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1 Preface

Ich betrachte es aber als durchaus

möglich, dass die Physik nicht auf dem

Feldbegriff begründet werden kann, d.h.

auf kontinuierlichen Gebilden.

Albert Einstein [1]

1.1 Introduction

Modern particle physics experiments have reached an unprecedented level of precision. For example, the

fine-structure constant of quantum electrodynamics (QED) has been measured through the recoil velocity of a

Rubidium isotope after an atomic transition to a precision of one part in a billion [2]. Even more remarkably,

the magnetic moment of the electron is known to a precision of one part in ten trillion [3]. However, the most

widely discussed high-precision experiment today is the gµ −2 experiment at Fermilab [4–9]. Such experiments

are vital for testing the Standard Model of particle physics.

The Standard Model is a highly developed quantum field theory (QFT) that describes three of the four

fundamental forces in nature: electromagnetic, weak, and strong interactions. Gravity remains beyond its

scope. Developed during the second half of the 20th century [10], the model was solidified by the confirmation

of the quark model [11] and validated through major experimental discoveries, including the top quark

(1995) [12], the τ neutrino (2000) [13], and the Higgs boson (2012) [14].

Despite its many successes, the Standard Model is not believed to be a complete theory. Not only does it

omit gravity, but it also contains internal inconsistencies, such as the Landau pole in QED [15], where the

energy-dependent coupling constant diverges at very high energies. This indicates that the Standard Model is

only an effective theory valid at low to intermediate energies.

High-precision experiments allow us to probe the limits of the Standard Model and search for signs of

beyond-the-standard-model (BSM) physics. To interpret these experiments, we also need precise theoretical

predictions. Calculations within the Standard Model are highly complex. While QED and weak interactions

can be computed perturbatively using a series expansion in terms of a small coupling constant [16], this

approach fails for low-energy strong interactions due to non-convergence.

In 1974, to address this issue, Kenneth Wilson proposed the idea of introducing a hard ultraviolet (UV)

cutoff through lattice regularization [17]. This technique replaces continuous spacetime with a discrete four

dimensional grid with spacing a, reducing the number of degrees of freedom and making computations

tractable in the strong-coupling limit. One of the most significant advantages of lattice discretization is

that it renders the theory finite in volume, making it amenable to numerical evaluation via Monte Carlo

methods [18].

Today, lattice calculations are approaching the precision of experimental measurements [19, 20]. To achieve

this, sophisticated computational techniques and the use of high-performance computing resources are

required. Over the past decade, simulations have begun utilizing GPUs [21–23], and more recently, quantum

computing [24] and machine learning approaches [25].

With these powerful methods, the lattice physics community provides increasingly accurate predictions that

can be directly compared with experimental data. This thesis presents my contributions to this rapidly

evolving and exciting field.

3



Preface
Overview of the Thesis

1.2 Overview of the Thesis

The first part of this thesis outlines the theoretical foundations underlying lattice field theory. It summarizes

the pioneering work of previous generations of physicists who laid the groundwork for modern lattice

formulations. The basics of quantum field theory and lattice gauge theory are discussed, along with the

numerical and analytical methods used for data analysis.

The second part applies these methods to high-precision QCD studies relevant to tests of the Standard

Model. Here, I present my own contributions to the field of lattice gauge theory. These contributions fall into

three main categories:

• Precise determination of the gradient flow scales w0 and t0, employing multiple methodologies.

These determinations achieve a level of precision that, to date, has not been reached in the literature. In

particular, the w0 scale plays a key role in our high-precision determination of the anomalous magnetic

moment of the muon [20]:

A. Boccaletti et al. (Budapest-Marseille-Wuppertal), High precision calculation of the hadronic vacuum

polarisation contribution to the muon anomaly, arXiv:2407.10913.

• High-precision determination of the ratio of kaon to pion decay constants, fK/fπ, which

provides a sensitive test of CKM matrix unitarity. The precision achieved in this work also surpasses

that of previous determinations. The results are to be published as [26]:

Fabian J. Frech et al. (Budapest-Marseille-Wuppertal), Determination of fK/fπ from 2+1+1 flavor

4-stout staggered lattices.

• Studies of tail contributions to the muon g−2, presented at the LATTICE2023 and LATTICE2024

conferences and published in the corresponding proceedings:

Fabian J. Frech et al. (Budapest-Marseille-Wuppertal), The mixing of two-pion and vector-meson

states using staggered fermions, PoS LATTICE2023 (2024) 251, [arXiv:2401.00514].

Fabian J. Frech et al. (Budapest-Marseille-Wuppertal), Reconstruction of the vector meson propagator

using a generalized eigenvalue problem, PoS LATTICE2024 (2025) 251, [arXiv:2501.19186].

1.3 Units and Conventions

In this thesis, flat spacetime is used, as is customary in particle physics, with the mostly negative metric

signature:

gµν = ηµν =

⎛⎜⎜⎜⎜⎜⎝

1

−1

−1

−1

⎞⎟⎟⎟⎟⎟⎠
(1.1)

Throughout this work, natural units are employed, meaning that the speed of light c, the Boltzmann constant

kB, the vacuum permittivity ǫ0 and the reduced Planck constant ~ are all set to unity. In principle, the

gravitational constant G would also be set to one in such a system, however, it does not appear in this thesis.

In some sections, lattice units are used, where the lattice spacing a is set to 1.
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Part I

Theoretical Foundations





2 Discretization of Quantum Field Theo-

ries

Quantum Field Theory (QFT) is the standard framework for describing modern particle physics. Compared

to ordinary quantum mechanics, where operators and states depend only on time, in QFT they depend on all

spacetime coordinates. In this sense, quantum mechanics can be interpreted as a (0 + 1) dimensional QFT.

Unlike classical field theory, which deals with real- or complex-valued fields, QFT involves operator-valued

fields. Most QFTs require Lorentz invariance, which is especially necessary when describing particles whose

momenta are large compared to their masses [27–29].

2.1 Classical Scalar and Vector Fields

Classical fields ϕ(x⃗, t) are typically real or complex-valued functions defined over spacetime, with wide-

ranging applications in cosmology [30], classical electrodynamics [31], and continuum mechanics [32]. The

most fundamental classical field theories are often used in their quantized form in modern particle physics [16,

33, 34].

2.1.1 Action and Lagrangian

The Hamiltonian principle states that a classical field ϕj extremizes the action S[ϕj(x), ∂µϕj(x)]. The index

j denotes different field components, such as spin, flavor, or vector direction, and x represents the spacetime

coordinates. The action is a functional given by the integral of the Lagrangian density L(ϕj , ∂µϕ
j) over all

spacetime. A necessary condition for minimizing the action is:

δS[ϕj , ∂µϕ
j]

δϕi(x) = 0, (2.1)

where δ/δϕ(x) denotes the functional derivative. Assuming that ϕ vanishes at the boundary of R3+1, one can

derive the Euler-Lagrange equations:

∂µ
∂L

∂(∂µϕj) − ∂L

∂ϕj
= 0. (2.2)

Noether’s Theorem

Noether’s theorem describes the relationship between a symmetry transformation and a conservation law [16,

29]. The infinitesimal version of a continuous transformation is given by

ϕ→ ϕ′ = ϕ + εδϕ, (2.3)

where ǫ is infinitesimal and δϕ is some deformation of the field. This transformation leaves a theory invariant

whenever the corresponding Lagrange density only changes by the four gradient of some current Jµ. The

corresponding conservation law states that the vector current is conserved:

∂µj
µ
= 0 with jµ =

∂L

∂(∂µϕ)δϕ − Jµ. (2.4)
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2.1.2 The Klein-Gordon theory

The simplest scalar field theory that is consistent with special relativity is the Klein-Gordon theory [16, 28,

29]. It is motivated by the relativistic energy-momentum-mass relation:

E2
= p⃗2 +m2 (2.5)

Using the well-known quantum mechanics substitutions

E → i∂t, (2.6)

p⃗→ −i∇⃗, (2.7)

and the application on a real- or complex-valued wave function φ(t, x⃗) we get the Lorentz-covariant wave-

equation

(∂µ∂µ +m2)φ(xµ) = 0. (2.8)

Elementary solutions of this equation are given by

φ±
k⃗
(xµ) = A±

k⃗
e±ikµx

µ ∣
k0=

√
k⃗2
+m2

, (2.9)

and using Fourier transformation the most-general solution can be represented in the following way:

φ(xµ) = ∑
σ∈{+,−}

∫ d4kAσ

k⃗
eiσkµx

µ

δ (k0 + σ√m2 + k⃗2) (2.10)

2.1.3 The Dirac theory

While the Klein-Gordon theory uses a second order differential equation to describe fields that fulfill the

relativistic energy-momentum relation, the Dirac theory is a first order differential equation to describe fields

that fulfill the relativistic energy-momentum relation [16, 27]. The Dirac equation is given by

(i /∂ −m)ψ = 0, (2.11)

where we use the Feynman-slash notation

/q = γµqµ (2.12)

and γµ represents a set of matrices fulfilling the condition

{γµ, γν} = 2ηµν , (2.13)

with the metric tensor ηµν = diag{1,−1,−1,−1}µν . It can be shown that these γ-matrices are at least four

dimensional [29]. The Dirac equation is often called the root of the Klein-Gordon equation due to the identity

(−i /∂ −m)(i /∂ +m) = −(∂µ∂µ +m2). (2.14)

From this, it can be concluded that each component of every solution of the Dirac equation is a solution of

the Klein-Gordon equation. It can be shown that real- or complex-valued Dirac fields ψ and ψ̄ can lead to

contradictions like the issue that the Hamiltonian is not bound from below [29]. This can be solved by taking
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Grassmann-valued fields instead [35] (see Appendix 12.4).

2.2 Path Integral Quantization

There are several ways to quantize field theories but Path Integral Quantization is particularly suited for

quantizing fields on the lattice.

2.2.1 Hamiltonian version of the path integral

To perform the Path Integral Quantization we start with the canonical commutation relations that are known

from quantum mechanics [36]:

[Qa, Pb] = iδab, [Qa,Qb] = [Pa, Pb] = 0 (2.15)

for a set of operators {Qa}a with the corresponding conjugate momentum operators {Pa}a. Here, the index a

describes the position1 and internal (spinor-, flavor-, color- etc.) degrees of freedom of the quantum field [34].

As the spatial degrees of freedom are continuous and integrated instead of summed over, the Kronecker delta

in Equation (2.15) has to be replaced by the Dirac distribution.

All operators Qa commute with each other so there has to be a system of common eigenstates ∣q⟩ with the

corresponding eigenvalues qa. The eigenvectors can be chosen orthogonally and normalized, such that they

fulfill the conditions

⟨q′∣q⟩ = δ(q′ − q), ✶ = ⨋ dqa ∣q⟩ ⟨q∣ (2.16)

where ⨋ denotes integration over spatial coordinates and summation over discrete indices. The same

construction can be done for the canonical momenta. The scalar product of the eigenstates can be computed

similar to how it is done in quantum mechanics as

⟨q∣p⟩ =∏
a

exp(ipaqa)√
2π

. (2.17)

Up to this point we worked at a fixed time-slice. Next we want to describe the time-evolution of the operators

in the Heisenberg picture:

Qa(t) = exp(iHt)Qa exp(−iHt) (2.18)

Pa(t) = exp(iHt)Pa exp(−iHt) (2.19)

Here, H is the Hamilton operator of the system. The new operators Qa(t) and Pa(t) have the eigenvectors∣q, t⟩ resp. ∣p, t⟩ with the eigenvalues qa and pa. These eigenstates are related to the eigenstates of Qa and Pa

by

∣q, t⟩ = exp(iHt) ∣q⟩ and ∣p, t⟩ = exp(iHt) ∣p⟩ . (2.20)

These time-dependent states are not the time-evolution of the eigenstates ∣q⟩ and ∣p⟩ (in this case there would

be a minus-sign in the exponent of the time-evolution operator), but the eigenvectors of the time-evolved

operators. At a given time-slice t, these states fulfill the relations from Equation (2.16) and Equation (2.17).

The expression ⟨q′, t′∣q, t⟩ describes the probability amplitude of the process going from state ∣q⟩ to state ∣q′⟩
in the time from t to t′. To compute this expression we start by assuming that the time difference of t and t′

1Since we work in the Schrödinger picture, there is no time-dependence in the operators.
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is infinitesimal:

⟨q′, t + dt∣q, t⟩ = ⟨q′, t∣ exp(−iHdt) ∣q, t⟩
= ∫ (∏

a

dpa) ⟨q′, t∣ exp(−iH(Q(t), P (t))dt) ∣p, t⟩ ⟨p, t∣q, t⟩
= ∫ (∏

a

dpa) ⟨q′, t∣ exp(−iH(q(t), p(t))dt) ∣p, t⟩ ⟨p, t∣q, t⟩
= ∫ (∏

a

dpa) exp [−iH(q′, p)dt + i⨋
a
(q′a − qa)pa] .

(2.21)

In the third step it is assumed that all momentum operators are moved to the right and all Q-operators are

moved to the left2. The momenta in the above equation are integrated over the whole range (−∞,∞). Now

let us split up the interval (t, t′) into N + 1 sub-intervals [t, t1], [t1, t2], ..., [tn, t′] of length dt. Now at each

tk (k = 1, ..., N) a complete set of states ∣q, tk⟩ is included.

⟨q′, t′∣q, t⟩ = ∫ ( N

∏
k=1

dqk) ⟨q′, t′∣qN , tN ⟩ ... ⟨q1, t1∣q, t⟩
= ∫ ( N

∏
k=1

dqk dpk

2π
) exp [i N

∑
k=1

((qk − qk−1) ⋅ pk−1 −H(qk, pk−1))dt]
(2.22)

Equation (2.22) is called the Path Integral Quantization of the transition amplitude. Here the indices a are

included implicitly. That means in particular that in the scalar products spatial variables are integrated out.

Not only transition amplitudes can be computed using the path integral but also matrix elements of generalized

operators F (P,Q) at times τ in the time-interval (t, t′):
⟨q′, t′∣F (Q(τ), P (τ)) ∣q, t⟩ = ∫ ( N

∏
k=1

dqk dpk

2π
)F (q(τ), p(τ)) exp [i N

∑
k=1

((qk − qk−1) ⋅ pk−1 −H(qk, pk−1))dt] ,
(2.23)

which results in the limit N →∞ in

∫ ( N

∏
k=1

dqk dpk

2π
)F (q(τ), p(τ)) exp [i∫ t′

t
dt̃ (q̇(t̃) ⋅ p(t̃) −H(q(t̃), p(t̃)))] . (2.24)

Finally we got an general expression for matrix elements in QFTs where we got rid of all operators [34].

2.2.2 Lagrangian version of the path integral

Since most commonly field theories are defined using their Lagrangian density, one wants to replace the

Hamilton function in Equation (2.23) by the corresponding Lagrange function. The following derivation is

similar to the one given in Section 9.3 of the QFT book by Weinberg [34].

In general, it can be assumed that the Hamilton function is polynomial of order two in the momenta and can

therefore be written as

H[Q,P ] = 1

2
Aab[Q]PaPb +B

a[Q]Pa +C[Q]. (2.25)

2This argument is taken from [34], nonetheless it is not taken care of the fact that exponentiating a sorted operator can
destroy the ordering. Luckily it can be derived from Trotter’s formula that unordered terms are of order dt2 [37]. In fact, this is
the reason why infinitesimal time intervals are considered.

10



Discretization of Quantum Field Theories
Quantum electrodynamics

So the exponent from Equation (2.24) is transformed to

−
1

2
∫ dτ dτ ′Aab

ττ ′[q]pa(τ)pb(τ ′) −∫ dτ Baτ pa[τ] − C[q], (2.26)

Aab
ττ ′[q] = Aab[q(τ)]δ(τ − τ ′), (2.27)

Baτ [q] = Ba[q(τ)] − q̇a[τ], (2.28)

C[q] = ∫ dτ C[q(τ)]. (2.29)

With the assumption that the operators whose matrix elements we want to compute do not depend on the

canonical momenta (which has shown to be the case in general), the momentum integration for the path

integral can be solved with common techniques to get the result

(det iA
2π
)−1/2 exp [− i

2
Aabξaξb − iB

aξa − iC] , (2.30)

where the ξ denote the stationary point of the exponent. This is given by the condition

q̇ =
δH

δp
∣
p=ξ

, (2.31)

that is known for being one of the Hamilton equations of motion. This can be used to interpret the integrand

in the exponent as a Legendre transformation to write the matrix elements in terms of the Lagrange function

⟨q′, t′∣F (Q(τ), P (τ)) ∣q′′, t′′⟩ = ∫ ( N

∏
k=1

dqk) ∣
q(t′′=q′′), q(t′)=q′

F (q(τ), p(τ)) exp [i∫ dtL[q(t), q̇(t)]] . (2.32)

The integral over the Lagrange function is called the action of the theory [34].

2.3 Quantum electrodynamics

Quantum electrodynamics (QED) is one of the most common QFTs. The fields that occur in this equation

are 2 ×Nf sets of Dirac spinor fields ψ̄f and ψf and a vector potential Aµ. Nf denotes the number of flavors

used in this theory, whose masses are given by mf . If one wants to describe only photons and electrons, Nf

can be set to one. Usually, it is defined via its Lagrange density

LQED
= −

1

4
FµνF

µν
+

Nf

∑
f=1

ψ̄f(i /D −mf)ψf , (2.33)

Fµν = ∂µAν − ∂νAµ, (2.34)

Dµ = ∂µ − ieAµ, (2.35)

where e denotes the coupling constant of this theory. The first term in this expression describes the propagation

of photons while the second term describes the propagation of fermions (zeroth order in e) and the electron

photon interaction. These are the three fundamental building blocks of QED, their respective Feynman

diagrams are shown in Figure 2.1. Setting up the Euler-Lagrange equations for the photon field Aµ, one

immediately gets the inhomogeneous Maxwell equation, while the equations of motion of the fermion fields

lead to the Dirac equation from Section 2.1.3.

Furthermore, QED is one of the most fundamental gauge theories. A gauge theory has a local symmetry

transformation Ω(x) that leaves the Lagrangian invariant. The co-domain of the gauge transformations is a

Lie group, called the gauge group. In QED, the gauge group is the one dimensional compact Lie group U(1).

11



Discretization of Quantum Field Theories
Quantum chromodynamics

γ e−

γ

e−

e−

Figure 2.1 The fundamental diagrams, which can be used to construct every interaction of QED. The photon
propagator is on the left, the fermion propagator is in the middle and on the right there is the only interaction
vertex of QED.

The fields are transformed according to

ψ(x)→ ψ′(x) = e−ieα(x)ψ(x), (2.36)

ψ̄(x)→ ψ̄′(x) = ψ̄(x)eieα(x), (2.37)

Aµ(x)→ A′µ(x) = Aµ(x) + e∂µα(x). (2.38)

where α(x) is a real-valued function that is at least C1 (differentiable). As for most functions in physics, it is

often assumed to be C∞ (infinitely many times differentiable).

2.4 Quantum chromodynamics

Quantum chromodynamics (QCD) is the standard theory used to describe the strong interaction within

the framework of the Standard Model, although other theoretical approaches to strong processes also exist,

especially in contexts beyond or effective to QCD [38]. Its overall structure is very similar to the one of

QED, but there are some crucial difficulties. First the fermion fields (called quark fields in this context)

have an additional color-index that can take values from one to three. The term “color” in this context does

not denote actual visual color, but is instead a conventional quantum label — introduced by analogy with

“flavor” — to distinguish between different types of fermions. The three components of the quark field are

related to the symmetry group, which has to be a subgroup of U(3) in order to leave the mass term invariant.

From experimental observations, it can be concluded that the subgroup in question must be SU(3) [39].

The transformation of the vector potential Aµ takes care of the invariance of the dynamical part of the

quarks under SU(3)-transformations. Every gauge-transformation Ω can be written as the exponential of an

anti-Hermitian 3 × 3-matrix:

Ω(x) = exp(−iαa(x)λa
2
) . (2.39)

The index a takes values from 1 to 8 and λa

2
is a normalized orthogonal basis of the vector space of Hermitian

and trace-less 3× 3-matrices su(3). λa are the Gell-Mann-matrices [40]. The gauge transformations for all the

fields appearing in QCD are given by

ψ(x)→ ψ′(x) = Ω(x)ψ(x), (2.40)

ψ̄(x)→ ψ̄′(x) = ψ̄(x)Ω†(x), (2.41)

Aµ(x)→ A′µ(x) = Ω(x)Aµ(x)Ω†(x) + (∂µΩ(x))Ω†(x). (2.42)
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g q

g

q

q

g

g

g

g

g

g

g

Figure 2.2 The fundamental diagrams, which can be used to construct every interaction of QCD. Compared to
QED, photons are replaced by gluons and the fermions are limited to quarks. In addition, there are self-interactions
of three or four gluons.

Figure 2.3 Experimental confirmation of the running of the strong coupling with respect to the energy scale [42].

The black lines are theoretical predictions for different values of the QCD energy scale Λ
(5)

MS
. This scale parameter,

defined within the modified minimal subtraction scheme (MS), sets the reference point at which the strong coupling
constant αs is matched to experimental data. Typical values lie in the range of a few hundred MeV [43, 44].

So there are three components of the quarks and an eight dimensional symmetry group. The boson fields

(that are called gluons in QCD). The Lagrangian of QCD is defined via

LQCD
= −

1

4
F a
µνF

µν
a +

Nf

∑
f=1

ψ̄c
f(i /Dcd −mfδcd)ψd

f , (2.43)

F a
µν = ∂µA

a
ν − ∂νA

a
µ + g

√
2fabcAb

µA
c
ν , (2.44)

Dcd
µ = ∂µδ

cd
−
ie

2
Aa

µλ
cd
a , (2.45)

One of the most fundamental differences of the QCD and QED Lagrangian is the non linear term in the

field strength tensor Fµν . It has to be included to take care of terms arising from the non-abelian structure

of SU(3). This quadratic term generates contributions of third and fourth powers of the gauge field A in

the Lagrangian which can be translated directly into gluon-gluon-interactions as shown in Figure 2.2 [41].

The general approach for computing matrix elements and transition amplitudes in most QFTs and especially

QED is perturbation theory. The general idea behind perturbation theory (in the context of QED) is that

each of the fundamental vertices (see Figure 2.1) corresponds to a mathematical expression. Each vertex

includes another factor of
√
α (∼ e) in the transition amplitude. Summing up all diagrams describing the

process will give an asymptotic series in powers of e that converges to the correct QED result.

The self-interaction of the gluons on the other hand leads to an interesting feature, called asymptotic freedom,
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that is shown in Figure 2.3. The coupling strength αs of QCD increases at low energies, or equivalently, at

large distances [45, 46]. Therefore the perturbative series only converges at sufficient high energy scales. So

another method has to be used to compute the matrix element in QCD at low energies. In 1974, Kenneth

Wilson introduced the idea of regularizing QFTs by a spacetime lattice for non-perturbative studies, such as

gauge theories with confinement [17].

2.5 Wick rotation

The exponent in the path integral in Equation (2.32) is given by iS, where S is the action of the corresponding

theory in Minkowski spacetime. The action is a real quantity, so the exponential has an absolute value of

one along all the field configurations. However, there are exceptions to this rule, e.g. when a finite chemical

potential is introduced. So when considering the transition amplitude (F = 1) of the process, one finds an

integral that is not convergent in a classical sense, because the domain is unbound and the absolute value

of the integrand is bound from below. Of course, at configurations with large action, the fluctuation of the

exponential is huge and therefore destructive interference suppresses the contribution in these action regimes,

but a mathematical well-defined solution of this problem is needed.

In Minkowski spacetime, the action is defined with an integration of the Lagrange-function with respect to

the time along the real axis. Now the time can be re-interpreted as a complex quantity. So we integrate along

a path in the complex plane, and this path is given by the real axis. Now this path can be modified. If the

integrand is a holomorphic function (which can be assumed if the action is analytic on the real axis) and the

path does not cross any poles during the modification, the result of the integral remains unchanged. We only

have to accept the assumption that the integrand converges to zero fast enough if ∣t∣ →∞. In case of the

Wick rotation, the modification of the path is given by

γα(t) = exp(iα)t (t ∈ R, α ∈ [0, π/2]). (2.46)

For α = 0 we have the integration along the real axis and for α = π
2

it is along the imaginary axis. Now we

can replace the time in the action according to

t→ tE = it. (2.47)

This affects the Lagrangian and the action such that they are replaced in the following way by their Euclidean

counterparts:

L→ −LE (2.48)

S → iSE (2.49)

The metric tensor ηµν of the Lorentz covariant theories is also replaced:

ηµν → δµν . (2.50)

Usually, the index zero is used for Minkowski time, while Euclidean time is denoted with the index 4. With the

aforementioned substitutions, the exponential in the path integral has the form exp(−SE) with SE bounded

from below, so the integrals converge properly [47]. The Euclidean actions for the Klein-Gordon and the
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Dirac theory are

SKG
E [φ] = 1

2
∫ d4x [(∂tφ)2 + (∂xφ)2 + (∂yφ)2 + (∂zφ)2 +m2φ2] =∶ 1

2
∫ d4x (∂µψ∂µφ +m2φ2) (2.51)

SD
E [ψ̄, ψ] = ∫ d4x ψ̄(γ4E∂t + γ1E∂x + γE2 ∂y + γ3E∂z +m)ψ =∶ ∫ d4x ψ̄ ( /∂E +m)ψ, (2.52)

where the γE matrices are defined according to

γ4E = γ
0, γiE = iγ

i
E . (2.53)

It follows that the Euclidean γ-matrices are Hermitian. The Yang-Mills action for photons and gluons changes

to [35, 37]

SYM
E =

1

4
FµνFµν . (2.54)

2.6 Lattice discretization

To compute observables in a QFT in a mathematically correct way one has to introduce an ultraviolet

regulator. In case of lattice gauge theory a hard momentum cutoff is used. This is done by discretizing

spacetime and only considering field values on a lattice. The spacetime variable xµ is replaced by a ⋅ nµ with

n ∈ Z4 and a being the lattice spacing. In principle it is possible to use anisotropic lattice spacings, but in

the studies that are discussed here, a globally fixed spacing is used. Of course the definition of operations

like derivatives and integrals (which are fundamental objects in the formulation of field theories) require a

continuous spacetime. So they have to be replaced by discrete operators that reproduce them in the limit

a→ 0. A possible (but not unique) discretization of these operators could be

∂µφ(x)→ φ(a(n + µ̂)) − φ(a(n − µ̂))
2a

, (2.55)

∫ d4xφ(x)→ a4 ∑
n∈Z4

φ(an), (2.56)

where µ̂ is a short notation for the unit vector in µ-direction. Applying this discretization on the free Dirac

action for fermions that is given in Equation (2.52) yields

S0
F [ψ, ψ̄] = a4∑

n

ψ̄(an)⎛⎝∑µ γµ
ψ(a(n + µ̂)) − ψ(a(n − µ̂))

2a
+mψ(an)⎞⎠ . (2.57)

The lattice spacing a is set to one (lattice units) often. As it was discussed before there are gauge transforma-

tions that can act on the quark fields, on the lattice they are given by Ω(an). So if the transformation of the

quark fields is given by

ψ(n)→ Ω(n)ψ(n), (2.58)

ψ̄(n)→ ψ̄(n)Ω†(n), (2.59)

the product of quark fields at neighboring lattice sites transforms as

ψ̄(n)ψ(n + µ̂)→ ψ̄(n)Ω†(n)Ω(n + µ̂)ψ(n + µ̂). (2.60)

So the discretized version of the fermion action is not gauge invariant anymore, which is a necessary condition

for the regularization. To restore gauge invariance, the gauge links Uµ(n) ∈ SU(3) are included. They are
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given by Nc ×Nc-matrices (Nc is the number of colors in the corresponding theory, three in case of QCD

and 1 in case of QED). They are located on the links between the lattices sites n and n + µ̂ as it is shown in

Figure 2.4. Whenever two quark fields ψ̄(m) and ψ(n) are multiplied, one has to include the product of the

gauge links along a path that connects the sites m and n between them. The gauge links transform according

to

Uµ(n)→ Ω(n)Uµ(n)Ω†(n + µ), (2.61)

which guarantees that the product

ψ̄(n)Uµ(n)ψ(n + µ) (2.62)

is gauge invariant. A gauge link connecting the sites n and n − µ̂ is given by U†
µ(n − µ). There is another way

to construct gauge invariant quantities on the lattice and that is to take the trace of the product of gauge

links along a closed path on the lattice. The most fundamental object is the plaquette

Pµν(n) = Tr{Uµ(n)Uµ(n + µ̂)U†
µ(n + ν̂)U†

ν(n)}, (2.63)

which is a closed loop along the smallest possible square in the µν-plane starting at n[17, 35, 37]. An example

is shown in Figure 2.5.

n Uµ(n) n + µ̂

ψ(n) ψ(n + µ̂)
Figure 2.4 The quark fields are located at the sites on the lattice, while the gauge fields is at the links that
connect adjacent lattice sites. This picture is taken from the Master Thesis of Timo Eichhorn [48].

n n + µ̂

n + ν̂ n + µ̂ + ν̂

Uµ(n)

U†
ν(n)

U†
µ(n + ν̂)

Uν(n + µ̂)

Figure 2.5 The plaquette is in general the most simple observable that can be constructed from gauge links only.
It is the smallest contractible loop. This picture is taken from the Master Thesis of Timo Eichhorn [48].
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2.7 The Wilson gauge action and improvements

It is evident how the lattice fermion action is related to the continuum one. The relation between gauge

links on the lattice and the gauge fields in the continuum theory is a bit more involved. The gauge links are

group-valued while the gauge fields takes values in the corresponding algebra. So they might be related by an

exponential function. This is indeed true, but the gauge field is defined at a single point, while the gauge

links are obviously not, so the gauge field is integrated along the link before the exponentiation:

Uµ(an) = exp(ig∫ a(n+µ̂)
an

Aνdsν) =∶ exp (iagÃµ(n)) . (2.64)

Here we introduced an algebra valued lattice quantity Ãµ(n) that differs to the gauge links by terms of O(a).
To get a lattice version of the Yang-Mills-Lagrangian, let us consider again the most simple gauge-invariant

quantity on the lattice, the plaquette (see Figure 2.5 and Equation (2.63)). If we use the exponential

representation in Equation (2.64) and apply a Taylor expansion of the continuous gauge fields

Aν(an + aµ̂) = Aν(an) + a∂µAν(n) +O(a2), (2.65)

we find that

Pµν(an) = exp (ia2g2Fµν(an) +O(a3)) , (2.66)

which can be expanded and reformulated to

SG[U] = 2Nc

g2´¸¶
β

∑
n

∑
µ<ν

Re(1 − 1

Nc

TrPµν(an)) = a4

2g2
∑
n

∑
µ,ν

Tr (F 2
µν) +O(a2). (2.67)

So we got a lattice version of the gauge action that matches with the continuum up to terms proportional to

a2. However, it is possible to remove some of those artifacts [49]. By including loops of size 2 × 1, the action

is modified to

Srect
G [U] = β

Nc
∑
n∈Λ

(∑
µ<ν

c0(Nc −Re tr[Pµν(n)]) + ∑
µ≠ν

c1(Nc −Re tr[Pµ,2ν(n)])), (2.68)

where Pµ,2ν is the 1 × 2 closed loop in the µν-plane. The coefficients have to be chosen according to

c0 + 8c1 = 1, c0 > 0. (2.69)

The condition ensures that the continuum limit is correct and the tuning of the parameters can exclude

higher-order contributions. For example, the Lüscher-Weisz (tree-level) action uses c0 =
5
3

and c1 = −
1
12

and

has classically leading discretization effects of O(a4) [50]. Other commonly used improved actions are the

DBW2 and the Iwasaki action [51, 52].
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3 Fermions on the lattice

Formulating fermion discretizations is a challenging, but interesting aspect of lattice QCD. In this chapter,

we focus on naive and staggered fermions [53], exploring how they relate to each other, where they differ, and

what mathematical challenges they pose.

