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Introduction

A key aspect of control theory is understanding the stability properties of
systems described by (partial) differential equations with external inputs
(controls, disturbances or uncertainties). These stability properties are
central to many applications, including robust feedback stabilization,
observer design, and the stability analysis of coupled systems and networks.

Input-to-state stability (ISS), first introduced by Sontag in 1989 [90],
has proven to be a suitable concept to study simultaneously internal
stability and robustness with respect to external inputs.

Loosely, consider a system Σ as a mapping which maps initial val-
ues x0 P X and input functions u : r0,8q Ñ U to the time evolution
x : r0, tmaxq Ñ X (typically a solution to some differential equation) for
some maximal tmax ¡ 0, which may depend on x0 and u. The normed
spaces X and U , equipped with the norms ∥�∥X and ∥�∥U , are referred to as
the state space and input space, respectively. The system Σ is considered to
be input-to-state stable (ISS) if, for all x0 P X and u P L8pr0,8q;Uq, the
state trajectory exists globally, i.e. tmax � 8, and satisfies the following
joint stability and robustness estimate for all t ¥ 0:

∥xptq∥X ¤ βp∥x0∥X , tq � γp sup
sPr0,ts

∥upsq∥U q, (1)

where the continuous functions β : r0,8q�r0,8q Ñ r0,8q and γ : r0,8q Ñ
r0,8q are of comparison classes KL and K, respectively, which are well-
known from Lyapunov theory. The properties of β and γ in (1) imply that
the uncontrolled system (u � 0) is uniformly globally asymptotically stable
with equilibrium x � 0. This can be easily generalized to any nonzero
equilibrium by shifting the state accordingly, or even to any attractors [93].
Additionally, the ISS estimate (1) ensures that if u is bounded, the state
remains bounded as well, with bound being determined by x0, u, β and γ.

While ISS was initially developed for finite-dimensional systems, many
real-world phenomena are governed by partial differential equations (PDEs),
which inherently result in infinite-dimensional state space representations
of the system. The analysis of ISS for infinite-dimensional systems is more

xi



xii Introduction

involved than for finite-dimensional systems. In fact, for linear systems#
9xptq � Axptq �Buptq, t ¥ 0,
xp0q � x0,

with A being the generator of a strongly continuous semigroup on the
state space X and B : U Ñ X being bounded, ISS is equivalent to uniform
exponential stability of the semigroup [18, 44]. In particular, this encom-
passes the finite-dimensional case. If B is not bounded as operator from
U to X, which is typically the case for boundary controlled PDEs, the
property of being ISS becomes non-trivial even for linear systems. In fact,
ISS is closely related to suitable solution concepts, see e.g. [44, 62, 88].

Along with the recent developments in the ISS theory for infinite-
dimensional systems [18, 19, 30, 52, 78, 79], several partial results have
been derived in the (semi)linear context, with an emphasis on parabolic
equations, see e.g. [49, 53, 69, 73, 75, 105]. For an overview of the ISS
theory, the reader is referred to the surveys [76, 88], the books [54, 71] and
the more recent habilitation thesis [72] for infinite-dimensional systems,
and to [91] for finite-dimensional systems.

Already seemingly harmless system classes such as bilinear control
systems #

9xptq � Axptq � F pxptq, uptqq, t ¥ 0,
xp0q � x0,

where F px, uq � °m
i�1 uiBix and A,Bi P Rn�n, see [23], are typical

examples for systems which are internally stable but not ISS, see e.g. [92].
However, these systems are integral input-to-state stable (integral ISS), a
variation of the classical ISS concept first mentioned in [92]. It is defined
similar to ISS, by replacing (1) with

∥xptq∥X ¤ βp∥x0∥X , tq � θ

�» t
0
µp∥upsq∥U q ds



, (2)

where β P KL and θ, µ P K. In the special case that µptq � tp with
1 ¤ p   8, (2) still provides meaningful information for u in Lp and the
integral term can be regarded as γp∥u∥Lppr0,ts;Uqq with γptq � θptpq. This
naturally leads to the following generalization of (1),

∥xptq∥X ¤ βp∥x∥X , tq � γp∥u∥Zpr0,ts;Uqq, (3)

where Z is a space of input functions. For Z � L8, we obtain (1) and for
Z � Lp with 1 ¤ p   8, we obtain (2) with µptq � tp. In general, the
functions µ and θ in (2) result from the system, hence, we cannot assume
that µ has polynomial growth. For infinite-dimensional linear systems it
is shown in [44] that (2) holds for u P L8 if and only if (3) holds for some
Orlicz space Z. The latter are function spaces generalizing Lp by posing an
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integrability condition with respect to a so-called Young function, which
is allowed to increase more rapidly than any monomial tp. These spaces
somehow “fill the gap” between Lp for p   8 and the often problematic
space L8.

Another aspect of nonlinear systems that we have not yet addressed
is the existence of global solutions, which is crucial for (integral) ISS.
This challenge is often ignored in the literature, where the existence of
well behaving solutions is assumed. In many cases, global existence of
solutions can be guaranteed by restricting the set of initial and input data.
This leads to the concept of local input-to-state stability (local ISS) [93],
where (1), or more generally (3), is only required for small x0 and u. This
approach allows for handling small perturbations while avoiding overly
strong assumptions on the nonlinearity. Since ISS is applied as a global
property, there is less literature on local ISS. For recent developments we
refer to [17, 70, 77]. In [63, 104] the authors also treat the problem of
identifying the local region of initial values and input functions for which
(3) holds.

Beyond ISS, there are further (classical) stability notions relevant for
modern applications of control theory. One of them is the related concept
of bounded-input bounded-output (BIBO) stability, which describes the
system’s ability to transfer bounded input functions to bounded output
functions. Compared to the challenges encountered in ISS theory, it now
has to be ensure that the system’s output is well-defined. For linear
systems, BIBO stability is extensively studied in the context of engineering
applications. However, much less is known for infinite-dimensional systems,
especially in the nonlinear case, see [14, 97] for systems with input-output
behavior described by convolution operators and [89] for linear systems
with unbounded control and observation operators.

Recently, BIBO stability has been used to ensure the applicability of
funnel control, a model-free adaptive control strategy designed to keep the
tracking error within a prescribed boundary. Since the seminal work by
Ilchmann, Sangwin, and Ryan [42], funnel control has been extensively
developed over the past twenty years, as detailed in [6] and the references
therein. It is particularly associated with BIBO stability of the internal
dynamics of systems with relative degree, which typically arises for system
described by the coupling of ODEs with PDEs. This connection has
been established through various “Funnel Theorems”, which have been
applied to both finite and infinite-dimensional systems, see [7, 8, 9, 42].
The types of dynamical systems for which funnel control is effective are
comprehensively listed in [5].



xiv Introduction

In this thesis, we study input-to-state stability and its variations for
infinite-dimensional nonlinear systems of the form$'&'%

9xptq � Axptq �Buptq � gpxptq, ũptq, yptqq, t ¥ 0,
xp0q � x0,

yptq � Cxptq, t ¥ 0,
(4)

where we consider the following cases:


 Bilinear control systems: gpx, ũ, yq � B̃F px, ũq with bilinear F .


 Bilinear feedback systems: gpx, ũ, yq � B̃Npx, yq with bilinear N .


 Semilinear systems: gpx, ũ, yq � fpxq.
The control and observation operators B, B̃ and C are assumed to be
unbounded with respect to the state space X. Our goal is to provide
reasonable sufficient and necessary operator-theoretic conditions, which
guarantee ISS properties of (4). We emphasize that the latter includes
existence and uniqueness of global solution.

In addition, we present sufficient conditions for BIBO stability of
semilinear systems.

It should be noted that, besides the operator-theoretic approach of this
thesis, there is the well-established theory of ISS Lyapunov functions, see
[76] for an overview. ISS Lyapunov functions extend the classical concept of
Lyapunov functions and Lyapunov stability and provide valuable insights
into a system’s behavior, enabling the verification of whether a given
system is (integral, local) ISS. However, ISS Lyapunov functions can be
difficult to identify, are often specific to a system, and do not address the
existence of solutions directly – challenges that seem more feasible from
the perspective of operator theory.
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Outline

 In Chapter 1, we introduce the basic notation of this thesis and

recall preliminary results on (perhaps not generally known) Orlicz
spaces and strongly continuous and analytic semigroups. Further,
we characterize the strong continuity of shift semigroups on Orlicz
spaces.


 In Chapter 2, we give a detailed and, to a certain extent, self-
contained introduction into infinite-dimensional linear systems. There
we present the concepts of admissible control and observation opera-
tors, as well as system nodes and well-posed linear systems laying
the groundwork for our discussion of nonlinear systems in Chap-
ter 5, Chapter 6 and Chapter 8. We emphasize that Chapter 2
not only summarizes existing literature but also includes certain
generalizations with respect to Orlicz spaces.


 Chapter 3 addresses Weiss’ conjecture from 1989 in [102], which states
that admissibility of control (equivalently observation) operators is
equivalent to a certain resolvent bound. For Lp-admissibility, Le
Merdy (p � 2) [61] and Haak (p ¥ 1) [31] provided a characterization
of the validity of this conjecture for bounded analytic semigroups.
In Chapter 3 we extend these findings for a class of Orlicz spaces.


 In Chapter 4, we define different notions of input-to-state stability
and recall the results from [44] on input-to-state stability for linear
systems.


 In Chapter 5, we consider integral input-to-state stability for bilinear
control systems. There we provide sufficient and necessary conditions
and apply the abstract results to a bilinear controlled Fokker–Planck
equation.


 In Chapter 6, local and global input-to-state stability for bilinear
feedback systems is considered. Examples are given in the form of
Burgers, Schrödinger, Navier–Stokes and wave equations.


 In Chapter 7, we present an ISS result based on multiplier tech-
niques for a semilinear wave equation with damping active only on a
subregion of the spatial domain.


 Finally, in Chapter 8, we conclude on BIBO stability of semilinear
systems. On the basis of our results, we prove the applicability of
funnel control to a coupled ODE-PDE model of a chemical tank
reactor model.
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Contributions
The core of this thesis has been published in form of the articles [37, 39,
40, 41]. These articles and further unpublished results contribute to this
thesis as follows:


 In [40], two characterizations of Orlicz admissibility for observation
operators are studied. The first one, given by Proposition 2.2.13 (and
Proposition 2.1.13 for control operators) generalizes an analogous
result for Lp due to Callier-Grabowski [28], see also Engel [24]. Both
rely on the strong continuity of the shift semigroup on Orlicz spaces,
discussed in Section 1.3.3, which is also studied in [40]. The second
characterization concerns the Weiss conjecture, which is discussed
in Chapter 3. Furthermore, a generalized Minkowski inequality
(Proposition 1.2.23) and the dual relation of Orlicz admissible control
and observation operators (Theorem 2.2.9), extending the Lp-result
from [100], are taken from [40].


 The results from [39] on integral ISS for bilinear control systems with
unbounded control operators, here included as Chapter 5, extend
those of [74], where the results and techniques are limited to bounded
control operators. Furthermore, Proposition 4.2.4 is taken from
[39]. It provides a generalization for a similar statement from [44],
which was used to prove that EΦ-ISS implies integral ISS for linear
system. Proposition 4.2.4 allows to lift this result to general nonlinear
autonomous systems, see Corollary 4.2.5.


 In [41], sufficient and necessary conditions for local ISS of an abstract
class of bilinear feedback systems are discussed. The results, here
included as Chapter 6, contribute to the rather sparse literature on
local ISS theory.


 Chapter 7 is work in progress and emerges from collaborations
with Birgit Jacob, University of Wuppertal, and Marius Tucsnak,
University of Bordeaux. ISS for a semilinear wave equation with
damping on a subregion and distributed input is proved based on
multiplier techniques, which as been used by Zuazua in [108] to prove
exponential stability of the above equation without inputs.


 In [37], BIBO stability of semilinear systems including unbounded
operators is proven based on the BIBO property of an extended linear
system, range conditions of the control operators and a small-gain
condition. The results enter this theses in form of Chapter 8, where
Section 8.4.2 is formulated for more general nonlinearities f instead
of the fixed function fpxq � |x|

1�|x| considered in [37].



Chapter 1

Preliminaries

In this chapter, we settle the basic notation of this thesis and recall
various fundamental results regarding Orlicz spaces and strongly continuous
semigroups used in this thesis.

Further, we provide seemingly new results on Orlicz spaces and the
strong continuity of the left- and right-shift semigroup on Orlicz spaces,
first mentioned in [40].

1.1 Basic notation
1.1.1 Dual pairings on Banach and Hilbert spaces
Let X be a Banach space over K P tR,Cu with norm ∥�∥X . If X � Kn,
n P N, we write |�| :� ∥�∥Kn for the Euclidean norm.

The (topological) anti-dual space of X is

X 1 :� tx1 : X Ñ K |x1 is antilinear and continuousu.

Let Y be another Banach spaces and x�, �yY,X : Y �X Ñ K be a continuous
sesquilinear form. Then, also x�, �yX,Y : X � Y Ñ K,

xx, yyX,Y :� xy, xyY,X
is a continuous sesquilinear form. If

Φ: Y Ñ X 1

y ÞÑ xy, �yY,X
is an isometric isomorphism, then we call pX,Y q a (anti-)dual pair and
x�, �yY,X its (anti-)dual pairing. Since Φ is isometric, we have that

|xx, yyX,Y | � |xy, xyY,X | ¤ ∥y∥Y ∥x∥X .

1



2 1. Preliminaries

Since Φ is also surjective, the Hahn–Banach theorem implies that

∥y∥Y � sup
∥x∥X¤1

|xx, yyX,Y | � sup
∥x∥X¤1

|xy, xyY,X |,

∥x∥X � sup
∥y∥Y ¤1

|xx, yyX,Y | � sup
∥y∥Y ¤1

|xy, xyY,X |.

Clearly, pX,X 1q is a dual pair with the canonical dual pairing

xx1, xyX1,X :� x1pxq, x P X, x1 P X 1.

When working with a dual pair pX,Y q, one can use x�, �yY,X and
x�, �yX,Y interchangeably. However, one has to be cautious with the order
of a dual pair. If pX,Y q is a dual pair with dual pairing x�, �yY,X , then
pY,Xq is not necessarily a dual pair and x�, �yX,Y may not be a dual pairing.
In fact, it is easy to see that there exists a Banach space Y such that
pX,Y q and pY,Xq are both dual pairs if and only if X is reflexive.

The choice of using the anti-dual space and anti-dual pairing instead of
their linear pendants is particularly useful in Hilbert spaces when switching
between dual pairings and inner products. Indeed, let X be a Hilbert
space and denote its inner product by x�, �yX . Then, pX,Xq is a dual pair
with the canonical dual pairing

xx, yyX,X :� xx, yyX .

Unless stated otherwise, we work with the canonical dual pairs pX,X 1q if
X is a Banach space and pX,Xq if X is a Hilbert space.

1.1.2 Linear operators
Let X and Y be Banach space. A linear operator from X to Y is a
linear mapping A : dompAq � X Ñ Y , where dompAq is a linear subspace
of X, called the domain of A. By writing A : X Ñ Y we mean that
dompAq � X. Let A : dompAq � X Ñ Y be a linear operator. Then, A
is called densely defined if dompAq is dense in X and closed if its graph
tpx,Axq |x P dompAqu � X � Y is closed. We say that A is bounded if
dompAq � X and the operator norm of A, defined by

∥A∥LpX,Y q :� sup
∥x∥X¤1

∥Ax∥Y ,

is finite, and unbounded otherwise. We abbreviate ∥A∥ � ∥A∥LpX,Y q,
unless we want to make it explicit that A is an operator from X to Y . The
space of bounded operators from X to Y , denoted by LpX,Y q, becomes
a Banach space when equipped with the operator norm. If X � Y we
abbreviate LpXq :� LpX,Y q.
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The kernel, kerA, and range, ranA, of A are defined by

kerA :� tx P dompAq |Ax � 0u,
ranA :� tAx |x P dompAqu.

If Y � X, we additionally define the spectrum, σpAq, and the resolvent
set, ρpAq, of A by

σpAq :� tλ P C | pλ�Aq is not invertibleu,
ρpAq :� CzσpAq.

Here, λ P C is identified with the operator λI, where I denotes the identity
on X. The resolvent of A at λ P ρpAq is the linear operator

pλ�Aq�1 : X Ñ X,

with ranpλ� Aq�1 � dompAq. If A is closed, then pλ� Aq�1 P LpXq for
all λ P ρpAq.

Now, let pX1, X2q and pY1, Y2q be dual pairs and A : dompAq � X1 Ñ
Y1 be a densely defined linear operator. The dual operator with respect
to the above dual pairs is the linear operator A1 : dompA1q � Y2 Ñ X2,
where

dompA1q
:�  

y2 P Y2
�� Dx2 P X2 @x1 P dompAq : xx2, x1yX2,X1 � xy2, Ax1yY2,Y1

(
and A1 is given by

A1y2 :� x2 ô xx2, x1yX2,X1 � xy2, Ax1yY2,Y1 for all x1 P dompAq.
Note that A1 is well-defined by Hahn–Banach’s theorem. The dual operator
A1 is always closed, and it is densely defined if A is closed.

If A : dompAq � X Ñ Y is a densely defined linear operator and no
dual pairs are mentioned, we define the dual operator of A using the
dual pairs pX,X 1q and pY, Y 1q if X and Y are Banach spaces, and pX,Xq
and pY, Y q if X and Y are Hilbert spaces. Thus, A1 is the standard dual
operator on Banach spaces and the adjoint operator on Hilbert spaces.

1.1.3 Function spaces
Let Ω � Rn be any subset and U a Banach space. We equip CpΩ;Uq, the
space of continuous functions f : Ω Ñ U , with the usual norm ∥f∥CpΩ;Uq :�
supζPΩ∥fpζq∥U . By CcpΩ;Uq we denote the subspace space of continuous
and compactly supported functions f , i.e., f P CpΩ;Uq and the support
of f , supp f :� tζ P Ω | fpζq � 0u, is a compact subset of Ω. For m P N,
we denote by CmpΩ;Uq the space of m-times continuously differentiable
functions f : Ω Ñ U , where differentiation is considered in the interior of
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Ω and all derivatives can be continuously extended to Ω. Further, consider
C8pΩ;Uq :� �

mPN C
mpΩ;Uq and C8

c pΩ;Uq :� tf P C8pΩ;Uq | supp f �
Ω is compactu.

Denote by F the Borel σ-algebra on Ω and by λ the Lebesgue measure.
Recall that a function f : Ω Ñ U is called simple if f � °8

i�1 ui1Fi
, where

ui P U , Fi P F has finite measure and

1F pζq :�
#

1, if ζ P F,
0, else

is the characteristic function on F � Ω. A function f : Ω Ñ U is called
(strongly) measurable if there exists a sequence of simple functions con-
verging almost everywhere to f .

By LppΩ;Uq, 1 ¤ p ¤ 8, we denote the standard Lebesgue space of
(equivalence classes of) strongly measurable functions f : Ω Ñ U such that
∥f∥LppΩ;Uq is finite, where

∥f∥LppΩ;Uq :�
#�³

Ω∥fpζq∥pU dζ
�1{p

, if p   8,
ess supζPΩ∥fpζq∥U , if p � 8.

Now, let Ω � Rn be an open domain. For m P N and 1 ¤ p ¤ 8 we
denote by Wm,ppΩ;Uq the classical Sobolev spaces of function in LppΩ;Uq
whose weak partial derivatives Dαf exists in LppΩ;Uq for all multi-indices
α � pα1, . . . , αnqJ P Nn0 with |α| :� °n

i�1 αi ¤ m. On Wm,ppΩ;Uq we
consider the norm

∥f∥Wm,ppΩ;Uq :�
�� ¸

0¤|α|¤m
∥Dαf∥pLppΩ;Uq

�
1
p

.

For p � 2 we use the notation HmpΩ;Uq :� Wm,2pΩ;Uq. If U is a
Hilbert space, then HmpΩ;Uq is a Hilbert space with the inner product

xf, gyHmpΩ;Uq :�
¸

0¤|α|¤m

»
Ω
xDαfpζq, DαgpζqyU dζ.

Further, let Hm
0 pΩ;Uq be the closure of C8

c pΩ;Uq in HmpΩ;Uq.
For Ω � ra, bq with �8   a   b ¤ 8 and 1 ¤ p ¤ 8 we define the

local Lp-space by

Lplocpra, bq;Uq :� tf : ra, bq Ñ U | f |ra,ts P Lppra, ts;Uq for all t P pa, bqu,
where f |ra,ts is the restriction of f to ra, ts. Similar, we define the local
Sobolev spaces

Wm,p
loc ppa, bq;Uq

:� tf : pa, bq Ñ Ω | f |pa,tq P Wm,pppa, tq;Uq for all t P pa, bqu
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and
Hm

locppa, bq;Uq :� Wm,2
loc ppa, bq;Uq.

For any function space Z we abbreviate ZpΩq :� ZpΩ,Kq, unless we
want to make it explicit that we are dealing with scalar-valued functions.

Further, we write Lppa, bq, if U � K and Ω is an interval of the form
pa, bq, ra, bq, pa, bs or ra, bs. This is well-defined since ta, bu is a Lebesgue
null set. Similar, we write Wm,ppa, bq, Hmpa, bq and Hm

0 pa, bq if Ω � pa, bq
is an open interval.

1.2 Orlicz spaces
In Lp-spaces, functions f are measured in term of their p-th power integra-
bility. Therefore, they are limited in capturing the behavior of functions
with more complex growth patterns. This is where Orlicz spaces come
into play. They are defined by introducing so-called Young functions Φ,
which generalize the functions t ÞÑ tp, and by studying the integrability
of Φpfq. In this way, Orlicz spaces extend Lp-spaces for 1   p   8. The
presented results are based on [1, 58, 60].

1.2.1 Young functions
We begin this section with the fundamental definition of Young functions.
Definition 1.2.1. A function Φ: r0,8q Ñ r0,8q is called Young function
if Φ is

(i) continuous,

(ii) convex,

(iii) Φptq ¡ 0 for t ¡ 0, and

(iv) the following limit properties are satisfied

lim
t×0

Φptq
t

� 0 and lim
tÑ8

Φptq
t

� 8. (1.1)

For every Young function Φ we have that Φp0q � 0, limtÑ8 Φptq � 8
and Φ is strictly increasing. Hence, the inverse function Φ�1 : r0,8q Ñ
r0,8q exists, and it is a strictly increasing and concave function which
satisfies Φ�1p0q � 0 and limtÑ8 Φ�1ptq � 8.
Remark 1.2.2. It is well known, see e.g. [1, 58, 60], that Φ is a Young
function if and only if

Φptq �
» t

0
φpτqdτ for all t ¥ 0 (1.2)

for some function φ : r0,8q Ñ r0,8q such that
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(i) φp0q � 0, φpτq ¡ 0 for τ ¡ 0 and limτÑ8 φpτq � 8,

(ii) φ is nondecreasing, and

(iii) φ is right-continuous.

Note that φ is the right-derivative of Φ almost everywhere with respect
to the Lebesgue measure. Hence, φ is unique up to equality on null-sets.
One could replace the right-continuity of φ with left-continuity, then φ
would be the left-derivative of Φ almost everywhere.

Definition 1.2.3. Let Φ be a Young function with right-derivative φ. For
ρ, s ¥ 0 we define

rφpρq :� sup
φpτq¤ρ

τ and rΦpsq :�
» s

0
rφpρq dρ.

We call rΦ the to Φ complementary Young function. And the functions Φ
and rΦ are called complementary to each other.

Remark 1.2.4. It is not difficult to check that rφ has the properties (i)-(iii)
from Remark 1.2.2. Hence, rΦ is a Young function with right-derivativerφ. Moreover, φ can be recovered from rφ via φpτq � sup rφpρq¤τ ρ, i.e., Φ
is the complementary Young function to rΦ. This means there is a one-
to-one correspondence between a Young function and its complementary
Young function and the notion “complementary to each other” makes
sense. The relation between complementary Young functions is illustrated
in Figure 1.1.

t

s

rΦpsq
Φptq

ρ � φpτq
τ � rφpρq

τ

ρ

Figure 1.1: Relation between complementary Young functions Φ and rΦ.
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The following result can also be rediscovered in Figure 1.1.

Lemma 1.2.5. Let Φ and rΦ be complementary Young functions generated
by φ and rφ, respectively. Then, Young’s inequality

st ¤ Φptq � rΦpsq (1.3)

holds for all s, t ¥ 0, and equality holds if and only if either t � rφpsq or
s � φptq.
Proof. For the proof we refer to [1, page 266]. ❑

Corollary 1.2.6. Let Φ be a Young function. Its complementary Young
function is given by rΦpsq � max

t¥0
tst� Φptqu.

Proof. The assertion follows from Young’s inequality, Lemma 1.2.5. ❑

Remark 1.2.7. The above expression for rΦ is sometimes used as a defi-
nition of the complementary Young function. It allows a more general
definition of Young functions, where the limit properties (1.1) are relaxed
to limt×0 Φptq � 0 and limtÑ8 Φptq � 8, see e.g. [84, page 6]. Using this
definition, Φptq � t is a Young function with

rΦptq � sup
s¥0

tpt� 1qsu �
"

0, if t P r0, 1s,
8, if t P p1,8q.

However, we only consider Young functions defined as in Definition 1.2.1,
unless otherwise specified.

Another relation between complementary Young functions is given
next.

Lemma 1.2.8. Let Φ and rΦ be complementary Young functions. Then,

t ¤ Φ�1ptqrΦ�1ptq ¤ 2t for all t ¥ 0. (1.4)

Proof. For the proof we refer to [1, pages 264-265]. ❑

An essential property of Young functions is the following growth be-
havior.

Definition 1.2.9. A Young function Φ satisfies the ∆2-condition near
infinity (Φ P ∆8

2 ) if there exist constants K ¡ 0 and t0 ¡ 0 such that

Φp2tq ¤ KΦptq for all t ¥ t0. (1.5)

If (1.5) holds for t0 � 0, we say that Φ satisfies the ∆2-condition globally
(Φ P ∆global

2 ).
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Remark 1.2.10. As a consequence of the monotonicity of Φ and a simple
iteration argument, as already mentioned in [1, page 231], the factor 2 in
(1.5) can be replaced by any constant r ¡ 1. The constant K will then
depend on r.

Example 1.2.11. The following functions are Young functions:

(i) Φ1ptq � tp

p for 1   p   8,

(ii) Φ2ptq � et � t� 1,

(iii) Φ3ptq � p1� tq logp1� tq � t,

(iv) Φ4ptq � t logplogpt� eqq,
(v) Φ5ptq � etp � 1 for 1   p   8.

The complementary Young function to Φ1 is rΦ1ptq � tp
1

p1 where p1 is the
Hölder conjugate of p, i.e., 1

p � 1
p1 � 1. The Young functions Φ2 and Φ3

are complementary to each other. Further, we have Φ1,Φ3,Φ4 P ∆global
2

and Φ2,Φ5 R ∆8
2 .

1.2.2 Young functions of class P
We close the discussion on Young functions by introducing a subclass
of Young functions with polynomial growth at 0 and 8. In [55], it is
proven that the associated Orlicz spaces (see Section 1.2) are interpolation
spaces between Lp-spaces. Due to their polynomial behavior, these Young
function will play a role in Chapter 3 in the context of the holomorphic
functional calculus.

Definition 1.2.12. We say that a function Φ: r0,8q Ñ r0,8q is of class
P (Φ P P) if Φ is invertible and there exist 1   p   q   8 and a continuous
concave function ρ : p0,8q Ñ p0,8q with

ρpstq ¤ maxp1, sqρptq (1.6)

for all s, t ¡ 0 and such that Φ�1 is given by

Φ�1ptq � t
1
p ρpt 1

q� 1
p q (1.7)

for t ¡ 0.

Functions of class P are Young functions as the following result shows.

Lemma 1.2.13. For 1   p   q   8 let f : p0,8q Ñ p0,8q be given by

fptq � t
1
p ρpt 1

q� 1
p q,
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where ρ : p0,8q Ñ p0,8q is a continuous concave function satisfying (1.6).
Then f is strictly increasing, and hence invertible on p0,8q. Its inverse
f�1 extends to a Young function by f�1p0q � 0. In particular, functions
of class P are Young functions.

Proof. From (1.6) we deduce that ρ is increasing. The concavity of ρ
implies that s ÞÑ ρpsq

s is decreasing on p0,8q and since 1
q � 1

p   0, s ÞÑ
ρpstq

1
q
� 1

p

s
1
q
� 1

p
is increasing for every t ¡ 0. For s P p0, 1q it follows that

fpstq � s
1
p t

1
p ρppstq 1

q� 1
p q

¥ s
1
p t

1
p ρpt 1

q� 1
p q � s

1
p fptq,

and similar for s P r1,8q,

fpstq � s
1
q t

1
p
ρppstq 1

q� 1
p q

s
1
q� 1

p

¥ s
1
q t

1
p ρpt 1

q� 1
p q � s

1
q fptq.

These inequalities and the properties of ρ imply that

mints 1
p , s

1
q ufptq ¤ fpstq ¤ maxts 1

p , s
1
q ufptq (1.8)

for s, t ¡ 0. It follows that f is strictly increasing on p0,8q and fpp0,8qq �
p0,8q. Hence, f is invertible with continuous and strictly increasing
inverse f�1 : p0,8q Ñ p0,8q. For the convexity of f�1 we refer to [68,
Lemma 14.2]. It follows from (1.8) for t � 1 that

lim
s×0

fpsq
s

� 8 and lim
sÑ8

fpsq
s

� 0.

Hence, f�1 extends uniquely to a Young function by f�1p0q � 0. ❑

Remark 1.2.14. 1. A representation of Φ P P and its complementary
Young function rΦ are given by [55, Lemma 3.2]: If Φ P P is charac-
terized by (1.7), then

Φptq � tqhptp�qq (1.9)

and rΦptq � tp
1

kptq1�p1q, (1.10)
where p1 and q1 are the Hölder conjugates to p and q, respectively,
and h, k : r0,8q Ñ r0,8q are continuous and quasi-concave functions
such that hptq ¡ 0 for t ¡ 0 and hpstq ¤ maxt1, suhptq for all s, t ¡ 0
and analog for k. The functions h and k are characterized by (1.9)
and (1.10).
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2. From (1.7), (1.9) and (1.10) we derive

Φ�1pstq ¤ maxts 1
p , s

1
q uΦ�1ptq,

Φpstq ¤ maxtsq, spuΦptq,rΦpstq ¤ maxtsp1 , sq1u rΦptq (1.11)

for s, t ¡ 0 and with the transformations u � maxtsq, spu, v � Φptq
and u � maxtsp1 , sq1u, v � rΦptq, respectively,

mintu 1
p , u

1
q uΦ�1pvq ¤ Φ�1puvq,

mintu 1
q1 , u

1
p1 u rΦ�1pvq ¤ rΦ�1puvq.

(1.12)

In particular, we have that Φ, rΦ P ∆global
2 by (1.11).

Example 1.2.15. (i) If ρ, µ : p0,8q Ñ p0,8q are continuous concave
functions satisfying (1.6), then so are aρ� bµ and ρ � µ for a, b ¥ 0.
To see that ρ � µ satisfies (1.6), note that ρ is increasing. The latter
follows from (1.6) by writing t̃ P p0, ts as t̃ � st with s P p0, 1s.

(ii) The trivial examples ρrptq � tr for some r P r0, 1s lead to the Young
functions Φptq � tα with α P rp, qs given by 1

α � r
q � 1�r

p , if we
assume that Φ�1 is given by (1.7) with 1   p   q   8. For r � 0
and r � 1 the corresponding functions ρ0ptq � 1 and ρ1ptq � t can
be seen as the extreme cases for ρ with respect to the gradient of
increasing concave functions.

(iii) The following example can be found in [55]. Let Φ�1 be given by
(1.7) with ρptq � mint1, tu, t ¥ 0 and any choice of 1   p   q   8.
Then, Φ is given by (1.9) with hptq � maxt1, tu, t ¥ 0. It is obvious
that Φ is of class P.

(iv) Let Φ�1 be given by (1.7) with ρptq � logp1�tq, t ¥ 0 and any choice
of 1   p   q   8. Then, Φ is of class P, Φ�1 has a holomorphic
extension to any sector Sδ :� tz P Czt0u | |arg z|   δu (taking the
principal branch of the complex logarithm) and for δ ¤ π

3 there exist
constants m0,m1 ¡ 0 such that

m0Φ�1p|z|q ¤ |Φ�1pzq| ¤ m1Φ�1p|z|q

for z P Sδ.

Proof. Let ρptq � logp1 � tq. It is well known that ρ is concave
and holomorphic on any sector Sδ. We first check that ρpstq ¤
maxt1, suρptq holds for s, t ¡ 0. For s ¤ 1, the monotonicity of
ρ implies ρpstq ¤ ρptq. For s ¡ 1, ρpstq ¤ sρptq is equivalent to
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logp1 � stq ¤ logpp1 � tqsq, which holds by Bernoulli’s inequality.
Hence, Φ is of class P.
For the remaining part, let δ ¤ π

3 , i.e., 2 cospδq ¥ 1. Let z �
reiθ P Sδ, i.e., r ¡ 0 and θ P p�δ, δq. Note that 1 � z P Sδ and
|1� z|2 � 1� 2 cospθqr � r2 holds. We infer that

|logp1� zq|2 � |logp|1� z|q � i argp1� zq|2

�
�

1
2 log

�a
1� 2 cospθqr � r2

	
2
� pargp1� zqq2

¥ 1
16 plogp1� 2 cospδqrqq2

¥ 1
16 plogp1� rqq2

� 1
16 plogp1� |z|qq2 ,

which shows 1
4ρp|z|q ¤ |ρpzq|. Similar, we estimate

|logp1� zq|2 �

���1
2 logp1� 2 cospθqr � r2loooooooooomoooooooooon

¤p1�rq2

q

��

2

� pargp1� zqq2

¤ logp1� rq2 � pargp1� zqq2

� ρp|z|q2 � pargp1� zqq2 .

Thus, to derive |ρpzq| ¤ m1ρp|z|q for some positive constant m1
independent of z, it suffices to show that

|argp1� zq|
ρp|z|q � |argp1� zq|

logp1� |z|q

is bounded on Sδ. Since z ÞÑ argp1 � zq is continuous on Sδzt0u,
the boundedness follows on compact subsets of Sδzt0u. Moreover,
|argp1� zq| ¤ π

3 implies the boundedness for large values of |z|. It
remains to show that |argp1�zq|

logp1�|z|q is bounded for small values of |z|. To
this end we use

|1� z| sinpargp1� zqq � Im p1� zq � Im pzq � |z| sinpargpzqq

on Sδ and that | ω
sinpωq | ¤ K for some K ¡ 0 and all ω P p�δ, δq.
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With this at hand, we estimate for z � reiθ,

|argp1� zq|
logp1� |z|q ¤ K

|sinpargp1� reiθqq|
logp1� rq

� K
r|sinpθq|

|1� reiθ| logp1� rq
¤ K

r

logp1� rq
¤ rK

for some rK ¡ 0 and small values of r � |z|. ❑

1.2.3 The Orlicz space LΦ

Let Ω � Rn be a nonempty subset. Measurability of sets and functions
refers to the Borel σ-algebra on Ω and the Lebesgue measure λ. As usual,
integration with respect to λ is denoted by

³
Ω f dλ � ³

Ω fpζq dζ � ³
Ω f dζ.

Further, U is a Banach space over K P tR,Cu.
We emphasize that all definitions and results easily extend to any

σ-finite measure space.
For a Young function Φ and a (strongly) measurable function f : Ω Ñ U

define
ρΦpfq :� ρΦpf ; Ω, Uq :�

»
Ω

Φp∥f∥U q dζ.

If we want to emphasize that f is a function from Ω to U , we write
ρΦpf ; Ω, Uq, and ρΦpfq else. Whenever one of these expressions appears,
we tacitly assume that f is measurable.

Definition 1.2.16. Let Φ be a Young function. With the usual convention
of identifying functions which coincide almost everywhere, the Orlicz space
LΦpΩ;Uq is defined by

LΦpΩ;Uq :�
!
f : Ω Ñ U

��� Dk ¡ 0 : ρΦ

�
f
k

	
  8

)
.

Further, we define two norms on LΦpΩ;Uq, the Luxemburg norm

∥f∥LΦpΩ;Uq :� inf
!
k ¡ 0

��� ρΦ

�
f
k

	
¤ 1

)
and the Orlicz norm

9f9LΦpΩ;Uq :� sup
"∣∣∣∣»

Ω
xf, gyU,U 1 dζ

∣∣∣∣ ���� ρrΦpg; Ω, U 1q ¤ 1
*

� sup
"»

Ω
|xf, gyU,U 1 | dζ

���� ρrΦpg; Ω, U 1q ¤ 1
*
,
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where the second equality follows by considering g̃ � g sgn pxf, gyU,U 1q
instead of g, where sgn is the sign function.
If U � K, we abbreviate LΦpΩq :� LΦpΩ;Kq, and LΦpa, bq � LΦpΩq if Ω is
an interval pa, bq, ra, bq, pa, bs or ra, bs.

As in the scalar case, it can be shown that the Luxemburg and Orlicz
norm, respectively, are norms on LΦpΩ;Uq, see e.g. [60, Theorem 3.6.4 ] and
[1, Theorem 8.10]. Furthermore, we will see that, as in the scalar case, both
norms are equivalent and turn EΦpΩ;Uq into an Banach space. However,
we take the Luxemburg norm as the standard norm since it does not
require any knowledge about the complementary Young function. We will
go over to the Orlicz norm, whenever its dual character is advantageous.

Example 1.2.17. For the Young function Φptq � tp, 1   p   8, we have

LΦ � Lp and ∥�∥LΦ � ∥�∥Lp .

In this sense, Orlicz spaces generalize Lp-spaces for 1   p   8.

The following result is useful for estimating the Luxemburg norm.

Lemma 1.2.18. Let Φ be a Young function and f P LΦpΩ;Uq. Then,
ρΦ pfq ¤ 1 holds if and only if ∥f∥LΦpΩ;Uq ¤ 1. Moreover, if ρΦ pfq � 1
holds, then ∥f∥LΦpΩ;Uq � 1.

Proof. This is a direct consequence of the definition of the Luxemburg norm
and a monotone convergence argument, see also [58, Theorem 9.5]. ❑

Similar to Lp-spaces, Hölder’s inequality applies in Orlicz spaces.

Lemma 1.2.19. Let Φ and rΦ be complementary Young functions. For
every f P LΦpΩ;Uq and g P LrΦpΩ;U 1q the generalized Hölder inequality
holds:»

Ω
|xf, gyU,U 1 | dζ ¤

»
Ω

∥f∥U∥g∥U 1 dζ ¤ 2∥f∥LΦpΩ;Uq∥g∥L
rΦpΩ;U 1q.

Proof. The first inequality is clear and the second one is a direct conse-
quence of Young’s inequality (1.3) and Lemma 1.2.18. ❑

From the definition of the Luxemburg norm it is clear that

∥f∥LΦpΩ;Uq � ∥ ∥f∥U ∥LΦpΩq

holds for every f P LΦpΩ;Uq. The analog identity for the Orlicz norm
is less obvious but still valid. A proof of this fact can be found in [87,
Lemma 3.4.22] under the additional (but unnecessary) assumption that
U is an Orlicz space. We recall the statement and give an inside into the
proof.
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Proposition 1.2.20. Let Φ and rΦ be complementary Young functions.
For f P LΦpΩ;Uq and g P LΦpΩ;U 1q we have that

sup
"»

Ω

∣∣∣xf,rhyU,U 1

∣∣∣ dζ
���� ρrΦprh; Ω, U 1q ¤ 1

*
� sup

"»
Ω

∥f∥U |h| dζ
���� ρrΦph; Ω,Kq ¤ 1

*
and

sup
"»

Ω

∣∣∣xrh, gyU,U 1

∣∣∣ dζ
���� ρrΦprh; Ω, Uq ¤ 1

*
� sup

"»
Ω

∥g∥U 1 |h| dζ
���� ρrΦph; Ω,Kq ¤ 1

*
.

In particular, 9f9LΦpΩ;Uq � 9 ∥f∥U 9LΦpΩq.

The proof is based on the following non-trivial lemma, which is a
simplification of [87, Satz 3.4.21].

Lemma 1.2.21. Let X,Y be Banach spaces. If B : X � Y Ñ K is
sesquilinear such that |Bpx, yq| ¤ ∥x∥X∥y∥Y for all x P X and y P Y , and

∥x∥X � supt|Bpx, yq| | y P Y, ∥y∥Y ¤ 1u,
then, for every measurable function x : Ω Ñ X and every ε P p0, 1q there
exists a measurable function y : Ω Ñ Y such that, for almost every ζ P Ω,

∥ypζq∥Y ¤ 1 and p1� εq∥xpζq∥X ¤ |Bpxpζq, ypζqq|.
Proof. We refer to [87, Satz 3.4.21] for the proof. There, bilinear forms B
are considered, however, the proof for sesquilinear forms is the same. ❑

Proof of Proposition 1.2.20. Note that “¤” is clear for both statements.
We have to prove the reverse estimates. First consider f P LΦpΩ;Uq and
let ε P p0, 1q. By y we denote the function from Lemma 1.2.21 for X � U ,
Y � U 1, Bpx, yq � xx, yyU,U 1 and x � f . Let h P LrΦpΩq with ρrΦphq ¤ 1
and set rh � yh. Since ∥y∥U 1 ¤ 1 almost everywhere, we obtain that
ρΦprh; Ω, U 1q ¤ 1, and hence,

p1� εq
»

Ω
∥f∥U |h| dµ

¤ sup
"»

Ω

∣∣∣xf,rhyU,U 1

∣∣∣ dµ
���� ρrΦprh; Ω, U 1q ¤ 1

*
.

Letting ε tend to zero and taking the supremum over all h P LrΦpΩq with
ρrΦphq ¤ 1 yields the assertion for f .

By considering X � U 1 and Y � U and reversing the arguments of B,
we obtain the corresponding statement for g. ❑



1.2. Orlicz spaces 15

Proposition 1.2.20 allows to lift well-known results from scalar-valued
to vector-valued Orlicz spaces.

Corollary 1.2.22. The Orlicz space LΦpΩ;Uq equipped with the Luxem-
burg norm or the Orlicz norm is a Banach space. Furthermore, these
norms are equivalent. More precisely, for f P LΦpΩ;Uq we have that

∥f∥LΦpΩ;Uq ¤ 9f9LΦpΩ;Uq ¤ 2∥f∥LΦpΩ;Uq.

Proof. This is a direct consequence of Proposition 1.2.20 and the scalar
results [60, Theorem 3.8.5 & 3.9.1]. ❑

Based on the equivalence of the Luxemburg and Orlicz norm, we can
prove the following –seemingly new– generalization of Minkowski’s integral
inequality for Orlicz spaces. For later considerations, we formulate it for
σ-finite measure spaces.

Proposition 1.2.23. Let Φ be a Young function and r ¥ 1 such that
Ψptq � Φpt 1

r q also defines a Young function. Further let pΩi,Fi, µiq,
i � 1, 2, be σ-finite measure spaces. Then,∥∥∥∥∥

�»
Ω2

pfp�, yqqr dµ2pyq

 1

r

∥∥∥∥∥
LΦpΩ1q

¤ 2 1
r

�»
Ω2

∥fp�, yq∥rLΦpΩ1q dµ2pyq

 1

r

holds for any measurable function f : Ω1 � Ω2 Ñ r0,8q, for which the
right-hand side is finite. The factor 2 1

r can be omitted if we consider the
Orlicz norm on both sides.

Proof. First we prove the statement for r � 1. Note that Ψ is trivially a
Young function in this case. Using the equivalent Orlicz norm on LΦ we
obtain that∥∥∥∥»

Ω2

fp�, yq dµ2pyq
∥∥∥∥

LΦpΩ1q

¤ sup
∥g∥L

rΦpΩ1q¤1

∣∣∣∣»
Ω1

»
Ω2

fpx, yq gpxq dµ2pyq dµ1pxq
∣∣∣∣

� sup
∥g∥L

rΦpΩ1q¤1

∣∣∣∣»
Ω2

»
Ω1

fpx, yq gpxq dµ1pxq dµ2pyq
∣∣∣∣

¤
»

Ω2

sup
∥g∥L

rΦpΩ1q¤1

∣∣∣∣»
Ω1

fpx, yq gpxq dµ1pxq
∣∣∣∣ dµ2pyq

¤ 2
»

Ω2

∥fp�, yq∥LΦpΩ1q dµ2pyq,

where we applied Hölder’s inequality (Lemma 1.2.19) in the last step.
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Now, let r ¥ 1 be given such that Ψptq � Φpt 1
r q defines a Young

function. We deduce from the definition of the Luxemburg norm that∥∥∥∥∥
�»

Ω2

pfp�, yqqr dµ2pyq

 1

r

∥∥∥∥∥
LΦpΩ1q

�
∥∥∥∥»

Ω2

pfp�, yqqr dµ2pyq
∥∥∥∥ 1

r

LΨpΩ1q

¤ 2 1
r

�»
Ω2

∥pfp�, yqqr∥LΨpΩ1q dµ2pyq

 1

r

� 2 1
r

�»
Ω2

∥fp�, yq∥rLΦpΩ1q dµ2pyq

 1

r

,

where we applied the previous derived estimate for r � 1 and the Young
function Ψ. ❑

1.2.4 The Orlicz space EΦ

For Lp-spaces a lot of practical statements are known like density of simple
functions, compactly supported continuous functions or step functions, as
well as absolute continuity of the norm with respect to the measure and a
characterization of the (anti-)dual space as another Lp1 -space. In general,
these results do not hold for Orlicz spaces LΦ. Therefore, we need to pass
over to a subspace EΦ, which we introduce next.

As before, Ω � Rn is a nonempty subset on which we consider the
Borel σ-algebra and the Lebesgue measure λ. Further, U is a Banach
space over K.

Definition 1.2.24. Let Φ be a Young function. We define the subspace
EΦpΩ;Uq of LΦpΩ;Uq, which we also call Orlicz space, by

EΦpΩ;Uq :� tf P L8pΩ;Uq | ess supp f is bounded u∥�∥LΦ .

If U � K, we abbreviate EΦpΩq :� EΦpΩ;Kq.
Lemma 1.2.25. Let Φ be a Young function. Then, EΦpΩ;Uq � LΦpΩ;Uq
if and only if either

(i) Φ P ∆global
2 , or

(ii) Φ P ∆8
2 and λpΩq   8.

If one of the equivalent conditions holds, then

LΦpΩ;Uq � EΦpΩ;Uq �
"
f : Ω Ñ U

���� »
Ω

Φp∥f∥U q dζ   8
*
.
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Proof. We refer for the proof to [1, page 236]. ❑

Remark 1.2.26. The convex set

KΦpΩ;Uq :�
"
f : Ω Ñ U

���� »
Ω

Φp∥f∥U qdµ   8
*
,

known as the Orlicz class, satisfies

EΦpΩ;Uq � KΦpΩ;Uq � LΦpΩ;Uq.

These spaces coincide if and only if one of the conditions (i) or (ii) from
Lemma 1.2.25 holds. Even more is true, KΦpΩ;Uq is a vector space if
and only if (i) or (ii) holds. Moreover, EΦpΩ;Uq is the maximal linear
subspace of KΦpΩ;Uq, and LΦpΩ;Uq is the smallest vector space containing
KΦpΩ;Uq, see [1, Chapter 8].
The concept of Orlicz spaces goes back to the Orlicz class as a naive
extension of Lp-spaces, obtained by replacing the function Φptq � tp by
the general class of Young functions.

The equality of spaces EΦ � LΦ can also be characterized by another
convergence notion, which is in general weaker than norm convergence.

Lemma 1.2.27. Let Φ be a Young function and punqnPN be a sequence in
LΦpΩ;Uq. If punqnPN converges in LΦ-norm to some u P LΦpΩ;Uq, then
punqnPN is Φ-mean convergent to u, that is,

lim
nÑ8

»
Ω

Φp∥un � u∥U qdζ � 0.

The converse holds if and only if LΦpΩ;Uq � EΦpΩ;Uq.
Proof. We refer for the proof to [1, page 270]. ❑

The following lemma contains useful conclusions about the density of
different classes of functions in Orlicz spaces. For simplicity, we assume
that Ω � I � R is an interval. An extension to more general measure
spaces is possible, cf. [2, Kapitel X, Satz 4.8 & Theorem 4.14]

Lemma 1.2.28. Let Φ be a Young function, I � R be an interval and U
be a Banach space. The following assertions hold.

(i) The set of simple functions#
s �

ņ

i�1
ui1Fi

�����n P N, ui P U,Fi measurable
+

is dense in EΦpI;Uq.
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(ii) For every function f P CcpI;Uq and ε ¡ 0 there exists a step function
φ such that

sup
ζPI

∥fpζq � φpζq∥U   ε.

Moreover, φ can be chosen such that

suppφ � rmin supp f,max supp f s � I.

(iii) CcpI;Uq is dense in EΦpI;Uq.
(iv) The set of step functions#

s �
ņ

i�1
ui1rai,biq

�����n P N, ai, bi P I, ai   bi, ui P U
+

is dense in EΦpI;Uq.
Proof. (i) Let f P EΦpI;Uq. By definition, there exists a sequence

pfnqnPN of simple functions converging to f almost everywhere, i.e.,
there exists a measurable null set N such that fnpζq Ñ fpζq as
nÑ8 for all ζ P IzN . Define

Fn :� tζ P I | ∥fnpζq∥U ¤ 2∥fpζq∥Uu
and f̃n � 1Fn

fn. Thus, Fn is measurable and for every n P N the
function f̃n is simple. For ζ P IzN , there exists n0 P N such that
∥fnpζq∥U ¤ 2∥fpζq∥U for n ¥ n0, i.e., ζ P �

n¥n0
Fn. We infer

that f̃npζq � fnpζq Ñ fpζq as n Ñ 8 for almost every ζ. Since
∥f̃n � f∥U ¤ 3∥f∥U and f P EΦpI;Uq � KΦpI;Uq, it follows by
dominated convergence that

lim
nÑ8

»
I

Φ
�

∥f̃n � f∥U
k



dζ � 0

for every k ¡ 0, hence, limnÑ8∥f̃n � f∥EΦpI;Uq � 0.

(ii) Let f P CcpI;Uq and ε ¡ 0 be arbitrary. Choose a, b P R, such that
supp f � ra, bs � I. Since f is uniformly continuous on ra, bs, there
exists δ ¡ 0 such that for all ζ1, ζ2 P ra, bs with |ζ1 � ζ2|   δ we
have that ∥fpζ1q � fpζ2q∥U   ε. Let a � a0   a1   . . . an � b with
ai�1 � ai   δ for i � 0, . . . , n� 1 and define

φpζq �

$'&'%
fpaiq, if ζ P rai, ai�1q,
fpanq, if ζ � an,

0, else.

Hence, φ is a step function with supζPI∥fpζq�φpζq∥U   ε. Note that
we could have chosen a � min supp f and b � max supp f , which
concludes the “Moreover” part.
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(iii) Since step functions are dense in EΦpI;Uq by (i), it suffices to
prove that for every ε ¡ 0, u P Uzt0u and measurable set F � I
with λpF q   8 there exists a function f P CcpI;Uq with ∥u1F �
f∥EΦpI;Uq   ε. Since the Lebesgue measure is regular, we find a
compact set K and an open set O in I with K � F � O such that

λpOzKq   pΦp∥u∥U

ε qq�1.

Urysohn’s lemma yields the existence of a continuous function φ : I Ñ
r0, 1s such that φ|K � 1 and φ|IzO � 0. It follows that f :� uφ P
CcpI;Uq and»

I

Φ
�

∥u1F � f∥U
ε



dζ ¤

»
OzK

Φ
�

∥u∥U
ε



dζ ¤ 1,

and thus, ∥u1F � f∥EΦpI;Uq   ε.

(iv) Let f P EΦpI, Uq and ε ¡ 0 be arbitrary. By (iii), there exists
g P CcpI;Uq with ∥f � g∥EΦpI;Uq   ε

2 . By (ii), there is a step
function φ and a compact set K � I with suppφX supp g � K and
supζPI∥gpζq � φpζq∥U   ε

2 Φ�1p 1
λpKq q. It follows that

»
I

Φ
�

∥g � φ∥U
ε
2



dζ ¤

»
K

Φ

�� ε
2 Φ�1

�
1

λpKq
	

ε
2

�
dλ � 1.

Hence, ∥g � φ∥EΦpI;Uq ¤ ε
2 and consequently,

∥f � φ∥EΦpI;Uq ¤ ∥f � g∥EΦpI;Uq � ∥g � φ∥EΦpI;Uq  
ε

2 �
ε

2 � ε,

which completes the proof. ❑

Lemma 1.2.28 enables us to prove the following result on the absolute
continuity of the EΦ-norm with respect to the measure.

Proposition 1.2.29. Let Φ be a Young function, I � Ω an interval and
U a Banach space. The norm on EΦpI;Uq is absolute continuous with
respect to the measure, that is, for all f P EΦpI;Uq and ε ¡ 0 there exists
δ ¡ 0 such that for every measurable set F � U with λpF q   δ it follows
that

∥f |F ∥EΦpF ;Uq   ε.

Proof. For f P EΦpI;Uq and ε ¡ 0 there exists a function g P L8pI;Uq
with ∥f � g∥EΦpI;Uq   ε

2 by Lemma 1.2.28. Let M ¡ ∥g∥L8pI;Uq and
δ � pΦp 2M

ε qq�1 ¡ 0. For every measurable set F � I with 0   λpF q   δ



20 1. Preliminaries

it follows that

∥f |F ∥EΦpF ;Uq � ∥1F f∥EΦpI;Uq
¤ ∥f � g∥EΦpI;Uq � ∥1F g∥EΦpI;Uq

¤ ε

2 �M∥1F ∥EΦpI;Uq

� ε

2 �MpΦ�1p 1
λpF q qq�1

¤ ε.

This concludes the proof. ❑

We conclude our discussion of Orlicz spaces with the following charac-
terization of the (anti-)dual space of the vector-valued space EΦpΩ;Uq.

Denote by F the Borel σ-algebra on Ω. Recall that U 1 possesses
the Radon-Nikodym property with respect to pΩ,F , λq if for every vector
measure ν : F Ñ U 1 of bounded variation, which is continuous with respect
to λ, i.e., limFPF,λpF qÑ0 νpF q � 0, there exists a λ-integrable function
g : Ω Ñ U 1 such that

νpF q �
»
F

g dλ for all F P F .

Proposition 1.2.30. Let Ω � Rn with λpΩq   8, then the (anti-)dual
space of EΦpΩ;Uq is (topologically) isomorphic to LrΦpΩ;U 1q if and only if
U 1 possesses the Radon-Nikodym property with respect to pΩ,F , µq.
Proof. Corollary 1.2.22 implies that the mapping

LrΦpΩ;U 1q Ñ pEΦpΩ;Uqq1

v ÞÑ
�
u ÞÑ

»
Ω
xv, uyU 1,U dµ



is an isometric isomorphism onto its range. The equivalence of surjec-
tivity of this map to the Radon-Nikodym property of U 1 can be proven
analogously to the Lp-case, see e.g. [22, Chapter IV.1]. ❑

1.2.5 Orlicz–Sobolev spaces
We briefly introduce Orlicz–Sobolev space, which are analogous to the
classical Sobolev spaces. We restrict ourselves to vector valued functions
defined on intervals and refer to [1, Chapter 8] for higher dimensional
domains and further details of Orlicz–Sobolev spaces.

