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Introduction

A key aspect of control theory is understanding the stability properties of
systems described by (partial) differential equations with external inputs
(controls, disturbances or uncertainties). These stability properties are
central to many applications, including robust feedback stabilization,
observer design, and the stability analysis of coupled systems and networks.

Input-to-state stability (ISS), first introduced by Sontag in 1989 [90],
has proven to be a suitable concept to study simultaneously internal
stability and robustness with respect to external inputs.

Loosely, consider a system ¥ as a mapping which maps initial val-
ues o € X and input functions u: [0,0) — U to the time evolution
2: [0,tmax) — X (typically a solution to some differential equation) for
some maximal ¢y, > 0, which may depend on zy and u. The normed
spaces X and U, equipped with the norms ||-||x and ||-||i7, are referred to as
the state space and input space, respectively. The system X is considered to
be input-to-state stable (ISS) if, for all 9 € X and u € L™([0,0);U), the
state trajectory exists globally, i.e. t.x = 00, and satisfies the following
joint stability and robustness estimate for all ¢t > 0:

()]l x < Bllzollx, 1) +( EE%]IIU(S)IIU% (1)

where the continuous functions §: [0, 00) x[0,00) — [0, 00) and 7: [0, 00) —
[0,0) are of comparison classes KL and K, respectively, which are well-
known from Lyapunov theory. The properties of 8 and 7 in (1) imply that
the uncontrolled system (u = 0) is uniformly globally asymptotically stable
with equilibrium x = 0. This can be easily generalized to any nonzero
equilibrium by shifting the state accordingly, or even to any attractors [93].
Additionally, the ISS estimate (1) ensures that if u is bounded, the state
remains bounded as well, with bound being determined by xg, u, 5 and ~.

While ISS was initially developed for finite-dimensional systems, many
real-world phenomena are governed by partial differential equations (PDEs),
which inherently result in infinite-dimensional state space representations
of the system. The analysis of ISS for infinite-dimensional systems is more

Xi
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involved than for finite-dimensional systems. In fact, for linear systems

x(t) = Az(t) + Bu(t), t=0,
z(0) = zo,

with A being the generator of a strongly continuous semigroup on the
state space X and B: U — X being bounded, ISS is equivalent to uniform
exponential stability of the semigroup [18, 44]. In particular, this encom-
passes the finite-dimensional case. If B is not bounded as operator from
U to X, which is typically the case for boundary controlled PDEs, the
property of being ISS becomes non-trivial even for linear systems. In fact,
ISS is closely related to suitable solution concepts, see e.g. [44, 62, 88].
Along with the recent developments in the ISS theory for infinite-
dimensional systems [18, 19, 30, 52, 78, 79], several partial results have
been derived in the (semi)linear context, with an emphasis on parabolic
equations, see e.g. [49, 53, 69, 73, 75, 105]. For an overview of the ISS
theory, the reader is referred to the surveys [76, 88], the books [54, 71] and
the more recent habilitation thesis [72] for infinite-dimensional systems,
and to [91] for finite-dimensional systems.
Already seemingly harmless system classes such as bilinear control
systems
z(t) = Azx(t) + F(xz(t),u(t)), t=0,
z(0) = zo,

where F(z,u) = >" , w;Biz and A, B; € R"*", see [23], are typical
examples for systems which are internally stable but not ISS, see e.g. [92].
However, these systems are integral input-to-state stable (integral ISS), a
variation of the classical ISS concept first mentioned in [92]. It is defined
similar to ISS, by replacing (1) with

l®)llx < B(lollx,t) +6 (JO u(IIU(S)IU)dS> : (2)

where 8 € KL and 6, € K. In the special case that u(t) = t? with
1 < p < oo, (2) still provides meaningful information for « in LP and the
integral term can be regarded as y(||u|lr([0,q:0)) With v(t) = 0(t?). This
naturally leads to the following generalization of (1),

lz(®)llx < Bllzllx, ) +~llull zgo.0:0), 3)

where Z is a space of input functions. For Z = L*, we obtain (1) and for
Z = LP with 1 < p < o0, we obtain (2) with u(t) = tP. In general, the
functions p and € in (2) result from the system, hence, we cannot assume
that p has polynomial growth. For infinite-dimensional linear systems it
is shown in [44] that (2) holds for u € L* if and only if (3) holds for some
Orlicz space Z. The latter are function spaces generalizing LP by posing an
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integrability condition with respect to a so-called Young function, which
is allowed to increase more rapidly than any monomial tP. These spaces
somehow “fill the gap” between L? for p < oo and the often problematic
space L™,

Another aspect of nonlinear systems that we have not yet addressed
is the existence of global solutions, which is crucial for (integral) ISS.
This challenge is often ignored in the literature, where the existence of
well behaving solutions is assumed. In many cases, global existence of
solutions can be guaranteed by restricting the set of initial and input data.
This leads to the concept of local input-to-state stability (local 1SS) [93],
where (1), or more generally (3), is only required for small zg and u. This
approach allows for handling small perturbations while avoiding overly
strong assumptions on the nonlinearity. Since ISS is applied as a global
property, there is less literature on local ISS. For recent developments we
refer to [17, 70, 77]. In [63, 104] the authors also treat the problem of
identifying the local region of initial values and input functions for which
(3) holds.

Beyond ISS, there are further (classical) stability notions relevant for
modern applications of control theory. One of them is the related concept
of bounded-input bounded-output (BIBO) stability, which describes the
system’s ability to transfer bounded input functions to bounded output
functions. Compared to the challenges encountered in ISS theory, it now
has to be ensure that the system’s output is well-defined. For linear
systems, BIBO stability is extensively studied in the context of engineering
applications. However, much less is known for infinite-dimensional systems,
especially in the nonlinear case, see [14, 97] for systems with input-output
behavior described by convolution operators and [89] for linear systems
with unbounded control and observation operators.

Recently, BIBO stability has been used to ensure the applicability of
funnel control, a model-free adaptive control strategy designed to keep the
tracking error within a prescribed boundary. Since the seminal work by
Tlchmann, Sangwin, and Ryan [42], funnel control has been extensively
developed over the past twenty years, as detailed in [6] and the references
therein. It is particularly associated with BIBO stability of the internal
dynamics of systems with relative degree, which typically arises for system
described by the coupling of ODEs with PDEs. This connection has
been established through various “Funnel Theorems”, which have been
applied to both finite and infinite-dimensional systems, see [7, 8, 9, 42].
The types of dynamical systems for which funnel control is effective are
comprehensively listed in [5].
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In this thesis, we study input-to-state stability and its variations for
infinite-dimensional nonlinear systems of the form

@(t) = Az(t) + Bu(t) + g(x(t), u(t),y(t)), t=0,

y(t) = Cx(t), t =0,
where we consider the following cases:
e Bilinear control systems: g(z,,y) = BF(x, @) with bilinear F.
e Bilinear feedback systems: g(z,,y) = BN(z,y) with bilinear N.
e Semilinear systems: g(z,a,y) = f(x).

The control and observation operators B, B and C' are assumed to be
unbounded with respect to the state space X. Our goal is to provide
reasonable sufficient and necessary operator-theoretic conditions, which
guarantee ISS properties of (4). We emphasize that the latter includes
existence and uniqueness of global solution.

In addition, we present sufficient conditions for BIBO stability of
semilinear systems.

It should be noted that, besides the operator-theoretic approach of this
thesis, there is the well-established theory of ISS Lyapunov functions, see
[76] for an overview. ISS Lyapunov functions extend the classical concept of
Lyapunov functions and Lyapunov stability and provide valuable insights
into a system’s behavior, enabling the verification of whether a given
system is (integral, local) ISS. However, ISS Lyapunov functions can be
difficult to identify, are often specific to a system, and do not address the
existence of solutions directly — challenges that seem more feasible from
the perspective of operator theory.
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Outline

In Chapter 1, we introduce the basic notation of this thesis and
recall preliminary results on (perhaps not generally known) Orlicz
spaces and strongly continuous and analytic semigroups. Further,
we characterize the strong continuity of shift semigroups on Orlicz
spaces.

In Chapter 2, we give a detailed and, to a certain extent, self-
contained introduction into infinite-dimensional linear systems. There
we present the concepts of admissible control and observation opera-
tors, as well as system nodes and well-posed linear systems laying
the groundwork for our discussion of nonlinear systems in Chap-
ter 5, Chapter 6 and Chapter 8. We emphasize that Chapter 2
not only summarizes existing literature but also includes certain
generalizations with respect to Orlicz spaces.

Chapter 3 addresses Weiss’ conjecture from 1989 in [102], which states
that admissibility of control (equivalently observation) operators is
equivalent to a certain resolvent bound. For LP-admissibility, Le
Merdy (p = 2) [61] and Haak (p > 1) [31] provided a characterization
of the validity of this conjecture for bounded analytic semigroups.
In Chapter 3 we extend these findings for a class of Orlicz spaces.

In Chapter 4, we define different notions of input-to-state stability
and recall the results from [44] on input-to-state stability for linear
systems.

In Chapter 5, we consider integral input-to-state stability for bilinear
control systems. There we provide sufficient and necessary conditions
and apply the abstract results to a bilinear controlled Fokker—Planck
equation.

In Chapter 6, local and global input-to-state stability for bilinear
feedback systems is considered. Examples are given in the form of
Burgers, Schrodinger, Navier—Stokes and wave equations.

In Chapter 7, we present an ISS result based on multiplier tech-
niques for a semilinear wave equation with damping active only on a
subregion of the spatial domain.

Finally, in Chapter 8, we conclude on BIBO stability of semilinear
systems. On the basis of our results, we prove the applicability of
funnel control to a coupled ODE-PDE model of a chemical tank
reactor model.
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Contributions

The core of this thesis has been published in form of the articles [37, 39,
40, 41]. These articles and further unpublished results contribute to this
thesis as follows:

e In [40], two characterizations of Orlicz admissibility for observation
operators are studied. The first one, given by Proposition 2.2.13 (and
Proposition 2.1.13 for control operators) generalizes an analogous
result for L” due to Callier-Grabowski [28], see also Engel [24]. Both
rely on the strong continuity of the shift semigroup on Orlicz spaces,
discussed in Section 1.3.3, which is also studied in [40]. The second
characterization concerns the Weiss conjecture, which is discussed
in Chapter 3. Furthermore, a generalized Minkowski inequality
(Proposition 1.2.23) and the dual relation of Orlicz admissible control
and observation operators (Theorem 2.2.9), extending the LP-result
from [100], are taken from [40].

e The results from [39] on integral ISS for bilinear control systems with
unbounded control operators, here included as Chapter 5, extend
those of [74], where the results and techniques are limited to bounded
control operators. Furthermore, Proposition 4.2.4 is taken from
[39]. It provides a generalization for a similar statement from [44],
which was used to prove that Eg-ISS implies integral ISS for linear
system. Proposition 4.2.4 allows to lift this result to general nonlinear
autonomous systems, see Corollary 4.2.5.

e In [41], sufficient and necessary conditions for local ISS of an abstract
class of bilinear feedback systems are discussed. The results, here
included as Chapter 6, contribute to the rather sparse literature on
local ISS theory.

e Chapter 7 is work in progress and emerges from collaborations
with Birgit Jacob, University of Wuppertal, and Marius Tucsnak,
University of Bordeaux. ISS for a semilinear wave equation with
damping on a subregion and distributed input is proved based on
multiplier techniques, which as been used by Zuazua in [108] to prove
exponential stability of the above equation without inputs.

e In [37], BIBO stability of semilinear systems including unbounded
operators is proven based on the BIBO property of an extended linear
system, range conditions of the control operators and a small-gain
condition. The results enter this theses in form of Chapter 8, where
Section 8.4.2 is formulated for more general nonlinearities f instead

of the fixed function f(z) = lo|

Toj5 considered in [37].



Chapter 1

Preliminaries

In this chapter, we settle the basic notation of this thesis and recall
various fundamental results regarding Orlicz spaces and strongly continuous
semigroups used in this thesis.

Further, we provide seemingly new results on Orlicz spaces and the
strong continuity of the left- and right-shift semigroup on Orlicz spaces,
first mentioned in [40].

1.1 Basic notation

1.1.1 Dual pairings on Banach and Hilbert spaces

Let X be a Banach space over K € {R,C} with norm ||-||x. If X = K",
n € N, we write |-| := ||-||g» for the Euclidean norm.
The (topological) anti-dual space of X is

X' :={2': X - K| is antilinear and continuous}.

Let Y be another Banach spaces and (-, )y, x: ¥ x X — K be a continuous
sesquilinear form. Then, also (-, )xy: X xY — K,

pxy =Y, )y x
is a continuous sesquilinear form. If

PV - X'
Y= Y, )y.x

is an isometric isomorphism, then we call (X,Y") a (anti-)dual pair and
(-, v, x its (anti-)dual pairing. Since ® is isometric, we have that

Kz, pxyl = Ky, ©yy.x| < lyllyllz|x-

1



2 1. Preliminaries

Since & is also surjective, the Hahn—Banach theorem implies that

lylly = sup |<$,y>x,y|= sup |<%I>Y7X|,

el x <1 el x <1
[zllx = sup Kz,ypxyl= sup [y, 2)v.x]|-
lylly <1 lylly <1

Clearly, (X, X’) is a dual pair with the canonical dual pairing
G ayxr x =a2'(z), zeX, 2’ €X'

When working with a dual pair (X,Y), one can use {-, )y,x and
{-,>x,v interchangeably. However, one has to be cautious with the order
of a dual pair. If (X,Y) is a dual pair with dual pairing (-, )y x, then
(Y, X)) is not necessarily a dual pair and <-, -)x y may not be a dual pairing.
In fact, it is easy to see that there exists a Banach space Y such that
(X,Y) and (Y, X) are both dual pairs if and only if X is reflexive.

The choice of using the anti-dual space and anti-dual pairing instead of
their linear pendants is particularly useful in Hilbert spaces when switching
between dual pairings and inner products. Indeed, let X be a Hilbert
space and denote its inner product by {-,->x. Then, (X, X) is a dual pair
with the canonical dual pairing

T, yx,x =T, Px.

Unless stated otherwise, we work with the canonical dual pairs (X, X”) if
X is a Banach space and (X, X) if X is a Hilbert space.

1.1.2 Linear operators

Let X and Y be Banach space. A linear operator from X to Y is a
linear mapping A: dom(A) € X — Y, where dom(A) is a linear subspace
of X, called the domain of A. By writing A: X — Y we mean that
dom(A) = X. Let A: dom(A) € X — Y be a linear operator. Then, A
is called densely defined if dom(A) is dense in X and closed if its graph
{(z,Az) |2z € dom(A)} € X x Y is closed. We say that A is bounded if
dom(A) = X and the operator norm of A, defined by

[Allex,yy = sup [Az]y,
x|l x <1
is finite, and unbounded otherwise. We abbreviate [|A] = [[Allz(x,v)

unless we want to make it explicit that A is an operator from X to Y. The
space of bounded operators from X to Y, denoted by £(X,Y), becomes
a Banach space when equipped with the operator norm. If X =Y we
abbreviate £L(X) = L(X,Y).



1.1. Basic notation 3

The kernel, ker A, and range, ran A, of A are defined by

ker A := {z € dom(A) | Az = 0},
ran A := {Ax |z € dom(A)}.

If Y = X, we additionally define the spectrum, o(A), and the resolvent
set, p(A), of A by

o(A) :={AeC|(\— A) is not invertible},
p(4) = C\o(A).

Here, A\ € C is identified with the operator A\I, where I denotes the identity
on X. The resolvent of A at A € p(A) is the linear operator

A=A X - X,

with ran(A — A)~! = dom(A). If A is closed, then (A — A)~! € £(X) for
all A € p(A).

Now, let (X1, X2) and (Y7, Y2) be dual pairs and A: dom(4) € X; —
Y1 be a densely defined linear operator. The dual operator with respect
to the above dual pairs is the linear operator A’: dom(A’) € Yo — X5,
where

dom(A”)

= {yg eYs | dzs € Xg Vap € dOHl(A) : <x27-'151>X27X1 = <y2, A$1>y2,y1}
and A’ is given by

Alys =19 & (T2, T1)x,,x, = (Y2, AT1)y, v, for all x1 € dom(A).

Note that A’ is well-defined by Hahn-Banach’s theorem. The dual operator
A’ is always closed, and it is densely defined if A is closed.

If A: dom(A) € X — Y is a densely defined linear operator and no
dual pairs are mentioned, we define the dual operator of A using the
dual pairs (X, X’) and (Y,Y”) if X and Y are Banach spaces, and (X, X)
and (YY) if X and Y are Hilbert spaces. Thus, A’ is the standard dual
operator on Banach spaces and the adjoint operator on Hilbert spaces.

1.1.3 Function spaces

Let Q € R™ be any subset and U a Banach space. We equip C(Q;U), the
space of continuous functions f: Q — U, with the usual norm || f||c(o,u) =
supceqllf(Qllv. By Ce(€;U) we denote the subspace space of continuous
and compactly supported functions f, i.e., f € C(Q;U) and the support
of f, supp f = {C € Q| f(¢) # 0}, is a compact subset of Q2. For m € N,
we denote by C™(£2;U) the space of m-times continuously differentiable
functions f: Q — U, where differentiation is considered in the interior of
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Q and all derivatives can be continuously extended to 2. Further, consider
CP (4 U) = (e C™ (% V) and CF (V) = {f € C () [supp f
Q is compact}.

Denote by F the Borel o-algebra on 2 and by A the Lebesgue measure.
Recall that a function f: Q — U is called simple if f = Zf:l u;1F,, where
u; € U, F; € F has finite measure and

if CeF
1F“%:{d ;i67

is the characteristic function on F € Q. A function f: Q — U is called
(strongly) measurable if there exists a sequence of simple functions con-
verging almost everywhere to f.

By LP(Q;U), 1 < p € o0, we denote the standard Lebesgue space of
(equivalence classes of) strongly measurable functions f:  — U such that
IlfllLe o0y is finite, where

ME A, it p < oo,
1l = { Sell/ QI 4O, it p
esssupeeal F(Ollu, i p= oo.

Now, let 2 € R™ be an open domain. For me N and 1 < p < o0 we
denote by W™P(Q; U) the classical Sobolev spaces of function in LP(Q; U)
whose weak partial derivatives D® f exists in LP(Q; U) for all multi-indices
a = (a1,...,0p)" € N§ with |af ==Y a; < m. On W™P(Q;U) we
consider the norm

Hf”WmfP(Q;U) = Z ||Daf||Lp U)

0<|alsm

For p = 2 we use the notation H™(Q;U) :== W™2(Q;U). If U is a
Hilbert space, then H™(; U) is a Hilbert space with the inner product

Gy = Y| DHO.DCw L.

0<|al<sm

Further, let H{*(€2; U) be the closure of C(;U) in H™(Q; U).
For Q = [a,b) with —00 < a < b < o0 and 1 < p < 00 we define the
local LP-space by

L ([a,0);U) = {f: [a,0) = U| flla,n € L7([a, t]; U) for all ¢ € (a,b)},

where f|[,,4 is the restriction of f to [a,t]. Similar, we define the local
Sobolev spaces

me((a,b); U)

loc

=1{f:(a,0) = Q| flia,) € W"P((a,t);U) for all t € (a,b)}
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and
Higc((a,0); U) = W2 ((a,); U).

For any function space Z we abbreviate Z(Q) = Z(£,K), unless we
want to make it explicit that we are dealing with scalar-valued functions.

Further, we write LP(a,b), if U = K and Q is an interval of the form
(a,b), [a,b), (a,b] or [a,b]. This is well-defined since {a, b} is a Lebesgue
null set. Similar, we write W™?(a,b), H"(a,b) and HJ'(a,b) if Q = (a,b)
is an open interval.

1.2 Orlicz spaces

In LP-spaces, functions f are measured in term of their p-th power integra-
bility. Therefore, they are limited in capturing the behavior of functions
with more complex growth patterns. This is where Orlicz spaces come
into play. They are defined by introducing so-called Young functions @,
which generalize the functions ¢t — tP, and by studying the integrability
of ®(f). In this way, Orlicz spaces extend LP-spaces for 1 < p < co. The
presented results are based on [1, 58, 60].

1.2.1 Young functions

We begin this section with the fundamental definition of Young functions.
Definition 1.2.1. A function ®: [0,00) — [0, 0) is called Young function
if & is

(i) continuous,

(ii

(iii

convex,

)
)
) ®(t) >0 for t > 0, and
)

(iv) the following limit properties are satisfied

lim 2 =0 and lim k0] = . (1.1)
tNO T tox t

For every Young function ® we have that ®(0) = 0, lim;_,o, ®(¢) = 00
and @ is strictly increasing. Hence, the inverse function ®1: [0,00) —
[0,0) exists, and it is a strictly increasing and concave functlon which
satisfies @71(0) = 0 and limy_,,, ®71(¢) = 0.

Remark 1.2.2. Tt is well known, see e.g. [1, 58, 60], that ® is a Young
function if and only if

O(t) = Lt p(r)dr forallt >0 (1.2)

for some function ¢: [0,00) — [0, 00) such that
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(i) ¢(0) =0, ¢(r) > 0 for 7 > 0 and lim,_, (1) = 0,
(ii) ¢ is nondecreasing, and
(iii) ¢ is right-continuous.

Note that ¢ is the right-derivative of ® almost everywhere with respect
to the Lebesgue measure. Hence, ¢ is unique up to equality on null-sets.
One could replace the right-continuity of ¢ with left-continuity, then ¢
would be the left-derivative of ® almost everywhere.

Definition 1.2.3. Let ® be a Young function with right-derivative . For
p,s = 0 we define

S

P(p):= sup 7 and B(s) ::JO &(p) dp.

We call ® the to ® complementary Young function. And the functions ®
and ® are called complementary to each other.

Remark 1.2.4. Tt is not difficult to check that ¢ has the properties (i)-(iii)
from Remark 1.2.2. Hence, ® is a Young function with right-derivative
@. Moreover, ¢ can be recovered from ¢ via (1) = supg(, <. p, i-e., ©

is the complementary Young function to ®. This means there is a one-
to-one correspondence between a Young function and its complementary
Young function and the notion “complementary to each other” makes
sense. The relation between complementary Young functions is illustrated
in Figure 1.1.

Figure 1.1: Relation between complementary Young functions ¢ and 3.
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The following result can also be rediscovered in Figure 1.1.

Lemma 1.2.5. Let ® and ® be complementary Young functions generated
by ¢ and @, respectively. Then, Young’s inequality

st < B(t) + B(s) (1.3)
holds for all s,t = 0, and equality holds if and only if either t = $(s) or
s = ¢(t).

Proof. For the proof we refer to [1, page 266]. a

Corollary 1.2.6. Let ® be a Young function. Its complementary Young
function is given by N
D(s) = I?>aox{st —o(1)}.

Proof. The assertion follows from Young’s inequality, Lemma 1.2.5. Q4

Remark 1.2.7. The above expression for ® is sometimes used as a defi-
nition of the complementary Young function. It allows a more general
definition of Young functions, where the limit properties (1.1) are relaxed
to limy o ®(¢) = 0 and limy_,, () = o0, see e.g. [84, page 6]. Using this
definition, ®(t) = t is a Young function with

&(t) = sup{(t — 1)s} =

s=0

0, iftelo0,1],
oo, ifte (1,00).

However, we only consider Young functions defined as in Definition 1.2.1,
unless otherwise specified.

Another relation between complementary Young functions is given
next.

Lemma 1.2.8. Let ® and & be complementary Young functions. Then,
t< L)L) <2t for allt = 0. (1.4)
Proof. For the proof we refer to [1, pages 264-265]. a

An essential property of Young functions is the following growth be-
havior.

Definition 1.2.9. A Young function ® satisfies the As-condition near
infinity (& € AY) if there exist constants K > 0 and ¢y > 0 such that

B(2t) < KD(t) for all t > to. (1.5)

If (1.5) holds for ty = 0, we say that ® satisfies the Ay-condition globally
((b 1= Aglobal).



8 1. Preliminaries

Remark 1.2.10. As a consequence of the monotonicity of ¢ and a simple
iteration argument, as already mentioned in [1, page 231], the factor 2 in
(1.5) can be replaced by any constant > 1. The constant K will then
depend on r.

Example 1.2.11. The following functions are Young functions:

(i) ®41(t) = % for 1 <p < o0,

The complementary Young function to ®; is & (¢) = tpi, where p' is the

Holder conjugate of p, i.e., % + ﬁ = 1. The Young functions ¢ and P3
are complementary to each other. Further, we have ®;, &3, &, € A5

and @2,@5 ¢ Ag
1.2.2 Young functions of class P

We close the discussion on Young functions by introducing a subclass
of Young functions with polynomial growth at 0 and oo. In [55], it is
proven that the associated Orlicz spaces (see Section 1.2) are interpolation
spaces between LP-spaces. Due to their polynomial behavior, these Young
function will play a role in Chapter 3 in the context of the holomorphic
functional calculus.

Definition 1.2.12. We say that a function ®: [0,00) — [0, o) is of class
P (P € P) if ® is invertible and there exist 1 < p < ¢ < 00 and a continuous
concave function p: (0,00) — (0,00) with

p(st) < max(1, s)p(t) (1.6)
for all s, > 0 and such that ®~! is given by

O L(t) = trp(ti v) (1.7)
for t > 0.

Functions of class P are Young functions as the following result shows.

Lemma 1.2.13. For 1 <p<gq <o let f: (0,00) — (0,00) be given by

),

T l=

F(t) =tvp(ta-
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where p: (0,00) — (0,00) is a continuous concave function satisfying (1.6).
Then f is strictly increasing, and hence invertible on (0,00). Its inverse
f~1 extends to a Young function by f~1(0) = 0. In particular, functions
of class P are Young functions.

Proof. From (1.6) we deduce that p is increasing. The concavity of p

implies that s +— @ is decreasing on (0,00) and since é — % <0, s+—
1_1
p(s)7 ” g increasing for every ¢ > 0. For s € (0, 1) it follows that
sda P

flst)=svtvp
P

These inequalities and the properties of p imply that
min{s¥, s }f(t) < f(st) < max{s?, 57} f() (1.8)

for s,t > 0. It follows that f is strictly increasing on (0, c0) and f((0, 0)) =
(0,00). Hence, f is invertible with continuous and strictly increasing
inverse f~!: (0,00) — (0,00). For the convexity of f~! we refer to [68,
Lemma 14.2]. It follows from (1.8) for ¢t = 1 that

limﬁzoo and lim ﬁzo.

s\O S s> 8
Hence, f~! extends uniquely to a Young function by f~*(0) = 0. Qa
Remark 1.2.14. 1. A representation of ® € P and its complementary

Young function ® are given by [55, Lemma 3.2]: If ® € P is charac-
terized by (1.7), then

B(t) = tIh(tP~7) (1.9)

and N , o
O(t) =tP k(t? 7)), (1.10)

where p’ and ¢’ are the Holder conjugates to p and ¢, respectively,
and h, k: [0,00) — [0, 00) are continuous and quasi-concave functions
such that h(t) > 0 for ¢ > 0 and h(st) < max{1, s}h(t) forall s,t >0
and analog for k. The functions h and k are characterized by (1.9)
and (1.10).
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From (1.7), (1.9) and (1.10) we derive

< max{sis%}CIfl(t)7

D(st) < max{s?, sP} ®(t), (1.11)
< m

ax{s?, 57} B(t)

for s,t > 0 and with the transformations u = max{s?, s}, v = ®(¢)
and u = max{s”l, sq'}, v = O(t), respectively,

min{u% , u%} O (v) < d Huw),

Lo N (1.12)
min{u® ,u? } @ 1(v) < & (uw).

In particular, we have that ®, ® € A5 by (1.11).

Example 1.2.15. (i) If p, u: (0,00) — (0,00) are continuous concave

(iii)

functions satisfying (1.6), then so are ap + by and p o u for a,b = 0.
To see that p o p satisfies (1.6), note that p is increasing. The latter
follows from (1.6) by writing # € (0,¢] as £ = st with s € (0, 1].

The trivial examples p,.(t) = t" for some r € [0, 1] lead to the Young
functions ®(t) = t“ with «a € [p, q] given by é = g + 1:, if we
assume that @1 is given by (1.7) with 1 <p < ¢ < 0. For r =0
and r = 1 the corresponding functions pg(t) = 1 and p1(t) = ¢ can
be seen as the extreme cases for p with respect to the gradient of

increasing concave functions.

The following example can be found in [55]. Let ®~! be given by
(1.7) with p(t) = min{1,¢}, t = 0 and any choice of 1 < p < ¢ < .
Then, ® is given by (1.9) with A(t) = max{1,t}, ¢ = 0. It is obvious
that @ is of class P.

Let @~ be given by (1.7) with p(t) = log(1+t), t = 0 and any choice
of 1 <p < q<oo. Then, ® is of class P, ® ! has a holomorphic
extension to any sector S5 := {z € C\{0} ||arg z| < d} (taking the
principal branch of the complex logarithm) and for ¢ < % there exist
constants mg, mq; > 0 such that

mo®~ ! (|z]) < [@7(2)] < ma®7(|2])

for z € Sy.

Proof. Let p(t) = log(1l + ¢). It is well known that p is concave
and holomorphic on any sector Ss. We first check that p(st) <
max{1l, s}p(t) holds for s,t > 0. For s < 1, the monotonicity of
p implies p(st) < p(t). For s > 1, p(st) < sp(t) is equivalent to
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log(1 + st) < log((1 + ¢)®), which holds by Bernoulli’s inequality.
Hence, @ is of class P.

For the remaining part, let § < %, i.e., 2cos(d) = 1. Let z =
rel € S5, ie., r > 0 and § € (—6,5). Note that 1 + 2 € S5 and
|1+ 2] =1+ 2cos(d)r + r? holds. We infer that

log(1 + 2)|* = [log(|]1 + 2|) +iarg(1 + z)|2

(; log <\/1 + 2cos(8)r + 7“2))2 + (arg(1 + 2))°

i (log(1 +2 (308((5)r))2
1
16
1 2
T (log(1 +2])?,

WV
_
o

WV

(log(1 +7))*

(=]

which shows 1p(|z]) < |p(z)|. Similar, we estimate

2
llog(1 + 2)|* = %log(l +2cos(0)r +72) | + (arg(1 + 2))°
<(1+r)?
< log(1 + 7)? + (arg(1 + 2))°
= p(|2)* + (arg(1 +2))*.

Thus, to derive |p(z)] < myp(]z]) for some positive constant m;
independent of z, it suffices to show that

larg(1l + 2)| _ larg(l + 2)|
p([z]) log(1 + |2])

is bounded on Ss. Since z — arg(1 + z) is continuous on Ss\{0},
the boundedness follows on compact subsets of Ss\{0}. Moreover,

larg(1 + 2)| < § implies the boundedness for large values of |z|. It
larg(1+2)]|

remains to show that Tog(1+]2])

is bounded for small values of |z|. To
this end we use

|1+ z|sin(arg(l + 2)) = Im (1 + z) = Im (2) = |z|sin(arg(z))

on Ss and that |Sm“’w\ < K for some K > 0 and all w € (=94, ).
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With this at hand, we estimate for z = re'?,
larg(1 + 2)| < |sin(arg(1 + re'?))|
log(1+|z]) — log(1 + )
r|sin(6)]
[1+ re?] log(1+r)
r
log(1+7)

==

X

=

<

for some K > 0 and small values of r = |z|. a

1.2.3 The Orlicz space Lg

Let 2 € R™ be a nonempty subset. Measurability of sets and functions
refers to the Borel o-algebra on € and the Lebesgue measure A. As usual,
integration with respect to A is denoted by {, fdX = {, f(¢)d¢ = {, fd¢.
Further, U is a Banach space over K € {R, C}.

We emphasize that all definitions and results easily extend to any
o-finite measure space.

For a Young function ® and a (strongly) measurable function f: Q — U
define

palf) = pa(£3.0) 1= | (17l e
If we want to emphasize that f is a function from  to U, we write

pa(f;Q,U), and pa(f) else. Whenever one of these expressions appears,
we tacitly assume that f is measurable.

Definition 1.2.16. Let ® be a Young function. With the usual convention
of identifying functions which coincide almost everywhere, the Orlicz space
La(2;U) is defined by

Lo(QU) = {f; Q- U‘3k>0: po (g) < oo}.
Further, we define two norms on Lg(2; U), the Luzemburg norm

[ fllLe vy = inf{k >0 ‘ 23 (%) < 1}

and the Orlicz norm

nm%Qm:wﬁuymmw«

pa(g: U < 1}

= Sup{L | fs gpuur| dC

ps(9;Q,U") < 1}7



1.2. Orlicz spaces 13

where the second equality follows by considering § = gsgn ({f, ¢9>v.v’)
instead of g, where sgn is the sign function.

If U = K, we abbreviate Ls(Q) := Lo (Q; K), and Lg(a,b) = La(Q) if Q is
an interval (a,b), [a,b), (a,b] or [a,b].

As in the scalar case, it can be shown that the Luxemburg and Orlicz
norm, respectively, are norms on Lg (Q; U), see e.g. [60, Theorem 3.6.4 ] and
[1, Theorem 8.10]. Furthermore, we will see that, as in the scalar case, both
norms are equivalent and turn Eg(2; U) into an Banach space. However,
we take the Luxemburg norm as the standard norm since it does not
require any knowledge about the complementary Young function. We will
go over to the Orlicz norm, whenever its dual character is advantageous.

Example 1.2.17. For the Young function ®(¢) = t?, 1 < p < o0, we have
Ly =L” and ||, = [-[lc»-
In this sense, Orlicz spaces generalize LP-spaces for 1 < p < 0.

The following result is useful for estimating the Luxemburg norm.

Lemma 1.2.18. Let ® be a Young function and f € Lo(Q2;U). Then,
pa (f) < 1 holds if and only if || f|lL, vy < 1. Moreover, if ps (f) =1
holds, then || f||L, ) = 1.

Proof. This is a direct consequence of the definition of the Luxemburg norm
and a monotone convergence argument, see also [58, Theorem 9.5]. Q

Similar to LP-spaces, Holder’s inequality applies in Orlicz spaces.

Lemma 1.2.19. Let & and & be complementary Young functions. For
every f € Le($;U) and g € Lg(;U’) the generalized Holder inequality
holds:

J’QKf, g d¢ < Lllf\\ullgllvf dC < 2/l fllLe @ 191l s -

Proof. The first inequality is clear and the second one is a direct conse-
quence of Young’s inequality (1.3) and Lemma 1.2.18. a

From the definition of the Luxemburg norm it is clear that

I fllLe oy = 1 fllo e @)

holds for every f € Lg(Q2;U). The analog identity for the Orlicz norm
is less obvious but still valid. A proof of this fact can be found in [87,
Lemma 3.4.22] under the additional (but unnecessary) assumption that
U is an Orlicz space. We recall the statement and give an inside into the
proof.
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Proposition 1.2.20. Let ® and d be complementary Young functions.
For f € Lo(;U) and g € Lo(Q;U’) we have that

su{ [ fer- v

pa (s ,U") < 1}
_ sup{ [ nrtwtatac

pa(h: 2 K) < 1}

and
sup{f ‘(h QuU (h Q,U) < }
_ sup{L||g||U,|h|dg P (h: 2, K) < 1}.
In particular, || flllLe @0y = Il 1fllo L)

The proof is based on the following non-trivial lemma, which is a
simplification of [87, Satz 3.4.21].

Lemma 1.2.21. Let X,Y be Banach spaces. If B: X xY — K is
sesquilinear such that |B(x,y)| < ||z||x||ylly for allze X and ye Y, and

[zllx = sup{|B(z,y)[ |y € Y, [lylly <1},

then, for every measurable function x: Q — X and every € € (0,1) there
exists a measurable function y: Q — Y such that, for almost every C € €2,

ly(Olly <1 and (1 —e)llz({)llx < [B(x(¢),y(¢))I-

Proof. We refer to [87, Satz 3.4.21] for the proof. There, bilinear forms B
are considered, however, the proof for sesquilinear forms is the same. O

Proof of Proposition 1.2.20. Note that “<” is clear for both statements.
We have to prove the reverse estimates. First consider f € Lg(Q;U) and
let € € (0,1). By y we denote the function from Lemma 1.2.21 for X = U,
Y =U', B(z,y) = {x,y)v,vr and x = f. Let h € Lg(Q) with pz(h) <1
and set . = yh. Since ||y|lyr < 1 almost everywhere, we obtain that
pq)(h;Q, U’) £ 1, and hence,

— h d/l,
<X ,h ’
<sup{f ‘<f >U,U

du|pg

(h;Q,U") < 1}.

Letting ¢ tend to zero and taking the supremum over all h € L () with
pg(h) < 1 yields the assertion for f.

By considering X = U’ and Y = U and reversing the arguments of B,
we obtain the corresponding statement for g. a
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Proposition 1.2.20 allows to lift well-known results from scalar-valued
to vector-valued Orlicz spaces.

Corollary 1.2.22. The Orlicz space Lo (Q;U) equipped with the Luzem-
burg norm or the Orlicz norm is a Banach space. Furthermore, these
norms are equivalent. More precisely, for f € Le(Q;U) we have that

[ fllLe @y < 1fllLe@ivy < 201 fllLe iv)-

Proof. This is a direct consequence of Proposition 1.2.20 and the scalar
results [60, Theorem 3.8.5 & 3.9.1]. Q

Based on the equivalence of the Luxemburg and Orlicz norm, we can
prove the following —seemingly new— generalization of Minkowski’s integral
inequality for Orlicz spaces. For later considerations, we formulate it for
o-finite measure spaces.

Proposition 1.2.23. Let ® be a Young function and v = 1 such that
W(t) = ®(tv) also defines a Young function. Further let (4, Fi, i),
i =1,2, be o-finite measure spaces. Then,

H (chf(-, D) el 71'

holds for any measurable function f: Qq x Qo — [0,00), for which the
right-hand side is finite. The factor 27 can be omitted if we consider the
Orlicz norm on both sides.

r

<2! ( fﬂ IIf(-,y)ILPml)duz(y))

Le (Ql)

Proof. First we prove the statement for » = 1. Note that U is trivially a
Young function in this case. Using the equivalent Orlicz norm on Lg we
obtain that

f(y) duz(y)
Qo

Lo (Ql)

< swp fQ ) 9(o) dpa(o) dyr 2)

HQHL&)(Ql)gl

= sup J flx,y) g(x)dups(x) d/,l/z(y)’
HQHL&(Ql)gl Qo JO
f(@,y) g(x) dp (x)

< J sup
Q3 |\9HL§>(91)<1 |95

< QL LG Le 0y dp2(y),

dpa(y)

where we applied Holder’s inequality (Lemma 1.2.19) in the last step.



16 1. Preliminaries

Now, let 7 > 1 be given such that ¥(t) = ®(t+) defines a Young
function. We deduce from the definition of the Luxemburg norm that

H <La(f(" )" duz(y)> :
d

<2

La (1)

f (FC29)) dpia(y)
Qs

3=

Ly (Q1)

( [ 160 i dm(y)>

r

Sl

1 r

=97 (LZf(-7y)||£¢(m)d”2(y)) ’

where we applied the previous derived estimate for » = 1 and the Young
function . a

1.2.4 The Orlicz space Eg

For LP-spaces a lot of practical statements are known like density of simple
functions, compactly supported continuous functions or step functions, as
well as absolute continuity of the norm with respect to the measure and a
characterization of the (anti-)dual space as another Lp/-space. In general,
these results do not hold for Orlicz spaces Lg. Therefore, we need to pass
over to a subspace Eg, which we introduce next.

As before, 2 € R™ is a nonempty subset on which we consider the
Borel g-algebra and the Lebesgue measure A. Further, U is a Banach
space over K.

Definition 1.2.24. Let ® be a Young function. We define the subspace
Es(;U) of Lg(€; U), which we also call Orlicz space, by

Ee(Q;U) = {f € L*(Q;U) |esssupp f is bounded }‘l'”L‘I’,
If U = K, we abbreviate E¢(Q2) := Eq(Q; K).

Lemma 1.2.25. Let ® be a Young function. Then, Eg(Q;U) = La(;U)
if and only if either

(i) @ e A", or
(ii) ® € AT and A\(Q) < .

If one of the equivalent conditions holds, then

Lol 0) = Ea(0) = {: 2 U \ [ #7101 ac <o},
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Proof. We refer for the proof to [1, page 236]. a

Remark 1.2.26. The convex set
Kol@0) = {£: 0~ UU ®(110) d < 0},
Q

known as the Orlicz class, satisfies
E<I>(Q; U) - K@(Q; U) - L@(Q; U)

These spaces coincide if and only if one of the conditions (i) or (ii) from
Lemma 1.2.25 holds. Even more is true, K¢ (§2;U) is a vector space if
and only if (i) or (ii) holds. Moreover, E¢(£2;U) is the maximal linear
subspace of Kg(;U), and Lg (2; U) is the smallest vector space containing
Kg(;U), see [1, Chapter 8].

The concept of Orlicz spaces goes back to the Orlicz class as a naive
extension of LP-spaces, obtained by replacing the function ®(¢) = t? by
the general class of Young functions.

The equality of spaces E¢ = Lg can also be characterized by another

convergence notion, which is in general weaker than norm convergence.

Lemma 1.2.27. Let ® be a Young function and (un)nen be a sequence in
L (i U). If (up)nen converges in Lg-norm to some u € La(;U), then
(tn)nen is ®-mean convergent to u, that is,

lim | ®(Jju, —ully)dd =0.

The converse holds if and only if Le(Q;U) = E¢(Q;U).
Proof. We refer for the proof to [1, page 270]. a

The following lemma contains useful conclusions about the density of
different classes of functions in Orlicz spaces. For simplicity, we assume
that Q = I € R is an interval. An extension to more general measure
spaces is possible, cf. [2, Kapitel X, Satz 4.8 & Theorem 4.14]

Lemma 1.2.28. Let ® be a Young function, I € R be an interval and U
be a Banach space. The following assertions hold.

(i) The set of simple functions

{S = Zn:ul]l}q

i=1

neNu; e U F; measumble}

is dense in Eo(I;U).
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(ii) For every function f € Co(I;U) and e > 0 there exists a step function
o such that

sup|[f(¢) —¢(Q)llv <e.
Ccel
Moreover, ¢ can be chosen such that
supp ¢ € [min supp f, maxsupp f] < I.
(iii) C.(I;U) is dense in Eg(I;U).
(iv) The set of step functions

{S = 2 uiﬂ[a,;,bi)

i=1

neN,ai,biGI,ai <bi,’U,iEU}

is dense in E¢(I; U).

