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Summary

Backward stochastic differential equations (BSDEs) are essential tools for modeling problems
across various scientific domains, including finance, economics, physics, etc., due to their connec-
tion to partial differential equations (PDEs) through the well-known (nonlinear) Feynman-Kac
formula. In case of option pricing, the solution pair of a BSDE represents the price and delta-
hedging of an option. Under the Black-Scholes framework, such a BSDE is linear and the solution
is given in a closed form. However, in most practical scenarios, BSDEs cannot be explicitly solved.
Hence, advanced numerical techniques to approximate their solution become desired.

The classical numerical schemes, e.g. Fourier or cubature methods on spatial discretization suffer
from the “curse of dimensionality”, where the computational cost increases exponentially with
the problems dimensionality. In case of option pricing, the BSDE exhibits the dimensionality
with the number of underlying financial assets under consideration. Recently, several works have
introduced innovative deep learning-based methods utilizing deep neural networks (DNNs) for
solving high-dimensional nonlinear BSDEs.

In this thesis, we are concerned with developing efficient numerical schemes for solving high-
dimensional nonlinear BSDEs using deep learning techniques. Due to the inherent uncertainty
and potential errors in decision-making processes involving deep learning models, this thesis also
considers uncertainty quantification (UQ) for these schemes.

The thesis is divided in three parts. The first part, outlined in Chapter 1 and based on our
research in [57, 60], surveys the existing deep learning BSDE schemes, categorizing them into
forward and backward deep learning schemes, as they are formulated forward or backward in
time. The pioneering (forward) scheme, known as the deep BSDE scheme, has been shown in
the literature to have several disadvantages. These include the potential to get stuck in poor
local minima or even diverge, especially for a complex solution structure and a long terminal
time. Furthermore, it tends to yield much better approximations of the BSDE at the initial
time than at the other time points. To address these issues, we propose a novel forward scheme
that overcomes them. To demonstrate the performance of the new algorithm, we present several
high-dimensional nonlinear BSDEs, including examples from pricing problems in finance.

The second part of the thesis, presented in Chapter 2, is based on our research in [59]. The
deep learning BSDE schemes often struggle to provide highly accurate gradient approximations,
which are crucial for financial applications, especially concerning hedging strategies for option
contracts. Therefore, in the second part, we propose a novel approach based on differential deep
learning, where the DNN models are trained not only on the inputs and labels but also the
differentials of the corresponding labels. Motivated by the efficiency of differential deep learning
in approximating labels and their derivatives with respect to (w.r.t.) inputs, we introduce both
backward and forward differential deep learning algorithms. We demonstrate, both theoretically
and numerically, that the backward algorithm is more efficient compared to other contemporary
backward deep learning methodologies. Additionally, we show that differential deep learning can
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be extended to the forward deep learning schemes.

The third part, detailed in Chapter 3 based on our research in [61], focuses on the UQ of deep
learning BSDE schemes. As these schemes are prone to noise and model errors, assessing its reli-
ability before it can be used in practice is critical. In the context of pricing and hedging different
contracts in finance, companies may incur significant financial losses due to poor judgments.
As an example, we consider the forward deep learning schemes to study UQ and introduce a
UQ model. Through various experiments, we demonstrate the reliability of the UQ model in
estimating uncertainty for the class of forward deep learning schemes. The proposed UQ model
is applicable to other deep learning BSDE schemes. It is worth highlighting that the work in this
chapter is the first one about the development of a UQ model for deep learning BSDE schemes.

In Chapter 4, we conclude the thesis by summarizing the findings and outlining potential avenues
for future research.
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Chapter 1

Deep Learning BSDE Schemes

The aim of this chapter is to provide a brief overview of some basics related to BSDEs along with
notable results about them. Moreover, we describe neural network (NN) architectures and deep
learning techniques. Following this, we discuss two classes of deep learning schemes (forward
and backward). The pioneering forward scheme, known as the deep BSDE method, has been
reported in the literature to encounter several challenges, including getting stuck to a poor local
minima or even diverging, especially for a complex solution structure and a long terminal time.
Additionally, this scheme tends to produce more accurate approximations at the initial time
than at later time points. To address these limitations, we propose a novel forward method.
Through several numerical experiments, we show the improved performance of our new scheme
compared to the deep BSDE scheme and other contemporary forward deep learning schemes.
The chapter is based on our research conducted in [57, 60].

1.1 Introduction

BSDEs are important tools used to model problems in scientific fields due to their connections
to PDEs and stochastic control problems via the nonlinear Feynman–Kac formula [62]. As an
illustrative example of their applications in finance, it was demonstrated in [62] that the price
and delta-hedging of an option can be represented by a BSDE. Such an approach via a BSDE
has a couple of advantages when compared with the usual one of considering the associated
PDE. Firstly, the delta-hedging strategy is inclusive in the BSDE solution. Secondly, many
market models can be presented in terms of BSDEs, ranging from the Black-Scholes model to
more advanced ones such as local volatility models [69], stochastic volatility models [26], jump-
diffusion models [25], defaultable options [4], and many others. Thirdly, BSDEs can also be used
in incomplete markets [62]. Furthermore, using BSDEs eliminates the need to switch to the
so-called risk-neutral measure. Therefore, BSDEs represent a more intuitive and understandable
approach for option pricing and hedging.

In this thesis, we consider the high-dimensional nonlinear decoupled forward-backward stochastic
differential equation (FBSDE){

Xt = x0 +
∫ t
0 a (s,Xs) ds+

∫ t
0 b (s,Xs) dWs,

Yt = g (XT ) +
∫ T
t f (s,Xs) ds−

∫ T
t Zs dWs,

∀ t ∈ [0, T ] (1.1)

where Xt := (Xt, Yt, Zt), Wt =
(
W 1

t , . . . ,W
d
t

)⊤
is a d-dimensional Brownian motion, a : [0, T ]×

Rd → Rd, b : [0, T ] × Rd → Rd×d, f : [0, T ] × Rd × R × R1×d → R is the driver function
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and g : Rd → R is the terminal condition which depends on the final value XT of the forward
stochastic differential equation (SDE). Hence, the randomness in the BSDE is driven by the
forward SDE. Usually, the coupled FBSDE is referred to as a FBSDE. Hence, to avoid confusion,
we refer to the decoupled FBSDE (1.1) as a BSDE. We shall work under the standard well-
posedness assumptions of [83] to ensure the existence of a unique solution pair of (1.1).

Under the Black-Scholes framework, the BSDE is linear and the solution is given in a closed form.
However, in most practical scenarios, BSDEs cannot be explicitly solved. For instance, the Black-
Scholes model under different interest rates for lending and borrowing [10] leads to a nonlinear
BSDE for which finding an analytical solution becomes challenging. Hence, advanced numerical
techniques to approximate their solutions are needed. In recent years, various numerical methods
have been proposed for solving BSDEs, e.g., [11, 101, 35, 72, 103, 9, 74, 105, 34, 18, 104, 88,
87, 95, 96] and many others, see, e.g. [17] for a nice overview. However, most of them are not
suitable for tackling high-dimensional BSDEs due to the well-recognized challenge known as
the “curse of dimensionality”. The computational cost associated with solving high-dimensional
BSDEs grows exponentially with the increase in dimensionality. Some of the most important
equations are naturally formulated in high dimensions, e.g. the Black-Scholes equation for option
pricing that exhibits the dimensionality of the BSDE with the number of underlying financial
assets. Some techniques such as parallel computing using GPU computing [36, 58] or sparse
grid methods [100, 27, 13] have proven effective in solving only moderately dimensional BSDEs
within a reasonable computation time.

Recently, different approaches have been proposed to solve high-dimensional BSDEs, which
can be classified into three main categories. The first category involves multilevel Monte Carlo
methods based on Picard iteration [23, 8, 47, 48, 24, 45, 46]. The second category includes
tree-based methods [18, 93, 94], and the third one consists of deep learning-based methods
using DNNs. The first deep learning-based scheme called the deep BSDE (we refer to it as
the DBSDE scheme), was introduced in [22, 38]. The authors conducted numerical experiments
with various examples, demonstrating the effectiveness of their proposed algorithm in high-
dimensional settings. It proved proficient in delivering both accurate approximations of the
solution and computational efficiency. Therefore, the method opened the door to solving BSDEs
in hundreds of dimensions in a reasonable amount of time. Several articles have been published
after the original publication of the DBSDE method, some adjusting, reformulating, or extending
the algorithm [97, 12, 28, 52, 44, 67, 84, 6, 15, 73, 53, 85, 92, 30, 32, 54, 57, 1, 3, 33, 86, 60, 59],
while others focused on error analysis [39, 56, 77] and uncertainty quantification [61].

The DBSDE scheme formulates the BSDE as a global optimization problem, where the process
Z is parameterized using DNNs and the process Y is approximated from the Euler-Maruyama
method applied to BSDE (1.1). The parameters of DNNs are then optimized using the stochastic
gradient descent (SGD) algorithm on a terminal loss produced by the forward Euler-Maruyama
discretization of the BSDE. Since the DBSDE scheme operate forward in time, we refer to it
as a forward deep learning scheme. It has been pointed out in the literature that the DBSDE
method suffers from the following disadvantages: 1) It can be stuck in poor local minima or even
diverge, especially for a complex solution structure and a long terminal time, see, e.g., [44]. 2) It
is capable of achieving much better approximations of the BSDE (1.1) at the initial time than
at the other time points, although the solution of the BSDE is approximated pathwise along
[0, T ], see [86]. Note that we refer as “good” local minima the one which may perform as well
as a global minima, and can exist in considerable numbers given a NNs loss function. Otherwise
we call it “poor” local minima. Using a single DNN for the process Z in the DBSDE scheme
instead of multiple ones can only overcome the second disadvantage, as we demonstrated in [57].
Even other contemporary forward deep learning schemes such as [86] does not overcome both
of these disadvantages.
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Another class of deep learning schemes for solving high-dimensional BSDEs are the backward
deep learning schemes, with the first algorithm developed in [44]. In this approach, the solution
of (1.1) is approximated using two DNNs, and their parameters are backwardly optimized based
on local optimization problems at each discrete time point. The scheme in [44] does not suffer
from the disadvantages of the DBSDE scheme. However, it is more computationally costly than
the forward deep learning schemes due to solving multiple local optimization problems.

Motivated by the disadvantages of the forward deep learning schemes [22, 86], we present a
novel forward scheme in the first part of this thesis. The essential concept is to formulate the
problem as a global optimization with local loss functions including the terminal condition.
Our formulation is obtained by using the Euler-Maruyama discretization of the integrals and
iterating it with the terminal condition, i.e., iterative time discretization, this might be seen also
as a multi-step time discretization. The algorithm estimates the unknown solution (the process
Y ) using a DNN and its gradient (the process Z) via automatic differentiation (AD). These
approximations are performed from the global minimization of the local loss functions defined
at each time point from the iterative time discretization.

In [86], the author has introduced a similar strategy based on local loss functions arising from
Euler-Maruyama discretization at each time interval, with the terminal condition included as an
additional term in the loss function, i.e., the proposed algorithm attempt to match the discretized
dynamics of the BSDE at each time interval. This approach achieves a good approximation of
the processes Y and Z not only at the initial time but also at each time layer. Hence, it can
overcome the second disadvantage of the DBSDE scheme. However, it still suffers from the first
disadvantage, which will be demonstrated in our numerical experiments in Section 1.5. Note
that it does not help the SGD algorithm in [22, 86] to converge to a good local minima just
by considering another network architecture. For instance, the recurrent neural network (RNN)
type architectures are specialized for learning long complex sequences. However, it has been
pointed out in [44] that using RNN type architectures in the DBSDE scheme does not improve
the results. Even when used in [86], the RNN architecture does not improve the results, which
will be shown in Section 1.5. In our new formulation, using local losses including the terminal
condition helps the SGD algorithm to converge to a good local minima.

This chapter is structured as follows. In Section 1.2, we introduce some preliminaries about
BSDEs including NN architectures (DNNs and RNNs) and deep learning techniques. The forward
deep learning schemes [22, 86] and our novel forward scheme are presented in Section 1.3.
Section 1.4 describes the backward deep learning scheme [44], which is considered in more detail
in the second part of the thesis. Section 1.5 demonstrates through various high-dimensional
examples including pricing problems the improved performance of our new algorithm compared
to other contemporary forward deep learning schemes [22, 86]. Finally, Section 1.6 concludes
this chapter.

1.2 Preliminaries

1.2.1 Spaces and notation

Let (Ω,F ,P, {Ft}0≤t≤T ) be a complete, filtered probability space. In this space a standard d-
dimensional Brownian motion {Wt}≤t≤T is defined, such that (s.t.) the filtration {Ft}0≤t≤T is
the natural filtration of Wt. In what follows, all equalities concerning Ft-measurable random
variables are meant in the P-a.s. sense and all expectations (unless stated otherwise) are meant
under probability measure P. Throughout the whole paper, we rely on the following notations
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• x ∈ Rd as a column vector. x ∈ R1×d as a row vector.

• |x| for the Frobenius norm of any x ∈ Rd×q. In the case of scalar and vector inputs, these
coincide with the standard Euclidean norm.

• S2
(
[0, T ]× Ω;Rd×q

)
for the space of continuous and progressively measurable stochastic

processes X : [0, T ]× Ω → Rd×q s.t. E
[
sup0≤t≤T |Xt|2

]
< ∞.

• H2
(
[0, T ]× Ω;Rd×q

)
for the space of progressively measurable stochastic processes Z :

[0, T ]× Ω → Rd×q s.t. E
[∫ T

0 |Zt|2 dt
]
< ∞.

• L2
Ft

(
Ω;Rd×q

)
for the space of Ft-measurable random variable ξ : Ω → Rd×q s.t. E

[
|ξ|2
]
<

∞.

• L2 ([0, T ];Rq) for the Hilbert space of deterministic functions h : [0, T ] → Rq s.t.∫ T
0 |h (t)|2 dt < ∞.

• ∇xf :=
(

∂f
∂x1

, . . . , ∂f
∂xd

)
∈ R1×d for the gradient of scalar-valued multivariate function

f (t, x, y, z) w.r.t. x ∈ Rd, and analogously for ∇yf ∈ R and ∇zf ∈ R1×d w.r.t. y ∈ R
and z ∈ R1×d, respectively. Similarly, we denote the Jacobian matrix of a vector-valued
function u : Rd → Rq by ∇xu ∈ Rq×d.

• Hessx u ∈ Rd×d the Hessian matrix of a function u : Rd → R.

• Cl
b

(
Rd;Rq

)
and Cl

p

(
Rd;Rq

)
for the set of l-times continuously differentiable functions

φ : Rd → Rq s.t. all partial derivatives up to order l are bounded or have polynomial
growth, respectively.

• ∆ = {t0, t1, . . . , tN} is the time discretization of [0, T ] with t0 = 0 < t1 < . . . < tN = T ,
∆tn = tn+1 − tn and |∆| := max0≤n≤N−1 tn+1 − tn.

• En [Y ] := E [Y |Ftn ] for the conditional expectation w.r.t. the natural filtration, given the
time partition ∆.

• x⊤ ∈ Rq×d for the transpose of any x ∈ Rd×q.

• Tr [x] for the trace of any x ∈ Rd×d.

• 0d,d, 1d,d for Rd×d matrices of all zeros and ones, respectively.

1.2.2 BSDEs

We recall some results on BSDE which are relevant for this work. For the functions in BSDE (1.1),
we hierarchically structure the properties that they are assumed to fulfill.

AX1. The initial condition x0 ∈ L2
F0

(
Ω;Rd

)
and a, b satisfy a linear growth condition in x, i.e.,

|a (t, x)|+ |b (t, x)| ≤ C (1 + |x|) ,

∀ t ∈ [0, T ], x ∈ Rd and some constant C > 0. Furthermore, a, b are uniformly Lipschitz contin-
uous in the spatial variable, i.e.,

|a (t, x1)− a (t, x2)|+ |b (t, x1)− b (t, x2)| ≤ La,b |x1 − x2|

∀ t ∈ [0, T ], x1, x2 ∈ Rd, for some constant La,b > 0.
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AX2. Assumption AX1 holds. Moreover, a(t, 0), b(t, 0) are uniformly bounded ∀ 0 ≤ t ≤ T and
a ∈ C0,1

b

(
[0, T ]× Rd;Rd

)
, b ∈ C0,1

b

(
[0, T ]× Rd;Rd×d

)
.

AY1. The function f(t, x, y, z) is uniformly Lipschitz continuous w.r.t y and z, i.e.

|f (t, x, y1, z1)− f (t, x, y2, z2)| ≤ Lf (|y1 − y2|+ |z1 − z2|) ,

∀ (t, x, y1, z1) and (t, x, y2, z2) ∈ [0, T ] × Rd × R × R1×d, for some constant Lf > 0. Moreover,
f, g satisfy a quadratic growth condition in x,i.e.,

|f (t, x, y, z)|+ |g (x)| ≤ C
(
1 + |x|2

)
,

∀ (t, x, y, z) ∈ [0, T ]× Rd × R× R1×d for some constant C > 0.

AY2. Assumption AY1 holds. Moreover, f ∈ C0,1,1,1
b

(
[0, T ]× Rd × R× R1×d;R

)
and g ∈

C1
b

(
Rd;R

)
.

In the following theorem, we state the well-known result on SDEs.

Theorem 1.2.1. (Moment Estimates for SDEs [65])
Assume that Assumption AX1 holds. Then the SDE in (1.1) has a unique strong solution
{Xt}0≤t≤T ∈ S2

(
[0, T ]× Ω;Rd

)
and the following moment estimates hold:

E

[
sup

0≤t≤T
|Xt|2

]
≤ C, E

[
sup
s≤r≤t

|Xr −Xs|2
]
≤ C |t− s| ,

where constant C depends only on T, d.

The well-posedness of the BSDE (1.1) is guaranteed by Assumption AY1. The following theorem
guarantees the existence of a unique solution triple of (1.1).

Theorem 1.2.2. (Properties of BSDEs [62])
Assume that Assumptions AX1 and AY1 holds. Then the BSDE (1.1) admits a unique solution
triple {Xt, Yt, Zt}0≤t≤T ∈ S2

(
[0, T ]× Ω;Rd

)
× S2 ([0, T ]× Ω;R)×H2

(
[0, T ]× Ω;R1×d

)
.

Another result that is relevant for this work is the path regularity result of the processes Y and
Z, which we state in the following theorem.

Theorem 1.2.3. (Path regularity [49])
Under Assumptions AX2 and AY2 the BSDE (1.1) admits a unique solution triple
{Xt, Yt, Zt}0≤t≤T ∈ S2

(
[0, T ]× Ω;Rd

)
×S2 ([0, T ]× Ω;R)×H2

(
[0, T ]× Ω;R1×d

)
. Moreover, the

following holds true:

(i) There exist a constant C > 0 s.t. ∀ 0 ≤ s ≤ t ≤ T

E
[
sup
s≤r≤t

|Yr − Ys|2
]
≤ C |t− s|

(ii) There exist a constant C > 0 s.t. for any partition ∆ of [0, T ]

N−1∑
n=1

E
[∫ tn+1

tn

|Zt − Ztn |
2 dt

]
≤ C |∆| .
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An important property of BSDEs is that they provide a probabilistic representation for the
solution of a specific class of PDEs given by the nonlinear Feynman–Kac formula. Consider the
semi-linear parabolic PDE

∂u(t, x)

∂t
+∇xu(t, x) a(t, x) +

1

2
Tr
[
bb⊤Hessx u(t, x)

]
+ f (t, x, u,∇xu b) (t, x) = 0, (1.2)

for all (t, x) ∈ ([0, T ] × Rd) and the terminal condition u(T, x) = g(x). Assume that (1.2)
has a classical solution u ∈ C1,2

b

(
[0, T ]× Rd;R

)
and the aforementioned standard Lipschitz

assumptions of (1.1) are satisfied. Then the solution of (1.1) can be represented P-a.s. by

Yt = u (t,Xt) , Zt = ∇xu (t,Xt) b (t,Xt) ∀ t ∈ [0, T ) . (1.3)

To approximate the function u (and its gradient), NNs are considered due to the approximation
capability in high dimensions.

1.2.3 NNs as function approximators

NNs rely on the composition of simple functions, but provide an efficient way to approximate
unknown functions.

We start introducing feedforward NNs or DNNs. Let d, q ∈ N be the input and output dimen-
sions, respectively. We fix the global number of layers as L + 2, L ∈ N the number of hidden
layers each with η ∈ N neurons. The first layer is the input layer with d neurons and the last
layer is the output layer with q neurons. A DNN is a function ϕ(x; θ) : Rd → Rq composed of a
sequence of simple functions, which can be expressed in the following form

x ∈ Rd 7−→ AL+1(·; θ(L+ 1)) ◦ ϱ ◦AL(·; θ(L)) ◦ ϱ ◦ . . . ◦ ϱ ◦A1(x; θ(1)) ∈ Rq,

where θ := (θ(1), . . . , θ(L+ 1)) ∈ RP and P is the total number of network parameters, x ∈ Rd

is called an input vector. Moreover, Al(·; θ(l)), l = 1, 2, . . . , L + 1 are affine transformations:
A1(·; θ(1)) : Rd → Rη, Al(·; θ(l)), l = 2, . . . , L : Rη → Rη and AL+1(·; θ(L + 1)) : Rη → Rq,
represented by

Al(v; θ(l)) = Wlv + Bl, v ∈ Rηl−1 ,

where θ(l) := (Wl,Bl), Wl ∈ Rηl×ηl−1 is the weight matrix and Bl ∈ Rηl is the bias vector with
η0 = d, ηL+1 = q, ηl = η for l = 1, . . . , L and ϱ : R → R is a nonlinear function (called the
activation function), and applied component-wise on the outputs of Al(·; θ(l)). Common choices
are tanh(·), sin(·),max(0, ·) etc. All these matrices Wl and vectors Bl form the parameters θ of
the DNN and they have the dimension

P =

L+1∑
l=1

ηl(ηl−1 + 1) = η(d+ 1) + η(η + 1)(L− 1) + q(η + 1),

for fixed d, q, L and η. We denote by Θ the set of possible parameters for the DNN ϕ(·; θ) with
θ ∈ Θ. The universal approximation theorem [41, 19] justifies the use of DNNs as function
approximators.

Another NN architecture are the RNNs, which are specialized to learning long-term dependen-
cies. Hence, it is naturally interesting to see whether RNNs can improve the forward deep learning
schemes [22, 86] for solving BSDEs, in particular to overcome the disadvantages mentioned al-
ready. RNNs are a type of NN that allow previous outputs to be used as inputs with hidden
states. More precisely, the standard RNNs [89] are defined as follows: let x1,x2, . . . ,xN ∈ Rd
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be input vectors, the network computes hidden states H1,H2, . . . ,HN ∈ Rη, and predictions
y1,y2, . . . ,yN ,∈ Rq, by the equations

Hn = ϱ(WHHn−1 +Wxxn + BH),

yn = WyHn + By,

where n = 1, . . . , N , H0 = 0 or considered as trainable parameter, θ = (WH,Wx,BH,Wy,By) ∈
RP are the trainable parameters and ϱ is the nonlinear activation function. Note that the stan-
dard RNNs are universal approximators as well, see [90]. If one shall think that Hn depends only
on the current input xn and the last hidden state Hn−1, and suppose that the distribution over
the hidden states is well-defined, the standard RNNs should preserve the Markovian property
for the BSDEs. However, although the Markovian property can be preserved, our numerical
results show that no improvements can be observed by using the standard RNNs in Section 1.5.
Furthermore, we also check and find that the accuracy of the deep learning-based algorithms for
solving BSDEs cannot be improved by using the advanced RNNs, e.g., Long Short-Term Mem-
ory (LSTM) networks or bidirectional RNNs. The reason could be that such NN architectures
even violate the Markovian property for the BSDEs. For example, in the LSTM the output yn

depends not only on the input vector xn (and parameters θ), but also the hidden state Hn−1

and/or Hn−2, . . . ,H0, i.e., xn−1 and/or xn−2, . . . ,x0.

1.2.4 Supervised deep learning

We present supervised deep learning using DNNs as it is the main NN architecture used in this
thesis. After the DNN architecture is defined, what determines the mapping of a certain input
to an output are the parameters θ incorporated in the DNN model. These parameters need to
be optimized s.t. the DNN approximates the unknown function which is called the training of
the DNN. The loss function acts as the objective function to be minimized during the training
procedure, in which the DNNs optimal set of parameters is searched.

Consider the training data sampled from some (unknown) multivariate joint distribution (x,y) ∼
p, where the random variable x ∈ Rd is referred as the input and the random variable y ∈ R as
the label. The goal (in a regression setting) is then to approximate the deterministic function
F (x) := Ep [y|x = x] by DNN ϕ(x; θ) using (x,y) ∼ p. The loss function measures how well the
current approximation of the DNN is compared to the label. A common choice is the expected
squared error, which is given as

L(θ) = Ep
[
|ϕ (x; θ)− y|2

]
. (1.4)

Then the optimal parameters θ∗ in (1.4) are given as

θ∗ ∈ argmin
θ∈Θ

L(θ),

which can be estimated by using SGD-type algorithms.

1.3 Forward deep learning schemes

In order to formulate BSDE as a deep learning problem, the first step is to discretize the integrals
in (1.1). Let us consider the time discretization ∆ with uniform step size ∆t = tn+1 − tn.
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For notational convenience we write ∆Wn = Wtn+1 − Wtn , (Xn, Yn, Zn) = (Xtn , Ytn , Ztn) and(
X∆

n , Y ∆
n , Z∆

n

)
for the approximations. The well-known Euler-Maruyama scheme reads

X∆
n+1 = X∆

n + a
(
tn, X

∆
n

)
∆t+ b

(
tn, X

∆
n

)
∆Wn, (1.5)

for n = 0, 1, . . . , N − 1 and X∆
0 = x0. Since the Brownian motions are independent, ∆Wn ∼

N (0d, ∆t Id), with 0d ∈ Rd a vector of zeros and Id ∈ Rd×d the identity matrix.

Next we apply the Euler-Maruyama scheme for the backward process. For the time interval
[tn, tn+1], the integral form of the backward process reads

Yn = Yn+1 +

∫ tn+1

tn

f (s,Xs) ds−
∫ tn+1

tn

Zs dWs,

which can be straightforwardly reformulated as

Yn+1 = Yn −
∫ tn+1

tn

f (s,Xs) ds+

∫ tn+1

tn

Zs dWs.

Applying the Euler-Maruyama scheme for the latter equation one obtains

Y ∆
n+1 = Y ∆

n − f
(
tn,X

∆
n

)
∆t+ Z∆

n ∆Wn, (1.6)

for n = 0, 1, . . . , N−1, where for notational convenienceX∆
n :=

(
X∆

n , Y ∆
n , Z∆

n

)
. By iterating (1.6)

together with the terminal condition g(X∆
N ), we have

Y ∆
n = g(X∆

N ) +

N−1∑
m=n

(
f
(
tm,X∆

m

)
∆t− Z∆

m∆Wm

)
, (1.7)

for n = 0, 1, . . . , N − 1, which represents an iterative time discretization of

Yn = g(XT ) +

∫ T

tn

f (s,Xs) ds−
∫ T

tn

Zs dWs.

The discretized form defined by (1.7) plays an important role in our forward algorithm, as it will
be presented in Section 1.3.3. The implicit equation (1.7) is assumed to be uniquely solvable.
Furthermore, we assume that Assumptions AX1 and AY1 hold. Under such conditions, our
algorithm approximates the solution of (1.7) by estimating Y ∆ with a NN and Z∆ with the AD,
and uses the SGD (in particular Adam optimizer) to find the root. The optimization algorithm
minimizes the loss defined with (1.7) and finds the optimal parameters θ∗ of the NN from the
set Θ. In this way, the approximation of the solution to (1.7) has the optimization error by
using the Adam algorithm, and the estimation error by using the empirical loss instead of the
continuous loss. Note that this discretization is also used in [30] whose formulation is based
on backward recursive local optimizations defined from (1.7) to estimate the solution and its
gradient at each time step, namely a backward deep learning scheme. In our case, we consider
a global optimization based on local losses obtained from (1.7) in a forward manner, hence a
forward deep learning scheme.

After discretizing the integrals, the deep learning schemes are made fully implementable by
approximating the unknown processes (Y ∆

n , Z∆
n ) in (1.5) for n = 0, 1, . . . , N . These processes

are parameterized using NNs, whose parameters are estimating by constructing an appropriate
loss function. Next, we review how the forward deep learning methods in [22, 86] are constructed,
and then present our new forward method.
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1.3.1 The DBSDE scheme

The approximation of the discrete unknown processes
(
Y ∆
n , Z∆

n

)
, n = 0, 1, . . . , N , in the DBSDE

scheme [22] is designed as a stochastic control problem and can be presented as follows: starting

from an initialization Y ∆,θ
0 = θy0 ∈ R of Y ∆

0 and Z∆,θ
0 = θz0 ∈ R1×d of Z∆

0 , and then using at
each discrete time point tn, n = 1, 2, . . . , N − 1, a different feedforward multilayer NN or DNN
ϕz
n(·; θzn) : Rd → R1×d to approximate Z∆

n ∈ R1×d as Z∆,θ
n , where the input of the network is

the Markovian process X∆
n ∈ Rd. The approximation

{
Y ∆,θ
n

}N

n=1
is calculated using the Euler-

Maruyama method (1.6). Note that this algorithm forms a global DNN that consists of NNs

defined at each time step, where the paths of
{
X∆

n

}N
n=0

inclusive of {Wn}Nn=0 are used as the
input data. Note that Wn is an input to the NN as ∆Wn−1 = Wn −Wn−1 is used to calculate
X∆

n . Then the final output Y ∆,θ
N depends on parameters θ =

(
θy0 , θ

z
0, θ

z
1, . . . , θ

z
N−1

)
. The output

aims to match the terminal condition g
(
X∆

N

)
of the BSDE, and then optimizes the parameters

θ over the parameter space Θ using the loss function

Ly,∆ (θ) = E

[∣∣∣Y ∆,θ
N − g

(
X∆

N

)∣∣∣2] . (1.8)

The final estimated parameters θ̂ are received after minimizing the loss function (1.8) using

SGD-type algorithms, and provide the final approximation of
(
Y ∆
n , Z∆

n

)
as
(
Y ∆,θ̂
n , Z∆,θ̂

n

)
for

n = 0, 1, . . . , N − 1 and Y ∆,θ̂
N . For the algorithmic framework we refer to [22]. Note that θy0

and θz0 are considered as learnable parameters in [22] and initialized by sampling from uniform
distributions.

Remark 1.3.1. As already mentioned, a strong drawback of the DBSDE scheme is that only
(Y0, Z0) can be well approximated. The approximation of the processes Y and Z over the entire
discrete time domain in the DBSDE scheme can be enhanced by utilizing a single DNN for the
process Z [57], incorporating the time variable as an input to the network, instead of employing
multiple DNNs at each discrete time point. This is because, for sufficiently regular solutions, the
gradient between two close time steps should be similar for a given spatial point x. In the DBSDE
scheme, there is no inherent connection between the gradients of successive and potentially close
time steps. Moreover, by closely linking the parameters to the loss function using one DNN
makes the resulting architecture easier to optimize and should perform better than the DBSDE
scheme. As demonstrated in [12, 57] through various high-dimensional numerical examples, using
a single DNN instead of multiple DNNs not only enhances numerical stability across the entire
time domain but also reduces computational time. From the same reasoning for the process Y ,
such approach using one DNN is also considered in [86] and in our novel forward deep learning
approach, where the DNN is used for the process Y and AD for Z.

Due to the complexity of the problem formulation and the inherent challenges in ensuring strict
regression error bounds for NNs using SGD methods, it is not straightforward to show that
the total error resulting from minimizing the loss function (1.8) approaches zero as the mesh
size becomes infinitely small. However, there are some articles about the convergence analysis
of the DBSDE scheme, using different assumptions to guarantee their results. We refer the
interested readers to [39] for an a posteriori error estimation of the scheme in the general case
of coupled FBSDEs. For coupled FBSDEs with non-Lipschitz coefficients, refer to [56], and
for fully-coupled drift coefficients, see [77]. It has been demonstrated in these works that as
long as the loss function (1.8) is optimized to be close to zero under fine time discretization,
the approximate solution is close to the true solution. Additionally, leveraging the universal
approximation theorem, the authors show that NNs with appropriate parameters can yield
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an approximately accurate numerical solution. However, these studies neglect the optimization
error from the SGD algorithm (and the estimation error associated with minimizing the empirical
version of the loss (1.8)), as accounting for it significantly increases the complexity of the analysis.
We demonstrate in the numerical section, see also [44], that the DBSDE method even diverges
for a complex solution structure and a long terminal time.

1.3.2 The local DBSDE scheme

To overcome the drawback of the DBSDE scheme that only (Y0, Z0) can be well approximated,
the author in [86] proposed to formulate the BSDE problem based on a global optimization with
local losses (we refer as Local Deep BSDE or LDBSDE scheme). The solution is approximated
by using a DNN and its gradient via AD. These approximations are performed by the global
minimization of local loss functions defined in terms of the dynamics of the BSDE at each discrete
time point given by the Euler-Maruyama method (1.6) and the terminal condition included as
an additional term. The algorithm is given as follows:

• Generate approximations X∆
n+1 for n = 0, 1, . . . , N − 1 using (1.5).

• At each discrete time point tn, n = 0, 1, . . . , N , use one DNN ϕy(·; θ) : R1+d → R to
approximate Y ∆

n and Z∆
n using AD due to (1.3), where the input vector of the network is

the time value tn ∈ R+ and the Markovian process X∆
n ∈ Rd. More precisely

Y ∆,θ
n = ϕy(tn, X

∆
n ; θ), Z∆,θ

n = ∇xϕ
y(t, x; θ)

∣∣∣
(t,x)=(tn,X∆

n )
b
(
tn, X

∆
n

)
.

• Train the parameters θ using a global loss function including local losses s.t. the dynamics
of discretized BSDE (1.6) are satisfied at each time step, namely

Ly,∆ (θ) =
N∑

n=0

Ly,∆
n (θ) ,

Ly,∆
n (θ) = E

[∣∣∣Y ∆,θ
n+1 − Y ∆,θ

n + f
(
tn,X

∆,θ
n

)
∆t− Z∆,θ

n ∆Wn

∣∣∣2] , n = 0, 1, . . . , N − 1,

Ly,∆
N (θ) = E

[∣∣∣Y ∆,θ
N − g

(
X∆

N

)∣∣∣2] ,
(1.9)

where for notational convenience X∆,θ
n :=

(
X∆

n , Y ∆,θ
n , Z∆,θ

n

)
.

• Approximate the optimal parameters θ∗ ∈ argminθ∈Θ Ly,∆ (θ) using a SGD method and

receive the final estimated parameters θ̂. Set the final approximation of
(
Y ∆
n , Z∆

n

)
as(

Y ∆,θ̂
n , Z∆,θ̂

n

)
for n = 0, 1, . . . , N .

The convergence of the LDBSDE scheme (and a Milstein-version of the scheme) is discussed
in [66], providing a similar a posteriori error type estimation as in [39] for the DBSDE scheme.
The authors show that the error of these schemes is bounded by their respective loss func-
tion (1.9), and the loss functional converges sufficiently fast to zero guaranteeing that the error
of the scheme vanishes in the limit. Such a situation is attainable through the universal approx-
imation theorem of NNs. Note that the SGD method used to solve the optimization problem is
assumed to not get trapped in a local minimum (which can be the case as we show in the nu-
merical experiments). Furthermore, the authors highlight an important distinction: algorithms
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like the DBSDE scheme require one DNN at each discrete time point, thereby limiting conver-
gence results to spatial approximations for fixed time discretizations. In contrast, schemes such
as the LDBSDE employ a single DNN defined across the entire state space, including the tem-
poral dimension, avoiding the increase of DNNs and thus addressing this scalability challenge
effectively.

1.3.3 The locally additive DBSDE scheme

The LDBSDE scheme improves the results of the DBSDE scheme for the approximations in the
entire time domain. However, it can also get stuck in poor local minima as the DBSDE scheme
especially for a complex solution structure and a long terminal time. Our idea is to consider
a formulation based on a global optimization with local loss function, where each loss term
includes the terminal condition. This is achieved by using the iterative time discretization (1.7).
We refer to this as the Locally additive Deep BSDE (LaDBSDE) scheme as each local loss term
is composed of a linear addition of nonlinear terms. The algorithm is given as follows:

• Generate approximations X∆
n+1 for n = 0, 1, . . . , N − 1 using (1.5).

• At each discrete time point tn, n = 0, 1, . . . , N − 1, use one DNN ϕy(·; θ) : R1+d → R to
approximate Y ∆

n and Z∆
n using AD due to (1.3), where the input vector of the network is

the time value tn ∈ R+ and the Markovian process X∆
n ∈ Rd. More precisely

Y ∆,θ
n = ϕy(tn, X

∆
n ; θ), Z∆,θ

n = ∇xϕ
y(t, x; θ)

∣∣∣
(t,x)=(tn,X∆

n )
b
(
tn, X

∆
n

)
.

• Train the parameters θ using a global loss function including local losses s.t. the iter-
ated dynamics of discretized BSDE (1.7) that always includes the terminal condition are
satisfied at each discrete time point, namely

Ly,∆ (θ) =

N−1∑
n=0

Ly,∆
n (θ) ,

Ly,∆
n (θ) = E

∣∣∣∣∣Y ∆,θ
n −

N−1∑
m=n

(
f
(
tm,X∆,θ

m

)
∆t− Z∆,θ

m ∆Wm

)
− g

(
X∆

N

)∣∣∣∣∣
2
 .

(1.10)

• Approximate the optimal parameters of θ∗ ∈ argminθ∈Θ Ly,∆ (θ) using a SGD method

and receive the final estimated parameters θ̂. Set the final approximation of
(
Y ∆
n , Z∆

n

)
as(

Y ∆,θ̂
n , Z∆,θ̂

n

)
for n = 0, 1, . . . , N − 1.

Remark 1.3.2. One can consider two DNNs, one for the process Y and another for Z, which
can result in better approximations compared to using AD for Z, see [44]. However, we aim to
show that the improvements from the LaDBSDE scheme compared to the LDBSDE scheme result
from the reformulation of loss function, specifically using (1.7) instead of (1.6). Therefore, we
considered a similar architecture to that used in the LDBSDE scheme.

We present the algorithmic framework (without using mini-batches and Adam optimizer) of the
LaDBSDE scheme with one sample path indexed by j and learning rate α in Framework 1.3.1.