From this chapter on, I will drop the subscript E from the Euclidean γ-matrices. Whenever it will be referred

to the γ-matrices, the Euclidean ones are meant implicitly.

3.1 Naive Fermions

As discussed before the dynamics of the quarks, which are the fermionic fundamental particles of QCD, is

described by the Euclidean Dirac equation

( /∂ +m)ψ = 0, (3.1)

which is the equation of motion of the Dirac action

S = ∫ d4xL, (3.2)

L = ψ̄( /∂ +m)ψ. (3.3)

As mentioned before (Section 2.6) this action can be put on the lattice. If we ignore gauge field contribution,

we can use a straightforward discretization scheme by replacing derivatives by symmetric finite differences

and integrals by sums. The naive action for free quarks in QCD with all indices written explicitly is given by

Snaive
= ∑

n∈Λ

3

∑
a,b=1

4

∑
αβ=1

ψ̄a
α(n)⎛⎝

4

∑
µ=1

γαβµ

δabψ
b
β(n + µ̂) − δabψb

β(n − µ̂)
2

+ δαβδabmψ
b
β(n)⎞⎠ , (3.4)

which is often written as a bilinear form

Snaive
= ∑

n,m

ψ̄(n)Mnaive
nm ψ(m) (3.5)

Mnaive
nm =

1

2

4

∑
µ=1

γµ (δn+µ̂,m − δn−µ̂,m) +mδnm (3.6)

with implicit Dirac and color indices [54]. In this discretization the fermion action provides a lot of interesting

symmetries [55].

3.1.1 Symmetries of the naive action

The homogeneous lattice structure of free Dirac fermions ensures that there are a lot of geometrical symmetry

transformations that leave the action invariant.
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Rotations and Inversions

We start with the rotational symmetry whose symmetry group is often called special Würfel group or SW4,

which consists of rotations of π
2

of all six coordinate planes. If one also allows spatial inversions, this group

is extended by a factor of 2 and is called Würfel group or W4. In odd dimension a spatial inversion can be

represented as a global sign in the defining representation, while in even dimensions a spatial inversion can

be defined by an additional sign for only one axis. The concept of the Würfel group can be generalized to

arbitrary dimensions similar to the generalization of continuous rotations to O(n) [56, 57]. In the Dirac

representation the elementary rotations can be represented as

Rµν
∶ψ(n)→ ψ′(n′) = exp{iπ

4
σµν}ψ(n′), (3.7)

(Rµν)† ∶ ψ̄(n)→ ψ̄′(n′) = ψ̄(n′) exp{−iπ
4
σµν}, (3.8)

where n′ is the lattice point that is received by rotating n in the µν-plane by an angle of π
2

. The transformation

exp{iπ
4
σµν} rotates the γ-matrices in the same way [58]. Note, that these matrices only build a projective

representation (see Section 12.1 of the symmetry group of a four dimensional hypercube, because of the

identity

(exp{iπ
4
σµν})4 = −1 ≠ 1. (3.9)

This is related to the fact that the lattice fermions have a spin of 1
2

like their continuum counterparts [29].

The inversion on the other hand is represented with

Is ∶ψ(n)→ ψ′(n′) = γ4ψ(n′), (3.10)

I†
s ∶ ψ̄(n)→ ψ̄′(n′) = ψ̄(n′)γ4. (3.11)

Shift symmetry

The homogeneous structure of the free naive action provides a wide spectrum of shift symmetries. Let Sµ be

the shift operator that is in the defining representation given by

Sµ ∶ψ(n)→ ψ′(n′) = ψ(n + µ̂), (3.12)

S†
µ ∶ ψ̄(n)→ ψ̄′(n′) = ψ̄(n − µ̂), (3.13)

from which can be concluded that the spinor structure is not affected by the shift symmetry transformations

in contrast to the W4-symmetry transformations. Now it is trivial to prove that the naive action is an invariant

quantity with respect to this transformation.

Furthermore, there are power series of this shift that do not affect the action, to construct them we consider

the bilinear A(m) = ∑n ψ̄(n)ψ(n+m) whose invariance for m = ±µ̂ and m = 0 implies invariance of the action.

Now consider power series of the shift operator (that are not canonically symmetry transformations):

P (α,Sµ)ψ = ∞

∑
i=−∞

αiS
i
µψ(n) = ∞

∑
i=−∞

αiψ(n + iµ̂) (3.14)

This transforms the term A(y) according to

A(m) =∑
n

ψ̄(n)ψ(n +m)→∑
n

∑
ij

α∗i αjψ̄(n + iµ̂)ψ(n +m + jµ̂), (3.15)
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which makes it an invariant condition if

∑
a∈Z

α∗a+iαa = δi0. (3.16)

Using the Fourier convolution theorem one can conclude that the elements of α are Fourier coefficients of a

U(1)-valued functions on a compact interval:

αm =
1

2π
∫

2π

0
dp eimpα̃(p) (3.17)

α̃(p) ∈ L([0,2π], U(1)). (3.18)

There is a variety of function that fulfill this condition. For example, choosing α̃ as a constant, this results in

the global U(1) symmetry of the action. It is somewhat more interesting to choose

α̃(p) = exp{iγp}. (3.19)

Then αm takes the form sinc(γ−m), which is equal to δγ,m if γ is an integer. So for γ ∈ Z this is the symmetry

due to the shift Sγ
µ . If m is chosen not to be an integer we can use it as a generalization of discrete shifts to

arbitrary (continuous) shifts gamma. In general, these types of symmetry transformations can be interpreted

as diagonal unitary operators on the momentum modes [59]:

∣p⟩→ α̃(p) ∣p⟩ . (3.20)

Taste symmetry

Apart from this geometrical symmetries, there are symmetry transformations that cannot be derived from a

defining representation of a transformation in R
4. For ξ ∈ Z4

2, consider the transformation

Bξψ(x) = (−)x⋅ξ 4

∏
ρ=1

(γ5γρ)ξρψ(x), (3.21)

that is a symmetry of the naive action [60]. All of the Bξ transformations are unitary, but not all of them are

Hermitian. In order to do this, one defines

B̃ξ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
iBξ if Bξ anti-Hermitian,

Bξ if Bξ Hermitian,
(3.22)

which are all Hermitian. It is very straightforward to prove that the set of B̃ξ transformation forms a projective

representation (see Section 12.1) of Z4
2. Using a central extension of this group (see Section 12.2) one can

consider

{±B̃ξ ∣ξ ∈ Z4
2}, (3.23)

which is indeed a group that is isomorphic to Γ0,4.

Since all of the group elements are Hermitian, the group elements can be used as generators of a continuous

16 dimensional symmetry group:

{exp (iαξB̃ξ) ∣αξ ∈ R}. (3.24)
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Furthermore, there are chiral symmetry transformations that do not affect the Dirac-part of the operator but

generate a sign on the mass term:

Aξ = i
∥ξ∥1Bξγ5 = i

∑µ ∣ξµ∣Bξγ5. (3.25)

It can be seen very easily that we have

Aξ̄ = ±Bξǫ(n). (3.26)

Thus, they have the same structure constants. We now can define the generators of left- and right-handed

transformations by

BR
ξ =

1 + ǫ(n)
2

B̃ξ, (3.27)

BL
ξ =

1 − ǫ(n)
2

B̃ξ. (3.28)

We have commutation relations

[BR
ξ ,B

R
ζ ] = 1 + ǫ(n)

2
C

ρ
ξζB̃ρ = C

ρ
ξζB

R
ρ , (3.29)

[BL
ξ ,B

L
ζ ] = 1 − ǫ(n)

2
C

ρ
ξζB̃ρ = C

ρ
ξζB

L
ρ , (3.30)

[BL
ξ ,B

R
ζ ] = 1 + ǫ(n)

2

1 − ǫ(n)
2

C
ρ
ξζB̃ρ = 0, (3.31)

with Cρ
ξζ ∈ R being the structure constants of the B̃ξ. The continuous transformations generated by the right-

and left-handed generators are

UR
= exp

⎛⎝∑ξ αξ

1 + ǫ(n)
2

B̃ξ

⎞⎠ = exp⎛⎝1 + ǫ(n)2
∑
ξ

αξB̃ξ

⎞⎠ = ∑k≥0
(1+ǫ(n)

2 ∑ξ αξB̃ξ)k
k!

= 1 +
1 + ǫ(n)

2
∑
k≥1

(∑ξ αξB̃ξ)k
k!

= 1 +
1 + ǫ(n)

2

⎛⎝exp⎛⎝∑ξ αξB̃ξ

⎞⎠ − 1⎞⎠
=
1 − ǫ(n)

2
+
1 + ǫ(n)

2
exp
⎛⎝∑ξ αξB̃ξ

⎞⎠

(3.32)

and

UL
=
1 + ǫ(n)

2
+
1 − ǫ(n)

2
exp
⎛⎝∑ξ αξB̃ξ

⎞⎠ . (3.33)

3.1.2 The doubling problem

It is very straightforward to diagonalize the naive action matrix Mnaive
mn . The Lagrange density of the action

is homogeneous in space and therefore should conserve the conjugate momenta, which translates in the fact

that Mnaive is diagonal in momentum space. The Fourier transformation of equation (3.4) is given by:

∫ dp

2π
∫ dq

2π

3

∑
a,b=1

4

∑
α,β=1

ψ̄a
α(p)M̃ψb

β(q) = (3.34)

∫ dp

2π
∫ dq

2π

3

∑
a,b=1

4

∑
α,β=1

ψ̄a
α(p)⎛⎝i

4

∑
µ=1

γαβµ sinpµ +mδαβ
⎞⎠ δabδ(p − q)ψb

β(q), (3.35)
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The Matrix M̃ can be inverted easily:

M̃−1
=

mδαβ − i∑µ γ
αβ
µ sinpµ

m2 +∑µ sin
2 pµ

δabδ(p − q). (3.36)

The free propagator for naive quarks is then given by the backwards transformation of the inverse Matrix

in momentum representation. It is common knowledge that poles in the massless propagator correspond

to physical states. Since the lattice momenta pµ are taken from the interval [0,2π), there are 16 momenta

corresponding to a physical state:

(0,0,0,0), (0,0,0, π), , ... (π, π, π, π). (3.37)

Therefore, 15 modes correspond to unphysical states, called the doublers [35]. The doublers are directly

related to the symmetry transformations given in Section 3.1.1. Let p = (p1, p2, p3, p4) with pi ∈ {0,1} be one

of the momenta from Equation (3.37) in units of π and Bξ with ξ ∈ Z4
2 one of the taste transformations. Then

this transformation acts in the following way:

Bξp ≡ p + ξ mod 2. (3.38)

So the physical interpretation of this observation is the following: The naive action describes 16 quarks

of the same mass instead of one. Therefore the action is symmetric when interchanging the quarks. The

corresponding symmetry transformations are the Bξ that are discussed before.

The No-go theorem

One might think that there is a way to get rid of the doublers without any disadvantages, but this is not the

case:

If D be a massless discrete Dirac operator, then at least one of the following statements is not true [61]:

1. D has only one zero-mode. This is equivalent to the statement that D has no doublers.

2. D is local, which means that there are constants C, c > 0 such that

∣Dmn∣ < C exp (−c∣n −m∣) . (3.39)

One has to note that the constant c should not depend on the lattice spacing.

3. D has the correct continuum limit, i.e

lim
a→0

D = /∂. (3.40)

4. D respects chiral symmetry, i.e.,

{D,γ5} = 0. (3.41)
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3.2 Staggered fermions

Staggered fermions can be introduced to reduce the number of doublers by a factor of four. This is still not

consistent with the theory we want to describe, but will allow us to save a lot of simulation time by not

computing 12 out of 16 identical fermions. The remaining three unwanted fermions can be removed by a

technique called rooting that will be mentioned later on.

3.2.1 The staggered transformation

In order to construct staggered fermions from naive fermions, the unitary basis transformation

Γ(x) = 4

∏
i=1

γxi

i Γ†(x) = 1

∏
i=4

γxi

i (3.42)

is defined. The basis transformation is used to defined the staggered fields χ and χ̄ as:

ψα(x) = Γαβ(x)χβ(x) (3.43)

ψ̄α(x) = χ̄β(x) (Γ†)βα (x) (3.44)

With this redefinition the free naive action in equation (3.4) becomes:

S =∑
xµ

χ̄α(x)(ηµ(x)δαβ χβ(x + µ̂) − χβ(x − µ̂)
2

+mδαβχβ(x)) (3.45)

ηµ(x) = (−)∑ν<µ xν (3.46)

By inspecting this expression one will notice that there is no mixing between the spinor components. It is

therefore sufficient to work with only one of those which reduces the degrees of freedom and therefore the

number of doublers by a factor of four. This feature is useful in the physical interpretation of the lattice

fermions (because we got rid of 12 unphysical modes) as well as in terms of computational effort [62–64]. So

the staggered action (which is one fourth of the naive action) is given by

Sst
= χ̄Mstχ, (3.47)

Mst
= ηµ(x)Ux,µδx+µ̂,y −U

†
x−µ,µδx−µ̂,y

2
+mδx,y, (3.48)

where the gauge links are already included, such that the action is gauge invariant.

3.2.2 Symmetry properties of staggered fermions

The (free) staggered action comes along with multiple symmetries. Averaged over all gauge field configurations,

these symmetries also holds for the interacting case [59]. Before listing the most important symmetries, a few

definitions have to be done:

ζµ(x) = (−)∑ν>µ xν (3.49)

ǫ(x) = (−)∑µ xµ (3.50)

SR(x) = 1 + ζµ(x)ζν(x) − ηµ(x)ην(x) + ζµ(x)ζν(x)ηµ(x)ην(x)
2

, (3.51)

with R being a rotation in the µν-plane.

24



Fermions on the lattice
Staggered fermions

1. The first symmetry is the symmetry of the staggered action under rotations of π/2 in the µν-plane. It

is similar to the corresponding symmetry transformation for naive fermions, but the pre-factor that

mixes the spinor-components is replaced by a location-dependent pre-factor:

Rµν
∶χ(n)→ χ′(n′) = SR(n′)χ(n′) (3.52)

2. Of course staggered fermions also have a shift symmetry, but since the staggered action comes along

with a position-dependent pre-factor, this has to be respected in the transformation rules:

Sµ
∶χ(n)→ χ′(n′) = ζµ(n)ψ(n′) (3.53)

3. The staggered phase ηµ(x) takes somehow the place of the γ-matrices, when transforming the naive

action to the staggered one. This also happens when considering the spatial inversion symmetry:

Is ∶χ(n)→ χ′(n′) = η4(n)ψ(n′) (3.54)

4. Next there is the charge conjugation symmetry that has a local pre-factor in the staggered formulation

and interchanged particles and antiparticles:

C0 ∶χ(n)→ ǫ(n)χ̄(n) (3.55)

χ̄(n)→ −ǫ(n)χ(n) (3.56)

5. The Baryon number is the only global symmetry in this list. It multiplies the quarks with a U(1)V -phase

factor:

B ∶ χ(n)→ gχ(n) g ∈ U(1) (3.57)

6. The axial hyper-charge is explicitly broken for m ≠ 0. The quarks are multiplied by an U(1)A-phase

factor.

H ∶ χ(n)→ gǫ(n) g ∈ U(1) (3.58)

It has to be noted that all of the symmetries with local pre-factors are involutions expected for the shifts.

If the shift operator is squared, the pre-factors cancel and what remains is the shift by two lattice units.

Therefore, in momentum space, this operator S2
µ =∶ Tµ can be represented as

Tµ ∣p⟩ = exp(2ipµ) ∣p⟩ . (3.59)

Next we want to take the square root of this operator which leaves two choices for each eigenvalue. We decide

to take the one with the with positive real part which ensures that the momenta are in the first Brillouin

zone:

T 1/2
µ ∣p⟩ = exp(ipµ) ∣p⟩ pµ ∈ (−π

2
,
π

2
] (3.60)

Using this definition, we can disentangle shift and taste from the symmetry operators by defining

Ξµ = T
−1/2
µ Sµ. (3.61)
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In the defining representation the Ξµ operators fulfill the anticommutation relations of the euclidean γ-

matrices, thus generating the 32-element group Γ4,0 [59]. Also, the taste transformations anticommute with

shifts in perpendicular directions and they are related to rotations via

RµνΞνR
−1
µνΞν = 1. (3.62)

This means that a rotation of the taste operators by an angular of π will not bring in a sign as it would for

vectors like the shift operator.

The total symmetry group of staggered fermions1 is then given as

G = {Rµν , Is, C0,Ξµ, T
1/2
µ }. (3.63)

If we consider only particles at rest, T 1/2
µ can be ignored (or represented trivially) and in combination with

our knowledge on how the Würfel group acts on taste and charge transformations, the symmetry group at

rest can be written as the semi-direct product of two groups:

G0 = {C0,Ξµ}⋊ {Rµν , Is} = Γ4,1 ⋊W4. (3.64)

Γ4,1 is the extension of Γ4,0 by the generating element C0 that anticommutes with the other generators Ξµ

and has the property C2
0 = −1. If we want to consider particles that are not at rest, we have to add back the

translation group. For simplicity, we use a finite lattice N lattice site in each direction and periodic boundary

conditions. Then the total symmetry group is given by [59]

G = {Z4
N}⋊ G0. (3.65)

In the application in Chapter 10 we will consider the symmetry group at a fixed time-slice,which changed the

group to

H = {Z3
N}⋊ Γ4,1 ⋊W3 = {Z3

N}⋊ [SW4 × Γ2,2]/Z2. (3.66)

3.2.3 Momentum, spin and taste operators for staggered fermions

In the studies in the second part of this work, not only resting scalar fields are considered, but also a large

variety of operators. Thus, I want to recap shortly how one can implement the different types of operators.

Firstly, the are non-zero momenta. Let us consider a resting staggered field χ(x) that is put into a functional:

F [χ, p = 0] =∑
x

Axχx. (3.67)

If we want to align a momentum q to the staggered field, we include a complex phase depending on the

position x of the quark field:

F [χ, p = q] =∑
x

Axχxe
iq⋅x. (3.68)

It is important that the components of p, i.e., pµ, are a multiple of 2π
Lµ

if the lattice has finite extension Lµ

in µ-direction. From the construction it can be seen directly that pµ ≡ pµ + 2π and thus, the momentum is

chosen from the interval (−π, π]. In the case of naive fermions (Section 3.1) it was shown that momenta that

are multiples of π can be interpreted as different tastes and not as higher momenta. During the staggered

construction we could get rid of some of those unwanted tastes. However, three unphysical tastes remain [35].

1We ignore the baryon number symmetry because its trivial and the axial symmetry because it is not exact.
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The construction of taste and spin structure for free quarks is explained in some detail in the appendix

of [60], but what is more interesting here is the taste and spin structure of mesons. A meson is a bound state

consisting of a quark χ and an antiquark χ̄. Each of them has four spin and four taste components that are

decomposed in the following way:

4̄s ⊗ 4s = 1s ⊕ 4s ⊕ 6s ⊕ 4s ⊕ 1s (3.69)

4̄t ⊗ 4t = 1t ⊕ 4t ⊕ 6t ⊕ 4t ⊕ 1t (3.70)

This decomposition is exactly the number of choices there are to pick out i out of 4 elements, what is exactly

how meson in the continuum are defined. There, one puts i distinct γ-matrices between the quark fields, i.e.,

ψ̄ (∏µ γ
nµ
µ )ψ with in n ∈ Z4

2. However, due to the staggered construction we have no γ-matrices acting on

spinor components but there is implicit spin and taste. A staggered meson with a spinor structure of n ∈ Z4
2

and with a taste structure of s ∈ Z4
2 is given by

jsn(x) = βs
n(x)χ̄(x)χ(x + δxsn), (3.71)

with δxsn ≡ (s + n) mod 2 and

βs
n(x) = (−)x⋅(s<+n>)+n⋅(s+n)< , (3.72)

where the superscript < denotes that the components of the vector are the cumulative sums of the elements

with a smaller index (modulo 2) and the superscript > denotes that the components of the vector are the

cumulative sums of the elements with a larger index (modulo 2) [60, 65] .
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4 Simulation of lattice gauge theories

The regularization with a hard cutoff is not the only advantage of discretization of spacetime. In combination

with finite volume and finite time-extension, the lattice theory has a finite number of degrees of freedom in

contrast to an uncountable infinite number as it is in the continuum theory. Therefore, the path-integral can

be solved with a combination of analytical and numerical computations.

4.1 Wick’s theorem

One of the most important statements of the spin-statistics theorem is that it is not possible to have two

fermions in the same state. Therefore fermions are described by Grassmann-valued fields {ψ†} and {ψ} (see

Section 12.4), that go in the fermion bilinear (see previous chapter 3). The total path-integral that has to be

evaluated in order to get the expectation value of an observable has the form

⟨O⟩ = 1

Z
∫ [DU][Dχ][Dχ̄]O[U,χ, χ̄] exp (−Sg[U] − χ̄Mχ) , (4.1)

Z = ∫ [DU][Dχ][Dχ̄] exp (−Sg[U] − χ̄Mχ) . (4.2)

While the gauge fields U consists of (at most) nine complex numbers for every link on the lattice, the Grassmann

field χ̄ and χ are harder to deal with. In principle a set of N Grassmann numbers can be represented using

matrices of size 2N × 2N . Since N ≫ 1000 usually it is not possible to store this representations. Luckily, the

Grassmann integration can be done analytically, if a moment of a Gaussian integral has to be computed [35]:

∫ [Dχ][Dχ̄]χi1χi2 ...χik χ̄j1 χ̄j2 ...χ̄jk exp{−χ̄Mχ} = δkl × f(M,{i},{j}) (4.3)

f(M,{i},{j}) = (−)k ∑
σ∈SK

sign(σ) [ k

∏
r=1

(M−1)
ir,jσ(r)

] × detM (4.4)

This is called Wick’s theorem. What finally remains is an integral with respect to the gauge links:

⟨O⟩ = 1

Z
∫ [DU] Õ[U] exp (−Sg[U] + log detM[U]) , (4.5)

Z = ∫ [DU] exp (−Sg[U] + log detM[U]) , (4.6)

where Õ[U] is O[U,χ, χ̄] after expanding in powers of χ and χ̄ and applying Wick’s theorem [16, 35].

4.2 MCMC/Sampling of Monte-Carlo data

The dimension d of an integral like the one from Equation (4.5) can easily exceed 106. The computational

cost when approximating such integrals with standard methods like numerical Riemann-Integration increases

exponentially with d. In addition, the bulk of the phase space is suppressed by the exponential, so a

huge amount of the computational time would be wasted (if it were even possible to perform this kind of

integrations). Instead one can choose choose N representative configurations Ui from the distribution

p[U] = 1

Z
exp (−Sg[U] + log detM[U]) (4.7)

and compute the observables

Oi = Õ[Ui] (4.8)
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on these representatives. The mean value of this measurements can be used as an estimator for the expectation

value of the observable with an uncertainty proportional to the inverse square root of the number of

configurations [35, 66]:

⟨O⟩ = 1

N

N

∑
i=1

Oi +O ( 1√
N
) (4.9)

This approach to integration is known as Monte Carlo (MC) integration. It relies on the random sampling of

configurations, much like drawing numbers from a lottery, which is where the method gets its name. The hard

task is of course to find a method that generates configurations according to a given and highly non-trivial

distribution. For some simpler models than QCD there are methods for a direct sampling of configurations [67],

but in QCD Markow-Chain-Monte-Carlo (MCMC) methods have to be used. These kinds of algorithms

generate the configurations Ui using the set {U0, ..., Ui−1} in combination with some (pseudo-)random input.

This of course leads to a certain amount of correlation between the configurations Ui (and the respective

observables Oi) that has to be taken into account. But this issue is explained in more detail in Section 5.1.

The chain of the configurations Ui is called a Markow-chain and has to fulfill the following four properties [37]:

1. The probability from that the system evolves from a state U to a state U ′ (W (U,U ′)) within one update

is in the interval [0,1]. This statement sounds trivial but is an important aspect of the mathematical

formulation.

0 ≤W (U,U ′) ≤ 1 (4.10)

2. The sum of all probabilities to evolution with the same initial configuration is one:

∫ [DU]W (U,U ′) = 1 (4.11)

3. There is a finite probability for the system to evolve from a given configuration U to any other given

configuration U ′ after a certain amount of steps k.

W k(U,U ′) > 0 (4.12)

4. The transition probability W (U,U ′) respects the desired distribution p[U].
W (U,U ′)p[U] =W (U ′, U)p[U ′] (4.13)

The first two conditions ensure that W (U,U ′) is a probability density function for a given U . The third

condition is called ergodicity and makes sure, that all configurations can be sampled after a finite time and

the last condition (detailed balance) takes care that the configurations Ui from the Markow-Chain are samples

according to the desired probability distribution p[U].
To start a Markow-chain, one needs an initial configurations. For this one can choose one of two methods: a

cold start or a hot start. For a cold start, the initial gauge field configuration is trivial, a common choice is

Uµ(x) = ✶ for all µ and x. For a hot start, one can either use an already existing gauge configuration from

the equilibrium of the algorithm or randomly chosen gauge links. If the initial configuration is outside of the

equilibrium a thermalization is needed, which means that a certain amount of updates is performed before the

measurement of the observables1 can be started. To find out when the system has arrived in the equilibrium

one can have look at certain observables and see at which point in the chain they start to build a plateau.

1that go in the final analysis of the data
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In the following two sections, two examples of MCMC-algorithms will be discussed: The Metropolis algorithm,

which is comparatively simple to understand and implement and the Hybrid-Monte-Carlo algorithm, that is

most commonly used in lattice gauge theories. Nevertheless, there are more algorithms like heat bath [18,

68–70], overrelaxation [71–73] and instanton [74–76] updates and modifications like Metadynamics [75–80]

and Density of States [81, 82]. Comparative studies can be found in [75, 76].

4.2.1 Metropolis algorithm

The Metropolis algorithm was invented by Metropolis et al. in 1953 [83]. I will skip a general description

of the algorithm and focus on the application to lattice gauge theories. Let Ui−1 by a given configuration

with the action Sold = Sg[Ui−1] − log detM[U]. Then one link Uν(y) of the configuration Ui−1 is chosen in

addition to a random element of the gauge group V that is close to the unity matrix. A proposal for a new

gauge configuration U ′ is made by

U ′µ(x) = Uµ(x) ⋅ V if x = y and µ = ν, (4.14)

U ′µ(x) = Uµ(x) else. (4.15)

On the configuration U ′ the new action Snew = Sg[U ′] − log detM[U ′] is measured. The configuration U ′ is

chosen to be the new configuration Ui with the probability min{1, e−(Snew−Sold)}. Otherwise, Ui is set again

to be Ui−1. This is called the Metropolis step. The acceptance rate of the new configuration can be tuned by

choosing the width of the distribution of V around the unity. Commonly this algorithm is only used if no

quarks are considered, i.e., M = 0, because the computation of the local changes is too expensive, especially

because the change of the gauge field in every step is very small, so a lot of determinants have to be computed

to get new independent gauge configurations.

4.2.2 Hybrid-Monte-Carlo algorithm

To solve issue with the high cost of the simulation of quarks, Duane et al. came up with another approach [84],

called Hybrid-Monte-Carlo (HMC) algorithm. If all of the links are changed by a bit in a way that does

not have a huge effect on the action, a larger change of the gauge configuration can be performed before

the Metropolis step and all-in-all less determinants have to be computed. The construction of the algorithm

starts by bringing to mind the path-integral expectation value

⟨O⟩ = ∫ [DU]O[U] exp (−S[U])∫ [DU] exp (−S[U]) . (4.16)

Now the set of canonical momenta Π of the gauge field U can be included by expanding the fraction by

∫ [DΠ] exp (−1
2
Π2):

⟨O⟩ = ∫ [DU]O[U] exp (−S[U]) ∫ [DΠ] exp (−1
2
Π2)

∫ [DU] exp (−S[U]) ∫ [DΠ] exp (−1
2
Π2) (4.17)

=
∫ [DU][DΠ]O[U] exp (−S[U] − 1

2
Π2)

∫ [DU][DΠ] exp (−S[U] − 1
2
Π2) (4.18)

Next, the gauge fields are distributed according to a Hamiltonian H = S[U] + 1
2
Π2 that describes a system

with fields U of mass 1 in a potential S[U]. Therefore new gauge configurations can be can be generated by

solving the Hamiltonian equations of motion

dU

dτ
=
∂H

∂Π
,

dΠ

dτ
= −

∂H

∂U
, (4.19)
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with an additional simulation time τ , which has to be strictly distinguished from the Euclidean time tE (or t)

that is used as a coordinate on the lattice. The procedure of an update step using the HMC algorithm is as

follows: First, for each lattice link Uµ(x) a corresponding conjugate momentum Πµ(x) is chosen randomly

from the distribution exp (−1
2
Π2). Then the Hamiltonian equations of motion (Equation (4.19)) are solved

using a numerical integration scheme, because this highly coupled system of partial differential equations

cannot be solved analytically. To preserve detailed balance, one uses symmetric symplectic integrators, which

guarantee reversibility and volume-preservation [85]. The simplest example is the leap-frog method, where

the updates are performed in the following way:

1. U0 = {Uµ(x)} and Π 1

2

= {Πµ(x)} − ǫ
2
∂H
∂U
∣τ=0

2. Ui = Ui−1 + ǫ
∂H
∂Π
∣τ=i− 1

2

and Πi+ 1

2

= Ui − ǫ
∂H
∂Π
∣τ=i− 1

2

(for i = 1, ..., n − 1)

3. Un = Un−1 + ǫΠn− 1

2

This way of alternately updating the gauge fields and the canonical momenta is superior to a standard

Euler-integration scheme, which has errors of O(ǫ) while the leap-frog method has errors of O(ǫ2) [35]. Also,

methods up to fourth order [86] are used to further reduce numerical deviations. Of course one can never get

rid of all deviations caused by the numerical integration, so after a trajectory with N steps and a step size of

ǫ = 1
N

the Hamiltonian has changed by ∆H. Since configurations should be sampled according to exp (−H), a

Metropolis step can be included to set the new configuration either to Un or back to U [35, 72].

