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A B S T R A C T

Die industrielle Computertomographie (CT) ist eine zerstörungsfreie Prüftechnik, die
dreidimensionale, digitale Abbilder, die sogenannten CT-Volumen, von Prüfteilen mithilfe
von Röntgenstrahlung erzeugt. Diese Dissertation untersucht den Einsatz von Deep Lear-
ning (DL) zur Bestimmung der Kernladungszahl und Dichte von Prüfteilen anhand von
industriellen CT-Scans. Mit dem so erlangten Wissen über die Materialzusammensetzung
eines Prüfteils können vielfältige Prüfszenarien, insbesondere an sicherheitskritischen
Prüfteilen, realisiert sowie der Recyclingprozess verbessert werden.
Der Einsatz eines DL-basierten Ansatzes verlangt neben einer passenden DL-Architektur
Trainingsdaten, die das zu lernende Problem, die Materialbestimmung, hinreichend gut
darstellen. Somit besteht ein zentraler Beitrag dieser Dissertation in der Entwicklung einer
anforderungsgerechten CT-Simulation zur Erzeugung annotierter Datensätze. Weiterhin
wird in dieser Dissertation erstmalig eine Convolution-basierte Architektur mit einer
Transformer-basierten Architektur für die Materialbestimmung anhand von CT-Volumen
quantitativ verglichen. Die wichtigsten Einflussfaktoren, die bei dem Transfer der entwi-
ckelten Methode zur Materialbestimmung in die reale CT-Anwendung auftreten, werden
identifiziert und quantitativ analysiert. Anhand eines realen CT-Scans einer Lithium-
Ionen-Batterie wird gezeigt, dass die entwickelte Methode geeignet ist, um sowohl in
Bezug auf Präzision als auch Laufzeit in der in-line Fertigung von Lithium-Ionen-Batterien
eingesetzt zu werden. Abschließend werden abseits der Materialbestimmung weitere
Anwendungspotentiale aus der entwickelten Methodik abgeleitet und exemplarisch
erprobt.
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1
E I N L E I T U N G

Mit der Entdeckung der Röntgenstrahlung im Jahr 1895 und dem damit verbundenen
ersten Röntgenbild, das die Hand von Wilhelm Conrad Röntgens Frau zeigt, wurde
ein neuartiges Teilgebiet der angewandten Physik eröffnet. Wilhelm Conrad Röntgen
veröffentlichte im Jahr 1896 seine Beschreibung einer neuen Strahlenart, die heutzutage als
Röntgenstrahlung bekannt ist [1]. Für seine Entdeckung erhielt er im Jahr 1901 den ersten
Nobelpreis für Physik [2]. Im Vergleich zu sichtbarem Licht bietet Röntgenstrahlung eine
stärkere Durchdringung von Materie, sodass Objekte durchleuchtet werden können. In
diesen sogenannten Röntgenprojektionsbildern (im Folgenden: Projektionen) wird die totale
Abschwächung der Röntgenstrahlung durch eine Probe ortsaufgelöst gemessen. Sie ist das
Produkt aus dem material- und energieabhängigen linearen Abschwächungskoeffizienten
µL,m(E)1 und einer Durchstrahlungslänge xm. Analog zu sichtbarem Licht kann für
Röntgenstrahlung das lambert-beer-Gesetz

I(E) = I0(E) · exp−µL,m(E)·x (1.1)

mit dem Spektrum der einfallenden Photonen I0(E) und dem gedämpften Spektrum I(E)
angewandt werden [3, S. 54]. Daraus folgt, dass Objekte aus verschiedenen Materialien
mit verschiedenen Durchstrahlungslängen die gleiche Dämpfung aufweisen können und
somit anhand einer Röntgenprojektion ununterscheidbar sind. Abbildung 1.1 zeigt die
Projektion von zwei Objekten. Das linke Objekt ist ein Würfel aus Aluminium mit einer

Abbildung 1.1: Röntgenprojektion von zwei Objekten unter monochromatischer Strahlung bei
6 MeV. Gleiche Größe, gleiche Graustufe, gleiches Objekt? Links: 10 cm Durch-
strahlung durch Aluminium. Rechts: 8.8 mm Durchstrahlung durch Wolfram. Die
genannten Materialien wurden aufgrund ihrer stark unterschiedlichen Abschwä-
chung der Röntgenstrahlung gewählt.

Kantenlänge von 10 cm. Das rechte Objekt ist ein 8.8 mm dünnes Wolframblech.
Zunächst wurde die Durchstrahlungsprüfung für medizinische Zwecke genutzt, um
beispielsweise im Jahr 1903 ein diagnostisches Verfahren zur Erkennung von Tuberkulose
anhand der Zwerchfell-Bewegungen zu realisieren [4]. Wenige Jahre später erkannte Mo-
seley eine Proportionalität zwischen dem Quadrat der (effektiven) Kernladungszahl Z2

eff

eines Elements und der Frequenz der ausgesandten (später: charakteristischen) Strahlung
ν nach vorheriger Anregung durch Röntgenstrahlung [5]. In den folgenden Jahrzehnten

1 Die in der Literatur häufig verwendete Notation des energieabhängigen lineare Abschwächungskoeffizient
µL(E) wird im Folgenden mit einem Materialindex m für die Notation von Multimaterialien ergänzt.
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2 einleitung

mündete diese Erkenntnis in die Entwicklung elementspezifischer Analyseverfahren
wie X-ray Fluorescence (XRF) und Energy-Dispersive X-ray Spectroscopy (EDX), die
beide auf der ausgesandten, charakteristischen Röntgenstrahlung der Elemente beruhen.
Aufbauend auf der bereits bekannten Beugung von Licht an Kristallgittern zeigte Max
von Laue, dass Röntgenstrahlung ebenfalls Beugungsmuster an Kristallen hervorbringt.
Hiermit bewies er, dass Röntgenstrahlung als Welle dargestellt werden kann und erhielt
im Jahr 1914 den Nobelpreis [6]. Basierend auf der Röntgenbeugung wurde das Gebiet
der Kristallstrukturanalyse (englisch: X-ray Crystallography) begründet, wodurch im Jahr
1953 die molekulare Struktur der DNA entdeckt wurde [7]. Der nächste technologi-
sche Durchbruch mithilfe von Röntgenstrahlung gelang Sir Godfrey Hounsfield im Jahr
1971, indem er den ersten Computertomographiescan durchführte und wenige Jahre
später zusammen mit Allan Cormack mit dem Nobelpreis für Medizin ausgezeichnet
wurde [8]. Im Gegensatz zur zweidimensionalen Durchstrahlungsprüfung wird bei der
Computertomographie (CT) eine Serie an Projektionen aus verschiedenen Blickwinkeln
aufgenommen. Vergleichbar mit dem stereoskopischen Sehen wird die Tiefeninformation
eines betrachteten Objektes im Kontext der aufgenommenen Bildserie aus verschiedenen
Perspektiven verfügbar. Durch Rekombination (im Folgenden: Rekonstruktion) der Bilder
wird ein dreidimensionales Abbild, ein sogenanntes Volumen oder auch CT-Volumen,
rekonstruiert, anhand dessen die Unterscheidung zwischen den Objekten aus Abbildung
1.1 trivial möglich ist. Abbildung 1.2a zeigt das Rendering des Volumens nach erfolg-
tem CT-Scan und dessen Rekonstruktion. Der Schnitt durch die horizontal orientierte
Mittelschicht ist in Abbildung 1.2b dargestellt. Es ist zu beobachten, dass Aluminium

(a) Rendering des rekonstruierten Volumens

100m
m

(b) Schnittbild aus der Draufsicht

Abbildung 1.2: Rekonstruiertes Volumen des CT-Scans eines Aluminiumwürfels mit der Kan-
tenlänge 10 cm und einem Wolframblech mit einer Dicke von 8.8 mm, wobei
eine einzelne Projektion in Abbildung 1.1 gezeigt wurde. Dargestellt werden ein
Rendering in (a) und ein Schnittbild in horizontaler Ebene in (b) – die Draufsicht.

und Wolfram im Schnittbild unterschiedliche Grauwerte aufweisen. Im Vergleich zu
der in Abbildung 1.1 dargestellten Projektion besitzen die Volumenpixeln (auch: Vo-
xel) eine physikalische Einheit, die die Dämpfung der Röntgenstrahlung pro Weglänge
durch ebendieses Voxel beschreibt. Sie entspricht dem linearen Abschwächungskoeffizi-
enten µL,m(E) aus Gleichung 1.1, sodass die CT als ortsaufgelöstes Messinstrument für
Abschwächungskoeffizienten der Röntgenstrahlung fungiert.
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1.1 motivation

Jedes chemische Element, beziehungsweise Material m, besitzt eine charakteristische Elek-
tronenkonfiguration2 und somit einen charakteristischen Abschwächungskoeffizienten
µL,m(E), der für die Unterscheidung zwischen verschiedenen Materialien herangezogen
werden kann. Im Folgenden werden materialauflösende Algorithmen basierend auf
CT-Daten (auch: Material-CT) wie folgt unterschieden:

• Die Materialbestimmung ist die Berechnung einer effektiven Kernladungszahl Z
und einer absoluten Dichte ρ (in g/cm3). Beide Größen sind somit Mittelwerte der
elementaren Mischung und die zugrundeliegenden Elemente können ohne weiteres
Wissen nicht eindeutig bestimmt werden.

• Die Materialzerlegung setzt einen festen Satz an Basismaterialien voraus, die aus
mathematischer Sicht eine linear unabhängige Basis bilden. Es werden somit relative
Anteile der Basismaterialien an einem Voxel berechnet und das Material effektiv in
die Basismaterialien zerlegt.

Beide Methoden bieten vielfältige Anwendungen für den industriellen und medizini-
schen Sektor. Im medizinischen Umfeld wird der gemessene Abschwächungskoeffizient
verwendet, um beispielsweise die Knochendichte eines Patienten abzuschätzen [9] oder
Lungenkrankheiten durch Gewebeveränderung zu erkennen [10]. Für industrielle Zwe-
cke kann die Materialbestimmung beziehungsweise -zerlegung ebenso vielfältig genutzt
werden. Als zerstörungsfreie Prüftechnik für nahezu jedes technisch relevante Material
findet die Material-CT beispielsweise Anwendung in der Erkennung gefährlicher oder
illegaler Stoffe, die in Containern an Flughäfen, Bahnhöfen oder Häfen transportiert
werden [11]. Die Untersuchung von Alterungsprozessen in technischen Materialien, zum
Beispiel Beschichtungen in Lithium-Ionen-Batterien, stellt ein weiteres Anwendungsfeld
dar [12]. Alle genannten Fälle haben die Gemeinsamkeit, dass die Voxel des Volumens
im Bestfall in intuitive und zugängliche Größen, meist eine Dichte ρ und eine effektive
Kernladungszahl Z, umgerechnet werden. Algorithmisch wird die materialauflösende CT
seit fast 50 Jahren erforscht. Lange Zeit wurden zu diesem Zweck Algorithmen händisch
entwickelt, die auf den physikalischen Grundlagen der CT basieren (im Folgenden: klassi-
sche Algorithmen). Die einflussreichsten Faktoren bei der CT-Bildgebung sind umfassend
erforscht und können entsprechend bei der Modellierung eines klassischen Algorithmus
berücksichtigt werden. Dennoch besteht eine weitverbreitete Einschränkung klassischer
Algorithmen darin, dass sie punktweise (pro Voxel) definiert sind und Kontextinforma-
tionen aus benachbarten Voxeln nicht miteinbeziehen [13, 14, 15]. CT-Daten unterliegen
aufgrund verschiedener Einflüsse, die in Kapitel 2 genauer ausgeführt werden, den
sogenannten CT-Artefakten, die zwar lokal erhebliche Abweichungen der rekonstruierten
Abschwächungskoeffizienten induzieren können, jedoch unter Einbezug eines größeren

2 Im für die meisten CT-Anwendungen relevanten Energiebereich E < 1 MeV ist der direkte Einfluss der
Atomkerne auf die Abschwächung der Röntgenstrahlung vernachlässigbar. Ausschlaggebend sind die
Bindungsenergien der Elektronen sowie die (räumliche) Elektronendichte. In Kapitel 2 werden die zugrun-
deliegenden Wechselwirkungen für die Entstehung des charakteristischen Abschwächungskoeffizienten
detailliert beschrieben.



4 einleitung

(Bild-)Kontextbereiches eindeutig als Artefakte identifizierbar und somit potentiell kor-
rigierbar sind. Moderne Ansätze der klassischen Materialzerlegung setzen daher auf
ein zweistufiges Verfahren, wobei nach der klassischen Zerlegung ein Cluster-Verfahren
angewandt wird, um Artefakte in semantisch zusammenhängenden Regionen herauszu-
filtern [16].
Formell betrachtet ist die Materialbestimmung anhand von rekonstruierten Volumen
eine sogenannte Bild-zu-Bild-Berechnung – eine Aufgabe aus dem Bereich Computer Visi-
on (CV), der in den letzten Jahren durch Methoden basierend auf Deep Learning (DL)
deutlich weiterentwickelt wurde. DL-basierte Methoden gelten derzeit als State-Of-The-
Art (SOTA) für viele CV-Anwendungen und dominieren die gängigsten Benchmarks
in der Objekterkennung [17], der Klassifizierung [18], der Segmentierung [19] und der
Segmentierung klinischer CT-Daten [20, 21], sodass traditionelle Verfahren weitestgehend
verdrängt worden sind. Ein Teil dieses Erfolges basiert auf dem Konzept des rezeptiven
Feldes – einer Methode zur Verarbeitung potentiell hilfreicher, räumlicher Kontextin-
formationen. Der Wandel hin zu DL-basierten Verfahren dringt zunehmend in die CT-
Anwendung, wie wir im Jahr 2024 anhand einer stark steigenden Zahl an Publikationen,
die DL als Werkzeug für die Material-CT verwenden, zeigen konnten [22]. Grundsätzlich
benötigen DL-Verfahren einen vorgegebenen Datensatz, die sogenannten Trainingsdaten,
der die zu lernenden Zusammenhänge implizit darstellt. Material-CT-Anwendungen wer-
den mit rekonstruierten Volumen oder Schnittbildern aus den rekonstruierten Volumen
als Eingabedaten (auch: Inputs) und den sogenannten Materialkarten als Ausgabedaten
(auch: Ground Truths) trainiert.3 Die Materialkarten geben bei der Materialbestimmung
für jedes Voxel, beziehungsweise auf Bildebene Pixel, in den Inputs eine Kernladungszahl
Z und eine Dichte ρ an. Zur Erzeugung der Trainingsdaten besteht somit die Möglichkeit,
sogenannte Phantome aus bekannten Materialien zu fertigen und CT-Scans an einer realen
Anlage durchzuführen. Die rekonstruierten Volumen können anschließend händisch
annotiert werden (Kernladungszahl und Dichte) und als Trainingsdaten verwendet wer-
den. Eine Alternative bietet die Erzeugung der Trainingsdaten mithilfe einer Simulation.
Obwohl beide Ansätze effektiv verwendet werden können [22], bietet die Simulation
einige Vorteile. Simulativ erzeugte Phantome sind, unabhängig von ihrer morphologi-
schen Komplexität, per Definition annotiert – das Phantom entspricht den Materialkarten
und Annotationsfehler treten nicht auf. Zudem erlaubt die Simulation die zufällige
Erzeugung eines breiten Spektrums an Formen und Materialzusammensetzungen, sodass
die Varianz der Trainingsdaten enorm gesteigert wird. Der wichtigste Nachteil einer
Simulation ist stets, dass sie die reale CT-Messung nicht fehlerfrei nachbildet. Diese
Abweichung von der Realität, die sogenannte Sim-To-Real-Gap, hat einen Einfluss auf die
Transferfähigkeit eines jeden auf simulierten Daten trainierten DL-Modells in die reale
Anwendung. Abhängig von der Größe der Sim-To-Real-Gap sinkt die Vorhersagegenau-
igkeit des Modells auf Realdaten signifikant ab, sodass ihr Einfluss für jede Anwendung
quantitativ untersucht werden muss.

3 Verfahren, die Projektionen in sogenannte Material-Projektionen übersetzen, werden im Rahmen dieser
Dissertationsschrift lediglich ergänzend genannt, da es sich stets um kalibrierte Verfahren mit vielen
Einschränkungen handelt. Weitere Argumente für die Wahl zwischen den Datendomänen Volumen oder
Projektion als Input für die Material-CT werden in Kapitel 2 aufgeführt.
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Im Rahmen dieser Dissertationsschrift wird die Anwendbarkeit DL-basierter Ansätze
für die Materialbestimmung in industriellen CT-Scans evaluiert und vorangetrieben. Zu-
nächst werden die Anforderungen an eine Simulation zur Erzeugung der Trainingsdaten
beschrieben und zur Auswahl einer passenden Methodik verwendet. Aufbauend wird
ein entsprechend simulierter Datensatz verwendet, um verschiedene DL-Architekturen,
die mit der Fragestellung der Material-CT kompatibel sind, hinsichtlich ihrer Eignung
für die Materialbestimmung zu evaluieren. Die Transferfähigkeit der trainierten Modelle
in die reale Anwendung wird untersucht, um Einschränkungen bedingt durch die Trai-
ningsdatenerzeugung, die DL-Architektur oder die generelle Methodik zu identifizieren
und zu beheben. Hierbei bestehen weiterhin offene Fragen, die in der Literatur zur
Materialbestimmung mit DL bisher nicht ausreichend untersucht worden sind, obwohl
sie für den Transfer in die reale Anwendung von zentraler Bedeutung sind. Abschließend
werden die entwickelten Methoden dieser Arbeit auf andere Fragestellungen der CT-
Anwendung projiziert, um weitere Anwendungsfelder zu erschließen und um zukünftige
Weiterentwicklung zu eröffnen.

1.2 forschungsfragen

Im Folgenden werden vier aus der Motivation abgeleitete Forschungsfragen formuliert
und erläutert.

Forschungsfrage 1: Wie lässt sich eine Simulation zur Trainingsdatenerzeugung für die Material-
bestimmung in der Computertomographie realisieren?

Im ersten Schritt wird eine Anforderungsanalyse an eine Methodik zur Trainingsdatener-
zeugung für die DL-basierte Materialbestimmung durchgeführt. Anhand der abgeleite-
ten Anforderungen werden etablierte CT-Simulationsprogramme bewertet sowie eine
Methodik zur Trainingsdatenerzeugung realisiert. Abschließend müssen die mit der aus-
gewählten Methodik erzeugten Daten quantitativ mit einer der etablierten Simulationen
verglichen und mindestens exemplarisch mit den Messdaten einer realen CT-Anlage
gegenübergestellt werden, um die Sim-To-Real-Gap abzuschätzen.

Forschungsfrage 2: Welche Deep-Learning-Architekturen eignen sich für die Materialbestimmung
in CT-Bildern unter Berücksichtigung industrieller Rahmenbedingungen?

Zunächst werden die industriellen Rahmenbedingungen, die von einer DL-Architektur in
Bezug auf Kompatibilität, Laufzeit und Hardwareanforderungen erfüllt werden müssen,
abgeleitet. Die Problemstellung der Materialbestimmung ist im Kern eine Bild-zu-Bild-
Berechnung beziehungsweise eine Pixel-zu-Pixel-Berechnung (auch: Dense Prediction).
Es werden bekannte Architekturen für Dense Prediction einerseits aus der Literatur zur
Material-CT und andererseits aus anderen CV-Anwendungen implementiert, für die
Materialbestimmung optimiert und quantitativ verglichen. Zur quantitativen Bewertung
werden die anfangs abgeleiteten industriellen Rahmenbedingungen herangezogen.
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Forschungsfrage 3: Welche Einschränkungen ergeben sich für die reale Anwendung aus der
gewählten Methodik zur Trainingsdatenerzeugung und der Deep-Learning-Architektur?

Abseits der technischen Machbarkeit spielt die praktische Anwendbarkeit eines Produktes
eine zentrale Rolle für die Realisierung der Methode. Die Methodik der Trainingsdaten-
erzeugung sowie die DL-Architektur treffen, begründet durch die Anforderungsanalyse
und die industriellen Rahmenbedingungen, verschiedene Annahmen und Einschrän-
kungen, die einen negativen Einfluss auf die universelle Anwendbarkeit der Modelle
in einer praktischen Anwendung haben können. Ziel ist es, ebendiese Einflüsse zu-
nächst zu identifizieren und ihre Auswirkungen auf die absolute Vorhersagegenauigkeit
der entwickelten DL-Modelle im Kontext der Materialbestimmung zu quantifizieren.
Diese Vorhersagegenauigkeit wird anhand von zuvor beschriebenen Fehlertoleranzen,
abgeleitet aus praktischen CT-Anwendungen, jeweils für die Kernladungszahl und die
Dichte beurteilt. Weiterhin werden Lösungsansätze diskutiert oder umgesetzt, um die
gefundenen Abweichungen zu korrigieren und somit die Vorhersagegenauigkeit bei der
Anwendung in realen CT-Scans zu verbessern.

Forschungsfrage 4: Können mit den entwickelten Methoden weitere Anwendungsfelder für Deep
Learning in der Computertomographie erschlossen werden?

Die im Rahmen der ersten drei Forschungsfragen entwickelten Methoden und Daten
können möglicherweise auf verwandte Fragestellungen der CT angewandt werden. Insbe-
sondere Methoden zur Verbesserung der Bildqualität können bereits durch die gewählte
Methodik der Material-CT implizit vom DL-Modell erlernt worden sein. Darüber hinaus
werden kleine Weiterentwicklungsmöglichkeiten der Simulation diskutiert, die zur Er-
zeugung geeigneter Trainingsdaten für andere CT-Fragestellungen verwendet werden
können.

1.3 struktur der thesis

Diese Thesis besteht aus zwei Teilen, wobei der erste Teil eine gemeinsame Basis für das
Verständnis der Computertomographie legt (Kapitel 2) und Deep Learning (Kapitel 3)
als vielseitiges Werkzeug für die Verarbeitung von CT-Daten vorstellt. Im Rahmen der
theoretischen Beschreibung der CT wird die Materialbestimmung eingeführt und in den
physikalischen Kontext eingebettet. Der Hauptteil befasst sich mit dem Forschungsbeitrag
dieser Dissertationsschrift in den Kapitel 4 bis 9.
Als systematischer Einstieg in den Hauptteil fungiert Kapitel 4, das die verwandte For-
schung zu dieser Dissertationsschrift zusammenfasst. Besonderer Fokus liegt hierbei auf
dem Wandel, der Forschende auch im Umfeld der Computertomographie zunehmend
motiviert, Problemstellungen mit Deep Learning zu bearbeiten. Anschließend werden die
Anforderungen an eine Simulation zur Trainingsdatenerzeugung, physikalisch motiviert
durch Kapitel 2 und ergänzt durch die DL-basierten Anforderungen aus Kapitel 3, im
Rahmen der ersten Forschungsfrage in Kapitel 5 abgeleitet. Basierend auf ebendiesen
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Anforderungen werden mehrere existierende CT-Simulationsprogramme bewertet sowie
die fehlenden Funktionalitäten identifiziert und implementiert. Die mit der entwickelten
Methode simulierten CT-Bilder werden mit den CT-Bildern einer realen CT-Anlage ver-
glichen.
In Kapitel 6 werden die industriellen Rahmenbedingungen für die Nutzung eines DL-
basierten Ansatzes zur Materialbestimmung abgeleitet und eine passende DL-Architektur
gesucht. Die Entscheidung zwischen einer Convolution-basierten und einer Transformer-
basierten Architektur stellt den zentralen Bestandteil dieses Kapitels dar.
Aufbauend auf der Trainingsdatenerzeugung sowie der ausgewählten DL-Architektur
wird in Kapitel 7 der Transfer in die reale CT-Anwendung untersucht, wobei Limitierun-
gen aus den beiden vorangehenden Forschungsfragen quantitativ eingeordnet werden.
Einige der gefundenen Limitierungen können teilweise durch eine angepasste Trainings-
strategie oder eine angepasste CT-Messstrategie reduziert oder vollständig aufgehoben
werden.
Abschließend werden weitere Anwendungsmöglichkeiten des entwickelten Verfahrens
für offene Fragestellungen der Computertomographie, abseits der Materialbestimmung,
in Kapitel 8 identifiziert und diskutiert. Der Fokus liegt auf Anwendungen, die direkt
aus der entwickelten Trainingsdatenerzeugung in Kombination mit der ausgewählten
DL-Architektur realisiert werden können, ohne komplexe Weiterentwicklungen zu erfor-
dern.
Kapitel 9 reflektiert die Forschungsergebnisse kritisch und stellt mögliche Verbesse-
rungen in Aussicht, die in erster Linie die Trainingsdatenerzeugung in Kapitel 5, die
DL-Architektur in Kapitel 6 und den Transfer in die CT-Anwendung in Kapitel 7 betref-
fen. Eine Zusammenfassung der erzielten Ergebnisse dieser Dissertationsschrift erfolgt in
Kapitel 10.





2
G R U N D L A G E N D E R I N D U S T R I E L L E N C O M P U T E RT O M O G R A P H I E

Abgeleitet vom Begriff Schnitt (altgriechisch: tomē) handelt es sich bei der Computer-
tomographie (CT) um ein Schnittbild-Verfahren, das einzelne Schichten eines Objektes
sichtbar macht. Insbesondere innenliegende Strukturen einer Probe werden durch die
Verwendung von Röntgenstrahlung bei der Bildaufnahme erfasst. Zunächst ähnelt die
CT einer klassischen Durchstrahlungsprüfung, wie sie auch in der klinischen Diagnostik
angewandt wird. Abbildung 2.1 zeigt den Aufbau einer sogenannten Kegelstrahl-CT. Die

Quelle

Probe

Detektor

Abbildung 2.1: Aufbau einer Kegelstrahl-CT bestehend aus einer (Röntgen-) Quelle, einem Detek-
tor und einer zu scannenden Probe. Die Pixel des Detektors werden schematisch
durch die Kacheln dargestellt.

Probe wird vor der idealisierten, punktförmigen Röntgenstrahlungsquelle (im Folgen-
den kurz: Quelle) positioniert und von der kegelförmig auslaufenden Röntgenstrahlung
durchleuchtet. Durch die Wechselwirkung der Röntgenstrahlung mit dem Material der
Probe wird die Strahlung abgeschwächt. Hinter der Probe befindet sich ein Detektor,
der die transmittierte Strahlung detektiert und in Form einer Projektion aufzeichnet.
Erweiternd zur einfachen Durchstrahlungsprüfung wird die Probe nach der Aufnahme
einer Projektion gedreht, sodass sich die Abbildungsperspektive relativ zur Probe ändert.
Anschaulich ergibt sich wie beim räumlichen Sehen mit zwei (oder mehr) Augen eine
Tiefeninformation, indem die Bilder aus verschiedenen Perspektiven zusammengerechnet
werden. Diese Berechnung wird in der CT als Rekonstruktion bezeichnet und ergibt für
einen Satz zweidimensionaler Projektionen ein dreidimensionales Volumen, welches
daher rekonstruiertes Volumen genannt wird. In praktischen CT-Anwendungen werden
mehrere hundert bis hin zu einigen tausend Projektionen aus verschiedenen Perspektiven,
meist verteilt auf den Vollkreis, aufgenommen.
Aus der Kegelstrahl-Geometrie ergibt sich, dass Details der Probe vergrößert auf den

9
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Detektor projiziert werden. Die geometrische Vergrößerung M (englisch: Magnification)
lässt sich mittels Strahlensatz durch

M =
SDD
SOD

(2.1)

mit dem Abstand zwischen Quelle und Detektor SDD (englisch: Source-Detector-Distance)
und dem Abstand zwischen Quelle und Probe SOD (englisch: Source-Object-Distance)
berechnen. Verschiedene Vergrößerungen erlauben somit das Scannen unterschiedlich
dimensionierter Proben, beziehungsweise Scanvolumina, bei maximaler Ausnutzung der
Detektorfläche.
In den folgenden Abschnitten werden die wichtigsten Bestandteile eines CT-Scanners
vorgestellt und die zugrundeliegende Funktionsweise beschrieben. Für die Beantwortung
der ersten und dritten Forschungsfrage ist ein grundlegendes Verständnis der Com-
putertomographie aus theoretischer Sicht zentral. Insbesondere für die Modellierung
des CT-Messprozesses im Kontext der ersten Forschungsfrage werden die zugrunde-
liegenden Wechselwirkungsprozesse von Photonen mit Materie in Abschnitt 2.1, die
(technische) Erzeugung von Röntgenstrahlung in Abschnitt 2.2 sowie die Detektion
ebendieser Röntgenstrahlung in Abschnitt 2.3 beschrieben. Die Rekonstruktion wird in
Abschnitt 2.4 eingeführt, um die resultierenden CT-Artefakte zu verstehen, deren Einfluss
einer der Hauptgründe für die Nutzung eines DL-basierten Ansatzes in dieser Arbeit ist.
In Abschnitt 2.5 werden verschiedene Strategien zur Datenaufnahme, sogenannte Trajek-
torien, vorgestellt. Das Konzept der Dual-Energy Computed Tomography (DECT) wird in
Abschnitt 2.6 gemeinsam mit praktischen Anwendungsmöglichkeiten, beispielsweise der
Materialerkennung, eingeführt. Abschließend wird in Abschnitt 2.7 eine reale CT-Anlage
vorgestellt, die in den folgenden Kapiteln für Vergleichsmessungen verwendet wird.

2.1 wechselwirkung von photonen mit materie

Die Energie eines Photons mit der Frequenz ν lässt sich durch

E = h · ν

mit dem Planckschen Wirkungsquantum h = 4.135 · 10−15 eV · s beschreiben. Abhängig
von dieser Energie interagieren Photonen unterschiedlich mit Materie. Im Rahmen dieser
Arbeit werden lediglich Photonen mit Energien im Bereich einiger Kiloelektronenvolt
(keV) bis Megaelektronenvolt (MeV) betrachtet1, sodass die folgenden Wechselwir-
kungsprozesse dominieren: der photoelektrische Effekt, die Compton-Streuung, die
Rayleigh-Streuung und die Paarbildung.

1 Das genannte Energieband ist der effektiv für die CT nutzbare, messtechnisch sinnvolle Energiebereich.
Photonen einer niedrigeren Energie, im Bereich einzelner keV, können die meisten makroskopischen Proben
nicht durchdringen und sind somit in der CT nicht allgemein nutzbar. Sehr hochenergetische Photonen
weisen stark abnehmende Wirkungsquerschnitte einerseits mit den Probenmaterialien und andererseits mit
den Detektormaterialien auf, sodass der Bildkontrast absinkt.
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Photoelektrischer Effekt

Der photoelektrische Effekt (kurz: Photoeffekt) beschreibt die Absorption eines Photons
durch ein gebundenes Elektron. Hierbei muss die Energie des einfallenden Photons Eγ

mindestens die Bindungsenergie des Elektrons EB aufbringen, sodass das Elektron den
Bindungszustand verlassen kann. Überschüssige Energie wird in kinetische Energie des
Elektrons umgewandelt, sodass

Eγ = h · ν︸ ︷︷ ︸
Photon

= −EB + Ekin︸ ︷︷ ︸
Elektron

gilt. In der Literatur werden Bindungsenergien EB teils negativ angegeben, sodass das
negative Vorzeichen zum Ausgleich der Energiebilanz benötigt wird [23, S. 257f]. Der
Photoeffekt wird schematisch in Abbildung 2.2 dargestellt.

γ

e−

Abbildung 2.2: Schematische Darstellung des photoelektrischen Effektes. Ein Elektron e− wird
durch Absorption eines Photons γ aus seinem Bindungszustand gelöst. Der
Atomkern ist dunkelblau dargestellt. Die Abbildung ist nicht maßstabsgetreu.

Compton-Streuung

Bei der Compton-Streuung führt ein Photon einen inelastischen Stoß mit einem quasifreien
Elektron aus [23, S. 257]. Das Photon überträgt einen Teil seiner Energie an das Elektron,
sodass sich die Wellenlänge λ des Photons auf λ′ vergrößert. Die effektive Zunahme
der Wellenlänge ∆λ beträgt mit der Compton-Wellenlänge des Elektrons λC = 2.426 ×
10−12 m und dem Streuwinkel φ

∆λ = λ′ − λ = λC(1 − cos φ) . (2.2)

Abbildung 2.3 stellt die Compton-Streuung konzeptionell dar. Die Zunahme der Wellen-
länge, und damit der absolute Energieübertrag auf das Elektron, ist demnach vollständig
durch den Streuwinkel φ beschrieben [3, S. 50f.]. Die Verteilung dieser Streuwinkel wird
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durch die Klein-Nishina-Gleichung beschrieben und ist für steigende Photonenenergien
zunehmend vorwärts (in die ursprüngliche Bewegungsrichtung des Photons) gerichtet [3,
S. 50f.]. Demnach besteht ein gerichteter Röntgenstrahl nach Durchgang durch Materie
bei zunehmenden Photonenenergien zunehmend aus bereits gestreuten Photonen, die
einer anderen Energieverteilung folgen.

e−

λ
λ
′

Abbildung 2.3: Schematische Darstellung der Compton-Streuung: Ein einfallendes Photon wird
an einem schwach gebundenen bzw. freien Elektron gestreut, wobei es seine
Wellenlänge λ auf λ′ vergrößert. Die Abbildung ist nicht maßstabsgetreu.

Rayleigh-Streuung

Bei der Rayleigh-Streuung, im Folgenden auch kohärente Streuung, wechselwirkt ein Photon
mit dem Feld der Elektronenhülle eines Atoms, ohne dass Energie effektiv übertragen
wird, da die Energie des Photons zu niedrig für einen Ionisations- oder Anregungsprozess
ist [3, S. 53] – lediglich die Richtung des Photons ändert sich, sodass eine primäre, gerich-
tete Strahlung räumlich zerstreut wird. Die Rayleigh-Streuung ist somit ein elastischer
und kohärenter Streuprozess.

Paarbildung

Die letzte relevante Wechselwirkung ist die Paarbildung, die ab Photonenenergien
oberhalb von 1022 keV auftritt. Ab dieser Energie kann sich das Photon in ein Elektron-
Positron-Paar umwandeln, sofern ein Atomkern in der Nähe ist, um die Impulserhaltung
zu gewährleisten. Da diese Dissertationsschrift auf Röntgenstrahlung unterhalb dieser
Energieschwelle aufbaut, wird auf eine detaillierte Beschreibung der Paarbildung bewusst
verzichtet. Weiterführende Informationen können bei den Autoren Demtröder [23, S.
257f] und Knoll [3, S. 51f] eingesehen werden.
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Massenschwächungskoeffizient

Die aus allen genannten Wechselwirkungsprozessen aufsummierte Abschwächung der
Röntgenstrahlung wird im sogenannten Massenschwächungskoeffizienten µm zusammenge-
fasst [3, S. 54; G. 2.22], der für ein Material m mit einer Dichte ρm die Beziehung

µL,m(E) = ρm · µm(E) (2.3)

mit dem bereits in der Einleitung genannten linearen Abschwächungskoeffizienten
µL,m(E) erfüllt. Abbildung 2.4 zeigt die verschiedenen Anteile der Wechselwirkungspro-
zesse am linearen Abschwächungskoeffizienten von Kupfer. Der grau hinterlegte Bereich
markiert einen typischen Energiebereich für die industrielle CT-Bildgebung. Für das
gezeigte Material Kupfer sind somit der Photoeffekt und die Compton-Streuung die
wichtigsten Dämpfungsprozesse von Röntgenstrahlung im markierten Energiebereich.
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Abbildung 2.4: Linearer Abschwächungskoeffizient von Kupfer Total mit den zugrundeliegenden
Abschwächungseffekten: Photoeffekt, Compton-Streuung, Kohärente Streuung und
Paarbildung. Die Abschwächungskoeffizienten wurden mit dem Programm aRTist
[24] simuliert. Ein typischer Energiebereich für die CT-Bildgebung ist im Plot grau
hinterlegt und liegt zwischen 30 keV und 450 keV.
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UH

Blende

e−

γ

Vakuum

UB

Fenster

Anode

Abbildung 2.5: Schematischer Aufbau einer Röntgenquelle mit der Heizspannung UH zur Erzeu-
gung freier Elektronen e− und der Beschleunigungsspannung UB zur Beschleuni-
gung der freien Elektronen. Durch Interaktion mit dem Anodenmaterial wird die
kinetische Energie der freien Elektronen in Photonen γ umgewandelt.

2.2 quelle : erzeugung von röntgenstrahlung

Die zur Bildgebung benötigte Röntgenstrahlung wird häufig durch sogenannte Röntgen-
quellen (historisch: Röntgenröhren) technisch erzeugt.2 Abbildung 2.5 stellt den Aufbau
einer Röntgenquelle dar. Eine Glühkathode, häufig in Form eines Wolframdrahtes, wird
durch das Anlegen einer Heizspannung UH und dem daraus resultierenden Heizstrom
erwärmt, sodass die Elektronen aus dem Wolframdraht zunehmend ins Vakuumniveau
übergehen. Die nun freien Elektronen werden mithilfe eines elektrischen Feldes Ee, dem
Resultat der sogenannten Beschleunigungsspannung UB, in Richtung der Anode beschleu-
nigt. Die Zunahme der kinetischen Energie der Elektronen mit der Elementarladung qe

beträgt ∆Ekin = UB · qe. Zentral ist, dass der gesamte Prozess im Vakuum stattfindet, so-
dass die mittlere freie Weglänge der Elektronen sehr viel größer als die Strecke zwischen
Glühkathode und Anode ist. Die beschleunigten Elektronen erreichen die Anode und
regen die Anodenatome an. Während der Relaxation erzeugen die Anodenatome ein für
das Anodenmaterial charakteristisches Emissionsspektrum (auch: Quellspektrum). Das
Spektrum setzt sich aus zwei wesentlichen Bestandteilen zusammen: der charakteristi-
schen Röntgenstrahlung und der Bremsstrahlung. Im folgenden Beispiel wird Wolfram als
Anodenmaterial angenommen, um exemplarische Quellspektren zu simulieren und zu
beschrieben.

2 Neben technisch erzeugter Röntgenstrahlung können auch radioaktive Strahler zur Bildgebung verwendet
werden [25]. Radioaktive Strahler werden vorrangig für Anwendungen im mobilen Einsatz, beispielsweise
zur Prüfung des Betons eines Brückenpfeilers, eingesetzt.
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Charakteristische Röntgenstrahlung

Die Atome im Anodenmaterial können durch die einfallenden Elektronen ionisiert wer-
den. Da die unbesetzten Energiezustände in den ionisierten Atomen durch Elektronen
aus höheren Energieniveaus, oder dem Vakuumniveau, besetzt werden, geben die Elek-
tronen jeweils beim Übergang in den unbesetzten Zustand ein Photon ab. Bedingt durch
die diskreten Energiezustände der Elektronen in einem Atom, gibt es ebenso diskrete
Übergänge, die die sogenannte charakteristische Röntgenstrahlung im Emissionsspektrum
bilden [23, S. 254ff]. Die Bindungszustände K 1s mit 69.525 keV und L1 2s mit 12.1 keV
sind an der Ausbildung der charakteristischen Linien von Wolfram beteiligt [26, S. 1–6].
Folgende Hauptlinien (historisch auch: Serien) werden bedingt durch Elektronenübergän-
ge in den genannten Bindungszuständen erwartet: vom Vakuumniveau in die K-Schale
mit etwa 69 keV und von der L-Schale in die K-Schale mit etwa 57 keV. In ebendiesen Grö-
ßenordnungen können die erwarteten charakteristischen Emissionslinien in Abbildung
2.6 beobachtet werden. Außerhalb des dargestellten, praktisch für die industrielle CT
nutzbaren Energiebereiches in Abbildung 2.6 tritt zudem der Übergang vom Vakuumni-
veau in die L-Schale mit etwa 12 keV auf. Die Berechnung des Spektrums berücksichtigt
auch Übergänge aus anderen Bindungszuständen, sodass weitere (Neben-) Linien zu den
oben beschriebenen Hauptlinien sichtbar sind.

25 50 75 100 125 150 175 200

Photonenenergie in keV

106

107

108

109

1010

1011

P
h

ot
on

en
za

h
l

in
1/

sr

100 kV

200 kV

Abbildung 2.6: Röntgenspektren für zwei verschiedene Beschleunigungsspannungen UB =
(100, 200) kV. Beide Spektren weisen die gleichen charakteristischen Emissions-
linien aufgrund der quantisierten Bindungszustände im Wolframatom aus. Die
Bremsstrahlung verteilt sich jeweils über den gesamten Energiebereich der einfal-
lenden Elektronen.
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Bremsstrahlung

Neben der charakteristischen Röntgenstrahlung besteht der Großteil der Spektren in
Abbildung 2.6 aus der sogenannten Bremsstrahlung. Die einfallenden Elektronen werden
durch die Coulomb-Felder der Atomkerne im Anodenmaterial beschleunigt und somit
von ihrer Bahn abgelenkt. Bei der Beschleunigung eines geladenen Teilchens wird Energie
in Form von Photonen abgestrahlt [23, S. 254]. Aufgrund dieser kontinuierlichen Wechsel-
wirkung ist das Spektrum der Bremsstrahlung kontinuierlich (auch: Röntgenkontinuum)
und über den gesamten Energiebereich der einfallenden Elektronen verteilt.

2.3 detektor : quantitative detektion von röntgenstrahlung

Dieser Abschnitt basiert auf Knoll (2000) [3] und beschreibt die physikalischen Grundla-
gen eines Detektors für Röntgenstrahlung im messtechnisch relevanten Energiebereich
für die Computertomographie zwischen wenigen keV bis hin zu einigen MeV. Im Rah-
men dieser Thesis werden vorrangig Detektoren verwendet, die auf dem Prinzip der
Szintillation basieren. Schematisch ist das Funktionsprinzip in Abbildung 2.7 dargestellt.
Die einfallenden Photonen γ wechselwirken mit dem sogenannten Szintillator, der im

γ

γ′

γ′ Szintillator

Photodioden

Abbildung 2.7: Funktionelle Skizze eines auf Szintillation basierenden Detektors in seitlicher
Ansicht.

Folgenden auch als aktives Medium bezeichnet wird. Häufig werden Szintillatoren aus
Elementen mit hoher Kernladungszahl gefertigt, um die Wirkungsquerschnitte mit den
einfallenden Photonen γ zu maximieren. Durch die Wechselwirkung wird der Szintillator
angeregt und gibt die überschüssige Energie in Form neuer Photonen γ′ im sichtbaren
Bereich wieder ab (Szintillation). Der Szintillator ist für die Photonen γ′ transparent,
sodass diese sich im Idealfall ohne weitere Interaktion fortbewegen können. Unter dem
Szintillator befinden sich die eigentlichen Pixel des Detektors in Form von Photodioden,
die die niederenergetischen Photonen γ′ effizient detektieren können. Im Vergleich zu
den Photodioden, die auch in dünner Bauweise eine hohe Effizienz bei der Detektion der
niederenergetischen Photonen γ′ erreichen, werden die Szintillatoren dicker ausgelegt,
um die Interaktionswahrscheinlichkeit mit den hochenergetischen Photonen γ zu erhö-
hen.
Insgesamt wird die im Szintillator deponierte Energie in elektrische Ladung umgesetzt,
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die in einem Kondensator zeitlich aufsummiert und anschließend nach der sogenann-
ten Integrationszeit ausgelesen wird. Ein Detektor nach diesem Konzept wird Energy-
Integrating Detector (EID) genannt, da die deponierte Energie über die Zeit integriert
wird. Der Szintillator sollte die von den Photonen γ deponierte Energie idealerweise
linear in niederenergetische Photonen γ′ umsetzen [3, S. 219], sodass die im Pixel aus-
gelesene Ladung proportional zur ursprünglich deponierten Energie im Szintillator ist.
Neben der Gesamtzahl der Pixel dx und dy, angeordnet in einem zweidimensionalen
Array, ist der Abstand zwischen zwei Pixelmittelpunkten, der sogenannte Pixel Pitch,
eine wichtige Eigenschaft des Detektors. Die in Abbildung 2.7 dargestellte Situation wird
Schrägdurchstrahlung genannt und ist zugunsten der Abbildung überspitzt dargestellt.
Im Bestfall liegt die Detektorebene senkrecht zum einfallenden Röntgenstrahl, sodass
ein einzelnes Photon γ ein räumlich präzise lokalisiertes Signal in einem einzigen Pixel
hinterlässt.

2.3.1 Bildkorrekturen

Die vom Detektor aufgenommenen Projektionen müssen korrigiert werden, da verschie-
dene Effekte die Bildqualität maßgeblich beeinträchtigen.
Erstens wird für jedes Pixel eine sogenannte Flatfield-Korrektur durchgeführt, um das
Untergrundsignal, den Offset, bedingt durch den Dunkelstrom des Detektors aus dem
Signal zu entfernen und um den Verstärkungsfaktor, den Gain, für jedes Pixel zu er-
mitteln. Hierzu werden ein Offset-Bild POffset (auch: Dunkelbild) ohne Röntgenstrahlung
und ein Gain-Bild PGain (auch: Hellbild) im Freistrahl ohne Probe aufgenommen. Ein
unkorrigiertes Pixel Px,y kann durch

P(x,y)
GOC =

P(x,y) − P(x,y)
Offset

P(x,y)
Gain − P(x,y)

Offset

· PGain (2.4)

in ein korrigiertes Pixel Px,y
GOC umgerechnet werden, wobei (x, y) die Position des Pixels

auf dem Detektor innerhalb des Pixelarrays beschreibt. PGain ist der Mittelwert des Gain-
Bildes und fungiert als Normierung.
Zweitens gibt es Pixel, die so stark beschädigt sind, dass ihr Signal nicht verwendet
werden kann. Die genauen Gründe für den Ausfall einzelner Pixel reichen von mechani-
scher Beschädigung bis hin zu elektrischen Problemen beim Auslesen und sind für die
Korrektur in erster Instanz nicht relevant. Diese Pixel werden Bad Pixel (auch: tote Pixel)
genannt und können mithilfe eines Prüfverfahrens aus der Norm ASTM E2597/E2597M -
14 [27] identifiziert werden. Neben bilinearer Interpolation [28, S. 65 f.] der Nachbarpixel
kann ebenso ein Median-Filter [28, S. 326] verwendet werden, um basierend auf den
Nachbarpixeln einen Ersatzwert für das beschädigte Pixel neu zu berechnen. Proble-
matisch wird dieser Lösungsansatz, sobald größere Ansammlungen beschädigter Pixel,
sogenannte Cluster, auftreten, da die benachbarten und ebenfalls beschädigten Pixel
nicht zur Korrektur verwendet werden können. Daher müssen für die Korrektur von
Clustern komplexere Algorithmen, die einen größeren Bildbereich (auch: Kontext) um
das beschädigte Pixel berücksichtigen, verwendet werden. Neben klassischen Bildrestau-
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rationsverfahren existieren auch DL-basierte Ansätze, die für die Restauration toter Pixel
eingesetzt werden [29]. Ebenso können ganze Zeilen oder Spalten des Detektors ausfallen
– eine häufige Folge elektrischer Defekte. Analog zur Argumentation bei Clusterdefekten
ist die bilineare Interpolation für die Korrektur ungeeignet. Jedoch kann mit dem Wissen
der Ausrichtung der fehlerhaften Zeile (oder Spalte) senkrecht zum Liniendefekt linear
interpoliert oder der Median-Filter angewandt werden. Eine Übersicht der klassischen
Korrekturverfahren für tote Pixel ist in Abbildung 2.8 dargestellt.

(a) Bilineare Interpolation (b) Median-Filter (c) Lineare Interpolation

Abbildung 2.8: Übersicht gängiger Korrekturverfahren zur Ausbesserung toter Pixel. Einzelne,
isolierte, tote Pixel können mit bilinearer Interpolation (a) oder einem Median-
Filter (b) korrigiert werden. Liniendefekte werden mit linearer Interpolation
senkrecht zum Defekt (c) korrigiert.