Proof. (i) Let f € Eg(I;U). By definition, there exists a sequence
(fn)nen of simple functions converging to f almost everywhere, i.e.,
there exists a measurable null set N such that f,(¢) — f(¢) as
n — oo for all ¢ € I\N. Define

Fy=A{Ce I|[fn(Ollv < 2(f(Ollu}

and f, =1 F, fn. Thus, F, is measurable and for every n € N the
function f,, is simple. For ¢ € T \NV, there exists ng € N such that
£ Ollo < 2(f(Ollv for n = ng, ie., ¢ € (),5,, Fn We infer
that f,(¢) = fu(¢) = f(¢) as n — oo for almost every (. Since
1fo — fllv < 3||fllv and f € Ee(I;U) € Ko(I;U), it follows by
dominated convergence that

i | (fnkfnU)dC:O

n—o0
for every k > 0, hence, lim,, .|| fn — s,y = 0.

(ii) Let f e C.(I;U) and £ > 0 be arbitrary. Choose a,b € R, such that
supp f € [a,b] € I. Since f is uniformly continuous on [a, b], there
exists § > 0 such that for all (1, € [a,b] with |(1 — (2] < 6 we
have that ||f((1) — f(G)|lv <e. Let a =ag < a1 < ...a, = b with
a;+1 —a; < dfori=0,...,n—1 and define

flai), if (e lai,aiv1),
SO(C) = f(an)7 if C = Qn,

0, else.

Hence, ¢ is a step function with sup.¢;[| f(¢) —¢({)||v < . Note that
we could have chosen ¢ = minsupp f and b = max supp f, which
concludes the “Moreover” part.
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(iii) Since step functions are dense in Eg¢(I;U) by (i), it suffices to
prove that for every ¢ > 0, v € U\{0} and measurable set F' < I
with A(F) < oo there exists a function f € C.(I;U) with |[ulp —
fllgq(r;uy < €. Since the Lebesgue measure is regular, we find a
compact set K and an open set O in I with K € F € O such that

MO\K) < (@(luzy)=,

Urysohn’s lemma yields the existence of a continuous function ¢: I —
[0,1] such that ¢|x = 1 and p|po = 0. It follows that f = up €
C.(I;U) and

[o(lte=tlo) ace [ a(ltle) gce
I € O\K 9

and thus, |[ulr — f|lg, o) <€

(iv) Let f € E¢(I,U) and € > 0 be arbitrary. By (iii), there exists
g € C(L;U) with ||f — gllgr,vy < 5. By (ii), there is a step
function ¢ and a compact set K € I with supp ¢ nsuppg € K and

supeer19(Q) — ¢(Q)llv < 5@ (5¢ky)- It follows that

o=l i7" ()
J@(g;ﬁ])dggfq> f() d\=1.
I 5 K 5
Hence, ||g — ¢llg,(1;v) < § and consequently,
e €
If = Pllearoy < NIF = leaioy + 19 = @llear) < 5+ 5 =
which completes the proof. a

Lemma 1.2.28 enables us to prove the following result on the absolute
continuity of the Eg-norm with respect to the measure.

Proposition 1.2.29. Let ® be a Young function, I < Q an interval and
U a Banach space. The norm on Eg(I;U) is absolute continuous with
respect to the measure, that is, for all f € E¢(I;U) and € > 0 there exists
0 > 0 such that for every measurable set F € U with A(F) < ¢ it follows
that

1f1FllEe (Fiv) <€
Proof. For f € E¢(I;U) and € > 0 there exists a function g € L*(I;U)
with Hf _g”Eq)(I;U) < % by Lemma 1.2.28. Let M > “g‘|L‘I(I;U) and
§ = (B(L))=1 > 0. For every measurable set F € I with 0 < \(F) <&

€
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it follows that

| flrlles (Foy = 1LF flles (r0)
< \f = 9llesvy + Fglles (109

€
< 5+ Mltrles o)
_< —1(_1 _yy-1
= M ()
<e.
This concludes the proof. a

We conclude our discussion of Orlicz spaces with the following charac-
terization of the (anti-)dual space of the vector-valued space Eq(€;U).

Denote by F the Borel o-algebra on Q. Recall that U’ possesses
the Radon-Nikodym property with respect to (2, F, A) if for every vector
measure v: F — U’ of bounded variation, which is continuous with respect
to A, i.e., limper \(r)y—o ¥(F) = 0, there exists a A-integrable function
g: Q — U’ such that

v(F) :f gdx forall F e F.
F

Proposition 1.2.30. Let Q € R"™ with A(Q) < oo, then the (anti-)dual
space of E¢ (% U) is (topologically) isomorphic to Lg(€;U’) if and only if
U’ possesses the Radon-Nikodym property with respect to (Q, F, ).

Proof. Corollary 1.2.22 implies that the mapping

Lg(Q;U") — (Eo(Q;U))

v (U = L<07U>U',U du)

is an isometric isomorphism onto its range. The equivalence of surjec-
tivity of this map to the Radon-Nikodym property of U’ can be proven
analogously to the LP-case, see e.g. [22, Chapter IV.1]. d

1.2.5 Orlicz—Sobolev spaces

We briefly introduce Orlicz—Sobolev space, which are analogous to the
classical Sobolev spaces. We restrict ourselves to vector valued functions
defined on intervals and refer to [1, Chapter 8] for higher dimensional
domains and further details of Orlicz—Sobolev spaces.

Let (a,b) € R be any open interval, U be a Banach space and ® be a
Young function. The Orlicz—Sobolev space W™Lg((a,b); U) of order m € N
consists of those (equivalence classes of) functions f € Lg((a,b); U) whose
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weak derivatives f(*) also belong to Lg((a,b); U) for all k = 1,...,m. The
space W™Eg((a,b); U) is defined in an analogous fashion and also called
Orlicz—Sobolev space. As for classical Sobolev spaces, it can be checked
that W™Lg((a,b); U) is a Banach space with respect to the norm

”fHWqus((a,b);U) = 2 ||f(k)||L<p((a,b);U)-
k=0

Further, W™Eg((a,b); U) is a closed subspace of W™Lg((a,b); U) and
therefore also a Banach space.
For —o0 < a < b < o0 we define the local Orlicz—Sobolev spaces by

WmL{),loc((aa b)v U)
={f:(a,b) > U | f|(a,t) € W"Lg((a,t); U) for all t € (a,b)},

and analogously for W"Eg 10c((a,b); U).
If (a,b) is a bounded interval, we have the continuous embeddings,

W™ Eg((a,0);U) = W"Lg((a,b); U) = W™ ((a,b); U) = C([a,b];U)

for all m € N. In particular, point evaluation of function in W Lg 1o and
W™ Eg joc is a well-defined and continuous operator.

1.3 Operator semigroups

We introduce the fundamental concepts of strongly continuous and analytic
operator semigroups, as well as related topics such as fractional powers
of operators. For more details on semigroups, we refer to [26], and for
analytic semigroups and fractional powers to [34].

1.3.1 Strongly continuous semigroups

Let X be a Banach space. Consider the abstract Cauchy problem

{i:(t) = Az(t), t=0,

2(0) = 70, (1.13)

where A: dom(A) € X — X is a linear operator and 2o € X. If A€ L(X),
the unique solution is given by the operator exponential function

L yn
z(t) = etzg = Z — A"xg.
n!
n=0
The assumption that A is bounded is quite restrictive, and in practice,
one often encounters unbounded operators A, for which the operator expo-
nential function is ill-defined. In such cases, strongly continuous operator
semigroups serve as a suitable generalization, providing a meaningful

solution concept.
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Definition 1.3.1. Let X be a Banach space. A family of operators
(T'(t))1z0 S L(X) is called a strongly continuous semigroup or Cy-semigroup
on X if

(i) 7(0) = 1,
(ii) T(t+s) =T()T(s) for all t,s > 0, and
(iii) [0,00) 2t T(t)x is continuous for every z € X.

Remark 1.3.2. Properties (i) and (ii) of Definition 1.3.1 are the semigroup
properties of (T'(t)):=0 and (iii) is the strong continuity on [0, ). Note
that the semigroup properties imply that it suffices to ask for strong
continuity at ¢ = 0.

If Ae L£(X), then (e'4);=0 is a Cp-semigroup. The operator A can be
re-obtained from the semigroup via Az = ($e42)(0). Extending this to
general Cp-semigroups leads to the following definition.

Definition 1.3.3. Let (T'(t)):>0 be a Cy-semigroup on a Banach space X.
Its (infinitesimal) generator is the operator A: dom(A) € X — X given
by

Az = lim M7
AN h
T(h)x —
dom(A) := {x € X | lim Tz == exists in X}.
RN\0 h

The generator of a Cy-semigroup is in general an unbounded operator.
However, the generator of a Cy-semigroup is densely defined, closed and
uniquely determines the semigroup, see [26, Chapter II, Theorem 1.4].

The Hille-Yosida theorem [26, Chapter IT, Theorem 3.8] and the Lumer—
Phillips theorem [26, Chapter II, Theorem 3.15] provide complete charac-
terizations for when a given operator A generates a Cy-semigroup.

Lemma 1.3.4. Let (T(t))t=0 be a Cy-semigroup on X. Then there exist
constants M > 1 and w € R such that

|T(t)|| < Me**  for allt = 0.
Proof. For the proof we refer to [26, Chapter I, Proposition 5.5]. Q

Regarding the growth behavior of semigroups, one makes the following
definition.

Definition 1.3.5. Let (T'(¢))i=0 be a Cy-semigroup.

(i) The growth bound of (T(t)):=o is the constant

wo((T(t))ez0) == inf{w e R|IM =0Vt = 0: ||T(t)|| < Me**}.
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(if) We call (T'(t))¢=0 bounded, if there exists M > 0 such that

IT@)|| <M forallt=0.

(iii) We call (T'(t))t=0 contractive if

IT(@)|| <1 forallt 0.

(iv) We call (T'(t))t=0 exponentially stable, if wo((T(t))i=0) < 0, i.e., if
there exist M,w > 0 such that

|T(t)] < Me " forall t > 0.

Exponential stable semigroups play an essential role in the stability
analysis of dynamical systems. We can characterize them as follows.

Lemma 1.3.6. For a Cy-semigroup (T(t))i=0 on a Banach space X the
following assertions are equivalent.

(1) (T'(t))et=0 is exponentially stable.
(i) T | 7(8) | = 0.
(iii) ||IT(®)|| < 1 for some t > 0.
Proof. For the proof we refer to [26, Chapter V, Proposition 1.7]. Q

One can always scale the semigroup (shift the generator) to obtain an
bounded or exponentially stable semigroup, as the following well-known
result shows.

Lemma 1.3.7. Let (T'(t))t>0 be a Co-semigroup on a Banach space X with
generator A. For any \ € R it holds that (e T (t))i=0 is a Co-semigroup
on X with generator A — A whose domain is dom(A — A\) = dom(A).
Moreover, the growth bounds satisfy

wo((e™MT())iz0) = wo((T(t))iz0) — A
In particular, (e T (t))=0 is exponentially stable if X > wo((T(t))¢=0)-

Proof. Let A be the generator of a Cy-semigroup (T(t));=0. For A € R
define S(t) = e MT(t). Clearly, (S(t))i=0 is a Co-semigroup. Let B be its
generator. We have to prove that B = A — A. For h > 0 and x € X there
holds
Shx—x  \,T(h)r —x N e My —x
no ¢ 2 h

Thus, z € dom(B) if and only if x € dom(A) = dom(A—\). By letting A \
0 for € dom(B) = dom(A), we obtain that Bx = Az — Az. The statement
about the growth bound follows from ||e ™ T'(t)|| = e=*||T'(¢)]. Q
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The following result allows to relate a Cp-semigroup and its generator
to the abstract Cauchy problem (1.13).

Lemma 1.3.8. Let (T(t))i=0 be a Cy-semigroup on a Banach space X
with generator A: dom(A) € X — X. Then, the following assertions
hold.

(i) For every x € dom(A) and t = 0 we have that T(t)z € dom(A) and

d

ST (e = T(H) Az = AT(t)z.

(ii) For every x € X and t = 0 we have that

t
J T(s)xds € dom(A)
0
and
i —x = AJ s)xds.
In addition, if x € dom(A), then we also have that
¢

T(t)x —x = ,[ T(s)Azds.

0

Proof. For the proof we refer to [26, Chapter II, Lemma 1.3]. a
Lemma 1.3.8 enables us to solve the abstract Cauchy problem.

Corollary 1.3.9. Let (T'(t))i=0 be a Cy-semigroup on X with generator
A, xo € X and define the function x : [0,00) — X by

z(t) == T(t)xg, t=0.

If o € dom(A), then z € C1([0,0); X) n C([0,0),dom(A)) solves (1.13),
where dom(A) is equipped with the graph norm ||z|a == |z|x + ||Az| x.
For general zg € X, x € C([0,0); X) is the unique solution of the integrated
version of (1.13), given by

(t) —xo = AL x(s) ds, (1.14)

where we implicitly demand that So s)ds € dom(A).

Proof. Lemma 1.3.8 and the strong continuity of (T'(t))¢»0 implies that x
has the claimed regularity properties and solves (1.13) if 2y € dom(A) and
(1.14) for general xy € X. For the uniqueness, assume that & is another
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solution in the classical sense, or of (1.14). Then, for z(¢) := z(t) — Z(¢) it
follows that

S

d S
T (T(t - s)f z(r) dr> =T(t—s)z(s) = T(t— s)Af z(r)dr = 0.
0 0
Hence, T(t — s) § 2(r) dr is constant, which yields z(t) = z(0) = 0 for all
t >0, and thus z = Z. Q

Remark 1.3.10. Note that the strong continuity of (T'(t))¢>o implies that
z(+) = T(-)xo depends continuously on z in X uniformly on compact
intervals [0,¢]. In [26, Chapter II, Corollary 6.9], it is shown that A
generating a Cp-semigroup is also necessary for (1.13) to have solutions
in C*([0,0); X) for 29 € dom(A) with the above continuous dependency
property.

A useful representation of the resolvent of a semigroup generator is
given by the Laplace transform of the semigroup.

Proposition 1.3.11. For Re A > wo((T'(t))1=0) it holds that X € p(A)
and for all x € X the resolvent of A in X\ is given by

0

A=Atz = f ) e MT(s)zds.

0

Proof. For the proof we refer to [26, Chapter II, Theorem 1.10] Qa

Next, we introduce the inter- and extrapolation spaces associated to
an operator A, which are important for the analysis of unbounded control
and observation operators in Chapter 2.

Definition 1.3.12. Let A: dom(A) € X — X be an operator with
nonempty resolvent set p(A). For A € p(A) we define the interpolation
space X1 by

Xy = (dom(A), ||| x,),

where
[2llx, = |(A = A)z|[x

for x € dom(A). Further, we define the extrapolation space X_; as the
completion
X g = (X, ||.||X—1)~7

where
lzllx_, = [[(A = A) 'allx

forz e X.

Note that the resolvent set of a semigroup generator is nonempty.
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Proposition 1.3.13. Let A be the generator of a Cy-semigroup (T(t))i=0
on X and X1 and X_1 be given as above. The following assertions hold.

(i) The spaces X1 and X_1 are Banach spaces. Moreover, different
choices of A € p(A) lead to equivalent norms on X1 and X_1, respec-
tively. In particular, these spaces are independent of the choice of
Aep(A).

(ii) We have the continuous and dense embeddings

Xl%X;)X_l.

(iii) For each t =0, let Ty (¢t) be the part of T(t) in X1, i.e., it acts like
T(t) on X1. Then, the family (T1(t))i=0 is a Co-semigroup on X
and its generator, Ay, is the part of A in X1, i.e., it acts like the
restriction of A to dom(A?).

(iv) For each t = 0, there exists a unique extension T_1(t) of T(t) to a
bounded operator on X_1. Moreover, (T_1(t))i=0 is a Co-semigroup
on X_1 and its generator A_y is the unique extension of A to an
operator on X _1 with domain dom(A_;) = X.

(v) The operators (A — A): X1 — X and (A — A_1): X — X_; are
isometric isomorphisms if A € p(A) is the same used to define the
norms on X1 and X_1. In particular, it holds that A € L(X1,X)
and A_1 € L(X, X _1).

Proof. The fact that different choices of A € p(A) lead to equivalent norms
follows by an elementary computation. For the other assertions, we refer

to [26, Chapter II, Proposition 5.2 & Theorem 5.5]. a
Remark 1.3.14. 1. The norm ||-||x, is equivalent to the graph norm of
A on dom(A).

2. An inductively continuation of the above procedure of defining the
inter- and extrapolations spaces leads to spaces X,,, n € Z, with
continuous and dense embeddings

..ngXng():X‘—)Xfng,Q...

This chain is known as Sobolev tower.

Let A’ be the dual operator of A. If A generates a Cp-semigroup
(T'(t))e=0 on the Banach space X, then we define the dual semigroup
(T'(t))¢=0 by taking the pointwise dual operators

T'(t) = (T(t)) € L(X").

According to the definition of the dual operator, the family (T’ (t)t=0
satisfies the semigroup properties 7°(0) = I and T'(t + s) = T'(¢t)T"(s).
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However, it is not necessarily strongly continuous on X’. A sufficient
condition for (7"(t)):=0 to be strongly continuous is that X is reflexive, as
shown in [98, Corollary 1.3.2].

If the dual semigroup is strongly continuous, then its generator is A’
(see [98, Theorem 1.3.1 & 1.3.3]). We denote the inter- and extrapolation
spaces for A’ by

X? and X9,

The following relations between the inter- and extrapolation spaces with
respect to A and A’ hold true.

Proposition 1.3.15. Let A be the generator of a Cy-semigroup (T (t))=o0
such that the dual semigroup (T'(t))i=0 is strongly continuous. For the
inter- and extrapolation spaces X1, X 1, X{ and X, with respect to A
and A’, we have that

(X)) = X% and (X_)) =X{.
The duality is given via the isometric isomorphisms
o X% - (X))
y (@ A=Ay, (A= A)z)xex)
and
U (X)) - XY
y (@ (A= Ay, (A = A1) 2 x).

Proof. First consider ®. Since A — A: X; — X and A — A" |: X' —» X4,
are isometric isomorphisms, we obtain for y € X’ that

12W)llxy = sup KA = ALy) "1y, (A = A)z)x x|

llzllx, <1
= ”;&pélK(/\ — A" )y, Byx x|
= [|(A = AZ) Myllx
= ||y||Xi1-

The density of X’ in X9, yields that ® is isometric. For 2z’ € (X;) we
have that y := (A — A" )(A — A) ")z € X%, satisfies ®(y) = z. Hence,
® is also surjective, and therefore an isometric isomorphism. Similar one
can check that ¥ is an isometric isomorphism. a

Remark 1.3.16. By Proposition 1.3.15, (X1, X%¢) and (X_;, X{) are dual
pairs with dual pairing given by

(Y1, $1>X31,X1 = (A - A')71y17 A= A)r)x x,
(s w2yxa x, = A= Aya, (A= A1) lag)xr x
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for z1 € X1, y1 € X%, 15 € X 1 and y» € X{. Additionally, if y; € X’
and o € X, then the dual pairings simplify as follows

<Z/1,301>(X')_1,X1 = Y1, 71)x7, %,
W2y T2)(x1),,x_, = Y2, T2)x7 X -

If the dual semigroup is not strongly continuous on X', one can pass over
to the sun-dual space of X with respect to (T(¢)):>0, see [98, Chapter 1.3],
to obtain similar dual pairings, see [98, Theorem 3.1.4 & 3.1.15].

1.3.2 Analytic semigroups

A special class of Cy-semigroups with particular nice properties are analytic
semigroups. We recall the basic concept, properties and their relation to
sectorial operators via the holomorphic functional calculus. In this context,
we also discuss further aspects of the holomorphic functional calculus as
well as fractional powers of sectorial operators.

For a first introduction to analytic semigroups, the reader is referred to
[26, Chapter II, Section 4a] and to [34] for a detailed insight into sectorial
operators and the holomorphic functional calculus.

We denote by C,, a € R, the open right half-plane with abscissa «,
Co:={2€C|Re z > a}.
For ¢ € [0, 7], we define

S {z € C\{0}| |arg 2| < &}, if 0 > 0,
" (0, 00), if 6 = 0.

Thus, Ss is the open sector with opening angle 24.

Definition 1.3.17. A Cy-semigroup (T'(t)):=0 is called an analytic semi-
group (of angle § € (0, 7]), if it extends to a family of operators (T'(z)) ,es; S
L(X) such that

(i) z — T(z) is analytic on S,
(if) T(0) = I and T'(z1 + 2z2) = T'(21)T (22) for 21,22 € S,
(iii) limg,s.—0 7 (2)x = z for every x € X.
Additionally, if
(iv) sup.eg,, [IT(2)]| < oo for all §" € (0,0)

holds, then we call (T'(z)).es, a bounded analytic semigroup.
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Remark 1.3.18. 1. Note that a bounded and analytic semigroup does
not have to be bounded analytic, i.e., uniform boundedness on [0, c0)
does not imply uniform boundedness on a sector Ss, d € (0, 7], as
the trivial example T(z) = e!* shows.

2. Condition (ii) in Definition 1.3.17 already follows from the semigroup
properties on [0,00) and (i) by the identity theorem for analytic
functions.

3. For an analytic semigroup (7'(t)):0 of angle 6 € (0, 7] and ¢’ € (0, 9)
there exists M > 1 and w € R such that

|T(z)|| < Mem@Re= forall z € Sy.

Thus, (e7“*T(t))s=0 is a bounded analytic semigroup of angle &'.

If we want to characterize the generators of analytic semigroups, it
suffices to consider bounded analytic semigroups by the previous remark.
It is known that the generators of bounded analytic semigroups are exactly
the negative of so-called sectorial operators with sectoriality type smaller
than 5. We introduce this concept next.

Definition 1.3.19. Let A: dom(A) € X — X be a densely defined
operator. We call the operator —A sectorial of type w for some w € [0, 7)
if o(—A) € S, and for every § € (w, ) there is a constant M; > 0 such
that

llz(z 4+ A) 71| < Ms  for all z € C\S;. (1.15)

Remark 1.3.20. 1. Sectorial operators are closed, since they have a
nonempty resolvent set.

2. In the literature, sectoriality is sometimes defined without the as-
sumption that A is densely defined and some of the results mentioned
below also hold true in this case. We made this assumption for con-
venience, since we are interested in semigroup generators.

The Dunford-Riesz class on a sector Ss is defined by

HY (S5) = {f e H”(S5)

For some C,a > 0 and all z € Ss :
|f(2)] < Cmin{[z]*, [z}
where H*(Sj5) is the set of all bounded holomorphic functions on Sj.
We are now able to define a first functional calculus for sectorial operators.

Let —A be sectorial of type w € [0,7) and f € H{(Ss) for some d € (w, 7].
Define

f(=4) = Qme (z+ A)7tdz, (1.16)

where T" := dSs is orientated positively, and §’ € (w, ) is arbitrary, i.e.,

N v
[ = —Ro0e® @Roge .
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The integral in (1.16) is absolute convergent by (1.15) and the decay
property of f at 0 and o0. The definition of f(—A) is independent of the
choice of §’ € (w, §) by Cauchy’s integral theorem.

It is not difficult to see that the mapping

Hg (Ss) = LX)
[ f(=4)
defines an algebra homomorphism, which can be extended to the extended
Dunford-Riesz class
£(S5) = HF (S5) @span{z — (1 + z) "'} @span{1}.

Indeed, £(S5) is an algebra, as can be seen by the identity 7(1-':2)2 =
1 z

T4~ 17 The extended algebra homomorphism

E(S5) — L(X)
g g(=A)

is defined by
g(—A) = f(=A) +c(I — A~ +dI,

where g = f + c(1 4+ 2)"! +d € £(S5) with f e H{(Ss) and ¢,d € C.

us

,5), then for any A € Sz, and
-z

Let —A be sectorial of type w € [0
d € (w, 5 — |argA|) the function z — e is bounded holomorphic on
Ss, holomorphic in some (even every) neighborhood of 0 and tends to
0 polynomially (even exponentially) fast as z — o in Ss. Then, [34,
Example 2.2.4] yields that z — e ** belongs to £(Ss). Hence, we can
define an operator family (T()\))Aeggw by

T(N) = (e7**) (—A) € L(X). (1.17)

A

By the above mentioned properties of the function z — e~ *#, we also have

that (see [34, Lemma 2.3.2])

if ¢ M (z 4+ A) Ndz, (1.18)
T,

T =55

where I'; = (S5 U B(0)) is orientated positively, ¢’ € (w,0) and r > 0.
Now we can characterize (bounded) analytic semigroups and their
generators.

Proposition 1.3.21. For an operator A: dom(A) € X — X, the follow-
ing assertions are equivalent.

(i) A generates a bounded analytic semigroup.
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(ii) A generates a bounded Cy-semigroup (T(t))i=o with ranT(t) <
dom(A) for allt >0 and

sup|[tAT ()| < . (1.19)
t>0

(iii) —A is sectorial of some type w € [0, T).

If one of the equivalent conditions holds, then the analytic semigroup
generated by A is given by (1.17) or equivalently by (1.18).

Proof. We refer for the proof to [26, Chapter II, Theorem 4.6]. Qa
Remark 1.3.22. 1. For analytic semigroups (T'(t)):=0, we have
ranT(t) € ﬂ dom(A™).

neN

Indeed, z — (14 2)"™ and 2z + g(2) = (1 + 2)"e "' are in £(S;s) for
every n € N, hence, T'(t) = (I — A)""g(—A).

2. For a bounded analytic semigroup with generator A, exponential
stability is equivalent to 0 € p(A). Indeed, this follows from a shift
argument that exploits the fact that p(A) is open and that the
sectoriality type of A is strictly smaller than 7.

So far we obtain bounded operators f(—A) for f € £(S5). If one
is willing to give up the boundedness, one can extend this calculus to

functions f for which an e € £(Ss) exists such that e(—A) is injective and
ef € £(Ss). Then, a closed operator f(—A) is defined by

F(=A) = (e(=A) " (ef)(=A).

The function e is called a regularizer for f and f(—A) is independent
of the choice of the regularizer, see [34, Lemma 1.2.1]. Considering this
extension of the holomorphic functional calculus, we obtain from [34,
Proposition 1.2.2] the following inclusions of operators,

f(=A)+9(=A4) < (f +9)(=4)
f(=A)g(=A) = (f9)(-4), (1.20)
dom(f(=A)g(—A)) = dom((fg)(=A)) n dom(g(—A4)),

to be understood as inclusions of the respective graphs, i.e., for two
operators By, Bg, the inclusion By € By means dom(B;) € dom(Bs) and
Bix = Byx for all z € dom(By).

This extension technique allows us to define fractional powers of sec-
torial operators. Let a € Cy and choose n € N with n > Re «a, thus

z ﬁ € £(Ss) for any § € (0,7]. Then, (—A)* is defined by

(4 = () A) = (= A (s ) (-A)

(1+2)"
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Lemma 1.3.23. For a sectorial operator —A and o € Cqy there holds that
ker A% = ker A

and

o(A%) = { XY | e a(A)}.
Furthermore, if A is injective, then ((—A)™1)® = ((—=A)*)~L.
Proof. We refer for the proof to [34, Proposition 3.1.1]. a
For an injective sectorial operator —A and « € Cy we define
() = (~A) .
By Lemma 1.3.23, (—A)™* is bounded if 0 € p(A).

Lemma 1.3.24. Let —A be an injective sectorial operator. Then, for
a, 8 € C we have the inclusion

(=A)*(=A)7 < (=A)**7,
dom((—A)*(—A)?) = dom((—A)**?) A dom((—A)?).
Equality holds if Re o and Re 8 are both positive or both negative.
Proof. We refer for the proof to [34, Proposition 3.2.1]. a

The following result shows that we can assume 0 € p(A) by shifting A
when dealing with fractional powers of sectorial operators.

Lemma 1.3.25. Let A be a sectorial operator, a € Cq and ¢ > 0. The
following assertions hold.

(i) dom((—4)) = dom((z — A)°).
(i) (—A)* (e — A)* = (—A(= — 4) 1),
(iii) limeo(e — A)*x = (—A)%x for all x € dom((—A)%).
Proof. We refer for the proof to [34, Proposition 3.1.9]. a
Next, we state an extension of (1.19) for (fractional) powers of A.

Proposition 1.3.26. Let A be the generator of a bounded analytic semi-
group (T(t))¢=0 with 0 € p(A). Then, for every o = 0 there exists
w, M, > 0 such that

[(=A)* T < Mot~ ™"
holds for all t = 0.
Proof. See [82, Chapter II, Theorem 6.13]. Q
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Similar to the inter- and extrapolation spaces for Cy-semigroups, Def-
inition 1.3.12, we define fractional inter- and extrapolation spaces for
bounded analytic semigroups.

Definition 1.3.27. Let A be the generator of a bounded analytic semi-
group (T(t))i=0 on X with 0 € p(4). For 0 < a < 1, we define the
fractional interpolation space X, by

Xo = (dom((=A4)%), [|Ix.)
where
lzllx, = I(=A)%z[ x

for € dom((—A)%). Further, we define the fractional extrapolation space
X _, as the completion

Xoo =X [IIx_.)~,
where

2llx_, = [I(—4)" x| x
for x € X.

By construction, we have that Xg = X, and X; and X_; are the
classical inter- and extrapolation spaces from Definition 1.3.12.

Recall from Proposition 1.3.13 that A, the part of A in X7, and A_1,
the extension of A to an operator on X_i, generate the Cy-semigroups
(T1(t))t=0 on X7 and (T—1(t))t=0 on X_1, respectively.

Proposition 1.3.28. Let A be the generator of a bounded analytic semi-
group (T'(t))i=0 on X with 0 € p(A) and for 0 < a <1 let X, and X_,, be
the corresponding fractional inter and extrapolation spaces. The following
assertions hold.

(i) The spaces X, and X_, are Banach spaces.
(if) For 0 < 8 < a <1 we have the continuous and dense embeddings
Xi=>Xo=2>XgoX—>X_g—>X_o— X 4.
(iii) The operator
(A-1)|x.: Xo = X (10,
s an tsometric isomorphism.
(iv) The operator (—A)* extends uniquely to an isometric isomorphism
(“A)*: X - X_,,

again denoted by (—A)® and its inverse is denoted by (—A)~. More-
over, for every t > 0 and x € X we have that

(A T(H)e = T 1 (H)(~A)°a,
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Proof. The fact that X, and X_, are Banach spaces is clear, since (—A)%
is a closed and boundedly invertible operator. The other statements can
be easily checked using Lemma 1.3.24. d

Remark 1.3.29. 1. In Definition 1.3.27 and Proposition 1.3.28, if 0 ¢
p(A), we consider A — X instead of A, for sufficiently large A.

2. Note that (—A)*T(t) is well-defined for every t >0 and 0 < @ < 1
since ran T'(t) € X1 € X,.

3. Similar to Remark 1.3.14 2., we obtain by induction the fractional
Sobolev tower (X, )acr with dense and continuous embeddings

XaHXB

for 8 < a. Moreover, it can be proven that for every «, 8 € R the

operator (—A)® restricts or extends (depending on the order of «

and ) to an isometric isomorphism from Xz to X3_,. Similar as

before, we have ranT'(t) € X,, for all & > 0, and thus, on can extend
Proposition 1.3.28 to fractional Sobolev towers (X, )acr-

A special class of bounded analytic semigroup are those, whose genera-
tors are self-adjoint and negative operators on a Hilbert space.

Definition 1.3.30. Let X be a Hilbert space. A self-adjoint operator
A: dom(A) € X — X is called strictly negative, if there exists waq < 0
such that for every x € dom(A) we have that

Az, z)x < walz|%- (1.21)
If (1.21) holds for w4 = 0, then A is called negative.

Clearly, strictly negative operators are negative and if A is negative,
then A — ¢ is strictly negative for any € > 0.

Lemma 1.3.31. If A is a self-adjoint and negative operator on a Hilbert
space X, then A generates an bounded analytic semigroup on X. If A
is strictly negative, this semigroup is exponentially stable and X% is the
completion of dom(A) with respect to the norm

||a:H§(%=<—Aa:,x>X, x € dom(A). (1.22)

Moreover, (X% X
X% — C given by

7%) is a dual pair with dual pairing -, )x |, x,: X_1 X
-2

1
2

=

yx_yxy = (=A)Fr (- A) Fy)x,

the norm on X 1 is given by

1
2

|zlx_, = sup Kz,ypx_
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and (1.21) and (1.22) extend to

Az ayx y xy = llalk, <wallalk (1.23)

[

forxeX%,

Proof. For the fact that a self-adjoint and negative operator generates a
bounded analytic semigroup, we refer to [26, Chapter II, Corollary 4.7].
If A is strictly negative, then A + w is still negative for sufficiently small
w > 0 and thus, A + w generates a bounded analytic semigroup. By
Lemma 1.3.7, A generates an exponentially stable and bounded analytic
semigroup. In particular, 0 € p(A) and X 1 and X_, are well-defined by
Definition 1.3.27. For z € dom(A) we have that (—A)z = (—A)2(—A)2z,
and since A is self-adjoint, so is (—A)2, which yields (1.22). By the density
of dom(A) in X 1, We may regard the latter space as the completion of
dom(A) with the norm defined by (1.22). Further, (—A)? is isomorphic
as an operator from X 1 to X, and also (after extension) from X to X_ 1
by Proposition 1.3.28. Hence, an easy computation (similar to the one in
the proof of Proposition 1.3.15) exploiting the self-adjointness of (—A)z,
yields that (X1, X_1) is a dual pair with the given dual pairing. Finally,
(1.23) follows from density of dom(A) in X1 and continuity of the dual
pairing and the norms. : u

1.3.3 The shift semigroups on Orlicz spaces

On LP, 1 < p < oo, the left- and right-shift semigroups are strongly
continuous and they are not strongly continuous on L*. In this section,
we provide sufficient and necessary conditions for the strong continuity of
the shift semigroups on Orlicz spaces.

Let —0 € a < b < . The right-shift semigroup (S(t))¢=0 on the
Orlicz spaces Lg((a,b); U) and Eg((a,b); U), respectively, is defined by

CONGE {g (r=t), ifr=teab)
, else.

The family (S(¢)):=0 clearly satisfies the semigroup properties S(0) = I
and S(t +s) = S(t)S(s) for all s,t = 0. Thus, the question remains,
whether it is strongly continuous.

It is known, that the right-shift semigroup defines a contractive Cop-
semigroup on LP((a,b);U) for 1 < p < o, see [26, Chapter 1, Exam-
ple 5.4, Chapter 2, Section 2.10 & 2.11] for U = K. Its generator is

_d
dr
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with domain
W'P((a,b); U), if a = —o0,
dom(D) = X
{f e W"P((a,b);U |f ) =0}, ifa>-—ow
The analogous statement holds for Eg.

Proposition 1.3.32. The right-shift semigroup (S(t))i=0 on Eg((a,b);U)
is a contractive Cy-semigroup. Its generator is given by

4

dr

with domain

W'Eqg((a,b); U), ifa =—m
dom(D) = L
{fEWE.:p ((a,b); |f —O} if a > —o0,
where WlEg((a,b); U) is the Orlicz—Sobolev space, see Section 1.2.5.
Proof. Clearly, (S(t)):=0 satisfies the semigroup properties S(0) = I and
S(t+s) = S(t)S(s) for all t,s = 0, and || S(¢)|| <1 for every ¢t = 0.
Recall from Lemma 1.2.28 that C.((a,b);U) is dense in E¢((a,b); U).

Hence, for all f € E¢((a,b);U) and € > 0 there exists g € C.((a,b); U)
such that || f — gllg, ((a,b);0) < €. Since g is compactly supported, we find

a compact set K in (a,b) such that supp(S(t)g — g) € K for all ¢t € [0,1].

The function ® (w) is uniformly continuous on K, and therefore,

f’q) (I(S(t)g)(r) —9(7“)|> dr < A(K) sup @ (I(S(t)g)(r) —9(7“)|> <1

€ reK €

a

holds for sufficiently small ¢ € (0, 1), where A denotes the Lebesgue measure.
By the definition of the Eg-norm, we have [|S(t)g — gllg,((a,0);0) < €, and
therefore,

1S f = fllEs ((ab)0)
< NSO = 9llgs (apy;vy + 1S9 = 9llEs ((ap);0)
+ 119 = fllEs ((a,b);0)
< 3e.
Hence, (S(t)):=0 is a strongly continuous and contractive Cp-semigroup
on Eg((a,b);U). Let A be its generator. We have to show A = D.

First, let f € dom(A). For every bounded subinterval (¢, d) € (a,b) it
holds that

f| c,d (_h)_f| c,d
(c,d) . (c,d) _Af|(c,d)

Sthf—f
— —Af

lim
AN

Eg({c,d);U)

=0.
Ea((a,b);U)

< lim
AN)
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The continuity of the embedding E4((c, d); U

T

LY((c,d); U) for (c,d)

(a,b) yields for almost every ¢, d with (¢, d) € (a,b) that
1 1 (e
f(d)—f(0)=,{1{1%h f()dr—hg%h hf(?")dr
_ fr) = fr=h)
- [ v
- [(anear

After changing f on a null-set, the equality holds for all such c,d. It
follows that f is absolutely continuous, and therefore, weakly differ-
entiable with weak derivative f' = —Af € Eg((a,0);U). Hence, we
proved that dom(A) € W'Eg((a,b);U) and Af = —f' for f € dom(A).
Next we prove that if @ > —oo, then f(a) = 0. Since dom(A) is in-
variant under the semigroup, see Lemma 1.3.8, and the embeddings
WIEa((a,0);U) — W'Bo((a,d);U) — W ((a,d);0) — C([a,d]; V)
are continuous for bounded intervals (a,d) € (a,b), we can assume that
S(t)f is a continuous function in W! Etp((a d);U) for every d € (a,b). It
follows that f(a) = (S(t)f)(a +1t) = lim\0(S(t)f)(a+t—1) = 0. Hence,
dom(A) € dom(D) and A = D on dom(A).

Now, let f € dom(D). If a > —oo, then we extend f on (—o0,a)
by 0. It holds that f € W'Eg((—00,b);U) and ||f|lwipg(—wp)v) =
I f W1 Eq ((a,p);0)- Going over to the equivalent Orlicz norm, we obtain

‘()ff

b):U)

f<f“ 0 poam) o

uu’

\
HgHL sl

= sup < Jf fr—s)ds,g(r )> dr
llgllLg <1 uu’

)

sup ds

hido Jglle, <1

<f( ) = (S(s)f)(r), g(r)pupr dr

—C

2 h
7 L 1S()f" = f'll e ((=x.p)0) ds,

where we applied the generalized Holder inequality in the last step. Finally,
it follows from

i 2 (IS = e ds = IS0 = Fleairare =0

that f € dom(A) and Af = Df, which completes the proof. a



38 1. Preliminaries

Proposition 1.3.33. Let (a,b) € R be any interval. If (S(t))i=0 is a
Co-semigroup on Lg((a,b);U), then ® € AF.

Proof. Suppose that ® ¢ AF. Without loss of generality we assume that
(a,b) = (0,1) and U = R. We will construct a function v € Lg(0,1) such
that ||S(t)v —v||L,(0,1) = 1. Since ® ¢ AJ" there exists a sequence (t,)n>1,
t, = n, such that ®(2t,) = n®(t,) and ®(t,) > 1 for all n > 1. Choose
ng € N such that er:ng # < 1 and define a family of disjoint subintervals
(Ik)kEN of (0, 1) by

| 1 S 1
Iy={1- — - 1-— — 1.
F ( 2 n?  ®(ty)(ng + k—1)2’ 2 n2>

n=no+k n=ngo+k

Let u =Y., t;1z,. From

1 * 1 a1
f Pu(r) dr = 3} 20 o = 2 g <!

0 —

we obtain u € Lg(0,1). We also have that

8

! 1
L O (2u(r))dr = Z (I)(%k)@(tk)(no TR0
- k
2 s k=i ="

k=1

Define v = 4u and note that (S(t)v)(:) is a bounded function for every
t > 0. Convexity of ® implies that

w = J’o D(2u(r))dr
<3| #UsOIO v+ | (SOOI

and therefore S(l) O(|(S(t)v)(r) —v(r)])dr = co. It follows that ||S(t)v —
||Ly(0,1) = 1 for all £ > 0, hence, (S(t)):=0 is not strongly continuous. O

Corollary 1.3.34. For bounded intervals (a,b) € R the following asser-
tions are equivalent.

(i) ® e AT.
(ii) L@((av b)v U) = E@((a" b)a U)
(iii) (S(t))e=0 is a Co-semigroup on Ly ((a,b); U).

If one of the equivalent conditions holds, then the generator of (S(t))i=0 is
given as in Proposition 1.3.32.
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Proof. This is a direct consequence of Lemma 1.2.25, Proposition 1.3.32
and Proposition 1.3.33. Q

Remark 1.3.35. For unbounded intervals we have that ® € A§*™ is equiv-
alent to Lo ((a,b);U) = Eg((a,b); U), so in this case (S(t))s=0 is strongly
continuous on Lg((a, b); U) by Proposition 1.3.32. Conversely, strong con-
tinuity of (S(t))tz0 on Le((a,b); U) implies ® € AF by Proposition 1.3.33,

which is equivalent to ® € A§°"™ if ¢ g(gt)) is bounded in 0.

All results on the right-shift semigroup can easily be transferred to the
left-shift semigroup (7'(¢))¢=0 on La((a,b); U), given by

f(r+t), ifr+te(a,b),

0, else.

(T )(r) = {

Proposition 1.3.36. For any interval (a,b) S R the following assertions
hold.

(i) The left-shift semigroup is strongly continuous on Eg¢((a,b);U).

(ii) If (a,b) is bounded, then the left-shift semigroup is strongly contin-
uwous on Le((a,b);U) if and only if ® € AP, ie., if and only if
L@((aa b)a U) = E@((CL b)7 U)

(iii) If ® € AY"™, then the left-shift semigroup is strongly continuous on

Lg((a,b);U). The converse holds if t — f(gt)) is bounded in 0.

In each case, we have that the left-shift semigroup is a contractive Cy-
semigroup whose generator is given by

=%
with domain
WlE(I)((aa b)a U)v Zfb = O,

dom(A) = {{f e W'Eo((a,0);U)| f(b) =0} ifb< .

Proof. The proof is analogous to the proofs of Proposition 1.3.32, Corol-
lary 1.3.34 and the argumentation in Remark 1.3.35. Q
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Chapter 2

Linear systems theory

In this chapter, we provide a detailed introduction to the solution and
output theory of infinite-dimensional linear systems with unbounded con-
trol and observation operators, based on [16, 86, 94, 95, 96, 99, 100, 101].
While input and output functions of class L” are considered therein, we
extend this to Orlicz spaces.