Framework 1.3.1. Let T, α ∈ (0,∞), d, P,N ∈ N, x0 ∈ Rd, a : [0, T ] × Rd → Rd, b : [0, T ] ×
Rd → Rd×d, f : [0, T ] × Rd × R × R1×d → R and g : Rd → R be functions, let (Ω,F ,P) be
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a probability space, let Wj : [0, T ] × Ω → Rd, j ∈ N, be independent d-dimensional standard
Brownian motions on (Ω,F ,P), let t0, t1, . . . , tN ∈ [0, T ] be real numbers with

0 = t0 < t1 < . . . < tN = T,

for every j ∈ N, let X∆
j : {0, 1, . . . , N} × Ω → Rd be a stochastic process which satisfies for all

n ∈ {0, 1, . . . , N − 1}, ∆Wn,j = Wn+1,j −Wn,j that X∆
0,j = x0 and

X∆
n+1,j = X∆

n,j + a
(
tn, X

∆
n,j

)
∆t+ b

(
tn, X

∆
n,j

)
∆Wn,j ,

for every θ ∈ RP , θ parameters of a NN, n ∈ {0, 1, . . . , N − 1}, q = 1, ϱ : R → R, L, η ∈ N,
let ϕ = (ϕ(t, x; θ))t∈R+,x∈Rd,θ∈RP : Rd+1 → Rq (ϕ ∈ C0,1

b

(
[0, T ]× Rd;R1×d

)
) be a family of

functions generated by NNs, where the output is given as Y ∆,θ
n,j = ϕ(tn, X

∆
n,j ; θ) and let Z∆,θ

n,j =

∇xϕ(t, x; θ)
∣∣∣
(t,x)=(tn,X∆

n,j)
b
(
tn, X

∆
n,j

)
, for every j ∈ N, n ∈ {0, 1, . . . , N−1} let φn,j : RP×Ω → R

be the function which satisfies for all θ ∈ RP , ω ∈ Ω that

φn,j(θ, ω) =

∣∣∣∣∣Y ∆,θ
n,j (ω)−

N−1∑
m=n

(
f
(
tm,X∆,θ

m,j(ω)
)
∆t− Z∆,θ

m,j (ω)∆Wm,j(ω)
)
− g

(
X∆

N,j(ω)
)∣∣∣∣∣

2

,

for every j ∈ N let φj : RP × Ω → R be the function which satisfies for all θ ∈ RP , ω ∈ Ω that

φj(θ, ω) =

N−1∑
n=0

φn,j(θ, ω),

for every j ∈ N let (∇θφj) : RP × Ω → RP be a function for all ω ∈ Ω, θ ∈{
v ∈ RP :

(
RP ∋ w 7→ φj(w,ω) ∈ R is differentiable at v ∈ RP

)}
and θ̂ : N × Ω → RP be a

stochastic process which satisfies for all κ ∈ N that

θ̂κ = θ̂κ−1 − α(∇θφj)
(
θ̂κ−1

)
.

The architecture of the LaDBSDE scheme is displayed in Figure 1.1. The flow of the information
is represented by the direction of the arrows. The calculations can be broken down into three
steps. In the first step, the samples of the forward SDE are calculated. The information used
in this step is represented by the dotted lines. For instance, to calculate X∆

2 , (t1,∆W1, X
∆
1 ) is

used, and (tN−1,∆WN−1, X
∆
N−1) for X

∆
N . The second step is to calculate the values (Y ∆,θ

n , Z∆,θ
n )

for n = 0, 1, . . . , N − 1, using a DNN and the AD. The information needed for such calculations
is represented by the solid lines. For example, the DNN uses as input (t1, X

∆
1 ) to calculate Y ∆,θ

1 .

Using the AD we calculate the gradient in the spatial direction to obtain Z∆,θ
1 . Finally, the

local losses are calculated backwardly with the information presented by the dashed lines. To
calculate Ly,∆

N−1, the terminal condition Y ∆
N = g(X∆

N ) and (tN−1,∆WN−1, X
∆
N−1, Y

∆,θ
N−1, Z

∆,θ
N−1)

are used. For Ly,∆
N−2, (tN−2,∆WN−2, X

∆
N−2, Y

∆,θ
N−2, Z

∆,θ
N−2) and the information form Ly,∆

N−1 are

used, namely Y ∆
N and (tN−1,∆WN−1, X

∆
N−1, Y

∆,θ
N−1). The same holds for the other loss terms.

We use a reverse computation approach for the local loss functions because it is more efficient
than the direct computation approach (where each local loss function, as defined in (1.10),
is calculated sequentially from from t = 0 to t = T ). The LaDBSDE algorithm calculating

the final estimates
(
Y ∆,θ̂
n , Z∆,θ̂

n

)
for n = 0, 1, . . . , N − 1, with mini-batches of size B and K

optimization steps of Adam optimizer using direct and reverse computation approaches of the

12



t0 t1 t2 · · · tN−1

∆W0 ∆W1 ∆W2 · · · ∆WN−1

X∆
0 X∆

1 X∆
2 · · · X∆

N−1 X∆
N

ϕy ϕy ϕy · · · ϕy

Y ∆,θ
0 Y ∆,θ

1 Y ∆,θ
2

· · · Y ∆,θ
N−1 Y ∆

N

∇xϕ
y ∇xϕ

y ∇xϕ
y · · · ∇xϕ

y

Z∆,θ
0 Z∆,θ

1 Z∆,θ
2

· · · Z∆,θ
N−1

Ly,∆
0 Ly,∆

1 Ly,∆
2

· · · Ly,∆
N−1

Figure 1.1: Architecture of the LaDBSDE scheme.

loss function (1.10) are given in Algorithm 1 and 2, respectively. Note that θ̂ is an estimation
of θ∗ due to the optimization error resulting from the Adam optimization algorithm and the
estimation error from the empirical version of loss (1.10) given as

L̃y,∆
(
θ̂
)
=

N−1∑
n=0

L̃y,∆
n

(
θ̂
)
,

L̃y,∆
n

(
θ̂
)
=

1

B

B∑
j=1

∣∣∣∣∣Y ∆,θ̂
n,j −

N−1∑
m=n

(
f
(
tm,X∆,θ̂

m,j

)
∆t− Z∆,θ̂

m,j∆Wm,j

)
− g

(
X∆

N,j

)∣∣∣∣∣
2

,

for a batch size B. With Algorithm 2 the computation time of LaDBSDE is comparable to
that of LDBSDE. An a posteriori error analysis for the LaDBSDE scheme can be conducted by
following, for example, the methodology outlined in [66]. This is part of our ongoing research.

1.4 Backward deep learning schemes

As for the forward deep learning schemes, the first step is to discretize the integrals in
BSDE (1.1), which are given from (1.5) and (1.6). The first backward deep learning approach is
proposed in [44]. The discrete unknown processes

(
Y ∆
n , Z∆

n

)
in (1.6) are approximated using two

DNNs. The DNN parameters are backwardly optimized at each discrete time step from the min-
imization of loss functions defined recursively by backward induction, namely local optimization
at each discrete time point. The method is referred to as deep backward dynamic programming
(DBDP) scheme, as it builds upon the backward dynamic programming relation (1.6). The
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Algorithm 1: Algorithm of LaDBSDE scheme using a direct computation of the loss
function (1.10)

Input: (N, d, T, x0) - problem parameters
Input: (a, b, f, g) - functions of the BSDE
Input: (α,K, L, η, ϱ,B) - DNN hyperparameters

Output:

({
Y ∆,θ̂
n

}N−1

n=0
,
{
Z∆,θ̂
n

}N−1

n=0

)
- estimated solution

∆t = T
N

for n = 0 : N do
tn = n∆t

end
q = 1 - DNN output dimension; input dimension d+ 1
θ̂0 - Xavier normal initializer [31]
Optimization or training part

for κ = 1 : K do
for j = 1 : B do

X∆
0,m = x0

for n = 0 : N − 1 do
Euler-Maruyama for the forward SDE
∆Wn,j ∼ N (0d,∆t Id)

X∆
n+1,j = X∆

n,j + a
(
tn, X

∆
n,j

)
∆t+ b

(
tn, X

∆
n,j

)
∆Wn,j

Use DNN with (L, η, ϱ) for Y and AD for Z

Y ∆,θ̂κ−1

n,j = ϕy
(
tn, X

∆
n,j ; θ̂

κ−1
)

Z∆,θ̂κ−1

n,j = ∇xϕ
y(t, x; θ̂κ−1)

∣∣∣
(t,x)=(tn,X∆

n,j)
b
(
tn, X

∆
n,j

)
end

end
Direct computation of the loss function (1.10)

for j = 1 : B do
for n = 0 : N − 1 do

Ỹ ∆,θ̂κ−1

n,j = g
(
X∆

N,j

)
for m = n : N − 1 do

Ỹ ∆,θ̂κ−1

n,j = Ỹ ∆,θ̂κ−1

n,j + f
(
tm,X∆,θ̂κ−1

m,j

)
∆t− Z∆,θ̂κ−1

m,j ∆Wm,j

end

L̃y,∆
n,j (θ̂

κ−1) =
∣∣∣Y ∆,θ̂κ−1

n,j − Ỹ ∆,θ̂κ−1

n,j

∣∣∣2
end

end

L̃y,∆(θ̂κ−1) =
∑N−1

n=0
1
B

∑B
j=1 L̃

y,∆
n,j (θ̂

κ−1)
Adam optimization step

θ̂κ - trained parameters at step κ using Adam optimizer [64] for L̃y,∆(θ̂κ−1)
end

θ̂ = θ̂K - final estimated DNN parameters after K optimization steps
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Algorithm 2: Algorithm of LaDBSDE scheme using a reverse computation of the loss
function (1.10)

Input: (N, d, T, x0) - problem parameters
Input: (a, b, f, g) - functions of the BSDE
Input: (α,K, L, η, ϱ,B) - DNN hyperparameters

Output:

({
Y ∆,θ̂
n

}N−1

n=0
,
{
Z∆,θ̂
n

}N−1

n=0

)
- estimated solution

∆t = T
N

for n = 0 : N do
tn = n∆t

end
q = 1 - DNN output dimension; input dimension d+ 1
θ̂0 - Xavier normal initializer [31]
Optimization or training part

for κ = 1 : K do
for j = 1 : B do

X∆
0,m = x0

for n = 0 : N − 1 do
Euler-Maruyama for the forward SDE
∆Wn,j ∼ N (0d,∆t Id)

X∆
n+1,j = X∆

n,j + a
(
tn, X

∆
n,j

)
∆t+ b

(
tn, X

∆
n,j

)
∆Wn,j

Use DNN with (L, η, ϱ) for Y and AD for Z

Y ∆,θ̂κ−1

n,j = ϕy
(
tn, X

∆
n,j ; θ̂

κ−1
)

Z∆,θ̂κ−1

n,j = ∇xϕ
y(t, x; θ̂κ−1)

∣∣∣
(t,x)=(tn,X∆

n,j)
b
(
tn, X

∆
n,j

)
end

end
Reverse computation of the loss function (1.10)

for j = 1 : B do

Ỹ ∆,θ̂κ−1

N,j = g
(
X∆

N,j

)
for n = N − 1 : 0 do

Ỹ ∆,θ̂κ−1

n,j = Ỹ ∆,θ̂κ−1

n+1,j + f
(
tn,X

∆,θ̂κ−1

n,j

)
∆t− Z∆,θ̂κ−1

n,j ∆Wn,j

L̃y,∆
n,j (θ̂

κ−1) =
∣∣∣Y ∆,θ̂κ−1

n,j − Ỹ ∆,θ̂κ−1

n,j

∣∣∣2
end

end

L̃y,∆(θ̂κ−1) =
∑N−1

n=0
1
B

∑B
j=1 L̃

y,∆
n,j (θ̂

κ−1)
Adam optimization step

θ̂κ - trained parameters at step κ using Adam optimizer [64] for L̃y,∆(θ̂κ−1)
end

θ̂ = θ̂K - final estimated DNN parameters after K optimization steps
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scheme can be formulated as follows:

• Generate approximations X∆
n+1 for n = 0, 1, . . . , N − 1 using (1.5).

• Set
Y ∆,θ̂
N := g(X∆

N ), Z∆,θ̂
N := ∇xg(X

∆
N )b(tN , X∆

N ).

• For each discrete time point tn, n = N − 1, N − 2, . . . , 0, use two DNNs ϕy
n(·; θyn) : Rd → R

and ϕz
n(·; θzn) : Rd → R1×d to approximate the discrete processes

(
Y ∆
n , Z∆

n

)
, respectively,

where the input vector of the network is the Markovian process X∆
n ∈ Rd. More precisely

Y ∆,θ
n = ϕy

n(X
∆
n ; θyn), Z∆,θ

n = ϕz
n(X

∆
n ; θzn).

• Train the parameter set θn = (θyn, θzn) by constructing a loss function s.t. the dynamics of
the discretized process Y given by (1.6) are fulfilled, namely

Ly,∆
n (θn) = E

[∣∣∣Y ∆,θ̂
n+1 − Y ∆,θ

n + f
(
tn,X

∆,θ
n

)
∆tn − Z∆,θ

n ∆Wn

∣∣∣2] . (1.11)

• Approximate the optimal parameters θ∗n ∈ argminθn∈Θn
Ly,∆
n (θn) using a SGD method

and receive the estimated parameters θ̂n =
(
θ̂yn, θ̂zn

)
. Then, define

Y ∆,θ̂
n := ϕy

n

(
X∆

n ; θ̂yn

)
, Z∆,θ̂

n := ϕz
n

(
X∆

n ; θ̂zn

)
.

The authors in [44] provided a similar scheme to the DBDP one, where the process Y is estimated
by a DNN and Z via AD, similar to the LDBSDE or LaDBSDE schemes. Note that another
backward deep learning scheme is developed in [30], where the authors used the iterative time
discretization (1.7) instead of (1.6) for the backward part in (1.1). We consider the DBDP scheme
and compare it to its differential deep learning counterpart in Chapter 2. The convergence of
the DBDP scheme towards the solution (Y,Z) of (1.1) is provided in [44] together with a rate
of convergence that depends on the discretization error from the Euler-Maruyama scheme and
the approximation or model error by the DNNs, see Theorem 4.1 in [44].

1.5 Numerical results

In this section we illustrate the improved performance using the LaDBSDE scheme compared
to the schemes DBSDE and LDBSDE. All the experiments below were run in PYTHON using
TensorFlow on the PLEIADES cluster (no parallelization), which consists of 268 workernodes
and additionally 5 GPU nodes with 8 NVidia HGX A100 GPUs (128 cores each, 2 TB memory, 16
GB per thread). We run the algorithms on the GPU nodes. For more information, see PLEIADES
documentation1.

In all the following examples, we consider similar hyperparameters for all schemes for a fair
comparison.

For the DBSDE scheme, we keep the network architecture considered in [22]. In the implemen-

tations, N − 1 DNNs are employed to calculate Z∆,θ
n , n = 1, 2, . . . , N − 1, θ ∈ RP . Each of the

NNs has L = 2 hidden layers and η = d + 10 neurons per hidden layer. The authors [22] also

1https://pleiadesbuw.github.io/PleiadesUserDocumentation/
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adopt batch normalization [50] right after each matrix multiplication and before activation. The
rectifier function (ReLU) R ∋ x 7→ max(0, x) ∈ [0,∞) is used as the activation function ϱ for
the hidden variables. All the weights are initialized using a normal or a uniform distribution
without any pre-training. The choice of the dimension of the parameters is given as [22], i.e.,

P = d+ 1 + (N − 1)(2d(d+ 10) + (d+ 10)2 + 4(d+ 10) + 2d).

For our scheme and the LDBSDE scheme, we adopt a similar network architecture as in [86],
where the author considered a DNN with L = 4 hidden layers and η = 256 neurons. Based on
this setting, the choice of the dimension of the parameters (including bias term) is given by

P = 256d+ 198145. (1.12)

Furthermore, R ∋ x 7→ sin(x) ∈ [−1, 1] is used as activation function ϱ in [86] and the following
learning rate decay approach:

ακ = 10(1[0,20000](κ)+1(20000,50000](κ)+1(50000,80000](κ)−6),

for κ = 1, 2, . . . ,K, where K = 100000 is the total number of Adam optimizer steps. Instead
of sin(x), we consider R ∋ x 7→ tanh(x) ∈ [−1, 1]. Note that from Framework 1.3.1 we require
to optimize over differentiable DNNs, and using the classical ReLU function may lead to an
explosion while calculating the numerical approximation of the Z process. Moreover, we use
L = 4 hidden layers and η = 10 + d neurons for the hidden layers. The dimension of the
parameters (including bias term) for such network architecture is given by

P = 2d2 + 56d+ 361. (1.13)

Compared to the complexity (1.12) given in [86], such parametrization of the NN gives a smaller
complexity (1.13). For instance, considering an example in d = 100, the complexity based on
equation (1.13) is decreased with a factor around 9 when compared to (1.12). In order to further
reduce the computation time compared to the learning approach given in [86], we consider a
piecewise-constant learning rate (PC-LR) decay with K = 60000 optimization steps of the Adam
algorithm, with the learning rate α adjusted as follows

ακ =



1e−3, for 1 ≤ κ ≤ 20000,

3e−4, for 20000 < κ ≤ 30000,

1e−4, for 30000 < κ ≤ 4000,

3e−5, for 40000 < κ ≤ 50000,

1e−5, for 50000 < κ ≤ K.

This learning approach is also applied to the DBSDE algorithm, but with a learning rate ranging
from α = 1e−2 to α = 1e−4. A batch size of B = 128 is used for each algorithm. Note that
when dealing with a forward SDE represented by the Geometric Brownian Motion (GBM), we
apply the ln-transformation.

We define the mean squared errors (MSEs) as performance metrics for a sample of size B:

ε̃yn :=
1

B

B∑
j=1

∣∣∣Yn,j − Y ∆,θ̂
n,j

∣∣∣2 , ε̃zn :=
1

B

B∑
j=1

∣∣∣Zn,j − Z∆,θ̂
n,j

∣∣∣2 , (1.14)

where Yn,j and Zn,j are the values of the respective processes for sample j at time point tn.
To account the stochasticity of the underlying Brownian motion and the Adam optimizer, we
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conduct Q = 10 independent runs (trainings) of the algorithms. We then define

ε̃
y
n :=

1

Q

Q∑
q=1

ϵ̃yn,q, ε̃
z
n :=

1

Q

Q∑
q=1

ϵ̃zn,q, (1.15)

as the mean MSE for the processes Y and Z. As a relative measure of the MSE, we consider

ε̃y,rn :=
1

B

B∑
j=1

∣∣∣Yn,j − Y ∆,θ̂
n,j

∣∣∣2
|Yn,j |2

, ε̃z,rn :=
1

B

B∑
j=1

∣∣∣Zn,j − Z∆,θ̂
n,j

∣∣∣2
|Zn,j |2

, (1.16)

for the processes Y and Z, respectively. We select a testing sample of size Btest = 1024. The
computation time (runtime) in seconds for one run of the algorithms is denoted as τ , and the
average computation time over Q = 10 runs as

τ :=
1

Q

Q∑
q=1

τq. (1.17)

1.5.1 The simple bounded BSDE

We start with an example where the DBSDE method diverges.

Example 1.5.1. The high-dimensional BSDE given in [44] reads

dXt = a dt+ b dWt,
X0 = x0,

−dYt =
((

cos
(∑d

k=1X
k
t

)
+ 0.2 sin

(∑d
k=1X

k
t

))
exp

(
T−t
2

)
−1

2

(
sin
(∑d

k=1X
k
t

)
cos
(∑d

k=1X
k
t

)
exp (T − t)

)2
+ 1

2d

(
Yt
∑d

k=1 Z
k
t

)2)
dt

−Zt dWt,

YT = cos
(∑d

k=1X
k
t

)
.

The analytical solution is given by Yt = exp
(
T−t
2

)
cos
(∑d

k=1X
k
t

)
,

Zt = −b exp
(
T−t
2

)
sin
(∑d

k=1X
k
t

)
11,d.

We begin with d = 1, T = 2, a = 0.2, b = 1 and x0 = 1. In Table 1.1, we report the mean
relative MSE values at t0 for (Y0, Z0) from all the schemes, their average runtime (in seconds)
and the empirical convergence rates β using N ∈ {4, 16, 64, 256}. The standard deviation (STD)
of the relative MSE values at t0 is given in the brackets. Actually, only a few hundreds opti-
mization steps are needed to achieve a good approximation of (Y0, Z0). However, to obtain good
approximations for the whole time domain, a high number of optimization steps is needed. From
Table 1.1 we see that the DBSDE scheme diverges. The LDBSDE scheme converges to a poor
local minima, the mean relative MSEs with N = 256 are around 14.20% and 1.64% for Y0 and
Z0 respectively. Increasing the number of optimization steps (K > 60000) reduces the (sam-
ple) STD, but cannot improve the estimates in the LDBSDE scheme. We may think that each
training of the algorithm converges around the same poor local minima. In order to numerically
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Metric

N = 4 N = 16 N = 64 N = 256

β

DBSDE DBSDE DBSDE DBSDE
LDBSDE LDBSDE LDBSDE LDBSDE

LDBSDE (RNN) LDBSDE (RNN) LDBSDE (RNN) LDBSDE (RNN)
LDBSDE (LSTM) LDBSDE (LSTM) LDBSDE (LSTM) LDBSDE (LSTM)

LaDBSDE LaDBSDE LaDBSDE LaDBSDE

ε̃
y,r
0

2.89e+00 (2.61e+00) NaN NaN NaN −
3.39e+00 (4.03e−02) 4.54e−01 (3.63e−03) 1.76e−01 (1.24e−02) 1.42e−01 (3.82e−02) 0.76
3.47e+00 (2.19e−02) 1.24e+00 (1.58e−01) 3.43e−01 (1.43e−01) 2.80e−01 (2.13e−01) 0.64
3.46e+00 (4.40e−03) 1.35e+00 (6.57e−03) 4.85e−01 (7.27e−02) 2.25e−01 (4.04e−02) 0.67
2.60e+00 (8.13e−03) 1.82e−01 (1.98e−01) 1.70e−02 (4.95e−03) 2.09e−03 (1.16e−03) 1.71

ε̃
z,r
0

8.52e−01 (4.92e−01) NaN NaN NaN −
2.75e−01 (7.35e−03) 5.86e−02 (4.01e−04) 3.09e−02 (3.22e−03) 1.64e−02 (7.97e−03) 0.66
2.95e−01 (3.93e−03) 1.55e−01 (2.65e−02) 4.74e−02 (2.48e−02) 4.95e−02 (6.75e−02) 0.47
3.00e−01 (1.15e−03) 1.72e−01 (1.82e−03) 6.26e−02 (9.94e−03) 2.53e−02 (4.04e−03) 0.61
1.34e−01 (2.08e−03) 1.04e−02 (1.20e−02) 2.11e−04 (1.64e−04) 1.51e−04 (1.69e−04) 1.75

τ

1.45e+02 − − −
1.43e+02 3.74e+02 1.31e+03 5.51e+03
1.04e+02 2.46e+02 8.06e+02 3.33e+03
1.82e+02 4.94e+02 1.81e+03 7.72e+03
1.30e+02 3.63e+02 1.33e+03 5.61e+03

Table 1.1: Mean relative MSE values, empirical convergence rates of (Y0, Z0) from DBSDE,
LDBSDE (DNN, RNN or LSTM) and LaDBSDE schemes and their average runtimes in Exam-
ple 1.5.1 for d = 1, T = 2 and N ∈ {4, 16, 64, 256}. The STD of the relative MSE values at t0 is
given in the brackets.

test that the RNN type architectures do not help the LDBSDE scheme to overcome the issue
of poor local minima, we use the RNN and LSTM architectures, which are referred as LDB-
SDE (RNN) and LDBSDE (LSTM), respectively. Using the LSTM architecture in the LDBSDE
scheme, the approximation errors are high, since the LSTM violates the Markovian property of
the BSDEs. Even using the RNN in the LDBSDE scheme cannot improve the approximations.
The LaDBSDE scheme gives smaller relative errors than the LDBSDE, 0.21% and 0.02% for
Y0 and Z0, respectively. Moreover, our scheme has better empirical convergence rates than the
LDBSDE scheme and achieves higher accuracy for comparable computation time, which holds
for the following examples too. The empirical speed of convergence for Y0 and Z0 is displayed
in Figure 1.2. Note that the approximation of Y0 in [44] is more accurate than all the schemes
(the results for Z0 are missing) in this example. However, the algorithm in [44] is a backward
deep learning scheme, which is based on local optimizations at each time step, see Section 1.4.
Its computational cost should be much higher than all the DBSDE, LDBSDE and LaDBSDE
schemes.

Next we compare the performances of LDBSDE and LaDBSDE for the entire time domain.
Hence, using the testing sample across the discrete domain ∆, we visualize in Figure 1.3 the
mean MSE values for each process (Y,Z). The STD of the MSE values is given in the shaded
area. Note that the approximation for the entire time domain is not discussed in [22], and in [86]
only Y is considered. From Figure 1.3 we see that LaDBSDE outperforms the LDBSDE scheme
by providing smaller mean MSEs over the discrete time domain.

We consider the high-dimensional case by setting d = 100, T = 1, a = 0.2
d , b = 1√

d
and x0 = 1d.

The mean relative MSE values, the empirical convergence rates for Y0 and Z0 and the average
runtime of each scheme is reported in Table 1.2 by using N ∈ {2, 8, 32, 128}. The STD of the
relative MSE values at t0 is given in the brackets. In Figure 1.4, the empirical speed of conver-
gence is displayed. In contrast to the 1-dimensional case, we observed from our experiments that
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Figure 1.2: The empirical speed of convergence for (Y0, Z0) from LDBSDE and LaDBSDE
schemes in Example 1.5.1 for d = 1, T = 2 and N ∈ {4, 16, 64, 256}. The average runtime
of the algorithms is given in seconds.
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Figure 1.3: Mean MSE values of the processes (Y, Z) from LDBSDE and LaDBSDE schemes
over the discrete time points {tn}N−1

n=0 using the testing sample in Example 1.5.1 for d = 1, T = 2
and N = 256. The STD of MSE values is given in the shaded area.

the DBSDE scheme gives good approximations for some trainings in this example for d = 100
and maturity T = 1, however for the other trainings the scheme diverged. The reason could
be that the diffusion reduces due to the large value of dimensionality (b = 1√

d
), and the ma-

turity is shorter than that in the case of one dimension. The DBSDE scheme only diverges by
setting T = 2. The smallest mean relative MSEs are still given by the LaDBSDE scheme. To
compare the approximations for the entire discrete time domain in the high-dimensional case,
we display in Figure 1.5 the mean MSE values for each process (Y, Z) using the testing sample
with N = 128. The STD of the MSE values is given in the shaded area. Our method shows
better approximations of processes Y and Z on the entire discrete time domain compared to the
LDBSDE scheme.

1.5.2 BSDE with quadratic control

Next we consider an example with a driver function in which the Z process grows quadratically.
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Metric

N = 2 N = 8 N = 32 N = 128

β
DBSDE DBSDE DBSDE DBSDE
LDBSDE LDBSDE LDBSDE LDBSDE
LaDBSDE LaDBSDE LaDBSDE LaDBSDE

ε̃
y,r
0

7.59e−01 (4.02e−02) 2.48e+00 (4.24e+00) NaN NaN −
1.44e−02 (2.36e−03) 6.63e−03 (4.38e−03) 4.35e−03 (2.38e−03) 8.75e−02 (1.38e−02) −0.36
4.61e−03 (2.03e−03) 3.46e−04 (4.17e−04) 4.23e−04 (4.13e−04) 5.78e−04 (5.62e−04) 0.44

ε̃
z,r
0

3.10e−01 (9.25e−01) 1.22e+00 (2.28e+00) NaN NaN −
3.75e−01 (2.19e−02) 1.91e−01 (2.52e−01) 4.87e−02 (2.68e−02) 9.24e−01 (2.09e−02) −0.10
1.80e−01 (1.23e−02) 1.62e−02 (9.84e−03) 7.97e−03 (3.79e−03) 1.02e−02 (3.91e−03) 0.67

τ
1.67e+02 7.78e+02 − −
3.35e+02 1.04e+03 4.04e+03 1.62e+04
2.85e+02 9.94e+02 4.04e+03 1.62e+04

Table 1.2: Mean relative MSE values, empirical convergence rates of (Y0, Z0) from DBSDE,
LDBSDE and LaDBSDE schemes and their average runtimes in Example 1.5.1 for d = 100,
T = 1 and N ∈ {2, 8, 32, 128}. The STD of the relative MSE values at t0 is given in the brackets.
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Figure 1.4: The empirical speed of convergence for (Y0, Z0) from DBSDE, LDBSDE and LaDB-
SDE schemes in Example 1.5.1 for d = 100, T = 1 and N ∈ {2, 8, 32, 128}. The average runtime
of the algorithms is given in seconds.

Example 1.5.2. Consider the nonlinear BSDE (see [37], Section 5){
−dYt =

(
|Zt|2 − |∇xφ(t,Wt)|2 −

(
∂
∂t +

1
2 Tr [Hessx]

)
φ(t,Wt)

)
dt− Zt dWt,

YT = sin
(
|WT |2c

)
,

where φ(t,Wt) = sin
((
T − t+ |Wt|2

)c)
. The analytic solution is{

Yt = sin
((
T − t+ |Wt|2

)c)
,

Zt = 2c cos
((
T − t+ |Wt|2

)c) (
T − t+ |Wt|2

)c−1
W⊤

t .

We choose d = 100, T = 1, c = 0.4 and report in Table 1.3 the mean relative MSE values of
Y0 and mean MSE values of Z0 (since Z0 = (0, . . . , 0)) for N ∈ {2, 8, 32, 128} from the DBSDE,
LDBSDE and LaDBSDE schemes. The empirical convergence rates and the average runtimes of
the algorithms are also provided. The STD of the relative MSE and MSE values is given in the
brackets. We display the empirical speed of convergence in Figure 1.6. We observe comparable
results for all the schemes for Y0, while our scheme provides better approximations for Z0.
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Figure 1.5: Mean MSE values of the processes (Y, Z) from LDBSDE and LaDBSDE schemes
over the discrete time points {tn}N−1

n=0 using the testing sample in Example 1.5.1 for d = 100,
T = 1 and N = 128. The STD of MSE values is given in the shaded area.

Metric

N = 2 N = 8 N = 32 N = 128

β
DBSDE DBSDE DBSDE DBSDE
LDBSDE LDBSDE LDBSDE LDBSDE
LaDBSDE LaDBSDE LaDBSDE LaDBSDE

ε̃
y,r
0

3.70e−06 (6.80e−07) 1.38e−06 (1.01e−06) 1.19e−06 (7.91e−07) 8.65e−07 (4.56e−07) 0.33
5.74e−06 (4.06e−06) 6.34e−07 (5.74e−07) 3.10e−07 (4.14e−07) 2.88e−06 (2.16e−06) 0.20
4.24e−06 (4.99e−06) 1.26e−06 (1.36e−06) 1.40e−06 (1.27e−06) 5.57e−07 (5.56e−07) 0.43

ε̃
z
0

1.72e−05 (2.00e−06) 3.31e−05 (6.15e−06) 7.28e−05 (1.44e−05) 1.52e−04 (1.50e−05) −0.53
5.07e−07 (1.16e−07) 3.78e−07 (7.06e−08) 1.07e−06 (1.58e−07) 1.17e−05 (4.26e−06) −0.76
5.86e−07 (2.02e−07) 9.73e−07 (1.16e−07) 9.60e−07 (2.00e−07) 1.19e−06 (4.67e−07) −0.15

τ
1.81e+02 7.93e+02 3.72e+03 1.54e+04
3.47e+02 1.05e+03 4.06e+03 1.62e+04
2.97e+02 1.01e+03 4.08e+03 1.64e+04

Table 1.3: Mean relative MSE values of Y0, mean MSE values of Z0, empirical convergence rates
from DBSDE, LDBSDE and LaDBSDE schemes and their average runtimes in Example 1.5.2
for d = 100 and N ∈ {2, 8, 32, 128}. The STD of the relative MSE and MSE values at t0 is given
in the brackets.

Moreover, the empirical convergence rates are higher from our scheme. In Figure 1.7, we display
the mean MSE values for each process over discrete domain ∆ using the testing sample and
N = 128, where the STD of the MSE values is visualized in the shaded area. We see that the
LaDBSDE scheme outperforms.

1.5.3 The Black-Scholes-Barenblatt BSDE

For the linear pricing problem we consider the Black-Scholes-Barenblatt type problem studied
in [86].
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Figure 1.6: The empirical speed of convergence for (Y0, Z0) from DBSDE, LDBSDE and LaDB-
SDE schemes in Example 1.5.2 for d = 100 and N ∈ {2, 8, 32, 128}. The average runtime of the
algorithms is given in seconds.
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Figure 1.7: Mean MSE values of the processes (Y, Z) from DBSDE, LDBSDE and LaDBSDE
schemes over the discrete time points {tn}N−1

n=0 using the testing sample in Example 1.5.2 for
d = 100 and N = 128. The STD of MSE values is given in the shaded area.

Example 1.5.3. Consider the Black-Scholes-Barenblatt BSDE (see [86], Subsection 4.1)
dXt = bXt dWt,
X0 = x0,

−dYt = −R
(
Yt − 1

b

∑d
k=1 Z

k
t

)
dt− Zt dWt,

YT = |XT |2,

The analytic solution is {
Yt = exp

((
R+ b2

)
(T − t)

)
|Xt|2,

Zt = 2b exp
((
R+ b2

)
(T − t)

)
(X2

t )
⊤.

We use d = 100, T = 1, R = 0.05, b = 0.4 and x0 = (1, 0.5, . . . , 1, 0.5) ∈ Rd. Note that ln-
transform is applied to the forward SDE. In Table 1.4, we report the mean relative MSE values
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at t0 for each process, the corresponding STD (given in the brackets), the empirical convergence
rates and the algorithm average runtime using N ∈ {2, 8, 32, 128}. In Figure 1.8 we display
the empirical speed of convergence. Our scheme provides the smallest mean relative MSEs for

Metric

N = 2 N = 8 N = 32 N = 128

β
DBSDE DBSDE DBSDE DBSDE
LDBSDE LDBSDE LDBSDE LDBSDE
LaDBSDE LaDBSDE LaDBSDE LaDBSDE

ε̃
y,r
0

8.49e−06 (3.48e−07) 4.07e−04 (6.63e−06) 2.39e−03 (3.06e−05) 4.78e−03 (3.19e−05) −1.50
9.02e−06 (3.30e−06) 1.13e−05 (8.65e−06) 5.37e−05 (1.01e−05) 1.79e−06 (2.45e−06) 0.24
5.30e−06 (2.31e−06) 4.28e−06 (3.92e−06) 6.37e−06 (6.13e−06) 5.76e−06 (4.53e−06) −0.05

ε̃
z,r
0

1.01e−03 (6.07e−05) 2.82e−02 (4.99e−04) 9.00e−02 (1.41e−03) 6.89e−02 (2.13e−03) −1.00
2.68e−03 (4.02e−04) 5.03e−03 (2.09e−03) 3.29e−02 (3.87e−03) 2.37e−02 (3.25e−03) −0.61
1.38e−03 (3.40e−04) 3.68e−03 (8.08e−04) 4.96e−03 (8.10e−04) 5.49e−03 (9.05e−04) −0.32

τ
1.85e+02 8.11e+02 3.80e+03 1.58e+04
3.55e+02 1.06e+03 4.18e+03 1.68e+04
3.04e+02 1.02e+03 4.16e+03 1.67e+04

Table 1.4: Mean relative MSE values, empirical convergence rates of (Y0, Z0) from DBSDE,
LDBSDE and LaDBSDE schemes and their average runtimes in Example 1.5.3 for d = 100 and
N ∈ {2, 8, 32, 128}. The STD of the relative MSE values at t0 is given in the brackets.
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Figure 1.8: The empirical speed of convergence for (Y0, Z0) from DBSDE, LDBSDE and LaDB-
SDE schemes in Example 1.5.3 for d = 100 and N ∈ {2, 8, 32, 128}. The average runtime of the
algorithms is given in seconds.

similar computation time. Using N = 128, we visualize the mean MSE values for each process
over discrete domain ∆ in Figure 1.9 for the testing sample (the STD of the MSE values is
displayed in the shaded area). We see that our scheme outperforms the DBSDE and LDBSDE
schemes in approximating the processes (Y,Z) over the entire discrete domain ∆.

1.5.4 Option pricing with different interest rates

For the nonlinear pricing problem, we consider pricing options under different interest rates,
which has been addressed in e.g., [22, 23, 93, 94].

Example 1.5.4. Consider the nonlinear pricing with different interest rates (see [10] and,
e.g., [22, 23, 93, 94] where this example has been used as a test example for numerical methods
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Figure 1.9: Mean MSE values of the processes (Y, Z) from DBSDE, LDBSDE and LaDBSDE
schemes over the discrete time points {tn}N−1

n=0 using the testing sample in Example 1.5.3 for
d = 100 and N = 128. The STD of MSE values is given in the shaded area.

for BSDEs)

dXt = aXt dt+ bXt dWt,
X0 = x0,

−dYt =
(
−R1Yt − a−R1

b

∑d
k=1 Z

k
t + (R2 −R1)max

(
1
b

∑d
k=1 Z

k
t − Yt, 0

))
dt

−Zt dWt,
YT = max

(
maxk=1,...,d

(
Xk

T −K1

)
, 0
)
− 2max

(
maxk=1,...,d

(
Xk

T −K2

)
, 0
)
.

The benchmark value with d = 100, T = 0.5, a = 0.06, b = 0.2, R1 = 0.04, R2 = 0.06,
K1 = 120, K2 = 150 and x0 = (100, . . . , 100) ∈ Rd is Y0

.
= 21.2988, which is computed using the

multilevel Monte Carlo approach [23] with 7 Picard iterations and Q = 10 independent runs.
For N ∈ {2, 8, 32, 128}, we show in Table 1.5 the approximation for Y0 (the reference results for
Z0 are not available) from all the schemes and their average runtime. Specifically, we report the

mean approximation of Y0 defined as Y
∆,θ̂
0 := 1

Q

∑Q
q=1 Y

∆,θ̂
0,q and the mean relative MSE (their

STD given in the brackets). The empirical convergence rate βy is also provided. The empirical
speed of convergence is visualized in Figure 1.10. Note that ln-transform is applied to the forward
SDE. We see that both the LDBSDE and LaDBSDE schemes cannot perform better than the
DBSDE scheme in this example. The reason is that both the driver function f(t, x, y, z) and
terminal condition g(x) are not everywhere differentiable. However, our scheme still performs
better than the LDBSDE scheme.

1.5.5 BSDE with non-additive diffusion

Finally, we consider an example where the noise in the forward SDE is non-additive.

Example 1.5.5. Consider the BSDE with space-dependent diffusion coefficients (see [76], Sub-
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Metric

N = 2 N = 8 N = 32 N = 128

βyDBSDE DBSDE DBSDE DBSDE
LDBSDE LDBSDE LDBSDE LDBSDE
LaDBSDE LaDBSDE LaDBSDE LaDBSDE

Y0 [23] 21.2988

Y
∆,θ̂
0

21.0963 (2.76e−03) 21.0934 (3.82e−03) 21.0938 (6.61e−03) 21.1513 (1.03e−02)
21.3465 (1.35e−01) 21.7266 (1.07e−02) 21.7344 (1.84e−02) 21.7227 (2.03e−02)
21.4075 (1.50e−02) 21.4851 (1.07e−02) 21.5122 (1.83e−02) 21.5052 (2.01e−02)

ε̃
y,r
0

9.04e−05 (2.46e−06) 9.30e−05 (3.46e−06) 9.27e−05 (6.04e−06) 4.82e−05 (6.80e−06) 0.14
4.55e−05 (1.27e−04) 4.04e−04 (2.05e−05) 4.19e−04 (3.52e−05) 3.97e−04 (3.86e−05) −0.47
2.65e−05 (7.16e−06) 7.68e−05 (9.04e−06) 1.01e−04 (1.71e−05) 9.48e−05 (1.90e−05) −0.30

τ
1.84e+02 8.12e+02 3.84e+03 1.60e+04
3.54e+02 1.07e+03 4.22e+03 1.69e+04
3.03e+02 1.04e+03 4.20e+03 1.69e+04

Table 1.5: Mean approximation of Y0, its mean relative MSE, empirical convergence rate from
DBSDE, LDBSDE and LaDBSDE schemes and their average runtimes in Example 1.5.4 for
d = 100 and N ∈ {2, 8, 32, 128}. The STD of the approximations of Y0 and its relative MSE
values are given in the brackets.
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Figure 1.10: The empirical speed of convergence for Y0 from DBSDE, LDBSDE and LaDBSDE
schemes in Example 1.5.4 for d = 100 and N ∈ {2, 8, 32, 128}. The average runtime of the
algorithms is given in seconds.

section 6.3)

dXt = Xt
1+X2

t

(2+X2
t )

3 dt+
1+X2

t

2+X2
t
dWt,

X0 = x0,

−dYt =

[
1

c1(t+c2)
exp

(
− |Xt|2

c1(t+c2)

)(
4
∑d

k=1

(Xk
t )

2(1+(Xk
t )

2)
(2+(Xk

t )
2)

3 −
∑d

k=1
(Xk

t )
2

t+c2

+
∑d

k=1
(1+(Xk

t )
2)

2

(2+(Xk
t )

2)
2

(
1− 2

(Xk
t )

2

c1(t+c2)

))
+

√
1+Y 2

t +exp
(
−2

|Xt|2
c1(t+c2)

)
1+2Y 2

t

∑d
k=1 Z

k
t

Xk
t

(2+(Xk
t )

2)
2

]
dt− Zt dWt,

YT = exp
(
− |XT |2

c1(T+c2)

)
,
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where c1, c2 ∈ R+. The analytical solution is given by Yt = exp
(
− |Xt|2

c1(t+c2)

)
,

Zt = − 2
c1(t+c2)

exp
(
− |Xt|2

c1(t+c2)

)(
Xt

1+X2
t

2+X2
t

)⊤
.