Let pa, bq � R be any open interval, U be a Banach space and Φ be a
Young function. The Orlicz–Sobolev space WmLΦppa, bq;Uq of order m P N
consists of those (equivalence classes of) functions f P LΦppa, bq;Uq whose
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weak derivatives f pkq also belong to LΦppa, bq;Uq for all k � 1, . . . ,m. The
space WmEΦppa, bq;Uq is defined in an analogous fashion and also called
Orlicz–Sobolev space. As for classical Sobolev spaces, it can be checked
that WmLΦppa, bq;Uq is a Banach space with respect to the norm

∥f∥WmLΦppa,bq;Uq :�
m̧

k�0
∥f pkq∥LΦppa,bq;Uq.

Further, WmEΦppa, bq;Uq is a closed subspace of WmLΦppa, bq;Uq and
therefore also a Banach space.

For �8   a   b ¤ 8 we define the local Orlicz–Sobolev spaces by

WmLΦ,locppa, bq;Uq
:� tf : pa, bq Ñ U | f |pa,tq P WmLΦppa, tq;Uq for all t P pa, bqu,

and analogously for WmEΦ,locppa, bq;Uq.
If pa, bq is a bounded interval, we have the continuous embeddings,

WmEΦppa, bq;Uq ãÑ WmLΦppa, bq;Uq ãÑ Wm,1ppa, bq;Uq ãÑ Cpra, bs;Uq
for all m P N. In particular, point evaluation of function in WmLΦ,loc and
WmEΦ,loc is a well-defined and continuous operator.

1.3 Operator semigroups
We introduce the fundamental concepts of strongly continuous and analytic
operator semigroups, as well as related topics such as fractional powers
of operators. For more details on semigroups, we refer to [26], and for
analytic semigroups and fractional powers to [34].

1.3.1 Strongly continuous semigroups
Let X be a Banach space. Consider the abstract Cauchy problem#

9xptq � Axptq, t ¥ 0,
xp0q � x0,

(1.13)

where A : dompAq � X Ñ X is a linear operator and x0 P X. If A P LpXq,
the unique solution is given by the operator exponential function

xptq � etAx0 :�
8̧

n�0

tn

n!A
nx0.

The assumption that A is bounded is quite restrictive, and in practice,
one often encounters unbounded operators A, for which the operator expo-
nential function is ill-defined. In such cases, strongly continuous operator
semigroups serve as a suitable generalization, providing a meaningful
solution concept.
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Definition 1.3.1. Let X be a Banach space. A family of operators
pT ptqqt¥0 � LpXq is called a strongly continuous semigroup or C0-semigroup
on X if

(i) T p0q � I,

(ii) T pt� sq � T ptqT psq for all t, s ¥ 0, and

(iii) r0,8q Q t ÞÑ T ptqx is continuous for every x P X.

Remark 1.3.2. Properties (i) and (ii) of Definition 1.3.1 are the semigroup
properties of pT ptqqt¥0 and (iii) is the strong continuity on r0,8q. Note
that the semigroup properties imply that it suffices to ask for strong
continuity at t � 0.

If A P LpXq, then petAqt¥0 is a C0-semigroup. The operator A can be
re-obtained from the semigroup via Ax � p d

dtetAxqp0q. Extending this to
general C0-semigroups leads to the following definition.

Definition 1.3.3. Let pT ptqqt¥0 be a C0-semigroup on a Banach space X.
Its (infinitesimal) generator is the operator A : dompAq � X Ñ X given
by

Ax :� lim
h×0

T phqx� x

h
,

dompAq :�
"
x P X

���� lim
h×0

T phqx� x

h
exists in X

*
.

The generator of a C0-semigroup is in general an unbounded operator.
However, the generator of a C0-semigroup is densely defined, closed and
uniquely determines the semigroup, see [26, Chapter II, Theorem 1.4].

The Hille–Yosida theorem [26, Chapter II, Theorem 3.8] and the Lumer–
Phillips theorem [26, Chapter II, Theorem 3.15] provide complete charac-
terizations for when a given operator A generates a C0-semigroup.

Lemma 1.3.4. Let pT ptqqt¥0 be a C0-semigroup on X. Then there exist
constants M ¥ 1 and ω P R such that

∥T ptq∥ ¤Meωt for all t ¥ 0.

Proof. For the proof we refer to [26, Chapter I, Proposition 5.5]. ❑

Regarding the growth behavior of semigroups, one makes the following
definition.

Definition 1.3.5. Let pT ptqqt¥0 be a C0-semigroup.

(i) The growth bound of pT ptqqt¥0 is the constant

ω0ppT ptqqt¥0q :� inf
 
ω P R

�� DM ¥ 0 @t ¥ 0 : ∥T ptq∥ ¤Meωt
(
.
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(ii) We call pT ptqqt¥0 bounded, if there exists M ¥ 0 such that

∥T ptq∥ ¤M for all t ¥ 0.

(iii) We call pT ptqqt¥0 contractive if

∥T ptq∥ ¤ 1 for all t ¥ 0.

(iv) We call pT ptqqt¥0 exponentially stable, if ω0ppT ptqqt¥0q   0, i.e., if
there exist M,ω ¡ 0 such that

∥T ptq∥ ¤Me�ωt for all t ¥ 0.

Exponential stable semigroups play an essential role in the stability
analysis of dynamical systems. We can characterize them as follows.

Lemma 1.3.6. For a C0-semigroup pT ptqqt¥0 on a Banach space X the
following assertions are equivalent.

(i) pT ptqqt¥0 is exponentially stable.

(ii) limtÑ8∥T ptq∥ � 0.

(iii) ∥T ptq∥   1 for some t ¡ 0.

Proof. For the proof we refer to [26, Chapter V, Proposition 1.7]. ❑

One can always scale the semigroup (shift the generator) to obtain an
bounded or exponentially stable semigroup, as the following well-known
result shows.

Lemma 1.3.7. Let pT ptqqt¥0 be a C0-semigroup on a Banach space X with
generator A. For any λ P R it holds that pe�λtT ptqqt¥0 is a C0-semigroup
on X with generator A � λ whose domain is dompA � λq � dompAq.
Moreover, the growth bounds satisfy

ω0ppe�λtT ptqqt¥0q � ω0ppT ptqqt¥0q � λ.

In particular, pe�λtT ptqqt¥0 is exponentially stable if λ ¡ ω0ppT ptqqt¥0q.
Proof. Let A be the generator of a C0-semigroup pT ptqqt¥0. For λ P R
define Sptq � e�λtT ptq. Clearly, pSptqqt¥0 is a C0-semigroup. Let B be its
generator. We have to prove that B � A� λ. For h ¡ 0 and x P X there
holds

Sphqx� x

h
� e�λhT phqx� x

h
� e�λhx� x

h
.

Thus, x P dompBq if and only if x P dompAq � dompA�λq. By letting λ×
0 for x P dompBq � dompAq, we obtain that Bx � Ax�λx. The statement
about the growth bound follows from ∥e�λtT ptq∥ � e�λt∥T ptq∥. ❑
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The following result allows to relate a C0-semigroup and its generator
to the abstract Cauchy problem (1.13).

Lemma 1.3.8. Let pT ptqqt¥0 be a C0-semigroup on a Banach space X
with generator A : dompAq � X Ñ X. Then, the following assertions
hold.

(i) For every x P dompAq and t ¥ 0 we have that T ptqx P dompAq and

d
dtT ptqx � T ptqAx � AT ptqx.

(ii) For every x P X and t ¥ 0 we have that» t
0
T psqxds P dompAq

and
T ptqx� x � A

» t
0
T psqxds.

In addition, if x P dompAq, then we also have that

T ptqx� x �
» t

0
T psqAxds.

Proof. For the proof we refer to [26, Chapter II, Lemma 1.3]. ❑

Lemma 1.3.8 enables us to solve the abstract Cauchy problem.

Corollary 1.3.9. Let pT ptqqt¥0 be a C0-semigroup on X with generator
A, x0 P X and define the function x : r0,8q Ñ X by

xptq :� T ptqx0, t ¥ 0.

If x0 P dompAq, then x P C1pr0,8q;Xq XCpr0,8q,dompAqq solves (1.13),
where dompAq is equipped with the graph norm ∥x∥A :� ∥x∥X � ∥Ax∥X .
For general x0 P X, x P Cpr0,8q;Xq is the unique solution of the integrated
version of (1.13), given by

xptq � x0 � A

» t
0
xpsq ds, (1.14)

where we implicitly demand that
³t
0 xpsq ds P dompAq.

Proof. Lemma 1.3.8 and the strong continuity of pT ptqqt¥0 implies that x
has the claimed regularity properties and solves (1.13) if x0 P dompAq and
(1.14) for general x0 P X. For the uniqueness, assume that x̃ is another
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solution in the classical sense, or of (1.14). Then, for zptq :� xptq � x̃ptq it
follows that

d
ds

�
T pt� sq

» s
0
zprqdr



� T pt� sqzpsq � T pt� sqA

» s
0
zprq dr � 0.

Hence, T pt� sq ³s0 zprqdr is constant, which yields zptq � zp0q � 0 for all
t ¥ 0, and thus x � x̃. ❑

Remark 1.3.10. Note that the strong continuity of pT ptqqt¥0 implies that
xp�q � T p�qx0 depends continuously on x0 in X uniformly on compact
intervals r0, ts. In [26, Chapter II, Corollary 6.9], it is shown that A
generating a C0-semigroup is also necessary for (1.13) to have solutions
in C1pr0,8q;Xq for x0 P dompAq with the above continuous dependency
property.

A useful representation of the resolvent of a semigroup generator is
given by the Laplace transform of the semigroup.

Proposition 1.3.11. For Re λ ¡ ω0ppT ptqqt¥0q it holds that λ P ρpAq
and for all x P X the resolvent of A in λ is given by

pλ�Aq�1x �
» 8

0
e�λsT psqxds.

Proof. For the proof we refer to [26, Chapter II, Theorem 1.10] ❑

Next, we introduce the inter- and extrapolation spaces associated to
an operator A, which are important for the analysis of unbounded control
and observation operators in Chapter 2.

Definition 1.3.12. Let A : dompAq � X Ñ X be an operator with
nonempty resolvent set ρpAq. For λ P ρpAq we define the interpolation
space X1 by

X1 :� pdompAq, ∥�∥X1q,
where

∥x∥X1 :� ∥pλ�Aqx∥X

for x P dompAq. Further, we define the extrapolation space X�1 as the
completion

X�1 :� pX, ∥�∥X�1q�,
where

∥x∥X�1 :� ∥pλ�Aq�1x∥X

for x P X.

Note that the resolvent set of a semigroup generator is nonempty.
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Proposition 1.3.13. Let A be the generator of a C0-semigroup pT ptqqt¥0
on X and X1 and X�1 be given as above. The following assertions hold.

(i) The spaces X1 and X�1 are Banach spaces. Moreover, different
choices of λ P ρpAq lead to equivalent norms on X1 and X�1, respec-
tively. In particular, these spaces are independent of the choice of
λ P ρpAq.

(ii) We have the continuous and dense embeddings

X1 ãÑ X ãÑ X�1.

(iii) For each t ¥ 0, let T1ptq be the part of T ptq in X1, i.e., it acts like
T ptq on X1. Then, the family pT1ptqqt¥0 is a C0-semigroup on X1
and its generator, A1, is the part of A in X1, i.e., it acts like the
restriction of A to dompA2q.

(iv) For each t ¥ 0, there exists a unique extension T�1ptq of T ptq to a
bounded operator on X�1. Moreover, pT�1ptqqt¥0 is a C0-semigroup
on X�1 and its generator A�1 is the unique extension of A to an
operator on X�1 with domain dompA�1q � X.

(v) The operators pλ � Aq : X1 Ñ X and pλ � A�1q : X Ñ X�1 are
isometric isomorphisms if λ P ρpAq is the same used to define the
norms on X1 and X�1. In particular, it holds that A P LpX1, Xq
and A�1 P LpX,X�1q.

Proof. The fact that different choices of λ P ρpAq lead to equivalent norms
follows by an elementary computation. For the other assertions, we refer
to [26, Chapter II, Proposition 5.2 & Theorem 5.5]. ❑

Remark 1.3.14. 1. The norm ∥�∥X1 is equivalent to the graph norm of
A on dompAq.

2. An inductively continuation of the above procedure of defining the
inter- and extrapolations spaces leads to spaces Xn, n P Z, with
continuous and dense embeddings

. . . X2 ãÑ X1 ãÑ X0 � X ãÑ X�1 ãÑ X�2 . . .

This chain is known as Sobolev tower.
Let A1 be the dual operator of A. If A generates a C0-semigroup

pT ptqqt¥0 on the Banach space X, then we define the dual semigroup
pT 1ptqqt¥0 by taking the pointwise dual operators

T 1ptq :� pT ptqq1 P LpX 1q.
According to the definition of the dual operator, the family pT 1ptqqt¥0
satisfies the semigroup properties T 1p0q � I and T 1pt � sq � T 1ptqT 1psq.
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However, it is not necessarily strongly continuous on X 1. A sufficient
condition for pT 1ptqqt¥0 to be strongly continuous is that X is reflexive, as
shown in [98, Corollary 1.3.2].

If the dual semigroup is strongly continuous, then its generator is A1
(see [98, Theorem 1.3.1 & 1.3.3]). We denote the inter- and extrapolation
spaces for A1 by

Xd
1 and Xd

�1.

The following relations between the inter- and extrapolation spaces with
respect to A and A1 hold true.

Proposition 1.3.15. Let A be the generator of a C0-semigroup pT ptqqt¥0
such that the dual semigroup pT 1ptqqt¥0 is strongly continuous. For the
inter- and extrapolation spaces X1, X�1, Xd

1 and Xd
�1 with respect to A

and A1, we have that

pX1q1 � Xd
�1 and pX�1q1 � Xd

1 .

The duality is given via the isometric isomorphisms

Φ: Xd
�1 Ñ pX1q1
y ÞÑ px ÞÑ xpλ�A1�1q�1y, pλ�AqxyX1,Xq

and

Ψ: pX�1q1 Ñ Xd
1

y ÞÑ px ÞÑ xpλ�A1qy, pλ�A�1q�1xyX1,Xq.
Proof. First consider Φ. Since λ�A : X1 Ñ X and λ�A1�1 : X 1 Ñ Xd

�1
are isometric isomorphisms, we obtain for y P X 1 that

∥Φpyq∥pX1q1 � sup
∥x∥X1¤1

|xpλ�A1�1q�1y, pλ�AqxyX1,X |

� sup
∥x̃∥X¤1

|xpλ�A1�1q�1y, x̃yX1,X |

� ∥pλ�A1�1q�1y∥X1

� ∥y∥Xd
�1
.

The density of X 1 in Xd
�1 yields that Φ is isometric. For z1 P pX1q1 we

have that y :� pλ � A1�1qppλ � Aq�1q1z P Xd
�1 satisfies Φpyq � z. Hence,

Φ is also surjective, and therefore an isometric isomorphism. Similar one
can check that Ψ is an isometric isomorphism. ❑

Remark 1.3.16. By Proposition 1.3.15, pX1, X
d
�1q and pX�1, X

d
1 q are dual

pairs with dual pairing given by

xy1, x1yXd
�1,X1 � xpλ�A1q�1y1, pλ�Aqx1yX1,X ,

xy2, x2yXd
1 ,X�1 � xpλ�A1qy2, pλ�A�1q�1x2yX1,X
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for x1 P X1, y1 P Xd
�1, x2 P X�1 and y2 P Xd

1 . Additionally, if y1 P X 1

and x2 P X, then the dual pairings simplify as follows

xy1, x1ypX1q�1,X1 � xy1, x1yX1,X ,

xy2, x2ypX1q1,X�1 � xy2, x2yX1,X .

If the dual semigroup is not strongly continuous on X 1, one can pass over
to the sun-dual space of X with respect to pT ptqqt¥0, see [98, Chapter 1.3],
to obtain similar dual pairings, see [98, Theorem 3.1.4 & 3.1.15].

1.3.2 Analytic semigroups
A special class of C0-semigroups with particular nice properties are analytic
semigroups. We recall the basic concept, properties and their relation to
sectorial operators via the holomorphic functional calculus. In this context,
we also discuss further aspects of the holomorphic functional calculus as
well as fractional powers of sectorial operators.
For a first introduction to analytic semigroups, the reader is referred to
[26, Chapter II, Section 4a] and to [34] for a detailed insight into sectorial
operators and the holomorphic functional calculus.

We denote by Cα, α P R, the open right half-plane with abscissa α,

Cα :� tz P C |Re z ¡ αu.

For δ P r0, πs, we define

Sδ :�
#
tz P Czt0u | |arg z|   δu, if δ ¡ 0,
p0,8q, if δ � 0.

Thus, Sδ is the open sector with opening angle 2δ.

Definition 1.3.17. A C0-semigroup pT ptqqt¥0 is called an analytic semi-
group (of angle δ P p0, πs), if it extends to a family of operators pT pzqqzPSδ

�
LpXq such that

(i) z ÞÑ T pzq is analytic on Sδ,

(ii) T p0q � I and T pz1 � z2q � T pz1qT pz2q for z1, z2 P Sδ,

(iii) limSδQzÑ0 T pzqx � x for every x P X.

Additionally, if

(iv) supzPSδ1
∥T pzq∥   8 for all δ1 P p0, δq

holds, then we call pT pzqqzPSδ
a bounded analytic semigroup.
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Remark 1.3.18. 1. Note that a bounded and analytic semigroup does
not have to be bounded analytic, i.e., uniform boundedness on r0,8q
does not imply uniform boundedness on a sector Sδ, δ P p0, πs, as
the trivial example T pzq � eiz shows.

2. Condition (ii) in Definition 1.3.17 already follows from the semigroup
properties on r0,8q and (i) by the identity theorem for analytic
functions.

3. For an analytic semigroup pT ptqqt¥0 of angle δ P p0, πs and δ1 P p0, δq
there exists M ¥ 1 and ω P R such that

∥T pzq∥ ¤Me�ωRe z for all z P Sδ1 .
Thus, pe�ωtT ptqqt¥0 is a bounded analytic semigroup of angle δ1.
If we want to characterize the generators of analytic semigroups, it

suffices to consider bounded analytic semigroups by the previous remark.
It is known that the generators of bounded analytic semigroups are exactly
the negative of so-called sectorial operators with sectoriality type smaller
than π

2 . We introduce this concept next.

Definition 1.3.19. Let A : dompAq � X Ñ X be a densely defined
operator. We call the operator �A sectorial of type ω for some ω P r0, πq
if σp�Aq � Sω and for every δ P pω, πq there is a constant Mδ ¡ 0 such
that

∥zpz �Aq�1∥ ¤Mδ for all z P CzSδ. (1.15)

Remark 1.3.20. 1. Sectorial operators are closed, since they have a
nonempty resolvent set.

2. In the literature, sectoriality is sometimes defined without the as-
sumption that A is densely defined and some of the results mentioned
below also hold true in this case. We made this assumption for con-
venience, since we are interested in semigroup generators.

The Dunford-Riesz class on a sector Sδ is defined by

H8
0 pSδq :�

#
f P H8pSδq

�����For some C,α ¡ 0 and all z P Sδ :
|fpzq| ¤ C mint|z|α, |z|�αu

+
,

where H8pSδq is the set of all bounded holomorphic functions on Sδ.
We are now able to define a first functional calculus for sectorial operators.
Let �A be sectorial of type ω P r0, πq and f P H8

0 pSδq for some δ P pω, πs.
Define

fp�Aq :� 1
2πi

»
Γ
fpzqpz �Aq�1 dz, (1.16)

where Γ :� BSδ1 is orientated positively, and δ1 P pω, δq is arbitrary, i.e.,

Γ � �R¥0eiδ1 ` R¥0e�iδ1 .
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The integral in (1.16) is absolute convergent by (1.15) and the decay
property of f at 0 and 8. The definition of fp�Aq is independent of the
choice of δ1 P pω, δq by Cauchy’s integral theorem.

It is not difficult to see that the mapping

H8
0 pSδq Ñ LpXq

f ÞÑ fp�Aq

defines an algebra homomorphism, which can be extended to the extended
Dunford-Riesz class

EpSδq :� H8
0 pSδq ` spantz ÞÑ p1� zq�1u ` spant1u.

Indeed, EpSδq is an algebra, as can be seen by the identity 1
p1�zq2 �

1
1�z � z

p1�zq2 . The extended algebra homomorphism

EpSδq Ñ LpXq
g ÞÑ gp�Aq

is defined by
gp�Aq :� fp�Aq � cpI �Aq�1 � dI,

where g � f � cp1� zq�1 � d P EpSδq with f P H8
0 pSδq and c, d P C.

Let �A be sectorial of type ω P r0, π2 q, then for any λ P Sπ
2 �ω and

δ P pω, π2 � |arg λ|q the function z ÞÑ e�λz is bounded holomorphic on
Sδ, holomorphic in some (even every) neighborhood of 0 and tends to
0 polynomially (even exponentially) fast as z Ñ 8 in Sδ. Then, [34,
Example 2.2.4] yields that z ÞÑ e�λz belongs to EpSδq. Hence, we can
define an operator family pT pλqqλPSπ

2 �ω
by

T pλq :� �
e�λz

� p�Aq P LpXq. (1.17)

By the above mentioned properties of the function z ÞÑ e�λz, we also have
that (see [34, Lemma 2.3.2])

T pλq � 1
2πi

»
Γr

e�λzpz �Aq�1 dz, (1.18)

where Γr � BpSδ1 YBrp0qq is orientated positively, δ1 P pω, δq and r ¡ 0.
Now we can characterize (bounded) analytic semigroups and their

generators.

Proposition 1.3.21. For an operator A : dompAq � X Ñ X, the follow-
ing assertions are equivalent.

(i) A generates a bounded analytic semigroup.
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(ii) A generates a bounded C0-semigroup pT ptqqt¥0 with ranT ptq �
dompAq for all t ¡ 0 and

sup
t¡0

∥tAT ptq∥   8. (1.19)

(iii) �A is sectorial of some type ω P r0, π2 q.
If one of the equivalent conditions holds, then the analytic semigroup
generated by A is given by (1.17) or equivalently by (1.18).

Proof. We refer for the proof to [26, Chapter II, Theorem 4.6]. ❑

Remark 1.3.22. 1. For analytic semigroups pT ptqqt¥0, we have

ranT ptq �
£
nPN

dompAnq.

Indeed, z ÞÑ p1� zq�n and z ÞÑ gpzq :� p1� zqne�tz are in EpSδq for
every n P N, hence, T ptq � pI �Aq�ngp�Aq.

2. For a bounded analytic semigroup with generator A, exponential
stability is equivalent to 0 P ρpAq. Indeed, this follows from a shift
argument that exploits the fact that ρpAq is open and that the
sectoriality type of A is strictly smaller than π

2 .
So far we obtain bounded operators fp�Aq for f P EpSδq. If one

is willing to give up the boundedness, one can extend this calculus to
functions f for which an e P EpSδq exists such that ep�Aq is injective and
ef P EpSδq. Then, a closed operator fp�Aq is defined by

fp�Aq :� pep�Aqq�1pefqp�Aq.
The function e is called a regularizer for f and fp�Aq is independent
of the choice of the regularizer, see [34, Lemma 1.2.1]. Considering this
extension of the holomorphic functional calculus, we obtain from [34,
Proposition 1.2.2] the following inclusions of operators,

fp�Aq � gp�Aq � pf � gqp�Aq
fp�Aqgp�Aq � pfgqp�Aq,

dompfp�Aqgp�Aqq � domppfgqp�Aqq X dompgp�Aqq,
(1.20)

to be understood as inclusions of the respective graphs, i.e., for two
operators B1, B2, the inclusion B1 � B2 means dompB1q � dompB2q and
B1x � B2x for all x P dompB1q.

This extension technique allows us to define fractional powers of sec-
torial operators. Let α P C0 and choose n P N with n ¡ Re α, thus
z ÞÑ zα

p1�zqn P EpSδq for any δ P p0, πs. Then, p�Aqα is defined by

p�Aqα :� pzαqp�Aq � pI �Aqn
�

zα

p1� zqn


p�Aq.
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Lemma 1.3.23. For a sectorial operator �A and α P C0 there holds that

kerAα � kerA

and
σpAαq � tλα |λ P σpAqu.

Furthermore, if A is injective, then pp�Aq�1qα � pp�Aqαq�1.

Proof. We refer for the proof to [34, Proposition 3.1.1]. ❑

For an injective sectorial operator �A and α P C0 we define

p�Aq�α :� pp�Aq�1qα.
By Lemma 1.3.23, p�Aq�α is bounded if 0 P ρpAq.
Lemma 1.3.24. Let �A be an injective sectorial operator. Then, for
α, β P C we have the inclusion

p�Aqαp�Aqβ � p�Aqα�β ,
dompp�Aqαp�Aqβq � dompp�Aqα�βq X dompp�Aqβq.

Equality holds if Re α and Re β are both positive or both negative.

Proof. We refer for the proof to [34, Proposition 3.2.1]. ❑

The following result shows that we can assume 0 P ρpAq by shifting A
when dealing with fractional powers of sectorial operators.

Lemma 1.3.25. Let A be a sectorial operator, α P C0 and ε ¡ 0. The
following assertions hold.

(i) dompp�Aqαq � domppε�Aqαq.
(ii) p�Aqαpε�Aq�α � p�Apε�Aq�1qα.

(iii) limε×0pε�Aqαx � p�Aqαx for all x P dompp�Aqαq.
Proof. We refer for the proof to [34, Proposition 3.1.9]. ❑

Next, we state an extension of (1.19) for (fractional) powers of A.

Proposition 1.3.26. Let A be the generator of a bounded analytic semi-
group pT ptqqt¥0 with 0 P ρpAq. Then, for every α ¥ 0 there exists
ω,Mα ¡ 0 such that

∥p�AqαT ptq∥ ¤Mαt
�αe�ωt

holds for all t ¥ 0.

Proof. See [82, Chapter II, Theorem 6.13]. ❑



1.3. Operator semigroups 33

Similar to the inter- and extrapolation spaces for C0-semigroups, Def-
inition 1.3.12, we define fractional inter- and extrapolation spaces for
bounded analytic semigroups.

Definition 1.3.27. Let A be the generator of a bounded analytic semi-
group pT ptqqt¥0 on X with 0 P ρpAq. For 0 ¤ α ¤ 1, we define the
fractional interpolation space Xα by

Xα :� pdompp�Aqαq, ∥�∥Xαq,
where

∥x∥Xα
:� ∥p�Aqαx∥X

for x P dompp�Aqαq. Further, we define the fractional extrapolation space
X�α as the completion

X�α :� pX, ∥�∥X�α
q�,

where
∥x∥X�α

:� ∥p�Aq�αx∥X
for x P X.

By construction, we have that X0 � X, and X1 and X�1 are the
classical inter- and extrapolation spaces from Definition 1.3.12.

Recall from Proposition 1.3.13 that A1, the part of A in X1, and A�1,
the extension of A to an operator on X�1, generate the C0-semigroups
pT1ptqqt¥0 on X1 and pT�1ptqqt¥0 on X�1, respectively.

Proposition 1.3.28. Let A be the generator of a bounded analytic semi-
group pT ptqqt¥0 on X with 0 P ρpAq and for 0 ¤ α ¤ 1 let Xα and X�α be
the corresponding fractional inter and extrapolation spaces. The following
assertions hold.

(i) The spaces Xα and X�α are Banach spaces.

(ii) For 0 ¤ β ¤ α ¤ 1 we have the continuous and dense embeddings

X1 ãÑ Xα ãÑ Xβ ãÑ X ãÑ X�β ãÑ X�α ãÑ X�1.

(iii) The operator
pA�1q|Xα : Xα Ñ X�p1�αq,

is an isometric isomorphism.

(iv) The operator p�Aqα extends uniquely to an isometric isomorphism

p�Aqα : X Ñ X�α,

again denoted by p�Aqα and its inverse is denoted by p�Aq�α. More-
over, for every t ¡ 0 and x P X we have that

p�AqαT ptqx � T�1ptqp�Aqαx.
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Proof. The fact that Xα and X�α are Banach spaces is clear, since p�Aqα
is a closed and boundedly invertible operator. The other statements can
be easily checked using Lemma 1.3.24. ❑

Remark 1.3.29. 1. In Definition 1.3.27 and Proposition 1.3.28, if 0 R
ρpAq, we consider A� λ instead of A, for sufficiently large λ.

2. Note that p�AqαT ptq is well-defined for every t ¡ 0 and 0 ¤ α ¤ 1
since ranT ptq � X1 � Xα.

3. Similar to Remark 1.3.14 2., we obtain by induction the fractional
Sobolev tower pXαqαPR with dense and continuous embeddings

Xα ãÑ Xβ

for β ¤ α. Moreover, it can be proven that for every α, β P R the
operator p�Aqα restricts or extends (depending on the order of α
and β) to an isometric isomorphism from Xβ to Xβ�α. Similar as
before, we have ranT ptq � Xα for all α ¥ 0, and thus, on can extend
Proposition 1.3.28 to fractional Sobolev towers pXαqαPR.

A special class of bounded analytic semigroup are those, whose genera-
tors are self-adjoint and negative operators on a Hilbert space.

Definition 1.3.30. Let X be a Hilbert space. A self-adjoint operator
A : dompAq � X Ñ X is called strictly negative, if there exists wA   0
such that for every x P dompAq we have that

xAx, xyX ¤ wA∥x∥2
X . (1.21)

If (1.21) holds for wA � 0, then A is called negative.

Clearly, strictly negative operators are negative and if A is negative,
then A� ε is strictly negative for any ε ¡ 0.

Lemma 1.3.31. If A is a self-adjoint and negative operator on a Hilbert
space X, then A generates an bounded analytic semigroup on X. If A
is strictly negative, this semigroup is exponentially stable and X 1

2
is the

completion of dompAq with respect to the norm

∥x∥2
X 1

2
� x�Ax, xyX , x P dompAq. (1.22)

Moreover, pX 1
2
, X� 1

2
q is a dual pair with dual pairing x�, �yX

� 1
2
,X 1

2
: X� 1

2
�

X 1
2
Ñ C given by

xx, yyX
� 1

2
,X 1

2
:� xp�Aq� 1

2x, p�Aq 1
2 yyX ,

the norm on X� 1
2

is given by

∥x∥X
� 1

2
� sup

∥y∥X 1
2
¤1

|xx, yyX
� 1

2
,X 1

2
|,
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and (1.21) and (1.22) extend to

xA�1x, xyX
� 1

2
,X 1

2
� �∥x∥2

X 1
2
¤ wA∥x∥2

X (1.23)

for x P X 1
2
.

Proof. For the fact that a self-adjoint and negative operator generates a
bounded analytic semigroup, we refer to [26, Chapter II, Corollary 4.7].
If A is strictly negative, then A� ω is still negative for sufficiently small
ω ¡ 0 and thus, A � ω generates a bounded analytic semigroup. By
Lemma 1.3.7, A generates an exponentially stable and bounded analytic
semigroup. In particular, 0 P ρpAq and X 1

2
and X� 1

2
are well-defined by

Definition 1.3.27. For x P dompAq we have that p�Aqx � p�Aq 1
2 p�Aq 1

2x,
and since A is self-adjoint, so is p�Aq 1

2 , which yields (1.22). By the density
of dompAq in X 1

2
, we may regard the latter space as the completion of

dompAq with the norm defined by (1.22). Further, p�Aq 1
2 is isomorphic

as an operator from X 1
2

to X, and also (after extension) from X to X� 1
2

by Proposition 1.3.28. Hence, an easy computation (similar to the one in
the proof of Proposition 1.3.15) exploiting the self-adjointness of p�Aq 1

2 ,
yields that pX 1

2
, X� 1

2
q is a dual pair with the given dual pairing. Finally,

(1.23) follows from density of dompAq in X 1
2

and continuity of the dual
pairing and the norms. ❑

1.3.3 The shift semigroups on Orlicz spaces
On Lp, 1 ¤ p   8, the left- and right-shift semigroups are strongly
continuous and they are not strongly continuous on L8. In this section,
we provide sufficient and necessary conditions for the strong continuity of
the shift semigroups on Orlicz spaces.

Let �8 ¤ a   b ¤ 8. The right-shift semigroup pSptqqt¥0 on the
Orlicz spaces LΦppa, bq;Uq and EΦppa, bq;Uq, respectively, is defined by

pSptqfqprq :�
#
fpr � tq, if r � t P pa, bq,
0, else.

The family pSptqqt¥0 clearly satisfies the semigroup properties Sp0q � I
and Spt � sq � SptqSpsq for all s, t ¥ 0. Thus, the question remains,
whether it is strongly continuous.

It is known, that the right-shift semigroup defines a contractive C0-
semigroup on Lpppa, bq;Uq for 1 ¤ p   8, see [26, Chapter 1, Exam-
ple 5.4, Chapter 2, Section 2.10 & 2.11] for U � K. Its generator is

D � � d
dr
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with domain

dompDq �
#

W1,pppa, bq;Uq, if a � �8, 
f P W1,pppa, bq;Uq �� fpaq � 0

(
, if a ¡ �8

The analogous statement holds for EΦ.
Proposition 1.3.32. The right-shift semigroup pSptqqt¥0 on EΦppa, bq;Uq
is a contractive C0-semigroup. Its generator is given by

D � � d
dr

with domain

dompDq �
#

W1EΦppa, bq;Uq, if a � �8, 
f P W1EΦppa, bq;Uq

�� fpaq � 0
(

if a ¡ �8,
where W1EΦppa, bq;Uq is the Orlicz–Sobolev space, see Section 1.2.5.
Proof. Clearly, pSptqqt¥0 satisfies the semigroup properties Sp0q � I and
Spt� sq � SptqSpsq for all t, s ¥ 0, and ∥Sptq∥ ¤ 1 for every t ¥ 0.

Recall from Lemma 1.2.28 that Ccppa, bq;Uq is dense in EΦppa, bq;Uq.
Hence, for all f P EΦppa, bq;Uq and ε ¡ 0 there exists g P Ccppa, bq;Uq
such that ∥f � g∥EΦppa,bq;Uq ¤ ε. Since g is compactly supported, we find
a compact set K in pa, bq such that supppSptqg � gq � K for all t P r0, 1s.
The function Φ

�
|pSptqgq�g|

ε

	
is uniformly continuous on K, and therefore,» b

a

Φ
�

|pSptqgqprq � gprq|
ε



dr ¤ λpKq sup

rPK
Φ
�

|pSptqgqprq � gprq|
ε



¤ 1

holds for sufficiently small t P p0, 1q, where λ denotes the Lebesgue measure.
By the definition of the EΦ-norm, we have ∥Sptqg � g∥EΦppa,bq;Uq ¤ ε, and
therefore,

∥Sptqf � f∥EΦppa,bq;Uq
¤ ∥Sptq∥∥f � g∥EΦppa,bq;Uq � ∥Sptqg � g∥EΦppa,bq;Uq
� ∥g � f∥EΦppa,bq;Uq

¤ 3ε.

Hence, pSptqqt¥0 is a strongly continuous and contractive C0-semigroup
on EΦppa, bq;Uq. Let A be its generator. We have to show A � D.

First, let f P dompAq. For every bounded subinterval pc, dq � pa, bq it
holds that

lim
h×0

∥∥∥∥f |pc,dqp� � hq � f |pc,dq
h

�Af |pc,dq
∥∥∥∥

EΦppc,dq;Uq

¤ lim
h×0

∥∥∥∥Sphqf � f

h
�Af

∥∥∥∥
EΦppa,bq;Uq

� 0.
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The continuity of the embedding EΦppc, dq;Uq ãÑ L1ppc, dq;Uq for pc, dq �
pa, bq yields for almost every c, d with pc, dq � pa, bq that

fpdq � fpcq � lim
h×0

1
h

» d
d�h

fprq dr � lim
h×0

1
h

» c
c�h

fprqdr

� lim
h×0

» d
c

fprq � fpr � hq
h

dr

�
» d
c

p�Afqprq dr.

After changing f on a null-set, the equality holds for all such c, d. It
follows that f is absolutely continuous, and therefore, weakly differ-
entiable with weak derivative f 1 � �Af P EΦppa, bq;Uq. Hence, we
proved that dompAq � W1EΦppa, bq;Uq and Af � �f 1 for f P dompAq.
Next we prove that if a ¡ �8, then fpaq � 0. Since dompAq is in-
variant under the semigroup, see Lemma 1.3.8, and the embeddings
W1EΦppa, bq;Uq ãÑ W1EΦppa, dq;Uq ãÑ W1,1ppa, dq;Uq ãÑ Cpra, ds;Uq
are continuous for bounded intervals pa, dq � pa, bq, we can assume that
Sptqf is a continuous function in W1EΦppa, dq;Uq for every d P pa, bq. It
follows that fpaq � pSptqfqpa� tq � limr×0pSptqfqpa� t� rq � 0. Hence,
dompAq � dompDq and A � D on dompAq.

Now, let f P dompDq. If a ¡ �8, then we extend f on p�8, aq
by 0. It holds that f P W1EΦpp�8, bq;Uq and ∥f∥W1EΦpp�8,bq;Uq �
∥f∥W1EΦppa,bq;Uq. Going over to the equivalent Orlicz norm, we obtain∥∥∥∥Sphqf � f

h
�Df

∥∥∥∥
EΦpp�8,bq;Uq

¤ sup
∥g∥L

rΦ
¤1

∣∣∣∣∣
» b
�8

B
fpr � hq � fprq

h
� f 1prq, gprq

F
U,U 1

dr
∣∣∣∣∣

� sup
∥g∥L

rΦ
¤1

∣∣∣∣∣∣
» b
�8

C
1
h

» h
0
f 1prq � f 1pr � sq ds, gprq

G
U,U 1

dr

∣∣∣∣∣∣
¤ 1
h

» h
0

sup
∥g∥L

rΦ
¤1

∣∣∣∣∣
» b
�8

xf 1prq � pSpsqf 1qprq, gprqyU,U 1 dr
∣∣∣∣∣ ds

¤ 2
h

» h
0

∥Spsqf 1 � f 1∥EΦpp�8,bq;Uq ds,

where we applied the generalized Hölder inequality in the last step. Finally,
it follows from

lim
h×0

1
h

» h
0

∥Spsqf 1 � f 1∥EΦpp�8,bq;Uq ds � ∥Sp0qf 1 � f 1∥EΦpp�8,bq;Uq � 0

that f P dompAq and Af � Df , which completes the proof. ❑
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Proposition 1.3.33. Let pa, bq � R be any interval. If pSptqqt¥0 is a
C0-semigroup on LΦppa, bq;Uq, then Φ P ∆8

2 .

Proof. Suppose that Φ R ∆8
2 . Without loss of generality we assume that

pa, bq � p0, 1q and U � R. We will construct a function v P LΦp0, 1q such
that ∥Sptqv� v∥LΦp0,1q ¥ 1. Since Φ R ∆8

2 there exists a sequence ptnqn¥1,
tn ¥ n, such that Φp2tnq ¥ nΦptnq and Φptnq ¡ 1 for all n ¥ 1. Choose
n0 P N such that

°8
n�n0

1
n2   1 and define a family of disjoint subintervals

pIkqkPN of p0, 1q by

Ik �
�

1�
8̧

n�n0�k

1
n2 �

1
Φptkqpn0 � k � 1q2 , 1�

8̧

n�n0�k

1
n2

�
.

Let u � °8
k�1 tk1Ik

. From» 1

0
Φpuprqq dr �

8̧

k�1
Φptkq 1

Φptkqpn0 � k � 1q2 �
8̧

k�n0

1
n2   1

we obtain u P LΦp0, 1q. We also have that» 1

0
Φp2uprqq dr �

8̧

k�1
Φp2tkq 1

Φptkqpn0 � k � 1q2

¥
8̧

k�1

k

pn0 � k � 1q2 � 8.

Define v � 4u and note that pSptqvqp�q is a bounded function for every
t ¡ 0. Convexity of Φ implies that

8 �
» 1

0
Φp2uprqq dr

¤ 1
2

» 1

0
Φp|pSptqvqprq � vprq|q dr � 1

2

» 1

0
ΦppSptqvqprqq dr

and therefore
³1
0 Φp|pSptqvqprq � vprq|qdr � 8. It follows that ∥Sptqv �

v∥LΦp0,1q ¥ 1 for all t ¡ 0, hence, pSptqqt¥0 is not strongly continuous. ❑

Corollary 1.3.34. For bounded intervals pa, bq � R the following asser-
tions are equivalent.

(i) Φ P ∆8
2 .

(ii) LΦppa, bq;Uq � EΦppa, bq;Uq.
(iii) pSptqqt¥0 is a C0-semigroup on LΦppa, bq;Uq.

If one of the equivalent conditions holds, then the generator of pSptqqt¥0 is
given as in Proposition 1.3.32.
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Proof. This is a direct consequence of Lemma 1.2.25, Proposition 1.3.32
and Proposition 1.3.33. ❑

Remark 1.3.35. For unbounded intervals we have that Φ P ∆global
2 is equiv-

alent to LΦppa, bq;Uq � EΦppa, bq;Uq, so in this case pSptqqt¥0 is strongly
continuous on LΦppa, bq;Uq by Proposition 1.3.32. Conversely, strong con-
tinuity of pSptqqt¥0 on LΦppa, bq;Uq implies Φ P ∆8

2 by Proposition 1.3.33,
which is equivalent to Φ P ∆global

2 if t ÞÑ Φptq
Φp2tq is bounded in 0.

All results on the right-shift semigroup can easily be transferred to the
left-shift semigroup pT ptqqt¥0 on LΦppa, bq;Uq, given by

pT ptqfqprq :�
#
fpr � tq, if r � t P pa, bq,
0, else.

Proposition 1.3.36. For any interval pa, bq � R the following assertions
hold.

(i) The left-shift semigroup is strongly continuous on EΦppa, bq;Uq.
(ii) If pa, bq is bounded, then the left-shift semigroup is strongly contin-

uous on LΦppa, bq;Uq if and only if Φ P ∆8
2 , i.e., if and only if

LΦppa, bq;Uq � EΦppa, bq;Uq.
(iii) If Φ P ∆global

2 , then the left-shift semigroup is strongly continuous on
LΦppa, bq;Uq. The converse holds if t ÞÑ Φptq

Φp2tq is bounded in 0.

In each case, we have that the left-shift semigroup is a contractive C0-
semigroup whose generator is given by

A � d
dr

with domain

dompAq �
#

W1EΦppa, bq;Uq, if b � 8,
tf P W1EΦppa, bq;Uq | fpbq � 0u if b   8.

Proof. The proof is analogous to the proofs of Proposition 1.3.32, Corol-
lary 1.3.34 and the argumentation in Remark 1.3.35. ❑
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Chapter 2

Linear systems theory

In this chapter, we provide a detailed introduction to the solution and
output theory of infinite-dimensional linear systems with unbounded con-
trol and observation operators, based on [16, 86, 94, 95, 96, 99, 100, 101].
While input and output functions of class Lp are considered therein, we
extend this to Orlicz spaces.

The linear input-output system$'&'%
9xptq � Axptq �Buptq, t ¥ 0,
xp0q � x0,

yptq � Cxptq, t ¥ 0,
(ΣpA,B,Cq)

describes the time-evolution of the state xptq P X starting from the initial
state x0 at t � 0, where the state space X is a Banach space. The input
uptq P U , viewed as control or disturbance, and the output yptq P Y
are connected to the system via the control operator B and observation
operator C. The input space U and output space Y are also Banach spaces.

Here, B and C may be unbounded operators with respect to X, as is
typically the case in PDEs with boundary control and observation, which
makes the solution and output theory non-trivial. This issue becomes
particularly problematic if both B and C are unbounded. Therefore, we
first consider the simplified systems#

9xptq � Axptq �Buptq, t ¥ 0,
xp0q � x0,

(ΣpA,Bq)

and $'&'%
9xptq � Axptq, t ¥ 0,
xp0q � x0,

yptq � Cxptq, t ¥ 0.
(ΣpA,Cq)

41
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We call ΣpA,Bq a linear input system and ΣpA,Cq a linear output system.
By abuse of notation and using the letter B exclusively for control op-

erators and C for observation operators, we used the abbreviation ΣpA,Bq
for ΣpA,B, 0q and ΣpA,Cq for ΣpA, 0, Cq.

2.1 Linear input systems
Let U and X be Banach spaces, A be the generator of a C0-semigroup
pT ptqqt¥0 on X and B P LpU,X�1q, where X�1 is the extrapolation space
defined in Definition 1.3.12. We call B bounded if B P LpU,Xq and
unbounded otherwise.

Corollary 1.3.9 shows that t ÞÑ T ptqx0 is a solution of (the integrated
version of) ΣpA,Bq for x0 P X and u � 0. As in the finite-dimensional
case, the variation of constants formula yields a (formal) solution for the
inhomogeneous problem, which leads to the following solution concept.

Definition 2.1.1. The mild solution of ΣpA,Bq for x0 P X and u P
L1

locpr0,8q;Uq is the function x : r0,8q Ñ X�1,

xptq � T ptqx0 �
» t

0
T�1pt� sqBupsqds, t ¥ 0. (2.1)

2.1.1 Admissible control operators and mild solutions
We are interested in control operators B, for which the mild solution (2.1)
is X-valued for all input-functions u P Zpr0,8q;Uq, where Z refers to
either Lp for 1 ¤ p ¤ 8 or some Orlicz space EΦ or LΦ.

For simplicity, we work with the following convention.

Convention. We call Φ : r0,8q Ñ r0,8q, t ÞÑ t, a Young function
(without complementary Young function rΦ) and write

EΦ � LΦ � L1 and LrΦ � L8. (2.2)

Hence, Lp is an Orlicz space for all 1 ¤ p   8 with this convention.

Definition 2.1.2. Let pT ptqqt¥0 be a C0-semigroup on X. We call
B P LpU,X�1q a Z-admissible control operator for pT ptqqt¥0 (or just
Z-admissible) if for some t ¡ 0 and all u P Zpr0,8q;Uq we have that

Φtu :�
» t

0
T�1pt� sqBupsqds P X. (2.3)

The operators Φt P LpZpr0,8q;Uq, X�1q, t ¥ 0, given by (2.3), are
called the input maps of ΣpA,Bq (and ΣpA,B,Cq).
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Note that Φtu P X�1 is well-defined for u P Zlocpr0,8q;Uq. Further-
more, B can be recovered from pΦtqt¥0 via

Bu � lim
t×0

1
t
Φtp1r0,8quq, u P U,

where the limit is taken in X�1.
Remark 2.1.3. Every bounded operator B P LpU,Xq is Z-admissible for
any choice of Z and any C0-semigroup on X.

The following result is well-known, see e.g. [99, Proposition 4.2] for
Z � Lp.
Proposition 2.1.4. If B is Z-admissible, then Φt P LpZpr0,8q;Uq, Xq
for all t ¥ 0.

Proof. Let τ ¡ 0 such that ran Φτ � X. We first prove that ran Φt � X
for all t ¥ 0.

For t P r0, τ s and u P Zpr0,8q;Uq define

ũpsq �

$'&'%
0, if s P r0, τ � ts,
ups� pτ � tqq, if s P pτ � t, τ s,
0, if s P pτ,8q.

It follows that ũ P Zpr0,8q;Uq and Φtu � Φτ ũ P X by assumption. For
t � 2τ and u P Zpr0,8q;Uq we have that up� � τq P Zpr0,8q;Uq, and
hence, Φ2τu � T pτqΦτu� Φτup� � τq P X. By induction, it follows that
Φtu P X for every u P Zpr0,8q;Uq and t ¥ 0.

Next, we prove that Φt P LpZpr0,8q;Uq, Xq for arbitrary t ¥ 0. For
λ P ρpAq define the operator B0 :� pλ � A�1q�1B P LpU,Xq. It follows
that

u ÞÑ pλ�Aq�1Φtu �
» t

0
T pt� sqB0upsqds

defines an operator in LpZpr0,8q;Uq, Xq with range in dompAq. Since
λ � A : dompAq � X Ñ X is a closed operator, we have that Φt �
pλ � Aqpλ � Aq�1Φt is a closed operator from Zpr0,8q;Uq to X. The
closed graph theorem yields that Φt P LpZpr0,8q;Uq, Xq. ❑

Remark 2.1.5. Since Φtu � Φtp1r0,tsuq, Proposition 2.1.4 implies that B is
Z-admissible if and only if for some (and hence for all) t ¡ 0 there exists
a constant Kt ¡ 0 such that for all u P Zpr0, ts;Uq the estimate∥∥∥∥» t

0
T�1pt� sqBupsqds

∥∥∥∥
X

¤ Kt∥u∥Zpr0,ts;Uq (2.4)

holds. The minimal constant Kt satisfying (2.4) is

KB,t :� ∥Φt∥LpZpr0,8q;Uq,Xq. (2.5)

Moreover, t ÞÑ KB,t is non-decreasing on r0,8q.
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Definition 2.1.6. Let B be Z-admissible. The constants KB,t, t ¥ 0, from
(2.5) are called the admissibility constants of B. We call B infinite-time
Z-admissible if the infinite-time Z-admissibility constant

KB,8 :� sup
t¥0

KB,t

is finite.

Remark 2.1.7. Since the set of step functions is dense in EΦpr0,8q;Uq, it
follows that B P LpU,X�1q is EΦ-admissible if and only if for some (and
hence for all) t ¡ 0 there exists a constant Kt ¥ 0 such (2.4) holds for
all step functions v : r0, ts Ñ U . Note that Φtv P X holds for every step
function v by Lemma 1.3.8 applied for pT�1ptqqt¥0.

The following statements on admissible control operators B are well-
known, see e.g. [99, Remark 4.7] and [102, Remark 2.1 & 2.2].

Lemma 2.1.8. Let pT ptqqt¥0 be a C0-semigroup on X and B P LpU,X�1q
be Z admissible. The following assertions hold.

(i) If Z̃pr0, ts;Uq � Zpr0, ts;Uq for some t ¡ 0, then B is Z̃-admissible.

(ii) B is Z-admissible for the scaled semigroup peαtT ptqqt¥0 for all α P R.

(iii) If the semigroup pT ptqqt¥0 is exponentially stable, then B is infinite-
time Z-admissible.

Proof. Assertion (i) follows from the definition of Z-admissibility and the
fact that the range condition (2.3) is independent of t by Proposition 2.1.4.

For (ii) let α P R and u P Zpr0,8q;Uq. Since Φt only depends on u
up to time t, we may assume without loss of generality that u|pt,8q � 0.
Hence, e�α�u P Zpr0,8q;Uq and» t

0
eαpt�sqT�1pt� sqBupsqds � eαt

» t
0
T�1pt� sqBpe�αsupsqq ds P X.

This shows that B is Z-admissible for peαtT ptqqt¥0.
For (iii) letM,ω ¡ 0 such that ∥T ptq∥ ¤Me�ωt. Since the admissibility

constants KB,t are non-decreasing in t, it suffices to prove that KB,n is
uniformly bounded in n P N. For n P N and u P Zpr0,8q;Uq we have∥∥∥∥» n

0
T�1pn� sqBupsq ds

∥∥∥∥
X

�
∥∥∥∥∥n�1̧

k�0

» k�1

k

T�1pn� sqBupsq ds
∥∥∥∥∥
X

�
∥∥∥∥∥n�1̧

k�0
T pn� k � 1q

» 1

0
T�1p1� sqBupk � sqds

∥∥∥∥∥
X
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¤MKB,1

n�1̧

k�0
e�ωpn�k�1q∥upk � �q∥Zpr0,1s;Uq

¤MKB,1∥u∥Zpr0,ns;Uq
n�1̧

k�0
e�ωpn�k�1q.

Since the sum converges, we obtain that KB,n is uniformly bounded in n,
which yields that B is infinite-time Z-admissible. ❑

Since pT ptqqt¥0 can be re-obtained from peαtT ptqqt¥0, Lemma 2.1.8
(ii) shows that admissibility is invariant under scaling of the semigroup
(or equivalently shifting of the generator). This is in general not true for
infinite-time admissibility.

By definition, Z-admissibility of B yields that Φtu depends continuously
on u P Zpr0,8q;Uq. The following result concludes on joint continuity
with respect to t and u for Z � EΦ (including L1 by our convention (2.2)),
see also [99, Proposition 2.3] for Z � Lp, 1 ¤ p   8.

Proposition 2.1.9. If B P LpU,X�1q is EΦ-admissible, then the function

r0,8q � EΦpr0,8q;Uq Ñ X

pt, uq ÞÑ Φtu

is continuous.

Proof. First, we prove continuity with respect to t. Fix u P EΦpr0,8q;Uq.
For any τ, t ¥ 0 we have that

Φτ�tu � T ptqΦτu� Φtupτ � �q.

Thus, admissibility of B yields for τ ¥ 0 and t P r0, 1s that

∥Φτ�tu� Φτu∥X
¤ ∥pT ptq � IqΦτu∥X � ∥Φtupτ � �q∥X
¤ ∥pT ptq � IqΦτu∥X �KB,1∥upτ � �q∥EΦpr0,ts;Uq,

where we used that KB,t is non-decreasing with respect to t. Since
pT ptqqt¥0 is strongly continuous and ∥upτ � �q∥EΦpr0,ts;Uq converges to 0
as t converges to 0, see Proposition 1.2.29, it follows that t ÞÑ Φtu is
right-continuous.

To prove the left-continuity in τ ¡ 0 let ptnqnPN be an arbitrary sequence
in r0, τ s with tn Ñ 0. Define un � uptn � �q, so that un P EΦpr0,8q;Uq.
Similar as before, we have that

Φτu � Φtn�pτ�tnqu � T pτ � tnqΦtnu� Φτ�tnun,
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and hence,

∥Φτu� Φτ�tnu∥X
¤ ∥T pτ � tnqΦtnu∥X � ∥Φτ�tnpun � uq∥X
¤ sup
tPr0,τs

∥T ptq∥ � ∥Φtnu∥X �KB,τ∥un � u∥EΦpr0,8q;Uq.

The left-continuity follows since Φtnu Ñ 0 as n Ñ 8 by the right con-
tinuity of t ÞÑ Φtu and since un Ñ u in Zpr0,8q;Uq as n Ñ 8 by the
strong continuity of the left-shift semigroup on Zpr0,8q;Uq, see Proposi-
tion 1.3.36.

The identity

Φtv � Φτu � Φtpv � uq � pΦt � Φτ qu
implies the joint continuity of pt, uq ÞÑ Φtu. ❑

Remark 2.1.10. Proposition 2.1.9 applies to more abstract function spaces
Z whose norm is absolutely continuous with respect to the measure and
on which the left-shift semigroup is strongly continuous.

The relation of Z-admissible control operators B and the mild solution
x of ΣpA,Bq is given as follows.

