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Zusammenfassung:

Diese Dissertation untersucht eine Reihe von Forschungsfragen in der Astroteilchenphysik und Kosmolo-
gie. Sie analysiert UHECR-Anisotropien in der Ankunftsrichtung, die durch das Magnetfeld der Milch-
straße beeinflusst werden, sowie die Ausbreitung kosmischer Strahlen im lokalen Universum durch die kos-
mische Mikrowellenhintergrundstrahlung (CMB) unter Berücksichtigung einer modifizierten Temperatur-
Rotverschiebungs-Beziehung (T (z) oder T -z). Zusätzlich untersuchen wir grundlegende physikalische
Konzepte, die eine modifizierte T -z-Relation im Rahmen eines dekonfinierenden SU(2)-Yang-Mills-Plasmas
nahelegen könnten. Darüber hinaus befasst sich diese Arbeit mit einem Leptonmodell, das auf einer gemis-
chten SU(2)-Yang-Mills-Thermodynamik basiert und eine Verbindung zwischen dem Leptonmassespek-
trum und dem Massenspektrum ultraleichter Axionen herstellt, welche als Kandidaten für die Dunkle
Materie des Universums vorgeschlagen werden.

Eine Motivation aus der Kosmologie zur Betrachtung einer modifizierten CMB T -z Relation sind die ak-
tuellen Spannungen (wie H0, σ8, S8) im kosmologischen Standardmodell ΛCDM. Eine vorgeschlagene Er-
weiterung, SU(2)CMB, beschreibt kosmische Mikrowellenhintergrund-Photonen im Rahmen einer SU(2)-
Eichtheorie anstelle einer U(1)-Eichgruppe. Dies impliziert eine abgeflachte Temperatur-Rotverschiebungs-
Relation. Dadurch werden einige dieser Spannungen reduziert, die Epoche der Rekombination zu höheren
Rotverschiebungen verschoben und die CMB-Photonendichte bei gleicher Rotverschiebung effektiv ver-
ringert.

Darüber hinaus diskutiert diese Dissertation die Auswirkungen der modifizierten kosmischen Mikro-
wellenhintergrund-Evolution auf Multimessenger-Studien. Insbesondere untersuchen wir die Effekte der
oben genannten ΛCDM-Erweiterung auf den Propagationshorizont ultrahochenergetischer kosmischer
Strahlen (UHECR), erhöhte kosmogene Neutrinoflüsse und die veränderten Eigenschaften der Quellen,
die aus dem UHECR-Spektrum abgeleitet werden. In verwandten Studien analysieren wir den Ein-
fluss galaktischer Magnetfelder auf die Ausbreitung und Isotropie von UHECRs. Interessanterweise
können bereits geringe zeitliche Variationen (∼30%) im kosmischen Strahlungsfluss in den letzten mehrere
Hunderttausend Jahre einen Dipol in der Ankunftsrichtung von UHECRs erzeugen, wie ihn die Auger-
Kollaboration beobachtet.

Mehrere Ansätze zur experimentellen Überprüfung der oben genannten erwähnten, geänderten T (z)-
Relation werden diskutiert. Während der Sunyaev–Zel’dovich-Effekt es nicht erlaubt, diese T (z)-Relation
direkt aus den Daten zu extrahieren, ist die Ausbreitung ultrahochenergetischer kosmischer Strahlen
dafür empfindlich. Es scheint, dass SU(2)CMB UHECR-Quellen wie Sternburst-Galaxien mit einer rel-
ativ stabilen Produktionsrate gegenüber aktiven galaktischen Kernen als primäre Quelle von UHECRs
bevorzugt. Wir schließen daraus, dass die Frage nach der Natur der primären UHECR-Quellen direkt
von der angenommenen Temperatur-Rotverschiebungs-Relation der CMB beeinflusst wird.

Darüber hinaus befasst sich diese Arbeit mit dem ARCADE 2-Radioüberschuss im CMB-Spektrum bei
kleinen Frequenzen, welchen wir nicht als Vordergrundstrahlung, sondern als eine intrinsische Eigenschaft
von Schwarzkörperstahlung interpretieren. Basierend auf SU(2)CMB untersuchen wir zudem theoretisch
und experimentell spektrale Schwarzkörper-Anomalien bei höheren Temperaturen als der aktuellen CMB-
Temperatur von TCMB = 2.725 K. Die Konsequenzen einer Erweiterung des kosmologischen Modells
ΛCDM im Sinne von SU(2)CMB für Dunkle Materie und Dunkle Energie, den sogenannten dunklen Sek-
tor, werden kurz diskutiert.
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Summary:

This thesis explores a range of research questions in astroparticle physics and cosmology. It examines
UHECR anisotropies in arrival direction, which are influenced by the Milky Way’s magnetic field and the
propagation of cosmic rays in the local Universe through the cosmic microwave background (CMB) with a
modified temperature-redshift (T (z) or T -z) relation. Additionally, we explore fundamental physics that
may suggest a modified T -z relation within the framework of a deconfining SU(2) Yang-Mills plasma.
Furthermore, this thesis also examines a lepton model based on mixed SU(2) Yang-Mills thermodynam-
ics, linking the lepton mass spectrum to the mass spectrum of ultralight axions, which are proposed as
candidates for the Universe’s dark matter.

A motivation from cosmology to consider a modified CMB T -z relation is the current parameter tensions
(such as H0, σ8, S8) in the cosmological standard model ΛCDM. A proposed extension called SU(2)CMB

describes thermal cosmic microwave background photons in the framework of an SU(2) gauge theory
instead of using the conventional U(1) gauge theory, which implies a flattened temperature-redshift re-
lation. This reduces some of these tensions, pushes the recombination epoch to higher redshifts, and
effectively reduces the CMB photon density at one and the same redshift.

Moreover, this thesis discusses the impact of the modified Cosmic Microwave Background evolution on
multimessenger studies. In particular, we investigate the effects of the above-mentioned ΛCDM exten-
sion on the ultra-high-energy cosmic ray (UHECR) propagation horizon, increased cosmogenic neutrino
fluxes, and the changes in source properties inferred from the UHECR spectrum. In related studies, we
investigate the impact of galactic magnetic fields on the propagation and isotropy of UHECRs. Inter-
estingly, only small temporal variations (∼30%) in the cosmic ray flux within the last couple of several
hundred-thousand years are able to reproduce a dipole in arrival direction of UHECRs as seen by the
Auger collaboration.

Several venues to test the proposed changed T (z) relation are discussed. Due to the redshift independence
of the thermal Sunyaev–Zel’dovich effect, this T -z relation cannot be extracted from data. On the other
hand, ultra-high-energy cosmic ray propagation is sensitive to this relation. It seems that SU(2)CMB

favours UHECR sources, such as starburst galaxies with a relatively steady production rate, over active
galactic nuclei as the primary source class of UHECRs. We conclude that the question about the nature
of primary sources of UHECRs is directly affected by the assumed T -z relation of the CMB.

Finally, we try to link the ARCADE 2 radio excess to an intrinsic feature of SU(2)CMB, a blackbody
anomaly instead of a radio foreground. Based on an SU(2)CMB model, we also investigate theoreti-
cally and experimentally spectral blackbody anomalies at higher temperatures than the current CMB
temperature of TCMB = 2.725 K. The consequences of an extension of the ΛCDM cosmological model
in the sense of SU(2)CMB for dark matter and dark energy, the so-called dark sector, are briefly discussed.
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1 Introduction

Figure 1.1: A traveler gazes through a gap in the heavens. Illustration from Camille Flammarion’s
L’atmosphère: météorologie populaire (Paris: Hachette, 1888), p. 163, colorized and modified.
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2 CHAPTER 1. INTRODUCTION

Introduction

The study of cosmic rays has a rich history that intertwines with the development of particle physics. In
a series of daring balloon experiments, Austrian physicist Victor Hess found that this ionizing radiation
originates from space rather than the Earth’s crust [10]. Initially, it was believed that cosmic rays were
primarily gamma rays due to their penetrating power. However, subsequent research by Jacob Clay
revealed that these particles are predominantly charged, such as protons and atomic nuclei [11]. In 1938
Pierre Auger and his students discovered extensive air showers at the Jungfraujoch in Switzerland and
the Pic du Midi in France [12], caused by cosmic rays striking the atmosphere and generating high-energy
secondary particles. This insight enabled the first correlated detector arrays for air shower detection, as
performed by the groups led by Bruno Rossi in the USA and Georgi Zatsepin in Russia in the 1940s
and 1950s. In the last forty years, cosmic ray observational experiments continuously improved their
sensitivity to the highest energetic particles. The experiment Fly’s Eye pioneered the use of atmospheric
fluorescence and detected ultra-high-energy cosmic rays (UHECRs) such as the famous “Oh-My-God
particle” with an energy of 3× 1020 eV [13]. KASCADE focused on medium to high-energy cosmic rays
(1014 − 1017 eV)1 by measuring extensive air showers using scintillator muon detectors for cosmic-ray
composition analysis, and hadron calorimeters. The Auger Observatory employs a hybrid method of
surface detectors and fluorescence telescopes and was designed to study UHECRs and their phenomena,
such as the Greisen–Zatsepin–Kuzmin (GZK) cutoff, as well as to determine the origin of UHECRs. The
Greisen–Zatsepin–Kuzmin cutoff is a theoretical limit on the energy of cosmic rays travelling through
space, proposed in 1966 [14, 15]. This cutoff occurs because ultra-high-energy cosmic rays interact inelas-
tically with photons from the cosmic microwave background (CMB), producing pions and losing energy
in the process. This interaction limits the propagation length of cosmic rays, e.g. protons can travel up
to roughly 10 — 100Mpc at the highest energies (E > 5× 1019 eV), meaning that cosmic rays above this
energy are unlikely to reach Earth from further distant sources. Moreover, the Pierre Auger Observatory
is sensitive to ultra-high-energy neutrinos (UHE neutrinos), which are neutrinos with energies typically
greater than 1015 eV. Those neutrinos can interact with the Earth’s crust or the atmosphere, producing
electromagnetic and hadronic cascades. The neutrino detection is particularly focused on tau neutrinos
(ντ ) in upcoming showers, and constraints can be made for beyond the standard model (BSM) physics on
this basis [16, 17]. For example, the mass of hypothetical heavy dark matter particles can be constrained,
which is typically assumed to be in the range of mDM ∼ 10 GeV — PeV. These experiments are based on
the idea that tauons produced in the Earth’s crust can escape into the atmosphere, where they decay into
Standard Model particles that initiate extensive air showers detectable by Auger’s water Cherenkov tanks.
This provides complementary insights: neutrinos trace sources deep within dense astrophysical regions,
helping to uncover the origins of cosmic rays. Although UHE neutrinos have not yet been detected in this
experiment, the Pierre Auger Observatory’s capability to observe them highlights its role as a valuable
multimessenger experiment, providing valuable insights into the highest energy cosmic phenomena over
the past two decades.

Yet, despite studying cosmic rays for well over a century, the origin of the highest-energetic cosmic rays
as well as their acceleration mechanisms are still elusive [18, 19]. This is partially due to our own galactic
magnetic field (GMF) changing the trajectory of charged particles and thereby obscuring the direction of
their origin. Therefore, this will be the starting point for the first out of six projects, which are presented
in this work. Two of these projects are still in preparation for publication (see project a) and d) in
Fig. 1.2), while four projects are already published (see project b), c), e) and f) in Fig. 1.2). Each project
is given a chapter of this thesis, and all projects have been conducted in cooperation with researchers
from the University of Wuppertal, Bochum, and Heidelberg. At the end of each chapter, there is a list of
contributions of the author of this thesis (JM) to the respective article. In addition to researchers from
Wuppertal and Heidelberg, the blackbody cavity experiment in project d) has been conducted by re-
searchers from the Istituto Nazionale di Ricerca Metrologica (INRiM), Torino, the Politecnico di Torino,
and the Physikalisch-Technische Bundesanstalt (PTB), Berlin. The central theme of this thesis is to
utilize cosmic rays as probes across progressively larger physical scales: starting with galactic magnetic
fields, the study extends to cosmic ray interactions with CMB photons, tests of ΛCDM extensions. In
addition, we explore fundamental lepton and photon properties theoretically in thermal Yang-Mills the-
ory and experimentally via a terrestrial blackbody anomaly. Ultimately, we are investigating condensates
of ultra-light axions, which are linked to the lepton mass spectrum [20], see project f), at the largest
cosmological scales. In the following, a brief introduction is given to all individual projects of this thesis.

1Although the data as shown in Fig. 1.3 is only in the energy range 1015 − 8× 1016 eV.
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1.1. PROJECT A): UHECR ANISOTROPY AND COMPOSITION 3

Figure 1.2: Overview of the projects of this thesis: a) the study of anisotropy of UHECR arrival direc-
tions caused by a modified cosmic ray flux; b) the interaction of UHECRs with the CMB as a crude
measure of the CMB temperature probing our Universe locally; c) the difficulties of extracting the red-
shift dependence of the cosmic microwave background temperature; d) search for a spectral blackbody
anomaly which could independently justify such a deviating CMB temperature evolution in redshift; e)
the determination of the fine structure constant and electroweak mixing angle within the framework of
mixed SU(2) Yang-Mills thermodynamics; f) and the determination of the T-dependent axion masses in
the same framework of SU(2) Yang-Mills thermodynamics based on the Veneziano-Witten formula.

1.1 Project a): UHECR Anisotropy and Composition

In research project a), we aim to gain a deeper understanding of the impact of our own galactic magnetic
field on the propagation of UHECRs and their directional anisotropy as seen by the Auger Collaboration,
compare Fig. 1.2 a). Thereby, we put an emphasis on the UHECR mass composition and study the energy
dependent dipole amplitude evolution for different UHECR nuclei. At energies at which the Pierre Auger
Observatory can measure the arrival direction of cosmic rays, that is above 4× 1018 eV, they propagate
mainly ballistically. With decreasing energy starting at around ankle energies (5×1018 eV)2, cosmic rays
start propagating quasi-diffusely. This means that the magnetic field can deflect the UHECRs without
trapping them in our Galaxy for extended periods of time (∼ 300 kilo years, which is implies propagation
lengths ≳ 100 kpc). In comparison, the Milky Way has a diameter of approximately 30 kpc. This
propagation length has been selected to enable multiple revolutions of cosmic rays within the galaxy. This
inability to trap cosmic rays arises from the negligible impact of the turbulent magnetic field component
at energies between the second knee (1017 eV) and the ankle, which is essential for their confinement. The
setup of the simulation involves 3D propagation of protons and nuclei with a mass composition consisting
of four elements (H, He, Ni and Fe) that are homogeneously injected at 20 kpc away from the center
of our Galaxy into a galactic magnetic field model and to an observer sphere with a radius of 1 kpc.
Thereby, we investigate different magnetic field models, mainly JF12 (Jansson & Farrar, 2012) adjacent
magnetic fields but also the UF24 (Unger & Farrar, 2024) model. The JF12 model and UF24 model are
both large-scale models of the Galactic magnetic field. The JF12 model combines a coherent (regular)
component, a turbulent component, and a stratified component to describe the GMF structure based on
observational constraints such as Faraday rotation measures and synchrotron emission. The UF24 model

2Please refer to Fig. 1.3 for an overview of the cosmic ray flux spectrum as measured on Earth, including the spectral
features called ‘ankle’ and ‘knee’.
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4 CHAPTER 1. INTRODUCTION

Figure 1.3: The cosmic ray flux as observed on Earth by multiple experiments as a function of energy
multiplied by E3. The data are taken from the Auger collaboration (red circle) [21], the Telescope Array
(blue square) [22], KASCADE (green cross) [23], the NUCLEON experiment (turquoise x) [24], Tibet-III
(purple small diamond) [25], HAWC (ultramarine diamond) [26], IceCube (yellow upward triangle) [27],
Tunka (black star) [28], and KASCADE-Grande (gray right pointing triangle)[29]. The original graphic
with more experiments can be found online [30].

refines and expands upon JF12, incorporating updated data and improved parameterizations to provide
a more accurate representation of the GMF’s impact on cosmic ray propagation and deflection. However,
it does not have a turbulent component yet. The first insight of project a) is that a mild fluctuation
in cosmic ray flux production (∼ 30%) can induce anisotropy of the arrival direction of UHECRs as
observed on Earth, even when the cosmic rays are injected homogeneously. This temporal modulation
is not completely disjoint from directional information: selecting a certain propagation length (and thus
time period in the past) to boost cosmic ray production always has a directional component associated
with the injection sphere within our simulation setup. This is because not all particles are travelling
multiple rounds within the Galaxy before hitting the capture sphere in our simulation setup. Especially
at the highest energies, most particles travel to the observer sphere in a rather straight way. The second
insight is that heavy elements show the tendency of an increased dipole amplitude at higher energies, and
that no dipole amplitude evolution occurs for a pure proton composition [1]. This may lead to another
way of constraining the UHECR mass composition, independent of the conventional study of Xmax, in
the future. In this context, Xmax refers to the depth in the atmosphere (measured in g/cm2) at which the
extensive air shower, triggered by the cosmic ray’s initial interaction with e.g. nitrogen in the atmosphere,
reaches its maximum particle density. It is the standard approach for inferring the mass of a primary
cosmic ray particle using Xmax. This is feasible as showers caused by heavier primary particles like iron
reach their maximum particle density in higher layers of the atmosphere, and earlier from the point of
first interaction than lighter particles such as protons.

1.2 Project b): UHECRs as Probe of the CMB Photon Density

Project b) aims to explore the potential of ultra-high-energy cosmic rays as probes for cosmological
models by examining the cumulative effects of cosmic microwave background photon density over their
propagation distances. By utilizing the interaction of cosmic rays with CMB photons, we investigate



C
ha

pt
er

1

1.3. PROJECT C): FREQUENCY-REDSHIFT EVOLUTION 5

potential connections between cosmic ray propagation and cosmology, for a small class of cosmological
models which change the CMB photon density. This test is only possible if we have plenty of UHECR
sources, evenly distributed up to redshift z = 1–2, which all have a similar acceleration mechanism
and mass spectrum. If ultra-high-energy cosmic rays (UHECRs) observed on Earth were predominantly
originating from a single nearby source, this would significantly complicate efforts to test these partic-
ular extensions of the ΛCDM model. In such a scenario, the observed UHECR signal would be heavily
influenced by local source properties, rather than reflecting the statistical properties of the large-scale
Universe. Consequently, it would be necessary to develop robust methods to disentangle this dominant
foreground contribution from the more isotropic background produced by distant, cosmologically dis-
tributed sources. The reason that we wish to test the CMB photon density is one particular extension
of the standard model of cosmology, ΛCDM (Lambda Cold Dark Matter), known as SU(2)CMB. ΛCDM
is the standard cosmological model, describing the evolution of the Universe dependent on dark energy
(Λ), cold dark matter, ordinary matter, and radiation at high redshifts within the framework of gen-
eral relativity. As the name SU(2)CMB suggests, the CMB and blackbody radiation more generally is
described with an SU(2) rather than a U(1) theory [31] within this cosmological extension. The advan-
tage of a pure Yang-Mills theory describing the photon in the deconfining phase is the mitigation of the
Hubble tension and the S8 tension [32, 33, 34]. The Hubble tension refers to the discrepancy between
the locally measured and cosmologically inferred values of the Hubble parameter (H0) [35], while the S8

tension arises from a mismatch between the observed and predicted amplitude of matter clustering in the
Universe. The biggest disadvantage of this particular ΛCDM extension is the increased amount of fitting
parameters to the CMB multipoles (9 instead of 6), and a fundamental change in leptogenesis, which are
expected to change aspects of Big Bang nucleosynthesis and may lead to tension therein. In particular,
the baryon density extracted from CMB fits in the framework of SU(2)CMB is currently lower than in
ΛCDM, while the latter is in a good agreement with current CMB simulations [36, 37]. Nonetheless, the
SU(2)CMB baryon density extracted from CMB fits roughly matches results of local censuses [38, 39].
One of the key characteristics of this ΛCDM extension is the changed temperature-redshift relation: the
cosmic microwave radiation cools down more slowly than in ΛCDM. In this model, recombination occurs
earlier at z∗ ∼ 1700 [33], while the CMB temperature at decoupling and today remains unchanged, as
Thomson scattering and other decoupling processes are unaffected by the modified T -z relation.

1.3 Project c): Frequency-Redshift Evolution

The dominant opinion in the literature currently is that the standard temperature-redshift relation of
the CMB is T (z)ΛCDM = T0 (1 + z) and can be inferred from the Lyman-alpha forrest and the ther-
mal Sunyaev-Zel’dovich effect. With T0 = 2.725K being the current temperature of the CMB. The
Lyman-alpha (Ly-α) line is a spectral feature of hydrogen, created when an electron transitions between
the first excited state (n=2) and the ground state (n=1), emitting or absorbing ultraviolet light at a
wavelength of 121.57 nm. The conventional assumption is that the temperature of hydrogen clouds can
be determined from the Lyman-alpha forest by analysing the thermal broadening of absorption lines in
quasar spectra, which is directly sensitive to the gas temperature. In project c), we demonstrate that any
assumed frequency-blueshift relation necessarily implies a corresponding temperature-redshift relation
under the assumption that the radiation is in thermal equilibrium [3]. Therefore, these two methods are
not sensitive to the actual temperature of the CMB in the past, and merely test the blackbody nature
of the CMB at those times; at most those techniques are sensitive to the temperature of the hydrogen
in the observed systems. The only non-local method to measure the temperature of the CMB seems to
be via the interaction of CMB photons with cosmic rays. This is the main motivation for project b). In
essence, project b) can be summarized with the finding that the modified temperature redshift relation,
in the framework of SU(2) cosmology, cannot generally be excluded. Diluting the CMB photon density
extends the propagation distance, effectively increasing the total number of propagated ultra-high-energy
cosmic rays below 1018.5 eV [2, 7]. In particular, mild tendencies can be seen for the dominant source
class of UHECRs: weakly evolving UHECR sources, such as starburst galaxies with a relatively steady
production rate, are preferred over strongly evolving sources like active galactic nuclei (AGNs). There-
fore, the viability of SU(2) cosmology would be heavily constrained if the primary sources of UHECRs
would independently turn out to be AGNs. And vice versa, if by other means the validity of SU(2)CMB

could be demonstrated, weakly evolving UHECR sources would be favoured over AGNs.
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1.4 Project d): Blackbody Anomaly at Low Temperatures

The framework of SU(2) cosmology was developed in the last two decades [31, 40, 41]. The description of
photons in thermal equilibrium is built around the formal argument that in an SU(2) theory the photon
is quantized automatically due to the non-abelian nature of the SU(2) gauge group, while for a U(1)
gauge group quantization needs to put in by hand. In an SU(2) theory for photons, the gauge bosons
(analogous to photons) are non-abelian, meaning they can interact with each other due to the structure
of the SU(2) Lie algebra. In a thermodynamical context, this self-interaction allows non-perturbative
physical phenomena, such as confinement, screening, or effective, dynamical gauge symmetry breaking
[31]. The phase diagram due to non-trivial ground state of SU(2) Yang-Mills thermodynamics (YMTD)
photon theory is shown in Fig. 1.4.

Figure 1.4: Phase diagram of SU(2)CMB with Tc = 2.725K in the infinite-volume limit. There are
three distinct phases: (I) deconfining phase, (II) preconfining, and (III) confining phase. In phase III an
additional fourth, very light lepton family emerges whose charged members can be called gammaron and
antigammaron with a mass of me ΛCMB/Λe = 1.5 × 10−2 eV. The preconfining ground state of SU(2)CMB

decays, among others, into such charged leptons at the Hagedorn temperature TH ∼ 2.3K.

The three thermodynamic phases are summarized in project e), Chapter 6.2, an in-depth introduction
can be found in [31]. The experimental search for screening effects due to monopoles in the deconfining
phase is the subject of project d). In this context, the search for screening effects means that we search in
a cryogenic cavity experiment for a deviation from the expected blackbody noise power at low frequencies
(5–11.5GHz) and temperatures which are comparable to the current temperatures of the CMB (T0,CMB

= 2.725K). Those deviations from Planck’s radiation law are expected close to a so called Hagedorn
phase transition. A Hagedorn phase transition marks the shift from a confined phase with fermionic
particles (e.g., leptons in phase III in Fig. 1.4) to a deconfined phase with freely moving quasi-particles
(e.g., monopoles in phase I in Fig. 1.4). In a pure SU(2)e gauge theory, this shift is expected to occur at
a temperature of roughly TH,e = 6.63 keV [5]. However, for SU(2)CMB the temperature of the Hagedorn
phase transition is TH ∼ 2.3K and the critical temperature Tc ≡ T0,CMB = 2.725K. For SU(2)e this
transition can be calculated with the lepton mass and stability constraints on the electron, as done in
project e). For SU(2)CMB, we do not know a prior a lepton mass of a potential fourth lepton species, as it
has never been observed yet. Therefore, the phase transition and critical temperature in the latter theory
cannot be determined purely theoretically. They need to be determined empirically. The balloon borne
experiment ARCADE 2 measured in its 2005 and 2006 flights a significant excess in CMB radiation,
which hints towards a non-trivial configuration of the photon ground state, compare Fig. 1.53. This CMB
line-temperature anomaly is used to anchor the critical temperature Tc to the current CMB temperature.
The more conservative scenario is that other astrophysical sources outshine the CMB at low frequencies,
though it remains unclear which specific sources are responsible [42]. In order to test whether the ex-
cess CMB radiation as observed by ARCADE 2 and other ground based experiments is of astrophysical
origin or a feature of blackbody radiation itself, we need sophisticated Earth based cavity experiments.
If similar radiation excess as shown in Fig. 1.5 can be measured in a terrestrial laboratory, astrophysical

3Please refer to [42, Fig. 4] for a clearer representation of the excess in form of a line-temperature excess.
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foregrounds could be severely constrained or even ruled out as source for this deviation. In the framework
of SU(2) Yang-Mills theory, this CMB radiation excess would be caused by Meissner massive photons
in the preconfined phase where U(1) is effectively broken by a monopole condensate. This serves as the
primary motivation for Project d). In a pilot study, initial measurements were conducted by INRiM. In
this study, we search for deviations predicted to occur for T > Tc ∼ T0,CMB which are due to an effective,
radiative photon screening at intact U(1) gauge symmetry.

Figure 1.5: The radio excess as observed by CMB observations could be explained by Meissner massive
photons in the preconfined phase of SU(2)CMB. In purple, a fit to the data is shown, the gray dotted line
indicates the expected Rayleigh-Jeans behaviour.

1.5 Project e): Electroweak Parameters

In the context of Yang-Mills thermodynamics, we also investigated the effect of mixing the deconfined
phase of the SU(2) theories, which are associated with the thermal the photon and electron [43, 44] in
project e). Only with the condition of stabilizing the electron (bulk pressure of the deconfined phase being
zero), an electroweak mixing angle can be obtained, which can be interpreted as the Weinberg angle [5].
This defining feature of an isolated electron not being point-like due to localized SU(2) thermodynamics
is different to the SM, in which it is point-like at all temperatures [ibid.]. Note that, even in YMTD, the
electron appears point-like when boosted to relativistic velocities, as in collider physics [ibid.]. However,
quantities derived in thermodynamic equilibrium, such as the fine-structure constant, are inherited from
the rest frame to the otherwise featureless situation of a relativistic electron [ibid.].

Therefore, one key aspect of SU(2)CMB as an extension of ΛCDM is that it is also motivating an extension
of the standard model of particle physics. Note that far from thermodynamic equilibrium, the standard
model is not only a great approximation, but superior in its descriptive power, in particular with respect
to scattering processes at collider experiments.
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1.6 Project f): The Dark Sector in Yang-Mills Thermodynamics

There are many other implications of the Yang-Mills thermodynamic framework in cosmology. The dark
sector is particularly affected if one describes the thermal ground state not only of photons with an
SU(2) gauge group, but each lepton family in local thermodynamic equilibrium (electron, muon, tauon).
Dark matter is a hypothetical particle species, which could for example couple only gravitationally or
additionally very weakly with particles of the standard model. Two of the many possible dark matter
candidate classes are ultra-light, Planck-scale axions and weakly interacting massive particles. Experi-
mental evidence for dark matter comes from observations of the bullet cluster [45], galaxy rotation curves
and the CMB [46, 47]. In YMTD, dark energy is represented by the energy density of a super horizon size
axion condensate. The particles of this condensate obey a Peccei-Quinn scale close to the Planck mass
fa,YMTD = MP ∼ 1028 eV [20, 48, 41]. The Peccei-Quinn (PQ) scale fa is the energy scale at which the
hypothetical global chiral U(1)PQ symmetry, originally introduced to solve the strong CP problem, spon-
taneously breaks. On top of this spontaneous breaking, there is an anomalous, explicit breaking induced
by topological charge carriers. This gives rise to a mass of the would-be Goldstone boson, the axion, of
ma ∼ Λ2/fa where Λ is the Yang-Mills scale of the gauge theory providing the field configurations of non-
trivial topological charge. The QCD scale ΛQCD is around 200MeV, below which quarks and gluons be-
come confined into hadrons. For the QCD axion, the Peccei-Quinn scale is typically expected to be around
fa,QCD ∼ 1018 — 1021 eV. The QCD axion is therefore ma,QCD ∝ Λ2

QCD/fa,QCD = (200MeV)2/fa,QCD ≃
10−2 — 10−5 eV. In Yang Mills thermodynamics, with a significantly heavier PQ scale, axion are ultra-
light (≤ 10−18 eV) and their coupling to the electromagnetic field is suppressed with the Planck mass,
so that no Primakov conversion is expected during the lifetime of the Universe. Within this frame-
work, the lightest axion species ma,γ ∼ 10−35 eV is associated with the Yang-Mills scale of the photon
ΛCMB ∼ 10−4 eV and can be interpreted as dark energy, and three axion species interpreted as fuzzy
and cold dark matter ma,ℓ ∼ 10−24 − 10−18 eV are associated with the Yang-Mills scales of the leptons
(Λe = 3.6 keV, Λµ ≃ 744 keV, Λτ ≃ 12.5MeV)4. In project f) the temperature dependent axion mass was
calculated for the deconfining phase of each axion species, which is independent of the explicit symmetry
breaking scale Λ and fa in the deconfining phase of the associated SU(2) Yang-Mills theory. These masses
are proportional to ma ∝ T 2/MP if the Peccei-Quinn scale can be assumed to be the Planck mass MP .
Interestingly, all of those axion species in YMTD almost always occur as a Bose-Einstein condensate
facilitated by gravity [49], right after getting massive at the Planck scale.

The projects of this work cover a broad range of topics within astroparticle physics and cosmology. Key
insights include additional indications for a heavy composition of the UHECR flux composition, derived
from our anisotropy study in project a), as well as the ability to probe the CMB photon density along
the propagation of UHECRs in project b). In addition, the secondary theme is to connect those areas
of research by testing the hypothesis of Yang-Mills thermodynamics phenomenologically. Thereby, this
work presents a range of considerations that hint at a potentially complex thermodynamical constitution
of photons and leptons, along with the possibility of a dark sector comprising four Planck-scale axion
species. Further research will be required to evaluate the validity of this hypothesis.

4Those Yang-Mills scales are fixed by first calculating Λe = 3.6 keV [5] and then using the lepton mass ratios to deduce
Λµ = Λe ×mµ/me and likewise Λτ = Λe ×mτ/me.



C
ha

pt
er

2
C

ha
pt

er
2

2 Anisotropy and UHECR Flux Composition

Figure 2.1: Comparison of flux modulation induced dipole with a mass composition based on an EPOS-
LHC fit (simulation) with Auger data 2024, compare [50]. For Auger data, all energies E > 8EeV have
been taken into account, for the modulated flux simulation the energy range 8EeV < E < 64EeV has
been assumed. The modulated flux is shown in Fig. 2.5.

This chapter presents original research, published here for the first time, and serves as a preprint [1]. It
is a collaborative effort within SFB 1491, with the associated project designated as A3.
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10 CHAPTER 2. ANISOTROPY AND UHECR FLUX COMPOSITION
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Abstract

The origin of the large-scale anisotropy in ultra-high-energy cosmic rays (UHECRs) remains unclear. We
explore the influence of a time-dependent cosmic-ray flux variation, which could imprint an anisotropic
signature. We explore this idea by investigating the energy- and composition-dependent residence time
of extragalactic cosmic rays entering our Galaxy. Using CRPropa 3.2 and current Galactic magnetic
field models, particularly PlanckJF12b, we introduce a time modulation in the cosmic ray flux to induce
anisotropy in an otherwise homogeneously injected UHECR distribution. Similarly to simulations which
only introduce spacial anisotropy in UHECR source distribution, we find a good agreement with the
observed right ascension only by altering the cosmic-ray flux in time, with a homogenous source distribu-
tion. This study is a proof of concept, and a potential advantage of our approach could be matching the
energy dependent dipole evolution to more complex past variations in cosmic-ray flux in future studies
(Gaussian modulation, multiple bursts, instead of a single delta function like temporal modulation as
done in this study). We find the best agreement with the Auger dipole for an increased cosmic ray flux of
about 34% in the past 46–55 kilo years (14–17 kpc) when the UHECR flux composition of EPOS-LHC is
employed. Furthermore, we find the energy evolution of the dipole amplitude to depend on rigidity, which
we control in the simulation setup by changing the mass composition of ultra-high-energy cosmic rays:
for a pure proton composition, the dipole amplitude remains constant from 4 – 64EeV, while heavier
elements like nitrogen and iron show a tendency for an increasing dipole amplitude with energy. The
time-varying UHECR flux approach in this research aims to provide a new avenue for testing UHECR
mass composition at the highest energies.

2.1 Introduction

The origin of ultra-high-energy cosmic rays (UHECRs) remains an open question [18, 19]. A key chal-
lenge in determining their origin is the influence of our own Galactic magnetic field (GMF), which alters
the trajectories of charged particles, thereby obscuring the direction of their origin. A feature of the
UHECR flux spectrum which has the potential to shed light on the origin of UHECRs is the mild but
statistically significant anisotropy in arrival direction of ultra-high-energy cosmic rays [50]. The Pierre
Auger Collaboration analysed nineteen years of UHECR data, and observed the dipole anisotropy with
a ∼ 6% amplitude above 8EeV with > 5σ significance [ibid.]. No significant higher-order multipoles
were found, and the dipole amplitude remained stable within the observation period. The observed mild
anisotropy in arrival direction of ultra-high-energy cosmic rays is often interpreted as the anisotropy in
source distribution [51]. This approach aims to find a prime candidate for the dominant UHECR source
class with directional studies [52]. In this work, we analyse the influence of a time-varying UHECR flux
on the anisotropy observed today with the Auger Observatory, while maintaining an otherwise homoge-
neous source distribution. The question is if a time-varying UHECR flux alone is enough to match the
observed anisotropy data.

