EE as the standard security goal for IM following the Snowden revelations in
2013 marks one of the most significant advancements for security on the Internet.
However, the rise of E2EE also brought up new challenges.

6See https://www.statista.com/statistics/258749/most-popular-global-mobile-
messenger-apps/

7See https://x.com/wcathcart/status/1321949078381453314
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Bypassing E2EE. While the security of the E2EE messaging protocols of several
IM apps has been analyzed in many works, these analyses focus on the transmis-
sion of messages. However, these analyses alone are not sufficient for a convincing
claim of achieving E2EE, as this requires all other features offered by the given
app to be secure as well. A nearly ubiquitous feature among IM apps is the ability
to back up chat histories to allow the recovery of the chats if the device is lost
or the user switches to a new phone.8 This indeed opens up opportunities for
adversaries to potentially bypass the E2EE of the transmission and instead attack
the backed up data. Therefore, the same strong security guarantees as for the
transmission protocol are required from the backup protocols.

A natural approach to developing a backup protocol, which is for example de-
ployed by WhatsApp, is to let the client generate a random key and simply encrypt
the chat history under this key before storing the resulting ciphertext in some cloud
storage. In order to allow the recovery of the backup in case the phone is lost,
the key is stored by the IM service provider and retrieved by the client when-
ever necessary. Unfortunately, this simple protocol clearly fails to provide strong
security guarantees, as a compromise of the cloud storage and WhatsApp’s key
storage would straightforwardly allow an adversary to decrypt the backup. In fact,
this weakness was seemingly exploited recently, where previously well protected
private communication became evidence in a lawsuit [Nov18].

E2EE Backups from Secure Hardware. Protocols aiming at the secure backup
of a user’s chat history—or a user’s cryptographic key in general—have been pro-
posed by Signal [Lun19], Apple [Krs16], Google [Wal18] and WhatApp [Wha21a].9
The common idea in all approaches is to back up the user’s high-entropy (encryp-
tion) key on a server and enable retrieval when the user correctly authenticates
via a human-memorable secret, like a password or PIN. In particular, when the
backup service is offered by the same provider that handles the E2EE communi-
cation, extra care is necessary to not undermine the encryption security. This is
done by relying on trusted hardware enclaves, such as hardware security modules
(HSMs). Intuitively, an HSM can be programmed once with software and then
“locked” in such a way that it is infeasible to change its software afterwards. This
enables even the protection of a protocol against corruption of the party running
the HSM. The challenge now lies in designing the code run by the HSM in such
a way that (1) users can retrieve their backup keys from a password or PIN, but
(2) the IM service provider—not knowing the user password—cannot obtain the
backup key.

8See e.g. https://www.facebook.com/help/messenger-app/677912386869109?helpref=
faq_content&locale=en_US, or https://threema.ch/en/faq/data_backup, or
https://faq.whatsapp.com/481135090640375/?locale=en_US&cms_platform=android&
cms_id=481135090640375&draft=false

9The E2EE backups in WhatsApp notably are an opt-in feature, leaving the weaker protocol
as the default option.

5

https://www.facebook.com/help/messenger-app/677912386869109?helpref=faq_content&locale=en_US
https://www.facebook.com/help/messenger-app/677912386869109?helpref=faq_content&locale=en_US
https://threema.ch/en/faq/data_backup
https://faq.whatsapp.com/481135090640375/?locale=en_US&cms_platform=android&cms_id=481135090640375&draft=false
https://faq.whatsapp.com/481135090640375/?locale=en_US&cms_platform=android&cms_id=481135090640375&draft=false


The WhatsApp E2EE Backup Protocol. Of the aforementioned approaches,
the WhatsApp backup protocol (WBP) has enjoyed the most attention due to
its enhanced protocol design and widespread usage. By early 2023, over 100
million WhatsApp users had already switched to this option [Cat22]. The WBP
deploys OPAQUE [JKX18], an asymmetric password-based key exchange protocol
(aPAKE) [GMR06] that allows a key exchange from a password without disclosing
the password itself to the server. Furthermore, the WBP aims to provide security
against password guessing attacks, where a malicious client repeatedly executes
the retrieval protocol with password guesses pw′. If the password guess pw′ equals
the password pw used during initialization, an adversary would gain access to the
secret backup key. Note that this attack is especially effective if the user password
only has low entropy, which is often the case for human-memorable passwords in
practice. The deployed protocol limits the number of admissible incorrect guesses
to ten [Wha21a, DLS21], after which the HSM destroys the encrypted version of
the backup key (and thus makes the backup irrecoverable). This guarantee should
even hold if the WhatsApp server were to be compromised. This leads us to our
first central question for Part II of this thesis:

Which formal security properties do we expect from an end-to-end encrypted
backup protocol and are they all achieved by WhatsApp’s backup protocol?

The Role of the HSM. The WBP protocol crucially relies on an HSM that is run
within the server as an incorruptible entity. Assuming that all data and keys stored
on the HSM are incorruptible can make the security analysis considerably less
complex. While this captures the initial design choices made by the WBP protocol
and the security claims WhatsApp advertises for its protocol [Wha21a], this is
somewhat unsatisfactory from a security and protocol design perspective. First,
if an incorruptible HSM can be assumed, the protocol could take more advantage
of that—the core of the WBP protocol is the OPAQUE protocol that provides
strong security guarantees even when the cryptographic state gets compromised,
which wouldn’t be needed if the assumption is that such an event can never occur.
Second, relying on a perfectly secure sub-entity is a risky assumption. In fact, also
trusted hardware modules have a history of getting breached or having to lower
their security claims [VBMW+18, VBPS17, BC19, SRW22]. Thus, it would be
desirable to clearly express and analyze the impact a partial or full corruption of
the HSM has on the expected security guarantees of the backup protocol. This
raises the final central question of this thesis:

How do we model security under partial or full corruption of the HSM and can
we construct simple and efficient end-to-end encrypted backup protocols secure

under the different corruption scenarios?

Our contributions, Part II. Our contributions in the second part of this thesis
are the following.

6



• We introduce a novel cryptographic primitive that abstracts the properties
of an E2EE backup protocol and formalize the expected security guarantees
including a fine-grained HSM corruption model.

• We provide the first full description of the WBP and conduct an extensive
security analysis of the WBP, revealing an attack where a corrupt WhatsApp
server could get more than ten password guesses.

• We develop three novel protocols for E2EE backups, each tailored to a dif-
ferent corruption scenario of the HSM, and prove their security.

1.3 Publication Overview
This thesis is based on the following works. We provide details on the contributions
of the author of this thesis at the beginning of each chapter.

Peer-reviewed publications:

[DFG+23] Gareth T. Davies, Sebastian H. Faller, Kai Gellert, Tobias Handirk,
Julia Hesse, Máté Horváth, and Tibor Jager. Security analysis of the
WhatsApp end-to-end encrypted backup protocol. In Helena Hand-
schuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part IV, vol-
ume 14084 of LNCS, pages 330–361, Santa Barbara, CA, USA, August
20–24, 2023. Springer, Cham, Switzerland.

[FHH+24] Sebastian H. Faller, Tobias Handirk, Julia Hesse, Máté Horváth, and
Anja Lehmann. Password-protected key retrieval with(out) HSM pro-
tection. In ACM CCS 2024, Salt Lake City, Utah, USA, October 14–18,
2024. ACM Press. To appear.

Unpublished work:

[GGH+23] Kai Gellert, Kristian Gjøsteen, Tobias Handirk, Håkon Jacobsen, and
Tibor Jager. On the concrete security of key confirmation. Work in
progress.

Other Publications not included in the thesis:

[DDG+20] Fynn Dallmeier, Jan P. Drees, Kai Gellert, Tobias Handirk, Tibor
Jager, Jonas Klauke, Simon Nachtigall, Timo Renzelmann, and Rudi
Wolf. Forward-secure 0-RTT goes live: Implementation and perfor-
mance analysis in QUIC. In Stephan Krenn, Haya Shulman, and Serge
Vaudenay, editors, CANS 20, volume 12579 of LNCS, pages 211–231,
Vienna, Austria, December 14–16, 2020. Springer, Cham, Switzerland.
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[GH21] Kai Gellert and Tobias Handirk. A formal security analysis of ses-
sion resumption across hostnames. In Elisa Bertino, Haya Shulman,
and Michael Waidner, editors, ESORICS 2021, Part I, volume 12972 of
LNCS, pages 44–64, Darmstadt, Germany, October 4–8, 2021. Springer,
Cham, Switzerland.

[LGM+20] Sebastian Lauer, Kai Gellert, Robert Merget, Tobias Handirk, and Jörg
Schwenk. T0RTT: Non-interactive immediate forward-secret single-
pass circuit construction. PoPETs, 2020(2):336–357, April 2020.
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2 Preliminaries
In this chapter, we introduce the notation used throughout this thesis. Further,
we recap some fundamental concepts of cryptography as well as some standard
cryptographic building blocks and computational problems.

2.1 Notation
We denote the security parameter as λ. For any n ∈ N let 1n be the unary
representation of n. We denote the length of a string s as |s| and the concatenation
of two strings a, b as a∥b. We define the binary operator ?= to return true if the two
operands are equal and false otherwise. We write x $←− S to indicate that we choose
an element x uniformly at random from set S and |S| to indicate the size of S. For
a probabilistic polynomial time (PPT) algorithm A we define y $←− A(x1, . . . , xℓ)
as the execution of A (with fresh random coins) on input x1, . . . , xℓ and assigning
the output to y. We say an algorithm is efficient if it is a PPT algorithm.

If a scheme consists of a tuple of algorithms, such as Scheme = (Alg1, Alg2), we
write Scheme.Alg1 to refer to the algorithm Alg1 of scheme Scheme. We instead
sometimes only write Alg1 if due to the context it is easy to see which scheme Alg1
refers to (e.g. due to uniqueness of name).

We use records of form ⟨x1, x2, x3⟩ for bookkeeping in some of our formal ar-
guments. For convenience, we introduce a notation that combines retrieval and
assignment of such records, i.e., when retrieving ⟨value, ∗, ∗⟩, we retrieve a record
that contains the value value in the first field and arbitrary values in the second
and third field (denoted by a wildcard symbol ∗). Additionally, we use brackets to
indicate variable assignment after retrieval, i.e., when retrieving ⟨value, [x2], [x3]⟩,
we retrieve the record holding the value value in its first entry and assign the
second and third entry to the variables x2 and x3, respectively.

2.2 Provable Security
The concept of provable security forms the backbone of modern cryptography. It
was first introduced in the seminal work by Goldwasser and Micali in 1984 [GM84]
and allows us to precisely understand the security guarantees that cryptographic
schemes or protocols provide. The basic idea is to first define a security model
that formally describes what it means for an adversary to “break the security” of a
given cryptosystem. Then, a rigorous mathematical proof is developed that relates
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the security of the cryptosystem to a computational problem that is assumed to
be hard, e.g. the discrete logarithm or factorization of integers. This shows
that the cryptosystem is indeed secure if no algorithm that efficiently solves the
computational problem exists.

Nowadays, several approaches to implementing this general paradigm exist, in-
cluding game-based security as proposed by Goldwasser and Micali [GM84], the
universal composability (UC) framework due to Canetti [Can01], the reactive sim-
ulatability framework developed by Backes, Pfitzmann, and Waidner [BPW07],
and the constructive cryptography framework introduced Maurer [Mau11]. In this
thesis, we use both game-based security and the UC framework, and in the fol-
lowing provide a brief introduction to both approaches.

2.2.1 Game-based Security
In the game-based approach, the security model is a security game, also called
security experiment, played between a challenger and the adversary A. We denote
security games as ExpGoal

Scheme,A, meaning that the experiment implements the se-
curity goal or security property Goal for the scheme Scheme. In the experiment,
the challenger sets up a well-defined problem or challenge for the adversary, where
solving the challenge reflects breaking the desired security goal. This challenge
could for example be the recovery of an encrypted message, where the adversary
does not know the key under which the message was encrypted.

There are essentially two types of challenges: search problems and decision
problems. In a search problem, the adversary is tasked with outputting a string
of arbitrary form, such as the message in the aforementioned challenge of message
recovery. In a decision problem, it is tasked with distinguishing between two
possible situations, which for example could be determining which one of two
messages chosen by the adversary was encrypted by the challenger. At the end
of the game, the challenger always outputs either 0 or 1, indicating whether the
adversary was successful in solving the challenge.

Finally, we consider the advantage AdvGoal
Scheme,A that measures the probability of

the adversary winning the experiment. For search problems this is simply defined
as the probability of the challenger outputting 1, i.e., we have AdvGoal

Scheme,A :=
Pr[ExpGoal

Scheme,A = 1]. But for decision problems we need to account for the fact
that the adversary can always guess correctly with probability 1/2 as it only
needs to distinguish between two equally likely possibilities. Hence, for decision
problems we always define AdvGoal

Scheme,A :=
∣∣∣2 · Pr[ExpGoal

Scheme,A = 1]− 1
∣∣∣. Using

this formalism, we now have the tools to describe when a scheme is considered
secure. There are two common approaches for this, namely the asymptotic and
the concrete approach.

The Asymptotic Approach. In the asymptotic approach [GM84], the scheme
as well as the adversary are parameterized by a security parameter λ ∈ N, which

10



can typically be viewed as corresponding to the length of the key. Then, a scheme
is considered secure if for any efficient adversary its advantage is asymptotically
small in λ. More precisely, we use the following notion of negligible functions.

Definition 1. A function f : N→ R≥0, where R≥0 denotes the non-negative real
numbers, is negligible in n if for every polynomial p there is an N ∈ N such that
for n > N it holds that f(n) < 1

p(n) .

We say a scheme is Goal-secure if for all adversaries with runtime polynomial in λ
its advantage is negligible in λ. Informally speaking, this can also be interpreted as
“there exist sufficiently large values of λ such that the probability of an adversary
breaking the security is vanishingly small.”

The Concrete Approach. In contrast to the asymptotic approach, the concrete
approach [BR09] aims to provide explicit bounds on the runtime and success prob-
ability of the adversary. This captures what practitioners are usually interested
in, as it gives exact probabilities of the scheme being secure for the parameters
chosen for deployment. Here, we say a scheme is (t, ϵ)-Goal-secure if any adversary
with runtime at most t has an advantage of at most ϵ.

Security Proofs. Having established how we model security in the game-based
setting, we now come back to how we prove the security of a given scheme. As
mentioned before, we want to relate the security of the scheme to a computational
problem with the goal of deriving statements of the form “if the problem Problem
is hard, then the scheme Scheme is Goal-secure.”1 As such a statement is usually
difficult to prove, we instead consider the equivalent statement “if the scheme
Scheme is not Goal-secure, then the problem Problem is not hard.” To prove this,
we assume that an efficient adversary A exists that breaks the Goal-security of
Scheme. The central part of the proof is then the construction of an efficient
reduction R that plays the experiment ExpProblem

R and at the same time runs A
as a subroutine and simulates the experiment ExpGoal

Scheme,A for A. If the reduction
is able to transform the output of the adversary in the simulated experiment into
a solution to the problem Problem, we have successfully shown that Scheme is
Goal-secure if Problem is hard.

Tightness of Security Proofs and Theoretically Sound Instantiations. Espe-
cially when using the concrete approach, we are often interested in the tightness
of a reduction or its security loss. The security loss can be defined as an upper
bound on the factor ℓ such that

tR/ϵR ≤ ℓ · tA/ϵA,

1Note that often we do not show that Scheme is Goal-secure if some computational problem is
hard, but instead show that Scheme is Goal-secure if some scheme Scheme′ is Goal′-secure.
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where tR and tA are the running times of the reduction R and the adversary A,
respectively, and ϵR and ϵA are their advantages. A reduction is said to be tight,
if ℓ is a small constant. It is non-tight, or lossy, if ℓ depends on the adversary or
on deployment parameters, such as the number of users.

Considering the tightness of a security proof allows us to relate the security
of some cryptographic scheme to some computational problem in precise, quanti-
tative terms. Moreover, we can ideally instantiate the scheme in a theoretically
sound way. To this end, we consider the security loss of the reduction and can
compensate for a lossy reduction with matching parameters, such as larger alge-
braic groups or key lengths. A larger security loss requires larger cryptographic
parameters for a theoretically sound instantiation, which in turn may incur signif-
icant overhead in terms of computations and communication. In particular, if the
concrete security bound depends on the application context, such as the number
of users, then this must be adequately compensated. This can be difficult if the
exact number is not known at the time of the deployment. In this case, upper
bounds must be determined, which may incur significant and possibly unnecessary
computational overhead. A protocol with tight security can be instantiated with
optimal parameters in a theoretically sound way, independent of the concrete (and
possibly a priori unknown) application context.

2.2.2 Universal Composability
In the UC framework, security is modeled via ideal functionalities. For a given
scheme or protocol that we want to analyze, an ideal functionality is an abstraction
of the cryptographic primitive that describes what parties should ideally learn
when interacting with the primitive. An ideal functionality can often be thought
of as a trusted third party, which takes the inputs of all parties, executes the
protocol internally, and hands the computed output back to the parties.

The basic idea of proving a protocol secure in the UC framework is to describe a
simulator that “mimics” the behavior of the real protocol towards a distinguishing
entity called the environment. The environment represents the external context
in which the protocol runs, including other protocols, or human user and adver-
sarial interaction. Hence, the environment may interactively instruct any party to
execute any part of the protocol with inputs of its choosing, intercept and modify
messages between parties, and even corrupt parties such that it can let them run
arbitrary code.

A protocol π is considered secure with respect to some ideal functionality if no
efficient environment is able to distinguish with non-negligible probability whether
it interacts with parties running the real protocol or with the simulator Sim that
is mimicking the protocol together with the ideal functionality F . Formally, we
define the advantage of an environment Z as

AdvF
π,Sim,Z(λ) := |Pr[Execπ,Z(λ) = 1]− Pr[IdealF ,Sim,Z(λ) = 1]| ,
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where Execπ,Z denotes the execution of the protocol π interacting with environ-
ment Z, and IdealF ,Sim,Z denotes the execution of the “ideal” protocol simulated
by Sim with F while interacting with Z. A mathematically precise definition of
these executions is beyond the scope of this thesis and we refer to [Can01].

We say π is secure with respect to F if for any efficient environment Z its
advantage is negligible in λ. In UC terminology we also say the protocol UC-
realizes the ideal functionality. Proving that the two view are indistinguishable
often involves a similar approach as the security proofs in the game-based setting.
We often assume that an environment exists that is able to distinguish between
the two views and then construct a reduction that solves some computational
problem or breaks some security property of a cryptographic primitive used in the
protocol.2 If the given computational problem is indeed hard or we have previously
proven the given security property of the given primitive, this shows that the two
views are indeed indistinguishable.

Informally speaking, proving that a protocol UC-realizes some functionality
can be interpreted as showing that no party including an adversary can learn
more from interacting with the real protocol than what they learn from the ideal
functionality, yielding a lower bound on the security guarantees of the protocol.
This also means that even though we can think of functionalities as trusted third
parties — which would not leak anything to an adversary — in order to prove
protocols secure, functionalities must often leak some information to the adversary.
As a toy example, imagine a simple scenario where Alice just wants to send a secret
message to Bob, for which they would use some symmetric encryption scheme.
Then, by simply observing the ciphertext sent by Alice, the adversary can learn
the length of the message. Thus, an ideal functionality for this scenario would also
have to leak this information, as we cannot prove the protocol secure with respect
to a functionality that does not leak the length of the message to the adversary.

This highlights the importance of defining meaningful functionalities in the
UC framework. On one hand, the functionality must leak enough information
such that we are able to prove protocols secure, but on the other hand it should
leak as little as possible since we obviously desire strong security guarantees. A
challenge in designing ideal functionalities is hence finding the sweet spot where
the functionality provides only the leakage that is necessary to allow a simulator
to simulate the protocol but no other leakage.

A key feature of the UC framework is the composition theorem. Imagine a
protocol that uses some cryptographic primitive, e.g. symmetric encryption, as a
building block. The composition theorem then states that any instantiation of the
primitive that is secure in the UC framework remains secure when it is used as
the building block in the protocol, even if it is used concurrently in parallel mul-
tiple times. This allows for a modular design of complex cryptographic protocols
combining smaller components into larger systems. A similar composition does

2Note that constructing this reduction does not require the security property to be formalized
in the UC framework and can also be done with game-based notions for the security property.
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not hold in general for protocols proven secure in game-based security models (see
e.g. [Sho99]).

2.3 Cryptographic Building Blocks
In this section, we recap the syntax and security of some basic cryptographic
primitives. For a more extensive discussion we refer the reader to [KL21]. In the
following, we use the game-based approach with asymptotic security, although all
security definitions can be formulated in the concrete security setting or the UC
framework as well (with the exception of cryptographic hash functions ).

2.3.1 Cryptographic Hash Functions
A hash function is a function that takes inputs of arbitrary length and maps them
to outputs of a fixed length. In cryptography, intuitively the security property we
require from hash functions is that it is difficult to find two inputs x ̸= x′ that
are mapped to the same output, which is called a collision. However, since hash
functions H : {0, 1}∗ → {0, 1}λ are compressing functions in the sense that their
range is larger than their domain, such collisions must always exist. Thus, for
any given hash function, there always exists an efficient adversary that outputs a
collision with non-negligible probability, e.g. the adversary that has the collision
hard-coded as its output. For this reason, we follow the approach by Rogaway
[Rog06] and say a hash function is collision resistant if we cannot construct an
adversary that finds a collision with non-negligible probability.

Definition 2. A hash function H : {0, 1}∗ → {0, 1}λ is collision resistant if we
cannot efficiently construct an efficient adversary A whose advantage

AdvCollRes
H,A (λ) := Pr[x ̸= x′ ∧H(x) = H(x′) | (x, x′) $←− A(1λ)]

is non-negligible.

2.3.2 Symmetric Encryption
A symmetric encryption (SE) scheme allows private communication between par-
ties sharing some private key k. A message m can be encrypted under k to obtain
a ciphertext c, which can be decrypted using the same key to obtain m.

Definition 3. A symmetric encryption scheme consists of three PPT algorithms
SE = (KGen, Enc, Dec) with key space K, message spaceM, and ciphertext space
C.

KGen(1λ): takes as input a security parameter λ and outputs a key k ∈ K.

Enc(k, m): takes as input a key k ∈ K and a message m ∈ M and outputs a
ciphertext c ∈ C.
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ExpIND-CPA
SE,A (λ)

1: k $←− KGen(1λ)
2: b $←− {0, 1}
3: (m0, m1, st) $←− AEnc(·)

0 with |m0| = |m1|
4: c∗ $←− Enc(k, mb)
5: b∗ $←− AEnc(·)

1 (st, c∗)
6: return b

?= b∗

Enc(m)
1: c $←− Enc(k, m)
2: return c

Figure 2.1: Security experiment ExpIND-CPA
SE,A (λ) for IND-CPA-security of symmetric

encryption.

Dec(k, c): takes as input a key k ∈ K and a ciphertext c ∈ C and outputs a
message m ∈M or an error symbol ⊥.

We say a scheme SE is correct if for all k $←− KGen(1λ) and all m ∈ M it holds
that

Dec(k, Enc(k, m)) = m.

For security, we intuitively require that the ciphertext c leaks no information
about the message m. This is formalized with the concept of indistinguishability.
Here the adversary chooses two messages m0, m1 of the same length and gets
the encryption of either m0 or m1 under a randomly chosen key. It then has to
distinguish which of the two messages was encrypted. More precisely, we consider
two standard security notions, namely indistinguishability under chosen plaintext
attacks (IND-CPA) and indistinguishability under chosen ciphertext attacks (IND-
CCA), which additionally give the adversary access to an encryption oracle, resp.
an encryption and a decryption oracle. The formal security experiments are given
in Figures 2.1 and 2.2.

Definition 4. The advantage of an adversary A = (A0,A1) against the indis-
tinguishability of ciphertexts under chosen plaintext attacks (IND-CPA) of an SE
scheme SE = (KGen, Enc, Dec) is defined as

AdvIND-CPA
SE,A (λ) :=

∣∣∣2 · Pr
[
ExpIND-CPA

SE,A (λ) = 1
]
− 1

∣∣∣ .
We say SE is IND-CPA-secure if AdvIND-CPA

SE,A (λ) is negligible in λ for all efficient
adversaries A.

Definition 5. The advantage of an adversary A = (A0,A1) against the indistin-
guishability of ciphertexts under chosen ciphertext attacks (IND-CCA) of an SE
scheme SE = (KGen, Enc, Dec) is defined as

AdvIND-CCA
SE,A (λ) :=

∣∣∣2 · Pr
[
ExpIND-CCA

SE,A (λ) = 1
]
− 1

∣∣∣ .
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ExpIND-CCA
SE,A (λ)

1: Q := ∅
2: k $←− KGen(1λ)
3: b $←− {0, 1}
4: (m0, m1, st) $←− AEnc(·),Dec(·)

0 with |m0| = |m1|
5: c∗ $←− Enc(k, mb)
6: b∗ $←− AEnc(·),Dec(·)

1 (st, c∗)
7: return b

?= b∗ ∧ c∗ /∈ Q

Enc(m)
1: c $←− Enc(k, m)
2: return c

Dec(c)
1: m := Dec(k, m)
2: Q := Q∪ {c}
3: return m

Figure 2.2: Security experiment ExpIND-CCA
SE,A (λ) for IND-CCA-security of symmetric

encryption.

ExpINT-CTXT
SE,A (λ)

1: Q := ∅
2: k $←− KGen(1λ)
3: c∗ $←− AEnc(·)

4: m := Dec(k, c∗)
5: return m ̸= ⊥ ∧ c∗ /∈ Q

Enc(m)
1: c $←− Enc(k, m)
2: Q := Q∪ {c}
3: return c

Figure 2.3: Security experiment ExpINT-CTXT
SE,A (λ) for INT-CTXT-security of sym-

metric encryption.

We say SE is IND-CCA-secure if AdvIND-CCA
SE,A (λ) is negligible in λ for all efficient

adversaries A.

After defining security notions for the secrecy of symmetric encryption, we now
turn to integrity, which aims to ensure that an adversary cannot tamper with a
ciphertext without the receiver of the message noticing the tampering. For this we
consider the security notion of ciphertext integrity, for which we give the formal
security experiment in Figure 2.3.

Definition 6. The advantage of an adversary A against the ciphertext integrity
(INT-CTXT) of an SE scheme SE = (KGen, Enc, Dec) is defined as

AdvINT-CTXT
SE,A (λ) := Pr[ExpINT-CTXT

SE,A (λ) = 1].

We say SE is INT-CTXT-secure if AdvINT-CTXT
SE,A (λ) is negligible in λ for all efficient

adversaries A.

An SE scheme that is IND-CCA-secure and INT-CTXT-secure is often also
called authenticated encryption (AE). We can further extend AE to authenticated
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ExpIND-CCA
AEAD,A (λ)

1: Q := ∅
2: k $←− KGen(1λ)
3: b $←− {0, 1}
4: (m0, m1, ad, st) $←− AEnc(·,·),Dec(·.·)

0 with |m0| = |m1|
5: c∗ $←− Enc(k, mb, ad)
6: b∗ $←− AEnc(·,·),Dec(·,·)

1 (st, c∗)
7: return b

?= b∗ ∧ (c∗, ad) /∈ Q

Enc(m, ad)
1: c $←− Enc(k, m, ad)
2: return c

Dec(c)
1: m := Dec(k, m, ad)
2: Q := Q∪ {c, ad}
3: return m

Figure 2.4: Security experiment ExpIND-CCA
AEAD,A (λ) for IND-CCA-security of authenti-

cated encryption with associated data.

encryption with associated data (AEAD), where the encryption algorithm takes
an additional input ad for which integrity but no secrecy will be ensured by the
ciphertext.

Definition 7. An authenticated encryption with associated data scheme consists
of three PPT algorithms AEAD = (KGen, Enc, Dec) with key space K, message
space M, ciphertext space C, and associated data space AD.

KGen(1λ): takes as input a security parameter λ and outputs a key k ∈ K.

Enc(k, m, ad): takes as input a key k ∈ K, a message m ∈ M, and associated
data ad ∈ AD, and outputs a ciphertext c ∈ C.

Dec(k, c, ad): takes as input a key k ∈ K, a ciphertext c ∈ C, and associated data
ad ∈ AD, and outputs a message m ∈M or an error symbol ⊥.

We say a scheme AEAD is correct if for all k $←− KGen(1λ), all m ∈ M, and all
ad ∈ AD it holds that

Dec(k, Enc(k, m, ad), ad) = m.

Again, we consider IND-CCA- and INT-CTXT-security (see Figure 2.4 and 2.5).

Definition 8. The advantage of an adversary A = (A0,A1) against the indis-
tinguishability of ciphertexts under chosen ciphertext attacks (IND-CCA) of an
AEAD scheme AEAD = (KGen, Enc, Dec) is defined as

AdvIND-CCA
AEAD,A (λ) :=

∣∣∣2 · Pr
[
ExpIND-CCA

AEAD,A (λ) = 1
]
− 1

∣∣∣ .
We say AEAD is IND-CCA-secure if AdvIND-CCA

AEAD,A (λ) is negligible in λ for all efficient
adversaries A.
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ExpINT-CTXT
AEAD,A (λ)

1: Q := ∅
2: k $←− KGen(1λ)
3: (c∗, ad∗) $←− AEnc(·,·)

4: m := Dec(k, c∗, ad∗)
5: return m ̸= ⊥ ∧ (c∗, ad∗) /∈ Q

Enc(m, ad)
1: c $←− Enc(k, m, ad)
2: Q := Q∪ {c, ad}
3: return c

Figure 2.5: Security experiment ExpINT-CTXT
AEAD,A (λ) for INT-CTXT-security of authen-

ticated encryption with associated data.

Definition 9. The advantage of an adversary A against the ciphertext integrity
(INT-CTXT) of an AEAD scheme AEAD = (KGen, Enc, Dec) is defined as

AdvINT-CTXT
AEAD,A (λ) := Pr[ExpINT-CTXT

AEAD,A (λ) = 1].

We say AEAD is INT-CTXT-secure if AdvINT-CTXT
AEAD,A (λ) is negligible in λ for all

efficient adversaries A.

2.3.3 Asymmetric Encryption
An asymmetric or public-key encryption (PKE) scheme allows parties to commu-
nicate without having to first establish a shared key. Instead a party generates a
key pair consisting of a public and a secret key. The public key is published and
used by other parties to encrypt messages. The corresponding secret key is then
used to decrypt ciphertexts.

Definition 10. A public-key encryption scheme consists of three PPT algorithms
PKE = (KGen, Enc, Dec) with key space K = PK × SK, message space M, and
ciphertext space C.

KGen(1λ): takes as input a security parameter λ and outputs a key pair (pk, sk) ∈
K.

Enc(pk, m): takes as input a public key pk ∈ PK and a message m ∈ M and
outputs a ciphertext c ∈ C.

Dec(sk, c): takes as input a secret key sk ∈ SK and a ciphertext c ∈ C and outputs
a message m ∈M or an error symbol ⊥.

We say a scheme PKE is correct if for all (pk, sk) $←− KGen(1λ) and all m ∈ M it
holds that

Dec(sk, Enc(pk, m)) = m.
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ExpIND-CPA
PKE,A (λ)

1: (pk, sk) $←− KGen(1λ)
2: b $←− {0, 1}
3: (m0, m1, st) $←− ADec(·)

0 (pk) with |m0| = |m1|
4: c∗ $←− Enc(pk, mb)
5: b∗ $←− ADec(·)

1 (st, c∗)
6: return b

?= b∗

Figure 2.6: Security experiment ExpIND-CPA
PKE,A (λ) for IND-CPA-security of public-key

encryption.

ExpIND-CCA
PKE,A (λ)

1: Q = ∅
2: (pk, sk) $←− KGen(1λ)
3: b $←− {0, 1}
4: (m0, m1, st) $←− ADec(·)

0 (pk) with |m0| = |m1|
5: c∗ $←− Enc(pk, mb)
6: b∗ $←− ADec(·)

1 (st, c∗)
7: return b

?= b∗ ∧ c∗ /∈ Q

Dec(c)
1: m := Dec(k, c)
2: Q := Q∪ {c}
3: return m

Figure 2.7: Security experiment ExpIND-CCA
PKE,A (λ) for IND-CCA-security of public-key

encryption.

Similarly to symmetric encryption, we again consider IND-CPA and IND-CCA
security. A difference in the security experiments for PKE is that there is no
encryption oracle. This is due to the fact that the adversary receives the public
key and can hence encrypt messages by itself without the help of an oracle. The
formal security experiments are given in Figures 2.6 and 2.7.

Definition 11. The advantage of an adversary A = (A0,A1) against the indis-
tinguishability of ciphertexts under chosen plaintext attacks (IND-CPA) of a PKE
scheme PKE = (KGen, Enc, Dec) is defined as

AdvIND-CPA
PKE,A (λ) :=

∣∣∣2 · Pr
[
ExpIND-CPA

PKE,A (λ) = 1
]
− 1

∣∣∣ .
We say PKE is IND-CPA-secure if AdvIND-CPA

PKE,A (λ) is negligible in λ for all efficient
adversaries A.

Definition 12. The advantage of an adversary A = (A0,A1) against the indistin-
guishability of ciphertexts under chosen ciphertext attacks (IND-CCA) of a PKE
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ExpsEUF-CMA
MAC,A (λ)

1: Q = ∅
2: k $←− KGen(1λ)
3: (m∗, t∗) $←− ATag(·)

4: return Vrfy(k, m∗, t∗) ?= 1 ∧ (m∗, t∗) /∈ Q

Tag(m)
1: t $←− Tag(k, m)
2: Q := Q∪ {(m, t)}
3: return t

Figure 2.8: Security experiment ExpsEUF-CMA
MAC,A (λ) for sEUF-CMA-security of mes-

sage authentication codes.

scheme PKE = (KGen, Enc, Dec) is defined as

AdvIND-CCA
PKE,A (λ) :=

∣∣∣2 · Pr
[
ExpIND-CCA

PKE,A (λ) = 1
]
− 1

∣∣∣ .
We say PKE is IND-CCA-secure if AdvIND-CCA

PKE,A (λ) is negligible in λ for all efficient
adversaries A.

2.3.4 Message Authentication Codes
A message authentication code (MAC) allows parties to ensure the authentication
of their communication. For this, the parties rely on a shared key, that can be
used to compute tags over messages and to verify tags.

Definition 13. A message authentication code consists of three PPT algorithms
MAC = (KGen, Tag, Vrfy) with key space K, message space M, and tag space T .

KGen(1λ): takes as input a security parameter λ and outputs a key k ∈ K.

Tag(k, m): takes as input a key k ∈ K and a message m ∈ M and outputs a tag
t ∈ T .

Vrfy(k, m, t): takes as input a key k ∈ K, a message m ∈M, and a tag t ∈ T and
outputs 0 or 1.

We say a scheme MAC is correct if for all k $←− KGen(1λ) and all m ∈ M it holds
that

Vrfy(k, m, Tag(k, m)) = 1.

Informally speaking, we require for security that it should be difficult to forge
a valid tag for any message. We formalize this via the standard notion of strong
existential unforgeability under chosen message attacks (sEUF-CMA), for which
we depict the security experiment in Figure 2.8.
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ExpsEUF-CMA
Sig,A (λ)

1: Q = ∅
2: (pk, sk) $←− KGen(1λ)
3: (m∗, σ∗) $←− ASign(·)

4: return Vrfy(k, m∗, σ∗) ?= 1 ∧ (m∗, σ∗) /∈ Q

Sign(m)
1: σ $←− Sign(sk, m)
2: Q := Q∪ {(m, σ)}
3: return σ

Figure 2.9: Security experiment ExpsEUF-CMA
Sig,A (λ) for sEUF-CMA-security of digital

signatures.

Definition 14. The advantage of an adversary A against the strong existen-
tial unforgeability under chosen message attacks (sEUF-CMA) of a MAC scheme
MAC = (KGen, Tag, Vrfy) is defined as

AdvsEUF-CMA
MAC,A (λ) := Pr

[
ExpsEUF-CMA

MAC,A (λ) = 1
]

.

We say MAC is sEUF-CMA-secure if AdvsEUF-CMA
MAC,A (λ) is negligible in λ for all effi-

cient adversaries A.

2.3.5 Digital Signatures
Digital signatures are the asymmetric analogue to MACs. The goal of achieving
authentication is the same for both primitives, however in contrast to MACs,
digital signatures do not rely on a shared key but on a key pair consisting of a
public and a secret key. The secret key is used to sign messages and anyone in
possession of the corresponding public key can verify the signature.

Definition 15. A digital signature consists of three PPT algorithms Sig =
(KGen, Sign, Vrfy) with key space K = PK×SK, message spaceM, and signature
space Σ.

KGen(1λ): takes as input a security parameter λ and outputs a key pair (pk, sk) ∈
K.

Sign(sk, m): takes as input a secret key sk ∈ SK and a message m ∈ M and
outputs a signature σ ∈ Σ.

Vrfy(pk, m, σ): takes as input a public key pk ∈ PK, a message m ∈ M, and a
signature σ ∈ Σ and outputs 0 or 1.

We say a scheme Sig is correct if for all (pk, sk) $←− KGen(1λ) and all m ∈ M it
holds that

Vrfy(k, m, Sign(k, m)) = 1.

21



ExpGapCDH
G,A (λ)

1: x, y $←− Zq

2: h $←− ADDH(·,·,·)(gx, gy)
3: return gxy ?= h

DDH(gx, gy, gz)
1: return gxy ?= gz

Figure 2.10: Security experiment ExpGapCDH
G,A (λ) for the GapCDH problem relative

to a group G = ⟨g⟩ of prime order q.

Security-wise we again require that it should be difficult to forge a valid signa-
ture, which is formalized in the security experiment in Figure 2.9.

Definition 16. The advantage of an adversary A against the strong existential
unforgeability under chosen message attacks (sEUF-CMA) of a digital signature
Sig = (KGen, Sign, Vrfy) is defined as

AdvsEUF-CMA
Sig,A (λ) := Pr

[
ExpsEUF-CMA

Sig,A (λ) = 1
]

.

We say Sig is sEUF-CMA-secure if AdvsEUF-CMA
Sig,A (λ) is negligible in λ for all efficient

adversaries A.

2.4 Computational Problems
In this section we recap some well-known computational problems that we use for
our security proofs. All problems we introduce here are variants of the computa-
tional Diffie–Hellman (DH) problem, which stems from the seminal work by Diffie
and Hellman [DH76].

Gap Diffie–Hellman. We begin with the GapCDH problem [GJK21]. Through-
out this section, let G be a cyclic group of prime order q with generator g. The
computational Diffie–Hellman (CDH) problem is the task of computing gxy given
two random elements gx and gy. In the GapCDH problem the adversary is ad-
ditionally given access to an oracle DDH(·, ·, ·) that takes as input three group
elements gx, gy, and gz and outputs 1 if z = xy and 0 otherwise (see Figure 2.10).

Definition 17. Let G = ⟨g⟩ be a cyclic group of prime order p. The advantage
of an adversary A in the gap computational Diffie–Hellman (GapCDH) problem
is defined as

AdvGapCDH
G,A (λ) := Pr

[
ExpGapCDH

G,A (λ) = 1
]

.

We say the GapCDH problem is hard relative to G if AdvGapCDH
G,A (λ) is negligible

in λ for all efficient adversaries A.
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ExpStDH
G,A (λ)

1: x, y $←− Zq

2: h $←− ADDH(·,·)(gx, gy)
3: return h

?= gxy

DDH(gy, gz)
1: return gxy ?= gz

Figure 2.11: Security experiment ExpStDH
G,A (λ) for the StDH problem relative to a

group G = ⟨g⟩ of prime order q.

ExpOMDH
G,n,A (λ)

1: x, y1, . . . , yn
$←− Zq

2: q := 0
3: S $←− ADDH(·,·,·,·),CDH(·)(gx, gy1 , . . . , gyn)
4: return S

?= {(gyi , gxyi) | i ∈ {1, . . . , n}}
∧ |S| = q + 1∧ q < n

DDH(h, hx, hy, hz)
1: return hxy ?= hz

CDH(h)
1: q := q + 1
2: return hx

Figure 2.12: Security experiment ExpOMDH
G,n,A (λ) for the OMDH problem relative to

a group G = ⟨g⟩ of prime order q.

Strong Diffie–Hellman. Next, we introduce the strong Diffie-Hellman problem
[ABR01]. This is essentially the same as the GapCDH problem, except that the
first input to the DDH oracle is fixed to the challenge value gx. The experiment
is depicted in Figure 2.11.

Definition 18. Let G = ⟨g⟩ be a cyclic group of prime order p. The advantage
of an adversary A in the strong Diffie–Hellman (StDH) problem is defined as

AdvStDH
G,A (λ) := Pr

[
ExpStDH

G,A (λ) = 1
]

.

We say the StDH problem is hard relative to G if AdvStDH
G,A (λ) is negligible in λ

for all efficient adversaries A.

One-more Diffie–Hellman. Finally, we consider the one-more Diffie–Hellman
(OMDH) problem [JKKX16], which is another variant of the CDH problem. Here,
the adversary gets n values gy1 , . . . , gyn as input and can use the CDH(·) oracle
to get the value gxyi for all but one yi. Additionally, it is given access to an even
more powerful oracle DDH(·, ·, ·, ·) than in the GapCDH problem, where it can
choose the base to which the discrete logarithm of the three group elements is
taken (see Figure 2.12).

23



Definition 19. Let G = ⟨g⟩ be a cyclic group of prime order p. The advantage of
an adversary A in the one-more Diffie–Hellman (OMDH) problem is defined as

AdvOMDH
G,n,A (λ) := Pr

[
ExpOMDH

G,n,A (λ) = 1
]

.

We say the n-OMDH problem is hard relative to G if AdvOMDH
G,n,A (λ) is negligible in

λ for all efficient adversaries A.

2.5 The Random Oracle Model
The random oracle model (ROM) [BR93] is a tool that is commonly used in the
security proofs of many cryptographic schemes using hash functions. The ROM is
often used when the scheme cannot be proven secure under standard assumptions
such as collision resistance. In the ROM, a hash function is idealized as a truly
random function with consistent input/output behavior to which all parties and
the adversary have oracle access. In security proofs the random oracle is typically
implemented as a large input/output table that is filled via lazy-sampling, which
means that the table is initially empty and whenever the random oracle receives
an input that it has not seen previously, it samples a new random output and
adds the pair of input and output to the table. A very useful feature of the ROM,
which is enabled by the lazy-sampling, is the programmability. Programmability
denotes that a reduction simulating a random oracle to an adversary does not
have to sample truly random outputs but may also choose the outputs for some
queries to its liking as long as they are indistinguishable from a uniformly random
output. This is a very important proof technique and we will also make use of it
in this thesis.

Notably, a security proof in the ROM does not translate to practice if the
given hash function does not closely approximate the random oracle, meaning
that it does not behave almost like a random function. A notable example are
hash functions based on the Merkle–Damgård construction [Dam90] such as MD5
[Riv92], SHA1 [EJ01], and SHA2 [EH11], which all suffer from length extension
attacks [Tsu92]. Nevertheless, a proof in the ROM is still better than no proof
at all and moreover implies that in order to break the scheme in practice, an
adversary must exploit weaknesses in the hash function.3 For this reason, the
ROM is still widely accepted as a useful paradigm.

3Assuming no other idealizing assumption is made in the proof.

24



Part I

Key Confirmation
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3 On the Concrete Security of Key
Confirmation

Author’s contribution. This chapter is based on currently unpublished joint
work with Kai Gellert, Kristian Gjøsteen, Håkon Jacobsen, and Tibor Jager, which
is an extension of the results by Gellert, Gjøsteen, Jacobsen, and Jager [GGJJ23].
The author of this thesis contributed the impossibility result in Section 3.6, which
extends the impossibility result of [GGJJ23] to a larger class of protocols than in
[GGJJ23]. The idea for the result evolved from discussions with Kristian Gjøsteen
and Tibor Jager, and the author of this thesis contributed the formal write up of
the result.

3.1 Introduction
From Weak to Full Forward Security. To upgrade an AKE protocol from weak
forward security to full forward security, there are typically two main approaches
for a generic transform: either using the key confirmation paradigm we already
introduced in Section 1.1 or authenticating the protocol messages with digital
signatures. The key confirmation approach is very efficient, and adds only a negli-
gible communication and computational cost to the underlying protocol as the key
confirmation values can be MACs, or extra output from the PRF that generated
the session key. The digital signature approach on the other hand is simple and
generic, but does not yield the most efficient protocols, since the signatures add
communication and computational overhead to the underlying protocol.

From Implicit to Explicit Authentication. The notions of weak and full forward
security are also closely connected to implicit and explicit authentication in key
exchange protocols [BPR00, BG11, DFW20]. Implicit authentication ensures to
a protocol participant that only its intended communication peer will be able to
derive the same session key. However, it does not guarantee that this peer actually
derived the session key or in fact participated in the protocol at all. By contrast,
explicit authentication ensures that the intended communication partner is indeed
online and has actively participated in the protocol.

Besides being able to turn weakly secure protocols into fully forward secure
protocols, another feature of key confirmation (and digital signatures) is that it
can also generically convert an implicitly authenticated protocol into an explicitly
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authenticated one.1

Efficient protocols and digital signatures. In this chapter we aim to construct
highly efficient key exchange protocols with full forward security. In doing so, we
will not focus on protocols based on digital signatures. There are two reasons for
this.

The first is that tightly secure key exchange protocols whose user long-term
keys are digital signature keys require signature schemes with tight security in a
multi-user setting with adaptive corruptions [BHJ+15]. This is because standard
single-user security notions, such as textbook EUF-CMA security, would incur an
inherent linear security loss in the number of users. While there exist several con-
structions of suitable schemes [BHJ+15, Bad14, GJ18, DGJL21, PW22, HLWG23],
all known constructions are much less efficient than standard signature schemes.

The second reason is the transition to post-quantum cryptography. We cur-
rently do not have candidates of post-quantum digital signature schemes that can
serve as generic one-to-one replacements for classical digital signature scheme in
many applications. This is because current post-quantum schemes have signifi-
cantly more overhead, either in terms of computation or communication. Among
those recently selected for standardization by NIST, SPHINCS+ [HBD+22] has
very large signatures and is considered too slow for many applications.2 Other
schemes have better computational performance [LDK+22, PFH+22], but suffer
from relatively large public keys and signatures. Therefore, while digital signa-
tures are a standard building block of real-world key exchange protocols, such as
TLS 1.3 [Res18], there is currently a trend to entirely avoid digital signatures in
future key exchange protocols. For example, the KEMTLS protocol [SSW20] is
a proposal for a quantum-secure TLS-replacement that uses a key encapsulation
mechanism (KEM) instead of a signature scheme. KEMs can currently be con-
structed much more efficiently in the post-quantum setting. Other examples are
the generic protocol designs based on KEMs by Pan et al. [PWZ23] and Hövel-
manns et al. [HKSU20], which both provide only weak forward security. While
a signature scheme provides explicit authentication in a straightforward way, a
KEM alone provides only implicit authentication via the communication part-
ner’s ability to correctly decrypt an encapsulated key. Explicit authentication
and full forward security can then be achieved by adding key confirmation mes-
sages. Hence, even though key confirmation has been used for more than two
decades, understanding its concrete security is becoming particularly relevant in
the post-quantum setting.

1Implicitly authenticated protocols often have weak forward security, and explicitly authenti-
cated protocols often have full forward security. However, we note that these are distinct
notions. That is, there are protocols having explicit authentication but no forward secu-
rity [BR94, Fig. 2], and fully forward secure protocols without explicit authentication, e.g.
[BG11, Protocol 4] and [CF15, Fig. 3].

2See https://blog.cloudflare.com/post-quantum-future/, for example.

28

https://blog.cloudflare.com/post-quantum-future/


The exact security of key confirmation. Suppose Π is an arbitrary key ex-
change protocol providing weak forward security and implicit authentication. The
protocol participants exchange a session key using Π and from this derive key con-
firmation messages as well as a new session key using a pseudorandom function
(PRF). They then exchange and verify the confirmation messages before out-
putting the new session key. Call this extended protocol Π+. Intuitively, protocol
Π+ should achieve full forward security and explicit authentication via a tight re-
duction to the weak forward security and implicit authentication of protocol Π as
well as the multi-user security of the PRF. Indeed, this is the claim of Theorem 6
in [CCG+19]. Unfortunately, this claim turns out to be wrong. In fact, as we will
show, for certain natural protocols, such as the protocol from Cohn-Gordon et al.
[CCG+19] and HMQV [Kra05], adding key confirmation messages like this must
necessarily lose a factor of U , where U is the number parties in the protocol.

To explain the flaw in [CCG+19], we first describe the high-level idea of their
security reduction from protocol Π+ to protocol Π. The reduction uses Test or
Reveal queries to get the session keys from Π and uses these to simulate the
key confirmation messages of protocol Π+. However, the reduction must decide
which session keys it will obtain via Reveal queries and which keys it will obtain
via Test queries. The standard strategy would be to guess which session the
adversary (against Π+) will test. But this approach cannot be used in [CCG+19]
as it would immediately incur a linear security loss in the number of users times
the number of sessions per user. Instead, the reduction proceeds as follows: once
a session has reached an accepting state in the underlying AKE protocol Π, the
reduction will base its decision on which query to use on the current freshness of
the session. If the session is not fresh, it will issue a Reveal query. If the session
is fresh, it will issue a Test query.

The problem with this strategy is that the freshness notion is with respect
to protocol Π, which is only guaranteeing weak forward security. Recall that
in a weak forward security model the adversary is forbidden from both actively
modifying the messages in a Test session and revealing the long-term secret of
its peer (refer to Section 3.3 for formal definitions). This is due to an unavoidable
attack first described by [BPR00] (see [BG11] and [CF15] for further discussions).
However, in the context of the reduction of [CCG+19], this becomes an issue since
the adversary against Π+ is not restricted in this way, while the reduction is.

To illustrate the issue (and the attack), consider an implicitly authenticated
Diffie–Hellman based protocol where Alice and Bob exchange DH shares gx and
gy, then derive their session key from gxy and some combination of their long-
term keys with gx and gy. In the attack, the adversary A first impersonates Alice
towards Bob by creating the DH share gx on her behalf. Once Bob receives this
message he creates its own DH share gy and accepts in protocol Π. Since A has not
(yet) revealed the long-term key of Alice, Bob is at this point still fresh in protocol
Π according to the weak forward security model. Consequently, the reduction will
issue a Test query in order to simulate its key confirmation message in protocol
Π+. However, if A now reveals the long-term key of Alice, then Bob will no longer
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be fresh (in protocol Π). At this point the reduction is stuck. This means that
the reduction in Theorem 6 of [CCG+19] does not work.

Our contributions. While the reduction of [CCG+19] does not work, can the
result nevertheless be salvaged? Unfortunately, no. The notions of weak forward
secrecy and implicit authentication turns out to be too weak to be tightly upgraded
to full forward secrecy and explicit authentication by simply adding key confir-
mation messages. Specifically, we show that a tight reduction from full forward
secrecy and explicit authentication to weak forward secrecy and implicit authen-
tication is impossible for a large class of compilers and protocols of interest for
practical applications. In particular, this includes the common key confirmation
message compiler discussed above and the key exchange protocol of [CCG+19].
We prove this using a meta-reduction described in more detail below.

On the other hand, by considering what the actual end goal of [CCG+19] was—
to create as efficient as possible key exchange protocols having full forward security
and explicit authentication, with optimal tightness—we can in fact recover their
intended result by a rearranging of arguments. Here, tightness is with respect
to the lowest-level building block of the protocol. In the case of [CCG+19] this
is the strong Diffie–Hellman (StDH) assumption (see Section 2.4). It was shown
in [CCG+19] that a large class of DH-based implicitly authenticated key exchange
protocols must lose a factor of U when reducing to StDH, where U is the number
of parties. If the reduction from Π+ to Π had been tight, as mistakenly claimed
in [CCG+19], then the overall result would have been a protocol Π+ with full
forward security and an optimal tightness loss of U to the StDH assumption.
However, in light of our impossibility result, the best one can hope for using this
approach is a loss of U2, since there is a tightness loss of U going from Π+ to Π
and a tightness loss of U going from Π to StDH.

But this begs the question: if we know from the beginning that we have to lose
a factor of at least U , is there some other way of structuring our arguments in
order to avoid a quadratic loss? Interestingly, the solution is to first reduce the
security of protocol Π+ to an even weaker notion of implicit security for protocol
Π, taking the “hit” of U here. This weaker notion is a selective security variant
of the key exchange game where the adversary must commit to a single party it
will not reveal the long-term key of.3 Establishing that full forward secrecy and
explicit authentication can be reduced generically to this selective security variant
with only a loss of U is our second main contribution.

Finally, if the selective security notion can be satisfied tightly by protocol Π from
some underlying hardness assumption, then, by using the generic result above, we
obtain a protocol Π+ with full forward security and explicit authentication losing

3This is related to the selective security notion from [KPW13], but the two notions are tech-
nically incomparable (see Remark 1). Moreover, in [KPW13] the adversary commits to both
parties and their sessions involved in the event. This incurs a quadratic security loss, making
it unsuitable for our purposes.
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only and overall factor of U . That is, we provide a modular approach towards cre-
ating protocols with full forward security (and explicit authentication): first prove
that the initial protocol Π satisfies selective security, then add key confirmation
messages to upgrade to full forward security. If the first can be obtained tightly,
then our generic result shows that the latter is obtained with a linear tightness
loss. Our third main contribution is to show that the selective security notion
can indeed be attained tightly. We illustrate this with the [CCG+19] protocol
and show that it satisfies selective security tightly from the strong Diffie–Hellman
assumption. Together with the generic upgrade theorem, this re-establishes their
originally claimed result, namely that full forward security can be obtained from
the StDH assumption with only a linear loss.

In summary, our main results are:

• (Section 3.4) We prove that a key exchange protocol can be upgraded from
selective weak forward security and implicit authentication, to full forward
security and explicit authentication using key confirmation. The proof has
a linear security loss in the number of parties U , which is optimal by the
impossibility result in Section 3.6.
One consequence of the generic upgrade theorem is that future key exchange
protocols can be designed towards the goal of selective security. As illus-
trated by the examples in Section 3.5, this may simplify proofs significantly.

• (Section 3.5) We show that the Diffie–Hellman-based protocol from [CCG+19]
tightly satisfies the selective security notion, illustrating that the overall
proof strategy achieves our goal of a protocol with full forward security and
a linear security loss.

• (Section 3.6) Finally, we give an impossibility result stating to the effect that
all security proofs showing that key confirmation upgrades weak forward
security to full forward security, must have a security loss of at least U .

Basic idea of the impossibility result. Our impossibility result shows essentially
that if one constructs a protocol Π+ from an underlying protocol Π by extending it
with two additional key confirmation messages, and if the security analysis of Π+

includes a reduction R to the weak forward security and implicit authentication
of Π, then R loses a factor which is at least linear in the number of parties U .

We prove this result with a meta-reduction M that runs the reduction R as a
subroutine by simulating a high-advantage adversary A for R. The main chal-
lenge of the meta-reduction is to properly simulate A, as this should actually be
impossible to do efficiently if the protocol is secure. Hence, we have to define the
adversary such that on the one hand it breaks security of the compiled protocol,
and thus is a valid adversary, and on the other hand M is able to simulate A
efficiently in almost all cases. A bound on the probability that M is not able
to simulate A then can be used to derive a bound on the security loss of the
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reduction. This is the standard meta-reduction technique, as used for example in
[Cor02, PV05, HJK12, FF13, LW14, BJLS16, FJS19, GGJJ23].

The main technical novelty in this thesis is how we implement this technique.
Before explaining this, we first have to sketch the hypothetical adversary A that
our meta-reduction will simulate (see Section 3.6.2 for a precise description of A).
It proceeds as follows.

1. A receives U public keys from its Π+ experiment and chooses a public key
at random to be distinguished.

2. A asks its experiment to start one session for each public key, such that the
sessions have distinct partner keys and their partners are supposed to send
the first key confirmation message.

3. A simulates partners for these sessions by creating protocol messages that
it sends to the experiment, until it receives key confirmation messages.
The main purpose of the first three steps is to force the reduction to output
(properly distributed) key confirmation messages for all U sessions.

4. A corrupts the secret keys of all but the distinguished public key and verifies
that they are correct, aborting if not.
The main purpose of this step is to force R to “know” all secret keys corre-
sponding to all public keys except for the distinguished key.

5. A checks that it received correct key confirmation messages from all the
sessions in Step 3 and aborts if not.
The Π+ security experiment will always send correct key confirmation mes-
sages and secret keys, but a reduction might not be able to do this. This is
where we will obtain the inherent tightness loss of the reduction.

6. Finally, A (somehow) computes the session key and the second key confirma-
tion message for the session with the distinguished public key as its partner
sends it, which then accepts. A then tests it and compared the returned key
to the real session key, winning the game.

Note that the adversary performs potentially inefficient computations in Steps 3, 4,
5 and 6. However, following the standard meta-reduction technique, it is sufficient
to describe such a hypothetical adversary, because a black-box reduction R should
still be able to leverage A to solve some computationally hard problem, such as
breaking the security of Π.

Now let us consider our approach to simulate this hypothetical adversary to-
wards a reduction R in our meta-reduction M. The first main difficulty arises
in Step 3 when sending messages without having corrupted the corresponding
key. This is because the protocol messages of Π+ produced by A may not be
efficiently computable without knowing the sending user’s long-term secret key.

32



Hence, M cannot efficiently compute them. To overcome this issue we need new
meta-reduction techniques.

Our first new technique uses that we have defined the hypothetical adversary
such that all messages it needs to produce (until its last step) are messages of the
underlying protocol Π. This is the case, because our definition of A guarantees
that R outputs the first key confirmation message for all sessions, and all previous
messages are messages of Π. Then we use that the meta-reduction runs R as a
subroutine, and that R itself interacts with the security experiment of Π. Our
new idea is to leverage the security experiment of Π, by lettingM create “hidden
sessions” in this experiment. These sessions are invisible to R, in the sense that
R is not aware that they exist. On the one hand, this provides us with a leverage
to efficiently provide M with the messages that it cannot necessarily efficiently
compute on its own. On the other hand, we have to proceed carefully, because we
have to make sure that the hidden sessions do not interfere with the interaction
between R and the security experiment of Π.

The second difficulty lies in Step 4. For the long-term secret keys, we will
argue that the reduction must have forwarded all corruption queries to its own
security experiment for Π, such that all these users are corrupted there, too. If the
reduction did not for some query, then either it did not provide a correct secret
key and we can thus efficiently simulate A, or it outputs a long-term secret key
which is correct with some non-negligible probability, and the corresponding user
is uncorrupted in the security experiment of Π. In the latter case, we show how
R could use this secret key to break the security of Π directly.

The third main difficulty lies in Step 5, in the verification of the key confirma-
tion messages. Again, it is not straightforward how this step can be efficiently
implemented by M, because even though A (and thus M) knows all secret keys
(except the one corresponding to the distinguished public key) from the corrupt
queries in Step 4, it knows neither the secret key corresponding to the distin-
guished public key, because this key was not corrupted, nor the randomness that
the experiment (or the reduction) has used in order to create the message received
when A has impersonated that user. Our new approach here is to let M inspect
the queries made by R to simulate the key confirmation messages, and apply a
careful case distinction.

• If there exists any session for which R outputs a key confirmation message,
butR did not reveal the session key, thenM assumes that the corresponding
key confirmation message is incorrect and thus is able to properly simulate
A by letting it abort. To argue that this is a proper simulation, we show
that if the key confirmation is correct, but the corresponding session not
revealed we can use it to break Π.

• We also need to consider the possibility that the adversary causes our “hid-
den sessions” to become partnered, which could be problematic since we may
have revealed the session keys of these hidden sessions. This is a technical
problem which we reduce to match security for the underlying protocol.
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Once we are sure neither of these events happen, the only way the meta-
reduction does not correctly abort is if the reduction correctly predicted our dis-
tinguished session, which happens with probability at most 1/U .

Evading the impossibility result. We emphasize that our impossibility result
only rules out reductions from the “standard” full forward security of Π+ to the
“standard” weak forward security of Π. While this matches how key confirmation
is commonly used to achieve full forward security (cf. [Kra05, Yan13a, GGJJ23]),
one possible way to circumvent it could be to either aim for a weaker, yet pos-
sibly equally useful notion of full forward security. Alternatively, one could start
from a notion of weak forward security that provides stronger properties, but is
possibly equally efficiently achievable. This was indeed done in a recent work
by Pan et al. [PRZ24]. They show how to construct tightly secure protocols via
key confirmation, thus seemingly contradicting our impossibility results. Their
main idea is to circumvent the impossibility result by starting from a weakly-
secure protocol that provides a new, non-standard security notion called one-way
verifiable weak forward secrecy (OW-VwFS). Essentially, the verifiability means
that an adversary is able to efficiently verify that a given session key belongs to
a given session. In contrast, our impossibility results consider underlying proto-
cols with standard indistinguishability-based weak forward secrecy (wFS). As also
explained in [PRZ24], the verifiability of their new OW-VwFS notion is stronger
than standard wFS, and thus makes it possible to bypass the impossibility.