We choose d = 100, T = 10, c1 = 10d, c2 = 1 and x0 = 1d. In Table 1.6, we report the
mean relative MSE values at t0 for each process from all schemes, using N ∈ {2, 8, 32, 128}.
The corresponding STD is given in the brackets. The average runtime of the algorithms and the
empirical convergence rates are also included. The empirical speed of convergence is displayed
in Figure 1.11. We observe that our scheme performs slightly better compared to the other

Metric

N = 2 N = 8 N = 32 N = 128

β
DBSDE DBSDE DBSDE DBSDE
LDBSDE LDBSDE LDBSDE LDBSDE
LaDBSDE LaDBSDE LaDBSDE LaDBSDE

ε̃
y,r
0

1.35e−02 (5.52e−05) 4.09e−04 (1.06e−05) 4.59e−06 (1.33e−06) 1.60e−06 (5.08e−07) 2.28
1.22e−02 (1.10e−04) 3.60e−04 (1.57e−05) 1.71e−05 (5.07e−06) 1.17e−05 (8.42e−06) 1.72
1.34e−02 (1.27e−04) 5.58e−04 (2.15e−05) 3.23e−05 (7.65e−06) 1.20e−06 (1.26e−06) 2.22

ε̃
z,r
0

4.87e−01 (1.11e−02) 1.79e−01 (1.53e−02) 9.63e−02 (1.39e−02) 1.49e−01 (2.11e−02) 0.30
6.21e−01 (4.60e−03) 3.27e−01 (6.63e−03) 8.85e−02 (4.65e−03) 1.82e−02 (7.72e−03) 0.86
5.26e−01 (4.98e−03) 1.82e−01 (6.86e−03) 2.57e−02 (8.33e−03) 2.50e−02 (1.21e−02) 0.80

τ
2.55e+02 1.13e+03 5.11e+03 2.12e+04
3.79e+02 1.18e+03 4.71e+03 1.88e+04
3.23e+02 1.16e+03 4.74e+03 1.90e+04

Table 1.6: Mean relative MSE values, empirical convergence rates of (Y0, Z0) from DBSDE,
LDBSDE and LaDBSDE schemes and their average runtimes in Example 1.5.5 for d = 100 and
N ∈ {2, 8, 32, 128}. The STD of the relative MSE values at t0 is given in the brackets.
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Figure 1.11: The empirical speed of convergence for (Y0, Z0) from DBSDE, LDBSDE and LaDB-
SDE schemes in Example 1.5.5 for d = 100 and N ∈ {2, 8, 32, 128}. The average runtime of the
algorithms is given in seconds.

schemes in approximating both Y0 and Z0. In Figure 1.12, we display using N = 128 the mean
MSE values of (Y,Z) at each discrete time point (their STD given in the shaded area) using the
testing sample. The LaDBSDE gives the best approximations of both processes on the entire
discrete time domain.
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Figure 1.12: Mean MSE values of the processes (Y,Z) from DBSDE, LDBSDE and LaDBSDE
schemes over the discrete time points {tn}N−1

n=0 using the testing sample in Example 1.5.5 for
d = 100 and N = 128. The STD of MSE values is given in the shaded area.

1.6 Conclusions

In this chapter we have proposed the LaDBSDE scheme as a forward deep learning algorithm
to solve high-dimensional nonlinear BSDEs. It approximates the solution and its gradient based
on a global minimization of a novel loss function, which uses local losses defined at each time
step including the terminal condition. Our new formulation is achieved by iterating the Euler-
Maruyama discretization of integrals with the terminal condition. The numerical results show
that the proposed scheme LaDBSDE outperforms the existing forward deep learning schemes [22,
86] in the sense of that it does not get stuck in a poor local minima and provide a good
approximation of the solution for the whole time domain.

Building upon the advancements introduced in this chapter, the next chapter introduces a new
class of schemes based on differential deep learning [42], aimed to further enhance the accuracy of
gradient and Hessian approximations. These improvements are particularly critical in financial
applications, where such sensitivities play a pivotal role.

28



Chapter 2

Differential Deep Learning BSDE
Schemes

The aim of this chapter is to introduce a new class of schemes for solving high-dimensional
nonlinear BSDEs using differential deep learning [42], which provides higher accurate approxi-
mations of the gradient and the Hessian matrix of the solution compared to the class of deep
learning schemes discussed in Chapter 1. High-accurate gradient approximations are particu-
larly important in financial applications, where the gradient represents the hedging strategy
for an option contract. The Hessian matrix corresponds to Γ sensitivity, which indicates a po-
tential acceleration in changes in the option’s value. To formulate the BSDE as a differential
deep learning problem, we utilize Malliavin calculus. Thus, we begin by outlining the basics of
Malliavin calculus, Malliavin differentiable BSDEs, and the differential deep learning technique.
We then introduce a new backward differential deep learning scheme and provide a convergence
analysis. Our idea can also be extended to forward deep learning schemes. We present a forward
differential deep learning scheme as well. Finally, we demonstrate the efficiency of our proposed
scheme through various high-dimensional examples, including option pricing problems, showing
that they outperform contemporary deep learning methodologies. This chapter is based on our
research presented in [59].

2.1 Introduction

High-accurate gradient approximations are of great significance, for example in finance, where
the process Z represents the hedging strategy for an option contract. Except the works in [60, 76],
other deep learning-based schemes do not discuss in detail the approximations for Z in high-
dimensional spaces, as it is generally more challenging than approximating Y for BSDEs. In this
chapter, we develop a class of schemes based on differential deep learning [42] that ensures high
accuracy not only for the process Y , but also for the process Z.

Recall that the backward deep learning scheme in [44], namely the DBDP scheme, approximates
the unknown solution pair of (1.1) using DNNs. The network parameters are optimized at each
time step through the minimization of loss functions defined recursively via backward induction.
More precisely, the loss is formulated from the Euler-Maruyama discretization of the BSDE at
each time interval. Such formulation gives an implicit approximation of the process Z. Hence, the
SGD algorithm lacks explicit information about Z, which impacts its approximation accuracy.
To address this, we enhance the SGD algorithm by providing it with additional information to
achieve accurate approximations of Z. As stated, we make use of differential deep learning [42],

29



a general extension of supervised deep learning. In this framework, the DNN model is trained
not only on inputs and labels but also on differentials of labels w.r.t. inputs. Differential deep
learning offers an efficient approximation not only of the labels but also of their derivatives when
compared to traditional supervised deep learning. We use Malliavin calculus to formulate the
BSDE problem as a differential deep learning problem. By applying the Malliavin derivative to
a BSDE, the Malliavin derivatives of the solution pair (Y,Z) of the BSDE satisfy themselves
another BSDE, resulting thus in a system of BSDEs. This formulation also requires estimating
the Hessian matrix of the solution. In the context of option pricing, this matrix corresponds to
Γ-hedging.

Our backward differential deep learning method works as follows. Firstly, we discretize the system
of BSDEs using the Euler-Maruyama method. Subsequently, we utilize DNNs to approximate
the unknown solution of these BSDEs, requiring the estimation of the triple of the processes
(Y,Z,Γ). The network parameters are optimized backwardly at each time step by minimizing
a loss function defined as a weighted sum of the dynamics of the discretized BSDE system.
Through this way, SGD is equipped with explicit information about the dynamics of the process
Z. As a result, our method can yield more accurate approximations than the DBDP scheme not
only for the process Z, but also for the process Γ. The computation time of our scheme is higher
compared to the DBDP scheme. Note that the authors in [76] also used the Malliavin derivative
to improve the accuracy of Z. However, their method significantly differs from ours, as they only
employ supervised deep learning. Their approach requires training the BSDE system separately,
which gives a higher computational cost compared to our method. This is demonstrated in
our numerical experiments. Furthermore, our approach using differential deep learning can be
straightforwardly extended not only to the backward deep learning schemes, but also to forward
deep learning schemes [22, 86, 60]. In contrast, the scheme presented in [76] cannot be integrated
into such methodologies, as it cannot be formulated as a global optimization problem. To the best
of our knowledge, only [71] applies differential deep learning to solve high-dimensional PDEs,
where the authors consider the associated dual stochastic control problem instead of working
with BSDEs.

The outline of this chapter is organized as follows. In the next section, we review the basics of
Malliavin calculus and Malliavin differentiable BSDEs, followed by an introduction to the tech-
nique of differential deep learning. Section 2.3 presents the backward differential deep learning
algorithm and its convergence analysis. In Section 2.4 we apply differential deep learning to the
forward scheme [86]. The numerical experiments presented in Section 2.5 confirm the theoreti-
cal results and show high accuracy of the solution, its gradient, and the Hessian matrix of the
solution over different option pricing problems. Finally, Section 2.6 concludes this chapter.

2.2 Malliavin differentiable BSDEs and differential deep learn-
ing

2.2.1 Malliavin calculus

We shall use techniques of the stochastic calculus of variations. To this end, we use the following
notation. For more details, we refer the reader to [79]. Let S be the space of smooth random
variables of the form

ξ = φ

(∫ T

0
h1(t)dWt, . . . ,

∫ T

0
hd(t)dWt

)
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where φ ∈ C∞
p

(
Rd;R

)
, h1, . . . , hd ∈ L2 ([0, T ];Rq). The Malliavin derivative of smooth random

variable ξ ∈ S is the R1×q-valued stochastic process given by

Dsξ :=

d∑
k=1

∂φ

xk

(∫ T

0
h1(t)dWt, . . . ,

∫ T

0
hd(t)dWt

)
hk(s).

We define the domain of D in L2
FT

as D1,2 (Ω;R), meaning that D1,2 is the closure of the class
of smooth random variables S w.r.t. the norm

∥ξ∥D1,2 :=

(
E
[
|ξ|2 +

∫ T

0
|Dsξ|2 ds

]) 1
2

.

Note that in case of vector valued Malliavin differentiable random variables ξ = (ξ1, . . . , ξq),
ξ ∈ D1,2 (Ω;Rq), its Malliavin derivative Dsξ ∈ Rq×q is the matrix-valued stochastic process.

The following lemma represents the Malliavin chain rule, which can be extended to Lipschitz
continuous functions.

Lemma 2.2.1. (Malliavin chain rule [79])
Let F ∈ C1

b

(
Rd;Rq

)
. Suppose that ξ ∈ D1,2

(
Ω;Rd

)
. Then F (ξ) ∈ D1,2 (Ω;Rq), and for each

0 ≤ s ≤ T
DsF (ξ) = ∇xF (ξ)Dsξ.

2.2.2 Malliavin differentiable BSDEs

For the functions in BSDE (1.1), we continue presenting additional assumptions that they are
assumed to fulfill when considering Malliavin derivative of BSDE (1.1).

AX3. Assumption AX2 holds. Moreover, a ∈ C0,2
b

(
[0, T ]× Rd;Rd

)
, b ∈ C0,2

b

(
[0, T ]× Rd;Rd×d

)
and there exist and positive constant C > 0 s.t.

v⊤b(t, x)b(t, x)⊤v ≥ C|v|2, x, v ∈ Rd, t ∈ [0, T ].

AY3. Assumption AY2 holds. Moreover, f ∈ C0,2,2,2
b

(
[0, T ]× Rd × R× R1×d;R

)
and g ∈

C2
b

(
Rd;R

)
.

We collect some Malliavin differentiability results on BSDEs, as we are interested on BSDEs
s.t. their solution triple {Xt, Yt, Zt}0≤t≤T is differentiable in the Malliavin sense. The results are
stated in the following theorems.

Theorem 2.2.1. (Malliavin differentiability of SDEs [79])
Assume that Assumption AX2 holds. Then ∀ t ∈ [0, T ], Xt ∈ D1,2

(
Ω;Rd

)
and its Malliavin

derivative admits a continuous version {DsXt}0≤s,t≤T ∈ S2
(
[0, T ]× Ω;Rd×d

)
satisfying for 0 ≤

s ≤ t ≤ T the SDE

DsXt = 1s≤t

{
b (s,Xs) +

∫ t

s
∇xa (r,Xr)DsXrdr +

∫ t

s
∇xb (r,Xr)DsXrdWr

}
,

where ∇xb denotes a Rd×d×d-valued tensor. Moreover, there exists a constant C > 0 s.t.

sup
s∈[0,T ]

E

[
sup

t∈[s,T ]
|DsXt|2

]
≤ C, E

[
|DsXr −DsXt|2

]
≤ C |r − t| .
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Theorem 2.2.2. (Malliavin differentiability of BSDEs [62])
Assume that Assumptions AX2 and AY2 holds. Then the solution triple {Xt, Yt, Zt}0≤t≤T

of (1.1) verify that ∀ t ∈ [0, T ] Yt ∈ D1,2 (Ω;R), Zt ∈ D1,2
(
Ω;R1×d

)
, X satisfies the statement

of Theorem 1.2.3, and a version of {DsYt}0≤s,t≤T ∈ S2
(
[0, T ]× Ω;R1×d

)
, {DsZt}0≤s,t≤T ∈

H2
(
[0, T ]× Ω;Rd×d

)
satisfy the BSDE

DsYt = 01,d, DsZt = 0d,d, 0 ≤ t < s ≤ T,

DsYt = ∇xg (XT )DsXT +

∫ T

t

(
∇xf (r,Xr)DsXr +∇yf (r,Xr)DsYr +∇zf (r,Xr)DsZr

)
dr

−
∫ T

t

(
(DsZr)

⊤dWr

)⊤
, 0 ≤ s ≤ t ≤ T.

Moreover, DtYt defined by the above equation is a version of Zt P-a.s. ∀ t ∈ [0, T ].

The final important result that is relevant for this work is the path regularity result of the
processes Y and Z, which we state in the following theorem by extending Theorem 1.2.3.

Theorem 2.2.3. (Path regularity [49])
Under Assumptions AX3 and AY3 the following holds true:

(i) There exist a constant C > 0 s.t. ∀ 0 ≤ s ≤ t ≤ T

E
[
sup
s≤r≤t

|Yr − Ys|2
]
≤ C |t− s|

(ii) There exist a constant C > 0 s.t. ∀ 0 ≤ s ≤ t ≤ T

E
[
sup
s≤r≤t

|Zr − Zs|2
]
≤ C |t− s|

In particular, there exists a continuous modification of the process Z.

2.2.3 Differential deep learning

One of the biggest challenges w.r.t. finding the optimal parameter set of the DNN is to avoid
learning training data-specific patterns, namely overfitting, and rather enforcing better gener-
alization of the fitted models. Hence, regularization approaches have been developed for DNNs
to avoid overfitting and thus improve the performance of the model. Such approaches penalize
certain norms of the parameters θ, expressing a preference for θ. Differential deep learning [42]
has the same motivation as regularization, namely to improve the accuracy of the model. This
is achieved by not expressing a preference, but correctness, in particular enforcing differential
correctness. It assumes that the derivative of the label w.r.t. input is known. Let us consider the
function Fx(x) = ∇xF (x) and the random variable z := Fx(x) ∈ R1×d. The goal in differential
deep learning is to approximate the label function F (x) by DNN ϕ(x; θ) using data (x,y, z) ∼ p
and minimizing the extended loss function (1.4) given as

L(θ) = Ep
[
|ϕ (x; θ)− y|2

]
+ λEp

[
|∇xϕ (x; θ)− z|2

]
, (2.1)

where ∇xϕ is calculated using AD and λ ∈ R+. Our numerical experiments indicated that
approximating the derivatives using AD resulted in worse performance compared to utilizing a
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separate DNN. This is consistent with the results in [44]. Therefore, we chose to employ a separate
DNN for the derivatives, namely we consider a slightly different formulation of differential deep
learning compared to [42]. We use one DNN ϕy (x; θy) to approximate the function F (x) and
another ϕz (x; θz) for Fx(x), and rewrite the loss function (2.1) as

L(θ) = λ1Ep
[
|ϕy (x; θy)− y|2

]
+ λ2Ep

[
|ϕz (x; θz)− z|2

]
, (2.2)

where θ = (θy, θz), λ1, λ2 ∈ [0, 1] and λ1 + λ2 = 1. Then the optimal parameters θ∗ in (2.2) are
given as

θ∗ ∈ argmin
θ∈Θ

L(θ),

estimated using a SGD method. Since the derivatives are integrated in the loss function (2.2) as
an additional term, we consider this modification to remain within the framework of differential
deep learning.

2.3 Backward differential deep learning schemes

In this section, we introduce the proposed backward differential deep learning method and
provide its convergence analysis.

2.3.1 The backward differential deep dynamic programming scheme

In order to formulate the BSDE (1.1) as a differential learning problem, we firstly discretize the
integrals in the resulting BSDE system given as

Xt = x0 +

∫ t

0
a (s,Xs) ds+

∫ t

0
b (s,Xs) dWs, (2.3)

Yt = g (XT ) +

∫ T

t
f (s,Xs) ds−

∫ T

t
Zs dWs, (2.4)

DsXt = 1s≤t

[
b (s,Xs) +

∫ t

s
∇xa (r,Xr)DsXrdr +

∫ t

s
∇xb (r,Xr)DsXrdWr

]
, (2.5)

DsYt = 1s≤t

[
∇xg (XT )DsXT +

∫ T

t
fD (r,Xr,DsXr) dr −

∫ T

t

(
(DsZr)

⊤dWr

)⊤ ]
, (2.6)

where we introduced the notations DsXt := (DsXt, DsYt, DsZt) and fD (t,Xt,DsXt) :=
∇xf (t,Xt)DsXt + ∇yf (t,Xt)DsYt + f (t,Xt)DsZt ∀ 0 ≤ s, t ≤ T . Note that the solution
of the above BSDE system is a pair of triples of stochastic processes {(Xt, Yt, Zt)}0≤t≤T and
{(DsXt, DsYt, DsZt)}0≤s,t≤T s.t. (2.3)-(2.6) holds P-a.s.

Let us consider the time discretization ∆. For notational convenience we write
(DnXm, DnYm, DnZm) = (DtnXtm , DtnYtm , DtnZtm) and

(
DnX

∆
m , DnY

∆
m , DnZ

∆
m

)
for the ap-

proximations, where 0 ≤ n,m ≤ N . The Euler-Maruyama scheme for the forward SDE (2.3)
and the backward process (2.4) is given in Section 1.3 in (1.5) and (1.6), respectively.

Next, we discretize the BSDE for the Malliavin derivatives, i.e. (2.5)-(2.6) in a similar manner.
The Malliavin derivative (2.5) approximated by the Euler-Maruyama method gives the estimates

DnX
∆
m =


1n=mb

(
tn, X

∆
n

)
, 0 ≤ m ≤ n ≤ N,

DnX
∆
m−1 +∇xa

(
tm−1, X

∆
m−1

)
DnX

∆
m−1∆tm−1

+∇xb
(
tm−1, X

∆
m−1

)
DnX

∆
m−1∆Wm−1, 0 ≤ n < m ≤ N.

(2.7)
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From [tn, tn+1] (2.6) is given as

DnYn = DnYn+1 +

∫ tn+1

tn

fD (s,Xs,DnXs) ds−
∫ tn+1

tn

(
(DnZs)

⊤ dWs

)⊤
. (2.8)

Using Euler-Maruyama scheme in (2.8), we get

DnY
∆
n = DnY

∆
n+1 + fD

(
tn,X

∆
n ,DnX

∆
n

)
∆tn −

((
DnZ

∆
n

)⊤
∆Wn

)⊤
, (2.9)

with DnX
∆
n :=

(
DnX

∆
n , DnY

∆
n , DnZ

∆
n

)
. Given the Markov property of the underlying processes,

the Malliavin chain rule (Lemma 2.2.1) implies that

DnYm = ∇xy (tm, Xm)DnXm, DnZm = ∇xz (tm, Xm)DnXm =: γ (tm, Xm)DnXm, (2.10)

for some deterministic functions y : [0, T ] × Rd → R and z : [0, T ] × Rd → R1×d, where γ :
[0, T ] × Rd → Rd×d is the Jacobian matrix of z (tm, Xm). Note that from the Feynman-Kac
relation (1.3) we have that z (tm, Xm) = ∇xy (tm, Xm) b (tm, Xm). Hence, one can write that
DnYm = z (tm, Xm) b−1 (tm, Xm)DnXm. Using Theorem 2.2.2, we have that (2.9) becomes

Z∆
n = Z∆

n+1b
−1
(
tn+1, X

∆
n+1

)
DnX

∆
n+1 + fD

(
tn,X

∆
n ,DnX

∆
n

)
∆tn −

((
Γ∆
n DnX

∆
n

)⊤
∆Wn

)⊤
,

(2.11)
where due to the aforementioned relations fD

(
t,X∆

n ,DnX
∆
n

)
= ∇xf

(
tn,X

∆
n

)
DnX

∆
n +

∇yf
(
tn,X

∆
n

)
Z∆
n +∇zf

(
tn,X

∆
n

)
Γ∆
n DnX

∆
n .

After discretizing the integrals, our scheme is made fully implementable at each discrete time
point tn by an appropriate function approximator to estimate the discrete unknown processes(
Y ∆
n , Z∆

n ,Γ∆
n

)
in (1.6) and (2.11). We estimate these unknown processes using DNNs and propose

the following scheme:

• Generate approximations X∆
n+1 for n = 0, 1, . . . , N − 1 via (1.5) and its discrete Malliavin

derivative DnX
∆
n , DnX

∆
n+1 using (2.7).

• Set

Y ∆,θ̂
N := g(X∆

N ), Z∆,θ̂
N := ∇xg(X

∆
N )b(tN , X∆

N ), Γ∆,θ̂
N := [∇x(∇xg b)] (tN , X∆

N ).

• For each discrete time point tn, n = N−1, N−2, . . . , 0, use three DNNs ϕy
n(·; θyn) : Rd → R,

ϕz
n(·; θzn) : Rd → R1×d and ϕγ

n(·; θγn) : Rd → Rd×d to approximate the discrete processes(
Y ∆
n , Z∆

n ,Γ∆
n

)
, respectively, where the input vector of the network is the Markovian process

X∆
n ∈ Rd. More precisely

Y ∆,θ
n = ϕy

n(X
∆
n ; θyn), Z∆,θ

n = ϕz
n(X

∆
n ; θzn), Γ∆,θ

n = ϕγ
n(X

∆
n ; θγn).

• Train the parameter set θn = (θyn, θzn, θ
γ
n) using the differential learning approach by con-

structing a loss function - as in (2.2) - s.t. the dynamics of the discretized process Y and
Z given by (1.6) and (2.11) are fulfilled, namely

L∆
n (θn) := λ1L

y,∆
n (θn) + λ2L

z,∆
n (θn) ,

Ly,∆
n (θn) = E

[∣∣∣Y ∆,θ̂
n+1 − Y ∆,θ

n + f
(
tn,X

∆,θ
n

)
∆tn − Z∆,θ

n ∆Wn

∣∣∣2] ,
Lz,∆
n (θn) := E

[∣∣∣Z∆,θ̂
n+1b

−1
(
tn+1, X

∆
n+1

)
DnX

∆
n+1 − Z∆,θ

n

+fD

(
tn,X

∆,θ
n ,DnX

∆,θ
n

)
∆tn −

((
Γ∆,θ
n DnX

∆
n

)⊤
∆Wn

)⊤
∣∣∣∣∣
2
 ,

(2.12)
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where for notational convinience DnX
∆,θ
n :=

(
DnX

∆
n , Z∆,θ

n ,Γ∆,θ
n DnX

∆
n

)
.

• Approximate the optimal parameters θ∗n ∈ argminθn∈Θn
L∆
n (θn) using a SGD method and

receive the estimated parameters θ̂n =
(
θ̂yn, θ̂zn, θ̂

γ
n

)
. Then, define

Y ∆,θ̂
n := ϕy

n

(
X∆

n ; θ̂yn

)
, Z∆,θ̂

n := ϕz
n

(
X∆

n ; θ̂zn

)
, Γ∆,θ̂

n := ϕγ
n

(
X∆

n ; θ̂γn

)
.

Note that the DBDP scheme in [44] can be considered as a special case of our scheme by choosing
λ1 = 1 and λ2 = 0. We refer to our scheme as DLBDP (differential learning backward dynamic
programming) scheme, where λ1 = 1

d+1 and λ2 = d
d+1 are considered due to dimensionality of

the processes Y and Z, a common practice in differential deep learning [42].

Our scheme offers several advantages over the DBDP scheme and other well-known deep learning
approaches [22, 30, 86, 60]:

(i) By explicitly incorporating the dynamics of the process Z via the BSDE (2.6) in the loss
function (2.12), we enhance the accuracy of Z approximations through the SGD method.

(ii) Additionally, the inclusion of the process Γ in the loss function through BSDE (2.6) allows
for better estimation of Γ within the DLBDP scheme compared to the deep learning-based
schemes, where AD is required for approximation of Γ.

The scheme in [76] – called the one step Malliavin (OSM) scheme – also uses the Malliavin
derivative to improve the accuracy of Z in the DBDP method. Hence, in the numerical exper-
iments, we compare our approach with both the schemes DBDP and OSM. The latter can be
formulated as follows:

• Generate approximations X∆
n+1 for n = 0, 1, . . . , N − 1 of SDE part in (2.3) via (1.5) and

its discrete Malliavin derivative DnX
∆
n , DnX

∆
n+1 using (2.7).

• Set

Y ∆,θ̂
N = g(X∆

N ), Z∆,θ̂
N = ∇xg(X

∆
N )b(tN , X∆

N ), Γ∆,θ̂
N = [∇x(∇xg b)] (tN , X∆

N ).

• For each discrete time point tn, n = N−1, N−2, . . . , 0, consider two optimization problems.
In the first one, use two independent DNNs ϕz

n(·; θzn) : Rd → R1×d and ϕγ
n(·; θγn) : Rd →

Rd×d to approximate the discrete processes
(
Z∆
n ,Γ∆

n

)
, respectively, where the input vector

of the network is the Markovian process X∆
n ∈ Rd. More precisely

Z∆,θ
n = ϕz

n(X
∆
n ; θzn), Γ∆,θ

n = ϕγ
n(X

∆
n ; θγn).

• Train the parameter set θn = (θzn, θ
γ
n) using a loss function such that the dynamics of the

discretized process Z given by (2.11) (with the Malliavin derivative of the driver function
evaluated at time points tn and tn+1 [76]) are fulfilled, namely

Lz,∆
n (θn) = E

[∣∣∣∣Z∆,θ̂
n+1b

−1
(
tn+1, X

∆
n+1

)
DnX

∆
n+1 − Z∆,θ

n

+fD

(
tn+1,X

∆,θ̂
n+1,DnX

∆,θ̂
n+1,n

)
∆tn −

((
Γ∆,θ
n DnX

∆
n

)⊤
∆Wn

)⊤
∣∣∣∣∣
2
 ,
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where X∆,θ̂
n+1 =

(
X∆

n+1, Y
∆,θ̂
n+1, Z

∆,θ̂
n+1

)
and DnX

∆,θ̂
n+1,n :=

(
DnX

∆
n+1, DnY

∆,θ̂
n+1,Γ

∆,θ
n DnX

∆
n

)
.

Approximate the optimal parameters θ∗n ∈ argminθn∈Θn
Lz,∆
n (θn) using a SGD method

and receive the estimated parameters θ̂n =
(
θ̂zn, θ̂

γ
n

)
. Then, define

Z∆,θ̂
n = ϕz

n

(
X∆

n ; θ̂zn

)
, Γ∆,θ̂

n = ϕγ
n

(
X∆

n ; θ̂γn

)
.

• For the second optimization problem, use another DNN ϕy
n(·; θyn) : Rd → R1×d to approxi-

mate the discrete processes Y ∆
n , namely

Y ∆,θ
n = ϕy

n(X
∆
n ; θyn).

Train the parameters θyn using a loss function such that the dynamics of the discretized
process Y given by (1.6) are fulfilled, namely

Ly,∆
n (θyn) = E

[∣∣∣Y ∆,θ̂
n+1 − Y ∆,θ

n + f
(
tn, X

∆
n , Y ∆,θ

n , Z∆,θ̂
n

)
∆tn − Z∆,θ̂

n ∆Wn

∣∣∣2] .
Approximate the optimal parameters θ∗,yn ∈ argminθyn∈Θy

n
Ly,∆
n (θyn) using a SGD method

and receive the estimated parameters θ̂yn. Then, define

Y ∆,θ̂
n = ϕy

n

(
X∆

n ; θ̂yn

)
.

In comparison to the OSM scheme, our approach demonstrates the following advantages:

(i) Since the OSM scheme employs supervised deep learning, it requires solving two opti-
mization problems per time step - one for BSDE (2.4) and another for BSDE (2.6) - to
approximate the unknown processes (Y,Z,Γ). Consequently, the computational cost of the
OSM scheme is up to twice as high as that of our scheme. This is demonstrated in our
numerical experiments.

(ii) Our scheme can be seamlessly extended not only to the backward deep learning approaches
(as the DBDP scheme), but also to forward deep learning approaches, such as [22, 86, 60].
This is discussed in Section 2.4. The OSM scheme cannot be integrated to such schemes,
as it cannot be formulated as a global optimization problem.

2.3.2 Convergence analysis

The main goal of this section is to prove the convergence of the DLBDP scheme towards the
solution (Y, Z,Γ) of the BSDE system (2.3)-(2.6), and provide a rate of convergence that depends
on the discretization error from the Euler-Maruyama scheme and the approximation or model
error by the DNNs.

For the functions figuring in the BSDE system (2.3)-(2.6), the following assumptions are in
place.

AX4. Assumption AX3 holds, with the Malliavin derivative |Dsb(t,Xt)| ≤ C P-a.s. for 0 ≤ s ≤
t ≤ T . The functions a(t, x) and b(t, x) are 1/2-Hölder continuous in time.

AY4. Assumption AY3 holds. Moreover, g ∈ C2+l
b

(
Rd;R

)
, l > 0. The function f(t, x, y, z) and

its partial derivatives ∇xf , ∇yf and ∇zf are all 1/2-Hölder continuous in time.
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We emphasise that our assumption for the SDE is less restrictive than that in [76], where
arithmetic Brownian motion (ABM) is assumed. When pricing and hedging options, usually
the stock dynamics are modeled by the GBM. To ensure the applicability of our convergence
analysis in such cases, we consider in the numerical section the ln-transformation of stock prices.
Consequently, we obtain a drift and diffusion function that satisfy Assumption AX4, thereby
ensuring that our theoretical analysis holds in the numerical experiments. Moreover, in case of
more advanced models than the GBM, if the Malliavin derivative of b(t,Xt) is bounded, our
analysis still holds.

The following lemma is a consequence of the considered assumptions.

Lemma 2.3.1. Under Assumptions AX4 and AY4, the Malliavin derivatives
(DsXt, DsYt, DsZt) are bounded P-a.s. for 0 ≤ s ≤ t ≤ T .

Proof. Due to Assumption AX4, we have that |DsXt| ≤ C P-a.s. for 0 ≤ s ≤ t ≤ T using [16],
Lemma 4.2 as |Dsb(t,Xt)| ≤ C P-a.s. for 0 ≤ s ≤ t ≤ T . Moreover, the parabolic PDE (1.3)
has a classical solution u ∈ C1,2

b

(
[0, T ]× Rd;R

)
(see [21], Theorem 2.1). The boundedness of

(DsYt, DsZt) follows after using the relations (2.10).

From the mean-value theorem, for f ∈ C0,2,2,2
b

(
[0, T ]× Rd × R× R1×d;R

)
, we have that f and

all its first-order derivatives in (x, y, z) are Lipschitz continuous. Therefore, the following holds
(using also Assumption AY4 and Lemma 2.3.1)

|f(t1,x1)− f(t2,x2)| ≤ Lf

(
|t1 − t2|

1
2 + |x1 − x2|+ |y1 − y2|+ |z1 − z2|

)
,

|fD(t1,x1,Dx1)− fD(t2,x2,Dx2)| ≤ LfD

(
|t1 − t2|

1
2 + |x1 − x2|+ |y1 − y2|+ |z1 − z2|

+|Dx1 −Dx2|+ |Dy1 −Dy2|+ |Dz1 −Dz2|
)
,

(2.13)

with xi = (xi, yi, zi), Dxi = (Dxi, Dyi, Dzi) and ti ∈ [0, T ], xi ∈ Rd, yi ∈ R, zi, Dyi ∈ R1×d,
Dxi, Dzi ∈ Rd×d, where Lf , LfD > 0 and i = 1, 2.

Under Assumptions AX4 and AY4, by Theorems 1.2.1, 2.2.1 and 2.2.3, we have that the processes
(X,Y, Z,DX,DY ) are all mean-squared continuous in time, more specific, there exists some
constant C > 0 s.t. ∀ s, r, t ∈ [0, T ]

E
[
|Xt −Xs|2

]
≤ C |t− s| , E

[
|DsXt −DsXr|2

]
≤ C |t− r| ,

E
[
|Yt − Ys|2

]
≤ C |t− s| , E

[
|Zt − Zs|2

]
≤ C |t− s| , E

[
|DsYt −DsYr|2

]
≤ C |t− r| .

(2.14)

From Assumptions AX4, AY4 and Lemma 2.3.1, we also see for 0 ≤ s ≤ t ≤ T that

E
[∫ T

0
|fD (t,Xt,DsXt)|2 dt

]
< ∞. (2.15)

Moreover, we have the well-known error estimate that the Euler-Maruyama approximations
in (1.5) admit to

max
0≤n≤N−1

E

[
sup

tn≤t≤tn+1

∣∣Xt −X∆
tn

∣∣2] = O (|∆|) , (2.16)

under Assumption AX1 and the Hölder continuity assumption in AX4 (see [102], Theorem
5.3.1), where the notation O (|∆|) means that lim sup|∆|→0 |∆|−1O (|∆|) < ∞. Note that under
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Assumption AX2 and the Hölder continuity assumption in AX4, it can be showed that the
Euler-Maruyama Malliavin derivative approximations DnX

∆
n+1 in (2.7) admit to similar error

estimates as in (2.16)

E
[∣∣DnXn+1 −DnX

∆
n+1

∣∣2] = O (|∆|) . (2.17)

Let us introduce the L2-regularity of DZ:

εDZ (|∆|) := E

[
N−1∑
n=0

∫ tn+1

tn

∣∣∣DnZr − D̂Zn

∣∣∣2 dr] , (2.18)

with

D̂Zn :=
1

∆tn
En

[∫ tn+1

tn

DnZsds

]
the L2-projection of the corresponding Malliavin derivative w.r.t. the Ftn σ-algebra. Based on
relations in (2.10), we have that

DnZr = ΓrDnXr, DmZr = ΓrDmXr, ∀ tn, tm < r.

Subsequently, using Lemma 2.3.1, the mean-squared continuity in time of DX given by Theo-
rem 2.2.1, and that the terminal condition of the Malliavin BSDE (2.6) is Lipschitz continuous
(due to Assumption AY4), we have that

εDZ (|∆|) = O (|∆|) ,

after applying [101] (Theorem 3.1).

We now define
Ŷ ∆
n := En

[
Y ∆,θ̂
n+1

]
+ f

(
tn, X̂

∆
n

)
∆tn,

Ẑ∆
n := En

[
Z∆,θ̂
n+1b

−1
(
tn+1, X

∆
n+1

)
DnX

∆
n+1

]
+ fD

(
tn, X̂

∆
n ,DnX̂

∆
n

)
∆tn,

Γ̂∆
n := 1

∆tn
En

[
∆WnZ

∆,θ̂
n+1b

−1
(
tn+1, X

∆
n+1

)
DnX

∆
n+1

]
b−1

(
tn, X

∆
n

)
,

(2.19)

for n = 0, . . . , N − 1, where X̂n :=
(
X∆

n , Ŷ ∆
n , Ẑ∆

n

)
and DnX̂n :=

(
DnX

∆
n , Ẑ∆

n , Γ̂∆
n b(tn, X

∆
n )
)
.

Note that Ŷ ∆
n and Ẑ∆

n in (2.19) are calculated by taking En[·] in (1.6) and (2.11), where

En

[
Ẑ∆
n ∆Wn

]
= 0 and En

[
Γ̂∆
n b(tn, X

∆
n )∆Wn

]
= 0. Moreover, Γ̂∆

n in (2.19) is calculated by

multiplying both sides of (2.11) with ∆Wn, where En

[
∆WnfD

(
tn, X̂

∆
n ,DnX̂

∆
n

)]
= 0. Finally,

applying the Itô isometry gives Γ̂∆
n in (2.19).

By the Markov property of the underlying processes, there exist some deterministic functions
ŷn, ẑn and γ̂n s.t.

Ŷ ∆
n = ŷn

(
X∆

n

)
, Ẑ∆

n = ẑn
(
X∆

n

)
, Γ̂∆

n = γ̂n
(
X∆

n

)
, n = 0, . . . , N − 1. (2.20)

Moreover, by the martingale representation theorem, there exists an Rd×d−valued square inte-
grable process DnẐt s.t.

DnY
∆,θ̂
n+1 = Ẑ∆

n − fD

(
tn, X̂

∆
n ,DnX̂

∆
n

)
∆tn +

∫ tn+1

tn

((
DnẐs

)⊤
dWs

)⊤
, (2.21)

and by Itô isometry, we have

DnẐ
∆
n = Γ̂∆

n b(tn, X
∆
n ) =

1

∆tn
En

[∫ tn+1

tn

DnẐsds

]
, n = 0, . . . , N − 1.
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Hence, DẐ∆ is an L2−projection of DẐ. Moreover, Ẑ∆ is an L2−projection of Ẑ s.t.

Y ∆,θ̂
n+1 = Ŷ ∆

n − f
(
tn, X̂

∆
n

)
∆tn +

∫ tn+1

tn

ẐsdWs. (2.22)

Finally, we define the approximation errors of ŷn, ẑn and γ̂n by the DNNs ϕy
n, ϕz

n and ϕγ
n defined

as

εyn := inf
θyn∈Θy

n

E
[∣∣ŷn (X∆

n

)
− ϕy

n

(
X∆

n ; θyn
)∣∣2] ,

εzn := inf
θzn∈Θz

n

E
[∣∣ẑn (X∆

n

)
− ϕz

n

(
X∆

n ; θzn
)∣∣2] ,

εγn := inf
θγn∈Θγ

n

E
[∣∣(γ̂n (X∆

n

)
− ϕγ

n

(
X∆

n ; θγn
))

b(tn, X
∆
n )
∣∣2] ,

(2.23)

for n = 0, . . . , N − 1. The goal is now to find an upper bound of the total approximation error
of the DLBDP scheme defined as

E
[
(Y, Z,Γ) ,

(
Y ∆,θ̂, Z∆,θ̂,Γ∆,θ̂

)]
:= max

0≤n≤N
E
[∣∣∣Yn − Y ∆,θ̂

n

∣∣∣2]+ max
0≤n≤N

E
[∣∣∣Zn − Z∆,θ̂

n

∣∣∣2]
+ E

[
N−1∑
n=0

∫ tn+1

tn

∣∣∣DnZs −DnZ
∆,θ̂
n

∣∣∣2 ds] ,
in terms of the discretization error (from the Euler-Maruyama scheme) and the approximation

errors (2.23) by the DNNs, where DnZs −DnZ
∆,θ̂
n = Γsb(s)− Γ∆,θ̂

n b(tn) due to relations (2.10)
and Assumption AX4.