Such a flux modulation may have been triggered by a single UHECR bursting event in a nearby galaxy,
such as Centaurus A, as suggested by [53]. Although a local bursting would also induce a spacial
anisotropy, the spacial anisotropy may be isotropiesed by UHECRs being reflected in larger magnetic
structures, i.e. the council of giants [ibid.]. Such echoes of a bursting event can be approximated as a
brief global increase in UHECR flux, an assumption we adopt throughout this study. This simplification
positions our work as a proof-of-principle analysis. In addition to a time-varying UHECR flux, we use this
simulation setup to study the composition and energy-dependent evolution of the dipole amplitude. To
investigate the impact of the GMF on UHECR propagation and residence time in our Galaxy, we examine
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different magnetic field models. The PlanckJF12b model [54] and the UF24 model [55] are large-scale rep-
resentations of the Galactic magnetic field commonly used in UHECR studies. The PlanckJF12b model is
an updated version of the JF12 model [56], incorporating improved constraints on the Galactic magnetic
field derived from Planck satellite data. Both the JF12 model and the PlanckJF12b combine a coherent
(regular) component, a turbulent component, and a stratified component to describe the GMF structure,
based on observational constraints such as Faraday rotation measures and synchrotron emission. The
UF24 model offers a similar approach with an updated magnetic field configuration, however, currently
without a turbulent component. This is the main reason to rely on the PlanckJF12b model and use the
UF24 model for internal validation1. More sophisticated models, such as those that include the matter
distribution in our local cosmic neighbourhood [51], have been proposed to improve the understanding of
how the GMF influences cosmic ray propagation over large distances. Simpler injection geometries have
also been considered, highlighting the significance of galactic magnetic fields when studying the UHECR
dipole [57].

Our findings include a reasonable good agreement with the time-varied UHECR flux for all injected
nuclei species individually (H, He, N, Fe) for a mildly increased flux of ∼ 30% in the past 46–55 kilo years
(14–17 kpc). We also base the injected composition on an EPOS-LHC fit to 2017 Auger data, in order to
have a realistic mass composition. In this scenario, a flux modulation of 34% is necessary in order to be
in agreement with Auger dipole data for the same modulated time period. In addition, we observe in our
simulation setup, that the dipole amplitude for heavier elements, such as nitrogen, increases with energy,
from ∼ 3% in the smallest energy bin (8–16EeV) to ∼ 6% in the highest energy bin (32–64EeV). This is
in contrast to a pure proton composition, in which the dipole amplitude remains energy-independent. We
identify this feature as a rigidity effect, as particles with a smaller rigidity spend more time propagating
within our Galaxy and have thus more time to be ‘isotropiesed’. More sophisticated simulation setups
need to follow, in order to constrain the UHECR compositional data with the energy dependent dipole
amplitude evolution.

2.2 Latency of UHECRs in PlanckJF12b

We use the magnetic field model PlanckJF12bField [56], within the cosmic ray simulation framework CR-
Propa 3.2 [58, 59] in order to study UHECR propagation in our GMF. We inject protons homogeneously
with a Lambertian distribution at 20 kpc from the Galactic center in the energy range 1016−1021 eV, fol-
lowing a spectral index of E−1, as shown in Fig. 2.2 a). Using a ballistic propagation model—appropriate
for high-energy cosmic rays with minimal deflections, we track particles reaching the 1 kpc capture sphere,
which is 8.5 kpc away from the center of the Milky Way. A smaller energy range of 1018.6 − 1020.2 eV
was used for all following studies with a spectral index of E−2.7. In Fig. 2.2 a) the energy dependent
propagation distance is shown for 1,970,000 particles which are reaching the capture sphere. Around ten
times more particles are simulated, which do not reach Earth in the designated simulation time or which
leave the Galaxy. Particles are not propagated further when the propagation length reaches 100 kpc, or
when particles are leaving our Galaxy. The latter scenario is detected by a second capture sphere with a
radius of 22 kpc.

Latency effects, such as the decrease in propagation length at ankle energies (1018.5 eV) as seen in Fig. 2.2
a), are robust even when varying the capture sphere size, changing the position of the capture sphere in
the Milky Way, and also when using the newer GMF model UF24. The latter model was not used for the
simulation of this work due to the lack of a turbulent module implementation in CRPropa. An additional
turbulent component could be introduced; however, this would not be supported by the available data.
Overall, the propagational effects as seen in Fig. 1 a) were similar in both magnetic fields. This leads
us to conclude that likely the large scale magnetic field structure causes the suppression of propagated
distances at ankle energies.

For PlanckJF12b, we see in Fig. 2.2 a) that the Galactic magnetic field shields Earth from the arrival
of UHECRs for energies below 1018 eV, leading to an almost complete suppression of UHECRs below
1017 eV. TF17 has a less severe shielding at low energies. Interestingly, all JF12 adjacent Galactic mag-
netic field models exhibit a suppression of propagated distances around that ankle energy (1018.5 eV).
We find this to be a combination of two effects: shielding of ballistically propagating ultra-high-energy

1A detailed comparison of the two models will appear in the Appendix in a later version of this paper.
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cosmic rays at higher energies, which is counterbalanced at lower energies by the onset of quasi-ballistic
propagation between 1017−1018.5 eV. We identify unchanged propagation distances in Fig. 2.2 a) above a
rigidity of 1019.5 V to be a characteristic of ballistic propagation. In Fig. 2.2 b) the injection of cosmic rays
has been adjusted to E−2.7. In order to incorporate information on the energy-dependent composition,
we use an EPOS-LHC fit to Auger 2017 data for our composition, compare [60, Fig. 3].

Figure 2.2: The energy dependent absolute number of protons which reach the capture sphere is shown
for propagated distance in PlanckJF12b. The protons were injected with a spectral index of E−1 in A
and with a spectral index of E−2.7 in B. Distances in both figures which are larger than ≥ 9 kpc are
indicated in yellow, ≥ 12 kpc (orange), ≥ 15 kpc (magenta), ≥ 20 kpc (indigo), ≥ 40 kpc (azure).

In order to have a realistic mass composition of UHECR, we employ an EPOS-LHC fit to 2017 Auger
data, as shown in Fig. 2.3 a). These flux ratios, which are used from individually 1018.6 − 1020.2 eV, are
multiplied with E3, and normalized by the highest mass composition, which is nitrogen at 1019.5 eV. After
normalization, we use up to one-hundredth batches of 40 million propagated particles each and repeat
the simulation as shown in Fig. 2.2 b) for four nuclei species (H, He, N, Fe) with an injection index of
E−2.7 for the whole energy range of 1018.6 − 1020.2 eV. Please refer to the Appendix, section 2.6, for a
detailed description of the simulation setup which was used for each batch of propagated particles. The
compositional information of the EPOS-LHC fit is binned for 16 energy bins, and accordingly batches
of each nuclei species are combined in order to represent the composition within a given energy bin.
The nuclei specific number of batches are also shown in the Appendix in Table 1. Fig. 2.3 b) shows the
propagated distances for particles which reaches the capture sphere with an EPOS-LHC composition,
also multiplied with E3.

2.3 Flux Modulation induced Anisotropy

The time a cosmic ray takes to propagate in our Galaxy before reaching Earth as seen in Fig. 2.2 a)
cannot be determined for individually particles experimentally23. Thus, we measure all particles which
reach Earth, without knowing their precise path through the galactic magnetic field. If the particles
are injected homogeneously, according to Liouville’s theorem, the isotropy should be conserved for any
stationary observer. This is why there is no anisotropy evident if one does not distinguish for the
propagation time of cosmic rays within our Galaxy, as seen in Fig. 2.4 (dark red line). In our simulation
setup, where propagated distances can be distinguished, a deviation from isotropy becomes apparent
when selecting subsets of propagated distances. A dipole is apparent for young particles, for example,
particles which travelled from the injection sphere directly to Earth (9–15 kpc, orange), as well as for
relatively old particles (distances ≥ 40 kpc, azure) in Fig. 2.4. Note that the dipole for older particles

2If the source of UHECRs was known, with photo-disintegration and hadronic interactions, statistical statements could
be made, since the mass composition is known at the highest energies of UHECRs [60].

3Note, that we use the term “time” and “distance” a cosmic ray travelled within our Galaxy interchangeable throughout
this work.
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Figure 2.3: A The ratios of H, He, N, and Fe that best fit the Auger Xmax distributions, using templates
produced by the EPOS-LHC high-energy interaction model, based on Auger 2019 data. The data of
this figure are taken from [61], Fig. 1. Shown in solid lines are the implemented nuclei fractions in
Fig. 2.3 b) for the energy bins 4-8 EeV, 8-16 EeV, 16-32 EeV and 32-64 EeV. The composition of the last
energy bin was taken to be equal to the third energy bin. The energy binning scheme uses logarithmic
intervals from 1018.6–1018.7 eV to 1020.0–1020.2 eV. Each bin width follows a constant step size of 0.1 in
the exponent, ensuring a uniform logarithmic spacing. B The energy dependent absolute number of an
UHECR composition based on an EPOS-LHC fit (on Auger 2017 data, [60]) which reach the capture
sphere is shown for propagated distance in PlanckJF12b. The nuclei were injected with a spectral index
of E−2.7. Distances ≥ 9 kpc are indicated in yellow, ≥ 12 kpc (orange), ≥ 15 kpc (magenta), ≥ 20 kpc
(indigo), ≥ 40 kpc (azure).

exhibits a phase shift in right ascension, resulting in a direction opposite to that of younger particles. In
order to reproduce the dipole as seen by the Auger collaboration, we modulate the cosmic ray flux in the
past by modulating the total cosmic ray flux with a delta-like function as shown in Fig. 2.5 a).

Figure 2.4: The propagation length dependent (an)isotropy is shown for cosmic rays which travelled
between 9-15 kpc (orange); between 15-20 kpc (magenta); between 20-40 kpc (indigo); all particles which
propagated longer than 40 kpc are shown in azure. The anisotropy for all distances is shown in red. This
figure is based on the simulation, as shown in Fig. 2.2 a).



C
ha

pt
er

2
C

ha
pt

er
2
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However, due to the simulation setup and the ballistic propagation of cosmic rays at the highest energies,
temporal information cannot be fully disentangled from spatial information. Boosting cosmic rays with
a propagation length below 30 kpc effectively selects rings of origin within the injection sphere. These
rings are significantly more isotropic than the assumptions in standard point source searches, as they
encompass a broader and more evenly distributed emission region. Nonetheless, the temporal modulation
of the UHECR flux is sufficient to induce the anisotropy as observed by the Auger collaboration.

Figure 2.5: A Modulation of the UHECR flux with a delta-peak-like modulation from 14− 17 kpc. The
total flux is conserved, while for ten thousand years the flux is increased by 34%. There are no cosmic
rays from 0-9 kpc since from injection outside the Galaxy, the particles need to travel at least 9 kpc in
order to reach the observer sphere. B Comparison of flux modulation induced dipole (simulation) with
Auger data 2024, compare [50]. For Auger data, all energies E > 8EeV have been taken into account,
for the modulated flux simulation the energy range 8EeV < E < 64EeV has been assumed.

While the total flux is preserved, increasing the flux within a period of roughly ten thousand years (from
46 to 55 kilo years) by 34% leads to a right ascension which is in a reasonably good agreement with
observations by the Auger collaboration [50], as seen in Fig. 2.5 b). The amplitude and timing of the
delta-peak-like cosmic ray flux modulation was adjusted to be in good agreement with the combined
Auger data for energies between 8–64EeV. The amplitude of the delta-like increased cosmic ray flux
determines the height of the dipole amplitude in Fig. 2.5 b). Shorter durations of increased flux can be
compensated by a higher flux modulation and vice versa. In addition, we find the right ascension is
linked with the rigidity of the injected particles: While a pure proton composition peaks around a right
ascension of 60◦, nitrogen dominated composition peak around 120◦, compare Fig. 2.8 in the Appendix.

To compare our simulation with anisotropy data from the Auger collaboration, we use the same energy
bins in this work which have been selected in previous studies: 4–8 EeV, 8–16 EeV, 16–32 EeV and 32–64
EeV. The delta-peak modulation induced anisotropy together with the EPOS-LHC mass composition can
be seen in ultramarine in Fig. 2.6. While the tendency of an increasing dipole amplitude for higher energies
is apparent for nitrogen, the overall match with the dipole evolution is quite poor for all individually
propagated nuclei and also the EPOS-LHC mass composition. We find that at low energies, heavier
elements experience greater deflection in the magnetic field, causing them to propagate longer in the GMF
than a light UHECR mass composition. We identify the very high dipole amplitude for nitrogen in the
smallest energy bin (4–8EeV) to be an artifact of our simulation setup: The particles are not propagated
long enough, causing the younger particles to induce a dipole. This is detected by our null-hypothesis
cross-check in Fig. 2.7 for the EPOS-LHC composition, which is dominated by nitrogen. Accounting for
all propagated distances together should result in no anisotropy, which is not the case for Fig. 2.7 a),
b) and to some extent also Fig. 2.7 c). The anisotropy dipole amplitudes in the lowest energy bin are
therefore erroneous for the EPOS-LHC fit composition and nitrogen, and are marked with an additional
cross to indicate this in Fig. 2.6. The key insight provided by Fig. 2.6 is that heavy elements induce an
increased dipole amplitude at higher energies, and that no dipole amplitude evolution is apparent for
a pure proton composition. This approach of a time-varied UHECR flux may become another way of
excluding a pure proton composition at the highest energies in the future for more sophisticated temporal
modulations, independent of the conventional study of Xmax.
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Figure 2.6: Comparison of the evolution of the dipole amplitude with energy, for the delta-like flux
modulation as in Fig. 2.5 a) with Auger 2024 data (red), compare [50]. Four energy bins are shown in
EeV: a) 4-8, b) 8-16, c) 16-32, d) ≤ 32 for Auger data and d) 32-64 for simulation. The Auger data
are compared with four simulation setups: A cosmic ray mass composition based on an EPOS-LHC fit
to 2017 Auger data (ultramarine, solid line fit), compare Fig.2.3 b). A cosmic ray composition of pure
protons (light blue, dashed fit), compare Fig. 2.2 b). As well as a pure helium composition (pink, dashed
fit) and a pure nitrogen composition (green, dashed fit), analogous to Fig. 2.2 b). The lowest energy bins
have been ignored for the fits for the EPOS-LHC composition and the nitrogen simulations. The fits are
intended only as a visual aid.

2.4 Summary and Outlook

In this work, we study the impact of the Galactic magnetic field of the Milky Way on arrival time and
on the observed dipole in arrival direction of UHECRs. Thereby, we use CRPropa 3.2 simulations and
current models of the galactic magnetic field, in particular PlanckJF12bField. Our findings indicate that
cosmic rays exhibit quasi-ballistic propagation below the ‘ankle’ energy (5 × 1018 eV) and experience
significant suppression below 1017 eV. We use a mild increase of ∼ 30% in the flux of ultra-high-energy
cosmic rays within the past 46–55 thousand years, to induce anisotropies in the arrival direction of UHE-
CRs as observed by the Auger collaboration (Fig. 2.5 b)). Furthermore, we investigate the energy and
composition dependent dipole amplitude evolution (Fig. 2.6). Heavy elements seem to play a key role in
reproducing the energy-dependent dipole amplitude evolution, but this tendency needs to be validated
with higher propagation times, higher statistics and more sophisticated temporal modulations. Future
studies on anisotropies, employing more advanced methodologies, may offer valuable insights into the
mass composition of ultra-high-energy cosmic rays, potentially enabling a deeper understanding of their
origins and behavior. Overall, this work emphasizes the need to have good galactic magnetic field models
and highlights the importance of residence time effects to cosmic rays propagation in our Galaxy.
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Data availability
The Python scripts and notebooks which have been used for the simulations in this paper are available
after publication on 4.
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2.5 Appendix

Figure 2.7: The UHECR flux modulation as shown in Fig. 2.5 a) is applied in six different energy bins in
order to study the energy dependent evolution of the dipole amplitude in Fig. 2.6. The mass composition,
as shown in Fig.2.3 b) is used both for the unmodulated (red) and the modulated flux (ultramarine) in
all subfigures. This composition is based on a EPOS-LHC fit to the Xmax of 2019 Auger data. The four
energy bins are (A: 4-8, B: 8-16, C: 16-32, D: 32-64) EeV.

4https://git.uni-wuppertal.de/meinert/uhecr-flux-modulation-induced-anisotropy

https://git.uni-wuppertal.de/meinert/uhecr-flux-modulation-induced-anisotropy
https://git.uni-wuppertal.de/meinert/uhecr-flux-modulation-induced-anisotropy
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2.6 Simulation Setup

To study the propagation of ultra-high-energy cosmic rays through the galactic magnetic field of the
Milky Way, we employ the CRPropa 3.2 framework [58]. For easier data management, and in particular
for the EPOS-LHC composition, we chose to simulate in batches of 40 million particles each. In the
following, our simulation setup is detailed, which has been employed for four different nuclei species.
The EPOS-LHC composition utilizes sixteen energy bins in total, from 1018.6–1020.2 eV in logarithmic
intervals. The number of batches for each nuclei species can be seen in Fig.2.3 a), as well as in Table 2.1
below. All Python scripts are available online after publication.

Nucl. bin 1 bin 2 bin 3 bin 4 bin 5 bin 6 bin 7 bin 8 bin 9 bin 10 bin 11 bin 12 bin 13 bin 14 bin 15 bin 16
H 33 26 18 10 5 2 1 1 1 1 1 1 1 1 1 1
He 23 28 34 36 36 28 16 6 2 1 1 1 1 1 1 1
N 21 27 38 48 60 79 91 99 98 79 50 28 14 6 2 1
Fe 3 4 6 7 10 12 15 17 22 26 28 28 20 11 5 2

Table 2.1: Summary of simulation batches for four nuclei species (H, He, N, Fe) across 16 energy bins,
normalized to nitrogen at 1019.4 eV. Each batch consists of 40 million particles, with up to 100 batches
per species, following the EPOS-LHC fit. The energy binning scheme uses logarithmic intervals from
1018.6–1018.7 eV to 1020.0–1020.2 eV. Each bin width follows a constant step size of 0.1 in the exponent,
ensuring a uniform logarithmic spacing.

2.6.1 Emission and Initial Conditions

We inject nuclei isotropically from a spherical shell of radius Rem = 20 kpc around the Galactic center,
ensuring a uniform distribution using the SourceLambertDistributionOnSpheremethod, which employs
a Lambertian distribution. The injected nuclei are assigned an energy spectrum following a power-law
distribution,

dN

dE
∝ Eγ , (2.1)

with a spectral index of γ = −2.7, spanning the energy range 1018.5 − 1020.5 eV, using the function
SourcePowerLawSpectrum. Only for the simulation shown in Fig.2.2 a), a spectral index of γ = −1, in
the energy range 1016− 1021 eV has been employed. The particle type is set using SourceParticleType,
allowing for the simulation of different nuclei species. In this study, we focus on hydrogen, helium,
nitrogen and iron. For example, helium is implemented using the nuclei ID: (nucleusId(4,2)), where
the first entry represents the mass number and the second denotes the number of protons.

2.6.2 Magnetic Field Model and Propagation

The simulation includes a large-scale galactic magnetic field, implemented with the PlanckJF12bField

model, which is an updated version of the JF12 field [56]. Charged particle propagation is handled using
the PropagationCK module, which numerically integrates particle trajectories while considering magnetic
deflections. The propagation step size is set to 0.1 pc. Each particle is propagated up to a maximum
trajectory length of 100 kpc before being terminated via the MaximumTrajectoryLength module. The
propagation is also terminated, if the capture sphere is reached or if the particles leave the Galaxy. The
latter condition is checked with a second capture sphere at a radius of Rcancel = 22 kpc from the Galactic
center.

2.6.3 Observer Setup and Data Collection

To detect particles reaching the vicinity of the Earth, we define observer surfaces at a distance of
R⊕ = −8.5 kpc from the Galactic center on the x-Axis in Cartesian coordinates, which is correspond-
ing to the Solar System’s location. The observer is implemented using the ObserverSurface mod-
ule, with a spherical capture region of radius 1 kpc. The observer deactivates particles upon detection
(setDeactivateOnDetection(True)), preventing further propagation and potential double counting.
All detected particle data, including arrival directions, energies, and species, are stored in an out-
put file using the TextOutput module. The output format includes all available particle information
(Output.Everything), with spatial coordinates expressed in kiloparsecs.
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2.6.4 Simulation Parameters and Execution

The simulation is executed for Ncand = 40, 000, 000 injected particles, ensuring statistical robustness
when multiple batches are combined. The entire simulation pipeline is run with progress tracking enabled
(setShowProgress(True)).

2.6.5 Summary of Key Parameters

Parameter Value
Emission radius (Rem) 20 kpc
Observer radius (R⊕) −8.5 kpc on the x-Axis
Observer capture sphere radius (Robs) 1 kpc
Outer capture sphere radius (Rcancel) 22 kpc
Energy range 1018.5 − 1020.5 eV
Spectral index (γ) −2.7
Magnetic field model PlanckJF12bField
Propagation step size 0.1 pc
Maximum trajectory length 100 kpc
Number of simulated particles (Ncand) 40, 000, 000

Table 2.2: Summary of simulation parameters used in CRPropa per batch.

This setup enables the study of UHECR propagation in the Galactic environment, providing insights into
the influence of the GMF on cosmic ray anisotropy.

Figure 2.8: A Comparison of simulated hydrogen with a 23% increased UHECR flux for propagation
distances between 14–17 kpc (compare the delta function like flux modulation in Fig. 2.5 a)) with 2024
Auger data, compare [50]. B Comparison of simulated nitrogen with a 37% increased UHECR flux
for propagation distances between 14–17 kpc with 2024 Auger data, compare [50]. For Auger data, all
energies E > 8EeV have been taken into account, for the modulated flux simulation the energy range
8EeV < E < 64EeV has been assumed.
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Figure 3.1: Spectral fit using a gradient descent algorithm to the 2017 Auger spectral flux data, Xmax

and σ(Xmax) data [60]. The fluxes of the normal U(1) and modified SU(2) temperature redshift relations
are shown as dashed and full lines, respectively. The χ2 was computed, including all the white dots.

This chapter is based the publication “Modified Temperature-Redshift Relation and Ultra-high-energy
Cosmic Ray Propagation” [2] as well as the conference proceeding [7].
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Abstract

We re-examine the interactions of ultra-high energy cosmic rays (UHECRs) with photons from the cosmic
microwave background (CMB) under a changed, locally non-linear temperature redshift relation T (z).
This changed temperature redshift relation has recently been suggested by the postulate of subjecting
thermalised and isotropic photon gases such as the CMB to an SU(2) rather than a U(1) gauge group. This
modification of ΛCDM is called SU(2)CMB, and some cosmological parameters obtained by SU(2)CMB

seem to be in better agreement with local measurements of the same quantities, in particular H0 and S8.
In this work, we apply the reduced CMB photon density under SU(2)CMB to the propagation of UHECRs.
This leads to a higher UHECR flux just below the ankle in the cosmic ray spectrum and slightly more
cosmogenic neutrinos under otherwise equal conditions for emission and propagation. Most prominently,
the proton flux is significantly increased below the ankle (5 × 1018 eV) for hard injection spectra and
without considering the effects of magnetic fields. The reduction in CMB photon density also favours
a decreased cosmic ray source evolution than the best fit using ΛCDM. In consequence, it seems that
SU(2)CMB favours sources that evolve as the star formation rate (SFR), like starburst galaxies (SBG)
and gamma-ray bursts (GRB), over active galactic nuclei (AGNs) as origins of UHECRs. We conclude
that the question about the nature of primary sources of UHECRs is directly affected by the assumed
temperature redshift relation of the CMB.

3.1 Introduction

The cosmic microwave background (CMB) is the cornerstone of modern Cosmology. Modelling its prop-
erties correctly is, however, not only relevant for Cosmology but also vital for the correct description of
ultra-high energy cosmic ray (UHECRs) propagation. While there are well known features such as the
cold spot and anisotropies [62], a lesser-known anomaly is the excess of CMB line temperature at low
frequencies, starting at around 1 GHz [63, 42, 64]. One suggested explanation for this extra radiation
involves radio sources in the galactic foreground, but fails to account for the isotropic nature of the
excess radiation [42, 65]. Another potential foreground source could be the decay of axions with a mass
of around 30µeV (8 GHz); compare [66] for a general discussion of axion decays at radio frequencies.
Instead of a radio source in the foreground, the CMB line temperature excess can also be interpreted as
an intrinsic feature of the CMB itself [67].

Associating CMB photons with a thermal SU(2) gauge theory, the so-called SU(2)CMB, instead of the
commonly considered thermal U(1) theory, introduces two interesting phase boundaries [31]. The CMB
occurs in the deconfining phase, where the SU(2) gauge symmetry is broken down to U(1) due to densely
packed topological field configurations, the Harrington-Shepard anti-calorons and calorons [68]. In the
thin preconfining phase, U(1) is reduced to the magnetic center group Z2 which is broken, in turn, in
the confining phase. The transition from the deconfining to the preconfining phase occurs at a criti-
cal temperature Tc, which can be identified to be close to the current temperature of the CMB [67].
Spontaneously breaking the U(1) gauge group in the preconfined phase then leads to a Meissner mass
of the photon of around 10 peV (100 MHz), compare [67]. This alternative explanation of the radiation
excess as an intrinsic feature of the cosmic microwave background (CMB) implies changes of the current
cosmological model ΛCDM.

Most noticeably, the temperature redshift relation T (z) of the CMB photons is changed. Within flat
ΛCDM and in adiabatically evolving cosmological models, the T (z)-relation is T (z)/T0 = (1 + z), where
T0 = 2.725K is the present CMB temperature [69]. Implementing an SU(2) gauge group into ΛCDM

https://orcid.org/0000-0001-7582-3456
https://orcid.org/0000-0003-1494-2624
https://orcid.org/0000-0002-6779-1172
https://orcid.org/0000-0002-6185-6414
https://orcid.org/0000-0002-2805-0195
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leads to T (z)/T0 = 1/41/3 (1 + z) for large redshifts z ≫ 1 see also [40]. This means that the CMB
photons are cooling down slower with the expansion of the Universe in SU(2)CMB than in ΛCDM. The
changed T (z) thus requires recombination to occur at a higher redshift. Fitting the CMB multipoles with
the changed T (z), recombination occurs at z∗,SU(2) = 1715 ± 0.19 [33] and is thereby at a significantly
higher redshift than in normal ΛCDM with z∗,U(1) = 1089.92± 0.25 [36].

When implementing the modified T (z) under SU(2) in CMB fits, some cosmological parameters are in
better agreement with locally obtained values than with ΛCDM [33]. In particular, the Hubble parameter
of SU(2)CMB, H0 = 74.24 ± 1.46 km s−1 Mpc−1, is in agreement with local values obtained by distance
ladders [32]. Similarly, the mild tension in σ8 and Ωm,0 [70] is alleviated with σ8 = 0.709 ± 0.020 and
Ωm,0 = 0.384± 0.006 [33] especially when trying to break degeneracy independently of any cosmological
model [71]. The relatively high recombination redshift has mainly two consequences: the fit to CMB
multipoles does not work, unless more matter is introduced to the cosmological model at some point
after recombination [33]. This is resolved by splitting the dark matter content into two parts, one which
is introduced before recombination and one afterwards. This sets some constraints to the nature of dark
matter, preferring ultra light dark matter classes such as fuzzy dark matter [41]. The second consequence
of this high recombination redshift is stretching the CMB photon density over longer periods of time,
which thus effectively reduces the CMB spatial density and produces an increase in the interaction lengths
of ultra-high energy cosmic rays.

While there are many attempts to measure the T (z)-relation of the CMB indirectly, for example with
absorber clouds [72], it is not obvious that those indirect methods are sensitive to the actual CMB
temperatures at finite redshifts [3]. They might only probe the temperature of the absorber clouds and
the blackbody nature of the CMB. There is a need of determining the temperature redshift relation
of the CMB directly. In this work, we dilute the CMB photon density in comparison to the standard
cosmological model ΛCDM, by assuming the so-called SU(2)CMB model [67, 33, 31, 34, 3]. The purpose of
this paper is to discuss how these potential changes to the CMB photon density influence the propagation
of UHECRs. Previous discussions of the consequences of an SU(2)CMB description on UHECR interactions
were limited to considering the handedness of the photons, SU(2)L [73]. A fully consistent understanding
of the SU(2)CMB model requires applying Yang-Mills thermodynamics and obtaining the modified T (z).
Furthermore, the effect of this modified temperature redshift relation on the CMB density produces non-
trivial redshift dependences on the UHECR interactions that need to be considered in depth. Firstly, the
modified T (z) relation is outlined in section 3.2. The consequences of this relation for all the interactions
of UHECRs are discussed in section 3.3. Section 3.4 compares fits of UHECRs spectral energy and
composition measured by the Pierre Auger Observatory with both U(1) and SU(2) T (z) relations. The
corresponding cosmogenic neutrino fluxes are presented in section 3.5.

3.2 T(z) Relation of SU(2)CMB

In the following, we briefly review the T (z) relation of deconfining SU(2)CMB thermodynamics. For a
longer version of the argument, the reader is referred to [74, 3]. The core idea is that the additional
degrees of freedom in an SU(2) gauge group lead to the topological constant 1/41/3, so that the T (z)
relation is for z ≫ 1 given by

T (z)/T0 =

(
1

4

)1/3

(1 + z) , (T (z) ≫ T (z = 0)). (3.1)

To derive this constant, a flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) universe is assumed:

dρ

da
= −3

a
(ρ+ P ) , (3.2)

where ρ denotes the energy density, and P the pressure of the deconfined phase in SU(2) thermodynamics.
The scale factor a is dimensionless, a(T (z = 0)) = 1, and related to the redshift z according to 1/a = z+1.
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Eq. (3.2) has the solution

a = exp

(
−1

3

∫ ρ(T )

ρ(T (z=0))

dρ

ρ+ P (ρ)

)

= exp

(
−1

3

∫ T

T (z=0)

1

T ′
dρ

dT ′︸ ︷︷ ︸
κ

dT ′

s(T ′)

)
, (3.3)

where the entropy density s is defined as s = (ρ+ P )/T . By using the Legendre transformation

ρ = T
dP

dT
− P , (3.4)

the term κ can be expressed as

κ =
1

T

dρ

dT
=

d2P

dT 2
=

ds

dT
. (3.5)

Substituting Eq. (3.5) into Eq. (3.3) finally yields

a = exp

(
−1

3
log

s(T )

s(T (z = 0))

)
. (3.6)

The formal solution (3.6) is valid for any thermal and conserved fluid subject to expansion in an FLRW
universe. If the function s(T ) is known, then T (z) can be derived. The ground-state of the deconfining
phase is independent of the T (z) relation, since the equation of state for ground-state pressure P gs

and energy density ρgs is P gs = −ρgs [see also 31]. Asymptotic freedom occurs nonperturbatively for
T (z) ≫ T (z = 0) [75, 76, 31], and therefore s(T ) is proportional to T 3. Due to a decoupling of massive
vector modes at T (z = 0), excitations represent a free photon gas. Therefore, s(T (z = 0)) is also
proportional to T 3(z = 0). Correspondingly, the ratio s(T )/s(T (z = 0)) in Eq. (3.6) reads

s(T )

s(T (z = 0))
=

g(T )

g(T (z = 0))

(
T

T (z = 0)

)3

, (T ≫ T (z = 0)) , (3.7)

where g refers to the number of relativistic degrees of freedom at the respective temperatures. SU(2) has
one massless gauge mode with two polarisations and two massive gauge modes with three polarisations
each, so g(T ) = 2 × 1 + 3 × 2 = 8, for U(1) there is only one massless mode, g(T (z = 0)) = 2 × 1.
Substituting this into Eq. (3.7), inserting the result into Eq. (3.6), and solving for T , one arrives at the
high-temperature T (z) relation

T (z) =

(
1

4

)1/3

(z + 1)T (z = 0) , (T ≫ T (z = 0)) . (3.8)

Due to two massive vector modes contributing to s(T ) at low temperatures, the T (z) relation is modified
to

T (z) = S(z)(z + 1)T (z = 0) , (T ≥ T (z = 0)) , (3.9)

where the nonlinear function S(z) is depicted in Fig. 3.2 and derived in [33]. The function S(z) can be
approximated reasonably well with the analytical function

S(z)SU(2) ≈ exp(−1− 1.7 z) +

(
1

4

)1/3

. (3.10)

This approximation will be used in section 3.3. However, the numerical solution was applied for all
following sections.

3.3 Changes in Propagation Length

In this section, we discuss the changes to the propagation of ultra-high energy cosmic rays produced by
employing the modified temperature relation T (z) from SU(2)CMB as derived in the previous section,
Eqs. 3.8 and 3.9.



C
ha

pt
er

3
C

ha
pt

er
3

C
ha

pt
er

3

3.3. CHANGES IN PROPAGATION LENGTH 23

Figure 3.2: Plot of function S(z) in Eq. (3.9) for SU(2)CMB in solid. The conventional T (z) relation of
the CMB, as used in the cosmological standard model ΛCDM, associates with the dashed line S(z) ≡ 1.
The high-temperature value 1/41/3 is approximated by the dotted line S(z) = 0.63.

The redshift dependence of the CMB temperature results in scaling and shifting of the differential CMB
photon number density nCMB(ϵ, z)

nCMB(ϵ, z) =

(
T (z)

T0

)2

nCMB

(
ϵ

(
T (z)

T0

)−1

, 0

)
, (3.11)

where ϵ is the energy of the photons, and nCMB as derived from the Planck distribution is

nCMB(ϵ, z) =
1

π2c3ℏ3
ϵ2

exp(ϵ/kBT (z))− 1
(3.12)

where kB is the Boltzmann constant. The redshift dependence of UHECR interactions with the CMB is
reflected in the expression for the energy loss length [77]

− 1

E

dE

dx
=

∫ ∞

ϵ0

dϵ′
kBT σ(ϵ′)f(ϵ′)ϵ′

2π2Γ2c3ℏ3

{
− ln

[
1− exp

(
− ϵ′

2ΓkBT

)]}
where E is the energy and Γ is the Lorentz boost of the UHECRs, and σ(ϵ′) is the cross-section of the
corresponding interaction (photodisintegration, photomeson, pair-production) and f(ϵ′) is the average
inelasticity of the interaction. The scaling of the CMB density produces a corresponding scaling of the
interaction rates λ(Γ, z):

λ(Γ, z) =

(
T (z)

T0

)3

λ

(
T (z)

T0
Γ, z = 0

)
. (3.13)

The comparison of the energy loss lengths for U(1) and SU(2) is shown in Fig. 3.3 (protons) and in
Fig. 3.4 (iron) for z = 1. The interaction processes with the CMB are represented separately (photopion,
photodisintegration, pair production) while they are grouped into one curve for extragalactic background
light (EBL, dotted dark red)1. For protons at redshift z = 1 the energy loss length at the GZK-limit
(E∼ 50EeV) is shifted by a factor of ∼2 to higher energies for SU(2) and the propagation lengths for both
pair production and photopion production are increased by nearly a factor 3. For iron nuclei at the same
redshift, the corresponding photodisintegration limit is also shifted to higher energies by a factor ∼2 for
the SU(2). However, because the energy loss lengths are also increased due to the reduced CMB density,
the interactions with the EBL are the dominant ones for cosmic ray energies below 1020 eV and therefore

1In this work we do not include the CMB nor the radio background into the description of the EBL. The EBL remains
unchanged under the assumption of an SU(2) gauge group for thermal photons, as the EBL is not thermalized.
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the total energy loss length is not increased as much as in the case of protons. This is representative
of the case for all intermediate nuclear species with masses between the proton and iron. The increase
in energy loss lengths implies the expansion of the horizon for UHECRs: for protons at all energies, for
nuclei at the highest energies starting from about ∼ 1019 eV. With such an increase, protons from sources
at redshift 1 and energies 1− 40EeV would propagate for several hundreds of megaparsecs more than in
the case of the U(1), whereas protons at higher energies (where the photopion interactions prevail) would
propagate for more than ten megaparsecs.

These increases of propagation horizons are only important when the contribution from distant sources
is the dominant one. As the redshift evolves to the present, the U(1) and SU(2)CMB densities converge
and by distances of 20Mpc from Earth the loss lengths differ by only 1.5%. Thus, although protons
can propagate further away from sources beyond ∼200Mpc in the SU(2) case, they completely lose their
energy before reaching our galaxy and only the secondary neutrinos reach us, much like in the U(1) case.