There is one further difficulty that has to be discussed. When including fermions the overall action is given by

S = Sg[U] − log detM[U], (4.20)

where Sg[U] is a local and computational cheap function but detM[U] is not. So computing the force ∂H
∂U

in

every step is still an extremely costly procedure. So one uses a trick called pseudo-fermions. As one might

remember the determinant originates from a Gaussian integral of Grassmann variables

detM = ∫ [Dχ][Dχ̄] exp (−χ̄Mχ) . (4.21)

A similar expression can be given by using complex numbers (if the matrix is Hermitian and positive definite):

detM =
1(2π)n ∫ [Dψ][Dψ†] exp (−ψ†M−1ψ) . (4.22)

Especially for small changes in the Matrix M , it could be shown that with a random vector ψ =Mφ where φ

is chosen from the distribution exp (−φ̄φ)
detM[U]
detM[U ′] = exp (−ψ†(M[U] −M[U ′])ψ) (4.23)

is a very good estimator, whose uncertainties do not produce a significant systematical deviation in the

distribution of the measurements. So before each trajectory, the ψs are drawn properly and the Hamiltonian

is replaced by

Hpseudo
=
1

2
Π2
+ Sg[U] + ψ†M−1ψ. (4.24)

Of course there is still some effort necessary to compute the expression ψ†M−1ψ and it derivative with respect

to the gauge fields in each step but this can be done using a conjugate gradient algorithm [87] which bounds

the computational costs compared to a Gaussian solver.
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The HMC algorithm is also useful to be applied in pure gauge theory, whenever the action is modified in a

way that local changes of the link variables produce global changes of the action [77].

4.3 Rooting

We still have to clarify the issue that the staggered Dirac operator has three unphysical zero modes. In

principle they can be interpreted as flavors, but in this case all flavors need to have the same mass, and since

mc ≈ 580 ×mu one might be convinced that this is no proper assumption to simulate QCD. To gain a better

understanding of this let us add another set of four quarks to the theory:

S = Sg[U] + χ̄1Mχ + χ̄2Mχ. (4.25)

After integration of the Grassmann-fields, this will change the partition function to

Z8 quarks
= ∫ [DU] exp (−Sg[U]) × (detM)2 . (4.26)

It can be concluded that doubling the number of quarks of the same kind, will square the determinant in the

partition function. In the same way the number of quarks can be reduced by a factor of four by using the

fourth root of the determinant:

Z1 quark
= ∫ [DU] exp (−Sg[U]) × (detM)1/4 . (4.27)

This procedure was established in [88], highly criticized in [89], discussed in [90] and used in many cases [19,

20].

Now the problem appears that there occur powers of M unequal to one in the Hamiltonian:

Hpseudo, rooted
=
1

2
Π2
+ Sg[U] + ψ†M−αψ, (4.28)

with α being e.g. 1
4
. There are several ideas to deal with this issue. First is to use the R-algorithm, which

rewrites the determinant as an effective action

detMα
= exp (α tr logM) = exp (−Seff) , (4.29)

where the parameter α ∈ R can be chosen without any constraints. The problem with this algorithm is the

computation of the force especially the gradient of the effective action, that is proportional to trM−1 ∂M
∂U

and

thus requires a full inversion of the matrix M . This is nearly impossible due to the enourmous size of the

matrices in lattice QCD. Therefore, estimations are needed that include an additional O(ǫ) contributions

to the Hamiltonian. Through non area-preserving integrators, this error can be reduced to O(ǫ2). In this

case the detailed-balance condition is not fulfilled, so the Metropolis step is not allowed. Therefore, the

measurement will have O(ǫ) corrections that have to be extrapolated to 0, which is not done usually.

Another choice is the Polynomial HMC (PHMC)-algorithm which tries to approximate Mα by a polynomial

p in M :

detMα
= ∫ [Dψ][Dψ†] exp (−ψ† p(M)ψ) . (4.30)

This algorithm does not have the problem of the R-algorithm but the degree n of the polynomial has to be

chosen at O(100 − 1000) as one needs to save at least n/2 vectors at once, which increases the memory cost.

In addition, comparatively large rounding errors can appear.

The current state-of-the-art choice is the rational HMC (RHMC)-algorithm which approximates Mα using a

33



Simulation of lattice gauge theories
Smoothing techniques

rational function

r(M) = n

∑
i=1

αi(M + βi)−1 (4.31)

An advantage is that the inversions for all βi can be done simultaneously so that no extra inversion time is

required for the molecular dynamics evaluation [91]. In addition, n is roughly of order 20, which is much less

than what is needed for polynomials [92].

4.4 Smoothing techniques

Plain gauge configurations usually provide a lot of ultra-violet noise. This means there are local fluctuations

in the gauge links that can affect the condition number of the fermion matrices, the scaling of the observables

at different lattice spacings, chiral symmetry- and taste-breaking effects. To reduce this noisy contributions,

one can smear the gauge fields such that the high-energy modes are reduced.

In addition, also the sources for fermionic observables can be smeared to change the contribution of different

modes in the correlation function [20].

4.4.1 Gradient flow

Gradient flow was used first in 2009 in the context of trivializing maps [93] and applied one year later in the

context of scale setting [94]. The main idea is the local minimization of the gauge action density including the

flow time t (not to be confused with the Euclidean time tE or the Monte-Carlo time τ) as a fifth dimension

and solving the partial differential equation

dV

dt
= −g20

∂S

∂V
V (4.32)

V (t = 0) = U, (4.33)

where ∂S
∂V

is the su(3)-valued derivative of the action with respect to the gauge links [94]. The energy density

measured on the configurations V can be computed using perturbation theory:

⟨E⟩ = 3(N2
c − 1)g2

128π2t2
(1 + c̄1g2 +O(g4)) (4.34)

c̄1 =
Nc(113 L + 52

9
− 3 log 3) −Nf(23L + 4

9
−

4
3
log 2)

16π2
(4.35)

g is the renormalized coupling and L = log(8µ2t)+γE . µ is the energy scale with γE being the Euler-Mascheroni

constant. Here, the energy density E is defined using the clover definition of the field strength tensor [35, 93]:

E =
1

V ⋅ T
∑
x

FµνFµν

Fµν =
−i

8
(Qµν −Qνµ)

Qµν = Pµ,ν + Pµ,−ν + P−µ,ν + P−µ,−ν

(4.36)

A visualization of the clover is given in Figure 4.1. From this it could be derived that ⟨t2E⟩ is independent of

the gauge coupling at leading order. At higher order this invariance is broken, but the violation vanishes in

the t→∞ limit. LÜscher suggested to consider the flow time t0 defined as

⟨t2E⟩∣t=t0 = 0.3 (4.37)
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to define a quantity that proportional to a2 in order to define the spacing of a lattice in dependence of another

gauge field.

This procedure is called Gradient Flow. If we choose S[U] in the flow equation (4.32) to be the Wilson gauge

action (as it was done by Lüscher), it is called Wilson flow.

In case of the Wilson flow (which is a very common choice) the following equation is solved:

dVµ(n)
dt

= −g20 (Psu(3)(Sµ(n)V †
µ (n)))Vµ(n) (4.38)

Vν(m)∣t=0 = Uν(m) ∀ν,m. (4.39)

Here, Sµ(n) is the sum of the staples surrounding the link Vµ(n) at the same flow time as the link Vµ(n).
Psu(3) denotes the projection operator on the Lie algebra su(3) of anti-Hermitian traceless 3× 3 matrices and

is defined via [35, 48]

Psu(3)(A) = A −A†

2
−
1

6
Tr{A −A†}. (4.40)

This formulation comes along with O(a2) discretization effects that are caused by cut-off effects of the same

size in the definition of the Wilson gauge action. However, in Section 2.7 it was already mentioned that the

gauge action can be modified by including larger loops. This was done first by Sint and Ramos, who called

this modified flow the “Zeuthen flow” [95, 96]. In the studies done in this work we use three different versions

of the Zeuthen flow. All of them are based on the flow equation

dVµ(n)
dt

= −g20 (1 + 1

12
∇
∗

µ∇µ) ∂SLW[V ]
∂Vµ(n) Vµ(n) (4.41)

Vν(m)∣t=0 = Uν(m) ∀ν,m (4.42)

Here ∇µ and ∇∗µ denote the gauge covariant forward and backward derivatives on the lattice, respectively.

These operators are defined as

∇µφ(n) = Uµ(n)φ(n + µ̂) − φ(n), (4.43)

∇
∗

µφ(n) = φ(n) −U†
µ(n − µ̂)φ(n − µ̂). (4.44)

The three types that we call unimproved clover (uc), improved clover (ic) and Symanzik (sy) differ by their

definition of the energy density. The uc uses the clover based energy density from Equation (4.36) that is

also used for the Wilson flow. For the ic, clover and plaquette field strength tensor are added in a way that

removes all of the O(a2) artifacts. The third type sy is defined with the Lüscher-Weisz improved energy

density [50], thus, it also got rid of all O(a2) contribution. However, it has different O(a4) contributions than

the improved clover type.
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Pµ,ν(n)

P−ν,µ(n)

Pν,−µ(n)

P−µ,−ν(n)

Figure 4.1 Illustration of the clover term used to define the field strength tensor on the lattice [97].

4.4.2 Smearing of the gauge field

There are different approved methods for gauge smearing like APE2 [98], HYP3 [99], HEX4 [100] and

stout5 [101]. In this thesis I will only consider the latter one, which is nothing more than a gradient flow on

the Wilson action using a simple Euler integration scheme. Usually a few steps of stout smearing nsmear is

applied and for each step of stout-smearing the following procedure is done: For each link the weighted sum

of all staples [37] surrounding the link is computed:

Cµ(x) = ∑
ν≠µ

ρµν (Uν(x)Uµ(x + ν̂)U†
ν(x + µ̂) −U†

ν(x − ν̂)Uµ(x − ν̂)Uν(x − ν̂ + µ̂)) . (4.45)

In principle ρµν can be chosen arbitrary but in practice it is often set constant as [19, 102]

ρµν = ρ ∼ 0.1. (4.46)

These weighted staples are multiplied on the adjoint of the gauge links

Ωµ(x) = Cµ(x)U†
µ(x) (4.47)

and projected on the Lie algebra of the gauge group:

Qµ(x) = i

2
(Ω†

µ(x) −Ωµ(x)) − i

2Nc

Tr (Ω†
µ(x) −Ωµ(x)) . (4.48)

If now U
(n)
µ (x) is the gauge field after n applications of stout smearing and Q

(n)
µ (x) is the algebra-element

Qµ(x) computed using U (n)µ (x), then

U (n+1)µ (x) = exp (iQ(n)µ (x))U (n)µ (x). (4.49)

In the limit ρ→ 0, nsmear →∞ and ρnsmear = t the Wilson flow at flow time t is restored [103, 104].

Usually a few steps of smearing are applied to the gauge field before computing fermion matrices to reduce

taste-breaking effects (staggered fermions [19]) or chiral symmetry breaking effects (Wilson fermions [105]).

2Named after the APE (Array Processor Experiment) collaboration
3Named after the hypercubic structure of this method
4Short for hypercubic exponential
5“Refers to their thick-bodied nature from the large brew of paths used in their formation (coined in a Dublin public

house).” [101]

36



Simulation of lattice gauge theories
Smoothing techniques

Also smearing (or the gradient flow) can be applied before measuring the topological charge

Q =
1

32π2
∑
x

ǫαβγδF
αβ(x)F γδ(x) (4.50)

which reduces UV-fluctuations that dominate the result [77, 106].

4.4.3 Smearing of the fermions sources

Not only the gauge fields can be smeared but also the fermion sources. According to Equation (4.3), fermionic

operators are linear combinations and product of elements of the inverse fermion matrix. Usually it is not

feasible to compute M−1 directly but what is done is to compute the matrix elements by solving the linear

system

ξ =Mη (4.51)

for some random sources ξr (r = 1, ...,Nsource) that fulfill the condition [35]

⟨ξTr ξs⟩ = δrs. (4.52)

For example, wall sources, ξt0(x, t) = 1
NxNyNz

δt,t0(−)r(x) with r(x) being either 0 or 1 randomly for each

lattice site, but also point sources ξt0,x0
(x, t)δt0,tδx0,x can be taken into account. To change the contributions

of different excitation to the measurement of the correlation function, the point source can be smeared using

a three dimensional Laplace operator [107], thus the point source is replaced by

S(x) = (D2
+m2

sc)−1δx,x0
δt,t0 , (4.53)

where D2 is the three dimensional gauge-covariant Laplace operator on the lattice and msc is a parameter

that can be tuned. In the first publication [107] this parameter is set such that the smearing radius is

about three lattice spacings. According to the affiliation of most of the authors of the paper that introduced

this smearing method, it is called Wuppertal-smearing. A definition of Wuppertal smearing that is more

suitable for practical applications was given, for example, in [20]. For a given pseudo-fermion field ψ the

Wuppertal-smearing operator Ŵ can be applied, which is defined via:

[Ŵψ](x) = (1 − σ)ψ(x) + σ
6
∑

µ=1,2,3

(U3d
µ (x)U3d

µ (x + µ̂)ψ(x + 2µ̂) +U3d,†
µ (x − µ̂)U3d,†

µ (x − 2µ̂)ψ(x − 2µ))
(4.54)

Here U3d is the gauge field U after applying a few steps of three dimensional stout-smearing, i.e., ρ4µ = ρµ4 = 0

in Equation (4.45). σ is a parameter that modifies the strength of the smearing procedure and similar to

stout-smearing, Wuppertal-smearing can be applied a few times on the same source. In Equation (4.54), it

can be seen that only sites that differ by an even number of spacings in all directions are included. This is

done in order to not mixing contributions from different tastes.
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5 Data analysis

In lattice QCD, a large amount of data generated by Markow-chain-Monte-Carlo algorithms has to be

analyzed. Statistical and systematic effects play a major role here and have to be considered appropriately.

Fortunately, a broad range of mathematical concepts and methods exist that can be adopted for use in lattice

QCD. A small fraction of these methods will be explained in the following chapter.

5.1 Treating of statistical uncertainties

We analyze data from a N -element Markow chain that samples the distribution that is given by the path

integral. Due to the fact that only a finite subspace of the phase space is sampled, a statistical uncertainty is

introduced, which can be estimated in several ways.

The elements of the Markow chain, which are gauge configurations Ui in the context of lattice gauge theory,

are used to measure observables O[Ui]. The expectation value of the observable is given by the mean value

along the Markow chain:

O =
1

N

N

∑
i=1

O[Ui]. (5.1)

Of course, the distribution of the measurements has a width (standard deviation), which is given by the square

root of the variance of the distribution. The variance is given by the mean value of the squared difference of

the expectation value and the measurements, but the normalization is changed 1
N−1

because the number of

degrees of freedom is already reduced by one when computing the mean value. So the variance is given by

σ2
O =

1

N − 1

N

∑
i=1

(O[Ui] −O)2 . (5.2)

On a finite Markow chain, it is only possible to compute estimators for expectation value and variance. Of

course the true value is only reached in the case of N →∞. But in most cases it can be assumed that N is

large enough to give a realistic value for those quantities.

In a Markow chain it is unavoidable that consecutive elements are dependent in some way. This effect is called

autocorrelation and is a huge issue in simulation of lattice gauge theory. For example topological observables

are plagued by large autocorrelation effects near the continuum limit [77]. This affects the estimation of

expectation values and errors. The effect of autocorrelation can be quantified using the autocorrelation

function (ACF) that gives (up to a normalization of σ2
O) the correlation (statistical relationship) of two

measurements on the Markow chain that are separated by t steps:

ΓO(t) = lim
K→∞

1

K

K

∑
i=1

(O[Ui+t] −O) (O[Ui] −O) (5.3)

There is some circumstantial evidence that the autocorrelation is given by a sum of decaying exponential

functions Ai exp{ t
τi
} (τi > τi+1) [108]. The most relevant contribution to the autocorrelation effects originates

from the case i = 0 and we can assume that the other contributions are suppressed exponentially. It follows

that the autocorrelation time (i.e., the time until the autocorrelation reaches 1/e) can be estimated by the

integral of the ACF. Since we only have access to the ACF for integers t, the integral is replaced by a sum.

This quantity is called integrated autocorrelation time and can be written as

τint(O) = 1

2
+

∞

∑
t=1

ΓO(t)
ΓO(0) =

1

2

∞

∑
t=1

ρO(t), (5.4)
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with ρO(t) = ΓO(t)
ΓO(0) being the normalized autocorrelation function. In general, one has N <∞, thus it is not

possible to compute the whole series, but from some point the ACF is dominated by noise. A simple In this

case, it is usual practice to stop the summation as soon as ΓO(t) < 0.

The error of the normalized autocorrelation function can be computed via

δρO(t) =
¿ÁÁÀ 1

N

W

∑
m=1

(ρ(m + t) + ρ(m − t) − 2ρ(m)ρ(t))2 (5.5)

using the convention ρ(−t) = ρ(t)[109, 110].

With this proper estimation of autocorrelation effects it is finally possible to estimate the error on the mean

value:

δO =

√
2σ2

Oτint(O)
N

. (5.6)

For fully uncorrelated measurements equation (5.4) will give an integrated autocorrelation time of 1
2
. Therefore,

the naive error on the mean values is given by

(δO)naive = σO√
N

(5.7)

and can serve as a lower bound for the error on the primary observable [108–111].

5.1.1 Blocking

If a set of data has to be analyzed, blocking is a common strategy. It is done via replacing a subset of the

data whose constitutions are similar in some parameters by their mean value [112]. This helps to estimate

the statistical uncertainties properly. In the context of Markow chains one often blocks data that are related

by autocorrelation effects. This is done by choosing b ≈ 2τ and making blocks of length b in the Markow

chain, where τ is the autocorrelation time of the observable. The length of the chain then reduces from N

to N/b, so one has to take care that b is a divisor of N . If this is not the cases, one can discard some on

the measurements. Afterwards the blocks can be treated as independent measurements and the error can be

computed naively (compare equation (5.7)). The blocking procedure is sketched in Figure 5.1.
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Figure 5.1 Visualization of blocking procedure.

Of course the choice of τ is not unambiguous. Typically, one chooses τ such that it is larger than the integrated

autocorrelation time of a quantity with large autocorrelation effects [19], for example the topological charge,

which has shown to have dominating autocorrelation times [75–78, 113].
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Another way to estimate a proper value for b is measuring the variance σ2 of certain observables in dependence

of b. If one finds a region where σ2
∝

1
b

one can choose a b from this region for an appropriate block size [35].

A disadvantage is that a pure blocking procedure is unpractical when computing the error of secondary

observables, i.e., f(O). In this case methods like Gaussian error propagation or automatic differentiation [114,

115] have to be applied, which cannot be generalized easily to arbitrary secondary observables [35]. Therefore,

one can use one of two other methods: Bootstrap and Jackknife.

5.1.2 Bootstrap resampling

The method of bootstrapping uses the assumption that the sample of measurements, that we have access

to, is representative for the whole set of possible measurements. So one draws (with replacement) set with

N elements (the same number as there are measurements in total) out of the sample and computes the

corresponding mean value. This procedure is done B times. These B mean values can be either used to

compute the error on the primary observable by calculating the standard deviation of the bootstrap samples

or they can be used to compute secondary observables by evaluating f(Ôi) as shown in Figure 5.2. The error

on the secondary observable can again be computed with the standard deviation.

To suppress autocorrelation effects one can also use a blocked bootstrapping. This means that a blocking

procedure is applied to the data. The resulting mean values of the blocks are than sampled using the

bootstrapping procedure [116].
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Figure 5.2 Visualization of bootstrap resampling.

5.1.3 Jackknife resampling

An alternative to the bootstrapping method is the Jackknife resampling, which is often referred to as

“linearized bootstrapping”. The Jackknife samples are constructed in the following way: To construct the

first sample all measurements except for the first one are averaged, for the second sample all measurements

except for the second are averaged and so on. Again on each Jackknife sample (and of course on the central

sample), one can evaluate secondary observables f(O). The value of the central sample can again be taken as

the central value of the observable while the error can be computed from the standard deviation of the J

Jackknife samples according to Figure 5.3 [117, 118].

Similar to the Bootstrapping procedure one can include a blocking procedure before computing the Jackknife

samples to handle autocorrelation effects. This also the method that is used in the papers the second part of

this thesis is based on [20, 26, 119, 120].
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Figure 5.3 Visualization of Jackknife resampling.

5.2 Treating of systematic uncertainties

In the context of lattice gauge theory systematic errors are the uncertainties that do not originate form the

Monte-Carlo evaluation of the path integral. Typically they are of the same order of magnitude than the

statistical error [19, 20, 26]. Systematic errors can have different origins. Typically one of most dominant

error sources is the choice of different fitting methods and models. Fits are used to extrapolate the data to

the continuum and the physical point (at which the simulation parameters take the physical values), but

they also can be used to estimate the energies from correlation functions. In general, one does not know the

correct model or method so a variety of different forms is used and the corresponding systematic error is

estimated from the width of the resulting distribution.

Another dominant source of systematic errors is the setting of the scale and the physical point. Typically,

a set of physical observables is computed in the lattice simulation and then fitted to the experimental (or

physical) value of the corresponding observable. Of course every uncertainty in the physical value translates

in an uncertainty in the final result. So what one typically does it to perform the analysis not using the

exact physical value, but with the upper and lower 1σ-deviations. From the spread of the two results, the

corresponding systematic error can be estimated [19].

Lattice computations are always done in a finite volume, so there are finite volume effects that have to be

accounted for. Fortunately, the finite volume effects are often small enough that a conservative estimation

of the error associated to the finite volume correction does not dominate the overall error of the analysis.

Of course, there are even more sources of systematic uncertainties like the strong-isospin breaking effect, or

effects from other interactions like QED.

5.3 Fitting procedure

A fit is a method to tune the parameters of a mathematical model in such a way that it aligns with the data

from an experiment or a simulation. Usually fitting is done by minimizing some quantity for example the

likelihood or the χ2.

Independent variables, for example lattice spacing a (in case of continuum extrapolations) or Euclidean

time t (in case of mass/energy plateaus) will be labeled by xi within this section. Dependent variables

(observables such as masses or decay constants) are labeled by yi. The fit models are given by function fi

(mostly polynomials or exponential functions in x) and the corresponding parameters that have to be tuned

are called ci.
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5.3.1 χ2

The standard way to fit a model to a set of measurements is the minimization of the χ2. For a proper

definition we need to generalize the concept of the variance mentioned in equation (5.2): The covariance

matrix of a set of statistical data yi is given by

Covij =
N

N − 1

N

∑
i=1

(yi − yi) (yj − yj). (5.8)

The ith diagonal element is given by variance of the quantity yi. The off-diagonal element (ij) of Cov describes

how the statistical fluctuation of yi affect the statistical fluctuation of yj . In some contexts it might be also

useful to remove the statistical fluctuation from this expression and only to look at the statistical correlations

of certain observables. Therefore, one can define correlation matrix [116, 121]

Corjk =
Covjk

σiσj
(5.9)

by normalizing the covariance matrix with the standard deviation of the corresponding line and column. If

one explicitly wants to ignore all effects originating of correlation effects, one can set all off-diagonal elements

to 0 and receives

Σij = σ
2
i δij . (5.10)

In this case, the correlation matrix will given by Corij = δij . To fit a model f depending on parameters

c = (ci)i and independent variables x = (xi)i to a set of dependent variables y = (yi)i, one minimizes the χ2

of the model and the data set. Generally spoken, the χ2 is the relative squared difference of the model and

the dependent variables. Mathematically spoken, the correlated χ2 is given by [116, 121]

χ2
corr(c) =∑

i

(yi − f(xi, c))Cor−1ij (yj − f(xj , c)). (5.11)

Furthermore, the uncorrelated χ2 can be defined by letting out the off-diagonal elements in the covariance

matrix [121]:

χ2
uncorr = (yi − f(xi))Σ−1ij (yj − f(xj)) (5.12)

Using standard optimizers one can tune the parameters ci such that the corresponding χ2 is minimized.

Assuming yi is chosen from the distribution N (f(xi, c), σyi
) the χ2 is distributed as the sum of squares of

standard normal distributed random variables. The resulting distribution is therefore called the χ2-distribution,

which is given by

pχ
2

n (x) = 2−
n
2

Γ (n
2
)xn

2
−1 exp(−x

2
) . (5.13)

Here, Γ denotes the Gamma function that generalizes the factorial to the complex plane. Within this context

n is often referred to the reduced number of degrees of freedom, which is given by the difference of the number

independent variables nfit and the number of parameters nparam. Also the expectation value of pχ
2

n is given by

n. Therefore, often the reduced chi-squared χ2

n
is used, whose expectation value is one. This can be used for

a quick check if the fitting procedure is properly or if the model or the set of variables have to be adjusted.

When dealing with correlated fits another issue occurs: The covariance matrix is made from a (comparatively

small) set of Jackknife samples and therefore might be ill-conditioned, which means that condition number,
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i.e., the ratio of smallest and largest eigenvalue of the covariance matrix is large in some sense. So there might

be small modes, that are nothing but noise, which dominate the χ2 due to the inversion of the covariance

matrix. Usually there are two simple ways to deal with this problem: First, one can reduce nfit. Since the

covariance matrix is a nfit × nfit matrix, there are less modes and the covariance matrix can be estimated

properly even with a small set of samples. Of course, the removal of some of the data points has to be justified

in some way. For example in a plateau fit (which can be used to measure mass states) the points that go in

to the fit should be equally distributed along the fitting window.

Furthermore, one can also perform a regularization on the covariance matrix. Basically, this is nothing else

than moving the smallest eigenvalues up to a certain bound. In detail, one has to compute the singular value

decomposition (SVD) of the covariance matrix

Cov = UαV (5.14)

where U and V are unitary matrices and α is a real diagonal matrix, whose diagonal elements are called(αi)i=1,...,nfit
with αi > αi+1. A minimal value for the singular values αmin is set, for example αmin = 10

−8α1.

Whenever a singular value αi is smaller than αmin or smaller than twice its statistical error it is replaced by

αi−1, otherwise it is simply replaced by ∣αi∣. Note, that it is important to proceed in increasing order in i to

get fully correct results. Finally, the tweaked singular values are inverted and the singular value decomposition

is inverted. Since the smallest modes are removed, noise will not dominate the χ2 of the correlated fits. A big

advantage compared to the first method is that none of the data points has to be removed, which will give a

more reliable result [122, 123].

5.3.2 Evidence for the quality of fits

Of course, fits can have different qualities. A set of data points with a strong curvature cannot be described

properly with a straight line. On the other hand, fitting data that are within errors on a straight line with

a high-order polynomial can introduce unwanted high deviations in the extrapolation regime (over-fitting).

Thus, there are indeed fits with different qualities. However, some methods are needed to quantify the quality

of a fit. As mentioned before the expectation value of the χ2-distribution is expected to be equal to the

number of degrees of freedom, but the quantity χ2/n is not a good parameter to describe the quality. For

example this quantity tends to overvalue fits with too many parameters. But fortunately there are better

alternatives.

Kolmogorow-Smirnow test

The Kolmogorow-Smirnow (KS) test is a parameter free check to test if a cumulative probability density

function F0 is consistent with a discrete test sample {Xi}i=1..n. To perform a KS test, an empirical distribution

function

F̃n(x) = 1

n

n

∑
i=1

θ(Xi − x) (5.15)

is defined. The null-hypothesis states that F0 is the correct function to describe the distribution of the Xi.

The supremum of the differences of F0 and the empirical distribution function

Dn = sup
x∈R

∣F̃n(x) − F0(x)∣ (5.16)
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is called the KS-statistic. For a given significancy value α, the hypothesis is accepted if the KS-statistic is

smaller than

dα =

√
−

1
2
log α

2

n
, (5.17)

which is a useful approximation of the cumulated Kolmogorow distribution.

dα also serves as the probability density function of the empirical distribution function. Also, one-sided

KS-tests can be defined in order to test if the empirical distribution function is above

Du
n = sup

x∈R

∣F̃n(x) − F0(x)∣ × θ(F̃n(x) − F0(x)) (5.18)

or below

Dl
n = sup

x∈R

∣F̃n(x) − F0(x)∣ × θ(F0(x) − F̃n(x)) (5.19)

the distributions function from the null-hypothesis.

P-value

The P-value is a measure used in statistics to quantify the strength of evidence against a null hypothesis. It

indicates how likely it is that the observed data (or even more extreme data) occurs given the null hypothesis.

A low P-value means that the observed data is unlikely under the null hypothesis, which calls the null

hypothesis into question. The P-value is a number between zero and one. Typically one chooses a lower bound

from which the fits are trusted [124, 125].