Theorem 2.3.1. (Consistency of DLBDP scheme). Under Assumptions AX4 and AY4, there
exist a constant C > 0 independent of the time partition ∆, s.t. the total approximation error
of the DLBDP scheme admits to

E
[
(Y,Z,Γ) ,

(
Y ∆,θ̂, Z∆,θ̂,Γ∆,θ̂

)]
≤ C

{
|∆|+ εDZ (|∆|) +N

N−1∑
n=0

(λ1ε
y
n + λ2ε

z
n)

+
N−1∑
n=0

(λ2ε
y
n + λ1ε

z
n + λ2ε

γ
n)

}
.

Proof. In the following, C denotes a positive generic constant independent of ∆, which may take
different values from line to line.

Step 1. Let us fix n ∈ {0, 1, . . . , N−1}. For the time interval [tn, tn+1] in (2.4), after taking En [·]
and using the relation for Ŷ ∆

n in (2.19), we get

Yn − Ŷ ∆
n = En

[
Yn+1 − Y ∆,θ̂

n+1

]
+ En

[∫ tn+1

tn

f (s,Xs)− f
(
tn, X̂

∆
n

)
ds

]
.

Using the Jensen inequality for the second term above and then the L2 ([0, T ];R) Cauchy-Schwarz
inequality, we have

∣∣∣Yn − Ŷ ∆
n

∣∣∣ ≤ ∣∣∣En

[
Yn+1 − Y ∆,θ̂

n+1

]∣∣∣+ (∆tn)
1
2

(
En

[∫ tn+1

tn

∣∣∣f (s,Xs)− f
(
tn, X̂

∆
n

)∣∣∣2 ds]) 1
2

.
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Using again the Jensen inequality for the first term above and the Young inequality of the form

(c1 + c2)
2 ≤ (1 + ν∆tn) c

2
1 +

(
1 +

1

ν∆tn

)
c22, ν > 0, (2.24)

we get (after taking E [·]) that

E
[∣∣∣Yn − Ŷ ∆

n

∣∣∣2] ≤ (1 + ν∆tn)E
[∣∣∣Yn+1 − Y ∆,θ̂

n+1

∣∣∣2]
+

1

ν
(1 + ν∆tn)E

[∫ tn+1

tn

∣∣∣f (s,Xs)− f
(
tn, X̂

∆
n

)∣∣∣2 ds] .
The Lipschitz and Hölder continuity of f in (2.13) and the inequality

(∑4
i=1 ci

)2
≤ 4

∑4
i=1 c

2
i

yields

E
[∫ tn+1

tn

∣∣∣f (s,Xs)− f
(
tn, X̂

∆
n

)∣∣∣2 ds]
≤ 4L2

f

(∫ tn+1

tn

|s− tn| ds+
∫ tn+1

tn

E
[∣∣Xs −X∆

n

∣∣2] ds+ ∫ tn+1

tn

E
[∣∣∣Ys − Ŷ ∆

n

∣∣∣2] ds
+

∫ tn+1

tn

E
[∣∣∣Zs − Ẑ∆

n

∣∣∣2] ds)
(2.25)

Due to the mean squared continuities (2.14) and the inequality (c1 + c2)
2 ≤ 2

(
c21 + c22

)
, we have∫ tn+1

tn

E
[∣∣Xs −X∆

n

∣∣2] ds = ∫ tn+1

tn

E
[∣∣(Xs −Xn) +

(
Xn −X∆

n

)∣∣2] ds,
≤
∫ tn+1

tn

E
[(
|Xs −Xn|+

∣∣Xn −X∆
n

∣∣)2] ds,
≤ C|∆|2 + 2∆tnE

[∣∣Xn −X∆
n

∣∣2] .
Performing similar calculations for other terms in (2.25), we gather

E
[∣∣∣Yn − Ŷ ∆

n

∣∣∣2] ≤ (1 + ν∆tn)E
[∣∣∣Yn+1 − Y ∆,θ̂

n+1

∣∣∣2]
+

4L2
f

ν
(1 + ν∆tn)

{
C|∆|2 + 2∆tn

(
E
[∣∣∣Yn − Ŷ ∆

n

∣∣∣2]+ E
[∣∣∣Zn − Ẑ∆

n

∣∣∣2])} ,

(2.26)
where we also used (2.16).

Step 2. By taking En [·] in (2.8) and using the relation for Ẑ∆
n in (2.19), we have

Zn − Ẑ∆
n = En

[
DnYn+1 −DnY

∆,θ̂
n+1

]
+ En

[∫ tn+1

tn

fD (s,Xs,DnXs)− fD

(
tn, X̂

∆
n ,DnX̂

∆
n

)
ds

]
,

where Zn = DnYn due to Theorem 2.2.2. Similarly as in the previous step, namely applying
Jensen inequality for the second term above, using the L2

(
[0, T ];Rd

)
Cauchy-Schwarz inequality

and the Young inequality (2.24), we have

E
[∣∣∣Zn − Ẑ∆

n

∣∣∣2] ≤ (1 + ν∆tn)E
[∣∣∣En

[
DnYn+1 −DnY

∆,θ̂
n+1

]∣∣∣2]
+

1

ν
(1 + ν∆tn)E

[∫ tn+1

tn

∣∣∣fD (s,Xs,DnXs)− fD

(
tn, X̂

∆
n ,DnX̂

∆
n

)∣∣∣2 ds] .
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From the Lipschitz and Hölder continuity of fD in (2.13) and the inequality
(∑7

i=1 ci

)2
≤

8
∑7

i=1 c
2
i , we get

E
[∫ tn+1

tn

∣∣∣fD (s,Xs,DnXs)− fD

(
tn, X̂

∆
n ,DnX̂

∆
n

)∣∣∣2 ds]
≤ 8L2

fD

(∫ tn+1

tn

|s− tn| ds+
∫ tn+1

tn

E
[∣∣Xs −X∆

n

∣∣2] ds+ ∫ tn+1

tn

E
[∣∣∣Ys − Ŷ ∆

n

∣∣∣2] ds
+

∫ tn+1

tn

E
[∣∣∣Zs − Ẑ∆

n

∣∣∣2] ds+ ∫ tn+1

tn

E
[∣∣DnXs −DnX

∆
n

∣∣2] ds
+

∫ tn+1

tn

E
[∣∣∣DnYs −DnŶ

∆
n

∣∣∣2] ds+ ∫ tn+1

tn

E
[∣∣∣DnZs −DnẐ

∆
n

∣∣∣2] ds) .

The mean squared continuities (2.14) and the inequality (c1 + c2)
2 ≤ 2

(
c21 + c22

)
yields

E
[∣∣∣Zn − Ẑ∆

n

∣∣∣2] ≤ (1 + ν∆tn)E
[∣∣∣En

[
DnYn+1 −DnY

∆,θ̂
n+1

]∣∣∣2]
+

8L2
fD

ν
(1 + ν∆tn)

{
C|∆|2 + 2∆tn

(
E
[∣∣Xn −X∆

n

∣∣2]+ E
[∣∣∣Yn − Ŷ ∆

n

∣∣∣2]
+E

[∣∣∣Zn − Ẑ∆
n

∣∣∣2])+ 2∆tn

(
E
[∣∣DnXn −DnX

∆
n

∣∣2]+ E
[∣∣∣DnYn −DnŶ

∆
n

∣∣∣2])
+E

[∫ tn+1

tn

∣∣∣DnZs −DnẐ
∆
n

∣∣∣2 ds]} .

By using (2.16), DnYn − DnŶ
∆
n = Zn − Ẑ∆

n and E
[∣∣DnXn −DnX

∆
n

∣∣2] = 0 (due to Assump-

tion AX4), we have

E
[∣∣∣Zn − Ẑ∆

n

∣∣∣2] ≤ (1 + ν∆tn)E
[∣∣∣En

[
DnYn+1 −DnY

∆,θ̂
n+1

]∣∣∣2]
+

8L2
fD

ν
(1 + ν∆tn)

{
C|∆|2 + 2∆tn

(
E
[∣∣∣Yn − Ŷ ∆

n

∣∣∣2]+ 2E
[∣∣∣Zn − Ẑ∆

n

∣∣∣2])
+E

[∫ tn+1

tn

∣∣∣DnZs −DnẐ
∆
n

∣∣∣2 ds]} .

By the definition of D̂Zn in (2.18), the last term above is given as

E
[∫ tn+1

tn

∣∣∣DnZs −DnẐ
∆
n

∣∣∣2 ds] = E
[∫ tn+1

tn

∣∣∣DnZs − D̂Zn

∣∣∣2 ds]+∆tnE
[∣∣∣D̂Zn −DnẐ

∆
n

∣∣∣2] .
(2.27)

Hence, we get

E
[∣∣∣Zn − Ẑ∆

n

∣∣∣2] ≤ (1 + ν∆tn)E
[∣∣∣En

[
DnYn+1 −DnY

∆,θ̂
n+1

]∣∣∣2]
+

8L2
fD

ν
(1 + ν∆tn)

{
C|∆|2 + 2∆tn

(
E
[∣∣∣Yn − Ŷ ∆

n

∣∣∣2]+ 2E
[∣∣∣Zn − Ẑ∆

n

∣∣∣2])
+E

[∫ tn+1

tn

∣∣∣DnZs − D̂Zn

∣∣∣2 ds]+∆tnE
[∣∣∣D̂Zn −DnẐ

∆
n

∣∣∣2]} .

(2.28)
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Next, we find an upper bound for ∆tnE
[∣∣∣D̂Zn −DnẐ

∆
n

∣∣∣2] in (2.28). By multiplying both sides

of (2.8) with ∆Wn, taking En[·], using the Itô’s isometry and (2.18), we have together with (2.19)

∆tn

(
D̂Zn −DnẐ

∆
n

)
= En

[
∆Wn

(
DnYn+1 −DnY

∆,θ̂
n+1 − En

[
DnYn+1 −DnY

∆,θ̂
n+1

])]
+ En

[
∆Wn

∫ tn+1

tn

fD (s,Xs,DnXs) ds

]
,

after rewriting the relation for Γ̂∆
n in (2.19) as ∆tnDnẐ

∆
n = En

[
∆WnDnY

∆,θ̂
n+1

]
and that

En

[
∆WnEn

[
DnYn+1 −DnY

∆,θ̂
n+1

]]
= 0. The conditional L2

(
Ω;Rd

)
Cauchy-Schwarz inequality

in the Frobenius norm and the independence of Brownian motion increments implies

∆tn

∣∣∣D̂Zn −DnẐ
∆
n

∣∣∣ ≤ (d∆tn)
1
2

(
En

[∣∣∣DnYn+1 −DnY
∆,θ̂
n+1 − En

[
DnYn+1 −DnY

∆,θ̂
n+1

]∣∣∣2]) 1
2

+ (d∆tn)
1
2

(
En

[∣∣∣∣∫ tn+1

tn

fD (s,Xs,DnXs) ds

∣∣∣∣2
]) 1

2

.

By applying the L2
(
[0, T ];Rd

)
Cauchy-Schwarz inequality for the last term above, using the

inequality (c1 + c2)
2 ≤ 2

(
c21 + c22

)
and the law of total expectation yields

∆tnE
[∣∣∣D̂Zn −DnẐ

∆
n

∣∣∣2] ≤ 2d

(
E
[∣∣∣DnYn+1 −DnY

∆,θ̂
n+1

∣∣∣2]− E
[∣∣∣En

[
DnYn+1 −DnY

∆,θ̂
n+1

]∣∣∣2])
+ 2d∆tnE

[∫ tn+1

tn

|fD (s,Xs,DnXs)|2 ds
]
.

(2.29)
Using the upper bound (2.29) in (2.28) and choosing ν ≡ ν̌ = 16dL2

fD
, this implies

E
[∣∣∣Zn − Ẑ∆

n

∣∣∣2] ≤ (1 + ν̌∆tn)E
[∣∣∣DnYn+1 −DnY

∆,θ̂
n+1

∣∣∣2]
+

1

2d
(1 + ν̌∆tn)

{
C|∆|2 + 2∆tn

(
E
[∣∣∣Yn − Ŷ ∆

n

∣∣∣2]+ 2E
[∣∣∣Zn − Ẑ∆

n

∣∣∣2])
+E

[∫ tn+1

tn

∣∣∣DnZs − D̂Zn

∣∣∣2 ds]}
+ (1 + ν̌∆tn)∆tnE

[∫ tn+1

tn

|fD (s,Xs,DnXs)|2 ds
]
.

(2.30)
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Step 3. Combining (2.26) and (2.30) gives

E
[∣∣∣Yn − Ŷ ∆

n

∣∣∣2]+ E
[∣∣∣Zn − Ẑ∆

n

∣∣∣2]
≤ (1 + ν∆tn)E

[∣∣∣Yn+1 − Y ∆,θ̂
n+1

∣∣∣2]+ (1 + ν̌∆tn)E
[∣∣∣DnYn+1 −DnY

∆,θ̂
n+1

∣∣∣2]
+

4L2
f

ν
(1 + ν∆tn)

{
C|∆|2 +∆tn

(
E
[∣∣∣Yn − Ŷ ∆

n

∣∣∣2]+ E
[∣∣∣Zn − Ẑ∆

n

∣∣∣2])}
+

1

2d
(1 + ν̌∆tn)

{
C|∆|2 + 4∆tn

(
E
[∣∣∣Yn − Ŷ ∆

n

∣∣∣2]+ E
[∣∣∣Zn − Ẑ∆

n

∣∣∣2])
+E

[∫ tn+1

tn

∣∣∣DnZs − D̂Zn

∣∣∣2 ds]}
+ (1 + ν̌∆tn)∆tnE

[∫ tn+1

tn

|fD (s,Xs,DnXs)|2 ds
]
.

Moreover,(
1−

(
4L2

f

ν
(1 + ν∆tn) +

2

d
(1 + ν̌∆tn)

)
∆tn

)(
E
[∣∣∣Yn − Ŷ ∆

n

∣∣∣2]+ E
[∣∣∣Zn − Ẑ∆

n

∣∣∣2])
≤ (1 + ν∆tn)E

[∣∣∣Yn+1 − Y ∆,θ̂
n+1

∣∣∣2]+ (1 + ν̌∆tn)E
[∣∣∣DnYn+1 −DnY

∆,θ̂
n+1

∣∣∣2]
+

4L2
f

ν
(1 + ν∆tn)C|∆|2 + 1

2d
(1 + ν̌∆tn)

{
C|∆|2 + E

[∫ tn+1

tn

∣∣∣DnZs − D̂Zn

∣∣∣2 ds]}
+ (1 + ν̌∆tn)∆tnE

[∫ tn+1

tn

|fD (s,Xs,DnXs)|2 ds
]
.

Then, for any given ν > 0 and |∆| sufficiently small:

E
[∣∣∣Yn − Ŷ ∆

n

∣∣∣2]+ E
[∣∣∣Zn − Ẑ∆

n

∣∣∣2]
≤ (1 + C|∆|)E

[∣∣∣Yn+1 − Y ∆,θ̂
n+1

∣∣∣2]+ (1 + C|∆|)E
[∣∣∣DnYn+1 −DnY

∆,θ̂
n+1

∣∣∣2]+ C|∆|2

+ CE
[∫ tn+1

tn

∣∣∣DnZs − D̂Zn

∣∣∣2 ds]+ C|∆|E
[∫ tn+1

tn

|fD (s,Xs,DnXs)|2 ds
]
.

(2.31)

Using the Young inequality in the form

(c1 + c2)
2 ≥ (1− ν) c21 +

(
1− 1

ν

)
c22 ≥ (1− ν) c21 −

1

ν
c22, ν > 0, (2.32)

we have for ν = |∆| that

E
[∣∣∣Yn − Ŷ ∆

n

∣∣∣2] = E
[∣∣∣Yn − Y ∆,θ̂

n + Y ∆,θ̂
n − Ŷ ∆

n

∣∣∣2]
≥ (1− |∆|)E

[∣∣∣Yn − Y ∆,θ̂
n

∣∣∣2]− 1

|∆|
E
[∣∣∣Y ∆,θ̂

n − Ŷ ∆
n

∣∣∣2] ,
E
[∣∣∣Zn − Ẑ∆

n

∣∣∣2] = E
[∣∣∣Zn − Z∆,θ̂

n + Z∆,θ̂
n − Ẑ∆

n

∣∣∣2]
≥ (1− |∆|)E

[∣∣∣Zn − Z∆,θ̂
n

∣∣∣2]− 1

|∆|
E
[∣∣∣Z∆,θ̂

n − Ẑ∆
n

∣∣∣2] .
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Then, for small enough |∆|, (2.31) becomes

E
[∣∣∣Yn − Y ∆,θ̂

n

∣∣∣2]+ E
[∣∣∣Zn − Z∆,θ̂

n

∣∣∣2]
≤ (1 + C|∆|)E

[∣∣∣Yn+1 − Y ∆,θ̂
n+1

∣∣∣2]+ (1 + C|∆|)E
[∣∣∣DnYn+1 −DnY

∆,θ̂
n+1

∣∣∣2]+ C|∆|2

+ CE
[∫ tn+1

tn

∣∣∣DnZs − D̂Zn

∣∣∣2 ds]+ C|∆|E
[∫ tn+1

tn

|fD (s,Xs,DnXs)|2 ds
]

+ CNE
[∣∣∣Ŷ ∆

n − Y ∆,θ̂
n

∣∣∣2]+ CNE
[∣∣∣Ẑ∆

n − Z∆,θ̂
n

∣∣∣2] .
Using the discrete Grönwall lemma in the above equation, we get

max
0≤n≤N

E
[∣∣∣Yn − Y ∆,θ̂

n

∣∣∣2]+ max
0≤n≤N

E
[∣∣∣Zn − Z∆,θ̂

n

∣∣∣2]
≤ CE

[∣∣g(XT )− g
(
X∆

N

)∣∣2]+ CE
[∣∣∇xg(XT )DN−1XN −∇xg

(
X∆

N

)
DN−1X

∆
N

∣∣2]
+ C|∆|+ C

N−1∑
n=0

E
[∫ tn+1

tn

∣∣∣DnZs − D̂Zn

∣∣∣2 ds]

+ C|∆|
N−1∑
n=0

E
[∫ tn+1

tn

|fD (s,Xs,DnXs)|2 ds
]
+ CN

N−1∑
n=0

E
[∣∣∣Ŷ ∆

n − Y ∆,θ̂
n

∣∣∣2]

+ CN
N−1∑
n=0

E
[∣∣∣Ẑ∆

n − Z∆,θ̂
n

∣∣∣2] .
The second term in the above inequality can be written as

E
[∣∣∇xg(XT )DN−1XN −∇xg

(
X∆

N

)
DN−1X

∆
N

∣∣2]
= E

[∣∣(∇xg(XT )−∇xg
(
X∆

N

))
DN−1XN +∇xg

(
X∆

N

) (
DN−1XN −DN−1X

∆
N

)∣∣2] ,
≤ 2E

[∣∣∇xg(XT )−∇xg
(
X∆

N

)∣∣2 |DN−1XN |2
]
+ 2E

[∣∣∇xg
(
X∆

N

)∣∣2 ∣∣DN−1XN −DN−1X
∆
N

∣∣2] ,
≤ CE

[∣∣∇xg(XT )−∇xg
(
X∆

N

)∣∣2]+ CE
[∣∣DN−1XN −DN−1X

∆
N

∣∣2]
where we used the submultiplicative property of the Frobenius norm and (c1 + c2)

2 ≤ 2
(
c21 + c22

)
for the first inequality, the boundedness of DX and ∇xg(X) for the second inequality. Therefore,
we get from (2.17) that

E
[∣∣∇xg(XT )DN−1XN −∇xg

(
X∆

N

)
DN−1X

∆
N

∣∣2] ≤ CE
[∣∣∇xg(XT )−∇xg

(
X∆

N

)∣∣2]+ C|∆|.
(2.33)

From (2.15), the L2-regularity of DZ (2.18) and the inequality (2.33), we have

max
0≤n≤N

E
[∣∣∣Yn − Y ∆,θ̂

n

∣∣∣2]+ max
0≤n≤N

E
[∣∣∣Zn − Z∆,θ̂

n

∣∣∣2]
≤ CE

[∣∣g(XT )− g
(
X∆

N

)∣∣2]+ CE
[∣∣∇xg(XT )−∇xg

(
X∆

N

)∣∣2]+ C|∆|+ CεDZ (|∆|)

+ CN
N−1∑
n=0

E
[∣∣∣Ŷ ∆

n − Y ∆,θ̂
n

∣∣∣2]+ CN
N−1∑
n=0

E
[∣∣∣Ẑ∆

n − Z∆,θ̂
n

∣∣∣2] .
(2.34)
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Step 4. Let us fix n ∈ {0, 1, . . . , N − 1}. By using relations (2.21) and (2.22), and recalling

the definition of
(
Ẑ∆
n , DnẐ

∆
n

)
as an L2−projection of

(
Ẑt, DnẐt

)
, we can rewrite the loss

function (2.12) as

L∆
n (θn) = λ1

(
L̂y,∆
n (θn) + E

[∫ tn+1

tn

∣∣∣Ẑs − Ẑ∆
n

∣∣∣2 ds])
+ λ2

(
L̂z,∆
n (θn) + E

[∫ tn+1

tn

∣∣∣DnẐs −DnẐ
∆
n

∣∣∣2 ds]) ,

(2.35)

where

L̂y,∆
n (θn) := E

[∣∣∣Ŷ ∆
n − ϕy

n

(
X∆

n ; θyn
)
+
(
f
(
tn,X

∆,θ
n

)
− f

(
tn, X̂

∆
n

))
∆tn

∣∣∣2]
+∆tnE

[∣∣∣Ẑ∆
n − ϕz

n

(
X∆

n ; θzn
)∣∣∣2] , (2.36)

and
L̂z,∆
n (θn) := E

[∣∣∣Ẑ∆
n − ϕz

n

(
X∆

n ; θzn
)
+
(
fD

(
tn,X

∆,θ
n ,DnX

∆,θ
n

)
−fD

(
tn, X̂

∆
n ,DnX̂

∆
n

))
∆tn

∣∣∣2]
+∆tnE

[∣∣∣(Γ̂∆
n − ϕγ

n

(
X∆

n ; θγn
))

b
(
tn, X

∆
n

)∣∣∣2] .
(2.37)

By using the Young inequality (2.24) in (2.36) we have

L̂y,∆
n (θn) ≤ (1 + ν∆tn)E

[∣∣∣Ŷ ∆
n − ϕy

n

(
X∆

n ; θyn
)∣∣∣2]+ (1 + 1

ν∆tn

)
∆t2n

E
[∣∣∣f (tn,X∆,θ

n

)
− f

(
tn, X̂

∆
n

)∣∣∣2]+∆tnE
[∣∣∣Ẑ∆

n − ϕz
n

(
X∆

n ; θzn
)∣∣∣2] .

From the Lipschitz and Hölder continuity of f (2.13) and the inequality (c1 + c2)
2 ≤ 2

(
c21 + c22

)
,

we get

E
[∣∣∣f (tn,X∆,θ

n

)
− f

(
tn, X̂

∆
n

)∣∣∣2] ≤ 2L2
f

(
E
[∣∣∣Ŷ ∆

n − ϕy
n

(
X∆

n ; θyn
)∣∣∣2]

+E
[∣∣∣Ẑ∆

n − ϕz
n

(
X∆

n ; θzn
)∣∣∣2]) .

Hence, (2.36) is bounded by

L̂y,∆
n (θn) ≤ (1 + C∆tn)E

[∣∣∣Ŷ ∆
n − ϕy

n

(
X∆

n ; θyn
)∣∣∣2]+ C∆tnE

[∣∣∣Ẑ∆
n − ϕz

n

(
X∆

n ; θzn
)∣∣∣2] . (2.38)

By performing similar steps for (2.37) (using Lipschitz and Hölder continuity of fD instead of
f (2.13)), we get

L̂z,∆
n (θn) ≤ C∆tnE

[∣∣∣Ŷ ∆
n − ϕy

n

(
X∆

n ; θyn
)∣∣∣2]+ (1 + C∆tn)E

[∣∣∣Ẑ∆
n − ϕz

n

(
X∆

n ; θzn
)∣∣∣2]

+ C∆tnE
[∣∣∣(Γ̂∆

n − ϕγ
n

(
X∆

n ; θγn
))

b(tn, X
∆
n )
∣∣∣2] . (2.39)
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We define L̂∆
n := λ1L̂

y,∆
n + λ2L̂

z,∆
n . Using the bounds in (2.38) and (2.39) yields

L̂∆
n (θn) ≤ λ1 (1 + C∆tn)E

[∣∣∣Ŷ ∆
n − ϕy

n

(
X∆

n ; θyn
)∣∣∣2]+ λ2C∆tnE

[∣∣∣Ŷ ∆
n − ϕy

n

(
X∆

n ; θyn
)∣∣∣2]

+ λ2 (1 + C∆tn)E
[∣∣∣Ẑ∆

n − ϕz
n

(
X∆

n ; θzn
)∣∣∣2]+ λ1C∆tnE

[∣∣∣Ẑ∆
n − ϕz

n

(
X∆

n ; θzn
)∣∣∣2]

+ λ2C∆tnE
[∣∣∣(Γ̂∆

n − ϕγ
n

(
X∆

n ; θγn
))

b(tn, X
∆
n )
∣∣∣2] .

(2.40)
On the other hand, by using the Young inequality (2.32) for ν ≡ ν∆tn, we get

L̂y,∆
n (θn) ≥ (1− ν∆tn)E

[∣∣∣Ŷ ∆
n − ϕy

n

(
X∆

n ; θyn
)∣∣∣2]− 1

ν∆tn
∆t2nE

[∣∣∣f (tn,X∆,θ
n

)
− f

(
tn, X̂

∆
n

)∣∣∣2]
+∆tnE

[∣∣∣Ẑ∆
n − ϕz

n

(
X∆

n ; θzn
)∣∣∣2] ,

≥ (1− ν∆tn)E
[∣∣∣Ŷ ∆

n − ϕy
n

(
X∆

n ; θyn
)∣∣∣2]− 2L2

f∆tn

ν

(
E
[∣∣∣Ŷ ∆

n − ϕy
n

(
X∆

n ; θyn
)∣∣∣2]

+E
[∣∣∣Ẑ∆

n − ϕz
n

(
X∆

n ; θzn
)∣∣∣2])+∆tnE

[∣∣∣Ẑ∆
n − ϕz

n

(
X∆

n ; θzn
)∣∣∣2]

where the Lipschitz and Hölder continuity of f (2.13) and the inequality (c1 + c2)
2 ≤ 2

(
c21 + c22

)
are used for the second inequality. By choosing ν ≡ ν⋆ = 4L2

f , we get

L̂y,∆
n (θn) ≥ (1− C∆tn)E

[∣∣∣Ŷ ∆
n − ϕy

n

(
X∆

n ; θyn
)∣∣∣2]+ ∆tn

2
E
[∣∣∣Ẑ∆

n − ϕz
n

(
X∆

n ; θzn
)∣∣∣2] , (2.41)

and by performing similar steps for (2.37) (using Lipschitz and Hölder continuity of fD instead
of f (2.13)) yields

L̂z,∆
n (θn) ≥ (1− C∆tn)E

[∣∣∣Ẑ∆
n − ϕz

n

(
X∆

n ; θzn
)∣∣∣2]− ∆tn

2
E
[∣∣∣Ŷ ∆

n − ϕy
n

(
X∆

n ; θyn
)∣∣∣2]

+
∆tn
2

E
[∣∣∣(Γ̂∆

n − ϕγ
n

(
X∆

n ; θγn
))

b(tn, X
∆
n )
∣∣∣2] . (2.42)

By using the bounds in (2.41) and (2.42), we have for L̂∆
n that

L̂∆
n (θn) ≥ λ1 (1− C∆tn)E

[∣∣∣Ŷ ∆
n − ϕy

n

(
X∆

n ; θyn
)∣∣∣2]− λ2

2
∆tnE

[∣∣∣Ŷ ∆
n − ϕy

n

(
X∆

n ; θyn
)∣∣∣2]

+ λ2 (1− C∆tn)E
[∣∣∣Ẑ∆

n − ϕz
n

(
X∆

n ; θzn
)∣∣∣2]+ λ1

2
∆tnE

[∣∣∣Ẑ∆
n − ϕz

n

(
X∆

n ; θzn
)∣∣∣2]

+ λ2
∆tn
2

E
[∣∣∣(Γ̂∆

n − ϕγ
n

(
X∆

n ; θγn
))

b(tn, X
∆
n )
∣∣∣2] ,

≥ λ1 (1− C∆tn)E
[∣∣∣Ŷ ∆

n − ϕy
n

(
X∆

n ; θyn
)∣∣∣2]+ λ2 (1− C∆tn)E

[∣∣∣Ẑ∆
n − ϕz

n

(
X∆

n ; θzn
)∣∣∣2]

+ λ2
∆tn
2

E
[∣∣∣(Γ̂∆

n − ϕγ
n

(
X∆

n ; θγn
))

b(tn, X
∆
n )
∣∣∣2] .

(2.43)

Step 5. Let us fix n ∈ {0, 1, . . . , N − 1}. We assume that θ̂n is a perfect approximation of the

optimal parameters θ⋆n =
(
θy,⋆n , θz,⋆n , θγ,⋆n

)
∈ argminθn∈Θn

L∆
n (θn) so that Y ∆,θ̂

n = ϕy
n

(
·; θy,⋆n

)
,
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Z∆,θ̂
n = ϕz

n

(
·; θz,⋆n

)
and Γ∆,θ̂

n = ϕγ
n

(
·; θγ,⋆n

)
. In other words, we assume that the SGD method is

not trapped in a local minimum, and we neglect the estimation error resulting from minimizing
an empirical loss function. We also have that θ⋆n ∈ argminθn∈Θn

L̂∆
n (θn) from (2.35). Hence,

L̂∆
n (θ⋆n) ≤ L̂∆

n (θn) for any θn. By using the upper bound (2.40) and the lower bound (2.43) of
L̂∆
n (θn), we then have for all θn

λ1 (1− C∆tn)E
[∣∣∣Ŷ ∆

n − Y ∆,θ̂
n

∣∣∣2]+ λ2 (1− C∆tn)E
[∣∣∣Ẑ∆

n − Z∆,θ̂
n

∣∣∣2]
+ λ2

∆tn
2

E
[∣∣∣(Γ̂∆

n − Γ∆,θ̂
n

)
b(tn, X

∆
n )
∣∣∣2] ≤ L̂∆

n (θ⋆n) ≤ L̂∆
n (θn) ≤

λ1 (1 + C∆tn)E
[∣∣∣Ŷ ∆

n − ϕy
n

(
X∆

n ; θyn
)∣∣∣2]+ λ2C∆tnE

[∣∣∣Ŷ ∆
n − ϕy

n

(
X∆

n ; θyn
)∣∣∣2]

+ λ2 (1 + C∆tn)E
[∣∣∣Ẑ∆

n − ϕz
n

(
X∆

n ; θzn
)∣∣∣2]+ λ1C∆tnE

[∣∣∣Ẑ∆
n − ϕz

n

(
X∆

n ; θzn
)∣∣∣2]

+ λ2C∆tnE
[∣∣∣(Γ̂∆

n − ϕγ
n

(
X∆

n ; θγn
))

b(tn, X
∆
n )
∣∣∣2] .

For ∆tn sufficiently small satisfying C∆tn ≤ 1
2 and using (2.20), we have

λ1E
[∣∣∣Ŷ ∆

n − Y ∆,θ̂
n

∣∣∣2]+ λ2E
[∣∣∣Ẑ∆

n − Z∆,θ̂
n

∣∣∣2]+ λ2∆tnE
[∣∣∣(Γ̂∆

n − Γ∆,θ̂
n

)
b(tn, X

∆
n )
∣∣∣2]

≤ λ1Cεyn + λ2C∆tnε
y
n + λ2Cεzn + λ1C∆tnε

z
n + λ2C∆tnε

γ
n.

(2.44)

After inserting the last inequality into (2.34), we obtain

max
0≤n≤N

E
[∣∣∣Yn − Y ∆,θ̂

n

∣∣∣2]+ max
0≤n≤N

E
[∣∣∣Zn − Z∆,θ̂

n

∣∣∣2]
≤ CE

[∣∣g(XT )− g
(
X∆

N

)∣∣2]+ CE
[∣∣∇xg(XT )−∇xg

(
X∆

N

)∣∣2]+ C|∆|+ CεDZ (|∆|)

+ CNλ1

N−1∑
n=0

εyn + Cλ2

N−1∑
n=0

εyn + CNλ2

N−1∑
n=0

εzn + Cλ1

N−1∑
n=0

εzn + Cλ2

N−1∑
n=0

εγn.

(2.45)

This completes the proof of the consistency of processes Y and Z in Theorem 2.3.1.

Step 6. It now remains to prove the consistency for the process Γ. Let us fix n ∈ {0, 1, . . . , N−1}.
Using (2.29) in (2.27), we get

E
[∫ tn+1

tn

∣∣∣DnZs −DnẐ
∆
n

∣∣∣2 ds]
≤ E

[∫ tn+1

tn

∣∣∣DnZs − D̂Zn

∣∣∣2 ds]+ 2d

(
E
[∣∣∣DnYn+1 −DnY

∆,θ̂
n+1

∣∣∣2]
−E

[∣∣∣En

[
DnYn+1 −DnY

∆,θ̂
n+1

]∣∣∣2])+ 2d∆tnE
[∫ tn+1

tn

|fD (s,Xs,DnXs)|2 ds
]
.
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Summing from n = 0, . . . , N − 1, using (2.15) and (2.18) gives

E

[
N−1∑
n=0

∫ tn+1

tn

∣∣∣DnZs −DnẐ
∆
n

∣∣∣2 ds]

≤ εDZ (|∆|) + C|∆|+ 2dE
[∣∣∣DN−1YN −DN−1Y

∆,θ̂
N

∣∣∣2]
+ 2d

N−1∑
n=1

(
E
[∣∣∣Dn−1Yn −Dn−1Y

∆,θ̂
n

∣∣∣2]− E
[∣∣∣En

[
DnYn+1 −DnY

∆,θ̂
n+1

]∣∣∣2]) ,

≤ εDZ (|∆|) + C|∆|+ CE
[∣∣∇xg (XN )−∇xg

(
X∆

N

)∣∣2]
+ 2d

N−1∑
n=1

(
E
[∣∣∣Dn−1Yn −Dn−1Y

∆,θ̂
n

∣∣∣2]− E
[∣∣∣En

[
DnYn+1 −DnY

∆,θ̂
n+1

]∣∣∣2]) ,

(2.46)

where the summation index is changed for the last summation in the first inequality, and (2.33)
is used in the second inequality.

Using similar steps as for (2.33), we have that

E
[∣∣∣Dn−1Yn −Dn−1Y

∆,θ̂
n

∣∣∣2]− E
[∣∣∣En

[
DnYn+1 −DnY

∆,θ̂
n+1

]∣∣∣2]
≤ CE

[∣∣∣Zn − Z∆,θ̂
n

∣∣∣2]+ C|∆| − E
[∣∣∣En

[
DnYn+1 −DnY

∆,θ̂
n+1

]∣∣∣2] .
Moreover, using

(1− |∆|)E
[∣∣∣Zn − Z∆,θ̂

n

∣∣∣2]− 1

|∆|
E
[∣∣∣Z∆,θ̂

n − Ẑ∆
n

∣∣∣2] ≤ E
[∣∣∣Zn − Ẑ∆

n

∣∣∣2]
and (2.30), we have for |∆| small enough:

E
[∣∣∣Dn−1Yn −Dn−1Y

∆,θ̂
n

∣∣∣2]− E
[∣∣∣En

[
DnYn+1 −DnY

∆,θ̂
n+1

]∣∣∣2]
≤ CE

[∣∣∣DnYn+1 −DnY
∆,θ̂
n+1

∣∣∣2]+ C|∆|+ C|∆|E
[∣∣∣Yn − Ŷ ∆

n

∣∣∣2]+ C|∆|E
[∣∣∣Zn − Ẑ∆

n

∣∣∣2]
+ CE

[∫ tn+1

tn

∣∣∣DnZs − D̂Zn

∣∣∣2 ds]+ C|∆|E
[∫ tn+1

tn

|fD (s,Xs,DnXs)|2 ds
]

+ CNE
[∣∣∣Ẑ∆

n − Z∆,θ̂
n

∣∣∣2] .
Hence, (2.46) becomes

E

[
N−1∑
n=0

∫ tn+1

tn

∣∣∣DnZs −DnẐ
∆
n

∣∣∣2 ds]
≤ CεDZ (|∆|) + C|∆|+ CE

[∣∣∇xg (XN )−∇xg
(
X∆

N

)∣∣2]
+ C

N−1∑
n=1

E
[∣∣∣DnYn+1 −DnY

∆,θ̂
n+1

∣∣∣2]+ C|∆|
N−1∑
n=1

E
[∣∣∣Yn − Ŷ ∆

n

∣∣∣2]

+ C|∆|
N−1∑
n=1

E
[∣∣∣Zn − Ẑ∆

n

∣∣∣2]+ CN
N−1∑
n=1

E
[∣∣∣Ẑ∆

n − Z∆,θ̂
n

∣∣∣2] ,
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where we used (2.15) and (2.18). From (2.31) and (2.34), we have that

E

[
N−1∑
n=0

∫ tn+1

tn

∣∣∣DnZs −DnẐ
∆
n

∣∣∣2 ds]
≤ CE

[∣∣g(XT )− g
(
X∆

N

)∣∣2]+ CE
[∣∣∇xg(XT )−∇xg

(
X∆

N

)∣∣2]+ C|∆|+ CεDZ (|∆|)

+ CN
N−1∑
n=0

E
[∣∣∣Ŷ ∆

n − Y ∆,θ̂
n

∣∣∣2]+ CN
N−1∑
n=0

E
[∣∣∣Ẑ∆

n − Z∆,θ̂
n

∣∣∣2] .
(2.47)

Finally, using

E
[∫ tn+1

tn

∣∣∣DnZs −DnZ
∆,θ̂
n

∣∣∣2 ds] ≤ 2E
[∫ tn+1

tn

∣∣∣DnZs −DnẐ
∆
n

∣∣∣2 ds]
+ 2∆tnE

[∣∣∣DnẐ
∆
n −DnZ

∆,θ̂
n

∣∣∣2 ds] ,
summing over n = 0, . . . , N − 1 and applying the inequalities (2.44) and (2.47), we derive
the proof of the consistency of process Γ as expressed in (2.45). This concludes the proof of
Theorem 2.3.1.

Remark 2.3.1. According to Theorem 2.3.1, the total approximation error of the DLBDP
scheme consists of four terms. The first term correspond to

(i) the strong approximation of the terminal condition and its gradient, depending on the
Euler-Maruyama scheme and the functions (g(x),∇xg(x)),

(ii) the strong approximation of the Euler-Maruyama scheme and the path regularity of the
processes (Y, Z), see Theorem 2.2.3.

The second term represents the L2-regularity of DZ. All the aforementioned terms converge to
zero as |∆| goes to zero, with a rate of |∆| when Assumptions AX4 and AY4 are satisfied. For
the last two terms, the better the DNNs are able to estimate the functions (2.20), the smaller is
their contribution in the total approximation error. Note that from the universal approximation
theorem [41, 19], the approximation error from the DNNs can be made arbitrarily small for
a sufficiently large number of hidden neurons. It is crucial noting that, in contrast to both the
DBDP scheme and the method outlined in [76], the DLBDP scheme provides a means to manage
the impact of the DNN’s approximation error. This is accomplished by selecting the values of
λ1 and λ2, resulting in improved accuracy for the processes (Y, Z,Γ), as we demonstrate in
Section 2.5.

2.4 Forward differential deep learning schemes

In this section, we introduce a forward differential deep learning scheme, which extends the
well-known LDBSDE scheme [86] described in Section 1.3.2.