The linear input-output system

x(t) = Axz(t) + Bu(t), t=0,
z(0) = o, (3(4,B,0))
y(t) = Cx(t), t =0,

describes the time-evolution of the state z(t) € X starting from the initial
state xg at t = 0, where the state space X is a Banach space. The input
u(t) € U, viewed as control or disturbance, and the output y(t) € Y
are connected to the system via the control operator B and observation
operator C. The input space U and output space Y are also Banach spaces.

Here, B and C' may be unbounded operators with respect to X, as is
typically the case in PDEs with boundary control and observation, which
makes the solution and output theory non-trivial. This issue becomes
particularly problematic if both B and C are unbounded. Therefore, we
first consider the simplified systems

Az(t) + Bu(t), =0, (3(A, B))

——
Eg
o =
A
[
N

54

and

2(0) = o, (X(4,0))
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We call (A, B) a linear input system and X(A, C) a linear output system.

By abuse of notation and using the letter B exclusively for control op-
erators and C' for observation operators, we used the abbreviation X(A, B)
for X(A, B,0) and X(A, C) for X(A,0,C).

2.1 Linear input systems

Let U and X be Banach spaces, A be the generator of a Cy-semigroup
(T'(t))tz0 on X and B € L(U, X_1), where X_; is the extrapolation space
defined in Definition 1.3.12. We call B bounded if B € £L(U, X) and
unbounded otherwise.

Corollary 1.3.9 shows that t — T'(t)x¢ is a solution of (the integrated
version of) (A, B) for zg € X and w = 0. As in the finite-dimensional
case, the variation of constants formula yields a (formal) solution for the
inhomogeneous problem, which leads to the following solution concept.

Definition 2.1.1. The mild solution of (A, B) for zyp € X and u €
Ll .([0,00); U) is the function z: [0,00) — X_1,

z(t) = T(t)xo + Lt T 1(t —s)Bu(s)ds, t=0. (2.1)

2.1.1 Admissible control operators and mild solutions

We are interested in control operators B, for which the mild solution (2.1)
is X-valued for all input-functions v € Z([0,0);U), where Z refers to
either LP for 1 < p < o0 or some Orlicz space Eg or Lg.

For simplicity, we work with the following convention.

Convention. We call ® : [0,00) — [0,00), { — ¢, a Young function
(without complementary Young function ®) and write

Ep =Lp =L' and Lgz=L". (2.2)
Hence, LP? is an Orlicz space for all 1 < p < oo with this convention.

Definition 2.1.2. Let (T(¢))i»0 be a Cp-semigroup on X. We call
B e L(U,X_1) a Z-admissible control operator for (T(t))i=o (or just
Z -admissible) if for some ¢ > 0 and all uw € Z([0,00); U) we have that

by = _[t T_1(t — s)Bu(s)ds € X. (2.3)
0

The operators ®; € L(Z([0,0);U),X_1), t = 0, given by (2.3), are
called the input maps of £(A, B) (and X(A, B,C)).
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Note that ®,u € X_; is well-defined for v € Zj,.([0,0);U). Further-
more, B can be recovered from (®;);>0 via

1
Bu = }{% ;‘I’t(]l[o,xc)u)v ueU,

where the limit is taken in X_1.
Remark 2.1.3. Every bounded operator B € L(U, X) is Z-admissible for
any choice of Z and any Cp-semigroup on X.

The following result is well-known, see e.g. [99, Proposition 4.2] for
7 =1°.
Proposition 2.1.4. If B is Z-admissible, then ®, € L(Z([0,0);U), X)
forallt = 0.

Proof. Let 7 > 0 such that ran ®, € X. We first prove that ran ®; € X
for all £ = 0.
For ¢t € [0,7] and u € Z([0,0); U) define

0, if se[0,7—1],
u(s) = u(s — (1t —1)), ifse(r—t,1],
0, if s € (7,00).

It follows that @ € Z(]0,00);U) and ®;u = .4 € X by assumption. For
t =27 and u € Z([0,00);U) we have that u(- + 7) € Z(][0,0);U), and
hence, ®o,u = T(7)®,u + ®,u(- + 7) € X. By induction, it follows that
®,u € X for every u € Z([0,00);U) and ¢ = 0.

Next, we prove that ®; € L(Z([0,0);U), X) for arbitrary ¢ > 0. For
X € p(A) define the operator By := (A — A_;) !B e L(U, X). It follows

that
t

ur (A= A) 1o = f T(t — s)Bou(s)ds
0
defines an operator in £(Z([0,0);U), X) with range in dom(A). Since
A— A :dom(4) € X — X is a closed operator, we have that &, =
(A — A) (A — A)71®,; is a closed operator from Z([0,00);U) to X. The
closed graph theorem yields that ®; € L(Z([0,0);U), X). Q

Remark 2.1.5. Since ®iu = ®;(1 g qu), Proposition 2.1.4 implies that B is
Z-admissible if and only if for some (and hence for all) ¢ > 0 there exists
a constant Ky > 0 such that for all u € Z([0,¢]; U) the estimate

holds. The minimal constant K; satisfying (2.4) is

< Killull zjo,q:0) (2.4)

JI T 1(t — s)Bu(s)ds
b

0

Kt = Pl 2(z(0,20);0), %) (2.5)

Moreover, t — Kp; is non-decreasing on [0, c0).
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Definition 2.1.6. Let B be Z-admissible. The constants Kp ¢+, t > 0, from
(2.5) are called the admissibility constants of B. We call B infinite-time
Z-admissible if the infinite-time Z-admissibility constant

KB,?L = sup KB,t

t=0
is finite.

Remark 2.1.7. Since the set of step functions is dense in E ([0, 00);U), it
follows that B € L(U, X_1) is Eg-admissible if and only if for some (and
hence for all) ¢ > 0 there exists a constant K > 0 such (2.4) holds for
all step functions v : [0,¢] — U. Note that ®,v € X holds for every step
function v by Lemma 1.3.8 applied for (T_1(%))¢=0.

The following statements on admissible control operators B are well-
known, see e.g. [99, Remark 4.7] and [102, Remark 2.1 & 2.2].

Lemma 2.1.8. Let (T'(t))i=0 be a Co-semigroup on X and B e L(U, X _1)
be Z admissible. The following assertions hold.

() If Z([0,t];U) < Z([0,t];U) for some t > 0, then B is Z-admissible.
(ii) B is Z-admissible for the scaled semigroup (e**T(t))i=0 for all o € R.

(iii) If the semigroup (T(t))i=0 is exponentially stable, then B is infinite-
time Z-admissible.

Proof. Assertion (i) follows from the definition of Z-admissibility and the
fact that the range condition (2.3) is independent of ¢ by Proposition 2.1.4.

For (ii) let @ € R and u € Z([0,0);U). Since ®; only depends on u
up to time ¢, we may assume without loss of generality that u| ) = 0.
Hence, e *u € Z([0,0); U) and

t ¢
J =T 1 (t — s)Bu(s)ds = eo‘tJ T_1(t — s)B(e™*u(s))ds € X.
0 0
This shows that B is Z-admissible for (e*'T(t))¢x0.

For (iii) let M,w > 0 such that | T'(t)|| < Me “!. Since the admissibility
constants K p; are non-decreasing in ¢, it suffices to prove that Kp ,, is
uniformly bounded in n € N. For n € N and u € Z([0,0);U) we have

Ln T_1(n — s)Bu(s)ds

X

n—1 ~k+1
Z f T 1(n — s)Bu(s)ds
k=0 "k

X

Z T(n—k-1) fl T_1(1 —s)Bu(k + s)ds
k=0

0

X
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n—1

<SMEp; Y, e Dk + )| 20,1709
k=0

n—1
< MKpallull zqo.n:0) Z emw(n=h=1),
k=0

Since the sum converges, we obtain that Kp , is uniformly bounded in n,
which yields that B is infinite-time Z-admissible. u

Since (T'(t))i=0 can be re-obtained from (e**T'(t))¢=0, Lemma 2.1.8
(ii) shows that admissibility is invariant under scaling of the semigroup
(or equivalently shifting of the generator). This is in general not true for
infinite-time admissibility.

By definition, Z-admissibility of B yields that ®;u depends continuously
on u € Z([0,00);U). The following result concludes on joint continuity
with respect to t and u for Z = Eg (including L! by our convention (2.2)),
see also [99, Proposition 2.3] for Z = 1P, 1 < p < o0.

Proposition 2.1.9. If Be L(U, X_1) is Eq-admissible, then the function

[0,0) x E¢([0,00);U) - X
(t,u) — dru

s continuous.

Proof. First, we prove continuity with respect to t. Fix u € E¢([0,00);U).
For any 7,t > 0 we have that

O pu=TE)Pru+ Prul(r + ).
Thus, admissibility of B yields for 7 > 0 and ¢ € [0, 1] that

||(b'r+tu - (I)TUHX
< (T() = D@rullx + [ Peu(r + )l x
< (T(@) = D®rullx + Kpallu(r + )llee 0.0:0),
where we used that Kp. is non-decreasing with respect to ¢. Since
(T'(t))t=0 is strongly continuous and |[u(7 + -)|[g,([0,4;0) converges to 0
as t converges to 0, see Proposition 1.2.29, it follows that ¢ — ®,u is
right-continuous.

To prove the left-continuity in 7 > 0 let (£, )nen be an arbitrary sequence
in [0, 7] with ¢, — 0. Define u,, = u(t, + ), so that u, € Eg([0,00);U).
Similar as before, we have that

Sru= O 4y yu=T(T —1) P, u+ Pr g, Up,
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and hence,

[Pru = Prt, ullx
IT(7 = ta)®r, ullx + [ ®r—t, (un — )] x
Sup]HT(t)H 1P, ullx + Kporllun = llgg 0.0):0)-

€[0,7

<
<

The left-continuity follows since ®; u — 0 as n — o by the right con-
tinuity of ¢t — ®;u and since u, — wu in Z([0,0);U) as n — o by the
strong continuity of the left-shift semigroup on Z([0,0);U), see Proposi-
tion 1.3.36.

The identity

v — Pru =P (v—u)+ (P — P, )u
implies the joint continuity of (¢,u) — ®.u. a

Remark 2.1.10. Proposition 2.1.9 applies to more abstract function spaces
Z whose norm is absolutely continuous with respect to the measure and
on which the left-shift semigroup is strongly continuous.

The relation of Z-admissible control operators B and the mild solution
x of X(A, B) is given as follows.

Corollary 2.1.11. Let A be the generator of a Cy-semigroup and B €
LU, X_1). The following assertions are equivalent.

(i) B is Z-admissible.

(ii) For some (and hence all)t > 0 and all xg € X and u € Z1oc([0,0); U)
the corresponding mild solution x of 3(A, B) satisfies x(t) € X.

If one of the equivalent conditions holds, then the mild solution x of
Y(A, B) for xop e X and u € Z1oc([0,0);U) satisfies

lz@®)llx < Me™||zollx + Kp.tllullz(o,0:0)-

where M > 1, w € R are such that |T(t)|| < Me " for allt = 0 and Kp 4,
t >0, are the admissibility constants of B. If (T'(t))i=0 is exponentially
stable, then one can choose w > 0 and replace Kp: by the infinite-time
admissibility constant Kp .

Moreover, if Z = Eg, then the mild solution satisfies x € C([0,0); X)
for all xg € X and u € E¢([0,00);U).

Proof. Equivalence of (i) and (ii) follows from Proposition 2.1.4 and the
fact that ®; only depends on u|[g 4. Inequality (2.1.11) follows from the
definition of the mild solution and (2.4). If the semigroup is exponentially
stable, w > 0 can be chosen and Kp; can be replaced by Kpg ., which
is finite by Lemma 2.1.8. For Z = Eg, Proposition 2.1.9 yields x €
C([0, 0); X). a
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Open Problem. It is an open problem whether the mild solution of
¥(A, B) with L™ -admissible or Lg-admissible B, where ® ¢ A, is con-
tinuous for all inputs in the respective space.

For ® € A¥, Lemma 1.2.25 yields that Ly ([0,t]; U) = Eg([0,t]; U) for
every t > 0 . Hence, in this case continuity of the mild solution follows
from Corollary 2.1.11.

2.1.2 Testing admissibility of control operators

The importance of admissible control operators becomes clear by Corol-
lary 2.1.11. In this section, we present some sufficient and necessary
conditions for admissibility of control operators. Further conditions can
be found e.g. in [95, Chaper 5] for Z = L2, [33] for weighted LP-spaces
and [103] for Z = L? and Z = Reg (the space of regulated functions) in
the context of positive semigroups on Banach latices.

We start with a characterization of Eg-admissible control operators
from [40], where the result is formulated for observation operators, cf.
Proposition 2.2.13. It goes back to Callier-Grabowski [28], see also Engel
[24]. First recall the auxiliary lemma from [24].

Lemma 2.1.12. Let X and U be Banach spaces, A : dom(A) € X — X
and D : dom(D) € U — U be closed and densely defined operators such
that (w, ) S p(A) n p(D) for some w € R and let K € L(dom(D), X),
where dom(D) is equipped with the graph norm of D. Then, the following
assertions are equivalent.

(i) The block operator matrix

-l ol

with domain

dom(A) := {m € X x dom(D)

r+ Kue dom(A)}

generates a Cy-semigroup (T 4(t))t=0 on X x U.

(ii) The operator A generates a Cy-semigroup (T'(t))i=0 on X, D gen-
erates a Co-semigroup (S(t))i=0 on U and for some (and hence for
all) 7 > 0 there holds that

sup [|R(t)] £, x) < 0,
te[0,7]

where R(t) is given by (the bounded extension of)

R(t)u = AJ: T(t —s)KS(s)uds, uedom(D?).
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If one of the equivalent conditions is satisfied, (T'4(t))i=0 is given by

T(t) R(t)
TA(t):[ 0 S(t)]'

Proof. We refer for the proof to [25, Theorem 3.3]. a

Proposition 2.1.13. Let A be the generator of a Cy-semigroup (T'(t))io0,
Be L(U,X _1). Then, the following assertions are equivalent.

(i) B is Eg-admissible.

(ii) The block operator matriz

A1 B§
Ap = |: 01 d0:| (2.6)
dr

with domain
dom(Ap) = {[i] € X x W'Eg((0,00);U) ‘A_lx + Bu(0) € X}

generates a Co-semigroup (Ta,(t))i=0 on X x Eg([0,0);U), where
dou := u(0) for ue WiEg((0,00);U).

If one of the equivalent conditions holds, then T 4, (t) is given by

Ta, (1) m _ [T(t)x + Z_(;(jt —) s)Bu(s) ds] .

Moreover, if (T4, (t))t=0 is bounded, then B is infinite-time Eq-admissible.

Proof. From Proposition 1.3.36 (and the well-known analog for L') it

follows that
d

e
with domain
dom(D) := W'Eg((0,0); U)

generates the left-shift semigroup (S(¢)):=0 on U = Eg([0,0);U). For
A€ p(A) = p(A_1) we write

| R R

- >

Api=

x

which is well-defined, since [ ] € dom(Ap) if and only if x € X, u €
dom(D) and z + (A — \)7'Bdou € dom(A). Note that Ap generates
a Cp-semigroup on X x Eg([0,00);U) if and only if Ap with domain
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dom(Ap) generates a Cp-semigroup on the same space. By Lemma 2.1.12,
this is the case if and only if supcpo 1| R(t)[| £ (E4 (0,:0):0),x) < 0, Where
R(t) is for u € dom(D?) and t > 0 given by

Rityu = (A—\) JO (- ) (Ao — 2 BAoS(s)u(s) ds

=(A-)) L T(t—s)(A_1 — A)*lBu(s) ds

t
= J T 1(t — s)Bu(s) ds.
0

Note that dom(D?) is dense in Eg([0,0); U), from which it follows that
suPsefo,] 1R | £(Be ([0,0);0),x) < © for some (all) 7 > 0 if and only
if B is Eg-admissible.  The representation of T4, (t) is derived from
Lemma 2.1.12 and the above computation of R(t). This representation
implies that B is infinite-time Eg-admissible if (T4, (t))t>0 is bounded. Q

For analytic semigroups, we have the following condition for LP-
admissibility.

Lemma 2.1.14. Let A be the generator of a bounded analytic semigroup
(T'(t))t=0 with 0 € p(A) and B € L(U, X_,) for some a.€ (0,1). Then, B

is infinite-time LP-admissible for all p > ﬁ

Proof. By T we denote the Gamma function

o0
I'(z) = J s*7le™% ds,
0

where the integral converges absolutely if z > 0. For B € L(U, X_,) with
a € (0,1) we have that B := (—A)~“B e L(U, X), see Proposition 1.3.28.
Let u € LP([0,00);U) and t > 0. We deduce from Proposition 1.3.28,
Proposition 1.3.26 and Hoélder’s inequality that

ft T_1(t — s)Bu(s) ds
0

X

J;) (—A)*T(t — s)Bu(s) ds

X
t
< M,|B| j (t = ) e u(s)||u ds

1
¢ V7

< M. |B] (f (1 — ) ¥ e er ) ds) -

0

’

l1—ap 1
~ 1 P’ t —ap —s p’
— ML B (wp) (f o ds) el o,
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’

~ 1 1_P’p 1
< M.|B| (wp> (T = )7 ullr (o0,

where p’ is the Holder conjugate of p, and M, and w > 0 are the constants
from Proposition 1.3.26. Since 1 — ap’ > 0 if and only if p > ﬁ, the
assertion follows. d

Remark 2.1.15. In the situation of Lemma 2.1.14 it follows from the proof
that the LP-admissibility constants of B € L(U, X_,) with a € (0, 1) and
p > ﬁ can be bounded by

M, u t o s o
Kpt < ——— (A Bllcux) || s* e ds
(wp’) o 0
M, _ 5
< 7( )Hp: [(=A)~*Bllw,x)(T(1 —ap’)) ¥,
wp') ¥

where M,,w > 0 are the constants from Proposition 1.3.26 and p’ is the
Holder conjugate of p.

In the following, we consider X = ¢%(N) for 1 < ¢ < oo with stan-
dard basis (e, )nen- Let (An)nen be a sequence of complex numbers with
sup,ey Re A, < 0. The operator A : dom(A) € X — X, defined by

Ae, = \pen,

2.7
dom(A) i= {(zn)acrt | (e € 1)}, 27

generates the Cp-semigroup (7'(t)):»0 on X,
T(t)e, = e le,, t=0. (2.8)

The corresponding extrapolation space X_; is given by

T q
(A_)\TL)nENEE (N)}
for some fixed A > sup,,cy Re A.

For this specific setting, we recall a characterization of LP-admissibility
for control operators B € L(C,X_;) in terms of a Carleson-measure
criterion provided by [48, Theorem 3.5]. We identify B € £(C, X_;) with
an element in X_; via Bl = b = (b, )nen € X_1. We define sets @, n € Z,
and a measure p (depending on A and B) by

X1 = { (@

Qn=1{2zeC|2" ' <Re z < 2"},
=) [bk|%0x,, (2:9)

keN
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where J, is the point measure in A, that is

1, ifAeq@,
0, else.

Q) = {
Lemma 2.1.16. Let 1 < ¢ < p < © and X = L4(N). Suppose that A is
defined by (2.7) with Re A, <0 and —\,, € S5 for some 0 € (0, §) and every
n € N. Let Be L(C,X_1) be given by the sequence b = (by)neny € X1
and Q,, and p be given by (2.9). Then, B is LP-admissible if and only if

_na(p—1) _p_
(2 7 (Qn))nez € L7~ (Z).
Proof. We refer for the proof to [48, Theorem 3.5]. Q

The following example of an operator B which is infinite-time admissible
with respect to L™, Lg and Eg for some Young function @, but not L?-
admissible for any choice of p € [1,00) is taken from [39]. It is an adaption
of [44, Example 5.2] and [103, Example 4.2.13].

Example 2.1.17. Let X = U = (*(N) and A be given by (2.7) with
An = —2". Thus, A generates the exponentially stable Cp-semigroup
(T'(t))t=0 on X, given by (2.8). We define an operator B € L(U, X_1) by

277/
Be,, = —e,.
n

For @ = (%)neN € U, we define B € £(C,X_,) by the sequence b =
(bn)ney = Bu € X 4. Consider p and @, as in Lemma 2.1.16. For
p € (2,00) we have that

2n 2n
—2n(p—1) —2n(p—1) 2 P

P /’L(Qn) =2 P

n4 nt’

and thus,

—2n(p—1) = 272s
(@) >nef(m4-”z>neﬂl(z)'

Lemma 2.1.16 yields that B is not LP-admissible for 2 < p < oo and hence,
by Lemma 2.1.8, not LP-admissible for 1 < p < co. Consequently, B is not
LP-admissible for 1 < p < 0.
Next, we show that B is Lg-admissible, where ® is the complementary
Young function of N
®(t) = tlog(log(t + e)).

It is not difficult to see that ® is a Young function. For n € N, we define

ke log(nlog(2) + e)
nis
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so that nk, > 1 and nQT,, > 1 hold. For t > 0 and n € N it follows that
N 2672”15 on " on "
) n - —2 tl 1 e -2t
( o nkne og<og <nkne +e
—ne”nt log ( log i (1+e)
knn nk,,

2" n
= ﬁe*Q “log (nlog(2) + log(1 + e) — log(nk,))
2n n
ﬁefz “log (nlog(2) + e)
e 2"t

YA\

N

This implies that

t 2" —2"(t—s)
5 n © —2"¢
J @() ds<1—e 2"t <1,
0 k’n

and hence, ||%e—2"(t—') L5 ([0.1]) < Kn. The generalized Holder inequality

(Lemma 1.2.19) implies for u € Lg ([0, t]; £2(N)) that

’ ( JO Tt — 5 Buls) ds> ) f 26209y (5)), ds

0

<205 I o (a0
< 2kn [|ullLa ([0,6;02(v)

for all n € N, and therefore,

Since (kp)neny € £2(N), we conclude that B is Lg-admissible. From
Lemma 2.1.8 it follows that B is also infinite-time admissible with re-

o8]

spect to Lg, Eg and L.

< 2| (Bn)nenllez v 1ull L (10,6702 ) -

t
J T_1(t — s)Bu(s) ds
£2(N)

0

2.1.3 Regularity of solutions

In Corollary 2.1.11 we have seen that Eg-admissibility implies continuity
of the mild solution for all 29 € X and u € Eg 10¢([0, 0); U). In this section
we discuss further regularity properties of the mild solution for smoother
initial and input data.

Definition 2.1.18. Let (T'(t))t=0 be Cp-semigroup on X and let B €
L(U,X_1). A functions z € C1([0,0); X) is called a classical solution
of (A, B) for zp € X and u € L _([0,00);U) if 2(0) = x¢ and #(t) =
A_12(t) + Bu(t) for all almost every t > 0.



2.1. Linear input systems 53

Remark 2.1.19. Every classical solution of ¥(A, B) is a mild solution.
Indeed, (1.3.8) implies for the classical solutions x for xp and u that

d

E(T,l(t—s)aﬁ(s)) =T({t—s)x(s)—T_1(t—s)A_12(s) = T_1(t — s) Bu(s)

for almost every 0 < s < t, and integrating in s over [0, ] yields
t
J’ T_1(t —s)Bu(s)ds = T(t — t)x(t) — T(t — 0)x(0) = z(t) — T(t)xo-
0

In particular, classical solutions are unique. Also note that classical
solutions do not necessarily satisfy x(t) € dom(A), but only A_jx(¢t) +
Bu(t) € X for almost every t > 0.

Our first result on the regularity of mild solutions is taken from [95,
Theorem 4.1.6 & Remark 4.1.7]. We emphasize that admissibility of B is
not required.

Proposition 2.1.20. Let A be the generator of a Cy-semigroup, and
Be L(U,X_1). Then, the linear system X(A, B) admits for all xg € X
and u € Wllc;i((O, 00);U) a unique mild solution

z e C([0,00); X) n CH([0,00); X_1).

Moreover, the mild solution satisfies for allt =0
¢
x(t) — g = J A_q12(s) + Bu(s)ds (2.10)
0

in X with integration in X_1.

Proof. Since B € L(U, X_1), it is L'-admissible for (T_1(t))¢=0. It follows
from Proposition 2.1.13 that

A_s B6
an =[]

dr
with domain
dom(Ap) = {[QZJ] € X 1 x Wh((0,00);U) ‘Agxo + Bu(0) € Xl}
=X x Wh((0,00);U)

generates the Co-semigroup (T4, (t))tz0 given by

Tag(t) [QZO] = [Tl(t)xo + Sé;(;i(%)_ s)Bu(s) ds]
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on X 1 x LY([0,0);U). Let 29 € X and u € W ((0,00); U). For every

t = 0 we have that [p[ﬁ]u] € X x WHi((0,00);U) = dom(Ap), where
Ppo,qu = on [0,¢] and 0 else. From Lemma 1.3.8 we deduce that

Ta, (t) [Proyu] € CH([0,00); X1 x L'([0,00); U))
N C([0,00); X x Wl’l((O,oo); U))

and

t
oty Zo Zo
T (t _ _ | apT ds.
AB()[P[O,tJU] [P[OJ]U] Jo 5745 (5) [P[o,tJU] ’

The first component of T4, (¢) [%?] is the mild solution z of ¥ (A, B) for
7o and u evaluated in t. Hence, z € C1([0,0); X_1) n C(]0,0); X) and

z(t) —xo = L A _ox(s) + BP[gqu(s)ds
= L A_jz(s) + Bu(s)ds

in X _; with integration in X 5. The second equality holds since x €
C([0,0); X). In particular, equality holds in X and since the integrand
lies in L ([0,00); X_1), the integration is carried out in X_; and x €

WL ((0,00); X_1). The uniqueness of the mild solution is evident. a

loc

In Proposition 2.1.20, one may replace the additional regularity property
of u by admissibility of B to obtain the following result, see also [95,
Proposition 4.2.5] for Z = L2

Proposition 2.1.21. Let A be the generator of a Cy-semigroup and
Be L(U,X_4) be Eg-admissible. Then, the linear system $(A, B) admits
for all xg € X and u € Eg 10c([0,0); U) a unique mild solution

z € C([0,00); X) N W'Eg 10c((0,00); X_1).
Moreover, the mild solution satisfies (2.10) in X with integration in X_1.

Proof. For xg € X and u € W'Eg 10.((0,0); U') € WL ((0,00); U), Propo-
sition 2.1.20 yields that (2.10) holds in X with integration in X_;. Since B
is Eg-admissible, ¥(A, B) admits for all 29 € X and u € Eg 10c([0,0);U) a
unique mild solution 2z € C([0, 0); X). Moreover, linearity yields that x(t)
depends continuously in X on w in E¢([0,¢]; U) for every ¢ > 0, see Corol-
lary 2.1.11. Hence, both sides of (2.10) depend continuously in X_; on u in
Eo([0,¢]; U) and density of W'Eg((0,¢); U) in Eg ([0, t]; U) for every t > 0
yields (2.10) for all u € Eg 10¢([0,0); U) in X_4. Since z(t) —z¢ € X and
A 12+ Bu € Eg 10c([0,0); X_1), we have that 2 € W Eg 10¢((0, 00); X_1)
and equality in (2.10) holds in X with integration in X ;. a
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Under additional regularity properties of u in Proposition 2.1.20 and
Proposition 2.1.21, the mild solution is a classical solution, as shown next,
see also [95, Lemma 4.2.8 & Remark 4.2.9].

Proposition 2.1.22. Let A be the generator of a Cy-semigroup (T (t))e=o0
and B e L(U, X_y). If either
(i) z0€ X and ue W2L((0,00); U) with A_yz¢ + Bu(0) € X or,

loc

(ii) 2o € X and u € W'Eg 10¢((0,00); U) with A_1z0 + Bu(0) € X and
B is Eg-admissible,

then the corresponding mild solution of X(A, B) is a classical solution.

Proof. We split (A, B) into two systems

o
with uq(t) = u(t) — u(0) and

Zo(t) = Axs(t) + Bu(0), t=0

{x2(0) I, (2.12)

where u(0) is regarded as a constant function. According to our assump-
tions, Proposition 2.1.20 and Proposition 2.1.21, both systems admit
unique mild solutions 1,22 € C([0, 00); X). Similar,

Z(t) = Az(t) + Buin(t), t=0
z2(0) =0

admits a unique mild solution z € C([0,0); X). The function 1,

lies in C'*([0,00); X) and solves (2.11) in the classical sense. Indeed, the
mild solution formula (2.1) for z and Lemma 1.3.8 yield that

() = J T_\(t — 5)Bin (s) ds

0
= [T_l(t—s)Bul( 5= 0+J A_ QT_ (t—S)B’LLl( )d
= Bul(t) + A_1531( )

Since classical solutions are mild solutions, the uniqueness of mild solutions
implies that z; = #; € C1([0,00); X) is the classical solution of (2.11).
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From the mild solution formula (2.1) for x2 and Lemma 1.3.8 it follows
that

A vaa(t) = A T(t)zo + Aflfo T (t = s)Bu(0) ds (2.13)

= T(t)[A_120 + Bu(0)] — Bu(0).

From Proposition 2.1.21 we infer that

t

2o(t) — xp = Jo A_125(s) + Bu(0)ds

t
= f T(s)[A—12o + Bu(0)]ds.
0

By assumption, the integrand of the latter integral is continuous with
values in X, and therefore, x5 € C*([0, o0); X).

Finally, the function x = z1 + 2 € C1([0,0); X) is the classical solution of
(A, B) for zp and w. It is unique by the uniqueness of mild solutions. Q

If A is a strictly negative operator on a Hilbert space, and therefore also
the generator of a bounded analytic semigroup, the following improvement
holds, see also [96, Proposition 6.5].

Proposition 2.1.23. Let A be a strictly negative operator on a Hilbert
space X. If Be L(U, X%), then B is infinite-time L2 -admissible. Moreover,
there exists a constant k > 0 such that ¥(A, B) admits for every xg € X
and u € L2([0,00); U) a unique mild solution

z e H'((0,00); X_1) n C([0,0); X) n L([0,0); X ),

Nl

-3
which satisfies for every t = 0,
||x||%{1((07t);X7%) + 2% + ||$||iz([o7t];xé)
< k(llzollX + 1l o, q.0))
and
2% — llzoll%

— 9Re L (Aa(s), w(s))x_y x, +(Buls),a(s))x

)

[T

Proof. Recall from Lemma 1.3.31 that A generates an exponentially stable

and bounded analytic semigroup, and that X 1 s well-defined. For any
zo € dom(A) and u € H _((0,00); U) with u(0) = 0 there exists a unique

classical solution x € C*([0, 00); X) of 3(A, B) by Proposition 2.1.22. In
particular, for every ¢ > 0, we have that

z(t) = A_1z(t) + Bu(t),
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in X. Since &(t) € X © X 1 and Bu(t) € X 1, we also have that
A_yx(t) € X_1, which is equivalent to x(t) € X1, see Proposition 1.3.28.

The representation of the X1-norm from Lemma 1.3.31 and (1.23) yield
that

Sl
— 2Re @ (t), 2(t))x
= 2<A_1a:(t),x(t)>x_%7xé + 2Re{(Bu(t),z(t))x

< —III(t)H?(% +BlZw.x ) lu®lE,
2

X

)

[V
[T

where we used 2ab < a? + b? for a,b € R. Integration over [0,t] yields
1% — llzoll%

=2Re JO<A—1JJ(5)’ z(s))x_

Xy + (Bu(s), x(s)>X7%7X% ds.

N=

and

lz(@®))1% + ”xH%ﬁ([O,t];X%) < Jlzollk + ”B”%(U,X_%)”U”%ﬁ([o,t];U) (2.14)
for all 29 € dom(A) and u € HZ ([0, 0); U) with u(0) = 0. Now, by the
density of dom(A) in X and {u € H2([0,¢]; U) | u(0) = 0} in L2([0,¢]; U) for
every t = 0, and the linearity of the system, it follows that B is infinite-time
L2-admissible and (2.14) holds for all z5 € X, u € L2([0, 00); U) and the cor-
responding mild solution x. In particular, we have z € L2([0, 00); X 1 ), and
thus A ;2 € L2([0,00); X_1). Due to these regularity properties, we infer
from the same density arguzment as above that the integral representation
of |z(t)]|% — |lzol|% holds for all zp € X and u € L3([0,00);U). More-
over, it follows from Proposition 2.1.21 that z € Hj,((0,00); X_1) with

T=A 12+ Buin X_%, and since HAfla':HL?([O,t];X_%) = H.Z'||L2([07t];X%),

we deduce that

Hx||%ll((0,t);X7%) = ||‘T||i2([0,t],X7%) + Az + Bu||i2([0,t];X7%)

< 3Hx||iQ([0,t];X%) + 2||B||2£(U,X7%)”uHi?([O,t];U)v

where we used (a + b)? < 2(a? + b?) for a,b € R. Combing this with (2.14)
completes the proof. Q

Remark 2.1.24. Consider the differential equation z(t) = Ax(t) + f(¢) with
f € LP. The property that not only & — Az, but £ and Ax belong to LP is
known as maximal LP-regularity.
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2.2 Linear output systems

Let X and Y be Banach spaces, A be the generator of a Cy-semigroup
(T(t))e=0 on X and C € L(X1,Y), where X; is the interpolation space
defined in Definition 1.3.12. We call C' bounded if C € £L(X,Y) and
unbounded otherwise.

For ¢ € X; we have that z € C1([0,0); X) n C([0,0); X1), z(t) =
T(t)xo is the classical solution of (A, C), see Corollary 1.3.9 and Propo-
sition 2.1.22. Therefore, the output y € C([0,00);Y) of (A, C) is given
by

y(t) == Cx(t) = CT(t)xo.

For general xg € X it is not necessarily true that T'(t)zo € X1, hence, we
cannot define the output by the above pointwise formula.

2.2.1 Admissible observation operators and outputs

We are interested in observation operators C, for which we can extend
y(-) = CT()xo for zg € X3 to all zp € X in some function space
Z([0,0);Y), where Z refers to L*, Eg¢ or Lg. We maintain the con-
vention (2.2) that L' = Eg = Lg is an Orlicz space.

Definition 2.2.1. Let (T'(¢))1»0 be a Co-semigroup on X. We call C €
L(X1,Y) a Z-admissible observation operator for (T'(t))i=o (or just Z-
admissible) if for some t > 0 the map ¥,: X; — Z(]0,0);Y), given
by

_ ) CT(-)xo, on [0,t],
\I/txo = {O’ on (t’w)’ (215)

admits an extension (again denoted by ¥;) ¥; € £(X, Z([0,00);Y)).

Since we use the letter B exclusively for control operators and C for
observation operators, there is no risk of confusion in stating that B or C
is Z-admissible.

The maps ¥y, t > 0, given by (2.15), are called the output maps of
3(A,C) (and X(A, B, C)).

Since C' € L(X1,Y) and L*([0,t];U) — Z([0,t];Y) for all ¢t = 0 we
have that ¥; € £(X1,Z([0,20);Y)). Furthermore, C' can be recovered
from (V)50 via

1
CLU() = lim — (‘I’tl'())(s) dS, g € Xl-

70 T 0

Remark 2.2.2. Every bounded operator C' € £(X,Y) is Z-admissible for
any choice of Z and any Cp-semigroup on X.
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The following result is the analog to Proposition 2.1.4, see also [95,
Proposition 4.3.2] for Z = L2.

Lemma 2.2.3. If C is Z-admissible, then U, extends for allt > 0 to an
operator U, € L(X, Z([0,0);Y)).

Proof. Let 7 > 0 such that ¥, extends to an operator in £(X, Z([0,00);Y)).
Denote by Pg 4 € L(Z([0,00);Y)) the truncation operator

y? on [0’ t]’
P =
(oY {07 on (t,00).

For t € [0, 7] the identity ¥; = P[o4 ¥, holds. Since Ppg is bounded on
Z([0,00);Y), ¥, extends to an operator in £(X, Z([0,00);Y)). For t = 27
we have that Vo, = P V; + P 2-)5(7) ¥, where (S(t))i>0 is the right-
shift semigroup on Z([0,0);U). Again, since Py 1, P[o2-] and S(7)
are bounded on Z([0,0);Y) it follows that W5, has an extension to an
operator in £(X, Z([0,00);Y)). The claim now follows by induction. Q

Remark 2.2.4. By Lemma 2.2.3 and the density of X; in X we have that
C' is Z-admissible if and only if for some (and hence for all) ¢ > 0 there
exists a constant K; > 0 such that for all g € X; the estimate

ICT()xoll z(r0,17;v) < Kellwollx (2.16)

holds. The minimal constant K; > 0 satisfying (2.16) is

Kei = Vel zix,z([0,0):v))-
Moreover, t — K¢ is non-decreasing on [0, o).

Definition 2.2.5. Let C' be Z-admissible. The constants K¢ ¢, t > 0, from
(2.2.4) are called the admissibility constants of C. We call C' infinite-time
Z-admissible if the infinite-time Z-admissibility constant

Kc,o =sup Koy

t=0
is finite.

Remark 2.2.6. By Remark 2.2.4, C is infinite-time Z-admissible if and
only if there exists K > 0 such that for all g € X; we have

ICT()xoll z(10,20);v) < Kll@oll x-

Similar to Lemma 2.1.8, see also [100, Proposition 2.3 & Remark 6.4]
for Z = L?, we have the following result.
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Lemma 2.2.7. Let (T'(t))i=0 be a Cy-semigroup on X and C € L(X1,Y)
be Z-admissible. The following assertions hold.

(1) If Z([0,t];Y) < Z([0,t];Y) for somet > 0, then C is Z-admissible.
(ii) C is Z-admissible for the scaled semigroup (e**T(t))i=o for all a € R.

(iii) If the semigroup (T'(t))i=0 s exponentially stable, then C is infinite-
time Z-admissible.

Proof. The continuous embedding in (i) yields for some m > 0 and all
Tg € Xl that

1CT()zoll z(10,67:vy < mICT()zoll z([0,61,v)-

Therefore, the claim follows from Remark 2.2.4.
Similar, (ii) follows from

1Ce™ T(-)woll z([0,4:v) < Sl[lp]eas||CT(')1’0HZ([0,t];y)~
se|0,t

For (iii), let M,w > 0 such that ||T'(¢)|| < Me™“!. Since the admissibil-
ity constants K¢+ are non-decreasing in ¢, it suffices to prove that K¢, is
uniformly bounded in n € N. For n € N and zy € X; we have that

ICT(-)zoll z(10,n1:v) 2 1CT()woll 2k, k+115v)
k=0

1
2 |CT(-)T(k )xOHZ([O,l];Y)

n
k=0

Kca Z ™" [l x-
k=0

The sum converges and hence, the constants K¢, are uniformly bounded
in n, which yields the infinite-time Z-admissibility of C. d

For Z-admissible observation operators, the output of (A, C) can be
defined as an Zj,.-function.

Definition 2.2.8. Let A be the generator of a Cy-semigroup (T'(¢))i=0
and C € L(X1,Y) be Z-admissible. The output of X(A,C) for xg € X is
the (almost everywhere defined) function y € Zj,¢([0,©);Y"), given by

Yo = (Weo)lo,q,
for every t = 0, where ¥; € £(X1, Z([0,00);Y")) is the extension of (2.15).

Note that the output of ¥(A, ) with Z-admissible C' depends for all
t >0 in Z([0,t];Y) continuously on zg in X.
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2.2.2 Duality of admissible operators

In [100, Theorem 6.9] Weiss describes the dual relation between LP-
admissible control and observation operator. In this section we extend
Weiss’ result to Orlicz admissible operators.

Let (T(t))t=0 be a Cy-semigroup on X and assume that its dual semi-
group (7T7(t)):=0 is also strongly continuous (this is e.g. true if X is re-
flexive). Let B € L(U,X_1) and C € L(X1,Y). We denote their dual
operators with respect to the dual pairs (X_1, X{) and (X1, X%;), de-
rived in Proposition 1.3.15, by B’ and C’, respectively. We have that
B' e L(X{,U") and C" € L(Y',X%,). We regard B’ as output operator
of the observation system X(A’, B'), dual to ¥(A, B) and C’ as control
operator of the input systems X(A’,C’) dual to (A, C).

The dual relation between Orlicz admissible control and observation
operators is given as follows.

Theorem 2.2.9. Let (T(t))i=0 be a Cy-semigroup on X such that the
dual semigroup (T"(t))i=0 is strongly continuous. The following assertions
hold for Be LU, X _1) and C € L(X1,Y).

(i) If C is an (infinite-time) Lg-admissible observation operator for
(T(t))i=0, then C" is an (infinite-time) Lg-admissible control opera-
tor for (T'(t))t=0 and the admissibility constants satisfy

Koy <2Keyg.

(i) If C" is an (infinite-time) Lg-admissible control operator for (T'(t))¢>0,
then C is an (infinite-time) Eg¢-admissible observation operator for
(T(t)) =0 and the admissibility constants satisfy

Koy < Keory.

(iii) If B is an (infinite-time) Lg-admissible control operator for (T(t))t=o,
then B' is a (infinite-time) Eg-admissible observation operator for
(T'(t))t=0 and the admissibility constants satisfy

Kp < Kpg.

(iv) If B' is an (infinite-time) Lg-admissible observation operator for
(T'(t)) =0 and if either X is reflexive or & € AJ (this includes ®(t) =
t, i.e., L = E¢ = L' and Ly = L*), then B is an (infinite-time)
La-admissible control operator for (T(t))i=0 and the admissibility
constants satisfy
Kpy <2Kpry.

Proof. First, we prove (i). Suppose that C is (infinite-time) Lg-admissible
and let ¢t > 0. For u € Lz([0,];Y") define

+

2y = L T (t — 5)C'u(s) ds.
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Clearly, we have that z, € X, = (X;)". For z € X it follows that

(o nx, x| = | €T =9y s

. (CT(s)z,u(t —s))yy ds

2(CT()2ng (o0 lult = )Lz (0,077

2K tllz x llulle, (o,0:v7)-

<
<

Hence, z,, extends to a linear bounded functional on X with norm bounded
by 2K ¢ ¢||lullL (j0,41:v)- Therefore, C" is (infinite-time) Lg-admissible with
admissibility constant K¢or ¢ < 2Kc .

For (ii) assume that C” is (infinite-time) Lz-admissible. For every ¢ > 0
and z € X; we have that CT(-)z|jo4 € C([0,t];Y) € Ea([0,t];Y). It
follows from Proposition 1.2.20 and Corollary 1.2.22 that

1CT()zlleq(0,0:v)

t
< s [T u)yyds
HuHLé([O,t];Y’)Sl 0

¢
= sup J (x, TLy(t — 5)C"u(t — s)ds)x, xa
o ~1

HUHLi([o,t];Yﬁsl

= sup < J (t—=38)C'u (t—s)ds>
HUHL&)([o,t];yl)Sl X, X'

S el f T, (t = )C'ult = ) ds|| 2] x
‘luHL'i)([O,t]:Y’)\l 0 X7
< Ko,
where we used |Ju(t — ) Lz ([0,4;Y") = ||u||L@([0,t];y/) and the fact that

Sé T, (t — s)C'u(t — s)ds € X' by assumption. Thus, C is (infinite-time)
Eg-admissible with admissibility constants K¢ ¢ < K.