Both results together nicely explain the possibility and impossibility of achieving
tight security with the key confirmation paradigm: if the underlying weakly-secure
protocol additionally provides verifiability in the sense of OW-VwFS, then one can
obtain a tightly and fully forward-secure protocol with the approach of [PRZ24].
However, in general this is not the case, and thus our impossibility results show
that the standard key confirmation paradigm is inherently lossy.

Another approach to evade the impossibility result could be to exploit that we
require that the underlying protocol Π has unique and efficiently verifiable secret
keys. This condition seems inessential, but there are concrete constructions where
protocol messages may, without compromising security, depend on the secret key
such that it is easy to see if two sessions use the same secret key. For example, a
reduction might embed some trivial redundancy to secret keys, such as a random
string which is sent along with every message. This might allow the reduction to
distinguish whether an adversary uses the same secret key as the reduction. While
we do not see how this could allow a reduction to avoid the impossibility result, it
would allow a reduction to detect our meta-reduction techniques, forming a tech-
nical obstruction to our proof. However, one can easily generalize our result from
unique to rerandomizable keys, using techniques from [HJK12, BJLS16]. Essen-
tially, the rerandomization ensures that a meta-reduction can turn a given secret
key for public key pk into a uniformly random secret key among all valid secret
keys for pk. We omit this, since this is a relatively straightforward generalization.
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3.2 Definitions
The formalism and definitions we use to model key exchange protocols are adapted
from de Saint Guilhelm et al. [DFW20]. Unlike the traditional Bellare–Rogaway [BR94,
BR95, BPR00] and (e)CK models [CK01, LLM07], security in this model is not
formulated as a single all-in-one game that implicitly captures all the properties a
protocol should have. Instead, security is split into many smaller definitions that
each captures a single “atomic” security property. This leads to a slight increase
in the number of definitions, as well as the number of proofs one have to carry out
in order to establish a protocol as “secure”. On the other hand, the advantage of
this approach is that each definition/property is much simpler and focused, and
the corresponding proofs similarly simple.

3.2.1 Syntax
A key exchange protocol is a tuple of stateless algorithms (KGen, Init, Run) where
KGen is the long-term key generation algorithm; Init creates a session state at
party i having intended peer j and role role, and returns this session’s initial
message (empty if a responder role); and Run takes as input a session state st and
a message m and outputs an updated state st′ and response message m′.

Session state. A session state st consists of the following variables.

• accept ∈ {true, false,⊥} – indicates the status of the key exchange run;
initialized to ⊥ and indicates a running, non-completed, session.

• key ∈ {0, 1}∗ ∪ {⊥} – the local session key derived during the key exchange
run; set once accept = true.

• role ∈ {init, resp} – the role of the session in the key exchange run.

• party – the party identity to which this session belongs.

• peer – the party identity of the intended peer for this key exchange run.

• sk – the secret long-term key of the party this session belongs to.

• pk – the public long-term key of the intended peer of the session.

• transcript – the (ordered) transcript of all messages sent and received by
session s. We use transcript− to denote the transcript minus the last message.

• aux – auxiliary protocol specific state, such as internal randomness and
ephemeral values.
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ExpPred
Π,U (A)

101: i∗ := A
102: b $←− {0, 1}∗

103: query_ctr := 0
104: session_ctr := 0
105: Accepted := Dict
106: Revealed := Dict
107: RevealedLTK := Dict
108: Tested := Dict
109: sk, pk := Dict
110: for i ∈ [1 . . . U ]:
111: (sk[i], pk[i]) $←− Π.KGen
112: RevealedLTK[i] := 0
113: if i ̸= i∗:
114: RevealedLTK[i] := 1
115: b′ := AO(pk, sk \ sk[i∗] )
116: return ¬Pred

NewSession(i ∈ [1, U ], j ∈ [1, U ], role)
201: query_ctr := query_ctr + 1
202: session_ctr := session_ctr + 1
203: s := session_ctr
204: Accepted[s] := 0
205: Revealed[s] := 0
206: Tested[s] := 0
207: (st, m) := Π.Init(i, j, sk[i], pk[j], role)
208: s.st := st
209: return (s, m)

Send(s, m)
301: query_ctr := query_ctr + 1
302: (m′, st′) := Π.Run(s.st, m)
303: s.st := st′

304: if s.accept = true:
305: Accepted[s] := query_ctr
306: return m′

Reveal(s)
401: query_ctr := query_ctr + 1
402: Revealed[s] := query_ctr
403: return s.key

RevealLTK(i ∈ [1, U ])
501: query_ctr := query_ctr + 1
502: if i = i∗:
503: return ⊥
504: if RevealedLTK[i] = 0:
505: RevealedLTK[i] := query_ctr
506: return sk[i]

Test(s)
601: query_ctr := query_ctr + 1
602: if Tested[s] ̸= 0:
603: return ⊥
604: if s.accept ̸= true:
605: return ⊥
606: Tested[s] := query_ctr
607: K0 := s.key
608: K1

$←− K
609: return Kb

Figure 3.1: Generic experiment parameterized on predicate
Pred, where A can make the queries in O =
{NewSession, Send, Reveal, RevealLTK, Test }. Code in
dashed boxes is only for the key secrecy game; code in filled boxes

is only for the selective key secrecy game. The notation s.st := st ′

means to assign all the variables in st ′ to the corresponding variables
associated with session s. Dict defines an associative array.

Security experiment We shall use the generic formal experiment ExpPred
Π,U (A)

given in Fig. 3.1 to define the various security properties of a key exchange protocol
(see Section 3.3). The experiment is parameterized on a security predicate Pred
that captures the security property being modeled. The experiment uses a number
of counters, variables and collections for bookkeeping purposes.

• query_ctr – incremented for each query made by the adversary. Used to
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order events in time; needed to define (full) forward secrecy.

• session_ctr – incremented for each new session created. Each session state
is associated with a unique session number which functions as an adminis-
trative label for that session (state). The session number is also given to the
adversary which can use it as an opaque handle to refer to a given session
in its queries. We use the notation “s.x” to refer to the variable x of the ses-
sion state identified by the administrative session number s. Note that the
adversary cannot “dereference” a session number in order to obtain internal
variables of the session state.

• Accepted, Tested, Revealed, RevealedLTK – associative arrays that record
when a session accepted, was tested, or when its session or long-term key
was revealed.

Common predicates. It will be useful to introduce a number of predicates on
the security experiment.

Definition 20 (Origin sessions). A (possibly non-accepted) session s′ is an origin-
session for an accepted session s if predicate Orig(s, s′) holds true, where

Orig(s, s′) ⇐⇒ s′.transcript ∈ {s.transcript, s.transcript−}. (3.1)

Definition 21 (Partnering). Two sessions s, s′ are partners if they have matching
conversations; that is, if the predicate Partner(s, s′) holds true, where

Partner(s, s′) ⇐⇒ s.transcript = s′.transcript. (3.2)

Like [DFW20] we do not require partners to agree upon each other’s identities.
This is an authentication property which will be covered by other definitions in
Section 3.3. Unlike [DFW20] we use matching conversations instead of abstract
session identifiers as our partnering mechanism. This is mainly done for the sake
of concreteness and is not a fundamental difference, although certain well-known
pitfalls need to be avoided when using matching conversations [LS17].

Definition 22 (SameKey). The predicate SameKey(s, s′) holds true if the sessions
both have established a session key and they are equal, that is

SameKey(s, s′) ⇐⇒ [s.key = s′.key ̸= ⊥]. (3.3)

Definition 23 (Authentication fresh). A session is authentication fresh if the
long-term key of its intended peer has not been revealed, that is:

aFresh(s) ⇐⇒ RevealedLTK[s.peer] = 0. (3.4)
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Finally, we define freshness predicates used for the key secrecy games. These
come in two flavors: weak forward secrecy and full forward secrecy [BPR00]. Com-
mon to both is that the adversary cannot reveal the session key of a tested session
or its partner. The difference is how long-term key leakage is handled. For weak
forward secrecy the adversary is forbidden from revealing the long-term key of a
session’s peer if it was actively interfering in the protocol run of the session (indi-
cated by the lack of an origin-session for the session in question). For full forward
secrecy this restriction is lifted, provided the leak happened after the session in
question accepted.

Definition 24 (Session key freshness). Let s.peer = j. The kFreshWFS(s) (resp.
kFreshFFS(s)) predicate hold if:

Revealed[s] = 0 (3.5)
∀s′ :: Partner(s, s′) =⇒ Revealed[s′] = 0 ∧ Tested[s′] = 0 (3.6)

(wFS) {s′ | Orig(s, s′)} = ∅ =⇒ aFresh(s) (3.7)
(fFS) {s′ | Orig(s, s′)} = ∅ =⇒ aFresh(s) ∨ (RevealedLTK[j] > Accepted[s])

(3.8)

3.3 Protocol security properties
This section defines the security properties a secure key exchange protocol ought
to have. The breakdown follows that of [DFW20] and consists of: soundness
properties (match and key-match soundness); various authentication properties
(implicit/explicit key and entity authentication); and session key secrecy. An
application will typically require all of these properties. Refer to [DFW20] for
further discussion and background.

Recall that the security experiment in Fig. 3.1 is parameterized on a predi-
cate Pred. In the following we define concrete predicates for each of the security
properties above. For each predicate there is also an associated advantage notion.

3.3.1 Match soundness
Match soundness is primarily a sanity check on the choice of partnering mecha-
nism. Namely, partnered sessions should derive the same session key (3.9); and
sessions will at most have one partner (3.10).

Definition 25 (Match soundness). The Match predicate evaluates to 1 iff ∀s, s′, s′′:

Partner(s, s′) =⇒ SameKey(s, s′) (3.9)
(Partner(s, s′) ∧ Partner(s, s′′)) =⇒ s′ = s′′ (3.10)

The match soundness advantage of an adversary A is

AdvMatch
Π,U (A) := Pr[ExpMatch

Π,U (A) = 1] (3.11)
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3.3.2 Key-match soundness
Key-match soundness (KMSound) is basically the converse of Match soundness.
While Match soundness says that partners should have equal session keys, KMSound
says that sessions having equal session keys should be partners.

Definition 26 (Key-match soundness). The KMSound predicate evaluates to 1 if
and only if

∀s :: (aFresh(s) ∧ s.accept) =⇒ ∀s′ :: (SameKey(s, s′) =⇒ Partner(s, s′)) (3.12)

The key-match soundness advantage of an adversary A is

AdvKMSound
Π,U (A) := Pr[ExpKMSound

Π,U (A) = 1]. (3.13)

3.3.3 Implicit key authentication
Implicit key authentication stipulates that two sessions that derive the same ses-
sion key should agree upon whom they are sharing this key with.

Definition 27 (Implicit key authentication). The iKeyAuth predicate evaluates
to 1 if and only if

∀s :: s.accept =⇒ ∀s′ :: (SameKey(s, s′) =⇒ s.peer = s′.party)

The implicit key authentication advantage of an adversary A is

AdviKeyAuth
Π,U (A) := Pr[ExpiKeyAuth

Π,U (A) = 1]. (3.14)

3.3.4 Explicit key authentication
Explicit key authentication stipulates that any two sessions that derive the same
session key should agree upon whom they are sharing this key with (as for implicit
key authentication), and as long as the session is authentication fresh some other
session deriving the same session key should exist.

Obviously, the session that sends the last message can never guarantee that
this message arrives at its destination, which means that this session can only
achieve the notion of almost-full key authentication, namely that an origin session
should exist and any origin session that has derived a session key has derived the
same key. A session that receives the last message, however, can guarantee that
another session exists that has derived the same key, and thereby achieve full key
authentication.

Let Lrcv denote the collection of all sessions that receive the last message of
the protocol, and let Lsend denote the collection of all sessions that send the last
message of the protocol.
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Definition 28 (Explicit key authentication). The fexKeyAuth predicate (resp.
afexKeyAuth predicate) evaluates to 1 if and only if

∀s ∈ Lrcv (resp. Lsend) :: s.accept =⇒ ∀s′ :: (SameKey(s, s′)⇒ s.peer = s′.party)
∧

(full) aFresh(s)⇒ ∃s′ :: SameKey(s, s′)

(almost-full) aFresh(s)⇒ ∃s′ ::
(
Orig(s, s′) ∧ [s′.key ̸= ⊥ =⇒ SameKey(s, s′)]

)
The full (resp. almost-full) explicit key authentication advantage of A is

AdvfexKeyAuth
Π,U (A) := Pr[ExpfexKeyAuth

Π,U (A) = 1] (3.15)
AdvafexKeyAuth

Π,U (A) := Pr[ExpafexKeyAuth
Π,U (A) = 1] (3.16)

3.3.5 Explicit entity authentication
Explicit entity authentication is almost identical to explicit key authentication,
the only difference being that the former is based on the Partner predicate while
the latter is based on the SameKey predicate. Basically, explicit key authentication
says that if a session with an honest peer accepts then there is some other session
holding the same session key, while explicit entity authentication says that if a
session with an honest peer accepts then it has a partner session.

Explicit key authentication and explicit entity authentication are closely related,
as shown in [DFW20].

Definition 29 (Explicit entity authentication). The fexEntAuth predicate (resp.
afexEntAuth predicate) evaluates to 1 if and only if

∀s ∈ Lrcv (resp. Lsend) :: s.accept =⇒ ∀s′ ::(Partner(s, s′) =⇒ s.peer = s′.party)
∧

(full) aFresh(s) =⇒ ∃s′ :: Partner(s, s′)

(almost-full) aFresh(s) =⇒ ∃s′ ::
(

Orig(s,s′) ∧ [s′.accept =⇒ Partner(s, s′)]
)

The full (resp. almost-full) explicit entity authentication advantage of A is

AdvfexEntAuth
Π,U (A) := Pr[ExpfexEntAuth

Π,U (A) = 1] (3.17)
AdvafexEntAuth

Π,U (A) := Pr[ExpafexEntAuth
Π,U (A) = 1] (3.18)

3.3.6 Key secrecy
Key secrecy is defined as usual with the adversary using a Test query to get the
real session key or a random key of a session. The adversary may make multiple
test queries, and they all share the same challenge bit, so that either all Test
queries return real keys, or all Test queries return random (and independently)
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sampled keys. Our experiment does not prevent the adversary from making Test
queries for sessions that are not key fresh, so we need to account for this in the
definition of advantage (called the penalty-style in [RZ18]).

Definition 30 (Key secrecy). If ∀s ∈ Tested :: kFreshWFS(s) = true (resp.
kFreshFFS(s) = true), the KeySecWFS (resp. KeySecFFS ) predicate returns 1
if and only if b′ = b. Else it returns b. The weak (resp. full) forward key secrecy
advantage of an adversary A is

AdvKeySecWFS
Π,U (A) :=

∣∣∣2 · Pr[ExpKeySecWFS
Π,U (A) = 1]− 1

∣∣∣ (3.19)

AdvKeySecFFS
Π,U (A) :=

∣∣∣2 · Pr[ExpKeySecFFS
Π,U (A) = 1]− 1

∣∣∣ (3.20)

Selective key secrecy. The selective key secrecy experiment is defined over the
experiment given in Fig. 3.1, where now the code inside the blue boxes is in-
cluded. In the selective security experiment the adversary has to commit to one
party it will not reveal the long-term key of throughout the game.

Definition 31 (Selective key secrecy). If ∀s ∈ Tested :: kFreshWFS(s) = true, the
SelKeySecWFS predicate returns 1 if and only if b′ = b. Else it returns b. The
selective key secrecy advantage of an adversary A is

AdvSelKeySecWFS
Π,U (A) :=

∣∣∣2 · Pr[ExpSelKeySecWFS
Π,U (A) = 1]− 1

∣∣∣ . (3.21)

Remark 1. Contrary to what one might expect, ordinary key secrecy does not
trivially reduce to selective key secrecy via a standard guessing argument (with
a tightness loss of U). In particular, an adversary that starts by revealing all
long-term keys will make a reduction to selective key secrecy unable to simulate
the one key it committed to. This makes our selective security security notion
incomparable to the selective notion of [KPW13], where the selected long-term key
only has to be involved in some event, not necessarily stay unrevealed throughout.

3.4 The security of adding key confirmation
Let Π denote an arbitrary key exchange protocol, and let Π+ denote the protocol
that extends Π by adding key confirmation messages from each side as illustrated
in Fig. 3.2. Conventionally, the key confirmation messages are derived from the
session key of Π using a PRF (and possibly a MAC) but in order to simplify the
later analysis we assume that Π produces session keys of the form (k, t, t′) directly.
Protocol Π+ is then derived from Π simply by defining its session key to be k,
and the key confirmation tags to be t and t′. Using this trick we can relate the
security of protocol Π+ purely to the security of protocol Π without having to rely
on PRFs or MACs.

Unfortunately, defining Π+ in terms of the key triple output by Π introduces one
technicality. We will often want to make an assertion of the form “if s and s′ have
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Alice Bob

Πk, t, t′ k, t, t′

t

t′

accept if received t is valid

accept if received t′ is valid

Figure 3.2: Protocol Π+ obtained by extending protocol Π with key confirmation
tags. All session variables in Π+ are inherited from Π, except for accept
which is defined as shown. The session sending the last message in
protocol Π sends tag t, and the session receiving the last message in
protocol Π sends tag t′.

equal keys in protocol Π+ (meaning k), then they also have equal keys in protocol
Π (meaning (k, t, t′))”. While this assertion easily follows in practice4, in the
generality we have presented Π and Π+ above the assertion does not automatically
follow. To cleanly state and prove our generic results we therefore introduce the
implication “equal k =⇒ equal (k, t, t′)” as an explicit security property.

To this end, let prefix : {0, 1}∗ → {0, 1}∗ be a function that returns a prefix of
a particular length (left unspecified) from its argument and define

SamePrefix(s, s′) ⇐⇒ [s.key, s′.key ̸= ⊥ ∧ prefix(s.key) = prefix(s′.key)]. (3.22)

Definition 32 (Same prefix security). The PreEqAllEq predicate evaluates to 1 if
and only if

∀s, s′ : SamePrefix(s, s′) =⇒ SameKey(s, s′). (3.23)

The same prefix advantage of A is

AdvPreEqAllEq
Π,U (A) def= Pr[ExpPreEqAllEq

Π,U (A)⇒ 1]. (3.24)

Remark 2. As mentioned above, proving same prefix security for a concrete pro-
tocol will typically be straightforward assuming the keys are derived using a rea-
sonable function. However, it is also possible to avoid the notion altogether (even
for completely generic protocols) using the proof technique of Lemma 1 in Sec-
tion 3.4.2. Specifically, if s and s′ have equal keys in protocol Π+ but not in
protocol Π, then this allows to break the (selective) key secrecy of protocol Π,
albeit with a tightness loss in the number of parties U .

4For example if (k, t, t′) is derived from the session transcript using a function for which getting
a collision just in k is unlikely, such as an extendable-output function or a random oracle
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KeySecFFS

fexEntAuth
+

afexEntAuth fexKeyAuth
+

afexKeyAuth

Match

iKeyAuth

PreEqAllEq

SelKeySecWFS

KMSound

KeySecWFS

Thm. 1
1

Thm. 11

Prop. 4
4

Prop. 44

Prop. 44

Prop. 44
Lemma 1

1

Lemma 11
Lemma 11

Figure 3.3: Steps in the proof of Theorem 1. A dashed line from X to Y means
that Y is not part of the statement of X, but only an intermediate step
inside its proof. A bold line from X to Y means that the reduction
loses a factor of U . Note that some reductions include additional
intermediate steps not shown.

3.4.1 Main result
We now state the first main theorem of this chapter: a protocol with weak forward
security can be upgraded to full forward security by adding key confirmation mes-
sages with a linear security loss in the number of parties U . By the impossibility
result in Section 3.6, the linear loss is optimal.

Theorem 1. Let A be an adversary against key secrecy for Π+. Then there exist
adversaries B1,B2, . . . ,B6, all with about the same runtime as A, such that

AdvKeySecFFS
Π+,U (A) ≤ 4 · U ·AdvSelKeySecWFS

Π,U (B1) + 8 ·AdviKeyAuth
Π,U (B2) + 4US

2taglen

+ 4 ·AdvMatch
Π,U (B3) + 4 ·AdvKMSound

Π,U (B4)

+ 12 ·AdvPreEqAllEq
Π,U (B5) + 4 ·AdvKeySecWFS

Π,U (B6),

where taglen is the length of the key confirmation tags used by Π+ and S is the
number of sessions.

The outline of the proof of Theorem 1 is shown in Fig. 3.3. At a high level
the proof consists of two parts: one where all accepting sessions with peers whose
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long-term keys are unrevealed have an origin session, and one where they don’t.
In the first case full forward key secrecy of protocol Π+ reduces straightforwardly
to the weak forward key secrecy of protocol Π. The main challenge is to deal
with the second case, namely to prove that protocol Π+ achieves explicit entity
authentication. In fact, the main technical tool for this is to prove that Π+ achieves
explicit key authentication, which is where we use the selective key secrecy notion.
The proof of explicit key authentication is the focus of Section 3.4.2.

Proof (of Theorem 1). We prove that

AdvKeySecFFS
Π+,U (A) ≤ 2 ·AdvfexEntAuth

Π+,U (A) + 2 ·AdvafexEntAuth
Π+,U (A) + 4 ·AdvKeySecWFS

Π,U (B6)
(3.25)

from which the result will follow by Proposition 4.
Let WinGi

denote that A wins in Game i, i.e., b′ = b and all Test sessions are
key fresh.

Game G0: Original game. This is the original key secrecy game for protocol
Π+.

Game G1: Reject sessions without origin. In this game all sessions s having
honest peers (i.e., aFresh(s) = true), but not having an origin session reject
all tags. In particular, this means that these sessions will never accept in
protocol Π+.
Claim 1.

Pr[WinG0 ] ≤ Pr[WinG1 ] + AdvfexEntAuth
Π+,U (A) + AdvafexEntAuth

Π+,U (A) (3.26)

Proof. Let E be the event that a session with an honest peer accepts in
protocol Π+, but without having an origin session. Since Game G0 and
Game G1 are identical unless event E occurs, it is sufficient to bound Pr[E].
Suppose s is a session that triggers event E. In particular, (i) s.accept = true,
(ii) aFresh(s) = true, and (iii) {s′ | Orig(s′, s)} = ∅. By the last property, s
also doesn’t have a partner, and by the first two properties this means that
either fexEntAuth is violated (in case s ∈ Lrcv) or afexEntAuth is violated (in
case s ∈ Lsend).

Game G2: Replace keys in accepting sessions. In this game all kFreshWFS
sessions which accept have their session keys replaced by random.
Claim 2.

Pr[WinG1 ] ≤ Pr[WinG2 ] + 2 ·AdvKeySecWFS
Π,U (B6). (3.27)

Proof. Algorithm B6 begins by drawing a random bit bsim, then simulates the
following game for A. Whenever A makes a query pertaining to protocol Π,
then B6 forwards it to its own (weak forward secrecy) game. When a session
s accepts in protocol Π, then B6 simulates protocol Π+ for A as follows.
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• If s is not kFreshWFS in protocol Π then B6 issues a Reveal(s) query
to its key secrecy game and uses the returned key (k, t, t′) to simulate
s’s tags in protocol Π+.

• If s is kFreshWFS, but does not have an origin session (in Π), then B6
issues a Reveal(s) query to its key secrecy game and uses the returned
key (k, t, t′) to simulate the tag sent by s. If s receives a tag, then it is
simply rejected.

• If s is kFreshWFS and has an origin session s′ (in Π), then,
– if s′ haven’t accepted in Π yet (and thus haven’t been issued a

Test or Reveal query), then B6 issues a Test query to s to
obtain a key (k, t, t′);

– if, on the other hand, s′ have already accepted, then by the previous
cases B6 must already have issued a Test or Reveal query to s′,
which returned a key (k, t, t′).

In either case, B6 uses the returned key (k, t, t′) to simulate both how
s sends and receives tags.

To answer A’s Reveal queries (in Π+), B6 uses the “k” element of the
tuples it obtained above. To answer A’s RevealLTK queries, B6 simply
forward these to its own game. To answer A’s Test queries, B6 answers as
follows.

• If the session has already been tested, or has not accepted yet, return
⊥.

• If bsim = 0 then B6 returns key from the (k, t, t′) tuple it previously
obtained for this session, as described above.

• If bsim = 1 then B6 returns a random key k̃.
Finally, when A stops and outputs a bit b′, then B6 outputs 1 to its own key
secrecy game if and only if b′ = bsim.5

We first claim that if the secret bit in B6’s key secrecy game is 0 (hence
B6’s Test queries are answered with real session keys), then B6 perfectly
simulates either Game G1 or Game G2, depending on the bit bsim.
Note first that if s is not kFreshWFS, then B6 obtains s’s actual key in
protocol Π, hence simulates protocol Π+ correctly. Second, if s is kFreshWFS,
but does not have an origin session, then s rejects any tag, and thus never
accepts in protocol Π+. This is exactly what happens after the change in
Game G1. Finally, if s is kFreshWFS and has an origin session, then it
behaves exactly as in Game G1 if bsim = 0 (since then B6 is using the actual

5Assuming all tested sessions are key fresh (according to kFreshFFS). Otherwise B6 simply
outputs a random bit.
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key from Π) and exactly as in Game G2 if bsim = 1 (since then B6 is using
a completely random key).
On the other hand, if the secret bit in B6’s key secrecy game is 1, then B6
simulates Game G2 independently of what bsim is. Specifically, this means
that bsim is completely hidden from A in this case.
Consequently, assuming the secret bit in B6’s key secrecy game is b, we have

Pr[B6 wins] = Pr[B6 wins | b = 0 ∧ bsim = 0] · 14
+ Pr[B6 wins | b = 0 ∧ bsim = 1] · 14

+ Pr[B6 wins | b = 1] · 12

(3.28)

= Pr[WinG1 ] · 14 + (1− Pr[WinG2 ]) · 14 + 1
4 (3.29)

= Pr[WinG1 ] · 14 − Pr[WinG2 ] · 14 + 1
2 . (3.30)

Hence,

AdvKeySecWFS
Π,U (B6) = |2 · Pr[B6 wins]− 1| = 1

2 · |Pr[WinG1 ]− Pr[WinG2 ]|
(3.31)

which proves the claim.

Concluding the proof of Theorem 1. By the change in Game G2 all session
keys of kFreshWFS sessions are now random, hence Pr[WinG2 ] = 1/2. Combining
the bounds from (3.26) and (3.27), and multiplying by 2, yields (3.25), from which
Theorem 1 follows by Proposition 4.

3.4.2 Implicit to explicit key authentication
In this section, we establish that explicit key authentication can be based on se-
lective key secrecy, implicit key authentication, and same prefix security. This is
a key technical result needed to restore the tight security of the explicitly authen-
ticated protocol of [CCG+19]. The use of selective security may also have further
applications in constructing highly efficient explicitly authenticated key exchange
protocols with full forward secrecy in the future.

Lemma 1. Let A be an adversary against full (resp. almost full) explicit key
authentication for Π+. Then there exists an adversary B2 against selective key
secrecy and an adversary B1 against implicit key authentication and same prefix
security, both with the same runtime as A, such that

AdvfexKeyAuth
Π+,U (A) ≤ AdviKeyAuth

Π,U (B1)+AdvPreEqAllEq
Π,U (B1)+U ·AdvSelKeySecWFS

Π,U (B2)+ US

2taglen ,
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AdvafexKeyAuth
Π+,U (A) ≤ AdviKeyAuth

Π,U (B1)+AdvPreEqAllEq
Π,U (B1)+U ·AdvSelKeySecWFS

Π,U (B2)+ US

2taglen ,

where taglen is the length of the key confirmation tags used by Π+ and S is the
number of sessions.

Since the proofs of full and almost full key authentication are virtually identical,
we only prove the fist bound. We need to deal with two cases. The first case
considers attacks on explicit authentication that result from breaking implicit
authentication of the underlying protocol Π. This case does not incur a tightness
loss.

The second case considers attacks on explicit authentication that rely on break-
ing the weak forward secrecy of the underlying protocol Π. The important point
is that in order to break explicit authentication, the partner long-term key must
be unrevealed at the point in time where authentication is broken. This means
that the session will be fresh at the time authentication is broken, which means
that we can deduce the challenge bit at the point in time where authentication
is broken. Any subsequent reveal of the partner long-term key can therefore be
ignored.

Proof. The proof is structured as a sequence of games. Let WinGi
denote the

event that A wins in Game i. Winning in this case means that full explicit key
authentication in (3.15) from Definition 28 does not hold.

Game G0: Original game. This is the original game for protocol Π+. We have
that

AdvfexKeyAuth
Π+,U (A) = Pr[WinG0 ]. (3.32)

Game G1: Reject non-authenticated sessions. We modify the game so that
if (3.15) does not hold for the Π part of a session of Π+, then that session
never accepts. Let ExceptG1 be the event that this happens.
It is immediate that until ExceptG1 happens, Game G1 proceeds exactly as
Game G0, so

|Pr[WinG1 ]− Pr[WinG0 ]| ≤ Pr[ExceptG1 ]. (3.33)

We create an adversary B1 against implicit key authentication for Π that
runs a copy of A and uses its experiment to run the Π part of Π+. When a
session of Π outputs a session key, B1 reveals the session key and uses that
to simulate sending and receiving the key confirmation messages. Let WinB1

denote the probability that B1 wins.
It is immediate that B1 and its experiment together simulate the experiment
in Game 0 perfectly with respect to the copy of A run by B1. Since SameKey
for Π+ implies SamePrefix for Π, if (3.15) does not hold for Π+ in an execu-
tion, either it will not hold when we consider the game as an execution of
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Π, or PreEqAllEq will not hold when we consider the game as an execution
of Π. In other words,

Pr[ExceptG1 ] ≤ Pr[WiniKeyAuth
B1 ] + Pr[WinPreEqAllEq

B1 ]. (3.34)

Game G2: Guess public key. We modify the game by sampling j ∈ {1, 2, . . . , U}
at the start. Let Win′

G2 be the event that WinG2 happens and one session
for which authentication is broken has the jth key as its peer’s public key.
Clearly,

Pr[Win′
G2 ] ≥ 1

U
Pr[WinG2 ] = 1

U
Pr[WinG1 ]. (3.35)

Game G3: Use random tags. We modify the game so that if (3.15) holds for
a session of Π+ that has the jth key as its peer public key but it has no
origin session, then that session samples random tags to use for the Π+ part
of the protocol, instead of the tags output by Π.
It is immediate that

Pr[Win′
G3 ] ≤ S

2taglen . (3.36)

We create an adversary B2 against selective key secrecy for Π that runs a
copy of A and uses its experiment to run the Π part of Π+, simulating the
sending and receiving of key confirmation messages as modified in Game G2,
further modified as follows:

• At the start, B2 selects an integer j ∈ {1, 2, . . . , U}.
• When a session of Π, using the ith key as its peer key, outputs a session

key, (3.15) holds for the session and it has no origin session, then:
– If i ̸= j, then B2 reveals the session key of the session and uses

that key to simulate the Π+ part of the session.
– If i = j, then B2 tests the Π instance and uses that key to simulate

the Π+ part of the session.
• If A reveals the jth long-term key, B2 outputs 0 and stops.

If A breaks authentication for a session with the jth key as its peer key, B2
outputs 1, otherwise B2 outputs 0.
Let Win′

B2,b denote the event that B2 outputs 1, when its experiment has the
secret bit b. We have that

AdvSelKeySecWFS
Π,U (B2) = |Pr[WinB2,0]− Pr[WinB2,1]|. (3.37)

If the experiment’s secret bit b = 0, then B2 perfectly simulates Game G2
with respect to the Win′

G2 event, since the only observable difference is that
B2 terminates when Win′

G2 no longer can occur (when the jth long-term key
is revealed), so

Pr[WinB2,0] = Pr[Win′
G2 ]. (3.38)
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If the experiment’s secret bit b = 1, then B2 perfectly simulates Game G3
with respect to the Win′

G3 event, again because of termination, so

Pr[WinB2,1] = Pr[Win′
G3 ]. (3.39)

The claim follows from (3.32)–(3.39).

3.4.3 Additional security reductions
Lemma 1 is the key result needed to show that protocol Π+ achieves full forward
secrecy (and explicit authentication) from the weakly forward-secret (and implic-
itly authenticated) protocol Π in a way that only incurs a tightness loss of U .
From this result all the other security properties defined in Section 3.3 follow in a
straightforward and modular way as we demonstrate in the following subsections.
Moreover, none of these reductions lose more than a factor of U (in fact, most
of the reductions are fully tight; those that are not only accrue the U term as a
result of invoking Lemma 1).

Match soundness. Match soundness of protocol Π+ follows directly from match
soundness of Π.
Proposition 1. Let A be an adversary against match security for Π+. Then there
exists an adversary B against match security for Π with the same runtime as A,
such that

AdvMatch
Π+,U (A) ≤ AdvMatch

Π,U (B).

Proof. If any condition on the left hand side in Definition 25 (partnering via
matching conversations) is satisfied for protocol Π+ then it is also satisfied for
protocol Π since the transcript of Π is a prefix of the transcript for Π+. Hence
any violation in Π+ implies a violation in Π.

The adversary B against Π therefore trivially simulates an execution of Π+

by revealing session keys and simulating the key confirmation messages. This
simulation is perfect and does not require extra resources.

Key-match soundness. Key-match soundness breaks down into two cases de-
pending on whether or not s and s′ have the same key in protocol Π. Here we
again use the same-prefix security notion PreEqAllEq as in Lemma 1.
Proposition 2. Let A be an adversary against key match soundness for Π+. Then
there exists an adversary B against key match soundness, match security and
same-prefix security for Π with the same runtime as A, such that

AdvKMSound
Π+,U (A) ≤ AdvKMSound

Π,U (B) + AdvPreEqAllEq
Π,U (B).
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Proof. Suppose s and s′ are such that key-match soundness (Definition 26) is vio-
lated for protocol Π+. That is, s has accepted, aFresh(s) = true, SameKey(s, s′) =
true, but Partner(s, s′) = false. Note that all of these predicates are relative to
protocol Π+.

We consider two cases:

1. s and s′ also have the same key (k, t, t′) in protocol Π;

2. s and s′ do not have the same key in protocol Π.

In case 1, s and s′ have the same key confirmation tags t, t′, hence for them not to
be partners in Π+, they cannot be partners in protocol Π (recall that partnering
is based on matching conversations). But this then violates key-match soundness
of Π. In case 2, PreEqAllEq fails for protocol Π.

Implicit key authentication. The proof of implicit key authentication follows
the exact same structure as the key-match soundness proof.
Proposition 3. Let A be an adversary against implicit key authentication for Π+.
Then there exists an adversary B against implicit key authentication, match se-
curity and same-prefix security for Π with the same runtime as A, such that

AdviKeyAuth
Π+,U (A) ≤ AdviKeyAuth

Π,U (B) + AdvPreEqAllEq
Π,U (B).

Proof. Suppose s and s′ are such that implicit key authentication (Definition 27) is
violated for protocol Π+. That is, s has accepted, aFresh(s) = true, SameKey(s, s′) =
true, but s.peer ̸= s′.party. Note that all of these predicates are relative to protocol
Π+.

We consider two cases:

1. s and s′ also have the same key (k, t, t′) in protocol Π;

2. s and s′ do not have the same key in protocol Π.

In case 1 implicit key authentication is also violated for protocol Π. In case 2,
PreEqAllEq fails for protocol Π.

Explicit entity authentication. Proving explicit entity authentication is straight-
forward, though it relies on a technical result from Appendix C.
Proposition 4. Let A be an adversary against full (resp. almost-full) explicit
entity authentication for Π+. Then there exists adversaries B1,B2, . . . ,B6 against,
respectively, match security, implicit key authentication, key match soundness,
key secrecy, selective key secrecy and implicit key authentication for Π, all with
the same runtime as A, such that

AdvfexEntAuth
Π+,U (A) ≤ AdvMatch

Π,U (B1) + 2 ·AdviKeyAuth
Π,U (B2) + AdvKMSound

Π,U (B3)

+ 3 ·AdvPreEqAllEq
Π,U (B4) + US

2taglen + U ·AdvSelKeySecWFS
Π,U (B5)
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Alice Bob

U := gr V := gs
“Alice”, A, U

“Bob”, B, V
key← Π.KDF(ctxt∥V a∥Br∥V r) key← Π.KDF(ctxt∥As∥U b∥U s)

Figure 3.4: The CCGJJ protocol from [CCG+19] for a prime-ordered group G with
generator g. Alice has secret long-term key a with public key A := ga;
Bob has secret long-term key b with public key B := gb. Their context
ctxt contains their names, their public keys and the two messages U
and V . We include names and public keys in the messages; in practice
these may be communicated in other ways.

AdvafexEntAuth
Π+,U (A) ≤ AdvMatch

Π,U (B1) + 2 ·AdviKeyAuth
Π,U (B2) + AdvKMSound

Π,U (B3)

+ 3 ·AdvPreEqAllEq
Π,U (B4) + US

2taglen + U ·AdvSelKeySecWFS
Π,U (B5)

Proof. The proofs of full and almost-full explicit entity authentication are virtually
identical so we only give a proof of the former.

By Proposition 8 we have (note that Π+ appears on both sides of the inequality)

AdvfexEntAuth
Π+,U (A) ≤ AdvMatch

Π+,U (A)+AdviKeyAuth
Π+,U (A)+AdvKMSound

Π+,U (A)+AdvfexKeyAuth
Π+,U (A)

Proposition 4 now follows by bounding all the individual terms on the right using,
respectively, Proposition 1, Proposition 3, Proposition 2, and Lemma 1.

3.5 The CCGJJ Protocol
The CCGJJ protocol [CCG+19], shown in Fig. 3.4, is a highly efficient implicitly
authenticated key exchange protocol with optimal tightness. We use this protocol
to illustrate our framework, which means we need to prove it satisfies the various
security properties defined in Section 3.3.

We begin by proving that the protocol has the basic properties we want, in
particular match soundness, key match soundness and the same prefix property.
Proposition 5. Let A be an adversary against the CCGJJ protocol. Then

AdvMatch
CCGJJ,U (A) ≤ S2

2|key| , AdvKMSound
CCGJJ,U (A) ≤ S2

|G|
and AdviKeyAuth

CCGJJ,U (A) ≤ S2

2|key| .

Proof. Since the KDF used to compute the session key includes the transcript and
the secrets included are fully determined by the public values, it follows that any
two sessions that are partners will compute the same session key, and a session
will compute the same key as any origin session.
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Match soundness could fail if a session has more than one partner, but this will
only happen if two sessions choose the same randomness.

Since the information in the transcript, and in particular names, is included
in the KDF that computes the key, two sessions that compute the same session
key must either be partners/agree on identities or there must be a collision in the
KDF.

In either case, the claims follows from a birthday bound.

Proposition 6. Let A be an adversary against the CCGJJ protocol. Then

AdvPreEqAllEq
CCGJJ,U (A) ≤ S2

2|key|−2taglen .

Proof. Two sessions have identical prefixes but distinct keys only if the data hashed
is distinct and there is a partial collision in the KDF. Since we model the KDF as
a random oracle, the birthday bound applies.

Proposition 7. Let A be an adversary against selective key secrecy for CCGJJ.
Then there exists adversaries B1, B2 and B3 against strong Diffie-Hellman (in
group G with generator g) with essentially the same runtime as A such that

AdvSelKeySecWFS
CCGJJ,U (A) ≤ AdvstDH

G,g (B1) + AdvstDH
G,g (B2) + AdvstDH

G,g (B3) + US2

|G|
.

The proof of Proposition 7 closely follows the structure of the proof in [CCG+19],
so we only sketch the argument, with emphasis on the differences, which entirely
relate to avoiding hybrid arguments involving the users. (Also note that the proof
in [CCG+19] proves more than just key secrecy, since they use a different security
model.)

Proof (sketch). Note that all of the adversaries we construct below have the same
runtime as A and the number of DH oracle calls is essentially bounded by the
number of random oracle queries made by A.

Recall from the proof in [CCG+19] that there are five classes of sessions: (I)
initiator sessions that have an origin session/partner that it agrees on identities
with; (II) other initiator sessions that are authentication fresh when they accept;
(III) responder sessions that have an origin session that it agrees on identities with;
(IV) other responder sessions that are authentication fresh when they accept; and
(V) sessions where the intended peer’s long-term key has been revealed.

The proof proceeds as a sequence of games, where the initial (zeroth) game is
the selective key secrecy game. The first game prevents two honest sessions from
having the same randomness. The second game changes to lazy evaluation of the
random oracle Π.KDF. We use the birthday bound to bound the advantage loss
from the first change, while the second change is unobservable.

The third game modifies type IV responder sessions whose peer is the selected
party so that it never modifies the random oracle to be consistent with the session
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key. This is only observable if the adversary makes the corresponding hash query.
By embedding our challenge DH tuple into the public key of the selected party
and (rerandomized) into the message sent by type IV responder sessions, we get a
strong Diffie-Hellman adversary B1 that succeeds whenever such a hash query is
made. This adversary uses its DH oracle to recognize and reprogram hash queries
related to sessions running as the selected party. Unlike in [CCG+19], the strong
Diffie-Hellman adversary does not have to guess a party whose secret long-term
key will not be revealed, so it does not lose a factor U in advantage.

The fourth game modifies type III responder sessions so that they never modify
the random oracle to be consistent with the session key. This is only observable if
the adversary makes the corresponding hash query. By embedding our challenge
DH tuple (rerandomized) into the initial messages of type I and II initiator sessions
and (rerandomized) into the responder messages of type III responder sessions,
we get a strong Diffie-Hellman adversary B2 that succeeds whenever such a hash
query is made. This adversary uses its DH oracle to recognize and reprogram hash
queries related to type II initiator sessions.

The fifth game modifies type II initiator sessions whose peer is the selected party
so that they never modify the random oracle to be consistent with the session key.
This is only observable if the adversary makes the corresponding hash query. By
embedding our challenge DH tuple into the public key of the selected party and
(rerandomized) into the message sent by type I or II initiator sessions, we get a
strong Diffie-Hellman adversary B3 that succeeds whenever such a hash query is
made. This adversary uses its DH oracle to recognize and reprogram hash queries
related to sessions running as the selected party. Again, unlike in [CCG+19],
the strong Diffie-Hellman adversary does not have to guess a party whose secret
long-term key will not be revealed, so it does not lose a factor U in advantage.

At this point, we observe that every session key fresh session fails to reprogram
the random oracle to be consistent with its session key, which means that every
testable session key is independent of anything the adversary has observed. It
follows that the adversary’s advantage in this game is 0, and the claim follows.

3.6 Impossibility of tight key confirmation

In this section we show that a large, natural, and widely-used class of compilers for
turning implicitly authenticated protocols into explicitly authenticated protocols,
inevitably must incur a linear security loss in the number of parties. The class
includes the generic compiler from [CCG+19], which was incorrectly claimed to
achieve tight security, but also the MAC-based approach to turn HMQV into
HMQV-C [Kra05] (which does not give explicit security bounds) and the compiler
by Yang [Yan13b] (which has a linear loss in the number of parties times sessions
per party).
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Alice Bob

Πk k

t

t′

t = Conf(k, pub; r0)accept if Check(t, k, pub) = 1

t′ = Conf(k, pub′; r1) accept if Check(t′, k, pub′) = 1

Figure 3.5: Protocol Π+ obtained by extending protocol Π with key confirmation
tags t, t′. The session sending the last message in protocol Π sends
tag t, and the session receiving the last message in protocol Π sends
tag t′. pub contains the transcript of Π and public keys pkA, pkB. pub′

additionally contains the first key confirmation tag t.

3.6.1 Requirements on Π and Π+

We consider generic compilers that turn implicitly authenticated protocols Π with
weak forward security into explicitly authenticated protocols Π+ with full forward
security. To this end, we will in the sequel focus on underlying protocols Π and
constructions Π+ that satisfy certain requirements that we define in this section.

Key confirmation messages. We assume an n-message protocol Π is extended
to an (n + 1)-message protocol Π+ as shown in Figure 3.5. The participants first
run the protocol Π and then exchange two key confirmation message t, t′, where
the first key confirmation message t is sent together with the final message of Π
and t′ in reply as the final (n + 1)-th message. Alternatively, we could define
Π+ such that the first key confirmation message is sent as a reply to the n-th
message. This would add two messages to Π, making Π+ an (n + 2)-message
protocol. We consider the former approach more natural, and this is the approach
used in CCGJJ19 [CCG+19] and HMQV-C [Kra05]. The latter approach is used
by Yang [Yan13b]. Even though we only treat the former variant here, our results
apply equally to both variants.

The parties compute the key confirmation messages with a potentially non-
deterministic algorithm Conf : K × {0, 1}∗ → {0, 1}τ , where K is the session key
space of Π. We require that apart from the session key, t, t′ are computed only
from publicly known values, such as the protocol transcript or public keys. In
practice, Conf typically is a PRF+simple MAC construction computed over the
protocol transcript (as e.g. in [CCG+19]).

To verify the key confirmation messages we assume a deterministic algorithm
Check : {0, 1}τ ×K× {0, 1}∗ → {0, 1}. We require that the probability of a given
tag being valid under a randomly chosen key is negligible. Formally, we need that
they are δ-entropy-preserving in the following sense.
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Definition 33. We say that an algorithm Check is δ-entropy-preserving if for all
k ∈ K, pub ∈ {0, 1}∗, and all t $←− Conf(k, pub) we have

Pr
k′ $←−K

[Check(t, k′, pub) = 1] ≤ δ.

Security of Π+ from Π via black-box reduction. We consider generic construc-
tions, where the security of Π+ is based on the security of Π and possibly the
security of the primitives used to generate the key confirmation messages. This
excludes artificial constructions of Π+, which run Π as a redundant subroutine,
but where security is achieved in a completely different way, such that Π is actu-
ally superfluous. The most natural way to establish security of Π+ based on the
security of Π is a reduction R from, e.g., the KeySecFFS security of Π+ to the
KeySecWFS of Π and potentially other arguments and reductions to the security
of primitives used in Π+.

We assume that R is given black-box access to an adversary A that breaks
the KeySecFFS security of Π+ and interacts with A via the oracles defined in the
KeySecFFS security experiment given in Section 3.2. At the same time R has
access to a KeySecWFS security experiment for Π. We assume that R is able to
win that security experiment with non-neglible probability if A has a non-neglible
probability of winning the security experiment for Π+. We only consider black-box
reductions which run a single instance of A once, without rewinding.

Furthermore, we require that R is “valid” in the sense that it never makes
queries that would lead to R trivially losing the security experiment, such as
issuing both Test(s) and Reveal(s) for some session s. Note that any reduction
R that does not satisfy this assumption can be turned into a reduction R′ that
satisfies the assumption by relaying all queries from R until R makes an invalid
query and then simply aborting. Similarly, we assume that R never ignores oracle
queries by A and always outputs some reply, which, however, may potentially be
invalid.

Finally, we assume that for every party i in the security experiment for Π+ there
exists a unique corresponding party i′ in the security experiment for Π simulated
by R towards A with pki = pki′ . Note that this does not exclude reductions that
run the adversary against Π+ with a smaller number of users than they were given
from the experiment on Π. We only require that R did not generate any public
key given to A by itself.

Π has unique and efficiently verifiable secret keys. We assume that for each
public key pk there is a unique matching secret key and that it is possible to
efficiently and perfectly verify whether a given secret key sk matches a given public
key pk. For Diffie–Hellman-like protocols such as HMQV [Kra05] or NAXOS
[LLM07], where public keys are typically of the form gx with x being the secret key,
this assumption trivially holds. For many other protocols, secret keys can often
be verified via executing a full protocol session with the given secret key and some
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known key pair belonging to some other party and checking whether both parties
compute the same session key. As mentioned above, one can easily generalize
our result from unique to efficiently rerandomizable keys, using techniques from
[HJK12, BJLS16]. Essentially, the rerandomization ensures that a meta-reduction
can turn a given secret key for public key pk into a uniformly random secret
key among all valid secret keys for pk. We omit this, since this is a relatively
straightforward generalization.

3.6.2 Impossibility result
We first describe an inefficient hypothetical adversary A against the protocol Π+

that breaks the KeySecFFS security with almost certainty. We then argue that
for any tight reduction R from the KeySecFFS security of Π+ to the KeySecWFS
security of Π we are able to efficiently simulate the hypothetical adversary A in a
meta-reductionM. This means given a tight reduction R,M is able to effciently
break the KeySecWFS security of Π. This is a contradiction to the assumption that
Π is secure and implies that R cannot be tight. We visualize the meta-reduction
M in Figure 3.6.

ExpKeySecWFS
Π,U (M)

Meta-reduction M

Reduction R

Inefficient
adversary
A simulated

by M

Figure 3.6: Visualization of meta-reduction M playing the experiment
ExpKeySecWFS

Π,U (M) while running R as a subroutine and simulat-
ing the inefficient adversary A to R. M relays all queries from R to
ExpKeySecWFS

Π,U (M).

Intuition. Let us sketch the main idea of the construction of our hypothetical
adversary and its simulation in the meta-reduction. For each party i, it creates
a new session si, where it impersonates party i towards party i + 1, and lets the
reduction R compute the first key confirmation message in si. Afterwards, A
invalidates the freshness of all sessions except one randomly chosen session si∗ by
corrupting all parties except i∗ +1. This essentially forces R to correctly guess the
value i∗ before computing the key confirmation messages, as it cannot leverage
any session except si∗ to break the security of Π. Since i∗ was chosen uniformly
at random by A, R can only guess correctly with probability 1/U , which implies
that R cannot be tight and must lose a factor U .
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However, in order to efficiently simulate A, M must be able to compute mes-
sages of Π on behalf of any party. A significant challenge in our result is that these
messages may depend on a secret key unknown to M. Furthermore, M cannot
corrupt a party to obtain its secret key and compute the messages of Π, since
corrupting all parties except i∗ after R already produced a valid key confirmation
message for the parties is a crucial tool in forcing R to guess i∗.

To overcome this challenge, we let the security experiment for Π generate the
messages in newly created sessions. This requires carefully arguing that the ex-
istence of these sessions can be hidden from R and they cannot influence the
validity of any query R may make such that M can still perfectly simulate the
experiment for Π towards R.

Strictly speaking, M will use twice as many Π sessions as A, but this remains
tight, and regardless, A uses just as many sessions as there are users, which is a
trivial number of sessions. Furthermore, in order to rule out a tighter reduction,
it is sufficient to decribe an arbitrary, polynomial-time meta-reduction that shows
how to efficiently (i.e., in polynomial time) solve a computationally infeasible
problem, such as breaking the underlying protocol, with non-negligible advantage.
We do not need the meta-reduction to be tight.

Theorem 2. Let Π be an AKE protocol and Π+ an AKE protocol constructed
by extending Π with key confirmation using Conf and Check as described in Sec-
tion 3.6.1. Let R be a reduction that uses any adversary A against the KeySecFFS
security of Π+ to break the KeySecWFS security of Π and Conf and Check be
δ-entropy-preserving. If Π, Π+, and R satisfy the requirements listed above in
Section 3.6.1, we can construct efficient adversaries M,B1,B2,B3,B4 with

AdvKeySecWFS
Π,U ′ (M) ≥ AdvKeySecWFS

Π,U ′ (R(A))− 3 ·AdvKeySecWFS
Π,U ′ (B1)

−AdvMatch
Π,U ′ (B2)−

√
AdvMatch

Π,U ′ (B3)− 2 · (AdvKeySecWFS
Π,U ′ (B4) + 1

U
− Uδ)

Interpretation of Theorem 2. We can assume that δ and the advantages of the
adversaries B1, B2,B3 and B4 are negligible. Further, if R was tight, its advantage
would be close to the advantage of A. The adversary A we describe below breaks
the KeySecFFS security of Π+ with probability very close to 1 and thusM would
break the KeySecWFS security of Π with probability roughly 1 − 2/U . However,
this is a contradiction to the assumption that Π is a secure protocol and implies
that R cannot be tight. In particular, in order for the advantage of M being
negligible, R must lose a factor U/2.

Proof. We begin by describing a hypothetical adversaryA that inefficiently breaks
the security of Π+ with high probabilty. Given any reductionR, we then construct
a meta-reduction M that efficiently simulates A if R is a tight reduction. This
means that by using a tight reduction R, the meta-reductionM is efficiently able
to break the security of Π. This is a contradiction to the assumption that Π is
secure and implies that R cannot be tight.
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Hypothetical adversary A. Consider the following hypothetical (inefficient) ad-
versary A against the KeySecFFS security of Π+.

1. A receives a list of public keys pk from its experiment and chooses j∗ $←−
{1, . . . , U} at random. Let i∗ := j∗ − 1 mod U .

2. For all i ∈ {1, . . . , U}, A initiates a new session owned by i with the in-
tended peer j = i + 1 mod U , where the role of i depends on the number
of messages in Π. Let n be the number of messages in Π. If n is even, A
chooses the role resp, and otherwise the role init. This ensures that in this
new session, the party that sends the last message of Π and hence also the
first key confirmation message is the party i. Formally, A issues the query
NewSession(i, j, role) with role set as described above and in return gets a
session number si,j and potentially the initial message mi,0.

3. For all sessions si,j with i ∈ {1, . . . , U} and j = i + 1 mod U , A executes Π+

impersonating the party j until the experiment outputs the first key confir-
mation message ti. To this end, it first runs (stj, mi,0) $←− Init(j, i, skj, pki,
role), where role = init if n is even and role = resp otherwise. Next, if
the role of j is init, A sends the initial message on behalf of j by querying
Send(si,j, mi,0) and obtains as output the response mi,1. If mi,1 does not
contain the first key confirmation message, A computes the next protocol
message mi,2 as (stj, mi,2) $←− Run(stj, mi,1) and sends it to the session si,j. A
continues this process until the session si,j outputs the first key confirmation
message ti. If the role of j is resp, A acts analogously, except that it uses the
initial message mi,0 it obtained in Step 2 to compute the first message of j.
Note that even if any protocol message that A needs to compute depends
on the secret key skj, A is able to (inefficiently) compute the message by,
e.g., brute forcing skj.

4. A issues a query RevealLTK(i) for all i ̸= j∗. Due to the assumption that
Π has efficiently and perfectly verifiable secret keys, A can somehow check
whether all secret keys returned by the experiment are correct. If any secret
key does not match the corresponding public key, A aborts.

5. For all i ∈ {1, . . . , U}, A verifies that the key confirmation message ti is valid
and aborts if it is not valid. Again, note that A is somehow able to (ineffi-
ciently) compute the sesion key ki that it needs to run Check(pubi, ki, ti).

6. A somehow computes the second key confirmation message t′
i∗ and sends it

to the session si∗,j∗ with the query Send(si∗,j∗ , t′
i∗). Finally, A issues the

query Test(si∗,j∗) to obtain a challenge key k. If k = ki∗ , A outputs b = 0
and otherwise b = 1.

Let us now analyze the advantage of A. Note that for the session si∗,j∗ we
have aFresh(si∗,j∗) = true since A did not corrupt the party j∗. Hence, even
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though there is no origin session for si∗,j∗ , kFreshFFS(si∗,j∗) holds. This means the
hypothetical A breaks the KeySecFFS predicate with probability 1 − 1/ |K| and
we have

AdvKeySecFFS
Π+,U (A) = 1− 1

|K|
,

where 1/ |K| is deducted due to the probability of Test returning a randomly
chosen key that is equal to the real session key.

Construction of meta-reduction M. Let R be a reduction as described in
Theorem 2. Recall that R is a black-box reduction that should be successful
against the security of Π given any successful adversary against the security of
Π+. In particular, it should be successful with our hypothetical adversary A. We
now describe our meta-reductionM that uses R as a subroutine while simulating
A towards R. M plays the security experiment ExpKeySecWFS

Π,U ′ (M) and relays
queries between its experiment and R. M simulates A using the following steps
(see also Figure 3.7).

1. M receives a list of public keys pk′ of size U ′ from its experiment and
provides it to R. R then outputs a list of public keys pk of size U with
U ≤ U ′. Exactly as A, M chooses j∗ $←− {1, . . . , U} at random, and again
let i∗ := j∗ − 1.
As described in Section 3.6.1, we assume that for each party i in the exper-
iment ExpKeySecFFS

Π+,U (A) simulated by R there exists a unique corresponding
party i′ in the experiment ExpKeySecWFS

Π,U ′ (λ) with pki = pki′ . For simplicity,
we assume in the following that R does not modify pk when forwarding it to
its adversary, i.e., we have i = i′ and U = U ′. If R applies some permutation
π to pk′ or deletes some entries before outputting it again, M can simply
compare the lists of public keys to compute the inverse permutation π−1,
which then maps any party i in ExpKeySecFFS

Π+,U (A) to the corresponding party
i′ in ExpKeySecWFS

Π,U ′ (M).

2. This step is exactly the same as Step 2 of A.

3. This is the first hypothetical step ofA, whichM needs to efficiently simulate.
While A can, e.g., simply brute force the secret key of some party j to
impersonate j and compute any messages that may depend on skj, this is
not possible for M. Instead, we rely on our assumption that for any party
in the experiment for Π+ simulated by R there exists a corresponding party
in the experiment for Π, which allows us to let ExpKeySecWFS

Π,U ′ (M) generate
all messages on behalf of any party in ExpKeySecFFS

Π+,U (A).
For this, M proceeds as follows. Similarly to the previous step, M creates
a new session in ExpKeySecWFS

Π,U ′ (M) for each party j ∈ {1, . . . , U} with the
intended peer i = j − 1, however with the role chosen in converse. If the
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3 On the Concrete Security of Key Confirmation

either

CorruptNotRelayed

4

¬CorruptNotRelayed

Replay

¬Replay

¬NoReveal

NonMatchingSessionKeys

¬NonMatchingSessionKeys

5

NoReveal

¬NoRevealValidTag

NoRevealValidTag

M wins in Step 6

M aborts, wFS
breaks

B1, p. 63

M aborts, match
soundness breaks

B3, p. 63

M aborts, match
soundness breaks

B2, p. 63

M aborts, wFS
breaks
B4, p. 64

M aborts, A
would also abort

Figure 3.7: The meta-reduction Steps 1–3 start sessions such that the reduction
sends key confirmation tags, Step 4 corrupts all but one long-term key,
Step 5 verifies the tags and Step 6 sends a correct tag for the randomly
chosen session. The main difficulty is the analysis of Steps 4 and 5.
The diagram describes the case analysis tree for Steps 4 and 5 of the
meta-reductionM. Labels written in sans serif font are events that can
happen in Steps 4 and 5 ofM, with ⇒ pointing to the corresponding
action taken by M.
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number of messages n in Π is even, it issues the query NewSession(j, i, init)
to its experiment and otherwise the query NewSession(j, i, resp). M here
essentially creates the opposing peer sessions s̃j,i for all sessions si,j it created
in the previous step. For readability, in the following we denote any session
in ExpKeySecFFS

Π+,U (A) with s and any session in ExpKeySecWFS
Π,U ′ (M) with s̃.

After creating the new sessions in ExpKeySecWFS
Π,U ′ (M), M is able to sim-

ulate A by relaying the messages between R and ExpKeySecWFS
Π,U ′ (M) with

the respective Send queries. First assume that n is even. In that case,
for all sessions s̃j,i created in this step we have role = init and in response
to the NewSession queries M obtains the first message mi,0. Then, M
alternates between issuing Send queries to R for the session si,j and to
ExpKeySecWFS

Π,U ′ (M) for the session s̃j,i until R outputs the first key confirma-
tion message. The first Send query is given to R with the message mi,0
and any subsequent query is given with the message output by the previous
Send query. If n is odd,M obtained the first message mi,0 already in Step
2 and issues its first Send query to the experiment instead of R. After R
outputs the first key confirmation message ti together with the final message
mi,n−1 of Π, M sends mi,n−1 to the session s̃j,i such that it accepts.
Note thatM needs to keep the existence of the sessions s̃j,i hidden fromR in
order to perfectly simulate the security experiment for R. In particular,M
needs to decrease the session number returned by its experiment in response
to any subsequent NewSession query relayed from R by U and ensure that
the existence of the hidden sessions and any queries issued to them do not
disallow any potential queries from R.
As all messages output byM in this step are computed by the experiment,
the message distribution is obviously identical to the distribution of messages
output by A, which computed the messages according to Π. Thus, M
perfectly simulates A in this step.