Figure 3.3: Propagation length of protons at redshift z = 1 as a function of the initial particle energy.
The normal U(1) and the SU(2) induced T ′(z) propagation lengths are shown as dashed and full lines,
respectively.

Nonetheless, protons coming from sources marginally closer are able to reach our galaxy: at a distance of
200Mpc Eq. 3.13 yields a reduction in the interaction rates of ∼9% for the SU(2) scenario, see Fig. 3.3.
For nuclei the increased propagation is, however, much less relevant since their propagation lengths are
limited to a few dozens of Mpc. For such distances, the reduction in interaction rates with the CMB is
of 2 − 4% for SU(2). However, those interactions are overshadowed by the dominant interactions with
the EBL.

3.4 Observational Consequences for UHECR Energy Spectra

We evaluate the impact on the propagation of UHECRs by employing the fit obtained by [78] to data
from the Pierre Auger Observatory [60] under a conventional temperature redshift relation (ΛCDM).
The changes in spectral energy and composition produced with the same fit values under SU(2)CMB are
obtained by employing the modified T (z)-relation. The propagation of UHECRs was performed using
PriNCe [78], which is an efficient code to integrate the transport equations for the evolution of cosmic
rays at cosmological scales. It includes all the relevant interactions and allows for custom modifications,
however, it does not account for the effect of magnetic fields. The propagation scenario considers a
population of sources with a continuous distribution in redshift proportional to (1 + z)m with source
evolution parameter m obtained from the fit. The sources are assumed to be isotropically distributed

https://github.com/joheinze/PriNCe
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Figure 3.4: As Fig. 3.3 for the propagation length of iron nuclei.

and to eject a rigidity-dependent spectral energy flux according to

JA(E) = JA fcut(E,ZA, Rmax) (1 + z)m
(

E

E0

)−γ

, (3.14)

with five nuclear mass groups indicated by the index A (denoting the nuclear species 1H, 4He, 14N, 28Si,
and 56Fe). They share the same spectral index γ and the maximal rigidity Rmax = Emax/ZA. The cutoff
of the injection spectra fcut is defined as

fcut(E) =

{
1, E < ZARmax

exp (1− E/(ZARmax)) , E > ZARmax.
(3.15)

JA represents the flux of particles of species A emitted per unit of time, comoving volume, and energy. The
elemental injection fractions fA are defined as fA = JA/(ΣA′ JA′) at the reference energy E0 = 1018 eV.
Integrating over the injected fluxes JA leads to the integral fractions of the energy density IA, which are
independent of the choice of E0:

IA =

∫∞
Emin

JAE dE

ΣA′
∫∞
Emin

JA′E dE
=

∫∞
Emin

fA fcut(E,ZA)E
1−γdE

ΣA′
∫∞
Emin

fA′ fcut(E,ZA′)E1−γdE
, (3.16)

where Emin = 1018 eV. For the sake of completeness, we provide both fA and IA in the following sec-
tions. For SU(2)CMB the following cosmological parameters were used for the propagation: the Hubble
parameter H0= 74.24 km s−1Mpc−1, a dark energy fraction of ΩΛ = 0.616, and the local matter den-
sity Ωm,0 = 0.384, compare with [33]. For U(1)CMB (ΛCDM) the values from the Planck Collaboration
were used [36, p. 15, Table 2], where H0 = 67.36 km s−1Mpc−1, ΩΛ = 0.6847 and Ωm,0 = 0.3153
(TT,TE,EE+lowE+lensing).

The best fit parameters obtained by [78] for the conventional ΛCDM relation are reported in Table 3.1
and plotted in Figure 3.5 for reference (dashed lines). Fixing these source parameters and propagating
the injected UHECR through the SU(2)CMB with its modified T (z) relation yields the solid lines in the
same figure. As can be seen, the resulting total flux for SU(2) is virtually unchanged for energies above
6 × 1018 eV, while the fluxes for individual nuclear groups show slightly more pronounced peaks. This
effect is a consequence of the modest increase in the horizons. At the same time, the reduction in the pair
production losses produces sharper peaks because the effect of energy redistribution corresponding to the
U(1) cases is less prominent for SU(2). For protons at the lowest energies, the differences are much more
pronounced due to the change in pair production rates as the energies approach 1018 eV from above.
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Figure 3.5: Spectral fit to the 2017 Auger spectral flux data [60] from the best fit parameters in [78],
see Tab. 3.1. The fluxes of the normal U(1) and modified SU(2) temperature redshift relations are shown
as dashed and full lines, respectively. The χ2 only considers data points above the ankle region (white
dots), as was done in [78].

EBL Gilmore et al. Element fA % IA %
models TALYS & Sibyll 2.3c H 0.0 0.0
redshifts 1 − 0 He 82.0 9.91
γ −0.8 Ni 17.3 69.99
Rmax 1.6× 1018 V Si 0.6 16.91
m 4.2 Fe 0.02 3.19

Table 3.1: Best fit parameters from [78], Table 3.

Repeating now the combined E, Xmax, and σ(Xmax) fit to the same data set of [60] employing a gradient
descent algorithm [79, p. 33 ff.] for all data points above 1 × 1018 eV in the SU(2)CMB model, we find
the best fit parameters shown in Table 3.2 and plotted in Fig. 3.6 as full lines. For this fit, the proton
excess of SU(2)CMB below the ankle is reduced and the main contributing factor is the shallower source
evolution (m = 2.7) in contrast to the stronger evolution m = 4.2 for U(1) in Heinze’s best fit. The
injected chemical composition and the spectral index are only mildly changed, which suggests that the
shallower source evolution is enough to compensate for the increased proton horizon and the pileup
below the ankle. Note that the proton fraction below the ankle is still too high, in disagreement with the
chemical composition inferred from the Xmax data. Below the ankle, an additional galactic component
is expected with a heavier composition. To better illustrate the SU(2) impact on UHECR propagation,
Fig. 3.7 contrasts the cosmic ray fluxes resulting with a conventional U(1) propagation employing the
best fit parameters from Table 3.2 and scaling the CMB photon density by different factors as shown in
the curve labels. The red dotted line in Fig. 3.7 corresponds to SU(2)L, where CMB photons interact
only with half of the UHECRs due to their handedness.

EBL Gilmore et al. Element fA % IA %
models TALYS & Sibyll 2.3c H 0.001 0.0
redshifts 1 − 0 He 82.3 9.74
γ −0.89 Ni 17.4 76.9
Rmax 1.74× 1018 V Si 0.35 11.6
m 2.7 Fe 0.01 1.72

Table 3.2: Best fit gradient descent parameters for the SU(2)CMB model.
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Figure 3.6: Spectral fit using a gradient descent algorithm to the 2017 Auger spectral flux data, Xmax

and σ(Xmax) data [60]. The fluxes of the normal U(1) and modified SU(2) temperature redshift relations
are shown as dashed and full lines, respectively. The χ2 was computed including all the white dots.

The excess in proton flux below the ankle is correlated with the CMB photon density, because these
protons come from the disintegration of nuclei. However, this relation is dependent on the injection
spectral index, and it is hard to distinguish an increased proton flux from an additional UHECR source
and source evolution. Detailed directional studies which also consider the effects of magnetic fields as well
as a better understanding of the chemical composition below the ankle are necessary in order to favour
or disfavour the correlation between the slope of the UHECR flux below the ankle and T (z). Note also
that only hard spectra, i.e. γ ≤ 0 can increase significantly the UHECR flux below the ankle, because of
the larger contribution of the highest energies in secondary protons. Soft injection spectra, e.g. γ ≈ 2 as
expected by shock acceleration, do not significantly increase the UHECR flux under SU(2)CMB.

3.5 Cosmogenic Neutrinos

The expected cosmogenic neutrino fluxes are shown in Fig. 3.8 for the modified temperature redshift
relation under SU(2)CMB and the normal T (z) for the best fit values from the gradient descent method,
Table 3.2. The neutrino fluxes for SU(2)CMB peak at slightly higher energies and are slightly increased.
The former feature is a consequence of the changed redshift dependence, which increases the energy of the
GZK limit in SU(2)CMB compared to U(1). The latter effect results from the increase in the propagation
horizon of the source protons. Figure 3.8 shows that changes in the T (z) relation of the CMB only affect
the cosmogenic neutrino flux for energies around 1017 eV. The peak at around 1015 eV, stemming mostly
from the decay of neutrons from photodisintegration (see e.g. [80]) is mostly unaffected except for being
slightly narrower due to reduced pair production losses.

In addition to the cosmogenic neutrinos, the photopion production with the CMB also generates γ-
rays and the resulting flux at Earth in the case of a SU(2)CMB would be slightly enhanced compared
to the U(1)CMB due to the increased horizon in the absence of γγ-pair production. However, γγ-pair
production and inverse Compton scattering with the EBL are the dominant interactions, in particular
for γ-ray energies ≲ 100TeV, therefore, after the cascading of photon we expect no significant difference
in the cosmogenic γ-ray flux between the SU(2)CMB and the U(1)CMB.
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Figure 3.7: The effect of seven modified CMB photon densities on the total cosmic ray flux is shown in
comparison to the normal U(1) temperature redshift relation, as obtained in [78] (navy blue, dashed) on
top of Auger data from 2017. The best fit parameters of the gradient descent method are used, compare
Table 3.2. The total CR flux for an SU(2) T (z) relation is shown in navy blue. 0.5 × U(1) is shown in
red dotted lines, 0.75 × U(1) orange dashed , 1.25 × U(1) yellow dot-dashed , 1.5 × U(1) green dotted ,
1.75 × U(1) light blue dashed , 2 × U(1) purple dot-dashed.

3.6 Summary

In this paper, we examined the impact of locally non-linear modification of the CMB temperature redshift
relation T (z) on the fit to ultra-high energy cosmic rays and the corresponding cosmogenic neutrinos.
The reduction of the CMB densities is found to affect significantly the interaction lengths of UHECRs
with CMB photons in the redshift range of relevance for UHECR propagation, resulting in extended
horizons for protons and UHECR nuclei. However, the increase in interaction lengths has only a modest
effect on the observed UHECR flux due to interactions with the EBL, which then become dominant
for the energies of relevance. Hence, a comparison to an existing fit of UHECRs yields similar flux of
UHECRs nuclei but differs considerably for protons where a pronounced bump appears below the ankle
for the SU(2)CMB for hard injection spectra.

In order not to exceed the total UHECR flux and to agree with Auger data in the case of a hard injection
spectrum, a shallower source evolution of cosmic ray sources of m ≈ 2.7 is needed, which is more in line
with SBGs and GRBs than with AGNs. This is in agreement with recent studies that consider arrival
directions and extragalactic magnetic fields for energies beyond the ankle (≥ 5× 1018 eV) [85]. While the
confirmation of the SU(2)CMB description requires further studies, the present work provides constraints
for its validity. The independent determination of the redshift evolution of UHECR sources has the
potential to reject the SU(2)CMB temperature redshift relation for hard injection spectra: for a steeper
cosmic ray source evolution, the predicted proton contribution below the ankle would be in tension with
observations.

Since there is currently no firm preference for a specific UHECR source class [86], we would like to add
modified T (z) and in particular in the case of SU(2)CMB to the discussion. This adds another tool to
discriminate potential source classes and vice versa, constraining the sources by other means while si-
multaneously improving the knowledge of the UHECR composition may lead to a direct probe of T (z)
of the CMB in the future.
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Figure 3.8: The cosmogenic neutrino flux obtained from the gradient descent fit, Table 3.2. SU(2)CMB

is shown in navy blue, normal ΛCDM with the corresponding cosmological parameters and U(1) photon
propagation is shown in a navy blue dashed line. The pink shaded area represents the projected sensitivity
for the IceCube Gen2 radio upgrade after 5 years of observation, compare Fig. 5 in [81]. The lavender
dotted line indicates the expected sensitivity for Grand200k after 3 years [82]. The dark purple and green
dashed lines show 90% CL limits from the IceCube and Pierre Auger Collaboration, respectively [83, 84].

Data availability
This work modifies the existing cosmic ray propagation program PriNCe [78], the additional Python
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Appendix A: Best fit Heinze SU(2)CMB

The best fit from [78] is reproduced in Fig. 3.9 a) alongside the cosmogenic neutrino flux, Fig. 3.9 b), the
Xmax data Fig. 3.9 c) and σ(Xmax) data, Fig. 3.9 d) overlaid by three hadronic interaction models. All χ2

for the Xmax of the best fit in Fig. 3.9 c) and the χ2 for σ(Xmax) of the best fit in Fig. 3.9 d) are shown
in table 3 of the original publication [2].

Figure 3.9: a) Spectral fit to the 2017 Auger spectral flux data from the best fit parameters in [78], see
Tab. 3.1. [78] assume a normal U(1) temperature redshift relation (dashed lines, total flux dashed navy
blue). The total cosmic ray flux with an SU(2) temperature redshift relation is shown with a blue solid
line. The χ2 only consider data points including the ankle region (white dots), according to Heinze’s
choice. b) The cosmogenic neutrino flux obtained from the fit in (a) in SU(2)CMB is shown in navy blue
solid, [78] in navy blue dashed lines. The pink shaded area represents the projected sensitivity for the
IceCube Gen2 radio upgrade after 5 years of observation, compare Fig. 5 in [81]. The lavender doted line
indicates the expected sensitivity for Grand200k after 3 years [82]. The dark purple dashed line shows
90% CL limits from the IceCube Collaboration (2018) [83]. And the green dashes line represents the 90%
CL limit from the Pierre Auger Collaboration (2019) [84]. c) The Auger 2017 ⟨Xmax⟩ and d) σ(Xmax)
data [87], on top of three different air-shower model expectations: Epos-LHC [88] (solid lines), Sibyll 2.3c
[89] (dashed bold lines) and QGSJET-II.04 [90] (dotted lines). For calculating the relative χ2 the same
energy ranges as in Fig. 3.10 c) and d) have been chosen for better compatibility.
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Appendix B: Best fit SU(2)CMB

In order to mitigate the proton excess below the ankle in the reproduced model from [78], a descending
algorithm is used. It minimizes the χ2 for the white spectral data points in Fig. 3.10 a), Xmax in Fig. 3.10
c) and σ(Xmax) in Fig. 3.10 d). The best fit parameter to the Pierre Auger Collaboration data from 2017
are shown in Table 3.2. All χ2 for the Xmax of the best fit in Fig. 3.10 c) and the χ2 for σ(Xmax) of the
fit in Fig. 3.10 d) are given in table 4 of the original publication [2].

Figure 3.10: a) Spectral fit to the 2017 Auger spectral flux data from the best fit parameters in [78], see
Tab. 3.1. [78] assume a normal U(1) temperature redshift relation (dashed lines, total flux dashed navy
blue). The total cosmic ray flux with an SU(2) temperature redshift relation is shown with a blue solid
line. The χ2 only consider data points including the ankle region (white dots), according to Heinze’s
choice. b) The cosmogenic neutrino flux obtained from the fit in (a) in SU(2)CMB is shown in navy blue
solid, [78] in navy blue dashed lines. The pink shaded area represents the projected sensitivity for the
IceCube Gen2 radio upgrade after 5 years of observation, compare Fig. 5 in [81]. The lavender doted line
indicates the expected sensitivity for Grand200k after 3 years [82]. The dark purple dashed line shows
90% CL limits from the IceCube Collaboration (2018) [83], and the green dashes line represents the 90%
CL limit from the Pierre Auger Collaboration (2019) [84]. c) The Auger 2017 ⟨Xmax⟩ and d) σ(Xmax)
data [87], on top of three different air-shower model expectations: Epos-LHC [88] (solid lines), Sibyll 2.3c
[89] (dashed bold lines) and QGSJET-II.04 [90] (dotted lines).
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4 Frequency–Redshift Relation of the CMB

Figure 4.1: The temperature redshift relation of the CMB under SU(2)CMB (ultramarine solid) and
under ΛCDM (ultramarine dashed). Any presumed frequency-redshift relation induced a temperature-
redshift relation for blackbody radiation. Thus, probes like the thermal Sunyaev–Zel’dovich effect may
not be sensetive to the actual CMB T -z relation, but only the blackbody nature of the CMB.

This chapter is based on the publication “The Frequency–Redshift Relation of the Cosmic Microwave
Background” [3].
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Abstract

We point out that a modified temperature–redshift relation (T -z relation) of the cosmic microwave back-
ground (CMB) cannot be deduced by any observational method that appeals to an a priori thermalisation
to the CMB temperature T of the excited states in a probe environment of independently determined
redshift z. For example, this applies to quasar-light absorption by a damped Lyman-alpha system due
to atomic as well as ionic fine-splitting transitions or molecular rotational bands. Similarly, the thermal
Sunyaev-Zel’dovich (thSZ) effect cannot be used to extract the CMB’s T -z relation. This is because the
relative line strengths between ground and excited states in the former and the CMB spectral distortion in
the latter case both depend, apart from environment-specific normalisations, solely on the dimensionless
spectral variable x = hν

kBT . Since the literature on extractions of the CMB’s T -z relation always assumes
(i) ν(z) = (1 + z) ν(z = 0), where ν(z = 0) is the observed frequency in the heliocentric rest frame, the
finding (ii) T (z) = (1+ z)T (z = 0) just confirms the expected blackbody nature of the interacting CMB
at z > 0. In contrast to the emission of isolated, directed radiation, whose frequency–redshift relation
(ν-z relation) is subject to (i), a non-conventional ν-z relation ν(z) = f(z) ν(z = 0) of pure, isotropic
blackbody radiation, subject to adiabatically slow cosmic expansion, necessarily has to follow that of the
T -z relation T (z) = f(z)T (z = 0) and vice versa. In general, the function f(z) is determined by the
energy conservation of the CMB fluid in a Friedmann–Lemâıtre–Robertson–Walker universe. If the pure

CMB is subject to an SU(2) rather than a U(1) gauge principle, then f(z) = (1/4)
1/3

(1 + z) for z ≫ 1,
and f(z) is non-linear for z ∼ 1.

4.1 Introduction

Angular correlations between directionally dependent temperature and polarisation fluctuations of the
cosmic microwave background (CMB) radiation [91] are important probes for the extraction of cosmolog-
ical parameters [92]. Since the observed angular correlations are mainly influenced by curvature-induced
dark-matter potentials, which in turn cause acoustic oscillations of the baryon–electron–photon plasma
prior to recombination, these parameters depend on high-z physics when extracted from CMB data.
Therefore, they are very sensitive to the temperature–redshift relation (T -z relation) that is assumed in
expressing the CMB’s energy density ρ(T ) in terms of z. If the CMB is subject to a quantum U(1) gauge
theory, then, according to the Stefan–Boltzmann law and energy conservation in a Friedmann–Lemâıtre–
Robertson–Walker (FLRW) universe, the T -z relation is T (z)/T (z = 0) = z+1, where T (z = 0) is today’s
CMB temperature T (z = 0) = 2.726 K [91]. Such a U(1) T -z relation is identical to the frequency–redshift
relation (ν-z relation) ν(z)/ν(z = 0) = z + 1 describing electromagnetic waves emitted by compact as-
trophysical objects and traveling through an expanding FLRW universe towards the observer [93].

The thermodynamics underlying the CMB and the thermodynamics of a dense gas of absorber–emitter
particles may be richer than they appear, such that the two situations need to be distinguished. While
the CMB can be represented by a photon gas within its bulk, absorber–emitter particles thermalise via
electromagnetic waves whose emissions and absorptions are enabled by electronic transitions. Therefore,
the conventional T -z relation may not hold universally but, depending on how the above two extreme
situations are mixed, is modified as T (z)/T (z = 0) = f(z), where the function f(z) is specific to the
generalizing theory. Thermodynamics then immediately implies that the ν-z relation is also of the form
ν(z)/ν(z = 0) = f(z). Such is the case, for example, if the thermal photons (and low-frequency waves) of
the CMB are identified with the Cartan modes of a single thermal SU(2) Yang–Mills theory, SU(2)CMB,
in the deconfining phase [94, 74]. These modes interact only feebly within a small range of low tem-
peratures and frequencies with the two off-Cartan quasiparticle vector modes. The fact that all gauge
modes, massless and massive, are excitations of one and the same thermal ground state adds additional
T -dependent energy density to that of thermal fluctuations: the ground-state energy density rises linearly
in T in contrast to the rapidly attained Stefan–Boltzmann law ∝ T 4 associated with thermal fluctuations
[94].

https://orcid.org/0000-0001-6365-0631
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If the CMB as a bulk thermal photon gas is indeed subject to SU(2)CMB thermodynamics (single Yang–
Mills theory in its deconfining phase) from T = 7.99 keV (or T = 1.09× 108 K) to T = 2.3× 10−4 eV (or
T = 2.726 K), then a number of implications arise (see [34, 33, 95, 96] for the CMB large-angle anomalies,
[40, 33] for the modified high-z cosmological model implied by a modified temperature–redshift relation
[74], [41] for dark-sector physics, and [97] for neutrinos. The purpose of the present paper is to point out
that past observational extractions of the CMB’s T -z relation from background-light absorbing systems,
which are assumed to thermalize with the CMB in a conventional way, are bound to extract the stan-
dard U(1) T -z relation if participating frequencies (observed absorption lines) are blueshifted accordingly.
This is also true of the observation of spectral CMB distortions inflicted by its photons scattering off hot
electrons belonging to X-ray clusters along the line of sight, i.e., the thermal Sunyaev-Zel’dovich effect
(thSZ). In Section 4.2, we discuss these two observational approaches in more detail. First, we analyse the
extraction of T (z) from absorption lines within the continuous spectrum of a background source caused
by a cloud in its line of sight, which is assumed to be thermalised with the CMB. Second, we discuss the
distortions of the CMB spectrum according to the thSZ effect. In the former case, the frequency of the
absorption line ν(z) = (z + 1)ν(z = 0), which is assumed to coincide with the exciting CMB frequency,
is used to extract a temperature T (z). Note that in this case T (z) coincides with the present CMB’s
temperature T (z = 0) only if it is redshifted as T (z)/(z + 1) = T (z = 0).

In other words, ignoring the value of a known transition frequency ν∗(z) of the system in using a different
ν-z relation for ν(z), ν(z) = f(z)ν(z = 0), the extracted CMB temperature would only have redshifted to
its present value under the use of T (z)/f(z) = T (z = 0). Therefore, it appears that in a given absorber
system, interaction with the CMB occurs by a local shift of the CMB frequency ν(z) and temperature
T (z) to the line frequency ν∗(z) = (z + 1)ν(z = 0) and cloud temperature T ∗(z) = (z + 1)T (z = 0) of
the absorbing molecules. For deconfining SU(2) Yang–Mills thermodynamics, ν(z) → ν∗(z) is an upward
shift (see Section 4.3). The thermalisation within a photon gas far away from any charges is different
from the thermalisation within absorber clouds. This is because the degrees of freedom invoked are not
the same. As a result, T ∗(z) = (z + 1)T (z = 0) is interpreted as the CMB’s T -z relation, while it is
actually T (z) = f(z)T (z = 0). In exploiting the thSZ effect for the CMB’s T -z relation extractions, we
observe a similar situation. In Section 4.3, we review [94, 74] how a modified T -z relation (and then the
ν-z relation) arises if the CMB is subject to deconfining SU(2) rather than U(1) quantum thermody-
namics and how the Yang-Mills scale of such an SU(2) model, in the following referred to as SU(2)CMB,
is fixed by observation. To achieve this, the CMB radio excess in line temperature, see, e.g., [63, 64],
is interpreted as an effect due to the transition between deconfining and preconfining SU(2) Yang–Mills
thermodynamics. We also discuss a number of alternative explanations of this effect.

Moreover, we discuss how another SU(2) model, SU(2)e [43, 44, 31], whose two stable solitonic excitations
in the confining phase represent the first-family lepton doublet, mixes with SU(2)CMB. Such a mixing
depends, up to temperatures of ∼ 7.99 keV, on the degree of thermalisation prevailing in a local envi-
ronment of electromagnetically interacting electronic charges within a certain range of frequencies and
charge densities. The aforementioned upward shift in the CMB frequency ν(z) to absorption line fre-
quency ν∗(z), accompanied by a shift in the CMB temperature T (z) to cloud temperature T ∗(z), would
then be a consequence of an incoherent mixture of the Cartan modes of SU(2)CMB (thermal photonic
fluctuation) with those of SU(2)e (thermalised electromagnetic waves) when moving from empty space
to the interior of the cloud. Finally, in Section 4.4, we summarise the results of this paper; mention an
observational signature that is sensitive to the CMB’s T -z relation, the spectrum of ultra-high energy
cosmic rays (UHECRs); and briefly discuss implications for Big Bang nucleosynthesis. From now on, we
work in natural units c = kB = ℏ = 1, where c denotes the speed of light in vacuum, kB is Boltzmann’s
constant, and ℏ refers to the reduced quantum of action.

4.2 Observational T -z Relation Extractions from a v-z Relation

In this section, we discuss two principle probes used in the literature to extract the redshift dependence of
the CMB temperature T (z) up to z ∼ 6.34; see [72] for a useful compilation, and how these extractions are
prejudiced by an assumed ν-z relation of CMB frequencies. The first class of probes comprises absorbing
clouds of known redshifts, e.g., parts of damped Lyman-α systems, in the line of sight of a distant quasar
or a bright galaxy. Here, the assumed thermalisation with the CMB populates the fine-structure levels
of the ground states of certain atoms or ions [98, 99, 100, 101, 72] or excites rotational levels of certain
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molecules [100, 102, 103], whose population ratios can be obtained from the respective absorption-line
profiles within the broad background spectra. Modelling environmentally dependent contributions to level
populations, such as particle collisions or pumping by UV radiation, the relative level populations yield
upper-limit estimates of T (z) at the redshift of the cloud. The limitations of this method are discussed
in [104]. Note that in [105], a solution of the rotational excitations of various molecular species could be
provided directly from their spectra.
The second class of probes refers to the observation of the CMB spectrum within certain frequency bands
along the lines of sight of X-ray clusters of known redshifts. A characteristic spectral distortion, known
as the thermal Sunyaev-Zel’dovich effect (thSZ) [106, 107] and caused by the inverse Compton scattering
of CMB photons off free, thermal electrons of these clusters is exploited to estimate T (z).

4.2.1 Absorber Clouds in the Line of Sight of a Quasar or a Bright Galaxy

Estimates of T (z) using the relative populations due to the excitation of atomic (ionic) fine-structure
transitions and molecular rotation levels by the CMB have a long history; see [108] for the theoretical
basis and [102, 103, 98, 100, 105, 72] for applications. Since sources of level excitations other than the
CMB (e.g., collisions, UV pumping) have to be modelled for a given absorber, the extracted T (z) is usually
seen as an upper bound on the true CMB temperature. If the CMB is assumed to be the sole source of
level population, then the extraction of T (z) is facilitated in terms of the column density of the absorber
species, depending on the measured line strength in the continuous spectrum of the background source,
the transition frequencies, the temperature at which the levels are thermalised, and the integrated opacity
of the line. Apparently, this method was validated by the measurement in [109] of the CMB temperature
T (z = 0) = (2.726+0.023

−0.031) K in our Galaxy, analysing CN rotational transitions in five diffuse interstellar
clouds. The value extracted in this way, T (z = 0), agreed well with the spectral CMB fit by COBE [91]
of T (z = 0) = (2.726 ± 0.010) K. So what about z > 0? In [105], a molecular rich cloud within a spiral
galaxy at z = 0.89 was observed towards the radio-loud, gravitationally lensed blazar PKS 1830-211 at
redshift z = 2.5. Within the cloud, the rotational temperature Trot is defined via

nu

nl
=

gu
gl

exp

(
−2πν∗(z)

Trot

)
, (4.1)

where nu (gu) and nl (gl) are the populations (degeneracies) of the upper and lower level, respectively,
and ν∗(z) denotes the transition frequency in the cloud’s rest frame. For the rotational excitations of
ten molecules, Trot was interpreted to universally represent T (z = 0.89) because the molecular gas was
estimated to be sub-thermally excited (rotational levels solely radiatively coupled to the CMB, negligible
impact of collisions and the local radiation field). Observations were performed within three wavelength
bands at around λ = 2, 3, 7 mm using two different instruments. In one (simplified) approach, the
extraction of Trot from the two transitions in each molecular species was performed by pinning down the
intersection of the two column densities NLTE depending on Trot. For a given transition, NLTE is defined
as

NLTE =
3

4π2µ2Sul
Q(Trot)

exp
(

El

Trot

)
1− exp

(
− 2πν∗(z)

Trot

) ∫ τdv , (4.2)

where El is the energy of the lower level, Q(Trot) the partition function including all rotational excita-
tions, µ the dipole moment, Sul the observed line strength, and

∫
τdv the integrated (observed) opacity

of the line. Across the absorption lines of all molecular species considered, this approach produces values
of Trot, which are quite consistent with the expectation T (z = 0.89) = (1 + 0.89)T (z = 0) = 5.14 K.
Setting Trot = T ∗(z) in Equation (4.2) and using ν∗(z) = (1 + z)ν(z = 0) is only consistent with the
participating CMB photons being distributed according to a blackbody spectrum if T ∗(z) also redshifts
as T ∗(z) = (1 + z)T (z = 0). Here ν(z = 0) denotes the observed frequency of the transition in the
heliocentric restframe. Therefore, this is an in-built feature of the model even though the CMB may, in
reality, exhibit a different T -z relation (and then also ν-z relation)1.

The situation is similar for the observation of atomic/ionic fine-structure transitions in absorbers at z > 0.
Also, here, the very assumption of these excitations thermalising with the CMB ties the extracted T -z

1One may think of the true CMB temperature (which would be lower in SU(2)CMB) and participating CMB frequency
being elevated by the same factor to T ∗(z) and ν∗(z) of a rotational excitation, respectively, by the incoherent mixing of
a Cartan mode in SU(2)CMB and a Cartan mode of SU(2)e as the observer moves from empty space outside the cloud
towards its interior.
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4.2. OBSERVATIONAL T-Z RELATION EXTRACTIONS FROM A V-Z RELATION 37

relation to the ν-z relation used in converting observed (heliocentric) frequencies to transition frequencies
in an absorber’s restframe: the proper use of f(z) = 1 + z for absorption lines produces a higher cloud
temperature T ∗(z) than CMB temperature T (z) if the latter is assumed to be described by an unmixed
SU(2) model; see Section 4.3. In Section 4.3.2, we will discuss in more detail a degree-of-thermalisation-
dependent mixing of Cartan excitations in two SU(2) gauge groups explaining why directed radiation,
as issued by the background source and observed in a spectrally resolved way after having passed the
absorber, obeys a conventional ν-z relation while the ν-z relation of CMB photons necessarily follows
that of the T -z relation, which may well be unconventional [74].

4.2.2 The Thermal Sunyaev-Zel’dovich Effect

The thermal Sunyaev-Zel’dovich effect (thSZ) is a distortion of the blackbody shape of the CMB spectrum
that is induced by the inverse Compton scattering of CMB photons off thermalised electrons in the X-ray
plasmas of a given cluster of galaxies [106, 107]. Neglecting contributions from the weakly relativistic
high-end part of the electrons’ velocity distribution, the thSZ effect can be expressed in terms of a
frequency-dependent (line-temperature) shift ∆T with respect to CMB baseline temperature T at the
cluster’s redshift z as [110]

∆T

T
(x, n⃗) =

[
σT

me

∫
ds ne(s, n⃗)Te(s, n⃗)

]
×
[
x coth

(x
2

)
− 4
]
. (4.3)

Here, me and σT refer to the mass of the electron and the Thomson cross-section, respectively. Both the
electron temperature Te and the electron number density ne depend on the proper distance parameter s
along the direction n⃗ of the line of sight under which CMB photons interacting with a given X-ray cluster
are observed. The dimensionless variable x is defined as x ≡ 2πν

T . As Equation (4.3) indicates, the thSZ
effect factorises into an environmental part, determined by the thermodynamics of the X-ray cluster at
redshift z and dubbed the thSZ flux, and into a part that solely depends on x. We note that the zero x0

of the second factor is

x0 ∼ 3.83 =
ν0

T (z = 0)
, (4.4)

where T (z = 0) = 2.726 K [91] denotes the CMB temperature today. As a consequence, the thSZ effect
predicts ν0 ∼ 217 GHz. The z dependence of T can already be extracted by focusing on the frequency ν0
at which ∆T

T (x, n⃗) vanishes. By virtue of Equation (4.4), a blueshift of ν0 according to the ν-z relation

ν∗0 (z) = f(z)ν0 (4.5)

then yields the T -z relation

T (z) =
f(z)ν0
x0

= f(z)T (z = 0) . (4.6)

Therefore, whatever the assumption on f(z) in the ν-z relation of Equation (4.5), this assumption nec-
essarily transfers to the T -z relation of Equation (4.6) if the intensity of the unperturbed CMB at any
redshift z > 0 is to possess a blackbody frequency distribution 2. To suppress the statistical error in
extractions of T (z), a set of frequency bands, centered at {νi}, is usually invoked in fitting the modelled
thSZ emission law to the observations with respect to X-ray clusters within a given redshift bin δ. For
example, in [110], the Planck frequency bands at 100, 143, 217, 353, and 545GHz were used in multiple
redshift bins, the stacking of patches in a given redshift bin δ and frequency band centered at νi was
performed, and the thSZ emission law was modelled by integrating Equation (4.3) over bandpasses and
by normalising it with the bandpass-averaged calibrator emission law. Relevant fit parameters turned
out to be the (stacked) thSZ flux Y δ, T δ, and the radio-source flux contamination F δ

rad, which were
subsequently estimated by a profile likelihood analysis.

2According to a very good approximation, the spectral intensity I(ν) of today’s CMB is given as Iz=0(ν)dν =

16π2 ν3

exp
(

2πν
T (z=0)

)
−1

dν [91]. If we assume a T -z relation of T (z = 0) = 1
f(z)

T (z) and a ν-z relation of ν(z = 0) ≡ 1
g(z)

ν′

with f(z) ̸= g(z), then the Stefan–Boltzmann law would still have redshifted according to the T -z relation:
∫
dνIz=0(ν) =

π2

15
T 4(z = 0) = π2

15

(
T (z)
f(z)

)4
=

(
1

g(z)

)4 ∫
dν′Iz(ν′). However, the maximum νmax = 2.821

2π
T (z = 0) of the distribution

Iz=0(ν)dν converts to a maximum ν′max = 2.821
2π

g(z)
f(z)

T (z) of the distribution Iz(ν′)dν′ = 16π2 (ν′)3

exp
(

f(z)
g(z)

2πν′
T (z)

)
−1

dν′. Thus,

Iz(ν′) would no longer be a blackbody spectrum.
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The crucial point here is that, in the modelling of the thSZ emission law within redshift bin δ, a blueshift
of observation frequency νi to ν∗i = f(z)νi needs to be applied, implying again the T -z relation

T (z) =
f(z)νi
xi

= f(z)T (z = 0) , (4.7)

where xi is now the solution to
F δ
i

Y δ
= coth

(xi

2

)
− 4 , (4.8)

and F δ
i denotes the stacked, observed thSZ flux within redshift bin δ. In [110], the use of ν∗i = (1 + z)νi

thus necessarily leads to the conventional T -z relation T (z) = (1 + z)T (z = 0). To the best of the
authors’ knowledge, the use of f(z) = 1 + z in the ν-z relation is, however, common to all extractions
of T (z) that appeal to the thSZ effect. When the CMB gauge field represents the Cartan subalgebra of
an SU(2) Yang–Mills theory, SU(2)CMB, it can be shown [74] that f(z) is different from f(z) = 1 + z
in the T -z relation (see Section 4.3.1) and therefore also in the ν-z relation. This is because, in addition
to thermal photons, the thermal ground state in the deconfining phase of an SU(2) Yang–Mills theory is
excited towards two vector modes subject to a temperature-dependent mass. A feeble coupling of these
two kinds of excitations leads to spectral distortions of CMB radiance deeply within the Rayleigh–Jeans
regime [34], which is not targeted by Planck frequency bands. In Section 4.3 we review how this T -z
relation arises and discuss why a corresponding non-conventional ν-z relation is to be expected from a
thermalisation process that is dependent on the mixing angle between the Cartan modes of two SU(2)
gauge models subject to disparate Yang–Mills scales.