Corollary 2.1.11. Let A be the generator of a C0-semigroup and B P
LpU,X�1q. The following assertions are equivalent.

(i) B is Z-admissible.

(ii) For some (and hence all) t ¡ 0 and all x0 P X and u P Zlocpr0,8q;Uq
the corresponding mild solution x of ΣpA,Bq satisfies xptq P X.

If one of the equivalent conditions holds, then the mild solution x of
ΣpA,Bq for x0 P X and u P Zlocpr0,8q;Uq satisfies

∥xptq∥X ¤Me�ωt∥x0∥X �KB,t∥u∥Zpr0,ts;Uq,

where M ¥ 1, ω P R are such that ∥T ptq∥ ¤Me�ωt for all t ¥ 0 and KB,t,
t ¥ 0, are the admissibility constants of B. If pT ptqqt¥0 is exponentially
stable, then one can choose ω ¡ 0 and replace KB,t by the infinite-time
admissibility constant KB,8.

Moreover, if Z � EΦ, then the mild solution satisfies x P Cpr0,8q;Xq
for all x0 P X and u P EΦpr0,8q;Uq.
Proof. Equivalence of (i) and (ii) follows from Proposition 2.1.4 and the
fact that Φt only depends on u|r0,ts. Inequality (2.1.11) follows from the
definition of the mild solution and (2.4). If the semigroup is exponentially
stable, ω ¡ 0 can be chosen and KB,t can be replaced by KB,8, which
is finite by Lemma 2.1.8. For Z � EΦ, Proposition 2.1.9 yields x P
Cpr0,8q;Xq. ❑
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Open Problem. It is an open problem whether the mild solution of
ΣpA,Bq with L8-admissible or LΦ-admissible B, where Φ R ∆8

2 , is con-
tinuous for all inputs in the respective space.

For Φ P ∆8
2 , Lemma 1.2.25 yields that LΦpr0, ts;Uq � EΦpr0, ts;Uq for

every t ¡ 0 . Hence, in this case continuity of the mild solution follows
from Corollary 2.1.11.

2.1.2 Testing admissibility of control operators
The importance of admissible control operators becomes clear by Corol-
lary 2.1.11. In this section, we present some sufficient and necessary
conditions for admissibility of control operators. Further conditions can
be found e.g. in [95, Chaper 5] for Z � L2, [33] for weighted Lp-spaces
and [103] for Z � Lp and Z � Reg (the space of regulated functions) in
the context of positive semigroups on Banach latices.

We start with a characterization of EΦ-admissible control operators
from [40], where the result is formulated for observation operators, cf.
Proposition 2.2.13. It goes back to Callier-Grabowski [28], see also Engel
[24]. First recall the auxiliary lemma from [24].

Lemma 2.1.12. Let X and U be Banach spaces, A : dompAq � X Ñ X
and D : dompDq � U Ñ U be closed and densely defined operators such
that pω,8q � ρpAq X ρpDq for some ω P R and let K P LpdompDq, Xq,
where dompDq is equipped with the graph norm of D. Then, the following
assertions are equivalent.

(i) The block operator matrix

A :�
�
A 0
0 D

� �
I K
0 I

�
with domain

dompAq :�
"�
x
u

�
P X � dompDq

����x�Ku P dompAq
*

generates a C0-semigroup pTAptqqt¥0 on X � U .

(ii) The operator A generates a C0-semigroup pT ptqqt¥0 on X, D gen-
erates a C0-semigroup pSptqqt¥0 on U and for some (and hence for
all) τ ¡ 0 there holds that

sup
tPr0,τs

∥Rptq∥LpU,Xq   8,

where Rptq is given by (the bounded extension of)

Rptqu :� A

» t
0
T pt� sqKSpsquds, u P dompD2q.
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If one of the equivalent conditions is satisfied, pTAptqqt¥0 is given by

TAptq �
�
T ptq Rptq

0 Sptq
�
.

Proof. We refer for the proof to [25, Theorem 3.3]. ❑

Proposition 2.1.13. Let A be the generator of a C0-semigroup pT ptqqt¥0,
B P LpU,X�1q. Then, the following assertions are equivalent.

(i) B is EΦ-admissible.

(ii) The block operator matrix

AB :�
�
A�1 Bδ0

0 d
dr

�
(2.6)

with domain

dompABq :�
"�
x
u

�
P X �W1EΦpp0,8q;Uq

����A�1x�Bup0q P X
*

generates a C0-semigroup pTAB
ptqqt¥0 on X � EΦpr0,8q;Uq, where

δ0u :� up0q for u P W1EΦpp0,8q;Uq.
If one of the equivalent conditions holds, then TAB

ptq is given by

TAB
ptq

�
x
u

�
�

�
T ptqx� ³t

0 T�1pt� sqBupsq ds
upt� �q

�
.

Moreover, if pTAB
ptqqt¥0 is bounded, then B is infinite-time EΦ-admissible.

Proof. From Proposition 1.3.36 (and the well-known analog for L1) it
follows that

D :� d
dr

with domain
dompDq :� W1EΦpp0,8q;Uq

generates the left-shift semigroup pSptqqt¥0 on U :� EΦpr0,8q;Uq. For
λ P ρpAq � ρpA�1q we write

AB �
�
A� λ 0

0 D

� �
I pA�1 � λq�1Bδ0
0 I

�
looooooooooooooooooooooomooooooooooooooooooooooon

ÃB :�

�
�
λ 0
0 0

�
,

which is well-defined, since r xu s P dompABq if and only if x P X, u P
dompDq and x � pA�1 � λq�1Bδ0u P dompAq. Note that AB generates
a C0-semigroup on X � EΦpr0,8q;Uq if and only if ÃB with domain
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dompABq generates a C0-semigroup on the same space. By Lemma 2.1.12,
this is the case if and only if suptPr0,τs∥Rptq∥LpEΦpr0,8q;Uq,Xq   8, where
Rptq is for u P dompD2q and t ¥ 0 given by

Rptqu � pA� λq
» t

0
T pt� sqpA�1 � λq�1Bδ0Spsqupsqds

� pA� λq
» t

0
T pt� sqpA�1 � λq�1Bupsq ds

�
» t

0
T�1pt� sqBupsqds.

Note that dompD2q is dense in EΦpr0,8q;Uq, from which it follows that
suptPr0,τs∥Rptq∥LpEΦpr0,8q;Uq,Xq   8 for some (all) τ ¡ 0 if and only
if B is EΦ-admissible. The representation of TAB

ptq is derived from
Lemma 2.1.12 and the above computation of Rptq. This representation
implies that B is infinite-time EΦ-admissible if pTAB

ptqqt¥0 is bounded. ❑

For analytic semigroups, we have the following condition for Lp-
admissibility.

Lemma 2.1.14. Let A be the generator of a bounded analytic semigroup
pT ptqqt¥0 with 0 P ρpAq and B P LpU,X�αq for some α P p0, 1q. Then, B
is infinite-time Lp-admissible for all p ¡ 1

1�α .

Proof. By Γ we denote the Gamma function

Γpzq �
» 8

0
sz�1e�s ds,

where the integral converges absolutely if z ¡ 0. For B P LpU,X�αq with
α P p0, 1q we have that pB :� p�Aq�αB P LpU,Xq, see Proposition 1.3.28.
Let u P Lppr0,8q;Uq and t ¡ 0. We deduce from Proposition 1.3.28,
Proposition 1.3.26 and Hölder’s inequality that∥∥∥∥» t

0
T�1pt� sqBupsqds

∥∥∥∥
X

�
∥∥∥∥» t

0
p�AqαT pt� sq pBupsq ds

∥∥∥∥
X

¤Mα∥ pB∥
» t

0
pt� sq�αe�ωt∥upsq∥U ds

¤Mα∥ pB∥
�» t

0
pt� sq�αp1e�ωp1pt�sq ds


 1
p1

∥u∥Lppr0,ts;Uq

�Mα∥ pB∥
�

1
ωp1


 1�αp1

p1
�» t

0
s�αp

1

e�s ds

 1

p1

∥u∥Lppr0,ts;Uq
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¤Mα∥ pB∥
�

1
ωp1


 1�αp1

p1

pΓp1� αp1qq 1
p1 ∥u∥Lppr0,ts;Uq,

where p1 is the Hölder conjugate of p, and Mα and ω ¡ 0 are the constants
from Proposition 1.3.26. Since 1 � αp1 ¡ 0 if and only if p ¡ 1

1�α , the
assertion follows. ❑

Remark 2.1.15. In the situation of Lemma 2.1.14 it follows from the proof
that the Lp-admissibility constants of B P LpU,X�αq with α P p0, 1q and
p ¡ 1

1�α can be bounded by

KB,t ¤ Mα

pωp1q 1�αp1

p1

∥p�Aq�αB∥LpU,Xq

�» t
0
s�αp

1

e�s ds

 1

p1

¤ Mα

pωp1q 1�αp1

p1

∥p�Aq�αB∥LpU,XqpΓp1� αp1qq 1
p1 ,

where Mα, ω ¡ 0 are the constants from Proposition 1.3.26 and p1 is the
Hölder conjugate of p.

In the following, we consider X � ℓqpNq for 1 ¤ q ¤ 8 with stan-
dard basis penqnPN. Let pλnqnPN be a sequence of complex numbers with
supnPN Re λn   8. The operator A : dompAq � X Ñ X, defined by

Aen :� λnen,

dompAq :� tpxnqnPN | pλnxnqnPN P ℓqpNqu,
(2.7)

generates the C0-semigroup pT ptqqt¥0 on X,

T ptqen � eλnten, t ¥ 0. (2.8)

The corresponding extrapolation space X�1 is given by

X�1 �
"
pxnqnPN

���� � xn
λ� λn



nPN

P ℓqpNq
*

for some fixed λ ¡ supnPN Re λn.
For this specific setting, we recall a characterization of Lp-admissibility

for control operators B P LpC, X�1q in terms of a Carleson–measure
criterion provided by [48, Theorem 3.5]. We identify B P LpC, X�1q with
an element in X�1 via B1 � b � pbnqnPN P X�1. We define sets Qn, n P Z,
and a measure µ (depending on A and B) by

Qn :� tz P C | 2n�1   Re z ¤ 2nu,
µ :�

¸
kPN

|bk|qδ�λk
, (2.9)
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where δλ is the point measure in λ, that is

δλpQq �
#

1, if λ P Q,
0, else.

Lemma 2.1.16. Let 1 ¤ q   p   8 and X � ℓqpNq. Suppose that A is
defined by (2.7) with Re λn   0 and �λn P Sδ for some δ P p0, π2 q and every
n P N. Let B P LpC, X�1q be given by the sequence b � pbnqnPN P X�1
and Qn and µ be given by (2.9). Then, B is Lp-admissible if and only if

p2�nqpp�1q
p µpQnqqnPZ P ℓ

p
p�q pZq.

Proof. We refer for the proof to [48, Theorem 3.5]. ❑

The following example of an operator B which is infinite-time admissible
with respect to L8, LΦ and EΦ for some Young function Φ, but not Lp-
admissible for any choice of p P r1,8q is taken from [39]. It is an adaption
of [44, Example 5.2] and [103, Example 4.2.13].

Example 2.1.17. Let X � U � ℓ2pNq and A be given by (2.7) with
λn � �2n. Thus, A generates the exponentially stable C0-semigroup
pT ptqqt¥0 on X, given by (2.8). We define an operator B P LpU,X�1q by

Ben � 2n
n
en.

For ũ � � 1
n

�
nPN P U , we define rB P LpC, X�1q by the sequence b �

pbnqnPN � Bũ P X�1. Consider µ and Qn as in Lemma 2.1.16. For
p P p2,8q we have that

2
�2npp�1q

p µpQnq � 2
�2npp�1q

p
22n

n4 � 2
2n
p

n4 ,

and thus, ��
2
�2npp�1q

p µpQnq
	 p

p�2


nPZ

�
�

2
2n

p�2

n
4p

p�2

�
nPZ

R ℓ1pZq.

Lemma 2.1.16 yields that rB is not Lp-admissible for 2   p   8 and hence,
by Lemma 2.1.8, not Lp-admissible for 1 ¤ p   8. Consequently, B is not
Lp-admissible for 1 ¤ p   8.

Next, we show that B is LΦ-admissible, where Φ is the complementary
Young function of rΦptq � t logplogpt� eqq.
It is not difficult to see that rΦ is a Young function. For n P N, we define

kn :� logpn logp2q � eq
n

,



52 2. Linear systems theory

so that nkn ¡ 1 and 2n

nkn
¥ 1 hold. For t ¥ 0 and n P N it follows that

rΦ�
2n

n e�2nt

kn

�
� 2n
nkn

e�2nt log
�

log
�

2n
nkn

e�2nt � e




¤ 2n
knn

e�2nt log
�

log
�

2n
nkn

p1� eq




� 2n
nkn

e�2nt log pn logp2q � logp1� eq � logpnknqq

¤ 2n
nkn

e�2nt log pn logp2q � eq

� 2ne�2nt.

This implies that» t
0
rΦ�

2n

n e�2npt�sq

kn

�
ds ¤ 1� e�2nt ¤ 1,

and hence, ∥ 2n

n e�2npt��q∥L
rΦpr0,tsq ¤ kn. The generalized Hölder inequality

(Lemma 1.2.19) implies for u P LΦpr0, ts; ℓ2pNqq that∣∣∣∣�» t
0
T�1pt� sqBupsqds



n

∣∣∣∣ � ∣∣∣∣» t
0

2n

n e�2npt�sqpupsqqn ds
∣∣∣∣

¤ 2∥ 2n

n e�2npt��q∥L
rΦpr0,tsq∥pup�qqn∥LΦpr0,tsq

¤ 2kn∥u∥LΦpr0,ts;ℓ2pNqq

for all n P N, and therefore,∥∥∥∥» t
0
T�1pt� sqBupsq ds

∥∥∥∥
ℓ2pNq

¤ 2∥pknqnPN∥ℓ2pNq∥u∥LΦpr0,ts;ℓ2pNqq.

Since pknqnPN P ℓ2pNq, we conclude that B is LΦ-admissible. From
Lemma 2.1.8 it follows that B is also infinite-time admissible with re-
spect to LΦ, EΦ and L8.

2.1.3 Regularity of solutions
In Corollary 2.1.11 we have seen that EΦ-admissibility implies continuity
of the mild solution for all x0 P X and u P EΦ,locpr0,8q;Uq. In this section
we discuss further regularity properties of the mild solution for smoother
initial and input data.

Definition 2.1.18. Let pT ptqqt¥0 be C0-semigroup on X and let B P
LpU,X�1q. A functions x P C1pr0,8q;Xq is called a classical solution
of ΣpA,Bq for x0 P X and u P L1

locpr0,8q;Uq if xp0q � x0 and 9xptq �
A�1xptq �Buptq for all almost every t ¥ 0.
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Remark 2.1.19. Every classical solution of ΣpA,Bq is a mild solution.
Indeed, (1.3.8) implies for the classical solutions x for x0 and u that

d
dt pT�1pt�sqxpsqq � T pt�sq 9xpsq�T�1pt�sqA�1xpsq � T�1pt�sqBupsq

for almost every 0 ¤ s ¤ t, and integrating in s over r0, ts yields» t
0
T�1pt� sqBupsq ds � T pt� tqxptq � T pt� 0qxp0q � xptq � T ptqx0.

In particular, classical solutions are unique. Also note that classical
solutions do not necessarily satisfy xptq P dompAq, but only A�1xptq �
Buptq P X for almost every t ¥ 0.

Our first result on the regularity of mild solutions is taken from [95,
Theorem 4.1.6 & Remark 4.1.7]. We emphasize that admissibility of B is
not required.

Proposition 2.1.20. Let A be the generator of a C0-semigroup, and
B P LpU,X�1q. Then, the linear system ΣpA,Bq admits for all x0 P X
and u P W1,1

locpp0,8q;Uq a unique mild solution

x P Cpr0,8q;Xq X C1pr0,8q;X�1q.

Moreover, the mild solution satisfies for all t ¥ 0

xptq � x0 �
» t

0
A�1xpsq �Bupsq ds (2.10)

in X with integration in X�1.

Proof. Since B P LpU,X�1q, it is L1-admissible for pT�1ptqqt¥0. It follows
from Proposition 2.1.13 that

AB :�
�
A�2 Bδ0

0 d
dr

�
with domain

dompABq :�
"�
x0
u

�
P X�1 �W1,1pp0,8q;Uq

����A�2x0 �Bup0q P X�1

*
� X �W1,1pp0,8q;Uq

generates the C0-semigroup pTAB
ptqqt¥0 given by

TAB
ptq

�
x0
u

�
�

�
T�1ptqx0 �

³t
0 T�2pt� sqBupsqds
upt� �q

�
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on X�1 � L1pr0,8q;Uq. Let x0 P X and u P W1,1
locpp0,8q;Uq. For every

t ¥ 0 we have that
� x0

Pr0,tsu

� P X � W1,1pp0,8q;Uq � dompABq, where
Pr0,tsu � u on r0, ts and 0 else. From Lemma 1.3.8 we deduce that

TAB
ptq � x0

Pr0,tsu

� P C1pr0,8q;X�1 � L1pr0,8q;Uqq
X Cpr0,8q;X �W1,1pp0,8q;Uqq

and

TAB
ptq

�
x0

Pr0,tsu

�
�
�

x0
Pr0,tsu

�
�

» t
0

ABTAB
psq

�
x0

Pr0,tsu

�
ds.

The first component of TAB
ptq r x0

u s is the mild solution x of ΣpA,Bq for
x0 and u evaluated in t. Hence, x P C1pr0,8q;X�1q X Cpr0,8q;Xq and

xptq � x0 �
» t

0
A�2xpsq �BPr0,tsupsq ds

�
» t

0
A�1xpsq �Bupsq ds

in X�1 with integration in X�2. The second equality holds since x P
Cpr0,8q;Xq. In particular, equality holds in X and since the integrand
lies in L1

locpr0,8q;X�1q, the integration is carried out in X�1 and x P
W1,1

locpp0,8q;X�1q. The uniqueness of the mild solution is evident. ❑

In Proposition 2.1.20, one may replace the additional regularity property
of u by admissibility of B to obtain the following result, see also [95,
Proposition 4.2.5] for Z � L2.

Proposition 2.1.21. Let A be the generator of a C0-semigroup and
B P LpU,X�1q be EΦ-admissible. Then, the linear system ΣpA,Bq admits
for all x0 P X and u P EΦ,locpr0,8q;Uq a unique mild solution

x P Cpr0,8q;Xq XW1EΦ,locpp0,8q;X�1q.

Moreover, the mild solution satisfies (2.10) in X with integration in X�1.

Proof. For x0 P X and u P W1EΦ,locpp0,8q;Uq � W1,1
locpp0,8q;Uq, Propo-

sition 2.1.20 yields that (2.10) holds in X with integration in X�1. Since B
is EΦ-admissible, ΣpA,Bq admits for all x0 P X and u P EΦ,locpr0,8q;Uq a
unique mild solution x P Cpr0,8q;Xq. Moreover, linearity yields that xptq
depends continuously in X on u in EΦpr0, ts;Uq for every t ¥ 0, see Corol-
lary 2.1.11. Hence, both sides of (2.10) depend continuously in X�1 on u in
EΦpr0, ts;Uq and density of W1EΦpp0, tq;Uq in EΦpr0, ts;Uq for every t ¥ 0
yields (2.10) for all u P EΦ,locpr0,8q;Uq in X�1. Since xptq � x0 P X and
A�1x�Bu P EΦ,locpr0,8q;X�1q, we have that x P W1EΦ,locpp0,8q;X�1q
and equality in (2.10) holds in X with integration in X�1. ❑
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Under additional regularity properties of u in Proposition 2.1.20 and
Proposition 2.1.21, the mild solution is a classical solution, as shown next,
see also [95, Lemma 4.2.8 & Remark 4.2.9].

Proposition 2.1.22. Let A be the generator of a C0-semigroup pT ptqqt¥0
and B P LpU,X�1q. If either

(i) x0 P X and u P W2,1
locpp0,8q;Uq with A�1x0 �Bup0q P X or,

(ii) x0 P X and u P W1EΦ,locpp0,8q;Uq with A�1x0 � Bup0q P X and
B is EΦ-admissible,

then the corresponding mild solution of ΣpA,Bq is a classical solution.

Proof. We split ΣpA,Bq into two systems#
9x1ptq � Ax1ptq �Bu1ptq, t ¥ 0
x1p0q � 0,

(2.11)

with u1ptq � uptq � up0q and#
9x2ptq � Ax2ptq �Bup0q, t ¥ 0
x2p0q � x0,

(2.12)

where up0q is regarded as a constant function. According to our assump-
tions, Proposition 2.1.20 and Proposition 2.1.21, both systems admit
unique mild solutions x1, x2 P Cpr0,8q;Xq. Similar,#

9zptq � Azptq �B 9u1ptq, t ¥ 0
zp0q � 0

admits a unique mild solution z P Cpr0,8q;Xq. The function x̃1,

x̃1ptq :�
» t

0
zpsq ds,

lies in C1pr0,8q;Xq and solves (2.11) in the classical sense. Indeed, the
mild solution formula (2.1) for z and Lemma 1.3.8 yield that

9̃x1ptq �
» t

0
T�1pt� sqB 9u1psq ds

� rT�1pt� sqBu1psqss�ts�0 �
» t

0
A�2T�1pt� sqBu1psq ds

� Bu1ptq �A�1x̃1ptq.
Since classical solutions are mild solutions, the uniqueness of mild solutions
implies that x1 � x̃1 P C1pr0,8q;Xq is the classical solution of (2.11).
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From the mild solution formula (2.1) for x2 and Lemma 1.3.8 it follows
that

A�1x2ptq � A�1T ptqx0 �A�1

» t
0
T�1pt� sqBup0q ds

� T ptqrA�1x0 �Bup0qs �Bup0q.
(2.13)

From Proposition 2.1.21 we infer that

x2ptq � x0 �
» t

0
A�1x2psq �Bup0qds

�
» t

0
T psqrA�1x0 �Bup0qs ds.

By assumption, the integrand of the latter integral is continuous with
values in X, and therefore, x2 P C1pr0,8q;Xq.
Finally, the function x � x1�x2 P C1pr0,8q;Xq is the classical solution of
ΣpA,Bq for x0 and u. It is unique by the uniqueness of mild solutions. ❑

If A is a strictly negative operator on a Hilbert space, and therefore also
the generator of a bounded analytic semigroup, the following improvement
holds, see also [96, Proposition 6.5].

Proposition 2.1.23. Let A be a strictly negative operator on a Hilbert
space X. If B P LpU,X 1

2
q, then B is infinite-time L2-admissible. Moreover,

there exists a constant k ¡ 0 such that ΣpA,Bq admits for every x0 P X
and u P L2pr0,8q;Uq a unique mild solution

x P H1pp0,8q;X� 1
2
q X Cpr0,8q;Xq X L2pr0,8q;X 1

2
q,

which satisfies for every t ¥ 0,

∥x∥2
H1pp0,tq;X

� 1
2
q � ∥xptq∥2

X � ∥x∥2
L2pr0,ts;X 1

2
q

¤ kp∥x0∥2
X � ∥u∥2

L2pr0,ts;Uqq
and

∥xptq∥2
X � ∥x0∥2

X

� 2 Re
» t

0
xA�1xpsq, xpsqyX

� 1
2
,X 1

2
� xBupsq, xpsqyX

� 1
2
,X 1

2
ds.

Proof. Recall from Lemma 1.3.31 that A generates an exponentially stable
and bounded analytic semigroup, and that X 1

2
is well-defined. For any

x0 P dompAq and u P H2
locpp0,8q;Uq with up0q � 0 there exists a unique

classical solution x P C1pr0,8q;Xq of ΣpA,Bq by Proposition 2.1.22. In
particular, for every t ¥ 0, we have that

9xptq � A�1xptq �Buptq,
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in X. Since 9xptq P X � X� 1
2

and Buptq P X� 1
2
, we also have that

A�1xptq P X� 1
2
, which is equivalent to xptq P X 1

2
, see Proposition 1.3.28.

The representation of the X 1
2
-norm from Lemma 1.3.31 and (1.23) yield

that

d
dt∥xptq∥

2
X

� 2 Re x 9xptq, xptqyX
� 2 xA�1xptq, xptqyX

� 1
2
,X 1

2
� 2 Re xBuptq, xptqyX

� 1
2
,X 1

2

¤ �∥xptq∥2
X 1

2
� ∥B∥2

LpU,X
� 1

2
q∥uptq∥2

U ,

where we used 2ab ¤ a2 � b2 for a, b P R. Integration over r0, ts yields

∥xptq∥2
X � ∥x0∥2

X

� 2 Re
» t

0
xA�1xpsq, xpsqyX

� 1
2
,X 1

2
� xBupsq, xpsqyX

� 1
2
,X 1

2
ds.

and

∥xptq∥2
X � ∥x∥2

L2pr0,ts;X 1
2
q ¤ ∥x0∥2

X � ∥B∥2
LpU,X

� 1
2
q∥u∥2

L2pr0,ts;Uq (2.14)

for all x0 P dompAq and u P H2
locpr0,8q;Uq with up0q � 0. Now, by the

density of dompAq in X and tu P H2pr0, ts;Uq |up0q � 0u in L2pr0, ts;Uq for
every t ¥ 0, and the linearity of the system, it follows that B is infinite-time
L2-admissible and (2.14) holds for all x0 P X, u P L2pr0,8q;Uq and the cor-
responding mild solution x. In particular, we have x P L2pr0,8q;X 1

2
q, and

thus A�1x P L2pr0,8q;X� 1
2
q. Due to these regularity properties, we infer

from the same density argument as above that the integral representation
of ∥xptq∥2

X � ∥x0∥2
X holds for all x0 P X and u P L2pr0,8q;Uq. More-

over, it follows from Proposition 2.1.21 that x P H1
locpp0,8q;X� 1

2
q with

9x � A�1x � Bu in X� 1
2
, and since ∥A�1x∥L2pr0,ts;X

� 1
2
q � ∥x∥L2pr0,ts;X 1

2
q,

we deduce that

∥x∥2
H1pp0,tq;X

� 1
2
q � ∥x∥2

L2pr0,ts,X
� 1

2
q � ∥A�1x�Bu∥2

L2pr0,ts;X
� 1

2
q

¤ 3∥x∥2
L2pr0,ts;X 1

2
q � 2∥B∥2

LpU,X
� 1

2
q∥u∥2

L2pr0,ts;Uq,

where we used pa� bq2 ¤ 2pa2 � b2q for a, b P R. Combing this with (2.14)
completes the proof. ❑

Remark 2.1.24. Consider the differential equation 9xptq � Axptq�fptq with
f P Lp. The property that not only 9x�Ax, but 9x and Ax belong to Lp is
known as maximal Lp-regularity.
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2.2 Linear output systems
Let X and Y be Banach spaces, A be the generator of a C0-semigroup
pT ptqqt¥0 on X and C P LpX1, Y q, where X1 is the interpolation space
defined in Definition 1.3.12. We call C bounded if C P LpX,Y q and
unbounded otherwise.

For x0 P X1 we have that x P C1pr0,8q;Xq X Cpr0,8q;X1q, xptq �
T ptqx0 is the classical solution of ΣpA,Cq, see Corollary 1.3.9 and Propo-
sition 2.1.22. Therefore, the output y P Cpr0,8q;Y q of ΣpA,Cq is given
by

yptq :� Cxptq � CT ptqx0.

For general x0 P X it is not necessarily true that T ptqx0 P X1, hence, we
cannot define the output by the above pointwise formula.

2.2.1 Admissible observation operators and outputs
We are interested in observation operators C, for which we can extend
yp�q � CT p�qx0 for x0 P X1 to all x0 P X in some function space
Zpr0,8q;Y q, where Z refers to L8, EΦ or LΦ. We maintain the con-
vention (2.2) that L1 � EΦ � LΦ is an Orlicz space.

Definition 2.2.1. Let pT ptqqt¥0 be a C0-semigroup on X. We call C P
LpX1, Y q a Z-admissible observation operator for pT ptqqt¥0 (or just Z-
admissible) if for some t ¡ 0 the map Ψt : X1 Ñ Zpr0,8q;Y q, given
by

Ψtx0 �

#
CT p�qx0, on r0, ts,
0, on pt,8q, (2.15)

admits an extension (again denoted by Ψt) Ψt P LpX,Zpr0,8q;Y qq.
Since we use the letter B exclusively for control operators and C for

observation operators, there is no risk of confusion in stating that B or C
is Z-admissible.

The maps Ψt, t ¥ 0, given by (2.15), are called the output maps of
ΣpA,Cq (and ΣpA,B,Cq).

Since C P LpX1, Y q and L8pr0, ts;Uq ãÑ Zpr0, ts;Y q for all t ¥ 0 we
have that Ψt P LpX1, Zpr0,8q;Y qq. Furthermore, C can be recovered
from pΨtqt¥0 via

Cx0 � lim
τÑ0

1
τ

» τ
0
pΨtx0qpsq ds, x0 P X1.

Remark 2.2.2. Every bounded operator C P LpX,Y q is Z-admissible for
any choice of Z and any C0-semigroup on X.
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The following result is the analog to Proposition 2.1.4, see also [95,
Proposition 4.3.2] for Z � L2.

Lemma 2.2.3. If C is Z-admissible, then Ψt extends for all t ¥ 0 to an
operator Ψt P LpX,Zpr0,8q;Y qq.
Proof. Let τ ¡ 0 such that Ψτ extends to an operator in LpX,Zpr0,8q;Y qq.
Denote by Pr0,ts P LpZpr0,8q;Y qq the truncation operator

Pr0,tsy �

#
y, on r0, ts,
0, on pt,8q.

For t P r0, τ s the identity Ψt � Pr0,tsΨτ holds. Since Pr0,ts is bounded on
Zpr0,8q;Y q, Ψt extends to an operator in LpX,Zpr0,8q;Y qq. For t � 2τ
we have that Ψ2τ � Pr0,τsΨτ �Pr0,2τsSpτqΨτ , where pSptqqt¥0 is the right-
shift semigroup on Zpr0,8q;Uq. Again, since Pr0,τs, Pr0,2τs and Spτq
are bounded on Zpr0,8q;Y q it follows that Ψ2τ has an extension to an
operator in LpX,Zpr0,8q;Y qq. The claim now follows by induction. ❑

Remark 2.2.4. By Lemma 2.2.3 and the density of X1 in X we have that
C is Z-admissible if and only if for some (and hence for all) t ¡ 0 there
exists a constant Kt ¥ 0 such that for all x0 P X1 the estimate

∥CT p�qx0∥Zpr0,ts;Y q ¤ Kt∥x0∥X (2.16)

holds. The minimal constant Kt ¡ 0 satisfying (2.16) is

KC,t :� ∥Ψt∥LpX,Zpr0,8q;Y qq.

Moreover, t ÞÑ KC,t is non-decreasing on r0,8q.
Definition 2.2.5. Let C be Z-admissible. The constants KC,t, t ¥ 0, from
(2.2.4) are called the admissibility constants of C. We call C infinite-time
Z-admissible if the infinite-time Z-admissibility constant

KC,8 :� sup
t¥0

KC,t

is finite.

Remark 2.2.6. By Remark 2.2.4, C is infinite-time Z-admissible if and
only if there exists K ¡ 0 such that for all x0 P X1 we have

∥CT p�qx0∥Zpr0,8q;Y q ¤ K∥x0∥X .

Similar to Lemma 2.1.8, see also [100, Proposition 2.3 & Remark 6.4]
for Z � Lp, we have the following result.
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Lemma 2.2.7. Let pT ptqqt¥0 be a C0-semigroup on X and C P LpX1, Y q
be Z-admissible. The following assertions hold.

(i) If Zpr0, ts;Y q ãÑ Z̃pr0, ts;Y q for some t ¡ 0, then C is Z̃-admissible.

(ii) C is Z-admissible for the scaled semigroup peαtT ptqqt¥0 for all α P R.

(iii) If the semigroup pT ptqqt¥0 is exponentially stable, then C is infinite-
time Z-admissible.

Proof. The continuous embedding in (i) yields for some m ¡ 0 and all
x0 P X1 that

∥CT p�qx0∥Z̃pr0,ts;Y q ¤ m∥CT p�qx0∥Zpr0,ts;Y q.

Therefore, the claim follows from Remark 2.2.4.
Similar, (ii) follows from

∥Ceα�T p�qx0∥Zpr0,ts;Y q ¤ sup
sPr0,ts

eαs∥CT p�qx0∥Zpr0,ts;Y q.

For (iii), let M,ω ¥ 0 such that ∥T ptq∥ ¤Me�ωt. Since the admissibil-
ity constants KC,t are non-decreasing in t, it suffices to prove that KC,n is
uniformly bounded in n P N. For n P N and x0 P X1 we have that

∥CT p�qx0∥Zpr0,ns;Y q ¤
n�1̧

k�0
∥CT p�qx0∥Zprk,k�1s;Y q

�
n�1̧

k�0
∥CT p�qT pkqx0∥Zpr0,1s;Y q

¤MKC,1

n�1̧

k�0
e�ωk∥x0∥X .

The sum converges and hence, the constants KC,n are uniformly bounded
in n, which yields the infinite-time Z-admissibility of C. ❑

For Z-admissible observation operators, the output of ΣpA,Cq can be
defined as an Zloc-function.

Definition 2.2.8. Let A be the generator of a C0-semigroup pT ptqqt¥0
and C P LpX1, Y q be Z-admissible. The output of ΣpA,Cq for x0 P X is
the (almost everywhere defined) function y P Zlocpr0,8q;Y q, given by

y|r0,ts � pΨtx0q|r0,ts,
for every t ¥ 0, where Ψt P LpX1, Zpr0,8q;Y qq is the extension of (2.15).

Note that the output of ΣpA,Cq with Z-admissible C depends for all
t ¥ 0 in Zpr0, ts;Y q continuously on x0 in X.
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2.2.2 Duality of admissible operators
In [100, Theorem 6.9] Weiss describes the dual relation between Lp-
admissible control and observation operator. In this section we extend
Weiss’ result to Orlicz admissible operators.

Let pT ptqqt¥0 be a C0-semigroup on X and assume that its dual semi-
group pT 1ptqqt¥0 is also strongly continuous (this is e.g. true if X is re-
flexive). Let B P LpU,X�1q and C P LpX1, Y q. We denote their dual
operators with respect to the dual pairs pX�1, X

d
1 q and pX1, X

d
�1q, de-

rived in Proposition 1.3.15, by B1 and C 1, respectively. We have that
B1 P LpXd

1 , U
1q and C 1 P LpY 1, Xd

�1q. We regard B1 as output operator
of the observation system ΣpA1, B1q, dual to ΣpA,Bq and C 1 as control
operator of the input systems ΣpA1, C 1q dual to ΣpA,Cq.

The dual relation between Orlicz admissible control and observation
operators is given as follows.
Theorem 2.2.9. Let pT ptqqt¥0 be a C0-semigroup on X such that the
dual semigroup pT 1ptqqt¥0 is strongly continuous. The following assertions
hold for B P LpU,X�1q and C P LpX1, Y q.

(i) If C is an (infinite-time) LΦ-admissible observation operator for
pT ptqqt¥0, then C 1 is an (infinite-time) LrΦ-admissible control opera-
tor for pT 1ptqqt¥0 and the admissibility constants satisfy

KC1,t ¤ 2KC,t.

(ii) If C 1 is an (infinite-time) LrΦ-admissible control operator for pT 1ptqqt¥0,
then C is an (infinite-time) EΦ-admissible observation operator for
pT ptqqt¥0 and the admissibility constants satisfy

KC,t ¤ KC1,t.

(iii) If B is an (infinite-time) LΦ-admissible control operator for pT ptqqt¥0,
then B1 is a (infinite-time) ErΦ-admissible observation operator for
pT 1ptqqt¥0 and the admissibility constants satisfy

KB1,t ¤ KB,t.

(iv) If B1 is an (infinite-time) LrΦ-admissible observation operator for
pT 1ptqqt¥0 and if either X is reflexive or Φ P ∆8

2 (this includes Φptq �
t, i.e., LΦ � EΦ � L1 and LrΦ � L8), then B is an (infinite-time)
LΦ-admissible control operator for pT ptqqt¥0 and the admissibility
constants satisfy

KB,t ¤ 2KB1,t.

Proof. First, we prove (i). Suppose that C is (infinite-time) LΦ-admissible
and let t ¥ 0. For u P LrΦpr0, ts;Y 1q define

zu �
» t

0
T 1�1pt� sqC 1upsq ds.
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Clearly, we have that zu P Xd
�1 � pX1q1. For x P X1 it follows that

|xx, zuyX1,Xd
�1

| �
∣∣∣∣» t

0
xCT pt� sqx, upsqyY,Y 1 ds

∣∣∣∣
�

∣∣∣∣» t
0
xCT psqx, upt� sqyY,Y 1 ds

∣∣∣∣
¤ 2∥CT p�qx∥LΦpr0,ts;Y q∥upt� �q∥L

rΦpr0,ts;Y 1q
¤ 2KC,t∥x∥X∥u∥L

rΦpr0,ts;Y 1q.

Hence, zu extends to a linear bounded functional on X with norm bounded
by 2KC,t∥u∥L

rΦpr0,ts;Y 1q. Therefore, C 1 is (infinite-time) LrΦ-admissible with
admissibility constant KC1,t ¤ 2KC,t.

For (ii) assume that C 1 is (infinite-time) LrΦ-admissible. For every t ¥ 0
and x P X1 we have that CT p�qx|r0,ts P Cpr0, ts;Y q � EΦpr0, ts;Y q. It
follows from Proposition 1.2.20 and Corollary 1.2.22 that

∥CT p�qx∥EΦpr0,ts;Y q

¤ sup
∥u∥L

rΦpr0,ts;Y 1q¤1

∣∣∣∣» t
0
xCT psqx, upsqyY,Y 1 ds

∣∣∣∣
� sup

∥u∥L
rΦpr0,ts;Y 1q¤1

∣∣∣∣» t
0
xx, T 1�1pt� sqC 1upt� sq dsyX1,Xd

�1

∣∣∣∣
� sup

∥u∥L
rΦpr0,ts;Y 1q¤1

∣∣∣∣∣
B
x,

» t
0
T 1�1pt� sqC 1upt� sq ds

F
X,X1

∣∣∣∣∣
¤ sup

∥u∥L
rΦpr0,ts;Y 1q¤1

∥∥∥∥» t
0
T 1�1pt� sqC 1upt� sq ds

∥∥∥∥
X1

∥x∥X

¤ KC1,t∥x∥X ,

where we used ∥upt � �q∥L
rΦpr0,ts;Y 1q � ∥u∥L

rΦpr0,ts;Y 1q and the fact that³t
0 T

1
�1pt� sqC 1upt� sqds P X 1 by assumption. Thus, C is (infinite-time)

EΦ-admissible with admissibility constants KC,t ¤ KC1,t.
Next, suppose that (iii) holds, i.e., B is (infinite-time) LΦ-admissible.

By Proposition 1.2.20 and Corollary 1.2.22, we have that

9B1T 1p�qx19E
rΦpr0,ts;U 1q ¤ sup

∥u∥LΦpr0,ts;Uq

∣∣∣∣» t
0
xupsq, B1T 1psqx1yU,U 1 ds

∣∣∣∣
for every t ¥ 0 and x1 P Xd

1 . Thus, similar to (ii), we obtain

∥B1T 1p�qx1∥E
rΦpr0,ts;U 1q ¤ KB,t∥x1∥X1
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for every x1 P Xd
1 , which yields that B1 is (infinite-time) ErΦ-admissible

with admissibility constant KB1,t ¤ KB,t.
Finally consider (iv). Let B1 be (infinite-time) LrΦ-admissible, x1 P Xd

1 ,
u P LΦpr0, ts;Uq and

zu :�
» t

0
T�1pt� squpsqds P X�1.

Similar to (i), we obtain that

|xx1, zuyXd
1 ,X�1 | ¤ 2KB1,t∥x1∥X1∥u∥LΦpr0,ts;Uq.

The above inequality shows that zu is a functional on X 1, i.e., an element
in X2. If X is reflexive, we can regard zu as an element of X with
∥zu∥X ¤ 2KB1,t∥u∥LΦpr0,ts;Uq. Hence, B is (infinite-time) LΦ-admissible
with KB,t ¤ 2KB1,t.

If Φ P ∆8
2 , then LΦpr0, ts;Uq � EΦpr0, ts;Uq by Lemma 1.2.25. For any

step function u P LΦpr0, ts;Uq we have that zu P X by Lemma 1.3.8. Since
∥zu∥X ¤ 2KB1,t∥u∥LΦpr0,ts;Uq, Remark 2.1.7 implies that B is (infinite-
time) LΦ-admissible with KB,t ¤ 2KB1,t. ❑

Remark 2.2.10. The admissibility constants in Theorem 2.2.9 are given
with respect to the Luxemburg norm on LΦ. If we take the equivalent
Orlicz norm, we obtain KC,t � KC1,t. Similarly, if X is reflexive or Φ P ∆8

2 ,
then KB,t � KB1,t holds.

2.2.3 Testing admissibility of observation operators

According to Theorem 2.2.9, the tests for admissibility of control operators
from Section 2.1.2 can be transferred to observation operators, provided
that the dual semigroup is strongly continuous. This is the case for Propo-
sition 2.1.23 and Example 2.1.17, since there X is assumed to be a Hilbert
space, and therefore reflexive. In Proposition 2.1.13 and Lemma 2.1.14
the dual semigroup is not necessarily strongly continuous. Therefore, we
provide the analogous statements. We begin with Lemma 2.1.14.

Lemma 2.2.11. Suppose that A generates a bounded analytic semigroup
pT ptqqt¥0 and 0 P ρpAq. If C P LpXα, Y q for some α P p0, 1q, then C is
infinite-time Lp-admissible for all 1 ¤ p   1

α .

Proof. If C P LpXα, Y q for some α P p0, 1q, then pC :� Cp�Aq�α P LpX,Y q.
From Proposition 1.3.28 and Proposition 1.3.26 we deduce for x0 P dompAq
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that

∥CT p�qx0∥Lppr0,8q;Y q � ∥ pCp�AqαT p�qx0∥Lppr0,8q;Y q

¤Mα∥ pC∥
�» 8

0
t�αpe�ωpt dt


 1
p

∥x0∥

�Mα∥ pC∥
�

1
ωp


 1�αp
p

pΓp1� αpqq 1
p ∥x0∥,

where Mα, ω ¡ 0 are the constants from Proposition 1.3.26 and Γ denotes
the Gamma function. Since 1� αp ¡ 0 if and only if p   1

α , the assertion
follows. ❑

Next, we give the analog of Proposition 2.1.13 for observation operators.
Recall the following auxiliary lemma.

Lemma 2.2.12. Let X and Y be Banach spaces, A : dompAq � X Ñ X
and D : dompDq � Y Ñ Y be closed and densely defined operators such
that pω,8q � ρpAq X ρpDq for some ω P R and let L P LpdompAq,Yq,
where dompAq is equipped with the graph norm of A. Then, the following
assertions are equivalent.

(i) The block operator matrix

A �
�
A 0
0 D

� �
I 0
L I

�
with domain

dompAq �
"�
x
y

�
P dompAq � Y

����Lx0 � y P dompDq
*

generates a C0-semigroup pTAptqqt¥0 on X � Y.

(ii) A generates a C0-semigroup pT ptqqt¥0 on X, D generates a C0-
semigroup pSptqqt¥0 on Y and for some (and hence for all) τ ¡ 0
we have that suptPr0,τs∥Rptq∥LpX,Yq   8, where Rptq is the bounded
extension of the operator

Rptqx0 � D
» t

0
Spt� sqLT psqx0 ds, x0 P dompA2q.

If one of the equivalent conditions is satisfied, pTAptqqt¥0 is given by

TAptq �
�
T ptq 0
Rptq Sptq

�
.

Proof. We referred to [25] for the proof. ❑
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Proposition 2.2.13. Let A be the generator of a C0-semigroup pT ptqqt¥0
and C P LpX1, Y q. Then, the following assertions are equivalent.

(i) C is EΦ-admissible.

(ii) For some (and hence for all) τ ¡ 0 the block operator matrix

AC �
�
A 0
0 � d

dr

� �
I 0
L I

�
with domain

dompACq �
"�
x0
y

�
P dompAq �W1EΦpp0, τq;Y q

����Cx0 � yp0q � 0
*

generates a C0-semigroup on X � EΦpr0, τ s;Y q, where L is given by
Lx0 :� 1r0,τsCx0 for x0 P dompAq.

If one of the equivalent conditions holds, TAC
ptq is given by

TAC
ptq

�
x0
y

�
�

�
T ptqx0

1r0,tsp�qCT pmaxt0, t� �uq � 1rt,8qp�qyp� � tq
�
.

Moreover, if pTAC
ptqqt¥0 is bounded on X � EΦpr0,8q;Y q, then C is

infinite-time EΦ-admissible.

Proof. From Proposition 1.3.32 (and the well-known analog for L1) it
follows that

D :� � d
dr

with domain

dompDq :� ty P W1EΦpp0, τq;Y q | yp0q � 0u
generates the right-shift semigroup pSptqqt¥0 on Y :� EΦpr0, τ s;Y q. Thus,
Lemma 2.2.12 yields that AC generates a C0-semigroup onX�EΦpr0, τ s;Y q
if and only if suptPr0,τs∥Rptq∥   8, where Rptq is for x0 P dompA2q, t ¥ 0
and r P r0, τ s given by

rRptqx0sprq � � d
dr

» t
0
Spt� sq1r0,τsprqCT psqx0 ds

� � d
dr

» t
maxt0,t�ru

CT psqx0 ds

� 1r0,tsprqCT pmaxt0, t� ruqx0.

Hence, AC generates a C0-semigroup on X�EΦpr0, τ s;Y q if and only if C is
EΦ-admissible. The representation of TAC

ptq is derived from Lemma 2.1.12
and the above computation of Rptq. It follows from this representation
that C is infinite-time EΦ-admissible, if pTAC

ptqqt¥0 is bounded. ❑
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2.3 System nodes and well-posedness
In Section 2.1 and Section 2.2 we discussed the solution and output theory
of linear systems ΣpA,B,Cq provided that either B or C is trivial. If this
is not the case, there is a non-trivial interaction of the possibly unbounded
operators B and C in the output, formally given by

yptq � Cxptq � CT ptqx0 � C

» t
0
T�1pt� sqBupsq ds.

In this section, we introduce the concepts of system nodes and well-posed
linear systems, which allow to overcome these issues. For more details on
these topics, we refer to [94].

2.3.1 System nodes
System nodes provide an abstract framework, which gathers all information
of a linear time-invariant input-output-system#

9xptq � Axptq �Buptq, t ¥ 0,
yptq � Cxptq �Duptq, t ¥ 0

in one operator S � rA B
C D s, called the system node, thus the system is

described by �
9xptq
yptq

�
� S

�
xptq
uptq

�
.

For systems with bounded operators, there is a clear one-to-one correspon-
dence between the bounded operators A, B, C and D and the bounded
system node S. Such a relation becomes non-trivial for unbounded systems.
Note that in the above system there is a feed-through operator D, which is
somehow “hidden” in the formulation ΣpA,B,Cq as we will see later.

Let U , X and Y be Banach spaces. By PX and PY , we denote the
canonical projections from X � Y to X and Y , respectively, i.e.,

PX

�
x
y

�
� x and PY

�
x
y

�
� y, x P X, y P Y.

For an operator S : dompSq � X � U Ñ X � Y , we define operators

A&B :� PXS

and

C&D :� PY S
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with dompA&Bq � dompC&Dq � dompSq. Hence, we have

S �
�
A&B
C&D

�
.

The main operator of S is the operator A : dompAq � X Ñ X given by

dompAq :�
"
x P X

���� �x0
�
P dompSq

*
,

Ax :� A&B
�
x
0

�
, x P dompAq.

Definition 2.3.1. Let U , X and Y be Banach spaces. A system node on
pU,X, Y q is a linear operator S : dompSq � X � U Ñ X � Y such that

(i) S is a closed operator,

(ii) A&B is a closed operator,

(iii) A generates a C0-semigroup on X and

(iv) for all u P U there exists x P X such that r xu s P dompSq.
A system node S is associated with the formal set of equations�

9xptq
yptq

�
� S

�
xptq
uptq

�
�

�
A&B
C&D

� �
xptq
uptq

�
. (2.17)

If S is bounded from X � U to X � Y , then A&B � rA B s and C&D �
rC D s for some bounded operators A,B,C and D. For unbounded S, [94,
Lemma 4.7.3 & 4.7.7] yield the following.

Lemma 2.3.2. Let S be a system node on pU,X, Y q with main operator
A and denote the associated inter- and extrapolation space by X1 and X�1.
The following assertions hold.

(i) There exists a unique B P LpU,X�1q such that rA�1 B s : X�U Ñ X
is an extension of A&B and

dompSq � tr xu s P X � U |A�1x�Bu P Xu.

(ii) For every u P U the set tx P X | r xu s P dompSqu is dense in X. In
particular, dompSq is dense in X � U .

(iii) If we equip dompSq with its graph norm, then C&D P LpdompSq, Y q
and for the operator C : X1 Ñ Y ,

Cx :� C&D
�
x
0

�
, x P X1,

we have that C P LpX1, Y q.
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(iv) For any s P ρpAq the operator
�
I �ps�A�1q�1B
0 I

�
: X � U Ñ X � U

is bounded and invertible with inverse
�
I ps�A�1q�1B
0 I

�
. Moreover, it

maps dompSq bijectively onto X1 � U .

(v) The graph norm of S on dompSq � dompA&Bq is equivalent to the
graph norm of A&B and to the norm |||�||| on X1 � U defined by�������������xu

�������������2 � ∥x� ps�A�1q�1Bu∥2
X1

� ∥u∥2
U

for any s P ρpAq.
Proof. We first prove (i). For every u P U there exists x P X such that
r xu s P dompSq by the definition of a system node. Hence, we can define

Bu :� A&B
�
x
u

�
�A�1x.

For u P U and x1, x2 P X with r x1
u s , r x2

u s P dompSq we have that�
A&B

�
x1
u

�
�A�1x1



�
�
A&B

�
x2
u

�
�A�1x2



� A&B

�
x1 � x2

0

�
�A�1px1 � x2q � 0

by the linearity of dompSq and the definition of A. Hence, B : U Ñ X�1
is a well-defined operator, rA�1 B s is an extension of A&B and by the
definition of B, dompSq � tr xu s P X � U |A�1x � Bu P Xu. For the
reverse inclusion assume that r xu s P X � U with A�1x�Bu P X. By the
definition of a system node, there exists x0 P X such that r x0

u s P dompSq.
It follows that A�1x0 �Bu P X, and hence A�1px�x0q P X as well. This
means that x� x0 P dompAq, i.e.,

�
x�x0

0
� P dompSq. We obtain from the

linearity of dompSq that r xu s �
�
x�x0

0
�� r x0

u s P dompSq. Thus, we proved
dompSq � tr xu s P X � U |A�1x�Bu P Xu.

Next, we prove that B is closed. Let punqnPN be a sequence in U
such that punqnPN converges in U to some u and pBunqnPN converges
in X�1 to some z. For λ P ρpAq let xn :� pλ � A�1q�1Bun P X. It
follows that A�1xn � Bun � λxn P X, which yields r xn

un
s P dompSq.

Moreover, r xn
un
s converges to

� pλ�A�1q�1z
u

�
in X � U and A&B r xn

un
s �

A�1xn � Bun converges to λpλ � A�1q�1z in X. Closedness of A&B
yields

� pλ�A�1q�1z
u

� P dompSq and

A&B
�pλ�A�1q�1z

u

�
� λpλ�A�1q�1z,

from which we deduce

Bu � A&B
�pλ�A�1q�1z

u

�
�A�1pλ�A�1q�1z � z.
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Hence, B is closed and by the closed graph theorem also bounded. Unique-
ness of B follows from (ii). We emphasize that the proof of (ii) will not
make use of the uniqueness of B.

To prove (ii) let u P U and x P X be arbitrary. Let λ P ρpAq and B be
the operator from (i). We have that x�pλ�A�1q�1Bu P X, so there exists
a sequence pwnqnPN in dompAq which converges to x � pλ � A�1q�1Bu
in X. Define xn :� wn � pλ � A�1q�1Bu P X. The sequence pxnqnPN
converges to x and satisfies r xn

u s P dompSq by (i), since

A�1xn �Bu � Awn � λpλ�A�1q�1Bu P X.
This proves that tx P X | r xu s P dompSqu is dense in X for every u P U .
Density of dompSq in X � U follows from Definition 2.3.1 (iv).

Assertion (iii) follows from the simple fact that every closed operator
is bounded with respect to its graph norm, the boundedness of PY and
the fact that X1 � t0u is a closed subspace of dompSq with respect to the
graph norm.

Next, we prove (iv). By (i), both block operators are bounded on
X �U and they are obviously inverse to each other. For r xu s P dompSq we
have that A�1x�Bu P X and

x� ps�A�1q�1Bu � ps�Aq�1psx� pA�1x�Buqq P X1.

Conversely, if r xu s P X1 � U , it follows that

A�1px� ps�A�1q�1Buq �Bu � Ax� sps�A�1q�1Bu P X.

Hence,
�
I �ps�A�1q�1B
0 I

�
maps dompSq bijetively onto X1 � U .

Finally, consider (v). For r xu s P dompSq � dompA&Bq the graph norm
with respect to S is equivalent to ∥�∥S given by∥∥∥∥�xu

�∥∥∥∥2

S

� ∥x∥2
X � ∥u∥2

U �
∥∥∥∥A&B

�
x
u

�∥∥∥∥2

X

�
∥∥∥∥C&D

�
x
u

�∥∥∥∥2

Y

,

and the graph norm with respect to A&B is defined by∥∥∥∥�xu
�∥∥∥∥2

A&B
:� ∥x∥2

X � ∥u∥2
U �

∥∥∥∥A&B
�
x
u

�∥∥∥∥2

X

.

Hence, I : pdompSq, ∥�∥Sq Ñ pdompA&Bq, ∥�∥A&Bq is bounded and by the
open mapping theorem an isomorphism, i.e., the respective graph norms
are equivalent. The equivalence to the norm |||�||| on X1 � U follows from
(iv). ❑

A decomposition of C&D into rC D s by extending C, as seen for B, is
in general not possible. Firstly, we cannot embed Y densely in a larger
space in general, e.g. if Y is finite-dimensional, and secondly, such an
operator D does not need to exist. However, C&D is fully described by C
and the transfer function of the system node, which we introduce next.
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Definition 2.3.3. Let S be a system node on pU,X, Y q and B and C be
the operators from Lemma 2.3.2.

(i) We call B the control operator of S.

(ii) We call C the observation operator of S.

(iii) The transfer function of S is the operator valued function

G : Cω0ppT ptqqt¥0q Ñ LpU, Y q,

s ÞÑ C&D
�ps�A�1q�1B

I

�
.

Note that G is well-defined, since
�
ps�A�1q�1B

I

�
P LpU,dompSqq for

s P Cω0ppT ptqqt¥0q � ρpAq.
Lemma 2.3.4. For a system node S on pU,X, Y q with main operator A,
control operator B, observation operator C and transfer function G the
following assertions hold.