4. M first executes all instructions from Step 4 of A. Additionally, we de-
note by CorruptNotRelayed the event that R answers a RevealLTK query
with a correct secret key without ever having given the same query to its
experiment. If CorruptNotRelayed occurs, we let M abort. Recall that M
runs R as a subroutine and relays all queries from R to its experiment,
which allows it to observe whether CorruptNotRelayed occurs. Therefore, if
CorruptNotRelayed does not occur, M simulates A in this step. We defer
bounding Pr[CorruptNotRelayed] to later (p. 63).

5. To check the validity of all tags ti, M needs to know the session key ki

established in the session s̃j,i. If the session s̃j,i does not have a partner
in ExpKeySecWFS

Π,U ′ (M), which may happen if R computes the messages of the
session si,j without creating a corresponding session s̃i,j in ExpKeySecWFS

Π,U ′ (M),
M can simply issue the query Reveal(s̃j,i).
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Here, we need to ensure that revealing a session s̃j,i that has no partner
does not restrict the queries that R is allowed to make. As long as s̃j,i is not
partnered, revealing it does not influence the session key freshness of any
other session. However, if s̃j,i ever becomes partnered with some session s̃ at
some later point, which we denote as the event Replay, s̃ is not session key
fresh. But since s̃j,i is hidden from R, from the view of R the session s̃ does
not have partner and therefore should be session key fresh. In that case M
cannot simulate the experiment for R anymore. We bound the probability
of Replay occurring below (see p. 63).
If during this step s̃j,i is already partnered with some session s̃ that R may
have created during Step 3 by relaying all Send queries for the session si,j to
its experiment, revealing s̃j,i would invalidate the freshness of s̃. This means
that if R would then test the session s̃, M cannot simulate the experiment
for Π towards R anymore. Thus, if the session s̃j,i is partnered with some
other session s̃, M has to act differently and proceeds as follows.
First, let Partnered denote the set of sessions (s̃j,i, s̃), where Partner(s̃j,i, s̃)
holds. Further, let NoReveal denote the event that there exist some (s̃j,i, s̃) ∈
Partnered, where s̃ is not revealed. If NoReveal does not occur, then for all
(s̃j,i, s̃) ∈ Partnered, R revealed s̃ as due to CorruptNotRelayed not occurring,
the reduction cannot query Test(s̃). SinceM can observe the experiment’s
response to any Reveal query fromR, it learns the session key of the session
s̃. However, we still need to ensure that the session s̃j,i actually computes
the same key as s̃. For this, let NonMatchingSessionKeys denote the event
that for some (s̃j,i, s̃) ∈ Partnered it holds that s̃j,i.key ̸= s̃.key. Then, if
NonMatchingSessionKeys does not occur,M learns the correct session key of
s̃j,i by observing the Reveal query of R.
If NoReveal occurs, we let M abort. Note that if NoReveal occurs, M still
simulates A if for all s̃j,i, which cause the event NoReveal, the tag ti output
in the session si,j is not valid as A aborts as well in that case. Therefore,
let NoRevealValidTag denote the event that for some session si,j the session
s̃j,i causes the event NoReveal and the tag ti is valid.
Overall we have, that M can simulate Step 5 of A independent of whether
the sessions s̃j,i have a partner or not if the events NonMatchingSessionKeys,
NoRevealValidTag and Replay do not occur. We again defer bounding
Pr[NonMatchingSessionKeys], Pr[NoRevealValidTag] and Pr[Replay] to later
(p. 63).

6. If (s̃j∗,i∗ , ·) /∈ Partnered,M already revealed s̃j∗,i∗ in Step 5 and obtained the
session key ki∗ , which it can use to compute the tag t′

i∗ = Conf(ki∗ , pub′),
where pub′ contains the transcript of the session s̃j∗,i∗ , the public keys
pki∗ , pkj∗ , and ti∗ . If for some session s̃ it holds that (s̃j∗,i∗ , s̃) ∈ Partnered,
R queried Reveal(s̃) since NoReveal did not occur. Therefore, M can use
the key ki∗ returned in that Reveal query to compute t′

i∗ as above.
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M then proceeds exactly as A, i.e., it sends t′
i∗ to the session si∗,j∗ , tests

si∗,j∗ , compares the key ki∗ it obtained as described above with the challenge
key k, and outputs the bit b accordingly.

In summary, M efficiently simulates A if the events NonMatchingSessionKeys,
CorruptNotRelayed, Replay, and NoRevealValidTag do not occur and we have

AdvKeySecWFS
Π,U (M) ≥AdvKeySecWFS

Π,U (R(A))− Pr[CorruptNotRelayed]
− Pr[Replay]− Pr[NonMatchingSessionKeys]− Pr[NoRevealValidTag].

Hence, it remains to bound Pr[CorruptNotRelayed], Pr[NonMatchingSessionKeys],
Pr[Replay], and Pr[NoRevealValidTag].

Bounding Pr[CorruptNotRelayed]. We construct an adversary B1 that breaks the
KeySecWFS security of Π whenever CorruptNotRelayed occurs. B1 acts like M
for Steps 1-4. If CorruptNotRelayed does not occur, B1 outputs a random bit.
Otherwise, let RevealLTK(i) be the first query that causes CorruptNotRelayed
and ski the key returned by R in that query. B1 chooses j ̸= i at random and
creates a new session s̃ owned by j with the intended peer i in ExpKeySecWFS

Π,U ′ (M).
Note that B1 is able to compute all messages on behalf of party i as it obtained
ski from R. Therefore, B1 can impersonate i throughout the session and can make
the session s̃ accept with the appropiate Send queries.

After s̃ has accepted, B1 tests s̃ and is able to distinguish the challenge key since
it impersonated i throughout the session. Note that s̃ is authentication fresh since
RevealLTK(i) was never queried to the experiment and hence s̃ is also session
key fresh. Thus, we have

AdvKeySecWFS
Π,U ′ (B1) = Pr[CorruptNotRelayed].

Bounding Pr[NonMatchingSessionKeys]. We now construct an adversary B2
against the Match soundness of Π whenever the event NonMatchingSessionKeys
occurs. The adversary B2 acts just like M for Steps 1 to 5 and then stops. If
NonMatchingSessionKeys occurs, then there exist some (s̃j,i, s̃) ∈ Partnered with
s̃j,i.key ̸= s̃.key, which implies that condition (3.9) does not hold and we have

AdvMatch
Π,U ′ (B2) = Pr[NonMatchingSessionKeys].

Bounding Pr[Replay]. We construct an adversary B3 that breaks the match
soundness of Π whenever the event Replay occurs. B3 acts like M until the event
Replay occurs and let s̃ be the session that causes Replay by becoming partnered
with some session s̃j,i. When Replay occurs, B3 stops R and creates a new session
s̃′ in ExpMatch

Π,U ′ (λ) with the same owner, peer, and role as s̃. Let s̃.transcriptr be
the list of messages that s̃ received. B3 sends all messages in s̃.transcriptr to s̃′

with the appropiate Send queries. Then s̃′ outputs the same messages as s̃ with
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probability at least Pr[Replay]. If s̃′ outputs the same messages, s̃j,i.s̃, and s̃′ are
all partnered, which implies that condition (3.10) does not hold and we have

AdvMatch
Π,U ′ (B3) ≥ Pr[Replay]2,

as the probability that s̃ becomes partnered with s̃j,i is Pr[Replay] and the proba-
bility that s̃ becomes partnered with s̃′ is at least Pr[Replay] as well.

Bounding Pr[NoRevealValidTag]. We construct an adversary B4 that breaks the
KeySecWFS security of Π whenever the event NoRevealValidTag occurs. B4 acts
like M for Steps 1-5. Then, for all (s̃j,i, s̃) ∈ Partnered such that s̃ was not
revealed, B4 queries Test(s̃j,i) to ExpKeySecWFS

Π,U ′ (M) to obtain a challenge key ki.
Next, it runs Check(ti, ki, pubi), where pubi contains the transcript of s̃j,i and the
public keys pki, pkj, to check the tag ti that was output by R in the session si,j.
If for any s̃j,i the tag ti is valid under ki, B4 outputs b = 0 to its experiment and
otherwise b = 1. If the event NoReveal does not occur, which implies that no
session as described above exists, B4 outputs a random bit.

Observe that for all sessions s̃j,i that B4 tests we have kFreshWFS(s̃j,i) = true
due to the following. First, the only Reveal queries that B4 issues are queries it
relays from R and queries it issues in Step 5. But the session s̃j,i is hidden from
R and cannot be revealed by R and in Step 5 B4 only reveals sessions that do not
have a partner, which implies that condition (3.5) holds. Second, all sessions s̃j,i

tested by B4 have a partner session, which is then also the origin session for s̃j,i,
and thus condition (3.7) holds.

Third, B4 only tests sessions s̃j,i, where the partner session s̃ was not revealed
by R. Additionally, if in Step 4, CorruptNotRelayed does not occur, then all
parties j ̸= j∗ were corrupted by R. This means for all s̃j,i ̸= s̃j∗,i∗ tested by B4,
testing the session s̃ partnered with s̃j,i would violate session key freshness of s̃
as condition (3.7) would not hold. We therefore ensure that R does not test the
session s̃ partnered with s̃j,i due to the assumption that R does not make any
invalid queries. Thus, for s̃j,i ̸= s̃j∗,i∗ condition (3.6) holds.

However, since the party j∗ was not corrupted, there is no guarantee that R
did not test the session partnered with s̃j∗,i∗ . To this end, let TargetTested denote
the event, that s̃j∗,i∗ is partnered with some session s̃ and R issued the query
Test(s̃). If TargetTested does not occur, condition (3.6) holds for s̃j∗,i∗ as well
and in summary kFreshWFS(s̃j,i) holds for all sessions s̃j,i tested by B4. We bound
Pr[TargetTested] below.

If the event NoRevealValidTag does not occur, then for all sessions s̃j,i tested by
B4 the tag ti output by R in the session si,j is invalid under the real session key,
which means that if Test returns the real session key, B4 always outputs b = 1.
If Test returns a random key, it may happen that a tag succesfully verifies even
though it is invalid under the real session key. If no such false positive occurs, B4
correctly outputs b = 1. As described in Section 3.6.1, we assume that for each
tag verification the probability of a false positive is δ and B4 makes at most U
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verifications, which implies that

Pr[ExpKeySecWFS
Π,U ′ (B4) = 1 | ¬NoRevealValidTag ∩∆] ≥ 1

2 − Uδ,

where ∆ := ¬CorruptNotRelayed ∩ ¬TargetTested.
If NoRevealValidTag occurs, then there exists at least one session si,j, where R

output a tag ti valid under the real session key. Therefore, if Test returns the
real session key, B4 successfully validates ti and correctly outputs b = 0 to the
experiment. If Test returns a random key, there again may be false positives. If
no false positive occurs, B4 correctly outputs b = 1 to the experiment. Since B4
makes at most U verifications and for each verification the probability of a false
positive is δ, we have

Pr[ExpKeySecWFS
Π,U ′ (B4) = 1 | NoRevealValidTag ∩∆] ≥ 1− Uδ.

It follows that we have

Pr[ExpKeySecWFS
Π,U (B4) = 1 | ∆]

≥ (1
2 − Uδ) · Pr[¬NoRevealValidTag] + (1− Uδ) · Pr[NoRevealValidTag]

= (1
2 − Uδ) · (1− Pr[NoRevealValidTag]) + (1− Uδ) · Pr[NoRevealValidTag]

= 1
2 − Uδ + 1

2 · Pr[NoRevealValidTag]

In total we then have

AdvKeySecWFS
Π,U (B4) ≥

1
2 · Pr[NoRevealValidTag]− Pr[CorruptNotRelayed]

− Pr[TargetTested]− Uδ.

Bounding Pr[TargetTested]. Again, let Partnered denote the set of sessions (s̃j,i, s̃)
such that s̃j,i is a session created by B4 in Step 2 and Partner(s̃j,i, s̃) holds. Then,
s̃ must be a session created by R during Step 3. Additionally, since s̃j,i is hidden
from R, from the view of R the session s̃ has no origin session. This means that
from the view of R, it is not allowed to both test s̃ and corrupt the intended peer
of s̃ as that would violate the session key freshness of s̃.

If CorruptNotRelayed does not occur, all parties but j∗ have been corrupted in
ExpKeySecWFS

Π,U ′ (M). Since we assume thatR does not make any query, which causes
it to trivially lose the experiment, for all (s̃j,i, s̃) ∈ Partnered, the session s̃ cannot
have been tested by R. If TargetTested occurs, then the session s̃ partnered with
s̃j∗,i∗ is the only session, for which R issued a Test query. Since R made this
query during Step 3 and all actions of M are independent of j∗ until Step 4, R
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must have correctly guessed among the U sessions created by B4 which session it
tests, which happens with probability 1/U and implies

Pr[TargetTested] = 1/U.

Summing everything up, we get the bound claimed in Theorem 2.

3.6.3 Discussion
Extension to Random Oracle model. Note that the argument in the proof of
Theorem 2 does not rely on random oracles. Given that most highly-efficient
implicitly authenticated protocols are proven secure in the random oracle model,
one might ask whether it is possible to give a tightly-secure construction of Π+

from Π in the random oracle model. For instance, one could consider computing
the key confirmation message as

Conf(k, pub) := H(k, pub). (3.40)
By modeling H as a random oracle the reduction R could potentially avoid com-
mitting to the key confirmation messages it simulates by just sending random
strings t̃ that can later be “explained” by re-programming H.

Unfortunately, we expect this approach to have an inherent tightness loss too.
The reason for this is that the reduction needs to simulate the random oracle H
consistently. But in order to achieve this, R would have to be able to distinguish
a random oracle query H(k, pub) using the “real” key (in which case it would have
to return t̃) from a query H(k′, pub) using an independent string k′. Since k is the
session key of Π, the reduction would thus have to be able to distinguish session
keys of Π from random, which should give rise to another attacker B on Π that
proceeds as follows:

1. B is again a meta-reduction, which runs R as a subroutine, relays all queries
between R and its security experiment, and simulates our hypothetical ad-
versary A until the end of Step 3.

2. Then B picks an arbitrary random session si,j and queries Test(si,j) to the
security experiment of Π, receving back a challenge key k.

3. Now B issues many random oracle queries of the form H(ki, pub) toR, where
k1, ..., kQ are chosen at random, but kℓ := k is defined as the challenge key
k for some random index ℓ $←− {1, . . . , Q}.

4. Now either R is able to distinguish the query with a “real” key k from
a “random” one. In this case, B can also distinguish the real key from a
random one, by checking whether t̃ = H(kℓ, pub).
OrR is not able to distinguish the query with a “real” key k from a “random”
one. In this case, R will fail with probability 1 − 1/Q, so that once again
we can simulate A efficiently because it aborts if R fails.
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The above proof idea is only a sketch, and we expect a rigorous proof to be
significantly more complex and subtle. In this work we focused on the simpler
and cleaner case of ruling out tight standard model constructions, which is also
what was claimed in [CCG+19].

Stateful protocols. Note that our result not necessarily applies to stateful pro-
tocols. For example, imagine a protocol Π, where some messages depend on a
randomness r that is composed as r := r′ ∥ ctr, where r′ is a fresh source of en-
tropy and ctr is the global number of sessions that have been started so far. For
such a protocol our meta-reduction may not be able to keep the sessions it creates
in Step 3 hidden from the reduction, since sessions created by R afterwards may
reveal the existence of those sessions. However, we stress that stateful protocols
are typically highly impractical as they require the synchronization of the state
between multiple parties. Indeed, to the best of our knowledge, there exists no
stateful AKE protocol considered practical.

3.7 Conclusion
Key confirmation is a standard technique to construct highly efficient protocols
with full forward security and explicit authentication and widely used in countless
protocols, such as [DvW92, Kra96, Orm98, BPR00, Kra05, Yan13a, FGSW16,
CCG+19, DFW20, BMS20, GGJJ23], for example. We showed that the concrete
security loss of key confirmation, which in prior work [GGJJ23] was proven for
a rather restricted class of protocols and reductions, holds also for more general
protocols and reductions. This suggests that this is a fundamental limitation of
the widely-used key confirmation paradigm. Hence, when designing protocols with
optimal concrete security, then one can either aim for maximal efficiency and use
key confirmation, where avoiding a linear security loss seems difficult, or follow the
approach of using digital signatures as in [BHJ+15, GJ18, DJ21, DG21, LLGW20,
JKRS21], which then yields much less efficient protocols for existing constructions
of digital signature schemes.

Future Research Directions. As already mentioned in Section 3.6.3, it is an
open question whether our result can be extended to the random oracle model.
Moreover, as the key confirmation paradigm seems promising for post-quantum
cryptography, it would be interesting to explore if it can even be extended to the
quantum random oracle model [BDF+11].
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4 Security Analysis of the
WhatsApp End-to-End Encrypted
Backup Protocol

Author’s contribution. The contents of this chapter are mainly based on joint
work with Gareth T. Davies, Sebastian Faller, Kai Gellert, Julia Hesse, Máté
Horváth, and Tibor Jager [DFG+23]. Section 4.3 is based on both [DFG+23] and
joint work with Sebastian Faller, Julia Hesse, Máté Horváth, and Anja Lehmann
[FHH+24], which refined the security model originally presented in [DFG+23].
As research is often an inherently collaborative task, all authors of [DFG+23]
contributed equally to the description of WhatsApp’s E2EE backup protocol and
the development of the original security model through mutual discussions. Its
refinement was developed in a similarly collaborative approach from all authors
of [FHH+24].

The security analysis of the backup protocol of WhatsApp in Section 4.4.3 is a
contribution from the author of this thesis. It is an extension of the original analy-
sis from [DFG+23], which was written mostly by Sebastian Faller and Julia Hesse
with minor contributions from the author of the thesis. This thesis extends the
result in two ways. First, the original publication informally claims that a security
analysis that only considers interactions between an honest client and a corrupt
server covers all other potential combinations of corruption among a client and a
server. We extend the proof to formally consider all four possible combinations
of corruptions. This extension comes with several technical challenges, especially
related to adaptive corruptions of either party. Second, we adjust the proof to the
refined security model from [FHH+24].

4.1 Overview
The WhatsApp messenger is the most popular instant messaging app in the
world with over 100 billion messages sent per day1, providing E2EE communi-
cations [Wha21b], where no party but sender and receiver should be able to read
(or modify) messages. As we have already discussed in Section 1.2, the protection
of data at rest, in particular in cloud-based backups, which are enabled by default
in WhatsApp, is as important as the protection of the data in transit to lay a
convincing claim of E2EE for the entire WhatsApp application.

1See https://x.com/wcathcart/status/1321949078381453314
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Before the end of 2021, whenever a user2 initiated the procedure for backing up
their messages (to be stored on iCloud or Google Drive), they would encrypt these
messages using a key that was known to WhatsApp. While this simple approach
allowed WhatsApp to return the backup encryption key to the user if the original
device were to be lost, it allowed access to backed up messages beyond the con-
trol of the user. For example, by US law, federal governments could have forced
WhatsApp to reveal the backup key (and the storage provider to reveal the en-
crypted contents) through a court order, and the previously well protected private
communication suddenly becomes evidence in a lawsuit [Nov18]. More generally,
the fact that the E2EE security can be circumvented by accessing the backups
harbors a great potential for abuse, for instance by malfeasant governments, mali-
cious employees, or in case of a compromise of both the storage provider’s servers
and WhatsApp’s servers.

WhatsApp E2EE Backups. In late 2021, WhatsApp rolled out an improved
protocol for protecting backups [Wha21a], with the aim to extend the E2EE se-
curity guarantees in a user-friendly way that enables users to restore their backup
keys from a password in case a device is lost. The underlying protocol, which we
call the WhatsApp backup protocol WBP in this work, makes use of HSMs with
the core idea to outsource all cryptographic computations to the client and the
HSM, while the WhatsApp “main server” essentially only relays messages (with
some minor modifications) between client and HSM. The protocol is designed such
that during the initialization phase3 both client and HSM enter a secret value (a
password pw for the client, and a “per-client-secret”4 for the HSM). Furthermore,
the client chooses a symmetric backup key K and the HSM receives an encrypted
version of the key, without either of them learning the secret input of the coun-
terparty. The client uses the backup key K to encrypt the backup data. If a user
loses their device, they can initiate a retrieval protocol from a new client device.
To this end, the new client and the WhatsApp “main server” (which, again, relays
messages to the HSM) execute a protocol where the client retrieves the backup
key, with the password pw used during initialization and the HSM contributing
the same per-client-secret as during initialization.

In order to prevent passwords being leaked to the WhatsApp server, the WBP
deploys OPAQUE [JKX18]. Further, to resist against password guessing at-
tacks, the HSM limits the number of admissible incorrect guesses to ten [Wha21a,
DLS21], after which it destroys the encrypted version of the backup key (and thus
makes the backup irrecoverable).

2We refer to the people using a device that runs the WhatsApp client software as users, to the
device as a client, and to the servers that provide the WhatsApp chat and backup service as
servers.

3Note that WhatsApp refer to this phase as registration.
4It is actually a “per-backup-secret”, which is determined during initialization. If a client were

to re-register, a new “per-backup-secret” would be chosen.
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Contributions. The WBP protocol is a widely-used real-world cryptographic pro-
tocol that addresses the fundamental problem of retrieving data from encrypted
backups based on human-memorable secrets. It aims to provide strong security
properties that match the E2EE-security of the messaging protocol, even against a
corrupted service provider. This work presents the first rigorous security analysis
of the WBP. Concretely, our results can be summarized as follows.

• We formalize the security properties expected from the WBP protocol in
terms of a password-protected key retrieval (PPKR) scheme, where users
store cryptographic keys on an untrusted server, retrievable with a password.
This formalization serves as a foundation for our work, and may also support
future analyses of alternative (potentially non-HSM-based) PPKR protocols
and their comparison.

• We provide a full description of the cryptographic core of the WBP protocol.
This description is based on a whitepaper published by WhatsApp [Wha21a],
a public security assessment of the backup system conducted by the NCC
Group [DLS21], and personal correspondence with the WBP designers [Kev23]
to fill subtle but essential technical gaps left in the protocol descriptions
of [Wha21a, DLS21].

• We present the first formal security analysis of the WBP protocol. Our
analysis is conducted in the UC framework [Can01], which is simulation-
based and therefore facilitates the consideration of low-entropy passwords.
We formally confirm several prior statements about the security guarantees
of the WBP.

• We describe how a corrupted server could get more than ten password
guesses per encrypted backup, even though prior security analysis [DLS21]
claimed that after ten incorrect tries the account is irremediably locked by
the HSM software, and the backup data cannot be retrieved in plaintext.
Concretely, we show that a corrupted server can get ten password guesses
per backup initialization. For example, a corrupted server could suppress
protocol messages to simulate a failed initialization, such that either the
WhatsApp client app retries sending of initialization messages automati-
cally, or the user re-initializes a backup manually, in order to increase the
number of password guesses against the HSM.

• We give a formal analysis of the 2HashDH oblivious pseudorandom func-
tion [JKKX16] (that is used in OPAQUE) in the multi-key setting, where
the domains of the two hash functions used as a building block are not as-
sumed to be separated for different keys. For our work, this result is required
since the WBP does not apply hash domain separation. Beyond that, our
findings provide the basis for analyzing the about-to-be-standardized version
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of OPAQUE [BKLW22]5 and the 2HashDH protocol currently in last call at
the IRTF [DFHSW23] even under the usage of multiple OPRF keys.

Organization. The remainder of this chapter is structured as follows. Section 4.2
provides a full protocol description of the WBP. We then describe our model for
PPKR in Section 4.3 and give our formal result in Section 4.4.

Responsible Disclosure. The research conducted for this work did not impact
the entire WhatsApp system or the privacy of WhatsApp users. In particular,
there was no interaction with the WhatsApp servers, HSMs, or any WhatsApp
users. The protocol description was written with the help of WhatsApp employees
[Kev23], and no reverse-engineering of any implemented code took place. The
scenario in which a corrupt WhatsApp server can increase the number of password
guesses against a user was never demonstrated in practice, but it was acknowledged
by WhatsApp that this would indeed be possible. WhatsApp does not object to
the publication.

4.1.1 Related Work
Password-protected secret sharing (PPSS) [BJSL11, JKKX16] allows a user to
share a secret value among a number of servers and later retrieve it using a partial
set of the servers (in the event that one or more servers become compromised
or unavailable) if and only if the password used during retrieval is the same as
the one used during the sharing step. This primitive has been analyzed in the
UC framework [CLN12, JKKX16], and several constructions based on oblivious
pseudorandom functions (OPRFs) exist (an overview can be found in [CHL22]).

The WhatsApp approach can be viewed as a one-out-of-one version of PPSS,
where WhatsApp’s HSM is the only server. This makes comparisons with work
on PPSS difficult: we need to model corruption of the WhatsApp communication
server (but not the HSM) and assess security in this context, something that
prior models that do not split the server’s role cannot capture. Nonetheless, our
formalization of PPKR in the UC model takes great inspiration from existing
functionalities for PPSS [JKKX16].

Beyond PPSS, there are several works that aim at bootstrapping encryption
keys (or symmetric encryptions directly) from user passwords with the assistance
of a server. Updatable oblivious key management [JKR19] relies on server assis-
tance to let a user derive file-specific encryption keys from a password, while re-
quiring strong user authentication. The distributed password-authenticated sym-
metric encryption scheme DPaSE [DHL22] aims for the same, while relying on the
assistance of several servers but not requiring user authentication. Like the WBP,

5The existing formal analysis of the OPAQUE protocol [JKX18] assumes hash domain separa-
tion in 2HashDH and hence does not apply to the version of OPAQUE in the most recent
Internet Draft [BKLW22].
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all the above schemes rely on OPRFs to shield passwords from curious servers,
but none of them aims to provide a restriction in the number of guessing attempts
after the compromise of the server, which the WBP aims for.

Password-hardened encryption services [LER+18, BEL+20] let users outsource
the encryption to a fully trusted frontend server. The protocols do not require
OPRFs and can hence provide better throughput, at the cost of revealing the
user’s password to the frontend server.

The recent works on Credential-less Secret Recovery [Sca19, OSV23] are for a
somewhat similar single-server setting as PPKR. Therein, a user stores a secret
on some cloud storage and uses the additional power of a trusted execution envi-
ronment (TEE) for secure recovery. In contrast to PPKR however, [OSV23] relies
on a publicly accessible blockchain instead of passwords to authenticate users.

4.2 E2EE Backups in WhatsApp

In this section, we give a detailed description of the WBP. Our presentation
is based on a whitepaper published by WhatsApp [Wha21a], a public security
assessment of the backup system conducted by NCC Group [DLS21], and personal
correspondence with WhatsApp (Meta) staff [Kev23].

We will start with a simplified explanation of the overall protocol layout in
Section 4.2.1 to give a high-level overview of its main idea. Then, to prepare
the detailed protocol description, we will discuss the creation of a communication
channel between clients and the backup server via the WhatsApp client registra-
tion protocol in Section 4.2.2. In Section 4.2.3, we elaborate on how WhatsApp
uses HSMs; in Section 4.2.4, we outline how these HSMs outsource storage to
servers that are considered untrusted. In Section 4.2.5, we then provide a detailed
description of the actual WBP. We conclude with Section 4.2.6, where we describe
how a malicious server can increase the admissible number of password guesses in
certain settings.

4.2.1 High-level Protocol Overview

There are four entities in the system: the user, a WhatsApp client running on
the user’s device, the WhatsApp server, and the HSM that only the WhatsApp
server can communicate with. We will now focus on the latter three. In this
high-level overview, we simplify by describing the WhatsApp server as merely
relaying messages between the HSM and the client. In the actual WBP protocol
it additionally authenticates clients and stores files encrypted by the HSM. As
the encryption and outsourced storage of the data at a cloud provider is done
using symmetric encryption, we focus on the initialization and retrieval of the
encryption key from a password.
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Client(pw, pkHSM) Server HSM(skHSM)

OPAQUE
Init

pw kOPRF

Kexport env

kOPRF
$←− {0, 1}λ

K $←− {0, 1}λ

e $←− SE.Enc(Kexport, K)
E $←− PKE.Enc(pkHSM, e) E

e := PKE.Dec(skHSM, E)
ctr := 10

output K store (env, e, kOPRF, ctr)

Figure 4.1: The WBP key initialization, high-level layout. The value kOPRF is
freshly chosen by the HSM for each initialization request.

Initialization. When activating WhatsApp’s E2EE backups for the first time,
the client chooses a backup key K to encrypt the chat history and the WBP key
initialization phase is executed (see Figure 4.1). To this end, the client first runs
the OPAQUE protocol with the HSM, which takes a password pw from the client
and a key kOPRF from the HSM as inputs. It then outputs a key Kexport to the
client6 and the “envelope” env to the HSM. This envelope is encrypted under
the key Kexport (which is derived using both pw and kOPRF) and contains freshly
chosen key material of the client that is used during retrieval to perform, e.g., a
Diffie–Hellman key exchange, among other things.

To conclude initialization, the client encrypts the backup key K first under the
symmetric key Kexport and then under the HSM’s public encryption key pk, and
sends the result E to the HSM. The HSM removes the outer encryption layer and
stores the encrypted backup key e, the OPAQUE envelope env, the key kOPRF, and
a counter ctr initialized with 10 that tracks password guessing attempts.

Key Retrieval. If the client has lost their client device (and thus lost their backup
key K), they can re-authenticate their new client device with WhatsApp (via
a challenge-response protocol that takes place after re-installing the WhatsApp
application), and subsequently start the retrieval part of the WBP depicted in
Figure 4.2.

The first step of the retrieval phase is that client and HSM engage in the key
exchange phase of the OPAQUE protocol. To this end, the client uses a value pw′

as input and the HSM contributes the values kOPRF and env as established during
the initialization phase. If the password pw′ entered by the client is equal to the
password pw during initialization, the OPAQUE protocol guarantees that (1) the

6The option to derive this additional key was originally not part of OPAQUE [JKX18]. How-
ever, it exists in the OPAQUE Internet Draft version 03 [KLW21], which is deployed by the
WBP.
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Client(pw′, pkHSM) Server HSM(skHSM)

OPAQUE
KE

pw′ env, kOPRF

¯Kexport, shk′
shk

shk key confirmation

c

retrieve (env, e, kOPRF, ctr)
lock client if ctr = 0
ctr := ctr − 1

ctr := 10

c $←− SE.Enc(shk, e)
e := SE.Dec(shk′, c)

K := SE.Dec( ¯Kexport, e)
output K

Figure 4.2: The WBP key retrieval, high-level layout.

client retrieves the former export key ¯Kexport = Kexport and (2) both client and
HSM derive the same value shk′ = shk. However, if pw′ ̸= pw, the client will have
to abort instead.

The HSM decrements its counter for attempted password guesses each time a
retrieval procedure is initiated. If the client can convince the HSM that it has
computed the same value shk′ = shk (via a key confirmation), the HSM will learn
that the entered password pw′ was indeed correct and hence reset its counter to
ten and send the stored ciphertext c to the client. Lastly, the client can use the
derived ¯Kexport to decrypt the ciphertext c and retrieve their backup key K. This
concludes the high-level overview of the cryptographic core of the WBP.

4.2.2 Client Registration
The WBP essentially relies on a communication channel between clients and the
backup server, which is realized in an indirect way. Upon installing the WhatsApp
application, the main WhatsApp server sets up a mutually authenticated channel
with each new client [Wha21b]. In the WhatsApp ecosystem this is done by a
server called ChatD, which is physically distinct form the WhatsApp server han-
dling the WBP. We decided to view all WhatsApp servers as a single WhatsApp
server entity, since a distinction would make the already complex protocol de-
scription and security analysis unnecessarily more complex without providing ad-
ditional insight.7

That is, at first, a secure channel is set up between the client and WhatsApp us-
ing the Noise framework [Per]. Then WhatsApp uses SMS authentication to verify
that the phone number it received via the freshly set up Noise channel belongs to

7For example, we want a corruption of the WhatsApp server to model a malicious WhatsApp
service provider, and therefore we want to consider the entire service as corrupted in this
case, without a need to distinguish between the ChatD and the backup server.
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Client with phone number no WhatsApp server

� Noise Pipe Setup -

-no via Noise Pipe choose cid
� nSMS via SMS nSMS

$←− {0, 1}λ

-n′
SMS via Noise Pipe if n′

SMS ̸= nSMS
return Fail

return pkNoise
WA else return

(pkNoise
cid , cid)

Figure 4.3: The WhatsApp client registration that is independent from the WBP.
Upon conclusion, the client can be identified via a unique identifier
cid, and both client and server are mutually authenticated.

the client. Upon conclusion, the client stores WhatsApp’s public key pkNoise
WA and

WhatsApp stores the freshly generated client’s public key pkNoise
cid together with

a unique client identifier cid. Subsequently, the WhatsApp server handles all in-
coming client requests via the Noise channel and also mediates the WBP messages
between the client and the backup service.

4.2.3 Hardware Security Modules
The WBP deploys HSMs as a core component of their PPKR protocol. Intuitively,
an HSM is a hardware device that can be programmed once with code and then
“locked” in such a way that it is infeasible to change its code afterwards. After
the HSMs are set up they hence serve as an incorruptible entity in the backup
ecosystem. In the WBP, the HSM performs most cryptographic relevant computa-
tions on the “WhatsApp side” (with minor computations performed by a different,
non-HSM WhatsApp “main server”) and is responsible for coordinating the secure
storage of backup keys.

Trusted Setup Ceremony. For the HSM to serve as an incorruptible entity in the
system, it must be ensured that (1) its secret key material is not leaked and that (2)
its code cannot be modified after setup. This is usually ensured via a process called
trusted setup ceremony or key ceremony. During such a ceremony, a ceremony
leader essentially unpacks new modules, sets them up with program code, and
generates fresh key material for the HSM (where public keys are copied and secret
keys remain secret). After setup, the HSM’s “programming key” is destroyed,
ensuring that it cannot be modified after the ceremony has taken place. The public
key material of the HSM is hard-coded into the WhatsApp application [DLS21].
Naturally, this procedure can only be trusted if it was executed faithfully. For the
remainder of this work we assume that the setup ceremony was conducted such
that

• the following key material has been generated:
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– a signature key pair (skSig, pkSig) $←− Sig.KGen(1λ),
– a public-key encryption key pair (skEnc, pkEnc) $←− PKE.KGen(1λ),
– a static Diffie–Hellman key pair (y, Y ) for y $←− Zp and Y = gy, where

g is a generator of a known group G of prime order p;
• the HSM uses the secret key material to execute the WBP’s computations

via predefined interfaces for each protocol step;
• the HSM can only be queried by a WhatsApp server, and only via the

specified interfaces. In particular, the HSM does not leak any of its secret
key material.

We remark that the HSM solution deployed by WhatsApp consists of multiple
HSMs, which ensures that user cannot get locked out of their backup if an HSM
breaks down. All HSMs are set up such that they coordinate their state changes
via the Raft consensus protocol [OO14], ensuring that each HSM behaves in the
same manner towards a user [Kev23]. Without loss of generality, we treat this set
of HSMs as a single HSM entity. The analysis of the HSM consensus protocol is
beyond the scope of this work.

4.2.4 Secure Outsourced Storage

One might be tempted to store sensitive data along with key material in an HSM.
However, storing data in the internal memory of an HSM is very expensive and
limited in capacity. Thus, the internal storage of an HSM is in practice not viable
to store large quantities of sensitive data for millions or billions of users. There-
fore, WhatsApp uses storage fully controlled by the WhatsApp server. The HSM
uses a dedicated symmetric encryption key KEnc

$←− {0, 1}λ which is used for au-
thenticated encryption, and this essentially ensures confidentiality and integrity
of stored records. Whenever the HSM requests a stored record, it decrypts the
record and verifies its integrity before processing it. In addition, a Merkle tree
based protocol is deployed to “tie” the encrypted records together and to pre-
vent a replay of outdated state records that were previously deleted by the HSM.
Whenever the WhatsApp server provides an encrypted record to the HSM, it also
has to provide a proof (using the Merkle tree) that this ciphertext is consistent
with the current state of the encrypted database. The HSM verifies this against
a locally stored root of the Merkle tree. If this verification fails, the HSM rejects
the record.

A formal analysis of this mechanism is beyond the scope of our work. Therefore,
for brevity of the protocol description and to not further complicate the security
analysis, we make the simplifying assumption that the HSM has no limited storage
and does not need to outsource any data. This resembles the claims made by
WhatsApp [Wha21a] and the findings by the NCC Group [DLS21].
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4 Security Analysis of the WhatsApp End-to-End Encrypted Backup Protocol

Client with phone number cid Server HSM
pk = {pkSig, pkEnc, Y } acc[ ] := ∅ sk = {skSig, skEnc, y}, aids := ∅
On input (InitC, pw):
K $←− {0, 1}λ

x $←− Zp, X := gx

r1
$←− Zp

a1 := H1(pw)r1 -s a1 On input (InitS, cid):
choose fresh aid ∈ {0, 1}∗

aid′ := acc[cid]
acc[cid] := aid -(InitS, aid, aid′,a1 ) if aid ∈ aids:

�(InitRes, aid, Fail)
return (InitRes, cid, Fail) else:

delete ⟨aid′, ∗, ∗, ∗⟩
aids := aids ∪ {aid}
kOPRF

$←− Zp

b1 := akOPRF
1

n1
$←− {0, 1}λ

tr′ := H3(a1, b1, n1)
�b1 , n1, σ1 �aid,b1 , n1, σ1 σ1

$←− Sig.Sign(skSig, b1 ∥ n1)
if Sig.Vrfy(pkSig, b1 ∥ n1, σ1) ̸= 1:

return (InitRes, Fail)
ρ := H2(pw, b

1/r1
1 )

ne
$←− {0, 1}λ

(Kexport, Kmask, Kauth) := KDF1(ρ, ne)
e cred := x⊕Kmask
Te := MAC.Tag(Kauth, Y ∥ ne ∥ e cred)
tr := H3(a1, b1, n1)
e $←− AE.Enc(Kexport, K)
m := e ∥ tr∥ X ∥ e cred ∥ ne ∥ Te

E $←− PKE.Enc(pkEnc, m)
return (InitRes, K) -s E -(aid, E)

m := PKE.Dec(skEnc, E)
e∥tr∥X ∥e cred∥ne∥Te := m
if tr ̸= tr′:

out := Fail
else:

m′ := e∥X ∥e cred∥ne∥ Te

store ⟨aid, kOPRF, m′, 10⟩
�(InitRes, aid, out) out := Succ

return (InitRes, cid, out)

Figure 4.4: The WBP initialization. Light blue boxes indicate 2HashDH instruc-
tions of OPAQUE; dark gray boxes denote other OPAQUE instruc-
tions; non-colored parts were added by WhatsApp. -s a is the
cid-authenticated transmission of a.
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4.2 E2EE Backups in WhatsApp

Client with phone number cid Server HSM
pk = {pkSig, pkEnc, Y } acc sk = {skSig, skEnc, y}, aids

On input (RetC, pw′):
r2

$←− Zp, a2 := H1(pw′)r2

nC
$←− {0, 1}λ

u $←− Zp, U := gu -s nC ,U ,a2 On input (RetS, cid):
if acc[cid] = ⊥:

return (RetRes, cid, Fail)

aid := acc[cid] -(RetS, aid, nC , U , a2 ) retrieve ⟨aid, [kOPRF], [m′], [ctr]⟩
if no such record exists:

�(RetRes, aid, Fail)

return (RetRes, cid, Fail) else if ctr = 0:

�(DelRec, aid) delete ⟨aid, ∗, ∗, ∗⟩
return (DelRec, cid) else:

e ∥ X ∥ e cred ∥ ne ∥ Te := m′

update ⟨aid, ∗, ∗, ∗⟩ with ctr − 1
b2 := akOPRF

2 ,nS
$←− {0, 1}λ

v $←− Zp, V = gv

ikm := (U v, Uy, Xv)
pre := (a2, nc, U, Y, e cred, ne, Te, b2, nS, V )

(KMAC
S , KMAC

C , shk) := KDF2(ikm, pre)
TS := MAC.Tag(KMAC

S , H3(pre))
σ2

$←− Sig.Sign(skSig, b2)�b2 ,e cred, ne, Te, nS ,
V, TS ,σ2

�aid,b2 ,e cred, ne, Te ,
nS ,V, TS , σ2

if Sig.Vrfy(pkSig, b2, σ2) ̸= 1
return (RetRes, Fail)

ρ := H2(pw, b
1/r2
2 )

(Kexport, Kmask, Kauth) := KDF1(ρ, ne)
if MAC.Vrfy(Kauth, Y ∥ ne ∥ e cred, Te) = 0:

return (RetRes, Fail)
x := e cred⊕Kmask
pre := (a2, nc, U, Y, e cred, ne, Te, b2, nS, V )
ikm := (V u, Y u, V x)
(KMAC

S , KMAC
C , shk) := KDF2(ikm, pre)

if MAC.Vrfy(KMAC
S , H3(pre), TS)

return (RetRes, Fail)
TC := MAC.Tag(KMAC

C , H3(pre ∥ TS)) h := H3(pre ∥ TS)

-s TC -(RetRes, aid,TC ) if MAC.Vrfy(KMAC
C , h, TC) = 0:

�(RetRes, aid, Fail)

return (RetRes, cid, Fail) else:
update ⟨aid, ∗, ∗, ∗⟩ with ctr := 10

e := AE.Dec(shk , c) �
c

� aid, c
c $←− AE.Enc(shk , e)

if e = ⊥: return (RetRes, cid, Succ)
return (RetRes, Fail)

K := AE.Dec(Kexport , e)
return (RetRes, K)

Figure 4.5: The WBP key retrieval. Light blue boxes indicate 2HashDH in-
structions of OPAQUE; light gray boxes mark 3DH of OPAQUE;
dark gray boxes denote other OPAQUE instructions; non-colored
parts were added by WhatsApp. -s a is the cid-authenticated trans-
mission of a.
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4.2.5 WhatsApp Backup Protocol Description
The detailed descriptions of the WBP’s key initialization and retrieval phases are
depicted in Figure 4.4 and Figure 4.5, respectively. As already discussed in Sec-
tion 4.2.1, the WBP builds on the OPAQUE Internet Draft v3 [KLW21], the steps
of which are highlighted in the figures. For a comparison of these OPAQUE steps
with [KLW21], we refer to Appendix A. Note that the figures include instructions
like “On (Interface, value)” or “return (Interface, value)”. These can bee seen
as messages delivered from or to higher-level application processes, which, e.g.,
output a successfully established symmetric backup key to be used for backing up
the actual data. We make these calls explicit since they will also appear in parts
of our security model.

Participants. There are three participants in the protocol. Client refers to the
WhatsApp client application of a user with unique identifier cid. The client is
in possession of the HSM’s public key, which is composed of a public key for
a signature scheme pkSig, an encryption public key pkEnc, and a static Diffie–
Hellman share Y . Those keys are hard-coded into the WhatsApp client and thus
authenticated.

The server is run by WhatsApp and it mostly relays messages between clients
and the HSM. For this it communicates with the client via the previously es-
tablished cid-authenticated channel (see Figure 4.3) and with the HSM directly
through a TLS channel. The server also maintains a map acc[·] of identifier pairs
(cid, aid), which “tie” a so-called account identifier aid (described below) to the
client identifier cid. If some cid is not contained in acc, we let acc[cid] = ⊥.

Finally, the HSM is (a trusted entity that is) in possession of the secret keys
skSig, skEnc, y corresponding to the respective public keys.

Key Initialization. A user with password pw and cid initializes the backup as
follows. On input of pw, the WhatsApp client app first chooses a uniformly random
backup key K that can be used for encrypting the backups and which is going
to be preserved via WBP. Next, it samples a Diffie–Hellman key-pair (X, x) that
will be used later in the OPAQUE key exchange step. Executing the 2HashDH
OPRF protocol [JKK14] with the HSM, the client samples r1

$←− Zp uniformly at
random. This is then used to blind the password pw by computing a1 := H1(pw)r1

using a hash function H1 : {0, 1}∗ → G. The client sends a1 to the server over the
cid-authenticated channel.

Upon receiving a1 from cid, the server chooses a fresh aid ∈ {0, 1}∗ that is
called “account identifier” by WhatsApp8 and checks if the client with cid has
ever initiated the protocol and thus has already an aid in its array acc. If so, it

8We remark that this terminology is slightly misleading, as aid does not identify a client’s
account but is rather a “backup identifier”. If the same client initializes many backups,
possibly with different passwords, then each backup will be assigned a new aid and only the
most recent backup is kept.
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sets aid′ := acc[cid] and acc[cid] := aid, otherwise it sets aid′ = ⊥. Finally, the
server sends aid, aid′, a1 to the HSM. Observe that the HSM never receives any
identifying information (e.g., cid) about the clients other than the value aid. That
is, the HSM is not aware of the concept of a client cid.

Upon receiving the server’s message, the HSM deletes all information associated
with aid′ from its storage. Then it checks whether aid has ever been used before.If
it was, then the HSM aborts and outputs aid, Fail to the server. If the HSM sees
aid for the first time, it picks a random key kOPRF

$←− Zp for that specific aid to be
used in the 2HashDH OPRF. The HSM then uses the client’s blinded password
a1 to compute b1 := akOPRF

1 . Furthermore, the HSM samples a nonce n1
$←− {0, 1}λ

uniformly at random and signs b1∥n1 under its secret key skSig. Finally, it computes
a transcript hash tr′ of the values a1, b1, n1 with a hash function H3 : {0, 1}∗ →
{0, 1}λ, and sends back aid, b1, n1 together with the resulting signature σ1 to the
server, which relays b1, n1, σ1 to the client.

After receiving the HSM’s message from the server, the client first verifies σ1
using pkSig and aborts if the verification fails. Otherwise, it unblinds the server’s re-
sponse b1 using the randomness r1 and derives the OPRF output y := H2(pw, b

1/r1
1 )

with hash function H2 : {0, 1}∗ → {0, 1}λ. Next, further keys Kexport, Kmask, Kauth
are derived from the OPRF output y with the help of a key derivation func-
tion KDF1. The obtained keys are used as follows. Kmask is used as an XOR
mask to obtain e cred, hiding the client’s Diffie-Hellman secret x. Kauth is used
to compute a MAC tag Te over Y ∥ ne ∥ e cred, where ne is a randomly sampled
nonce of length λ. Finally, Kexport is used to encrypt K to produce the envelope9

e $←− AE.Enc(Kexport, K). Similarly to the HSM, the client also computes a tran-
script hash tr := H3(a1, b1, n1) and composes a message m := e∥tr∥X∥e cred∥ne∥Te,
which is then encrypted under the HSM’s public key E $←− PKE.Enc(pkEnc, m) to
hide its content from the intermediary server. The encrypted envelope E is sent
to the server over the cid-authenticated channel.

Upon receiving E from a client with cid, the server looks up acc[cid] := aid and
forwards aid, E to the HSM. After receiving the message, the HSM decrypts E
and checks whether the received transcript hash tr matches its own view of the
transcript tr′. If the transcripts do not match, it aborts sending aid, Fail to the
server that outputs cid, Fail. In case of matching transcripts, the HSM initializes
a counter ctr that aims to track the unsuccessful key retrieval attempts and stores
in the secure storage the tuple (aid, kOPRF, e ∥X ∥ e cred ∥ ne ∥ Te, ctr). Finally, it
informs the server about the successful completion of the initialization phase by
sending aid, Succ that outputs cid, Succ concluding the key initialization.

Key Retrieval. The goal of the WBP retrieval phase is to enable users, who do
not have access anymore to their backup key K, to retrieve it using the password
they entered during key initialization. On input of pw′, the WhatsApp client app
first prepares its input r2, a2 to the 2HashDH OPRF the same way as during

9Note that the WBP’s envelope is not equivalent to an OPAQUE envelope.
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initialization, samples an ephemeral Diffie–Hellman key-pair (u, U) for the 3DH
protocol, and also samples a uniformly random nonce nC . Then nC , U, a2 are sent
to the server over the cid-authenticated channel.

Upon receiving the client’s message, the server checks the array acc and if it does
not contain cid, then it aborts because no user with the identifier cid initialized
any backup keys. Otherwise, it attaches the account identifier aid := acc[cid] to
the client’s message and sends these to the HSM.

When receiving the server’s message, the HSM retrieves the record from the
secure storage that is indexed by aid. If no such record is found, it returns failure
to the server. Otherwise the HSM retrieves the record containing the per-client
OPRF key kOPRF, the current counter value ctr, and m′ that is parsed as m′ =
e ∥X ∥ e cred ∥ ne ∥ Te. If ctr = 0, then the HSM deletes the record indexed with
aid from the storage and informs the server of this. If ctr > 0, then its value is
decreased by one and the stored record for aid is updated with the new ctr value.
Next, as in the key initialization phase, the HSM computes b2 := akOPRF

2 as a step
of 2HashDH. After sampling a uniformly random nonce nS, the execution of the
3DH protocol steps follows. The HSM samples an ephemeral Diffie–Hellman key
pair (V, v) and computes three shared Diffie–Hellman secrets: U v, Uy, Xv. Using
these shared secrets and the preamble pre, which is essentially a concatenation of
the full protocol transcript (a2, nc, U, Y, e cred, ne, Te, b2, nS, V ), it derives the keys
KMAC

S , KMAC
C , and shk from a key derivation function KDF2. Finally, with KMAC

S

it computes a MAC tag TS over the hashed preamble, signs b2 with skSig to get
signature σ2 and sends its response composed of aid, b2, e cred, ne, Te, nS, V, TS, σ2
to the server, who removes aid from the message and forwards the rest to the
client.

After receiving the HSM’s response from the server, the client first verifies the
signature σ2 and aborts if the verification fails. It then again derives the keys
Kexport, Kmask, Kauth and verifies the MAC Te that was created during the initial-
ization. If the verification failed, it aborts. Otherwise it continues to reconstruct x
by unmasking e cred with Kmask and then to derive the keys KMAC

S , KMAC
C , shk from

the three shared Diffie–Hellman secrets V u, Y u, V x and the preamble pre. Using
KMAC

S it verifies the MAC TS and aborts if this is not successful. Otherwise the
client computes MAC TC over a hash of pre ∥TS with the key KMAC

C , which it then
sends to the server through the cid-authenticated channel.

After attaching aid to TC , the server forwards these values to the HSM. Since
the HSM knows all values for computing the MAC tag that it has just received,
it can verify the MAC. Note that with the MAC verification it essentially checks
whether pw = pw′. If the MAC verification fails, it aborts, otherwise it resets the
counter ctr to 10. Finally, the HSM encrypts e using shk and sends the resulting
ciphertext c and aid to the server who forwards c to the client.

As the final steps of the retrieval phase, the client first decrypts c to obtain e
(it aborts if the AE decryption fails) and then decrypts e using the key Kexport to
obtain the backup key K.
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4.2.6 Extending the Number of Password Guesses
As we already noted in the protocol description in Section 4.2.5, the WBP only
authenticates the client towards the server but not towards the HSM. The usage
of the so-called “account identifier” aid aims to bridge this gap. The way it is used
ensures that the HSM always associates every retrieval request from the same cid
with the same unique aid that was assigned for this cid during its last successful
key initialization request. Furthermore, the HSM only keeps records of the last
key initialization of a user under the aid that was assigned to the corresponding
cid during this last initialization. Recall that in order to limit the number of
password guesses against some account, each password guess has to be associated
with the targeted account. It turns out that this cannot be guaranteed in case of
the WBP when the server is malicious. The reason for this is that the server is in
charge of assigning aids for cids, and neither the client nor the HSM can check this
because the former never sees their assigned aid, and the latter never learns the
cid of clients. This allows the server to increase the number of password guesses
in certain cases.

We demonstrate the attack with an example. Let us assume that some client
with identity cid has already initialized a key and the HSM stored the correspond-
ing record under aid. Now if the same client runs key initialization again with the
same password,10 the server is assumed to instruct the HSM to delete the previ-
ous record by setting aid′ := aid. However, the execution of this step completely
depends on the server acting honestly. A malicious server might however proceed
as if it has never seen cid before and make the HSM store qI records for cid, if
the client with cid runs the key initialization qI times. If the client used the same
password pw all qI times, the malicious server will have 10qI password guessing
opportunities, since it knows all the qI aids that are associated with cid’s records.

Mitigating the Attack. If the transcripts tr′ and tr contained information about
the client identity cid, in a way that both the client and the HSM can verify this,
then they would be able to notice if the server is dishonest about the client identity.
However, note that this countermeasure is very difficult to deploy retroactively,
since any changes in the programming of the HSM would require the setup cere-
mony to be performed again.

Resetting ctr without the correct password. Recall that the HSM determines
whether a retrieval was successful solely by verifying the MAC TC . This implies
that the ability to compute a valid TC in fact does not prove knowledge of the
correct password. Instead it proves knowledge of the DH secret x corresponding
to the DH share X stored by the HSM, which is needed to compute KMAC

C and in
turn a valid TC . A notable consequence is therefore that any party that knows x

10WhatsApp is for mobile devices, connection loss may happen leading to a failure. After an
unsuccessful attempt, the user would most probably re-run initialization, likely with the same
password.
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can always reset the counter ctr to 10 even if it runs the retrieval with a wrong
password. The practical impact of this, however, is rather small as in this way a
corrupt party can only reset the ctr of a file that it initialized itself. An adversary
cannot exploit this to reset the ctr of any other party, even when a maliciously
acting server executes the attack described above and reroutes the retrieval to a
different aid.

4.3 Password-Protected Key Retrieval
In this section we give a formal definition of password-protected key retrieval
(PPKR) in terms of an ideal functionality.

The Cryptographic Abstraction of the WBP. We introduce the concept of
a password-protected key retrieval (PPKR) protocol, which is a 2-party protocol
executed by a client and a server. Note that in the WBP protocol, this client is the
user’s WhatsApp client and this server is the combination of the WhatsApp server
and the HSM. A PPKR protocol consists of two phases: (1) an initialization phase,
where the client generates a symmetric encryption key and, using a password,
securely stores it with a server, and (2) a retrieval phase, where the client can
retrieve their symmetric encryption key using a password.

The server may neither learn any information about the client’s password, nor
their key from these interactions, but only whether a retrieval was successful. To
provide a high-level intuition, we depict the input-output behavior of the PPKR
functionality in Figure 4.6. Besides this, we demand several properties from a
PPKR scheme that seem relevant for such a primitive in practice. These include
protection against online and offline dictionary attacks, and that it provides cryp-
tographically strong encryption keys.
Remark 3. We note here that alternative modelings are possible. For example, one
could case-tailor the definition to the WhatsApp setting and formulate a variant
of PPKR with three parties: the client, the server, and the HSM. However, our
notion with only two parties is more versatile: it can be used to analyze protocols
where the server relies on an HSM, as well as protocols where the server acts on its
own, or relies on arbitrarily many other entities, such as a cloud provider, offline
storage, etc. The reason why this is possible is that usage of such “helpers” is
well integrated into the UC framework [Can01] through the notion of so-called hy-
brid functionalities, which can be modularly “plugged” into protocol descriptions
without “spilling” into the definition of the underlying primitive.

4.3.1 Modeling Server (and HSM) Corruption
The central entity in our system is the server S, which provides the password-
protected key retrieval service to its clients, and which we model to be corruptible
in several ways. As already mentioned above, the HSM does not appear as an
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Client Server

-InitC : pw � InitS

PPKR
initialization

�InitRes : K

-RetC : pw′
� RetS

PPKR
retrieval

� RetRes : -RetRes :
K if pw = pw′, else Fail Succ if pw = pw′, else Fail

Figure 4.6: Schematic overview of password-protected key retrieval with initial-
ization on top and retrieval at the bottom, already using the interface
names of our functionality FPPKR. In both phases, the server does not
provide any particular input but still has to participate in the protocol
for the client to successfully initialize and retrieve a key K, which is
modeled in the ideal functionality by letting it provide the InitS and
RetS messages.

explicit entity in a PPKR protocol, but is rather considered an artifact on how
the server’s code is deployed. Let us discuss the different corruption scenarios that
we consider in this setting.

Server Corrupt: This corruption status gives a corrupt server some, rather be-
nign, attack capabilities, e.g. as discussed in Section 4.2.6, but still maintains
most security guarantees. This scenario models that the server essentially
mainly acts as a connecting interface between clients and the HSM (or any
other “helper” utilized by the server), which remains perfectly secure and
leaks no information. Applying this scenario to the WBP, this in partic-
ular means that all cryptographic key material and client records remain
protected during this corruption thanks to being executed in the HSM.

File Leakage: We additionally model that the client files, containing the infor-
mation to verify the recovery password and retrieve the client’s key, can be
leaked to the adversary. In the context of an HSM-supported setup, this
means that the adaptively stored and maintained information by the HSM
can get compromised. The file leakage can happen repeatedly, with the ad-
versary obtaining snapshots of all the stored client files. This does neither
imply that the server nor HSM are corrupt though.
We believe this realistically models that the core key material of the HSM
enjoys particularly strong protection, whereas the HSM-protected database
of possibly millions of client records is less secure and can be vulnerable to
leakage attacks.
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Server (and HSM) Fully Corrupt: We also want to capture the (loss of) secu-
rity when the server gets fully corrupted, meaning that all parts of the
server—including the HSM (or any other helper)—are under the control of
the adversary. This implies the previous two corruption settings, i.e., nor-
mal server corruption and continuous compromise of all files, and also goes
beyond as we now assume that the adversary is in full control of the HSM.
That is, the core key material is no longer trusted, and the adversary can
arbitrarily deviate from the original HSM protocol.

Expected Security Properties. Before formalizing an ideal functionality FPPKR,
we first describe the security properties we intuitively expect from a PPKR scheme
and how they degrade under the discussed corruption scenarios.

The key K that is generated in a PPKR scheme should be usable without
restrictions in any other application, thus we require that K is indistinguishable
from random. Note that in particular this implies that neither the server nor the
adversary can influence the generation of K in any way. Moreover, we expect
K to remain secret from everyone but the client that computed it throughout
the lifetime of the PPKR protocol. Hence, FPPKR should leak no information on
the key, and any output given by FPPKR to the server or the adversary must be
independent from K. These two properties should even hold in any corruption
scenario, unless the adversary correctly guesses the client’s password.

In order to limit the ability to guess passwords via dictionary attacks, we expect
FPPKR to (1) not leak any information about a password used by some client to
any other party beyond whether a password used in a retrieval is the same as in
the most recent initialization by that client, and (2) allow only a small number
of failed retrieval attempts before K is deleted, although there are exceptions to
both properties under full corruption.

Regarding (1), a fully corrupt server has extended (although still limited) on-
line11 password guessing capabilities against an honest cid in the following sense.
A fully corrupt S is not limited to running a retrieval with the currently stored
backup file of cid. Instead, it can use currently stored or outdated backup files
of any client, or even arbitrary data. This means that S not necessarily learns
whether the password used by cid in the retrieval is equal to the one from the
most recent initialization by cid, but can compare it to the password from al-
most any initialization12 or even arbitrary passwords. This also implies that S can
choose which key cid obtains if the passwords match—be it the currently stored or
outdated key of any cilent, or an arbitrary one. Note that in any case, the server
is still limited to a single password guess per retrieval.

The exception regarding (2) is that the limit on retrieval attempts cannot be

11We refer to attacks that require interaction with at least one other party as online. Accord-
ingly, offline attacks require no interaction with other parties.

12This excludes initializations, for which the file was never leaked and got deleted (through
exhaustion of retrieval attempts or re-initialization) before the server became fully corrupt.
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guaranteed anymore if the server is fully corrupt as we cannot guarantee that it
actually deletes K. We emphasize that file leakage in contrast has no impact on
the number of possible failed retrieval attempts as this is only a passive one-time
access to the files and gives no active ability to tamper with them or the counter.
However, leaking file gives the adversary an unlimited number of offline password
guessing attempts. Nevertheless, we expect that a PPKR scheme provides re-
sistance against pre-computation attacks [JKX18] for leaked files, meaning that
the adversary cannot pre-compute a table of possible passwords and immediately
learn the user’s password upon file leakage.

We further expect that clients are authenticated towards the server13 and cannot
be impersonated by other clients or the adversary. However, note that a corrupt
server might be able to skip client authentication14 and execute the protocol on
behalf of any client by itself, i.e., without interacting with any client. Finally, we
expect that the server is authenticated towards clients and cannot be impersonated
by the adversary.

We summarize the list of expected security properties below.

• Pseudorandomness of K: Honest clients compute pseudorandom keys K,
even if the server is fully corrupt.