4.3 T -z Relation and ν-z Relation in SU(2)CMB: Theoretical Ba-
sis

In this section, we discuss in detail why a thermal gas of electromagnetic disturbances (far away from
any emitting surface on the scale of a typical inverse frequency ν−1) and with an isotropic and spatially
homogeneous flux density of practically incoherent photons obeys a T -z relation and an associated ν-z
relation that are different from the ν-z relation of directed, (partially) coherent radiation.

4.3.1 T -z Relation in SU(2)CMB

A pronounced distortion of the blackbody spectrum of radiance deep within the Rayleigh–Jeans part was
observed in [63, 64] and the references therein. To explain this highly isotropic CMB radio excess at
frequencies below 1GHz, we argued in [67] that the critical temperature T (z = 0) for the deconfining–
preconfining phase transition of SU(2) Yang–Mills thermodynamics is very close to the present temper-
ature of the CMB of T (z = 0) = 2.726 K [91]. This may seem to be a somewhat fine-tuned situation.
However, the difference with the ordinary tuning of parameters by hand is that the dual gauge coupling
thermodynamically rises rapidly as the temperature drops into the preconfining phase. Since the Cartan
mode’s extracted thermal quasiparticle mass is 100 MHz, which is around three orders of magnitude
smaller than the critical temperature Tc, it follows that T (z = 0) needs to be very close to Tc. However,
due to a presently incomplete understanding of the supercooling of the deconfining into the preconfin-
ing phase and the associated tunnelling, there is a tolerance of ∼ 10% in this dynamic tuning of the
two temperatures, which corresponds to about 1Gy of cosmic evolution [111]. The exact assignment
T (z = 0) = Tc, addressed further below, implies a Yang–Mills scale ΛCMB = 1.064 × 10−4 eV, and thus
it is justified to refer to the SU(2) Yang–Mills model, whose deconfining thermodynamics are assumed to
describe the CMB, as SU(2)CMB. We quote below a number of alternative approaches to explaining the
CMB radio excess. Let us now review [74] how the T -z relation of deconfining SU(2)CMB thermodynamics
is derived from energy conservation in an Friedmann–Lemâıtre–Robertson–Walker (FLRW) universe of
cosmological scale factor a, normalised such that today a(T (z = 0)) = 1. One has

dρ

da
= −3

a
(ρ+ P ) , (4.9)

where ρ and P denote the energy density and pressure of deconfining SU(2)CMB thermodynamics, re-
spectively. As usual, redshift z and scale factor a are related as follows: a−1 = z + 1. Equation (4.9) has
the formal solution
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a = exp

(
−1

3

∫ ρ(T )

ρ(T (z=0))

dρ

ρ+ P (ρ)

)
= exp

−1

3

∫ T

T (z=0)

dT ′
1
T ′

dρ
dT ′

s(T ′)

 , (4.10)

where the entropy density s is defined as

s =
ρ+ P

T
. (4.11)

By virtue of the Legendre transformation

ρ = T
dP

dT
− P , (4.12)

one has

1

T

dρ

dT
=

d2P

dT 2
=

ds

dT
. (4.13)

Substituting Equation (4.13) into Equation (4.10) finally yields

a =
1

z + 1
= exp

(
−1

3

∫ T

T (z=0)

dT ′ d

dT ′

[
log

s(T ′)

M3

])
= exp

(
−1

3
log

s(T )

s(T (z = 0))

)
. (4.14)

Here, M denotes an arbitrary mass scale. The formal solution (4.14) is valid for any thermal and conserved
fluid subject to expansion in an FLRW universe. If the function s(T ) is known, then (4.14) can be solved
for the T -z relation T (z). Equations (4.11) and (4.14) exclude a ground-state dependence of the T -z
relation, since the equation of state for ground-state pressure P gs and energy density ρgs is P gs = −ρgs

[31]. In deconfining SU(2)CMB thermodynamics, asymptotic freedom [75, 76] occurs non-perturbatively
for T ≫ T (z = 0) [31]. The Stefan–Boltzmann limit is then well saturated, and therefore s(T ) is
proportional to T 3. Moreover, at T (z = 0), due to a decoupling of massive vector modes, excitations
represent a free photon gas. Therefore, s(T (z = 0)) is proportional to T 3(z = 0). As a consequence, the
ratio s(T )/s(T (z = 0)) in Equation (4.14) reads

s(T )

s(T (z = 0))
=

g(T )

g(T (z = 0))

(
T

T (z = 0)

)3

=

((
g(T )

g(T (z = 0))

) 1
3 T

T (z = 0)

)3

, (T ≫ T (z = 0)) ,

(4.15)

where g refers to the number of relativistic degrees of freedom at the respective temperatures. We have
g(T ) = 2×1+3×2 = 8 (two photon polarizations plus three polarisations for each of the two vector modes)
and g(T (z = 0)) = 2× 1 (two photon polarisations). Substituting this into Equation (4.15), inserting the
result into Equation (4.14), and solving for T , we arrive at the high-temperature T -z relation

T =

(
1

4

) 1
3

(z + 1)T (z = 0) ≈ 0.629 (z + 1)T (z = 0) , (T ≫ T (z = 0)) . (4.16)

Due to two vector modes of a finite, T -dependent mass contributing to s(T ) at low temperatures, the
T -z relation is modified to give

T = S(z)(z + 1)T (z = 0) , (T ≥ T (z = 0)) , (4.17)

where the function S(z) is depicted in Figure 4.2.
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Figure 4.2: Plot of function S(z) in Equation (4.17). The curvature in S(z) at a low z indicates the
breaking of conformal invariance in the deconfining SU(2) Yang–Mills plasma for T ≳ T (z = 0) with a

rapid approach towards (1/4)
1/3

as z increases. The conventional T -z relation of the CMB, as used in
the cosmological standard model ΛCDM, is associated with the dashed line S(z) ≡ 1. Figure adapted
from [33].

In Section 4.3.1, we reviewed why T (z = 0) ≲ Tc. We now argue why T (z = 0) is excluded to be larger
than Tc: there is another contribution to the excess in line temperatures at low frequencies from the
fact that the frequency of waves (populating the deep Rayleigh–Jeans spectrum up to const/T 2) and the
frequency of photons (starting to represent the spectrum for frequencies larger than const/T 2) redshift
differently. On the other hand, the baseline temperature T (z) redshifts like the frequency of photons.
That is, wavelike modes redshift as ν(z) = (1+z)ν(z = 0) while temperature (photon frequency) redshifts
more weakly as T (z) = S(z)(z + 1)T (z = 0) with a numerically known function S(z) < 1 of negative

slope dS(z)
dz ∼ −1 for z ≪ 1; see Figure 4.2. This also contributes to an increase in the line temperature

at low frequencies compared to the Rayleigh–Jeans law, since low frequencies are redshifted as usual
but the baseline temperature redshifts slower when lowering z in the vicinity of z = 0; see Figure 4.3
and Equation (4.18). Observationally [63], the onset of this effect could be visible at ν ∼ 1 GHz, which
implies that the wavelengths of low-frequency waves are larger than 30 cm, in turn implying a critical
temperature lower than 11.6K [31]. For the differential evolution of the baseline temperature, we have

dT = T (z = 0)

(
dS(z)

dz
(1 + z) + S(z)

)
dz . (4.18)

Since the present CMB’s line temperature rises steeply with a spectral index of −2.6 when lowering the
frequency [63, 64], the effect of Equation (4.18), which (modulo a mild stacking of low frequencies) is
frequency-independent for ν < const/T 2, does not explain these large and variable line temperatures.
Thus, we are again led to set T (z = 0) ∼ Tc to explain the observed steep rise in terms of wave evanescence
(thermal Meissner mass). Therefore, the tuning T (z = 0) ∼ Tc is entirely explained by observation and
does not require any ad hoc parameter coincidence.

Note that large and variable line temperatures cannot be explained in terms of the diffuse free–free
emission facilitated by cosmological reionisation [112, 113]. Interestingly, synchrotron radiation induced
by weakly interacting massive particles (WIMPs) annihilations or decays in extra-galactic halos could
match the low-frequency excess in CMB line temperature if a thermal annihilation cross-section for light
WIMPs is invoked [114]. Galactic radio emission is excluded as an explanation by the isotropy of the
signal [42]. In [115], stochastic frequency diffusion is used to explain the low-frequency excess in the
present CMB (also dubbed ‘space roar’) in terms of a primordial epoch of non-equilibrium conditions in
the plasma. These conditions are modelled by a mild violation of the Einstein relation in the Kompaneets
equation to allow for low-frequency localisation in the evolving photon distribution. The formation of the
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Figure 4.3: Plot of the T -z relation S(z)(1 + z) in deconfining SU(2) Yang–Mills thermodynamics
with T (z = 0) ≡ Tc. The conventional quantum U(1) T -z relation of the CMB, employed in the
cosmological standard model ΛCDM, is depicted by the dashed line. Here T ∗ denotes the higher value
of the temperature within the cloud, deduced from a conventional ν-z relation of the line whose profile
is analysed.

first generation of supermassive, cosmological black holes is speculated to explain the space roar in terms
of synchrotron emission from the remnants [116]. If the line-temperature excess can, indeed, be shown to
persist to higher redshifts, including the onset of reionisation (cosmic dawn), then a potential explanation
of the anomalously strong absorption of the redshifted 21 cm line by neutral hydrogen measured by an
experiment to detect the global epoch of the reionisation signature (EDGES) [117] is enabled. This
would falsify our proposal that the present space roar is solely a very-low-redshift phenomenon due to an
admixture of Gaussian distributed evanescent waves to the conventional low-frequency Rayleigh–Jeans
CMB spectrum3. However, the strong absorption of the redshifted 21 cm line can also be explained by
the dark-matter-induced cooling of the absorbing cosmic gas without having to invoke the excess intensity
of the CMB at low frequencies throughout cosmic dawn [118].

4.3.2 Anisotropic Photon Emission by Electrons

In the framework of the SU(2) Yang–Mills theory, why is it that spectral lines redshift according to the
conventional ν-z relation ν(z) = (1+z) ν(z = 0) while the bulk of frequencies within the CMB follow a ν-z
relation associated with the T -z relation of Section 4.3.1? The electron and its neutrino are modelled by a
onefold self-intersecting, figure-eight-like center-vortex loop and a single center-vortex loop, respectively;
see [43, 44] and [31]. These excitations are immersed into the confining ground state of the SU(2) Yang–
Mills theory. A mass formula can be derived for the electron that equates the frequency of a breathing
monopole [119, 120] (or the quantum selfenergy [121, 122]), contained within an extended ball-like blob
associated with the region of vortex intersection, with the sum of the static monopole’s rest mass and
the energy content of the deconfining SU(2) Yang–Mills thermodynamics of the blob (considering the
mixing of two thermal gauge theories SU(2)CMB and SU(2)e at a temperature T0 = 1.18Tc,e where the
pressure vanishes [5]). By invoking the value of the electron mass me = 511 keV, this formula yields
a value of the SU(2) Yang–Mills scale Λe = 3.62 keV or a critical temperature Tc,e = 7.99 keV for the
deconfining–preconfining phase transition in SU(2)e [5]. In addition, one obtains a blob radius r0 ∼ a0,
where a0 denotes the Bohr radius a0 = 0.592 Å. Also, the reduced Compton radius rc, which roughly
coincides with the core radius of the monopole rc [119, 120], turns out to be rc ∼ α r0 where α ∼ 1/137
is the electromaganetic fine-structure constant. Modulo the electron’s magnetic moment, carried by two

3This admixture would arise due to phase tunnelling occurring when supercooling the deconfining phase into the pre-
confining phase in SU(2)CMB.
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closed vortex lines connecting to the blob, this matches with de Broglie’s original interpretation of the
electron [121, 122] and with the interpretation of the square of the wave function in wave mechanics
[123] as a probability density for locating a point particle [124]. Namely, in its restframe, the electron
represents an extended (spatially homogeneous) vibration induced by a charged monopole whose core
size is negligible on the scale of the blob size and whose rate of jump-like location changes within the
blob volume matches the vibration frequency ν0 (m0 = hν0, where m0 is electron mass).

If the global temperature of a photon gas is smaller than Tc,e, then these photons must be thermalised
with respect to SU(2)CMB for Tc,CMB ∼ 10−4 eV ≪ 7.99 keV ∼ Tc,e. On the other hand, a directedly
propagating electromagnetic field (a wave) represents a non-thermalised mode and thus cannot be subject
to the gauge group SU(2)CMB but rather is described by SU(2) Yang–Mills theories of much larger Yang–
Mills scales [31]. The process of converting these isolated waves, emitted by the charge carriers that do
not penetrate into the volume bounded by a closed, emitting spatial surface, into a thermal photon gas
contained within this volume hence proceeds by chopping their coherent intensity distribution into grainy
and short-lived energy-momentum packets by the increasing homogenisation and isotropisation of energy
transport as more and more differently directed waves of varying oscillation frequencies superposition away
from the emitting surface. This process of thermalisation, producing a photon gas with the temperature
of the emitting surface, can effectively be understood as a rotation of SU(2) modes of theories with large
Yang–Mills scales into those of SU(2)CMB.

4.3.3 Thermalisation-Dependent Mixing of Two SU(2) Gauge Theories

For simplicity and due to its practical relevance4, we consider the interplay of gauge groups SU(2)CMB

and SU(2)e. The discussion in Section 4.3.2 can then be summarised as

āCMB
µ = aCMB

µ cos θW + aeµ sin θW ,

āeµ = −aCMB
µ sin θW + aeµ cos θW , (4.19)

where (āCMB
µ ,āeµ) refers to the rotated state reached from the initial state (aCMB, ae) for the effective

gauge fields in the deconfining phases of SU(2)CMB and SU(2)e. The thermodynamically determined
mixing angle θW turns out to be close to the electroweak mixing angle (θW = 30.84◦) if mixing within
the interior of the blob—representing the center of the region of self-intersection of the center-vortex
loop—is considered. Within this central domain, the mixed deconfining-phase pressure must vanish [5].
Note that in the case of infinite-volume thermodynamics at high temperatures (high-z cosmology), such
a stability constraint on a finite-volume region is irrelevant, and one has θW = 45◦.

In general, a change in the state of thermalisation induces a change in the rotation angle θ = θ(η, T ∗, T ).
In particular, for the interaction of the CMB with absorber clouds, θ depends on the degree of ther-
malisation η invoked by the initial states of electromagnetically interacting electrons of temperature T ∗

within the cloud and the temperature T of the CMB. Note that the thermalisation of these electronic
states is influenced by these very lines dissipating directed background light. Via the degree of thermal-
isation η, the mixing angle θ also depends on the range of frequencies νl ≤ ν ≤ νu of wavelike modes
in SU(2)CMB and SU(2)e, which mediate the interactions between the electrons. Due to the present
CMB exhibiting the largest low-frequency interval of excitations associated with waves throughout its
cosmological history (see Section 4.3.1), and since the main frequency used for the extraction of T (z = 0)
from background source–absorber cloud systems in the Milky Way [109] is 113.6GHz, which is to the
left of the peak frequency ν = 160.4 GHz of the present CMB’s blackbody spectrum, it is qualitatively
understandable that the same temperature as in the CMB blackbody spectral fit in [91] is observed for
these systems. Due to the strong compression of the CMB wave spectrum with a factor ∝ T−2, it is also
plausible that temperatures extracted from a background source–absorber cloud system at earlier epochs
differ from the associated CMB temperatures because the mixing between SU(2)CMB and SU(2)e within
the cloud then is tilted towards SU(2)e. The quantitative computation of θ in a situation where a system
of interacting (bound) electrons of a given number density, invoking a range of frequencies νl ≤ ν ≤ νu
for these interactions, is immersed into the CMB is a complex task which we hope to gain more insight
about in the future.

4Charge carriers subject to SU(2) theories of larger Yang–Mills scales, represented by the charged leptons of the standard
model µ± and τ±, are unstable due to weak decay and therefore do not qualify as material within the emitting surfaces of
a blackbody cavity.
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4.4 Summary

In this paper, we discussed two main approaches to extract the CMB temperature at finite redshifts:
the analysis of absorption line profiles originating from gases of atoms, ions, or molecules within the
line of sight of a broad-spectrum and bright background source, and the thermal Sunyaev-Zel’dovich
effect (thSZ). In the literature, the assumption of a conventional frequency–redshift relation (ν-z re-
lation) for CMB photons, considered to thermalise with relevant transitions in the cloud systems in
the former case or to represent CMB spectral distortions in the latter situation, yields a conventional
temperature–redshift relation (T -z relation) for the CMB. We argued, based on the blackbody spectrum
at all redshifts, that this is a consequence of thermodynamics. Whatever the assumed ν-z relation, ob-
servations necessarily produce the associated T -z relation and vice versa. If the CMB is subject to an
SU(2) rather than a U(1) quantum gauge principle, we reviewed how the corresponding T -z relation
changes. Consequently, the CMB’s ν-z relation is changed. Finally, on a qualitative level, we provided
reasons for which the temperature of a cloud of known redshift may differ from the temperature of a
pure photon gas representing the CMB far away from the cloud. This is because thermalisation in the
cloud, in addition to the interaction of bound electrons with wavelike CMB disturbances, also proceeds
via emissions and absorptions of wavelike modes by bound electrons. These modes, however, are subject
to another (confining-phase) SU(2) Yang–Mills theory of a much higher critical temperature: SU(2)e.
The existence of SU(2)e impacts Big Bang nucleosynthesis. Specifically, if the electron is subject to an
SU(2) gauge-theory model, involving the two factors SU(2)CMB and SU(2)e [43, 44, 5] (see also [41]), then
the Hagedorn temperature TH = 6.66 keV of SU(2)e implies that the primordial Helium mass fraction
of Y = 1

4 (Y = 2fi
1+fi

, where fi denotes the neutron-to-proton ratio at the onset of nucleosynthesis) is

not induced by the nucleosynthesis of the light elements setting in at T = 65 keV, subject to fi = 1
7

(the freeze-out value f = 1
5 at T ∼ 800 keV being reduced to fi =

1
7 at T = 65 keV due to neutron de-

cay). Rather, nucleosynthesis would start at T = 65 keV with fi = 1, implying a Helium mass fraction of
Y = 1 prior to the Hagedorn transition. The value of Y would subsequently be reduced to Y ∼ 1

4 through
collective Helium photo-disintegration by gamma quanta that are released across the Hagedorn transition.

Our conclusion regarding the extractions of the CMB temperature using the thSZ effect pursued in the
literature is that they confirm the CMB blackbody spectrum at a finite redshift. However, under the
assumed conventional ν-z relation, the result of the T -z relation extraction is necessarily conventional as
well. The extraction of the CMB’s T -z relation from an assumed thermalisation within absorber clouds,
which also uses a conventional ν-z relation for the relevant absorption lines, is questionable since the two
systems, (i) a cloud immersed into the CMB and (ii) a pure CMB, exhibit different thermal degrees of free-
dom at a sufficiently high redshift: waves for (i) and photons for (ii). One possibility for determining the
effect of the T -z relation subject to SU(2)CMB is to study the flux of ultra-high-energy cosmic rays (UHE-
CRs). In particular, there is a sensitive region below the ankle, that is, for 1×1018 eV ≤ E ≤ 6×1018 eV.
Due to the reduced CMB photon density at the same finite redshift, there is a higher flux of UHECRs
under otherwise equal conditions for emission and propagation. Most prominently, the flux of protons is
significantly increased in comparison to the use of the conventional T -z relation when fitted to UHECR
data [2].

Data availability
This work did not require additional scripts. However, the Python notebooks for creating the figures are
available upon request.
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5 Search for a Blackbody Anomaly

Figure 5.1: The radio excess as observed by multiple terrestrial CMB observations and ARCADE 2 can
be interpreted as Meissner massive photons in the preconfined phase of SU(2)CMB [67]. In purple, a fit
to the data is shown; the gray dotted line indicates expected Rayleigh-Jeans behaviour.

This chapter presents original research, published here for the first time, and serves as a preprint [4]. It is
building upon previous work by Carlos Falquez and Ralf Hofmann [125]. The data were taken by Roberto
Gavioso, Giorgio Brida, Dario Imbraguglio at the Istituto Nazionale di Ricerca Metrologica (INRiM).
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Abstract

We report measurements of radiometric power in the frequency range 5.0 to 11.5GHz and temperature
range 10 to 53K, using a monopole antenna immersed in a cylindrical blackbody cavity (d = 179mm,
h = 190mm). Up to 0.15 dBm of excess power (corresponding to a ∼3.5% increase relative to the
expected Nyquist noise power of a 50Ω resistor) was observed. Simultaneous thermometry revealed a
temperature gradient within the cavity, with the top consistently hotter than the bottom by up to 0.15K.
The measured power differences between antennas are consistent with this gradient, with the hotter
top emitting more thermal radiation than the colder bottom. The frequency dependence of the effect,
particularly in the antenna viewing the colder region, can be attributed to spatially varying coupling
efficiency and the characteristics of thermal emission in the Rayleigh-Jeans regime. No indication of
additional physical mechanisms beyond standard blackbody thermodynamics is required to explain the
observed excess. Future experiments with improved thermal homogenization, larger cavity dimensions,
and higher radiometric precision may help further constrain or isolate potential non-standard effects.

5.1 Introduction

Max Planck’s discovery of the law of spectral energy density I(ω;T )dω of the radiation that prevails
inside an ideal blackbody 1,

IU(1)(ω;T )dω =
1

π2

ω3

eω/T − 1
dω , (5.1)

marks the beginning of quantum mechanics. A blackbody is an idealized physical object that absorbs
all incident electromagnetic radiation, regardless of frequency or angle of incidence. It is also a perfect
emitter of radiation, with its emission spectrum dependent solely on its temperature, as described by
Planck’s radiation law in Eq. (5.1). The emissivity is assumed to be ϵ = 1 and at a temperature T . Here,
ω = 2πν denote circular and ν ordinary (wave-photon) frequency while dω is some frequency bandwidth
of observation. Note that spectral radiance RU(1) and IU(1) are the same in natural units.

The association of the quantum of action ℏ with Eq. (5.1) reflects the postulate of propagating packets
of energy ω: photons. Photons are not subject to classical equipartition of electromagnetic wave energy,
which would imply the Rayleigh-Jeans limit IU(1)(ω ≪ T ;T ) dω = ω2T dω/(π2). Treating thermal elec-
tromagnetic disturbances classically, throughout the entire spectrum, implies a catastrophic and unphys-
ical ultraviolet divergence of the total energy density ρ =

∫∞
0

dω IU(1)(ω;T ). The quantum behaviour of
thermal radiation at higher frequencies, expressed by Eq. (5.1) instead ensures a finite (Stefan-Boltzmann)
value ρ = π2T 4/15. Planck’s thermal photon gas rests on Maxwell’s electrodynamics, which is a U(1)
gauge theory. In addition, quantized electromagnetic field energy and Bose-Einstein statistics must be
invoked ad hoc [126, 127]. From the theoretical side, a propagating solution to the classical SU(2) Yang-
Mills equations in 4D Minkowski spacetime, which embodies the photon without ad hoc quantisation,
was constructed recently in [128].

Planck’s radiation law is ubiquitous. Its fundamental nature is best expressed by the fact that the uni-
verse’s most extended thermal photon gas, the Cosmic Microwave Background (CMB), obeys Eq. (5.1) at
one-percent precision for frequencies ν > 3GHz and at TCMB,0 = 2.726K [63, 129, 130]. However, devia-
tions from this radiation law are reported to be highly significant for ν < 3GHz, see [63] and references

1In this work, if not explicitly stated otherwise, we work in natural units ℏ = kB = c = 1 where ℏ denotes Planck’s
reduced quantum of action, kB is Boltzmann’s constant, and c refers to the speed of light in vacuum.

https://orcid.org/0000-0001-7582-3456
https://orcid.org/0000-0001-6365-0631
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therein. Many possible explanations were put forward to explain this low-frequency anomaly, see, e.g.
[114, 115, 116]. A galactic origin of the excess is excluded by the extreme isotropy of the signal [42], and
it cannot be explained in terms of the diffuse free–free emission facilitated by cosmological reionisation
[112, 113]. In [67] the low-frequency CMB excess of [63] was interpreted as evanescence of low-frequency
modes. Evanescence, in turn, is explained by the onset of the Meissner effect: electric-magnetically dual
monopoles in a deconfining SU(2) Yang-Mills plasma, whose tree-level massless modes (TLMM) is the
thermalized photon, start to condense at the critical temperature Tc of the deconfining-preconfining phase
transition [31]. The ensuing assignment TCMB,0 = Tc, suggesting the name SU(2)CMB, has significant
consequences for the cosmological model at high redshifts [3, 33, 40]. Therefore, it is important to per-
form terrestrial laboratory experiments to either support or rule out the theoretical SU(2)CMB association
with thermal photon gases. In particular, one should focus on SU(2)CMB’s prediction of anomalous noise
powers in the deconfining phase [131, 132] not far above Tc and for low frequencies. Note that in contrast
to [67] where, by virtue of TCMB,0 = Tc, noise-power excess is linked to the Meissner effect, the prediction
we aim to test in the present work rests on a spectral gap which is generated radiatively for T > TCMB,0.

5.2 Experimental Setup and Noise-Power Amplification

5.2.1 Design and components of experiment

Blackbody cavity and temperature control

Figure 5.2: Illustration of the experimental setup of cavity with cryogenic amplification chain and exper-
imental setup at INRiM. The amplification chain consists out of an amplifier (ampl.) and two circulators
(circ.), in order to avoid back reflections into the cavity, as well as one cryogenic Dicke switch shortly
before the cavity. A schematic drawing of the monopole antenna is shown in A, a picture of the Vivaldi
antenna is included in B. The position of the antenna and resistor in the cavity has been exchanged
for the Vivaldi antenna. For all following graphics, excluding the Appendix: A refers to analysis using
monopole antenna data, and B refers to data taken with the Vivaldi antenna.

The description of the cryostat design in this subsection 5.2.1 is adapted from [133]. The apparatus is
shown in Fig. 5.9, closed but without the first cooling stage in a), with the monopole antenna in b), with
a switched position of antenna and resistor, as well as a Vivaldi antenna in c). The design of the cryostat
itself is inspired by recent developments in single-pressure Refractive Index Gas Thermometry (RIGT)
apparatuses [134]. To control the temperature of the microwave cavity within a range of 9K to ambient
temperature, a cryostat comprising three main vacuum-tight stages was designed and assembled, as shown
in Fig. 5.9 in the Appendix. It utilizes a pulse-tube cryocooler (PTC), Sumitomo model SRP-082B2S-
F70H, which provides a cooling power of 0.9W at 4.2K. The innermost stage of the cryostat consists of
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a cylindrical copper vessel with an internal diameter of 200mm, which serves as the microwave cavity.
The cavity lining is made of Laird Eccosorb HR 25 polyurethane foam, 25mm thick and impregnated
with carbon black dispersions. The frequency-dependent reflectivity of the material can be found in the
manufacturer’s data sheet2 (page 2). Across the main flange of the cavity, multiple coaxial and single-pin
feedthroughs are welded onto three stainless steel flanges. These enable the transmission of microwave
signals and provide electrical connections to the thermometer terminals.

In addition, a custom flanged copper block, internally bored with a 4mm hole, facilitates evacuation and
helium filling of the experimental vessel. The measurements are performed in an evacuated cavity at a
pressure of approximately 10−4 bar. Surrounding the microwave cavity is a larger vacuum-tight cylindri-
cal copper vessel (250mm in diameter), which acts as a thermal switch stage. This stage is equipped
with the same number and types of hydraulic and electrical feedthroughs as the inner cavity. Its function
is to regulate heat transmission between the PTC and the cavity, either enhancing or minimizing heat
transfer as needed. Thermal contact between the PTC’s second stage and the outer flange of the thermal
switch is ensured by cylindrical copper posts and rectangular plates. These components provide vertical
and radial clearance for feedthroughs, connectors, and thermal anchoring of cables and tubing.

The next outermost stage is a cylindrical copper enclosure (320mm in diameter) serving as a radiation
shield. This minimizes heat losses between the first stage of the PTC, the thermal switch, and the
ambient temperature tank. Thermal linkage between the radiation shield and the PTC is achieved using
copper posts and plates similar to those in the thermal switch. The entire system is enclosed in a stainless
steel, vacuum-tight cylindrical tank with an internal diameter of 500mm and a depth of 500mm. This
tank is equipped with multiple welded ConFlat® flanges for signal feedthroughs, gas inlet and outlet
flows, electrical heater connections, and auxiliary temperature sensors. To further reduce radiation heat
losses, Mylar foil is incorporated between the cryostat’s different stages. In addition, the primary and
secondary flanges of both the experimental and thermal switch vessels are sealed using indium wire to
ensure vacuum and pressure-tightness. The assembled cryostat was tested for vacuum integrity using
a helium leak detector. However, additional heat losses introduced by cables and gas tubes limited the
minimum achievable operating temperature of the system to approximately 9K. Four calibrated Cernox®

thin film resistance temperature sensors are deployed within the cavity and behind the foam lining, in
order to determine the temperature gradient of the cavity. Due to the precise temperature control, the
maximal uncertainty in temperature, can be assumed to be smaller than 100mK. The amplification chain
consists of an amplifier (ampl. in Fig. 5.2) and two circulators to prevent back reflections into the cavity,
with a cryogenic Dicke switch (Radiall Ramses SP6T) placed just before the cavity.

Noise powers of monopole antenna and Nyquist resistor

The derivation of noise power NU(1)(ν;T ) in SI units from radiance for the U(1) case, where the antenna
faces a solid angle of Ω = 4π and is subject to the effective apertures Āeff , under the condition hν ≪ kBT ,
is given as follows:

NU(1)(ν;T ) dν = IU(1)(ν;T )× Āeff × Ωdν

=
4ν2

c2
kBT × c2

4πν2
× 4π dν

= 4 kBT dν , (5.2)

where Ω = 4π denotes the full solid angle. antenna reflectance, resistor reflectance.

Dicke switch, amplification stages, measurement strategy

The goal is to measure the noise power of the antenna relative to the noise power of the Nyquist resistor.
While the latter one being a solid state body, it can always be assumed to follow Planck’s radiation law,
while the antenna probes the blackbody nature of the cavity. The core idea is to use one amplification
chain for both probes and a cryogenic Dicke switch shortly before the cavity to switch between the
antenna and the resistor, compare the illustration in Fig. 5.2 a). Each channel was used for a duration
of two minutes before switching, during which the measured powers were integrated over time. In order
to mitigate the risk of impedance mismatches in the last two connections from the Dicke switch to the
antenna / resistor, as well as at the antenna connection, the position of the antenna and the resistor was

2https://media.distrelec.com/Web/Downloads/_t/ds/Laird_Eccosorb_HR_eng_tds.pdf

https://media.distrelec.com/Web/Downloads/_t/ds/Laird_Eccosorb_HR_eng_tds.pdf
https://media.distrelec.com/Web/Downloads/_t/ds/Laird_Eccosorb_HR_eng_tds.pdf


C
ha

pt
er

5
C

ha
pt

er
5

C
ha

pt
er

5
C

ha
pt

er
5

C
ha

pt
er

5
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changed, as depicted in Fig. 5.2 b). Furthermore, the antenna type was altered to a Vivaldi antenna,
which has a complementary antenna profile (forward cone) to the monopole antenna (torus like), as
well as a lower reflection coefficient Γsource, as shown in Fig. 5.8 in the Appendix. The measured power
differences for the monopole and Vivaldi antenna with the Nyquist resistor each are shown in Fig. 5.4 a)
and b) respectively.

5.2.2 Error estimates

Statistical error

To average the noise power deviation, data was collected with a bin width of 100MHz in frequency and
1K in temperature. Each bin contains hundreds of data points, making the error of the mean at least
an order of magnitude smaller than the systematic errors. For a detailed discussion of statistical errors
in a similar experimental setup, see [63] on ARCADE 2 integration times and bandwidths, including
temperature averaging.

Systematic errors

There are two main error classes, of which any combination could influence the observed deviation from
Rayleigh-Jeans behaviour at low frequencies and temperatures. First, errors in the cryogenic amplification
chain, such as impedance mismatches caused by feedthroughs, uncertainties due to amplification, and
the two short cables (∼7 cm) from the cryogenic Dicke switch to the monopole antenna and the resistor.
The second error class consists of unaccounted-for noise-power sources, such as thermometers or their
cabling within the blackbody cavity itself. This particular example is unlikely to cause pollution, as two
thermometers use DC current and the other thermometers operate at very low current, which wouldn’t
generate noise power in the GHz range. To estimate the real part of the amplification gain of the antenna
and resistor, G21,A and G21,R, respectively, we measure the scattering parameter S21 as well as the
mismatches at the source and load Γoutput and Γsource. Refer to Fig. 5.8 in the Appendix for measured
spectra of S21, Γoutput, and Γsource. The mismatch at the input, Γinput, is calibrated to be 1. The gain
G21 is given by

G21 = |S21|2
1− |Γsource|2

1− |Γoutput|2
× 1

|1− ΓinputΓsource|2
. (5.3)

Thereby, Γoutput is the output reflection coefficient and Γsource is the source reflection coefficient. Since
the source and output reflection coefficients of the network are of the order of -10 dB for the antenna
and the resistor, the main contribution to G21 is S21. The total gain estimated for the antenna and the
resistor, G21,A and G21,R are shown in Fig. 5.3. S21 was measured at room temperature, and only ∆S21

was used for the error propagation, since ∆Γsource and ∆Γoutput are negligible, as can be inferred from
Fig. 5.8 in the Appendix. The total errors in dB for the power difference, are thus given by

∆PA-R =
√
∆G2

21,A +∆G2
21,R , (5.4)

and shown in Fig. 5.4 and Table 5.1.

ν [GHz] 5.3 ± 0.05 8.8 ± 0.05

∆PA-R [dB] 0.025 0.039

Table 5.1: The average ∆PA-R over 100MHz bins of the estimate in Eq. (5.4) for two central frequencies
where the gain errors are particularly small. Since both antenna types have nearly identical gain ampli-
fication, they share the same error budget.

5.3 Experimental Results

Inspecting Fig. 5.3, we identify two sweet spots at ν = 5.3GHz and ν = 8.8GHz with very low average
gain error ∆PA-R, see Tab. 5.1. With this error estimate, PA-R is shown in Fig. 5.4.
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Figure 5.3: The gain for the antenna G21,A (blue) and the resistor G21,R (orange) are shown in dB from
5–11.5GHz in dB, is shown in the upper part of the figure α). Their respective errors as well as the total

error in dB for the power difference ∆PA-R =
√

∆G2
21,A +∆G2

21,R in green are shown in the bottom part

of the figure β).