(i) The transfer function G is analytic on some right-half plane and
satisfies for α, β P Cω0ppT ptqqt¥0q,

Gpαq �Gpβq � Crpα�A�1q�1 � pβ �A�1q�1sB
� pβ � αqCpα�Aq�1pβ �A�1q�1B.

(2.18)

(ii) For all α P Cω0ppT ptqqt¥0q and r xu s P dompSq we have that

C&D
�
x
u

�
� Crx� pα�A�1q�1Bus �Gpαqu.

Proof. Assertion (i) follows from the definition of G and the resolvent
identity pα�A�1q�1 � pβ �A�1q�1 � pβ � αqpα�Aq�1pβ �A�1q�1.

For (ii) let α P Cω0ppT ptqqt¥0q and r xu s P dompSq, i.e., A�1x� Bu P X.
It follows that x� pα�A�1q�1Bu P X1 and

C&D
�
x
u

�
�Gpαqu � C&D

�
x� pα�A�1q�1Bu

0

�
� Crx� pα�A�1q�1Bus,

which completes the proof. ❑

Corollary 2.3.5. A system node S on pU,X, Y q is uniquely determined
by its main operator A, control operator B, observation operator C and
transfer function G.

Proof. This is a direct consequence of Lemma 2.3.2 and Lemma 2.3.4. ❑
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Since we usually work with the operators A, B, C and G associated
to a system node S, we introduce the following notation.

Definition 2.3.6. We call ΣpA,B,C,Gq a system node if there exists a
system node S with main operator A, control operator B, observation
operator C and transfer function G.

By Lemma 2.3.2 and Lemma 2.3.4 we may reformulate (2.17) as follows,
where we additionally assign an initial value to the set of equations,

$'&'%
9xptq � A�1xptq �Buptq, t ¥ 0,
xp0q � x0,

yptq � Crxptq � pα�A�1q�1Buptqs �Gpαquptq, t ¥ 0.
(2.19)

The following result concludes on the existence and uniqueness of
solutions and outputs of (2.19) for smooth input data, see also [94,
Lemma 4.7.8].

Lemma 2.3.7. Let ΣpA,B,C,Gq be a system node on pU,X, Y q. Then,
(2.19) admits for all x0 P X and u P W2,1

locpp0,8q;Uq with A�1x0 �
Bup0q P X a unique (classical) solution x P C1pr0,8q;Xq with r xu s P
Cpr0,8q; dompSqq and output y P Cpr0,8q;Y q.

Proof. For x0 P X and u P W2,1
locpp0,8q;Uq with A�1x0 � Bup0q P X,

Proposition 2.1.22 yields the existence of the unique classical solution
x P C1pr0,8q;Xq of ΣpA,Bq, i.e.#

9xptq � A�1xptq �Buptq, t ¥ 0,
xp0q � x0,

holds pointwise inX. In particular, x andA�1x�Bu belong to Cpr0,8q;Xq.
Since u P W2,1

locpr0,8q;Uq, we also have that u P Cpr0,8q;Uq. It follows
that r xu s P Cpr0,8q; dompSqq and 9xptq � A&B

�
xptq
uptq

�
for every t ¥ 0 by

Lemma 2.3.2 (i), (ii) and (v). Therefore, by Lemma 2.3.4,

yptq :� C&D
�
xptq
uptq

�
� C

�
xptq � pα�A�1q�1Buptq��Gpαquptq

is well-defined and independent of α P Cω0ppT ptqqt¥0q. Recall that C&D P
LpdompSq, Y q by Lemma 2.3.2 (iii), which implies y P Cpr0,8q;Y q. Hence,
x and y are the unique classical solution and output of (2.19). ❑

For initial values x0 P X and u P L1
locpr0,8q;Uq we consider the

following generalized solution and output concept.
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Definition 2.3.8. Let ΣpA,B,C,Gq be a system node on pU,X, Y q
and pT ptqqt¥0 be the semigroup generated by A. For x0 P X and
u P L1

locpr0,8q;Uq we define:

(i) The mild solution x of ΣpA,B,C,Gq for x0 and u is defined as the
mild solution of ΣpA,Bq, that is, for t ¥ 0,

xptq � T ptqx0 �
» t

0
T�1pt� sqBupsq ds.

(ii) For a mild solution x of ΣpA,B,C,Gq for x0 and u, we define the
output of ΣpA,B,C,Gq as the Y -valued distribution y given for t ¥ 0
by

yptq � d2

dt2

�
pC&Dq

» t
0
pt� sq

�
xpsq
upsq

�
ds


,

meaning that it acts on test functions φ P C8
c pr0,8q;Y 1q as

yrφs �
» 8

0

B
d2

dt2φptq, pC&Dq
» t

0
pt� sq

�
xpsq
upsq

�
ds
F
Y 1,Y

dt.

The distributional output of a system node is well-defined by the
following result ([94, Lemma 4.7.9]).

Lemma 2.3.9. Let ΣpA,B,C,Gq be a system node on pU,X, Y q and x
be the mild solution for x0 P X, u P L1

locpr0,8q;Uq. Then, for the second
integral �

x̃ptq
ũptq

�
:�

» t
0
pt� sq

�
xpsq
upsq

�
ds, t ¥ 0

we have that x̃ P C1pr0,8q, Xq and r x̃ũ s P Cpr0,8q; dompSqq.

Proof. First note that for any Banach space V and f P L1
locpr0,8q;V q

integration by parts yields for any t ¥ 0» t
0
pt� sqfpsq ds �

» t
0

» s
0
fprq dr ds. (2.20)

By linearity it suffices to consider the two cases where either x0 � 0 or
u � 0. In the latter case, we have that xptq � T ptqx0. Lemma 1.3.8
implies that t ÞÑ ³t

0 xpsqds belongs to Cpr0,8q;X1q. It follows from
(2.20) that x̃ P C1pr0,8q;X1q, and thus, r x̃0 s P C1pr0,8q;X1 � t0uq �
C1pr0,8q; dompSqq.
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In the case where x0 � 0, we have that xptq � ³t
0 T�1pt� sqBupsqds,

and therefore,

x̃ptq �
» t

0
pt� sq

» s
0
T�1ps� rqBuprq dr ds

τ�s�r�
» t

0
pt� sq

» s
0
T�1pτqBups� τq dτ ds

Fubini�
» t

0
T�1pτqB

» t
τ

pt� squps� τqdsdτ

r�s�τ�
» t

0
T�1pτqB

» t�τ
0

pt� τ � rquprq dr dτ

σ�t�τ�
» t

0
T�1pt� σqB

» σ
0
pσ � rquprq dr dσ

�
» t

0
T�1pt� σqBũpσq dσ.

This means that x̃ is the mild solution for the initial value x0 � 0 and
input ũ. Since ũ P W2,1

locpr0,8q;Uq with ũp0q � 0 by (2.20), Lemma 2.3.7
yields that x̃ P C1pr0,8q;Xq and r x̃ũ s P Cpr0,8q; dompSqq. ❑

2.3.2 Well-posed linear systems
Well-posedness is a well-established concept in linear systems theory, which
guarantees the existence of solutions and outputs (in a certain function
space) Z depending continuously on the initial value and input, as seen in
Section 2.1 for ΣpA,Bq and Section 2.2 for ΣpA,Cq. We consider input
and output functions of class L2, and refer to [94] for Z � Lp or Z � Reg
(the space of regulated functions).
Definition 2.3.10. A system node ΣpA,B,C,Gq on pU,X, Y q is called
a well-posed linear system node if for some t ¡ 0 there exists a constant
kt ¡ 0 such that for all x0 P X1 and u P H2

locpp0,8q;Uq with up0q � 0 the
classical solution and output of ΣpA,B,C,Gq from Lemma 2.3.7 satisfy

∥xptq∥X � ∥y∥L2pr0,ts;Y q ¤ ktp∥x0∥X � ∥u∥L2pr0,ts;Uqq. (2.21)

Remark 2.3.11. For x0 and u as in Definition 2.3.10, the classical solution
and output derived in Lemma 2.3.7 can be written as

xptq � T ptqx0 � Φtu,
y|r0,ts � pΨtx0 � Ftuq|r0,ts,

(2.22)

where pT ptqqt¥0 is the semigroup generated by A, Φt is given by (2.3), Ψt

is given by (2.15) and for u P H2
locpp0,8q;Uq with up0q � 0,

Ftu :� C

�» �

0
T�1p� � sqBupsq ds� pα�A�1q�1Bu

�
�Gpαqu (2.23)
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on r0, ts for some α P Cω0ppT ptqqt¥0q and Ftu :� 0 on pt,8q. Note that» t
0
T�1pt� sqBupsq ds� pα�A�1q�1Buptq

� pα�Aq�1
» t

0
T�1pt� sqBrαupsq � 9upsqs ds

holds for u P H2
locpp0,8q;Uq with up0q � 0. Hence, Ftu is well-defined by

Proposition 2.1.22 and independent of the choice of α by Lemma 2.3.4.
Given a linear system ΣpA,B,Cq with semigroup generator A, B P

LpU,X�1q and C P LpX1, Y q, we choose G : Cγ Ñ LpU, Y q for some γ P R
satisfying (2.18) and define the output y of ΣpA,B,Cq as the output of
the system node ΣpA,B,C,Gq. By (2.18), any two such G differ only
by an additive constant operator D P LpU, Y q, hence, the corresponding
outputs differ by Du, where u is the input. Since D is bounded, it does
not affect the well-posedness and the following definition is independent of
the choice of G.

Definition 2.3.12. We call ΣpA,B,Cq a well-posed linear system if there
exists a function G satisfying (2.18) on some right half-plane such that
ΣpA,B,C,Gq is a well-posed linear system node (after extending G to
Cω0ppT ptqqt¥0q if necessary).

We have the following characterization of well-posed linear systems.

Corollary 2.3.13. Let U,X, Y be Banach spaces, A be the generator of
a C0-semigroup pT ptqqt¥0 on X, B P LpU,X�1q, C P LpX1, Y q. Then
ΣpA,B,Cq is a well-posed linear system if and only if

(i) B is an L2-admissible control operator,

(ii) C is an L2-admissible observation operator and

(iii) for some (and hence for every) function G : Cω0ppT ptqqt¥0q Ñ LpU, Y q
satisfying (2.18), the operator Ft defined by (2.23) extends to Ft P
LpL2pr0,8q;Uq,L2pr0,8q;Y qq.

If one of the equivalent conditions holds, then ΣpA,B,C,Gq admits for
all x0 P X and u P L2

locpr0,8q;Uq a unique mild solution x P Cpr0,8q;Xq
and output y P L2

locpr0,8q;Y q satisfying (2.21).
Moreover, if pT ptqqt¥0 is exponentially stable, then kt in (2.21) can be

chosen to be independent of t.

Proof. If ΣpA,B,Cq is well-posed, then Φt, Ψt and Ft (for some G as in
(iii)) from Remark 2.3.11 extent for some t ¥ 0 to Φt P LpL2pr0,8q;Uq, Xq,
Ψt P LpX,L2pr0,8q;Y qq and Ft P LpL2pr0,8q;Uq,L2pr0,8q;Y qq. In
particular, B and C are L2-admissible by definition.
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Proposition 2.1.4, Lemma 2.2.3 and an analog result for Ft, cf. [101],
yield respective extension for all t ¥ 0. Hence, ΣpA,B,C,Gq admits for
all x0 P X and u P L2

locpr0,8q;Uq a unique mild solution x P Cpr0,8q;Xq
by Corollary 2.1.11 and an output y P L2

locpr0,8q;Y q given by (2.22) with
extended operators. Moreover, (2.21) holds in this case since both sides
depend continuously on x0 in X and u in L2pr0, ts;Uq.

Conversely, (i), (ii) and (iii) imply boundedness of Φt, Ψt and Ft in
the above sense, respectively. In particular, (2.21) holds for x0 and u as
in Definition 2.3.10.

If pT ptqqt¥0 is exponentially stable, then ∥T ptq∥, ∥Φt∥ and ∥Ψt∥ are
uniformly bounded in t, see Lemma 2.1.8 and Lemma 2.2.7. With similar
methods one can prove that ∥Ft∥ is uniformly bounded in t, see [101] for
the details. Hence, (2.21) holds for k � supt¥0p∥T ptq∥ � ∥Φt∥ � ∥Ψt∥ �
∥Ft∥q. ❑

In Hilbert spaces, it is possible to replace the property that Ft is
bounded with respect to the respective L2-spaces from Corollary 2.3.13
by the more handy one that the transfer function is bounded on some
right-half plane.

Lemma 2.3.14. Let U , X and Y be Banach spaces, A be the generator of
a C0-semigroup pT ptqqt¥0 on X, B P LpU,X�1q and C P LpX1, Y q. Then
ΣpA,B,Cq is well-posed if and only if

(i) B is an L2-admissible control operator,

(ii) C is an L2-admissible observation operator and

(iii) some (and hence every) function G : Cω0ppT ptqqt¥0q Ñ LpU, Y q which
satisfies (2.18) is bounded on some right-half plane Cα.

If one of the equivalent conditions holds, G is bounded on Cα for any
α ¡ ω0ppT ptqqt¥0q.
Proof. We refer for the proof to [16, Theorem 5.1]. ❑

We close this chapter with the following result on well-posedness
for strictly negative operators A on Hilbert spaces as defined in Defi-
nition 1.3.30.

Proposition 2.3.15. Let U,X, Y be Hilbert spaces and A be a strictly
negative operator on X. If B P LpU,X� 1

2
q and C P LpX 1

2
, Y q, then

ΣpA,B,Cq is well-posed and for x0 P X and u P L2pr0,8q;Uq the mild
solution x and output y (for the transfer function G � Cp� � A�1q�1B)
satisfy

x P H1pp0,8q;X� 1
2
q X Cpr0,8q;Xq X L2pr0,8q;X 1

2
q,

y � Cx P L2pr0,8q;Y q.
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Moreover, there exists k ¡ 0 (independent of x0, u and t) such that for
every t ¥ 0 there holds that

∥x∥2
H1pp0,tq;X

� 1
2
q � ∥xptq∥2

X � ∥x∥2
L2pr0,ts;X 1

2
q � ∥y∥2

L2pr0,ts;Y q

¤ kp∥x0∥2
X � ∥u∥2

L2pr0,ts;Uqq
(2.24)

and

∥xptq∥2
X � ∥x0∥2

X

� 2 Re
» t

0
xA�1xpsq, xpsqyX

� 1
2
,X 1

2
� xBupsq, xpsqyX

� 1
2
,X 1

2
ds.

Proof. From Proposition 2.1.23 it follows that ΣpA,B,Cq admits a unique
mild solution x with the desired properties. By the assumptions on B and C
and by Proposition 1.3.28 (iii), the function G � Cp� �A�1q�1B : ρpAq Ñ
LpU, Y q is well-defined and satisfies (2.18). It follows from Remark 2.3.11
that y � Cx P L2pr0,8q;Y q is the output of ΣpA,B,C,Gq. The estimate
(2.24) follows from the boundedness properties of x and the fact that
C P LpX 1

2
, Y q. In particular, ΣpA,B,Cq is well-posed. ❑



Chapter 3

On the Weiss conjecture
for Orlicz spaces

In this chapter, we generalize a characterization of Lp-admissible observa-
tion operators due to Le Merdy (p � 2) and Haak (p ¥ 1) to Orlicz spaces,
which relates to a conjecture originally formulated by Weiss in [102] (for
p � 2 and, equivalently, for the dual problem of control operators).

This chapter is based on [40].

3.1 Introduction
The p-Weiss conjecture states that infinite-time Lp-admissibility of an
observation operator C is equivalent to the so-called infinite-time p-Weiss
condition for C, that is

sup
zPC0

pRe zq1� 1
p ∥Cpz �Aq�1∥   8, (3.1)

a property which is easily seen to follow from Lp-admissibility by Hölder’s
inequality.

The question thus is whether the p-Weiss condition is sufficient for Lp-
admissibility of C. Whereas the answer is negative in the general Banach
space setting [102] (and p � 2), the problem has received much attention
since then, with both positive results, as well as counterexamples. We
mention here some of them and refer to the survey [46] for a more detailed
overview. In [47, 51] it is shown, that the 2-Weiss conjecture does not hold
in arbitrary Hilbert spaces without further assumptions on the semigroup
and the operator C. For Hilbert spaces the p � 2-case is known to hold
true for exponentially stable, left-invertible semigroups, see [102], as well
as in the case of contraction semigroups and finite-dimensional output
spaces, see [45]. For infinite-dimensional output spaces, the statement

77
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may fail even for semigroups of isometries, see [47]. Le Merdy showed in
[61] that the 2-Weiss conjecture holds true in the Hilbert space situation
under the assumption of an analytic contractive semigroup. Moreover,
he showed for Banach spaces and a bounded analytic semigroup that the
2-Weiss conjecture holds if and only if the operator p�Aq 1

2 , defined via
the holomorphic functional calculus (see Section 1.3.2), is infinite-time
L2-admissible. Haak extended in [31] Le Merdy’s results to more general
p ¥ 1 as follows: If A generates a bounded analytic semigroup and A has
dense range, then the p-Weiss conjecture holds if and only if p�Aq 1

p is
infinite-time Lp-admissible. He used generalized square function estimates
for the operator A which are equivalent to p�Aq 1

p being infinite-time
Lp-admissible.

3.2 The Weiss conjecture for Orlicz spaces
We continue the developments of Le Merdy and Haak in the context of
Orlicz spaces for Young functions of class P, see Definition 1.2.12. Our
approach is based on the ideas from [11], which seem to be slightly more
elementary than the more natural proof of Haak’s result using square
function estimates. It seems to be a non-trivial challenge to generalize
such square function estimates to the Orlicz space setting.

Definition 3.2.1. Let X and Y be Banach spaces and A be the generator
of a C0-semigroup on X. We say that C P LpX1, Y q satisfies the Φ-Weiss
condition for a Young function Φ if

sup
zPCα

�
∥e�Re z�∥L

rΦp0,8q
	�1

∥Cpz �Aq�1∥LpX,Y q   8 (3.2)

for some α ¡ 0, where rΦ is the complementary Young function of Φ. We
say that C satisfies the infinite-time Φ-Weiss condition if (3.2) holds for
α � 0.

It is obvious that the definitions of the Φ-Weiss condition and the
p-Weiss condition (3.1) are consistent in the sense that they are the same
if we consider Φptq � tp for 1   p   8. The following lemma shows that ifrΦ P ∆global

2 , then we can replace p∥e�Re z�∥L
rΦpr0,8qq�1 by rΦ�1pRe zq, i.e.,

(3.2) becomes

sup
zPCα

rΦ�1pRe zq∥Cpz �Aq�1∥LpX,Y q   8.
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Lemma 3.2.2. Let Φ be a Young function. For every s ¡ 0 we have that

rΦ�1psq ¤
�

∥e�s�∥L
rΦp0,8q

	�1
,

and if rΦ P ∆global
2 , then there exists a constant c ¡ 0 such that

c
�

∥e�s�∥L
rΦp0,8q

	�1
¤ rΦ�1psq ¤

�
∥e�s�∥L

rΦp0,8q
	�1

. (3.3)

Proof. The convexity of rΦ yields for k �
�rΦ�1psq

	�1
,» 8

0
rΦ�

e�st
k



dt ¤ rΦ�

1
k


» 8

0
e�st dt � 1,

and hence, ∥e�s�∥L
rΦp0,8q ¤ prΦ�1psqq�1. For the second part let rΦ P ∆global

2 .
By Remark 1.2.10, there exists K ¡ 1 such that rΦpexq ¤ KrΦpxq for all
x ¡ 0. By monotonicityrΦperxq ¤ rΦperrsxq ¤ KrrsrΦpxq ¤ Kr�1rΦpxq
follows for all r ¡ 0 and taking x � e�rrΦ�1psq leads to

K�pr�1qs ¤ rΦpe�rrΦ�1psqq.
Let c � mint1, 1

K logpKqu P p0, 1s. Convexity of rΦ yields» 8

0
rΦ�

e�strΦ�1psq
c

�
dt ¥ 1

c

» 8

0
rΦ�

e�strΦ�1psq
	

dt

¥ 1
c

» 8

0
K�pst�1qsdt

� 1
cK logpKq

¥ 1.

By the definition of the Luxemburg norm, we infer that

c
�rΦ�1psq

	�1
¤ ∥e�s�∥L

rΦp0,8q,

which completes the proof. ❑

Similar to Lp-spaces it is easy to prove that LΦ-admissibility of C P
LpX1, Y q implies the Φ-Weiss condition.

Lemma 3.2.3. Let A be the generator of a C0-semigroup pT ptqqt¥0 on
X. If C P LpX1, Y q is LΦ-admissible, then the Φ-Weiss condition holds.
Moreover, if pT ptqqt¥0 is bounded, then infinite-time admissibility of C
implies the infinite-time Φ-Weiss condition.
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Proof. First, assume that C is infinite-time LΦ-admissible for the bounded
semigroup pT ptqqt¥0. Using Proposition 1.3.11 and the generalized Hölder
inequality (Lemma 1.2.19), we obtain for Re z ¡ 0 ¥ ω0ppT ptqqt¥0q and
all x P X1 that

∥Cpz �Aq�1x∥Y �
∥∥∥∥» 8

0
e�ztCT ptqxdt

∥∥∥∥
Y

¤ 2∥e�Re z�∥L
rΦp0,8q∥CT p�qx∥LΦpr0,8q;Y q

¤ 2KC,8∥e�Re z�∥L
rΦp0,8q∥x∥X

holds, where KC,8 denotes the infinite-time admissibility constant of C.
Now, the claim follows from the density of X1 in X and boundedness of
Cpz �Aq�1 on X.

If C is just LΦ-admissible for pT ptqqt¥0, then C is infinite-time LΦ-
admissible for the bounded semigroup generated by A � α, where α ¡
maxt0, ω0ppT ptqqt¥0qu. Hence, the proof can be deduced from the infinite-
time case. ❑

Let A be the generator of a bounded analytic semigroup. If LΦ � Lp,
Haak’s result tells us that the converse of Lemma 3.2.3 holds if and
only if Φ�1p�Aq � p�Aq 1

p is (infinite-time) Lp-admissible, hence formally
Φ�1p�Aq seems to be a suitable operator to characterize general LΦ-
admissibility. However, we have to make sure that this is actually a
well-defined operator in LpX1, Xq. To define Φp�Aq via the holomorphic
functional calculus (see Section 1.3.2), we make the following assumption
on Φ.

Assumption 3.2.4. Let �A be sectorial of type ω P r0, π2 q. Assume that
Φ�1 extends to a holomorphic function on some sector Sδ for δ P pω, π2 q
and that there exist constants m0,m1 ¡ 0 such that

m0Φ�1p|z|q ¤ |Φ�1pzq| ¤ m1Φ�1p|z|q for all z P Sδ.
Without assuming that Φ is holomorphic, we can also define Φp�Aq, if A

is a multiplication operator with real spectrum. Recall that a multiplication
operator is an operator Ma : LppΩq Ñ LppΩq for some sigma-finite measure
space pΩ,F , µq, 1 ¤ p ¤ 8 and a : Ω Ñ C measurable, given by

Mag :� ag,

dompMaq :� tg P LppΩq | ag P LppΩqu.
Given a multiplication operator Ma, we define fpMaq for a measurable
function f : σpMaq Ñ C by

fpMaq :�Mf�a.

Similar to the holomorphic functional calculus, (1.20) holds, see e.g. [35,
Chapter 2]. Further, if f P L8pσpMaqq, then fpMaq is bounded with
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∥fpMaq∥ ¤ ∥f∥L8pσpMaqq. For the following, note that if A � Ma is a
multiplication operator, then so is �A �M�a.

Lemma 3.2.5. Suppose that A generates a bounded analytic semigroup
on X and that Φ is a Young function. If either

(i) A is a multiplication operator with σp�Aq � r0,8q, or

(ii) Assumption 3.2.4 holds and additionally Φ P P,

then Φ�1p�Aq P LpX1, Xq is well-defined via the functional calculus for
multiplication operators and the holomorphic functional calculus, respec-
tively.

Proof. Let

fpzq :� Φ�1pzq
1� z

.

It suffices to prove that fp�Aq is bounded, where fp�Aq is defined via the
measurable functional calculus if we consider (i) and via the holomorphic
functional calculus if we consider (ii). Indeed, we obtain from (1.20) that

fp�AqpI �Aq � Φ�1p�Aq
in the sense of inclusion of the respective graphs of operators. If fp�Aq
is bounded, the operator on the left-hand side is in LpX1, Xq and so is
Φ�1p�Aq. We distinguish between the two assumptions:

(i) Since Φ is a Young function, f is a bounded function on r0,8q and
we derive from the functional calculus for multiplication operators
that fp�Aq is bounded.

(ii) To prove that fp�Aq is a bounded operator on X, it suffices to prove
that f P H8

0 pSδq for some sector Sδ, i.e., there exist C,α ¡ 0 such
that

|fpzq| ¤ C mint|z|α, |z|�αu for all z P Sδ. (3.4)
By Assumption 3.2.4, Φ�1 is holomorphic on some sector Sδ and
|Φ�1pzq| ¤ m1Φ�1p|z|q for z P Sδ. Since Φ P P, we infer by (1.11)
that, for |z| ¤ 1,

Φ�1p|z|q
|1� z|

¤ Φ�1p|z|q ¤ Φ�1p1q|z| 1
q ,

and, by (1.12) and (1.4), that, for |z| ¥ 1,

Φ�1p|z|q
|1� z|

¤ Φ�1p|z|q
|z|

¤ 2rΦ�1p|z|q
¤ 2rΦ�1p1q

|z|�
1
p1 ,

therefore, Φ P H8
0 pSδq. ❑
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Remark 3.2.6. Recall Example 1.2.15 of Young functions of class P . While
(iii) is only useful when A is a multiplication operator, (ii) and (iv) yield
Young functions Φ which satisfy Assumption 3.2.4. Further, (i) tells us how
to construct further examples of class P, e.g. ρptq � tr � logptq, r P r0, 1s,
yields Φ P P via (1.7) for any choice of 1   p   q   8. However, in
general it is not clear whether this construction leads to functions satisfying
Assumption 3.2.4 again.

Lemma 3.2.7. Suppose that A generates a bounded analytic semigroup
pT ptqqt¥0 on X and that Φ is a Young function. If either

(i) A is a multiplication operator with σp�Aq � r0,8q, or

(ii) Assumption 3.2.4 holds and Φ P P,

then we have that

sup
t¡0

pΦ�1p 1
t qq�1 ∥Φ�1p�AqT ptq∥LpXq   8.

Proof. Let t ¡ 0 and

fpsq :� Φ�1psqe�st.

We have that fp�Aq � Φ�1p�AqT ptq by (1.20).

(i) If A is a multiplication operator, we have that ∥fp�Aq∥LpXq ¤
sups¥0 fpsq. First, note that s ÞÑ se�st attains its maximum at
s � 1

t and s ÞÑ Φ�1psq
s is decreasing, since Φ�1 is concave. Hence,

for s ¥ 1
t it follows that

fpsq � Φ�1psq
s

� se�st ¤ Φ�1 � 1
t

�
1
t

� 1
t e
�1 � f

� 1
t

�
.

Therefore, as a continuous function, f attains its maximum in r0, 1
t s.

Since Φ�1 is increasing, we infer that

∥fp�Aq∥LpXq ¤ sup
s¥0

fpsq � sup
sPr0, 1

t s
Φ�1psq e�st ¤ Φ�1 � 1

t

�
and the assertion follows.

(ii) Let Assumption 3.2.4 hold and let Φ P P. Let ω, δ,m1 be as in
Assumption 3.2.4, choose δ1 P pω, δq and take Γ � BSδ1 orientated
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positively. Then,

∥fp�Aq∥LpXq ¤
m1

2π

»
Γ

Φ�1p|z|qe�Re zt∥pz �Aq�1∥|dz|

¤ m1Mδ1

2π

»
Γ

Φ�1p|z|q
|z|

e�Re zt|dz|

� m1Mδ1

π

» 8

0

Φ�1prq
r

e�r cospδ1qt dr

� m1Mδ1

π

» 8

0

Φ�1p st q
s

e�s cospδ1q ds

¤ Φ�1 � 1
t

� m1Mδ1

π

» 8

0
maxts 1

p�1, s
1
q�1u e�s cospδ1q ds,

where |dz| denotes the total variation of the complex measure dz.
Note that we used (1.11) in the last step. Since the last integral
converges, the proof is complete. ❑

Remark 3.2.8. We want to point out that Φ P P is only needed to guarantee
Φ�1p�Aq P LpX1, Xq and to deal with the singularity of the integrand
at 0. If we consider the integral over pε,8q with ε P p0, 1s we derive the
estimate » 8

ε

Φ�1p st q
s

e�s cospδ1q ds ¤ Φ�1 � 1
t

�
ε

» 8

ε

e�s cospδ1q ds,

since s ÞÑ Φ�1p s
t q

s is decreasing and Φ�1 is increasing.
We continue with some technical auxiliary results.

Lemma 3.2.9. Suppose that A generates a bounded analytic semigroup
on X and that Φ is a Young function. If either

(i) A is a multiplication operator with σp�Aq � r0,8q, or

(ii) Assumption 3.2.4 holds and Φ P P,

and if Φ�1p�Aq is LΦ-admissible, then for every τ ¡ 0 there exists cτ ¡ 0
such that

∥t ÞÑ tΦ�1p 1
t qT ptqAx∥LΦpr0,τs;Xq ¤ cτ∥x∥X (3.5)

holds for all x P X1.
If Φ�1p�Aq is infinite-time LΦ-admissible, then (3.5) holds for τ � 8

and c8   8.

Proof. Le t ¡ 0 and define f : r0,8q Ñ r0,8q by

fpsq � s

Φ�1psqe
� st

2

for s ¡ 0 and fp0q � 0. First, we show that tΦ�1p 1
t qfp�Aq is uniformly

bounded in t ¡ 0.
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(i) Suppose that A is a multiplication operator. The limit property of
the Young function Φ at 0 implies that f is continuous. For s ¥ 2

t
we have that

fpsq � 1
Φ�1psq � se

� st
2 ¤ fp 2

t q.

Thus, since f is continuous, it attains its maximum in r0, 2
t s. The

concavity of Φ�1 implies that s ÞÑ s
Φ�1psq is increasing. Hence, for

s P r0, 2
t s we obtain that

fpsq ¤ 2
tΦ�1p 2

t q
¤ 2
tΦ�1p 1

t q
,

where we used the monotonicity of Φ�1 in the last inequality. We
conclude that

∥fp�Aq∥LpXq ¤ sup
s¥0

|fpsq| ¤ 2
tΦ�1p 1

t q
,

and hence, the uniform boundedness follows.

(ii) Suppose that Assumption 3.2.4 holds and Φ P P. Let δ and m0 be
given as in Assumption 3.2.4. Choose δ1 P pω, δq, where ω P r0, π2 q
is the type of sectoriality of �A and let Γ � BSδ1 be orientated
positively. We deduce from (1.12) that

∥fp�Aq∥LpXq ¤
1

2πm0

»
Γ

|z|
Φ�1p|z|qe

�Re z t
2 ∥pz �Aq�1∥|dz|

¤ Mδ1

2πm0

»
Γ

e�Re z t
2

Φ�1p|z|q |dz|

� Mδ1

πm0

» 8

0

e� cospδ1qr t
2

Φ�1prq dr

s�rt� Mδ1

πm0

» 8

0

e� cospδ1q s
2

tΦ�1p st q
ds

¤ 1
tΦ�1p 1

t q
Mδ1

πm0

» 8

0
maxts� 1

p , s�
1
q u e� cospδ1q s

2 ds

The last integral converges, therefore, tΦ�1p 1
t qfp�Aq is uniformly

bounded in t.
For x P X1 we have that

tΦ�1p 1
t qT ptqAx � �tΦ�1p 1

t qfp�Aq Φ�1p�AqT p t2 qx.
Since the first part is uniformly bounded as shown before, the (infinite-
time) LΦ-admissibility of Φ�1p�Aq yields the desired estimate.
Note that we can decompose the operator in the above way by the prop-
erties of the functional calculus. Indeed, fp�Aq is bounded on X and
ranT p t2 q � X1 � dompΦ�1p�Aqq for all t ¡ 0. ❑
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Corollary 3.2.10. Suppose that A generates a bounded analytic semigroup
pT ptqqt¥0 on X and that Φ is a Young function. If either

(i) A is a multiplication operator with σp�Aq � r0,8q, or

(ii) Assumption 3.2.4 holds and Φ P P,

and if Φ�1p�Aq is LΦ-admissible and C P LpX1, Y q satisfies

sup
t¡0

pΦ�1p 1
t qq�1∥Cpe�βtT ptqq∥LpX,Y q   8

for some β ¥ 0, then for every τ ¡ 0 there exist constants cτ ,Kτ ¡ 0 such
that

∥tCpe�βtT ptqqpA� βqx∥LΦpr0,τs;Xq ¤ pcτ �Kτβq ∥x∥X (3.6)

holds for all x P X1.
If Φ�1p�Aq is infinite-time LΦ-admissible, then cτ can be chosen to be
uniformly bounded in τ ¡ 0.

Proof. For x P X1 we write

tCpe�βtT ptqqpA� βqx
� pΦ�1p 1

t qq�1Cpe�β t
2T p t2 qq tΦ�1p 1

t qpe�β
t
2T p t2 qqpA� βqx.

Since Φ�1 is concave, which yields Φ�1p 2
t q ¤ 2Φ�1p 1

t q, it follows from the
assumption that pΦ�1p 1

t qq�1Cpe�β t
2T p t2 qq is uniformly bounded. Thus,

it suffices to estimate tΦ�1p 1
t qpe�β

t
2T p t2 qqpA� βqx. Lemma 3.2.9 implies

that

tΦ�1p 1
t qpe�β

t
2T p t2 qqAx∥LΦpr0,τs;Xq ¤ 2∥ t2 Φ�1p 2

t qT p t2 qAx∥LΦpr0,τs;Xq
¤ cτ∥x∥X

for some cτ , which is uniformly bounded in τ if Φ�1p�Aq is infinite-time
LΦ-admissible. Since the semigroup is bounded and t ÞÑ tΦ�1p 1

t q is
bounded on r0, τ s there exists a constant rKτ ¡ 0 such that

∥tΦ�1p 1
t qe�β

t
2T p t2 qβ∥LpXq ¤ β rKτ .

A straight-forward estimate of the Orlicz norm completes the proof. ❑

We briefly introduce the weak Orlicz space LΦ,8 � LΦ,8pr0,8q;Y q
which consists of (equivalence classes of) strongly measurable functions
f : r0,8q Ñ Y such that

∥f∥LΦ,8pr0,8q;Y q :� sup
t¥0

pΦ�1p 1
t qq�1 f�ptq   8,



86 3. On the Weiss conjecture for Orlicz spaces

where f� denotes the decreasing rearrangement of f ,

f�ptq :� infts ¥ 0 |λptω P r0,8q | ∥fpωq∥Y ¡ suq   tu
� infts ¥ 0 |λpr∥f∥Y ¡ ssq   tu.

Here, we used the abbreviation rg ¡ ss :� tω P r0,8q | gpωq ¡ su for any
function g on r0,8q, where λ denotes the Lebesgue measure. As usual, we
write LΦ,8p0,8q if Y � C. The reader is referred to [65, 80] for further
details about weak Orlicz spaces and the related Orlicz–Lorentz spaces.

Theorem 3.2.11. Let A be the generator of a bounded analytic semigroup
pT ptqqt¥0 on X and Φ P P. If either A is a multiplication operator
with σp�Aq � r0,8q, or Assumption 3.2.4 holds, then the following are
equivalent for C P LpX1, Y q.

(i) The infinite-time Φ-Weiss condition holds, i.e., (3.2) holds with
α � 0,

(ii) supt¡0pΦ�1p 1
t qq�1∥CT ptqx∥Y ¤ M∥x∥X for some M ¡ 0 and all

x P X.

(iii) C is infinite-time LΦ,8-admissible.

Theorem 3.2.11 generalizes [32, Theorem 2.3] and [11, Lemma 2.3].
In [32], the above theorem is proven for Φptq � t2 and our proof of “(ii)
ñ (iii) ñ (i)” is based on this source. In [11] the equivalence of (i) and
(ii) was shown for Φptq � tp. One could follow the idea of [11] to prove
(i) ñ (ii) in the case that Assumption 3.2.4 holds. However, we give a
completely different and much simpler proof, which is also applicable if A
is a multiplication operator.

Proof of Theorem 3.2.11. First, we prove the implication (i) ñ (ii). For
x P X and t ¡ 0 we have that�

Φ�1p 1
t q
��1 ∥CT ptqx∥ ¤ trΦ�1p 1

t q∥Cp 1
t �Aq�1p 1

t �AqT ptqx∥
¤M 1∥pI � tAqT ptqx∥

by (1.4) and (i), for some M 1 ¡ 0. In the case of a bounded analytic
semigroup, we have that ∥T ptq∥ and ∥tAT ptq∥ are uniformly bounded in
t ¥ 0, see Proposition 1.3.21. Similar, if A is a multiplication operator
with σp�Aq � r0,8q, then for some M ¡ 0 we have that ∥T ptq∥ ¤
M sups¥0 e�st and ∥tAT ptq∥ ¤ M sups¥0 ste�st, which yields uniform
boundedness in t ¥ 0. Hence, (ii) follows.

Next, we prove (ii) ñ (iii). Let M be given as in (ii). For x P X we
have that λpr∥CT p�qx∥Y ¡ ssq ¤ λprΦ�1p 1

� qM∥x∥X sq � pΦp s
M∥x∥X

qq�1,
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and hence,

∥CT p�qx∥LΦ,8pr0,8q;Y q � sup
t¡0

pΦ�1p 1
t qq�1pCT p�qxq�ptq

¤ sup
t¡0

pΦ�1p 1
t qq�1 infts ¥ 0 | pΦp s

M∥x∥X
qq�1   tu

� sup
t¡0

pΦ�1p 1
t qq�1Φ�1p 1

t qM∥x∥

�M∥x∥X .

This shows that C is infinite-time LΦ,8-admissible.
To complete the proof we show (iii) ñ (i). For z P C0, the function

g : r0,8q Ñ r0,8q, gptq � e�Re zt is decreasing, and hence, g � g�. Let
x P X and set fptq � ∥CT ptqx∥Y . The Hardy–Littlewood inequality yields
for every z P C0 that

∥Cpz �Aq�1x∥Y ¤
» 8

0
fptqgptq dt

¤
» 8

0
tf�ptq1

t
g�ptq dt

¤ 2
» 8

0

1
Φ�1p 1

t q
f�ptq g�ptq

trΦ�1p 1
t q

dt

¤ 2∥f∥LΦ,8p0,8q

» 8

0

e�Re zt

trΦ�1p 1
t q

dt

s�Re zt� 2∥f∥LΦ,8p0,8q

» 8

0

e�s

srΦ�1pRe z
s q

ds

¤ 2∥f∥LΦ,8p0,8q

» 8

0

e�s

smints� 1
q1 , s

� 1
p1 urΦ�1pRe zq

ds

¤ K∥f∥LΦ,8p0,8qrΦ�1pRe zq
,

for some K ¡ 0, where we applied (1.4) and (1.12). By assumption, we
have ∥f∥LΦ,8p0,8q ¤ KC,8∥x∥X with infinite-time admissibility constant
KC,8   8. Hence, (i) follows and the proof is complete. ❑

The finite-time version of Theorem 3.2.11 reads as follows.

Corollary 3.2.12. Suppose that A generates a bounded analytic semigroup
pT ptqqt¥0 on X and that Φ P P. If either A is a multiplication operator
or Assumption 3.2.4 holds, then the following statements are equivalent
for C P LpX1, Y q.

(i) The Φ-Weiss condition (3.2) holds for some α ¡ ω0ppT ptqqt¥0q.
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(ii) For some β ¡ ω0ppT ptqqt¥0q, M ¡ 0 and all x P X we have that

sup
t¡0

pΦ�1p 1
t qq�1 ∥Cpe�βtT ptqqx∥ ¤M∥x∥.

(iii) C is LΦ,8-admissible.

In (i) and (ii), the parameters α and β can be chosen the same if they are
non-negative.

Proof. This is a direct consequence of 3.2.11 obtained by scaling the
semigroup and the fact that admissibility is preserved under scaling,
see Lemma 2.2.7. ❑

Theorem 3.2.11 and Corollary 3.2.12 shows that the (infinite-time)
Weiss condition for C is equivalent to (infinite-time) admissibility of C
with respect to the weak Orlicz space. To characterize admissibility with
respect to the regular Orlicz space LΦ, we need the following lemma on
the boundedness of the integral operator L on LΦpr0, τ s;Y q, defined by

pLfqptq :�
» τ
t

fpsq
s

ds, 0 ¤ t ¤ τ. (3.7)

Lemma 3.2.13. If Φ P P and L is given by (3.7) for some τ ¡ 0, then
L P LpLΦpr0, τ s;Y qq and the operator norm is independent of τ ¡ 0.

Proof. The operator L, regarded as an operator on Lppr0, τ s;Y q, is bounded
with operator norm bounded by p, see [11, Proposition 2.2]. Therefore,
the assertion is a direct consequence of the interpolation result [55, Theo-
rem 5.1]. ❑

We put everything together to get the main theorem of this chapter.

Theorem 3.2.14. Suppose that A generates a bounded analytic semigroup
and that Φ P P. If either A is a multiplication operator with σp�Aq �
r0,8q, or Assumption 3.2.4 holds, then the following are equivalent.

(i) Φ�1p�Aq is (infinite-time) LΦ-admissible.

(ii) We have the equivalence,

C is (infinite-time) LΦ-admissible

ô
#
C satisfies the (infinite-time)
Φ-Weiss condition (3.2)

+
.

Proof. By pT ptqqt¥0 we denote the semigroup generated by A. Since it is
bounded, we have that ω0ppT ptqqt¥0q ¤ 0.
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First, assume (ii). Lemma 3.2.7 and Theorem 3.2.11 yield that the
infinite-time Φ-Weiss condition (and hence the finite-time Φ-Weiss con-
dition) holds for C � Φ�1p�Aq. By (ii), Φ�1p�Aq is (infinite-time)
LΦ-admissible.

Second, assume (i). If C is (infinite-time) LΦ-admissible, then the
(infinite-time) Φ-Weiss property (3.2) follows by Lemma 3.2.3.

It is left to prove that the (infinite-time) Φ-Weiss property for C implies
(infinite-time) LΦ-admissibility of C. First consider the finite-time case.
Let

sup
zPCα

rΦ�1pRe zq ∥Cpz �Aq�1∥   8

for some α ¡ ω0ppT ptqqt¥0q. Corollary 3.2.12 implies for β ¡ maxtα, 0u
that

M :� sup
t¡0

pΦ�1p 1
t qq�1∥Cpe�βtT ptqq∥   8

and Corollary 3.2.10 implies that fptq � tCpe�βtT ptqqpA � βqx lies in
LΦpr0, τ s;Y q for every τ P r0,8q. For x P X1 and t P r0, τ s we have that

Cpe�βtT ptqqx � Cpe�βτT pτqqx�
» τ
t

Cpe�βsT psqqpA� βqx ds

� Cpe�βτT pτqqx� pLfqptq,

where L is the integral operator given by (3.7), which is bounded on
LΦpr0, τ s;Y q by Lemma 3.2.13, since Φ P P. We obtain that

∥Cpe�βtT ptqqx∥LΦpr0,τs;Y q
¤ ∥Cpe�βτT pτqqx∥LΦpr0,τs;Y q � ∥Lf∥LΦpr0,τs;Y q
¤ pΦ�1p 1

τ qq�1 ∥Cpe�βτT pτqqx∥Y � ∥L∥∥f∥LΦpr0,τs;Y q
¤ rM � ∥L∥pcτ � βKτ qs∥x∥X ,

where cτ and Kτ are the constants from Corollary 3.2.10 and ∥L∥ de-
notes the operator norm of L on LΦpr0, τ s;Y q. This shows that C is
LΦ-admissible for the rescaled semigroup peβtT ptqqt¥0 and therefore, also
for pT ptqqt¥0, see Lemma 2.2.7. The infinite-time case is even simpler.
Assume that the infinite-time Φ-Weiss condition holds. Theorem 3.2.11
implies that

M :� sup
t¡0

pΦ�1p 1
t qq�1∥CT ptq∥   8,

and as before,

∥CT ptqx∥LΦpr0,τs;Y q ¤ pM � ∥L∥cτ q∥x∥X .

Since ∥L∥ and cτ are uniformly bounded in τ ¡ 0, see Corollary 3.2.10,
we obtain that C is infinite-time LΦ-admissible. ❑
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On X � ℓrpNq, r P r1,8q, there is a sufficient condition on Φ for infinite-
time LΦ-admissibility of Φ�1p�Aq, when dealing with a multiplication
operator A given by

Aen � λnen,

dompAq �
#
x � pxnqnPN P ℓrpNq

����� 8̧

n�1
|λnxn|r   8

+
,

(3.8)

where penqnPN is the standard basis on ℓrpNq and pλnqn is assumed to
be a sequence of non-positive numbers, i.e., λn ¤ 0 for all n P N. It is
well-known that A generates the bounded analytic semigroup pT ptqqt¥0
given by

T ptqen � eλnten, n P N.

Clearly, for any Young function Φ, the functional calculus for multiplication
operators yields that Φ�1p�Aq is given by

Φ�1p�Aqen � Φ�1p�λnqen, n P N.

Proposition 3.2.15. Consider the operator A on ℓr given by (3.8). If
Φ and t ÞÑ Φpt 1

r q are Young functions, then Φ�1p�Aq is infinite-time
LΦ-admissible.

Proof. For x � pxnqnPN P dompAq � X1, the generalized Minkowski
inequality (Proposition 1.2.23) and Lemma 3.2.2 imply

∥Φ�1p�AqT p�qx∥LΦpr0,8q;ℓrq �

∥∥∥∥∥∥∥∥
��� 8̧

n�1
λn�0

|Φ�1p�λnqeλn�xn|r

��

1
r

∥∥∥∥∥∥∥∥
LΦp0,8q

¤ 2 1
r

��� 8̧

n�1
λn�0

∥Φ�1p�λnqeλn�xn∥rLΦp0,8q

��

1
r

¤ 2 1
r ∥x∥ℓr .

This proves that Φ�1p�Aq is infinite-time LΦ-admissible. ❑

Remark 3.2.16. Note that the theory developed in this section is also
applicable to self-adjoint operators A on Hilbert spaces. Indeed, by the
spectral theorem (see [34, Theorem D.5.1]) A is unitary equivalent to a
multiplication operator and admissibility of C for the semigroup generated
by A is preserved under unitary transformations of C and A.



Chapter 4

Input-to-state stability

In this chapter, we introduce the basic definitions of input-to-state stability
(ISS) and its variations and recall characterizations of ISS for linear systems.
For an introduction to ISS and an overview of recent developments, we
refer to the introduction of this thesis and the references mentioned therein.

Furthermore, we present a result from [39], which states that input-to-
state stability with respect to EΦ implies integral input-to-state stability
for abstract control system.

4.1 Definition and basic properties
We present an abstract class of control systems that encompasses the linear
systems discussed in Chapter 2 and the nonlinear systems examined later.
This abstract formulation allows us to define ISS for all systems discussed
in this thesis at once, however, it is not necessary for the subsequent
discussions.

Definition 4.1.1. Let X and U be Banach spaces. Let ϕ : dompϕq Ñ X
a function with domain dompϕq � r0,8q �X � tu : r0,8q Ñ Uu, which
satisfies:

(i) ϕp0, x0, uq � x0 for all p0, x0, uq P dompϕq.
(ii) If r0, t � hs � tx0u � tuu � dompϕq with t, h ¥ 0, then r0, hs �

tϕpt, x0, uqu � tupt� �qu � dompϕq holds and

ϕpt� h, x0, uq � ϕph, ϕpt, x0, uq, upt� �qq.

(iii) If r0, ts�tx0u�tuu � domϕ and ũ : r0,8q Ñ U with u|r0,ts � ũ|r0,ts,
then it holds that r0, ts � tx0u � tũ|r0,tsu � domϕ and ϕpt, x0, uq �
ϕpt, x0, ũq, where we identify ũ|r0,ts with its zero-extension outside
of r0, ts.

91



92 4. Input-to-state stability

We call pX,U, ϕq an abstract control system with state space X, input space
U and semi-flow ϕ. Given p0, x0, uq P dompϕq, we call x0 the initial state
or initial value and u the input or control (function) and the mapping
t ÞÑ ϕpt, x0, uq the state trajectory.

Intuitively, the state trajectory will be the solution of some (partial)
differential equation with initial value x0 and input function u.

Similar classes of abstract systems are considered e.g. in [88, Defini-
tion 2.1] or [76, Definition 1.3 & Definition 1.4]. Our definition is slightly
more general, as we neither assume any specific structure of the domain of
ϕ nor that the the trajectory is defined on some interval r0, T s for T ¡ 0.
In fact, our definition allows that for x0 P X and u : r0,8q Ñ U the
intersection pr0,8q � tx0u � tuuq X dompϕq is the singleton tp0, x0, uqu or
even empty. This might be the case for non-linear systems, but also for
infinite-dimensional linear systems ΣpA,Bq with B not being admissible.

Consider the following classes of comparison functions,

K :�
!
γ P Cpr0,8qq

��� γp0q � 0 and γ is strictly increasing
)
,

L :�
!
γ P Cpr0,8qq

��� γ is strictly decreasing with lim
tÑ8 γptq � 0

)
,

KL :�
#
β P Cpr0,8q � r0,8qq

�����βp�, tq P K for all t ¥ 0 and
βpr, �q P L for all r ¡ 0

+
.

Note that functions of class K, L and KL only take values in r0,8q.
The following definition of input-to-state stability with respect a normed

space of input functions Z goes back to Sontag [90], where ODE systems
and Z � L8 are considered.

Definition 4.1.2. An abstract control system pX,U, ϕq is called input-to-
state stable with respect to Z or just Z-ISS if

(i) r0,8q �X � Zpr0,8q;Uq � dompϕq, and

(ii) there exists β P KL and γ P K such that for all x0 P X, u P
Zpr0,8q;Uq and t ¥ 0 the state trajectory satisfies

∥ϕpt, x0, uq∥X ¤ βp∥x0∥X , tq � γp∥u∥Zpr0,ts;Uqq. (4.1)

While condition (i) in Definition 4.1.2 guarantees the existence of a
global state trajectory for all initial states in X and inputs in Zpr0,8q;Uq,
condition (ii) yields a combined stability and robustness estimate as de-
picted in Figure 4.1.
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∥xptq∥X

βp∥x0∥X , tq

t

(a) Norm of the trajectory of an Z-ISS
system without input (u � 0).

∥xptq∥X

βp∥x0∥X , tq � γp∥u∥Zpr0,8q;Uqq

γp∥u∥Zpr0,8q;Uqq

t

(b) Norm of the trajectory of an Z-ISS
system with input (u � 0).

Figure 4.1: Norm of the trajectory of an Z-ISS system.

For nonlinear systems, the following two variants of ISS, first mentioned
in [93] and [92], respectively, are particularly relevant for nonlinear systems.

Definition 4.1.3. An abstract control system pX,U, ϕq is called locally
input-to-state stable with respect to Z or just locally Z-ISS if there exists
ε ¡ 0 such that

(i) r0,8q � tpx0, uq P X � Zpr0,8q;Uq | ∥x0∥X � ∥u∥Zpr0,8q;Uq ¤ εu �
dompϕq, and

(ii) there exists β P KL and γ P K such that for all x0 P X, u P
Zpr0,8q;Uq with ∥x0∥X � ∥u∥Zpr0,8q;Uq ¤ ε and all t ¥ 0 the state
trajectory satisfies

∥ϕpt, x0, uq∥X ¤ βp∥x0∥X , tq � γp∥u∥Zpr0,ts;Uqq. (4.2)

Clearly, Z-ISS implies local Z-ISS. The converse is in general not true.

Definition 4.1.4. An abstract control system pX,U, ϕq is called integral
input-to-state stable or just integral ISS if

(i) r0,8q � 1X � L8pr0,8q;Uq � dompϕq, and

(ii) there exists β P KL and θ, µ P K such that for all x0 P X, u P
L8pr0,8q;Uq and t ¥ 0 the state trajectory satisfies

∥ϕpt, x0, uq∥X ¤ βp∥x0∥X , tq � θ

�» t
0
µp∥upsq∥U q ds



. (4.3)

In [44] the authors also consider integral ISS with respect to Z, in
which case it is not clear that the right-hand side of (4.3) is finite. In
order to have a meaningfull integral ISS estimate we restrict ourselves to
Z � L8. Certainly, one might extend (4.3) to those inputs for which a
state trajectory exists and the integral is finite.

Note that there is no elementary implication between (4.1) for Z � L8
and (4.3).
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4.2 Input-to-state stability for linear systems
In this section, we present selected results from [44] on (integral) input-to-
state stability for linear systems, either to apply them later or to put our
results for nonlinear systems into a wider context. Further, we prove that
EΦ-ISS implies integral ISS for abstract control systems, a result which is
first formulated in [39] and based on an idea from [44].

Let X and U be Banach spaces, A be the generator of a C0-semigroup
pT ptqqt¥0 on X and B P LpU,X�1q. Consider the linear system ΣpA,Bq
as an abstract control system pX,U, ϕq, where

ϕpt, x0, uq :� xptq � T ptqx0 �
» t

0
T�1pt� sqBupsq ds

is the mild solution for the initial value x0 P X and input function
u P L1

locpr0,8q;Uq. The domain of ϕ is

dompϕq :� tpt, x0, uq P r0,8q �X � L1
locpr0,8q;Uq |xptq P Xu.

Then, r0,8q�X �W1,1
locpr0,8q;Uq � dompϕq holds by Proposition 2.1.20,

and if B is Z-admissible, also r0,8q � X � Zpr0,8q;Uq � dompϕq by
Corollary 2.1.11. Here, Z will be either of the spaces Lp, EΦ or LΦ.
We prefer to write xptq instead of ϕpt, x0, uq and have in mind that xptq
depends on x0 and u.

A complete characterization of Z-ISS and further elementary (integral)
ISS properties of linear systems are given by [44, Remark 2.8 & Proposi-
tion 2.10]. We augment these results in the following by an equivalence to
local Z-ISS.

Theorem 4.2.1. Let A be the generator of a C0-semigroup pT ptqqt¥0 on
X and B P LpU,X�1q.

(i) The following statements are equivalent.

(a) ΣpA,Bq is Z-ISS.

(b) ΣpA,Bq is locally Z-ISS.

(c) pT ptqqt¥0 is exponentially stable and B is Z-admissible.

(d) pT ptqqt¥0 is exponentially stable and B is infinite-time Z-ad-
missible.

(ii) If ΣpA,Bq is integral ISS, then it is L8-ISS.