The most common example is the P-value according to the χ2-distribution of a fit. It tells how likely it is

that another fit with the same degrees of freedom is worse than the fit from the null-hypothesis. In practice

this means that one has to compute the value of the cumulative distribution function of the pχ
2

n probability

density at the χ2 of the null-hypothesis. So the P-value (for the χ2-distribution) can be computed by dividing

the incomplete Γ-function with argument n
2

and χ2

2
divided by Γ (n

2
):

P (n,χ2) = Γ(n
2
, χ

2

2
)

Γ (n
2
) =

∫ ∞χ2/2 dt t
n
2
−1e−t

∫ ∞0 dt t
n
2
−1e−t

(5.20)

Q-value

Bruno and Sommer suggested not to use the P-value to estimate the quality of a fit but to replace Equa-

tion (5.20) by another one [121]. Usually the name Q-value is also used for what I call the P-value. Within in

this thesis, I will use the Bruno/Sommer definition

Q(ν,χ2) = ∫ dndatay p(y)θ (χ2(y) − χ2) , (5.21)

p(y) = exp (−1
2
χ2(y))√(2π)ndata detC

, (5.22)

where χ2(y) is the (not optimized) χ2 for the data y compared to the optimized fit and C is the covariance

matrix of the given data. Using substitutions this can be reformulated to

Q = ∫ dndataz (2π)−ndata
2 exp(−1

2
∥z∥2) × θ (zT ⋅ ν ⋅ z − χ2) , (5.23)
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where ν is a symmetric positive definite matrix, that is defined by

ν = C1/2W (1 −P)WC1/2, (5.24)

with W 2 being either the covariance matrix (in case of correlated fits) or the matrix with the inverse squared

errors on the diagonal (in case of uncorrelated fits). P is the projection on the nfit dimensional subspace

that is spanned by the image of W . It was mentioned before that non-positive eigenvalues of the (measured)

correlation matrix can appear, due to noise in the Jackknife estimation. So if λi (i = 1...nν ≤ n = ndata − nfit)

are the positive eigenvalues of ν the Q-value can be given as [121]

Q(χ2, ν) = ∫ ⎛⎝
nν

∏
i=1

dzi e
−

1

2
z2

i√
2π

⎞⎠ × θ⎛⎝
nν

∑
j=1

λjz
2
j − χ

2⎞⎠ . (5.25)

In general it is not possible to compute the Q-value analytically but a Monte-Carlo evaluation of the integral

with O(105) evaluation is precise enough to give a good estimator for the Q-value.

Akaike-Information criterion (AIC)

Usually, a lot of different fit models is used to describe the data from the simulation. Of course one could use

the model with the best P /Q-value for the final result. But it is still possible that the best model is wrong.

So a better approach is to sample a lot of different function and compute their mean value using weights that

respect the quality of the fit in some way. Akaike came up with the following approach [126]: A fit through

ndata data points with nfit fit parameters and an optimized χ2, has a weight of

w =N exp(−χ2

2
− nfit + ndata) . (5.26)

The normalization factor N is chosen such that the sum of all weights is equal to one. In [19] it was suggested

to modify this weight by replacing nfit by nfit

2
so that the overall weight is given by

w =N exp(−χ2
+ nfits − 2ndata

2
) . (5.27)

With this approach, fit models with many parameters are suppressed. This prevents from including models

that suffer from over-fitting.

5.4 Statistical and systematic covariances

It is not trivial to compute systematic and statistical errors (and covariances) from the data. As mentioned in

the previous sections, Ns different systematics are assigned to the corresponding weights and the statistical

effects are considered using NJ blocked Jackknife samples and the central sample. To compute the total

error and in addition separate it into its statistical and systematic contribution, the following approach

was suggested in [19]: For each systematic s = 1...Ns, the statistical contribution is approximated by a

Gaussian function with the mean value µs taken from the central sample and the width σs calculated from

the Jackknife samples. All of these Gaussian functions are added using their respective weights. Since this

might be impractical for a large amount of systematics, the Gaussian functions are put in a histogram. This

new total histogram again has a mean µtot and a width σtot. The variance σ2
tot is the sum of the variance of

the systematics σ2
sys and the statistical variance σ2

stat. To figure out how the total variance is divided into

these two values, the procedure is repeated by using
√
λσs as the width for the different systematics. The
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resulting width of the histogram is called σ2
tot,λ. Then, the following system of linear equations can be solved:

σ2
sys + σ

2
stat = σ

2
tot

σ2
sys + λσ

2
stat = σ

2
tot,λ

, (5.28)

The total variances and λ are known so the system can be solved for the statistical and systematic variances [19].

It is also interesting to compute statistical and systematic covariances of two observables. Of course one

could fill a two dimensional histogram instead of a one dimensional one, but from experience one can know

that this gets expensive in terms of computation effort because the overall number of bins can easily exceed

a million if for the one dimensional case a few thousands are used. But luckily there is an easy formula to

compute the covariance of two observables

cov(Y1, Y2) = 1

2
(σ2

Y1+Y2
− σ2

Y1
− σ2

Y2
) . (5.29)

Thus, if the variances of Y1 and Y2 are already known the covariance can be calculated with the same

computational costs as the variances [127]. The remaining problem is the computation of the variance of

Y1 + Y2. If both of the quantities come from the same fit and therefore are associated to the same weights,

it is very easy. For each systematic s, one chooses (Y1 + Y2)s = Y1s + Y2s for all statistical samples and the

weights ws. But if both quantities have completely unrelated systematics, a different approach is needed. For

example, one can draw a systematic s1 for Y1 according to the weights {w1
s} of the systematics of Y1. The

same is done for Y2 and then Y1s1 + Y2s2 is included in the histogram with the weight one. This procedure

has to be repeated a certain amount of times D. D can be estimated by setting Y2 = Y1. Then it can be

checked for which value of D the desired precision is reached, i.e., if the result is compatible with the variance

from the standard procedure. If the two observables share some (flat-weighted) systematics that are aligned

to an external input like different choices of a scale setting variable one can respect this correlation in the

following way: Let us call these systematics s′ and the remaining s′′1 resp. s′′2 . Due to the flat-weighting, all

systematics s′ have the same weight. Then it is looped over s′ for both observables parallel and from the

other observables s′′1 and s′′2 it is chosen according to the weight. Th Gaussian functions in the histogram are

weighted with one.

5.5 Generalized Eigenvalue problems

In lattice QCD, a correlation function of an operator O takes the form

CO(t) =∑
i

∣aOi ∣2 exp(−EO
i t), (5.30)

where EO
0 < E

O
1 < E

O
2 ... are the different energies contributing the operator [35, 37]. In many cases all states

above the ground state1 are exponentially suppressed after a certain time tmin so that for t > tmin it can be

assumed that the correlation function only consists of the ground state’s exponential function. But this is not

always the case and the following problem can appear: The coefficients of the lowest energy states can be very

small which will lead to the problem that tmin is very large. Therefore, it might already be in a region where

the signal-to-noise ratio is too bad to get the desired precision. This can be the case if the vector-correlator,

which has small contributions from some two-pion systems that can have lower energies than the mass of the

vector correlator [119, 128] is considered.

Luckily, there is a general strategy to solve this problem. To resolve NE different energy states, one needs NE

operators with this energy states but contributions of different strengths. Basically this means that we look for

1The ground state is the state with the lowest energy, i.e., i = 0.
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a set of operators {Oj}j=1...NE
that have the same quantum numbers. Now, not only the correlation functions

Cj(t) = ⟨O†
j(t)Oj(0)⟩ have to be measured but also the cross-correlation functions Cjk(t) = ⟨O†

j(t)Ok(0)⟩ [129].

Thus, the correlation function C = {Cjk}j,k=1...NE
with

Cjk(t) =∑
i

(aji )∗aki exp(−Eit) (5.31)

can be used to extract the modes exp(−Eit) using a Generalized Eigenvalue Problem (GEVP). Now a

parameter t0 is fixed in order to have

Cjk(t) =∑
i

[(aji )∗aki exp(−Eit0)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Bi={bjki }jk

× exp(−Ei(t − t0)). (5.32)

Each matrix Bl is constructed to be the outer product of a vector al with itself. Therefore, it is Hermitian

with rank one, and thus it has only one eigenvector vl with a non-zero eigenvalue. This eigenvector is

given by (vl)m = aml . It cannot be assumed that the vectors {vl} build an orthogonal system, but we can

generally expect that v†
l vk is small compared to v†

l vl if k ≠ l. Thus, the multiplication of C(t) with vl can be

approximated in the following way [130, 131]:

C(t) ⋅ vl ≈ Bl ⋅ vl × exp(−El(t − t0)), (5.33)

or, as it is written usually:

C(t)vl ≈ λl(t, t0)C(t0)vl, (5.34)

λ(t, t0) = exp(−El(t − t0)). (5.35)

A GEVP can be solved by computing the eigenvalues and eigenvectors of C(t0)−1 ⋅ C(t). To extract the

functions λl(t, t0) for a fixed t0 one could solve the GEVP for all t. However, the apparent order of the

eigenvalues λl may differ from the true order due to statistical fluctuations and systematic errors (from the

approximation in Equation (5.33)). Therefore, it is better to extract the eigenvectors vl for one specific choice

of t0 and t, and then compute the eigenvalues via

λl(t, t0) = v†
l ⋅C(t) ⋅ vl. (5.36)
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6 Lattice techniques

In this chapter, I provide an overview of the lattice methods and techniques employed throughout this thesis.

Particular attention is given to the basic properties of our newly generated finest ensembles. In addition, the

extraction of energies and decay constants from correlation functions is explained. Furthermore, I present an

overview of finite-volume effects, QED corrections, and strong isospin-breaking contributions.

6.1 Action and ensembles

Gauge configurations are generated using a Symanzik improved [50] 4stout [101] one-link staggered action.

In total, there are 31 different isospin-symmetric ensembles at eight different lattice spacings. The masses are

scattered around the physical point, as shown in Figure 6.1. For the sea quark contributions, an additional

ensemble generated with the 4HEX staggered action [100] and the DBW2 gauge action [51] is used. A big

advantage of the 4HEX action compared to the 4stout action is that the taste breaking is much smaller,

which also reduces the associated discretization effects. However, simulations with the 4HEX action are more

likely to suffer from topological freezing at fine lattice spacings [77]. In Table 6.1 all of the isospin symmetric

4stout ensembles are listed. The lattice spacing a and the geometric extension given by L and T are chosen

such that the physical extension of the lattice is ∼ (63 ×9) fm4 for all of the ensembles. The charm quark mass

is not given in this table, however, it is set to 11.85 times the mass of the strange quark [19, 20, 133, 134].

Statistical errors are estimated with a blocked Jackknife procedure [112] with 48 bins (see Section 5.1.3).

Of course, it has to be checked that the autocorrelation of the observables is small enough, such that the

corresponding autocorrelation time is smaller than the block size. Otherwise the bins might be correlated and

the overall error will be underestimated. One expects autocorrelation to be stronger on finer lattices [77],

so it is sufficient to check the autocorrelation time on the finest ensemble (β = 4.3032). The time series of

the topological charge is shown in Figure 6.2 while the autocorrelation function and time of the pion and

kaon decay constants, the squared topological charge and the Wilson-flow based w0 and t0 scales can be

seen in Figure 6.3. The worst autocorrelation, that is observed, is the one from the squared topological

charge, the decay constants have a significant smaller autocorrelation time. Thus, it is only necessary to

check whether the autocorrelation time of the squared topological charge is smaller than the block size

on the finest ensemble. This condition is satisfied for all ensembles except one at β = 4.3032, which has a

relatively small number of trajectories, as shown in Table 6.1. Nevertheless, the autocorrelation time of the

observables of interest (decay constants and gradient-flow based scales) is significant smaller. Thus, we do not

have to take care of autocorrelation effects after the blocking procedure. The scaling of the autocorrelation

time of w0 is also considered, and it is shown that the critical scaling is proportional to a2 (see Figure 6.4).

The topological susceptibility approaches, in the continuum limit, the value reported in [135]. As already

mentioned in Chapter 3 different tastes come along with different hadron masses, so the pions get heavier

the more the locality of the spin-taste operator is violated. In the SU(4)-taste-symmetry group the tastes

can be labeled according {P,A,T, V,S}, which are the abbreviations for pseudo-scalar, axial-vector, tensor,

vector and scalar. In combination with the pseudo-scalar spin-structure this refers to a non-locality of the

spin-taste operator by 0,1,2,3 or 4 dimensions. The local operator (pseudo-scalar spin and taste structure) is

the lightest and called the Goldstone taste. The mass parameters are chosen such that the masses of these

mesons bracket the physical point in Figure 6.1. The taste breaking effects are quantified by

∆KS(ξ) =M2
π(ξ) −M2

π(P ),
δKS(ξ) = 2 (M2

η −M
2
π −∆KS(ξ)) . (6.1)
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Figure 6.1 Landscape plots of the ensembles used in this study. The pseudo-scalar masses Mll and Mss are given
in units of the w0-scale normalized to their physical value. Each lattice spacing is aligned with a different color
and the black point marks the physical point in the isospin-symmetric limit. The errorbars on the physical point
originate from uncertainties on the physical values of the pseudo-scalar masses and the w0-scale. Similar figures are
shown in [20, 132].
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Figure 6.2 Time series of the topological charge for ensembles with the finest and second finest lattice spacings.
The latter (“Monster”) is discussed in detail in our recent publication [20], while the (new) finest ensemble first
appears in [26]. Therefore, some details are investigated in this work.
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β a [fm] L × T ams ms/ml #confs SIB

3.7000 0.1315 48 × 64 0.057291 27.899 904
√

3.7500 0.1191 56 × 96 0.049593 28.038 315
0.049593 26.939 516

√
0.051617 29.183 504

√
0.051617 28.038 522
0.055666 28.083 215

3.7753 0.1116 56 × 84 0.047615 27.843 510
√

0.048567 28.400 505
0.046186 26.469 507

√
0.049520 27.852 385

3.8400 0.0952 64 × 96 0.043194 28.500 510
√

0.043194 30.205 436
0.040750 28.007 1503
0.049520 27.852 500

√
3.9200 0.0787 80 × 128 0.032440 27.679 506

0.034240 27.502 512
√

0.032000 26.512 1001
0.032440 27.679 327
0.033286 27.738 1450

√
0.034240 27.502 500

4.0126 0.0640 96 × 144 0.026500 27.634 446
0.026500 27.124 551

√
0.026500 27.634 2248
0.026500 27.124 1000
0.027318 27.263 985
0.027318 28.695 1750

4.1479 0.0483 128 × 192 0.019370 27.630 1155
0.019951 27.104 1605

4.3032 0.036 176 × 264 0.013751 27.630 857
0.014026 27.362 267
0.013751 26.825 841

Table 6.1 Ensembles used in this study. We also give the spacing, volume and mass parameters according to the
ensembles. Ensembles that are also used for strong-isospin-breaking (SIB) simulations are marked with a tick(

√
).

Further explanations on the SIB are given in Section 6.5.

53



Lattice techniques
Action and ensembles

0 10 20 30 40 50
0.0

0.5

1.0
ρ
f
π

τint. =3.7(0.8)

0 10 20 30 40 50
0.0

0.5

1.0

ρ
f
K τint. =3.9(0.8)

0 10 20 30 40 50
0.0

0.5

1.0

ρ
w

0

τint. =11.3(3.2)

0 10 20 30 40 50
0.0

0.5

1.0

ρ
t 0 τint. =10.4(2.9)

0 10 20 30 40 50

#traj./10

0.0

0.5

1.0

ρ
Q

2

τint. =14.6(4.3)

Figure 6.3 Autocorrelation functions of the kaon and pion decay constant and of the squared topological charge.
The autocorrelation function and time are estimated with methods explained in [109, 110]. Even though the x-axis
is given in units of trajectories of the HMC-algorithm, the ACT is given in units of measurements which is one
twentieth of ACT in units of trajectories.

10−3 10−2

a2/fm2

101

τ i
n
t(
w

0
) τ = 0.01 · (a/fm)−2.14 χ2/dof =1.8/2

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007

a2/fm2

0.00

0.05

0.10

χ
Q
/f
m

4

χQ

χQ ·m2
π,phys./m

2
π,ts
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The autocorrelation time of w0 scales approximately with 1/a2, while the topological susceptibility approaches the
limit that was estimated in [135]. After dividing out the taste-splitting of the taste-singlet pion mass [136] the
topological susceptibility is very flat in terms of the lattice spacing.
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Figure 6.5 The taste-violation ∆KS of two different tastes, the line shows an exact a4 scaling. The Roman
number labeling is done according to [137].

Here ξ denotes the different tastes (P ,A,T ,V or S), the η-meson is the meson corresponding to the λ8-element

of the eight dimensional irrep of the SU(3)F , i.e.,

η =
uū + dd̄ − 2ss̄√

6
. (6.2)

The taste splitting ∆KS is expected to scale proportional to a2αs(1/a)3 as already discussed in [20]. In this

study it is also shown that this behavior is somewhat similar to an a4 scaling, which is also true for the (new)

finest ensemble as it can be seen in Figure 6.5.

6.2 Gradient flow based scale setting

In Section 4.4.1 I already mentioned the scale t0 that is defined using the gradient flow, more specific the

Wilson flow, by figuring out the flow-time zero at which the equation T (t0) = 0.3 with T (t) = t2E(t) holds [93,

94]. t0 has a mass dimension of −1 and can be used to set the lattice spacing (the scale) according to

a =

¿ÁÁÀ t
phys
0

t0
(6.3)

with tphys
0 being 0.14292(104) fm for Nf = 2+ 1+ 1 and 0.14474(57) fm for Nf = 2+ 1. The values are averages

from estimations of different collaborations. The averaging procedure was performed by the Flavor Lattice

Averaging Group (FLAG) [138]. In 2012 the BMW collaboration suggested to use an alternative to t0 which

they called the w0 scale. It is defined similarly to the t0 scale, but this uses the value of T (t) with t being the

flow time, the w0 scale is defined as [139].

⟨t d
dt
[t2E(t)] ∣t=w2

0
⟩ = 0.3. (6.4)

In the original publication, the following reason for this proposal was given: The old function t2E(t) depends

only on energy scales larger than 1√
t
, i.e., if effects from small values of t appear that affect T (t), one

55



Lattice techniques
Meson mass and decay constant on the lattice

will find this affects all larger values of t. The w0 scale does not have this problem because it is defined

locally. By including the derivative of the defining function T (t), only effects around the energy scale 1√
t

are

considered [139]. In the first publication an Nf = 2 + 1 value for the w0 scale was computed:

w
phys
0 = 0.1755(18)(04) fm (6.5)

Thus, the scale setting variable had an uncertainty of roughly one percent of its value. Current state-of-the

art lattice computations on the other hand aim for even more precise results, so more accurate estimations

for the scale setting variable are required.

Unfortunately, it is not that simple to compute a new physical value of w0. Since it is a quantity with mass

dimension −1 the continuum limit cannot be taken (in the limit a→ 0 the lattice quantity w0 diverges). Before

taking the continuum limit we need to construct a dimensionless quantity. Usually, this is done by multiplying

w0 by a quantity of mass dimension one, whose physical value can be measured from experiments. A good

idea is to use a hadronic observable O where the non-QCD contributions are under control. The quantity

then Ow0 has a well-defined continuum limit, and w0 can be determined by dividing by the physical value of

O, with potential additional adjustments to account for QED effects or similar corrections, if necessary.

In general. two methods with different advantages are used. First, there is the mass of the Ω−-baryon that is

known to a very high precision from experiments (MΩ− = 1672.45(29)MeV [43]). The downside is that the

mass extraction of the Ω-baryon on the lattice is a demanding task. Second, there is the pion decay constant,

fπ, that can be computed relatively easily from the pion correlator on the lattice. However, the physical

value of the pion decay constant is somewhat problematic. While the pion decay width is known up to a very

high precision (2.5281(5) × 10−14MeV [140]), the radiative corrections play a significant role in the overall

uncertainty. Additionally, there is the still unsolved puzzle of the CKM unitarity that might be related to a

wrong estimation of ∣Vud∣, which is also a quantity that enters our w0 computation if the pion decay constant

is used.

6.3 Meson mass and decay constant on the lattice

The pseudo-scalar mesons on the lattice are already widely discussed in Chapter 3 and Section 6.1. In

order not to have to deal with taste-breaking effects, we use Goldstone or pseudo-scalar taste for the meson

operators.

Pab(x⃗, t) = ψ̄a(x⃗, t) (γ5 ⊗ ξ5)ψb(x⃗, t) (6.6)

Here a and b denote the flavor content of the quarks. They are either light (l) or strange (s) in most of the

sections. Whenever strong-isospin-breaking is mentioned a and b refer to up (u), down (d) or strange. The

correlator of the pseudo scalar is given by

Gab(t) = a3
L3
∑⃗
x

⟨Pab(x⃗, t)P †
ab(0⃗,0)⟩, (6.7)

which can also be written as

Gab(t) = ∞∑
i=0

(aie−Mit + bi(−)te−M ′

it) . (6.8)

The second summand is called parity partner oscillation [62] and is only non-vanishing if the two quarks have

a different mass. Thus, in our case the oscillation appears for the kaon but not for the pion. Since in the time

direction periodic boundary conditions are employed one gets propagation in backwards time direction and
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additionally contributions from the exponential modes that wind around the time interval N times:

Gab(t) = ∞∑
i=0

∞

∑
N=0

[ai (e−Mi(t+NT )
+ e−Mi(T−t+NT )) + bi(−)t (e−M ′

i(t+NT )
+ e−M

′

i(T−t+NT ))] (6.9)

Here T is the time-extend of the lattice. One usually assumes that Mi ≫M0 for i ≠ 0, therefore, all those

cases are exponentially suppressed and can be ignored, since their contribution is much smaller than the

statistical noise from the evaluation of the path integral. Using the closed expression for the geometric series

yields

Gab(t) = a0 e−M0t + e−M0(T−t)
1 − e−M0T

+ b0(−)t e−M ′

0
t
+ e−M

′

0
(T−t)

1 − e−M
′

0
T

(6.10)

= 2a0
cosh(M0(T /2 − t))
eM0T /2(1 − e−M0T ) + 2b0(−)t cosh(M

′

0(T /2 − t))
eM

′

0
T /2(1 − e−M ′

0
T ) . (6.11)

Even for the kaon no parity partner oscillation could be observed in our data. It can be assumed that M ′

0−M0

is sufficiently large such that the parity partner oscillation is suppressed at the time windows considered in

this study. The coefficient a0 is related to the pseudo-scalar decay constant by

fab = 2(ma +mb)√ a0

M3
0

⇔ a0 =
f2abM

3
0

4(ma +mb)2 . (6.12)

Putting this into Equation (6.11) yields

Gab(t) = f2abM
3
0

2(ma +mb)2
cosh(M0(T /2 − t))
eM0T /2(1 − e−M0T ) . (6.13)

Here ma and mb are the quark mass parameters of the flavors a and b. It has to be noted that the definition

of the decay constant is not unique but differs according to certain conventions. The prefactor 2 in Equation

(6.12) can be replaced by factor of 1 or
√
2 depending on the physicist’s choice. Nevertheless, this will not

affect the ratio of kaon and pion decay constants as long as it is done consistently.

The pseudo-scalar correlator is measured using our standard random source technique (a further explanation

is given in Section 10.2.2). From the correlator we extract the effective mass M0 and the effective decay

constant fab by using the following procedure: The mass is the curvature of the time dependence of the

correlation function. It can be computed using the local mass extraction formula:

M eff, loc(t) = 1

∆
cosh−1

G(t +∆) +G(t −∆)
2G(t) , (6.14)

where ∆ is some quantity that is fixed in physical units. In this study we use two different values ∆ ≈ 0.2 fm

and ∆ ≈ 0.4 fm to estimate the systematic errors from this discretization. Additionally, ∆ is always chosen to

be a multiple of 2a in order not to include artifacts from staggered oscillation.

Since it is also possible that our choice of the mass extraction formula includes a systematic bias, we also

include another one, the midpoint mass extraction formula

M eff, mid(t) = − 1

2∆
[cosh−1 G(t +∆)

G(T /2) − cosh−1 G(t −∆)G(T /2) ] . (6.15)

An example of the effective mass according to the midpoint formula from Equation (6.15) can be seen in

Figure 6.6 in the left panel. In this figure the effective mass is only shown for 1.2 fm ≤ t ≤ 4.0 fm. In general, it

can be expected that for smaller times the higher excited states from Equation (6.8) can be seen, therefore

the effective mass does not build a plateau (within errorbars) for smaller t. For larger t the signal-to-noise
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Figure 6.6 Left panel: Midpoint effective mass of the pion. The shaded regions denote the plateau windows
that are chosen according to Figure 6.9. Right panel: effective decay constant of the kaon, the plateau windows
are shifted by 0.5 fm according to the study in Figure 6.9. The correlation functions that belong to this data are
measured on one of the ensembles with β = 3.9200.

ratio of the effective mass can decrease [141], Nevertheless, for the pion this problem is not as bad [142] as

e.g. for the vector correlator [120] (see Chapter 10).

To get an expression for the effective decay constant we plug the effective mass into Equation (6.13) and

solve for f to get

f eff
ab (t) =

¿ÁÁÁÀ2Gab(t)(ma +mb)2
M eff

ab (t)3
eM

eff
ab
(t)T

2 (1 − e−Meff
ab
(t)T )

cosh(M eff
ab (t − T

2
)) . (6.16)

An example for the effective decay constant of the kaon can be seen in the right panel of Figure 6.6. To extract

a single value for the mass and decay constant respectively, one fits a plateau to the effective (time-dependent

quantity) by minimizing either the uncorrelated or the correlated χ2:

χ2
uncorr.(m) = tmax

∑
t=tmin

(m − y(t)
δy(t) )

2

(6.17)

χ2
corr.(m) = tmax

∑
ta=tmin

tmax

∑
tb=tmin

(m − y(ta))C−1 (y(ta), y(tb)) (m − y(tb)) (6.18)

Here δy(t) is the standard error (Jackknife error in this study) of y(t) and C−1 (y(ta), y(tb)) is the inverse

covariance matrix of y evaluated at y(ta) and y(tb). Usually, the correlated χ2 is the more trustworthy

quantity, because it respects the correlation of the effective mass/decay constant values at different time-slices.

Nevertheless, there is a problem that was also found in lattice data by Ammer and Dürr in [143] and in

experimental data [144]: The value for m from the minimization of the correlated χ2 is outside the range

of values it is fit to. This is most probably an effect of the covariance matrix estimation, because it is very

sensitive to the noise of the Jackknife estimator for a large amount of time-slices included (see Figure 6.8 and

Section 5.3). An example of this effect for our data can be seen in Figure 6.7, further plots on this topic can

be found in [143]. From this observation the decision was made to use only uncorrelated fits for the plateaus

of effective masses and decay constants. While the effective mass seems to increase for small times and to
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Figure 6.7 Uncorrelated and correlated plateau fit for the midpoint effective mass on one of the ensembles with
β = 3.8400. ∆ is set to 0.4 fm and the fit range is chosen to be [1.9 fm,2.9 fm]. It can be seen that the mean value of
the correlated fit is above all the mean values of the data points, whereas the uncorrelated mean value is in the
middle of all the data.
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Figure 6.8 The condition number of the correlation matrix of the plateau fits. One the x-axis we show different
observables with different systematics. Red points denote fits whose mean values are outside of the spread of the
mean values of the data points. Especially in the upper-right corner one can notice a correlation between large
condition numbers and the “d’Agostini” effect for the finer ensembles. This plot is provided courtesy of Finn Stokes,
the plot was created for an internal meeting in 2022 [145].
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Figure 6.9 Heatmaps that describe the quality of the plateau fits in terms of the the range [tmin, tmax]. For each
interval the Q-value (Section 5.3.2) is measured, the color is aligned to the P -value of the one-sided KS-test along
all ensembles. Left-hand side: Plateau fits of the pion mass. Right-hand side: Plateau fits of the kaon mass.

be stable for larger times, the effective decay constant seems to decrease for both small and large times.

Therefore, the total result will most probably depend significantly on the choice of the range. A good strategy

to pick the correct choice is needed. Here, a strategy similar the one that was established in [20] is used. A fit

range [tmin, tmax] is picked and then the Q-value (established in [121]) according to the uncorrelated plateau

fit on this range is computed for all of the ensembles (see Table 6.1). Since the Q-value is expected to follow

a uniform distribution, we want to look for fit ranges at which this value is distributed uniformly or shifted

towards higher Q-values. We can quantify this strategy by performing a one-sided Kolmogorov-Smirnov (KS)

test [146, 147], where we compare the distribution of the Q-values for a given range along all ensembles to the

identity function. An example of this type of test applied to the Ω− baryon mass is shown in Figure 6.14. The

P -value of this KS-test is shown in the heat maps in Figure 6.9 for the pseudo-scalar mesons with light-light

and light-strange quark content in dependence of start and end point of the fit range. According to this test

we picked two ranges of length 1.0 fm for each meson, respectively. This is done to estimate the systematic

error originating from the choice of the fit range due to contamination from excited states. For the light-light

mesons we pick

[t1min, t
1
max] = [1.9 fm,2.9 fm], (6.19)

[t2min, t
2
max] = [2.1 fm,3.1 fm] (6.20)

and for the light-strange quark content we decided to use

[t1min, t
1
max] = [2.4 fm,3.4 fm], (6.21)

[t2min, t
2
max] = [2.6 fm,3.6 fm]. (6.22)

An example of the plateau fits including statistical errors is shown in Figure 6.6.
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6.4 Finite volume effects of pseudo-scalar masses and decay con-

stants

The ensembles that are given in Table 6.1 have a spatial extension of around 6 fm and a temporal extension

of around 9 fm. Therefore, the measurements on our ensembles differ from the infinite volume quantity by an

amount that is not known exactly, but is expected to be at the order of magnitude of our target precision

(see Figure 6.10). This problem is similar to the UV cut-off through the finite lattice spacing, but while

discretization artifacts have to be removed with a continuum extrapolation, finite-volume (FV) effects are

easier to deal with. The main idea in this study is to estimate the difference of the finite volume and the

infinite volume quantity with chiral perturbation theory (χPT) and add this to the data, so that the global

fit procedure is done using infinite volume observables. This also has the advantage that fluctuations that are

aligned with variations in the volumes of the different ensembles are removed completely.

In the literature one can find FV corrections for the pseudo-scalar masses and decay constants up to two loops

or next-to-next-to leading order (NNLO): The one loop corrections (next-to leading order) can be found in a

work done by Gasser and Leutwyler [148], while Colangelo, Dürr and Hafaeli combined an existing NNLO

computation of the pion scattering, that uses Lüscher’s approach, to compute NNLO finite size effects of the

pseudo-scalar observables [149]. Bijnens and Rössler made a full calculation of the NNLO FV effects for the

desired quantities [150] and provided a software framework CHIRON [151] to compute the effects depending

on the volume and the low-energy constants [38] that are taken directly from our simulation combined with

the w0 scale from [19, 20, 152]. Including only NLO effects the FV pion decay constant is smaller than the

infinite volume quantity by about 0.11%, whereas, the difference is 0.12% if also NNLO effects are included.