• Secrecy of K: Initialized and retrieved keys of any honest client remain
hidden from even a fully corrupt server as long as the server does not cor-
rectly guess the honest client’s password.

• Uniqueness of K: If the server is honest, initialization of a key K by user
cid deletes any key that cid previously initialized.

• Oblivious passwords: The initialization phase does not leak any informa-
tion about the password to even a fully corrupt server.

• No online dictionary attacks: The retrieval phase leaks at most one bit
of information (1) about the password used by the client to even a fully
corrupt server, and (2) about the initialized password to even a malicious
client.

• Limited number of retrieval attempts with wrong passwords: Let
K denote the key initialized by an honest client cid, and assume that cid
later runs the retrieval phase 10 times consecutively with a wrong password.

13We leave the concrete means of authentication to the application. In the case of the WBP,
SMS-based authentication is used, creating a one-to-one correspondence between cid and
phone numbers of WhatsApp users. Other authentication methods such as biometrics (where
cid would correspond to, e.g., a fingerprint) or even device-bound strong authentication using
signatures are possible as well.

14We opted for a general treatment here, i.e., allowing client impersonation by the server. In
fact, we could strengthen this (see Section 4.3.3 for more details) but this depends on which
mechanisms on the server side are corruptible.
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Then, unless the server is fully corrupt, it erases all K-dependent informa-
tion, i.e., K cannot be retrieved anymore. This must hold even if the client
becomes maliciously corrupted after initializing K.

• Limited number of offline guesses: The above guarantee extends to
corrupt servers if there was no file leakage, i.e., after 10 wrong password
guesses to retrieve any honestly initialized key K, K is deleted and cannot
be retrieved by anyone anymore if no file containing K was leaked.15

• Resistance to pre-computation attacks: Secrecy of K is maintained
even for leaked files.

• Client authentication: As long as the server is honest, only the client
who initialized K can attempt to retrieve K. This must hold even if the
password used during initialization becomes publicly known.

• Server authentication: There is only one server in the system and it
cannot be impersonated by the adversary, unless the server gets corrupted.

• Key authenticity: Let K be the key initialized by any client cid. Then, if
cid retrieves with the correct password, it obtains K as long as the server is
honest.

We give an overview and comparison of the main security properties in the
different corruption settings in Table 4.1 below. For brevity, we refer to security
that is maintained when the server S is corrupt, but no files got leaked as Lev-1
security. Lev-2 security covers the optimal guarantees up to joint server corruption
and file leakage, considering both attack capabilities combined. Finally, Lev-3
security refers to schemes that maintain the optimal security guarantees up to full
server corruption.

4.3.2 A PPKR Functionality
In Figures 4.7 to 4.9 we describe the ideal functionality FPPKR for password-
protected key retrieval. On a high level, FPPKR implements a password protected
lookup table that contains clients’ keys. When some client executes the initializa-
tion phase, an entry for that client is created in the lookup table or updated if an
entry already existed. By executing the retrieval phase, clients can access their
entry in the table and recover their key, but only if they pass password authenti-
cation. If they fail password authentication 10 times in a row, FPPKR deletes the
key by erasing the corresponding table entry of that user. Note that while FPPKR

15Note that the phrasing “any initialized” here reflects that the adversary can extend the number
of admissible password guesses, as described in Section 4.2.6. This is necessary to model
the security achieved by WhatsApp’s protocol. We will discuss in Section 4.3.3 how the
functionality can be strengthened.
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Table 4.1: Overview of expected security properties of FPPKR under different cor-
ruption settings. We refer to the following level: Lev-1 = S is corrupt,
Lev-2 = S is corrupt and files are leaked (both attacks combined), Lev-3
= fully corrupt S.

Property Honest S Lev-1 Lev-2 Lev-3

Pseudorandom key K ✓ ✓ ✓ ✓

Secrecy of K ✓ ✓ ✓ ✓

Uniqueness of K ✓ ✗ ✗ ✗

Oblivious passwords ✓ ✓ ✓ ✓

No online dictionary attacks ✓ ✓ ✓ ✓

Upper limit on incorrect recoveries ✓ ✓ ✓ ✗

Limited offline attacks ✓ ✓ ✗ ✗

No precomputation for offline attacks n.a. n.a. ✓ ✓

Client authentication ✓ ✗ ✗ ✗

Server authentication ✓ ✗ ✗ ✗

Key authenticity ✓ ✗ ✗ ✗

maintains the table entries using client identifiers, FPPKR does not enforce the ini-
tialization and retrieval processes to run on the same physical client machine. In
our model, we understand the client’s party identifier as the identity under which
the client device can authenticate. This way, if multiple devices can authenticate
under the same identity, InitC and RetC can be called from different machines.

Next, we will explain the interfaces and record keeping of FPPKR. In Figures
Figures 4.7 to 4.9 we labeled all instructions for easy referencing. FPPKR interacts
with arbitrary clients and a single server S, where S is encoded in the session
identifier sid (server authentication). Note that for brevity we omit sid from
all inputs and outputs of FPPKR. The functionality internally maintains different
types of records to keep track of ongoing and finished initialization and retrieval
phases. If FPPKR ever tries to retrieve a record that does not exist, it ignores the
query causing this.

Initialization Phase. Whenever a client cid starts a new initialization, it calls
the InitC interface with the password pw the user has chosen and a subsession
identifier ssid. FPPKR then ( IC.1 ) generates a fresh key K $←− {0, 1}λ (ensuring
pseudorandomness of K) for cid and records that cid has started a new initial-
ization by creating a record ⟨InitC, ssid, cid, pw, K,⊥,⊥⟩ ( IC.2 ). As the func-
tionality enforces no order in which the InitC and InitS interface are called, it
may happen that the InitS interface was already queried previously, in which case
FPPKR updates the record ⟨InitC, ssid, cid,⊥,⊥, ∗, srvOk⟩ created in the InitS in-
terface with the values pw and K ( IC.2 ). Finally, the functionality informs the
adversary A that the client cid has started a new initialization ( IC.3 ).

If the server agrees to participate in the initialization with cid in the subses-
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4 Security Analysis of the WhatsApp End-to-End Encrypted Backup Protocol

FPPKR is parameterized with a security parameter λ. FPPKR talks to a server S that
is encoded in sid, arbitrary clients cid, and the adversary A. S can have corruption
state honest, corrupt, or FullyCorrupt. FPPKR further allows file leakage
via the LeakFile corruption command. For brevity, we omit session identifier
sid from all inputs, outputs, and records. If FPPKR tries to retrieve a record that
does not exist, it ignores the incoming message. FPPKR ignores repeated inputs
with the same ssid and in that case activates A.
Initialization phase

On input (InitC, ssid, pw) from cid:
IC.1 Choose K $←− {0, 1}λ

IC.2 If a record ⟨Init, ssid, cid,⊥,⊥, ∗, srvOk⟩ exists, overwrite (⊥,⊥) in it
with (pw, K). Otherwise record ⟨Init, ssid, cid, pw, K,⊥,⊥⟩

IC.3 Send (InitC, ssid, cid) to A

On input (InitS, ssid, cid, cid′ ) from S:
IS.1 If a record ⟨Init, ssid, cid, ∗, ∗,⊥,⊥⟩ exists, overwrite the last ⊥ with

srvOk. Otherwise record ⟨Init, ssid, cid,⊥, ⊥, ⊥, srvOk⟩
IS.2 If S is not honest, in the record ⟨Init, ssid, cid, ∗, ∗, ⊥, srvOk⟩ over-

write ⊥ with cid′

IS.3 Send (InitS, ssid, cid) to A
On input (CompleteInitC, ssid, b) from A:

CIC.1 Retrieve ⟨Init, ssid, [cid], ∗, [K], ∗, srvOk⟩. Ignore the query if K = ⊥
CIC.2 If b = 1, output (InitRes, ssid, K) to cid
CIC.3 If b = 0, output (InitRes, ssid, Fail) to cid

On input (CompleteInitS, ssid, b) from A:
CIS.1 Retrieve ⟨Init, ssid, [cid], [pw], [K], [cid′], srvOk⟩. Ignore the query if

K = ⊥. If cid′ ̸= ⊥, set cid := cid′

CIS.2 If b = 0, output (InitRes, ssid, cid, Fail) to S. Else continue.
CIS.3 Set ctr := ∞ if S is FullyCorrupt, and ctr := 10 other-

wise. Store ⟨File, cid, pw, K, ctr, honest ⟩ if cid is honest and
⟨File, cid, pw, K, ctr, Malicious ⟩ otherwise, overwriting any existing
record ⟨File, cid, ∗, ∗, ∗, ∗⟩

CIS.4 If S is FullyCorrupt, record ⟨leaked, cid, pw, K, i+1⟩, where i ∈ N
is the largest number, such that a record ⟨leaked, cid, ∗, ∗, i⟩ exists,
or i = 1 if no such record exists.

CIS.5 Send (InitRes, ssid, Succ) to S

Figure 4.7: Ideal functionality FPPKR for password-protected key retrieval, initial-
ization interfaces. Code in solid boxes and dashed boxes can be
dropped to strengthen FPPKR (see Section 4.3.3).
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4.3 Password-Protected Key Retrieval

Retrieval Phase
On input (RetC, ssid, pw′) from cid:

RC.1 If a record ⟨Ret, ssid, cid,⊥, ∗, [pw], ∗, srvOk⟩ exists, overwrite ⊥ with pw′ and
set match := (pw ?= pw′). Otherwise record ⟨Ret, ssid, cid, pw′,⊥,⊥,⊥,⊥⟩ and
set match := ⊥

RC.2 Send (RetC, ssid, cid, match) to A

On input (RetS, ssid, cid, cid′ , pw∗, K∗, i) from S:
RS.1 If a record ⟨Ret, ssid, cid, [pw′],⊥,⊥,⊥,⊥⟩ exists, overwrite the last entry with

srvOk. Otherwise set pw′ := ⊥ and record ⟨Ret, ssid, cid, pw′,⊥,⊥,⊥, srvOk⟩
RS.2 If S is not honest, in the record ⟨Ret, ssid, cid, pw′,⊥, ∗, ∗, ∗⟩ overwrite ⊥ with

cid′ and set cid := cid′

RS.3 If S is FullyCorrupt and pw∗ ̸= ⊥: set p̂w := pw∗, K̂ := K∗

RS.4 If S is FullyCorrupt, pw∗ = ⊥, retrieve the record ⟨leaked, cid, [pw], [K], i⟩
and set ctr :=∞. Otherwise, retrieve the record ⟨File, cid, [pw], [K], [ctr], ∗⟩. Set
p̂w, K̂ as follows:

(1) If no such record exists, set p̂w := ⊥, K̂ := Fail.
(2) If ctr = 0, set p̂w := ⊥, K̂ := DelRec and delete ⟨File, cid, ∗, ∗, ∗, ∗⟩.
(3) Else, set p̂w := pw, K̂ := K and overwrite ctr with ctr − 1 in the File

record.
RS.5 In the record ⟨Ret, ssid, cid, pw′, ∗,⊥,⊥, ∗⟩ overwrite (⊥,⊥) with (p̂w, K̂)
RS.6 If pw′ = ⊥, set match := ⊥, else set match := (p̂w ?= pw′)
RS.7 Send (RetS, ssid, cid, match) to A.

On input (CompleteRetC, ssid, b) from A:
CRC.1 Retrieve ⟨Ret, ssid, [cid], [pw′], ∗, [pw], [K], srvOk⟩. Ignore the query if pw′ = ⊥.
CRC.2 Determine the output K ′ as follows:

(1) If K ∈ {Fail, DelRec}, set K ′ := K
(2) If pw = pw′ and b = 1, set K ′ := K
(3) In all other cases, set K ′ := Fail

CRC.3 Send (RetRes, ssid, K ′) to cid.
On input (CompleteRetS, ssid, b) from A:

CRS.1 Retrieve ⟨Ret, ssid, [cid], [pw′], [cid′], [pw], [K], srvOk⟩. Ignore the query if pw′ =
⊥. If cid′ ̸= ⊥, set cid := cid′

CRS.2 Determine the output result as follows:
(1) If K ∈ {Fail, DelRec}, set result := K.
(2) If b = 1 and either pw = pw′ or a record
⟨File, cid, ∗, ∗, ∗, Malicious⟩ exists , set result := Succ.

(3) In all other cases, set result := Fail.
CRS.3 If result = Succ and there exists a record ⟨File, cid, pw, K, [ctr], ∗⟩, overwrite

ctr with 10.
CRS.4 Send (RetRes, ssid, result) to S.

Figure 4.8: Ideal functionality FPPKR, retrieval interfaces. Code in solid boxes
and dashed boxes can be dropped to strengthen FPPKR (see Sec-
tion 4.3.3).
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4 Security Analysis of the WhatsApp End-to-End Encrypted Backup Protocol

Corruption interfaces

On corruption command (LeakFile) from A:
LF.1 Create an empty list L.
LF.2 For every record ⟨File, [cid], [pw], [K], [ctr], ∗⟩:

(1) Append (cid, ctr) to L.
(2) If no record ⟨leaked, cid, ∗, ∗, ∗⟩ exists, add a record
⟨leaked, cid, pw, K, 1⟩.

(3) Otherwise, add a record ⟨leaked, cid, pw, K, i + 1⟩, where i ∈ N
is the largest number, such that a record ⟨leaked, cid, ∗, ∗, i⟩ exists.

LF.3 Output L to A.
On corruption command (Corrupt, P) from A:

C.1 Mark P as corrupt.
On corruption command (FullyCorrupt, S) from A:

FC.1 Mark S as FullyCorrupt and run LS.1-LS.2
FC.2 In every record ⟨File, ∗, ∗, ∗, [ctr], ∗⟩ overwrite ctr with ∞.
FC.3 Output L to A

Attack interfaces

On input (MaliciousInit, cid, pw∗, K∗) from A:
MI.1 If S is honest, ignore this input.
MI.2 Record ⟨File, cid, pw∗, K∗, 10, Malicious ⟩, overwriting any existing

record ⟨File, cid, ∗, ∗, ∗, ∗⟩

On input (MaliciousRet, cid, pw∗, b) from A:
MR.1 If S is honest, ignore this input.
MR.2 If no record ⟨File, cid, [pw], [K], [ctr], [st]⟩ exists, output Fail to A.
MR.3 If ctr = 0, delete record ⟨File, cid, pw, K, ctr, ∗⟩ and output

(DelRec, cid) to A
MR.4 If pw∗ = pw or if st = Malicious and b = 1, overwrite ctr in the record

with 10 and output K to A. Otherwise, overwrite ctr with ctr− 1 and
output Fail to A

On input (OfflineAttack, cid, pw∗, i) from A:
OA.1 If a record ⟨leaked, cid, pw∗, [K], i⟩ exists, output K to A. Otherwise,

output Fail to A.

Figure 4.9: Ideal functionality FPPKR, corruption and attack interfaces. The
boxed code can be dropped to strengthen FPPKR (see Section 4.3.3).
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sion ssid, it calls the InitS interface, which takes as input two (not necessarily
distinct) client identities cid and cid′. The additional identity cid′ is only effective
if the server is not honest ( IS.2 ), and reflects that a malicious server can simply
ignore client authentication and claim a different identity has authenticated to
him. Similar to the InitC interface, the functionality either creates a new record
or updates an existing one depending on the order in which the two interfaces are
called. Here it stores the identifier srvOk, which simply indicates that the server
has agreed to participate in this initialization, and potentially the additional iden-
tity cid′ ( IS.1 and IS.2 ). Finally, FPPKR informs the adversary that S agreed to
the initialization with cid.

After both parties agreed to participate in the initialization, the adversary may
let FPPKR compute the output of the initialization phase for the client with the
interface CompleteInitC and for the server with CompleteInitS. Both in-
terfaces verify that the respective other party gave its InitC or InitS input (cf.
CIC.1 and CIS.1 ) by ensuring that the session record contains a key K (stored
in IC.2 ) and the identifier srvOk (stored in IS.1 ). Again, the functionality does
not enforce an order in which the parties receive their output and leaves this
decision to the adversary A. The adversary’s choices are as follows:

• CompleteInitC with the parameter b = 1 outputs K from the session
record to the client ( CIC.2 )

• CompleteInitC with the parameter b = 0 outputs Fail to the client
( CIC.3 )

• CompleteInitS with the parameter b = 1 outputs Succ to the server
( CIS.5 )

• CompleteInitS with the parameter b = 0 outputs Fail to the server
( CIS.2 )

Further, if it does not output Fail, the CompleteInitS interface ensures
that FPPKR installs a password-protected backup key file for cid that contains K
( CIS.3 ). Note that here the additional identity cid′ from the InitS interface
becomes effective. If it is present, the backup key file is created for cid′ instead
of cid, which reflects that a malicious server can claim that any cid′ completed
the initialization ( CIS.1 ). Moreover, the file contains a counter ctr initialized to
10 that indicates the remaining retrieval attempts before the file gets deleted. If
the server is fully corrupt, ctr is instead initialized to ∞, indicating that a fully
corrupt server may never delete files. The last entry of the installed file marks
whether the initializing client is honest or corrupt, which will later be necessary
in the retrieval to reflect that corrupt parties can always reset their counter even
when retrieving with a wrong password.

Finally, since a fully corrupt server implies a continuous compromise of all files,
FPPKR creates essentially a copy of the installed file in a leaked record, which
is utilized by FPPKR to enable offline password guesses for any leaked backup file
( CIS.5 ).

This concludes the description of FPPKR’s initialization phase. The absence of
any K- or pw-dependent information in the outputs towards the server ( CIS.2 ,
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CIS.5 ) and the adversary ( IC.3 , IS.3 ) ensures secrecy of K and password
obliviousness during initialization. Since FPPKR stores at most one File record
per cid (cf. CID3 ), Uniqueness of K is provided.

Retrieval Phase. The general structure of record keeping and interfaces of the
retrieval phase are very similar to the initialization phase. First, the client has to
start a retrieval session with the RetC interface, and the server has to agree in
participating in the retrieval with the RetS interface, and there is again for each
party an interfaces to let FPPKR output either success or failure to the parties.
For the RetC interface, cid provides as input the password pw′ it chose for this
retrieval attempt. FPPKR records this in a Ret record, again by either creating
or updating the record ( RC.1 ). It then outputs to A that cid started a retrieval
session, where if the RetS interface was already called, the output also contains
the bit pw ?= pw′, where pw is the password from the backup file that cid tries
to retrieve ( RC.2 ). We let FPPKR leak this information to the adversary because
many protocols, including the WBP, leak via their communication pattern whether
the client used the correct password or not. For example, a server might only send
its last message to the client if it has previously learned that the client’s password
was correct.

For the RetS interface, the server can again supply the additional client identity
cid′, which acts exactly as in the initialization phase ( RS.2 ) (Client authentica-
ton during retrieval). The server inputs further values pw∗, K∗, i, which become
effective only if the server is fully corrupt. They are used to indicate which file or
arbitrary values the server wants to use for the retrieval. This choice is determined
as follows:

• If the server wants to run the retrieval with arbitrary values, it submits
pw∗ ̸= ⊥ and K∗ ̸= ⊥ ( RS.3 )

• If it wants to run the retrieval with a previously leaked file, it submits
pw∗ = ⊥. Using cid′, it indicates the whose file it wants to use and the value
i determines the exact leaked file.

• If it submits pw∗ = ⊥ and i = 0 or if it is not fully corrupt, then FPPKR uses
the currently stored file for cid (key authenticity)

After finding a file for a retrieval attempt, FPPKR checks if the retrieval attempt
counter for cid has reached zero. In that case, it deletes the File record of cid
to ensure that the key contained in that record cannot be recovered anymore
( RS.4 (2)) (limited number of retrieval attempts with wrong passwords).
Otherwise, the retrieval attempt counter for cid′ is decremented ( RS.4 (3)) and
the password pw and key K obtained from the File record are written to the Ret
record ( RS.5 ).

Finally, the functionality gives the output (RetS, sid, cid′, pw ?= pw′) to the
adversary A ( RS.7 ), where the latter bit again refelcts that it may be leaked via
the communication pattern whether the client used the correct password or not.

To complete the retrieval session, the adversary calls CompleteRetC and
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CompleteRetS, again with FPPKR enforcing no order in which the interfaces are
called. Similarly to the the initialization phase, both interfaces verify that both
parties gave their respective input (cf. CRC.1 and CRS.1 ) and both take an
input b, which immediately let’s the interface output Fail if b = 0 (cf. CRC.2 and
CRS.2 ). Assuming b = 1, in CompleteRetC the functionality then compares
the two password pw and pw′ contained in the session state record and outputs
the key K contained in the record to the client if they are the same ( CRC.2 and
CRC.3 ). The CompleteRetS interface works similarly, however it also outputs
Succ to the server if the file was initialized by a malicious party, reflecting that
they can reset their counter even when retrieving with wrong passwords ( CRS.2
- CRC.4 ).

It can be seen from the outputs towards the server ( CRS.4 ) and the adversary
( RS.7 ) that only one bit of information about the password used by an honest
client during retrieval (i.e., match or no match) is leaked, protecting the client
from online dictionary attacks. Further, they contain no information about
the key K, ensuring secrecy of K during retrieval.

Offline Attacks. The adversary has access to three interfaces MaliciousInit,
MaliciousRet, and OfflineAttack to mount offline attacks. In the first two
interfaces the adversary impersonates some client cid, however, as described in the
discussion of the expected security properties, a client can only be impersonated if
the server is corrupt. Therefore, both queries are ignored by FPPKR if S is honest
( MR.1 and MI.1 ).

With the MaliciousInit interface, the adversary impersonates a client cid
and executes a new initialization for cid. For this, A can choose a new password
pw∗ and a new key K∗, which are then stored in a new File record marked
Stored that overwrites any existing File record for cid ( MI.2 ). FPPKR resets
the counter ctrssid to 10 since with any new initialization the client gets 10 new
retrieval attempts.

With the interface MaliciousRet the adversary impersonates a client and
tries to recover a client’s key from a guessed password. To this end, A inputs the
client identity cid and a password guess pw∗. FPPKR retrieves the File record of cid
marked Stored ( MR.2 ) and checks if cid has any retrieval attempts left by check-
ing if ctrssid[cid] = 0. If cid has no retrieval attempts left, it deletes the File record
of cid (limited number of offline guesses) and outputs (DelRec, sid, cid) to
A to notify A that the record was deleted ( MR.3 ). Otherwise, the functionality
proceeds to check whether the guessed password pw∗ matches the password pw
from the File record. If the passwords match, the adversary gets access to the
key stored in the File record, and otherwise FPPKR returns Fail to the adversary
( MR.4 ).

The OfflineAttack interface can be used to guess the password of a leaked
file offline. The adversary specifies the leaked file it wants to attack with the
values cid and i, and obtains the key K from the file if its password guess was
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correct ( OA.1 ). Note that the adversary can start using the OfflineAttack on
records only after it compromised them, which ensures pre-computation attack
resistance.

Differences between PPKR and 1-PPSS A password-protected secret sharing
scheme [BJSL11] allows a user to retrieve a password-protected secret from a set
of servers. The servers cannot derive or offline-attack the user’s data unless a
certain subset of them colludes. A PPKR scheme could be interpreted as a 1-
PPSS scheme, i.e., where only one server is involved in storing and retrieving the
password-protected secret. While both primitives are very similar considering only
honest parties, it is actually the server corruption model that greatly differs for
PPKR and 1-PPSS. Intuitively, the one server of a 1-PPSS scheme holds the only
share of a secret (or key, in the terminology of PPKR), i.e., the full secret. If such
a server is compromised, unlimited offline guesses on the shared user secret are
unavoidable. PPKR is stronger: upon server compromise, only a limited number
of password guesses are allowed on user secrets. Hence, PPKR never falls back to
1-PPSS, due to the stronger guarantees upon server compromise.

4.3.3 On Strengthening FPPKR

We discuss two potential was of strengthening FPPKR, both inspired by the dis-
cussions of 4.2.6. First, while FPPKR deletes keys of honest users whenever a user
re-initializes (e.g., when refreshing the key, or when changing the password) as
long as the server is honest, it does not guarantee uniqueness of clients’ backup
keys if the server is corrupted. Consequently, the limited number of offline
guesses holds only per initialized key of a user, and not per user. The reason
why we go with the weaker FPPKR is that the WBP cannot guarantee the stronger
version, and thus we have to reflect this weakness for the security analysis of the
actual protocol. However, as we demonstrate in Chapter 5, we can construct pro-
tocols that provide stronger security guarantees in this regard than WBP. For this
reason, we state here the properties that we ideally demand from FPPKR, and the
corresponding functionality can be read from Figures 4.7 to 4.9 by dropping the
code in dashed boxes . The security guarantees are then strengthened as follows.

• Uniqueness of K: If the server is honest, initialization of a key K by
user cid deletes any key that cid previously initialized, even if the server is
malicious.

• Limited number of offline guesses: The above guarantee extends to
corrupt servers, i.e., after 10 wrong password guesses to recover any honestly
initialized the latest honestly initialized key K of any client, K is deleted and
cannot be retrieved by anyone anymore if no file containing K was leaked.

• Client authentication: As long as the server is honest not fully corrupt,
only the client who initialized K can attempt to retrieve K. This must hold
even if the password used during initialization becomes publicly known.
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• Key authenticity: Let K be the key initialized by any client cid. Then, if
cid retrieves with the correct password, it obtains K as long as the server is
honest not fully corrupt.

Second, we can strengthen FPPKR by disallowing corrupt parties to reset the
counter of files they initialized while using wrong passwords. For the same reasons
as above, we have to define FPPKR including this weakness. The strengthened
functionality can be read read from Figures 4.7 to 4.9 by dropping the code in
solid boxes . The security guarantees are then strengthened as follows.

• Limited number of retrieval attempts with wrong passwords: Let
K denote the key initialized by an honest client cid any party P, and assume
that cid P later runs the retrieval phase 10 times consecutively with a wrong
password. Then, unless the server is fully corrupt, it erases all K-dependent
information, i.e., K cannot be retrieved anymore. This must hold even if
the client becomes maliciously corrupted after initializing K.

4.4 Security Analysis
The Difficulty of a Security Analysis. The WBP relies on the strong asymmet-
ric password-authenticated key exchange (saPAKE) protocol OPAQUE [JKX18],
which comes with a security analysis in the UC framework. This immediately
raises the question whether one could modularize the analysis and leverage the
UC composition theorem to obtain our main result. The approach would be as
follows:

1. Prove that OPAQUE UC-emulates functionality FsaPAKE (proven already in
[JKX18]).

2. Prove that the WBP using FsaPAKE instead of OPAQUE UC-emulates FPPKR
(presumably a simpler proof than proving security using OPAQUE).

3. Invoke the UC composition theorem: it yields that from 1. and 2. above it
directly follows that WBP using OPAQUE UC-emulates FPPKR.

However, this is not the road that we are able to take in this work. Instead, we
have to prove the statement in item 3 above from scratch because of the following
two main reasons. First, OPAQUE is a key exchange protocol that results in two
parties sharing a key, while the goal of the WBP is to hide the key from the server.
Second, the WBP deploys version 03 of the OPAQUE Internet Draft [KLW21] to
which the security analysis of the OPAQUE framework [JKX18] does not apply,
for a multitude of reasons that we describe in Appendix B.

The main challenge when performing a security analysis of the WBP is to tame
its complexity. To this end, we modularize the security proofs of the underlying
OPRF and the AKE schemes. Since previous security analyses did not apply to
the protocol versions deployed by the WBP, we first show their security separately.
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Then we use the resulting simulators as subcomponents of the WBP simulator.
This proof technique, which was already used for AKE in [JKX18], avoids formu-
lating the WBP in the AKE- and OPRF-hybrid model. The latter is not even
possible, due to the non-black-box use that the WBP makes of these components.

To further tame the complexity, we only consider the Lev-1 security of the WBP
and leave the analysis of Lev-2 and Lev-3 security as open problems. Neverthe-
less, even when proving only Lev-1 security, this provides confidence in the design
choices that WhatsApp made for WBP, indeed resulting in a secure PPKR pro-
tocol. Moreover, having proven Lev-1 security, it seems likely that if an adversary
wants to break the security of WBP in practice, this has to involve breaking the
security of either the outsourced storage system or the HSM, leaving WhatsApp
with only two potential points of failure that need to be protected.

4.4.1 Security of the 2HashDH OPRF
In this section we analyze the security of the 2HDH protocol that is used as a
building block in the WBP. We first state a “multi-key” version of the OPRF
functionality from [JKX18] that allows evaluation of PRFs with respect to many
different keys, and where we drop the ability of the functionality to export a
transcript prefix to the application. The reasons for these changes are as follows:

• Multi-key setting: WhatsApp’s PPKR scheme in Figures 4.4 and 4.5
uses an OPRF called “2HashDH” [JKKX16] (see Figure 4.11 for the protocol
description) where hash functions H1 and KDF2 do not have domains that are
separated for different PRF keys. More concretely, if two clients initialize or
retrieve using the same password pw, both compute the same value H1(pw)
as a first step of the 2HashDH protocol. Hence, the security analysis of
the OPRF part of WhatsApp’s PPKR scheme cannot rely on any domain
separation occurring.16

• Dropping prefixes: As we do not use FOPRF to formulate WhatsApp’s
PPKR scheme (i.e., we do not formulate it in the FOPRF-hybrid model) but
only rely on the existence of a simulator for 2HashDH in the proof, we do
not require the export of parts of the transcript in order to, e.g., sign or
compare them. The OPRF functionality used in the analysis of OPAQUE
[JKX18] had to introduce such exportation in order to be able to state the
OPAQUE protocol in the OPRF-hybrid setting.

16We note that the security analysis of OPAQUE [JKX18] is carried out with respect to a single-
key OPRF functionality and hence proves the security of OPAQUE only when hash domains
of the two hash functions of 2HashDH are separated, e.g., by hashing unique session/key
identifiers alongside the other inputs. However, OPAQUE in practice (e.g., [BKLW22])
does not deploy such domain separation, since the negotiation and memorization of session
identifiers is expensive and partly contradicts with the purpose of the scheme being password-
only. Hence, for a meaningful analysis of these deployed versions of OPAQUE, our multi-key
version of FOPRF should be used.
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We note that [JKX18] proves the security of 2HashDH without reliance on au-
thenticated channels between the client and the server (previous works [JKKX16]
still relied on such channels). This fits our setting, where the OPRF is run between
the client and the HSM holding all PRF keys. Neither is the client authenticated
to the HSM (it is only authenticated toward the server, but a malicious server can
lie to the HSM about this authentication), nor can the client determine which key
was used by the HSM (the malicious server can let the HSM use any of its PRF
keys).

While WhatsApp’s implementation of 2HashDH is in a strong setting where
servers/PRF key holders are all played by the HSM and hence can be assumed
incorruptible and uncompromisable (i.e., they will always follow the protocol, and
they will never leak their PRF keys), we opt for a general treatment of OPRFs
including server corruption and compromise in this section. While we do not
require the analysis of these settings within this work, we believe that a general
treatment and analysis of 2HashDH without domain separation has great relevance
for other works [JKX18, BKLW22, DFHSW23].

Having summarized where we reuse results from, how we change them, and why,
we now describe the technical contents of this section. In Figure 4.10 we state a
multi-key OPRF functionality adopted from [JKX18]. In Figure 4.11 we give the
multi-key version of the 2HashDH OPRF of [JKX18]. In Figure 4.12 we give the
simulator that demonstrates that 2HashDH UC-realizes FOPRF.

Multi-Key OPRF Model

Our functionality FOPRF closely follows the design from [JKX18], but we extend
the functionality to be able to handle multiple servers and even multiple PRF keys
per server. FOPRF is depicted in Figure 4.10 and we mark in gray the changes over
[JKX18] that enable our FOPRF to handle multiple PRF keys and servers. We now
explain the functionality’s interfaces and parameters in detail.

The functionality FOPRF implements oblivious access to a truly random function
family Fsid,S,kid(·) : {0, 1}∗ → {0, 1}ℓ. The functions are parameterized by a global
session identifier sid and parameters S, kid that can take arbitrary values and can
be interpreted as taking the role of the PRF key. For each pair S, kid, a truly
random function table is maintained.

The Init interface. Any server S can call this interface to initialize a new PRF
key with identifier kid. We let FOPRF ignore subsequent inputs of same key iden-
tifiers per server, which models that we expect key identifiers to be unique per
server (e.g., they correspond to account names of clients where each client evalu-
ates their “own” PRF, or they describe the purpose of the PRF that is evaluated
with this key). Key identifiers are not kept secret (i.e., they are leaked to the
adversary). For each newly initialized PRF key by server S with identifier kid,
FOPRF stores a record ⟨S, kid⟩ and sets a counter tx[S, kid] to 0.
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4 Security Analysis of the WhatsApp End-to-End Encrypted Backup Protocol

Functionality F ℓ
OPRF

The functionality is parametrized by a PRF output-length ℓ. For every kid , x, value
Fsid,S,kid(x) is initially undefined, and if an undefined value Fsid,S,kid(x) is referenced
then FOPRF assigns Fsid,S,kid(x) $←− {0, 1}ℓ.

Initialization:
On (Init, sid, kid ) from S, if this is the first Init message for kid , set tx[S, kid ] = 0,
store ⟨S, kid⟩ and send (Init, sid, kid , S) to A. Ignore all subsequent Init messages
for kid from S. // Unique key identifiers per server.
Server Compromise:
On (Compromise, sid, kid , S) from A, mark ⟨S, kid ⟩ as Compromised. If S is cor-
rupted, all key identifiers kid with records ⟨S, kid⟩ are marked as Compromised .
Note: Message (Compromise, sid, kid , S) requires permission from the environment.
// Key-wise compromise is possible.
Offline Evaluation:
On (OfflineEval, sid, kid∗ , S, x) from A, send (OfflineEval, sid,

kid∗ , S, x, Fsid,S,kid(x) ) to A if any of the following hold: (i) ⟨S, kid∗ ⟩ is marked
Compromised, (ii) kid∗ = kid for a kid previously received via the Init interface
from S (iii) kid∗ ̸= kid for all values kid previously received via the Init interface
from S.
Evaluation:

• On (Eval, sid, kid , ssid, S, x) from P ∈ {C,A}, record ⟨ kid , ssid, P, x⟩ and send
(Eval, sid, kid , ssid, P, S) to A.

• On (SndrComplete, sid, kid′ , ssid) from P ∈ {S′,A}:
– Ignore the message if P = S′ is honest and there is no record ⟨S′, kid′ ⟩. //

Honest servers do not use unknown keys.
– If P = A then record ⟨A, kid′ ⟩ (if it does not exist already) // Adversary

can play server with its own keys.
– Increment tx[S′, kid′ ].
– Send (SndrComplete, sid, kid′ , ssid, S′) to A.

• On (RcvComplete, sid, kid∗ , ssid, P, S∗) from A:
– Ignore this message if there is no record ⟨∗, ssid, P, x⟩ or if tx[S∗, kid∗ ] = 0.
– Decrement tx[S∗, kid∗ ].
– Send (EvalOut, sid, ssid, Fsid,S∗,kid∗(x) ) to P.

Figure 4.10: A multi-key version of the ideal functionality FOPRF from [JKX18]
(without prefixes). The ability to maintain multiple PRF keys is
reflected in the addition of “key identifiers” kid, and we highlight the
changes using gray boxes .
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The Compromise interface. The effect of the compromise interface is that a
record ⟨S, kid⟩ is marked Compromised. This corresponds to compromise of a
PRF key, e.g., due to a breach at the server. We model key-wise compromise by
letting the adversary specify which kid it wants to compromise at what server S,
as it is possible that, e.g., a server only leaks keys that he recently has touched,
while others remain securely stored. If a server gets corrupted (i.e., fully controlled
by the adversary), all its keys are considered Compromised. Looking ahead, a
key being marked compromised allows the adversary to evaluate the corresponding
PRF an unbounded number of times (see the OfflineEval interface explanation
below).

The OfflineEval interface. This interface can be used by the adversary to
evaluate any of the random functions Fsid,S,kid(·) (identified by the “PRF key”
S, kid) on any input x. However, FOPRF will only return the corresponding PRF
value if the corresponding key is considered to be in the hands of the adversary.
This is the case if S is corrupt or S, kid was already compromised, or if S, kid was
never honestly initialized. If any of these checks pass, FOPRF returns Fsid,S,kid(x)
to the adversary.

The Eval interface. This interface is called by any client C who wants to eval-
uate a specific PRF identified by S, kid on a secret input x. In order to allow for
parallel evaluation sessions, the interface takes a subsession identifier ssid. FOPRF
stores the request and informs the adversary, keeping input x private.

The SndrComplete interface. This interface allows a server to signal that
it wants to assist in a specific evaluation identified by ssid, using the PRF key
of that server identified by kid′. Note that FOPRF does not enforce the intended
key identifier (specified in Eval input by the client) and the used key identifier
(specified in SndrComplete input by the server) to be the same. This allows for
the analysis of OPRF protocols that do not assume clients to be authenticated,
and hence messages by clients can be modified. In particular the method of clients
telling the server which key to use might not be tamper-proof. To proceed with the
interface explanation, FOPRF allows server participation only if the corresponding
key exists at a server (or the server is using a malicious key). FOPRF then increases
the “evaluation ticket” counter tx[S, kid′] by 1. Looking ahead, this counter will
reflect the number of PRF evaluations that a server agreed to assist with, on a
per-key basis.

The RcvComplete interface. Finally, the RcvComplete interface can be
called by the adversary at any time to let a client C finalize an open evaluation
session identified by ssid. FOPRF only continues the request if P is expecting to
receive an output for ssid. The adversary has the freedom to specify with respect
to which key S∗, kid∗ the client receives the evaluation for, with only one constraint:
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there needs to be an evaluation ticket tx[S∗, kid∗]. This ensures that evaluation
of the PRF with respect to honest keys held by servers cannot happen more
times than the corresponding server has agreed to assist in the evaluation. If an
evaluation ticket for the specified key is found, it is taken away by decreasing
the counter, and the PRF output is sent to P. We note that the flexibility of
the adversary in FOPRF that lets it decide at the very latest point how to spend
evaluation tickets is what has allowed to prove universal composability for efficient
protocols such as 2HashDH [JKKX16] in the past, as it allows for “late extraction”
of adversarial PRF keys.

Security of Multi-Key 2HashDH

The multi-key version of 2HDH can be found in Figure 4.11. The changes over
the single-key version are quite minimal: essentially all interfaces receive a key
identifier kid as additional input. The client who wants to evaluate a PRF with
key identifier kid informs the server about it by sending kid alongside the first
message. The server who receives the first message takes the kid and looks up the
PRF key according to this identifier. There is no authenticity of key identifiers if
channels are not client-authenticated, as in the setting of the WhatsApp backup
protocol.

We stress that the addition of key identifiers results in a subtle but crucial
difference: in multi-key 2HDH (Figure 4.11), hash function domains are not sep-
arated for each key identifier kid. That is, Alice’s computation to evaluate her
PRF identified by kidAlice at input x involves computation of H1(x), which is the
same value that Bob computes if he wants to evaluate his PRF identified by kidBob
at the same input x. Without client-authenticated channels, the adversary can
hence maliciously “reroute” PRF evaluation to different keys. More specifically,
Alice computes H1(x)r and sends (kidAlice, H1(x)r) to her server. The adversary
rewrites this message to (kidBob, H1(x)r) such that the server applies Bob’s key
and sends back to Alice the value (H1(x)r)kBob . Alice removes the blinding factor
r and outputs H2(x, H1(x)kBob), which is an evaluation of x of Bob’s PRF. Note
that Alice cannot notice that she computed somebody else’s PRF.17

Theorem 3. Let H1 : {0, 1}∗ → G be a hash function into a group of order q ∈ N,
H2 : {0, 1}∗ × G → {0, 1}ℓ with ℓ ∈ N be another hash function, and let k $←− Zq.
Suppose the (N, Q) one-more DH assumption holds for G, where Q := qE is the
maximum number of (Eval, ∗, kid, S, ∗) queries over all tuples (kid, S) made by the
environment Z, N := qE + qH , and qH is the total number of H1 queries made
by Z. Then the “multi-key” protocol 2HDH of Figure 4.11 UC-realizes the “multi-
key” functionality FOPRF of Figure 4.10, with hash functions H1, H2 modeled as
random oracles.
17We note that the analysis of OPAQUE [JKX18], which is carried out using multiple instances

of single-key 2HashDH, does not examine the effect of this attack since the parallel execution
of many single-key 2HashDH instances introduces domain separation into all random oracles.
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4.4 Security Analysis

2HashDH(H1, H2)

Components:
Hash functions H1 : {0, 1}∗ → G, H2 : {0, 1}∗ × G → {0, 1}ℓ with ℓ ∈ N and
G = ⟨g⟩ a group of order q. The two hash functions are specified for one
particular sid, which has to be folded into the input.
Initialization:
On (Init, sid, kid ), the server S picks k $←− Zq and stores ⟨sid, kid , k⟩.

Server Compromise:
On (Compromise, sid, kid ), if there is a record ⟨sid, kid , k⟩, the server S reveals
k to the adversary.
Offline Evaluation:
On (OfflineEval, sid, kid , x), the server retrieves record ⟨sid, kid , k⟩ and out-
puts (OfflineEval, sid, kid , H2(x, H1(x)k)).
Online Evaluation:

• On (Eval, sid, kid , ssid, S′, x) the client C picks r $←− Zq, records
⟨sid, ssid, r⟩ sends (sid, kid , ssid, H1(x)r) to the server S′.

• On (SndrComplete, sid, kid , ssid) and message (sid, kid , ssid, a) from C,
s.t. a ∈ G, the server S retrieves record ⟨sid, kid , k⟩ and sends (sid, ssid, ak)
to C.

• On (sid, ssid, b) s.t. b ∈ G, the client C retrieves record ⟨sid, ssid, r⟩, aborts
if the tuple is not found and else outputs (Eval, sid, ssid, H2(x, b1/r)).

Figure 4.11: The multi-key version of protocol 2HashDH that realizes FOPRF. The
changes introduced over [JKX18] due to the handling of multiple PRF
keys are marked with gray boxes , and the exportation of prefixes is
dropped.
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More precisely, for any adversary against 2HashDH, there is a simulator Sim2HDH
that interacts with FOPRF and produces a view that no environment Z can distin-
guish with advantage better than

AdvFOPRF
2HDH,Sim2HDH,Z(λ) ≤ qIAdvOMDH

G,qE+qH ,A(λ)(λ) + (qE + qH)2

q

where qI is the number of honestly initialized keys in the system.

Proof intuition. There is already a proof of universal composability of single-
key 2HashDH in [JKX18], by giving an algorithm that simulates the protocol run
if there is only one honest PRF key. If there are several honest PRF keys, the
question to resolve in our proof is whether the individual simulators from [JKX18]
can be orchestrated to run in parallel, without any clashes in programming the
random oracles. The idea to avoid clashes is the following: first, due to the high
entropy in PRF keys, a clash in H2 programming is unlikely to occur, since k is part
of the H2 inputs. Inputs to H1 are the values at which a PRF should be evaluated,
and hence they can coincide (e.g., different users have the same passwords that
they need to feed into their PRF). However, the single-key simulator of [JKX18]
does not rely on programming H1 outputs to values specific to a certain PRF key,
but rather relies on knowledge of a trapdoor of the hash output. Our multi-key
simulator can thus apply the following strategy: it first chooses trapdoors itself
and plants them into H1 outputs, and then it runs the individual simulators on
these joint trapdoors. The precise code of our simulator is given in Figure 4.12
and the detailed proof follows below.

Proof. We argue that Sim2HDH of Figure 4.12 generates a view to an arbitrary
environment Z that is indistinguishable from Z’s interaction with the real world
where parties run protocol 2HashDH of Figure 4.11. Without loss of generality,
suppose A is the dummy adversary [Can01] who merely passes through all its
messages to and from Z. The interfaces and view of Z are as follows:

• Client: Z sends (Eval, sid, kid, ssid, S, x) to a client and eventually receives
back a PRF value (EvalOut, sid, ssid, y) under the key identified by kid,
held by S.

• Server: Z sends (SndrComplete, sid, kid, ssid) to a server in order to let
that server finish session ssid using key identifier kid. Z does not expect to
see any output from the server upon sending this input.

• Adversary: Z expects to receive both protocol messages fromA in case client
and server are honest. Z sends (sid, kid, ssid, a) to A as any client’s message,
and (sid, ssid, b) as any server’s message. Observe that, since 2HashDH is
run over unauthenticated channels, such messages can be introduced by Z
without corrupting anybody.
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• Random oracles: Z can query both H1(x) and H2(y, z) to A for any values
x, y, z.

We now describe the above view of Z in more detail and for both worlds. For
any chosen kid, x, Z receives transcript values a, b from A for corresponding honest
clients and servers, and a PRF value (EvalOut, sid, ssid, y) in case the client is
honest. In the real execution, we have a = H(x)r for a randomly chosen r ∈ Zq,
b = ak for a randomly chosen k ∈ Zq, y = H2(x, H1(x)k), and queries to H1 and
H2 answered consistently and uniformly at random. In the ideal execution, we
have a = gJ a randomly chosen group element, b = gk′

J for a randomly chosen
k′ $←− Zq, y $←− {0, 1}ℓ as chosen by FOPRF, and H1 and H2 values answered with
uniform values from the appropriate ranges. We now argue indistinguishability of
both worlds in detail.

• Message a (H(x)r vs. gJ): since the uniformly chosen r ∈ Zq is never
revealed by an honest client, H(x)r is uniformly random to Z and hence
indistinguishable from gJ .

• Message b (ak vs. ak′): k is chosen at random by the honest server and not
revealed to Z, while k′ is chosen at random by Sim2HDH, and not revealed
to Z. Hence both ak and ak′ are indistinguishable for Z.

• Output (EvalOut, sid, ssid, y) (H2(x, H1(x)k) vs. Fsid,i(x)): the only way
to distinguish the real world y from the ideal world is to query (x, H1(x)k)
to the H2 oracle. However, Sim2HDH is able to detect this: if k is the key
used by an honest server, then there is a record ⟨F, ∗, kid, k, u1/r⟩ for the
corresponding r from the H1 record of x (cf. first bullet of step 8 in Figure
4.12). Hence in this case Sim2HDH learns the key identifier kid which this
H2 query of Z is consistent with. If on the other hand k is a key already
used by a corrupt server/the network adversary, then Sim2HDH has a record
⟨M,A, i,⊥, u1/r⟩ for the corresponding r from the H1 record of x (cf. second
bullet of step 8 in Figure 4.12). Hence also in this case Sim2HDH learns
the key identifier i. If any key identifier is found, Sim2HDH obtains the
correct PRF value Fsid,S,kid(x) (or Fsid,A,i(x)) from FOPRF via the Eval (or
OfflineEval) interface (depending on whether the server holding the key
identifier is compromised/corrupt or honest), and sets it to be equal to
H2(x, u). Hence, if FOPRF replies with a value, the outputs are equal. If not,
Sim2HDH aborts and we analyze the probability for that happening below.
Note that this also ensures that H2(x, u) equals an OfflineEval query of
an honest server for one of its own kid.

• Random oracle H1: since gJ in step 4 of Sim2HDH is chosen at random,
the simulated responses are indistinguishable from the ones chosen by the
random oracle in the real protocol.

• Random oracle H2: Sim2HDH programs H2 to either a uniform value (cf.
third bullet of step 8 in Figure 4.12) or to an output of FOPRF, which is itself
chosen by FOPRF uniformly at random. Hence, the H2 outputs of Sim2HDH
are equally distributed to the outputs of the random oracle H2 in the real
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world.
It is left to analyze the probability that Sim2HDH queries FOPRF with ei-

ther (Eval, sid, kid, ssid, S, x) and (RcvComplete, sid, kid, ssid,A, S), or with
(OfflineEval, sid, i, S′, x) and does not receive a PRF value as reply. This
can happen for Eval and RcvComplete queries in case their inputs do not
correspond to each other, or if no tickets are left (i.e., tx[S, kid] = 0). For
OfflineEval, Sim2HDH only does not receive a reply if S′ is honest and has
previously initialized key identifier i.

For OfflineEval, Sim2HDH calls this interface with inputs S, i in three places
in step 8, where in the first occurrence S is Compromised, and in the second and
third occurrence S = A. Thus, OfflineEval always outputs a PRF value y to
Sim2HDH.

For Eval and RcvComplete, Sim calls these interfaces in step 8, first
bullet, second dash. Since Sim2HDH uses corresponding inputs, FOPRF not
replying is not due to mismatching inputs but due to tx[S, kid] = 0 as
checked by FOPRF in RcvComplete. Let Fail(S, kid) denote the event
that a (RcvComplete, sid, kid, ssid,A, S) message is ignored. We have
Pr[Sim2HDH aborts] ≤ ∑S,kid Pr[Fail(S, kid)].

We now upper bound Pr[Fail(S, kid) by reducing to the one-more DH problem
using the reduction in Figure 4.13. The overall strategy of the reduction is the
following: the challenge key k̄ is only implicitly known as gk̄ and the reduction
records the tuple (g, gk̄) as key of S̃, k̃id. The reduction puts the challenge genera-
tors g1, . . . , gN as H1 replies and first messages of Eval queries for S̃, k̃id. It is now
left to run the rest of the execution without knowledge of k̄ and the exponents
(trapdoors) of the generators. The strategy is as follows:

• The reduction uses its (·)k̄ exponentiation oracle to produce messages on
behalf of S̃ for key k̃id.

• The reduction uses its DDH oracle DDH(g, gk̄, X, Y ) to recognize an adver-
sarially-given tuple (X, Y ) that lets it win the one-more DH game.

• The reduction uses its DDH oracle DDH(gj, Y, gj′ , B) to recognize re-usage
of adversarial keys k in two evaluation transcripts (gj, Y ), (gj′ , B).

From the reduction code in Figure 4.13 we can see the following.
• Every time the exponentiation oracle is used (step 6), a (SndrComplete, sid,

kid, ∗) query was issued by S and hence tx[S, kid] was increased by 1.
• The counter tx[S, kid] is decreased whenever (RcvComplete, sid, kid, ssid, ∗, S)

is sent to FOPRF, which happens in the first bullets of steps 7 and 8. It can
be seen from the DDH oracle inputs that in both cases the adversary gave
a tuple gj, gk̄

j (with k̄ being the challenge key) and gj is from g1, . . . , gN .
Thus, if Fail(S, kid) occurs and the reduction has guessed the correct initialization
query, the number of such tuples is one more than the number of oracle queries
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made by the reduction (assuming there is no collision in g1, . . . , gN). That is,

Pr[Fail(S, kid) | no collision in g1, . . . , gN ] ≤ qIAdvOMDH
G,n,A (λ)

with n := qE +qH , where qI is the number of Init queries (i.e., honestly initialized
keys in the system), qE is the maximum number of Eval queries over all PRF
keys, and qH is the number of H1 queries made by Z.

On the other hand, the probability that there is a collision in g1, . . . , gN is upper
bounded by N2/q. Thus we have

Pr[Fail] ≤ qIAdvOMDH
G,qE+qH ,A(λ) + (qE + qH)2/q.

4.4.2 Security of the 3DH AKE
In this section we analyze the security of the 3DH protocol as used in the WBP
and the OPAQUE draft [KLW21]. In previous work [GJK21] it was shown that
a slightly different version of 3DH UC-realizes key-hiding AKE (KH-AKE). Even
though the two versions differ only in small details, the variant of 3DH used
in WBP is unfortunately not covered by the analysis of [GJK21]. To close this
gap, we reenact the previous analysis of [GJK21] for the 3DH variant as used in
WBP and show that it UC-realizes AKE with security against key compromise
impersonation (KCI), which is a security notion related to KH-AKE but which
is not known to be implied by KH-AKE. AKE-KCI is used in [JKX18] to prove
security of OPAQUE and we use it in Section 4.4.3 to prove that the WBP UC-
realizes PPKR. The result shown in this section further justifies the decision to use
3DH as the AKE in the OPAQUE draft [KLW21] instead of HMQV, as suggested
by [JKX18].

We consider the 3DH variant described in Figure 4.14, as matches the use in
WBP. The difference from the variant considered in [GJK21] lies in the compu-
tation of the key k. While in [GJK21] it is computed as H(sid, P, P′, X, Y, Z), in
Figure 4.14 it is computed as H(aux, X, Y, Z), where aux is an arbitrary auxiliary
input string. This reflects real-world scenarios, where often the session key is com-
puted dependent on additional context information. This is also the case in WBP,
where shk depends on the transcript pre. Note that we set aux to ⊥ when creating
a new session, since in many applications the full context information may not be
available yet. This is also the case in WBP, where pre contains many values that
are computed by the server and therefore unknown to the client at the start of
the retrieval phase.

We introduce two small changes to the functionality FAKE-KCI presented in
[JKX18] and display the modified version of FAKE-KCI in Figure 4.15. First, we
add an auxiliary input aux from the adversary to the NewKey interface and en-
sure that NewKey only outputs the same session key for two sessions if they are
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4 Security Analysis of the WhatsApp End-to-End Encrypted Backup Protocol

Simulator Sim2HDH(sid, H1, H2, N)

The simulator obtains as input a session identifier sid indicating which (multi-key) FOPRF
instance it communicates with, the description of two hash functions H2 : {0, 1}∗ × G →
{0, 1}l, H1 : {0, 1}∗ → G with l ∈ N and G = ⟨g⟩ a group of order q, and a number N ∈ N.

1. Pick and record N random numbers r1, . . . , rN ∈ Zq and set g1 := gr1 , . . . , gN := grN .
Set counter J := 1 and I := 1.

2. On (Init, sid, kid, S) from FOPRF, record ⟨S, kid⟩ and ⟨F, S, kid, k, z = gk⟩ for k $←− Zq.
3. On (Compromise, sid, kid, S) from A, mark ⟨S, kid⟩ as Compromised. Retrieve
⟨F, S, ∗, kid, k, ∗⟩ and send (Compromise, sid, kid) to FOPRF and (sid, kid, k) to A.

4. For each fresh query x to H1(·), answer it with gJ and record ⟨H1, x, rJ⟩. Set J := J + 1.
5. Upon receiving (Eval, sid, kid, ssid, C, S) from FOPRF, send (sid, kid, ssid, gJ) to A as C’s

message to S and record ⟨kid, ssid, C, rJ⟩. Set J := J + 1.
6. Upon receiving (SndrComplete, sid, kid, ssid) from FOPRF and (sid, kid, ssid, a) from A

as some client’s C message to some honest server S: if there is a record ⟨F, S, kid, k, ∗⟩,
then send (sid, ssid, ak) as the response of S for client C to A.

7. Upon receiving (sid, ssid, b) with b ∈ G from A as some server’s S′ message to a client C,
retrieve record ⟨∗, ssid, C, r⟩ and let gj denote the message sent in step 5 for ssid, C.

• [A delivers honestly.] If there is a record ⟨F, S, kid, k, ∗⟩ with b = gk
j and ⟨S, kid⟩ is

not marked Compromised, send (RcvComplete, sid, kid, ssid, C, S) to FOPRF.
• [A plays server using non-fresh adversarial key.] If a record ⟨M,A, i,⊥, b1/r⟩ exists,

send (SndrComplete, sid, i, ssid) and (RcvComplete, sid, i, ssid, C,A) to FOPRF.
• [A plays server with compromised key.] If there is a record ⟨F, S, kid, ∗, b1/r⟩ and

record ⟨S, kid⟩ is marked Compromised, send (SndrComplete, sid, kid, ssid) and
(RcvComplete, sid, kid, ssid, C, S) to FOPRF.

• [A uses fresh key.] If there is no such record ⟨T, ∗, ∗, ∗, b1/r⟩, set i := I, record
⟨M,A, i,⊥, b1/r⟩, and set I := I + 1. Send (SndrComplete, sid, i, ssid) and
(RcvComplete, sid, i, ssid, C,A) to FOPRF.

8. For each fresh query (x, u) to H2(·, ·), retrieve record ⟨H1, x, r⟩. If there is no such record,
then pick H2(x, u) $←− {0, 1}l. Otherwise, do the following:

• [u = H(x)k for a server’s key.] If a record ⟨F, S, kid, k, z⟩ satisfies z = u1/r, do:
– [Compute PRF value for k, x offline.] If ⟨S, kid⟩ is Compromised or S

is corrupt, send (OfflineEval, sid, kid, S, x) to FOPRF, and on response
(OfflineEval, sid, kid, S, x, y), set H2(x, u) := y.

– [Compute PRF value for k, x online, relying on a ticket tx[S, kid].] If S
is not Compromised, pick a fresh ssid∗ and send (Eval, sid, kid, ssid∗, S, x),
(SndrComplete, sid, kid, ssid), and (RcvComplete, sid, kid, ssid∗,A, S) to
FOPRF. If FOPRF ignores the last message, abort. Else, on FOPRF’s response
(Eval, sid, ssid∗, y), set H2(x, u) := y.

• [u = H(x)k for an adversarial k.] Else, if there is a tuple
⟨M,A, i,⊥, u1/r⟩, send (OfflineEval, sid, i,A, x) to FOPRF, and on response
(OfflineEval, sid, i,A, x, y) set H2(x, u) := y

• [Fresh adversarial key.] Else, record ⟨M,A, i,⊥, u1/r⟩ for i = I,
send send (OfflineEval, sid, i,A, x) to FOPRF, and on response
(OfflineEval, sid, i,A, x, y) set H2(x, u) := y and I := I + 1.

Figure 4.12: The simulator that demonstrates that “multi-key” 2HashDH UC-
realizes our “multi-key“ FOPRF. The simulator is adopted from
[JKX18], Figure 14. We add key identifiers and run one instance
of their simulator (without prefix simulation) per kid.
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4.4 Security Analysis

Reduction R(S̃, k̃id, g, y = gk̄, g1, . . . , gN)

The reduction runs simulator Sim2HDH(sid, H1, H2,⊥, N) with the following modifications. If a
step is not listed, then there are no changes compared to Sim2HDH

2. [Place the challenge key:] On (Init, S̃, k̃id, sid) from FOPRF, record ⟨F, S̃, k̃id,⊥, y⟩ and
⟨S, k̃id⟩. From now on, use k̃id to denote the guessed key identifier, and S̃ to denote
the server who holds it. For all other Init queries, change the recorded tuple to format
⟨F, S, kid, k, (g, gk)⟩.

4. [Put challenges in H1:] As Sim2HDH, except that R records ⟨H1, x, gJ⟩ instead of ⟨H1, x, gJ⟩.
5. [Put challenges in Eval queries:] Upon (Eval, sid, kid, ssid, C, S̃) with kid = k̃id from FOPRF,

send (sid, kid, ssid, gJ) to A as C’s message to S̃ and record ⟨k̃id, ssid, C,⊥⟩. Set J := J + 1.
For kid ̸= k̃id, there is no change in code here.

6. Upon receiving (SndrComplete, sid, kid, ssid, S) from FOPRF and (sid, kid, ssid, a) from A
as some client’s C message to some honest server S:

• If (S, kid) ̸= (S̃, k̃id), R acts like Sim2HDH.
• [Use exponentiation oracle to compute b for key k̃id:] If (S, kid) = (S̃, k̃id) then send b

to the exponentiation oracle to receive back bk̄, and send (sid, ssid, bk̄) as the response
of S for client C to A. Record (reftuple, a, bk̄) if this was the first usage of the oracle.

7. [Use DDH oracle to compensate for not knowing H1 exponent r:] Upon receiving (sid, ssid, b)
with b ∈ G from A as some server’s S′ message to a client C, retrieve records ⟨∗, ssid, C, r⟩
and (reftuple, A, B), let gj denote the message sent in step 5 for ssid, C, and do:

• [A delivers b for challenge k̃id honestly.] If DDH(gj, b, A, B) = 1, send
(RcvComplete, sid, k̃id, ssid, C, S̃) to FOPRF.

• [A delivers b for non-challenge kid honestly.] If there is a record ⟨F, S, kid, k, ∗⟩
with b = gk

j and record ⟨S, kid⟩ is not marked Compromised, send
(RcvComplete, sid, kid, ssid, C, S) to FOPRF.

• [A plays server using non-fresh adversarial key.] If there is a record
⟨M,A, i,⊥, (G, H)⟩ with DDH(G, H, gj, b) = 1, send (SndrComplete, sid, i, ssid) and
(RcvComplete, sid, i, ssid, C,A) to FOPRF.

• [A plays server with compromised key.] If there is a record ⟨F, S, kid, k, (g, gk)⟩ with b =
gk

j and record ⟨S, kid⟩ is marked Compromised, send (SndrComplete, sid, kid, ssid)
and (RcvComplete, sid, kid, ssid, C, S) to FOPRF.