Figure 5.4: The power difference (in dBm) between the monopole antenna and resistor in A, and the
Vivaldi antenna and resistor in B, along with systematic error estimates for two frequencies, is shown:
5.3GHz in yellow and 8.8GHz in purple. All noise powers are normalized at T = 53K to correct for
different mode couplings to antenna and resistor. For any given central frequency and temperature, the
data was averaged over bins of 100MHz bin and 1K, respectively.
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5.4 Interpretation of Noise-Power Excess at Low Temperatures

Here, we analyse to what extent the results of Sec. 5.3 can be understood in a model of thermal photon
gases which invoke mixed degrees of freedom stemming from distinct phases of two SU(2) Yang-Mills
theories of vastly disparate Yang-Mills scales [4]. In the following, we work again in natural units
c = ℏ = kB = 1. In [131] the Feynman rules of the effective theory of deconfining SU(2) Yang-Mills
thermodynamics [31] were applied to compute the transverse screening function G of the tree-level mass-
less mode of four-momentum p (in unitary-Coulomb gauge) and emergent dispersion law p2 = G from
the gap equation

G

T 2
=

∫
dξ

∫
dρ e2λ−3

(
−4 +

ρ2

4e2

)
ρ ×

nB

(
2πλ−3/2

√
ρ2 + ξ2 + 4e2

)
√

ρ2 + ξ2 + 4e2
, (5.5)

subject to the following condition

|(p+ k)2|=
∣∣G+ 2 k · p+ 4e2|ϕ|2

∣∣ ≤ |ϕ|2 , (5.6)

where k represents the four momentum of the two tree-level heavy modes running in the loop of the
associated tadpole diagram (the other one-loop diagram vanishes due to 4-momentum conservation in
the two three-vertices [31]). In Eqs. (5.5) and (5.6) we define: |ϕ| =

√
Λ3/(2πT ) and k2 = 4e |ϕ|2,

y⃗ = k⃗/|ϕ|,
y1 = ρ cosφ , y2 = ρ sinφ , y3 = ξ . (5.7)

Λ, λ ≡ 2πT/Λ, and e(λ) denote the Yang-Mills scale, the dimensionless temperature, and the effective
gauge coupling, respectively [31]. Since the lowest temperature is 10K, which is considerable higher than
Tc = 2.725K, we can set e =

√
8π. This is the value of e(λ) deep within the deconfining phase [ibid.]. As a

consequence of p2 = G, a T dependent gap frequency ω∗(T ) = 2πν∗(T ) (propagation for p0 = ω > ω∗(T ),
evanescence for p0 = ω ≤ ω∗(T )) is predicted [131]. Setting TCMB,0 = Tc, one obtains for 8K ≤ T ≤ 50K
an excellent fit as [132]

ν∗(T )

GHz
= 42.70

(
T

K

)−0.53

+ 0.21 . (5.8)

Spectral noise power is obtained from spectral radiance by multiplication with an effective aperture
A = l2/(4π), where l denotes the propagating wavelength, and spectral radiance, in turn, is obtained
from spectral energy density by multiplication with the group velocity dω/d | p⃗ |. In the Rayleigh-Jeans
limit ω/T = 2πν/T ≪ 1 of Eq. (5.1) this yields a U(1) spectral noise power NU(1) dν = 2T dν. Like in
[67], where at T = TCMB,0 the gap for transverse polarisations of the tree-level massless mode is produced
by the onset of the Meissner effect at T ∼ TCMB,0 and not by radiatively induced screening at T > TCMB,0

considered in the present work, we model the SU(2)CMB spectral noise power for ν ≤ ν∗ by a Gaussian
of zero mean and standard deviation ν∗(T )

NSU(2)CMB
dν = F (T ) exp[−ν2/(2ν2∗(T ))] dν . (5.9)

Here, F (T ) is obtained by demanding continuity at ν = ν∗ when transitioning to NU(1): F (T ) = 4 e1/2T .
Since the cavity is small and the emission of electromagnetic waves into its hohlraum occurs via the
transition between thermalised quantum states of electrons immersed, according to [5], into the confining
phase of an SU(2) Yang-Mills theory of scale ∼ 3.6 keV, we must consider a cavity specific mixing between
thermal effective U(1) waves, radiated into the hohlraum by the cavity walls, and the tree-level massless
modes of SU(2)CMB, which are emitted by this theory’s thermal ground state. This mixing of two SU(2)
Yang-Mills theories is parametrized by the angle θ. Therefore, the difference of D of the dBm of mixed
spectral noise power vs. standard U(1) Rayleigh-Jeans spectral noise power NU(1) reads

D = 10 log10

(
cos2 θ + exp

[
−ν2/(2ν2∗(T )) +

1

2

]
sin2 θ

)
, (5.10)

for ν ≤ ν∗(T ). For ν > ν∗(T ) we have D ≡ 0. In Fig. 5.5 the prediction for the T dependence of D
according to Eq. (5.10) is shown for ν = 5.3 and 8.8GHz when matching the means of the experimental
data at T = 10K. Notice that at the blue dashed lines (at 11.7K) in Fig. 5.5 a) and b), an entire caloron
coarse-graining volume fits within the blackbody cavity. Here, coarse-graining refers to a process in
which microscopic or quantum-level details are averaged over a characteristic spatial scale to produce
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Figure 5.5: The noise power difference between the monopole antenna PAntenna and the 50Ω resistor
PResistor is shown in dBm for ν = 5.3GHz in A and for ν = 8.8GHz in a’), the same data which was
also shown in Fig. 5.4 a). The power-law model D of Eq. (5.10) is shown to describe the excess radiation
at the lowest available temperatures. The model has been calibrated to match the experimental average
values at a temperature of T = 10K. The range where the model aligns with the experimental data is
highlighted by a solid yellow line in panel A and a solid purple line in panel A’. The zero touching point
of the radiation excess model D (dotted lines) is determined by the gap frequency ν∗(T ). At the blue
dashed lines (11.7K), a full caloron coarse-graining volume fits into the blackbody cavity, while at the
blue dot-dashed lines (46.7K), only half fits.

an effective, macroscopic description. In the case of calorons, this characteristic scale is the size of the
caloron itself, which defines a spherical region in space. At this temperature, the physical size of the
blackbody cavity is large enough to fully contain one such caloron sphere. Assuming Tc = TCMB,0, the
diameter d of this region’s volume (setting TCMB,0 = Tc) is given as [31]

d(λ/λc) =
0.01056

2π
λ3/2
c

(
λ

λc

)1/2

m , (5.11)

where λc = 13.87 the dimensionless critical temperature. To the right of the blue dot-dashed lines in
Fig. 5.5, the SU(2)CMB infinite-volume theory, which motivates the model in Eq. (5.10), is not applicable.
Those lines indicate the temperature at which the radius of the cavity’s cylinder equals 1

2 d. In Fig. 5.6 an
extraction of the mixing angle θ from the (spline extrapolated) data at T = 10K is shown as a function
of frequency ν.

Figure 5.6: The frequency dependence of the mixing angle θ according to Eq. 5.10 is shown for frequencies
from 5.0 - 11.5GHz. The mixing angle and its gain errors is averaged over 100MHz bands, determined
at T = 10K. The average mixing angle is 13.21◦ (yellow dashed line) for the monopole antenna in A,
and 3.12◦ (also yellow dashed line) for the Vivaldi antenna in B.
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5.5 Discussion and Summary

In this article we have reviewed on how a radiatively induced modification of the thermal photon’s disper-
sion law emerges due to transverse screening / antiscreening, mediated by a resummation of the one-loop
polarisation tensor to all orders in the photon’s propagator and taking place within the deconfining phase
of an SU(2) Yang-Mills theory. The effect is predicted to occur sizeably within the Rayleigh-Jeans regime
if temperature is not far above Tc ∼ 10−4 eV and radiation is thermalised in a spatially isotropic and
homogeneous way. In a next step, we have considered both the spectral manifestation of the radiance
anomaly at a fixed temperature and the modified Rayleigh-Jeans law of radiance at a fixed frequency as
a function of temperature. For a terrestrial experiment testing these predictions, temperature variation
is usually more practical than frequency variation. The associated gap frequency ν∗(T) was calculated,
determining the temperature below which deviations from the Rayleigh-Jeans law are expected for a
given frequency.

We discuss the process of directed emission of radiation from the thermalized cavity walls and its sub-
sequent thermalization into isotropic and homogeneous radiation towards the center of a sufficiently
extended cavity. We consider an admixture of SU(2) (photons/waves stemming from SU(2)CMB of Yang-
Mills scale ∼ 10−4 eV) with U(1) radiance (waves stemming from SU(2)e of Yang-Mills scale ∼ 3.6 keV).
This U(1) admixture arises due to the proximity of the antenna to the cavity walls and the relatively small
volume of the cavity (small in comparison by the wave length of the measured frequencies). We initially
found the U(1) contribution to be dominating the noise power at 10K, with an average mixing angle of
13.2◦ in the frequency range of 5–11.5GHz for the monopole antenna, compare Fig. 5.6 a). In comparison,
the excess radiation could be interpreted as a substantially smaller mixing angle for the Vivaldi antenna,
compare Fig. 5.6 b). For the monopole antenna, this is equivalent to sin2(13.2◦) ∼ 5% of SU(2) radiation
within the cavity. The deviation from Rayleigh-Jeans noise power is statistically significant at 5.3GHz
and the lowest experimentally accessible temperatures.

Despite the above summarized efforts to interpret the power offset with a mixing of two photon dispersion
laws, the observed power differences between the two antennas are consistent with a thermal gradient
within the cavity, where the top is hotter than the bottom. This temperature gradient is confirmed by
direct thermometry (purple trace), and it provides a natural explanation for the asymmetric blackbody
emission: the monopole antenna viewing the hotter top detects excess thermal radiation, while the Vi-
valdi antenna viewing the colder bottom detects a deficit.

Figure 5.7: Measured power differences −∆P (resitor-antenna) as a function of cavity temperature for
two antenna configurations: A a monopole antenna viewing mostly the top of the cavity, and B a Vivaldi
antenna viewing mostly the bottom. The power was averaged over a bin size of 0.25GHz and 3K. The
purple squares show the measured temperature difference ∆T = Tbottom−Ttop, indicating that the top of
the cavity is consistently hotter than the bottom. Negative −∆P values indicate higher received power
relative to the reference, while positive values indicate lower power. Each trace corresponds to a different
measurement frequency. This strongly suggests, that the measured signal originates from the temperature
gradient within the cavity.
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The frequency dependence observed in Fig. 5.7B is likely due to a combination of physical and instru-
mental factors. At lower frequencies, the antenna pattern may sample a larger effective volume of the
cavity, averaging over a greater vertical extent and thus integrating more of the temperature gradient.
Additionally, the thermal emission at lower frequencies remains firmly in the Rayleigh-Jeans regime,
where the power per unit bandwidth remains linear in temperature, making any temperature differences
appear more directly in the measured power. At higher frequencies, reduced antenna sensitivity and the
exponential suppression of power in the Wien regime may lead to a weaker apparent signal difference.

While the observed signal can be attributed to a temperature gradient within the cavity rather than a
clear spectral signature of SU(2) thermodynamics, this outcome does not invalidate the theoretical moti-
vation nor the experimental strategy. On the contrary, our findings underscore the importance of pursuing
further investigations under improved conditions. In particular, extending measurements to lower tem-
peratures and frequencies, where the predicted deviations from the Rayleigh-Jeans law are expected to
be most pronounced, remains a promising path. Moreover, the use of larger cavities would mitigate
wall-proximity effects and reduce contamination from U(1)-like modes, enabling a cleaner isolation of the
SU(2) contribution. With refined cavity design, optimized antenna configurations, and stringent thermal
stabilization, future experiments may yet uncover the subtle signatures of modified photon dispersion, a
fundamental prediction of non-Abelian thermal field theory.

Data availability
The experimental data as well as the Python notebook which has been used for their evaluation are
available after publication on 3.
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Appendix

Figure 5.8: The scattering parameters used for calculating the gain amplification in Eq. 5.3 as well
as the gain amplification error in Eq. 5.4. All measurements were performed using a network analyser
(VNA) under room temperature conditions. The following scattering parameters were taken A: the real
amplification from the cryogenic amplification chain, including amplifier, circulators, and switch for the
pathway to the antenna (blue) and resistor (orange). B: the reflection coeficcient Γsource for the free field
monopole antenna (blue), the Vivaldi antenna in the cavity (green), the free field Vivaldi antenna (light
green), as well as the Nyquist resistor (orange). C: the reflection coeficcient Γoutput, from the source to
the network analyser, for the free field antenna mount (blue), as from the resistor mount (orange).
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Figure 5.9: The apparatus is shown closed without the first cooling stage in A, (C1–C4) are Cernox®

temperature sensors. For our measurement, there are additional temperature sensors within the cavity,
behind the lining. The apparatus with an open cavity and monopole antenna in B, and open with a
switched antenna-resistor position and a Vivaldi antenna in C. Fig. 5.9 a) has been adapted from [133,
Fig. 4].
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6 Electroweak Parameters from YMTD

Figure 6.1: The electroweak mixing angle is defined by the point of zero pressure T0,mixture of the mixture
of deconfining ground states of the electron and photon theories.

This chapter is based on “Electroweak parameters from mixed SU(2) Yang-Mills Thermodynamics” [5]
and the conference proceedings [8].
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Abstract

Based on the thermal phase structure of pure SU(2) quantum Yang-Mills theory, we describe the electron
at rest as an extended particle, a droplet of radius r0 ∼ a0, where a0 is the Bohr radius. This droplet
is of vanishing pressure and traps a monopole within its bulk at a temperature of Tc = 7.95 keV. The
monopole is the Bogomolny-Prasad-Sommerfield (BPS) limit. It is interpreted in an electric-magnetically
dual way. Utilizing a spherical mirror-charge construction, we approximate the droplet’s charge at a value
of the electromagnetic fine-structure constant α of α−1 ∼ 134 for soft external probes. It is shown that
the droplet does not exhibit an electric dipole or quadrupole moment due to averages of its far-field
electric potential over monopole positions. We also calculate the mixing angle θW ∼ 30◦ which belongs
to deconfining phases of two SU(2) gauge theories of very distinct Yang-Mills scales (Λe = 3.6 keV and
ΛCMB ∼ 10−4 eV). Here, the condition that the droplet’s bulk thermodynamics is stable determines the
value of θW . The core radius of the monopole, whose inverse equals the droplet’s mass in natural units,
is about 1% of r0.

6.1 Introduction

The electroweak interactions between leptons in the Standard Model of Particle Physics (SM) are medi-
ated by quantised gauge fields, associated with the group U(1)Y ×SU(2)W. In the SM, asymptotic lepton
states are associated with point particles whose localisation characteristics relate to quantum states of
relativistic matter waves, described by solutions to the Dirac equation, and which depend on the presence
or absence of external potentials. Electroweak interactions are assumed to be governed by small gauge
couplings: g′ < 1 for U(1)Y and g < 1 for SU(2)W. The SM is extremely successful and efficient in de-
livering a quantitative description of scattering cross-sections, decay rates, branching ratios, production
and oscillation rates, as well as bound-state properties. Renormalisability of the electroweak sector of
the SM [135, 136, 137] assures that corrections to an asymptotic state are calculable to any desired order
in the couplings g′ and g without having to introduce parameters in addition to those of the defining
Lagrangian. By resummation of renormalised Feynman diagrams, these parameters evolve with the res-
olution scale externally applied to a physical process. Generally speaking, a parameter value obtained at
a given four-momentum transfer P can be converted to that at a different four-momentum transfer P ′

by a rescaling that depends on logarithms of the ratio P/P ′.

While the electroweak sector of the SM reliably predicts the running of its parameters and the amplitudes
of associated processes, it is unable to compute absolute parameter values at any given resolution. Most
prominently, the electromagnetic fine-structure constant α [138], which at low four-momentum transfer
assumes the experimental value [139],

αexp =
q2

4πϵ0ℏc
=

1

137.035999206
, (6.1)

is not subject to calculation within the SM. That is, given ϵ0 (permittivity of the vacuum), ℏ (reduced
quantum of action), and c (speed of light in vacuum), the electric charge of the electron q is a free
parameter whose value needs to be measured. In what follows, we assume that the constants of nature
ϵ0, c, and ℏ are independently measured and thus are not considered free parameters of the SM1. These
constants and Boltzmann’s constant kB are all set equal to unity in the present report (natural units).
In the electroweak sector of the SM [140, 141, 142] the electromagnetic coupling q, due to mixing between
the Cartan-algebras of SU(2)W and U(1)Y , is obtained from the (perturbative) coupling g of SU(2)W or
from the (perturbative) coupling g′ of U(1)Y as

q = g sin θW or q = g′ cos θW . (6.2)

1They can be argued to emerge from pure SU(2) Yang-Mills theory, see [31].

https://orcid.org/0000-0001-7582-3456
https://orcid.org/0000-0001-6365-0631
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Here, 28.7◦ ≤ θW ≤ 29.3◦ [143, 144] denotes the weak mixing (or Weinberg) angle, measured at variable
four-momentum transfer. In addition to condition (6.2), one imposes for the electric charge operator Q
and the hypercharge matrix Y of each left-handed lepton family that Y = Q− 1

2σ3 where σ3 = diag(1,−1)
denotes the third Pauli matrix, see [145] for a comprehensive review. Like q, θW is a free parameter of
the SM whose value has to be inferred experimentally at a given resolution. One can pick resolution to
be vanishing, and we argue in the present work that, under clearly stated assumptions, in this limit the
values of the dimensionless electroweak parameters α and θW can be approximated thermodynamically.
Such an approach is based on ideas by Louis de Broglie providing the foundations for wave mechanics
[122, 146]. Namely, the electron as a propagating matter wave emerges by applying a Lorentz boost to a
spatially extended and internally oscillating system (a standing wave). De Broglie also noticed that the
transformations of wave frequency and the frequency of internal oscillation are distinct in the same way
as the transformations of particle energy and internal heat are. This, however, reveals the existence of
a close link between relativistic thermodynamics and the physical insights that are at the heart of wave
mechanics.

The present work takes up these profound ideas by de Broglie, supplemented by concrete notions of what
the source of oscillation, the oscillating medium, and the boundary of this medium are in the framework
of pure SU(2) Yang-Mills thermodynamics in four spacetime dimensions. As we shall argue, this enables
derivations of the values of the electroweak parameters α and θW . To put this into perspective, we
would also like to mention other approaches. The experimental value of α in Eq. (6.1) is either repre-
sented by numerology or linked to physics beyond that of the SM. Pure numerology without a defined
physical basis can generate an impressive proximity to the value in Eq. (6.1), mostly invoking combina-
tions of primes, and prominent transcendental numbers in elementary functions or continued fractions.
These results are reviewed in [147]. Other approaches, including Dirac’s large number hypothesis as
well as Weyl’s hypothesis, both invoking the classical radius of the electron, Casimir’s mousetrap model,
Kaluza-Klein theories, open-string scattering, invariants under certain ad hoc symmetries and others are
reviewed in [148]. Regarding the electroweak mixing angle θW , the assumption that quarks have integer
electric charges as in the Han-Nambu scheme solves the orthogonality condition between the Z-boson
field and the photon-field γ by a value sin2 θW = 1/4 or θW = 30◦ which is close to experiment [149].
For discussions on how the Weinberg angle relates to consistency conditions in breaking the symmetry
groups of grand unified theories (GUT) in four or higher dimensions, see [150] and references therein.

The strength of the SM is that parameters such as α and θW can be evolved accurately to describe particle
transitions that are characterised by large four-momentum transfers. To such processes, thermodynamics
is not applicable. This is already suggested by the fact that in the center-of-mass (COM) frame of two
colliding electrons the square of COM energy is given as s = 4m2

e(1 − v2)−1 and that the temperature
T0 in each particle’s restframe is, by invariance of local entropy under Lorentz boosts [146], decreased as
T =

√
1− v2T0. Here, ±v are the respective particle speeds. Letting v ↗ 1, we notice that, as s → ∞,

the temperature of each droplet vanishes, T ↘ 0. This associates a strongly boosted electron with the
confining phase of SU(2) Yang-Mills thermodynamics by depriving it of its 3D structure. Alternatively,
an observer in the center-of-mass frame instead of seeing colliding, spherical droplets sees 2D ’pancakes’
due to a strong Lorentz contraction along the boosted coordinate. Therefore, the deconfining phase,
whose restframe thermodynamics mainly constitutes the droplet and defines its Lorentz invariant prop-
erties mass me and electric charge Q, is invisible in the center-of-mass frame at large s, see Secs. 4 and 5.

The process of pair creation of an electron and a positron, both separated well at late times, by a pair of
initially well separated photons is another example of large four-momentum transfer during the transition.

Here, a highly nonthermal, intermediate state of even locally inhomogeneous energy density is generated.
This intermediate state emerges from local energy deposition into the ground state of the confining phase
of an SU(2) Yang-Mills theory. The round-point center vortex loops composing this ground state are
stretched and twisted by such an energy composition [31]. Subsequently, this intermediate state equi-
librates into a final state, the electron. In the restframe of the ensuing electron, a thermal droplet at
rest is well separated spatially from the boosted thermal droplet – the positron. In Quantum Electrody-
namics (QED) and to lowest order in α the nonthermal, intermediate of a pair creation process, where
both particles are not fully developed and close by, is described by the electron propagator connecting
the two vertices of the associated Feynman diagram. This propagator mediates off-shell propagation of
positive and negative energy states forward and backward through limited time intervals, and it is well
known how effective and precise the associated QED cross sections describe the experimental data on
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pair creation [151]. Therefore, QED (and more generally the SM) is a powerful tool to quantitatively
assess collisional transitions of asymptotic particle states whose intrinsic thermodynamics is of no use to
describe such processes. Yet, as we will argue in the present work, defining particle properties can be
obtained from a thermodynamical approach operating in their restframes. A situation that QED and the
SM is unlikely to describe well, however, is the physics of a dense and thermal2 state of electrons and
positrons in terms of particle and energy transport, charge and spin fluctuations as well as correlation
functions of particle number densities and particle speeds. An important signature to search for in this
regard is the creation of electron-positron pairs by macroscopic droplet evaporation, in terms of their
gamma-ray annihilation lines originating outside the droplet. The formation of such extended droplets
is facilitated by localised deposition of ultra-high energy density through compact, ultra-high contrast,
femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays
[152]. This experiment achieves a local energy density of 8×1016 J/m3 across a spot size of ∼ 5µm which
would guarantee the creation of macroscopic droplet dimensions.

In this paper, we consider the simultaneous presence of all phases (deconfining / preconfining / confining)
of 4D SU(2) Yang-Mills thermodynamics within a ball-like spatial region of radius r0, a droplet. In par-
ticular, we demonstrate how the mixing within the deconfining phase of two SU(2) Yang-Mills theories of
vastly disparate scales, SU(2)CMB and SU(2)e, appears to yield a realistic value for the electroweak mixing
angle due to vanishing bulk pressure and at vanishing external energy-momentum transfer. The Yang-
Mills scales (or critical temperatures) of SU(2)CMB and SU(2)e are derived from experiment. Namely,
the Yang-Mills scale of SU(2)CMB is suggested to be ΛCMB ∼ 10−4 eV from the excess of CMB line tem-
peratures for frequencies ν < 3GHz [63] or from a potential detection of screening effects in a laboratory
blackbody experiment at low temperatures. Here, screening effects generate a gap for propagating black-
body radiation at low frequencies (< 17GHz) shortly above the deconfining/preconfining phase transition
of SU(2)CMB [34, 4] 3. The Yang-Mills scale of SU(2)e is deduced in the present work from the mass
of the electron as Λe ∼ 3.60 keV, see also [43, 44] for mildly deviating earlier estimates that neglected
gauge-theory mixing. The mixing between the deconfining, preconfining, and confining phases of SU(2)e
and the deconfining phase of SU(2)CMB creates a thick boundary shell to the droplet whereas the bulk
region is described by the deconfining phases of SU(2)e and SU(2)CMB trapping an SU(2)e monopole4.
The thick boundary shell thus is a region of high electric conductivity due to condensed monopoles in
the preconfining phase of SU(2)e. It is an essential assumption of the present paper that in the limit of
a static equlibirium the thick boundary shell is sharply delineated from the bulk at r̄ < r0. That is, for
each volume element within the thick boundary shell contracting forces, stemming from the mixing of
deconfining and preconfining phases of SU(2)e, are cancelled by the expanding force due to the plasma
of the deconfining phase of SU(2)CMB

5. In any case, the pressure vanishes on the confining-phase side of
the Hagedorn transition in SU(2)e, that is, outside the droplet for r > r0 [31]. We also assume:

(i) effective hydrostatic equilibrium of the thick boundary shell. After spatio-temporally averaging, the
bulk pressure Pbs vanishes, Pbs ≡ 0,

(ii) that phase segregation and therefore a maximum radius for radial averages over monopole positions
is given by the mean radius r̄ of the initial, non-phase segregated thin-boundary shell droplet, and

(iii) that the energy density within the thick boundary shell is comparable to the bulk energy den-
sity. Notice that in the absence of an external force bulk homogeneity T (r) = T0 = const and
therefore vanishing bulk pressure, Pbulk ≡ 0, are due to hydrostatic and thermodynamic equilib-
rium and the continuity condition of vanishing pressure at bulk-boundary-shell separation r = r̄,
Pbulk(r=r̄)=Pbs(r = r̄) = 0. Namely, dPbulk/dr = dPbulk/dT dT/dr ≡ 0 ⇒ dT/dr ≡ 0 ⇒
T (r) = T0 = const which, together with Pbulk(r = r̄) = Pbs(r = r̄) = 0, yields Pbulk ≡ 0.

2Here, dense refers to densities of the order of 1/(droplet volume), namely ∼ 1.8× 1028 m−3, and thermal corresponds
to temperatures comparable to the stabilisation temperature of the associated Yang-Mills theories, namely T0 ∼ 9.4 keV,
or an energy density ∼ 5× 1014 J m−3.

3This gap is filled by evanescent modes with a spectrum differing distinctly from Rayleigh-Jeans: Rather than decaying
∝ ν2 with decreasing frequency ν the evanescent mode spectrum grows because modes with decreasing ν possess a decreasing
spatial decay length, therefore less energy, and thus are easier excitable.

4This requires an electric-magnetic dual interpretation of U(1) charges in SU(2) Yang-Mills theory, see [153, 31].
5To avoid making this assumption a treatment of the thick boundary shell in terms of imperfect-fluid hydrodynamics

would require a derivation of an effective, selfconsistent, and r dependent equation of state by a spatio-temporal coarse-
graining of the phase and gauge-theory mixture. On this basis, the solution to the hydrostatic fluid equations of the thick
boundary shell could be obtained. This is technically hard and beyond the scope of the present paper, however.
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6.1. INTRODUCTION 61

On one hand, the quantum mass of the droplet is m0 = ω0, monopole breathing associating with the
(circular) frequency ω0 [122, 43, 44]. On the other hand, the spatial extent of the electron refers to a
dynamical equilibrium which is very close to the static equilibrium assumed in (i). This can be pictured as
follows: The thick boundary shell could effectively produce negative pressure by an imbalance of the par-
tial pressures stemming from phase mixing in SU(2)e (negative) and gauge theory mixing with SU(2)CMB

(positive). The bulk surface would then have to impose a positive counter pressure (homogeneous in the
bulk due to the quantum correlation length | ϕ |−1 being much larger than the droplet’s extent), that is
T > T0. Alternatively, the thick boundary shell could exhibit an imbalance of partial pressures to effec-
tively produce positive pressure to which the bulk surface would react by pull (negative pressure). This
describes the droplet’s breathing around a stable equilibrium where bulk and boundary-shell pressures
independently vanish. In the absence of external forces, breathing amplitudes for the deviations of droplet
radii and pressures away from this equilibrium are small6. Therefore, assuming an overall vanishing of
pressures is justified for an initial estimate of monopole charge distribution, bulk gauge-theory mixing,
and droplet mass. Regarding assumption (ii), we argue in Sec. 6.4.3 that shortly after pair creation in
each droplet Yang-Mills phases are not segregated and that therefore, the only radial scale r̄ to determine
segregation is the radial mean subject to a homogeneous probability density over the droplet volume.
Assumption (iii) allows for a quick estimate of droplet mass, see Eq. (6.50), since for the boundary shell it
is a priori not clear what the effective mixing angle between SU(2)CMB and SU(2)e and what the effective
phase mixing within SU(2)e are. Note that the fraction of boundary-shell volume to droplet volume is
∼ 27/64 ∼ 0.42 and that therefore deviations of the true energy density within the boundary shell from
the assumed bulk energy density should not influence the droplet mass estimate on the right-hand side
of Eq. (6.50) strongly.

It is the equivalent descriptions of the system in terms of effective (and only implicit quantum) bulk
thermodynamics on one hand and explicit quantum physics on the other hand that allow to address
essentials of the droplet physics, see Eq. (6.50). The purpose of the present paper is to demonstrate in such
a context what assumptions (i), (ii), and (iii) actually imply for the values of the dimensionless parameters
in electroweak theory. This paper is organised as follows. For the benefit of readability and better access
to our derivations we review in Sec. 2 the thermal phase structure of a (3+1)-dimensional Minkowskian
and effectively quantum SU(2) Yang-Mills theory as it emerges from a 4-dimensional, fundamental, and
classical SU(2) Yang-Mills theory defined on the Euclidean cylinder R3 × S1. In particular, we discuss
the nature of the transitions from deconfining via preconfining to the confining phase and how the
respective (thermal) ground states emerge by dense packings of fundamental topological defects whose
central regions are not resolved in the respective effective theories. Sec. 3 is devoted to a brief review
of previous work on finite-volume SU(2) Yang-Mills thermodynamics inside the droplet that represents
the spatial region of selfintersection of a center-vortex loop, immersed into the confining phase. Such a
droplet traps a perturbed Bogmolnyi-Prasad-Sommerfield (BPS) monopole causing monopole and plasma
vibrations. A stepwise approach towards a droplet model capable of approximating the experimental
value of the electromagnetic fine-structure constant α is developed in Sec. 4. This model, which is short
of mixing two SU(2) gauge theories within the droplet’s bulk, invokes all three phases of SU(2) Yang-
Mills thermodynamics. It also uses a spherical mirror-charge construction to yield the effective droplet
charge as seen by an external electromagnetic probe of long wavelength. Moreover, the model introduces
the mean of the radial position of the monopole over the entire droplet volume to segregate a thick
boundary shell from deconfining-phase bulk thermodynamics. Finally, the droplet charge is expressed as
a bulk-volume average. In Sec. 5 the mixing of two SU(2) Yang-Mills theories is considered to describe
the thermodynamically stable bulk of a droplet. Here, the conditions of monopole-charge universality
and zero bulk pressure determine both the bulk temperature in units of one theory’s critical temperature
for the deconfining-preconfining phase transition as well as the mixing angle. The latter turns out to be
close to experimental values of the weak mixing angle θW, the Weinberg angle. When accounting for
gauge-theory mixing, the model developed in Sec. 4 yields a value of α not far from the experimental
low-energy value. Sec. 5 computes the ratio between reduced Compton radius rc, which is roughly equal
to the core radius of the monopole, and droplet radius r0 from a quantum-thermodynamical electron-mass
formula. As it turns out, r0 is smaller but comparable to the Bohr radius a0. In Sec. 6 we present a brief
summary and an outlook on how the present framework can be applied to understand the emergence and
weak decay of the other two charged lepton species of the SM.

6It is the monopole with a mass fraction of less than 10% [43] that drives breathing and, due the defined phase structure
of SU(2)e, the boundary shell cannot compress/expand itself indefinitely.
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6.2 Three Phases of SU(2) Yang-Mills Thermodynamics

SU(2) Yang-Mills thermodynamics occurs in three distinct phases as shown in Fig. 6.2. Here, we briefly re-
view associated concepts and results, closely following [31]. The infinite-volume limit is assumed through-
out.

Figure 6.2: Phase diagram of SU(2)CMB with Tc = 2.725K in the infinite-volume limit. There are three
distinct phases: (I) deconfining phase, (II) preconfining, and (III) confining phase. In phase III a very
light lepton family emerges whose charged members can be called gammaron and antigammaron and
which posses a mass of 1.5× 10−2 eV. The ground state of SU(2)CMB partly transitions into such charged
leptons at the Hagedorn temperature Tc′ ∼ 2.27K.

6.2.1 Deconfining phase (I)

The deconfining phase takes place for T ≥ Tc. Its thermal ground state can be derived from a spatially
coarse-grained two-point field-strength correlator, evaluated on a trivial-holonomy caloron or anticaloron
[68] whose respective contributions are superimposed. The reason for the use of a trivial-holonomy rather
than a nontrivial-holonomy caloron or anticaloron is its stability under one-loop quantum fluctuations
[154]. (Anti)calorons are (anti)selfdual solutions to the fundamental Yang-Mills equations on the Eu-
clidean cylinder R3×S1, parametrised by 0 ≤ r < ∞, 0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π, 0 ≤ τ ≤ β ≡ 1

T (T denoting
temperature). Therefore, these gauge-field configurations are void of pressure and energy-density, that is,
they do not propagate. The spatial coarse-graining is performed over the central spatial dependence of
the field-strength correlation. This amounts to an integral over the 3D spatial ball, referred to as ’center’
in the following, at any given value of τ . In the singular gauge that the (anti)caloron is constructed in, this
ball centrally locates the topological charge. Specifically, this means that integrating the Chern-Simons
current over a 3-sphere of radius ρ ≫ ϵ > 0, centered at the position of the maximum of the action
density at r = 0, τ0, yields a result which does not depend on ϵ. Here ρ denotes the (anti)caloron radius7.
The average over (anti)caloron radii ρ yields a normalisation which cubically rises with the upper cutoff.
This integral produces a rapidly saturating, harmonic τ -dependence.
Dense spatial packing of centers (spatial homogeneity at the resolution set by a (anti)caloron center’s
radius) gives rise to an inert, temporally winding, and adjoint scalar field ϕ of modulus |ϕ| =

√
Λ3/2πT

which breaks the fundamental gauge symmetry SU(2) down to U(1). Here Λ denotes the Yang-Mills scale
of the deconfining phase. Dense packing implies the overlap of (anti)caloron peripheries (the complements
of their centers) with centers and with one another. After spatial coarse-graining, the collective presence
of all other (anti)caloron peripheries at the position of a given (anti)caloron center accurately is captured
by a pure-gauge solution agsµ to the effective Yang-Mills equation. Out of vanishing pressure and energy
density in a situation, where only the dense packing of centers is considered, the inclusion of peripheral
overlap produces finite ground-state energy density ρgs and pressure P gs. One has

ρgs = −P gs = 4πΛ3T . (6.3)

7Throughout the paper the symbol ρ is used to denote various quantities in different contexts: caloron radius, plasma
energy density, and probability density for the location of a monopole within the droplet’s bulk. What is meant when will
be clear from the context.
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This vacuum equation of state is an important aspect of the ‘thermal ground state’. Microscopically,
(anti)caloron overlap transiently changes the (anti)caloron’s holonomy from trivial to mildly nontrivial
which introduces the negative ground-state pressure described by Eq. (6.3)[154].

By virtue of the adjoint Higgs mechanism invoked by field ϕ, two out of three components (dimension of
SU(2) algebra su(2) equals three) of the effectively propagating gauge field aµ are massive where mass
m depends on T (quasiparticle mass). This can be seen after de-winding the field ϕ and nullifying the
effective ground-state gauge field agsµ by a singular but admissible gauge transformation. Under such a
gauge transformation, the Polyakov loop, evaluated on agsµ , changes its value from the center element −12

to the center element 12. This confirms that the theory is in a deconfining phase, that is, the electric
center symmetry Z2 is broken dynamically.