Therefore, the decision was made to use NLO finite volume corrections and add the difference of NNLO and

NLO as a systematic error source. The resulting systematic error is much smaller than our target precision of

∼ 0.1%.

Unfortunately, staggered fermions come along with several tastes of pion that are heavier than in the

continuum [62] as it can be seen in Equation (6.1), which results in a reduction of finite volume effects.

However, the spectrum of the η-meson is distorted in another way (also Equation (6.1)), such that some of

the tastes become lighter than in the continuum. This can affect the finite volume effects in an opposite

way. In the next-to leading order case these effects are already computed for the Goldstone taste by Aubin

and Bernard [153, 154] and for the remaining tastes by Bailey et al. [155, 156]. The formulas in the papers

mentioned above depend on the taste-violation parameters ∆KS(ξ) and δKS(ξ) from Equation (6.1). The

values for these quantities can be measured on our ensembles and are translated into the hairpin parameters

δA =
δKS(A)
∆KS(A) , (6.23)

δV =
δKS(V )
∆KS(V ) . (6.24)

The Fermilab-MILC collaboration [157] provides values of

δMILC
A =

(r21a2δA)MILC

(r21a2∆A)MILC
∣
a=0.12 fm

=
−0.0958(93)
0.053983

= −1.77(17), (6.25)

δMILC
V =

(r21a2δV )MILC

(r21a2∆V )MILC
∣
a=0.12 fm

=
0.050(24)
0.167563

= 0.30(14). (6.26)

From our fits (Figure 6.10) we obtain the value

δA = −1.80 (6.27)
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Figure 6.10 Finite volume effects of the pion and kaon (left column and right column) mass and decay constant
(top row and bottom row). The points denote the values of simulations on different volumes. They can be compared
to the predictions of NLO, NNLO and NSNLO that are given by the lines.

β a [fm] L × T ams ms/ml #conf

3.7000 0.1315 32 × 64 0.057291 27.899 938
40 × 64 0.057291 27.899 840
48 × 64 0.057291 27.899 904
64 × 64 0.057291 27.899 521

Table 6.2 Ensembles that are used in the FV study. The third ensemble corresponds to the (63 × 9) fm4 extension
from the ensembles in Table 6.1 and can also be found there.)

in combination with the observation that δV has no significant contribution and can there be neglected

(δV = 0). For NNLO no staggered χPT computations are available, therefore the continuum results from

Bijnens [150, 151] are used from the difference of NNLO and NLO contributions. As mentioned before, we

have a very conservative approach to estimating the systematic error for the finite volume contributions,

therefore we can expect this simplification to be covered.

The data for pion and kaon mass and decay constant measured on the ensembles in Table 6.2 are shown in

Figure 6.10 together with three different approaches to describe the finite-volume effects, i.e., NLO, NNLO

and NSNLO (NNLO with NLO contributions from staggered χPT). The four panels are combined in a single

total fit with four constraints being the infinite volume results. The NSNLO also uses δA as a fit parameter

(see Equation (6.27)), while δV is set to zero. It is evident that including staggered effects is necessary for an

appropriate description of the finite volume behavior. So it is decided to use the staggered NLO to correct for

finite volume effects, while the difference of usual NLO and NNLO is used to estimate the systematic error of
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this approach. Additionally, we use to sets of hairpin parameters

(δA, δV )1 = (−1.76,0.92) (6.28)

(δA, δV )2 = (−1.87,0.00) (6.29)

to account for the different values of these values by BMW and MILC collaboration.

6.5 Strong isospin-breaking and QED contributions

Up to this point it has been assumed that mu =md =ml, i.e., the up- and down quarks have the same mass,

which results in an exact SU(2)-isospin-symmetry of QCD. Of course, this is not correct in reality, but

since in this limit the simulations are much cheaper, this approximation is used for the main contribution of

the results. Nevertheless, the result of an isospin-symmetric analysis differs from the physical value by the

isospin-breaking contributions. For these isospin-breaking contributions new measurements are performed

using the ensembles that are marked with a tick in Table 6.1. All the parameters are the same as in the

isospin-symmetric ensembles but the two light quark flavors are replaced by up- and down-type quarks with

the masses set according to

mu/md = 0.485, (6.30)
mu +md

2
=ml. (6.31)

To quantify the IB contributions we expand the QCD value of our target observable fK/fπ up to first order

in δm =md −mu:

[fK±/fπ±]QCD
= [fls/fll]ISO

+
∂

∂δm
[fK±/fπ±]QCD ∣

δm=0

× δmphys
+O (δmphys2) (6.32)

Since δm is not an observable but a scheme-dependent quantity, it is more useful to replace it by a dimensionless

observable that scales proportional to the isospin-breaking, M2

dd−M
2

uu

f2
π

=∶
∆M2

f2
π

. The difference of the squares of

the pseudo-scalar masses ∆M2 is proportional to the isospin-breaking [38], while f2π has no LO contributions

in the isospin-breaking. The expansion of Equation (6.32) then becomes

[fK±/fπ±]QCD
= [fls/fll]ISO

+
(fds − fus)fll

2∆M2
× [∆M2

f2π
]phys

+O
⎛⎝[∆M

4

f4π
]phys⎞⎠ (6.33)

with [∆M2

f2
π
]phys

= 0.34850927 [133]. This value does not have an error even if it is a physical value, because

the scheme is set in a way that fπ and ∆M2 are fixed. More on this topic can be found in Section 7.1.

The quantity (fds−fus)fll
2∆M2 is now measured on the IB ensembles, except for fll which is taken from the

corresponding isospin-symmetric ensemble due to the fact that is has higher statistics.

As it will be discussed in Section 7.1 also sea-sea contributions of can be measured, according to

G = [FK

Fπ

−B [M2
π

F2
π

] −C [2M2
K −M

2
π

F2
π

]]′′
02

, (6.34)

where B and C describe the quark mass dependence of the target observable. Further explanations are given

in Section 7.1. Here, FH denotes the QED+QCD decay constant of the hadron H which is equal to fH in the

limit e→ 0. For simplicity, here we work in the QCD isospin symmetric limit. The notation in Equation (6.34)

is a short cut for the second order contribution in the charge of the sea quarks. To derive an expression for
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β a [fm] L × T ams ms/ml #conf

3.7000 0.1315 24 × 48 0.057291 27.899 726
48 × 64 0.057291 27.899 300

3.7753 0.1116 28 × 56 0.047615 27.843 887
3.8400 0.0952 32 × 64 0.043194 28.500 1110

0.043194 30.205 1072
0.040750 28.007 1036
0.039139 26.893 1035

0.7300 0.1120 56×84 0.06061 33.7280 1305

Table 6.3 Ensembles that are used in the QED+QCD study. Here, dynamical QED and QCD simulations are
combined, so that sea quark effects can be considered. The first eight ensembles are generated using the 4stout

action while the last one is based on the 4HEX action.

q

q

γ

q

γ

q

q

γ

Figure 6.11 Sea quark diagrams of O(e2) that are included in the study.

the latter equation the second order expansions in the sea quark charge have to be included:

G = [FK + e
2
sF
′′

K

Fπ + e2sF
′′

π

−B [(Mπ + e
2
sM

′′

π )2(Fπ + e2sF
′′

π )2 ] −C [
2(MK + e

2
sM

′′

K)2 − (Mπ + e
2
sM

′′

π )2(Fπ + e2sF
′′

π )2 ]]′′
02

=
FK

Fπ

[F ′′K
FK

−
F ′′π

Fπ

] −B [2M2
π

F2
π

[M ′′

π

Mπ

−
F ′′π

Fπ

]] −C [4M2
K

F2
π

[M ′′

K

MK

−
F ′′π

Fπ

] − 2M2
π

F2
π

[M ′′

π

Mπ

−
F ′′π

Fπ

]]
(6.35)

The corresponding quantities F(
′′)

H and M
(′′)
H can be measured on the QCD+QED ensembles that are given

in Table 6.3. The second derivative with respect to the sea quarks charge is given by the expression

⟨O⟩′′02 = ⟨O0
det s′′2
det s0

⟩
0

− ⟨O0⟩0⟨det s′′2
det s0

⟩
0

(6.36)

where the subscript 0 denotes the order of QED effects of the respective quantity or the expectation value. s

is the fermion matrix ∏f( /Dstagg −mf)1/4. Within the derivation the assumption was made that

⟨det s′1
det s0

⟩
0

= 0. (6.37)

The latter notations and calculations were published first in [19]. The diagrams entering these computations

are shown in Figure 6.11. The diagram on the right has a vertex with two quarks and two photons, which is

a forbidden diagram in usual QED. However, at finite lattice spacing vertices with an arbitrary number of

photons can occur. This can be derived easily by expanding one of the terms appearing in the discretized
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fermion action:

ψ(x)Dµψ(x) = 1

2a
(ψ(x)Uµ(x)ψ(x + aµ̂) − ψ(x)U†

µ(x − aµ̂)ψ(x − aµ̂)) (6.38)

=
1

2a
(ψ(x)eiaeAµ(x)ψ(x + aµ̂) −ψ(x)e−iaeAµ(x−aµ̂)ψ(x − aµ̂)) (6.39)

When expanding the latter expression in powers of the lattice spacing it is evident that the a−1 contributions

vanish, the constant expressions reproduce the vertex from continuum QED and there are higher contributions

in (ae)n that describe a vertex with n photons. This also explains why there are no diagrams with more

n-photon vertices: They are not of O(e2).
In addition to the 4stout ensembles, we add some of the (more precise) 4HEX data (see Table 6.3) in order to

achieve a reduction of statistical noise and finite volume effects of the sea-quark contributions.

To compute the sea-quark effects of FHw0 only sea modification to Equation (6.34) are necessary. In this

case these effects are described by

G = [FHw0 −B [M2
π

F2
π

] −C [2M2
K −M

2
π

F2
π

]]′′
02

. (6.40)

6.6 Ω operators and correlation functions

There are many different operators for the positive-parity, ground-state Ω− baryon [137, 158, 159], but in this

study we will focus on three specific operators. To be able to concisely express these operators, we define the

spatial covariant shift

Siχa(x) = Ui(x)χa(x + î) (i = 1,2,3), (6.41)

with χa being the quark field with flavor content a. Two sequential shifts are then written as Sµν = SµSν . If

necessary, we also use an additional “flavor” index α,β or γ that is defined and further explained in [159].

With these definitions we can define the operators:

ΩVI(t) = ∑
xk%2=0

ǫabc (S1χaS12χbS13χc − S2χaS21χbS23χc + S3χaS31χbS32χc) (6.42)

ΩXI(t) = ∑
xk%2=0

ǫabc (S1χaS2χbS3χc) (6.43)

ΩBa(t) = [2δα1δβ2δγ3 − δα3δβ1δγ2 − δα2δβ3δγ1 + 2δα1δγ2δβ3 − δα3δγ1δβ2 − δα2δγ3δβ1] (6.44)

∑
xk%2=0

ǫabc (S1χaαS12χbβS13χcγ − S2χaαS21χbβS23χcγ + S3χaαS31χbβS32χcγ)
These three operators differ in the tastes they couple to, which means that their ground-state masses at finite

a might slightly differ. Nevertheless, in the continuum the masses of these three states should be degenerate.

However, we use all three of these operators to estimate the systematic uncertainty originating from the

choice of the operator. To modify the contributions of the excited states, which will yield a different operator

for the GEVP, we apply Wuppertal smearing (see Section 4.4.3) to either none, one, or two of the point

sources. The Wuppertal smearing parameter σ is set to 0.5 and the gauge fields in the Laplacian are smeared

with stout smearing and a parameter of ρ = 0.125. The number of smearing steps for the Wuppertal and stout

smearing, respectively, can be found in Table 6.4. These numbers are tuned in a way that the smearing radius

(in physical units) is roughly constant along all ensembles. The number of point and smeared sources can

also be found in Table 6.4. Since smearing reduces the signal-to-noise ratio, the number of smeared sources

is greater by O(10). The point sources are located on a random time-slice on the corners of a cube of size
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(L/2)3. For each of those eight points a random (canonical) unit vector in color space is chosen.

β NWptl N3d tp ta tb range #1 range #2 # pt, sm sources
3.7000 24 32 1 4 7 7. . .15 8. . .15 28928, 229376
3.7500 30 40 1 4 7 8. . .18 9. . .18 66208, 530176
3.7553 34 46 1 4 7 9. . .19 10. . .19 61024, 488192
3.8400 46 62 2 4 9 10. . .20 11. . .20 125440, 2807552
3.9200 67 90 2 6 9 12. . .25 13. . .25 137472, 3038720
4.0126 101 135 3 6 9 15. . .30 16. . .30 223360, 4235520
4.1479 178 238 5 6 11 19. . .40 21. . .40 160544, 2068736

Table 6.4 The parameters for the Ω-analysis are chosen different for each β. We give the number of smearing
applications for the Wuppertal smearing (NWptl) and the three dimensional stout smearing (N3d). tp denotes the
additional shift for point sources in the GEVP, ta and tb are the time slices chosen to estimate the Eigenvector in
the GEVP. To fit the correlators we use two different fit ranges range#1 and range#2. The smearing radii as well
as the ranges are kept constant in physical units along all ensembles. This table is previously published in [20].

6.7 Extraction of the Ω-baryon mass

To ensure that the forward and backward-propagating states have a consistent parity we apply the folding

transformation

Ht →

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
(Ht + (−)t+1HT−t) if 0 < t < T

2

Ht t = 0 or t = T
2

(6.45)

to the Ω−-propagator Ht.

As mentioned before, the three Baryon-operators ΩVI, ΩXI and ΩBa couple to different excitations. Even

though the ground state dominates beyond a certain time separation, contributions from higher excitations

will contaminate the signal and increase overall uncertainties. Therefore, we use a GEVP (Section 5.5) to

extract the different mass excitations, similar to the reconstruction of the vector correlator in Chapter 10.

This method was proposed in [130]. In this study, we use a six dimensional GEVP that includes point sources

and smeared sources due to different contributions of excited states from the smearing procedure. Additionally,

certain shifts of the propagator are included; this method is called pencil-of-functions and uses shifts of the

correlation function to define different operators [160] according to

Ôi(t) = Ô(t + i), (6.46)

Ô
†
i (t) = Ô†(t − i). (6.47)

For the point sources, an additional shift tp is introduced. In this way, the amplitude of all states entering the

GEVP is of the same order of magnitude. Additionally, we can reduce the contamination from excited states

that play a dominant role for early time slices in combination with point sources. In total, we use different

shifts of the point and four different shifts of the smeared operator. The correlation matrix from the GEVP is

given by

Ht =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H
pp
t+2tp+0

H
pp
t+2tp+1

H
ps
t+tp+0

H
ps
t+tp+1

H
ps
t+tp+2

H
ps
t+tp+3

H
pp
t+2tp+1

H
pp
t+2tp+2

H
ps
t+tp+1

H
ps
t+tp+2

H
ps
t+tp+3

H
ps
t+tp+4

H
sp
t+tp+0

H
sp
t+tp+1

Hss
t+0 Hss

t+1 Hss
t+2 Hss

t+3

H
sp
t+tp+1

H
sp
t+tp+2

Hss
t+1 Hss

t+2 Hss
t+3 Hss

t+4

H
sp
t+tp+2

H
sp
t+tp+3

Hss
t+2 Hss

t+3 Hss
t+4 Hss

t+5

H
sp
t+tp+3

H
sp
t+tp+4

Hss
t+3 Hss

t+4 Hss
t+5 Hss

t+6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.48)
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Figure 6.12 Effective mass from the Ω-propagator eigenstates on the finest ensemble with β = 4.1479. The
numbers are converted to physical units by choosing a = 0.0483 fm. Upper panel: Excitations of the Ω baryon
extracted with the GEVP. The gray horizontal line corresponds to a measurement of the Belle collaboration [161].
Lower panel: Ground state effective mass from the GEVP. The blue band corresponds to a single exponential fit to
the ground state propagator. Figure is previously published in [20].

where the superscripts denote the respective choice of smeared (s) and unsmeared (p) source and sink. For

fixed ta and tb we solve the GEVP

Hta ⋅ v(ta, tb) = λ(ta, tb)Htb ⋅ v(ta, tb). (6.49)

The parameters ta and tb are chosen differently for the respective ensembles. The explicit values can be found

in Table 6.4. To reconstruct the function λ(ta − tb) = λ(ta, tb) the vector-matrix-vector product

P (t; ta, tb) = v†(ta, tb) ⋅Ht ⋅ v(ta, tb) ≈ λ(t) (6.50)

is computed. This way we can make sure that always the correct state is chosen, especially in the long-distance

regime with large statistical noise. Further explanations are given in Section 5.5.

We decided to fit single-state exponential functions to the propagators instead of using plateau fits to the

effective mass. However, for better visualization, we still show the effective masses for one of the finest

ensembles in Figure 6.12 along with the result of our ground state fit and an experimental value [161] for the

first excitation that is compatible with our data. We fit the data to the model

Y (t) = A exp(−Mt) (6.51)

by minimizing the correlated χ2. The optimization with respect to the coefficient A can be done analytically,
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Figure 6.13 Autocorrelation functions on the β = 4.1479 ensemble. Left panel: Autocorrelation functions of the
squared topological charge and the energy density, both at flow time w2

0. Right panel: Autocorrelation function
of the ΩVI-operator with two point sources and two smeared sources, respectively. Figure is previously published
in [20].

so we end up with a one-parameter fit

Ỹ (t) = ∑t0,t1 λ(t0)C−1(t0, t1) exp(−Mt1)
∑t0,t1 exp(−Mt0)C−1(t0, t1) exp(−Mt1) exp(−Mt), (6.52)

where C−1(t0, t1) is the inverse covariance matrix of y, evaluated at y(t0) and y(t1). Usually, we use 48

Jackknife samples to estimate the uncertainty. However, for the stability of the covariance matrix, it is useful

to use a larger amount of samples. Here, we use 200 Jackknife samples, which still ensures that the blocks are

large enough to handle autocorrelation effects. The autocorrelation function of the Ω propagator can be found

in Figure 6.13. The covariance matrix is inverted using an SVD-cut of 10−8, as explained in Section 5.3.1, to

prevent the overall result from being dominated by statistical noise [162].

Usually, it is a non-trivial task to find the optimal region in which the exponential function is fitted to the

correlator. Here, we decide to use a method very similar to the one used in Section 6.3. For each ensemble,

we compute the (correlated) Q-value (Section 5.3.2) [121] for a given range [tmin, tmax]. Then, we perform a

one-sided KS-test across the ensembles, where we allow the Q-values to be tilted towards 1. The P-values of

this KS-tests are shown in the right panel of Figure 6.14. Based on this figure, the decision was made to use

the fit ranges [0.9 fm,2.0 fm] and [1.0 fm,2.0 fm]. We use two different ranges to account for the systematic

uncertainty associated with different excitations. The KS-tests for both of the chosen ranges are shown in the

left panel of Figure 6.14. All in all we are able to measure the mass of the Ω-baryon on our lattices with

permille precision as it can be seen in Figure 6.15.

68



Lattice techniques
Extraction of the Ω-baryon mass

0.0 0.5 1.0
Q

0.0

0.5

1.0

C
D
F
(Q

)

tmin = 0.9fm

tmin = 1.0fm

1.0 1.5 2.0

tmin/ fm

1.5

2.0

2.5

3.0

t m
a
x
/
fm

10−3

10−2

10−1

100

P
-v
al
u
e
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[1.0 fm,2.0 fm]. Right panel: Heatmap of the P-values of all KS-tests. The red crosses mark the fit ranges
that are used within the final analysis. Figure is previously published in [20].
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7 Global analysis

In the following chapter, the choice of the scheme, i.e., our way to set the scale and the physical point, and

our global fit procedure are described.

7.1 Schemes, transformations and global fit functions

The pseudo-scalar decay constant can be decomposed in the QCD and QED contributions according to

F2
H = f

2
H(1 + δH) (H = π,K). (7.1)

afH is a quantity that can be measured fairly easy using lattice QCD as it is shown in Section 6.3. Thus, it is a

useful (and common [139, 163, 164]) strategy to set the lattice spacing a with this quantity. The problem arises

that a proper physical (i.e., scheme independent) value does not exist for fH and δH , respectively. Basically,

one is free to choose how to split up the QCD and QED contributions. However, the total QCD+QED decay

constant is a physical quantity that is related to the decay width by some kinematical factors. The lattice

spacing in this study is set according to

a =
afπ

f
phys
π

with fphys
π = 130.5MeV. (7.2)

Here, fphys
π is taken from the FLAG report 2024 [138]. It should be mentioned that in the pure QCD limit

e→ 0, FH and fH are the same quantity and can therefore be used analogously.

Fπ can be determined experimentally with high precision [43, 133]. In [163] the radiative corrections are then

determined using lattice simulations and the pion decay constant can thus be corrected for electromagnetic

contributions. In this way, an independent value of the pure QCD pion decay constant is obtained, which is

given by

fGRS
π = 130.65(12)MeV. (7.3)

This quantity has a one-permille uncertainty that is highly dominated by the lattice estimation of the radiative

corrections. The ratio of the full QCD+QED pseudo-scalar decay constant can be expanded around the

physical point with our “master equation”:

FK

Fπ

= A +B [M2
π

F2
π

− const.] +C [M2
ds +M

2
us −M

2
π

F2
π

− const.′]
+D [M2

ds −M
2
us

F2
π

− const.′′] +Ee2v + Feves +Ge2s.
(7.4)

Here ev denotes the charge of a valence quark and es is the charge of a sea quark. The constants are defined

by the scheme. Here, we use the FLAG scheme [138] since the quantities are defined without any uncertainty.

However, other groups [163] might use another scheme like the GRS, but we are able to transform our results

into any scheme afterwards. The FLAG scheme is defined by

fFLAG
π = 130.5MeV, (7.5)

MFLAG
π = 135.0MeV, (7.6)

MFLAG
K+ = 491.6MeV, (7.7)

MFLAG
K0 = 497.6MeV. (7.8)
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The constants A, B and C can be determined from fits to isospin-symmetric data in pure QCD

[fK
fπ
]isoQCD

= A +B [M2
ll

f2ll
− const.] +C [2M2

ls −M
2
ll

f2ll
− const.′] (7.9)

with the constants set to the according physical values in the FLAG scheme. Since these terms are symmetric

with respect to the interchange of up- and down quark we can compute the antisymmetric derivative with

respect to their difference and find an expression for D:

D =
(fds − fus)fud
2(M2

ds −M
2
us) . (7.10)

This expression can be rescaled by [M0

K

2
−M+

K
2

2f2
π

]FLAG

to get the isospin-breaking contributions to the ratio

of the decay constants. The value of E can be taken from [163]; however, care must be taken regarding

the scheme, as the GRS scheme is used there instead of the FLAG scheme. However, we can compute the

transformation and the difference will be small. The F term has a flavor SU(3) suppression since ∑
s=u,d,s

es = 0

and therefore is neglected within this study. Using the notation of [19] the contribution of two sea quarks can

be computed via

G = [FK

Fπ
−B [M2

π

F2
π

− const.] −C [M2
ds +M

2
us −M

2
π

F2
π

]]′′
02

. (7.11)

Here, the parameters B and C can be taken from the isospin-symmetric fits in Equation (7.9). Using the

parameters it is easy to transform to a given scheme by adjusting the constants to the desired quantities. For

example, the PDG values can be used to obtain the physical result. The study in [163] from which we take

the value of E uses the GRS scheme [165]. In this scheme the pseudo-scalar masses are split up into their

QCD and QED contributions. In these meson matching computations they neglected the sea quark effect,

thus, the QED part of their calculation only consists of valence-valence effects and thus the QCD part of the

scheme-defining quantities also contains sea-sea and sea-valence effects.

The “master equations” for the observable fπw0 and fπ
√
t0 can be constructed in the same way. However,

Equation (7.4) includes strong-isospin breaking effects which can be neglected here.

7.2 Global fit procedure

At this point, we have data for the isospin-symmetric and the isospin-breaking (IB) parts of fK/fπ at infinite

volume, finite lattice spacing and quark masses scattering around the physical point. Next we want to

extrapolate the data to the physical point1 as well as the continuum a = 0. We perform three different global

fits according to

Y = A +BXl +CXs, (7.12)

D = AIB +BIBXl +CIBXs, (7.13)

G = Asea. (7.14)

The quantities A, B and C are computed using fits to our isospin-symmetric data, while the isospin-breaking

data are fitted to D. The sea-quark contributions G are taken from fits the QCD+QED data. Xl is a quantity

proportional to the light quark mass deviation from the physical point and Xs is proportional to the strange

quark mass deviation. In Equation (7.13) also the Xl (and no Xu or Xd) is used because this would make up

1This is the point at which the expectation values of certain observables (e.g. pseudo-scalar masses, ...) match their physical
counterparts
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second order effects in the isospin-breaking which are ignored in this study. Xl and Xs are used to interpolate

the data to the physical point. This can be done very precisely, because the ensembles are defined in a way

that they scatter closely around the physical point (see Section 6.1) [19, 20]. The sea quark effects are not

interpolated to the physical point, since the meson masses do not scatter aroung the physical value due to

large finite volume effects. However, an additional finite volume scaling is included in Asea. The quantities

A, B and C (and their isospin-breaking counterparts) are function depending on the lattice spacing that

can be used to extrapolate the data to the continuum. In this study we choose this three functions to be

polynomials in a2 respectively ∆KS . The quantity a2 is set using the ratio ( afπ

f
phys
π

)2, where the numerator

can be measured on each ensemble and the denominator can be taken from [133]. Alternatively, one could

use the w0-scale [139, 152] that is used e.g. in the g − 2 studies [19, 20] and is further explained in Section 9.

∆KS is used as another parameter to quantify the discretization effects. It is much more sensitive to the

lattice spacing than a2, in fact it is a2αs(1/a)3, where αs is the strong coupling at the energy scale 1/a. In

Section 6.1 it could be shown that at small lattice spacing this is close to an a4 scaling. Of course, on the

lattice only a2∆KS could be measured so the definition of a2 that was mentioned before is used to remove

the a2 prefactor.

7.2.1 Isospin symmetric

For the isospin symmetric fit the quantity for the light quark mass deviation is set as

Xl =
M2

ll

f2ll
−

⎡⎢⎢⎢⎢⎣
(Mphys

π± )2
(fphys

π± )2
⎤⎥⎥⎥⎥⎦ (7.15)

and the strange quark mass deviation is given as

Xs =
M2

ls −
1
2
M2

ll

f2ll
−

⎡⎢⎢⎢⎢⎣
(Mphys

K± )2 − 1
2
(Mphys

π± )2
(fphys

π± )2
⎤⎥⎥⎥⎥⎦ . (7.16)

The function A is a polynomial in a2 and ∆KS with the constraint that the sum of the maximum degrees in a2

and ∆KS is larger than zero and smaller than four. The function B and C are constructed in a similar way, but

the maximum total degree is one, whereas B and C are also allowed to be lattice spacing independent. Since

continuum extrapolation is a feature of Symanzik effective theory, which states that a lattice discretization is

an asymptotic expansion in the lattice spacing around the continuum, it is possible to have a finite radius of

convergence [49, 166, 167]. Therefore, it is possible that some of the ensembles with larger lattice spacings

should not be included in the continuum extrapolation. In order to deal with this issue we decide to skip up to

four of the largest lattice spacings. Of course, we make sure to reduce the degree of the A/B/C-polynomials

so that over-fitting is avoided, e.g. if we remove the four largest spacing, only four spacings remain, therefore

A should not have more than three free parameters (deg(A) ≤ 2). We use the same argument for the B and

C polynomial, but only the five spacing with more than two ensembles are counted.

There is one further exception for the polynomial allowed within the analysis:

A(a2,∆KS) = A0 +A1a
2
+A2a

4
+A′1∆KS (7.17)

This polynomial has a4 and ∆KS contributions. From Figure 6.5 it is known that both terms are very similar.

In this type of fits a significant instability could be observed. So we decided to skip this function. It can be
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Figure 7.1 Left panel: Continuum extrapolation of the decay constant ratio of kaon and pion in the isospin-
symmetric limit. The shown fit is linear in a2, ∆KS , Xl and Xs. The points are shifted to the physical point and are
averaged if they correspond to the same lattice spacing, open points are not included in the fits. Solid lines denote
the fit range, dashed lines denote regions outside of the fit range. The light blue gives the statistical deviation
estimated by Jackknife resampling. Right panel: Histogram and cumulative distribution function of the continuum
extrapolated results of the pseudo-scalar decay constant ratio. The green and yellow bands give the one and two σ

neighborhoods, respectively.

assumed that the contributions from this polynomial to the overall result are covered by the polynomials

A(a2,∆KS) = A0 +A1a
2
+A′1∆KS , (7.18)

A(a2,∆KS) = A0 +A1a
2
+A2a

4. (7.19)

An example of one of the best isospin-symmetric fits to fK/fπ is shown in the right panel of Figure 7.1. It

includes taste-breaking effects proportional to DKS as well as usual a2 discretization effects. The shift to the

physical point has no lattice spacing dependence in the example and the coarsest ensemble is excluded from

the fit. However, the fit aligns well with the excluded data point.

7.2.2 isospin-breaking

For the strong-isospin-breaking contributions (D) only six lattice spacings, with at most two ensembles each,

are available (Table 6.1. The light quark mass deviation is given by

Xl =
M2

ud

f2ud
−

⎡⎢⎢⎢⎢⎣
(Mphys

π± )2
(fphys

π± )2
⎤⎥⎥⎥⎥⎦ =

M2
ll

f2ll
−

⎡⎢⎢⎢⎢⎣
(Mphys

π± )2
(fphys

π± )2
⎤⎥⎥⎥⎥⎦ +O(δm

2), (7.20)

which is the same expression as for the isospin-symmetric fit up to contributions in δm2. For the strange

quark mass deviation the expression is changed a little bit to

Xs =
M2

us +M
2
ds −M

2
ll

2f2ll
−

⎡⎢⎢⎢⎢⎣
(Mphys

K± )2 + (Mphys

K0 )2 − (Mphys
π± )2

2 (fphys
π± )2

⎤⎥⎥⎥⎥⎦ +O(δm
2). (7.21)
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Since the overall number of ensembles is much smaller in this case also the number of available functions has

to be reduced. The maximum total degree of of the AIB polynomial is reduced from three to two compared

to the isospin-symmetric fits. BIB and CIB are numbers in this case with the additional constraint that at

least one of them is fixed to zero. A representative fit of the isospin-breaking continuum extrapolation is

shown in Figure 7.2.