• [A uses fresh key.] In any other case, set i := I, I := I + 1, record ⟨M,A, i,⊥, (gj, b)⟩,
send (SndrComplete, sid, i, ssid) and (RcvComplete, sid, i, ssid, C,A) to FOPRF.

8. For each fresh query (x, u) to H2(·, ·), retrieve record ⟨H1, x, gj⟩. If there is no such record,
then pick H2(x, u) $←− {0, 1}l. Otherwise, retrieve ⟨reftuple, A, B⟩ and do the following:

• [u = H(x)k for the challenge key.] If DDH(gj, u, A, B) then pick a fresh identifier
ssid∗ and send (Eval, sid, k̃id, ssid∗,⊥, x) and (RcvComplete, sid, k̃id, ssid∗,A, S̃) to
FOPRF. If FOPRF ignores the last message then abort. Else, on FOPRF’s response
(Eval, sid, ssid∗, y), set H2(x, u) := y.

• [u = H(x)k for any other server’s key.] If some ⟨F, S, kid, k, (g, gk)⟩ satisfies u = gk
j ,

then proceed as Sim2HDH in the case that some ⟨F, S, kid, k, z⟩ satifies z = u1/r.
• [u = H(x)k for an adversarial k.] Else, if there is a tuple ⟨M,A, i,⊥, (G, H)⟩ with

DDH(G, H, gj, u) = 1 then send (OfflineEval, sid, i,A, x) to FOPRF, and on response
(OfflineEval, sid, i,A, x, y) set H2(x, u) := y

• [Fresh adversarial key.] Else, send (OfflineEval, sid, I,A, x) to FOPRF, on response
(OfflineEval, sid, I,A, x, y), record ⟨M,A, I,⊥, (gj, u)⟩, set H2(x, u) := y, I := I +
1.

Figure 4.13: Reduction to the OMDH problem.
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3DH
P on Init P on Y, B, aux from P′

a $←− Zp, A := ga retrieve (sk, pk) = (a, A) for P
store (sk, pk) = (sid, a, A) for P if P <lex P′

Z := Bx ∥ Y a ∥ Y x

P on (NewSession, P′) k := H(aux, X, Y, Z)
x $←− Zp, X := gx else
retrieve pk = A for P and sid Z := Y a ∥Bx ∥ Y x

send X, A,⊥ to P′ k := H(aux, Y, X, Z)

Figure 4.14: Triple Diffie–Hellman Key Exchange 3DH as used in the WBP.

provided with the same auxiliary input. This reflects that in real-world scenarios,
two parties only compute the same key if they agree on the context. Second,
we introduce the interface Init, which reflects that in 3DH parties generate a
long-term secret key when they are initialized.

Theorem 4. Let G = ⟨g⟩ be a cyclic group of prime order p and H : {0, 1}∗×G3 →
{0, 1}λ be a hash function. Suppose the GapCDH Assumption holds in G and let
H be a random oracle.

Then the 3DH protocol of Figure 4.14 UC-realizes FAKE-KCI of Figure 4.15. More
precisely, for any efficient adversary against 3DH, there is an efficient simulator
Sim3DH that interacts with FAKE-KCI and produces a view such that for any efficient
environment Z it holds that

AdvFAKE-KCI
3DH,Sim3DH,Z(λ) ≤ AdvGapCDH

G,B1 (λ) + 2qI ·AdvGapCDH
G,B2 (λ) + q2

S

p
,

where qI denotes the number of Init queries to FAKE-KCI and qS the number of
NewSession queries to FAKE-KCI.

Proof. We describe the simulator Sim3DH in Figure 4.16. We now show a sequence
of hybrid experiments G0, . . . , G6, where starting from the real-world execution
Exec3DH,Z we make small incremental changes until we reach the ideal-world
execution IdealFAKE-KCI with Sim3DH. While some steps are similar to the proof
in [GJK21], we cannot fully adapt their proof due to the different functionalities.
We write Pr[Gi] as shorthand for the probability that the environment outputs
1 in Gi. Let qH ∈ N denote the number of H queries and qI ∈ N the number of
Init queries to FAKE-KCI.

Game G0: This is the real world execution Exec3DH,Z .

Game G1: In this game we move everything the protocol parties do to the sim-
ulator who internally executes all parties. We also add an ideal functionality
that does nothing but forwarding every input it gets to the simulator. To
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4.4 Security Analysis

In the description below, we assume P, P′ ∈ {U, S}.
• On (Init, sid) from P, send (Init, sid, P) to A.
• On (NewSession, sid, ssid, P′) from P, send

(NewSession, sid, ssid, P, P′) to A. If ssid was not used be-
fore by P, record ⟨ssid, P, P′⟩ and mark it Fresh.

• On (Compromise, sid, P) from A, mark P Compromised.
• On (Impersonate, sid, ssid, P) from A, if P is marked Compro-

mised and there is a record ⟨ssid, P, ∗⟩ marked Fresh, mark this
record Compromised.

• On (NewKey, sid, ssid, P, aux , shk∗) from A, where |shk∗| = λ, if
there is a record ⟨ssid, P, [P′]⟩ not marked Completed, do:

– If the record is marked Compromised, or P or P′ is corrupted,
set shk := shk∗.

– If the record is marked Fresh, an output (sid, ssid, aux’ , shk′)
was sent to P′ from FAKE-KCI while record ⟨ssid, P′, P⟩ was
marked Fresh, and aux = aux′ , set shk := shk′.

– Else pick shk $←− {0, 1}λ.
Finally, mark ⟨ssid, P, P′⟩ Completed and send (sid, ssid, aux , shk)
to P.

Figure 4.15: Ideal functionality FAKE-KCI. The changes over [JKX18] are marked
with gray boxes .
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4 Security Analysis of the WhatsApp End-to-End Encrypted Backup Protocol

Simulator Sim3DH

1. On (Init, sid, P) from FAKE-KCI: choose a $←− Zp, A $←− ga. Store
⟨P, sid, a, A⟩

2. On (NewSession, sid, ssid, P, P′) from FAKE-KCI:
• if P <lex P′, set r := 0, else set r := 1.
• choose x $←− Zp, set X = gx

• retrieve ⟨P, sid, ∗, [A]⟩
• store ⟨sid, ssid, P, P′, r, x, X⟩ and send X, A,⊥ to P′.

3. On adversarial message ssid, Y, B, aux to P on behalf of P′: if there
is a record ⟨[sid], ssid, P, P′, [r], [x], ∗⟩:

• if there is no record ⟨sid, ssid, P′, P, ∗, [y], Y ⟩ and P′ is com-
promised in session sid, send (Impersonate, sid, ssid, P′) to
FAKE-KCI and do:

– if r = 0, set h := H(aux, Bx ∥ Y a ∥ Y x)
– else, set h := H(aux, Y a ∥Bx ∥ Y x)

• Otherwise, set h := ⊥
• send (NewKey, sid, ssid, P, aux, h) to FAKE-KCI.

4. On (Compromise, sid, P) from Z: Send (Compromise, sid, P) to
FAKE-KCI, retrieve record ⟨P, sid, [a], ∗⟩ and output a to Z.

5. On query (aux, Z) to random oracle H from Z:
• if there exists a record ⟨H, (aux, Z), [k]⟩, output k.
• Else pick k $←− {0, 1}λ and store record ⟨H, (aux, Z), k⟩. Output

k.

Figure 4.16: Simulator Sim3DH showing that 3DH UC-realizes FAKE-KCI.
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make the changes oblivious to the environment we also add dummy parties
that forward the input they get from Z to the functionality. Finally, we
equip the functionality with dummy interfaces that allow the simulator to
let any party produce any output chosen by the simulator. As these are only
syntactical changes, we have

Pr[G1] = Pr[G0].

Game G2: Whenever an honest party P sends a message X, A,⊥ for X = gx

such that X was already sent by another honest party P′ ̸= P, i.e., the
simulator stored a record ⟨∗, ∗, P′, ∗, ∗, x, X⟩, the experiment aborts. Since
x $←− Zp was sampled uniformly at random and there are at most qS queries
to NewSession, due to the birthday bound we have

|Pr[G2]− Pr[G1]| ≤
q2

S

p
.

Game G3: In this game, we abort if the environment queries H on input aux, Z
where Z = L∥M ∥N corresponds to the output of two honest parties. More
precisely, if the simulator stored records ⟨P, sid, a, A⟩, ⟨P′, sid, b, B⟩, ⟨sid, ssid,
P, P′, 0, x⟩, and ⟨sid, ssid, P′, P, 1, y⟩, s.t. L = Bx, M = Y a, N = gxy, we
abort the game. Now, we can construct an adversary B1 that wins the
GapCDH game if Z ever makes a query of this form. The reduction works
as follows.
At the start of the game, it receives a CDH challenge (X̄, Ȳ ). Then, for every
message (NewSession, sid, ssid, P, P′) from FAKE-KCI, where P is honest, it
simulates the message of P by choosing s $←− Zp and setting X := X̄s if
r = 0, or t $←− Zp, Y := Ȳ t if r = 1. Instead of storing ⟨ssid, P, P′, ∗, x, X⟩, as
x = dlogg(X) is not known to the reduction, it stores ⟨sid, ssid, P, P′, ∗, s, X⟩,
resp. ⟨sid, ssid, P, P′, ∗, t, Y ⟩. Now, on a query aux, L ∥ M ∥ N to H, the
reduction can check with its DDH oracle if (X̄, Y s, N) or (Ȳ , X t, N) are
valid DH triples for any of the recorded pairs s, X and t, Y . If the check is
successful, the reduction returns N1/st as result to its challenger. It is easy
to see that the reduction wins iff the abort happens. Thus, we have

|Pr[G3]− Pr[G2]| ≤ AdvGapCDH
G,B1 (λ).

Game G4: In this game, for honest parties that receive a message from an hon-
est party, we let the functionality compute the session key instead of the
simulator. That is, on an adversarial message Y, B, aux from P′ to P, the
simulator checks if there is a record ⟨[sid], [ssid], P′, P, ∗, ∗, Y ⟩ and a record
⟨P′, sid, ∗, B⟩. If such records exists, this means that P′ is honest and that
Y and B were generated by the simulator. It then makes the functionality
output a key shk $←− {0, 1}λ or shk′, if the functionality already output a
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key shk′ to P′ in the same subsession ssid of session sid. In G4, P there-
fore always outputs a uniformly random key. Conversely, in G3 the key for
P was computed by the simulator as H(aux, Bx ∥ Y a ∥ Y x). However, due
to the abort condition introduced in G3 the environment cannot query the
random oracle for this exact input. Therefore, the output of P in G4 and
G3 is indistinguishable and we have

Pr[G4] = Pr[G3].

Game G5: In this game, we change the way honest parties receive their output
if the received message Y, B, aux was sent maliciously, i.e., there is no record
⟨[sid], [ssid], P′, P, ∗, y, Y ⟩ or ⟨P′, sid, ∗, B⟩. We distinguish three cases here:

• P′ is corrupt: We continue to let the functionality output a key shk∗

to P that was provided by the simulator. In G3 the key of any such
session was computed as H(aux, Bx ∥Y a ∥Y x) or H(aux, Y a ∥Bx ∥Y x),
depending on the role of P. In G5 the simulator gives exactly that
value to the functionality.

• P′ is compromised: The simulator first sends (Impersonate, sid, ssid, P′)
to FPPKR to mark this session as Compromised. Afterwards, we con-
tinue as in the case above.

• P′ is honest and not compromised: In G3, P outputs a key that was
computed as H(aux, Bx ∥ Y a ∥ Y x) or H(aux, Y a ∥Bx ∥ Y x), depending
on its role. In G5, we let the functionality output a uniformly random
key shk∗ $←− {0, 1}λ. Z can only notice the difference by querying
aux, Bx∥Y a∥Y x to H, where B is the public key of P′. If Z makes such a
query, we abort the game. Since P′ is honest and not compromised, b s.t.
B = gb is unknown to Z. We can thus create an adversary B2 that wins
the GapCDH game if the environment ever queries H(aux, Bx∥Y a∥Y x),
if P has role r = 0.
The reduction works as follows: On a challenge (X̄, B̄) the reduction
guesses an index i ∈ {1, . . . qI} and on the i-th (Init, ∗, ∗) output from
FAKE-KCI it outputs B̄. On every NewSession message from FAKE-KCI,
the reduction chooses s $←− Zp and computes X := X̄s. It outputs X
as message for that party and, similarly as the reduction in game G3,
stores s instead of x. When the reduction receives a query H(aux, L ∥
M ∥ N) it uses its DDH oracle to check if (B̄, X, L) is a valid DH
triple for any recorded X. If that is the case, it retrieves the s stored
alongside X and outputs L1/s as to its challenger. It is easy to see
that the reduction succeeds if the guessed index i is correct. If P has
role r = 1 and Z queries H(aux, Y a ∥ Bx ∥Xy), then we construct an
analogous reduction that solves the GapCDH problem in essentially the
same way.

Overall we get
|Pr[G5]− Pr[G4]| ≤ 2qI ·AdvGapCDH

G,B2 (λ).
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Game G6: In this step we replace the simulator and the functionality described
in G5 with the simulator and the functionality from Figure 4.16 and Fig-
ure 4.15. One can verify that this does not change the distribution of the
experiment, that is,

Pr[G6] = Pr[G5].

Combining all probabilities yields the bound claimed in the theorem.

4.4.3 Security of the WBP
Modeling the HSM. We model the HSM as a hybrid functionality FWBP

HSM that
can be queried by the server as in Figures 4.4 and 4.5. That is, FWBP

HSM contains
exactly the code that the HSM contains in these figures. For completeness and
clarity, FWBP

HSM is depicted in Figure 4.17. In addition, FWBP
HSM provides an interface

for clients to retrieve the HSM’s public key, which models the setup process that
ensures that clients have the “right” WhatsApp public key hard-coded into their
smartphones.18

In the UC framework, messages sent between some party and an ideal func-
tionality are perfectly secure, meaning no network adversary can intercept them
or tamper with them. Thus, modeling the HSM key distribution as idealized
communication expresses our assumptions that

1. the user installs the correct WhatsApp client on her phone,
2. WhatsApp’s setup ceremony of the HSM leads to honestly generated keys

being distributed to the clients, and
3. only the HSM knows the secret key of the HSM.

However, analyzing the mechanisms to ensure the above assumptions is not in the
scope of this work.

Corruption Model. All corruptions are malicious, meaning that the adversary
can fully control not only the communication but also the behavior of a corrupted
party. We consider adaptive corruptions of clients and the server, however, we add
the restriction that clients cannot be corrupted during an ongoing initialization or
retrieval session. More precisely, the environment is not allowed to corrupt some
client cid if, following the most recent (InitC, ∗) input from the environment to
cid, cid did not produce a corresponding output (InitRes, ∗) yet. Analogously,
if following the most recent (RetC, ∗) input from the environment to cid, cid
did not produce a corresponding output (RetRes, ∗) yet, the environment is not
18One might be tempted to model this by giving the HSM’s public key as input to the client

instead. However, that would mean that the UC environment machine can give public keys
to clients for which the environment knows the corresponding secret key. For WBP the clients
have a hard-coded public key for which only the HSM knows the secret key, so this would
not adequately model WBP and make the already complex security analysis unreasonably
more complex.
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4 Security Analysis of the WhatsApp End-to-End Encrypted Backup Protocol

Ideal functionality FWBP
HSM

Initially:
• aids := ∅
• (skSig, pkSig) $←− Sig.KGen(1λ)
• (skEnc, pkEnc) $←− PKE.KGen(1λ)
• y $←− Zp, Y := gy

• Set pk := {pkSig, pkEnc, Y } and sk :=
{KEnc, skSig, skEnc, y}

On (GetPK) from P ∈ {cid, S,A}:
• Send pk to P

On (InitS, aid, aid′, a1) from S:
• If aid ∈ aids, return

(InitRes, aid, Fail)
• Delete ⟨aid′, ∗, ∗, ∗⟩
• aids := aids ∪ {aid}
• kOPRF

$←− Zp

• b1 := akOPRF
1

• n1
$←− {0, 1}λ

• σ1
$←− Sig.Sign(skSig, b1 ∥ n1)

• tr′ := H3(a1, b1, n1)
• Send (aid, b1, n1, σ1) to S

On (File, aid, E) from S:
• (e ∥ tr ∥ X ∥ e cred ∥ ne ∥ Te) :=

PKE.Dec(skEnc, E)
• If tr ̸= tr′, send (InitRes, aid, Fail)

to S
• If tr = tr′, store
⟨aid, kOPRF, (e, X, e cred, ne, Te), 10⟩
and send (InitRes, aid, Succ) to S

On (RetS, aid, nC , U, a2) from S:
• retrieve ⟨aid, [kOPRF], [m], [ctr]⟩
• e, X, e cred, ne, Te := m
• If no record can be found, send

(RetRes, aid, Fail) to S, else con-
tinue

• If ctr = 0, delete ⟨aid, ∗, ∗, ∗⟩ and send
(DelRec, aid) to S, else continue

• Update ⟨aid, ∗, ∗, ∗⟩ with ctr − 1
• b2 := akOPRF

2
• nS

$←− {0, 1}λ

• v $←− Zp, V := gv

• pre := (a2, nc, U, Y, e cred, ne, Te, b2,
nS, V )

• ikm := (U v, Uy, Xv)
• (KMAC

S , KMAC
C , shk) := KDF2(ikm, pre)

• TS := MAC.Tag(KMAC
S , H3(pre))

• σ2
$←− Sig.Sign(skSig, b2)

• Send (aid, b2, e cred, ne, Te, nS, V, TS,
σ2) to S

On (RetRes, aid, TC) from S
• If MAC.Vrfy(KMAC

C , H3(pre ∥ TS), TC) =
0, send (RetRes, aid, Fail) to S, else
continue

• c $←− AE.Enc(shk, e)
• Update ⟨aid, ∗, ∗, ∗⟩ with ctr := 10
• Send (aid, c) to S

Figure 4.17: The ideal functionality FWBP
HSM .
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allowed to corrupt cid as well. We introduce this restriction due to the following
reasoning.

Imagine that the environment instructs some honest client cid to first initialize
with some password pw and afterwards instructs cid to start a recovery phase,
again using pw. Then, after the server produced its final message c, but before
the environment allows c to be delivered to cid, it instructs the adversary to
corrupt cid. It now learns the entire state of cid, and in particular the keys
Kexport and shk that cid would use to obtain K. Thus, it can now check whether
the ciphertext c was produced according to the protocol description, namely by
computing e := AE.Dec(shk; c), K := AE.Dec(Kexport; e), and checking whether
K

?= K ′, where K ′ is the key that was output by cid in the initialization phase.
However, in the ideal world, the simulator could not produce c according to the

protocol description, as it in particular does not know K ′. Instead it can only
output a simulated ciphertext c′ := AE.Enc(shk, 0λ). Therefore, upon corrupting
cid the environment would be able to efficiently distinguish between the real and
ideal world. In order to avoid this, we disallow the corruption of clients during
ongoing initialization or recovery sessions, which prevents the environment from
learning shk and checking whether c indeed contains e and in turn K ′ since cid
deletes shk before outputting K at the end of the recovery phase.

We believe that even with the added restriction, this still provides a reasonably
realistic modeling of corruptions. In practice we expect a full intialization or
recovery session to take only a few seconds and thus we expect it to be very difficult
for an adversary to corrupt a client in this short timeframe. Note that an adversary
could theoretically extend this “corruption timeframe” by e.g. recording c and
dropping the message from the network. However, we assume that in practice
all protocol participants implement some timeout mechanism, which terminates
the session if no response arrived within a short timeframe, as is standard in any
networked application.

Formally, this means that the effect of adaptive client corruptions is that the
adversary (1) learns all values that the client stores after completion of an initial-
ization or retrieval phase, namely key K, and (2) controls the client behavior from
that point on.

Let AEAD = (KGen, Enc, Dec) be the AEAD scheme that is implicitly used in
Figures 4.4 and 4.5 to encrypt x, that is:

KGen(1λ): Outputs (Kmask, Kauth), where Kmask, Kauth
$←− {0, 1}λ

Enc((Kmask, Kauth), x, Y ∥ ne): Computes e cred := x ⊕ Kmask and Te
$←−

MAC.Tag(Kauth, Y ∥ ne ∥ e cred) and outputs (e cred, Te)

Dec((Kmask, Kauth), (e cred, Te), Y ∥ ne): If MAC.Vrfy(Kauth, e cred∥Y ∥ne, Te) = 0,
outputs ⊥ and x := e cred⊕Kmask otherwise

For the security analysis, we require AEAD to provide random-key robustness
[JKX18], which means that given two randomly sampled keys, it should be difficult
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to compute a ciphertext that decrypts successfully under both keys. We give the
formal definition below.

Definition 34. The advantage of an adversary A against the random-key robust-
ness (RKR) of an AEAD scheme AEAD = (KGen, Enc, Dec) is defined as

AdvRKR
AEAD,A(λ) := Pr[Dec(k, c) ̸= ⊥ ∧ Dec(k′, c) ̸= ⊥ | k, k′ $←− K, c $←− A(k, k′)].

We say AEAD is RKR-secure if AdvRKR
AEAD,A(λ) is negligible in λ for all efficient

adversaries A.

We are now ready to state our main theorem of this chapter.

Theorem 5. Let H1, H2, KDF1, KDF2 be random oracles such that 2HDHUC-
realizes the “multi-key” OPRF functionality FOPRF of Figure 4.10 and 3DH
UC-realizes the AKE functionality FAKE-KCI of Figure 4.15. Let Sig =
(Sig.KGen, Sig.Sign, Sig.Vrfy) be an sEUF-CMA-secure signature scheme, MAC =
(MAC.KGen, MAC.Tag, MAC.Vrfy) be an sEUF-CMA-secure MAC, PKE =
(PKE.KGen, PKE.Enc, PKE.Dec) be an IND-CCA-secure public key encryption
scheme, AE = (AE.KGen, AE.Enc, AE.Dec) be an authenticated encryption scheme,
AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) have random-key robustness, and
H3 : {0, 1}∗ → {0, 1}λ be a collision resistant hash function.

The WBP as described in Figure 4.4 and Figure 4.5 UC-realizes the function-
ality FPPKR of Figures 4.7 to 4.9 with Lev-1 security (i.e., without the LeakFile
and FullyCorrupt interface) in the FWBP

HSM -hybrid model, assuming adaptive
malicious corruption of clients and the server restricted as described above, and
a client-authenticated channel between clients and the server. Concretely, we can
construct adversaries B1, . . . ,B8 and environments Z1 and Z2 such that for any
efficient adversary against WBP (interacting with FWBP

HSM ), the simulator SimWBP
that interacts with FPPKR produces a view such that for every efficient environment
Z, it holds that

AdvFPPKR
WBP,SimWBP,Z(λ) ≤ AdvFOPRF

2HDH,Sim2HDH,Z1(λ) + AdvFAKE-KCI
3DH,Sim3DH,Z2(λ)

+ AdvsEUF-CMA
Σ,B (λ) + 2qRetAdvsEUF-CMA

MAC,B (λ)
+ 2AdvCollRes

H3,B (λ) + qInitAdvIND-CPA
PKE,B (λ)

+ qRetAdvIND-CPA
AE,B (λ) + qRetAdvINT-CTXT

AE,B (λ)

+
(

qInit

2

)
2−λ +

(
qRet

2

)
2−λ+1 +

(
qKDF1

2

)
AdvRKR

AEAD,B(λ),

where qInit ∈ N is an upper bound on the number of initializations, qRet ∈ N is an
upper bound on the number of recoveries, qKDF1 is an upper bound on the number
of KDF1 queries.
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Proof Intuition. Let us begin with a high-level description of the proof. We
have to show that we can simulate protocol transcripts without knowledge of the
passwords chosen for honest clients by the environment such that the simulated
transcripts are indistinguishable from the real protocol transcripts.

For this, we heavily rely on the security of the 2HDH OPRF and the 3DH AKE,
which we have proven in Sections 4.4.1 and 4.4.2. The simulator SimWBP inter-
nally runs a copy of the simulators Sim2HDH and Sim3DH and the corresponding
functionalities FOPRF and FAKE-KCI that the simulators interact with. Then, when-
ever we have to simulate (parts of) a message in the WBP that is part of 2HDH or
3DH for some honest party, we “outsource” the simulation to Sim2HDH or Sim3DH.

Another crucial proof strategy is simulating any ciphertext by encrypting a 0-
string whenever the environment cannot know the key used for decryption. In
this way we can simulate ciphertexts, which in the real protocol depend on the
secret input of some party, without knowledge of the secret input. Due to the
IND-CPA or IND-CCA security of the encryption scheme, no environment is able
to recognize this change.

Further, we have to show that the outputs parties produce in the simulated
execution are indistinguishable from the outputs in the real execution. As long as
both parties are honest, this is rather straightforward as we can rely on FPPKR,
which in particular lets us learn whether the client used the correct password for
retrievals and provides the output to the parties accordingly. A more difficult
challenge arises when some party is corrupt. In that case, we use Sim2HDH to
extract the password the corrupt party used from the random oracle queries to
H2. We can then provide the extracted password to FPPKR on behalf of the corrupt
party and let FPPKR produce the output for the honest party.

Proof. We depict our simulator SimWBP in Figures 4.18 to 4.23. Throughout the
proof, we regularly reference steps of the simulator in the form I.1 . The simulator
works with session state records

⟨Init, ssid, cid, a, kid, aid, a∗, b1, n1, σ1, b∗
1, n∗

1, x, E⟩

for initialization. All values are initialized to ⊥ and potentially updated through-
out an initialization. At the end of an initialization by cid, the record has the
following semantics.

Init2 = ssid indicates the sub-session id used for this initialization;

Init3 ∈ {cid,⊥} is either the cid of the client running the initialization or it is
set to ⊥ if the corrupt S maliciously initializes;

Init4 ∈ {a,⊥} is either the a value sent by an honest cid, or ⊥ if cid is corrupt
or if the corrupt S impersonates cid;

Init5 = kid is the OPRF key identifier chosen for this initialization;
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Init6 ∈ {aid,⊥} is either ⊥ if the server is honest, or the new account name
delivered to the HSM if the server is corrupt;

Init7 = a∗ indicates the a value delivered to the HSM or the server;

Init8 = b1 indicates the b1 value sent by the HSM or the server;

Init9 = n1 indicates the n1 value sent by the HSM or the server;

Init10 = σ1 indicates the σ1 value sent by the HSM or the server;

Init11 ∈ {b∗
1,⊥} indicates the b1 value received by the client or ⊥ if cid is corrupt;

Init12 ∈ {n∗
1,⊥} indicates the n1 value received by the client or ⊥ if cid is corrupt;

Init13 ∈ {x,⊥} is the client’s Diffie–Hellman secret either simulated for an honest
client or decrypted from E and e cred. It is set to⊥ if it cannot be extracted
from a corrupted initialization;

Init14 ∈ {E,⊥} is the ciphertext E computed by cid or ⊥ if cid is corrupt.

Similarly, the simulator works with session state records

⟨Ret, ssid, cid, m1, match, kid, aid, m∗
1, (KMAC

C , KMAC
S , shk), m2, TC , T ∗

C , c⟩

for retrieval. At the end of a retrieval by cid, the record has the following semantics.

Ret2 = ssid indicates the sub-session id used for this initialization;

Ret3 ∈ {cid,⊥} is either the cid of the client running the retrieval or it is set to
⊥ if the corrupt S maliciously retrieves;

Ret4 ∈ {(nC , U, a2),⊥} is either the message (nC , U, a2) sent by an honest cid,
or ⊥ if cid is corrupt or if the corrupt S impersonates cid;

Ret5 ∈ {0, 1} indicates whether the password used in the retrieval is correct

Ret6 = kid is the key identifier used in this retrieval;

Ret7 ∈ {aid,⊥} is either ⊥ if the server is honest, or the account name delivered
to the HSM if the server is corrupt;

Ret8 = (nC , U, a2) indicates the a value delivered to the HSM or the server;

Ret9 = (KMAC
C , KMAC

S , shk) indicates the keys computed by HSM or the server

Ret10 = (b2, e cred, ne, Te, nS, V, TS, σ2) indicates the message sent by the HSM
or the server;
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Ret11 ∈ {TC ,⊥} is either the TC value sent by an honest cid or ⊥ if cid is corrupt
or if the corrupt S impersonates cid;

Ret12 = T ∗
C is the TC value delivered to the HSM or the server;

Ret13 = c indicates the ciphertext c sent by the HSM or the server

We construct a sequence of games G0 to G23, where we gradually change the
real-world execution of the protocol WBP to reach the ideal-world execution, where
the environment interacts with the simulator from Figures 4.18 to 4.23 and the
ideal functionality FPPKR. We write Pr[Gi] to denote the probability that the
environment outputs 1 in the game Gi.

Game G0: Real world. This is the real world.

Game G1: Create simulator. In this game we create two new entities: an
ideal functionality F and a simulator Sim. The functionality F forwards
all inputs it receives to Sim and provides an interface to Sim that al-
lows Sim to let F produce any given output to any given party. The
simulator Sim executes the protocol code of WBP on the input given by
F and provides back the output through F . Additionally, Sim stores
the session state records described above just like SimWBP. To make
the introduction of F oblivious to the environment, we also add dummy
parties that just forward any input they receive from the environment
to F , resp. from F to the environment. Finally, we equip F with
the interfaces Corrupt, LeakFile, MaliciousInit, MaliciousRet, and
OfflineAttack with the exact same code as in FPPKR.

This are merely syntactical changes as still every message is produced as in
the real-world. Thus, this game is identically distributed as G0, i.e.,

Pr[G1] = Pr[G0].

Game G2: Do not maintain aid while S is honest. In this game the simu-
lator does not maintain aids while S is honest and only samples an aid for
each cid when S gets corrupted (see C.1 ). Furthermore, after the server
gets corrupted, Sim uses the map aids[·] to store the aid of the most re-
cent initialization of each cid (see C.1 , Ia.12 , IE.5 , IE.6 (d), R.1 , and
Ra.3 ). This is again a purely syntactical change that we do for bookkeeping
in the simulator. Since the honest server maintains a one-to-one mapping
and all messages sent between cid and S and the outputs of the parties are
independent of aid, this change is oblivious to the environment. Hence, we
have

Pr[G2] = Pr[G1].
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Game G3: Abort upon H2 collision. In this game the simulator aborts if
the random oracle H2 ever outputs the same value ρ for two different inputs
( H2.3 ). Since the outputs are sampled uniformly at random, due to the
birthday bound we have

|Pr[G3]− Pr[G2]| ≤
q2

H2

2λ
,

where qH2 is the number of queries to H2.

Game G4: Abort upon Kauth collision. In this game the simulator aborts if
the random oracle KDF1 ever outputs the same value Kauth for two different
inputs ( K1.1 (c)). Since the outputs are sampled uniformly at random, due
to the birthday bound we have

|Pr[G4]− Pr[G3]| ≤
q2

KDF1

2λ
,

where qKDF1 is the number of queries to KDF1.

Game G5: Abort upon nonce collision. In this game we let Sim abort if
there is a collision on the nonces n1 sampled in two different initializations
( Ia.7 ). Similarly, we also abort on collisions on ne, nC , nS ( Ib.8 , R.6 ,
Ra.5 ). Since Sim samples a nonce n1 and ne in each initialization and a
nonce nC and nS in each retrieval, due to the birthday bound we have

|Pr[G5]− Pr[G4]| ≤
2(q2

Init + q2
Ret)

2λ
,

where qInit is the number of initializations and qRet is the number of re-
trievals.

Game G6: Output Fail upon adversarial signature. In this game we let
Sim immediately output Fail to any cid if some σ1 or σ2 that was not
computed by Sim is delivered to cid (see Ib.3 and Rb.3 ). Note that as in
G5 the adversary can still replay some message b1, n1, σ1, which is reflected in
Ib.3 by not specifying an ssid for the Init record. G6 and G5 only deviate
if a valid signature is sent to cid that was not issued by the Sim before, which
we denote as the event ESig. If this happens with non-negligible probability,
we can construct an adversary against the sEUF-CMA security of Sig.
The reduction works as follows: assume there is an environment Z∗ that
causes the event ESig when interacting with F and Sim. Then, the reduction
B1 internally runs the whole experiment including F , Sim and Z∗. Instead
of letting the simulator compute pkSig itself, B1 uses the public key that
it gets from the challenger. Moreover, instead of computing σ1 and σ2 by
itself, B1 asks the oracle Sign to produce the signature. When the simulator
detects ESig, B1 outputs the signature σ∗ and the message m∗ that caused
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ESig to its challenger. It is easy to see that B1 wins the sEUF-CMA game
whenever ESig occurs. Thus, we have

|Pr[G6]− Pr[G5]| ≤ AdvsEUF-CMA
Sig,B1 (λ).

Game G7: cid encrypts 0 in E. In this game we change the computation
of the ciphertext E. Whenever Sim simulates E for some honest cid, it
computes E $←− PKE.Enc(pkEnc, m), where m is a 0-string of appropriate
length. Furthermore, it stores a record ⟨E, X ∥ tr∥e cred∥ne ∥Te⟩ that stores
the values that would normally be encrypted in E and retrieves the values
from this record when E is delivered to S (see Ib.7 , IE.3 (b), and IE.5 ).19

Assume there is an environment Z∗ that can distinguish G7 and G6. We con-
struct an adversary B2 against the IND-CCA security of PKE as follows. First,
B2 sets pkEnc := pk, where pk is the public key received from its challenger.
Then, we construct a sequence of games G(0)

6 := G6, G(1)
6 , . . . , G(qInit)

6 := G7,
where in G(i)

6 in the first i initializations E is computed as an encryption
of a 0-string and in the remaining initializations it is computed as in G6.
Because Z∗ can distinguish between G7 and G6, there must be an index
i∗ ∈ {1, . . . , qInit} such that Z∗ can distinguish between G(i∗−1)

7 and G(i∗)
7 .

Now, in the i∗-th initialization, B2 outputs m0 := X ∥ tr ∥ e cred ∥ ne ∥ Te

and m1 as a 0-string of the same length to its challenger to receive a chal-
lenge ciphertext c∗ and sets E := c∗. Additionally, whenever it receives some
message (ssid, E) to S or FWBP

HSM such that no record ⟨E, ∗⟩ exists, it uses its
decryption oracle Dec to decrypt E. It is easy to see that if the challenger
encrypts m0, the game is distributed exactly like G(i∗−1)

6 and if it encrypts
m1, it is distributed exactly like G(i∗)

6 . Hence, we get

|Pr[G7]− Pr[G6]| ≤ qInitAdvIND-CCA
PKE,B2 (λ).

Game G8: Abort on collision in H3. In this game, we let Sim abort if it ever
computes the same output of H3 for two different inputs. It is easy to see
that we can construct an adversary B3 against the collision resistance of H3
if any environment Z∗ causes Sim to abort with non-negligible probability.
B3 runs the whole experiment with Z∗ and outputs the two inputs that led
to the abort. We therefore have

|Pr[G8]− Pr[G7]| ≤ AdvCollRes
H3,B3 (λ).

Game G9: Skip tr validation. In this game, the simulator does not check the
transcript tr′ anymore whenever cid is honest and either S is honest or the
corrupt S honestly delivers E. Instead it simply checks whether the values

19Due to the changes later introduced in G9, we do not store tr in the record in Ib.7 .
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a1, b1, and n1 were honestly delivered by A and outputs Fail to S if any was
not honestly delivered ( IE.3 (a)).

Let a1, b1, n1 denote the values simulated by Sim and a∗
1, b∗

1, n∗
1 denote the

values delivered by A. G9 and G8 are clearly identical until A delivers
some a∗

1, b∗
1, n∗

1 such that H3(a1, b1, n1) = H3(a∗
1, b∗

1, n∗
1). However, due to the

changes introduced in G8, Sim aborts the simulation if that ever happens.
We therefore have

Pr[G9] = Pr[G8].

Game G10: Replace the 2HashDH protocol. In this game we change the sim-
ulators behavior concerning the messages of the 2HashDH protocol. Instead
of computing the messages of the 2HashDH protocol as in the real-world, the
simulator uses its internal ideal OPRF functionality FOPRF and its internal
OPRF simulator Sim2HDH to simulate the messages and outputs. In partic-
ular, this affects the messages a1 (cf. I.2 ), a2 (cf. R.2 ), b1 (cf. Ia.6 and
Ia.13 ), and b2 (cf. Ra.3 and Ra.9 ), the computation of ρ (cf. Ib.4 ) and
queries to H1 (cf. H1.1 ) and H2 (cf. H2.2 and H2.4 ). Moreover, we ensure
that Sim2HDH simulates a fresh OPRF key (cf. Ia.5 ) in each initialization
by choosing a fresh kid (cf. I.1 , Ia.2 (a), and Ia.9 (a)). Finally, instead of
storing kOPRF in the File records, we now store kid (cf. IE.2 (b), IE.3 (b),
IE.6 (e)) and retrieve kid in retrievals before simulating b2 (cf. R.1 , Ra.2 ,
and Ra.7 ).

One challenge in this game comes from the fact that the adversary can
replay messages (â1, n̂1, σ̂1). A client cannot recognize that the message is
replayed and just proceeds normally, however with overwhelming probability
Sim will output Fail to the server due to G9. Since Sim2HDH simulated b̂1
as âk̂

1 for a uniformly random key k̂ (see Steps 2 and 6 of Sim2HDH), b̂1 is a
uniformly random element from G. Since the same holds for the message b1
that Sim simulates when it receives the message a1 from cid, the probability
that the check in IE.3 (a) succeeds when cid received a replayed message
is at most 1/q, where q is the order of G. For this reason we can simply
sample ρ uniformly at random when cid receives a replayed message (see
Ib.5 ) without interacting with Sim2HDH.

Now, assume there is an environment Z∗ that can distinguish between games
G9 and G10. We can construct an environment Z1 that can distinguish be-
tween the real 2HashDH protocol and the simulated execution with Sim2HDH
and FOPRF. The environment Z1 internally runs the whole experiment in-
cluding F and Sim with Z∗, but whenever Sim would execute a operation
of 2HashDH, it instead generates the corresponding output from the OPRF
experiment. If Z1 interacts with 2HDH, it perfectly simulates G9 for Z∗,
and if it interacts with FOPRF and Sim2HDH, it simulates G10 for Z∗ with
probability 1− 1/q.
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It follows that we have

|Pr[G10]− Pr[G9]| ≤ AdvFOPRF
2HDH,Sim2HDH,Z1(λ)− 1

q
.

Game G11: Rule out ambiguous OPAQUE envelopes e cred, Te. In this
game, the simulator aborts the simulation if it ever sees two distinct random
oracle queries (ρ, ne) and (ρ′, n′

e) to KDF1 such that any (e cred, Te, (Y, ne))
it has ever computed or received decrypts successfully with AEAD under the
output of both queries.
Assume there is an environment Z∗ that can distinguish between games G10
and G11 with non-negligible probability. We can construct an adversary B4
against the RKR-security of AEAD as follows. At the beginning, B4 receives
two keys k1 and k2 from its challenger. Additionally, it guesses two random
indices i, j ∈ {1, . . . , QKDF1}, where qKDF1 is an upper bound on the number
of random oracle queries to KDF1. B4 internally runs the whole experiment
with F , Sim, and Z∗. On the i-th query to KDF1, it programs the output to
be Kexport ∥ k1 for some uniformly random Kexport, and on the j-th query it
programs the output to be Kexport

′ ∥ k2 for some uniformly random Kexport
′.

When Z∗ causes Sim to abort, B4 outputs the values (e cred, Te, (Y, ne)) that
led to the abort to its challenger. If the the outputs of the queries i and j
are the ones under which (e cred, Te, (Y, ne)) decrypts successfully, then B4
wins the RKR experiment. Hence, we have

|Pr[G11]− Pr[G10]| ≤
1

q2
KDF1

AdvRKR
AEAD,B4(λ).

Game G12: Extract pw from malicious initializations. In this game we
change the behavior of Sim whenever it receives a message (ssid, E) that was
not computed by Sim on behalf of some honest cid. Here we want to extract
the password that the corrupt cid or corrupt S used in this initialization. To
this end, let (e, tr, X, e cred, ne, Te) be the values Sim obtains from decrypt-
ing E. We then search for a previous query (pw, h) to the random oracle H2,
such that Te verifies under the key Kauth derived from ρ and ne, where ρ is
the output of the query to H2. Note that due to G11 there is at most one
Kauth under which Te verifies and due to game G4 there can then only be one
pair (ρ, ne) such that (∗, Kauth, ∗) = KDF1(ρ, ne). Thus, Sim can uniquely
determine pw.
If Sim is able to find such a query and thus extract the password pw, it lets
F create a record for cid by sending either InitC and CompleteInitS or
MaliciousInit to F . Moreover, it can now decrypt e cred to obtain the
DH secret x and store it in the Init record. If it cannot extract a password,
it lets F create the record anyway, however with pw = ⊥ since the corrupt
party must have computed Te under some randomly chosen key that was not
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output by KDF1. The distribution of this game does not change as F only
creates the File records but does not use them, yet. Therefore, we have

Pr[G12] = Pr[G11].

Game G13: Replace the 3DH protocol. In this game we change the simu-
lators behavior concerning the messages of the 3DH protocol. Instead of
computing the messages of the 3DH protocol as in the real-world, the sim-
ulator uses its internal ideal AKE functionality FAKE-KCI and its internal
AKE simulator Sim3DH to simulate the messages and outputs. In particu-
lar, this affects the messages U (cf. R.4 ), V (cf. Ra.3 ), the public and
private keys y, Y (cf. PK.1 (c)) and X, x (cf. Ib.6 ), the computation of
(KMAC

C , KMAC
S , shk) (cf. Ra.3 and Rb.5 ) and queries to KDF2 ( K2.3 ).

A difficulty in this game arises when an honest client tries to retrieve a record
that was initialized by a corrupt server. In that case, Sim cannot use Sim3DH
and FAKE-KCI to output keys, as we cannot insert the DH share X chosen
by the corrupt server into Sim2HDH. Instead Sim computes (u, U) as in G12
and upon receiving the message (b2, . . . , σ2) just copies the keys computed
by Sim3DH in Ra.9 if both parties agree an ikm and pre. Note that here it is
crucial that Sim was able to extract the DH secret x chosen by the corrupt
server as it otherwise cannot compute ikm for the client. If the parties do not
agree on ikm and pre or Sim could not extract x, it chooses (KMAC

C , KMAC
S , shk)

uniformly at random such that they follow the same distribution as in G12.
Assume there is an environment Z∗ that can distinguish between games
G12 and G13. We can construct an environment Z2 that can distinguish
between the real 3DH protocol and the simulated execution with Sim3DH
and FAKE-KCI. The environment Z2 internally runs the whole experiment
including F and Sim with Z∗, but whenever Sim would execute a operation
of 3DH, it instead generates the corresponding output from the AKE exper-
iment. If Z2 interacts with 3DH, it perfectly simulates G12 for Z∗, and if it
interacts with FAKE-KCI and Sim3DH, it perfectly simulates G13 for Z∗.
It follows that we have

|Pr[G13]− Pr[G12]| ≤ AdvFAKE-KCI
3DH,Sim3DH,Z2(λ).

Game G14: Randomize e cred. In this game we change the computation of
the ciphertext e cred. Whenever SimWBP simulates E for some honest cid, it
chooses e cred $←− {0, 1}λ (see Ib.7 ). This ensures that e cred is independent
of x and thus the adversary cannot learn anything about x from e cred as long
as it does not guess the password of cid. If A guesses the password of cid, we
program the random oracle KDF1 such that it outputs Kmask := x ⊕ e cred
(see K1.1 (a)). Since e cred was drawn uniformly at random, Kmask is a
uniformly random value as well, which ensures that the distribution of Kmask
does not change in this game.
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From the information-theoretic security of the one-time-pad it follows that

Pr[G14] = Pr[G13].

Game G15: Skip verification of TS. In this game we do not check the MAC TS

for validity anymore. Instead the simulator simply checks whether the mes-
sages (nC , U, a2) and (b2, e cred, ne, Te, nS, V, TS, ∗) were honestly delivered
by the adversary. If they were not honestly delivered, Sim lets F output
Fail to cid. G15 and G14 only deviate if the adversary modifies any part of
these messages but the MAC T ′

S it sends to cid is valid. We denote this as
the event EMAC. If this event occurs with non-negligible probability, we can
construct an adversary against the sEUF-CMA security of MAC.
The reduction works as follows. Let qRet be an upper bound on the number
of retrievals. The reduction B5 guesses an index i ∈ {1, . . . , qRet} and runs
the experiment internally. If the i-th retrieval is run by an honest cid, B5 does
not compute TS itself but instead lets TS be computed by the oracle Tag,
which implicitly sets KMAC

S to the key sampled by the challenger. This does
not change the distribution of KMAC

S as it already is a uniformly random value
as of G13. If the event EMAC occurs in the i-th retrieval, the reduction gives
the value TS that the client received as output to its challenger together with
the corresponding message H3(pre). Note that due to the changes introduced
in G8, the environment Z∗ also cannot somehow exploit collisions in the
hash function H3. One can see that B5 wins the sEUF-CMA experiment if it
guessed i correctly and EMAC occurs in the i-th retrieval. Therefore, we have

|Pr[G15]− Pr[G14]| ≤ qRetAdvsEUF-CMA
MAC,B5 (λ).

Game G16: Skip verification of TC. In this game we do not check the MAC
TC for validity anymore in retrievals by an honest cid. Instead the simulator
simply checks whether the message TC was honestly delivered by the adver-
sary. If it was not honestly delivered, Sim produces the output Fail to
S. G16 and G15 only deviate if the adversary delivers some valid T ′

C ̸= TC ,
which we denote as the event E′

MAC. If this event occurs with non-negligible
probability, we can construct an adversary B6 against the sEUF-CMA secu-
rity of MAC.
The reduction B6 essentially works just like B5 from G15. B6 guesses an
index i ∈ {1, . . . , qRet} and lets TC be computed by the oracle Tag in the
i-th retrieval. Again, this does not change the distribution of KMAC

C as it
already is a uniformly random value as of G13. If the event E′

MAC occurs in
the i-th retrieval, B6 gives the value TC that the server received as output to
its challenger together with the corresponding message H3(pre ∥ TS). Thus,
we have

|Pr[G16]− Pr[G15]| ≤ qRetAdvsEUF-CMA
MAC,B6 (λ).
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Game G17: Skip verification of Te. In this game, Sim does not check if Te

verifies when an honest cid receives a message b2, e cred, ne, Te, nS, V, TS, σ2
and instead directly checks the passwords pw′ that it still receives from F
in this game. We claim that the distribution of the game does not change
up to negligible difference with this modification.
Due to G15, the message (b2, e cred, ne, Te, nS, V, TS, ∗) cannot be modified
by the adversary and the values e cred, ne, and Te must be equal to the ones
that are stored by Sim. We now distinguish how the values stored by Sim
could have been computed. First, they could have been computed by Sim in
?? when it simulated an initialization for cid, where the adversary honestly
delivered E. Second, they could have been computed in an initialization by
cid, where the corrupt server delivers some E′ ̸= E to the HSM. Third, they
could have been computed by the corrupt S in an initialization, where it
impersonated cid.
In the first case, in G16, Te would successfully verify if cid used the cor-
rect password. Thus, directly checking the password does not change the
distribution. In the second and third case, in ??, Sim tried to extract the
password pw that was used to compute the values e cred′, n′

e, and T ′
e ob-

tained by decrypting E′, in particular it must hold that T ′
e verifies under the

key Kauth derived from pw. If it was able to extract pw, we can again simply
compare pw with the password pw′ used by cid in this retrieval.
Now consider the case that Sim could not extract a password. Recall that
in that case, it stored the error symbol ⊥ as the password, which means
that now in G17, cid will always output Fail in any retrieval. Thus, we
need argue that cid always outputs Fail when it receives T ′

e in G16 if Sim
could not extract a password in ??. If Sim was not able to extract pw,
this must be due to T ′

e not verifying under Kauth. If no key exists under
which T ′

e verifies, then in G16, cid will obviously also output Fail in any
retrieval where it receives T ′

e. If T ′
e verifies under some key Kauth

′ ̸= Kauth,
cid would not output Fail if it ever derives Kauth

′ in some retrieval, meaning
that G17 would deviate from G16. First, assume that Kauth

′ was not output
by the random oracle KDF1, yet. Then, the probability of cid ever deriving
Kauth

′ in any retrieval can be bounded by qRet
2λ , since the outputs of KDF1

are drawn uniformly at random. If Kauth
′ was already output by KDF1 in

response to some query (ρ, ne), then ρ was never output by the random
oracle H2 in response to some query (pw∗, h) before, as otherwise Sim would
have extracted pw∗ as the password used to compute T ′

e. That means we
can bound the probability of cid deriving ρ by qRet

2λ , since the outputs of H2
are drawn uniformly at random.
The argument for the third case, where the corrupt S impersonated cid in
the initialization, follows analogously. Overall, we have

|Pr[G17]− Pr[G16]| ≤
2qRet

2λ
.
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Game G18: Output Fail upon adversarial AE ciphertexts. In this game we
let Sim immediately output Fail to any cid if cid receives a ciphertext c that
was not computed by Sim. G18 and G17 only deviate if a valid ciphertext
is sent to cid that was not issued by the Sim before, which we denote as the
event EAE. If this happens with non-negligible probability, we can construct
an adversary against the INT-CTXT security of AE.
Assume there is an environment Z∗ that causes the event EAE when in-
teracting with F and Sim. Then, the reduction B7 internally runs the
whole experiment including F , Sim and Z∗. Further, it guesses an index
i $←− {1, . . . , qRet} and in the i-th retrieval does not compute c by itself
but instead asks the oracle Enc to compute c. Note that this implicitly
programs the key shk to the key k chosen by the challenger but this does
not change the distribution of shk as it is sampled uniformly at random by
FAKE-KCI. Additionally, in G13 we have ensured that both parties use the
same key shk, which means that if the event EAE occurs in the i-th retrieval
for some ciphertext c′, c′ is valid under the key k. Thus, if the event EAE
occurs, B7 wins the INT-CTXT experiment and we have

|Pr[G18]− Pr[G17]| ≤ qRetAdvINT-CTXT
AE,B7 (λ).

Game G19: S encrypts 0 in c. In this game the the simulator computes c as
AE.Enc(shk, m), where m is a 0-string of appropriate length, in retrievals with
honest clients. Assume there is an environment Z∗ that can distinguish G19
and G18. We construct an adversary B8 against the IND-CPA security of AE
as follows. We construct a sequence of games G(0)

18 := G18, G(1)
18 , . . . , G(qInit)

18 :=
G19, where in G(i)

18 in the first i retrievals c is computed as an encryption of a
0-string using the oracle Enc and in the remaining retrievals it is computed
as in G18. Because Z∗ can distinguish between G19 and G18, there must
be an index i∗ ∈ {1, . . . , qRet} such that Z∗ can distinguish between G(i∗−1)

19
and G(i∗)

19 . Now, in the i∗-th retrieval, B8 outputs m0 := e and m1 as a
0-string of the same length to its challenger to receive a challenge ciphertext
c∗ and sends c∗ to cid. Note that due to G18 the environment cannot modify
the ciphertext sent in any retrieval and hence B8 does not need a decryption
oracle. Now, if the challenger encrypts m0, the game is distributed exactly
like G(i∗−1)

18 and if it encrypts m1, it is distributed exactly like G(i∗)
18 . Hence,

we get
|Pr[G19]− Pr[G18]| ≤ qInitAdvIND-CPA

AE,B8 (λ).

Game G20: Add InitC and RetC interfaces. In this game we introduce
slightly modified interfaces InitC and RetC to F and add the interfaces
InitS and RetS. The interfaces InitC and RetC act exactly as in FPPKR
except that they still forward pw to Sim. These are only syntactical changes
as the interfaces never give any output to parties. We have

Pr[G20] = Pr[G19]
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Game G21: Let F produce output for clients. In this game Sim does not pro-
duce outputs directly to clients anymore and instead uses the CompleteInitC
and CompleteRetC interfaces of F , which we add to F with the same
code as in FPPKR. Whenever Sim produced output to some honest cid in
G20, it now issues the corresponding query to F , in particular this affects .

In the initialization, clients always output K in G20, which Sim can simulate
in G21 by sending (CompleteInitC, ssid, 1), making the changes in the
initialization phase indistinguishable. The retrieval phase is more difficult
to simulate as the client can output Fail, DelRec, or K. To this end,
we need to add a slightly modified CompleteInitS interface to F that
only executes the Steps CIS.1 and CIS.3 to ensure that F stores File
records that can be accessed in the retrieval. Similarly, we also introduce a
slightly modified CompleteRetS interface to ensure that F resets the ctr
in the File records in a successful retrieval. The modified CompleteRetS
interface executes the Steps CRS.1 , CRS.2 , and CRS.3 .

Let us now argue that the changes in the retrieval phase are indistinguish-
able as well. First, in this game F still forwards the passwords of clients to
Sim, which makes it easy for Sim to determine whether a retrieval by an
honest cid is successful and choose b for the CompleteRetC query accord-
ingly. For retrievals by a corrupt party, we distinguish whether the currently
stored File record by Sim was created in an initialization by an honest or
corrupt party. If it was an honest cid, indicated by the existence of a record
⟨Prog, kid, [ρ], ∗⟩, the corrupt party must have guessed the password cor-
rectly in this retrieval. Otherwise it cannot decrypt e cred, which means that
it cannot learn anything about the clients DH secret x and cannot compute
a valid TC . Hence, a record ⟨H2, [pw], ∗, ρ⟩ must exist and Sim can extract
the password pw used by the corrupt party in this retrieval. If the currently
stored File record was created in an initialization by a corrupt party, Sim
does not need to extract a password since in that case it can always reset
the counter in F with the CompleteRetS or MaliciousRet interface.

Finally, we need to ensure that ctr is decremented in any retrieval. If S is
honest it is decremented in the InitS interface. If S is corrupt, Sim issues
RetS on behalf of the corrupt server in Ra.8 .

In summary, the simulator ensures that clients receive the same outputs as
in G20 by (1) using the password it receives from F to determine whether
retrievals should be successful and (2) ensuring that the ctr values in F
are always updated correctly by decrementing it in every initialization and
resetting it to 10 whenever there is a successful retrieval. Therefore, the
distribution of G21 is the same as in G20 and we have

Pr[G21] = Pr[G20].
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Game G22: Let F produce output for the server. In this game, we change
the simulator such that it uses the CompleteInitS and CompleteRetS
interfaces to produce output to the server. To this end, we add the missing
steps from FPPKR of these interfaces to F . Since in G21 the simulator already
used these interfaces in successful initializations and retrievals, we only need
to add the queries in failed initializations and retrievals. Here, Sim always
sets b = 0, which ensures that S receives the output Fail, and we have

Pr[G22] = Pr[G21].

Game G23: Remove password forwarding from F . In this game, we finally
remove the password forwarding of F . In G22, Sim used the password
inputs to determine whether recoveries should be successful. But instead
of comparing the passwords by itself, it can also use the output match from
F , which gives the exact same information. Therefore, the distribution of
the game does not change:

Pr[G23] = Pr[G22].