2.3.2 Bildrauschen

Die Projektionen unterliegen einem Bildrauschen, das sich aus dem physikalischen Bild-
gebungsprozess ableiten lässt. Das von der Quelle erzeugte Spektrum besteht insgesamt
aus N0 Photonen, die mit einer Wahrscheinlichkeit pa durch die Probe transmittieren
und den Detektor erreichen. Durch Anwendung der Zählstatistik ergibt sich, dass im
Rahmen einer Standardabweichung N0 · pa ±

√
N0 · pa Photonen den Detektor erreichen

[30, S. 170 f.] und zu einem Bildrauschen, basierend auf einem Poisson-Prozess, führen
(Poisson Noise oder Shot Noise). Zusätzlich unterliegen die Detektoren einem elektroni-
schen und thermischen Grundrauschen. Eine weitere Quelle des Bildrauschens kann
in der zeitlichen Instabilität der erzeugten Röntgenstrahlung identifiziert werden. Zeit-
liche Instabilitäten des von der Röntgenquelle emittierten Spektrums beziehen sich in
den meisten Fällen auf die Flussdichte des Elektronenstroms auf die Anode (vergleiche
Abbildung 2.5), sodass die Leistung des emittierten Spektrums insgesamt variiert, die
spektrale Verteilung aber weitestgehend konstant bleibt. Somit können einzelne Pro-
jektionen während des CT-Scans zwar andere Zählraten anzeigen, jedoch bleiben die
Verhältnisse zwischen den projizierten Objekten stets gleich. Durch die Normierung der
Projektionen vor der Rekonstruktion werden erstens diese Schwankung und zweitens
räumliche Inhomogenität des Quellspektrums ausgeglichen.

2.4 rekonstruktion

Die mathematische Grundlage zur Rekonstruktion, und damit für die Computertomogra-
phie, lieferte Johann Radon im Jahr 1917 [31], indem er zeigte, dass eine zweidimensionale
Funktion durch die Werte aller Linienintegrale des Definitionsbereiches ebendieser Funk-
tion eindeutig dargestellt werden kann [30, S. 150]. Der eigentliche Messprozess bei
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P1

P2P3P4

(a) Rückprojektion

−ωmax−ωmax +ωmax+ωmax

H(ω)

(b) Ram-Lak-Filter

Abbildung 2.9: Schematische Darstellung der Rekonstruktion durch Rückprojektion der
Parallelstrahl-Geometrie (a) mit einem möglichen Filter (b) im Frequenzraum
H(ω) für die Anwendung der gefilterten Rückprojektion.

der CT, das heißt die Abschwächung der Röntgenstrahlung durch die Probe gemäß
Gleichung 1.1 sowie das Aufzeichnen des integrierten Signals, folgt dem nach Radon
beschriebenen Modell und wird auch als Radon-Transformation bezeichnet. Die Inverse
der Radon-Transformation liefert somit aus einem Satz gemessener Projektion und einer
bekannten Abbildungsgeometrie eine Rekonstruktion, die in einfachster Form durch das
Verschmieren der Projektionen entlang ihrer Aufnahmerichtung (auch ungefilterte Rückpro-
jektion) erfolgt. Eine ausführliche Betrachtung dieser Rekonstruktionsmethode kann bei
den Autoren Maier [30, S. 150-156] und Kak [32, S. 56-68] eingesehen werden. Abbildung
2.9a skizziert die Rückprojektion eines Satzes von Projektionen durch ein Zielvolumen
unter der Annahme paralleler Röntgenstrahlen (auch: Parallelstrahl-Geometrie). Das re-
konstruierte Volumen eines gescannten Zylinders wird abhängig von der Anzahl der
verwendeten Projektionen in der oberen Zeile von Abbildung 2.10 dargestellt. Mit dem
Wissen, dass es sich bei dem in Abbildung 2.10 rekonstruierten Objekt um einen Zylinder,
beziehungsweise in der Schnittebene um einen Kreis, handelt, liefert die ungefilterte
Rückprojektion auch unter Verwendung von 1000 Projektionen ein unscharfes Resultat.
Diese Unschärfe folgt aus der unzureichenden Abtastung hoher Frequenzanteile durch
den CT-Messprozess [30, S. 156ff] und kann mithilfe eines Filters, der auf die Projektio-
nen angewandt wird, korrigiert werden.3 Häufig wird der in Abbildung 2.9b geplottete
Ram-Lak-Filter verwendet, der hohe Frequenzanteile bis zu einer Grenzfrequenz ωmax

verstärkt und niederfrequente Anteile unterdrückt. Oberhalb der Grenzfrequenz wird
das Signal abgeschnitten, um das hochfrequente Rauschen im Bild zu reduzieren [30, S.
158ff].
In klinischen und industriellen Anwendungen ist die Parallelstrahl-Geometrie zugunsten
der Kegelstrahl-CT wenig verbreitet. Daher basieren die meisten Rekonstruktionsalgo-
rithmen auf dem sogenannten FDK-Algorithmus, der nach Feldkamp, Davis und Kress
benannt wurde [33] und erstmals eine effiziente Möglichkeit beschrieb, dreidimensionale
Volumen aus zweidimensionalen Projektionen unter Berücksichtigung der geometrischen
Vergrößerung zu rekonstruieren. Alle weiteren Rekonstruktionen in dieser Arbeit werden
mit dem FDK-Algorithmus berechnet. Ergänzend sind iterative Rekonstruktionsalgo-

3 Durch Darstellung der Röntgenprojektionen im Fourierraum kann anschaulich gezeigt werden, dass die
niedrigen Frequenzanteile des Bildes geometrisch bedingt feiner abgetastet werden als die hochfrequenten
Bildanteile. Eine zu dieser Erläuterung ergänzende Abbildung kann bei Kak [32, S. 59, Fig. 3.7] eingesehen
werden.
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N=4 N=10 N=50 N=1000

Abbildung 2.10: Ungefilterte Rekonstruktion (obere Reihe) und gefilterte Rekonstruktion (untere
Reihe) für verschiedene Projektionszahlen N gleichverteilt über den Vollkreis.

rithmen zu nennen, die im Vergleich zur FDK-Rekonstruktion deutlich rechenintensiver
sind. Ihre Vorteile sind im Allgemeinen auf die Reduktion verschiedener CT-Artefakte
beschränkt, die im folgenden Abschnitt beschrieben werden. Im weiteren Verlauf dieser
Thesis werden keine iterativen Rekonstruktionsalgorithmen verwendet.

2.4.1 CT-Artefakte

Die gefilterte Rückprojektion mit 1000 Projektionen in Abbildung 2.10 (untere Zeile, ganz
rechts) ist qualitativ betrachtet artefaktfrei. In praktischen Anwendungsfällen kommt
es aufgrund verschiedener Einflüsse dennoch häufig zu sogenannten CT-Artefakten, die
einen maßgeblichen Einfluss auf die Bildqualität haben können. Aus dem vorangehenden
Abschnitt ist das Undersampling (deutsch: Unterabtastung) in Abbildung 2.10 in Form von
linienartigen Artefakten insbesondere bei niedrigen Projektionszahlen zu erkennen. Eine
niedrige Projektionszahl führt zu einer Unterabtastung der Probe und somit zu einer
verminderten Rekonstruktionsqualität. Die Literatur empfiehlt für einen Detektor mit dx

Pixeln in der Breite4 mindestens dx Projektionen gleichverteilt auf einen Vollkreis für die
Rekonstruktion zu verwenden [32, S. 186]. Im Folgenden wird ohne weiteren Kommentar
diese Faustformel angewandt. Eine weitere Artefaktquelle besteht in der Aufhärtung der
polychromatischen Röntgenstrahlung durch die energieabhängige Dämpfung innerhalb
einer Probe [30, S. 171 f.]. Abbildung 2.4 zeigt die Energieabhängigkeit des linearen
Abschwächungskoeffizienten für Kupfer. Im für die CT-Bildgebung relevanten, grau
schattierten Bereich sinkt der lineare Abschwächungskoeffizient streng monoton, sodass
die niederenergetischen Anteile des einfallenden Spektrums eine stärkere Dämpfung
erfahren. Das Spektrum wird somit durch die Wechselwirkung mit der Probe nicht nur
insgesamt gedämpft, sondern auch aufgehärtet.5 Dieser Effekt nimmt mit der Dicke
einer gescannten Probe zu, sodass in den inneren Schichten eines homogenen Zylin-

4 Gemeint ist die Pixelausbreitungsrichtung x⃗, die senkrecht zur Rotationsachse (CT-Achse) und senkrecht
zur Strahlrichtung steht.

5 Historisch bedingt wird von weicher (niederenergetischer) und harter (hochenergetischer) Röntgenstrahlung
gesprochen.
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ders niedrigere Abschwächungskoeffizienten aufgrund des aufgehärteten Spektrums
rekonstruiert werden. Abbildung 2.11 zeigt den beschriebenen Effekt und die daraus
resultierende, charakteristische Form im Schnittbild (rechte Spalte) – das sogenannte
Cupping. Zur Reduktion der Strahlaufhärtungsartefakte kann eine Vorfilterung des Rönt-
genspektrums verwendet werden [30, S. 172]. Die Vorfilterung härtet das Spektrum vor
der Interaktion mit der Probe auf, sodass insgesamt weniger Photonen aus den niedri-
geren Energiebereichen für den Messprozess verwendet werden. Somit sinkt die Stärke
der Strahlaufhärtungsartefakte deutlich ab. In der unteren Zeile von Abbildung 2.11
wird das gleiche Quellspektrum mit Vorfilterung durch ein 1 mm dickes Kupferblech zur
Bildaufnahme verwendet. Im Vergleich zur Bildaufnahme ohne Vorfilterung (obere Zeile)
ist zu erkennen, dass die Strahlaufhärtung reduziert werden konnte. Zudem sind die
absolut rekonstruierten Abschwächungskoeffizienten in Abbildung 2.11 (rechte Spalte)
durch die Vorfilterung gesunken, da die effektive Energie des einfallenden Spektrums
gestiegen ist und der effektive Abschwächungskoeffizient gemäß Abbildung 2.4 in diesem
Energiebereich monoton fällt.
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Abbildung 2.11: Rekonstruierte Volumen eines Zylinders mit verschiedenen Röntgenspektren:
ungefiltertes Spektrum (obere Zeile) und durch 1 mm Kupfer vorgefiltertes
Spektrum (untere Zeile) bei gleicher Beschleunigungsspannung UB = 150 kV.
Die Schnitte durch die Volumen entlang der gestrichelten Linien werden in der
rechten Spalte geplottet. Sofern nicht anders beschriftet, handelt es sich bei den
Achsen um numerierte Voxel.

Wie in Abschnitt 2.1 erwähnt, liefert die Compton-Streuung teilweise den stärksten
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Beitrag zur Abschwächung der Strahlung im CT-relevanten Energiebereich (vergleiche
Abbildung 2.4). Da es sich um einen Streuprozess mit einer bestimmten Winkelverteilung
handelt, wird ein Teil der Streustrahlung ebenfalls in Richtung des Detektors ausgesandt
und trägt zum gemessenen Signal bei. In der klassischen FDK-Rekonstruktion, beschrie-
ben in Kapitel 2.4, wird dieser Streuprozess nicht berücksichtigt, sodass mitunter von
der Realität abweichende Abschwächungskoeffizienten rekonstruiert werden.6 Ebenso
werden Abbildungsunschärfen, zum Beispiel durch eine nicht ideal punktförmige Rönt-
genstrahlungsquelle, nicht berücksichtigt, sodass die Detailerkennbarkeit weiter abnimmt.
Während die Kreistrajektorie die Mittelschicht der Probe7 ideal abbildet (zweidimen-
sional auch: Fächerstrahl-Geometrie), werden die Schichten im Randbereich geometrisch
verzerrt und diagonal durchstrahlt abgebildet, sodass sich die sogenannten Feldkamp-
Artefakte herausbilden. Sie haben einen direkten Einfluss auf die absolut rekonstruierten
Abschwächungskoeffizienten und somit auch auf die im Folgenden vorgestellte Materi-
albestimmung, die auf ebendiesen Abschwächungskoeffizienten basiert. Das letzte hier
genannte CT-Artefakt ist der Partial Volume Effect, der den partiellen, inhomogenen Inhalt
eines rekonstruierten Voxels beschreibt. Anhand des folgenden Beispiels in Abbildung
2.12 kann der Partial Volume Effect veranschaulicht werden. Der Effekt tritt somit an

(a) Probe kleiner als Voxel (b) rekonstruiertes Voxel

Abbildung 2.12: Ausgangssituation einer runden Probe, die den Durchmesser des umliegenden
Voxels aufweist (a). Aufgrund der Voxelgröße kann das runde Objekt nicht
korrekt rekonstruiert werden. Das rekonstruierte Voxel (b) zeigt somit den
Mittelwert des Inhalts von (a), also eine Mischung aus der Probe und ihrer
Umgebung – den Partial Volume Effect.

allen räumlichen Eigenschaften einer Probe auf, die kleiner sind als die Voxelgröße selbst
(häufig: Kanten und Partikel).

2.5 trajektorien

Neben der bereits am Anfang dieses Kapitels beschriebenen Kreistrajektorie in Abbildung
2.13a wird die Helixtrajektorie, dargestellt in Abbildung 2.13b, häufig verwendet. Die
Nutzung der Helixtrajektorie bietet den Vorteil, dass jedes Volumenelement der Probe
zu einem bestimmten Zeitpunkt in der Mittelebene der Abbildungsgeometrie liegt und

6 Konkret führt die Streustrahlung zu einer Reduktion der rekonstruierten Abschwächungskoeffizienten
innerhalb einer Probe.

7 Gemeint ist die mittlere Schnittebene durch die Probe, die in derselben Ebene wie die eingezeichnete
Trajektorie liegt. Sie befindet sich in der Mitte der Abbildungsgeometrie und wird daher auch Mittelebene
genannt.
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(a) Kreistrajektorie (b) Helixtrajektorie

Abbildung 2.13: Renderings einer Kreistrajektorie (a) und einer Helixtrajektorie (b) zum Scan
der quaderförmigen Probe. Die Quelle bewegt sich entlang der roten Linie.
Gegenüberliegend zu jeder Quellposition befindet sich der Detektor, sodass
beide gemeinsam um die Probe rotieren (siehe Abbildung 2.1). Zur Verbesserung
der Darstellung werden die Positionen des Detektors nicht eingezeichnet.

somit keine Feldkamp-Artefakte auftreten. Zudem können längliche Proben mit einer
höheren Vergrößerung als bei der Kreistrajektorie abgebildet werden.

2.6 dual-energy ct und klassische materialzerlegung

Bei der Computertomographie mit polychromatischer Röntgenstrahlung und einem
Energy-Integrating Detector (EID) werden die Abschwächungskoeffizienten einer Pro-
be ortsaufgelöst und energieintegriert gemessen. Das Spektrum der Röntgenstrahlung
bestimmt somit den Energiebereich in dem der Abschwächungskoeffizient des Proben-
materials effektiv gemessen wird. Nach Sprawls besteht eine gängige Hilfsgröße zur
Beschreibung dieses effektiven Energiebereiches durch die sogenannte effektive Energie
[34]. Sie ist ebenjene Photonenenergie, die ein monochromatischer Röntgenstrahl benötigt,
um die gleiche Penetration wie ein gegebener polychromatischer Röntgenstrahl an einer
festen Probe aufzuweisen [34]. Die im Folgenden genannten Abschwächungskoeffizienten
werden daher zusätzlich mit dem Index eff versehen, um zu verdeutlichen, dass es sich
um die effektiven Abschwächungskoeffizienten unter Verwendung polychromatischer
Röntgenstrahlung handelt. Bei der Durchführung mehrerer CT-Scans mit unterschied-
lichen Röntgenspektren, beziehungsweise unterschiedlichen effektiven Energien, kann
der Abschwächungskoeffizient in verschiedenen Energiebereichen gemessen und für
weiterführende Analysen verwendet werden. Im Fall von zwei unterschiedlichen Energi-
en wird der gesamte Scan auch DECT genannt. Die Aufnahme einer DECT kann durch
verschiedene Strategien realisiert werden:

• Beim Multi-Scan werden zwei separate CT-Scans nacheinander mit verschiede-
nen Parametern der Röntgenquelle, zum Beispiel Beschleunigungsspannung oder
Vorfilterung, durchgeführt [35, S. e893].
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• Mehrschichtige Detektoren, sogenannte Sandwich Detectors, können während ei-
nes einzigen CT-Scans verschiedene Energiekanäle durch die unterschiedlichen
Detektorschichten registrieren [35, S. e890 ff.].

• Moderne Photonenzähler (auch Photon-Counting Detectors (PCDs)) können einzelne
Photonen energieaufgelöst detektieren [35, S. e892 f.].

• Durch schnelles Alternieren der Beschleunigungsspannung in der Röntgenröhre,
das Rapid Tube Potential Switching oder Fast-kV Switching, können verschiedene
Röntgenspektren zur Aufnahme aufeinanderfolgender Bilder verwendet werden
[35, S. e893 ff.].

• Die Verwendung mehrerer, unabhängiger Systeme, bestehend aus Röntgenquelle
und Detektor, die den gleichen Prüfraum beleuchten, stellt eine weitere Möglichkeit
zur Aufnahme von DECT dar [35, S. e896 f.].

Bereits im Jahr 1976 publizierte Alvarez einen Algoritmus zur Materialzerlegung basie-
rend auf DECT [13]. Eine gängige Darstellung von DECT zur Materialdifferenzierung
wird in Abbildung 2.14 für die Materialien Aluminium, Eisen und Kupfer dargestellt.
Für zwei gegebene Röntgenspektren, in diesem Beispiel definiert durch die Energie der
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Abbildung 2.14: Ideal rekonstruierte Dual-Energy-Abschwächungskoeffizienten µL verschiedener
Materialien m basierend auf monochromatischer Röntgenstrahlung mit 140 keV
und 240 keV. Die Abschwächungskoeffizienten tragen keinen Index zur Anzeige
der effektiven Energie (eff), da es sich zur Vereinfachung um monochromatische
Röntgenstrahlung handelt. Jede Linie beschreibt ein Material in verschiedenen
relativen Dichten. Die relativen Dichten sind beispielhaft an den Stützpunkten
der Kupferlinie annotiert.
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monochromatischen Strahlung, werden die rekonstruierten Abschwächungskoeffizienten
µL,m graphisch aufgetragen. Aus der Definition des linearen Abschwächungskoeffizienten

µeff
L,m = ρm · µm (2.5)

mit einer absoluten Dichte ρm und dem Massenschwächungskoeffizienten µm folgen
unmittelbar die Datenpunkte für die relativen Dichten zwischen 0.2 und 1.0. Eine unbe-
kannte Probe kann somit durch einen DECT-Scan eindeutig anhand der rekonstruierten
Abschwächungskoeffizienten einer Gerade und damit einem Material und einer Dich-
te zugeordnet werden. Analog können für polychromatische Röntgenstrahlung, mit
Verwendung der effektiven Energie, in realen Anwendungen Kalibrationsmessungen
durchgeführt werden, um Materialien anhand der rekonstruierten Abschwächungsko-
effizienten erkennen zu können. Ein Problem bei diesem sehr direkten Ansatz ist in
Abbildung 2.11 aus dem vorangehenden Abschnitt über CT-Artefakte ersichtlich: die
rekonstruierten Abschwächungskoeffizienten sind in einer homogenen Probe bei Ver-
wendung von polychromatischer Röntgenstrahlung aufgrund der Strahlaufhärtung nicht
konstant. Daraus folgt, dass der oben beschriebene Ansatz zur Materialerkennung nur
in absoluter Abwesenheit der Strahlaufhärtungsartefakte, also beispielsweise bei der
Verwendung einer monochromatischen Röntgenquelle, erfolgsversprechend ist.

2.7 vorstellung reale ct-anlage

An einigen Stellen dieser Arbeit bedarf es eines Abgleiches mit realen CT-Daten, die mit
der in diesem Abschnitt vorgestellten CT-Anlage aufgenommen werden. Eine Fotografie
der verwendeten CT-Anlage vom Typ diondo d2 ist in Abbildung 2.15 dargestellt. Die
Anlage ist auf einem Granit-Manipulator aufgebaut, um den Einfluss der thermischen
Ausdehnung und generell durch Vibrationen zu unterdrücken. Die Röntgenquelle kann
mit einer maximalen Beschleunigungsspannung UB = 240 kV betrieben werden. In der
Röntgenquelle befindet sich eine scheibenförmige Anode, die in Transmission, das heißt
die Strahlrichtung der Elektronen entspricht der Richtung des primären Photonenstrahls,
betrieben wird (auch: Transmissionsquelle). Transmissionsquellen sind aufgrund ihres
kleinen Brennflecks8 im Vergleich zu Reflexionsquellen (vergleiche Abbildung 2.5) für
hochaufgelöste CT-Scans besser geeignet, wobei dies auf Kosten der abgestrahlten Leis-
tung in Form der Röntgenstrahlung geschieht.
Der Detektor basiert auf einem Caesiumiodid-Szintillator und wird energieintegrierend
betrieben (vergleiche EID in Abschnitt 2.3). Der Pixel Pitch beträgt 139 µm auf einer Flä-
che mit insgesamt 3000 × 3000 Pixeln. Zur Bedienung der gesamten CT-Anlage wird die
Software diControl verwendet. Weiterführende Informationen bezüglich der vorgestellten
CT-Anlage können bei der Firma diondo in Hattingen angefordert werden.
Einige im weiteren Verlauf dieser Dissertationsschrift gewählte Parameter, beispielsweise
die Beschleunigungsspannungen der Röntgenquelle, werden in Anlehnung an die diondo
d2 gewählt, um den angesprochenen quantitativen Vergleich der Daten zu erleichtern.

8 Gemeint ist der Bereich aus dem die Röntgenstrahlung innerhalb der Anode emittiert wird.
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Abbildung 2.15: Fotografie der verwendeten CT-Anlage diondo d2 im Dienstleistungsbereich der
Firma diondo. Rechts im Bild ist die Röntgenquelle zu sehen, links befindet sich
der Detektor.



3
G R U N D L A G E N D E S D E E P L E A R N I N G S F Ü R D I E
C O M P U T E RT O M O G R A P H I E

Dieses Kapitel dient als Einstieg für CT-Experten in die Methodik des Deep Learnings
als Werkzeug für die Bildverarbeitung und insbesondere für die Verarbeitung von CT-
Bilddaten im Rahmen dieser Dissertationsschrift. Daher werden vorrangig die zugrunde
liegenden Konzepte einiger Bausteine des Deep Learnings im Folgenden phänomeno-
logisch und nicht in voller Tiefe erklärt. Versierte Deep-Learning-Entwickler können
zur Abkürzung direkt die Abbildung 3.5 sowie die Publikationen von Ronneberger et
al. [36] und Liu et al. [37, 38] einsehen, um die in den folgenden Kapiteln verwendeten
Architekturen nachzuvollziehen. Zunächst wird Deep Learning formell in Abschnitt
3.1 anhand eines einfachen neuronalen Netzes eingeführt. Darauf aufbauend werden
das Training und die Bewertung des Trainingserfolges in den Abschnitten 3.2 und 3.3
beschrieben. Da im Rahmen dieser Dissertationsschrift mit CT-Bildern gearbeitet wird,
vertieft Abschnitt 3.4 die Anwendung des Deep Learnings für die Verarbeitung von
Bildern. Zwei im weiteren Verlauf dieser Arbeit genutzte und konzeptionell verschiedene
Architekturen zur Bildverarbeitung werden in den Abschnitten 3.4.1 und 3.4.2 vorgestellt:
das U-Net [36] und der Swin Transformer [38].

3.1 einführung : deep learning

Gesucht sei eine Funktion f , die eine Variable x (auch: Input) in eine Variable y (auch:
Ground Truth) übersetzt:

f : x 7→ y . (3.1)

Weiterhin sei eine Serie, bestehend aus beispielhaften Tupeln (x, y), den sogenannten
Trainingsdaten, gegeben. Unter diesen Bedingungen wird vom sogenannten Supervised
Learning gesprochen, da x und y bekannt sind. Mit dem entsprechenden Vorwissen über
die von der Funktion f darzustellende Abbildung, beispielsweise durch Domänenwissen,
kann eine Funktionsgleichung explizit aufgestellt und an die Trainingsdaten angepasst
werden. Besteht kein derartiges Wissen, kann alternativ nach Hornik ein künstliches
neuronales Netz angesetzt werden, das bei geeigneter Auslegung die Fähigkeit besitzt,
mathematische Funktionen f anhand der gegebenen Trainingsdaten zu approximieren
[39]. Neuronale Netze bestehen aus Neuronen, die mithilfe sogenannter Verbindungen
untereinander vernetzt werden [40, S. 185 f.]. Die Neuronen werden typischerweise in
mehreren Schichten (auch: Layer) angeordnet. In Abbildung 3.1 wird ein Multi-Layer-
Perceptron (MLP) dargestellt, das aus insgesamt drei Schichten besteht, die mithilfe der
Verbindungen verknüpft werden. Der Input x ist in diesem Beispiel ein Vektor mit drei
Komponenten (x1, x2, x3) und bildet die Neuronen der Input Layer. Allgemein werden

27
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Abbildung 3.1: Architekturdiagramm eines einfachen MLPs mit den Neuronen der Input Layer x,
der Hidden Layer h und der Output Layer ŷ.

die von neuronalen Netzen verarbeiteten Daten auch Tensoren1 genannt – eine Verallge-
meinerung der zuvor beschriebenen Vektordarstellung des Inputs x. Die Neuronen der
Hidden Layer hi werden durch die Linearkombination des Inputs x mit sogenannten
Weights w, der Addition des sogenannten Bias b und der Anwendung der sogenannten
Aktivierungsfunktion ϕ berechnet durch:

hi = ϕ

(
∑

j
wj · xj + b

)
. (3.2)

Durch die Verwendung einer nichtlinearen Aktivierungsfunktion ϕ kann das MLP auch
nichtlineare Funktionen f approximieren [40, S. 187]. Die Aktivierungsfunktion ReLU
(Rectified Linear Unit) gehört zu dieser Klasse der nichtlinearen Aktivierungsfunktionen
[40, S. 191 f.], ist definiert durch

ϕReLU(x) =

x , x ≥ 0

0 , x < 0
(3.3)

und nach Goodfellow eine der am häufigsten verwendeten Aktivierungsfunktionen [40, S.
192]. In der Definitionsgleichung von ϕReLU(x) symbolisiert x die Klammer aus Gleichung
3.2. Analog zu Gleichung 3.2 werden die Werte der Neuronen in der Output Layer (auch:
Prediction) ŷ aus den Neuronen der Hidden Layer berechnet. Somit sind die Weights
w und die Bias-Werte b aller Neuronen und Verbindungen eines neuronalen Netzes
ebenjene Parameter, die an die gegebenen Trainingsdaten angepasst werden müssen,
sodass das MLP die Funktion f bestmöglich approximiert [40, S. 189]. Die Gewichte und
die Bias-Werte werden daher auch trainierbare Parameter θ genannt und ihre Gesamtzahl

1 Der Begriff steht in direktem Zusammenhang mit dem Tensor aus der Mathematik.
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wird als Kapazität des neuronalen Netzes bezeichnet.
Das beispielhaft dargestellte MLP in Abbildung 3.1 besitzt eine Hidden Layer. Durch
das Hinzufügen weiterer Hidden Layers wird das neuronale Netz tiefer und in seiner
Gesamtheit ausdrucksstärker, da es eine größere Anzahl an Rechenoperationen der Form
aus Gleichung 3.2 zur Darstellung der Funktion f nutzen kann [40, S. 185 f.]. Ab welcher
Tiefe, beziehungsweise Kapazität, ein neuronales Netz zum Deep Learning zählt, ist
in der Literatur nicht einheitlich definiert. Nach Goodfellow zählt ein neuronales Netz
zu Deep Learning, sobald es komplexe Merkmale durch die Kombination abstrakter
Teilmerkmale in den Hidden Layers ausdrücken kann [40, S. 6 f.]. So könnte ein tiefes
neuronales Netz beispielhaft die Erfassung und Unterscheidung der Fellmuster von
Giraffen (geflecktes Muster) und Zebras (gestreiftes Muster) als abstraktes Merkmal in
einer der vielen Hidden Layers erlernen. In einer anderen Layer könnte es auch die
relative Halslänge im Verhältnis zur Gesamtgröße des Tieres – ein weiteres nützliches
Merkmal zur Unterscheidung zwischen Giraffen und Zebras – als abstraktes Merkmal
erlernen.

3.2 training neuronaler netze

Die im vorausgehenden Abschnitt erfolgte Vorstellung eines einfachen MLPs in Abbil-
dung 3.1 lässt eine zentrale Frage offen: Wie werden die trainierbaren Parameter θ an die
gegebenen Trainingsdaten (x, y) angepasst? Zur Beschreibung des sogenannten Trainings,
ebendieser Anpassung der Parameter θ, werden drei Kernkomponenten benötigt, die im
Folgenden aufgezählt werden:

• Loss: Im Allgemeinen berechnet ein neuronales Netz aus einem Input x (Input Layer)
eine Prediction ŷ (Output Layer), die vom Ground Truth y mehr oder weniger stark
abweicht. Die Abweichung, der sogenannte Loss L, wird mithilfe sogenannter Loss
Functions quantifiziert. Für verschiedene Problemarten, beispielsweise Regression
und Klassifikation, gibt es verschiedene Loss Functions. Das im Rahmen dieser
Dissertationsschrift formulierte Problem zählt formal zur Regression, da aus den
Inputs x (CT-Bilder) kontinuierlich verteilte Predictions ŷ (Materialien) berechnet
werden sollen. Somit wird im Folgenden eine Loss Function für Regressionsproble-
me beschrieben. Eine häufig für Regressionsprobleme verwendete Loss Function
ist der Mean Squared Error (MSE-Loss), der den mittleren, quadratischen Fehler der
Predictions ŷ gegenüber den Ground Truths y misst:

MSE-Loss(ŷ, y) =
1
L ∑

i
(ŷi − yi)

2 . (3.4)

Hierbei ist L die Länge der Vektoren y beziehungsweise ŷ, das heißt, konkret am
Beispiel des MLPs aus Abbildung 3.1, die Anzahl der Neuronen in der Output
Layer. Neben dem MSE-Loss gibt es eine Vielzahl alternativer Loss Functions, die
zum Training von Regressionsproblemen verwendet werden und bei Ciampiconi et
al. [41] eingesehen werden können.
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• Gradientenbestimmung: Das vorgestellte MLP in Abbildung 3.1 verwendet größten-
teils differenzierbare Rechenoperationen2, sodass zur Minimierung des Losses ein
Gradientenverfahren genutzt werden kann. Mithilfe der sogenannten Backpropa-
gation kann der Gradient für einen Loss L entlang der trainierbaren Parameter
∇θ(L) ermittelt werden [40, S. 225 f.]. Anschaulich wird hierbei der Einfluss jedes
trainierbaren Parameters auf den Loss ermittelt.

• Optimierer: Mit dem Gradienten ∇θ(L) erfolgt die Anpassung der trainierbaren
Parameter durch

θ′ = θ − ϵ∇θ(L)

mit der sogenannten Lernrate ϵ , sodass sich die aktualisierten trainierbaren Para-
meter θ′ ergeben. Moderne Optimierer im Bereich des DLs verwenden adaptive
Lernraten, sodass jeder Parameter aus θ zusätzlich eine multiplikative, individuelle
Lernrate zugeordnet bekommt. Durch die Nutzung individueller Lernraten wird
die Konvergenz beschleunigt, da Parameter, die einen eher geringen Einfluss auf
den Loss haben, das heißt schwache Gradienten aufweisen, mit größeren indi-
viduellen Lernraten aktualisiert werden können, während Parameter mit steilen
Gradienten niedrigere Lernraten und damit kleinere Optimierungsschritte erfahren.
Ein häufig genutzter Optimierer heißt AdamW [42].

Anhand von Codeabschnitt 3.1 werden die soeben vorgestellten Kernkomponenten in
den Ablauf des Trainings eines neuronalen Netzes eingebettet.

1 for batch in batches:

2 x, y = batch

3 y_hat = model(x)

4 loss = lossFunction(y_hat, y)

5 loss.backward()

6 optimizer.step(loss, model)

Codeabschnitt 3.1: Grobalgorithmus zum Training eines neuronalen Netzes model mit den Inputs
x, den Ground Truths y und den Predictions y_hat anhand einer Loss Function
lossFunction mithilfe eines Optimierers optimizer.

Zunächst werden die Trainingsdaten (x, y)0, ..., (x, y)N in sogenannte Batches, das heißt
Teilpakete, der Größe B aufgeteilt. Jeder Batch wird in Inputs x und Ground Truths
y zerlegt. Die Inputs dienen, gemäß obiger Beschreibung, dem neuronalen Netz zur
Berechnung der Prediction ŷ, die mit den Ground Truths y verglichen werden und einen
Loss ergeben. Mittels Backpropagation (loss.backward()) wird der Gradient des Losses
bezüglich der trainierbaren Parameter ∇θ(L) berechnet [40, S. 225]. Der Optimierer
kann anschließend die trainierbaren Parameter anpassen (optimizer.step(..)), sodass
der Loss für den soeben prozessierten Batch reduziert wird. Dieses Verfahren wird für
alle Batches der Trainingsdaten in mehreren Durchläufen, den sogenannten Epochen,

2 Die einzige Ausnahme besteht in der Aktivierungsfunktion ReLU, die nur im Punkt x = 0 mathematisch
nicht differenzierbar ist. An dieser Stelle beträgt ihr Gradient per Definition ∇ReLU = 0, um die Gradienten-
bestimmung weiterhin durchführen zu können. Moderne Alternativen, beispielsweise GELU, sind meist
stetig differenzierbar.
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durchgeführt.
Die Aktualisierung der trainierbaren Parameter θ auf Basis des Gradienten ∇θ(L) birgt in
der bisher dargestellten Form eine Gefahr: Der Gradient, und damit die Aktualisierung,
eines Gewichtes in einer bestimmten Hidden Layer wird basierend auf der Annahme
berechnet, dass die anderen Hidden Layer konstant bleiben (vergleiche Goodfellow [40, S.
354 f.]). Durch die Aktualisierung der Gewichte innerhalb einer Hidden Layer hi können
ihre Ausgabewerte, die als Eingabewerte der nächsten Hidden Layer hi+1 agieren, deut-
lich geändert werden. Dieses Problem kann durch die Anwendung einer Normierung der
Daten vor jeder Hidden Layer reduziert werden [40, S. 356 f.]. Mithilfe der sogenannten
Batch-Normalization-Layer (kurz: BNorm) werden die Daten eines Batches bei Anwendung
der Layer so normiert, dass sie den Erwartungswert 0 und die Standardabweichung 1
aufweisen [43]. Die BNorm reduziert das soeben beschriebene Problem deutlich und
trägt insgesamt zu einer Stabilisierung des Trainings bei [40, S. 357 f.].
Rückblickend lassen sich zunächst zwei wichtige sogenannte Hyperparameter3 identifizie-
ren: die Lernrate ϵ und die Größe der Batches, die sogenannte Batch Size, B. Die Lernrate
wird zumeist anhand von Standardwerten aus der Literatur in der Größenordnung
1 × 10−3 für den AdamW-Optimierer gewählt und basierend auf der Historie durchge-
führter Trainings angepasst. Gleiches gilt für die Batch Size, die einerseits durch eine
Vergrößerung die Trainingsdauer reduziert, jedoch andererseits durch eine Verkleinerung
bessere Trainingsergebnisse liefern kann [44].

3.3 beurteilung des trainings

Der vorausgehende Abschnitt beschreibt, wie das Training eines neuronalen Netzes
durchgeführt werden kann. Er lässt jedoch die Frage offen, wie der Trainingsverlauf
beurteilt wird. Vor dem Training wird ein gegebener Trainingsdatensatz in zwei Teil-
datensätze, ohne gemeinsame Teilmenge, mit den Bezeichnungen Training Dataset und
Validation Dataset zufällig aufgeteilt. Im Rahmen des in Codeabschnitt 3.1 durchgeführten
Trainings werden nur die Daten aus dem Training Dataset verwendet. Der mittlere Loss
aller Batches des Training Datasets wird als sogenannter Training Loss gespeichert. Nach
einer Epoche werden die Daten des Validation Datasets durch das Modell, vorwärts
(ohne Backpropagation und Optimierungsschritt), verarbeitet und der resultierende Loss
als sogenannter Validation Loss gespeichert. Er ist somit der Loss, den das trainierte
Modell auf Daten erreicht, die es nicht zum Training verwendet hat. Die graphische
Auswertung des Training und Validation Losses für alle Epochen eines durchgeführten
Trainings, die sogenannten Loss Curves, lassen Rückschlüsse auf den Verlauf, aber auch
auf den Erfolg des Trainings zu. Abbildung 3.2 zeigt beispielhaft zwei verschiedene
Trainingsverläufe. Das Modell im linken Plot von Abbildung 3.2 erfährt das sogenannte
Overfitting. Während das Modell verhältnismäßig gute Vorhersagen auf den (bekann-
ten) Daten des Training Datasets macht, verschlechtern sich die Vorhersagen auf den
(unbekannten) Daten des Validation Datasets. Anschaulich kann dieser Prozess mit der

3 Neben den trainierbaren Parametern θ, die Bestandteil der Architektur sind und während des Trainings
angepasst werden, gibt es die sogenannten Hyperparameter, die zur Steuerung des Trainings oder zur
Erzeugung der Architektur verwendet werden [40, S. 133 f.].
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Abbildung 3.2: Training und Validation Loss eines Modells, das von Overfitting (links) und
Underfitting (rechts) betroffen ist. Beide Plots teilen sich die Legende sowie die
y-Achse.

folgenden Situation verglichen werden: Ein sehr fauler Mathematiklehrer stellt in seinen
wöchentlichen Leistungsüberprüfungen stets dieselben Aufgaben. Es sollen immer die
ersten Ableitungen derselben drei Funktionen berechnet werden (Training Dataset). Der
effiziente Schüler (das neuronale Netz) erkennt nach kurzer Zeit dieses Muster und lernt
nur die drei Ergebnisse auswendig und erzielt gute Noten (einen niedrigen Training
Loss). Bei Ankunft eines neuen Lehrers, der die Schüler auffordert, andere Funktionen
(Validation Dataset) zu differenzieren, scheitern die Schüler (Validation Loss), da sie in
den letzten Wochen nicht das Konzept der Differenzierung, sondern nur dieselben drei
Ergebnisse auswendig gelernt haben (Overfitting).
Anhand des Beispiels kann ebenfalls ein möglicher Ausweg aus dieser Situation identifi-
ziert werden: Der faule Lehrer hätte nicht nur drei Funktionen in seinen Tests, sondern
hunderte von Funktionen auflisten sollen. In diesem Fall ist es für den Schüler aufgrund
seiner begrenzten Gehirnkapazität (vergleiche Kapazität als Gesamtheit der trainierbaren
Parameter θ) nicht möglich, die Ergebnisse alle auswendig zu lernen. Seine Kapazität
ist allerdings ausreichend, um das Konzept der Differenzierung zu erlernen und so alle
Aufgaben dieser Art lösen zu können. Neuronale Netze können durch das Training
basierend auf einem großen Datenbestand mit einer entsprechenden Varianz nach dem
gleichen Schema gezwungen werden, Konzepte zu erlernen und nicht die Ergebnisse
der Trainingsdaten auswendig zu lernen. Somit sind (ausreichend) große Datensätze ein
zentraler Aspekt bei der Entwicklung neuronaler Netze.
Abbildung 3.2 (rechts) zeigt den anderen Extremfall, der beim Training eines neuro-
nalen Netzes eintreten kann – das sogenannte Underfitting. In diesem Fall kann das
Modell weder die Ergebnisse auswendig lernen, noch das zugrunde liegende Konzept
erlernen. Dieses Verhalten kann in manchen Fällen auf eine zu niedrige Kapazität zu-
rückgeführt werden. Hinzuzufügen ist, dass Underfitting, unabhängig von der Kapazität
einer Architektur, auch bei einer ungeeigneten Wahl einer Architektur bezüglich einer
Problemstellung beobachtet werden kann und somit das Lernen des zugrundeliegenden
Zusammenhangs nicht möglich ist.
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3.3.1 Weitere Verbesserungen des Trainings

Das häufig beobachtete Overfitting kann mithilfe unterschiedlicher Techniken reduziert
werden. Neben dem oben genannten Vergrößern des Trainingsdatensatzes werden im
Rahmen dieser Arbeit drei weitere Techniken angewandt, die sich im Laufe der Jahre als
Standardverfahren durchgesetzt haben:

1. Dropout: Durch zufälliges Deaktivieren einzelner Neuronen innerhalb einer Layer
durch eine sogenannte Dropout-Layer (kurz: Dropout) während des Trainings wird
nach Srivastava et al. die sogenannte Co-Adaption reduziert [45]. Sie beschreibt die
Ausbildung von Abhängigkeiten zwischen mehreren Neuronen oder Layern – ver-
gleichbar mit dem Prozess des Auswendiglernens anstelle der Ausbildung robuster
und unabhängiger Merkmale. Anschaulich kann sich das Netz bei Anwendung
des Dropouts nicht auf einzelne, hochgradig spezialisierte Neuronen verlassen,
da diese, bedingt durch die zufällige Deaktivierung, nicht immer zur Verfügung
stehen. Der relative Anteil der deaktivierten Neuronen durch eine Dropout-Layer
wird im Folgenden beispielhaft für den Wert 10 % durch die Notation Dropout0.1

ausgedrückt.

2. Weight Decay: Der oben genannte Optimierer AdamW nutzt das sogenannte Weight
Decay, einen Mechanismus, der in seiner Grundidee die Werte der trainierbaren
Parameter θ abhängig von einem Zerfallsfaktor, dem namensgebenden Parameter
Weight Decay, reduziert [42]. Der Zerfallsfaktor beträgt beispielsweise 0.99 und
wird multiplikativ auf alle trainierbaren Parameter θ angewandt, sodass kleine
Werte einem geringen Zerfall unterliegen, während große Werte deutlich angepasst
werden. Somit wird das neuronale Netz indirekt gezwungen, große Werte in θ zu
vermeiden, die häufig ein Symptom von Overfitting sind.

3. Learning Rate Scheduling: Bei der Verwendung des in Abschnitt 3.2 genannten
AdamW-Optimierers werden intern, neben der globalen Lernrate ϵ, für jeden
trainierbaren Parameter adaptive Lernraten verwendet. Trotz dieser Eigenschaft
wurde von Loshchilov et al. gezeigt, dass die Variation der globalen Lernrate
ϵ abhängig von der aktuellen Epoche, das sogenannte Learning Rate Scheduling,
den Trainingserfolg mit dem AdamW-Optimierer begünstigen kann [42]. Konkret
verwenden Loshchilov et al. das sogenannte Cosine Annealing Warm Restarts, das die
Lernrate über die erste halbe Periode der Cosinus-Funktion zwischen einem Start-
und Endwert abklingen lässt (Cosine Annealing) und anschließend die Lernrate auf
den Startwert zurücksetzt, um den gleichen Zyklus zu wiederholen (Warm Restarts)
[46, 42]. Abbildung 3.3 stellt einen möglichen Verlauf der Lernrate mit dem Cosine
Annealing Warm Restarts mit insgesamt vier Lernzyklen dar. Weiterhin kann
zu Beginn des Trainings die Lernrate einmalig, linear hochgefahren werden, das
sogenannte Warm-Up, sodass das Training mit einer insgesamt höheren Lernrate
ϵ beschleunigt und stabilisiert wird [47, 48]. Das Warm-Up wird ebenfalls in
Abbildung 3.3 dargestellt.
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Abbildung 3.3: Beispielhafter Verlauf der Lernrate ϵ abhängig von der Epoche für das Cosine
Annealing Warm Restarts mit Warm-Up.

3.4 deep learning für die bildverarbeitung

Für die Verarbeitung von (CT-Schicht-)Bildern ist das aus dem vorangehenden Abschnitt
bekannte MLP nicht gut geeignet, wie die folgende Ausführung zeigt. Zunächst ändert
sich die Datenmodalität: Bilder bestehen im Allgemeinen aus C (Farb-)Kanälen und
weisen die Dimensionen H, W auf. Somit haben die Inputs die Form (C, H, W).
Theoretisch könnte das MLP aus Abbildung 3.1 so angelegt werden, dass es C · H · W
Neuronen in der Input Layer besitzt. Für ein RGB-Bild der Form (C, H, W) = (3, 256, 256)
werden demnach fast 200000 Neuronen in der Input Layer benötigt. Selbst wenn die
erste Hidden Layer nur aus zehn Neuronen besteht, gibt es in Summe bereits etwa zwei
Millionen trainierbare Parameter θ. Ohne explizite Berechnung wird klar, dass bereits
mit nur wenigen Hidden Layers und einer Output Layer die Kapazität eines derartigen
neuronalen Netzes extrem groß wird und es für praktische Anwendungen unbrauchbar
ist [49]. Einen Ausweg bietet eine Methode aus der klassischen Bildverarbeitung – die
Faltung mit Bildfiltern. In der klassischen Bildverarbeitung kann beispielsweise die
Kantenerkennung mit dem Sobel-Operator [50] explizit als Faltung eines Bildes mit einer
Faltungsmatrix ausgeführt werden. Dieses Konzept lässt sich verallgemeinern, indem
die Einträge der Faltungsmatrizen (auch: Kernel) trainierbare Parameter sind und somit
die von der Faltung (englisch: Convolution) durchgeführte Operation für eine spezifische
Aufgabe trainiert werden kann. LeCun et al. zeigen für die Handschrifterkennung
einzelner Zeichen, dass neuronale Netze, basierend auf trainierbaren Convolutions,
sogenannte Convolutional Neural Networks (CNNs), den MLPs überlegen sind [49]. In
Kombination mit den Convolutions einer festen Kernelgröße 3 × 3 verwendet LeCun
in seiner vorgestellen Architektur LeNet-5 sogenannte Pooling Layer, die die räumlichen
Dimensionen eines Bildes während der Verarbeitung schrittweise verkleinern. Abbildung
3.4 zeigt einen Tensor der Form (1, 4, 4), der durch Anwendung einer Pooling-Layer, dem
sogenannten Maxpool, auf die Form (1, 2, 2) reduziert wird. Für eine feste Größe der
Kernel wird durch das Pooling das Sichtfeld der Convolutions, das auch rezeptives Feld
genannt wird, relativ zur Gesamtgröße des Bildes vergrößert.
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Abbildung 3.4: Funktionsskizze einer Maxpool Layer zur Halbierung der räumlichen Bilddimen-
sionen durch Extraktion des Maximalwertes aus einem Fenster der Größe 2 × 2.

Das Forschungsfeld der CNNs wurde in den folgenden Jahren um viele Architekturen
erweitert. Eine der am häufigsten verwendeten Architekturen für die Bildverarbeitung
ist das ResNet [51], das zusätzlich sogenannte Residual Connections oder Skip Connections,
verwendet. Die Hintergründe dieser Skip Connections können in der Publikation von He
et al. nachvollzogen werden [51].
Für die in Kapitel 1 motivierte Materialbestimmung sollen sowohl die Kernladungszahl
als auch die Dichte pro Pixel, beziehungsweise im CT-Schichtbild pro Voxel, anhand
von DECT-Bilder vorhergesagt werden. Somit müssen die Eingaben (Low-Energy und
High-Energy) und Ausgaben (Kernladungszahl und Dichte) eines passenden neuronalen
Netzes Bildern der Form (C, H, W) = (2, H, W) entsprechen. Diese Form der Vorhersage
wird auch Dense Prediction genannt, da für jedes Pixel der Eingabe ein Pixel in der
Ausgabe berechnet wird. Eine der bekanntesten Architekturen für Dense Prediction
ist das U-Net, welches in Abschnitt 3.4.1 vorgestellt wird. CNNs, die viele Jahre die
Bildverarbeitung dominiert haben, werden zunehmend von sogenannten Transformern
ersetzt. Die konzeptionelle Idee hinter der Transformer-Architektur, und wie diese für
die Bildverarbeitung genutzt werden kann, wird in Abschnitt 3.4.2 beschrieben.

3.4.1 U-Net

Abbildung 3.5 stellt die Architektur des U-Nets anschaulich mit seiner namensgebenden,
U-förmigen Struktur dar. Nach Ronneberger et al. besteht das U-Net aus einem soge-
nannte Encoder und einem sogenannten Decoder. Der Encoder verarbeitet eine Eingabe,
ein Graustufenbild, der Form (1, H, W) durch die Anwendung von Convolutions und
Pooling in den sogenannten Latent Space, der wiederum die Form (1024, H

16 , W
16 ) aufweist.

