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ABSTRACT

Die industrielle Computertomographie (CT) ist eine zerstorungsfreie Priiftechnik, die
dreidimensionale, digitale Abbilder, die sogenannten CT-Volumen, von Priifteilen mithilfe
von Rontgenstrahlung erzeugt. Diese Dissertation untersucht den Einsatz von Deep Lear-
ning (DL) zur Bestimmung der Kernladungszahl und Dichte von Priifteilen anhand von
industriellen CT-Scans. Mit dem so erlangten Wissen iiber die Materialzusammensetzung
eines Priifteils konnen vielfédltige Priifszenarien, insbesondere an sicherheitskritischen
Priifteilen, realisiert sowie der Recyclingprozess verbessert werden.

Der Einsatz eines DL-basierten Ansatzes verlangt neben einer passenden DL-Architektur
Trainingsdaten, die das zu lernende Problem, die Materialbestimmung, hinreichend gut
darstellen. Somit besteht ein zentraler Beitrag dieser Dissertation in der Entwicklung einer
anforderungsgerechten CT-Simulation zur Erzeugung annotierter Datensitze. Weiterhin
wird in dieser Dissertation erstmalig eine Convolution-basierte Architektur mit einer
Transformer-basierten Architektur fiir die Materialbestimmung anhand von CT-Volumen
quantitativ verglichen. Die wichtigsten Einflussfaktoren, die bei dem Transfer der entwi-
ckelten Methode zur Materialbestimmung in die reale CT-Anwendung auftreten, werden
identifiziert und quantitativ analysiert. Anhand eines realen CT-Scans einer Lithium-
Ionen-Batterie wird gezeigt, dass die entwickelte Methode geeignet ist, um sowohl in
Bezug auf Prdzision als auch Laufzeit in der in-line Fertigung von Lithium-Ionen-Batterien
eingesetzt zu werden. Abschlieffend werden abseits der Materialbestimmung weitere
Anwendungspotentiale aus der entwickelten Methodik abgeleitet und exemplarisch

erprobt.
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1

EINLEITUNG

Mit der Entdeckung der Rontgenstrahlung im Jahr 1895 und dem damit verbundenen
ersten Rontgenbild, das die Hand von Wilhelm Conrad Rontgens Frau zeigt, wurde
ein neuartiges Teilgebiet der angewandten Physik eroffnet. Wilhelm Conrad Rontgen
verdffentlichte im Jahr 1896 seine Beschreibung einer neuen Strahlenart, die heutzutage als
Rontgenstrahlung bekannt ist [1]. Fiir seine Entdeckung erhielt er im Jahr 1901 den ersten
Nobelpreis fiir Physik [2]. Im Vergleich zu sichtbarem Licht bietet Rontgenstrahlung eine
starkere Durchdringung von Materie, sodass Objekte durchleuchtet werden konnen. In
diesen sogenannten Rontgenprojektionsbildern (im Folgenden: Projektionen) wird die totale
Abschwiéchung der Rontgenstrahlung durch eine Probe ortsaufgelost gemessen. Sie ist das
Produkt aus dem material- und energieabhéngigen linearen Abschwichungskoeffizienten
m(E)! und einer Durchstrahlungslinge x,. Analog zu sichtbarem Licht kann fiir

Rontgenstrahlung das LAMBERT-BEER-Gesetz
I(E) = Iy(E) - exp Frm(E)= (1.1)

mit dem Spektrum der einfallenden Photonen Iy(E) und dem gedampften Spektrum I(E)
angewandt werden [3, S. 54]. Daraus folgt, dass Objekte aus verschiedenen Materialien
mit verschiedenen Durchstrahlungsldngen die gleiche Dampfung aufweisen kénnen und
somit anhand einer Rontgenprojektion ununterscheidbar sind. Abbildung 1.1 zeigt die

Projektion von zwei Objekten. Das linke Objekt ist ein Wiirfel aus Aluminium mit einer

Abbildung 1.1: Rontgenprojektion von zwei Objekten unter monochromatischer Strahlung bei
6 MeV. Gleiche Grofle, gleiche Graustufe, gleiches Objekt? Links: 10 cm Durch-
strahlung durch Aluminium. Rechts: 8.8 mm Durchstrahlung durch Wolfram. Die
genannten Materialien wurden aufgrund ihrer stark unterschiedlichen Abschwa-
chung der Rontgenstrahlung gewéhlt.

Kantenldnge von 10 cm. Das rechte Objekt ist ein 8.8 mm diinnes Wolframblech.

Zunidchst wurde die Durchstrahlungspriifung fiir medizinische Zwecke genutzt, um
beispielsweise im Jahr 1903 ein diagnostisches Verfahren zur Erkennung von Tuberkulose
anhand der Zwerchfell-Bewegungen zu realisieren [4]. Wenige Jahre spéter erkannte Mo-
seley eine Proportionalitit zwischen dem Quadrat der (effektiven) Kernladungszahl ZZ;
eines Elements und der Frequenz der ausgesandten (spéter: charakteristischen) Strahlung

v nach vorheriger Anregung durch Rontgenstrahlung [5]. In den folgenden Jahrzehnten

Die in der Literatur hdufig verwendete Notation des energieabhidngigen lineare Abschwachungskoeffizient
pL(E) wird im Folgenden mit einem Materialindex m fiir die Notation von Multimaterialien erginzt.
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miindete diese Erkenntnis in die Entwicklung elementspezifischer Analyseverfahren
wie X-ray Fluorescence (XRF) und Energy-Dispersive X-ray Spectroscopy (EDX), die
beide auf der ausgesandten, charakteristischen Rontgenstrahlung der Elemente beruhen.
Aufbauend auf der bereits bekannten Beugung von Licht an Kristallgittern zeigte Max
von Laue, dass Rontgenstrahlung ebenfalls Beugungsmuster an Kristallen hervorbringt.
Hiermit bewies er, dass Rontgenstrahlung als Welle dargestellt werden kann und erhielt
im Jahr 1914 den Nobelpreis [6]. Basierend auf der Rontgenbeugung wurde das Gebiet
der Kristallstrukturanalyse (englisch: X-ray Crystallography) begriindet, wodurch im Jahr
1953 die molekulare Struktur der DNA entdeckt wurde [7]. Der nédchste technologi-
sche Durchbruch mithilfe von Rontgenstrahlung gelang Sir Godfrey Hounsfield im Jahr
1971, indem er den ersten Computertomographiescan durchfiihrte und wenige Jahre
spdter zusammen mit Allan Cormack mit dem Nobelpreis fiir Medizin ausgezeichnet
wurde [8]. Im Gegensatz zur zweidimensionalen Durchstrahlungspriifung wird bei der
Computertomographie (CT) eine Serie an Projektionen aus verschiedenen Blickwinkeln
aufgenommen. Vergleichbar mit dem stereoskopischen Sehen wird die Tiefeninformation
eines betrachteten Objektes im Kontext der aufgenommenen Bildserie aus verschiedenen
Perspektiven verftigbar. Durch Rekombination (im Folgenden: Rekonstruktion) der Bilder
wird ein dreidimensionales Abbild, ein sogenanntes Volumen oder auch CT-Volumen,
rekonstruiert, anhand dessen die Unterscheidung zwischen den Objekten aus Abbildung
1.1 trivial moglich ist. Abbildung 1.2a zeigt das Rendering des Volumens nach erfolg-
tem CT-Scan und dessen Rekonstruktion. Der Schnitt durch die horizontal orientierte
Mittelschicht ist in Abbildung 1.2b dargestellt. Es ist zu beobachten, dass Aluminium

(a) Rendering des rekonstruierten Volumens (b) Schnittbild aus der Draufsicht

Abbildung 1.2: Rekonstruiertes Volumen des CT-Scans eines Aluminiumwiirfels mit der Kan-
tenldnge 10cm und einem Wolframblech mit einer Dicke von 8.8 mm, wobei
eine einzelne Projektion in Abbildung 1.1 gezeigt wurde. Dargestellt werden ein
Rendering in (a) und ein Schnittbild in horizontaler Ebene in (b) — die Draufsicht.

und Wolfram im Schnittbild unterschiedliche Grauwerte aufweisen. Im Vergleich zu
der in Abbildung 1.1 dargestellten Projektion besitzen die Volumenpixeln (auch: Vo-
xel) eine physikalische Einheit, die die Dampfung der Rontgenstrahlung pro Weglange
durch ebendieses Voxel beschreibt. Sie entspricht dem linearen Abschwéachungskoeffizi-
enten py ,(E) aus Gleichung 1.1, sodass die CT als ortsaufgeldstes Messinstrument fiir
Abschwiéchungskoeffizienten der Rontgenstrahlung fungiert.



1.1 MOTIVATION

1.1 MOTIVATION

Jedes chemische Element, beziehungsweise Material m, besitzt eine charakteristische Elek-
tronenkonfiguration? und somit einen charakteristischen Abschwichungskoeffizienten
pr,m(E), der fiir die Unterscheidung zwischen verschiedenen Materialien herangezogen
werden kann. Im Folgenden werden materialauflosende Algorithmen basierend auf
CT-Daten (auch: Material-CT) wie folgt unterschieden:

¢ Die Materialbestimmung ist die Berechnung einer effektiven Kernladungszahl Z
und einer absoluten Dichte p (in g/cm?). Beide Groflen sind somit Mittelwerte der
elementaren Mischung und die zugrundeliegenden Elemente konnen ohne weiteres

Wissen nicht eindeutig bestimmt werden.

¢ Die Materialzerlegung setzt einen festen Satz an Basismaterialien voraus, die aus
mathematischer Sicht eine linear unabhéngige Basis bilden. Es werden somit relative
Anteile der Basismaterialien an einem Voxel berechnet und das Material effektiv in

die Basismaterialien zerlegt.

Beide Methoden bieten vielfdltige Anwendungen fiir den industriellen und medizini-
schen Sektor. Im medizinischen Umfeld wird der gemessene Abschwachungskoeffizient
verwendet, um beispielsweise die Knochendichte eines Patienten abzuschétzen [9] oder
Lungenkrankheiten durch Gewebeveranderung zu erkennen [10]. Fiir industrielle Zwe-
cke kann die Materialbestimmung beziehungsweise -zerlegung ebenso vielféltig genutzt
werden. Als zerstorungsfreie Priiftechnik fiir nahezu jedes technisch relevante Material
findet die Material-CT beispielsweise Anwendung in der Erkennung gefahrlicher oder
illegaler Stoffe, die in Containern an Flughédfen, Bahnhofen oder Héifen transportiert
werden [11]. Die Untersuchung von Alterungsprozessen in technischen Materialien, zum
Beispiel Beschichtungen in Lithium-lonen-Batterien, stellt ein weiteres Anwendungsfeld
dar [12]. Alle genannten Fille haben die Gemeinsamkeit, dass die Voxel des Volumens
im Bestfall in intuitive und zugéngliche Grofsen, meist eine Dichte p und eine effektive
Kernladungszahl Z, umgerechnet werden. Algorithmisch wird die materialauflosende CT
seit fast 50 Jahren erforscht. Lange Zeit wurden zu diesem Zweck Algorithmen handisch
entwickelt, die auf den physikalischen Grundlagen der CT basieren (im Folgenden: klassi-
sche Algorithmen). Die einflussreichsten Faktoren bei der CT-Bildgebung sind umfassend
erforscht und kénnen entsprechend bei der Modellierung eines klassischen Algorithmus
berticksichtigt werden. Dennoch besteht eine weitverbreitete Einschrankung klassischer
Algorithmen darin, dass sie punktweise (pro Voxel) definiert sind und Kontextinforma-
tionen aus benachbarten Voxeln nicht miteinbeziehen [13, 14, 15]. CT-Daten unterliegen
aufgrund verschiedener Einfliisse, die in Kapitel 2 genauer ausgefiihrt werden, den
sogenannten CT-Artefakten, die zwar lokal erhebliche Abweichungen der rekonstruierten

Abschwichungskoeffizienten induzieren konnen, jedoch unter Einbezug eines grofieren

Im fiir die meisten CT-Anwendungen relevanten Energiebereich E < 1MeV ist der direkte Einfluss der
Atomkerne auf die Abschwichung der Rontgenstrahlung vernachlédssigbar. Ausschlaggebend sind die
Bindungsenergien der Elektronen sowie die (raumliche) Elektronendichte. In Kapitel 2 werden die zugrun-
deliegenden Wechselwirkungen fiir die Entstehung des charakteristischen Abschwachungskoeffizienten
detailliert beschrieben.
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(Bild-)Kontextbereiches eindeutig als Artefakte identifizierbar und somit potentiell kor-
rigierbar sind. Moderne Ansitze der klassischen Materialzerlegung setzen daher auf
ein zweistufiges Verfahren, wobei nach der klassischen Zerlegung ein Cluster-Verfahren
angewandt wird, um Artefakte in semantisch zusammenhangenden Regionen herauszu-
filtern [16].

Formell betrachtet ist die Materialbestimmung anhand von rekonstruierten Volumen
eine sogenannte Bild-zu-Bild-Berechnung — eine Aufgabe aus dem Bereich Computer Visi-
on (CV), der in den letzten Jahren durch Methoden basierend auf Deep Learning (DL)
deutlich weiterentwickelt wurde. DL-basierte Methoden gelten derzeit als State-Of-The-
Art (SOTA) fiir viele CV-Anwendungen und dominieren die gangigsten Benchmarks
in der Objekterkennung [17], der Klassifizierung [18], der Segmentierung [19] und der
Segmentierung klinischer CT-Daten [20, 21], sodass traditionelle Verfahren weitestgehend
verdrangt worden sind. Ein Teil dieses Erfolges basiert auf dem Konzept des rezeptiven
Feldes — einer Methode zur Verarbeitung potentiell hilfreicher, raumlicher Kontextin-
formationen. Der Wandel hin zu DL-basierten Verfahren dringt zunehmend in die CT-
Anwendung, wie wir im Jahr 2024 anhand einer stark steigenden Zahl an Publikationen,
die DL als Werkzeug fiir die Material-CT verwenden, zeigen konnten [22]. Grundsétzlich
benotigen DL-Verfahren einen vorgegebenen Datensatz, die sogenannten Trainingsdaten,
der die zu lernenden Zusammenhénge implizit darstellt. Material-CT-Anwendungen wer-
den mit rekonstruierten Volumen oder Schnittbildern aus den rekonstruierten Volumen
als Eingabedaten (auch: Inputs) und den sogenannten Materialkarten als Ausgabedaten
(auch: Ground Truths) trainiert.> Die Materialkarten geben bei der Materialbestimmung
fiir jedes Voxel, beziehungsweise auf Bildebene Pixel, in den Inputs eine Kernladungszahl
Z und eine Dichte p an. Zur Erzeugung der Trainingsdaten besteht somit die Moglichkeit,
sogenannte Phantome aus bekannten Materialien zu fertigen und CT-Scans an einer realen
Anlage durchzufiihren. Die rekonstruierten Volumen konnen anschliefSend handisch
annotiert werden (Kernladungszahl und Dichte) und als Trainingsdaten verwendet wer-
den. Eine Alternative bietet die Erzeugung der Trainingsdaten mithilfe einer Simulation.
Obwohl beide Ansitze effektiv verwendet werden konnen [22], bietet die Simulation
einige Vorteile. Simulativ erzeugte Phantome sind, unabhéngig von ihrer morphologi-
schen Komplexitit, per Definition annotiert — das Phantom entspricht den Materialkarten
und Annotationsfehler treten nicht auf. Zudem erlaubt die Simulation die zuféllige
Erzeugung eines breiten Spektrums an Formen und Materialzusammensetzungen, sodass
die Varianz der Trainingsdaten enorm gesteigert wird. Der wichtigste Nachteil einer
Simulation ist stets, dass sie die reale CT-Messung nicht fehlerfrei nachbildet. Diese
Abweichung von der Realitdt, die sogenannte Sim-To-Real-Gap, hat einen Einfluss auf die
Transferfahigkeit eines jeden auf simulierten Daten trainierten DL-Modells in die reale
Anwendung. Abhingig von der Grofie der Sim-To-Real-Gap sinkt die Vorhersagegenau-
igkeit des Modells auf Realdaten signifikant ab, sodass ihr Einfluss fiir jede Anwendung

quantitativ untersucht werden muss.

Verfahren, die Projektionen in sogenannte Material-Projektionen iibersetzen, werden im Rahmen dieser
Dissertationsschrift lediglich ergénzend genannt, da es sich stets um kalibrierte Verfahren mit vielen
Einschrankungen handelt. Weitere Argumente fiir die Wahl zwischen den Datendoménen Volumen oder
Projektion als Input fiir die Material-CT werden in Kapitel 2 aufgefiihrt.



1.2 FORSCHUNGSFRAGEN

Im Rahmen dieser Dissertationsschrift wird die Anwendbarkeit DL-basierter Ansatze
fur die Materialbestimmung in industriellen CT-Scans evaluiert und vorangetrieben. Zu-
nichst werden die Anforderungen an eine Simulation zur Erzeugung der Trainingsdaten
beschrieben und zur Auswahl einer passenden Methodik verwendet. Aufbauend wird
ein entsprechend simulierter Datensatz verwendet, um verschiedene DL-Architekturen,
die mit der Fragestellung der Material-CT kompatibel sind, hinsichtlich ihrer Eignung
fiir die Materialbestimmung zu evaluieren. Die Transferfdhigkeit der trainierten Modelle
in die reale Anwendung wird untersucht, um Einschrankungen bedingt durch die Trai-
ningsdatenerzeugung, die DL-Architektur oder die generelle Methodik zu identifizieren
und zu beheben. Hierbei bestehen weiterhin offene Fragen, die in der Literatur zur
Materialbestimmung mit DL bisher nicht ausreichend untersucht worden sind, obwohl
sie fiir den Transfer in die reale Anwendung von zentraler Bedeutung sind. Abschlieflend
werden die entwickelten Methoden dieser Arbeit auf andere Fragestellungen der CT-
Anwendung projiziert, um weitere Anwendungsfelder zu erschlieffen und um zukiinftige
Weiterentwicklung zu erdffnen.

1.2 FORSCHUNGSFRAGEN

Im Folgenden werden vier aus der Motivation abgeleitete Forschungsfragen formuliert
und erldutert.

Forschungsfrage 1: Wie liisst sich eine Simulation zur Trainingsdatenerzeugung fiir die Material-
bestimmung in der Computertomographie realisieren?

Im ersten Schritt wird eine Anforderungsanalyse an eine Methodik zur Trainingsdatener-
zeugung fiir die DL-basierte Materialbestimmung durchgefiihrt. Anhand der abgeleite-
ten Anforderungen werden etablierte CT-Simulationsprogramme bewertet sowie eine
Methodik zur Trainingsdatenerzeugung realisiert. Abschlieflend miissen die mit der aus-
gewdhlten Methodik erzeugten Daten quantitativ mit einer der etablierten Simulationen
verglichen und mindestens exemplarisch mit den Messdaten einer realen CT-Anlage
gegeniibergestellt werden, um die Sim-To-Real-Gap abzuschéitzen.

Forschungsfrage 2: Welche Deep-Learning-Architekturen eignen sich fiir die Materialbestimmung
in CT-Bildern unter Beriicksichtigung industrieller Rahmenbedingungen?

Zuniéchst werden die industriellen Rahmenbedingungen, die von einer DL-Architektur in
Bezug auf Kompatibilitdt, Laufzeit und Hardwareanforderungen erfiillt werden mdissen,
abgeleitet. Die Problemstellung der Materialbestimmung ist im Kern eine Bild-zu-Bild-
Berechnung beziehungsweise eine Pixel-zu-Pixel-Berechnung (auch: Dense Prediction).
Es werden bekannte Architekturen fiir Dense Prediction einerseits aus der Literatur zur
Material-CT und andererseits aus anderen CV-Anwendungen implementiert, fiir die
Materialbestimmung optimiert und quantitativ verglichen. Zur quantitativen Bewertung

werden die anfangs abgeleiteten industriellen Rahmenbedingungen herangezogen.
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Forschungsfrage 3: Welche Einschrinkungen ergeben sich fiir die reale Anwendung aus der
gewihlten Methodik zur Trainingsdatenerzeugung und der Deep-Learning-Architektur?

Abseits der technischen Machbarkeit spielt die praktische Anwendbarkeit eines Produktes
eine zentrale Rolle fiir die Realisierung der Methode. Die Methodik der Trainingsdaten-
erzeugung sowie die DL-Architektur treffen, begriindet durch die Anforderungsanalyse
und die industriellen Rahmenbedingungen, verschiedene Annahmen und Einschran-
kungen, die einen negativen Einfluss auf die universelle Anwendbarkeit der Modelle
in einer praktischen Anwendung haben konnen. Ziel ist es, ebendiese Einfliisse zu-
néchst zu identifizieren und ihre Auswirkungen auf die absolute Vorhersagegenauigkeit
der entwickelten DL-Modelle im Kontext der Materialbestimmung zu quantifizieren.
Diese Vorhersagegenauigkeit wird anhand von zuvor beschriebenen Fehlertoleranzen,
abgeleitet aus praktischen CT-Anwendungen, jeweils fiir die Kernladungszahl und die
Dichte beurteilt. Weiterhin werden Losungsansitze diskutiert oder umgesetzt, um die
gefundenen Abweichungen zu korrigieren und somit die Vorhersagegenauigkeit bei der

Anwendung in realen CT-Scans zu verbessern.

Forschungsfrage 4: Konnen mit den entwickelten Methoden weitere Anwendungsfelder fiir Deep

Learning in der Computertomographie erschlossen werden?

Die im Rahmen der ersten drei Forschungsfragen entwickelten Methoden und Daten
konnen moglicherweise auf verwandte Fragestellungen der CT angewandt werden. Insbe-
sondere Methoden zur Verbesserung der Bildqualitdt konnen bereits durch die gewéahlte
Methodik der Material-CT implizit vom DL-Modell erlernt worden sein. Dariiber hinaus
werden kleine Weiterentwicklungsmoglichkeiten der Simulation diskutiert, die zur Er-
zeugung geeigneter Trainingsdaten fiir andere CT-Fragestellungen verwendet werden

konnen.

1.3 STRUKTUR DER THESIS

Diese Thesis besteht aus zwei Teilen, wobei der erste Teil eine gemeinsame Basis fiir das
Verstdndnis der Computertomographie legt (Kapitel 2) und Deep Learning (Kapitel 3)
als vielseitiges Werkzeug fiir die Verarbeitung von CT-Daten vorstellt. Im Rahmen der
theoretischen Beschreibung der CT wird die Materialbestimmung eingefiihrt und in den
physikalischen Kontext eingebettet. Der Hauptteil befasst sich mit dem Forschungsbeitrag
dieser Dissertationsschrift in den Kapitel 4 bis 9.

Als systematischer Einstieg in den Hauptteil fungiert Kapitel 4, das die verwandte For-
schung zu dieser Dissertationsschrift zusammenfasst. Besonderer Fokus liegt hierbei auf
dem Wandel, der Forschende auch im Umfeld der Computertomographie zunehmend
motiviert, Problemstellungen mit Deep Learning zu bearbeiten. Anschliefiend werden die
Anforderungen an eine Simulation zur Trainingsdatenerzeugung, physikalisch motiviert
durch Kapitel 2 und ergéanzt durch die DL-basierten Anforderungen aus Kapitel 3, im
Rahmen der ersten Forschungsfrage in Kapitel 5 abgeleitet. Basierend auf ebendiesen
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Anforderungen werden mehrere existierende CT-Simulationsprogramme bewertet sowie
die fehlenden Funktionalitdten identifiziert und implementiert. Die mit der entwickelten
Methode simulierten CT-Bilder werden mit den CT-Bildern einer realen CT-Anlage ver-
glichen.

In Kapitel 6 werden die industriellen Rahmenbedingungen fiir die Nutzung eines DL-
basierten Ansatzes zur Materialbestimmung abgeleitet und eine passende DL-Architektur
gesucht. Die Entscheidung zwischen einer Convolution-basierten und einer Transformer-
basierten Architektur stellt den zentralen Bestandteil dieses Kapitels dar.

Aufbauend auf der Trainingsdatenerzeugung sowie der ausgewdhlten DL-Architektur
wird in Kapitel 7 der Transfer in die reale CT-Anwendung untersucht, wobei Limitierun-
gen aus den beiden vorangehenden Forschungsfragen quantitativ eingeordnet werden.
Einige der gefundenen Limitierungen konnen teilweise durch eine angepasste Trainings-
strategie oder eine angepasste CT-Messstrategie reduziert oder vollstandig aufgehoben
werden.

Abschlieflend werden weitere Anwendungsmoglichkeiten des entwickelten Verfahrens
tir offene Fragestellungen der Computertomographie, abseits der Materialbestimmung,
in Kapitel 8 identifiziert und diskutiert. Der Fokus liegt auf Anwendungen, die direkt
aus der entwickelten Trainingsdatenerzeugung in Kombination mit der ausgewéhlten
DL-Architektur realisiert werden kénnen, ohne komplexe Weiterentwicklungen zu erfor-
dern.

Kapitel 9 reflektiert die Forschungsergebnisse kritisch und stellt mogliche Verbesse-
rungen in Aussicht, die in erster Linie die Trainingsdatenerzeugung in Kapitel 5, die
DL-Architektur in Kapitel 6 und den Transfer in die CT-Anwendung in Kapitel 7 betref-
fen. Eine Zusammenfassung der erzielten Ergebnisse dieser Dissertationsschrift erfolgt in
Kapitel 10.
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GRUNDLAGEN DER INDUSTRIELLEN COMPUTERTOMOGRAPHIE

Abgeleitet vom Begriff Schnitt (altgriechisch: tome) handelt es sich bei der Computer-
tomographie (CT) um ein Schnittbild-Verfahren, das einzelne Schichten eines Objektes
sichtbar macht. Insbesondere innenliegende Strukturen einer Probe werden durch die
Verwendung von Rontgenstrahlung bei der Bildaufnahme erfasst. Zunéachst dhnelt die
CT einer klassischen Durchstrahlungspriifung, wie sie auch in der klinischen Diagnostik
angewandt wird. Abbildung 2.1 zeigt den Aufbau einer sogenannten Kegelstrahl-CT. Die

:—>

Probe

Detektor

Abbildung 2.1: Aufbau einer Kegelstrahl-CT bestehend aus einer (Rontgen-) Quelle, einem Detek-
tor und einer zu scannenden Probe. Die Pixel des Detektors werden schematisch
durch die Kacheln dargestellt.

Probe wird vor der idealisierten, punktformigen Rontgenstrahlungsquelle (im Folgen-
den kurz: Quelle) positioniert und von der kegelférmig auslaufenden Rontgenstrahlung
durchleuchtet. Durch die Wechselwirkung der Rontgenstrahlung mit dem Material der
Probe wird die Strahlung abgeschwicht. Hinter der Probe befindet sich ein Detektor,
der die transmittierte Strahlung detektiert und in Form einer Projektion aufzeichnet.
Erweiternd zur einfachen Durchstrahlungspriifung wird die Probe nach der Aufnahme
einer Projektion gedreht, sodass sich die Abbildungsperspektive relativ zur Probe &dndert.
Anschaulich ergibt sich wie beim rdumlichen Sehen mit zwei (oder mehr) Augen eine
Tiefeninformation, indem die Bilder aus verschiedenen Perspektiven zusammengerechnet
werden. Diese Berechnung wird in der CT als Rekonstruktion bezeichnet und ergibt fiir
einen Satz zweidimensionaler Projektionen ein dreidimensionales Volumen, welches
daher rekonstruiertes Volumen genannt wird. In praktischen CT-Anwendungen werden
mehrere hundert bis hin zu einigen tausend Projektionen aus verschiedenen Perspektiven,
meist verteilt auf den Vollkreis, aufgenommen.

Aus der Kegelstrahl-Geometrie ergibt sich, dass Details der Probe vergrofiert auf den
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Detektor projiziert werden. Die geometrische Vergroflerung M (englisch: Magnification)

lasst sich mittels Strahlensatz durch

SDD

M=3s6D

2.1)

mit dem Abstand zwischen Quelle und Detektor SDD (englisch: Source-Detector-Distance)
und dem Abstand zwischen Quelle und Probe SOD (englisch: Source-Object-Distance)
berechnen. Verschiedene Vergrofierungen erlauben somit das Scannen unterschiedlich
dimensionierter Proben, beziehungsweise Scanvolumina, bei maximaler Ausnutzung der
Detektorflache.

In den folgenden Abschnitten werden die wichtigsten Bestandteile eines CT-Scanners
vorgestellt und die zugrundeliegende Funktionsweise beschrieben. Fiir die Beantwortung
der ersten und dritten Forschungsfrage ist ein grundlegendes Verstdndnis der Com-
putertomographie aus theoretischer Sicht zentral. Insbesondere fiir die Modellierung
des CT-Messprozesses im Kontext der ersten Forschungsfrage werden die zugrunde-
liegenden Wechselwirkungsprozesse von Photonen mit Materie in Abschnitt 2.1, die
(technische) Erzeugung von Rontgenstrahlung in Abschnitt 2.2 sowie die Detektion
ebendieser Rontgenstrahlung in Abschnitt 2.3 beschrieben. Die Rekonstruktion wird in
Abschnitt 2.4 eingefiihrt, um die resultierenden CT-Artefakte zu verstehen, deren Einfluss
einer der Hauptgriinde fiir die Nutzung eines DL-basierten Ansatzes in dieser Arbeit ist.
In Abschnitt 2.5 werden verschiedene Strategien zur Datenaufnahme, sogenannte Trajek-
torien, vorgestellt. Das Konzept der Dual-Energy Computed Tomography (DECT) wird in
Abschnitt 2.6 gemeinsam mit praktischen Anwendungsmoglichkeiten, beispielsweise der
Materialerkennung, eingefiihrt. Abschliefiend wird in Abschnitt 2.7 eine reale CT-Anlage
vorgestellt, die in den folgenden Kapiteln fiir Vergleichsmessungen verwendet wird.

2.1 WECHSELWIRKUNG VON PHOTONEN MIT MATERIE

Die Energie eines Photons mit der Frequenz v lasst sich durch
E=h-v

mit dem Planckschen Wirkungsquantum # = 4.135- 10~ eV - s beschreiben. Abhéngig
von dieser Energie interagieren Photonen unterschiedlich mit Materie. Im Rahmen dieser
Arbeit werden lediglich Photonen mit Energien im Bereich einiger Kiloelektronenvolt
(keV) bis Megaelektronenvolt (MeV) betrachtet!, sodass die folgenden Wechselwir-
kungsprozesse dominieren: der photoelektrische Effekt, die Compton-Streuung, die
Rayleigh-Streuung und die Paarbildung.

Das genannte Energieband ist der effektiv fiir die CT nutzbare, messtechnisch sinnvolle Energiebereich.
Photonen einer niedrigeren Energie, im Bereich einzelner keV, konnen die meisten makroskopischen Proben
nicht durchdringen und sind somit in der CT nicht allgemein nutzbar. Sehr hochenergetische Photonen
weisen stark abnehmende Wirkungsquerschnitte einerseits mit den Probenmaterialien und andererseits mit
den Detektormaterialien auf, sodass der Bildkontrast absinkt.
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Photoelektrischer Effekt

Der photoelektrische Effekt (kurz: Photoeffekt) beschreibt die Absorption eines Photons
durch ein gebundenes Elektron. Hierbei muss die Energie des einfallenden Photons E,
mindestens die Bindungsenergie des Elektrons Ep aufbringen, sodass das Elektron den
Bindungszustand verlassen kann. Uberschiissige Energie wird in kinetische Energie des
Elektrons umgewandelt, sodass

E,y =h-v= —Eg + Exin
N’ N——

Photon Elektron
gilt. In der Literatur werden Bindungsenergien Ep teils negativ angegeben, sodass das
negative Vorzeichen zum Ausgleich der Energiebilanz benotigt wird [23, S. 257f]. Der

Photoeffekt wird schematisch in Abbildung 2.2 dargestellt.

Abbildung 2.2: Schematische Darstellung des photoelektrischen Effektes. Ein Elektron e~ wird
durch Absorption eines Photons 7y aus seinem Bindungszustand gelost. Der
Atomkern ist dunkelblau dargestellt. Die Abbildung ist nicht mafistabsgetreu.

Compton-Streuung

Bei der Compton-Streuung fiihrt ein Photon einen inelastischen Stoff mit einem quasifreien
Elektron aus [23, S. 257]. Das Photon {iibertrédgt einen Teil seiner Energie an das Elektron,
sodass sich die Wellenldnge A des Photons auf A’ vergrofert. Die effektive Zunahme
der Wellenldnge AA betrdgt mit der Compton-Wellenldnge des Elektrons Ac = 2.426 x
1072 m und dem Streuwinkel ¢

A=A —A=Ac(l —cosg) . (2.2)

Abbildung 2.3 stellt die Compton-Streuung konzeptionell dar. Die Zunahme der Wellen-
lange, und damit der absolute Energieiibertrag auf das Elektron, ist demnach vollstiandig
durch den Streuwinkel ¢ beschrieben [3, S. 50f.]. Die Verteilung dieser Streuwinkel wird

11
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durch die Klein-Nishina-Gleichung beschrieben und ist fiir steigende Photonenenergien
zunehmend vorwirts (in die urspriingliche Bewegungsrichtung des Photons) gerichtet [3,
S. 50f.]. Demnach besteht ein gerichteter Rontgenstrahl nach Durchgang durch Materie
bei zunehmenden Photonenenergien zunehmend aus bereits gestreuten Photonen, die

einer anderen Energieverteilung folgen.

—— -

Abbildung 2.3: Schematische Darstellung der Compton-Streuung: Ein einfallendes Photon wird
an einem schwach gebundenen bzw. freien Elektron gestreut, wobei es seine
Wellenlidnge A auf A" vergrofert. Die Abbildung ist nicht mafstabsgetreu.

Rayleigh-Streuung

Bei der Rayleigh-Streuung, im Folgenden auch kohiirente Streuung, wechselwirkt ein Photon
mit dem Feld der Elektronenhiille eines Atoms, ohne dass Energie effektiv tibertragen
wird, da die Energie des Photons zu niedrig fiir einen Ionisations- oder Anregungsprozess
ist [3, S. 53] — lediglich die Richtung des Photons dndert sich, sodass eine primaére, gerich-
tete Strahlung raumlich zerstreut wird. Die Rayleigh-Streuung ist somit ein elastischer

und kohdrenter Streuprozess.

Paarbildung

Die letzte relevante Wechselwirkung ist die Paarbildung, die ab Photonenenergien
oberhalb von 1022 keV auftritt. Ab dieser Energie kann sich das Photon in ein Elektron-
Positron-Paar umwandeln, sofern ein Atomkern in der Néahe ist, um die Impulserhaltung
zu gewdhrleisten. Da diese Dissertationsschrift auf Rontgenstrahlung unterhalb dieser
Energieschwelle aufbaut, wird auf eine detaillierte Beschreibung der Paarbildung bewusst
verzichtet. Weiterfithrende Informationen konnen bei den Autoren Demtroder [23, S.
257f] und Knoll [3, S. 51f] eingesehen werden.
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Massenschwichungskoeffizient

Die aus allen genannten Wechselwirkungsprozessen aufsummierte Abschwéachung der
Rontgenstrahlung wird im sogenannten Massenschwichungskoeffizienten y,, zusammenge-
fasst [3, S. 54; G. 2.22], der fiir ein Material m mit einer Dichte p,, die Beziehung

HLm(E) = om - pim(E) (2.3)

mit dem bereits in der Einleitung genannten linearen Abschwachungskoeffizienten
pr,m(E) erfiillt. Abbildung 2.4 zeigt die verschiedenen Anteile der Wechselwirkungspro-
zesse am linearen Abschwichungskoeffizienten von Kupfer. Der grau hinterlegte Bereich
markiert einen typischen Energiebereich fiir die industrielle CT-Bildgebung. Fiir das
gezeigte Material Kupfer sind somit der Photoeffekt und die Compton-Streuung die
wichtigsten Dampfungsprozesse von Rontgenstrahlung im markierten Energiebereich.
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Abbildung 2.4: Linearer Abschwichungskoeffizient von Kupfer Total mit den zugrundeliegenden
Abschwidchungseffekten: Photoeffekt, Compton-Streuung, Kohirente Streuung und
Paarbildung. Die Abschwéachungskoeffizienten wurden mit dem Programm aRTist
[24] simuliert. Ein typischer Energiebereich fiir die CT-Bildgebung ist im Plot grau
hinterlegt und liegt zwischen 30 keV und 450 keV.
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® Ui ©

Vakuum

Fenster

Abbildung 2.5: Schematischer Aufbau einer Rontgenquelle mit der Heizspannung Uy zur Erzeu-
gung freier Elektronen e~ und der Beschleunigungsspannung Up zur Beschleuni-
gung der freien Elektronen. Durch Interaktion mit dem Anodenmaterial wird die
kinetische Energie der freien Elektronen in Photonen 7y umgewandelt.

2.2 QUELLE: ERZEUGUNG VON RONTGENSTRAHLUNG

Die zur Bildgebung benétigte Rontgenstrahlung wird hédufig durch sogenannte Rontgen-
quellen (historisch: Rontgenrohren) technisch erzeugt.? Abbildung 2.5 stellt den Aufbau
einer Rontgenquelle dar. Eine Glithkathode, hdufig in Form eines Wolframdrahtes, wird
durch das Anlegen einer Heizspannung Uy und dem daraus resultierenden Heizstrom
erwdrmt, sodass die Elektronen aus dem Wolframdraht zunehmend ins Vakuumniveau
tibergehen. Die nun freien Elektronen werden mithilfe eines elektrischen Feldes E,, dem
Resultat der sogenannten Beschleunigungsspannung Up, in Richtung der Anode beschleu-
nigt. Die Zunahme der kinetischen Energie der Elektronen mit der Elementarladung ge
betrdgt AEyi, = Up - ge. Zentral ist, dass der gesamte Prozess im Vakuum stattfindet, so-
dass die mittlere freie Wegldange der Elektronen sehr viel grofier als die Strecke zwischen
Gliihkathode und Anode ist. Die beschleunigten Elektronen erreichen die Anode und
regen die Anodenatome an. Wiahrend der Relaxation erzeugen die Anodenatome ein fiir
das Anodenmaterial charakteristisches Emissionsspektrum (auch: Quellspektrum). Das
Spektrum setzt sich aus zwei wesentlichen Bestandteilen zusammen: der charakteristi-
schen Rontgenstrahlung und der Bremsstrahlung. Im folgenden Beispiel wird Wolfram als
Anodenmaterial angenommen, um exemplarische Quellspektren zu simulieren und zu

beschrieben.

Neben technisch erzeugter Rontgenstrahlung konnen auch radioaktive Strahler zur Bildgebung verwendet
werden [25]. Radioaktive Strahler werden vorrangig fiir Anwendungen im mobilen Einsatz, beispielsweise
zur Priiffung des Betons eines Briickenpfeilers, eingesetzt.
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Charakteristische Rontgenstrahlung

Die Atome im Anodenmaterial konnen durch die einfallenden Elektronen ionisiert wer-
den. Da die unbesetzten Energiezustdnde in den ionisierten Atomen durch Elektronen
aus hoheren Energieniveaus, oder dem Vakuumniveau, besetzt werden, geben die Elek-
tronen jeweils beim Ubergang in den unbesetzten Zustand ein Photon ab. Bedingt durch
die diskreten Energiezustdnde der Elektronen in einem Atom, gibt es ebenso diskrete
Ubergénge, die die sogenannte charakteristische Rontgenstrahlung im Emissionsspektrum
bilden [23, S. 254ff]. Die Bindungszustidnde K 1s mit 69.525keV und L; 2s mit 12.1keV
sind an der Ausbildung der charakteristischen Linien von Wolfram beteiligt [26, S. 1-6].
Folgende Hauptlinien (historisch auch: Serien) werden bedingt durch Elektroneniibergan-
ge in den genannten Bindungszustdnden erwartet: vom Vakuumniveau in die K-Schale
mit etwa 69 keV und von der L-Schale in die K-Schale mit etwa 57 keV. In ebendiesen Gro-
Benordnungen konnen die erwarteten charakteristischen Emissionslinien in Abbildung
2.6 beobachtet werden. AufSerhalb des dargestellten, praktisch fiir die industrielle CT
nutzbaren Energiebereiches in Abbildung 2.6 tritt zudem der Ubergang vom Vakuumni-
veau in die L-Schale mit etwa 12keV auf. Die Berechnung des Spektrums berticksichtigt
auch Ubergénge aus anderen Bindungszustianden, sodass weitere (Neben-) Linien zu den

oben beschriebenen Hauptlinien sichtbar sind.
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Abbildung 2.6: Rontgenspektren fiir zwei verschiedene Beschleunigungsspannungen Up =
(100,200) kV. Beide Spektren weisen die gleichen charakteristischen Emissions-
linien aufgrund der quantisierten Bindungszustdnde im Wolframatom aus. Die
Bremsstrahlung verteilt sich jeweils iiber den gesamten Energiebereich der einfal-
lenden Elektronen.
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Bremsstrahlung

Neben der charakteristischen Rontgenstrahlung besteht der Grofiteil der Spektren in
Abbildung 2.6 aus der sogenannten Bremsstrahlung. Die einfallenden Elektronen werden
durch die Coulomb-Felder der Atomkerne im Anodenmaterial beschleunigt und somit
von ihrer Bahn abgelenkt. Bei der Beschleunigung eines geladenen Teilchens wird Energie
in Form von Photonen abgestrahlt [23, S. 254]. Aufgrund dieser kontinuierlichen Wechsel-
wirkung ist das Spektrum der Bremsstrahlung kontinuierlich (auch: Rontgenkontinuum)

und tiber den gesamten Energiebereich der einfallenden Elektronen verteilt.

2.3 DETEKTOR: QUANTITATIVE DETEKTION VON RONTGENSTRAHLUNG

Dieser Abschnitt basiert auf Knoll (2000) [3] und beschreibt die physikalischen Grundla-
gen eines Detektors fiir Rontgenstrahlung im messtechnisch relevanten Energiebereich
tir die Computertomographie zwischen wenigen keV bis hin zu einigen MeV. Im Rah-
men dieser Thesis werden vorrangig Detektoren verwendet, die auf dem Prinzip der
Szintillation basieren. Schematisch ist das Funktionsprinzip in Abbildung 2.7 dargestellt.
Die einfallenden Photonen 7 wechselwirken mit dem sogenannten Szintillator, der im

N

Photodioden

Abbildung 2.7: Funktionelle Skizze eines auf Szintillation basierenden Detektors in seitlicher
Ansicht.

Folgenden auch als aktives Medium bezeichnet wird. Haufig werden Szintillatoren aus
Elementen mit hoher Kernladungszahl gefertigt, um die Wirkungsquerschnitte mit den
einfallenden Photonen 7 zu maximieren. Durch die Wechselwirkung wird der Szintillator
angeregt und gibt die tiberschiissige Energie in Form neuer Photonen v’ im sichtbaren
Bereich wieder ab (Szintillation). Der Szintillator ist fiir die Photonen 9/ transparent,
sodass diese sich im Idealfall ohne weitere Interaktion fortbewegen konnen. Unter dem
Szintillator befinden sich die eigentlichen Pixel des Detektors in Form von Photodioden,
die die niederenergetischen Photonen v/ effizient detektieren kénnen. Im Vergleich zu
den Photodioden, die auch in diinner Bauweise eine hohe Effizienz bei der Detektion der
niederenergetischen Photonen 7' erreichen, werden die Szintillatoren dicker ausgelegt,
um die Interaktionswahrscheinlichkeit mit den hochenergetischen Photonen y zu erho-
hen.

Insgesamt wird die im Szintillator deponierte Energie in elektrische Ladung umgesetzt,
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die in einem Kondensator zeitlich aufsummiert und anschlieflend nach der sogenann-
ten Integrationszeit ausgelesen wird. Ein Detektor nach diesem Konzept wird Energy-
Integrating Detector (EID) genannt, da die deponierte Energie iiber die Zeit integriert
wird. Der Szintillator sollte die von den Photonen 7y deponierte Energie idealerweise
linear in niederenergetische Photonen 7" umsetzen [3, S. 219], sodass die im Pixel aus-
gelesene Ladung proportional zur urspriinglich deponierten Energie im Szintillator ist.
Neben der Gesamtzahl der Pixel d; und d,, angeordnet in einem zweidimensionalen
Array, ist der Abstand zwischen zwei Pixelmittelpunkten, der sogenannte Pixel Pitch,
eine wichtige Eigenschaft des Detektors. Die in Abbildung 2.7 dargestellte Situation wird
Schrigdurchstrahlung genannt und ist zugunsten der Abbildung tiberspitzt dargestellt.
Im Bestfall liegt die Detektorebene senkrecht zum einfallenden Rontgenstrahl, sodass
ein einzelnes Photon <y ein rdumlich prazise lokalisiertes Signal in einem einzigen Pixel

hinterlasst.

2.3.1 Bildkorrekturen

Die vom Detektor aufgenommenen Projektionen miissen korrigiert werden, da verschie-
dene Effekte die Bildqualitdt mafigeblich beeintrachtigen.

Erstens wird fiir jedes Pixel eine sogenannte Flatfield-Korrektur durchgefiihrt, um das
Untergrundsignal, den Offset, bedingt durch den Dunkelstrom des Detektors aus dem
Signal zu entfernen und um den Verstarkungsfaktor, den Gain, fiir jedes Pixel zu er-
mitteln. Hierzu werden ein Offset-Bild Pogsser (auch: Dunkelbild) ohne Rontgenstrahlung
und ein Gain-Bild Pgain (auch: Hellbild) im Freistrahl ohne Probe aufgenommen. Ein
unkorrigiertes Pixel P*¥ kann durch

(xy) (xy)
xy) _ P — Pofiset B
PGO - P(W) B P(x’y) PGam (2‘4)

Gain Offset

in ein korrigiertes Pixel Pé’cy)c umgerechnet werden, wobei (x,y) die Position des Pixels
auf dem Detektor innerhalb des Pixelarrays beschreibt. Pq,in ist der Mittelwert des Gain-
Bildes und fungiert als Normierung.

Zweitens gibt es Pixel, die so stark beschddigt sind, dass ihr Signal nicht verwendet
werden kann. Die genauen Griinde fiir den Ausfall einzelner Pixel reichen von mechani-
scher Beschadigung bis hin zu elektrischen Problemen beim Auslesen und sind fiir die
Korrektur in erster Instanz nicht relevant. Diese Pixel werden Bad Pixel (auch: tote Pixel)
genannt und konnen mithilfe eines Priifverfahrens aus der Norm ASTM E2597/E2597M -
14 [27] identifiziert werden. Neben bilinearer Interpolation [28, S. 65 £.] der Nachbarpixel
kann ebenso ein Median-Filter [28, S. 326] verwendet werden, um basierend auf den
Nachbarpixeln einen Ersatzwert fiir das beschiddigte Pixel neu zu berechnen. Proble-
matisch wird dieser Losungsansatz, sobald groflere Ansammlungen beschéddigter Pixel,
sogenannte Cluster, auftreten, da die benachbarten und ebenfalls beschddigten Pixel
nicht zur Korrektur verwendet werden konnen. Daher miissen fiir die Korrektur von
Clustern komplexere Algorithmen, die einen grofieren Bildbereich (auch: Kontext) um
das beschadigte Pixel berticksichtigen, verwendet werden. Neben klassischen Bildrestau-
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rationsverfahren existieren auch DL-basierte Ansitze, die fiir die Restauration toter Pixel
eingesetzt werden [29]. Ebenso konnen ganze Zeilen oder Spalten des Detektors ausfallen
— eine haufige Folge elektrischer Defekte. Analog zur Argumentation bei Clusterdefekten
ist die bilineare Interpolation fiir die Korrektur ungeeignet. Jedoch kann mit dem Wissen
der Ausrichtung der fehlerhaften Zeile (oder Spalte) senkrecht zum Liniendefekt linear
interpoliert oder der Median-Filter angewandt werden. Eine Ubersicht der klassischen
Korrekturverfahren fiir tote Pixel ist in Abbildung 2.8 dargestellt.

[ﬂnﬂﬂ

(a) Bilineare Interpolation (b) Median-Filter (c) Lineare Interpolation

Abbildung 2.8: Ubersicht gangiger Korrekturverfahren zur Ausbesserung toter Pixel. Einzelne,
isolierte, tote Pixel konnen mit bilinearer Interpolation (a) oder einem Median-
Filter (b) korrigiert werden. Liniendefekte werden mit linearer Interpolation
senkrecht zum Defekt (c) korrigiert.

2.3.2  Bildrauschen

Die Projektionen unterliegen einem Bildrauschen, das sich aus dem physikalischen Bild-
gebungsprozess ableiten ldsst. Das von der Quelle erzeugte Spektrum besteht insgesamt
aus Ny Photonen, die mit einer Wahrscheinlichkeit p, durch die Probe transmittieren
und den Detektor erreichen. Durch Anwendung der Zahlstatistik ergibt sich, dass im
Rahmen einer Standardabweichung Ny - p, = /N - pa Photonen den Detektor erreichen
[30, S. 170 f.] und zu einem Bildrauschen, basierend auf einem Poisson-Prozess, fithren
(Poisson Noise oder Shot Noise). Zusatzlich unterliegen die Detektoren einem elektroni-
schen und thermischen Grundrauschen. Eine weitere Quelle des Bildrauschens kann
in der zeitlichen Instabilitdt der erzeugten Rontgenstrahlung identifiziert werden. Zeit-
liche Instabilitdten des von der Rontgenquelle emittierten Spektrums beziehen sich in
den meisten Féllen auf die Flussdichte des Elektronenstroms auf die Anode (vergleiche
Abbildung 2.5), sodass die Leistung des emittierten Spektrums insgesamt variiert, die
spektrale Verteilung aber weitestgehend konstant bleibt. Somit konnen einzelne Pro-
jektionen wiahrend des CT-Scans zwar andere Zdhlraten anzeigen, jedoch bleiben die
Verhiltnisse zwischen den projizierten Objekten stets gleich. Durch die Normierung der
Projektionen vor der Rekonstruktion werden erstens diese Schwankung und zweitens

raumliche Inhomogenitit des Quellspektrums ausgeglichen.

24 REKONSTRUKTION

Die mathematische Grundlage zur Rekonstruktion, und damit fiir die Computertomogra-
phie, lieferte Johann Radon im Jahr 1917 [31], indem er zeigte, dass eine zweidimensionale
Funktion durch die Werte aller Linienintegrale des Definitionsbereiches ebendieser Funk-
tion eindeutig dargestellt werden kann [30, S. 150]. Der eigentliche Messprozess bei



2.4 REKONSTRUKTION

K E R
# P1

(a) Riickprojektion (b) Ram-Lak-Filter

—Wmax +wmax

Abbildung 2.9: Schematische Darstellung der Rekonstruktion durch Riickprojektion der
Parallelstrahl-Geometrie (a) mit einem moglichen Filter (b) im Frequenzraum
H(w) firr die Anwendung der gefilterten Riickprojektion.

der CT, das heifst die Abschwidchung der Rontgenstrahlung durch die Probe gemif3
Gleichung 1.1 sowie das Aufzeichnen des integrierten Signals, folgt dem nach Radon
beschriebenen Modell und wird auch als Radon-Transformation bezeichnet. Die Inverse
der Radon-Transformation liefert somit aus einem Satz gemessener Projektion und einer
bekannten Abbildungsgeometrie eine Rekonstruktion, die in einfachster Form durch das
Verschmieren der Projektionen entlang ihrer Aufnahmerichtung (auch ungefilterte Riickpro-
jektion) erfolgt. Eine ausfiihrliche Betrachtung dieser Rekonstruktionsmethode kann bei
den Autoren Maier [30, S. 150-156] und Kak [32, S. 56-68] eingesehen werden. Abbildung
2.9a skizziert die Riickprojektion eines Satzes von Projektionen durch ein Zielvolumen
unter der Annahme paralleler Rontgenstrahlen (auch: Parallelstrahl-Geometrie). Das re-
konstruierte Volumen eines gescannten Zylinders wird abhédngig von der Anzahl der
verwendeten Projektionen in der oberen Zeile von Abbildung 2.10 dargestellt. Mit dem
Wissen, dass es sich bei dem in Abbildung 2.10 rekonstruierten Objekt um einen Zylinder,
beziehungsweise in der Schnittebene um einen Kreis, handelt, liefert die ungefilterte
Riickprojektion auch unter Verwendung von 1000 Projektionen ein unscharfes Resultat.
Diese Unschaérfe folgt aus der unzureichenden Abtastung hoher Frequenzanteile durch
den CT-Messprozess [30, S. 156ff] und kann mithilfe eines Filters, der auf die Projektio-
nen angewandt wird, korrigiert werden.> Haufig wird der in Abbildung 2.9b geplottete
Ram-Lak-Filter verwendet, der hohe Frequenzanteile bis zu einer Grenzfrequenz wmax
verstarkt und niederfrequente Anteile unterdriickt. Oberhalb der Grenzfrequenz wird
das Signal abgeschnitten, um das hochfrequente Rauschen im Bild zu reduzieren [30, S.
158ff].

In klinischen und industriellen Anwendungen ist die Parallelstrahl-Geometrie zugunsten
der Kegelstrahl-CT wenig verbreitet. Daher basieren die meisten Rekonstruktionsalgo-
rithmen auf dem sogenannten FDK-Algorithmus, der nach Feldkamp, Davis und Kress
benannt wurde [33] und erstmals eine effiziente Moglichkeit beschrieb, dreidimensionale
Volumen aus zweidimensionalen Projektionen unter Berticksichtigung der geometrischen
Vergrofierung zu rekonstruieren. Alle weiteren Rekonstruktionen in dieser Arbeit werden

mit dem FDK-Algorithmus berechnet. Ergdnzend sind iterative Rekonstruktionsalgo-

Durch Darstellung der Rontgenprojektionen im Fourierraum kann anschaulich gezeigt werden, dass die
niedrigen Frequenzanteile des Bildes geometrisch bedingt feiner abgetastet werden als die hochfrequenten
Bildanteile. Eine zu dieser Erlduterung ergédnzende Abbildung kann bei Kak [32, S. 59, Fig. 3.7] eingesehen
werden.
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N=1000

N=10 N=50

Abbildung 2.10: Ungefilterte Rekonstruktion (obere Reihe) und gefilterte Rekonstruktion (untere
Reihe) fiir verschiedene Projektionszahlen N gleichverteilt tiber den Vollkreis.

rithmen zu nennen, die im Vergleich zur FDK-Rekonstruktion deutlich rechenintensiver
sind. Thre Vorteile sind im Allgemeinen auf die Reduktion verschiedener CT-Artefakte
beschrankt, die im folgenden Abschnitt beschrieben werden. Im weiteren Verlauf dieser

Thesis werden keine iterativen Rekonstruktionsalgorithmen verwendet.

241 CT-Artefakte

Die gefilterte Riickprojektion mit 1000 Projektionen in Abbildung 2.10 (untere Zeile, ganz
rechts) ist qualitativ betrachtet artefaktfrei. In praktischen Anwendungsfallen kommt
es aufgrund verschiedener Einfliisse dennoch hdufig zu sogenannten CT-Artefakten, die
einen mafsgeblichen Einfluss auf die Bildqualitit haben konnen. Aus dem vorangehenden
Abschnitt ist das Undersampling (deutsch: Unterabtastung) in Abbildung 2.10 in Form von
linienartigen Artefakten insbesondere bei niedrigen Projektionszahlen zu erkennen. Eine
niedrige Projektionszahl fiihrt zu einer Unterabtastung der Probe und somit zu einer
verminderten Rekonstruktionsqualitidt. Die Literatur empfiehlt fiir einen Detektor mit d
Pixeln in der Breite* mindestens d, Projektionen gleichverteilt auf einen Vollkreis fiir die
Rekonstruktion zu verwenden [32, S. 186]. Im Folgenden wird ohne weiteren Kommentar
diese Faustformel angewandt. Eine weitere Artefaktquelle besteht in der Aufhartung der
polychromatischen Rontgenstrahlung durch die energieabhidngige Dampfung innerhalb
einer Probe [30, S. 171 f.]. Abbildung 2.4 zeigt die Energieabhdngigkeit des linearen
Abschwiachungskoeffizienten fiir Kupfer. Im fiir die CT-Bildgebung relevanten, grau
schattierten Bereich sinkt der lineare Abschwachungskoeffizient streng monoton, sodass
die niederenergetischen Anteile des einfallenden Spektrums eine stirkere Dampfung
erfahren. Das Spektrum wird somit durch die Wechselwirkung mit der Probe nicht nur
insgesamt geddmpft, sondern auch aufgehirtet.” Dieser Effekt nimmt mit der Dicke

einer gescannten Probe zu, sodass in den inneren Schichten eines homogenen Zylin-

Gemeint ist die Pixelausbreitungsrichtung ¥, die senkrecht zur Rotationsachse (CT-Achse) und senkrecht
zur Strahlrichtung steht.