Effective, propagating excitations can be grouped into purely quantum thermal for all frequencies (massive
modes) and classical, off-shell or quantum thermal, depending on frequency (massless mode). The one-
loop approximation to thermodynamical bulk quantities like pressure P or energy density ρ, subjecting
noninteracting excitations to the presence of the thermal ground state, is 99% accurate. Small corrections
to this estimate can be computed in terms of higher loops. They collectively describe the effects of rare
dissociations by large holonomy shifts in (anti)calorons. The dissociation products are screened monopole-
antimonopole pairs.

Demanding that one-loop fluctuations and the thermal ground-state estimate are thermodynamically
consistent (implicit T -dependences cancel in Legendre transformations: dP

dm = 0, P the one-loop pressure,
m the quasiparticle mass) one derives the following first-order ordinary differential equation [31]

∂aλ = −24λ4a

(2π)6
D(2a)

1 + 24λ3a2

(2π)6 D(2a)
, (6.4)

where

a ≡ m

2T
= 2πeλ−3/2 (6.5)

and

D(y) ≡
∫ ∞

0

dx
x2√

x2 + y2
1

exp
(√

x2 + y2
)
− 1

. (6.6)

Here, e denotes the effective gauge coupling in the deconfining phase, and dimensionless temperature
is defined as λ ≡ 2πT

Λ . The evolution described by Eq. (6.4) possesses two fixed points: a = 0 and
a = ∞. The latter associates with a critical temperature λc of value λc = 13.87, the former describes
the behaviour at asymptotically high temperatures. For a ≪ 1 the downward-in-temperature evolution
described by Eq. (6.4) is solved by

a(λ) = 4
√
2π2λ−3/2

(
1− λ

λi

[
1− aiλ

3
i

32π4

])1/2

, (6.7)

subject to the initial condition a(λi) = ai ≪ 1 and λi ≫ 1. The attractor a(λ) = 4
√
2π2λ−3/2 implies,

by virtue of Eq. (6.5), that the effective gauge coupling e is a constant almost everywhere:

e ≡
√
8π . (6.8)

Eq.(6.7) indicates that the condition a ≪ 1, under which it was derived, is violated at small temperatures.
Since the exact solution continues to grow with decreasing λ (negative definiteness of right-hand side of
Eq. (6.4)) the right-hand side of Eq. (6.4) will be suppressed exponentially. This implies a behaviour
a(λ) ∝ − log(λ − λc) for λ ↘ λc and therefore a logarithmic singularity at λc also for e(λ), see Fig. 6.3.
Physically, such a singularity implies masslessness for isolated screened monopoles, liberated by the
dissociation of large-holonomy (anti)calorons and collectively associable to effective radiative corrections
[155]. Therefore, as λ ↘ λc, the holonomy of a typical (anti)caloron moves from small to large [156].
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Figure 6.3: The effective gauge coupling of the deconfining phase in SU(2) Yang-Mills thermodynamics as
a function of dimensionless temperature λ = 2πT

Λ ≥ 13.87 = λc where Λ denotes the Yang-Mills scale, and
Tc is the critical temperature for the deconfining-preconfining phase transition. Temperature λ0 = 18.31
refers to the point of vanishing pressure.

6.2.2 Preconfining phase (II)

The preconfining phase extends from λc = 13.87 (onset of monopole condensation, second-order phase
transition, pressures on both side of the phase boundary match, thermal energy density of monopole-
antimonopole-condensed system with one massive photonic vector excitation is higher on the preconfining
than on the deconfining side of the phase boundary with one massless photonic vector excitation, coex-
istence of deconfining and preconfining phases, phase tunneling) via λ = λ∗ = 12.15 (preconfining-phase
energy density matches supercooled thermal energy density of deconfining ground state with one mass-
less photonic excitation, phase tunneling suppressed) to λc′ = 11.57 (massive photon decouples, entropy
vanishes, onset of Hagedorn transition, discontinuous phase changes of order parameter [157] associate
with tunneling towards (magnetic) Z2 degenerate ground state, associated center-flux creation). Mi-
croscopically, the thermal ground state of the preconfining phase is constituted from massless magnetic
monopoles and antimonopoles. In physics models, these are dually interpreted and therefore represent
electric monopoles and antimonopoles [153].

Dense packing of monopole and antimonopole cores is described by an effective, inert, complex scalar field
φ which breaks the remaining gauge symmetry U(1) dynamically. The overlap of all peripheries at the
position of a given monopole or antimonopole core is described by an effective pure-gauge configuration
aD,gs
µ . In the preconfining phase, the Polyakov loop, evaluated on the effective ground-state gauge field

aD,gs
µ , is unity in both winding and unitary gauge. This is indicative of the fact that the preconfining

phase already confines infinitely heavy, fundamental test charges, although massive, propagating gauge
modes can still be excited. The pressure throughout the deconfining phase is negative. If it were not for
phase mixing, the ground state of the preconfining phase would be a superconductor. But even in the
presence of phase mixing, electric conductance is expected to be very high for λc′ ≤ λ ≤ λc compared to
the deconfining and confining phases. At λc the effective U(1) gauge coupling g vanishes with mean-field
exponent 1

2 , at λc′ g diverges logarithmically [31].

6.2.3 Confining phase (III)

At λc′ massive Abrikosov-Nielsen-Oleson vortex loops without selfintersections, which are instable defects
for λ′

c < λ ≤ λc due to their finite, resolvable core-sizes, become massless and metastable. These massless
solitons, so-called thin center-vortex loops, break the magnetic center symmetry Z2 dynamically [157]
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upon their condensation. Condensation is enabled by shrinkage to round, massless points [158]. The
ensuing new Z2 degenerate ground state, which confines fundamental test charges and does not support
thermal gauge-mode excitation anymore, can be shown to possess no energy density and to exert no
pressure [31]. The liberation of thin center-vortex loops at λc′ from the ground state of the preconfining
phase initiates the Hagedorn transition. Effectively, this process is described in terms of phase changes
by ±π of a complex scalar field Φ.Such phase changes accompany tunneling events through tangentially
convex regions of a potential uniquely determined by Z2 symmetry. Collisions of center-vortex loops
lead to twistings and the formations of stable regions of selfintersections which, in their restframes, are
characterised by the droplets of radius r0 that we have alluded to in Sec. 1, see also Sec. 3. The density
of states Ω(E) of solitons, which are subject to an arbitrary number of selfintersections, rises more than
exponentially in energy E. Therefore, no partition function exists for λ ∼ λc′ (confining phase), and
thermodynamics is not a valid description anymore. (This can already be inferred from the fact that for
λ ↘ λc′ the entropy density vanishes which violates Nernst’s theorem.)

6.2.4 Summary of phase structure of SU(2) Yang-Mills thermodynamics

To summarise, SU(2) Yang-Mills thermodynamics comes in three phases, see Fig. 6.2. The deconfining
phase (phase I) breaks SU(2) to U(1) in terms of a thermal ground state estimate which is composed
of trivial-holonomy anticalorons and calorons of topological charge k = ∓1. For λ ≫ λc rare dissocia-
tions of (anti)calorons, induced by large holonomy shifts, create isolated monopoles and antimonopoles
which, however, are spatially not resolved in the effective theory. For λ ∼ 2 . . . 3λc the distance between
monopoles and antimonopoles is comparable to the spatial resolution set by |ϕ|−1, and therefore they
become explicit and isolated degrees of freedom. In the effective theory, the collective imprint of these
monopoles and antimonopoles onto thermodynamical quantities (a ∼ 1% effect compared to the free
quasiparticle approximation [31]) or dispersion laws for propagating gauge modes can be studied in terms
of (resummed) radiative corrections. There is a temperature, λ0 ∼ 1.32λc, where a finite-size system can
be stabilised due to vanishing pressure. At λc monopoles and antimonopoles become massless, pointlike
defects that are densely packed: they represent a would-be superconductive condensate. However, phase
mixing reduces conductivity to finite values. Pressure is negative throughout the preconfining phase. At
λc′ = 0.83λc the monopole-antimonopole condensate of the preconfining phase undergoes a violent decay
into center-vortex loops of any selfintersection number n ≥ 0. This initiates the (nonthermal) Hagdorn
transition. The new ground state is composed of massless, shrunk-to-points center-vortex loops, possesses
no energy density and exerts no pressure. Each selfintersection point of a center-vortex loop represents
the droplet of radius r0 (scaled by the ratio of the respective Yang-Mills scales) that is addressed in
the next section. At a finite resolution, provided by nonthermal, external electromagnetic fields, only
center-vortex loops with n = 0, 1 can be regarded stable solitons.

6.3 Selfintersecting Center-Vortex Loop and Magnetic Moment

A thin center vortex can be understood as a chain of unresolved monopoles and antimonopoles whose
flux is confined to a thin tube [159]. The stable, massive soliton, represented by a center-vortex loop
with n = 1, then originates from a localised investment of energy (pair creation) into round-point center-
vortex loops with n = 0. These round points constitute the ground state of the confining phase. Such
an investment of energy implies stretching / twisting / pinching and the eventual release of a monopole
or an antimonopole from the tube. As a consequence, points of vortex selfintersection are defined. Since
a monopole or antimonopole cannot exist as isolated defects in the confining vacuum, each point of
selfintersection needs to evolve into an extended ball-like spatial region (a droplet). The deconfining,
pressureless bulk of such a droplet facilitates a finite-mass and finite-extent monopole or antimonmopole
at the temperature T = T0 = 1.32Tc. The droplet comprises a boundary shell, which exhibits a temper-
ature gradient, where positive pressure generated by turbulences (Hagedorn transition) is superimposed
by the negative pressures contributed by preconfining and deconfining phases. On temporal and spatial
average, zero pressure of the boundary shell is assumed in the remainder of this paper to continue the
vanishing pressure of the confining phase outside the droplet. The center flux external to the droplet
forms a flux configuration which is of figure-eight topology.
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Let us now discuss why such a topology relates to the spin- 12 nature of the electron and how an according
magnetic moment µ⃗ emerges. Dually interpreted, a quantum of magnetic center flux represents a quantum
of electric center flux, in turn, inducing a quantum of magnetic moment. Fig. 6.4 depicts the center-vortex
loop with n = 1. Since the electric center flux is two-fold degenerate (it can flow along or counter a fixed
tangential vector to the vortex loop) the projection of µ⃗ onto a quantisation axis is also twofold degenerate,
and one has in the isolated case

µ⃗ = −g µB S⃗ , (6.9)

where g = 2, µB ≡ − q
2me

is the Bohr magneton, me and q are the electron’s mass and charge, respectively,

and S⃗ is the spin vector. The two possible projections of S⃗ are ± 1
2 . Notice that the quantisation axis is

parallel to the normal n̂ of the plane that the figure-eight configuration is considered to be immersed in,
for certain characteristics of curve-shrinking planar figure-eight configurations, see [160]. Picturing the
droplet charge, modulo quantum jitter [161, 162], to move along a circle of radius comparable to a0 (Bohr
radius), see Sec. 6.5.4, the Bohr magneton describes its effective revolution in time ∆t as triggered by the
revolution within the same span of time of one of the unresolved monopoles or antimonopoles along the
thin vortex loop. Namely, in associating with L⃗ = −gS⃗ the orbital angular momentum of the droplet
subject to |L⃗| = a0 · me · 2πa0/(∆t), the magnetic moment µ⃗ of Eq. (6.9) can simply be interpreted as
µ⃗ = ±I πa20 n̂ which is the magnetic moment induced by a circular current loop of radius a0 carrying the
current I = q

∆t . Since a center-vortex loop in reality is not isolated (it is immersed into the CMB, and it
connects to a fluctuating thick boundary shell) one expects a slight deviation from the value g = 2 which
to a high precision is computable in Quantum Electrodynamics [163]. A derivation of µB from jittery
revolutions of the droplet is beyond the scope of the present paper, however. Ignoring for the moment
the complications of electroweak decays, mixing effects, and the tendency of vortex loops to shrink under
a lowering of external resolution [160], we propose the three lepton families to match with doublets of
center-vortex loops (n = 0, 1). Each doublet would then emerge within one of three SU(2) Yang-Mills
theories, whose scales relate to charged lepton masses, see Sec. 5.4 for a derivation of droplet size and
Tc from the mass of any given charged lepton. For the first lepton family, where the soliton with n = 1
(electron) is stable, the implications of such an assignment are pursued in the remainder of this paper.

Figure 6.4: The electron as a soliton in SU(2) Yang-Mills theory. For simplicity, mixing effects with
another SU(2) Yang-Mills theory are ignored in this figure. The bulk of the droplet, containing an
isolated BPS monopole, is in the deconfining phase (I) at vanishing pressure (temperature T0), the thick
boundary shell (II) radially interpolates between a thermal 2nd-order like (inner part of shell, onset
of superconductivity / preconfining phase) and a nonthermal Hagedorn phase transition (outer part of
shell, full superconductivity). On average, this boundary shell should be of vanishing pressure due to the
mixing of all three phases and possesses a high electric conductance. The confining phase (III) prevails
outside of the droplet. Isolated gauge modes may propagate as waves in this phase if their frequency is
lower than a limit set by the Yang-Mills scale. The monopole within the bulk of the droplet breathes at a
frequency me (rest mass of electron [43]) and generates a time dependent vibration of spatially constant
amplitude throughout the droplet. Connected to the thick boundary shell are center-vortex lines, which
induce the magnetic moment of the soliton. Topologically, these form a figure eight with the vortex-line
selfintersection - producing an isolated monopole or antimonopole - being responsible for the origination
of the droplet, see text.
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6.4 Value of Electromagnetic Fine-Structure Constant

6.4.1 Trapping a single monopole or antimonopole inside the droplet’s bulk

Let us first discuss the simplified situation in which the physics of a droplet is governed by a single gauge
theory: SU(2)e. We aim to derive the dual charge8 of such a system. A monopole or an antimonopole is
immersed into the droplet’s bulk of deconfining phase at temperature T0. From now on we consider the
situation of a trapped monopole only, since that of a trapped antimonopole simply is described by sign
inversions of all charges considered. As discussed previously, T0 = 1.32Tc,e is the temperature where the
pressure of the droplet vanishes [44]. Due to the high conductance of the boundary shell (r̄ ≤ r ≤ r0) and
for r̄ ∼ r0 a spherical mirror-charge construction [164] can be used to approximate the droplet charge for
probes of long wavelengths. This construction is depicted in Fig. 6.5. Here s or s′ denote the respective
distances between observer and monopole or observer and mirror charge. Monopole and mirror charge
are both positioned on a radial ray pointing away from the droplet center. As seen from the droplet
center, angle θ subtends the direction of the observer and the direction of this ray. The distance between
observer and droplet center is denoted by o. In thin-shell approximation, we set r̄ = r0.

Since a mirror charge construction for boundary conditions on a spherical surface operates with Coulomb
potentials for the inducing and the mirror charge [164], it is essential to secure that a Yukawa factor
exp(−s/ls) for the potential associated with the monopole’s charge inside the ball can be treated as
unity. Here ls denotes the charge screening length that arises from other screened and stable dipoles in
the infinite-volume plasma [31]. Let us thus check the selfconsistency of only one explicit monopole or
antimonopole inhabitating the droplet of radius r0. This requires an estimate of ls/r0 ≫ 1. In [44] it was
found for a pure SU(2)e theory describing the droplet that

r0 =
4.043

πT0
= 0.44Λ−1

e . (6.10)

In Sec. 6.5.4 we derive a deviating estimate of r0 which includes the mixing of SU(2)CMB and SU(2)e.
The screening length ls = 71.43 / T was extracted from a two-loop radiative correction to the pressure at
large temperatures, T ≫ T0, see [165]. For an estimate, we may continue this asymptotic result to T0 to
obtain

ls
r0

∼ 55.5 ≫ 1 . (6.11)

Therefore, for 0 ≤ s ≤ 2 r0 a Yukawa factor exp(−s/ls) to the Coulomb potential, which could arise from
other explicit monopoles and antimonopoles within the droplet, can be set equal to unity. Thus, the
assumption of a single monopole being trapped in the bulk of the droplet indeed is selfconsistent.

6.4.2 Thin-shell approximation

In deriving the effective charge of the droplet at bulk temperature T = T0 and in the long-wavelength
limit, we first analyse the limits of vanishing shell thickness r0 = r̄ and superconductivity of the boundary
shell, see Fig. 6.4. Moreover, we neglect the effects of monopole breathing [119, 120] and implied position
changes in this section. Under these simplifying assumptions, the static potential outside the droplet
reads [164]

V (o, r, θ) =
1

4π

(
qe
s

+
q′e
s′

)
=

qe
4π

(
r − r0

r

1

o
+

(r2 − br0) cos θ

r

1

o2

+
(r3 − b2r0)(1− 3 cos2 θ)

2r

1

o3

+ O
(

1

o4

))
, (o > r0) , (6.12)

where s ≡
√
o2 + r2 − 2or cos θ, s′ ≡

√
o2 + b2 − 2ob cos θ, b ≡ r20

r , and q′e ≡ −qe
r0
r . From Eq. (6.12) and

for o ≫ r0 we read off the effective charge ge of the droplet from the coefficient of 1
o as

ge =
r − r0

r
qe . (6.13)

8The magnetic charge of the monopole is physically interpreted as an electric charge, see [153, 31].
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Figure 6.5: Construction of the effective droplet charge by superposition of the Coulomb potentials of
the monopole charge qe with a mirror charge q′e outside the droplet due to superconductivity of a thin
boundary shell. In reality, a finite radial range r0 − d ≤ r ≤ r0 associates with the Hagedorn transition.
The reason why r̄ = 3

4 r0 (dotted line) delineates region II from region I, compare with Fig. 6.4, is discussed
in Sec. 6.4.3.

6.4.3 Averaging the droplet’s effective charge over monopole locations

Droplet creation and thermalisation

When a droplet of radius r0, containing a trapped monopole, forms in an SU(2)e gauge theory it is a
priori not thermalised, and the monopole’s location within the droplet, which is a mixed state of all three
phases, is equally likely everywhere in the ball apart from a thin boundary shell. A uniform a priori
distribution of monopole location in Cartesian coordinates is then cast into a nonflat probability density
ρ(r, θ) in spherical coordinates for 0 ≤ r < r0 and for a polar angle 0 ≤ θ < π, see Sec. 6.4.3. The thin
boundary shell of the droplet (the radial location r ∼ r0 where the Hagedorn transition to the confin-
ing phase takes place) is characterised by decoupled dual Abelian gauge modes and off-Cartan modes
which, due to their large masses, cannot be redistributed into the interior of the droplet. Only after bulk
thermalisation is attained for a central radial region does an extended boundary region materialise – a
thick boundary shell (r̄ = ξr0 < r < r0 with 0 < ξ < 1) exhibiting a temperature gradient and defining
the transition from the deconfining via the preconfining to the confining phase via phase mixing. As the
trapped monopole enters this region, it rapidly changes its identity9.

Let us discuss this situation and its consequences in more detail. If, after bulk thermalisation, the
monopole is kicked towards the thick boundary shell then it undergoes mass and charge reduction until it
becomes a part of the (spatially inhomogeneous) monopole-antimonopole condensate contributing to the
phase mixture there [31]. Yet, to explicitly conserve charge (or 3D winding number) and droplet mass,
another monopole, formerly part of the condensate, needs to act in place of the original monopole in
the bulk of the droplet (deconfining phase). Ignoring correlations between monopoles and antimonopoles
inside and close to the condensate within the boundary shell, one may approximate a given monopole’s
probability density of location by the a priori distribution ρ(r, θ). However, the monopole’s charge qe
(and its mass) is a function of r which is flat and finite in the droplet’s bulk (deconfining phase) but
rapidly approaches zero as the radial location approaches r̄ = ξr0. Since no length scale other than r0
characterises the a priori distribution ρ(r, θ) in the limit of vanishing probe four-momentum transfer, we
are led to associate ξ with the mean radial position of the monopole (fluctuations of this mean can be

9The monopole is exposed to the caloron’s 4D winding number, which is localised spatially deeply within its center [31].
This 4D Euclidean winding is associated with the quantum of action ℏ [31] and therefore exerts undeterministic kicks and
position changes onto the monopole at the breathing frequency of the monopole.
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neglected at vanishing four-momentum transfer, see Sec. 6.4.3) according to ρ,

⟨r⟩ρ
r0

≡ ξ =
3

4
. (6.14)

Physically, the droplet’s bulk is subject to a mixing of two thermal gauge theories, SU(2)e and SU(2)CMB,
see Sec. 6.5.2. This, however, does not invalidate the above argument, since the (nonthermal) probe field
always resides in SU(2)e [31] and therefore is sensitive only to the physics acted out by (thermal) SU(2)e
gauge fields inside the droplet.

Naive thin-shell approximation and value of fine-structure constant α

The droplet’s effective charge, when probed with an energy-momentum transfer small compared to the
Yang-Mills scale Λe, due to the frequent changes of monopole location inside the droplet’s bulk (kicks
issued by a combination of Planck’s quantum of action ℏ and the lowest breathing frequency of the
monopole [119, 120, 44, 43]) compared to the frequency of an external probe field, will represent itself as
an angular and radial average subject to the following a priori probability density ρ prior to thermalisation
(uniform distribution in Cartesian coordinates over ball volume)

ρ(r, θ) =
3r2

4πr30
sin θ , (0 ≤ r < r0, 0 ≤ θ < π) . (6.15)

Performing the θ-average of V (o, r, θ) in Eq. (6.12) w.r.t. the distribution ρ(r, θ) in Eq. (6.15), we conclude
that there is no dipole (and no quadrupole) contribution to the electric charge distribution of the droplet
– in agreement with experimental bounds on a potential, feeble CP violation by an electric dipole moment
[166].
In particular, the droplet’s charge is obtained by an average of the static system’s charge in Eq. (6.13)
w.r.t. the probability density ρ(r, θ) in Eq. (6.15). It is given as

⟨ge⟩ρ = 3

∫ r0

0

dr
r(r − r0)

r30
qe = −1

2
qe . (6.16)

Let us discuss why this result is statistically stable. The monopole changes its position within the droplet
at a rate comparable to its breathing frequency ω0 = me [122] where me denotes the electron mass
[119, 120, 44, 43]. If the droplet is probed by an external electromagnetic wave of frequency ωp ≪ ω0

then the distribution ρ(r, θ) of Eq. (6.15) is sampled independently N = ω0

ωp
≫ 1 many times during each

probe oscillation. Therefore, the value of ge, averaged over one probe oscillation, has mean

ḡe ≡
1

N

N∑
i=1

⟨ge,i⟩ρ = ⟨ge⟩ρ = −1

2
qe , (6.17)

and standard deviation σge/
√
N where σge =

√
3
2 qe is the standard deviation of ge with respect to ρ(r, θ).

In the limit of vanishing four-momentum transfer (N → ∞), the droplet’s effective charge hence does not
fluctuate and is given by Eq. (6.16). Such an argument in favour of the non-fluctuativity of the effective
chargecan be extended to assure the nonfluctuativity of any observable function f(r) of the random
variable r. For example, one may consider the mean radial position, f(r) = r, see also Eq. (6.14), for
which one has

r̄ ≡ 1

N

N∑
i=1

⟨ri⟩ρ = ⟨r⟩ρ =
3

4
r0 (6.18)

with a standard deviation σr/
√
N where σr =

√
3/80 r0.

Since the external gauge field probing the droplet’s charge resides in the Cartan algebra of SU(2)e [31]
and ignoring the effects due to a finite boundary-shell thickness, this would yield a value of the inverse
electromagnetic fine-structure constant α−1 of

α−1 =
4π

ḡ2e
= 4

e2(λ0)

4π
= 53.464 , (6.19)

where e(λ0) = 12.96, see [43, 44]. Obviously, this is too low compared to the value α−1 ∼ 137 associated
with Eq. (6.1). Therefore, in Sec. 6.4.3 we consider a model implementing the effects of a thick boundary
shell.
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Modelling a thick boundary shell after thermalisation

According to the discussion of Secs. 6.4.3 and 6.4.3 about droplet generation the only length scale available
to radially separate bulk thermodynamics (deconfining phase) from the thick boundary shell, where the
transitions from deconfining via preconfining to confining phase take place and where an isolated monopole
cannot exist, is r̄ = ξr0 with ξ = 3

4 , see Eqs. (6.14) and (6.18). This corrects the thin-shell approximation
for the droplet charge qe to

ḡe = ⟨ge⟩ρ = 3

∫ 3
4 r0

0

dr
r(r − r0)

r30
qe = −27

64
qe . (6.20)

The inverse electromagnetic fine-structure constant α−1 would then compute as

α−1 =
4π

ḡ2e
=

(
64

27

)2
e2(λ0)

4π
= 75.099 . (6.21)

Although this value is higher than the one of Eq. (6.19), it is still quite far off the experimental value
associated with Eq. (6.1). One may think that this discrepancy arises because thin-shell perfect-conductor
boundary conditions were used to model a thick boundary shell of finite conductance. Certainly, there
is a (not easy to compute) correction to Eq. (6.21) to compensate for this simplification. However, a
far more important conceptual ingredient is missing in Eq. (6.19): mixing effects due to the two gauge
theories SU(2)e and SU(2)CMB providing a stable mix of deconfining-phase plasmas in the bulk of the
droplet to yield an environment that allows the existence of an isolated monopole for each theory. It is
the SU(2)e component of this mixture whose monopole together with its mirror charge determine the
charge distribution of an electron as seen by a directed, external SU(2)e probe field. To analyse this, is
the subject of the next section.

6.5 SU(2) Gauge Group Mixing in the Droplet

6.5.1 Thermal SU(2) gauge-theory mixing and comparison with electroweak
theory

Outside the droplet (confining phase of SU(2)e, deconfining phase of SU(2)CMB due to the presence of
the Cosmic Microwave Background), the directedly propagating (nonthermal) gauge field is the effective
Cartan gauge field a3µ,e [167, 31]. The Standard Model of Particle Physics (SM) describes this nonthermal
electromagnetic mode by a global mixture of the gauge mode Bµ of U(1)Y and the Cartan gauge modeW 0

µ

of SU(2)W. However, due to the finite extent of the deconfining SU(2)e plasma in the present approach
mixing of SU(2)CMB and SU(2)e occurs only inside the droplet due to outside temperatures being much
smaller than the critical temperature Tc,e of the deconfining-preconfining phase transition of SU(2)e.
De-mixing of the two theories outside the droplet takes place because each is in a different phase. Here,
we consider a mixing between the full gauge groups SU(2)e and SU(2)CMB inside the droplet. That is,
inside the droplet, due to thermalisation in one and the same deconfining phase the fields fCMB and fe
are actively rotated as (

fCMB

fe

)
−→

(
cos θW − sin θW
sin θW cos θW

)(
fCMB

fe

)
, (6.22)

where θW denotes the mixing (or Weinberg) angle, and field f stands for either the fundamental field
strength tensor Fµν or the effective gauge field aµ in unitary-Coulomb gauge [31]. An effective, propa-
gating external field a3µ,e thus couples to the droplet charge as

q = ḡe(λ0) cos θW(λ0) = −27

64
qe(λ0) cos θW(λ0)

= −27

64

4π

e(λ0)
cos θW(λ0) , (6.23)

compare with Eqs. (6.20) and (6.22). Note that we continue to define the dimensionless temperature λ as
λ ≡ 2πT

Λe
where Λe denotes the Yang-Mills scale of SU(2)e, amounting to a few keV [44]. The precise value

under gauge-theory mixing is computed in Sec. 6.5.4. Also, we now denote by λ0 the temperature where
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the pressure of the mixing plasmas of SU(2)CMB and SU(2)e vanishes. Likewise, an effective, external
field a3µ,CMB would couple to a reduced monopole charge

qCMB(λ0) sin θW(λ0) =
4π

e(κ−1λ0)
sin θW(λ0) . (6.24)

Since SU(2)CMB is in the deconfining phase inside and outside the droplet, there is no mirror-charge
factor. Also, due to the small value of the Yang-Mills scale ΛCMB the directed propagation of a3µ,CMB is
constrained to long wavelengths [167, 31]. Here, we introduce

κ ≡ ΛCMB/Λe ≪ 1 , (6.25)

based on ΛCMB ∼ 10−4 eV. Note that e(κ−1λ0) =
√
8π to a very good approximation. In the droplet’s

bulk, however, (thermal) gauge fields a3µ,e and a3µ,CMB couple with reduced strength as

qe(λ0) cos θW(λ0) =
4π

e(λ0)
cos θW(λ0) (6.26)

and as in Eq. (6.24) to their respective monopoles. As in the SM [168, 140, 141], the universality of the
two reduced couplings in Eqs. (6.26) and (6.24) (mixed gauge field couples to each charge with the same
strength) thus requires

qCMB(λ0) sin θW(λ0) = qe(λ0) cos θW(λ0) . (6.27)

Eq. (6.27) is the definition exploited in Sec. 6.5.2 to thermodynamically determine the value of θW.
Eq. (6.27) also implies the following correspondences between the Cartan algebra in SU(2)CMB×SU(2)e
and the Cartan algebra (unitary gauge) in the gauge group of the Standard Model SU(2)W×U(1)Y at
λ0:

Cartan(su(2)e) = u(1)Y ,

Cartan(su(2)CMB) = Cartan(su(2)W) . (6.28)

Considering that SU(2)CMB is deeply in its deconfining phase close to the droplet surface at λc′ , keeping
the quasiparticle masses of its off-Cartan fluctuations at values well below 10−4 eV, see also the discussion
in Sec. 6, we are led to make the following assignment between off-Cartan members of the algebras of
SU(2)CMB×SU(2)e and SU(2)W×U(1)Y at λc′ , however:

off-Cartan(su(2)e) = off-Cartan(su(2)W) . (6.29)

That is, in the SU(2)CMB×SU(2)e model θW may change as a process relegates its focus from the de-
confining bulk (definition of droplet’s charge in interaction with long-wavelength external probes) to the
boundary shell (electroweak conversions from heavier to lighter charged leptons).
In the SM’s (extremely successful) nonthermal, weak-coupling approach and complete (rather than step-
wise) SU(2) gauge-symmetry breaking, invoked by a fundamentally charged Higgs-field of (unitary-gauge)
neutral vacuum expectation vH = 246GeV, the Weinberg angle θW can also be defined via

cos θW =
mW±

mZ0

, (6.30)

where mW± and mZ0 denote the masses of the vector bosons mediating the weak force.
In the SU(2)CMB×SU(2)e model proposed here, the large hierarchy of measured vector-boson mass of
80.4GeV (W±) and 90.2GeV (Z0) characterises the decoupling of effective gauge fields in SU(2)e at
the deconfining-preconfining (W±) and preconfining-confining (Z0) phase boundaries as a consequence
of divergent effective coupling constants. Collectively, this physics takes place within the thick boundary
shell. The effective Higgs mechanisms at play are an adjoint one in the former and an Abelian one in the
latter situation. Therefore, although the effective nonthermal Cartan mode of SU(2)e, a

3
µ,e, is modelled

by the gauge group U(1)Y in the Standard Model, the effective off-Cartan modes of SU(2)e, a
1,2
µ,e, close

to the Hagedorn transition play the role of the massive vector bosons W±
µ of SU(2)W in the Standard

Model. Also, the effective dual, massive U(1) mode of the preconfining phase in SU(2)e plays the role of
the massive vector boson Z0 in the Standard Model. Due to phase mixture in SU(2)e, setting in slightly
below Tc,e, the masses mW± and mZ0 cannot be defined thermodynamically in the SU(2)CMB×SU(2)e
model. Because of this and since, thermodynamically, all massive gauge bosons are solely generated in
SU(2)e a definition of θW via Eq. (6.30) would be meaningless, and we have to resort to Eq. (6.27) for
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a useful thermodynamical definition of θW. In the absence of CP-violating terms in the fundamental
Yang-Mills action, like in the SM, there is no theoretical basis in the SU(2)CMB×SU(2)e model for why
only left-handed charged currents couple to the weak, massive gauge fields. Also, lepton universality,
which comprises instable mu- and tau-leptons and their neutrinos, is a concept difficult to describe ther-
modynamically by an extension of our present model to SU(2)CMB×SU(2)e×SU(2)µ×SU(2)τ . However,
certain considerations are made in Sec. 6. Finally, it is not clear how a neutral scalar excitation of mass
126GeV – the Higgs boson – collectively emerges in the SU(2)CMB×SU(2)e model as an excitation of
the phase- and gauge-group mixed plasma of the thick boundary shell. The Standard Model is highly
efficient and successful in addressing all these features. For the time being, we therefore must confine
our discussion of electroweak physics to the electromagnetic coupling of electrons to thermal photons or
propagating electromagnetic waves. Still, such limited understanding of the underpinning of electroweak
physics in the SU(2)CMB×SU(2)e model produces values of α and θW which are close to their SM values,
as we shall see in Secs. 6.5.3 and 6.5.2, respectively.

6.5.2 Mixing angle θW

During the creation of an electron-positron pair, we must assume that the fundamental gauge fields that
initiate the formation of the two droplets are purely Aµ,e since the initial two-photon state is nonthermal
(θW = 0) [31]. Once the droplet volumes define themselves and after internal thermal equilibrium is
attained, there is a fixed mixing angle θW. An intriguing feature of the Standard Model is that the value
of θW can be computed at a certain four-momentum transfer from the value of θW measured at another
four-momentum transfer. The intriguing feature of SU(2) Yang-Mills thermodynamics is that the value
of θW at zero four-momentum transfer appears to be computable independently of what is assumed so
far in deriving the value of α. Let us demonstrate this.
Due to mixing of SU(2)CMB and SU(2)e the deconfining-phase bulk pressure of the droplet Pbulk at
temperature T ≥ Tc,e (Tc,e the critical temperature for the deconfining-preconfining phase transition in
SU(2)e) and to one-loop accuracy is given as10

Pbulk(T ) =
(
1− sin2 θW(T )

)
Pe(T ) + sin2 θW(T )PCMB(T )

= Pe(T ) + sin2 θW(T )(PCMB(T )− Pe(T ))

= Pe(T ) + sin2 θW(T ) (PCMB,gs(T )− Pe,gs(T ))

+ sin2 θW(T ) (PCMB,3 pols(T )− Pe,3 pols(T )) ,

(6.31)

where Pe, PCMB denote the total pressures in deconfining SU(2)e and SU(2)CMB, respectively. They
are defined in detail in Eqs. (6.38), (6.39), and (6.40) below. The indices ’gs’ and ’3 pols’ refer to the
contributions to these pressures arising from the respective ground states and the two effective gauge-
mode excitations with three polarisations (due to the adjoint Higgs mechanisms invoked by the thermal
ground states). The contributions of the effective gauge-mode excitations with two polarisations (massless
modes) cancel exactly between SU(2)e and SU(2)CMB in the term on the right-hand side of in Eq. (6.31)
which is proportional to sin2 θW(T ). Note that the pressure of a monopole intrinsically is nil.
From now on, T0 and T0,e are agreed to denote the zeros of Pbulk and Pe, respectively. Therefore,
Eq. (6.31) implies that

T0 =
λ0

2π
Λe ≤ T0,e =

λ0,e

2π
Λe (π > θW ≥ 0) . (6.32)

The inequality (6.32) holds since the differences PCMB,gs−Pe,gs and PCMB,3 pols−Pe,3 pols both are positive
due to Eq. (6.25) as well as 11 Eqs. (6.38), (6.39), and (6.40). This means that Pe(T0) must be negative

10Components of the perfect-fluid thermal energy-momentum tensor θµν such as the pressure P or the energy density ρ
are bilinear functionals of the fundamental field-strength tensor Fµν . Therefore, mixing coefficients sin θW or cos θW appear
in squared form.