Of course, all of these reductions compared to to the isospin-symmetric case will lead to a larger relative

spread of mean value but since isospin-breaking effects are expected to be sub-percent, this will not affect the

overall precision significantly.

7.2.3 Sea quark contributions

The quantity G (defined in Equation (6.35)) that describes the sea quark contributions to fk/fπ is measured

on the ensembles in Table 6.3. Since there are only three lattice spacings available and the data have a

relatively large statistical uncertainty it was made the decision to include only constant and linear functions in

a2 for the continuum extrapolation. Due to large finite volume effects (most of the ensembles have a box size

of ∼ 3 fm) the pion and kaon masses are not scattered around the physical point. The extrapolation of Xl and

Xs to zero can provide large fit instabilities. Therefore, Xl and Xs are not considered in this study (B = C = 0)

and we assume that the deviation of the result by shifting the physical point is covered by the large statistical

errors. Since there are two 6 fm boxes available on the coarsest lattice spacing also a finite size scaling of 1
L2

is included in the analysis. Of course, usually one does not fit an explicit dependence with two independent

variables (reduced number of degrees of freedom should be at least one) but we decided to include it to

somehow deal with the finite volume effects. Examples of the continuum and infinite volume extrapolations

can be seen in Figure 7.2. The 4HEX ensemble is expected to have smaller discretization artifacts than the

other ones. Therefore, when we include it in the fit its lattice artifacts are overestimated. By repeating the

analysis with the assumption that the lattice spacing of this specific ensemble is exactly zero, we also include

an underestimation of the discretization effects. Thus, we include a conservative estimation of the uncertainty

originating from the lattice actions.

7.3 Further aspects of the analysis

In this section we want to highlight some methods and ideas that are important for this study but do not fit

really into one of the other sections.

7.3.1 Weighting of the systematics

Within the previous sections a lot of different systematics were mentioned. Basically, there are three kinds of

systematics:

1. Systematics related to the extraction of mass and decay constants from the propagator:

• Local vs. midpoint effective mass

• Size of the time steps in the effective mass formula dt ∈ {0.2 fm,0.4 fm}
• Early vs. late fit range of the mass and decay constant plateaus

2. Systematics related to the NSNLO finite volume corrections

• Choice of the Hairpin parameters: (δA, δV ) ∈ {(−1,76,0.92), (−1.87,0.00)}
• NSNLO finite volume corrections: NSNLO = SNLO + {0,2} × (NNLO −NLO)2

2For the isospin-breaking analysis we do not compute NNLO correction but use directly {0,2} × SNLO.
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Figure 7.2 Upper panel: Continuum extrapolation of the strong-isospin breaking contributions to fK/fπ. The
fit form is a linear function in a2. All points that correspond to the same lattice spacing are averaged since no
quark mass dependence is considered in this fit form. The open points denote points that are not included in the
overall fit. Lower panels: Relative sea quark contributions to fK/fπ. The data are fitted to zero lattice spacing and
infinite volume simultaneously. We present the continuum extrapolation and infinite volume and the infinite volume
extrapolation at zero lattice spacing. In order to do so, the QED+QCD ensembles from Table 6.3 are used. The red
points denote the 4HEX ensemble that is not included in the averaging procedure of measurements at same a or L,
respectively. The results corresponding to this fits are given in Table 8.1.
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Figure 7.3 Sea quark effects contributing to fπw0. On the left plot the continuum extrapolation at infinite volume
is given while on the right plot the infinite volume extrapolation at zero lattice spacing is shown. The strategy is
the same as used for the sea quark contributions to fK/fπ (see Section 6.5 and 7.2). The results corresponding to
this fits are given in Table 8.3.

3. Systematics related to the global fit procedure

• Cutting out up to four3 of the smallest β-values

• a2 contributions up to third4 order

• ∆KS contributions up to third5 order

• Nine6 total combinations of B and C functions

As it is in done in [19] and in [20] the systematics related to the global fit procedure are weighted according

to a modified version of the Akaike-Information-Criterion (AIC) [19, 126]:

p =N exp(−1
2
(χ2

fit + 2nfit − ndata)) . (7.22)

Here χ2 denotes the total χ2 of the global fit as described in Section 7.2, nfit is the number of parameters

that are used in this specific fit and ndata is the number of data points (ensembles) incorporated in this fit.

N is a properly chosen normalization factor. The remaining systematics are “flat-”weighted, which means

that for a fixed fit procedure all fit have the same weight. For example if we fit the data to

Z = A0 + a
2A1 +B0Xl +C0Xs (7.23)

3Three for isospin-breaking
4Second for IB
5Second for IB
6Three for IB
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with no β cuts and label all systematics related the mass/decay constant extraction or FV effects by i, j, we

get a weight for each continuum limit of

wZ
j =

p
j
Z

∑Z p
j
Z ∑i 1

(7.24)

p
j
Z = exp(−12 (χ2

Z,j − 21)) , (7.25)

where χ2
Z,j is the χ2 of the data to the fit model Z using remaining systematics j.

7.3.2 Blinding and cross checks

To be unbiased during the process of analyzing the data, the kaon decay constant, w0 and
√
t0 are multiplied

with different unknown blinding factors απ
blind, αw0

blind and αt0
blind respectively. The value of the blinding factors

is not known by any of the people involved in this project. The advantage of a multiplicative blinding factor

is that our relative precision is unchanged by the blinding procedure, so it can be compared to precisions of

other collaboration during the process.

Each step of the whole analysis was performed by at least two people from the group consisting of Fabian

Frech, Keith Kelley, Finn Stokes, Gen Wang and Kalman Szabo. This rigorous crosscheck procedure helps

ensure the absence of inadvertent errors.
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8 Lattice results

In this chapter the total results of the lattice studies are given. Especially, the lattice results to fK/fπ and

their IB and QED (sea quark) contributions are given. Furthermore, the lattice estimates of the dimensionless

quantities MΩw0, fπw0 and fπ
√
t0 and the sea quark contributions to Fπw0 are given.

8.1 Computation of the pseudo-scalar decay constant ratio

Our final results of the fits that were performed during the analysis of fK/fπ are given in Table 8.1. In

the upper plots one can see different continuum extrapolations of [fK/fπ]iso as functions of a2 and ∆KS ,

respectively. The colors denote the different weights of the corresponding fits. In the histogram the overall

distribution of the isospin symmetric data is shown. The table next to it shows the error budget of this

particular analysis from which it can be concluded that the continuum extrapolation (β but, A and A′ fit

form) is the dominant source of systematic errors. In the table below you can find all of the results of this

analysis. On the diagonal there are the results of the isospin-symmetric analysis (A) and its derivatives with

respect to Xl (B) and Xs (C). D represents the strong-isospin breaking contributions and G are the sea

quark effects. A computation of the valence quark effects can be found in [163].

8.2 Computation of MΩw0

As mentioned before, the physical value of w0 can be obtained by extrapolating the dimensionless product

of w0 with either MΩ or fπ, and then dividing by the corresponding physical value. The global fit of the

combination

w0 =
(w0MΩ)lat

M
phys
Ω

, (8.1)

where Mphys
Ω is the experimentally measured mass of the Ω baryon, can be seen in Figure 8.2. The continuum

extrapolation is done using polynomials in either a2 =
[(aMΩ)lat]2
[Mphys

Ω
]2 or a2∆KS

[(aMΩ)lat]2 up to degrees of order three.

Similarly to the fK/fπ global fit in Section 7.2 the coarsest three lattice spacings can be excluded, and

the physical point is reached via interpolations in Xl and Xs. The histogram of all the fits can be seen in

Figure 8.2. The left-hand side of the histogram has a Gaussian shape, while the right-hand side has a longer

tail. This can be explained by the curvature of the data in combination with the third-order polynomial in a2

that shift the continuum limit towards higher values, as evident in the continuum extrapolation above. The

error budget is given in Table 8.2. The most dominant systematic error source is the choice of the continuum

parameter, which makes sense because ∆KS provides a much smaller extrapolation range than the usual a2

fits. The next largest error source (even larger than the statistical error) is the choice of the fit range for the

Ω propagator. Thus, we can see how important proper analysis of the Ω baryon mass is in this context. For

example, in the global fits for the decay constant the choice of the fit ranges only contributed sub-leading to

the total error.
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median 1.9292
statistical error 0.0011 0.058 %
full systematic error 0.0010 0.053 %
Plateau region 0.000018 0.00095 %
Effective mass dt 0.00013 0.0070 %
Effective mass form 0.00016 0.0081 %
Hairpin parameters 0.0000032 0.00017 %
NNLO XPT FV 0.0000022 0.00011 %
Beta cut 0.00017 0.0088 %
A 0.00062 0.032 %
A’ fit form 0.00037 0.019 %
B fit form 0.000046 0.0024 %
C fit form 0.000030 0.0016 %

A B C D G

A 1.9292(12)(+8
−12

)[+14
−17

] 0.06(0.06)(0.06) 0.22(0.1)(0.39) 0.08(0.05)(0.11) –

B −0.030(18)(+11
−8

)[+21
−20

] −0.22(−0.34)(−0.02) 0.07(−0.01)(0.17) –

C 0.0157(17)(+7
−13

)[+18
−21

] 0.21(0.19)(0.23) –

D −0.0186(33)(+29
−16

)[+44
−37

] –

G −0.0005(7)(+12
−4

)[+14
−8

]

Table 8.1 Blinded lattice results of the fK/fπ-study. Upper left panel: Different continuum extrapolations in
a2, the points are shifted to physical masses and are averaged if they correspond to the same lattice spacing. The
colors denote relative weights of the corresponding fits. Upper-right panel: Different continuum extrapolations in
∆KS . Center left panel: Total histogram of the isospin-symmetric fK/fπ continuum extrapolation. Center right

panel: Error budget of the fK/fπ continuum extrapolation. Lower panel: Continuum results (diagonal) and their
correlation coefficients with the corresponding statistical and systematic contributions (off-diagonal). The medians
from the tables and the histograms differ slightly. This is an artifact of the binning of the histogram. However, for
the final results the values from the tables are taken, which use the methods from [19, 20].
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8.3 Computation of fπw0

For the computation of fπw0 we add another systematic ingredient by computing the gradient flow based

scale w0 with either the Wilson or the Symanzik improved Zeuthen-flow (see Section 4.4). This systematic

is chosen to be a flat-weighted ingredient within the analysis. Furthermore, we skip the finest ensembles

(β = 4.3032) since they were not available when the paper was originally published [20]. A comparison of

pure a2 and pure ∆KS fit forms can be seen in Figure 8.3. Here, the relative weight of the corresponding fit

is marked with an associated color. Below that, the total histogram of the distributions of the continuum

values of fπw0 and the error budget are given. The error budget is dominated the choice of the gradient flow

(Wilson flow vs. Symanzik improved Zeuthen flow). At the bottom, the results of the constituents of the

analysis are given. On the diagonal, the FLAG scheme continuum result (A) and its derivatives with respect

to Xl and Xs (B and C) are given. The G-coefficient describes the sea quark contributions to the total result.

For these quantities, the first error is statistical, the second is systematic and the third (in squared brackets)

is the total error. On the off-diagonals of the table, you can find the correlation coefficients of the respective

quantities split up into their statistical and systematic contributions.

8.4 Computation of fπ
√
t0

The computation of fπ
√
t0 largely follows the same procedure as the computation of fπw0, with only a few

differences. Obviously, the target observable is replaced by fπ
√
t0, and we only compute the pure QCD value

of
√
t0 in the FLAG scheme, as we do not have access to data for the sea quark contributions.

A comparison of different fit forms depending on only a2 or ∆KS is shown in Figure 8.4. Continuum

extrapolations only depending on ∆KS do not seem to describe the data properly, while combinations of

a2 and ∆KS contributions are suitable to describe the data. It can also be seen that the overall error is

dominated by the continuum extrapolation followed by the choice of the gradient flow.
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Median 172.35 am
Total error 0.51 am 0.30 %
Statistical error 0.22 am 0.13 %
Systematic error 0.46 am 0.27 %
Pseudo-scalar fit range 0.01 am < 0.01 %
Omega baryon fit range 0.24 am 0.14 %
Physical value of MΩ 0.06 am 0.03 %
Lattice spacing cuts 0.09 am 0.05 %
Order of fit polynomials 0.17 am 0.10 %
Continuum parameter (∆KS or a2) 0.30 am 0.17 %

Table 8.2 Upper left panel: Continuum extrapolation of the w0 scale, estimated with the Ω baryon mass, in terms
of a2. Upper right panel: Continuum extrapolation of the same quantity in terms of ∆KS . Center panel: Total
histogram of w0 with the one- and two-sigma bands Lower panel: Error budget of w0 computed with the mass of
the Ω baryon. Previously published in [20].
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Plateau region 0.000016 0.012 %
Effective mass dt 0.00000075 0.00056 %
Effective mass form 0.000025 0.019 %
Hairpin parameters 0.0000017 0.0013 %
NNLO XPT FV 0.000014 0.010 %
Beta cut 0.000063 0.047 %
A 0.00011 0.085 %
A’ fit form 0.000057 0.042 %
B fit form 0.0000059 0.0044 %
C fit form 0.0000048 0.0036 %

A B C G

A 0.1346(1)(+2
−3)[+2−4] −0.09(0.02)(−0.22) −0.03(0.42)(−0.52) –

B 0.0069(21)(+13
−0 )[+25−21] −0.19(−0.17)(−0.24) –

C −3(15)(+4
−9)[+16−8 ] × 10−5 –

G 9(9)(+2
−9)[+10−13] × 10−5

Table 8.3 Blinded lattice results of the fπw0-study. Upper left panel: Different continuum extrapolations in a2,
the points are shifted to physical masses and are averaged if they correspond to the same lattice spacing. The colors
denote relative weights of the corresponding fits. Upper right panel: Different continuum extrapolations in ∆KS .
Center left panel: Total histogram of the isospin-symmetric fπw0 continuum extrapolation. Center right panel:

Error budget of the fπw0 continuum extrapolation. Lower panel: Continuum results (diagonal) and their correlation
coefficients (off-diagonal).
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Hairpin parameters 0.0000053 0.0048 %
NNLO XPT FV 0.000018 0.016 %
Beta cut 0.000067 0.060 %
A 0.00012 0.11 %
A’ fit form 0.000047 0.042 %
B fit form 0.0000059 0.0053 %
C fit form 0.000025 0.022 %

A B C G

A 0.1118(2)(+2
−3)[+3−4] 0.03(0.01)(0.07) 0.10(−0.05)(0.31) –

B 0.0069(22)(+13
−5 )[+25−24] −0.20(−0.12)(−0.36) –

C 3(2)(+0
−2)[+2−3] × 10−4 –

G –

Table 8.4 Blinded lattice results of the fπ
√
t0-study. Upper left panel: Different continuum extrapolations in

a2, the points are shifted to physical masses and are averaged if they correspond to the same lattice spacing. The
colors denote relative weights of the corresponding fits. Upper right panel: Different continuum extrapolations in
∆KS . Center left panel: Total histogram of the isospin-symmetric fπ

√
t0 continuum extrapolation. Center right

panel: Error budget of the fπ
√
t0 continuum extrapolation. Lower panel: Continuum results (diagonal) and their

correlation coefficients (off-diagonal).
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9 Phenomenology

The lattice simulations discussed in the previous chapters aim to address tensions between experimental

results and theoretical predictions. Beyond this, lattice QCD offers powerful tools to investigate fundamental

aspects of the standard model such as the unitarity of the CKM matrix and the anomalous magnetic moment

of the muon. Additionally, scale setting - that is, the determination of the lattice spacing - remains a crucial

and ongoing challenge in lattice QCD, often leading to discrepancies and debates within the lattice community.

9.1 The anomalous magnetic moment of the muon

The anomalous magnetic moment of the muon aµ =
gµ−2

2
is currently one of the most important test

parameters for the standard model of particle physics. In experiments, it has been measured up to a precision

of 0.2ppm [8], with the current experimental average being

aµ = 116,592,055(25) × 10−11. (9.1)

From the theory point of view its value is dominated by electromagnetic contributions that can be computed

using perturbation theory. In addition, there are small contributions from electroweak and hadronic light-

by-light effects [168–174]. Also, hadronic vacuum polarization (HVP) effects contribute to aµ by a small

amount, which is called aLO−HVP
µ . Although the absolute contribution is very small compared to the QED

contribution, the error is dominated by the HVP part [168]. Currently, there are two methods that are used

to obtain a value for aLO−HVP
µ : A lattice computation from first principles, and the data-driven approach.

With lattice QCD, aLO−HVP
µ can be computed from the vector correlation function via

aLO−HVP
µ = α2 ∫

∞

0
dtK(t)C1γI(t), (9.2)

K(t) = ∫ ∞

0

dQ2

m2
µ

ω (Q2

m2
µ

)(t2 − 4

Q2
sin2 ( tQ

2
)) , (9.3)

ω(x) = [x + 2 −
√
x(x + 4)]2√

x(x + 4) , (9.4)

where C1γI(t) is the one-photon irreducible part of the vector propagator, mµ the mass of the muon and α

the electromagnetic fine-structure constant. Using the R-ratio the HVP-contributions to aµ can be computed

using [127]

aLO−HVP
µ = (αmµ

2π
)2 ∫ ∞

0

ds

s2
K̂(s)R(s), (9.5)

K̂(s) = 3s5/2
8m4

µ
∫
∞

0
dt e−t

√
sK(t). (9.6)

Commonly, the time interval [0,∞) is split into several windows. This is done because different length scales

on the lattice come along with different statistical and systematic subtleties that can be considered separately

with this approach. Whenever an integration with respect to the Euclidean time is performed on the lattice,
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Figure 9.1 Comparison of experimental measurements and theoretical predictions (with or without data-driven
inputs). The green data point represents the mean value of experimental measurements of aµ [8, 175–177] while the
other data are theoretical predictions that estimate the HVP contributions in different ways: The purple data points
show pure lattice calculations [19, 178–180] while the blue ones use different data-driven approaches [181–190]. The
best theoretical prediction (red), that is available at the moment uses data-driven approaches for the small tail
contributions of the HVP. Figure is taken from [20].

we can pick out a time interval (ti, tf) with the (smooth) window function

W (t; ti, tf ,∆) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if ti = 0 and tf =∞

1 − θ(t − tf ,∆), if 0 = ti < tf <∞

θ(t − ti,∆) − θ(t − tf ,∆), if 0 < ti < tf <∞

θ(t − ti,∆), if 0 < ti < tf =∞

(9.7)

θ(t,∆) = 1 + tanh ( t
∆
)

2
, (9.8)

where usually ∆ = 0.15 fm and the three windows [0.0 fm,0.4 fm] (short distance), [0.4 fm,1.0 fm] (intermediate

distance) and [1.0 fm,∞ fm) (long distance) are chosen [127, 168, 191].

The first theoretical computation of aLO−HVP
µ that reaches the precision of the experiments was done by

the BMW collaboration in 2020 (see Figure 9.1). At the same time another group of theoretical physicists

published a value of aLO−HVP
µ that showed a 5σ-disagreement with the experimental results [168]. In this

paper the HVP effects were estimated using a data-driven approach that uses the R-ratio of electron-positron

scattering for the HVP. Due to the fact that at the current level of precision there are a lot of contradicting

predictions for aLO−HVP
µ this is a very interesting topic for physicists that look for Beyond-Standard-Model
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(BSM) effects. In order to resolve this problem experimentalists and theorist aim to increase the precision of

their respective results.

After the first experimental values of g − 2 from Fermilab were published in 2021 [192], the update came out

in 2023 with the precision given in Equation (9.1) [8]. The final results with the best precision are expected

to be published in 2025. Also, a lot of lattice calculations were published during the last years [179, 180,

193–199].

An important aspect of a high-precision computation of aLO−HVP
µ is the setting of the lattice spacing. This is

often done using the gradient-flow based observable w0 that has to be determined beforehand up to a very

high precision. In the previous chapters the computations of different dimensionless quantities with the w0

were discussed. From this we can extract this quantity in different ways:

Using the mass of the Ω-baryon we get a total results of

w0 = 0.17245(22)(46)[51] fm (9.9)

where the first error is statistical and the second is systematic. Here, strong-isospin breaking contributions of

∼ 0.0001 fm are added to the lattice results [19, 20] of MΩw0 after dividing by the physical mass of the Ω−

baryon [43].

To extract w0 from the fπw0-combination we have to bring the pion decay rate

Γ(π+ → ℓν̄ℓ) = G2
F

8π
m2

ℓMπ (1 − m2
ℓ

M2
π

)2 × ∣Vud̄∣2 × f2π × (1 + δπ) (9.10)

to mind. The experimentally estimated value of this quantity is [140]

Γexp(π+ → ℓν̄ℓ) = 3.8408(7) × 10−7 s−1. (9.11)

The pure QCD decay constant is defined by dividing out the kinematical factors as well as the first CKM

element ∣Vud∣ = 0.97373(31) [200] and radiative corrections [163]:

fGRS
π = 130.65(12)MeV (9.12)

Thus, we can compute w0 by transforming fπw0 into the GRS-scheme (with the coefficients from Table 8.3),

adding the sea quark effects and dividing out fGRS
π

αw0

blindw0 =
1

fGRS
π

(A +B(XGRS
l −XFLAG

l ) +C(XGRS
s −XFLAG

s ) +G(B,C)) , (9.13)

which results in a total value of

w0 = 0.17270(21)stat.(34)QCD(19)valence & exp(9)sea[45]tot. fm (9.14)

In Figure 9.2, it can be seen that the overall distribution of w0 exhibits a distinctly Gaussian shape, in contrast

to the histogram of fπw0 shown in Table 8.3. This difference arises from the use of various experimental

inputs and radiative corrections, which introduce additional uncertainties. These uncertainties effectively

smooth out the statistical and systematic fluctuations, leading to a more Gaussian-like distribution. The

estimation beats the precision of the prediction using the Ω baryon mass and all studies of other lattice

groups, including the FLAG average, as can be seen in Figure 9.3. The new w0 value based on the pion

decay constant is perfectly compatible with the estimation using the Ω− baryon mass and the FLAG average,

respectively [20, 194].
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Figure 9.2 Total histogram of our w0 estimation based on the pion decay constant.

To compute the QED contribution to w0 in the FLAG scheme we consider the difference

w
QED,FLAG
0 = w0 −

[fπw0]FLAG

fFLAG
π

= −0.00026(9)stat.(1)QCD(19)valence & exp(9)sea[22]tot. fm (9.15)

which is nearly compatible with zero at our current precision.

9.2 Lattice computation of FK/Fπ as a test for the CKM-unitarity

In the following section we will discuss the unitarity of the Cabibbo-Kobayashi-Maskawa matrix and its

relation to the meson decay constants. The topic is of special interest because state-of-the-art calculations

show a 2 − 3σ discrepancy to experimental results. High precision lattice QCD computations [55, 201, 203,

205–214] can help to further investigate this issue by providing precise values for the mesonic decay constant

that — in combination with experimental measurements [43, 140] — put the standard model of particle

physics to the test.

9.2.1 The CKM unitarity and its relation to the meson decay constants

With a mass of Mπ± = 139.57039(18)MeV and Mπ0 = 134.9768(5)MeV [43], pions are the lightest hadrons.1

Therefore it is straightforward to conclude that they are stable under strong interaction. However, a pion

can decay via weak processes into leptons, as shown in 9.4. On the other hand, the kaon is the lightest

hadron with non-zero strangeness (MK = 493.677(16)MeV [43]). Since strangeness is a conserved quantity

under strong interactions [40], the kaon also only has weak decay channels, but it also has non-leptonic decay

products (such as pions). Nevertheless, in this study we only care about the leptonic decay channels, at least

for the charged kaon.

In weak interactions, the transformations of the quark-flavors (which are necessary for the vertices at which the

W ± boson is created) happen with probabilities related to the elements of the Cabibbo-Kobayashi-Maskawa

1Note that the π± is not allowed to decay into π0 due to charge conservation.
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Figure 9.3 Comparison of several estimations of w0 [19, 20, 201–205] and the average from the FLAG report
2024 [138]. The data are still blinded, so the result from our study is shifted such that it aligns with the FLAG
average. However, the relative errors can be compared due to our multiplicative blinding procedure.
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Figure 9.4 The leptonic decay of the positively charged pion π+ (left) and kaon (right). To get the diagrams for
the negatively charged meson all of the particles have to be replaced by their antiparticles. Nearly 100% of all pions
decay into muons, because the tauon is heavier than the pion [43] and the e/νe final state is suppressed because of
helicity conservation [215].
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(CKM) matrix [216, 217]:

V CKM
=

⎛⎜⎜⎜⎝
Vud̄ Vus̄ Vub̄

Vcd̄ Vcs̄ Vcb̄

Vtd̄ Vts̄ Vtb̄

⎞⎟⎟⎟⎠
. (9.16)

The unitarity of this matrix is a direct consequence of the fact that each quark of a given up-type flavor can

only be transformed into exactly one quark of a given down-type flavor and vice versa.

The CKM matrix has four free real parameters,2 and is commonly parametrized with the angles θ12, θ13, θ23
and the phase δ via

V CKM
=

⎛⎜⎜⎜⎝
cos θ12 cos θ13 sin θ12 cos θ13 sin θ13e

iδ

− sin θ12 cos θ23 − sin θ23 cos θ12 sin θ13e
iδ cos θ12 cos θ23 − sin θ23 sin θ12 sin θ13e

iδ sin θ23 cos θ12

sin θ12 sin θ23 − cos θ23 cos θ12 sin θ13e
iδ

− cos θ12 sin θ23 − cos θ23 sin θ12 sin θ13e
iδ cos θ23 cos θ12

⎞⎟⎟⎟⎠
.

(9.17)

Using the parameters

λ = sin θ12 (9.18)

A =
sin θ23

sin2 θ12
(9.19)

η =
sin θ13

sin θ12 sin θ23
sin δ (9.20)

ρ =
sin θ13

sin θ12 sin θ23
cos δ (9.21)

one can introduce the Wolfenstein parametrization of the CKM matrix [218]:

V CKM
=

⎛⎜⎜⎜⎝
1 − λ2

2
λ Aλ3(ρ − iη)

−λ 1 − λ2

2
Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎞⎟⎟⎟⎠
+O(λ4). (9.22)

Within this project a simplified view on the unitarity of the CKM matrix is sufficient. However, we only

investigate the first row unitarity, i.e.,

∣Vud̄∣2 + ∣Vus̄∣2 + ∣Vub̄∣2 = 1. (9.23)

On the other hand, experimental measurements suggest that the value of ∣Vub̄∣2 is much smaller than the

precision of current lattice computations [43], therefore the latter equation can be reduced to

∣Vud̄∣2 + ∣Vus̄∣2 ≈ 1 (9.24)

and λ from the Wolfenstein parametrization in Equation (9.18) and (9.22) is the remaining quantity of

interest.

Now the question arises how Equation (9.24) is related to the meson decay constants. In order to clarify this

2A generic 3 × 3 complex matrix has 18 real parameters. Here, there are nine constraints from the unitarity. Furthermore, five
degrees of freedom are phases that can be absorbed into the quark fields, whereas one overall global phase cannot be absorbed.
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Figure 9.5 Examples for diagrams that include the radiative corrections from Equation (9.25). The diagram
on the left describes an additional photon exchange between one of the quarks and the lepton, while on the right
diagram an additional photon connects the two quarks of the pion. More diagrams that contribute to radiative
corrections for meson decays are shown in [163].

issue we consider the decay width of the processes that are shown in Figure 9.4:

Γ(π+ → ℓν̄ℓ) = G2
F

8π
m2

ℓMπ (1 − m2
ℓ

M2
π

)2 × ∣Vud̄∣2 × f2π × (1 + δπ) (9.25)

Γ(K+ → ℓν̄ℓ) = G2
F

8π
m2

ℓMK (1 − m2
ℓ

M2
K

)2 × ∣Vus̄∣2 × f2K × (1 + δK) (9.26)

Here GF = 1.1663787(6)GeV−2 [219] is the Fermi-constant that is related to the coupling constant of the

weak interaction gw via

GF =

√
2

8

g2w
m2

W

. (9.27)

mX is the mass of a fundamental particle X and MY describes the mass of a hadron Y . fπ and fK are

the decay constants of the respective mesons and the δ’s are the radiative corrections that take care of the

inclusion of QCD+QED diagrams, some examples are shown in Figure 9.5. For the combined QCD+QED

decay constant, the notation FH ∶= fH
√
1 + δH is commonly used. Combing the Equations (9.25) and (9.26)

we can immediately observe that the matrix elements of the CKM matrix are related via the formula

∣Vud∣ =
√
MK (1 − m2

ℓ

M2

K

)√
Mπ (1 − m2

ℓ

M2
π
)
fK

fπ

√
1 + δK

1 + δπ
∣Vus∣. (9.28)

From the Wolfenstein parametrization in Equation (9.22) one can get another connection:

∣Vud∣ = 1 − ∣Vus∣2
2
+O (∣Vud∣4) (9.29)

Using elementary calculus it can be found out that there is a unique positive solution of both of the latter

equations. So the question arises where the 2 − 3σ tension between theory and experiment comes in. The

answer is that there are two more experiments that provide constraint on ∣Vud∣ respectively ∣Vus∣ separately.

One the one hand, results on the super-allowed β decays [200, 220, 221] give further information on ∣Vud∣,
whereas on the other hand, semi-leptonic kaon decays provide a value for ∣Vus∣.
Nuclear β decay is the conversion of a neutron into proton or vice-versa (whatever is energetically favorable)

under radiation of an electron(positron) and the corresponding (anti)neutrino. The corresponding Feynman

diagrams are shown in Figure 9.6.