Historisch bedingt wird von weicher (niederenergetischer) und harter (hochenergetischer) Rontgenstrahlung
gesprochen.
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ders niedrigere Abschwichungskoeffizienten aufgrund des aufgehirteten Spektrums
rekonstruiert werden. Abbildung 2.11 zeigt den beschriebenen Effekt und die daraus
resultierende, charakteristische Form im Schnittbild (rechte Spalte) — das sogenannte
Cupping. Zur Reduktion der Strahlaufhdrtungsartefakte kann eine Vorfilterung des Ront-
genspektrums verwendet werden [30, S. 172]. Die Vorfilterung héirtet das Spektrum vor
der Interaktion mit der Probe auf, sodass insgesamt weniger Photonen aus den niedri-
geren Energiebereichen fiir den Messprozess verwendet werden. Somit sinkt die Starke
der Strahlaufhartungsartefakte deutlich ab. In der unteren Zeile von Abbildung 2.11
wird das gleiche Quellspektrum mit Vorfilterung durch ein 1 mm dickes Kupferblech zur
Bildaufnahme verwendet. Im Vergleich zur Bildaufnahme ohne Vorfilterung (obere Zeile)
ist zu erkennen, dass die Strahlaufhirtung reduziert werden konnte. Zudem sind die
absolut rekonstruierten Abschwachungskoeffizienten in Abbildung 2.11 (rechte Spalte)
durch die Vorfilterung gesunken, da die effektive Energie des einfallenden Spektrums
gestiegen ist und der effektive Abschwachungskoeffizient gemafs Abbildung 2.4 in diesem
Energiebereich monoton fallt.
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Abbildung 2.11: Rekonstruierte Volumen eines Zylinders mit verschiedenen Rontgenspektren:
ungefiltertes Spektrum (obere Zeile) und durch 1 mm Kupfer vorgefiltertes
Spektrum (untere Zeile) bei gleicher Beschleunigungsspannung Up = 150kV.
Die Schnitte durch die Volumen entlang der gestrichelten Linien werden in der
rechten Spalte geplottet. Sofern nicht anders beschriftet, handelt es sich bei den
Achsen um numerierte Voxel.

Wie in Abschnitt 2.1 erwédhnt, liefert die Compton-Streuung teilweise den starksten
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Beitrag zur Abschwachung der Strahlung im CT-relevanten Energiebereich (vergleiche
Abbildung 2.4). Da es sich um einen Streuprozess mit einer bestimmten Winkelverteilung
handelt, wird ein Teil der Streustrahlung ebenfalls in Richtung des Detektors ausgesandt
und tragt zum gemessenen Signal bei. In der klassischen FDK-Rekonstruktion, beschrie-
ben in Kapitel 2.4, wird dieser Streuprozess nicht beriicksichtigt, sodass mitunter von
der Realitdt abweichende Abschwichungskoeffizienten rekonstruiert werden.® Ebenso
werden Abbildungsunschérfen, zum Beispiel durch eine nicht ideal punktférmige Ront-
genstrahlungsquelle, nicht berticksichtigt, sodass die Detailerkennbarkeit weiter abnimmt.
Wihrend die Kreistrajektorie die Mittelschicht der Probe’ ideal abbildet (zweidimen-
sional auch: Ficherstrahl-Geometrie), werden die Schichten im Randbereich geometrisch
verzerrt und diagonal durchstrahlt abgebildet, sodass sich die sogenannten Feldkamp-
Artefakte herausbilden. Sie haben einen direkten Einfluss auf die absolut rekonstruierten
Abschwichungskoeffizienten und somit auch auf die im Folgenden vorgestellte Materi-
albestimmung, die auf ebendiesen Abschwachungskoeffizienten basiert. Das letzte hier
genannte CT-Artefakt ist der Partial Volume Effect, der den partiellen, inhomogenen Inhalt
eines rekonstruierten Voxels beschreibt. Anhand des folgenden Beispiels in Abbildung
2.12 kann der Partial Volume Effect veranschaulicht werden. Der Effekt tritt somit an

(a) Probe kleiner als Voxel (b) rekonstruiertes Voxel

Abbildung 2.12: Ausgangssituation einer runden Probe, die den Durchmesser des umliegenden
Voxels aufweist (a). Aufgrund der Voxelgrofie kann das runde Objekt nicht
korrekt rekonstruiert werden. Das rekonstruierte Voxel (b) zeigt somit den
Mittelwert des Inhalts von (a), also eine Mischung aus der Probe und ihrer
Umgebung — den Partial Volume Effect.

allen rdumlichen Eigenschaften einer Probe auf, die kleiner sind als die Voxelgrofe selbst
(hdufig: Kanten und Partikel).

2.5 TRAJEKTORIEN

Neben der bereits am Anfang dieses Kapitels beschriebenen Kreistrajektorie in Abbildung
2.13a wird die Helixtrajektorie, dargestellt in Abbildung 2.13b, haufig verwendet. Die
Nutzung der Helixtrajektorie bietet den Vorteil, dass jedes Volumenelement der Probe

zu einem bestimmten Zeitpunkt in der Mittelebene der Abbildungsgeometrie liegt und

Konkret fiihrt die Streustrahlung zu einer Reduktion der rekonstruierten Abschwachungskoeffizienten
innerhalb einer Probe.

Gemeint ist die mittlere Schnittebene durch die Probe, die in derselben Ebene wie die eingezeichnete
Trajektorie liegt. Sie befindet sich in der Mitte der Abbildungsgeometrie und wird daher auch Mittelebene
genannt.
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(a) Kreistrajektorie (b) Helixtrajektorie

Abbildung 2.13: Renderings einer Kreistrajektorie (a) und einer Helixtrajektorie (b) zum Scan
der quaderformigen Probe. Die Quelle bewegt sich entlang der roten Linie.
Gegeniiberliegend zu jeder Quellposition befindet sich der Detektor, sodass
beide gemeinsam um die Probe rotieren (siehe Abbildung 2.1). Zur Verbesserung
der Darstellung werden die Positionen des Detektors nicht eingezeichnet.

somit keine Feldkamp-Artefakte auftreten. Zudem konnen langliche Proben mit einer
hoheren Vergrofierung als bei der Kreistrajektorie abgebildet werden.

2.6 DUAL-ENERGY CT UND KLASSISCHE MATERIALZERLEGUNG

Bei der Computertomographie mit polychromatischer Rontgenstrahlung und einem
Energy-Integrating Detector (EID) werden die Abschwéchungskoeffizienten einer Pro-
be ortsaufgelost und energieintegriert gemessen. Das Spektrum der Rontgenstrahlung
bestimmt somit den Energiebereich in dem der Abschwéchungskoeffizient des Proben-
materials effektiv gemessen wird. Nach Sprawls besteht eine géngige Hilfsgroie zur
Beschreibung dieses effektiven Energiebereiches durch die sogenannte effektive Energie
[34]. Sie ist ebenjene Photonenenergie, die ein monochromatischer Rontgenstrahl benétigt,
um die gleiche Penetration wie ein gegebener polychromatischer Rontgenstrahl an einer
festen Probe aufzuweisen [34]. Die im Folgenden genannten Abschwéchungskoeffizienten
werden daher zuséatzlich mit dem Index eff versehen, um zu verdeutlichen, dass es sich
um die effektiven Abschwachungskoeffizienten unter Verwendung polychromatischer
Rontgenstrahlung handelt. Bei der Durchfiihrung mehrerer CT-Scans mit unterschied-
lichen Rontgenspektren, beziehungsweise unterschiedlichen effektiven Energien, kann
der Abschwichungskoeffizient in verschiedenen Energiebereichen gemessen und fiir
weiterfithrende Analysen verwendet werden. Im Fall von zwei unterschiedlichen Energi-
en wird der gesamte Scan auch DECT genannt. Die Aufnahme einer DECT kann durch

verschiedene Strategien realisiert werden:

* Beim Multi-Scan werden zwei separate CT-Scans nacheinander mit verschiede-
nen Parametern der Rontgenquelle, zum Beispiel Beschleunigungsspannung oder
Vorfilterung, durchgefiihrt [35, S. e893].
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* Mehrschichtige Detektoren, sogenannte Sandwich Detectors, konnen wahrend ei-
nes einzigen CT-Scans verschiedene Energiekanile durch die unterschiedlichen
Detektorschichten registrieren [35, S. e890 ff.].

* Moderne Photonenzihler (auch Photon-Counting Detectors (PCDs)) konnen einzelne
Photonen energieaufgelost detektieren [35, S. €892 £.].

¢ Durch schnelles Alternieren der Beschleunigungsspannung in der Rontgenrohre,
das Rapid Tube Potential Switching oder Fast-kV Switching, konnen verschiedene
Rontgenspektren zur Aufnahme aufeinanderfolgender Bilder verwendet werden
[35, S. €893 ff.].

¢ Die Verwendung mehrerer, unabhédngiger Systeme, bestehend aus Rontgenquelle
und Detektor, die den gleichen Priifraum beleuchten, stellt eine weitere Moglichkeit
zur Aufnahme von DECT dar [35, S. €896 {.].

Bereits im Jahr 1976 publizierte Alvarez einen Algoritmus zur Materialzerlegung basie-
rend auf DECT [13]. Eine gédngige Darstellung von DECT zur Materialdifferenzierung
wird in Abbildung 2.14 fiir die Materialien Aluminium, Eisen und Kupfer dargestellt.
Fiir zwei gegebene Rontgenspektren, in diesem Beispiel definiert durch die Energie der
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Abbildung 2.14: Ideal rekonstruierte Dual-Energy-Abschwachungskoeffizienten yy, verschiedener
Materialien m basierend auf monochromatischer Rontgenstrahlung mit 140 keV
und 240keV. Die Abschwéchungskoeffizienten tragen keinen Index zur Anzeige
der effektiven Energie (eff), da es sich zur Vereinfachung um monochromatische
Rontgenstrahlung handelt. Jede Linie beschreibt ein Material in verschiedenen
relativen Dichten. Die relativen Dichten sind beispielhaft an den Stiitzpunkten
der Kupferlinie annotiert.
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monochromatischen Strahlung, werden die rekonstruierten Abschwachungskoeffizienten

#L,m graphisch aufgetragen. Aus der Definition des linearen Abschwéchungskoeffizienten
Him = P fim (2.5)

mit einer absoluten Dichte p, und dem Massenschwachungskoeffizienten uy, folgen
unmittelbar die Datenpunkte fiir die relativen Dichten zwischen 0.2 und 1.0. Eine unbe-
kannte Probe kann somit durch einen DECT-Scan eindeutig anhand der rekonstruierten
Abschwichungskoeffizienten einer Gerade und damit einem Material und einer Dich-
te zugeordnet werden. Analog konnen fiir polychromatische Rontgenstrahlung, mit
Verwendung der effektiven Energie, in realen Anwendungen Kalibrationsmessungen
durchgefiihrt werden, um Materialien anhand der rekonstruierten Abschwachungsko-
effizienten erkennen zu konnen. Ein Problem bei diesem sehr direkten Ansatz ist in
Abbildung 2.11 aus dem vorangehenden Abschnitt iiber CT-Artefakte ersichtlich: die
rekonstruierten Abschwichungskoeffizienten sind in einer homogenen Probe bei Ver-
wendung von polychromatischer Rontgenstrahlung aufgrund der Strahlaufhiartung nicht
konstant. Daraus folgt, dass der oben beschriebene Ansatz zur Materialerkennung nur
in absoluter Abwesenheit der Strahlaufhartungsartefakte, also beispielsweise bei der

Verwendung einer monochromatischen Rontgenquelle, erfolgsversprechend ist.

2.7 VORSTELLUNG REALE CT-ANLAGE

An einigen Stellen dieser Arbeit bedarf es eines Abgleiches mit realen CT-Daten, die mit
der in diesem Abschnitt vorgestellten CT-Anlage aufgenommen werden. Eine Fotografie
der verwendeten CT-Anlage vom Typ diondo d2 ist in Abbildung 2.15 dargestellt. Die
Anlage ist auf einem Granit-Manipulator aufgebaut, um den Einfluss der thermischen
Ausdehnung und generell durch Vibrationen zu unterdriicken. Die Rontgenquelle kann
mit einer maximalen Beschleunigungsspannung Ug = 240kV betrieben werden. In der
Rontgenquelle befindet sich eine scheibenférmige Anode, die in Transmission, das heifst
die Strahlrichtung der Elektronen entspricht der Richtung des priméren Photonenstrahls,
betrieben wird (auch: Transmissionsquelle). Transmissionsquellen sind aufgrund ihres
kleinen Brennflecks® im Vergleich zu Reflexionsquellen (vergleiche Abbildung 2.5) fiir
hochaufgeloste CT-Scans besser geeignet, wobei dies auf Kosten der abgestrahlten Leis-
tung in Form der Rontgenstrahlung geschieht.

Der Detektor basiert auf einem Caesiumiodid-Szintillator und wird energieintegrierend
betrieben (vergleiche EID in Abschnitt 2.3). Der Pixel Pitch betrdagt 139 pm auf einer Fla-
che mit insgesamt 3000 x 3000 Pixeln. Zur Bedienung der gesamten CT-Anlage wird die
Software diControl verwendet. Weiterfithrende Informationen beziiglich der vorgestellten
CT-Anlage konnen bei der Firma diondo in Hattingen angefordert werden.

Einige im weiteren Verlauf dieser Dissertationsschrift gewahlte Parameter, beispielsweise
die Beschleunigungsspannungen der Rontgenquelle, werden in Anlehnung an die diondo

d2 gewdhlt, um den angesprochenen quantitativen Vergleich der Daten zu erleichtern.

8 Gemeint ist der Bereich aus dem die Rontgenstrahlung innerhalb der Anode emittiert wird.
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Abbildung 2.15: Fotografie der verwendeten CT-Anlage diondo d2 im Dienstleistungsbereich der
Firma diondo. Rechts im Bild ist die Rontgenquelle zu sehen, links befindet sich
der Detektor.



GRUNDLAGEN DES DEEP LEARNINGS FUR DIE
COMPUTERTOMOGRAPHIE

Dieses Kapitel dient als Einstieg fiir CT-Experten in die Methodik des Deep Learnings
als Werkzeug fiir die Bildverarbeitung und insbesondere fiir die Verarbeitung von CT-
Bilddaten im Rahmen dieser Dissertationsschrift. Daher werden vorrangig die zugrunde
liegenden Konzepte einiger Bausteine des Deep Learnings im Folgenden phdanomeno-
logisch und nicht in voller Tiefe erkldrt. Versierte Deep-Learning-Entwickler konnen
zur Abkiirzung direkt die Abbildung 3.5 sowie die Publikationen von Ronneberger et
al. [36] und Liu et al. [37, 38] einsehen, um die in den folgenden Kapiteln verwendeten
Architekturen nachzuvollziehen. Zundchst wird Deep Learning formell in Abschnitt
3.1 anhand eines einfachen neuronalen Netzes eingefiihrt. Darauf aufbauend werden
das Training und die Bewertung des Trainingserfolges in den Abschnitten 3.2 und 3.3
beschrieben. Da im Rahmen dieser Dissertationsschrift mit CT-Bildern gearbeitet wird,
vertieft Abschnitt 3.4 die Anwendung des Deep Learnings fiir die Verarbeitung von
Bildern. Zwei im weiteren Verlauf dieser Arbeit genutzte und konzeptionell verschiedene
Architekturen zur Bildverarbeitung werden in den Abschnitten 3.4.1 und 3.4.2 vorgestellt:
das U-Net [36] und der Swin Transformer [38].

3.1 EINFUHRUNG: DEEP LEARNING

Gesucht sei eine Funktion f, die eine Variable x (auch: Input) in eine Variable y (auch:
Ground Truth) libersetzt:
fix—y . (3.1)

Weiterhin sei eine Serie, bestehend aus beispielhaften Tupeln (x,y), den sogenannten
Trainingsdaten, gegeben. Unter diesen Bedingungen wird vom sogenannten Supervised
Learning gesprochen, da x und y bekannt sind. Mit dem entsprechenden Vorwissen tiber
die von der Funktion f darzustellende Abbildung, beispielsweise durch Domédnenwissen,
kann eine Funktionsgleichung explizit aufgestellt und an die Trainingsdaten angepasst
werden. Besteht kein derartiges Wissen, kann alternativ nach Hornik ein kiinstliches
neuronales Netz angesetzt werden, das bei geeigneter Auslegung die Fahigkeit besitzt,
mathematische Funktionen f anhand der gegebenen Trainingsdaten zu approximieren
[39]. Neuronale Netze bestehen aus Neuronen, die mithilfe sogenannter Verbindungen
untereinander vernetzt werden [40, S. 185 f.]. Die Neuronen werden typischerweise in
mehreren Schichten (auch: Layer) angeordnet. In Abbildung 3.1 wird ein Multi-Layer-
Perceptron (MLP) dargestellt, das aus insgesamt drei Schichten besteht, die mithilfe der
Verbindungen verkniipft werden. Der Input x ist in diesem Beispiel ein Vektor mit drei

Komponenten (x1, x2, x3) und bildet die Neuronen der Input Layer. Allgemein werden

27



28

GRUNDLAGEN DES DEEP LEARNINGS FUR DIE COMPUTERTOMOGRAPHIE

Hidden Layer

Input Layer Output Layer

Abbildung 3.1: Architekturdiagramm eines einfachen MLPs mit den Neuronen der Input Layer x,
der Hidden Layer & und der Output Layer .

die von neuronalen Netzen verarbeiteten Daten auch Tensoren! genannt — eine Verallge-
meinerung der zuvor beschriebenen Vektordarstellung des Inputs x. Die Neuronen der
Hidden Layer h; werden durch die Linearkombination des Inputs x mit sogenannten
Weights w, der Addition des sogenannten Bias b und der Anwendung der sogenannten
Aktivierungsfunktion ¢ berechnet durch:

i

Durch die Verwendung einer nichtlinearen Aktivierungsfunktion ¢ kann das MLP auch
nichtlineare Funktionen f approximieren [40, S. 187]. Die Aktivierungsfunktion ReLU
(Rectified Linear Unit) gehort zu dieser Klasse der nichtlinearen Aktivierungsfunktionen
[40, S. 191 f.], ist definiert durch

x, x>0
PreLU(X) = (3.3)
0, x<0

und nach Goodfellow eine der am haufigsten verwendeten Aktivierungsfunktionen [40, S.
192]. In der Definitionsgleichung von ¢rery(x) symbolisiert x die Klammer aus Gleichung
3.2. Analog zu Gleichung 3.2 werden die Werte der Neuronen in der Output Layer (auch:
Prediction) §J aus den Neuronen der Hidden Layer berechnet. Somit sind die Weights
w und die Bias-Werte b aller Neuronen und Verbindungen eines neuronalen Netzes
ebenjene Parameter, die an die gegebenen Trainingsdaten angepasst werden miissen,
sodass das MLP die Funktion f bestmoglich approximiert [40, S. 189]. Die Gewichte und
die Bias-Werte werden daher auch trainierbare Parameter 6 genannt und ihre Gesamtzahl

1 Der Begriff steht in direktem Zusammenhang mit dem Tensor aus der Mathematik.
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wird als Kapazitit des neuronalen Netzes bezeichnet.

Das beispielhaft dargestellte MLP in Abbildung 3.1 besitzt eine Hidden Layer. Durch
das Hinzufiigen weiterer Hidden Layers wird das neuronale Netz tiefer und in seiner
Gesamtheit ausdrucksstérker, da es eine grofsere Anzahl an Rechenoperationen der Form
aus Gleichung 3.2 zur Darstellung der Funktion f nutzen kann [40, S. 185 f.]. Ab welcher
Tiefe, beziehungsweise Kapazitdt, ein neuronales Netz zum Deep Learning zihlt, ist
in der Literatur nicht einheitlich definiert. Nach Goodfellow z&hlt ein neuronales Netz
zu Deep Learning, sobald es komplexe Merkmale durch die Kombination abstrakter
Teilmerkmale in den Hidden Layers ausdriicken kann [40, S. 6 f.]. So konnte ein tiefes
neuronales Netz beispielhaft die Erfassung und Unterscheidung der Fellmuster von
Giraffen (geflecktes Muster) und Zebras (gestreiftes Muster) als abstraktes Merkmal in
einer der vielen Hidden Layers erlernen. In einer anderen Layer konnte es auch die
relative Halslange im Verhaltnis zur GesamtgrofSe des Tieres — ein weiteres niitzliches
Merkmal zur Unterscheidung zwischen Giraffen und Zebras — als abstraktes Merkmal

erlernen.

3.2 TRAINING NEURONALER NETZE

Die im vorausgehenden Abschnitt erfolgte Vorstellung eines einfachen MLPs in Abbil-
dung 3.1 lasst eine zentrale Frage offen: Wie werden die trainierbaren Parameter 0 an die
gegebenen Trainingsdaten (x,y) angepasst? Zur Beschreibung des sogenannten Trainings,
ebendieser Anpassung der Parameter 6, werden drei Kernkomponenten benétigt, die im
Folgenden aufgezahlt werden:

¢ Loss: Im Allgemeinen berechnet ein neuronales Netz aus einem Input x (Input Layer)
eine Prediction § (Output Layer), die vom Ground Truth y mehr oder weniger stark
abweicht. Die Abweichung, der sogenannte Loss £, wird mithilfe sogenannter Loss
Functions quantifiziert. Fiir verschiedene Problemarten, beispielsweise Regression
und Klassifikation, gibt es verschiedene Loss Functions. Das im Rahmen dieser
Dissertationsschrift formulierte Problem zdhlt formal zur Regression, da aus den
Inputs x (CT-Bilder) kontinuierlich verteilte Predictions { (Materialien) berechnet
werden sollen. Somit wird im Folgenden eine Loss Function fiir Regressionsproble-
me beschrieben. Eine hdufig fiir Regressionsprobleme verwendete Loss Function
ist der Mean Squared Error (MSE-Loss), der den mittleren, quadratischen Fehler der
Predictions § gegeniiber den Ground Truths y misst:

MSE-Loss(9,y) = — Y (9i —vi)* - (3.4)

Hierbei ist L die Lange der Vektoren y beziehungsweise 7, das heifst, konkret am
Beispiel des MLPs aus Abbildung 3.1, die Anzahl der Neuronen in der Output
Layer. Neben dem MSE-Loss gibt es eine Vielzahl alternativer Loss Functions, die
zum Training von Regressionsproblemen verwendet werden und bei Ciampiconi et
al. [41] eingesehen werden konnen.
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* Gradientenbestimmung: Das vorgestellte MLP in Abbildung 3.1 verwendet grofsten-
teils differenzierbare Rechenoperationen?, sodass zur Minimierung des Losses ein
Gradientenverfahren genutzt werden kann. Mithilfe der sogenannten Backpropa-
gation kann der Gradient fiir einen Loss £ entlang der trainierbaren Parameter
V(L) ermittelt werden [40, S. 225 f.]. Anschaulich wird hierbei der Einfluss jedes

trainierbaren Parameters auf den Loss ermittelt.

* Optimierer: Mit dem Gradienten V(L) erfolgt die Anpassung der trainierbaren
Parameter durch
0' =60—eVy(L)

mit der sogenannten Lernrate € , sodass sich die aktualisierten trainierbaren Para-
meter 6’ ergeben. Moderne Optimierer im Bereich des DLs verwenden adaptive
Lernraten, sodass jeder Parameter aus 6 zusitzlich eine multiplikative, individuelle
Lernrate zugeordnet bekommt. Durch die Nutzung individueller Lernraten wird
die Konvergenz beschleunigt, da Parameter, die einen eher geringen Einfluss auf
den Loss haben, das heifst schwache Gradienten aufweisen, mit grofieren indi-
viduellen Lernraten aktualisiert werden konnen, wiahrend Parameter mit steilen
Gradienten niedrigere Lernraten und damit kleinere Optimierungsschritte erfahren.
Ein haufig genutzter Optimierer heifst AdamW [42].

Anhand von Codeabschnitt 3.1 werden die soeben vorgestellten Kernkomponenten in

den Ablauf des Trainings eines neuronalen Netzes eingebettet.

for batch in batches:
X, y = batch
y_hat = model(x)
loss = lossFunction(y_hat, y)
loss.backward()
optimizer.step(loss, model)

Codeabschnitt 3.1: Grobalgorithmus zum Training eines neuronalen Netzes model mit den Inputs
x, den Ground Truths y und den Predictions y_hat anhand einer Loss Function
lossFunction mithilfe eines Optimierers optimizer.

Zunichst werden die Trainingsdaten (x,y)o, ..., (X, ¥)n in sogenannte Batches, das heif3t
Teilpakete, der Grofie B aufgeteilt. Jeder Batch wird in Inputs x und Ground Truths
y zerlegt. Die Inputs dienen, geméfs obiger Beschreibung, dem neuronalen Netz zur
Berechnung der Prediction j, die mit den Ground Truths y verglichen werden und einen
Loss ergeben. Mittels Backpropagation (loss.backward()) wird der Gradient des Losses
beziiglich der trainierbaren Parameter V(L) berechnet [40, S. 225]. Der Optimierer
kann anschlieflend die trainierbaren Parameter anpassen (optimizer.step(..)), sodass
der Loss fiir den soeben prozessierten Batch reduziert wird. Dieses Verfahren wird fiir
alle Batches der Trainingsdaten in mehreren Durchldufen, den sogenannten Epochen,

Die einzige Ausnahme besteht in der Aktivierungsfunktion ReLU, die nur im Punkt x = 0 mathematisch
nicht differenzierbar ist. An dieser Stelle betragt ihr Gradient per Definition Vie y = 0, um die Gradienten-
bestimmung weiterhin durchfiihren zu kénnen. Moderne Alternativen, beispielsweise GELU, sind meist
stetig differenzierbar.
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durchgefiihrt.

Die Aktualisierung der trainierbaren Parameter 6 auf Basis des Gradienten V(L) birgt in
der bisher dargestellten Form eine Gefahr: Der Gradient, und damit die Aktualisierung,
eines Gewichtes in einer bestimmten Hidden Layer wird basierend auf der Annahme
berechnet, dass die anderen Hidden Layer konstant bleiben (vergleiche Goodfellow [40, S.
354 £.]). Durch die Aktualisierung der Gewichte innerhalb einer Hidden Layer /; konnen
ihre Ausgabewerte, die als Eingabewerte der ndchsten Hidden Layer h;; agieren, deut-
lich gedndert werden. Dieses Problem kann durch die Anwendung einer Normierung der
Daten vor jeder Hidden Layer reduziert werden [40, S. 356 f.]. Mithilfe der sogenannten
Batch-Normalization-Layer (kurz: BNorm) werden die Daten eines Batches bei Anwendung
der Layer so normiert, dass sie den Erwartungswert 0 und die Standardabweichung 1
aufweisen [43]. Die BNorm reduziert das soeben beschriebene Problem deutlich und
trdgt insgesamt zu einer Stabilisierung des Trainings bei [40, S. 357 f.].

Riickblickend lassen sich zunichst zwei wichtige sogenannte Hyperparameter® identifizie-
ren: die Lernrate € und die Grofe der Batches, die sogenannte Batch Size, B. Die Lernrate
wird zumeist anhand von Standardwerten aus der Literatur in der Grofienordnung
1 x 1073 fiir den AdamW-Optimierer gewahlt und basierend auf der Historie durchge-
fithrter Trainings angepasst. Gleiches gilt fiir die Batch Size, die einerseits durch eine
Vergroflerung die Trainingsdauer reduziert, jedoch andererseits durch eine Verkleinerung

bessere Trainingsergebnisse liefern kann [44].

3.3 BEURTEILUNG DES TRAININGS

Der vorausgehende Abschnitt beschreibt, wie das Training eines neuronalen Netzes
durchgefiihrt werden kann. Er ldsst jedoch die Frage offen, wie der Trainingsverlauf
beurteilt wird. Vor dem Training wird ein gegebener Trainingsdatensatz in zwei Teil-
datensitze, ohne gemeinsame Teilmenge, mit den Bezeichnungen Training Dataset und
Validation Dataset zufdllig aufgeteilt. Im Rahmen des in Codeabschnitt 3.1 durchgefiihrten
Trainings werden nur die Daten aus dem Training Dataset verwendet. Der mittlere Loss
aller Batches des Training Datasets wird als sogenannter Training Loss gespeichert. Nach
einer Epoche werden die Daten des Validation Datasets durch das Modell, vorwirts
(ohne Backpropagation und Optimierungsschritt), verarbeitet und der resultierende Loss
als sogenannter Validation Loss gespeichert. Er ist somit der Loss, den das trainierte
Modell auf Daten erreicht, die es nicht zum Training verwendet hat. Die graphische
Auswertung des Training und Validation Losses fiir alle Epochen eines durchgefiihrten
Trainings, die sogenannten Loss Curves, lassen Riickschliisse auf den Verlauf, aber auch
auf den Erfolg des Trainings zu. Abbildung 3.2 zeigt beispielhaft zwei verschiedene
Trainingsverldufe. Das Modell im linken Plot von Abbildung 3.2 erfdhrt das sogenannte
Overfitting. Wahrend das Modell verhiltnisméafiig gute Vorhersagen auf den (bekann-
ten) Daten des Training Datasets macht, verschlechtern sich die Vorhersagen auf den
(unbekannten) Daten des Validation Datasets. Anschaulich kann dieser Prozess mit der

Neben den trainierbaren Parametern 6, die Bestandteil der Architektur sind und wihrend des Trainings
angepasst werden, gibt es die sogenannten Hyperparameter, die zur Steuerung des Trainings oder zur
Erzeugung der Architektur verwendet werden [40, S. 133 £.].

31



32

GRUNDLAGEN DES DEEP LEARNINGS FUR DIE COMPUTERTOMOGRAPHIE

1.2 1
1.0 1 .

0.8 1 .

Loss

—e— Training Loss

0.4 1 ] Validation Loss

0.2

T T T T T T T T T T T T T T T T T T T T T T
1 23 45 6 7 8 91011 1 23 45 6 7 8 91011
Epoche Epoche

Abbildung 3.2: Training und Validation Loss eines Modells, das von Overfitting (links) und
Underfitting (rechts) betroffen ist. Beide Plots teilen sich die Legende sowie die
y-Achse.

folgenden Situation verglichen werden: Ein sehr fauler Mathematiklehrer stellt in seinen
wochentlichen Leistungstiberpriifungen stets dieselben Aufgaben. Es sollen immer die
ersten Ableitungen derselben drei Funktionen berechnet werden (Training Dataset). Der
effiziente Schiiler (das neuronale Netz) erkennt nach kurzer Zeit dieses Muster und lernt
nur die drei Ergebnisse auswendig und erzielt gute Noten (einen niedrigen Training
Loss). Bei Ankunft eines neuen Lehrers, der die Schiiler auffordert, andere Funktionen
(Validation Dataset) zu differenzieren, scheitern die Schiiler (Validation Loss), da sie in
den letzten Wochen nicht das Konzept der Differenzierung, sondern nur dieselben drei
Ergebnisse auswendig gelernt haben (Overfitting).

Anhand des Beispiels kann ebenfalls ein moglicher Ausweg aus dieser Situation identifi-
ziert werden: Der faule Lehrer hitte nicht nur drei Funktionen in seinen Tests, sondern
hunderte von Funktionen auflisten sollen. In diesem Fall ist es fiir den Schiiler aufgrund
seiner begrenzten Gehirnkapazitit (vergleiche Kapazitit als Gesamtheit der trainierbaren
Parameter 0) nicht moglich, die Ergebnisse alle auswendig zu lernen. Seine Kapazitat
ist allerdings ausreichend, um das Konzept der Differenzierung zu erlernen und so alle
Aufgaben dieser Art 16sen zu konnen. Neuronale Netze konnen durch das Training
basierend auf einem grofien Datenbestand mit einer entsprechenden Varianz nach dem
gleichen Schema gezwungen werden, Konzepte zu erlernen und nicht die Ergebnisse
der Trainingsdaten auswendig zu lernen. Somit sind (ausreichend) grofie Datensédtze ein
zentraler Aspekt bei der Entwicklung neuronaler Netze.

Abbildung 3.2 (rechts) zeigt den anderen Extremfall, der beim Training eines neuro-
nalen Netzes eintreten kann — das sogenannte Underfitting. In diesem Fall kann das
Modell weder die Ergebnisse auswendig lernen, noch das zugrunde liegende Konzept
erlernen. Dieses Verhalten kann in manchen Féllen auf eine zu niedrige Kapazitit zu-
riickgefiihrt werden. Hinzuzufiigen ist, dass Underfitting, unabhingig von der Kapazitat
einer Architektur, auch bei einer ungeeigneten Wahl einer Architektur beziiglich einer
Problemstellung beobachtet werden kann und somit das Lernen des zugrundeliegenden

Zusammenhangs nicht moglich ist.
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3.3.1 Weitere Verbesserungen des Trainings

Das haufig beobachtete Overfitting kann mithilfe unterschiedlicher Techniken reduziert
werden. Neben dem oben genannten Vergrofiern des Trainingsdatensatzes werden im
Rahmen dieser Arbeit drei weitere Techniken angewandyt, die sich im Laufe der Jahre als
Standardverfahren durchgesetzt haben:

1. Dropout: Durch zufélliges Deaktivieren einzelner Neuronen innerhalb einer Layer
durch eine sogenannte Dropout-Layer (kurz: Dropout) wahrend des Trainings wird
nach Srivastava et al. die sogenannte Co-Adaption reduziert [45]. Sie beschreibt die
Ausbildung von Abhingigkeiten zwischen mehreren Neuronen oder Layern — ver-
gleichbar mit dem Prozess des Auswendiglernens anstelle der Ausbildung robuster
und unabhéngiger Merkmale. Anschaulich kann sich das Netz bei Anwendung
des Dropouts nicht auf einzelne, hochgradig spezialisierte Neuronen verlassen,
da diese, bedingt durch die zuféllige Deaktivierung, nicht immer zur Verfiigung
stehen. Der relative Anteil der deaktivierten Neuronen durch eine Dropout-Layer
wird im Folgenden beispielhaft fiir den Wert 10 % durch die Notation Dropout®!
ausgedriickt.

2. Weight Decay: Der oben genannte Optimierer AdamW nutzt das sogenannte Weight
Decay, einen Mechanismus, der in seiner Grundidee die Werte der trainierbaren
Parameter 0 abhidngig von einem Zerfallsfaktor, dem namensgebenden Parameter
Weight Decay, reduziert [42]. Der Zerfallsfaktor betragt beispielsweise 0.99 und
wird multiplikativ auf alle trainierbaren Parameter § angewandt, sodass kleine
Werte einem geringen Zerfall unterliegen, wahrend grofie Werte deutlich angepasst
werden. Somit wird das neuronale Netz indirekt gezwungen, grofie Werte in 6 zu
vermeiden, die hdufig ein Symptom von Overfitting sind.

3. Learning Rate Scheduling: Bei der Verwendung des in Abschnitt 3.2 genannten
AdamW-Optimierers werden intern, neben der globalen Lernrate ¢, fiir jeden
trainierbaren Parameter adaptive Lernraten verwendet. Trotz dieser Eigenschaft
wurde von Loshchilov et al. gezeigt, dass die Variation der globalen Lernrate
€ abhangig von der aktuellen Epoche, das sogenannte Learning Rate Scheduling,
den Trainingserfolg mit dem AdamW-Optimierer begiinstigen kann [42]. Konkret
verwenden Loshchilov et al. das sogenannte Cosine Annealing Warm Restarts, das die
Lernrate tiber die erste halbe Periode der Cosinus-Funktion zwischen einem Start-
und Endwert abklingen ladsst (Cosine Annealing) und anschlieffend die Lernrate auf
den Startwert zuriicksetzt, um den gleichen Zyklus zu wiederholen (Warm Restarts)
[46, 42]. Abbildung 3.3 stellt einen moglichen Verlauf der Lernrate mit dem Cosine
Annealing Warm Restarts mit insgesamt vier Lernzyklen dar. Weiterhin kann
zu Beginn des Trainings die Lernrate einmalig, linear hochgefahren werden, das
sogenannte Warm-Up, sodass das Training mit einer insgesamt hoheren Lernrate
€ beschleunigt und stabilisiert wird [47, 48]. Das Warm-Up wird ebenfalls in
Abbildung 3.3 dargestellt.
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Abbildung 3.3: Beispielhafter Verlauf der Lernrate ¢ abhingig von der Epoche fiir das Cosine
Annealing Warm Restarts mit Warm-Up.

3.4 DEEP LEARNING FUR DIE BILDVERARBEITUNG

Fiir die Verarbeitung von (CT-Schicht-)Bildern ist das aus dem vorangehenden Abschnitt
bekannte MLP nicht gut geeignet, wie die folgende Ausfiihrung zeigt. Zundchst dndert
sich die Datenmodalitét: Bilder bestehen im Allgemeinen aus C (Farb-)Kandlen und
weisen die Dimensionen H, W auf. Somit haben die Inputs die Form (C, H, W).
Theoretisch konnte das MLP aus Abbildung 3.1 so angelegt werden, dasses C- H - W
Neuronen in der Input Layer besitzt. Fiir ein RGB-Bild der Form (C, H, W) = (3, 256,256)
werden demnach fast 200000 Neuronen in der Input Layer benotigt. Selbst wenn die
erste Hidden Layer nur aus zehn Neuronen besteht, gibt es in Summe bereits etwa zwei
Millionen trainierbare Parameter 6. Ohne explizite Berechnung wird klar, dass bereits
mit nur wenigen Hidden Layers und einer Output Layer die Kapazitét eines derartigen
neuronalen Netzes extrem grofd wird und es fiir praktische Anwendungen unbrauchbar
ist [49]. Einen Ausweg bietet eine Methode aus der klassischen Bildverarbeitung — die
Faltung mit Bildfiltern. In der klassischen Bildverarbeitung kann beispielsweise die
Kantenerkennung mit dem Sobel-Operator [50] explizit als Faltung eines Bildes mit einer
Faltungsmatrix ausgefiihrt werden. Dieses Konzept ldsst sich verallgemeinern, indem
die Eintrdge der Faltungsmatrizen (auch: Kernel) trainierbare Parameter sind und somit
die von der Faltung (englisch: Convolution) durchgefiihrte Operation fiir eine spezifische
Aufgabe trainiert werden kann. LeCun et al. zeigen fiir die Handschrifterkennung
einzelner Zeichen, dass neuronale Netze, basierend auf trainierbaren Convolutions,
sogenannte Convolutional Neural Networks (CNNs), den MLPs tiberlegen sind [49]. In
Kombination mit den Convolutions einer festen Kernelgrofie 3 x 3 verwendet LeCun
in seiner vorgestellen Architektur LeNet-5 sogenannte Pooling Layer, die die raumlichen
Dimensionen eines Bildes wahrend der Verarbeitung schrittweise verkleinern. Abbildung
3.4 zeigt einen Tensor der Form (1,4, 4), der durch Anwendung einer Pooling-Layer, dem
sogenannten Maxpool, auf die Form (1,2,2) reduziert wird. Fiir eine feste Grofe der
Kernel wird durch das Pooling das Sichtfeld der Convolutions, das auch rezeptives Feld
genannt wird, relativ zur Gesamtgrofie des Bildes vergrofert.
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Abbildung 3.4: Funktionsskizze einer Maxpool Layer zur Halbierung der raumlichen Bilddimen-
sionen durch Extraktion des Maximalwertes aus einem Fenster der Grofle 2 x 2.

Das Forschungsfeld der CNNs wurde in den folgenden Jahren um viele Architekturen
erweitert. Eine der am héufigsten verwendeten Architekturen fiir die Bildverarbeitung
ist das ResNet [51], das zusétzlich sogenannte Residual Connections oder Skip Connections,
verwendet. Die Hintergriinde dieser Skip Connections konnen in der Publikation von He
et al. nachvollzogen werden [51].

Fiir die in Kapitel 1 motivierte Materialbestimmung sollen sowohl die Kernladungszahl
als auch die Dichte pro Pixel, beziehungsweise im CT-Schichtbild pro Voxel, anhand
von DECT-Bilder vorhergesagt werden. Somit miissen die Eingaben (Low-Energy und
High-Energy) und Ausgaben (Kernladungszahl und Dichte) eines passenden neuronalen
Netzes Bildern der Form (C, H, W) = (2, H, W) entsprechen. Diese Form der Vorhersage
wird auch Dense Prediction genannt, da fiir jedes Pixel der Eingabe ein Pixel in der
Ausgabe berechnet wird. Eine der bekanntesten Architekturen fiir Dense Prediction
ist das U-Net, welches in Abschnitt 3.4.1 vorgestellt wird. CNNs, die viele Jahre die
Bildverarbeitung dominiert haben, werden zunehmend von sogenannten Transformern
ersetzt. Die konzeptionelle Idee hinter der Transformer-Architektur, und wie diese fiir

die Bildverarbeitung genutzt werden kann, wird in Abschnitt 3.4.2 beschrieben.

3.4.1 U-Net

Abbildung 3.5 stellt die Architektur des U-Nets anschaulich mit seiner namensgebenden,
U-féormigen Struktur dar. Nach Ronneberger et al. besteht das U-Net aus einem soge-
nannte Encoder und einem sogenannten Decoder. Der Encoder verarbeitet eine Eingabe,
ein Graustufenbild, der Form (1, H, W) durch die Anwendung von Convolutions und
Pooling in den sogenannten Latent Space, der wiederum die Form (1024, %, %) aufweist.
Dieser Prozess verlduft auf mehreren, sogenannten hierarchischen Ebenen, sodass hierarchi-
sche Feature-Maps* (C, H, W) mit den Dimensionen (64, H, W), (128, 4, %), (256, Z, W),
(512, %, g) und (1024, %, %) berechnet werden (vergleiche Abbildung 3.5). Die Anzahl
der Kanéle in der ersten Feature-Map (64, H, W) wird im Folgenden Feature-Map-Tiefe
genannt und ist der bestimmende Faktor fiir die Gesamtkapazitit der Architektur. An-

schliefiend dient der Latent Space als Startpunkt des Decoders, der, als Umkehrung

Der Begriff hierarchische Feature-Map bezeichnet hier konkret einen Tensor, der das letzte Element, das
Zwischenergebnis, einer hierarchischen Ebene in einem CNN bildet. In der U-Net-Architektur (verglei-
che Abbildung 3.5) werden die hierarchischen Feature-Maps des Encoders in den Decoder mittels Skip
Connections tibertragen.
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Abbildung 3.5: Architekturdiagramm des U-Net nach Ronneberger [36] mit den rdumlichen
Dimensionen (H, W) der Tensoren. Die Anzahl der Kanile wird iiber den Tensoren
angegeben.

zum Encoder, die rdumlichen Dimensionen schrittweise erhoht und die Feature-Maps
aus dem Encoder durch Skip Connections (vergleiche Skip Connection in Abschnitt 3.4)
mitverarbeitet (Copy+Concat). Zur Erh6hung der raumlichen Dimensionen, als imper-
fekter Umkehrprozess des Poolings, werden sogenannte Upconvolutions oder Transposed
Convolutions verwendet. Anschaulich ist die Transposed Convolution eine umgekehrte
Convolution, das heifst sie fiihrt die Erweiterung eines Pixels auf einen grofieren Bereich
aus. Die Skip Connections zwischen dem Encoder und dem Decoder helfen bei der
Wiederherstellung der raumlichen, positionsabhédngigen Informationen, die teilweise
durch das Pooling im Encoder verloren gegangen sind.

Ronneberger entwickelte das U-Net urspriinglich zur Segmentierung medizinischer Bild-
daten [36]. Zwischenzeitlich wurde das U-Net fiir unterschiedliche Anwendungsbereiche
und Lernprobleme angewendet: zur Segmentierung von Kamerabildern aus fahrenden
Autos [52], zur Erkennung von Gebduden [53] in Satellitenbildern, zur Klassifizierung
von Ackerland [54] in Satellitenbildern und zum Schitzen einer rdumlichen Tiefe in
Kamerabildern [55].

3.4.2 Swin Transformer

Urspriinglich entwickelt fiir das Natural Language Processing (NLP) [56], dringen soge-
nannte Transformer zunehmend in neue Anwendungsgebiete vor. Das Funktionsprinzip

von Transformern wird im Folgenden vereinfacht erklirt, sodass ein Grundverstandnis
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erlangt werden kann. An entsprechenden Stellen wird auf die Literatur verwiesen, sodass
bei Bedarf weitere Informationen eingesehen werden konnen.

Transformer basieren nicht auf Convolutions, sondern verwenden eine Kombination aus
der sogenannten Self-Attention und MLPs [56]. Anhand eines einfachen Beispiels kann
die Zielsetzung der Self-Attention illustriert werden: Gegeben sei der Satz

Moritz scannt sein Mittagessen

zusammen mit qualitativ bestimmten Self-Attention-Werten in Tabelle 3.1. Genaue De-
tails zur Berechnung der Self-Attention sind fiir ein konzeptionelles Verstiandnis der
Architektur nicht notwendig und kénnen ergdnzend bei Vaswani et al. eingesehen wer-
den [56]. Fiir jede mogliche Permutation der Wortpaare wird ein Self-Attention-Wert
berechnet, der bei der weiteren Verarbeitung ausgewéhlten Teilen des Satzes eine hohere
Relevanz zuordnet. Anschaulich ist das Wortpaar Moritz-sein fiir die Gesamtbedeutung
des Satzes wesentlich unwichtiger als das Wortpaar Moritz-scannt. Die Self-Attention

ist somit ein Maf3 fiir die Verkniipfung relevanter Teile der Eingabe. Es fallt zudem auf,

Tabelle 3.1: Exemplarische Self-Attention-Werte fiir den Satz ,Moritz scannt sein Mittagessen".
Die tabellierten Werte sind rein illustrativ und entstammen keiner realen Berechnung.

Moritz scannt sein Mittagessen

Moritz 0.10 030 0.20 0.40
scannt 0.20 0.10 = 0.40 0.30
sein 0.15 035 0.10 0.40
Mittagessen 0.25 025 025 0.25

dass die Matrix der Self-Attention-Werte nicht symmetrisch ist. Der phdnomenologische
Grund hierfiir besteht in der Tatsache, dass die Reihenfolge der einzelnen Worter relativ
zueinander fiir die Gesamtaussage des Satzes wichtig ist. Jedes Wort (jede Zeile der
Tabelle) berechnet die Self-Attention gepaart mit allen Wortern des Satzes (Spalten) in
der gegebenen Reihenfolge. Die Summe der Zeilen ist somit stets eins. Mathematisch
kann dieser Zusammenhang in den Gleichungen zur Self-Attention nach Vaswani et al.
nachvollzogen werden [56].

Das klassisch von CNNs dominierte Feld der Computer Vision wurde erstmalig durch
Dosovitskiy et al. fiir die sogenannten Vision Transformer (ViT) eroffnet [57]. Die zentrale
Idee ist, ein Bild in sogenannte Patches zu unterteilen, die als einzelne Worter eines Satzes
(dem gesamten Bild) interpretiert werden. Somit kann der oben genannte Mechanismus
zur Berechnung der Self-Attention nach Vaswani et al. auf die Patches angewandt werden.
Im Gegensatz zu CNNSs, deren rezeptives Feld durch die Grofle der Convolution-Kernel
definiert ist, kann der ViT durch die Berechnung der Self-Attention auf allen Patches (Bild-
bereichen) Informationen aus weit verstreuten Bildbereichen miteinander kombinieren.
Jedoch muss dieser offensichtliche Vorteil des ViTs durch das Training auf sehr grofien
Datensdtzen zundchst erlernt werden [57]. CNNs nutzen durch die Anwendung der
Convolution automatisch die Bildinformationen aus einem lokalen, meist semantisch zu-
sammenhdngenden Bereich, der hdufig wertvolle (Bild-)Informationen, wie zum Beispiel

Objektkanten, enthdlt. ViTs miissen diese Beziehung benachbarter Bildeigenschaften sehr
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aufwendig erlernen, worin einer der Griinde fiir den grofsen Bedarf an Trainingsdaten be-
steht. Eine hybride Losung bietet der sogenannte Swin Transformer nach Liu et al. [37, 38],
der die Patches in grofiere Gruppen, die sogenannten Windows, zusammenfasst und die
Self-Attention nur tiber die Patches innerhalb eines Windows berechnet. Abbildung 3.6
(links) zeigt die Aufteilung eines Bildes, bestehend aus den Patches, in Windows. Durch

I:l Patch

Window

Windows Shifted Windows

Abbildung 3.6: Positionierung der Windows und Shifted Windows zur Berechnung der Self-
Attention {iber benachbarte Patches im Bild in der Swin-Transformer-Architektur.
Die Abbildung entstammt in leicht verdnderter Form der Publikation von Liu et
al. [37].

diese Einschrankung des rezeptiven Feldes im Vergleich zum ViT, insbesondere wenn
rdumlich zusammenhingende Informationen an den Grenzen zwischen zwei Windows
liegen, ist es sinnvoll, neben den Windows auch sogenannte Shifted Windows zu verwen-
den, die um eine halbe Window-Breite verschoben positioniert sind und in Abbildung
3.6 (rechts) dargestellt werden. Nach Liu et al. steigt der Berechnungsaufwand der Self-
Attention beim Swin Transformer linear mit den Bildimensionen [37], wiahrend dieser
beim ViT quadratisch mit den Bilddimensionen anwichst [57]. Der Swin Transformer ist
somit besser auf grofde Bilder skalierbar. Zudem wird ein Bild beim Swin Transformer
in mehreren, hierarchischen Schichten verarbeitet, sodass hierarchische Feature-Maps,
analog zu CNNs, entstehen. Anstelle der klassischen, parameterfreien Pooling Layer
werden beim Swin Transformer trainierbare Layer wie beim MLP verwendet, um die
rdaumlichen Dimensionen der Tensoren (Feature-Maps) schrittweise zu halbieren [37].
Durch Liu et al. wurden die Swin-Transformer-Modelle Tiny (Swin-T), Small (Swin-S),
Base (Swin-B), Large (Swin-L), Huge (Swin-H) und Giant (Swin-G) vorgestellt, die sich
hauptsdchlich durch ihre, in der genannten Reihenfolge steigende, Kapazitit unterschei-
den [38]. Strukturell ist der Swin Transformer, aufgrund seiner hierarchischen Struktur,
mit der Grundidee des U-Nets [36], speziell dem Encoder, kompatibel [37, 36, 58]. Weitere
Details zur Umriistung des U-Nets auf eine Transformer-basierte Architektur [58] folgen
zusammen mit einer Gegeniiberstellung beider Architekturen in Kapitel 6.4.
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Dieses Kapitel basiert auf einer dieser Dissertationsschrift vorausgehenden Publikation
[22], die den aktuellen Stand der Forschung sowie den Wandel der Materialbestimmung
mit Deep Learning in CT-Daten in Form einer systematischen Literaturrecherche erfasst.
Die Ergebnisse der Literaturrecherche stammen demnach aus dem Monat Juli im Jahr
2024. Eine Aktualisierung der Suchergebnisse im Februar des Jahres 2025 konnte neue Pu-
blikationen identifizieren, die zwar die bereits gesammelten Erkenntnisse untermauern,
jedoch keine neuen Erkenntnisse hinzufiigen. Somit sind die im Folgenden vorgestellten
Ergebnisse weiterhin giiltig und konnen als verwandte Forschung in dieser Dissertations-
schrift genutzt werden.

Im Jahr 1976 legt Alvarez den Grundstein fiir die Materialzerlegung in CT-Schnittbildern
[13]. Er beschreibt den linearen Abschwachungskoeffizienten i, als Linearkombination
aus einem Term zur Beschreibung des Photoeffektes und einem Term zur Beschreibung
der Compton-Streuung mit den materialspezifischen Konstanten a; und a,

1
Y E) = o+ fnE) @)
—_—

Photocffekt Compton-Streuung

an einer Position (x,y, z) im Voxelgitter des rekonstruierten Volumens. Durch die Mes-
sung von yy, fiir mindestens zwei verschiedene Energien E kann die Gleichung nach a;
und a, aufgeldst werden. Alvarez tabelliert fiir die in seiner Publikation verwendeten CT-
Parameter die charakteristischen Werte von 4; und a; fiir Gehirngewebe und Fettgewebe.
Etwa 25 Jahre spéter publiziert Heismann eine Erweiterung des Ansatzes von Alvarez,
indem er eine Gleichung vorstellt, die jedem Voxel in einem DECT-Schichtbild eine Kern-
ladungszahl und eine Dichte zuordnet — die sogenannte Z-p-Zerlegung [14]. Ausgehend
von Gewichtungsfunktionen w, (E), die die Eigenschaften des Rontgenspektrums und
des Detektors abbilden, und tabellierten Massenschwachungskoeffizienten % aus der
Literatur, gilt nach Heismann [14]

F(Z) = ﬁg; - ;72 mit f, = /wn(E) (;) (E,Z)dE und ne{0,1}. (42
Zur Ermittlung der Kernladungszahl Z aus dieser Gleichung genitigt die numerische
Bestimmung der Inversen F~!. Nach Heismann wichst die Funktion F(Z), in dem von
ihm beschriebenen Energie- und Materialbereich, monoton, sodass die Bestimmung der
Inversen F~! durch Interpolation erfolgen kann [14].

Ein fundamentaler Unterschied zwischen den beiden vorgestellen Grundlagenarbeiten
von Alvarez und Heismann besteht darin, dass die Z-p-Zerlegung (nach Heismann)
effektive Kernladungszahlen und Dichten berechnet, wihrend die Basiszerlegung (nach
Alvarez) diskrete Anteile an den gewdhlten (Material-)Basisvektoren ermittelt. In der
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Basiszerlegung werden die Basisvektoren vorgegeben — zum Beispiel zwei Materialien
wie Aluminium und Eisen. Das Ergebnis gibt dann die Anteile der Basisvektoren an
einem bestimmten Voxel an — zum Beispiel 20% Aluminium und 80% Eisen. Mit dem
notigen Vorwissen ist die Basiszerlegung somit ein méachtiges Werkzeug, das auch auf
drei oder mehr Basisvektoren ausgeweitet werden kann, wie im spéteren Verlauf dieses
Kapitels gezeigt wird.

Bei der Z-p-Zerlegung werden effektive Werte, das heifst im Fall einer Mischung (oder
Legierung) Mittelwerte, ohne Vorwissen tiber die vorliegende Probe berechnet. Das
soeben genannte Beispiel einer Zusammensetzung aus 20% Aluminium und 80% Eisen

erscheint in der Z-p-Zerlegung nach der Gleichung von Heismann [14] als

1
73,0\ °
Zegi(AlgoFegs) = (Z’Z’ppl> ~ 254
1 1

und
et = 0.2 p(Al) + 0.8 - p(Fe) = 6.8g/cm®

Beide Methoden weisen somit Vor- und Nachteile auf und sind in der Literatur weit
verbreitet, wie in den folgenden Abschnitten deutlich wird.

41 METHODIK DER LITERATURRECHERCHE

Nach der Definition von vom Brocke muss eine systematische Literaturrecherche repro-
duzierbar und umfassend sein sowie einen Erkenntnisgewinn liefern [59]. Hierzu nennt
vom Brocke zwei verbreitete Suchmaschinen: Scopus und Web of Science [59]. Fiir diese
Arbeit wird die Suchmaschine Scopus von Elsevier verwendet, da sie nach Pranckute
eine breitere Abdeckung interdisziplindrer Themen, zu denen der Inhalt dieser Arbeit
ebenfalls z&hlt, im Vergleich zu Web of Science bietet [60]. Konkret erfolgt die Literaturre-
cherche anhand sogenannter Queries Q. Ein Query kann durch einfache Keywords oder
durch spezielle Operatoren erstellt werden. Fiir den unten genannten Query werden

insgesamt zwei Operatoren verwendet:

1. TITLE-ABS-KEY(<str>) filtert nach dem String str in den Titeln, Abstracts und
Keywords der Publikationen,

2. REF(<str>) filtert nach dem String str in den Quellenangaben der Publikationen.

Die Kombination mit einer Jahreszahl ist bei dem REF-Operator in der Form REF (Weiss
2024) ebenfalls moglich. Fiir die Suche nach materialauflosenden CT-Verfahren wird der
Query aus drei Bestandteilen zusammengesetzt:

1. TITLE-ABS-KEY(computed tomography OR ct)
2. TITLE-ABS-KEY (material)

3. TITLE-ABS-KEY(dual-energy OR multi-energy OR photon-counting).
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Die ersten beiden Bestandteile des Queries werden sofort durch das Thema dieser Dis-
sertationsschrift motiviert. Verfahren, die nicht auf mehreren Energiekandlen basieren,
werden durch den dritten Bestandteil des Queries bewusst ausgeschlossen, da, gemaf3
der Einfiihrung der Materialbestimmung in Kapitel 2, mehrere Energiekanile fiir die
Materialerkennung bendtigt werden [13, 14]. Die Anzahl der mit dem Query gefundenen
Publikationen wird in Abbildung 4.1 aufgeltst nach dem Publikationsjahr graphisch dar-
gestellt (blaue Linie). In der Gesamtheit kann ein steigender Trend der Publikationszahlen

250 A
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Q + REF(Alvarez 1976)
—— (@ + REF(Heismann 2003)

200
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Abbildung 4.1: Anzahl der Publikationen unter Verwendung des genannten Queries bei Scopus.
Mit den Zusatzfiltern REF(Alvarez 1976) und REF(Heismann 2003) werden Publi-
kationen gefiltert, die ebenjene Autoren zitieren [13, 14].

mit dem Query beobachtet werden (blaue Linie). Durch weitere Verfeinerung des Queries
nach Kl-basierten Verfahren (Q + KI), explizit aufgebaut aus artificial intelligence,
machine learning oder deep learning, ergibt sich die gelbe Linie in Abbildung 4.1.
Mit der Vorstellung des U-Nets [36] wird im Jahr 2015, wie im weiteren Verlauf dieses
Kapitels gezeigt wird, der Grundstein fiir die meisten DL-basierten Materialerkennungs-
verfahren nur wenige Jahre vor den ersten Publikationen zur Materialbestimmung mit
Deep Learning gelegt. Alternativ werden mit den REF-Operatoren die Publikationen
gefiltert, die die fundamentalen, klassischen Verfahren nach Alvarez [13] und Heismann
[14] zur Materialerkennung in den Quellenangaben referenzieren (rote Linien). Wahrend
vor dem Jahr 2018 klassische Materialbestimmungsverfahren das Feld dominieren, steigt
die Anzahl der Zitationen der klassischen Basismaterialzerlegung nach Alvarez an. Zu
beobachten ist weiterhin, dass seit Einfiihrung der KI-basierten Materialbestimmungs-
verfahren, die Anzahl der Zitationen von Alvarez stagniert. Es besteht, ohne weitere
Begriindung, die Vermutung, dass sich moderne, KI-basierte Verfahren weniger auf Wis-
sen iiber die klassische, physikbasierte Materialzerlegung beziehen, wihrend klassische
Verfahren auf derartiges Domdnenwissen angewiesen sind.