As mentioned before, a drawback of the forward deep learning methods such as the LDBSDE
scheme is their struggle to provide highly accurate first and second-order gradient approxima-
tions, namely the process Z and Γ. This limitation becomes apparent in the loss function (1.9)
of the LDBSDE scheme, as the SGD algorithm lacks the explicit information about the dy-
namics of Z and does not explicitly include Γ. In a differential deep learning problem, the loss
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function requires explicit information about the labels and their derivatives with respect to in-
puts [42]. Therefore, transforming the BSDE into a differential deep learning problem provides
the necessary information to the SGD algorithm. This is done by using the Malliavin calculus.

Applying the Malliavin derivative to (1.1) yields another BSDE. These are given in (2.2)-(2.6).
As for the LDBSDE scheme, we firstly discretize the integrals in such BSDE system using the
Euler-Maruyama method, providing the approximations given in Section 1.3 in (1.5) and (1.6),
and Section 2.3.1, (2.7) and (2.11). After discretizing the integrals, our scheme is made fully
implementable by approximating the unknown processes

(
Y ∆
n , Z∆

n ,Γ∆
n

)
in the discrete BSDE

system (1.6) and (2.11) using three DNNs for n = 0, 1, . . . , N . We refer to our scheme as
differential LDBSDE (DLDBSDE), which works as follows:

• Generate approximations X∆
n+1 for n = 0, 1, . . . , N−1 using (1.5) and its discrete Malliavin

derivative DnX
∆
n , DnX

∆
n+1 using (2.7).

• At each discrete time point tn, n = 0, 1, . . . , N , use DNNs ϕy(·; θy) : R1+d → R,
ϕz(·; θz) : R1+d → R1×d and ϕγ(·; θγ) : R1+d → Rd×d to approximate the discrete pro-
cesses

(
Y ∆
n , Z∆

n ,Γ∆
n

)
, respectively, where the input vector of the network is the time value

tn ∈ R+ and the Markovian process X∆
n ∈ Rd, namely

Y ∆,θ
n = ϕy(tn, X

∆
n ; θy), Z∆,θ

n = ϕz(tn, X
∆
n ; θz), Γ∆,θ

n = ϕγ(tn, X
∆
n ; θγ).

• Train the parameters θ = (θy, θz, θγ) using a global differential loss type function including
local losses such that the dynamics of discretized BSDE system (1.6) and (2.11) are satisfied
at each time step, namely

L∆ (θ) = λ1L
y,∆ (θ) + λ2L

z,∆ (θ)

Ly,∆ (θ) = E

[
N−1∑
n=0

∣∣∣Y ∆,θ
n+1 − Y ∆,θ

n + f
(
tn,X

∆,θ
n

)
∆t− Z∆,θ

n ∆Wn

∣∣∣2 + ∣∣∣Y ∆,θ
N − g

(
X∆

N

)∣∣∣2]

Lz,∆ (θn) = E

N−1∑
n=0

∣∣∣∣∣DnY
∆,θ
n+1 − Z∆,θ

n + fD

(
tn,X

∆,θ
n ,DnX

∆,θ
n

)
∆t−

((
Γ∆,θ
n DnX

∆
n

)⊤
∆Wn

)⊤
∣∣∣∣∣
2

+
∣∣∣Z∆,θ

N − gx
(
X∆

N

)
b
(
tN , X∆

N

)∣∣∣2 ] ,
(2.48)

where DnY
∆,θ
n+1 = Z∆,θ

n+1b
−1
(
tn+1, X

∆
n+1

)
DnX

∆
n+1.

• Approximate the optimal parameters θ∗ ∈ argminθ∈Θ L∆ (θ) using a SGD method and

receive the final estimated parameters θ̂. Set the final approximation of
(
Y ∆
n , Z∆

n ,Γ∆
n

)
as(

Y ∆,θ̂
n , Z∆,θ̂

n ,Γ∆,θ̂
n

)
for n = 0, 1, . . . , N .

Note that LDBSDE scheme can be considered as a special case of our scheme by choosing
λ1 = 1 and λ2 = 0, and using one DNN for Y and AD for the processes Z and Γ. Similarly to
the DLBDP scheme, we chose λ1 = 1

d+1 and λ2 = d
d+1 . The difference between the DLDBSDE

scheme and the DLBDP scheme is outlined in Remark 2.4.1, and its convergence analysis in
Remark 2.4.2.

Remark 2.4.1. The DLDBSDE scheme significantly differs from the DLBDP scheme. Unlike
the latter, which relied on local optimization, the former is based on global optimization.
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Remark 2.4.2. The convergence of the LDBSDE scheme is discussed in [66], providing an a
posteriori error estimation similar to [39] for the DBSDE scheme. The authors demonstrate
that the error of the LDBSDE scheme is bounded by its respective loss function (1.9), and the
loss functional converges sufficiently fast to zero, ensuring that the error of the scheme vanishes
in the limit. This result is achievable through the universal approximation theorem [41, 19] of
NNs. An a posteriori error analysis for the DLDBSDE scheme can be conducted by following the
methodology in [66] and Section 2.3.2. The latter includes the additional assumptions, namely
Assumptions AX4 and AY4 needed for ensuring the boundedness of the Malliavin derivatives. It
also provides the extra steps required to address the discretization error introduced by the Euler-
Maruyama method and the model/approximation error from the DNNs (ϕz, ϕγ) associated with
the second term in the loss function (2.48). This is part of our ongoing research.

2.5 Numerical results

The numerical results for forward-type schemes have been presented in the previous chapter.
Therefore, in this chapter, we focus on the numerical results of backward-type schemes. Specif-
ically, we illustrate the improved performance of the DLBDP scheme compared to the DBDP
scheme not only when approximating the solution, but also its gradient and the Hessian matrix.
Moreover, we show that our scheme achieves similar accuracy compared to the OSM scheme
for less computation time. As high-accurate gradient approximations are of great importance
in finance, we consider linear and nonlinear option pricing examples. All the experiments below
were conducted using PYTHON and TensorFlow on the PLEIADES cluster’s GPU nodes.

In all the following examples, we consider the same hyperparameters for our scheme and both
the DBDP and OSM schemes for a fair comparison. For the DNNs, we choose L = 2 hidden
layers and η = 100 + d neurons per hidden layer. The input is normalized based on the true
moments. The input is not normalized at discrete time point t0, as the standard deviation is zero.
A hyperbolic tangent activation tanh(·) is applied on each hidden layer. It is crucial to mention
that one can’t apply batch normalization for the hidden layers as AD is required to approximate
the process Γ in the DBDP scheme. This is because using batch normalization creates dependence
for the gradients in the batch, since it normalizes across the batch dimension. Using the method
tf.GradientTape.batch jacobian to approximate Γ when the DNN that approximates Z involves
tf.keras.layers.BatchNormalization layers returns something with the expected shape, but its
contents have an unclear meaning, see TensorFlow documentation1, batch Jacobian section.
Therefore, batch normalization is emitted not only in the DBDP scheme, but also in our scheme
to ensure a fair comparison. For the SGD iterations, we use the Adam optimizer with a PC-LR
approach. We choose a batch size of B = 1024 for each of κ optimization steps. At the discrete
time point tN−1, we consider K = 24000 optimization steps, where the learning rate α is adjusted
as follows

ακ =



1e−2, for 1 ≤ κ ≤ 2000,

3e−3, for 2000 < κ ≤ 4000,

1e−3, for 4000 < κ ≤ 8000,

3e−4, for 8000 < κ ≤ 12000,

1e−4, for 12000 < κ ≤ 16000,

3e−5, for 16000 < κ ≤ 20000,

1e−5, for 20000 < κ ≤ K.

1https://www.tensorflow.org/guide/advanced_autodiff#batch_jacobian
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For the next discrete time points (i.e., tN−2, . . . , t0), we make use of the transfer learning ap-
proach, and reduce the number of optimization steps to K = 10000, and use the following learning
rates

ακ =



1e−3, for 1 ≤ κ ≤ 2000,

3e−4, for 2000 < κ ≤ 4000,

1e−4, for 4000 < κ ≤ 6000,

3e−5, for 6000 < κ ≤ 8000,

1e−5, for 8000 < κ ≤ K.

The gradient of the driver function f w.r.t each variable (x, y, z) and the function g w.r.t
to variable x are calculated by using AD, namely tf.GradientTape in TensorFlow. For
the gradient of the function representing Zt (when available) in (1.3) w.r.t to variable x,
tf.GradientTape.batch jacobian is used. Note that we consider a uniform time discretization
∆ of [0, T ]. The DLBDP algorithm (without ln-transformation) calculating the final estimates(
Y ∆,θ̂
n , Z∆,θ̂

n

)
for n = N − 1, . . . , 1, 0, is given in Algorithm 3 when using the aforementioned

learning rate decay and transfer learning approaches. The parameters θ̂ are an estimation of θ∗

due to the optimization error resulting from the Adam optimization algorithm and the estima-
tion error from the empirical version of loss (2.12) given as

L̃∆
n (θn) = λ1L̃

y,∆
n (θn) + λ2L̃

z,∆
n (θn) ,

L̃y,∆
n (θn) =

1

B

B∑
j=1

∣∣∣Y ∆,θ̂
n+1,j − ϕy

n

(
X∆

n,j ; θ
y
n

)
+ f

(
tn,X

∆,θ
n,j

)
∆t− ϕz

n

(
X∆

n,j ; θ
z
n

)
∆Wn,j

∣∣∣2 ,
L̃z,∆
n (θn) =

1

B

B∑
j=1

∣∣∣∣Z∆,θ̂
n+1,jb

−1
(
tn+1, X

∆
n+1,j

)
DnX

∆
n+1,j − ϕz

n

(
X∆

n,j ; θ
z
n

)
+fD

(
tn,X

∆,θ
n,j ,DnX

∆,θ
n,j

)
∆t−

((
ϕγ
n

(
X∆

n,j ; θ
γ
n

)
DnX

∆
n,j

)⊤
∆Wn,j

)⊤∣∣∣∣2 ,
for a batch size B.

As performance metrics for a sample with the size B, we use the MSE, mean MSE, and its
relative measure as defined in (1.14), (1.15) and (1.16), respectively, where for the process Γ we
have that, e.g., the MSE is given as

ε̃γn :=
1

B

B∑
j=1

∣∣∣Γn,j − Γ∆,θ̂
n,j

∣∣∣2 .
The average computation time over Q = 10 runs of the algorthms is given as in (1.17).

2.5.1 The Black-Scholes BSDE

We start with a linear BSDE - the Black-Scholes BSDE - which is used for pricing of European
options.

Example 2.5.1. The high-dimenisonal Black-Scholes BSDE reads [100]
dXk

t = (ak − δk)X
k
t dt+ bkX

k
t dW

k
t ,

Xk
0 = xk0, k = 1, . . . , d,

−dYt = −
(
RYt +

∑d
k=1

ak−R+δk
bk

Zk
t

)
dt− Zt dWt,

YT =
(∏d

k=1

(
Xk

T

)ck −K
)+

,
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Algorithm 3: Algorithm of DLBDP scheme

Input: (N, d, T, x0) - problem parameters; (a, b, f, g) - functions of the BSDE
Input: (α,K, L, η, ϱ,B, λ1, λ2) - DNN hyperparameters

Output:
(
Y ∆,θ̂
n , Z∆,θ̂

n ,Γ∆,θ̂
n

)
, n = 0, . . . , N − 1 - estimated solution

for n = N − 1 : 0 do

tn = n∆t, ∆t = T
N

θ̂0n =
(
θ̂y,0n , θ̂z,0n , θ̂γ,0n

)
- Xavier normal initializer [31]

if n < N − 1 then

θ̂0n = θ̂n+1 - Transfer learning approach
end
for κ = 1 : K do

for j = 1 : B do
X∆

0,j = x0
for n = 0 : N − 1 do

X∆
n+1,j = X∆

n,j + a
(
tn, X

∆
n,j

)
∆t+ b

(
tn, X

∆
n,j

)
∆Wn,j ,

∆Wn,j ∼ N (0d,∆t Id)

DnX
∆
n,j = b

(
tn, X

∆
n,j

)
DnX

∆
n+1,j =

DnX
∆
n,j +∇xa

(
tn, X

∆
n,j

)
DnX

∆
n,j∆t+∇xb

(
tn, X

∆
n,j

)
DnX

∆
n,j∆Wn,j

end
Use three DNNs with hyperparamters (L, η, ϱ) and input X∆

n,j:

Y ∆,θ̂κ−1

n,j = ϕy
n

(
·; θ̂y,κ−1

n

)
, Z∆,θ̂κ−1

n,j = ϕz
n

(
·; θ̂z,κ−1

n

)
,Γ∆,θ̂κ−1

n,j = ϕγ
n

(
·; θ̂γ,κ−1

n

)
if n = N − 1 then

Y ∆,θ̂
n+1,j = g(X∆

N,j), Z∆,θ̂
n+1,j = ∇xg(X

∆
N,j)b(tN , X∆

N,j)

else

Y ∆,θ̂
n+1,j = ϕy

n+1

(
X∆

n+1,j ; θ̂
y
n+1

)
, Z∆,θ̂

n+1,j = ϕz
n+1

(
X∆

n+1,j ; θ̂
z
n+1

)
end

end
Empirical loss function (2.12):

L̃y,∆
n

(
θ̂κ−1
n

)
=

1

B

B∑
j=1

∣∣∣Y ∆,θ̂
n+1,j − Y ∆,θ̂κ−1

n,j + f
(
tn,X

∆,θ̂κ−1

n,j

)
∆t− Z∆,θ̂κ−1

n,j ∆Wn,j

∣∣∣2
L̃z,∆
n

(
θ̂κ−1
n

)
=

1

B

B∑
j=1

∣∣∣∣∣Z∆,θ̂
n+1,jb

−1
(
tn+1, X

∆
n+1,j

)
DnX

∆
n+1,j − Z∆,θ̂κ−1

n,j

+fD

(
tn,X

∆,θ̂κ−1

n,j ,DnX
∆,θ̂κ−1

n,j

)
∆t−

((
Γ∆,θ̂κ−1

n,j DnX
∆
n,j

)⊤
∆Wn,j

)⊤
∣∣∣∣∣
2

L̃∆
n

(
θ̂κ−1
n

)
= λ1L̃

y,∆
n

(
θ̂κ−1
n

)
+ λ2L̃

z,∆
n

(
θ̂κ−1
n

)
θ̂κn - trained parameters at step κ using Adam [64] with ακ

end

θ̂n = θ̂Kn - final estimated DNN parameters at tn after K optimization steps
end
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where ck > 0 and
∑d

k=1 ck = 1. Note that ak represents the return rate of the stock Xk
t , bk

the volatility of the stock returns, δk is its dividend rate, and xk0 is the price of the stock at
t = 0. Moreover, XT is the price of the stocks at time T , which denotes the maturity of the
option contract. The value K represents the contract’s strike price. Finally, R corresponds to the
risk-free interest rate. The analytic solution (the option price Yt and the delta-hedging strategy
Zt) is given by

Yt = u(t,Xt) = exp
(
−δ̌ (T − t)

)∏d
k=1

(
Xk

t

)ck Φ (ď1)− exp (−R (T − t))KΦ
(
ď2
)
,

Zk
t = ∂u

∂xk
bkX

k
t = ck exp

(
−δ̌ (T − t)

)∏d
k=1

(
Xk

t

)ck Φ (ď1) bk, k = 1, . . . , d,

ď1 =
ln

(∏d
k=1(Xk

t )
ck

K

)
+
(
R−δ̌+ b̌2

2

)
(T−t)

b̌
√
T−t

,

ď2 = ď1 − b̌
√
T − t,

b̌2 =
∑d

k=1(bkck)
2, δ̌ =

∑d
k=1 ck

(
δk +

b2k
2

)
− b̌2

2 ,

(2.49)

where Φ (·) is the standard normal cumulative distribution function. The analytical solution
Γt = ∇x (∇xu (t,Xt) b (t,Xt)) is calculated by using AD. As we mentioned in Section 2.3.2, when
dealing with a forward SDE represented by the GBM, we apply the ln-transformation to ensure
that the theoretical analysis is applicable to our numerical experiments. We define X̌t := ln (Xt)
and ǔ(t, X̌t) := u(t,Xt). Using the Feynman-Kac formula, we write the Black-Scholes BSDE in
the ln-domain 

dX̌k
t =

(
ak − δk − 1

2b
2
k

)
dt+ bk dW

k
t ,

X̌k
0 = ln

(
xk0
)
, k = 1, . . . , d,

−dY̌t = −
(
RY̌t +

∑d
k=1

ak−R+δk
bk

Žk
t

)
dt− Žt dWt,

Y̌T =
(
exp

(∑d
k=1 ckX̌

k
T

)
−K

)+
.

(2.50)

The ln-transformation simplifies the Malliavin derivatives as DnX
k
n = bkX

k
n, DnX

k
n+1 = bkX

k
n+1

and DnX̌
k
n = DnX̌

k
n+1 = bk for k = 1, . . . , d. Note that

(
Y̌t, Žt

)
= (Yt, Zt) since Y̌t = ǔ(t, X̌t) =

u(t,Xt) = Yt and Žk
t = ∂ǔ

∂x̌k
bk = ∂u

∂xk
bkX

k
t = Zk

t for k = 1, . . . , d. Hence, we can compare the
approximated solution of (2.50) in the ln-domain with the exact solution of Example 2.5.1 given

in (2.49). In case of the process Γ, we have that Γ̌k,j
t

1

Xj
t

= Γk,j
t for k, j = 1, . . . , d. In the following

tests, for k = 1, . . . , d, we set xk0 = 100, ak = 0.05, bk = 0.2, R = 0.03, ck = 1
d and δk = 0.

Moreover, we set K = 100, T = 1 and d ∈ {1, 10, 50}.

We start with d = 1 as we can also visualize the exact and approximated values of each process
over the discrete time domain. In Figure 2.1, we display the exact and approximated value of
the processes (Y,Z,Γ) from the first run of DBDP, OSM and DLBDP at arbitrary discrete time
points (t2, t32, t63) = (0.0312, 0.5000, 0.9844) using N = 64. Moreover, we show only 256 out
of 1024 testing samples for better visualization. Our scheme outperforms the DBDP scheme in
approximating the process Γ, particularly as we approach t0. The OSM scheme exhibits sim-
ilar approximations as our method. It is difficult to observe any improvement from DLBDP
scheme for the processes Y and Z in Figure 2.1. Therefore, to provide a clearer comparison
using the entire testing sample across the discrete domain ∆, we visualize in Figure 2.2 the
mean MSE values for each process for d ∈ {1, 10, 50}. The STD of the MSE values is given in
the shaded area. Firstly, we compare our scheme with the DBDP scheme. For the case of d = 1,
Figure 2.2c clearly shows a substantial improvement in approximating the process Γ across the
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(c) Process Γ at t63 = 0.9844.

80 100 120 140 160
0

10

20

30

40

50

60

X∆
32

Y32

Y ∆,θ̂
32 -DBDP

Y ∆,θ̂
32 -OSM

Y ∆,θ̂
32 -DLBDP

(d) Process Y at t32 = 0.5000.
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(i) Process Γ at t2 = 0.0312.

Figure 2.1: Exact and approximated values of the processes (Y, Z,Γ) from the first run of DBDP,
OSM and DLBDP schemes at discrete time points (t2, t32, t63) = (0.0312, 0.5000, 0.9844) using
256 samples of the testing sample in Example 2.5.1, for d = 1 and N = 64.
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(d) Process Y , d = 10.
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(e) Process Z, d = 10.
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(f) Process Γ, d = 10.
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(g) Process Y , d = 50.
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(h) Process Z, d = 50.
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(i) Process Γ, d = 50.

Figure 2.2: Mean MSE values of the processes (Y,Z,Γ) from DBDP, OSM and DLBDP
schemes over the discrete time points {tn}N−1

n=0 using the testing sample in Example 2.5.1, for
d ∈ {1, 10, 50} and N = 64. The STD of MSE values is given in the shaded area.
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discrete time points {tn}N−1
n=0 achieved by our scheme compared to the DBDP scheme. Further-

more, Figure 2.2b demonstrates that the DLBDP scheme also outperforms in approximating
the process Z. However, there is no improvement achieved with our scheme for the process Y ,
as shown in Figure 2.2a. As the dimension increases to d = 10 and d = 50, our scheme further
exhibits a higher accuracy for approximating the processes (Z,Γ). Moreover, an improvement in
approximating the process Y is evident for d = 50 from the DLBDP scheme compared to DBDP
scheme, as displayed in Figure 2.2g. The approximations from our scheme and the OSM scheme
are comparable. Specifically, both schemes yield similar approximations for the process Γ, while
the OSM scheme performs better for the process Z, and our scheme gives higher accuracy for
the process Y .

Next, we report in Table 2.1 the mean relative MSE of each process at t0 while varying N
for d ∈ {1, 10, 50}, along with the average computation time from both the DBDP, OSM and
DLBDP schemes. The STD of the relative MSE values at t0 is given in the brackets. The mean
relative MSE of (Y0, Z0) decreases as N increases for each dimension in all schemes. This trend
is also observed for Γ0 in the OSM and DLBDP schemes, but not in the DBDP scheme, which
actually diverges. Note that the mean relative MSE values start to flatten out for N = 64,
indicating that the overall contribution of the approximation error from the DNNs increases
for higher N and becomes larger than the discretization error. This is consistent with the error
analysis in Section 2.3.2 (see Theorem 4.1 for the DBDP scheme [44] and Theorem 5.2 for the
OSM scheme [76]). Compared to the DBDP scheme, our approach consistently yields the smallest
mean relative MSE for each process, especially as the dimension increases. Both the OSM and
DLBDP schemes provide overall comparable approximations. The average computation time of
the DLBDP algorithm is higher compared to that of the DBDP algorithm. Note that we compare
the computational time of all schemes including the computation of Γ at each optimization step.
In [76] it is mentioned that the runtime of their algorithm is roughly double of the DBDP one,
as it requires solving two optimization problems per discrete time step. Since in the second
optimization problem only the parameters of the DNN for the process Y are optimized, one can
reasonably infer that our algorithm may be up to twice as fast as the one proposed in [76]. This
is observed in Table 2.1 when comparing the computation of the OSM and DLBDP schemes,
especially as d and N increases (the algorithm’s complexity grows due to the higher number of
network parameters with increasing dimensionality and the increased number of optimization
problems with larger N).

To train the algorithms, we set a high number of optimization steps (and a high number of
hidden neurons) as described in the beginning of Section 2.5 s.t. the same hyperparameters are
used for each example. However, the computation time of the algorithms can be reduced, e.g.,
by reducing the number of optimization steps. This can be seen in Figure 2.3, where we display
the mean loss and MSE values of each process for all the algorithms using a validation sample
Bvalid = 1024, at discrete time points (t32, t63) in case of d = 50 and using N = 64. The mean

loss is defined as L̃
∆

n

(
θ̂n

)
:= 1

Q

∑Q
q=1 L̃

∆
n,q

(
θ̂n

)
. The STD of the loss and MSE values is given

in the shaded area. By choosing for instance K = 16000 at t63 and K = 5000 at other discrete
time points, the runtime of the algorithms is substantially reduced with almost an insignificant
loss of accuracy.

2.5.2 Option pricing with different interest rates

We now consider the pricing problem involving a European option in a financial market where
the different interest rates for borrowing and lending are different, which is represented by a
nonlinear BSDE.
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(a) Loss, t63 = 0.9844.
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(b) Loss, t32 = 0.5000.
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(c) Process Y , t63 = 0.9844.
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(d) Process Y , t32 = 0.5000.
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(e) Process Z, t63 = 0.9844.
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(f) Process Z, t32 = 0.5000.
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(g) Process Γ, t63 = 0.9844.
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(h) Process Γ, t32 = 0.5000.

Figure 2.3: Mean loss and MSE values of the process (Y,Z,Γ) from DBDP, OSM and DLBDP
schemes at discrete time points (t32, t63) = (0.5000, 0.9844) using the validation sample in Ex-
ample 2.5.1, for d = 50 and N = 64. The STD of the loss and MSE values is given in the shaded
area.
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(a) d = 1.

Metric

N = 2 N = 8 N = 32 N = 64
DBDP DBDP DBDP DBDP
OSM OSM OSM OSM

DLBDP DLBDP DLBDP DLBDP

ε̃
y,r
0

1.31e−05 (1.50e−05) 3.57e−06 (1.63e−06) 2.93e−06 (4.08e−06) 1.11e−06 (1.66e−06)
4.66e−05 (3.55e−05) 4.44e−06 (3.93e−06) 8.82e−07 (1.79e−06) 2.76e−06 (3.01e−06)
8.47e−06 (9.42e−06) 3.29e−06 (4.06e−06) 3.14e−06 (4.20e−06) 9.59e−07 (1.69e−06)

ε̃
z,r
0

3.20e−03 (3.58e−04) 2.04e−04 (3.06e−05) 1.91e−05 (9.24e−06) 4.93e−06 (5.90e−06)
2.54e−06 (3.06e−06) 8.94e−07 (9.66e−07) 2.14e−06 (2.55e−06) 6.90e−07 (9.79e−07)
9.46e−04 (1.28e−04) 7.47e−05 (1.20e−05) 5.79e−06 (1.56e−06) 2.20e−06 (9.52e−07)

ε̃
γ,r
0

1.16e+00 (1.55e−02) 9.94e−01 (1.49e−03) 9.89e−01 (5.47e−03) 9.86e−01 (1.01e−02)
5.59e−05 (1.18e−05) 6.51e−06 (5.69e−06) 1.79e−06 (2.12e−06) 1.96e−06 (2.52e−06)
8.10e−04 (6.58e−05) 7.36e−05 (2.24e−05) 4.93e−06 (4.87e−06) 2.77e−06 (3.33e−06)

τ
2.14e+02 6.60e+02 2.84e+03 6.83e+03
3.44e+02 1.03e+03 4.56e+03 1.15e+04
2.68e+02 7.65e+02 3.16e+03 7.39e+03

(b) d = 10.

ε̃
y,r
0

4.06e−04 (1.03e−04) 1.98e−05 (1.27e−05) 4.72e−06 (6.36e−06) 2.68e−06 (3.85e−06)
6.28e−04 (1.01e−04) 4.07e−05 (2.76e−05) 1.36e−05 (1.45e−05) 4.94e−06 (3.56e−06)
4.09e−05 (3.03e−05) 8.83e−06 (5.46e−06) 4.10e−06 (4.06e−06) 3.05e−06 (5.51e−06)

ε̃
z,r
0

1.77e−02 (5.69e−04) 1.08e−03 (1.53e−04) 7.79e−05 (1.85e−05) 2.58e−05 (1.88e−05)
1.05e−05 (7.64e−06) 1.67e−06 (2.15e−06) 1.16e−06 (1.34e−06) 1.84e−06 (1.49e−06)
5.65e−03 (2.01e−04) 4.14e−04 (3.96e−05) 2.44e−05 (1.01e−05) 8.51e−06 (5.85e−06)

ε̃
γ,r
0

1.00e+00 (2.47e−03) 1.00e+00 (5.17e−04) 1.00e+00 (8.77e−04) 1.00e+00 (1.73e−03)
2.18e−04 (4.63e−05) 1.07e−05 (9.20e−06) 6.08e−06 (2.64e−06) 5.94e−06 (2.85e−06)
6.80e−04 (6.43e−05) 8.53e−06 (3.48e−06) 6.85e−06 (2.96e−06) 6.99e−06 (6.45e−06)

τ
2.72e+02 1.03e+03 7.40e+03 2.47e+04
5.14e+02 1.89e+03 1.39e+04 4.73e+04
4.08e+02 1.35e+03 8.44e+03 2.64e+04

(c) d = 50.

ε̃
y,r
0

5.47e−03 (3.72e−04) 4.20e−04 (9.11e−05) 4.67e−05 (3.80e−05) 1.48e−05 (1.24e−05)
3.64e−03 (4.10e−04) 2.55e−04 (5.89e−05) 1.45e−05 (1.13e−05) 9.79e−06 (8.85e−06)
2.23e−05 (1.94e−05) 8.12e−06 (7.46e−06) 4.15e−06 (6.77e−06) 2.90e−06 (2.04e−06)

ε̃
z,r
0

5.75e−02 (1.27e−03) 4.15e−03 (3.36e−04) 2.75e−04 (6.49e−05) 8.27e−05 (2.85e−05)
1.55e−03 (2.65e−04) 4.06e−05 (1.64e−05) 6.51e−06 (5.62e−06) 9.42e−06 (1.17e−05)
2.28e−02 (4.33e−04) 1.49e−03 (6.05e−05) 1.04e−04 (2.51e−05) 2.54e−05 (9.21e−06)

ε̃
γ,r
0

1.00e+00 (2.75e−05) 1.00e+00 (2.34e−04) 1.00e+00 (2.85e−04) 1.00e+00 (1.69e−04)
2.24e−02 (1.83e−03) 1.25e−04 (8.82e−05) 6.59e−05 (7.35e−05) 8.93e−05 (1.23e−04)
6.17e−02 (1.84e−03) 1.33e−03 (2.13e−04) 1.19e−04 (1.13e−04) 6.56e−05 (7.64e−05)

τ
5.65e+02 2.83e+03 2.88e+04 1.12e+05
2.75e+03 9.77e+03 7.32e+04 2.54e+05
2.47e+03 7.77e+03 4.67e+04 1.47e+05

Table 2.1: Mean relative MSE values of (Y0, Z0,Γ0) from DBDP, OSM and DLBDP schemes and
their average runtimes in Example 2.5.1 for d ∈ {1, 10, 50} and N ∈ {2, 8, 32, 64}. The STD of
the relative MSE values at t0 is given in the brackets.

Example 2.5.2. The high-dimensional nonlinear BSDE for pricing European options with dif-
ferent interest rates reads

dXt = aXt dt+ bXt dWt,
X0 = x0,

−dYt =
(
−R1Yt − a−R1

b

∑d
k=1 Z

k
t + (R2 −R1)max

(
1
b

∑d
k=1 Z

k
t − Yt, 0

))
dt

−Zt dWt,
YT = g(XT ),
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where R1 and R2 are the interest rates for lending and borrowing, respectively, and g(x) is the
payoff function. Note that instead of solving the above BSDE directly, we solve the transformed
BSDE in the ln-domain.

In the case of d = 1, we consider an European call option with g(XT ) = (XT −K)+. This setting
agrees with the setting in [35] (Section 6.3.1), where it is noted that solving the above nonlinear
BSDE is the same as solving the linear BSDE in Example 2.5.1 with R = R2. This is a good
example to compare the approximation of the process (Y,Z,Γ) in case of a nonlinear BSDE from
all algorithms with the exact solution (given in (2.49)) on the entire discrete time domain. We
set T = 0.5, K = 100, x0 = 100, a = 0.06, b = 0.2, R1 = 0.04 and R2 = 0.06. In Figure 2.4, we
display the mean MSE values for each process over discrete domain ∆ using the testing sample
and N = 64, where the STD of the MSE values is visualized in the shaded area. We see that

0 0.1 0.2 0.3 0.4 0.5
10−5

10−4

10−3

tn

ε̃
y
n-DBDP

ε̃
y
n-OSM

ε̃
y
n-DLBDP

(a) Process Y .

0 0.1 0.2 0.3 0.4 0.5

10−4

10−3

10−2

tn

ε̃
z
n-DBDP

ε̃
z
n-OSM

ε̃
z
n-DLBDP

(b) Process Z.

0 0.1 0.2 0.3 0.4 0.5

10−6

10−4

10−2

100

tn

ε̃
γ
n-DBDP

ε̃
γ
n-OSM

ε̃
γ
n-DLBDP

(c) Process Γ.

Figure 2.4: Mean MSE values of the processes (Y,Z,Γ) from DBDP, OSM and DLBDP schemes
over the discrete time points {tn}N−1

n=0 using the testing sample in Example 2.5.2, for d = 1 and
N = 64. The STD of MSE values is given in the shaded area.

our scheme outperforms the DBDP scheme in approximating the processes (Z,Γ) on the entire
discrete domain ∆, similarly as in Example 2.5.1. Moreover, our scheme outperforms the OSM
scheme in approximating the process Z in this example. In Table 2.2, we report the mean relative
MSE values at t0 for each process and the algorithm average runtime using N ∈ {2, 8, 32, 64}.
The STD of the relative MSE values at t0 is given in the brackets. The same conclusion can be
drawn that the DLBDP scheme yields convergent results for N ∈ {2, 8, 32, 64} for each process
(whereas DBDP diverges for Γ0) and outperforms the DBDP scheme. Similarly to Example 2.5.1,
our scheme and the OSM scheme yield overall comparable approximations, except for N = 64,
where our scheme performs better for the process Z. Additionally, the DLBDP scheme exhibits
smaller runtimes compared to the OSM scheme.

Next, we test all schemes in the case of d = 50, using the payoff function

YT = max

(
max

k=1,...,d

(
Xk

T −K1

)
, 0

)
− 2max

(
max

k=1,...,d

(
Xk

T −K2

)
, 0

)
,

where K1 = 120 and K2 = 150. Note that a = 0.06, b = 0.2 and x0 = 100150. The benchmark
value is Y0

.
= 17.9743, which is computed using the multilevel Monte Carlo approach [23] with

7 Picard iterations and Q = 10 independent runs. For N ∈ {2, 8, 32, 64}, we show in Table 2.3
the approximation for Y0 (the reference results for Z0 are not available) from all algorithms
and their average runtime. More precisely, we report the mean approximation of Y0 defined

as Y
∆,θ̂
0 := 1

Q

∑Q
q=1 Y

∆,θ̂
0,q , the mean relative MSE and their STD given in the brackets. We
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Metric

N = 2 N = 8 N = 32 N = 64
DBDP DBDP DBDP DBDP
OSM OSM OSM OSM

DLBDP DLBDP DLBDP DLBDP

ε̃
y,r
0

3.85e−06 (4.16e−06) 2.69e−06 (2.94e−06) 2.97e−06 (3.17e−06) 9.91e−07 (1.13e−06)
1.33e−05 (1.61e−05) 3.66e−06 (4.60e−06) 1.42e−06 (2.22e−06) 1.55e−06 (2.22e−06)
3.76e−06 (4.31e−06) 2.71e−06 (2.91e−06) 2.93e−06 (3.25e−06) 9.65e−07 (1.19e−06)

ε̃
z,r
0

1.97e−04 (7.14e−05) 1.75e−05 (1.10e−05) 3.07e−06 (3.13e−06) 1.67e−06 (1.90e−06)
2.87e−06 (4.45e−06) 9.31e−07 (9.62e−07) 1.51e−06 (1.83e−06) 7.98e−07 (1.26e−06)
2.77e−05 (1.78e−05) 1.44e−06 (8.18e−07) 6.97e−07 (7.76e−07) 3.05e−07 (2.59e−07)

ε̃
γ,r
0

1.09e+00 (1.67e−02) 1.01e+00 (3.16e−02) 9.96e−01 (1.44e−03) 9.96e−01 (1.43e−03)
9.53e−07 (1.48e−06) 1.51e−06 (1.33e−06) 1.52e−06 (1.52e−06) 1.12e−06 (1.52e−06)
3.25e−04 (3.80e−05) 2.51e−05 (1.05e−05) 1.24e−06 (1.26e−06) 1.08e−06 (1.61e−06)

τ
2.14e+02 6.63e+02 2.85e+03 6.85e+03
3.11e+02 1.00e+03 4.57e+03 1.15e+04
2.35e+02 7.37e+02 3.15e+03 7.42e+03

Table 2.2: Mean relative MSE values of (Y0, Z0,Γ0) from DBDP, OSM and DLBDP schemes
and their average runtimes in Example 2.5.2 for d = 1 and N ∈ {2, 8, 32, 64}. The STD of the
relative MSE values at t0 is given in the brackets.

Metric

N = 2 N = 8 N = 32 N = 64
DBDP DBDP DBDP DBDP
OSM OSM OSM OSM

DLBDP DLBDP DLBDP DLBDP

Y0 [23] 17.9743

Y
∆,θ̂
0

17.5602 (4.11e−01) 17.7981 (4.50e−01) 17.9276 (5.15e−01) 17.9112 (4.91e−01)
17.6537 (2.57e−01) 17.5056 (7.75e−01) 17.8351 (3.88e−01) 17.8865 (8.77e−02)
17.8329 (1.83e−01) 17.4669 (6.58e−01) 17.9714 (1.63e−01) 17.9117 (9.41e−02)

ε̃
y,r
0

1.05e−03 (1.48e−03) 7.24e−04 (1.79e−03) 8.29e−04 (1.40e−03) 7.58e−04 (8.88e−04)
5.23e−04 (5.25e−04) 2.54e−03 (5.66e−03) 5.27e−04 (1.08e−03) 4.77e−05 (9.41e−05)
1.65e−04 (2.77e−04) 2.14e−03 (3.50e−03) 8.22e−05 (7.96e−05) 3.95e−05 (4.65e−05)

τ
5.54e+02 2.82e+03 2.87e+04 1.12e+05
2.60e+03 9.74e+03 7.30e+04 2.55e+05
2.36e+03 7.67e+03 4.67e+04 1.47e+05

Table 2.3: Mean approximation of Y0, its mean relative MSE from DBDP, OSM and DLBDP
schemes and their average runtimes in Example 2.5.2 for d = 50 and N ∈ {2, 8, 32, 64}. The
STD of the approximations of Y0 and its relative MSE values are given in the brackets.

observe that our scheme consistently provides higher accurate approximations of Y0 for the
50-dimensional nonlinear BSDE in Example 2.5.2 compared to the other schemes, resulting in
smaller relative MSE value. The DBDP scheme achieves the shortest computation time, while
our scheme is faster than the OSM scheme. Note that the mean relative MSE can be further
reduced by increasing the number of hidden neurons or layers provided that the optimization
error is sufficiently small.

2.5.3 The Hamilton-Jacobi-Bellman equation

The next example is a Hamilton-Jacobi-Bellman (HJB) equation which admits a semi-explicit
solution [22]. In finance, specifically portfolio optimization, solving the HJB equation provides
insights into the optimal investment strategy that maximizes expected utility of the investors
terminal wealth. Hence, the process Y is related to the wealth of the portfolio and the process
Z the holding on each asset.
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Example 2.5.3. The high-dimensional HJB BSDE reads
dXt = b dWt,
X0 = x0,

−dYt = −
∑d

k=1

(
Zk
t
b

)2
dt− Zt dWt,

YT = g(XT ).

This BSDE admits the semi-explicit solution as given in [22]

Yt = u(t,Xt) = − ln (E [exp (−g(Xt + b (WT −Wt)))]) .