Dieser Prozess verläuft auf mehreren, sogenannten hierarchischen Ebenen, sodass hierarchi-
sche Feature-Maps4 (C, H, W) mit den Dimensionen (64, H, W), (128, H

2 , W
2 ), (256, H

4 , W
4 ),

(512, H
8 , W

8 ) und (1024, H
16 , W

16 ) berechnet werden (vergleiche Abbildung 3.5). Die Anzahl
der Kanäle in der ersten Feature-Map (64, H, W) wird im Folgenden Feature-Map-Tiefe
genannt und ist der bestimmende Faktor für die Gesamtkapazität der Architektur. An-
schließend dient der Latent Space als Startpunkt des Decoders, der, als Umkehrung

4 Der Begriff hierarchische Feature-Map bezeichnet hier konkret einen Tensor, der das letzte Element, das
Zwischenergebnis, einer hierarchischen Ebene in einem CNN bildet. In der U-Net-Architektur (verglei-
che Abbildung 3.5) werden die hierarchischen Feature-Maps des Encoders in den Decoder mittels Skip
Connections übertragen.
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Abbildung 3.5: Architekturdiagramm des U-Net nach Ronneberger [36] mit den räumlichen
Dimensionen (H, W) der Tensoren. Die Anzahl der Kanäle wird über den Tensoren
angegeben.

zum Encoder, die räumlichen Dimensionen schrittweise erhöht und die Feature-Maps
aus dem Encoder durch Skip Connections (vergleiche Skip Connection in Abschnitt 3.4)
mitverarbeitet (Copy+Concat). Zur Erhöhung der räumlichen Dimensionen, als imper-
fekter Umkehrprozess des Poolings, werden sogenannte Upconvolutions oder Transposed
Convolutions verwendet. Anschaulich ist die Transposed Convolution eine umgekehrte
Convolution, das heißt sie führt die Erweiterung eines Pixels auf einen größeren Bereich
aus. Die Skip Connections zwischen dem Encoder und dem Decoder helfen bei der
Wiederherstellung der räumlichen, positionsabhängigen Informationen, die teilweise
durch das Pooling im Encoder verloren gegangen sind.
Ronneberger entwickelte das U-Net ursprünglich zur Segmentierung medizinischer Bild-
daten [36]. Zwischenzeitlich wurde das U-Net für unterschiedliche Anwendungsbereiche
und Lernprobleme angewendet: zur Segmentierung von Kamerabildern aus fahrenden
Autos [52], zur Erkennung von Gebäuden [53] in Satellitenbildern, zur Klassifizierung
von Ackerland [54] in Satellitenbildern und zum Schätzen einer räumlichen Tiefe in
Kamerabildern [55].

3.4.2 Swin Transformer

Ursprünglich entwickelt für das Natural Language Processing (NLP) [56], dringen soge-
nannte Transformer zunehmend in neue Anwendungsgebiete vor. Das Funktionsprinzip
von Transformern wird im Folgenden vereinfacht erklärt, sodass ein Grundverständnis
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erlangt werden kann. An entsprechenden Stellen wird auf die Literatur verwiesen, sodass
bei Bedarf weitere Informationen eingesehen werden können.
Transformer basieren nicht auf Convolutions, sondern verwenden eine Kombination aus
der sogenannten Self-Attention und MLPs [56]. Anhand eines einfachen Beispiels kann
die Zielsetzung der Self-Attention illustriert werden: Gegeben sei der Satz

Moritz scannt sein Mittagessen

zusammen mit qualitativ bestimmten Self-Attention-Werten in Tabelle 3.1. Genaue De-
tails zur Berechnung der Self-Attention sind für ein konzeptionelles Verständnis der
Architektur nicht notwendig und können ergänzend bei Vaswani et al. eingesehen wer-
den [56]. Für jede mögliche Permutation der Wortpaare wird ein Self-Attention-Wert
berechnet, der bei der weiteren Verarbeitung ausgewählten Teilen des Satzes eine höhere
Relevanz zuordnet. Anschaulich ist das Wortpaar Moritz-sein für die Gesamtbedeutung
des Satzes wesentlich unwichtiger als das Wortpaar Moritz-scannt. Die Self-Attention
ist somit ein Maß für die Verknüpfung relevanter Teile der Eingabe. Es fällt zudem auf,

Tabelle 3.1: Exemplarische Self-Attention-Werte für den Satz „Moritz scannt sein Mittagessen".
Die tabellierten Werte sind rein illustrativ und entstammen keiner realen Berechnung.

Moritz scannt sein Mittagessen
Moritz 0.10 0.30 0.20 0.40
scannt 0.20 0.10 0.40 0.30
sein 0.15 0.35 0.10 0.40
Mittagessen 0.25 0.25 0.25 0.25

dass die Matrix der Self-Attention-Werte nicht symmetrisch ist. Der phänomenologische
Grund hierfür besteht in der Tatsache, dass die Reihenfolge der einzelnen Wörter relativ
zueinander für die Gesamtaussage des Satzes wichtig ist. Jedes Wort (jede Zeile der
Tabelle) berechnet die Self-Attention gepaart mit allen Wörtern des Satzes (Spalten) in
der gegebenen Reihenfolge. Die Summe der Zeilen ist somit stets eins. Mathematisch
kann dieser Zusammenhang in den Gleichungen zur Self-Attention nach Vaswani et al.
nachvollzogen werden [56].
Das klassisch von CNNs dominierte Feld der Computer Vision wurde erstmalig durch
Dosovitskiy et al. für die sogenannten Vision Transformer (ViT) eröffnet [57]. Die zentrale
Idee ist, ein Bild in sogenannte Patches zu unterteilen, die als einzelne Wörter eines Satzes
(dem gesamten Bild) interpretiert werden. Somit kann der oben genannte Mechanismus
zur Berechnung der Self-Attention nach Vaswani et al. auf die Patches angewandt werden.
Im Gegensatz zu CNNs, deren rezeptives Feld durch die Größe der Convolution-Kernel
definiert ist, kann der ViT durch die Berechnung der Self-Attention auf allen Patches (Bild-
bereichen) Informationen aus weit verstreuten Bildbereichen miteinander kombinieren.
Jedoch muss dieser offensichtliche Vorteil des ViTs durch das Training auf sehr großen
Datensätzen zunächst erlernt werden [57]. CNNs nutzen durch die Anwendung der
Convolution automatisch die Bildinformationen aus einem lokalen, meist semantisch zu-
sammenhängenden Bereich, der häufig wertvolle (Bild-)Informationen, wie zum Beispiel
Objektkanten, enthält. ViTs müssen diese Beziehung benachbarter Bildeigenschaften sehr
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aufwendig erlernen, worin einer der Gründe für den großen Bedarf an Trainingsdaten be-
steht. Eine hybride Lösung bietet der sogenannte Swin Transformer nach Liu et al. [37, 38],
der die Patches in größere Gruppen, die sogenannten Windows, zusammenfasst und die
Self-Attention nur über die Patches innerhalb eines Windows berechnet. Abbildung 3.6
(links) zeigt die Aufteilung eines Bildes, bestehend aus den Patches, in Windows. Durch

Windows

Patch

Window

Shifted Windows

Abbildung 3.6: Positionierung der Windows und Shifted Windows zur Berechnung der Self-
Attention über benachbarte Patches im Bild in der Swin-Transformer-Architektur.
Die Abbildung entstammt in leicht veränderter Form der Publikation von Liu et
al. [37].

diese Einschränkung des rezeptiven Feldes im Vergleich zum ViT, insbesondere wenn
räumlich zusammenhängende Informationen an den Grenzen zwischen zwei Windows
liegen, ist es sinnvoll, neben den Windows auch sogenannte Shifted Windows zu verwen-
den, die um eine halbe Window-Breite verschoben positioniert sind und in Abbildung
3.6 (rechts) dargestellt werden. Nach Liu et al. steigt der Berechnungsaufwand der Self-
Attention beim Swin Transformer linear mit den Bildimensionen [37], während dieser
beim ViT quadratisch mit den Bilddimensionen anwächst [57]. Der Swin Transformer ist
somit besser auf große Bilder skalierbar. Zudem wird ein Bild beim Swin Transformer
in mehreren, hierarchischen Schichten verarbeitet, sodass hierarchische Feature-Maps,
analog zu CNNs, entstehen. Anstelle der klassischen, parameterfreien Pooling Layer
werden beim Swin Transformer trainierbare Layer wie beim MLP verwendet, um die
räumlichen Dimensionen der Tensoren (Feature-Maps) schrittweise zu halbieren [37].
Durch Liu et al. wurden die Swin-Transformer-Modelle Tiny (Swin-T), Small (Swin-S),
Base (Swin-B), Large (Swin-L), Huge (Swin-H) und Giant (Swin-G) vorgestellt, die sich
hauptsächlich durch ihre, in der genannten Reihenfolge steigende, Kapazität unterschei-
den [38]. Strukturell ist der Swin Transformer, aufgrund seiner hierarchischen Struktur,
mit der Grundidee des U-Nets [36], speziell dem Encoder, kompatibel [37, 36, 58]. Weitere
Details zur Umrüstung des U-Nets auf eine Transformer-basierte Architektur [58] folgen
zusammen mit einer Gegenüberstellung beider Architekturen in Kapitel 6.4.



4
V E RWA N D T E F O R S C H U N G

Dieses Kapitel basiert auf einer dieser Dissertationsschrift vorausgehenden Publikation
[22], die den aktuellen Stand der Forschung sowie den Wandel der Materialbestimmung
mit Deep Learning in CT-Daten in Form einer systematischen Literaturrecherche erfasst.
Die Ergebnisse der Literaturrecherche stammen demnach aus dem Monat Juli im Jahr
2024. Eine Aktualisierung der Suchergebnisse im Februar des Jahres 2025 konnte neue Pu-
blikationen identifizieren, die zwar die bereits gesammelten Erkenntnisse untermauern,
jedoch keine neuen Erkenntnisse hinzufügen. Somit sind die im Folgenden vorgestellten
Ergebnisse weiterhin gültig und können als verwandte Forschung in dieser Dissertations-
schrift genutzt werden.
Im Jahr 1976 legt Alvarez den Grundstein für die Materialzerlegung in CT-Schnittbildern
[13]. Er beschreibt den linearen Abschwächungskoeffizienten µL als Linearkombination
aus einem Term zur Beschreibung des Photoeffektes und einem Term zur Beschreibung
der Compton-Streuung mit den materialspezifischen Konstanten a1 und a2

µ
(x,y,z)
L (E) = a(x,y,z)

1 · 1
E3︸ ︷︷ ︸

Photoeffekt

+ a(x,y,z)
2 · fKN(E)︸ ︷︷ ︸

Compton-Streuung

(4.1)

an einer Position (x, y, z) im Voxelgitter des rekonstruierten Volumens. Durch die Mes-
sung von µL für mindestens zwei verschiedene Energien E kann die Gleichung nach a1

und a2 aufgelöst werden. Alvarez tabelliert für die in seiner Publikation verwendeten CT-
Parameter die charakteristischen Werte von a1 und a2 für Gehirngewebe und Fettgewebe.
Etwa 25 Jahre später publiziert Heismann eine Erweiterung des Ansatzes von Alvarez,
indem er eine Gleichung vorstellt, die jedem Voxel in einem DECT-Schichtbild eine Kern-
ladungszahl und eine Dichte zuordnet – die sogenannte Z-ρ-Zerlegung [14]. Ausgehend
von Gewichtungsfunktionen wn(E), die die Eigenschaften des Röntgenspektrums und
des Detektors abbilden, und tabellierten Massenschwächungskoeffizienten κ

ρ aus der
Literatur, gilt nach Heismann [14]

F(Z) =
f1(Z)
f2(Z)

=
µ1

µ2
mit fn =

∫
wn(E)

(
κ

ρ

)
(E, Z)dE und n ∈ {0, 1} . (4.2)

Zur Ermittlung der Kernladungszahl Z aus dieser Gleichung genügt die numerische
Bestimmung der Inversen F−1. Nach Heismann wächst die Funktion F(Z), in dem von
ihm beschriebenen Energie- und Materialbereich, monoton, sodass die Bestimmung der
Inversen F−1 durch Interpolation erfolgen kann [14].
Ein fundamentaler Unterschied zwischen den beiden vorgestellen Grundlagenarbeiten
von Alvarez und Heismann besteht darin, dass die Z-ρ-Zerlegung (nach Heismann)
effektive Kernladungszahlen und Dichten berechnet, während die Basiszerlegung (nach
Alvarez) diskrete Anteile an den gewählten (Material-)Basisvektoren ermittelt. In der

39
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Basiszerlegung werden die Basisvektoren vorgegeben – zum Beispiel zwei Materialien
wie Aluminium und Eisen. Das Ergebnis gibt dann die Anteile der Basisvektoren an
einem bestimmten Voxel an – zum Beispiel 20% Aluminium und 80% Eisen. Mit dem
nötigen Vorwissen ist die Basiszerlegung somit ein mächtiges Werkzeug, das auch auf
drei oder mehr Basisvektoren ausgeweitet werden kann, wie im späteren Verlauf dieses
Kapitels gezeigt wird.
Bei der Z-ρ-Zerlegung werden effektive Werte, das heißt im Fall einer Mischung (oder
Legierung) Mittelwerte, ohne Vorwissen über die vorliegende Probe berechnet. Das
soeben genannte Beispiel einer Zusammensetzung aus 20% Aluminium und 80% Eisen
erscheint in der Z-ρ-Zerlegung nach der Gleichung von Heismann [14] als

Zeff(Al0.2Fe0.8) =

(
∑i Z3

i · ρi

∑i ρi

) 1
3

≈ 25.4

und
ρeff = 0.2 · ρ(Al) + 0.8 · ρ(Fe) = 6.8 g/cm3 .

Beide Methoden weisen somit Vor- und Nachteile auf und sind in der Literatur weit
verbreitet, wie in den folgenden Abschnitten deutlich wird.

4.1 methodik der literaturrecherche

Nach der Definition von vom Brocke muss eine systematische Literaturrecherche repro-
duzierbar und umfassend sein sowie einen Erkenntnisgewinn liefern [59]. Hierzu nennt
vom Brocke zwei verbreitete Suchmaschinen: Scopus und Web of Science [59]. Für diese
Arbeit wird die Suchmaschine Scopus von Elsevier verwendet, da sie nach Pranckute
eine breitere Abdeckung interdisziplinärer Themen, zu denen der Inhalt dieser Arbeit
ebenfalls zählt, im Vergleich zu Web of Science bietet [60]. Konkret erfolgt die Literaturre-
cherche anhand sogenannter Queries Q. Ein Query kann durch einfache Keywords oder
durch spezielle Operatoren erstellt werden. Für den unten genannten Query werden
insgesamt zwei Operatoren verwendet:

1. TITLE-ABS-KEY(<str>) filtert nach dem String str in den Titeln, Abstracts und
Keywords der Publikationen,

2. REF(<str>) filtert nach dem String str in den Quellenangaben der Publikationen.

Die Kombination mit einer Jahreszahl ist bei dem REF-Operator in der Form REF(Weiss

2024) ebenfalls möglich. Für die Suche nach materialauflösenden CT-Verfahren wird der
Query aus drei Bestandteilen zusammengesetzt:

1. TITLE-ABS-KEY(computed tomography OR ct)

2. TITLE-ABS-KEY(material)

3. TITLE-ABS-KEY(dual-energy OR multi-energy OR photon-counting).
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Die ersten beiden Bestandteile des Queries werden sofort durch das Thema dieser Dis-
sertationsschrift motiviert. Verfahren, die nicht auf mehreren Energiekanälen basieren,
werden durch den dritten Bestandteil des Queries bewusst ausgeschlossen, da, gemäß
der Einführung der Materialbestimmung in Kapitel 2, mehrere Energiekanäle für die
Materialerkennung benötigt werden [13, 14]. Die Anzahl der mit dem Query gefundenen
Publikationen wird in Abbildung 4.1 aufgelöst nach dem Publikationsjahr graphisch dar-
gestellt (blaue Linie). In der Gesamtheit kann ein steigender Trend der Publikationszahlen
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Abbildung 4.1: Anzahl der Publikationen unter Verwendung des genannten Queries bei Scopus.
Mit den Zusatzfiltern REF(Alvarez 1976) und REF(Heismann 2003) werden Publi-
kationen gefiltert, die ebenjene Autoren zitieren [13, 14].

mit dem Query beobachtet werden (blaue Linie). Durch weitere Verfeinerung des Queries
nach KI-basierten Verfahren (Q + KI), explizit aufgebaut aus artificial intelligence,
machine learning oder deep learning, ergibt sich die gelbe Linie in Abbildung 4.1.
Mit der Vorstellung des U-Nets [36] wird im Jahr 2015, wie im weiteren Verlauf dieses
Kapitels gezeigt wird, der Grundstein für die meisten DL-basierten Materialerkennungs-
verfahren nur wenige Jahre vor den ersten Publikationen zur Materialbestimmung mit
Deep Learning gelegt. Alternativ werden mit den REF-Operatoren die Publikationen
gefiltert, die die fundamentalen, klassischen Verfahren nach Alvarez [13] und Heismann
[14] zur Materialerkennung in den Quellenangaben referenzieren (rote Linien). Während
vor dem Jahr 2018 klassische Materialbestimmungsverfahren das Feld dominieren, steigt
die Anzahl der Zitationen der klassischen Basismaterialzerlegung nach Alvarez an. Zu
beobachten ist weiterhin, dass seit Einführung der KI-basierten Materialbestimmungs-
verfahren, die Anzahl der Zitationen von Alvarez stagniert. Es besteht, ohne weitere
Begründung, die Vermutung, dass sich moderne, KI-basierte Verfahren weniger auf Wis-
sen über die klassische, physikbasierte Materialzerlegung beziehen, während klassische
Verfahren auf derartiges Domänenwissen angewiesen sind.
Zur Verbesserung der Vergleichbarkeit der verschiedenen Ansätze aus dieser Vielzahl
an Publikationen müssen weitere Kriterien erfüllt werden. Zunächst muss der Zugriff
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auf eine ausgewählte Publikation mindestens für akademische Einrichtungen möglich
sein, ohne einzelne Publikationen gezielt erwerben zu müssen. Viele publizierte Ansätze
basieren auf vorausgehenden Arbeiten, sodass versucht wird, Publikationen mit einem
neuartigen Ansatz oder mindestens einer signifikanten Weiterentwicklung eines bestehen-
den Ansatzes zu selektieren. Hierbei muss zwischen klassischen und datengetriebenen
Ansätzen differenziert werden. Klassische Ansätze basieren auf den Grundlagenarbeiten
von Alvarez [13] und Heismann [14]. Somit grenzen sich substantielle Weiterentwick-
lungen im Feld der klassischen Algorithmen beispielsweise durch die Erweiterung des
Ansatzes von Heismann auf den Energiebereich > 1 MeV unter zusätzlicher Berücksich-
tigung der Paarbildung (vergleiche Kapitel 2.1) ab. Datengetriebene Verfahren müssen
entweder eine neue Modellarchitektur, Methodik der Trainingsdatenerzeugung oder
generell neuartige Trainingsstrategien vorstellen. Die Architekturen müssen anhand der
Beschreibung in der Publikation von versierten DL-Entwicklern nachvollziehbar und
reproduzierbar sein. Zudem existieren nur wenige offene Benchmarks zum quantitativen
Vergleich der Ansätze untereinander, sodass der jeweils verwendete Datensatz im Best-
fall entweder mitpubliziert worden ist oder mithilfe einer Open-Source-Simulation und
einem bekannten Parametersatz nachgestellt werden kann. Einige Daten, insbesondere
aus dem klinischen Umfeld, unterliegen der Geheimhaltung, sodass in diesen Fällen
mindestens eine ausführliche Beschreibung der Datenart und Datenzusammensetzung
vorliegen muss. Verschiedene Röntgenspektren und Detektortechnologien, EID und PCD,
stellen unterschiedliche Herausforderungen an die Materialbestimmung oder -zerlegung
und müssen erfasst werden. Daher müssen die Konfiguration der CT-Anlage, in Be-
zug auf die Röntgenstrahlungsquelle und den Detektor, sowie die Aufnahmeparameter
(Integrationszeit, Vergrößerung, Trajektorie) nachvollziehbar dokumentiert sein. Einige
der gefundenen Publikationen verwenden nur einen Energiekanal eines PCDs, sodass
abschließend manuell geprüft werden muss, ob die Ansätze auf mehreren Energiekanälen
basieren. Zusammenfassend muss demnach eine Publikation die folgenden Filter erfüllen,
um in den Korpus aufgenommen zu werden:

1. Der Zugriff erfolgt über einen der großen Verlage;

2. Der vorgestellte Ansatz muss entweder neuartig oder eine signifikante Weiterent-
wicklung eines bestehenden Ansatzes in mindestens einem der folgenden Aspekte
sein:

2.1. Physikalische Modellierung des CT-Messprozesses (insbesondere bei klassi-
schen Algorithmen);

2.2. Aufbau der DL-Architektur, Methodik der Datenerzeugung oder Trainings-
strategie.

3. Der CT-Scan muss in Bezug auf die Scanparameter und die Anlagenkonfiguration
so beschrieben sein, dass er reproduziert werden kann.

4. Der vorgestellte Ansatz muss mindestens zwei Energiekanäle verwenden – eine
Grundvoraussetzung, die durch Alvarez [13] und Heismann [14] für die Material-
bestimmung vorgegeben wird.
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Anhand der soeben genannten Filter resultiert ein Korpus, bestehend aus 24 Publika-
tionen, wobei drei Publikationen industrielle CT-Anwendungsfälle beschreiben. Dieses
starke Ungleichgewicht wird verbessert, indem die iCT conference proceedings seit dem
Jahr 2016 zusätzlich durchsucht werden. Durch die ursprüngliche Suche wurden diese
Publikationen nicht erfasst, da sie nicht bei Scopus indiziert werden. Die iCT ist eine
der größten Konferenzen zur industriellen Computertomographie in Europa, sodass
relevante Fortschritte mit hoher Wahrscheinlichkeit in diesem Rahmen publiziert werden.
Aus den iCT conference proceedings konnten zwei Publikationen identifiziert werden, die
die oben genannten Filter erfüllen, sodass der Korpus final 26 Publikationen umfasst. Der
Korpus teilt sich in industrielle und klinische CT sowie in klassische Algorithmen und
datengetriebene Verfahren (KI) auf. Eine Übersicht dieser Kategorien ist in Abbildung
4.2 dargestellt.
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klassisch klinisch
KI klinisch
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Abbildung 4.2: Kreisdiagramm zur anschaulichen Darstellung der Anteile klassischer und KI-
basierter Publikationen für die klinische und industrielle Materialbestimmung
und -zerlegung in CT-Bildern. Die Zahlenwerte in den Anteilen geben die absolute
Anzahl der Publikationen in der jeweiligen Kategorie an.

4.2 analyse des korpus

Eine Übersicht der Publikationen im Korpus mit einer chronologischen Einordnung wird
in Abbildung 4.3 dargestellt. Relevante Entwicklungen aus dem Umfeld der CT und
des Deep Learnings sind chronologisch ergänzt. Bemerkenswert ist, dass Alvarez seinen
Ansatz zur Basismaterialzerlegung [13] bereits fünf Jahre nach dem ersten CT-Scan, und
damit auch zeitlich vor dem Nobelpreis von Hounsfield, publiziert hat. Zudem gibt es
erst seit 2021 kommerzielle CT-Scanner, die im klinischen Umfeld PCDs verwenden,
obwohl der Grundstein für die Technologie mit dem Medipix2 Detektor im Jahr 2007
gelegt worden ist. Die grundlegenden Arbeiten zu modernen CV-Architekturen wurden
mit dem U-Net 2016 [36] und dem ViT 2019 [57] veröffentlicht.
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Abbildung 4.3: Zeitstrahl der Publikationen aus dem Korpus (oben) und relevanter Entwicklun-
gen aus der CT- und DL-Forschung (unten). DL-basierte Einträge werden durch
den roten Schriftzug AI markiert.

4.2.1 Beschleunigungsspannung und Detektortechnologie

Bei der Messung einer DECT können verschiedene Aufnahmestrategien verwendet wer-
den, wie in Abschnitt 2.6 beschrieben worden ist. Im Rahmen dieser Dissertationsschrift
wird zwischen integrierenden (EID) und zählenden (PCD) Detektoren unterschieden.
Zählende Detektoren bieten den Vorteil, mehrere Energiekanäle gleichzeitig zu messen,
während integrierende Detektoren in der Regel mehrere Einzelscans mit verschiedenen
Quellparametern nacheinander aufzeichnen.1 Abbildung 4.4 zeigt einen Überblick der
verwendeten Quellspannungen und Detektortechnologien aus dem Korpus. Zunächst
kann keine Einschränkung der klassischen oder datengetriebenen Materialbestimmung
anhand der Quellspannung, der Detektortechnologie oder der Anwendungsdomäne
identifiziert werden.
Es konnten fünf Publikationen identifiziert werden, die klassische Materialbestimmung
auf PCD-Daten anwenden [61, 62, 16, 63, 64]. Roessl verwendet einen PCD mit acht
äquidistanten Bins zwischen 10 keV und 80 keV mit einer Beschleunigungsspannung von
90 kV [61]. Son nutzt eine Quellspannung von 125 kV und teilt das Spektrum in zwei
Bins b1,2 mit 20 keV ≤ b1 ≤ 60 keV und 60 keV ≤ b2 ≤ 125 keV [62]. Die niedrigsten Quell-
spannungen aus dem Korpus werden bei Wang und Firsching mit 50 kV dokumentiert
[16, 64]. Besonders hervorzuheben ist der Medipix2 Detektor (PCD) aus der Arbeit von
Firsching, der 41 Energiekanäle zwischen 7.3 keV und 53.3 keV auflöst [64]. Jumanazarov
erprobt die Verwendung von zwei, sechs und fünfzehn Energiekanälen, wobei sechs
Energiekanäle die besten Ergebnisse liefern [63].

1 Zur Vereinfachung wird hier auf eine weitere Aufschlüsselung der Messstrategie (Multi-Scan, Sandwich,
Potential Switching, Multi-Tube) bei EIDs, wie in Abschnitt 2.6 angedeutet, verzichtet.
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Abbildung 4.4: Verwendete Beschleunigungsspannungen der Publikationen aus dem Korpus.
Die Farbe kennzeichnet die Anwendungsdomäne. Gestrichelte Balken stellen
illustrativ die Verwendung eines PCDs dar. Die Position des Strichmusters gibt
keine Auskunft über die Verteilung der Energiekanäle des PCDs. Methoden,
die beide Detektortechnologien verwenden, sind mit durchgehenden Balken
beschriftet. DL-basierte Ansätze sind durch den Schriftzug AI am rechten Ende
des Balkens markiert.
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Weiterhin wurden sechs Publikationen gefunden, die PCD-Daten mit datengetriebenen
Ansätzen verarbeiten [65, 66, 67, 68, 69, 70]. Shi verwendet zwei Energiekanäle [70], Shi
drei Energiekanäle [69], Bussod vier Energiekanäle [66], Abascal fünf Energiekanäle [65]
sowie Long und Guo zwölf Energiekanäle [67, 68].
Heismann formuliert seinen klassischen Ansatz zur Z-ρ-Zerlegung mit einem EID für
einen DECT-Scan bestehend aus zwei Scans mit 80 kV und 140 kV Quellspannung. Xing
erweitert Heismanns Ansatz auf den Energiebereich bis 6 MV ebenfalls für integrierende
Detektoren [71].
Darüber hinaus konnten sieben Publikationen gefunden werden, die datengetriebene
Methoden auf EID-basierte CT-Scans anwenden [11, 72, 73, 74, 75, 76, 77]. Drei der
Publikationen nutzen hybride Ansätze, die sowohl EID- als auch PCD-Daten prozes-
sieren [78, 79, 80]. Häufig führt die Nutzung eines EIDs zu einer besseren Bildqualität,
während die Strahlenexposition des Patienten (der Probe) stark erhöht ist. In der kli-
nischen Anwendung ist es daher wünschenswert, effiziente PCDs zu verwenden, um
die Strahlenexposition zu senken, obwohl die Bildqualität vermindert ist. Ziel dieser
hybriden Ansätze ist, die PCD-Daten als Inputs und die EID-Daten als Ground Truths zu
nutzen, sodass die trainierten Modelle die Bildqualität der PCD-Daten verbessern [78, 80].

4.2.2 Materialien

Die Materialbestimmung oder -zerlegung ist für verschiedene Materialien aufgrund des
jeweils charakteristischen Abschwächungskoeffizienten eine unterschiedlich komplizier-
te Aufgabe. Neben dem Auftreten von CT-Artefakten (vergleiche Kapitel 2.4.1) durch
stark abschwächende Materialien spielt die Wahl einer geeigneten Basis für die Basis-
materialzerlegung eine zentrale Rolle. Daher ist eine Differenzierung der verwendeten
Materialien in den Publikationen des Korpus in Abhängigkeit der verwendeten Methode,
klassisch oder datengetrieben, von großem Interesse. Zunächst werden die verwende-
ten Probenmaterialien aus den Publikationen des Korpus erfasst und nach der jeweils
verwendeten Methode kategorisiert. Abbildung 4.5 bietet einen graphischen Überblick
der Materialien. Aufgrund des Übergewichts der Publikationen aus dem klinischen An-
wendungsgebiet, sind größtenteils klinisch-diagnostisch relevante Materialien vertreten.
Hierzu zählen in erster Linie Knochen (bone) und Wasser (water). Calcium (Ca) ist zum
Beispiel als Bestandteil von Hydroxylapatit in (menschlichen) Knochen und Zähnen
zu finden. Aufgrund der geringen Dichte von Knochenmasse, ist sie auch für niedrige
Photonenenergien ab 50 keV zur Bildgebung ausreichend transparent. Weiterhin werden
Iod (I) und Gadolinium (Gd) aufgrund ihrer hohen Kernladungszahl und damit starken
Abschwächung von Röntgenstrahlung als Kontrastmittel in der klinischen CT verwendet.
Eine Beispielanwendung ist die Bildgebung von Blutgefäßen, die durch Injektion eines
Kontrastmittels im Rahmen einer CT erfolgen kann. Die charakteristische K-Kante in den
Absorptionsspektren von Iod bei Ek,I = 33.17 keV und Gadolinium bei Ek,Gd = 50.24 keV
kann ebenfalls zur Bildgebung verwendet werden [81].
Technisch relevante, industrielle Materialien wie Aluminium (Al), Eisen (Fe), Kupfer
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Abbildung 4.5: Graphische Darstellung der Materialien aus dem Korpus aufgelöst nach Kern-
ladungszahl und Dichte. Im Periodensystem benachbarte Elemente wurden zur
Ergänzung hinzugefügt und entsprechend gekennzeichnet (n.a.).

(Cu) und Blei (Pb) werden von Xing verwendet [71]. Aluminium kann aufgrund seiner
niedrigen Abschwächung mit ebenfalls niedrigen Spannungen bis 140 kV in makrosko-
pischen Proben identifiziert werden (vergleiche auch Heismann [14]). Zur Bildgebung
der stärker abschwächenden Materialien verwendet Xing demnach Beschleunigungs-
spannungen bis 6 MV – die sogenannte LINAC-CT2. Für Aluminium, Eisen und Kupfer
konnte in einer dieser Thesis vorausgehenden Publikation gezeigt werden, dass die
Z-ρ-Zerlegung von LINAC-CT-Daten mit DL möglich ist [76]. Drei Materialien wurden
ausschließlich in Publikationen mit klassischen Ansätzen gefunden: Magnesium, Silicium
und Blei [82, 71]. Aus technischer Sicht besteht kein Grund für den Ausschluss dieser
oder anderer fehlender Materialien von datengetriebenen Ansätzen. Gase werden auf-
grund ihrer grundsätzlich extrem niedrigen Abschwächung der Röntgenstrahlung in der
ausgewählten Literatur nicht betrachtet.

4.2.3 Klassische Ansätze zur Materialbestimmung

Der Begriff klassische Ansätze bezeichnet in dieser Dissertationsschrift materialauflösende
Algorithmen in CT-Bildern, die von Domänenexperten basierend auf physikalischen

2 Klassische Röntgenstrahlungsquellen funktionieren nach dem in Abbildung 2.5 dargestellten Prinzip: Freie
Elektronen werden durch ein elektrisches Feld direkt zu einer Anode beschleunigt und wechselwirken
mit ebendieser. Für extrem hohe Beschleunigungsspannungen ist dieses Prinzip nicht anwendbar. Freie
Elektronen werden vorbeschleunigt und in Paketen durch Hohlraumresonatoren geleitet. Innerhalb der
Hohlraumresonatoren können extrem hohe elektrische Feldstärken realisiert werden, sodass die Elektro-
nen kinetische Energien im Bereich vieler Megaelektronenvolt erreichen können. Dieser Aufbau wird
Linearbeschleuniger (englisch: linear accelerator; kurz: LINAC) genannt.
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Erkenntnissen entwickelt werden. Konkret basieren diese Ansätze auf der Physik der
Abschwächung von Röntgenstrahlung durch Materie – hauptsächlich durch den photo-
elektrischen Effekt und die Compton-Streuung (vergleiche Abbildung 2.4) wie Alvarez
und Heismann zeigen [13, 14]. Erweiternde, klassische Methoden werden in diesem
Abschnitt vorgestellt. Firsching zeigt im Jahr 2009, dass die Materialzerlegung nach
Alvarez auf zählende Detektoren (PCD) ausgeweitet und mithilfe präziser Vermessung
der Detektorantwort, des Quellspektrums und einer Monte-Carlo-basierten Simulation
verbessert werden kann [64]. Zudem fasst er die Basismaterialzerlegung nach Alvarez
anschaulich für mehrdeutige Materialkombinationen aus mathematischer Perspektive
zusammen: Bei der Wahl der Basismaterialien wird idealerweise eine linear unabhängige
Basis bereitgestellt [64]. Die lineare Unabhängigkeit ab dem dritten Basisvektor wird
durch Unstetigkeiten der linearen Abschwächungskoeffizienten – den K-Kanten – erzeugt
[64], während die ersten beiden Basisvektoren trivial unabhängig sind, weil sie auf dem
Photoeffekt und der Compton-Streuung fußen. Da die K-Kanten der meisten klinisch
relevanten Materialien sehr niedrig liegen und da am Detektor keine Photonen aus diesen
Energiebereichen nachweisbar sind, können schwere Elemente mit höheren K-Kanten
der Basis einen weiteren linear unabhängigen Basisvektor hinzufügen [64].
Roessl verwendet eine linear unabhängige Basis, bestehend aus dem Abschwächungs-
anteil des photoelektrischen Effektes und Gadolinium, um lokale Gadoliniumkonzen-
trationen zu messen [61]. Durch die Messung der Gadoliniumkonzentrationen können
verstopfte Blutgefäße, zum Beispiel durch Kalkablagerungen, gefunden werden [61].
In der industriellen Anwendung nutzt Jumanazarov die Basismaterialzerlegung für leich-
te Elemente mit Kernladungszahlen 6 ≤ Z ≤ 15.
Aufbauend auf der von Heismann publizierten Z-ρ-Zerlegung [14] und der stöchiometri-
schen Kalibration von CT-Daten nach Schneider [83], entwickelt Son eine verbesserte Me-
thode zur Materialbestimmung für verschiedene Gewebetypen basierend auf PCD-Daten
[62]. Xing erweitert Heismanns Ansatz für die LINAC-CT durch die Berücksichtigung
der Paarbildung bei hohen Photonenenergien [71].
Zusammenfassend lässt sich festhalten, dass klassische Algorithmen stark von der Model-
lierung der zugrundeliegenden Physik abhängig sind. Bei der Basismaterialzerlegung ist
die Wahl einer anwendungsspezifischen Basis entscheidend. Für ein System, bestehend
aus drei Materialien, werden im Bestfall drei linear unabhängige Basisvektoren gewählt,
sodass die Zerlegung eindeutig ist. Häufig ist diese Auswahl stark eingeschränkt oder
nicht möglich.

4.2.4 Datengetriebene Ansätze

Im Kontext dieser Dissertationsschrift fungiert der folgende Abschnitt als Grundlage für
die Ausrichtung der Forschung, die aufbauend auf der bestehenden Literatur erfolgt. Es
werden die verwendeten Datensätze sowie die implementierten Architekturen erläutert.
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Datensätze

Einige Autoren nutzen das XCAT-Phantom [84, 85] zur Erzeugung der Trainingsdaten.
Hierbei handelt es sich um eine Simulationssoftware, die ein anatomisch detailliertes Ab-
bild des menschlichen Körpers erstellt und in Form eines Voxelvolumens exportiert [85].
Die voxelbasierten Phantome können in gängige CT-Simulationsprogramme eingeladen
und weiterverarbeitet werden.
Mit dieser Methode erzeugt Shi zwölf Phantome, von denen jeweils 140 Schichtbilder
extrahiert werden [69]. Insgesamt nutzen drei Autoren das XCAT-Phantom bei der Si-
mulation der Trainingsdaten für klinische Materialbestimmung [69, 70, 80]. Fang ersetzt
die klinischen Materialien im XCAT-Phantom durch industriell genutzte Materialien
(zum Beispiel Eisen, Magnesium und Teflon) und erzeugt so Trainingsdaten für einen
industriellen Anwendungsfall [11].
Das FORBILD-Phantom [86] ähnelt konzeptionell dem XCAT-Phantom und wird von
Cao zur Phantomerzeugung mit Gewebe, Wasser und Kontrastmittel verwendet [75]. Zu
beachten ist, dass beide Programme (XCAT und FORBILD) nur zur Erzeugung eines
Phantoms und nicht zur Simulation der CT dienen.
Eine alternative Strategie zur Sammlung der benötigten Trainingsdaten besteht in der
Annotation bestehender, realer CT-Daten. Die Annotation ist ein zeitintensiver und teurer
Prozess, der durch manuelle Annotationsfehler an Genauigkeit einbüßen kann. Der größ-
te Vorteil dieser Methode besteht darin, dass die Trainingsdaten der realen Verteilung,
den Messdaten aus einer realen CT-Anlage, entstammen und so keine Sim-To-Real-Gap
auftritt. Vier Autoren verwenden manuell annotierte Trainingsdaten [72, 73, 67, 68].
Insbesondere bei der Annotation klinischer CT-Daten vereinfacht das Domänenwissen
von Experten den Annotationsprozess und die damit verbundene Genauigkeit deutlich.
Bussod verwendet die Synchrotron-CT3, um die Annotation der regulären, polychromati-
schen CT-Bilder vorzunehmen [66].
Sidky veröffentlicht einen Trainingsdatensatz [87], bestehend aus DECT-Bildern als In-
puts und drei Materialkanälen als Ground Truths.4 Die simulierten DECT-Bilder zeigen
unter anderem Verkalkungen, die gefunden werden sollen. Durch eine niedrige Winkelab-
deckung der simulierten CT-Trajektorie sind die Bilder von starken Artefakten überlagert.
Neben den Testdaten umfasst der Trainingsdatensatz effektiv 1000 DECT-Schichtbilder
[87], sodass das Training parameterstarker Architekturen erschwert wird.
Krebbers nutzt energiedispersive Röntgenspektroskopie (auch bekannt als EDX) zur
Annotation gegebener Graphitproben [77]. Grundsätzlich ist EDX eine Analysemethode,
die besonders für Oberflächen geeignet ist, sodass die Methode von Krebbers nur auf
sehr flachen Proben anwendbar ist.5

3 Zur Erzeugung der Röntgenstrahlung wird ein Synchrotron verwendet. Aufgrund des extrem hohen
Photonenflusses kann die polychromatische Röntgenstrahlung mithilfe eines Monochromators auf ein
schmales Energieband gefiltert werden, sodass nahezu monoenergetische Photonen zur CT verwendet
werden können. In diesem Fall kann die in Abschnitt 2.6, insbesondere Abbildung 2.14, beschriebene
Methode trivial zur Materialbestimmung angewandt werden.

4 Methodisch ist für diese Problemstellung die Basismaterialzerlegung zu wählen.
5 Bei dem Beschuss einer Probe mit einem Elektronenstrahl werden aufgrund der Eindringtiefe der Elektronen

vorzugsweise oberflächennahe, aber auch tiefer liegende Atome angeregt. Bei der Relaxation geben die
Atome Photonen einer charakteristischen Energie ab, sodass anhand dieser Photonen ein Element identifiziert
werden kann. Emittierte Photonen aus tieferen Lagen der Probe verlassen jedoch nur selten die Probe, da
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In einer dieser Arbeit vorausgehenden Publikation wird ein Verfahren zur Erzeugung
zufälliger Phantome, bestehend aus einer Vielzahl einzelner Regionen mit variablen
Formen, veröffentlicht [76]. Durch die hohe Varianz der so erzeugten Phantome, wird
die Generalisierungsfähigkeit eines trainierten Modells gefördert, da keine festen Muster
existieren, die auswendig gelernt werden können.

Architekturen

Abgesehen von leichten Modifikationen, zum Beispiel der notwendigen Anpassung der
Featurezahl der Input und Output Layer zur Verarbeitung von DECT-Bildern, nutzen
viele Autoren das Vanilla U-Net6 nach Ronneberger [36]. Ein Überblick über die ver-
wendeten Architekturen und die Trainingsdatensätze ist in Tabelle 4.1 dargetellt. Cao
nutzt das Vanilla U-Net zur Vervollständigung fehlender Projektionsdaten in einem
sogenannten Sparse-Angle-CT [75] – einem CT-Scan mit niedriger Winkelabdeckung, das
heißt mit zu wenigen Projektionen. Darüber hinaus werden drei weitere Vanilla U-Nets
verwendet, um die Trainingsdaten mit verschiedenen Kontrastmittelkonzentrationen zu
verarbeiten [75]. Li nutzt ein Vanilla U-Net zur Basismaterialzerlegung von Wasser und
Iod anhand von CT-Schichtbildern [73]. Die gleiche Zerlegung wird von Shi anhand von
Projektionen mit einem Vanilla U-Net durchgeführt [70]. Beide Autoren nutzen mehrere
MLPs, um die Predictions der U-Nets im Kontext der Inputs auf physikalische Konsistenz
zu überprüfen [73, 70].
Fang, Abascal und Bussod nutzen flachere Versionen des U-Nets mit einer reduzierten
Tiefe (Anzahl der Pooling beziehungsweise Upconv Layer) und Breite (Anzahl der Featu-
res nach Convolutions) [11, 65, 66]. Nadkarni verwendet ebenfalls eine flachere Version
des U-Nets, um dreidimensionale Volumen verarbeiten zu können [78]. Aufgrund der
zusätzlichen räumlichen Dimension steigt die benötigte Rechenzeit signifikant an.
Neben diesen Vereinfachungen des ursprünglichen U-Nets versuchen einige Autoren,
Verbesserungen an der Architektur zu implementieren. Shi verwendet variable Kernel-
größen (3 × 3, 5 × 5, 7 × 7) im Encoder zusammen mit einer sogenannten Local and
Non-Local Feature Aggregation, die zur verbesserten Erfassung lokaler Bildeigenschaften
über die verschiedenen Größenskalen im Encoder beitragen soll [69]. Es wird quantitativ
gezeigt, dass die entwickelte Architektur im Vergleich zum Vanilla U-Net auf simulierten
XCAT-Phantom-Daten die Materialzerlegung verbessert [69]. In einer dieser Thesis vor-
ausgehenden Publikation wird gezeigt, dass der Encoder des U-Nets durch einen Swin
Transformer [38] ersetzt werden kann [76].
Die bisher vorgestellten Ansätze führen die Berechnungen in einer festen Datendomä-
ne, Projektionen oder Volumen, durch. Su stellt eine Architektur namens DIRECT-NET
vor, die Projektionen direkt in rekonstruierte Volumen in Form einer Basismaterialzer-
legung umrechnet [74]. Der vorgestellte Ansatz ist zweistufig [74]. Zunächst werden
aus DECT-Sinogrammen acht neue Sinogramme mit einem leicht modifizierten U-Net
berechnet. Diese acht Sinogramme werden mit einem CT-Rekonstruktionsoperator in

sie aufgrund ihrer niedrigen Energie sofort wieder innerhalb der Probe wechselwirken. Somit stammt der
Großteil des Signals, das beim EDX gemessen wird, aus oberflächennahen Schichten.

6 Der Begriff Vanilla bezieht sich im Kontext von Deep Learning auf die Originalversion einer Architektur
ohne Modifikationen.
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acht Schichtbilder umgerechnet. Ein weiteres U-Net fasst die acht Schichtbilder zu zwei
Basismaterialbildern zusammen. Das Alleinstellungsmerkmal dieses Ansatzes ist, dass
der Rekonstruktionsoperator Teil der Architektur ist [74]. Er muss differenzierbar sein,
um das sogenannte End-to-End Training der gesamten Architektur zu ermöglichen. Mit
dieser Methode können CT-Artefakte, die während der Rekonstruktion entstehen, effektiv
unterdrückt werden. Nach Maier wird die Integration bekannter Operatoren, insbesonde-
re der CT-Rekonstruktion, in größere Architekturen als Precision Learning bezeichnet [88].
Gong verwendet ein CNN mit sogenannten Inception Blocks, um weiches Gewebe, Kno-
chen und Iod zu erkennen [79]. Das trainierte Modell wird mit dem Vanilla U-Net
verglichen und liefert bessere Ergebnisse [79].
Drei Autoren nutzen sogenannte Generative Adversarial Networks (GANs), die ursprüng-
lich für das Lernen von Verteilungen vorgestellt worden sind [89]. GANs werden aus
einem Generator und einem Discriminator aufgebaut. Der Generator erzeugt Outputs, die
sogenannten Candidates, die zur Verteilung der Trainingsdaten passen sollen. Anhand des
Outputs entscheidet der Discriminator, ob der gegebene Candidate real oder artificial ist,
also ob er direkt aus dem Trainingsdatensatz stammt oder ob er vom Generator künstlich
innerhalb der gelernten Verteilung erzeugt worden ist [89]. Generator und Discrimina-
tor agieren als Gegenspieler (adversarial) und werden gemeinsam trainiert, sodass der
Generator zunehmend bessere, das heißt der Verteilung der Trainingsdaten ähnlichere,
künstliche Outputs erschafft, während der Discriminator zunehmend besser zwischen
den realen Trainingsdaten und den künstlichen Outputs des Generators unterscheiden
kann. Das Funktionsprinzip von GANs wird auch für Transfer Learning verwendet [90].
Wang verwendet ein GAN mit einem modifizierten U-Net als Generator [72]. Nach dem
Encoder im U-Net wird ein Transformer-Modul, bestehend aus einer Self-Attention-Layer
und einem MLP, auf den Latent Space angewandt [72]. Zwei Discriminatoren entscheiden
anhand der generierten Wasser- und Iod-Bilder (Basismaterialzerlegung), ob die Bilder
real oder artificial sind. Der Loss der gesamten Architektur wird durch

L = L1 + Ladversarial + LVGG

definiert, wobei L1 der Generator-Loss, Ladversarial der Discriminator-Loss und LVGG der
sogenannte Perceptual Loss nach Johnson [91] ist. Guo verwendet ein Vanilla U-Net als
Generator und ein CNN als Discriminator, der Inputs (DECT-Bilder) und Predictions
(Materialkarten) als Entscheidungsgrundlage verwendet, sodass die Predictions zusätz-
lich im Kontext der Inputs auf Konsistenz geprüft werden [68]. Geng nutzt eine ähnliche
Architektur zur Segmentierung einer metallischen Nadel in Röntgenprojektionsbildern
[80].
Im vorherigen Abschnitt zu den verwendeten Datensätzen wurde ein von Sidky pu-
blizierter Datensatz [87] genannt, welcher im Rahmen der AAPM deep-learning spectral
CT Grand Challenge – einem Wettbewerb zur Materialzerlegung – erstellt worden ist.
Sidky fasst die besten zehn Modelle dieser Challenge in seiner Publikation zusammen
[87]. Im Rahmen dieser Literaturrecherche werden die Platzierungen 1, 3 und 4 erfasst.
Der zweitplatzierte Ansatz basiert auf einem klassischen Verfahren, das eine akkurate
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CT-Simulation voraussetzt und iterativ eine optimale Lösung erprobt.7 Die Gewinner
der Challenge, Team GM_CNU, verwenden einen zweistufigen Ansatz. Mithilfe einer
iterativen Rekonstruktion8 werden Volumen rekonstruiert, die anschließend durch ein
CNN (genauer: RED-CNN [92]; eine Variation des U-Nets) in Basismaterialbilder zerlegt
werden [87]. Diese Basismaterialbilder werden mit einer CT-Simulation rückprojiziert
und ergeben zusammen mit den ursprünglichen Inputs sogenannte Residual Images – Dif-
ferenzbilder, die zusammen mit den Basismaterialbildern in ein weiteres CNN gegeben
werden, um die Basismaterialbilder weiter zu verbessern. Insgesamt ist dieser Ansatz
sehr vergleichbar mit der bereits vorgestellten Methoden nach Liu [73].
Den dritten Platz belegt Team MIR mit vier U-Nets, die jeweils Teilaufgaben der Zerlegung
erfüllen [87]. Das erste U-Net berechnet die Summe der Basismaterialien aus den DECT-
Bildern. Das zweite U-Net erstellt eine binäre Segmentierungsmaske zur Detektion der
Verkalkungen. Das dritte U-Net erstellt die gesuchten Calcium- und Fettmaterialkarten.
Das vierte U-Net verfeinert die Materialkarten.
Den vierten Platz belegt Team WashUDEAM mit einer Basismaterialzerlegung in alle mög-
lichen Kombinationen der drei Basismaterialien paarweise, das heißt AB, AC, BC sowie
die drei zugehörigen Permutationen, in insgesamt sechs verschiedene Materialbasen [87].
Ein U-Net verrechnet die sechs Materialbasen in die gesuchten drei Materialkarten.
Zusammenfassend nutzt die absolute Mehrheit der Autoren das U-Net mit teilweise
kleinen Anpassungen sowohl im klinischen als auch im industriellen Umfeld (vergleiche
Tabelle 4.1). Es konnten einige Hybrid-Architekturen identifiziert werden, die dennoch in
ihrer Kernidee ein U-Net benutzen und durch weitere Mechanismen, beispielsweise die
Konsistenzprüfung zwischen Inputs und Outputs mit einem Discriminator, ergänzen.
Weiterhin spielen Transformer-basierte Architekturen derzeit eine zu vernachlässigende
Rolle, obwohl ihr Beitrag zum Fortschritt anderer Bereiche der Computer Vision unbe-
streitbar ist. Diese Beobachtung konnte durch die Aktualisierung der Literaturrecherche
im Februar 2025 erneut bestätigt werden.