Next, suppose that (iii) holds, i.e., B is (infinite-time) Lg-admissible.
By Proposition 1.2.20 and Corollary 1.2.22; we have that

I1B'T'()2'

J(u ), BT ()2 50,0 ds

p([0410) S su
\u\|L¢([o 50

for every t > 0 and 2’ € X{. Thus, similar to (ii), we obtain

I1B'T' ()2 ||, jo.q:0y < Kl x
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for every 2/ € X{, which yields that B’ is (infinite-time) Ez-admissible
with admissibility constant Kp'; < Kp .

Finally consider (iv). Let B’ be (infinite-time) Lg-admissible, 2’ € x¢,
u € Lg([0,¢]; U) and

¢
2y = J T 1(t —s)u(s)ds e X_;.
0

Similar to (i), we obtain that
Ka's zupxa x_, | < 2Kpr a2’ || x0 1l Lo fo,13:0) -

The above inequality shows that z, is a functional on X’, i.e., an element
in X”. If X is reflexive, we can regard z, as an element of X with
lzullx < 2Kpr tl|ullLg(o,;0)- Hence, B is (infinite-time) Lg-admissible
with Kgyt < QKB/’t.

If ® € AT, then Lg([0,t]; U) = Eg([0,t]; U) by Lemma 1.2.25. For any
step function u € Lg ([0, t]; U) we have that z, € X by Lemma 1.3.8. Since
lzullx < 2K ¢l|vllLy(fo,4;0), Remark 2.1.7 implies that B is (infinite-
time) Le-admissible with Kp; < 2Kpr 4. Q

Remark 2.2.10. The admissibility constants in Theorem 2.2.9 are given
with respect to the Luxemburg norm on Lg. If we take the equivalent
Orlicz norm, we obtain K¢ ; = K¢ ¢. Similarly, if X is reflexive or ® € AT,
then Kp: = Kp/; holds.

2.2.3 Testing admissibility of observation operators

According to Theorem 2.2.9, the tests for admissibility of control operators
from Section 2.1.2 can be transferred to observation operators, provided
that the dual semigroup is strongly continuous. This is the case for Propo-
sition 2.1.23 and Example 2.1.17, since there X is assumed to be a Hilbert
space, and therefore reflexive. In Proposition 2.1.13 and Lemma 2.1.14
the dual semigroup is not necessarily strongly continuous. Therefore, we
provide the analogous statements. We begin with Lemma 2.1.14.

Lemma 2.2.11. Suppose that A generates a bounded analytic semigroup
(T(t)t=0 and 0 € p(A). If C € L(X,,Y) for some o € (0,1), then C is
infinite-time LP-admissible for all 1 < p < é

Proof. If C € L(X,,Y) for some « € (0, 1), then C:=C(-A)~e L(X,Y).
From Proposition 1.3.28 and Proposition 1.3.26 we deduce for xg € dom(A)
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that
ICT()zollLr (o)) = IC(—A) T (ol ([0.0):v)

. 1
< M.|C) (f tapewptdt) ol
0

l—ap

M| (Wlp) "0 - ap))F ol

where M,,w > 0 are the constants from Proposition 1.3.26 and I" denotes
the Gamma function. Since 1 — ap > 0 if and only if p < é, the assertion
follows. d

Next, we give the analog of Proposition 2.1.13 for observation operators.
Recall the following auxiliary lemma.

Lemma 2.2.12. Let X and Y be Banach spaces, A: dom(A) € X — X
and D: dom(D) € Y — Y be closed and densely defined operators such
that (w,0) € p(A) N p(D) for some w € R and let L € L(dom(A),)),
where dom(A) is equipped with the graph norm of A. Then, the following
assertions are equivalent.

(i) The block operator matriz

A 0ffI O
=[5 o[z 1]
with domain
dom(A) = {B] € dom(A) x Y ‘ Lxg+ye dom(D)}

generates a Co-semigroup (T a(t))i=0 on X x Y.

(ii) A generates a Co-semigroup (T(t))i=0 on X, D generates a Cop-
semigroup (S(t))i=0 on Y and for some (and hence for all) T > 0
we have that supyepo 1| R(#) || c(x,p) < o0, where R(t) is the bounded
extension of the operator

R(t)xo = DL S(t —s)LT(s)xods, xo€ dom(A?).

If one of the equivalent conditions is satisfied, (T'4(t))i=0 s given by

Proof. We referred to [25] for the proof. a
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Proposition 2.2.13. Let A be the generator of a Cy-semigroup (T'(t))=0
and C € L(X1,Y). Then, the following assertions are equivalent.

(i) C is Eg-admissible.

(ii) For some (and hence for all) T > 0 the block operator matrix

A 0 1[I o0
ro=lo Sl 1
“7lo 4L 1

with domain

dom(A¢) = {[9;0] € dom(A4) x W'E4((0,7);Y) ‘C’xo +y(0) = 0}
generates a Co-semigroup on X x Eg([0,7];Y), where L is given by
Lxg == 1[0, Cxo for o € dom(A).

If one of the equivalent conditions holds, T a.,(t) is given by

Tac(t) [ZO] = [ 0. )cT(max{o:I;(i)x}o) + L) (DY (- = t)] '

Moreover, if (Ta.(t))i=0 s bounded on X x Eg([0,00);Y), then C is
infinite-time Eg-admissible.

Proof. From Proposition 1.3.32 (and the well-known analog for L') it

follows that
d

dr

with domain
dom(D) = {y e W'Es((0,7);Y)|y(0) = 0}

generates the right-shift semigroup (S(¢))=0 on Y := Eg([0,7];Y). Thus,
Lemma 2.2.12 yields that A generates a Cy-semigroup on X xEq ([0, T], )
if and only if sup,epg (| R(t)[| < 0, where R(t) is for zo € dom(A?), t >0
and r € [0, 7] given by

[ROml(r) = =3 | = 91p.0(0)CT ()0 ds

d t
=—— CT(s)xods
dr max{0,t—r}

110,47 (r)CT (max{0,t — r})zo.

Hence, A generates a Cy-semigroup on X x Eg ([0, 7];Y) if and only if C' is
Eg-admissible. The representation of T4, (¢) is derived from Lemma 2.1.12
and the above computation of R(t). It follows from this representation
that C is infinite-time Eg-admissible, if (T4, (t))>0 is bounded. a
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2.3 System nodes and well-posedness

In Section 2.1 and Section 2.2 we discussed the solution and output theory
of linear systems (A, B, C) provided that either B or C' is trivial. If this
is not the case, there is a non-trivial interaction of the possibly unbounded
operators B and C' in the output, formally given by

y(t) = Cx(t) = CT(t)xo + CJO T_1(t — s)Bu(s) ds.

In this section, we introduce the concepts of system nodes and well-posed
linear systems, which allow to overcome these issues. For more details on
these topics, we refer to [94].

2.3.1 System nodes

System nodes provide an abstract framework, which gathers all information
of a linear time-invariant input-output-system

Az(t) + Bu(t), t =0,
t=20

——
< 8
NN
[
Q
8
=
+
S
£
~~
=

in one operator S = [& B], called the system node, thus the system is
described by

)L

y(t) u(t)]”

For systems with bounded operators, there is a clear one-to-one correspon-
dence between the bounded operators A, B, C' and D and the bounded
system node S. Such a relation becomes non-trivial for unbounded systems.
Note that in the above system there is a feed-through operator D, which is
somehow “hidden” in the formulation (A, B, C) as we will see later.

Let U, X and Y be Banach spaces. By Px and Py, we denote the
canonical projections from X x Y to X and Y, respectively, i.e.,

Px|:§:|=$ and Py[;]zy, reX, yeY.

For an operator S: dom(S) € X x U —» X x Y, we define operators
A&B = PXS
and

C&D = Py S
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with dom(A&B) = dom(C&D) = dom(S). Hence, we have

ALB
5= [C&D] :

The main operator of S is the operator A: dom(A) € X — X given by

[g] € dom(S)},

Az = A&B [g] , x € dom(A).

dom(A) := {x eX

Definition 2.3.1. Let U, X and Y be Banach spaces. A system node on
(U, X,Y) is a linear operator S: dom(S) € X x U — X x Y such that

(i) S is a closed operator,
(ii) A&B is a closed operator,
(iii) A generates a Cp-semigroup on X and
(iv) for all u € U there exists x € X such that [{, ] € dom(S).

A system node S is associated with the formal set of equations
()| _ o|z@)] _ [A&B]| [z(t)
[y(t)] =5 [u(t)] = [C&D u(t) | (2.17)
If S is bounded from X x U to X x Y, then A&B =[A B] and C&D =

[c D] for some bounded operators A, B,C' and D. For unbounded S, [94,
Lemma 4.7.3 & 4.7.7] yield the following.

Lemma 2.3.2. Let S be a system node on (U, X,Y) with main operator
A and denote the associated inter- and extrapolation space by X1 and X _1.
The following assertions hold.

(i) There exists a unique B € L(U, X_1) such that [A-1 B]: X xU - X
is an extension of A&B and

dom(S) ={[5]e X xU|A_1x + Bue X}.

(ii) For every u € U the set {x € X |[5] € dom(S)} is dense in X. In
particular, dom(S) is dense in X x U.

(iii) If we equip dom(S) with its graph norm, then C&D € L(dom(S),Y)
and for the operator C: X1 - Y,

Cx = C&D [g], r € Xy,

we have that C € L(X;,Y).



68 2. Linear systems theory

(iv) For any s € p(A) the operator [é *(S*Al—l)_lB] X xU—->XxU

I(s—A_1)7'B

is bounded and invertible with inverse [0 7 ] Moreover, it

maps dom(S) bijectively onto Xy x U.

(v) The graph norm of S on dom(S) = dom(A&B) is equivalent to the
graph norm of A&B and to the norm |||-|| on X1 x U defined by

[H}

= [lz — (s = A1) 7' Bull%, + [lull%
for any s € p(A).

Proof. We first prove (i). For every u € U there exists z € X such that
[%] € dom(S) by the definition of a system node. Hence, we can define

Bu = A&B [i] — Az

For uw e U and z1,22 € X with [%}],[%2 ] € dom(S) we have that

(A&B [ﬂ - A_1x1> - <A&B [9;2] - A_lxg)
= A&B [”"1 Y ””2] —A (21 —122) =0

by the linearity of dom(S) and the definition of A. Hence, B: U —» X_;
is a well-defined operator, [ A-1 B] is an extension of A&B and by the
definition of B, dom(S) € {[#] € X x U|A_1z + Bu € X}. For the
reverse inclusion assume that [§] € X x U with A_jz + Bu € X. By the
definition of a system node, there exists zo € X such that [ % ] € dom(S5).
It follows that A_jx0+ Bu € X, and hence A_q(x —x¢) € X as well. This
means that z — g € dom(A), i.e., [** | € dom(S). We obtain from the
linearity of dom(S) that [£]=[*," |+ [%] € dom(S). Thus, we proved
dom(S) ={[5]e X xU|A_1z + Bue X}.

Next, we prove that B is closed. Let (u,)nen be a sequence in U
such that (up)nen converges in U to some u and (Buy)nen converges
in X_; to some z. For A € p(A) let z,, = (A — A_1)"'Bu, € X. It
follows that A_jx, + Bu, = Az, € X, which yields [4"] € dom(S).
Moreover, [4"] converges to [(A*Aal)flz] in X xU and A&B[3"] =
A_y2, + Bu, converges to A(A — A_;) 'z in X. Closedness of A&B
yields [ A=4-07"z] € dom(S) and

A&B [(A - Au—l)lz] — A=A,

from which we deduce

_ 1
Bu = A&B [(A Aufl) z] S A=A )=
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Hence, B is closed and by the closed graph theorem also bounded. Unique-
ness of B follows from (ii). We emphasize that the proof of (ii) will not
make use of the uniqueness of B.

To prove (ii) let w € U and z € X be arbitrary. Let A € p(A) and B be
the operator from (i). We have that z—(A—A_1) "' Bu € X, so there exists
a sequence (wy)nen in dom(A) which converges to # — (A — A_1) ' Bu
in X. Define z,, = w, + (A — A_1)"'Bu € X. The sequence (Z,,)nen
converges to x and satisfies [%p ] € dom(S) by (i), since

A_12, + Bu= Aw, + \(A— A_1) 'Bue X.

This proves that {x € X |[7] € dom(S5)} is dense in X for every u € U.
Density of dom(S) in X x U follows from Definition 2.3.1 (iv).

Assertion (iii) follows from the simple fact that every closed operator
is bounded with respect to its graph norm, the boundedness of Py and
the fact that X7 x {0} is a closed subspace of dom(S) with respect to the
graph norm.

Next, we prove (iv). By (i), both block operators are bounded on
X x U and they are obviously inverse to each other. For [ ] € dom(S) we
have that A_1x + Bu € X and

r—(s—A 1) 'Bu=(s—A) sz — (A 1z + Bu)) e X;.
Conversely, if [$] € X7 x U, it follows that
A_j(x+(s—A_1) 'Bu)+ Bu= Az + s(s — A_1) 'Bue X.
Hence, _é 7(5714]_1)—13] maps dom(S) bijetively onto X7 x U.

Finally, consider (v). For [£] € dom(S) = dom(A&B) the graph norm
with respect to S is equivalent to ||-||s given by

i

and the graph norm with respect to A& B is defined by

1.,

Hence, I: (dom(S),||"||s) — (dom(A&B),||"||a&5) is bounded and by the
open mapping theorem an isomorphism, i.e., the respective graph norms

are equivalent. The equivalence to the norm ||-|| on X; x U follows from
(iv). Q

2 2 2

)

T
u Y

X
= ol + ul + [ ag 7]

+een 7]

S X

2 2

_J)
= Nl -+l + a5 7]

X

A decomposition of C&D into [ ¢ D] by extending C, as seen for B, is
in general not possible. Firstly, we cannot embed Y densely in a larger
space in general, e.g. if Y is finite-dimensional, and secondly, such an
operator D does not need to exist. However, C&D is fully described by C
and the transfer function of the system node, which we introduce next.
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Definition 2.3.3. Let S be a system node on (U, X,Y) and B and C be
the operators from Lemma 2.3.2.

(i) We call B the control operator of S.
(ii) We call C the observation operator of S.

(iii) The transfer function of S is the operator valued function
G: Cog((r(®)iz0) = LUY),

s C&D [(5 - A—l)lB] .

I

Note that G is well-defined, since [(‘9_‘4—11)713] € L(U,dom(S)) for
5 € Con(1(1))120) S P(A)-
Lemma 2.3.4. For a system node S on (U, X,Y) with main operator A,

control operator B, observation operator C and transfer function G the
following assertions hold.

(i) The transfer function G is analytic on some right-half plane and
satisfies for a, B € Coy((7(1))in0)s

Gl@) =G =Clla—A-) = (B-A) B
=(-a)Cla—A)"(B—-A 1) B.

(ii) For all av € Cyyy((1(t))1n0) and [ ] € dom(S) we have that

t=20

C&D [z] =Clz— (a— A_1)"'Bu] + G(a)u.

Proof. Assertion (i) follows from the definition of G and the resolvent
identity (@ — A_1) ' — (B—A_1) ! = (B—a)(a—A) (8- A1) L.

For (ii) let a € CWO((T(t))f;O? and [i] € dom(9), i.e., A 12 + Bu e X.
It follows that z — (&« — A_1)"'Bu € X; and

C&D [ ] — G(a)u = C&D [m (e

x — A 1)7'Bu
u

0
=Clr - (a— A_1) "' Bul,
which completes the proof. a

Corollary 2.3.5. A system node S on (U, X,Y) is uniquely determined
by its main operator A, control operator B, observation operator C and
transfer function G.

Proof. This is a direct consequence of Lemma 2.3.2 and Lemma 2.3.4. Q4
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Since we usually work with the operators A, B, C' and G associated
to a system node S, we introduce the following notation.

Definition 2.3.6. We call (A4, B,C, G) a system node if there exists a
system node S with main operator A, control operator B, observation
operator C and transfer function G.

By Lemma 2.3.2 and Lemma 2.3.4 we may reformulate (2.17) as follows,
where we additionally assign an initial value to the set of equations,

&(t) = A_1z(t) + Bu(?), t=0,
2(0) = xo, (2.19)
y(t) = Cla(t) — (0 — A1) ' Bu()] + Glau(t), ¢>0.

The following result concludes on the existence and uniqueness of
solutions and outputs of (2.19) for smooth input data, see also [94,
Lemma 4.7.8].

Lemma 2.3.7. Let 3(A,B,C,G) be a system node on (U, X,Y). Then,
(2.19) admits for all zo € X and u € W2L((0,00);U) with A _yxo +
Bu(0) € X a unique (classical) solution x € C*([0,00); X) with [%] €
C([0, 0); dom(S)) and output y € C([0,0);Y).

Proof. For 9 € X and u € Wloc(( 0);U) with A_1z¢9 + Bu(0) € X,
Proposition 2.1.22 yields the existence of the unique classical solution
x € CH([0,0); X) of £(A, B), i.e

#(t) = A_yz(t) + Bu(t), t=0,
z(0) = xo,

holds p01ntw1se in X. In particular,  and A_;z+Bu belong to C([0, 00); X).
Since u € WIOC([ 0);U), we also have that u € C([0,00);U). It follows

that [2] e C([0,0); dom(S)) and #(t) = A&B [W)] for every ¢ = 0 by
Lemma 2.3.2 (i), (ii) and (v). Therefore, by Lemma 2.3.4,

y(t) = C&D [ﬁgg] = C[a(t) = (a — A 1) "' Bu(t)] + G(a)u(t)
is well-defined and independent of a € Cy,((7(4)),5,)- Recall that C&D €
L(dom(S),Y) by Lemma 2.3.2 (iii), which implies y € C(]0, 0); Y"). Hence,

x and y are the unique classical solution and output of (2.19). Q

For initial values zop € X and u € L. _([0,00);U) we consider the
following generalized solution and output concept.
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Definition 2.3.8. Let (A, B,C,G) be a system node on (U, X,Y)
and (T'(t))i=0 be the semigroup generated by A. For zp € X and
uwe Ll _([0,00);U) we define:

loc

(i) The mild solution x of ¥(A, B,C, G) for zy and u is defined as the
mild solution of X(A, B), that is, for ¢ > 0,

z(t) = T(t)xo + Jo T_1(t — s)Bu(s) ds.

(ii) For a mild solution z of 3(A, B,C, G) for zy and u, we define the
output of X(A, B, C, G) as the Y-valued distribution y given for ¢t > 0

by
w0 = 3 (cen) [e-a [2] as).

meaning that it acts on test functions p € C¥([0,0);Y”’) as

J <dt2(p (C&D) Lt(t —5) [38] ds>y{7Y dt.

The distributional output of a system node is well-defined by the
following result ([94, Lemma 4.7.9]).

Lemma 2.3.9. Let ¥(A, B,C, G) be a system node on (U, X,Y) and x
be the mild solution for xo € X, u € Ll ([0,00);U). Then, for the second

integral
[28] = Lt(t — ) [28] ds, t=0

we have that & € C*([0,00),X) and [Z] € C([0, c); dom(S)).

Proof. First note that for any Banach space V and f € L _([0,0); V)
integration by parts yields for any ¢t > 0

J(t—s ds—J, f F(r)dr ds. (2.20)

By linearity it suffices to consider the two cases where either 2o = 0 or
u = 0. In the latter case, we have that z(t) = T(¢)xg. Lemma 1.3.8
implies that ¢t — So s)ds belongs to C([0,0); X;). It follows from
(2.20) that # € C*([0, 0 ) X1), and thus, [g] e C1([0,00); X7 x {0}) <
C1([0, 00); dom(S)).
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In the case where zy = 0, we have that z(t) = So 1(t — s)Bu(s) ds,
and therefore,

O f(t—s) f T (s — r)Bu(r) dr ds
,[t t—s) f T 1(1)Bu(s — 1) drds

0

Fubml J

7= JTlt—UBJ o—r)u(r)drdo
0

+

T (7 BJ (t — s)u(s — 7)dsdr

& O

t—7
T (7 BJ (t—7—r)u(r)drdr

4 ©

= f T_1(t — o)Biu(o)do.
0

This means that Z is the mild solution for the initial value o = 0 and
input @. Since @ € Wil ([0, 00); U) with @(0) = 0 by (2.20), Lemma 2.3.7
yields that & € C1([0,00); X) and [Z] € C([0, ©0); dom(S)). Qa

2.3.2 Well-posed linear systems

Well-posedness is a well-established concept in linear systems theory, which
guarantees the existence of solutions and outputs (in a certain function
space) Z depending continuously on the initial value and input, as seen in
Section 2.1 for (A, B) and Section 2.2 for X(A, C). We consider input
and output functions of class L2, and refer to [94] for Z = L? or Z = Reg
(the space of regulated functions).

Definition 2.3.10. A system node 3(A, B,C,G) on (U, X,Y) is called
a well-posed linear system node if for some ¢t > 0 there exists a constant
k¢ > 0 such that for all zo € X; and u € HZ ((0,00);U) with u(0) = 0 the
classical solution and output of 3(A4, B,C,G) from Lemma 2.3.7 satisfy

z(t)]lx + [lyll2o,q:v) < Fe(llzollx + llwlluzo,g:0)- (2.21)

Remark 2.3.11. For xy and u as in Definition 2.3.10, the classical solution

and output derived in Lemma 2.3.7 can be written as
z(t) = T(t)xg + Dsu,

(1) = T(®)zo + & (2.22)

Yl = (Wewo + Feu)lpo,q,

where (T'(t))¢=0 is the semigroup generated by A, ®, is given by (2.3), ¥,
is given by ( 2 and for u € H2 ((0,00);U) with u(0) = 0,

loc

Fou = [ — s)Bu(s)ds — (o — Al)_lBu] +G(o)u  (2.23)
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on [0,t] for some o € Cy,y((7(t))150) and Fru := 0 on (t,00). Note that

t=0

Lt T 1(t — s)Bu(s)ds — (« — A_1) ' Bu(t)

~(a— A JO T 1(t — s)Blau(s) — i(s)] ds

holds for u € H _((0,0); U) with u(0) = 0. Hence, F,u is well-defined by

Proposition 2.1.22 and independent of the choice of a by Lemma 2.3.4.

Given a linear system X(A, B, C) with semigroup generator A, B €
L(U,X_1)and C € L(X1,Y), we choose G: C, — L(U,Y) for some v € R
satisfying (2.18) and define the output y of 3(A, B,C) as the output of
the system node (A4, B,C,G). By (2.18), any two such G differ only
by an additive constant operator D € L(U,Y), hence, the corresponding
outputs differ by Du, where u is the input. Since D is bounded, it does
not affect the well-posedness and the following definition is independent of
the choice of G.

Definition 2.3.12. We call (A4, B, C) a well-posed linear system if there
exists a function G satisfying (2.18) on some right half-plane such that
Y(A, B,C,G) is a well-posed linear system node (after extending G to
(CUJO((T(t))tz()) if necessary).

We have the following characterization of well-posed linear systems.

Corollary 2.3.13. Let U, X,Y be Banach spaces, A be the generator of
a Co-semigroup (T(t))i=0 on X, B € LU, X_1), C € L(X1,Y). Then
3(A, B,C) is a well-posed linear system if and only if

(i) B is an L?-admissible control operator,
(i) C is an L2-admissible observation operator and

(iii) for some (and hence for every) function G: Cyy((1(t))150) — L(U,Y)
satisfying (2.18), the operator ¥y defined by (2.23) extends to Fy €
L(L2([0,00); U), L([0, 0); Y)).

If one of the equivalent conditions holds, then (A, B,C,G) admits for
all zg € X and u € LE ([0,00);U) a unique mild solution x € C([0,00); X)

loc

and output y € L ([0,00);Y) satisfying (2.21).

Moreover, if (T(t))i=0 is exponentially stable, then k; in (2.21) can be
chosen to be independent of t.

Proof. If (A, B, C) is well-posed, then ®;, ¥; and F; (for some G as in
(iii)) from Remark 2.3.11 extent for some ¢ > 0 to ®; € L(L?([0,0);U), X),
U, € L(X,L3([0,00);Y)) and F; € L(L%([0,00);U),L3([0,00);Y)). In
particular, B and C are L?-admissible by definition.
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Proposition 2.1.4, Lemma 2.2.3 and an analog result for Fy, cf. [101],
yield respective extension for all ¢ > 0. Hence, ¥(A, B, C, G) admits for
all zo € X and u e L2 ([0,00); U) a unique mild solution z € C([0, 00); X)

by Corollary 2.1.11 and an output y € L2 ([0, 00);Y) given by (2.22) with
extended operators. Moreover, (2.21) holds in this case since both sides
depend continuously on z¢ in X and u in L%([0,¢]; U).

Conversely, (i), (ii) and (iii) imply boundedness of ®;, ¥, and F; in
the above sense, respectively. In particular, (2.21) holds for zy and u as
in Definition 2.3.10.

If (T'(t)):=0 is exponentially stable, then | T(t)], ||®¢] and ||¥,| are
uniformly bounded in ¢, see Lemma 2.1.8 and Lemma 2.2.7. With similar
methods one can prove that ||F;|| is uniformly bounded in ¢, see [101] for
the details. Hence, (2.21) holds for k = sup,q([|T(¢)|| + [|Pe]| + || ¥¢| +
IF.l). a

In Hilbert spaces, it is possible to replace the property that F; is
bounded with respect to the respective L2-spaces from Corollary 2.3.13
by the more handy one that the transfer function is bounded on some
right-half plane.

Lemma 2.3.14. Let U, X and Y be Banach spaces, A be the generator of
a Co-semigroup (T(t))i=0 on X, Be L(U,X 1) and C € L(X1,Y). Then
3(A, B,C) is well-posed if and only if

(i) B is an L?-admissible control operator,
(ii) C is an L2-admissible observation operator and

(iii) some (and hence every) function G: Co((1))n0) — L£(U,Y) which
satisfies (2.18) is bounded on some right-half plane C,.

If one of the equivalent conditions holds, G is bounded on C, for any

a > wo((T(#):20)-

Proof. We refer for the proof to [16, Theorem 5.1]. Q
We close this chapter with the following result on well-posedness

for strictly negative operators A on Hilbert spaces as defined in Defi-
nition 1.3.30.

Proposition 2.3.15. Let U, X,Y be Hilbert spaces and A be a strictly
negative operator on X. If B € L(U,X_1) and C € L(X1,Y), then
(A, B, C) is well-posed and for xg € X and u € L2([0,00);U) the mild
solution x and output y (for the transfer function G = C(-— A_1)"'B)
satisfy

z e H'((0,00); X_1) n C([0,00); X) n L2([0,0); X
y = CxeL?([0,0);Y).

);

1
2
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Moreover, there exists k > 0 (independent of xg, u and t) such that for
every t = 0 there holds that

B o.0:x 1) T 12@O1F + 12122 0.0:x 1) + 191E2(0.9:v)
} : (2.24)

< k(llzollX + lullEzjo.q.0)
and
()% — llzollX

= 2Re L<A*1$(S)7x(5)>X,%’X% + <Bu(s)7m(s)>xi%,xé ds.

Proof. From Proposition 2.1.23 it follows that 3(A, B, C') admits a unique
mild solution = with the desired properties. By the assumptions on B and C
and by Proposition 1.3.28 (iii), the function G = C(- — A_;) 1 B: p(4) —
L(U,Y) is well-defined and satisfies (2.18). It follows from Remark 2.3.11
that y = Cx € L2([0,0);Y) is the output of (A, B,C, G). The estimate
(2.24) follows from the boundedness properties of x and the fact that
Ce E(X%,Y). In particular, ¥(A, B, C) is well-posed. a



Chapter 3

On the Weiss conjecture
for Orlicz spaces

In this chapter, we generalize a characterization of LP-admissible observa-
tion operators due to Le Merdy (p = 2) and Haak (p > 1) to Orlicz spaces,
which relates to a conjecture originally formulated by Weiss in [102] (for
p = 2 and, equivalently, for the dual problem of control operators).

This chapter is based on [40].

3.1 Introduction

The p-Weiss conjecture states that infinite-time LP-admissibility of an
observation operator C' is equivalent to the so-called infinite-time p- Weiss
condition for C, that is

sup (Re 2)'77||C(z — A) Y| < o0, (3.1)
2€Cq
a property which is easily seen to follow from LP-admissibility by Holder’s
inequality.

The question thus is whether the p-Weiss condition is sufficient for LP-
admissibility of C'. Whereas the answer is negative in the general Banach
space setting [102] (and p = 2), the problem has received much attention
since then, with both positive results, as well as counterexamples. We
mention here some of them and refer to the survey [46] for a more detailed
overview. In [47, 51] it is shown, that the 2-Weiss conjecture does not hold
in arbitrary Hilbert spaces without further assumptions on the semigroup
and the operator C. For Hilbert spaces the p = 2-case is known to hold
true for exponentially stable, left-invertible semigroups, see [102], as well
as in the case of contraction semigroups and finite-dimensional output
spaces, see [45]. For infinite-dimensional output spaces, the statement

T
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may fail even for semigroups of isometries, see [47]. Le Merdy showed in
[61] that the 2-Weiss conjecture holds true in the Hilbert space situation
under the assumption of an analytic contractive semigroup. Moreover,
he showed for Banach spaces and a bounded analytic semigroup that the
2-Weiss conjecture holds if and only if the operator (—A)z, defined via
the holomorphic functional calculus (see Section 1.3.2), is infinite-time
L2-admissible. Haak extended in [31] Le Merdy’s results to more general
p =1 as follows: If A generates a bounded analytic semigroup and A has
dense range, then the p-Weiss conjecture holds if and only if (—A)% is
infinite-time LP-admissible. He used generalized square function estimates
for the operator A which are equivalent to (—A)% being infinite-time
L?-admissible.

3.2 The Weiss conjecture for Orlicz spaces

We continue the developments of Le Merdy and Haak in the context of
Orlicz spaces for Young functions of class P, see Definition 1.2.12. Our
approach is based on the ideas from [11], which seem to be slightly more
elementary than the more natural proof of Haak’s result using square
function estimates. It seems to be a non-trivial challenge to generalize
such square function estimates to the Orlicz space setting.

Definition 3.2.1. Let X and Y be Banach spaces and A be the generator
of a Cp-semigroup on X. We say that C € L(X7,Y) satisfies the ®-Weiss
condition for a Young function & if

-1
sup (Je=™ “ly00)  I1CG =AM ey <@ (32
2eCq,

for some « > 0, where ® is the complementary Young function of . We
say that C satisfies the infinite-time ®-Weiss condition if (3.2) holds for
a = 0.

It is obvious that the definitions of the ®-Weiss condition and the
p-Weiss condition (3.1) are consistent in the sense that they are the same
if we consider ®(t) = tP for 1 < p < 0. The following lemma shows that if
® e A", then we can replace ([le™ R *[|L_(j0,s)) ' by @' (Re 2), i.e.,
(3.2) becomes

sup &1 (Re 2)[|C(z — A) Y oix.y) < .

2eCq,
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Lemma 3.2.2. Let ® be a Young function. For every s > 0 we have that
~ -1
P71 (s) < (||e_"||L@(o,%)) )

and if ® € Ay then there exists a constant ¢ > 0 such that

c(le " la0m) <3 < (I ly0m) - (33

~ ~ -1
Proof. The convexity of ® yields for k = (@‘1(5)) ,

S’JN e—st - 1 o
J <I>< )dts@()J e stdt =1,
0 k k 0

and hence, [le™"[|r; (0,2) < (®=1(s))~. For the second part let ® € Ag°>™",

By Remark 1.2.10, there exists K > 1 such that ®(ez) < K®(x) for all
z > 0. By monotonicity

d(e"z) < D(elz) < KMd(z) < K™H1d(x)
follows for all 7 > 0 and taking z = e "®1(s) leads to
K=t < (e 071 (s)).

Let ¢ = min{1, ﬁ(K)} € (0,1]. Convexity of & yields

O e—st%—l(s) 1~ w1
JO<1><0> dt?EL <I>(e & (s))dt

1 o8}
> 7J‘ Kf(stJrl)Sdt
¢ Jo

1
cKlog(K)
=1

By the definition of the Luxemburg norm, we infer that

- -1
c(87) <l "y,
which completes the proof. Q
Similar to LP-spaces it is easy to prove that Lg-admissibility of C €
L(X1,Y) implies the ®-Weiss condition.

Lemma 3.2.3. Let A be the generator of a Cy-semigroup (T(t))i=0 on
X. If Ce L(X1,Y) is Lg-admissible, then the ®-Weiss condition holds.
Moreover, if (T(t))i=0 is bounded, then infinite-time admissibility of C
implies the infinite-time ®-Weiss condition.
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Proof. First, assume that C' is infinite-time Lg-admissible for the bounded
semigroup (7'(t))¢=0. Using Proposition 1.3.11 and the generalized Holder
inequality (Lemma 1.2.19), we obtain for Re z > 0 = wo((T(t))¢=0) and
all z € X that

IC(z — A)a|y = HJ e T () dt
0

Y
< 2[le” e Ly 0,00) [CT ()2 ||y ([0,00):v)
< 2Kcowlle™ ™ * L, 0,00 12l x

holds, where K¢ .. denotes the infinite-time admissibility constant of C.
Now, the claim follows from the density of X; in X and boundedness of
C(z—A)!on X.

If C is just Lg-admissible for (T'(t))¢>0, then C is infinite-time Lg-
admissible for the bounded semigroup generated by A — «, where o >
max{0,wo((T(t))¢=0)}. Hence, the proof can be deduced from the infinite-
time case. d

Let A be the generator of a bounded analytic semigroup. If Lg = LP,
Haak’s result tells us that the converse of Lemma 3.2.3 holds if and
only if ®~1(—A) = (—A)% is (infinite-time) LP-admissible, hence formally
®~!(—A) seems to be a suitable operator to characterize general Lg-
admissibility. However, we have to make sure that this is actually a
well-defined operator in £(X1, X). To define ®(—A) via the holomorphic
functional calculus (see Section 1.3.2), we make the following assumption
on O.

Assumption 3.2.4. Let —A be sectorial of type w € [0, ). Assume that
! extends to a holomorphic function on some sector Ss for é € (w, 5)
and that there exist constants mg, m; > 0 such that

me® 1(|z]) < @7 H(2)| < m1®Y(Jz|)  for all z € S;.

Without assuming that ® is holomorphic, we can also define ®(—A), if A
is a multiplication operator with real spectrum. Recall that a multiplication
operator is an operator M, : LP(2) — LP(Q) for some sigma-finite measure
space (Q, F,u), 1 <p <o and a: Q — C measurable, given by

Mag = ag,
dom(M,) = {g € LP(Q) | ag € LP(Q)}.

Given a multiplication operator M,, we define f(M,) for a measurable
function f: o(M,) — C by

f(Ma) = Mfoa'

Similar to the holomorphic functional calculus, (1.20) holds, see e.g. [35,
Chapter 2]. Further, if f € L*(c(M,)), then f(M,) is bounded with
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If(Ma)]l < [[fllL»(o(ar,))- For the following, note that if A = M, is a
multiplication operator, then so is —A = M _,.

Lemma 3.2.5. Suppose that A generates a bounded analytic semigroup
on X and that ® is a Young function. If either

(i) A is a multiplication operator with o(—A) < [0,0), or
(ii) Assumption 3.2.4 holds and additionally ® € P,

then @ Y(—A) € L(X1,X) is well-defined via the functional calculus for
multiplication operators and the holomorphic functional calculus, respec-
tively.

Proof. Let

7'(2)

1+2

It suffices to prove that f(—A) is bounded, where f(—A) is defined via the

measurable functional calculus if we consider (i) and via the holomorphic
functional calculus if we consider (ii). Indeed, we obtain from (1.20) that

F(=A)I - A) c 27 (-4)

in the sense of inclusion of the respective graphs of operators. If f(—A)
is bounded, the operator on the left-hand side is in £(X7, X) and so is
@ 1(—A). We distinguish between the two assumptions:

(i) Since @ is a Young function, f is a bounded function on [0, 00) and
we derive from the functional calculus for multiplication operators

that f(—A) is bounded.

(ii) To prove that f(—A) is a bounded operator on X, it suffices to prove
that f e Hi (Ss) for some sector Sy, i.e., there exist C,a > 0 such
that

|f(2)] € Cmin{|z|?, |z|7*} for all z € S;. (3.4)

By Assumption 3.2.4, ! is holomorphic on some sector S5 and
|~ 1(2)| < m1®1(|2]) for z € Ss. Since ® € P, we infer by (1.11)
that, for |z| < 1,

<dY(l2]) < 2711z,

and, by (1.12) and (1.4), that, for |z] > 1,

O (|z) _ 2 '(|2]) 2 2
< < = z
1+ 2| 2] d-1(|z))  d-1(1)

therefore, ® € H{"(Ss). a
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Remark 3.2.6. Recall Example 1.2.15 of Young functions of class P. While
(iii) is only useful when A is a multiplication operator, (ii) and (iv) yield
Young functions ® which satisfy Assumption 3.2.4. Further, (i) tells us how
to construct further examples of class P, e.g. p(t) = t" + log(t), r € [0, 1],
yields ® € P via (1.7) for any choice of 1 < p < ¢ < . However, in
general it is not clear whether this construction leads to functions satisfying
Assumption 3.2.4 again.

Lemma 3.2.7. Suppose that A generates a bounded analytic semigroup
(T'(t))e=0 on X and that ® is a Young function. If either

(i) A is a multiplication operator with o(—A) € [0, 00), or

(ii) Assumption 3.2.4 holds and ® € P,

then we have that

sup (971 (1) ™! |27 (AT (W) ey < o

Proof. Let t > 0 and

We have that f(—A) = ®~1(—=A)T'(t) by (1.20).

(i) If A is a multiplication operator, we have that |[f(—=4)|zx) <

sup,so f(s). First, note that s — se™*' attains its maximum at

[ . . . 1
s = % and s +— % is decreasing, since ®~! is concave. Hence,

for s > % it follows that

Therefore, as a continuous function, f attains its maximum in [0, 1].

t
Since ®~! is increasing, we infer that

IF(=A)llex) <sup f(s) = sup @7H(s) o™ < @7 (3)

se[0, ¢

and the assertion follows.

(ii) Let Assumption 3.2.4 hold and let ® € P. Let w,d, m; be as in
Assumption 3.2.4, choose ¢’ € (w,d) and take I' = 0S5 orientated
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positively. Then,

my

17 (=Dl < j &1 (|2])e= Re | (= + A) [ [d]

27
—1
< m1M5’ J‘ (I) (‘ZDefRe zt|dz|
2 Jr |7
miMs [ @ (r) &
_ f efrcos( )t dr
Y 0 T
_ my Mg J«SO (I)_l(%)efscos((s') ds
™ 0 S

—-1/1 mi Mg * i1 11 —scos(d")

<P ' (3) — | max{s¥ ,si '}e ds,
m 0

where |dz| denotes the total variation of the complex measure dz.

Note that we used (1.11) in the last step. Since the last integral

converges, the proof is complete. Q

Remark 3.2.8. We want to point out that ® € P is only needed to guarantee
@ 1(—A) € L(X1,X) and to deal with the singularity of the integrand
at 0. If we consider the integral over (e, 00) with € € (0, 1] we derive the

estimate
Lol / 1 (L) ~ /
J (t)e—scos(é)dsg (t)f e—scos(J)dS,
g S € g
. o(2) . . T .
since s +— % is decreasing and ®~! is increasing.

We continue with some technical auxiliary results.

Lemma 3.2.9. Suppose that A generates a bounded analytic semigroup
on X and that ® is a Young function. If either

(i) A is a multiplication operator with o(—A) € [0, 0), or
(ii) Assumption 8.2.4 holds and ® € P,

and if ®~(—A) is Ly-admissible, then for every T > 0 there exists c; > 0
such that
[t = tdH ()T () ALy (o.r1:x) < erllz]x (3.5)

holds for all x € X;.

If ®=1(—A) is infinite-time Lg-admissible, then (3.5) holds for 7 = oo
and ¢ < 00.
Proof. Le t > 0 and define f: [0,00) — [0,0) by

s st

f(s) = @T(s)e_Q

for s > 0 and f(0) = 0. First, we show that t®~1(1)f(—A) is uniformly
bounded in ¢ > 0.
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(i) Suppose that A is a multiplication operator. The limit property of
the Young function ® at 0 implies that f is continuous. For s > %

we have that
]. st

f(s) = g7 se 2 < SG3)

Thus, since f is continuous, it attains its maximum in [0, 2]. The
concavity of ®~! implies that s > q)%(s) is increasing. Hence, for

s € [0, 2] we obtain that

£(5) < — 2

< )
te=1(2) T t@-1(1)

where we used the monotonicity of ®~! in the last inequality. We
conclude that
2

1f(=A)lzx) < §1;%>|f(8)| < @ 1(1)

and hence, the uniform boundedness follows.

(ii) Suppose that Assumption 3.2.4 holds and ® € P. Let 6 and mg be
given as in Assumption 3.2.4. Choose ¢’ € (w,d), where w € [0, T)
is the type of sectoriality of —A and let I' = 0Ss be orientated
positively. We deduce from (1.12) that

1 |Z‘ —Re zi —1
_ < 3 —

M —Re 2zt
<=0 Je " dz|
2mmo Jr @71(]2])

T te- 1Ly mme Jy

The last integral converges, therefore, t®~!(1)f(—A) is uniformly
bounded in ¢.

For x € X we have that

te~ ()T () Az = —t@~ () f(—A) 2~ (=A)T($)z.

Since the first part is uniformly bounded as shown before, the (infinite-
time) Lg-admissibility of @ 1(—A) yields the desired estimate.

Note that we can decompose the operator in the above way by the prop-
erties of the functional calculus. Indeed, f(—A) is bounded on X and
ranT(£) € X < dom(®~!(—A)) for all ¢ > 0. a
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Corollary 3.2.10. Suppose that A generates a bounded analytic semigroup
(T(t))t=0 on X and that ® is a Young function. If either

(i) A is a multiplication operator with o(—A) € [0,0), or

(ii) Assumption 8.2.4 holds and ® € P,

and if @ 1(—A) is Ly-admissible and C € L(X1,Y) satisfies

sup (€71(1)) HCe P T(1)llcxy) < ©

t>0

for some B = 0, then for every 7 > 0 there exist constants ¢, K > 0 such
that

[EC(e™ P T())(A = B)allLa(orx) < (¢r + EK-B) [zlx  (3.6)

holds for all x € X;.
If @~ Y(—A) is infinite-time Lg-admissible, then ¢, can be chosen to be
uniformly bounded in T > 0.