The semi-explicit solution of (Zt,Γt) is calculated using relations (2.10). Note that it is quite time
consuming to approximate highly accurate pathwise reference solutions (Yt, Zt,Γt) for t ∈ [0, T ].
Hence, we only calculate a reference solution at t0. We set T = 0.5, d = 50, X0 = 1d, b =

√
0.2

and g(x) = ln
(
1
2

(
1 + |x|2

))
. Using 107 Brownian motion samples and 50 independent runs,

we calculate the mean approximations of (Y0, Z0,Γ0) and use as reference values to test the
accuracy of all schemes. In Table 2.4, we report the relative MSE values at t0 for each process,
the corresponding STD (given in the brackets) and the algorithm average runtime using N ∈
{2, 8, 32, 64}. Our scheme consistently outperforms the DBDP scheme in approximating (Z0,Γ0),

Metric

N = 2 N = 8 N = 32 N = 64
DBDP DBDP DBDP DBDP
OSM OSM OSM OSM

DLBDP DLBDP DLBDP DLBDP

ε̃
y,r
0

5.59e−07 (3.65e−07) 2.45e−07 (1.68e−07) 1.21e−07 (1.70e−07) 2.07e−07 (1.63e−07)
9.56e−07 (5.80e−07) 1.36e−07 (1.12e−07) 1.75e−07 (1.83e−07) 1.67e−07 (1.48e−07)
4.56e−07 (2.99e−07) 2.67e−07 (2.29e−07) 2.08e−07 (2.11e−07) 2.45e−07 (4.04e−07)

ε̃
z,r
0

2.62e−04 (4.98e−05) 5.22e−04 (1.29e−04) 6.19e−04 (1.34e−04) 7.56e−04 (9.84e−05)
5.47e−05 (1.83e−05) 5.56e−05 (2.85e−05) 4.98e−05 (2.29e−05) 6.84e−05 (4.51e−05)
6.30e−05 (6.83e−06) 1.02e−04 (1.97e−05) 9.09e−05 (1.49e−05) 1.08e−04 (3.50e−05)

ε̃
γ,r
0

9.35e−01 (1.02e−02) 9.65e−01 (1.28e−02) 8.18e−01 (1.15e−03) 8.41e−01 (4.51e−03)
5.20e−04 (2.81e−05) 4.34e−04 (2.60e−05) 5.05e−04 (2.72e−05) 6.32e−04 (4.10e−05)
2.99e−04 (1.03e−05) 8.28e−04 (2.41e−05) 1.14e−03 (3.43e−05) 1.50e−03 (4.43e−05)

τ
5.15e+02 2.38e+03 2.09e+04 7.80e+04
2.53e+03 8.90e+03 5.64e+04 1.85e+05
2.45e+03 7.52e+03 3.91e+04 1.13e+05

Table 2.4: Mean relative MSE values of (Y0, Z0,Γ0) from DBDP, OSM and DLBDP schemes
and their average runtimes in Example 2.5.3 for d = 50 and N ∈ {2, 8, 32, 64}. The STD of the
relative MSE values at t0 is given in the brackets.

particularly for Γ0. The OSM scheme performs slightly better than the DLBDP scheme in this
example, but has a higher computation time.

2.5.4 The Black-Scholes extended with local volatility

Our next example is taken from [87] in order to demonstrate the effectiveness of our scheme
in case of a time dependent diffusion function. Consider an European call option as in Exam-
ple 2.5.1, where each underlying asset follows a GBM with time dependent drift and diffusion.
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Example 2.5.4. The high-dimenisonal Black-Scholes BSDE with local volatility reads [87]
dXt = (a(t)− δ)Xt dt+ b(t)Xt dWt,
X0 = x0,

−dYt = −
(
RYt +

∑d
k=1

a(t)−R+δ
b(t) Zk

t

)
dt− Zt dWt,

YT =
(∏d

k=1

(
Xk

T

)ck −K
)+

,

where for a(t) and b(t) we choose the following periodic functions

a(t) = a0 + a1 sin

(
2π

C1
t

)
+ a2 sin

(
2π

C2
t

)
,

b(t) = b0 + b1 sin

(
2π

C1
t

)
+ b2 sin

(
2π

C2
t

)
.

The exact solution of this local volatility model is given by the Black-Scholes formula with

volatility parameter b̄ =
√

1
T−t

∫ T
t b(s)2ds. More precisely, the exact solution is given by (2.49)

with

b̌ =
d∑

k=1

(b̄ck)
2, δ̌ =

d∑
k=1

ck

(
δk +

b̄2

2

)
− b̌2

2
, Zk

t =
∂u

∂xk
b(t)Xk

t .

We apply the ln-transformation in this example, which is similar as in the case of Example 2.5.1.
Moreover, we set T = 0.25, d = 50 and the other following parameter values

X0 = 100,K = 100, R = 0.1, a0 = 0.2, a1 = 0.1, a2 = 0.02,

ck =
1

d
, δ = 0, C1 = 1, C2 = 0.25, b0 = 0.25, b1 = 0.125, b2 = 0.025.

Using N = 32, the mean MSE values for each process over discrete domain ∆ are visualized in
Figure 2.5 for the testing sample. The STD of the MSE values is displayed in the shaded area.
Compared to previous examples, we notice significant improvements from our scheme not only
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Figure 2.5: Mean MSE values of the processes (Y,Z,Γ) from DBDP, OSM and DLBDP schemes
over the discrete time points {tn}N−1

n=0 using the testing sample in Example 2.5.4, for d = 50 and
N = 32. The STD of MSE values is given in the shaded area.

in approximating the process Z but also the process Y compared to the DBDP scheme. In the
case of the process Γ, such improvements are evident only near t0. Interestingly, the DLBDP
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scheme outperfrms the OSM scheme in this example for the processes Y and Γ, while providing
comparable approximations of the process Z.

In Table 2.5, we report the mean relative MSE values at t0 for each process from all schemes,
using N ∈ {2, 8, 16, 32}. The corresponding STD is given in the brackets. The average runtime of
the algorithms are also included. Our scheme gives overall the smallest relative MSE values. In

Metric

N = 2 N = 8 N = 16 N = 32
DBDP DBDP DBDP DBDP
OSM OSM OSM OSM

DLBDP DLBDP DLBDP DLBDP

ε̃
y,r
0

9.00e−03 (4.22e−04) 6.00e−03 (5.16e−04) 2.05e−03 (1.81e−04) 5.88e−04 (1.55e−04)
5.92e−03 (2.85e−04) 4.36e−04 (1.26e−04) 2.15e−04 (1.34e−04) 1.26e−04 (1.30e−04)
1.89e−04 (5.49e−05) 7.62e−06 (7.10e−06) 2.18e−05 (2.98e−05) 1.59e−05 (1.89e−05)

ε̃
z,r
0

1.77e−01 (1.57e−03) 2.78e−02 (1.28e−03) 6.86e−03 (5.04e−04) 1.57e−03 (1.91e−04)
6.99e−02 (7.43e−04) 3.47e−03 (3.31e−04) 4.34e−04 (1.40e−04) 1.40e−04 (2.23e−04)
1.14e−01 (8.91e−04) 9.62e−03 (5.48e−04) 1.79e−03 (3.18e−04) 2.80e−04 (7.59e−05)

ε̃
γ,r
0

1.00e+00 (5.28e−04) 1.00e+00 (6.55e−05) 1.00e+00 (2.25e−04) 1.00e+00 (9.98e−04)
3.92e−01 (3.52e−03) 2.99e−04 (1.83e−04) 3.19e−03 (1.36e−03) 6.63e−03 (9.26e−03)
4.72e−01 (3.49e−03) 1.78e−03 (6.86e−04) 8.91e−04 (4.64e−04) 1.36e−03 (7.11e−04)

τ
5.61e+02 2.79e+03 8.52e+03 2.80e+04
2.71e+03 9.62e+03 2.47e+04 7.14e+04
2.41e+03 7.78e+03 1.76e+04 4.59e+04

Table 2.5: Mean relative MSE values of (Y0, Z0,Γ0) from DBDP, OSM and DLBDP schemes
and their average runtimes in Example 2.5.4 for d = 50 and N ∈ {2, 8, 16, 32}. The STD of the
relative MSE values at t0 is given in the brackets.

this example, the improvement in approximating Y0 is more evident than in previous examples.

2.5.5 BSDE with non-additive diffusion

We now consider the non-symmetric example in [76] to demonstrate the performance of our
scheme when the noise in the forward SDE is non-additive. The BSDE and its analytical solution
are given in Example 1.5.5.

We choose d = 50, T = 10, c1 = 10d, c2 = 1 and x0 = 1d. In Figure 2.6, we display the mean
MSE values for each process over discrete domain ∆ using the testing sample and N = 64,
where the STD of the MSE values is visualized in the shaded area. Note that for N = 64 the
approximations from the OSM scheme are not available, because the scheduled scripts in the
GPU nodes of PLEIADES cluster have a time limit of 3 days. Therefore, only the approximations
from the DBDP and DLBDP schemes are displayed. Our scheme clearly outperforms the DBDP
scheme in approximating each process during the entire discrete time domain.

In Table 2.6, we report the mean MSE values (due to small magnitude of the exact solution) at
t0 for each process and the algorithm average runtime using N ∈ {2, 8, 32, 64}. The STD of the
relative MSE values at t0 is given in the brackets. The same conclusions as can be drawn with
our scheme when compared to the DBDP and OSM schemes even in the case of a more general
diffusion term.

2.5.6 The Black-Scholes BSDE with correlated noise

Finally, we test all the schemes using an example with correlated noise. Specifically, we consider
a European max call option within the Black-Scholes framework for a basket of stocks with
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Figure 2.6: Mean MSE values of the processes (Y, Z,Γ) from DBDP and DLBDP schemes over
the discrete time points {tn}N−1

n=0 using the testing sample in Example 1.5.5, for d = 50 and
N = 64. The STD of MSE values is given in the shaded area.

Metric

N = 2 N = 8 N = 32 N = 64
DBDP DBDP DBDP DBDP
OSM OSM OSM OSM

DLBDP DLBDP DLBDP DLBDP

ε̃
y
0

1.03e−02 (1.81e−04) 1.27e−04 (5.35e−05) 8.79e−06 (8.09e−06) 1.87e−05 (9.08e−06)
1.56e−02 (6.28e−04) 7.01e−04 (2.19e−05) 5.03e−05 (1.20e−05) NA
1.23e−02 (8.73e−04) 5.07e−04 (8.91e−05) 4.46e−06 (4.97e−06) 3.55e−06 (2.37e−06)

ε̃
z
0

1.69e−04 (6.23e−06) 7.31e−05 (8.25e−06) 1.60e−05 (2.71e−06) 8.66e−06 (1.94e−06)
6.32e−05 (5.03e−06) 1.81e−05 (7.95e−07) 3.09e−06 (3.84e−07) NA
1.21e−04 (2.07e−05) 1.31e−05 (2.70e−06) 2.60e−06 (6.37e−07) 2.07e−06 (3.29e−07)

ε̃
γ
0

4.82e−04 (1.32e−05) 4.84e−04 (5.67e−05) 4.03e−04 (6.19e−05) 3.87e−04 (3.46e−05)
2.85e−04 (2.78e−05) 7.83e−05 (2.04e−06) 1.11e−05 (1.33e−06) NA
7.87e−04 (3.78e−05) 3.25e−04 (2.24e−05) 7.10e−05 (4.08e−06) 3.95e−05 (3.24e−06)

τ
5.79e+02 3.22e+03 3.36e+04 1.26e+05
3.95e+03 1.41e+04 9.47e+04 NA
3.16e+03 1.04e+04 5.92e+04 1.78e+05

Table 2.6: Mean MSE values of (Y0, Z0,Γ0) from DBDP, OSM and DLBDP schemes and their
average runtimes in Example 1.5.5 for d = 50 and N ∈ {2, 8, 32, 64}. The STD of the relative
MSE values at t0 is given in the brackets. The approximations for N = 64 from the OSM scheme
are not available (NA) due to large computation time (more than 3 days).

distinct parameters (expected return, volatility, and correlation). The dynamics of the stocks
are therefore given as

dXk
t = (ak − δk)X

k
t dt+ bkX

k
t dW

k
t ,

Xk
0 = xk0, k = 1, . . . , d,

dW k
t dW

j
t = ρk,jdt, k, j = 1, . . . , d, ρk,k = 1.

By applying the Cholesky decomposition to the correlation matrix (ρk,j)k,j=1,...,d and transform-
ing the stock dynamics into the ln-domain, the corresponding BSDE is given as follows.

Example 2.5.5. The high-dimenisonal BSDE for an European max call option in the ln-domain
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reads 
dX̌k

t =
(
ak − δk − 1

2b
2
k

)
dt+ bk

∑d
j=1 ρ̌k,j dW̌t

j
,

X̌k
0 = log

(
xk0
)
, k = 1, . . . , d,

−dYt = −
(
RYt +

∑d
k=1 (ak −R+ δk)φ

(
Zk
t

))
dt− Zt dW̌t,

YT =
(
maxk=1,...,d exp

(
X̌T

)
−K

)+
,

where W̌t are d independent Brownian motions, ρ̌k,j represents the elements of the lower trian-
gular matrix from Cholesky decomposition of (ρk,j)k,j=1,...,d and

φ(Zk
t ) =


Zk
t

bkρ̌k,k
, k = d,

Zk
t −
∑d

j=k+1 bj ρ̌j,kF (Zj
t )

bkρ̌k,k
, k ̸= d.

We set d = 20, T = 0.5, R = 0.05, K = 100 and δk = 0 for k = 1, . . . , d. The expected returns,
volatilities, and correlation matrix are generated randomly. Specifically, xk0 ∼ U [K−0.05K,K+
0.05K], ak ∼ U [0.01, 0.1] and bk ∼ U [0.05, 0.3] for k = 1, . . . , d. The correlation matrix is sampled
from U [−1, 1], ensuring that it is symmetric, positive definite, and has diagonal elements equal
to one. To compute a benchmark value of Y0, we use the Monte Carlo method (under the exact
solution of the stock dynamics in the ln-domain) with 107 Brownian motion samples and 50
independent runs. Table 2.7 reports the mean approximation of Y0, the mean relative MSE
values, and the average runtime for all schemes using N ∈ {2, 8, 32, 64}. Standard deviations are
provided in parentheses. Our method gives the best approximations of the benchmark option

Metric

N = 2 N = 8 N = 32 N = 64
DBDP DBDP DBDP DBDP
OSM OSM OSM OSM

DLBDP DLBDP DLBDP DLBDP

Y0 Monte Carlo 33.4819

Y
∆,θ̂
0

33.5478 (3.63e−02) 33.4500 (9.82e−02) 33.3932 (1.87e−01) 33.4664 (1.38e−01)
33.3931 (1.30e−01) 33.5005 (9.42e−02) 33.4690 (7.40e−02) 33.4449 (5.60e−02)
34.1471 (1.87e−01) 33.6575 (6.70e−02) 33.4367 (4.56e−02) 33.4542 (4.05e−02)

ε̃
y,r
0

5.06e−06 (4.23e−06) 9.50e−06 (7.34e−06) 3.82e−05 (5.52e−05) 1.72e−05 (1.75e−05)
2.20e−05 (3.38e−05) 8.22e−06 (1.69e−05) 5.04e−06 (7.56e−06) 4.01e−06 (3.41e−06)
4.26e−04 (2.03e−04) 3.15e−05 (2.42e−05) 3.68e−06 (5.20e−06) 2.14e−06 (2.34e−06)

τ
3.34e+02 1.52e+03 1.35e+04 4.71e+04
7.53e+02 3.09e+03 2.66e+04 9.35e+04
5.80e+02 2.19e+03 1.57e+04 5.13e+04

Table 2.7: Mean approximation of Y0, its mean relative MSE from DBDP, OSM and DLBDP
schemes and their average runtimes in Example 2.5.5 for d = 20 and N ∈ {2, 8, 32, 64}. The
STD of the approximations of Y0 and its relative MSE values are given in the brackets.

value compared to the DBDP and OSM schemes, showcasing its robustness in high-dimensional,
non-symmetric settings. The errors for (Z0,Γ0) are not reported due to the lack of highly accurate
benchmarks. However, based on the previous examples, similar conclusions can be drawn for
(Z0,Γ0).

2.6 Conclusions

In this chapter, we introduced a new class of schemes which utilizes the differential deep learn-
ing approach to solve high-dimensional nonlinear BSDEs. By applying Malliavin calculus, we
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transform the BSDEs into a differential deep learning problem. This transformation results in
a system of BSDEs that requires the estimation of the solution, its gradient, and the Hessian
matrix, given by the triple of processes (Y,Z,Γ) in the BSDE system. To approximate this so-
lution triple, we discretize the integrals within the system using the Euler-Maruyama method
and parameterize their discrete version using DNNs. The DNN parameters are iteratively op-
timized backwardly at each time step by minimizing a differential learning type loss function,
constructed as a weighted sum of the dynamics of the discretized BSDE system. An error anal-
ysis is conducted to demonstrate the convergence of the proposed algorithm. Our formulation
provides additional information to the SGD method to give more accurate approximations com-
pared to deep learning-based approaches, as our loss function includes not only the dynamics of
the process Y but also Z. We show that the introduced differential deep learning-based approach
can be used to other deep learning based schemes, e.g., in [86], but also others [22, 60]. The
proficiency of our algorithm in terms of accuracy or computational efficiency is demonstrated
through numerous numerical experiments involving pricing and hedging nonlinear options up to
50 dimensions. The proposed algorithm holds promise for applications in pricing and hedging
financial derivatives in high-dimensional settings.

Building on the advancements in solving high-dimensional BSDEs using differential and deep
learning techniques, the next chapter shifts focus to UQ for such schemes, addressing the chal-
lenges of evaluating uncertainties inherent in their implementation.

67



Chapter 3

UQ for Deep Learning BSDE
Schemes

The aim of this chapter is to study UQ for a class of deep learning BSDE schemes. More precisely,
we review the sources of uncertainty involved in the schemes and numerically study the impact
of different sources. Usually, the STD of the approximate solutions obtained from multiple runs
of the algorithm with different datasets is calculated to address the uncertainty. This approach
is computationally quite expensive, especially for high-dimensional problems. Hence, we develop
a UQ model that efficiently estimates the STD of the approximate solution using only a single
run of the algorithm. The model also estimates the mean of the approximate solution, which
can be leveraged to initialize the algorithm and improve the optimization process. We begin
by introducing the sources of uncertainty in deep learning BSDE schemes, where we take as
an example the pioneering DBSDE scheme. Moreover, the UQ model is introduced based on
this scheme. Finally, we demonstrate through various numerical experiments the UQ model’s
reliability in estimating mean and STD not only for the DBSDE scheme, but also for other deep
learning BSDE schemes. Additionally, we show multiple practical implications of using the UQ
model. The chapter is based on our research conducted in [61]. It is worth highlighting that the
work in this chapter is the first development of a UQ model for deep learning BSDE schemes.
There remains significant work to be undertaken in this area.

3.1 Introduction

Since the predictions of models that use deep learning in decision-making processes are prone to
noise and model errors [55], assessing the model’s reliability before it can be used in practice is
critical. An example of such decisions is the pricing and hedging of different contracts in finance.
Companies may suffer from significant financial losses as a result of poor judgments. Thus, it
is highly desirable to understand the uncertainties in deep learning BSDE schemes and develop
methods to quantify them.

The pricing and hedging of option contracts is represented by the solution of the BSDE (1.1),
see [62]. In case of a basket option, such BSDE is high-dimensional, as the dimensionality is
related to the number of assets in the basket. When including market imperfections such as
different interest rates for lending and borrowing [10], the BSDE becomes non-linear. As already
explained in Chapter 1, the first deep learning-based scheme for solving high-dimensional non-
linear BSDEs is the DBSDE scheme [22]. Due to the universal approximation capability [41, 19]
of NNs, the objective function can be effectively optimized in practice. Therefore, the function
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values of interest (the unknown solution and its gradient) are obtained quite accurately. Some
convergence analysis of the DBSDE scheme have been studied, e.g., see [39, 56, 77] for the error
analysis (utilizing universal approximation capability of NNs) and [98] for its gradient conver-
gence (under a restrictive choice of NN setting). However, their analysis does not consider all
the error or uncertainty sources (quite difficult to analyze), which in practical applications can’t
be disentangled, as we show in the numerical experiments. Thus, quantifying the uncertainty of
the DBSDE scheme – and other differential or deep learning BSDE schemes – becomes crucial
for practical applications.

As an example, we consider the pioneering DBSDE scheme to study UQ and introduce our
UQ model. As presented in Section 1.3.1, the authors in the DBSDE scheme reformulate the
BSDE as a stochastic control problem and use the Euler-Maruyama method to discretize the
integrals. The unknown functions (solution at initial time and its gradient on the whole time
domain) are estimated using DNNs. The parameters of DNNs are then optimized using the
SGD algorithm. The DBSDE method incorporates various sources of uncertainty, including finite
time discretization, restrictive choice of DNN specifications, the lack of convergence guarantees
of the SGD algorithm, and finite sample size during stochastic optimization. It is crucial to
identify and quantify these different sources of uncertainty in the DBSDE scheme for practical
applications. Therefore, we review these sources of uncertainty and numerically demonstrate
the impact of different sources. As mentioned before, our numerical experiments show that
it is practically challenging to disentangle them, emphasizing the importance of quantifying
uncertainty before using the scheme in practice. Usually, the STD of the approximate solutions
obtained from multiple runs of the DBSDE algorithm with different datasets is calculated to
account for the uncertainty in a given prediction, see [22]. This approach is computationally
expensive, especially in high-dimensional cases due to the complexity of the DBSDE scheme
itself. As the dimensionality increases, so does the number of network parameters that need to
be optimized within each run of the scheme. While the ensemble size remains fixed regardless of
the dimension, it adds a constant factor to the overall complexity of the method. Therefore, we
develop a UQ model to estimate the STD of the approximate solution without requiring multiple
runs. Several techniques have been proposed in the literature to quantify uncertainty, such as
Monte Carlo Dropout [29], Monte Carlo DropConnnect [75], deep ensembles [70, 82], Flipout-
based variational inference [99], Markov Chain Monte Carlo [68], and many others [40, 81, 80].
A review of these techniques can be found in [2]. To the best of our knowledge, there are no
applications or developments of UQ models specifically for deep learning BSDE schemes. Hence,
we develop a UQ model with the aim of addressing this gap.

Our UQ model is based on a commonly used approach for quantifying uncertainty in het-
eroscedastic nonlinear regression, see [5] for heteroscedastic least square type regression meth-
ods and [78, 70, 63] for heteroscedastic NN regression methods. We make the assumption that
the residuals or errors of the DBSDE scheme follow a normal distribution with zero mean and
the STD depending on the chosen parameter set of the discretized BSDE. This is a standard
assumption in heteroscedastic regression. In our method, we use a DNN to learn two functions
that estimate the mean and STD of the approximate solution. To train the DNN, we construct
a dataset of independent and identically distributed (i.i.d) samples, which includes different pa-
rameter sets of the discretized BSDE and the corresponding approximate solutions obtained from
the DBSDE algorithm. After generating a moderate number of samples, we optimize the network
parameters by minimizing the negative ln-likelihood. Our UQ model provides an estimate of the
STD of the approximate solution in a more computationally efficient manner compared to run-
ning multiple iterations of the algorithm per BSDE parameter set. Additionally, the estimated
mean of the approximate solution from our model can be used to initialize the algorithm and
improve the optimization process. Note that Bayesian (variational) methods could be used for
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estimating the uncertainty of the DBSDE scheme, without requiring an additional little process-
ing DNN as in our approach to model the uncertainty. However, integrating Bayesian methods
into the DBSDE scheme require changes to its network architecture (e.g. the addition of dropout
layers or even more drastic changes). Our aim is to perform UQ efficiently within the existing
structure of the scheme, without introducing changes to it. Bayesian approaches typically come
with increased computational cost. The deep ensemble method, which serves as our baseline,
involves training the DBSDE scheme e.g. 10 times. The STD of these 10 approximations is then
used as a measure of uncertainty. Although effective, this method is computationally expensive
due to multiple trainings/DBSDE solves required. Our approach requires only one run of the
DBSDE scheme (plus the pre-processing step to gather data to train the model) and provides
STD estimates equivalent to those of 4 or more DBSDE runs in the deep ensemble approach, as
demonstrated in our numerical experiments. Using our method in a continual learning manner,
it provides a substantial reduction in computational cost. Note that our model is applicable not
only to the DBSDE scheme but also to other deep learning and differential deep learning BSDE
schemes for solving BSDEs. In addition to the DBSDE scheme, we apply our UQ model to the
LaDBSDE scheme [60], which exhibits better convergence than the DBSDE scheme. Our numer-
ical experiments demonstrate that the UQ model produces reliable estimates of the mean and
STD of the approximate solution for both the DBSDE and LaDBSDE schemes. Moreover, we
show multiple practical implications of using the UQ model. Firstly, the estimated STD captures
multiple sources of uncertainty, demonstrating its effectiveness in quantifying the uncertainty.
Secondly, the UQ model illustrates the improved performance of the LaDBSDE scheme in com-
parison to the DBSDE scheme based on the corresponding estimated STD values. Finally, our
UQ model can be utilized to determine DNN hyperparameter values for which the respective
scheme performs well, e.g. the number of discretization points.

The remainder of this chapter is organized as follows. In Section 3.2, we discuss the sources of
uncertainty in the DBSDE scheme. The UQ model that estimates the STD of the approximate
solution is provided in Section 3.3. In Section 3.4, we analyze the practical impact of different
sources of uncertainty in the DBSDE scheme and demonstrate the effectiveness of our UQ model
through numerical tests for both the DBSDE and LaDBSDE schemes. Finally, in Section 3.5,
we conclude this chapter.

3.2 Uncertainty decomposition in the DBSDE scheme

In this section, we first reformulate the BSDE (1.1) as a stochastic control problem and then
describe the DBSDE scheme for this problem. This forms the foundation for discussing afterward
the sources of uncertainty in the DBSDE scheme. Similarly, one can identify the sources of
uncertainty in other (differential) deep learning BSDE schemes.
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3.2.1 A suitable stochastic control problem to represent the DBSDE scheme

The DBSDE scheme solves the associated stochastic control problem to the BSDE (1.1), which
can be formulated as

inf
Y0∈L2

F0
(Ω;R), Z∈H2([0,T ]×Ω;R1×d)

L (Y0, Z) ,

s.t. Xt = x0 +

∫ t

0
a (s,Xs) ds+

∫ t

0
b (s,Xs) dWs,

Yt = Y0 −
∫ t

0
f (s,Xs) ds+

∫ t

0
Zs dWs,

(3.1)

for t ∈ [0, T ], where

L (Y0, Z) = E
[
|g(XT )− YT |2

]
.

The solution {(Xt, Yt, Zt)}0≤t≤T of (1.1) is a minimizer of (3.1) since the loss function attains
zero when it is evaluated at the solution. In addition, the wellposedness of the BSDEs (under
the usual regularity conditions [62]) ensures the existence and uniqueness of the minimizer. Due
to (1.3), a function approximator for u : Rd → R and ∇xu b : [0, T ]×Rd → R1×d to approximate
the unknown solution Y0 = u(t0, x0) and Zt = ∇xu (t,Xt) b (t,Xt) ∀ t ∈ [0, T ] is needed. Due to
their approximation capability in high dimensions, the authors in [22] considered DNNs in the
DBSDE scheme.

As already discussed, the first step to formulate (3.1) as a deep learing problem is to discretize the
integrals (given by the Euler-Maruyama scheme in (1.5) and (1.6)). The discretized counterpart
of (3.1) is given as

inf
Y ∆
0 ∈L2

F0
(Ω;R), Z∆∈H∆,2({0,1,...,N−1}×Ω;R1×d)

L∆
(
Y ∆
0 , Z∆

)
,

s.t. X∆
0 = x0,

X∆
n+1 = X∆

n + a
(
tn, X

∆
n

)
∆t+ b

(
tn, X

∆
n

)
∆Wn,

Y ∆
n+1 = Y ∆

n − f
(
tn,X

∆
n ,
)
∆t+ Z∆

n ∆Wn,

(3.2)

for n = 0, 1, . . . , N − 1, where

L∆
(
Y ∆
0 , Z∆

)
= E

[∣∣g(X∆
N )− Y ∆

N

∣∣2] ,
and H∆,2

(
{0, 1, . . . , N} × Ω;R1×d

)
is the space of progressively measurable discrete stochastic

processes Z∆ : {0, 1, . . . , N} × Ω → R1×d s.t. E
[∑N

n=0

∣∣Z∆
tn

∣∣2 ∆t
]
< ∞. The authors in [22]

considered DNNs, namely ϕy
0 : Rd → R and ϕz

n : Rd → R1×d for n = 0, 1, . . . , N − 1 to estimate
the solution of (3.2). The fully implementable DBSDE scheme for a sample of size B obtained
from the Brownian motion increments ∆Wn is finally given as

min
θ∈Θ

L̃∆
(
ϕy
0 (x0; θ

y
0) , ϕ

z
(
X∆; θz

))
,

s.t. X∆
0 = x0, Y ∆,θ

0 = ϕy
0(x0; θ

y
0),

X∆
n+1,j = X∆

n,j + a
(
tn, X

∆
n,j

)
∆t+ b

(
tn, X

∆
n,j

)
∆Wn,j ,

Z∆,θ
n,j = ϕz

n(X
∆
n,j ; θ

z
n),

Y ∆,θ
n+1,j = Y ∆,θ

n,j − f
(
tn,X

∆,θ
n,j

)
∆t+ Z∆,θ

n,j ∆Wn,j ,

(3.3)
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for n = 0, 1, . . . , N − 1, j = 1, . . . , B, ∆Wn,j ∼ N (0d,∆t Id) and

L̃∆
(
ϕy
0(x0; θ

y
0), ϕ

z(X∆; θz)
)
=

1

B

B∑
j=1

∣∣∣g(X∆
N,j)− Y ∆,θ

N,j

∣∣∣2 .
As stated in Section 1.3.1 Y ∆,θ

0 = θy0 ∈ R and Z∆,θ
0 = θz0 ∈ R1×d are considered as learnable

parameters in [22], which are initialized by sampling from uniform distributions. Furthermore,

N − 1 DNNs are employed to calculate Z∆,θ
n for n = 1, 2, . . . , N − 1.

In the following sections, we introduce all the sources of uncertainty in the DBSDE scheme
and propose a UQ model to estimate the uncertainty. It is important to emphasize that our
approach is applicable not only to the DBSDE scheme but also to the LaDBSDE scheme (as we
demonstrate in the numerical experiments) and potentially to other (differential) deep learning
BSDE schemes as well.

3.2.2 Sources of uncertainty in the DBSDE scheme

For notational convenience, we consider to outline the multiple sources of uncertainty in the
DBSDE scheme

• Y ⋆
0 := argminY∈L2

F0
(Ω;R)×H2([0,T ]×Ω;R1×d) L(Y) the solution to (3.1), where Y = (Y0, Z).

• Y∆,⋆ := argminY∆∈L2
F0

(Ω;R)×H∆,2({0,1,...,N−1}×Ω;R1×d) L
∆
(
Y∆

)
the solution to (3.2), where

Y∆ =
(
Y ∆
0 , Z∆

)
.

• θ⋆ := argminθ∈Θ L∆
(
Yθ
)
the optimal parameters of parameterized version of (3.2) using

DNNs, where Yθ =
(
ϕy
0(x0; θ

y
0), ϕ

z(X∆; θz)
)
.

• θ̃⋆ := argminθ∈Θ L̃∆
(
Yθ
)
the optimal parameters in (3.3).

• A : N → Θ the optimization algorithm and θ̂ = A(B) an estimate for the sample of size

B. Then Yθ̂ =
(
Y ∆,θ̂
0 , Z∆,θ̂

)
is an estimate of (3.3) after applying optimizer A.

• φ∆ : L2
F0

(Ω;R)×H∆,2
(
{0, . . . , N − 1} × Ω;R1×d

)
→ L2

F0
(Ω;R)×H2

(
[0, T ]× Ω;R1×d

)
is

an interpolation scheme. We choose φ∆ s.t. L∆ − L ◦ φ∆ = 0.

These uncertainties stem from factors such as finite time discretization, restrictive choice of DNN
specifications, the lack of convergence guarantees of the SGD algorithm, and finite sample sizes.
To systematically capture these sources, we employ a telescopic sum approach. More precisely,
we decompose the total error of the DBSDE scheme – given by evaluating its final estimates

Yθ̂ in (3.3) – by consecutively adding and removing the solutions defined above evaluated
in (3.1), (3.2) or (3.3). This yields the following error decomposition of the DBSDE scheme

L
(
φ∆
(
Yθ̂
))

≤ L(Y⋆)

+ L
(
φ∆
(
Y∆,⋆

))
− L (Y⋆) (discretization error)

+
∣∣L∆

(
Y∆,⋆

)
− L

(
φ∆
(
Y∆,⋆

))∣∣
+ L∆

(
Yθ⋆

)
− L∆

(
Y∆,⋆

)
(model/approximazion error)

+ L∆
(
Yθ̃⋆

)
− L∆

(
Yθ⋆

)
(estimation error)
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+
∣∣∣L̃∆

(
Yθ̃⋆

)
− L∆

(
Yθ̃⋆

)∣∣∣ (sampling error)

+ L̃∆
(
Yθ̂
)
− L̃∆

(
Yθ̃⋆

)
(optimization error)

+
∣∣∣L∆

(
Yθ̂
)
− L̃∆

(
Yθ̂
)∣∣∣ (sampling error)

+
∣∣∣L(φ∆

(
Yθ̂
))

− L∆
(
Yθ̂
)∣∣∣ .

where the interpolant φ∆ is used to evaluate a discrete solution to the continuous formula-
tion (3.1). Since L∆ − L ◦ φ∆ = 0, we have

L
(
φ∆
(
Yθ̂
))

≤ L
(
φ∆
(
Y∆,⋆

))
(3.4)

+ L∆
(
Yθ⋆

)
− L∆

(
Y∆,⋆

)
(3.5)

+ L∆
(
Yθ̃⋆

)
− L∆

(
Yθ⋆

)
(3.6)

+
∣∣∣L̃∆

(
Yθ̃⋆

)
− L∆

(
Yθ̃⋆

)∣∣∣ (3.7)

+ L̃∆
(
Yθ̂
)
− L̃∆

(
Yθ̃⋆

)
(3.8)

+
∣∣∣L∆

(
Yθ̂
)
− L̃∆

(
Yθ̂
)∣∣∣ . (3.9)

In the decomposition above, each term corresponds to a specific source of uncertainty. The nam-
ing convention we adopt here is motivated by [43]. The term (3.4) captures the discretization
error associated with the Euler-Maruyama method. Note that in numerical methods approxi-
mating conditional expectations on spatial discretization, the discretization error is only a source
of bias and not uncertainty. It is quantified by the difference between the BSDE solution and its
discrete approximation. However, in the DBSDE scheme, it is a source of bias and uncertainty.
For instance, a coarser discretization introduces more variance (the Brownian motion increments
∆Wn ∼ N (0d, ∆t Id)) but also systematic errors. When implementing the algorithm, a DNN
architecture has to be chosen. Hence, (3.5) represents the model or approximation error [7, 51].
Since the scheme optimizes the empirical loss, (3.6) denotes the estimation error, as the empir-
ical loss is only an estimate of the true loss. Selecting an SGD-type algorithm to optimize the
DNN parameters introduces the optimization error, represented by (3.8). Finally, (3.7) and (3.9)
correspond to the sampling errors. Note that the errors (3.4)-(3.9) may influence each other. For
instance, a small model error (3.5) achieved by a complex DNN architecture could result in an
increased optimization error (3.8), e.g. due to SGD getting stuck in poor local minima.

There are several studies that have conducted a theoretical analysis of the error terms associ-
ated with the DBSDE method. In [39], the authors provide a posteriori error estimation of the
scheme for the general case of coupled FBSDEs (see [56] for FBSDEs with non-Lipschitz coef-
ficients and [77] for fully-coupled drift coefficients). It is demonstrated that the error converges
to zero given the universal approximation capability of NNs. Specifically, the error decreases as
discretization error (3.4) and model error (3.5) diminish by increasing the number of time steps
and neurons/layers. However, their analysis does not consider estimation error (3.6), sampling
errors (3.7) and (3.9), and optimization error (3.8). The latter is quite difficult to analyze, and
its current understanding is limited, mainly due to the non-convexity of the loss function in deep
learning BSDE schemes. The authors in [98] provide a theoretical guarantee for the convergence
of SGD iterations in the DBSDE scheme, but under a very restrictive choice of NN settings. On
the other hand, the estimation and sampling errors can be negligible thanks to the soft memory
limitation of a single SGD step (a new sample of a chosen batch size is generated after each
optimization step). Hence, one can pass many realizations of the underlying Brownian motion
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throughout the optimization cycle. While the magnitude of such error terms can be negligible,
one is limited in practice to select a large number of discretization points and neurons/layers
due to memory limitation and the high increase in computation time (the scheme uses N − 1
DNNs). Moreover, while a high value of N can reduce discretization error, it can also result in
a larger error due to the increased number of DNNs and the accumulation of propagated errors
over time, as we demonstrate in the numerical section. Hence, although theoretically one expects
uncertainty only from the optimization error, in practical implementation, the discretization and
model errors also contribute to the uncertainty in the DBSDE scheme. The practical impact of
these sources of uncertainty is discussed in the numerical section.

3.3 UQ model

In practice, it is challenging to disentangle the sources of uncertainty in the DBSDE scheme,
as we demonstrate in the numerical experiments. Consequently, quantifying the uncertainty of
the DBSDE scheme becomes crucial for practical applications. In this section, we develop a UQ
model to estimate the uncertainty. After applying the DBSDE scheme, we obtain the random

variables Y ∆,θ̂
0 ∈ R and Z∆,θ̂

0 ∈ R1×d that approximate Y0 and Z0, respectively. To evaluate the
quality of such approximations, one can use the expected squared error when the exact solution
is known. This metric accounts for all the error sources in the DBSDE scheme and is calculated
as

ϵy :=

√
E
[(

Y ∆,θ̂
0 − Y0

)2]
∈ R+, ϵzk :=

√
E
[(

Z∆,θ̂,k
0 − Zk

0

)2]
∈ R+,

for k = 1, . . . , d. However, (Y0, Z0) is usually unknown, the STD of the approximate solutions

σy :=

√
E
[(

Y ∆,θ̂
0 − µy

)2]
∈ R+, σzk :=

√
E
[(

Z∆,θ̂,k
0 − µzk

)2]
∈ R+,

is often used, where k = 1, . . . , d, µy := E
[
Y ∆,θ̂
0

]
∈ R and µzk := E

[
Z∆,θ̂,k
0

]
∈ R. To compute

the STD (and the expected squared error when the exact solution (Y0, Z0) is available), Q runs
of the DBSDE algorithm must be done. The STD and the expected squared error are used as
the benchmark in our experiments. To this end, we have the root mean squared error (RMSE)
and the ensemble (biased sample) STD as

ϵ̃y :=

√√√√ 1

Q

Q∑
q=1

(
Y ∆,θ̂
0,q − Y0

)2
, σ̃y :=

√√√√ 1

Q

Q∑
q=1

(
Y ∆,θ̂
0,q − µ̃y

)2
,

for Y0 and

ϵ̃zk :=

√√√√ 1

Q

Q∑
q=1

(
Z∆,θ̂,k
0,q − Zk

0

)2
, σ̃zk :=

√√√√ 1

Q

Q∑
q=1

(
Z∆,θ̂,k
0,q − µ̃zk

)2
,

for Z0, k = 1, . . . , d, where
(
Y ∆,θ̂
0,q , Z∆,θ̂

0,q

)
represents the approximated solutions from the q-th run

of the algorithm, µ̃y := 1
Q

∑Q
q=1 Y

∆,θ̂
0,q and µ̃zk := 1

Q

∑Q
q=1 Z

∆,θ̂,k
0,q are the ensemble (sample) means

of the approximate solution. Note that one can use the ensemble unbiased STD. However, the
estimate of the STD from the UQ model is biased (as a maximum likelihood estimate). Therefore,
for the purpose of comparison in numerical experiments, it is more convenient to use the ensemble
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biased STD. Usually, Q = 10 is used, which is computationally expensive in high dimensions.