Beobachtungen zur Rechenzeit und Hardware

DL-basierte Modelle benötigen einen gewissen Rechenzeitaufwand, der im Rahmen des
Trainings aufgebracht werden muss. Abhängig von der Komplexität der Architektur
und des zu lernenden Problems, variieren die Anforderungen an die Hardware. Die
meisten Autoren aus dem Korpus machen keine Angaben zur verwendeten Hardware.
Es ist anzunehmen, dass die meisten Architekturen, die auf U-Nets basieren, mit einer
hinreichend effizienten Implementierung auf einzelnen, modernen Graphikkarten trai-
niert werden können. Somit sind derartige Architekturen für die allermeisten Entwickler
verfügbar und ebenfalls effizient in praktischen Anwendungen nutzbar. Abascal führt
das Training auf einer Nvidia GTX 1080Ti [65] durch und Shi nutzt eine Nvidia RTX 2080
[70] – beide Graphikkarten entstammen dem Gaming-Portfolio von Nvidia, benötigen

7 In grober Auslegung kann das Verfahren zu Machine Learning gezählt werden. Große Teile der Methode
basieren auf physikalischer Modellierung und unterscheiden sich in ihrer Komplexität deutlich von den
anderen Verfahren.

8 Durch die Verwendung einer iterativen Rekonstruktion werden die CT-Artefakte, teils bedingt durch die
Sparse-Angle CT des gegebenen Datensatzes, reduziert.
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keine speziellen Systemanforderungen und sind für Konsumenten frei erhältlich. In einer
dieser Thesis vorausgehenden Publikation wird ein Transformer-basiertes U-Net mithilfe
eines Nvidia DGX-A100-Systems trainiert [76].
Derzeit ist unklar, ob die Mehrheit der Autoren das U-Net verwendet, weil es die besten
Ergebnisse liefert oder weil parameterstärkere Architekturen die verfügbaren Rechenres-
sourcen überlasten würden. Hinzu kommt, dass die Datenbeschaffung, insbesondere
realer CT-Daten, ein zeitaufwändiger und daher teurer Prozess ist, sodass dateneffiziente
Architekturen weiterhin im Vorteil sind. Die zunehmende Leistungsfähigkeit, und die
damit verbundene breite Verfügbarkeit der Hardware wird in den kommenden Jah-
ren zeigen, ob sich das U-Net gegen neuartige Architekturen, zum Beispiel gegen den
Transformer, langfristig durchsetzen kann.
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Tabelle 4.1: Überblick über die Architekturen und Datensätze der datengetriebenen Ansätze aus dem Korpus. Die Publikationen von Nadkarni [78] und Krebbers
[77] machen keine Angaben zur Größe des Datensatzes.

Autor Architektur Datensatzart Datensatzgröße Datendomäne

Long 2019 [67] FC-PRNet Scan ≈200 Volumenschnitt
Shi 2019 [70] U-Net Simulation 140 Projektion

Bussod 2021 [66] U-Net Scan (Synchrotron) 450 K Projektion
Gong 2020 [79] U-Net + InceptNet Scan 110 K Volumenschnitt
Geng 2021 [80] PMS-GAN Simulation + Scan 124 + 124 Projektion

Abascal 2021 [65] U-Net Simulation 5400 Volumenschnitt + Projektion
Su 2022 [74] U-Net Simulation 10 K Volumenschnitt + Projektion

Fang 2022 [11] U-Net Simulation 300 Volumenschnitt
Nadkarni 2022 [78] U-Net Scan - Volumenschnitt

Wang 2022 [72] GAN Scan 8159 Volumenschnitt
Li 2023 [73] U-Net + MLP Scan 7218 Volumenschnitt

Cao 2022 [75] CNN Simulation ≈12 K Volumenschnitt
Guo 2023 [68] GAN + U-Net Scan 1 K Volumenschnitt
Shi 2024 [69] U-Net Simulation 35 K Volumenschnitt

Krebbers 2023 [77] sensor3D Scan + XRD - Volumenschnitt
Weiss 2024 [76] U-Net Simulation 64 K Volumenschnitt
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4.3 erkenntnisgewinn aus der literatur

Die Ergebnisse der Literaturrecherche werden im Folgenden zusammengefasst. Als Basis
für die aufbauende Forschung in dieser Dissertationsschrift wird auf die Erzeugung, oder
Sammlung, der Trainingsdaten sowie die DL-Architekturen ein besonderer Fokus gelegt.

4.3.1 Erzeugung der Trainingsdaten

Datengetriebene Ansätze benötigen einen Datensatz, um die zugrundeliegenden Zu-
sammenhänge selbstständig aus den Daten zu erlernen. Die Herkunft dieser Datensätze
kann entweder eine Simulation oder eine Serie realer CT-Scans sein. Es wurden vier
Publikationen gefunden, die das XCAT-Phantom [84, 85] verwenden, um (digitale) Phan-
tome für eine anschließende CT-Simulation zu erzeugen [69, 70, 80, 11]. Fang ersetzt die
Materialien des XCAT-Phantoms, um das Phantom für einen industriellen Anwendungs-
fall mit den Materialien Eisen, Magnesium und Teflon zu nutzen [11]. Einige Autoren
nutzen reale Scandaten und annotieren die CT-Bilder händisch. Diese Methode bietet den
Vorteil, dass die Verteilung der Trainingsdaten sehr genau ebenjener Verteilung entspricht,
für die das trainierte Modell später ausgeführt werden soll. Teilweise werden andere
Messmethoden, beispielsweise Synchrotron-CT [66], verwendet, um die Annotation vor-
zunehmen. Aus dem klinischen Umfeld stellt Sidky einen offenen, simulierten Datensatz
zur Materialzerlegung und gezielten Suche von Calcium in Brust-DECT-Bildern bereit.
Grundsätzlich sind weder offene Datensätze zur Materialbestimmung noch performante
Simulationsprogramme aus dem industriellen Umfeld im Korpus gefunden worden, die
zur Erzeugung von Trainingsdaten lückenlos geeignet sind. Eins der Forschungsziele die-
ser Arbeit ist daher, eine schnelle und modulare Methode zur Trainingsdatenerzeugung
für die Materialbestimmung anhand von industriellen CT-Schichtbildern zu finden, oder
bei Bedarf zu entwickeln, sowie die verwendeten Trainingsdaten zu veröffentlichen.

4.3.2 Architekturen

Eine Zusammenfassung der verwendeten Architekturen ist in Tabelle 4.1 angegeben. Die
absolute Mehrheit der Autoren verwendet entweder das Vanilla U-Net oder eine stark
an das U-Net angelehnte Architektur mit kleinen, teils äußerst effektiven Anpassungen
[69, 70, 66, 65, 74, 11, 78]. In einer dieser Dissertationsschrift vorausgehenden Publikation
wurde gezeigt, dass, bei der Materialbestimmung in LINAC-CT-Bildern, der Encoder
des U-Nets durch einen Swin Transformer [38] ersetzt werden kann. Einige Autoren
verwenden GANs, um mithilfe des Discriminators die Konsistenz zwischen den Inputs
(DECT-Bilder) und den Predictions (Materialvorhersage) zu überprüfen [80, 68, 72]. Die
in Abschnitt 4.1 geäußerte Vermutung, datengetriebene Ansätze basierten zunehmend
weniger auf der Verwendung des Domänenwissens klassischer Materialzerlegung, kann
somit nicht bestätigt werden. Vielmehr machen die Autoren des Korpus deutlich, dass
sie Domänenexperten der Computertomographie sind und dass sie Deep Learning als
praktisches Werkzeug zur weiteren Verbesserung ihrer Methodik nutzen.
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Aufgrund mangelnder Angaben in den Publikationen des Korpus kann nicht abschlie-
ßend ermittelt werden, ob die Verwendung des U-Nets erfolgt, da es die besten Ergebnisse
liefert oder weil parameterstärkere Architekturen mit den verfügbaren Ressourcen nur
eingeschränkt verfügbar sind. Somit besteht ein Forschungsbeitrag dieser Arbeit in
der Implementierung und dem quantitativen Vergleich Convolution- und Transformer-
basierter Architekturen für die Materialbestimmung in CT-Bildern.
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Ziel dieses Kapitels ist die Definition und Umsetzung einer simulationsbasierten Me-
thode, um Trainingsdaten für die DL-basierte Materialbestimmung zu erzeugen. Die
Vorteile einer Simulation bei der Erzeugung großer Datenmengen gegenüber einer realen
Messserie, bezogen auf die DL-basierte Materialbestimmung, wurden bereits in Kapitel
1.1 angeführt und dienten zur Formulierung der ersten Forschungsfrage, die im Rahmen
diese Kapitels beantwortet werden soll. Zunächst erfolgt eine Anforderungsanalyse in
Abschnitt 5.1, die sowohl die CT-spezifischen Aspekte der benötigten Simulation als auch
die durch die Wahl eines DL-basierten Ansatzes induzierten Randbedingungen beleuch-
tet. Einige existierende Simulationsprogramme werden in Abschnitt 5.2 knapp vorgestellt
und im Kontext der Anforderungsanalyse eingeordnet. Aufgrund einer unzureichenden
Abdeckung der Anforderungen aus Abschnitt 5.1 durch die existierenden Simulationen
aus Abschnitt 5.2 muss eine neue Simulation entwickelt werden, die in Abschnitt 5.3
beschrieben wird. Abschließend erfolgt die Evaluation der spezifizierten Anforderungen
aus Abschnitt 5.1 an die implementierte Simulation in Abschnitt 5.4.

5.1 anforderungsanalyse : ct-simulation

Die funktionalen Anforderungen an eine CT-Simulation, die zur Erzeugung der Trai-
ningsdaten für die DL-basierte Materialbestimmung eingesetzt werden kann, lassen
sich in zwei Kategorien unterteilen: die CT-spezifischen Anforderungen und die DL-
spezifischen Anforderungen. Für den erfolgreichen Transfer eines trainierten DL-Modells
auf eine konkrete Anwendung an einer realen CT-Anlage muss die Verteilung der Trai-
ningsdaten möglichst genau mit der Verteilung der Messdaten der realen CT-Anlage
übereinstimmen. Somit müssen die relevanten Einflussfaktoren, die die Messdaten an
der realen CT-Anlage charakterisieren, in der Simulation physikalisch korrekt abgebildet
werden. Die Identifikation dieser CT-spezifischen Einflussfaktoren erfolgt in Abschnitt
5.1.1.
Wie in Kapitel 3 beschrieben, ist Deep Learning ein flexibles und damit an viele Fragestel-
lungen anpassbares Werkzeug, sofern (a) die Qualität der Trainingsdaten hoch ist und
(b) diese in ausreichender Menge zur Verfügung stehen. Die Qualität der Trainingsdaten
muss in zweierlei Hinsicht, bezogen auf die Fragestellung dieser Arbeit, gewährleistet
sein: Erstens muss die Simulation den physikalischen Messprozess der CT gut modellie-
ren. Dies wurde im Rahmen der CT-spezifischen Anforderungen bereits erfasst. Zweitens
muss der Trainingsdatensatz eine große Vielfalt unterschiedlicher CT-Bilder umfassen,
sodass das Modell im Training möglichst viele unterschiedliche Formen der virtuellen
Prüfteile (auch: Phantome) und Materialien erlernen kann (Abschnitt 5.1.2). Die absolut
benötigte Menge der Trainingsdaten (b) hängt stark von der Komplexität, oder auch Ka-
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pazität, der gewählten Architektur ab, welche sich wiederum aus der Komplexität des zu
lernenden Problems ableitet. Im Rahmen dieser Anforderungsanalyse soll eine sinnvolle
Größenordnung für die Menge der benötigten Trainingsdaten begründet abgeschätzt
werden (vergleiche DL-spezifische Anforderung in Abschnitt 5.1.2).
Abschließend werden einige nicht-funktionale Anforderungen in Abschnitt 5.1.3 disku-
tiert.

5.1.1 CT-spezifische Anforderungen

Wie in Kapitel 2 beschrieben, fungiert die CT als ortsaufgelöstes Messinstrument für
lineare Abschwächungskoeffizienten µL der Röntgenstrahlung. Demnach wird zunächst
ein Simulationsmodul zur Berechnung des erzeugten Röntgenstrahlungsspektrums benö-
tigt. Die in Abschnitt 2.2 eingeführten Röntgenquellen, beziehungsweise die von ihnen
emittierten Spektren, werden typischerweise durch eine Beschleunigungsspannung sowie
das Material und durch die Maße einer Anode parametrisiert. Häufig werden (Vor-)Filter
(vergleiche Kapitel 2.4.1; Abbildung 2.11), auch in Form von Strahlfenstern (vergleiche
Abbildung 2.5), ebenfalls bei der Simulation der Quelle berücksichtigt. Mithilfe dieser
Angaben kann das emittierte Spektrum, das heißt der Photonenfluss pro Energie- und
Winkelbereich, berechnet werden.
Im nächsten Schritt wird der durch die Probe transmittierte Anteil des Quellspektrums
ermittelt. Hierzu werden die Schnittlängen x durch jedes in der Probe vorliegende Ma-
terial ermittelt und durch Anwendung des lambert-beer-Gesetzes aus Gleichung 1.1
mit dem gegebenen Quellspektrum in Intensitäten umgerechnet. Der lineare Abschwä-
chungskoeffizient µL,m(E) für das gegebene Material m kann der Literatur entnommen
werden [93].
Die durch die Probe transmittierte Röntgenstrahlung trifft auf den Detektor und wird,
analog zur Probe, erneut abgeschwächt. Durch erneute Anwendung des lambert-beer-
Gesetzes aus Gleichung 1.1 folgt die Anzahl der Photonen, die im Szintillator des
Detektors eine Wechselwirkung verursachen und damit ein Signal erzeugen (vergleiche
Abschnitt 2.3). Wie in Kapitel 2.3 beschrieben, führt die zeitliche Integration über das
Spektrum der wechselwirkenden Photonen im Szintillator zu einer deponierten Energie,
die im Idealfall proportional zum Detektorsignal, den Counts eines EIDs, ist. Momentan
stehen PCDs nicht im Fokus der Anwendung, sodass sie nicht berücksichtigt werden.
Der Messprozess ist somit in dieser abstrahierten Darstellung in drei Schritte aufteilbar:
die Simulation des Quellspektrums, die Abschwächung durch die Probe sowie die Ab-
schwächung und Integration (Signalentstehung) im Detektor.
Anhand der Definition des linearen Abschwächungskoeffizienten in Gleichung 2.3 kann
gefolgert werden, dass die Dichte für ein bestimmtes Material proportional zum li-
nearen Abschwächungskoeffizienten ist. Somit kann der Toleranzbereich des linearen
Abschwächungskoeffizienten direkt aus der geforderten Präzision für die Dichtevorhersa-
ge bestimmt werden. Aus Gesprächen mit CT-Anwendern ergibt sich der Toleranzbereich
±1% für die Berechnung der Dichte, der proportional zu 1

µm
auch für den linearen

Abschwächungskoeffizienten angenommen werden kann (vergleiche Fehlerfortpflanzung
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erster Ordnung von Gleichung 2.3). Eine weitere Anforderung besteht in der Berücksich-
tigung poröser Materialien, die für viele (chemische) Anwendungen von hoher Relevanz
sind. Durch die Porosität wird die Kontaktoberfläche vergrößert, sodass gewisse chemi-
sche Prozesse effizienter ablaufen. Daher ist nicht nur die Bestimmung des eigentlichen
Materials, sondern ebenso die Bestimmung der absoluten Dichte (in g/cm3) für porö-
se Materialien wichtig. Die simulierten Proben müssen daher durch variable, relative
Dichten η, beispielsweise ρ(Al80 %) = 0.8 · 2.7 g/cm3, charakterisiert werden können.

5.1.2 Deep-Learning-spezifische Anforderungen

Die erste Anforderung besteht in der Wahl eines Datenformats, das gleichermaßen für die
Problemstellung der Materialbestimmung sowie für die Verarbeitung durch DL geeignet
ist. Wie in Kapitel 2.4 beschrieben, liegen die Ausgabedaten eines CT-Scans in Form von
Volumen, beziehungsweise einer Serie von zweidimensionalen Schnittbildern durch das
rekonstruierte Volumen, vor. Aufgrund ihrer Entwicklungsgeschichte sind die meisten
DL-Architekturen aus dem CV-Bereich für die Verarbeitung zweidimensionaler Bilder
optimiert. Ebenso ergibt die Literaturrecherche in Kapitel 4, dass lediglich ein Autor
dreidimensionale Volumen als direkte Eingabe für ein neuronales Netz verwendet. Der
Hauptgrund hierfür liegt vermutlich in dem extremen Anstieg der benötigten Rechenzeit
beim Training der Modelle auf dreidimensionalen Daten. Somit wird im Folgenden der
zweidimensionale Grenzfall der CT, die sogenannte Fächerstrahl-CT (vergleiche Abschnitt
2.4.1; Fächerstrahl-Geometrie), modelliert. Sie entspricht der Mittelschicht eines rekonstru-
ierten Volumens. Die Algorithmik wird dem Ablauf eines CT-Scans nachempfunden:
Aus den zweidimensionalen Phantomen werden Sätze eindimensionaler Projektionen
für jede Energie des DECT berechnet, die wiederum in Volumen mit zwei Kanälen (Low-
Energy und High-Energy) und zwei räumlichen Dimensionen (DECT-Schichtbilder),
rekonstruiert werden. Die Phantome werden als Materialkarten, räumlich aufgelöst nach
Kernladungszahl und Dichte, ausgedrückt, sodass sie als Ground Truths der durchge-
führten Materialbestimmung anhand der DECT-Schichtbilder (Inputs) eingesetzt werden
können. Sowohl die DECT-Schichtbilder als auch die Materialkarten haben demnach zwei
Kanäle C und zwei räumliche Dimensionen (durch die Verwendung der Fächerstrahl-CT)
H, W. Das Ergebnis eines Durchlaufs dieser Datenerzeugung ist ein sogenanntes Tupel be-
stehend aus den DECT-Schichtbildern (Inputs) und den Materialkarten (Ground Truths).
Die Zusammensetzung der Trainingsdaten sollte idealerweise keinen sogenannten Bi-
as1 während des Trainings induzieren. Beispielsweise besteht die Möglichkeit, dass ein
Modell, das exklusiv auf runden Phantomen trainiert worden ist, bei der Verarbeitung
eckiger Phantome falsche Vorhersagen produziert. Gleiches kann für die Materialzu-
sammensetzung der Phantome gelten: Ein Modell, das nur auf leichten Elementen wie
Aluminium oder Magnesium trainiert worden ist, wird Kupfer höchstwahrscheinlich
nicht korrekt bestimmen können. Somit muss die Zusammensetzung der Trainings-
daten anwendungsspezifisch steuerbar sein. Da in dieser Arbeit vorrangig moderne,

1 Gemeint ist nicht der Bias b, der bei der Einführung neuronaler Netze in Kapitel 3 genannt wurde, sondern
eine grundsätzliche Voreingenommenheit des Modells aufgrund der Zusammensetzung der Trainingsdaten.
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parameterstarke Architekturen untersucht werden sollen, besteht das Risiko, dass die
gewählte Größe des Trainingsdatensatzes zu klein ausfällt, insbesondere wenn diese
Wahl auf Basis der Literaturrecherche erfolgt in der die absolute Mehrheit der Autoren
verhältnismäßig dateneffiziente Architekturen verwendet. Moderne Architekturen für
CV-Anwendungen werden in der Regel auf Datensätzen mit mehreren Millionen Bildern
vortrainiert [37, 38, 94], sodass die Möglichkeit bestehen muss, einen simulierten Trai-
ningsdatensatz mit einigen Millionen Tupeln mindestens exemplarisch zu berechnen.
Idealerweise ist die Implementierung so effizient, dass auch Rechner mit einzelnen Gra-
phikkarten in weniger als 24 Stunden Datensätze der benötigten Größe erzeugen können.
Konkret wird im Rahmen dieser Dissertationsschrift die Partition WestAI am Forschungs-
zentrum Jülich verwendet, die einer Rechenzeitbeschränkung von maximal 24 Stunden
pro Job unterliegt. Wie in der vorausgehenden Literaturrecherche in Kapitel 4 aufgezeigt
wurde, schwanken die von den Autoren verwendeten Trainingsdatenmengen zwischen
wenigen hundert Tupeln [70, 67] bis hin zu 450.000 Tupeln [66]. Es ist zu beachten, dass
der auffällig große Datensatz mit 450.000 Tupeln auf Projektionen basiert, während in
dieser Arbeit ein Verfahren auf Basis der CT-Schichtbilder entwickelt wird. Aus Tabelle
4.1 kann entnommen werden, dass Gong et al. den größten Datensatz im Korpus mit
110.000 Tupeln verwenden, der die Materialbestimmung basierend auf CT-Schnittbildern
durchführt. Für das Training vergleichbarer Architekturen wird demnach abgeschätzt,
dass eine Datensatzgröße von 250.000 (250K) CT-Schnittbildern ausreichend ist. Hieraus
ergibt sich für einen Eintrag, bestehend aus einem DECT-Schichtbild mit zwei Kanä-
len und zwei Materialphantomen (Kernladungszahl und Dichte), die Gesamtgröße des
Datensatzes

V = 250000 · 2 · 2 · H · W · 4 Byte =


≈ 66 GB mit H = W = 128

≈ 262 GB mit H = W = 256

≈ 1049 GB mit H = W = 512

für die Bilddimensionen H und W sowie das Datenformat float32 mit 4 Bytes. Die
Wahl der Bilddimensionen anhand von Zweierpotenzen bietet den Vorteil, dass die
Speicherzugriffe bei den Rechenoperationen effizienter sind, da die Speicherblöcke
ebenfalls anhand von Zweierpotenzen angeordnet sind. Zusätzlich werden die räum-
lichen Bilddimensionen H, W durch das in Kapitel 3.4 eingeführte Pooling bei der
Verarbeitung mehrfach halbiert, sodass auch hier H und W möglichst oft durch zwei
teilbar sein sollten. In Anbetracht des benötigten Speicherplatzes, insbesondere bei
Datensätzen mit bis zu einer Million Tupeln, wird die Bildgröße für die Ausgabe der
Simulation im Folgenden auf 256 × 256 festgelegt. Die Folgen dieser Wahl werden an
den entsprechenden Stellen in den weiteren Kapiteln anwendungsbezogen diskutiert.
Theoretisch können die Materialkarten der Kernladungszahlen im uint8-Format abgespei-
chert werden, um Speicherplatz auf Kosten der Verarbeitungsgeschwindigkeit zu sparen.2

2 Durch das Speichern der Daten in einem anderen Datenformat müssen die Daten bei jedem Ladevorgang,
das heißt in jeder Epoche des Trainings, konvertiert werden. Die Reduktion des benötigten Speicherplatzes
durch das Speichern der Kernladungszahlen im uint8-Format beträgt etwa 19 %.
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5.1.3 Nicht-funktionale Anforderungen

Neben den funktionalen Anforderungen aus den vorangehenden Abschnitten können
einzelne, nicht-funktionale Anforderungen identifiziert werden. Zunächst muss die
Simulation zur Vereinfachung der Reproduzierbarkeit auf quelloffener Software basieren.
Sie soll zudem mithilfe einzelner, lesbarer Konfigurationsdateien, bevorzugt im JSON-
Format, parametrisierbar sein, um eine einfache Reproduzierbarkeit der Ergebnisse zu
erreichen. Gekoppelt an die Anforderung bezüglich der Größe des zu simulierenden
Datensatzes und der daraus folgenden Anforderung an den Berechnungsaufwand soll
die Simulation Cluster-fähig sein, das heißt in erster Instanz mit dem Betriebssystem
Linux kompatibel und einfach skalierbar sein.

5.1.4 Überblick über die Anforderungen

Angelehnt an die Durchführung eines realen CT-Scans, bestehend aus der Auswahl
einer zu scannenden Probe, der Projektion der Probe mithilfe von Röntgenstrahlung
sowie der abschließenden Rekonstruktion, kann der Ablauf der benötigten Simulation zur
Erzeugung der Trainingsdaten im Rahmen dieser Arbeit abgeleitet werden. Abbildung 5.1
stellt diesen Ablauf dar, wobei die Auswahl der (virtuellen) Probe durch den sogenannten
Phantomgenerator randomisiert erfolgt.

Phantomgenerator

Projektor

Rekonstruktion

Ø
Al 80%

Fe

Mg

Al

Materialkarten

DECT-Schichtbild

Dual-Energy Sinogramm Dual-Energy Volumen

Phantom

Abbildung 5.1: Ablaufdiagramm der vorgestellten Methode zur Erzeugung der Trainingsdaten.
Der Phantomgenerator erzeugt zufällige Phantome, die durch den Projektor und
die Rekonstruktion in DECT-Schichtbilder umgerechnet werden. Die Phantome
werden in Form von Materialkarten, das heißt räumlich aufgelöst nach Kernla-
dungszahl und Dichte, dargestellt. Im oben rechts gezeigten Phantom ist eine
leere Region mit Ø beschriftet. Poröse Materialien werden durch den hochgestell-
ten, relativen Volumenanteil angezeigt: Al 80% stellt poröses Aluminium mit einer
mittleren Dichte von ρ = 0.8 · 2.7 g/cm3 = 2.16 g/cm3 dar.



62 simulation der computertomographie

5.2 existierende ct-simulationen

Anhand der soeben beschriebenen Anforderungen werden einige bestehende Simulati-
onsprogramme hinsichtlich ihrer Eignung für die Trainingsdatenerzeugung im Rahmen
dieser Arbeit bewertet. Grundsätzlich lassen sich CT-Simulationen in zwei Kategorien
einteilen: Monte-Carlo-basierte Simulationen und Raytracing-basierte Simulationen [95].
Monte-Carlo-basierte CT-Simulationen modellieren den physikalischen Prozess auf Teil-
chenebene – die Wechselwirkung der einzelnen Photonen mit Materie. Sie erreichen somit
die präziseste Modellierung einer realen CT-Anlage und sind den anderen Verfahren in
diesem Aspekt weit überlegen. Anhand des Photonenflusses durch den Detektor einer
realen CT-Anlage (typischerweise ≫ 1 × 108 s−1) kann beispielhaft überschlagen werden,
dass Monte-Carlo-basierte CT-Simulationen für die Berechnung einer einzelnen Projekti-
on viele Minuten bis hin zu mehreren Tagen benötigen [96, 97]. Die Monte-Carlo-basierte
Simulation einer großen Sammlung unterschiedlicher CT-Scans, jeweils bestehend aus
tausenden von Projektionen, ist praktisch nicht durchführbar und demnach zur Trai-
ningsdatenerzeugung im Rahmen dieser Arbeit nicht geeignet.
Raytracing-basierte-Verfahren gehen nach einer anderen Methodik vor: Die emittierte
Röntgenstrahlung wird in Form einzelner Strahlen zwischen der Röntgenquelle und
jedem Pixel des Detektors modelliert. Schematisch, jedoch in einem anderen Kontext,
ist diese Modellierung in Abbildung 2.1 bereits dargestellt worden. Jeder Strahl wird
durch ein Photonenspektrum, das heißt durch Photonenzahlen abhängig von ihrer Ener-
gie I(E), charakterisiert. Aus der Schnittlänge mit der Probe kann durch Anwendung
des lambert-beer-Gesetzes aus Gleichung 1.1 das Photonenspektrum nach Durchgang
durch die Probe ermittelt werden. Somit wird pro Strahl (pro Detektorpixel) einmal die
Schnittlänge und einmal das lambert-beer-Gesetz berechnet, um das transmittierte Pho-
tonenspektrum zu erhalten. Die konkreten Verfahren zur Berechnung der Schnittlängen
werden im Rahmen dieser Arbeit nicht weiter ausgeführt. Eine beispielhafte Methode
kann bei Vidal et al. eingesehen werden [95].
Die Raytracing-basierten Verfahren, speziell für die industrielle CT-Modellierung, unter-
liegen einer erheblichen Einschränkung: die modellierten Strahlen sind gerade. Wie in
Kapitel 2.1 beschrieben, steigt der Anteil der Compton-Streuung an der totalen Wech-
selwirkungswahrscheinlichkeit mit der Energie im CT-relevanten Energiebereich an
(vergleiche Abbildung 2.4). Die räumliche (Zer-)Streuung des Photonenstrahls3 wird
mit einem Raytracing-basierten Ansatz nicht korrekt abgebildet, obschon die absolute
Abschwächung durch die Compton-Streuung mit der Auswertung des lambert-beer-
Gesetzes korrekt erfasst wird. Im Folgenden werden ausgewählte, Raytracing-basierte
Simulationsprogramme kurz vorgestellt und hinsichtlich ihrer Eignung für die Trainings-
datenerzeugung anhand der in Abschnitt 5.1 aufgestellten Anforderungen bewertet. Die
Gründe für die Auswahl der vorgestellten Programme werden in den jeweiligen Abschnit-

3 Die Winkelverteilung des Photons nach dem Compton-Streuprozess folgt der Gesetzmäßigkeit nach Klein-
Nishina [3, S. 50 f.] und ist daher für steigende Photonenenergien zunehmend nach vorne, das heißt in die
ursprüngliche Ausbreitungsrichtung des Photons, gerichtet. Bei steigender Photonenenergie steigt somit
auch das Detektorsignal, da es zu einer Summation mit den gestreuten Photonen kommt.
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ten dargelegt. Ein grundsätzlicher Orientierungspunkt besteht stets durch Gespräche mit
anderen CT-Entwicklern.

5.2.1 aRTist

Im Rahmen des öffentlich geförderten Forschungsprojektes CTSimU, das sich mit der
Messunsicherheitsbestimmung realer CT-Anlagen anhand von Simulationen befasst, wird
die Simulation aRTist häufig referenziert [98, 99]. Das Konsortium des Forschungsprojek-
tes besteht sowohl aus Universitäten als auch aus Vertretern der Industrie, sodass der
genannten Simulation aRTist ein gewisser Stellenwert zuzuschreiben ist. aRTist wird von
der Bundesanstalt für Materialforschung und -prüfung entwickelt und liegt aktuell in der
Version 2.12.6 vor [24]. Eine der großen Stärken von aRTist besteht in der umfassenden
Sammlung an ergänzenden Paketen, die zum Beispiel die Simulation verschiedener Rönt-
genquellen oder verschiedener Detektormodelle ermöglicht. Im Kern verwendet aRTist
einen Raytracing-basierten STL-Projektor, der die Schnittlängen der virtuellen Proben
basierend auf STL-Modellen4 berechnet. Im zweiten Schritt werden die Schnittlängen
unter Berücksichtigung des Röntgenspektrums, des Materials des Prüfkörpers und des
Detektormodells in Intensitäten, typischerweise in J/m2, umgerechnet. Hauptsächlich
wird hierzu das lambert-beer-Gesetz aus Gleichung 1.1 ausgeführt. Zusätzlich besteht
die Möglichkeit, eine Monte-Carlo-basierte Berechnung der Projektionen mit reduzierter
Auflösung durchzuführen, sodass realistische Wechselwirkungs- und Streuprozesse, bei-
spielsweise die angesprochene Compton-Streuung, in der Simulation abgeschätzt werden
können.
Trotz dieser vielversprechenden Funktionen hat aRTist zwei signifikante Nachteile. Ers-
tens wird für den Betrieb der Simulation eine graphische Benutzeroberfläche benötigt,
die zur Einrichtung und qualitativen Bewertung der Simulation zunächst praktisch
erscheint, allerdings die Parallelisierung mehrerer Instanzen ineffizient gestaltet. Zur
Berechnung großer Trainingsdatensätze entsteht durch die graphische Benutzeroberflä-
che ein Nachteil, da die simulierten Proben nicht einzeln betrachtet werden müssen
und so die Rechenleistung ineffizient verbraucht wird. aRTist benötigt etwa 1.9 min zur
Berechnung von 2000 Projektionen eines Zeilendetektors mit 2000 Pixeln und demnach
bereits fast 660 Tage, um diese Berechnung für 250.000 unterschiedliche Phantome und
zwei Energiekanäle durchzuführen. Wie in Abschnitt 5.1.2 beschrieben, muss die Si-
mulation innerhalb eines sinnvollen Zeitrahmens einen angemessen dimensionierten
Trainingsdatensatz erzeugen können, sodass aRTist für diesen Zweck ausscheidet. In
den folgenden Kapiteln wird aRTist teilweise verwendet, um simulierte Phantome unter
Einbezug einer realistischen Röntgenstrahlungsquelle, der realistischen Interaktion der
Strahlung mit der Probe und einer realistischen Nachbildung des Detektors zu erzeugen,
um quantitative Aussagen zu treffen. Somit wird die Stärke von aRTist, die realistische
Simulation der CT, zur Validierung der im Folgenden erzielten Ergebnisse genutzt. Der
zweite, jedoch nicht entscheidende, Nachteil von aRTist besteht in der Begrenzung auf

4 Ein Dateiformat zur Darstellung von Oberflächen im dreidimensionalen Raum basierend auf Dreiecken
[100].



64 simulation der computertomographie

das Betriebssystem Windows, sodass der Betrieb auf Großrechnern, die typischerweise
ein Betriebssystem auf der Basis von Linux verwenden, erschwert wird. Zudem muss
aRTist erworben werden und ist nicht quelloffen, sodass die eigenständige Erweiterung
der Funktionen nicht möglich ist.

5.2.2 gVXR

Eine vielversprechende Alternative zu dem soeben vorgestellten Programm aRTist besteht
in gVXR, das quelloffen ist und kostenlos für die Forschung eingesetzt werden kann [101].
gVXR vereint in Summe die gleichen Funktionalitäten, mit Ausnahme der Monte-Carlo-
basierten Berechnungen, und nutzt hierfür teilweise andere, ebenfalls quelloffene Pakete.
So stammen die simulierten Quellspektren von SpekPy[102] und die tabellierten Abschwä-
chungskoeffizienten von xraylib [103]. Analog zu aRTist werden die Phantome in gVXR als
STL-Modelle eingeladen, die Schnittlängen bestimmt sowie das lambert-beer-Gesetz aus
Gleichung 1.1 angewandt. Im Gegensatz zu aRTist werden die Schnittlängenberechung
sowie die Anwendung des lambert-beer-Gesetzes auf der Graphikkarte ausgeführt, so-
dass die Berechnungsgeschwindigkeit deutlich zunimmt. gVXR ist plattformunabhängig
und kann mit der Programmiersprache Python angesteuert werden. Die Verwendung
einer graphischen Benutzeroberfläche ist optional.

5.2.3 Diskussion der Anforderungen

Anhand der in Abschnitt 5.1 formulierten Anforderungen, werden die beiden vorgestell-
ten Simulationen hinsichtlich ihrer Eignung zur Trainingsdatenerzeugung im Rahmen
dieser Arbeit bewertet. Im Kontext von Abbildung 5.1 werden die einzelnen Kernfunk-
tionalitäten abgearbeitet. Keins der vorgestellten Programme bietet die Möglichkeit der
zufälligen Erzeugung von Phantomen (Phantomgenerator). In der Literaturrecherche (Ka-
pitel 4.2.4) wurde eine Publikation identifiziert, die das XCAT-Phantom verwendet, um
Trainingsdaten für die Materialbestimmung in der industriellen CT zu generieren [11].
Da das XCAT-Phantom für klinische Anwendungen entwickelt wurde [84], ist seine
Morphologie an den menschlichen Körper angelehnt, sodass der Transfer auf industrielle
Prüfteile potentiell aufgrund der abweichenden Morphologie erschwert wird.
Beide Programme aus Abschnitt 5.2 ermöglichen die Berechnung der Röntgenprojektio-
nen (Projektor), sofern das Phantom als STL-Modell vorliegt. Die Materialkarten müssen
als Voxelgitter vorliegen, damit diese mit den rekonstruierten CT-Volumen räumlich
registriert sind (vergleiche Anforderungsanalyse Abschnitt 5.1). Somit bietet es sich an,
die Erzeugung der Phantome ebenfalls in einem Voxelgitter auszuführen, sodass bei der
Umrechnung in ein STL-Modell keine Verschiebungen und damit Registrierungsfehler
auftreten können. Demnach scheiden sowohl aRTist als auch gVXR für den Projektor
aus. Es wird ein voxelbasierter Projektor gesucht, sodass nicht zwischen Voxelgittern
und STL-Modellen konvertiert werden muss. Rekonstruktionsalgorithmen verwenden
voxelbasierte Projektoren, um die Rückprojektion durchzuführen (vergleiche Kapitel 2.4).
Die ASTRA Toolbox (kurz: ASTRA) [104] ist eine Sammlung verschiedener Module, die
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überwiegend auf die Rekonstruktion von CT-Daten ausgerichtet sind. Sie bietet zudem
einen sogenannten Vorwärtsprojektor, der die Schnittlängen durch voxelbasierte Volumen
berechnet. Durch Ergänzen der Abschwächungsberechnung nach dem lambert-beer-
Gesetz aus Gleichung 1.1, einer Möglichkeit zur Simulation realistischer Quellspektren
sowie dem Abruf der tabellierten Abschwächungskoeffizienten kann somit die Projektion
des voxelbasierten Phantoms realisiert werden. Die Quellspektren können mit SpekPy[102]
oder aRTist [24] berechnet werden. Die energieabhängigen, linearen Abschwächungskoef-
fizienten µ (vergleiche beispielhaft Abbildung 2.4) können der Literatur [26] entnommen
oder mithilfe von xraylib [103] oder aRTist [24] berechnet werden.
Weiterhin wird gemäß Abbildung 5.1 eine Rekonstruktion benötigt, die die gesammel-
ten Projektionen, zusammengefasst dargestellt als Sinogramm, in die DECT-Volumen
rekonstruiert. Hierzu ist die bereits genannte ASTRA Toolbox [104] geeignet. Sie bietet
neben dem aus Kapitel 2.4 bekannten FDK-Algorithmus ebenfalls iterative Rekonstrukti-
onsalgorithmen an, die zu einer Verbesserung der Bildqualität führen können, jedoch
aufgrund ihres immensen Rechenzeitbedarfs, insbesondere auf großen CT-Volumen,
von niedriger Relevanz in der industriellen Computertomographie sind. Somit wird
die gefilterte Rückprojektion, ein Spezialfall des FDK-Algorithmus, zur Rekonstruktion
verwendet. Darüber hinaus ist die ASTRA Toolbox quelloffen und plattformunabhängig
[104], sodass die nicht-funktionalen Anforderungen ebenfalls erfüllt werden.
Zusammenfassend bleiben die folgenden Module übrig, die implementiert werden müs-
sen: ein Phantomgenerator und die Anwendung des lambert-beer-Gesetzes (Gleichung
1.1).

5.3 eigene simulation

Basierend auf der Anforderungsanalyse aus Abschnitt 5.1 wird eine eigene Simulation im-
plementiert. Gemäß Abschnitt 5.2.3 werden einige der gesuchten (Teil-)Funktionalitäten,
die in anderen Programmen verfügbar sind, übernommen. Die im Folgenden vorgestellte
Simulation besteht aus drei Modulen, die bereits in Abbildung 5.1 im Kontext der Anfor-
derungsanalyse eingeführt worden sind: dem Phantomgenerator, dem Projektor und der
Rekonstruktion.
Gemeinsam werden diese drei Module in eine übergeordnete Funktion eingebettet, die
den gesamten Ablauf, beginnend mit einer Zufallszahl zur Initialisierung des Phantomge-
nerators bis hin zum Speichern eines Datentupels, bestehend aus einem DECT-Volumen
und den Materialkarten, zusammenfasst. Durch die Verwendung von Dask, einer Python-
Bibliothek für verteiltes Rechnen [105], wird die parallele Ausführung dieser Funktion zur
Erzeugung eines einzelnen Datentupels in voneinander unabhängigen Instanzen stark
vereinfacht. Kurz gefasst kann Dask verwendet werden, um eine große Anzahl kleiner
Aufgaben (hier: die Erzeugung eines Datentupels) in einem Netzwerk aus sogenannten
Workern (auch: Dask-Worker) zu verteilen und die Ergebnisse zu sammeln. Mithilfe von
Dask ist somit die im Folgenden beschriebene Simulation zwischen einem Laptop und
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einem HPC-Cluster beliebig skalierbar5. In den folgenden Abschnitten werden die Im-
plementierungen des Phantomgenerators und des Projektors aus dem Ablaufdiagramm
in Abbildung 5.1 beschrieben. Die Rekonstruktion wird direkt aus der ASTRA Toolbox
übernommen. Abgesehen von einigen Paketen in den verwendeten Bibliotheken ist die
Simulation in Python implementiert.

Phantomgenerator: Erzeugung eines zufälligen Phantoms

Eine der DL-spezifischen Anforderungen nach Abschnitt 5.1 besteht in der Erzeugung
zufällig geformter Phantome, die aus verschiedenen, ebenfalls zufällig ausgewählten
Materialien zusammengesetzt sind. Im Folgenden werden die von einzelnen Materialien
besetzten Bereiche in einem Phantom als Regionen oder Materialregionen bezeichnet. Der
im Folgenden beschriebene Algorithmus ist gemäß den Anforderungen aus Abschnitt
5.1 für die Erzeugung zweidimensionaler Phantome konzipiert. Für dreidimensionale
Phantome ist der Algorithmus direkt erweiterbar, wobei die benötigte Rechenzeit sowie
der Speicherbedarf linear mit der Gesamtzahl der Voxel ansteigen.
Das im Rahmen dieser Arbeit gewählte Prinzip zur Erzeugung der zufälligen Regionen
entstammt der Biologie: dem Wachstum von unterschiedlichen Bakterienkolonien in
einer Petrischale. Zu Beginn wird die leere Petrischale mit einer Anzahl unterschied-
licher Bakterien an zufälligen Stellen punktuell besetzt. Dies sind die Startpunkte des
Wachstums jeder Kolonie (Materialregion). Pro Zeitschritt wächst jede Kolonie zufällig
in angrenzende und bisher unbesetzte Gitterpunkte (Voxel). Sobald ein festgelegter
Anteil der Gesamtfläche der Petrischale von den Bakterienkolonien besetzt worden ist,
wird das Wachstum eingefroren und das Experiment (die Erzeugung der Materialre-
gionen) beendet. Codeabschnitt 5.1 fasst den soeben beschriebenen Algorithmus zur
Erzeugung zufälliger Regionen innerhalb eines zweidimensionalen Bereiches zusammen.

1 volume = Array2D(yDim, xDim)

2 seed_points = Random(number_of_seed_points, volume)

3 while volume.infill < target_infill:

4 for seed in random_choice(seed_points):

5 seed.grow()

Codeabschnitt 5.1: Grobalgorithmus zur Erzeugung der zufälligen Regionen eines Phantoms.

Nach der Ausbreitungsphase der Bakterienkolonien wird jede Kolonie, identifiziert durch
eine eindeutige ID, zufällig in ein Material (Kernladungszahl Z und absolute Dichte ρ)
umgewandelt:

ID 7→ (Zi, ηρi) mit η ∈ [0.8, 1.0] .

Der Faktor η wird zufällig gewählt und stellt die Porosität eines Materials dar. Die
Auswahl des Materials erfolgt ebenfalls zufällig aus einem gegebenen Materialpool, der
im Rahmen dieser Thesis in Tabelle 5.1 zusammengefasst ist. Insbesondere die Materialien
Aluminium, Chrom, Eisen, Kupfer, Magnesium, Nickel, Titan und Zink sind von hoher

5 Die Mindestanforderungen für das Ausführen einer einzelnen Simulation umfassen etwa 1 GB verfügbaren
Haupt- und Graphikspeicher. Mehr Speicher ermöglicht eine erhöhte Parallelisierung und Auslastung.
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Symbol Al Be Ca Co Cr Cu Fe Ga Ge K Li
Z 13 4 20 27 24 29 26 31 32 19 3

ρ in g/cm3 2.7 1.8 1.6 8.9 7.2 9.0 7.9 5.9 5.3 0.9 0.5
Symbol Mg Mn Ni Sc Ti V Zn

Z 12 25 28 21 22 23 30
ρ in g/cm3 1.7 7.3 8.9 3.0 4.5 6.1 7.1

Tabelle 5.1: Symbole, Kernladungszahlen Z und Dichten ρ der selektierten Materialien für die
Phantome der CT-Simulation.

technischner Relevanz, sodass sie in den Materialpool aufgenommen werden. Die auf dem
Periodensystem benachbarten Elemente werden zur Verbesserung der Generalisierung
auf ähnliche Materialien ergänzend hinzugenommen. Für eine spezifische Anwendung
der Materialbestimmung mit Vorwissen, beispielsweise zur gezielten Identifikation von
Kupferpartikeln, kann es zielführend sein, den Materialpool deutlich einzuschränken.
Das Ergebnis des Phantomgenerators ist insgesamt eine zweidimensionale Materialkarte
(vergleiche Abbildung 5.1), die für jeden Gitterpunkt (Voxel) eine Kernladungszahl Z
und eine Dichte ρ angibt.

Projektor: Projektion des Phantoms

Jedes nach obigem Prinzip erzeugte Phantom wird durch eine Materialkarte beschrieben.
Ziel dieses Moduls ist die Berechnung der energie- und materialabhängigen Projektion
des Phantoms in Anlehnung an die reale CT-Bildaufnahme. Ein Überblick über diese
Berechnung wird in Abbildung 5.2 dargestellt.
Zunächst werden aus den materialaufgelösten Phantomen unter Angabe der CT-
Geometrie Schnittlängen mithilfe eines Schnittlängenprojektors P aus der ASTRA Toolbox
berechnet. Die resultierenden Schnittlängen hängen somit zusätzlich vom Projektions-
winkel φ aus der CT-Geometrie und einem Pixelindex u des eindimensionalen Detektors
(Fächerstrahl-CT) ab. Im nächsten Schritt wird aus dem einfallenden Röntgenspektrum
I0(E) sowie den tabellierten Abschwächungskoeffizienten µm für jedes Material m das
lambert-beer-Gesetz aus Gleichung 1.1 angewandt, um das Spektrum IP(E) nach
Abschwächung durch das Phantom zu berechnen. Aus dem Abschwächungskoeffizienten
des Detektormaterials µD und der Schnittlänge durch ein Pixel x(u)D des Detektors wird
die Intensität ID(E) nach zusätzlicher Abschwächung durch den Detektor bestimmt. Die
Differenz IP(E)− ID(E) entspricht der Intensität, beziehungsweise der Photonenzahl,
aufgelöst nach Energie, die das Signal im Detektor ISignal(E) erzeugt. Nach spektraler
Integration

∫
dE für einen energieintegrierenden Detektor nach Kapitel 2.3 folgt das

gemessene Signal ISignal – das sogenannte Sinogramm. Die gesamte in Abbildung 5.2
beschriebene Berechnung ist hochgradig parallelisierbar. Nach der Projektion zur Be-
rechnung der Schnittlängen wird jede folgende Operation pro Pixel ausgeführt und ist
unabhängig von den anderen Pixeln, sodass die Parallelisierung auf einer Graphikkarte
effizient implementiert werden kann.
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Phantome Schnittlängen IP(E) ID(E)

−ISignal(E)ISignal

P G. 1.1 G. 1.1

∫
dE

m m, φ, u φ, u φ, u

φ, uφ, u

CT-Geometrie I0(E), µm µD, x(u)D

Abbildung 5.2: Ablaufdiagramm der CT-Projektion ausgehend von m materialaufgelösten Phan-
tomen mit dem Schnittlängenoperator P unter einer gegebenen CT-Geometrie
mit dem Projektionswinkel φ und für jedes Detektorpixel u eines eindimensio-
nalen Detektors. Das erzeugte Quellspektrum I0(E) sowie die durch Phantom
und Detektor abgeschwächten Spektren IP(E) und ID(E) werden zusammen mit
den Abschwächungskoeffizienten µ zur Anwendung des lambert-beer-Gesetzes
benötigt. Nach Subtraktion und spektraler Integration folgt das gemessene Detek-
torsignal ISignal.