(iii) If ΣpA,Bq is Z1-ISS and Z2pr0, ts;Uq � Z1pr0, ts;Uq for some t ¡ 0,
then ΣpA,Bq is Z2-ISS.
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Proof. We first prove (i). Clearly, (a) implies (b) by definition. Further,
(c) and (d) are equivalent by Lemma 2.1.8 and imply for the mild solution
of ΣpA,Bq for arbitrary x0 P X and u P Zpr0,8q;Uq,

∥xptq∥X ¤Me�ωt∥x0∥X �KB,8∥u∥Zpr0,ts;Uq,

where M,ω ¡ 0 are such that ∥T ptq∥ ¤Me�ωt and KB,8 is the infinite-
time admissibility constant of B. Hence, ΣpA,Bq is Z-ISS and (4.1) holds
for β P KL and γ P K given by βps, tq �Me�ωts and γpsq � KB,8s.

It remains to proof that (b) implies (c). Assume that (b) holds, Setting
x0 and u in (4.2) successively to zero, we obtain for all x0 P X and
u P Zpr0,8q;Uq by scaling,

ε

∥u∥Zpr0,8q;Uq

» t
0
T�1pt� sqBupsq ds P X,

and
∥T ptqx0∥X ¤ 1

ε
∥x0∥Xβpε, tq.

Hence, B is Z-admissible and since βpε, tq Ñ 0 as t Ñ 8, exponential
stability of pT ptqqt¥0 follows from Lemma 1.3.6.

Next, we prove (ii). Assume that ΣpA,Bq is integral ISS. Similar as
before, setting x0 and u in (4.3) successively to zero shows that B is
L8-admissible and pT ptqqt¥0 exponentially stable. Thus, the claim follows
from (i).

Finally, (iii) follows from (i) and Lemma 2.1.8. ❑

Remark 4.2.2. If ΣpA,Bq is Z-ISS, (4.1) is satisfied for

βpt, sq �Me�ωts and γpsq � KB,8s,

where M,ω ¡ 0 are such that ∥T ptq∥ ¤ Me�ωt and KB,8 ¡ 0 is the
infinite-time admissibility constant of B with respect to Z.

For bounded B, Theorem 4.2.1 simplifies significantly, as the following
result shows.

Proposition 4.2.3. Let A generate a C0-semigroup pT ptqqt¥0 on X and
B P LpU,Xq. Then, the following assertions are equivalent.

(i) ΣpA,Bq is Z-ISS.

(ii) ΣpA,Bq is integral ISS.

(iii) A generates an exponentially stable C0-semigroup pT ptqqt¥0.

Proof. Since B is bounded it is Z-admissible for any choice of Z. By
Theorem 4.2.1, (i) and (iii) are equivalent and (ii) implies (iii).
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To complete the proof, we show that (iii) implies (ii). Let pT ptqqt¥0 be
exponentially stable and chose M,ω ¡ 0 such that ∥T ptq∥ ¤ Me�ωt for
all t ¥ 0. For all x0 P X and u P L8pr0,8q;Uq the corresponding mild
solution of ΣpA,Bq satisfies for all t ¥ 0,

∥xptq∥X ¤ ∥T ptq∥∥x0∥X �
» t

0
∥T pt� sq∥∥B∥∥upsq∥U ds

¤Me�ωt∥x0∥X �M∥B∥LpU,Xq

» t
0

∥upsq∥U ds,

hence (4.3) holds for β P KL and θ, µ P K given by βps, tq � Me�ωts,
θpsq �M∥B∥LpU,Xqs and µpsq � s. ❑

One might ask whether Z-ISS implies integral ISS for unbounded
control operators B. For Z � Lp with 1 ¤ p   8, this is trivial since

γp∥u∥Lppr0,ts;Uqq � θ

�» t
0
µp∥upsq∥U q ds



for µpsq � sp, and θpsq � γps 1

p q, where µ P K and θ P K provided that
γ P K. Note that this is not limited to linear systems, but holds for any
abstract control system pX,U, ϕq.

The Orlicz norm is in general not given by an integral. However, one
can bound the Orlicz norm by such an integral term as the following result
from [39, Proposition 2.5] shows.
Proposition 4.2.4. Let Φ be a Young function and U be a Banach
space. Then, for every T P p0,8s there exist θ̃, µ P K such that for any
u P L8pr0, T s;Uq and t P r0, T q the following holds:

∥u∥EΦpr0,ts;Uq ¤ θ̃

�» t
0
µp∥upsq∥U q ds



. (4.4)

Moreover, θ̃ and µ can be chosen as

µpxq �

$'&'%
³x
0 φp

?
sq ds, x   1,

³1
0 φp

?
sq ds

Φp1q Φpx2q, x ¥ 1,
(4.5)

where φ equals the right-derivative of Φ almost everywhere, see also Re-
mark 1.2.2, and, for α ¡ 0,

θ̃pαq � sup
!

∥u∥EΦpr0,ts;Uq
��� t P r0, T q, u P L8pr0, ts;Uq,» t

0
µp∥upsq∥U q ds ¤ α

)
,

with θ̃p0q � 0.
If Φ P ∆global

2 or if T   8 and Φ P ∆8
2 , then µ � Φ can be chosen as well .
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Proof. Note that we only need to show that µ and θ̃ define K-functions
since (4.4) is immediate from the definition of θ̃. The proof is similar in
spirit to an argument used in [81, Proof of Theorem 1], with the crucial
fact being that µ defined by (4.5) defines a Young function such that

Φ ¤ µ and sup
x¡0

Φpcxq
µpxq   8

for all c ¡ 0, see [81, Lemma 1]. This implies that whenever a sequence
pfnqnPN with fn P L8pr0, tns;Uq, tn P r0, T q, is such that

lim
nÑ8

» tn
0
µp∥fnpsq∥U q ds � 0,

it follows that limnÑ8∥fn∥EΦpr0,tns;Uq � 0, see [81, Lemma 2]. This is also
true for µ � Φ if Φ P ∆global

2 or if T   8 and Φ P ∆8
2 , see Lemma 1.2.27.

Clearly, µ is a K-function, since µ is a Young function. Therefore, it remains
to consider θ̃. It is easy to see that θ̃ is well-defined, non-decreasing and
unbounded, whence we are left to show continuity. Moreover, since θ̃pαq
is of the form supMα with nested sets pMαqα¡0, it follows that θ̃ is right-
continuous on p0,8q. To see that θ̃ is continuous at α � 0, let pαnqnPN
be a decreasing sequence of positive numbers with limnÑ8 αn � 0 and for
every n P N let un P L8pr0, tns;Uq be such that

³tn
0 µp∥unpsq∥U qds ¤ αn

and 0 ¤ θ̃pαnq � ∥un∥EΦpr0,tns;Uq   1
n . By the above mentioned argument,

we can conclude that ∥un∥EΦpr0,tns;Uq converges to 0 as n Ñ 8. Thus,
limnÑ8 θ̃pαnq � 0.

We finish the proof by showing that θ̃ is left-continuous on p0,8q. Now
let α ¡ 0, pαnqnPN � r0, αs be a sequence with limnÑ8 αn � α and let
un P L8pr0, tns;Uq, n P N, such that» tn

0
µp∥unpsq∥U qds ¤ α and lim

nÑ8 θ̃pαq � ∥un∥EΦpr0,tns;Uq � 0.

For every n P N, we aim to find ũn P L8pr0, tns;Uq such that» tn
0
µp∥ũnpsq∥U q ds ¤ αn and lim

nÑ8∥un � ũn∥EΦpr0,tns;Uq � 0.

Indeed, then

θ̃pαq � θ̃pαnq
¤ θ̃pαq � ∥ũn∥EΦpr0,tns;Uq
¤ θ̃pαq � ∥un∥EΦpr0,tns;Uq � ∥un � ũn∥EΦpr0,tns;Uq

tends to 0 as nÑ8, which shows left-continuity. We define ũn :� un1Mn ,
where the measurable set Mn is chosen such that»

Mn

µp∥unpsq∥U q ds � αn, if
» tn

0
µp∥unpsq∥U q ds ¥ αn,
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or Mn � r0, tns otherwise. It follows that» tn
0
µp∥unpsq � ũnpsq∥U q ds

�
» tn

0
µp∥unpsq∥U q ds�

»
Mn

µp∥unpsq∥U q ds

¤ α� αn.

Using the argument from the beginning of the proof again, we infer that
∥un � ũn∥EΦpr0,tns;Uq Ñ 0 as nÑ8. This concludes the proof. ❑

Corollary 4.2.5. If an abstract control system pX,U, ϕq is EΦ-ISS, then
it is integral ISS. Moreover, in (4.3), one can choose β to be the same as
in the EΦ-ISS estimate (4.1) and µ and θ as in Proposition 4.2.4.

Proof. This is a direct consequence of the definitions of Z-ISS for Z � EΦ,
integral ISS and Proposition 4.2.4. ❑

Remark 4.2.6. Let us make the following comments on the construction of
µ and θ̃ in Proposition 4.2.4.

1. If Φpsq � sp, 1 ¤ p   8, then µpsq � sp can be chosen and it is not
hard to see that, up to a constant, θprq is given by Φ�1prq � r

1
p .

This shows that the choice of θ is rather natural.

2. The function µ defined by (4.5) does not depend on T and θ̃ can
also be chosen independently of T (by setting T � 8). It follows
that (4.4) holds for all u P L8pr0,8q;Uq and t ¥ 0.

3. If Φ P ∆global
2 , then (4.4) with µ � Φ holds for all u P EΦpr0,8q;Uq.

Hence, for any abstract control system pX,U, ϕq, EΦ-ISS implies EΦ-
integral ISS, meaning that (4.3) holds for all u P EΦpr0,8q;Uq. This
extends parts of [44, Theorem 3.2] from linear to abstract control
systems.

4. With similar techniques as in the proof of Proposition 4.2.4, it has
been shown in [44, 81] that if a linear system ΣpA,Bq satisfies (4.1)
for Z � EΦ, then it is integral ISS with the estimate

∥xptq∥X ¤ βp∥x0∥X , tq � θ

�» t
0
µp∥upsq∥U q ds



,

where β is the function from (4.1), µ is given by (4.5) and

θpαq � sup
# ∥∥∥∥» t

0
T�1psqBupsq ds

∥∥∥∥
X

����� t ¥ 0, u P L8pr0, ts;Uq,
» t

0
µp∥upsq∥U q ds ¤ α

+
.
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for α ¡ 0 and θp0q � 0. Note that θ relies on the solution formula
for linear systems, thus, this approach is limited to linear systems.
Moreover, Proposition 4.2.4 shows that θ̃ can actually be chosen
independent of the semigroup pT ptqqt¥0 and B provided the system
is EΦ-ISS (which, however, depends on pT ptqqt¥0 and B, of course).
In some sense, this fact simplifies the proofs in [44, 81]. On the other
hand, the above choice of θ is more refined; in case the system was
even EΨ-admissible with some Ψ ¤ Φ, this would affect the choice
of θ, even if µ is constructed from Φ only.

In [44, Lemma 2.9] it is shown that it suffices for integral ISS of linear
system to have an integral ISS estimate for a fixed t ¡ 0. The details are
given next.

Lemma 4.2.7. Let A be the generator of an exponentially stable C0-
semigroup pT ptqqt¥0 on X and B P LpU,X�1q. If here exist µ, θ P K such
that

∥∥∥∥» 1

0
T�1p1� sqBupsqds

∥∥∥∥
X

¤ θ

�» 1

0
µp∥upsq∥U q ds



(4.6)

holds for all u P L8pr0, 1s;Uq, then there exists a C ¡ 0 such that

∥∥∥∥» t
0
T�1pt� sqBupsq ds

∥∥∥∥
X

¤ Cθ

�» t
0
µp∥upsq∥U q ds




holds for all t ¥ 0 and u P L8pr0,8q;Uq.
In particular, ΣpA,Bq is integral ISS if and only if pT ptqqt¥0 is expo-

nentially stable and (4.6) holds.

Proof. We will prove that there exists a constant C ¡ 0 such that for all
u P L8pr0,8q;Uq and all t ¡ 0 there exists ũ P L8pr0, 1s;Uq such that

∥∥∥∥» t
0
T�1pt� sqBupsq ds

∥∥∥∥
X

¤ C

∥∥∥∥» 1

0
T�1p1� sqBũpsq ds

∥∥∥∥
X

(4.7)

and » 1

0
µp∥ũpsq∥U q ds ¤

» t
0
µp∥upsq∥U q ds. (4.8)
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Let u P L8pr0,8q;Uq, t ¡ 0 and n P N with n� 1   t ¤ n. We estimate,∥∥∥∥» t
0
T�1pt� sqBupsqds

∥∥∥∥
X

¤
∥∥∥∥∥
» t
n�1

T�1pt� sqBupsq ds
∥∥∥∥∥�

∥∥∥∥∥ n�2̧

k�0

» k�1

k

T�1pt� sqBupsq ds
∥∥∥∥∥
X

�
∥∥∥∥∥
» 1

n�t
T�1p1� sqBups� 1� tq ds

∥∥∥∥∥
X

�
∥∥∥∥∥ n�2̧

k�0
T pt� k � 1q

» 1

0
T�1p1� sqBups� kq ds

∥∥∥∥∥
X

¤
∥∥∥∥» 1

0
T�1p1� sqBûpsq ds

∥∥∥∥
X

� C max
k�0,...,n�2

∥∥∥∥» 1

0
T�1p1� sqBups� kq ds

∥∥∥∥
X

,

where û is the zero extension of ups� 1� tq|rn�t,1s to a function on r0, 1s
and C ¥ 1 is some constant, which can be chosen independently of n and
t, since pT ptqqt¥0 is exponentially stable. Define uk :� up� � kq|r0,1s for
k � 0, . . . , n� 2 and

ũ :� arg max
vPtû,u0,...,un�2u

∥∥∥∥» 1

0
T�1p1� sqBvpsq ds

∥∥∥∥
X

.

By definition, ũ P L8pr0, 1s;Uq satisfies (4.7) and (4.8). Combining this
with (4.6) yields the desired estimate.

Consequently, the equivalence of integral ISS and exponential stability
of the semigroup together with (4.6) is evident by the linearity of the
system, which allows to separate initial values and input functions. ❑

Corollary 4.2.5 states that EΦ-ISS implies integral ISS. The following
lemma will help us to prove the reverse implication for linear systems, see
also [44, Lemma 3.5].

Lemma 4.2.8. Let ΣpA,Bq be L8-integral ISS. Then, there exists θ̃,Φ P K
such that Φ is a continuously differentiable Young function and for all
t ¥ 0 and u P L8pr0, ts;Uq we have∥∥∥∥» t

0
T�1pt� sqBupsq ds

∥∥∥∥
X

¤ θ̃

�» t
0

Φp∥upsq∥U q ds


. (4.9)

Proof. Let ΣpA,Bq be L8-integral-ISS and take θ, µ P K such that (4.3)
holds. By [83, Lemma 14], there exists a convex function µv and a concave
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function µc, both in K and differentiable on p0,8q, such that µ ¤ µv � µc.
For any Young function Ψ, the function µc �Ψ�1 is concave, thus, Jensen’s
inequality yields that

θ

�» 1

0
µp∥upsq∥U q ds



¤ θ

�» 1

0
pµc � µvqp∥upsq∥U q ds



¤ pθ � µc �Ψ�1q

�» 1

0
pΨ � µvqp∥upsq∥U q ds



.

We have that θ̃ :� θ � µc �Ψ�1 P K and Φ :� Ψ � µv is a Young function.
Moreover, if Ψ is differentiable, then so is Φ. Finally, the assertion follows
from Lemma 4.2.7. ❑

We can now prove the characterization of integral ISS given by [44,
Theorem 3.1].

Theorem 4.2.9. Let A be the generator of a C0-semigroup pT ptqqt¥0 on
X, B P LpU,X�1q. The following assertions are equivalent.

(i) ΣpA,Bq is L8-integral ISS.

(ii) ΣpA,Bq is EΦ-ISS for some Young function Φ.

(iii) pT ptqqt¥0 is exponentially stable and the operator B is (infinite-time)
EΦ-admissible for some Young function Φ.

Proof. Note that (ii) and (iii) are equivalent by Theorem 4.2.1, and (ii)
implies (i) by Corollary 4.2.5. Thus, it remains to prove that (i) implies
(iii).

Assume that (i) holds. It follows from Theorem 4.2.1 that A generates
an exponentially stable C0-semigroup. By Lemma 4.2.8, there exists
θ̃ P K and a Young function Φ such that (4.9) holds for all t ¥ 0 and
u P L8pr0, ts;Uq. Since L8pr0, ts;Uq � EΦpr0, ts;Uq, Lemma 1.2.18 implies
for all u P L8pr0,8q;Uq, u � 0,

1
∥u∥EΦpr0,ts;Uq

∥∥∥∥» t
0
T�1pt� sqBupsq ds

∥∥∥∥
X

¤ θ̃

�» t
0

Φ
�

∥upsq∥U
∥u∥EΦpr0,ts;Uq



ds



¤ θ̃p1q.

By density, this holds for all u P EΦpr0, ts;Uq, which shows that B is
EΦ-admissible. ❑
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Remark 4.2.10. It is shown in Example 2.1.17 that there are linear systems
ΣpA,Bq which are L8-integral ISS, but not Lp-ISS. In particular, the
Young function Φ in Theorem 4.2.9 can not assumed to be of the form
Φptq � tp for some 1 ¤ p   8.

Open Problem. It is an open problem whether L8-ISS implies integral
ISS for linear systems with unbounded control operators.



Chapter 5

Input-to-state stability of
bilinear control systems

In this chapter we study input-to-state stability of bilinear control systems
with unbounded control operators. We will prove the existence of solutions
as well as (integral) ISS estimates under reasonable assumptions on the
system’s operators related to (integral) ISS properties of the underlying
linear systems. We apply our abstract results to a bilinearly controlled
Fokker–Planck equation as considered in [12] to ensure an (integral) ISS
estimate with respect to the systems equilibrium.

Our findings extend those of [74], where bilinear systems with bounded
control operators and suitable Lipschitz assumptions on the bilinearity
are considered. There, it is shown that integral ISS is equivalent to
exponential stability of the semigroup. For unbounded control operators,
the ISS analysis is already nontrivial for linear systems (cf. Theorem 4.2.1
and Proposition 4.2.3) and becomes even more challenging for nonlinear
systems.

As mentioned in [92], seemingly harmless bilinear systems such as the
prototypical one-dimensional example#

9xptq � �xptq � uptqxptq, t ¥ 0,
xp0q � x0

(5.1)

are not L8-ISS, but integral ISS. Indeed, the solution is given by

xptq � x0e
³t
0 upsq�1 ds � x0e�te

³t
0 upsq ds,

which is unbounded for constant inputs u ¡ 1, and thus, it is not L8-ISS.
However, applying ab ¤ a2

2 � b2

2 to the solution formula shows that (5.1)
is integral ISS.

This chapter is based on [39].

103



104 5. ISS of bilinear control systems

5.1 Input-to-state stability for bilinear con-
trol systems

In the following we consider bilinear control systems of the form#
9xptq � Axptq �B1F pxptq, u1ptqq �B2u2ptq, t ¥ 0,
xp0q � x0,

(ΣF )

where


 X, sX and U1, U2 are Banach spaces and x0 P X,


 A generates a C0-semigroup pT ptqqt¥0 on X,


 u1 P L1
locpr0,8q;U1q and u2 P L1

locpr0,8q;U2q,


 B1 P Lp sX,X�1q and B2 P LpU2, X�1q,


 the nonlinear operator F : X � U1 Ñ sX is

(i) bounded in the sense that there exists a constant m ¡ 0 such
that

∥F px, uq∥�X ¤ m∥x∥X∥u∥U1 @x P X,u P U1; (5.2)

(ii) locally Lipschitz continuous in the first variable, where the
Lipschitz constant depends linearly on the U1-norm of the
second argument, that is, for all bounded subsets Xb � X there
exists a constant LXb ¡ 0, such that for all x P Xb and u P U1
it holds that

∥F px, uq � F py, uq∥�X ¤ LXb∥u∥U1∥x� y∥X ; (5.3)

(iii) measureable along measureable functions, that is, for all inter-
vals I and measurable functions f : I Ñ X and g : I Ñ U1, the
mapping

I Ñ sX
s ÞÑ F pfpsq, gpsqq

is measurable.

With a slight abuse of notation, but following the literature e.g. [74],
we call such systems “bilinear” because of the prototypical example given
by F px, uq � ux with U1 � R, which already shares most interesting
aspects.
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Definition 5.1.1. Let 0 ¤ t0   t1   8, x0 P X, u1 P L1
locpr0,8q;U1q and

u2 P L1
locpr0,8q;U2q. A function x : rt0, t1s Ñ X is called a mild solution

of ΣF on rt0, t1s if, for all t P rt0, t1s,

xptq � T pt� t0qx0 �
» t
t0

T�1pt� sqrB1F pxpsq, u1psqq �B2u2psqs ds. (5.4)

A function x : r0,8q Ñ X is called a global mild solution, or a mild solution
on r0,8q of ΣF , if x|r0,t1s is a mild solution on r0, t1s for every t1 ¡ 0.

We consider the bilinear systems as abstract control systems pX,U, ϕq
(see Definition 4.1.1) with U � U1 � U2 and

ϕpt, x0, uq :� xptq

being the mild solution of ΣF in time t corresponding to x0 P X and
u � pu1, u2q P L1

locpr0,8q;U1q � L1
locpr0,8q;U2q for which a mild solution

exists. The domain of ϕ is defined as the collection of all such triples
pt, x0, uq.

Since the input has two components, we consider input spaces of the
form Z � Z1pr0,8q;U1q � Z2pr0,8q;U2q. We equip U with the norm
∥pu1, u2q∥U � ∥u1∥U1 �∥u2∥U2 and similar for Z. Now, using the fact that
for γ1, γ2, γ P K we have that γ1 � γ2 P K and γpa � bq ¤ γp2aq � γp2bq
for all a, b ¥ 0, Definition 4.1.2 and Definition 4.1.4 are equivalent to the
following more practical formulation.

Definition 5.1.2. The system ΣF is called

(i) pZ1, Z2q-ISS if there exist β P KL, γ1, γ2 P K such that for all
x0 P X, u1 P Z1pr0,8q;U1q and u2 P Z2pr0,8q;U2q there exists a
unique global mild solution x of ΣF , which satisfies for all t ¥ 0

∥xptq∥X ¤ βp∥x0∥X , tq � γ1p∥u1∥Z1pr0,ts;U1qq � γ2p∥u2∥Z2pr0,ts;U2qq;

(ii) integral-ISS if there exist β P KL, θ1, θ2, µ1, µ2 P K such that for all
x0 P X, u1 P L8pr0,8q;U1q and u2 P L8pr0,8q;U2q there exists a
unique global mild solution x of ΣF , which satisfies for all t ¥ 0

∥xptq∥X ¤ βp∥x0∥X , tq � θ1

�» t
0
µ1p∥u1psq∥U q ds



� θ2

�» t
0
µ2p∥u2psq∥U q ds



.
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One may also consider the following mixed Z-ISS and integral ISS
inequalities:

∥xptq∥X ¤ βp∥x0∥X , tq � γ1p∥u1∥Z1pr0,ts;U1qq

� θ2

�» t
0
µ2p∥u2psq∥U2qds



,

(5.5)

∥xptq∥X ¤ βp∥x0∥X , tq � θ1

�» t
0
µ1p∥u1psq∥U1qds



� γ2p∥u2∥Z2pr0,ts;U2qq.

(5.6)

We first prove existence of local solutions to ΣF , where we apply
typical arguments in the context of mild solutions for semilinear equations,
cf. [82, Chapter 6]. A similar result for the existence of the unique mild
solution as in the following Proposition 5.1.3 were proved under slightly
stronger conditions in [10] for Lp-admissible B1, scalar-valued inputs u1,
F px, u1q � u1x and B2 � 0.

To keep the notation simple and not distinguish between L1 and EΦ,
we consider the convention (2.2), i.e., we refer to Φptq � t as a Young
function (without complementary Young function rΦ) and write EΦ � L1

and LrΦ � L8.

Proposition 5.1.3. Let A be the generator of a C0-semigroup pT ptqqt¥0
on X. If B1 P Lp sX,X�1q is EΦ-admissible and B2 P LpU2, X�1q is
EΨ-admissible, then, for all t0 ¥ 0, x0 P X, u1 P EΦpr0,8q;U1q and
u2 P EΨpr0,8q;U2q there exists t1 ¡ t0 such that ΣF possesses a unique
mild solution x P Cprt0, t1s;Xq on rt0, t1s.

Moreover, if tmax ¡ t0 denotes the supremum over all t1 ¡ t0 such
that ΣF has a unique mild solution x on rt0, t1s for fixed x0 P X, u1 P
EΦpr0,8q;U1q and u2 P EΨpr0,8q;U2q, then the finite-time blow-up prop-
erty holds:

tmax   8 ùñ lim sup
tÕtmax

∥xptq∥X � 8.

Proof. We first show that for every t0 ¥ 0, x0 P X, u1 P EΦpr0,8q;U1q
and u2 P EΨpr0,8q;U2q there exists t1 ¡ t0 such that ΣF possesses a
unique mild solution on rt0, t1s.Moreover, we show that t1 � t0 � δ can be
chosen such that δ ¡ 0 is independent of x0 and t0 for any bounded sets
of initial data x0 and t0.

Let T ¡ 0, r ¡ 0, u1 P EΦpr0,8q;U1q and u2 P EΨpr0,8q;U2q be
arbitrary and consider t0 P r0, T s and x0 P X with ∥x0∥X ¤ r. Let M ¥ 1
and ω P R such that ∥T ptq∥ ¤Meωt for every t ¥ 0 and define

k :� 2Mpe|ω|r � 1q.
We denote by m the constant from (5.2), by Lk the Lipschitz constant
of F on the closed ball tx P X | ∥x∥X ¤ ku and by KB1,t and KB2,t the
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admissibility constants of B1 and B2, respectively. Chose δ P p0, 1q such
that

(i) mKB1,T�1∥u1∥EΦprt0,t0�δs;U1q ¤ 1
2 ,

(ii) KB2,T�1∥u2∥EΨprt0,t0�δs;U2q ¤M and

(iii) KB1,T�1Lk∥u1∥EΦprt0,t0�δs;U1q   1.
Recall from Proposition 1.2.29 that such a δ exists and note that, apart
from the constants associated with the operators B1, B2, A, F , the choice
of δ only depends on r and T , where the r-dependence of δ arises from
the r-dependence of k. Define t1 :� t0 � δ,

S :� tx P Cprt0, t1s;Xq | ∥Cprt0,t1s;Xq¤ ku
and the map Φ: S Ñ S by

pΦpxqqptq :� T pt� t0qx0 �
» t
t0

T�1pt� sqrB1F pxpsq, u1psqq �B2u2psqsds.

We will prove that Φ is a contraction on S.
We first check that Φ is well-defined, that is, Φ maps S into S. The

strong continuity of pT ptqqt¥0 and Corollary 2.1.11 imply that Φpxq P
Cprt0, t1s;Xq for every x P Cprt0, t1s;Xq. Note that we applied Corol-
lary 2.1.11 twice: to ΣpA,B2q with input u2 and to ΣpA,B1q with input
F pxp�q, u1p�qq, where we set u1, u2, x zero on r0, t0q, where we also used
that F pxp�q, u1p�qq P EΦprt0, t1s; sXq, which is a consequence of (5.2). For
x P S and t P rt0, t1s we have that

∥pΦpxqqptq∥X
¤Meωpt�t0q∥x0∥X �KB1,t∥F px, u1q∥EΦprt0,ts;�Xq
�KB2,t∥u2∥EΨprt0,ts;U2q

¤Me|ω∥∥x0∥X �mKB1,T�1∥u1∥EΦprt0,t1s;U1q∥x∥Cprt0,t1s;Xq
� CB2,T�1∥u2∥EΨprt0,t1s;U2q

¤ k,

where we used admissibility in the first inequality and (5.2) as well as
monotonicity of the admissibility constants and the Orlicz norm in the
second inequality. The last inequality follows from (i), (ii) and our choices
of k. Hence, Φ maps S to S.

The contractivity follows by (iii), since

∥Φpxq � Φpx̃q∥Cprt0,t1s;Xq
¤ sup
tPrt0,t1s

∥∥∥∥» t
t0

T�1pt� sqB1rF pxpsq, u1psqq � F px̃psq, u1psqqs ds
∥∥∥∥

¤ KB1,T�1Lk∥u1∥EΦprt0,t1s;U1q∥x� x̃∥Cprt0,t1s;Xq
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for all x, x̃ P S, where we used again admissibility, the Lipschitz property
of F and the monotonicity of the Orlicz norm. By Banach’s fixed point
theorem, we conclude that ΣF possesses a unique mild solution on rt0, t1s
with initial condition x0 and input functions u1 and u2.

Now, let tmax be the supremum over all t1 ¡ t0 such that there exists a
unique mild solution x of ΣF on rt0, t1s, where x0 P X, u1 P EΦpr0,8q;U1q
and u2 P EΨpr0,8q;U2q are given. Suppose that tmax is finite. We will
show that lim suptÕtmax∥xptq∥X � 8. If this is not the case, we have

r :� sup
tPrt0,tmaxq

∥xptq∥X   8.

Let ptnqnPN be a sequence of positive real numbers converging to tmax
from below. Since tn P r0, tmaxs and ∥xptnq∥ ¤ r for all n P N, there exists
δ ¡ 0 independent of n P N such that the system#

9yptq � Ayptq �B1F pyptq, u1ptqq �B2u2ptq,
yptnq � xptnq

has a unique mild solution y on rtn, tn � δs. Therefore, for n P N with
tn� δ ¡ tmax, we can extend x by xptq � yptq, t P rtn, tn� δs, to a solution
of ΣF on rt0, tn � δs. This contradicts the maximality of tmax, and hence,
x has to be unbounded in tmax. ❑

Theorem 5.1.4. Let A be the generator of an exponentially stable C0-
semigroup pT ptqqt¥0 on X, B1 P Lp sX,X�1q be EΦ-admissible and B2 P
LpU2, X�1q be EΨ-admissible. Then, ΣF is pEΦ,EΨq-ISS and pEΦ,L8q-
ISS.

Proof. We give the proof in two steps. At first we prove the existence of a
continuous global mild solution x of ΣF (which does not need the expo-
nential stability of pT ptqqt¥0). Afterwards we prove the ISS properties.
STEP I. Choose M ¥ 0 and ω P R such that ∥T ptq∥ ¤ Me�ωt By
Lemma 2.1.8, B1 is EΦ-admissible andB2 is EΨ-admissible for pe ω

2 tT ptqqt¥0.
Denote the corresponding admissibility constants by CB1,t and CB2,t, re-
spectively. Then, for every t ¥ 0, y P EΦpr0,8q; sXq and ỹ P EΨpr0,8q;U2q
we have ∥∥∥∥» t

0
e ω

2 pt�sqT�1pt� sqB1ypsq ds
∥∥∥∥ ¤ CB1,t∥y∥EΦpr0,ts;�Xq

and ∥∥∥∥» t
0

e ω
2 pt�sqT�1pt� sqB2ỹpsq ds

∥∥∥∥ ¤ CB2,t ∥ỹ∥EΨpr0,ts;U2q .

Let x0 P X, u1 P EΦpr0,8q;U1q and u2 P EΨpr0,8q;U2q and let tmax be
the supremum over all t1 such that ΣF possesses a unique continuous mild
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solution x on r0, t1s. Lemma 5.1.3 yields tmax ¡ 0. For t P r0, tmaxq we
have that

∥xptq∥X
¤ ∥T ptqx0∥X

� e�ω
2 t

∥∥∥∥» t
0

e ω
2 pt�sqT�1pt� sqB1pe ω

2 sF pxpsq, u1psqqq ds
∥∥∥∥
X

� e�ω
2 t

∥∥∥∥» t
0

e ω
2 pt�sqT�1pt� sqB2e ω

2 su2psq ds
∥∥∥∥
X

¤Me�ωt∥x0∥X � CB1,te�
ω
2 t∥e ω

2 �F pxp�q, u1p�qq∥EΦpr0,ts;�Xq
� Cω,u2,t,

(5.7)

where Cω,u2,t � CB2,te�
ω
2 t

∥∥e ω
2 �u2

∥∥
EΨpr0,ts;U2q. The ∥�∥EΦ-norm in the

second term can be estimated by the boundedness of F ,

∥e ω
2 �F pxp�q, u1p�qq∥EΦpr0,ts;�Xq ¤ m

∥∥ ∥u1p�q∥U1 e ω
2 � ∥xp�q∥X

∥∥
EΦpr0,ts;Rq .

Passing over to the equivalent Orlicz norm on EΦ (if EΦ � L1) yields that
for all ε ¡ 0 there exists a function g P LΦ̃pr0, ts;Rq with ∥g∥LΦ̃pr0,ts;Rq ¤ 1
such that

∥∥∥u1p�q∥U1e ω
2 �∥xp�q∥X

∥∥
EΦpr0,ts;Rq ¤

» t
0

∥u1psq∥U1 |gpsq| �e ω
2 s∥xpsq∥� ds� ε.

If EΦ � L1, the above estimate holds trivially with the constant function
g � 1r0,ts. Combining this with (5.7) gives

e ω
2 t∥xptq∥X

¤Me�ω
2 t∥x0∥X�mCB1,tε� e ω

2 tCω,u2,t

�mCB1,t

» t
0

∥u1psq∥U1 |gpsq| �e ω
2 s∥xpsq∥X

�
ds.

Setting αptq :� Me�ω
2 t∥x0∥ �mCB1,tε � e ω

2 tCω,u2,t, Gronwall’s integral
inequality implies that

e ω
2 t∥xptq∥X

¤ αptq �mCB1,t

» t
0
αpsq∥u1psq∥ |gpsq|epmCB1,t

³t
s
∥u1prq∥ |gprq| drq ds

¤ αptq �
�
M∥x0∥ sup

rPr0,ts
e�ω

2 r �mCB1,tε� e ω
2 tCω,u2,t

�
� 2mCB1,t∥u1∥EΦpr0,ts;U1qe2mCB1,t∥u1∥EΦpr0,ts;U1q ,
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where we used the generalized Hölder inequality (Lemma 1.2.19). Thus,
by letting ε tend to 0, multiplying with e�ω

2 t and using ab ¤ a2

2 � b2

2 for
a, b P R, we obtain

∥xptq∥X ¤Me�ωt∥x0∥X � 1
2M

2e�ωt sup
rPr0,ts

e�ωr∥x0∥2
X

� 4m2C2
B1,t∥u1∥2

EΦpr0,ts;U1qe
4mCB1,t∥u1∥EΦpr0,ts;U1q

� Cω,u2,t � 1
2C

2
ω,u2,t.

By monotonicity of the Orlicz norm,

∥e ω
2 �u2∥EΨpr0,ts;U2q ¤ sup

rPr0,ts
e ω

2 r∥u2∥EΨpr0,ts;U2q,

from which it readily follows that

∥xptq∥X ¤ βp∥x0∥X , tq � γ1pCB1,t∥u1∥EΦpr0,ts;U1qq
� γ2pCB2,te�

ω
2 t∥e ω

2 �u2∥EΨpr0,ts;U2qq
¤ βp∥x0∥X , tq � γ1pCB1,t∥u1∥EΦpr0,ts;U1qq
� γ2pCB2,t sup

rPr0,ts
e�ω

2 r∥u2∥EΨpr0,ts;U2qq,
(5.8)

for all u1 P EΦpr0,8q;U1q, u2 P EΨpr0,8q;U2q and functions β P KL and
γ1, γ2 P K, which can be chosen as

βps, tq �Me�ωts� 1
2M

2e�ωts2 sup
rPr0,ts

e�ωr,

γ1psq � m2s2e4ms,

γ2psq � s� 1
2s

2.

(5.9)

Moreover, the mild solution exists on r0,8q by Proposition 5.1.3 since it
stays bounded on any bounded interval by (5.8).
STEP II. Since we are dealing with an exponentially stable semigroup,
Lemma 2.1.8 implies that CB1,t and CB2,t are uniformly bounded in t and
we can choose ω ¡ 0. Hence, (5.8) yields for all u1 P EΦpr0,8q;U1q and
u2 P EΨpr0,8q;U2q that

∥xptq∥X
¤ βp∥x0∥X , tq � γ1

�
CB1∥u1∥EΦpr0,ts;U1q

�� γ2
�
CB2∥u2∥EΨpr0,ts;U2q

�
with CBi � supt¥0 CBi,t, i � 1, 2 being the infinite-time admissibility
constant of Bi for the exponentially stable semigroup pe ω

2 tT ptqqt¥0. This
shows that ΣF is pEΦ,EΨq-ISS.

System ΣF is also pEΦ,L8q-ISS by realizing that there exists a constant
C ¡ 0 such that

e�ω
2 t∥e ω

2 �u2∥EΨpr0,ts;U2q ¤ C∥u2∥L8pr0,ts;U2q, (5.10)



5.1. ISS for bilinear control systems 111

for all u2 P L8pr0,8q;U2q and t ¡ 0. To see this, let ε ¡ 0 such that
Ψpsq ¤ s for all s P p0, εq, which exists by the property that limsÑ0

Ψpsq
s �

0. Therefore, choosing C � maxt 1
ϵ ,

2
ω u,» t

0
Ψ
�
C�1e�ω

2 s
�

ds ¤
» t

0
C�1e�ω

2 s ds ¤ 2
Cω

¤ 1.

This implies that» t
0

Ψ
�

e ω
2 s∥u2psq∥U2

Ce ω
2 t∥u2∥L8pr0,ts;U2q

�
ds ¤

» t
0

Ψ
�
C�1e ω

2 ps�tq
	

ds ¤ 1,

from which (5.10) follows by the definition of the EΨ-norm. ❑

Remark 5.1.5. 1. The assumptions of Proposition 5.1.3 already yield
that the unique mild solution x for x0 P X, u1 P EΦpr0,8q;U1q and
u2 P EΨpr0,8q;U2q is global. This is the first step of the proof of
Theorem 5.1.4. Moreover, this mild solution is continuous.

2. The assumptions of Theorem 5.1.4 are natural as they are equivalent
to ΣpA,B1q being EΦ-ISS and ΣpA,B2q being EΨ-ISS, see Theo-
rem 4.2.1. The letter is even necessary, since the bilinear system
coincides with ΣpA,B2q if we set u1 � 0. Also note that assumption
of B1 being EΦ-admissible is generally not necessary, as the choice
F � 0 shows.

3. In the situation of Theorem 5.1.4, up to constants, the functions β,
γ1 and γ2 in the pEΦ,EΨq-ISS estimate for ΣF can be given explicitly
by (5.9) with ω ¡ 0.

4. In Theorem 5.1.4 one cannot expect L8-ISS with respect to u1 as
the system (5.1) shows.

5. The proof of Theorem 5.1.4 is easier in the case of Lp-spaces, since
the Lp-norm is already an integral.

Corollary 5.1.6. If the linear systems ΣpA,B1q and ΣpA,B2q are integral
ISS, then so is ΣF . The assumption that ΣpA,B2q is integral ISS is
necessary.

Proof. By Theorem 4.2.9, integral ISS of the linear systems is equivalent
to the exponential stability of the semigroup pT ptqqt¥0 generated by A
and the admissibility of the control operators B1 and B2 with respect to
some Orlicz spaces EΦ and EΨ, respectively. If follows from Theorem 5.1.4
that ΣF is (EΦ,EΨ)-ISS. Since L8 is contained in any Orlicz space on
bounded intervals, Proposition 4.2.4 applied for u1 and u2 yields that ΣF
is integral ISS. The necessity of ΣpA,B2q being integral ISS can be seen
by setting u1 � 0 in the bilinear system. ❑
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Remark 5.1.7. The functions θ1, θ2, µ1 and µ2 for the integral ISS estimate
of ΣF can be given explicitly in terms of γ1 and γ2 from (5.9) with ω ¡ 0,
as well as µ and θ from Proposition 4.2.4. The function β can be chosen
as in (5.9).
Remark 5.1.8. Theorem 5.1.4 and Proposition 4.2.4 allow us to derive
further mixed ISS and integral ISS estimates of the form (5.5) and (5.6).
More precisely, under the assumptions of Theorem 5.1.4, or equivalently
Corollary 5.1.6, there exist β P KL and γ1, γ2, θ1, θ2, µ1, µ2 P K such that
(5.5) holds for Z1 � EΦ, u1 P EΦpr0,8q;U1q and u2 P L8pr0,8q;U2q
and (5.6) holds for Z2 � EΨ or Z2 � L8, u1 P L8pr0,8q;U1q, and
u2 P Z2pr0,8q;U2q.

5.2 The controlled Fokker–Planck equation
Following [12], we consider the following variant of the Fokker–Planck
equation on a bounded domain Ω � Rn, with boundary BΩ of class C2

(see [27, Section 6.2] for a definition),$&%
Bρ
Bt pt, ζq � ν∆ρpt, ζq � div

�
ρpt, ζq∇V pt, ζq

	
, t ¥ 0, ζ P Ω

ρp0, ζq � ρ0pζq ζ P Ω,
(5.11)

together with the reflective boundary condition

0 � pν∇ρpt, ζq � ρpt, ζq∇V pt, ζqq � n⃗pζq, t ¥ 0, ζ P BΩ. (5.12)

Here, n⃗ refers to the outward-pointing unit normal vector on the boundary,
ρ0 denotes the initial probability distribution with

³
Ω ρ0pζqdζ � 1 and

ν ¡ 0 is a constant. Furthermore, the potential V is assumed to be of the
form

V pt, ζq �W pζq � αpζquptq, (5.13)

where W,α : Ω Ñ R are measurable functions such that

W,α P

$'&'%
W1,8pΩq XW2,2pΩq, if n � 1,
W1,8pΩq XW2,2�εpΩq, if n � 2,
W1,8pΩq XW2,npΩq, if n ¥ 3,

(5.14)

for some ε ¡ 0, and α satisfies the structural assumption

∇αpζq � n⃗pζq � 0, ζ P BΩ. (5.15)

Thus, the scalar-valued input function u enters the system via the spatial
profile α in the potential.
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In order to cast the equations in an abstract framework, we consider
the state space X � L2pΩq and introduce the operators A : dompAq �
L2pΩq Ñ L2pΩq and B : H1pΩq Ñ L2pΩq given by

Af :� ν∆f � divpf∇W q,
dompAq :� tf P H2pΩq | pν∇ρ� ρ∇W q � n⃗ � 0 on BΩu, (5.16)

where pν∇f � f∇W q � n⃗ � 0 on BΩ is understood in the weak sense, i.e.,»
Ω
pν∆f � divpf∇W qφdζ

� �
»

Ω
pν grad f � f∇W q gradφdζ

for every φ P H1pΩq and

Bρ :� divpf∇αq. (5.17)

Further, for

Φpζq :� logpνq � W pζq
ν

define the multiplication operator M , considered as an operator in L2pΩq,
H1pΩq or H2pΩq by

Mf :� e Φ
2 f.

We will show that M is bounded and invertible on each of the mentioned
spaces, whence the operator Ã : dompÃq � L2pΩq Ñ L2pΩq,

Ãf :�MAM�1f,

dompÃq :�M dompAq � tf P L2pΩq |M�1f P dompAqu.

is well-defined.
The following proposition (apart from (vi)) is a recap of results from

[12, Section 3]. For convenience, we present a proof with slightly different
methods.

Proposition 5.2.1. Let Ω � Rn with C2-boundary BΩ, ν ¡ 0 and W as
in (5.14) The following assertions hold.

(i) M is bounded and invertible as operator on L2pΩq, H1pΩq and H2pΩq

M�1f � e�Φ
2 f.

(ii) The operator BW : H1pΩq Ñ L2pΩq, BW f :� divpf∇W q is bounded.

(iii) The operator A generates a bounded analytic semigroup on L2pΩq.
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(iv) The operator Ã is self-adjoint and negative.

(v) A has discrete spectrum σpAq � p�8, 0s only consisting of eigenval-
ues with only accumulation point �8. Moreover, e�Φ is an eigen-
function to the simple eigenvalue 0.

(vi) B uniquely extends to an operator in LpL2pΩq, X�1q, where X�1 is
the extrapolation space associated with A.

Proof. Note that as soon as we have proved (i) and (ii), A and Ã are well
defined.

First consider (i). The boundedness of M and M�1 on each of the
spaces is a consequence of the regularity of W and Hölder’s inequality. It
is evident that M�1 is the inverse of M .

Next, we prove (ii). For f P H1pΩq and W as in (5.14), we have
that BW f � ∇f � ∇W � f∆W . Since ∇W P L8pΩqn, the operator
f ÞÑ ∇f � ∇W is bounded from H1pΩq to L2pΩq. For the boundedness
of f ÞÑ f∆W , we first recall from [1, Theorem 4.12] that the following
embeddings are continuous,

H1pΩq ãÑ

$'&'%
CpΩq, if n � 1,
LqpΩq for any 1 ¤ q   8, if n � 2,
L 2n

n�2 pΩq, if n ¥ 3.

Hölder’s inequality yields for p, p1 P r1,8s with 1
p � 1

p1 � 1,

∥f∆W∥L2pΩq ¤ ∥f∥L2p∥∆W∥L2p1 pΩq.

The choices p � 8 and p1 � 1 for n � 1, p � 2�ε
ε and p1 � 2�ε

2 for
n � 2, and p � n

n�2 and p1 � n
2 for n ¥ 3, along with the aforementioned

embeddings, show that the mapping f ÞÑ f∆W , and consequently BW , is
bounded as operator from H1pΩq to L2pΩq.

We prove the assertions (iii) and (iv) together. Define the continuous
sesquilinear form a : H1pΩq �H1pΩq Ñ C,

apf, gq :� x∇f,∇gyL2pΩq � xBf, gyL2pΩq �
»
BΩ
bfg dσ,

where σ is the surface measure on BΩ and b P L8pBΩq is given by

bpζq :� 1
ν

∇W pζq � n⃗pζq.

If we are dealing with real-valued spaces, a : H1pΩq � H1pΩq Ñ R is a
continuous bilinear form. In [4, Theorem 4.3], it is proved that if a is an
L2-elliptic form, meaning there exist ω P R and β ¡ 0 such that for all
u P H1pΩq,

Re apf, fq � ω∥f∥2
L2pΩq ¥ β∥f∥2

H1pΩq,
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then the operator Aa associated with a, defined by

�Aaf :� y if apf, gq � xy, gyL2pΩq for all g P H1pΩq,
dompAaq :� tf P H1pΩq | Dy P L2pΩq : apf, gq � xy, gyL2pΩqu,

generates an analytic semigroup on L2pΩq. The operator Aa � ωI, and
thus also Aa, is well-defined by the Lax-Milgram theorem, see e.g. [13,
Theorem 3.2].

It follows from [3, Theorem 7.15] that a0pf, gq :� apf, gq�xBW f, gyL2pΩq
defines an L2-elliptic sesquilinear form, whose associated operator is given
by

Aa0f � ν∆f,
dompAa0q � tf P H1pΩq |∆f P L2pΩq, pν∇f � f∇W q � n⃗ � 0 on BΩu.

In particular, there exists ω P R and β ¡ 0 such that

Re a0pf, fq � ω∥f∥2
L2pΩq ¥ β∥f∥2

H1pΩq.

Combining this with

|xBW f, fyL2pΩq| ¤ ∥BW ∥∥f∥H1pΩq∥f∥L2pΩq

¤ µ∥f∥2
H1pΩq �

∥BW ∥2

4µ ∥f∥2
L2pΩq.

(5.18)

for 0   µ   β, where we used ab ¤ µa2 � 1
4µb

2 for a, b P R in the last step,
leads to

Re apf, fq � pω � ∥BW ∥
4µ q∥f∥2

L2pΩq

� Re a0pf, fq � ω∥f∥2
L2pΩq �

∥B∥
4µ � Re xBW f, fyL2pΩq

¥ pβ � µq∥u∥2
H1pΩq.

This shows that a is L2-elliptic, and since BW is bounded from H1pΩq to
L2pΩq, we obtain that the associated operator Aa is given by Aa � Aa0�B
with domain dompAaq � dompAa0q.

Next, we prove that dompAq � dompAaq. By (i), the operator M2 is
bounded and invertible on L2pΩq, H1pΩq and H2pΩq. Hence, applying the
transformation M2 to elements in dompAaq yields that f P dompAaq if
and only if

eΦf P tg P H1pΩq |∆g P L2pΩq, ∇g � n⃗ � 0 on BΩu
This set coincides with tg P H2pΩq |∇g � n⃗ � 0u by the regularity improving
property of the Neumann-Laplacian on a bounded open domain with C2-
boundary, see e.g. [29, Theorem2.4.2.5]. Retransformation of these sets
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yields dompAaq � dompAq. Consequently, A � Aa generates an analytic
semigroup on L2pΩq.

Since Ã is obtained from A via the transformation M , we have that Ã
generates the analytic semigroup pSptqqt¥0 given by Sptq � MT ptqM�1,
where pT ptqqt¥0 is the semigroup generated by A.

To prove that Ã is a self-adjoint and negative operator, it suffices to
show that Ã is a symmetric operator with xÃf, fyL2pΩq ¤ 0 for f P dompÃq
by [15, Lemma A.3.76]. First note that

dompÃq � tf P H2pΩq | pe�Φ
2 ∇pe Φ

2 fqq � n⃗ � 0 on BΩu
and for f P dompÃq we have that

Ãf � νe Φ
2 div

�
e�Φ∇pe Φ

2 fq
	
.

Now, a simple integration by parts argument (see [12, Page 7] for the
details) yields that Ã is symmetric and

xÃf, fyL2pΩq � �
»

Ω
νe�Φ|∇pe Φ

2 fq|2 dζ ¤ 0 (5.19)

for all f P dompÃq. Thus, Ã is indeed a self-adjoint and negative opera-
tor on X. In particular, pSptqqt¥0, equivalently pT ptqqt¥0, is a bounded
analytic semigroup, which completes the proof of (iii) and (iv).

For (v), first note that σpAq � σpÃq, which is contained in p�8, 0s,
since Ã is a negative operator. Let f P dompAq be an arbitrary eigenfunc-
tion of A to the eigenvalue 0. Hence, e Φ

2 f is an eigenfunction of Ã to the
eigenvalue 0. Now, (5.19) yields that ∇peΦfq � 0, i.e., f � c e�Φ for some
constant c. Hence, 0 is a simple eigenvalue with eigenspace tc e�Φ | c P Cu.
For the remaining properties of σpAq � σpÃq it suffices by [56, Chap-
ter 3, Theorem 6.29] to prove that Ã has a compact resolvent. So, let
λ P p0,8q � ρpÃq and g P L2pΩq. Let f P dompÃq be such that

g � pλ� Ãqf.
A direct computation exploiting the definition of Ã yields that f is the
weak solution to$'&'%

�ν∆f � 1
2e Φ

2 divpe�Φ
2 f∇W q � λf � 1

2∇f �∇W � g in Ω,

pν∇f � 1
2f∇W q � n⃗ � 0 on BΩ.

Testing this equation with f and integrating by parts yields

ν∥∇f∥L2pΩqn � 1
2

»
Ω

e�Φ
2 f∇pe Φ

2 fqlooooooomooooooon
� 1

2ν f
2∇W�f∇f

�∇W dx� 1
2

»
Ω
f∇f �∇W dx

�
»

Ω
pg � λfqf dx,
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and hence,

ν∥∇f∥2
L2pΩq

¤ 1
4ν ∥∇W∥2

L8pΩqn∥f∥2
L2pΩq � ∥∇W∥L8pΩqn∥f∥L2pΩq∥∇f∥L2pΩqn

� p∥g∥L2pΩq � λ∥f∥L2pΩqq∥f∥L2pΩq.

It follows from

∥∇W∥L8pΩqn∥f∥L2pΩq∥∇f∥L2pΩqn

¤ ε∥∇f∥2
L2pΩqn �

∥W∥2
L8pΩqn

4ε ∥f∥2
L2pΩq

for ε P p0, νq and ∥f∥L2pΩq ¤ ∥pλ � Ãq�1∥∥g∥L2pΩq that there exists a
constant K ¡ 0 such that

∥f∥H1pΩq ¤ K∥g∥L2pΩq,

which shows that pλ � Ãq�1 is bounded from L2pΩq to H1pΩq. Since
H1pΩq ãÑ L2pΩq is compact, we obtain that pλ � Ãq�1 is a compact
operator on L2pΩq.

Finally, we prove (vi). First note that B is of the form BW from (ii)
with α instead of W . Since α has the same regularity as W , we have that
B is bounded from H1pΩq to L2pΩq. For f, g P X1 � dompAq we have
that,

|xBf, gyX�1,X1 | � |xBf, gyX |

�
∣∣∣∣»

Ω
divpf∇αqg dζ

∣∣∣∣
�

∣∣∣∣� »
Ω
f∇α �∇g dζ

∣∣∣∣
¤ ∥f∥L2pΩq∥∇α∥L8pΩq∥g∥H1pΩq,

where we integrated by parts and used (5.15) to obtain the third equation
and Hölder’s inequality for the last one. Hence, B extends uniquely to a
bounded operator from L2pΩq to X�1, which completes the proof. ❑

By Proposition 5.2.1, the Fokker–Planck system (5.11) - (5.13) with
W and α satisfying (5.14) and (5.15) is of the form ΣF with semigroup
generator A from (5.16), control operators B1 � 0 and B2 � B being the
extension of (5.17) obtained in Proposition 5.2.1 (vi), which we will again
denote by B, and bilinear mapping F : X � CÑ X, F px, uq � xu.

If we can prove that B is admissible with respect to some Orlicz
space, (5.11) admits for all initial values in X and input functions in that
Orlicz space a unique mild solution by Proposition 5.1.3 and Remark 5.1.5.
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However, the system will not be ISS, since 0 is an eigenvalue of A and
hence, A does not generate an exponentially stable C0-semigroup.

Therefore, we consider the system around the stationary distribution

ρ8 :� c e�Φ

with c ¡ 0 such that
³
Ω ρ8pζqdζ � 1, as already done in [12]. We

decompose X according to the projections P,Q : L2pΩq Ñ L2pΩq,

Py :� y � ρ8

»
Ω
ypζq dζ

and
Q :� I � P.

Note that ranQ � kerP � spantρ8u and kerQ � ranP . Define

X :� ranP.

Let y :� ρ � ρ8 and consider its decomposition y � yP � yQ with
yP � Py P X and yQ � Qy P spantρ8u. The Fokker–Planck equation can
be equivalently rewritten as$'&'%

9yP ptq � AyP ptq � B1 pyP ptquptqq � B2uptq, t ¥ 0,
yP p0q � Pρ0,

yQptq � Qρ0 � ρ8 � 0, t ¥ 0,
(5.20)

with operators

A : dompAq :� X X dompAq Ñ X , f ÞÑ Af,

B1 : X Ñ X�1, f ÞÑ Bf,

B2 : CÑ X , u ÞÑ uBρ8.

Here, X�1 is the extrapolation space with respect to A. Note that Qρ0 �
ρ8 � 0 follows from the assumption

³
Ω ρ0pζq dζ � 1.