11We identify:

PCMB,3 pols(T ) = −12
κ4(Λeλ)4

(2π)6
P̃ (2a(κ−1λ)) ,

PCMB,gs(T ) = −2κ3Λ4
eλ ,

Pe,3 pols(T ) = −12
(Λeλ)4

(2π)6
P̃ (2a(λ)) ,

Pe,gs(T ) = −2Λ4
eλ . (6.33)
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which, in turn, implies that T0 ≤ T0,e. According to [43], one has

T0,e = 1.32Tc,e or λ0,e = 1.32λc,e = 18.31 . (6.34)

Because of Eqs. (6.32), (6.25) and (6.34), we may to a very good approximation use the asymptotic value

qCMB =
4π

e(κ−1λ0)
≈

√
2 (6.35)

in Eq. (6.27). Thus, we have

tan θW(λ0) =
e(κ−1λ0)

e(λ0)
≈

√
8π

e(λ0)
. (6.36)

Substituting Eq. (6.36) in Eq. (6.31), we finally arrive at

0 = Pbulk(T0)

=
(
1− sin2 θW(λ0)

)
Pe(T0) + sin2 θW(λ0)PCMB(T0)

=

(
1− e2(κ−1λ0)

e2(λ0) + e2(κ−1λ0)

)
Pe(T0)

+
e2(κ−1λ0)

e2(λ0) + e2(κ−1λ0)
PCMB(T0)

≈
(
1− 8π2

e2(λ0) + 8π2

)
Pe(T0) +

8π2

e2(λ0) + 8π2
PCMB(T0) .

(6.37)

Explicitly, the pressures Pe(T0) and PCMB(T0) are given as [31]

Pe(T0) = −Λ4
eP̄ (λ0, a(λ0))

PCMB(T0) = −κ4Λ4
eP̄ (κ−1λ0, a(κ

−1λ0)) , (6.38)

where

P̄ (λ, a(λ)) ≡ 2λ4

(2π)6

[
2P̃ (0) + 6P̃ (2a)

]
+ 2λ (6.39)

and

P̃ (y) ≡
∫ ∞

0

dxx2 log
[
1− exp

(
−
√
x2 + y2

)]
. (6.40)

The advantage of writing PCMB(T0) as in Eq. (6.38) is that the precise value of κ ≪ 1 is not required
to be known in order to extract λ0 and e(λ0) from the condition in Eq. (6.37). This is due to the rapid
vanishing of the quantity a(λ) as λ → ∞, see Eq. (6.5). Solving Eq. (6.37) for λ0 numerically, we have

λ0 = 16.3 = 1.18λc,e , e(λ0) = 14.88 . (6.41)

Indeed, due to mixing the zero λ0 of the bulk pressure turns out to be smaller than λ0,e, compare
Eqs. (6.34) and (6.41).
Finally, solving Eq. (6.36) for θW(λ0) subject to Eq. (6.41), we obtain

θW(λ0) ≡ θW(Q = 0) = arctan

√
8π

e(λ0)
= 30.84◦ , (6.42)

where, with a slight abuse of notation, the argument Q = 0 indicates that the system is probed at
vanishing four-momentum transfer (resolution referring to the maximum of the moduli of the Mandelstam
variables s, t, u that contribute to the probing process). This is close to the experimentally obtained value
of the Weinberg angle. In [144] the value of θW was extracted from the parity-violating asymmetry in
fixed target electron-electron scattering at a resolution of Q = 0.1612GeV as

θW(Q = 0.1612GeV) = 29.23◦ · · · 29.40◦ . (6.43)

The latest particle data group quotation of θW, measured at Q equal to the mass mZ of the Z-boson, is
[143]

θW(Q = mZ = 90.2GeV) = 28.73◦ · · · 28.75◦ . (6.44)
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Note the tendency of a mild increase of θW from Eq. (6.44) to Eq. (6.43) for vastly decreasing values of
resolution (logarithmic running). The thermodynamically determined value of θW in Eq. (6.42) is our
prediction for θW(Q = 0). The Weinberg angle at Q = 0 appears to be determined quite accurately from
bulk thermodynamics without having to make explicit assumptions on the finite-volume physics of the
droplet’s thick boundary shell, where SU(2)e and SU(2)CMB and all phases of the former theory mix.
Implicitly, we assume, however, that the pressure of this shell as exerted onto the bulk is zero. Note that
for an infinite-volume system, where stability constraints are irrelevant, we have θW(λ) = 45◦ for the
mixing of the theories SU(2)e and SU(2)CMB in the conformal limit λ ≫ λ0.

6.5.3 Value of α

Considering gauge-theory mixing inside the deconfining-phase bulk of the droplet and assuming the
external, effective gauge field, which probes the droplet charge, to reside in SU(2)e, we may use Eq. (6.23)
to obtain

α =
q2

4π
=

(
− 27

64qe(λ0) cos θW
)2

4π
. (6.45)

Appealing to the value of θW in Eq. (6.42) and to the value of e(λ0) in Eq. (6.41) yields

α−1 = 134.3 . (6.46)

This deviates by only 2% from the experimental value of Eq. (6.1).
However, in contrast to the determination of the Weinberg angle θW, which is a quantity that depends
only on the stability of bulk thermodynamics in a finite volume (Pbulk = 0) and on the universality of
monopole charges, the determination of the fine-structure constant α hinges in addition on phase mixing
within SU(2)e and mixing of the gauge groups SU(2)e and SU(2)CMB inside the thick boundary shell. For
this boundary shell, defined by a vanishing monopole charge in SU(2)e within the radial extent r̄ ≤ r ≤ r0
(r̄ = ξr0 the mean radius w.r.t. the a priori distribution of monopole location), we also had to assume
vanishing pressure. To understand the physics of the thick boundary shell better is the subject of future
work. An according improvement of the mirror-charge construction used so far to define the droplet’s
charge but also the effect of droplet revolution on the probability density ρ in Eq. (6.15) could decrease
the difference between the value of α in Eq. (6.46) and its experimental value in Eq. (6.1).

6.5.4 Impact of mixing on mass formula and length-scale hierarchy in powers
of α

A modelling of the mixing effects within the thick boundary shell is beyond the scope of the present
article. Therefore, in what follows, we content ourselves with estimating Tc,e and the droplet radius r0
under gauge-theory mixing, and we assume that the energy densities are the same within the droplet’s
thick boundary shell and the droplet’s bulk. Let us determine the shift in Yang-Mills scale Λe when
changing the model of the free electron based on pure SU(2)e to a model that invokes mixing of SU(2)e
and SU(2)CMB. For a pure SU(2)e model, the electron’s rest-mass me, which coincides with the lowest
circular breathing frequency ω0 = e(λ0,e)H∞(T0) of the monopole [120, 119, 43], is given as (re-writing
Eq. (5) of [169])

me = e(λ0,e)H∞(T0) = mm(T0) +
4π

3
r30ρ(T0)

= H∞(T0)

(
4π

e(λ0,e)
+

64π

3λ4
0,e

χ3ρ̄(λ0,e)

)
, (6.47)

where the dimensionless plasma energy density ρ(T0)/Λ
4
e ≡ ρ̄(λ, a(λ)) is defined as

ρ̄(λ, a(λ)) ≡ 2λ4

(2π)6
[2ρ̃(0) + 6ρ̃(2a)] + 2λ , (6.48)

mm(T0) denotes the mass of a BPS monopole originating from the dissociation of a (anti)caloron of
maximally nontrivial holonomy, and χ ≡ r0H∞(T0) ≡ πr0T0. Fig. 6.6 illustrates the three phases of the
ground state of SU(2)e. The reason why the BPS limit is considered here is that a nontrivial-holonomy
caloron sets the value of the asymptotic, adjoint Higgs field of its constituent monopole and antimonopole
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solely in terms of its holononmy and not dynamically by minimization of potential energy density, see
[170, 171]. In Eq. (6.48), we have introduced

ρ̃(y) ≡
∫ ∞

0

dxx2

√
x2 + y2

exp
(√

x2 + y2
)
− 1

, (6.49)

and in Eq. (6.47) the quantity H∞(T0) = πT0 refers to the modulus of the (anti)caloron gauge-field
component A4(r → ∞) = a4, see [43]. In the case of gauge-theory mixing of SU(2)CMB with SU(2)e, we
generalise Eq. (6.47) to

me

H∞(T0)
= e(λ0) cos θW + e(κ−1λ0) sin θW

=cos θW
4π

e(λ0)
+ sin θW

4π

e(κ−1λ0)
+

64π

3λ4
0

χ3

×
[
cos2 θWρ̄(λ0, a(λ0)) + κ4 sin2 θWρ̄

(
λ0

κ
, a

(
λ0

κ

))]
. (6.50)

Solving the second half of Eq. (6.50) for χ after appealing to Eqs. (6.41) and (6.42), we obtain

r0 = 5.09H−1
∞ (T0) . (6.51)

From Eqs. (6.51) and (6.41) we deduce

r0
|ϕ|−1(T0)

= 0.155 , (6.52)

indicating that the droplet is contained deeply within the central region of a typical caloron or anticaloron
which contributes to the emergence of the deconfining thermal ground state of SU(2)e. Yet, we have
r0/β0 = 1.62 such that the radial integral in the definition of ϕ’s phase reasonably well represents a
sinusoidal τ -dependence, see [31], p. 127. As a consequence of Eqs. (6.41), (6.51) we have

r0 = 0.622Λ−1
e . (6.53)

With this corrected value of droplet radius r0 due to gauge-theory mixing, compare with Eq. (6.10) for
the case of pure SU(2)e, the ratio of screening length ls to r0 of Eq. (6.11) is reduced compared to the
case of pure SU(2)e as

ls
r0

∼ 44.1 . (6.54)

Still, this is sufficiently larger than unity to justify the mirror-charge construction of Sec. 6.4.2. Recall,
that such a construction requires the Coulomb nature of the static U(1) potential of the monopole away
from its core region. The first part of Eq. (6.50) yields

me

H∞(T0)
= 17.33 . (6.55)

Together with Eq. (6.51) this implies a ratio of reduced Compton length rc to r0 as

rc
r0

=
1

17.33× 5.09
=

1

88.3
. (6.56)

That is, due to mixing, the core-size of the trapped monopole, which according to the first part of
Eq. (6.47) is close to rc [119], becomes even more pointlike compared to the droplet’s extent than for the
case of a pure SU(2)e model where rc/r0 = 1/52.40. Eq. (6.55) also implies that

me

Λe
= 141.82 (6.57)

or Λe = 3.60 keV or Tc,e = 7.95 keV.
According to Eq. (6.56), the ratio of droplet radius r0 to Bohr radius a0 is

r0
a0

=
r0
rc

rc
a0

= 88.3
rc
a0

= 88.3α = 0.64 . (6.58)
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Figure 6.6: Phase diagram of SU(2)e with Tc,e = 0.923 × 108 K (7.95 keV) in the infinite-volume limit.
There are three distinct phases: (I) the deconfining phase, (II) the preconfining phase, and (III) the
confining phase.

Such a large ratio of order unity is in line with Louis de Broglie’s proposal [122] that the free electron at
rest represents the oscillation of a thermal plasma of finite extent and spatially constant amplitude driven
by a vibrating monopole. Namely, within the deconfining bulk of the droplet at rest, the superposition
of spherical wavelets of constant frequency and wavelength but highly random phase and variable origin
plausibly yield a plasma oscillation of nearly constant spatial amplitude — the basic insight of de Broglie’s
deduction of the electron’s matter wavelength paving the way for wave mechanics [172]. Note that also
outside the droplet, the spatially decaying Coulomb field a34 keeps oscillating at the droplet’s frequency
ω0 = me. This also is true of the energy density or the pressure of the plasma component due to
SU(2)CMB at temperatures that locally are higher than the CMB baseline temperature within a certain,
local environment of the droplet.

6.6 Discussion and Summary

In this work we have proposed the electron to be a figure-eight shaped soliton formed by a thin center-
vortex loop in SU(2) Yang-Mills theory where the region of selfintersection is an extended droplet. This
soliton is stable and immersed into the confining ground state of an SU(2) Yang-Mills theory of scale
3.60 keV. Moreover, the soliton is subject to the confining ground states of other Yang-Mills theories with
higher scales and the Cosmic Microwave Background (CMB). In the present work, we associate the CMB
with the deconfining phase of an SU(2) Yang-Mills theory of scale ∼ 10−4 eV (SU(2)CMB) [31, 67].
Based on the definition of the Bohr magneton, we also link the electron’s magnetic moment to revolu-
tions of the droplet’s effective charge. These revolutions are induced by the unresolved monopoles and
antimonopoles moving along and constituting the center-vortex loop. The contribution of the thin vortex
lines to the total mass of this soliton is negligible, see [31]. However, vortex lines may play a role in
producing nonlocal interactions that magnetically correlate electrons in a 2D plane [158].

Within the bulk region of the droplet an electric monopole is trapped which internally vibrates due
to kicks issued by the quantum physics of the thermal ground state [31]. This ground state locally
superimposes a caloron and an anticaloron center and overlapping (anti)caloron peripheries. Under the
selfconsistent assumption that the droplet’s bulk can be represented by infinite-volume thermodynamics,
we have derived the following statements:

(i) Bulk stability, that is, the vanishing of the thermodynamical pressure deep inside the droplet im-
plies a mixing angle between the Yang-Mills theories SU(2)e and SU(2)CMB at one and the same
temperature T0 which practically coincides with the value of the weak mixing (or Weinberg) angle
of the Standard Model of Particle Physics.

(ii) The value of the electromagnetic fine-structure constant α at vanishing energy-momentum transfer
is reasonably well approximated by a mirror charge construction, suggested by the high electric
conductivity of the droplet’s thick boundary shell. In addition, the derivation of the value of α
relies on (a) a thermodynamical SU(2)e and SU(2)CMB gauge-theory mixing plus monopole charge
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6.6. DISCUSSION AND SUMMARY 77

universality, (b) stability of the thick boundary shell by its assumed, vanishing mean pressure, and
(c) the statistical average of the droplet’s charge over the bulk volume w.r.t. a spatially homogeneous
distribution, cut off at the mean radius (condition that the thick boundary shell is excluded as a
region for positioning the isolated monopole of the SU(2)e component of the bulk plasma).

(iii) The droplet’s mass formula, in generalisation of [44] now considering SU(2)e and SU(2)CMB gauge-
theory mixing, predicts a droplet size r0 which is comparable with the Bohr radius a0. For the
core size of the monopole rc (the reduced Compton wave length [119, 120, 122]) we therefore obtain
rc ∼ α r0 ∼ αa0 = α−1 re where re denotes the classical electron radius. As a consequence, the
monopole core indeed is an (unresolved) point particle on the scales of the droplet’s extent and on
the radius |ϕ|−1 of a (anti)caloron which constitutes the thermal ground state.

(iv) The Yang-Mills scale Λe of SU(2)e and the critical temperature Tc,e are derived from this mass
formula, applying it to the mass of the electron me = 511 keV. One has: Λe = 3.60 keV or
Tc,e = 7.95 keV. This implies a critical temperature Tc′,e of the Hagedorn transition as Tc′,e =
11.57
13.87 7.95 keV= 6.63 keV. When the spatio-temporal design of fusion plasmas is optimised to ac-
complish steady-state operation, involving comparable electron temperatures (and high electron
densities), these results should be taken into account in devising magnetic and inertial plasma
confinement strategies.

(v) There is an environment to the stationary droplet of an extent yet to be specified which is charac-
terised by a plasma of deconfining SU(2)CMB phase, slightly hotter than the CMB. This deconfining
plasma vibrates at a frequency ∼ me. The monopole of SU(2)CMB may alternate its location from
the droplet’s bulk region into this environment and vice versa.

Let us now briefly discuss possible links of these results to phenomena discussed in the literature. In
our present approach, we would interpret the particle at rest as the droplet whose vibrating (standing)
external Coulomb potential is transformed into a propagating wave upon boost [146], giving rise to ob-
servable (self-)interference effects to statistically determine the droplet’s position [173]. As mentioned in
the introduction, we do expect a considerable impact of the thermodynamical approach to the electron
proposed here in better understanding collective plasma phenomena at electron temperatures starting at
around T ∼ Tc = 6.6 keV in experiments with magnetic plasma confinement which were not predicted by
conventional magneto-hydrodynamics. These could include the formation of an edge transport barrier
associated with a pressure pedestal, edge-localised modes, magnetic instabilities, and ion-orbit losses in
the high-confinement mode [174, 175]. Note that the electron plasma density ne in conventional tokamaks
and stellerators is ne ∼ 1020 m−3 while a macroscopically stabilised plasma droplet at T = T0 = 9.38 keV
with an energy density of ρ(T0) = 1.77 × 104 keV4 represents a number density of percolated electrons
of ne ∼ 1.79 × 1028 m−3. Therefore, eight orders of magnitude in electron density are missing in order
to achieve a macroscopically stabilised plasma state. Still, the above-mentioned effects at much lower
electron densities may point to the here-proposed model of the electron.

An important question, which arises due to a modelling of the electroweak parameters θW and α that
apparently is particular to the electron as a thermal and stable quantum particle, concerns these pa-
rameters’ experimentally enshrined universality across the electroweak interactions of all leptons. As
for the unstable, charged leptons µ and τ the reason why their charge is identical to that of the elec-
tron would be as follows. As soon as a τ or a µ lepton is created at rest, the according droplets
in SU(2)CMB×SU(2)e×SU(2)µ, see Fig. 6.7 a), and in SU(2)CMB×SU(2)e×SU(2)µ×SU(2)τ , respectively,
disperse the energies invested in surplus to their quantum mass, defined by a generalisation of Eq. (6.50),
into their surroundings and can only trap an SU(2)µ or an SU(2)τ monopole, respectively, see Fig. 6.7 b)
for the muon droplet. The other monopoles are free to leave or re-enter this droplet. In case of SU(2)CMB

this ab initio dispersion of energy does not define new phase boundaries since the CMB represents the
deconfining phase (likely very close to the deconfining-preconfining transition [31]). In case of SU(2)µ
or SU(2)e new droplets are formed that embed the initial droplet, see Fig. 6.7 c) for the case of SU(2)e.
This process of (cascading) droplet formation invokes formerly single, round-point center-vortex loops
from confining-phase ground states to define the respective droplets as their stabilised regions of self-
intersection: single center-vortex loops thus turn into figure-eight shaped center-vortex loops. In the
Standard Model of Particle Physics, this subprocess refers to the absorption of an antineutrino, compare
Fig. 6.7 b) and Fig. 6.7 f). After quantum equilibration, the initial droplets’ bulks exhibit defined mixing
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angles for four or three deconfining SU(2) Yang-Mills theories by two or three charge-universality con-
ditions (in general: in the droplet representing the Nth lepton family there are N charge-universality
conditions fixing the N independent components of a unit vector in an (N + 1)-dimensional Euclidean
space or N mixing angles), respectively, and a defined temperature by the condition of vanishing bulk
pressure. Since the according leptons are unstable, no (temporally) coherently propagating waves in the
Cartan algeba’s of SU(2)τ and SU(2)µ exist that could externally probe these charges and the magnetic
moments that relate to the center-vortex loops extending from µ- and τ -droplets. Therefore, even though
the electron droplet contains µ- and τ -droplets and their respective, trapped monopoles, only the trapped
monopole and the magnetic moment provided by the center-vortex loop in SU(2)e are seen externally.
For the charge of µ and τ leptons, we thus are back at the derivation of the charge of an electron (or
fine-structure constant α), see Sec. 6.5.3. Their decays can be figured as processes, where embedded
droplets of much smaller radii r0,µ ∼ m0,e

m0,µ
r0,e and r0,τ ∼ m0,e

m0,τ
r0,e (m0,i, r0,i the rest mass, droplet radius

of charged lepton i with i = e, µ, τ), subject to gauge theory mixing in SU(2)CMB×SU(2)e× SU(2)µ and
SU(2)CMB×SU(2)e×SU(2)µ×SU(2)τ , respectively, by eventual contact with the thick boundary shell of
an embedding droplet (for the τ lepton droplet these embedding droplets are the droplets of SU(2)µ and
SU(2)e, for the µ lepton droplet this is the droplet of SU(2)e) dissolve to feed their high energy densities
and massive, trapped monopoles, locally into those of the nonthermally distorted respective boundary
shells. This local investment of energy into the boundary shell can be thought of as a transient exci-
tation of a W±-boson in the Standard Model of Particle Physics. As a result, an energetic neutrino is
emitted: a figure-eight shaped center-vortex loop looses its droplet together with the trapped monopole
when interacting with the thick boundary shell to transform into a single center-vortex, see Fig. 6.7 d) for
µ-decay and Fig. 6.7 f) the according subprocess in the Standard Model of Particle Physics.

To relate hadrons to pure Yang-Mills thermodynamics is much harder than for leptons. Hadrons are
complex quantum systems of confined (anti)quarks that are effectively and efficiently described by Quan-
tum Chromodynamics [176, 76]. To address the emergence of (anti)quarks as electrically fractionally
charged particles within pure Yang-Mills theories of one and the same electric-magnetic parity is im-
possible. Rather, a derivation of quark properties probably would require an interplay and mixing of
electric-magnetic dual SU(3) Yang-Mills models to allow a version of the fractional Quantum Hall effect
[177, 178, 179] to take place.

In closing, we would like to state clearly that there cannot be any doubt that the Standard Model of
Particle Physics represents a milestone development in accurately and efficiently describing the interac-
tions of leptons and hadrons. Essentially, this theory rests on well organised weak-coupling expansions
that implement the gauge principle in a perturbatively consistent way [180, 181] and that are applicable
to any so far probed energy-momentum transfer. A thermodynamical approach to the interactions of
leptons and hadrons in terms of pure Yang-Mills theory is inferior to the Standard Model. What the
Standard Model is incapable of delivering though is a ground-state structure doing justice to cosmologi-
cal observations [182, 183], to provide a useful framework for thermal and nonthermal phase transitions
[184], a postdiction of the absolute values of (some of) its dimensionless parameters, and a deeper grasp
of the nature of particle-matter-wave duality concerning charged leptons. As the present work intended
to demonstrate, a computation of two of the Standard Model’s dimensionless parameter values appears
to be feasible. The here-proposed venue is still far from addressing other in-built features of the Standard
Model such as parity violation of the weak interactions, a derivation of the electron’s magnetic moment
including the anomalous quantum behaviour, a quantitative grasp of the entries of the CKM matrix, or
the fractional electric charges of quarks. We hope to gain more insight into these problems in the future.
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Figure 6.7: Creation and decay of a muon: a) A not yet quantum equilibrated muon droplet, defined
as the selfintersection region of a center-vortex loop, is created within the confining phase of SU(2)µ.
This droplet contains three types of monopoles: qµ, qe, qg. b) Energy in surplus to the muon quantum
mass is dissipated into the surroundings. The monopoles qe, qg are not trapped by the thick boundary
shell of the muon droplet (turquoise) and are free to leave or re-enter. A single center-vortex loop of
SU(2)e is fused with qe to form a figure-eight shaped object subject to a new electron droplet. The
monopole qg (dark blue) in SU(2)CMB outside the electron droplet, at the CMB’s present temperature,
would be reduced to a massless and zero-charge point particle [67]. c) The size of the electron droplet
(blue) is comparable with the Bohr radius a0 and contains the muon droplet. d) The muon droplet is
dissolved by the thick boundary shell of the electron droplet, rendering qµ an irrelevant, massless, and
zero-charge point particle which casts a figure-eight shaped center-vortex loop into a single one: the muon
neutrino νµ. The localised energy injected to the boundary shell thus is a transient process which can be
interpreted as a W− boson in the Standard Model of Particle Physics. e) The final states of muon decay
are the electron and νµ. f) Feynman-diagram of muon decay in the Standard Model of Particle Physics.

Data availability
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7 The Dark Sector in YMTD

Figure 7.1: Axions have a temperature dependent mass mA ∝ T 2/MP in deconfinement phases of SU(2)
Yang-Mills thermodynamics; in the confining phase, the axion mass is constant. An axion associated
with the Yang-Mills scale potentially implying the third lepton family possesses a mass mA,τ (z = 0) ≈
8 × 10−17 eV (ultramarine). Accordingly, for the second lepton family, one would have mA,µ(z = 0) ≈
3 × 10−19 eV (orange). An axion that associates with the first lepton family carries a mass mA,e(z =
0) ≈ 7× 10−24 eV (green), and an axion, which couples to a Yang-Mills theory potentially describing the
CMB would possess a mass mA,CMB(z = 0) ≈ 10−35 eV (yellow).

This chapter is based on the article “Axion mass and the ground state of deconfining SU(2) Yang-Mills
thermodynamics” [6] by Ralf Hofmann, Dmitry Antonov and JM and the conference proceedings [9].
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Abstract

For the deconfinement phase of an SU(2) Yang-Mills theory, we compute the axion mass mA by appealing
to the Veneziano-Witten formula. The topological susceptibility χ arises (i) from a precisely computable
thermal ground-state contribution due to a center of a relevant (anti)caloron and (ii) from contributions
due to free thermal quasi-particles in the effective theory. Both, (i) and (ii) are derived by using standard
Euclidean thermal field theory techniques. While contribution (i) is positive and ∝ T 4, contribution
(ii) is negative, as demanded by reflection positivity, but negligible compared to contribution (i). As a
consequence, practically from the critical temperature Tc onwards a real-valued axion mass mA(T ) =√

2
3π

T 2

MP
emerges when the Peccei-Quinn scale is assumed to be the Planck mass MP , independently of

the Yang-Mills scale that the axion associates with. We discuss why our results deviate from those found
in the dilute instanton gas and interacting instanton liquid approximations and from results obtained in
lattice simulations. Assuming the universe’s dark sector to be based on such ultralight axion species,
which are nonrelativistic for T ≪ MP , we investigate the cosmological conditions for their global Bose
condensation as the very early universe cooled to temperatures of the order of 109 eV.

7.1 Introduction

The temperature (T ) dependence of the topological susceptibility χ in the deconfinement phase of an
SU(2) or SU(3) Yang-Mills theory was estimated by various methods: dilute instanton gas [185], in-
stanton liquid [186], lattice simulations [187, 188, 189, 190, 191, 192, 193], and model of the stochastic
vacuum [194]. Knowing the T -dependence of χ precisely is important for understanding cosmologi-
cal models whose (fuzzy) dark-matter sector is based on the quantum dynamics of ultralight axions
[195, 196, 197, 198, 199, 200, 201].

Based on χ(T ), the Veneziano-Witten formula can be employed to calculate the axion mass mA(T ). Orig-
inally, this formula was proposed as an estimate for the mass of the pseudoscalar η′-meson in QCD. For
cosmologically stable axions, however, the required smallness of axion masses and decay constants com-
pared to particle physics scales could originate from the extreme hierarchy between the Planck mass MP

(the Peccei-Quinn scale), at which regime gravitational attraction [202] may condense massless fermion
flavours [203, 48] and generate a massless, pseudoscalar, flavour-singlet field ϕ, and the Yang-Mills scales
of pure SU(2) or SU(3) theories which associate with visible matter and radiation described by the Stan-
dard Model of Particle Physics in an evolving universe [5, 112, 31]. These hierarchically-smaller-than-MP

Yang-Mills scales also may have, by some as of yet unknown mechanism, been determined by physics
of the Planckian regime. As in [48], we thus consider a dynamical breaking of the global symmetry
U(1)A [204, 205] at the Planck scale. Gauge field configurations that are assumed to saturate the topo-
logical susceptibility χ, see Eq. (7.1), are usually taken to be instantons in the literature, subject to a
finite-temperature electric Debye screening to modify the T = 0 instanton density. This only allows for
instanton radii ρ < (πT )−1 to contribute to the model partition function [206]. The results for χ, when
computed in a dilute gas of instantons (DIGA) [185] or in a liquid of instantons (IILA) [186], have in
turn inspired fit models in lattice simulations of χ [187]. Note that these instanton based approaches
do not resemble the situation of a thermal ground state [31] which (i) is composed of spatially densely
packed Harrington-Shepard (HS) calorons or anticalorons [207], exhibiting an intrinsic T -dependence of
the topological charge density Q per isolated field configuration, and which (ii) is dominated by caloron
radii ρ ∝ T 1/2 [31]. Point (ii) implies that properly capturing the topological charge of a relevant
gauge-field configuration requires enormous spatial volumes at high T which are not available in lattice
simulations [208, 31]. Indeed, Fig. 7.2 depicts the ratio of the lattice size L = 2/Tc, employed in an SU(3)

simulation [188], and the size of the relevant caloron radius ρ =
λ3/2
c

2πTc

(
T
Tc

)1/2
[31] as a function of T/Tc

for both SU(2) and SU(3). Therefore, throughout the deconfinement phase (T ≥ Tc) the lattice size L

https://orcid.org/0000-0001-6365-0631
https://orcid.org/0000-0001-7582-3456
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7.1. INTRODUCTION 83

Figure 7.2: The ratio of lattice size L = 2/Tc, as employed in [188], and the caloron radius ρ =

λ3/2
c

2πTc

(
T
Tc

)1/2
for SU(2) (ultramarine) and for SU(3) (orange). This caloron radius is relevant in the

emergence of the thermal ground state [31]. For SU(2) and SU(3) the dimensionless critical temperatures
(λ ≡ 2πT/Λ) are given as λc = 13.87 and λc = 9.475, respectively.

never accommodates the center of a relevant caloron: the spatial lattice simply falls through the topo-
logical charge distribution. That is, the integral

∫
d4xQ(x) in Eq. (7.1) below1 over the lattice volume is

not saturated. The rapid power-law decay of χ ∼ a T−b suggested for the gauge group SU(3) by DIGA
[185] or by IILA [186], (for the SU(3) case b ranges as 4.9 ≤ b ≤ 9, depending on the number of fermion
flavours in the simulation, and there is disagreement in the normalisation a by a factor of ten between
DIGA and fits to lattice results [188]) could therefore well be an artefact of the assumed diluteness of
the topological charge carriers, a neglect of their intrinsic T dependence (instantons are not periodic in
the Euclidean time coordinate x4), and the above mentioned, perturbatively motivated, T dependent
constraint on instanton scale on the modelling side. As mentioned above, lattice simulations [187, 188]
suffer from severe finite-spatial-volume constraints, see also [193] for an insightful discussion.

The purpose of the present paper is to compute the T dependence of χ for deconfining SU(2) Yang-Mills
thermodynamics and to discuss some implications for a modelling of the cosmological dark sector, based
on a T dependence of the axion mass derived from the right-hand side of the Veneziano-Witten formula
(VWF). Our work is organised as follows: In Sec. 7.2 we briefly review the VWF for the axion mass and
comment on its interpretation in the realm of cosmology. The computation of the topological susceptibility
χ, by far dominated by the spatial center of a HS caloron or anticaloron, relevant for the emergence of the
thermal ground state of deconfining SU(2) Yang-Mills thermodynamics, is carried out in Sec. 7.3. Here
we will show that, in contrast to lattice and DIGA/IILA modelling and as a result of the dense spatial
packing of (anti)caloron centers in the deconfining thermal ground state as well as the rapid, power-law
rise of the caloron scale parameter with T , the topological susceptibility χ evolves as χ = a T 4 for T ≫ Tc.
This can be expected from dimensional analysis and, motivated by perturbative asymptotic freedom at
T = 0 [75, 76], the irrelevance of the Yang-Mills scale Λ at large T [193]. Confirming this expectation,
we compute the factor of proportionality to be a = 2π2/3 for an SU(2) Yang-Mills theory in terms of an
effective contact term in the topological charge correlation. We also show that the (negative) contribution
of lower spatial resolutions to the right-hand side of VWF, which can be computed in the effective theory
[31] in terms of a non-contact term, are negligible. In Sec. 7.4 we indicate cosmological implications for
very high redshifts in a model of the dark sector where the present dark matter and dark energy are
related to selfgravitating depercolated and global condensates of ultralight axions, respectively. More

1Since the correlator of Q is computed on one field configuration only — a Harrington-Shepard caloron — it naturally
factorises into a local and a nonlocal part. Note that the contribution and weight of the anticaloron is identical, and
therefore the average over both caloron and anticaloron reduces to the caloron contribution.
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84 CHAPTER 7. THE DARK SECTOR IN YMTD

specifically, cosmological dark matter requires such condensates to be spatially confined to subgalactic
scales [195, 200, 41] (fuzzy dark matter) while dark energy requires a superhorizon sized axion condensate
[41]. Finally, we summarise our results and present an outlook on future research in Sec. 7.5. Throughout
the paper we work in supernatural units: ℏ = kB = c = 1 where ℏ denotes Planck’s (reduced) quantum
of action, kB is Boltzmann’s constant, and c refers to the speed of light in vacuum.

7.2 Axion Mass Squared via The Veneziano-Witten Formula at
Finite Temperature

The VWF for the mass of the U(1)A Goldstone field A in QCD, defined on R4 and subject to gauge
group SU(Nc) as well as Nf massless fundamentally charged fermion flavours, reads [209, 210]

lim
Nc→∞

m2
Af

2

2Nf
= lim

Nc→∞

∫
d4x⟨Q(x)Q(0)⟩T ≡ χ , (7.1)

where the topological charge density Q(x) is given as

Q(x) ≡ 1

64π2
ϵµνρσF

a
µνF

a
ρσ ≡ 1

32π2
F a
µν F̃

a
µν . (7.2)

Here, ⟨· · · ⟩T denotes the canonical ensemble average in pure SU(Nc) Yang-Mills thermodynamics, and
greek indices takes on values 4,1,2,3. In the present work, we assume with [185, 186, 187, 206, 188, 189,
190, 191, 192, 193] the validity of Eq. (7.1) in the deconfinement phase of Yang-Mills thermodynamics at
finite temperature (T > 0).
In computing the T dependence of the axion mass mA, the large Nc limit is relevant to those SU(2)i
or SU(3)j subgroups of SU(Nc) only (associated with a Yang-Mills scale Λi or Λj) which are in their
deconfinement phases. We will show in Sec. 7.3.2 that for such Yang-Mills theories practically only the
thermal ground state [31] contributes to the right-hand side of Eq. (7.1). In applying SU(2) Yang-Mills
thermodynamics to cosmology, the simulated evolution of the Cosmic Microwave Background (CMB)
[211], initialised at a redshift of z ∼ 109 and terminating today (z = 0), requires a single such SU(2) theory
only [31, 5]: SU(2)CMB with ΛCMB ∼ 10−4 eV [67]. According to [48] we may therefore fix in Eq. (7.1)
limNc→∞ f2/(2Nf ) ∼ M2

P for Nf ≫ 1 where MP denotes the Planck mass MP = 1.22× 1019 GeV.