5.4 evaluation der implementierten simulation

Die implementierte Simulation muss hinsichtlich der in Abschnitt 5.1 aufgeführten
Anforderungen untersucht werden. Einige Anforderungen, beispielsweise das Datenfor-
mat, wurden bereits in der Implementierung entsprechend erfüllt und bedürfen keiner
weiteren Prüfung. Exemplarisch wird die Ausgabe der Simulation sowie die statisti-
sche Verteilung eines Trainingsdatensatzes in Abschnitt 5.4.1 vorgestellt. Anschließend
muss die Präzision des modellierten CT-Bildgebungsprozesses im Vergleich zu einer
verbreiteten Simulation (aRTist) sowie einem realen CT-Scan verglichen werden. Die
DL-spezifischen Anforderungen in Bezug auf die Datensatzgröße in Abhängigkeit zur
Berechnungsdauer werden in Abschnitt 5.4.4 überprüft.

5.4.1 Exemplarischer Datensatz & Datenverteilung

Anhand eines exemplarisch simulierten Datensatzes können einige der funktionalen
Anforderungen aus Abschnitt 5.1 an die implementierte Simulation evaluiert werden.
Die verwendeten CT-Parameter werden in Tabelle 5.2 zusammengefasst und sind dem
Modell einer realen CT-Anlage nachempfunden (vergleiche CT-Anlage in Kapitel 2.7).
Im Vergleich zum realen Detektor werden in diesem CT-Parametersatz vier Pixel des
Originaldetektors mit dem Pixel Pitch 139 µm zu einem Pixel mit dem Pixel Pitch 278 µm
zusammengefasst, um Rechenzeit auf Kosten der räumlichen Auflösung zu sparen. Durch
die Verdopplung des Pixel Pitch, kann die Anzahl der Pixel pro Zeile (im dreidimensio-
nalen Fall auch pro Spalte) halbiert werden, sodass die CT-Abbildungsgeometrie in allen
anderen Parametern konstant bleibt und somit die simulierten Abschwächungskoeffizi-
enten quantitativ mit den an der realen CT-Anlage gemessenen Werten vergleichbar sind.
Zusätzlich wird, begründet durch die DL-spezifischen Anforderungen aus Abschnitt
5.1, kein zweidimensionaler Detektor, sondern nur eine einzelne Zeile des Detektors
simuliert, da die so gesammelten eindimensionalen Projektionen ausreichen, um eine
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einzelne CT-Mittelschicht zu rekonstruieren (Fächerstrahl-CT). Zunächst wird die Ausga-

Geometrie

Anzahl Projektionen 1500 (Vollkreis)

SDD 500 mm

SOD 35 mm

Detektor

Detektor-Typ Flachdetektor, 200 µm Caesiumiodid

Pixel Pitch 278 µm

Pixelmatrix Dimensionen (1500 × 1)Pixel

Pixeldatentyp 16 Bit unsigned-int

Integrationszeit > 100 ms

Strahlungsquelle

Typ Wolfram-Transmissionsquelle

UB + Vorfilter (Low-Energy) 140 kV + 1.0 mm Al | 0.5 mm Cu

UB + Vorfilter (High-Energy) 240 kV + 1.0 mm Cu | 1.0 mm Sn

Phantome

Anzahl Datentupel 250000

Seitenlänge des Volumens 1.0 cm

Auflösung (256 × 256)Voxel

Anzahl Regionen N 0 < N ≤ 1000 (gleichverteilt)

Ausfüllfaktor (vgl. target_infill) 90%

relative Dichte η 0.8 ≤ η ≤ 1.0

Tabelle 5.2: CT-Simulationsparameter für einen DECT-Scan mit dem Abstand zwischen Quelle
und (Objekt-)Drehachse SOD, dem Abstand zwischen Quelle und Detektor SDD und
der Beschleunigungsspannung UB. Die Einstellungen der Strahlungsquelle werden
getrennt für den Low- und High-Energy-Scan angegeben, wobei die Integrationszeit
am Detektor jeweils so gewählt wird, dass der Dynamikumfang im Mittel 70% des
Datenraumes des Detektors 0 − 65535 abdeckt.

be der implementierten Simulation visualiert. Abbildung 5.3 zeigt ein mit den genannten
Parametern simuliertes Tupel, bestehend aus den DECT-Schnittbildern und den Material-
karten, aufgelöst nach Kernladungszahl und Dichte. Der Phantomgenerator erzeugt die
Materialkarten in der rechten Spalte in Abbildung 5.3 zufällig. Mithilfe des Projektors und
der Rekonstruktion werden die Phantome (Materialkarten) in die DECT-Schichtbilder in
der linken Spalte umgerechnet. Diese etwas kontraintuitive Anordnung – von rechts nach
links – wird anhand des zu lernenden Problems, der Materialzerlegung, motiviert: Die
DECT-Schichtbilder (links) sollen in die Materialkarten (rechts) umgerechnet werden.
Aus den DL-spezifischen Anforderungen geht weiterhin hervor, dass die generierten
Phantome von zufälliger Materialzusammensetzung und Form sein müssen, um erstens
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Abbildung 5.3: Simuliertes Datentupel bestehend aus Low-Energy (LE) und High-Energy (HE) CT-
Schnitten (linke Spalte) durch ein zufällig erzeugtes Phantom. Das Phantom wird
durch die Angabe der Kernladungszahlen und Dichten räumlich charakterisiert
(rechte Spalte). Alle x- und y-Achsen geben räumliche Positionen im Voxelgitter
an. Die Einheiten der Farbskalen werden in den Plotüberschriften angegeben.
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eine große Auswahl unterschiedlicher Materialien bestimmen zu können und zweitens
die morphologische Varianz innerhalb des Datensatzes zu erhöhen. Anhand des exem-
plarisch simulierten Datensatzes kann mittels einer Stichprobe die Zusammensetzung
des gesamten Datensatzes statistisch untersucht werden. Die Verteilungen in Abbildung
5.4 wurden aus 8000 zufällig ausgewählten Tupeln berechnet und geben einen Hinweis
auf die Verteilung der Materialien innerhalb der Stichprobe. Zu sehen sind die quanti-
sierten, nahezu gleichverteilten Kernladungszahlen (oben rechts) der für die Simulation
ausgewählten Elemente. Die relativen Dichten η werden aus dem Bereich 0.8 ≤ η ≤ 1.0
zufällig und gleichverteilt gewählt, sodass im Histogramm (unten rechts) der absolu-
ten Dichten eine Streuung beobachtet werden kann. In den Histogrammen der linken
Spalte von Abbildung 5.4, den effektiv gemessenen Abschwächungskoeffizienten, wird
deutlich, dass die Strahlaufhärtung einen signifikanten Einfluss auf die Datenzusam-
mensetzung ausübt. Wie bereits in Kapitel 2.4.1 beschrieben, hängt der rekonstruierte
Abschwächungskoeffizient µL stark von der lokalen Umgebung innerhalb der Probe ab
und ist keineswegs konstant für ein festes Material. Zur Beurteilung der morphologi-
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Abbildung 5.4: Histogramme der auftretenden Abschwächungskoeffizienten µL für den Low-
Energy LE und High-Energy HE Kanal sowie die Kernladungszahlen und Dichten
aus der in Tabelle 5.2 beschriebenen Simulation anhand einer Stichprobe.
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schen Varianz der einzelnen Phantome ist Abbildung 5.4 ungeeignet. Eine detaillierte
Analyse der vorkommenden Formen kann sehr aufwändig gestaltet werden, sodass im
Rahmen dieser Arbeit eine vereinfachte Methode angewandt wird: Die Phantome werden
mit dem Canny-Edge-Operator [106] in Kantenbilder umgerechnet und anschließend
normiert. Bei geeigneter Parameterwahl des Canny-Edge-Operators erscheinen so die
Kanten zwischen den unterschiedlichen Regionen innerhalb eines Phantoms gleich und
sind nicht abhängig von ihrem Gradienten. Anhand der oben genannten Stichprobe
kann die Summe über alle Kantenbilder berechnet werden und so sollten feste Muster,
die immer an der gleichen räumlichen Position in den Phantomen auftreten, sichtbar
werden. Abbildung 5.5 stellt das Summenbild über alle Kantenbilder der Stichprobe dar.
Der dunkel abgesetzte Randbereich ist eine Folge der räumlichen Begrenzungen an den
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Abbildung 5.5: Summe aus den Kantenbildern ermittelt durch den Canny-Edge-Operator mit
anschließender Normierung aus 8000 zufällig ausgewählten Phantomen. Die
Farbskala hat keine Einheit und ist als eine Häufigkeit zu interpretieren.

Rändern der Phantome. Statistisch ist es wahrscheinlicher, dass mittlere Bildbereiche von
verschiedenen Regionen besetzt werden als Randbereiche. Ansonsten kann kein eindeuti-
ges Muster identifiziert werden, sodass insgesamt geschlussfolgert werden kann, dass die
Erzeugung der zufälligen Phantome, in Bezug auf Form und Materialzusammensetzung,
mit der implementierten Simulation erfolgreich ist.

5.4.2 Vergleich mit aRTist und mit einem realen Scan

Weiterhin sind die CT-spezifischen Anforderungen, insbesondere in Bezug auf die Präzi-
sion des CT-Bildgebungsprozesses, zu prüfen. Dies erfolgt anhand eines Vergleiches mit
der in Abschnitt 5.2.1 vorgestellten Simulation aRTist sowie einem realen CT-Scan. Ein



5.4 evaluation der implementierten simulation 73

direkter Vergleich zwischen der implementierten Simulation und aRTist ist in Abbildung
5.6 dargestellt. Das simulierte Phantom ist ein Aluminiumwürfel, der verschiedene Poro-
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Abbildung 5.6: Vergleichender Schnitt durch einen Aluminiumwürfel mit verschiedenen relativen
Dichten 0.8 ≤ η ≤ 1.0 simuliert mit aRTist, der implementierten Simulation
sim und der korrigierten aRTist-Simulation aRTist’ aus Gleichung 5.1. Durch die
starke Übereinstimmung der Kurven ist die rote Linie nur schlecht erkennbar. Zur
besseren Vergleichbarkeit werden im unteren Teil der Abbildung die absoluten
Differenzen diff. zwischen aRTist beziehungsweise aRTist’ mit sim visualisiert.
Der grau schattierte Bereich markiert die Zielgenauigkeit (±1 %-Genauigkeit der
Dichte nach Gleichung 2.3).

sitäten aufweist, sodass im CT-Schnittbild ein Stufenprofil sichtbar wird. Ein konstanter
Offset ist zwischen der implementierten Simulation sim und aRTist in der unteren Dar-
stellung von Abbildung 5.6 qualitativ zu beobachten (graue Linie). Dieser Offset ist für
verschiedene Materialien, beziehungsweise verschiedene Abschwächungskoeffizienten,
nicht konstant. Daher wird ein lineares Modell der Form

y = m · x + b mit

y : aRTist-Daten

x : sim-Daten
(5.1)

angesetzt, um die Abweichung zu korrigieren. Es ergeben sich die Koeffizienten m =

0.9912 und b = 0.0113 für den in Abbildung 5.6 dargestellten Fall und unter zusätzlicher
Berücksichtigung der Materialien Magnesium, Eisen und Kupfer. Durch Anwendung der
Offset-Korrektur aus Gleichung 5.1 ergibt sich das Profil aRTist’ in Abbildung 5.6 sowie
die dargestellte Abweichung unter dem Plot (blaue Kurve). Es erscheint zunächst unin-
tuitiv, die mit aRTist simulierten Werte an die implementierte Simulation anzupassen, da
aRTist im Rahmen dieser Dissertationsschrift als verbreitete und etablierte CT-Simulation
vorgestellt wurde. Durch die Verwendung realer CT-Daten kommt in späteren Kapiteln
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eine dritte Datenquelle hinzu, für die erneut ein Korrekturmodell nach Gleichung 5.1
angepasst werden muss. Zur besseren Vergleichbarkeit der Materialbestimmung wird
daher die implementierte Simulation als gemeinsame Basis gewählt, sodass die mit aRTist
simulierten Daten sowie die Daten von der CT-Anlage in die Basis der implementierten
Simulation übertragen werden müssen. Die korrigierten CT-Schnittbilder nach aRTist und
nach der implementierten Simulation werden für die genannten vier Materialien in Abbil-
dung 5.7 zusammengefasst. Die Plots der oberen Zeile in Abbildung 5.7 zeigen die leicht
dämpfenden Materialien Aluminium und Magnesium, die keine starken CT-Artefakte
aufweisen. In den Plots der unteren Zeile ist deutlich der Effekt der Strahlaufhärtung zu
erkennen, der auf die verhältnismäßig niedrige Beschleunigungsspannung UB = 140 kV
zurückzuführen ist und korrekt von der implementierten Simulation dargestellt wird.
Der grau schattierte Bereich markiert die geforderte Genauigkeit (±1 %-Genauigkeit
der Dichte) und wird durch die Fehlerfortpflanzung von Gleichung 2.3 individuell für
jedes Material berechnet. Die korrigierten Abschwächungskoeffizienten liegen nach An-
wendung der Korrektur innerhalb der geforderten Genauigkeiten. Basierend auf diesen
Ergebnissen und im Kontext der geforderten Genauigkeit der linearen Abschwächungs-
koeffizienten (vergleiche Abschnitt 5.1), wird Gleichung 5.1 als ausreichend gewertet und
fortan zum Angleich der mit aRTist simulierten Daten an die Daten der implementierten
Simulation verwendet. Die Koeffizienten ebendieser Gleichung sind stets für einen Satz
gegebener CT-Parameter, insbesondere Quellspannung und Vorfilterung, individuell zu
ermitteln und demnach nicht für andere CT-Parameter gültig.
Zum Abgleich der simulierten CT-Daten mit dem Scanergebnis einer realen CT-Anlage
(im Folgenden zur Vereinfachung auch: Anlage) müssen mehrere Dinge beachtet werden.
Zunächst müssen die CT-Geometrie der Anlage, das emittierte Quellspektrum sowie
der Aufbau des Detektors möglichst genau erfasst werden. Während die CT-Geometrie
durch Kalibrationsmessungen mit metrologisch eingemessenen Prüfkörpern sehr ex-
akt bestimmt werden kann, ist über den inneren Aufbau der Röntgenquelle und des
Detektors nur wenig bekannt. Somit basieren die berechneten Quellspektren und Detek-
torantworten teilweise auf Angaben der Datenblätter, gut begründeten Annahmen sowie
interner Kommunikation mit den Herstellern. Die genauen Angaben zur Berechnung der
verwendeten Quellspektren und der Detektorantwort dürfen daher in dieser Dissertati-
onsschrift nicht publiziert werden. Das rekonstruierte Volumen des Scans wird manuell
segmentiert und anhand der Segmentierung in ein voxelbasiertes Phantom umgerechnet,
welches durch den in Abbildung 5.1 vorgestellten Ablauf beginnend ab dem Projektor
verarbeitet werden kann. Mithilfe dieser Methodik wird das real gescannte Phantom
als Eingabeparameter der implementierten Simulation genutzt, sodass ein quantitativer
Abgleich der rekonstruierten Volumen möglich ist.
Der an der Anlage durchgeführte Scan wird mit einem Aluminiumquader, einem Edel-
stahlzylinder und einem Kupferquader gemeinsam mit den CT-Parametern aus Tabelle
5.2 durchgeführt. Die rekonstruierten Volumina des Scans und der Simulation sind für
beide Energien (140 kV und 240 kV gemäß Tabelle 5.2) in Abbildung 5.8 dargestellt. Qua-
litativ können bereits einige Unterschiede in Bezug auf die Abschwächungskoeffizienten
innerhalb und außerhalb der verschiedenen Objekten identifiziert werden. Besonders
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Abbildung 5.7: Schnitte durch die rekonstruierten Volumina eines Phantoms für verschiedene Ma-
terialien mit der entwickelten Simulation sim und aRTist unter Berücksichtigung
der linearen Korrektur (aRTist’) aus Gleichung 5.1. Unter den Plots werden die
absoluten Differenzen diff. zusammen mit der grau schattierten Zielgenauigkeit
(±1 %-Genauigkeit der Dichte nach Gleichung 2.3) dargestellt. Neben dem Ele-
ment wird ebenfalls die Quellspannung angegeben. Alle Plots teilen die Legende
unten rechts. Die rote Linie wird aufgrund der Übereinstimmung mit den anderen
Linien teilweise durch diese verdeckt.

auffällig ist die Abweichung der CT-Artefakte außerhalb der Objekte, die hauptsächlich
durch die fehlende Modellierung der Streustahlung (vergleiche Compton-Streuung; Ka-
pitel 2.1) in der implementierten Simulation entsteht. Da die Strahlaufhärtung korrekt
modelliert wird und in Abbildung 5.8 (oben rechts) deutlich zu erkennen ist, wird deut-
lich, dass die verbleibende Abweichung innerhalb der Materialien zur realen Messung,
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Abbildung 5.8: Rekonstruierte Volumina für zwei Beschleunigungsspannungen aus der CT-
Anlage beschriftet mit Scan (links) und der implementierten Simulation Sim
(rechts). Der Vollzylinder besteht aus dem Edelstahl V2A. Der linke Quader be-
steht aus Aluminium und der rechte Quader besteht aus Kupfer. Die graue Linie
zeigt das Referenzprofil an, um das in Gleichung 5.1 vorgestellte lineare Modell
anzupassen. Die rote Linie markiert das Testprofil, um die Interpolationsfähigkeit
des linearen Modells nachzuweisen. Alle x- und y-Achsen geben räumliche Posi-
tionen im Voxelgitter an.

insbesondere bei höheren Photonenenergien in Abbildung 5.8 (unten), auf die Streustrah-
lung zurückzuführen ist. Entlang der grauen Linie werden die Werte des Scans mithilfe
des eben beschriebenen linearen Modells aus Gleichung 5.1 an die simulierten Werte
angeglichen. Somit werden die Materialien Aluminium und Kupfer zur Anpassung des
Modells verwendet. Zu prüfen ist die Interpolationsfähigkeit des linearen Modells ent-
lang der roten Linie (Edelstahl V2A) – dem Testprofil, das aus Sicht der Kernladungszahl
und Dichte zwischen den Stützpunkten des linearen Modells liegt. Abbildung 5.9 zeigt
den Schnitt durch die Volumina entlang des Testprofils durch den Edelstahlzylinder.
Das Modell verschiebt das ursprünglich stark abweichende Scanprofil (gelb) in die Nä-
he des simulierten Profils (rot). Wie bereits beschrieben, gibt es bei der Modellierung
einer realen CT-Anlage Unsicherheiten, vorwiegend induziert durch die Röntgenquelle
und den Detektor, die nicht vollständig korrigiert werden können. Trotz der weiterhin
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Abbildung 5.9: Schnitt entlang der roten Linie in Abbildung 5.8 zur Evaluation der Transfer-
fähigkeit des linearen Modells auf Edelstahl V2A. Das auf der grauen Linie
in Abbildung 5.8 angepasste Modell wird verwendet. Unter den Plots werden
die absoluten Differenzen diff. zwischen scan’ und sim zusammen mit der grau
schattierten Zielgenauigkeit (±1 %-Genauigkeit der Dichte nach Gleichung 2.3)
dargestellt. Die absoluten Differenzen weichen deutlich von der geforderten Ziel-
genauigkeit ab.

bestehenden Abweichung, der effektiven Sim-To-Real-Gap, zwischen dem korrigierten
Profil scan’ und der implementierten Simulation sim, wurde mithilfe der Korrektur dieser
ursprünglich noch viel stärkere Unterschied erheblich reduziert. Im Folgenden wird
das angepasste lineare Modell zur Anpassung der realen Messdaten an die Simulation
verwendet, um die Sim-To-Real-Gap zu verkleinern und somit die Materialbestimmung
mithilfe der trainierten DL-Modelle zu verbessern.

5.4.3 Beobachtungen mit (simulierter) Dual-Energy CT

Wie bereits im Rahmen der Einführung der Strahlaufhärtung (vergleiche Kapitel 2.4.1; ins-
besondere Abbildung 2.11) beschrieben, werden bei der Verwendung polychromatischer
Röntgenstrahlung homogene Objekte nicht mit konstanten Abschwächungskoeffizien-
ten rekonstruiert. Somit verändert sich der in Abbildung 2.14 dargestellte Plot, in dem
jedes Material durch eine separate, scharfe Linie beschrieben wird, mit zunehmendem
Einfluss der Strahlaufhärtung und weiterer CT-Artefakte deutlich. Dieser Effekt soll, in
Anlehnung an die Darstellung aus Abbildung 2.14, anhand simulierter Abschwächungs-
koeffizienten einzelner Materialien beobachtet werden, um erstens die Funktionalität der
polychromatischen CT-Simulation zu überprüfen und um zweitens die Problemstellung
der Materialbestimmung weiter zu verdeutlichen. Abbildung 5.10 zeigt die DECT-Linien
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für die in Tabelle 5.2 beschriebene Simulation. Im linken Plot von Abbildung 5.10 ist
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Abbildung 5.10: Aus einer Simulation extrahierte, materialabhängige Abschwächungskoeffizi-
enten µL,m für zwei Quellspannungen 140 kV und 240 kV. Die Werte im linken
Plot entstammen einer Simulation nur mit den Materialien Aluminium und
Magnesium, während die Werte im rechten Plot aus einer Simulation mit den
zusätzlichen Materialien Eisen und Kupfer enstammen. Es wurden jeweils 3000
Voxel zufällig ausgewählt. Die einzelnen Datenpunkte sind leicht transparent
eingezeichnet, um die Dichte übereinander liegender Punkte zu visualieren.

die Aufweichung der scharfen DECT-Linien sichtbar – die Linien erscheinen nunmehr
als Punktwolken, die für die gezeigten Materialien Aluminium und Magnesium noch
eindeutig trennbar sind. Der rechte Plot zeigt den Einfluss der Materialien Eisen und
Kupfer (nicht im Plot) neben Aluminium und Magnesium in den Phantomen. Durch die
starke Abschwächung der sehr viel schwereren Elemente Eisen und Kupfer werden die
DECT-Punktwolken von Aluminium und Magnesium weiter zerstreut. An der y-Achse
ist ebenfalls Clipping am Nullpunkt zu erkennen, da rekonstruierte Voxel mit negativen
Werten per Definition in der Simulation geclipped werden.6 Analog zeigt Abbildung
5.11 die DECT-Plots für die Materialien Eisen und Kupfer. Auch hier ist eine deutliche
Zerstreuung der Punktwolke sowie eine teilweise Überlagerung zu beobachten.
Die Schwierigkeit für einen Algorithmus zur Materialbestimmung wird anhand der
Abbildungen 5.10 und 5.11 deutlich. Wird lediglich ein Voxel in einem DECT-Schichtbild
betrachtet, sind zwei Zahlenwerte gegeben – der µL,m(140 kV) und der µL,m(240 kV).
Die DECT-Punktwolken in den Abbildungen 5.10 und 5.11 sind weitestgehend getrennt,
jedoch gibt es einzelne Ausreißer, die zu einer leichten Überlagerung der Punktwolken
beitragen. Mit einem klassischen, (einzel-)voxelbasierten Algorithmus, nach der Definiti-
on klassischer Algorithmen zur Materialbestimmung aus Kapitel 4, kann in diesen Fällen
nicht entschieden werden, welches Material vorliegt. Nach der Einführung des Deep
Learnings (Kapitel 3) und den Ergebnissen der Literaturrecherche zur Material-CT (Kapi-
tel 4) besteht die These, dass DL-basierte Verfahren mit ihrer Fähigkeit, einen lokalen
(Bild-)Kontext in eine Berechnung einzubeziehen, diese Limitierung auflösen können.

6 Negative Abschwächungskoeffizienten sind physikalisch nicht sinnvoll, entstehen immer als Folge von
CT-Artefakten und werden in der Regel genullt.
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Abbildung 5.11: Aus einer Simulation extrahierte, materialabhängige Abschwächungskoeffizien-
ten µL,m für zwei Quellspannungen 140 kV und 240 kV. Es wurden jeweils 3000
Voxel zufällig ausgewählt. Die einzelnen Datenpunkte sind leicht transparent
eingezeichnet, um die Dichte übereinander liegender Punkte zu visualieren.

5.4.4 Geschwindigkeit und Skalierbarkeit

Die am Anfang des Kapitels in Abschnitt 5.1 formulierten Anforderungen bezüglich
der Geschwindigkeit der Trainingsdatenerzeugung werden nun für die implementierte
Methode evaluiert. Die implementierte Simulation berechnet einen Trainingsdatensatz
gemäß Tabelle 5.2 mit insgesamt 250.000 Tupeln in weniger als zwei Stunden. Für die
Bestimmung der angegebenen Zeit wurde ein GPU-Server der Partition WestAI am
Forschungszentrum Jülich verwendet. Jeder GPU-Server dieser Partition besitzt 64 CPU-
Kerne, 512 GB Speicher und vier Nvidia H100 NVL mit jeweils 94 GB Graphikspeicher.
Die einzelnen Simulationen werden in Batches mit jeweils 64 Datentupeln innerhalb
der oben angesprochenen Dask-Worker gestartet. Abbildung 5.12 zeigt den Einfluss der
Worker-Anzahl pro GPU auf die Geschwindigkeit der Simulation. Es gilt, genügend
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Abbildung 5.12: Mittlere benötigte Zeit pro Simulation eines Datentupels für verschiedene Worker-
Anzahlen pro GPU.
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Worker zu starten, sodass die GPUs voll ausgelastet werden. Bei einer zu großen Worker-
Anzahl blockieren sich die Prozesse gegenseitig und bremsen das gesamte System aus.
Die minimale Zeit pro Datensatz wird bei 12 Workern beobachtet, sodass im Folgenden
12 Worker pro GPU verwendet werden.
Weiterhin ist zu klären, wie die benötigte Rechenzeit von der Anzahl der verwendeten
Graphikkarten innerhalb eines Rechenknotens abhängt. Abbildung 5.13 zeigt die be-
nötigte Zeit zur Berechnung eines verkleinerten Testdatensatzes bestehend aus 12800
Datentupeln. Die theoretische, ideale Skalierung bezüglich der GPU-Anzahl (graue Linie)
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Abbildung 5.13: Mittlere benötigte Zeit für die Simulation von 12800 Datentupeln mit einer oder
mehreren GPUs. Die graue Linie markiert den Idealfall: die Verdopplung der
GPU-Anzahl führt zu einer Halbierung der Rechenzeit.

wird erwartungsgemäß nicht erreicht. Dennoch ist ein Leistungszuwachs, das heißt eine
Reduktion der Berechnungsdauer, für eine zunehmende Anzahl an GPUs zu beobachten.
Aufbauend kann untersucht werden, wie sich die Skalierung mit einer größeren Anzahl
an GPUs, verteilt auf mehrere Rechenknoten, in Bezug zur Rechenzeit verhält. Es ist anzu-
nehmen, dass die in Abbildung 5.13 dokumentierte Leistungsabnahme durch Erhöhung
der GPU-Anzahl weiter zunimmt. Im Rahmen dieser Thesis wird auf diese Untersuchung
bewusst verzichtet, da die Simulation auf einem Rechenknoten mit der oben genannten
Spezifikation innerhalb des Zeitlimits von 24 h etwa drei Millionen Datentupel erzeugen
und speichern kann.

5.5 zusammenfassung

In diesem Kapitel wurden zunächst die CT-spezifischen sowie die DL-spezifischen
Anforderungen für die Trainingsdatenerzeugung mithilfe einer Simulation für die Ma-
terialbestimmung in der Computertomographie identifiziert. Motiviert anhand eines
realen CT-Messablaufes wurde ein Ablaufdiagramm für die Trainingsdatenerzeugung in
Abbildung 5.1 entwickelt. Einige der Funktionalitäten, der Schnittlängenprojektor sowie
die Rekonstruktion, konnten in bestehenden Simulationsprogrammen identifiziert und
isoliert für die eigene Implementierung genutzt werden. Die fehlenden Funktionen, das
Generieren zufälliger Phantome sowie die Abschwächungsberechnung nach Gleichung
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1.1, wurden implementiert. Insgesamt wurde die entwickelte Methode zur Datenerzeu-
gung abschließend anhand der zu Beginn des Kapitels aufgestellten Anforderungen
evaluiert. Es konnte gezeigt werden, dass die implementierte Simulation eine ausrei-
chende Übereinstimmung mit der vielerseits genutzten Simulation aRTist aufweist. Der
Abgleich mit realen CT-Scandaten zeigt jedoch deutliche Abweichungen, die vermutlich
aufgrund systematischer Modellierungsungenauigkeiten auftreten, sodass die geforderte
Genauigkeit nicht erreicht wird. Diese Abweichungen können vermutlich mit der Ver-
wendung einer Monte-Carlo-basierten Simulation signifikant reduziert werden, wozu
jedoch die verfügbare Rechenzeit um mehrere Größenordnungen überschritten wird. Die
implementierte Simulation wird im weiteren Verlauf dieser Arbeit zur Trainingsdatener-
zeugung verwendet, wobei der Fehler aufgrund der angesprochenen Sim-To-Real-Gap
jeweils im Kontext der Auswertung verschiedener Aspekte diskutiert wird. Es wird fest-
gehalten, dass mithilfe der implementierten Methode zur Trainingsdatenerzeugung die
im Rahmen der Literaturrecherche identifizierte Forschungslücke mindestens teilweise
geschlossen werden kann. Durch die Geschwindigkeit und Skalierbarkeit der imple-
mentierten Methode können erstmals sehr große Trainingsdatenmengen mit mehreren
Millionen Tupeln innerhalb einer wirtschaftlichen Zeitspanne erzeugt werden. Mithilfe
ebendieser Datensätze können parameterstarke DL-Modelle, die auf große Datensätze
angewiesen sind, trainiert und für die Material-CT erprobt werden. Auch alternative
Fragestellungen der CT abseits der Materialbestimmung können mithilfe der imple-
mentierten Methodik durch die Simulation entsprechender Trainingsdaten erschlossen
werden. Offen bleibt eine Lösung der beobachteten Sim-To-Real-Gap, die als Folge der
fehlenden Modellierung der Streustrahlung auftritt und weiterhin nicht trivial mithilfe
einer Raytracing-basierten Simulation erschlossen werden kann.





6
D E E P - L E A R N I N G - A R C H I T E K T U R F Ü R D I E
M AT E R I A L B E S T I M M U N G

Nach der Einführung des Deep Learnings als flexibles Werkzeug zur Darstellung kom-
plexer Funktionen in Kapitel 3 wird in diesem Kapitel zur Beantwortung der zweiten
Forschungsfrage eine DL-Architektur gesucht, die die Materialbestimmung basierend
auf CT-Daten effektiv lösen kann. Zunächst werden in Abschnitt 6.1 die industriellen
Rahmenbedingungen beschrieben, die für den späteren Transfer der DL-Modelle in
die praktische CT-Anwendung berücksichtigt werden müssen. Es werden verschiedene
Szenarien von CT-Scans vorgestellt, die individuelle Anforderungen an die Inferenzge-
schwindigkeit der DL-Modelle stellen. Weiterhin ist die zu erreichende, absolute Präzision
der DL-basierten Materialbestimmung festzulegen, die ebenfalls im Rahmen der indus-
triellen Rahmenbedingungen anwendungsbezogen motiviert und berechnet wird. Die
in Kapitel 5 beschriebene Simulation wird zur Erzeugung der Trainingsdaten für die
DL-Modelle in diesem Kapitel verwendet. Somit unterliegt die Beurteilung der Präzision
bei der Materialbestimmung anhand von realen CT-Scandaten weiterhin der Sim-To-Real-
Gap, die nach Kapitel 5.4.2 nicht vernachlässigbar ist. Daher werden zunächst simulierte
Phantome verwendet, um die Präzision der Materialbestimmung in diesem Kapitel, ins-
besondere beim Vergleich verschiedener DL-Architekturen, zu quantifizieren. Das hierzu
simulierte Phantom wird in Abschnitt 6.2 anhand der Rahmenbedingungen motiviert
und beschrieben. CT-Schichtbilder weisen in praktischen Anwendungen meist große
räumliche (Bild-)Dimensionen H, W auf (vergleiche Kapitel 6.1). Ein Standardansatz, um
sehr große Bilder mit neuronalen Netzen effizient zu verarbeiten, ist das sogenannte
Cropping – das Zerlegen eines Bildes in kleinere Teilbilder, sodass die Teilbilder einzeln
von einem neuronalen Netz verarbeitet werden können [107, 108]. In Abschnitt 6.3 wird
untersucht, ob diese Strategie für die Materialbestimmung mit CT-Schichtbildern an-
gewandt werden kann. Basierend auf der Literaturrecherche in Kapitel 4.2.4 werden in
Abschnitt 6.4 zwei DL-Architekturen für die Materialbestimmung trainiert und quantita-
tiv verglichen. Abschließend wird die ausgewählte Architektur in Abschnitt 6.5 anhand
der zuvor beschriebenen Rahmenbedingungen bewertet.

6.1 industrielle rahmenbedingungen für dl in der ct

Zunächst ist die Laufzeit, die sogenannte Inferenzzeit, der entwickelten DL-Architektur
im Kontext der Mess- und Rekonstruktionszeit eines CT-Scans zu beurteilen. In der in-
dustriellen CT lassen sich drei Scanmodi anhand der zur Verfügung stehenden Messzeit
identifizieren: die Labor-CT, die At-line-CT und die In-line-CT. Die Labor-CT ist auf eine
bestmögliche Bildqualität ausgelegt, sodass die Messzeit praktisch nicht limitiert ist. Im
Gegensatz dazu steht die In-line-CT, die zur lückenlosen Prüfung in einem Produkti-
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onsprozess eingesetzt wird und deren Messzeit direkt an den Produktionstakt T der
zu prüfenden Teile (sogenannte Prüfteile) gekoppelt ist. Durch die Einschränkung der
Messzeit kann die Bildqualität negativ beeinträchtigt werden. Zwischen diesen beiden
Prüfkonzepten gibt es die At-line-CT, die produktionsbegleitend nicht jedes produzierte
Teil, sondern nur stichprobenhaft die CT-Prüfung durchführt, sodass ein Kompromiss
aus Bildqualität und aufgebrachter Messzeit erreicht wird. Grundsätzlich lässt sich für die
Labor-CT keine eindeutige obere Schranke hinsichtlich der Inferenzzeit eines DL-Modells
bestimmen, da die Messzeiten anwendungsabhängig sind und ebenso die Dimensionen
der rekonstruierten Volumina stark variieren. Hingegen wird durch den Produktionstakt
bei der At-line- und In-line-CT die maximale Verarbeitungszeit eingeschränkt. Anhand
eines Beispiels aus der industriellen Fließbandproduktion lassen sich einige Faktoren aus
der Anwendungsumgebung anschaulich erfassen. Abbildung 6.1 zeigt den Ausschnitt
einer industriellen Fertigungslinie mit einem CT-Scanner zur Qualitätsüberwachung.
Während das Prüfteil nach der CT-Bildaufnahme im Fertigungsprozess weiterverarbeitet

CT-Scan

T L i.O.

n.i.O.

Abbildung 6.1: Schematische Darstellung einer In-line-CT gekoppelt an ein Fließband mit ei-
nem zeitlichen Abstand T, der Taktzeit, zwischen zwei Prüfteilen (oder: Proben).
Nach der Bildaufnahme im CT-Scanner werden die Prüfteile auf dem Fließband
weitertransportiert und die Zeit, beziehungsweise die zurückgelegte Strecke, bis
zur Prüfentscheidung in Ordnung (i.O) oder nicht in Ordnung (n.i.O.) durch den
CT-Scan wird als Latenz L bezeichnet.

wird, laufen im Hintergrund die Rekonstruktion und die (DL-basierte) Auswertung.
Die Laufzeit der DL-Modelle hat somit, additiv zur Laufzeit der Rekonstruktion, einen
direkten Einfluss auf die Latenz der Prüfentscheidung. Im Idealfall erfolgen die Rekon-
struktion und die Auswertung innerhalb der Taktzeit T, sodass die Latenz kleiner oder
gleich der Taktzeit ist und die gesamte Auswertung somit in Echtzeit zum Prüfprozess
erfolgt. Dreier et al. demonstrieren, dass einzelne Prüfaufgaben an Batteriezellen mit-
hilfe von CT-Scans innerhalb einer Sekunde durchgeführt werden können [109]. Aus
Gesprächen mit CT-Experten wird zudem klar, dass die Durchführung eines CT-Scans
einer ganzen Batteriezelle (Rundzelle, beispielsweise Typ 18650) innerhalb von etwa 10 s
realistisch auf dem von Dreier et al. beschriebenen CT-Scanner1 durchgeführt werden
kann. Die Rekonstruktion der CT-Daten wird im Rahmen dieser Arbeit nicht näher
betrachtet, sodass idealisiert angenommen wird, dass die Rekonstruktion innerhalb der
geforderten Taktzeit von 10 s auf einem dedizierten Rechner erfolgt. Somit ergibt sich

1 Konkret wird die kurze Messzeit durch den hohen Photonenfluss der von Dreier et al. verwendeten
Röntgenquelle [109] erreicht.
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für die Materialbestimmung, analog zur Rekonstruktionszeit, die maximale Inferenzzeit
10 s, um dem Takt der CT-Scans zu folgen. Die Materialbestimmung mit Deep Learning
wird in der Regel (vergleiche Kapitel 4.2.4) schichtweise durchgeführt, sodass die Berech-
nungen auf unabhängigen CT-Schichten, senkrecht zur Drehachse, auf mehreren GPUs
parallel ausgeführt werden können, wobei jede GPU die Zeit T = 10 s ausschöpfen kann.
Im weiteren Verlauf des Kapitels wird sich zeigen, welche Architekturen nach dieser
Definition In-line-fähig sind und insbesondere wirtschaftlich sinnvoll, das heißt unter
Verwendung eines einzelnen Inferenzservers mit bis zu acht Graphikkarten, in realen
Produktionsumgebungen genutzt werden können.
Eine weitere Rahmenbedingung für den industriellen Einsatz der entwickelten Verfah-
ren zur Materialbestimmung besteht in der absoluten Präzision sowie der Bildqualität.
Hierbei meint der Begriff Präzision die Vorhersagegenauigkeit der Methode in Bezug auf
die ortsabhängige Materialzusammensetzung (Kernladungszahl Z und Dichte ρ) und
der Begriff Bildqualität die klassische Bildqualität in Bezug auf Rauschen und Bildschär-
fe. Die Anforderungen an die Bildqualität werden direkt aus dem CT-Scan abgeleitet.
Wie in Kapitel 2.3 beschrieben, wird das Rauschen der aufgenommenen Projektionen
durch die Rekonstruktion in das Volumen zurückprojiziert. Steuwe et al. zeigen, dass
die DL-basierte Bildverarbeitung das Rauschen in CT-Schichtbildern reduzieren kann
[110]. Daher soll anhand der Ergebnisse dieser Arbeit die Rauschreduktion der verwen-
deten Methode stichprobenartig untersucht werden. Hierzu wird das Bildrauschen als
effektive Schwankung der rekonstruierten Abschwächungskoeffizienten quantifiziert. Die
Präzision der Methode muss im Kontext einer gegebenen Messaufgabe beurteilt werden.
Mit dem Wissen, dass eine vorliegende Probe weder ein Gemisch noch eine Legierung
ist, genügt zur Materialbestimmung von beispielsweise Aluminium die Vorhersage der
Kernladungszahl Z = 13± 0.49. Anders verhält es sich bei Legierungen, wie zum Beispiel
Edelstählen, da hier die effektiven Kernladungszahlen verschiedener Edelstähle reell-
wertig sind [14] und sich gegebenenfalls erst in den Nachkommastellen unterscheiden.
Gleiches gilt für die Vorhersage der Dichte, sodass sich für beide Größen keine direkte
Anforderung bezüglich der Präzision aus der Anwendungsperspektive ergibt – je genauer,
desto besser. In Gesprächen mit CT-Anwendern wird häufig eine maximale Abweichung
von 1 % (Abweichung vom jeweiligen Literaturwert) für die Materialbestimmung, das
heißt konkret die Kernladungszahl und die Dichte, gefordert. Daraus ergibt sich beispiels-
weise für die Dichtevorhersage von Eisen mit dem Literaturwert ein Toleranzbereich
ρ ≈ (7.80± 0.08) g/cm3. Zur Vereinfachung, das heißt unter Ausschluss von Legierungen,
werden somit die Toleranzbereiche ±0.5 für die Vorhersage der Kernladungszahl und
±1 % für die Vorhersage der Dichte definiert. Innerhalb dieser Toleranzbereiche können
sogenannte Reinstoffe2 eindeutig identifiziert und anhand ihrer Dichte auf Porosität ge-
prüft werden. Darauf aufbauend kann untersucht werden, welche maximale Präzision
für die Vorhersage der Kernladungszahl und Dichte aus physikalischer Sicht überhaupt
möglich ist. Die rekonstruierten DECT-Schichtbilder dienen als Eingabedaten für das
vorgestellte Verfahren zur Materialbestimmung. Sie unterliegen einem Rauschen, welches
die maximale Präzision der Materialbestimmung limitiert und zunächst bestimmt werden

2 Gemeint ist hier ein Material, das nur aus einer Atomsorte besteht.
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muss. Das absolute Rauschen entspricht der Standardabweichung der rekonstruierten
Abschwächungskoeffizienten in einem homogenen Objekt. Problematisch ist jedoch, dass
die rekonstruierten Abschwächungskoeffizienten, aufgrund der Strahlaufhärtungsarte-
fakte innerhalb einer stark abschwächenden Probe, positionsabhängig abgesenkt werden
und somit die genannte Standardabweichung in einem Bildausschnitt signifikant be-
einflussen. Um das absolute Rauschen von den Strahlaufhärtungsartefakten (vergleiche
Kapitel 2.4.1) innerhalb der Probe zu trennen, wird eine zweidimensionale Funktion
an den gewählten Bildausschitt µ(x,y) im CT-Schichtbild angefittet, die näherungsweise
den Einfluss der Strahlaufhärtungsartefakte abbildet. Abbildung 6.2 zeigt einen eindi-
mensionalen Schnitt durch den Kupferwürfel aus Abbildung 5.8 (realer Scan) sowie die
angefittete Funktion. Die Standardabweichung der Differenz zwischen Signal und Fit
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Abbildung 6.2: Schnitt durch den mittleren Teil des Kupferwürfels aus Abbildung 5.8 (Signal)
mit dem Fit eines Polynoms vierten Grades (oben). Die absolute Abweichung
zwischen dem Signal und dem Fit wird unten dargestellt und entspricht dem
absoluten Rauschen in der Einheit 1/cm. Der genaue Bildausschitt innerhalb der
Kupferprobe ist in Abbildung 6.3 eingezeichnet.

(Abbildung 6.2; unten) entspricht dem absoluten Bildrauschen in dem ausgewählten
Bildausschnitt. Abbildung 6.3 stellt die DECT-Schichtbilder aus dem realen CT-Scan
gemeinsam mit den ausgewählten Bildausschnitten zur Bestimmung des Rauschens dar.
In allen Materialien ist das Rauschen im Low-Energy-Kanal (140 kV) stärker. Weiterhin ist
das Rauschen in den Abschwächungskoeffizienten von Eisen und Kupfer deutlich höher
als in den Abschwächungskoeffizienten des Aluminiums, da das Aluminium aufgrund
der niedrigeren Abschwächung weniger Photonen absorbiert und somit die Zählstatistik
am Detektor besser ausfällt. Zur Bestimmung des Einflusses des Bildrauschens ∆µL auf
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Abbildung 6.3: Rekonstruierte DECT-Volumina eines realen Scans mit berechnetem Rauschen in
den verschiedenen Materialien. Die roten Boxen markieren die jeweilige Bildaus-
schnitte zur Berechnung des Rauschens.

die vorhergesagte Kernladungszahl Z und Dichte ρ werden die Gleichungen nach Knoll
[3, S. 54; G. 2.22] und Heismann [14] verwendet:

µL = ρ · µm (Knoll)

µL = αρ
Zk

El + βρ (Heismann)
(6.1)

wobei µm der Massenschwächungskoeffizient eines Materials m ist, α, β, k und l Konstan-
ten nach Heismann [14] sind und E die effektive Photonenenergie (vergleiche Kapitel 2.6;
Sprawls [34]) ist. Durch Umformen und Ableiten ergibt sich für die Fehlerfortpflanzung
mit einem gegebenen Rauschen des rekonstruierten Volumens ∆µL

µL = αρ
Zk
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(6.2)



88 deep-learning-architektur für die materialbestimmung

für die Ungenauigkeit der Kernladungszahl ∆Z sowie

µL = ρ · µm ⇔ ρ =
µL

µm
⇒ dρ

dµL
=

1
µm

⇒ ∆ρ =
1

µm
· ∆µL

(6.3)

für die Ungenauigkeit der Dichte ∆ρ.
Aus den berechneten Werten des Bildrauschens in Abbildung 6.3 und den Gleichungen
6.2 und 6.3 werden die bestmöglichen Präzisionen für die Materialbestimmung abhängig
vom Material ermittelt und in Tabelle 6.1 aufgelistet. Da die Materialbestimmung auf
beiden Energien des DECT-Scans basiert, wird das stärkere Rauschen (Low-Energy-Bild
aus Abbildung 6.3 (links)) zur Abschätzung verwendet.

Tabelle 6.1: Theoretische Grenzauflösungen der Kernladungszahlvorhersage Z ± ∆Z und Dichte-
vorhersage ρ ± ∆ρ berechnet mithilfe von Gleichung 6.2 und 6.3 anhand der Daten
des realen Scans aus Abbildung 5.8 und 6.3.