The above operators are well-defined. Indeed, we have that AQ � 0
on X and QA � 0 on dompAq, where the latter follows from integrating
by parts. Hence, PA � AP holds on dompAq, which yields that A is
well-defined. Moreover, P commutes with the resolvent of A on X, and
thus also with T ptq for every t ¥ 0. Consequently, pT ptqqt¥0 leaves X
invariant, i.e., T ptqX � X for all t ¥ 0. By [50, Lemma 4.2], A generates
a C0-semigroup pT ptqqt¥0 on X , the extrapolation space corresponding
to A satisfies X�1 � X�1 and ∥ρ∥X�1 � ∥ρ∥X�1 for ρ P X�1. By [50,
Lemma 4.4], P admits a unique extension to a projection P P LpX�1q
with ran P � X�1 and which commutes with A and T ptq for every t ¥ 0.
Since we also have that PB � B on H1pΩq by the structural assumption
(5.15), extension yields PB � B on X. Hence, B1 and B2 are well-defined,
B1 P LpX ,X�1q and B2 P LpC,X q.
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Introducing the nonlinear mapping

F : X � CÑ X , py, uq ÞÑ yu, (5.21)

we infer that the Fokker–Planck system given by (5.11)-(5.13) and (5.20)
can be written as bilinear control systems of the form ΣF , where the
respective operators satisfy our general assumptions on this system.
Theorem 5.2.2. The Fokker–Planck system (5.11)-(5.13) admits for every
ρ0 P L2pΩq with

³
Ω ρ0pζqdζ � 1 and u P L2pr0,8q; L2pΩqq a unique mild

solution ρ P Cpr0,8q; L2pΩqq which satisfies for some C,ω ¡ 0 and every
t ¥ 0 »

Ω
ρpt, ζq dζ � 1

and
∥ρptq � ρ8∥L2pΩq

¤ Ce�ωt
�

∥ρ0 � ρ8∥L2pΩq�∥ρ0 � ρ8∥2
L2pΩq

	
� γ

�» t
0

∥upsq∥2
L2pΩq ds



,

where γprq � CreCr
1
2 � Cr

1
2 � Cr. In particular, (5.20) is L2-ISS and

integral ISS.

Proof. We will give the proof based on Theorem 5.1.4 applied to (5.20).
By [50, Lemma 4.2], the largest connected subset of ρpAq containing

an interval of the form rr,8q is contained in ρpAq. Recall that σpAq
is discrete with single accumulation point �8. Hence, ρpAq itself is
the above connected subset, which implies σpAq � σpAq � p�8, 0s. In
particular, ρpAq � p�8, 0s is discrete with single accumulation point �8
and 0 R σpAq by construction. Hence, A generates an exponentially stable
C0-semigroup.

As B2 P LpC,X q, B2 is clearly L2-admissible. Next, we will prove that
B1 is L2-admissible. By [50, Lemma 4.4] it suffices to prove that B is
L2-admissible.

By Proposition 5.2.1, Ã is self-adjoint and negative. Therefore, Ã� I is
strictly negative. We denote the fractional inter- and extrapolation space
corresponding Ã� I by X̃ 1

2
and X̃� 1

2
. Recall from Lemma 1.3.31 that

∥x∥2
X̃ 1

2

� xpI � Ãqx, xyX , x P dompÃq,
∥x∥X̃

� 1
2
� sup

∥v∥X̃ 1
2
¤1

|xx, vyX |, x P X.

We first prove that the operator B̃ :� MBM�1 defined on H1pΩq has a
unique extension B̃ P LpX, X̃� 1

2
q, which is L2-admissible. Integration by

parts yields

∥v∥2
X̃ 1

2

� ∥v∥2
L2pΩq � ∥∇

�
e Φ

2 v
	
e�

Φ
2 ∥2

L2pΩq, v P dompÃq.
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For f P dompÃq � H1pΩq and v P dompÃq with ∥v∥X̃ 1
2
¤ 1, we have that

|xB̃f, vyL2pΩq| �
∣∣∣∣»

Ω
ve Φ

2 div
�

e�Φ
2 f∇α

	
dζ

∣∣∣∣
�

∣∣∣∣»BΩ
ve Φ

2 e�Φ
2 f∇α � n⃗dσ �

»
Ω

∇
�
ve Φ

2

	
�
�

e�Φ
2 f∇α

	
dζ

∣∣∣∣
¤ ∥∇

�
ve Φ

2

	
e�Φ

2 ∥2
L2pΩqn∥f∇α∥2

L2pΩqn

¤ n∥∇α∥2
L2pΩqn∥∇

�
ve Φ

2

	
e�Φ

2 ∥2
L2pΩqn∥f∥2

L2pΩq.

Thus, we can extend B to an operator B̃ P LpX, X̃� 1
2
q, which is L2-

admissible for the semigroup generated by Ã by Proposition 2.1.23. We
have for β P ρpAq � ρpÃq and f P X

∥M�1f∥X�1 � ∥pβ �Aq�1M�1f∥X
� ∥M�1pβ � Ãq�1f∥X
¤ ∥M�1∥∥f∥X̃�1

.

Thus, M�1 has a unique extension to an operator in LpX̃�1, X�1q. The
same argument yields a unique extension M P LpX�1, X̃�1q. Note that
these extensions are inverse to each other, so it is natural to denote the
extensions again by M and M�1. It follows that the extension of B to
an operator in LpX,X�1q is given by B � M�1B̃M , hence, B is L2-
admissible. Indeed, if pT ptqqt¥0 is the semigroup generated by A, then
pSptqqt¥0 with Sptq � MT ptqM�1 is the semigroup generated by Ã and
for u P L2pr0, ts;Xq we have that Mu P L2pr0, ts;Xq and» t

0
T�1pt� sqBupsq ds �M�1

» t
0
S�1pt� sqB̃pMuqpsqds.

Remark 5.1.5 implies that the Fokker–Planck system (5.11)-(5.13) has a
unique global mild solution ρ P Cpr0,8q;Xq for any initial value ρ0 P L2pΩq
and input function u P L2pr0,8q; L2pΩqq. Further, in [12, Proposition 2.2],
it is shown that

³
Ω ρ0pζqdζ � 1 implies

³
Ω ρpt, ζq dζ � 1 for all t ¡ 0.

The fact that (5.20) is L2-ISS and integral ISS are direct consequences
of Theorem 5.1.4 and Corollary 5.1.6. The explicit (integral) ISS estimate
as stated in the theorem follows from Remark 5.1.5 (see also (5.9)), and
by realizing that the global mild solution of (5.20) is given by yp �
P pρ� ρ8q � ρ� ρ8. ❑



Chapter 6

Input-to-state stability of
bilinear feedback systems

In this chapter, we study (local) input-to-state stability of bilinear feedback
systems with unbounded control and observation operators. We present
sufficient and necessary conditions for the existence of global solutions and
a weighted L2-ISS estimate, both for small initial and input data. This
is achieved by considering the bilinear feedback systems as a linear open
loop system with bilinear feedback law. Furthermore, under additional
dissipation properties on the nonlinearity, we show that our results extend
to arbitrary initial and input data, and to general Lq-ISS estimates for
q ¥ 2.

Our abstract framework allows to apply the results to various nonlinear
PDEs, which is done for the Burgers equation, the Schrödinger equation,
the Navier–Stokes equation and a wave equation with quadratic potential.

This chapter is based on [41].

6.1 Local input-to-state stability for bilinear
feedback systems

Consider the bilinear feedback system of the form$'''&'''%
9zptq � Azptq �B1u1ptq �B2u2ptq, t ¥ 0,
zp0q � z0,

yptq � Czptq, t ¥ 0,
u2ptq � Npzptq, yptqq, t ¥ 0,

(ΣN )

where the spaces and operators satisfy the following standing assumptions

121
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 X,U1, U2 and Y are Banach spaces and z0 P X,


 A generates a C0-semigroup pT ptqqt¥0 on X,


 B1 P LpU1, X�1q, B2 P LpU2, X�1q,

 C P LpX1, Y q,

 Y � X with continuous embedding and C extends to an operator in

LpXq, again denoted by C,


 N : X � Y Ñ U2 is a continuous bilinear mapping and there exists
K ¡ 0 and p P p0, 1q such that

∥Npz, yq∥U2 ¤ K∥z∥X∥y∥1�p
X ∥y∥pY (6.1)

holds for all z P X and y P Y .

Inserting u2 � Npz, yq in the systems dynamics, ΣN becomes a non-
linear system, which is often the given natural form, see Section 6.3.
Considering the nonlinearity as a feedback, as depicted in Figure 6.1,
allows us to take advantage of the underlying linear structure.

9z � Az �B1u1 �B2u2

y � Cz

Npz, yq

u1

u2

y

Figure 6.1: Structural representation of the feedback system ΣN .

The linear system corresponding to ΣN , given by$'&'%
9xptq � Axptq �B1u1ptq �B2u2ptq, t ¥ 0,
xp0q � x0,

yptq � Cxptq, t ¥ 0,
(Σlin)

is a linear system ΣpA,B,Cq with U � U1 � U2, u � pu1, u2q and Bu �
B1u1 � B2u2. Thus, Σlin is well-posed if and only if ΣpA,B1, Cq and
ΣpA,B2, Cq are well-posed. If this is the case, the solution x P Cpr0,8q, Xq
and output y P L2

locpr0,8q;Y q of Σlin for x0 P X and ui P L2
locpr0,8q;Uiq,

i � 1, 2, are given by

xptq � T ptqx0 � Φ1
tu1 � Φ2

tu2,

y|r0,ts � Ψtx0 � F1
tu1 � F2

tu2,
(6.2)



6.1. Local input-to-state stability for bilinear feedback systems 123

for t ¥ 0, where pT ptqqt¥0, pΦitqt¥0, pΨi
tqt¥0, pFitqt¥0q are the operator fami-

lies corresponding to pA,Bi, Cq and some transfer function Gi for i � 1, 2,
see Remark 2.3.11. Moreover, there exist positive constants k1,t and k2,t
such that

∥xptq∥X ¤ k1,tp∥x0∥X � ∥u1∥L2pr0,ts;U1q � ∥u2∥L2pr0,ts;U2qq,
∥y∥L2pr0,ts;Y q ¤ k2,tp∥x0∥X � ∥u1∥L2pr0,ts;U1q � ∥u2∥L2pr0,ts;U2qq.

(6.3)

If A generates an exponentially stable C0-semigroup, then k1,t and k2,t
can be chosen independently of t by Corollary 2.3.13.

Definition 6.1.1. Let Σlin be well-posed, T ¡ 0, z0 P X and u1 P
L2

locpr0,8q;Uq. Functions z P Cpr0, T s;Xq and y P L2pr0, T s;Y q are called
a mild solution and output of ΣN on r0, T s for z0 and u1 if

zptq � T ptqz0 � Φ1
tu1 � Φ2

tNpz, yq, for all t P r0, T s,
y � ΨT z0 � F1

Tu1 � F2
TNpz, yq, on r0, T s. (6.4)

We call x P Cpr0,8q;Xq and y P L2
locpr0,8q;Y q a global mild solution and

output of ΣN for z0 and u1 if x|r0,T s and y|r0,T s are a mild solution and
output of ΣN on r0, T s for z0 and u1 for all T ¡ 0.

With this solution concept, we regard ΣN as an abstract control system
pX,U1, ϕq (see Definition 4.1.1) with

ϕpt, z0, u1q � zptq
being the mild solution of ΣN in time t for initial value z0 P X and
input function u1 P L2

locpr0,8q;Uq, where dompϕq is the set of all triples
pt, z0, u1q for which a unique mild solution for z0 and u1 exists on r0, ts.

In [96, Section 7] the authors proved the following existence and unique-
ness result for the mild solution of ΣN locally in time.

Lemma 6.1.2. If Σlin is well-posed, then for every M ¡ 0 there exists
T ¡ 0 such that for any z0 P X and u1 P L2pr0,8q;U1q with ∥z0∥X �
∥u1∥L2pr0,8q;U1q ¤M System ΣN admits a unique solution z and output y
on r0, T s. Moreover, if tmax denotes the the supremum over all T ¡ 0 such
that ΣN admits a solution z and an output y on r0, T s for fixed z0 P X
and u1 P L2pr0,8q;U1q, then the finite-time blow-up property holds:

tmax   8 ùñ lim sup
tÕtmax

∥xptq∥X � 8.

Proof. We refer to [96, Theorem 7.6 & Remark 7.5] for the proof. These
results are formulated in Hilbert spaces, but are also valid in Banach
spaces. ❑

A key property of any form of ISS is the existence of solutions globally
in time. Unfortunately, this is not always given for ΣN as the following
example shows.
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Example 6.1.3. For U1 � U2 � X � Y � R, A � �I, B1 � 0,
B2 � C � I and Npz, yq � zy, we can write ΣN as$'&'%

9zptq � �zptq � zptq2, t ¥ 0,
zp0q � z0,

yptq � zptq, t ¥ 0,

with z0 P R. The solution, given by

zptq � z0

p1� z0qet � z0
,

has finite-time blow-up if z0 ¡ 1. Note that changing the sign of B2 does
not change this behavior as it would be the case for cubic nonlinearity z3

instead of z2. Indeed, for B2 � �I we obtain the solution

zptq � z0

p1� z0qet � z0

with finite-time blow-up if z0   �1. However, for |z0| ¤ 1 the solution
exists globally in time.

With similar techniques used in [96] to prove Lemma 6.1.2 , we will
prove global existence and uniqueness of solutions of ΣN for small initial
and input data as well as a local ISS estimate with respect to weighted
L2-spaces. For any Banach space U , interval I � r0,8q and ω ¡ 0 denote
by L2

ωpI;Uq the weighted L2-space

L2
ωpI;Uq :� tu P L2pI;Uq | eω�u P L2pI;Uqu

with norm
∥u∥L2

ωpI;Uq :� ∥eω�u∥L2pI;Uq.

Theorem 6.1.4. Let Σlin be well-posed and A be the generator of an
exponentially stable C0-semigroup pT ptqqt¥0. Let M,λ ¡ 0 such that
∥T ptq∥ ¤Me�λt holds for all t ¥ 0. Then, for every ω P p0, λq there exist
ε, k ¡ 0 such that for all z0 P X and u1 P L2

ωpr0,8q;U1q with

∥z0∥X � ∥u1∥L2
ωpr0,8q;U1q ¤ ε (6.5)

ΣN admits a unique global mild solution z P Cpr0,8q;Xq and output
y P L2pr0,8q;Y q and for all t ¥ 0 the following estimate holds

∥zptq∥X ¤ ke�ωtp∥z0∥X � ∥u1∥L2
ωpr0,ts;U1qq. (6.6)

In particular, ΣN is locally L2
ω-ISS.
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Proof. Let ω P p0, λq, z0 P X and ui P L2
ωpr0,8q;Uiq for i � 1, 2. By z

and y we denote the state trajectory and the output of Σlin with x0 � z0.
Since eω�ui P L2pr0,8q;Uiq for i � 1, 2, the functions x � eω�z, eω�y are
the state trajectory and the output of the shifted linear system$'&'%

9xptq � pA� ωIqxptq �B1eωtu1ptq �B2eωtu2ptq, t ¥ 0,
xp0q � z0,

eωtyptq � Cxptq, t ¥ 0.
(rΣlin)

This system is again well-posed, as can be directly concluded from the
representation (6.2) and Corollary 2.3.13, see also [16, Proposition 3.2]
for details. By our choice of ω, A� ω generates an exponentially stable
semigroup. Thus, by (6.3) applied to the shifted linear system, there exist
k1, k1 ¡ 0 such that

∥eωtzptq∥X ¤ k1p∥z0∥X � ∥u1∥L2
ωpr0,8q;U1q � ∥u2∥L2

ωpr0,8q;U2qq,
∥y∥L2

ωpr0,ts;Y q ¤ k2p∥z0∥X � ∥u1∥L2
ωpr0,8q;U1q � ∥u2∥L2

ωpr0,8q;U2qq
(6.7)

holds for all t ¥ 0.
Let K ¥ 0 and p P p0, 1q such that (6.1) holds and choose ε ¡ 0 such

that

ε   p2ωq 1�p
2

4K∥C∥1�p
LpXqk

2�p
1 kp2p1� pq 1�p

2
. (6.8)

Now, let z0 P X and u1 P L2
ωpr0,8q;U1q such that (6.5) holds with ε as

above. For any u2 in the set

Sε :� tu2 P L2
ωpr0,8q;U2q | ∥u2∥L2

ωpr0,8q;U2q ¤ εu
we denote by z and y the mild solution and output of the linear system
Σlin with input data z0 and ui, i � 1, 2. We will prove that

G : Sε Ñ Sε, Gpu2q :� Npz, yq
is a contraction. Then, Banach’s fixed point theorem implies that G has a
unique fixed point in Sε, and thus, ΣN has a unique solution. Uniqueness
follows from the above fixed point argument and uniqueness of solutions
locally in time (Lemma 6.1.2).
In order to verify our claim on G, we first check that G is well-defined.
From our assumptions on N and the boundedness of C, we deduce for
almost every t ¡ 0 that

∥eωtNpzptq, yptqq∥U2 ¤ K∥eωtzptq∥X∥eωtyptq∥1�p
X e�ωt∥eωtyptq∥pY

¤ K}C}1�p
LpXq∥eωtzptq∥2�p

X e�ωt∥eωtyptq∥pY
¤ K}C}1�p

LpXqp2k1εq2�pe�ωt∥eωtyptq∥pY ,
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where the last inequality holds by the first inequality in (6.7), (6.5) and
since u2 P Sε. We infer by Hölder’s inequality, (6.7), (6.5), the fact that
u2 P Sε and our choice of ε (6.8) that

∥Npz, yq∥L2
ωpr0,8q;U2q ¤ K∥C∥1�p

LpXqp2k1εq2�p
�

1� p

2ω


 1�p
2

∥y∥pL2
ωpr0,8q;Y q

¤ 4K}C}1�p
LpXqk

2�p
1 kp2

�
1� p

2ω


 1�p
2

ε2

¤ ε,

thus, Gpu2q P Sε.
Similarly, we obtain that G is is a contraction. Let vi P Sε, i � 1, 2,

be arbitrary. By zi and yi, i � 1, 2, we denote the state trajectory and
the output of Σlin with input data z0 and u1 satisfying (6.5) and u2 � vi,
i � 1, 2. Since N is bilinear, we have that

Gpv1q � Gpv2q � Npz1, y1q �Npz2, y2q
� Npz1 � z2, y1q �Npz2, y1 � y2q.

We estimate each term separately. Note that eω�pz1 � z2q and eω�py1 � y2q
are the state trajectory and output of the shifted linear system rΣlin with
z0 � 0, u1 � 0 and u2 � v1�v2, respectively. Similar as before, we deduce
from (6.7), the boundedness of C, (6.5) and the fact that v1 P Sε,

∥eωtNpz1ptq � z2ptq, y1ptqq∥U2

¤ K∥eωtpz1ptq � z2ptqq∥X∥eωty1ptq∥1�p
X e�ωt∥eωty1ptq∥pY

¤ K∥C∥1�p
LpXqk

2�p
1 p2εq1�pe�ωt∥eωty1ptq∥pY ∥v1 � v2∥L2

ωpr0,8q;U2q.

Applying Hölder’s inequality and (6.7), as before, yields
∥eω�Npz1 � z2, y1q∥L2pr0,8q;U2q

¤ 2K∥C∥1�p
LpXqk

2�p
1 kp2

�
1� p

2ω


 1�p
2

ε∥eω�pv1 � v2q∥L2pr0,8q;U2q.

For the second term we obtain similarly
∥eωtNpz2ptq, y1ptq � y2ptqq∥U2

¤ K∥eωtz2ptq∥X∥eωtpy1ptq � y2ptqq∥1�p
X e�ωt∥eωtpy1ptq � y2ptqq∥pY

¤ K∥C∥1�p
LpXqk

2�p
1 p2εq∥v1 � v2∥1�p

L2
ωpr0,8q;U2q

� e�ωt∥eωtpy1ptq � y2ptqq∥pY .
Again, Hölder’s inequality and (6.7) yield that

∥eω�Npz2, y1 � y2q∥L2pr0,ts;U2q

¤ 2K∥C∥1�p
LpXqk

2�p
1 kp2

�
1� p

2ω


 1�p
2

ε∥v1 � v2∥L2
ωpr0,8q;U2q,
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and hence,

∥eω�pGpv1q � Gpv2qq∥L2pr0,8q;U2q
¤ ∥Npz1 � z2, y1q∥L2

ωpr0,8q;U2q � ∥Npz2, y1 � y2q∥L2
ωpr0,8q;U2q

¤ 4K∥C∥1�p
LpXqk

2�p
1 kp2

�
1� p

2ω


 1�p
2

ε∥v1 � v2∥L2
ωpr0,8q;U2q.

By (6.8), G is a contraction on Sε, and therefore, there exists a unique
u2 P Sε such that u2 � Npz, yq, where z and y are the solution and the
output of Σlin with input data z0 and u1 satisfying (6.5) and u2. Hence, z
and y are the solution and the output of ΣN and from (6.7) we deduce
that

∥zptq∥X ¤ 2k1εe�ωt. (6.9)

To prove the ISS estimate, let ε be given as above and let z0 P X and
u1 P L2

ωpr0,8q;U1q such that (6.5) holds. Denote the corresponding
solution and output of ΣN by z and y, respectively. Further, let t ¡ 0 be
arbitrary and define

ε̃ :� ∥z0∥� ∥u1∥L2
ωpr0,ts;U1q ¤ ε. (6.10)

It is clear that ε̃ satisfies (6.8) and that ΣN admits for z0 and ũ1 � 1r0,tsu1
a unique solution z̃ satisfying (6.9) with ε̃, i.e.,

∥z̃ptq∥X ¤ 2k1e�ωtp∥z0∥X � ∥u1∥L2
ωpr0,ts;U1qq.

As a consequence of the causality of the linear system Σlin, we obtain
that

z|r0,ts � z̃|r0,ts,
which completes the proof. ❑

Remark 6.1.5. Let us make the following comments about Theorem 6.1.4.

1. The assumption that A generates an exponentially stable semigroup
is necessary in the view of our general abstract setting. Indeed, for
the trivial choices N � 0, C � 0 or B2 � 0, the bilinear feedback
system ΣN takes the form Σlin with B2 � 0 for which (local) ISS
requires exponential stability of the semigroup, see Theorem 4.2.1.
However, for particular nonlinearities, it might be possible to weaken
these assumptions.

2. Theorem 6.1.4 also holds for Lq-well-posed linear systems with ex-
ponentially stable C0-semigroup for 1 ¤ q   8, where Lq-well-
posedness is defined by replacing L2 by Lq in Definition 2.3.10 and
Definition 2.3.12, see also [94, Definition 2.2.1]. In this case, we con-
sider input functions u1 P Lqω, defined analogously to L2

ω, and obtain
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an Lqω-ISS estimate under analog smallness condition as before. The
proof stays the same up to adaption of the used Hölder inequalities
and the resulting constants.

3. In the situation of Theorem 6.1.4 we obtain

∥zptq∥X ¤ k∥z0∥Xe�ωt � k∥u1∥Lqpr0,ts;U1q

every t ¥ 0, q P r2,8s and u1 P Lqpr0,8q;Uq X L2
ωpr0,8q;Uq as

a direct consequence of (6.6) and Hölder’s inequality. This is an
Lq-ISS estimate, however, this does not mean that ΣN is locally
Lq-ISS, since the equation only holds for small input functions in
the intersection of Lq with the weighted space L2

ω.

4. Determining the local region for the initial value and input function
for which a system is locally ISS, is in general no easy task. In [104],
this problem is discussed for ODE systems. Condition (6.8) shows
how ε in Theorem 6.1.4 can be chosen, depending on the decay rate ω,
the constants ∥C∥LpXq, k1 and k2 corresponding to the shifted linear
system via (6.7) and the constants K and p from (6.1). Condition
(6.8) is not optimal for specific systems (see e.g. Theorem 6.3.3).

6.2 Global input-to-state stability for bilin-
ear feedback systems

In this section we present additional boundedness and dissipation con-
ditions on the system’s operators and the nonlinearity that guarantee
(global) Lq-ISS of ΣN .

Let X,U1, U2, Y be Hilbert spaces.

Assumption 6.2.1. The operator A is self-adjoint and strictly negative,
Bi P LpUi, X� 1

2
q for i � 1, 2 and C P LpX 1

2
, Y q.

Assumption 6.2.2. The operator A is of the form A � A0 � L, where
A0 is skew-adjoint and L P LpXq is strictly dissipative, i.e., there exists a
constant wA   0 such that

Re xLz, zyX ¤ wA∥z∥2
X for all z P X,

Bi P LpUi, Xq for i � 1, 2 and C P LpX,Y q.
Remark 6.2.3. Both assumptions guarantee that A is the generator of an
exponentially stable C0-semigroup and that there exists wA   0 such that

Re xAz, zyX ¤ wA∥z∥2
X for all x P dompAq, (6.11)

where the real part can be ignored under Assumption 6.2.1. Moreover,
Σlin is well-posed by Proposition 2.3.15 and Corollary 2.3.13, thus, Theo-
rem 6.1.4 is applicable.
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We continue with two technical statement about the properties of the
mild solution of ΣN under Assumption 6.2.1 and Assumption 6.2.2.

Lemma 6.2.4. Let U,X, Y be Hilbert spaces and suppose that Assump-
tion 6.2.1 holds. For z0 P X and u1 P L2

locpr0,8q;U1q let r0, tmaxq be the
maximal existence interval of the corresponding mild solution z of ΣN .
Then, z satisfies

z P H1
locpr0, tmaxq;X� 1

2
q X Cpr0, tmaxq;Xq X L2

locpr0, tmaxq;X 1
2
q,

and, for all t P r0, tmaxq,

∥zptq∥2
X � ∥z0∥2

X

� 2
» t

0
xAzpsq, zpsqyX

� 1
2
,X 1

2
� xu1psq, B1

1zpsqyU1

� xNpzpsq, Czpsqq, B1
2zpsqyU2 ds.

(6.12)

Proof. For any z0 P X and u1 P L2pr0,8q;U1q, the system ΣN has a
unique mild solution z P Cpr0, tmaxq;Xq with maximal time of existence
tmax ¡ 0 and an output y P L2

locpr0, tmaxq;Y q by Lemma 6.1.2. For
t P r0, tmaxq, the mild solution z|r0,ts coincides with the restriction x|r0,ts
of the mild solution x of the linear system Σlin with x0 � z0, u1 as given
and u2 � Npz|r0,ts, y|r0,tsq P L2pr0, ts;U2q, extended by 0 to a function in
L2pr0,8q;U2q. Moreover, y|r0,ts is the restriction of the output of Σlin. We
deduce from Proposition 2.3.15 that z|r0,ts � x|r0,ts P H1pp0, tq;X� 1

2
q X

Cpr0, ts;Xq X L2pr0, ts;X 1
2
q and Cz|r0,ts � Cx|r0,ts � y|r0,ts P L2pr0, ts;Y q

for any t P r0, tmaxq. In particular, z has the desired regularity property
and Cz|r0,ts is well-defined as a function in L2pr0, ts;Y q. Finally, (6.12)
follows from Proposition 2.3.15. ❑

The analog of Lemma 6.2.4 holds under Assumption 6.2.2.

Lemma 6.2.5. Let U,X, Y be Hilbert spaces and suppose that Assump-
tion 6.2.2 holds. For z0 P X and u1 P L2

locpr0,8q;U1q let r0, tmaxq be the
maximal existence interval of the corresponding mild solution z of ΣN .
Then, z satisfies for all t P r0, tmaxq.

∥zptq∥2
X � ∥z0∥2

X

� 2
» t

0
xLzpsq, zpsqyX � xu1psq, B1

1zpsqyU1

� xNpzpsq, Czpsqq, B1
2zpsqyU2 ds.

(6.13)

Proof. For z0 P dompAq and ui P H1
0pp0,8q;Uiq for i � 1, 2, the system

Σlin has a unique classical solution z P C1pr0,8q;Xq by Proposition 2.1.22.
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Since A � A0�L with bounded L and skew-adjoint A0, we have for t ¥ 0,
d
dt∥zptq∥

2
X

� 2 Re x 9zptq, zptqyX
� 2 Re pxLzptq, zptqyX � xu1ptq, B1

1zptqyU1 � xu2ptq, B1
2zptqyU2q.

Integration over r0, ts yields

∥zptq∥2
X � ∥z0∥2

X

� 2 Re
» t

0
xLzpsq, zpsqyX � xu1psq, B1

1zpsqyU1

� xu2psq, B1
2zpsqyU2 ds,

(6.14)

where both sides depend continuously on z0 in X and ui in L2pr0, ts;Uiq,
i � 1, 2, since L,B1, B2 and C are bounded. The density of dompAq in
X and H1

0pp0,8q;Uiq in L2pr0,8q;Uiq implies that (6.14) holds for mild
solutions z of Σlin for any z0 P X and ui P L2pr0,8q;Uiq, i � 1, 2.

Now, let z0 P X and u1 P L2
locpr0,8q;U1q. Let z P Cpr0, tmaxq;Xq be

the corresponding solution from Lemma 6.1.2 on r0, tmaxq. Since C is
bounded, the corresponding output is y � Cz P L2

locpr0, tmaxq;Y q (it is
even continuous). Hence, for every t P r0, tmaxq, z|r0,ts is the restriction
of the solution of the linear system Σlin for x0 � z0, u1 as given and
u2 � Npz|r0,ts, Cz|r0,tsq P L2pr0, ts;U2q, extended by 0 to a function in
L2pr0,8q;U2q. By the first part of this proof, (6.14) holds for u2 �
Npz, Czq and all t P r0, tmaxq, which completes the proof. ❑

If we consider input data satisfying the smallness condition (6.5) from
Theorem 6.1.4 in Lemma 6.2.4 or Lemma 6.2.5, we clearly obtain tmax � 8.
Under an additional dissipation condition on the nonlinear part, we can
eliminate the smallness condition to achieve tmax � 8 and global ISS
results. This is formulated in the following theorem.
Theorem 6.2.6. Suppose that Assumption 6.2.1 or Assumption 6.2.2 is
satisfied and let wA   0 such that (6.11) holds. Further, assume that there
exists m1,m2 P R with

1�m1 ¡ 0 and p1�m1qwA �m2   0

such that

Re xNpz, Czq, B1
2zyU2 ¤ �m1 Re xAz, zyX �m2∥z∥2

X (6.15)

holds for all z P dompAq. Then, there exist constants c, ν ¡ 0 such that
ΣN admits for all z0 P X and u1 P L2

locpr0,8q;U1q a unique global mild
solution z which satisfies for all t ¥ 0,

∥zptq∥X ¤ ∥z0∥Xe�νt � c e�νt∥eν�u1∥L2pr0,ts;U1q. (6.16)

In particular, ΣN is Lq-ISS for all q P r2,8s.
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Proof. For any z0 P X and u1 P L2
locpr0,8q;U1q there exists a maximal

tmax ¡ 0 such that ΣN admits a unique solution z P Cpr0, ts;Xq and
output y P L2pr0, ts;Y q of ΣN for all t   tmax by Lemma 6.1.2. It suffices
to prove (6.16) on r0, ts for any t P r0, tmaxq. Indeed, then ∥zp�q∥X is
uniformly bounded on r0, ts and Lemma 6.1.2 yields tmax � 8.

First consider Assumption 6.2.1. We infer from Lemma 6.2.4 that
∥zp�q∥2

X is almost everywhere differentiable and
1
2

d
dt∥zptq∥

2
X

� Re
�
xA�1zptq, zptqyX

� 1
2
,X 1

2
� xu1ptq, B1

1zptqyU1

� xNpzptq, Czptqq, B1
2zptqyU2

	
¤ p1�m1qp�∥z∥2

X 1
2
q �m2∥zptq∥2

X

� ∥B1
1∥LpX 1

2
,U1q∥u1ptq∥U1∥zptq∥X 1

2

¤ rp1�m1 � µqwA �m2s∥zptq∥2
X

� 1
4µ∥B1

1∥2
LpX 1

2
,U1q∥u1ptq∥2

U1

(6.17)

for µ ¡ 0 such that 1�m1 �µ ¡ 0 and �ν :� rp1�m1 �µqwA�m2s   0,
where we applied (1.23) in the first inequality and ab ¤ µ

a
2 � b2

4µ in the
last one. Gronwall’s differential inequality yields that

∥zptq∥2 ¤ ∥z0∥2
Xe�2νt � 1

2µ∥B1
1∥2

LpX 1
2
,Uq

» t
0

∥upsq∥2
U1

e�2νpt�sq ds,

and hence, (6.16) follows,

∥zptq∥X ¤ ∥z0∥Xe�νt �
�

1
2µ∥B1

1∥2
LpX 1

2
,Uq


 1
2

e�νt∥eν�u1∥L2pr0,ts;U1q.

If Assumption 6.2.2 holds, we obtain an analog estimate to (6.17) by
using Lemma 6.2.5 and replacing xA�1zptq, zptqyX

� 1
2
,X 1

2
by xLzptq, zptqyX ,

∥B1
1∥LpX 1

2
,Uq by ∥B1

1∥LpX,Uq and by using the strict dissipativity of L
instead of (1.23). As before, Gronwall’s inequality yields (6.16),

∥zptq∥X ¤ ∥z0∥Xe�νt �
�

1
2µ∥B1

1∥2
LpX,U1q


 1
2

e�νt∥eν�u1∥L2pr0,ts;U1q.

For 2 ¤ q ¤ 8 we have that Lqpr0,8q;U1q � L2
locpr0,8q;U1q, thus,

(6.16) holds for all u P Lqpr0,8q;U1q. Hölder’s inequality implies for every
t ¥ 0 that

e�νt∥eν�u1∥L2pr0,ts;U1q ¤ c∥u1∥Lqpr0,ts;U1q (6.18)
for some constant c ¡ 0 independent of t. In particular, ΣN is Lq-ISS for
any 2 ¤ q ¤ 8. ❑
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Remark 6.2.7. In the proof of Theorem 6.2.6 we have shown that V : X Ñ
R, V pzq � ∥z∥2

X is an ISS-Lyapunov function (see [76, Definition 2.11]
for a definition) for ΣN under the additional assumption (6.15). This
assumption has been used in [88] to derive ISS estimates for parabolic
semilinear boundary control systems with (time-depending) semilinearities
mapping the fractional spaces Xα boundedly into X. Compared to our
setting, neither feedback nor unboundedness of the nonlinearity, in the
sense of the presence of unbounded operator B2 and C, are considered.

6.3 Examples

6.3.1 The Burgers equation
Stability of the viscous Burgers equation has been studied in several works,
such as [59, 67, 85], to name only a few of them. In [106], local ISS with
respect to L8-inputs of a Burgers equation on the state space L2p0, 1q with
in-domain and boundary controls/disturbances is proved under additional
regularity assumptions on the controls/disturbances corresponding to the
used solution concept of classical solutions.

We consider the following controlled viscous Burgers equation with
Dirichlet boundary conditions,$'''''&'''''%

Bz
Bt pt, ζq �

B2z

Bζ2 pt, ζq � zpt, ζqBzBζ pt, ζq � u1pt, ζq, t ¥ 0, ζ P p0, 1q,
zpt, 0q � zpt, 1q � 0, t ¥ 0,
zp0, ζq � z0pζq, ζ P p0, 1q,
ypt, ζq � zpt, ζq, t ¥ 0, ζ P p0, 1q.

(6.19)

We apply the results from Section 6.2 to the above Burgers equation
considered once on the state space H1

0p0, 1q and once on the state space
L2p0, 1q.

First, let the state, input and output spaces be given by

X � H1
0p0, 1q,

U1 � U2 � L2p0, 1q,
Y � H2p0, 1q XH1

0p0, 1q,
(6.20)

where all spaces are assumed to be real valued. We equip H1
0p0, 1q with

the norm
∥z∥H1

0p0,1q �
∥∥∥∥dz

dζ

∥∥∥∥
L2p0,1q

.

It follows from the Poincaré inequality that this defines a norm, which is
equivalent to the standard norm on H1

0p0, 1q.
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Let the operator A on X be defined by

Az :� d2z

dζ2 , dompAq :�
"
z P H3p0, 1q

���� z, d2z

dζ2 P H1
0p0, 1q

*
.

It is known that A is a self-adjoint and strictly negative operator on
L2p0, 1q. The fractional inter- and extrapolation spaces X 1

2
and X� 1

2
are

given by

X 1
2
� H2p0, 1q XH1

0p0, 1q and X� 1
2
� L2p0, 1q,

see [96, Section 8] and the references therein. Further, we consider the
operators Bi P LpUi, X� 1

2
q for i � 1, 2 and C P LpX 1

2
, Y q to be the

identity on the respective spaces. In particular, Assumption 6.2.1 holds.
The bilinear feedback operator N : X � Y Ñ U2 is defined by

Npz, yq :� �zdy
dζ .

The validity of (6.1) for any p P p0, 1q follows from the continuous embed-
ding H1p0, 1q ãÑ Cpr0, 1sq. Indeed, denoting the embedding constant by
c, it follows for any z P X � H1

0p0, 1q, y P Y � H2p0, 1q X H1
0p0, 1q and

p P p0, 1q that

∥z dy
dζ ∥L2p0,1q ¤ ∥z∥Cpr0,1sq∥y∥L2p0,1q ¤ c∥z∥H1

0p0,1q∥y∥1�p
H1

0p0,1q
∥y∥pH2p0,1q.

We obtain the following local ISS result for the Burgers equation.

Theorem 6.3.1. The Burgers equation (6.19) with spaces as in (6.20) and
operators as above is a bilinear feedback system of the form ΣN . Moreover,
there exist ω, ε ¡ 0 such that (6.19) admits for all z0 P H1

0p0, 1q and
u1 P L2

ωpr0,8q; L2p0, 1qq with

∥z0∥H1
0p0,1q � ∥u1∥L2

ωpr0,8q;L2p0,1qq ¤ ε

a unique mild solution

z P H1pp0,8q; L2p0, 1qq X Cpr0,8q; H1
0pΩqq X L2pr0,8q; H2p0, 1qq,

which satisfies for some k ¡ 0 and every t ¥ 0 that

∥zptq∥X ¤ ke�ωtp∥z0∥H1
0p0,1q � ∥eω�u1∥L2pr0,ts;L2p0,1qqq.

In particular, (6.19) is locally L2
ω-ISS.

Proof. This is a direct consequence of Theorem 6.1.4 and Lemma 6.2.4. ❑

Remark 6.3.2. In [96, Theorem 8.1], the authors proved that the Burgers
equation admits global solutions for all input data z0 P H1

0p0, 1q and u1 P
L2pr0,8q; L2p0, 1qq. Unfortunately, (6.15) does not hold for all z P dompAq,
so our method does not guarantee a global L2-ISS estimate for the spaces
from (6.20).
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Now, let us consider (6.19) with the real valued spaces
X � L2p0, 1q,
U1 � U2 � H�1p0, 1q,
Y � H1

0p0, 1q.
(6.21)

Let A be given by

Az :� d2z

dζ2 , dompAq :� H2p0, 1q XH1
0p0, 1q.

As before, A is self-adjoint and strictly negative on L2p0, 1q, and we obtain
X 1

2
� H1

0p0, 1q and X� 1
2
� H�1p0, 1q.

The operators Bi P LpUi, X� 1
2
q and C P LpX 1

2
, Y q are considered to be

the identity on the respective spaces. In particular, Assumption 6.2.1
holds. The bilinear feedback operator N : X � Y Ñ U2, given by

Npz, yq :� �1
2

dpzyq
dζ ,

satisfies (6.1). Indeed, for z P X and y P Y the continuity of the embed-
ding Hsp0, 1q ãÑ Cpr0, 1sq for s P p 1

2 , 1q, see e.g. [1, Theorem 7.63] or [21,
Theorem 8.2], and the classical interpolation result [66, Corollary 1.7 & Ex-
ample 1.10] imply for α P p0, 1

2 q that

∥y∥Cpr0,1sq ¤ K∥y∥
H

1
2�α ¤ K∥y∥1�p

L2p0,1q∥y∥pH1p0,1q

with p � 1
2 � α P p0, 1q, and hence,

∥Npz, yq∥U2 ¤
1
2∥zy∥L2p0,1q ¤

1
2K∥z∥L2p0,1q∥y∥1�p

L2p0,1q∥y∥pH1p0,1q.

Moreover, for z P dompAq we have that

xNpz, Czq, zyL2p0,1q � �1
3

» 1

0

dz3

dζ pζqdζ � �1
3 pz

3p1q � z3p0qq � 0.

Therefore, (6.15) holds and we obtain the following global ISS result for
the Burgers equation.
Theorem 6.3.3. The Burgers equation (6.19) with spaces as in (6.21) and
operators as above is a bilinear feedback system of the form ΣN . Moreover,
(6.19) admits for all z0 P L2p0, 1q and u1 P L2pr0,8q; H�1p0, 1qq a unique
mild solution
z P H1pp0,8q; H�1p0, 1qq X Cpr0,8q; L2p0, 1qq X L2pr0,8q; H1

0p0, 1qq,
which satisfies for some ν, c ¡ 0 and all t ¥ 0 that

∥zptq∥L2p0,1q ¤ ∥z0∥L2p0,1qe�νt � c e�νt∥eν�u1∥L2pr0,ts;H�1p0,1qq.

In particular, (6.19) is Lq-ISS for all q P r2,8s.
Proof. This is a direct consequence of Theorem 6.2.6 and Lemma 6.2.4. ❑
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6.3.2 The Schrödinger equation
We consider the following controlled Schrödinger equation

$'''''&'''''%

Bz
Bt pt, ζq � iB

2z

Bζ2 pt, ζq � zpt, ζq � pzpt, ζqq2 � u1pt, ζq, t ¥ 0, ζ P p0, 1q,
zpt, 0q � zpt, 1q � 0, t ¥ 0,
zp0, ζq � z0, ζ P p0, 1q,
ypt, ζq � zpt, ζq, t ¥ 0, ζ P p0, 1q.

(6.22)

We take the spaces as in (6.20), which are here assumed to be complex
valued and define the operator A on X by

Az :� id
2z

dζ2 � z, dompAq :�
"
z P H3p0, 1q

���� z, d2z

dζ2 P H1
0p0, 1q

*
.

Note that A � A0 � L, where A0 � id2z
dζ2 with dompA0q � dompAq is

skew-adjoint and L � �I is strictly dissipative. We consider the input and
output spaces U1 � U2 � Y � X and the bounded operators B1 � B2 �
C � I, whence Assumption 6.2.2 is satisfied. Define N : X � Y Ñ U2 by

Npz, yq :� zy.

Thus, N satisfies (6.1) for any p P p0, 1q. Indeed, it follows from the
continuous embedding H1p0, 1q ãÑ Cpr0, 1sq with embedding constant
c ¡ 0 that

∥Npz, yq∥H1p0,1q ¤ ∥ dz
dζ y∥L2p0,1q � ∥z dy

dζ ∥L2p0,1q ¤ 2c∥z∥H1p0,1q∥y∥H1p0,1q.

We obtain the following local ISS result.

Theorem 6.3.4. The Schrödinger equation (6.22) is a bilinear feedback
system of the form ΣN with the above spaces and operators. Moreover,
there exist ω, ε ¡ 0 such that (6.22) admits for all z0 P H1

0p0, 1q and
u1 P L2

ωpr0,8q; L2p0, 1qq with

∥z0∥H1
0p0,1q � ∥u1∥L2

ωpr0,8q;L2p0,1qq ¤ ε

a unique solution z P Cpr0,8q; H1
0p0, 1qq, which satisfies for some k ¡ 0

and every t ¥ 0 that

∥zptq∥H1
0p0,1q ¤ ke�ωtp∥z0∥H1

0p0,1q � ∥eω�u1∥L2pr0,ts;L2p0,1qqq.

In particular, (6.22) is locally L2
ω-ISS.

Proof. This is a direct consequence of Theorem 6.1.4. ❑
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6.3.3 The Navier–Stokes system
The following example of the Navier–Stokes equation is taken from [96].
There, the authors considered the Navier–Stokes equation as a bilinear
feedback system to prove local in time well-posedness. All operator theo-
retic statements used in this section can be found in [96, Section 9] and
the references therein.

Consider the controlled Navier–Stokes equation on a bounded and open
domain Ω � Rn with boundary BΩ of class C2 (see [27, Section 6.2] for a
definition)

$'''''&'''''%
ρ
Bz
Bt pt, ζq � ν∆zpt, ζq � ρrpz �∇qzspt, ζq �∇ppt, ζq � u1pt, ζq, t ¥ 0, ζ P Ω,

div zpt, ζq � 0, t ¥ 0, ζ P Ω,
zpt, ζq � 0, t ¥ 0, ζ P BΩ,
zp0, ζq � z0pζq, ζ P Ω.

(6.23)

The Navier–Stokes system describes the motion of an incompressible
viscous fluid in the bounded domain Ω. The Eulerian velocity field of the
fluid z and the pressure field in the fluid p are unknown, while the density
ρ and the viscosity of the fluid ν are given positive constants. By P we
denote the orthogonal projection from L2pΩ;R3q onto the closed subspace

L2,σpΩq :� tφ P L2pΩ;R3q | divφ � 0, φ � n⃗ � 0 on BΩu,

where n⃗ denotes the outward pointing unit normal vector at BΩ and
φ � n⃗ � 0 is understood in the weak sense, i.e., for all ψ P H1pΩq we have
that »

Ω
φpζq �∇ψpζq dζ � 0.

The projection P is called the Helmholtz or Leray projector, and it is known
that

GpΩq :� pI � P qL2pΩ;R3q
can be given by GpΩq � ∇pxH1pΩqq, where

xH1pΩq :�
"
q P H1pΩq

����»
Ω
qpζqdζ � 0

*
.

One can prove that ∇ : xH1pΩq Ñ GpΩq is a bounded invertible operator
with bounded inverse, denoted by M.
The Stokes operator A0 is defined by

A0φ :� �ν
ρ
P∆φ, dompA0q :� L2,σpΩq XH1

0pΩ;R3q XH2pΩ;R3q.
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It turns out that A0 is a self-adjoint, strictly positive operator on L2,σpΩq.
Hence, we can define

Aφ :� �A0φ, dompAq :� dompA 3
2
0 q

on the state space

X � dompA 1
2
0 q � tφ P H1

0pΩ;R3q | divφ � 0u,

equipped with the standard norm on H1
0pΩ;R3q, which is equivalent to the

graph norm of A
1
2
0 . Thus, A is a self-adjoint and strictly negative operator

on X and we obtain that

X 1
2
� dompA0q and X� 1

2
� L2,σpΩq.

Further, we introduce the spaces

U1 � U2 � L2pΩ;R3q, Y � dompA0q

and the operators Bi P LpUi, X� 1
2
q for i � 1, 2 and C P LpX 1

2
, Y q with

bounded extension C P LpXq given by

B1 � B2 � P, C � I.

We define the bilinear mapping N : X � Y Ñ U2 by

Npz, yq � �rpz �∇qys.

In [96, Proof of Proposition 9.2] it is shown that N satisfies (6.1) for p � 4
5 .

Theorem 6.3.5. The Helmholtz projected version of the Navier–Stokes
system (6.23) is a bilinear feedback system of the form ΣN with the above
spaces and operators. Moreover, there exist ω, ε ¡ 0 such that (6.23) admits
for all z0 P H1

0pΩ;R3q with div z0 � 0 and u1 P L2
ωpr0,8q; L2pΩ;R3qq with

∥z0∥H1
0pΩ;R3q � ∥u1∥L2

ωpr0,8q;L2pΩ;R3qq ¤ ε

a unique solution pz, pq,

z P H1pp0,8q; L2pΩ;R3qq X Cpr0,8q; H1
0pΩ;R3qq X L2pr0,8q; H2pΩ;R3qq,

p P L2pr0,8q; xH1pΩqq,

which satisfies for some k ¡ 0 and every t ¥ 0 that

∥zptq∥H1
0pΩ;R3q ¤ ke�ωtp∥z0∥H1

0pΩ;R3q � ∥eω�u1∥L2pr0,ts;L2pΩ;R3qqq.

In particular, (6.23) is locally L2
ω-ISS.
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Proof. The proof follows from the computations in the proof of [96,
Thorem 9.1], Theorem 6.1.4 and Lemma 6.2.4. We give the details for the
sake of completeness.
Since the projected version of (6.23) is a bilinear feedback system for
which Assumption 6.2.1 is satisfied, we obtain from Theorem 6.1.4 and
Lemma 6.2.4 the existence of ω, ε ¡ 0 such that there exists for ev-
ery z0 P X � tφ P H1

0pΩ;R3q | divφ � 0u and u1 P L2
ωpr0,8q;U1q �

L2
ωpr0,8q; L2pΩ;R3qq satisfying

∥z0∥H1
0pΩ;R3q � ∥u1∥L2

ωpr0,8q;L2pΩ;R3q ¤ ε

a unique mild solution

z P H1pp0,8q; L2,σpΩqq X Cpr0,8q; H1
0pΩ;R3qq X L2pr0,8q; H2pΩqq,

which satisfies

∥zptq∥H1
0pΩq ¤ k∥z0∥H1

0pΩqe
�ωt � ke�ωt∥u1eω�∥L2pr0,ts;L2pΩ;R3qq

for every t ¥ 0 and some constant k ¡ 0. Since z P H1pp0,8q; L2,σpΩqq it
follows that

ρ 9zptq � νP∆zptq � ρP rpzptq �∇qzptqs
with each term in L2pr0,8q; L2pΩ;R3qq, and hence,

ρ 9zptq � ν∆zptq � ρrpzptq �∇qzptqs � u1ptq
� pI � P qrν∆zptq � ρpzptq �∇qzptq � u1ptqs.

Since

pI � P qrν∆zptq � ρpzptq �∇qzptq � u1ptqs P L2pr0,8q;GpΩqq

by the definition of GpΩq, we have that p P L2pr0,8q; xH1pΩqq, where

pptq :� MpI � P qrν∆zptq � ρpzptq �∇qzptq � u1ptqs.

It follows that the pair pz, pq is a solution for (6.23) with the asserted
regularities. The uniqueness follows from the uniqueness of the solution
for the projected version of that system. ❑

6.3.4 A wave equation
Consider the following wave-type equation on a bounded and open domain
Ω � Rd, d ¤ 4, with Lipschitz boundary BΩ (see [27, Section 6.2] for a
definition),
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$'''''''''''''&'''''''''''''%

B2ω

Bt2 pt, ζq �
Bω
Bt pt, ζq �∆zpt, ζq � pωpt, ζqq2 � u1pt, ζq, t ¥ 0, ζ P Ω,

ωpt, ζq � 0, t ¥ 0, ζ P BΩ,
ωp0, ζq � ω0pζq, ζ P Ω,

Bω
Bt p0, ζq � ω1pζq, ζ P Ω,

y1pt, ζq � ωpt, ζq, t ¥ 0, ζ P Ω,

y2pt, ζq � Bω
Bt pt, ζq, t ¥ 0, ζ P Ω.

(6.24)

The transformation �
φ
ψ

�
�

�
ω
Bω
Bt

�
,

�
φ0
ψ0

�
�

�
ω0
ω1

�
,

leads to the first order system, considered on the state space X � H1
0pΩq�

L2pΩq, $'''''''&'''''''%

�
9φptq
9ψptq

�
� A

�
φptq
ψptq

�
�
�

0
u1ptq

�
�
�

0
φ2ptq

�
, t ¥ 0�

φp0q
ψp0q

�
�

�
φ0
ψ0

�
,�

y1ptq
y2ptq

�
�

�
φptq
ψptq

�
, t ¥ 0,

(6.25)

where the operator A : dompAq � X Ñ X is defined by

A :�
�

0 I
∆ �I

�
, dompAq :� �

H2pΩq XH1
0pΩq

��H1
0pΩq.

It is well-known that A generates an exponentially stable C0-semigroup
on X. It can be readily seen that (6.25) has the form ΣN with input and
output spaces

U1 � U2 � L2pΩq, Y � X � H1
0pΩq � L2pΩq, (6.26)

control and observation operators

B1 � B2 �
�
0
I

�
, C � I,

and bilinear mapping N : X � Y Ñ U2 given by

N

��
φ1
ψ1

�
,

�
φ2
ψ2

�

� φ1φ2.
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Note that Bi P LpUi, Xq for i � 1, 2 and C P LpX,Y q thus Σlin is well-
posed.

Since d ¤ 4, the embedding H1pΩq ãÑ L4pΩq is continuous, which
implies that N is well-defined and satisfies (6.1) for any p P p0, 1q as
Y � X. Indeed, for φ1, φ2 P H1pΩq we have that

∥φ1φ2∥L2pΩq ¤ ∥φ1∥L4pΩq∥φ2∥L4pΩq ¤ c2∥φ1∥H1pΩq∥φ2∥H1pΩq,

where c is the embedding constant.
We obtain the following local ISS result.

Theorem 6.3.6. The wave equation (6.25) is a bilinear feedback system
of the form ΣN with the above spaces and operators. Moreover, there exist
ω, ε ¡ 0 such that (6.25) admits for all pφ0, ψ0q P H1

0pΩq � L2pΩq and
u1 P L2

ωpr0,8q; L2pΩqq with

∥φ0∥H1
0pΩq � ∥ψ0∥L2pΩq � ∥u1∥L2

ωpr0,8q;L2pΩqq ¤ ε

a unique mild solution pφ,ψq P Cpr0,8q; H1
0pΩq � L2pΩqq which satisfies

for some k ¡ 0 and every t ¥ 0 that

∥φptq∥H1pΩq � ∥ψptq∥L2pΩq
¤ ke�ωt

�
∥φ0∥H1pΩq � ∥ψ0∥L2pΩq � ∥u1eω�∥L2pr0,ts;L2pΩqq

�
.

In particular, (6.25) is locally L2
ω-ISS.

Proof. This is a direct consequence of Theorem 6.1.4. ❑

Remark 6.3.7. One could also use energy based methods to derive the local
ISS result for (6.25). More precisely, for sufficiently small ε ¡ 0, Poincaré’s
inequality implies that the square root of the energy functional

Epφ,ψq :�
»

Ω
|∇φpxq|2 dx�

»
Ω

|ψpxq|2 dx� ε

»
Ω
φpxqψpxq dx

defines a norm on H1
0pΩq � L2pΩq, which is equivalent the the standard

norm on that space. Moreover, there exist ν, c ¡ 0 such that
1
2

d
dtEpφptq, ψptqq ¤ �νEpφptq, ψptqq � c∥u1ptq∥2

L2pΩq

holds for classical solutions pφ,ψq of (6.25), provided that the initial
value and input function are sufficiently small in the sense of (6.5). This
means that E is a local ISS-Lyapunov function. As in the proof of
Theorem 6.2.6, Gronwall’s inequality yields the desired L2

ν-ISS estimate for
classical solutions. As seen in the proof of Lemma 6.2.5, we can approximate
mild solutions by classical solutions in Cpr0, ts; H1

0pΩq � L2pΩqq for every
t ¥ 0. Note that Assumption 6.2.2 is not satisfied. However, A � A0 � L
with A0 being skew-adjoint and L being bounded and dissipative (not
strictly dissipative), which suffices to prove Lemma 6.2.5. Finally, by
approximation, the local L2

ν-ISS estimate holds also for mild solutions.