Zur Verbesserung der Vergleichbarkeit der verschiedenen Ansitze aus dieser Vielzahl

an Publikationen miissen weitere Kriterien erfiillt werden. Zundchst muss der Zugriff
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auf eine ausgewdihlte Publikation mindestens fiir akademische Einrichtungen moglich
sein, ohne einzelne Publikationen gezielt erwerben zu miissen. Viele publizierte Ansitze
basieren auf vorausgehenden Arbeiten, sodass versucht wird, Publikationen mit einem
neuartigen Ansatz oder mindestens einer signifikanten Weiterentwicklung eines bestehen-
den Ansatzes zu selektieren. Hierbei muss zwischen klassischen und datengetriebenen
Ansitzen differenziert werden. Klassische Ansétze basieren auf den Grundlagenarbeiten
von Alvarez [13] und Heismann [14]. Somit grenzen sich substantielle Weiterentwick-
lungen im Feld der klassischen Algorithmen beispielsweise durch die Erweiterung des
Ansatzes von Heismann auf den Energiebereich > 1 MeV unter zusétzlicher Beriicksich-
tigung der Paarbildung (vergleiche Kapitel 2.1) ab. Datengetriebene Verfahren miissen
entweder eine neue Modellarchitektur, Methodik der Trainingsdatenerzeugung oder
generell neuartige Trainingsstrategien vorstellen. Die Architekturen miissen anhand der
Beschreibung in der Publikation von versierten DL-Entwicklern nachvollziehbar und
reproduzierbar sein. Zudem existieren nur wenige offene Benchmarks zum quantitativen
Vergleich der Ansédtze untereinander, sodass der jeweils verwendete Datensatz im Best-
fall entweder mitpubliziert worden ist oder mithilfe einer Open-Source-Simulation und
einem bekannten Parametersatz nachgestellt werden kann. Einige Daten, insbesondere
aus dem klinischen Umfeld, unterliegen der Geheimhaltung, sodass in diesen Fallen
mindestens eine ausfiihrliche Beschreibung der Datenart und Datenzusammensetzung
vorliegen muss. Verschiedene Rontgenspektren und Detektortechnologien, EID und PCD,
stellen unterschiedliche Herausforderungen an die Materialbestimmung oder -zerlegung
und miissen erfasst werden. Daher miissen die Konfiguration der CT-Anlage, in Be-
zug auf die Rontgenstrahlungsquelle und den Detektor, sowie die Aufnahmeparameter
(Integrationszeit, Vergrofserung, Trajektorie) nachvollziehbar dokumentiert sein. Einige
der gefundenen Publikationen verwenden nur einen Energiekanal eines PCDs, sodass
abschlieffend manuell gepriift werden muss, ob die Ansitze auf mehreren Energiekanédlen
basieren. Zusammenfassend muss demnach eine Publikation die folgenden Filter erfiillen,

um in den Korpus aufgenommen zu werden:
1. Der Zugriff erfolgt tiber einen der grofSen Verlage;

2. Der vorgestellte Ansatz muss entweder neuartig oder eine signifikante Weiterent-
wicklung eines bestehenden Ansatzes in mindestens einem der folgenden Aspekte
sein:

2.1. Physikalische Modellierung des CT-Messprozesses (insbesondere bei klassi-
schen Algorithmen);

2.2. Aufbau der DL-Architektur, Methodik der Datenerzeugung oder Trainings-
strategie.

3. Der CT-Scan muss in Bezug auf die Scanparameter und die Anlagenkonfiguration

so beschrieben sein, dass er reproduziert werden kann.

4. Der vorgestellte Ansatz muss mindestens zwei Energiekanéle verwenden — eine
Grundvoraussetzung, die durch Alvarez [13] und Heismann [14] fiir die Material-

bestimmung vorgegeben wird.
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Anhand der soeben genannten Filter resultiert ein Korpus, bestehend aus 24 Publika-
tionen, wobei drei Publikationen industrielle CT-Anwendungsfille beschreiben. Dieses
starke Ungleichgewicht wird verbessert, indem die iCT conference proceedings seit dem
Jahr 2016 zusétzlich durchsucht werden. Durch die urspriingliche Suche wurden diese
Publikationen nicht erfasst, da sie nicht bei Scopus indiziert werden. Die iCT ist eine
der grofiten Konferenzen zur industriellen Computertomographie in Europa, sodass
relevante Fortschritte mit hoher Wahrscheinlichkeit in diesem Rahmen publiziert werden.
Aus den iCT conference proceedings konnten zwei Publikationen identifiziert werden, die
die oben genannten Filter erfiillen, sodass der Korpus final 26 Publikationen umfasst. Der
Korpus teilt sich in industrielle und klinische CT sowie in klassische Algorithmen und
datengetriebene Verfahren (KI) auf. Eine Ubersicht dieser Kategorien ist in Abbildung
4.2 dargestellt.

B Klassisch klinisch
B KI klinisch

I klassisch industriell
BN KT industriell

Abbildung 4.2: Kreisdiagramm zur anschaulichen Darstellung der Anteile klassischer und KI-
basierter Publikationen fiir die klinische und industrielle Materialbestimmung
und -zerlegung in CT-Bildern. Die Zahlenwerte in den Anteilen geben die absolute
Anzahl der Publikationen in der jeweiligen Kategorie an.

42 ANALYSE DES KORPUS

Eine Ubersicht der Publikationen im Korpus mit einer chronologischen Einordnung wird
in Abbildung 4.3 dargestellt. Relevante Entwicklungen aus dem Umfeld der CT und
des Deep Learnings sind chronologisch ergénzt. Bemerkenswert ist, dass Alvarez seinen
Ansatz zur Basismaterialzerlegung [13] bereits fiinf Jahre nach dem ersten CT-Scan, und
damit auch zeitlich vor dem Nobelpreis von Hounsfield, publiziert hat. Zudem gibt es
erst seit 2021 kommerzielle CT-Scanner, die im klinischen Umfeld PCDs verwenden,
obwohl der Grundstein fiir die Technologie mit dem Medipix2 Detektor im Jahr 2007
gelegt worden ist. Die grundlegenden Arbeiten zu modernen CV-Architekturen wurden
mit dem U-Net 2016 [36] und dem ViT 2019 [57] veroffentlicht.
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Gong 2021 AI
Abascal 2021 Al

. Kernladungszahl, Dichte (nach Heismann) ’ Cao 2022 Al
Li 2022 AL
i Nadkarni 2022 Al
. Basiszerlegung (nach Alvarez) Wang 2022 Al
Fang 2022 Al
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Abbildung 4.3: Zeitstrahl der Publikationen aus dem Korpus (oben) und relevanter Entwicklun-
gen aus der CT- und DL-Forschung (unten). DL-basierte Eintrdge werden durch
den roten Schriftzug Al markiert.

42.1 Beschleunigungsspannung und Detektortechnologie

Bei der Messung einer DECT konnen verschiedene Aufnahmestrategien verwendet wer-
den, wie in Abschnitt 2.6 beschrieben worden ist. Im Rahmen dieser Dissertationsschrift
wird zwischen integrierenden (EID) und zdhlenden (PCD) Detektoren unterschieden.
Zahlende Detektoren bieten den Vorteil, mehrere Energiekanile gleichzeitig zu messen,
wahrend integrierende Detektoren in der Regel mehrere Einzelscans mit verschiedenen
Quellparametern nacheinander aufzeichnen.! Abbildung 4.4 zeigt einen Uberblick der
verwendeten Quellspannungen und Detektortechnologien aus dem Korpus. Zunéachst
kann keine Einschrankung der klassischen oder datengetriebenen Materialbestimmung
anhand der Quellspannung, der Detektortechnologie oder der Anwendungsdoméne
identifiziert werden.

Es konnten fiinf Publikationen identifiziert werden, die klassische Materialbestimmung
auf PCD-Daten anwenden [61, 62, 16, 63, 64]. Roessl verwendet einen PCD mit acht
dquidistanten Bins zwischen 10 keV und 80 keV mit einer Beschleunigungsspannung von
90KkV [61]. Son nutzt eine Quellspannung von 125kV und teilt das Spektrum in zwei
Bins by, mit 20keV < b; < 60keV und 60keV < by, < 125keV [62]. Die niedrigsten Quell-
spannungen aus dem Korpus werden bei Wang und Firsching mit 50kV dokumentiert
[16, 64]. Besonders hervorzuheben ist der Medipix2 Detektor (PCD) aus der Arbeit von
Firsching, der 41 Energiekanile zwischen 7.3 keV und 53.3 keV auflost [64]. Jumanazarov
erprobt die Verwendung von zwei, sechs und fiinfzehn Energiekandlen, wobei sechs

Energiekandle die besten Ergebnisse liefern [63].

Zur Vereinfachung wird hier auf eine weitere Aufschliisselung der Messstrategie (Multi-Scan, Sandwich,
Potential Switching, Multi-Tube) bei EIDs, wie in Abschnitt 2.6 angedeutet, verzichtet.
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Abbildung 4.4: Verwendete Beschleunigungsspannungen der Publikationen aus dem Korpus.
Die Farbe kennzeichnet die Anwendungsdomane. Gestrichelte Balken stellen
illustrativ die Verwendung eines PCDs dar. Die Position des Strichmusters gibt
keine Auskunft tiber die Verteilung der Energiekandle des PCDs. Methoden,
die beide Detektortechnologien verwenden, sind mit durchgehenden Balken
beschriftet. DL-basierte Ansitze sind durch den Schriftzug Al am rechten Ende
des Balkens markiert.
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Weiterhin wurden sechs Publikationen gefunden, die PCD-Daten mit datengetriebenen
Ansitzen verarbeiten [65, 66, 67, 68, 69, 70]. Shi verwendet zwei Energiekandle [70], Shi
drei Energiekandle [69], Bussod vier Energiekanile [66], Abascal fiinf Energiekanile [65]
sowie Long und Guo zwolf Energiekandle [67, 68].

Heismann formuliert seinen klassischen Ansatz zur Z-p-Zerlegung mit einem EID fiir
einen DECT-Scan bestehend aus zwei Scans mit 80 kV und 140 kV Quellspannung. Xing
erweitert Heismanns Ansatz auf den Energiebereich bis 6 MV ebenfalls fiir integrierende
Detektoren [71].

Dariiber hinaus konnten sieben Publikationen gefunden werden, die datengetriebene
Methoden auf EID-basierte CT-Scans anwenden [11, 72, 73, 74, 75, 76, 77]. Drei der
Publikationen nutzen hybride Ansitze, die sowohl EID- als auch PCD-Daten prozes-
sieren [78, 79, 80]. Haufig fiihrt die Nutzung eines EIDs zu einer besseren Bildqualitat,
wiahrend die Strahlenexposition des Patienten (der Probe) stark erhoht ist. In der kli-
nischen Anwendung ist es daher wiinschenswert, effiziente PCDs zu verwenden, um
die Strahlenexposition zu senken, obwohl die Bildqualitdt vermindert ist. Ziel dieser
hybriden Ansétze ist, die PCD-Daten als Inputs und die EID-Daten als Ground Truths zu
nutzen, sodass die trainierten Modelle die Bildqualitdt der PCD-Daten verbessern [78, 80].

4.2.2 Materialien

Die Materialbestimmung oder -zerlegung ist fiir verschiedene Materialien aufgrund des
jeweils charakteristischen Abschwéchungskoeffizienten eine unterschiedlich komplizier-
te Aufgabe. Neben dem Auftreten von CT-Artefakten (vergleiche Kapitel 2.4.1) durch
stark abschwidchende Materialien spielt die Wahl einer geeigneten Basis fiir die Basis-
materialzerlegung eine zentrale Rolle. Daher ist eine Differenzierung der verwendeten
Materialien in den Publikationen des Korpus in Abhdngigkeit der verwendeten Methode,
klassisch oder datengetrieben, von grofiem Interesse. Zundchst werden die verwende-
ten Probenmaterialien aus den Publikationen des Korpus erfasst und nach der jeweils
verwendeten Methode kategorisiert. Abbildung 4.5 bietet einen graphischen Uberblick
der Materialien. Aufgrund des Ubergewichts der Publikationen aus dem klinischen An-
wendungsgebiet, sind grofitenteils klinisch-diagnostisch relevante Materialien vertreten.
Hierzu zédhlen in erster Linie Knochen (bone) und Wasser (water). Calcium (Ca) ist zum
Beispiel als Bestandteil von Hydroxylapatit in (menschlichen) Knochen und Zdhnen
zu finden. Aufgrund der geringen Dichte von Knochenmasse, ist sie auch fiir niedrige
Photonenenergien ab 50 keV zur Bildgebung ausreichend transparent. Weiterhin werden
Iod (I) und Gadolinium (Gd) aufgrund ihrer hohen Kernladungszahl und damit starken
Abschwichung von Réntgenstrahlung als Kontrastmittel in der klinischen CT verwendet.
Eine Beispielanwendung ist die Bildgebung von Blutgefidfien, die durch Injektion eines
Kontrastmittels im Rahmen einer CT erfolgen kann. Die charakteristische K-Kante in den
Absorptionsspektren von Iod bei Ej; = 33.17 keV und Gadolinium bei E;gq = 50.24 keV
kann ebenfalls zur Bildgebung verwendet werden [81].

Technisch relevante, industrielle Materialien wie Aluminium (Al), Eisen (Fe), Kupfer
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Abbildung 4.5: Graphische Darstellung der Materialien aus dem Korpus aufgeltst nach Kern-
ladungszahl und Dichte. Im Periodensystem benachbarte Elemente wurden zur
Erganzung hinzugefiigt und entsprechend gekennzeichnet (n.a.).

(Cu) und Blei (Pb) werden von Xing verwendet [71]. Aluminium kann aufgrund seiner
niedrigen Abschwédchung mit ebenfalls niedrigen Spannungen bis 140kV in makrosko-
pischen Proben identifiziert werden (vergleiche auch Heismann [14]). Zur Bildgebung
der stirker abschwédchenden Materialien verwendet Xing demnach Beschleunigungs-
spannungen bis 6 MV - die sogenannte LINAC-CT?. Fiir Aluminium, Eisen und Kupfer
konnte in einer dieser Thesis vorausgehenden Publikation gezeigt werden, dass die
Z-p-Zerlegung von LINAC-CT-Daten mit DL mdoglich ist [76]. Drei Materialien wurden
ausschliefilich in Publikationen mit klassischen Ansitzen gefunden: Magnesium, Silicium
und Blei [82, 71]. Aus technischer Sicht besteht kein Grund fiir den Ausschluss dieser
oder anderer fehlender Materialien von datengetriebenen Ansitzen. Gase werden auf-
grund ihrer grundsétzlich extrem niedrigen Abschwichung der Rontgenstrahlung in der

ausgewdhlten Literatur nicht betrachtet.

4.2.3 Klassische Ansiitze zur Materialbestimmung

Der Begriff klassische Ansiitze bezeichnet in dieser Dissertationsschrift materialauflosende

Algorithmen in CT-Bildern, die von Domédnenexperten basierend auf physikalischen

2 Klassische Rontgenstrahlungsquellen funktionieren nach dem in Abbildung 2.5 dargestellten Prinzip: Freie
Elektronen werden durch ein elektrisches Feld direkt zu einer Anode beschleunigt und wechselwirken
mit ebendieser. Fiir extrem hohe Beschleunigungsspannungen ist dieses Prinzip nicht anwendbar. Freie
Elektronen werden vorbeschleunigt und in Paketen durch Hohlraumresonatoren geleitet. Innerhalb der
Hohlraumresonatoren konnen extrem hohe elektrische Feldstarken realisiert werden, sodass die Elektro-
nen kinetische Energien im Bereich vieler Megaelektronenvolt erreichen kénnen. Dieser Aufbau wird
Linearbeschleuniger (englisch: linear accelerator; kurz: LINAC) genannt.
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Erkenntnissen entwickelt werden. Konkret basieren diese Ansitze auf der Physik der
Abschwachung von Rontgenstrahlung durch Materie — hauptsdchlich durch den photo-
elektrischen Effekt und die Compton-Streuung (vergleiche Abbildung 2.4) wie Alvarez
und Heismann zeigen [13, 14]. Erweiternde, klassische Methoden werden in diesem
Abschnitt vorgestellt. Firsching zeigt im Jahr 2009, dass die Materialzerlegung nach
Alvarez auf zidhlende Detektoren (PCD) ausgeweitet und mithilfe praziser Vermessung
der Detektorantwort, des Quellspektrums und einer Monte-Carlo-basierten Simulation
verbessert werden kann [64]. Zudem fasst er die Basismaterialzerlegung nach Alvarez
anschaulich fiir mehrdeutige Materialkombinationen aus mathematischer Perspektive
zusammen: Bei der Wahl der Basismaterialien wird idealerweise eine linear unabhéngige
Basis bereitgestellt [64]. Die lineare Unabhéngigkeit ab dem dritten Basisvektor wird
durch Unstetigkeiten der linearen Abschwachungskoeffizienten — den K-Kanten — erzeugt
[64], wihrend die ersten beiden Basisvektoren trivial unabhingig sind, weil sie auf dem
Photoeffekt und der Compton-Streuung fufien. Da die K-Kanten der meisten klinisch
relevanten Materialien sehr niedrig liegen und da am Detektor keine Photonen aus diesen
Energiebereichen nachweisbar sind, konnen schwere Elemente mit hoheren K-Kanten
der Basis einen weiteren linear unabhéngigen Basisvektor hinzufiigen [64].

Roessl verwendet eine linear unabhéngige Basis, bestehend aus dem Abschwachungs-
anteil des photoelektrischen Effektes und Gadolinium, um lokale Gadoliniumkonzen-
trationen zu messen [61]. Durch die Messung der Gadoliniumkonzentrationen kénnen
verstopfte Blutgefdfie, zum Beispiel durch Kalkablagerungen, gefunden werden [61].

In der industriellen Anwendung nutzt Jumanazarov die Basismaterialzerlegung fiir leich-
te Elemente mit Kernladungszahlen 6 < Z < 15.

Aufbauend auf der von Heismann publizierten Z-p-Zerlegung [14] und der stochiometri-
schen Kalibration von CT-Daten nach Schneider [83], entwickelt Son eine verbesserte Me-
thode zur Materialbestimmung fiir verschiedene Gewebetypen basierend auf PCD-Daten
[62]. Xing erweitert Heismanns Ansatz fiir die LINAC-CT durch die Berticksichtigung
der Paarbildung bei hohen Photonenenergien [71].

Zusammenfassend ldsst sich festhalten, dass klassische Algorithmen stark von der Model-
lierung der zugrundeliegenden Physik abhédngig sind. Bei der Basismaterialzerlegung ist
die Wahl einer anwendungsspezifischen Basis entscheidend. Fiir ein System, bestehend
aus drei Materialien, werden im Bestfall drei linear unabhingige Basisvektoren gewéhlt,
sodass die Zerlegung eindeutig ist. Haufig ist diese Auswahl stark eingeschrankt oder

nicht moglich.

4.2.4 Datengetriebene Ansiitze

Im Kontext dieser Dissertationsschrift fungiert der folgende Abschnitt als Grundlage fiir
die Ausrichtung der Forschung, die aufbauend auf der bestehenden Literatur erfolgt. Es

werden die verwendeten Datensitze sowie die implementierten Architekturen erldutert.
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Datensiitze

Einige Autoren nutzen das XCAT-Phantom [84, 85] zur Erzeugung der Trainingsdaten.
Hierbei handelt es sich um eine Simulationssoftware, die ein anatomisch detailliertes Ab-
bild des menschlichen Korpers erstellt und in Form eines Voxelvolumens exportiert [85].
Die voxelbasierten Phantome konnen in giangige CT-Simulationsprogramme eingeladen
und weiterverarbeitet werden.

Mit dieser Methode erzeugt Shi zwolf Phantome, von denen jeweils 140 Schichtbilder
extrahiert werden [69]. Insgesamt nutzen drei Autoren das XCAT-Phantom bei der Si-
mulation der Trainingsdaten fiir klinische Materialbestimmung [69, 70, 80]. Fang ersetzt
die klinischen Materialien im XCAT-Phantom durch industriell genutzte Materialien
(zum Beispiel Eisen, Magnesium und Teflon) und erzeugt so Trainingsdaten fiir einen
industriellen Anwendungsfall [11].

Das FORBILD-Phantom [86] dhnelt konzeptionell dem XCAT-Phantom und wird von
Cao zur Phantomerzeugung mit Gewebe, Wasser und Kontrastmittel verwendet [75]. Zu
beachten ist, dass beide Programme (XCAT und FORBILD) nur zur Erzeugung eines
Phantoms und nicht zur Simulation der CT dienen.

Eine alternative Strategie zur Sammlung der benétigten Trainingsdaten besteht in der
Annotation bestehender, realer CT-Daten. Die Annotation ist ein zeitintensiver und teurer
Prozess, der durch manuelle Annotationsfehler an Genauigkeit einbiifsen kann. Der grofs-
te Vorteil dieser Methode besteht darin, dass die Trainingsdaten der realen Verteilung,
den Messdaten aus einer realen CT-Anlage, entstammen und so keine Sim-To-Real-Gap
auftritt. Vier Autoren verwenden manuell annotierte Trainingsdaten [72, 73, 67, 68].
Insbesondere bei der Annotation klinischer CT-Daten vereinfacht das Domédnenwissen
von Experten den Annotationsprozess und die damit verbundene Genauigkeit deutlich.
Bussod verwendet die Synchrotron—CT3, um die Annotation der reguldren, polychromati-
schen CT-Bilder vorzunehmen [66].

Sidky veroffentlicht einen Trainingsdatensatz [87], bestehend aus DECT-Bildern als In-
puts und drei Materialkanélen als Ground Truths.* Die simulierten DECT-Bilder zeigen
unter anderem Verkalkungen, die gefunden werden sollen. Durch eine niedrige Winkelab-
deckung der simulierten CT-Trajektorie sind die Bilder von starken Artefakten {iberlagert.
Neben den Testdaten umfasst der Trainingsdatensatz effektiv 1000 DECT-Schichtbilder
[87], sodass das Training parameterstarker Architekturen erschwert wird.

Krebbers nutzt energiedispersive Rontgenspektroskopie (auch bekannt als EDX) zur
Annotation gegebener Graphitproben [77]. Grundsitzlich ist EDX eine Analysemethode,
die besonders fiir Oberflachen geeignet ist, sodass die Methode von Krebbers nur auf

sehr flachen Proben anwendbar ist.’

Zur Erzeugung der Rontgenstrahlung wird ein Synchrotron verwendet. Aufgrund des extrem hohen
Photonenflusses kann die polychromatische Rontgenstrahlung mithilfe eines Monochromators auf ein
schmales Energieband gefiltert werden, sodass nahezu monoenergetische Photonen zur CT verwendet
werden konnen. In diesem Fall kann die in Abschnitt 2.6, insbesondere Abbildung 2.14, beschriebene
Methode trivial zur Materialbestimmung angewandt werden.

Methodisch ist fiir diese Problemstellung die Basismaterialzerlegung zu wéhlen.

Bei dem Beschuss einer Probe mit einem Elektronenstrahl werden aufgrund der Eindringtiefe der Elektronen
vorzugsweise oberflachennahe, aber auch tiefer liegende Atome angeregt. Bei der Relaxation geben die
Atome Photonen einer charakteristischen Energie ab, sodass anhand dieser Photonen ein Element identifiziert
werden kann. Emittierte Photonen aus tieferen Lagen der Probe verlassen jedoch nur selten die Probe, da
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In einer dieser Arbeit vorausgehenden Publikation wird ein Verfahren zur Erzeugung
zufidlliger Phantome, bestehend aus einer Vielzahl einzelner Regionen mit variablen
Formen, veroffentlicht [76]. Durch die hohe Varianz der so erzeugten Phantome, wird
die Generalisierungsfahigkeit eines trainierten Modells gefordert, da keine festen Muster

existieren, die auswendig gelernt werden konnen.

Architekturen

Abgesehen von leichten Modifikationen, zum Beispiel der notwendigen Anpassung der
Featurezahl der Input und Output Layer zur Verarbeitung von DECT-Bildern, nutzen
viele Autoren das Vanilla U-Net® nach Ronneberger [36]. Ein Uberblick tiber die ver-
wendeten Architekturen und die Trainingsdatensétze ist in Tabelle 4.1 dargetellt. Cao
nutzt das Vanilla U-Net zur Vervollstindigung fehlender Projektionsdaten in einem
sogenannten Sparse-Angle-CT [75] — einem CT-Scan mit niedriger Winkelabdeckung, das
heifdt mit zu wenigen Projektionen. Dartiber hinaus werden drei weitere Vanilla U-Nets
verwendet, um die Trainingsdaten mit verschiedenen Kontrastmittelkonzentrationen zu
verarbeiten [75]. Li nutzt ein Vanilla U-Net zur Basismaterialzerlegung von Wasser und
Iod anhand von CT-Schichtbildern [73]. Die gleiche Zerlegung wird von Shi anhand von
Projektionen mit einem Vanilla U-Net durchgefiihrt [70]. Beide Autoren nutzen mehrere
MLPs, um die Predictions der U-Nets im Kontext der Inputs auf physikalische Konsistenz
zu tberpriifen [73, 70].

Fang, Abascal und Bussod nutzen flachere Versionen des U-Nets mit einer reduzierten
Tiefe (Anzahl der Pooling beziehungsweise Upconv Layer) und Breite (Anzahl der Featu-
res nach Convolutions) [11, 65, 66]. Nadkarni verwendet ebenfalls eine flachere Version
des U-Nets, um dreidimensionale Volumen verarbeiten zu konnen [78]. Aufgrund der
zusétzlichen rdumlichen Dimension steigt die bendtigte Rechenzeit signifikant an.
Neben diesen Vereinfachungen des urspriinglichen U-Nets versuchen einige Autoren,
Verbesserungen an der Architektur zu implementieren. Shi verwendet variable Kernel-
grofien (3 x 3, 5 x5, 7 x 7) im Encoder zusammen mit einer sogenannten Local and
Non-Local Feature Aggregation, die zur verbesserten Erfassung lokaler Bildeigenschaften
iiber die verschiedenen Grofienskalen im Encoder beitragen soll [69]. Es wird quantitativ
gezeigt, dass die entwickelte Architektur im Vergleich zum Vanilla U-Net auf simulierten
XCAT-Phantom-Daten die Materialzerlegung verbessert [69]. In einer dieser Thesis vor-
ausgehenden Publikation wird gezeigt, dass der Encoder des U-Nets durch einen Swin
Transformer [38] ersetzt werden kann [76].

Die bisher vorgestellten Ansétze fithren die Berechnungen in einer festen Datendoma-
ne, Projektionen oder Volumen, durch. Su stellt eine Architektur namens DIRECT-NET
vor, die Projektionen direkt in rekonstruierte Volumen in Form einer Basismaterialzer-
legung umrechnet [74]. Der vorgestellte Ansatz ist zweistufig [74]. Zunédchst werden
aus DECT-Sinogrammen acht neue Sinogramme mit einem leicht modifizierten U-Net

berechnet. Diese acht Sinogramme werden mit einem CT-Rekonstruktionsoperator in

sie aufgrund ihrer niedrigen Energie sofort wieder innerhalb der Probe wechselwirken. Somit stammt der
Grofsteil des Signals, das beim EDX gemessen wird, aus oberflichennahen Schichten.

Der Begriff Vanilla bezieht sich im Kontext von Deep Learning auf die Originalversion einer Architektur
ohne Modifikationen.
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acht Schichtbilder umgerechnet. Ein weiteres U-Net fasst die acht Schichtbilder zu zwei
Basismaterialbildern zusammen. Das Alleinstellungsmerkmal dieses Ansatzes ist, dass
der Rekonstruktionsoperator Teil der Architektur ist [74]. Er muss differenzierbar sein,
um das sogenannte End-to-End Training der gesamten Architektur zu ermoglichen. Mit
dieser Methode konnen CT-Artefakte, die wiahrend der Rekonstruktion entstehen, effektiv
unterdriickt werden. Nach Maier wird die Integration bekannter Operatoren, insbesonde-
re der CT-Rekonstruktion, in grofiere Architekturen als Precision Learning bezeichnet [88].
Gong verwendet ein CNN mit sogenannten Inception Blocks, um weiches Gewebe, Kno-
chen und Iod zu erkennen [79]. Das trainierte Modell wird mit dem Vanilla U-Net
verglichen und liefert bessere Ergebnisse [79].

Drei Autoren nutzen sogenannte Generative Adversarial Networks (GANs), die urspriing-
lich fiir das Lernen von Verteilungen vorgestellt worden sind [89]. GANs werden aus
einem Generator und einem Discriminator aufgebaut. Der Generator erzeugt Outputs, die
sogenannten Candidates, die zur Verteilung der Trainingsdaten passen sollen. Anhand des
Outputs entscheidet der Discriminator, ob der gegebene Candidate real oder artificial ist,
also ob er direkt aus dem Trainingsdatensatz stammt oder ob er vom Generator kiinstlich
innerhalb der gelernten Verteilung erzeugt worden ist [89]. Generator und Discrimina-
tor agieren als Gegenspieler (adversarial) und werden gemeinsam trainiert, sodass der
Generator zunehmend bessere, das heifit der Verteilung der Trainingsdaten dhnlichere,
kiinstliche Outputs erschafft, wahrend der Discriminator zunehmend besser zwischen
den realen Trainingsdaten und den kiinstlichen Outputs des Generators unterscheiden
kann. Das Funktionsprinzip von GANs wird auch fiir Transfer Learning verwendet [90].
Wang verwendet ein GAN mit einem modifizierten U-Net als Generator [72]. Nach dem
Encoder im U-Net wird ein Transformer-Modul, bestehend aus einer Self-Attention-Layer
und einem MLP, auf den Latent Space angewandt [72]. Zwei Discriminatoren entscheiden
anhand der generierten Wasser- und Iod-Bilder (Basismaterialzerlegung), ob die Bilder
real oder artificial sind. Der Loss der gesamten Architektur wird durch

L=1L+ ll—'adversarial + Lvee

definiert, wobei IL; der Generator-Loss, IL,qversarial der Discriminator-Loss und LLygg der
sogenannte Perceptual Loss nach Johnson [91] ist. Guo verwendet ein Vanilla U-Net als
Generator und ein CNN als Discriminator, der Inputs (DECT-Bilder) und Predictions
(Materialkarten) als Entscheidungsgrundlage verwendet, sodass die Predictions zusatz-
lich im Kontext der Inputs auf Konsistenz gepriift werden [68]. Geng nutzt eine dhnliche
Architektur zur Segmentierung einer metallischen Nadel in Rontgenprojektionsbildern
[80].

Im vorherigen Abschnitt zu den verwendeten Datensdtzen wurde ein von Sidky pu-
blizierter Datensatz [87] genannt, welcher im Rahmen der AAPM deep-learning spectral
CT Grand Challenge — einem Wettbewerb zur Materialzerlegung — erstellt worden ist.
Sidky fasst die besten zehn Modelle dieser Challenge in seiner Publikation zusammen
[87]. Im Rahmen dieser Literaturrecherche werden die Platzierungen 1, 3 und 4 erfasst.

Der zweitplatzierte Ansatz basiert auf einem klassischen Verfahren, das eine akkurate
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CT-Simulation voraussetzt und iterativ eine optimale Losung erprobt.” Die Gewinner
der Challenge, Team GM_CNU, verwenden einen zweistufigen Ansatz. Mithilfe einer
iterativen Rekonstruktion® werden Volumen rekonstruiert, die anschlieBend durch ein
CNN (genauer: RED-CNN [92]; eine Variation des U-Nets) in Basismaterialbilder zerlegt
werden [87]. Diese Basismaterialbilder werden mit einer CT-Simulation riickprojiziert
und ergeben zusammen mit den urspriinglichen Inputs sogenannte Residual Images — Dif-
ferenzbilder, die zusammen mit den Basismaterialbildern in ein weiteres CNN gegeben
werden, um die Basismaterialbilder weiter zu verbessern. Insgesamt ist dieser Ansatz
sehr vergleichbar mit der bereits vorgestellten Methoden nach Liu [73].

Den dritten Platz belegt Team MIR mit vier U-Nets, die jeweils Teilaufgaben der Zerlegung
erfiillen [87]. Das erste U-Net berechnet die Summe der Basismaterialien aus den DECT-
Bildern. Das zweite U-Net erstellt eine bindre Segmentierungsmaske zur Detektion der
Verkalkungen. Das dritte U-Net erstellt die gesuchten Calcium- und Fettmaterialkarten.
Das vierte U-Net verfeinert die Materialkarten.

Den vierten Platz belegt Team WashUDEAM mit einer Basismaterialzerlegung in alle mog-
lichen Kombinationen der drei Basismaterialien paarweise, das heifst AB, AC, BC sowie
die drei zugehdrigen Permutationen, in insgesamt sechs verschiedene Materialbasen [87].
Ein U-Net verrechnet die sechs Materialbasen in die gesuchten drei Materialkarten.
Zusammenfassend nutzt die absolute Mehrheit der Autoren das U-Net mit teilweise
kleinen Anpassungen sowohl im klinischen als auch im industriellen Umfeld (vergleiche
Tabelle 4.1). Es konnten einige Hybrid-Architekturen identifiziert werden, die dennoch in
ihrer Kernidee ein U-Net benutzen und durch weitere Mechanismen, beispielsweise die
Konsistenzpriifung zwischen Inputs und Outputs mit einem Discriminator, ergdnzen.
Weiterhin spielen Transformer-basierte Architekturen derzeit eine zu vernachladssigende
Rolle, obwohl ihr Beitrag zum Fortschritt anderer Bereiche der Computer Vision unbe-
streitbar ist. Diese Beobachtung konnte durch die Aktualisierung der Literaturrecherche

im Februar 2025 erneut bestétigt werden.

Beobachtungen zur Rechenzeit und Hardware

DL-basierte Modelle bendtigen einen gewissen Rechenzeitaufwand, der im Rahmen des
Trainings aufgebracht werden muss. Abhédngig von der Komplexitdt der Architektur
und des zu lernenden Problems, variieren die Anforderungen an die Hardware. Die
meisten Autoren aus dem Korpus machen keine Angaben zur verwendeten Hardware.
Es ist anzunehmen, dass die meisten Architekturen, die auf U-Nets basieren, mit einer
hinreichend effizienten Implementierung auf einzelnen, modernen Graphikkarten trai-
niert werden konnen. Somit sind derartige Architekturen fiir die allermeisten Entwickler
verfiigbar und ebenfalls effizient in praktischen Anwendungen nutzbar. Abascal fiihrt
das Training auf einer Nvidia GTX 1080Ti [65] durch und Shi nutzt eine Nvidia RTX 2080
[70] — beide Graphikkarten entstammen dem Gaming-Portfolio von Nvidia, benotigen

In grober Auslegung kann das Verfahren zu Machine Learning gezédhlt werden. Grofie Teile der Methode
basieren auf physikalischer Modellierung und unterscheiden sich in ihrer Komplexitit deutlich von den
anderen Verfahren.

Durch die Verwendung einer iterativen Rekonstruktion werden die CT-Artefakte, teils bedingt durch die
Sparse-Angle CT des gegebenen Datensatzes, reduziert.
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keine speziellen Systemanforderungen und sind fiir Konsumenten frei erhiltlich. In einer
dieser Thesis vorausgehenden Publikation wird ein Transformer-basiertes U-Net mithilfe
eines Nvidia DGX-A100-Systems trainiert [76].

Derzeit ist unklar, ob die Mehrheit der Autoren das U-Net verwendet, weil es die besten
Ergebnisse liefert oder weil parameterstarkere Architekturen die verfiigbaren Rechenres-
sourcen tiberlasten wiirden. Hinzu kommt, dass die Datenbeschaffung, insbesondere
realer CT-Daten, ein zeitaufwandiger und daher teurer Prozess ist, sodass dateneffiziente
Architekturen weiterhin im Vorteil sind. Die zunehmende Leistungsfahigkeit, und die
damit verbundene breite Verfiigbarkeit der Hardware wird in den kommenden Jah-
ren zeigen, ob sich das U-Net gegen neuartige Architekturen, zum Beispiel gegen den
Transformer, langfristig durchsetzen kann.
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Tabelle 4.1: Uberblick iiber die Architekturen und Datensétze der datengetriebenen Ansitze aus dem Korpus. Die Publikationen von Nadkarni [78] und Krebbers
[77] machen keine Angaben zur Grofie des Datensatzes.

Autor Architektur Datensatzart Datensatzgrofie Datendomine
Long 2019 [67] FC-PRNet Scan ~200 Volumenschnitt
Shi 2019 [70] U-Net Simulation 140 Projektion
Bussod 2021 [66] U-Net Scan (Synchrotron) 450 K Projektion
Gong 2020 [79] U-Net + InceptNet Scan 110 K Volumenschnitt
Geng 2021 [80] PMS-GAN Simulation + Scan 124 + 124 Projektion
Abascal 2021 [65] U-Net Simulation 5400 Volumenschnitt + Projektion
Su 2022 [74] U-Net Simulation 10 K Volumenschnitt + Projektion
Fang 2022 [11] U-Net Simulation 300 Volumenschnitt
Nadkarni 2022 [78] U-Net Scan - Volumenschnitt
Wang 2022 [72] GAN Scan 8159 Volumenschnitt
Li 2023 [73] U-Net + MLP Scan 7218 Volumenschnitt
Cao 2022 [75] CNN Simulation ~12 K Volumenschnitt
Guo 2023 [68] GAN + U-Net Scan 1K Volumenschnitt
Shi 2024 [69] U-Net Simulation 35K Volumenschnitt
Krebbers 2023 [77] sensor3D Scan + XRD - Volumenschnitt
Weiss 2024 [76] U-Net Simulation 64 K Volumenschnitt
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4.3 ERKENNTNISGEWINN AUS DER LITERATUR

Die Ergebnisse der Literaturrecherche werden im Folgenden zusammengefasst. Als Basis
fiir die aufbauende Forschung in dieser Dissertationsschrift wird auf die Erzeugung, oder

Sammlung, der Trainingsdaten sowie die DL-Architekturen ein besonderer Fokus gelegt.

43.1 Erzeugung der Trainingsdaten

Datengetriebene Ansdtze bendtigen einen Datensatz, um die zugrundeliegenden Zu-
sammenhinge selbststindig aus den Daten zu erlernen. Die Herkunft dieser Datensitze
kann entweder eine Simulation oder eine Serie realer CT-Scans sein. Es wurden vier
Publikationen gefunden, die das XCAT-Phantom [84, 85] verwenden, um (digitale) Phan-
tome fiir eine anschliefende CT-Simulation zu erzeugen [69, 70, 80, 11]. Fang ersetzt die
Materialien des XCAT-Phantoms, um das Phantom fiir einen industriellen Anwendungs-
fall mit den Materialien Eisen, Magnesium und Teflon zu nutzen [11]. Einige Autoren
nutzen reale Scandaten und annotieren die CT-Bilder hiandisch. Diese Methode bietet den
Vorteil, dass die Verteilung der Trainingsdaten sehr genau ebenjener Verteilung entspricht,
fir die das trainierte Modell spéater ausgefiihrt werden soll. Teilweise werden andere
Messmethoden, beispielsweise Synchrotron-CT [66], verwendet, um die Annotation vor-
zunehmen. Aus dem klinischen Umfeld stellt Sidky einen offenen, simulierten Datensatz
zur Materialzerlegung und gezielten Suche von Calcium in Brust-DECT-Bildern bereit.

Grundsatzlich sind weder offene Datensédtze zur Materialbestimmung noch performante
Simulationsprogramme aus dem industriellen Umfeld im Korpus gefunden worden, die
zur Erzeugung von Trainingsdaten liickenlos geeignet sind. Eins der Forschungsziele die-
ser Arbeit ist daher, eine schnelle und modulare Methode zur Trainingsdatenerzeugung
fiir die Materialbestimmung anhand von industriellen CT-Schichtbildern zu finden, oder

bei Bedarf zu entwickeln, sowie die verwendeten Trainingsdaten zu verdffentlichen.

4.3.2 Architekturen

Eine Zusammenfassung der verwendeten Architekturen ist in Tabelle 4.1 angegeben. Die
absolute Mehrheit der Autoren verwendet entweder das Vanilla U-Net oder eine stark
an das U-Net angelehnte Architektur mit kleinen, teils dufserst effektiven Anpassungen
[69, 70, 66, 65, 74, 11, 78]. In einer dieser Dissertationsschrift vorausgehenden Publikation
wurde gezeigt, dass, bei der Materialbestimmung in LINAC-CT-Bildern, der Encoder
des U-Nets durch einen Swin Transformer [38] ersetzt werden kann. Einige Autoren
verwenden GANSs, um mithilfe des Discriminators die Konsistenz zwischen den Inputs
(DECT-Bilder) und den Predictions (Materialvorhersage) zu tiberpriifen [80, 68, 72]. Die
in Abschnitt 4.1 geduflerte Vermutung, datengetriebene Ansitze basierten zunehmend
weniger auf der Verwendung des Doménenwissens klassischer Materialzerlegung, kann
somit nicht bestétigt werden. Vielmehr machen die Autoren des Korpus deutlich, dass
sie Domédnenexperten der Computertomographie sind und dass sie Deep Learning als
praktisches Werkzeug zur weiteren Verbesserung ihrer Methodik nutzen.

55



56

VERWANDTE FORSCHUNG

Aufgrund mangelnder Angaben in den Publikationen des Korpus kann nicht abschlie-
8end ermittelt werden, ob die Verwendung des U-Nets erfolgt, da es die besten Ergebnisse
liefert oder weil parameterstarkere Architekturen mit den verfiigbaren Ressourcen nur
eingeschrankt verfiligbar sind. Somit besteht ein Forschungsbeitrag dieser Arbeit in
der Implementierung und dem quantitativen Vergleich Convolution- und Transformer-
basierter Architekturen fiir die Materialbestimmung in CT-Bildern.
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Ziel dieses Kapitels ist die Definition und Umsetzung einer simulationsbasierten Me-
thode, um Trainingsdaten fiir die DL-basierte Materialbestimmung zu erzeugen. Die
Vorteile einer Simulation bei der Erzeugung grofler Datenmengen gegentiber einer realen
Messserie, bezogen auf die DL-basierte Materialbestimmung, wurden bereits in Kapitel
1.1 angefiihrt und dienten zur Formulierung der ersten Forschungsfrage, die im Rahmen
diese Kapitels beantwortet werden soll. Zunéchst erfolgt eine Anforderungsanalyse in
Abschnitt 5.1, die sowohl die CT-spezifischen Aspekte der benétigten Simulation als auch
die durch die Wahl eines DL-basierten Ansatzes induzierten Randbedingungen beleuch-
tet. Einige existierende Simulationsprogramme werden in Abschnitt 5.2 knapp vorgestellt
und im Kontext der Anforderungsanalyse eingeordnet. Aufgrund einer unzureichenden
Abdeckung der Anforderungen aus Abschnitt 5.1 durch die existierenden Simulationen
aus Abschnitt 5.2 muss eine neue Simulation entwickelt werden, die in Abschnitt 5.3
beschrieben wird. AbschliefSend erfolgt die Evaluation der spezifizierten Anforderungen
aus Abschnitt 5.1 an die implementierte Simulation in Abschnitt 5.4.

51 ANFORDERUNGSANALYSE: CT-SIMULATION

Die funktionalen Anforderungen an eine CT-Simulation, die zur Erzeugung der Trai-
ningsdaten fiir die DL-basierte Materialbestimmung eingesetzt werden kann, lassen
sich in zwei Kategorien unterteilen: die CT-spezifischen Anforderungen und die DL-
spezifischen Anforderungen. Fiir den erfolgreichen Transfer eines trainierten DL-Modells
auf eine konkrete Anwendung an einer realen CT-Anlage muss die Verteilung der Trai-
ningsdaten moglichst genau mit der Verteilung der Messdaten der realen CT-Anlage
ubereinstimmen. Somit miissen die relevanten Einflussfaktoren, die die Messdaten an
der realen CT-Anlage charakterisieren, in der Simulation physikalisch korrekt abgebildet
werden. Die Identifikation dieser CT-spezifischen Einflussfaktoren erfolgt in Abschnitt
5.1.1.

Wie in Kapitel 3 beschrieben, ist Deep Learning ein flexibles und damit an viele Fragestel-
lungen anpassbares Werkzeug, sofern (a) die Qualitdt der Trainingsdaten hoch ist und
(b) diese in ausreichender Menge zur Verfiigung stehen. Die Qualitit der Trainingsdaten
muss in zweierlei Hinsicht, bezogen auf die Fragestellung dieser Arbeit, gewahrleistet
sein: Erstens muss die Simulation den physikalischen Messprozess der CT gut modellie-
ren. Dies wurde im Rahmen der CT-spezifischen Anforderungen bereits erfasst. Zweitens
muss der Trainingsdatensatz eine grofie Vielfalt unterschiedlicher CT-Bilder umfassen,
sodass das Modell im Training moglichst viele unterschiedliche Formen der virtuellen
Priifteile (auch: Phantome) und Materialien erlernen kann (Abschnitt 5.1.2). Die absolut

benotigte Menge der Trainingsdaten (b) hiangt stark von der Komplexitit, oder auch Ka-
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pazitit, der gewihlten Architektur ab, welche sich wiederum aus der Komplexitit des zu
lernenden Problems ableitet. Im Rahmen dieser Anforderungsanalyse soll eine sinnvolle
Grofsenordnung fiir die Menge der benétigten Trainingsdaten begriindet abgeschatzt
werden (vergleiche DL-spezifische Anforderung in Abschnitt 5.1.2).

Abschlieffend werden einige nicht-funktionale Anforderungen in Abschnitt 5.1.3 disku-
tiert.

5.1.1 CT-spezifische Anforderungen

Wie in Kapitel 2 beschrieben, fungiert die CT als ortsaufgelostes Messinstrument fiir
lineare Abschwichungskoeffizienten i, der Rontgenstrahlung. Demnach wird zunéchst
ein Simulationsmodul zur Berechnung des erzeugten Rontgenstrahlungsspektrums beno-
tigt. Die in Abschnitt 2.2 eingefiihrten Rontgenquellen, beziehungsweise die von ihnen
emittierten Spektren, werden typischerweise durch eine Beschleunigungsspannung sowie
das Material und durch die Mafse einer Anode parametrisiert. Haufig werden (Vor-)Filter
(vergleiche Kapitel 2.4.1; Abbildung 2.11), auch in Form von Strahlfenstern (vergleiche
Abbildung 2.5), ebenfalls bei der Simulation der Quelle berticksichtigt. Mithilfe dieser
Angaben kann das emittierte Spektrum, das heifst der Photonenfluss pro Energie- und
Winkelbereich, berechnet werden.

Im néchsten Schritt wird der durch die Probe transmittierte Anteil des Quellspektrums
ermittelt. Hierzu werden die Schnittlangen x durch jedes in der Probe vorliegende Ma-
terial ermittelt und durch Anwendung des LAMBERT-BEER-Gesetzes aus Gleichung 1.1
mit dem gegebenen Quellspektrum in Intensitdten umgerechnet. Der lineare Abschwa-
chungskoeffizient yy,, (E) fiir das gegebene Material m kann der Literatur entnommen
werden [93].

Die durch die Probe transmittierte Rontgenstrahlung trifft auf den Detektor und wird,
analog zur Probe, erneut abgeschwécht. Durch erneute Anwendung des LAMBERT-BEER-
Gesetzes aus Gleichung 1.1 folgt die Anzahl der Photonen, die im Szintillator des
Detektors eine Wechselwirkung verursachen und damit ein Signal erzeugen (vergleiche
Abschnitt 2.3). Wie in Kapitel 2.3 beschrieben, fiihrt die zeitliche Integration iiber das
Spektrum der wechselwirkenden Photonen im Szintillator zu einer deponierten Energie,
die im Idealfall proportional zum Detektorsignal, den Counts eines EIDs, ist. Momentan
stehen PCDs nicht im Fokus der Anwendung, sodass sie nicht bertiicksichtigt werden.
Der Messprozess ist somit in dieser abstrahierten Darstellung in drei Schritte aufteilbar:
die Simulation des Quellspektrums, die Abschwédchung durch die Probe sowie die Ab-
schwichung und Integration (Signalentstehung) im Detektor.

Anhand der Definition des linearen Abschwéchungskoeffizienten in Gleichung 2.3 kann
gefolgert werden, dass die Dichte fiir ein bestimmtes Material proportional zum li-
nearen Abschwachungskoeffizienten ist. Somit kann der Toleranzbereich des linearen
Abschwichungskoeffizienten direkt aus der geforderten Prézision fiir die Dichtevorhersa-
ge bestimmt werden. Aus Gesprachen mit CT-Anwendern ergibt sich der Toleranzbereich
+1% fiir die Berechnung der Dichte, der proportional zu ﬁ auch fiir den linearen
Abschwichungskoeffizienten angenommen werden kann (vergleiche Fehlerfortpflanzung
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erster Ordnung von Gleichung 2.3). Eine weitere Anforderung besteht in der Berticksich-
tigung poroser Materialien, die fiir viele (chemische) Anwendungen von hoher Relevanz
sind. Durch die Porositat wird die Kontaktoberfliche vergrofiert, sodass gewisse chemi-
sche Prozesse effizienter ablaufen. Daher ist nicht nur die Bestimmung des eigentlichen
Materials, sondern ebenso die Bestimmung der absoluten Dichte (in g/ cm?®) fiir poro-
se Materialien wichtig. Die simulierten Proben miissen daher durch variable, relative
Dichten 7, beispielsweise p(AI*°”) = 0.8 - 2.7 g /cm?, charakterisiert werden konnen.

5.1.2 Deep-Learning-spezifische Anforderungen

Die erste Anforderung besteht in der Wahl eines Datenformats, das gleichermaflen fiir die
Problemstellung der Materialbestimmung sowie fiir die Verarbeitung durch DL geeignet
ist. Wie in Kapitel 2.4 beschrieben, liegen die Ausgabedaten eines CT-Scans in Form von
Volumen, beziehungsweise einer Serie von zweidimensionalen Schnittbildern durch das
rekonstruierte Volumen, vor. Aufgrund ihrer Entwicklungsgeschichte sind die meisten
DL-Architekturen aus dem CV-Bereich fiir die Verarbeitung zweidimensionaler Bilder
optimiert. Ebenso ergibt die Literaturrecherche in Kapitel 4, dass lediglich ein Autor
dreidimensionale Volumen als direkte Eingabe fiir ein neuronales Netz verwendet. Der
Hauptgrund hierfiir liegt vermutlich in dem extremen Anstieg der bendtigten Rechenzeit
beim Training der Modelle auf dreidimensionalen Daten. Somit wird im Folgenden der
zweidimensionale Grenzfall der CT, die sogenannte Fiicherstrahl-CT (vergleiche Abschnitt
2.4.1; Fiicherstrahl-Geometrie), modelliert. Sie entspricht der Mittelschicht eines rekonstru-
ierten Volumens. Die Algorithmik wird dem Ablauf eines CT-Scans nachempfunden:
Aus den zweidimensionalen Phantomen werden Sitze eindimensionaler Projektionen
fiir jede Energie des DECT berechnet, die wiederum in Volumen mit zwei Kanélen (Low-
Energy und High-Energy) und zwei rdumlichen Dimensionen (DECT-Schichtbilder),
rekonstruiert werden. Die Phantome werden als Materialkarten, raumlich aufgeldst nach
Kernladungszahl und Dichte, ausgedriickt, sodass sie als Ground Truths der durchge-
fiihrten Materialbestimmung anhand der DECT-Schichtbilder (Inputs) eingesetzt werden
konnen. Sowohl die DECT-Schichtbilder als auch die Materialkarten haben demnach zwei
Kanéle C und zwei rdumliche Dimensionen (durch die Verwendung der Facherstrahl-CT)
H, W. Das Ergebnis eines Durchlaufs dieser Datenerzeugung ist ein sogenanntes Tupel be-
stehend aus den DECT-Schichtbildern (Inputs) und den Materialkarten (Ground Truths).
Die Zusammensetzung der Trainingsdaten sollte idealerweise keinen sogenannten Bi-
as! wihrend des Trainings induzieren. Beispielsweise besteht die Moglichkeit, dass ein
Modell, das exklusiv auf runden Phantomen trainiert worden ist, bei der Verarbeitung
eckiger Phantome falsche Vorhersagen produziert. Gleiches kann fiir die Materialzu-
sammensetzung der Phantome gelten: Ein Modell, das nur auf leichten Elementen wie
Aluminium oder Magnesium trainiert worden ist, wird Kupfer héchstwahrscheinlich
nicht korrekt bestimmen konnen. Somit muss die Zusammensetzung der Trainings-

daten anwendungsspezifisch steuerbar sein. Da in dieser Arbeit vorrangig moderne,

Gemeint ist nicht der Bias b, der bei der Einfiihrung neuronaler Netze in Kapitel 3 genannt wurde, sondern
eine grundsatzliche Voreingenommenheit des Modells aufgrund der Zusammensetzung der Trainingsdaten.
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parameterstarke Architekturen untersucht werden sollen, besteht das Risiko, dass die
gewdhlte Grofie des Trainingsdatensatzes zu klein ausfillt, insbesondere wenn diese
Wahl auf Basis der Literaturrecherche erfolgt in der die absolute Mehrheit der Autoren
verhdltnismaflig dateneffiziente Architekturen verwendet. Moderne Architekturen fiir
CV-Anwendungen werden in der Regel auf Datensdtzen mit mehreren Millionen Bildern
vortrainiert [37, 38, 94], sodass die Moglichkeit bestehen muss, einen simulierten Trai-
ningsdatensatz mit einigen Millionen Tupeln mindestens exemplarisch zu berechnen.
Idealerweise ist die Implementierung so effizient, dass auch Rechner mit einzelnen Gra-
phikkarten in weniger als 24 Stunden Datensétze der bendtigten Grofie erzeugen konnen.
Konkret wird im Rahmen dieser Dissertationsschrift die Partition WestAI am Forschungs-
zentrum Jiilich verwendet, die einer Rechenzeitbeschrankung von maximal 24 Stunden
pro Job unterliegt. Wie in der vorausgehenden Literaturrecherche in Kapitel 4 aufgezeigt
wurde, schwanken die von den Autoren verwendeten Trainingsdatenmengen zwischen
wenigen hundert Tupeln [70, 67] bis hin zu 450.000 Tupeln [66]. Es ist zu beachten, dass
der auffillig grofie Datensatz mit 450.000 Tupeln auf Projektionen basiert, wahrend in
dieser Arbeit ein Verfahren auf Basis der CT-Schichtbilder entwickelt wird. Aus Tabelle
4.1 kann entnommen werden, dass Gong et al. den grofiten Datensatz im Korpus mit
110.000 Tupeln verwenden, der die Materialbestimmung basierend auf CT-Schnittbildern
durchfiihrt. Fiir das Training vergleichbarer Architekturen wird demnach abgeschétzt,
dass eine Datensatzgrofie von 250.000 (250K) CT-Schnittbildern ausreichend ist. Hieraus
ergibt sich fiir einen Eintrag, bestehend aus einem DECT-Schichtbild mit zwei Kani-
len und zwei Materialphantomen (Kernladungszahl und Dichte), die Gesamtgrofie des
Datensatzes

~66GB mitH =W =128
V =250000-2-2-H-W-4Byte = ¢ ~262GB mitH = W = 256
~1049GB mitH = W =512

tir die Bilddimensionen H und W sowie das Datenformat float32 mit 4 Bytes. Die
Wahl der Bilddimensionen anhand von Zweierpotenzen bietet den Vorteil, dass die
Speicherzugriffe bei den Rechenoperationen effizienter sind, da die Speicherblocke
ebenfalls anhand von Zweierpotenzen angeordnet sind. Zusatzlich werden die raum-
lichen Bilddimensionen H, W durch das in Kapitel 3.4 eingefiihrte Pooling bei der
Verarbeitung mehrfach halbiert, sodass auch hier H und W moglichst oft durch zwei
teilbar sein sollten. In Anbetracht des benétigten Speicherplatzes, insbesondere bei
Datensdtzen mit bis zu einer Million Tupeln, wird die Bildgrofle fiir die Ausgabe der
Simulation im Folgenden auf 256 x 256 festgelegt. Die Folgen dieser Wahl werden an
den entsprechenden Stellen in den weiteren Kapiteln anwendungsbezogen diskutiert.
Theoretisch konnen die Materialkarten der Kernladungszahlen im uint8-Format abgespei-

chert werden, um Speicherplatz auf Kosten der Verarbeitungsgeschwindigkeit zu sparen.?

Durch das Speichern der Daten in einem anderen Datenformat miissen die Daten bei jedem Ladevorgang,
das heifit in jeder Epoche des Trainings, konvertiert werden. Die Reduktion des benétigten Speicherplatzes
durch das Speichern der Kernladungszahlen im uint8-Format betragt etwa 19 %.
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5.1.3 Nicht-funktionale Anforderungen

Neben den funktionalen Anforderungen aus den vorangehenden Abschnitten konnen
einzelne, nicht-funktionale Anforderungen identifiziert werden. Zunichst muss die
Simulation zur Vereinfachung der Reproduzierbarkeit auf quelloffener Software basieren.
Sie soll zudem mithilfe einzelner, lesbarer Konfigurationsdateien, bevorzugt im J[SON-
Format, parametrisierbar sein, um eine einfache Reproduzierbarkeit der Ergebnisse zu
erreichen. Gekoppelt an die Anforderung beziiglich der Grofle des zu simulierenden
Datensatzes und der daraus folgenden Anforderung an den Berechnungsaufwand soll
die Simulation Cluster-fihig sein, das heifst in erster Instanz mit dem Betriebssystem
Linux kompatibel und einfach skalierbar sein.