Material Z ± ∆Z (ρ ± ∆ρ) in g/cm3

Al (Z = 13, ρ = 2.70) 13 ± 0.033 2.70 ± 0.0096
Fe (Z = 26, ρ = 7.80) 26 ± 0.023 7.80 ± 0.0092
Cu (Z = 29, ρ = 8.93) 29 ± 0.021 8.93 ± 0.0083

6.2 simuliertes phantom zur quantitativen auswertung

Für einen quantitativen Vergleich zwischen den im weiteren Verlauf dieses Kapitels
entwickelten DL-Architekturen werden Testdaten benötigt, deren Eigenschaften exakt
bekannt sind. Die Phantome der Testdaten müssen verschiedene Materialien enthalten,
deren Zusammensetzung und Position innerhalb der rekonstruierten Volumina exakt
bekannt sind. Zur Abdeckung der in Kapitel 5.3 motivierten Bandbreite verwende-
ter Materialien, werden die Materialien Aluminium, Eisen und Kupfer exemplarisch
ausgewählt. Aluminium zählt zu den leichtesten und Kupfer zu den schwersten aus-
gewählten Elementen in Tabelle 5.1 während Eisen mittig platziert ist. Zudem müssen
die CT-Geometrie und das Quellspektrum exakt bekannt sein, um Abweichungen der
DL-Modelle aufgrund von systematischen Modellierungsfehlern ausschließen zu können.
Rückblickend auf die beobachtete Sim-To-Real-Gap in Kapitel 5.4.2 sollte daher eine
Simulation zur Erzeugung des Phantoms verwendet werden, die den CT-Messprozess
analog zu der implementierten Simulation modelliert. Somit kann beispielsweise der
Einfluss der Streustrahlung auf die Ergebnisse der Materialbestimmung explizit ausge-
klammert werden. Dennoch sollten die Testdaten in einem sinnvollen und realistischen
Maß CT-Artefakte, konkret die Strahlaufhärtung und das statistische (Bild-)Rauschen,
enthalten. Die Stärke der Strahlaufhärtung kann durch die Probengröße (genauer: die
Schnittlänge durch ein Material) sowie durch das Quellspektrum beeinflusst werden.
Basierend auf Experimenten an der realen CT-Anlage aus Kapitel 2.7 werden die DECT-
Quellspektren mit den Beschleunigungsspannungen 140 kV (Low-Energy-Kanal) und
240 kV (High-Energy-Kanal) festgelegt. Während die höhere Beschleunigungsspannung
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mit 240 kV die maximal einstellbare Beschleunigungsspannung an der Röntgenquelle der
realen CT-Anlage ist, wird die niedrigere Beschleunigungsspannung so gewählt, dass
sie einerseits einen möglichst großen Abstand zur höheren Beschleunigungsspannung
aufweist und andererseits nicht so niedrig ist, dass die Strahlaufhärtungsartefakte die
Bildqualität maßgeblich beeinträchtigen. Die Probengröße wird auf 1 cm (Kantenlänge)
festgelegt, um deutliche Strahlaufhärtungsartefakte im Low-Energy-Kanal zu induzieren
während der High-Energy-Kanal weitestgehend artefaktfrei bleibt. Zur Simulation des
Testdatensatzes wird aRTist (vergleiche Kapitel 5.2.1) verwendet. Das simulierte Phantom
wird in Abbildung 6.4 dargestellt. Die in der Simulation verwendeten CT-Scanparameter,

(a) Phantom (b) Abbildungsgeometrie

Abbildung 6.4: Screenshots (a) des Phantoms bestehend aus Aluminium (Al), Eisen (Fe) und
Kupfer (Cu) sowie der gesamten Abbildungsgeometrie in (b) aus der Simulation
aRTist. In (b) befindet sich die Röntgenquelle mit eingezeichnetem Strahlkegel
oben im Bild. Direkt unterhalb ist das Phantom aus (a) zu sehen. Unten befindet
sich ein Detektor, der die Projektion des Phantoms zeigt.

abgeleitet aus den Anforderungen, werden in Tabelle 5.2 aufgelistet. Abbildung 6.5 zeigt
einen Schnitt durch das rekonstruierte Volumen des Phantoms aus Abbildung 6.4. Der
Effekt der Strahlaufhärtung kann anhand des deutlichen Cuppings (vergleiche Abschnitt
2.4.1), wie gefordert, in der oberen Zeile im Low-Energy-Kanal erkannt werden. Für
die nachfolgenden Auswertungen dieses Kapitels wird ausschließlich das vorgestellte
Phantom aus Abbildung 6.5 verwendet.
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Abbildung 6.5: CT-Schnittbilder durch den Low-Energy-Kanal (oben) und den High-Energy-
Kanal (unten) des Phantoms aus Abbildung 6.4. Die rechte Spalte stellt jeweils
den Schnitt entlang der gestrichelten Mittellinien dar.
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6.3 einfluss des globalen bildkontextes

CT-Artefakte beeinflussen im Allgemeinen die Bildqualität und insbesondere die quantita-
tiv gemessenen Abschwächungskoeffizienten, wie in Abschnitt 2.4.1 beschrieben worden
ist. Die Identifikation eines CT-Artefakts, in einem gegebenen CT-Volumen, ist für Domä-
nenexperten in der Regel unproblematisch, da sie, im globalen Bildkontext, das gescannte
Objekt von den charakteristischen Streifen, Linien und Grauwertverschiebungen unter-
scheiden können. Wird hingegen nur ein kleiner Ausschnitt des CT-Volumens betrachtet,
ist diese Unterscheidung zunehmend anspruchsvoller und ab dem Unterschreiten einer
gewissen Bildausschnittgröße unmöglich. DL-basierte Verfahren zur Verarbeitung von CT-
Daten, oder allgemein Bilddaten, bieten gegenüber den meisten klassischen Algorithmen
den Vorteil, dass sie dieses entscheidende Kontextwissen extrahieren können. Im Idealfall
wird somit ein DL-Modell auf vollständigen Schnittbildern aus dem CT-Volumen trainiert,
sodass der globale Kontext ebendieser Schicht vollständig verfügbar ist. Ein Problem
mit diesem Ansatz ist, dass industrielle CT-Schnittbilder häufig eine hohe Auflösung
bis zu 30002 Voxeln aufweisen, sodass das direkte Training auf einzelnen Schichtbildern
dieser Auflösung aufgrund des immensen Rechenbedarfs nicht realistisch durchführbar
ist. In Kapitel 5.1.2, den DL-induzierten Rahmenbedingungen, wurden daher die Bilddi-
mensionen der simulierten CT-Schichtbilder vorläufig auf (H, W) = (256, 256) festgelegt.
Dennoch existieren Strategien, um mit großen Bildern zu trainieren und die Modelle auf
ebendiesen auszuführen: Bei der sogenannten Crop-Strategie werden das Training und
die Inferenz auf kleineren Bildausschnitten, sogenannten Crops, ausgeführt. Alternativ
können die großen Bilder auch mittels Interpolation verkleinert werden (Resize-Strategie),
sodass das gesamte CT-Schichtbild mit einer reduzierten Auflösung vorliegt. Beide Strate-
gien werden im Folgenden erprobt und hinsichtlich ihrer Vorhersagegenauigkeit bei der
Materialbestimmung verglichen. Basierend auf den Ergebnissen der Literaturrecherche
in Kapitel 4.2.4 wird, der Mehrheit der Autoren folgend, die U-Net-Architektur nach
Ronneberger et al. [36] verwendet. Da es sich bei der folgenden Untersuchung der Resize-
und Crop-Strategie im Kern um die Bedeutung des globalen Bildkontextes für die lokale
Materialbestimmung handelt, kann angenommen werden, dass sich andere Architekturen
in diesem Punkt analog zum U-Net verhalten.
Um einen fairen Vergleich zu ermöglichen, wird ein Datensatz mit den Dimensionen
(C, H, W) = (2, 1024, 1024) der DECT-Schichtbilder simuliert. Da die Gesamtgröße des
Datensatzes aufgrund der hohen räumlichen Auflösung signifikant ansteigt (vergleiche
Kapitel 5.1), wird die Anzahl der simulierten Tupel auf 32.000 reduziert, sodass der Daten-
satz insgesamt etwa 260 GB umfasst. Für das Modell, das mit der Resize-Strategie trainiert
wird (Mresize), werden die Bilder mittels bilinearer Interpolation auf die Dimensionen
(C, H, W) = (2, 256, 256) verkleinert. Das andere Modell (Mcrop) wird mit, während des
Trainings zufällig erzeugten, Crops mit den Dimensionen (C, H, W) = (2, 256, 256) aus
den DECT-Schichtbildern trainiert. Abbildung 6.6a zeigt den Training Loss und den
Validation Loss des Models Mresize, das auf vollständigen DECT-Schichtbildern trainiert
worden ist. Nach etwa 150 Epochen erfährt das Modell Overfitting an die Trainingsdaten.
Die Loss Curves des Modells Mcrop sind in Abbildung 6.6b dargestellt. Anhand von
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Abbildung 6.6: Training (train) und Validation Losses (validation) für (a) das Training auf ganzen
CT-Schichtbildern mit der Resize-Strategie und (b) das Training auf zufälligen
Ausschnitten der CT-Schichtbilder mit der Crop-Strategie. Die Originalauflösung
der Schichtbilder ist (1024× 1024)Pixel. Die Schichtbilder werden für das Training
in (a) mittels bilinearer Interpolation verkleinert, sodass der gesamte Bildkontext
vorliegt. Das Training in (b) wird mit Random Crops der DECT-Schichtbilder
durchgeführt, sodass nur ein eingeschränkter, lokaler Bildkontext vorliegt. Die
jeweils besten Validation Losses werden durch die gestrichelten Linien markiert.
Beide Plots entsprechen der Legende in (b). Die Trainingsparameter sind in beiden
Durchläufen bis auf die Anzahl der Epochen identisch.

Abbildung 6.6 scheint das Training mit der Crop-Strategie bessere Ergebnisse, das heißt
konkret einen niedrigeren Validation Loss, zu liefern. Ein Grund für den niedrigeren Vali-
dation Loss kann in der relativen Größe der Regionen (vergleiche Abbildung 5.3) in Bezug
zur Bildgröße, beziehungsweise im Fall der Crop-Bilder Bildausschnittsgröße, vermutet
werden. Es besteht die Vermutung, dass größere, zusammenhängende Materialregionen,
einfacher vom Modell vorhergesagt werden können. Dieser Zusammenhang zwischen
der mittleren Regionsgröße relativ zur Bildgröße und der Materialvorhersage wird in
Abschnitt 7.1 durch eine Variation der mittleren Regionsgröße spezifisch untersucht.
Die quantitative Auswertung des Phantoms in Tabelle 6.2 bringt im Gegensatz zu Ab-
bildung 6.6 hervor, dass die Bestimmung der Materialien in den meisten Fällen mit der
Resize-Strategie bessere Ergebnisse liefert. Lediglich die Vorhersage der Kernladungszahl
von Kupfer erzielt einen besseren Mittelwert mit der Crop-Strategie, wobei die berech-
nete Standardabweichung verhältnismäßig hoch ausfällt. Die Ergebnisse zeigen, dass
die Resize-Strategie zur Optimierung der Materialbestimmungspräzision im Folgenden
verwendet werden sollte. Offen bleibt die Frage nach einer sinnvollen Bildgröße infolge
des Resizings. Wie bereits in Kapitel 5.1 beschrieben, hat die Bildgröße einen signifi-
kanten Einfluss auf die Größe des gesamten Trainingsdatensatzes sowie die Dauer des
Trainings. Vor dem Hintergrund, dass im weiteren Verlauf dieses Kapitels und auch in
den weiteren Kapiteln zahlreiche Modelle trainiert werden müssen, um sowohl Hyper-
parameter zu optimieren als auch Grenzen der entwickelten Methodik zu untersuchen,
werden die Bilddimensionen in den Trainingsdaten im Folgenden auf (256 × 256)Pixel
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festgelegt. Diese Dimensionen orientieren sich weiterhin an den Ergebnissen der Litera-
turrecherche aus Kapitel 4.2.4 und sind ausreichend, um die Methodik zu untersuchen,
ohne wertvolle Rechenzeit in einem unvernünftigen Maß zu verbrauchen. Eine Impli-

Tabelle 6.2: Vorhergesagte Kernladungszahlen in (a) und absolute Dichten in (b) für die verschie-
denen Trainingsstrategien resize und crop. Die tabellierten Werte geben den Mittelwert
µ und die Standardabweichung σ der Vorhersage in der Form µ ± σ an. In der jeweils
ersten Spalte werden die Materialien zusammen mit ihren Literaturwerten gelistet.
Das jeweils bessere Ergebnis, pro Strategie und Material, ist grau hinterlegt. Alle
Ergebnisse wurden mit einem U-Net [36] erzielt.

Material resize crop
Al (13) 13.03 ± 0.05 15.70 ± 1.08
Fe (26) 26.53 ± 0.08 26.81 ± 0.15
Cu (29) 28.69 ± 0.11 28.88 ± 0.62

(a) Kernladungszahl Z

Material resize crop
Al (2.70) 2.70 ± 0.01 2.65 ± 0.03
Fe (7.80) 7.81 ± 0.02 7.78 ± 0.03
Cu (8.93) 8.97 ± 0.02 9.14 ± 0.2

(b) Dichte ρ in g/cm3

kation aus dieser Wahl ist, dass die Materialbestimmung auch auf hochauflösenden
CT-Schnittbildern mit deutlich größeren Bilddimensionen stets eine maximale Auflö-
sung von (256 × 256)Pixel erreicht. Somit können kleine Partikel durch Anwendung der
Resize-Strategie in den CT-Schichtbildern durch die Interpolation verfälschte Abschwä-
chungskoeffizienten aufweisen oder vollständig verschwinden. Für einen spezifischen
Anwendungsfall, beispielsweise die Materialbestimmung ebendieser Partikel, können
aufbauend auf dieser Arbeit, mit der gleichen Methodik und genügend Rechenzeit,
DL-Modelle auf deutlich größeren Bilddimensionen nach dem Resizing trainiert werden,
um die auflösungsbedingte Präzision zu verbessern.

6.4 verschiedene architekturen : convolution oder transformer?

Im Rahmen dieser Arbeit werden ausschließlich Architekturen für die Bildverarbeitung
(CV) betrachtet, da die Materialbestimmung nach den Anforderungen aus Kapitel 5.1
als eine Bild-zu-Bild-Berechnung (Dense Prediction) formuliert wird. Mit der steigenden
Popularität von Deep Learning ist in den letzten Jahren eine Vielzahl unterschiedlicher
Architekturen für ebenso vielfältige Anwendungen vorgestellt und erprobt worden. Eine
Architektur, die für vielfältige Anwendung aus verschiedensten Domänen angewandt
wird [52, 53, 54, 55], ist das U-Net [36], das bereits in Abbildung 3.5 vorgestellt wurde.
Das U-Net wurde im vorangehenden Abschnitt, motiviert durch die Ergebnisse der
Literaturrecherche aus Kapitel 4.2.4, exemplarisch verwendet, um den Einfluss des glo-
balen Bildkontextes innerhalb eines CT-Schichtbildes auf die Materialbestimmung zu
untersuchen. In Abschnitt 6.4.1 werden die Kapazität des U-Nets (vergleiche θ Abschnitt
3.1) sowie die Trainingsdatenmenge systematisch optimiert, um die effizienteste Konfi-
guration im Kontext der formulierten Anforderungen für die Materialbestimmung zu
finden.
Han et al. dokumentieren einen Trend, demzufolge Transformer-basierte Architekturen
zur Bildverarbeitung zunehmend an Popularität gewinnen [111] und die Convolution-
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basierten Architekturen durch ihre verbesserte Genauigkeit und Inferenzgeschwindigkeit
in gängigen CV-Benchmarks zur Bildklassifikation [57], Objektdetektion und Segmentie-
rung [37] verdrängen. Die Frage, ob Transformer-basierte Architekturen ebenfalls bei der
Materialbestimmung anhand von CT-Schichtbildern die Convolution-basierten Architek-
turen übertreffen, ist bisher in der Literatur nicht quantitativ untersucht worden, sodass
in ebendieser Untersuchung einer der Forschungsbeiträge dieser Dissertationsschrift
besteht. In Abschnitt 6.4.2 wird eine Transformer-basierte Architektur vorgestellt, die für
Dense Prediction geeignet ist und hinsichtlich der Materialbestimmung optimiert. Es
erfolgt ein Vergleich zwischen dem U-Net und der Transformer-basierten Architektur,
sodass eine geeignete Architektur für den weiteren Verlauf dieser Arbeit ausgewählt
werden kann.

6.4.1 U-Net

Das U-Net wurde im vorangehenden Abschnitt in seiner ursprünglichen Form nach
Ronneberger [36] verwendet. In diesem Abschnitt soll zunächst die Präzision der Mate-
rialbestimmung bei der Verwendung des U-Nets weiter verbessert werden, indem die
Kapazität der U-Net-Architektur variiert wird. Einige Autoren berichten von Anpassun-
gen der Feature-Map-Tiefe3 des U-Nets [65, 66, 74], sodass das U-Net für ihre spezifischen
Anwendungen bessere Ergebnisse liefert oder Rahmenbedingungen, wie zum Beispiel
eine reduzierte Inferenzzeit, besser erfüllt. Daher wird für die gegebene Fragestellung
der Materialbestimmung die Tiefe der Feature-Map des U-Nets optimiert. Das U-Net
wurde durch Ronneberger mit einer Feature-Map-Tiefe von 64 definiert [36]. Zur Verein-
fachung wird die Notation U-Netx verwendet, die ein U-Net mit der Feature-Map-Tiefe
x bezeichnet. Tabelle 6.3 bietet einen Überblick über die im Folgenden getesteten Feature-
Map-Tiefen. Die Feature-Map-Tiefen werden anhand von Zweierpotenzen gewählt, um
ein effizientes Speicherlayout der zugrundeliegenden Rechenoperationen zu erreichen.
Für jede Feature-Map-Tiefe werden zudem die Kapazität und die benötigte Rechenzeit
für das Training über 100 Epochen angegeben. Beim U-Net führt eine Verdoppelung der

Tabelle 6.3: Kapazität des U-Nets und Rechenzeitbedarf τ zum Training über 100 Epochen für
verschiedene Feature-Map-Tiefen. Die Angaben zum Rechenzeitbedarf wurden mit
einem Rechenknoten bestehend aus vier NVIDIA H100 und einem Datensatz der
Größe 250.000 (vergleiche Tabelle 5.1) ermittelt. Das Symbol † zeigt an, dass es sich um
einen extrapolierten Wert aufgrund von Rechenzeitlimitierungen (maximal 24 Stunden
pro Job) handelt.

Feature-Map-Tiefe 8 16 32 64 128 256
Kapazität / 1 × 106 0.5 1.9 7.5 30.0 120.0 480.0

τ in Stunden 2.4 2.6 3.4 4.8 9.2 25.8†

Feature-Map-Tiefe zu einer Vervierfachung der Kapazität. Weiterhin ist zu beobachten,
dass die benötigte Rechenzeit nicht proportional zur Kapazität (im tabellierten Bereich)
ist, da mit steigender Kapazität der Datentransfer zwischen CPU- und GPU-Speicher

3 Beschrieben in Abschnitt 3.4.1: Die Anzahl der Kanäle des Tensors (der Feature-Map) vor der ersten
Pooling-Layer im U-Net.
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einen zunehmend kleineren Anteil der Rechenzeit ausmacht.4 Anhand der angegebenen
Rechenzeiten in Tabelle 6.3 wird ersichtlich, dass die Modelle U-Net128 und U-Net256, auf-
grund der Rechenzeitbeschränkungen der Partition WestAI am Forschungszentrum Jülich,
lediglich über 260 beziehungsweise 96 Epochen trainiert werden können. Die anderen
Modelle werden bis zur Konvergenz – meistens über 500 Epochen – trainiert. Abbildung
6.7 fasst die Ergebnisse der Materialbestimmung für die verschiedenen Feature-Map-
Tiefen nach erfolgtem Training der Modelle auf dem Trainingsdatensatz nach Tabelle 5.2
zusammen. Aluminium weist die niedrigsten Abweichungen (MAE) und gleichzeitig die
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Abbildung 6.7: Mittlerer absoluter Fehler MAE der Vorhersage von Kernladungszahl (links) und
Dichte (rechts) mit dem U-Net bei verschiedenen Feature-Map-Tiefen. Ausge-
wertet wurde mithilfe des in Abbildung 6.4 vorgestellten Phantoms anhand der
Materialien Aluminium, Eisen und Kupfer. Der graue Bereich in der linken Abbil-
dung markiert den Toleranzbereich (vergleiche Rahmenbedingungen in Abschnitt
6.1). Analog wird der obere Rand des Toleranzbereiches der Dichte für jedes
Material im rechten Plot gestrichelt markiert.

höchste Stabilität der Kernladungszahlvorhersage zwischen den verschiedenen Modellen
auf. Die MAEs der Materialien Eisen und Kupfer fluktuieren hingegen deutlich. Es
ist zu beobachten, dass nur die Feature-Map-Tiefe 64 sowohl bei der Vorhersage der
Kernladungszahl als auch bei der Dichte die geforderten Präzisionen von ∆Z = ±0.5
(absolut) und ∆ρ = ±1 % (relativ) nach Abschnitt 6.1 für alle Testmaterialien erreicht.
Somit wird die Feature-Map-Tiefe 64, in Übereinstimmung mit dem Vanilla U-Net nach

4 Im Allgemeinen werden Daten vom CPU-Speicher (auch: Host Memory) zunächst in den GPU-Speicher (auch:
Device Memory) übertragen, bevor konkrete Berechnungen auf der GPU mit ebendiesen Daten ausgeführt
werden können. In vielen Fällen stellt dieser Transfer einen Großteil der benötigten Berechnungsdauer dar,
der, aus Sicht der GPU, reine Wartezeit ist. Mit zunehmender Kapazität des Modells steigt auch die benötigte
Rechenzeit der Graphikkarte zur Verarbeitung eines Datenpakets und somit reduziert sich die Wartezeit auf
das nächste Datenpaket. Mithilfe asynchroner Programmierung, die aufgrund ihrer Komplexität hier nicht
weiter erläutert wird, werden die Wartezeiten der GPU signifikant reduziert und der Durchsatz verbessert.
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Ronneberger [36], für die folgenden Untersuchungen verwendet.
Der zweite Optimierungsaspekt, der in diesem Fall ein Hyperparameter des Trainings ist,
besteht in der Größe des Trainingsdatensatzes. Eine Verkleinerung des Trainingsdatensat-
zes kann die Simulation sowie das anschließende Training deutlich beschleunigen und
somit effizienter gestalten. Aus der verwandten Forschung in Kapitel 4 geht hervor, dass
einige Autoren Datensätze mit nur wenigen tausend Tupeln zum Training des U-Nets
verwenden [65, 68, 73, 72]. Zunächst wird die Größenabhängigkeit des Trainingsdatensat-
zes auf die Materialbestimmung untersucht. Der zugrundeliegende Datensatz D umfasst
250.000 Tupel (vergleiche Tabelle 5.2) – die verkleinerten Datensätze erfüllen die Relation

D(10 K) ∈ D(15 K) ∈ D(25 K) ∈ D(50 K) ∈ D(100 K) ∈ D(250 K) .

Aus dem ursprünglichen Datensatz D(250 K) werden zufällig 100.000 Tupel ausgewählt,
die den Datensatz D(100 K) bilden. Analog wird für die kleineren Datensätze verfahren,
sodass diese jeweils eine Teilmenge aller größeren Datensätze sind. Abbildung 6.8 stellt
die Validation Losses mehrerer U-Nets dar, die jeweils auf den genannten Datensätzen
trainiert worden sind. Im Gesamtbild von Abbildung 6.8 sinkt der finale Validation Loss
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Abbildung 6.8: Validation Losses mehrerer U-Nets trainiert auf verschiedenen Datensatzgrößen
(siehe Legende).

mit zunehmender Größe des Trainingsdatensatzes. Die einzige Ausnahme wird bei den
Datensätzen der Größe 10K und 15K beobachtet, wobei es sich auch um statistische
Schwankungen handeln kann. Grundsätzlich ist zu beobachten, dass die Validation
Losses um bis zu eine Größenordnung im gezeigten Beispiel in Abbildung 6.8 variie-
ren. Abbildung 6.9 bietet einen Überblick der Vorhersagen mit den soeben trainierten
Modellen auf dem simulierten Testphantom aus Abbildung 6.5. Die Vorhersage der
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Abbildung 6.9: Vorhergesagte Kernladungszahlen und Dichten des Phantoms aus Abbildung 6.5
mit den U-Nets, trainiert auf verschiedenen Datensatzgrößen nach Abbildung 6.8.
Die Literaturwerte sind grau und dick gestrichelt eingezeichnet. Die in Kapitel
6.1 definierten Präzisionen von ±0.5 für die Kernladungszahl sowie ±1% für die
Dichte sind grau und dünn gestrichelt als obere und untere Grenze des zulässigen
Bereiches, grau hinterlegt, eingezeichnet.



98 deep-learning-architektur für die materialbestimmung

Kernladungszahl liefert bei allen Modellen für die maximale Datensatzgröße (250K)
die geringsten Abweichungen zu den Literaturwerten. Insbesondere die Vorhersage der
Kernladungszahl des Aluminiums gelingt stabil innerhalb des Toleranzbereiches mit
allen genannten Datensatzgrößen. Die Vorhersage der Dichte liegt für alle Materialien
des Testphantoms nur bei den Datensatzgrößen 25K und 250K innerhalb des gültigen
1%-Bereiches. Bei allen anderen Datensatzgrößen liegt mindestens eine Vorhersage der
Dichte außerhalb des genannten 1%-Bereiches. Im Folgenden wird zur besseren Ver-
gleichbarkeit weiterhin die Standardgröße des Datensatzes mit 250.000 Tupeln verwendet.
Eine weitere Vergrößerung des Trainingsdatensatzes wird aufgrund der bereits oben ge-
nannten Rechenzeitlimitierungen nicht weiter verfolgt, sollte jedoch aufbauend auf dieser
Arbeit erprobt werden. Mit den benötigten Rechenzeiten aus Tabelle 6.3 wird ersichtlich,
dass das U-Net64 sehr genau innerhalb des Zeitlimits von 24 h über die geforderten 500
Epochen traininert werden konnte. Durch die Vergrößerung des Datensatzes wird, analog
zu den Trainingsdurchläufen der parameterstärkeren Modelle U-Net128 und U-Net256,
die Rechenzeitlimitierung überschritten. Es besteht dennoch die Möglichkeit, dass ein
sehr viel größerer Datensatz bereits mit deutlich weniger Trainingsepochen eine robuste
Materialbestimmung erlernen kann. Problematisch gestaltet sich in diesem Fall dennoch
die Datenmenge des Trainingdatensatzes (vergleiche 5.1).

6.4.2 Swin Transformer

Nachdem in den vorangehenden Abschnitten dieses Kapitels ausschließlich das U-Net
verwendet wurde, wird im Folgenden, motiviert durch die Erfolge des Transformers
in anderen Anwendungen, eine Transformer-basierte Architektur für die Materialbe-
stimmung erprobt. Es bietet sich an, eine Architektur zu untersuchen, die der Struktur
des U-Nets im Kernkonzept folgt: ein Encoder, ein Decoder und Skip Connections
zwischen den entsprechenden hierarchischen Ebenen des Encoders und Decoders. Die
Idee, innerhalb der U-Net-Architektur den Convolution-basierten Encoder und Decoder
durch einen Transformer-basierte Encoder und Decoder zu ersetzen, wurde bereits von
Cao et al. für die Segmentierung klinischer CT-Schichtbilder [58] vorgeschlagen und ist
somit als direkter Nachfolger des U-Nets, mindestens in der CT-Domäne, anzusehen.
Abbildung 6.10 stellt die implementierte Swin-Unet-Architektur nach Cao et al. [58]
schematisch dar. Der Encoder besteht in der Abbildung aus einem SwinV2-L nach Liu et
al. [38], der bereits in Kapitel 3.4.2 eingeführt wurde. Das Patch Embedding berechnet für
jedes Patch (vergleiche Kapitel 3.4.2) einen Vektor, dessen Länge Embedding Dimension
genannt wird. Weitere Details zum Patch Embedding können bei Dosovitskiy [57] und
Liu [37, 38] eingesehen werden. Im Decoder werden ebenfalls Swin-Transformer-Blöcke
zusammen mit dem sogenannten Patch Expanding verwendet, das die Upconvolutions
aus dem originalen U-Net (vergleiche Abbildung 3.5) ersetzt und das Swin-Unet hier-
durch vollständig im Decoder auf Convolutions verzichten kann. Weitere Details zu
der Architektur können in der zugehörigen Publikation [58] abgerufen werden. Analog
zu der Feature-Map-Tiefe beim U-Net (vergleiche Tabelle 6.3) kann der Encoder des
Swin-Unets mit unterschiedlichen Kapazitäten ausgelegt werden. Tabelle 6.4 fasst die im
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Abbildung 6.10: Architekturdiagramm des Swin-Unet nach Cao et al. [58] in leicht abgewandelter
Form. Der dargestellte Encoder ist ein SwinV2-L nach Liu et al. [38] (vergleiche
Tabelle 6.4).

Folgenden erprobten Swin-Unets mit verschiedenen Encodern zusammen. Aufgrund der
Rechenzeitbeschränkungen der Partition WestAI am Forschungszentrum Jülich werden
die parameterstarken Encoder Swin-H und Swin-G nicht betrachtet. In dem von Cao et al.
vorgestellten Swin-Unet gibt es zudem die Bedingung, dass die Embedding Dimension
ganzzahlig durch drei teilbar sein muss, sodass der Encoder Swin-B mit 128 Kanälen
ausgeschlossen wird. Zur Vereinfachung wird im Folgenden ein Swin-Unet mit einem

Tabelle 6.4: Kapazität und Rechenzeitbedarf τ des Swin-Unets nach Cao et al. [58] zum Training
über 100 Epochen für verschiedene Encoder in Form der Swin-Transformer-Modelle
nach Liu et al. [38]. Der von Cao et al. verwendete Encoder wird nicht durch Liu
et al. beschrieben und somit im Folgenden als SwinV2-M (SwinV2-Minute, gespro-
chen maI’nju:t) bezeichnet. Die Angaben zum Rechenzeitbedarf wurden mit einem
Rechenknoten bestehend aus vier NVIDIA H100 und einem Datensatz der Größe
250.000 (vergleiche Tabelle 5.1) ermittelt.

Encoder SwinV2-M SwinV2-S SwinV2-L
Embedding Dimension 48 96 192

Kapazität / 1 × 106 21.4 84.4 336.2
τ in Stunden 6.1 6.3 10.4

SwinV2-L-Encoder mit Swin-Unet-L bezeichnet (analog Swin-Unet-M und Swin-Unet-S).
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Cao et al. trainieren das Swin-Unet-M für die Segmentierung anhand eines Datensatzes,
der 3779 annotierte Bilder umfasst und somit etwa drei Größenordnungen kleiner ist
als der von Liu verwendete Datensatz [38]. Zudem initialisiert Cao die Parameter des
Encoders mit Gewichten, die auf dem Datensatz ImageNet vortrainiert worden sind.
Die offiziell verfügbaren Swin-TransformerV2-Modelle wurden auf den Datensätzen
ImageNet-1K (≥ 106 Bilder) und ImageNet-22K (≥ 107 Bilder) [94] vortrainiert, die ein brei-
tes Spektrum an Bildern enthalten, jedoch keinen inhaltlichen Bezug zur CT aufweisen.
Anschließend können die bereits vortrainierten Modelle mithilfe eines verhältnismäßig
kleinen Datensatz final an die Verteilung der neuen Daten angepasst werden – das soge-
nannte Fine-Tuning. Diese Strategie wird, in Anlehnung an die Arbeit von Cao [58], im
Folgenden erprobt: Abbildung 6.11 stellt die Loss Curves zweier Trainingsdurchläufe mit
dem Swin-Unet-S dar, wobei der Encoder einmal ohne das Vortraining initialisiert und
einmal mit den vortrainierten Gewichten des ImageNet-22K-Datensatzes geladen wurde.
Es ist keine absolute Verbesserung des Validation Losses und keine Beschleunigung der
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Abbildung 6.11: Train Loss TL und Validation Loss VL zweier Trainingsdurchläufe mit dem Swin-
Unet-S nach Cao et al. [58]. Das Modell scratch verwendet keine vortrainierten
Gewichte, während das Modell pretrained die Gewichte für den SwinV2-S (En-
coder) aus einem Vortraining auf dem ImageNet-22K-Datensatz verwendet. Der
Pfeil kennzeichnet ein Plateau des Modells mit den vortrainierten Gewichten.

Konvergenz durch den Einsatz der vortrainierten Gewichte zu beobachten. Zusätzlich
benötigt das Modell einige Epochen, gekennzeichnet durch den Pfeil in Abbildung 6.11,
um sich an die neue Datenverteilung anzupassen. Wie bereits vermutet, unterscheidet
sich die Datenverteilung der DECT-Schichtbilder im Rahmen dieser Arbeit zu stark
von der Datenverteilung des ImageNet-22K-Datensatzes auf dem der Swin-Transformer
vortrainert wurde. Es konnten keine Transformer-basierten Modelle gefunden werden,
die auf CT-Daten vortrainiert worden sind. Insgesamt konnte kein Mehrwert aus der
Verwendung der vortrainierten Gewichte des SwinV2-S gezogen werden. Die folgenden
Swin-Unets werden ohne die Nutzung der vortrainierten Gewichte direkt auf den simu-
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lierten Daten für die Materialbestimmung trainiert.
Analog zu den Optimierungen des U-Nets im vorausgehenden Abschnitt, werden die
verschiedenen Swin-Unets erprobt, um den besten Encoder für die gegebene Frage-
stellung zu ermitteln. Abbildung 6.12 stellt die mittleren absoluten Abweichungen der
Materialvorhersagen des Swin-Unets mit verschiedenen Encodern dar. Die Modelle
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Abbildung 6.12: Mittlerer absoluter Fehler MAE der Vorhersage von Kernladungszahl (links) und
Dichte (rechts) durch das Swin-Unet [58] mit verschiedenen Encodern aus Tabelle
6.4. Ausgewertet wurde mithilfe des in Abbildung 6.4 vorgestellten Phantoms
anhand der Materialien Aluminium, Eisen und Kupfer. Der graue Bereich in der
linken Abbildung markiert den Toleranzbereich (vergleiche Rahmenbedingungen
in Abschnitt 6.1). Analog wird der obere Rand des Toleranzbereiches der Dichte
für jedes Material im rechten Plot gestrichelt markiert. Die Swin-Unets mit den
Encodern SwinV2-M und SwinV2-L wurden ergänzend mit einem vergrößerten
Datensatz trainiert, der drei Millionen Tupel umfasst. Die entsprechenden Da-
tenpunkte werden mit dreieckigen Markern dargestellt.

wurden unter maximaler Ausschöpfung der verfügbaren Rechenzeit trainiert, sodass
die Anzahl der Trainingsepochen der ausgewerteten Modelle nicht gleich ist. Keinem
der trainierten Swin-Unets gelingt die Materialbestimmung innerhalb der geforderten
Toleranzbereiche. Die Kernladungszahl von Kupfer wird von keinem der trainierten Mo-
delle innerhalb des Toleranzbereiches vorhergesagt. Für Aluminium und Eisen werden
sowohl die Kernladungszahl als auch die Dichte innerhalb des Toleranzbereiches von
den Modellen Swin-Unet-M und Swin-Unet-S korrekt vorhergesagt. Insgesamt liefert das
Modell Swin-Unet-M die besten Ergebnisse in diesem Experiment, sodass es für den
quantitativen Vergleich mit dem U-Net64 aus dem vorangehenden Abschnitt verwendet
wird. An diesem Punkt ist bereits klar, dass das Swin-Unet, aufgrund der fehlerhaften
Vorhersage der Kernladungszahl von Kupfer, insgesamt schlechtere Ergebnisse bei der
Materialbestimmung als das U-Net produziert – ein zunächst unerwartetes Ergebnis
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vor dem Hintergrund der Überlegenheit der Transformer in anderen Disziplinen aus
dem CV-Umfeld (vergleiche Han et al. [111]). Der zunächst offenkundigste Grund ist ein
potentiell zu kleiner Trainingsdatensatz, sodass das Swin-Unet sein volles Potential nicht
entfalten konnte (vergleiche Abschnitt 3.4.2). Daher wird zusätzlich mit einem deutlich
vergrößerten Datensatz (3.000.000 Tupel), im Vergleich zu der in Tabelle 5.2 genannten
Standardgröße, ein Training durchgeführt ohne eine signifikante Verbesserung verzeich-
nen zu können. Abbildung 6.12 enthält ebendiese Datenpunkte (dreieckige Marker).
Weiterhin besteht die Vermutung, dass die Modelle aufgrund der Rechenzeitbeschrän-
kungen nicht vollständig konvergieren konnten, sodass der Vergleich in Abbildung 6.12
mit den, auf kleineren Datensätzen, austrainierten Modellen unfair erscheint. Durch
die Vergrößerung des Trainingsdatensatzes um den Faktor zwölf steigt gleichermaßen
die benötigte Trainingszeit τ nach Tabelle 6.4 um ebendiesen Faktor an. Die weitere
Untersuchung dieser Beobachtung sollte in einer zukünftigen Forschungarbeit aus den
oben genannten Gründen durchgeführt und mit den Ergebnissen von Han et al. [111]
diskutiert werden.

6.4.3 Vergleich

Nach der Optimierung der beiden untersuchten Architekturen, dem U-Net [36] und dem
Swin-Unet [58], werden die jeweils besten Modelle quantitativ in Tabelle 6.5 verglichen.
Das Swin-Unet-M erzielt in vier von insgesamt sechs Testwerten (drei Materialien mit
jeweils einer Kernladungszahl und einer Dichte) bessere Ergebnisse als das U-Net. Aus

Tabelle 6.5: Vorhergesagte Kernladungszahlen in (a) und absolute Dichten in (b) für das U-Net
[36] und das Swin-Unet-M [58]. Die tabellierten Werte geben den Mittelwert µ, die
Standardabweichung σ und die prozentuale Abweichung des Mittelwertes p von dem
Literaturwert der Vorhersage in der Form µ ± σ (p) an. In der ersten Spalte beider
Tabellen werden die Materialien zusammen mit ihren Literaturwerten gelistet. Das
jeweils bessere Ergebnis, pro Modell und Material, ist grau hinterlegt.

Material U-Net Swin
Al (13) 13.04 ± 0.01 (0.3 %) 13.06 ± 0.15 (0.5 %)
Fe (26) 26.32 ± 0.34 (1.2 %) 26.26 ± 0.18 (1.0 %)
Cu (29) 28.84 ± 0.17 (0.6 %) 27.76 ± 0.18 (4.3 %)

(a) Kernladungszahl Z

Material U-Net Swin
Al (2.70) 2.71 ± 0.00 (0.4 %) 2.70 ± 0.03 (0.0 %)
Fe (7.80) 7.85 ± 0.07 (0.6 %) 7.82 ± 0.04 (0.3 %)
Cu (8.93) 9.01 ± 0.02 (0.9 %) 8.87 ± 0.05 (0.7 %)

(b) Dichte in g/cm3

den Abbildungen 6.7 und 6.12 wurde bereits in den jeweiligen Abschnitten deutlich, dass
nur das U-Net64 alle Testmaterialien innerhalb der Toleranzbereiche korrekt identifiziert
und somit die geforderten Rahmenbedingungen in Bezug auf die Präzision der Mate-
rialbestimmung erfüllt. Für die folgenden Untersuchungen wird demnach das U-Net64

verwendet.
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6.5 inferenz mit dem u-net

Bisher wurden nur die Trainingsverläufe sowie die quantitativen Auswertungen mit Blick
auf die Präzision der Materialbestimmung anhand des Testphantoms gezeigt. Die am
Anfang dieses Kapitels genannten, industriellen Rahmenbedingungen umfassen neben
der Präzision auch eine Anforderung an die Inferenzgeschwindigkeit der Architektur,
die in diesem Abschnitt untersucht wird. Für eine feste Architektur, beispielsweise
das ausgewählte U-Net64 aus Abschnitt 6.4.1, ist die Inferenzzeit pro CT-Schichtbild
lediglich von den räumlichen Dimensionen des Schichtbildes abhängig. Die Architektur
des U-Nets basiert vollständig auf Convolutions (auch: Fully-Convolutional), sodass die
Modelle, aus technischer Sicht, obschon sie auf festen Bilddimensionen (256 × 256)Pixel
trainiert worden sind, auf variablen Bilddimensionen ausgeführt werden können.5 Die
im Folgenden ermittelten Inferenzgeschwindigkeiten sind somit auch für die U-Net64-
Modelle gültig, die, motiviert aus der Anwendungsperspektive (vergleiche Abschnitt 6.3),
auf anderen Bilddimensionen trainiert worden sind. Abbildung 6.13 stellt die Inferenzzeit
für unterschiedlich dimensionierte CT-Schichtbilder mit dem U-Net64 dar. Zunächst ist
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Abbildung 6.13: Benötigte Inferenzzeit pro (CT-Schicht-)Bild abhängig von der Bildbreite mit dem
U-Net64. Weiterhin sind die Bilder quadratisch, sodass die zu prozessierende
Datenmenge quadratisch mit der Bildbreite ansteigt. Die durchgezogenen Linien
sind quadratische Fits an die jeweiligen Datenpunkte. Die nach Abschnitt 6.1 ma-
ximale Inferenzzeit zur In-line-Fähigkeit beträgt für ein CT-Volumen bestehend
aus 3000 Schichten und mit der Verwendung von acht Graphikkarten ≈ 27 ms
und wird grau gestrichelt dargestellt. Für die gezeigten Ergebnisse wurde eine
Nvidia H100 NVL verwendet.

gut zu erkennen, dass die Inferenzzeit ab einer Bildbreite von 256 Pixel quadratisch
mit ebendieser skaliert.6 Das U-Net64 ist nach Abbildung 6.13 bis zu einer Auflösung
von (1024 × 1024)Pixel mit der gegebenen Hardware, das heißt acht Nvidia H100, In-

5 Der Effekt von unterschiedlichen Trainings- und Testdatenbilddimensionen wurde für die Bildklassifizierung
von Touvron et al. [112] untersucht.

6 Durch die Verwendung quadratischer Bilder steigt die Gesamtzahl der Pixel quadratisch mit der Breite an.
Somit ist die Inferenzzeit direkt proportional zur Gesamtzahl der Pixel.
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Line-fähig. Bei voller Bildauflösung (3000 × 3000)Pixel beträgt die Berechnungzeit für
die Materialbestimmung eines Volumens der Größe (3000 × 3000 × 3000)Voxel auf der
genannten Hardware knapp 41 s.

6.6 zusammenfassung der ergebnisse

In diesem Kapitel wurden zwei DL-basierte Architekturen, das U-Net [36] sowie das
Swin-Unet [58], quantitativ anhand der Materialbestimmung optimiert und verglichen.
Die systematische Untersuchung der Kapazitäten verschiedener U-Nets und Swin-Unets
sowie der quantitative Vergleich dieser konzeptionell unterschiedlichen Architekturen
für die Materialbestimmung anhand von CT-Bildern ist einer der Forschungsbeiträge
dieser Dissertationsschrift. Es wird deutlich, dass die in der Literatur etablierte U-Net-
Architektur für die Materialbestimmung, im Vergleich zum Swin-Unet, mit deutlich
weniger Aufwand, in Form von Trainingsdaten und Rechenzeit, gute Ergebnisse er-
zielen kann. Weiterhin wird demonstriert, dass das Swin-Unet, obschon es nicht alle
Testmaterialien in dieser Arbeit erkennen konnte, das Potential birgt, präzisere Dich-
tevorhersagen als das U-Net zu produzieren (vergleiche Tabelle 6.5). Die in Abschnitt
6.1 geforderte Präzision wurde exklusiv durch das U-Net64 erreicht, das ebenfalls bis
zu einer Auflösung von (1024 × 1024)Pixel In-Line-fähig ist (vergleiche Abschnitt 6.5).
Dennoch konnten die Anforderungen an die Präzision der Methode nur eingeschränkt
im Rahmen dieses Abschnitts überprüft werden. Die vorausgehenden Abschnitte sowie
Abbildung 6.7 geben einen Hinweis darauf, in welcher Größenordnung die Präzision
der Vorhersage der Kernladungszahl und der Dichte unter idealen Bedingungen liegen
kann. Für die Kernladungszahl ist, unter Ausschluss von Gemischen, eine ausreichende
Genauigkeit mit einem Fehler von weniger als 0.5 (einheitenlos) nachgewiesen wor-
den. Die Dichten der Testmaterialien wurden mit einem absoluten Fehler < 0.1 g/cm3

vorhergesagt. Alle Analysen bezüglich der Präzision wurden auf dem in Abschnitt 6.2
vorgestellten Phantom durchgeführt. Im folgenden Kapitel wird der Transfer in die reale
CT-Anwendung überprüft. Viele der bisher gültigen Einschränkungen, beispielsweise
die Fixierung der Probengröße (Kantenlänge), werden aufgehoben und ihr Einfluss auf
die Vorhersagegenauigkeit geprüft. Ebenso ist die in Kapitel 5.4.2 beschriebene Sim-
To-Real-Gap bisher nicht berücksichtigt worden, sodass die angegebenen Präzisionen,
insbesondere in Tabelle 6.5, in einem realen Scan deutlich schlechter ausfallen werden.
Am Ende des folgenden Kapitels wird die Diskussion zur Präzision der vorgestellten
Methode daher erneut aufgegriffen.



7
T R A N S F E R I N D I E C T- P R A X I S

Nach der Realisierung einer Simulation zur Trainingsdatenerzeugung in Kapitel 5 sowie
der Auswahl einer DL-Architektur in Kapitel 6 wird nun die Transferfähigkeit der ge-
samten Methodik zur Materialbestimmung in realistische CT-Scan-Szenarien überprüft.
Die in Kapitel 5.1 abgeleiteten Anforderungen induzieren durch die gewählte Methodik
der Trainingsdatenerzeugung, insbesondere durch die Fixierung einiger Simulationspara-
meter, messbare Einschränkungen für die Präzision der Materialbestimmung sobald von
dem in der Simulation abgebildeten Szenario abgewichen wird. Diese Einschränkungen
sind entweder im Phantomgenerator oder im implementierten CT-Projektor (vergleiche
Abbildung 5.1) zu lokalisieren. Die Rekonstruktion erfolgt analog zu der Rekonstruktion
realer Proben und induziert keine Abweichungen. Die Simulationsparameter werden im
Folgenden in der durch den Algorithmus vorgegebenen Reihenfolge diskutiert.
Der Phantomgenerator erzeugt, pro Phantom, eine zufällige Anzahl an Regionen – die
Regionszahl. Durch die Wahl des Intervalls aus dem die Regionszahl N (vergleiche Ka-
pitel 5.3), beispielsweise 0 < N ≤ 1000 anhand von Tabelle 5.2, zufällig gezogen wird,
ergibt sich indirekt die mittlere Größe der einzelnen Materialregionen innerhalb der
simulierten Phantome. Der Einfluss ebendieser mittleren Regionsgröße hinsichtlich der
Ortsauflösung der DL-basierten Materialbestimmung wird in Abschnitt 7.1 anschaulich
motiviert und quantifiziert. Die durch den Phantomgenerator erzeugten Materialkar-
ten fungieren als Ground Truths beim Training der Modelle. Sie weisen ideal scharfe
Kanten zwischen den Materialregionen auf, sodass anzunehmen ist, dass die (Material-
)Vorhersagen der trainierten Modelle ebenfalls ideal scharfe Kanten aufweisen. Dieser
Aspekt wird in Abschnitt 7.2 exemplarisch, mithilfe einer in Abschnitt 7.1 eingeführten
Methodik, untersucht. Die physische Größe des Phantoms, und damit auch die Größe des
CT-Scanvolumens, ist ein weiterer Parameter des Phantomgenerators, der in praktischen
Anwendungen, abhängig von der physischen Größe der zu scannenden Probe, stark
variiert und einen deutlichen Einfluss auf die rekonstruierten Abschwächungskoeffi-
zienten hat (vergleiche Strahlaufhärtungsartefakte; Kapitel 2.4.1). Zur Beschleunigung
der Simulation1 wird die physische Größe des Phantoms, die ebenso die CT-Geometrie
beeinflusst, innerhalb der Simulation eines einzelnen Datensatzes konstant gehalten,
sodass bei der Anwendung eines trainierten Modells auf eine Probe abweichender Größe
die Vorhersagegenauigkeit potentiell sinkt. Die Vorhersagegenauigkeit, bezüglich der
Materialbestimmung, wird in Abschnitt 7.3 abhängig von dem physischen Größenunter-
schied zwischen den Scanvolumen in den Trainings- und Testdaten analysiert. Nach den
CT-spezifischen Anforderungen aus Kapitel 5.1 ist die Bestimmung poröser Materialien,
beispielsweise für die Beurteilung einer Beschichtungen in einer Lithium-Ionen-Batterien,

1 Durch das einmalige Anlegen der Datenstrukturen für die Rekonstruktion mit einer festen CT-Geometrie,
ermöglicht durch das Fixieren der physischen Dimensionen des simulierten Phantoms, wird die Rekonstruk-
tion signifikant beschleunigt und ermöglicht somit die in Kapitel 5.3 beschriebenen Simulationsgeschwin-
digkeiten.

105
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relevant, wobei die Porosität, ausgedrückt durch die relative Dichte η, einen Einfluss auf
die Vorhersagegenauigkeit der Materialbestimmung haben kann. Dieser Einfluss der rela-
tiven Dichte wird in Abschnitt 7.4 untersucht. Eine weitere Vereinfachung besteht in der
Annahme der Fächerstrahl-CT, dem zweidimensionalen Grenzfall einer Kegelstrahl-CT,
die als DL-spezifische Anforderung in Kapitel 5.1 genannt wurde. Bei realen CT-Scans
werden, abgesehen von den selten eingesetzten Zeilendetektoren2, typischerweise zwei-
dimensionale Detektoren benutzt, die somit die Rekonstruktion eines dreidimensionalen
Volumens, bestehend aus vielen übereinander gestapelten CT-Schichtbildern, ermögli-
chen. In Abschnitt 7.5 wird die Materialbestimmung auf allen CT-Schichtbildern, auch
außerhalb der Mittelschicht, angewandt und ihre Genauigkeit überprüft.
Die bis zu diesem Punkt aufgezählten Einschränkungen existieren unabhängig von der
in Kapitel 5.4.2 beschriebenen Sim-To-Real-Gap und können somit auf dem simulierten
Testphantom aus Kapitel 6.2 analysiert werden. Abschließend wird der Einfluss der
fehlenden Modellierung der Streustrahlung (vergleiche Kapitel 5.1 und 5.4.2) untersucht,
indem ein trainiertes Modell zur Materialbestimmung auf realen, und damit streustrah-
lungsbehafteten, CT-Daten angewandt wird. Die verwendeten Daten wurden mit der
CT-Anlage aus Kapitel 2.7 unter Verwendung der CT-Parameter aus Tabelle 5.2 aufge-
nommen.
Ziel dieses Kapitels ist primär die quantitative Untersuchung der Präzision der Material-
bestimmung in Abhängigkeit der soeben genannten Einflussfaktoren, die von zentraler
Bedeutung bei dem Transfer der Methodik in die reale CT-Anwendung sind. Weiter-
hin sollen Lösungen zur Reduktion der gefundenen Einschränkungen entwickelt oder
mindestens diskutiert werden, sodass für zukünftige Forschungsarbeiten sinnvolle An-
satzpunkte angeboten werden.