7.3 The Veneziano-Witten Integral for Deconfining SU(2) YMTD

7.3.1 The topological susceptibility χ on a Harrington-Shepard (anti)caloron

In this section, we compute the short-distance contribution to the axion mass squared, relying on Eq. (7.1),
which represents a contact term in the effective theory [31]. In the deconfinement phase, the topological
susceptibility χ of Eq. (7.1) originates from an HS (anti)caloron center [207] in the thermal ground state
(a thermal quantum vacuum [31]. Thereby, HS (anti)caloron centers are densely packed spatially, subject
to overlapping peripheries. There is no winding in these peripheries. Thus, the ground-state portion of
⟨Q(x)Q(0)⟩T is computed on a single caloron center.
At finite temperature, the spacetime average of Q(x) is over the Euclidean cylinder S1×R3, x4 ≡ τ, xi =
rx̂i (i = 1, 2, 3) where x̂ is a unit vector in R3 and r =| x |≤| ϕ |−1, see Fig. 7.3.
Since the right-hand side of Eq. (7.1) is quadratic in Q and since we average over the contribution of
an HS caloron and an HS anticaloron [31] the thermal ground-state part of ⟨Q(x)Q(0)⟩T is represented
by an HS caloron which, due to spatial isotropy, spatially is centered at r = 0 (peak position of the HS
caloron’s action density).
When expressing the field strength F a

µν , expanded into a basis ta (a = 1, 2, 3) of the Lie algebra su(2)

such that tr tatb = 1
2 δ

ab, in terms of O(4) scalar and tensor valued functionals P (x) and Pµν(x) of the
caloron prepotential Π(x) we follow the convention of [212]. Namely, in singular gauge one has for the
gauge field of an HS caloron with topological charge k = 1

Aa
µ = −η̄aµκ

∂κΠ

Π
, (7.3)

where η̄aµκ denotes the (anti-selfdual) ’t Hooft symbol, and Π is the prepotential given as [207]

Π(τ, r) = 1 +
ρ2

βr

sinh 2πr
β

cosh 2πr
β − cos 2πτ

β

. (7.4)
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Figure 7.3: Spatially coarse-graining a fundamental-theory caloron center (integrating the correlator
⟨Q(x4,x)Q(0,0)⟩T from r =| x |= 0 to r =| x |=| ϕ |−1 and over angles) generates an effective, spatial
contact term if resolution is limited as r =| x |≥| ϕ |−1. This reduces the shaded region to the line
segment 0 ≤ x4 ≤ β in the effective theory. The integral over 0 ≤ x4 ≤ β and x⃗ ∈ R3 of the portion of
⟨Q(x4,x)Q(0,0 |)⟩T , which is due to effective (quasiparticle) fluctuations, is strongly suppressed compared
to the integral over 0 ≤ x4 ≤ β of this spatial contact term, see Sec. 7.3.2.

Here, β denotes the inverse of temperature T , β ≡ 1
T , and ρ is the associated instanton scale parameter

[171, 213, 214]. Note that the second term on the right-hand side of Eq. (7.4) originates from summing
the instanton prepotential in singular gauge over equidistantly shifted values of its time coordinate τ .
This renders Π(τ, r) periodic in τ which can be seen by the dependence on cos 2πτ

β . For the field strength,

this implies staticity for sufficiently large values of r. The field strength F a
µν ≡ ∂µA

a
ν − ∂νA

a
µ + ϵabcAb

µA
c
ν

is expressed as

F a
µν = η̄aµνP − η̄aνκPµκ + η̄aµκPνκ (7.5)

if we define

P ≡ (∂κΠ)(∂κΠ)

Π2
, Pµν ≡ Π∂µ∂νΠ− 2(∂µΠ)(∂νΠ)

Π2
. (7.6)

Here, ϵabc denotes the 3D totally antisymmetric tensor with ϵ123 = 1. Note that

Pµν = Pνµ , Pµµ = −2P . (7.7)

Therefore, one has for a selfdual caloron field2

Q ≡ 1

32π2
F a
µνF

a
µν =

1

8π2

(
P 2
µν − P 2

)
. (7.8)

Considering that Π = Π(τ, r), we have

F a
µνF

a
µν = 4

(
3

(
∂rΠ

Π

)4

+

(
∂2
rΠ

Π

)2

+ 2

(
∂rΠ

rΠ

)2

+ 3

(
∂τΠ

Π

)4

+

(
∂rΠ

Π

)2
(
−4

∂2
rΠ

Π
+ 6

(
∂τΠ

Π

)2
)

− 4

(
∂τΠ

Π

)2
∂2
τΠ

Π
+

(
∂2
τΠ

Π

)2

− 8
∂rΠ

Π

∂τΠ

Π

∂r∂τΠ

Π
+ 2

(
∂r∂τΠ

Π

)2
)

. (7.9)

2For useful relations on the contractions of bilinears in η̄aµν see [212].
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Figure 7.4: The weak y and λ dependences of function 4πx2Q̄(x, y, λ): λ = λc, 3λc, 10λc and x = 0
(lowest set), x = 0.5 (uppermost set), and x = 1 (intermediate set).

Introducing rescaled variables, y ≡ τ
β , x ≡ r

β , the dimensionless temperature λ = 2πT
Λ , Λ denoting the

SU(2) Yang-Mills scale, and setting ρ =| ϕ |−1=
√

2πT
Λ3 to be the dominating value of the scale parameter

in the thermal ground state [31], Eq. (7.4) is cast into

Π(τ, r, T ) = Π̄(y, x, λ) = 1 +
λ3

4πx

sinh 2πx

cosh 2πx− cos 2πy
. (7.10)

Here, we have introduced the general dimensionless function f̄(y, x, λ) = T−nf(τ, r, T ) where n is the
mass dimension of function f . Substituting Eq. (7.10) into Eq. (7.9) and using Eq. (7.8) yields

lim
r→0

Q(τ, r, T ) = T 4 lim
x→0

Q̄(y, x, λ) = 2π2T 4λ6

(
8 + λ3 + 4 cos 2πy

)2
3 (2 + λ3 − 2 cos 2πy)

4 . (7.11)

According to Eq. (7.11) the y and the λ dependences of Q̄(y, x = 0, λ) are very weak for λ ≥ λc = 13.87
[31]. At finite x this behaviour of Q̄(y, x, λ) w.r.t. variations in y and λ persists, which is demonstrated
in Fig. 7.4 for x = 0, 0.5, 1.0 and λ = λc, 3λc, 10λc.

For λ ≥ λc = 13.87 the topological charge k ≡ 4π
∫ 1

0
dy
∫∞
0

dxx2Q̄(y, x, λ) = 1 thus can, to a very good
accuracy, be computed as

k = 4π

∫ ∞

0

dxx2Q̄(
1

2
, x, λ) . (7.12)

If we truncate the integration over x in Eq. (7.12) at the scale xmax = ρ
β = |ϕ|−1

β = λ3/2

2π ,

k = 4π

∫ λ3/2

2π

0

dxx2Q̄(
1

2
, x, λ) , (7.13)

then we obtain numerically k = 0.9768, 0.9927, 0.9938 for λ = λc, 2λc, 2.5λc, respectively. This shows
that, practically for all λ, the topological charge of an HS (anti)caloron resides within its center. The
(dimensionless) radius xmax of this center, however, grows ∝ λ3/2 with dimensionless temperature λ.
This explains why lattice simulations, essentially operating at a fixed spatial volume at varying T , fail to
capture large portions of the topological charge of a relevant (anti)caloron in χ(T ), compare with Fig. 7.2.
The short-distance correlation of the thermal ground state of an SU(2) Yang-Mills theory are mediated by
the centers of an HS caloron or anticaloron [31]. As confirmed above, the (anti)caloron action, representing
a nontrivial topological charge of this gauge-field configuration, is localised within the (anti)caloron
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center. As a consequence, the ground-state contribution to the ensemble average on the right-hand side
of Eq. (7.1) represents the contribution of an (anti)caloron center - a contact term within the effective,
deconfining Minkowskian quantum thermodynamics [31], see also Fig. 7.3. In contrast to calorons, which
are action minimisers of the 4D defining, classical, and Euclidean Yang-Mills theory and are infinitely
resolved, the effective theory describes the quantum dynamics of gauge fields in (3+1)D Minkowski space
at spatial distances larger than | ϕ |−1. By matching the effective theory with the fundamental one at
this resolution limit, it was argued in [153] that the caloron action coincides with Planck’s quantum of
action ℏ. Light-cone localised, propagating solutions to the source-free Minkowskian Yang-Mills equations
— photons —, which could be initiated by sufficiently resolving, time-periodic probes of (anti)caloron
centers, were constructed recently by A. Rabinowitch [128]. Given these localised solutions, a probe’s
circular frequency ω thus could provoke propagating quanta of energy ℏω.
We are now in a position to compute the thermal ground state contribution of the right-hand side of
Eq. (7.1) as

χcal. cen. =

∫
cal. cen.

dτdΩdr r2 Q(τ, r, T )Q(0, 0, T )

= 4πT 4 Q̄(0, 0, λ)

∫ 1

0

dy

∫ λ3/2

2π

0

dxx2Q̄(y, x, λ)

≃ 4πT 4 Q̄(0, 0, λ)

∫ λ3/2

2π

0

dxx2Q̄(
1

2
, x, λ)

≃ 2

3

(12 + λ3)2π2

λ6
T 4

λ≫λc

−→
2

3
π2 T 4 , (7.14)

where dΩ denotes the angular part of the measure in the spatial integration. Therefore,

mA =

√
2

3
π
T 2

MP
, (T ≫ Tc) . (7.15)

Note that, due to the integral of Eq. (7.13) being close to unity and due to the function on the right-hand
side in Eq. (7.11) being near to 2π2T 4/3 already at λ = λc = 13.87, the T dependence of mA as in
Eq. (7.15) is an excellent approximation, already for T ∼ Tc.

7.3.2 Do thermal quasiparticle fluctuations contribute to χ?

Eq. (7.14) associates with a contact term of the correlator ⟨Q(x4,x)Q(0,0)⟩T in the effective theory of the
deconfining phase of SU(2) Yang-Mills thermodynamics [31]. In [215] it is suggested that precisely such a
contact term saturates the right-hand side of Eq. (7.1) at T = 0, see also an associated argument for the
Schwinger model in [216]. In the Appendix we show that in the effective theory for the deconfining phase
of SU(2) Yang-Mills thermodynamics [31] a negative contribution to χ arises from massless and massive,
effectively free thermal quasi-particles. Judged by the smallness of two- and three-loop corrections to the
free quasi-particle approximation of thermodynamical quantities, this should be precise to the sub-percent
level [31]. As computed in the Appendix, free quasi-particles generate in χ(T ) a positive coefficient in
front of −T 4 which is much smaller than unity. Therefore, we can consider the result of Eq. (7.14) a
reliable estimate of the entire topological susceptibility χ: the expression for the axion mass mA in
Eq. (7.15), which emerges from the axial anomaly invoked by SU(2) (anti)calorons, should be accurate
to the sub-percent level. In [194] χ(T ) was computed in the model of the stochastic vacuum. For
the nonperturbative part of the correlator ⟨Q(x4,x)Q(0,0)⟩T a factorised negative contribution was
shown to be overcompensated by a positive nonfactorised contribution. Both are expressed in terms of
nonperturbative vacuum parameters measured at zero temperature, which were extracted from lattice
simulations. As a result, a T 4 dependence with a positive coefficient also was found in [194].

7.4 Cosmological Implications: Bose Condensation of Axions

As a function of increasing cosmological redshift z axion masses for four different species are shown in
Fig. 7.5. In the confining phase of the associated SU(2) Yang-Mills theory, the axion mass is constant
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in z. For the three species concerned at the present temperature of the CMB, T0 = 2.725K, and up to
z ∼ 108, the lowest axion mass can be extracted phenomenologically from rotation curves of low-surface-
brightness galaxies [41]. The other two masses follow from Yang-Mills scaling relations (subject to a
common Peccei-Quinn scale, here MP ) in the fuzzy dark matter model. Such scaling relies on a link to
lepton families introduced in [41] and explicated for the first lepton family in [5]. As soon as a SU(2)
Yang-Mills theory transitions to its deconfinement phase, the associated axion mass starts to depend
on z via Eq. (7.15) and is subject to the T -z relation in the deconfinement phase [74]. At high redshifts
(z > 1012) all axion species exhibit the same dependence of their mass on redshift z. Note that the validity
of our axion–mass computation in an expanding Friedmann-Lemâıtre-Robertson-Walker universe hinges
on temperature T being larger than the Hubble expansion rate H. In a radiation dominated universe,
we estimate H/T = O(10)T/MP . Therefore, we demand T/MP ≪ O(10−1) which allows us to address
most of the universe’s expansion history.
Let us now investigate the implications of Eq. (7.15) for the critical temperature Tc,B of Bose condensation
involving non-relativistic axion particles of mass mA and number density3 nA. One has [127]

Tc,B =
2π

mA

(
nA

ζ
(
3
2

)) 2
3

, (7.16)

where ζ(x) denotes the Riemann zeta function (ζ
(
3
2

)
= 2.6124). If we assume that, due to the long-range

quantum correlations facilitated by a super-horizon (reduced) Compton wave length4 m−1
A,i, the energy

density ρΛi = mA,inA,i of a global axion condensate exhibits negligible redshift (or T ) dependence then
the dependence of the axion mass on temperature of Eq. (7.15) predicts

Tc,B,i =

(
486

π4

)1/26
(

ρΛi

ζ
(
3
2

))2/13

M
5/13
P . (7.17)

Setting ρΛCMB
= (10−3 eV)4 and MP = 1.22 × 1028 eV yields Tc,B,CMB = 8.3 × 108 eV which associates

with a redshift z > 1012. This is beyond the initial redshift z ∼ 109 assumed in CMB simulations [211].
Higher vacuum energy densities, ρΛi

> ρΛCMB
, yield higher values of Tc,B,i even though their spread is

small due to the small power of 2/13 in Eq. (7.17).
Due to the large hierarchy between Tc,B,i and MP and by virtue of Eq. (7.15) thermal axions constitute
radiation for all temperatures T within the regime MP ≫ T > Tc,B,i. However, in a radiation dominated
universe, they only represent a small fraction of radiation energy density. This is because radiation
domination arises due the Stefan-Boltzmann limit of Yang-Mills thermodynamics. For T ∼ MP , where
we expect Einstein gravity to profoundly develop quantum behaviour, thermal axions would become
nonrelativistic again.

3In cosmology, axion particles can be shown to be nonrelativistic [195]: roughly speaking, their speed vA,i is bounded

from above by vA,i(z) =
M(z)mA,i(z)

M2
P

where M(z) denotes the entire mass of the instantaneously gravitating system at

redshift z after virialisation [195]. To axions that presently form a super-horizon sized, self-gravitating Bose condensate to
represent dark energy we associate the gauge group SU(2)CMB [217, 48, 41]. In ΛCDM this system presently gravitates
subject to a mass MΛCDM(z = 0) made from the axion condensate, dark matter, and baryons. For a spatial ball of present
Hubble radius rH0

= H−1
0 — the causally connected, selfgravitating region to which a typical axion particle virialises —

we have MΛCDM(z = 0) ∼ 4π
3
H−3

0 H2
0M

2
P

3
8π

= 1
2
M2

P /H0. Using H0 = 1.34× 10−32 h eV and h = 0.74 [218, 35, 32] yields

MΛCDM(z = 0) ∼ 7.5×1087 eV. Setting mA,CMB,0 = 10−35 eV [67], one thus arrives at vA,CMB(z = 0) ∼ 5.04×10−4 ≪ 1.

In a spatially flat, matter dominated universeM(z) evolves asM(z = 0) (z+1)−3/2. WithmA,i(z) = (1/4)2/3 mA,i,0 (z+1)2

[94] this produces vA,i = vA,i,0 (1/4)
2/3 (z + 1)1/2. In a radiation dominated universe vA,i does not evolve in z. Ignoring

a small regime in redshift of dark-energy domination and taking the redshift of radiation-matter equality as z ∼ 3000, the

axion-particle speed vA,CMB thus increases from its present value by a factor of ∼ (1/4)2/3 (3000+1)1/2 = 21.7. Therefore,
axions that associate with SU(2)CMB are non-relativistic throughout the entire expansion history. Axion particles of species
that are associated with fuzzy dark matter receive their redshift independent masses due to the Veneziano-Witten formula
applied to confining phases of SU(2) Yang-Mills theories for redshifts z < 108 [41] where topological charge is carried by
round-point center-vortex loops [31]. Presently, they are similarily slow as the axions of SU(2)CMB [195, 41]. With increasing
z and for z < 108 the velocities of these axion particles remains constant until the percolation of their selfgravitating lumps
sets in at zp,i. For z > zp,i axion velocities either decay with (z+1)−3/2 (matter domination) or with (z+1)−2 (radiation
domination) as z increases and so are guaranteed to be non-relativistic. In the deconfining phases of the associated SU(2)
Yang-Mills theories, that is, in the very early, radiation dominated universe, axion velocities do not evolve.

4One can readily see that the horizon size rH remains smaller than the Compton wavelength m−1
Ai

in a radiation domi-

nated universe. Namely, rHmAi
= O(1)/O(10). This shows that no gravitational back reaction occurs while maintaining

the condensed state of axion particles. Thus, the condition to determine the critical temperature for condensation is solely
Eq. (7.16).
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Figure 7.5: Axions have a temperature dependent mass mA ∝ T 2/MP in deconfinement phases of
SU(2) Yang-Mills thermodynamics, see Eq. (7.15); in the confining phase, the axion mass is constant,
see [41]. According to [41] and Eq. (7.15), the temperature dependence of mA is shown for four axion
species [41]: an axion associated with the Yang-Mills scale potentially implying the third lepton family
possesses a mass mA,τ (z = 0) ≈ 8 × 10−17 eV (ultramarine). Accordingly, for the second lepton family,
one would have mA,µ(z = 0) ≈ 3 × 10−19 eV (orange). An axion that associates with the first lepton
family carries a mass mA,e(z = 0) ≈ 7× 10−24 eV (green), and an axion, which couples to a Yang-Mills
theory potentially describing the CMB would possess a mass mA,CMB(z = 0) ≈ 10−35 eV (yellow). At the
respective deconfinement phase transitions the axion mass, which is supported by a reduced topological
susceptibility in the confining phase (round-point center-vortex loops being the topological charge carriers
[31]) as compared to the deconfinement phase, see derivation of Eq. (7.14), jumps up to a higher value. To
convert the T dependence of the axion mass in Eq. (7.15) into a z dependence, the temperature-redshift
relation T (z) = S(z) · (z + 1) · T0 was used [74]. Here, S(z) derives from a numerical evaluation of the
SU(2) deconfinement entropy density. It is fitted as S(z) = exp(−1− 1.7 z) + 1/41/3.

7.5 Summary and Outlook

In this paper, we have revisited the computation of axion mass according to the Veneziano-Witten for-
mula applied to the deconfining phase of an SU(2) Yang-Mills theory. Our result for the T dependence
of the topological susceptibility χ deviates from what is found in the literature: a T 4 dependence, which
is expected from dimensional analysis [193] and indeed shown to emerge in our computation involving
the center of a Harrington-Shepard caloron to represent the thermal ground state locally [31], contrasts
with power laws of large negative exponents [185, 186, 187, 188, 189, 190, 191, 192]. In Sec. 7.1 we
have pointed out various possible reasons for why such a discrepancy arises. We also have shown that
the contributions to χ stemming from massless and massive effective excitations of the thermal ground
state of a given SU(2) Yang-Mills theory yield an extremely suppressed negative correction (reflection
positivity) to the positive caloron contribution. Finally, we have investigated the consequences of this
result for cosmological model building. Such models consider the dark sector as axial-anomaly induced
by virtue of SU(2) Yang-Mills theories subject to a common Peccei-Quinn scale MP [48]. Such gauge
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theories possibly relate to the three lepton families of the Standard Model of Particle Physics [41, 5].
A fourth SU(2) theory of scale ΛCMB ∼ 10−4 eV (and Peccei-Quinn scale MP ) — SU(2)CMB — may
generate a present axion mass of ∼ 10−35 eV, therefore a super-horizon Compton wavelength, and thus
could relate to dark energy. It is worth asking at what temperatures these theories Bose condense their
axion particles in a cooling universe. We find that the associated critical temperatures depend on the
respective energy densities of the condensate through a power law of fractional power 2/13. This sug-
gests, in heating the very early universe through these transitions, that for all axion species the epoch
of dissolving dark energy into radiation is occurring at nearly the same temperature. The results ob-
tained here could be useful for cosmological model building in a framework where the dark sector of the
universe is due to the selfgravitating quantum dynamics of ultralight axions [195, 219, 199, 198, 200, 201].
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Appendix

Here, we evaluate the contribution to the topological susceptibility χ on the right-hand side of Eq. (7.1)
arising from quasi-particle fluctuations in the effective theory of deconfining SU(Nc) Yang-Mills thermo-
dynamics [31]. Throughout this Appendix, we denote by x or y spacetime vectors in R4.

A: Factorised χ(T ) in the model of the stochastic Yang-Mills vacuum at T > Tc

Here, in contrast to Secs. 7.2 and 7.3, we work with the perturbative definition, where the coupling is
not absorbed into the gauge field. Let us then consider the expression εµνλρFµνFλρ, where one of the
indices can be equal to 4, and Fµν is the antisymmetric field-strength tensor, defined either in terms of
the fundamental gauge field Aµ or effective gauge fields aµ. In the present section, both kinds of gauge
fields are identified and subjected to the coupling g. In Appendix B, we refer to effective gauge fields and
set g = e. Thus, Fµν = F a

µνt
a, where F a

µν = ∂µA
a
ν −∂νA

a
µ+gfabcAb

µA
c
ν , t

a’s are SU(Nc)-generators in the

fundamental representation, normalised as tr tatb = δab/2, a = 1, . . . , N2
c − 1, and fabc are the structure

constants of the Lie algebra su(Nc). One readily obtains that εµνλρFµνFλρ = 4 ε4ijkF4iFjk. Moreover,
one has

ε4ijkε4lmnF4i(x)Fjk(x)F4l(0)Fmn(0) = 2F4i(x)Fjk(x) [F4i(0)Fjk(0) + 2F4k(0)Fij(0)] . (7.18)

For latter usage we define x = (x, x4) = (x1, x2, x3, x4), x
2 = x2

1 + x2
2 + x2

3, and |x|2 = x2
1 + x2

2 + x2
3 + x2

4.
The local density of topological charge is defined as

Q(x) =
g2

32π2
εµνλρ tr(Fµν(x)Fλρ(x)) . (7.19)

From Eqs. (7.18) and (7.19) it is straightforward to obtain

⟨Q(x)Q(0)⟩ = g4

128π4

[
⟨F a

4i(x)F
a
jk(x)F

b
4i(0)F

b
jk(0)⟩+ 2⟨F a

4i(x)F
a
jk(x)F

b
4k(0)F

b
ij(0)⟩

]
. (7.20)

Let us now consider the factorised part of Eq. (7.20) which consists of six pairwise products of the two-
point correlation functions of the field strengths. As indicated by the lattice data in [220] the deconfine-
ment phase transition at T = Tc is associated with the disappearance of the chromo-electric condensate
⟨(gEa

i )
2⟩T , and hence also of ⟨F a

4i(x)F
b
4j(y)⟩T . Accordingly, Eq. (7.20) yields ⟨F a

4i(x)F
b
4j(0)⟩T = 0 in the

stochastic Yang-Mills vacuum at T > Tc [220]. Thus, one has

⟨Q(x)Q(0)⟩T,factorized =
1

128π4

[
⟨g2F a

4i(0)F
a
jk(0)⟩2T + ⟨g2F a

4i(x)F
b
jk(0)⟩2T (7.21)

+ 2⟨g2F a
4i(0)F

a
jk(0)⟩T ⟨g2F b

4k(0)F
b
ij(0)⟩T

+ 2⟨g2F a
4i(x)F

b
ij(0)⟩T ⟨g2F a

4k(x)F
b
jk(0)⟩T

]
.

We thus see that ⟨Q(x)Q(0)⟩T,factorized is fully expressed in terms of the correlation function ⟨g2Ea
i (x)B

b
k(0)⟩T

where Ea
i = F a

i4 denotes the chromo-electric field and Bb
k = 1/2εkijF

b
ij is the chromo-magnetic field. This

correlation function can be parameterized through a scalar function f(x) as

⟨g2Ea
i (x)B

b
k(0)⟩T = δabεiknxnf(x) . (7.22)

If one multiplies this equation by tatb and takes the trace, one obtains

tr ⟨g2Ea
i (x)t

aBb
k(0)t

b⟩T =
N2

c − 1

2
εiknxnf(x).

This parameterization can now be compared with the one adopted in Eq. (2.9) of [220] which reads

tr ⟨g2Ea
i (x)t

aBb
k(0)t

b⟩T = −1

2
εiknxn

∂DBE
1

∂x4
,

where the lattice values for the function DBE
1 (x) can also be found in [220].
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Therefore, f(x) is unambiguously related to the function DBE
1 (x) as

f(x) = − 1

N2
c − 1

∂DBE
1

∂x4
(7.23)

Using the aforementioned definitions of the chromo-electric and the chromo-magnetic fields, one has

⟨g2F a
4i(x)F

b
jk(0)⟩T = δab (δijδkn − δikδjn)xnf(x) . (7.24)

Equations (7.21) and (7.24) finally yield:

⟨Q(x)Q(0)⟩T,factorized =
1

128π4

[
⟨g2F a

4i(x)F
b
jk(0)⟩2T + 2⟨g2F a

4i(x)F
b
ij(0)⟩T ⟨g2F a

4k(x)F
b
jk(0)⟩T

]
(7.25)

= −N2
c − 1

32π4
x2f2 .

Note the negative sign of this contribution to ⟨Q(x)Q(0)⟩T , in accordance with the reflection-positivity
property and the pseudoscalar nature of the topological charge [221, 215].

B: Contributions to topological susceptibility due to massless and massive
quasi-particles

Let us now calculate contributions produced to the correlation function (7.25) by free massless and
massive quasi-particles in the effective theory of SU(Nc) Yang-Mills thermodynamics (Nc = 2, 3) for the
deconfinement phase [31]. These contributions are denoted by ⟨Q(x)Q(0)⟩T,factorized, free in what follows.
We first assume all the N2

c − 1 effective gauge fields to be massless, and subsequently show how the
corresponding contribution of massless quasi-particles dominates over that of the massive ones. For the
case of free massless quasi-particles, we need to consider the Abelian part of the field-strength tensor,
fa
µν = ∂µa

a
ν − ∂νa

a
µ. Setting g = e yields:

⟨e2Ea
i (x)B

b
k(y)⟩T=0,free =

1

2
εklm⟨e2fa

i4(x)f
b
lm(y)⟩T=0 = εklm∂x

4 ∂
y
m⟨e2aai (x)abl (y)⟩T=0 ,

where ⟨e2aai (x)abl (y)⟩T=0 = e2

4π2
δabδil
(x−y)2 (Feynman gauge), and we continue to work in Euclidean spacetime.

Hence,

⟨e2Ea
i (x)B

b
k(0)⟩T=0,free = e2δabεikn∂4∂n

1

4π2x2
. (7.26)

At finite temperature T ≡ 1/β, the propagator of massless gauge modes, 1
4π2x2 , can be represented as an

integral over the Schwinger proper time s as∫ ∞

0

ds

(4πs)2

+∞∑
n=−∞

exp

[
−x2 + (x4 + βn)2

4s

]
. (7.27)

Poisson resummation casts the sum over winding modes into the sum over Matsubara frequencies as

+∞∑
n=−∞

exp

[
− (x4 + βn)2

4s

]
= 2T

√
πs

+∞∑
k=−∞

exp(−ω2
ks+ iωkx4) , (7.28)

where ωk = 2πTk is the k-th Matsubara frequency. Therefore, the x4-differentiation in Eq. (7.26) re-
turns the prefactor of iωk which vanishes for k = 0. Hence, we approximate the sum over Matsubara
frequencies by only keeping terms with k = ±1. The finite-temperature generalisation of ∂4∂n

1
4π2x2 is

thus approximated as
T 2xn

4
√
π

∫ ∞

0

ds

s5/2
e−(2πT )2s− x2

4s sin(2πTx4) .

The s-integration in this expression, along with Eq. (7.22), yields

ffree(x) ≃
2πe2T 3

x2

(
1 +

1

2πT |x|

)
e−2πT |x| sin(2πTx4) .
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Thus, by employing Eq. (7.25), we obtain:

⟨Q(x)Q(0)⟩T,factorized, free ≃ −N2
c − 1

8π2

(e2T 3)2

x2

(
1 +

1

2πT |x|

)2

e−4πT |x| sin2(2πTx4) . (7.29)

By using Eq. (7.29), we calculate now χT,factorized, free, given as∫
d3x

∫ β

0

dx4⟨Q(x)Q(0)⟩T,factorized, free

= −N2
c − 1

8π2
(e2T 3)2

4π

2T

∫ ∞

|ϕ|−1

d|x|
(
1 +

1

2πT |x|

)2

e−4πT |x| , (7.30)

where the prefactor of 1
2T stems from

∫ β

0
dx4 sin

2(2πTx4), |ϕ|−1 = λ3/2

2πT , λ ≥ λc = 13.87 [31] and e ∼
√
8π

for T ≫ Tc. Therefore, we have

| χT,factorized, free |≃
N2

c − 1

16π2
(eT )4 e−2λ3/2

≤ 4× 10−39T 4 , (λ ≥ λc, Nc = 2) . (7.31)

The above calculation of the contribution χT,factorized, free of massless gauge fields to χ(T ) can readily be
generalized to the case of massive vector bosons of common mass m. Here, 1/(4π2x2) in Eq. (7.26) just
needs to be replaced by mK1(m|x|)/(4π2|x|), where K1 is the Macdonald function. This amounts to
adding the term −m2s into the exponentials in Eqs. (7.27) and (7.28) and introducing a factor of 3/2 for
the additional polarisation state. We obtain (cf. Eq. (7.30))

χT,factorized, free,massive ≃ −3

2

N2
c − 1

32π4
(eT )4

4π

2T

[
(2πT )2 +m2

] ∫ ∞

|ϕ|−1

d|x| e−2
√

(2πT )2+m2 |x|

= −3
N2

c − 1

64π3
e4T 3

√
(2πT )2 +m2 e−2

√
(2πT )2+m2

2πT λ3/2

. (7.32)

This expression indicates an even stronger exponential suppression than that of Eq. (7.31). In the effective
theory for the deconfinement phase of SU(2) Yang-Mills thermodynamics, the adjoint Higgs mechanism
leaves one gauge mode massless but generates a common mass m = 4πeTλ−3/2 [31] for the other two
gauge modes. Here e =

√
8π for T ≫ Tc. For SU(3) two different masses emerge which, however, exhibit

the same T−1/2 power-law fall-off at high temperatures. This shows that, modulo a smaller number
of polarisation states (six vs. eight for SU(2), 16 vs. 22 for SU(3)), the hypothetic contribution to
χT,factorized, free of massless gauge fields dominates among the contributions of all effective excitations.
Since the modulus of χT,factorized, free is ridiculously small, see Eq. (7.31), we justify the omission of
(negative) contributions to χ that arise from quasi-particle modes in the effective theory.
Finally, let us discuss an important property to be respected by the full correlation function ⟨Q(x)Q(0)⟩T :
it should be negative for all x ̸= 0 while yielding a positive χ(T ) [221, 215] to define a positive axion mass
squared according to Eq. (7.1). For the contribution ⟨Q(x)Q(0)⟩T,factorized, free in Eq. (7.29) this is the
case, albeit subject to an exponentially strong suppression of the modulus as compared to the positive
caloron contact contribution, compare with Eq. (7.11).
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Figure 8.1: Turtles all the way down? 19th century illustration of a world turtle from Wikimedia,
modified.
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8.1 Summary

This thesis explores a range of research questions in astroparticle physics and cosmology. It examines
anisotropies influenced by the Milky Way’s magnetic field and the propagation of cosmic rays on cos-
mological scales through the cosmic microwave background (CMB) with a modified temperature-redshift
(T -z) relation. In addition, we explore fundamental physics that may suggest a modified T -z relation
within the framework of a deconfining SU(2) Yang-Mills plasma. The thesis also examines a lepton
model based on mixed SU(2) Yang-Mills thermodynamics, linking the lepton mass spectrum to the mass
spectrum of ultralight axions, which are proposed as candidates for the Universe’s dark matter.

The starting point from cosmology is the current tensions in the cosmological standard model currently
ΛCDM are the discrepancies of the locally observed Hubble parameter H0 [32], which is inversely propor-
tional to the size of the universe with global, model-dependent observations of cosmic microwave radiation
(CMB) [36]; as well as the local density distribution of dark matter (cf. ibid. and [222]). The advantage
of a non-abelian Yang-Mills theory of the photon is the mitigation of both discrepancies with a consistent
implementation in the cosmological model [33, 34] without fine-tuning. The essential characteristic of the
modified cosmological model is the changed temperature-redshift relation: the cosmic microwave radia-
tion cools down more slowly than under ΛCDM. Testing the modified temperature-redshift relation with
cosmic ray propagation, which directly interact with the CMB photons, is one of the main objectives of
this thesis.

Figure 8.2: An overview of the axion masses in the framework of Yang-Mills thermodynamics, overlaid
with the phase structures of the leptons and the deconfined phase of the photon. In this theoretical
framework, leptons are immersed in the confined phase of the respective lepton theory after a Hagedorn
phase transition. We aim to test a diluted CMB photon density which would occur in the deconfined
phase of SU(2)CMB with the propagation of cosmic rays.

The prevailing view in the literature has been that this temperature-redshift relation could be determined
from the Lyman-alpha forest and the thermal Sunyaev-Zel’dovich effect. We find that assuming a trivial
frequency-redshift relation inevitably leads to a trivial temperature-redshift relation [3]. Therefore, these
two methods are not sensitive to the actual temperature of the CMB, but at most to the temperature of
the hydrogen and other absorbers (CO, NH4) in the observed systems. The only method to measure the
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temperature of the CMB in the past seems to be via the interaction of CMB photons with propagating
cosmic rays. Using cosmic ray propagation to probe the CMB photon density, we find that this particular
ΛCDM modification remains viable and even supports UHECR propagation below 1018.5 eV. In partic-
ular, mild tendencies can be seen for the dominant source class of UHECRs: It seems that SU(2)CMB

favours UHECR sources, such as starburst galaxies with a relatively steady production rate, over active
galactic nuclei as the primary source class of UHECRs. There are many other applications of our modified
description of blackbody radiation in cosmology. The dark sector is particularly affected if one describes
the thermal ground state not only of photons with an SU(2) gauge group, but each lepton family in
thermodynamic equilibrium (electron, muon, tauon). An overview of the axion masses in the framework
of Yang-Mills thermodynamics, overlaid with three thermal phases of the leptons and the deconfined
phase of the photon, can be seen in Fig.8.2. The lightest axion species ma,γ ∼ 10−35 eV is associated
with the Yang-Mills scale of the photon ΛCMB ∼ 10−4 eV and can be interpreted as dark energy, and
three axion species interpreted as fuzzy and cold dark matter ma,ℓ ∼ 10−24− 10−18 eV are related to the
Yang-Mills scales of the leptons with ma ∼ Λ2/MP in the confining phase of their respective Yang-Mills
theory. The axion mass of each species is temperature dependent and proportional to ma ∝ T 2/MP in
the deconfining phase. The Peccei-Quinn scale is thereby assumed to be the Planck mass MP .

However, in order to falsify this modified cosmological model, we need laboratory experiments. If the
thermal ground can be described with an SU(2) Yang-Mills theory, we expect screening effects for low
frequencies and low temperatures (as well as Meissner massive photons in the so-called preconfined
phase). First microwave cavity measurements were taken by the Istituto Nazionale di Ricerca Metro-
logica (INRiM), which show statistically significant excess noise power at 5.3GHz and 10K as well as
mild tensions at higher frequencies up to 11.5 GHz. While this excess can be attributed to temperature
gradients within the cavity, further cavity experiments at lower frequencies and temperatures are neces-
sary to systematically probe potential deviations from Planck’s radiation law. Lastly, by combining the
deconfined phase of the photon and electron an electroweak mixing angle can be obtained, which can
be interpreted as the Weinberg angle [5]. This thesis discusses an array of arguments which hint at a
complex thermal constitution of photons and leptons, as well as a dark sector made up out of four Planck
scale axion species. Further research is needed to assess the validity of this scenario and the hypothesis
that photons and leptons emerge from pure SU(2) Yang-Mills theories.
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