5.1.4  Uberblick iiber die Anforderungen

Angelehnt an die Durchfiihrung eines realen CT-Scans, bestehend aus der Auswahl
einer zu scannenden Probe, der Projektion der Probe mithilfe von Rontgenstrahlung
sowie der abschliefienden Rekonstruktion, kann der Ablauf der benétigten Simulation zur
Erzeugung der Trainingsdaten im Rahmen dieser Arbeit abgeleitet werden. Abbildung 5.1
stellt diesen Ablauf dar, wobei die Auswahl der (virtuellen) Probe durch den sogenannten
Phantomgenerator randomisiert erfolgt.

Phantomgenerator

Phantom

Materialkarten
DECT-Schichtbild

Dual-Energy Sinogramm Dual-Energy Volumen

Abbildung 5.1: Ablaufdiagramm der vorgestellten Methode zur Erzeugung der Trainingsdaten.
Der Phantomgenerator erzeugt zuféllige Phantome, die durch den Projektor und
die Rekonstruktion in DECT-Schichtbilder umgerechnet werden. Die Phantome
werden in Form von Materialkarten, das heifit raumlich aufgeldst nach Kernla-
dungszahl und Dichte, dargestellt. Im oben rechts gezeigten Phantom ist eine
leere Region mit J beschriftet. Porose Materialien werden durch den hochgestell-
ten, relativen Volumenanteil angezeigt: A189% stellt pordses Aluminium mit einer
mittleren Dichte von p = 0.8 - 2.7 g/cm3 =2.16 g/cm3 dar.
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5.2 EXISTIERENDE CT-SIMULATIONEN

Anhand der soeben beschriebenen Anforderungen werden einige bestehende Simulati-
onsprogramme hinsichtlich ihrer Eignung fiir die Trainingsdatenerzeugung im Rahmen
dieser Arbeit bewertet. Grundsatzlich lassen sich CT-Simulationen in zwei Kategorien
einteilen: Monte-Carlo-basierte Simulationen und Raytracing-basierte Simulationen [95].
Monte-Carlo-basierte CT-Simulationen modellieren den physikalischen Prozess auf Teil-
chenebene — die Wechselwirkung der einzelnen Photonen mit Materie. Sie erreichen somit
die praziseste Modellierung einer realen CT-Anlage und sind den anderen Verfahren in
diesem Aspekt weit tiberlegen. Anhand des Photonenflusses durch den Detektor einer
realen CT-Anlage (typischerweise > 1 x 10® s~1) kann beispielhaft iiberschlagen werden,
dass Monte-Carlo-basierte CT-Simulationen fiir die Berechnung einer einzelnen Projekti-
on viele Minuten bis hin zu mehreren Tagen benétigen [96, 97]. Die Monte-Carlo-basierte
Simulation einer groflen Sammlung unterschiedlicher CT-Scans, jeweils bestehend aus
tausenden von Projektionen, ist praktisch nicht durchfiihrbar und demnach zur Trai-
ningsdatenerzeugung im Rahmen dieser Arbeit nicht geeignet.
Raytracing-basierte-Verfahren gehen nach einer anderen Methodik vor: Die emittierte
Rontgenstrahlung wird in Form einzelner Strahlen zwischen der Rontgenquelle und
jedem Pixel des Detektors modelliert. Schematisch, jedoch in einem anderen Kontext,
ist diese Modellierung in Abbildung 2.1 bereits dargestellt worden. Jeder Strahl wird
durch ein Photonenspektrum, das heifit durch Photonenzahlen abhéngig von ihrer Ener-
gie I(E), charakterisiert. Aus der Schnittlinge mit der Probe kann durch Anwendung
des LAMBERT-BEER-Gesetzes aus Gleichung 1.1 das Photonenspektrum nach Durchgang
durch die Probe ermittelt werden. Somit wird pro Strahl (pro Detektorpixel) einmal die
Schnittlinge und einmal das LAMBERT-BEER-Gesetz berechnet, um das transmittierte Pho-
tonenspektrum zu erhalten. Die konkreten Verfahren zur Berechnung der Schnittlaingen
werden im Rahmen dieser Arbeit nicht weiter ausgefiihrt. Eine beispielhafte Methode
kann bei Vidal et al. eingesehen werden [95].

Die Raytracing-basierten Verfahren, speziell fiir die industrielle CT-Modellierung, unter-
liegen einer erheblichen Einschrankung: die modellierten Strahlen sind gerade. Wie in
Kapitel 2.1 beschrieben, steigt der Anteil der Compton-Streuung an der totalen Wech-
selwirkungswahrscheinlichkeit mit der Energie im CT-relevanten Energiebereich an
(vergleiche Abbildung 2.4). Die raumliche (Zer-)Streuung des Photonenstrahls® wird
mit einem Raytracing-basierten Ansatz nicht korrekt abgebildet, obschon die absolute
Abschwichung durch die Compton-Streuung mit der Auswertung des LAMBERT-BEER-
Gesetzes korrekt erfasst wird. Im Folgenden werden ausgewdhlte, Raytracing-basierte
Simulationsprogramme kurz vorgestellt und hinsichtlich ihrer Eignung fiir die Trainings-
datenerzeugung anhand der in Abschnitt 5.1 aufgestellten Anforderungen bewertet. Die
Griinde fiir die Auswahl der vorgestellten Programme werden in den jeweiligen Abschnit-

Die Winkelverteilung des Photons nach dem Compton-Streuprozess folgt der Gesetzméafsigkeit nach Klein-
Nishina [3, S. 50 f.] und ist daher fiir steigende Photonenenergien zunehmend nach vorne, das heifit in die
urspriingliche Ausbreitungsrichtung des Photons, gerichtet. Bei steigender Photonenenergie steigt somit
auch das Detektorsignal, da es zu einer Summation mit den gestreuten Photonen kommt.
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ten dargelegt. Ein grundsatzlicher Orientierungspunkt besteht stets durch Gesprache mit
anderen CT-Entwicklern.

5.2.1 aRTist

Im Rahmen des offentlich geférderten Forschungsprojektes CTSimU, das sich mit der
Messunsicherheitsbestimmung realer CT-Anlagen anhand von Simulationen befasst, wird
die Simulation aRTist hdufig referenziert [98, 99]. Das Konsortium des Forschungsprojek-
tes besteht sowohl aus Universititen als auch aus Vertretern der Industrie, sodass der
genannten Simulation aRTist ein gewisser Stellenwert zuzuschreiben ist. aRTist wird von
der Bundesanstalt fiir Materialforschung und -priifung entwickelt und liegt aktuell in der
Version 2.12.6 vor [24]. Eine der grofien Starken von aRTist besteht in der umfassenden
Sammlung an ergdnzenden Paketen, die zum Beispiel die Simulation verschiedener Ront-
genquellen oder verschiedener Detektormodelle ermoglicht. Im Kern verwendet aRTist
einen Raytracing-basierten STL-Projektor, der die Schnittlingen der virtuellen Proben
basierend auf STL-Modellen* berechnet. Im zweiten Schritt werden die Schnittlingen
unter Bertiicksichtigung des Rontgenspektrums, des Materials des Priifkorpers und des
Detektormodells in Intensitéten, typischerweise in J/m?, umgerechnet. Hauptséchlich
wird hierzu das LAMBERT-BEER-Gesetz aus Gleichung 1.1 ausgefiihrt. Zusitzlich besteht
die Moglichkeit, eine Monte-Carlo-basierte Berechnung der Projektionen mit reduzierter
Auflésung durchzufiihren, sodass realistische Wechselwirkungs- und Streuprozesse, bei-
spielsweise die angesprochene Compton-Streuung, in der Simulation abgeschétzt werden
konnen.

Trotz dieser vielversprechenden Funktionen hat aRTist zwei signifikante Nachteile. Ers-
tens wird fiir den Betrieb der Simulation eine graphische Benutzeroberflache benétigt,
die zur Einrichtung und qualitativen Bewertung der Simulation zunéchst praktisch
erscheint, allerdings die Parallelisierung mehrerer Instanzen ineffizient gestaltet. Zur
Berechnung grofSer Trainingsdatensétze entsteht durch die graphische Benutzeroberfla-
che ein Nachteil, da die simulierten Proben nicht einzeln betrachtet werden miissen
und so die Rechenleistung ineffizient verbraucht wird. aRTist benétigt etwa 1.9 min zur
Berechnung von 2000 Projektionen eines Zeilendetektors mit 2000 Pixeln und demnach
bereits fast 660 Tage, um diese Berechnung fiir 250.000 unterschiedliche Phantome und
zwei Energiekanidle durchzufiihren. Wie in Abschnitt 5.1.2 beschrieben, muss die Si-
mulation innerhalb eines sinnvollen Zeitrahmens einen angemessen dimensionierten
Trainingsdatensatz erzeugen konnen, sodass aRTist fiir diesen Zweck ausscheidet. In
den folgenden Kapiteln wird aRTist teilweise verwendet, um simulierte Phantome unter
Einbezug einer realistischen Rontgenstrahlungsquelle, der realistischen Interaktion der
Strahlung mit der Probe und einer realistischen Nachbildung des Detektors zu erzeugen,
um quantitative Aussagen zu treffen. Somit wird die Starke von aRTist, die realistische
Simulation der CT, zur Validierung der im Folgenden erzielten Ergebnisse genutzt. Der
zweite, jedoch nicht entscheidende, Nachteil von aRTist besteht in der Begrenzung auf

4 Ein Dateiformat zur Darstellung von Oberflichen im dreidimensionalen Raum basierend auf Dreiecken
[100].
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das Betriebssystem Windows, sodass der Betrieb auf Grofirechnern, die typischerweise
ein Betriebssystem auf der Basis von Linux verwenden, erschwert wird. Zudem muss
aRTist erworben werden und ist nicht quelloffen, sodass die eigenstandige Erweiterung

der Funktionen nicht moglich ist.

522 gVXR

Eine vielversprechende Alternative zu dem soeben vorgestellten Programm aRTist besteht
in gVXR, das quelloffen ist und kostenlos fiir die Forschung eingesetzt werden kann [101].
gVXR vereint in Summe die gleichen Funktionalitdten, mit Ausnahme der Monte-Carlo-
basierten Berechnungen, und nutzt hierfiir teilweise andere, ebenfalls quelloffene Pakete.
So stammen die simulierten Quellspektren von SpekPy[102] und die tabellierten Abschwé-
chungskoeffizienten von xraylib [103]. Analog zu aRTist werden die Phantome in gVXR als
STL-Modelle eingeladen, die Schnittlangen bestimmt sowie das LAMBERT-BEER-Gesetz aus
Gleichung 1.1 angewandt. Im Gegensatz zu aRTist werden die Schnittlingenberechung
sowie die Anwendung des LAMBERT-BEER-Gesetzes auf der Graphikkarte ausgefiihrt, so-
dass die Berechnungsgeschwindigkeit deutlich zunimmt. gVXR ist plattformunabhéngig
und kann mit der Programmiersprache Python angesteuert werden. Die Verwendung
einer graphischen Benutzeroberfldche ist optional.

5.2.3 Diskussion der Anforderungen

Anhand der in Abschnitt 5.1 formulierten Anforderungen, werden die beiden vorgestell-
ten Simulationen hinsichtlich ihrer Eignung zur Trainingsdatenerzeugung im Rahmen
dieser Arbeit bewertet. Im Kontext von Abbildung 5.1 werden die einzelnen Kernfunk-
tionalitidten abgearbeitet. Keins der vorgestellten Programme bietet die Moglichkeit der
zufélligen Erzeugung von Phantomen (Phantomgenerator). In der Literaturrecherche (Ka-
pitel 4.2.4) wurde eine Publikation identifiziert, die das XCAT-Phantom verwendet, um
Trainingsdaten fiir die Materialbestimmung in der industriellen CT zu generieren [11].
Da das XCAT-Phantom fiir klinische Anwendungen entwickelt wurde [84], ist seine
Morphologie an den menschlichen Korper angelehnt, sodass der Transfer auf industrielle
Priifteile potentiell aufgrund der abweichenden Morphologie erschwert wird.

Beide Programme aus Abschnitt 5.2 ermoglichen die Berechnung der Rontgenprojektio-
nen (Projektor), sofern das Phantom als STL-Modell vorliegt. Die Materialkarten miissen
als Voxelgitter vorliegen, damit diese mit den rekonstruierten CT-Volumen rdaumlich
registriert sind (vergleiche Anforderungsanalyse Abschnitt 5.1). Somit bietet es sich an,
die Erzeugung der Phantome ebenfalls in einem Voxelgitter auszufiihren, sodass bei der
Umrechnung in ein STL-Modell keine Verschiebungen und damit Registrierungsfehler
auftreten konnen. Demnach scheiden sowohl aRTist als auch gVXR fiir den Projektor
aus. Es wird ein voxelbasierter Projektor gesucht, sodass nicht zwischen Voxelgittern
und STL-Modellen konvertiert werden muss. Rekonstruktionsalgorithmen verwenden
voxelbasierte Projektoren, um die Riickprojektion durchzufiihren (vergleiche Kapitel 2.4).
Die ASTRA Toolbox (kurz: ASTRA) [104] ist eine Sammlung verschiedener Module, die
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tiberwiegend auf die Rekonstruktion von CT-Daten ausgerichtet sind. Sie bietet zudem
einen sogenannten Vorwirtsprojektor, der die Schnittlaingen durch voxelbasierte Volumen
berechnet. Durch Ergdnzen der Abschwichungsberechnung nach dem LAMBERT-BEER-
Gesetz aus Gleichung 1.1, einer Moglichkeit zur Simulation realistischer Quellspektren
sowie dem Abruf der tabellierten Abschwachungskoeffizienten kann somit die Projektion
des voxelbasierten Phantoms realisiert werden. Die Quellspektren konnen mit SpekPy[102]
oder aRTist [24] berechnet werden. Die energieabhidngigen, linearen Abschwéchungskoef-
fizienten u (vergleiche beispielhaft Abbildung 2.4) konnen der Literatur [26] enthnommen
oder mithilfe von xraylib [103] oder aRTist [24] berechnet werden.

Weiterhin wird gemafd Abbildung 5.1 eine Rekonstruktion benotigt, die die gesammel-
ten Projektionen, zusammengefasst dargestellt als Sinogramm, in die DECT-Volumen
rekonstruiert. Hierzu ist die bereits genannte ASTRA Toolbox [104] geeignet. Sie bietet
neben dem aus Kapitel 2.4 bekannten FDK-Algorithmus ebenfalls iterative Rekonstrukti-
onsalgorithmen an, die zu einer Verbesserung der Bildqualitét fithren kénnen, jedoch
aufgrund ihres immensen Rechenzeitbedarfs, insbesondere auf grofien CT-Volumen,
von niedriger Relevanz in der industriellen Computertomographie sind. Somit wird
die gefilterte Riickprojektion, ein Spezialfall des FDK-Algorithmus, zur Rekonstruktion
verwendet. Dartiber hinaus ist die ASTRA Toolbox quelloffen und plattformunabhéngig
[104], sodass die nicht-funktionalen Anforderungen ebenfalls erfiillt werden.
Zusammenfassend bleiben die folgenden Module {ibrig, die implementiert werden miis-
sen: ein Phantomgenerator und die Anwendung des LAMBERT-BEER-Gesetzes (Gleichung
1.1).

5.3 EIGENE SIMULATION

Basierend auf der Anforderungsanalyse aus Abschnitt 5.1 wird eine eigene Simulation im-
plementiert. Gemafs Abschnitt 5.2.3 werden einige der gesuchten (Teil-)Funktionalitdten,
die in anderen Programmen verfiigbar sind, iibernommen. Die im Folgenden vorgestellte
Simulation besteht aus drei Modulen, die bereits in Abbildung 5.1 im Kontext der Anfor-
derungsanalyse eingefiihrt worden sind: dem Phantomgenerator, dem Projektor und der
Rekonstruktion.

Gemeinsam werden diese drei Module in eine iibergeordnete Funktion eingebettet, die
den gesamten Ablauf, beginnend mit einer Zufallszahl zur Initialisierung des Phantomge-
nerators bis hin zum Speichern eines Datentupels, bestehend aus einem DECT-Volumen
und den Materialkarten, zusammenfasst. Durch die Verwendung von Dask, einer Python-
Bibliothek fiir verteiltes Rechnen [105], wird die parallele Ausfiihrung dieser Funktion zur
Erzeugung eines einzelnen Datentupels in voneinander unabhidngigen Instanzen stark
vereinfacht. Kurz gefasst kann Dask verwendet werden, um eine grofse Anzahl kleiner
Aufgaben (hier: die Erzeugung eines Datentupels) in einem Netzwerk aus sogenannten
Workern (auch: Dask-Worker) zu verteilen und die Ergebnisse zu sammeln. Mithilfe von

Dask ist somit die im Folgenden beschriebene Simulation zwischen einem Laptop und

65



66

N

SIMULATION DER COMPUTERTOMOGRAPHIE

einem HPC-Cluster beliebig skalierbar’. In den folgenden Abschnitten werden die Im-
plementierungen des Phantomgenerators und des Projektors aus dem Ablaufdiagramm
in Abbildung 5.1 beschrieben. Die Rekonstruktion wird direkt aus der ASTRA Toolbox
tbernommen. Abgesehen von einigen Paketen in den verwendeten Bibliotheken ist die

Simulation in Python implementiert.

Phantomgenerator: Erzeugung eines zufilligen Phantoms

Eine der DL-spezifischen Anforderungen nach Abschnitt 5.1 besteht in der Erzeugung
zufillig geformter Phantome, die aus verschiedenen, ebenfalls zufdllig ausgewdhlten
Materialien zusammengesetzt sind. Im Folgenden werden die von einzelnen Materialien
besetzten Bereiche in einem Phantom als Regionen oder Materialregionen bezeichnet. Der
im Folgenden beschriebene Algorithmus ist geméfl den Anforderungen aus Abschnitt
5.1 fiir die Erzeugung zweidimensionaler Phantome konzipiert. Fiir dreidimensionale
Phantome ist der Algorithmus direkt erweiterbar, wobei die benétigte Rechenzeit sowie
der Speicherbedarf linear mit der Gesamtzahl der Voxel ansteigen.

Das im Rahmen dieser Arbeit gewédhlte Prinzip zur Erzeugung der zufilligen Regionen
entstammt der Biologie: dem Wachstum von unterschiedlichen Bakterienkolonien in
einer Petrischale. Zu Beginn wird die leere Petrischale mit einer Anzahl unterschied-
licher Bakterien an zufélligen Stellen punktuell besetzt. Dies sind die Startpunkte des
Wachstums jeder Kolonie (Materialregion). Pro Zeitschritt wéchst jede Kolonie zufallig
in angrenzende und bisher unbesetzte Gitterpunkte (Voxel). Sobald ein festgelegter
Anteil der Gesamtfliache der Petrischale von den Bakterienkolonien besetzt worden ist,
wird das Wachstum eingefroren und das Experiment (die Erzeugung der Materialre-
gionen) beendet. Codeabschnitt 5.1 fasst den soeben beschriebenen Algorithmus zur

Erzeugung zufilliger Regionen innerhalb eines zweidimensionalen Bereiches zusammen.

volume = Array2D(yDim, xDim)
seed_points = Random(number_of_seed_points, volume)
while volume.infill < target_infill:
for seed in random_choice(seed_points):
seed.grow()

Codeabschnitt 5.1: Grobalgorithmus zur Erzeugung der zufélligen Regionen eines Phantoms.

Nach der Ausbreitungsphase der Bakterienkolonien wird jede Kolonie, identifiziert durch
eine eindeutige ID, zuféllig in ein Material (Kernladungszahl Z und absolute Dichte p)
umgewandelt:

ID — (Z;,np;) mit 5 € [0.8,1.0].

Der Faktor # wird zufdllig gewdhlt und stellt die Porositit eines Materials dar. Die
Auswahl des Materials erfolgt ebenfalls zuféllig aus einem gegebenen Materialpool, der
im Rahmen dieser Thesis in Tabelle 5.1 zusammengefasst ist. Insbesondere die Materialien

Aluminium, Chrom, Eisen, Kupfer, Magnesium, Nickel, Titan und Zink sind von hoher

Die Mindestanforderungen fiir das Ausfiihren einer einzelnen Simulation umfassen etwa 1 GB verfiigbaren
Haupt- und Graphikspeicher. Mehr Speicher ermoglicht eine erhohte Parallelisierung und Auslastung.
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Symbol Al | Be |Ca|Co | Cr|Cu| Fe |Ga|Ge| K | Li
V4 13 | 4 | 20|27 | 24|29 |2 |31 |32|19| 3
ping/cm® [ 27 [ 1.8 |16 [89[72[9.0[79|59[53[09]05
Symbol | Mg |Mn | Ni | Sc | Ti | V |Zn
V4 12 | 25 | 28 | 21 | 22 | 23 | 30
ping/ecm® [ 1.7 | 73 |89 [3.0 [ 45[ 61|71

Tabelle 5.1: Symbole, Kernladungszahlen Z und Dichten p der selektierten Materialien fiir die
Phantome der CT-Simulation.

technischner Relevanz, sodass sie in den Materialpool aufgenommen werden. Die auf dem
Periodensystem benachbarten Elemente werden zur Verbesserung der Generalisierung
auf dhnliche Materialien ergdnzend hinzugenommen. Fiir eine spezifische Anwendung
der Materialbestimmung mit Vorwissen, beispielsweise zur gezielten Identifikation von
Kupferpartikeln, kann es zielfiihrend sein, den Materialpool deutlich einzuschranken.
Das Ergebnis des Phantomgenerators ist insgesamt eine zweidimensionale Materialkarte
(vergleiche Abbildung 5.1), die fiir jeden Gitterpunkt (Voxel) eine Kernladungszahl Z
und eine Dichte p angibt.

Projektor: Projektion des Phantoms

Jedes nach obigem Prinzip erzeugte Phantom wird durch eine Materialkarte beschrieben.
Ziel dieses Moduls ist die Berechnung der energie- und materialabhdngigen Projektion
des Phantoms in Anlehnung an die reale CT-Bildaufnahme. Ein Uberblick iiber diese
Berechnung wird in Abbildung 5.2 dargestellt.

Zunidchst werden aus den materialaufgelosten Phantomen unter Angabe der CT-
Geometrie Schnittlingen mithilfe eines Schnittlingenprojektors P aus der ASTRA Toolbox
berechnet. Die resultierenden Schnittlingen hdngen somit zuséitzlich vom Projektions-
winkel ¢ aus der CT-Geometrie und einem Pixelindex u des eindimensionalen Detektors
(Facherstrahl-CT) ab. Im ndchsten Schritt wird aus dem einfallenden Rontgenspektrum
Ip(E) sowie den tabellierten Abschwachungskoeffizienten y,, fiir jedes Material m das
LAMBERT-BEER-Gesetz aus Gleichung 1.1 angewandt, um das Spektrum Ip(E) nach
Abschwichung durch das Phantom zu berechnen. Aus dem Abschwachungskoeffizienten
des Detektormaterials yp und der Schnittlainge durch ein Pixel x](Du ) des Detektors wird
die Intensitdt Ip(E) nach zusétzlicher Abschwichung durch den Detektor bestimmt. Die
Differenz Ip(E) — Ip(E) entspricht der Intensitét, beziehungsweise der Photonenzahl,
aufgeldst nach Energie, die das Signal im Detektor Igignq(r) erzeugt. Nach spektraler
Integration [ dE fiir einen energieintegrierenden Detektor nach Kapitel 2.3 folgt das
gemessene Signal Isign, — das sogenannte Sinogramm. Die gesamte in Abbildung 5.2
beschriebene Berechnung ist hochgradig parallelisierbar. Nach der Projektion zur Be-
rechnung der Schnittlingen wird jede folgende Operation pro Pixel ausgefiihrt und ist
unabhéngig von den anderen Pixeln, sodass die Parallelisierung auf einer Graphikkarte

effizient implementiert werden kann.
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CT-Geometrie Io(E), pim HD, x](;;l )
Phantome L4 Schnittlingen G.11 Ip(E) G 11 Ip(E)
m m, g, u Q,u ¢, u
; JdE )
Signal ISi al E -
o, u = o, u U

Abbildung 5.2: Ablaufdiagramm der CT-Projektion ausgehend von m materialaufgelosten Phan-
tomen mit dem Schnittlingenoperator P unter einer gegebenen CT-Geometrie
mit dem Projektionswinkel ¢ und fiir jedes Detektorpixel u eines eindimensio-
nalen Detektors. Das erzeugte Quellspektrum Iy(E) sowie die durch Phantom
und Detektor abgeschwichten Spektren Ip(E) und Ip(E) werden zusammen mit
den Abschwachungskoeffizienten y zur Anwendung des LAMBERT-BEER-Gesetzes
benotigt. Nach Subtraktion und spektraler Integration folgt das gemessene Detek-
torsignal Isjgnal-

5.4 EVALUATION DER IMPLEMENTIERTEN SIMULATION

Die implementierte Simulation muss hinsichtlich der in Abschnitt 5.1 aufgefiihrten
Anforderungen untersucht werden. Einige Anforderungen, beispielsweise das Datenfor-
mat, wurden bereits in der Implementierung entsprechend erfiillt und bediirfen keiner
weiteren Priifung. Exemplarisch wird die Ausgabe der Simulation sowie die statisti-
sche Verteilung eines Trainingsdatensatzes in Abschnitt 5.4.1 vorgestellt. Anschlieffend
muss die Prazision des modellierten CT-Bildgebungsprozesses im Vergleich zu einer
verbreiteten Simulation (aRTist) sowie einem realen CT-Scan verglichen werden. Die
DL-spezifischen Anforderungen in Bezug auf die Datensatzgrofie in Abhdngigkeit zur

Berechnungsdauer werden in Abschnitt 5.4.4 tiberpriift.

5.4.1 Exemplarischer Datensatz & Datenverteilung

Anhand eines exemplarisch simulierten Datensatzes kénnen einige der funktionalen
Anforderungen aus Abschnitt 5.1 an die implementierte Simulation evaluiert werden.
Die verwendeten CT-Parameter werden in Tabelle 5.2 zusammengefasst und sind dem
Modell einer realen CT-Anlage nachempfunden (vergleiche CT-Anlage in Kapitel 2.7).
Im Vergleich zum realen Detektor werden in diesem CT-Parametersatz vier Pixel des
Originaldetektors mit dem Pixel Pitch 139 um zu einem Pixel mit dem Pixel Pitch 278 um
zusammengefasst, um Rechenzeit auf Kosten der raumlichen Auflosung zu sparen. Durch
die Verdopplung des Pixel Pitch, kann die Anzahl der Pixel pro Zeile (im dreidimensio-
nalen Fall auch pro Spalte) halbiert werden, sodass die CT-Abbildungsgeometrie in allen
anderen Parametern konstant bleibt und somit die simulierten Abschwachungskoeffizi-
enten quantitativ mit den an der realen CT-Anlage gemessenen Werten vergleichbar sind.
Zusatzlich wird, begriindet durch die DL-spezifischen Anforderungen aus Abschnitt
5.1, kein zweidimensionaler Detektor, sondern nur eine einzelne Zeile des Detektors

simuliert, da die so gesammelten eindimensionalen Projektionen ausreichen, um eine
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einzelne CT-Mittelschicht zu rekonstruieren (Facherstrahl-CT). Zunichst wird die Ausga-

Geometrie
Anzahl Projektionen 1500 (Vollkreis)
SDD 500 mm
SOD 35mm
Detektor
Detektor-Typ Flachdetektor, 200 pm Caesiumiodid
Pixel Pitch 278 pm
Pixelmatrix Dimensionen (1500 x 1) Pixel
Pixeldatentyp 16 Bit unsigned-int
Integrationszeit > 100 ms
Strahlungsquelle
Typ Wolfram-Transmissionsquelle
Up + Vorfilter (Low-Energy) 140kV + 1.0mm Al | 0.5mm Cu
Up + Vorfilter (High-Energy) 240kV + 1.0mm Cu | 1.0mm Sn
Phantome
Anzahl Datentupel 250000
Seitenldnge des Volumens 1.0cm
Auflosung (256 x 256) Voxel
Anzahl Regionen N 0 < N <1000 (gleichverteilt)
Ausfiillfaktor (vgl. target_infill) 90%
relative Dichte 7 08<5<10

Tabelle 5.2: CT-Simulationsparameter fiir einen DECT-Scan mit dem Abstand zwischen Quelle
und (Objekt-)Drehachse SOD, dem Abstand zwischen Quelle und Detektor SDD und
der Beschleunigungsspannung Up. Die Einstellungen der Strahlungsquelle werden
getrennt fiir den Low- und High-Energy-Scan angegeben, wobei die Integrationszeit
am Detektor jeweils so gewéhlt wird, dass der Dynamikumfang im Mittel 70% des
Datenraumes des Detektors 0 — 65535 abdeckt.

be der implementierten Simulation visualiert. Abbildung 5.3 zeigt ein mit den genannten
Parametern simuliertes Tupel, bestehend aus den DECT-Schnittbildern und den Material-
karten, aufgelost nach Kernladungszahl und Dichte. Der Phantomgenerator erzeugt die
Materialkarten in der rechten Spalte in Abbildung 5.3 zufillig. Mithilfe des Projektors und
der Rekonstruktion werden die Phantome (Materialkarten) in die DECT-Schichtbilder in
der linken Spalte umgerechnet. Diese etwas kontraintuitive Anordnung — von rechts nach
links — wird anhand des zu lernenden Problems, der Materialzerlegung, motiviert: Die
DECT-Schichtbilder (links) sollen in die Materialkarten (rechts) umgerechnet werden.

Aus den DL-spezifischen Anforderungen geht weiterhin hervor, dass die generierten
Phantome von zufélliger Materialzusammensetzung und Form sein miissen, um erstens
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Abbildung 5.3: Simuliertes Datentupel bestehend aus Low-Energy (LE) und High-Energy (HE) CT-
Schnitten (linke Spalte) durch ein zuféllig erzeugtes Phantom. Das Phantom wird
durch die Angabe der Kernladungszahlen und Dichten rdumlich charakterisiert
(rechte Spalte). Alle x- und y-Achsen geben rdumliche Positionen im Voxelgitter
an. Die Einheiten der Farbskalen werden in den Plotiiberschriften angegeben.
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eine grofie Auswahl unterschiedlicher Materialien bestimmen zu kénnen und zweitens
die morphologische Varianz innerhalb des Datensatzes zu erhohen. Anhand des exem-
plarisch simulierten Datensatzes kann mittels einer Stichprobe die Zusammensetzung
des gesamten Datensatzes statistisch untersucht werden. Die Verteilungen in Abbildung
5.4 wurden aus 8000 zufillig ausgewahlten Tupeln berechnet und geben einen Hinweis
auf die Verteilung der Materialien innerhalb der Stichprobe. Zu sehen sind die quanti-
sierten, nahezu gleichverteilten Kernladungszahlen (oben rechts) der fiir die Simulation
ausgewdhlten Elemente. Die relativen Dichten 17 werden aus dem Bereich 0.8 <7 < 1.0
zuféllig und gleichverteilt gewihlt, sodass im Histogramm (unten rechts) der absolu-
ten Dichten eine Streuung beobachtet werden kann. In den Histogrammen der linken
Spalte von Abbildung 5.4, den effektiv gemessenen Abschwichungskoeffizienten, wird
deutlich, dass die Strahlaufhidrtung einen signifikanten Einfluss auf die Datenzusam-
mensetzung ausiibt. Wie bereits in Kapitel 2.4.1 beschrieben, hiangt der rekonstruierte
Abschwichungskoeffizient yy, stark von der lokalen Umgebung innerhalb der Probe ab
und ist keineswegs konstant fiir ein festes Material. Zur Beurteilung der morphologi-
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Abbildung 5.4: Histogramme der auftretenden Abschwachungskoeffizienten yp fiir den Low-
Energy LE und High-Energy HE Kanal sowie die Kernladungszahlen und Dichten
aus der in Tabelle 5.2 beschriebenen Simulation anhand einer Stichprobe.
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schen Varianz der einzelnen Phantome ist Abbildung 5.4 ungeeignet. Eine detaillierte
Analyse der vorkommenden Formen kann sehr aufwindig gestaltet werden, sodass im
Rahmen dieser Arbeit eine vereinfachte Methode angewandt wird: Die Phantome werden
mit dem Canny-Edge-Operator [106] in Kantenbilder umgerechnet und anschliefiend
normiert. Bei geeigneter Parameterwahl des Canny-Edge-Operators erscheinen so die
Kanten zwischen den unterschiedlichen Regionen innerhalb eines Phantoms gleich und
sind nicht abhidngig von ihrem Gradienten. Anhand der oben genannten Stichprobe
kann die Summe tiiber alle Kantenbilder berechnet werden und so sollten feste Muster,
die immer an der gleichen rdumlichen Position in den Phantomen auftreten, sichtbar
werden. Abbildung 5.5 stellt das Summenbild tiber alle Kantenbilder der Stichprobe dar.
Der dunkel abgesetzte Randbereich ist eine Folge der rdumlichen Begrenzungen an den
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Abbildung 5.5: Summe aus den Kantenbildern ermittelt durch den Canny-Edge-Operator mit
anschliefender Normierung aus 8000 zuféllig ausgewéhlten Phantomen. Die
Farbskala hat keine Einheit und ist als eine Hiufigkeit zu interpretieren.

Randern der Phantome. Statistisch ist es wahrscheinlicher, dass mittlere Bildbereiche von
verschiedenen Regionen besetzt werden als Randbereiche. Ansonsten kann kein eindeuti-
ges Muster identifiziert werden, sodass insgesamt geschlussfolgert werden kann, dass die
Erzeugung der zufilligen Phantome, in Bezug auf Form und Materialzusammensetzung,
mit der implementierten Simulation erfolgreich ist.

5.4.2  Vergleich mit aRTist und mit einem realen Scan

Weiterhin sind die CT-spezifischen Anforderungen, insbesondere in Bezug auf die Prazi-
sion des CT-Bildgebungsprozesses, zu priifen. Dies erfolgt anhand eines Vergleiches mit
der in Abschnitt 5.2.1 vorgestellten Simulation aRTist sowie einem realen CT-Scan. Ein
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direkter Vergleich zwischen der implementierten Simulation und aRTist ist in Abbildung

5.6 dargestellt. Das simulierte Phantom ist ein Aluminiumwiirfel, der verschiedene Poro-

Al 140kV

0.650 - sim
artist

artist’

0.500 A
0.450
0.005 A
= 0.000 -
-0.005 1— T T T T T
0 200 400 600 800 1000
Voxelindex

Abbildung 5.6: Vergleichender Schnitt durch einen Aluminiumwiirfel mit verschiedenen relativen
Dichten 0.8 < 5 < 1.0 simuliert mit aRTist, der implementierten Simulation
sim und der korrigierten aRTist-Simulation aRTist” aus Gleichung 5.1. Durch die
starke Ubereinstimmung der Kurven ist die rote Linie nur schlecht erkennbar. Zur
besseren Vergleichbarkeit werden im unteren Teil der Abbildung die absoluten
Differenzen diff. zwischen aRTist beziehungsweise aRTist" mit sim visualisiert.
Der grau schattierte Bereich markiert die Zielgenauigkeit (£1 %-Genauigkeit der
Dichte nach Gleichung 2.3).

sitdten aufweist, sodass im CT-Schnittbild ein Stufenprofil sichtbar wird. Ein konstanter
Offset ist zwischen der implementierten Simulation sim und aRTist in der unteren Dar-
stellung von Abbildung 5.6 qualitativ zu beobachten (graue Linie). Dieser Offset ist fiir
verschiedene Materialien, beziehungsweise verschiedene Abschwiachungskoeffizienten,
nicht konstant. Daher wird ein lineares Modell der Form

) v - aRTist-Daten
y=m-x+b mit (5.1)
x : sim-Daten

angesetzt, um die Abweichung zu korrigieren. Es ergeben sich die Koeffizienten m =
0.9912 und b = 0.0113 fiir den in Abbildung 5.6 dargestellten Fall und unter zusatzlicher
Berticksichtigung der Materialien Magnesium, Eisen und Kupfer. Durch Anwendung der
Offset-Korrektur aus Gleichung 5.1 ergibt sich das Profil aRTist” in Abbildung 5.6 sowie
die dargestellte Abweichung unter dem Plot (blaue Kurve). Es erscheint zunédchst unin-
tuitiv, die mit aRTist simulierten Werte an die implementierte Simulation anzupassen, da
aRTist im Rahmen dieser Dissertationsschrift als verbreitete und etablierte CT-Simulation

vorgestellt wurde. Durch die Verwendung realer CT-Daten kommt in spéteren Kapiteln
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eine dritte Datenquelle hinzu, fiir die erneut ein Korrekturmodell nach Gleichung 5.1
angepasst werden muss. Zur besseren Vergleichbarkeit der Materialbestimmung wird
daher die implementierte Simulation als gemeinsame Basis gewéahlt, sodass die mit aRTist
simulierten Daten sowie die Daten von der CT-Anlage in die Basis der implementierten
Simulation iibertragen werden miissen. Die korrigierten CT-Schnittbilder nach aRTist und
nach der implementierten Simulation werden fiir die genannten vier Materialien in Abbil-
dung 5.7 zusammengefasst. Die Plots der oberen Zeile in Abbildung 5.7 zeigen die leicht
déampfenden Materialien Aluminium und Magnesium, die keine starken CT-Artefakte
aufweisen. In den Plots der unteren Zeile ist deutlich der Effekt der Strahlaufhirtung zu
erkennen, der auf die verhiltnisméafiig niedrige Beschleunigungsspannung Up = 140kV
zuriickzufiihren ist und korrekt von der implementierten Simulation dargestellt wird.
Der grau schattierte Bereich markiert die geforderte Genauigkeit (+£1 %-Genauigkeit
der Dichte) und wird durch die Fehlerfortpflanzung von Gleichung 2.3 individuell fiir
jedes Material berechnet. Die korrigierten Abschwéchungskoeffizienten liegen nach An-
wendung der Korrektur innerhalb der geforderten Genauigkeiten. Basierend auf diesen
Ergebnissen und im Kontext der geforderten Genauigkeit der linearen Abschwachungs-
koeffizienten (vergleiche Abschnitt 5.1), wird Gleichung 5.1 als ausreichend gewertet und
fortan zum Angleich der mit aRTist simulierten Daten an die Daten der implementierten
Simulation verwendet. Die Koeffizienten ebendieser Gleichung sind stets fiir einen Satz
gegebener CT-Parameter, insbesondere Quellspannung und Vorfilterung, individuell zu
ermitteln und demnach nicht fiir andere CT-Parameter giiltig.

Zum Abgleich der simulierten CT-Daten mit dem Scanergebnis einer realen CT-Anlage
(im Folgenden zur Vereinfachung auch: Anlage) miissen mehrere Dinge beachtet werden.
Zundchst miissen die CT-Geometrie der Anlage, das emittierte Quellspektrum sowie
der Aufbau des Detektors moglichst genau erfasst werden. Wahrend die CT-Geometrie
durch Kalibrationsmessungen mit metrologisch eingemessenen Priifkdrpern sehr ex-
akt bestimmt werden kann, ist {iber den inneren Aufbau der Rontgenquelle und des
Detektors nur wenig bekannt. Somit basieren die berechneten Quellspektren und Detek-
torantworten teilweise auf Angaben der Datenbldtter, gut begriindeten Annahmen sowie
interner Kommunikation mit den Herstellern. Die genauen Angaben zur Berechnung der
verwendeten Quellspektren und der Detektorantwort diirfen daher in dieser Dissertati-
onsschrift nicht publiziert werden. Das rekonstruierte Volumen des Scans wird manuell
segmentiert und anhand der Segmentierung in ein voxelbasiertes Phantom umgerechnet,
welches durch den in Abbildung 5.1 vorgestellten Ablauf beginnend ab dem Projektor
verarbeitet werden kann. Mithilfe dieser Methodik wird das real gescannte Phantom
als Eingabeparameter der implementierten Simulation genutzt, sodass ein quantitativer
Abgleich der rekonstruierten Volumen moglich ist.

Der an der Anlage durchgefiihrte Scan wird mit einem Aluminiumquader, einem Edel-
stahlzylinder und einem Kupferquader gemeinsam mit den CT-Parametern aus Tabelle
5.2 durchgefiihrt. Die rekonstruierten Volumina des Scans und der Simulation sind fiir
beide Energien (140kV und 240 kV gemafs Tabelle 5.2) in Abbildung 5.8 dargestellt. Qua-
litativ konnen bereits einige Unterschiede in Bezug auf die Abschwachungskoeffizienten
innerhalb und aufserhalb der verschiedenen Objekten identifiziert werden. Besonders
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Abbildung 5.7: Schnitte durch die rekonstruierten Volumina eines Phantoms fiir verschiedene Ma-
terialien mit der entwickelten Simulation sim und aRTist unter Berticksichtigung
der linearen Korrektur (aRTist’) aus Gleichung 5.1. Unter den Plots werden die
absoluten Differenzen diff. zusammen mit der grau schattierten Zielgenauigkeit
(1 %-Genauigkeit der Dichte nach Gleichung 2.3) dargestellt. Neben dem Ele-
ment wird ebenfalls die Quellspannung angegeben. Alle Plots teilen die Legende
unten rechts. Die rote Linie wird aufgrund der Ubereinstimmung mit den anderen
Linien teilweise durch diese verdeckt.

auffillig ist die Abweichung der CT-Artefakte aufserhalb der Objekte, die hauptsdchlich
durch die fehlende Modellierung der Streustahlung (vergleiche Compton-Streuung; Ka-
pitel 2.1) in der implementierten Simulation entsteht. Da die Strahlaufthédrtung korrekt
modelliert wird und in Abbildung 5.8 (oben rechts) deutlich zu erkennen ist, wird deut-

lich, dass die verbleibende Abweichung innerhalb der Materialien zur realen Messung,

75



76

SIMULATION DER COMPUTERTOMOGRAPHIE

Scan, 140kV 1/cm Sim, 140kV 1/cm
0
250 6
500
750 4
1000
2
1250
0
Scan, 240kV 1/cm Sim, 240kV 1/cm
0 1.25
1.5
20 o 100 &
500
0.75 1.0
750
0.50
1000 0.5
0.00 0.0
0 500 1000 0 500 1000

Abbildung 5.8: Rekonstruierte Volumina fiir zwei Beschleunigungsspannungen aus der CT-
Anlage beschriftet mit Scan (links) und der implementierten Simulation Sim
(rechts). Der Vollzylinder besteht aus dem Edelstahl V2A. Der linke Quader be-
steht aus Aluminium und der rechte Quader besteht aus Kupfer. Die graue Linie
zeigt das Referenzprofil an, um das in Gleichung 5.1 vorgestellte lineare Modell
anzupassen. Die rote Linie markiert das Testprofil, um die Interpolationsfahigkeit
des linearen Modells nachzuweisen. Alle x- und y-Achsen geben rdumliche Posi-
tionen im Voxelgitter an.

insbesondere bei hoheren Photonenenergien in Abbildung 5.8 (unten), auf die Streustrah-
lung zurtickzufiihren ist. Entlang der grauen Linie werden die Werte des Scans mithilfe
des eben beschriebenen linearen Modells aus Gleichung 5.1 an die simulierten Werte
angeglichen. Somit werden die Materialien Aluminium und Kupfer zur Anpassung des
Modells verwendet. Zu priifen ist die Interpolationsfahigkeit des linearen Modells ent-
lang der roten Linie (Edelstahl V2A) — dem Testprofil, das aus Sicht der Kernladungszahl
und Dichte zwischen den Stiitzpunkten des linearen Modells liegt. Abbildung 5.9 zeigt
den Schnitt durch die Volumina entlang des Testprofils durch den Edelstahlzylinder.
Das Modell verschiebt das urspriinglich stark abweichende Scanprofil (gelb) in die Na-
he des simulierten Profils (rot). Wie bereits beschrieben, gibt es bei der Modellierung
einer realen CT-Anlage Unsicherheiten, vorwiegend induziert durch die Rontgenquelle

und den Detektor, die nicht vollstandig korrigiert werden konnen. Trotz der weiterhin
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Abbildung 5.9: Schnitt entlang der roten Linie in Abbildung 5.8 zur Evaluation der Transfer-
fahigkeit des linearen Modells auf Edelstahl V2A. Das auf der grauen Linie
in Abbildung 5.8 angepasste Modell wird verwendet. Unter den Plots werden
die absoluten Differenzen diff. zwischen scan” und sim zusammen mit der grau
schattierten Zielgenauigkeit (£1 %-Genauigkeit der Dichte nach Gleichung 2.3)
dargestellt. Die absoluten Differenzen weichen deutlich von der geforderten Ziel-
genauigkeit ab.

bestehenden Abweichung, der effektiven Sim-To-Real-Gap, zwischen dem korrigierten
Profil scan” und der implementierten Simulation sim, wurde mithilfe der Korrektur dieser
urspriinglich noch viel starkere Unterschied erheblich reduziert. Im Folgenden wird
das angepasste lineare Modell zur Anpassung der realen Messdaten an die Simulation
verwendet, um die Sim-To-Real-Gap zu verkleinern und somit die Materialbestimmung
mithilfe der trainierten DL-Modelle zu verbessern.

5.4.3 Beobachtungen mit (simulierter) Dual-Energy CT

Wie bereits im Rahmen der Einfiihrung der Strahlaufhartung (vergleiche Kapitel 2.4.1; ins-
besondere Abbildung 2.11) beschrieben, werden bei der Verwendung polychromatischer
Rontgenstrahlung homogene Objekte nicht mit konstanten Abschwéchungskoeffizien-
ten rekonstruiert. Somit verdndert sich der in Abbildung 2.14 dargestellte Plot, in dem
jedes Material durch eine separate, scharfe Linie beschrieben wird, mit zunehmendem
Einfluss der Strahlaufhadrtung und weiterer CT-Artefakte deutlich. Dieser Effekt soll, in
Anlehnung an die Darstellung aus Abbildung 2.14, anhand simulierter Abschwéachungs-
koeffizienten einzelner Materialien beobachtet werden, um erstens die Funktionalitit der
polychromatischen CT-Simulation zu tiberpriifen und um zweitens die Problemstellung
der Materialbestimmung weiter zu verdeutlichen. Abbildung 5.10 zeigt die DECT-Linien
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tir die in Tabelle 5.2 beschriebene Simulation. Im linken Plot von Abbildung 5.10 ist
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Abbildung 5.10: Aus einer Simulation extrahierte, materialabhéngige Abschwachungskoeffizi-
enten iy, fiir zwei Quellspannungen 140 kV und 240kV. Die Werte im linken
Plot entstammen einer Simulation nur mit den Materialien Aluminium und
Magnesium, wahrend die Werte im rechten Plot aus einer Simulation mit den
zusétzlichen Materialien Eisen und Kupfer enstammen. Es wurden jeweils 3000
Voxel zufillig ausgewdhlt. Die einzelnen Datenpunkte sind leicht transparent
eingezeichnet, um die Dichte tibereinander liegender Punkte zu visualieren.

die Aufweichung der scharfen DECT-Linien sichtbar — die Linien erscheinen nunmehr
als Punktwolken, die fiir die gezeigten Materialien Aluminium und Magnesium noch
eindeutig trennbar sind. Der rechte Plot zeigt den Einfluss der Materialien Eisen und
Kupfer (nicht im Plot) neben Aluminium und Magnesium in den Phantomen. Durch die
starke Abschwéchung der sehr viel schwereren Elemente Eisen und Kupfer werden die
DECT-Punktwolken von Aluminium und Magnesium weiter zerstreut. An der y-Achse
ist ebenfalls Clipping am Nullpunkt zu erkennen, da rekonstruierte Voxel mit negativen
Werten per Definition in der Simulation geclipped werden.® Analog zeigt Abbildung
5.11 die DECT-Plots fiir die Materialien Eisen und Kupfer. Auch hier ist eine deutliche
Zerstreuung der Punktwolke sowie eine teilweise Uberlagerung zu beobachten.

Die Schwierigkeit fiir einen Algorithmus zur Materialbestimmung wird anhand der
Abbildungen 5.10 und 5.11 deutlich. Wird lediglich ein Voxel in einem DECT-Schichtbild
betrachtet, sind zwei Zahlenwerte gegeben — der yp ,(140kV) und der upm(240kV).
Die DECT-Punktwolken in den Abbildungen 5.10 und 5.11 sind weitestgehend getrennt,
jedoch gibt es einzelne Ausreifer, die zu einer leichten Uberlagerung der Punktwolken
beitragen. Mit einem klassischen, (einzel-)voxelbasierten Algorithmus, nach der Definiti-
on klassischer Algorithmen zur Materialbestimmung aus Kapitel 4, kann in diesen Féllen
nicht entschieden werden, welches Material vorliegt. Nach der Einfiihrung des Deep
Learnings (Kapitel 3) und den Ergebnissen der Literaturrecherche zur Material-CT (Kapi-
tel 4) besteht die These, dass DL-basierte Verfahren mit ihrer Fahigkeit, einen lokalen

(Bild-)Kontext in eine Berechnung einzubeziehen, diese Limitierung auflosen kénnen.

6 Negative Abschwachungskoeffizienten sind physikalisch nicht sinnvoll, entstehen immer als Folge von
CT-Artefakten und werden in der Regel genullt.
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Abbildung 5.11: Aus einer Simulation extrahierte, materialabhdngige Abschwachungskoeffizien-
ten yp, m fiir zwei Quellspannungen 140kV und 240kV. Es wurden jeweils 3000
Voxel zufillig ausgewdhlt. Die einzelnen Datenpunkte sind leicht transparent
eingezeichnet, um die Dichte tibereinander liegender Punkte zu visualieren.

54.4 Geschwindigkeit und Skalierbarkeit

Die am Anfang des Kapitels in Abschnitt 5.1 formulierten Anforderungen beziiglich
der Geschwindigkeit der Trainingsdatenerzeugung werden nun fiir die implementierte
Methode evaluiert. Die implementierte Simulation berechnet einen Trainingsdatensatz
gemdf’ Tabelle 5.2 mit insgesamt 250.000 Tupeln in weniger als zwei Stunden. Fiir die
Bestimmung der angegebenen Zeit wurde ein GPU-Server der Partition WestAI am
Forschungszentrum Jiilich verwendet. Jeder GPU-Server dieser Partition besitzt 64 CPU-
Kerne, 512 GB Speicher und vier Nvidia H100 NVL mit jeweils 94 GB Graphikspeicher.
Die einzelnen Simulationen werden in Batches mit jeweils 64 Datentupeln innerhalb
der oben angesprochenen Dask-Worker gestartet. Abbildung 5.12 zeigt den Einfluss der
Worker-Anzahl pro GPU auf die Geschwindigkeit der Simulation. Es gilt, geniigend
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Abbildung 5.12: Mittlere benotigte Zeit pro Simulation eines Datentupels fiir verschiedene Worker-
Anzahlen pro GPU.
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Worker zu starten, sodass die GPUs voll ausgelastet werden. Bei einer zu grofien Worker-
Anzahl blockieren sich die Prozesse gegenseitig und bremsen das gesamte System aus.
Die minimale Zeit pro Datensatz wird bei 12 Workern beobachtet, sodass im Folgenden
12 Worker pro GPU verwendet werden.

Weiterhin ist zu kldren, wie die benétigte Rechenzeit von der Anzahl der verwendeten
Graphikkarten innerhalb eines Rechenknotens abhingt. Abbildung 5.13 zeigt die be-
notigte Zeit zur Berechnung eines verkleinerten Testdatensatzes bestehend aus 12800
Datentupeln. Die theoretische, ideale Skalierung beztiglich der GPU-Anzahl (graue Linie)
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Abbildung 5.13: Mittlere benétigte Zeit fiir die Simulation von 12800 Datentupeln mit einer oder
mehreren GPUs. Die graue Linie markiert den Idealfall: die Verdopplung der
GPU-Anzahl fithrt zu einer Halbierung der Rechenzeit.

wird erwartungsgemafs nicht erreicht. Dennoch ist ein Leistungszuwachs, das heifst eine
Reduktion der Berechnungsdauer, fiir eine zunehmende Anzahl an GPUs zu beobachten.
Aufbauend kann untersucht werden, wie sich die Skalierung mit einer groéfieren Anzahl
an GPUs, verteilt auf mehrere Rechenknoten, in Bezug zur Rechenzeit verhilt. Es ist anzu-
nehmen, dass die in Abbildung 5.13 dokumentierte Leistungsabnahme durch Erh6hung
der GPU-Anzahl weiter zunimmt. Im Rahmen dieser Thesis wird auf diese Untersuchung
bewusst verzichtet, da die Simulation auf einem Rechenknoten mit der oben genannten
Spezifikation innerhalb des Zeitlimits von 24 h etwa drei Millionen Datentupel erzeugen

und speichern kann.

55 ZUSAMMENFASSUNG

In diesem Kapitel wurden zunédchst die CT-spezifischen sowie die DL-spezifischen
Anforderungen fiir die Trainingsdatenerzeugung mithilfe einer Simulation fiir die Ma-
terialbestimmung in der Computertomographie identifiziert. Motiviert anhand eines
realen CT-Messablaufes wurde ein Ablaufdiagramm fiir die Trainingsdatenerzeugung in
Abbildung 5.1 entwickelt. Einige der Funktionalitdten, der Schnittlangenprojektor sowie
die Rekonstruktion, konnten in bestehenden Simulationsprogrammen identifiziert und
isoliert fiir die eigene Implementierung genutzt werden. Die fehlenden Funktionen, das
Generieren zufélliger Phantome sowie die Abschwédchungsberechnung nach Gleichung
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1.1, wurden implementiert. Insgesamt wurde die entwickelte Methode zur Datenerzeu-
gung abschliefSend anhand der zu Beginn des Kapitels aufgestellten Anforderungen
evaluiert. Es konnte gezeigt werden, dass die implementierte Simulation eine ausrei-
chende Ubereinstimmung mit der vielerseits genutzten Simulation aRTist aufweist. Der
Abgleich mit realen CT-Scandaten zeigt jedoch deutliche Abweichungen, die vermutlich
aufgrund systematischer Modellierungsungenauigkeiten auftreten, sodass die geforderte
Genauigkeit nicht erreicht wird. Diese Abweichungen kénnen vermutlich mit der Ver-
wendung einer Monte-Carlo-basierten Simulation signifikant reduziert werden, wozu
jedoch die verfiigbare Rechenzeit um mehrere Gréfienordnungen iiberschritten wird. Die
implementierte Simulation wird im weiteren Verlauf dieser Arbeit zur Trainingsdatener-
zeugung verwendet, wobei der Fehler aufgrund der angesprochenen Sim-To-Real-Gap
jeweils im Kontext der Auswertung verschiedener Aspekte diskutiert wird. Es wird fest-
gehalten, dass mithilfe der implementierten Methode zur Trainingsdatenerzeugung die
im Rahmen der Literaturrecherche identifizierte Forschungsliicke mindestens teilweise
geschlossen werden kann. Durch die Geschwindigkeit und Skalierbarkeit der imple-
mentierten Methode kénnen erstmals sehr grofie Trainingsdatenmengen mit mehreren
Millionen Tupeln innerhalb einer wirtschaftlichen Zeitspanne erzeugt werden. Mithilfe
ebendieser Datensdtze konnen parameterstarke DL-Modelle, die auf grofie Datensétze
angewiesen sind, trainiert und fiir die Material-CT erprobt werden. Auch alternative
Fragestellungen der CT abseits der Materialbestimmung konnen mithilfe der imple-
mentierten Methodik durch die Simulation entsprechender Trainingsdaten erschlossen
werden. Offen bleibt eine Losung der beobachteten Sim-To-Real-Gap, die als Folge der
fehlenden Modellierung der Streustrahlung auftritt und weiterhin nicht trivial mithilfe

einer Raytracing-basierten Simulation erschlossen werden kann.
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Nach der Einfithrung des Deep Learnings als flexibles Werkzeug zur Darstellung kom-
plexer Funktionen in Kapitel 3 wird in diesem Kapitel zur Beantwortung der zweiten
Forschungsfrage eine DL-Architektur gesucht, die die Materialbestimmung basierend
auf CT-Daten effektiv 16sen kann. Zundchst werden in Abschnitt 6.1 die industriellen
Rahmenbedingungen beschrieben, die fiir den spédteren Transfer der DL-Modelle in
die praktische CT-Anwendung berticksichtigt werden miissen. Es werden verschiedene
Szenarien von CT-Scans vorgestellt, die individuelle Anforderungen an die Inferenzge-
schwindigkeit der DL-Modelle stellen. Weiterhin ist die zu erreichende, absolute Prazision
der DL-basierten Materialbestimmung festzulegen, die ebenfalls im Rahmen der indus-
triellen Rahmenbedingungen anwendungsbezogen motiviert und berechnet wird. Die
in Kapitel 5 beschriebene Simulation wird zur Erzeugung der Trainingsdaten fiir die
DL-Modelle in diesem Kapitel verwendet. Somit unterliegt die Beurteilung der Prazision
bei der Materialbestimmung anhand von realen CT-Scandaten weiterhin der Sim-To-Real-
Gap, die nach Kapitel 5.4.2 nicht vernachldssigbar ist. Daher werden zundchst simulierte
Phantome verwendet, um die Prizision der Materialbestimmung in diesem Kapitel, ins-
besondere beim Vergleich verschiedener DL-Architekturen, zu quantifizieren. Das hierzu
simulierte Phantom wird in Abschnitt 6.2 anhand der Rahmenbedingungen motiviert
und beschrieben. CT-Schichtbilder weisen in praktischen Anwendungen meist grofie
raumliche (Bild-)Dimensionen H, W auf (vergleiche Kapitel 6.1). Ein Standardansatz, um
sehr grofse Bilder mit neuronalen Netzen effizient zu verarbeiten, ist das sogenannte
Cropping — das Zerlegen eines Bildes in kleinere Teilbilder, sodass die Teilbilder einzeln
von einem neuronalen Netz verarbeitet werden konnen [107, 108]. In Abschnitt 6.3 wird
untersucht, ob diese Strategie fiir die Materialbestimmung mit CT-Schichtbildern an-
gewandt werden kann. Basierend auf der Literaturrecherche in Kapitel 4.2.4 werden in
Abschnitt 6.4 zwei DL-Architekturen fiir die Materialbestimmung trainiert und quantita-
tiv verglichen. Abschlieffend wird die ausgewéhlte Architektur in Abschnitt 6.5 anhand

der zuvor beschriebenen Rahmenbedingungen bewertet.