Chapter 7

Input-to-state stability of
a semilinear wave
equation

In this chapter, we study input-to-state stability of a semilinear wave
equation with in-domain damping being active only on some spatial sub-
region. In [108] Zuazua considered this problem in the absence of inputs.
He proved exponential stability under certain geometric conditions on
the subregion based on multiplier methods and the monotonicity of the
system’s energy. In the presence of inputs, it is no longer guaranteed that
the energy is monotonically decaying. However, we show that the semi-
linear damped wave equation with inputs is L2-ISS by refining Zuazua’s
approach.

7.1 Well-posedness of a semilinear wave equa-
tion

We consider the following semilinear damped wave equation on the open
and bounded domain Ω � Rn with boundary BΩ of class C2 (see [27,
Section 6.2] for a definition) and distributed input u,$'''''''&'''''''%

B2z

Bt2 pt, ζq �∆zpt, ζq � fpzpt, ζqq � apζqBzBt pt, ζq � upt, ζq, t ¥ 0, ζ P Ω,

zpt, ζq � 0, t ¥ 0, ζ P BΩ,
zp0, ζq � z0pζq, ζ P Ω,

Bz
Bt p0, ζq � z1pζq, ζ P Ω.

(7.1)

141
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In line with [108], we impose the following assumption on f and a. The
function f P C1pRq satisfies, for all s P R,

fpsqs ¥ 0, (7.2)

in particular, fp0q � 0. Further, assume that f is superlinear in the sense
that there exists some δ ¡ 0 such that for all s P R,

fpsqs ¥ p2� δqF psq, (7.3)

where
F psq �

» s
0
fprq dr.

Moreover, f satisfies the following local Lipschitz condition for some C ¡ 0,
p ¡ 1 with pn� 2qp ¤ n and all x, y P R,

|fpxq � fpyq| ¤ Cp1� |x|p�1 � |y|p�1q|x� y|. (7.4)

The function a P L8pΩq is assumed to be non-negative almost everywhere.
Moreover, we assume that there exist a non-empty open subset ω � Ω and
a constant a0 ¡ 0 such that for almost every ζ P ω,

apζq ¥ a0 ¡ 0. (7.5)

This guarantees that the damping in (7.1) is active on the subset ω.
As a first result, we prove well-posedness of (7.1) considered as a first

order system. Using the (formal) state variable x � r x1
x2 s �

� z
Bz
Bt

�
, we

obtain #
9xptq � Axptq � gpxptqq � vptq, t ¥ 0,
xp0q � x0,

(7.6)

considered on the state space X � H1
0pΩq � L2pΩq with

A :�
�

0 I
∆ �Ma

�
, dompAq :� �

H2pΩq XH1
0pΩq

��H1
0pΩq, (7.7)

and multiplication operator

Ma : L2pΩq Ñ L2pΩq, Maz � az.

The semilinearity g, the input v and the initial value x0 are given by

gpxq � � 0
�fpx1q

�
, v � r 0

u s , and x0 � r z0
z1 s . (7.8)

Note that a P L8pΩq implies Ma P LpL2pΩqq. It follows that A generates a
C0-semigroup on X. Furthermore, f , considered as a function from H1pΩq
into L2pΩq is well-defined and locally Lipschitz continuous in the sense
that for any bounded set V � X there exists a constant LV ¡ 0 such that

∥fpzq � fpz̃q∥L2pΩq ¤ LV ∥z � z̃∥H1pΩq for all z, z̃ P V.
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Indeed, the assumption pn � 2qp ¤ n with p ¡ 1 guarantees that the
embedding H1pΩq ãÑ L2ppΩq is continuous, see [1, Theorem 4.12]. Then,
for z, z̃ P H1pΩq, we deduce from (7.4) and Hölder’s inequality that»

Ω
|fpzpζqq � fpz̃pζqq|2 dζ

¤ C2
»

Ω
p1� |zpζq|p�1 � |z̃pζq|p�1q2 |zpζq � z̃pζq|2 dζ

¤ 3C2
»

Ω
p1� |zpζq|2pp�1q � |z̃pζq|2pp�1qq |zpζq � z̃pζq|2 dζ

¤ 3C2
�

∥1∥2pp�1q
L2ppΩq � ∥z∥2pp�1q

L2ppΩq � ∥z̃∥2pp�1q
L2ppΩq

	
∥z � z̃∥2

L2ppΩq

¤ K
�

∥1∥2pp�1q
L2ppΩq � ∥z∥2pp�1q

H1pΩq � ∥z̃∥2pp�1q
H1pΩq

	
∥z � z̃∥2

H1pΩq,

for some K ¡ 0. Since fp0q � 0, it follows that f : H1
0pΩq Ñ L2pΩq is well-

defined and locally Lipschitz continuous. Consequently, also g : X Ñ X is
well-defined and locally Lipschitz continuous.

The well-posedness of (7.6) follows from the next abstract result, which
is well-known for v � 0, see e.g. [15, Theorem 11.1.5]. For the sake of
completeness, we give the proof, which is an adoption of the proof of [15,
Theorem 11.1.5].

Lemma 7.1.1. Let A be the generator of a C0-semigroup pT ptqqt¥0 on a
Hilbert space X and g : X Ñ X be locally Lipschitz continuous, i.e., for
every bounded set V � X there exists a constant LV ¡ 0 such that

∥gpx1q � gpx2q∥X ¤ LV ∥x1 � x2∥X

holds for all x1, x2 P V . Then, for every x0 P X and v P L2pr0,8q;Xq
there exists a t1 ¡ 0 such that the semilinear system (7.6) has a unique
mild solution x P Cpr0, t1s;Xq, that is,

xptq � T ptqx0 �
» t

0
T pt� sqrgpxpsqq � vpsqsds, t P r0, t1s.

Moreover, let x0 and v be fixed and denote by tmax the supremum over all
t1 ¡ 0 such that (7.6) has a unique mild solution on r0, t1s. Then, the
following assertions hold.

(i) If tmax   8, then lim suptÕtmax∥xptq∥X � 8.

(ii) For any compact interval r0, τ s � r0, tmaxq, the mild solution depends
continuously in Cpr0, τ s;Xq on x0 P X and v P L2pr0, τ s;Xq.

(iii) If x0 P dompAq and v P H1pp0,8q;Xq, then, x : r0, tmaxq Ñ X is
differentiable with xptq P dompAq and it satisfies (7.6) pointwise on
r0, tmaxq.
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Proof. We first consider the more general problem#
9xptq � Axptq � gpxptqq � vptq, t ¥ t0,

xpt0q � x0,
(7.9)

for some t0 ¥ 0, and prove the existence of unique mild solution x P
Cprt0, t1s, Xq for sufficiently small t1 ¡ t0, i.e., x satisfies

xptq � T pt� t0qx0 �
» t
t0

T pt� sqrgpxpsqq � vpsqsds, t P rt0, t1s.

Let x0 P X and v P L2prt0,8q;Xq be arbitrary and extend v by 0 to a
function in L2pr0,8q;Xq. Let M ¥ 1 and ω ¡ 0 with ∥T ptq∥ ¤Meωt for
all t ¥ 0. For r ¡ 0 with ∥x0∥X � ∥v∥L2pr0,8q;Xq ¤ r, define

Kprq :�Meωr �M ¥ 1 (7.10)

and

δprq :� min
#

1, 1
eω

�
KprqLKprq � ∥gp0q∥X

� , 1
2MeωLKprq

+
¡ 0, (7.11)

where LKprq is the Lipschitz constant of g on the bounded ball tx P
X | ∥x∥X ¤ Kprqu. We will show that (7.9) has a unique mild solution x
on rt0, t0 � δprqs with ∥xptq∥X ¤ Kprq. Define

SKprq :�  
x P Cprt0, t0 � δprqs;Xq �� ∥x∥Cprt0,t0�δprqs;Xq ¤ Kprq(

and the nonlinear map F : SKprq Ñ SKprq by

pFxqptq :� T pt� t0qx0 �
» t
t0

T pt� sqpgpxpsqq � vpsqq ds.

Note that for any x P SKprq the function Fx is continuous on rt0, t0�δprqs.
Indeed, this follows from the strong continuity of pT ptqqt¥0 and the fact
that the integral term is the convolution of the semigroup with the L1

loc
function gpxp�qq � v, see also Proposition 2.1.9 for B � I. Further, for
every x P SKprq and t P rt0, t0 � δprqs we have that

∥pFxqptq∥X

¤Meω
�

∥x0∥X �
» t
t0

LKprq∥xpsq∥X � ∥gp0q∥X � ∥vpsq∥X ds



¤Meωr �MeωδprqpKprqLKprq � ∥gp0q∥Xq
¤ Kprq.
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This shows that F is well-defined. Similar, for x1, x2 P SKprq and t P
rt0, t0 � δprqs we estimate

∥pFx1qptq � pFx2qptq∥X
¤MeωLKprqδprq∥x1 � x2∥Cprt0,t0�δprqsq

¤ 1
2∥x1 � x2∥Cprt0,t0�δprqsq.

Hence, F is a contraction and Banach’s fixed point theorem yields the
existence of a unique mild solution x P Cprt0, t0 � δprqs;Xq of (7.9) with
∥xptq∥X ¤ Kprq.

Next consider (i) and let tmax be the supremum over all t1 ¡ t0 such
that (7.9) admits a unique mild solution x on rt0, t1s for fixed x0 P X and
v P L2prt0,8q;Xq. We prove (i) by contradiction. Assume that tmax   8
and lim suptÕtmax∥xptq∥X   8. Hence, there exists an increasing sequence
ptnqnPN in rt0, tmaxq converging to tmax with

r :� sup
nPN

∥xptnq∥X   8.

By the first part of the proof, we find a δ � δprq ¡ 0 independent of n P N
such that the system#

9xnptq � Axnptq � gpxnptqq � vptq, t ¥ tn,

xnptnq � xptnq

has a unique mild solution xn on rtn, tn � δs. Hence, we can extend the
mild solution x by xn to a mild solution on rt0, tn�δs. For large n we have
tn � δ ¡ tmax contradicting the maximality of tmax and thereby proving
the claim.

For (ii), fix x0 P X and v P L2pr0,8q;Xq and denote the corresponding
solution of (7.6) by x. Let τ P p0, tmaxq. We will show that for x̃0 P X and
ṽ P L2pr0,8q;Xq sufficiently close to x0 and v, the corresponding mild
solution z exists on r0, τ s and thereon it is close to x. To do this rigorously,
set

r :� 2p∥x∥Cpr0,τs;Xq � ∥v∥L2pr0,8q;Xqq
and let Kprq and δprq be given by (7.10) and (7.11), respectively. Choose
N P N such that Nδprq ¥ τ . By going over to some possibly smaller
δ P p0, δprqs we can assume that Nδ � τ . So, tn :� nδ with n � 0, . . . , N
induces a partition of r0, τ s. Further define

Mτ :� max
!

1,maxtτ 1
2 , 1uMeωτ

�
1�MeωτLKprqτeMeωτLKprqτ

	)
,

where LKprq denotes the Lipschitz constant of g on tx P X | ∥x∥X ¤ Kprqu.
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Now, let x̃0 P X and ṽ P L2pr0,8q;Xq with

∥x̃0 � x0∥X ¤ ∥x0∥X
MN
τ

,

∥ṽ � v∥L2pr0,τs;Xq ¤
∥v∥L2pr0,τs;Xq°N

k�0 M
k
τ

.

(7.12)

Since we consider solutions on r0, τ s we assume without loss of generality
that v � ṽ � 0 on pτ,8q.
We will inductively prove that for all n � 0, . . . , N�1 there exists a unique
mild solution zn on rtn, tn�1s of (7.9) with initial condition znptnq �
zn�1ptnq (with z�1pt0q � z�1p0q :� x̃0) and input ṽ, which satisfy for
t P rtn, tn�1s

∥znptq�xptq∥ ¤Mn�1
τ ∥znptnq�xptnq∥X�

n�1̧

k�1
Mk
τ ∥ṽ�v∥L2pr0,τs;Xq. (7.13)

First, let n � 0. Note that

∥x̃0∥X � ∥ṽ∥L2pr0,τs;Xq
¤ ∥x̃0 � x∥X � ∥x0∥X � ∥ṽ � v∥L2pr0,τs;Xq � ∥v∥L2pr0,τs;Xq
¤ r,

by (7.12) and the fact that Mτ ¥ 1. Hence, by the first part of the
proof, (7.9) with z0 as state trajectory, initial condition z0pt0q � z�1pt0q �
x̃0 and input ṽ admits a unique solution z0 on rt0, t1s which satisfies
∥z0∥Cprt0,t1s;Xq ¤ Kprq. Hence, we can invoke the Lipschitz continuity of
g to derive the following estimate from the mild solution formula for all
t P rt0, t0 � δs,

∥z0ptq � xptq∥X
¤Meωτ maxtτ 1

2 , 1up∥x̃0 � x0∥X � ∥ṽ � v∥L2pr0,τs;Xqq

�MeωτLKprq
» t
t0

∥z0psq � xpsq∥X ds.

Applying Gronwall’s integral inequality yields that

∥z0ptq � xptq∥X
¤Meωτ maxtτ 1

2 , 1up∥x̃0 � x0∥X � ∥ṽ � v∥L2pr0,τs;Xqq

�
�

1�MeωτLKprq
» t
t0

eMeωτLKprqpt�sq ds



¤Mτ p∥x̃0 � x0∥X � ∥ṽ � v∥L2pr0,τs;Xqq,

(7.14)

which shows the induction claim for n � 0. Assume that for n P t0, . . . , N�
2u there exists a unique mild solution zn on rtn, tn�1s of (7.9) with initial
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condition znptnq � zn�1ptnq and input ṽ, which satisfies (7.13). Then, it
follows from (7.12) that

∥znptn�1q∥X � ∥ṽ∥L2pr0,τs;Xq
¤ ∥znptn�1q � xptn�1q∥X � ∥xptn�1q∥X
� ∥ṽ � v∥L2pr0,τs;Xq � ∥v∥L2pr0,τs;Xq

¤Mn�1
τ ∥x̃0 � x0∥X � ∥xptn�1q∥X

�
n�1̧

k�0
Mk
τ ∥ṽ � v∥L2pr0,τs;Xq � ∥v∥L2pr0,τs;Xq

¤ r.

Again, by the first part of the proof, (7.9) with zn�1 as state trajectory,
initial condition zn�1ptnq � znptn�1q and input ṽ has a unique mild
solution zn�1 on rtn�1, tn�2s which satisfies ∥zn�1∥Cprtn�1,tn�2s;Xq ¤ Kprq.
As before, we estimate the norm of the difference of zn�1 and x based on
the mild solution formula and then apply Gronwall’s integral inequality to
obtain (7.13) for n� 1. This proves the claimed induction statement. It
follows that the function z : r0, τ s Ñ X, defined by z � zn on rtn, tn�1s for
n � 0, . . . , N � 1 is the unique continuous mild solution on r0, τ s of (7.6)
with initial value x̃0 and input ṽ. Further, since Mτ ¥ 1, z satisfies (7.13)
with n � N and all t P r0, τ s. Since N only depends on τ , we have shown
the existence of a constant Cτ ¡ 0 such that

∥zptq � xptq∥X ¤ Cτ p∥x̃0 � x0∥X � ∥ṽ � v∥L2pr0,τs;Xqq (7.15)

holds for all t P r0, τ s provided that x̃0 and ṽ are close to x0 and v in the
sense of (7.12), which completes the proof of (ii).

Finally, consider (iii). Let x be the mild solution of (7.6) for x0 P
dompAq and v P H1pr0,8q;Xq. For any h ¡ 0 we have that

xphq � x0

h

� T phqx0 � x0

h
� 1
h

» h
0
T ph� sqrgpx0q � vp0qs ds

� 1
h

» h
0
T ph� sqrgpxpsqq � gpx0q � vpsq � vp0qs ds.

Since x0 P dompAq, the first term converges to Ax0 as h × 0 and the
second term converges to gpx0q � vp0q by the strong continuity of the
semigroup. Since H1 is continuously embedded in the continuous functions
on compact intervals, g and v are uniformly continuous on any compact
interval. Hence, for any ε ¡ 0 there exists hε P p0, 1s such that for all
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h P r0, hεs we have that∥∥∥∥∥ 1
h

» h
0
T ph� sqrgpxpsqq � gpx0q � vpsq � vp0qs ds

∥∥∥∥∥
X

¤ sup
tPr0,1s

∥T ptq∥ε.

Since ε ¡ 0 was arbitrary, the left-hand side converges to 0 as h× 0, and
therefore, x is right-differentiable in t � 0.

Next, we show right-differentiability in t P r0, tmaxq. Let δ ¡ 0 such
that t� δ   tmax and h P p0, δq. First note that

xpt� hq � T ptqxphq �
» t

0
T pt� sqrgpxps� hqq � vps� hqsds.

Hence, xpt� hq is the solution of#
9yptq � Ayptq � gpyptqq � vpt� hq, t ¥ 0,
yp0q � xphq

evaluated in t. It follows from (7.15) that∥∥∥∥xpt� hq � xptq
h

∥∥∥∥
X

¤ Ct�δ

�∥∥∥∥xphq � x0

h

∥∥∥∥
X

�
∥∥∥∥vp� � hq � vp�q

h

∥∥∥∥
L2pr0,ts;Xq

�
.

(7.16)

Note that the right-hand side is uniformly bounded in h P p0, δq since x is
right-differentiable in t � 0 and∥∥∥∥vp� � hq � vp�q

h

∥∥∥∥2

L2pr0,ts;Xq
�

» t
0

∥∥∥∥» 1

0
9vps� rhqdr

∥∥∥∥2

X

ds

¤
» t

0

» 1

0
∥ 9vps� rhq∥2

X dr ds

�
» 1

0

» t�rh
rh

∥ 9vpσq∥2
X dσ dr

¤ ∥ 9v∥2
L2pr0,t�hs;Xq

holds for any t ¥ 0 and h ¡ 0, where we applied Cauchy Schwarz’ inequality.
Next, consider the identity

T phq � I

h
xptq � xpt� hq � xptq

h

� 1
h

» t�h
t

T pt� h� sqrgpxpsqq � vpsqs ds.
(7.17)
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Similar as before, the integral term

1
h

» t�h
t

T pt� h� sqrgpxpsqq � vpsqs ds

� 1
h

» h
0
T ph� rqrgpxpt� rqq � vpt� rqs dr

� 1
h

» h
0
T ph� rqrgpxpt� rqq � gpxptqq � vpt� rq � vptqsdr

� 1
h

» h
0
T ph� rqrgpxptqq � vptqsdr

converges to gpxptqq � vptq as h× 0 by the uniform continuity of g and v
on compact intervals and the strong continuity of the semigroup. To show
convergence of the remaining terms in (7.17), let phnqnPN � p0, δq be any
zero-sequence. It follows from (7.16) that pxpt�hnq�xptq

hn
qnPN is bounded,

hence it possesses a weakly convergent subsequence (again denoted with
hn). By (7.17), also pT phnq�I

hn
qnPN converges weakly to some y P X. Thus,

for q P dompA1q we have that

xA1q, xptqyX � lim
nÑ8

B
T 1phnq � I

hn
q, xptq

F
X

� lim
nÑ8

B
q,
T phnq � I

hn
xptq

F
X

� xq, yyX .
Therefore, xptq P domppA1q1q which coincides with dompAq since A is closed.
Finally, (7.17) yields that x is right-differentiable in t with right-derivative
Axptq � gpxptqq � vptq.

For the left-differentiability in t P p0, tmaxq we proceed similar. For
h ¡ 0 with t� h ¥ 0 we have that

xptq � T pt� hqxphq �
» t�h

0
T pt� h� sqrgpxps� hqq � vps� hqs ds.

Hence, xptq is the solution of#
9yptq � Ayptq � gpyptqq � vpt� hq, t ¥ 0,
yp0q � xphq

evaluated in t � h. For small h ¡ 0 (7.15) yields the existence of some
Ct ¡ 0 such that∥∥∥∥xptq � xpt� hq

h

∥∥∥∥
X

¤ Ct

�∥∥∥∥xphq � x0

h

∥∥∥∥
X

�
∥∥∥∥vp� � hq � vp�q

h

∥∥∥∥
L2pr0,t�hs;Xq

�
.
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As before, the right-hand side is uniformly bounded in h P p0, ts. For such
h we also have that

T phq � I

h
xpt� hq � xptq � xpt� hq

h

� 1
h

» t
t�h

T pt� sqrgpxpsqq � vpsqsds.
(7.18)

The integral 1
h

³t
t�h T pt�sqrgpxpsqq�vpsqs ds converges to gpxptqq�vptq as

h× 0, which can be concluded with the same arguments used before. More-
over, for any zero-sequence phnqnPN in p0, tq we have that pxptq�xpt�hnq

hn
qnPN

is bounded. Therefore, we can extract a weakly convergent subsequence
(again denoted with hn). By (7.17) also pT phnq�I

hn
xpt� hnqqnPN converges

weakly to some y P X and for any q P dompA1q we have that

xA1q, xptqyX � lim
nÑ8

B
T 1phnq � I

hn
q, xpt� hnq

F
X

� lim
nÑ8

B
q,
T phnq � I

hn
xpt� hnq

F
X

� xq, yyX ,

where we used q P dompA1q and continuity of x for the first equality.
This shows that xptq P dompAq. Therefore, in the above equation, we
can replace the subsequence phnqnPN by any zero-sequence in p0, ts, and
since q P dompA1q was arbitrary, it follows that limh×0

T phq�I
h xpt� hq �

Axptq. Finally, (7.18) implies that x is left-differentiable with left-derivative
Axptq � gpxptqq � vptq. This coincides with the right-derivative in t, and
this, x is differentiable on r0, tmaxq with 9xptq � Axptq � fpxptqq � vptq. ❑

Remark 7.1.2. For any z0 P H1
0pΩq, z1 P L2pΩq and u P L2pr0,8q; L2pΩqq,

the unique mild solution of the first order semilinear wave equation
(7.6) – (7.8) from Lemma 7.1.1 takes the form x � � z

Bz
Bt

�
with z P

Cpr0, tmaxq; H1
0pΩqqXC1pr0, tmaxq; L2pΩqq. Moreover, if z0 P H2pΩqXH1

0pΩq,
z1 P H1

0pΩq and u P H1
0pp0,8q; L2pΩqq, then

Bz
Bt ptq P H1

0pΩq and B2z

Bt2 ptq P L2pΩq

exist for all t P r0, tmaxq and z satisfies (7.1) in L2pΩq pointwise on r0, tmaxq.
Indeed, by Lemma 7.1.1, we only have to show that the mild solution
x � r x1

x2 s P Cpr0, tmaxq; H1
0pΩq � L2pΩqq takes the claimed form. To this

end, note that it coincides on r0, tmaxq with the mild solution of the linear
system #

9̃xptq � Ax̃ptq � ũptq, t ¥ 0,
x̃p0q � x0,



7.1. Well-posedness of a semilinear wave equation 151

with state space X � H1
0pΩq�L2pΩq and input ũ � � 0

�fpx1q�u
�

on r0, tmaxq
and ũ � 0 on rtmax,8q. Since f maps H1

0pΩq continuously into L2pΩq we
have ũ P L2pr0,8q;Xq. By Proposition 2.1.21, x̃ satisfies for t ¥ 0 the
implicit equation

x̃ptq � x0 �
» t

0
A�1x̃psq � ũpsqds

in X with integration in X�1. Thus, we obtain for the first component

x1ptq � z0 �
» t

0
x2psq ds

for all t P r0, tmaxq, i.e., x1 P C1pr0, tmaxq; L2pΩqq with dx1
dt ptq � x2ptq in

L2pΩq.
For a mild solution x � � z

Bz
Bt

�
of the semilinear wave equation consider

the energy functional

Eptq :� 1
2

»
Ω

|∇zpt, ζq|2 � |BzBt pt, ζq|
2 dζ �

»
Ω
F pzpt, ζqq dζ. (7.19)

If
� z
Bz
Bt

�
is the mild solution for z0 P H2pΩq X H1

0pΩq, z1 P H1
0pΩq and

u P H1pp0,8q; L2pΩqq, then we can differentiate the first integral in (7.19)
in each t P r0, tmaxq by Remark 7.1.2. The latter integral is differentiable
in t, since z : r0, tmaxq Ñ H1

0pΩq is differentiable and F considered as
mapping F : H1

0pΩq Ñ L1pΩq, x ÞÑ F pxp�qq is Fréchet-differentiable with
Fréchet-derivative F 1pxqh � hfpxp�qq, which is also a function in L2pΩq.
Indeed, for x, h P H1

0pΩq the Lipschitz condition (7.4) together with the
continuous embeddings H1

0pΩq ãÑ L2ppΩq ãÑ Lp�1pΩq yields

∥F px� hq � F pxq � fpxqh∥L1pΩq

�
»

Ω

�����
» xpζq�hpζq
xpζq

fpsq � fpxpζqq ds
�����dζ

¤
»

Ω
Cp1�maxt|xpζq|p�1, |xpζq � hpζq|p�1u � |xpζq|p�1q|hpζq|2 dζ

¤
»

Ω
Cp1� 2p�2|hpζq|p�1 � p1� 2p�2q|xpζq|p�1q|hpζq|2 dζ

¤ C
�

∥h∥2
L2pΩq � 2p�2∥h∥p�1

Lp�1pΩq � p1� 2p�2q∥x∥p�1
LppΩq∥h∥2

L2ppΩq
	

¤ rC �
∥h∥2

H1
0pΩq � ∥h∥p�1

H1
0pΩq

� ∥x∥p�1
H1

0pΩq
∥h∥2

H1
0pΩq

	
for some rC ¡ 0, where we used convexity of s ÞÑ sp�1, which yields
maxt|x|p�1, |x � h|p�1u ¤ p|x| � |h|qp�1 ¤ 2p�2p|x| � |h|q, as well as
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Hölder’s inequality. Since p ¡ 1, the claimed Fréchet-differentiability
follows. Therefore, we can differentiate Eptq for every t P r0, tmaxq and

d
dtEptq

�
»

Ω
∇zpt, ζq �∇

�Bz
Bt pt, ζq



� B2z

Bt2 pt, ζq
Bz
Bt pt, ζq dζ

�
»

Ω
fpzpt, ζqqBzBt pt, ζqdζ

� �
»

Ω
∆zpt, ζqBzBt pt, ζq dζ �

»
Ω

B2z

Bt2 pt, ζq
Bz
Bt pt, ζqdζ

�
»

Ω
fpzpt, ζqqBzBt pt, ζqdζ

� �
»

Ω
apζq

����BzBt pt, ζq
����2 dζ �

»
Ω
upt, ζqBzBt pt, ζq dζ.

Note that the latter is continuous in t and integration over rS, T s yields

EpT q � EpSq

� �
» T
S

»
Ω
apζq

����BzBt pt, ζq
����2 dζ dt�

» T
S

»
Ω
upt, ζqBzBt pt, ζq dζ dt.

(7.20)

Since both sides depend continuously on z0 in H1
0pΩq, z1 P L2pΩq and

u P L2pr0,8q; L2pΩqq by Lemma 7.1.1 (ii), density yields that (7.20)
holds for any z0 P H1

0pΩq, z1 P L2pΩq and u P L2pr0,8q; L2pΩqq and
the corresponding mild solution.

Lemma 7.1.3. The mild solution
� z
Bz
Bt

�
of the first order semilinear wave

equation (7.6)-(7.8) for z0 P H1
0pΩq, z1 P L2pΩq and u P L2pr0,8q; L2pΩqq

from Lemma 7.1.1 is global, i.e., tmax � 8.

Proof. By Lemma 7.1.1 (i) it suffices to show that any mild solution with
maximal existence time tmax ¡ 0 is bounded on any compact interval
r0, T s � r0, tmaxq. For any t P r0, T s we have that

1
2∥zptq∥2

H1
0pΩq �

1
2∥BzBt ptq∥

2
L2pΩq

¤ Eptq
¤ Ep0q � 1

4ε∥BzBt ∥2
L2pr0,ts;L2pΩqq � ε∥u∥2

L2pr0,ts;L2pΩqq

¤ Ep0q � 1
4εT∥BzBt ∥2

L2pr0,ts;L2pΩqq � ε∥u∥2
L2pr0,T s;L2pΩqq,

for all ε ¡ 0, where we used that F ¥ 0 on R in the first inequality and
(7.20) as well as a ¥ 0 almost everywhere in Ω and xy ¤ x2

4ε � εy2 for any
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x, y P R in the second one. For ε � T we obtain that

sup
tPr0,T s

"
1
2∥zptq∥2

H1
0pΩq �

1
4∥BzBt ptq∥

2
L2pΩq

*
¤ Ep0q � T∥u∥2

L2pr0,T s;L2pΩqq.

This shows that mild solutions remain bounded on compact intervals
r0, T s � r0, tmaxq. ❑

7.2 Input-to-state stability of a semilinear
wave equation

We will use the energy functional (7.19) to prove an L2-ISS estimate for
the mild solution of (7.6), provided that the damping region ω satisfies
the following geometric condition.

Assumption 7.2.1. For ζ0 P Rn set

Γpζ0q :� tζ P BΩ | pζ � ζ0q � n⃗pζq ¡ 0u ,

where n⃗pζq is the outward pointing unit normal vector at ζ P BΩ. We
assume that the damping region ω � Ω on which (7.5) holds almost
everywhere for some a0 ¡ 0 is a neighborhood of Γpζ0q in Ω for some
ζ0 P Rn, i.e., ω � U X Ω for some neighborhood U of Γpζ0q for some
ζ0 P Rn.

Geometrically, Γpζ0q is the part of the boundary BΩ, “facing away”
from ζ0, as depicted in Section 7.2. Assumption 7.2.1 does not require
that ω has a certain measure. In fact, ω could be the intersection of Ω
with an ε-tube around Γpζ0q.

ζ0

n⃗

n⃗
Γpζ0q

Ω

ω

Figure 7.1: Example for the geometric condition on the damping region ω
stated in Assumption 7.2.1.
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Theorem 7.2.2. Let Ω � Rn be an open and bounded domain with
boundary BΩ of class C2. Let f P C1pRq and a P L8pΩq be non-negative
such that (7.2)–(7.5) hold, where ω satisfies Assumption 7.2.1. Then,
there exist µ,C0, C1 ¡ 0 such that for all z0 P H1

0pΩq, z1 P L2pΩq and
u P L2pr0,8q; L2pΩqq the mild solution x � � z

Bz
Bt

�
of (7.6)–(7.8) satisfies

∥zptq∥2
H1

0pΩq � ∥BzBt ptq∥
2
L2pΩq

¤ C0e�µt
�

∥z0∥2
H1

0pΩq � ∥z0∥p�1
H1

0pΩq
� ∥z1∥2

L2pΩq
	

� C1∥u∥2
L2pr0,ts;L2pΩqq,

(7.21)

for all t ¥ 0, where p ¡ 1 is the constant from (7.4). In particular, the first
order formulation (7.6) of the semilinear wave equation (7.1) is L2-ISS.

Proof. It suffices to prove (7.21) for z0 P H2pΩq X H1
0pΩq, z1 P H1

0pΩq
and u P H1pp0,8q; L2pΩqq and the corresponding global classical solution
x � � z

Bz
Bt

�
, which exists by Lemma 7.1.1 and Lemma 7.1.3. The statement

for z0, z1, u as in the theorem follows by density and continuous dependency
of the mild solution and (7.21) on these data. Furthermore, it suffices to
show the energy estimate

Eptq ¤ Ce�µtEp0q �K∥u∥2
L2pr0,ts;L2pΩqq (7.22)

for all t ¥ 0 and some absolute constants C,K ¡ 0. Indeed, we deduce
from (7.22) that

1
2

�
∥zptq∥2

H1
0pΩq � ∥BzBt ptq∥

2
L2pΩq



¤ Eptq
¤ Ce�µtEp0q �K∥u∥2

L2pr0,ts;L2pΩqq

¤ C0e�µt
�

∥z0∥2
H1

0pΩq � ∥z0∥p�1
H1

0pΩq
� ∥z1∥2

L2pΩq
	
� C1∥u∥2

L2pr0,ts;L2pΩqq

for some C0, C1 ¡ 0, where we used F psq ¥ 0 in the first inequality and
(7.3), (7.4) together with fp0q � 0 and the continuity of the embedding
H1pΩq into Lp�1pΩq for the last inequality.

To arrive at (7.22) we first prove for T ¡ 0 sufficiently large that

EpT q ¤ 2CT pEp0q � EpT qq �KT ∥u∥2
L2pr0,T s;L2pΩqq (7.23)

with positive constants CT and KT . This is done in STEP I and STEP II.
Finally we show in STEP III that (7.23) implies (7.22).

For the sake of keeping the notation simple, we waive the dependency
of all functions on t ¥ 0 or ζ P Ω when integrating. Furthermore, we use
C and K for absolute and CT and KT for T -dependent constants which
may change from estimate to estimate.
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STEP I. We first prove

» T
0
Eptq dt

¤ CT

#» T
0

»
Ω
a

����BzBt
����2 dζ dt�

» T
0

»
Ω

|z|2 dζ dt� ∥u∥2
L2pr0,T s;L2pΩqq

+

for some T -dependent constant CT ¡ 0 and T ¡ 0 sufficiently large.
Multiplying (7.1) with q � ∇z for a vector field q P pW1,8pΩqqn and

integrating by parts as in [64, Lem. 3.7] yields that

�»
Ω

Bz
Bt pq �∇zq dζ

�T
0
� 1

2

» T
0

»
ω

pdiv qq
�∣∣∣∣BzBt

∣∣∣∣2
� |∇z|2

�
dζ dt

�
» T

0

»
Ω

ņ

j,k�1

Bqk
Bζj

Bz
Bζk

Bz
Bζj dζ dt�

» T
0

»
Ω
pdiv qqF pzq dζ dt

�
» T

0

»
Ω
a
Bz
Bt pq �∇zq dζ dt

� 1
2

» T
0

»
BΩ
pq � n⃗q

∣∣∣∣ BzBn⃗
∣∣∣∣2

dσ dt�
» T

0

»
Ω
upq �∇zq dζ dt.

(7.24)

Let ζ0 P Rn such that ω is a neighborhood of Γpζ0q. The choice

qpζq � mpζq :� pζ � ζ0q

yields that

�»
Ω

Bz
Bt pm �∇zqdζ

�T
0
� n

2

» T
0

»
Ω

∣∣∣∣BzBt
∣∣∣∣2
� |∇z|2 dζ dt

�
» T

0

»
Ω

|∇z|2 dζ dt� n

» T
0

»
Ω
F pzq dζ dt

�
» T

0

»
Ω
a
Bz
Bt pm �∇zq dζ dt

� 1
2

» T
0

»
BΩ
pm � n⃗q

∣∣∣∣ BzBn⃗
∣∣∣∣2

dσ dt�
» T

0

»
Ω
upm �∇zq dζ dt

¤ 1
2

» T
0

»
Γpζ0q

pm � n⃗q
∣∣∣∣ BzBn⃗

∣∣∣∣2
dσ dt�

» T
0

»
Ω
upm �∇zq dζ dt.

(7.25)

Similar, multiplying (7.1) with ξz for ξ P W1,8pΩq and integrating by
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parts leads to

�»
Ω
ξz

�Bz
Bt �

az

2



dζ

�T
0

�
» T

0

»
Ω
ξ

�∣∣∣∣BzBt
∣∣∣∣2
� |∇z|2

�
dζ dt

�
» T

0

»
Ω
pp∇ξq � p∇zqqz dζ dt�

» T
0

»
Ω
ξzfpzqdζ dt

�
» T

0

»
Ω
ξzudζ dt.

(7.26)

For ξ � 1 we obtain that

�»
Ω
z

�Bz
Bt �

az

2



dζ

�T
0

�
» T

0

»
Ω

∣∣∣∣BzBt
∣∣∣∣2
� |∇z|2 dζ dt�

» T
0

»
Ω
zfpzq dζ dt

�
» T

0

»
Ω
zudζ dt.

(7.27)

If we combine (7.25) and (7.27), we obtain for any α P R that

�»
Ω

Bz
Bt pm �∇zq � αz

�Bz
Bt �

a

2z



dζ
�T

0

�
�n

2 � α
	 » T

0

»
Ω

∣∣∣∣BzBt
∣∣∣∣2

dζ dt�
�

1� α� n

2

	 » T
0

»
Ω

|∇z|2 dζ dt

� α

» T
0

»
Ω
zfpzq dζ dt� n

» T
0

»
Ω
F pzqdζ dt

�
» T

0

»
Ω
a
Bz
Bt pm �∇zq dζ dt

¤ 1
2

» T
0

»
Γpζ0q

pm � n⃗q
∣∣∣∣ BzBn⃗

∣∣∣∣2
dσ dt�

» T
0

»
Ω
upm �∇z � zqdζ dt.

Let δ ¡ 0 be the constant from (7.3). For α P
�

maxt0, n2 � 1, n
2�δ u, n2

	
and C � mintn2 � α, 1 � α � n

2 , p2 � δqα � nu it follows that CF pzq ¤
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αzfpzq � nF pzq, and hence,

C

» T
0
Eptq dt

¤ 1
2

» T
0

»
Γpζ0q

pm � n⃗q
∣∣∣∣ BzBn⃗

∣∣∣∣2
dσ dt�

∣∣∣∣∣
» T

0

»
Ω
a
Bz
Bt pm �∇zq dζ dt

∣∣∣∣∣� X

�
» T

0

»
Ω
upm �∇z � zq dζ dt,

where

X �
∣∣∣∣∣
�»

Ω

Bz
Bt pm �∇zq � αz

�Bz
Bt �

a

2z



dζ
�T

0

∣∣∣∣∣ .
Thus, the previous inequality together with

∣∣∣∣∣
» T

0

»
Ω
a
Bz
Bt pm �∇zq dζ dt

∣∣∣∣∣
¤ ∥a∥L8pΩq

4ε

» T
0

»
Ω
a

∣∣∣∣BzBt
∣∣∣∣2

dζ dt� ε∥m∥2
L8pΩq

» T
0

»
Ω

|∇z|2 dζ dtlooooooooomooooooooon
¤ ³T

0 Eptq dt

for ε ¡ 0 sufficiently small implies for some constant C ¡ 0 that

» T
0
Eptq dt

¤ C

#» T
0

»
Γpζ0q

pm � n⃗q
∣∣∣∣ BzBn⃗

∣∣∣∣2
dσ dt�

» T
0

»
Ω
a

∣∣∣∣BzBt
∣∣∣∣2

dζ dt� X

�
∣∣∣∣∣
» T

0

»
Ω
upm �∇z � zq dζ dt

∣∣∣∣∣
+
.

(7.28)

It is known (see e.g. [64, Chapter I, Remark 3.2]) that there exist a
neighborhood ω̂ of Γpζ0q such that ω̂ X Ω � ω and a vector field h P
pW1,8pΩqqn such that

h � n⃗ on Γpζ0q, h � n⃗ ¥ 0 in BΩ and h � 0 in Ωzω̂.
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Therefore, (7.24) for q � h implies for some C ¡ 0 that» T
0

»
Γpζ0q

∣∣∣∣ BzBn⃗
∣∣∣∣2

dσ dt

¤
» T

0

»
BΩ
ph � n⃗q

∣∣∣∣ BzBn⃗
∣∣∣∣2

dσ dt

¤ C

# ∣∣∣∣∣
�»

Ω

Bz
Bt ph �∇zq dζ

�T
0

∣∣∣∣∣
�
» T

0

»
ω̂XΩ

∣∣∣∣BzBt
∣∣∣∣2
� |∇z|2 � F pzq dζ dt

�
» T

0

»
ω̂XΩ

uph �∇zq dζ dt
+
.

(7.29)

It follows from the the proof of [64, Chapter VII, Lemma 2.4] that there
exists a function η P W1,8pΩq such that

0 ¤ η ¤ 1 in Ω, η � 1 in ω̂, η � 0 in Ωzω and |∇η|2

η
P L8pωq.

Hence, (7.26) with ξ � η implies that

» T
0

»
Ω
ηp|∇z|2 � zfpzqq dζ dt

¤
∣∣∣∣∣
» T

0

»
Ω
zpp∇ηq � p∇zqq dζ dt

∣∣∣∣∣�
» T

0

»
ω

∣∣∣∣BzBt
∣∣∣∣2

dζ dt� Y

�
∣∣∣∣∣
» T

0

»
Ω
ηzudζ dt

∣∣∣∣∣ ,
where

Y �
∣∣∣∣∣
�»

Ω
ηz

�Bz
Bt �

a

2z



dζ
�T

0

∣∣∣∣∣ .
Therefore, this inequality together with∣∣∣∣∣

» T
0

»
Ω
zpp∇ηq � p∇zqq dζ dt

∣∣∣∣∣
�

∣∣∣∣∣
» T

0

»
ω

�
z∇η?
η



� p?η∇zq dζ dt

∣∣∣∣∣
¤ ε

» T
0

»
Ω
η|∇z|2 dζ dt� 1

4ε

» T
0

»
ω

|∇η|2

η
|z|2 dζ dt
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for ε ¡ 0 sufficiently small and (7.3) yield for some C ¡ 0 that» T
0

»
ω̂XΩ

|∇z|2 � F pzq dζ dt

¤
» T

0

»
Ω
ηp|∇z|2 � F pzqq dζ dt

¤ C

#» T
0

»
ω

∣∣∣∣BzBt
∣∣∣∣2

dζ dt�
» T

0

»
ω

|z|2 dζ dt� Y

�
∣∣∣∣∣
» T

0

»
Ω
ηzudζ dt

∣∣∣∣∣
+
.

(7.30)

Combining (7.28), (7.29) and (7.30) with the boundedness of η and h and
the positivity assumptions on a, we obtain that

» T
0
Eptq dt

¤ C

# ∣∣∣∣∣
�»

Ω

Bz
Bt ph �∇zq dζ

�T
0

∣∣∣∣∣� X � Y

�
» T

0

»
Ω
a

∣∣∣∣BzBt
∣∣∣∣2

dζ dt�
» T

0

»
Ω

|z|2 dζ dt

�
∣∣∣∣∣
» T

0

»
Ω
ηzudζ dt

∣∣∣∣∣�
∣∣∣∣∣
» T

0

»
ω̂XΩ

uph �∇zqdζ dt
∣∣∣∣∣

�
∣∣∣∣∣
» T

0

»
Ω
upm �∇z � zq dζ dt

∣∣∣∣∣
+

¤ C

# ∣∣∣∣∣
�»

Ω

Bz
Bt ph �∇zq dζ

�T
0

∣∣∣∣∣� X � Y

�
» T

0

»
Ω
a

∣∣∣∣BzBt
∣∣∣∣2

dζ dt�
» T

0

»
Ω

|z|2 dζ dt

� ε

» T
0

»
Ω

∣∣∣∣BzBt
∣∣∣∣2
� |∇z|2 dζ dtloooooooooooooooomoooooooooooooooon

¤ ³T
0 Eptq dt

�
�

1� 1
4ε



∥u∥2

L2pr0,T s;L2pΩqq

+
.

(7.31)

Using the definitions of X and Y,∣∣∣∣∣
�»

Ω

Bz
Bt ph �∇zq dζ

�T
0

∣∣∣∣∣� X � Y
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¤ C

#�»
Ω

∣∣∣∣BzBt
∣∣∣∣2
� |∇z|2 dζ �

»
Ω

|z|2 dζ
�T

0

+

¤ C

#�»
Ω

∣∣∣∣BzBt
∣∣∣∣2
� |∇z|2 dζ

�T
0

+

¤ C

#
EpT q � Ep0q

+

� C

#
2EpT q � Ep0q � EpT q

+

¤ C

#
2EpT q �

» T
0

»
Ω
a

∣∣∣∣BzBt
∣∣∣∣2

dζ dt

� ε

» T
0

»
Ω

∣∣∣∣BzBt
∣∣∣∣2

dζ dt� 1
4ε∥u∥2

L2pr0,T s;L2pΩqq

+
,

where we applied the Poincaré inequality in the first and (7.20) in the
last equality. Combining this with (7.31) and choosing ε sufficiently small
leads to

» T
0
Eptq dt

¤ C

#
EpT q �

» T
0

»
Ω
a

∣∣∣∣BzBt
∣∣∣∣2

dζ dt�
» T

0

»
Ω

|z|2 dζ dt

� ∥u∥2
L2pr0,T s;L2pΩqq

+
.

(7.32)

We remark that the function r ÞÑ Eprq � ³r
0
³
Ω u

Bz
Bt dζ dt is non-increasing

on r0,8q by (7.20). It follows that

TEpT q � T

» T
0

»
Ω
u
Bz
Bt dζ dt ¤

» T
0
Eprq dr �

» T
S

» r
S

»
Ω
u
Bz
Bt dζ dtdr,
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and therefore,

TEpT q

¤
» T

0
Eprqdr � T

» T
0

»
Ω
u
Bz
Bt dζ dt�

» T
0

» r
0

»
Ω
u
Bz
Bt dζ dtdr

�
» T

0
Eprqdr �

» T
0

» T
r

»
Ω
u
Bz
Bt dζ dtdr

¤
» T

0
Eprqdr � T

» T
0

»
Ω

∣∣∣∣uBzBt
∣∣∣∣ dζ dt

¤
» T

0
Eprqdr � T

2

» T
0

»
Ω

∣∣∣∣BzBt
∣∣∣∣2

dζ dt� T

2 ∥u∥L2pr0,T s;L2pΩqq.

Hence, (7.32) yields that

EpT q

¤ CT

#» T
0

»
Ω
a

∣∣∣∣BzBt
∣∣∣∣2

dζ dt�
» T

0

»
Ω

|z|2 dζ dt

� ∥u∥2
L2pr0,T s;L2pΩqq

+ (7.33)

and » T
0
Eptq dt

¤ CT

#» T
0

»
Ω
a

∣∣∣∣BzBt
∣∣∣∣2

dζ dt�
» T

0

»
Ω

|z|2 dζ dt

� ∥u∥2
L2pr0,T s;L2pΩqq

+ (7.34)

for some constant CT ¡ 0 and T ¡ 0 large enough.
STEP II. Let T ¡ 0 large such that (7.33) and (7.34) hold. We prove

that there exists a constant CT such that» T
0

»
Ω

|z|2 dζ dt ¤ CT

#» T
0

»
Ω
a

∣∣∣∣BzBt
∣∣∣∣2

dζ dt� ∥u∥2
L2pr0,T s;L2pΩqq

+
.

Note that this estimate (and the statement of the theorem) has been
established in [108] if u|r0,T s � 0 (u � 0). Therefore, we can assume
u|r0,T s � 0.

Assume that such an estimate does not hold. Then, there exists a
sequence

��
zn
Bzn
Bt

�	
nPN

of classical solution of (7.6) with the same input
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v � r 0
u s, u P L2pr0, T s; L2pΩqq (extended outside of r0, T s by 0) such that

lim
nÑ8

∥zn∥2
L2pr0,T s;L2pΩqq³T

0
³
Ω a

∣∣ Bzn

Bt
∣∣2 dζ dt� ∥u∥2

L2pr0,T s;L2pΩqq
� 8. (7.35)

We introduce the following notation

λn � ∥zn∥L2pr0,T s;L2pΩqq,

fnpsq � 1
λn
fpλnsq,

vn � zn
λn
,

Fnpsq �
» s

0
fnprq dr.

Since u|r0,T s � 0 it follows from (7.35) that pλnqnPN is unbounded and,
thus, we extract a subsequence, again denoted by pλnqnPN, such that
λn Ñ8 as nÑ8. Note that vn solves$&%

B2vn
Bt2 pt, ζq �∆vnpt, ζq � fnpvnpt, ζqq � apζqBvnBt pt, ζq �

1
λn
upt, ζq,

vnpt, ζq|ζPBΩ � 0,

where t ¥ 0 and ζ P Ω. Thus, STEP I is applicable for vn. Note that (7.34)
holds for vn with constant CT independent of n. Indeed, the constant in
(7.34) only depends on f in the sense that it depends on the superlinearity
constant δ from (7.3) which is the same superlinearity constant for all fn.
Furthermore, we have that ∥vn∥L2pr0,T s;L2pΩqq � 1 for all n P N and

lim
nÑ8

» T
0

»
Ω
a

∣∣∣∣BvnBt
∣∣∣∣2

dζ dt�
∥∥∥∥ u

λn

∥∥∥∥2

L2pr0,T s;Ωqq
� 0.

We conclude from (7.34) that pFnpvnqqnPN is a bounded sequence in
L1pr0, T s � Ωq. The superlinearity (7.3) implies for all |s| ¥ 1,

F psq ¥ mintF p�1q, F p1qu|s|2�δ,
from which we deduce that

λδn

» »
tpt,ζqPr0,T s�Ω |λn|vnpt,ζq|¥1u

|vn|2�δ dζ dt

¤ 1
mintF p�1q, F p1qu

» »
tpt,ζqPr0,T s�Ω |λn|vnpt,ζq|¥1u

1
λ2
n

F pλnvnqdζ dt

¤ 1
mintF p�1q, F p1qu∥Fnpvnq∥L1pr0,T s�Ωq,

where we used 1
λ2

n
F pλnvnq � Fnpvnq in the last step. Hence, the left-hand

side is uniformly bounded in n P N. Since

λδn

»
tpt,ζqPr0,T s�Ω |λn|vnpt,ζq|¤1u

|vn|2�δ dζ dt
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is also uniformly bounded and λn Ñ8 as nÑ8, we infer that

lim
nÑ8

» T
0

»
Ω

|vn|2�δ dζ dt � 0,

which contradicts ∥vn∥L2pr0,T s;L2pΩqq � 1 for every n P N. Thus, we obtain
from STEP I that

EpT q ¤ CT

#» T
0

»
Ω
a

∣∣∣∣BzBt
∣∣∣∣2

dζ dt� ∥u∥2
L2pr0,T s;L2pΩqq

+
(7.36)

and» T
0
Eptq dt ¤ CT

#» T
0

»
Ω
a

∣∣∣∣BzBt
∣∣∣∣2

dζ dt� ∥u∥2
L2pr0,T s;L2pΩqq

+
. (7.37)

STEP III. Let T ¡ 0 large enough such that (7.36) and (7.37) hold.
Then, for any ε ¡ 0 we have that

EpT q � 2CT
» T

0

»
Ω
u
Bz
Bt dζ dt

¤ EpT q � εCT ∥u∥2
L2pr0,T s;L2pΩqq �

CT
ε

» T
0

»
Ω

∣∣∣∣BzBt
∣∣∣∣2

dζ dtloooooooooomoooooooooon
¤2

³T
0 Eptq dt

¤
�
CT � 2C2

T

ε


» T
0

»
Ω
a

∣∣∣∣BzBt
∣∣∣∣2

dζ dt

�
�
CT � 2C2

T

ε
� εCT



∥u∥2

L2pr0,T s;L2pΩqq.

For ε � 2CT we deduce from (7.20) that

EpT q ¤ 2CT pEp0q � EpT qq �KT ∥u∥L2pr0,T s;L2pΩqq

with KT � 2pCT � C2
T q, and hence,

EpT q ¤ 2CT
1� 2CT

Ep0q � KT

1� 2CT
∥u∥2

L2pr0,T s;L2pΩqq. (7.38)

Since (7.1) is autonomous we can shift (7.38) from r0, T s to any time-
interval rS, S � T s with T � pS � T q � S sufficiently large to obtain

EpS � T q ¤ 2CT
1� 2CT

EpSq � KT

1� 2CT
∥u∥2

L2prS,S�T s;L2pΩqq. (7.39)
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Now, fix T ¡ 0 large enough so that the above holds. Let t ¥ 0 and
choose n P N such that pn� 1qT   t ¤ nT . We deduce from (7.20) that
Eptq � ³t

pn�1qT
³
Ω u

Bz
Bt dζ ds ¤ Eppn� 1qT q, and hence,

Eptq ¤ Eppn� 1qT q � 1
4∥u∥2

L2prpn�1qT,ts;L2pΩqq �
» t
pn�1qT

»
Ω

∣∣∣∣BzBt
∣∣∣∣2

dζ dslooooooooooooomooooooooooooon
¤³t

pn�1qT
Epsq ds

.

Gronwall’s inequality and applying (7.39) repeatedly for S � kT with
k � n� 1, . . . , 0, yields that

Eptq ¤ eTEppn� 1qT q � eT
4 ∥u∥2

L2prpn�1qT,ts;L2pΩqq

¤ eT
�

2CT
1� 2CT


n�1
Ep0q

� eTKT

1� 2CT

n�1̧

k�1

�
2CT

1� 2CT


k
∥u∥2

L2pr0,T s;L2pΩqq

� eT
4 ∥u∥2

L2prpn�1qT,ts;L2pΩqq

¤ Ce�µtEp0q �K∥u∥2
L2pr0,ts;L2pΩqq,

for some constants C,K ¡ 0 and µ ¡ 0 given by

µ � 1
T

log
�

1� 2CT
CT



.

Thus, we proved (7.22) which implies (7.21) as explained in the beginning
of the proof. ❑

Remark 7.2.3. The used multipliers in the proof of Theorem 7.2.2 are
introduced by Lions in [64, Chapter VII, Section 2.3] to prove controllability
results for the linear wave equation. If the damping is active on the whole
domain Ω, one could simply consider the perturbed energy functional

Eεptq � Eptq � ε

»
Ω
zpt, ζqBzBt pt, ζq dζ

for suitably small ε ¡ 0, cf. Remark 6.3.7, see also [107], where nonlinear
damping terms are also considered.



Chapter 8

Bounded-input-bounded-
output stability

So far, we have studied the input-to-state behavior in terms of input-to-
state stability. For certain applications, such as funnel control, one is
interested in the input-to-output behavior of a system, and in particular,
in the property that bounded input functions are transferred to bounded
output functions. This property is known as bounded-input-bounded-output
(BIBO) stability.

In this chapter, we study BIBO stability for infinite-dimensional semi-
linear systems with possibly unbounded control and observation operators
by regarding the semilinear system as an extended linear system with
nonlinear feedback. We provide sufficient conditions for BIBO stability of
the semilinear system in terms of BIBO stability of the extended linear
system, L8-admissibility properties of the control operator, as well as
Lipschitz and small-gain properties of the semilinearity.

We apply the abstract results to a chemical reactor model to guarantee
the applicability of funnel control.

This chapter is based on [37].

8.1 BIBO stability of semilinear state space
systems

Let U,X and Y be Banach spaces and let ΣpA,B,C,Gq be a system
node on pU,X, Y q as defined in Definition 2.3.1 and Definition 2.3.6. Let
pT ptqqt¥0 be the semigroup generated by A and let C&D : dompC&Dq Ñ
Y be the associated combined output/feedthrough operator. Furthermore,
let f : rX Ñ X be a nonlinear function, where rX � X is a continuously
embedded subspace. Then, the pair pΣ, fq formally representing the

165
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equations $'''&'''%
9xptq � Axptq �Buptq � fpxptqq, t ¥ 0,
xp0q � x0,

yptq � C&D
�
xptq
uptq

�
, t ¥ 0

(pΣ, fq)

is called a semilinear state space system.
The space rX will be either X itself or some fractional interpolation

space Xα with 0 ¤ α   1 if A generates an analytic semigroup.

Definition 8.1.1. Let x0 P X, T ¡ 0 and u P L1
locpr0,8q;Uq.