Therefore, we propose a UQ model to estimate the STDs for
(
Y ∆,θ̂
0 , Z∆,θ̂

0

)
by using only Q = 1

run of the algorithm. The model is based on an approach commonly used to quantify uncertainty
in heteroscedastic nonlinear regression. We make the assumption that the errors of the DBSDE
scheme follow a normal distribution with zero mean and the STD depending on the parameter
set of the discretized BSDE (such as T , x0, ∆t, etc.). This assumption aligns with the standard
practice in heteroscedastic regression. To train the UQ model, we construct a dataset of length
M with i.i.d samples D = {xi,yi, zi}Mi=1. Here, xi ∈ Rn represents n parameters of the discretized

BSDE, for example, xi := (x0,i, Ti,∆ti), and (yi, zi) :=
(
Y ∆,θ̂
0 (xi), Z

∆,θ̂
0 (xi)

)
∈ R×R1×d are the

approximations of (Y0(xi), Z0(xi)) obtained from the DBSDE scheme using BSDE parameter
set xi. We use uniform distributions to select the BSDE parameter set xi

x0,i ∼ U
[
xmin
0 , xmax

0

]
, Ti ∼ U

[
Tmin, Tmax

]
,

where (xmin
0 , xmax

0 ) and (Tmin, Tmax) are the boundaries of the corresponding uniform distribu-
tions for x0 and T . The training and test data for our UQ model stem from the same distribution.
Consequently, our method cannot be expected to generalize to out-of-distribution data, which
is a common challenge in deep learning in general. We propose adopting a continual learning
approach, which is however beyond the scope of this dissertation and remains future work. For
instance, an out-of-distribution detection method could be applied to the parameter space of
the BSDE (e.g. kernel density estimation). If a given BSDE parameter set is identified as in-
distribution, our current UQ model is applied. For out-of-distribution parameter sets, we fall
back to the ensemble baseline approach. This allows us to incorporate new data into our UQ
model, enabling it to be retrained and refined for future predictions. One can use the entire
dataset D to build a learning algorithm that considers Y0 and Z0 as pairs (the BSDE solution
at t0 is the pair (Y0, Z0)). However, this approach may introduce increased complexity for the
learning algorithm, mainly because the magnitudes of the solutions for y and z over different
BSDE parameter sets x can differ significantly. Additionally, assumptions regarding their corre-
lation might be necessary. Hence, we divide the dataset D into two datasets, Dy = {xi,yi}Mi=1

and Dz = {xi, zi}Mi=1, and develop two different learning algorithms. Given the input feature
x, we use one DNN to model the probabilistic predictive distribution py,θ(y|x) and another for
pz,θ(z|x). More precisely, we treat each observed value as a sample from a Gaussian distribution
(multivariate Gaussian for Z0), with the mean and STD as functions of the BSDE parameter
set, namely

yi ∼ N (µy (xi) , (σ
y)2 (xi)), zi ∼ N (µz (xi) , Id (σ

z)2 (xi)), (3.10)

and allow the networks to calculate their final estimates as (µ̂y(xi), σ̂
y(xi)) ∈ R × R+ and

(µ̂z(xi), σ̂
z(xi)) ∈ Rd × Rd

+. These calculations are performed by minimizing the negative ln-
likelihood

L̃y(θ) = − ln
(
py,θ(y|x)

)
=

1

M

M∑
i=1

(
ln
(
σy,θ(xi)

)
+

1

2

(
yi − µy,θ(xi)

)2
(σy,θ)2(xi)

)
+ C,

for Y0 and assuming that the covariance matrix of Z∆,θ̂
0 is diagonal, then

L̃z(θ) = − ln
(
pz,θ(z|x)

)
=

1

M

M∑
i=1

(
d∑

k=1

ln
(
σzk,θ(xi)

)
+

1

2

(
zi − µz,θ(xi)

)⊤ (
(σz,θ)2(xi)

)−1 (
zi − µz,θ(xi)

))
+ C,

75



for Z0, where C > 0 are constants and
(
µθ, σθ

)
are the parameterized version of unknown

parameters (µ, σ) using DNNs with parameters θ. The algorithmic framework of our UQ model
is provided in the following section.

3.4 Numerical results

In this section, we take the DBSDE scheme as an example to illustrate the impact of different
sources of uncertainty in the scheme and apply our UQ model to both the DBSDE and LaDBSDE
schemes. All the experiments below were conducted using PYTHON and TensorFlow on the
PLEIADES cluster.

3.4.1 Experimental setup

The dataset D of length M for the UQ model is generated as follows:

• For sample i, i = 1, . . . ,M, generate a BSDE parameter set xi, e.g. xi = (x0,i, Ti,∆ti)
using uniform distributions.

• After specifying the hyperparameters of the DBSDE scheme, run the algorithm
for the BSDE with parameter set xi to calculate the approximations (yi, zi) =(
Y ∆,θ̂
0 (xi), Z

∆,θ̂
0 (xi)

)
.

• Collect (xi,yi, zi) and perform the same steps for each i.

A more detailed formulation is given in Algorithm 4. Note that in order to efficiently generate
the dataset D, we consider a straightforward parallelization of Algorithm 4, namely one core is
used to simulate the DBSDE scheme for one BSDE parameter set. Hence, multiple cores provide
a parallel generation of the dataset D. The implementation of Algorithm 4 follows the hyper-
parameters considered in [22] for the DBSDE scheme, see also Section 1.5. We use Algorithm 5
and 6 to estimate the parameters in (3.10) for Y0 and Z0, respectively. For the implementation
of Algorithm 5, we first split the dataset Dy into training, validation, and testing samples, whose
sizes are denoted by M train, Mvalid and M test, respectively. Note that the validation set is used
to validate the performance of our UQ model when tuning its hyperparameters. The input layer
of the DNN has n neurons, and the output layer has 2 neurons. The first neuron in the output
layer estimates the mean of the approximate solution µy(x), and the second neuron in the out-
put layer estimates the STD of the approximate solution σy(x), where the softplus activation
function ϱ(x) = ln(1+ ex) ∈ (0,∞) is applied to obtain positive estimates. The ReLU activation
function is used for the Ly hidden layers. Note that it is appropriate to choose ηy > qy. The
input data x is normalized based on the training data. We use the Adam optimizer with learning
rate αy, a batch size By, L2 regularization with parameter λy, and a specified number of epochs
epy. The hyperparameters are set in a similar fashion for the implementation of Algorithm 6.

To visually and quantitatively compare our estimates of the mean and STD of the approximate
solution to benchmark values, such as the exact solution, RMSE, ensemble mean, and ensemble
STD, we consider both linear and nonlinear BSDEs with available analytical solutions. We
take the Black-Scholes BSDE as a linear 1-dimensional example, which is used for pricing the
European options. It is given in Section 2.5.1, Example 2.5.1, which is given in d = 1 as:
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Algorithm 4: Algorithm generating dataset D for UQ model

Input:
(
N,M, d, xmin

0 , xmax
0 , Tmin, Tmax, Y min

0 , Y max
0

)
- problem related parameters

Input: (a, b, f, g) - functions of BSDE
Input: (α,L, η, ϱ,B,K) - DNN hyperparameters in DBSDE scheme
Output: D = {xi,yi, zi}Mi=1 - Dataset for UQ model
for i = 1 : M do

x0,i ∼ U
[
xmin
0 , xmax

0

]
Ti ∼ U

[
Tmin, Tmax

]
∆ti =

Ti
N

xi = (x0,i, Ti,∆ti)
for n = 0 : N do

tn = n∆ti
end
Initialize parameter set θ

Y ∆,θ̂0

0 (xi) = θ̂y,00 ∼ U
[
Y min
0 , Y max

0

]
Z∆,θ̂0

0 (xi) = θ̂z,00 ∼ U [−11,d, 11,d] - 11,d ∈ R1×d vector of all ones(
θ̂z,01 , . . . , θ̂z,0N−1

)
- Xavier normal initializer [31]

θ̂0 =
(
θ̂y,00 , θ̂z,00 , θ̂z,01 , . . . , θ̂z,0N−1

)
Optimization or training part

for κ = 1 : K do
for j = 1 : B do

X∆
0,j = x0,i

for n = 0 : N − 1 do
Euler-Maruyama for the forward SDE
∆Wn,j ∼ N (0d,∆ti Id)

X∆
n+1,j = X∆

n,j + a
(
tn, X

∆
n,j

)
∆ti + b

(
tn, X

∆
n,j

)
∆Wn,j

Use DNN with (L, η, ϱ) for Z and Euler-Maruyama for Y
q = d - DNN output dimension; input dimension d
if n < N − 1 then

Z∆,θ̂κ−1

n+1,j = ϕz
n+1

(
X∆

n+1,j ; θ̂
z,κ−1
n+1

)
Y ∆,θ̂κ−1

n+1,j = Y ∆,θ̂κ−1

n,j − f
(
tn,X

∆,θ̂κ−1

n,j

)
∆ti + Z∆,θ̂κ−1

n,j ∆Wn,j

else

Y ∆,θ̂κ−1

n+1,j = Y ∆,θ̂κ−1

n,j − f
(
tn,X

∆,θ̂κ−1

n,j

)
∆ti + Z∆,θ̂κ−1

n,j ∆Wn,j

end

end

end

L̃∆
(
θ̂κ−1

)
= 1

B

∑B
j=1

∣∣∣g(X∆
N,j)− Y ∆,θ̂κ−1

N,j

∣∣∣2
Adam optimization step

θ̂κ - trained parameters with Adam optimizer [64], learning rate α
end

θ̂ = θ̂K - final estimated parameters after K optimization steps

(yi, zi) =
(
Y ∆,θ̂
0 (xi), Z

∆,θ̂
0 (xi)

)
end
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Algorithm 5: Algorithm estimating the parameters of (3.10) for Y0

Input:
(
M, n,Mvalid,M test,Dy

)
- parameters and dataset for UQ model

Input: (αy, Ly, ηy, ϱy, By, epy, λy) - DNN hyperparameters

Output:
(
µy,θ̂(x), σy,θ̂(x)

)
- estimates of UQ model for Y0

Split Dy into training, validation and testing samples

M train = M −Mvalid −M test(
xtrain,ytrain

)(
xvalid,yvalid

)(
xtest,ytest

)
Normalize input data x based on training statistics(
xtrain,nr,xvalid,nr,xtest,nr

)
qy = 2 - DNN output dimension; input dimension n
Initialize parameters θ

θ̂0- Xavier normal initializer [31]
κ = 0
for each epoch until epy do

for j = 1 : Mtrain

By do
κ = κ+ 1
Batch data

xtrain,nr =
{
xtrain,nr
i

}j By

i=(j−1)By+1

Use DNN with (Ly, ηy, ϱy) to estimate parameters in (3.10) for Y0

µy,θ̂κ−1 (
xtrain,nr

)
, σy,θ̂κ−1 (

xtrain,nr
)
= ϕy

(
xtrain,nr; θ̂κ−1

)
Calculate loss including L2 regularization

L̃y
(
θ̂κ−1

)
=

1
By

∑j By

i=(j−1)By+1

(
ln
(
σy,θ̂κ−1

(
xtrain,nr
i

))
+ 1

2

(
ytrain
i −µy,θ̂κ−1

(xtrain,nr
i )

)2
(σy,θ̂κ−1)

2
(xtrain,nr

i )

)
+λy

∑Ly

l=1

∣∣∣Ŵκ−1
l

∣∣∣2
Adam optimization step

θ̂κ - trained parameters with Adam optimizer [64], learning rate αy

end

end

θ̂ = θ̂κ - final estimated parameters of DNN after epy epochs, each with Mtrain

By number
of batches(
µy,θ̂(x), σy,θ̂(x)

)
- estimated parameters of (3.10) for Y0, x training, validation or

testing sample
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Algorithm 6: Algorithm estimating the parameters of (3.10) for Z0

Input:
(
M, n,Mvalid,M test,Dz

)
- parameters and dataset for UQ model

Input: (αz, Lz, ηz, ϱz, Bz, epz, λz) - DNN hyperparameters

Output:
(
µz,θ̂(x), σz,θ̂(x)

)
- estimates of UQ model for Z0

Split Dz into training, validation and testing samples

M train = M −Mvalid −M test(
xtrain, ztrain

)(
xvalid, zvalid

)(
xtest, ztest

)
Normalize input data x based on training statistics(
xtrain,nr,xvalid,nr,xtest,nr

)
qz = 2d - DNN output dimension; input dimension n
Initialize parameters θ

θ̂0- Xavier normal initializer [31]
κ = 0
for each epoch until epz do

for j = 1 : Mtrain

Bz do
κ = κ+ 1
Batch data

xtrain,nr =
{
xtrain,nr
i

}j Bz

i=(j−1)Bz+1

Use DNN with (Lz, ηz, ϱz) to estimate parameters in (3.10) for Z0

µz,θ̂κ−1 (
xtrain,nr

)
, σz,θ̂κ−1 (

xtrain,nr
)
= ϕz

(
xtrain,nr; θ̂κ−1

)
Calculate loss including L2 regularization

L̃z
(
θ̂κ−1

)
= 1

Bz

∑j Bz

i=(j−1)Bz+1

(∑d
k=1 ln

(
σzk,θ̂

κ−1
(
xtrain,nr
i

))
+1

2

(
ztraini − µz,θ̂κ−1

(
xtrain,nr
i

))⊤((
σz,θ̂κ−1

)2 (
xtrain,nr
i

))−1

(
ztraini − µz,θ̂κ−1

(
xtrain,nr
i

)))
+ λz

∑Lz

l=1

∣∣∣Ŵκ−1
l

∣∣∣2
Adam optimization step

θ̂κ - trained parameters with Adam optimizer [64], learning rate αz

end

end

θ̂ = θ̂κ - final estimated parameters of DNN after epz epochs, each with Mtrain

Bz number
of batches(
µz,θ̂(x), σz,θ̂(x)

)
- estimated parameters of (3.10) for Z0, x training, validation or

testing sample
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Example 3.4.1. The Black-Scholes BSDE in d = 1 reads [105]
dSt = (a− δ)St dt+ bSt dWt, S0 = s0,

−dYt = −
(
RYt + (a−R+ δ) Zt

b

)
dt− Zt dWt,

YT = (ST −K)+ .

For the nonlinear case, we consider the nonlinear high-dimensional Burgers type BSDE.

Example 3.4.2. The high-dimensional Burgers type BSDE reads [22]
dXt = b dWt, X0 = 0,

−dYt =
(

b
dYt −

2d+b2

2bd

)(∑d
k=1 Z

k
t

)
dt− Zt dWt,

YT =
exp(T+ 1

d

∑d
k=1 X

k
T )

1+exp(T+ 1
d

∑d
k=1 X

k
T )

,

where, Wt = (W 1
t ,W

2
t , . . . ,W

d
t )

⊤, Xt = (X1
t , X

2
t , . . . , X

d
t )

⊤ and Zt = (Z1
t , Z

2
t , . . . , Z

d
t ). The

analytic solution is given by
Yt =

exp(t+ 1
d

∑d
k=1 X

k
t )

1+exp(t+ 1
d

∑d
k=1 X

k
t )
,

Zt = b
d

exp(t+ 1
d

∑d
k=1 X

k
t )

(1+exp(t+ 1
d

∑d
k=1 X

k
t ))

211,d,

where 11,d ∈ R1×d a row vector of ones. At t0 we have that (Y0, Z0) =
(
0.5, b

4d11,d
)
.

The following experiments are organized as follows. Firstly, we illustrate the impact of the
sources of uncertainty in the DBSDE scheme for both examples by visualizing the effect of
different errors on the uncertainty. Secondly, we assess the performance of our UQ model for
the mean and STD of the approximate solution by comparing them with the benchmark values.
Additionally, we determine the number of runs of the DBSDE algorithm for which the ensemble
STD is comparable to the estimated STD. Furthermore, the computational cost of generating the
training data for the UQ model is evaluated. To demonstrate the applicability of the UQ model
to other deep learning-based BSDE schemes, we apply it to the LaDBSDE scheme. Finally, we
show the practical implications of our UQ model.

3.4.2 The impact of the sources of uncertainty in the DBSDE scheme

To demonstrate the impact of the sources of uncertainty in the DBSDE scheme, we fix the
parameter set of the BSDE and vary the hyperparameters of the DBSDE scheme that affect
the corresponding source of uncertainty. Initially, we focus on the estimation and optimization
errors. By using a high number of optimization steps K and different learning rate approaches,
the effect of these errors on the uncertainty of the DBSDE scheme is analyzed. Afterward, we
investigate the impact of the model error by increasing the number of hidden neurons η. Lastly,
the number of discretization points N is varied in order to study how the discretization error
contributes to the uncertainty of the DBSDE scheme.

For the parameter values T = 1,K = 100, S0 = 100, a = 0.05, b = 0.2, R = 0.03 and δ = 0 in
Example 3.4.1, the exact solution is (Y0, Z0) = (9.4134, 11.9741). In Example 3.4.2, we chose
d = 50 and fix b = 25, T = 0.25. The exact solution is (Y0, Z0) = (0.5, 0.12511,50). For the DBSDE
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algorithm, we start with the following hyperparameters: a constant learning rate approach (C-
LR) with K = 60000 optimization steps of the Adam algorithm, a learning rate α = 1e−2,
and a batch size of B = 128. To analyze the effect of estimation and optimization errors on
the RMSE, we plot the RMSE values in Figures 3.1 and 3.2 for Examples 3.4.1 and 3.4.2,
respectively, for increasing values of K. The RMSE values of Z0 are plotted only for the first
component in Example 3.4.2 as it is similar for the other components in our experiments. We
use N = 32 discretization points and Q = 10 runs of the DBSDE algorithm. Note that each
run of the DBSDE algorithm involves a different seed for generating the dataset and different
initialization values of DNN parameters. As K increases, the sum of estimation and optimization
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(a) RMSE values for Y0.
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(b) RMSE values for Z0.

Figure 3.1: RMSE values are plotted for Example 3.4.1 for increasing K, where T = 1,K =
100, S0 = 100, a = 0.05, b = 0.2, R = 0.03 and δ = 0.
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Figure 3.2: RMSE values are plotted for Example 3.4.2 while increasing K, where T = 0.25 and
b = 25.

errors decreases for both examples as expected. This is because the DBSDE algorithm uses a
new sample of size 128 after each optimization step, and the optimizer tends to perform better
with more training data and optimization steps. This reduction in RMSE is evident until around
5000 optimization steps. However, for K > 5000, the RMSE plateaus due to other error sources,
such as model and discretization errors, which are higher than the optimization error. Note that
the RMSE values for Example 3.4.2 are lower than those for Example 3.4.1 because the exact
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solution has a smaller value. To further reduce the optimization error, we use a PC-LR approach
with the following learning rates

ακ =



1e−2, for 1 ≤ κ ≤ 20000,

3e−3, for 20000 < κ ≤ 30000,

1e−3, for 30000 < κ ≤ 40000,

3e−4, for 40000 < κ ≤ 50000,

1e−4, for 50000 < κ ≤ K.

We compare the RMSE values using C-LR and PC-LR in Figure 3.3 for Example 3.4.1. A similar
behavior is observed for Example 3.4.2, see Figure A.1 in Appendix A.

0 1 2 3 4 5 6

·104

10−3

10−2

10−1

100

101

K

ϵ̃y

C-LR
PC-LR

(a) RMSE values for Y0.
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Figure 3.3: RMSE values are plotted for Example 3.4.1 using different learning rate approaches,
where T = 1,K = 100, S0 = 100, a = 0.05, b = 0.2, R = 0.03 and δ = 0.

Next, we consider the model error. To try reduce the model error, one can increase the number
of hidden neurons η or the number of hidden layers L. We report the RMSE values for η ∈
{10+d, 32+d, 64+d, 128+d} in Figures 3.4 and 3.5 using PC-LR, for Examples 3.4.1 and 3.4.2,
respectively. We observe that the RMSE does not decrease in both examples.

Finally, we consider the discretization error, which appears to be larger than the model error.
To visualize this, we use the PC-LR approach while setting η = 128 + d, and plot the RMSE
values in Figure 3.6 for N ∈ {2, 8, 32, 128, 256, 512, 1024} in the case of Example 3.4.1. When
considering the approximation of Y0, the RMSE decreases with increasing N until N = 32, after
which it does not reduce anymore. This phenomenon is even worse for the approximation of Z0,
as it starts to increase. It is worth noting that approximating Z is generally more challenging
than approximating Y for BSDEs. While a higher value of N can reduce the discretization
error, it can also lead to a larger error due to the increased number of DNNs and network
parameters to be optimized. Additionally, the propagated errors over time in the DBSDE scheme
become larger with a higher value of N . Such behaviour is more evident in Example 3.4.2, where
the RMSE start to significantly increase for both Y0 and Z0 after N = 32, see Figure A.2 in
Appendix A. This is due to the higher dimensionality, and the nonlinearity of the driver function
in Example 3.4.2. To provide further clarity, we display the RMSE values and the absolute errors

ϵ̃yq = |Y ∆,θ̂
0,q − Y0| and ϵ̃zq = |Z∆,θ̂

0,q − Z0| from the q-th run for N ∈ {32, 1024} in Figure 3.7 for
Example 3.4.1. The variation of absolute errors from different runs around the corresponding
RMSE values indicates that the increase in RMSE in Figure 3.6 for N > 32 is caused mainly
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Figure 3.4: RMSE values are plotted for Example 3.4.1 using η ∈ {10+d, 32+d, 64+d, 128+d},
where T = 1,K = 100, S0 = 100, a = 0.05, b = 0.2, R = 0.03 and δ = 0.
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Figure 3.5: RMSE values are plotted for Example 3.4.2 using η ∈ {10+d, 32+d, 64+d, 128+d},
where T = 0.25 and b = 25.

by the propagated errors (same is observed for Example 3.4.2, see Figure A.3 in Appendix A).
Note that choosing η > 128 + d does not reduce the RMSE. Hence, disentangling the sources
of uncertainty is practically challenging, making it essential to quantify the uncertainty of the
DBSDE scheme for practical applications.

3.4.3 Performance of the UQ model

In this section, we evaluate the quality of the mean and STD of the approximate solution
estimated from our UQ model for both the DBSDE and LaDBSDE schemes. We start with
the DBSDE scheme and consider Examples 3.4.1 and 3.4.2. In each example, the following
structure is used. Firstly, the dataset for training and evaluating the UQ model is generated.
To gain insights into the RMSE and ensemble STD, we visualize these values and determine
an appropriate metric for assessing the accuracy of the ensemble STD in approximating the
RMSE. Secondly, we focus on evaluating the accuracy of the estimated STD from the UQ
model in approximating the RMSE, and compare it with the performance of the ensemble STD.
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Figure 3.6: RMSE values are plotted for Example 3.4.1 using N ∈ {2, 8, 32, 128, 256, 512, 1024},
where T = 1,K = 100, S0 = 100, a = 0.05, b = 0.2, R = 0.03 and δ = 0.

Additionally, we determine the number of DBSDE runs that the estimated STD achieves the
same quality as the ensemble STD. The computational cost for training the UQ model is assessed
in terms of the number of DBSDE runs needed to train it. Finally, we evaluate the accuracy of the
estimated mean from the UQ model in approximating the exact solution, and compare it with
the performance of the ensemble mean. Regarding the LaDBSDE scheme, only Example 3.4.2
is analyzed to show the applicability of the UQ model, following a similar structure as for the
DBSDE scheme.

3.4.3.1 The DBSDE scheme for the Black-Scholes example

The dataset D = {xi,yi, zi}Mi=1 for the UQ model is generated using Algorithm 4, where xi

includes the parameter set of the Black-Scholes BSDE, i.e. xi = (ai, bi, S0,i, Ri, δi,Ki, Ti). Note

that yi = Y ∆,θ̂
0 (xi) and zi = Z∆,θ̂

0 (xi) are the approximated solutions given by the DBSDE
algorithm for the parameter set xi of the Black-Scholes BSDE. The parameter set xi is generated
using uniform distributions, where the bounds are chosen to account for all different scenarios
of a European (call) option, namely in the money (ITM), at the money (ATM), and out of the
money (OTM). To calculate (yi, zi), we set K = 30000, α = 1e−2 and B = 128 for the DBSDE
algorithm. We generate 3 datasets where we treat T andN differently for each dataset. In dataset
D1, we fix the values of T and N. In dataset D2, we vary T , but we keep the step size ∆t fixed. In
the last dataset D3, both T and ∆t vary. This way, we analyze the performance of our UQ model
in the case where the maturity value and discretization error vary. Additionally, we analyze the
cases where the maturity value or the discretization error is fixed. The range of values for the
parameters on each dataset is given in Table 3.1, where we choose a = 0.05, δ = 0, and K = 100.
We consider M = 2560 different BSDE parameter sets and run the DBSDE algorithm Q = 10

Dataset
Parameter range

b S0 R T N ∆t

D1 [0.1, 0.4] [K − 20,K + 20] [0.001, 0.1] 0.25 10 0.025

D2 [0.1, 0.4] [K − 20,K + 20] [0.001, 0.1]
[

1
12
, 1
]

T
∆t

0.025

D3 [0.1, 0.4] [K − 20,K + 20] [0.001, 0.1]
[

1
12
, 1
]

16 T
N

Table 3.1: Parameter range for Example 3.4.1.
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(a) RMSE values and the absolute error from each
of Q = 10 DBSDE runs for Y0 with N = 32.
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(b) RMSE values and the absolute error from each
of Q = 10 DBSDE runs for Y0 with N = 1024.
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(c) RMSE values and the absolute error from each
of Q = 10 DBSDE runs for Z0 with N = 32.
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(d) RMSE values and the absolute error from each
of Q = 10 DBSDE runs for Z0 with N = 1024.

Figure 3.7: RMSE values and the absolute errors from each of Q = 10 DBSDE runs are plotted
for Example 3.4.1 using N ∈ {32, 1024}, where T = 1,K = 100, S0 = 100, a = 0.05, b = 0.2, R =
0.03 and δ = 0.

times for each BSDE parameter set. Thus, we construct a dataset of length M = 2560 for the
UQ model by selecting the BSDE parameter set and the corresponding approximated solutions
from the first run of the DBSDE algorithm. We also calculate benchmark values such as the
RMSE, ensemble mean, and ensemble STD for each BSDE parameter set. Note that the datasets
Dj are split into Dy

j and Dz
j for j = 1, 2, 3 in order to built the UQ model for Y0 and Z0. To gain

insights into the benchmark values (the RMSE and ensemble STD), we display these values in
Figure 3.8 and 3.9, sorted by the value of the exact solution (Y0 and Z0 respectively) for each
dataset in the log-domain. Since the exact solution is different for each BSDE parameter set x,
we also display their relative estimates, where,

ϵ̃y,r(x) :=
ϵ̃y(x)

|Y0(x)|
, σ̃y,r(x) :=

σ̃y(x)

|µ̃y(x)|
,

are the corresponding relative estimates for Y0 and

ϵ̃z,r(x) :=
ϵ̃z(x)

|Z0(x)|
, σ̃z,r(x) :=

σ̃z(x)

|µ̃z(x)|
,
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are the corresponding relative measures for Z0. Note that we show only the last 256 out of
2560 values for better visualization. The RMSE, ensemble STD, and also their relative values

2350 2400 2450 2500 2550
−3

−2

−1

i

log (ϵ̃y(xi))

log (σ̃y(xi))

(a) Estimates for Dy
1 .

2350 2400 2450 2500 2550
−4

−2

0

2

i

log (ϵ̃y,r(xi))

log (σ̃y,r(xi))

(b) Relative estimates for Dy
1 .

2350 2400 2450 2500 2550
−3

−2

−1

i

log (ϵ̃y(xi))

log (σ̃y(xi))

(c) Estimates for Dy
2 .

2350 2400 2450 2500 2550
−4

−2

0

2

i

log (ϵ̃y,r(xi))

log (σ̃y,r(xi))

(d) Relative estimates for Dy
2 .

2350 2400 2450 2500 2550
−3

−2

−1

i

log (ϵ̃y(xi))

log (σ̃y(xi))

(e) Estimates for Dy
3 .

2350 2400 2450 2500 2550
−4

−2

0

2

i

log (ϵ̃y,r(xi))

log (σ̃y,r(xi))

(f) Relative estimates for Dy
3 .

Figure 3.8: RMSE, the ensemble STD and their relative estimates for Dy
j , j = 1, 2, 3 sorted by

the value of the exact solution in Example 3.4.1.

exhibit a strong positive correlation. Hence, we use the correlation to quantify the strength of
the relationship between the RMSE and ensemble STD values. The correlation values in the
log-domain are reported in Table 3.2. Note that all the following calculations for evaluating the
estimated STD from the UQ model are conducted in the log-domain throughout this section.

86



2350 2400 2450 2500 2550
−3

−2

−1

0

i

log (ϵ̃z(xi))

log (σ̃z(xi))

(a) Estimates for Dz
1 .

2350 2400 2450 2500 2550
−4

−2

0

2

i

log (ϵ̃z,r(xi))

log (σ̃z,r(xi))

(b) Relative estimates for Dz
1 .

2350 2400 2450 2500 2550
−3

−2

−1

0

i

log (ϵ̃z(xi))

log (σ̃z(xi))

(c) Estimates for Dz
2 .

2350 2400 2450 2500 2550
−4

−2

0

2

i

log (ϵ̃z,r(xi))

log (σ̃z,r(xi))

(d) Relative estimates for Dz
2 .

2350 2400 2450 2500 2550
−3

−2

−1

0

i

log (ϵ̃z(xi))

log (σ̃z(xi))

(e) Estimates for Dz
3 .

2350 2400 2450 2500 2550
−4

−2

0

2

i

log (ϵ̃z,r(xi))

log (σ̃z,r(xi))

(f) Relative estimates for Dz
3 .

Figure 3.9: RMSE, the ensemble STD and their relative estimates for Dz
j , j = 1, 2, 3 sorted by

the value of the exact solution in Example 3.4.1.

We observe that the relative values provide a more reasonable measure than the absolute ones
as the exact solution varies for each BSDE parameter set x. Therefore, the relative values are
used to evaluate the performance of the UQ model in estimating the STD of the approximate
solution. Furthermore, we find that the cases with high relative RMSE values in Figure 3.8
and 3.9 correspond to deep OTM options, for which the DBSDE algorithm may produce negative
estimates of the option price Y0 or its delta hedging strategy Z0, indicating divergence. The
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Dataset

Measure Correlation D1 D2 D3

Absolute measure for Y0 ρ (log(ϵ̃y(x)), log(σ̃y(x))) 0.9260 0.9338 0.9284

Relative measure for Y0 ρ (log(ϵ̃y,r(x)), log(σ̃y,r(x))) 0.9860 0.9835 0.9761

Absolute measure for Z0 ρ (log(ϵ̃z(x)), log(σ̃z(x))) 0.8491 0.8397 0.8034

Relative measure for Z0 ρ (log(ϵ̃z,r(x)), log(σ̃z,r(x))) 0.9750 0.9638 0.9554

Table 3.2: Correlation between the RMSE and ensemble STD values, and their relative values
for Dj, j = 1, 2, 3 in Example 3.4.1.

number of such cases is given in Table 3.3. To estimate the STD and mean of the approximate

Dataset

Condition for divergence D1 D2 D3

Y ∆,θ̂
0 (x) < 0 or Z∆,θ̂

0 (x) < 0 126 62 60

Table 3.3: Number of diverged cases of the DBSDE scheme for Dj, j = 1, 2, 3 in Example 3.4.1.

solution for Y0 and Z0, we use Algorithm 5 and 6, respectively. Note that there is no evidence
against the normality assumption for our UQ model, see Appendix B. The datasets Dj are split
into training, validation, and testing samples, where we set Mvalid = M test = 256, and the rest
for training, M train = M −Mvalid −M test. To account for deviations in our results, we repeat
each experiment 10 times, training 10 different UQ models, and provide the mean as well as the
STD. For D1, n = 3, since xi = (bi, S0,i, Ri) is the BSDE parameter set, n = 5 for D2 and D3

where (T,N) and (T,∆t) are also varied, respectively. We use ηy = ηz = 128 and Ly = Lz = 2.
The learning rate α, number of epochs ep, batch size B, and L2 regularization parameter λ
are tuned. Based on the performance of the UQ model in the validation sample, the fine-tuned
hyperparameters for Y0 and Z0 in dataset D1 are: B = 128, λ = 3e−2, and a PC-LR approach
with α ∈ {1e−3, 3e−4, 1e−4, 3e−5, 1e−5} and ep = 1000 for α = 1e−3 and ep = 500 for other
learning rates. For the other datasets, the only change is in the PC-LR approach, where ep = 100
for α < 1e−3. Note that all the following results are shown for the testing sample. To evaluate the
quality of the estimated STD, we report in Table 3.4 the correlation between the relative RMSE
and ensemble STD values ρ (log(ϵ̃r(x)), log(σ̃r(x))), as well as the mean correlation between
the relative RMSE and estimated STD values ρ (log(ϵ̃r(x)), log(σ̂r(x))), where the averaging
corresponds to the number of repetitions of our experiment computed by

ρ (log(ϵ̃y,r(x)), log(σ̂y,r(x))) :=
1

10

10∑
i=1

ρ
(
log(ϵ̃y,r(x)), log(σ̂y,r

i (x))
)
,

ρ (log(ϵ̃z,r(x)), log(σ̂z,r(x))) :=
1

10

10∑
i=1

ρ
(
log(ϵ̃z,r(x)), log(σ̂z,r

i (x))
)
.

Moreover, σ̂y,r(x) and σ̂z,r(x) represents the estimated relative STD values from 10 different
trained UQ models for Y0 and Z0, respectively. The index i corresponds to the values estimated
from the i-th trained UQ model. The STD of the correlation is given in the brackets. Note that
training 10 UQ models in this example, as well as in the following, is done only to test the robust-
ness of our approach and to assess the statistical validity of our results. The correlation values
for the relative ensemble STD and the mean correlation values for the relative estimated STD
from our UQ model are very close for Y0 and Z0. This demonstrates that the relative estimated
STD effectively approximates the relative ensemble STD. Moreover, we determine the number of
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Dataset

UQ approach Metric D1 D2 D3

Ensemble for Y0 ρ (log(ϵ̃y,r(x)), log(σ̃y,r(x))) 0.9893 0.9817 0.9898

UQ model for Y0 ρ (log(ϵ̃y,r(x)), log(σ̂y,r(x))) 0.9852 (0.0006) 0.9604 (0.0049) 0.9575 (0.0074)

Ensemble for Z0 ρ (log(ϵ̃z,r(x)), log(σ̃z,r(x))) 0.9669 0.9657 0.9581

UQ model for Z0 ρ (log(ϵ̃z,r(x)), log(σ̂z,r(x))) 0.9473 (0.0021) 0.9151 (0.0108) 0.8934 (0.0137)

Table 3.4: Correlation between the relative RMSE and ensemble STD values, and the mean
correlation between the relative RMSE and estimated STD values from the UQ model for Dj,
j = 1, 2, 3 using the testing sample in Example 3.4.1. The STD of the correlation is given in the
brackets.

runs of the DBSDE algorithm for which the relative ensemble STD is approximately equal to the
relative estimated STD. Therefore, we display in Figure 3.10 the correlation between the relative
RMSE and ensemble STD values ρ (log(ϵ̃r(x)), log(σ̃r(x))) for different DBSDE runs, the mean
correlation between the relative RMSE and estimated STD values ρ (log(ϵ̃r(x)), log(σ̂r(x))), and
their intersection. The shaded area gives the STD of the correlation. We observe that the relative
estimated STD from the UQ model is as good as the relative ensemble STD calculated from
around Q = 9 runs of the DBDSE algorithm for Y0 and Q = 5 for Z0 in dataset D1. When the
maturity T is also varied in dataset D2, the relative estimated STD is as good as the relative
ensemble STD calculated from around Q = 4 runs of the DBDSE algorithm for Y0 and Z0. The
same can be concluded for the last dataset D3 where the maturity T and the step size ∆t are
also varied. Hence, using a training dataset of length M train = 2048 to train the UQ model,
the relative estimated STD can perform as well as the relative ensemble STD of at least Q = 4
DBSDE runs.

Using a larger M train, the UQ model is expected to provide a better estimate of the relative
STD. However, this pre-processing step to gather training data for the model increases the
computational cost as the number of DBSDE runs needed to train the UQ model is equal to
M train. To show such a trade-off, we display in Figure 3.11 the mean correlation between the
relative RMSE and estimated STD values ρ (log(ϵ̃r(x)), log(σ̂r(x))) while increasing the number
of DBSDE runs to train the UQ model from 10% to 100% of M train. We observe that the UQ
model can give a good estimate of the relative STD even when trained with 1024 DBSDE runs.

Our UQ model does not only estimates the STD of the approximate solution but also its mean.
We use the RMSE to measure the quality of the estimated mean compared to the ensemble
mean and the expected (exact) solution, which are presented in Table 3.5. The mean RMSE
(RMSE) corresponds to the number of repetitions of our experiment computed by

RMSE (Y0(x), µ̂
y(x)) :=

1

10

10∑
i=1

RMSE
(
Y0(x), µ̂

y
i (x)

)
,

RMSE (Z0(x), µ̂
z(x)) :=

1

10

10∑
i=1

RMSE (Z0(x), µ̂
z
i (x)) ,

where µ̂y(x) and µ̂z(x) represents the estimated mean values from 10 different trained UQ
models for Y0 and Z0, respectively. The index i corresponds to the values estimated from the
i-th trained UQ model. The STD of the RMSE is given in the brackets. The RMSE between the
exact solution and ensemble mean values RMSE (Y0(x), µ̃

y(x)), and the mean RMSE between
the exact solution and estimated mean values RMSE (Y0(x), µ̂

y(x)) are very close. The same
can be concluded for Z0. Hence, the estimated mean given by our UQ model can be used as
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Figure 3.10: Correlation between the relative RMSE and ensemble STD values for different
DBSDE runs, and the mean correlation between the relative RMSE and estimated STD values
from the UQ model (STD of correlation given in the shaded area) for Dj, j = 1, 2, 3 using the
testing sample in Example 3.4.1. The black dot defines their intersection.

highly accurate initializers of
(
Y ∆,θ̂
0 , Z∆,θ̂

0

)
in the DBSDE algorithm, instead of initializing them

randomly using uniform distributions.

90



256 512 768 1024 1280 1536 1792 2048

0.94

0.96

0.98

1

#ofDBSDE runs

ρ

ρ (log(ϵ̃y,r(x)), log(σ̂y,r(x)))

(a) Dataset Dy
1 .

256 512 768 1024 1280 1536 1792 2048

0.6

0.8

1

#ofDBSDE runs

ρ

ρ (log(ϵ̃z,r(x)), log(σ̂z,r(x)))

(b) Dataset Dz
1 .

256 512 768 1024 1280 1536 1792 2048

0.8

0.9

1

#ofDBSDE runs

ρ

ρ (log(ϵ̃y,r(x)), log(σ̂y,r(x)))

(c) Dataset Dy
2 .

256 512 768 1024 1280 1536 1792 2048

0.4

0.6

0.8

1

#ofDBSDE runs

ρ

ρ (log(ϵ̃z,r(x)), log(σ̂z,r(x)))

(d) Dataset Dz
2 .

256 512 768 1024 1280 1536 1792 2048

0.7

0.8

0.9

1

#ofDBSDE runs

ρ

ρ (log(ϵ̃y,r(x)), log(σ̂y,r(x)))

(e) Dataset Dy
3 .

256 512 768 1024 1280 1536 1792 2048

0.2

0.4

0.6

0.8

1

#ofDBSDE runs

ρ

ρ (log(ϵ̃z,r(x)), log(σ̂z,r(x)))

(f) Dataset Dz
3 .

Figure 3.11: Mean correlation between the relative RMSE and estimated STD values from the
UQ model while increasing the number of DBSDE runs to train the model from 10% to 100% of
M train for Dj, j = 1, 2, 3 using the testing sample in Example 3.4.1. The STD of the correlation
is given in the shaded area.