6.1 INDUSTRIELLE RAHMENBEDINGUNGEN FUR DL IN DER CT

Zunéchst ist die Laufzeit, die sogenannte Inferenzzeit, der entwickelten DL-Architektur
im Kontext der Mess- und Rekonstruktionszeit eines CT-Scans zu beurteilen. In der in-
dustriellen CT lassen sich drei Scanmodi anhand der zur Verfligung stehenden Messzeit
identifizieren: die Labor-CT, die At-line-CT und die In-line-CT. Die Labor-CT ist auf eine
bestmogliche Bildqualitdt ausgelegt, sodass die Messzeit praktisch nicht limitiert ist. Im
Gegensatz dazu steht die In-line-CT, die zur liickenlosen Priifung in einem Produkti-
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onsprozess eingesetzt wird und deren Messzeit direkt an den Produktionstakt T der
zu priifenden Teile (sogenannte Priifteile) gekoppelt ist. Durch die Einschrankung der
Messzeit kann die Bildqualitdt negativ beeintrachtigt werden. Zwischen diesen beiden
Priifkonzepten gibt es die At-line-CT, die produktionsbegleitend nicht jedes produzierte
Teil, sondern nur stichprobenhaft die CT-Priifung durchfiihrt, sodass ein Kompromiss
aus Bildqualitdt und aufgebrachter Messzeit erreicht wird. Grundsétzlich ldsst sich fiir die
Labor-CT keine eindeutige obere Schranke hinsichtlich der Inferenzzeit eines DL-Modells
bestimmen, da die Messzeiten anwendungsabhingig sind und ebenso die Dimensionen
der rekonstruierten Volumina stark variieren. Hingegen wird durch den Produktionstakt
bei der At-line- und In-line-CT die maximale Verarbeitungszeit eingeschrankt. Anhand
eines Beispiels aus der industriellen FlieSbandproduktion lassen sich einige Faktoren aus
der Anwendungsumgebung anschaulich erfassen. Abbildung 6.1 zeigt den Ausschnitt
einer industriellen Fertigungslinie mit einem CT-Scanner zur Qualitédtsiiberwachung.

Wihrend das Priifteil nach der CT-Bildaufnahme im Fertigungsprozess weiterverarbeitet

CT-Scan

© ©
>

Abbildung 6.1: Schematische Darstellung einer In-line-CT gekoppelt an ein FlieSband mit ei-
nem zeitlichen Abstand T, der Taktzeit, zwischen zwei Priifteilen (oder: Proben).
Nach der Bildaufnahme im CT-Scanner werden die Priifteile auf dem FlieSband
weitertransportiert und die Zeit, beziehungsweise die zuriickgelegte Strecke, bis

zur Prifentscheidung in Ordnung (i.0) oder nicht in Ordnung (n.i.0.) durch den
CT-Scan wird als Latenz L bezeichnet.

i.0.

L

wird, laufen im Hintergrund die Rekonstruktion und die (DL-basierte) Auswertung.
Die Laufzeit der DL-Modelle hat somit, additiv zur Laufzeit der Rekonstruktion, einen
direkten Einfluss auf die Latenz der Priifentscheidung. Im Idealfall erfolgen die Rekon-
struktion und die Auswertung innerhalb der Taktzeit T, sodass die Latenz kleiner oder
gleich der Taktzeit ist und die gesamte Auswertung somit in Echtzeit zum Priifprozess
erfolgt. Dreier et al. demonstrieren, dass einzelne Priifaufgaben an Batteriezellen mit-
hilfe von CT-Scans innerhalb einer Sekunde durchgefiihrt werden kénnen [109]. Aus
Gesprachen mit CT-Experten wird zudem Kklar, dass die Durchfiihrung eines CT-Scans
einer ganzen Batteriezelle (Rundzelle, beispielsweise Typ 18650) innerhalb von etwa 10s
realistisch auf dem von Dreier et al. beschriebenen CT-Scanner! durchgefiihrt werden
kann. Die Rekonstruktion der CT-Daten wird im Rahmen dieser Arbeit nicht ndher
betrachtet, sodass idealisiert angenommen wird, dass die Rekonstruktion innerhalb der
geforderten Taktzeit von 10s auf einem dedizierten Rechner erfolgt. Somit ergibt sich

Konkret wird die kurze Messzeit durch den hohen Photonenfluss der von Dreier et al. verwendeten
Rontgenquelle [109] erreicht.
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tiir die Materialbestimmung, analog zur Rekonstruktionszeit, die maximale Inferenzzeit
10s, um dem Takt der CT-Scans zu folgen. Die Materialbestimmung mit Deep Learning
wird in der Regel (vergleiche Kapitel 4.2.4) schichtweise durchgefiihrt, sodass die Berech-
nungen auf unabhéngigen CT-Schichten, senkrecht zur Drehachse, auf mehreren GPUs
parallel ausgefiihrt werden konnen, wobei jede GPU die Zeit T = 10s ausschopfen kann.
Im weiteren Verlauf des Kapitels wird sich zeigen, welche Architekturen nach dieser
Definition In-line-fiihig sind und insbesondere wirtschaftlich sinnvoll, das heifst unter
Verwendung eines einzelnen Inferenzservers mit bis zu acht Graphikkarten, in realen
Produktionsumgebungen genutzt werden kénnen.

Eine weitere Rahmenbedingung fiir den industriellen Einsatz der entwickelten Verfah-
ren zur Materialbestimmung besteht in der absoluten Prizision sowie der Bildqualitat.
Hierbei meint der Begriff Prizision die Vorhersagegenauigkeit der Methode in Bezug auf
die ortsabhingige Materialzusammensetzung (Kernladungszahl Z und Dichte p) und
der Begriff Bildqualitit die klassische Bildqualitdt in Bezug auf Rauschen und Bildschér-
fe. Die Anforderungen an die Bildqualitidt werden direkt aus dem CT-Scan abgeleitet.
Wie in Kapitel 2.3 beschrieben, wird das Rauschen der aufgenommenen Projektionen
durch die Rekonstruktion in das Volumen zuriickprojiziert. Steuwe et al. zeigen, dass
die DL-basierte Bildverarbeitung das Rauschen in CT-Schichtbildern reduzieren kann
[110]. Daher soll anhand der Ergebnisse dieser Arbeit die Rauschreduktion der verwen-
deten Methode stichprobenartig untersucht werden. Hierzu wird das Bildrauschen als
effektive Schwankung der rekonstruierten Abschwachungskoeffizienten quantifiziert. Die
Prazision der Methode muss im Kontext einer gegebenen Messaufgabe beurteilt werden.
Mit dem Wissen, dass eine vorliegende Probe weder ein Gemisch noch eine Legierung
ist, gentigt zur Materialbestimmung von beispielsweise Aluminium die Vorhersage der
Kernladungszahl Z = 13 & 0.49. Anders verhilt es sich bei Legierungen, wie zum Beispiel
Edelstdhlen, da hier die effektiven Kernladungszahlen verschiedener Edelstdhle reell-
wertig sind [14] und sich gegebenenfalls erst in den Nachkommastellen unterscheiden.
Gleiches gilt fiir die Vorhersage der Dichte, sodass sich fiir beide Grofien keine direkte
Anforderung beziiglich der Préazision aus der Anwendungsperspektive ergibt — je genauer,
desto besser. In Gesprachen mit CT-Anwendern wird hédufig eine maximale Abweichung
von 1% (Abweichung vom jeweiligen Literaturwert) fiir die Materialbestimmung, das
heifit konkret die Kernladungszahl und die Dichte, gefordert. Daraus ergibt sich beispiels-
weise fiir die Dichtevorhersage von Eisen mit dem Literaturwert ein Toleranzbereich
p ~ (7.80 £0.08) g/cm?>. Zur Vereinfachung, das heif3t unter Ausschluss von Legierungen,
werden somit die Toleranzbereiche £0.5 fiir die Vorhersage der Kernladungszahl und
+1 % fiir die Vorhersage der Dichte definiert. Innerhalb dieser Toleranzbereiche konnen
sogenannte Reinstoffe’ eindeutig identifiziert und anhand ihrer Dichte auf Porositit ge-
priift werden. Darauf aufbauend kann untersucht werden, welche maximale Prézision
tir die Vorhersage der Kernladungszahl und Dichte aus physikalischer Sicht tiberhaupt
moglich ist. Die rekonstruierten DECT-Schichtbilder dienen als Eingabedaten fiir das
vorgestellte Verfahren zur Materialbestimmung. Sie unterliegen einem Rauschen, welches

die maximale Prézision der Materialbestimmung limitiert und zunédchst bestimmt werden

2 Gemeint ist hier ein Material, das nur aus einer Atomsorte besteht.
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muss. Das absolute Rauschen entspricht der Standardabweichung der rekonstruierten
Abschwiéchungskoeffizienten in einem homogenen Objekt. Problematisch ist jedoch, dass
die rekonstruierten Abschwiachungskoeffizienten, aufgrund der Strahlaufhartungsarte-
fakte innerhalb einer stark abschwdchenden Probe, positionsabhéngig abgesenkt werden
und somit die genannte Standardabweichung in einem Bildausschnitt signifikant be-
einflussen. Um das absolute Rauschen von den Strahlauthédrtungsartefakten (vergleiche
Kapitel 2.4.1) innerhalb der Probe zu trennen, wird eine zweidimensionale Funktion
an den gewahlten Bildausschitt u(*¥) im CT-Schichtbild angefittet, die naherungsweise
den Einfluss der Strahlaufhdrtungsartefakte abbildet. Abbildung 6.2 zeigt einen eindi-
mensionalen Schnitt durch den Kupferwiirfel aus Abbildung 5.8 (realer Scan) sowie die
angefittete Funktion. Die Standardabweichung der Differenz zwischen Signal und Fit

0.17 1

=]

—_

[«
1

0.15 A

pin 1/cm

0.14 A

0.005 1

0.000
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Abbildung 6.2: Schnitt durch den mittleren Teil des Kupferwiirfels aus Abbildung 5.8 (Signal)
mit dem Fit eines Polynoms vierten Grades (oben). Die absolute Abweichung
zwischen dem Signal und dem Fit wird unten dargestellt und entspricht dem
absoluten Rauschen in der Einheit 1/cm. Der genaue Bildausschitt innerhalb der
Kupferprobe ist in Abbildung 6.3 eingezeichnet.

(Abbildung 6.2; unten) entspricht dem absoluten Bildrauschen in dem ausgewédhlten
Bildausschnitt. Abbildung 6.3 stellt die DECT-Schichtbilder aus dem realen CT-Scan
gemeinsam mit den ausgewdhlten Bildausschnitten zur Bestimmung des Rauschens dar.
In allen Materialien ist das Rauschen im Low-Energy-Kanal (140 kV) starker. Weiterhin ist
das Rauschen in den Abschwichungskoeffizienten von Eisen und Kupfer deutlich hoher
als in den Abschwichungskoeffizienten des Aluminiums, da das Aluminium aufgrund
der niedrigeren Abschwéchung weniger Photonen absorbiert und somit die Zahlstatistik
am Detektor besser ausfallt. Zur Bestimmung des Einflusses des Bildrauschens Ay; auf
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Abbildung 6.3: Rekonstruierte DECT-Volumina eines realen Scans mit berechnetem Rauschen in
den verschiedenen Materialien. Die roten Boxen markieren die jeweilige Bildaus-
schnitte zur Berechnung des Rauschens.

die vorhergesagte Kernladungszahl Z und Dichte p werden die Gleichungen nach Knoll
[3, S. 54; G. 2.22] und Heismann [14] verwendet:

UL = 0 HUm (Knoll)

7k (6.1)
HL=apor + Bo (Heismann)

wobei ym der Massenschwachungskoeffizient eines Materials m ist, a, B, k und ! Konstan-
ten nach Heismann [14] sind und E die effektive Photonenenergie (vergleiche Kapitel 2.6;
Sprawls [34]) ist. Durch Umformen und Ableiten ergibt sich fiir die Fehlerfortpflanzung
mit einem gegebenen Rauschen des rekonstruierten Volumens Apy

1 1
_ Zk B (HL—,BP)EI %_ El 13 1
yL—ucpﬁ—k,Bp = Z= <(xp> = <“p> (nL — Bp)*
dz BN
= —— = R .
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-1 (6.2)
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tiir die Ungenauigkeit der Kernladungszahl AZ sowie

ML dp 1

HL=p M P Jim dur i

1 (6.3)
= Ap = — - Aug,
Hm
fir die Ungenauigkeit der Dichte Ap.
Aus den berechneten Werten des Bildrauschens in Abbildung 6.3 und den Gleichungen
6.2 und 6.3 werden die bestmoglichen Prézisionen fiir die Materialbestimmung abhéngig
vom Material ermittelt und in Tabelle 6.1 aufgelistet. Da die Materialbestimmung auf
beiden Energien des DECT-Scans basiert, wird das stiarkere Rauschen (Low-Energy-Bild
aus Abbildung 6.3 (links)) zur Abschdtzung verwendet.

Tabelle 6.1: Theoretische Grenzauflésungen der Kernladungszahlvorhersage Z + AZ und Dichte-
vorhersage p = Ap berechnet mithilfe von Gleichung 6.2 und 6.3 anhand der Daten
des realen Scans aus Abbildung 5.8 und 6.3.

Material ZE+AZ | (p£Ap)ing/cm’
Al (Z =13,p=270) | 13+0.033 2.70 £ 0.0096
Fe (Z = 26, p = 7.80) | 26 £0.023 | _ 7.80 = 0.0092
Cu(Z =29, p=2893) | 29+£0.021 8.93 +0.0083

6.2 SIMULIERTES PHANTOM ZUR QUANTITATIVEN AUSWERTUNG

Fiir einen quantitativen Vergleich zwischen den im weiteren Verlauf dieses Kapitels
entwickelten DL-Architekturen werden Testdaten benotigt, deren Eigenschaften exakt
bekannt sind. Die Phantome der Testdaten miissen verschiedene Materialien enthalten,
deren Zusammensetzung und Position innerhalb der rekonstruierten Volumina exakt
bekannt sind. Zur Abdeckung der in Kapitel 5.3 motivierten Bandbreite verwende-
ter Materialien, werden die Materialien Aluminium, Eisen und Kupfer exemplarisch
ausgewdhlt. Aluminium zdhlt zu den leichtesten und Kupfer zu den schwersten aus-
gewdhlten Elementen in Tabelle 5.1 wahrend Eisen mittig platziert ist. Zudem miissen
die CT-Geometrie und das Quellspektrum exakt bekannt sein, um Abweichungen der
DL-Modelle aufgrund von systematischen Modellierungsfehlern ausschliefien zu konnen.
Riickblickend auf die beobachtete Sim-To-Real-Gap in Kapitel 5.4.2 sollte daher eine
Simulation zur Erzeugung des Phantoms verwendet werden, die den CT-Messprozess
analog zu der implementierten Simulation modelliert. Somit kann beispielsweise der
Einfluss der Streustrahlung auf die Ergebnisse der Materialbestimmung explizit ausge-
klammert werden. Dennoch sollten die Testdaten in einem sinnvollen und realistischen
Mafs CT-Artefakte, konkret die Strahlaufhartung und das statistische (Bild-)Rauschen,
enthalten. Die Starke der Strahlaufhdrtung kann durch die Probengrofie (genauer: die
Schnittlange durch ein Material) sowie durch das Quellspektrum beeinflusst werden.
Basierend auf Experimenten an der realen CT-Anlage aus Kapitel 2.7 werden die DECT-
Quellspektren mit den Beschleunigungsspannungen 140kV (Low-Energy-Kanal) und
240kV (High-Energy-Kanal) festgelegt. Wahrend die hohere Beschleunigungsspannung
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mit 240 kV die maximal einstellbare Beschleunigungsspannung an der Rontgenquelle der
realen CT-Anlage ist, wird die niedrigere Beschleunigungsspannung so gewahlt, dass
sie einerseits einen moglichst grofien Abstand zur hoheren Beschleunigungsspannung
aufweist und andererseits nicht so niedrig ist, dass die Strahlaufhartungsartefakte die
Bildqualitat mafigeblich beeintrachtigen. Die Probengrofie wird auf 1cm (Kantenlédnge)
festgelegt, um deutliche Strahlaufhédrtungsartefakte im Low-Energy-Kanal zu induzieren
wihrend der High-Energy-Kanal weitestgehend artefaktfrei bleibt. Zur Simulation des
Testdatensatzes wird aRTist (vergleiche Kapitel 5.2.1) verwendet. Das simulierte Phantom
wird in Abbildung 6.4 dargestellt. Die in der Simulation verwendeten CT-Scanparameter,

(a) Phantom (b) Abbildungsgeometrie
858

Abbildung 6.4: Screenshots (a) des Phantoms bestehend aus Aluminium (A/), Eisen (Fe) und
Kupfer (Cu) sowie der gesamten Abbildungsgeometrie in (b) aus der Simulation
aRTist. In (b) befindet sich die Rontgenquelle mit eingezeichnetem Strahlkegel
oben im Bild. Direkt unterhalb ist das Phantom aus (a) zu sehen. Unten befindet
sich ein Detektor, der die Projektion des Phantoms zeigt.

abgeleitet aus den Anforderungen, werden in Tabelle 5.2 aufgelistet. Abbildung 6.5 zeigt
einen Schnitt durch das rekonstruierte Volumen des Phantoms aus Abbildung 6.4. Der
Effekt der Strahlaufhartung kann anhand des deutlichen Cuppings (vergleiche Abschnitt
2.4.1), wie gefordert, in der oberen Zeile im Low-Energy-Kanal erkannt werden. Fiir
die nachfolgenden Auswertungen dieses Kapitels wird ausschliefilich das vorgestellte
Phantom aus Abbildung 6.5 verwendet.
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Abbildung 6.5: CT-Schnittbilder durch den Low-Energy-Kanal (oben) und den High-Energy-
Kanal (unten) des Phantoms aus Abbildung 6.4. Die rechte Spalte stellt jeweils
den Schnitt entlang der gestrichelten Mittellinien dar.
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6.3 EINFLUSS DES GLOBALEN BILDKONTEXTES

CT-Artefakte beeinflussen im Allgemeinen die Bildqualitdt und insbesondere die quantita-
tiv gemessenen Abschwichungskoeffizienten, wie in Abschnitt 2.4.1 beschrieben worden
ist. Die Identifikation eines CT-Artefakts, in einem gegebenen CT-Volumen, ist fiir Doma-
nenexperten in der Regel unproblematisch, da sie, im globalen Bildkontext, das gescannte
Objekt von den charakteristischen Streifen, Linien und Grauwertverschiebungen unter-
scheiden konnen. Wird hingegen nur ein kleiner Ausschnitt des CT-Volumens betrachtet,
ist diese Unterscheidung zunehmend anspruchsvoller und ab dem Unterschreiten einer
gewissen Bildausschnittgroffe unmoglich. DL-basierte Verfahren zur Verarbeitung von CT-
Daten, oder allgemein Bilddaten, bieten gegeniiber den meisten klassischen Algorithmen
den Vorteil, dass sie dieses entscheidende Kontextwissen extrahieren konnen. Im Idealfall
wird somit ein DL-Modell auf vollstindigen Schnittbildern aus dem CT-Volumen trainiert,
sodass der globale Kontext ebendieser Schicht vollstindig verfiigbar ist. Ein Problem
mit diesem Ansatz ist, dass industrielle CT-Schnittbilder hidufig eine hohe Auflosung
bis zu 30002 Voxeln aufweisen, sodass das direkte Training auf einzelnen Schichtbildern
dieser Auflosung aufgrund des immensen Rechenbedarfs nicht realistisch durchfiihrbar
ist. In Kapitel 5.1.2, den DL-induzierten Rahmenbedingungen, wurden daher die Bilddi-
mensionen der simulierten CT-Schichtbilder vorldufig auf (H, W) = (256,256) festgelegt.
Dennoch existieren Strategien, um mit grofien Bildern zu trainieren und die Modelle auf
ebendiesen auszufiihren: Bei der sogenannten Crop-Strategie werden das Training und
die Inferenz auf kleineren Bildausschnitten, sogenannten Crops, ausgefiihrt. Alternativ
konnen die grofien Bilder auch mittels Interpolation verkleinert werden (Resize-Strategie),
sodass das gesamte CT-Schichtbild mit einer reduzierten Auflosung vorliegt. Beide Strate-
gien werden im Folgenden erprobt und hinsichtlich ihrer Vorhersagegenauigkeit bei der
Materialbestimmung verglichen. Basierend auf den Ergebnissen der Literaturrecherche
in Kapitel 4.2.4 wird, der Mehrheit der Autoren folgend, die U-Net-Architektur nach
Ronneberger et al. [36] verwendet. Da es sich bei der folgenden Untersuchung der Resize-
und Crop-Strategie im Kern um die Bedeutung des globalen Bildkontextes fiir die lokale
Materialbestimmung handelt, kann angenommen werden, dass sich andere Architekturen
in diesem Punkt analog zum U-Net verhalten.

Um einen fairen Vergleich zu ermoglichen, wird ein Datensatz mit den Dimensionen
(C,H,W) = (2,1024,1024) der DECT-Schichtbilder simuliert. Da die Gesamtgrofle des
Datensatzes aufgrund der hohen rdumlichen Auflésung signifikant ansteigt (vergleiche
Kapitel 5.1), wird die Anzahl der simulierten Tupel auf 32.000 reduziert, sodass der Daten-
satz insgesamt etwa 260 GB umfasst. Fiir das Modell, das mit der Resize-Strategie trainiert
wird (Mrsi#¢) werden die Bilder mittels bilinearer Interpolation auf die Dimensionen
(C,H,W) = (2,256,256) verkleinert. Das andere Modell (M°P) wird mit, wéhrend des
Trainings zufillig erzeugten, Crops mit den Dimensionen (C, H, W) = (2,256,256) aus
den DECT-Schichtbildern trainiert. Abbildung 6.6a zeigt den Training Loss und den
Validation Loss des Models M™siz¢ das auf vollstindigen DECT-Schichtbildern trainiert
worden ist. Nach etwa 150 Epochen erfahrt das Modell Overfitting an die Trainingsdaten.
Die Loss Curves des Modells M“°P sind in Abbildung 6.6b dargestellt. Anhand von

91



92

DEEP-LEARNING-ARCHITEKTUR FUR DIE MATERIALBESTIMMUNG

— train
—-1 -1 ]
0 ] 10 ] validation
7 7
e} -2 4 Q -2
2 10 \ 3 10 3
“s,\\b 11
- ¥ | ‘ 4 \
E \\\l E v,“- ‘
1073 4 \"\W 10775 \ |
] 1 .
] : B L 44
0 200 400 0 250 500 750
Epoche Epoche
(a) Resize-Strategie (b) Crop-Strategie

Abbildung 6.6: Training (train) und Validation Losses (validation) fiir (a) das Training auf ganzen
CT-Schichtbildern mit der Resize-Strategie und (b) das Training auf zufilligen
Ausschnitten der CT-Schichtbilder mit der Crop-Strategie. Die Originalauflésung
der Schichtbilder ist (1024 x 1024) Pixel. Die Schichtbilder werden fiir das Training
in (a) mittels bilinearer Interpolation verkleinert, sodass der gesamte Bildkontext
vorliegt. Das Training in (b) wird mit Random Crops der DECT-Schichtbilder
durchgefiihrt, sodass nur ein eingeschrénkter, lokaler Bildkontext vorliegt. Die
jeweils besten Validation Losses werden durch die gestrichelten Linien markiert.
Beide Plots entsprechen der Legende in (b). Die Trainingsparameter sind in beiden
Durchldufen bis auf die Anzahl der Epochen identisch.

Abbildung 6.6 scheint das Training mit der Crop-Strategie bessere Ergebnisse, das heifst
konkret einen niedrigeren Validation Loss, zu liefern. Ein Grund fiir den niedrigeren Vali-
dation Loss kann in der relativen Grofie der Regionen (vergleiche Abbildung 5.3) in Bezug
zur Bildgrofse, beziehungsweise im Fall der Crop-Bilder Bildausschnittsgrofie, vermutet
werden. Es besteht die Vermutung, dass grofiere, zusammenhdngende Materialregionen,
einfacher vom Modell vorhergesagt werden konnen. Dieser Zusammenhang zwischen
der mittleren Regionsgrofie relativ zur Bildgrofie und der Materialvorhersage wird in
Abschnitt 7.1 durch eine Variation der mittleren Regionsgrofie spezifisch untersucht.

Die quantitative Auswertung des Phantoms in Tabelle 6.2 bringt im Gegensatz zu Ab-
bildung 6.6 hervor, dass die Bestimmung der Materialien in den meisten Fillen mit der
Resize-Strategie bessere Ergebnisse liefert. Lediglich die Vorhersage der Kernladungszahl
von Kupfer erzielt einen besseren Mittelwert mit der Crop-Strategie, wobei die berech-
nete Standardabweichung verhéltnisméfiig hoch ausfallt. Die Ergebnisse zeigen, dass
die Resize-Strategie zur Optimierung der Materialbestimmungsprazision im Folgenden
verwendet werden sollte. Offen bleibt die Frage nach einer sinnvollen Bildgrofse infolge
des Resizings. Wie bereits in Kapitel 5.1 beschrieben, hat die Bildgrofie einen signifi-
kanten Einfluss auf die Grofse des gesamten Trainingsdatensatzes sowie die Dauer des
Trainings. Vor dem Hintergrund, dass im weiteren Verlauf dieses Kapitels und auch in
den weiteren Kapiteln zahlreiche Modelle trainiert werden miissen, um sowohl Hyper-
parameter zu optimieren als auch Grenzen der entwickelten Methodik zu untersuchen,
werden die Bilddimensionen in den Trainingsdaten im Folgenden auf (256 x 256) Pixel
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festgelegt. Diese Dimensionen orientieren sich weiterhin an den Ergebnissen der Litera-
turrecherche aus Kapitel 4.2.4 und sind ausreichend, um die Methodik zu untersuchen,

ohne wertvolle Rechenzeit in einem unverniinftigen Mafs zu verbrauchen. Eine Impli-

Tabelle 6.2: Vorhergesagte Kernladungszahlen in (a) und absolute Dichten in (b) fiir die verschie-
denen Trainingsstrategien resize und crop. Die tabellierten Werte geben den Mittelwert
u und die Standardabweichung ¢ der Vorhersage in der Form y &+ ¢ an. In der jeweils
ersten Spalte werden die Materialien zusammen mit ihren Literaturwerten gelistet.
Das jeweils bessere Ergebnis, pro Strategie und Material, ist grau hinterlegt. Alle
Ergebnisse wurden mit einem U-Net [36] erzielt.

Material resize crop Material resize crop
Al (13) | 13.034+0.05 | 15.70 £1.08 Al (2.70) | 270 £0.01 | 2.65 £ 0.03
Fe (26) | 26.53 £0.08 | 26.81 £0.15 Fe (7.80) | 7.81+£0.02 | 7.78 £0.03
Cu (29) | 28.69 £0.11 | 28.88 £ 0.62 Cu (8.93) | 897£0.02 | 9.14+0.2

(a) Kernladungszahl Z (b) Dichte p in g/ cm?

kation aus dieser Wahl ist, dass die Materialbestimmung auch auf hochauflosenden
CT-Schnittbildern mit deutlich grofleren Bilddimensionen stets eine maximale Auflo-
sung von (256 x 256) Pixel erreicht. Somit konnen kleine Partikel durch Anwendung der
Resize-Strategie in den CT-Schichtbildern durch die Interpolation verfilschte Abschwa-
chungskoeffizienten aufweisen oder vollstindig verschwinden. Fiir einen spezifischen
Anwendungsfall, beispielsweise die Materialbestimmung ebendieser Partikel, konnen
aufbauend auf dieser Arbeit, mit der gleichen Methodik und geniigend Rechenzeit,
DL-Modelle auf deutlich grofieren Bilddimensionen nach dem Resizing trainiert werden,

um die auflosungsbedingte Prazision zu verbessern.

6.4 VERSCHIEDENE ARCHITEKTUREN: CONVOLUTION ODER TRANSFORMER?

Im Rahmen dieser Arbeit werden ausschliefilich Architekturen fiir die Bildverarbeitung
(CV) betrachtet, da die Materialbestimmung nach den Anforderungen aus Kapitel 5.1
als eine Bild-zu-Bild-Berechnung (Dense Prediction) formuliert wird. Mit der steigenden
Popularitdat von Deep Learning ist in den letzten Jahren eine Vielzahl unterschiedlicher
Architekturen fiir ebenso vielfaltige Anwendungen vorgestellt und erprobt worden. Eine
Architektur, die fiir vielfdltige Anwendung aus verschiedensten Doménen angewandt
wird [52, 53, 54, 55], ist das U-Net [36], das bereits in Abbildung 3.5 vorgestellt wurde.
Das U-Net wurde im vorangehenden Abschnitt, motiviert durch die Ergebnisse der
Literaturrecherche aus Kapitel 4.2.4, exemplarisch verwendet, um den Einfluss des glo-
balen Bildkontextes innerhalb eines CT-Schichtbildes auf die Materialbestimmung zu
untersuchen. In Abschnitt 6.4.1 werden die Kapazitit des U-Nets (vergleiche 6 Abschnitt
3.1) sowie die Trainingsdatenmenge systematisch optimiert, um die effizienteste Konfi-
guration im Kontext der formulierten Anforderungen fiir die Materialbestimmung zu
finden.

Han et al. dokumentieren einen Trend, demzufolge Transformer-basierte Architekturen

zur Bildverarbeitung zunehmend an Popularitdt gewinnen [111] und die Convolution-
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basierten Architekturen durch ihre verbesserte Genauigkeit und Inferenzgeschwindigkeit
in gangigen CV-Benchmarks zur Bildklassifikation [57], Objektdetektion und Segmentie-
rung [37] verdrangen. Die Frage, ob Transformer-basierte Architekturen ebenfalls bei der
Materialbestimmung anhand von CT-Schichtbildern die Convolution-basierten Architek-
turen {tibertreffen, ist bisher in der Literatur nicht quantitativ untersucht worden, sodass
in ebendieser Untersuchung einer der Forschungsbeitrdge dieser Dissertationsschrift
besteht. In Abschnitt 6.4.2 wird eine Transformer-basierte Architektur vorgestellt, die fiir
Dense Prediction geeignet ist und hinsichtlich der Materialbestimmung optimiert. Es
erfolgt ein Vergleich zwischen dem U-Net und der Transformer-basierten Architektur,
sodass eine geeignete Architektur fiir den weiteren Verlauf dieser Arbeit ausgewéhlt

werden kann.

6.4.1 U-Net

Das U-Net wurde im vorangehenden Abschnitt in seiner urspriinglichen Form nach
Ronneberger [36] verwendet. In diesem Abschnitt soll zunédchst die Prézision der Mate-
rialbestimmung bei der Verwendung des U-Nets weiter verbessert werden, indem die
Kapazitit der U-Net-Architektur variiert wird. Einige Autoren berichten von Anpassun-
gen der Feature—Map—Tiefe3 des U-Nets [65, 66, 74], sodass das U-Net fiir ihre spezifischen
Anwendungen bessere Ergebnisse liefert oder Rahmenbedingungen, wie zum Beispiel
eine reduzierte Inferenzzeit, besser erfiillt. Daher wird fiir die gegebene Fragestellung
der Materialbestimmung die Tiefe der Feature-Map des U-Nets optimiert. Das U-Net
wurde durch Ronneberger mit einer Feature-Map-Tiefe von 64 definiert [36]. Zur Verein-
fachung wird die Notation U-Net* verwendet, die ein U-Net mit der Feature-Map-Tiefe
x bezeichnet. Tabelle 6.3 bietet einen Uberblick iiber die im Folgenden getesteten Feature-
Map-Tiefen. Die Feature-Map-Tiefen werden anhand von Zweierpotenzen gewéhlt, um
ein effizientes Speicherlayout der zugrundeliegenden Rechenoperationen zu erreichen.
Fiir jede Feature-Map-Tiefe werden zudem die Kapazitit und die benotigte Rechenzeit
fiir das Training tiber 100 Epochen angegeben. Beim U-Net fiihrt eine Verdoppelung der

Tabelle 6.3: Kapazitdt des U-Nets und Rechenzeitbedarf T zum Training tiber 100 Epochen fiir
verschiedene Feature-Map-Tiefen. Die Angaben zum Rechenzeitbedarf wurden mit
einem Rechenknoten bestehend aus vier NVIDIA H100 und einem Datensatz der
Grofse 250.000 (vergleiche Tabelle 5.1) ermittelt. Das Symbol t zeigt an, dass es sich um
einen extrapolierten Wert aufgrund von Rechenzeitlimitierungen (maximal 24 Stunden
pro Job) handelt.

Feature-Map-Tiefe 8 16 | 32 64 128 256
Kapazitiat / 1 x 10° 1 05|19 | 75300 | 120.0 | 480.0
T in Stunden 2412634 48 92 | 25.8F

Feature-Map-Tiefe zu einer Vervierfachung der Kapazitat. Weiterhin ist zu beobachten,
dass die benétigte Rechenzeit nicht proportional zur Kapazitit (im tabellierten Bereich)
ist, da mit steigender Kapazitdt der Datentransfer zwischen CPU- und GPU-Speicher

Beschrieben in Abschnitt 3.4.1: Die Anzahl der Kanéle des Tensors (der Feature-Map) vor der ersten
Pooling-Layer im U-Net.



6.4 VERSCHIEDENE ARCHITEKTUREN: CONVOLUTION ODER TRANSFORMER?

einen zunehmend kleineren Anteil der Rechenzeit ausmacht.* Anhand der angegebenen
Rechenzeiten in Tabelle 6.3 wird ersichtlich, dass die Modelle U-Net'?® und U-Net?*®, auf-
grund der Rechenzeitbeschrankungen der Partition WestAI am Forschungszentrum Jiilich,
lediglich tiber 260 beziehungsweise 96 Epochen trainiert werden kénnen. Die anderen
Modelle werden bis zur Konvergenz — meistens iiber 500 Epochen — trainiert. Abbildung
6.7 fasst die Ergebnisse der Materialbestimmung fiir die verschiedenen Feature-Map-
Tiefen nach erfolgtem Training der Modelle auf dem Trainingsdatensatz nach Tabelle 5.2
zusammen. Aluminium weist die niedrigsten Abweichungen (MAE) und gleichzeitig die

Kernladungszahl Dichte
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0.6
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Abbildung 6.7: Mittlerer absoluter Fehler MAE der Vorhersage von Kernladungszahl (links) und
Dichte (rechts) mit dem U-Net bei verschiedenen Feature-Map-Tiefen. Ausge-
wertet wurde mithilfe des in Abbildung 6.4 vorgestellten Phantoms anhand der
Materialien Aluminium, Eisen und Kupfer. Der graue Bereich in der linken Abbil-
dung markiert den Toleranzbereich (vergleiche Rahmenbedingungen in Abschnitt
6.1). Analog wird der obere Rand des Toleranzbereiches der Dichte fiir jedes
Material im rechten Plot gestrichelt markiert.

hochste Stabilitdt der Kernladungszahlvorhersage zwischen den verschiedenen Modellen
auf. Die MAEs der Materialien Eisen und Kupfer fluktuieren hingegen deutlich. Es
ist zu beobachten, dass nur die Feature-Map-Tiefe 64 sowohl bei der Vorhersage der
Kernladungszahl als auch bei der Dichte die geforderten Prazisionen von AZ = £0.5
(absolut) und Ap = £1 % (relativ) nach Abschnitt 6.1 fiir alle Testmaterialien erreicht.
Somit wird die Feature-Map-Tiefe 64, in Ubereinstimmung mit dem Vanilla U-Net nach

Im Allgemeinen werden Daten vom CPU-Speicher (auch: Host Memory) zunéchst in den GPU-Speicher (auch:
Device Memory) iibertragen, bevor konkrete Berechnungen auf der GPU mit ebendiesen Daten ausgefiihrt
werden konnen. In vielen Féllen stellt dieser Transfer einen Grofteil der benotigten Berechnungsdauer dar,
der, aus Sicht der GPU, reine Wartezeit ist. Mit zunehmender Kapazitdt des Modells steigt auch die benétigte
Rechenzeit der Graphikkarte zur Verarbeitung eines Datenpakets und somit reduziert sich die Wartezeit auf
das néachste Datenpaket. Mithilfe asynchroner Programmierung, die aufgrund ihrer Komplexitit hier nicht
weiter erldutert wird, werden die Wartezeiten der GPU signifikant reduziert und der Durchsatz verbessert.
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Ronneberger [36], fiir die folgenden Untersuchungen verwendet.

Der zweite Optimierungsaspekt, der in diesem Fall ein Hyperparameter des Trainings ist,
besteht in der Grofse des Trainingsdatensatzes. Eine Verkleinerung des Trainingsdatensat-
zes kann die Simulation sowie das anschlieSende Training deutlich beschleunigen und
somit effizienter gestalten. Aus der verwandten Forschung in Kapitel 4 geht hervor, dass
einige Autoren Datensdtze mit nur wenigen tausend Tupeln zum Training des U-Nets
verwenden [65, 68, 73, 72]. Zundchst wird die Grofsenabhingigkeit des Trainingsdatensat-
zes auf die Materialbestimmung untersucht. Der zugrundeliegende Datensatz D umfasst
250.000 Tupel (vergleiche Tabelle 5.2) — die verkleinerten Datensatze erfiillen die Relation

D(10K) € D(15K) € D(25K) € D(50K) € D(100K) € D(250K)

Aus dem urspriinglichen Datensatz D (250 K) werden zuféllig 100.000 Tupel ausgewéhlt,
die den Datensatz D(100K) bilden. Analog wird fiir die kleineren Datensitze verfahren,
sodass diese jeweils eine Teilmenge aller grofleren Datensitze sind. Abbildung 6.8 stellt
die Validation Losses mehrerer U-Nets dar, die jeweils auf den genannten Datensatzen
trainiert worden sind. Im Gesamtbild von Abbildung 6.8 sinkt der finale Validation Loss

— 10K 25K 100K
— 15K — 50K — 250K

“‘

1072

T T T T T
0 100 200 300 400 500
Epoche

Abbildung 6.8: Validation Losses mehrerer U-Nets trainiert auf verschiedenen Datensatzgrofien
(siehe Legende).

mit zunehmender Grofle des Trainingsdatensatzes. Die einzige Ausnahme wird bei den
Datensidtzen der Grofle 10K und 15K beobachtet, wobei es sich auch um statistische
Schwankungen handeln kann. Grundsitzlich ist zu beobachten, dass die Validation
Losses um bis zu eine Grofienordnung im gezeigten Beispiel in Abbildung 6.8 variie-
ren. Abbildung 6.9 bietet einen Uberblick der Vorhersagen mit den soeben trainierten
Modellen auf dem simulierten Testphantom aus Abbildung 6.5. Die Vorhersage der
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Abbildung 6.9: Vorhergesagte Kernladungszahlen und Dichten des Phantoms aus Abbildung 6.5
mit den U-Nets, trainiert auf verschiedenen Datensatzgrofien nach Abbildung 6.8.
Die Literaturwerte sind grau und dick gestrichelt eingezeichnet. Die in Kapitel
6.1 definierten Prazisionen von £0.5 fiir die Kernladungszahl sowie £1% fiir die
Dichte sind grau und diinn gestrichelt als obere und untere Grenze des zulédssigen
Bereiches, grau hinterlegt, eingezeichnet.
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Kernladungszahl liefert bei allen Modellen fiir die maximale Datensatzgrofie (250K)
die geringsten Abweichungen zu den Literaturwerten. Insbesondere die Vorhersage der
Kernladungszahl des Aluminiums gelingt stabil innerhalb des Toleranzbereiches mit
allen genannten Datensatzgrofien. Die Vorhersage der Dichte liegt fiir alle Materialien
des Testphantoms nur bei den Datensatzgrofien 25K und 250K innerhalb des giiltigen
1%-Bereiches. Bei allen anderen Datensatzgrofien liegt mindestens eine Vorhersage der
Dichte aufierhalb des genannten 1%-Bereiches. Im Folgenden wird zur besseren Ver-
gleichbarkeit weiterhin die Standardgrofie des Datensatzes mit 250.000 Tupeln verwendet.
Eine weitere Vergrofierung des Trainingsdatensatzes wird aufgrund der bereits oben ge-
nannten Rechenzeitlimitierungen nicht weiter verfolgt, sollte jedoch aufbauend auf dieser
Arbeit erprobt werden. Mit den benétigten Rechenzeiten aus Tabelle 6.3 wird ersichtlich,
dass das U-Net® sehr genau innerhalb des Zeitlimits von 24 h iiber die geforderten 500
Epochen traininert werden konnte. Durch die Vergroflerung des Datensatzes wird, analog
zu den Trainingsdurchldufen der parameterstérkeren Modelle U-Net'?® und U-Net>®,
die Rechenzeitlimitierung tiberschritten. Es besteht dennoch die Mdoglichkeit, dass ein
sehr viel groflerer Datensatz bereits mit deutlich weniger Trainingsepochen eine robuste
Materialbestimmung erlernen kann. Problematisch gestaltet sich in diesem Fall dennoch

die Datenmenge des Trainingdatensatzes (vergleiche 5.1).

6.4.2 Swin Transformer

Nachdem in den vorangehenden Abschnitten dieses Kapitels ausschliefslich das U-Net
verwendet wurde, wird im Folgenden, motiviert durch die Erfolge des Transformers
in anderen Anwendungen, eine Transformer-basierte Architektur fiir die Materialbe-
stimmung erprobt. Es bietet sich an, eine Architektur zu untersuchen, die der Struktur
des U-Nets im Kernkonzept folgt: ein Encoder, ein Decoder und Skip Connections
zwischen den entsprechenden hierarchischen Ebenen des Encoders und Decoders. Die
Idee, innerhalb der U-Net-Architektur den Convolution-basierten Encoder und Decoder
durch einen Transformer-basierte Encoder und Decoder zu ersetzen, wurde bereits von
Cao et al. fiir die Segmentierung klinischer CT-Schichtbilder [58] vorgeschlagen und ist
somit als direkter Nachfolger des U-Nets, mindestens in der CT-Doméne, anzusehen.
Abbildung 6.10 stellt die implementierte Swin-Unet-Architektur nach Cao et al. [58]
schematisch dar. Der Encoder besteht in der Abbildung aus einem SwinV2-L nach Liu et
al. [38], der bereits in Kapitel 3.4.2 eingefiihrt wurde. Das Patch Embedding berechnet fiir
jedes Patch (vergleiche Kapitel 3.4.2) einen Vektor, dessen Liange Embedding Dimension
genannt wird. Weitere Details zum Patch Embedding kénnen bei Dosovitskiy [57] und
Liu [37, 38] eingesehen werden. Im Decoder werden ebenfalls Swin-Transformer-Blocke
zusammen mit dem sogenannten Patch Expanding verwendet, das die Upconvolutions
aus dem originalen U-Net (vergleiche Abbildung 3.5) ersetzt und das Swin-Unet hier-
durch vollstindig im Decoder auf Convolutions verzichten kann. Weitere Details zu
der Architektur konnen in der zugehorigen Publikation [58] abgerufen werden. Analog
zu der Feature-Map-Tiefe beim U-Net (vergleiche Tabelle 6.3) kann der Encoder des
Swin-Unets mit unterschiedlichen Kapazititen ausgelegt werden. Tabelle 6.4 fasst die im
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Abbildung 6.10: Architekturdiagramm des Swin-Unet nach Cao et al. [58] in leicht abgewandelter
Form. Der dargestellte Encoder ist ein SwinV2-L nach Liu et al. [38] (vergleiche
Tabelle 6.4).

Folgenden erprobten Swin-Unets mit verschiedenen Encodern zusammen. Aufgrund der
Rechenzeitbeschrankungen der Partition WestAI am Forschungszentrum Jiilich werden
die parameterstarken Encoder Swin-H und Swin-G nicht betrachtet. In dem von Cao et al.
vorgestellten Swin-Unet gibt es zudem die Bedingung, dass die Embedding Dimension
ganzzahlig durch drei teilbar sein muss, sodass der Encoder Swin-B mit 128 Kanilen

ausgeschlossen wird. Zur Vereinfachung wird im Folgenden ein Swin-Unet mit einem

Tabelle 6.4: Kapazitdt und Rechenzeitbedarf T des Swin-Unets nach Cao et al. [58] zum Training
tiber 100 Epochen fiir verschiedene Encoder in Form der Swin-Transformer-Modelle
nach Liu et al. [38]. Der von Cao et al. verwendete Encoder wird nicht durch Liu
et al. beschrieben und somit im Folgenden als SwinV2-M (SwinV2-Minute, gespro-
chen mar'nju:t) bezeichnet. Die Angaben zum Rechenzeitbedarf wurden mit einem
Rechenknoten bestehend aus vier NVIDIA H100 und einem Datensatz der Grofle
250.000 (vergleiche Tabelle 5.1) ermittelt.

Encoder SwinV2-M | SwinV2-S | SwinV2-L
Embedding Dimension 48 96 192
Kapazitat / 1 x 100 21.4 84.4 336.2
T in Stunden 6.1 6.3 104

SwinV2-L-Encoder mit Swin-Unet-L bezeichnet (analog Swin-Unet-M und Swin-Unet-S).
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Cao et al. trainieren das Swin-Unet-M fiir die Segmentierung anhand eines Datensatzes,
der 3779 annotierte Bilder umfasst und somit etwa drei Grofsenordnungen kleiner ist
als der von Liu verwendete Datensatz [38]. Zudem initialisiert Cao die Parameter des
Encoders mit Gewichten, die auf dem Datensatz ImageNet vortrainiert worden sind.
Die offiziell verfiigbaren Swin-TransformerV2-Modelle wurden auf den Datensitzen
ImageNet-1K (> 10° Bilder) und ImageNet-22K (> 107 Bilder) [94] vortrainiert, die ein brei-
tes Spektrum an Bildern enthalten, jedoch keinen inhaltlichen Bezug zur CT aufweisen.
Anschliefsend konnen die bereits vortrainierten Modelle mithilfe eines verhéltnismafiig
kleinen Datensatz final an die Verteilung der neuen Daten angepasst werden — das soge-
nannte Fine-Tuning. Diese Strategie wird, in Anlehnung an die Arbeit von Cao [58], im
Folgenden erprobt: Abbildung 6.11 stellt die Loss Curves zweier Trainingsdurchldaufe mit
dem Swin-Unet-S dar, wobei der Encoder einmal ohne das Vortraining initialisiert und
einmal mit den vortrainierten Gewichten des ImageNet-22K-Datensatzes geladen wurde.

Es ist keine absolute Verbesserung des Validation Losses und keine Beschleunigung der

—— TL scratch TL pretrained
—— VL scratch —— VL pretrained

101 4

Loss

1072

0 100 200 300 400 500
Epoche

Abbildung 6.11: Train Loss TL und Validation Loss VL zweier Trainingsdurchldufe mit dem Swin-
Unet-S nach Cao et al. [58]. Das Modell scratch verwendet keine vortrainierten
Gewichte, wahrend das Modell pretrained die Gewichte fiir den SwinV2-S (En-
coder) aus einem Vortraining auf dem ImageNet-22K-Datensatz verwendet. Der
Pfeil kennzeichnet ein Plateau des Modells mit den vortrainierten Gewichten.

Konvergenz durch den Einsatz der vortrainierten Gewichte zu beobachten. Zuséatzlich
benotigt das Modell einige Epochen, gekennzeichnet durch den Pfeil in Abbildung 6.11,
um sich an die neue Datenverteilung anzupassen. Wie bereits vermutet, unterscheidet
sich die Datenverteilung der DECT-Schichtbilder im Rahmen dieser Arbeit zu stark
von der Datenverteilung des ImageNet-22K-Datensatzes auf dem der Swin-Transformer
vortrainert wurde. Es konnten keine Transformer-basierten Modelle gefunden werden,
die auf CT-Daten vortrainiert worden sind. Insgesamt konnte kein Mehrwert aus der
Verwendung der vortrainierten Gewichte des SwinV2-S gezogen werden. Die folgenden

Swin-Unets werden ohne die Nutzung der vortrainierten Gewichte direkt auf den simu-
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lierten Daten fiir die Materialbestimmung trainiert.

Analog zu den Optimierungen des U-Nets im vorausgehenden Abschnitt, werden die
verschiedenen Swin-Unets erprobt, um den besten Encoder fiir die gegebene Frage-
stellung zu ermitteln. Abbildung 6.12 stellt die mittleren absoluten Abweichungen der

Materialvorhersagen des Swin-Unets mit verschiedenen Encodern dar. Die Modelle
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Abbildung 6.12: Mittlerer absoluter Fehler MAE der Vorhersage von Kernladungszahl (links) und
Dichte (rechts) durch das Swin-Unet [58] mit verschiedenen Encodern aus Tabelle
6.4. Ausgewertet wurde mithilfe des in Abbildung 6.4 vorgestellten Phantoms
anhand der Materialien Aluminium, Eisen und Kupfer. Der graue Bereich in der
linken Abbildung markiert den Toleranzbereich (vergleiche Rahmenbedingungen
in Abschnitt 6.1). Analog wird der obere Rand des Toleranzbereiches der Dichte
fiir jedes Material im rechten Plot gestrichelt markiert. Die Swin-Unets mit den
Encodern SwinV2-M und SwinV2-L wurden ergdnzend mit einem vergrofserten
Datensatz trainiert, der drei Millionen Tupel umfasst. Die entsprechenden Da-
tenpunkte werden mit dreieckigen Markern dargestellt.

wurden unter maximaler Ausschopfung der verfiigbaren Rechenzeit trainiert, sodass
die Anzahl der Trainingsepochen der ausgewerteten Modelle nicht gleich ist. Keinem
der trainierten Swin-Unets gelingt die Materialbestimmung innerhalb der geforderten
Toleranzbereiche. Die Kernladungszahl von Kupfer wird von keinem der trainierten Mo-
delle innerhalb des Toleranzbereiches vorhergesagt. Fiir Aluminium und Eisen werden
sowohl die Kernladungszahl als auch die Dichte innerhalb des Toleranzbereiches von
den Modellen Swin-Unet-M und Swin-Unet-S korrekt vorhergesagt. Insgesamt liefert das
Modell Swin-Unet-M die besten Ergebnisse in diesem Experiment, sodass es fiir den

quantitativen Vergleich mit dem U-Net®*

aus dem vorangehenden Abschnitt verwendet
wird. An diesem Punkt ist bereits klar, dass das Swin-Unet, aufgrund der fehlerhaften
Vorhersage der Kernladungszahl von Kupfer, insgesamt schlechtere Ergebnisse bei der

Materialbestimmung als das U-Net produziert — ein zunédchst unerwartetes Ergebnis
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vor dem Hintergrund der Uberlegenheit der Transformer in anderen Disziplinen aus
dem CV-Umfeld (vergleiche Han et al. [111]). Der zunéchst offenkundigste Grund ist ein
potentiell zu kleiner Trainingsdatensatz, sodass das Swin-Unet sein volles Potential nicht
entfalten konnte (vergleiche Abschnitt 3.4.2). Daher wird zusédtzlich mit einem deutlich
vergrofierten Datensatz (3.000.000 Tupel), im Vergleich zu der in Tabelle 5.2 genannten
Standardgrofse, ein Training durchgefiihrt ohne eine signifikante Verbesserung verzeich-
nen zu koénnen. Abbildung 6.12 enthilt ebendiese Datenpunkte (dreieckige Marker).
Weiterhin besteht die Vermutung, dass die Modelle aufgrund der Rechenzeitbeschran-
kungen nicht vollstindig konvergieren konnten, sodass der Vergleich in Abbildung 6.12
mit den, auf kleineren Datenséitzen, austrainierten Modellen unfair erscheint. Durch
die Vergroflerung des Trainingsdatensatzes um den Faktor zwolf steigt gleichermafsen
die benotigte Trainingszeit T nach Tabelle 6.4 um ebendiesen Faktor an. Die weitere
Untersuchung dieser Beobachtung sollte in einer zukiinftigen Forschungarbeit aus den
oben genannten Griinden durchgefiihrt und mit den Ergebnissen von Han et al. [111]

diskutiert werden.

6.4.3 Vergleich

Nach der Optimierung der beiden untersuchten Architekturen, dem U-Net [36] und dem
Swin-Unet [58], werden die jeweils besten Modelle quantitativ in Tabelle 6.5 verglichen.
Das Swin-Unet-M erzielt in vier von insgesamt sechs Testwerten (drei Materialien mit

jeweils einer Kernladungszahl und einer Dichte) bessere Ergebnisse als das U-Net. Aus

Tabelle 6.5: Vorhergesagte Kernladungszahlen in (a) und absolute Dichten in (b) fiir das U-Net
[36] und das Swin-Unet-M [58]. Die tabellierten Werte geben den Mittelwert y, die
Standardabweichung ¢ und die prozentuale Abweichung des Mittelwertes p von dem
Literaturwert der Vorhersage in der Form y + ¢ (p) an. In der ersten Spalte beider
Tabellen werden die Materialien zusammen mit ihren Literaturwerten gelistet. Das
jeweils bessere Ergebnis, pro Modell und Material, ist grau hinterlegt.

Material U-Net Swin

Al (13) 13.04 +0.01 (0.3 %) 13.06 £ 0.15 (0.5 %)
Fe (26) 26.32+0.34 (1.2%) 26.26 +0.18 (1.0 %)
Cu (29) 28.84 +0.17 (0.6 %) 27.76 +0.18 (4.3 %)

(a) Kernladungszahl Z

Material U-Net Swin

Al (2.70) 2.7140.00 (0.4 %) 2.70 +0.03 (0.0 %)
Fe (7.80) 7.85+0.07 (0.6 %) 7.82+£0.04 (0.3%)
Cu (8.93) 9.01+£0.02 (0.9%) 8.87 £ 0.05 (0.7 %)

(b) Dichte in g/ cm?

den Abbildungen 6.7 und 6.12 wurde bereits in den jeweiligen Abschnitten deutlich, dass
nur das U-Net* alle Testmaterialien innerhalb der Toleranzbereiche korrekt identifiziert
und somit die geforderten Rahmenbedingungen in Bezug auf die Prazision der Mate-
rialbestimmung erfiillt. Fiir die folgenden Untersuchungen wird demnach das U-Net*

verwendet.
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6.5 INFERENZ MIT DEM U-NET

Bisher wurden nur die Trainingsverldufe sowie die quantitativen Auswertungen mit Blick
auf die Prizision der Materialbestimmung anhand des Testphantoms gezeigt. Die am
Anfang dieses Kapitels genannten, industriellen Rahmenbedingungen umfassen neben
der Prazision auch eine Anforderung an die Inferenzgeschwindigkeit der Architektur,
die in diesem Abschnitt untersucht wird. Fiir eine feste Architektur, beispielsweise
das ausgewdhlte U-Net® aus Abschnitt 6.4.1, ist die Inferenzzeit pro CT-Schichtbild
lediglich von den rdumlichen Dimensionen des Schichtbildes abhédngig. Die Architektur
des U-Nets basiert vollstindig auf Convolutions (auch: Fully-Convolutional), sodass die
Modelle, aus technischer Sicht, obschon sie auf festen Bilddimensionen (256 x 256) Pixel
trainiert worden sind, auf variablen Bilddimensionen ausgefiihrt werden konnen.? Die
im Folgenden ermittelten Inferenzgeschwindigkeiten sind somit auch fiir die U-Net®-
Modelle giiltig, die, motiviert aus der Anwendungsperspektive (vergleiche Abschnitt 6.3),
auf anderen Bilddimensionen trainiert worden sind. Abbildung 6.13 stellt die Inferenzzeit
fiir unterschiedlich dimensionierte CT-Schichtbilder mit dem U-Net* dar. Zunéchst ist
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Abbildung 6.13: Benotigte Inferenzzeit pro (CT-Schicht-)Bild abhidngig von der Bildbreite mit dem
U-Net®*. Weiterhin sind die Bilder quadratisch, sodass die zu prozessierende
Datenmenge quadratisch mit der Bildbreite ansteigt. Die durchgezogenen Linien
sind quadratische Fits an die jeweiligen Datenpunkte. Die nach Abschnitt 6.1 ma-
ximale Inferenzzeit zur In-line-Fahigkeit betragt fiir ein CT-Volumen bestehend
aus 3000 Schichten und mit der Verwendung von acht Graphikkarten ~ 27 ms
und wird grau gestrichelt dargestellt. Fiir die gezeigten Ergebnisse wurde eine
Nvidia H100 NVL verwendet.

gut zu erkennen, dass die Inferenzzeit ab einer Bildbreite von 256 Pixel quadratisch
mit ebendieser skaliert.® Das U-Net®* ist nach Abbildung 6.13 bis zu einer Auflésung
von (1024 x 1024) Pixel mit der gegebenen Hardware, das heifst acht Nvidia H100, In-

5 Der Effekt von unterschiedlichen Trainings- und Testdatenbilddimensionen wurde fiir die Bildklassifizierung
von Touvron et al. [112] untersucht.

6 Durch die Verwendung quadratischer Bilder steigt die Gesamtzahl der Pixel quadratisch mit der Breite an.
Somit ist die Inferenzzeit direkt proportional zur Gesamtzahl der Pixel.
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Line-fihig. Bei voller Bildauflosung (3000 x 3000) Pixel betragt die Berechnungzeit fiir
die Materialbestimmung eines Volumens der Grofie (3000 x 3000 x 3000) Voxel auf der
genannten Hardware knapp 41s.