(i) A function x : r0, T s Ñ X�1 is called a mild solution of the semilinear
state space system pΣ, fq on r0, T s for x0 and u if xptq P rX for almost
all t P r0, T s, fpxp�qq P L1pr0, T s;Xq and x satisfies

xptq � T ptqx0 �
» t

0
T�1pt� sq rfpxpsqq �Bupsqs ds

in X�1 for all t P r0, T s.
(ii) Given a mild solution x on r0, T s for x0 and u, the corresponding

output y is the Y -valued distribution given by

yptq � d2

dt2

�
pC&Dq

» t
0
pt� sq

�
xpsq
upsq

�
ds


, (8.1)

for t P r0, T s, that is, it acts on test functions φ P C8
c pr0, T q;Y 1q as

yrφs �
» T

0

B
d2

dt2φptq, pC&Dq
» t

0
pt� sq

�
xpsq
upsq

�
ds
F
Y 1,Y

dt.

A function x : r0,8q Ñ X�1 is called a global mild solution to the semilinear
state space system for x0 and u if x|r0,T s is a mild solution for x0 and u
on r0, T s for every T ¡ 0.

Remark 8.1.2. If x is a mild solution of pΣ, fq on r0, T s for x0 P X and
u P L1

locpr0,8q;Uq, then x and r yx s are the restriction of the mild solution
and output of the extended system node

Σ
�
A, rB I s , rCI s ,

�
G Cp��Aq�1

p��A�1q�1B p��Aq�1

�	
for x0 and

� u
fpxq

�
(extended outside of r0, T s by 0). In particular, the

integral appearing in (8.1) lies in dompC&Dq, and thus, the application
of C&D is well-defined by Lemma 2.3.9.

With this solution concept we can define BIBO stability for the consid-
ered semilinear state space systems.
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Definition 8.1.3. A semilinear state space system pΣ, fq is called L8-
BIBO stable if the following two conditions are satisfied.

(i) For x0 � 0 and any u P L8locpr0,8q;Uq there exists a global mild
solution x of pΣ, fq.

(ii) For any cU ¡ 0 there exists a constant cY ¡ 0 such that for any
global mild solution x of pΣ, fq for x0 � 0 and u P L8locpr0,8q;Uq, the
corresponding output satisfies y P L8locpr0,8q;Y q and the following
implication holds for all t ¥ 0

}u}L8pr0,ts;Uq   cU ùñ }y}L8pr0,ts;Y q   cY .

A way of approaching the question of BIBO stability for systems like
pΣ, fq is to rewrite the system as feedback system as schematically depicted
in Figure 8.1.

ẋ = Ax+
[
B I

] [u
ũ

]

ỹ =

[
C
I

]
x

f(ỹ2)

u

ũ

ỹ

Figure 8.1: Nonlinearity as feedback loop

This way, it is possible to employ properties of the extended linear
system to derive properties of the semilinear one. Here, the most relevant
property of the linear system for our discussions is naturally its L8-BIBO
stability, for which we have the following sufficient conditions.

Proposition 8.1.4. Let ΣpA,B,C,Gq be a system node, where A gen-
erates an exponentially stable C0-semigroup. Then, the extended system
node Σ

�
A, rB I s , rCI s ,

�
G Cp��Aq�1

p��A�1q�1B p��Aq�1

�	
is L8-BIBO stable if all

the following hold:

(i) ΣpA,B,C,Gq is L8-BIBO stable.

(ii) B is an L8-admissible control operator.

(iii) ΣpA, I, C,Cp� �Aq�1q is L8-BIBO stable.
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Proof. The L8-admissibility of Band the exponential stability imply that
the system node ΣpA,B, I, p� �A�1q�1Bq is L8-BIBO stable. Indeed, its
output and mild solution coincide, and therefore, the statement follows
from Corollary 2.1.11. Analogously, the same holds for the system node
ΣpA, I, I, p� �Aq�1q since I is bounded and therefore L8-admissible.

By the L8-BIBO stability of the respective system nodes it follows
that there are constants c, cC , cB , cI ¡ 0 such that for x0 � 0 and any
r uru s P L8locpr0,8q;U �Xq there are the following solutions and outputs,
which satisfy for all t ¡ 0 the corresponding inequalities:

• ΣpA,B,C,Gq admits for the input u a solution x and output y P
L8locpr0,8q;Y q, which satisfies

}y}L8pr0,ts;Y q ¤ c}u}L8pr0,ts;Uq;

• ΣpA,B, I, p� � A�1q�1Bq admits for the input u a solution xB P
L8locpr0,8q;Xq, which is also the output and satisfies

}xB}L8pr0,ts;Xq ¤ cB}u}L8pr0,ts;Uq;

• ΣpA, I, C,Cp� � Aq�1q admits for the input ru a solution xC and
output yC P L8locpr0,8q;Y q, which satisfies

}yC}L8pr0,ts;Y q ¤ cC}ru}L8pr0,ts;Xq;

• ΣpA, I, I, p� � Aq�1q admits for ru a solution xI P L8locpr0,8q;Xq,
which is also the output and satisfies

}xI}L8pr0,ts;Xq ¤ cI}ru}L8pr0,ts;Xq.

Clearly we also have xB � x and xC � xI . Moreover, the state of the
extended system node with input r uru s is given by

rxptq � » t
0
T pt� sq �B I

� �upsqrupsq
�

ds � xptq � xCptq.

Furthermore, we observe that the combined output/feedthrough operator
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�C&D for this extended system node acts for β P ρpAq as

�C&D

�� rx�
uru
���

�
�
C
I

��rx� pβ �A�1q�1 �B I
� �uru

�

�
�

Gpβq Cpβ �Aq�1

pβ �A�1q�1B pβ �Aq�1

� �
uru
�

�
�
C
I

� �
x� pβ �A�1q�1Bu

�� �
C
I

� �
xC � pβI �Aq�1ru�

�
�

Gpβqu� Cpβ �Aq�1ru
pβ �A�1q�1Bu� pβ �Aq�1ru

�
�

�
y � yC
x� xC

�
.

It follows that the output ry of the extended system node is given by

ry � �
y � yC
xB � xI

�
,

a priori in a distributional sense, but thus also as ry P L8locpr0,8q;Y �Xq.
This shows the existence of a solution rx and output ry for r uru s with ry P
L8locpr0,8q;Y �Xq of the extended system node.

For all t ¡ 0 we have that

}ry}L8pr0,ts;Y�Xq
¤ }y}L8pr0,ts;Y q � }yC}L8pr0,ts;Y q � }xB}L8pr0,ts;Xq � }xI}L8pr0,ts;Xq
¤ c}u}L8pr0,ts;Uq � cC}ru}L8pr0,ts;Xq � cB}u}L8pr0,ts;Uq � cI}ru}L8pr0,ts;Xq

¤ maxtc, cC , cB , cIu
�����uru

�����
L8pr0,ts;U�Xq

,

which completes the proof. ❑

Remark 8.1.5. 1. In the following we will use the notation ΣpA,B,Cq
to refer to a system node ΣpA,B,C,Gq if it is clear from the context
which transfer function G is used.

2. One can straightforwardly extend Proposition 8.1.4 to the case of
the extended linear system

Σ
�
A,

�
B rB� , �CrC

�
,

�
G Cp� �Aq�1 rBrCp� �A�1q�1B rCp� �Aq�1 rB

��
,

where rB P LpU,Xq and rC P LpX,Y q.
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3. We note that the assumption that ΣpA, I, Cq is L8-BIBO stable
excludes boundary observation if A generates a strongly continuous
group, that is A and �A generate strongly continuous semigroups.
Indeed, under this assumption it is shown in [89, Proposition 6.6] that
L8-BIBO stability of ΣpA, I, Cq implies that C must be a bounded
operator.

4. The exponential stability assumed in Proposition 8.1.4 cannot be
dropped, as the subsystem ΣpA, I, Iq is obviously not L8-BIBO
stable if e.g. A � 0.

8.2 Global Lipschitz nonlinearities
In this section, we prove the existence of mild solutions of the semilinear
state space system pΣ, fq under local Lipschitz conditions on f and suitable
admissibility assumptions on B. Furthermore, we impose a small gain
condition, which guarantees BIBO stability of pΣ, fq provided that f is
globally Lipschitz continuous.

Throughout this section, we assume that A generates an exponen-
tially stable C0-semigroup pT ptqqt¥0 on X. Additionally, if A generates a
bounded analytic semigroup, let Xα and X�α for α P r0, 1q be the frac-
tional inter- and extrapolation spaces from Definition 1.3.27. We denote
by p�Aqα both the fractional power of A as an operator in LpXα, Xq
and its extension to an operator in LpX,X�αq, see Proposition 1.3.28.
Recall from Lemma 2.1.14 and Remark 2.1.15 that p�Aqα P LpX,X�αq is
infinite-time L8-admissible and the L8-admissibility constants Kt satisfy

Kt ¤ Mα

ω1�α

» t
0
s�αe�s ds

¤ MαΓp1� αq
ω1�α

(8.2)

for all t ¥ 0, where Γ is the Gamma function and Mα, ω ¡ 0 are the
constants from Proposition 1.3.26, i.e., ∥p�AqαT ptq∥ ¤Mαt

�αe�ωt holds
for all t ¡ 0.

Note that (8.2) also holds for α � 0 if pT ptqqt¥0 is not analytic, in which
case we set X0 :� X and p�Aq0 :� I. Indeed, (8.2) holds for M0 �M ¡ 0
and ω ¡ 0 such that ∥T ptq∥ ¤Me�ωt for all t ¥ 0.

Regarding the existence and uniqueness of mild solutions to pΣ, fq, we
have the following result, where we additionally allow f to depend on t.
For related situations see [82, Chapter 6.3].
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Lemma 8.2.1. Let A be the generator of an exponentially stable C0-
semigroup. If the semigroup is bounded analytic, let α P r0, 1q; else, set
α � 0. Let B P LpU,X�p1�αqq be such that p�AqαB is L8-admissible and
f : r0,8q�Xα Ñ X is locally Lipschitz in the following sense: there exists
a measurable function g : r0,8q � r0,8q Ñ r0,8q such that

• gp�, 0q P L8locpr0,8qq,
• gps, sq � 0 for all s ¥ 0,

• for every bounded set V � r0,8q�Xα there exists a constant L ¡ 0
such that for every pt1, x1q, pt2, x2q P V we have that

∥fpt1, x1q � fpt2, x2q∥X ¤ Lpgpt1, t2q � ∥x1 � x2∥Xα
q. (8.3)

Then, for every t0 ¥ 0, x0 P Xα and u P L8locprt0,8q;Uq, the system#
9xptq � Axptq �Buptq � fpt, xptqq, t ¥ t0,

xpt0q � x0
(8.4)

admits a unique mild solution x P L8prt0, t1s;Xαq for some t1 ¡ t0 , i.e.,
x satisfies the implicit equation

xptq � T pt� t0qx0 �
» t
t0

T�1pt� sqBupsq ds�
» t
t0

T�1pt� sqfps, xpsqq ds

for all t P rt0, t1s. Moreover, if tmax ¡ t0 denotes the supremum over all
t1 ¡ t0 for which (8.4) admits a mild solution on rt0, t1s, then the following
finite-time blow-up property holds,

tmax   8 ùñ lim sup
tÕtmax

∥xptq∥Xα � 8.

Additionally, if there exists a nonnegative and nondecreasing function
k P Cprt0,8qq such that, for every t ¥ t0 and x P Xα,

∥fpt, xq∥X ¤ kptqp1� ∥x∥Xαq, (8.5)

then (8.4) admits a global mild solution x P L8locprt0,8q;Xαq, that is,
x|rt0,t1s is a mild solution on rt0, t1s for every t1 ¡ t0.

Proof. Let t0 ¥ 0, x0 P Xα and u P L8locprt0,8q;Uq. Set u � 0 on r0, t0q.
First, we show that there exists δ ¡ 0 such that (8.4) admits a so-

lution x P L8prt0, t0 � δs;Xαq. Let t11 ¡ t0 and choose r ¡ 0 with
∥x0∥Xα�∥u∥L8pr0,t11s;Uq ¤ r. Denote by K1,t and K2,t the L8-admissibility
constants of p�AqαB and p�Aqα (considered as an operator in LpX,X�αq),
respectively. Let M :� supt¥0∥T ptq∥ and

m :� pM �K1,t11qr � 1 ¡ 0.
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Further, let L ¡ 0 be a constant satisfying (8.3) for V � prt0, t11s � tx P
Xα | ∥x∥α ¤ muq Y tp0, 0qu. Since limt×0 K2,t � 0 by (8.2), there exists a
δ P p0, t11q such that

K2,δ ¤ min
#

1
Lp∥gp�, 0q∥L8p0,t11q �mq � ∥fp0, 0q∥X ,

1
2L

+
.

Note that δ depends on r, pT ptqqt¥0, α, f and t11 ¡ t0, but not on t0, x0
and u with ∥x0∥Xα

� ∥u∥L8pr0,t11s;Uq ¤ r.
Define

S :� tz P L8prt0, t0 � δs;Xq | ∥z∥L8prt0,t0�δs;Xq ¤ mu.
For z P S and t P rt0, t0 � δs let F : S Ñ S by

pFzqptq :� T pt� t0qp�Aqαx0 �
» t
t0

T�1pt� sqp�AqαBupsq ds

�
» t
t0

T�1pt� sqp�Aqαfps, p�Aq�αzpsqq ds.

Note that F is well-defined since, for t P rt0, t0 � δs and z P S,

∥pFzqptq∥X
¤M∥x0∥Xα

�K1,δ∥u∥L8prt0,ts;Uq �K2,δ∥fp�, p�Aq�αzp�qq∥L8prt0,ts;Xq
¤ pM �K1,t11qr
�K2,δ

�
Lp∥gp�, 0q∥L8prt0,tsq � ∥p�Aq�αz∥L8prt0,ts;Xαqq � ∥fp0, 0q∥X

�
¤ pM �K1,t11qr
�K2,δ

�
Lp∥gp�, 0q∥L8p0,t11q �mq � ∥fp0, 0q∥X

	
¤ m,

where we used (8.3) in the second last step. Similar, we obtain for t P
rt0, t0 � δs and z1, z2 P S that

∥pFz1qptq � pFz2qptq∥X

�
∥∥∥∥» t
t0

T�1pt� sqp�Aqαrfps, p�Aq�αz1psqq � fps, p�Aq�αz2psqqs ds
∥∥∥∥
X

¤ K2,δL∥z1 � z2∥L8prt0,ts;Xq,

which shows that S is contractive. By Banach’s fixed point theorem there
exists a unique fixed point z P S of F , i.e.,

zptq � T pt� t0qp�Aqαx0 �
» t
t0

T�1pt� sqp�AqαBupsqds

�
» t
t0

T�1pt� sqp�Aqαfps, p�Aq�αzpsqq ds
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holds for almost every t P rt0, t0� δs. The Lipschitz condition (8.3) implies
that fp�, p�Aq�αzp�qq P L8prt0, t0 � δs;Xq. Note that B is L8-admissible
by Lemma 2.1.14 if α P p0, 1q and by assumption if α � 0. Clearly, I is
also L8-admissible. Hence, the linear system#

9xptq � Axptq �Buptq � fpt, p�Aq�αzptqq, t ¥ t0,

xpt0q � x0
(8.6)

admits a unique mild solution x P L8prt0, t0 � δs;Xq given by

xptq � T pt� t0qx0 �
» t
t0

T�1pt� sqBupsq ds

�
» t
t0

T�1pt� sqfps, p�Aq�αzpsqq ds,

where each term on the right-hand side lies in dompp�Aqαq for almost
every t P rt0, t0 � δs by the analyticity of the semigroup. If the semigroup
is not analytic and α � 0, this is trivially true.

It follows that p�Aqαxptq � pFzqptq � zptq for almost every t P rt0, t0�
δs, and thus, x P L8prt0, t0 � δs;Xαq is the mild solution of (8.4) on
rt0, t0 � δs.

For given t0 ¥ 0, x0 P Xα and u P L8prt0,8q;Uq we denote by tmax the
supremum over all t1 ¡ t0 such that (8.4) admits a unique mild solution
x P L8prt0, t1s;Xαq. If tmax   8 and lim suptÕtmax∥xptq∥Xα   8, then
there exists an increasing sequence ptnqnPN in rt0, tmaxq converging to tmax
with

r :� sup
nPN

∥xptnq∥Xα
  8.

From the previous argumentation we can find δ ¡ 0 independent of n P N
such that the system#

9xnptq � Axnptq �Buptq � fpt, xnptqq, t ¥ tn,

xnptnq � xptnq
admits for all n P N a unique mild solution xn P L8prtn, tn � δs;Xαq.
Therefore, we can extend the solution x by xn to a solution on rt0, tn � δs
for n large enough, such that tn�δ ¡ tmax. This contradicts the maximality
of tmax and the claim follows.

The fact that the mild solution exists on r0,8q if (8.5) holds, follows
as in [82, Chapter 6, Theorem 3.3]. ❑

Remark 8.2.2. We make the following remarks on Lemma 8.2.1.

1. In the case of analytic semigroups and α P p0, 1q, the solution of
(8.4) satisfies x P Cprt0, tmaxq;Xq, as it is also the mild solution of
the linear system (8.6) with Lp-admissible operators B and I for
some p P r1,8q, see Corollary 2.1.11 and Lemma 2.1.14.
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2. Lemma 8.2.1 still holds if the semigroup is not exponentially stable
with the exception that the global mild solution, if it exists, may only
be locally essentially bounded. In the analytic case, the fractional
spaces Xα and X�α for α P p0, 1q are then defined with respect to
A � λ, where λ ¡ 0 is such that A � λ generates an exponentially
stable semigroup. Then, consider z � e�λtx and the corresponding
shifted system#

9zptq � pA� λqzptq �Bpe�λtuptqq � fλpt, zptqq, t ¥ t0,

zpt0q � x0

with fλpt, zq � e�λtfpt, eλtzq. Now, if f is locally Lipschitz in the
sense of Lemma 8.2.1, then so is fλ. To see this, let g be the function
corresponding to the local Lipschitz property of f , V � rt0,8q�Xα

be bounded and L the Lipschitz constant of f on V . Then, for any
pt1, z1q, pt2, z2q P V we have

∥fλpt1, z1q � fλpt2, z2q∥X
¤ e�λt1∥fpt1, eλt1z1q � fpt2, eλt2z2q∥X
� |e�λt1 � e�λt2 |∥fpt2, eλt2z2q∥X

¤ e�λt1L
�
gpt1, t2q � eλt1∥z1 � z2∥Xα

� |eλt1 � eλt2 |∥z2∥Xα

�
� |e�λt1 � e�λt2 |∥fpt2, eλt2z2q∥X

¤ Lλ phpt1, t2q � ∥z1 � z2∥Xα
q

with

Lλ :� L �maxt1, sup
pt,zqPV

∥z∥Xα
, sup
pt,zqPV

∥fpt, eλtzq∥Xqu ¥ L

being the new Lipschitz constant on V and

hpt1, t2q :� gpt1, t2q � |eλt1 � eλt2 |� |e�λt1 � e�λt2 |.

Thus, h has the same properties as those required of g in Lemma 8.2.1.
Moreover, if k is such that (8.5) holds, then we have for all t ¥ 0
that

∥fλpt, zq∥ ¤ e�λtkptqp1� eλt∥z∥Xαq ¤ kptqp1� ∥z∥Xαq.

Hence, Lemma 8.2.1 is applicable to the shifted system, yielding a
mild solution z P L8prt0, t1s, Xαq. Moreover, if (8.5) holds, then z P
L8locprt0,8q;Xαq. The solution to the original problem is x � eλ�z P
L8prt0, t1s;Xαq, which is a global mild solution in L8locprt0,8q;Xαq
if (8.5) holds.
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Remark 8.2.3. 1. Under the assumptions of Lemma 8.2.1 we have that
the mild solution of the extended system node ΣpA, rB I s, rCI sq for
x0 P Xα, u P L8pr0,8q;Uq and ũ P L8pr0,8q;Xq satisfies

∥xptq∥Xα

¤Me�ωt∥x0∥Xα �K1,8∥u∥L8pr0,ts;Uq �K2,8∥ũ∥L8pr0,ts;Xq,

where Ki,8, i � 1, 2, are the infinite-time L8-admissibility constants
of p�AqαB and p�Aqα, respectively, and M,ω ¡ 0 are constants
such that ∥T ptq∥ ¤Me�ωt for all t ¥ 0.

2. From the considerations in 1. and the fact that the transfer function
of ΣpA, rB I s, rCI sq is not only mapping into LpU�X,Y �Xq but also
into LpU �X,Y �Xαq, we obtain that ΣpA, rB I s, rCI sq is L8-BIBO
stable with respect to the spaces pU �X,X, Y �Xq if and only if it
is L8-BIBO stable with respect to the spaces pU �X,Xα, Y �Xαq.
Hence, if one of the above system nodes is L8-BIBO stable, there exist
constants k1, k2 ¡ 0 such that for x0 � 0 and all u P L8pr0,8q;Uq
and ũ P L8pr0,8q;Xq the output ỹ satisfies

∥ỹ∥L8pr0,ts;Y�Xαq ¤ k1∥u∥L8pr0,ts;Uq � k2∥ũ∥L8pr0,ts;Xq. (8.7)

Next, we present our main theorem on L8-BIBO stability of the
semilinear state space system pΣ, fq for globally Lipschitz continuous
functions f : Xα Ñ X, i.e., there exists a constant L ¡ 0 such that

∥fpx1q � fpx2q∥X ¤ L∥x1 � x2∥Xα (8.8)

holds for all x1, x2 P Xα.

Theorem 8.2.4. Let A be the generator of an exponentially stable C0-
semigroup. If the semigroup is bounded analytic, let α P r0, 1q; else, set
α � 0. Let B P LpU,X�p1�αqq be such that p�AqαB is L8-admissible, f
satisfy (8.8) with constant L ¡ 0 and ΣpA, rB I s, rCI sq be L8-BIBO stable.
If LK2,8   1, where K2,8 is the infinite-time L8-admissibility constant
of p�Aqα, then the output y of pΣ, fq with initial value x0 � 0 and input
u P L8pr0,8q;Uq satisfies the following inequality for some K,K ¥ 0 and
every t ¥ 0,

∥y∥L8pr0,ts;Y q ¤ K∥u∥L8pr0,ts;Uq � K. (8.9)
In particular, the semilinear state space system pΣ, fq is L8-BIBO stable.

Proof. By Lemma 8.2.1, there exists a unique global mild solution x P
L8locpr0,8q;Xαq of pΣ, fq for x0 � 0 and any u P L8pr0,8q;Uq. Note that
x is also the state trajectory of the linear system node ΣpA, rB I s, rCI sq
with input r u

fpxp�qq s P L8locpr0,8q;U � Xq and that the corresponding
output is given by ỹ � r yx s, where y is given by (8.1). Since the linear
system node ΣpA, rB I s, rCI sq is L8-BIBO stable, ỹ P L8locpr0,8q;Y �Xαq
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follows, and therefore, y P L8locpr0,8q;Y q. We deduce from Remark 8.2.3
and (8.8),

∥x∥L8pr0,ts;Xαq
¤ K1,8∥u∥L8pr0,ts;Uq � LK2,8∥x∥L8pr0,ts;Xαq �K2,8∥fp0q∥X ,

and thus, since LK2,8   1,

∥x∥L8pr0,ts;Xαq ¤
K1,8

1� LK2,8
∥u∥L8pr0,ts;Uq �

K2,8
1� LK2,8

∥fp0q∥X .

Combining this with (8.7) for ũ � fpxq and applying (8.8) once more
yields

∥y∥L8pr0,ts;Y q ¤ ∥ỹ∥L8pr0,ts;Y�Xαq

¤
�
k1 � Lk2K1,8

1� LK2,8



∥u∥L8pr0,ts;Uq � K

with K �
�
k2 � k2LK2,8

1�LK2,8

	
∥fp0q∥X . ❑

Corollary 8.2.5. Let the assumptions of Theorem 8.2.4 hold and denote by
Mα, ω and k2 the constants from (8.2) and (8.7). If either LMαΓp1�αq

ω1�α   1,
or Lk2   1, then (8.9) holds, and hence, pΣ, fq is L8-BIBO stable.

Proof. By definition, K2,8 is the smallest, time independent constant
such that the mild solution x of ΣpA, rB I s, rCI sq for x0 � 0, u � 0 and
ũ P L8pr0,8q;Xq satisfies for every t ¥ 0

∥xptq∥Xα
¤ K2,8∥ũ∥L8pr0,ts;Xq.

It follows that K2,8 ¤ k2 by (8.7), and also that K2,8 ¤ MαΓp1�αq
ω1�α by

Remark 2.1.15. The assertion is now a consequence of Theorem 8.2.4. ❑

Remark 8.2.6. In the situation of Corollary 8.2.5, it is possible to improve
the constants in (8.9) by replacing K2,8 by k2 or MαΓp1�αq

ω1�α suitably in
the proof of Theorem 8.2.4.

Remark 8.2.7. Theorem 8.2.4 and Corollary 8.2.5 can be easily generalized
to nonlinearities f depending also on time t ¥ 0 and satisfying (8.3) and
(8.5) for a positive and bounded function k P Cpr0,8qq. Indeed, one has to
replace the Lipschitz constant L in the smallness conditions by ∥k∥L8p0,8q.
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8.3 Locally Lipschitz nonlinearities
We consider the following heat equation with Neumann boundary condi-
tions, internal friction represented by a cubic nonlinearity and internal
control on an open and bounded domain Ω � Rd, d ¤ 3, with Lipschitz
boundary BΩ,$''''&''''%

Bx
Bt pt, ζq � ∆xpt, ζq � x3pt, ζq � pBuptqqpζq, t ¥ 0, ζ P Ω,

Bx
Bn⃗ pt, ζq � 0, t ¥ 0, ζ P BΩ,

xp0, ζq � x0pζq, ζ P Ω.

(8.10)

Here, n⃗ is the outward pointing unit normal vector at the boundary and
B
Bn⃗ P LpH1

∆pΩq,H� 1
2 pBΩqq is the Neumann trace operator on

H1
∆pΩq :�  

x P H1pΩq ��∆x P L2pΩq(,
∥x∥H1

∆pΩq :�
�

∥x∥2
H1pΩq � ∥∆x∥2

L2pΩq
	 1

2
,

which coincides with the normal derivative on smooth functions.
In an abstract formulation, (8.10) may be written as#

9xptq � Axptq � fpxptqq �Buptq, t ¥ 0,
xp0q � x0,

(8.11)

with state space X � L2pΩq, A : dompAq � X Ñ X given by

A :� ∆, dompAq :�
"
x P H1pΩq

����∆x P L2pΩq and Bx
Bn⃗ � 0 on BΩ

*
,

and f : X 1
2
Ñ X given by fpxq � �x3. The input function u is assumed

to take values in an arbitrary Banach space U and the control operator
B : U Ñ X is such that B P LpU,Xq.

Since A is self-adjoint and negative, it is the generator of a bounded
analytic semigroup, and hence, X 1

2
is well-defined, with norm given by

∥x∥2
X 1

2
� ∥pI �Aq 1

2x∥2
X � ∥x∥2

X � ∥p�Aq 1
2x∥2

X , x P X 1
2
. (8.12)

Thus, X 1
2
� H1pΩq with the standard norm, which is continuously embed-

ded into L6pΩq. Therefore, the mapping f is well-defined, and a direct
computation invoking Hölder’s inequality shows that f is locally Lipschitz
continuous.

The following theorem gives an upper bound on the X 1
2
-norm of the

state trajectory of (8.10). If u � 0 and Ω is one-dimensional, it is even
known that (8.10) is stable with respect to the X 1

2
-norm, see e.g. [15,

Chapter 11].
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Theorem 8.3.1. Let X � L2pΩq, U be a Banach space and B P LpU,Xq.
For any initial condition x0 P X 1

2
and input u P L8pr0,8q;Uq, the

heat equation (8.10) admits a unique mild solution x P H1
locpr0,8q;Xq X

Cpr0,8q;X 1
2
q X L2

locpr0,8q;X1q which satisfies the estimate

∥xptq∥2
X 1

2
¤

�
∥x0∥2

X � 2∥p�Aq 1
2x0∥2

X �
»

Ω
x4

0pζq dζ



e�νt

�K

» t
0

e�ρpt�sqp1� ∥upsq∥2
U q ds,

for all t ¥ 0 and some ν,K ¡ 0 independent of t, x0 and u.

Proof. Let x0 P X 1
2

and u P L8pr0,8q;Uq. Since f : X 1
2
Ñ X is locally

Lipschitz continuous, we deduce from Lemma 8.2.1 and Remark 7.1.2 the
existence of a unique mild solution x P Cpr0, t1s;X 1

2
q for some t1 ¡ 0.

Consequently, ũ :� fpxp�qq P L8pr0, t1s;Xq � L2pr0, t1s;X 1
2
q. Since x is

also the mild solution of the linear system#
9xptq � Axptq �Buptq � ũptq, t ¥ 0,
xp0q � x0,

where the control operators B and I are bounded as operators into X
and therefore also into X� 1

2
. The maximal regularity property of the

analytic semigroup (Proposition 2.1.23) yields that x P H1pp0, t1q;X� 1
2
q X

Cpr0, t1s;Xq X L2pr0, t1s;X 1
2
q and

∥xptq∥2
X � ∥x0∥2

X

� 2
» t

0
�∥p�Aq 1

2xpsq∥2
X � xxpsq, BupsqyX � xxpsq, fpxpsqqyX ds

for every t P r0, t1s. Similar, since z � pI � Aq 1
2x is the mild solution of

the linear system#
9zptq � Azptq � pI �Aq 1

2Buptq � pI �Aq 1
2 ũptq, t ¥ 0,

zp0q � pI �Aq 1
2x0,

we obtain z P H1pp0, t1q;X� 1
2
q X Cpr0, t1s;Xq X L2pr0, t1s;X 1

2
q, which

translates to x P H1pp0, t1q;XqXCpr0, t1s;X 1
2
qXL2pr0, t1s;X1q. As before,

we have that

∥zptq∥2
X � ∥pI �Aq 1

2x0∥2
X

� 2
» t

0
�∥p�Aq 1

2 zpsq∥2
X � xzpsq, pI �Aq 1

2BupsqyX 1
2
,X

� 1
2

� xzpsq, pI �Aq 1
2 fpxpsqqyX 1

2
,X

� 1
2

ds
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for every t P r0, t1s. A direct computation invoking the definition of z,
(8.12) and the above representation of ∥xptq∥2

X yields

∥p�Aq 1
2xptq∥2

X � ∥p�Aq 1
2x0∥2

X

� �2
» t

0
∥Axpsq∥2

X � xAxpsq, BupsqyX � xAxpsq, fpxpsqqyX ds

for every t P r0, t1s. Therefore,

V pxptqq :� ∥xptq∥2
X � 2∥p�Aq 1

2xptq∥2
X �

»
Ω
x4pt, ζq dζ

is almost everywhere differentiable on p0, t1q with derivative
d
dtV pxptqq

� �2∥p�Aq 1
2xptq∥2

X � xxptq, BuptqyX � xxptq, fpxpsqqyX
� 4∥Axptq∥2

X � 4xAxptq, BuptqyX � 4xAxptq, fpxptqqyX
� 4xfpxptqq, Axptq �Buptq � fpxptqqyX

� �2∥p�Aq 1
2xptq∥2

X �
»

Ω
x4pt, ζq dζ � xxptq, BuptqyX

� 4∥Axptq � fpxptq∥2
X � 4xAxptq � fpxptqq, BuptqyX .

Young’s inequality and the boundedness of the operator B from U into X
implies for any ε ¡ 0

d
dtV pxptqq

¤ �2∥p�Aq 1
2xptq∥2

X �
»

Ω
x4pt, ζq dζ � ε∥xptq∥2

X

�
�

2� 1
4ε



∥B∥2

LpU,Xq∥uptq∥2
U .

(8.13)

Since L4pΩq is continuously embedded into X � L2pΩq, there exists a
constant c ¡ 0 such that

2ε∥xptq∥2
X ¤ 2εc∥xptq∥2

L4pΩq ¤ 2εc
�

1�
»

Ω
x4pt, ζqdζ



holds. Now, if we write ε∥xptq∥2

X � �ε∥xptq∥2
X � 2ε∥xptq∥2

X in (8.13), it
follows for ε ¡ 0 with 2εc   1 that

d
dtV pxptqq

¤ �ε∥xptq∥3
X � 2∥p�Aq 1

2xptq∥2
X � p1� 2εcq

»
Ω
x4pt, ζqdζ

�Kp1� ∥uptq∥2
U q

¤ �νV pxptqq �Kp1� ∥uptq∥2
U q
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for some K ¡ 0 and ν :� mint1, ε, 1 � 2cεu ¡ 0. Finally, Gronwall’s
inequality implies

∥xptq∥2
X 1

2
¤ V pxptqq ¤ V px0qe�νt �K

» t
0

e�νpt�sqp1� ∥upsq∥2
U q ds,

which is the desired estimate on r0, t1s. In particular, ∥xp�q∥X 1
2

is bounded
on r0, t1s with bound independent of t1. As this holds on any interval
r0, t1s on which the solutions of (8.11) exist, Lemma 8.2.1 yields that x is
the global mild solutions, hence the estimate holds on r0,8q. ❑

Corollary 8.3.2. The heat equation with output$'''''''&'''''''%

Bx
Bt pt, ζq � ∆xpt, ζq � x3pt, ζq �Buptq, t ¥ 0, ζ P Ω,

xp0, ζq � x0pζq, ζ P Ω,
Bx
Bn⃗ pt, ζq � 0, t ¥ 0, ζ P BΩ,

yptq � Cxp�, tq, t ¥ 0,

with state space X � L2pΩq, input space U , control operator B P LpU,Xq,
output space Y and output operator C P LpX 1

2
, Y q is a L8-BIBO stable

semilinear state space system pΣ, fq.
Proof. Theorem 8.3.1 implies that (8.10) admits for x0 � 0 and all u P
L8pr0,8q;Uq a unique mild solution x P H1

locpr0,8q;XqXCpr0,8q;X 1
2
qX

L2
locpr0,8q;X1q satisfying

∥xptq∥2
X 1

2
¤ K

» t
0

e�νpt�sqp1� ∥upsq∥2
U q ds ¤ K

ν
p1� ∥u∥2

L8pr0,ts;Uqq.

Consequently, x is also the mild solution to the extended system node
ΣpA, rB I s, rCI sq with input r u

�x3 s whose (distributional) output is r yx s.
Note that yptq � pC&Dq

�
xptq
uptq

�
for almost every t ¥ 0 since

�
xptq
uptq

�
P

dompC&Dq for almost every t ¥ 0. Now, as x takes only values in
X 1

2
� dompCq, it suffices to show that for all t ¡ 0 we have that

}Cxp�q}L8pr0,ts;Y q ¤ mp1� }u}L8pr0,ts;Uqq for some m ¡ 0. But this bound
directly follows from the estimate of xptq in the X 1

2
-norm and the bound-

edness of C as operator from X 1
2

to Y . ❑

The approach used to prove the estimate in Theorem 8.3.1 appears
promising for handling nonlinearities given by negatives of odd monomials,
assuming a suitable choice of the parameter α for the space Xα. Indeed,
such nonlinear operators satisfy the sectorial condition xx, fpxqyX ¤ 0,
which may be viewed as a condition for the energy to be nonincreasing.
For instance, such a sectorial condition has already been used in [36] in
order to prove the well-posedness of nonlinear infinite-dimensional systems
like pΣ, fq.
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8.4 An application to funnel control
After a brief introduction to funnel control, we show its applicability to a
coupled ODE–PDE system describing the evolution of chemical components
in chemical reactors. Here, the main task is to verify BIBO stability of
the semilinear PDE. Finally, numerical simulations are depicted.

We emphasize that the presented results generalize those of [38], where
the control and observation operators are assumed to satisfy strong regu-
larity assumptions and the global Lipschitz nonlinearity f is only allowed
to be defined on X.

8.4.1 Basics on funnel control
We recall the following framework for funnel control, which was already
present in the early works of the field, [42], see also [5] and the references
therein.

For the following input-output differential relation#
9yptq � Npdptq, Spyqptqq �Mpdptq, Spyqptqquptq, t ¥ 0
yp0q � y0,

(8.14)

where all functions are assumed to be R-valued, y is the output and u the
input, it is supposed that the following conditions hold.

Assumption 8.4.1. The disturbance d is in L8pr0,8q;Rq, the nonlinear
function N is in CpR2;Rq and the gain function M P CpR2;Rq is strictly
positive, i.e., Mpd, ϱq ¡ 0 for all pd, ϱq P R2.

Assumption 8.4.2. The map S : Cpr0,8q;Rq Ñ L8pr0,8q;Rq is a (pos-
sibly nonlinear) operator which satisfies the following conditions:

(i) BIBO property: For all k1 ¡ 0, there exists k2 ¡ 0 such that for all
y P Cpr0,8q;Rq and t ¥ 0,

∥y∥L8pr0,ts;Rq ¤ k1 ùñ ∥Spyq∥L8pr0,ts;Rq ¤ k2. (8.15)

(ii) Causality: For all y, ŷ P Cpr0,8q;Rq and t ¥ 0 the following impli-
cation holds

y|r0,tq � ŷ|r0,tq ùñ Spyq|r0,tq � Spŷq|r0,tq.

(iii) Local Lipschitz condition: For all t ¥ 0 and all y P Cpr0, ts;Rq
there exist positive constants τ, δ and ρ such that for any y1, y2 P
Cpr0,8q;Rq with yi|r0,ts � y, i � 1, 2, and |yipsq � yptq|   δ for all
s P rt, t� τ s and i � 1, 2 we have that

∥Spy1q � Spy2q∥L8prt,t�τs;Rq ¤ ρ∥y1 � y2∥L8prt,t�τs;Rq. (8.16)



182 8. Bounded-input-bounded-output stability

In [8], the authors study more general input-output relations with
memory and of relative degree r P N, under assumptions similar to As-
sumption 8.4.1 and Assumption 8.4.2. The class of systems described by
(8.14) is quite general and encompasses systems with infinite-dimensional
internal dynamics as shown, for instance, in [8] and [43].

For systems written like in (8.14), a funnel controller is an adaptive
model-free control method whose objective is to maintain the error function

eptq :� yptq � yrefptq,
where y is the output and yref an a priori fixed reference signal, within the
following prescribed funnel

Fϕ :� tpt, eptqq P r0,8q � R |ϕptq|eptq|   1u,
where the function ϕ is assumed to belong to

Φ :�
#
ϕ P Cpr0,8q;Rq

�����ϕ PW1,8pp0,8q;Rq, ϕptq ¡ 0@t ¥ 0
and lim inf

tÑ8 ϕptq ¡ 0

+
.

As described in [7, 8] or [43], a controller that achieves the described
output tracking performance is given by

uptq � �eptq
1� ϕ2ptqe2ptq , (8.17)

with ϕ P Φ and ϕp0q|ep0q|   1. The following theorem, coming from [42],
see also [7] with r � 1, characterizes the effectiveness of the controller
(8.17) in terms of existence and uniqueness of solutions of the closed-loop
system and in terms of output tracking performance.

Theorem 8.4.3. Consider System (8.14) with Assumption 8.4.1 and
Assumption 8.4.2. Let yref P W 1,8pp0,8q;Rq, ϕ P Φ and y0 P R such
that the condition ϕp0q|ep0q|   1 holds. Then, the funnel controller (8.17)
applied to (8.14) results in a closed-loop system whose solution y : r0, T q Ñ
R, T P p0,8s, has the following properties:

(i) The solution exists globally, i.e., T � 8.

(ii) The input u : r0,8q Ñ R, the gain function k : r0,8q Ñ R, kptq :�
1

1�ϕptq2|eptq|2 and the output y : r0,8q Ñ R are bounded.

(iii) The tracking error e : r0,8q Ñ R evolves in the funnel Fϕ and is
bounded away from the funnel boundaries in the sense that there
exists ε ¡ 0 such that, for all t ¥ 0, |eptq| ¤ 1

ϕptq � ε.

Proof. We refer for the proof to [8, Theorem 2.1], which is essentially [7,
Theorem 3.1]. ❑
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8.4.2 Funnel control for a chemical reactor model
Consider the system depicted in Figure 8.2 comprised of a continuous
stirred-tank reactor (CSTR) and a tubular reactor with axial dispersion
(TRAD) similar to the one studied in [57].

ΣTRAD

u(t)

y(t) = xF (t)

ΣCSTR

xF (t)

xI(1, t)xF (t)

Figure 8.2: Coupled CSTR-tubular reactor system

The input-output system is described by the coupled PDE-ODE system

ΣTRAD

$'''''&'''''%

BxI
Bt pt, ζq � D

B2xI
Bζ2 pt, ζq � v

BxI
Bζ pt, ζq � ψxIpt, ζq � fpxIpt, ζqq, t ¥ 0, ζ P p0, 1q,

BxI
Bζ pt, 0q � xF ptq, BxIBζ pt, 1q � 0, t ¥ 0,

xIp0, ζq � 1, ζ P p0, 1q,

ΣCSTR

$'&'%
9xF ptq � a1xF ptq � a2uptq �RxIpt, 1q, t ¥ 0,
xF p0q � 1,
yptq � xF ptq, t ¥ 0,

with xF ptq P R and xIpt, �q P L2p0, 1q. The constants v ¡ 0 and D ¡ 0 are
the transport and diffusion velocities in the tubular reactor, R ¡ 0 describes
the recycling within the system, and a1, a2 and ψ ¡ 0 are constants
describing the chemical reactions within the two reactors. Furthermore, f
is a nonlinear mapping from L2p0, 1q to L2p0, 1q, such as e.g. the Lipschitz
continuous function fpxq � |x|

|x|�1 from [20].
We can straightforwardly bring this system into the form (8.14),#

9yptq � Spyqptq � a2 uptq, t ¥ 0
yp0q � 1

(8.18)

with the operator S : Cpr0,8q;Rq Ñ L8pr0,8q;Rq given by

Spηp�qq � a1ηp�q �Rxp�, 1q, (8.19)
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where x is the solution to the system$'''''&'''''%

Bx
Bt pt, ζq � D

B2x

Bζ2 pt, ζq � v
Bx
Bζ pt, ζq � ψxpt, ζq � fpxpt, ζqq, t ¥ 0, ζ P p0, 1q,

xp0, ζq � 1, ζ P p0, 1q,
Bx
Bζ pt, 0q � ηptq, BxBζ pt, 1q � 0 t ¥ 0 .

(8.20)

While these internal dynamics are given in terms of a boundary control
system, one could – using the methods laid out in [15, Chapter 10] and
[88] – rewrite this system to arrive at one in the form of pΣ, fq with spaces
and operators as follows.

The state space X � L2p0, 1q is equipped with the following weighted
inner product

xf, gyρ :�
» 1

0
ρpζqfpζqgpζq dζ,

where ρpζq :� e� v
D ζ . Note that x�, �yρ is equivalent to the standard inner

product on L2p0, 1q. The operator A is defined by

Ax :� D
d2x

dζ2 � v
dx
dζ � ψx, (8.21)

for x P dompAq, given by

dompAq :�
"
x P H2p0, 1q

���� dx
dζ p0q � 0 � dx

dζ p1q
*
. (8.22)

The control operator is

B : RÑ X�1, Bu � �Dδ0u, (8.23)

where δ0 P X�1 denotes the Dirac delta distribution at ζ � 0, and the
observation operator is point measurement at ζ � 1, i.e.,

C : X1 Ñ R, Cx � xp1q. (8.24)

So, the input and output space are U � Y � R.
With this framework, it is easy to see that A is a self-adjoint and strictly

negative operator by considering x�, �yρ as inner product. In particular, A
generates an exponentially stable and bounded analytic semigroup.

Moreover, A is a Riesz-spectral operator whose eigenvalues and nor-
malized eigenfunctions are given by

λ0 � �ψ,

λn � �v
2 � 4D2n2π2

4D � ψ, n P N
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and

ϕ0pζq �
d

D

vp1� e�v
D q

1r0,1spζq,

ϕnpζq �
?

2v?
4n2π2D2 � v2

�
e v

2D ζ

�
sinpnπζq � 2nπD

v
cospnπζq


�
, n P N,

respectively. Hence, the semigroup generated by A is given by

T ptq �
8̧

n�0
eλntx�, ϕnyXϕn

with growth bound ω0pT ptqqt¥0 � supnPN0 λn � �ψ   0. The fractional
extrapolation spaces X�α, 0 ¤ α ¤ 1 are given by

X�α �
#
z P X�1

����� 8̧

n�0

|xz, ϕnyX�1,X1 |2

| � λn|2α   8
+
.

Further, X 1
2
� H1p0, 1q with ∥�∥X 1

2
induced by the inner product

xf, gyX 1
2
� D

» 1

0
e� v

D ζ
df
dζ pζq

dg
dζ pζqdζ � ψ

» 1

0
e� v

D ζfpζqgpζq dζ,

which is equivalent to the standard inner product on H1p0, 1q.
Lemma 8.4.4. The operators B and C from (8.23) and (8.24) satisfy
B P LpR, X�αq for every α ¡ 1

4 and C P LpX 1
2
,Rq.

Proof. We use the notation fn � gn for sequences pfnqnPN0 and pgnqnPN0

to abbreviate the fact that there exist constants m,M ¡ 0 such that
mfn ¤ gn ¤ Mfn holds for all n P N0. For z � B1 � �Dδ0 P X�1 we
have that |xz, ϕnyX�1,X1 |2 � n0, and therefore,

8̧

n�0

|xz, ϕnyX�1,X1 |2

|�λn|2α
�

8̧

n�0

1
n4α .

This series converges for all α ¡ 1
4 , which implies B1 � �Dδ0 P X�α, and

thus, B P LpR, X�αq for any α P p 1
4 , 1s.

Since point evaluation is bounded on X 1
2
� H1p0, 1q, we also have

C P LpX 1
2
, Y q. ❑

To apply Theorem 8.4.3 to (8.18) and thereby ensure the effectiveness
of funnel control for the chemical reactor model, we need to verify that S,
given by (8.19), satisfies Assumption 8.4.2. Note that Assumption 8.4.1 is
clearly satisfied.
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First, we show L8-BIBO stability of (8.20) considered as a semilinear
state space system pΣ, fq with operators A, B and C given by (8.21)–(8.24)
and suitable nonlinearity f . To this end, we apply Corollary 8.2.5, so,
we shall first check that the extended linear system ΣpA, rB I s, rCI sq is
L8-BIBO stable.

Proposition 8.4.5. The extended linear system ΣpA, rB I s, rCI sq with
operators (8.21)-(8.24) is L8-BIBO stable.

Proof. We will apply Proposition 8.1.4. The operator A generates an expo-
nentially stable and bounded analytic semigroup, and B is L8-admissible
by Lemma 8.4.4 and Lemma 2.1.14. Further, [89, Proposition 4.5] states
that whenever B P LpU,X�αq and C P LpXβ , Y q with α � β   1, then
the system node ΣpA,B,C,Gq is L8-BIBO stable. Since B P LpU,X�αq
for α ¡ 1

4 , I P LpXq � LpX,X0q and C P LpX 1
2
, Y q, we conclude that

ΣpA,B,C,Gq and ΣpA, I, C,CpI �Aq�1q are L8-BIBO stable. Hence, all
assumptions of Proposition 8.1.4 are satisfied and the assertion follows. ❑

Theorem 8.4.6. Consider the system (8.20) as a semilinear state space
system pΣ, fq with operators A, B and C given by (8.21)–(8.24). If
f : Xα Ñ X is globally Lipschitz continuous for some α P p0, 3

4 q with
Lipschitz constant L bounded by

L   p1� αq1�αeαψ1�α

Γp1� αq , (8.25)

then (8.20) is L8-BIBO stable.

Proof. We will apply Corollary 8.2.5 to prove the assertion. It is shown
in Proposition 8.4.5 that the extended linear system node is L8-BIBO
stable. Since B P LpR, X�ηq for η ¡ 1

4 , we have for α P p0, 3
4 q that

B P LpU,X�p1�αqq and p�AqαB P LpU,X�βq for some β P p0, 1q. In
particular, p�AqαB is L8-admissible by Lemma 2.1.14. Next, for α P p0, 3

4 q
and ω P p0, ψq we estimate the constant Mα from (8.2). For x P X we
have

p�AqαT ptqx �
8̧

n�0
p�λnqαeλntxx, ϕnyX�1,X1ϕn,

hence,
∥p�AqαtαeωtT ptq∥ � sup

nPN0

p�λnqαtαepλn�ωqt.

For fixed t ¡ 0 let gpnq � p�λnqαtαepλn�ωqt. For n � 0, taking the
supremum over t ¡ 0 yields

gp0q ¤ ααe�α
� �λ0

�λ0 � ω


α
.
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Now consider n ¥ 1. Extend the formula of λn for n ¥ 1 to n P p0,8q.
Then, g is a differentiable function on p0,8q which attains its maximum
in n� P p0,8q determined by α� λn�t � 0. Thus, maximizing gpn�q in t
as before and using λn�   λ0 as well as ω ¡ 0 yields for all n ¥ 1,

gpnq ¤ gpn�q ¤ ααe�α
� �λn�
�λn� � ω


α
¤ ααe�α

� �λ0

�λ0 � ω


α
.

Altogether, we obtain for ω P p0, ψq that

∥p�AqαtαeωtT ptq∥ ¤ ααe�α
�

ψ

ψ � ω


α
�Mα,ω,

where we inserted �λ0 � ψ. Finally, we deduce from Corollary 8.2.5 that
(8.20) is L8-BIBO stable if LMα,ωΓp1�αq

ω1�α   1 holds for some ω P p0, ψq. By
the definition of Mα,ω, this translates to

L   ω1�αeαpψ � ωqα
ααψαΓp1� αq . (8.26)

The right-hand side attains its maximum with respect to ω in ω � p1�
αqψ P p0, ψq and with this choice, (8.26) becomes (8.25) and is therefore
satisfied by assumption. ❑

Remark 8.4.7. The proof of Theorem 8.4.6 shows how Mα (depending on
ω P p0, ψq) can be chosen such that (8.2) holds for A given by (8.21). In
particular, for ω � p1�αqψ, we can choose Mα � e�α. Hence, the infinite-
time L8-admissibility constant K2,8 of p�Aqα for α P p0, 3

4 q satisfies

K2,8 ¤ e�αΓp1� αq
p1� αq1�αψ1�α .

Finally, to apply Theorem 8.4.3 to our tank reactor model, it remains
to show that the map S is causal and locally Lipschitz continuous in the
sense of Assumption 8.4.2.

Proposition 8.4.8. Consider (8.20) with global Lipschitz map f : Xα Ñ
X for some α P r 1

2 ,
3
4 q with fp0q � 0 whose Lipschitz constant L satisfies

(8.25). Then, the operator S defined by (8.19) satisfies Assumption 8.4.2.

Proof. The BIBO-property of S follows from Theorem 8.4.6.
Next, fix t ¥ 0 and consider an arbitrary τ ¥ 0. Let η1, η2 P

Cpr0,8q;Rq with η1|r0,ts � η � η2|r0,ts for some fixed η P Cpr0, ts;Rq.
It follows from Lemma 8.4.4, Lemma 8.2.1 and Remark 8.2.2 that System
(8.20) with η1 and η2 as inputs, admits unique mild solutions x1 and x2 in
Cpr0,8q;Xq, respectively. Clearly, x1 and x2 coincide on r0, ts, which is



188 8. Bounded-input-bounded-output stability

the causality of S. Furthermore, for t̃ P rt, t� τ s, the mild solutions satisfy

p�Aqαxipt̃q � p�AqαT pt̃� tqxiptq �
» t̃
t

T pt̃� sqp�Aqαfpxipsqq ds

�
» t̃
t

T pt̃� sqp�AqαBηipsq ds,

where i � 1, 2. We infer from this representation and Remark 8.4.7 that

∥x1 � x2∥L8prt,t�τs;Xαq

¤ e�αΓp1� αqL
p1� αq1�αψ1�α ∥x1 � x2∥L8prt,t�τs;Xαq

�K1,8∥η1 � η2∥L8prt,t�τsq,

where K1,8 is the infinite-time L8-admissibility constant of p�Aq 1
2B.

Since e�αΓp1�αqL
p1�αq1�αψ1�α   1 by assumption, there exists a constant ρ ¡ 0 such

that
∥x1 � x2∥L8prt,t�τs;Xαq ¤ ρ∥η1 � η2∥L8prt,t�τs;Rq.

Finally, since α ¥ 1
2 , the space Xα is continuously embedded into X 1

2
.

Assumption (8.25) together with the boundedness of C from X 1
2

to R
conclude the proof. ❑

According to Theorem 8.4.3, funnel control is applicable to (8.20) with
Lipschitz maps f : Xα Ñ X which satisfy fp0q � 0 and (8.25) for some
α P r 1

2 ,
3
4 q provided that the initial error between the output and the

tracked reference is in the prescribed funnel.

8.4.3 Numerical simulations
As parameters for the PDE and the ODE in (8.20), we consider the
following values D � 0.1, v � 0.4, ψ � 2.8, a1 � �1, a2 � 2, R � 3. The
nonlinear mapping f : RÑ R, fpxq � |x|

1�|x| is globally Lipschitz continuous
as mapping from X 1

2
to X with Lipschitz constant L ¤ 1 and it satisfies

(8.25) for α � 1
2 .

The reference signal that the output xF ptq is supposed to track is
set as yrefptq � 1

2 cosptq, while the prescribed funnel in which the output
error evolves is determined by ϕptq � p2e�2t � 0.2q�1. The spatial interval
r0, 1s is discretized into n � 100 equidistant subintervals. Then the PDE–
ODE system as a closed-loop system with the funnel controller (8.17) is
discretized by using finite differences and it is integrated afterwards with
the ODE solver ode23s of Matlab©. The resulting state xIpt, ζq of the
PDE (8.20) is depicted in Figure 8.3. The error between the output xF ptq
and the reference signal yrefptq together with the prescribed funnel are
given in Figure 8.4. The funnel controller is depicted in Figure 8.5.



8.4. An application to funnel control 189

Figure 8.3: State variable xIpt, ζq of the PDE (8.20).
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Figure 8.4: Output error tracking eptq � yptq � yrefptq with the funnel
whose boundaries are the functions � 1

ϕptq and 1
ϕptq .
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Figure 8.5: Funnel controller uptq � �eptq
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2000.

[14] D. Cobb and C.-J. Wang. A characterization of bounded-input
bounded-output stability for linear time-varying systems with distri-
butional inputs. SIAM J. Control Optim., 42(4):1222–1243, 2003.

[15] R. Curtain and H. Zwart. Introduction to infinite-dimensional sys-
tems theory: A state-space approach, volume 71 of Texts in Applied
Mathematics. Springer, New York, 2020.

[16] R. F. Curtain and G. Weiss. Well posedness of triples of operators
(in the sense of linear systems theory). In Control and estimation of
distributed parameter systems (Vorau, 1988), volume 91 of Internat.
Ser. Numer. Math., pages 41–59. Birkhäuser, Basel, 1989.
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