Proof. For x € X; we write

tC(e P T(t)) (A — B)x
= (@71 ()T CEe A T(L)) t¢>‘1(%)(e‘ﬁ%T(é))(A - Bz

Since @' is concave, which yields @ 1(2) < 2@~1(1), it follows from the
assumption that (®~(1))~! ( % T(%)) is umformly bounded. Thus,
it suffices to estimate t®!(1)(e™ (%))(A B)x. Lemma 3.2.9 implies
that

1O (1) T(5) Al 0.r1:3) < 20587 (B)T(S) A2l|Ly (0,172

<
< erllellx

for some c,, which is uniformly bounded in 7 if ®~!(—A) is infinite-time
Lg-admissible. Since the semigroup is bounded and ¢ — t®~1(1) is
bounded on [0, 7] there exists a constant K, > 0 such that

[t2(})e P2 T(5)Bl c(x) < BE.
A straight-forward estimate of the Orlicz norm completes the proof. QO

We briefly introduce the weak Orlicz space Lo, = La,([0,0);Y)
which consists of (equivalence classes of) strongly measurable functions
f:]0,00) = Y such that

1l 10,007y = sUD(®TH(§)) ™" f*(t) < o0,

t=0
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where f* denotes the decreasing rearrangement of f,

| A({w € [0,00) [ [|f(W)lly > s}) <t}
A by > s]) <t}

=0
=inf{s >0

Here, we used the abbreviation [g > s] := {w € [0, 0) | g(w) > s} for any
function g on [0, c0), where A denotes the Lebesgue measure. As usual, we
write Lg o (0,00) if Y = C. The reader is referred to [65, 80] for further
details about weak Orlicz spaces and the related Orlicz—Lorentz spaces.

Theorem 3.2.11. Let A be the generator of a bounded analytic semigroup
(T(t))i=0 on X and ® € P. If either A is a multiplication operator
with o(—A) € [0,0), or Assumption 3.2.4 holds, then the following are
equivalent for C' € L(X;,Y).

(i) The infinite-time ®-Weiss condition holds, i.e., (3.2) holds with
a=0,

(ii) supyso(@~ 1)) HICT(t)z|ly < M|z|x for some M > 0 and all
r€EX.

(i) C s infinite-time Lg o, -admissible.

Theorem 3.2.11 generalizes [32, Theorem 2.3] and [11, Lemma 2.3].
In [32], the above theorem is proven for ®(¢) = t? and our proof of “(ii)
= (iii) = (i)” is based on this source. In [11] the equivalence of (i) and
(ii) was shown for ®(t) = . One could follow the idea of [11] to prove
(i) = (ii) in the case that Assumption 3.2.4 holds. However, we give a
completely different and much simpler proof, which is also applicable if A
is a multiplication operator.

Proof of Theorem 3.2.11. First, we prove the implication (i) = (ii). For
r € X and t > 0 we have that
_ —1 -
(@) lIeT®zl <t (PIC(E = A (G = AT ()]

< M’H( — AT (t)a
by (1.4) and (i), for some M’ > 0. In the case of a bounded analytic
semigroup, we have that ||T(t)|| and ||tAT'(¢)| are uniformly bounded in
t = 0, see Proposition 1.3.21. Similar, if A is a multiplication operator
with o(—A) € [0,0), then for some M > 0 we have that ||T(¢)| <
Msup,sge * and [[tAT(t)|] < M sup,s,ste *', which yields uniform
boundedness in ¢ > 0. Hence, (ii) follows.

Next, we prove (ii) = (iii). Let M be given as in (ii). For z € X we
have that A([|CT()zlly > s]) < M@ ()M ]allx]) = (@(zr)
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and hence,

ICT ()l (f0,5)) = sup(@~(§))~H(CT()2)* ()

t>0
< sup(@7H () infls 2 0| (2t )T <)
= sup(® ()1 (1) M ||

t>0
= M|z|x.

This shows that C is infinite-time Lg ,-admissible.

To complete the proof we show (iii) = (i). For z € Cy, the function
g: [0,00) — [0,00), g(t) = e~ B¢ ** is decreasing, and hence, g = g*. Let
x € X and set f(t) = ||CT(t)x|y. The Hardy—Littlewood inequality yields
for every z € Cy that

IC(z = A ally < jf
<f () 1" (1) dr

| g¥(t
<2f ey,
o ®71(%) td-1(1)
—Re zt
T i TR
;)
s= Rez e
ETT{ 1@) ds
v} ° e—s
< 2[|fllLg, .0 0,50) 1 1~ ds
0 smin{s” v,s » }&"(Re z)
KHflle (0,)
~I(Re 2)

for some K > 0, where we applied (1.4) and (1.12). By assumption, we
have | fllL, .. 0,2) < Keoollz[[x with infinite-time admissibility constant
K¢ o < 0. Hence, (i) follows and the proof is complete. a

The finite-time version of Theorem 3.2.11 reads as follows.

Corollary 3.2.12. Suppose that A generates a bounded analytic semigroup
(T(t))t=0 on X and that ® € P. If either A is a multiplication operator
or Assumption 3.2.4 holds, then the following statements are equivalent

for C e L(X1,Y).
(i) The ®-Weiss condition (3.2) holds for some o > wo((T'(t))i=0)-
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(if) For some B > wo((T'(t))t=0), M > 0 and all x € X we have that

sup(® 1 (§)) 7! |C(e™ T (t)z|| < M||x].

t>0

(i) C is Lo o -admissible.

In (i) and (ii), the parameters a and B can be chosen the same if they are
non-negative.

Proof. This is a direct consequence of 3.2.11 obtained by scaling the
semigroup and the fact that admissibility is preserved under scaling,
see Lemma 2.2.7. d

Theorem 3.2.11 and Corollary 3.2.12 shows that the (infinite-time)
Weiss condition for C' is equivalent to (infinite-time) admissibility of C
with respect to the weak Orlicz space. To characterize admissibility with
respect to the regular Orlicz space Lg, we need the following lemma on
the boundedness of the integral operator L on Lg([0,7];Y), defined by

(L)(t) :=f @ds, 0<t<T (3.7)
t
Lemma 3.2.13. If ® € P and L is given by (3.7) for some 7 > 0, then

L e L(Lg([0,7];Y)) and the operator norm is independent of T > 0.

Proof. The operator L, regarded as an operator on LP([0, 7]; Y), is bounded
with operator norm bounded by p, see [11, Proposition 2.2]. Therefore,
the assertion is a direct consequence of the interpolation result [55, Theo-
rem 5.1]. a

We put everything together to get the main theorem of this chapter.

Theorem 3.2.14. Suppose that A generates a bounded analytic semigroup
and that ® € P. If either A is a multiplication operator with o(—A) C
[0,00), or Assumption 3.2.4 holds, then the following are equivalent.

(i) @ 1(—A) is (infinite-time) Lg-admissible.
(ii) We have the equivalence,
C' is (infinite-time) Lg-admissible
C' satisfies the (infinite-time)
=3 .
&-Weiss condition (3.2)

Proof. By (T(t))i=0 we denote the semigroup generated by A. Since it is
bounded, we have that wo((T(t))i=0) < 0.
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First, assume (ii). Lemma 3.2.7 and Theorem 3.2.11 yield that the
infinite-time ®-Weiss condition (and hence the finite-time ®-Weiss con-
dition) holds for C = ®71(-A). By (ii), ®71(—A) is (infinite-time)
Lg-admissible.

Second, assume (i). If C' is (infinite-time) Lg-admissible, then the
(infinite-time) ®-Weiss property (3.2) follows by Lemma 3.2.3.

It is left to prove that the (infinite-time) ®-Weiss property for C' implies
(infinite-time) Lg-admissibility of C'. First consider the finite-time case.
Let

sup & (Re z) |C(z — A) || < 0

2eC,
for some o > wo((T'(t))+=0). Corollary 3.2.12 implies for g > max{ca, 0}
that

M = sup(®~H(3)) THIC(e*T(#))]| < oo
t>0

and Corollary 3.2.10 implies that f(t) = tC(e P'T(t))(A — B)z lies in
Lo ([0,7];Y) for every 7 € [0,00). For z € X; and ¢ € [0, 7] we have that

C(e™P'T(t))x = C(e™P"T(r))x — L C(e™T(s))(A - Bz ds
= C(e™""T(r))x — (Lf)(1),

where L is the integral operator given by (3.7), which is bounded on
Ls([0,7];Y) by Lemma 3.2.13, since ® € P. We obtain that

IC(e™ P T (1)L ([0,r75v)
<NC(e™TT(T)) |y (0,71 + LS Lo ([0,71:v)
< (@) THICE TNy + LI lLy o,71v)
< [M +||L(er + BE)] |zl x,

where ¢; and K, are the constants from Corollary 3.2.10 and ||L|| de-
notes the operator norm of L on Lg([0,7];Y). This shows that C is
Lg-admissible for the rescaled semigroup (e®*T(t));=o and therefore, also
for (T'(t))i=0, see Lemma 2.2.7. The infinite-time case is even simpler.
Assume that the infinite-time ®-Weiss condition holds. Theorem 3.2.11
implies that

M = sup(@=1 (1) CT()] < o,

t>0

and as before,
ICT(8)]|Ly ([0,77v) S (M + [ Ll[er) ||z x-

Since ||L|| and ¢, are uniformly bounded in 7 > 0, see Corollary 3.2.10,
we obtain that C is infinite-time Lg-admissible. Q
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On X = ¢"(N), r € [1,00), there is a sufficient condition on @ for infinite-
time Lg-admissibility of ®~!(—A), when dealing with a multiplication
operator A given by

Aep, = Ay €n,

(3.8)
dom(A) = {x = (Tn)nen € £'(N)

o0
Z [Anzn|" < oo}7
n=1

where (e, )nen is the standard basis on ¢"(N) and (A,), is assumed to
be a sequence of non-positive numbers, i.e., A\, < 0 for all n € N. It is
well-known that A generates the bounded analytic semigroup (7'(t))¢=0
given by

T(t)e, = e le,, neN.

Clearly, for any Young function @, the functional calculus for multiplication
operators yields that ®~1(—A) is given by
O H(—=Ae, =D 1 (=\)en, neN.

Proposition 3.2.15. Consider the operator A on ¢ given by (3.8). If
1

® and t — ®(tr) are Young functions, then ®~1(—A) is infinite-time

La-admissible.

Proof. For x = (xn)nen € dom(A) = X, the generalized Minkowski
inequality (Proposition 1.2.23) and Lemma 3.2.2 imply

3=

o
1@~ (= AT |Ly (oeyiery = ||| D) 187 (= An)er zn|”
n=1
An#0 Lo (0,70)
1
1 L '
<2F Z ||<I)*1(_)\n)e/\n-:cn||£¢(07I)
X0
< 27 ||z |-
This proves that ®~1(—A) is infinite-time Lg-admissible. a

Remark 3.2.16. Note that the theory developed in this section is also
applicable to self-adjoint operators A on Hilbert spaces. Indeed, by the
spectral theorem (see [34, Theorem D.5.1]) A is unitary equivalent to a
multiplication operator and admissibility of C' for the semigroup generated
by A is preserved under unitary transformations of C' and A.



Chapter 4

Input-to-state stability

In this chapter, we introduce the basic definitions of input-to-state stability
(ISS) and its variations and recall characterizations of ISS for linear systems.
For an introduction to ISS and an overview of recent developments, we
refer to the introduction of this thesis and the references mentioned therein.

Furthermore, we present a result from [39], which states that input-to-
state stability with respect to E¢ implies integral input-to-state stability
for abstract control system.

4.1 Definition and basic properties

We present an abstract class of control systems that encompasses the linear
systems discussed in Chapter 2 and the nonlinear systems examined later.
This abstract formulation allows us to define ISS for all systems discussed
in this thesis at once, however, it is not necessary for the subsequent
discussions.

Definition 4.1.1. Let X and U be Banach spaces. Let ¢: dom(¢) - X
a function with domain dom(¢) € [0,00) x X x {u: [0,00) — U}, which
satisfies:

(i) ¢(0,20,u) = x¢ for all (0, 29, u) € dom(¢p).
(ii) If [0, + h] x {zo} x {u} € dom(¢) with ¢,h > 0, then [0,h] x
{o(t, xo,u)} x {u(t 4 -)} < dom(¢) holds and
o(t + h,xo,u) = ¢(h, p(t,x0,u),u(t + -)).

(iii) If [0,2] x {xo} x {u} S dom ¢ and @: [0,00) — U with uljg,q = 1[04,
then it holds that [0,t] x {xo} x {il[o,q} S dom ¢ and ¢(t,z0,u) =
@(t, xo, @), where we identify |, with its zero-extension outside
of [0,¢].

91
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We call (X, U, ¢) an abstract control system with state space X, input space
U and semi-flow ¢. Given (0, x,u) € dom(¢), we call z¢ the initial state
or initial value and u the input or control (function) and the mapping
t — &(t, o, u) the state trajectory.

Intuitively, the state trajectory will be the solution of some (partial)
differential equation with initial value zg and input function wu.

Similar classes of abstract systems are considered e.g. in [88, Defini-
tion 2.1] or [76, Definition 1.3 & Definition 1.4]. Our definition is slightly
more general, as we neither assume any specific structure of the domain of
¢ nor that the the trajectory is defined on some interval [0,T] for T > 0.
In fact, our definition allows that for o € X and u: [0,00) — U the
intersection ([0, 0) x {zg} x {u}) N dom(¢) is the singleton {(0,xg,u)} or
even empty. This might be the case for non-linear systems, but also for
infinite-dimensional linear systems (A, B) with B not being admissible.

Consider the following classes of comparison functions,

K= {'y e C([0, 0)) ‘7(0) =0 and 7 is strictly increasing},

L= {'y e C(]0,0)) "y is strictly decreasing with thﬁrr} ~(t) = 0},

KL= {B e C([0, ) x [0,0)) ‘ﬁ('vt) eKforallt>0 and}.

B(r,-)e L forall r >0

Note that functions of class I, £ and KL only take values in [0, c0).

The following definition of input-to-state stability with respect a normed
space of input functions Z goes back to Sontag [90], where ODE systems
and Z = L™ are considered.

Definition 4.1.2. An abstract control system (X, U, ¢) is called input-to-
state stable with respect to Z or just Z-ISS if

(i) [0,90) x X x Z([0,00); U) € dom(¢), and

(ii) there exists 8 € KL and v € K such that for all g € X, u €
Z([0,00);U) and t > 0 the state trajectory satisfies

l9(t; 20, w)llx < Bllzollxs ) +(ull zo.0:0))- (4.1)

While condition (i) in Definition 4.1.2 guarantees the existence of a
global state trajectory for all initial states in X and inputs in Z([0, 0);U),
condition (ii) yields a combined stability and robustness estimate as de-
picted in Figure 4.1.
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. Bllzollx s t) + y(llull zo.0):0))

s Bllollx, t)

t t

(a) Norm of the trajectory of an Z-ISS  (b) Norm of the trajectory of an Z-ISS
system without input (u = 0). system with input (u # 0).

Figure 4.1: Norm of the trajectory of an Z-ISS system.

For nonlinear systems, the following two variants of ISS, first mentioned
in [93] and [92], respectively, are particularly relevant for nonlinear systems.

Definition 4.1.3. An abstract control system (X, U, ¢) is called locally
input-to-state stable with respect to Z or just locally Z-ISS if there exists
€ > 0 such that

(i) [0,00) x {(xo,u) € X x Z([0,0); U) | [[zollx + llullz(f0,.000) < €} S
dom(¢), and

(ii) there exists 8 € KL and v € K such that for all zp € X, u €
Z([0,00); U) with ||zolx + [[ullz([0,:0);0) < € and all £ > 0 the state
trajectory satisfies

16t o, w)l[x < Bllzollx, ) +([lullz(o.0:0))- (4.2)

Clearly, Z-ISS implies local Z-ISS. The converse is in general not true.

Definition 4.1.4. An abstract control system (X, U, ¢) is called integral
input-to-state stable or just integral ISS if

(i) [0,00) x 1X x L*([0,00);U) < dom(¢), and

(ii) there exists § € KL and 6, € K such that for all zy € X, u €
L*(]0,0);U) and t = 0 the state trajectory satisfies

160t 70,0 1x < Blllzollx, 1) +0 ( | ’u<||u<s>||U>ds) L 43)

In [44] the authors also consider integral ISS with respect to Z, in
which case it is not clear that the right-hand side of (4.3) is finite. In
order to have a meaningfull integral ISS estimate we restrict ourselves to
Z = L”. Certainly, one might extend (4.3) to those inputs for which a
state trajectory exists and the integral is finite.

Note that there is no elementary implication between (4.1) for Z = L™
and (4.3).
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4.2 Input-to-state stability for linear systems

In this section, we present selected results from [44] on (integral) input-to-
state stability for linear systems, either to apply them later or to put our
results for nonlinear systems into a wider context. Further, we prove that
FEg-ISS implies integral ISS for abstract control systems, a result which is
first formulated in [39] and based on an idea from [44].

Let X and U be Banach spaces, A be the generator of a Cy-semigroup
(T'(t))iz=0 on X and B € L(U, X_1). Consider the linear system ¥(A, B)
as an abstract control system (X, U, ¢), where

t

d(t, xo,u) = x(t) = T(t)xo + Jo T 1(t — s)Bu(s)ds

is the mild solution for the initial value zop € X and input function
we LE ([0,00);U). The domain of ¢ is

dom(¢) = {(t,z,u) € [0,00) x X x Li_([0,00);U) | z(t) € X}.

Then, [0,00) x X x W2L([0, 0); U) € dom(¢) holds by Proposition 2.1.20,
and if B is Z-admissible, also [0,00) x X x Z([0,0);U) € dom(¢) by
Corollary 2.1.11. Here, Z will be either of the spaces LP, E¢ or Lg.
We prefer to write z(t) instead of ¢(¢,xg,u) and have in mind that x(t)
depends on zy and wu.

A complete characterization of Z-ISS and further elementary (integral)
ISS properties of linear systems are given by [44, Remark 2.8 & Proposi-
tion 2.10]. We augment these results in the following by an equivalence to
local Z-ISS.

Theorem 4.2.1. Let A be the generator of a Cy-semigroup (T'(t))i=0 on
X and Be L(U, X_4).

(i) The following statements are equivalent.
(a) 3(A,B) is Z-ISS.
(b) X(A, B) is locally Z-ISS.
)
)

(c
(d

(T'(t))t=0 is exponentially stable and B is Z-admissible.

(T'(t))e=0 is exponentially stable and B is infinite-time Z-ad-
missible.

i) If ¥(A, B) is integral ISS, then it is L™-ISS.
(if) g

(iii) If 3(A, B) is Z1-I5S and Z5([0,t];U) < Z1(|0,t]; U) for somet > 0,
then 3(A, B) is Zo-ISS.
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Proof. We first prove (i). Clearly, (a) implies (b) by definition. Further,
(c) and (d) are equivalent by Lemma 2.1.8 and imply for the mild solution
of X(A, B) for arbitrary 2o € X and u € Z([0,00);U),

[2(t)|lx < Me “*laollx + Ko llull 20,501

where M,w > 0 are such that [|T(¢)|| < Me™" and Kp ., is the infinite-
time admissibility constant of B. Hence, ¥(A4, B) is Z-ISS and (4.1) holds
for B € KL and v € K given by 3(s,t) = Me “'s and v(s) = Kp 5.

It remains to proof that (b) implies (¢). Assume that (b) holds, Setting
zo and u in (4.2) successively to zero, we obtain for all o € X and
u € Z([0,00);U) by scaling,

¢
S J T 1(t —s)Bu(s)ds € X,
||U||Z([0,oo);U) 0
and )
[T ()zollx < ngCOHXﬁ(&?,t)~

Hence, B is Z-admissible and since 3(g,t) — 0 as t — o0, exponential
stability of (T'(t))¢=o follows from Lemma 1.3.6.

Next, we prove (ii). Assume that X(A, B) is integral ISS. Similar as
before, setting z¢ and w in (4.3) successively to zero shows that B is
L*-admissible and (T'(t)):»0 exponentially stable. Thus, the claim follows
from (i).

Finally, (iii) follows from (i) and Lemma 2.1.8. Q

Remark 4.2.2. If ¥(A, B) is Z-ISS, (4.1) is satisfied for
B(t,s) = Me “'s and ~(s) = Kp.s,

where M,w > 0 are such that | T(t)|| < Me " and Kp, > 0 is the
infinite-time admissibility constant of B with respect to Z.

For bounded B, Theorem 4.2.1 simplifies significantly, as the following
result shows.

Proposition 4.2.3. Let A generate a Cy-semigroup (T(t))i=0 on X and
Be L(U,X). Then, the following assertions are equivalent.

(i) X(A, B) is Z-ISS.
(ii) 3(A, B) is integral ISS.
(iii) A generates an exponentially stable Cy-semigroup (T(t))t=0-

=

Proof. Since B is bounded it is Z-admissible for any choice of Z. By
Theorem 4.2.1, (i) and (iii) are equivalent and (ii) implies (iii).
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To complete the proof, we show that (iii) implies (ii). Let (T'(¢))¢=0 be
exponentially stable and chose M,w > 0 such that ||T(t)|| < Me™* for
all t > 0. For all zp € X and u € L*([0,00);U) the corresponding mild
solution of 3(A, B) satisfies for all ¢ > 0,

le@lx < IT@llzollx + LIIT(t = 91 Bllllu(s)llo ds

t
SMFMMﬂx+MBMmmJMSMM&
0

hence (4.3) holds for 3 € KL and 6, € K given by B(s,t) = Me “!s,
0(s) = M||B|cv,x)s and p(s) = s. a

One might ask whether Z-ISS implies integral ISS for unbounded
control operators B. For Z = LP with 1 < p < o0, this is trivial since

Wth@ﬂﬂﬂ=9<LMmM@Wﬂ®>

for p(s) = sP, and 6(s) = 7(3%), where p € K and 6 € K provided that
v € K. Note that this is not limited to linear systems, but holds for any
abstract control system (X, U, ¢).

The Orlicz norm is in general not given by an integral. However, one
can bound the Orlicz norm by such an integral term as the following result
from [39, Proposition 2.5] shows.

Proposition 4.2.4. Let ® be a Young function and U be a Banach
space. Then, for every T € (0,00] there exist 0, € K such that for any
ue L*¥([0,T];U) and t € [0,T) the following holds:

HM@memﬁé(LMWM@Wﬂ®>- (4.4)

Moreover, 8 and i can be chosen as

Sg o(+/5) ds, x <1,

p(z) = (4.5)
1 s)ds
So ‘P(I()\({)) (I)(Cﬂz), T > 1’

where ¢ equals the right-derivative of ® almost everywhere, see also Re-
mark 1.2.2, and, for a >0,

0(a) = sup { ullmy (0.0 [ € [0, ), we L7 ([0, 1] U),
t
[ wtul) s < a}.
0

with 6(0) = 0.
If®e Ay orif T <0 and ® € AY, then p = ® can be chosen as well .
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Proof. Note that we only need to show that p and 6 define K-functions
since (4.4) is immediate from the definition of §. The proof is similar in
spirit to an argument used in [81, Proof of Theorem 1], with the crucial
fact being that p defined by (4.5) defines a Young function such that

P
® <y and sup (cz)
x>0 H(z)

for all ¢ > 0, see [81, Lemma 1]. This implies that whenever a sequence
(fn)neny with f,, € L*([0,t,]; U), t,, € [0,T), is such that

tn

lim . (|l fr(s)llo) ds = 0,

n—xL

it follows that lim,, . || fr|lg, ([0,t,];0) = 0, see [81, Lemma 2]. This is also
true for p = @ if ® € AL"™ or if T < o0 and ® € AY, see Lemma 1.2.27.
Clearly, pis a IC- functlon since 1 is a Young function. Therefore it remains
to consider 6. It is easy to see that 6 is well-defined, non-decreasing and
unbounded, whence we are left to show continuity. Moreover, since 6(a)
is of the form sup M, with nested sets (My)a=0, it follows that g is right-
continuous on (0, 00). To see that 0 is continuous at o = 0, let (@n)nen
be a decreasing sequence of positive numbers with hmn_m a, = 0 and for
every n € N let u,, € L*([0,¢,]; U) be such that So (lun(s)||v) ds < a,
and 0 < 0(a,) — |ta || (0,60]:0) < = By the above mentioned argument,
we can conclude that [|u,||g, ([o,t,];0) converges to 0 as n — oo. Thus,
lim,, é(an) = 0.

We finish the proof by showing that 6 is left-continuous on (0,00). Now
let @« > 0, (n)nen S [0, ] be a sequence with lim,, . @, = « and let

e L*([0,t,];U), n € N, such that

tn -
|l @llords <@ and - lim 60) ~ s aqos, g0 = 0
0 n—xL

For every n € N, we aim to find @, € L*([0,t,]; U) such that

tW,
| sl lloyds <@ and i fu, = o, oy = O
0 n—u
Indeed, then
f(c) — O(cn)

< 0(0) = |l gg (o,0n10)
<

() = unllge (0.0, + 1tin — B (0,670

tends to 0 as n — o0, which shows left-continuity. We define @,, :== un 1y, ,
where the measurable set M,, is chosen such that

fuwmwww=%,ﬁﬁhwmwwm>%

n
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or M, = [0,t,] otherwise. It follows that

_[71M(Hun(8)—'ﬂn(3ﬂh7)d8

0

=f3mmwmw®—f ({[un () 1) ds
0

n

< a—ay.

Using the argument from the beginning of the proof again, we infer that
ltn — tinllEy ([0,t,];:0) = 0 @s m — c0. This concludes the proof. Qa

Corollary 4.2.5. If an abstract control system (X, U, ¢) is E¢-ISS, then
it is integral ISS. Moreover, in (4.3), one can choose [3 to be the same as
in the Eg-1SS estimate (4.1) and p and 6 as in Proposition 4.2.4.

Proof. This is a direct consequence of the definitions of Z-ISS for Z = Eg,
integral ISS and Proposition 4.2.4. d

Remark 4.2.6. Let us make the following comments on the construction of
w1 and 6 in Proposition 4.2.4.

1. If ®(s) =P, 1 < p < o, then u(s) = sP can be chosen and it is not
hard to see that, up to a constant, §(r) is given by ®~1(r) = .
This shows that the choice of 6 is rather natural.

2. The function p defined by (4.5) does not depend on T and 6 can
also be chosen independently of T' (by setting T' = o0). It follows
that (4.4) holds for all v e L*(]0,0);U) and ¢ > 0.

3. If ® € A§°"™ then (4.4) with u = ® holds for all u € E¢([0,00);U).
Hence, for any abstract control system (X, U, ¢), E¢-ISS implies Eg-
integral ISS, meaning that (4.3) holds for all v € E¢ ([0, 00); U). This
extends parts of [44, Theorem 3.2] from linear to abstract control
systems.

4. With similar techniques as in the proof of Proposition 4.2.4, it has
been shown in [44, 81] that if a linear system X(A, B) satisfies (4.1)
for Z = Eg, then it is integral ISS with the estimate

()]l x < B(llxollx,t) + 6 (L u(IIU(S)IIU)d8> ,

where £ is the function from (4.1), p is given by (4.5) and

Jt T (s)Bu(s)ds| |t> 0, ueL”([0,1: 1),

0

wm=am{

X

JumﬂﬁUﬁb<a}
0



4.2. Input-to-state stability for linear systems 99

for @ > 0 and 6(0) = 0. Note that 0 relies on the solution formula
for linear systems, thus, this approach is limited to linear systems.
Moreover, Proposition 4.2.4 shows that 6 can actually be chosen
independent of the semigroup (7'(¢))=0 and B provided the system
is E¢-ISS (which, however, depends on (T'(t)):»0 and B, of course).
In some sense, this fact simplifies the proofs in [44, 81]. On the other
hand, the above choice of 6 is more refined; in case the system was
even Eg-admissible with some ¥ < ®, this would affect the choice
of 0, even if u is constructed from & only.

In [44, Lemma 2.9] it is shown that it suffices for integral ISS of linear
system to have an integral ISS estimate for a fixed ¢t > 0. The details are
given next.

Lemma 4.2.7. Let A be the generator of an exponentially stable Cy-
semigroup (T'(t))tz0 on X and B € L(U, X_1). If here exist u,0 € K such
that

holds for all w € L™ ([0,1]; U), then there exists a C > 0 such that

‘ <9 U:u(llu(s)lla) ds)

holds for allt = 0 and uwe L*([0,00);U).
In particular, X(A, B) is integral ISS if and only if (T(t))¢=0 is expo-
nentially stable and (4.6) holds.

fl T_1(1 — s)Bu(s)ds

0

<0 ( | 1 u<|u<s>|U)ds) (46)

X

Jt T_1(t — s)Bu(s)ds
0

X

Proof. We will prove that there exists a constant C' > 0 such that for all
ue L*([0,00);U) and all ¢ > 0 there exists 4 € L*([0, 1]; U) such that

J T 1(1 - s)Bi(s) ds (A7)

J T 1(t — s)Bu(s)ds
0

0

SC‘

X X

and

j u(la(s) ) ds < J u(llu(s)lv) ds. (4.8)

0
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Let w € L*([0,00);U), t > 0 and n € N with n — 1 <t < n. We estimate,

Jt T 1(t — s)Bu(s)ds

0 X
t n—2 nk+1
< J T_1(t — s)Bu(s)ds|| + Z J T_1(t — s)Bu(s)ds
n—1 k=0 vk X
1
= f T 1(1-s)Bu(s—1+t)ds
n—t X
n—2 1
+| DTt -k - 1)f T 1(1 — s)Bu(s + k) ds
k=0 0 X
1
< f T_1(1— s)Bi(s) ds
0 b's

+C max
k=0,...,n—2

)

Jl T 1(1 — s)Bu(s + k)ds
X

0

where @ is the zero extension of u(s — 1 +)|[,—¢ 17 to a function on [0, 1]
and C > 1 is some constant, which can be chosen independently of n and
t, since (T'(t)):=0 is exponentially stable. Define uy = u(- + k)l[o,1) for
k=0,...,n—2and

fl T 1(1 —s)Bu(s)ds
0

U= arg max
ve{l, U0, .., Un—2}

X

By definition, @ € L™ ([0, 1]; U) satisfies (4.7) and (4.8). Combining this
with (4.6) yields the desired estimate.

Consequently, the equivalence of integral ISS and exponential stability
of the semigroup together with (4.6) is evident by the linearity of the
system, which allows to separate initial values and input functions. d

Corollary 4.2.5 states that E-ISS implies integral ISS. The following
lemma will help us to prove the reverse implication for linear systems, see
also [44, Lemma 3.5].

Lemma 4.2.8. Let (A, B) be L*-integral ISS. Then, there exists 0, ® € K
such that ® is a continuously differentiable Young function and for all
t =0 and ue L™([0,t];U) we have

Proof. Let ¥(A, B) be L*-integral-ISS and take 6, 4 € I such that (4.3)
holds. By [83, Lemma 14], there exists a convex function y, and a concave

Jt T_1(t — s)Bu(s) ds
0

< ( [ t<1><||u<s>|U)ds) L @)

0
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function p., both in K and differentiable on (0, o), such that p < p, © .
For any Young function ¥, the function p.o W~ is concave, thus, Jensen’s
inequality yields that

o(Lﬂmm@deQ

<a(j7mpunum@wywb)

0

<(Gopcol™) (Ll(‘lf © p)([[u(s)][v) d5> :

We have that 6 := 0o .o ¥ ! e K and ® := ¥ o p, is a Young function.
Moreover, if ¥ is differentiable, then so is ®. Finally, the assertion follows
from Lemma 4.2.7. Q

We can now prove the characterization of integral ISS given by [44,
Theorem 3.1].

Theorem 4.2.9. Let A be the generator of a Co-semigroup (T(t))i=0 on
X, Be L(U,X_1). The following assertions are equivalent.

(i) X(A, B) is L*-integral ISS.
(ii) X(A, B) is Eg-ISS for some Young function ®.

(iii) (T'(¢))¢=0 is exponentially stable and the operator B is (infinite-time)
Es-admissible for some Young function ®.

Proof. Note that (ii) and (iii) are equivalent by Theorem 4.2.1, and (ii)
implies (i) by Corollary 4.2.5. Thus, it remains to prove that (i) implies
(ii).

Assume that (i) holds. It follows from Theorem 4.2.1 that A generates
an exponentially stable Cy-semigroup. By Lemma 4.2.8, there exists
0 € K and a Young function ® such that (4.9) holds for all ¢+ > 0 and
u € L*([0,t]; U). Since L*([0,t];U) < Eg([0,t]; U), Lemma 1.2.18 implies
for all u e L*([0,00);U), u # 0,

¢
_ f T_1(t — s)Bu(s)ds
[ulleq (0.0 11Jo

t
(J o <|u(5)|U> ds)
o \llullesoq:0)

<0(1).

X

<

X

™

By density, this holds for all uw € E¢([0,¢];U), which shows that B is
Eg-admissible. a
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Remark 4.2.10. It is shown in Example 2.1.17 that there are linear systems
(A, B) which are L*™-integral ISS, but not LP-ISS. In particular, the
Young function ® in Theorem 4.2.9 can not assumed to be of the form
®(t) = P for some 1 < p < 0.

Open Problem. It is an open problem whether L™ -1SS implies integral
1SS for linear systems with unbounded control operators.



Chapter 5

Input-to-state stability of
bilinear control systems

In this chapter we study input-to-state stability of bilinear control systems
with unbounded control operators. We will prove the existence of solutions
as well as (integral) ISS estimates under reasonable assumptions on the
system’s operators related to (integral) ISS properties of the underlying
linear systems. We apply our abstract results to a bilinearly controlled
Fokker—Planck equation as considered in [12] to ensure an (integral) ISS
estimate with respect to the systems equilibrium.

Our findings extend those of [74], where bilinear systems with bounded
control operators and suitable Lipschitz assumptions on the bilinearity
are considered. There, it is shown that integral ISS is equivalent to
exponential stability of the semigroup. For unbounded control operators,
the ISS analysis is already nontrivial for linear systems (cf. Theorem 4.2.1
and Proposition 4.2.3) and becomes even more challenging for nonlinear
systems.

As mentioned in [92], seemingly harmless bilinear systems such as the
prototypical one-dimensional example

{:'c(t) = —2(t) + u(t)z(t), t =0, 51)

are not L™-ISS, but integral ISS. Indeed, the solution is given by

J,‘(t) = Jjoesf) u(s)—1ds — Ioeitesé u(s)ds

3

which is unbounded for constant inputs v > 1, and thus, it is not L*-ISS.
2 2

However, applying ab < % + % to the solution formula shows that (5.1)

is integral ISS.

This chapter is based on [39].

103
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5.1 Input-to-state stability for bilinear con-
trol systems

In the following we consider bilinear control systems of the form

{Jb(t) = Az(t) + BiF(2(t),u1(t)) + Baus(t), >0,
(Er)

z(0) = xo,
where
e X, X and Uy, U, are Banach spaces and zg € X,

o A generates a Cop-semigroup (T'(t))¢=0 on X,

uy € LL ([0,00); Uy) and ug € L ([0, 0); Us),

loc loc

B1 € L(X,X_l) and B2 € [,(UQ,X_l),

the nonlinear operator F: X x Uy — X is

(i) bounded in the sense that there exists a constant m > 0 such
that

1F(z,u)lx < mlzllxlullo,  VeeXuely  (52)

(ii) locally Lipschitz continuous in the first variable, where the
Lipschitz constant depends linearly on the Uj-norm of the
second argument, that is, for all bounded subsets X}, € X there
exists a constant Lx, > 0, such that for all x € X}, and v e Uy
it holds that

1F(z,u) = Fy,u)llx < Lx,[lullv, 2 —yllx; (5.3)

(iii) measureable along measureable functions, that is, for all inter-
vals I and measurable functions f: I — X and g: I — Uy, the
mapping

I-X

s F(f(s),9(5))

is measurable.

With a slight abuse of notation, but following the literature e.g. [74],
we call such systems “bilinear” because of the prototypical example given
by F(z,u) = uz with U; = R, which already shares most interesting
aspects.
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Definition 5.1.1. Let 0 <ty < t; < 0, 79 € X, uy € L} _([0,00);U;) and

loc

ug € L} ([0,00); Uz). A function z: [tg,t1] — X is called a mild solution

loc

of BF on [to,t1] if, for all ¢ € [to, 1],

z(t) = T(t —to)xo + f T_1(t — s)[B1F(z(s),u1(s)) + Bauza(s)]ds. (5.4)

to

A function z: [0,00) — X is called a global mild solution, or a mild solution
on [0,00) of ¥, if z|[o+,] is a mild solution on [0, ;] for every ¢; > 0.

We consider the bilinear systems as abstract control systems (X, U, ¢)
(see Definition 4.1.1) with U = Uy x Uz and

o(t, g, u) == x(t)

being the mild solution of ¥ in time t corresponding to zy € X and
u = (ug,uz2) € Li ([0,00); U1) x Li ([0, 00); Us) for which a mild solution
exists. The domain of ¢ is defined as the collection of all such triples
(t, o, u).

Since the input has two components, we consider input spaces of the
form Z = Z1([0,00);Uy) x Z5([0,0);Usz). We equip U with the norm
|(ur, u2)ll = |Ju1llu, +||uz]lu, and similar for Z. Now, using the fact that
for v1,72,7 € K we have that 71 + 72 € K and v(a + b) < v(2a) + v(2b)
for all a,b > 0, Definition 4.1.2 and Definition 4.1.4 are equivalent to the
following more practical formulation.

Definition 5.1.2. The system X is called
(i) (Z1, Z3)-ISS if there exist 8 € KL, 71,72 € K such that for all

x0 € X, uy € Z1([0,0);U1) and ug € Z3([0,0); Us) there exists a
unique global mild solution x of X, which satisfies for all t > 0

Izl x < B(llwollx,t) +v1(lluill z, (jo.:01)) + Y2 (lluzll 2, (o,4:0));

(i) integral-ISS if there exist 5 € KL, 01,02, 1, uo € K such that for all
x9 € X, up € L*([0,00); Uy) and us € L™([0, 00); Us) there exists a
unique global mild solution x of ¥, which satisfies for all t > 0

o0l < Bl )+ 0r [ t s (5 )
46, (Ltﬂz(HW(S)HU)dS) |
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One may also consider the following mixed Z-ISS and integral ISS
inequalities:

)l x < B(llzollx,t) +va(lluallz, o.e7:01))

vou [ t pallus(o)e) ds ). 55

)l x < B(lzollx,t) + 61 (JO ul(llm(S)IlUl)dS)

+ 2 (lluzl z,([0,11:02))-

(5.6)

We first prove existence of local solutions to Xp, where we apply
typical arguments in the context of mild solutions for semilinear equations,
cf. [82, Chapter 6]. A similar result for the existence of the unique mild
solution as in the following Proposition 5.1.3 were proved under slightly
stronger conditions in [10] for LP-admissible By, scalar-valued inputs uy,
F(x,uy) = uyz and By = 0.

To keep the notation simple and not distinguish between L! and Eg,
we consider the convention (2.2), i.e., we refer to ®(¢t) = t as a Young
function (without complementary Young function CTJ) and write E¢ = L!
and Lz = L™.

Proposition 5.1.3. Let A be the generator of a Co-semigroup (T(t))i=0
on X. If By € L(X,X_1) is Eg-admissible and By € L(Us, X_1) is
Ey-admissible, then, for all to = 0, z9 € X, u1 € Eg([0,00);U1) and
us € Eg([0,00); Us) there exists t1 > to such that X possesses a unique
mild solution x € C([to,t1]; X) on [to,t1].

Moreover, if tmax > to denotes the supremum over all t1 > to such
that X has a unique mild solution x on [tg,t1] for fized zg € X, u; €
Es([0,00);U1) and us € Eg([0,00);Us), then the finite-time blow-up prop-
erty holds:

tmax < 0© = limsup|z(t)||x = oo.
Proof. We first show that for every tg = 0,20 € X, u1 € E¢([0,00);U;)
and us € Ey([0,00); Uz) there exists t; > tg such that 3 possesses a
unique mild solution on [tg, t;].Moreover, we show that ¢; = to + ¢ can be
chosen such that § > 0 is independent of zy and ¢y for any bounded sets
of initial data x¢ and tg.

Let T > 0, r > 0, u1 € Eg([0,00);U;) and uz € Eg([0,00);Uz) be
arbitrary and consider tg € [0,7] and z¢ € X with ||zg||x <r. Let M > 1
and w € R such that | T'(t)]] < Me“" for every t > 0 and define

k= 2M(el*lr +1).

We denote by m the constant from (5.2), by Ly the Lipschitz constant
of F on the closed ball {z € X |||z|x < k} and by Kp, ; and Kp,, the
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admissibility constants of By and Bs, respectively. Chose 0 € (0, 1) such
that

(i) mKp, re1lluallgg (to,to+67:01) < 35
(i) Kpyr+1lu2llBy (fto.to+81:02) < M and

(111) KBl,T-i-lLkHu1||E<I>([t0,to+5];U1) <L
Recall from Proposition 1.2.29 that such a § exists and note that, apart
from the constants associated with the operators By, Bo, A, F', the choice
of § only depends on r and T, where the r-dependence of § arises from
the r-dependence of k. Define t; = tg + 6,

S = A{z € C([to, t1]; X) | o(1to,t11:) < K}
and the map ®: § —» S by

t

(®(x))(t) =Tt —to)zo + J T_1(t — 8)[B1F(x(s),u1(s)) + Bauz(s)] ds.

to

We will prove that ® is a contraction on S.

We first check that ® is well-defined, that is, ® maps S into §. The
strong continuity of (7'(t)):>0 and Corollary 2.1.11 imply that ®(x) €
C([to, t1]; X) for every = € C([to,t1]; X). Note that we applied Corol-
lary 2.1.11 twice: to (A, By) with input us and to (A, By) with input
F(xz(+),u1(-)), where we set uy,us,x zero on [0,ty), where we also used

that F(z(-),u1(-)) € Es([to, t1]; X), which is a consequence of (5.2). For
x € S and t € [to, t1] we have that
1(@(x)) ()| x
< M)l x + K, | F(,u1) g (110,49 )
+ KB27t||u2||E\p([to,t];U2)
< Meljzo||x +mKp, il s gro.3:00) 12l ofto, 1] )
+ Oy, r1lluzllgy ([t0.0]:02)
<k,

where we used admissibility in the first inequality and (5.2) as well as
monotonicity of the admissibility constants and the Orlicz norm in the
second inequality. The last inequality follows from (i), (ii) and our choices
of k. Hence, ® maps S to S.