6.6 ZUSAMMENFASSUNG DER ERGEBNISSE

In diesem Kapitel wurden zwei DL-basierte Architekturen, das U-Net [36] sowie das
Swin-Unet [58], quantitativ anhand der Materialbestimmung optimiert und verglichen.
Die systematische Untersuchung der Kapazititen verschiedener U-Nets und Swin-Unets
sowie der quantitative Vergleich dieser konzeptionell unterschiedlichen Architekturen
tir die Materialbestimmung anhand von CT-Bildern ist einer der Forschungsbeitriage
dieser Dissertationsschrift. Es wird deutlich, dass die in der Literatur etablierte U-Net-
Architektur fiir die Materialbestimmung, im Vergleich zum Swin-Unet, mit deutlich
weniger Aufwand, in Form von Trainingsdaten und Rechenzeit, gute Ergebnisse er-
zielen kann. Weiterhin wird demonstriert, dass das Swin-Unet, obschon es nicht alle
Testmaterialien in dieser Arbeit erkennen konnte, das Potential birgt, prazisere Dich-
tevorhersagen als das U-Net zu produzieren (vergleiche Tabelle 6.5). Die in Abschnitt
6.1 geforderte Prazision wurde exklusiv durch das U-Net® erreicht, das ebenfalls bis
zu einer Auflosung von (1024 x 1024) Pixel In-Line-fahig ist (vergleiche Abschnitt 6.5).
Dennoch konnten die Anforderungen an die Prédzision der Methode nur eingeschrankt
im Rahmen dieses Abschnitts iiberpriift werden. Die vorausgehenden Abschnitte sowie
Abbildung 6.7 geben einen Hinweis darauf, in welcher Grofsenordnung die Prézision
der Vorhersage der Kernladungszahl und der Dichte unter idealen Bedingungen liegen
kann. Fiir die Kernladungszahl ist, unter Ausschluss von Gemischen, eine ausreichende
Genauigkeit mit einem Fehler von weniger als 0.5 (einheitenlos) nachgewiesen wor-
den. Die Dichten der Testmaterialien wurden mit einem absoluten Fehler < 0.1 g/cm?
vorhergesagt. Alle Analysen beziiglich der Prazision wurden auf dem in Abschnitt 6.2
vorgestellten Phantom durchgefiihrt. Im folgenden Kapitel wird der Transfer in die reale
CT-Anwendung tiberpriift. Viele der bisher giiltigen Einschrankungen, beispielsweise
die Fixierung der Probengrofie (Kantenldnge), werden aufgehoben und ihr Einfluss auf
die Vorhersagegenauigkeit gepriift. Ebenso ist die in Kapitel 5.4.2 beschriebene Sim-
To-Real-Gap bisher nicht beriicksichtigt worden, sodass die angegebenen Prézisionen,
insbesondere in Tabelle 6.5, in einem realen Scan deutlich schlechter ausfallen werden.
Am Ende des folgenden Kapitels wird die Diskussion zur Prazision der vorgestellten
Methode daher erneut aufgegriffen.
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Nach der Realisierung einer Simulation zur Trainingsdatenerzeugung in Kapitel 5 sowie
der Auswahl einer DL-Architektur in Kapitel 6 wird nun die Transferfdhigkeit der ge-
samten Methodik zur Materialbestimmung in realistische CT-Scan-Szenarien tiberpriift.
Die in Kapitel 5.1 abgeleiteten Anforderungen induzieren durch die gewahlte Methodik
der Trainingsdatenerzeugung, insbesondere durch die Fixierung einiger Simulationspara-
meter, messbare Einschrankungen fiir die Prazision der Materialbestimmung sobald von
dem in der Simulation abgebildeten Szenario abgewichen wird. Diese Einschrankungen
sind entweder im Phantomgenerator oder im implementierten CT-Projektor (vergleiche
Abbildung 5.1) zu lokalisieren. Die Rekonstruktion erfolgt analog zu der Rekonstruktion
realer Proben und induziert keine Abweichungen. Die Simulationsparameter werden im
Folgenden in der durch den Algorithmus vorgegebenen Reihenfolge diskutiert.

Der Phantomgenerator erzeugt, pro Phantom, eine zufillige Anzahl an Regionen — die
Regionszahl. Durch die Wahl des Intervalls aus dem die Regionszahl N (vergleiche Ka-
pitel 5.3), beispielsweise 0 < N < 1000 anhand von Tabelle 5.2, zuféllig gezogen wird,
ergibt sich indirekt die mittlere Grofie der einzelnen Materialregionen innerhalb der
simulierten Phantome. Der Einfluss ebendieser mittleren Regionsgrofie hinsichtlich der
Ortsauflosung der DL-basierten Materialbestimmung wird in Abschnitt 7.1 anschaulich
motiviert und quantifiziert. Die durch den Phantomgenerator erzeugten Materialkar-
ten fungieren als Ground Truths beim Training der Modelle. Sie weisen ideal scharfe
Kanten zwischen den Materialregionen auf, sodass anzunehmen ist, dass die (Material-
)Vorhersagen der trainierten Modelle ebenfalls ideal scharfe Kanten aufweisen. Dieser
Aspekt wird in Abschnitt 7.2 exemplarisch, mithilfe einer in Abschnitt 7.1 eingefiihrten
Methodik, untersucht. Die physische Grofie des Phantoms, und damit auch die Grofie des
CT-Scanvolumens, ist ein weiterer Parameter des Phantomgenerators, der in praktischen
Anwendungen, abhingig von der physischen Grofse der zu scannenden Probe, stark
variiert und einen deutlichen Einfluss auf die rekonstruierten Abschwachungskoeffi-
zienten hat (vergleiche Strahlaufhdrtungsartefakte; Kapitel 2.4.1). Zur Beschleunigung
der Simulation! wird die physische Grofle des Phantoms, die ebenso die CT-Geometrie
beeinflusst, innerhalb der Simulation eines einzelnen Datensatzes konstant gehalten,
sodass bei der Anwendung eines trainierten Modells auf eine Probe abweichender Grofse
die Vorhersagegenauigkeit potentiell sinkt. Die Vorhersagegenauigkeit, beziiglich der
Materialbestimmung, wird in Abschnitt 7.3 abhdngig von dem physischen Grofienunter-
schied zwischen den Scanvolumen in den Trainings- und Testdaten analysiert. Nach den
CT-spezifischen Anforderungen aus Kapitel 5.1 ist die Bestimmung poroser Materialien,

beispielsweise fiir die Beurteilung einer Beschichtungen in einer Lithium-Ionen-Batterien,

Durch das einmalige Anlegen der Datenstrukturen fiir die Rekonstruktion mit einer festen CT-Geometrie,
ermoglicht durch das Fixieren der physischen Dimensionen des simulierten Phantoms, wird die Rekonstruk-
tion signifikant beschleunigt und ermoglicht somit die in Kapitel 5.3 beschriebenen Simulationsgeschwin-
digkeiten.
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relevant, wobei die Porositat, ausgedriickt durch die relative Dichte 7, einen Einfluss auf
die Vorhersagegenauigkeit der Materialbestimmung haben kann. Dieser Einfluss der rela-
tiven Dichte wird in Abschnitt 7.4 untersucht. Eine weitere Vereinfachung besteht in der
Annahme der Facherstrahl-CT, dem zweidimensionalen Grenzfall einer Kegelstrahl-CT,
die als DL-spezifische Anforderung in Kapitel 5.1 genannt wurde. Bei realen CT-Scans
werden, abgesehen von den selten eingesetzten Zeilendetektoren?, typischerweise zwei-
dimensionale Detektoren benutzt, die somit die Rekonstruktion eines dreidimensionalen
Volumens, bestehend aus vielen tibereinander gestapelten CT-Schichtbildern, ermogli-
chen. In Abschnitt 7.5 wird die Materialbestimmung auf allen CT-Schichtbildern, auch
auflerhalb der Mittelschicht, angewandt und ihre Genauigkeit tiberpriift.

Die bis zu diesem Punkt aufgezidhlten Einschrankungen existieren unabhéngig von der
in Kapitel 5.4.2 beschriebenen Sim-To-Real-Gap und kénnen somit auf dem simulierten
Testphantom aus Kapitel 6.2 analysiert werden. Abschlieflend wird der Einfluss der
fehlenden Modellierung der Streustrahlung (vergleiche Kapitel 5.1 und 5.4.2) untersucht,
indem ein trainiertes Modell zur Materialbestimmung auf realen, und damit streustrah-
lungsbehafteten, CT-Daten angewandt wird. Die verwendeten Daten wurden mit der
CT-Anlage aus Kapitel 2.7 unter Verwendung der CT-Parameter aus Tabelle 5.2 aufge-
nommen.

Ziel dieses Kapitels ist primér die quantitative Untersuchung der Prézision der Material-
bestimmung in Abhédngigkeit der soeben genannten Einflussfaktoren, die von zentraler
Bedeutung bei dem Transfer der Methodik in die reale CT-Anwendung sind. Weiter-
hin sollen Losungen zur Reduktion der gefundenen Einschrankungen entwickelt oder
mindestens diskutiert werden, sodass fiir zukiinftige Forschungsarbeiten sinnvolle An-

satzpunkte angeboten werden.

7.1 GROSSE DER MATERIALREGIONEN

In Kapitel 5.3 wurde die implementierte Simulation beschrieben. Einer der zentralen
Parameter bei der Erzeugung zufilliger Materialphantome ist die Anzahl der unter-
schiedlichen (Material-)Regionen pro Phantom (N in Tabelle 5.2). In der Simulation
wird fiir jedes Phantom die Anzahl der Regionen N zufillig und gleichverteilt aus dem
Intervall [1, Njax| gezogen. Ebenso werden diese N Startpunkte der Regionen zufillig
und gleichverteilt im verfligbaren Voxelgitter verteilt. Pro Zeitschritt wachst jede Region
um einen festen Betrag in eine zuféllige Richtung. Statistisch werden daher die einzel-
nen Regionen im Durchschnitt kleiner wenn N, grofier wird. Der Parameter N,
hat somit einen direkten Einfluss auf die mittlere Grofse der einzelnen Regionen inner-
halb aller Phantome, die zum Training des DL-Modells verwendet werden. Statistisch
werden, beispielsweise fiir ein sehr kleines Ny, einzelne kleine Regionen im Trainings-
datensatz unterreprasentiert, sodass einem trainierten Modell die Generalisierung auf
derartig kleine Regionen vermutlich nur eingeschrankt gelingt. Ziel dieses Abschnittes
ist die Untersuchung des rdaumlichen Auflésungsvermogens der trainierten Modelle

2 Gemeint ist ein eindimensionaler Detektor, der nur eine Zeile an Pixeln besitzt und somit zur Fiacherstrahl-CT
genutzt wird.
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auf Regionsgrofien, die von der mittleren Regionsgrofie der Trainingsdaten abweichen.
Zur quantitativen Bestimmung des Auflosungsvermogens kann die sogenannte Modu-
lationstransferfunktion (kurz: MTF), oder auch MTF-Kurve als Funktion einer Frequenz,
herangezogen werden [113, S. 8 f.]. Die MTF-Kurve gibt anschaulich den verbleibenden
Kontrast eines Objektes in Abhédngigkeit der Objektgrofie, ausgedriickt als Ortsfrequenz
f,an [113, S. 8 £.]. Eine hdufig verwendete Einheit fiir die Ortsfrequenz ist Ip/mm (line
pairs per millimeter) oder cycles/Pixel — die Periode einer zyklischen Struktur. Anhand
eines Siemenssterns, der eine variable, periodische Struktur abhédngig von seinem Radius
aufweist, kann das Aufldsungsvermogen anschaulich bestimmt werden, wie die folgende
Ausfiihrung zeigt. Abbildung 7.1 zeigt einen rekonstruierten Siemensstern in kartesischen

und polaren Koordinaten. Jedem Radius (rote Linie) kann ein Strichmuster, mit einer
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Abbildung 7.1: Rekonstruiertes Volumen eines simulierten Siemenssterns aus Aluminium in
einem kartesischen Voxelgitter (links) und einem polaren Voxelgitter (rechts).
Beide Abbildungen teilen sich die Grauwertskala rechts mit der Einheit cm ™! des
Abschwéichungskoeffizienten.

vom Radius abhédngigen Ortsfrequenz, zugeordnet werden. Der Radius, bei dem noch
50 % des urspriinglichen Kontrastes des Strichmusters verbleiben, wird MTF50-Radius ge-
nannt. Anschaulich ist er genau der Radius, bis zu dem das Abbildungssystem (hier: das
DL-Modell zur Materialbestimmung) noch die Hélfte des idealen Kontrastes (MTF = 1)
darstellen kann.

Fiir die folgende Untersuchung wurden zwolf Datensitze basierend auf Tabelle 5.2 mit
Nuax € {25,50,100,200, 300,400, 500, 600,700, 800,900, 1000} simuliert und anschlieBend
fiir das Training mehrerer U-Nets verwendet — jedes U-Net wird exklusiv mit einem Da-
tensatz aus der genannten Menge trainiert. Die Modelle zur Materialbestimmung werden
auf den Siemensstern aus Abbildung 7.1 (links) angewandt und berechnen Materialkar-
ten, die anschlieflend durch eine Polartransformation in die Darstellung in Abbildung 7.2
(links) transformiert werden. Bereits ohne quantitative Berechnung des MTF50-Radius
ist die Auflosungsgrenze der Materialkarte in Polarkoordinaten als Grenze zwischen
dem eindeutig erkennbaren Strichmuster und der darunterliegenden, diffusen Flache
erkennbar. Abbildung 7.2 (rechts) stellt die normierte MTF-Kurve in Abhédngigkeit des
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Radius dar, sodass der MTF50-Radius (rote Linie in beiden Plots) quantitativ als Radius
(x-Koordinate) fiir den Wert 0.5 der normierten MTF (y-Koordinate) bestimmt werden

kann. Diese Methode zur Bestimmung der MTF50-Radien wird fiir die Materialvorhersa-
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Abbildung 7.2: Dichtevorhersage eines Modells fiir den Siemensstern in Polarkoordinaten (links)
und resultierende MTF-Kurve in Abhidngigkeit vom Radius des Siemenssterns.
Der MTF50-Radius ist in beiden Plots rot markiert.

gen der oben genannten Modelle durchgefiihrt. Somit wird fiir jedes Modell, trainiert
auf einem Datensatz mit einem bestimmten N,,,,, der MTF50-Radius berechnet. Die

Ergebnisse werden in Abbildung 7.3 graphisch zusammengefasst. Es ist kein eindeutiger
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Abbildung 7.3: MTF50-Radien in Abhéngigkeit von der maximalen Regionszahl Ny, fiir die
Materialbestimmung auf dem Siemensstern aus Abbildung 7.1.

Zusammenhang zwischen den MTF50-Radien und der maximalen Regionszahl Ny,
sowohl fiir die Bilder der Kernladungszahl als auch fiir die Bilder der Dichte zu beob-
achten. Somit besteht kein nachweisbarer Zusammenhang zwischen dem raumlichen
Auflosungsvermogen des gewdhlten Materialbestimmungsansatzes und der maximalen



7.1 GROSSE DER MATERIALREGIONEN

Regionszahl Ny, in der Simulation. Die beobachteten Schwankungen sind vermutlich
statistischer Natur und werden in der folgenden Auswertung der MTF50-Kurve mit einer
alternativen Methode erneut beurteilt.

Eine weitere Methode zur Bestimmung der MTF-Kurve kann anhand eines gegebenen
Profils, einem eindimensionalen Schnitt durch ein Bild, durchgefiihrt werden. Dieses
Profil heifst Edge-Spread-Function (kurz: ESF(x)) mit der eindimensionalen Bildkoordinate
x und es muss so gelegt werden, dass es die Kante eines Objektes im Bild, den maximalen
Kontrastwechsel, erfasst. Anschaulich zeigt Abbildung 7.4 eine mogliche ESF und ihre
Positionierung an der Grenzfliche zwischen dem Aluminiumwiirfel und dem Hinter-

grund (Luft). Durch Differenzierung entlang der Bildkoordinate x wird die sogenannte

3
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Abbildung 7.4: Vorhersage der Dichte durch ein trainiertes Modell auf dem Phantom aus Ab-
schnitt 6.2 (links). Entlang des roten Pfeils wird die Edge-Spread-Function ESF
extrahiert, die im rechten Plot dargestellt wird. Der Literaturwert fiir die Dichte
des Aluminiums wird gestrichelt mit der Bezeichnung REF zusétzlich angegeben.

Line-Spread-Function (kurz: LSF(x))

LSF(x) = %ESF(JC) 7.1)

berechnet, die ein Maf3 fiir die Ortsunschérfe ist. Insgesamt ist die MTF einer Frequenz f
aufbauend auf der ESF(x) und der LSF(x) durch

_IFUSF@)()
MTF) = [F(L8E(x)) 0)| 72

mit der Fouriertransformation F definiert [114, S. 225 £.]. Im Vergleich zu der phdanome-
nologischen Bestimmung der MTF als Radius des Siemenssterns aus Abbildung 7.1 wird
bei dieser Methode eine Ortsfrequenz in der Einheit 1/Pixel ermittelt — die sogenannte
MTF50-Frequenz. Eine Umrechnung in die Einheit 1/mm kann unter Angabe der Voxel-
grofie des rekonstruierten Volumens trivial erfolgen.

Im Folgenden wird das Phantom aus Abbildung 6.4 verwendet, um die Materialbestim-
mung durchzufiihren sowie die MTF50-Frequenz aus den Materialkarten zu ermitteln.
Abbildung 7.5 (links) zeigt die MTF-Kurve eines extrahierten Kantenprofils am Rand des
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Aluminiumsquaders nach erfolgter Materialbestimmung durch die trainierten Modelle.

Die oben genannte Vermutung, einen Zusammenhang zwischen der maximalen Regi-
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Abbildung 7.5: MTF-Kurve einer Kante mit eingezeichneter MTF50-Frequenz (links) fiir den
Aluminiumwiirfel aus dem Phantom in Abbildung 6.4. Die berechneten MTF50-
Frequenzen fiir die verschiedenen maximalen Regionszahlen Npyax in den Trai-
ningsdaten werden rechts dargestellt.

onszahl Npmax und der Auflosungsfahigkeit des Modells zu identifizieren, kann mittels
Abbildung 7.5 (rechts) ebenfalls (vergleiche Abbildung 7.3) entkriftet werden. Entgegen
der Intuition, dass ein Modell, welches mit einer hoheren maximalen Regionszahl trai-
niert wurde, eine hohere MTF50-Frequenz besitzen sollte, zeigt die Auswertung einen
gegenldufigen Trend. Die beste MTF50-Frequenz wird bei einer maximalen Regions-
zahl Npax = 50 gemessen. Zur Erkldarung dieser Beobachtung konnen mehrere Aspekte
herangezogen werden. Die Strukturierung, oder Aufteilung der Regionen, innerhalb
einzelner Phantome kann stark variieren. Statistisch ist es zwar wahrscheinlich, dass die
verschiedenen Regionen im Mittel gleichgrofs sind, jedoch kénnen sich auch deutlich
kleinere oder grofere Regionen zufillig ausbilden. Zur Uberpriifung dieser These wer-
den die Regionsgrofien exemplarisch fiir Aluminium in einem der zuvor beschriebenen,
simulierten Datensdtze mit N,,x = 100 berechnet. Abbildung 7.6 stellt die gefundenen
Regionsgrofien in Form eines Histogramms dar. Neben dem Erwartungswert werden klei-
nere und deutlich grofiere Regionen im gezeigten Datensatz beobachtet. Somit erscheinen
Regionen verschiedenster Grofie auch in einem Datensatz, der mit einem kleinen Nmax
simuliert worden ist.? Folglich hat der Parameter Npax einen kleineren Einfluss auf die
Grofse der Materialregionen als zu Beginn dieses Abschnittes vermutet worden ist.

Ein weiterer Aspekt ist, dass die Ground Truths (Materialkarten) aufgrund ihrer Er-
zeugung stets ideal scharfe Kanten aufweisen. Es ist daher sehr wahrscheinlich, dass
die Modelle grundsétzlich lernen, Kanten scharf darzustellen, um die Materialkarten
besser zu reproduzieren und so die Auswertung der MTF50-Frequenz anhand eines
Kantenprofils nicht zur Quantifizierung des Auflosungsvermogens herangezogen werden

Die Voraussetzung ist lediglich, dass der Datensatz grofs genug ist, sodass derartige, statistisch unterdriickte
Effekte auftreten.
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Abbildung 7.6: Histogramm der gefundenen Regionsgrofien von Aluminium (exemplarisch) in
dem Trainingsdatensatz mit N,y = 100 anhand von 3200 zufallig ausgewédhlten
Phantomen. Basierend auf der Auflgsung jedes Phantoms (256 x 256) Pixel ergibt
sich mit dem Erwartungswert der Regionszahl 0.5 - Ny, der Erwartungswert der
Regionsgrofie zu 1311 Pixel.

kann. Dieser Aspekt wird im folgenden Abschnitt 7.2 untersucht. Weiterhin konnten
keine Unterschiede der MTF-Kurven aus den Vorhersagen der Kernladungszahl und
der Dichte ermittelt werden. Beide Kandle verhalten sich, bezogen auf die MTF-Kurven,
identisch.

Die meisten in diesem Abschnitt vorgestellten Modelle erreichen im Mittel eine Grenzfre-
quenz von 0.115 Pixel !, die mit der CT-Geometrie aus Tabelle 5.2 in eine Strukturgrofse
umgerechnet werden kann, bei der noch 50 % des Kontrastes abgebildet werden. Sie be-
tragt ~ 174 ym. Fiir eine praktische Anwendung, beispielsweise die Materialbestimmung
kleiner Partikel innerhalb einer Probe, ist die MTF50-Frequenz nicht aussagekraftig, da
sie ebenjene Ortsfrequenz ist, bei der noch die Halfte des Kontrastes (Signal des Materials,
beispielsweise die Dichte) abgebildet wird. Zur quantitativ korrekten Bestimmung der
Dichte (£1 % nach Kapitel 5.1) eines Partikels mit einer Ortsfrequenz fp, muss mindestens
MTF(fp) > 0.99 gelten.

7.2 KANTENSCHARFE

Die absolute Kantenscharfe ist fiir das Messen (Metrologie) an CT-Volumina von grofser
Bedeutung, sodass ein moglicher Verlust der Kantenschérfe durch die Anwendung
der Materialbestimmung quantitativ analysiert werden muss. Aufbauend auf der im
vorangehenden Abschnitt untersuchten Auflosungsfahigkeit der DL-basierten Materialbe-
stimmung wird in diesem Abschnitt die Kantenschérfe der vorhergesagten Materialkarten
im Vergleich zu den rekonstruierten Volumina ermittelt. Die bereits in Abschnitt 7.1 be-
schriebene MTF-Kurve, bestimmt anhand einer Objektkante, kann analog als Maf3 fiir die
Kantenschirfe herangezogen werden. Scharfe Kanten werden im Gegensatz zu weichen

Kanten aus hoheren (Bild-)Frequenzanteilen dargestellt, sodass die MTF-Kurven, als Mafs
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fiir die Ubertragung dieser (Bild-)Frequenzanteile, zum Vergleich der Kantenschérfen
zwischen zwei Bildern genutzt werden kann. Abbildung 7.7 stellt die MTF-Kurven fiir
die beiden DECT-Schichtbilder sowie die beiden Materialvorhersagen dar. Die Position
der ESE, die den MTF-Kurven zugrundeliegt, entspricht der Markierung in Abbildung
7.4 (links). Bereits ohne quantitative Auswertung der MTF50-Frequenz wird anhand der
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Abbildung 7.7: MTE-Kurven aus den beiden Kanilen des DECT-Schichtbildes (LE und HE) und
der Materialvorhersagen (Kernladungszahl Z und Dichte p) iiber eine Kante des
Aluminiumwiirfels aus dem Phantom in Abbildung 6.4.

Lage der Kurven deutlich, dass die Materialbestimmung eine geringere Kantenschérfe als
die beiden Kanile des DECT-Schnittbildes LE und HE aufweist. Diese Beobachtung steht
im Widerspruch zu den Trainingsdaten, da die Materialkarten absolut scharfe Kanten
aufweisen und das Modell somit im Training die Darstellung ebendieser Kanten gelernt
haben sollte. Zhou et al. zeigen fiir klinische CT-Schichtbilder, dass die Verwendung
eines CNNs, konkret zur Rauschreduktion, einen negativen Einfluss auf die Ortsauflo-
sung (MTF-Kurve) hat. Ein vergleichbarer Effekt kann anhand von Abbildung 7.7 fiir
die Materialbestimmung dokumentiert werden. Zur Verbesserung der Kantenschérfe
publizierten Mathieu et al. die Loss Function Gradient Difference Loss, die in Kombination
mit dem, auch in dieser Arbeit verwendeten, MSE-Loss unscharfe (Bild-)Ausgaben re-
duziert [115]. Aufbauend sollte die von Mathieu et al. vorgestellte Loss Function fiir die
Materialbestimmung erprobt werden, um dem Verlust der Kantenschérfe, der in diesem
Abschnitt beobachtet werden konnte, entgegenzuwirken. Es wird festgehalten, dass die
vorhergesagten Materialkarten eine verminderte Kantenschérfe im Vergleich zu den
DECT-Schnittbildern aufweisen. Die Verbesserung der Kantenschirfe sollte Inhalt einer
zukiinftigen Forschungsarbeit sein, um insbesondere die Metrologie zu ermoglichen.
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7.3 GROSSE DES SIMULIERTEN PHANTOMS

Eine weitere relevante Variable fiir den Transfer in die CT-Praxis ist die Grofle, beziehungs-
weise Kantenldnge, des CT-Priifvolumens. Wie bereits durch Abbildung 2.1 angedeutet,
ist die CT-Geometrie ausschlaggebend fiir die Grofie des Priifvolumens. Die Grofie des
Priifvolumens, beziehungsweise die Grofse der zu priifenden Probe, hat einen Einfluss auf
die Auspragung der Strahlaufhartungsartefakte wie in Kapitel 2.4.1 beschrieben worden
ist. Demnach wird vermutet, dass ein DL-basiertes Modell zur Materialbestimmung, das
auf einer festen CT-Geometrie trainiert wurde, bei dem Transfer auf eine andere Geome-
trie aufgrund der verdnderten Datenverteilung schlechte Vorhersagen produziert. Hierzu
wird ein Testphantom, analog zu Abbildung 6.4, in aRTist simuliert, das insgesamt eine
Kantenldnge von 1cm aufweist. Es werden Modelle M mit verschiedenen Kantenldngen
des Simulationsvolumens trainiert und auf dem genannten Testphantom ausgewertet.
Zur Vereinfachung wird die folgende Notation verwendet: M!™ bezeichnet ein Modell,
das mit Trainingsdaten der Kantenldnge 1 cm trainiert worden ist. Der mittlere absolute
Fehler (MAE) tiber die Vorhersagen der Kernladungszahlen und Dichten der Materialien
Aluminium, Eisen und Kupfer wird in Abbildung 7.8 abhédngig von der Kantenldnge des

Simulationsvolumens dargestellt. Erwartungsgemaf3 weist M!™ den geringsten Fehler

2.5 1 .
----- Grofe Testphantom
—4— Kernladungszahl
20 Dichte in g/cm?
=
@)
g 1.5
<
M 1.0
<
=
0.5
0.0 - '
0 2 4 6 8

Kantenlédnge des sim. Volumens in cm

Abbildung 7.8: Mittlerer absoluter Fehler (MAE) der Kernladungszahl- und Dichtevorhersagen
von Aluminium, Eisen und Kupfer in einem quadratischen Phantom mit der Kan-
tenldnge 1 cm (iibrige CT-Parameter siehe Tabelle 5.2). Mehrere Modelle wurden
mit verschiedenen Kantenldngen des Simulationsvolumens trainiert (x-Achse).
Die graue Linie zeigt die Kantenldnge des Testphantoms (1 cm) an. Die Fehler-
balken entsprechen einer gemittelten Standardabweichung tiber alle genannten
Materialien.

bei der Auswertung des Testphantoms der gleichen Kantenldange auf. Die Vorhersagen
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der Modelle M?%°>™ und M?2“™ weisen einen vergleichbar niedrigen MAE auf, wihrend
die verbleibenden Modelle mit zunehmend abweichender Kantenldnge ebenso zuneh-
mende MAESs verzeichnen. Somit wird eine deutliche Einschrankung des vorgestellten
Ansatzes zur Materialbestimmung deutlich: Fiir jede Kantenldnge des CT-Priifvolumens
wird ein Modell benétigt, das auf Trainingsdaten der entsprechenden Kantenldnge, oder
einer sehr dhnlichen Kantenldnge, trainiert worden ist, um bestmégliche Ergebnisse zu
erzielen. Da keine allgemeingiiltige Aussage zu dieser mindestens geforderten Ahn-
lichkeit der Kantenldngen getroffen werden kann, sollte in praktischen Anwendungen
mit der exakt geforderten Kantenldnge trainiert werden, um Abweichungen dieser Art
auszuschliefien. Andererseits besteht theoretisch die Moglichkeit auf einem gemischten
Datensatz, der viele verschiedene, simulierte Kantenldngen enthilt, zu trainieren, sodass
sich ein robustes DL-Modell ergibt. Dieser Ansatz wurde in erster Instanz nicht verfolgt,
da die Rekonstruktion mit einer fixen CT-Geometrie signifikant schneller ist und somit
die Rechenzeit der gesamten Simulation signifikant reduziert wird (vergleiche 5.4.4).
Weiterhin ist zu beachten, dass verschiedene Kantenldngen zu unterschiedlich ausge-
pragten Strahlaufhdrtungsartefakten fithren und sich somit die Verteilungen der linearen
Abschwichungskoeffizienten deutlich zerstreuen (vergleiche Kapitel 5.4.3). Durch die
grofie Zahl an Mehrdeutigkeiten in den Trainingsdaten ist der Mehrwert des Trainings
auf einem derartig universellen Datensatz gegeniiber dem Training einzelner, auf eine
Kantenldnge spezialisierter Modelle fraglich. Eine mogliche Losung dieses Problems
wird im folgenden Abschnitt durch die Anpassung eines spezialisierten Modells auf eine

andere Kantenlidnge diskutiert und erprobt.

7.3.1 Fine-Tuning zur Adaption der Kantenliinge

Zwar ist das U-Net in der gewidhlten Konfiguration verhédltnismaflig schnell, das heifst
glinstig, zu trainieren, jedoch erscheint das Bereitstellen einer beliebig feingranularen
Sammlung trainierter Modelle fiir jede CT-Geometrie, beziehungsweise Probengrofse,
nach den Resultaten aus dem vorausgehenden Abschnitt, insbesondere Abbildung 7.8,
nicht wirtschaftlich. Eine bereits aus Kapitel 6.4 bekannte Losung besteht in der Anwen-
dung des Fine-Tunings. Kurz gefasst wird ein vortrainiertes Modell vorausgesetzt, das
mithilfe eines kleinen Datensatzes an eine neue Datenverteilung angepasst wird. Wie
bereits angemerkt und stichprobenhaft im Vorfeld dieser Arbeit erprobt, ist das Training
eines einzelnen Modells auf einer groflen Bandbreite an Kantenldngen aufgrund der
variierenden Strahlaufhdrtungsartefakte wenig aussichtsreich. Im Folgenden wird das
Fine-Tuning erprobt, um ein vortrainiertes Modell MA™ mithilfe kleiner Datensitze an
eine neue Datenverteilung, ein simuliertes Volumen mit der Kantenldnge 1 cm, anzupas-
sen. Zunichst wird die benétigte Datenmenge, das heifst die Anzahl der Tupel ebendieses
kleinen Datensatzes, untersucht, indem mehrere Modelle mit unterschiedlich grofien
Datensédtzen dem Fine-Tuning unterzogen werden. Die verwendeten Datensatzgrofien
betragen exemplarisch 1000, 2000, 4000 und 8000 Tupel. Eine detaillierte Optimierung
dieser Datensatzgrofie spielt fiir reale Anwendungen eine zu vernachldssigende Rolle,
da die Simulation zur Trainingsdatenerzeugung aus Kapitel 5 in weniger als vier Mi-
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nuten 8000 Tupel berechnen kann. Abbildung 7.9 stellt die MAEs der vorhergesagten
Kernladungszahlen und Dichten abhédngig von der jeweils verwendeten Grofie des Trai-
ningsdatensatzes fiir das Fine-Tuning dar. Es ist zu beobachten, dass 4000 Datentupel

Kernladungszahl Dichte in g/cm?
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Abbildung 7.9: Mittlerer absoluter Fehler (MAE) der vorhergesagten Kernladungszahlen und
Dichten von Aluminium, Eisen und Kupfer in einem quadratischen Phantom mit
der Kantenldnge 1 cm (iibrige CT-Parameter siehe Tabelle 5.2) wahrend des Fine-
Tunings des Modells M*™ mit verschiedenen Datensatzgroen (Legende), die
auf einer Kantenldnge 1 cm basieren. Die grauen Linien geben die Baseline (obere
Linie), das heiflt den Fehler des vortrainierten Modells M*“™ ohne Fine-Tuning,
sowie den MAE des Modells M!™ (untere Linie) an. Die in den Rahmenbedin-
gungen geforderte Prézision der Kernladungszahl- und Dichtevorhersage wird
als grauer Toleranzbereich eingezeichnet.

ausreichen, um das Modell so anzupassen, dass die geforderte Prizision erreicht wird
(gelbe Kurve). Die Trainingszeit iiber 500 Epochen betragt fiir ebendiese Datensatzgrofse
knapp 27 min auf vier Nvidia H100. Zudem besteht die Moglichkeit, dass ein derartig
kleiner Trainingsdatensatz vollstindig im GPU-Speicher vorgehalten werden kann und
die angegebene Trainingszeit somit signifikant reduziert wird.* Diese Optimierung kann
fir eine praxisnahe Anwendung implementiert werden und ist nicht Teil dieser Arbeit.
In Summe zeigen die Ergebnisse, dass mithilfe des Fine-Tunings kleine Anpassungen
beziiglich der CT-Geometrie® nachtriglich auf vortrainierten Modellen in einer kurzen
Zeitspanne durchgefiihrt werden konnen. Weiterhin konnen mit den gegebenen sechs

Pro GPU miissen in diesem Rechenbeispiel 1000 Tupel verarbeitet werden, die etwa 1 GB Speicher benétigen.
In der aktuellen Implementierung werden die Batches, bestehend aus 128 Tupeln, von einer Festplatte in
den CPU-Speicher geladen und anschlieffend in den GPU-Speicher kopiert. Dieser Schritt kann bei einem
Datensatz, der vollstindig in den GPU-Speicher passt, einmalig zu Beginn des Trainings durchgefiihrt
werden, sodass die Berechnungszeit pro Epoche deutlich reduziert werden kann.

In diesem Abschnitt wurde gezielt das Fine-Tuning eines Modells auf eine neue Kantenldnge des rekonstru-
ierten Volumens untersucht. Im Allgemeinen werden die Mafie des rekonstruierten Volumens durch die
CT-Geometrie festgelegt.
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Stiitzpunkten (MOLem Af05em - pqlem - Ag2em - Aqdem ynd MB™) mittels Fine-Tuning
die Kantenldngen zwischen 1 mm und 8 cm abgedeckt werden — ein realistischer Einstell-

bereich des Priifvolumens einer hochauflosenden CT-Anlage.

74 RELATIVE DICHTEN

Neben massiven Proben konnen auch porose Werkstoffe, beispielsweise aufgrund ihrer
vergroBerten Oberfliche®, von technischer Relevanz sein. Ein bekanntes Beispiel hierfiir
ist die Elektrodenbeschichtung in modernen Lithium-Ionen-Batterien, die haufig aus
einem porosen Material aufgebaut wird. Im Bestfall ist die raumliche Auflosung des
CT-Systems so hoch, dass die einzelnen Poren innerhalb einer derartigen Probe aufgeldst
werden konnen. Somit werden Voxel rekonstruiert, die vollstindig (massiv) mit Material
gefiillt sind und andere Voxel rekonstruiert, die nur Luft enthalten und somit leer sind.
Abseits dieses Idealfalls tritt der in Kapitel 2.4.1 beschriebene Partial Volume Effect
auf. Manche Voxel sind teilausgefiillt und ihr linearer Abschwiachungskoeffizient ist
proportional zur relativen Dichte 77 — dem relativen Volumenanteil eines Materials an
einem Voxel. In Kapitel 5.3 wurde die implementierte Simulation vorgestellt, wobei der
Faktor # die Porositédt der simulierten Phantome bestimmt (vergleiche Abbildung 5.1).
Es wurde zunichst festgelegt, dass 17 € [0.8,1.0] gilt — die zu untersuchenden Proben
sind vermutlich auf ebendiesen Wertebereich der relativen Dichte eingeschrankt. Fiir
die Allgemeingiiltigkeit des vorgestellten Ansatzes zur Materialbestimmung wire es
dartiiber hinaus vorteilhaft, wenn die relative Dichte beliebige Werte aus dem Intervall
[0, 1] annehmen konnte. In diesem Abschnitt wird untersucht, welchen Einfluss die untere
Schranke dieses Intervalls auf die Prazision der Materialbestimmung hat. Zunéchst wer-
den die Verteilungen zweier Trainingsdatensétze verglichen, die mit unterschiedlichen
relativen Dichten simuliert wurden. Abbildung 7.10 zeigt den Unterschied der Vertei-
lungen der Abschwiachungskoeffizienten im High-Energy-Kanal fiir zwei Simulationen
mit unterschiedlichen Wertebereichen der relativen Dichte #. Im Fall 7 = 1 werden nur
massive Materialien simuliert. In Abbildung 7.10 ist zu erkennen, dass die Simulation
pordser Materialien die Verteilung der Abschwachungskoeffizienten insgesamt gléttet
beziehungsweise aufweicht (blaue Kurve). Dieser Effekt ist anhand von Gleichung 2.3
sofort ersichtlich, da durch den grofieren Wertebereich von p;, insgesamt ein breiteres
Spektrum an Abschwéachungskoeffizienten iy, ,, pro Material gemessen werden kann.
Weiterhin fiihrt dieser Effekt zu einer Verstirkung der Mehrdeutigkeiten bei der Materi-
albestimmung (vergleiche Abbildung 5.10). Im Vergleich dazu weist die Verteilung ohne
Porositét (rote Kurve in Abbildung 7.10) deutlich voneinander getrennte Haufungspunkte
auf, die somit die verschiedenen Materialien zumindest teilweise voneinander trennen.

Es folgt die Vermutung, dass das Erlernen der Materialbestimmung anhand eines
Datensatzes mit einem grofieren Intervall der relativen Dichten 7 fiir ein DL-Modell
schwieriger ist. Diese Vermutung wird im Folgenden quantitativ untersucht. Es wer-

den Trainingsdatensdtze mit verschiedenen unteren Grenzen der relativen Dichten

6 Die Vergroflerung einer (Kontakt-)Oberfldche spielt hdufig bei der Optimierung chemischer Reaktionen eine
wichtige Rolle.



7.4 RELATIVE DICHTEN

x 107
— n>0.5

3 n=1.0
=
g 2
=i
< F Frl_[

T (el I

'L..-L --'"'r- _“‘LH
Ly oy
0 : : il
0.0 0.5 1.0 1.5 2.0

pHE in em !

Abbildung 7.10: Histogramme aus 8000 zufallig gewahlten Datentupeln aus den Simulationen
mit einer relativen Dichte # > 0.5 und einer relativen Dichte # = 1.0. Dargestellt
werden die High-Energy-Kanéle mit einer Beschleunigungsspannung Up =
240kV und den Simulationsparametern aus Tabelle 5.2.

n > {0.5,0.6,0.7,0.8,0.9,1.0} simuliert und zum Training mehrerer U-Nets [36] ver-
wendet. Ein Ausschnitt der beim Training ermittelten Validation Losses ist in Abbildung
7.11 abgebildet. Gemafs der obigen Hypothese erreichen die trainierten Modelle mit einer
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Abbildung 7.11: Validation Losses der U-Nets ab der 400. Trainingsepoche mit verschiedenen
n > {0.5,0.6, 0.7,0.8,0.9, 1.0} im Trainingsdatensatz (Legende). Die Validation
Losses wurden zur Verbesserung der Darstellung mit einem eindimensionalen
Gaussfilter (Standardabweichung o = 3) geglattet.

Abnahme der Intervallgrofie von 1 hohere Genauigkeiten — einen niedrigeren Validation
Loss. Daruf aufbauend zeigt Abbildung 7.12 die besten Validation Losses der Modelle
fur verschiedene, minimale, relative Dichten 7. Es ist ein grob linear fallender Trend zu
beobachten. Er unterstiitzt die Vermutung, dass kleinere Intervalle (weniger Porositéat)
einfacher fiir das Modell zu erlernen sind. Auf die Berechnung der extrapolierten Da-
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Abbildung 7.12: Beste Validation Losses (multipliziert mit 10%) der U-Nets aus den Trainings
mit verschiedenen # > {0.5,0.6,0.7,0.8,0.9,1.0}. Eine lineare Funktion ist an die
Daten angepasst und auf den gesamten Definitionsbereich von # extrapoliert.

tenpunkte fiir 7 < 0.5 wird zugunsten der verfiigbaren Rechenzeit bewusst verzichtet.
Zudem stehen derzeit keine Proben, die eine derart niedrige relative Dichte aufweisen,
im Fokus der Anwendung. Die Ausweitung der Methodik auf beispielsweise hochporose,
technische Metallschaume mit relativen Dichten # < 0.5 und Porengrofien, die unterhalb
der CT-Auflosung liegen, ist moglich und kann fiir einen gegebene Anwendungsfall
durchgefiihrt werden.

Zuletzt ist die Materialbestimmung auf einem geeigneten, simulierten Phantom zu tiber-
priifen. Mithilfe der CT-Parameter aus Tabelle 5.2 wird ein Aluminiumwtiirfel mit den
relativen Dichten 77 € {0.8,0.85,0.9,0.95,1.0} simuliert. In den simulierten Trainingsdaten

erscheint pordses Aluminium beispielsweise AI*”

mit der Kernladungszahl Z = 13 und
der Dichte p = 0.8-2.7g/cm?® = 2.16 g/cm>. Somit ist zu erwarten, dass die Vorhersage
der Kernladungszahl stabil den Literaturwert 13 ermittelt, wiahrend die Vorhersage der
absoluten Dichte proportional zur relativen Dichte # erfolgt. Zwar ist der im soeben
genannten Testphantom simulierte Dichtebereich # > 0.8, dennoch wurden zur Verbesse-
rung der Generalisierungsfahigkeit auch deutlich groflere Dichtebereiche zum Training
einiger Modelle verwendet. Abbildung 7.13 stellt die vorhergesagten Kernladungszahlen
und Dichten der Modelle, trainiert mit # > {0.5,0.6,0.7,0.8,0.9,1.0}, dar. Zur Vereinfa-
chung wird die folgende Notation verwendet: M7=08 bezeichnet ein Modell, das auf
Trainingsdaten mit einer relativen Dichte # > 0.8 trainiert worden ist. Die Auswertung
der vorhergesagten Kernladungszahlen zeigt, dass die Modelle entsprechend ihrer relati-
ven Dichte aus den Trainingsdaten Aluminium korrekt erkennen. Das Modell M7>09
erkennt die Kernladungszahl des Aluminiums bei 77 < 0.9 nicht korrekt. Analog erkennt
das Modell M"7=! Aluminium fiir n > 0.95. Die verbleibenden Modelle erkennen die
Kernladungszahl im gesamten Phantom korrekt. In den Dichtevorhersagen zeichnet sich
ein dhnliches Bild ab. Die Dichtevorhersage des Modells M"=! weicht stark von den
anderen Modellen ab. Es wird vermutet, dass dieses Modell das Konzept der relativen
Dichte nie erlernen konnte und somit die gezeigten Ergebnisse hervorbringt. Im Gegen-

satz dazu extrapoliert das Modell M"7>%9 korrekt die Dichte des porésen Aluminiums
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Abbildung 7.13: Vorhersagen der Kernladungszahl und Dichte fiir ein Aluminiumphantom mit
verschiedenen relativen Dichten # (x-Achse) durch Modelle, die mit unterschied-
lichen unteren Grenzen der relativen Dichte (Legende) trainiert worden sind. Die
gestrichelten Linien geben die Literaturwerte an. In dem unteren Plot miissen die
absoluten Dichten fiir # € {0.8,0.85,0.9,0.95,1.0} vorhergesagt werden, sodass
fiinf Literaturwerte eingezeichnet sind.

bis hin zu # = 0.8.

Es ist festzuhalten, dass die Bestimmung der Kernladungszahl pordser Materialien expli-
zit fiir die in den Materialien vorliegende Porositdt in den Trainingsdaten vorliegen muss,
wiahrend die Dichtevorhersage, mindestens teilweise, durch die Modelle extrapoliert
werden kann. Im Allgemeinen muss der Dichtebereich der Probe mindestens in den
Trainingsdaten abgebildet werden, sodass die Verwendung eines Modell M"7>05 fiir
alle Proben, die innerhalb dieses Dichtebereiches liegen, moglich ist. Fiir einen gege-
benen Anwendungsfall sollte demnach die relative Dichte der Probe grob abgeschétzt
und in der Simulation der Trainingsdaten, beziehungsweise der Auswahl eines bereits
trainierten Modells, berticksichtigt werden. Analog zu dem vorausgehenden Abschnitt
ist die Anwendung des Fine-Tunings auch hier denkbar, um vortrainierte Modelle auf

anwendungsspezifische, relative Dichten zu optimieren.

7.5 VORHERSAGEN AUSSERHALB DER CT-MITTELSCHICHT

Eine weitere Einschrankung besteht in der Erzeugung eines zweidimensionalen Phantoms
(vergleiche DL-spezifische Anforderungen in Abschnitt 5.1) und die daraus resultierende,
rekonstruierte Mittelschicht, die fiir das Training verwendet wird (vergleiche Kapitel 5.3).
Demnach liegen die simulierten CT-Schichtbilder in der Mittelebene (Facherstrahl-CT),
sodass keine Feldkamp-Artefakte (vergleiche Kapitel 2.4.1) auftreten. Anschaulich be-
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schrieben kann ein dreidimensionales, rekonstruiertes Volumen als CD-Stapel” dargestellt
werden, der entlang der CT-Drehachse verlduft — sozusagen an ebendieser aufgefadelt
ist. Die mittlere CD im Stapel symbolisiert in diesem Vergleich die CT-Mittelschicht. In
realen CT-Scans werden hingegen die allermeisten Proben mit der dreidimensionalen
Kegelstrahl-CT gescannt und Schnittebenen, die entlang der Drehachse versetzt zur
Mittelebene liegen, enthalten wichtige Informationen und miissen, auch in der Materi-
albestimmung, korrekt abgebildet werden. Ein bekanntes Problem der Kegelstrahl-CT
kann mittels einer Simulation in aRTist visualisiert werden: Die rekonstruierten Abschwié-
chungskoeffizienten y d&ndern sich mit dem Abstand zur Mittelebene wie in Abbildung
7.14 dargestellt wird. Sie sinken mit zunehmendem Abstand zur Mittelebene fiir beide

L

0.600 —— Cone

) in cm
o
D
[\~
o
1

= —— Helix

0.125 T T T T T
—4 -2 0 2 4

Abstand zur Mittelebene in mm

Abbildung 7.14: Schnitt entlang der Drehachse (z-Achse) durch das rekonstruierte Volumen eines
Eisenstabs der Lange 10 cm fiir die DECT-Spektren nach Tabelle 5.2: 140kV und
240kV. Gezeigt werden die rekonstruierten Abschwachungskoeffizienten y, die
aus einem simulierten Scan mit einer Kegelstrahl-CT (Cone) und einer Helix-CT
(Helix) aufgenommen worden sind. Die physischen Start- und Endpunkte des
Eisenstabes sind grau gestrichelt eingezeichnet.

Spektren bei der Kegelstrahl-CT (blaue Kurve) ab. Zusétzlich ist an den Randern zu
erkennen, dass die Kegelstrahl-CT den Eisenstab etwa 0.5 mm zu kurz rekonstruiert.
Mithilfe der ebenfalls in Abbildung 7.14 dargestellten Helix-CT (rote Kurve) werden
die beiden genannten Probleme der Kegelstrahl-CT weitestgehend behoben. Das Profil
erscheint deutlich konstanter und die Endpunkte des Eisenstabes werden korrekt, wenn
auch mit tiberschwingenden Abschwachungskoeffizienten, rekonstruiert. Allein anhand
dieser Erkenntnis aus Abbildung 7.14 kann gefolgert werden, dass die Helix-CT fiir die
Materialbestimmung vorzuziehen ist, da sie weniger Artefakte im Volumen, insbesondere
in den Randbereichen, erzeugt und somit die Verschiebung der Datenverteilung im

7 Gemeint ist ein Stapel sogenannter Compact Discs.
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Vergleich zur simulierten Mittelschicht im Trainingsdatensatz verringert wird.

Aufbauend auf dieser Erkenntnis wird in Abbildung 7.15 die Materialbestimmung kon-
kret auf einem dreidimensionalen, simulierten Volumen durchgefiihrt und in Abhédngig-
keit des Abstandes zur Mittelebene entlang der CT-Drehachse ausgewertet. Die Vorher-
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Abbildung 7.15: Vorhergesagte Kernladungszahlen und Dichten abhédngig vom Abstand zur
Mittelebene eines Phantoms angelehnt an Abbildung 6.4 verldngert entlang der
Drehachse auf 10 cm. Die Literaturwerte sind grau dick gestrichelt eingezeichnet.
Die in Kapitel 6.1 definierten Prizisionen von +0.5 fiir die Kernladungszahl
sowie +1% fiir die Dichte sind diinn gestrichelt als obere und untere Grenze des
zuldssigen Bereiches, grau hinterlegt, eingezeichnet.

sage der Kernladungszahl gelingt dem trainierten Modell sowohl bei der Kegelstrahl-CT
als auch bei der Helix-CT im Toleranzbereich der in Kapitel 6.1 abgeleiteten Rahmen-
bedingungen problemlos. Zudem ist im Profil der Vorhersage der Kernladungszahl im
Volumen aus der Kegelstrahl-CT (linke Spalte, blaue Linie) keine Abstandsabhédngigkeit
zu beobachten. Bei der Vorhersage der Dichte auf dem Volumen der Kegelstrahl-CT
liegen alle Vorhersagen aufserhalb des grau markierten Toleranzbereiches (vergleiche
Abschnitt 6.1). Die reduzierten Abschwachungskoeffizienten im High-Energy-Volumen
der Helix-CT (vergleiche Abbildung 7.14; unten) senken die Vorhersage der Dichte ab,
sodass die vorhergesagten Dichten innerhalb der Toleranz liegen. Weiterhin ist zu ver-
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merken, dass sich bei der Vorhersage der Dichte im Volumen der Kegelstrahl-CT das
bereits in Abbildung 7.14 beobachtete Profil beobachten ldsst, welches mit zunehmendem
Abstand zur Mittelebene abféllt. Das Modell interpretiert den genannten Verlauf der
Abschwichungskoeffizienten als Variation der relativen Dichte, da die Vorhersage der
Kernladungszahlen konstant ist. Im Einklang mit der Erkenntnis aus Abbildung 7.14
wird festgehalten, dass die Helix-CT der Kegelstrahl-CT fiir die Materialbestimmung
dreidimensional ausgedehnter Proben vorzuziehen ist. Die in Kapitel 5.1 gewihlte Me-
thodik — das exklusive Training auf CT-Mittelschichten — stellt keine Einschrankung fiir
die Anwendung der Materialbestimmung auf dreidimensionale Proben dar, sofern die

Helix-CT zur Bildaufnahme verwendet wird.

7.6 ANWENDUNG AUF REALE CT-DATEN

Abschlieflend wird der entwickelte Ansatz zur Materialbestimmung auf realen CT-
Scandaten erprobt. Im Rahmen der Evaluation der implementierten Simulation in Ab-
schnitt 5.4.2 wurde bereits gezeigt, dass die reale CT-Anlage, im Vergleich zur implemen-
tierten Simulation, geringfiigig abweichende Abschwichungskoeffizienten misst. Somit
besteht die Vermutung, dass die Materialvorhersage ebenfalls keine idealen Ergebnisse
liefern wird. Abbildung 7.16 (linke Spalte) zeigt die rekonstruierten CT-Mittelschichten
eines DECT-Scans an der CT-Anlage aus Abschnitt 2.7 mit den Scanparametern aus
Tabelle 5.2. In der rechten Spalte werden die Materialvorhersagen eines DL-Modells
dargestellt. Zunachst ist zu beobachten, dass die CT-Artefakte zwischen den einzelnen
Proben teilweise, und falschlicherweise, als Material mit einer niedrigen Kernladungszahl
und Dichte erkannt werden. Weiterhin ist, insbesondere in der Dichtevorhersage des
Kupfers (rechts unten), zu erkennnen, dass die Strahlaufhartungsartefakte (das Cupping,
vergleiche Kapitel 2.4.1) nicht vollstandig vom DL-Modell als solche erkannt und entfernt
werden. Der homogene Kupferquader (im Schnittbild: Kupferquadrat) enthélt somit nach
der Vorhersage ein falsches Dichteprofil. Ein moglicher Grund fiir diese Abweichung
besteht in der Sim-To-Real-Gap, die bereits in Kapitel 1.1 angesprochen wurde und auf
eine unzureichende Modellierung des realen CT-Messprozesses durch die Simulation
zurtickzufiihren ist. Wie in Kapitel 5.2 beschrieben, bildet eine Raytracing-basierte Simu-
lation den realen Messprozess nicht ideal nach, sodass systematische Modellierungsfehler
zwangldufig in die Ergebnisse eingetragen werden.

Neben der qualitativen Auswertung von Abbildung 7.16 konnen die Materialvorhersagen
quantitativ anhand von Tabelle 7.1 bewertet werden. Die vorhergesagten Kernladungszah-
len fiir Aluminium, Edelstahl und Kupfer stimmen unter Einbezug der Unsicherheiten
mit den Literaturwerten tiberein. Dennoch befindet sich der Mittelwert der Kernladungs-
zahl fiir Edelstahl mit 26.73 auflerhalb des tolerierten Fehlerbereiches 0.5 (vergleiche
Abschnitt 6.1). Bei den Dichtevorhersagen liegen alle Mittelwerte deutlich unterhalb der
Literaturwerte. Der Grund fiir diese einheitliche Absenkung der vorhergesagten Dichten
kann, mindestens teilweise, in der fehlenden Modellierung der Streustrahlung gefunden
werden. Abbildung 7.17 zeigt das CT-Schichtbild einer Raytracing-basierten Simulation
und das Differenzbild zu einer Monte-Carlo-basierten Simulation. Die Streustrahlung
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Abbildung 7.16: Rekonstruierte DECT-Schichtbilder (links) und berechnete Materialkarten (rechts)
eines realen Scans an der CT-Anlage aus Kapitel 2.7. Alle x- und y-Achsen tragen
die Einheit Voxel.

tragt aufgrund ihrer Winkelverteilung ebenfalls zum gemessenen Detektorsignal bei,
sodass insgesamt eine niedrigere Abschwichung rekonstruiert wird (vergleiche Ab-
schnitt 2.1 und 2.3). Nach der Auswertung in Abbildung 7.17 senkt die Bertiicksichtigung
der Streustrahlung die rekonstruierten Abschwachungskoeffizienten um etwa 10 % fiir
das genannte Beispiel (Aluminiumwiirfel, 240kV) gegeniiber der Raytracing-basierten
Simulation ab. Daraus folgt, dass auch die Dichte niedriger vorhergesagt wird — die
beobachtete Abweichung in Tabelle 7.1.

Die einzelnen Bestandteile der Probe aus Abbildung 7.16 sind raumlich klar voneinander
separiert und in ihrem Inneren nicht strukturiert, sodass die Vorhersage der Materialien
verhédltnisméfiig einfach erscheint. Eine komplexer strukturierte Probe wurde mit den
oben genannten CT-Parametern aus Tabelle 5.2 gescannt und ist in Abbildung 7.18 dar-
gestellt — es handelt sich um eine Lithium-Ionen-Batterie (LIB). Die gezeigte LIB ist eine
sogenannte Rundzelle, die aus aufgewickelten Lagen besteht. In der Dichtevorhersage
in Abbildung 7.18 (rechts unten) ist zu erkennen, dass die LIB ein Gehduse mit einer
hohen Dichte (= 6 g/cm?) besitzt und in ihrem Inneren Dichten zwischen 1g/cm? und
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Tabelle 7.1: Vorhergesagte Kernladungszahlen und Dichten durch ein U-Net [36] fir das Ex-
periment aus Abbildung 7.16. Die tabellierten Werte geben den Mittelwert y, die
Standardabweichung ¢ und die prozentuale Abweichung des Mittelwerts p vom
Literaturwert der Vorhersage in der Form y £ ¢ (p) an. In der ersten Spalte werden
die Materialien zusammen mit ihren Literaturwerten gelistet.

Material Kernladungszahl Z | Dichte p in g/ cm’

Al (Z =13, p =2.70) 13.00 £0.01 (0.0%) | 2.59 +0.10 (4.1%)
V2A (Z =259,0=7.77) | 26.73+0.90 (3.2%) | 7.73+0.12 (0.5%)
Cu(Z =29, p=2893) 28.954+0.19 (0.2%) | 7.92+£0.37 (11.3%)

RT-Simulation ~ 1/cm RT-MC 1/cm
0
0.002
100 0.02
>< 0.01
S
= 300
0.000
400 0.00.
—0.001
0 200 400 0 200 400
Voxel Voxel

Abbildung 7.17: Links: Simuliertes CT-Schichtbild eines Aluminiumwtiirfels bei einer Quellspan-
nung Up = 240kV mit der Verwendung eines Raytracing-basierten Projektors
(RT). Rechts: Differenzbild zu dem simulierten CT-Schichtbild eines Monte-
Carlo-basierten Projektors (MC). Der Mittelwert innerhalb des Aluminiums im
Differenzbild betragt 0.002cm ™! — in guter Niherung 10 % des insgesamt ge-
messenen Signals. Die Berechnungdauern der Bilder betragen in der genannten
Reihenfolge Trr = 1.2 min und Tyyc ~ 120h.