Furthermore, we have now arrived at the point, where F executes exactly
the code of FPPKR and Sim executes the code of SimWBP. We have thus
arrived at the ideal world execution, and summing up the terms from the
game hops gives the bound given in Theorem 5.
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4 Security Analysis of the WhatsApp End-to-End Encrypted Backup Protocol

Simulator SimWBP, part 1

SimWBP stores a map aids[·] that stores the aid belonging to cid. Wait for X means that
SimWBP does not proceed to the next instruction before receiving X and meanwhile gives back
activation to A. Once it receives X, it first proceeds with the instructions on input X and then
continues at the instruction, where it waited for X. If a record cannot be retrieved, the query
is ignored. For brevity we omit session identifier sid from all inputs, outputs, and records.
On GetPK from anyone to FWBP

HSM :
PK.1 If no record ⟨PK, [pk], ∗⟩ exists:

(a) (skSig, pkSig) $←− Sig.KGen(1λ) (G1)
(b) (skEnc, pkEnc) $←− PKE.KGen(1λ) (G1)
(c) Give input (Init, sid) to FAKE-KCI from FWBP

HSM . This triggers Step 1 of Sim3DH,
and then set Y to the values A generated in that step (G13)

(d) Set sk = {skSig, skEnc,⊥, KEnc} and pk = {pkSig, pkEnc, Y } and store ⟨PK, pk, sk⟩
(G1)

PK.2 Reply with pk (G1)
On corrupt from A to S:

C.1 For each record ⟨File, [cid], ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩, choose a fresh aid $←− {0, 1}λ, set
aids[cid] := aid, and overwrite cid with aid in the File record (G2)

C.2 Output aids[·] (G1)
On (InitC, ssid, cid) from FPPKR: // honest cid

I.1 Choose a fresh kid $←− {0, 1}λ that has not been used in any other initialization (G10)
I.2 Give input (Eval, sid, kid, ssid,FWBP

HSM , 0) to FOPRF from cid. This triggers Step 5 of
Sim2HDH, which outputs (sid, cid, ssid, a) (G10)

I.3 Record ⟨Init, ssid, cid, a, kid,⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥⟩ and send (ssid, a) as message from
cid to S (G1)

On (InitS, ssid, cid) from FPPKR: // honest S
I.4 If S honest, wait for (ssid, a1) from cid to S (G1) // See (ssid, a1) interface

On (ssid, a1) from A to S on behalf of cid: // any cid, honest S
Ia.1 If S is honest, wait for (InitS, ssid, cid) from FPPKR (G1)
Ia.2 If cid is corrupt:

(a) Choose a fresh kid $←− {0, 1}λ that has not been used in any other initialization
(G10)

(b) Record ⟨Init, ssid, cid, a, kid,⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥⟩ (G1)
Ia.3 If cid is honest, retrieve ⟨Init, ssid, cid, ∗, [kid], ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ (G1)
Ia.4 Delete any existing record ⟨File, cid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ (G1)
Ia.5 Give input (Init, sid, kid) to FOPRF from FWBP

HSM . This triggers Step 2 of Sim2HDH (G10)
// Create new OPRF key

Ia.6 Give input (SndrComplete, sid, kid, ssid) to FOPRF from FWBP
HSM . This triggers Step 6

of Sim2HDH, which outputs (sid, ssid, b) (G10)
Ia.7 Compute n1

$←− {0, 1}λ and σ1
$←− Sig.Sign(skSig, b1 ∥ n1). Overwrite the entries 7-10 in

⟨Init, ssid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ with a1, b1, n1, σ1. Send (ssid, b1, n1, σ1) from S to
cid (G1). Abort if another record ⟨Init, ∗, ∗, ∗, ∗, ∗, ∗, ∗, n1, ∗, ∗, ∗, ∗, ∗⟩ exists (G5)

Figure 4.18: Simulator SimWBP for WBP, part 1.
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4.4 Security Analysis

Simulator SimWBP, part 2

On (InitS, ssid, aid, aid′, a∗
1) from A to FWBP

HSM on behalf of S:
Ia.8 Run HSM code up to checking if aid is fresh. If it is not fresh, send (InitRes, aid, Fail)

to S, and else continue (G1)
Ia.9 If no record ⟨Init, ssid, [cid], ∗, [kid], ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ exists:

(a) Choose a fresh kid $←− {0, 1}λ that has not been used in any other initialization
(G10)

(b) Record ⟨Init, ssid,⊥, ∗, kid,⊥, a∗
1,⊥,⊥,⊥,⊥,⊥,⊥,⊥⟩ and set cid := ⊥ (G1)

Ia.10 Overwrite the sixth entry of the record ⟨Init, ssid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ with aid
(G1)

Ia.11 Delete any existing record ⟨File, aid′, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ (G1)
Ia.12 If cid ̸= ⊥, set aids[cid] := aid (G2)
Ia.13 Execute Steps Ia.5 - Ia.7 where the output is returned to S instead of cid (G10)
On (ssid, b1, n1, σ1) from A to C on behalf of S: // honest cid

Ib.1 Retrieve ⟨Init, ssid, cid, ∗, [kid], [aid], ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ (G1)
Ib.2 If S is not honest, give input (InitS, ssid, cid, aid) to FPPKR. On response

(InitS, ssid, cid) from FPPKR or if FPPKR ignores the input, continue below (G21) //
Ensures that we can produce output for cid

Ib.3 [Forged signature] If no record ⟨Init, [ssid′], ∗, ∗, ∗, ∗, ∗, b1, n1, σ1, ∗, ∗, ∗⟩ exists (G6),
send (CompleteInitC, ssid, 0) to FPPKR (G21)

Ib.4 If ssid′ = ssid, give input (RcvComplete, sid, kid, ssid, cid,FWBP
HSM ) to FOPRF, which

outputs (EvalOut, sid, ssid, ρ) (G10)
Ib.5 If ssid′ ̸= ssid, sample ρ $←− {0, 1}λ (G10)
Ib.6 Send (sid, Init) to FAKE-KCI from cid, which triggers Step 1 of Sim3DH, and then set

(x, X) to the values (a, A) generated in that step (G13)
Ib.7 Compute e cred $←− {0, 1}λ (G14), Kauth

$←− {0, 1}λ (G14), ne
$←− {0, 1}λ, and Te

$←−
MAC.Tag(Kauth, Y ∥ne, e cred) (G1), and E $←− PKE.Enc(pkEnc, m), where m is a 0-string
of appropriate length and record ⟨E, X ∥ e cred ∥ne ∥Te⟩ (G7) and ⟨Prog, kid, ρ, Kauth⟩
(G14)

Ib.8 Abort if another record ⟨File, ∗, ∗, ∗, ∗, ∗, ∗, ne, ∗, ∗⟩ exists (G5)
Ib.9 Overwrite the entries 11-14 in the record ⟨Init, ssid, cid, ∗, kid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩

with b1, n1, x, E and send (ssid, E) as message from cid to S (G1) and
(CompleteInitC, ssid, 1) to FPPKR (G21)

On (ssid, E) from A to S on behalf of cid:
IE.1 Retrieve ⟨Init, ssid, cid, [a1], [kid], ∗, [a∗

1], [b1], [n1], ∗, [b∗
1], [n∗

1], ∗, ∗⟩ (G1)
IE.2 If cid is corrupt, run the HSM code up to determining out (G1)

(a) If out = Fail, send (CompleteInitS, ssid, 0) to FPPKR (G22)
(b) If out = Succ, Let e ∥X ∥ tr ∥ e cred ∥ ne ∥ Te denote the decryption of E. Search

for a record ⟨H2, [pw], ∗, [ρ]⟩ marked Consistent such that MAC.Vrfy(Kauth, Y ∥
ne ∥ e cred, Te) = 1 holds for (Kexport, Kauth, Kmask) := KDF1(ρ, ne) (G12). If
more than one such record exists, abort the simulation (G11). If exactly one
such record exists, give input (MaliciousInit, aid, pw, K) to FPPKR for K :=
AE.Dec(Kexport, e). If no such record exists, give input (MaliciousInit, aid,⊥,⊥)
to FPPKR (G12). Record ⟨File, cid, ssid, kid, e, X, e cred, ne, Te, 10⟩ overwriting any
existing ⟨File, cid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ (G1) and send (CompleteInitS, ssid, 1) to
FPPKR (G22)

IE.3 If cid is honest:
(a) If a1 ̸= a∗

1, b1 ̸= b∗
1, or n1 ̸= n∗

1 (G9), set b := 1, else set b := 0 (G22)
(b) Retrieve ⟨E, [X] ∥ [e cred] ∥ [ne] ∥ [Te]⟩ (G7), record ⟨File, cid, ssid, kid, e, X, e cred,

ne, Te, 10⟩ overwriting any existing ⟨File, cid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ (G1), and send
(CompleteInitS, ssid, b) to FPPKR (G22)

Figure 4.19: Simulator SimWBP for WBP, part 2.
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4 Security Analysis of the WhatsApp End-to-End Encrypted Backup Protocol

Simulator SimWBP, part 3

On (ssid, E) from S to FWBP
HSM on behalf of S:

IE.4 Retrieve ⟨Init, ssid, [cid], [a1], [kid], [aid], [a∗
1], [b1], [n1], ∗, [b∗

1], [n∗
1], ∗, [E′]⟩ (G1)

IE.5 [Honest delivery of E ] If E = E′, execute IE.3 (G7) and set aids[cid] := aid (G2)
IE.6 If E ̸= E′ (G7), run HSM code up to determining out (G1)

(a) If out = Fail, send (InitRes, ssid, Fail) to S as output of the HSM, else continue
(G1)

(b) Let e ∥ X ∥ tr ∥ e cred ∥ ne ∥ Te denote the decryption of E. Search for a
record ⟨H2, [pw], ∗, [ρ]⟩ marked Consistent such that MAC.Vrfy(Kauth, Y ∥ ne ∥
e cred, Te) = 1 holds for (Kexport, Kauth, Kmask) := KDF1(ρ, ne) (G12). If more than
one such record exists, abort the simulation (G11). If exactly one such record ex-
ists, give input (MaliciousInit, aid, pw, K) to FPPKR for K := AE.Dec(Kexport, e).
If no such record exists, give input (MaliciousInit, aid,⊥,⊥) to FPPKR (G12)

(c) Overwrite the 13th entry of the record ⟨Init, ssid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ with
e cred⊕Kmask (G12)

(d) If cid ̸= ⊥, set aids[cid] := aid (G2)
(e) Record ⟨File, aid, ssid, kid, e, X, e cred, ne, Te, 10⟩ (G1)

On (RetC, ssid, cid, match) from FPPKR: // honest cid
R.1 If S is honest, retrieve ⟨File, cid, [ssid′], [kid], ∗, ∗, ∗, ∗, ∗, ∗⟩, and otherwise retrieve

⟨File, aids[cid], [ssid′], [kid], ∗, ∗, ∗, ∗, ∗, ∗⟩ (G2). If no such record exists, choose a fresh
kid $←− {0, 1}λ that has not been used in any initialization (G10)

R.2 Give input (Eval, sid, kid, ssid,FWBP
HSM , 0) to FOPRF from cid. This triggers Step 5 of

Sim2HDH, which outputs (sid, cid, ssid, a) (G10)
R.3 If no record ⟨Init, ssid′, cid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ exists, compute u $←− Zq and U :=

gu and record ⟨Dh, ssid,⊥,⊥⟩ (G13) // Corrupt S maliciously initialized for cid and we
cannot use FAKE-KCI as it does not know the DH public key

R.4 Otherwise, give input (NewSession, sid, ssid, cid,FWBP
HSM ) to FAKE-KCI from cid. This

triggers Step 2 of Sim3DH, which outputs (U, X,⊥) (G13)
R.5 Compute nC

$←− {0, 1}λ and record ⟨Ret, ssid, cid, (nC , U, a), match,⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥⟩
and send (ssid, nC , U, a) as message from cid to S (G1)

R.6 Abort if another record ⟨Ret, ∗, ∗, (nC , ∗, ∗), ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ exists (G5)
On (RetS, ssid, cid, match) from FPPKR: // honest S

R.7 If a record ⟨Ret, ssid, ∗, ∗,⊥, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ exists, overwrite ⊥ with match (G1)
R.8 Otherwise, record ⟨Ret, ssid, cid,⊥, match,⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥⟩ (G1)
R.9 If S honest, wait for (ssid, nC , U, a2) from cid to S (G1) // See (ssid, nC , U, a2) interface

Figure 4.20: Simulator SimWBP for WBP, part 3.
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4.4 Security Analysis

Simulator SimWBP, part 4

On (ssid, nC , U, a2) from A to S on behalf of cid: // honest S
Ra.1 If S honest, wait for (RetS, ssid, cid) from FPPKR (G1)
Ra.2 Retrieve ⟨File, cid, ∗, [kid], ∗, [X], [e cred], [ne], [Te], ∗⟩. If no such record exists, send

(CompleteRetS, ssid, 0) to FPPKR (G1)
Ra.3 Run HSM code on input (ssid, aid, nC , U, a2) (G1) with aid := cid (G2) and the following

modifications:
• To compute b2 give input (SndrComplete, sid, kid, ssid) to FOPRF from FWBP

HSM .
This triggers Step 6 of Sim2HDH, which outputs (sid, ssid, b2) (G10)

• To compute (KMAC
C , KMAC

S , shk) give input (NewSession, sid, ssid,FWBP
HSM , cid) to

FAKE-KCI. This triggers Step 2 of Sim3DH, which outputs (V, Y,⊥). Then
send (U, X, pre) to Sim3DH as a message from cid to FWBP

HSM . This triggers
Step 3 of Sim3DH, which lets FAKE-KCI output (sid, ssid, pre, s). Interpret s as
(KMAC

C , KMAC
S , shk) (G13)

If the output of the HSM code is (ssid, DelRec), send (CompleteInitS, ssid, 0) to
FPPKR (G22) and (ssid, DelRec) from S to cid. Otherwise continue (G1)

Ra.4 Set m := (b2, e cred, ne, Te, nS, V, TS, σ2). Overwrite the entries 6 and 8-10 of the record
⟨Ret, ssid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ with kid, (nC , U, a2), (KMAC

C , KMAC
S , shk), and m and

send (ssid, m) from S to cid (G1)
Ra.5 Abort if another record ⟨Ret, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, m′, ∗, ∗, ∗⟩ exists with m′ =

(∗, ∗, ∗, ∗, nS, ∗, ∗, ∗) (G5)
On (ssid, aid, nC , U, a2) from A to FWBP

HSM on behalf of S:
Ra.6 If no record ⟨File, aid, ∗, [kid], ∗, [X], [e cred], [ne], [Te], ∗⟩ exists, send

(RetRes, ssid, Fail) from FWBP
HSM to S (G1)

Ra.7 If no record ⟨Ret, ssid, [cid], ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ with cid ̸= ⊥ exists, record
⟨Ret, ssid,⊥,⊥,⊥,⊥, aid,⊥,⊥,⊥,⊥,⊥,⊥⟩ and set cid = ⊥ (G1)

Ra.8 Give input (RetS, ssid, cid′, aid,⊥,⊥,⊥) to FPPKR, where cid′ := cid if cid ̸= ⊥ and
cid′ := aid otherwise. On response (RetS, ssid, cid′, match) overwrite the fifth entry of
the record ⟨Ret, ssid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ with match (G23)

Ra.9 Execute Steps Ra.3 - Ra.5 , where cid := aid if cid = ⊥, and returning the output to
S instead of cid (G10)

Ra.10 If a record ⟨Dh, ssid, ∗, ∗⟩ exists: (G13)
(a) Let v denote the value chosen in Step 2 of Sim3DH during Ra.3 with V = gv

(G13)
(b) Overwrite the last two entries of ⟨Dh, ssid, ∗, ∗⟩ with

((U v, Uy, Xv), (KMAC
C , KMAC

S , shk)) (G13)
On (ssid, DelRec) from A to cid on behalf of S:

D.1 If no record ⟨Ret, ssid, cid, ∗, ∗, ∗, ∗, ∗, ∗, ∗,⊥,⊥,⊥⟩ exists, ignore this query (G1)
D.2 If S is corrupt, give input (RetS, ssid, cid, cid,⊥,⊥,⊥) to FPPKR. On response

(RetS, ssid, cid, match) from FPPKR continue below (G21)
D.3 Send (CompleteRetC, ssid, 1) to FPPKR (G21)

Figure 4.21: Simulator SimWBP for WBP, part 4.
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4 Security Analysis of the WhatsApp End-to-End Encrypted Backup Protocol

Simulator SimWBP, part 5

On (ssid, b2, e cred, ne, Te, nS, V, TS, σ2) from A to cid on behalf of S:
Rb.1 Retrieve ⟨Ret, ssid, cid, [m1], [match], [kid], [aid], [m∗

1], ∗, [m2], ∗, ∗, ∗⟩. If no such record
exists, ignore the query (G1)

Rb.2 If S is corrupt, give input (RetS, ssid, cid, aid,⊥,⊥,⊥) to FPPKR. On response
(RetS, ssid, aid, match′) from FPPKR set match := match′ and overwrite match with
match′ in the record retrieved above (G23)

Rb.3 [mismatching password or preamble] If match = 0 (G23), m1 ̸= m∗
1, or

(b2, e cred, ne, Te, nS, V, TS, σ2) ̸= m2 (G6, G15), send (CompleteRetC, ssid, 0) to
FPPKR (G21), else continue (G6)

Rb.4 If a record ⟨Dh, ssid, [ikm], ([KMAC
C ], ∗, ∗)⟩ exists: (G13)

(a) Retrieve ⟨Init, ∗, ∗, kid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, [x], ∗⟩ (G13)
(b) If ikm ̸= (V u, Y u, V x) (G13), send (CompleteRetC, ssid, 0) to FPPKR (G21),

else continue (G13)
Rb.5 If no record ⟨Dh, ssid, ∗, ∗⟩ exists, send (V, Y, pre) to Sim3DH as a message from cid

to FWBP
HSM . This triggers Step 3 of Sim3DH, which lets FAKE-KCI output (sid, ssid, pre, s).

Interpret s as (KMAC
C , KMAC

S , shk) (G13)
Rb.6 Compute TC

$←− MAC.Tag(KMAC
C , H3(pre, TS)). Overwrite the tenth entry of record

retrieved in Rb.1 with TC and send (ssid, TC) from cid to S (G1)
On (ssid, TC) from A to S on behalf of cid: // honest S

RT.1 If cid is honest: (G16)
(a) If no record ⟨Ret, ssid, ∗, ∗, ∗, ∗, ∗, ∗, (∗, ∗, [shk]), ∗, TC , ∗, ∗⟩ exists (G16), send

(CompleteRetS, ssid, 0) to FPPKR (G22), else continue (G16)
(b) Compute c $←− AE.Enc(shk, m), where m is a 0-string of appropriate length (G19)

RT.2 If cid is corrupt:
(a) Retrieve ⟨Ret, ssid, ∗, ∗, ∗, [kid], ∗, ∗, ([KMAC

C ], [KMAC
S ], [shk]), [m], ∗, ∗, ∗⟩ with m =

(∗, ∗, ∗, ∗, ∗, ∗, [TS], ∗) (G1)
(b) If MAC.Vrfy(KMAC

C , H3(pre∥TS), TC) = 0, give input (RetC, ssid,⊥) to FPPKR. On
response (RetC, ssid, cid) from FPPKR send (CompleteRetS, ssid, 0) to FPPKR.
(G22). Otherwise continue below. (G1)

(c) If records ⟨Prog, kid, [ρ], ∗⟩ and ⟨H2, [pw], ∗, ρ⟩ exist, give input (RetC, ssid, pw)
to FPPKR. On response (RetC, ssid, cid, match), send (CompleteRetC, ssid, 1)
to FPPKR. On response (RetRes, ssid, K), compute e $←− AE.Enc(Kexport, K) and
c $←− AE.Enc(shk, e) for (Kexport, ∗, ∗) := KDF1(ρ, ne) (G??)

(d) Otherwise, give input (RetC, ssid,⊥) to FPPKR. On response
(RetC, ssid, cid, match), compute c $←− AE.Enc(shk, e) (G19)

RT.3 Overwrite the last entry of the record ⟨File, cid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ with 10 and the
last two entries of the record ⟨Ret, ssid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ with (TC , c). Send
(ssid, c) from S to cid (G1) and (CompleteRetS, ssid, 1) to FPPKR (G21)

Figure 4.22: Simulator SimWBP for WBP, part 5.
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4.4 Security Analysis

Simulator SimWBP, part 6

On (ssid, TC) from A to FWBP
HSM on behalf of S: // corrupt S

RT.4 Retrieve ⟨Ret, ssid, ∗, ∗, [match], [kid], [aid], ∗, ([KMAC
C ], ∗, [shk], ∗, [T ′

C ], ∗, ∗)⟩ (G1)
RT.5 If TC = T ′

C (G16) and compute c $←− AE.Enc(shk, m), where m is a 0-string of appro-
priate length (G19)

RT.6 If TC ̸= T ′
C : (G16)

(a) If MAC.Vrfy(KMAC
C , H3(pre ∥ TS), TC) = 0, send (RetRes, ssid, Fail) from FWBP

HSM
to S, else continue below (G1)

(b) If a record ⟨Prog, kid, [ρ], ∗⟩ and ⟨H2, [pw], ∗, ρ⟩ exist, send
(MaliciousRet, cid, pw, 0) to FPPKR, where cid is defined such that
aids[cid] = aid holds. On response K from FPPKR compute e $←− AE.Enc(Kexport, K)
and c $←− AE.Enc(shk, e) for (Kexport, ∗, ∗) := KDF1(ρ, ne) (G??)

(c) Otherwise, send (MaliciousRet, aid,⊥, 1) to FPPKR, retrieve
⟨File, aid, ∗, ∗, [e], ∗, ∗, ∗, ∗, ∗⟩ and compute c $←− AE.Enc(shk, e) (G1)

RT.7 Overwrite the last entry of the record ⟨File, aid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ with 10 and the
last two entries of the record ⟨Ret, ssid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ with (TC , c) and send
(ssid, c) from FWBP

HSM to A (G1) and (CompleteRetS, ssid, 1) to FPPKR (G21)
On (ssid, c) from A to cid on behalf of S: // honest cid

Rc.1 Retrieve ⟨Ret, ssid, cid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, [c′]⟩ (G1)
Rc.2 Send (CompleteRetC, ssid, c

?= c′) to FPPKR (G18, G21)
On random oracle query H1(pw) from A:

H1.1 Send H1(pw) from A to Sim2HDH. This triggers Step 4 of Sim2HDH, which outputs h.
Output h to A (G10)

On random oracle query H2(pw, h) from A:
H2.1 If a record ⟨H2, pw, h, [ρ]⟩ exists, output ρ (G1)
H2.2 Send H2(pw, h) to Sim2HDH. This triggers Step 8 of Sim2HDH, which outputs ρ (G10)
H2.3 If a record ⟨H2, ∗, ∗, ρ⟩ exists, abort (G3)
H2.4 Record ⟨H2, pw, h, ρ⟩ and mark it Consistent if ρ was produced by FOPRF during

Step 8 of Sim2HDH (G10). Output ρ

On random oracle query KDF1(ρ, ne) from A:
K1.1 If no record ⟨KDF1, ρ, ne, ([Kexport], [Kmask], [Kauth])⟩ exists:

(a) If records ⟨Prog, [kid], ρ, [Kauth]⟩, ⟨Init, ∗, ∗, ∗, kid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, [x], [E]⟩, and
⟨E, ∗ ∥ [e cred] ∥ ne ∥ ∗⟩ exist, compute Kexport

$←− {0, 1}λ and Kmask := e cred⊕ x
(G??)

(b) Otherwise, choose Kexport, Kmask, Kauth
$←− {0, 1}λ (G1)

(c) If a record ⟨KDF1, ∗, ∗, (∗, ∗, Kauth)⟩ exists, abort (G4)
(d) Record ⟨KDF1, ρ, ne, (Kexport, Kmask, Kauth)⟩ (G1)

K1.2 Output (Kexport, Kmask, Kauth) to A (G1)
On random oracle query KDF2(ikm, pre) from A:

K2.1 If a record ⟨KDF2, ikm, pre, [s]⟩ exists, output s to A (G1)
K2.2 If records ⟨Dh, [ssid], ikm, [s]⟩ and ⟨Ret, ssid, ∗, ∗, ∗, ∗, ∗, [m1], ∗, [m2], ∗, ∗, ∗, ∗⟩ exist

such that pre = (a2, nC , U, Y, e cred, ne, Te, b2, nS, V ) for m1 = (nC , U, a2) and m2 =
(b2, e cred, ne, Te, nS, V, TS, σ2), record ⟨KDF2, ikm, pre, s⟩ (G13)

K2.3 In any other case, send (pre, ikm) from A to Sim3DH. This triggers Step 5 of Sim3DH,
which outputs s (G13)

K2.4 Output s to A. (G1)

Figure 4.23: Simulator SimWBP for WBP, part 6.
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5 Password-Protected Key Retrieval
with(out) HSM-Protection

Author’s contribution. The contents of this chapter are based on joint work
with Sebastian Faller, Julia Hesse, Máté Horváth, and Anja Lehmann [FHH+24].
The design of the three PPKR protocols presented in this chapter, which evolved
through several mutual discussions, are an equal contribution of all authors. The
majority of the security analysis of the OPRF-PPKR protocol given in Section 5.4
was developed by the author of this thesis with minor contributions from Sebastian
Faller, Julia Hesse, and Máté Horváth in the form of occasional discussions of the
proof strategy and the write up of small, isolated parts of the formal proof.

5.1 Overview
The question how users of IM apps can maintain access to their data when they
lose their devices or switch to a new phone is one of the new challenges arising
with the deployment of E2EE as the de facto security standard. Apart from
WBP, which we analyzed extensively in Chapter 4, other protocols aiming at the
secure backup of a user’s chat history—or a user’s cryptographic key in general—
have been proposed by Signal [Lun19], Apple [Krs16], and Google [Wal18]. The
approach of all three approaches is similar to the WBP in the sense that the user’s
high-entropy (encryption) key is stored on a server that relies on some trusted
hardware enclaves, such as hardware security modules (HSMs). In our formal
analysis of the WBP, we relied on the assumption that the HSM is perfectly
secure and does not leak any cryptographic keys or backup files.

While this correctly captures the initial design choice made for the WBP pro-
tocol as well as the security claims advertised by WhatsApp [Wha21a], this is
somewhat unsatisfactory from a security and protocol design perspective. First,
if we assume an incorruptible HSM, the protocol design could take more advan-
tage of that—the core of the WBP protocol is the OPAQUE protocol [JKX18],
providing strong security guarantees even when the cryptographic state gets com-
promised, which wouldn’t be needed if the assumption is that such an event can
never occur. Second, relying on a perfectly secure sub-entity is a risky assump-
tion. In fact, also trusted hardware modules have a history of getting breached or
having to lower their security claims [VBMW+18, VBPS17, BC19, SRW22].

Therefore, in this chapter we explore the question how we can design highly
efficient PPKR protocols under the assumption that the trusted hardware enclave
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is incorruptible (Lev-1 security), partially corruptible in the sense that backup files
may be leaked (Lev-2 security), or even fully corruptible (Lev-3 security).

5.1.1 Our Contributions
We propose three provably secure PPKR protocols, all relying on a server-internal
HSM to protect the user’s backup files, but aiming at a different trust level, thus
having a dedicated trade-off between the strength of the HSM assumption and
simplicity. We present two protocols that provide the same (or even stronger)
formally proven security as the WBP, yet are significantly simpler. Both fall short
of achieving security under full HSM corruption, for which we design a protocol
that, similarly to the WBP, uses an oblivious pseudorandom function (OPRF) as
a crucial building block, giving up on the reliance on basic primitives only. Let us
provide some more detail.

We generally consider the same setting as for the WBP for all of our protocols.
We assume client-to-server authenticated channels e.g. through an SMS or email
passcode authentication as is done in WhatsApp, giving users the assurance that
an adversary or other clients cannot try to retrieve their key. Importantly, we
do not assume client-to-HSM authentication. In the other direction, as a notable
difference from the WBP, we assume that the HSM authenticates all its messages
through digital signatures, which is often referred to as attestation. Attestation is
a standard feature of HSMs and must be deployed with some means of verifying
the authenticity of the signature public key, e.g. with a certificate chain.1 The
details for this, however, are beyond the scope of this thesis. As in Chapter 4,
we model the HSM as a hybrid functionality providing an interface where any
party can obtain the public key, reflecting that there exists some trusted way of
obtaining the key in practice.

In our model of leakage from the HSM, covered through Lev-2 security, HSM
attestation is the only power kept from the adversary. Only in our strongest
model, Lev-3 that considers full HSM corruption, we will provide the adversary
with the attestation key. This distinction between the permanent attestation key
and client-specific files is justified because attestation is a central capability of
HSMs. Therefore, an HSM manufacturer might turn special attention to the pro-
tection of the single attestation key, such as more expensive hardware protection
mechanisms.

For simplicity, we also assume that the HSM has some persistent memory where
it stores file records. In practice, HSMs might securely outsource such storage as
done, e.g., in the case of the WBP (cf. Section 4.2.4), but the actual realization of
storage is irrelevant for our work. This HSM-protected storage is still considered
secret upon server corruption (Lev-1) but entirely leaked to the adversary from
Lev-2 up.

1See e.g. https://thalesdocs.com/gphsm/luna/7/docs/network/Content/admin_
partition/confirm/confirm_hsm.htm
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Finally, we provide an intuition for the basic approaches of our three construc-
tions.

Basic/enhanced encrypt-to-HSM: We start with a protocol that fully relies on
a trusted HSM for most of its operation, and leverage this to simplify the
design as much as possible. The resulting protocol merely uses standard
symmetric and asymmetric encryption. We prove our simple protocol to be
secure on Lev-1, which gives the same (or even slightly stronger, see discus-
sions in Sections 4.2.6 and 4.3.3) security guarantees as we have formally
proven for WBP in Section 4.4.3. We further show how to upgrade the
protocol to Lev-2 security, by relying on fresh encryption keys and salted
hashing in the stored password files. The simplicity hinges on the trust in
the HSM though, as the protocol loses its security if the HSM gets fully
corrupted. Interestingly, the best attacks against all long-term user files are
still offline attacks, but the login passwords that users send during an active
retrieval session are now revealed in plain when the HSM is fully corrupted,
which violates the Lev-3 guarantees.

OPRF-based: Our third protocol provides Lev-3 security, i.e., it guarantees op-
timal protection even in the presence of full server and HSM corruption.
This protocol partly resembles the WBP, as it also relies on an OPRF as a
core primitive. Recall that the WBP relies on OPAQUE, an aPAKE that is
built from an OPRF. By building our protocol directly from OPRFs and the
clearly specified security guarantees as concrete target, our protocol enjoys a
much cleaner design. In particular, we can omit all OPAQUE parts that are
not needed for PPKR (which does not aim at fresh session keys as aPAKE).
Overall, we propose an OPRF-based PPKR that has a simpler protocol de-
sign and better efficiency than WBP, and that fixes several attacks related
to user authentication that we identified in Section 4.2.6.

For an overview of the three protocols, see Table 5.1.

5.2 Lev-1 Protocol: Basic Encrypt-to-HSM
In the security analysis of the WBP in Section 4.4.3 we assumed that the HSM
cannot be corrupted and never leaks information. A natural question is if this
strong assumption allows for a simpler PPKR protocol. The basic encrypt-to-HSM
protocol encPw, depicted in Figure 5.1, answers the question in the affirmative.

The central observation is that if no information is leaked by the HSM, then
one can store the client’s passwords and keys in the clear at the HSM.When
a client wants to retrieve its key, the HSM can simply compare the provided
password with the stored cleartext password and return the key if the check was
successful. We must only ensure that the password and the key remain protected
during transmission via the (possibly corrupt) server—the prototypical scenario
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Table 5.1: Security achieved by our PPKR protocols and WBP. ✓= achieves opti-
mal protection in that corruption setting, ✗= not secure, where Lev-1:
server corrupt, Lev-2: server corrupt + backup file leaks, Lev-3: server
(and HSM) fully corrupt. Gray are conjectures. WBP was proven se-
cure in a model that is slightly weaker than our Lev-1 model, ∗ denotes
that similar relaxations likely being needed for the given level too. The
last column indicates if the protocol relies on standard building blocks
only.

Lev-1 Lev-2 Lev-3 Standard BB

encPw, Figure 5.1 ✓ ✗ ✗ ✓

encPw+, Figure 5.5 ✓ ✓ ✗ ✓

OPRF-PPKR, Figure 5.9 ✓ ✓ ✓ ✗

WBP, Figures 4.4 and 4.5 ✓∗ ✓∗ ✓∗ ✗

for encryption. Therefore the core idea behind the pw-to-HSM protocol is as
follows:

1. For initialization, the client encrypts its password and its randomly sampled
backup key K under the public key of the HSM: C $←− PKE.Enc(pk, (pw, K)).
The client sends C via the server to the HSM.

2. The HSM decrypts C and stores the password and the backup key.

3. For recovery, the client encrypts its password together with a freshly chosen
symmetric key C $←− PKE.Enc(pk, (pw′, k)) and sends that to the HSM.

4. The HSM decrypts C and compares pw′ to the stored password pw. If
the check is successful, the HSM encrypts the stored backup key under the
provided symmetric key C ′ $←− SE.Enc(k, K). The HSM sends the C ′ to the
client.

5. The client decrypts the symmetric ciphertext C ′ and obtains its backup key
K.

We assume that the public key pk can be distributed similarly as the public at-
testation key and thus all clients have access to pk. However, there are a number
of subtleties that have to be addressed by the protocol in order to satisfy FPPKR.

To prevent the “rerouting” of messages to a different cid by a corrupt server,
we let the client encrypt session identifier ssid and their own identity cid, and also
include these items in the clear. By comparing the decrypted identifiers with the
clear-text ones, the HSM will notice when a malicious server changes the identifiers
of honest client requests, and abort. Hence, with this little check, encPw is stronger
(on Lev-1) than the WBP, which admits such attacks as discussed in Section 4.2.6.
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This means we can even prove the basic encrypt-to-HSM protocol is secure under
the strengthened version of FPPKR, where we drop the code in dashed boxes (cf.
Section 4.3.3). Moreover, as the HSM directly checks the password supplied by the
client, it is not possible for corrupt parties to reset their counter when retrieving
with a wrong password and we can also drop the code in solid boxes of FPPKR.

We show that encPw is a secure PPKR protocol when only considering server
corruptions, i.e., it provides Lev-1 security.

Theorem 6. Let SE = (SE.KGen, SE.Enc, SE.Dec) be an IND-CPA-secure symmet-
ric encryption scheme, PKE = (PKE.KGen, PKE.Enc, PKE.Dec) be an IND-CCA-
secure public key encryption scheme, and Sig = (Sig.KGen, Sig.Sign, Sig.Vrfy) by
an sEUF-CMA-secure signature scheme used for attestation.

Then, the protocol encPw from Figure 5.1 UC-realizes FPPKR at Lev-1 security
(i.e. without the LeakFile and FullyCorrupt interfaces) in the F encPw

HSM -hybrid
model, malicious adaptive corruptions , and a client-authenticated channel between
clients and the server. Concretely, we can construct adversaries B1, . . .B4 such
that for any efficient adversary against encPw (interacting with F encPw

HSM ), the simu-
lator SimencPw interacting with FPPKR produces a view such that for every efficient
environment Z it holds that

AdvFPPKR
encPw,SimencPw,Z(λ) ≤AdvsEUF-CMA

Sig,B1 (λ) + qInitAdvIND-CCA
PKE,B2 (λ)

+ qRetAdvIND-CCA
PKE,B3 (λ) + qRetAdvIND-CPA

SE,B4 (λ),

where qInit is the number of initializations and qRet is the number of retrievals.

Proof intuition. The gist of the proof is that the incorruptible HSM holds the
secret key skenc for all encryptions. As the HSM is modeled as a hybrid functional-
ity, the simulator has access to the secret key. This allows for the following proof
strategy:

To simulate honest clients without the password, the simulator can replace
the PKE ciphertexts C by encryptions of 0-strings of appropriate length. The
environment cannot detect this change by the IND-CCA security of the encryption
scheme. Indeed, we require CCA security, as the HSM’s responses on mismatching
cid and ssid give the adversary a very limited decryption oracle. The ciphertext
C ′ is again replaced by an encryption of 0-strings of appropriate length. Note
that this time we only need to reduce to IND-CPA security because the integrity
of C ′ is ensured by the HSM attestation. Finally, the simulator can use FPPKR to
provide clients with their correct output.

To extract the inputs of corrupt clients the simulator can use the secret key
skenc of the HSM. The simulator knows this key because the HSM is modeled as
a hybrid functionality. That means concretely that in the ideal-world execution,
the simulator plays the role of the HSM (and thus, chooses skenc by itself). Using
skenc, the simulator can decrypt the PKE ciphertext C provided by the corrupt
client and provide the used password pw∗ to FPPKR. If the password guess was
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5 Password-Protected Key Retrieval with(out) HSM-Protection

Client cid Server S HSM

Setup Phase
� spkenc � spkenc (skenc, pkenc) $←− PKE.KGen(λ)

On (InitC, ssid, pw):
K $←− {0, 1}λ

m := (pw, K, cid, ssid)
C $←− PKE.Enc(pkenc, m) On (InitS, ssid, cid):

-sInit, ssid, C, cid -Init, ssid, C, cid
(pw, K, cid′, ssid′) := PKE.Dec(skenc, C)
if cid ̸= cid′ or ssid ̸= ssid′:

out := Fail
else:

delete ⟨cid, ∗, ∗, ∗⟩
store ⟨cid, pw, K, ctr := 10⟩

If out = Fail: � sInitRes, ssid, out � sInitRes, ssid, out
out := Succ

K := Fail return (InitRes, ssid, out)
return (InitRes, ssid, K)
On (RetC, ssid, pw′):
ksym

$←− {0, 1}λ

m := (ksym, pw′, cid, ssid)
C $←− PKE.Enc(pkenc, m) On (RetS, ssid, cid):

-sRet, ssid, C, cid -Ret, ssid, C, cid
(ksym, pw′, cid′, ssid′) := PKE.Dec(skenc, C)
retrieve ⟨cid, [pw], [K], [ctr]⟩
if ctr = 0:

delete ⟨cid, ∗, ∗, ∗⟩
out := DelRec

else:
update ⟨cid, ∗, ∗, ∗⟩ with ctr − 1
if cid ̸= cid′, ssid ̸= ssid′, or pw′ ̸= pw:

out := Fail
else:

update ⟨cid, ∗, ∗, ∗⟩ with ctr := 10
� sRetRes, ssid, out � sRetRes, ssid, out

out $←− SE.Enc(ksym, K)
If out /∈ {Fail, DelRec}: If out /∈ {Fail, DelRec}

out := SE.Dec(ksym, out) out := Succ
return (RetRes, ssid, out) return (RetRes, ssid, Succ)

Figure 5.1: Protocol encPw. � sx is the HSM-attested transmission of x.
-s y is the client-to-server authenticated transmission of y. We im-

plicitly assume that each message contains sid. cid and S output
(InitRes, ssid, Fail) or (RetRes, ssid, Fail), whenever they receive
an unexpected message (i.e. with mismatching ssid or cid) or when
attestation verification fails. If any party receives the same type of
message twice with the same ssid, it ignores the second one.
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5.2 Lev-1 Protocol: Basic Encrypt-to-HSM

Functionality F encPw
HSM

The functionality initially computes (skenc, pkenc) $←− PKE.KGen(1λ) and stores
⟨skenc⟩.
On (Init, ssid, C, cid) from S:

• Retrieve ⟨[skenc]⟩
• (pw, K, cid′, ssid′) := PKE.Dec(skenc, C)
• If cid′ ̸= cid or ssid′ ̸= ssid, set (InitRes, ssid, Fail) to S. Else continue.
• Delete ⟨cid, ∗, ∗, ∗⟩ and store ⟨cid, pw, K, 10⟩
• Send (InitRes, ssid, Succ)

On (Ret, ssid, C, cid) from S:
• Retrieve ⟨skenc⟩.
• (ksym, pw′, cid′, ssid′) := PKE.Dec(sk, C)
• Retrieve ⟨cid, [pw], K, [ctr]⟩
• If ctr = 0, delete ⟨cid, pw, K, ctr⟩ and send (RetRes, ssid, DelRec) to S.

Else continue.
• If cid′ ̸= cid, ssid′ ̸= ssid, or pw ̸= pw′, update ⟨cid, ∗, ∗, ∗⟩ with ctr − 1 and

send (RetRes, ssid, Fail) to S. Else continue.
• Update ⟨cid, ∗, ∗, ∗⟩ with ctr := 10
• C ′ $←− SE.Enc(ksym, K). Set r := C ′.
• Send (RetRes, ssid, C ′) to S

Figure 5.2: The ideal functionality F encPw
HSM .
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correct the functionality will give the simulator the retrieved backup key K. The
simulator can also extract the corrupt client’s symmetric key ksym by using the
secret key skenc of the HSM and respond to the client with an encrypted version
of its backup key C ′.

Simulating the server amounts to executing the rest of the protocol as usual
because the server holds no private information.

Proof. We construct a sequence of hybrid games G0 to G14 where we gradually
change the real-world execution of the protocol encPw (interacting with the hybrid
functionality F encPw

HSM ) to reach the ideal-world execution, where the environment
interacts with the simulator from Figures 5.3 to 5.4 and the ideal functionality
FPPKR. We write Pr[Gi] to denote the probability that the environment outputs
1 in the hybrid game Gi.

Game G0: Real world. This is the real world.

Game G1: Create simulator. In this game we create two new entities called
the ideal functionality F and the simulator Sim. Initially, F just for-
wards the input of the dummy parties to Sim and outputs what Sim
instructs it to output. In particular, F has interfaces (InitC, ssid, pw),
(InitS, ssid, cid),(RetC, ssid, pw′), and (RetS, ssid, cid, pw∗, K∗, i) that just
forward the input to Sim. The simulator executes the code of all honest
parties of the protocol internally on the input that it is provided by F and
it internally runs the code of the hybrid functionality F encPw

HSM . Note that
these are just syntactical changes and the protocol is still executed as in the
real world. We have

Pr[G1] = Pr[G0].

Game G2: Output Fail on tampered message from HSM. In this game,
we change how the simulator reacts when an honest client receives a message
from the HSM that was tampered with. Whenever an honest client receives
a message (InitRes, ssid, Succ) where Sim never produced this message on
behalf of Sim, then Sim makes the client output Fail (see IO.1 ). Similarly,
when an honest client receives a message (RetRes, ssid, out) that was never
produced by Sim on behalf of the HSM, then Sim makes the client output
Fail (see RO.1 ).
The distribution of G2 and G1 are identical, unless some honest client re-
ceives a message that was never simulated by Sim on behalf of the HSM,
but where the attestation signature is still valid, which we denote as the
event ESig. Assume there is some environment Z∗ that is able to distin-
guish between G2 and G1. Then we construct an adversary B1 against the
sEUF-CMA-security of Sig. B1 internally runs the whole experiment includ-
ing F , Sim and Z∗. Whenever it simulates a message on behalf of the HSM
it uses the signature oracle Sign to compute the attestation signature. This
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5.2 Lev-1 Protocol: Basic Encrypt-to-HSM

Initially, compute (skenc, pkenc) := PKE.KGen(1λ) and store record ⟨sid, skenc, pkenc⟩. Wait for X
means that SimencPw does not proceed to the next instruction before receiving X and meanwhile
gives back activation to A. Once it receives X, it first proceeds with the instructions on input
X and then continues at the instruction, where it waited for X. If a record cannot be retrieved,
the query is ignored. For brevity we omit session identifier sid from all inputs, outputs, and
records.
On (InitC, ssid, cid) from FPPKR:

I.1 Retrieve record ⟨sid, ∗, [pkenc]⟩ (G1)
I.2 Compute C $←− PKE.Enc(pkenc, m), where m is a 0-string of appropriate length, and

record ⟨Init, ssid, cid, C⟩ (G3). Send (Init, ssid, C, cid) to S on behalf of cid (G1).
On (InitS, ssid, cid) from FPPKR:

I.3 If S is honest, wait for (Init, ssid, C, cid) from cid to S. (G1)
On (Init, ssid, C, cid) from A to S on behalf of cid:

IC.1 Wait for (InitS, ssid, cid) from FPPKR. (G1)
IC.2 If cid is honest, retrieve ⟨Init, ssid, cid, C⟩. (G3)
IC.3 If cid is corrupt:

a) Retrieve ⟨sid, [skenc], ∗⟩, compute (pw, K, cid′, ssid′) := PKE.Dec(skenc, C) (G1) and
give input (InitC, ssid, pw) to FPPKR on behalf of cid, where pw = ⊥ if the decryp-
tion resulted in a 0-string. On response (InitC, ssid, cid) continue below. (G5)

b) If the decryption resulted in a 0-string (G3), cid ̸= cid′, or ssid ̸= ssid′, send
(InitRes, ssid, Fail) to cid (G1) and (CompleteInitS, ssid, 0) to FPPKR (G6)
// 0 meaning fail.

c) Otherwise, store ⟨File, cid, K⟩, overwriting any existing ⟨File, cid, ∗⟩. (G1) //
No need to store pw and ctr, as FPPKR takes care of this.

IC.4 If a record ⟨Init, ssid, cid, C⟩ exists, store record ⟨File, cid, ctr := 10⟩. (G1) // Sim
must keep counter for DelRec in honest IDC, honest server case.

IC.5 Send (InitRes, ssid, Succ) to cid (G1) and give input (CompleteInitS, ssid, 1) to
FPPKR (G6) // 1 meaning no fail.

On (Init, ssid, C, cid) from A to F encPw
HSM on behalf of corrupt S:

IC.6 If there is a record ⟨Init, ssid, cid, C⟩ (G3), then give input (InitS, ssid, cid) to FPPKR
(G6). // Honest C from cid is used
On response (InitS, ssid, cid), send (InitRes, ssid, Succ) to S (G3). Send
(CompleteInitS, ssid, 1) to FPPKR (G6). // bS = 1 for successful Init.

IC.7 Else if there is no such record, then retrieve record ⟨sid, [skenc], ∗⟩ and compute
(pw∗, K∗, cid∗, ssid∗) := Dec(skenc, C) (G1). If the decryption results in a 0-string (G3),
cid∗ ̸= cid, or ssid∗ ̸= ssid, then return (RetRes, ssid, Fail) to S (G1). Else give input
(MaliciousInit, cid, pw∗, K∗) to FHSM (G4), delete any existing record ⟨File, cid, ∗⟩
(G12), and send (InitRes, ssid, Succ) to S (G1). // Maliciously chosen key and pwd.

On (InitRes, ssid, out) from A to cid on behalf of S:
IO.1 If (InitRes, ssid, out) was never output by SimencPw on behalf of S or F encPw

HSM , send
(CompleteInitC, ssid, 0) to FPPKR (G2). Else if there is no record ⟨Init, ssid, cid, ∗⟩,
give input (CompleteInitC, ssid, 0) to FPPKR (G11). // 0 meaning fail.

IO.2 Else, give input (CompleteInitC, ssid, 1) to FPPKR (G11) // 1 meaning no success.

Figure 5.3: The initialization part of the simulator SimencPw for the protocol
encPw.
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implicitly programs the attestation key of the HSM to the one sampled in
the sEUF-CMA experiment. As the key is sampled uniformly at random both
in sEUF-CMA experiment and G2, this does not change the distribution of
the key. When the event ESig occurs, B1 outputs the corresponding message
and signature to its challenger. It is easy to see that B1 wins the experiment
whenever ESig occurs. Hence, we have

|Pr[G2]− Pr[G1]| ≤ AdvsEUF-CMA
Sig,B1 (λ).

Game G3: Switch ciphertext in initialization. In this game, we change
how Sim computes the ciphertext C produced by honest clients during ini-
tialization. Instead of computing C $←− PKE.Enc(pkenc, (pw, K, cid, ssid)), the
simulator computes C $←− PKE.Enc(pkenc, m), where m is a 0-string of ap-
propriate length. Nonetheless, Sim still receives the secret input pw from F
and chooses K := {0, 1}λ, which it stores in a record ⟨Init, ssid, cid, C, pw, K⟩
(see I.2 ). Note that storing pw and K in the record is only a temporary
change and we remove this again in G11.
Further, we change how Sim acts when receiving a ciphertext C from an
honest cid or from a corrupt server that honestly delivers C from an hon-
est cid to F encPw

HSM in an initialization. In more detail, Sim keeps track of
all ciphertexts that it computes for honest cid as C $←− PKE.Enc(pkenc, m)
in the ⟨Init, ssid, cid, C, pw, K⟩ records. When Sim receives a message
(Init, ssid, C, cid), then Sim tries to retrieve ⟨Init, ssid, cid, C, [pw], [K]⟩, i.e.,
it checks if C was computed by Sim for the honest client cid as an encryption
of a 0-string in subsession ssid. If that is the case, then Sim does not use
skenc to decrypt C but instead stores a record ⟨File, cid, pw, K, 10⟩ and sends
(InitRes, ssid, Succ) to the server (see IC.2 and IC.6 ). Again, creating
this record is only a temporary change that we remove again in games G9,
G11 and G14. If C was not computed by Sim, indicated by the fact that
no record ⟨Init, ssid, cid, C, ∗, ∗⟩ exists, then Sim continues as in G2. Note
that this may lead to Sim decrypting C to a 0-string, e.g., if A replays some
C that was computed by Sim on behalf of some honest cid. However, in
that case, in G2, Sim would output Fail to S as there would be a mismatch
between cid and cid′ or ssid and ssid′. Thus, we let Sim output Fail to S if
C is decrypted to a 0-string (see IC.3 (b) and IC.7 ).
It is easy to see that the outputs of the server and the client are just as in
G2. Hence, the only difference is the distribution of C. If Z can distinguish
G3 from G2, then we can construct an adversary B1 against the IND-CCA
security of PKE as follows: First, B1 does not compute (skenc, pkenc) itself
but uses the pk∗ provided by its challenger. Let qInit ∈ N be the number of
initializations. We construct a sequence of games G(0)

2 , . . . , G(qInit)
2 , where in

G(i)
2 the first i ciphertexts are computed as encryptions of 0-strings if simu-

lated for an honest cid and the remaining ciphertexts are encrypted as in G2
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(except that pk∗ is used). We have G2 = G(0)
2 and G3 = G(qInit)

2 . Because Z
can distinguish G2 from G3, there must be an index i∗ ∈ [qInit] such that Z
has a non-negligible advantage in distinguishing G(i∗)

2 and G(i∗−1)
2 . Now, in

the i∗-th initialization the reduction B1 gives m0 := (ksym, pw, cid, ssid) and
m1 a 0-string of the same length to the challenger and uses the returned C∗

as ciphertext for the i∗-th initialization. Additionally, whenever B1 receives
a message (Init, ssid, C∗, cid) from A to F encPw

HSM on behalf of a corrupt server
such that there is no record ⟨Init, ssid, C∗, cid, [pw], [K]⟩, then B1 uses its de-
cryption oracle to decrypt C∗. The oracle answers with (pw∗, K∗, cid∗, ssid∗)
and B1 then proceeds as in G2.
Now, if C∗ encrypts m0, the game is distributed as in G(i∗−1)

2 and if it
encrypts m1, then the game is distributed as in G(i∗)

2 . We get

|Pr[G3]− Pr[G2]| ≤ qInitAdvIND-CCA
PKE,B1 (λ).

Game G4: Inform F of malicious initializations. In this game, we
add the MaliciousInit interface as in FPPKR to F . We also let Sim
use MaliciousInit to make F create records for malicious initializations.
More precisely, when A instructs a corrupted server to send a message
(InitC, ssid, C∗, cid) to F encPw

HSM , where C∗ was never sent by an honest client
before, then Sim first proceeds just as in G3, i.e., it executes the code of
F encPw

HSM , but additionally gives input (MaliciousInit, ssid, cid, pw∗, K∗) to
F (see IC.7 ).
Note that on receiving the MaliciousInit input F only responds to Sim.
Therefore, Z’s view did not change and we get

Pr[G4] = Pr[G3].

Game G5: Provide F with input of corrupted clients in initializa-
tion. In this game we change Sim such that when it receives a message
(Init, ssid, C, cid) from a corrupted cid to an honest S, in addition to de-
crypting (pw, K, cid′, ssid′), checking cid = cid′, ssid = ssid′ and recording
⟨File, cid, pw, K, 10⟩, it also gives input (InitC, ssid, pw) to F (see IC.3 (a)).
Since a corrupted cid may replay ciphertexts C that were computed by Sim
as an encryption of a 0-string, Sim sets pw = ⊥ for its InitC query if C
decrypts to a 0-string. This cannot modify the view of Z as Sim outputs
Fail to the corrupt client if such a replay happens (cf. IC.3 (b)). Note that
the InitC interface of F is still a dummy interface, so this change does not
alter the view of Z, so

Pr[G5] = Pr[G4].

Game G6: Let F generate server output in initialization. In this game, we
change the initialization interfaces InitC and InitS, and add the interface
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5 Password-Protected Key Retrieval with(out) HSM-Protection

On (RetC, ssid, cid, match) from FPPKR:
R.1 Retrieve record ⟨sid, [skenc], [pkenc]⟩. (G1)
R.2 Choose ksym

$←− {0, 1}λ (G1). Compute C $←− PKE.Enc(pkenc, m), where m is a 0-string
of appropriate length and record ⟨Ret, ssid, cid, C, ksym⟩ (G7). Send (Ret, ssid, C, cid)
to S on behalf of cid. (G1)

On (RetS, ssid, cid′, match) from FPPKR:
R.3 If S is honest, wait for (Ret, ssid, C, cid) from cid to S. (G1)

On (Ret, ssid, C, cid) from A to S on behalf of cid:
RC.1 Wait for (RetS, ssid, cid, match) from FPPKR. (G1)
RC.2 If cid is honest:

a) Retrieve ⟨Ret, ssid, cid, C, [ksym]⟩. (G7)
b) Retrieve record ⟨File, cid, [ctr]⟩. If ctr = 0 set C ′ := DelRec. Else if match = 1

(G14), compute C ′ $←− SE.Enc(ksym, 0λ) (G10) and set ctr in the record to 10. Else
set C ′ := Fail (G1) and ctr in the record to ctr − 1.

c) Store ⟨ssid, C ′⟩ (G7).
RC.3 If cid is corrupt:

a) Retrieve ⟨sid, [skenc], ∗⟩, compute (ksym, pw′, cid′, ssid′) := PKE.Dec(skenc, C) (G1),
and give input (RetC, ssid, pw′) to FPPKR on behalf of cid, where pw′ = ⊥ if the
decryption resulted in a 0-string. On response (RetC, ssid, cid, match) continue
below. (G8)

b) If the decryption resulted in a 0-string (G7), cid ̸= cid′, or ssid ̸= ssid′, send
(RetRes, ssid, Fail) to cid. (G1)

c) Send (CompleteRetC, ssid, 1) to FPPKR. On response (RetRes, ssid, K), if
K ∈ {Fail, DelRec}, set C ′ := K. (G12)

d) If K /∈ {Fail, DelRec} and a record ⟨File, cid, [K ′]⟩ exists, compute C ′ $←−
SE.Enc(k′

sym, K ′) (G12). // Ignore, K, it is different from the extracted K ′

e) If no such record exists, compute C ′ $←− SE.Enc(k′
sym, K). (G1) // cid was honest

at Init
RC.4 Send (CompleteRetS, ssid, 1) to FPPKR (G9) and (RetRes, ssid, C ′) to cid. (G1)

On (Ret, ssid, cid, C) from A to F encPw
HSM on behalf of corrupt S:

RC.5 If a record ⟨Ret, ssid, cid, C, [ksym]⟩ exists, then give input (RetS, ssid, cid,⊥,⊥,⊥)
to FPPKR. On response (RetS, ssid, cid, match), give input (CompleteRetS, ssid, 1)
to FPPKR (G9) and on the subsequent response (RetRes, ssid, K ′) execute the steps
RC.2 (b) and RC.2 (c). (G14)

RC.6 If no record ⟨Ret, ssid, cid, C, ∗⟩ exists, then retrieve ⟨sid, skenc, pkenc⟩ and compute
(ksym, pw′, cid′, ssid′) := PKE.Dec(skenc, C). (G1)

RC.7 If the decryption results in a 0-string (G7), cid′ ̸= cid, or ssid′ ̸= ssid, then send
(RetRes, ssid, Fail) to S. (G1)

RC.8 Give input (MaliciousRet, ssid, cid, pw′) to FPPKR and on response K ′ determine
the output as follows (G12).

a) If K ′ ∈ {DelRec, Fail}, then send (RetRes, ssid, K ′) to S. (G12)
b) If K ′ /∈ {DelRec, Fail}, then compute C ′ := SE.Enc(ksym, K) if a

record ⟨File, cid, [K]⟩ exists and C ′ := SE.Enc(ksym, K ′) otherwise. Send
(RetRes, ssid, C ′) to S (G12).

On (RetRes, ssid, out) from A to cid on behalf of S:
RO.1 If HSM signature does not verify, send (CompleteInitC, ssid, 0) to FPPKR (G2). Else

if out ∈ {Fail, DelRec}, give input (CompleteRetC, ssid, 0) to FPPKR. (G11) //
If it is DelRec then the DoS bit doesn’t matter.

RO.2 Else give input (CompleteRetC, ssid, 1) to FPPKR. (G11) // out = C ′ is attestated
by the HSM and A didn’t tamper with it.

Figure 5.4: The retrieval part of the simulator SimencPw for the protocol encPw.
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CompleteInitS to F . We change InitC and InitS to be exactly as in
FPPKR except that InitC still provides Sim with the input pw of cid. Further,
we change Sim such that it uses CompleteInitS to produce output for
honest S in the initialization phase. Now, when Sim receives (InitS, ssid, cid)
from F and a message (InitC, ssid, C, cid) to the server, where either C
was produced by Sim itself or (pw, K, cid′, ssid′) := PKE.Dec(skenc, C) and
cid′ = cid and ssid′ = ssid, then Sim does not directly make the server output
(InitRes, ssid, cid, Succ) but instead gives (CompleteInitS, ssid, cid, 1) to
F ( IC.5 ). If the decrypted cid′ is different from cid or ssid′ is different from
ssid, then Sim gives input (CompleteInitS, ssid, cid, 0) to F ( IC.3 (b)).
Furthermore, Sim uses the CompleteInitS interface, whenever a corrupt
S honestly delivers a message from some honest cid to F encPw

HSM . Even though
in that case the interface gives its output to Sim, this query is necessary
to ensure that F creates a File record. Note that F only creates a File
record, if it received the InitC and InitS input. Thus, since S is corrupt,
Sim first gives the input (InitS, ssid, cid) to F (see IC.6 ).
We can see that the output of the honest server did not change. In G5 the
honest server outputs (InitRes, ssid, Succ) if it received a ciphertext that
decrypted to the correct cid, ssid. If C contains a different cid′ or ssid′, the
server aborts. The simulator makes F provide the corresponding output by
choosing the bit bS accordingly for the CompleteInitS message. Hence,

Pr[G6] = Pr[G5].

Note that due to the changes introduced in Games G4-G6, F now stores
File records in all initializations, although F does not use them in retrievals,
yet.

Game G7: Switch ciphertext in retrieval. In this game, we change how Sim
computes the ciphertext C produced by honest clients during retrieval. In-
stead of computing the ciphertext as C $←− PKE.Enc(pkenc, (ksym, pw′, cid, ssid))
the simulator computes it as C $←− PKE.Enc(pkenc, m), where m is a 0-string
of appropriate length. Still, it chooses a symmetric key ksym

$←− {0, 1}λ and
stores a record ⟨Ret, ssid, cid, C, ksym, pw′⟩ to remember the symmetric key
(see R.2 ). Note that Sim still gets the client’s input pw′ from F , which we
change in G14).
We further change how Sim reacts on a message (Ret, ssid, C, cid) to
F encPw

HSM , where C was computed by Sim itself for the retrieval of an hon-
est client. Then, Sim does not retrieve skenc to decrypt C. Instead, Sim
retrieves the record ⟨Ret, ssid, cid, C, [ksym], [pw′]⟩ ( RC.2 (a)) and proceeds
as in G6 by executing the code of F encPw

HSM . Additionally, before sending
(RetRes, ssid, C ′) to S, Sim stores ⟨ssid, C ′⟩ ( RC.2 (c)). Similarly to G3,
the changes introduced here may lead to Sim decrypting C to a 0-string,
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e.g., if A replays some C that was computed by Sim on behalf of some hon-
est cid. Again, we let Sim output Fail to S in that case (cf. RC.3 (b) and
RC.7 ).
Note that the output behavior of Sim did not change. That is because Sim
essentially behaves like F encPw

HSM except that it does not encrypt and decrypt
pw′, ksym but it stores these values and uses the stored values later. However,
the distribution of C did change. Now, if the environment could distinguish
G7 from G6, we can construct an adversary B2 against the IND-CCA security
of PKE as follows:
Let qRet ∈ N be the number of retrieval phases executed. First, B2 does not
compute (skenc, pkenc) itself anymore but uses the pk∗ provided by its chal-
lenger. We construct a sequence of games G(0)

6 , . . . , G(qRet)
6 , where in G(i)

6
the first i ciphertexts that honest clients produce in retrieval are replaced
by encryptions of ⊥ and the remaining ciphertexts stay as in G6 (except
that pk∗ is used). If Z can distinguish G7 from G6 then there is an index
i∗ ∈ [qRet] such that Z distinguishes G(i∗)

6 and G(i∗−1)
6 with non-negligible

advantage. B2 internally runs Z and simulates G(i∗−1)
6 except for the i∗-th

retrieval. In this retrieval, B2 gives the messages m0 := (ksym, pw′, cid, ssid)
and m1 as a 0-string of the same length to its challenger. When the chal-
lenger responds with a ciphertext C∗ then B2 uses C∗ as the ciphertext in
the message (Ret, ssid, C∗, cid) that the honest client sends to S. Further,
if B2 receives at some point a message (Ret, ssid, C, cid) from a corrupted
server to F encPw

HSM , where there is no record ⟨Ret, [ssid′], [cid′], C, [ksym]⟩, i.e.,
the ciphertext towards the HSM is tampered with, then B2 gives C to the de-
cryption oracle provided by the IND-CCA challenger. On the oracle’s answer
(k∗

sym, pw∗, cid∗, ssid∗) the reduction checks if cid∗ = cid and ssid∗ = ssid. If
these checks, fail the reduction gives output (ssid, Fail) to the server. Else,
the reduction retrieves the record ⟨File, sid, cid, [pw], [K], [ctr]⟩. If ctr = 0,
then the reduction deletes the record and sends (DelRec, cid) to S. Else,
if pw = pw∗, the reduction sets ctr := 10, computes C ′ $←− SE.Enc(k∗

sym, K),
and sends (ssid, C ′) to S. Else, the reduction decrements ctr and sends
(ssid, Fail) to S. Finally, B2 outputs whatever Z outputs.
Note that if C∗ encrypts m0, then the view of Z is distributed exactly as in
G(i∗−1)

6 , and if C∗ encrypts m1, then the view of Z is distributed exactly as
in G(i∗)

6 . We get

|Pr[G7]− Pr[G6]| ≤ qRetAdvIND-CCA
PKE,B2 (λ).

Game G8: Provide F with input of corrupted clients in retrieval.
In this game we change Sim such that when it receives a message
(Ret, ssid, C, cid) from a corrupted cid the simulator now, in addition to
decrypting (k′

sym, pw′, cid′, ssid′) := PKE.Dec(skenc, C) and checking cid =

154



cid′, ssid = ssid′, also gives input (RetC, ssid, cid, pw′) to F . Similarly to
G5, we use pw′ = ⊥ if C is decrypted to a 0-string ( RC.3 (a)). Note that
the RetC interface of F is still a dummy interface, so this change does not
alter the view of Z, so

Pr[G8] = Pr[G7].

Game G9: Let F generate server output in retrieval. In this game,
we change the RetC and RetS interfaces of F and we add the
CompleteRetS interface to F .
We change RetC and RetS such that they are as in FPPKR except that
RetC still forwards the secret client input pw′ to the simulator. Fur-
ther, we change Sim such that it uses the interfaces to produce outputs
for honest servers in the retrieval phase. That means, when Sim receives
a message (Ret, ssid, C, cid) from an honest or corrupt cid, it first pro-
ceeds as in G8, and before sending its output to cid, it sends the message
(CompleteRetS, ssid, cid, 1) to F ( RC.4 ).
Additionally, Sim uses the CompleteRetS interface whenever the cor-
rupt server honestly delivers a message from some honest cid to F encPw

HSM .
Similarly to G6, this query gives its output back to Sim, but this query
is again necessary to appropiately update the internal state of F , in par-
ticular this interface resets the counter of cid to 10 if the retrieval is suc-
cessful. Again, note that this requires the simulator to first give the input
(RetS, ssid, cid,⊥,⊥,⊥) to F ( RC.5 ).
First, note that by definition, the interface RetC, resp. RetS, is called
whenever an honest client, resp. honest server, starts a retrieval. Next, note
that Sim also ensures that the RetC input is given to F when a corrupted
client performs a retrieval. As Sim controls skenc, it is able to extract pw′ by
decrypting C and can give this as input to F . Thus, F always retrieves a
record ⟨RetC, ssid, cid, pw′, pw, K⟩ with pw′ ̸= ⊥ when Sim provides it with
the CompleteRetS input. Consequently, if the provided password was
correct, F outputs Succ to S and else it outputs Fail to S. Finally, note
that F maintains the counter exactly as F encPw

HSM did, i.e., the counter is set
to 10 when a new File record is created, the counter is decremented when a
password guess was wrong, and the counter is reset to 10 when a password
guess was correct. Thus, from now on, Sim no longer keeps a counter in its
File records. Overall, the output of an honest server did not change in this
game and we get

Pr[G9] = Pr[G8].