The contractivity follows by (iii), since

18 (2) = 2(2)lle(tto.11:)

L T \(t — $)By[F(a(s), ur(s)) — F(&(s), ur(s))] ds

0

< sup
te [to 7t1]

< K, rv1Llelluilles (fto.0 3500 17 — Tl o ((to,17:)
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for all x,% € S, where we used again admissibility, the Lipschitz property
of F' and the monotonicity of the Orlicz norm. By Banach’s fixed point
theorem, we conclude that X possesses a unique mild solution on [tg, 1]
with initial condition o and input functions u; and wus.

Now, let t,ax be the supremum over all £; > ty such that there exists a
unique mild solution = of ¥ on [tg, t1], where zg € X, u; € Eg ([0, 0); Uy)
and ug € Ey([0,00); Us) are given. Suppose that tmayx is finite. We will
show that limsup, », _||#(t)||x = co. If this is not the case, we have

max

r:== sup |z(t)||x <o0.
t€[t0,tmax)

Let (t,,)nen be a sequence of positive real numbers converging to tmax
from below. Since t,, € [0, tmax] and ||z(t,)|| < r for all n € N, there exists
6 > 0 independent of n € N such that the system

y(t) = Ay(t) + B1F(y(t),u1(t)) + Baua(t),
y(tn) = x(tn)

has a unique mild solution y on [t,,t, + d]. Therefore, for n € N with
Ly +0 > tmax, we can extend x by x(t) = y(t), t € [tn, tn + J], to a solution
of ¥ on [to,t, + 0]. This contradicts the maximality of ¢y, and hence,
< has to be unbounded in ;.. a

Theorem 5.1.4. Let A be the generator of an exponentially stable Co-
semigroup (T(t))=0 on X, By € L(X,X_1) be Eg-admissible and Bs €
L(Us, X_1) be Eg-admissible. Then, Xp is (Eg, Ey)-1SS and (Eg,L*)-
1SS.

Proof. We give the proof in two steps. At first we prove the existence of a
continuous global mild solution x of ¥z (which does not need the expo-
nential stability of (T'(t))=0). Afterwards we prove the ISS properties.
STEP I. Choose M > 0 and w € R such that |T(¢)| < Me “* By
Lemma 2.1.8, B is Eg-admissible and B; is Eg-admissible for (e2*T'(t))¢>0.
Denote the corresponding admissibility constants by Cp, + and Cp, +, re-
spectively. Then, for every ¢t > 0, y € Eg ([0, 00); X) and § € Eg ([0, 00); Uz)
we have

¢
J e2(=)T_ (t — s)Byij(s) ds
0

¢
J e2 (=T (t — s)Byy(s) ds
0

< CBl,t||yHEq>([o,t];>7)

and

< Coot |l y (o,350) -

Let zg € X, u1 € E¢([0,00);U1) and us € Eg([0,00); Uz) and let tpax be
the supremum over all ¢; such that Xz possesses a unique continuous mild
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solution = on [0,¢;]. Lemma 5.1.3 yields tax > 0. For t € [0, tnax) We
have that

lz(t)x
< || T(t)zollx
t
+oft fe%@*s)T_l(t—s)Bl(e%SF(x(s),ul(s)))ds
0 X
t (5.7)
+ e 3t J e3=)T  (t — s)Bye?*uy(s) ds
0 X
< Me™|lzollx + Cp, e 2% F(2(-), u1()llgy (0.0 %)
+ Cw,ug,tv

where C, ., = COp, e 2! He%'uQHEW([O,t] The ||||g,-norm in the

;Uz)”
second term can be estimated by the boundedness of F',

le® F(2(), ur ()l o) < m [ T Olloy €2 2 G)lx [, (0.2 -
Passing over to the equivalent Orlicz norm on Eg (if Eg # L!) yields that

for all € > 0 there exists a function g € Lg ([0, ]; R) with [|g||L. (jo,¢;r) < 1
such that

t
s Ol o) x ey g0y < | a6l b (5o s+

If Es = L', the above estimate holds trivially with the constant function
g = 1pp,q. Combining this with (5.7) gives

¥ |la(t)llx

< Me_%t||xo||x+mCBl,t6 + e%th’uz,t

+mCpy L lur ()l lg(s)] (e2*]l(s)llx) ds.

Setting a(t) == Me™ 2!||zo|| + mCp, 1 + €2'Cy, 1,1, Gronwall’s integral
inequality implies that

¥ (1) x

t
<a(t) + mCp | a(s)ua(s)] gle)]e(m s LI g
0

< a(t) + MHI()” sup 67%7‘ + mCB1,t€ + e%tcw,ug,t
rel0,t]

2mC .
- 2mC, ¢ [l ([0, g;0,)€” P 1 IBa o),
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where we used the generalized Holder inequality (Lemma 1.2.19). Thus,
by letting ¢ tend to 0, multiplying with e~ 3* and using ab < %2 + % for

a,b e R, we obtain

N

lz(®)lx < Me ! |lag|x + 5Me ! st]e’“”onHi
rel0,t

2002 2 4mCp ¢llutlleg (0,050
+4m*Cp, t”ul”Eq( [0,t];U1)€ ! @ (1011
2

+Cu,u2,t+ ic

wug,

By monotonicity of the Orlicz norm,

le ¥ us| 1) < sup ¥ us]lgy (0.0
2|lEg ([0,t;U2) S SUP 2|lEw ([0,t];Uz2)»
rel0,t]

from which it readily follows that

u1 || g (0,6:01))

[z(®)llx < B(llwollx,t) +71(Cp, ¢
+72(Chye” 2| ua gy (j0,41502))
< B(llwollx,t) + 71(Ch,y

+72(Cp, 1 sup €™ 2" |Jug|lgy, ([0,0502));
ref0,t]

(5.8)

u1 || g4 ([0,;01))

for all u; € E¢([0,00);U1), uz € Eg([0,00); Uz) and functions 5 € KL and
Y1,72 € K, which can be chosen as
B(s,t) = Me “'s + 1M?e “'s* sup e 7,
rel0,t]
1 (5) = m2s2etms, (5.9)

Ya(s) = 5+ 357

Moreover, the mild solution exists on [0, 00) by Proposition 5.1.3 since it
stays bounded on any bounded interval by (5.8).

STEP II. Since we are dealing with an exponentially stable semigroup,
Lemma 2.1.8 implies that C'g, ; and Cp, ; are uniformly bounded in ¢ and
we can choose w > 0. Hence, (5.8) yields for all u; € E¢([0,00);U;) and
Ug € E\p([o, CD), U2) that

|2(t)llx
< B(l|zollx, t) + 71 (Cr, llutllee (o,0:01)) + 72 (CB, luzley (0,q:02))

with Cp, = sup;>qCB, ¢, © = 1,2 being the infinite-time admissibility
constant of B; for the exponentially stable semigroup (e2‘T'(t));o. This
shows that X is (E¢, Ey)-ISS.

System X is also (Eg, L™)-ISS by realizing that there exists a constant
C > 0 such that

e™ 2% ualpy (j0,:05) < ClluzllLe(jo,e;02)s (5.10)
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for all ug € L*([0,00);Uz) and t > 0. To see this, let ¢ > 0 such that

Yis) _

U(s) < s for all s € (0,¢), which exists by the property that limg_,q
0. Therefore, choosing C' = max{+, 2},

t t
w w 2

J R (C_le_fs) ds < J Cle™%2%ds < — < 1.

0 0 Cw

This implies that

t Y t
J v 5: ||’ZL2(S)HU2 ds <lf U (Cfleg(sft)) ds < 1,
0 Ce2|luz|lL=([0,q:02) 0

from which (5.10) follows by the definition of the Eg-norm. a

Remark 5.1.5. 1. The assumptions of Proposition 5.1.3 already yield
that the unique mild solution z for z¢ € X, u; € E¢([0,0);U;) and
us € Eg([0,00);Us) is global. This is the first step of the proof of
Theorem 5.1.4. Moreover, this mild solution is continuous.

2. The assumptions of Theorem 5.1.4 are natural as they are equivalent
to X(A, By) being Eg-ISS and X(A, By) being Eg-ISS; see Theo-
rem 4.2.1. The letter is even necessary, since the bilinear system
coincides with X(A, Bs) if we set u; = 0. Also note that assumption
of By being Eg-admissible is generally not necessary, as the choice
F = 0 shows.

3. In the situation of Theorem 5.1.4, up to constants, the functions g,
~v1 and s in the (Eg, Ey)-ISS estimate for ¥ can be given explicitly
by (5.9) with w > 0.

4. In Theorem 5.1.4 one cannot expect L™-ISS with respect to u; as
the system (5.1) shows.

5. The proof of Theorem 5.1.4 is easier in the case of LP-spaces, since
the LP-norm is already an integral.

Corollary 5.1.6. If the linear systems X(A, By) and X(A, Bs) are integral
1SS, then so is X¥p. The assumption that X(A, Bs) is integral ISS is
necessary.

Proof. By Theorem 4.2.9, integral ISS of the linear systems is equivalent
to the exponential stability of the semigroup (T'(¢)):»0 generated by A
and the admissibility of the control operators By and By with respect to
some Orlicz spaces E¢ and Ey, respectively. If follows from Theorem 5.1.4
that X is (Eg, Ey)-ISS. Since L™ is contained in any Orlicz space on
bounded intervals, Proposition 4.2.4 applied for u; and us yields that X g
is integral ISS. The necessity of 3(A, Bs) being integral ISS can be seen
by setting u; = 0 in the bilinear system. u
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Remark 5.1.7. The functions 61, 6o, 111 and po for the integral ISS estimate
of ¥ can be given explicitly in terms of 7 and 72 from (5.9) with w > 0,
as well as p and 6 from Proposition 4.2.4. The function 8 can be chosen
as in (5.9).

Remark 5.1.8. Theorem 5.1.4 and Proposition 4.2.4 allow us to derive
further mixed ISS and integral ISS estimates of the form (5.5) and (5.6).
More precisely, under the assumptions of Theorem 5.1.4, or equivalently
Corollary 5.1.6, there exist § € KL and 71,72, 01, 02, p1, o € K such that
(5.5) holds for Z; = Eg, u; € Eg([0,00);U;1) and uy € L*([0, 00); Us)
and (5.6) holds for Z; = Eg or Zy = L%, uy € L*([0,00);U;), and
Ug € ZQ([O, (X)); U2)

5.2 The controlled Fokker—Planck equation

Following [12], we consider the following variant of the Fokker—Planck
equation on a bounded domain 2 € R”, with boundary 09 of class C?
(see [27, Section 6.2] for a definition),

%(t, ¢) = vAp(t,¢) + div (p(t, OVV(t, g)), £>0,Ce

p(ov C) = pO(C) C € Qa

(5.11)

together with the reflective boundary condition
0= WVp(t,Q) + p(t, OVV(£,0) - (), t>0,Ced  (5.12)

Here, 71 refers to the outward-pointing unit normal vector on the boundary,
po denotes the initial probability distribution with SQ po(¢)d¢ =1 and
v > 0 is a constant. Furthermore, the potential V is assumed to be of the
form

V(t, Q) = W(C) + a(Qu(t), (5.13)

where W, a: €0 — R are measurable functions such that

WLE(Q) n W22(Q), ifn=1,
W,a€ { WhP(Q) n W22+€(Q),  ifn =2, (5.14)
WL2(Q) n W2n(Q), if n > 3,

for some € > 0, and « satisfies the structural assumption
Va(()-7i(¢) =0, ¢e o (5.15)

Thus, the scalar-valued input function u enters the system via the spatial
profile « in the potential.
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In order to cast the equations in an abstract framework, we consider
the state space X = L2?(Q2) and introduce the operators A: dom(A4) <
L2(Q) — L2(Q) and B: HY(Q) — L2(Q) given by

Af =vAf +div(fVIWV),

) B (5.16)
dom(A) = {f e H*(Q) | (wVp + pVW) -7 = 0 on 02},

where (vV f + fVW) -7 =0 on 09 is understood in the weak sense, i.e.,
J (vAf + div(fVW)ed¢
Q
= —J (vgrad f + fVW)grad ¢ d¢
Q

for every o € H(Q) and
Bp = div(fVa). (5.17)
Further, for

D(¢) == log(v) + @

define the multiplication operator M, considered as an operator in L2?((2),
H'(Q) or H%(Q) by
Mf:=e?f.

We will show that M is boun@ed and i{lvertible on each of the mentioned
spaces, whence the operator A: dom(A) € L2(Q2) — L2(Q),

Af == MAM™'},
dom(A) := M dom(A) = {f € L}(Q)| M~'f € dom(A)}.

is well-defined.

The following proposition (apart from (vi)) is a recap of results from
[12, Section 3]. For convenience, we present a proof with slightly different
methods.

Proposition 5.2.1. Let Q € R™ with C?-boundary 092, v > 0 and W as
in (5.14) The following assertions hold.

(i) M is bounded and invertible as operator on L2(2), H'(Q2) and H2(Q)
M'f=e%f.

(ii) The operator By : H(Q) — L%(Q), By f = div(fVW) is bounded.

(ili) The operator A generates a bounded analytic semigroup on L2(£2).



114 5. ISS of bilinear control systems

(iv) The operator A is self-adjoint and negative.

(v) A has discrete spectrum o(A) € (—00,0] only consisting of eigenval-
ues with only accumulation point —oo. Moreover, e~ is an eigen-
function to the simple eigenvalue 0.

(vi) B uniquely extends to an operator in L(L?(Q), X 1), where X 1 is
the extrapolation space associated with A.

Proof. Note that as soon as we have proved (i) and (ii), A and A are well
defined.

First consider (i). The boundedness of M and M~! on each of the
spaces is a consequence of the regularity of W and Hoélder’s inequality. It
is evident that M~ is the inverse of M.

Next, we prove (ii). For f € H}(Q2) and W as in (5.14), we have
that By f = Vf - VW + fAW. Since VW € L*(Q)", the operator
f— Vf-VW is bounded from H(Q) to L2(£2). For the boundedness
of f — fAW, we first recall from [1, Theorem 4.12] that the following
embeddings are continuous,

c(Q), ifn=1,
HY(Q) — {LI(Q) forany 1 < g < o0, ifn =2,
L2 (0Q), if n > 3.

Holder’s inequality yields for p, p’ € [1, 0] with % + i =1,

[fAW |2 (@) < [ fllLee [AW [L2r o

The choices p = oo and p =1forn=1p= 2 and p = 2+e for

n =2 and p = "5 and p’ = § for n > 3, along with the aforementloned
embeddings, show that the mapping f— fAW, and consequently By, is
bounded as operator from H'(2) to L2().

We prove the assertions (iii) and (iv) together. Define the continuous
sesquilinear form a: H'(Q) x HY(Q) — C,

1.9 = (VL. Vdraie) = (Bl goe + | _bfade

where o is the surface measure on 02 and b € L*(09) is given by

b(Q) = LVIW() - (O)

If we are dealing with real-valued spaces, a: H}(Q2) x H}(Q) —» R is a
continuous bilinear form. In [4, Theorem 4.3], it is proved that if a is an
L2-elliptic form, meaning there exist w € R and 3 > 0 such that for all
u e HY(Q),

Re a(f, f) + wl flf2 () = Bl fIf o
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then the operator A, associated with a, defined by

—Au.f =y ifa(f,g9) =<y, g9L2q) forall g e H! (),
dom(A,) == {f e H'( )|3y€L2(9)- a(f,9) =<y, Prz )}

generates an analytic semigroup on L2(€). The operator A, + wI, and
thus also 4,, is well-defined by the Lax-Milgram theorem, see e.g. [13,
Theorem 3.2].

It follows from [3, Theorem 7.15] that ao(f, 9) := a(f, 9)+(Bw f, g)r2(0)
defines an L2-elliptic sesquilinear form, whose associated operator is given
by

aof:VAfa
dom(Ag,) = {f € HY(Q) | Af € L2(Q), (V] + VW) -7 = 0 on Q).

In particular, there exists w € R and § > 0 such that
Re ag(f, f) + @l flI72(0) = B @
Combining this with
[<Bw f, orzyl < [[Bwl[1f [ @l Itz

| Bw|? (5.18)
< pll f 1l oy + 1£11Z2(0)-

for 0 < 1 < B3, where we used ab < pa? + ﬁbQ for a,b € R in the last step,
leads to

IIBwll

Re a(f, f) + (w+ )||fHL2(Q)

1B

= Re ao(. f) +w||f||iz(m i

> (8 — ) llullfr o

This shows that a is L2-elliptic, and since By is bounded from H*(£2) to
L2(€2), we obtain that the associated operator A, is given by A4, = A,, + B
with domain dom(A,) = dom(A4,,).

Next, we prove that dom(A) = dom(A,). By (i), the operator M? is
bounded and invertible on L2(£2), H!(2) and H?(Q). Hence, applying the
transformation M? to elements in dom(A,) yields that f € dom(A,) if
and only if

—Re(Bw f, fr20)

e?fe{geH (Q)|AgeL*(Q), Vg i =0 on 00}

This set coincides with {g € H?(Q) | Vg-ii = 0} by the regularity improving
property of the Neumann-Laplacian on a bounded open domain with C?-
boundary, see e.g. [29, Theorem2.4.2.5]. Retransformation of these sets
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yields dom(A4,) = dom(A). Consequently, A = A, generates an analytic
semigroup on L2().

Since A is obtained from A via the transformation M, we have that A
generates the analytic semigroup (S(t))¢>o given by S(t) = MT(t)M !,
where (T(t))i=0 is the semigroup generated by A.

To prove that A is a self-adjoint and negative operator, it suffices to
show that A is a symmetric operator with (Af, oLz < 0for fe dom(A)
by [15, Lemma A.3.76]. First note that

dom(A) = {f e HX(Q)| (e 2V(e? f)) -7 = 0 on 00}

and for f € dom(A) we have that
Af = ve? div (e*q’V(e%f)> .

Now, a simple integration by parts argument (see [12, Page 7] for the
details) yields that A is symmetric and

<Aﬁﬁmmy=—Lv€@W@%ﬁV@<0 (5.19)

for all f € dom(A). Thus, A is indeed a self-adjoint and negative opera-
tor on X. In particular, (S(t))i=0, equivalently (T'(t)):=0, is a bounded
analytic semigroup, which completes the proof of (iii) and (iv).

For (v), first note that o(A) = o(A), which is contained in (—c0,0],
since A is a negative operator. Let f € dom(A) be an arbitrary eigenfunc-
tion of A to the eigenvalue 0. Hence, e f is an eigenfunction of A to the
eigenvalue 0. Now, (5.19) yields that V(e®f) =0, i.e., f = ce™® for some
constant c. Hence, 0 is a simple eigenvalue with eigenspace {ce~®|c e C}.
For the remaining properties of o(A) = o(A) it suffices by [56, Chap-
ter 3, Theorem 6.29] to prove that A has a compact resolvent. So, let

MAe (0,0) € p(A) and g € L?(Q). Let f € dom(A) be such that

g=0-A)f.

A direct computation exploiting the definition of A yields that f is the
weak solution to

1 1
—VAf — §e% div(e™ 2 fYW) + \f + GV/ VW =g g
1
(vVf+ ifVW) -i1=0 on 0f.
Testing this equation with f and integrating by parts yields

1 o o 1
VIV £z + ff e T fV(e? f) VW dz + ff V- VW da
2)g ~——— 2 Jo

=L PPYWHfVS

- | a=anraa.
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and hence,
VIV 120
1
< EHVW“%RJ(Q)”HJCH%P(Q) + IVW e @ [ fllLz @)V fllLz@n
+ (lgllLz) + M fllLz @)1 f Lz @)-

It follows from

VWL @) 1 fllLz @) [V fllLz @)yn
W12y

<e|VFlEz @ + 1

1£11Z 20
for e € (0,v) and [|f[lr2(q) < [[(A — A)_lH||g||L2(Q) that there exists a
constant K > 0 such that

[ flla @) < Kllgllz),

which shows that (A — A)~! is bounded from L?(Q) to H'(Q). Since
H'(Q) — L%(Q) is compact, we obtain that (A — A)~! is a compact
operator on L2().

Finally, we prove (vi). First note that B is of the form By, from (ii)
with « instead of W. Since a has the same regularity as W, we have that
B is bounded from H!(Q) to L2(f2). For f,g € X; = dom(A) we have

that,
|<Bf7 9>X71,X1 | = \<Bf, 9>X|

div(fVa)g dC’
Q

- ’—J fVa-ngC‘
Q
< [ f @ IVallu= @ lglla @),

where we integrated by parts and used (5.15) to obtain the third equation
and Holder’s inequality for the last one. Hence, B extends uniquely to a
bounded operator from L2(2) to X, which completes the proof. Q

By Proposition 5.2.1, the Fokker-Planck system (5.11) - (5.13) with
W and « satisfying (5.14) and (5.15) is of the form Xy with semigroup
generator A from (5.16), control operators By = 0 and By = B being the
extension of (5.17) obtained in Proposition 5.2.1 (vi), which we will again
denote by B, and bilinear mapping F: X x C - X, F(z,u) = zu.

If we can prove that B is admissible with respect to some Orlicz
space, (5.11) admits for all initial values in X and input functions in that
Orlicz space a unique mild solution by Proposition 5.1.3 and Remark 5.1.5.
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However, the system will not be ISS, since 0 is an eigenvalue of A and
hence, A does not generate an exponentially stable Cy-semigroup.
Therefore, we consider the system around the stationary distribution

P = ce™®
with ¢ > 0 such that §, p,(¢)d{ = 1, as already done in [12]. We
decompose X according to the projections P, Q: L2(Q2) — L2(Q),

Py = y—p%J y(¢)d¢

Q

and
Q=1-P

Note that ran @ = ker P = span{p.} and ker Q = ran P. Define
X :=ran P.

Let y := p — py and consider its decomposition y = yp + yg with
yp = Py e X and yg = Qy € span{py }. The Fokker-Planck equation can
be equivalently rewritten as

yp(t) = Ayp(t) + Bi (yp(t)u(t)) + Bau(t), t=0,
yr(0) = Ppo, (5.20)
Yo(t) = Qpo — pr = 0, t>0,

with operators

A: dom(A) := X ndom(4) - X, f— Af,
Blix_)-)(fhf'_’Bfa
By: C— X, ur— uBpy.

Here, X_; is the extrapolation space with respect to A. Note that Qpy —
P = 0 follows from the assumption SQ po(€)d¢ = 1.

The above operators are well-defined. Indeed, we have that AQ =0
on X and QA = 0 on dom(A), where the latter follows from integrating
by parts. Hence, PA = AP holds on dom(A), which yields that A is
well-defined. Moreover, P commutes with the resolvent of A on X, and
thus also with T'(¢) for every ¢t > 0. Consequently, (T'(t))i>0 leaves X
invariant, i.e., T(t)X € X for all ¢ > 0. By [50, Lemma 4.2], A generates
a Co-semigroup (7T (t)):=0 on X, the extrapolation space corresponding
to A satisfies X_1 € X_; and ||p||lx_, = ||pllx_, for p € X_;. By [50,
Lemma 4.4], P admits a unique extension to a projection P € L£L(X_1)
with ranP = X_; and which commutes with A and 7 (t) for every ¢ > 0.
Since we also have that PB = B on H!(Q) by the structural assumption
(5.15), extension yields PB = B on X. Hence, B; and By are well-defined,
B € ﬁ(X, Xfl) and By € [,((C, X)
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Introducing the nonlinear mapping
F:XxC- X, (y,u)—yu, (5.21)

we infer that the Fokker—Planck system given by (5.11)-(5.13) and (5.20)
can be written as bilinear control systems of the form X, where the
respective operators satisfy our general assumptions on this system.

Theorem 5.2.2. The Fokker—Planck system (5.11)-(5.13) admits for every
po € L2(Q) with §, po(¢)d¢ = 1 and u € L*([0,0); L*(Q)) a unique mild
solution p € C([0,00);L2(Q)) which satisfies for some C,w > 0 and every
t=>0

f Pt Q) dC = 1
Q
and

[p(t) = pollLz ()

t
< e (I = pelhae o = o)+ [ 1ol as)

1
where v(r) = CreC™ + Cr2 + Cr. In particular, (5.20) is L2-ISS and
integral ISS.

Proof. We will give the proof based on Theorem 5.1.4 applied to (5.20).

By [50, Lemma 4.2], the largest connected subset of p(A) containing
an interval of the form [r,00) is contained in p(A). Recall that o(A)
is discrete with single accumulation point —oco. Hence, p(A) itself is
the above connected subset, which implies o(A) € o(A) € (—0,0]. In
particular, p(A) € (—o0, 0] is discrete with single accumulation point —oo
and 0 ¢ o(A) by construction. Hence, A generates an exponentially stable
Co-semigroup.

As By € L(C, X), By is clearly L2-admissible. Next, we will prove that
B; is L?-admissible. By [50, Lemma 4.4] it suffices to prove that B is
L2-admissible.

By Proposition 5.2.1, A is self-adjoint and negative. Therefore, A— I is
strictly negative. We denote the fractional inter- and extrapolation space
corresponding A — I by X% and X—é' Recall from Lemma 1.3.31 that

||$||§z1 ={(I = Az, z)x, x € dom(A),

ol

lzllg , = sup [Kz,v)x], reX.
- lvllx, <1
2

[N

We first prove that the operator B := MBM~" defined on H'(Q) has a
unique extension B € L(X, X_ 1 ), which is L2-admissible. Integration by
parts yields
@ _e N
loli%, = lollfa@ + IV (c¥0) e ¥ 22q), v e dom(A).

1
2
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For f € dom(A) € H'(Q2) and v € dom(A) with |jv]|¢. < 1, we have that

N=

KBf, w2yl = ‘ L vef div (=¥ fVa) d<]

LQ ve%efnga -nndo — Lz v (ve%) - (e*%fVa) dC‘
<V (ve?) e 22/ VallE g

< _2
<nllVal o IV (vef ) e % | )l FIz .

Thus, we can extend B to an operator B € L(X, X_%), which is L2-
admissible for the semigroup generated by A by Proposition 2.1.23. We

have for 8 € p(A) = p(A) and fe X

1M fllxe, = 1B =AM fllx
= IM71 (B - )7 fllx
<Ml s,

Thus, M~! has a unique extension to an operator in £(X_;, X_;). The
same argument yields a unique extension M € £(X_;, X_;). Note that
these extensions are inverse to each other, so it is natural to denote the
extensions again by M and M~!. It follows that the extension of B to
an operator in £(X,X_ ;) is given by B = M~'BM, hence, B is L*-
admissible. Indeed, if (T'(t));>0 is the semigroup generated by A, then
(S(t))s=0 with S(t) = MT(t)M~" is the semigroup generated by A and
for u € L2([0,t]; X) we have that Mu € L2([0,¢]; X) and

¢ ¢
f T \(t— $)Bu(s) ds = M—lf S_y(t — ) B(Mu)(s) ds.
0 0
Remark 5.1.5 implies that the Fokker—Planck system (5.11)-(5.13) has a
unique global mild solution p € C([0, 00); X) for any initial value pg € L2(Q)
and input function u € L2([0, o0); L?(Q)). Further, in [12, Proposition 2.2],
it is shown that §, po(¢) d¢ = 1 implies {, p(t,¢) d¢ = 1 for all ¢ > 0.
The fact that (5.20) is L2-ISS and integral ISS are direct consequences
of Theorem 5.1.4 and Corollary 5.1.6. The explicit (integral) ISS estimate
as stated in the theorem follows from Remark 5.1.5 (see also (5.9)), and
by realizing that the global mild solution of (5.20) is given by y, =

P(p—px) =p—pxs. a



Chapter 6

Input-to-state stability of
bilinear feedback systems

In this chapter, we study (local) input-to-state stability of bilinear feedback
systems with unbounded control and observation operators. We present
sufficient and necessary conditions for the existence of global solutions and
a weighted L2-ISS estimate, both for small initial and input data. This
is achieved by considering the bilinear feedback systems as a linear open
loop system with bilinear feedback law. Furthermore, under additional
dissipation properties on the nonlinearity, we show that our results extend
to arbitrary initial and input data, and to general L?-ISS estimates for
q=2.

Our abstract framework allows to apply the results to various nonlinear
PDEs, which is done for the Burgers equation, the Schrédinger equation,
the Navier—Stokes equation and a wave equation with quadratic potential.

This chapter is based on [41].

6.1 Local input-to-state stability for bilinear
feedback systems

Consider the bilinear feedback system of the form

Z(t) = Az(t) + Blul(t) + BQUQ(t), t>=0,

2(0) = zo,

y(0) = C2(0), i>0 =5
uz(t) = N(z(t),y(t)), t=0,

where the spaces and operators satisfy the following standing assumptions

121
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e X,U;,U; and Y are Banach spaces and zp € X,
o A generates a Cy-semigroup (T'(t))i=0 on X,

e B1eL(Uy,X_1), Bae L(Uz, X_1),

o CeL(X,,Y),

e Y € X with continuous embedding and C' extends to an operator in
L(X), again denoted by C,

e N: X xY — U, is a continuous bilinear mapping and there exists
K > 0 and p € (0,1) such that

INCG vz < Kzl llyllx P lylly (6.1)
holds for all ze€ X and ye Y.

Inserting us = N(z,y) in the systems dynamics, ¥ becomes a non-
linear system, which is often the given natural form, see Section 6.3.
Considering the nonlinearity as a feedback, as depicted in Figure 6.1,
allows us to take advantage of the underlying linear structure.

Uy
z = Az + Biuy + Bousg Yy
W) y=Cz i
N(z,y) |+

Figure 6.1: Structural representation of the feedback system X%,

The linear system corresponding to X%V, given by
x(t) = Ax(t) + Blul(t) + BQUQ(t), t =0,

x(0) = =y, (Z1in)
y(t) = Cz(t), t>=0,

is a linear system X(A, B, C) with U = Uy x Uy, u = (u1,u2) and Bu =
Biuj + Baug. Thus, ¥y, is well-posed if and only if (A, B;,C) and
(A, By, C) are well-posed. If this is the case, the solution z € C([0, 00), X)
and output y € L2 ([0,00);Y) of Ty for 2o € X and u; € LE ([0, 00); U;),
1 = 1,2, are given by

(t) = T(t)xo + Oyus + PFuy, (6.2)
y|[0,t] =WU,zg + ]F%ul + F?u% ’
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for t = 0, where (T'(t))i=0, (®%)i=0, (¥i)i>0, (Fi)¢=0) are the operator fami-
lies corresponding to (A, B;, C') and some transfer function G; for ¢ = 1,2,
see Remark 2.3.11. Moreover, there exist positive constants ki ; and ko ;
such that

()] x

||yHL2([o,t];y)

Eve(llzollx + llutllizqo.a.un) + lluzllzo,g;0.))s (6.3)

NN

Eae([lwollx + llurllie(o,q:00) + lluzllzqo,g;02))-

If A generates an exponentially stable Cy-semigroup, then ki, and ks,
can be chosen independently of ¢ by Corollary 2.3.13.

Definition 6.1.1. Let Xy, be well-posed, T' > 0, zp € X and u; €
L2 ([0,00); U). Functions z € C([0,T]; X) and y € L2([0,T];Y) are called
a mild solution and output of £ on [0,T] for 29 and uy if

2(t) = T(t)zo + ®luy + ®?N(z,y), forallte[0,T],

) , (6.4)
y=Urzo +Frus + F-N(z,y), on [0,T].

We call z € C([0,00); X) and y € L _([0,0);Y) a global mild solution and
output of XN for zy and wu; if (0,77 and yljo,r] are a mild solution and

output of ¥ on [0, 7] for 2y and u; for all T > 0.

With this solution concept, we regard X% as an abstract control system
(X,Uy, @) (see Definition 4.1.1) with

o(t, z0,u1) = 2(t)

being the mild solution of ¥V in time ¢ for initial value zp € X and

input function u; € LE ([0, 00); U), where dom(¢) is the set of all triples

(t, z0,u1) for which a unique mild solution for zo and u; exists on [0, {].
In [96, Section 7] the authors proved the following existence and unique-

ness result for the mild solution of ¥V locally in time.

Lemma 6.1.2. If Xy, is well-posed, then for every M > 0 there exists
T > 0 such that for any 2o € X and uy € L2([0,00); Uy) with ||20]|x +
JutllL2(o,.0);00) < M System BN admits a unique solution z and output y
on [0, T]. Moreover, if tmax denotes the the supremum over all T > 0 such
that SN admits a solution z and an output y on [0,T] for fized 2o € X
and uy € L2([0,00); Uy), then the finite-time blow-up property holds:

tmax <0 == limsup|z(¢t)||x = oo.

ttnax
Proof. We refer to [96, Theorem 7.6 & Remark 7.5] for the proof. These

results are formulated in Hilbert spaces, but are also valid in Banach
spaces. Q

A key property of any form of ISS is the existence of solutions globally
in time. Unfortunately, this is not always given for %V as the following
example shows.
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Example 6.1.3. For Uy = U, = X =Y =R, A = -1, B =0,
By = C =1 and N(z,y) = 2y, we can write XV as

(1)
z(0) =
y(t)

—z(t) + 2(t)%, t=0,

20,
z(t), t=0,

with 29 € R. The solution, given by

20

Z(t) B (1 — Zo)et + Zo’

has finite-time blow-up if z5 > 1. Note that changing the sign of By does
not change this behavior as it would be the case for cubic nonlinearity z3
instead of z2. Indeed, for By = —I we obtain the solution

20

Z(t) - (1 + Zo)et — 20

with finite-time blow-up if zg < —1. However, for |zg| < 1 the solution
exists globally in time.

With similar techniques used in [96] to prove Lemma 6.1.2 , we will
prove global existence and uniqueness of solutions of £ for small initial
and input data as well as a local ISS estimate with respect to weighted
L2-spaces. For any Banach space U, interval I < [0,00) and w > 0 denote
by L2(I;U) the weighted L2-space

L2(I;U) = {ue L*(I;U) | e* v e L*(I;U)}

with norm

lullLz (roy = lle* ullLz(rv)-

Theorem 6.1.4. Let Xy, be well-posed and A be the generator of an
exponentially stable Cy-semigroup (T(t))i=o0. Let M, X > 0 such that
IT(t)|| < Me ?t holds for all t = 0. Then, for every w € (0, \) there exist
g,k > 0 such that for all zo € X and uy € L2 ([0, 00); Uy) with

[20llx + [lutllLz ([0,00):00) < € (6.5)

YN admits a unique global mild solution z € C([0,0); X) and output
y € L2([0,00);Y) and for all t = 0 the following estimate holds

121l x < ke™* (20l x + lluallLz (fo,eg;01))- (6.6)

In particular, ¥V is locally L2 -1SS.
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Proof. Let w € (0,\), 20 € X and u; € L2([0,00);U;) for i = 1,2. By 2
and y we denote the state trajectory and the output of ¥y, with xg = zg.
Since e* u; € L2([0,00); U;) for i = 1,2, the functions z = e“"z, e’y are
the state trajectory and the output of the shifted linear system

2(t) = (A +wl)x(t) + Bre“ uy (t) + Bae®tug(t), t =0,
z(0) = 2, (Zin)
e“ly(t) = Ca(t), t=0.

This system is again well-posed, as can be directly concluded from the
representation (6.2) and Corollary 2.3.13, see also [16, Proposition 3.2]
for details. By our choice of w, A + w generates an exponentially stable
semigroup. Thus, by (6.3) applied to the shifted linear system, there exist
k1,ky > 0 such that

lle“*2(t)1x < E1(llzollx + lutllie (o,c0p0n) + luzlliz (o,m)sw)) 6.7)

lyllL2 (jo,0:v) < k2(ll20llx + llutllez (jo,00:0) + llv2llLz (j0,0):02))
holds for all t > 0

Let K > 0 and p € (0,1) such that (6.1) holds and choose £ > 0 such
that

P

(2w) ="

AK|[Cl 5%k PRE (1 = p) =

(6.8)

Now, let zp € X and uy € L2([0,00);U;) such that (6.5) holds with ¢ as
above. For any us in the set

Se == {ug € L2([0,0); Ua) | lluzllrz (jo,0)02) < €}

we denote by z and y the mild solution and output of the linear system
Yiin with input data zg and u;, ¢ = 1,2. We will prove that

G: Se = Se, G(uz) = N(z,y)

is a contraction. Then, Banach’s fixed point theorem implies that G has a
unique fixed point in S., and thus, £V has a unique solution. Uniqueness
follows from the above fixed point argument and uniqueness of solutions
locally in time (Lemma 6.1.2).

In order to verify our claim on G, we first check that G is well-defined.
From our assumptions on N and the boundedness of C', we deduce for
almost every ¢t > 0 that

[e“" N (=(t), y (), < Klle*"2 ()Hxlle y(@)llx e ety ()1
K[Cll g% lle 2(8) 15 Pe* ey (I

< KOl k) (2kie)* Pe e y(t)II5,



126 6. ISS of bilinear feedbacl systems

where the last inequality holds by the first inequality in (6.7), (6.5) and
since ug € S.. We infer by Holder’s inequality, (6.7), (6.5), the fact that
ug € S. and our choice of £ (6.8) that

171»
1-p
IV Gl o.ey < KT @0 (522) T Wity

1-p 2—p1p 1_p oz 2
< 4K||C||£(X)k1 k3 ow €
Sy
thus, G(usz) € Se.

Similarly, we obtain that G is is a contraction. Let v; € S, i = 1,2,
be arbitrary. By z; and y;, i = 1,2, we denote the state trajectory and
the output of 3j;, with input data zg and w; satisfying (6.5) and us = v;,
1 =1,2. Since N is bilinear, we have that

G(v1) = G(v2) = N(21,y1) — N(22,92)
= N(z1 — 2z2,y1) + N(22, 91 — ¥2)-
We estimate each term separately. Note that e¥ (21 — 2z2) and e (y1 — y2)
are the state trajectory and output of the shifted linear system X);, with

zo = 0, up = 0 and ug = v; — v9, respectively. Similar as before, we deduce
from (6.7), the boundedness of C, (6.5) and the fact that vy € S,

[e N (21(t) = 22(), y1.(£)[| v
S e Z1 — Z2 xl|e "y X_ e e Y1 Y
< K[! (21(8) = 22(8)) || x e g ()] X P e ya ()1}
< K| Cll 5% K (20) 7 Pe ™ e ya (O[5 |1 — vallLz (po,0):0)-
Applying Holder’s inequality and (6.7), as before, yields

€ N (21 = 22, y1) 12 ([0,00):U3)
1-p
p

e o (1=p\ T,
< 2NN MR (5E) el o ooy

For the second term we obtain similarly

e N (22(t), 91 (t) = y2(t) [l
< Kle 22 (1) x e (y1 (1) = w2 ()| x "o e (ya(t) — ya())II5-
S K||C||1£(§)k2 P2e)||lv1 - U2||L3([07w);U2)
e le (1 (t) — y2(1))II5-
Again, Holder’s inequality and (6.7) yield that

e N(z2,y1 — y2)llL2([0,67:02)
1—p ="
ZKHC’”l p k2 Pb <2w> gllvy — U2||L3([0,f,);U2)a
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and hence,

[ (G(v1) = G(v2))llL2(0,50);0)
< |[N(z — Zz,yl)”Lg([o,w);Ug) + [N (22,91 — y2)||L5([0,oo);U2)

1—

_ _ 1—p\ 2
<A R (52 el = valuzonnn

By (6.8), G is a contraction on S, and therefore, there exists a unique
us € Se such that us = N(z,y), where z and y are the solution and the
output of ¥y, with input data zp and w; satisfying (6.5) and us. Hence, 2z
and y are the solution and the output of ¥ and from (6.7) we deduce
that

ll2(t)||x < 2kiee " (6.9)

To prove the ISS estimate, let € be given as above and let zg € X and
up € L2([0,00);Uy) such that (6.5) holds. Denote the corresponding
solution and output of £V by z and y, respectively. Further, let ¢ > 0 be
arbitrary and define

€= |zoll + [luallLz (o,q;01) < € (6.10)

It is clear that & satisfies (6.8) and that XV admits for zy and @; = Lo, qua
a unique solution Z satisfying (6.9) with &, i.e.,

IZ®)]lx < 2kre™ (20l x + lualle o.00))-

As a consequence of the causality of the linear system X;;,, we obtain
that

2lj0,1 = 210,

which completes the proof. Q
Remark 6.1.5. Let us make the following comments about Theorem 6.1.4.

1. The assumption that A generates an exponentially stable semigroup
is necessary in the view of our general abstract setting. Indeed, for
the trivial choices N = 0, C' = 0 or By = 0, the bilinear feedback
system XV takes the form Xy, with By = 0 for which (local) ISS
requires exponential stability of the semigroup, see Theorem 4.2.1.
However, for particular nonlinearities, it might be possible to weaken
these assumptions.

2. Theorem 6.1.4 also holds for Li-well-posed linear systems with ex-
ponentially stable Cp-semigroup for 1 < ¢ < o0, where L7-well-
posedness is defined by replacing L2 by L in Definition 2.3.10 and
Definition 2.3.12, see also [94, Definition 2.2.1]. In this case, we con-
sider input functions u; € LZ, defined analogously to L2, and obtain
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an LZ-ISS estimate under analog smallness condition as before. The
proof stays the same up to adaption of the used Holder inequalities
and the resulting constants.

3. In the situation of Theorem 6.1.4 we obtain

2Bl x < kllzollxe™" + klluallLo(po,q:00)

every t > 0, ¢ € [2,00] and u; € L9([0,00);U) n L2([0,00);U) as
a direct consequence of (6.6) and Holder’s inequality. This is an
L4-ISS estimate, however, this does not mean that XV is locally
L4-ISS, since the equation only holds for small input functions in
the intersection of L7 with the weighted space L2.

4. Determining the local region for the initial value and input function
for which a system is locally ISS, is in general no easy task. In [104],
this problem is discussed for ODE systems. Condition (6.8) shows
how ¢ in Theorem 6.1.4 can be chosen, depending on the decay rate w,
the constants ||C||z(xy, k1 and k corresponding to the shifted linear
system via (6.7) and the constants K and p from (6.1). Condition
(6.8) is not optimal for specific systems (see e.g. Theorem 6.3.3).

6.2 Global input-to-state stability for bilin-
ear feedback systems

In this section we present additional boundedness and dissipation con-

ditions on the system’s operators and the nonlinearity that guarantee

(global) L4-1SS of ©V.
Let X,U;,U,, Y be Hilbert spaces.

Assumption 6.2.1. The operator A is self-adjoint and strictly negative,
B; EE(Ui,X_%) for i =1,2 and CEE(X%,Y).