4 g/cm3 vorliegen. Allgemein dhneln die Kontrastverhiltnisse der Dichtevorhersage den
DECT-Schichtbildern in Abbildung 7.18 (links). Auffillig ist beziiglich der Vorhersage
der Kernladungszahl in Abbildung 7.18 (rechts oben), dass einige Lagen im Inneren
der LIB eine hohe Kernladungszahl und gleichzeitig niedrige Dichte aufweisen. Hierbei
handelt es sich um ein Beschichtungsmaterial aus einer Gruppe namens Lithium-Nickel-
Mangan-Cobalt-Oxid (NMC). Eine haufig verwendete Mischung mit einer Dichte von
34¢g/ cm? heist NMC811, die im rekonstruierten Volumen nach der Gleichung von He-
ismann [14] mit einer effektiven Kernladungszahl Z.¢ ~ 26.4 erscheint. Da die genaue
Zusammensetzung der meisten kommerziell erhéltlichen LIBs nicht 6ffentlich bekannt ist,
wird der gezeigte Scan zusammen mit der Materialbestimmung der LIB nur qualitativ
ausgewertet. Anhand des Scans wird dennoch deutlich, dass die vorgestellte Methode zur
Materialbestimmung prinzipiell fiir die Untersuchung von LIBs geeignet ist. Unklar ist

zu diesem Zeitpunkt, ob typische Fehlerbilder, nach denen in den CT-Scans von Batterien
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Abbildung 7.18: Rekonstruierte DECT-Schichtbilder (links) und berechnete Materialkarten (rechts)
eines CT-Scans einer Lithium-Ionen-Batterie (LIB), durchgefiihrt an der CT-
Anlage aus Kapitel 2.7.

gesucht wird®, mithilfe der vorgestellten Methode gefunden werden kénnen. Mit einer
gezielten Auswertung einer bekannten und vollstindig charakterisierten LIB kann das
vorgestellte Verfahren zur Materialbestimmung aufbauend auf dieser Arbeit evaluiert
und gegebenfalls entsprechen qualifiziert werden.

Zusammenfassend kann festgehalten werden, dass die Ubertragung der trainierten
Modelle, fiir quantitative Aussagen, auf reale CT-Daten nicht trivial ist. Die Daten-
verteilungen der realen CT-Anlage unterscheiden sich zu stark von den simulierten
Verteilungen, sodass weitere Schritte notwendig sind, um die Materialvorhersagen zu
verbessern. Eine weitere Optimierung der Simulation zur Reduktion der Sim-To-Real-Gap
erscheint wenig aussichtsreich, da die angesprochenen, systematischen Modellierungsfeh-
ler einer Raytracing-basierten Simulation nicht umgehbar sind ohne Monte-Carlo-basierte
Verfahren zu nutzen. Hingegen erscheint das in Abschnitt 7.3.1 erprobte Fine-Tuning

Zu den wichtigsten Untersuchungen zahlt die Identifikation freier Partikel, beispielsweise aus Kupfer, die als
Verunreinigung einen negativen Einfluss auf die Leistung und Sicherheit der LIB austiben kénnen [116, 117].
Nach der Untersuchung des Aufldsungsvermogens in Abschnitt 7.1 ist klar, dass das Auflosungsvermogen
der Materialbestimmung nicht nur die Sichtbarkeit, sondern ebenso die quantitativen Materialvorhersagen
kleiner Partikel beeinflusst.
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als vielversprechende Methoden zur Uberwindung der Sim-To-Real-Gap. Nach dem er-
folgreichen Fine-Tuning eines Modells zur Anpassung an eine verdnderte CT-Geometrie
(vergleiche Abschnitt 7.3.1), konnte das gleiche Verfahren fiir die Anpassung an reale
CT-Daten verwendet werden. Durch das Vortrainieren der Modelle gentigt ein deutlich
kleinerer Datensatz zum Fine-Tuning, der anhand eines geeigneten, realen Phantoms
erzeugt werden kann (Kalibrationsscan). Ein Nachteil dieses Verfahrens besteht jedoch
darin, dass das Fine-Tuning, analog zu Abschnitt 7.3.1, fiir jeden CT-Parametersatz erneut
anhand eines Kalibrationsscans durchgefiihrt werden muss. Es besteht derzeit keine
Moglichkeit, den Einfluss der CT-Geometrie oder des Quellspektrums getrennt von der
Abweichung zwischen der Simulation und der realen CT-Anlage zu beschrieben, da
sowohl die CT-Geometrie als auch das Quellspektrum die simulierten und real gemes-
senen Datenverteilungen in komplexer Form beeinflussen. Idealerweise bestiinde die
DL-Architektur aus getrennten und voneinander unabhingigen Modulen, die jeweils
einen dieser Freiheitsgrade abdecken. Somit wire das Fine-Tuning, beispielsweise an
eine neue CT-Geometrie, moglich, ohne fiir jede Anwendung einen Kalibrationsscan
durchfiihren zu miissen.

Ein alternativer Ansatz kann durch die Verwendung eines zweiten DL-Modells realisiert
werden, das, abhédngig von den CT-Parametern, explizit den Unterschied zwischen der
Datenverteilung der Raytracing-basierten Simulation und einem realen Scan (oder einer
Monte-Carlo-basierten Simulation) erlernt und ebendiesen effektiv kompensieren kann.
Dieser Ansatz wird in Kapitel 9 im Kontext zukiinftiger Forschungsarbeiten ausfiihrlich
diskutiert.

7.7 ZUSAMMENFASSUNG DER ERGEBNISSE

In diesem Kapitel wurde die entwickelte Methodik, bestehend aus der implementierten
Simulation (Kapitel 5) sowie der ausgewdhlten DL-Architektur (Kapitel 6), in realisti-
sche CT-Scanszenarien tiberfiihrt und ihre Einschrankungen bezogen auf die Préazision
der Materialbestimmung untersucht. Die meisten untersuchten Einschrankungen treten
unabhéngig von der beobachteten Sim-To-Real-Gap auf, sodass sie anhand von simu-
lierten Phantomen untersucht werden konnten. In Abschnitt 7.1 wurde gezeigt, dass
der Erwartungswert der Regionsgrofie, bestimmt durch den Parameter Ny, in den
simulierten Phantomen (vergleiche Phantomgenerator in Kapitel 5.3) keinen Einfluss auf
die Ortsauflosung der DL-basierten Materialbestimmung hat. Weiterhin wurde erkannt,
dass die MTE-Kurve, eine hdufig genutzte Darstellungsform fiir die Ortsauflosung von
CT-Systemen, nicht zur Quantifizierung der Ortsauflosung bei der Materialbestimmung
geeignet ist, sodass diesbeziiglich eine domé&nenspezifische Methodik entwickelt wer-
den sollte. Die Analyse der Kantenschirfe der Materialvorhersagen in Abschnitt 7.2
bestatigt die Ergebnisse von Steuwe et al. [110], dass CNNs, die mit dem MSE-Loss auf
CT-Schichtbildern trainiert werden, die Kantenschirfe der Bilder reduzieren.

In Abschnitt 7.3 konnte gezeigt werden, dass das Training eines Modells auf einer festen
Kantenldnge des simulierten Volumens die Generalisierungsfahigkeit des Modells auf
andere Kantenldngen einschrankt. Das Fine-Tuning eines vortrainierten Modells auf eine
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neue Kantenldnge, die in einer vergleichbaren Grofienordnung der urspriinglichen Kan-
tenldnge liegt, wurde als Losungsvorschlag aufgezeigt und erfolgreich fiir den Transfer
eines Modells M*™ (Kantenldnge im Training 4 cm) auf die neue Kantenlinge 1cm
anhand eines kleinen Datensatzes demonstriert.

Neben der Materialbestimmung massiver Proben konnten in Abschnitt 7.4 die Kernla-
dungszahlen und Dichten von pordosem Aluminium (Porositit < 20 %) mit Modellen
durchgefiihrt werden, die auf entsprechenden Porositidten, beziehungsweise relativen
Dichten, innerhalb der Trainingsdaten konditioniert wurden.

Eine weitere relevante Einschrankung der entwickelten Methode, das Training auf zwei-
dimensionalen Phantomen (Facherstrahl-CT), konnte im Rahmen von Abschnitt 7.5 bei
der Anwendung auf dreidimensionale Proben analysiert werden. Durch den Einsatz der
Helix-CT, als Alternative zur Kegelstrahl-CT, werden aufgrund der Verschiebung entlang
der CT-Achse alle Schichten des dreidimensionalen Volumens wie eine Mittelschicht
betrachtet, sodass ein auf simulierten Mittelschichten trainiertes Modell stabile Material-
vorhersagen iiber ein dreidimensionales Volumen liefert.

Die sicherlich gravierendste Einschrankung ist durch die mehrfach angesprochene Sim-
To-Real-Gap gegeben. In Abschnitt 7.6 wurde die Materialbestimmung auf einem realen
CT-Schichtbild erprobt, wobei die Ergebnisse entsprechend der ausgepréagten Sim-To-
Real-Gap ausfallen. Es ist festzuhalten, dass die vorgestellte Methode zur Materialbestim-
mung nur stark eingeschrankt direkt in die CT-Praxis iibertragbar ist. Weiterfiihrende
Schritte wurden in Abschnitt 7.6 diskutiert, um die Sim-To-Real-Gap zu reduzieren und
so den Transfer in die reale Anwendung zu ermoglichen. Das schlichte Training auf
annotierten Realdaten, das teilweise in der verwandten Forschung in Kapitel 4.2.4 durch-
gefiihrt wurde, ist fiir industrielle Anwendungen aufgrund der enormen Vielfalt bezogen
auf die Priifteile (Form und Material) und die CT-Parameter fiir ein gut generalisiertes
Modell nicht durchfiihrbar. Prinzipiell wird ein Ansatz benétigt, der das Grundkonzept
der Materialbestimmung aus simulierten Daten erlernt und lediglich den Versatz zur
realen Datenverteilung in den CT-Scans anhand weniger, im Bestfall nicht annotierter,
Daten erlernen kann. Die Konzeption und Entwicklung eines derartigen Ansatzes ist

Gegenstand zukiinftiger Forschung.
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Die entwickelte Methodik zur Erzeugung von Trainingsdaten fiir die Materialbestimmung
in CT-Schichtbildern sowie die implementierten DL-Architekturen konnen, in leicht ab-
gewandelter Form, neben der Materialbestimmung fiir weitere Anwendungen in der CT
verwendet werden und somit zur Verbesserung der CT-Datenverarbeitung im Allgemei-
nen abseits der Materialbestimmung beitragen. Ziel dieses Kapitels ist die exemplarische
Ausfiihrung oder konzeptionelle Identifikation einiger Anwendungsmoglichkeiten, die
ohne komplexe Weiterentwicklungen der, in den drei vorausgehenden Forschungsfragen
erarbeiteten, Methodik umgesetzt werden konnen. Mit der beobachteten Sim-To-Real-Gap
wurde ein zentrales Problem der Trainingsdatenerzeugung identifiziert, das zu einer
deutlichen Verschlechterung der Materialbestimmung in realen CT-Scans fiihrt, wie in
Kapitel 7.6 aufgezeigt wurde. Dennoch besteht ein zu identifizierendes Potential fiir
andere Anwendungsfélle, in denen die Sim-To-Real-Gap, konkret die fehlende Model-
lierung der Streustrahlung, eine untergeordnete Rolle spielt und somit die entwickelte
Methodik direkt verwendet werden kann. Die Einfliisse der Sim-To-Real-Gap werden
daher in den jeweiligen Abschnitten anwendungsbezogen diskutiert.

Fiir die meisten Priifaufgaben, die mithilfe der CT durchgefiihrt werden, geniigt die
Messung mit einem einzelnen Spektrum, sodass DECT im Gesamtfeld der CT-Priifung
in einer Nische zu lokalisieren ist. Daher basieren die in diesem Kapitel vorgestellten
Anwendungen nicht auf DECT, sodass sie per Definition das Potential besitzen, auf jeden
industriellen CT-Scan angewandt zu werden.

Aufbauend auf den Beobachtungen aus Kapitel 7.6 (vergleiche Abbildung 7.16) wird
zundchst ein Verfahren zur Reduktion der Strahlaufhartungsartefakte in Abschnitt 8.1
vorgestellt und auf reale CT-Daten angewandt. Abschnitt 8.2 untersucht die implizit
erlernte Rauschunterdriickung des Verfahrens aus Abschnitt 8.1 ebenfalls auf realen
CT-Daten. Abschliefsend wird in Abschnitt 8.3 eine Methodik konzeptionell erldutert, die

zur Erkennung von Poren und Partikeln in CT-Scans verwendet werden kann.

8.1 REDUKTION DER STRAHLAUFHARTUNGSARTEFAKTE

Die Reduktion der Strahlaufhdrtungsartefakte wird seit vielen Jahren untersucht, um
die Bildqualitdt in CT-Scans zu verbessern. In klinischen CT-Scans stellt beispielsweise
implantiertes Metall in Form von Schrauben oder Schienen eine Hauptquelle fiir die
sogenannten Metallartefakte dar, die als Extremfall der Strahlaufhidrtung definiert wer-
den konnen. Nach Selles et al. lassen sich Verfahren zur Reduktion der Metallartefakte
anhand der verwendeten Datendoméne in zwei Kategorien unterteilen: Sinogram-based
und Image-based [118]. Im Rahmen dieser Dissertationsschrift wurde die Materialbestim-
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mung auf CT-Schichtbildern (Image-based) untersucht, sodass die in den vorangehenden
Kapiteln entwickelte Methodik vorzugsweise auf die zuletzt genannte Datendomaéne,
das heifst im rekonstruierten Volumen, angewandt wird. Weiterhin wurde in Kapitel
7.6 beobachtet, dass die trainierten Modelle die Strahlaufhadrtung in den Trainingsdaten
verarbeiten und in den Materialvorhersagen teilweise kompensieren (vergleiche Abbil-
dung 7.16). Abbildung 8.1 stellt die Kompensation der Strahlaufhidrtung exemplarisch
und qualitativ anhand der Materialbestimmung innerhalb der Materialien Edelstahl und
Kupfer aus dem realen CT-Scan nach Abbildung 7.16 dar. Aluminium weist aufgrund
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Abbildung 8.1: Teilschnitte durch den Edelstahlstab (links) und den Kupferwiirfel (rechts) im
High-Energy-Schichtbild mit 240kV (graue Linie) sowie durch die Materialvorher-
sagen (blaue und rote Linie). Gezeigt wird jeweils ein Teilprofil (obere Zeile) durch
die Objekte zur normierten Darstellung des Cuppings, hauptsichlich bedingt
durch die Strahlaufhartung, sodass die y-Achse einheitenlos ist. In der unteren
Zeile wird die absolute Abweichung von einem idealen Objekt (gestrichelte Linie),
das heifst ohne Strahlaufhédrtungsartefakte, dargestellt. Ziel der Abbildung ist die
qualitative Veranschaulichung, dass die Materialvorhersagen weniger Cupping
aufweisen als das High-Energy-Schichtbild.

seiner niedrigen Abschwiachung grundsitzlich weniger Strahlaufhédrtungsartefakte auf,
sodass die Materialien Edelstahl und Kupfer zu diesem Zweck anschaulicher sind. Das
Vergleichprofil wurde dem High-Energy-Schichtbild entnommen, da es weniger Strahl-
aufhdrtungsartefakte aufweist als das Low-Energy-Schichtbild und die Verwendung des
letzteren somit ein unfairer Vergleich wire.!

Wie einleitend beschrieben, ist die Durchfithrung der DECT beziehungsweise der Mate-

rialbestimmung fiir viele CT-Priifaufgaben mit der Verwendung eines EIDs zu zeitauf-

Das trainierte Modell berechnet die Materialbestimmung basierend auf den Low- und High-Energy-
Schichtbildern. Somit ist die qualitative Beurteilung der Artefaktkompensation nur fair, wenn das ar-
tefaktarmere Eingabebild, das High-Energy-Schichtbild, zum Vergleich herangezogen wird.
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windig und es bedarf einer vereinfachten Methode zur Reduktion der Strahlaufhdrtungs-
artefakte, die ohne eine DECT auf bestehende CT-Scanprotokolle angewandt werden
kann. Mithilfe der implementierten Simulation ldsst sich eine einfachere und zugleich
effektivere Methode zur Kompensation der Strahlaufhédrtungsartefakte realisieren: Wie in
Kapitel 2.4.1 beschrieben, besteht der Grund fiir die Strahlaufhédrtungsartefakte in der
Nutzung eines polychromatischen Rontgenspektrums. Bisher wurde die Simulation mit
zwei verschiedenen Quellspektren verwendet, um die DECT-Scans darzustellen. Durch
Verwendung zweier Spektren, beispielsweise 140kV (polychromatisch) und 100 keV (mo-
nochromatisch), berechnet die Simulation automatisch ein rekonstruiertes Volumen mit
dem polychromatischen Spektrum und ein rekonstruiertes Volumen mit dem mono-
chromatischen Spektrum, das keine Strahlaufhiartungsartefakte aufweist. Mithilfe der
simulierten Daten kann somit ein neuronales Netz, in diesem Fall exemplarisch ein
U-Net [36], trainiert werden, um die polychromatischen CT-Schichtbilder in monochro-
matische CT-Schichtbilder umzurechnen. Abbildung 8.2 stellt die Vorhersage eines nach
dieser Methodik trainierten U-Nets anhand von realen CT-Daten dar. Anhand der CT-
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Abbildung 8.2: Polychromatisches CT-Schichtbild (links) mit einer Beschleunigungsspannung
Up = 140kV des CT-Scans aus Kapitel 7.6 und Vorhersage des monochromati-
schen CT-Schichtbildes durch ein U-Net [36]. Die untere Zeile zeigt die Profile
entlang der roten, gestrichelten Linie.

Schichtbilder wird deutlich, dass die Strahlaufhédrtungsartefakte deutlich unterdriickt
werden (insbesondere untere Zeile anhand des reduzierten Cuppings). Die Aufienkante
des Aluminumquaders wird allerdings nicht korrekt dargestellt — im unteren Teil wird
falschlicherweise Material vorhergesagt, obwohl an dieser Stelle lediglich Luft erscheinen
sollte. Dieses Beispiel soll exemplarisch zeigen, dass die Realisierung einer Artefaktkor-
rektur fiir die Strahlaufhartungsartefakte mit diesem Ansatz moglich ist.

Der Einfluss der Sim-To-Real-Gap, hauptsédchlich induziert durch die fehlende Modellie-
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rung der Streustrahlung, wird anhand dieses Beispiels ebenfalls in verminderter Form
deutlich: Formell werden durch das beschriebene Verfahren die polychromatischen
Abschwichungskoeffizienten aus dem realen CT-Scan in monochromatische Abschwié-
chungskoeffizienten umgerechnet. Durch die fehlende Streustrahlung in den simulierten
Trainingsdaten werden die durch das DL-Modell berechneten, monochromatischen Ab-
schwachungskoeffizienten verfdlscht, da die Inputs des realen Scans der Streustrahlung,
und damit einer leicht abweichenden Verteilung, unterliegen. Wie einleitend beschrieben,
ist die Reduktion der Strahlaufhirtungsartefakte nicht rein quantitativ motiviert, sondern
dient ebenfalls einer Verbesserung der (subjektiven) Bildqualitit. Bei der strukturellen
CT-Priifung, beispielsweise zur Identifikation von Poren und Rissen, sind die absoluten
Werte der rekonstruierten Abschwichungskoeffizienten fiir den Anwender irrelevant.
Entscheidend ist einzig der (relative) Bildkontrast, sodass die Anwendung der in diesem
Abschnitt beschriebenen Methode keinen negativen Einfluss auf die Durchfiihrung der
Priifaufgabe hat.

8.2 RAUSCHREDUKTION

In diesem Abschnitt wird das trainierte Modell aus dem vorausgehenden Abschnitt
8.1 auf reale CT-Daten angewandt und das Rauschen des Inputs (CT-Schichtbild) mit
dem Rauschen der Prediction (monochromatisches CT-Schichtbild) verglichen. Neben
DL-basierten Verfahren, die explizit zur Rauschunterdriickung in CT-Bildern entwickelt
worden sind [119], besteht die Vermutung, dass das trainierte Modell aus Abschnitt
8.1 bereits aufgrund der Trainingsstrategie ein gewisses Potential zur Rauschreduktion
aufweist. Das Modell wurde auf rauschfreien CT-Schichtbildern trainiert, sodass es kein
realistisches Verstandnis des CT-spezifischen Rauschmusters im Rahmen des Trainings
erlangen konnte. Wie in Kapitel 3.4.1 beschrieben, enthilt das verwendete U-Net Dropout-
Layer, die, einzig motiviert aus der Perspektive des DLs, zur Stabilisation des Trainings
genutzt werden [45]. Die Dropout-Layer konnen formell als bindres (Bild-)Rauschen
interpretiert werden, das vom Modell unterdriickt wird.

Zur Quantifizierung des Rauschens in einem CT-Bildausschnitt wird die Standardabwei-
chung in ebendiesem nach dem in Kapitel 6.1 (Abbildung 6.2) beschriebenen Verfahren
ermittelt. Abbildung 8.3 stellt ein real gemessenenes, polychromatisches CT-Schichtbild
sowie das monochromatische CT-Schichtbild durch die Vorhersage eines U-Nets trainiert
im Rahmen von Abschnitt 8.1 dar. Anhand der roten Boxen ist zu erkennen, dass das
Bildrauschen durch Anwendung des U-Nets, sowohl innerhalb der Proben als auch im
leeren Raum?, reduziert wird. Auch wenn diese stichprobenartige Untersuchung der
Rauschreduktion keineswegs eine Allgemeingiiltigkeit fiir alle CT-Scans aufweist, ist ein
gewisses Potential der Methodik exemplarisch zu verzeichnen.

Ein positiver Nebeneffekt in Bezug auf eine verbesserte Robustheit gegentiber Bildrau-
schen kann intuitiv aus der Verwendung der Dropout-Layer abgeleitet, wenn auch nur

schwierig fiir CT-Bilder quantifiziert, werden. Nach Srivastava et al. fithrt die Verwen-

Gemeint ist der Teil des rekonstruierten Volumens, der keine Probe, sondern nur Luft enthilt, die in guter
Néherung vollstindig transparent fiir die Photonen im CT-relevanten Energiebereich ist.
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Abbildung 8.3: Rekonstruiertes CT-Schichtbild bei einer Quellspannung Up = 140kV eines Scans
mit der CT-Anlage aus Kapitel 2.7 und den CT-Parametern nach Tabelle 5.2
(links). Das monochromatische CT-Schichtbild (rechts) wurde mit einem U-Net
nach der Methodik aus Abschnitt 8.1 berechnet. Die Zahlenwerte oberhalb der
roten Boxen geben die normierten Standardabweichungen der rekonstruierten
Abschwiéchungskoeffizienten innerhalb der roten Boxen wieder.

dung der Dropout-Layer wahrend des Trainings anschaulich zu der zufélligen Aufspal-
tung des neuronalen Netzes in Teilinstanzen des gesamten Modells (Sub-Networks) [45].
Bei der Inferenz, bei der die Dropout-Layer im Normalfall deaktiviert werden, agieren
nach obiger Sichtweise alle Sub-Networks additiv und mitteln ihre (Zwischen-)Ergebnisse,
sodass ein Rauschen in den Eingabedaten statistisch unterdriickt wird.

8.3 DETEKTION VON POREN UND PARTIKELN

Wie in Kapitel 7.6 beschrieben, kann die Computertomographie verwendet werden, um
Lithium-Ionen-Batterien zu priifen. Im Kontext von Kapitel 7.1 wurde erldutert, dass
die Materialbestimmung von Partikeln mit dem vorgestellten Ansatz nur bis zu einer
gewissen Partikelgrofie zuverldssig funktionieren kann. Die implementierte Simulation
kann mit kleinen Anpassungen zur Erzeugung von Trainingsdaten fiir die Detektion
von Partikeln oder Poren in CT-Scans genutzt werden: Zunéchst werden zuféllige Phan-
tome nach dem in Kapitel 5.3 beschriebenen Verfahren erzeugt. Anschlieffend kénnen
gezielt kleine Regionen eines bestimmten Materials hinzugefiigt werden, deren Posi-
tionen, analog zu den Materialkarten, als Annotationen dienen. Fiir das Training einer
Segmentierung dieser kleinen Objekte konnen somit die CT-Schichtbilder als Inputs
und die bindr maskierten Partikel als Ground Truths verwendet werden. Alternativ

konnen die bekannten Positionen der eingefiigten Partikel fiir die Positionierung so-
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genannter Bounding Boxes verwendet werden (Box-basierte Detektion). Im Kontext der
beobachteten Sim-To-Real-Gap kann die Argumentation aus Abschnitt 8.1 aufgegriffen
werden. Auch fiir die Detektion von Poren und Partikeln spielt die Streustrahlung ei-
ne stark untergeordnete Rolle. Die Partikel werden nicht anhand ihrer quantitativen
Abschwichungskoeffizienten, sondern anhand ihres Kontrastunterschiedes gegeniiber
ihrer Umgebung erkannt — analog benétigt ein CT-Experte nicht die absoluten Werte der
Abschwidchungskoeffizienten zur Identifikation eines Partikels oder einer Pore innerhalb
eines sonst homogenen Materials. Diese beispielhafte Anwendung der implementierten
Simulation wird im Rahmen dieser Arbeit nicht erprobt, kann jedoch aufbauend zur
Entwicklung eines neuronalen Netzes zur Partikel- oder Porenidentifikation genutzt

werden.

84 ZUSAMMENFASSUNG DER ERGEBNISSE

In diesem Kapitel wurden weitere Anwendungsfélle der entwickelten Methodik aus
den ersten drei Forschungsfragen identifiziert. Insbesondere die Methodik der Trai-
ningsdatenerzeugung bietet allein durch den Austausch einiger Parameter das Potential,
Trainingsdaten fiir alternative Anwendungsfille, abseits der Materialbestimmung, zu
generieren. Die vorgestellten Anwendungsfille besitzen die Gemeinsamkeit, dass sie
nicht auf quantitativen CT-Daten basieren und somit, im Vergleich zur Materialbestim-
mung, robuster gegeniiber der in Abschnitt 7.6 diskutierten Sim-To-Real-Gap sind. Durch
die Substitution eines der beiden Quellspektren in den Simulationsparametern kénnen
mit der implementierten Simulation Trainingsdaten fiir die Umrechnung zwischen poly-
und monochromatischen CT-Schichtbildern erzeugt werden. Die Ergebnisse eines mit
ebendiesen Daten trainierten U-Nets wurden in Abschnitt 8.1 anhand realer Scandaten
prasentiert und weisen eine deutliche Reduktion der Strahlaufhirtungsartefakte auf. In
Abschnitt 8.2 wurde die implizit erlernte Rauschunterdriickung des trainierten U-Nets
aus Abschnitt 8.1 untersucht. Abschliefiend wurde die Moglichkeit disktuiert, mithilfe
des Phantomgenerators (vergleiche Abschnitt 5.3) Trainingsdaten fiir die Box-basierte
Detektion oder Segmentierung von Partikeln und Poren zu erzeugen. Alle genannten
Anwendungsfille weisen das Potential auf, auch ohne die weitere Reduktion der Sim-To-
Real-Gap, erfolgreich mit simulierten Daten trainiert und in die realen CT-Anwendung

iibertragen werden zu konnen.
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Im Rahmen der Einleitung in Kapitel 1 wurde die Verwendung eines DL-basierten Ver-
fahrens zur Materialbestimmung anhand von CT-Daten motiviert. Hieraus wurden vier
Forschungsfragen abgeleitet und in den Kapitel 5 bis 8 beantwortet. Ziel dieses Kapitels
ist die Bewertung und kritische Diskussion ebendieser Antworten auf die Forschungsfra-
gen.

Zur Beantwortung der ersten Forschungsfrage (Kapitel 5) wurde eine simulations-
basierte Methodik zur Trainingsdatenerzeugung fiir die Materialbestimmung in CT-
Schichtbildern entwickelt. Die einzige, heutzutage realistisch durchfiihrbare, Simulati-
onstechnik fiir die Erzeugung grofler Trainingsdatenmengen ist die Raytracing-basierte
Projektion virtueller Priifteile (vergleiche Kapitel 5.1). Sie birgt jedoch eine systemati-
sche Ungenauigkeit: die Streustrahlung, ein Produkt der Compton-Streuung (vergleiche
Kapitel 2.1), wird nicht modelliert. Riickblickend auf die Wechselwirkungsprozesse
von Photonen mit Materie in Abbildung 2.4 wird deutlich, dass der relative Anteil der
Compton-Streuung an der gesamten Wechselwirkung von der Photonenenergie abhéngt.
Abbildung 9.1 stellt den Anteil der Compton-Streuung an dem totalen Abschwachungs-
koeffizienten i, energieabhingig dar. Die Compton-Streuung ist, in grofsen Teilen des
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Abbildung 9.1: Anteil der Compton-Streuung am totalen Abschwachungskoeffizienten fiir ver-
schiedene Materialien abhingig von der Photonenenergie. Der relevante Energie-
bereich fiir die industrielle CT ist, analog zu Abbildung 2.4, grau hinterlegt.

industriell relevanten Energiebereiches, der einflussreichste Wechselwirkungsprozess,
sodass ein signifikanter Anteil des gemessenen (Detektor-)Signals auf die vorwaérts-
gerichtete Streustrahlung (vergleiche Kapitel 2.1, Klein-Nishina-Gleichung [3, S. 50f.])
zurtickzufiihren ist. Durch die fehlende Modellierung der Streustrahlung in der imple-
mentierten Simulation ist eine deutliche Sim-To-Real-Gap zu beobachten (vergleiche
Abbildung 5.8 und Abbildung 7.17). Ein Losungsansatz besteht in dem expliziten Lernen
der Sim-To-Real-Gap mit einem DL-Modell, sodass die simulierten Bilder, nach Pro-
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zessierung durch ein entsprechend trainiertes Modell, den realen Bildern stark dhneln.
Dieser Ansatz wird von Maier konkret fiir die fehlende Modellierung der Streustrah-
lung in simulierten CT-Bildern beschrieben: Er trainiert ein DL-Modell, das die absolute
Differenz zwischen einer Raytracing-basierten Simulation und einer (realistischen) Monte-
Carlo-basierten Simulation vorhersagt [120]. Obwohl Maier diese Methodik fiir einen
anderen Anwendungsfall konzipiert hat, bietet sie eine Moglichkeit, um die Verteilung
der Trainingsdaten im Rahmen dieser Arbeit deutlich an die real gemessenen CT-Daten
anzugleichen und um somit den Transfer auf reale CT-Daten zu verbessern. Da die Streu-
strahlung ein dreidimensional auftretender Effekt ist, sollte die implementierte Simulation
zur Datenerzeugung ebenfalls dreidimensionale Phantome und somit zweidimensionale
Projektionen berechnen, sodass die von Maier entwickelte Methode ihr volles Potential
entfalten kann. Dennoch ist zu betonen, dass die von Maier trainierten Modelle fiir das
Training stets die Projektionen aus einer Monte-Carlo-basierten Simulation benétigen,
sodass diese Methode ebenfalls mit einem erheblichen Berechnungsaufwand verbunden
ist. Ein alternatives Verfahren wurde durch Tercan fiir industrielle Sim-To-Real-Gaps
beschrieben und besteht in dem Vortrainieren eines DL-Modells auf simulierten Daten
und dem anschlieffenden Fine-Tuning auf wenigen, annotierten Realdaten [121]. Nach
Tercan lernt das DL-Modell wihrend des Vortrainings die grundlegenden Zusammen-
hédnge der simulierten Trainingsdatenverteilung und wéhrend des Fine-Tunings lediglich
den, potentiell trivialen, Versatz zur realen Datenverteilung. Beide Ansédtze nach Maier
und Tercan sollten in einer zukiinftigen Arbeit grundsitzlich fiir die Verarbeitung von
CT-Daten mit DL, auch abseits der Materialbestimmung, untersucht werden.

Die im Rahmen der zweiten Forschungsfrage (Kapitel 6) ausgewédhlte DL-Architektur,
das U-Net [36], wird in der Literatur fiir die Materialbestimmung anhand von CT-Bildern
haufig verwendet (vergleiche Tabelle 4.1). Im quantitativen Vergleich mit dem Swin-Unet
[58] konnte sich das U-Net fiir die Materialbestimmung im Rahmen dieser Arbeit durch-
setzen. Die deutliche Uberlegenheit der Transformer-basierten Architekturen gegentiber
den Convolution-basierten Architekturen in den grofsen CV-Benchmarks [111, 57, 37, 38]
steht in einem Widerspruch zu den Ergebnissen von Kapitel 6. Es ist die Frage zu stellen,
aus welchem Grund das U-Net bessere Ergebnisse bei der Materialbestimmung erzielen
konnte. Der offenkundigste Grund besteht in einem Mangel an Trainingsdaten, da das
Swin-Unet ohne vortrainierte Gewichte initialisiert wird. In den Originalpublikationen
nach Liu et al. wird der Swin Transformer auf Datensdtzen mit vielen Millionen Bildern
zundchst vortrainiert und anschlieffend fiir die speziellen Anwendungen mittels Fine-
Tuning angepasst [38]. Cao et al. geben fiir ihr Segmentierungsproblem aus der klinischen
CT an, auf dem ImageNet-Datensatz vortrainierte Gewichte fiir den Swin Transformer zu
verwenden [58], jedoch wird keine konkrete Referenz angegeben. Die Versuche in dieser
Arbeit, einen vortrainierten Swin Transformer (ImageNet-22K) zu nutzen, fithrten zu
keiner Verbesserung der Materialbestimmung (vergleiche Kapitel 6.4.2; Abbildung 6.11).
Der Grund fiir dieses Resultat kann in den doméanenspezifischen Unterschieden zwischen
dem ImageNet-22K-Datensatz und den DECT-Schichtbildern gefunden werden. Mit ei-
nem offenen und ausreichend dimensionierten CT-Datensatz konnten parameterstarke

Modelle, beispielsweise der Swin Transformer aber auch etablierte CNNs wie das ResNet,
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vortrainiert werden und so den Zugang fiir Forschende aus dem CT-Bereich signifikant
vereinfachen. Dariiber hinaus kénnen auf einem derartigen Datensatz offene Benchmarks
definiert werden, sodass die fiir die CT entwickelten Modelle untereinander vergleichbar
werden. Insbesondere fiir spezifische und sicherheitskritische CT-Anwendung bietet ein
offener Datensatz nicht nur Vergleichbarkeit sondern ebenso Transparenz. Ein Beispiel
hierfiir wére die Identifikation von Partikeln in Lithium-Ionen-Batterien anhand von
CT-Schichtbildern (vergleiche Kapitel 8.3). Die absoluten Detektionswahrscheinlichkei-
ten, der potentiell sicherheitskritischen Partikel, werden momentan von verschiedenen
CT-Systemherstellern anhand eigener, interner Datensidtze angegeben. Anhand eines
offenen Testdatensatzes konnten die verschiedenen Algorithmen quantitativ verglichen
und eventuell sogar qualifiziert werden. Allgemein existieren im CV-Bereich bekannte
Trainings- und Testdatensdtze beispielsweise fiir die Bildklassifikation [122, 94], die zum
quantitativen und anwendungsbezogenen Vergleich verschiedener DL-Architekturen
genutzt werden. Simpson et al. stellen mehrere offene Datensitze bereit, um die Segmen-
tierung trainierter Modelle anhand von klinischen Magnetresonanztomographie- und
CT-Scans zu beurteilen. Demnach sollten ebenfalls offene Datensitze aus der industriel-
len CT publiziert werden, um einerseits eine gemeinsame Datenbasis fiir das Training
von Basismodellen (vergleiche Swin Transformer [38]) zu schaffen und andererseits auf
ebendiesen Daten verschiedene Priifaufgaben evaluieren zu konnen, sodass die vorge-
stellen DL-Architekturen untereinander vergleichbar sind. Condon et al. stellen einen
offenen Datensatz bereit, der die CT-Schichtbilder von LIBs beinhaltet [123], jedoch keine
Annotationen bereitstellt. Fiir diesen Datensatz ware die Ergdanzung entsprechender
Annotationen zur Ausfithrung der Segmentierung oder Detektion von Partikeln denkbar
und sollte durchgefiihrt werden. Die Erweiterung auf andere Priifteile und alternative
CT-Parameter kann ebenfalls zielfithrend sein, um ausdrucksstarke Basismodelle fiir die
Verarbeitung von industriellen CT-Daten zu entwickeln.

Die dritte Forschungsfrage (Kapitel 7) befasst sich mit der Ubertragbarkeit des entwickel-
ten Ansatzes zur Materialbestimmung in die reale CT-Praxis. In den Anforderungen an
die Simulation (Kapitel 5.1) und den Rahmenbedingungen des DL-Modells (Kapitel 6.1)
wurden einige Annahmen getroffen, deren Auswirkungen in der realen CT-Anwendung
aufgezeigt und quantifiziert werden. Die implementierte Simulation erzeugt stets einen
Trainingsdatensatz, der mit einem festen Satz an CT-Parametern (beispielsweise Tabelle
5.2) erzeugt worden ist. Diese Annahme wurde getroffen, um einerseits die Prézision
der Materialbestimmung zu optimieren und andererseits die Laufzeit der Simulation zu
reduzieren. Jedoch benétigt eine spezifische Anwendung nach diesem Vorgehen einen
ebenso spezifischen Trainingdatensatz. In Kapitel 7.3 konnte gezeigt werden, dass das
Fine-Tuning genutzt werden kann, um vortrainierte Modelle an neue CT-Geometrien
anhand eines verhiltnisméafig kleinen, simulierten Datensatzes mit moderatem Berech-
nungsaufwand anzupassen. Analog konnen die anderen CT-Parameter, beispielsweise
die Einstellungen der Rontgenquelle, mithilfe eines kleinen Trainingsdatensatzes ange-
lernt werden. Ein alternativer Ansatz besteht in der Entwicklung einer DL-Architektur,
die neben den CT-Schichtbildern ebenfalls die CT-Parameter verarbeitet und somit eine
bessere Generalisierung aufweist.
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Problematischer verhilt sich das raumliche Auflosungsvermogen der DL-basierten Mate-
rialbestimmung, das in Kapitel 7.1 untersucht wurde. Es konnte gezeigt werden, dass
die Grofse der Materialregionen, entgegen der Erwartungen, keinen Einfluss auf das
rdaumliche Auflosungsvermogen der DL-basierten Materialbestimmung hat. Dartiber
hinaus ist die Messung der MTF-Kurve — eine etablierte Metrik zur Bestimmung des
Auflosungsvermogens von CT-Systemen — nur bedingt zur Messung des rdaumlichen
Auflésungsvermogens bei der Materialbestimmung geeignet (vergleiche Kapitel 7.1).
Es bedarf einer angepassten Metrik, die die Eigenschaft der Materialbestimmung als
Regressionsproblem berticksichtigt. Die Entwicklung einer derartigen Metrik, die so-
wohl die Prazision der Materialbestimmung als auch die Ortsaufléosung innerhalb der
CT-Schichtbilder bewerten kann, muss Gegenstand zukiinftiger Forschung sein. Abschlie-
lend wurde in Kapitel 7.6 demonstriert, dass die entwickelte Methode zur Materialbe-
stimmung aufgrund der Sim-To-Real-Gap nur bedingt auf reale CT-Daten anwendbar ist
und somit weiterer Forschungsbedarf besteht. Neben den bereits diskutierten Methoden
zur Reduktion der Sim-To-Real-Gap, die auf eine Verbesserung der Simulationsdaten
(nach Maier [120]) beziehungsweise das Fine-Tuning mit Realdaten (nach Tercan [121])
abzielen, kann ergidnzend seitens der DL-Architektur und der Trainingsstrategie eine
konzeptionelle Anderung erprobt werden: das Training mit gemischten Daten aus der
Simulation und der realen CT-Anlage. Konkret ist die Annotation realer CT-Daten, wie
mehrfach beschrieben, sehr zeitaufwéandig und daher nicht zu favorisieren, wiahrend die
Annotation bei den Simulationsdaten automatisch aus der entwickelten Methodik folgt
(vergleiche Kapitel 5.1.4). Es bedarf somit einer Trainingsstrategie, die annotierte Simula-
tionsdaten und nicht annotierte Realdaten verarbeitet — ein Verfahren, das als sogenannte
Adversarial Domain Adaption von Tzeng et al. publiziert wurde [90]. Bei der Adversarial
Domain Adaption werden zwei Encoder, die jeweils die Bilder aus einer Quell- und
einer Zieldoméne in einen Latent Space kodieren, gezwungen, einen sehr dhnlichen,
das heifst fiir einen Discriminator ununterscheidbaren, Latent Space zu kodieren [90].
Ubertragen auf die in dieser Arbeit gegebene Problemstellung kénnte mit dieser Methode
ein Encoder trainiert werden, der die realen CT-Daten und die simulierten CT-Daten in
einen (nahezu) identischen Latent Space kodiert. Aus diesem Latent Space kann, mithilfe
des auf simulierten Daten trainierten Decoders (unter Zuhilfennahme der annotierten
Materialien), die Materialbestimmung durchgefiihrt werden. Anhand dieser Beschrei-
bung erscheint die Methode der Adversarial Domain Adaption aus theoretischer Sicht
fiir das gegebene Problem gut geeignet zu sein, wobei beachtet werden muss, dass bereits
kleine morphologische Unterschiede zwischen den simulierten und realen CT-Daten als
Unterscheidungsmerkmal durch den Discriminator verwendet werden kdnnen und so die
gesamte Methodik destabilisieren konnen. Eine fiir CT-Daten allgemeingiiltige Losung
der beschriebenen Sim-To-Real-Gap beherbergt das Potential, vielfédltige Anwendungen,
auch abseits der Materialbestimmung, auf Basis simulierter CT-Daten zu trainieren und
anschliefiend in die praktische CT-Anwendung zu tibertragen. Somit bieten sowohl die
simulationsbezogene als auch die DL-bezogene Reduktion der Sim-To-Real-Gap bei
CT-Daten ein erhebliches Forschungspotential fiir zukiinftige Arbeiten.

Trotz der im Rahmen dieser Arbeit signifikanten Sim-To-Real-Gap, die den Transfer der
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Materialbestimmung auf reale CT-Daten behindert, konnten in Kapitel 8 im Rahmen der
vierten Forschungsfrage exemplarisch einige Anwendungspotentiale der entwickelten
Methodik fiir andere Aufgabenfelder innerhalb der CT aufgezeigt werden. Zusammen-
fassend ist die entwickelte Methode zur Trainingsdatenerzeugung fiir Anwendungen
geeignet, die nicht der quantitativen CT zugeordnet sind — das heifst, die absoluten
Abschwéchungskoeffizienten eine fiir die Priifaufgabe untergeordnete Rolle spielen. Zu
diesen Priifaufgaben zihlt beispielhaft die raumliche Detektion von Partikeln innerhalb
eines CT-Schichtbildes, fiir die der Einfluss der Streustrahlung zu vernachléssigen ist.
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Die industrielle CT ist eine zerstorungsfreie Priiftechnik, die dreidimensionale, digitale
Abbilder, die sogenannten CT-Volumen, der Priifteile mithilfe von Rontgenstrahlung
erzeugt. Physikalisch betrachtet ist die CT somit ein ortsaufgelostes Messverfahren der
linearen Abschwachungskoeffizienten y, der Rontgenstrahlung, die zur Bildaufnahme
verwendet wird. Verschiedene Materialien weisen unterschiedliche und energieabhingige
lineare Abschwachungskoeffizienten auf, deren Verlauf charakteristisch fiir das jeweilige
Material ist. Somit besteht die Moglichkeit, aus den mithilfe der CT gemessenen linearen
Abschwidchungskoeffizienten, ortsaufgeldste Riickschliisse auf die Materialien zu ziehen,
aus denen das gescannte Priifteil besteht — die Materialbestimmung. Neben vielfaltigen
Anwendungen im Umfeld der klinischen CT, die auch den Ursprung der CT-basierten
Materialbestimmung darstellt, ist die Materialbestimmung in der industriellen CT ein
wertvolles Werkzeug zur Charakterisierung und Qualitédtssicherung von Priifteilen.

Seit Jahrzehnten werden Methoden zur Materialbestimmung anhand von CT-Volumen
einerseits durch Anwendung der physikalischen Gesetze (klassische Algorithmen) und
andererseits durch datengetriebene Verfahren (kiinstliche neuronale Netze), zu denen
auch das Deep Learning zdhlt, erforscht [13, 14, 22]. Im Rahmen dieser Dissertations-
schrift wird ein DL-basiertes Verfahren zur Materialbestimmung vorgestellt.

Zunichst werden im Rahmen der ersten Forschungsfrage die Anforderungen an die
simulationsbasierte Trainingsdatenerzeugung sowie die Implementierung ebendieser
Simulation vorgenommen. Die implementierte Simulation basiert auf einem Raytracing-
basierten Ansatz und kann demnach einen der wichtigsten Wechselwirkungsprozesse,
die Compton-Streuung, nur bedingt modellieren. Somit unterliegen die simulierten CT-
Daten einer Sim-To-Real-Gap, die durch den Vergleich mit realen CT-Daten ersichtlich
wird. Dennoch bietet die implementierte Simulation aufgrund ihrer Geschwindigkeit
und Skalierbarkeit das Potential, Datensdtze zu berechnen, die mit mehreren Millionen
Eintrdgen eine wichtige Grundlage fiir das Training parameterstarker DL-Modelle auch
tir zukiinftige Forschungsarbeiten bilden.

In der zweiten Forschungsfrage wird eine geeignete DL-Architektur fiir die zu lernende
Materialbestimmung gesucht. Formell ist die Materialbestimmung eine sogenannte Dense
Prediction, die fiir jedes Pixel eines Eingabebildes eine (Material-)Vorhersage berechnet.
Aufgrund der Ergebnisse einer Literaturrecherche im Rahmen dieser Dissertationsschrift
wird zunédchst das U-Net [36] implementiert und fiir die Materialbestimmung optimiert.
Weiterhin ist der Erfolg von Transformer-basierten Architekturen in der Bildverarbeitung
[57, 37, 38] unbestreitbar, sodass auch fiir die Materialbestimmung eine Transformer-
basierte Architektur erprobt werden muss. Hierzu wird das Swin-Unet [58] implementiert
und quantitativ mit dem U-Net verglichen. Obschon die Materialbestimmung einzelner,
ausgewihlter Materialien mit dem Swin-Unet bessere Ergebnisse hervorbringt, sind
lediglich die Vorhersagen mit dem U-Net auf allen betrachteten Testmaterialien innerhalb
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der von CT-Anwendern geforderten Fehlertoleranzen, sodass das U-Net fiir die weitere
Untersuchungen verwendet wird. Die Ergebnisse geben ein Hinweis auf das in der
Literatur bisher unausgeschopfte Potential Transformer-basierter Architekturen fiir die
Verarbeitung von CT-Daten, welches in dieser Dissertationsschrift teilweise aufgedeckt,
jedoch nicht vollstandig genutzt werden konnte.

In der dritten Forschungsfrage werden die Auswirkungen der in den ersten beiden
Forschungsfragen getroffenen Annahmen beim Transfer in die reale CT-Anwendung
untersucht. Es wird gezeigt, dass die auf festen Probengrofien trainierten Modelle mittels
Fine-Tuning an andere Probengrofsen angepasst werden kénnen und die geforderte
Préazision der Materialbestimmung erreichen. Weiterhin wird demonstriert, dass die
Annahme der Facherstrahl-CT in den simulierten Daten (es werden zweidimensionale
Proben auf einen eindimensionalen Detektor projiziert) ebenfalls auf dreidimensionale
CT-Daten schichtweise angewandt werden kann, sofern die Helix-Trajektorie zur Da-
tenaufnahme verwendet wird. Die Materialbestimmung poroser Proben ist ebenfalls
moglich, wenn die verwendeten Trainingsdaten ebendiese Porositdten enthalten. Bei
der Beurteilung des raumlichen Auflosungsvermogens wurde festgestellt, dass die in
der CT verbreitete MTF-Kurve nicht mit der Materialbestimmung kompatibel ist und
an dieser Stelle weiterer Forschungsbedarf besteht. Ebenfalls konnte der Einfluss der
bereits beobachteten Sim-To-Real-Gap auf die Materialbestimmung anhand eines realen
CT-Scans mit bekannten Probenmaterialien bestitigt werden: Die fehlende Modellierung
der Streustrahlung senkt die rekonstruierten Abschwéchungskoeffizienten ab, sodass
insbesondere die Dichtevorhersagen unterhalb der Literaturwerte zu verordnen sind.
Klar ist, dass die Reduktion der Sim-To-Real-Gap ein zentraler Bestandteil zukiinftiger
Forschung sein muss, um einerseits die Materialbestimmung und andererseits die DL-
basierte Datenverarbeitung von CT-Daten zu verbessern.

Abschliefiend werden in der vierten Forschungsfrage weitere Anwendungsmoglichkeiten
der entwickelten Methodik, abseits der Materialbestimmung, genannt und im Kontext
der beobachteten Sim-To-Real-Gap hinsichtlich ihrer Realisierbarkeit eingeordnet. So
besteht die Moglichkeit, DL-Modelle beispielsweise auf die Detektion von Partikeln zu
trainieren, da die Erkennung der Partikel nicht auf absoluten Werten, sondern auf dem
relativen Bildkontrast in einer lokalen Umgebung erfolgen kann. Im Allgemeinen sind
Anwendungsfille, die nur geringfiigig von der fehlenden Modellierung der Streutrahlung
beeinflusst werden, mit der entwickelten Methodik realisierbar. Hierzu zahlt gegebenen-
falls auch die Materialbestimmung bei sehr viel niedrigeren Photonenenergien und mit

leichten Materialien — zum Beispiel fiir die klinische CT.