7.1 größe der materialregionen

In Kapitel 5.3 wurde die implementierte Simulation beschrieben. Einer der zentralen
Parameter bei der Erzeugung zufälliger Materialphantome ist die Anzahl der unter-
schiedlichen (Material-)Regionen pro Phantom (N in Tabelle 5.2). In der Simulation
wird für jedes Phantom die Anzahl der Regionen N zufällig und gleichverteilt aus dem
Intervall [1, Nmax] gezogen. Ebenso werden diese N Startpunkte der Regionen zufällig
und gleichverteilt im verfügbaren Voxelgitter verteilt. Pro Zeitschritt wächst jede Region
um einen festen Betrag in eine zufällige Richtung. Statistisch werden daher die einzel-
nen Regionen im Durchschnitt kleiner wenn Nmax größer wird. Der Parameter Nmax

hat somit einen direkten Einfluss auf die mittlere Größe der einzelnen Regionen inner-
halb aller Phantome, die zum Training des DL-Modells verwendet werden. Statistisch
werden, beispielsweise für ein sehr kleines Nmax, einzelne kleine Regionen im Trainings-
datensatz unterrepräsentiert, sodass einem trainierten Modell die Generalisierung auf
derartig kleine Regionen vermutlich nur eingeschränkt gelingt. Ziel dieses Abschnittes
ist die Untersuchung des räumlichen Auflösungsvermögens der trainierten Modelle

2 Gemeint ist ein eindimensionaler Detektor, der nur eine Zeile an Pixeln besitzt und somit zur Fächerstrahl-CT
genutzt wird.
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auf Regionsgrößen, die von der mittleren Regionsgröße der Trainingsdaten abweichen.
Zur quantitativen Bestimmung des Auflösungsvermögens kann die sogenannte Modu-
lationstransferfunktion (kurz: MTF), oder auch MTF-Kurve als Funktion einer Frequenz,
herangezogen werden [113, S. 8 f.]. Die MTF-Kurve gibt anschaulich den verbleibenden
Kontrast eines Objektes in Abhängigkeit der Objektgröße, ausgedrückt als Ortsfrequenz
f , an [113, S. 8 f.]. Eine häufig verwendete Einheit für die Ortsfrequenz ist lp/mm (line
pairs per millimeter) oder cycles/Pixel – die Periode einer zyklischen Struktur. Anhand
eines Siemenssterns, der eine variable, periodische Struktur abhängig von seinem Radius
aufweist, kann das Auflösungsvermögen anschaulich bestimmt werden, wie die folgende
Ausführung zeigt. Abbildung 7.1 zeigt einen rekonstruierten Siemensstern in kartesischen
und polaren Koordinaten. Jedem Radius (rote Linie) kann ein Strichmuster, mit einer
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Abbildung 7.1: Rekonstruiertes Volumen eines simulierten Siemenssterns aus Aluminium in
einem kartesischen Voxelgitter (links) und einem polaren Voxelgitter (rechts).
Beide Abbildungen teilen sich die Grauwertskala rechts mit der Einheit cm−1 des
Abschwächungskoeffizienten.

vom Radius abhängigen Ortsfrequenz, zugeordnet werden. Der Radius, bei dem noch
50 % des ursprünglichen Kontrastes des Strichmusters verbleiben, wird MTF50-Radius ge-
nannt. Anschaulich ist er genau der Radius, bis zu dem das Abbildungssystem (hier: das
DL-Modell zur Materialbestimmung) noch die Hälfte des idealen Kontrastes (MTF = 1)
darstellen kann.
Für die folgende Untersuchung wurden zwölf Datensätze basierend auf Tabelle 5.2 mit
Nmax ∈ {25, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000} simuliert und anschließend
für das Training mehrerer U-Nets verwendet – jedes U-Net wird exklusiv mit einem Da-
tensatz aus der genannten Menge trainiert. Die Modelle zur Materialbestimmung werden
auf den Siemensstern aus Abbildung 7.1 (links) angewandt und berechnen Materialkar-
ten, die anschließend durch eine Polartransformation in die Darstellung in Abbildung 7.2
(links) transformiert werden. Bereits ohne quantitative Berechnung des MTF50-Radius
ist die Auflösungsgrenze der Materialkarte in Polarkoordinaten als Grenze zwischen
dem eindeutig erkennbaren Strichmuster und der darunterliegenden, diffusen Fläche
erkennbar. Abbildung 7.2 (rechts) stellt die normierte MTF-Kurve in Abhängigkeit des
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Radius dar, sodass der MTF50-Radius (rote Linie in beiden Plots) quantitativ als Radius
(x-Koordinate) für den Wert 0.5 der normierten MTF (y-Koordinate) bestimmt werden
kann. Diese Methode zur Bestimmung der MTF50-Radien wird für die Materialvorhersa-
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Abbildung 7.2: Dichtevorhersage eines Modells für den Siemensstern in Polarkoordinaten (links)
und resultierende MTF-Kurve in Abhängigkeit vom Radius des Siemenssterns.
Der MTF50-Radius ist in beiden Plots rot markiert.

gen der oben genannten Modelle durchgeführt. Somit wird für jedes Modell, trainiert
auf einem Datensatz mit einem bestimmten Nmax, der MTF50-Radius berechnet. Die
Ergebnisse werden in Abbildung 7.3 graphisch zusammengefasst. Es ist kein eindeutiger
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Abbildung 7.3: MTF50-Radien in Abhängigkeit von der maximalen Regionszahl Nmax für die
Materialbestimmung auf dem Siemensstern aus Abbildung 7.1.

Zusammenhang zwischen den MTF50-Radien und der maximalen Regionszahl Nmax

sowohl für die Bilder der Kernladungszahl als auch für die Bilder der Dichte zu beob-
achten. Somit besteht kein nachweisbarer Zusammenhang zwischen dem räumlichen
Auflösungsvermögen des gewählten Materialbestimmungsansatzes und der maximalen
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Regionszahl Nmax in der Simulation. Die beobachteten Schwankungen sind vermutlich
statistischer Natur und werden in der folgenden Auswertung der MTF50-Kurve mit einer
alternativen Methode erneut beurteilt.
Eine weitere Methode zur Bestimmung der MTF-Kurve kann anhand eines gegebenen
Profils, einem eindimensionalen Schnitt durch ein Bild, durchgeführt werden. Dieses
Profil heißt Edge-Spread-Function (kurz: ESF(x)) mit der eindimensionalen Bildkoordinate
x und es muss so gelegt werden, dass es die Kante eines Objektes im Bild, den maximalen
Kontrastwechsel, erfasst. Anschaulich zeigt Abbildung 7.4 eine mögliche ESF und ihre
Positionierung an der Grenzfläche zwischen dem Aluminiumwürfel und dem Hinter-
grund (Luft). Durch Differenzierung entlang der Bildkoordinate x wird die sogenannte
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Abbildung 7.4: Vorhersage der Dichte durch ein trainiertes Modell auf dem Phantom aus Ab-
schnitt 6.2 (links). Entlang des roten Pfeils wird die Edge-Spread-Function ESF
extrahiert, die im rechten Plot dargestellt wird. Der Literaturwert für die Dichte
des Aluminiums wird gestrichelt mit der Bezeichnung REF zusätzlich angegeben.

Line-Spread-Function (kurz: LSF(x))

LSF(x) =
d

dx
ESF(x) (7.1)

berechnet, die ein Maß für die Ortsunschärfe ist. Insgesamt ist die MTF einer Frequenz f
aufbauend auf der ESF(x) und der LSF(x) durch

MTF( f ) =
|F (LSF(x))( f )|
|F (LSF(x))(0)| (7.2)

mit der Fouriertransformation F definiert [114, S. 225 f.]. Im Vergleich zu der phänome-
nologischen Bestimmung der MTF als Radius des Siemenssterns aus Abbildung 7.1 wird
bei dieser Methode eine Ortsfrequenz in der Einheit 1/Pixel ermittelt – die sogenannte
MTF50-Frequenz. Eine Umrechnung in die Einheit 1/mm kann unter Angabe der Voxel-
größe des rekonstruierten Volumens trivial erfolgen.
Im Folgenden wird das Phantom aus Abbildung 6.4 verwendet, um die Materialbestim-
mung durchzuführen sowie die MTF50-Frequenz aus den Materialkarten zu ermitteln.
Abbildung 7.5 (links) zeigt die MTF-Kurve eines extrahierten Kantenprofils am Rand des
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Aluminiumsquaders nach erfolgter Materialbestimmung durch die trainierten Modelle.
Die oben genannte Vermutung, einen Zusammenhang zwischen der maximalen Regi-
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Abbildung 7.5: MTF-Kurve einer Kante mit eingezeichneter MTF50-Frequenz (links) für den
Aluminiumwürfel aus dem Phantom in Abbildung 6.4. Die berechneten MTF50-
Frequenzen für die verschiedenen maximalen Regionszahlen Nmax in den Trai-
ningsdaten werden rechts dargestellt.

onszahl Nmax und der Auflösungsfähigkeit des Modells zu identifizieren, kann mittels
Abbildung 7.5 (rechts) ebenfalls (vergleiche Abbildung 7.3) entkräftet werden. Entgegen
der Intuition, dass ein Modell, welches mit einer höheren maximalen Regionszahl trai-
niert wurde, eine höhere MTF50-Frequenz besitzen sollte, zeigt die Auswertung einen
gegenläufigen Trend. Die beste MTF50-Frequenz wird bei einer maximalen Regions-
zahl Nmax = 50 gemessen. Zur Erklärung dieser Beobachtung können mehrere Aspekte
herangezogen werden. Die Strukturierung, oder Aufteilung der Regionen, innerhalb
einzelner Phantome kann stark variieren. Statistisch ist es zwar wahrscheinlich, dass die
verschiedenen Regionen im Mittel gleichgroß sind, jedoch können sich auch deutlich
kleinere oder größere Regionen zufällig ausbilden. Zur Überprüfung dieser These wer-
den die Regionsgrößen exemplarisch für Aluminium in einem der zuvor beschriebenen,
simulierten Datensätze mit Nmax = 100 berechnet. Abbildung 7.6 stellt die gefundenen
Regionsgrößen in Form eines Histogramms dar. Neben dem Erwartungswert werden klei-
nere und deutlich größere Regionen im gezeigten Datensatz beobachtet. Somit erscheinen
Regionen verschiedenster Größe auch in einem Datensatz, der mit einem kleinen Nmax

simuliert worden ist.3 Folglich hat der Parameter Nmax einen kleineren Einfluss auf die
Größe der Materialregionen als zu Beginn dieses Abschnittes vermutet worden ist.
Ein weiterer Aspekt ist, dass die Ground Truths (Materialkarten) aufgrund ihrer Er-
zeugung stets ideal scharfe Kanten aufweisen. Es ist daher sehr wahrscheinlich, dass
die Modelle grundsätzlich lernen, Kanten scharf darzustellen, um die Materialkarten
besser zu reproduzieren und so die Auswertung der MTF50-Frequenz anhand eines
Kantenprofils nicht zur Quantifizierung des Auflösungsvermögens herangezogen werden

3 Die Voraussetzung ist lediglich, dass der Datensatz groß genug ist, sodass derartige, statistisch unterdrückte
Effekte auftreten.
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Abbildung 7.6: Histogramm der gefundenen Regionsgrößen von Aluminium (exemplarisch) in
dem Trainingsdatensatz mit Nmax = 100 anhand von 3200 zufällig ausgewählten
Phantomen. Basierend auf der Auflösung jedes Phantoms (256 × 256)Pixel ergibt
sich mit dem Erwartungswert der Regionszahl 0.5 · Nmax der Erwartungswert der
Regionsgröße zu 1311 Pixel.

kann. Dieser Aspekt wird im folgenden Abschnitt 7.2 untersucht. Weiterhin konnten
keine Unterschiede der MTF-Kurven aus den Vorhersagen der Kernladungszahl und
der Dichte ermittelt werden. Beide Kanäle verhalten sich, bezogen auf die MTF-Kurven,
identisch.
Die meisten in diesem Abschnitt vorgestellten Modelle erreichen im Mittel eine Grenzfre-
quenz von 0.115 Pixel−1, die mit der CT-Geometrie aus Tabelle 5.2 in eine Strukturgröße
umgerechnet werden kann, bei der noch 50 % des Kontrastes abgebildet werden. Sie be-
trägt ≈ 174 µm. Für eine praktische Anwendung, beispielsweise die Materialbestimmung
kleiner Partikel innerhalb einer Probe, ist die MTF50-Frequenz nicht aussagekräftig, da
sie ebenjene Ortsfrequenz ist, bei der noch die Hälfte des Kontrastes (Signal des Materials,
beispielsweise die Dichte) abgebildet wird. Zur quantitativ korrekten Bestimmung der
Dichte (±1 % nach Kapitel 5.1) eines Partikels mit einer Ortsfrequenz fP, muss mindestens
MTF( fP) ≥ 0.99 gelten.

7.2 kantenschärfe

Die absolute Kantenschärfe ist für das Messen (Metrologie) an CT-Volumina von großer
Bedeutung, sodass ein möglicher Verlust der Kantenschärfe durch die Anwendung
der Materialbestimmung quantitativ analysiert werden muss. Aufbauend auf der im
vorangehenden Abschnitt untersuchten Auflösungsfähigkeit der DL-basierten Materialbe-
stimmung wird in diesem Abschnitt die Kantenschärfe der vorhergesagten Materialkarten
im Vergleich zu den rekonstruierten Volumina ermittelt. Die bereits in Abschnitt 7.1 be-
schriebene MTF-Kurve, bestimmt anhand einer Objektkante, kann analog als Maß für die
Kantenschärfe herangezogen werden. Scharfe Kanten werden im Gegensatz zu weichen
Kanten aus höheren (Bild-)Frequenzanteilen dargestellt, sodass die MTF-Kurven, als Maß
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für die Übertragung dieser (Bild-)Frequenzanteile, zum Vergleich der Kantenschärfen
zwischen zwei Bildern genutzt werden kann. Abbildung 7.7 stellt die MTF-Kurven für
die beiden DECT-Schichtbilder sowie die beiden Materialvorhersagen dar. Die Position
der ESF, die den MTF-Kurven zugrundeliegt, entspricht der Markierung in Abbildung
7.4 (links). Bereits ohne quantitative Auswertung der MTF50-Frequenz wird anhand der
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Abbildung 7.7: MTF-Kurven aus den beiden Kanälen des DECT-Schichtbildes (LE und HE) und
der Materialvorhersagen (Kernladungszahl Z und Dichte ρ) über eine Kante des
Aluminiumwürfels aus dem Phantom in Abbildung 6.4.

Lage der Kurven deutlich, dass die Materialbestimmung eine geringere Kantenschärfe als
die beiden Kanäle des DECT-Schnittbildes LE und HE aufweist. Diese Beobachtung steht
im Widerspruch zu den Trainingsdaten, da die Materialkarten absolut scharfe Kanten
aufweisen und das Modell somit im Training die Darstellung ebendieser Kanten gelernt
haben sollte. Zhou et al. zeigen für klinische CT-Schichtbilder, dass die Verwendung
eines CNNs, konkret zur Rauschreduktion, einen negativen Einfluss auf die Ortsauflö-
sung (MTF-Kurve) hat. Ein vergleichbarer Effekt kann anhand von Abbildung 7.7 für
die Materialbestimmung dokumentiert werden. Zur Verbesserung der Kantenschärfe
publizierten Mathieu et al. die Loss Function Gradient Difference Loss, die in Kombination
mit dem, auch in dieser Arbeit verwendeten, MSE-Loss unscharfe (Bild-)Ausgaben re-
duziert [115]. Aufbauend sollte die von Mathieu et al. vorgestellte Loss Function für die
Materialbestimmung erprobt werden, um dem Verlust der Kantenschärfe, der in diesem
Abschnitt beobachtet werden konnte, entgegenzuwirken. Es wird festgehalten, dass die
vorhergesagten Materialkarten eine verminderte Kantenschärfe im Vergleich zu den
DECT-Schnittbildern aufweisen. Die Verbesserung der Kantenschärfe sollte Inhalt einer
zukünftigen Forschungsarbeit sein, um insbesondere die Metrologie zu ermöglichen.
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7.3 größe des simulierten phantoms

Eine weitere relevante Variable für den Transfer in die CT-Praxis ist die Größe, beziehungs-
weise Kantenlänge, des CT-Prüfvolumens. Wie bereits durch Abbildung 2.1 angedeutet,
ist die CT-Geometrie ausschlaggebend für die Größe des Prüfvolumens. Die Größe des
Prüfvolumens, beziehungsweise die Größe der zu prüfenden Probe, hat einen Einfluss auf
die Ausprägung der Strahlaufhärtungsartefakte wie in Kapitel 2.4.1 beschrieben worden
ist. Demnach wird vermutet, dass ein DL-basiertes Modell zur Materialbestimmung, das
auf einer festen CT-Geometrie trainiert wurde, bei dem Transfer auf eine andere Geome-
trie aufgrund der veränderten Datenverteilung schlechte Vorhersagen produziert. Hierzu
wird ein Testphantom, analog zu Abbildung 6.4, in aRTist simuliert, das insgesamt eine
Kantenlänge von 1 cm aufweist. Es werden Modelle M mit verschiedenen Kantenlängen
des Simulationsvolumens trainiert und auf dem genannten Testphantom ausgewertet.
Zur Vereinfachung wird die folgende Notation verwendet: M1 cm bezeichnet ein Modell,
das mit Trainingsdaten der Kantenlänge 1 cm trainiert worden ist. Der mittlere absolute
Fehler (MAE) über die Vorhersagen der Kernladungszahlen und Dichten der Materialien
Aluminium, Eisen und Kupfer wird in Abbildung 7.8 abhängig von der Kantenlänge des
Simulationsvolumens dargestellt. Erwartungsgemäß weist M1 cm den geringsten Fehler
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Abbildung 7.8: Mittlerer absoluter Fehler (MAE) der Kernladungszahl- und Dichtevorhersagen
von Aluminium, Eisen und Kupfer in einem quadratischen Phantom mit der Kan-
tenlänge 1 cm (übrige CT-Parameter siehe Tabelle 5.2). Mehrere Modelle wurden
mit verschiedenen Kantenlängen des Simulationsvolumens trainiert (x-Achse).
Die graue Linie zeigt die Kantenlänge des Testphantoms (1 cm) an. Die Fehler-
balken entsprechen einer gemittelten Standardabweichung über alle genannten
Materialien.

bei der Auswertung des Testphantoms der gleichen Kantenlänge auf. Die Vorhersagen



114 transfer in die ct-praxis

der Modelle M0.5 cm und M2 cm weisen einen vergleichbar niedrigen MAE auf, während
die verbleibenden Modelle mit zunehmend abweichender Kantenlänge ebenso zuneh-
mende MAEs verzeichnen. Somit wird eine deutliche Einschränkung des vorgestellten
Ansatzes zur Materialbestimmung deutlich: Für jede Kantenlänge des CT-Prüfvolumens
wird ein Modell benötigt, das auf Trainingsdaten der entsprechenden Kantenlänge, oder
einer sehr ähnlichen Kantenlänge, trainiert worden ist, um bestmögliche Ergebnisse zu
erzielen. Da keine allgemeingültige Aussage zu dieser mindestens geforderten Ähn-
lichkeit der Kantenlängen getroffen werden kann, sollte in praktischen Anwendungen
mit der exakt geforderten Kantenlänge trainiert werden, um Abweichungen dieser Art
auszuschließen. Andererseits besteht theoretisch die Möglichkeit auf einem gemischten
Datensatz, der viele verschiedene, simulierte Kantenlängen enthält, zu trainieren, sodass
sich ein robustes DL-Modell ergibt. Dieser Ansatz wurde in erster Instanz nicht verfolgt,
da die Rekonstruktion mit einer fixen CT-Geometrie signifikant schneller ist und somit
die Rechenzeit der gesamten Simulation signifikant reduziert wird (vergleiche 5.4.4).
Weiterhin ist zu beachten, dass verschiedene Kantenlängen zu unterschiedlich ausge-
prägten Strahlaufhärtungsartefakten führen und sich somit die Verteilungen der linearen
Abschwächungskoeffizienten deutlich zerstreuen (vergleiche Kapitel 5.4.3). Durch die
große Zahl an Mehrdeutigkeiten in den Trainingsdaten ist der Mehrwert des Trainings
auf einem derartig universellen Datensatz gegenüber dem Training einzelner, auf eine
Kantenlänge spezialisierter Modelle fraglich. Eine mögliche Lösung dieses Problems
wird im folgenden Abschnitt durch die Anpassung eines spezialisierten Modells auf eine
andere Kantenlänge diskutiert und erprobt.

7.3.1 Fine-Tuning zur Adaption der Kantenlänge

Zwar ist das U-Net in der gewählten Konfiguration verhältnismäßig schnell, das heißt
günstig, zu trainieren, jedoch erscheint das Bereitstellen einer beliebig feingranularen
Sammlung trainierter Modelle für jede CT-Geometrie, beziehungsweise Probengröße,
nach den Resultaten aus dem vorausgehenden Abschnitt, insbesondere Abbildung 7.8,
nicht wirtschaftlich. Eine bereits aus Kapitel 6.4 bekannte Lösung besteht in der Anwen-
dung des Fine-Tunings. Kurz gefasst wird ein vortrainiertes Modell vorausgesetzt, das
mithilfe eines kleinen Datensatzes an eine neue Datenverteilung angepasst wird. Wie
bereits angemerkt und stichprobenhaft im Vorfeld dieser Arbeit erprobt, ist das Training
eines einzelnen Modells auf einer großen Bandbreite an Kantenlängen aufgrund der
variierenden Strahlaufhärtungsartefakte wenig aussichtsreich. Im Folgenden wird das
Fine-Tuning erprobt, um ein vortrainiertes Modell M4 cm mithilfe kleiner Datensätze an
eine neue Datenverteilung, ein simuliertes Volumen mit der Kantenlänge 1 cm, anzupas-
sen. Zunächst wird die benötigte Datenmenge, das heißt die Anzahl der Tupel ebendieses
kleinen Datensatzes, untersucht, indem mehrere Modelle mit unterschiedlich großen
Datensätzen dem Fine-Tuning unterzogen werden. Die verwendeten Datensatzgrößen
betragen exemplarisch 1000, 2000, 4000 und 8000 Tupel. Eine detaillierte Optimierung
dieser Datensatzgröße spielt für reale Anwendungen eine zu vernachlässigende Rolle,
da die Simulation zur Trainingsdatenerzeugung aus Kapitel 5 in weniger als vier Mi-
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nuten 8000 Tupel berechnen kann. Abbildung 7.9 stellt die MAEs der vorhergesagten
Kernladungszahlen und Dichten abhängig von der jeweils verwendeten Größe des Trai-
ningsdatensatzes für das Fine-Tuning dar. Es ist zu beobachten, dass 4000 Datentupel
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Abbildung 7.9: Mittlerer absoluter Fehler (MAE) der vorhergesagten Kernladungszahlen und
Dichten von Aluminium, Eisen und Kupfer in einem quadratischen Phantom mit
der Kantenlänge 1 cm (übrige CT-Parameter siehe Tabelle 5.2) während des Fine-
Tunings des Modells M4 cm mit verschiedenen Datensatzgrößen (Legende), die
auf einer Kantenlänge 1 cm basieren. Die grauen Linien geben die Baseline (obere
Linie), das heißt den Fehler des vortrainierten Modells M4 cm ohne Fine-Tuning,
sowie den MAE des Modells M1 cm (untere Linie) an. Die in den Rahmenbedin-
gungen geforderte Präzision der Kernladungszahl- und Dichtevorhersage wird
als grauer Toleranzbereich eingezeichnet.

ausreichen, um das Modell so anzupassen, dass die geforderte Präzision erreicht wird
(gelbe Kurve). Die Trainingszeit über 500 Epochen beträgt für ebendiese Datensatzgröße
knapp 27 min auf vier Nvidia H100. Zudem besteht die Möglichkeit, dass ein derartig
kleiner Trainingsdatensatz vollständig im GPU-Speicher vorgehalten werden kann und
die angegebene Trainingszeit somit signifikant reduziert wird.4 Diese Optimierung kann
für eine praxisnahe Anwendung implementiert werden und ist nicht Teil dieser Arbeit.
In Summe zeigen die Ergebnisse, dass mithilfe des Fine-Tunings kleine Anpassungen
bezüglich der CT-Geometrie5 nachträglich auf vortrainierten Modellen in einer kurzen
Zeitspanne durchgeführt werden können. Weiterhin können mit den gegebenen sechs

4 Pro GPU müssen in diesem Rechenbeispiel 1000 Tupel verarbeitet werden, die etwa 1 GB Speicher benötigen.
In der aktuellen Implementierung werden die Batches, bestehend aus 128 Tupeln, von einer Festplatte in
den CPU-Speicher geladen und anschließend in den GPU-Speicher kopiert. Dieser Schritt kann bei einem
Datensatz, der vollständig in den GPU-Speicher passt, einmalig zu Beginn des Trainings durchgeführt
werden, sodass die Berechnungszeit pro Epoche deutlich reduziert werden kann.

5 In diesem Abschnitt wurde gezielt das Fine-Tuning eines Modells auf eine neue Kantenlänge des rekonstru-
ierten Volumens untersucht. Im Allgemeinen werden die Maße des rekonstruierten Volumens durch die
CT-Geometrie festgelegt.
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Stützpunkten (M0.1 cm, M0.5 cm, M1 cm, M2 cm, M4 cm und M8 cm) mittels Fine-Tuning
die Kantenlängen zwischen 1 mm und 8 cm abgedeckt werden – ein realistischer Einstell-
bereich des Prüfvolumens einer hochauflösenden CT-Anlage.

7.4 relative dichten

Neben massiven Proben können auch poröse Werkstoffe, beispielsweise aufgrund ihrer
vergrößerten Oberfläche6, von technischer Relevanz sein. Ein bekanntes Beispiel hierfür
ist die Elektrodenbeschichtung in modernen Lithium-Ionen-Batterien, die häufig aus
einem porösen Material aufgebaut wird. Im Bestfall ist die räumliche Auflösung des
CT-Systems so hoch, dass die einzelnen Poren innerhalb einer derartigen Probe aufgelöst
werden können. Somit werden Voxel rekonstruiert, die vollständig (massiv) mit Material
gefüllt sind und andere Voxel rekonstruiert, die nur Luft enthalten und somit leer sind.
Abseits dieses Idealfalls tritt der in Kapitel 2.4.1 beschriebene Partial Volume Effect
auf. Manche Voxel sind teilausgefüllt und ihr linearer Abschwächungskoeffizient ist
proportional zur relativen Dichte η – dem relativen Volumenanteil eines Materials an
einem Voxel. In Kapitel 5.3 wurde die implementierte Simulation vorgestellt, wobei der
Faktor η die Porosität der simulierten Phantome bestimmt (vergleiche Abbildung 5.1).
Es wurde zunächst festgelegt, dass η ∈ [0.8, 1.0] gilt – die zu untersuchenden Proben
sind vermutlich auf ebendiesen Wertebereich der relativen Dichte eingeschränkt. Für
die Allgemeingültigkeit des vorgestellten Ansatzes zur Materialbestimmung wäre es
darüber hinaus vorteilhaft, wenn die relative Dichte beliebige Werte aus dem Intervall
[0, 1] annehmen könnte. In diesem Abschnitt wird untersucht, welchen Einfluss die untere
Schranke dieses Intervalls auf die Präzision der Materialbestimmung hat. Zunächst wer-
den die Verteilungen zweier Trainingsdatensätze verglichen, die mit unterschiedlichen
relativen Dichten simuliert wurden. Abbildung 7.10 zeigt den Unterschied der Vertei-
lungen der Abschwächungskoeffizienten im High-Energy-Kanal für zwei Simulationen
mit unterschiedlichen Wertebereichen der relativen Dichte η. Im Fall η = 1 werden nur
massive Materialien simuliert. In Abbildung 7.10 ist zu erkennen, dass die Simulation
poröser Materialien die Verteilung der Abschwächungskoeffizienten insgesamt glättet
beziehungsweise aufweicht (blaue Kurve). Dieser Effekt ist anhand von Gleichung 2.3
sofort ersichtlich, da durch den größeren Wertebereich von ρm insgesamt ein breiteres
Spektrum an Abschwächungskoeffizienten µL,m pro Material gemessen werden kann.
Weiterhin führt dieser Effekt zu einer Verstärkung der Mehrdeutigkeiten bei der Materi-
albestimmung (vergleiche Abbildung 5.10). Im Vergleich dazu weist die Verteilung ohne
Porosität (rote Kurve in Abbildung 7.10) deutlich voneinander getrennte Häufungspunkte
auf, die somit die verschiedenen Materialien zumindest teilweise voneinander trennen.
Es folgt die Vermutung, dass das Erlernen der Materialbestimmung anhand eines
Datensatzes mit einem größeren Intervall der relativen Dichten η für ein DL-Modell
schwieriger ist. Diese Vermutung wird im Folgenden quantitativ untersucht. Es wer-
den Trainingsdatensätze mit verschiedenen unteren Grenzen der relativen Dichten

6 Die Vergrößerung einer (Kontakt-)Oberfläche spielt häufig bei der Optimierung chemischer Reaktionen eine
wichtige Rolle.
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Abbildung 7.10: Histogramme aus 8000 zufällig gewählten Datentupeln aus den Simulationen
mit einer relativen Dichte η ≥ 0.5 und einer relativen Dichte η = 1.0. Dargestellt
werden die High-Energy-Kanäle mit einer Beschleunigungsspannung UB =
240 kV und den Simulationsparametern aus Tabelle 5.2.

η ≥ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} simuliert und zum Training mehrerer U-Nets [36] ver-
wendet. Ein Ausschnitt der beim Training ermittelten Validation Losses ist in Abbildung
7.11 abgebildet. Gemäß der obigen Hypothese erreichen die trainierten Modelle mit einer
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Abbildung 7.11: Validation Losses der U-Nets ab der 400. Trainingsepoche mit verschiedenen
η ≥ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} im Trainingsdatensatz (Legende). Die Validation
Losses wurden zur Verbesserung der Darstellung mit einem eindimensionalen
Gaussfilter (Standardabweichung σ = 3) geglättet.

Abnahme der Intervallgröße von η höhere Genauigkeiten – einen niedrigeren Validation
Loss. Daruf aufbauend zeigt Abbildung 7.12 die besten Validation Losses der Modelle
für verschiedene, minimale, relative Dichten η. Es ist ein grob linear fallender Trend zu
beobachten. Er unterstützt die Vermutung, dass kleinere Intervalle (weniger Porosität)
einfacher für das Modell zu erlernen sind. Auf die Berechnung der extrapolierten Da-



118 transfer in die ct-praxis

0.0 0.2 0.4 0.6 0.8 1.0

η

0.2

0.4

0.6

0.8

1.0

B
es
te
r
V
al
id
at
io
n
Lo

ss data
lin. Fit

Abbildung 7.12: Beste Validation Losses (multipliziert mit 103) der U-Nets aus den Trainings
mit verschiedenen η ≥ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. Eine lineare Funktion ist an die
Daten angepasst und auf den gesamten Definitionsbereich von η extrapoliert.

tenpunkte für η < 0.5 wird zugunsten der verfügbaren Rechenzeit bewusst verzichtet.
Zudem stehen derzeit keine Proben, die eine derart niedrige relative Dichte aufweisen,
im Fokus der Anwendung. Die Ausweitung der Methodik auf beispielsweise hochporöse,
technische Metallschäume mit relativen Dichten η < 0.5 und Porengrößen, die unterhalb
der CT-Auflösung liegen, ist möglich und kann für einen gegebene Anwendungsfall
durchgeführt werden.
Zuletzt ist die Materialbestimmung auf einem geeigneten, simulierten Phantom zu über-
prüfen. Mithilfe der CT-Parameter aus Tabelle 5.2 wird ein Aluminiumwürfel mit den
relativen Dichten η ∈ {0.8, 0.85, 0.9, 0.95, 1.0} simuliert. In den simulierten Trainingsdaten
erscheint poröses Aluminium beispielsweise Al80 % mit der Kernladungszahl Z = 13 und
der Dichte ρ = 0.8 · 2.7 g/cm3 = 2.16 g/cm3. Somit ist zu erwarten, dass die Vorhersage
der Kernladungszahl stabil den Literaturwert 13 ermittelt, während die Vorhersage der
absoluten Dichte proportional zur relativen Dichte η erfolgt. Zwar ist der im soeben
genannten Testphantom simulierte Dichtebereich η ≥ 0.8, dennoch wurden zur Verbesse-
rung der Generalisierungsfähigkeit auch deutlich größere Dichtebereiche zum Training
einiger Modelle verwendet. Abbildung 7.13 stellt die vorhergesagten Kernladungszahlen
und Dichten der Modelle, trainiert mit η ≥ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, dar. Zur Vereinfa-
chung wird die folgende Notation verwendet: Mη≥0.8 bezeichnet ein Modell, das auf
Trainingsdaten mit einer relativen Dichte η ≥ 0.8 trainiert worden ist. Die Auswertung
der vorhergesagten Kernladungszahlen zeigt, dass die Modelle entsprechend ihrer relati-
ven Dichte aus den Trainingsdaten Aluminium korrekt erkennen. Das Modell Mη>0.9

erkennt die Kernladungszahl des Aluminiums bei η < 0.9 nicht korrekt. Analog erkennt
das Modell Mη=1 Aluminium für η ≥ 0.95. Die verbleibenden Modelle erkennen die
Kernladungszahl im gesamten Phantom korrekt. In den Dichtevorhersagen zeichnet sich
ein ähnliches Bild ab. Die Dichtevorhersage des Modells Mη=1 weicht stark von den
anderen Modellen ab. Es wird vermutet, dass dieses Modell das Konzept der relativen
Dichte nie erlernen konnte und somit die gezeigten Ergebnisse hervorbringt. Im Gegen-
satz dazu extrapoliert das Modell Mη>0.9 korrekt die Dichte des porösen Aluminiums
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Abbildung 7.13: Vorhersagen der Kernladungszahl und Dichte für ein Aluminiumphantom mit
verschiedenen relativen Dichten η (x-Achse) durch Modelle, die mit unterschied-
lichen unteren Grenzen der relativen Dichte (Legende) trainiert worden sind. Die
gestrichelten Linien geben die Literaturwerte an. In dem unteren Plot müssen die
absoluten Dichten für η ∈ {0.8, 0.85, 0.9, 0.95, 1.0} vorhergesagt werden, sodass
fünf Literaturwerte eingezeichnet sind.

bis hin zu η = 0.8.
Es ist festzuhalten, dass die Bestimmung der Kernladungszahl poröser Materialien expli-
zit für die in den Materialien vorliegende Porosität in den Trainingsdaten vorliegen muss,
während die Dichtevorhersage, mindestens teilweise, durch die Modelle extrapoliert
werden kann. Im Allgemeinen muss der Dichtebereich der Probe mindestens in den
Trainingsdaten abgebildet werden, sodass die Verwendung eines Modell Mη>0.5 für
alle Proben, die innerhalb dieses Dichtebereiches liegen, möglich ist. Für einen gege-
benen Anwendungsfall sollte demnach die relative Dichte der Probe grob abgeschätzt
und in der Simulation der Trainingsdaten, beziehungsweise der Auswahl eines bereits
trainierten Modells, berücksichtigt werden. Analog zu dem vorausgehenden Abschnitt
ist die Anwendung des Fine-Tunings auch hier denkbar, um vortrainierte Modelle auf
anwendungsspezifische, relative Dichten zu optimieren.

7.5 vorhersagen außerhalb der ct-mittelschicht

Eine weitere Einschränkung besteht in der Erzeugung eines zweidimensionalen Phantoms
(vergleiche DL-spezifische Anforderungen in Abschnitt 5.1) und die daraus resultierende,
rekonstruierte Mittelschicht, die für das Training verwendet wird (vergleiche Kapitel 5.3).
Demnach liegen die simulierten CT-Schichtbilder in der Mittelebene (Fächerstrahl-CT),
sodass keine Feldkamp-Artefakte (vergleiche Kapitel 2.4.1) auftreten. Anschaulich be-
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schrieben kann ein dreidimensionales, rekonstruiertes Volumen als CD-Stapel7 dargestellt
werden, der entlang der CT-Drehachse verläuft – sozusagen an ebendieser aufgefädelt
ist. Die mittlere CD im Stapel symbolisiert in diesem Vergleich die CT-Mittelschicht. In
realen CT-Scans werden hingegen die allermeisten Proben mit der dreidimensionalen
Kegelstrahl-CT gescannt und Schnittebenen, die entlang der Drehachse versetzt zur
Mittelebene liegen, enthalten wichtige Informationen und müssen, auch in der Materi-
albestimmung, korrekt abgebildet werden. Ein bekanntes Problem der Kegelstrahl-CT
kann mittels einer Simulation in aRTist visualisiert werden: Die rekonstruierten Abschwä-
chungskoeffizienten µ ändern sich mit dem Abstand zur Mittelebene wie in Abbildung
7.14 dargestellt wird. Sie sinken mit zunehmendem Abstand zur Mittelebene für beide
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Abbildung 7.14: Schnitt entlang der Drehachse (z-Achse) durch das rekonstruierte Volumen eines
Eisenstabs der Länge 10 cm für die DECT-Spektren nach Tabelle 5.2: 140 kV und
240 kV. Gezeigt werden die rekonstruierten Abschwächungskoeffizienten µ, die
aus einem simulierten Scan mit einer Kegelstrahl-CT (Cone) und einer Helix-CT
(Helix) aufgenommen worden sind. Die physischen Start- und Endpunkte des
Eisenstabes sind grau gestrichelt eingezeichnet.

Spektren bei der Kegelstrahl-CT (blaue Kurve) ab. Zusätzlich ist an den Rändern zu
erkennen, dass die Kegelstrahl-CT den Eisenstab etwa 0.5 mm zu kurz rekonstruiert.
Mithilfe der ebenfalls in Abbildung 7.14 dargestellten Helix-CT (rote Kurve) werden
die beiden genannten Probleme der Kegelstrahl-CT weitestgehend behoben. Das Profil
erscheint deutlich konstanter und die Endpunkte des Eisenstabes werden korrekt, wenn
auch mit überschwingenden Abschwächungskoeffizienten, rekonstruiert. Allein anhand
dieser Erkenntnis aus Abbildung 7.14 kann gefolgert werden, dass die Helix-CT für die
Materialbestimmung vorzuziehen ist, da sie weniger Artefakte im Volumen, insbesondere
in den Randbereichen, erzeugt und somit die Verschiebung der Datenverteilung im

7 Gemeint ist ein Stapel sogenannter Compact Discs.
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Vergleich zur simulierten Mittelschicht im Trainingsdatensatz verringert wird.
Aufbauend auf dieser Erkenntnis wird in Abbildung 7.15 die Materialbestimmung kon-
kret auf einem dreidimensionalen, simulierten Volumen durchgeführt und in Abhängig-
keit des Abstandes zur Mittelebene entlang der CT-Drehachse ausgewertet. Die Vorher-

−5 0 5

12.98

13.00

13.02

K
er
nl
ad

un
gs
za
hl

Al

Cone
Helix

−5 0 5

2.7

2.8

D
ic
ht
e
in

g
/c

m
3

Al

−5 0 5
25.95

26.00

26.05

K
er
nl
ad

un
gs
za
hl

Fe

−5 0 5
7.7

7.8

7.9

8.0
D
ic
ht
e
in

g
/c

m
3

Fe

−5 0 5

Abstand in mm

28.95

29.00

29.05

K
er
nl
ad

un
gs
za
hl

Cu

−5 0 5

Abstand in mm

8.8

8.9

9.0

D
ic
ht
e
in

g
/c

m
3

Cu

Abbildung 7.15: Vorhergesagte Kernladungszahlen und Dichten abhängig vom Abstand zur
Mittelebene eines Phantoms angelehnt an Abbildung 6.4 verlängert entlang der
Drehachse auf 10 cm. Die Literaturwerte sind grau dick gestrichelt eingezeichnet.
Die in Kapitel 6.1 definierten Präzisionen von ±0.5 für die Kernladungszahl
sowie ±1% für die Dichte sind dünn gestrichelt als obere und untere Grenze des
zulässigen Bereiches, grau hinterlegt, eingezeichnet.

sage der Kernladungszahl gelingt dem trainierten Modell sowohl bei der Kegelstrahl-CT
als auch bei der Helix-CT im Toleranzbereich der in Kapitel 6.1 abgeleiteten Rahmen-
bedingungen problemlos. Zudem ist im Profil der Vorhersage der Kernladungszahl im
Volumen aus der Kegelstrahl-CT (linke Spalte, blaue Linie) keine Abstandsabhängigkeit
zu beobachten. Bei der Vorhersage der Dichte auf dem Volumen der Kegelstrahl-CT
liegen alle Vorhersagen außerhalb des grau markierten Toleranzbereiches (vergleiche
Abschnitt 6.1). Die reduzierten Abschwächungskoeffizienten im High-Energy-Volumen
der Helix-CT (vergleiche Abbildung 7.14; unten) senken die Vorhersage der Dichte ab,
sodass die vorhergesagten Dichten innerhalb der Toleranz liegen. Weiterhin ist zu ver-
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merken, dass sich bei der Vorhersage der Dichte im Volumen der Kegelstrahl-CT das
bereits in Abbildung 7.14 beobachtete Profil beobachten lässt, welches mit zunehmendem
Abstand zur Mittelebene abfällt. Das Modell interpretiert den genannten Verlauf der
Abschwächungskoeffizienten als Variation der relativen Dichte, da die Vorhersage der
Kernladungszahlen konstant ist. Im Einklang mit der Erkenntnis aus Abbildung 7.14
wird festgehalten, dass die Helix-CT der Kegelstrahl-CT für die Materialbestimmung
dreidimensional ausgedehnter Proben vorzuziehen ist. Die in Kapitel 5.1 gewählte Me-
thodik – das exklusive Training auf CT-Mittelschichten – stellt keine Einschränkung für
die Anwendung der Materialbestimmung auf dreidimensionale Proben dar, sofern die
Helix-CT zur Bildaufnahme verwendet wird.

7.6 anwendung auf reale ct-daten

Abschließend wird der entwickelte Ansatz zur Materialbestimmung auf realen CT-
Scandaten erprobt. Im Rahmen der Evaluation der implementierten Simulation in Ab-
schnitt 5.4.2 wurde bereits gezeigt, dass die reale CT-Anlage, im Vergleich zur implemen-
tierten Simulation, geringfügig abweichende Abschwächungskoeffizienten misst. Somit
besteht die Vermutung, dass die Materialvorhersage ebenfalls keine idealen Ergebnisse
liefern wird. Abbildung 7.16 (linke Spalte) zeigt die rekonstruierten CT-Mittelschichten
eines DECT-Scans an der CT-Anlage aus Abschnitt 2.7 mit den Scanparametern aus
Tabelle 5.2. In der rechten Spalte werden die Materialvorhersagen eines DL-Modells
dargestellt. Zunächst ist zu beobachten, dass die CT-Artefakte zwischen den einzelnen
Proben teilweise, und fälschlicherweise, als Material mit einer niedrigen Kernladungszahl
und Dichte erkannt werden. Weiterhin ist, insbesondere in der Dichtevorhersage des
Kupfers (rechts unten), zu erkennnen, dass die Strahlaufhärtungsartefakte (das Cupping,
vergleiche Kapitel 2.4.1) nicht vollständig vom DL-Modell als solche erkannt und entfernt
werden. Der homogene Kupferquader (im Schnittbild: Kupferquadrat) enthält somit nach
der Vorhersage ein falsches Dichteprofil. Ein möglicher Grund für diese Abweichung
besteht in der Sim-To-Real-Gap, die bereits in Kapitel 1.1 angesprochen wurde und auf
eine unzureichende Modellierung des realen CT-Messprozesses durch die Simulation
zurückzuführen ist. Wie in Kapitel 5.2 beschrieben, bildet eine Raytracing-basierte Simu-
lation den realen Messprozess nicht ideal nach, sodass systematische Modellierungsfehler
zwangläufig in die Ergebnisse eingetragen werden.
Neben der qualitativen Auswertung von Abbildung 7.16 können die Materialvorhersagen
quantitativ anhand von Tabelle 7.1 bewertet werden. Die vorhergesagten Kernladungszah-
len für Aluminium, Edelstahl und Kupfer stimmen unter Einbezug der Unsicherheiten
mit den Literaturwerten überein. Dennoch befindet sich der Mittelwert der Kernladungs-
zahl für Edelstahl mit 26.73 außerhalb des tolerierten Fehlerbereiches ±0.5 (vergleiche
Abschnitt 6.1). Bei den Dichtevorhersagen liegen alle Mittelwerte deutlich unterhalb der
Literaturwerte. Der Grund für diese einheitliche Absenkung der vorhergesagten Dichten
kann, mindestens teilweise, in der fehlenden Modellierung der Streustrahlung gefunden
werden. Abbildung 7.17 zeigt das CT-Schichtbild einer Raytracing-basierten Simulation
und das Differenzbild zu einer Monte-Carlo-basierten Simulation. Die Streustrahlung
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Abbildung 7.16: Rekonstruierte DECT-Schichtbilder (links) und berechnete Materialkarten (rechts)
eines realen Scans an der CT-Anlage aus Kapitel 2.7. Alle x- und y-Achsen tragen
die Einheit Voxel.

trägt aufgrund ihrer Winkelverteilung ebenfalls zum gemessenen Detektorsignal bei,
sodass insgesamt eine niedrigere Abschwächung rekonstruiert wird (vergleiche Ab-
schnitt 2.1 und 2.3). Nach der Auswertung in Abbildung 7.17 senkt die Berücksichtigung
der Streustrahlung die rekonstruierten Abschwächungskoeffizienten um etwa 10 % für
das genannte Beispiel (Aluminiumwürfel, 240 kV) gegenüber der Raytracing-basierten
Simulation ab. Daraus folgt, dass auch die Dichte niedriger vorhergesagt wird – die
beobachtete Abweichung in Tabelle 7.1.
Die einzelnen Bestandteile der Probe aus Abbildung 7.16 sind räumlich klar voneinander
separiert und in ihrem Inneren nicht strukturiert, sodass die Vorhersage der Materialien
verhältnismäßig einfach erscheint. Eine komplexer strukturierte Probe wurde mit den
oben genannten CT-Parametern aus Tabelle 5.2 gescannt und ist in Abbildung 7.18 dar-
gestellt – es handelt sich um eine Lithium-Ionen-Batterie (LIB). Die gezeigte LIB ist eine
sogenannte Rundzelle, die aus aufgewickelten Lagen besteht. In der Dichtevorhersage
in Abbildung 7.18 (rechts unten) ist zu erkennen, dass die LIB ein Gehäuse mit einer
hohen Dichte (≈ 6 g/cm3) besitzt und in ihrem Inneren Dichten zwischen 1 g/cm3 und
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Tabelle 7.1: Vorhergesagte Kernladungszahlen und Dichten durch ein U-Net [36] für das Ex-
periment aus Abbildung 7.16. Die tabellierten Werte geben den Mittelwert µ, die
Standardabweichung σ und die prozentuale Abweichung des Mittelwerts p vom
Literaturwert der Vorhersage in der Form µ ± σ (p) an. In der ersten Spalte werden
die Materialien zusammen mit ihren Literaturwerten gelistet.

Material Kernladungszahl Z Dichte ρ in g/cm3

Al (Z = 13, ρ = 2.70) 13.00 ± 0.01 (0.0 %) 2.59 ± 0.10 (4.1 %)
V2A (Z = 25.9, ρ = 7.77) 26.73 ± 0.90 (3.2 %) 7.73 ± 0.12 (0.5 %)

Cu (Z = 29, ρ = 8.93) 28.95 ± 0.19 (0.2 %) 7.92 ± 0.37 (11.3 %)
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Abbildung 7.17: Links: Simuliertes CT-Schichtbild eines Aluminiumwürfels bei einer Quellspan-
nung UB = 240 kV mit der Verwendung eines Raytracing-basierten Projektors
(RT). Rechts: Differenzbild zu dem simulierten CT-Schichtbild eines Monte-
Carlo-basierten Projektors (MC). Der Mittelwert innerhalb des Aluminiums im
Differenzbild beträgt 0.002 cm−1 – in guter Näherung 10 % des insgesamt ge-
messenen Signals. Die Berechnungdauern der Bilder betragen in der genannten
Reihenfolge TRT = 1.2 min und TMC ≈ 120 h.