Assumption 6.2.2. The operator A is of the form A = Ay + L, where
Ay is skew-adjoint and L € £(X) is strictly dissipative, i.e., there exists a
constant w4 < 0 such that

Re{Lz,zyx < wallz||% forall zeX,
B;e L(U;, X) for i = 1,2 and C € L(X,Y).
Remark 6.2.3. Both assumptions guarantee that A is the generator of an
exponentially stable Cp-semigroup and that there exists wa < 0 such that
RedAz,2)x <wallz||% for all z € dom(A), (6.11)

where the real part can be ignored under Assumption 6.2.1. Moreover,
Yiin is well-posed by Proposition 2.3.15 and Corollary 2.3.13, thus, Theo-
rem 6.1.4 is applicable.
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We continue with two technical statement about the properties of the
mild solution of ¥ under Assumption 6.2.1 and Assumption 6.2.2.

Lemma 6.2.4. Let U, X,Y be Hilbert spaces and suppose that Assump-
tion 6.2.1 holds. For z9 € X and uy € L2 ([0,00);Uy) let [0, tmax) be the
mazimal existence interval of the corresponding mild solution z of XNV.
Then, z satisfies

ZE Hlloc([ovtmax);X ) N C([ max) X) N LIOC([O max) X%)7
and, for all t € [0, tmax),

2015 — ll20ll%
s J (Ax(s), 25Dy x, + (), BLa()s, (6.12)
+{N(z(s),Cz(s)), Byz(s))u, ds.

Proof. For any zp € X and u; € L2([0,00);U;), the system XV has a
unique mild solution z € C([0, tmax); X ) with maximal time of existence
tmax > 0 and an output y € L2 ([0,¢max);Y) by Lemma 6.1.2. For
t € [0, tmax), the mild solution z|[o4 coincides with the restriction x| 4
of the mild solution x of the linear system X;, with zg = zg, u; as given
and uz = N(2[[0,, Yl[0,1]) € L2([0,t]; Uz), extended by 0 to a function in
L2([0, o0); U3). Moreover, Y[0,47 is the restriction of the output of ¥y;,. We
deduce from Proposition 2.3.15 that z|jg = 2|[o, € Hl((O,t);Xfé) A
C([0,t]; X) n L2([0,t]; X1) and Czlp q = C|jo,5 = yljo,g € L*([0,¢];Y)
for any ¢ € [0, tmax). In particular, z has the desired regularity property
and C'z|[y 4 is well-defined as a function in L?([0,¢];Y). Finally, (6.12)
follows from Proposition 2.3.15. Q

The analog of Lemma 6.2.4 holds under Assumption 6.2.2.

Lemma 6.2.5. Let U, X,Y be Hilbert spaces and suppose that Assump-
tion 6.2.2 holds. For z9 € X and uy € L2 ([0,00);Uy) let [0, tmax) be the
mazimal existence interval of the corresponding mild solution z of XNV,
Then, z satisfies for all t € [0, tmax)-

lO% - lz0l%
= f (La(s), 2())x + Cun(s), BLz(s)u, (6.13)
(N (2(5), C2(5)), By=(s)yu, ds.

Proof. For zy € dom(A) and u; € Hy((0,00); U;) for i = 1,2, the system
Yiin has a unique classical solution z € C*([0, o0); X) by Proposition 2.1.22.
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Since A = Ag+ L with bounded L and skew-adjoint Ag, we have for ¢ > 0,

d 2
SO
= 2Re (1), 2(1))x
= 2Re ((L2(t), 2(t)x + Cur(t), B12(t)v, + {ua(t), Byz(t)uvs)-
Integration over [0, ] yields

1% — =0l %
= 2Re L(Lz(s),z(s)}x + (ur(s), Bl 2(s)du, (6.14)

+ (ua(s), Byz(s))u, ds,

where both sides depend continuously on zp in X and u; in L2([0,t]; U;),
i = 1,2, since L, By, B and C are bounded. The density of dom(A) in
X and H{((0,00); U;) in L%([0, 00); U;) implies that (6.14) holds for mild
solutions z of ¥y, for any zp € X and u; € L2([0,00);U;), i = 1,2.

Now, let 29 € X and u; € LE ([0,00);U1). Let z € C([0, tmax); X) be
the corresponding solution from Lemma 6.1.2 on [0, {max). Since C' is
bounded, the corresponding output is y = Cz € L2 ([0, tmax); Y) (it is
even continuous). Hence, for every t € [0, tmax), 2|[0,q is the restriction
of the solution of the linear system Xy, for x¢o = zp, u; as given and
uz = N(z|jo,,C%l[0,1) € L([0,t]; U2), extended by 0 to a function in
L2([0,00); Us). By the first part of this proof, (6.14) holds for us =
N(z,Cz) and all t € [0, t;ax), which completes the proof. Q

If we consider input data satisfying the smallness condition (6.5) from
Theorem 6.1.4 in Lemma 6.2.4 or Lemma 6.2.5, we clearly obtain t,,,x = 0.
Under an additional dissipation condition on the nonlinear part, we can
eliminate the smallness condition to achieve t,,x = 00 and global ISS
results. This is formulated in the following theorem.

Theorem 6.2.6. Suppose that Assumption 6.2.1 or Assumption 6.2.2 is
satisfied and let wa < 0 such that (6.11) holds. Further, assume that there
exists m1, mo € R with

1—=m1 >0 and (1—mip)wa+mo<0
such that
Re(N(z,Cz), Bb2)y, < —miRe{Az, 2)x + ma||z||% (6.15)

holds for all z € dom(A). Then, there exist constants c,v > 0 such that
YN admits for all zo € X and uy € L2 _([0,00);Uy) a unique global mild

loc
solution z which satisfies for allt = 0,

l2®)llx < llzollxe™" + ce™ [le” ualla(o,m00)- (6.16)

In particular, ¥ is L9-ISS for all q € [2,0].
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Proof. For any zo € X and uy € L2 ([0, 00);U;) there exists a maximal
tmax > 0 such that ¥V admits a unique solution z € C([0,¢]; X) and
output y € L2([0,¢];Y) of X for all ¢t < t;,.x by Lemma 6.1.2. It suffices
to prove (6.16) on [0,t] for any ¢ € [0,tmax). Indeed, then [|z(-)|x is
uniformly bounded on [0, ] and Lemma 6.1.2 yields ¢mpax = 00.

First consider Assumption 6.2.1. We infer from Lemma 6.2.4 that
12(:)||% is almost everywhere differentiable and

1d )
5Ol
= Re (CA12(8), 2()x_

+ (N (=(8), (1), Bat >U2)
<<1—m1><—uznxé> mal=(0) (6.17)
1B leixy ol Ol 120)lx,

< [(1=m1 — pwa +mo]|lz(1)]1%
1
+ @”BiH%(X%,Ul)Hul(t)”QUl
for g > 0 such that 1 —my —p > 0 and —v := [(1 —my — p)wa +ms] <0,
where we applied (1.23) in the first inequality and ab < %2 + % in the
last one. Gronwall’s differential inequality yields that

I=01F < lzolfee™ + 5o Bl ex, o f Jus) 0244 ds,

and hence, (6.16) follows,

—v 1 : —vt || V-
1) 1x < lzo]lxe t+(2MHBani(w) e e us 2 o0
2

If Assumption 6.2.2 holds, we obtain an analog estimate to (6.17) by
using Lemma 6.2.5 and replacing (A_12(t), 2(t)>)x ,.x, by (Lz(t), 2(t))x,
-2 2
IBillzix, 0y by [1Billz(x,0y and by using the strict dissipativity of L
2
instead of (1.23). As before, Gronwall’s inequality yields (6.16),

1

_ 1 _ .
1(0)1x < llzollxe " + (MB;i(X,Ul)) e e u e (o0,

For 2 < ¢ < oo we have that L([0,00);U;) € L ([0,00); Uy), thus,
(6.16) holds for all u € LI(]0, o0); Uy). Hélder’s inequality implies for every
t > 0 that

e " ur ||z (jo,g:00) < clluallLao..om) (6.18)

for some constant ¢ > 0 independent of ¢. In particular, %V is LI-ISS for
any 2 < g < 0. (|
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Remark 6.2.7. In the proof of Theorem 6.2.6 we have shown that V: X —
R, V(2) = ||z|% is an ISS-Lyapunov function (see [76, Definition 2.11]
for a definition) for ¥¥ under the additional assumption (6.15). This
assumption has been used in [88] to derive ISS estimates for parabolic
semilinear boundary control systems with (time-depending) semilinearities
mapping the fractional spaces X, boundedly into X. Compared to our
setting, neither feedback nor unboundedness of the nonlinearity, in the
sense of the presence of unbounded operator By and C, are considered.

6.3 Examples

6.3.1 The Burgers equation

Stability of the viscous Burgers equation has been studied in several works,
such as [59, 67, 85], to name only a few of them. In [106], local ISS with
respect to L*-inputs of a Burgers equation on the state space L2(0, 1) with
in-domain and boundary controls/disturbances is proved under additional
regularity assumptions on the controls/disturbances corresponding to the
used solution concept of classical solutions.

We consider the following controlled viscous Burgers equation with
Dirichlet boundary conditions,

( Q) = 0C2( Q) —=(t, C) (t Q) +w(t,¢), t=0,¢e(0,1),
Z(t 0) = 2(t,1) =0, t>0, (6.19)
( )_ZO( ) CG(O,l),
y(t,¢) = 2(t, C), t>0,¢e(0,1).

We apply the results from Section 6.2 to the above Burgers equation
considered once on the state space H}(0, 1) and once on the state space
L2(0,1).

First, let the state, input and output spaces be given by

X =Hp(0,1),
Uy = U, = L%(0,1), (6.20)
Y =H%(0,1) n H}(0,1),

where all spaces are assumed to be real valued. We equip H}(0, 1) with
the norm

dz
||Z||H(1,(0,1) = dic

L2(0,1).

It follows from the Poincaré inequality that this defines a norm, which is
equivalent to the standard norm on H}(0,1).
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Let the operator A on X be defined by
= 3@

a

Az ¥

z

dom(A) = {z e H3(0,1)

e H(0, 1)}.

It is known that A is a self-adjoint and strictly negative operator on
L2(0,1). The fractional inter- and extrapolation spaces X 1 and X 1 are
given by

X1 =H?%0,1) nH}(0,1) and X 1 =L2%(0,1),

1 1
2 2

see [96, Section 8] and the references therein. Further, we consider the
operators B; € L(U;,X 1) for i = 1,2 and C' € L(X,Y) to be the
identity on the respective spaces. In particular, Assumption 6.2.1 holds.
The bilinear feedback operator N: X x Y — U, is defined by

dy
N =—z—.
(z.9) = =23
The validity of (6.1) for any p € (0,1) follows from the continuous embed-
ding H'(0,1) — C([0,1]). Indeed, denoting the embedding constant by
¢, it follows for any z € X = H}(0,1), y € Y = H?(0,1) n H}(0,1) and
p € (0,1) that

”Z%”LZ(O,I) < llzlleqoapllvliLzo,n) < C|\Z||Hg,(o,1)||y||11%f071)||y||f12(071)-
We obtain the following local ISS result for the Burgers equation.
Theorem 6.3.1. The Burgers equation (6.19) with spaces as in (6.20) and
operators as above is o bilinear feedback system of the form X. Moreover,
there ewist w,e > 0 such that (6.19) admits for all zy € H}(0,1) and

up € L2([0,00); L2(0, 1)) with
HZO||H5(0,1) + [t llLz (o, 0)L2(0,1)) < €
a unique mild solution
z € H'((0,00); L*(0,1)) n C([0, o0); Hy(2)) n L*([0, 00); H*(0, 1)),
which satisfies for some k > 0 and every t = 0 that
2()]lx < keibUt(”ZO”H})(O,l) + [le* w1 l|L2((0,e5L2(0,1)))-
In particular, (6.19) is locally L2 -ISS.

Proof. This is a direct consequence of Theorem 6.1.4 and Lemma 6.2.4. Q

Remark 6.3.2. In [96, Theorem 8.1], the authors proved that the Burgers
equation admits global solutions for all input data 2o € H(0,1) and u; €
L2([0,00); L2(0,1)). Unfortunately, (6.15) does not hold for all z € dom(A),
so our method does not guarantee a global L2-ISS estimate for the spaces
from (6.20).
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Now, let us consider (6.19) with the real valued spaces

X =12(0,1),
Uy =U, =H10,1), (6.21)
Y = Hj(0,1).
Let A be given by
Az = jzz, dom(A) := H2(0, Hn H(l)(O, 1).

As before, A is self-adjoint and strictly negative on L2(0, 1), and we obtain
X3 =Hy(0,1) and X_ 1 =H'(0,1).

The operators B; € L(U;, X_1) and C € L(X,,Y) are considered to be
the identity on the respective spaces. In particular, Assumption 6.2.1
holds. The bilinear feedback operator N: X x Y — Us, given by

1 d(zy)
N ==
(#9)=—37q¢
satisfies (6.1). Indeed, for z € X and y € Y the continuity of the embed-
ding H?*(0,1) — C([0,1]) for s € (3,1), see e.g. [1, Theorem 7.63] or [21,
Theorem 8.2], and the classical interpolation result [66, Corollary 1.7 & Ex-
ample 1.10] imply for o € (0, §) that

17
Wleqom < Kyl e < Klglt ol e,
with p = % + a € (0,1), and hence,

1 1
INCG)llvz < 5llzyliezo) < 5Kll2lez0,) 9l 2 60.1) 1911%5 0.1
Moreover, for z € dom(A) we have that

N0 im0 = 5 [ (a0 = 260 - 20) =0
z2,UZ2),Z2)12(0,1) = 3], a¢ = 32 z = 0.
Therefore, (6.15) holds and we obtain the following global ISS result for
the Burgers equation.

Theorem 6.3.3. The Burgers equation (6.19) with spaces as in (6.21) and
operators as above is a bilinear feedback system of the form XN . Moreover,
(6.19) admits for all zg € L2(0,1) and uy € L?([0,00); H71(0,1)) a unique
mild solution

z e HY((0,00); H1(0,1)) n C([0,0); L2(0,1)) n L2([0, 00); Hy(0, 1)),
which satisfies for some v,c >0 and all t = 0 that

[|2( )||L2 0,1) & ||ZOHL2(0 1)€ ™y Ce_ytHeV'UlHL2([0,t];H71(0,1))-

In particular, (6.19) is L9-1SS for all g € [2, o0].

Proof. This is a direct consequence of Theorem 6.2.6 and Lemma 6.2.4. Q4
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6.3.2 The Schrodinger equation

We consider the following controlled Schrédinger equation

02 i

5 (00 = 135 (1,0 = 2(1.0) + (. O)’ +ui(t,¢), t=0,(e(0,1),

z(t,0) = 2(t,1) =0, t =0, (6.22)
Z(O7C)=207 46(0,1),

y(t, Q) = z(t, Q), t=0,€(0,1).

We take the spaces as in (6.20), which are here assumed to be complex
valued and define the operator A on X by

a

d?z
ac € H})(O,l)}.

Az = id—<2 —z, dom(A):= {z e H3(0,1)

2,

Note that A = Ay + L, where Ay = ig%ﬁ with dom(Ap) = dom(4) is

skew-adjoint and L = —1I is strictly dissipative. We consider the input and

output spaces Uy = Us =Y = X and the bounded operators B; = By =

C = I, whence Assumption 6.2.2 is satisfied. Define N: X x Y — U, by
N(z,y) = zy.

Thus, N satisfies (6.1) for any p € (0,1). Indeed, it follows from the
continuous embedding H'(0,1) — C([0,1]) with embedding constant
¢ > 0 that

IN Gz )l 0.1) < G 0le0,0) + ||2%HL2(0,1) < 2¢|zllur 0,0 1Yl 0,1)-

We obtain the following local ISS result.

Theorem 6.3.4. The Schriodinger equation (6.22) is a bilinear feedback
system of the form SN with the above spaces and operators. Moreover,
there ewist w,e > 0 such that (6.22) admits for all zy € HA(0,1) and
up € L2([0,00); L2(0, 1)) with

[20ll12 0,1y + luallLz (o,)m2(0,1)) < €

a unique solution z € C([0,00); H§(0,1)), which satisfies for some k > 0
and every t = 0 that

201120,y < ke™ (llz0ll12(0,1) + lle” wallL2(fo,e1:.2(0,1)))-
In particular, (6.22) is locally L2 -1SS.

Proof. This is a direct consequence of Theorem 6.1.4. Qa
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6.3.3 The Navier—Stokes system

The following example of the Navier—Stokes equation is taken from [96].
There, the authors considered the Navier—Stokes equation as a bilinear
feedback system to prove local in time well-posedness. All operator theo-
retic statements used in this section can be found in [96, Section 9] and
the references therein.

Consider the controlled Navier—Stokes equation on a bounded and open
domain © € R™ with boundary 092 of class C? (see [27, Section 6.2] for a
definition)

PO (1,0) VA1) + ol V)EE,C) + Tplh, Q) = wa(1,0), 13 0.Ce 0,
div z(¢,¢) =0, t>0,(eQ, (6.23)

2(t,¢) =0, t>0,Cedn,

2(0,¢) = z0(¢), Ceq.

The Navier—Stokes system describes the motion of an incompressible
viscous fluid in the bounded domain 2. The Eulerian velocity field of the
fluid 2z and the pressure field in the fluid p are unknown, while the density
p and the viscosity of the fluid v are given positive constants. By P we
denote the orthogonal projection from L2(©2;R?) onto the closed subspace

L27(Q) = {p e L2(Q;R?) | dive =0, ¢ - 7 = 0 on 0Q},

where 7i denotes the outward pointing unit normal vector at 092 and
¢ -7 = 0 is understood in the weak sense, i.e., for all ¥ € H}(2) we have
that

L #(0) - V() dC = 0.

The projection P is called the Helmholtz or Leray projector, and it is known
that
G(Q) := (I — P)L?(Q;R?)

can be given by G(Q) = V(IfI\1 (€2)), where

—~

(@) = {ae @) aac=o}.

One can prove that V: Ijl\l(Q) — G(Q) is a bounded invertible operator
with bounded inverse, denoted by M.
The Stokes operator Ag is defined by

Ao = —ZPAcp, dom(Ap) = L*7(Q) n HH(Q;R3) n HA(Q; R?).
p
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It turns out that Ay is a self-adjoint, strictly positive operator on L%7(Q).
Hence, we can define

Ap = —Agp, dom(A) := dom(A2)
on the state space
X = dom(A}) = { € H} (% R?) | div = 0},

equipped with the standard norm on H}(Q;R?), which is equivalent to the

1
graph norm of Ag. Thus, A is a self-adjoint and strictly negative operator
on X and we obtain that

X: =dom(4y) and X 1 =L*7(Q).

Nl
Nl

Further, we introduce the spaces
Uy =U; = L*(Q;R?), Y =dom(Ay)

and the operators B; € L(U;, X 1) for i = 1,2 and C' € L(X1,Y) with
bounded extension C' € L(X) given by

Bi=By=P, C~—=1I.
We define the bilinear mapping N: X x Y — Us; by
N(z,y) = =[(z- V)yl.
In [96, Proof of Proposition 9.2] it is shown that N satisfies (6.1) for p = %.

Theorem 6.3.5. The Helmholtz projected version of the Navier—Stokes
system (6.23) is a bilinear feedback system of the form SN with the above
spaces and operators. Moreover, there exist w,e > 0 such that (6.23) admits
for all zy € H§(Q; R3) with div 29 = 0 and uy € L2 ([0, 0); L2(;R3)) with

zo0ll12 msy + lwallLz ([0, 0):L2 (rs)) < €
a unique solution (z,p),

z e H((0,0); L2(Q;R?)) n C([0, 00); Hy (4 R?)) n L2([0, 00); H?(; R?)),
p e L2([0,0); HL(12)),

which satisfies for some k > 0 and every t = 0 that
2(0) a3 sms) < ke™ ([[20]l i msy + lle un |z (0,02 (:me)))-

In particular, (6.23) is locally L2 -ISS.
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Proof. The proof follows from the computations in the proof of [96,
Thorem 9.1], Theorem 6.1.4 and Lemma 6.2.4. We give the details for the
sake of completeness.
Since the projected version of (6.23) is a bilinear feedback system for
which Assumption 6.2.1 is satisfied, we obtain from Theorem 6.1.4 and
Lemma 6.2.4 the existence of w,e > 0 such that there exists for ev-
ery z0 € X = {p € H}(\R?) | dive = 0} and uy € L([0,00);U;) =
L2 ([0, 00); L2(£2; R?)) satisfying
[z0llg0ms) + llunllLz (o,0)L2ire) < €

a unique mild solution

2 € HY((0,00); L29(2)) n C([0, o0): HA( R?)) n LE([0, o0); HE (%)),
which satisfies

12() 12 ) < k”ZOHH})(Q)e_Wt + ke lure® (|2 fo,:L2 (me))

for every t > 0 and some constant k > 0. Since z € H*((0,00); L27(£)) it
follows that

pi(t) = vPAX() — pP(2(t) - V)2(1)]
with each term in L2([0, 00); L?(Q;R?)), and hence,

pz(t) = vAz(t) = pl(2(2) - V)z(1)] + ua(?)
— (I = P)[vAz(t) = p(2(t) - V)2(t) + ur ()]

Since
(I = P)[vAz(t) = p(=(t) - V)z(t) + ua(t)] € L*([0,0); G(2))
by the definition of G(£2), we have that p € L2([0, o0); ITI\l(Q)), where
P(E) = M(I = P)A=(t) — p(=(t) - V)=(t) + w1 (1))

It follows that the pair (z,p) is a solution for (6.23) with the asserted
regularities. The uniqueness follows from the uniqueness of the solution
for the projected version of that system. d

6.3.4 A wave equation

Consider the following wave-type equation on a bounded and open domain
Q € R?, d < 4, with Lipschitz boundary 09 (see [27, Section 6.2] for a
definition),
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(2900 + 2.0 - 2200+ @OP =m(t.0), 120Ce,
w(t,C) =0, £>0,Ce o0,
(0.0) = wo(C). ceo,

< %0,0 = w0, cen, 2
WO =t 120¢eq

L w(t.0= 2.0, 120ce0

The transformation

=Lg] )= 15

leads to the first order system, considered on the state space X = H}(€2) x

L?(Q),
| mg -4 [58] * [ulo(t)] + [Lpzo(t)] L >0
< [22%83 B [ig] (6.25)
[328 - [58] ! >0,

where the operator A: dom(A) € X — X is defined by

A= [2 _II] dom(A) = (H2() A HY()) x H(S).

It is well-known that A generates an exponentially stable Cy-semigroup
on X. It can be readily seen that (6.25) has the form X with input and
output spaces

U =U,=1%Q), Y =X=H)Q) xL*Q), (6.26)
control and observation operators

0

Blszz[I

| c-t

and bilinear mapping N: X x Y — U, given by

v([2]-[5]) e
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Note that B; € L(U;, X) for ¢ = 1,2 and C € L(X,Y) thus Xy, is well-
posed.

Since d < 4, the embedding H!(Q) — L*(£2) is continuous, which
implies that N is well-defined and satisfies (6.1) for any p € (0,1) as
Y = X. Indeed, for 1, ps € H(Q) we have that

le102llL2(0) < lleillua@)llezllia@) < Ellerllm @) lezlla @),

where c is the embedding constant.
We obtain the following local ISS result.

Theorem 6.3.6. The wave equation (6.25) is a bilinear feedback system
of the form SN with the above spaces and operators. Moreover, there exist
w,e > 0 such that (6.25) admits for all (po,v0) € H{(Q) x L3(Q) and
uy € L2 ([0, 00); L2(Q)) with

vl + [[YollLz) + lutllLz (o,20)m2)) <€

a unique mild solution (p,) € C([0,00); H§(Q) x L2(Q)) which satisfies
for some k > 0 and every t = 0 that

el @) + Y@l
< ke™" ([leollm o) + [Yollz) + llure 2o, (0))) -
In particular, (6.25) is locally L2 -1SS.

Proof. This is a direct consequence of Theorem 6.1.4. d

Remark 6.3.7. One could also use energy based methods to derive the local
ISS result for (6.25). More precisely, for sufficiently small € > 0, Poincaré’s
inequality implies that the square root of the energy functional

E(p4) = fﬂ|w<a:>|2 do + fg|w<x>|2 do+e L p(@)(z) de

defines a norm on H{(Q) x L?(€2), which is equivalent the the standard
norm on that space. Moreover, there exist v, ¢ > 0 such that

5 S B(p(t), w(1)) < —B(p(t), 0(1)) + ellur () e

holds for classical solutions (¢p,%) of (6.25), provided that the initial
value and input function are sufficiently small in the sense of (6.5). This
means that E is a local ISS-Lyapunov function. As in the proof of
Theorem 6.2.6, Gronwall’s inequality yields the desired L2-ISS estimate for
classical solutions. As seen in the proof of Lemma 6.2.5, we can approximate
mild solutions by classical solutions in C([0,t]; H}(Q) x L2(2)) for every
t > 0. Note that Assumption 6.2.2 is not satisfied. However, A = Ag + L
with Ay being skew-adjoint and L being bounded and dissipative (not
strictly dissipative), which suffices to prove Lemma 6.2.5. Finally, by
approximation, the local L2-ISS estimate holds also for mild solutions.



Chapter 7

Input-to-state stability of
a semilinear wave
equation

In this chapter, we study input-to-state stability of a semilinear wave
equation with in-domain damping being active only on some spatial sub-
region. In [108] Zuazua considered this problem in the absence of inputs.
He proved exponential stability under certain geometric conditions on
the subregion based on multiplier methods and the monotonicity of the
system’s energy. In the presence of inputs, it is no longer guaranteed that
the energy is monotonically decaying. However, we show that the semi-
linear damped wave equation with inputs is L2-ISS by refining Zuazua’s
approach.

7.1 Well-posedness of a semilinear wave equa-
tion
We consider the following semilinear damped wave equation on the open

and bounded domain Q € R" with boundary 0Q of class C? (see [27,
Section 6.2] for a definition) and distributed input ,

62

S0 = 2260 + [z (to>+a<>6t<r<>—u<t<> t20CeQ,
2(t,¢) = t>0,( €9, (7.1)
0 0= a0 Cen,
20,0 =20, cen
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In line with [108], we impose the following assumption on f and a. The
function f € C(R) satisfies, for all s € R,

f(s)s =0, (7.2)

in particular, f(0) = 0. Further, assume that f is superlinear in the sense
that there exists some ¢ > 0 such that for all s € R,

f(s)s = (24 9)F(s), (7.3)
where

P = [ o)

Moreover, f satisfies the following local Lipschitz condition for some C' > 0,
p>1with (n —2)p < nand all z,y e R,

[f(@) = f)] < CA+ 2P~ +[ylP~)le -yl (7.4)

The function a € L™ () is assumed to be non-negative almost everywhere.
Moreover, we assume that there exist a non-empty open subset w € Q and
a constant ag > 0 such that for almost every ( € w,

a(¢) = ap > 0. (7.5)

This guarantees that the damping in (7.1) is active on the subset w.

As a first result, we prove well-posedness of (7.1) considered as a first
order system. Using the (formal) state variable z = [71] = [;], we
obtain

(7.6)

@(t) = Az(t) + g(2(t)) +o(t), t=0,
z(0) = xp,

considered on the state space X = H§(Q) x L?(Q) with

A= [2 _]{4] dom(A) = (H3(Q) n HY(Q)) x HYQ),  (7.7)

and multiplication operator
M, :13(Q) - L%(Q), M,z =az.
The semilinearity g, the input v and the initial value zy are given by
9@) = [-slep]. v=1[8], and =[] (7.8)

Note that a € L* () implies M, € £L(L?(9)). It follows that A generates a
Co-semigroup on X. Furthermore, f, considered as a function from H*()
into L2(Q) is well-defined and locally Lipschitz continuous in the sense
that for any bounded set V' € X there exists a constant Ly > 0 such that

1/(2) = f()llL2@) < Lvllz = 2w (@) forall 2,2€ V.
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Indeed, the assumption (n — 2)p < n with p > 1 guarantees that the
embedding H!(Q) — L?P(Q) is continuous, see [1, Theorem 4.12]. Then,
for 2,2 € H'(Q), we deduce from (7.4) and Hélder’s inequality that

| 1@ - sEorac
<G [ (1 BOP + HOP R 1:0) — HOP dc
<30 [ L+ 0P + QP ) |2(0) = 20 a6
<3C% (I %) + 12155 + 1217% ) ) 112 = Zl3en oy
<K (10550 + 1=l5bey) + 121REG)) 11z = 2 @),

for some K > 0. Since f(0) = 0, it follows that f: Hj(2) — L3(Q) is well-
defined and locally Lipschitz continuous. Consequently, also g: X — X is
well-defined and locally Lipschitz continuous.

The well-posedness of (7.6) follows from the next abstract result, which
is well-known for v = 0, see e.g. [15, Theorem 11.1.5]. For the sake of
completeness, we give the proof, which is an adoption of the proof of [15,
Theorem 11.1.5].

Lemma 7.1.1. Let A be the generator of a Cy-semigroup (T(t))i=0 on a
Hilbert space X and g: X — X be locally Lipschitz continuous, i.e., for
every bounded set V € X there exists a constant Ly > 0 such that

llg(w1) — g(x2)l|x < Lv|lz1 — 22/ x

holds for all 1,29 € V. Then, for every xg € X and v € L2([0,0); X)
there exists a t; > 0 such that the semilinear system (7.6) has a unique
mild solution x € C([0,t1]; X), that is,

t

z(t) = T(t)xo + L T(t — s)[g(x(s)) +v(s)]ds, te]0,t1].

Moreover, let xg and v be fized and denote by tyax the supremum over all
t1 > 0 such that (7.6) has a unique mild solution on [0,t1]. Then, the
following assertions hold.

(i) If tmax < 00, then lim supt/tmaxHx(t)HX = 0.

(ii) For any compact interval [0, 7] € [0, tmax), the mild solution depends
continuously in C([0,7]; X) on z¢ € X and v € L2([0,7]; X).

(iii) If 2o € dom(A) and v € H'((0,00); X), then, z: [0,tmax) — X is
differentiable with x(t) € dom(A) and it satisfies (7.6) pointwise on
[Oatmax)-
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Proof. We first consider the more general problem

{ #(t) = Ax(t) + g(x(t)) +v(t), t = to, (7.9)

(E(to) =X,

for some tg = 0, and prove the existence of unique mild solution x €
C([to,t1], X) for sufficiently small ¢; > ¢, i.e., x satisfies

t

x(t) =T(t —to)xo + f T(t —s)[g(x(s)) +v(s)]ds, te [to,t1].

to

Let 29 € X and v € L?([tg,0); X) be arbitrary and extend v by 0 to a
function in L2([0,00); X). Let M > 1 and w > 0 with ||T(¢)|| < Me** for
all t > 0. For r > 0 with [|xol|x + [|v][L2(jo,00);x) < 7, define

K(r)=Mer+M=>1 (7.10)
and

1 1
e (K(r) Ly + l9(0)[|x) " 2Me* Ly

o(r) = min{l, } >0, (7.11)

where L, is the Lipschitz constant of g on the bounded ball {z €
X||lzllx < K(r)}. We will show that (7.9) has a unique mild solution x
on [to,to + 0(r)] with ||z(t)||x < K(r). Define

Sk = {x € C([to,to + 6(r)]; X) [ 2l o (fto,to +5(m1:x) < K (1)}

and the nonlinear map F': Sg () = Sk (r) by

t

(Fz)(t) =Tt —to)xo + J T(t —s)(g(z(s)) +v(s)) ds.

to

Note that for any = € Sg () the function Fz is continuous on [to, to +d(7)].
Indeed, this follows from the strong continuity of (T'(¢t)):=0 and the fact
that the integral term is the convolution of the semigroup with the LlloC

function g(z(-)) + v, see also Proposition 2.1.9 for B = I. Further, for
every = € Sk () and t € [tg,to + 0(r)] we have that

I(Fa)(t)]1x
< Me® <xo|x + [ L lle@lx + o)l + ||v<s>||xds)

M
Me“r + Me“3(r) (K (r) Ly + [l9(0)]x)

<
< K(r).
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This shows that F' is well-defined. Similar, for 1,72 € Sk(,) and t €
[to,to + d(r)] we estimate

[(Fx1)(t) = (Fa2)(t)]| x
< Me” Lig(ry0(r)l|z1 — 22l o([to,to+5(r)])

—_

< sl = z2lle(to to+5(m)])-

[\]

Hence, F is a contraction and Banach’s fixed point theorem yields the
existence of a unique mild solution = € C([to, to + d(r)]; X) of (7.9) with
lz(t)]x < K(r).

Next consider (i) and let tax be the supremum over all ¢; > tg such
that (7.9) admits a unique mild solution = on [to,¢;] for fixed z¢ € X and
v € L2([tp, 0); X). We prove (i) by contradiction. Assume that tpax < 00
and limsup,; »,  ||=(t)||x < oo. Hence, there exists an increasing sequence
(tn)nen In [to, tmax) converging to tmax with

r = sup||lxz(t,)||x < 0.
neN

By the first part of the proof, we find a 6 = §(r) > 0 independent of n € N
such that the system
Tn(t) = Axp(t) + g(zn(t) +v(t), t=ty,
Tn(tn) = 2(t,)

has a unique mild solution z,, on [t,,t, + d]. Hence, we can extend the
mild solution x by ,, to a mild solution on [tg, t,, +d]. For large n we have
tn + 0 > tmax contradicting the maximality of ¢, and thereby proving
the claim.

For (ii), fix zo € X and v € L2([0, 00); X) and denote the corresponding
solution of (7.6) by z. Let 7 € (0, tmax). We will show that for Zo € X and
¥ € L2([0,00); X) sufficiently close to 2o and v, the corresponding mild
solution z exists on [0, 7] and thereon it is close to 2. To do this rigorously,
set

= 2(||lzllc(o,1;x) + [[vllL2(o,00);x))

and let K(r) and §(r) be given by (7.10) and (7.11), respectively. Choose
N € N such that Né(r) = 7. By going over to some possibly smaller
4 € (0,9(r)] we can assume that N§ = 7. So, t,, :==nd withn=0,...,N
induces a partition of [0, 7]. Further define

M, = mauX{l,rnax{T%7 1} Me*™ (1 + Me“" Ly (Te LK(T)T)}

where L,y denotes the Lipschitz constant of g on {z € X | |z|[x < K(r)}.
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Now, let g € X and ¥ € L2([0,0); X) with

N l|zoll x
120 = ollx < = 75
i 7.12
15— vllie (o) < oll2 o) (7.12)
Seso Mk

Since we consider solutions on [0, 7] we assume without loss of generality
that v = 0 = 0 on (7, 0).
We will inductively prove that for all n = 0, ..., N —1 there exists a unique
mild solution z, on [tn,t,+1] of (7.9) with initial condition z,(t,) =
Zn—1(tn) (with z_1(to) = 2-1(0) = Z() and input ¥, which satisfy for
te [tnv tn+1]

n+1

2 ()= ()| < Mz (tn) = (ta) | x+ Y5 MFIT—vlL2(o:x)- (7-13)
k=1

First, let n = 0. Note that
Jollx + olle o

< @0 — 2lx + ll2ollx + |0 = vllrz(o,r1;3) + [[VllL2(o,7153)

<
by (7.12) and the fact that M, > 1. Hence, by the first part of the
proof, (7.9) with zg as state trajectory, initial condition z¢(tg) = z_1(to) =
Zo and input ¥ admits a unique solution zy on [tg,?;] which satisfies
lz0llc([to,t:7:x) < K (r). Hence, we can invoke the Lipschitz continuity of
g to derive the following estimate from the mild solution formula for all
t € [to, to + 0],

[1z0(t) — z(8)[| x

< Me*" max{r2,1}(||Zo — zo x + || — v||L2([0.1]:x))
t
M Ly [ Nols) = o) .
to

Applying Gronwall’s integral inequality yields that

l20(t) — x(8)]| x

< Me*" max{r%, 1}(||Zo — ol x + |17 — v]lt2([o.7:x))

b e 7.14
: (1 + MewTLK(T) J eMe Lk (r(t=9) dS) ( )
to
< Mz (|20 — ollx + |9 — vllL2(j0,71:x))
which shows the induction claim for n = 0. Assume that forn € {0,..., N —

2} there exists a unique mild solution z, on [t,,t,+1] of (7.9) with initial
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condition z,(t,) = #n—1(tn) and input o, which satisfies (7.13). Then, it
follows from (7.12) that

| 2n (tns )|l x 4 19]lL2(j0,77:x)
< Jznltnss) = 2ltnrn)lx + 2(tnsn)lx
+ 1|9 = vllL2(0,.:x) + vl o, 71:x)
< MPHEo — wollx + [|2(tng)llx
n+1
+ Z ME||5 = vllL2(fo,71:x) + IIvllL2(po,71:)
k=0
<.

Again, by the first part of the proof, (7.9) with z,,1 as state trajectory,
initial condition z,4+1(tn) = 2zn(tn+1) and input ¢ has a unique mild
solution zy, 11 on [ty 1, 2] which satisfies [|2n 1 llc ([t tnse]ix) < K(7).
As before, we estimate the norm of the difference of z,,; and = based on
the mild solution formula and then apply Gronwall’s integral inequality to
obtain (7.13) for n + 1. This proves the claimed induction statement. It
follows that the function z: [0,7] — X, defined by z = z, on [t,, tn41] for
n=0,...,N —1 is the unique continuous mild solution on [0, 7] of (7.6)
with initial value %y and input . Further, since M, > 1, z satisfies (7.13)
with n = N and all ¢t € [0, 7]. Since N only depends on 7, we have shown
the existence of a constant C, > 0 such that

12() = 2@l x < Cr ([0 = ollx + |10 = vllL2(po,r1:x)) (7.15)

holds for all ¢ € [0, 7] provided that Z¢ and ¥ are close to z¢ and v in the
sense of (7.12), which completes the proof of (ii).

Finally, consider (iii). Let x be the mild solution of (7.6) for xy €
dom(A) and v € H!([0,00); X). For any h > 0 we have that

z(h) —xo
h
_ T(h)zo — o

h
h + % JO T'(h — s)[g(zo) +v(0)] ds

1 h
3 | T = 9lte() — ate0) + o) — o0 s

Since zp € dom(A), the first term converges to Az as h N\, 0 and the
second term converges to g(xo) + v(0) by the strong continuity of the
semigroup. Since H' is continuously embedded in the continuous functions
on compact intervals, g and v are uniformly continuous on any compact
interval. Hence, for any £ > 0 there exists h. € (0,1] such that for all
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h € [0, h.] we have that

1

h
*ffuh—ﬁb@@D—Mﬂﬂ+W$—Umﬂ®

. < sup [T(®)]le.
0

te[0,1]

X

Since € > 0 was arbitrary, the left-hand side converges to 0 as h \, 0, and
therefore, x is right-differentiable in ¢ = 0.

Next, we show right-differentiability in ¢ € [0, tmax). Let 6 > 0 such
that t + § < tmax and h € (0,9). First note that

z(t+h)=T(t)x(h) + L T(t—s)[g(xz(s+ h)) +v(s+ h)]ds.

Hence, z(t + h) is the solution of

{ §(t) = Ay(t) + g(y(t)) + v(t + h), t =0,

evaluated in ¢. It follows from (7.15) that

xu+M—x@H

(7.16)
< Cigs ( ) .
L2([0,t];X)

Note that the right-hand side is uniformly bounded in h € (0, §) since x is
right-differentiable in ¢ = 0 and

X
x(h) — xq
h

v(+h) —o()

+ h

X

2

ds
X

2 t
L2([0,t];X) - JO

t 1
SJ J ||v(s+rh)H?X drds
o Jo

1 pt+rh
- [ | 1B doar
0 Jrh

P
< HU||L2([0,t+h];X)

o+ h) = u()

1
Y J (s + rh)dr

0

holds for any ¢ = 0 and h > 0, where we applied Cauchy Schwarz’ inequality.
Next, consider the identity

T(h)—1 x(t + h) — x(¢)

N () = 2 Y
p e h

. (7.17)
3| T =9l + o) as
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Similar as before, the integral term

1

t+h
h L T(t+h—s)[g(z(s)) +v(s)]ds

h
f T(h—r)[glx(t+7r))+ov(t+r)]dr
f T(h—r)[glx(t+71)) —gx(t)) + vt +7r)—v(t)]dr

h
4 | 7= Dlge) +u@]dr

converges to g(x(t)) + v(t) as h \{ 0 by the uniform continuity of g and v
on compact intervals and the strong continuity of the semigroup. To show
convergence of the remaining terms in (7.17), let (hy,)nen € (0,0) be any
zero-sequence. It follows from (7.16) that (%TW)%N is bounded,
hence it possesses a weakly convergent subsequence (again denoted with
hy). By (7.17), also (%)%N converges weakly to some y € X. Thus,
for ¢ € dom(A") we have that

Agattyx = i (T gt

n—o0 n

T T(hn) -1
= lim <q7 B w(t)>X

=@, y)x-
Therefore, 2(t) € dom((A’)") which coincides with dom(A) since A is closed.
Finally, (7.17) yields that « is right-differentiable in ¢ with right-derivative
Az(t) + g(z(t)) + v(t).
For the left-differentiability in ¢ € (0, tmax) we proceed similar. For
h > 0 with t — h > 0 we have that
t—h

xz(t) =T(t — h)z(h) + L T(t—h—s)[gx(s+h)) +v(s + h)]ds.

Hence, x(t) is the solution of
y(t) = Ay(t) + g(y(t)) +v(t + h), t=0,
y(0) = z(h)

evaluated in ¢ — h. For small A > 0 (7.15) yields the existence of some
Cy > 0 such that

x(t) —z(t — h) H
h X
<ot<“’<h)—x0 N EEOETI0 )
h X L2([0,t—h]; X)
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As before, the right-hand side is uniformly bounded in & € (0,¢]. For such
h we also have that

T(h])l— Ix(t = x(t) — z(t —h)
1t (7.18)
s thh T(t — s)[g(x(s)) +v(s)]ds.