LITERATURVERZEICHNIS

(6]

[10]

Rontgen, Wilhelm C.: Ueber eine neue Art von Strahlen. In: Sitzungsberichte
Physikal. Institut der Universitat Wiirzburg (1896). (Zugriff: 2024-06-13)

Nobel Prize Outreach: The Nobel Prize in Physics 1901. https://www.nobelprize.
org/prizes/physics/1901/rontgen/facts/. (Zugriff: 2024-06-18). Version: 1901

Knoll, Glenn F.: Radiation Detection and Measurement. 3. ed. New York, NY
Weinheim : Wiley, 2000. — ISBN 978-0-471-07338-3

Dally, J.EHalls: On the Use of the Roentgen Rays in the Diagnosis of Pulmonary
Disease. In: The Lancet 161 (1903), Nr. 4165, 1800-1806. http://dx.doi.org/
10.1016/50140-6736(01)86540-5. (Zugriff: 2024-10-21). — DOI 10.1016/5S0140-
6736(01)86540-5. — ISSN 0140-6736

Moseley, H.G.J.: LXXX. The High-Frequency Spectra of the Elements. Part II. In: The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
27 (1914), Nr. 160, 703-713. http://dx.doi.org/10.1080/14786440408635141. (Zu-
griff: 2024-10-21). — DOI 10.1080/14786440408635141

Nobel Prize Outreach: The Nobel Prize in Physics 1914. https://www.nobelprize.
org/prizes/physics/1914/summary/. (Zugriff: 2024-10-21). Version: 1914

Watson, J. D. ; Crick, F. H. C.: Molecular Structure of Nucleic Acids: A Structure for
Deoxyribose Nucleic Acid. In: Nature 171 (1953), April, Nr. 4356, 737-738. http:
//dx.doi.org/10.1038/171737a0. (Zugriff: 2024-10-21). — DOI 10.1038/171737a0. —
ISSN 14764687

Nobel Prize Outreach: The Nobel Prize in Physiology or Medicine 1979. https:
//www.nobelprize.org/prizes/medicine/1979/press-release/. (Zugriff: 2024-
05-21). Version: 1979

Schreiber, Joseph J. ; Anderson, Paul A. ; Hsu, Wellington K.: Use of Computed
Tomography for Assessing Bone Mineral Density. In: Neurosurgical Focus 37
(2014), Juli, Nr. 1, E4. http://dx.doi.org/10.3171/2014.5.F0CUS1483. (Zugriff:
2024-08-13). — DOI 10.3171/2014.5.FOCUS1483. — ISSN 1092-0684

Nagpal, Prashant ; Guo, Junfeng ; Shin, Kyung M. ; Lim, Jae-Kwang ; Kim, Ki B.
; Comellas, Alejandro P. ; Kaczka, David W. ; Peterson, Samuel ; Lee, Chang H. ;
Hoffman, Eric A.: Quantitative CT Imaging and Advanced Visualization Methods:
Potential Application in Novel Coronavirus Disease 2019 (COVID-19) Pneumonia.
In: BJR I Open 3 (2021), Januar, Nr. 1, 20200043. http://dx.doi.org/10.1259/bjro.
20200043. (Zugriff: 2024-08-13). — DOI 10.1259/bjro.20200043. — ISSN 2513-9878

143


https://www.nobelprize.org/prizes/physics/1901/rontgen/facts/
https://www.nobelprize.org/prizes/physics/1901/rontgen/facts/
http://dx.doi.org/10.1016/S0140-6736(01)86540-5
http://dx.doi.org/10.1016/S0140-6736(01)86540-5
http://dx.doi.org/10.1080/14786440408635141
https://www.nobelprize.org/prizes/physics/1914/summary/
https://www.nobelprize.org/prizes/physics/1914/summary/
http://dx.doi.org/10.1038/171737a0
http://dx.doi.org/10.1038/171737a0
https://www.nobelprize.org/prizes/medicine/1979/press-release/
https://www.nobelprize.org/prizes/medicine/1979/press-release/
http://dx.doi.org/10.3171/2014.5.FOCUS1483
http://dx.doi.org/10.1259/bjro.20200043
http://dx.doi.org/10.1259/bjro.20200043

144

LITERATURVERZEICHNIS

[11]

[14]

[15]

[16]

Fang, Wei ; Li, Liang: Attenuation Image Referenced (AIR) Effective Atom
Number Image Calculation for MeV Dual-Energy Container CT Using Image-
Domain Deep Learning Framework. In: Results in Physics 35 (2022), 105406.
http://dx.doi.org/10.1016/j.rinp.2022.105406. (Zugriff: 2022-11-08). - DOI
10.1016/j.rinp.2022.105406. — ISSN 2211-3797

Rahe, Christiane ; Kelly, Stephen T. ; Rad, Mansoureh N. ; Sauer, Dirk U. ; Mayer,
Joachim ; Figgemeier, Egbert: Nanoscale X-ray Imaging of Ageing in Automotive
Lithium Ion Battery Cells. In: Journal of Power Sources 433 (2019), 126631. http:
//dx.doi.org/10.1016/].jpowsour.2019.05.039. (Zugriff: 2024-10-22). — DOI
10.1016/j.jpowsour.2019.05.039. — ISSN 0378-7753

Alvarez, R E. ; Macovski, A: Energy-Selective Reconstructions in X-ray Computeri-
sed Tomography. In: Physics in Medicine and Biology 21 (1976), September, Nr. 5,
733-744. http://dx.doi.org/10.1088/0031-9155/21/5/002. (Zugriff: 2022-02-17).
- DOI 10.1088/0031-9155/21/5/002. — ISSN 00319155

Heismann, B. ]. ; Leppert, J. ; Stierstorfer, K.: Density and Atomic Number Measure-
ments with Spectral X-Ray Attenuation Method. In: Journal of Applied Physics 94
(2003), August, Nr. 3, 2073-2079. http://dx.doi.org/10.1063/1.1586963. (Zugriff:
2024-10-22). — DOI 10.1063/1.1586963. — ISSN 0021-8979, 1089-7550

Nachtrab, F. ; Weis, S. ; Keflling, P. ; Sukowski, F. ; Haf8ler, U. ; Fuchs, T. ; Uhlmann,
N. ; Hanke, R.: Quantitative Material Analysis by Dual-Energy Computed Tomo-
graphy for Industrial NDT Applications. In: Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 633 (2011), S159-5162. http://dx.doi.org/10.1016/j.nima.2010.06.
154. (Zugriff: 2022-08-31). — DOI 10.1016/j.nima.2010.06.154. — ISSN 0168-9002

Wang, Shaoyu ; Cai, Ailong ; Wu, Weiwen ; Zhang, Tao ; Liu, Fenglin ; Yu,
Hengyong: IMD-MTFC: Image-Domain Material Decomposition via Material-
Image Tensor Factorization and Clustering for Spectral CT. In: IEEE Transactions
on Radiation and Plasma Medical Sciences 7 (2023), April, Nr. 4, 382-393.
http://dx.doi.org/10.1109/TRPMS.2023.3234613. (Zugriff: 2024-03-25). - DOI
10.1109/TRPMS.2023.3234613. — ISSN 2469-7311, 2469-7303

paperswithcode: Object Detection on COCO Test-Dev. https://paperswithcode.
com/sota/object-detection-on-coco. (Zugriff: 2024-10-22). Version:2024

paperswithcode: Image Classification on ImageNet. https://paperswithcode.

com/sota/image-classification-on-imagenet. (Zugriff:  2024-10-22).
Version: 2024

paperswithcode: Semantic Segmentation on ADE20K. https://paperswithcode.
com/sota/semantic-segmentation-on-ade20k. (Zugriff: 2024-10-22). Version: 2024

paperswithcode: =~ Medical Image Segmentation on Kvasir-SEG.  https://

paperswithcode.com/sota/medical-image-segmentation-on-kvasir-seg. (Zu-
griff: 2024-10-22). Version:2024


http://dx.doi.org/10.1016/j.rinp.2022.105406
http://dx.doi.org/10.1016/j.jpowsour.2019.05.039
http://dx.doi.org/10.1016/j.jpowsour.2019.05.039
http://dx.doi.org/10.1088/0031-9155/21/5/002
http://dx.doi.org/10.1063/1.1586963
http://dx.doi.org/10.1016/j.nima.2010.06.154
http://dx.doi.org/10.1016/j.nima.2010.06.154
http://dx.doi.org/10.1109/TRPMS.2023.3234613
https://paperswithcode.com/sota/object-detection-on-coco
https://paperswithcode.com/sota/object-detection-on-coco
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/semantic-segmentation-on-ade20k
https://paperswithcode.com/sota/semantic-segmentation-on-ade20k
https://paperswithcode.com/sota/medical-image-segmentation-on-kvasir-seg
https://paperswithcode.com/sota/medical-image-segmentation-on-kvasir-seg

[22]

(23]

[24]

[26]

[31]

LITERATURVERZEICHNIS

paperswithcode: Medical Image Segmentation on CVC-ClinicDB. https://

paperswithcode.com/sota/medical-image-segmentation-on-cvc-clinicdb. (Zu-
griff: 2024-10-22). Version: 2024

Weiss, Moritz ; Meisen, Tobias: Reviewing Material-Sensitive Computed Tomo-
graphy: From Handcrafted Algorithms to Modern Deep Learning. In: NDT 2
(2024), Juli, Nr. 3, 286-310. http://dx.doi.org/10.3390/ndt2030018. (Zugriff:
2024-08-13). — DOI 10.3390/ndt2030018. — ISSN 2813-477X

Demtroder, Wolfgang: Experimentalphysik 3. Berlin, Heidelberg : Springer Ber-
lin Heidelberg, 2010 (Springer-Lehrbuch). http://link.springer.com/10.1007/
978-3-642-03911-9. (Zugriff: 2023-08-24). — ISBN 978-3-642-03910-2 978-3-642—
03911-9

Bellon, C.: aRTist - Analytical RT Inspection Simulation Tool. BAM Federal Insti-
tute for Materials Research and Testing. https://artist.bam.de/en/index.htm.
(Zugriff: 2024-05-08)

Becker, F. ; Kohnke, D. ; Reichardt, M. ; Budelmann, H.: Investigation of Various
Concrete Compositions with Respect to Gamma-Radiation Transmission Properties
of Cs-137. In: Radiation Physics and Chemistry 171 (2020), Juni, 108679. http:
//dx.doi.org/10.1016/].radphyschem.2020.108679. (Zugriff: 2025-01-27). — DOI
10.1016/j.radphyschem.2020.108679. — ISSN 0969806X

Thompson, A. ; Attwood, D. ; Gullikson, E. ; Howells, M. ; Kim, K]. ; Kirz, J.
; Kortright, J. ; Lindau, I. ; Liu, Y. ; Pianetta, P. ; Robinson, A. ; Scofield, J. ;
Underwood, J. ; Williams, G. ; Winick, H.: X-RAY DATA BOOKLET. 3. Berke-
ley : Lawrence Berkeley National Laboratory, 2009

E07 Committee: Practice  for = Manufacturing Characterization  of

Digital Detector Arrays. http://www.astm.org/cgi-bin/resolver.cgi?
E2597E2597M- 14. (Zugriff: 2024-10-17)

Gonzalez, Rafael C. ; Woods, Richard E.: Digital Image Processing. Third Edition.
New York, New York : Pearson Education, 2008. — ISBN 0-13-168728-X

Lee, Eunae ; Hong, Eunyeong ; Kim, Dong S.: Using Deep Learning for Pixel-Defect
Corrections in Flat-Panel Radiography Imaging. In: Journal of Medical Imaging
8 (2021), Mérz, Nr. 02. http://dx.doi.org/10.1117/1.JMI.8.2.023501. (Zugriff:
2024-10-16). - DOI 10.1117/1.JM1.8.2.023501. — ISSN 2329-4302

Maier, Andreas (Hrsg.) ; Steidl, Stefan (Hrsg.) ; Christlein, Vincent (Hrsg.) ;
Hornegger, Joachim (Hrsg.): Lecture Notes in Computer Science. Bd. 11111:

Medical Imaging Systems: An Introductory Guide. Cham : Springer International

Publishing, 2018 http://link.springer.com/10.1007/978-3-319-96520-8. (Zu-
griff: 2022-02-15). — ISBN 978-3-319-96519-2 978-3-319-96520-8

Radon, Johann: Uber Die Bestimmung von Funktionen Lings Gewisser Man-
nigfaltigkeiten. In: Berichte iiber die Verhandlungen der Koniglich-Sachsischen

145


https://paperswithcode.com/sota/medical-image-segmentation-on-cvc-clinicdb
https://paperswithcode.com/sota/medical-image-segmentation-on-cvc-clinicdb
http://dx.doi.org/10.3390/ndt2030018
http://link.springer.com/10.1007/978-3-642-03911-9
http://link.springer.com/10.1007/978-3-642-03911-9
https://artist.bam.de/en/index.htm
http://dx.doi.org/10.1016/j.radphyschem.2020.108679
http://dx.doi.org/10.1016/j.radphyschem.2020.108679
http://www.astm.org/cgi-bin/resolver.cgi?E2597E2597M-14
http://www.astm.org/cgi-bin/resolver.cgi?E2597E2597M-14
http://dx.doi.org/10.1117/1.JMI.8.2.023501
http://link.springer.com/10.1007/978-3-319-96520-8

146

LITERATURVERZEICHNIS

[38]

Gesellschaft der Wissenschaften zu Leipzig 69, Nr. 1917, S. 262-277. (Zugriff: 2022-

08-30)

Kak, Avinash C. ; Slaney, Malcolm: Principles of Computerized Tomographic
Imaging: "This SIAM Edition Is an Unabridged Republication of the Work First

Published by IEEE Press, New York, 1988.". Philadelphia, Pa : Society for Industrial

and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA
19104), 2001 (Classics in Applied Mathematics 33). — ISBN 978-0-89871-494—4
978-0-89871-927-7

Feldkamp, L. A. ; Davis, L. C. ; Kress, J]. W.: Practical Cone-Beam Algorithm.
In: Journal of the Optical Society of America A 1 (1984), Juni, Nr. 6, 612. http:
//dx.doi.org/10.1364/J0SAA.1.000612. (Zugriff: 2022-02-15). — DOI 10.1364/JO-
SAA.1.000612. — ISSN 1084-7529, 1520-8532

Perry Sprawls: Physical Principles of Medical Imaging (Web Version). 2nd. 1993
(Zugriff: 2024-06-24)

McCollough, Cynthia H. ; Boedeker, Kirsten ; Cody, Dianna ; Duan, Xinhui ; Flohr,
Thomas ; Halliburton, Sandra S. ; Hsieh, Jiang ; Layman, Rick R. ; Pelc, Norbert J.:
Principles and Applications of Multienergy CT: Report of AAPM Task Group 291.
In: Medical Physics 47 (2020), Juli, Nr. 7. http://dx.doi.org/10.1002/mp.14157.
(Zugriff: 2022-01-07). — DOI 10.1002/mp.14157. — ISSN 0094-2405, 2473-4209

Ronneberger, Olaf ; Fischer, Philipp ; Brox, Thomas: U-Net:

Convolutional Networks  for  Biomedical Image Segmentation. http:
//arxiv.org/abs/1505.04597. (Zugriff: 2022-06-09). Version: Mai 2015

Liu, Ze ; Lin, Yutong ; Cao, Yue ; Hu, Han ; Wei, Yixuan ; Zhang, Zheng ;
Lin, Stephen ; Guo, Baining: Swin Transformer: Hierarchical Vision Transformer
Using Shifted Windows. http://arxiv.org/abs/2103.14030. (Zugriff: 2023-04-03).
Version: August 2021

Liu, Ze ; Hu, Han ; Lin, Yutong ; Yao, Zhuliang ; Xie, Zhenda ; Wei, Yixuan
; Ning, Jia ; Cao, Yue ; Zhang, Zheng ; Dong, Li ; Wei, Furu ; Guo, Baining:
Swin Transformer V2: Scaling Up Capacity and Resolution. http://arxiv.org/
abs/2111.09883. (Zugriff: 2024-09-18). Version: April 2022

Hornik, Kurt ; Stinchcombe, Maxwell ; White, Halbert: Multilayer Feedforward
Networks Are Universal Approximators. In: Neural Networks 2 (1989), Januar, Nr.
5, 359-366. http://dx.doi.org/10.1016/0893-6080(89)90020-8. (Zugriff: 2025-
02-21). — DOI 10.1016/0893-6080(89)90020-8. — ISSN 08936080

Goodfellow, I. ; Bengio, Y. ; Courville, A.: Deep Learning: Das Umfassende
Handbuch : Grundlagen, Aktuelle Verfahren Und Algorithmen, Neue
Forschungsansitze. 1. Frechen : mitp, 2018. — ISBN 978-3-95845-700-3



http://dx.doi.org/10.1364/JOSAA.1.000612
http://dx.doi.org/10.1364/JOSAA.1.000612
http://dx.doi.org/10.1002/mp.14157
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/2103.14030
http://arxiv.org/abs/2111.09883
http://arxiv.org/abs/2111.09883
http://dx.doi.org/10.1016/0893-6080(89)90020-8

[42]

[43]

[44]

[46]

(48]

[49]

LITERATURVERZEICHNIS

Ciampiconi, Lorenzo ; Elwood, Adam ; Leonardi, Marco ; Mohamed, Ashraf ;
Rozza, Alessandro: A Survey and Taxonomy of Loss Functions in Machine Lear-
ning. (2024), November. http://dx.doi.org/10.48550/arXiv.2301.05579. (Zu-
griff: 2025-01-17). — DOI 10.48550/arXiv.2301.05579

Loshchilov, Ilya ; Hutter, Frank: Decoupled Weight Decay Regularization. (2019),
Januar. http://dx.doi.org/10.48550/arXiv.1711.05101. (Zugriff: 2024-12-28). —
DOI 10.48550/arXiv.1711.05101

Ioffe, Sergey ; Szegedy, Christian: Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift. (2015), Mérz. http://dx.
doi.org/10.48550/arXiv.15602.03167. (Zugriff: 2025-01-02). — DOI 10.48550/ ar-
Xiv.1502.03167

Lin, Runze: Analysis on the Selection of the Appropriate Batch Size in CNN
Neural Network. In: 2022 International Conference on Machine Learning and
Knowledge Engineering (MLKE) (2022), Februar, 106-109. http://dx.doi.org/
10.1109/MLKE55170.2022.00026.  (Zugriff: 2025-01-19). — DOI 10.1109/ML-
KE55170.2022.00026

Srivastava, Nitish ; Hinton, Geoffrey ; Krizhevsky, Alex ; Sutskever, Ilya ;
Salakhutdinov, Ruslan: Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. In: Journal of Machine Learning Research 15 (2014), Nr. 56, 1929-1958.
http://jmlr.org/papers/v15/srivastavalda.html. (Zugriff: 2024-12-28)

Loshchilov, Ilya ; Hutter, Frank: SGDR: Stochastic Gradient Descent with Warm
Restarts. (2017), Mai. http://dx.doi.org/10.48550/arXiv.1608.03983. (Zugriff:
2025-01-10). — DOI 10.48550/arXiv.1608.03983

Goyal, Priya ; Dollar, Piotr ; Girshick, Ross ; Noordhuis, Pieter ; Wesolowski, Lu-
kasz ; Kyrola, Aapo ; Tulloch, Andrew ; Jia, Yangqing ; He, Kaiming: Accurate,
Large Minibatch SGD: Training ImageNet in 1 Hour. http://dx.doi.org/10.
48550/arXiv.1706.02677. (Zugriff: 2025-01-20). Version: April 2018

Kalra, Dayal S. ; Barkeshli, Maissam: Why Warmup the Learning Rate? Underlying
Mechanisms and Improvements. (2024), November. http://dx.doi.org/10.48550/
arxiv.2406.09405. (Zugriff: 2025-01-20). — DOI 10.48550/ arXiv.2406.09405

LeCun, Yann ; Bottou, Leon ; Bengio, Yoshua ; Ha, Patrick: Gradient-Based Learning
Applied to Document Recognition. In: Proceedings of the IEEE 86 (1998), Nr. 11,
S. 2278-2324. http://dx.doi.org/10.1109/5.726791. (Zugriff: 2024-10-24). — DOI
10.1109/5.726791

Sobel, I. ; Feldman, G.: A 3x3 Isotropic Gradient Operator for Image Pro-
cessing. (1968). https://www.researchgate.net/publication/285159837_A_33_
isotropic_gradient_operator_for_image_processing. (Zugriff: 2025-01-20)

147


http://dx.doi.org/10.48550/arXiv.2301.05579
http://dx.doi.org/10.48550/arXiv.1711.05101
http://dx.doi.org/10.48550/arXiv.1502.03167
http://dx.doi.org/10.48550/arXiv.1502.03167
http://dx.doi.org/10.1109/MLKE55170.2022.00026
http://dx.doi.org/10.1109/MLKE55170.2022.00026
http://jmlr.org/papers/v15/srivastava14a.html
http://dx.doi.org/10.48550/arXiv.1608.03983
http://dx.doi.org/10.48550/arXiv.1706.02677
http://dx.doi.org/10.48550/arXiv.1706.02677
http://dx.doi.org/10.48550/arXiv.2406.09405
http://dx.doi.org/10.48550/arXiv.2406.09405
http://dx.doi.org/10.1109/5.726791
https://www.researchgate.net/publication/285159837_A_33_isotropic_gradient_operator_for_image_processing
https://www.researchgate.net/publication/285159837_A_33_isotropic_gradient_operator_for_image_processing

148

LITERATURVERZEICHNIS

[51]

[54]

[55]

[56]

He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Deep Residual Learning
for Image Recognition. (2015), Dezember. http://dx.doi.org/10.48550/arXiv.
1512.03385. (Zugriff: 2025-01-20). — DOI 10.48550/arXiv.1512.03385

Sugirtha, T ; Sridevi, M: Semantic Segmentation Using Modified U-Net for Autono-
mous Driving. In: 2022 IEEE International IOT, Electronics and Mechatronics
Conference (IEMTRONICS) (2022), Juni, 1-7. http://dx.doi.org/10.1109/
IEMTRONICS55184.2022.9795710. (Zugriff: 2024-12-04). — DOI 10.1109/IEMTRO-
NICS55184.2022.9795710

Chhor, Guillaume ; Bougdal-Lambert, lanis: Satellite Image Segmentation
for Building Detection Using U-net. https://cs229.stanford.edu/proj2017/
final- reports/5243715.pdf. (Zugriff: 2024-12-04). Version:2017

Kramarczyk, P. ; Hejmanowska, B.. UNET NEURAL NETWORK IN AGRI-
CULTURAL LAND COVER CLASSIFICATION USING SENTINEL-2. In: The
International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences XLVIII-1/W3-2023 (2023), Oktober, 85-90. http://dx.doi.
org/10.5194/isprs-archives-XLVIII-1-W3-2023-85-2023. (Zugriff: 2024-12-04).
— DOI 10.5194 /isprs—archives—XLVIII-1-W3-2023-85-2023. — ISSN 2194-9034

Baumann, Anton ; Roflberg, Thomas ; Schmitt, Michael: Probabilistic MIMO U-Net:
Efficient and Accurate Uncertainty Estimation for Pixel-wise Regression. In: 2023
IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)
(2023), Oktober, 4500-4508. http://dx.doi.org/10.1109/ICCVW60793.2023.00484.
(Zugriff: 2024-12-04). — DOI 10.1109/ICCVW60793.2023.00484

Vaswani, Ashish ; Shazeer, Noam ; Parmar, Niki ; Uszkoreit, Jakob ; Jones, Lli-
on ; Gomez, Aidan N. ; Kaiser, Lukasz ; Polosukhin, Illia: Attention Is All You
Need. (2017), Dezember. http://dx.doi.org/10.48550/arXiv.1706.03762. (Zu-
griff: 2023-02-07). — DOI 10.48550/arXiv.1706.03762

Dosovitskiy, Alexey ; Beyer, Lucas ; Kolesnikov, Alexander ; Weissenborn, Dirk ;
Zhai, Xiaohua ; Unterthiner, Thomas ; Dehghani, Mostafa ; Minderer, Matthias ;
Heigold, Georg ; Gelly, Sylvain ; Uszkoreit, Jakob ; Houlsby, Neil: An Image Is
Worth 16x16 Words: Transformers for Image Recognition at Scale. (2021), Juni.
http://dx.doi.org/10.48550/arXiv.2010.11929. (Zugriff: 2023-04-18). — DOI
10.48550/arXiv.2010.11929

Cao, Hu ; Wang, Yueyue ; Chen, Joy ; Jiang, Dongsheng ; Zhang, Xiaopeng ; Tian,
Qi ; Wang, Manning: Swin-Unet: Unet-like Pure Transformer for Medical Image
Segmentation. (2021), Mai. http://dx.doi.org/10.48550/arXiv.2105.05537. (Zu-
griff: 2024-10-02). — DOI 10.48550/arXiv.2105.05537

Vom Brocke, Jan ; Simons, Alexander ; Riemer, Kai ; Niehaves, Bjorn ; Plattfaut, Ralf
; Cleven, Anne: Standing on the Shoulders of Giants: Challenges and Recommenda-

tions of Literature Search in Information Systems Research. In: Communications of



http://dx.doi.org/10.48550/arXiv.1512.03385
http://dx.doi.org/10.48550/arXiv.1512.03385
http://dx.doi.org/10.1109/IEMTRONICS55184.2022.9795710
http://dx.doi.org/10.1109/IEMTRONICS55184.2022.9795710
https://cs229.stanford.edu/proj2017/final-reports/5243715.pdf
https://cs229.stanford.edu/proj2017/final-reports/5243715.pdf
http://dx.doi.org/10.5194/isprs-archives-XLVIII-1-W3-2023-85-2023
http://dx.doi.org/10.5194/isprs-archives-XLVIII-1-W3-2023-85-2023
http://dx.doi.org/10.1109/ICCVW60793.2023.00484
http://dx.doi.org/10.48550/arXiv.1706.03762
http://dx.doi.org/10.48550/arXiv.2010.11929
http://dx.doi.org/10.48550/arXiv.2105.05537

[60]

[62]

[65]

[66]

LITERATURVERZEICHNIS

the Association for Information Systems 37 (2015). http://dx.doi.org/10.17705/
1CAIS.03709. (Zugriff: 2024-05-13). — DOI 10.17705/1CAIS.03709. — ISSN 15293181

Pranckuté, Raminta: Web of Science (WoS) and Scopus: The Titans of Bibliographic
Information in Today’s Academic World. In: Publications 9 (2021), Mérz, Nr. 1, 12.
http://dx.doi.org/10.3390/publications9010012. (Zugriff: 2025-01-27). — DOI
10.3390/publications9010012. — ISSN 2304-6775

Roessl, E ; Proksa, R: K-Edge Imaging in x-Ray Computed Tomography Using
Multi-Bin Photon Counting Detectors. In: Physics in Medicine and Biology 52
(2007), August, Nr. 15, 4679-4696. http://dx.doi.org/10.1688/60031-9155/52/15/
020. (Zugriff: 2024-03-25). — DOI 10.1088/0031-9155/52/15/020. — ISSN 0031-9155,
1361-6560

Son, Kihong ; Kim, Daehong ; Lee, Sooyeul: Improving the Accuracy of the Effective
Atomic Number (EAN) and Relative Electron Density (RED) with Stoichiometric
Calibration on PCD-CT Images. In: Sensors 22 (2022), November, Nr. 23, 9220. http:
//dx.doi.org/10.3390/522239220. (Zugriff: 2024-03-25). — DOI 10.3390/522239220.
— ISSN 1424-8220

Jumanazarov, Doniyor ; Alimova, Asalkhon ; Abdikarimov, Azamat ; Koo, Ja-
keoung ; Poulsen, Henning F. ; Olsen, Ulrik L. ; Iovea, Mihai: Material Clas-
sification Using Basis Material Decomposition from Spectral X-ray CT. In:

Nuclear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment 1056 (2023), November,
168637. http://dx.doi.org/10.1016/j.nima.2023.168637. (Zugriff: 2024-03-06). —
DOI 10.1016/j.nima.2023.168637. — ISSN 01689002

Firsching, Markus: Material Reconstruction in X-ray Imaging. Erlangen-Niirnberg,

Friedrich-Alexander-Universitiat, Dissertation, 2009. https://ecap.nat.fau.de/
wp-content/uploads/2017/05/2009_Firsching_Dissertation.pdf. (Zugriff: 2022-
04-21)

Abascal, Juan F P J. ; Ducros, Nicolas ; Pronina, Valeriya ; Rit, Simon ; Rodesch,
Pierre-Antoine ; Broussaud, Thomas ; Bussod, Suzanne ; Douek, Philippe ;
Hauptmann, Andreas ; Arridge, Simon ; PEYRIN, Francoise: Material Decomposi-
tion in Spectral CT Using Deep Learning: A Sim2Real Transfer Approach. In: IEEE
Access 9 (2021), 25632-25647. http://dx.doi.org/10.1109/ACCESS.2021.3056150.
(Zugriff: 2022-02-08). — DOI 10.1109/ ACCESS.2021.3056150

Bussod, Suzanne ; Abascal, Juan E ; Arridge, Simon ; Hauptmann, Andreas
; Chappard, Christine ; Ducros, Nicolas ; Peyrin, Francoise: Convolutional
Neural Network for Material Decomposition in Spectral CT Scans. In: 2020
28th European Signal Processing Conference (EUSIPCO) (2021), Januar, 1259-1263.
http://dx.doi.org/10.23919/Eusipco47968.2020.9287781. (Zugriff: 2024-03-25).
— DOI 10.23919/Eusipco47968.2020.9287781

149


http://dx.doi.org/10.17705/1CAIS.03709
http://dx.doi.org/10.17705/1CAIS.03709
http://dx.doi.org/10.3390/publications9010012
http://dx.doi.org/10.1088/0031-9155/52/15/020
http://dx.doi.org/10.1088/0031-9155/52/15/020
http://dx.doi.org/10.3390/s22239220
http://dx.doi.org/10.3390/s22239220
http://dx.doi.org/10.1016/j.nima.2023.168637
https://ecap.nat.fau.de/wp-content/uploads/2017/05/2009_Firsching_Dissertation.pdf
https://ecap.nat.fau.de/wp-content/uploads/2017/05/2009_Firsching_Dissertation.pdf
http://dx.doi.org/10.1109/ACCESS.2021.3056150
http://dx.doi.org/10.23919/Eusipco47968.2020.9287781

150

LITERATURVERZEICHNIS

[67]

[70]

[73]

Long, Zourong ; Feng, Peng ; He, Peng ; Wu, Xiaochuan ; Guo, Xiaodong ; Ren,
Xuezhi ; Chen, Mianyi ; Gao, Jingxuan ; Wei, Biao ; Cong, Wenxiang: Fully Con-
volutional Pyramidal Residual Network for Material Discrimination of Spectral
CT. In: IEEE Access 7 (2019), 167187-167194. http://dx.doi.org/10.1109/ACCESS.
2019.2953942. (Zugriff: 2024-03-25). - DOI 10.1109/ ACCESS.2019.2953942. — ISSN
2169-3536

Guo, Xiaodong ; He, Peng ; Lv, Xiaojie ; Ren, Xuezhi ; Li, Yonghui ; Liu, Yuanfeng ;
Lei, Xiaohua ; Feng, Peng ; Shan, Hongming: Material Decomposition of Spectral CT
Images via Attention-Based Global Convolutional Generative Adversarial Network.
In: Nuclear Science and Techniques 34 (2023), Mérz, Nr. 3, 45. http://dx.doi.org/
10.1007/541365-023-01184-5. (Zugriff: 2024-03-25). — DOI 10.1007 /s41365-023—
01184-5. — ISSN 1001-8042, 2210-3147

Shi, Zaifeng ; Kong, Fanning ; Cheng, Ming ; Cao, Huaisheng ; Ouyang, Shunxin ;
Cao, Qingjie: Multi-Energy CT Material Decomposition Using Graph Model Impro-
ved CNN. In: Medical & Biological Engineering & Computing 62 (2024), April, Nr.
4,1213-1228. http://dx.doi.org/10.1007/s11517-023-02986-w. (Zugriff: 2024-
03-25). — DOI 10.1007 /s11517-023-02986—w. — ISSN 0140-0118, 1741-0444

Shi, Zaifeng ; Li, Huilong ; Li, Jinzhuo ; Wang, Zhongqi ; Cao, Qingjie: Raw-
Data-Based Material Decomposition Using Modified U-Net for Low-Dose Spec-
tral CT. In: 2019 12th International Congress on Image and Signal Processing,
BioMedical Engineering and Informatics (CISP-BMEI) (2019), Oktober, 1-5. http:
//dx.doi.org/10.1109/CISP-BMEI48845.2019.8965998. (Zugriff: 2024-03-25). —
DOI 10.1109/CISP-BMEI48845.2019.8965998

Xing, Yuxiang ; Zhang, Li ; Duan, Xinhui ; Cheng, Jianping ; Chen, Zhigqi-
ang: A Reconstruction Method for Dual High-Energy CT With MeV X-Rays.
In: IEEE Transactions on Nuclear Science 58 (2011), April, Nr. 2, 537-546.
http://dx.doi.org/10.1109/TNS.2011.2112779. (Zugriff: 2023-03-09). — DOI
10.1109/TNS.2011.2112779. — ISSN 0018-9499, 1558-1578

Wang, Guoshuai ; Liu, Zhou ; Huang, Zhengyong ; Zhang, Na ; Luo, Honghong ;
Liu, Lijian ; Shen, Hao ; Che, Canwen ; Niu, Tianye ; Liang, Dong ; Luo, Dehong ;
Hu, Zhanli: Improved GAN: Using a Transformer Module Generator Approach for
Material Decomposition. In: Computers in Biology and Medicine 149 (2022), Ok-
tober, 105952. http://dx.doi.org/10.1016/j.compbiomed.2022.105952. (Zugriff:
2024-03-20). — DOI 10.1016/j.compbiomed.2022.105952. — ISSN 00104825

Li, Yinsheng ; Tie, Xin ; Li, Ke ; Zhang, Ran ; Qi, Zhihua ; Budde, Adam ; Grist,
Thomas M. ; Chen, Guang-Hong: A Quality-checked and Physics-constrained Deep
Learning Method to Estimate Material Basis Images from single-kV Contrast-
enhanced Chest CT Scans. In: Medical Physics 50 (2023), Juni, Nr. 6, 3368-
3388. http://dx.doi.org/10.1002/mp.16352. (Zugriff: 2024-03-25). — DOI
10.1002/mp.16352. — ISSN 0094-2405, 2473-4209



http://dx.doi.org/10.1109/ACCESS.2019.2953942
http://dx.doi.org/10.1109/ACCESS.2019.2953942
http://dx.doi.org/10.1007/s41365-023-01184-5
http://dx.doi.org/10.1007/s41365-023-01184-5
http://dx.doi.org/10.1007/s11517-023-02986-w
http://dx.doi.org/10.1109/CISP-BMEI48845.2019.8965998
http://dx.doi.org/10.1109/CISP-BMEI48845.2019.8965998
http://dx.doi.org/10.1109/TNS.2011.2112779
http://dx.doi.org/10.1016/j.compbiomed.2022.105952
http://dx.doi.org/10.1002/mp.16352

[75]

[77]

(81]

LITERATURVERZEICHNIS

Su, Ting ; Sun, Xindong ; Yang, Jiecheng ; Mi, Donghua ; Zhang, Yikun ; Wu,
Haodi ; Fang, Shibo ; Chen, Yang ; Zheng, Hairong ; Liang, Dong ; Ge, Yongshuai:
DIRECT-Net: A Unified Mutual-domain Material Decomposition Network for
Quantitative Dual-energy CT Imaging. In: Medical Physics 49 (2022), Februar, Nr.
2,917-934. http://dx.doi.org/10.1002/mp.15413. (Zugriff: 2024-03-25). — DOI
10.1002 /mp.15413. — ISSN 0094-2405, 2473-4209

Cao, Wenchao ; Shapira, Nadav ; Maidment, Andrew ; Daerr, Heiner ; Noél, Pe-
ter B.: Hepatic Dual-Contrast CT Imaging: Slow Triple kVp Switching CT with
CNN-based Sinogram Completion and Material Decomposition. In: Journal of
Medical Imaging 9 (2022), Januar, Nr. 01. http://dx.doi.org/10.1117/1.JMI.9.1.
014003. (Zugriff: 2024-03-25). — DOI 10.1117/1.JMI.9.1.014003. — ISSN 23294302

Weiss, Moritz ; Brierley, Nick ; Von Schmid, Mirko ; Meisen, Tobias: End-To-
End Deep Learning Material Discrimination Using Dual-Energy LINAC-CT. In:
e-Journal of Nondestructive Testing 29 (2024), Marz, Nr. 3. http://dx.doi.org/
10.58286/29244. (Zugriff: 2024-04-19). — DOI 10.58286/29244. — ISSN 1435-4934

Krebbers, Leonard T. ; Grozmani, Natalia ; Lottermoser, Bernd G. ; Schmitt, Ro-
bert H.: Application of Multispectral Computed Tomography for the Characte-
risation of Natural Graphite. In: e-Journal of Nondestructive Testing 28 (2023),
Marz, Nr. 3. http://dx.doi.org/10.58286/27710. (Zugriff: 2024-04-19). — DOI
10.58286/27710. — ISSN 14354934

Nadkarni, Rohan ; Allphin, Alex ; Clark, Darin ; Badea, Cristian: Material Decom-
position from Photon-Counting CT Using a Convolutional Neural Network and
Energy-Integrating CT Training Labels. In: 7th International Conference on Image
Formation in X-Ray Computed Tomography (2022), Oktober, 14. http://dx.doi.
org/10.1117/12.2646405. (Zugriff: 2024-03-20). — DOI 10.1117/12.2646405

Gong, Hao ; Tao, Shengzhen ; Rajendran, Kishore ; Zhou, Wei ; McCollough,
Cynthia H. ; Leng, Shuai: Deep-learning-based Direct Inversion for Material
Decomposition. In: Medical Physics 47 (2020), Dezember, Nr. 12, 6294-6309. http:
//dx.doi.org/10.1002/mp.14523. (Zugriff: 2024-03-25). — DOI 10.1002/mp.14523.
— ISSN 0094-2405, 2473-4209

Geng, Mufeng ; Tian, Zifeng ; Jiang, Zhe ; You, Yunfei ; Feng, Ximeng ; Xia, Yan
; Yang, Kun ; Ren, Qiushi ; Meng, Xiangxi ; Maier, Andreas ; Lu, Yanye: PMS-
GAN: Parallel Multi-Stream Generative Adversarial Network for Multi-Material
Decomposition in Spectral Computed Tomography. In: IEEE Transactions on
Medical Imaging 40 (2021), Februar, Nr. 2, 571-584. http://dx.doi.org/10.1109/
TMI.2020.3031617. (Zugriff: 2024-03-25). — DOI 10.1109/TMI.2020.3031617. — ISSN
0278-0062, 1558-254X

Jost, Gregor ; McDermott, Michael ; Gutjahr, Ralf ; Nowak, Tristan ; Schmidt,
Bernhard ; Pietsch, Hubertus: New Contrast Media for K-Edge Imaging With
Photon-Counting Detector CT. In: Investigative Radiology 58 (2023), Juli, Nr. 7,

151


http://dx.doi.org/10.1002/mp.15413
http://dx.doi.org/10.1117/1.JMI.9.1.014003
http://dx.doi.org/10.1117/1.JMI.9.1.014003
http://dx.doi.org/10.58286/29244
http://dx.doi.org/10.58286/29244
http://dx.doi.org/10.58286/27710
http://dx.doi.org/10.1117/12.2646405
http://dx.doi.org/10.1117/12.2646405
http://dx.doi.org/10.1002/mp.14523
http://dx.doi.org/10.1002/mp.14523
http://dx.doi.org/10.1109/TMI.2020.3031617
http://dx.doi.org/10.1109/TMI.2020.3031617

152

LITERATURVERZEICHNIS

(82]

[83]

[87]

[88]

515-522. http://dx.doi.org/10.1097/RLI.0000000000000978. (Zugriff: 2024-05-
06). — DOI 10.1097 /RLI.0000000000000978. — ISSN 15360210, 0020-9996

Busi, Matteo ; Mohan, K. A. ; Dooraghi, Alex A. ; Champley, Kyle M. ; Martz,
Harry E. ; Olsen, Ulrik L.: Method for System-Independent Material Characte-
rization from Spectral X-ray CT. In: NDT & E International 107 (2019), Oktober,
102136. http://dx.doi.org/10.1016/j.ndteint.2019.102136. (Zugriff: 2024-02-
07). — DOI 10.1016/j.ndteint.2019.102136. — ISSN 09638695

Schneider, Uwe ; Pedroni, Eros ; Lomax, Antony: The Calibration of CT Hounsfield
Units for Radiotherapy Treatment Planning. In: Physics in Medicine and Biology 41
(1996), Januar, Nr. 1, 111-124. http://dx.doi.org/10.1088/0031-9155/41/1/609.
(Zugriff: 2025-01-03). — DOI 10.1088/0031-9155/41/1/009. — ISSN 0031-9155,
1361-6560

Segars, W. P. ; Sturgeon, G. ; Mendonca, S. ; Grimes, Jason ; Tsui, B. M. W.: 4D
XCAT Phantom for Multimodality Imaging Research. In: Medical Physics 37 (2010),
September, Nr. 9, 4902—4915. http://dx.doi.org/10.1118/1.3480985. (Zugriff:
2024-05-14). — DOI 10.1118/1.3480985. — ISSN 0094-2405, 2473-4209

Segars, W. P. ; Mahesh, M. ; Beck, T. J. ; Frey, E. C. ; Tsui, B. M. W.: Realistic
CT Simulation Using the 4D XCAT Phantom: Realistic CT Simulation Using the
4D XCAT Phantom. In: Medical Physics 35 (2008), Juli, Nr. 8, 3800-3808. http:
//dx.doi.org/10.1118/1.2955743. (Zugriff: 2024-04-09). — DOI 10.1118/1.2955743.
— ISSN 00942405

Yu, Zhicong ; Noo, Frédéric ; Dennerlein, Frank ; Wunderlich, Adam ; Lauritsch,
Giinter ; Hornegger, Joachim: Simulation Tools for Two-Dimensional Expe-
riments in x-Ray Computed Tomography Using the FORBILD Head Phan-
tom. In: Physics in Medicine and Biology 57 (2012), Juli, Nr. 13, N237-N252.
http://dx.doi.org/10.1088/0031-9155/57/13/N237. (Zugriff: 2024-04-10). — DOI
10.1088/0031-9155/57 /13 /N237. — ISSN 0031-9155, 1361-6560

Emil Sidky ; Xiaochuan Pan: Report on the AAPM Deep-Learning Spectral CT
Grand Challenge. In: Medical Physics 51 (2024), S. 772-785. http://dx.doi.org/
10.1002/mp.16363. (Zugriff: 2024-04-29). — DOI 10.1002/mp.16363

Maier, Andreas ; Schebesch, Frank ; Syben, Christopher ; Wiirfl, Tobias ; Steidl,
Stefan ; Choi, Jang-Hwan ; Fahrig, Rebecca: Precision Learning: Towards Use of
Known Operators in Neural Networks. (2018), Oktober. http://dx.doi.org/10.
48550/arXiv.1712.00374. (Zugriff: 2024-05-14). — DOI 10.48550/arXiv.1712.00374

Goodfellow, Ian J. ; Pouget-Abadie, Jean ; Mirza, Mehdi ; Xu, Bing ; Warde-Farley,
David ; Ozair, Sherjil ; Courville, Aaron ; Bengio, Yoshua: Generative Adversarial
Networks. (2014), Juni. http://dx.doi.org/10.48550/arXiv.1406.2661. (Zugriff:
2025-01-05). — DOI 10.48550/arXiv.1406.2661


http://dx.doi.org/10.1097/RLI.0000000000000978
http://dx.doi.org/10.1016/j.ndteint.2019.102136
http://dx.doi.org/10.1088/0031-9155/41/1/009
http://dx.doi.org/10.1118/1.3480985
http://dx.doi.org/10.1118/1.2955743
http://dx.doi.org/10.1118/1.2955743
http://dx.doi.org/10.1088/0031-9155/57/13/N237
http://dx.doi.org/10.1002/mp.16363
http://dx.doi.org/10.1002/mp.16363
http://dx.doi.org/10.48550/arXiv.1712.00374
http://dx.doi.org/10.48550/arXiv.1712.00374
http://dx.doi.org/10.48550/arXiv.1406.2661

[93]

[95]

(98]

LITERATURVERZEICHNIS

Tzeng, Eric ; Hoffman, Judy ; Saenko, Kate ; Darrell, Trevor: Adversarial Discrimi-
native Domain Adaptation. (2017), Februar. http://dx.doi.org/160.48550/arXiv.
1702.05464. (Zugriff: 2025-02-15). — DOI 10.48550/arXiv.1702.05464

Johnson, Justin ; Alahi, Alexandre ; Fei-Fei, Li: Perceptual Losses for Real-Time
Style Transfer and Super-Resolution. (2016), Mdrz. http://dx.doi.org/10.48550/
arXiv.1603.08155. (Zugriff: 2024-04-29). — DOI 10.48550/arXiv.1603.08155

Chen, Hu ; Zhang, Yi ; Kalra, Mannudeep K. ; Lin, Feng ; Chen, Yang ; Liao, Peixi ;
Zhou, Jiliu ; Wang, Ge: Low-Dose CT With a Residual Encoder-Decoder Convolutio-
nal Neural Network. In: IEEE Transactions on Medical Imaging 36 (2017), Dezem-
ber, Nr. 12, 2524-2535. http://dx.doi.org/10.1109/TMI.2017.2715284. (Zugriff:
2024-04-30). — DOI 10.1109/TM1.2017.2715284. — ISSN 0278-0062, 1558-254X

Henke, B.L. ; Gullikson, EM. ; Davis, J.C.: X-Ray Interactions: Photoabsorption,
Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92. In: Atomic
Data and Nuclear Data Tables 54 (1993), Nr. 2, 181-342. http://dx.doi.org/10.
1006/adnd.1993.1013. (Zugriff: 2024-10-27). - DOI 10.1006 /adnd.1993.1013. — ISSN
0092-640X

Deng, Jia ; Dong, Wei ; Socher, Richard ; Li, Li-Jia ; Kai Li ; Li Fei-Fei: ImageNet: A
Large-Scale Hierarchical Image Database. In: 2009 IEEE Conference on Computer
Vision and Pattern Recognition (2009), Juni, 248-255. http://dx.doi.org/10.
1109/CVPR.2009.5206848. (Zugriff: 2025-01-11). — DOI 10.1109/CVPR.2009.5206848

Vidal, Franck P. ; Garnier, Manuel ; Freud, Nicolas ; Létang, Jean M.
; John, Nigel W.: Simulation of X-ray Attenuation on the GPU. In:
Theory and Practice of Computer Graphics (2009), 8 pages. http://dx.doi.
org/10.2312/LOCALCHAPTEREVENTS/TPCG/TPCGO9/025-032. (Zugriff: 2025-01-17).
— DOI 10.2312/LOCALCHAPTEREVENTS/TPCG/TPCG09/025-032. ISBN
9783905673715

Pointon, Jamie L. ; Wen, Tianci ; Tugwell-Allsup, Jenna ; Stjar, Aaron ; Létang,
Jean M. ; Vidal, Franck P.: Simulation of X-ray Projections on GPU: Benchmarking
gVirtualXray with Clinically Realistic Phantoms. In: Computer Methods and
Programs in Biomedicine 234 (2023), Juni, 107500. http://dx.doi.org/10.1016/
j.cmpb.2023.107500. (Zugriff: 2025-01-18). — DOI 10.1016/j.cmpb.2023.107500. —
ISSN 01692607

Badal, Andreu ; Badano, Aldo: Accelerating Monte Carlo Simulations of Photon
Transport in a Voxelized Geometry Using a Massively Parallel Graphics Processing
Unit. In: Medical Physics 36 (2009), November, Nr. 11, 4878-4880. http://dx.doi.
org/10.1118/1.3231824. (Zugriff: 2025-01-19). — DOI 10.1118/1.3231824. — ISSN
00942405, 2473-4209

Reuter, Tamara ; Borges De Oliveira, Fabricio ; Abt, Christian ; Ballach, Frederic ;
Bartscher, Markus ; Bellon, Carsten ; Dennerlein, Frank ; Fuchs, Patrick ; Glinnewig,

153


http://dx.doi.org/10.48550/arXiv.1702.05464
http://dx.doi.org/10.48550/arXiv.1702.05464
http://dx.doi.org/10.48550/arXiv.1603.08155
http://dx.doi.org/10.48550/arXiv.1603.08155
http://dx.doi.org/10.1109/TMI.2017.2715284
http://dx.doi.org/10.1006/adnd.1993.1013
http://dx.doi.org/10.1006/adnd.1993.1013
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.2312/LOCALCHAPTEREVENTS/TPCG/TPCG09/025-032
http://dx.doi.org/10.2312/LOCALCHAPTEREVENTS/TPCG/TPCG09/025-032
http://dx.doi.org/10.1016/j.cmpb.2023.107500
http://dx.doi.org/10.1016/j.cmpb.2023.107500
http://dx.doi.org/10.1118/1.3231824
http://dx.doi.org/10.1118/1.3231824

154

LITERATURVERZEICHNIS

[100]

[101]

[102]

[103]

[104]

[105]

[106]

Olaf ; Hausotte, Tino ; Hess, Jonathan ; Kasperl, Stefan ; Maass, Nicole ; Kimmig,
Wolfgang ; Schielein, Richard ; Von Schmid, Mirko ; Suppes, Alexander ; Wagner,
Georg ; Watzl, Christia ; Wohlgemuth, Florian: Introduction to “Realistic Simulation
of Real CT Systems with a Basic-Qualified Simulation Software - CTSimU2". In:
e-Journal of Nondestructive Testing 28 (2023), Méarz, Nr. 3. http://dx.doi.org/
10.58286/27715. (Zugriff: 2025-01-18). — DOI 10.58286/27715. — ISSN 14354934

Plotzki, David ; Hartlaub, Bendix ; Borges De Oliveira, Fabricio ; Reuter, Tamara
; Wohlgemuth, Florian ; Bellon, Carsten ; Hausotte, Tino: The CTSimU Software
Toolbox for CT-related Image Processing and Quality Assessment. In: e-Journal
of Nondestructive Testing 27 (2022), Mérz, Nr. 3. http://dx.doi.org/10.58286/
26564. (Zugriff: 2025-01-18). — DOI 10.58286/26564. — ISSN 14354934

Library of Congress: STL (STereoLithography) File Format Family. https://www.
loc.gov/preservation/digital/formats/fdd/fddee0504.shtml. (Zugriff: 2024-
11-04). Version: September 2019

Sujar, Aaron ; Meuleman, Andreas ; Villard, Pierre-Frederic ; Garcia, Marcos ; Vidal,
Franck P.: gVirtualXRay: Virtual X-Ray Imaging Library on GPU. In: Computer
Graphics and Visual Computing (CGVC) (2017), 8 pages. http://dx.doi.org/10.
2312/CGVC.20171279. (Zugriff: 2025-01-18). — DOI 10.2312/CGVC.20171279. ISBN
9783038680505

Poludniowski, Gavin ; Omar, Artur ; Bujila, Robert ; Andreo, Pedro: Technical Note:
SpekPy v2.0—a Software Toolkit for Modeling X-ray Tube Spectra. In: Medical
Physics 48 (2021), Juli, Nr. 7, 3630-3637. http://dx.doi.org/10.1002/mp.14945.
(Zugriff: 2025-01-18). — DOI 10.1002/mp.14945. — ISSN 0094-2405, 24734209

Schoonjans, Tom ; Brunetti, Antonio ; Golosio, Bruno ; Sanchez Del Rio, Manuel
; Solé, Vicente A. ; Ferrero, Claudio ; Vincze, Laszlo: The Xraylib Library for
X-ray-Matter Interactions. Recent Developments. In: Spectrochimica Acta Part B:
Atomic Spectroscopy 66 (2011), November, Nr. 11-12, 776-784. http://dx.doi.org/
10.1016/j.sab.2011.09.011. (Zugriff: 2025-01-18). - DOI 10.1016/j.sab.2011.09.011.
— ISSN 05848547

Van Aarle, Wim ; Palenstijn, Willem J. ; Cant, Jeroen ; Janssens, Eline ; Bleichrodt,
Folkert ; Dabravolski, Andrei ; De Beenhouwer, Jan ; Joost Batenburg, K. ; Sijbers,
Jan: Fast and Flexible X-ray Tomography Using the ASTRA Toolbox. In: Optics
Express 24 (2016), Oktober, Nr. 22, 25129. http://dx.doi.org/10.1364/0E.24.
025129. (Zugriff: 2024-11-18). — DOI 10.1364/0OE.24.025129. — ISSN 10944087

Dask: Dask. https://docs.dask.org/en/stable/. (Zugriff: 2025-02-28)

Canny, John: A Computational Approach to Edge Detection. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence PAMI-8 (1986), November, Nr. 6,
679-698. http://dx.doi.org/10.1109/TPAMI.1986.4767851. (Zugriff: 2025-01-30).
- DOI 10.1109/TPAMI.1986.4767851. — ISSN 0162-8828



http://dx.doi.org/10.58286/27715
http://dx.doi.org/10.58286/27715
http://dx.doi.org/10.58286/26564
http://dx.doi.org/10.58286/26564
https://www.loc.gov/preservation/digital/formats/fdd/fdd000504.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000504.shtml
http://dx.doi.org/10.2312/CGVC.20171279
http://dx.doi.org/10.2312/CGVC.20171279
http://dx.doi.org/10.1002/mp.14945
http://dx.doi.org/10.1016/j.sab.2011.09.011
http://dx.doi.org/10.1016/j.sab.2011.09.011
http://dx.doi.org/10.1364/OE.24.025129
http://dx.doi.org/10.1364/OE.24.025129
https://docs.dask.org/en/stable/
http://dx.doi.org/10.1109/TPAMI.1986.4767851

LITERATURVERZEICHNIS

[107] Krizhevsky, Alex ; Sutskever, Ilya ; Hinton, Geoffrey E.: ImageNet Classification
with Deep Convolutional Neural Networks. In: Communications of the ACM 60
(2017), Mai, Nr. 6, 84-90. http://dx.doi.org/10.1145/3065386. (Zugriff: 2025-02-
10). - DOI 10.1145/3065386. — ISSN 0001-0782, 1557-7317

[108] Kong, Fanjie ; Henao, Ricardo: Efficient Classification of Very Large Images with
Tiny Objects. (2021), Dezember. http://dx.doi.org/10.48550/arXiv.2106.02694.
(Zugriff: 2025-02-10). — DOI 10.48550/arXiv.2106.02694

[109] Dreier, Till ; Nilsson, Daniel ; Espes, Emil: In-Line and at-Line Battery CT Enabled
by MetalJet Sources. In: e-Journal of Nondestructive Testing 29 (2024), Mérz, Nr. 3.
http://dx.doi.org/10.58286/29240. (Zugriff: 2024-07-10). — DOI 10.58286/29240.
— ISSN 1435-4934

[110] Steuwe, Andrea ; Valentin, Birte ; Bethge, Oliver T. ; Ljimani, Alexandra ; Niegisch,
Giinter ; Antoch, Gerald ; Aissa, Joel: Influence of a Deep Learning Noise Reduc-
tion on the CT Values, Image Noise and Characterization of Kidney and Ureter
Stones. In: Diagnostics 12 (2022), Juli, Nr. 7, 1627. http://dx.doi.org/10.3390/
diagnostics12071627. (Zugriff: 2025-01-15). — DOI 10.3390/diagnostics12071627. —
ISSN 2075-4418

[111] Han, Kai ; Wang, Yunhe ; Chen, Hanting ; Chen, Xinghao ; Guo, Jianyuan ; Liu,
Zhenhua ; Tang, Yehui ; Xiao, An ; Xu, Chunjing ; Xu, Yixing ; Yang, Zhaohui
; Zhang, Yiman ; Tao, Dacheng: A Survey on Visual Transformer. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 45 (2023), Januar, Nr. 1,
87-110. http://dx.doi.org/10.1109/TPAMI.2022.3152247. (Zugriff: 2025-02-03). —
DOI 10.1109/TPAMI.2022.3152247. — ISSN 0162-8828, 2160-9292, 1939-3539

[112] Touvron, Hugo ; Vedaldi, Andrea ; Douze, Matthijs ; Jégou, Hervé: Fixing the
Train-Test Resolution Discrepancy. (2019). http://dx.doi.org/10.48550/ARXIV.
1906.06423. (Zugriff: 2025-03-02). — DOI 10.48550/ ARXIV.1906.06423

[113] Buchmann, F.: Handbuch Radiographie. https://download.sstmed.com/Tools/
Aufnahmehelfer.pdf. (Zugriff: 2024-12-20). Version: 1996

[114] Winston, Roland ; Minano, Juan C. ; Benitez, Pablo: IMAGING APPLICATIONS
OF NONIMAGING CONCENTRATORS. Version:2005. http://dx.doi.org/10.
1016/B978-012759751-5/50009-9. In: Nonimaging Optics. Elsevier, 2005. — DOI
10.1016/B978-012759751-5/50009-9. — ISBN 978-0-12-759751-5, 219-234

[115] Mathieu, Michael ; Couprie, Camille ; LeCun, Yann: Deep Multi-Scale Video
Prediction beyond Mean Square Error. (2016), Februar. http://dx.doi.org/10.
48550/arXiv.1511.05440. (Zugriff: 2025-02-12). — DOI 10.48550/arXiv.1511.05440

[116] Sun, Yukun ; Yuan, Yuebo ; Lu, Languang ; Han, Xuebing ; Kong, Xiangdong
; Wang, Hewu ; Ouyang, Minggao ; Gao, Panlong ; Zheng, Hexing ; Wang, Ke-
ming: A Comprehensive Research on Internal Short Circuits Caused by Copper

Particle Contaminants on Cathode in Lithium-Ion Batteries. In: eTransportation 13

155


http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.48550/arXiv.2106.02694
http://dx.doi.org/10.58286/29240
http://dx.doi.org/10.3390/diagnostics12071627
http://dx.doi.org/10.3390/diagnostics12071627
http://dx.doi.org/10.1109/TPAMI.2022.3152247
http://dx.doi.org/10.48550/ARXIV.1906.06423
http://dx.doi.org/10.48550/ARXIV.1906.06423
https://download.sstmed.com/Tools/Aufnahmehelfer.pdf
https://download.sstmed.com/Tools/Aufnahmehelfer.pdf
http://dx.doi.org/10.1016/B978-012759751-5/50009-9
http://dx.doi.org/10.1016/B978-012759751-5/50009-9
http://dx.doi.org/10.48550/arXiv.1511.05440
http://dx.doi.org/10.48550/arXiv.1511.05440

156

LITERATURVERZEICHNIS

[117]

[118]

[119]

[120]

[121]

[122]

[123]

(2022), August, 100183. http://dx.doi.org/10.1016/j.etran.2022.100183. (Zu-
griff: 2025-01-26). — DOI 10.1016/j.etran.2022.100183. — ISSN 25901168

Chen, Wei ; Han, Xuebin ; Pan, Yue ; Yuan, Yuebo ; Kong, Xiangdong ; Liu, Lishuo
; Sun, Yukun ; Shen, Weixiang ; Xiong, Rui: Defects in Lithium-Ion Batteries: From
Origins to Safety Risks. In: Green Energy and Intelligent Transportation (2024),
November, 100235. http://dx.doi.org/10.1016/j.geits.2024.100235. (Zugriff:
2025-01-26). — DOI 10.1016/j.geits.2024.100235. — ISSN 27731537

Selles, Mark ; Van Osch, Jochen A. ; Maas, Mario ; Boomsma, Martijn F. ;
Wellenberg, Ruud H.: Advances in Metal Artifact Reduction in CT Images: A Re-
view of Traditional and Novel Metal Artifact Reduction Techniques. In: European
Journal of Radiology 170 (2024), Januar, 111276. http://dx.doi.org/10.1016/j.
ejrad.2023.111276. (Zugriff: 2025-02-02). — DOI 10.1016/j.ejrad.2023.111276. —
ISSN 0720048X

Sadia, Rabeya T. ; Chen, Jin ; Zhang, Jie: CT Image Denoising Methods for Image
Quality Improvement and Radiation Dose Reduction. In: Journal of Applied
Clinical Medical Physics 25 (2024), Februar, Nr. 2, €14270. http://dx.doi.org/
10.1002/acm2.14270. (Zugriff: 2025-02-14). — DOI 10.1002/acm?2.14270. — ISSN
1526-9914, 1526-9914

Joscha Maier: Artifact Correction and Real-Time Scatter Estimation for

X-Ray Computed Tomography in Industrial Metrology. Heidelberg, Universitat

Heidelberg, Dissertation, Juni 2019. https://archiv.ub.uni-heidelberg.de/
volltextserver/26701/1/Dissertation_JoschaMaier.pdf. (Zugriff: 2025-02-05)

Hasan Tercan: Machine Learning-Based Predictive Quality in Manufacturing

Processes. Wuppertal, Bergische Universitit Wuppertal, Dissertation, 2023. (Zugriff:
2025-02-06)

Lin, Tsung-Yi ; Maire, Michael ; Belongie, Serge ; Bourdev, Lubomir ; Girshick, Ross
; Hays, James ; Perona, Pietro ; Ramanan, Deva ; Zitnick, C. L. ; Dollar, Piotr: Mi-
crosoft COCO: Common Objects in Context. (2015), Februar. http://dx.doi.org/
10.48550/arXiv.1405.0312. (Zugriff: 2023-06-06). — DOI 10.48550/arXiv.1405.0312

Condon, Amariah ; Buscarino, Bailey ; Moch, Eric ; Sehnert, William ]J. ; Miles,
Owen ; Herring, Patrick K. ; Attia, Peter M.: A Dataset of over One Thousand
Computed Tomography Scans of Battery Cells. In: Data in Brief 55 (2024), August,
110614. http://dx.doi.org/10.1016/j.dib.2024.110614. (Zugriff: 2025-02-20). —
DOI 10.1016/j.dib.2024.110614. — ISSN 23523409


http://dx.doi.org/10.1016/j.etran.2022.100183
http://dx.doi.org/10.1016/j.geits.2024.100235
http://dx.doi.org/10.1016/j.ejrad.2023.111276
http://dx.doi.org/10.1016/j.ejrad.2023.111276
http://dx.doi.org/10.1002/acm2.14270
http://dx.doi.org/10.1002/acm2.14270
https://archiv.ub.uni-heidelberg.de/volltextserver/26701/1/Dissertation_JoschaMaier.pdf
https://archiv.ub.uni-heidelberg.de/volltextserver/26701/1/Dissertation_JoschaMaier.pdf
http://dx.doi.org/10.48550/arXiv.1405.0312
http://dx.doi.org/10.48550/arXiv.1405.0312
http://dx.doi.org/10.1016/j.dib.2024.110614

	Einleitung
	Motivation
	Forschungsfragen
	Struktur der Thesis

	Grundlagen der industriellen Computertomographie
	Wechselwirkung von Photonen mit Materie
	Quelle: Erzeugung von Röntgenstrahlung
	Detektor: Quantitative Detektion von Röntgenstrahlung
	Bildkorrekturen
	Bildrauschen

	Rekonstruktion
	CT-Artefakte

	Trajektorien
	Dual-Energy CT und klassische Materialzerlegung
	Vorstellung reale CT-Anlage

	Grundlagen des Deep Learnings für die Computertomographie
	Einführung: Deep Learning
	Training neuronaler Netze
	Beurteilung des Trainings
	Weitere Verbesserungen des Trainings

	Deep Learning für die Bildverarbeitung
	U-Net
	Swin Transformer


	Verwandte Forschung
	Methodik der Literaturrecherche
	Analyse des Korpus
	Beschleunigungsspannung und Detektortechnologie
	Materialien
	Klassische Ansätze zur Materialbestimmung
	Datengetriebene Ansätze

	Erkenntnisgewinn aus der Literatur
	Erzeugung der Trainingsdaten
	Architekturen


	Simulation der Computertomographie
	Anforderungsanalyse: CT-Simulation
	CT-spezifische Anforderungen
	Deep-Learning-spezifische Anforderungen
	Nicht-funktionale Anforderungen
	Überblick über die Anforderungen

	Existierende CT-Simulationen
	aRTist
	gVXR
	Diskussion der Anforderungen

	Eigene Simulation
	Evaluation der implementierten Simulation
	Exemplarischer Datensatz & Datenverteilung
	Vergleich mit aRTist und mit einem realen Scan
	Beobachtungen mit (simulierter) Dual-Energy CT
	Geschwindigkeit und Skalierbarkeit

	Zusammenfassung

	Deep-Learning-Architektur für die Materialbestimmung
	Industrielle Rahmenbedingungen für DL in der CT
	Simuliertes Phantom zur quantitativen Auswertung
	Einfluss des globalen Bildkontextes
	Verschiedene Architekturen: Convolution oder Transformer?
	U-Net
	Swin Transformer
	Vergleich

	Inferenz mit dem U-Net
	Zusammenfassung der Ergebnisse

	Transfer in die CT-Praxis
	Größe der Materialregionen
	Kantenschärfe
	Größe des simulierten Phantoms
	Fine-Tuning zur Adaption der Kantenlänge

	Relative Dichten
	Vorhersagen außerhalb der CT-Mittelschicht
	Anwendung auf reale CT-Daten
	Zusammenfassung der Ergebnisse

	Anwendungspotential auf andere Problemstellungen in der CT
	Reduktion der Strahlaufhärtungsartefakte
	Rauschreduktion
	Detektion von Poren und Partikeln
	Zusammenfassung der Ergebnisse

	Kritische Würdigung
	Zusammenfassung