3.4.3.2 The DBSDE scheme for the Burgers type example

We generate dataset D = {xi,yi, zi}Mi=1 using Algorithm 4, where xi now includes the parameter
set of the Burgers type BSDE, namely xi = (bi, Ti), and yi ∈ R and zi ∈ R1×d the corresponding
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Dataset

UQ approach Metric D1 D2 D3

Ensemble for Y0 RMSE (Y0(x), µ̃
y(x)) 1.72e−2 1.70e−02 2.04e−02

UQ model for Y0 RMSE (Y0(x), µ̂
y(x)) 1.97e−2 (9.89e−04) 3.29e−02 (1.34e−03) 3.35e−02 (1.44e−03)

Ensemble for Z0 RMSE (Z0(x), µ̃
z(x)) 6.47e−02 6.00e−02 6.02e−02

UQ model for Z0 RMSE (Z0(x), µ̂
z(x)) 7.05e−02 (2.30e−03) 8.27e−02 (4.71e−03) 8.17e−02 (7.11e−03)

Table 3.5: RMSE between the exact solution and ensemble mean values, and the mean RMSE
between the exact solution and estimated mean values from the UQ model for Dj, j = 1, 2, 3
using the testing sample in Example 3.4.1. The STD of the RMSE is given in the brackets.

approximate solution for Y0(xi) and Z0(xi). We keep the same hyperparameter values of the
DBSDE algorithm as in Example 3.4.1 to generate the dataset D and consider only varying the
BSDE parameter set as done for the dataset D3 in Example 3.4.1, namely (b, T,∆t) are varied.
In Table 3.6 the range of parameter values is reported. We set again M = 2560 and Q = 10

Dataset
Parameter range

b T N ∆t

D [0.2, 40]
[

1
12
, 0.3

]
32 T

N

Table 3.6: Parameter range for Example 3.4.2.

for each BSDE parameter set, and split the dataset D into Dy and Dz. The RMSE, ensemble
STD, and their relative values for Y0 and Z1

0 are displayed in Figures 3.12 and 3.13, sorted by
the value of the corresponding exact solution. Note that for Z0, only the results for the first
component are shown (with similar behavior observed for other components of Z0). We find
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Figure 3.12: RMSE, the ensemble STD and their relative estimates for Dy sorted by the value
of the exact solution in Example 3.4.2.

that the DBSDE algorithm produces negative approximations of Z0 in a significant number of
cases (1270 cases), especially for small values of b (b ≈ 0.2). Additionally, for large values of
b and T (b > 40 and T > 0.3), the relative RMSE values become very large. Similar to the
previous example, Figures 3.12 and 3.13 demonstrate a strong positive correlation among the
RMSE, ensemble STD, and their relative values. The correlation values in the log-domain are
reported in Table 3.7 for dataset D.
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Figure 3.13: RMSE, the ensemble STD and their relative estimates for Dz sorted by the value
of the exact solution in Example 3.4.2.

Measure Correlation Dataset D
Absolute measure for Y0 ρ (log(ϵ̃y(x)), log(σ̃y(x))) 0.9815

Relative measure for Y0 ρ (log(ϵ̃y,r(x)), log(σ̃y,r(x))) 0.9813

Absolute measure for Z1
0 ρ (log(ϵ̃z1(x)), log(σ̃z1(x))) 0.9900

Relative measure for Z1
0 ρ (log(ϵ̃z1,r(x)), log(σ̃z1,r(x))) 0.9353

Table 3.7: Correlation between the RMSE and ensemble STD values, and their relative values
for D in Example 3.4.2.

To train the UQ model, we follow the same procedure as in Example 3.4.1. We again choose
a testing and validation sample of 256 and use the rest for training the UQ model. Note
that n = 3 since xi = (bi, Ti,∆ti). Based on the validation sample, the fine-tuned hyper-
parameters for Y0 are as follows: By = 128, λy = 1e−3, and a PC-LR approach with
αy ∈ {1e−3, 3e−4, 1e−4, 3e−5, 1e−5} and epy = 5000 for αy = 1e−3 and epy = 500 for the
other learning rates. For Z1

0 , the fine-tuned hyperparameters are: Bz = 128, λz = 3e−2, and a
PC-LR approach with αz = αy and epz = 1000 for αz = 1e−3 and epz = 100 for the other learn-
ing rates. In Table 3.8, we present the correlation between the relative RMSE and ensemble STD
values ρ (log(ϵ̃r(x)), log(σ̃r(x))), as well as the mean correlation between the relative RMSE and
estimated STD values ρ (log(ϵ̃r(x)), log(σ̂r(x))). The correlation values for the relative ensemble

UQ approach Metric Dataset D
Ensemble for Y0 ρ (log(ϵ̃y,r(x)), log(σ̃y,r(x))) 0.9828

UQ model for Y0 ρ (log(ϵ̃y,r(x)), log(σ̂y,r(x))) 0.8584 (0.0096)

Ensemble for Z1
0 ρ (log(ϵ̃z1,r(x)), log(σ̃z1,r(x))) 0.9484

UQ model for Z1
0 ρ (log(ϵ̃z1,r(x)), log(σ̂z1,r(x))) 0.9694 (0.0005)

Table 3.8: Correlation between the relative RMSE and ensemble STD values, and the mean
correlation between the relative RMSE and estimated STD values from the UQ model for D
using the testing sample in Example 3.4.2. The STD of the correlation is given in the brackets.

STD and the mean correlation values for the relative estimated STD from our UQ model are
close for Y0 and even better for Z1

0 , indicating that our UQ model can provide highly accurate
estimates of the relative ensemble STD also in high dimensions. In Figure 3.14, we display the
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correlation between the relative RMSE and ensemble STD values ρ (log(ϵ̃r(x)), log(σ̃r(x))) for
different DBSDE runs, the mean correlation between the relative RMSE and estimated STD
values ρ (log(ϵ̃r(x)), log(σ̂r(x))), and their intersection. The relative estimated STD from the
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(a) Dataset Dy.
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Figure 3.14: Correlation between the relative RMSE and ensemble STD values for different
DBSDE runs, and the mean correlation between the relative RMSE and estimated STD values
from the UQ model (STD of correlation given in the shaded area) for D using the testing sample
in Example 3.4.2. The black dot defines their intersection.

UQ model achieves the quality of the relative ensemble STD calculated from around Q = 4 runs
of the DBDSE algorithm for Y0 and more than Q = 10 for Z1

0 . In this example, the performance
of the UQ model for Z0 improves compared to the previous example. One possible explanation
for this improvement is the exact solution in this example, which slightly varies for Z0 across
different BSDE parameter sets x, namely Example 3.4.2 is less challenging than Example 3.4.1
for Z0.

To show the computation cost of generating the training data for the UQ model, we display
in Figure 3.15 the mean correlation between the relative RMSE and estimated STD values
ρ (log(ϵ̃r(x)), log(σ̂r(x))) while increasing the number of DBSDE runs to train the model. Even
when training the UQ model with around 1024 DBSDE runs, a good estimate of the STD is
achieved.

Next, we examine the performance of our UQ model for the mean of the approximate
solution. We calculate the RMSE between the exact solution and ensemble mean values
RMSE (Y0(x), µ̃

y(x)), as well as the mean RMSE between the exact solution and estimated
mean values RMSE (Y0(x), µ̂(x)) for Y0, and similarly for Z1

0 . The corresponding values are
reported in Table 3.9. Based on the results, we can conclude that the estimated means given by

UQ approach Metric Dataset D
Ensemble for Y0 RMSE (Y0(x), µ̃

y(x)) 3.80e−03

UQ model for Y0 RMSE (Y0(x), µ̂
y(x)) 1.12e−03 (1.24e−04)

Ensemble for Z1
0 RMSE

(
Z1

0 (x), µ̃
z1(x)

)
2.82e−03

UQ model for Z1
0 RMSE

(
Z1

0 (x), µ̂
z1(x)

)
9.08e−04 (1.92e−04)

Table 3.9: RMSE between the exact solution and ensemble mean values, and the mean RMSE
between the exact solution and estimated mean values from the UQ model for D using the
testing sample in Example 3.4.2. The STD of the RMSE is given in the brackets.
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Figure 3.15: Mean correlation between the relative RMSE and estimated STD values from the
UQ model while increasing the number of DBSDE runs to train the model from 10% to 100%
of M train for D using the testing sample in Example 3.4.2. The STD of the correlation is given
in the shaded area.

our UQ model can serve as highly accurate initializers for
(
Y ∆,θ̂
0 , Z∆,θ̂

0

)
in the DBSDE algorithm

also in high dimensions.

3.4.3.3 The LaDBSDE scheme for the Burgers type example

We now demonstrate that the proposed UQ model can be applied to other deep learning-based
BSDE schemes, specifically the LaDBSDE scheme [60]. As application, we select the Burgers
type BSDE, due to its nonlinearity and higher dimensionality. We choose the hyperparameters
for the LaDBSDE scheme similarly to those used in the DBSDE scheme. More precisely, we
consider K = 30000, α = 1e−3, B = 128, η = 10 + d, L = 4, and ϱ(x) = tanh(x). Batch
normalization is applied after each matrix multiplication and before activation functions. The
Adam optimizer is used as an SGD-type algorithm. Using BSDE parameter set x as outlined
in Table 3.6, we apply the LaDBSDE scheme and collect the corresponding approximation of
Y0(x) and Z0(x). To distinguish this dataset from the one generated by the DBSDE scheme, we
denote it as Ď.

We split the dataset Ď into Ďy and Ďz to train and test the UQ model for Y0 and Z0, respectively.
Using a validation sample of 256, the fine-tuned hyperparameters of the UQ model for Y0 are:
By = 32, λy = 3e−3, and a PC-LR approach with αy ∈ {1e−3, 3e−4, 1e−4, 3e−5, 1e−5} and
epy = 1000 for αy = 1e−3 and epy = 100 for the other learning rates. For Z1

0 , we have B
z = 128,

λz = 1e−2, and a PC-LR approach with αz = αy and epz = 1000 for αz = 1e−3 and epz = 500
for the other learning rates. In Figure 3.16, we display the correlation between the relative
RMSE and ensemble STD values ρ (log(ϵ̃r(x)), log(σ̃r(x))) for different LaDBSDE runs, the mean
correlation between the relative RMSE and estimated STD values ρ (log(ϵ̃r(x)), log(σ̂r(x))), and
their intersection. The relative estimated STD from the UQ model achieves the quality of the
relative ensemble STD calculated from Q = 6 runs of the LaDBDSE algorithm for Y0 and around
Q = 5 for Z1

0 (similar performance for other components of Z0). This demonstrates that the
UQ model can be applied to other deep learning-based BSDE schemes, which work in a similar
manner to the DBSDE scheme. The computational cost to train the UQ model in the case of
the LaDBSDE scheme is shown in Figure 3.17. We can draw the same conclusions as for the
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Figure 3.16: Correlation between the relative RMSE and ensemble STD values for different
LaDBSDE runs, and the mean correlation between the relative RMSE and estimated STD
values from the UQ model (STD of correlation given in the shaded area) for Ď using the testing
sample in Example 3.4.2. The black dot defines their intersection.
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Figure 3.17: Mean correlation between the relative RMSE and estimated STD values from the
UQ model while increasing the number of LaDBSDE runs from 10% to 100% of M train for Ď
using the testing sample in Example 3.4.2. The STD of the correlation is given in the shaded
area.

DBSDE scheme from the results obtained in this case.

In Table 3.10, we present the RMSE between the exact solution and ensemble mean values
RMSE (Y0(x), µ̃

y(x)), as well as the mean RMSE between the exact solution and estimated
mean values RMSE (Y0(x), µ̂

y(x)) for Y0 (similar for Z1
0 ). These values are very close. The

same conclusion can be drawn for Z1
0 . This indicates that our UQ model can also provide highly

accurate approximations of the mean of the approximate solution for the LaDBSDE scheme.
Moreover, the RMSE values are smaller than those in Table 3.9 for Y0 and Z1

0 . Hence, our UQ
model can identify on average the improved approximations provided by the LaDBSDE scheme
compared to the DBSDE scheme.
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UQ approach Metric Dataset Ď

Ensemble for Y0 RMSE (Y0(x), µ̃
y(x)) 1.32e−03

UQ model for Y0 RMSE (Y0(x), µ̂
y(x)) 1.11e−03 (1.93e−05)

Ensemble for Z1
0 RMSE

(
Z1

0 (x), µ̃
z1(x)

)
1.35e−03

UQ model for Z1
0 RMSE

(
Z1

0 (x), µ̂
z1(x)

)
1.14e−03 (7.65e−05)

Table 3.10: RMSE between the exact solution and ensemble mean values, and the mean RMSE
between the exact solution and estimated mean values from the UQ model for Ď using the
testing sample in Example 3.4.2. The STD of the RMSE is given in the brackets.

3.4.4 Practical implications of the UQ model

In this section, we study what sources of uncertainty can be captured by our UQ model and we
demonstrate its applicability to downstream tasks.

We start by analyzing the sources of uncertainty that our UQ model can effectively capture. It
can be expected that the estimated STD captures uncertainty due to the optimization heuristic
as well as the uncertainty due to data sampling. The reason is that each training of the DBSDE
scheme provides a slightly different solution, which is therefore reflected by the training dataset
of the UQ model. The differences in the solutions are caused by: 1) The random initialization of
the parameters θ of the DNNs in the DBSDE scheme, which leads to different gradient descent
iterations. 2) The sampling from the distribution of Brownian motion increments in the DBSDE
scheme, which also leads to different gradient approximations. However, it is less clear about the
uncertainty stemming from the discretization error, as it might bias the approximations provided
by the DBSDE scheme. To illustrate the behavior of the relative RMSE, ensemble STD, and es-
timated STD values across varying ∆t values, we display these measures in Figure 3.18 using the
testing data in dataset D from Example 3.4.2. Note that in this section we use only the relative
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(b) Dataset Dz.

Figure 3.18: Relative RMSE, ensemble STD and estimated STD values from the UQ model for
increasing value of ∆t for D using the testing sample in Example 3.4.2.

estimated STD from the first trained UQ model (out of our ensemble of 10 models considered
before for evaluation). As ∆t decreases, the bias from the discretization error decreases, and the
relative estimated STD improves in approximating the relative RMSE. For larger values of ∆t,
the bias grows, but the STD also increases. Therefore, the trend of the STD remains consistent
with the RMSE, indicating that the relative estimated STD remains reasonable across differ-
ent values of ∆t for approximating the relative RMSE. The same is observed for the relative
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ensemble STD. To measure the strength and direction of the monotonic relationship between
the relative RMSE and estimated STD values across ∆t values, we consider Spearman’s rank
correlation (ς). This metric is calculated as

ς (ϵ̃r(x), σ̂r(x)) := 1−
6
∑Mtest

i=1 rank(ϵ̃r(x))i − rank(σ̂r(x))i

M test
(
(M test)2 − 1

) ,

where, e.g. rank(ϵ̃r(x))i is the assigned rank to ϵ̃r(xi). Note that ς (ϵ̃r(x), σ̃r(x)) is calculated
similarly. The rank correlation values are displayed in Table 3.11. The high positive rank corre-

UQ approach Rank correlation Dataset D
Ensemble for Y0 ς (ϵ̃y,r(x), σ̃y,r(x)) 0.9282

UQ model for Y0 ς (ϵ̃y,r(x), σ̂y,r
1 (x)) 0.6977

Ensemble for Z1
0 ς (ϵ̃z1,r(x), σ̃z1,r(x)) 0.9780

UQ model for Z1
0 ς (ϵ̃z1,r(x), σ̂z1,r

1 (x)) 0.9608

Table 3.11: Rank correlation between the relative RMSE, ensemble STD, and estimated STD
values for D using the testing sample in Example 3.4.2.

lation values indicate that the relative estimated STD from our UQ model can reflect multiple
sources of uncertainty, including the uncertainty caused by the discretization error.

Next, we aim to determine whether our UQ model can detect the enhanced performance of
the LaDBSDE scheme over the DBSDE scheme for each BSDE parameter set, rather than just
considering the average performance as shown before. For this purpose, the accuracy score (acc)
for the testing sample of datasets D and Ď of Example 3.4.2 is considered. We define binary
labels to calculate it. For the relative RMSE, we consider

ℓrϵ̃(xi) :=

{
1 if ϵ̃r,LaDBSDE(xi) < ϵ̃r,DBSDE(xi),
0 otherwise,

for the BSDE parameter set xi. Similarly, we define binary labels ℓrσ̃(x) and ℓrσ̂(xi) for the
relative ensemble STD and estimated STD, respectively. The accuracy score between the labels
of the relative RMSE and estimated STD values represents the number of BSDE parameter sets
in which the smallest relative RMSE and estimated STD values are achieved from the same
scheme, divided by the total number of BSDE parameter sets, i.e.

acc (ℓrϵ̃(x), ℓ
r
σ̂(x)) :=

1

M test

Mtest∑
i=1

1ℓrϵ̃ (xi)=ℓrσ̂(xi).

Similarly, we calculate the accuracy score between the labels of relative RMSE and ensemble STD
values acc (ℓrϵ̃(x), ℓ

r
σ̃(x)) and report them in Table 3.12. The accuracy score of almost 1 for Z1

0

UQ approach Accuracy score Datasets D and Ď
Ensemble for Y0 acc (ℓy,rϵ̃ (x), ℓy,rσ̃ (x)) 0.9023

UQ model for Y0 acc
(
ℓy,rϵ̃ (x), ℓy,rσ̂1

(x)
)

0.8008

Ensemble for Z1
0 acc (ℓz1,rϵ̃ (x), ℓz1,rσ̃ (x)) 0.9922

UQ model for Z1
0 acc

(
ℓz1,rϵ̃ (x), ℓz1,rσ̂1

(x)
)

0.9922

Table 3.12: Accuracy score between the binary labels of the relative RMSE, ensemble STD, and
estimated STD values from D and Ď using the testing sample in Example 3.4.2.
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implies that the relative estimated STD from our UQ model illustrates enhanced performance
when comparing the DBSDE and LaDBSDE schemes across the entire testing sample. This
observation is valid only for 80% of the testing sample for Y0.

Moreover, as the RMSE increases due to propagated errors with increasing N (from a certain
value of N depending on the BSDE parameter set values), it is of interest to determine whether
the UQ model can identify the value of N at which the algorithm attains the smallest RMSE
based on the estimated STD. To investigate this, we generate a dataset DN similar to D in
Table 3.6 with a fixed maturity T = 0.3, and each sampled BSDE parameter set is solved for
N = {2, 8, 32, 128}. The dataset DN consists of 2560 BSDE parameter sets, resulting in a total
number of samples M = 10240. We choose M train = 8192 and Mvalid = M test = 1024. Note
that n = 2 since xi = (bi, N), N ∈ N. We use the same hyperparameters for the UQ model as
for dataset D and train only one model. To evaluate the accuracy score, we define the binary
multi-label

ℓrϵ̃(xi) :=


{1, 0, 0, 0} if N∗,r

ϵ̃ (xi) = 2,
{0, 1, 0, 0} if N∗,r

ϵ̃ (xi) = 8,
{0, 0, 1, 0} if N∗,r

ϵ̃ (xi) = 32,
{0, 0, 0, 1} if N∗,r

ϵ̃ (xi) = 128,

for the relative RMSE, where N∗,r
ϵ̃ (xi) := argminN∈N ϵ̃r(bi, N). The binary multi-labels for the

relative ensemble STD ℓrσ̃(xi) and estimated STD ℓrσ̂(xi) are defined similarly. The accuracy
score values between these multi-labels for the testing sample of DN are presented in Table 3.13.
We observe that the accuracy score values between the multi-labels of the relative RMSE and

UQ approach Accuracy score Dataset DN

Ensemble for Y0 acc (ℓy,rϵ̃ (x), ℓy,rσ̃ (x)) 0.6836

UQ model for Y0 acc
(
ℓy,rϵ̃ (x), ℓy,rσ̂1

(x)
)

0.3594

Ensemble for Z1
0 acc (ℓz1,rϵ̃ (x), ℓz1,rσ̃ (x)) 0.8008

UQ model for Z1
0 acc

(
ℓz1,rϵ̃ (x), ℓz1,rσ̂1

(x)
)

0.5313

Table 3.13: Accuracy score between the multi-labels of the relative RMSE, ensemble STD, and
estimated STD values from DN using the testing sample in Example 3.4.2.

estimated STD values acc (ℓrϵ̃(x), ℓ
r
σ̂(x)) are between 0.4 and 0.5. This indicates that the relative

estimated STD correctly predicted the value of N with the smallest relative RMSE for around
40% or 50% of the BSDE parameter sets in the testing sample.

The accuracy score serves as a restrictive metric, requiring each predicted label ℓrσ̃(x) or ℓ
r
σ̂(x)

to exactly match the true label ℓrϵ̃(x). Hence, it doesn’t tolerate partial errors. For instance, if
the N value with the smallest relative RMSE coincides with the one having the second smallest
relative estimated STD, the prediction is counted as incorrect. This rigid evaluation fails to
consider the order of predicted labels. For this purpose, we consider the mean reciprocal rank
metric (MRR), since there is only one relevant label per sample. It measures the effectiveness
of a model in ranking a list of predicted labels based on their relevance to the only true label. In
our case, the true label is N∗,r

ϵ̃ (x). The predicted ones are denoted by Nsort,r
σ̃ (x) and Nsort,r

σ̂ (x),
the ascending sorted N values for the BSDE parameter set x based on the value of relative

ensemble STD and estimated STD, respectively. Hence, MRR
(
N∗,r

ϵ̃ (x),Nsort,r
σ̂ (x)

)
is given by

MRR
(
N∗,r

ϵ̃ (x),Nsort,r
σ̂ (x)

)
:=

1

256

256∑
i=1

1

pos
(
N∗,r

ϵ̃ (xi),N
sort,r
σ̂ (xi)

) ,
where pos

(
N∗,r

ϵ̃ (xi),N
sort,r
σ̂ (xi)

)
gives the position where the true label N∗,r

ϵ̃ (xi) is found in the
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list of predicted labels Nsort,r
σ̂ (xi). The mean reciprocal rank values are reported in Table 3.14.

We observe that, on average, our UQ model can show that the smallest relative RMSE is achieved

UQ approach Mean reciprocal rank Dataset DN

Ensemble for Y0 MRR
(
N∗,y,r

ϵ̃ (x),Nsort,y,r
σ̃ (x)

)
0.8268

UQ model for Y0 MRR
(
N∗,y,r

ϵ̃ (x),Nsort,y,r
σ̂1

(x)
)

0.6149

Ensemble for Z1
0 MRR

(
N∗,z1,r

ϵ̃ (x),Nsort,z1,r
σ̃ (x)

)
0.8952

UQ model for Z1
0 MRR

(
N∗,z1,r

ϵ̃ (x),Nsort,z1,r
σ̂1

(x)
)

0.74584

Table 3.14: Mean reciprocal rank between the N value with the smallest relative RMSE and the
ascending sorted N values based on the relative ensemble STD and estimated STD values from
DN using the testing sample in Example 3.4.2.

for the N value of either the first or second smallest relative estimated STD.

3.5 Conclusions

In this chapter, we investigated the sources of uncertainty in the deep learning-based BSDE
schemes and develop a UQ model based on heteroscedastic nonlinear regression to estimate the
uncertainty. We applied the UQ model to the pioneering scheme developed in [22] and the one
in [60]. The STD of the approximate solution captures the uncertainty, which is usually esti-
mated by performing multiple runs of the algorithm with different datasets. This approach is
quite computationally expensive, especially in high-dimensional cases. Our UQ model estimates
the STD much cheaper, namely using a single run of the algorithm. Under the assumption of
normally distributed errors with zero mean and the STD depending on the parameter set of the
discretized BSDE, we employ a DNN to learn two functions that estimate the mean and STD
of the approximate solution. The DNN is trained using a dataset of i.i.d. samples, consisting of
various parameter sets of the discretized BSDE and their corresponding approximated solutions
from a single run of the algorithm. The network parameters are optimized by minimizing the neg-
ative ln-likelihood. The STD is thus estimated much cheaper. Furthermore, the estimated mean
can be leveraged to initialize the algorithm, improving the optimization process. Our numerical
results demonstrate that the proposed UQ model provides reliable estimates of the mean and
STD of the approximate solution for both considered schemes, even in high-dimensional cases.
The estimated STD captures various sources of uncertainty, showcasing its capability in quan-
tifying the uncertainty. Moreover, the UQ model illustrates the improved performance of the
LaDBSDE scheme compared to the DBSDE scheme based on the corresponding estimated STD
values. Finally, it can also identify the hyperparameters that yield a well-performing scheme.
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Chapter 4

Conclusions and outlook

In this thesis, we developed novel numerical schemes for solving high-dimensional nonlinear
BSDEs using differential and deep learning techniques, with a particular focus on applications
in finance. Additionally, we delved into UQ to assess the reliability of these methods before being
used in practice.

In Chapter 1, we reviewed contemporary deep learning BSDE schemes, categorizing them into
forward and backward types, with a focus on the disadvantages as discussed in the literature.
More specifically, the pioneering forward scheme [22] has been shown to suffer from two main
drawbacks: 1) It can get stuck in a poor local minima or even diverge for a complex solution
structure and a long terminal time. 2) It is capable in achieving much better approximation
at t = 0, although pathwise solution is approximated. The contemporary forward scheme [86]
can overcome only the second disadvantage. We showed numerically that even using RNN type
architectures in [86] – which are NN architectures specialized for learning long complex se-
quences – does not help the scheme to converge to a good local minima. To overcome these
limitations, we proposed a new forward scheme by reformulating the optimization problem. Our
scheme employs a loss function that minimizes local losses defined at each time step, iterating
the Euler-Maruyama discretization of integrals with the terminal condition. Through various
numerical experiments including pricing problems, we demonstrated that our approach outper-
forms existing forward deep learning schemes [22, 86] by not getting stuck in a poor local minima
and providing robust approximations across the entire time domain.

A common issue of deep learning BSDE schemes is their struggle to provide high-accurate
first- and second-order gradient approximations, which are critical for financial applications.
In Chapter 2, we addressed this by introducing a new class of schemes based on differential
deep learning. Motivated by the fact that differential deep learning can provide an efficient
approximation of the labels and their derivatives w.r.t. inputs, we reformulated the BSDE as
a differential deep learning problem by using Malliavin calculus. This transformation required
to estimate the solution, its gradient, and the Hessian matrix, represented by the triple of
processes (Y,Z,Γ) in the BSDE system. To approximate this solution triple, we discretized the
integrals within the system using the Euler-Maruyama method and parameterized their discrete
version using DNNs. Depending on how the network parameters are optimized – either local or
global optimization – we provided both backward and forward differential deep learning schemes.
We stared with the backward scheme, where the DNN parameters are iteratively optimized
backwardly at each time step by minimizing a differential learning type loss function, constructed
as a weighted sum of the dynamics of the discretized BSDE system. A convergence analysis is
performed to validate the accuracy and reliability of the proposed algorithm. In case of the
forward scheme, only the algorithm is presented. The network parameters here are optimized

101



by globally minimizing a differential learning loss function, defined as a weighted sum of the
dynamics of the discretized BSDE system that incorporate local loss functions. The proficiency of
our new backward algorithm in terms of accuracy is demonstrated through numerous numerical
experiments involving pricing and hedging nonlinear options in high dimensions. The proposed
methods show potential for application in pricing and hedging financial derivatives in high-
dimensional settings.

In Chapter 3, we explored the uncertainties inherent in deep learning BSDE schemes and pro-
posed a UQmodel leveraging heteroscedastic nonlinear regression to quantify these uncertainties.
We applied the model to the pioneering scheme [22] as well as the approach presented in [60].
Traditionally, uncertainty is addressed by calculating the STD of approximate solutions through
multiple runs of the algorithm on varying datasets – a process that becomes very computation-
ally expensive in high-dimensional scenarios. In contrast, our UQ model efficiently estimates the
STD using only a single algorithm run. Assuming normally distributed errors with zero mean
and a parameter-dependent STD, we employed a DNN to estimate both the mean and STD
of the approximate solution. The network is trained on i.i.d. samples, where each sample com-
prised parameter sets of the discretized BSDE and their corresponding approximate solutions
from a single run. By minimizing the negative ln-likelihood, the DNN parameters are optimized,
enabling efficient estimation of the STD. Additionally, the estimated mean can be utilized to ini-
tialize the algorithm, enhancing its optimization process. Numerical experiments demonstrated
that the proposed UQ model reliably estimated the mean and STD for both schemes, even in
high-dimensional cases. The estimated STD effectively captured various uncertainty sources,
highlighting the model’s robustness in quantifying uncertainty. Furthermore, the results illus-
trated the superior performance of [60] over [22], as indicated by the STD estimates. The UQ
model also proved useful in identifying optimal hyperparameters for achieving a good-performing
scheme.

This thesis covers a few existing and novel algorithms for solving high-dimensional BSDEs, and
provides the first development of a UQ model for these schemes. However, several areas require
further investigation. Future research directions, as outlined in the chapters, include conducting
an error analysis of the scheme presented in Chapter 1, the forward one in Chapter 2, and
addressing out-of-distribution data for the UQ model as suggested in Chapter 3. An intriguing
open question concerns the assumptions about the boundedness of the Malliavin derivatives in
Chapter 2, particularly where the Malliavin derivative of the diffusion term is assumed to be
bounded in the forward SDE. For more general diffusion terms, advanced techniques, such as
the truncation technique mentioned in [14], would be necessary. Additionally, exploring other
option pricing and hedging problems, such as American type options, would require considering
reflected BSDEs (RBSDEs). This presents further challenges, as adopting the developed schemes
to RBSDEs requires approximating an additional process. It is called the reflecting process, which
keep the solution Yt of the BSDE going below the barrier g(Xt), namely the American option
price should not go below the payoff at time t. Moreover, extra terms in the loss function would
be needed to enforce this constraint. This becomes even more complex and interesting when
considering differential deep learning schemes, where the Malliavin derivative of the reflecting
process must be taken into account.
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Appendix A

Impact of the sources of uncertainty
for the Burgers type BSDE

In this section, we visualize the effect of different errors on the RMSE for Example 3.4.2. The
impact of the optimization error is shown in Figure A.1 using C-LR and PC-LR approaches.
For the discretization error, see Figure A.2. The effect of the optimization error and propagated
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Figure A.1: RMSE values are plotted for Example 3.4.2 using different learning rate approaches,
where T = 0.25 and b = 25.

errors over time are displayed in Figure A.3.
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Figure A.2: RMSE values are plotted for Example 3.4.2 using N ∈ {2, 8, 32, 128, 256, 512, 1024},
where T = 0.25 and b = 25.
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(a) RMSE values and the absolute error for each
of Q = 10 DBSDE runs for Y0 with N = 32.
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(b) RMSE values and the absolute error for each
of Q = 10 DBSDE runs for Y0 with N = 1024.
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Figure A.3: RMSE values and the absolute errors from each of Q = 10 DBSDE runs are plotted
for Example 3.4.2 using N ∈ {32, 1024}, where T = 0.25 and b = 25.
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Appendix B

Normality assumption of the error
distribution

In this section, we conduct a test to assess the normality of the error distribution in (3.10) for
Example 3.4.1. For the parameter values T = 0.33,K = 100, S0 = 100, a = 0.05, b = 0.2, R =
0.03 and δ = 0, the exact solution is (Y0, Z0) = (5.0679, 11.1420). Using N = 16, K = 30000,
α = 1e−2 and conducting Q = 1280 independent runs of the DBSDE algorithm, we display the
empirical distribution of the approximations in Figure B.1. The observed empirical distributions
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Figure B.1: Empirical distribution of the approximate solution (3.10) in Example 3.4.1 for pa-
rameter set T = 0.33,K = 100, S0 = 100, a = 0.05, b = 0.2, R = 0.03 and δ = 0. The curve
represents a fitted normal distribution to the data.

exhibit a Gaussian shape. To further assess the normality, we perform the Shapiro-Wilk [91] and
D’Agostino and Pearson’s [20] tests for the assessment of normality. The p-values obtained from
these tests are presented in Table B.1. With a significance level of 0.05, we conclude that there is

no evidence to reject the assumption of normal distribution for the approximate solutions Y ∆,θ̂
0

and Z∆,θ̂
0 .
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Shapiro-Wilk D’Agostino-Pearson

Y ∆,θ̂
0 0.2975 0.4794

Z∆,θ̂
0 0.3957 0.2435

Table B.1: p-value of the statistical tests in Example 3.4.1 for parameter set T = 0.33,K =
100, S0 = 100, a = 0.05, b = 0.2, R = 0.03 and δ = 0.
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M. Würschmidt, Convergence Rates for a Deep Learning Algorithm for Semilinear
PDEs, Available at SSRN, (2021), https://ssrn.com/abstract=3981933.

111

https://arxiv.org/abs/2204.05796
https://arxiv.org/abs/2204.05796
https://proceedings.neurips.cc/paper_files/paper/2018/file/7180cffd6a8e829dacfc2a31b3f72ece-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/7180cffd6a8e829dacfc2a31b3f72ece-Paper.pdf
https://doi.org/10.3934/puqr.2021019
https://doi.org/10.3934/puqr.2021019
https://doi.org/10.1007/978-3-031-11818-0_10
https://doi.org/10.1007/978-3-031-11818-0_10
https://doi.org/10.1186/s13362-021-00118-3
https://doi.org/10.1186/s13362-021-00118-3
https://arxiv.org/abs/2404.08456
https://arxiv.org/abs/2404.08456
https://doi.org/10.3934/dcdsb.2023151
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2024053491
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2024053491
https://doi.org/10.1111/1467-9965.00022
https://doi.org/10.1111/1467-9965.00022
https://proceedings.neurips.cc/paper_files/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-662-12616-5
https://ssrn.com/abstract=3981933


[67] S. Kremsner, A. Steinicke, and M. Szölgyenyi, A Deep Neural Network Algorithm
for Semilinear Elliptic PDEs with Applications in Insurance Mathematics, Risks, 8 (2020),
p. 136, https://doi.org/10.3390/risks8040136.

[68] M. A. Kupinski, J. W. Hoppin, E. Clarkson, and H. H. Barrett, Ideal-observer
computation in medical imaging with use of Markov-chain Monte Carlo techniques, J. Opt.
Soc. Am. A, 20 (2003), pp. 430–438, https://doi.org/10.1364/JOSAA.20.000430.

[69] C. Labart and J. Lelong, A Parallel Algorithm for solving BSDEs-Application to the
pricing and hedging of American options, 2011, https://arxiv.org/abs/1102.4666v1.

[70] B. Lakshminarayanan, A. Pritzel, and C. Blundell, Simple and scalable
predictive uncertainty estimation using deep ensembles, Adv. Neural Inf. Process.
Syst., 30 (2017), https://proceedings.neurips.cc/paper_files/paper/2017/file/

9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf.

[71] W. Lefebvre, G. Loeper, and H. Pham, Differential learning methods for solving
fully nonlinear PDEs, Digit. Finance, 5 (2023), pp. 183–229, https://doi.org/10.1007/
s42521-023-00077-x.

[72] J.-P. Lemor, E. Gobet, and X. Warin, Rate of convergence of an empirical regres-
sion method for solving generalized backward stochastic differential equations, Bernoulli,
12 (2006), pp. 889–916, https://doi.org/10.3150/bj/1161614951.

[73] J. Liang, Z. Xu, and P. Li, Deep learning-based least squares forward-backward stochas-
tic differential equation solver for high-dimensional derivative pricing, Quant. Finance, 21
(2021), pp. 1309–1323, https://doi.org/10.1080/14697688.2021.1881149.

[74] J. Ma, J. Shen, and Y. Zhao, On Numerical Approximations of Forward-Backward
Stochastic Differential Equations, SIAM J. Numer. Anal., 46 (2008), pp. 2636–2661, https:
//doi.org/10.1137/06067393x.

[75] A. Mobiny, P. Yuan, S. K. Moulik, N. Garg, C. C. Wu, and H. V. Nguyen,
Dropconnect is effective in modeling uncertainty of bayesian deep networks, Sci. Rep., 11
(2021), p. 5458, https://doi.org/10.1038/s41598-021-84854-x.

[76] B. Negyesi, K. Andersson, and C. W. Oosterlee, The One Step Malliavin scheme:
new discretization of BSDEs implemented with deep learning regressions, IMA J. Numer.
Anal., (2024), p. drad092, https://doi.org/10.1093/imanum/drad092.

[77] B. Negyesi, Z. Huang, and C. W. Oosterlee, Generalized convergence of the deep
BSDE method: a step towards fully-coupled FBSDEs and applications in stochastic control,
2024, https://arxiv.org/abs/2403.18552.

[78] D. A. Nix and A. S. Weigend, Estimating the mean and variance of the target proba-
bility distribution, in Proceedings of 1994 IEEE International Conference on Neural Net-
works (ICNN’94), vol. 1, IEEE, 1994, pp. 55–60, https://doi.org/10.1109/ICNN.1994.
374138.

[79] D. Nualart, The Malliavin Calculus and Related Topics, vol. 1995, Springer, 2006,
https://doi.org/10.1007/3-540-28329-3.

[80] P. Oberdiek, G. Fink, and M. Rottmann, UQGAN: A Unified Model for Uncertainty
Quantification of Deep Classifiers trained via Conditional GANs, Adv. Neural Inf. Process.
Syst., 35 (2022), pp. 21371–21385, https://proceedings.neurips.cc/paper_files/

paper/2022/file/8648e249887ccb0fe8c067d596e35b40-Paper-Conference.pdf.

112

https://doi.org/10.3390/risks8040136
https://doi.org/10.1364/JOSAA.20.000430
https://arxiv.org/abs/1102.4666v1
https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://doi.org/10.1007/s42521-023-00077-x
https://doi.org/10.1007/s42521-023-00077-x
https://doi.org/10.3150/bj/1161614951
https://doi.org/10.1080/14697688.2021.1881149
https://doi.org/10.1137/06067393x
https://doi.org/10.1137/06067393x
https://doi.org/10.1038/s41598-021-84854-x
https://doi.org/10.1093/imanum/drad092
https://arxiv.org/abs/2403.18552
https://doi.org/10.1109/ICNN.1994.374138
https://doi.org/10.1109/ICNN.1994.374138
https://doi.org/10.1007/3-540-28329-3
https://proceedings.neurips.cc/paper_files/paper/2022/file/8648e249887ccb0fe8c067d596e35b40-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8648e249887ccb0fe8c067d596e35b40-Paper-Conference.pdf


[81] P. Oberdiek, M. Rottmann, and H. Gottschalk, Classification uncertainty of deep
neural networks based on gradient information, in L. Pancioni, F. Schwenker, E. Trentin
(eds) Artificial Neural Networks in Pattern Recognition. ANNPR 2018. Lecture Notes
in Computer Science(), vol. 11081, Springer, Cham, 2018, https://doi.org/10.1007/
978-3-319-99978-4_9.

[82] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dil-
lon, B. Lakshminarayanan, and J. Snoek, Can you trust your model’s uncer-
tainty? Evaluating predictive uncertainty under dataset shift, Adv. Neural Inf. Process.
Syst., 32 (2019), https://proceedings.neurips.cc/paper_files/paper/2019/file/

8558cb408c1d76621371888657d2eb1d-Paper.pdf.

[83] E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation,
Syst. Control. Lett., 14 (1990), pp. 55–61, https://doi.org/10.1016/0167-6911(90)
90082-6.

[84] M. Pereira, Z. Wang, I. Exarchos, and E. A. Theodorou, Learning Deep Stochas-
tic Optimal Control Policies using Forward-Backward SDEs, 2021, https://arxiv.org/
abs/1902.03986.

[85] H. Pham, X. Warin, and M. Germain, Neural networks-based backward scheme for
fully nonlinear PDEs, SN Partial Differ. Equ. Appl., 2 (2021), https://doi.org/10.
1007/s42985-020-00062-8.

[86] M. Raissi, Forward–backward stochastic neural networks: deep learning of high-
dimensional partial differential equations, in Peter Carr Gedenkschrift: Research Advances
in Mathematical Finance, World Scientific, 2024, pp. 637–655, https://doi.org/10.

1142/9789811280306_0018.

[87] M. Ruijter and C. Oosterlee, Numerical Fourier method and second-order Taylor
scheme for backward SDEs in finance, Appl. Numer. Math., 103 (2016), pp. 1–26, https:
//doi.org/10.1016/j.apnum.2015.12.003.

[88] M. J. Ruijter and C. W. Oosterlee, A Fourier Cosine Method for an Efficient
Computation of Solutions to BSDEs, SIAM J. Sci. Comput., 37 (2015), pp. A859–A889,
https://doi.org/10.1137/130913183.

[89] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by
back-propagating errors, Nature, 323 (1986), pp. 533–536, https://doi.org/10.1038/
323533a0.
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