Game G10: Switch symmetric ciphertext in retrieval. In this game, we
change how Sim computes the ciphertext C ′ produced by the HSM during
retrievals of honest clients. Instead of computing C ′ $←− SE.Enc(ksym, K),
where K is the retrieved key, the simulator now computes C ′ $←−
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SE.Enc(ksym, 0λ) ( RC.2 (b)). Note that ksym is still chosen by Sim uniformly
at random for every honest client that starts a retrieval.
Thus, if Z can distinguish G9 and G10, then we can construct an adversary
B3 against the IND-CPA security of SE. We construct a sequence of games
G(0)

9 , . . . , G(qRet)
9 , where in G(i)

9 the first i ciphertexts C ′ are replaced by en-
cryptions of ⊥ as described above. If Z can distinguish G9 from G10, then
there is an index i∗ such that Z has non-negligible advantage in distinguish-
ing G(i∗)

9 from G(i∗−1)
9 . The reduction B3 internally runs Z and plays the

role of F and Sim in G(i∗)
9 except for the i∗-th retrieval. There, B3 does not

choose a symmetric key ksym but sends the messages m0 := K and m1 := 0λ

to its challenger, where K is the backup key that the HSM would use to
compute C ′. When the challenger returns a ciphertext C∗, B3 outputs the
message (RetRes, ssid, C∗).
Note that the view of Z in the case that C∗ encrypts m0 is distributed exactly
as in G(i∗−1)

9 and in the case that C∗ encrypts m1 the view is distributed
exactly as in G(i∗)

9 . Therefore we get

|Pr[G10]− Pr[G9]| ≤ qRetAdvIND-CPA
SE,B3 (λ).

Game G11: Generate output for honest clients by F . In this game, we
change F and Sim such that Sim lets F produce the output for an honest
client in the initialization and retrieval phase. To this end, Sim will make
use of the interfaces CompleteInitC and CompleteRetC that we add
to F exactly as in FPPKR. We change the following things:

• Whenever the simulator produces a message (Init, ssid, C, cid) on be-
half of some honest client cid, the simulator no longer draws a ran-
dom backup key K. Further, when it then receives a message
(InitRes, ssid, out) to cid, it uses the CompleteInitC interface with
the bit bC set accordingly ( IO.2 and IO.1 ).

• Similarly, when Sim receives a message (RetRes, ssid, C ′) towards an
honest client cid, the simulator now uses the CompleteRetC interface
with the bit bC set depending on the value of out ( RO.1 and RO.2 ).

As a consequence, Sim no longer needs to store the key K in the File records
for honest initializations and the values pw and K in the Init records.
Note that as of G6, F already chooses a uniformly random key K when it
receives an InitC message, although that key is not used up to this game.
Now, the CompleteInitC interface ensures that it is given as output to
cid in the initialization phase. Similarly, in the retrieval phase of G10 the
simulator retrieved its own stored backup key from the initialization phase to
give it as output to cid in the retrieval phase. Now, F , and not Sim, stores the
backup key K in its File record, retrieves it when a retrieval is successful,
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and gives it as output to cid or Sim when Sim sends a CompleteRetC
message for a successful subsession.
Overall, the distribution of Z’s view did not change and we get

Pr[G11] = Pr[G10].

Game G12: Retrieve maliciously initialized records from F . In this
game we change how Sim responds in retrievals by a corrupt party. When
it receives a message (RetC, ssid, C∗, cid) from A on behalf of a corrupted
cid, after checking cid′ = cid and ssid′ = ssid, Sim now additionally sends
(CompleteRetC, ssid, 1) to F . If F answers with (RetRes, ssid, K ′),
where K ∈ {Fail, DelRec}, then Sim forwards this to cid on behalf of
S ( RC.3 (c)). If K ′ /∈ {Fail, DelRec}, then Sim needs to produce the
ciphertext C ′. However, the key K ′ received from F may be different from
the key K that the corrupt cid chose in its last initialization, as F always
chooses a random key when receiving the input InitC even for a corrupted
cid. Therefore, if a record ⟨File, cid, [K]⟩ exists, which implies that cid ex-
ecuted an initialization phase after being corrupted, then Sim encrypts K
instead of K ′ to obtain C ′ ( RC.3 (d) and RC.3 (e)). Note that this re-
quires the simulator to delete any potentially existing File record of some
cid whenever the corrupted S maliciously initializes for cid to ensure that it
always returns the key of the most recent initialization (cf. IC.7 ).
Furthermore, we add the MaliciousRetrieve interface as in FPPKR to
F , which Sim now uses in retrievals by a corrupt S. When A instructs
the corrupted server to send a message (RetC, ssid, C∗, cid) to F encPw

HSM ,
where C∗ was never sent by an honest client, which is again captured
by checking if C∗ decrypts to a 0-string ( RC.7 ), Sim gives the input
(MaliciousRetrieve, ssid, cid, pw∗) to F , where pw∗ is the password it ob-
tained from decrypting C∗ ( RC.8 ). If the response of F is (DelRec, cid)
or Fail, then Sim forwards the response to the server ( RC.8 (a)). Else, F
responds with K ′. As before, we need to check whether the key returned
by F is the correct one by checking whether a File record exists for cid
( RC.8 (b)).
Note that the added interface does not output anything to the protocol par-
ties but only to Sim. Further, note that F now behaves exactly as F encPw

HSM
did in G11 when a corrupted server interacts with F encPw

HSM . More precisely, on
a (MaliciousInit, ssid, cid, pw∗, K∗) the functionality creates a record con-
taining the password pw∗ and the backup key K∗ together with a counter,
initialized to 10. Then on a (MaliciousRetrieve, ssid, cid, pw∗) the func-
tionality tries to retrieve this record, checks the counter, and compares the
provided password with the stored password.

Pr[G12] = Pr[G11].

157



Game G13: Add unused attack interfaces. In this game, we add the inter-
faces LeakFile, corrupt, FullyCorrupt, and OfflineAttack to F .
Note that our simulator never uses these interfaces. That is because F encPw

HSM
does not leak any key files and cannot be corrupted. Thus, the protocol even
realizes a version of FPPKR that does not allow offline attacks. We get

Pr[G13] = Pr[G12].

Game G14: Ideal world. We change the ideal functionality such that no more
private input pw, pw′ is given to Sim. Note that Sim only used these inputs
to determine if the password pw′ used in a retrieval is correct. Instead it can
now use the output match from F ( RC.2 (b) and RC.5 ). Hence, we finally
remove pw′ from the Ret and File records. Also, we take away the ability
of Sim to give output to parties. This is also not used anymore. Thus we
get

Pr[G14] = Pr[G13].

After this change, we reached the ideal-world execution of the protocol encPw
with the simulator Sim = SimencPw as described in Figures 5.3 and 5.4
and the functionality F = FPPKR as described in Figures 4.7 and 4.8. In
particular, we never had to change how Sim reacts on receiving a GetPK
message when acting as F encPw

HSM .

5.3 Lev-2 Protocol: Enhanced Encrypt-to-HSM
When the HSM leaks permanently stored protocol data such as account informa-
tion of clients, also called “password files”, one cannot hope to prevent an adver-
sary from, e.g., offline-attacking a PPKR protocol. That is because the file must
contain enough information for the HSM to decide whether a retrieval attempt is
successful or not. Nonetheless, one can demand that an adversary still needs to
guess a user’s password and cannot read the password and/or the backup key im-
mediately from the file. In other words, clients that choose very strong passwords
should still have a certain level of security even if the HSM’s files get leaked.

Clearly, the basic encrypt-to-HSM protocol from Section 5.2 falls short of this
goal, and hence cannot reach Lev-2 security: The passwords and backup keys are
stored in the clear and a compromise of the HSM’s long-term state immediately
gives them away. Further, the leakage includes all protocol-specific long-term
state, i.e., the adversary also gets the HSM’s decryption key skenc, which leaks
all the password (attempts) from sessions happening after the compromise to the
attacker.

To reach Lev-2 security, we strengthen encPw in two ways: First, we store the
password only in hashed form at the HSM, with a user-specific salt to prevent
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pre-computation attacks; and encrypt the backup key with another salted pass-
word hash. The salts are stored in the password file. Second, we let the HSM
use ephemeral encryption keys for each session. Figure 5.5 shows our enhanced
encrypt-to-HSM protocol encPw+. We can formally prove in Theorem 7 that
these relatively simple (although in the case of the encryption keys significantly
more expensive) measures are enough to restrict an adversary in Lev-2 back to
offline guessing, after getting access to the long-term storage of the HSM.

We stress that our HSM leakage model at Lev-2 returns all permanently stored
user files and protocol-specific long-term state to the adversary, but not the tem-
porary values that occur during execution of the protocol.
Theorem 7. Let SE = (SE.KGen, SE.Enc, SE.Dec) be an IND-CPA-secure symmet-
ric encryption scheme, PKE = (PKE.KGen, PKE.Enc, PKE.Dec) be an IND-CCA-
secure public key encryption scheme, Sig = (Sig.KGen, Sig.Sign, Sig.Vrfy) by an
sEUF-CMA-secure signature scheme used for attestation, and H be modeled as a
random oracle. Then, the protocol encPw+ from Figure 5.5 UC-realizes FPPKR at
Lev-2 security (i.e., without the FullyCorrupt interface) in the F encPw+

HSM -hybrid
model, malicious adaptive corruptions, and a client-authenticated channel between
clients and the server. Concretely, we can construct adversaries B1, . . .B4 such
that for any efficient adversary against encPw+ (interacting with F encPw+

HSM ), the
simulator SimencPw+ interacting with FPPKR produces a view such that for every
efficient environment Z it holds that

AdvFPPKR
encPw,SimencPw+,Z(λ) ≤ AdvsEUF-CMA

Sig,B1 (λ) + qInitAdvIND-CCA
PKE,B2 (λ)

+ qRetAdvIND-CCA
PKE,B3 (λ) + qRetAdvIND-CPA

SE,B4 (λ) + qInit(2qInit − 1)
2λ

+ qH

2λ
,

where qInit is the number of initializations, qRet is the number of retrievals, and
qH is the number of H queries.
Proof Sketch. Crucial for the proof of Theorem 6 and Theorem 7 is that the
HSM is modeled as a hybrid-functionality. Therefore, the simulator will be able to
extract malicious inputs using the HSM’s secret encryption key. Further, honest
clients can be simulated by invoking the CCA security of PKE as the client’s
passwords are not used elsewhere (except for determining the output). Finally, for
Theorem 7, the simulator must deal with leaked files. To that end, the simulator
can observe and program the random oracle H and use the OfflineAttack
interface of FPPKR. In case of a successful guess, the simulator learns K. Then, it
can program H(s2, pw) := c⊕K to equivocate c after the fact, and similarly Sim
can program H(s1, pw) := h.

The leaked client file does not contain values that would allow impersonation
of the HSM (while full corruption, considered in Section 5.4, will allow HSM
impersonation).

Proof sketch. Because the formal proof of Theorem 7 shares most of its steps
with the proof of Theorem 6, we focus on the changes to the proof that are
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5 Password-Protected Key Retrieval with(out) HSM-Protection

Client cid Server S HSM

On (InitS, ssid, cid):
On (InitC, ssid, pw): -Init, ssid, GetPK (skenc, pkenc) $←− PKE.KGen(λ)

� sInit, ssid, pkenc � sInit, ssid, pkenc

K $←− {0, 1}λ

m := (pw, K, cid, ssid)
C $←− PKE.Enc(pkenc, m)

-sInit, ssid, C, cid -Init, ssid, C, cid
(pw, K, cid′, ssid′) := PKE.Dec(skenc, C)
if cid ̸= cid′ or ssid ̸= ssid′:

out := Fail
else:

s1, s2
$←− {0, 1}λ

h := H(s1, pw)
c := K ⊕ H(s2, pw)
delete ⟨cid, ∗, ∗, ∗, ∗, ∗⟩
store ⟨cid, c, h, s1, s2, 10⟩
out := Succ

If out = Fail: � sInitRes, ssid, out � sInitRes, ssid, out

K := Fail return (InitRes, ssid, out)
return (InitRes, ssid, K)

On (RetS, ssid, cid):
On (RetC, ssid, pw′): -Ret, ssid, GetPK (skenc, pkenc) $←− PKE.KGen(λ)

� sRet, ssid, pkenc � sRet, ssid, pkenc

ksym
$←− {0, 1}λ

m := (ksym, pw′, cid, ssid)
C $←− PKE.Enc(pkenc, m)

-sRet, ssid, C, cid -Ret, ssid, C, cid
(ksym, pw′, cid′, ssid′) := PKE.Dec(skenc, C)
retrieve ⟨cid, [c], [h], [s1], [s2], [ctr]⟩
if ctr = 0:

delete ⟨cid, ∗, ∗, ∗, ∗, ∗⟩
out := DelRec

else:
update ⟨cid, ∗, ∗, ∗, ∗, ∗⟩ with ctr − 1
if cid ̸= cid′, ssid ̸= ssid′, or H(s1, pw′) ̸= h:

set out := Fail
else:

update ⟨cid, ∗, ∗, ∗, ∗, ∗⟩ with ctr := 10
� sRetRes, ssid, out � sRetRes, ssid, out

out $←− SE.Enc(ksym, c⊕ H(s2, pw′))
If out /∈ {Fail, DelRec}: If out /∈ {Fail, DelRec}:

out := SE.Dec(ksym, out) out := Succ
return (RetRes, ssid, out) return (RetRes, ssid, out)

Figure 5.5: Protocol encPw+. � sx is the HSM-attested transmission of x.
-s y is the client-to-server authenticated transmission of y. We im-

plicitly assume that each message contains sid and the random oracle
H takes sid as first input. cid and S output (InitRes, ssid, Fail) or
(RetRes, ssid, Fail), whenever they receive an unexpected message
(i.e. with mismatching ssid or cid) or when attestation verification
fails. If any party receives the same type of message twice with the
same ssid, it ignores the second one.
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5.3 Lev-2 Protocol: Enhanced Encrypt-to-HSM

Functionality F encPw+
HSM

On (Init, GetPK, ssid) from S:
• (skenc, pkenc) $←− PKE.KGen(1λ)
• Store ⟨ssid, skenc⟩.
• Send (Init, ssid, pkenc) to S.

On (Ret, GetPK, ssid) from S:
• (skenc, pkenc) $←− PKE.KGen(1λ)
• Store ⟨ssid, skenc⟩.
• Send (Ret, ssid, pkenc) to S.

On (Init, ssid, C, cid) from S:
• Retrieve ⟨ssid, [skenc]⟩
• (pw, K, cid′, ssid′) := PKE.Dec(skenc, C)
• If cid′ ̸= cid or ssid′ ̸= ssid send (InitRes, ssid, Fail) to S. Else continue.
• s1, s2

$←− {0, 1}λ

• h := H(s1, pw), c := K ⊕ H(s2, pw)
• Delete ⟨cid, ∗, ∗, ∗, ∗, ∗⟩ and store ⟨cid, c, h, s1, s2, 10⟩
• Delete record ⟨ssid, skenc⟩
• Send (InitRes, ssid, Succ) to S

On (Ret, ssid, C, cid) from S:
• Retrieve ⟨ssid, skenc⟩.
• (ksym, pw′, cid′, ssid′) := PKE.Dec(sk, C)
• Retrieve ⟨cid, [c], [h], [s1], [s2], [ctr]⟩
• If ctr = 0, delete ⟨cid, ∗, ∗, ∗, ∗∗⟩ and send (RetRes, ssid, DelRec) to S.

Else continue.
• If cid′ ̸= cid, ssid′ ̸= ssid, or h ̸= H(s1, pw′), update ⟨cid, ∗, ∗, ∗, ∗, ∗⟩ with

ctr − 1 and send (RetRes, ssid, Fail) to S. Else continue
• Update ⟨cid, ∗, ∗, ∗, ∗, ∗⟩ with ctr := 10.
• C ′ $←− SE.Enc(ksym, c⊕ H(s2, pw)).
• Send (RetRes, ssid, C ′) to S

On (LeakFile) from A:
• Set L := ∅
• For all ⟨[cid], [c], [h], [s1], [s2], [ctr]⟩ append (cid, c, h, s1, s2, ctr) to L.
• Return L.

Figure 5.6: The ideal functionality F encPw+
HSM .
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required to also achieve security under leaked HSM files. We show the modified
and additional interfaces that the simulator provides in Figure 5.8. The bulk of
the proof works exactly as the proof of Theorem 6. But in contrast, we now have
to simulate leakage of HSM files, because F encPw+

HSM allows the adversary to call its
LeakFile interface. To that end, the simulator must observe and program the
random oracle H and use the OfflineAttack interface of FPPKR. The simulator
now also has to generate fresh encryption keys (pkenc, skenc) for every initialization
and retrieval and store them until they are used. Note that we can keep the rest
of the simulation as in the proof of Theorem 6. That is because the leaked client
file does not contain values that would allow impersonation of the HSM (as will
be the case when we consider full corruption in Section 5.4).

Before the state of the HSM is leaked, an adversary has only a negligible chance
to query H(s2, pw) to the random oracle. That is because s2 has high entropy.
Therefore, the simulator can store a uniformly random value c as the encoding of
the backup key. But once the HSM state is leaked, the adversary knows s1, s2 and
h and thus, can guess passwords and verify its guess using h and s1. If one of the
guesses is correct, the adversary will be able to check if c is indeed an encoding of
K by using s2. The simulator can use the OfflineAttack interface of FPPKR to
see if the adversary’s guess was correct. In case of a successful guess, the simulator
learns K. Then, it can program H(s2, pw) := c⊕K to equivocate c after the fact,
and similarly Sim can program H(s1, pw) := h.

Proof. As in the proof of Theorem 6 we construct a sequence of hybrid games
starting from the real world and ending in the ideal world. As the majority of
game hops are identical to the previous proof, we only provide the games that are
new. We write Gx for x ∈ (i, i+1) ⊂ R to denote that the game is added between
game Gi and Gi+1 in the sequence of games from the proof of Theorem 6.

Game G1.1: Abort on salt collision. In this game, the simulator aborts if it
randomly samples a salt value that is already used for some other cid. More
precisely, when Sim simulates F encPw+

HSM and draws s1 and s2 uniformly at
random during initialization, Sim checks if it already sampled either value
in some previous initialization. If that is the case, Sim aborts the execution
(see LF.3 (b)).
Let qInit ∈ N be the number of initializations. We get

|Pr[G1.1]− Pr[G1]| ≤
qInit(2qInit − 1)

2λ
.

Game G5.1: Add OfflineAttack and LeakFile interfaces to F . In this
game, we add the interfaces OfflineAttack and LeakFile to F exactly
as they are in FPPKR. Because Sim does currently not use them, we get

Pr[G5.1] = Pr[G5].
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5.3 Lev-2 Protocol: Enhanced Encrypt-to-HSM

On (InitC, ssid, cid) from FPPKR:
I.1 Wait for (Init, ssid, pkenc) from S to cid. (G1)

On (InitS, ssid, cid) from FPPKR:
I.2 Compute (skenc, pkenc) $←− PKE.KGen(1λ) and store ⟨ssid, skenc, pkenc⟩. Send

(Init, ssid, pkenc) to cid on behalf of S. (G1)
On (Init, ssid, pkenc) from A to cid on behalf of S:

IPK.1 Compute C $←− PKE.Enc(pkenc,⊥) and store ⟨Init, ssid, cid, C⟩ (G3).
Send (Init, ssid, C, cid) to S on behalf of cid. (G1) // pkenc cannot be
tampered with.

On (RetC, ssid, cid, match) from FPPKR:
R.1 Wait for (Ret, ssid, pkenc) from S to cid. (G1)

On (RetS, ssid, cid′, match) from FPPKR:
R.2 Compute (skenc, pkenc) $←− PKE.KGen(1λ) and store ⟨ssid, skenc, pkenc⟩. Send

(Ret, ssid, pkenc) to cid on behalf of S. (G1)
On (Ret, ssid, pkenc) from A to cid on behalf of S:

RPK.1 Compute C $←− PKE.Enc(pkenc,⊥), choose ksym
$←− {0, 1}λ, and store

⟨Ret, ssid, cid, C, ksym⟩ (G3). Send (Ret, ssid, C, cid) to S on behalf of
cid (G1). // RetC came before pkenc.

On (Init, ssid, GetPK) from A to F encPw
HSM on behalf of S:

G.1 Compute (skenc, pkenc) $←− PKE.KGen(1λ) and store ⟨ssid, skenc, pkenc⟩. Send
(Init, ssid, pkenc) to S on behalf of F encPw+

HSM (G1). // attestated
On (Ret, ssid, GetPK) from A to F encPw

HSM on behalf of S:
G.2 Compute (skenc, pkenc) $←− PKE.KGen(1λ) and store ⟨ssid, skenc, pkenc⟩. Send

(Ret, ssid, pkenc) to S on behalf of F encPw+
HSM (G1). // attestated

On (Init, ssid, C, cid) from A to S on behalf of cid:
IC.1 through IC.5 as in Figure 5.3.
IC.6 Try to retrieve all records ⟨leaked, cid, [c], [h], [s1], [s2], ∗, ∗⟩ not marked

old. If such records exist, then mark all of them as old. (G5.2) // After
init, the file contains fresh values.

On (Init, ssid, C, cid) from A to F encPw+
HSM on behalf of S:

IC.6 and IC.7 as in Figure 5.3.
IC.8 Try to retrieve all records ⟨leaked, cid, [c], [h], [s1], [s2], ∗, ∗⟩ not marked

old. If such records exist, then mark all of them as old. (G5.2)// After
init, the file contains fresh values.

Figure 5.7: Differences from the simulator SimencPw (Figures 5.3 to 5.4) to the
simulator SimencPw+, part 1.
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5 Password-Protected Key Retrieval with(out) HSM-Protection

On a query (LeakFile) from A to F encPw+
HSM :

LF.1 Give input (LeakFile) to FPPKR. FPPKR returns L. (G5.2)
LF.2 L := ∅ (G5.2)
LF.3 For each (cid, ctr) ∈ L:

a) Try to retrieve a record ⟨leaked, cid, [c], [h], [s1], [s2], ∗, [i]⟩ not
marked old. (G5.2)

b) If no such record exists, choose c, h, s1, s2
$←− {0, 1}λ (G5.3 and G5.4).

If s1 or s2 was used before as salt by Sim, then abort (G1.1). Else
store ⟨leaked, cid, c, h, s1, s2, ctr, 1⟩. Append (cid, c, h, s1, s2, ctr) to
L. (G5.2)

c) Else store a record ⟨leaked, cid, c, h, s1, s2, ctr, i + 1⟩, where i is the
biggest number such that a record ⟨leaked, cid, [c], [h], [s1], [s2], ∗, i⟩
exists. Append (cid, c, h, s1, s2, ctr) to L. (G5.2)

LF.4 Send L to A on behalf of F encPw+
HSM . (G1)

On a query H(s∗, pw∗) :
H.1 If a record ⟨H, s∗, pw∗, [y]⟩ exists, output y. (G1)
H.2 Try to retrieve the record ⟨leaked, [cid], ∗, [h], s∗, ∗, ∗, [i]⟩. If such a record

exists, give input (OfflineAttack, cid, pw∗, i) to FPPKR. If FPPKR re-
sponds with K ̸= Fail, record ⟨H, s∗, pw∗, h⟩ and output h. If K = Fail,
choose y $←− {0, 1}λ, record ⟨H, s∗, pw∗, y⟩ and output y. (G5.3)

H.3 If no such leaked record exists, try to retrieve the record
⟨leaked, [cid], [c], ∗, ∗, s∗, ∗, [i]⟩. If such a record exists, give input
(OfflineAttack, cid, pw∗, i) to FPPKR. If FPPKR responds with K ̸= Fail,
record ⟨H, s∗, pw∗, c ⊕ K⟩ and output c ⊕ K. If K = Fail, choose
y $←− {0, 1}λ, record ⟨H, s∗, pw∗, y⟩ and output y. (G5.4)

H.4 If both such leaked do not exist (G5.4), choose y $←− {0, 1}λ, record
⟨H, s∗, pw∗, y⟩ and output y (G1).

Figure 5.8: Differences from the simulator SimencPw (Figures 5.3 to 5.4) to the
simulator SimencPw+, part 2.
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Game G5.2: Use LeakFile interface of F . In this game, we change how
Sim responds to a (LeakFile) message from A to F encPw+

HSM . Sim gives input
(LeakFile) to F and receives a list L from F (see LF.1 ). The simulator
initializes L := ∅. Now, for all (cid, ctr) ∈ L the simulator tries to retrieve a
record ⟨leaked, cid, [c], [h], [s1], [s2], ∗, ∗⟩ that is not marked old.
If no such record exists then Sim chooses s1, s2 := {0, 1}λ uniformly at ran-
dom. Then, Sim computes h := H(s1, pw) and c := K⊕H(s2, pw) and creates
a record ⟨leaked, cid, c, h, s1, s2, ctr, 1⟩. Sim appends (cid, c, h, s1, s2, ctr) to
L.
Otherwise, Sim adds (cid, c, h, s1, s2, ctr) to L and records
⟨leaked, cid, c, h, s1, s2, ctr, i + 1⟩, where i is the biggest number such
that a record ⟨leaked, cid, c, h, s1, s2, ∗, i⟩ exists.
Sim also does an additional step when an initialization was completed, i.e.,
in IC.6 or IC.8 , depending on whether the server is corrupted or not. Sim
goes through all so far leaked records and marks them as old. That means
that they still can be offline attacked, but the next time when a record
is leaked, Sim will simulate the creation of a new file. In particular, Sim
keeps leaked records of already overwritten initializations. This will be
important for programming H later. However, the records that are added
to L are always the “current” records, i.e., records that correspond to File
records of F .
Also, note that Sim only appends leaked data for cid if cid ∈ L. However,
in the previous games, we ensured that F creates a File record whenever
F encPw+

HSM would have done so. More precisely, when Sim receives a message
(Init, ssid, C, cid) from A to S on behalf of a corrupted cid and all the checks
pass then Sim gives input (CompleteInitC, ssid, cid, 1) to F so F creates
a File record. Similarly, when Sim receives a message (Init, ssid, C, cid)
from A to F encPw+

HSM on behalf of S and all the checks pass then Sim sends
either a MaliciousInit message or (CompleteInitS, ssid, cid, 1) to F so
F creates a File record.
Overall, the view of Z did not change.

Pr[G5.2] = Pr[G5.1].

Game G5.3: Simulate the password hash h. In this game, we let Sim simulate
h = H(s1, pw) without using pw and we let Sim program the random oracle
accordingly.
First, when Sim creates a record ⟨leaked, cid, c, h, s1, s2, ctr, i⟩ it no longer
computes h like in the real protocol but now chooses it uniformly at random,
i.e., h $←− {0, 1}λ (see LF.3 (b))
Second, Sim observes the random oracle queries. If there is a query
H(s∗

1, pw∗) such that a record ⟨leaked, [cid], ∗, [h], s∗
1, ∗, ∗, [i]⟩ exists, then
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Sim gives input (OfflineAttack, cid, pw∗, i) to F . If F answers with
Fail, then Sim responds with a uniformly random value. If F answers
with K ̸= Fail, then Sim programs H(s∗

1, pw∗) to h (see H.2 ). This en-
sures that if A guesses the password of some client whose file was leaked
previously, then the output of the random oracle query is consistent with
the values that Sim output in the leaked file.
Since H is modeled as a random oracle, choosing h as a uniformly random
value does not modify the distribution of h. However, observe that Z could
distinguish this game from the previous one if A guesses the salt s∗

1 that
some cid uses together with the password pw∗ before leaking the file of cid.
If that happens, Sim would output a random value h∗ on the oracle query
(s∗

1, pw∗). Then, upon A leaking the file of cid, the simulator would not
output h∗ in the leaked file and instead choose a random value h since it
cannot know that cid chose the password pw∗. As s1 is chosen uniformly at
random from {0, 1}λ, the probability of this happening can be bounded by
qH2−λ, where qH ∈ N is the number of queries to H. Note that this even
holds if other clients use the same pw∗ because due to G1.1 they will use a
different salt s′

1 and H(s′
1, pw∗) is independent of H(s∗

1, pw∗). Thus, we have

|Pr[G5.3]− Pr[G5.2]| ≤
qInitqH

2λ
.

Game G5.4: Simulate the password hash c. In this game, we let Sim simulate
the leaked records without using K and pw and we let Sim program the
random oracle accordingly.
First, when Sim creates a record ⟨leaked, cid, c, h, s1, s2, ctr, i⟩ it no longer
computes c like in the real protocol but now chooses it uniformly at random,
i.e., c := {0, 1}λ (see LF.3 (b)).
Second, Sim observes the random oracle queries. If there is a query
H(s∗

2, pw∗) such that a record ⟨leaked, [cid], [c], ∗, ∗, s∗
2, ∗, [i]⟩ exists, then

Sim gives input (OfflineAttack, cid, pw∗, i) to F . If F answers with
Fail, then Sim responds with a uniformly random value. If F answers
with K ̸= Fail, then, Sim programs H(s∗

2, pw∗) := c ⊕ K. Note that for
honest cid, Sim uses the key K it chose on behalf of cid in the initialization
instead of the one returned by F . Once we let F generate the output of
honest clients in G11, we change this to use the key returned from F . This
again ensures that the leaked files are consistent with the random oracle
outputs ( H.3 ).
Again, it holds that the distribution of c does not change by choosing it as
uniformly random value since H is a random oracle. However, similarly to
G5.3, the environment could distinguish this game from the previous one if
A guesses the salt s∗

2 of some cid∗. Following the same arguments as in G5.3,
we have

|Pr[G5.4]− Pr[G5.3]| ≤
qInitqH

2λ
.
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Changed Reductions Also, we have to change the reductions on IND-CCA se-
curity in G3 and G7 because of the difference in computing (skenc, pkenc):

Game G3: Let qInit ∈ N be the number of initializations. We construct
a sequence of games G(0)

1 , . . . , G(qInit)
1 , where in G(i)

1 the first i ciphertexts are
computed as encryptions of 0-strings with appropriate length and the remaining
ciphertexts are encrypted as in G1. We have G1 = G(0)

1 and G2 = G(qInit)
1 .

Because Z can distinguish G1 from G2, there must be an index i∗ ∈ [qInit] such
that Z has a non-negligible advantage in distinguishing G(i∗)

1 and G(i∗−1)
1 . Now,

in the i∗-th initialization the reduction B2 does not choose a new key-pair (sk, pk)
when it receives a GetPK or InitS message, but uses the public key that it is
provided by the challenger. When it simulates cid in the i∗-th simulation, it gives
m0 := (ksym, pw′, cid, ssid) and m1 as a 0-string of the same length to the challenger
and uses the returned C∗ as the ciphertext for the initialization. Further, if B2
receives a message (Init, ssid, C, cid) from A to S or to F encPw

HSM such that C ̸= C∗,
then B2 uses its decryption oracle to decrypt C∗ and proceeds as in G1.

Now, if C∗ encrypts m0 the game is distributed as in G(i∗−1)
1 and if it encrypts

m1 then the game is distributed as in G(i∗)
1 .

Game G7: Let qRet ∈ N be the number of retrieval phases executed. We con-
struct a sequence of games G(0)

5 , . . . , G(qRet)
5 , where in G(i)

5 the first i ciphertexts
that honest clients produce in retrieval are replaced by encryptions of 0-strings of
appropriate length and the remaining ciphertexts stay as in G5. If Z can distin-
guish G6 from G5, then there is an index i∗ ∈ [qRet] such that Z distinguishes
G(i∗)

5 and G(i∗−1)
5 with non-negligible advantage. B3 internally runs Z and simu-

lates G(i∗−1)
5 except for the i∗-th retrieval. In this retrieval, B3 does not choose a

fresh pair (pkenc, skenc) when it receives a GetPK message, but uses the public key
pk∗

Enc provided by the challenger. B3 gives the messages m0 := (pw, K, cid, ssid)
and m1 as a 0-string of the same length to its challenger. When the challenger
responds with a ciphertext C∗, then B3 uses C∗ as the ciphertext in the message
(Ret, ssid, C∗, cid) that the honest client sends to S. Further, if B3 receives at
some point a message (Ret, ssid, C, cid) to S or F encPw

HSM , where C ̸= C∗, then B3
gives C to the decryption oracle provided by the IND-CCA challenger and proceeds
as in G5. Finally, B3 outputs whatever Z outputs.

Note that if C∗ encrypts m0 then the view of Z is distributed exactly as in
G(i∗−1)

5 and if C∗ encrypts m1 then the view of Z is distributed exactly as in game
G(i∗)

5 .

Missing Lev-3 Security of encPw+. Cleary, our enhanced encrypt-to-HSM pro-
tocol cannot satisfy Lev-3 security: if the adversary gets the HSM’s attestation
key, it has full control over the public keys for the encryption scheme under which
the client encrypts the user’s password. Thus, for all users that still use the PPKR
service after the full compromise happened, the adversary immediately learns their
plaintext passwords from the request – and consequently can retrieve their keys
too.
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To achieve Lev-3 security, we need to securely communicate some password-
dependent data to a possibly entirely malicious party for authentication, and
cannot rely on any server-held secret for the password’s protection. This requires
more advanced cryptographic techniques, for which we turn to an oblivious pseu-
dorandom function in our third construction.

5.4 Lev-3 Protocol: OPRF-based PPKR
In this section, we build PPKR that provides protection against full server and
HSM corruption. That is, even when all keys and files are leaked, the best an
adversary can do is an offline attack against each user’s password. Our goal is to
propose a simpler protocol than WBP that reaches such Lev-3 security.

Oblivious Pseudorandom Function. At the core of our construction is an obliv-
ious pseudorandom function (OPRF). Such a function allows to deterministically
compute y = PRF(k, x) through an interactive protocol between an evaluator and
requester. The evaluator knows the PRF key k, but learns nothing about the
input x or output y it computes. We will use such an OPRF to deterministically
compute password-dependent key material, which allows the client to authenti-
cate towards the HSM, and also derive the encryption key under which K gets
wrapped.

High-Level Idea of OPRF-PPKR. For initialization, the client executes the OPRF
with the HSM (through the server) to obtain a value ρ = PRF(kOPRF, (pw, cid)),
depending on the user’s password and cid. The HSM chooses a client-specific key
kOPRF. The derived ρ then serves as the key for an authenticated encryption (AE)
scheme, under which the client’s randomly chosen key K gets encrypted. The
client also generates a signature key pair (skC , pkC) for future re-authentication.
It encrypts both skC and K under ρ, obtaining a ciphertext c. The HSM gets c
and pkC and stores them with cid, kOPRF, and a counter value ctr, initially set to
10, forming the password file for cid.

For retrieval, the client receives c from the HSM and runs the OPRF again.
If the client uses the same password as in initialization, it obtains the same ρ as
earlier. The client then uses ρ to decrypt c, obtaining (K, skC). Now the client
can prove knowledge of the right password towards the HSM, by using the skC

to sign the transcript of previous messages exchanged with the HSM. The HSM
decreases the counter ctr at the beginning of every retrieval, and if it receives such
a signature that verifies under the pkC in the stored user file, it considers the client
as correctly authenticated and resets the ctr value to 10 again.

Interestingly, we still need a fresh encryption key pair for communication to-
wards the HSM – but only for the initialization. Therein, the client’s values
(pkC , c) and the ssid get encrypted under the freshly chosen key. The purpose of
this encryption is to prevent a malicious server from combining the ciphertext c of
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an honest user with a different public key pkC . Such a mixing attack would allow
the server to plant the honest c with some authentication information where it
could easily circumvent the strict limit of failed retrievals imposed by the HSM.
Thus, the purpose of the public-key encryption here is to bind the honest user’s
information together.

Comparison to WBP. Our protocol shares a lot of similarities with the WBP,
but simplifies the design enabling both a more efficient and more secure variant.
We discuss the main differences to our protocol here.

Recall that the overall idea of the WBP is to let the client and the HSM execute
an asymmetric PAKE protocol to exchange fresh symmetric key (KMAC

C , KMAC
S , shk)

from the password of the client, and the password file stored by the HSM. KMAC
C

is subsequently used to prove the correctness of the client’s password to the HSM
via a MAC, to reset the file counter. The client’s key K is encrypted under the key
Kexport, which is derived with an OPRF, and stored by the HSM in the ciphertext
e. The protocol is instantiated with OPAQUE [JKX18], which in turn crucially
relies on an OPRF to produce the static export key.

In our protocol, we start from an OPRF instead of aPAKE, and implement the
proof of password knowledge separately through digital signatures. This yields
a simpler protocol layout and cleaner security proof. In terms of similarity, the
AE ciphertext stored in the client’s password files corresponds to the OPAQUE
password files, and the OPRF is used to deterministically derive a key to decrypt
this file and perform the re-authentication. How this authentication is done differs
though: we save one message by using signatures instead of authenticated key
exchange. Note that this exploits that we are not aiming at the key exchange,
which was the goal of OPAQUE – and thus is more than what is needed for PPKR.

Apart from improving efficiency, our protocol provides better security then
WBP. While the following attacks can all be considered minor, they are still
in conflict with the desired security properties – and easily preventable as shown
by our protocol. The security improvements are as follows:

1. In the WBP, a corrupt server can prevent old password files of honest clients
from being overwritten upon a client re-initializing with a new password.
The corrupt server could then still use up all remaining password guesses
against old password files, to retrieve previous keys of the client (cf. Sec-
tion 4.2.6). We prevent this by having the HSM attest the client identity
cid for each session ssid, and letting the client abort when it receives a mis-
matching cid. This enforces an agreement between an honest client and
honest HSM when the server is corrupt (needed for Lev-1 security).

2. We fix a “rerouting” attack on the WBP which allows a corrupt server
to reroute honest retrieval attempts to wrong password files. This results
in honest Alice retrieving Bob’s key if both use the same password. We
therefore invoke the OPRF not only on the user’s password but also append
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the unique client identity cid to the input. This simple measure ensures
that users derive unique wrapping keys ρ, which protects against this attack
(again needed for Lev-1 security).

3. The above two measures additionally prevent two attacks on the WBP that
a fully corrupt server in the Lev-3 setting2 can mount: (I) checking whether
two honest clients use the same password, (II) resetting the counter in an
honest client’s password file if another client having the same password runs a
retrieval. Both attacks work by routing a retrieval attempt of Alice to Bob’s
password file, which in the WBP goes unnoticed by Alice, and can succeed
because the passwords of honest clients are not enforced to be unique. Both
is prevented through measures (1) and (2).

4. Considering the same HSM leakage model that we use (everything except
the HSM’s attestation key gets leaked on Lev-2), in the WBP, a malicious
server can run offline password guessing attack not only against all leaked
files but also against files that are created after the compromise. This is
because the WBP relies on a long-term encryption key at the HSM for
initialization. After a Lev-2 compromise, the malicious server can decrypt
an honest user’s initialization request, and re-encrypt the user’s wrapped
key K together with a maliciously chosen (AKE) public key. This allows
the malicious server to get unlimited password guesses against the user’s real
password-wrapped key, as it can correctly complete key confirmation towards
the HSM, even when performing the retrieval with the wrong passwords. Our
protocol prevents that attack by using fresh encryption keys in initialization,
achieving the necessary security for Lev-2.

Concrete OPRF for Efficiency. While our protocol can be securely realized with
any 2-round OPRF, we build OPRF-PPKR from the 2HashDH OPRF [JKKX16]
in a non-black-box way. This was mainly done for efficiency reasons. A generic
approach relying on an ideal OPRF functionality would not allow binding the
OPRF in- and outputs directly to other protocol values, nor do this efficiently
in an HSM-attested way. However, even though our protocol is non-generic, our
proof actually provides some modularity: we use the 2HashDH simulator as a
step in our proof, and from then on rely on the abstracted security properties of
a UC-secure OPRF. Nevertheless, our proof additionally relies on the internals of
the 2HashDH simulator at several points, making the switch to another OPRF
non-trivial.

Before stating our theorem, we introduce the security notion of equivocability
[JKX18] for authenticated encryption that we require in our construction. Equiv-
ocability means that a simulator is able to produce ciphertexts of the scheme

2Although we did not formally analyze the WBP under full corruptions, t is easy to verify
that a fully corrupt server in the WBP can use the same OPRF key for Alice and Bob and
perform these attacks.
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without committing to the plaintext. If the ciphertext must be decrypted then
the simulator can output an appropriate key to open the ciphertext to a message
of choice.

Definition 35. The advantage of an adversary A = (A0,A1) against the equivo-
cability (EQV) of an AE scheme AE = (KGen, Enc, Dec) is defined as

AdvEQV
SE,A(λ) :=

∣∣∣∣∣∣∣∣Pr

A1(c, k) = 1

∣∣∣∣∣∣∣
m $←− A0

k $←− KGen(1λ)
c $←− Enc(k, m)

− Pr

A1(c, k) = 1

∣∣∣∣∣∣∣∣
m $←− A0

c $←− Sim(1)
EQV(|m|)

k $←− Sim(2)
EQV(c, m)


∣∣∣∣∣∣∣∣ .

We say AE is EQV-secure if for any efficient A, there exists an efficient simulator
SimEQV = (Sim(1)

EQV, Sim(2)
EQV) such that AdvEQV

AE,A(λ) is negligible in λ.

We refer the reader to [JKX18] for an instantiation of an authenticated encryp-
tion scheme that is equivocable and random-key robust.

Theorem 8. Let AE = (KGen, Enc, Dec) be an IND-CPA-, INT-CTXT-, RKR-,
and EQV-secure authenticated encryption scheme, PKE = (KGen, Enc, Dec) be
an IND-CCA-secure public key encryption scheme, Sig = (KGen, Sign, Vrfy) an
sEUF-CMA-secure signature scheme, and H1 and H2 be modeled as a random
oracles. Then, the protocol OPRF-PPKR from Figure 5.9 UC-realizes FPPKR at
Lev-3 security in the FOPRF-PPKR

HSM -hybrid model, malicious adaptive corruptions,
and a client-authenticated channel between clients and the server. Concretely, we
can construct adversaries B1, . . . ,B5, and environment Z1 such that for any effi-
cient adversary against OPRF-PPKR (interacting with FOPRF-PPKR

HSM ), the simulator
SimOPRF-PPKR interacting with FPPKR produces a view such that for every efficient
environment Z it holds that

AdvFPPKR
OPRF-PPKR,SimOPRF-PPKR,Z(λ) ≤AdvFOPRF

2HDH,Sim2HDH,Z1(λ) + AdvsEUF-CMA
Sig,B1 (λ)

+ q2
EAdvRKR

AE,B2(λ) + qInitAdvINT-CTXT
AE,B3 (λ) + AdvEQV

AE,B4(λ)
+ qInitAdvsEUF-CMA

Sig,B5 (λ) + qInitAdvIND-CCA
PKE,B6 (λ)

where qInit is the number of initializations, qRet is the number of retrievals.

Proof Sketch. The proof heavily relies on the security of the 2HashDH OPRF.
We reuse the simulator Sim2HDH from Section 4.4.1, which demonstrates that
2HashDH UC-realizes FOPRF, in a non-black-box way throughout the proof. When-
ever we have to simulate a message a, b, a′, or b′ for some honest party, we “out-
source” the simulation to Sim2HDH. This also means that we let Sim2HDH choose
the key kOPRF, which we then need to obtain from Sim2HDH whenever there is a
LeakFile query from A. Furthermore, from the random oracle queries to H2
by A, Sim2HDH is able to extract the password chosen by a corrupt party in an
initialization, which allows us to install a corresponding file in FPPKR.
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5 Password-Protected Key Retrieval with(out) HSM-Protection
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Figure 5.9: Protocol OPRF-PPKR. � sx indicates that the message x is
signed by the HSM; and -s y denotes the client-to-server au-
thenticated transmission of y. cid outputs (InitRes, ssid, Fail) or
(RetRes, ssid, Fail), whenever it receives an unexpected message (i.e.
with mismatching ssid or cid) or when signature verification fails for
the received signed message. If any party receives the same type of
message twice with the same ssid it ignores the second one.172



5.4 Lev-3 Protocol: OPRF-based PPKR

Functionality FOPRF-PPKR
HSM

The functionality initially computes (sk, pk) $←− Sig.KGen(1λ)
On (GetPK, ssid) from anyone:

• Output pk.
On (Init, ssid, a, cid) from S:

• (skenc, pkenc) := PKE.KGen(1λ)
• kOPRF

$←− Zq, b := akOPRF

• send (ssid, b, cid, pkenc) to S
On (ssid, C) from S:

• (ssid′, pkC , c) := PKE.Dec(skenc, C)
• if ssid′ ̸= ssid: out := Fail

else:
store ⟨cid, pkC , c, kOPRF, ctr := 10⟩, out := Succ

• send (InitRes, ssid, out) to S
On (Ret, ssid, a′, cid) from S:

• Retrieve ⟨cid, [pkC ], [c], [kOPRF], [ctr]⟩
• if no record can be found: send (RetRes, ssid, Fail) to S

else:
if ctr = 0: delete ⟨cid, pkC , c, kOPRF, ctr⟩
else:

set ctr in the record to ctr − 1, b′ := a′kOPRF

send (ssid, b′, c, cid) to S
On (ssid, σ) from S:

• if Sig.Vrfy(pkC , (a′, cid, ssid, b′, c), σ): set counter in the record to ctr := 10.
Set out := Succ
else:

out := Fail
• send (RetRes, ssid, out) to S

On (LeakFile, sid) from A:
• Set L := ∅
• For every record ⟨[cid], [pkC ], [c], [kOPRF], [ctr]⟩ append (cid, pkC , c, kOPRF, ctr)

to L.
• Output L to A.

On (FullyCorrupt, sid) from A:
• Run (LeakFile, sid) to obtain L.
• Output L and sk.

Figure 5.10: The ideal functionality FOPRF-PPKR
HSM .
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A challenge that arises from allowing the LeakFile query is that A can do
offline password guessing using kOPRF obtained from leaked files. If A guesses the
correct password pw of some cid, it can decrypt the ciphertext c that was encrypted
under the output ρ of the OPRF. Hence, c has to be simulated such that it decrypts
to the key K chosen randomly by FPPKR for cid, as otherwise, the simulation would
be distinguishable from the real protocol. However, when we simulate c in the
initialization phase, K is unknown, as FPPKR has not even given it to cid, yet. To
solve this, we require AE to be equivocable, which allows us to produce a simulated
c and only later decide to which values c decrypts. More precisely, whenever A
queries H2 on an input of the form (pw′ ∥ cid, H1(pw′ ∥ cid)kOPRF), where kOPRF
is some OPRF key chosen by Sim2HDH, we submit pw′ to the OfflineAttack
interface of FPPKR. If pw = pw′, then we obtains the key K and can equivocate c
to obtain a ρ such that c decrypts to K under ρ and program the output of H2
to ρ.

A similar challenge arises when S is fully corrupt. Then, S can make the critical
query to H2 even before we simulate c as it chooses the OPRF key kOPRF used
in the initialization. Thus, we have to check for all previous H2 queries whether
it was this critical query via the OfflineAttack interface and if so, encrypt K
under the corresponding output of H2 instead of outputting an equivocable c.

The last major challenge is that a fully corrupt S can do key-planting attacks
and can mix-and-match different files during a retrieval, e.g., when cid retrieves,
S could use kOPRF of some cid′ ̸= cid and an adversarial c. To deal with this, we
check whether the password pw′′ ∥ cid′′ and key k′

oprf used to derive the ρ, under
which the adversarial c was encrypted, are the same as the password pw ∥ cid and
key kOPRF used in the retrieval by cid. In the real world, cid would then output the
key K decrypted from c. To simulate this, we use the key-planting capabilities in
the RetS interface. We can again find the password pw′′ ∥ cid′′ used to derive ρ
via the H2 queries by A and check whether the same OPRF key was used with
the help of Sim2HDH. We can then decrypt c to get K ′′ and submit pw′′ and K ′′ to
the RetS interface. If pw = pw′′, cid then outputs K ′′. We can proceed similarly
if c instead is equivocable.

We depict our simulator in Figures 5.11 to 5.14. In the below, when referring
to blue-colored boxes such as I.1 , we always mean the ones from these figures.
The gray boxes CIS.4 refer to FPPKR instructions from Figures 4.7 and 4.8. The
simulator works with session state records

⟨Init, cid, kid, ssid, a, cid∗, kid, a∗, skenc, skC , b, C⟩

for initialization. All values are initialized to ⊥ and potentially updated throught
an initialization. At the end of an initialization by cid, the record has the following
semantics.

Init1 ∈ {cid,⊥} is either the cid of an honest client running initialization or it is
set to ⊥ if the client is corrupt or if the corrupt S impersonates cid;
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Init2 ∈ {kid,⊥} is either the number of initializations started by cid, as seen by the
HSM, or it is set to ⊥ if the client is corrupt or if the corrupt S impersonates
cid;

Init3 = ssid indicates the sub-session id used by cid;

Init4 ∈ {a,⊥} is either the a value sent by a honest cid, or ⊥ if cid is corrupt or
if the corrupt S impersonates cid.

Init5 ∈ {cid∗,⊥} is either the client name, delivered to the HSM, or set to ⊥ if
the server is fully corrupt;

Init6 ∈ {kid,⊥} is the number of initializations started by cid∗, as seen by the
HSM, or set to ⊥ if the server is fully corrupt;

Init7 ∈ {a∗,⊥} indicates the a value, delivered to the HSM, or set to ⊥ if the
server is fully corrupt;

Init8 ∈ {skenc,⊥} is the encryption secret key, generated by the HSM for the
current sub-session, or set to ⊥ if the server is fully corrupt;

Init9 ∈ {skC ,⊥} is the client’s signature secret key either decrypted from c or
simulated for an honest client. It is set to ⊥ if it cannot be extracted from
a corrupted initialization;

Init10 = b is either the b value computed by the honest HSM or the value received
by cid if S is fully corrupt;

Init11 ∈ {C,⊥} is the ciphertext C computed by cid or ⊥ if cid is corrupt.

Similarly, the simulator works with the sollowing session state records

⟨Ret, cid, kid, ssid, a, match, cid∗, kid∗, a∗, pkC , b, c⟩

in the retrieval. Again, all values are initialized to ⊥ and potentially updated
throughout a retrieval. At the end of the retrieval by cid, the record has the
following semantics.

Ret1 ∈ {cid,⊥} is either the cid of an honest client running retrieval or it is set
to ⊥ if the client is corrupt or if the corrupt S impersonates cid;

Ret2 ∈ {kid,⊥} is either the number of initializations started by cid when cid
starts this retrieval, as seen by the HSM, or it is set to ⊥ if the client is
corrupt or if the corrupt S impersonates cid;

Ret3 = ssid indicates the sub-session id used by cid;

Ret4 ∈ {a,⊥} is either the a′ value sent by a honest cid, or ⊥ if cid is corrupt or
if the corrupt S impersonates cid.

175



Ret5 ∈ {0, 1} indicates whether the password in the retrieval is correct

Ret6 ∈ {cid∗,⊥} is either the client name, delivered to the HSM, or set to ⊥ if
the server is fully corrupt;

Ret7 ∈ {kid∗,⊥} is the number of initializations started by cid∗ when S receives
the first message in this retrieval, as seen by the HSM, or set to ⊥ if the
server is fully corrupt;

Ret8 ∈ {a∗,⊥} indicates the a′ value, delivered to the HSM, or set to ⊥ if the
server is fully corrupt;

Ret9 ∈ {pkC ,⊥} is the signature public key used by the HSM in this retrieval, or
set to ⊥ if the server is fully corrupt;

Ret10 = b′ is either the b value computed by the honest HSM or the value received
by cid if S is fully corrupt;

Ret11 ∈ {c} is the ciphertext c sent by the honest HSM or ⊥ if S is fully corrupt.

We construct a sequence of hybrid games G0 to G14 where we gradually change
the real-world execution of the protocol OPRF-PPKR (interacting with the hybrid
functionality FOPRF-PPKR

HSM ) to reach the ideal-world execution, where the environ-
ment interacts with the simulator from Figures 5.11 to 5.14 and the ideal func-
tionality FPPKR. We write Pr[Gi] to denote the probability that the environment
outputs 1 in the hybrid game Gi.

Game G0: Real world. This is the real world.

Game G1: Create simulator. In this game we create two new entities called
the ideal functionality F and the simulator Sim. Initially, F just for-
wards the input of the dummy parties to Sim and outputs what Sim in-
structs it to output. In particular, F has interfaces (InitC, ssid, cid, pw),
(InitS, ssid, cid),(RetC, ssid, cid, pw′), and (RetS, ssid, cid) that just for-
ward the input to Sim. Additionally, F has the corruption and attack inter-
faces LeakFile, FullyCorrupt, MaliciousInit, MaliciousRet, and
OfflineAttack with the exact same code as in FPPKR. Note, however,
that Sim does not use these interfaces yet.
The simulator executes the code of all honest parties of the protocol inter-
nally on the input that it is provided by F and it internally runs the code of
the hybrid functionality FOPRF-PPKR

HSM . Additionally, it creates records exactly
as SimOPRF-PPKR does, but at this point never uses the values from any of
these records. Note that these are just syntactical changes and the protocol
is still executed as in the real world. We have

Pr[G1] = Pr[G0].
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5.4 Lev-3 Protocol: OPRF-based PPKR

Simulator SimOPRF-PPKR, part 1

SimOPRF-PPKR stores a list kid[·]. Initially SimOPRF-PPKR executes (pk, sk) $←− Sig.KGen(1λ) and stores
⟨PK, pk, sk⟩. Whenever it outputs a message towards some cid or from FOPRF-PPKR

HSM to a corrupt
S, it attestates the message with sk.
Wait for X means that SimOPRF-PPKR does not proceed to the next instruction before receiving X
and meanwhile gives back activation toA. Once it receives X, it first proceeds with the instructions
on input X and then continues at the instruction, where it waited for X. If a record cannot be
retrieved, the query is ignored. For brevity we omit session identifier sid from all inputs, outputs,
and records. (G1)
On (InitC, ssid, cid) from FPPKR: // honest cid

I.1 If kid[cid] is undefined, set kid[cid] := 0. Otherwise, set kid[cid] := kid[cid] + 1. (G3) // new
OPRF key for each init

I.2 Give input (Eval, sid, cid ∥ kid[cid], ssid, S, 0) to FOPRF from cid. This triggers Step 5 of
Sim2HDH, which outputs (sid, cid, ssid, a). (G3)
Record ⟨Init, cid, kid[cid], ssid, a,⊥,⊥,⊥,⊥,⊥,⊥,⊥⟩ and send (ssid, a, cid) as message from
cid to S. (G1) // Output of FOPRF (eval. of 0) ignored

On (InitS, ssid, cid) from FPPKR: // honest S
I.3 If S honest, wait for (ssid, a, cid) from cid to S. (G1) // See (ssid, a, cid) interface

On (Init, ssid, a, cid) from A to S on behalf of cid: // any cid, honest S
Ia.1 If S is honest, wait for (InitS, ssid, cid) from FPPKR. (G1)
Ia.2 If cid is corrupt:

• If kid[cid] is undefined, set kid[cid] := 0, otherwise set kid[cid] := kid[cid] + 1. Set
kid := kid[cid]. (G3) // Ensure new oprf key. If cid is honest this is ensured in InitC

• Record ⟨Init,⊥,⊥, ssid,⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥⟩ (G1)
Ia.3 If cid is honest, retrieve ⟨Init, cid, [kid], ssid, ∗,⊥,⊥,⊥,⊥,⊥,⊥,⊥⟩. (G3)
Ia.4 Give input (Init, sid, cid ∥ kid) to the simulated FOPRF from the simulated S. This triggers

Step 2 of Sim2HDH. (G3) // Create new OPRF key
Ia.5 Give input (SndrComplete, sid, cid ∥ kid, ssid) to the simulated FOPRF from the simulated

S. This triggers Step 6 of Sim2HDH, which outputs (sid, ssid, b). (G3)
Ia.6 Compute (pkenc, skenc) $←− PKE.KGen(1λ) and overwrite the entries 6-11 in

⟨Init, ∗, ∗, ssid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ with cid, kid, a, skenc,⊥, b. Send (ssid, b, cid, pkenc) as HSM-
signed message from S to cid. (G1) // Can later access OPRF keys via F records in Sim2HDH

On (Init, ssid, a, cid) from A to FOPRF-PPKR
HSM on behalf of corrupt S: // any cid

Ia.7 If no record ⟨Init, ∗, [kid], ssid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ exists, create
⟨Init,⊥,⊥, ssid,⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥⟩. (G1)
Additionally, if kid[cid] is undefined set kid[cid] := 0 and otherwise kid[cid] := kid[cid] + 1
and set kid := kid[cid]. (G3) // cid corrupt and S just forwards or S impersonates cid

Ia.8 Execute Steps Ia.4 - Ia.6 , except that the output is returned to S instead of sending it
from S to cid. (G3)

Figure 5.11: Simulator SimOPRF-PPKR for OPRF-PPKR, part 1.
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Game G2: Output Fail on tampered message from HSM. In this game,
we change how the simulator reacts when an honest client receives a message
from the HSM that was tampered with while the server is not fully corrupt.
Whenever an honest client receives a message, on behalf of the HSM, where
Sim never produced this message on behalf of the HSM, and if the sever is
not fully corrupt, then Sim makes the client output Fail .
The distribution of G2 and G1 are identical, unless some honest client re-
ceives a message that was never simulated by Sim on behalf of the HSM,
but where the attestation signature is still valid, which we denote as the
event ESig. Assume there is some environment Z∗ that is able to distin-
guish between G2 and G1. Then we construct an adversary B1 against the
sEUF-CMA-security of Sig. B1 internally runs the whole experiment includ-
ing F , Sim and Z∗. Whenever it simulates a message on behalf of the HSM
it uses the signature oracle Sign to compute the attestation signature. This
implicitly programs the attestation key of the HSM to the one sampled in
the sEUF-CMA experiment. As the key is sampled uniformly at random both
in sEUF-CMA experiment and G2, this does not change the distribution of
the key. When the event ESig occurs, B1 outputs the corresponding message
and signature to its challenger. It is easy to see that B1 wins the experiment
whenever ESig occurs. Hence, we have

|Pr[G2]− Pr[G1]| ≤ AdvsEUF-CMA
Sig,B1 (λ).

Game G3: Simulate the OPRF execution. In this game, we replace the
2HashDH protocol with its ideal execution, namely functionality F ℓ

OPRF of
Figure 4.10 and simulator Sim2HDH(sid, H1, H2, N) of Figure 4.12. We conse-
quently let the simulated parties use the interfaces of F ℓ

OPRF, e.g., instead of
computing a := H1(pw ∥ cid)r, a party sends (Eval, sid, cid ∥ kid, ssid, S, pw ∥
cid) to F ℓ

OPRF, where for the first initialization by cid we have kid = 0 and
with each subsequent initialization by cid it is incremented by 1. When-
ever a party is supposed to obtain a PRF value, the simulator calls the
RcvComplete interface of F ℓ

OPRF. Since in this ideal OPRF execution,
OPRF keys are chosen by Sim2HDH(sid, H1, H2, N) (see Step 2 of Figure
4.12), the simulator takes these keys whenever it has to store a file. Fi-
nally, the 2HashDH protocol messages a, b sent by honest parties are now
simulated by Sim2HDH(sid, H1, H2, N). The formal changes can be read from
Figures 5.11 to 5.14, marked with (G3).
This and the previous game are indistinguishable up to the advantage of
distinguishing the real 2HashDH execution from the ideal execution of F ℓ

OPRF
and Sim2HDH(sid, H1, H2, N), which means we have

|Pr[G3]− Pr[G2]| ≤ AdvFOPRF
2HDH,Sim2HDH,Z(λ).

.
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Game G4: Abort upon ambiguous ciphertexts. We let the simulator abort
if it obtains an adversarially-generated AE ciphertext c such that for two val-
ues k, k′ from records ⟨F, S, [kid], k, ∗⟩, ⟨F, S, [kid′], k′, ∗⟩ stored by the OPRF
simulator Sim2HDH, c successfully decrypts under k and k′, i.e., the output
of AE.Dec is not ⊥ (cf. IC.2 (c), IC.7 (c)(ii), and Rb.3 (a)).
This and the previous game are indistinguishable by the random-key ro-
bustness of AE. The reduction is straightforward, running on two chal-
lenge keys k, k′: it randomly chooses two occasions where FOPRF samples
Fsid,S,kid(x) $←− {0, 1}ℓ and instead sets Fsid,S,kid(x) := k for the first one and
:= k′ for the second. Note that this does not change the distribution as k, k′

are uniformly random. Ciphertexts c passing the winning condition of the
random-key robustness game can be detected by trial-decrypting with k and
k′. We hence have

|Pr[G4]− Pr[G3]| ≤ q2
EAdvRKR

B2,AE(λ).

Game G5: Honest cid fails upon malicious AE ciphertext. In this game, we
modify how Sim proceeds when receiving an adversarial message or honestly
delivered message (ssid, b′, c, cid) from A to some honest cid. Sim checks
whether all of the following conditions hold:

• c was not produced by Sim,
• There is no value Fsid,S,∗(pw′ ∥ cid) defined in FOPRF that successfully

decrypts c,
• There is a value Fsid,S,[kid](pw′ ∥ cid) defined in FOPRF that successfully

decrypts c, but in this retrieval a malicious S did not use the OPRF
key with kid kid.