A β decay is called superallowed if the wave-function of the nucleon is unchanged apart from the fact that

the flavor of one quark is changed. While the half-lives of the whole set of β decays span more than 20 orders

of magnitude, the small set of 13 superallowed β decays has shown to have a constant intrinsic strength [222].
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n
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ν̄e
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W +

Figure 9.6 Left-hand side: Nuclear β decay: A down quark is transformed into an up quark under radiation of a
W − boson. Since the down quark was a parton of a neutron, this neutron is transformed into a proton. The total
charge of the nucleus is increased by 1, therefore this nuclear process changed the element. The W − boson decays
into an electron and the corresponding antineutrino. Right-hand side: Inverse Nuclear β decay: The charge of the
nucleus is decreased by 1 and a positron and the corresponding neutrino are emitted.

K0

π−

ℓ+

νℓ

d

s̄

W +

u K̄0

π+

ℓ−

ν̄ℓ

d̄

s

W −

u

Figure 9.7 Left-hand side: Semi-leptonic decay of the K0. Right-hand side: Semi-leptonic decay of the K̄0.

From those one can extract a value for ∣Vud∣, Hardy and Towner published in 2020 a value [200] of

∣Vud∣ = 0.97373 ± 0.00031. (9.30)

A value for the up-strange quark-mixing element can be received using date from semi-leptonic kaon decays.

The neutral kaons K0 and K̄0, which consist of a down and a strange quark have decay channels, that consist

of a lepton-neutrino pair and a pion, as it can be seen in Figure 9.7. From this processes it is possible to give

an estimate of [133, 223]

∣Vus∣ = 0.2232(6). (9.31)

An independent way of measuring ∣Vus∣ is given in [224–228] by considering decays of the τ lepton as the ones

that are shown in Figure 9.8. In this case the corresponding CKM matrix element is significantly smaller [43]:

∣Vus∣ = 0.2207(14). (9.32)

In all of these cases 2 − 3σ discrepancies with the CKM unitarity can be seen. Thus, the task in this part is

to use a high-precision lattice estimation of the kaon and pion decay constant ratio. This can be used for

further investigations of the CKM unitarity.
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Figure 9.8 Diagram of hadronic τ decays. Left-hand side: Strange hadronic τ decay. Right-hand side: Non-strange
hadronic τ decay.
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FNAL/MILC17

RBC/UKQCD14

HPQCD13

Figure 9.9 Comparison on the results on fK/fπ. The values include the FLAG average [138], and existing lattice
studies [55, 201, 203, 205–209]. For some of the data, the available values do not include strong-isospin breaking
corrections. Then, the corrections are taken from the FLAG report [138], which uses the SU(3) χPT formula
from [229]. The data are still blinded, so the result from our study is shifted such that it aligns with the FLAG
average. However, the relative errors can be compared due to our multiplicative blinding procedure.

9.2.2 Phenomenological consequences of the lattice results

If the isospin symmetric and isospin-breaking contributions to fK/fπ that are given in Section 8.1 are

combined properly one gets the full QCD results of fK/fπ in the FLAG scheme which is the common scheme

to compare the results with those from other groups. In this study we get the result

αK
blind [fKfπ ]

FLAG

= 1.9226(14)(13)[19] (9.33)

where the first error is statistical and the second error is systematic. The total error is given in squared

brackets. A comparison with the result from other collaborations as well as the averaged results from the

2024 FLAG report is shown in the left column of Figure 9.9. It can be seen that this study provides the most

accurate (0.10%) QCD result of the ratio of the kaon and pion decay constants. To extract information on

the CKM unitarity from the ratio of the pseudo-scalar decay constants we need to re-call the pion and kaon
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decay widths:

Γ(π+ → ℓν̄ℓ) = G2
F

8π
m2

ℓMπ (1 − m2
ℓ

M2
π

)2 × ∣Vud̄∣2 × f2π × (1 + δπ) (9.34)

Γ(K+ → ℓν̄ℓ) = G2
F

8π
m2

ℓMK (1 − m2
ℓ

M2
K

)2 × ∣Vus̄∣2 × f2K × (1 + δK) (9.35)

The ratio of these two equations leads to the expression

∣Vud
Vus
∣2 = Γ(π+ → ℓνℓ)

Γ(K+ → ℓνℓ)
MK

Mπ

(1 − m2

ℓ

M2

K

)2
(1 − m2

ℓ

M2
π
)2
f2K
f2π

1 + δK

1 + δπ
(9.36)

=∶ Cπ,K

f2K
f2π
(1 + δK,π) (9.37)

Since we want to use the radiative corrections δπ,K in GRS scheme from RM123 [163] also the decay constant

ratio has to be transformed in the preferred scheme. In order to do so, we can take the values from Table 8.1

such that we have a lattice estimate of the decay constant ratio of

(αK
blind)2 ∣VudVus

∣2 = (αK
blind)2 × [FK

Fπ

] ×Cπ,K (9.38)

=(A +B(XGRS
l −XFLAG

l ) +C(XGRS
s −XFLAG

s ) +D δM2

2fGRS
π

+G(B,C))2 × (1 + δvalence
K,π ) ×Cπ,K (9.39)

The sum in the first brackets of Equation (9.39) which is the lattice estimation of fK
fπ

in the GRS scheme

(including sea quark effects) is computed according to the methods that were introduced in Section 5.4 for

estimating the covariance of quantities with systematic and statistical uncertainties. The sea quark effects

G are measured for two values of B and C, respectively, so they can be interpolated to their values at the

corresponding systematic. δπ,K and Cπ,K also have an uncertainty that is respected by taking their upper

and lower one-sigma quantile, respectively.

Since we include a lattice estimation of the sea quark effects we need to purify the radiative corrections that

are given in [163] from those contributions:

δvalence
π = 0.0150(18) (9.40)

δvalence
K = 0.0021(8) (9.41)

δvalence
K,π = δRvalence

K − δRvalence
π = 0.0129(14) (9.42)

Thus the theoretical prediction of the full QCD+QED decay constants is given by:

αK
blind [FK

Fπ

]theory

= 1.9251(15)(27)[31] (9.43)

which corresponds to a precision of 0.16% One can check whether the expressions

∣V HT
ud ∣2 ⎛⎝1 + ∣VudVus

∣−2⎞⎠ and ∣V FLAG
us ∣2 ⎛⎝1 + ∣VudVus

∣2⎞⎠ (9.44)

are compatible with one by using the value of the up-down element from Hardy and Towner [200] and the

FLAG value for the up-strange element [194], respectively. A total comparison of our results, the CKM

unitarity and the results from the FLAG and Hardy and Towner is shown in Figure 9.10. Since the lattice
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estimations in this work are not unblinded yet, the results are set to the PDG values using the precision of

our result.

0.960 0.965 0.970 0.975 0.980

|Vud|

0.220

0.222

0.224

0.226

0.228

0.230
|V

u
s
|

fK / fπ (this work, blinded)

semi-leptonic kaon decays (FLAG)

superallowed β decays (HT)

unitarity

Figure 9.10 CKM constraints for the pseudo-scalar decay constants. The results from our work [26] are given
by the blue band, the super-allowed β decay results [200] are marks by the purple band, the semi-leptonic kaon
decays [138] are given by the yellow band and the dashed line corresponds to the CKM unitarity using the assumption
∣Vub∣ = 0 which compatible with our reached precision.

With a relative precision of 2 permille for Vus/Vud, my result surpasses the precision of the PDG value [43]

for Vus, which stands at 3 permille. This is particularly notable given that the Vud input from Hardy and

Towner is already determined with very high precision [200].

9.3 Discrepancies in scale setting

As shown in Figure 9.11, there are significant discrepancies among different lattice determinations of the

gradient-flow-based scale
√
t0, which are not observed for the w0 scale (see Figure 9.3). These various

determinations of
√
t0 employ different discretization schemes and physical input parameters. This raises the

question: what is the origin of these discrepancies? Using our data, we are also able to compute this scale and

contribute to the discussion.

Using the pion decay rate in the FLAG scheme (fFLAG
π = 130.5MeV [138]), we can give a value of

αt0
blind

√
t
QCD, FLAG
0 = 0.1791(3)(+3

−2)[+4−4] fm, (9.45)

which has a higher precision than most of the existing lattice studies as can be seen in the right panel of

Figure 9.11. However, the QED contributions are missing, but in the previous section we could observe that

w
QCD, FLAG
0 ∼ 0 at our current level of precision. Therefore, no large differences are expected, even though

this assumption still has to be proven.
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Figure 9.11 Comparison of several estimations of
√
t0 [139, 201–203, 207, 230–233] and the average from the

FLAG report 2024 [138]. Estimations based on simulations using Nf = 2 + 1 instead of Nf = 2 + 1 + 1 are marked
with ∗. The data are still blinded, so the result from our study is shifted such that it aligns with the FLAG average.
However, the relative errors can be compared due to our multiplicative blinding procedure.
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Most of the works contributing to the muon g − 2 puzzle only give results for certain windows. It was shown

that a large amount of the uncertainties are related to the bad signal-to-noise ratio of the vector correlator at

large time distances. While in the fist high-precision estimation of aLO−HVP
µ [19] the bounding method was

used (which uses estimates for upper and lower bound the vector propagator in the critical regime), the idea

came up to reconstruct the long-distance behavior by a spectral decomposition of the correlation function

at shorter distances [128, 179, 180, 234]. Nevertheless, the by far best reduction of statistical uncertainties

in the long-distance regime could be made by including the data-driven approach for only a small part the

long-distance window while using the lattice simulations for the bulk of aLO−HVP
µ . This approach was first

published by the BMW collaboration in 2024 [20]. Before it could shown that the discrepancies of data-driven

and lattice approach arise from the shorter distances [127]. Even though we have a very precise methods for

the tail distributions by now, it is still interesting to reconstruct the vector propagator for large distances to

have an independent check of the data-driven approach.

Since there is a strong decay of the vector meson (ρ) into two pions, the vector correlator has contri-

butions of the form exp(−E2πt)1. If there the are two-pion states with an energy below the mass of the

ρ-meson (which is actually the case), the long-distance regime is dominated by the two-pion states. So we

plan to extract the two-pion contributions from the vector correlator using a GEVP (see Section 5.5) that

includes the vector meson and two-pion states at short distances. The extracted parameters can then be used

to reconstruct the correlator at long distances.

This chapter is divided into the following sections. First, I present my mathematical consideration to construct

two-pion states with the same quantum numbers as the vector meson using staggered fermions. Next, I will

present the ideas of the implementation. In particular I will construct a method for an efficient computation

of connected two-pion diagrams. The content of the following section has been presented on the LATICE2023

and LATTICE2024 conferences and published in the corresponding Proceedings of Science (PoS) [119, 120].

10.1 Two pion contribution to vector mesons

The staggered symmetry group on a fixed time slice is given by

Z
3
N ⋊ [Γ4,1

⋊W3] , (10.1)

with ⋊ denoting the semi-direct product. The first factor describes the translations on the three dimensional

torus, the second one the charge conjugation and taste transformations and the last factor the rotations and

inversions of three dimensional cube. More details on the symmetry group of the staggered action is given

in Section 3.2.2. In this study a vector meson at rest, trivial in taste space, is considered. Therefore, the

representation of the vector state is given by

C ⊗ V, (10.2)

where C is the non-trivial (Z2) representation of the charge conjugation2 and V is the vector representation

of the Würfel group, i.e., the defining representation of the orthogonal group O(3) restricted on W3.

The pion states are somewhat more involved since they are not trivial in position and taste. Indeed, the

1E2π denotes the energy of a two-pion system, thus, E2π ≥ 2Mπ .
2Later we will include ππ states with negative charge conjugacy (I = 1 combination). Therefore, we can ignore the charge

conjugation issues in the mathematical derivation.
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representation of resting Goldstone-pions is trivial. However, when considering two-pion states taste momentum

structure will be more involved. Basis vectors of the pion representation are given by

∣p⃗, ξ⃗, ξ4⟩π± , (10.3)

where the 4th component of the taste is separated from the others, because this component is not affected by

the spatial rotations. These states transform under the generators of the staggered symmetry group in the

following way

Si ∣p⃗, ξ⃗, ξ4⟩π± = e−ipi ∣p⃗, ξ⃗, ξ4⟩π± (10.4)

Ξµ ∣p⃗, ξ⃗, ξ4⟩π± = (−)ξµ ∣p⃗, ξ⃗, ξ4⟩π (10.5)

R ∣p⃗, ξ⃗, ξ4⟩π± = det(R) ∣Rp⃗,Rξ⃗, ξ4⟩π± (10.6)

C ∣p⃗, ξ⃗, ξ4⟩π± = ∣p⃗, ξ⃗, ξ4⟩π∓ . (10.7)

This structure can be derived using the little group procedure mentioned in the Appendix 12.3.

A two-pion state with I = 1 is given (up to normalization) by the wedge product a ∧ b = 1√
2
(a⊗ b − b⊗ a) of

two single-pion states with charge + resp. −. So the group representation is generated by

Si (∣p⃗a, ξ⃗a, ξa4 ⟩π+ ∧ ∣p⃗b, ξ⃗b, ξb4⟩π−) = e−i(pa
i +p

b
i) (∣p⃗a, ξ⃗a, ξa4 ⟩π+ ∧ ∣p⃗b, ξ⃗b, ξb4⟩π−) (10.8)

Ξµ (∣p⃗a, ξ⃗a, ξa4 ⟩π+ ∧ ∣p⃗b, ξ⃗b, ξb4⟩π−) = (−)ξaµ+ξbµ (∣p⃗a, ξ⃗a, ξa4 ⟩π+ ∧ ∣p⃗b, ξ⃗b, ξb4⟩π−) (10.9)

R (∣p⃗a, ξ⃗a, ξa4 ⟩π+ ∧ ∣p⃗b, ξ⃗b, ξb4⟩π−) = (∣Rp⃗a,Rξ⃗a, ξa4 ⟩π+ ∧ ∣Rp⃗b,Rξ⃗b, ξb4⟩π−) (10.10)

C (∣p⃗a, ξ⃗a, ξa4 ⟩π+ ∧ ∣p⃗b, ξ⃗b, ξb4⟩π−) = − (∣p⃗a, ξ⃗a, ξa4 ⟩π+ ∧ ∣p⃗b, ξ⃗b, ξb4⟩π−) . (10.11)

Here, it is used that det(R)2 = 1 for all elements of W3. For simplicity we will denote these states as

∣p⃗a, ξ⃗a, ξa4 ⟩π+ ∧ ∣p⃗b, ξ⃗b, ξb4⟩π− =∶ ∣p⃗a, ξ⃗a, ξa4 ; p⃗b, ξ⃗b, ξb4⟩ . (10.12)

Of course, not all two-pion states have the same overlap to all vector meson states. Quantum numbers have

to be conserved as well as some of the states appear with a different multiplicity. Mathematically spoken,

it behaves the following way: The vector meson representation of the Würfel group is irreducible while the

two-pion representations are reducible. Therefore, the two-pion states can be decomposed into irreducible

representations, from which we expect some to be the vector meson irrep. So we can construct vector-meson

like states from the two-pion states with the same quantum numbers according to

∣q⃗ = 0, ζµ = 0; s,m,α⟩ = ∑
(p⃗a,ξaµ,p⃗

b,ξbµ)∈s
∣p⃗a, ξ⃗a, ξa4 ; p⃗b, ξ⃗b, ξb4⟩ ⟨p⃗a, ξ⃗a, ξa4 ; p⃗b, ξ⃗b, ξb4∣q⃗ = 0, ζµ = 0; s,m,α⟩ , (10.13)

where q⃗ denotes the momentum and ζµ the taste of the vector meson, s labels the orbit Os of the two-pion

states under W3 rotations and spatial inversions, m ∈ (1, ..., as) labels the multiplicities with which the

corresponding orbit occurs, and α = x, y, z represents the orientation of the reconstructed vector meson. One

should note that the vector-like states have a rotational symmetry and therefore, the final states only depend

on the absolute value of the momentum and taste vectors (this is why they are classified into orbits) and on

the 4th component of the taste. Of course, the rotations affects the direction of the vector state but this is

considered in further calculations.

The derivation is similar to Wigner’s little group procedure mentioned in Section 12.3 and in [34].

So one has to figure out the multiplicities as as well as the Clebsch-Gordan coefficients which are given

defined as the scalar product from Equation (10.13). Computing the multiplicities is straightforward using

basic essences of finite group theory. The character of a representation is given by the trace of a corresponding
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group element, which means in the case of a two-pion state

χ2π(S⃗,R,Ξµ) =
∑

p⃗a,p⃗b,ξaµ,ξ
b
µ

⟨p⃗a, ξ⃗a, ξa4 ; p⃗b, ξ⃗b, ξb4∣Rp⃗a, R⃗ξa, ξa4 ;Rp⃗b,Rξ⃗b, ξb4⟩ e−iS⃗⋅R(p⃗a
+p⃗b)−iπΞ⃗⋅R(ξ⃗a+ξ⃗b)−iπΞ4(ξa4+ξb4) (10.14)

(10.15)

and in the case of the vector meson

χρ(R) = Tr(R). (10.16)

Then, the multiplicity of a given orbit is given by

as =
1

24 ⋅ 48 ⋅L3
∑
nRΞ

χρ(R)∗ × χ2π(n,R,Ξ) (10.17)

=
1

48
∑
R

χρ(R)∗ ×∑
p⃗b

∑
p⃗a=Rp⃗a

δ(p⃗a + p⃗b) × ∑⃗
ξb

∑
ξ⃗a=Rξ⃗a

δ(ξa1,2,3,4 − ξb1,2,3,4), (10.18)

which can be computed very easily using a small script. Please note that the resulting formula is independent

of the lattice volume as long as the cubic symmetry is valid.

When computing this coefficients one will notice that the only two-pion states that have overlap to the resting

taste-singlet vector meson are those that have total momentum 0 and constitute of two pions that have the

same taste. Therefore, the multiplicities (and the CG-coefficients) can be labeled by a single momentum

(which we call p⃗) and a single taste (which we call ξ)3. Independent of the choice of ξ4 we get the coefficients

shown in table 10.1. The multiplicities as well as the Clebsch-Gordan coefficient only depend on the orbit of

the pion state under the action of the Würfel group. The orbits can be labeled by the absolute value of taste

and momentum and from this point we will denote the two-pion states that have total momentum zero and

that are taste-singlets in the bra-ket notation as

∣p⃗, ξ⃗, ξ4;−p⃗, ξ⃗, ξ4⟩ =∶ ∣p⃗, ξ⃗, ξ4; I = 1⟩ . (10.19)

Next one needs to compute the Clebsch-Gordan coefficients, that are given by the scalar product in Equa-

tion (10.13):

C
s,m,α

p⃗,ξ⃗,ξ4;R
= ⟨Rp⃗,Rξ⃗, ξ4; I = 1∣q⃗ = 0⃗, ζµ = 0; s,m,α⟩ . (10.20)

The Clebsch-Gordon coefficients do not depend on ξ4 and can of course be given in terms of momenta and

tastes from the corresponding rotational orbit:

C
s,m,α

p⃗,ξ⃗
= ⟨p⃗, ξ⃗, ξ4, I = 1∣q⃗ = 0⃗, ζµ = 0; s,m,α⟩ . (10.21)

Since the symmetry group that is considered here is a finite group, we can use brute-force techniques [235] in

order to compute the CG-coefficients. The application of this method for the two-pion-vector-meson overlap

is explained very briefly in the following paragraph:

Let T (R) be the vector representation of a Würfel group element R. In this case, all of those 48 matrices are

real, orthogonal and three dimensional. For a given taste and momentum orbit O and Rotation R ∈W3 we

3Of course, p⃗ can be replaced by −p⃗. This results in an interchange of the two pions and produces only a global sign which is
not relevant in the generalized eigenvalue problem.
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define DO(R) as a matrix of dimension ∣O∣ fulfilling the following condition:

DO(R)p⃗a,ξa;p⃗b,ξb = δp⃗a,Rp⃗bδξa,Rξb ∀(p⃗a, ξa), (p⃗b, ξb) ∈ O (10.22)

One has to note that for the taste one does not need to distinguish between positive and negative number,

i.e., the rotations R act on the taste vector as elements of O(Z3
2). For example a rotation be π around the

z-axis leaves the unit vector in z-unit vector invariant:

⎛⎜⎜⎜⎝
1 0 0

0 −1 0

0 0 −1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
0

0

1

⎞⎟⎟⎟⎠
≡

⎛⎜⎜⎜⎝
0

0

1

⎞⎟⎟⎟⎠
mod 2. (10.23)

One might ask why the representation in Equation (10.22) has no dependence on the shift or taste operation.

This is because in this special case of two pion states the phases (signs) for shift (taste) operation cancel

exactly. E.g. while the first pion gives a phase of eip⃗
a
⋅s⃗, the second one gives a phase of eip⃗

b
⋅s⃗
= e−ip⃗

a
⋅s⃗.

Therefore, the whole computation becomes independent of the lattice size which reduces the computational

effort by far. The whole computation can be done within a few seconds on a usual laptop PC.

We can compute the coefficients by normalizing the columns of

∑
R

DO(R) ⋅A ⋅ T (R) , (10.24)

where A is a matrix with general coefficients and the size of A is chosen such that the multiplications are

well-defined. Most of the general entries of A will cancel after this procedure but the remaining ones will

span a vector space whose dimension is the multiplicity we computed before4. Choosing a certain basis

here will give the coefficients for the different copies of the vector space. The final matrix will have three

columns each representing one component of the vector current. The entries in each of the rows will denote

the Clebsch-Gordan coefficient of the corresponding state. For example let us consider the ∣p⃗∣ = 1, ∣ξ⃗∣ = 3 and

ξ4 = 1 orbit with the ordered basis

∣p⃗ = e⃗x, ξ⃗ = e⃗x + e⃗y + e⃗z, ξ4 = 1⟩ , ∣p⃗ = −e⃗x, ξ⃗ = e⃗x + e⃗y + e⃗z, ξ4 = 1⟩ , (10.25)

∣p⃗ = e⃗y, ξ⃗ = e⃗x + e⃗y + e⃗z, ξ4 = 1⟩ , ∣p⃗ = −e⃗y, ξ⃗ = e⃗x + e⃗y + e⃗z, ξ4 = 1⟩ , (10.26)

∣p⃗ = e⃗z, ξ⃗ = e⃗x + e⃗y + e⃗z, ξ4 = 1⟩ , ∣p⃗ = −e⃗z, ξ⃗ = e⃗x + e⃗y + e⃗z, ξ4 = 1⟩ . (10.27)

The resulting matrix (after normalizing the columns) of Equation (10.24) will be

1√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

−1 0 0

0 1 0

0 −1 0

0 0 1

0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (10.28)

which means that the ith component of the vector overlap with this orbit is given by

1

2
(∣p⃗ = e⃗i, ξ⃗ = e⃗x + e⃗y + e⃗z, ξ4 = 1⟩ − ∣p⃗ = −e⃗i, ξ⃗ = e⃗x + e⃗y + e⃗z, ξ4 = 1⟩) . (10.29)

For states with a multiplicity larger than one (e.g. the same pion states with ∣ξ⃗∣ = 2), one can construct more

4In principle we do not need to compute the multiplicities before, but it is very straightforward and some kind of crosscheck
for the computation of the coefficients.
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∣p⃗∣2 = 0 ∣p⃗∣2 = 1 ∣p⃗∣2 = 2 ∣p⃗∣2 = 3 ∣p⃗∣2 = 4
∣ξ⃗∣2 = 0 0 1 1 1 1∣ξ⃗∣2 = 1 0 2 3 2 2∣ξ⃗∣2 = 2 0 2 3 2 2∣ξ⃗∣2 = 3 0 1 1 1 1

Table 10.1 Multiplicities of 2π representations in the resting vector meson depending on the absolute momentum
and taste. The multiplicities can be computed using the scalar product of characters of the representations of the
vector states and the two-pion state, respectively.

ξ⃗2 = 0(3) ξ⃗2 = 1(2)
p⃗2 = 1 C

1,α

λe⃗i,0⃗
= λ 1√

2
δαi C

1,α

λe⃗i,f⃗j
= λ 1√

2
δijδαi

C
2,α

λe⃗i,f⃗j
=

λ
2
(1 − δij)δαi

p⃗2 = 2 C
1,α

λe⃗i+µej ,0⃗
=

λ

2
√
2
δαi C

1,α

λe⃗i+µe⃗j ,f⃗k
=

λ

2
√
2
∣ǫijk ∣δαi

C
2,α

λe⃗i+µe⃗j ,f⃗k
=

λ

2
√
2
δkiδαi

C
3,α

λe⃗i+µe⃗j ,f⃗k
=

λ

2
√
2
δkjδαi

p⃗2 = 3 C
1,α

λe⃗i+µe⃗j+νe⃗k,0⃗
=

λ

2
√
2
δαi C

1,α

λe⃗i+µe⃗j+νe⃗k,f⃗l
=

λ

2
√
2
δilδαi

C
2,α

λe⃗i+µe⃗j+νe⃗k,f⃗l
=

λ
4
∣ǫjkl∣δαi

p⃗2 = 4 C
1,α

2λe⃗i,0⃗
= λ 1√

2
δαi C

1,α

2λe⃗i,f⃗j
= λ 1√

2
δijδαi

C
2,α

2λe⃗i,f⃗j
=

λ
2
(1 − δij)δαi

Table 10.2 The Clebsch-Gordan coefficients needed for constructing the vector meson out of two-pion states.

independent linear combinations of the overlapping states.

Next we will present the CG coefficients for the taste and momentum orbits up to p⃗2 = 4. Due to symmetries,

there is no distinction between p⃗2 = 1 and p⃗2 = 4. The unit vectors in momentum space are denoted with

e⃗i, while fi represents unit vectors in taste space, whenever p⃗2 = 1 or ξ⃗2 = 1. If the orbits are of the type

ξ⃗2 = 2, fi denotes a vector with a zero in the ith component and a one in the other ones. 0⃗ denotes the zero

vector in the case ξ⃗2 = 0 and (1,1,1)T when ξ⃗2 = 3. Here, λ, µ, and ν refer to 1 and −1, respectively. The

Clebsch-Gordan coefficients are shown in Table 10.2.

10.2 Implementation

The coordinate-space correlation function of the π+ operator is defined as

Cπ+(x, y) = [u(x)O(x)d̄(x)][d(y)O†(y)ū(y)], (10.30)

whereas the π− correlation function is

Cπ−(x, y) = [ū(x)O(x)d(x)][d̄(y)O†(y)u(y)]. (10.31)

Here, we define O(x) = (γ5 ⊗Ξ) exp (−ip⃗ ⋅ x⃗) in the spin-taste representation with a certain taste Ξ, the

momentum is given by p⃗ = 2π
L
n⃗ with L being the spatial lattice extend and n⃗ ∈ N3. The definition of the

spin-taste operators for staggered fermions is given in Section 3.2. From now on I will drop the coordinate of

the operator O since it is given implicitly by the neighboring arguments.

To construct two-pion states we consider a combination of π+ and π− with negative charge conjugation
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quantum number given by:

π+π− − π−π+

2
(10.32)

This is done in order to match the strong isospin and charge conjugation quantum number of the vector

meson.

Therefore, the correlation function of the antisymmetrized π+π−-state has to be considered:

Cπ+π−(x, y, z,w) = [u(x)Od̄(x)][d(y)Pū(y)][d(z)O†ū(z)][u(w)P †d̄(w)]
From this we get four different contractions:

⟨Cπ+π−(x, y, z,w)⟩ =Tr [M−1
u (y, x)OM−1

d (x, y)P ]Tr [M−1
d (w, z)O†M−1

u (z,w)P †]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
disconnected, “t-channel”

(10.33)

−Tr [M−1
u (z, x)OM−1

d (x, y)PM−1
d (w, z)O†M−1

u (y,w)P †]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
connected

(10.34)

−Tr [M−1
u (y, x)OM−1

d (x, z)PM−1
d (w, y)O†M−1

u (z,w)P †]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
connected

(10.35)

+Tr [M−1
u (z, x)OM−1

d (x, z)P ]Tr [M−1
d (w, y)O†M−1

u (y,w)P †]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
disconnected, “s-channel”

(10.36)

Here, ⟨...⟩ denotes the expectation value with respect to the fermion path-integral at a fixed gauge configuration.

The trace is taken with respect to the color components. As mentioned before, it is necessary to antisymmetrize

the ingoing as well as the outgoing pions. So we are left with

1

4
(Cπ+π−(x, y, z,w) −Cπ+π−(y, x, z,w) −Cπ+π−(x, y,w, z) −Cπ+π−(y, x,w, z)) . (10.37)

The first disconnected term (Equation (10.33)) will be zero due to its symmetric structure in combination

with the antisymmetrization of the two-pion correlator. Therefore, no implementation for this term is needed

and the term in Equation (10.36) will be called disconnected from now on. Additionally, one will see that

Equation (10.34) and Equation (10.35) are indistinguishable after the antisymmetrization. Therefore, we will

only consider one of those and call it the connected diagram. One has to note that this connected diagram

then gets a prefactor of −2. Within the analysis one should ensure that a proper antisymmetrization with

respect to the ingoing and outgoing pions is done.

Since the pions need to have back-to-back momentum one has to add certain phase factors before summing

up the spatial components. We consider the center-of-mass frame and therefore, the ingoing and the outgoing

momenta have to sum up to zero. The momentum of each ingoing pion is p⃗ (resp. −p⃗) and the momentum for

the outgoing pions is q⃗ (resp. −q⃗).

Of course, the two-pion states are not the only states needed in the GEVP for the reconstructions of the

vector meson. One also has to implement the vector meson (ρ-meson) correlation function it self to resolve all

energy eigenstates. This correlation function is given by

Cρ(x, z) = 1

2
([u(x)Oū(x)] − [d(x)O†d̄(x)]) ([ū(z)Ou(z)] − [d̄(z)O†d(z)]) , (10.38)

where O = γi ⊗ ✶ in the spin-taste representation, which corresponds to a taste-singlet vector meson. Finally,

one has only two contributing contractions which corresponds to one contributing contraction in the isospin-
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symmetric limit, which is used for the implementation:

Tr [M−1
u/d(x, z)OM−1

u/d(z, x)O†] (10.39)

The GEVP also requires terms that mix the vector and the two-pion state of which the correlation functions

are given by:

Cρππ(x, z,w) = 1

2
([u(x)Oū(x)] − [d(x)O†d̄(x)]) [d(z)P †ū(z)][u(w)P †d̄(w)]. (10.40)

In comparison to the pure pion or vector states, this three-point correlation functions are not real but complex

valued. In addition one can prove the identity

Cρππ(x,w, z) = Cρππ(x, z,w)∗, (10.41)

which, combined with the antisymmetrization in the pions, leads to the following expression that has to be

implemented:

ImTr [M−1
u/d(w, z)OM−1

u/d(x,w)P †M−1
d/u(z,w)P ] . (10.42)

For the implementation, we use certain noise sources ξe/o,t0 that fulfill the following properties:

ξTe,t0ξe,t1 =
NcL

3

2
δt0,t1 , (10.43)

ξTe,t0ξe,t1 = 0, (10.44)

ξTe,t0ξe,t1 = 0, (10.45)

ξTe,t0ξe,t1 =
NcL

3

2
δt0,t1 . (10.46)

In this case, they are represented by wall sources in the following way:

ξe,t0(x⃗, t, c) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if ∣x∣1%2 = 1

(−1)r(x⃗,c)δt0,t else
,

ξo,t0(x⃗, t, c) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if ∣x∣1%2 = 0

(−1)r(x⃗,c)δt0,t else
.