4 g/cm3 vorliegen. Allgemein ähneln die Kontrastverhältnisse der Dichtevorhersage den
DECT-Schichtbildern in Abbildung 7.18 (links). Auffällig ist bezüglich der Vorhersage
der Kernladungszahl in Abbildung 7.18 (rechts oben), dass einige Lagen im Inneren
der LIB eine hohe Kernladungszahl und gleichzeitig niedrige Dichte aufweisen. Hierbei
handelt es sich um ein Beschichtungsmaterial aus einer Gruppe namens Lithium-Nickel-
Mangan-Cobalt-Oxid (NMC). Eine häufig verwendete Mischung mit einer Dichte von
3.4 g/cm3 heißt NMC811, die im rekonstruierten Volumen nach der Gleichung von He-
ismann [14] mit einer effektiven Kernladungszahl Zeff ≈ 26.4 erscheint. Da die genaue
Zusammensetzung der meisten kommerziell erhältlichen LIBs nicht öffentlich bekannt ist,
wird der gezeigte Scan zusammen mit der Materialbestimmung der LIB nur qualitativ
ausgewertet. Anhand des Scans wird dennoch deutlich, dass die vorgestellte Methode zur
Materialbestimmung prinzipiell für die Untersuchung von LIBs geeignet ist. Unklar ist
zu diesem Zeitpunkt, ob typische Fehlerbilder, nach denen in den CT-Scans von Batterien
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Abbildung 7.18: Rekonstruierte DECT-Schichtbilder (links) und berechnete Materialkarten (rechts)
eines CT-Scans einer Lithium-Ionen-Batterie (LIB), durchgeführt an der CT-
Anlage aus Kapitel 2.7.

gesucht wird8, mithilfe der vorgestellten Methode gefunden werden können. Mit einer
gezielten Auswertung einer bekannten und vollständig charakterisierten LIB kann das
vorgestellte Verfahren zur Materialbestimmung aufbauend auf dieser Arbeit evaluiert
und gegebenfalls entsprechen qualifiziert werden.
Zusammenfassend kann festgehalten werden, dass die Übertragung der trainierten
Modelle, für quantitative Aussagen, auf reale CT-Daten nicht trivial ist. Die Daten-
verteilungen der realen CT-Anlage unterscheiden sich zu stark von den simulierten
Verteilungen, sodass weitere Schritte notwendig sind, um die Materialvorhersagen zu
verbessern. Eine weitere Optimierung der Simulation zur Reduktion der Sim-To-Real-Gap
erscheint wenig aussichtsreich, da die angesprochenen, systematischen Modellierungsfeh-
ler einer Raytracing-basierten Simulation nicht umgehbar sind ohne Monte-Carlo-basierte
Verfahren zu nutzen. Hingegen erscheint das in Abschnitt 7.3.1 erprobte Fine-Tuning

8 Zu den wichtigsten Untersuchungen zählt die Identifikation freier Partikel, beispielsweise aus Kupfer, die als
Verunreinigung einen negativen Einfluss auf die Leistung und Sicherheit der LIB ausüben können [116, 117].
Nach der Untersuchung des Auflösungsvermögens in Abschnitt 7.1 ist klar, dass das Auflösungsvermögen
der Materialbestimmung nicht nur die Sichtbarkeit, sondern ebenso die quantitativen Materialvorhersagen
kleiner Partikel beeinflusst.
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als vielversprechende Methoden zur Überwindung der Sim-To-Real-Gap. Nach dem er-
folgreichen Fine-Tuning eines Modells zur Anpassung an eine veränderte CT-Geometrie
(vergleiche Abschnitt 7.3.1), könnte das gleiche Verfahren für die Anpassung an reale
CT-Daten verwendet werden. Durch das Vortrainieren der Modelle genügt ein deutlich
kleinerer Datensatz zum Fine-Tuning, der anhand eines geeigneten, realen Phantoms
erzeugt werden kann (Kalibrationsscan). Ein Nachteil dieses Verfahrens besteht jedoch
darin, dass das Fine-Tuning, analog zu Abschnitt 7.3.1, für jeden CT-Parametersatz erneut
anhand eines Kalibrationsscans durchgeführt werden muss. Es besteht derzeit keine
Möglichkeit, den Einfluss der CT-Geometrie oder des Quellspektrums getrennt von der
Abweichung zwischen der Simulation und der realen CT-Anlage zu beschrieben, da
sowohl die CT-Geometrie als auch das Quellspektrum die simulierten und real gemes-
senen Datenverteilungen in komplexer Form beeinflussen. Idealerweise bestünde die
DL-Architektur aus getrennten und voneinander unabhängigen Modulen, die jeweils
einen dieser Freiheitsgrade abdecken. Somit wäre das Fine-Tuning, beispielsweise an
eine neue CT-Geometrie, möglich, ohne für jede Anwendung einen Kalibrationsscan
durchführen zu müssen.
Ein alternativer Ansatz kann durch die Verwendung eines zweiten DL-Modells realisiert
werden, das, abhängig von den CT-Parametern, explizit den Unterschied zwischen der
Datenverteilung der Raytracing-basierten Simulation und einem realen Scan (oder einer
Monte-Carlo-basierten Simulation) erlernt und ebendiesen effektiv kompensieren kann.
Dieser Ansatz wird in Kapitel 9 im Kontext zukünftiger Forschungsarbeiten ausführlich
diskutiert.

7.7 zusammenfassung der ergebnisse

In diesem Kapitel wurde die entwickelte Methodik, bestehend aus der implementierten
Simulation (Kapitel 5) sowie der ausgewählten DL-Architektur (Kapitel 6), in realisti-
sche CT-Scanszenarien überführt und ihre Einschränkungen bezogen auf die Präzision
der Materialbestimmung untersucht. Die meisten untersuchten Einschränkungen treten
unabhängig von der beobachteten Sim-To-Real-Gap auf, sodass sie anhand von simu-
lierten Phantomen untersucht werden konnten. In Abschnitt 7.1 wurde gezeigt, dass
der Erwartungswert der Regionsgröße, bestimmt durch den Parameter Nmax, in den
simulierten Phantomen (vergleiche Phantomgenerator in Kapitel 5.3) keinen Einfluss auf
die Ortsauflösung der DL-basierten Materialbestimmung hat. Weiterhin wurde erkannt,
dass die MTF-Kurve, eine häufig genutzte Darstellungsform für die Ortsauflösung von
CT-Systemen, nicht zur Quantifizierung der Ortsauflösung bei der Materialbestimmung
geeignet ist, sodass diesbezüglich eine domänenspezifische Methodik entwickelt wer-
den sollte. Die Analyse der Kantenschärfe der Materialvorhersagen in Abschnitt 7.2
bestätigt die Ergebnisse von Steuwe et al. [110], dass CNNs, die mit dem MSE-Loss auf
CT-Schichtbildern trainiert werden, die Kantenschärfe der Bilder reduzieren.
In Abschnitt 7.3 konnte gezeigt werden, dass das Training eines Modells auf einer festen
Kantenlänge des simulierten Volumens die Generalisierungsfähigkeit des Modells auf
andere Kantenlängen einschränkt. Das Fine-Tuning eines vortrainierten Modells auf eine
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neue Kantenlänge, die in einer vergleichbaren Größenordnung der ursprünglichen Kan-
tenlänge liegt, wurde als Lösungsvorschlag aufgezeigt und erfolgreich für den Transfer
eines Modells M4 cm (Kantenlänge im Training 4 cm) auf die neue Kantenlänge 1 cm
anhand eines kleinen Datensatzes demonstriert.
Neben der Materialbestimmung massiver Proben konnten in Abschnitt 7.4 die Kernla-
dungszahlen und Dichten von porösem Aluminium (Porosität ≤ 20 %) mit Modellen
durchgeführt werden, die auf entsprechenden Porositäten, beziehungsweise relativen
Dichten, innerhalb der Trainingsdaten konditioniert wurden.
Eine weitere relevante Einschränkung der entwickelten Methode, das Training auf zwei-
dimensionalen Phantomen (Fächerstrahl-CT), konnte im Rahmen von Abschnitt 7.5 bei
der Anwendung auf dreidimensionale Proben analysiert werden. Durch den Einsatz der
Helix-CT, als Alternative zur Kegelstrahl-CT, werden aufgrund der Verschiebung entlang
der CT-Achse alle Schichten des dreidimensionalen Volumens wie eine Mittelschicht
betrachtet, sodass ein auf simulierten Mittelschichten trainiertes Modell stabile Material-
vorhersagen über ein dreidimensionales Volumen liefert.
Die sicherlich gravierendste Einschränkung ist durch die mehrfach angesprochene Sim-
To-Real-Gap gegeben. In Abschnitt 7.6 wurde die Materialbestimmung auf einem realen
CT-Schichtbild erprobt, wobei die Ergebnisse entsprechend der ausgeprägten Sim-To-
Real-Gap ausfallen. Es ist festzuhalten, dass die vorgestellte Methode zur Materialbestim-
mung nur stark eingeschränkt direkt in die CT-Praxis übertragbar ist. Weiterführende
Schritte wurden in Abschnitt 7.6 diskutiert, um die Sim-To-Real-Gap zu reduzieren und
so den Transfer in die reale Anwendung zu ermöglichen. Das schlichte Training auf
annotierten Realdaten, das teilweise in der verwandten Forschung in Kapitel 4.2.4 durch-
geführt wurde, ist für industrielle Anwendungen aufgrund der enormen Vielfalt bezogen
auf die Prüfteile (Form und Material) und die CT-Parameter für ein gut generalisiertes
Modell nicht durchführbar. Prinzipiell wird ein Ansatz benötigt, der das Grundkonzept
der Materialbestimmung aus simulierten Daten erlernt und lediglich den Versatz zur
realen Datenverteilung in den CT-Scans anhand weniger, im Bestfall nicht annotierter,
Daten erlernen kann. Die Konzeption und Entwicklung eines derartigen Ansatzes ist
Gegenstand zukünftiger Forschung.
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A N W E N D U N G S P O T E N T I A L AU F A N D E R E P R O B L E M S T E L L U N G E N
I N D E R C T

Die entwickelte Methodik zur Erzeugung von Trainingsdaten für die Materialbestimmung
in CT-Schichtbildern sowie die implementierten DL-Architekturen können, in leicht ab-
gewandelter Form, neben der Materialbestimmung für weitere Anwendungen in der CT
verwendet werden und somit zur Verbesserung der CT-Datenverarbeitung im Allgemei-
nen abseits der Materialbestimmung beitragen. Ziel dieses Kapitels ist die exemplarische
Ausführung oder konzeptionelle Identifikation einiger Anwendungsmöglichkeiten, die
ohne komplexe Weiterentwicklungen der, in den drei vorausgehenden Forschungsfragen
erarbeiteten, Methodik umgesetzt werden können. Mit der beobachteten Sim-To-Real-Gap
wurde ein zentrales Problem der Trainingsdatenerzeugung identifiziert, das zu einer
deutlichen Verschlechterung der Materialbestimmung in realen CT-Scans führt, wie in
Kapitel 7.6 aufgezeigt wurde. Dennoch besteht ein zu identifizierendes Potential für
andere Anwendungsfälle, in denen die Sim-To-Real-Gap, konkret die fehlende Model-
lierung der Streustrahlung, eine untergeordnete Rolle spielt und somit die entwickelte
Methodik direkt verwendet werden kann. Die Einflüsse der Sim-To-Real-Gap werden
daher in den jeweiligen Abschnitten anwendungsbezogen diskutiert.
Für die meisten Prüfaufgaben, die mithilfe der CT durchgeführt werden, genügt die
Messung mit einem einzelnen Spektrum, sodass DECT im Gesamtfeld der CT-Prüfung
in einer Nische zu lokalisieren ist. Daher basieren die in diesem Kapitel vorgestellten
Anwendungen nicht auf DECT, sodass sie per Definition das Potential besitzen, auf jeden
industriellen CT-Scan angewandt zu werden.
Aufbauend auf den Beobachtungen aus Kapitel 7.6 (vergleiche Abbildung 7.16) wird
zunächst ein Verfahren zur Reduktion der Strahlaufhärtungsartefakte in Abschnitt 8.1
vorgestellt und auf reale CT-Daten angewandt. Abschnitt 8.2 untersucht die implizit
erlernte Rauschunterdrückung des Verfahrens aus Abschnitt 8.1 ebenfalls auf realen
CT-Daten. Abschließend wird in Abschnitt 8.3 eine Methodik konzeptionell erläutert, die
zur Erkennung von Poren und Partikeln in CT-Scans verwendet werden kann.

8.1 reduktion der strahlaufhärtungsartefakte

Die Reduktion der Strahlaufhärtungsartefakte wird seit vielen Jahren untersucht, um
die Bildqualität in CT-Scans zu verbessern. In klinischen CT-Scans stellt beispielsweise
implantiertes Metall in Form von Schrauben oder Schienen eine Hauptquelle für die
sogenannten Metallartefakte dar, die als Extremfall der Strahlaufhärtung definiert wer-
den können. Nach Selles et al. lassen sich Verfahren zur Reduktion der Metallartefakte
anhand der verwendeten Datendomäne in zwei Kategorien unterteilen: Sinogram-based
und Image-based [118]. Im Rahmen dieser Dissertationsschrift wurde die Materialbestim-

129
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mung auf CT-Schichtbildern (Image-based) untersucht, sodass die in den vorangehenden
Kapiteln entwickelte Methodik vorzugsweise auf die zuletzt genannte Datendomäne,
das heißt im rekonstruierten Volumen, angewandt wird. Weiterhin wurde in Kapitel
7.6 beobachtet, dass die trainierten Modelle die Strahlaufhärtung in den Trainingsdaten
verarbeiten und in den Materialvorhersagen teilweise kompensieren (vergleiche Abbil-
dung 7.16). Abbildung 8.1 stellt die Kompensation der Strahlaufhärtung exemplarisch
und qualitativ anhand der Materialbestimmung innerhalb der Materialien Edelstahl und
Kupfer aus dem realen CT-Scan nach Abbildung 7.16 dar. Aluminium weist aufgrund
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Abbildung 8.1: Teilschnitte durch den Edelstahlstab (links) und den Kupferwürfel (rechts) im
High-Energy-Schichtbild mit 240 kV (graue Linie) sowie durch die Materialvorher-
sagen (blaue und rote Linie). Gezeigt wird jeweils ein Teilprofil (obere Zeile) durch
die Objekte zur normierten Darstellung des Cuppings, hauptsächlich bedingt
durch die Strahlaufhärtung, sodass die y-Achse einheitenlos ist. In der unteren
Zeile wird die absolute Abweichung von einem idealen Objekt (gestrichelte Linie),
das heißt ohne Strahlaufhärtungsartefakte, dargestellt. Ziel der Abbildung ist die
qualitative Veranschaulichung, dass die Materialvorhersagen weniger Cupping
aufweisen als das High-Energy-Schichtbild.

seiner niedrigen Abschwächung grundsätzlich weniger Strahlaufhärtungsartefakte auf,
sodass die Materialien Edelstahl und Kupfer zu diesem Zweck anschaulicher sind. Das
Vergleichprofil wurde dem High-Energy-Schichtbild entnommen, da es weniger Strahl-
aufhärtungsartefakte aufweist als das Low-Energy-Schichtbild und die Verwendung des
letzteren somit ein unfairer Vergleich wäre.1

Wie einleitend beschrieben, ist die Durchführung der DECT beziehungsweise der Mate-
rialbestimmung für viele CT-Prüfaufgaben mit der Verwendung eines EIDs zu zeitauf-

1 Das trainierte Modell berechnet die Materialbestimmung basierend auf den Low- und High-Energy-
Schichtbildern. Somit ist die qualitative Beurteilung der Artefaktkompensation nur fair, wenn das ar-
tefaktärmere Eingabebild, das High-Energy-Schichtbild, zum Vergleich herangezogen wird.
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wändig und es bedarf einer vereinfachten Methode zur Reduktion der Strahlaufhärtungs-
artefakte, die ohne eine DECT auf bestehende CT-Scanprotokolle angewandt werden
kann. Mithilfe der implementierten Simulation lässt sich eine einfachere und zugleich
effektivere Methode zur Kompensation der Strahlaufhärtungsartefakte realisieren: Wie in
Kapitel 2.4.1 beschrieben, besteht der Grund für die Strahlaufhärtungsartefakte in der
Nutzung eines polychromatischen Röntgenspektrums. Bisher wurde die Simulation mit
zwei verschiedenen Quellspektren verwendet, um die DECT-Scans darzustellen. Durch
Verwendung zweier Spektren, beispielsweise 140 kV (polychromatisch) und 100 keV (mo-
nochromatisch), berechnet die Simulation automatisch ein rekonstruiertes Volumen mit
dem polychromatischen Spektrum und ein rekonstruiertes Volumen mit dem mono-
chromatischen Spektrum, das keine Strahlaufhärtungsartefakte aufweist. Mithilfe der
simulierten Daten kann somit ein neuronales Netz, in diesem Fall exemplarisch ein
U-Net [36], trainiert werden, um die polychromatischen CT-Schichtbilder in monochro-
matische CT-Schichtbilder umzurechnen. Abbildung 8.2 stellt die Vorhersage eines nach
dieser Methodik trainierten U-Nets anhand von realen CT-Daten dar. Anhand der CT-
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Abbildung 8.2: Polychromatisches CT-Schichtbild (links) mit einer Beschleunigungsspannung
UB = 140 kV des CT-Scans aus Kapitel 7.6 und Vorhersage des monochromati-
schen CT-Schichtbildes durch ein U-Net [36]. Die untere Zeile zeigt die Profile
entlang der roten, gestrichelten Linie.

Schichtbilder wird deutlich, dass die Strahlaufhärtungsartefakte deutlich unterdrückt
werden (insbesondere untere Zeile anhand des reduzierten Cuppings). Die Außenkante
des Aluminumquaders wird allerdings nicht korrekt dargestellt – im unteren Teil wird
fälschlicherweise Material vorhergesagt, obwohl an dieser Stelle lediglich Luft erscheinen
sollte. Dieses Beispiel soll exemplarisch zeigen, dass die Realisierung einer Artefaktkor-
rektur für die Strahlaufhärtungsartefakte mit diesem Ansatz möglich ist.
Der Einfluss der Sim-To-Real-Gap, hauptsächlich induziert durch die fehlende Modellie-



132 anwendungspotential auf andere problemstellungen in der ct

rung der Streustrahlung, wird anhand dieses Beispiels ebenfalls in verminderter Form
deutlich: Formell werden durch das beschriebene Verfahren die polychromatischen
Abschwächungskoeffizienten aus dem realen CT-Scan in monochromatische Abschwä-
chungskoeffizienten umgerechnet. Durch die fehlende Streustrahlung in den simulierten
Trainingsdaten werden die durch das DL-Modell berechneten, monochromatischen Ab-
schwächungskoeffizienten verfälscht, da die Inputs des realen Scans der Streustrahlung,
und damit einer leicht abweichenden Verteilung, unterliegen. Wie einleitend beschrieben,
ist die Reduktion der Strahlaufhärtungsartefakte nicht rein quantitativ motiviert, sondern
dient ebenfalls einer Verbesserung der (subjektiven) Bildqualität. Bei der strukturellen
CT-Prüfung, beispielsweise zur Identifikation von Poren und Rissen, sind die absoluten
Werte der rekonstruierten Abschwächungskoeffizienten für den Anwender irrelevant.
Entscheidend ist einzig der (relative) Bildkontrast, sodass die Anwendung der in diesem
Abschnitt beschriebenen Methode keinen negativen Einfluss auf die Durchführung der
Prüfaufgabe hat.

8.2 rauschreduktion

In diesem Abschnitt wird das trainierte Modell aus dem vorausgehenden Abschnitt
8.1 auf reale CT-Daten angewandt und das Rauschen des Inputs (CT-Schichtbild) mit
dem Rauschen der Prediction (monochromatisches CT-Schichtbild) verglichen. Neben
DL-basierten Verfahren, die explizit zur Rauschunterdrückung in CT-Bildern entwickelt
worden sind [119], besteht die Vermutung, dass das trainierte Modell aus Abschnitt
8.1 bereits aufgrund der Trainingsstrategie ein gewisses Potential zur Rauschreduktion
aufweist. Das Modell wurde auf rauschfreien CT-Schichtbildern trainiert, sodass es kein
realistisches Verständnis des CT-spezifischen Rauschmusters im Rahmen des Trainings
erlangen konnte. Wie in Kapitel 3.4.1 beschrieben, enthält das verwendete U-Net Dropout-
Layer, die, einzig motiviert aus der Perspektive des DLs, zur Stabilisation des Trainings
genutzt werden [45]. Die Dropout-Layer können formell als binäres (Bild-)Rauschen
interpretiert werden, das vom Modell unterdrückt wird.
Zur Quantifizierung des Rauschens in einem CT-Bildausschnitt wird die Standardabwei-
chung in ebendiesem nach dem in Kapitel 6.1 (Abbildung 6.2) beschriebenen Verfahren
ermittelt. Abbildung 8.3 stellt ein real gemessenenes, polychromatisches CT-Schichtbild
sowie das monochromatische CT-Schichtbild durch die Vorhersage eines U-Nets trainiert
im Rahmen von Abschnitt 8.1 dar. Anhand der roten Boxen ist zu erkennen, dass das
Bildrauschen durch Anwendung des U-Nets, sowohl innerhalb der Proben als auch im
leeren Raum2, reduziert wird. Auch wenn diese stichprobenartige Untersuchung der
Rauschreduktion keineswegs eine Allgemeingültigkeit für alle CT-Scans aufweist, ist ein
gewisses Potential der Methodik exemplarisch zu verzeichnen.
Ein positiver Nebeneffekt in Bezug auf eine verbesserte Robustheit gegenüber Bildrau-
schen kann intuitiv aus der Verwendung der Dropout-Layer abgeleitet, wenn auch nur
schwierig für CT-Bilder quantifiziert, werden. Nach Srivastava et al. führt die Verwen-

2 Gemeint ist der Teil des rekonstruierten Volumens, der keine Probe, sondern nur Luft enthält, die in guter
Näherung vollständig transparent für die Photonen im CT-relevanten Energiebereich ist.
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Abbildung 8.3: Rekonstruiertes CT-Schichtbild bei einer Quellspannung UB = 140 kV eines Scans
mit der CT-Anlage aus Kapitel 2.7 und den CT-Parametern nach Tabelle 5.2
(links). Das monochromatische CT-Schichtbild (rechts) wurde mit einem U-Net
nach der Methodik aus Abschnitt 8.1 berechnet. Die Zahlenwerte oberhalb der
roten Boxen geben die normierten Standardabweichungen der rekonstruierten
Abschwächungskoeffizienten innerhalb der roten Boxen wieder.

dung der Dropout-Layer während des Trainings anschaulich zu der zufälligen Aufspal-
tung des neuronalen Netzes in Teilinstanzen des gesamten Modells (Sub-Networks) [45].
Bei der Inferenz, bei der die Dropout-Layer im Normalfall deaktiviert werden, agieren
nach obiger Sichtweise alle Sub-Networks additiv und mitteln ihre (Zwischen-)Ergebnisse,
sodass ein Rauschen in den Eingabedaten statistisch unterdrückt wird.

8.3 detektion von poren und partikeln

Wie in Kapitel 7.6 beschrieben, kann die Computertomographie verwendet werden, um
Lithium-Ionen-Batterien zu prüfen. Im Kontext von Kapitel 7.1 wurde erläutert, dass
die Materialbestimmung von Partikeln mit dem vorgestellten Ansatz nur bis zu einer
gewissen Partikelgröße zuverlässig funktionieren kann. Die implementierte Simulation
kann mit kleinen Anpassungen zur Erzeugung von Trainingsdaten für die Detektion
von Partikeln oder Poren in CT-Scans genutzt werden: Zunächst werden zufällige Phan-
tome nach dem in Kapitel 5.3 beschriebenen Verfahren erzeugt. Anschließend können
gezielt kleine Regionen eines bestimmten Materials hinzugefügt werden, deren Posi-
tionen, analog zu den Materialkarten, als Annotationen dienen. Für das Training einer
Segmentierung dieser kleinen Objekte können somit die CT-Schichtbilder als Inputs
und die binär maskierten Partikel als Ground Truths verwendet werden. Alternativ
können die bekannten Positionen der eingefügten Partikel für die Positionierung so-



134 anwendungspotential auf andere problemstellungen in der ct

genannter Bounding Boxes verwendet werden (Box-basierte Detektion). Im Kontext der
beobachteten Sim-To-Real-Gap kann die Argumentation aus Abschnitt 8.1 aufgegriffen
werden. Auch für die Detektion von Poren und Partikeln spielt die Streustrahlung ei-
ne stark untergeordnete Rolle. Die Partikel werden nicht anhand ihrer quantitativen
Abschwächungskoeffizienten, sondern anhand ihres Kontrastunterschiedes gegenüber
ihrer Umgebung erkannt – analog benötigt ein CT-Experte nicht die absoluten Werte der
Abschwächungskoeffizienten zur Identifikation eines Partikels oder einer Pore innerhalb
eines sonst homogenen Materials. Diese beispielhafte Anwendung der implementierten
Simulation wird im Rahmen dieser Arbeit nicht erprobt, kann jedoch aufbauend zur
Entwicklung eines neuronalen Netzes zur Partikel- oder Porenidentifikation genutzt
werden.

8.4 zusammenfassung der ergebnisse

In diesem Kapitel wurden weitere Anwendungsfälle der entwickelten Methodik aus
den ersten drei Forschungsfragen identifiziert. Insbesondere die Methodik der Trai-
ningsdatenerzeugung bietet allein durch den Austausch einiger Parameter das Potential,
Trainingsdaten für alternative Anwendungsfälle, abseits der Materialbestimmung, zu
generieren. Die vorgestellten Anwendungsfälle besitzen die Gemeinsamkeit, dass sie
nicht auf quantitativen CT-Daten basieren und somit, im Vergleich zur Materialbestim-
mung, robuster gegenüber der in Abschnitt 7.6 diskutierten Sim-To-Real-Gap sind. Durch
die Substitution eines der beiden Quellspektren in den Simulationsparametern können
mit der implementierten Simulation Trainingsdaten für die Umrechnung zwischen poly-
und monochromatischen CT-Schichtbildern erzeugt werden. Die Ergebnisse eines mit
ebendiesen Daten trainierten U-Nets wurden in Abschnitt 8.1 anhand realer Scandaten
präsentiert und weisen eine deutliche Reduktion der Strahlaufhärtungsartefakte auf. In
Abschnitt 8.2 wurde die implizit erlernte Rauschunterdrückung des trainierten U-Nets
aus Abschnitt 8.1 untersucht. Abschließend wurde die Möglichkeit disktuiert, mithilfe
des Phantomgenerators (vergleiche Abschnitt 5.3) Trainingsdaten für die Box-basierte
Detektion oder Segmentierung von Partikeln und Poren zu erzeugen. Alle genannten
Anwendungsfälle weisen das Potential auf, auch ohne die weitere Reduktion der Sim-To-
Real-Gap, erfolgreich mit simulierten Daten trainiert und in die realen CT-Anwendung
übertragen werden zu können.
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Im Rahmen der Einleitung in Kapitel 1 wurde die Verwendung eines DL-basierten Ver-
fahrens zur Materialbestimmung anhand von CT-Daten motiviert. Hieraus wurden vier
Forschungsfragen abgeleitet und in den Kapitel 5 bis 8 beantwortet. Ziel dieses Kapitels
ist die Bewertung und kritische Diskussion ebendieser Antworten auf die Forschungsfra-
gen.
Zur Beantwortung der ersten Forschungsfrage (Kapitel 5) wurde eine simulations-
basierte Methodik zur Trainingsdatenerzeugung für die Materialbestimmung in CT-
Schichtbildern entwickelt. Die einzige, heutzutage realistisch durchführbare, Simulati-
onstechnik für die Erzeugung großer Trainingsdatenmengen ist die Raytracing-basierte
Projektion virtueller Prüfteile (vergleiche Kapitel 5.1). Sie birgt jedoch eine systemati-
sche Ungenauigkeit: die Streustrahlung, ein Produkt der Compton-Streuung (vergleiche
Kapitel 2.1), wird nicht modelliert. Rückblickend auf die Wechselwirkungsprozesse
von Photonen mit Materie in Abbildung 2.4 wird deutlich, dass der relative Anteil der
Compton-Streuung an der gesamten Wechselwirkung von der Photonenenergie abhängt.
Abbildung 9.1 stellt den Anteil der Compton-Streuung an dem totalen Abschwächungs-
koeffizienten µL energieabhängig dar. Die Compton-Streuung ist, in großen Teilen des
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Abbildung 9.1: Anteil der Compton-Streuung am totalen Abschwächungskoeffizienten für ver-
schiedene Materialien abhängig von der Photonenenergie. Der relevante Energie-
bereich für die industrielle CT ist, analog zu Abbildung 2.4, grau hinterlegt.

industriell relevanten Energiebereiches, der einflussreichste Wechselwirkungsprozess,
sodass ein signifikanter Anteil des gemessenen (Detektor-)Signals auf die vorwärts-
gerichtete Streustrahlung (vergleiche Kapitel 2.1, Klein-Nishina-Gleichung [3, S. 50f.])
zurückzuführen ist. Durch die fehlende Modellierung der Streustrahlung in der imple-
mentierten Simulation ist eine deutliche Sim-To-Real-Gap zu beobachten (vergleiche
Abbildung 5.8 und Abbildung 7.17). Ein Lösungsansatz besteht in dem expliziten Lernen
der Sim-To-Real-Gap mit einem DL-Modell, sodass die simulierten Bilder, nach Pro-
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zessierung durch ein entsprechend trainiertes Modell, den realen Bildern stark ähneln.
Dieser Ansatz wird von Maier konkret für die fehlende Modellierung der Streustrah-
lung in simulierten CT-Bildern beschrieben: Er trainiert ein DL-Modell, das die absolute
Differenz zwischen einer Raytracing-basierten Simulation und einer (realistischen) Monte-
Carlo-basierten Simulation vorhersagt [120]. Obwohl Maier diese Methodik für einen
anderen Anwendungsfall konzipiert hat, bietet sie eine Möglichkeit, um die Verteilung
der Trainingsdaten im Rahmen dieser Arbeit deutlich an die real gemessenen CT-Daten
anzugleichen und um somit den Transfer auf reale CT-Daten zu verbessern. Da die Streu-
strahlung ein dreidimensional auftretender Effekt ist, sollte die implementierte Simulation
zur Datenerzeugung ebenfalls dreidimensionale Phantome und somit zweidimensionale
Projektionen berechnen, sodass die von Maier entwickelte Methode ihr volles Potential
entfalten kann. Dennoch ist zu betonen, dass die von Maier trainierten Modelle für das
Training stets die Projektionen aus einer Monte-Carlo-basierten Simulation benötigen,
sodass diese Methode ebenfalls mit einem erheblichen Berechnungsaufwand verbunden
ist. Ein alternatives Verfahren wurde durch Tercan für industrielle Sim-To-Real-Gaps
beschrieben und besteht in dem Vortrainieren eines DL-Modells auf simulierten Daten
und dem anschließenden Fine-Tuning auf wenigen, annotierten Realdaten [121]. Nach
Tercan lernt das DL-Modell während des Vortrainings die grundlegenden Zusammen-
hänge der simulierten Trainingsdatenverteilung und während des Fine-Tunings lediglich
den, potentiell trivialen, Versatz zur realen Datenverteilung. Beide Ansätze nach Maier
und Tercan sollten in einer zukünftigen Arbeit grundsätzlich für die Verarbeitung von
CT-Daten mit DL, auch abseits der Materialbestimmung, untersucht werden.
Die im Rahmen der zweiten Forschungsfrage (Kapitel 6) ausgewählte DL-Architektur,
das U-Net [36], wird in der Literatur für die Materialbestimmung anhand von CT-Bildern
häufig verwendet (vergleiche Tabelle 4.1). Im quantitativen Vergleich mit dem Swin-Unet
[58] konnte sich das U-Net für die Materialbestimmung im Rahmen dieser Arbeit durch-
setzen. Die deutliche Überlegenheit der Transformer-basierten Architekturen gegenüber
den Convolution-basierten Architekturen in den großen CV-Benchmarks [111, 57, 37, 38]
steht in einem Widerspruch zu den Ergebnissen von Kapitel 6. Es ist die Frage zu stellen,
aus welchem Grund das U-Net bessere Ergebnisse bei der Materialbestimmung erzielen
konnte. Der offenkundigste Grund besteht in einem Mangel an Trainingsdaten, da das
Swin-Unet ohne vortrainierte Gewichte initialisiert wird. In den Originalpublikationen
nach Liu et al. wird der Swin Transformer auf Datensätzen mit vielen Millionen Bildern
zunächst vortrainiert und anschließend für die speziellen Anwendungen mittels Fine-
Tuning angepasst [38]. Cao et al. geben für ihr Segmentierungsproblem aus der klinischen
CT an, auf dem ImageNet-Datensatz vortrainierte Gewichte für den Swin Transformer zu
verwenden [58], jedoch wird keine konkrete Referenz angegeben. Die Versuche in dieser
Arbeit, einen vortrainierten Swin Transformer (ImageNet-22K) zu nutzen, führten zu
keiner Verbesserung der Materialbestimmung (vergleiche Kapitel 6.4.2; Abbildung 6.11).
Der Grund für dieses Resultat kann in den domänenspezifischen Unterschieden zwischen
dem ImageNet-22K-Datensatz und den DECT-Schichtbildern gefunden werden. Mit ei-
nem offenen und ausreichend dimensionierten CT-Datensatz könnten parameterstarke
Modelle, beispielsweise der Swin Transformer aber auch etablierte CNNs wie das ResNet,



kritische würdigung 137

vortrainiert werden und so den Zugang für Forschende aus dem CT-Bereich signifikant
vereinfachen. Darüber hinaus können auf einem derartigen Datensatz offene Benchmarks
definiert werden, sodass die für die CT entwickelten Modelle untereinander vergleichbar
werden. Insbesondere für spezifische und sicherheitskritische CT-Anwendung bietet ein
offener Datensatz nicht nur Vergleichbarkeit sondern ebenso Transparenz. Ein Beispiel
hierfür wäre die Identifikation von Partikeln in Lithium-Ionen-Batterien anhand von
CT-Schichtbildern (vergleiche Kapitel 8.3). Die absoluten Detektionswahrscheinlichkei-
ten, der potentiell sicherheitskritischen Partikel, werden momentan von verschiedenen
CT-Systemherstellern anhand eigener, interner Datensätze angegeben. Anhand eines
offenen Testdatensatzes könnten die verschiedenen Algorithmen quantitativ verglichen
und eventuell sogar qualifiziert werden. Allgemein existieren im CV-Bereich bekannte
Trainings- und Testdatensätze beispielsweise für die Bildklassifikation [122, 94], die zum
quantitativen und anwendungsbezogenen Vergleich verschiedener DL-Architekturen
genutzt werden. Simpson et al. stellen mehrere offene Datensätze bereit, um die Segmen-
tierung trainierter Modelle anhand von klinischen Magnetresonanztomographie- und
CT-Scans zu beurteilen. Demnach sollten ebenfalls offene Datensätze aus der industriel-
len CT publiziert werden, um einerseits eine gemeinsame Datenbasis für das Training
von Basismodellen (vergleiche Swin Transformer [38]) zu schaffen und andererseits auf
ebendiesen Daten verschiedene Prüfaufgaben evaluieren zu können, sodass die vorge-
stellen DL-Architekturen untereinander vergleichbar sind. Condon et al. stellen einen
offenen Datensatz bereit, der die CT-Schichtbilder von LIBs beinhaltet [123], jedoch keine
Annotationen bereitstellt. Für diesen Datensatz wäre die Ergänzung entsprechender
Annotationen zur Ausführung der Segmentierung oder Detektion von Partikeln denkbar
und sollte durchgeführt werden. Die Erweiterung auf andere Prüfteile und alternative
CT-Parameter kann ebenfalls zielführend sein, um ausdrucksstarke Basismodelle für die
Verarbeitung von industriellen CT-Daten zu entwickeln.
Die dritte Forschungsfrage (Kapitel 7) befasst sich mit der Übertragbarkeit des entwickel-
ten Ansatzes zur Materialbestimmung in die reale CT-Praxis. In den Anforderungen an
die Simulation (Kapitel 5.1) und den Rahmenbedingungen des DL-Modells (Kapitel 6.1)
wurden einige Annahmen getroffen, deren Auswirkungen in der realen CT-Anwendung
aufgezeigt und quantifiziert werden. Die implementierte Simulation erzeugt stets einen
Trainingsdatensatz, der mit einem festen Satz an CT-Parametern (beispielsweise Tabelle
5.2) erzeugt worden ist. Diese Annahme wurde getroffen, um einerseits die Präzision
der Materialbestimmung zu optimieren und andererseits die Laufzeit der Simulation zu
reduzieren. Jedoch benötigt eine spezifische Anwendung nach diesem Vorgehen einen
ebenso spezifischen Trainingdatensatz. In Kapitel 7.3 konnte gezeigt werden, dass das
Fine-Tuning genutzt werden kann, um vortrainierte Modelle an neue CT-Geometrien
anhand eines verhältnismäßig kleinen, simulierten Datensatzes mit moderatem Berech-
nungsaufwand anzupassen. Analog können die anderen CT-Parameter, beispielsweise
die Einstellungen der Röntgenquelle, mithilfe eines kleinen Trainingsdatensatzes ange-
lernt werden. Ein alternativer Ansatz besteht in der Entwicklung einer DL-Architektur,
die neben den CT-Schichtbildern ebenfalls die CT-Parameter verarbeitet und somit eine
bessere Generalisierung aufweist.
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Problematischer verhält sich das räumliche Auflösungsvermögen der DL-basierten Mate-
rialbestimmung, das in Kapitel 7.1 untersucht wurde. Es konnte gezeigt werden, dass
die Größe der Materialregionen, entgegen der Erwartungen, keinen Einfluss auf das
räumliche Auflösungsvermögen der DL-basierten Materialbestimmung hat. Darüber
hinaus ist die Messung der MTF-Kurve – eine etablierte Metrik zur Bestimmung des
Auflösungsvermögens von CT-Systemen – nur bedingt zur Messung des räumlichen
Auflösungsvermögens bei der Materialbestimmung geeignet (vergleiche Kapitel 7.1).
Es bedarf einer angepassten Metrik, die die Eigenschaft der Materialbestimmung als
Regressionsproblem berücksichtigt. Die Entwicklung einer derartigen Metrik, die so-
wohl die Präzision der Materialbestimmung als auch die Ortsauflösung innerhalb der
CT-Schichtbilder bewerten kann, muss Gegenstand zukünftiger Forschung sein. Abschlie-
ßend wurde in Kapitel 7.6 demonstriert, dass die entwickelte Methode zur Materialbe-
stimmung aufgrund der Sim-To-Real-Gap nur bedingt auf reale CT-Daten anwendbar ist
und somit weiterer Forschungsbedarf besteht. Neben den bereits diskutierten Methoden
zur Reduktion der Sim-To-Real-Gap, die auf eine Verbesserung der Simulationsdaten
(nach Maier [120]) beziehungsweise das Fine-Tuning mit Realdaten (nach Tercan [121])
abzielen, kann ergänzend seitens der DL-Architektur und der Trainingsstrategie eine
konzeptionelle Änderung erprobt werden: das Training mit gemischten Daten aus der
Simulation und der realen CT-Anlage. Konkret ist die Annotation realer CT-Daten, wie
mehrfach beschrieben, sehr zeitaufwändig und daher nicht zu favorisieren, während die
Annotation bei den Simulationsdaten automatisch aus der entwickelten Methodik folgt
(vergleiche Kapitel 5.1.4). Es bedarf somit einer Trainingsstrategie, die annotierte Simula-
tionsdaten und nicht annotierte Realdaten verarbeitet – ein Verfahren, das als sogenannte
Adversarial Domain Adaption von Tzeng et al. publiziert wurde [90]. Bei der Adversarial
Domain Adaption werden zwei Encoder, die jeweils die Bilder aus einer Quell- und
einer Zieldomäne in einen Latent Space kodieren, gezwungen, einen sehr ähnlichen,
das heißt für einen Discriminator ununterscheidbaren, Latent Space zu kodieren [90].
Übertragen auf die in dieser Arbeit gegebene Problemstellung könnte mit dieser Methode
ein Encoder trainiert werden, der die realen CT-Daten und die simulierten CT-Daten in
einen (nahezu) identischen Latent Space kodiert. Aus diesem Latent Space kann, mithilfe
des auf simulierten Daten trainierten Decoders (unter Zuhilfennahme der annotierten
Materialien), die Materialbestimmung durchgeführt werden. Anhand dieser Beschrei-
bung erscheint die Methode der Adversarial Domain Adaption aus theoretischer Sicht
für das gegebene Problem gut geeignet zu sein, wobei beachtet werden muss, dass bereits
kleine morphologische Unterschiede zwischen den simulierten und realen CT-Daten als
Unterscheidungsmerkmal durch den Discriminator verwendet werden können und so die
gesamte Methodik destabilisieren können. Eine für CT-Daten allgemeingültige Lösung
der beschriebenen Sim-To-Real-Gap beherbergt das Potential, vielfältige Anwendungen,
auch abseits der Materialbestimmung, auf Basis simulierter CT-Daten zu trainieren und
anschließend in die praktische CT-Anwendung zu übertragen. Somit bieten sowohl die
simulationsbezogene als auch die DL-bezogene Reduktion der Sim-To-Real-Gap bei
CT-Daten ein erhebliches Forschungspotential für zukünftige Arbeiten.
Trotz der im Rahmen dieser Arbeit signifikanten Sim-To-Real-Gap, die den Transfer der
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Materialbestimmung auf reale CT-Daten behindert, konnten in Kapitel 8 im Rahmen der
vierten Forschungsfrage exemplarisch einige Anwendungspotentiale der entwickelten
Methodik für andere Aufgabenfelder innerhalb der CT aufgezeigt werden. Zusammen-
fassend ist die entwickelte Methode zur Trainingsdatenerzeugung für Anwendungen
geeignet, die nicht der quantitativen CT zugeordnet sind – das heißt, die absoluten
Abschwächungskoeffizienten eine für die Prüfaufgabe untergeordnete Rolle spielen. Zu
diesen Prüfaufgaben zählt beispielhaft die räumliche Detektion von Partikeln innerhalb
eines CT-Schichtbildes, für die der Einfluss der Streustrahlung zu vernachlässigen ist.
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Die industrielle CT ist eine zerstörungsfreie Prüftechnik, die dreidimensionale, digitale
Abbilder, die sogenannten CT-Volumen, der Prüfteile mithilfe von Röntgenstrahlung
erzeugt. Physikalisch betrachtet ist die CT somit ein ortsaufgelöstes Messverfahren der
linearen Abschwächungskoeffizienten µL der Röntgenstrahlung, die zur Bildaufnahme
verwendet wird. Verschiedene Materialien weisen unterschiedliche und energieabhängige
lineare Abschwächungskoeffizienten auf, deren Verlauf charakteristisch für das jeweilige
Material ist. Somit besteht die Möglichkeit, aus den mithilfe der CT gemessenen linearen
Abschwächungskoeffizienten, ortsaufgelöste Rückschlüsse auf die Materialien zu ziehen,
aus denen das gescannte Prüfteil besteht – die Materialbestimmung. Neben vielfältigen
Anwendungen im Umfeld der klinischen CT, die auch den Ursprung der CT-basierten
Materialbestimmung darstellt, ist die Materialbestimmung in der industriellen CT ein
wertvolles Werkzeug zur Charakterisierung und Qualitätssicherung von Prüfteilen.
Seit Jahrzehnten werden Methoden zur Materialbestimmung anhand von CT-Volumen
einerseits durch Anwendung der physikalischen Gesetze (klassische Algorithmen) und
andererseits durch datengetriebene Verfahren (künstliche neuronale Netze), zu denen
auch das Deep Learning zählt, erforscht [13, 14, 22]. Im Rahmen dieser Dissertations-
schrift wird ein DL-basiertes Verfahren zur Materialbestimmung vorgestellt.
Zunächst werden im Rahmen der ersten Forschungsfrage die Anforderungen an die
simulationsbasierte Trainingsdatenerzeugung sowie die Implementierung ebendieser
Simulation vorgenommen. Die implementierte Simulation basiert auf einem Raytracing-
basierten Ansatz und kann demnach einen der wichtigsten Wechselwirkungsprozesse,
die Compton-Streuung, nur bedingt modellieren. Somit unterliegen die simulierten CT-
Daten einer Sim-To-Real-Gap, die durch den Vergleich mit realen CT-Daten ersichtlich
wird. Dennoch bietet die implementierte Simulation aufgrund ihrer Geschwindigkeit
und Skalierbarkeit das Potential, Datensätze zu berechnen, die mit mehreren Millionen
Einträgen eine wichtige Grundlage für das Training parameterstarker DL-Modelle auch
für zukünftige Forschungsarbeiten bilden.
In der zweiten Forschungsfrage wird eine geeignete DL-Architektur für die zu lernende
Materialbestimmung gesucht. Formell ist die Materialbestimmung eine sogenannte Dense
Prediction, die für jedes Pixel eines Eingabebildes eine (Material-)Vorhersage berechnet.
Aufgrund der Ergebnisse einer Literaturrecherche im Rahmen dieser Dissertationsschrift
wird zunächst das U-Net [36] implementiert und für die Materialbestimmung optimiert.
Weiterhin ist der Erfolg von Transformer-basierten Architekturen in der Bildverarbeitung
[57, 37, 38] unbestreitbar, sodass auch für die Materialbestimmung eine Transformer-
basierte Architektur erprobt werden muss. Hierzu wird das Swin-Unet [58] implementiert
und quantitativ mit dem U-Net verglichen. Obschon die Materialbestimmung einzelner,
ausgewählter Materialien mit dem Swin-Unet bessere Ergebnisse hervorbringt, sind
lediglich die Vorhersagen mit dem U-Net auf allen betrachteten Testmaterialien innerhalb
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der von CT-Anwendern geforderten Fehlertoleranzen, sodass das U-Net für die weitere
Untersuchungen verwendet wird. Die Ergebnisse geben ein Hinweis auf das in der
Literatur bisher unausgeschöpfte Potential Transformer-basierter Architekturen für die
Verarbeitung von CT-Daten, welches in dieser Dissertationsschrift teilweise aufgedeckt,
jedoch nicht vollständig genutzt werden konnte.
In der dritten Forschungsfrage werden die Auswirkungen der in den ersten beiden
Forschungsfragen getroffenen Annahmen beim Transfer in die reale CT-Anwendung
untersucht. Es wird gezeigt, dass die auf festen Probengrößen trainierten Modelle mittels
Fine-Tuning an andere Probengrößen angepasst werden können und die geforderte
Präzision der Materialbestimmung erreichen. Weiterhin wird demonstriert, dass die
Annahme der Fächerstrahl-CT in den simulierten Daten (es werden zweidimensionale
Proben auf einen eindimensionalen Detektor projiziert) ebenfalls auf dreidimensionale
CT-Daten schichtweise angewandt werden kann, sofern die Helix-Trajektorie zur Da-
tenaufnahme verwendet wird. Die Materialbestimmung poröser Proben ist ebenfalls
möglich, wenn die verwendeten Trainingsdaten ebendiese Porositäten enthalten. Bei
der Beurteilung des räumlichen Auflösungsvermögens wurde festgestellt, dass die in
der CT verbreitete MTF-Kurve nicht mit der Materialbestimmung kompatibel ist und
an dieser Stelle weiterer Forschungsbedarf besteht. Ebenfalls konnte der Einfluss der
bereits beobachteten Sim-To-Real-Gap auf die Materialbestimmung anhand eines realen
CT-Scans mit bekannten Probenmaterialien bestätigt werden: Die fehlende Modellierung
der Streustrahlung senkt die rekonstruierten Abschwächungskoeffizienten ab, sodass
insbesondere die Dichtevorhersagen unterhalb der Literaturwerte zu verordnen sind.
Klar ist, dass die Reduktion der Sim-To-Real-Gap ein zentraler Bestandteil zukünftiger
Forschung sein muss, um einerseits die Materialbestimmung und andererseits die DL-
basierte Datenverarbeitung von CT-Daten zu verbessern.
Abschließend werden in der vierten Forschungsfrage weitere Anwendungsmöglichkeiten
der entwickelten Methodik, abseits der Materialbestimmung, genannt und im Kontext
der beobachteten Sim-To-Real-Gap hinsichtlich ihrer Realisierbarkeit eingeordnet. So
besteht die Möglichkeit, DL-Modelle beispielsweise auf die Detektion von Partikeln zu
trainieren, da die Erkennung der Partikel nicht auf absoluten Werten, sondern auf dem
relativen Bildkontrast in einer lokalen Umgebung erfolgen kann. Im Allgemeinen sind
Anwendungsfälle, die nur geringfügig von der fehlenden Modellierung der Streutrahlung
beeinflusst werden, mit der entwickelten Methodik realisierbar. Hierzu zählt gegebenen-
falls auch die Materialbestimmung bei sehr viel niedrigeren Photonenenergien und mit
leichten Materialien – zum Beispiel für die klinische CT.
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