Formally, Sim executes these checks via the code in Rb.3 (a) and Rb.3 (b).
If all conditions hold, then Sim lets cid immediately output (RetRes, ssid, Fail)
instead of following the protocol as in G4. If any condition does not hold, it
proceeds as in G4. Note that G5 only differs if cid outputs (RetRes, ssid, Succ)
in G4 and (RetRes, ssid, Fail) in G5, which we denote by the event EAE.
We now construct an adversary B3 that breaks the INT-CTXT-security of
AE given any environment Z that causes EAE.
B3 acts like Sim and chooses i∗ $←− {1, . . . , qInit}. Let cid∗ denote the cid that
executes the i∗-th initialization. If cid∗ is corrupt, B3 aborts. Otherwise,
it does not compute c by encrypting (K, skC) under ρ∗ but instead submits
(K, skC) to its encryption oracle. Note that this implicitly programs ρ∗ to
the key k∗ chosen by the INT-CTXT experiment. Since k∗ is chosen uniformly
at random and FOPRF chooses its outputs uniformly at random, this means
that there is no change in the distribution of c.
In any subsequent retrieval by cid∗ before cid∗ executes another initialization,
B3 checks the conditions listed above, and if they hold, it outputs the c′
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5 Password-Protected Key Retrieval with(out) HSM-Protection

Simulator SimOPRF-PPKR, part 2

On (ssid, b, cid∗, pkenc) from A to cid: // honest cid, any S
Ib.1 Retrieve ⟨Init, cid, [kid], ssid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩. (G1)
Ib.2 If S is not honest, give input (InitS, ssid, cid) to FPPKR. On response (InitS, ssid, cid) from

FPPKR or if FPPKR ignores the input, continue below. (G10) // Ensures that we can produce
output for cid

Ib.3 If HSM signature does not verify, send (CompleteInitC, ssid, 0) to FPPKR. (G10)
Ib.4 If cid ̸= cid∗, send (CompleteInitC, ssid, 0) to FPPKR. (G10) // cid’s a rerouted
Ib.5 Compute (skC , pkC) := Sig.KGen(1λ). (G1)
Ib.6 If S is fully corrupt:

a) Send (CompleteInitS, ssid, 1) to FPPKR. (G10)
b) For each record ⟨H2, [pw] ∥ cid, ∗, [y]⟩ marked Consistent (G14)

send (OfflineAttack, cid, pw, i + 1) to FPPKR, where i ∈ N is the largest number
such that a record ⟨leaked, cid, ∗, ∗, ∗, i⟩ exists. (G10)

c) If for any query the output is K ̸= Fail (G10), compute c $←− AE.Enc(y, (K, skC)).
Else set c $←− SimEQV(λ + |skC |). (G6)

d) Record ⟨File, cid, kid, pkC , skC , c⟩ and ⟨leaked, cid, kid, skC , c, i + 1⟩, where i ∈ N is
the largest number such that a record ⟨leaked, cid, ∗, ∗, ∗, i⟩ exists or i = 0 if no such
record exists. (G1)

e) Compute C $←− PKE.Enc(pkenc, (ssid, pkC , c)). (G1)
f) Overwrite the three last entries of the Init record retrieved above with skC , b, C. (G1)

Ib.7 If S is not fully corrupt:
a) Compute c $←− SimEQV(λ + |skC |). (G6)
b) Compute C := PKE.Enc(skenc,⊥), (G13)
c) overwrite the tenth entry of the record retrieved above with skC and the last entry

with C. (G1)
Ib.8 Send (ssid, C) to S (G1)

and (CompleteInitC, ssid, 1) to FPPKR. (G10). Store ⟨C, ssid, pkC , c⟩ (G13) .
On (ssid, C) from A to S on behalf of cid: // any cid, honest S

IC.1 Retrieve ⟨Init, ∗, ∗, ssid, ∗, ∗, [kid], ∗, [skenc], [skC ], ∗, [C ′]⟩. (G1)
IC.2 If cid is corrupt: (G8)

a) Execute HSM code, (G1)
where the entry kOPRF of the stored File record is set to ⊥, (G3)
up to determining out and denote the decryption by (ssid′, pkC , c). (G1)
If out = Fail, send (CompleteInitS, ssid, 0) to FPPKR and otherwise continue. (G11)
// Sim2HDH has the OPRF key

b) Find a record ⟨H2, [pw] ∥ ∗, ∗, [y]⟩ that is marked Consistent such that ⊥ ≠
(K, skC) := AE.Dec(y, c). Otherwise set pw := ⊥. (G8)

c) If more than one consistent record is found, abort the simulation. (G4)
d) Send input (InitC, ssid, pw) to FPPKR on behalf of cid. (G8)

On response (InitC, ssid, cid) from FPPKR send message (CompleteInitS, ssid, 1) to
FPPKR (G11).

IC.3 If cid is honest, retrieve ⟨C, ssid, [pkC ], [c]⟩. (G13)
Store ⟨File, cid, pkC , c,⊥, 10⟩ overwriting any ⟨File, cid, ∗, ∗, ∗, ∗⟩ (G1), and send message
(CompleteInitS, ssid, 1) to FPPKR. (G10)

Figure 5.12: Simulator SimOPRF-PPKR for OPRF-PPKR, part 2.
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received in that retrieval to the INT-CTXT experiment. Further, if the file
from the i∗-th initialization was leaked, in any subsequent retrieval by cid∗,
B3 checks the same conditions and outputs the c′ received in that retrieval
to the INT-CTXT experiment if they hold.
If such a retrieval by cid∗ is the first that causes the event EAE, which
happens with probability 1/qInit, B3 wins the INT-CTXT experiment due to
the following. Let c∗ be the ciphertext that causes EAE, which means that
in G4, cid∗ would successfully decrypt c∗ using ρ∗. Since B3 implicitly set
ρ∗ = k∗, c∗ successfully decrypts under k∗ and constitutes a forgery in the
INT-CTXT experiment. Therefore, we have

|Pr[G5]− Pr[G4]| ≤ qInitAdvINT-CTXT
B3,AE (λ).

Game G6: Simulate ciphertexts of honest initializations without pass-
words. In this game, we change how Sim computes the AE ciphertext
c in initializations of honest clients. Now, when Sim receives a message
(ssid, b, cid, pkenc) and A has not yet queried (pw ∥ cid, b1/r) to the random
oracle H2, Sim does not compute c $←− AE.Enc(ρ, (K, skC)). Instead it uses
the equivocability simulator of AE and runs c $←− SimEQV(λ + |skC |). Note
that this can only happen with non-negligible probability if S is fully corrupt
as otherwise A would have to guess the OPRF key used by Sim2HDH. Then,
Sim records ⟨AE, c, pw ∥ cid, b1/r, K, skC⟩. Recall that Sim still receives pw as
input and can create these records. We emphasize that the creation of these
records is only a temporary change that will be removed later in G14 and
any step introduced in this game that relies on these records will be changed
later to work without them (cf. G10 and G14).
We now use the AE records to ensure that retrieval still works correctly. To
that end, we change Sim such that when it receives a message (ssid, b′, c, cid)
in a retrieval of an honest cid, Sim retrieves the record ⟨AE, c, pw′∥cid, b′1/r′

, [K],
[skC ]⟩. If such a record exists, c was produced SimEQV, and Sim proceeds
using K and skC from that record. If no such record exists, then c was com-
puted by Z, and Sim checks whether cid can decrypt it. For this, it again
checks the conditions from G5. If they hold, Sim let’s cid output Fail and
otherwise decrypts c using Fsid,S,cid∥∗(pw′ ∥ cid) to obtain K and skC . Note
that the output behavior of cid here is the same as in G5. Formally, all
these changes that do not rely on the AE records are done in Ib.6 (c) and
Ib.7 (a).
To ensure that Z cannot distinguish G6 from G5, Sim additionally has
to properly program the random oracle H2 to account for password guess-
ing. For each query (pw ∥ cid, y) to H2, it retrieves the record ⟨AE, [c], pw ∥
cid, y, [K], [skC ]⟩, then runs ρ := SimEQV(c, (K, skC)), and sets H2(pw, y) := ρ
( H2.2 (b)). That means, whenever A queries H2 on the input that would
yield the key for c in G5, Sim now equivocates c to the matching message
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and programs H2 accordingly. If no such record exists, Sim forwards the
query to the random oracle H2 of Sim2HDH as in G5.
We claim that for any Z that is able to distinguish G6 and G5, we can
construct an adversary B4 that wins the EQV experiment for AE. Since in
G5, ρ is chosen by FOPRF uniformly at random and c is encrypted under
ρ, the distribution of ρ and c in G5 is exactly the same as in the real
game of the EQV experiment. In G6, c is output by SimEQV and thus its
distribution is exactly the same as in the ideal game of the EQV experiment.
The distribution of ρ in G6 remains unchanged unless there is a query to H2
such that Sim equivocates c. In that case ρ is distributed exactly the same
as in the ideal world in the EQV experiment as it is computed by SimEQV.
Thus, we have

|Pr[G6]− Pr[G5]| ≤ AdvEQV
B4,AE(λ).

Game G7: Abort upon signature forgery. In this game, we let Sim abort
upon observing a forged signature. Concretely, if Sim receives a message
(ssid, σ∗) from A to S on behalf of cid then Sim aborts if all of the following
conditions hold (cf. σ.1 ):

• There is a record ⟨File, cid, [pkC ], ∗, ∗, ∗⟩ such that
Sig.Vrfy(pkC , (a′, cid, ssid, b′, c), σ∗) = 1,

• The signed c was not equivocated using SimEQV, i.e., Sim never com-
puted ρ := SimEQV(c, (K, skC)),

• σ∗ was not computed by Sim on behalf of an honest cid.
Similarly, if Sim receives a message (ssid, σ∗) from A to FOPRF-PPKR

HSM on behalf
of S then Sim aborts if all of the above conditions hold (cf. σ.2 ). We call
this event ESig. If A can provoke ESig to happen, then we can use A to
construct an adversary B5 against the sEUF-CMA security of Sig. B5
internally runs Z and plays the role of Sim and F in the execution of the
protocol. B5 starts by randomly choosing i∗ ∈ {1, . . . , qInit}, where qInit
is the number of initializations. Let cid∗ denote the cid that exeutes the
i∗-th initialization. If cid∗ is honest, then B5 does not generate a signing
key pair (skC , pkC) but instead uses the public key pk∗ that it gets from its
challenger. Since it does not know the key sk∗, it stores ⊥ instead of skC in
the AE record in the i∗-th initialization.
If cid∗ is corrupt, then B5 aborts. Further, if A makes an H2 query such that
Sim would equivocate c∗ by computing ρ := SimEQV(c∗, (K, skC)), where c∗

is the AE ciphertext produced in the i∗-th initialization, then B5 also aborts.
Now, whenever cid∗ executes a retrieval, B5 checks two conditions:

• cid∗ receives a message (ssid, b′, c∗, cid∗), where c∗ is the ciphertext it
produced in the i∗-th initialization.

• The retrieval is successful (in this game, B5 still gets the client input
pw′ and can check pw = pw′).
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5.4 Lev-3 Protocol: OPRF-based PPKR

Simulator SimOPRF-PPKR, part 3.

On (ssid, C) from A to FOPRF-PPKR
HSM on behalf of corrupt S: // any cid, corrupt S

IC.4 Retrieve ⟨Init, [cid], ∗, ssid, [a], [cid∗], [kid], [a∗], [skenc], [skC ], ∗, [C ′]⟩. (G1)
IC.5 If C ′ = ⊥, give input (InitS, ssid, cid) to FPPKR. On response (InitS, ssid, cid) from FPPKR

continue below. (G10) // C ′ ̸= ⊥ implies that b was deliverd to cid, where the simulator
gave input InitS to FPPKR

IC.6 If C = C ′, retrieve record ⟨C, [ssid], [pkC ], [c]⟩ (G13). Give input (CompleteInitS, ssid, 1)
to FPPKR (G10),
record ⟨File, cid∗, kid, pkC , skC , c⟩ overwriting any ⟨File, cid∗, ∗, ∗, ∗, ∗⟩, and send
(InitRes, ssid, Succ) to S as output of the HSM. (G1) // honest delivery of C, which
also implies honest delivery of a and cid = cid∗ as otherwise C ′ = ⊥

IC.7 If C ̸= C ′:
a) Search for a record ⟨C, [ssid′], [pkC ], [c]⟩. (G13)

If ssid′ ̸= ssid, send (InitRes, ssid, Fail) to S. Otherwise, record
⟨File, cid∗, kid, pkC , skC , c⟩ overwriting any ⟨File, cid∗, ∗, ∗, ∗, ∗⟩. (G1)

b) If no such record ⟨C, ∗, ∗, ∗⟩ exists (G13), execute the HSM code on input (ssid, C),
(G1)
where the entry kOPRF of the stored File record is set to ⊥, (G3)
up to determining out and denote the result of the decryption by (ssid′, pkC , c).
If out = Fail, send (InitRes, ssid, Fail) to S. If out ̸= Fail, record
⟨File, cid∗, kid, pkC , skC , c⟩ overwriting any ⟨File, cid∗, ∗, ∗, ∗, ∗⟩. (G1)

c) Search a record ⟨H2, [pw] ∥ ∗, ∗, [y]⟩ that is marked Consistent such that ⊥ ̸=
(K, skC) := AE.Dec(y, c). Overwrite the third to last entry of the Ret record re-
trieved above with skC . (G8)

i. If no such record exists, send (MaliciousInit, cid∗,⊥,⊥) to FPPKR. (G8) // Z
has not yet computed the PRF value for a

ii. If more than one consistent record is found, abort the simulation. (G4)
iii. In all other cases, send (MaliciousInit, ssid, cid∗, pw, K) to FPPKR. (G8) // Z

can decrypt c
d) Send (InitRes, ssid, Succ) to S as output of the HSM. (G1)

On random oracle query H1(pw ∥ cid) from A:
H1.1 Query H1(pw ∥ cid) to Sim2HDH (→ Step 4 of Sim2HDH). Return output. (G3)

On random oracle query H2(pw ∥ cid, x) from A:
H2.1 If a record ⟨H2, pw ∥ cid, x, y⟩ exists, output y. (G1)
H2.2 If there exists a record ⟨F, S, cid∥[kid], [kOPRF], ∗⟩ in Sim2HDH such that x = H1(pw∥cid)kOPRF :

(G14)
a) Retrieve ⟨leaked, cid, kid, [skC ], [c], [i]⟩. If multiple exist, choose smallest i. (G10)
b) Send (OfflineAttack, cid, pw, i) to FPPKR. If it outputs K ̸= Fail, (G10)

run y $←− SimEQV(c, (K, skC)), record ⟨H2, pw ∥ cid, x, y⟩ and output y. (G6)
Otherwise continue.

H2.3 Query H2(pw∥cid, x) to Sim2HDH, which triggers Step 8 of Sim2HDH. Let y denote its output.
Record ⟨H2, pw ∥ cid, x, y⟩. If y was produced by FOPRF mark the record as Consistent.
Output y. (G3)

Figure 5.13: Simulator SimOPRF-PPKR for OPRF-PPKR, part 3.
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If both conditions are satisfied, then B5 does not compute
Sig.Sign(skC , (a′, cid, ssid, b′, c∗)) but instead uses its Sign(·) oracle provided
by its challenger to get a signature σ on the message m = (a′, cid, ssid, b′, c∗).
If any condition does not hold, B5 proceeds just like Sim in G6. Now, B5
continues the simulation and observes all (ssid, σ) messages that it receives
from A. If there is a message such that ESig happens, then B5 outputs σ.
Note that the view of Z in the reduction did not change with respect to
G7. The public key pkC and the signatures σ are distributed exactly as in
G6. In the i∗-th initialization, B5 did not use skC , as it simulated c∗ $←−
SimEQV(λ + |skC |) without skC as in G6. B5 also did not have to equivocate
c∗ with ρ := SimEQV(c∗, (K, skC)) (which it would not be able to do). If
the first signature σ∗ that caused the event ESig is valid under pk∗, which
happens with probability at least 1/qInit, B5 wins. Overall, we get

|Pr[G7]− Pr[G6]| ≤ qInitAdvsEUF-CMA
B5,Sig (λ).

Game G8: Extract from malicious initialization. In this game, we change
the behaviour of Sim whenever it receives a message (ssid, C) from a corrupt
cid or the corrupt S queries (ssid, C) to FOPRF-PPKR

HSM . For this, we first modify
F in the following way. We change the interface (InitC, ssid, pw) such that
it acts exactly as FPPKR if and only if the cid that makes the query is cor-
rupt. Further, we add an interface (CompleteInitS, ssid, cid, pw, K) that
executes the steps CIS.3 and CIS.4 of FPPKR. Again, the addition of this
interface is only a temporary change and it is removed again in G11.
When receiving a message (ssid, C) from a corrupt party, Sim executes the
protocol as in G7 and then searches for a record ⟨H2, pw ∥ ∗, ∗, y⟩ such that
c decrypts successfully to some (K, skC) under y. Note that as of game G4,
there is at most one such y. If no such record exists, it sets K := ⊥, pw := ⊥.
If the message (ssid, C) came from a corrupt cid, Sim gives the input (InitC, ssid, pw)
to FPPKR on behalf of cid and sends (CompleteInitS, ssid, cid, pw, K) to
FPPKR. On the other hand, if (ssid, C) came from the corrupt S, Sim queries
(MaliciousInit, ssid, cid, pw, K) to FPPKR, where cid is the value the cor-
rupt S sent in the first message of the subsession ssid. Formally, the changes
can be read from IC.2 (Step IC.2 (b) and the first part of Step IC.2 (d))
and IC.7 (c) (Steps IC.7 (c)(i) and IC.7 (c)(iii)).
The changes introduced in this game are only syntactical and do not affect
any output of Sim. Essentially we only let F store some records for initial-
izations executed by a corrupt party, but F never uses these records yet to
produce an output for any party. Hence, we have

Pr[G8] = Pr[G7].
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Game G9: Extract from malicious retrieval. We change the simulator
whenever it receives message (ssid, σ) from a corrupt cid to S, or from a
corrupt S to FOPRF-PPKR

HSM . As of game G7, we know that if σ verifies un-
der pkC stored in the file of cid, either the adversary previously initial-
ized (on behalf of corrupt cid or a corrupt S) that file record or it guessed
the password of cid. As in the previous game, we let the simulator ex-
tract pw from that malicious initialization or password guess and submit
(RetC, ssid, pw) to FPPKR on behalf of corrupt cid (see σ.2 (a) and σ.2 (b)),
resp. (MaliciousRet, cid∗, pw′) for a corrupt S (see σ.16 ).
Because the changes in the simulation again only affect the state of FPPKR
which is not yet influencing protocol outputs, the change is only syntactical,
and we have

Pr[G9] = Pr[G8].

Game G10: Let F produce the output of the client. In this game,
we change the simulator such that the output for honest clients is gen-
erated by F . To this end we have to introduce several changes to
F . We modify the interfaces (InitC, ssid, pw) and (RetC, ssid, pw) to
act exactly like FPPKR, except that they still forward all inputs to
Sim. Next, we add the interfaces (InitS, ssid, cid), (RetS, ssid, cid),
(CompleteInitC, ssid, bC), and (CompleteRetC, ssid, bC) and let them
act exactly like in FPPKR. Finally, we introduce the interfaces
(CompleteInitS, ssid, bS) and (CompleteRetS, ssid, bS), which both act
as in FPPKR, except that they never give any output to S.
Furthermore, we change Sim to always use the interfaces CompleteInitC
and CompleteRetC of F whenever it wants to produce output of some
honest cid with bC set appropriately ( Ib.3 , Ib.4 , Ib.8 , Del.3 , Rb.5 ,
Rb.6 , Rb.8 , last step, and Rb.9 , last step). Note that these interfaces
only produce output if both InitC and InitS, resp. RetC and RetS, were
queried previously and thus require Sim to give the inputs to F on behalf of
S if S is not honest ( Ib.2 , Del.2 , Rb.4 ). Additionally, Sim has to ensure
that F internally creates File records that can be accessed during retrievals.
For this reason, whenever A sends some (ssid, C) from an honest cid, Sim
sends (CompleteInitS, ssid, 1) to F ( IC.3 , IC.6 ), once again first giving
the InitS input to F if S is not honest to ensure that the CompleteInitS
query proceeds ( IC.5 ). Lastly, Sim acts exactly like SimOPRF-PPKR on the
queries LeakFile and (FullyCorrupt, S) by A ( LF.1 - LF.3 , FC.1 -
FC.3 ).
A difficulty for Sim resulting from these changes is that for honest clients, K
is now chosen by F instead of Sim and is unknown to Sim. In particular, this
affects the changes introduced in G6 as Sim cannot use the records ⟨AE, . . .⟩
anymore in G10 to store and obtain K. Instead, whenever Sim equivocates
some ciphertext c during a query to H2, it has to extract K from F . Note
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5 Password-Protected Key Retrieval with(out) HSM-Protection

Simulator SimOPRF-PPKR, part 4.

On (RetC, ssid, cid, match) from FPPKR // Any cid
R.1 If no record ⟨File, cid, [kid], ∗, ∗, ∗⟩ exists, set kid := ⊥. (G3)
R.2 Give input (Eval, sid, cid ∥ kid, ssid, S, 0) to the simulated FOPRF from the simulated cid.

This triggers Step 5 of Sim2HDH, which outputs (sid, cid, ssid, a′). (G3)
R.3 If a record ⟨Ret,⊥,⊥, ssid,⊥,⊥, ∗, ∗, ∗, ∗, ∗, ∗⟩ exists, overwrite the second, third, fifth,

and sixth entry with (cid, kid, a′, match). (G1) // This record exists if RetS was executed
previously

R.4 Otherwise, record ⟨Ret, cid, kid, ssid, a′, match,⊥,⊥,⊥,⊥,⊥,⊥⟩. (G1)
R.5 Send (Ret, ssid, a′, cid) as message from cid to S. (G1)

On (RetS, ssid, cid, match) from FPPKR: // honest, corrupt, or fully corrupt S
R.6 If a record ⟨Ret, ∗, ∗, ssid, ∗,⊥, ∗, ∗, ∗, ∗, ∗, ∗⟩ exists, overwrite ⊥ with match. (G1) // This

record exists if RetC was executed previously
R.7 Otherwise, record ⟨Ret,⊥,⊥, ssid,⊥, match,⊥,⊥,⊥,⊥,⊥,⊥⟩. (G1)
R.8 Wait for (Ret, ssid, a′, cid). (G1) // See the (Ret, ssid, a′, cid) interface below.

On (Ret, ssid, a′, cid) from A to S on behalf of cid: // any cid, any (if jumping here from the
(Ret, ssid, a′, cid) from A to FOPRF-PPKR

HSM interface) S
Ra.1 If S is honest, wait for (RetS, ssid, cid, match) message from FPPKR. (G1) // See

(RetS, ssid, cid, match) interface.
Ra.2 Retrieve ⟨File, cid, [kid], [pkC ], ∗, [c′]⟩. If no such record exists and S is honest, send

(CompleteRetS, ssid, 0) to FPPKR (G12)
Ra.3 Execute HSM code on input (Ret, ssid, a′, cid) up to determining the output (G1)

and with the computation of b′ substituted as follows. Give input
(SndrComplete, sid, cid ∥ kid, ssid) to the simulated FOPRF from the simulated S.
This triggers Step 6 of Sim2HDH, which outputs (sid, ssid, b′). (G3)

Ra.4 If the HSM output is ssid, DelRec, record ⟨DelRec, ssid⟩ and send (ssid, DelRec) as
HSM-signed message from S to cid. If the output is ssid, b′, c, cid, overwrite the six last en-
tries of ⟨Ret, ∗, ∗, ssid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ with cid, kid, a′, pkC , b′, c′ and send (ssid, b′, c′, cid)
as HSM-signed message to cid. (G1)

On (Ret, ssid, a′, cid) from A to FOPRF-PPKR
HSM on behalf of corrupt S:

Ra.5 If no record ⟨Ret, ∗, ∗, ssid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ exists, create
⟨Ret,⊥,⊥, ssid,⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥⟩. (G1)

Ra.6 Execute Steps Ra.2 - Ra.4 except that the output is returned to S instead of sending it
from S to cid (G3)

On (ssid, DelRec) from A to cid on behalf of S: // honest cid, any S
Del.1 If no record ⟨Ret, cid, ∗, ssid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ exists or if there already was a message

(ssid, b′, c, cid∗) to cid, ignore. (G1)
Del.2 If S is not honest, send (RetS, ssid, cid, 0, DelRec, 0) to FPPKR. On response

(RetS, ssid, cid, match) from FPPKR continue below. (G10)
Del.3 If HSM signature verifies, send (CompleteRetC, ssid, 1) to FPPKR and otherwise

(CompleteRetC, ssid, cid, 0). (G10)

Figure 5.14: Simulator SimOPRF-PPKR for OPRF-PPKR, part 4.
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5.4 Lev-3 Protocol: OPRF-based PPKR

Simulator SimOPRF-PPKR, part 5.

On (ssid, b′, c, cid∗) from A to cid on behalf of S: // honest cid, any S
Rb.1 Retrieve ⟨Ret, cid, ∗, ssid, [a′], [match], ∗, [kid], ∗, ∗, ∗, ∗⟩. (G1)

If no such record exists or if there already was a message (ssid, DelRec) to cid, ignore.
(G1) // cid did not start retrieval or record deleted.

Rb.2 If S is corrupt, set pw := ⊥, K := ⊥, i := ⊥. (G12)
Rb.3 If S is fully corrupt:

a) If record ⟨H2, [pw] ∥ cid, [u], [y]⟩ marked Consistent exists (G14) and records
⟨cid ∥ kid, ssid, cid, [r′]⟩ and ⟨H1, pw ∥ cid, [r]⟩ exist in Sim2HDH s.t. ⊥ ̸= (K, skC) :=
AE.Dec(y, c), and b′1/r′ = u1/r, (G5)
set i := 0. (G10)
If more than one consistent record is found, abort the simulation. (G4) // Adversar-
ial OPRF key

b) Otherwise, if records ⟨leaked, cid, [kid′], [skC ], c, [i]⟩ and
⟨Init, cid, kid′, ∗, [a], ∗, ∗, ∗, ∗, ∗, [b], ∗⟩ exist and a record ⟨F, S, ∗, [k], ∗⟩ exists in
Sim2HDH such that ak = b and a′k = b′, (G5)
set pw := ⊥, K := ⊥. (G10) // Impersonation with old file

c) Otherwise, set pw := 0, K := Fail, i := 0, skC := ⊥. (G10)
Rb.4 If S is not honest, give input (RetS, ssid, cid∗, pw, K, i) to FPPKR. On response

(RetS, ssid, cid∗, match) overwrite the sixth entry in the record retrieved in Step 1 with
match. (G10) // Ensures that we can produce output for cid

Rb.5 If HSM signature does not verify, send (CompleteRetC, ssid, 0) to FPPKR. (G10)
Rb.6 If cid ̸= cid∗, send (CompleteRetC, ssid, 0) to FPPKR. (G10) // cid’s a rerouted
Rb.7 If S is not fully corrupt, retrieve ⟨File, cid, kid, ∗, [skC ], ∗⟩. (G14)
Rb.8 If match = 1 and skC ̸= ⊥, compute σ := Sig.Sign(skC , (a′, cid, ssid, b′, c)), send (ssid, σ) as

message from cid to S (G14)
and send (CompleteRetC, ssid, 1) to FPPKR. (G10)

Rb.9 If match = 0 or skC = ⊥, (G14)
send (CompleteRetC, ssid, 0) to FPPKR. (G10)

On (ssid, σ) from A to S on behalf of cid: // any cid, honest S
σ.1 Abort if all of the following conditions hold: (G7)

• There is either a record ⟨File, cid, [pkC ], ∗, ∗, ∗⟩ or Sim leaked pkC to A such that
Sig.Vrfy(pkC , (a′, cid, ssid, b′, c), σ∗) = 1, (G7)

• The signed c was not equivocated using SimEQV, i.e., Sim never computed ρ :=
SimEQV(c, (K, skC)), (G7)

• Sim never output σ on behalf of an honest cid. (G7)
σ.2 If cid is corrupt, do the following.

a) Retrieve ⟨Ret, ∗, ∗, ssid, ∗, ∗, cid, ∗, [a′], [pkC ], [b′], [c]⟩. If a record ⟨DelRec, ssid⟩ exists,
ignore. (G1)
Determine pw′ as follows:

• If Sig.Vrfy(pkC , (a′, cid, ssid, b′, c), σ) = 0, set pw′ = ⊥. (G9)
• Otherwise, search for a record ⟨H2, [pw′] ∥ ∗, ∗, [y]⟩ marked Consistent such that
⊥ ≠ (K, skC) := AE.Dec(y, c). If noch such a record exists, set pw′ = ⊥. (G9)

b) Give input (RetC, ssid, pw′) to FPPKR on behalf of cid. On response
(RetC, ssid, cid, match) from FPPKR continue below. (G9)

c) Execute HSM code on input (ssid, σ) up to determining out. (G1)
If out = Fail, send message (CompleteRetS, ssid, 0) to FPPKR (G12), and otherwise
(CompleteRetS, ssid, 1) (G10)

σ.3 If cid is honest, execute HSM code on input (ssid, σ) and
send message (CompleteRetS, ssid, 1) to FPPKR. (G12) // If cid is honest, we only simulate
σ if match = 1 and do not need to check again here. Due to cid-authentication the adversary
also cannot inject any messages

Figure 5.15: Simulator SimOPRF-PPKR for OPRF-PPKR, part 5.
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5 Password-Protected Key Retrieval with(out) HSM-Protection

Simulator SimOPRF-PPKR, part 6.

On (ssid, σ) from A to FOPRF-PPKR
HSM on behalf of corrupt S: // any cid

σ.12 Abort if all of the following conditions hold: (G7)
a) There is either a record ⟨File, cid, [pkC ], ∗, ∗, ∗⟩ or Sim leaked pkC to A such that

Sig.Vrfy(pkC , (a′, cid, ssid, b′, c), σ∗) = 1, (G7)
b) The signed c was not equivocated using SimEQV, i.e., Sim never computed ρ :=

SimEQV(c, (K, skC)), (G7)
c) Sim never output σ on behalf of an honest cid. (G7)

σ.13 Retrieve ⟨Ret, [cid], ∗, ssid, ∗, [match], [cid∗], ∗, [a′], [pkC ], [b′], [c]⟩. If a record ⟨DelRec, ssid⟩
exists, ignore. Execute HSM code on input (ssid, σ) up to determining out. (G1)

σ.14 If match = ⊥, give input (RetS, ssid, cid∗,⊥,⊥,⊥) to FPPKR. On response
(RetS, ssid, cid∗, match) from FPPKR continue below. (G10) // match = ⊥ indicates that
RetS input was not given to FPPKR yet, which is necessary to decrease counter

σ.15 If out = Fail, send (RetRes, ssid, Fail) to S. (G1)
σ.16 If out = Succ, search for a record ⟨H2, [pw′] ∥ ∗, ∗, [y]⟩ marked Consistent such that

⊥ ≠ (K, skC) := AE.Dec(y, c), otherwise set pw′ := ⊥. Then do: (G9) // need to reset ctr
in FPPKR

a) // both messages in this retrieval come from corrupt S If cid = ⊥, give input
(MaliciousRet, cid∗, pw′) to FPPKR. (G9)
Independent of the response from FPPKR, send (RetRes, ssid, Succ) to S. (G1) //
We give the same password as in the MaliciousInit query, which ensures that the
counter is reset

b) // a′ message came from cid, σ from corrupt S If cid ̸= ⊥:
• If cid is corrupt, input (RetC, ssid, pw′) to FPPKR (G9)
• Give input (CompleteRetS, ssid, 1) to FPPKR and send (RetRes, ssid, Succ) to

S. (G10)
On GetPK from anyone to FOPRF-PPKR

HSM :
pk.1 Retrieve ⟨PK, [pk], ∗⟩ and return pk. (G1)

On LeakFile from A to FOPRF-PPKR
HSM on behalf of S:

LF.1 Send (LeakFile) to FPPKR to obtain L. (G10)
LF.2 L := ∅. For each (cid, ctr) in L: (G10)

a) Retrieve ⟨File, cid, [kid], [pkC ], [skC ], [c]⟩. (G10)
b) Retrieve ⟨F, S, cid ∥ kid, [kOPRF], ∗⟩ in OPRF simulator. (G10)
c) If no record ⟨leaked, cid, ∗, ∗, ∗, ∗⟩ exists, record ⟨leaked, cid, kid, skC , c, 1⟩. Other-

wise, record ⟨leaked, cid, kid, skC , c, i+1⟩ where i ∈ N is the biggest number such that
a record ⟨leaked, cid, ∗, ∗, ∗, i⟩ exists. Append (cid, pkC , c, kOPRF, ctr) to L. (G10)

LF.3 Output L to A. (G10)
On FullyCorrupt from A to FOPRF-PPKR

HSM on behalf of S: (G10)
FC.1 Send (FullyCorrupt, S) to FPPKR, which outputs L. (G10)
FC.2 Execute Step 2 of LeakFile using L. (G10)
FC.3 Retrieve ⟨PK, ∗, [sk]⟩ and output sk. (G10)

Figure 5.16: Simulator SimOPRF-PPKR for OPRF-PPKR, part 6.
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that A can only make a query that requires Sim to equivocate if the corre-
sponding file containing c was leaked or if S is fully corrupt as otherwise A
does not know the OPRF key used by Sim2HDH. This means that in F there
is now a leaked record that Sim can address in the OfflineAttack inter-
face ( H2.2 (a) and the first part of H2.2 (b)). This allows Sim to obtain K
by using the password from the query by A and properly equivocate c. Sim
proceeds analagously if some honest cid receives a message (ssid, b, cid∗, pkenc)
and A has already queried (pw ∥ cid, b1/r) to H2, except that it first has to
send (CompleteInitS, ssid, 1) to F in order to let F create the leaked
record ( Ib.6 (a)- Ib.6 (c)).
Next, we change the handling of messages (ssid, b′, c, cid∗) in Sim. Here we
need to appropriately choose the values pw∗, K∗, and i for the RetS query if
S is fully corrupt. For this, Sim again relies on similar checks as introduced
in G5. If there is a record Fsid,S,∗(pw′ ∥cid∗) that successfully decrypts c, Sim
sets pw∗ := pw′ and K∗ := K, where K is the key obtained from decrypting c
( Rb.3 (a)). If no such record exists but S used the same OPRF key as in the
initalization that produced c, Sim sets pw∗ := ⊥, K := ⊥ and chooses i such
that it indicates the leaked record that contains c ( Rb.3 (b)). Otherwise,
it sets pw∗ := 0 and K∗ := Fail, which ensures that cid outputs Fail
independent of the password ( Rb.3 (c)). Further, Sim uses the skC obtained
from decrypting c, resp. the leaked record, to compute the signature σ.
Finally, we need to ensure that the counter for cid is updated in F . Hence,
whenever Sim gives the output (RetRes, ssid, Succ) to S, it additionally
sends (CompleteRetS, ssid, 1) to F (last part of σ.2 (c), σ.3 , second step
of σ.16 (b)).
Let us now argue why the changes introduced in G10 are indistinguishable
from G9. In G9, K was chosen uniformly at random by Sim, and K is chosen
uniformly at random by F in G10. Therefore the distribution of K obviously
does not change. Moreover, the other significant change introduced in G10 to
the initialization phase is removing K from the records ⟨AE, . . .⟩. However,
as argued above, Sim is always able to extract K from F whenever necessary.
Thus, all outputs for any cid in the initialization phase remain unchanged.
In the retrieval phase, the removal of K from the records ⟨AE, . . .⟩ has no
effect, since in G9 in the retrieval phase the record was only used to obtain
K when Sim needed to output it to cid in a successful retrieval, where cid
received an equivocal c. However, this is not necessary in G10, as K is
output by F to cid.
In both phases, the ouputs of S remain unchanged as S still gets its out-
put from Sim and the CompleteInitS and CompleteRetS interfaces
introduced here do not produce output to S. Overall, we therefore have

Pr[G10] = Pr[G9].
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Game G11: Let F produce the output of honest servers in initializa-
tion. In this game, we change Sim such that it produces the output for
honest servers by calling the appropriate interfaces of F . We also change
the CompleteInitS interface of F to provide output to S.
Concretely, in IC.2 (a), we still let Sim compute (ssid′, pkC , c) := Dec(skenc, C)
and check ssid = ssid′. However, if the check fails, Sim now sends (CompleteInitS, ssid, 0)
to F to let the server output Fail.
Further, we remove the (CompleteInitS, ssid, cid, pw, K) interface from F
that we introduced in G8. In G8 the interface was used by Sim to let F
create File records. However, as of G10, F stores all the necessary records
because of the added InitC and InitS interfaces. Therefore, Sim can exe-
cute IC.2 (d) exactly as Sim2HDH, i.e., Sim sends (CompleteInitS, ssid, 1)
to F instead of (CompleteInitS, ssid, cid, pw, K).
We argue that the above changes do not alter the view of Z: First, whenever
in G10 Sim would have given output (InitRes, ssid, cid, Fail) directly to the
honest S, we now use the (CompleteInitS, ssid, 0) message to F . The effect
is the same and F outputs (InitRes, ssid, cid, Fail) to S. The same holds
for the (CompleteInitS, ssid, 1) messages and Succ output. In addition,
CompleteInitS makes F record File records that use cid, pw, K from F ’s
Init records (instead of the values provided to CompleteInitS). But these
records were already created in G10, and therefore cid, pw, K are the same
in both games. We get

Pr[G11] = Pr[G10].

Game G12: Let F produce the output of honest servers in retrieval.
In this game, we change Sim such that it produces the output for honest
servers in retrieval by calling the appropriate interfaces of F . In G11, Sim
only used the CompleteRetS interface when it wanted to produce the
output Succ for S. Hence, here we change Sim to also send the message
(CompleteRetS, ssid, 0) to F when it wants to produce the output Fail
for S ( Ra.2 and σ.2 (c)). By setting bS = 0, S always gets output Fail
from F unless F deletes the file for cid in this retrieval, however in that case
Sim ignores the message (ssid, σ) (see σ.2 (a), σ.13 ). Therefore, when-
ver Sim sends (CompleteRetS, ssid, 0) to F , this produces the output
(RetResssid, Fail) to S.
Further, it is easy to verify that any (CompleteRetS, ssid, 1) query from
Sim, where S is honest, produces the output (RetRes, ssid, Succ) to S
( σ.2 (c), σ.3 ). In σ.2 , Sim is either able to extract the correct password
due to G9, which leads to CompleteRetS outputting Succ, or if it cannot
extract a password the file must have been created in a malicious initializa-
tion and CompleteRetS then outputs Succ as well. If cid is honest (cf.
σ.3 ), the signature σ received in this interface is only valid if it was out-
put by Sim, which only happens if cid used the correct password. Thus,
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CompleteRetS outputs Succ as well and we have

Pr[G12] = Pr[G11].

Game G13: Simulate C during Init. In this game, we change how Sim com-
putes the message (ssid, C) for honest cid as long as S is not fully corrupt.
Whenever Sim receives a message (ssid, b, cid, pkenc) to an honest cid, the
simulator does not compute C $←− PKE.Enc(pkenc, (ssid, pkC , c)) but now com-
putes C $←− PKE.Enc(pkenc,⊥) (see Ib.7 (b)).
We also change Sim such that it does not decrypt the ciphertext C produced
for an honest cid anymore. In IC.3 , when C was computed by Sim for
an honest cid, then Sim retrieves the record containing pkC and c that it
stored when computing C. Similarly, in IC.6 , when C was computed by
Sim, then Sim just retrieves the stored values pkC and c. Additionally,
we need to check if the corrupt S replays some C that was computed as
C $←− PKE.Enc(pkenc,⊥) and if so, retrieve the corresponding values from
the record instead of decrypting C (cf. IC.7 (a) and IC.7 (b)). The only
change in the view of Z is that the distribution of the ciphertexts C. If
Z can detect this difference, we can construct an adversary B6 against the
IND-CCA security of PKE as follows:
Let qInit ∈ N be the number of initializations. We construct a sequence of
games G(0)

12 , . . . , G(qInit)
12 , where in G(i)

12 the first i ciphertexts are computed as
encryptions of ⊥ and the remaining ciphertexts are encrypted as in G12. We
have G12 = G(0)

12 and G13 = G(qInit)
12 . Because Z can distinguish G12 from

G13 there must be an index i∗ ∈ [qInit] such that Z has a non-negligible
advantage in distinguishing G(i∗−1)

12 and G(i∗)
12 . its challenger. Now, let ssid∗

denote the ssid of the i∗-th initialization and cid∗ denote the cid that ex-
ecutes that initialization. In that initialization the reduction B6 does not
compute (skenc, pkenc) itself in Ia.6 but uses the pk∗ provided by its chal-
lenger. Then, in Ib.7 (b), B6 gives m0 := (ssid∗, pkC , c) and m1 := ⊥ to the
challenger and uses the returned C∗ as ciphertext for the i∗-th initialization.
In any subsequent retrieval by cid∗ In IC.7 (b), when B6 receives a message
(ssid, C) from A to F encPw

HSM on behalf of a corrupted server such that there is
no record ⟨Init, ∗, ∗, ssid∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, C⟩ then B6 uses the challenger’s
decryption oracle to decrypt C. Similarly, in IC.2 (a), if there is no record
⟨Init, ∗, ∗, ssid∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, C⟩ then Sim again uses the challenger’s de-
cryption oracle to decrypt C.
Then we have that if C∗ encrypts m0 the game is distributed as in G(i∗−1)

12
and if it encrypts m1 then the game is distributed as in G(i∗)

12 . We get

|Pr[G13]− Pr[G12]| ≤ qInitAdvIND-CCA
PKE,B6 (λ).
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Game G14: Remove password forwarding from F . In this game, we do
not give Sim any private input of the parties anymore. Up to G13, Sim still
stored the records ⟨AE, c, pw∥cid, b1/r, skC⟩ and used them for three purposes:
(1) to obtain the skC that is supposed to be contained in an equivocable c,
(2) to check whether a client used the correct password in a retrieval, and
(3) to determine critical queries (pw ∥ cid, b1/r) to H2 that require Sim to
equivocate c. As we now finally remove the AE records, we have to simulate
these steps in another way.
Issue (1) can be solved trivially, and we instead use the File records, which
also store c and skC (see Rb.7 ). For issue (2), we now rely on the bit match
that Sim receives from F and indicates whether the password used in the
retrieval is correct (see Rb.8 and Rb.9 ).
To solve issue (3), we can instead rely on the records ⟨H2, pw ∥ cid, u, y⟩ and
the Consistent marking. An H2 record if marked Consistent if and only
if u = H1(pw ∥ cid)k for some OPRF key k, where k can be either created
by Sim2HDH (cf. H2.2 ), i.e., when S is not fully corrupt, or adversarially
chosen (cf. Ib.6 (b)), i.e., when S is fully corrupt. Then, whenever Sim
would query the OfflineAttack interface in G13 with the password pw
obtained from the AE record, in this game we instead query the interface
with all passwords pw from Consistent H2 records ( Ib.6 (b)).
With this change, we finally reach the point where Sim = SimOPRF-PPKR and
F = FPPKR. We clearly added all interfaces of FPPKR to F . One can also
verify that Sim is indeed SimOPRF-PPKR.

5.5 Evaluation & Discussion
In this section, we give an overview of the concrete efficiency of our protocols,
compare them to WBP, and also discuss the respective advantages of our protocols.

Instantiations of Building Blocks For the efficiency overview, we choose con-
crete instantiations of the required primitives, such that we can count the number
of operations performed in each protocol. We only chose group-based public key
primitives to keep the numbers comparable. But of course, one could use any
other secure instantiation of the primitives, e.g., based on RSA or lattices.

Concretely, we chose Schnorr-Signatures, HMAC, HKDF, ElGamal encryption
as a CPA secure encryption and DHIES as CCA secure encryption. For simplicity,
we assumed that all hash evaluations cost a uniform unit “1 Hash”3 and similarly
that one AE encryption or decryption costs “1 AES”. A detailed overview of the
computation costs of each primitive can be found in Table 5.2. We did not list
the HSM’s attestation signatures as they are automatically produced by the HSM
anyway.

3Ignoring e.g., exponentiations that might be needed to hash into a group.
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Table 5.2: Costs of concrete building blocks for the efficiency evaluation in Sec-
tion 5.5.

KGen Enc Dec
CPA Enc (ElGamal) 1 Exp 2 Exp, 1 Hash 1 Exp, 1 Hash
CCA Enc (DHIES) 1 Exp 2 Exp, 3 Hash, 1 AES 1 Exp, 3 Hash, 1 AES
AE (AES-GCM) - 1 AES 1 AES

KGen Sign Vrfy
Signature (Schnorr) 1 Exp 1 Exp,1 Hash 2 Exp, 1 Mult, 1 Hash
MAC (HMAC) - 2 Hash 2 Hash

KDF (n keys, HKDF) (2n + 2) Hash

Table 5.3: Efficiency of PPKR realizations expressed in terms of the number of ex-
ponentiations (E), multiplications (M), hash evaluations (H) and AES
encryptions/decryptions (A). Since the server mostly just relays mes-
sages, we ignore its costs in the comparison. In case of encPw and WBP,
we assume that the static encryption key of the HSM is hardcoded into
the client, therefore no communication is needed for key sharing in Init
and Rec and we neglect the costs of the one-time generation. For more
details on the instantiations of the primitives used for the comparison,
we refer to Table 5.2.

encPw (Sec. 5.2) encPw+ (Sec. 5.3) OPRF-PPKR (Sec. 5.4) WBP (Sec. 4.2)

Init
Client 2 E, 3 H, 1 A 2 E, 3 H, 1 A 5 E, 5 H, 2 A 7 E, 12 H, 1 A, 1 M
HSM 3 H, 1 A 2 E, 5 H, 1 A 2 E, 3 H, 1 A 3 E, 3 H
no. rounds 2 3 3 3

Rec
Client 2 E, 3 H, 2 A 2 E, 3 H, 2 A 3 E, 3 H, 1 A 8 E, 27 H, 2 A, 1 M
HSM 3 H, 2 A 2 E, 5 H, 2 A 2 E, 1 H, 1 M 6 E, 15 H, 1 A
no. rounds 2 3 3 4

Efficiency Comparison As Table 5.3 shows, OPRF-PPKR is more efficient than
the WBP in both, initialization and retrieval. This comes mostly from WBP
performing an authenticated key exchange where OPRF-PPKR uses a digital
signature. In particular, in the retrieval phase, which will be the more time-
critical phase in deployment, as it will be run more often than initialization, our
protocol outperforms WBP: OPRF-PPKR reduces the round4 complexity from 4
to 3, and uses roughly one-third of the operations required by WBP, for both the
client and HSM.

If we compare the two enhanced encrypt-to-HSM protocols to OPRF-PPKR ,
they are more efficient and they save one round of communication, as they strongly
rely on the HSM security, with the weakest protocol having the lowest computa-

4We count one round as a message from party A to party B (and not as a full round-trip A to
B to A).

193



tional requirements. Interestingly, in bare numbers, they are not significantly
more efficient though.

Thus, considering that OPRF-PPKR provides much better security for almost
the same costs, this might raise the question of whether there are any advantages
in using our simpler protocols – which is what we answer next.

Advantages of Standard Primitives The core benefit of our two basic/enhanced
encrypt-to-HSM protocols is that they explore how the extended trust in the
HSM can be traded for simplicity in the protocol design. Both protocols rely on
standard and well-understood primitives only, which are public-key and symmetric
encryption, and hash functions. In contrast, WBP and our OPRF-PPKR require
(dedicated discrete-log-based) OPRFs.

In particular, when internally using an HSM, reliance on simple and standard
building blocks is an advantage – established primitives are implemented in many
well-tested frameworks and have been studied for resistance against side-channel
attacks. OPRFs are still a somewhat more modern primitive that just recently
came into focus of practitioners, i.e., it might require developers to implement low-
level cryptographic procedures instead of merely invoking APIs of trusted libraries.
Thus, the operations needed for OPRF-PPKR and WBP might be more prone
to implementation errors or be simply not available or accessible through the
shielded HSM APIs when using “off-the-shelf” HSMs. The clear downside of both
simple protocols is that they lose security when the HSM is (fully) compromised.
However, given that they require only well-understood operations by the HSM,
such a simpler HSM might be easier to protect, making a security breach less
likely.

Further, realizing an efficient quantum-safe OPRF is still an open problem.
This is in contrast to the other standard building blocks for which quantum-safe
options exist. Here the basic/enhanced encrypt-to-HSM protocols again have the
advantage over OPRF-PPKR and WBP, as they rely on standard primitives only,
and can easily benefit from a post-quantum “upgrade”.

Lev-3 Security for Offline Users in enhanced encrypt-to-HSM While we prove
the enhanced encrypt-to-HSM protocol to satisfy at most Lev-2 security, it actu-
ally does preserve strong guarantees if the HSM is fully corrupted, but only for
“offline” clients. Recall that we assumed the HSM’s attestation key to be the
single value that enjoys particularly strong protection – and thus is the only addi-
tional information the adversary gets upon full server corruption. Consequently,
the impact of such a compromise on the protocol’s security is then rather limited.
In fact, for users who never use the PPKR after the full corruption happened, our
enhanced encrypt-to-HSM protocol provides the same protection as OPRF-PPKR
: their leaked files must still be cracked through individual offline attacks against
each password. This might be a sufficient guarantee in reality. Especially in set-
tings where it will be known which HSM is used by the server, and assuming that
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a breach of the HSM most critical operation would become public. Then either
the service is stopped, and the server updates to a secure HSM; or the particularly
cautious users would no longer log into the PPKR service – and their password
and key would be just as secure as with the OPRF-PPKR protocol. Only the
users who still engage in active sessions would lose their security. However, their
security is fully compromised in enhanced encrypt-to-HSM, as the malicious server
will learn their password and key in plain as soon as they start a new initializa-
tion or retrieval session. Here, OPRF-PPKR still ensures the secrecy of the user’s
data.

What is the best protocol? Overall, there is no clear answer to what can be
considered the "best" protocol. We believe that both our enhanced encrypt-to-
HSM and OPRF-PPKR protocols have their individual strengths that can make
each the right choice for a dedicated deployment setting. The enhanced encrypt-
to-HSM is clearly superior to its unsalted variant, yet preserves all simplicity
advantages. Thus, here we do not see a strong reason to favor the encPw proto-
col (Lev-1 security) and would recommend opting for the encPw+ version (Lev-2
security) whenever the advantages of the simple and standard construction out-
weigh the concerns of a full HSM corruption. As just discussed, the guarantees of
encPw+ in case of full corruption are actually not lost entirely. For those users
who never use the retrieval again after the full HSM corruption occurred, it pro-
vides the same security as OPRF-PPKR. Nevertheless, for applications with very
high-security requirements, the OPRF-PPKR construction provides the strongest
(Lev-3) guarantees, but requires more care in the implementation.
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6 Conclusion
Let us again summarize our contributions in this Part. In Chapter 4, we have
presented the first formal security analysis of the widely-used WhatsApp backup
protocol and confirmed that the WBP indeed provides strong security guarantees
such as online protection of the password, and the strength and secrecy of the
backup key. However, we also show how a compromised WhatsApp server can
increase the number of admissible password guesses from only ctr on the most
recent password of the user, to qpw ∗ ctr on any password pw ever entered by
the user, where qpw is the number of initializations performed with pw by the
WhatsApp client device.

In Chapter 5, we proposed the three PPKR protocols encPw, encPw+, and
OPRF-PPKR. The protocols provide a tradeoff which trust assumptions one is
willing to accept. On one end of the spectrum, if we want the highest security
guarantees, the OPRF-PPKR protocol provides strong security guarantees even if
the HSM looses all its guarantees. Essentially, an adversary in control of the HSM
can still not do any better than trying to guess passwords in that case. On the
other end of the spectrum, lies the basic encrypt-to-HSM protocol, which offers
great performance, and as long the HSM does not leak any data, the protocol
provides the same security guarantees as OPRF-PPKR.

6.1 Future Research Directions
Let us discuss some possible future research directions for PPKR.

Further analysis of the WBP. Having we already defined the security model for
corruption of the HSM, a natural question is whether the security guarantees of
the WBP are retained in that scenario as well. It seems reasonable to conjecture
that they hold thank to the WBP being build on top of OPAQUE. Nevertheless,
even in the case where the HSM is perfectly secure, the WBP has some subtle
issues that we had to account for in the security analysis by artificially weakening
FPPKR. For this reason, a thorough analysis of Lev-2 and Lev-3 security is necessary
before any claims can be made for the WBP in these scenarios.

Another possible direction is the analysis of the outsourced storage protocol
that WhatsApp employs to avoid storing extensive user data directly on the HSM.
This could take two approaches. (1) Which security guarantees does the solution
deployed by WhatsApp provide, or (2) which security guarantees to we require
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from an outsourced storage protocol such that it can be used as a building block
for PPKR, possibly under the different corruption scenarios.

New constructions of PPKR. As already discussed in Section 5.5, there is an
advantage in using only standard building blocks to construct PPKR. Hence, it
is an interesting question, whether we can develop a PPKR scheme with Lev-3
security from only standard building blocks. Another potential research direction
would be exploring which level of security we can achieve without the help of some
trusted hardware.
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A Comparison of the WBP to the
OPAQUE Internet Draft Notation

In Table A.1 we list naming differences between our description of the WBP and
the notation used in the OPAQUE draft. In the following we summarize where
our protocol description in the Figures 4.4 and 4.5 differs from the OPAQUE draft
[KLW21], and justify these changes.

• In the OPAQUE draft the server sends its public key in its first message in
both phases (see Sections 3.3.2 and 4.1.2.2 in [KLW21]). This public key
is already hardcoded into the WhatsApp client and thus is not sent by the
HSM.

• In the OPAQUE draft Kexport, Kmask, Kauth are derived via a memory-hard
function and HKDF [Kra10] (see Section 3.3.3 in [KLW21]). These steps are
simplified into one computation via KDF1 in Figures 4.4 and 4.5.

• According to the OPAQUE draft, pre contains either the identities of the
client and the server, or their respective public keys (see Section 6.2 in
[KLW21]). In the WBP, pre contains only the public key of the HSM and
neither the client’s identity nor its public key. However, pre contains e cred,
which is an encryption of skC . Since Te ensures the integrity and authenticity
of e cred, e cred uniquely determines the client’s public key, which means
that it still is implicitly contained in pre.

• In the OPAQUE draft KMAC
S , KMAC

C , shk are derived via a series of HKDF
computations (see Section 4.2.2.2 in [KLW21]). These steps are simplified
into one computation via KDF2 in Figure 4.5.
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A Comparison of the WBP to the OPAQUE Internet Draft Notation

Table A.1: Names and variables as they are referred to in our protocol description
and in the OPAQUE Internet Draft [KLW21].

Our notation OPAQUE Internet Draft notation

S Server
cid Client
Kexport export_key
r1 and r2 blind
a1 and a2 request and M
(pkC , skC) creds
(y, Y ) (server_private_key, server_public_key)
y secret_creds
Y cleartext_creds
pw password
kOPRF oprf_key
ne envelope_nonce
Kmask pseudorandom_pad
Kauth auth_key
e cred encrypted_creds
Te auth_tag
(ne, e cred, Te) envelope
(kOPRF, pkC , (ne, e cred, Te)) credential_file
T ′

e expected_tag
nC client_nonce
U client_keyshare and epkU
V server_keyshare and epkS
u eskU
v eskS
nS server_nonce
TS or T ′

C mac
KMAC

S server_mac_key
KMAC

C client_mac_key
ikm IKM
shk session_key

216



B On not Using Proven OPAQUE
Guarantees for the WBP

In this section we expand on the reasoning why the proven security guarantees
of OPAQUE [JKX18] do not carry over directly to the WBP, in particular the
differences between the OPAQUE version proven secure therein and the version
from Internet Draft v03 [KLW21] that the WBP is using.

In order to modularly use an saPAKE functionality, we would need to formally
prove which exact functionality Internet Draft v03 [KLW21] (or, more specific,
the OPAQUE protocol as implemented in Figures 4.4 and 4.5) UC-emulates. This
however seems overkill, because a) the list of differences is quite extensive, and b)
we do not even rely on the “full” OPAQUE security: we only rely on OPAQUE
being secure against a malicious client, because the OPAQUE server code is run
on an incorruptible HSM.

For completeness, we list below the differences between the proven OPAQUE
protocol and the one deployed in WBP.

• OPAQUE from Internet Draft v03 [KLW21] does not separate hash domains
of the different 2HashDH PRFs with domain separators. [JKX18] only an-
alyzes the security of OPAQUE where the hash domains are separate on a
per-PRF-key basis.

• OPAQUE from Internet Draft v03 [KLW21] has a long-term public key pair
of the server (server_private_key, server_public_key), which is used
for the generation of every password file. The paper version of OPAQUE
[JKX18, Fig. 8] lets the server choose a fresh key pair (pS, PS) for every
password file.

• OPAQUE from Internet Draft v03 [KLW21] has an interactive registration
phase where the server does not learn the password. The paper version of
OPAQUE [JKX18, Fig. 8] has a registration phase where the server gets
the cleartext password as input. This difference was already pointed out in
[BKLW22], where it is claimed that (1) interactive registration only adds
to the security proven in [JKX18], and (2) an upcoming paper analyzes the
interactive phase.

• OPAQUE from Internet Draft v03 [KLW21] puts the client secret key skC

in the password file in form of e cred := skC ⊕Kmask. In the paper version
of OPAQUE [JKX18, Fig. 8], a password file contains password-encrypted
credentials AuthEncrw(pu, Pu, PS), where rw is the PRF value for pw. A user
can retrieve their key pair pu, Pu from the file by decrypting it with rw. Draft
v09 [BKLW22] motivates this change by (1) smaller password files and (2) no
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need for applications to provide AKE key material to the client, but instead
deal with key generation within OPAQUE. (2) is actually only a difference
between v09 and older versions of the draft, because in [JKX18] OPAQUE
(more specific: the server) is generating the client’s AKE key pairs. Draft
v09 [BKLW22] also says that this change is analyzed in an upcoming paper.

• OPAQUE from Internet Draft v03 [KLW21] lets the client output an addi-
tional export key export_key that is not present in [JKX18].

• OPAQUE from Internet Draft v03 [KLW21] uses 3DH as AKE while [JKX18]
only shows that HMQV can be used.

• OPAQUE from Internet Draft v03 [KLW21] uses a superset of transcripts
used in [JKX18].
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C Explicit entity authentication vs.
explicit key authentication.

Here we prove that explicit entity authentication reduces to explicit key authen-
tication. This is basically a restatement of Proposition 9 in [DFW19]1. Note that
Proposition 8 describes a reduction for the same protocol Π unlike in Section 3.4
where the reductions are from the extended protocol Π+ to the underlying protocol
Π.
Proposition 8. Let Π be a protocol and A and adversary against Π for (almost-
)full entity authentication. Then A is also an adversary against match soundness,
implicit key authentication, key match soundness and (almost-)full key authenti-
cation, and

AdvfexEntAuth
Π,U (A) ≤ AdvMatch

Π,U (A)+AdviKeyAuth
Π,U (A)+AdvKMSound

Π,U (A)+AdvfexKeyAuth
Π,U (A)

AdvafexEntAuth
Π,U (A) ≤ AdvMatch

Π,U (A)+AdviKeyAuth
Π,U (A)+AdvKMSound

Π,U (A)+AdvafexKeyAuth
Π,U (A)

Proof. The proofs of full and almost-full explicit entity authentication are identical
so we only give a proof of the former.

Suppose s ∈ Lrcv is a session that receives the last message of the protocol, and
for which fexEntAuth is violated (so s has accepted). We consider two cases:

1. There is a session s′ such that Partner(s, s′) = true, but s.peer ̸= s.party. We
consider two further sub-cases:

a) SameKey(s, s′) ̸= true. In this case Match is violated.
b) SameKey(s, s′) = true. In this case iKeyAuth is violated.

2. There is no session s′ such that Partner(s, s′) = true, but aFresh(s) = true.
We consider two further sub-cases:

a) There is session s′′ such that SameKey(s, s′′) = true. In this case
KMSound is violated.

b) There is no session s′ such that SameKey(s, s′) = true. In this case
fexKeyAuth is violated.

1Although [DFW19, Prop. 9] appears to miss an iKeyAuth term.
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