(10.47)

Here, r(x⃗, c) is a randomly chosen integer for each spatial lattice site and each color index.

For certain cases (vector mesons) we need point sources instead of the aforementioned wall sources. Those

can be written as

ξe/o,t0(x⃗, t, c) =
√

NcL3

2
δ(y⃗ − x⃗)δt0,tδd,c (10.48)

Here y⃗ is a randomly chosen spatial lattice site (that is even (e) or odd(o)) and d is a random color index.
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Figure 10.1 The diagrams corresponding to the GEVP including vector-meson-type states. The first one (conn.,
a)) includes interchange of quarks in the two pion states, the second one (free, b)) describes two pions propagating
independently and the third one (disc., c)) is identical to zero due to the isospin combination of the pions. The
decay of the vector mesons into two pions is described by the triangle (d)) and the remaining diagram (e)) is the
vector meson correlation function [119]

10.2.1 Vector meson correlator

The computation of the vector meson correlation function is done by implementing the scalar product

Cρ(t0, t) = 1

Nξ
∑
ξ

∑
t1,t2

⟨ξt0M−1
t0,t1

B (Pt)t1,t2 ∣M−1
t2,t0

Aξt0⟩ , (10.49)

where A/B denote components of the taste-singlet vector meson operator (in this case we have A = B) and

Pt is a projection on a fixed time slice t that is given by

(P (t))t1,t2 = δt,t1δt,t2 . (10.50)

From now on, this projection is included implicitly. The expectation value is computed by the mean values

with different random sources ξ that are only non-zero at a randomly chosen time slice t0 according to

Equation (10.47) and (10.48). The number of inversion, which is the most costly factor of such a computation

for the vector meson correlator is given by

Nξ(1 +NO) = Nξ(1 + 3) = 4Nξ (10.51)

where Nξ gives the number of random sources ξ and NO is the number of vector meson operators (smeared and

unsmeared, three components). Unfortunately, this expression converges only very slowly towards the exact

result when increasing Nξ. Therefore, for our usual values of Nξ the vector meson correlator is dominated by

noise. In order to get rid of the problem, we include low-mode averaging (LMA). The idea behind LMA is

that we expect the correlator mainly to depend on the eigenvalues of M with small absolute value. From the

preconditioning, we already know the lowest eigenvalues λi and the corresponding eigenvectors vi so we can
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compute the most contributing part exactly:

CLMA
ρ (t0, t) = Neig

∑
ij

1

λiλj
⟨viOA∣Pt0 ∣vj⟩ ⟨vjOB ∣Pt ∣vi⟩ . (10.52)

The eigen-part of the inversion is defined as

M−1
e =

Neig

∑
i

1

λi
∣vi⟩⟨vi∣ (10.53)

and is of course, not the true inversion of the staggered matrix. There is a rest-part we define as

M−1
r =M

−1
−M−1

e .

Due to the fact that the correlator in Equation (10.49) includes two inversions of the staggered matrix,

we have eigen-eigen (ee), rest-rest (rr) and eigen-rest and rest-eigen (er) contributions in the vector meson

correlator. If the number of pre-calculated eigenvectors gets to a suitable extend, the eigen-eigen part is the

dominant one. This part then will be replaced by the low-mode averaging expression to receive a strong

improvement of the signal-to-noise ratio especially for larger Euclidean time distances. The eigen-eigen part

of Equation (10.49) can be used to cross-check the low-mode-averaging.

10.2.2 Free pion diagram

The free pion diagram has to advantage that it can be computed by multiplying two one-pion correlation

functions. The computation looks similar as the vector meson in the previous subsection, but the operator

has to be replaced by the corresponding pion-operator with proper taste quantum numbers. Due to the fact

that the pion signal is very clean (since we deal with π+/π−) low-mode averaging is not necessary. In addition

we do not need to smear the operators and, therefore, we can use a wall-source instead of a point source.

The main problem in the implementation of this diagram is that we might have time-non-local operators.

In the lattice simulation, an operator includes shift by (sµ + tµ) mod 2 in the µ direction. Whenever µ is

spatial this is no problem, because the shift in symmetrized in forward and backward direction. But since

we measure correlation functions at a given time slice, we cannot do this in time direction. The application

of a time-non-local operator would shift the time slice at which the operator is measured from t to t − 1.

Therefore, we also include sources at t0 + 1 and average over different correlation functions in the following

way, where Ol denotes a local and On a time-non-local operator. We start explaining the case in which A is a

local operator and B can be either local or non-local. The first case is well-known:

CBlAl(t0, t) ∶= ⟨ξt0M−1
t0,t
Bl∣M−1

t,t0
Alξt0⟩, (10.54)

CBnAl(t0, t) ∶= 1

2
(⟨ξt0M−1

t0,t
Bn∣M−1

t,t0
Alξt0⟩ + ⟨ξt0M−1

t0,t
∣ (Bn)†M−1

t,t0A
lξt0⟩) . (10.55)

At the vertical line we compute the scalar-product which includes a projection on time slice t, but the

difference of t and t0 differs by one between the two terms in CBnAl . To include non-local operators for A,

we compute

CBlAn(t0, t) ∶= 1

2
(⟨ξt0M−1

t0,t
Bl∣M−1

t,t0
Alξt0⟩ + ⟨ξt0+1 (An)†M−1

t0,t
Bl∣M−1

t,t0+1
ξt0+1⟩)
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Combining the two methods for computing non-local A resp. B one yields the expression for both to be

non-local:

CBnAn(t0, t) ∶= 1

4
(⟨ξt0M−1

t0,t
Bl∣M−1

t,t0
Alξt0⟩ + ⟨ξt0+1 (An)†M−1

t0+1,t
Bl∣M−1

t,t0+1
ξt0+1⟩

+⟨ξt0M−1
t0,t
Bn∣M−1

t,t0
Alξt0⟩ + ⟨ξt0M−1

t0,t
∣ (Bn)†M−1

t,t0
Alξt0⟩ + ⟨ξt0+1M−1

t0+1,t
Bl∣M−1

t,t0+1
Alξt0+1⟩).

(10.56)

The free part will be the dominating contribution to the two-pion interaction especially for small time

separations. Nevertheless for larger separations, the connected part may play a more significant role.

10.2.3 Interaction diagram

For the implementation of the interaction diagram between the ρ-meson and the two-pion state, there are two

possible ways of implementation. Let A be the operator describing one of the corresponding pions. It has to

be mentioned that both A operators will have opposite momentum, so one has to take care of this issue when

implementing the diagrams. The ρ operator will be denoted by B. The first method is the implementation of

the decay:

CρAA(t0, t) = ⟨ξt0M−1
t0,t
AM−1

t,tA∣M−1
t0,t0

ρξt0⟩ (10.57)

Here, a problem appears that also arises in the next section that discusses the connected pion diagram. The

red inversion has to be perform on each time-slice which will increases the computational time drastically.

Luckily, one can compute the diagram in the opposite direction:

CAAρ = ⟨ξt0M−1
t0,t
B∣M−1

t,t0
AM−1

t0,t0
Aξt0⟩. (10.58)

This way, the dominant part of computational costs comes from the right-hand-side of the scalar product

where it is proportional to the number of operators included but not to the number of time-slices.

10.2.4 Connected pion diagram

The connected part of the diagram is by far the most expensive part of the computation and requires the

most elaborated strategy for a efficient computation. The main issue for the high costs can be seen from a

naive implementation for local operators:

Cconn.
BBAA(t0, t) = ⟨ξt0M−1

t0,t
BM−1

t,tB∣M−1
t,t0
AM−1

t0,t0
Aξt0⟩. (10.59)

The red inversion has to be performed on every timeslice, so that there occurs an overall number of inversions

proportional to [120]

T /a ×#O ×#Nξ (10.60)

. This is no problem on small volumes but since the cost of a single inversion scales roughly with V = L3
× T ,

the additional time scaling becomes a problem at larger volumes. An approach to save computational time

for the connected diagrams was presented by me at the LATTICE2024 conference. The key ingredient is the

low-mode averaging that was also used in Section 10.2.1. Therefore, the red inversion in replaced by the sum
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of the eigen-part M−1
e = ∑Neig

i
1
λi
∣vi⟩ ⟨vi∣ and M−1

r =M
−1
−M−1

e :

Cconn.
BBAA = ⟨ξt0M−1

t0,t
B

Neig

∑
i

1

λi
∣vi⟩ ⟨vi∣B∣M−1

t,t0
AM−1

t0,t0
Aξt0⟩ (10.61)

+ ⟨ξt0M−1
t0,t
B (M−1

r )t,tB∣M−1
t,t0
AM−1

t0,t0
Aξt0⟩. (10.62)

Of course the rest part also requires inversions at each time slice. Therefore, an approximation of the identity

✶ ≈ ∑σ ∣σ⟩ ⟨σ∣ is included, where the vectors ∣σ⟩ are normalized stochastic sources. The number of stochastic
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Figure 10.2 Comparison of exact and estimated two-pion propagator on the ensemble with β = 3.7000, L/a = 48
and T /a = 64. Left panel: Correlation function of the two-pion propagator with both pions having Goldstone and
two units of momentum (in opposite directions). The blue data are measured exactly using the full inversion whereas
the orange are exact on the lowest 1500 eigenvalues with the rest part being estimated using 24 random sources.
Right panel: Ratio of the propagators from the two different methods. For a better visibility the optimal ratio is
marked by a blue line. Previously published in [120].

sources Nσ has to be fine-tuned, not least because we are interested in saving computational resources. Of

course, we also need a sufficient large amount of random sources such that we can reach the desired accuracy.

It could be shown that choosing Nσ ∼ L/(2a) is an appropriate first choice.

The quality of the result and the savings of computational time are the two things that need further

investigations. In order to do this we employ representative configurations out of the repository for the g − 2

project, a list of the ensembles can be found in Table 6.1 and Table 6.2. Finally, it was made the decision to

explore the coarsest ensembles available (β = 3.7000). This has the advantage that we can save computational

resources even if we do simulations at our usual volume of (63 × 9) fm4. Additionally, we have access to

different volumes at this β and therefore are able to investigate the volume scaling of the computing time.

When comparing the quality of the exact method and the approximation with low-mode-averaging and

random sources it could be seen, that the quality of the second method strongly depends on the operator. For

the Goldstone taste in combination with zero-momentum it is fairly easy to get a good quality even with a

really small choice for Nσ. This is related to the fact that in this case the two-pion propagator is dominated

by the low-modes. However, p = 0 does not have an overlap to the vector states because it has no particular

direction. Thus, one cannot use this method in the way it works best.

Unfortunately, the quality gets worse and worse the higher the momentum and the more non-local the taste.

This is due to the fact that in these cases the contribution of higher modes starts to dominate the overall
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Figure 10.3 Comparison of the computational time for measuring all observables on a single configuration using
the full inversion and the low-mode-averaging, respectively. Left panel: Computational time depending on the
volume. Right panel: Computational time depending on the number of operators. Previously published in [120].

result. Increasing the number of eigenvalues and the number of random sources are possible solutions, but of

course they come along with more computational effort. As a representative example I show a comparison

of the quality of the Goldstone taste with the momentum being 4π
L

, i.e., two times the smallest possible

momentum. It is shown in Figure 10.2. The propagators in the right panel look very similar apart from the

noisy region around T /2. The comparison in the right panel is much more useful in this case. Here, the ratio

of exact and low-mode-averaged is given. It is evident that the deviation starts to be significant around

18a ≈ 2.3 fm. However, this is not a big deal since we want to use early windows to extract the mass plateaus

and matrix elements. Thus larger noise at later windows does not provide any problems.

Apart from the fact that the new method seems to be sufficiently precise, the question remains whether we

can save computational time. In order to clarify this, two tests were performed whose results are given in

Figure 10.3. The first measures the simulation time as a function of the volume. In both cases, a behavior of

polynomial order can be observed with the low-mode-averaging method scaling slightly better. The other

test is performed with respect to the number of operators included. Here, it can be seen that both methods

also scale similarly, with the low-mode-averaged method being superior by a global factor of three. All these

tests are performed with the number of eigenvalues and Nσ being tuned so that both methods give a similar

precision on the result.

10.3 Decomposition of the vector-like states and reconstruction

of the vector propagator

In this section, a few results on the tail reconstruction of the vector meson propagator are discussed. We use

48 configurations of the β = 3.7000 ensemble with a physical extension of (63 × 9) fm4. The lattice spacing

is (depending on the scheme) slightly larger than 0.13 fm and we use 2 + 1 + 1 quarks that are close to the

(isospin-symmetric) physical point. The configurations are generated with the 4stout action [19, 20, 26, 50,

101].

On this configuration, the two-pion propagators (connected and disconnected), the vector correlator and the

interaction propagator are measured. Of course, not all possible two-pion states are included in this study,
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but only those with an energy smaller than the mass of the vector meson mρ. This is the case for Goldstone

pions with up to three units of momentum, for axial-taste pions with up to two units of momentum, and

for tensor-taste pions with one unit of momentum. For nearly all of the relevant combinations, 120 random

sources are used. However, since the connected diagram is the most expensive and, additionally, very small

compared to the disconnected one, only 30 random sources are used.

To resolve the energy states that contribute to the vector-meson propagator, a generalized eigenvalue problem

is constructed. To deal with the noise related to higher excitation of the vector meson (E >mρ), we use the

pencil-of-functions method [129, 236]. This means that time-shifted ρ-propagators are also included in the

GEVP. This method is also applied in Chapter 6. As it can be seen in Table 10.2 there are now ten different

two-pion combinations with an energy lower than that of the ρ-meson. Together with tree different time-shifts

of the vector propagator from the pencil-of-functions method the overall correlation matrix is given by

C(t) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Cρρ(t − 4) Cρρ(t − 3) Cρρ(t − 2) Cρ(ππ)1(t − 2) Cρ(ππ)2(t − 2) ...

Cρρ(t − 3) Cρρ(t − 2) Cρρ(t − 1) Cρ(ππ)1(t − 1) Cρ(ππ)2(t − 1) ...

Cρρ(t − 2) Cρρ(t − 1) Cρρ(t) Cρ(ππ)1(t) Cρ(ππ)2(t) ...

C(ππ)1ρ(t − 2) C(ππ)1ρ(t − 1) C(ππ)1ρ(t) C(ππ)1(ππ)1(t) C(ππ)1(ππ)2(t) ...

C(ππ)2ρ(t − 2) C(ππ)2ρ(t − 1) C(ππ)2ρ(t) C(ππ)2(ππ)1(t) C(ππ)2(ππ)2(t) ...

... ... ... ... ... ...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (10.63)

Here, we denote the two-pion states that have the same quantum numbers as the ρ-meson by (ππ)i, where

we used 1 ≤ i ≤ 10 to label the states whose total energy is bound by 770MeV.

We solve the GEVP

C(t) ⋅ V (t, t0) = λ(t, t0)C(t) ⋅ V (t, t0), (10.64)

where we choose t0 = 5 and t = 6. The correlators are reconstructed by

λ̃i(t) = V †
i ⋅C(t) ⋅ Vi. (10.65)

They are shown in Figure 10.4. It is evident that there are two states that are very noisy, namely the green

and the orange one. They are related to the higher excitations that appear in the ρ-propagator and are filtered

out using the pencil of functions. Those two states are not considered in the reconstruction. However, this is

not necessary because higher-energy states dominate the short-distance contributions and are suppressed

exponentially in the long range. To get the energy states that contribute to the long distance contributions,

we compute the corresponding effective masses using the local mass extraction formula

M eff, loc(t) = 1

∆
cosh−1

G(t +∆) +G(t −∆)
2G(t) , (10.66)

where ∆ is chosen to be 2a. The corresponding effective masses are shown in Figure 10.5. Here, also the

effective masses from the higher states (orange and green) are shown and it can be seen that they do not

form a proper plateau at this level of precision. However, it is very likely that these states indeed correspond

to higher energies, since most of the orange and green points are above the threshold of amρ ≈ 0.5. To

reconstruct the matrix elements that are needed to reconstruct the vector meson correlation function, we use

the expression

aeff.
i =

(Vi ⋅C(t) ⋅ eρ)2
λ̃i(t) × exp(meff(t) × t), (10.67)
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Figure 10.4 Eigenvalues of the vector GEVP. Previously published in [120].

where eρ is the unit vector that picks out the unshifted ρ-components of the of the correlation matrix C(t).
The corresponding effective matrix elements can be seen in Figure 10.6. Again, the green and the orange

do not build a plateau; however, they are not considered in the reconstruction. Furthermore, apart from

the blue state, all matrix elements have a very large relative error. Additionally, the blue state dominates

the overall result by far. This suggests that there appeared some problems in the generalized eigenvalue

problem. However, we want to use the data to reconstruct the first moment ∑t
t4

24
ρ(t). The integrand of the

first moment can be seen in Figure 10.7, where the reconstruction is compared to the result of the direct

simulation of the vector propagator. The two data sets are not compatible in the short-distance window,

however, this is due to the fact that we did not include the (very noisy) higher excitations. Nevertheless, in

the longer distances, the two methods are compatible with the reconstruction being much more precise.

10.4 Summary and comment on the further progress

In this work, a mathematical framework to to construct the two-pion states with the same quantum numbers

as the taste-singlet vector meson at rest was derived. In principle, this framework can also be used for other

tastes and momenta of the vector meson. The diagrams corresponding to this project (vector-meson, two-pion

(connected and disconnected) and interaction) were implemented in the software framework dynqcd. For the

connected two-pion contributions, a method for more efficient computations was designed. Some tests were

performed to compare this method to the direct computation of the connected diagram and it was found out

that the new method is superior. Finally, all this methods were combined to reconstruct the vector meson on

our coarsest ensemble with a size of (63 × 9) fm4, a lattice spacing of a ≈ 0.134 fm and physical quark masses.

A precise computation of the tail of the vector-meson propagator is a very challenging task. Especially if

staggered fermions are used, a lot of problems can occur. Staggered fermions have, in contrast to e.g. Wilson

fermions, a taste structure. Thus, a large variety of states is present at finite lattice spacing, which have to be

included in the generalized eigenvalue problem. For example, in this study ten two-pion states are used in the

GEVP, without the taste structure it would have been three. Apart from the large number of contributing

states, the taste structure provides more problems: The non-local tastes lead to an increment of the noise of

the corresponding correlators, which makes it harder to resolve the energy states properly. As discussed in

Section 10.2, the large number of operators require additional methods like low-mode averaging. It was also
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Figure 10.5 Effective masses of the vector GEVP. Previously published in [120].

shown that this method suffer from non-locality of the tastes.

In addition to the large number of problems with the taste structure, solving the GEVP does not seem to

work optimally in this case. The overlap of the ρ and the two-pion state is likely too small. This issue could

be resolved by adding a few steps of (for example) Wuppertal smearing [107] as it is done in our Ω-study in

Chapter 6.

However, there are already working studies on the reconstruction of the tail of the vector meson for Domain-

wall fermions [179], Wilson fermions [180] and also staggered fermions [128, 237]. However, in the staggered

study of the MILC collaboration only a coarse lattice (a ≈ 0.15 fm) is used with a physical extension of less than

5 fm. This leads to the fact that only three different two-pion states are included: Goldstone taste with one or

two units of momentum and the axial taste with one unit of momentum. In combination with an appropriate

smearing of the vector correlator they are able to give a proper reconstruction of the long-distance regime.

Other discretization schemes of fermions, on the other hand, already provide a continuum extrapolation of

the long-distance reconstruction [179, 180].

In summary it can be said that the reconstruction of the tail of the vector correlator using staggered fermions

is hard task and there is still a lot of work to do. For other discretizations this task is easier already applied to

g − 2. Luckily, there are also methods like data-driven approaches, that allow us to compute the long-distance

contributions to g − 2 with a high-precision [20, 127].
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Figure 10.6 Matrix elements of the GEVP. Previously published in [120].
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11 Conclusion and Outlook

This thesis presented several contributions to the field of lattice quantum chromodynamics, with a focus on

high-precision determinations relevant for tests of the Standard Model.

The first part (Chapters 2–5) laid the theoretical groundwork for lattice field theory and provided a

systematic introduction to path integral quantization, fermion discretization and the corresponding symmetry

properties and the essential tools for data analysis in lattice simulations.

The second part of this thesis presents research I carried out in cooperation with the Budapest-Marseille-

Wuppertal collaboration.

Two methods were employed to estimate the reference scales w0 and t0: one based on the Ω− baryon mass,

and another using the pion decay constant. Both approaches led to estimates with unprecedented precision.

Both methods of estimating w0 are now used in the most accurate lattice prediction of the hadronic vacuum

polarization contribution to the muon anomaly [20].

Furthermore, techniques were explored to investigate the long-distance contributions to the muon g − 2.

Two-pion states with the same quantum numbers as the vector meson were constructed, and a mathematical

framework was developed to resolve the mixing between two-pion and vector meson states using a generalized

eigenvalue problem. Particular emphasis was placed on the implementation of the contributing diagrams, and a

computational strategy was devised to reduce the cost of evaluating the computationally expensive connected

diagrams. It was demonstrated that this approach significantly lowers runtime without compromising the

quality of the resulting signal.

These techniques were implemented and tested on a large-volume ensemble (6, fm3
×9, fm, a ≈ 0.13, fm). While

first results on the reconstruction were obtained, this topic remains rich in open questions and challenges. At

the end of this chapter, I provide a brief overview of the current status of the tail reconstruction and discuss

several potential strategies to address the remaining issues.

Additionally, a high-precision lattice determination of the pseudo-scalar decay constant ratio was performed.

This study included all relevant effects such as finite-volume corrections, strong isospin breaking and a careful

treatment of sea and valence quark contributions. A noteworthy feature of this work was the inclusion of

a novel fine lattice ensemble with a = 0.034 fm, which allowed for an unprecedented level of precision. The

resulting estimate of fK/fπ directly translates into a highly accurate determination of the relevant CKM

matrix elements, and provides a stringent test of CKM unitarity within the Standard Model.

Outlook

The results of this thesis contribute to ongoing efforts to reduce the theoretical uncertainties in key observables

of the Standard Model. In particular, the reconstruction of the long-distance tail of the vector correlator

represents a step forward in lattice determinations of the hadronic vacuum polarization contribution to the

muon anomalous magnetic moment. By implementing a method based on a generalized eigenvalue problem

and applying it on a large-volume ensemble, this work demonstrated that improved control over the low-energy

region is possible. However, in case of staggered fermions there is still a lot of open work as discussed in

Section 10.4.

Further progress will require complementary approaches. Data-driven methods remain essential for validating

lattice results in the region where the signal is suppressed but still relevant [20, 127]. Moreover, cross-checks

using different fermion discretizations are crucial to ensure that systematic effects are under control. These

aspects were already discussed in Section 10.4, and future work will need to build upon both the algorithmic

and conceptual developments presented here.

An important element of this thesis is the inclusion of a new, exceptionally fine lattice ensemble with a
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spacing of approximately 0.038 fm. While it played a central role in the precise determination of fK/fπ, its

usefulness goes far beyond that single application. The ensemble offers an opportunity to perform lattice

simulations with significantly reduced discretization errors, which will benefit a broad class of observables

ranging from hadron spectroscopy to weak matrix elements.

Finally, the determination of the reference scales w0 and t0 with previously unmatched precision has immediate

practical value. These scales serve as key ingredients in setting the overall scale for many lattice calculations

and have already been adopted in recent state-of-the-art determinations of aHVP
µ . Reliable scale setting is a

prerequisite for meaningful comparisons between theory and experiment, and the methods developed here

will support future precision studies across a wide range of applications.
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12.1 Projective representations

Let G be a group, and c ∶ G×G→ C a function that fulfills the following conditions (for arbitrary x, y, z ∈ G):

• ∣c(x, y)∣ = 1
• c(1G, x) = c(x,1G) = 1
• c(x, y)−1 = c(y, x)∗
• c(x, y)c(xy, z) = c(x, yz)c(y, z)

Then c is called a standard factor system or a co-cycle of G.

A projective representation of dimension n of G is given by a n dimensional vector space V and a mapping

ρ ∶ G→ GL(V ), that fulfills the condition

ρ(x) ⋅ ρ(y) = c(x, y)ρ(xy) ∀x, y, ∈ G. (12.1)

If c(x, y) = 1 for all x, y in G then this projective representation is called a true representation or simply a

representation [238]. The matrix representation of ρ is often written as dρ. A subspace U ⊂ V is called an

invariant subspace of ρ, if ρ(U) ⊂ U . If V and {0} are the only possible choices for U , then ρ is called an

irreducible representation or an irrep [239].

A representation is called faithful if it is injective.

12.2 Central Group Extensions

It is possible to write a group G as a direct product of a normal subgroup N and the quotient group G/N as

G = N ×G/N. (12.2)

A group extension proceeds the other way around, a group G is constructed out of two groups N and Q,

where N is a normal subgroup of G and Q ∼ G/N . One often calls G a group extension of N by Q. If N is in

the center of G, i.e., each element of N commutes with every element of G, the group extension is called a

central extension.

In this thesis mainly irreducible matrix groups are considered. The center of those groups is always proportional

to the identity. For example every central extension of SU(N) is a subgroup of U(n) = C⋊ SU(n).
12.3 Generelization of Wigner’s Little Group Procedure

In this section the method to compute irreps of semi-direct products is given, i.e., the way to construct the

irreps of G = N ⋊H out of the irreps of N and H. This method consists of four steps which will be explained

in detail:

1. At first one has to decompose the representations of N into H-orbits. In order to do this one defines

the following equivalence relation:

γ ∼ γ′ ⇐⇒ ∃h ∈H and U ∈ SU(V ) ∶ dγ(hnh−1) = Udγ′(n)U†. (12.3)
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This means that two irreps of N are in the same orbits iff they can be transformed into each other by

conjugation with h up to equivalence. If N is an abelian group, all of its irreps are one dimensional and

the transformation U can be left out.

2. Next one has to select a representative γ for each orbit and define its little group H(γ) in the following

way:

H(γ) = {h ∈H ∶ dγ(hnh−1) = Udγ(n)U† for some U ∈ SU(V )}. (12.4)

Again, if N is an abelian group the unitary transformation can be left out. The stability group of γ is

then given by

L(γ) = N ⋊H(γ) ⊂ G. (12.5)

3. The next task is to find the allowable irreps of L(γ). If N is an abelian group it is rather simple: The

irreps are given by dγ ⊗ dδ, where δ is an irrep of H(γ). For the non-abelian case we have

d(γ)(hnh−1) = U(h)d(γ)(n)U−1(h). (12.6)

By Schur’s Lemma, U(h) is unique up to a phase, and therefore these transformations generate a

projective representation of H. If the phases can be chosen such that the U(h) give a true representation,

then the irreps are given by

(0, h) ⋅ (n,1) = (hnh−1, h)↦ U(h) ⋅ dγ(n)⊗ dδ(h). (12.7)

If the unitary matrices cannot be chosen in this way, one uses projective representations of H(γ) such

that they cancel. In order to do this one considers the central extension H̃(γ) of H(γ) and takes its

faithful representations δ̃ instead of δ [59, 238, 240].

12.4 Grassmann algebra

While scalar fields can be described by complex numbers and vector fields are usually described by real

four-component vectors, fermions have to be described by a type of numbers that anticommute in order to

satisfy the spin-statistics theorem. The type of numbers needed in this case is called the Grassmann algebra.

Its construction is explained in the following section.

The first ingredient is a vector space V whose dimension N corresponds to two times the number of

degrees of freedoms of the fermion field. In the context of staggered fermions in lattice gauge theory we

have dim(V ) = 2Nc ×L
3
× T , in a continuous theory this vector space has infinite dimension. Next a basis{ηi}1≤i≤N ⊂ V is chosen, which is used to construct a basis of the exterior product of V with itself V2 ∶= V ∧V

{ηi ∧ ηj}1≤i≤j≤N ⊂ V2 (ηj ∧ ηi = −ηi ∧ ηj), (12.8)

as well as the basis n-fold exterior product Vn

{ηi1 ∧ ηi2 ∧ ... ∧ ηin}1≤i1≤i2≤...≤in ⊂ Vn. (12.9)

The Grassmann algebra over V is thus defined as

Λ(V ) = V0 ⊕ V1 ⊕ ...⊕ VN , (12.10)
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where V0 is defined to be the field of complex or real numbers and V1 ∶= V . The wedge product symbol is

often omitted, so one writes vw instead of v ∧ w. The Grassmann algebra is an anticommutative algebra

with unity of dimension 22N , where usually half of its generators are labeled by (ηi)i and half by (η†
i )i. The

dagger does not mean that the second set is the adjoint of the first set, but it plays a similar role as the

complex conjugate in the case of pseudo-fermions.

Due to the fact that the square of an element of the Grassmann algebra is zero, it can be concluded that

each Taylor expansion only has a finite number of terms. In other words, every analytical function on the

Grassmann algebra is a polynomial. Integration and differentiation on Λ(V ) are defined via

∫ dηi ηj = δij , (12.11)

∂

∂ηi
ηj = δij . (12.12)

The most important integral in the context of Grassmann numbers, the Gaussian integral on Λ(V ), is

∫
N

∏
i=1

[dη†
i dηi] exp(−∑

kl

η
†
kM

klηl) = det(M), (12.13)

whenever it is a normal matrix, i.e., it commutes with its adjoint and therefore is diagonalizable. This can be

derived using the one dimensional integral

∫ dη†dη exp (−λη†η) = ∫ dη†dη (1 − λη†η) = λ (12.14)

and a suitable coordinate transformation for the Grassmann algebra.
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