The integral + Sth T(t—s)[g(z(s))+v(s)] ds converges to g(x(t)) +v(t) as
h \{ 0, which can be concluded with the same arguments used before. More-
over, for any zero-sequence (hy,)nen in (0,t) we have that (I(t)%ff*h”))nel\;
is bounded. Therefore, we can extract a weakly convergent subsequence
(again denoted with h,,). By (7.17) also (%x(t — hy))nen converges

weakly to some y € X and for any ¢ € dom(A’) we have that

lim Mq,x(t — hn)>
b's

(Alq,2(t))x

n—w hn,
) Tl -1
= nh_r)%v q7hnl‘(t—hn)>x
= <Q7y>Xa

where we used ¢ € dom(A’) and continuity of z for the first equality.
This shows that x(t) € dom(A). Therefore, in the above equation, we
can replace the subsequence (h,)neny by any zero-sequence in (0,t], and
since ¢ € dom(A’) was arbitrary, it follows that lim,\ o %x(t —h) =
Az(t). Finally, (7.18) implies that x is left-differentiable with left-derivative
Az(t) + g(z(t)) + v(t). This coincides with the right-derivative in ¢, and
this, x is differentiable on [0, tmayx) with (t) = Az(t) + f(z(¢)) +o(¢). Q

Remark 7.1.2. For any 2 € H}(Q), 21 € L?(Q) and u € L2([0, 00); L2(2)),
the unique mild solution of the first order semilinear wave equation
(7.6) — (7.8) from Lemma 7.1.1 takes the form z = [%] with 2z €
C([0, tmax); HE(2)) nCL([0, tmax); L2(2)). Moreover, if 2o € H2(2) nHE(€2),
21 € HE(2) and uw e HA((0,0); L3(Q)), then

z 2z
%(t) e HY(Q) and g?(t) e L?(Q)
exist for all t € [0, tnayx) and z satisfies (7.1) in L2(2) pointwise on [0, tmax)-
Indeed, by Lemma 7.1.1, we only have to show that the mild solution
= [5:] € C([0, tmax); H§(Q) x L2(2)) takes the claimed form. To this
end, note that it coincides on [0, tyax) With the mild solution of the linear
system

{ég(t) = AZ(t) +a(t), t=0,



7.1. Well-posedness of a semilinear wave equation 151

with state space X = H}(Q) x L2(Q) and input @ = [_f(£1)+u] on [0, tmax)
and @ = 0 on [tmax, ). Since f maps H}(£2) continuously into L2(2) we
have @ € L2([0,0); X). By Proposition 2.1.21, 7 satisfies for ¢ > 0 the
implicit equation

Z(t) —xo = Jo A_1Z(s) +u(s)ds

in X with integration in X_;. Thus, we obtain for the first component

t

x1(t) = 20 + L x2(s)ds
for all t € [0, tmax), i-€., 1 € CH([0, tmax); L2(Q)) with dditl(t) = xo(t) in
L2(Q).

For a mild solution z = [ if] of the semilinear wave equation consider
the energy functional

— 5 [t or +1 S woracs [ Fewoa @)
Q Q

If [%] is the mild solution for zg € H?(Q) n H§(2), 21 € H{(R2) and
u € H((0,00); L%(Q)), then we can differentiate the first integral in (7.19)
in each ¢ € [0, tmax) by Remark 7.1.2. The latter integral is differentiable
in ¢, since z: [0,tmax) — H§(Q) is differentiable and F considered as
mapping F: H}(Q) — LY(Q), z — F(z(+)) is Fréchet-differentiable with
Fréchet-derivative F’(z)h = hf(x(-)), which is also a function in L2(£2).
Indeed, for x, h € H}(£2) the Lipschitz condition (7.4) together with the
continuous embeddings H} () — L2P(Q) — LPL(Q) yields

|F(z+ h) — F(z) - f(2)hlui
z({)+h(¢)
=j‘[ £(s) — fF(@(0)) ds
Q 'r(

2(¢)
< JQ C(1 + max{]z(Q)P~ |2(C) + O~} + [2(OPHIR(O)P d¢

d¢

<jcu+ﬂ*W0W%uvm%maMVMMm%<
< C (Il + 22 IR oy + (14 27 a5 [ e

< C (Ihlis oy + 10123 by + N5 oy 111 )

for some C' > 0, where we used convexity of s — sP~!, which yields
max{|z[P~, |z + AP~} < (Jz| + [R))P7F < 2P72(|z| + |h]), as well as
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Holder’s inequality. Since p > 1, the claimed Fréchet-differentiability
follows. Therefore, we can differentiate E(t) for every ¢ € [0, tmax) and

d
2@

vi(t.0) ¥ (5.0) + G005 0.0

Q
v f et o)%(t,o a

62

ax0F o [ 5

(4,0 (1,0 ¢
+ J’Qf(Z(EC))g(taC)dC

- [ a0z

2
S0 dor [ utoF o

Note that the latter is continuous in ¢ and integration over [S, 7] yields

H

Since both sides depend continuously on 2o in H}(Q), 21 € L?(Q) and
u € L%([0,00);L%(2)) by Lemma 7.1.1 (ii), density yields that (7.20)
holds for any zo € H}(Q), z1 € L%(Q) and u € L2([0,0);L?(Q)) and
the corresponding mild solution.

E(T) -

az (7.20)

tC

d(dt+ff tg (tg)dgdt

Lemma 7.1.3. The mild solution [ 2 | of the first order semilinear wave
equation (7.6)-(7.8) for z9 € H}(Q), 21 € L2(Q) and u € L2([0, 00); L2(Q))
from Lemma 7.1.1 is global, i.e., tyax = 0.

Proof. By Lemma 7.1.1 (i) it suffices to show that any mild solution with
maximal existence time ty,,x > 0 is bounded on any compact interval
[0,7] € [0, tmax)- For any t € [0, T] we have that

1 1 0z
Sy + 515 Ol
< E(t)
1,0z,

< E(0) T || 675 ||L2( [0.¢]:L2(2) T 5||“HL2( [0,4]:12())
E(0) + ZeTHEHLz([o,t];m(Q)) + 5||UHL2([0,T];L2(Q))»

for all € > 0, where we used that F' > 0 on R in the first mequahty and
(7.20) as well as a > 0 almost everywhere in  and 2y < - + ey? for any
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z,y € R in the second one. For ¢ =T we obtain that
1 9 1,0z, 9 9
o {510l + 515 Ol | < EO)+ Tlsqoryas

This shows that mild solutions remain bounded on compact intervals
[0,T] € [0, tmax)- Q

7.2 Input-to-state stability of a semilinear
wave equation

We will use the energy functional (7.19) to prove an L2-ISS estimate for
the mild solution of (7.6), provided that the damping region w satisfies
the following geometric condition.

Assumption 7.2.1. For (y € R™ set

['(Co) = {C € 092 [ (¢ = ¢o) - 7(¢) > 0},

where 7(¢) is the outward pointing unit normal vector at ¢ € 0Q2. We
assume that the damping region w € Q on which (7.5) holds almost
everywhere for some ap > 0 is a neighborhood of I'({p) in Q for some
¢ € R, ie., w = U n Q for some neighborhood U of T'({y) for some
Co € R™.

)

Geometrically, T'(¢p) is the part of the boundary 012, “facing away’
from (p, as depicted in Section 7.2. Assumption 7.2.1 does not require
that w has a certain measure. In fact, w could be the intersection of
with an e-tube around T'({p).

Figure 7.1: Example for the geometric condition on the damping region w
stated in Assumption 7.2.1.
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Theorem 7.2.2. Let 2 € R™ be an open and bounded domain with
boundary ) of class C?. Let f € C1(R) and a € L™ () be non-negative
such that (7.2)—(7.5) hold, where w satisfies Assumption 7.2.1. Then,
there exist p,Co,C1 > 0 such that for all zg € H5(Q), 21 € L2(Q) and
u € L2([0,00); L2(Q)) the mild solution x = [%] of (7.6)—(7.8) satisfies

0z
121 ) + ||§(t)||izm)

— 1 :
< Cpeht (Ilzollﬂg(m + llzollft iy + ||zl||irzm)) (7.21)

+ C HU”iz([O,t];L%Q))’

forallt =0, where p > 1 is the constant from (7.4). In particular, the first
order formulation (7.6) of the semilinear wave equation (7.1) is L2-ISS.

Proof. Tt suffices to prove (7.21) for zg € H2(Q) n H{(Q), 21 € H{(Q)
and u € H((0, 00); L2(Q)) and the corresponding global classical solution
T = [if ], which exists by Lemma 7.1.1 and Lemma 7.1.3. The statement
for zg, z1, u as in the theorem follows by density and continuous dependency
of the mild solution and (7.21) on these data. Furthermore, it suffices to
show the energy estimate

E(t) < Ce " E(0) + K ||ull?2j0.49:12(0)) (7.22)

for all £ = 0 and some absolute constants C, K > 0. Indeed, we deduce
from (7.22) that

1 0z
5 (IO By + 15 Ol

(t)

FE
Ce™™E(0) + K [ullf2(0.q.12(0))

NN

—u 1
Coe™#! <||20||12q(1)(9) + ||ZO||§){J(1:(Q) + ||21H%2(Q)) + ClHU||i2([o,t];L2(Q))

V/A\

for some Cy, C1 > 0, where we used F(s) = 0 in the first inequality and
(7.3), (7.4) together with f(0) = 0 and the continuity of the embedding
H(2) into LPT1(Q) for the last inequality.

To arrive at (7.22) we first prove for T' > 0 sufficiently large that

E(T) < 207(E(0) — E(T)) + Krllulf (o r1.12(0) (7.23)

with positive constants C'r and K. This is done in STEP I and STEP II.
Finally we show in STEP III that (7.23) implies (7.22).

For the sake of keeping the notation simple, we waive the dependency
of all functions on ¢t = 0 or ¢ € 2 when integrating. Furthermore, we use
C and K for absolute and Cr and Kp for T-dependent constants which
may change from estimate to estimate.
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STEP I. We first prove
T

f E(t)dt
0

T 2
<CTU faaz
0 Q

T
d<dt+f0 fQ|z|2d<dt+|u||ia<[o,T];Lz<m>}

for some T-dependent constant Cr > 0 and T > 0 sufficiently large.
Multiplying (7.1) with ¢ - Vz for a vector field ¢ € (WL (£2))" and
integrating by parts as in [64, Lem. 3.7] yields that

[J a (¢-V2) dC] J J (div q) (
+J L kznjl‘g‘é’jjijé ¢ dt — J f (div q)F () d¢ dt
j f 9% (q-Vz)dcdt
f J 6z

Let ¢p € R™ such that w is a neighborhood of I'({p). The choice

—|Vz |2) d¢dt

(7.24)

T
do dt + J J u(q - Vz)d¢ dt.
0o Jo

q(¢) = m(¢) = (¢ = o)

yields that

[ Zt(m Vz) dg] —|Vz[2d¢ dt

+J J|Vz|2d§dt—nf0 LF(z)dCdt

f J a— m-Vz)d{dt (7.25)

3]
H@

Similar, multiplying (7.1) with £z for £ € WH*(Q) and integrating by

T
dadt+f J u(m - Vz)d(dt
9 0 Jo

T
do dt + J J u(m - Vz)d¢dt.
6 0 Jo
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parts leads to

o5,
S e

- LT | (v (vapzaca- fOT | ereaca

+ JOT L €zudC dt.

For £ = 1 we obtain that
0z az
U (at >d<]
T
- % vsPacar - 7.27
L L 5| — VAT dddt L Lzﬂz)dédt (7.27)

T
+J f zu d¢ dt.
0 Jo

If we combine (7.25) and (7.27), we obtain for any o € R that

|v22) d¢ dt

(7.26)

[J %(m-Vz)—i—az (Zz—i-gz) dg]:
7—04 f f aj d(dt+(1 a—f f f|Vz\2dCdt
—i—ozj .sz dCdt—nJ L z)d¢de

J l[a—m Vz)d¢dt

5[ [

Let 6 > 0 be the constant from (7.3). For a € (maX{O 5—1,35%5h 2)
and C = min{§ —a,1 +a — 5,(2 4+ d)a — n} it follows that CF(z) <

2 T

dodt—}-f J u(m-Vz + z)d¢ de.
Q

0

%
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azf(z) —nF(z), and hence,

CJTE(t)dt
L

+J0 fgu(m-Vz—i—z)det,

2
dodt + + X

LT Lz a%(m -Vz)d¢dt

%

where

0z 0z a
X:HQ&’t(m Vz)+az(at 2>dC]

Thus, the previous inequality together with

a— m-Vz)d{dt

gﬂflwmffa
45 o JO

oz ?

T
d¢ dt + ellm|f (g L L\vzﬁ d¢ dt
—_—————

< ST E@)dt

for € > 0 sufficiently small implies for some constant C' > 0 that

JT E(t)dt
il

oz |2

ot

0z

)37 d¢dt +&  (7.28)

T
dadt+f Ja
0 Jo

It is known (see e.g. [64, Chapter I, Remark 3.2]) that there exist a
neighborhood & of T'({y) such that ® n Q € w and a vector field h €
(WL%(0))™ such that

u(m-Vz+z)d(dt

h=nonT({), h-n=0indQY and h=0in Q\O.
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Therefore, (7.24) for ¢ = h implies for some C' > 0 that

L1
T [
{|U oV dc]o
L
+L Lmu(h-vz)dgdt}.

It follows from the the proof of [64, Chapter VII, Lemma 2.4] that there
exists a function n € WH*(Q) such that

0z |2

—»

dodt

2
do dt

(7.29)

+|V2)2 + F(z)d¢ dt

V? ;
0<n<1inQ, n=1in®, n=0inQNw and Vo € L (w).
n

Hence, (7.26) with £ = 7 implies that

fo ’ Lnuw +2f(2) A dt

2
2((Vn) - (Vz))dC dt| + dcdt +Y

ol 0t

nzud(dt|,
Q

(e e3)e]

Therefore, this inequality together with

where

2((Vn) - (Vz)) dC dt
(ZV”> JiIVz) d¢dt

1 T 2
EJ Jn|Vz|2dCdt+—J JMMQdCdt
0 Q de 0 w n
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for € > 0 sufficiently small and (7.3) yield for some C' > 0 that

JOT ng|vz|2 +F(z)d¢dt

T
<LJQ77(|VZ|2+F(z))dCdt .
2 T .
dc¢ dt 2d¢ dt
ci+ JO L 22dcdt+ Y

<c{ !
}.

Combining (7.28), (7.29) and (7.30) with the boundedness of 1 and h and
the positivity assumptions on a, we obtain that

w0t

nzud dt
Q

T
JAm@a
0
0z r
<C [ (h-Vz)dcj] +X+Y
ot o
Z T
JJ = dCdt—i—J f|z\2d(dt
ot 0 Q
nzudl dt| + u(h-Vz)d¢dt
Q wnQ

u(m-Vz+z)d(dt

_l’_
0 JQ
<C [ aZ(h-Vz)dg]T
h Q Ot 0

} (7.31)

+X+Y
J J (7 dCdt—i—LTL|z2d§dt
+sj J’ ’ +|Vz|2dCdt

) t

1 2
+ (1 + 4€> ||u||L2([O,T];L2(Q))}'

Using the definitions of & and Y,

T
FX+Y

[ ) Zj(h <7z)dc]

0
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T
J +—VdeC+J‘deC] }
Q Q 0
2 T
+ V2| dC] }
0

oz |2

2

where we applied the Poincaré inequality in the first and (7.20) in the
last equality. Combining this with (7.31) and choosing ¢ sufficiently small
leads to

T
dCdt—i—J,O JQ|Z|2d§dt (7.32)

C{E<T>+ f [o|Z ’

+ ||u||i2([0,T];L2(Q))}'

We remark that the function r — E(r) — {| {, u2 d¢ dt is non-increasing
on [0,00) by (7.20). It follows that

JJu—M& fEﬂM—ffju—M&&
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and therefore,

TE(T)

T T T v
SJ E(r)dr—i—TJ Ju%dgdt—f J Ju%dg“dtdr

0 0 Jo Ot 0 Jo Jo Ot

T T T ox
=f E(r)dr—i—f f f u——d¢dtdr

0 0o Jr Jo Ot

T T
SJ E(r)dr—i—TJ J

0 0 Ja

T T
<[ rwar [
0 2 0 Q

Hence, (7.32) yields that

a2
Yot

oz |? T
Fn d¢dt + §||U||L2([0,T];L2(sz))-

E(T)

<er{ ]

+ |u||i2([0,T];L2(Q))}

0z

2 T
= dCdt+J J|z|2dgdt
ot o Ja

(7.33)

and

f "B ar

0

o[ [

+ |u||i2([0,T];L2(Q))}

0z

2 T
2
o d¢dt + Jo JQ|2| d¢de (7.34)

for some constant C'r > 0 and T > 0 large enough.

STEP II. Let T > 0 large such that (7.33) and (7.34) hold. We prove
that there exists a constant C'; such that

fLW@&«%fLa

Note that this estimate (and the statement of the theorem) has been
established in [108] if u|jgr; = 0 (u = 0). Therefore, we can assume
u|[0$T] # 0.

Assume that such an estimate does not hold. Then, there exists a

0z
ot

2
d¢dt + ||u||i2([O,T];L2(Q))}'

sequence ([ ;}Z D of classical solution of (7.6) with the same input
ot neN
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v=1[92], ueL?(0,T];L*()) (extended outside of [0, 7] by 0) such that

I2nl1F2 (0. 77:2(02))

im — o 5 = 0. (7.35)
"o Sga |G| dddt + HUHL?([&T];L?(Q))
We introduce the following notation
Zn
An = [[znllL2 ([0, 71;12(02)) Un =N
1 s
Ins) = 570 Ons), Fu(s) = | gy
0

Since uljo,r7 # 0 it follows from (7.35) that (A,)nen is unbounded and,
thus, we extract a subsequence, again denoted by (Ap)nen, such that
A, — 00 as n — 0. Note that v,, solves

R ovy, 1

Ot2 (ta C) - A’Un(t, C) + fn(vn(t7 C)) + a(C)W(t C) = Eu(ta C)a

U (t, ¢)lcean = 0,

where t > 0 and ¢ € Q. Thus, STEP I s applicable for v,,. Note that (7.34)
holds for v,, with constant C7 independent of n. Indeed, the constant in
(7.34) only depends on f in the sense that it depends on the superlinearity
constant ¢ from (7.3) which is the same superlinearity constant for all f,,.
Furthermore, we have that ||v,|/12([0,7];2(q)) = 1 for all n € N and

T
lim f f a

We conclude from (7.34) that (F,(v,))nen is a bounded sequence in
LY([0,7] x Q). The superlinearity (7.3) implies for all |s| > 1,

o 2 2

u
n

L2([0,71:92))

F(s) > min{F(-1), F(1)}|s|***,

from which we deduce that

o JJ |v,|2F0 d¢ dt
{(t.Q)e[0,TIx 2| Anvn(t,0)[=1}
< — ! ff %F
min{F(=1), F(1)} J Jy,0)e[0.17x2 | A on (6,021} A
1
< FTL n b
mln{F(—l),F(l)}” (U )”Ll([O,T]XQ)

(Anvn) dC dt

where we used )\%F(Anvn) = F,,(vy,) in the last step. Hence, the left-hand
side is uniformly bounded in n € N. Since

)\fLJ’ v, |20 d¢ dt
{(£,OE[0,TIX 2 | Anfon (£,0)| <1}
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is also uniformly bounded and \,, — 00 as n — 00, we infer that

T
limJ j|vn\2+5dg‘dt=0,
0 JQ

n—awL

which contradicts ||vn||L2([0,77:12(2)) = 1 for every n € N. Thus, we obtain
from STEP I that

s <ot [ f o
and
LTE@ at < CT{ f [o

STEP III. Let T > 0 large enough such that (7.36) and (7.37) hold.
Then, for any € > 0 we have that

0z

ot

2
d¢dt + |u||i2([0,T];L2(Q))} (7.36)

0z

ot

2
A dt + Jlull? 2o 77,12 (62)) } (7.37)

T
E(T)+2CTJ Ju%dgdt
0 Ja O

Cr (T ( |0z
< E(T) +eCrllullf qo,ry120)) + ?TJO L o

22 T
S(CT-‘FCT)J Ja
3 o Ja

202 5
+ |\ Cr+ —~ + 207 ) [[ull2 (0, 77,.2(02))-

2
dcdt

~
<2{T E(t)dt

0z

2
= | deat

For ¢ = 2Ct we deduce from (7.20) that
E(T) <207 (E(0) — E(T)) + Krl|ullL2[0,17:L2(02))
with K7 = 2(Cr + C%), and hence,

Kr
O+ +2Cr ullEa o,y @y)- (7.38)

2CT
E(T) <
( ) 1+2Cr

Since (7.1) is autonomous we can shift (7.38) from [0,7] to any time-
interval [S, S + T with T = (S + T) — S sufficiently large to obtain

2CT
1+ 2Cr

K

E(S) + —— = lulzqssimprey.  (7:39)

ES+T)<
( + ) 1+ 2Cr
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Now, fix T" > 0 large enough so that the above holds. Let ¢ > 0 and
choose n € N such that (n — 1)T <t < nT. We deduce from (7.20) that

E(t) — Sznq)T 5o u%f d¢ds < E((n —1)T), and hence,

22
ot

1 ¢ 2
Et) < E((n—1T) + —|lull?2(1(noiir 112 +J J d¢ds.
(t) < B(( )T) + Jllullte -1y w20 ez Jo

~"

gxfnil)T E(s)ds

Gronwall’s inequality and applying (7.39) repeatedly for S = kT with
k=n—1,...,0, yields that

T
(&
E(t) <e"E((n—1)T) + ZHUH%Q([(n—l)T,t];L2(Q))
n—1
<o ( 20r ) £(0)

1+2Cr
TRy "I 200\
+ 1+20, kZ::l <1 n 2CT> HU||L2([0,T];L2(Q))

eT 2
+ ZHU‘HLZ([(n—l)T,t];LZ(Q))

< Ce™™E(0) + K [ullf20.q.0.2 0>
for some constants C, K > 0 and p > 0 given by

—110 1+ 2Cr
'LL_T g Cr .

Thus, we proved (7.22) which implies (7.21) as explained in the beginning
of the proof. a

Remark 7.2.3. The used multipliers in the proof of Theorem 7.2.2 are
introduced by Lions in [64, Chapter VII, Section 2.3] to prove controllability
results for the linear wave equation. If the damping is active on the whole
domain 2, one could simply consider the perturbed energy functional

BL() = B(®)+2 [ +(6.05 (6.0

for suitably small € > 0, cf. Remark 6.3.7, see also [107], where nonlinear
damping terms are also considered.



Chapter 8

Bounded-input-bounded-
output stability

So far, we have studied the input-to-state behavior in terms of input-to-
state stability. For certain applications, such as funnel control, one is
interested in the input-to-output behavior of a system, and in particular,
in the property that bounded input functions are transferred to bounded
output functions. This property is known as bounded-input-bounded-output
(BIBO) stability.

In this chapter, we study BIBO stability for infinite-dimensional semi-
linear systems with possibly unbounded control and observation operators
by regarding the semilinear system as an extended linear system with
nonlinear feedback. We provide sufficient conditions for BIBO stability of
the semilinear system in terms of BIBO stability of the extended linear
system, L*-admissibility properties of the control operator, as well as
Lipschitz and small-gain properties of the semilinearity.

We apply the abstract results to a chemical reactor model to guarantee
the applicability of funnel control.

This chapter is based on [37].

8.1 BIBO stability of semilinear state space
systems

Let U, X and Y be Banach spaces and let X(A4, B,C,G) be a system
node on (U, X,Y) as defined in Definition 2.3.1 and Definition 2.3.6. Let
(T'(t))t=0 be the semigroup generated by A and let C&D: dom(C&D) —

Y be the associated combined output/ feedthrough operator. Furthermore,
let f: X — X be a nonlinear function, where X C X is a continuously
embedded subspace. Then, the pair (X, f) formally representing the

165



166 8. Bounded-input-bounded-output stability

equations
i(t) = Aw(t) + Bu(t) + f(a(t), t>0,
s (=.1)
y(t) = C&D [th;] , t>0

is called a semilinear state space system.
The space X will be either X itself or some fractional interpolation
space X, with 0 < a < 1 if A generates an analytic semigroup.

Definition 8.1.1. Let 29 € X, T > 0 and u € L] ([0, 00); U).

(i) A function z: [0,T] — X_; is called a mild solution of the semilinear
state space system (X, f) on [0, T for zo and u if z(t) € X for almost
all t € [0,T], f(z()) e LY([0,T]; X) and z satisfies

t

x(t) = T(t)xo + J T 1(t—s)[f(z(s)) + Bu(s)] ds

0
in X_, forall £ e [0,T].

(ii) Given a mild solution x on [0, 7] for z¢ and u, the corresponding
output y is the Y-valued distribution given by

y(t) = ;1:2 <(O&D)J:( )[igg] ds), (8.1)

for t € [0, 77, that is, it acts on test functions p € C*([0,T);Y”) as

f <dt29" C&D)Lt(t—S) [28] ds>Y“Y dt.

A function x: [0,00) — X_; is called a global mild solution to the semilinear
state space system for zo and wu if 2[[y 7 is a mild solution for z and u
on [0,T] for every T > 0.

Remark 8.1.2. If z is a mild solution of (X, f) on [0,T] for o € X and
uwe LL _([0,00);U), then z and [¥] are the restriction of the mild solution

loc
and output of the extended system node

2 (A L5 LIS s S0 ))

for zg and [ s(z)| (extended outside of [0,T] by 0). In particular, the
integral appearing in (8.1) lies in dom(C&D), and thus, the application
of C&D is well-defined by Lemma 2.3.9.

With this solution concept we can define BIBO stability for the consid-
ered semilinear state space systems.
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Definition 8.1.3. A semilinear state space system (X, f) is called L*-
BIBO stable if the following two conditions are satisfied.

(i) For o = 0 and any u € L5([0,00); U) there exists a global mild
solution z of (3, f).

(ii) For any cy > 0 there exists a constant ¢y > 0 such that for any
global mild solution x of (X, f) for zg = 0 and u € L2 ([0, «©); U), the

corresponding output satisfies y € L{5 ([0, 00);Y") and the following
implication holds for all ¢ > 0

luleqogioy <cv = yleeoagy) < ey
A way of approaching the question of BIBO stability for systems like

(X%, f) is to rewrite the system as feedback system as schematically depicted
in Figure 8.1.

Figure 8.1: Nonlinearity as feedback loop

This way, it is possible to employ properties of the extended linear
system to derive properties of the semilinear one. Here, the most relevant
property of the linear system for our discussions is naturally its L*-BIBO
stability, for which we have the following sufficient conditions.

Proposition 8.1.4. Let X(A, B,C, G) be a system node, where A gen-
erates an exponentially stable Cy-semigroup. Then, the extended system

node ¥ (A, [51],[9]. [(_%f)_lB C;_f;)_} ]) is L*-BIBO stable if all
the following hold:

(i) (A, B,C,G) is L*-BIBO stable.
(ii) B is an L™ -admissible control operator.

(ili) X(A4,I,C,C(-— A)~Y) is L*-BIBO stable.
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Proof. The L*-admissibility of Band the exponential stability imply that
the system node X(4, B, I, (- — A_1)7'B) is L*-BIBO stable. Indeed, its
output and mild solution coincide, and therefore, the statement follows
from Corollary 2.1.11. Analogously, the same holds for the system node
Y(A,I,1,(-— A)~!) since I is bounded and therefore L*-admissible.

By the L™-BIBO stability of the respective system nodes it follows
that there are constants c, c¢,cp,cr > 0 such that for o = 0 and any
[#] € L.([0,00); U x X) there are the following solutions and outputs,

loc
which satisfy for all ¢ > 0 the corresponding inequalities:

e Y(A, B,C,G) admits for the input u a solution x and output y €
L ([0,00);Y), which satisfies

loc

Iyl (f0,q:v) < clwllne o, ;093

e %(A,B,I,(- — A_1)7!B) admits for the input u a solution x5 €
L. ([0,00); X), which is also the output and satisfies

|z B lL= (0,6:x) < esllullLe([o,gq:0)3

o X(A,I1,C,C(- — A)~Y) admits for the input @ a solution z¢ and
output yo € L _([0,0);Y), which satisfies

loc

lycll=(fo.0:v) < cclifr=(0.0;x);

o B(A,I,I,(-— A)™") admits for @ a solution z; € L¥ ([0, 0); X),
which is also the output and satisfies

|11 o,0:x) < crlltf e (o,q;x)-

Clearly we also have g = x and z¢ = x;. Moreover, the state of the
u

extended system node with input [ ] is given by

i(t) = f t T(t—s)[B 1] [gg] ds = 2(t) + zc(b).

0

Furthermore, we observe that the combined output/feedthrough operator
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C&D for this extended system node acts for 8 € p(A) as

=
(G

|
e —(1;4(,51))—13 %ﬂ—_ﬁ)—;] [g]

= ?] (x—(B—A_1)"'Bu) + [?] (zc — (BT — A)~'@0)
L GBu+CB— AT ]
((B—A_1) 'Bu+(B—-A)'a

_ [y +yc
|z + x|’

SIS 1

, ~Q

It follows that the output ¥ of the extended system node is given by

?7: Y+ Yo
g+ x|’
0);Y x X).

a priori in a distributional sense, but thus also as § € LiZ (][0,
r[#] with § e

This shows the existence of a solution Z and output ¥ fo
L. ([0,0); Y x X) of the extended system node.
For all £ > 0 we have that

191l ([0,4:v x x)
< ylLeo.avy + lyellueo.qv) + [28IL= j0.0:x) + [21]L=(0.6:x)

< clullne o,y + cell@le jo,q,x) + esllulieo,:0) + erllille (go,q:x)

|

which completes the proof. Q

)

L ([0,];U x X )

< max{c, cc,CB, CI}

Remark 8.1.5. 1. In the following we will use the notation (A, B, C)
to refer to a system node X(A, B, C, G) if it is clear from the context
which transfer function G is used.

2. One can straightforwardly extend Proposition 8.1.4 to the case of
the extended linear system

2<A,[B é][g]

where B e L(U,X) and C € L(X,Y).

G C(-—A)'B
C(-—A_)'B C(--A)"'B
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3. We note that the assumption that (A, I,C) is L*-BIBO stable
excludes boundary observation if A generates a strongly continuous
group, that is A and —A generate strongly continuous semigroups.
Indeed, under this assumption it is shown in [89, Proposition 6.6] that
L*-BIBO stability of X(A, I, C) implies that C' must be a bounded
operator.

4. The exponential stability assumed in Proposition 8.1.4 cannot be
dropped, as the subsystem X (A, I,I) is obviously not L*-BIBO
stable if e.g. A = 0.

8.2 Global Lipschitz nonlinearities

In this section, we prove the existence of mild solutions of the semilinear
state space system (X, f) under local Lipschitz conditions on f and suitable
admissibility assumptions on B. Furthermore, we impose a small gain
condition, which guarantees BIBO stability of (X, f) provided that f is
globally Lipschitz continuous.

Throughout this section, we assume that A generates an exponen-
tially stable Cy-semigroup (7T'(t)):=0 on X. Additionally, if A generates a
bounded analytic semigroup, let X, and X_, for « € [0,1) be the frac-
tional inter- and extrapolation spaces from Definition 1.3.27. We denote
by (—A)® both the fractional power of A as an operator in £(X,, X)
and its extension to an operator in £(X,X ), see Proposition 1.3.28.
Recall from Lemma 2.1.14 and Remark 2.1.15 that (—A)* € L(X, X_,) is
infinite-time L*-admissible and the L™ -admissibility constants K; satisfy

M, (*
Ki<—— | s % "ds
v 0 (8.2)
M,T(1—«)
< - 7
wl—o

for all ¢ > 0, where I is the Gamma function and M,,w > 0 are the
constants from Proposition 1.3.26, i.e., |[(—A)*T(t)|| < Myt e " holds
for all ¢ > 0.

Note that (8.2) also holds for @ = 0 if (T'(¢))¢=0 is not analytic, in which
case we set X :== X and (—A)® := I. Indeed, (8.2) holds for My = M > 0
and w > 0 such that | T(¢t)|| < Me ¢ for all t > 0.

Regarding the existence and uniqueness of mild solutions to (3, f), we
have the following result, where we additionally allow f to depend on t.
For related situations see [82, Chapter 6.3].
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Lemma 8.2.1. Let A be the generator of an exponentially stable Cy-
semigroup. If the semigroup is bounded analytic, let o € [0,1); else, set
a=0. Let Be L(U, X_(1—q)) be such that (—A)*B is L* -admissible and
f:]0,00) x X, — X is locally Lipschitz in the following sense: there exists
a measurable function g: [0,00) x [0,00) — [0,00) such that

« g(-,0) € Liﬁc([ovoo)%
e g(s,8) =0 foralls >0,

o for every bounded set V C [0,0) x X, there exists a constant L > 0
such that for every (t1,x1), (t2,x2) € V we have that

[f(t1,@1) = f(t2,z2)|x < L(g(t1,t2) + [[21 — 22llx.).  (8.3)

Then, for every to =0, xo € X, and u € L5 ([to,0);U), the system

loc

{ @(t) = Az(t) + Bu(t) + f(t, z(t)), t=to, 54

l‘(to) = X

admits a unique mild solution x € L*([to, t1]; Xo) for some t1 > tg , i.e.,
x satisfies the implicit equation

t t

T 1(t — s)Bu(s)ds + J T 1(t—s)f(s,z(s))ds

to

x(t) = T(t — to)zo + J

to
for all t € [to,t1]. Moreover, if tmax > to denotes the supremum over all
t1 > to for which (8.4) admits a mild solution on [to,t1], then the following
finite-time blow-up property holds,

tmax <0 = limsup|lz(t)||x, = .

t Mtmax

Additionally, if there exists a nonnegative and nondecreasing function
k€ C([to, )) such that, for everyt >ty and x € X,

(@) lx < RO+ [[2]lx,), (8.5)

then (8.4) admits a global mild solution x € L% ([to,0); X,), that is,

loc
T|to,6,] 75 @ mild solution on [to,t1] for every t1 > to.

Proof. Let tg = 0, zp € X, and u € L ([to, 0); U). Set u =0 on [0, to).
First, we show that there exists 6 > 0 such that (8.4) admits a so-
lution € L*([to,to + ¢]; Xo). Let ¢} > ¢y and choose r > 0 with
|0l x.. +[[ullL=({o,¢17;0) < 7. Denote by K7 ; and K3 ; the L*-admissibility
constants of (—A)*B and (—A)* (considered as an operator in £(X, X)),

respectively. Let M := sup,.|T(t)|| and

m = (M + Ky )r +1>0.
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Further, let L > 0 be a constant satisfying (8.3) for V' = ([to,t]] x {z €
Xo | |zlla < m}) v {(0,0)}. Since limy\,0 K2, = 0 by (8.2), there exists a
0 € (0,t})) such that

1 1
K5 5 < min = .
. {L(HQ(HO)HLD(o,t;)+m)+||f(070)||x 2L}

Note that ¢ depends on r, (T'(t))¢=0, @, f and ¢} > tp, but not on tg, xg
and u with ||zo|[x,, + l|lullL=(fo,¢1;0) < 7
Define

S = {z e L™ ([to, to + 01; X) [ |2/l (fto,t +51:x) < m}-
For z € S and ¢t € [to,to + 6] let F: S — S by

(F2)(t) =Tt —to)(—A)%xo + Jt T_1(t — s)(—A)*Bu(s)ds

to

+ L T_1(t—s)(—A)*f(s,(—A)"%z(s)) ds.

0

Note that F' is well-defined since, for ¢ € [to,to + ] and z € S,

[(F2) ()] x
< Ml|zolx,, + K sllullue o100 + Kool £, (=A) ™ 20 Lo (gt0,17:x)
<M+ Ky y)r
+ Ka.5 (L(gC5 0)lLr [ty + 1(=A) "2 lle (ft0,6:x0)) + 1(0,0) ]I x)
< (M + Kl,tll )7‘
+ K5 (L(9(- 0l 0.) +m) + 1£(0,0)1x )
<m,

where we used (8.3) in the second last step. Similar, we obtain for ¢ €
[to,to + 6] and z1, 29 € S that

[(F21)(2) = (F22) ()]l x

L Toa(t = s)(=A)*[f (s, (=A)"21(s)) = f(s,(=A)""22(s))] ds

0

< KasLl|21 — 22ln(fto 1) »
which shows that S is contractive. By Banach’s fixed point theorem there
exists a unique fixed point z € § of F i.e.,

z2(t) =T(t — to)(—A)%xo + J T_1(t — s)(—A)*Bu(s)ds

to

n j T o (t — 5)(—A)° (5, (—A)~°2(s)) ds
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holds for almost every t € [to, o+ d]. The Lipschitz condition (8.3) implies
that f(-, (—A)™%z(-)) € L*([to,to + 0]; X). Note that B is L™-admissible
by Lemma 2.1.14 if « € (0,1) and by assumption if & = 0. Clearly, I is
also L*-admissible. Hence, the linear system

{ &(t) = Ax(t) + Bu(t) + f(t,(—A)“2(t), t > 1o,

z(to) = xo (86)

admits a unique mild solution z € L% ([to, to + 0]; X) given by

z(t) =T(t —to)xo + J T_1(t — s)Bu(s)ds

to

¢
+ J, T_1(t—s)f(s,(—A)™"2(s)) ds,
to
where each term on the right-hand side lies in dom((—A)%) for almost
every t € [to,to + &] by the analyticity of the semigroup. If the semigroup
is not analytic and o = 0, this is trivially true.

It follows that (—A)*z(t) = (Fz)(t) = z(t) for almost every t € [to,to+
4], and thus, x € L™([to,to + 0]; X4) is the mild solution of (8.4) on
[to, to + 5]

For given tg > 0, zo € X, and u € L*([tg, 0); U) we denote by ty,ax the
supremum over all ¢; > ¢y such that (8.4) admits a unique mild solution
r € L7([to, t1]; Xo)- If tmax < 0 and limsup; », _ [|(t)]|x, < o, then
there exists an increasing sequence (ty,)nen in [to, tmax) converging to tmax
with

r = sup|lz(t,)||x, < .
neN
From the previous argumentation we can find 6 > 0 independent of n € N
such that the system

Tn(t) = Az, (t) + Bu(t) + f(t, z, (1)), t=ty,
Tn(tn) = 2(tn)

admits for all n € N a unique mild solution z,, € L™ ([tn,tn + 0]; Xa)-
Therefore, we can extend the solution z by z,, to a solution on [tg, t,, + d]
for n large enough, such that ¢,,+9 > tax. This contradicts the maximality
of tmax and the claim follows.

The fact that the mild solution exists on [0, c0) if (8.5) holds, follows
as in [82, Chapter 6, Theorem 3.3]. a

Remark 8.2.2. We make the following remarks on Lemma 8.2.1.

1. In the case of analytic semigroups and « € (0,1), the solution of
(8.4) satisfies x € C([to, tmax); X ), as it is also the mild solution of
the linear system (8.6) with LP-admissible operators B and I for
some p € [1,00), see Corollary 2.1.11 and Lemma 2.1.14.
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2. Lemma 8.2.1 still holds if the semigroup is not exponentially stable

with the exception that the global mild solution, if it exists, may only
be locally essentially bounded. In the analytic case, the fractional
spaces X, and X_, for a € (0,1) are then defined with respect to
A — A, where A > 0 is such that A — X\ generates an exponentially
stable semigroup. Then, consider z = e 2 and the corresponding
shifted system

(1) = (A= N)z(t) + Ble™u(t)) + falt, 2(t), ¢ = to,
Z(to) = 2Xp

with fy(t,2) = e f(t,e*z). Now, if f is locally Lipschitz in the
sense of Lemma 8.2.1, then so is f. To see this, let g be the function
corresponding to the local Lipschitz property of f, V € [to, 0) x X,
be bounded and L the Lipschitz constant of f on V. Then, for any
(t1,21), (t2, 22) € V we have

[ fa(te, 21) = faltz, 22) [ x
<e M f(tr, e z) — fta,eM20)|x
+le M —e 2| f(ta, €2 20) | x
< e ML (g(ty, t2) + |21 — 22l x, + €M — 2|22 x.,)
+le M —e M| f(ta, M2 2) | x

< Ly (h(t1,t2) + |21 — 22]lx.,)
with

Ly =L -max{l, sup |z|x,. sup ||f(t,e*z)|x)} > L

(t,z)eV (t,z)eV
being the new Lipschitz constant on V and
h(tr, te) = gltr, ta) + [ — e 2| 4 e — e7A2|,

Thus, h has the same properties as those required of g in Lemma 8.2.1.
Moreover, if k is such that (8.5) holds, then we have for all t > 0
that

I£a(t, 2 < e MR (1 + e 2llx.) < KO+ [|2]x.,)-

Hence, Lemma 8.2.1 is applicable to the shifted system, yielding a
mild solution z € L™ ([to, t1], Xo). Moreover, if (8.5) holds, then z €
Li.([to,0); Xa). The solution to the original problem is z = ez €
L*([to,t1]; Xa), which is a global mild solution in L5, ([to, 0); X4)
if (8.5) holds.
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Remark 8.2.3. 1. Under the assumptions of Lemma 8.2.1 we have that
the mild solution of the extended system node X(A, [ B 1],[§]) for
20 € Xq, u € L¥([0,00); U) and @ € L*([0,0); X) satisfies

[zl x..
< Me “Maollx, + Ko llulluejo,q.0) + Kool (fo.q:x)

where K; o, ¢ = 1,2, are the infinite-time L*-admissibility constants
of (—A)*B and (—A)*, respectively, and M,w > 0 are constants
such that ||T(t)|] < Me“! for all ¢ > 0.

2. From the considerations in 1. and the fact that the transfer function
of X(A,[B 1],[§]) is not only mapping into £(U x X, Y x X) but also
into L(U x X,Y x X,), we obtain that X(A,[B 1],[§]) is L*-BIBO
stable with respect to the spaces (U x X, X,Y x X) if and only if it
is L™-BIBO stable with respect to the spaces (U x X, X,,Y x X,).
Hence, if one of the above system nodes is L*°-BIBO stable, there exist
constants k1, k2 > 0 such that for g = 0 and all u € L*([0,0);U)
and @ € L™([0,0); X) the output § satisfies

911L2 (f0,4: x xo) < Killullne qo,q:0y + k2ll@llLe o,0;x) - (8.7)

Next, we present our main theorem on L*-BIBO stability of the
semilinear state space system (X, f) for globally Lipschitz continuous
functions f: X, — X, i.e., there exists a constant L > 0 such that

[f(z1) = f(z2)[x < Lllzy — 22| x. (8.8)
holds for all 1,z € X,.

Theorem 8.2.4. Let A be the generator of an exponentially stable Cy-
semigroup. If the semigroup is bounded analytic, let o € [0,1); else, set
a=0. Let Be L(U, X_(1_q)) be such that (—A)®B is L -admissible, f
satisfy (8.8) with constant L > 0 and X(A,[B 1],[§]) be L*-BIBO stable.
If LKs o, < 1, where Ko o, is the infinite-time L™ -admissibility constant
of (—A)“, then the output y of (X, f) with initial value xg = 0 and input
u € L*([0,00); U) satisfies the following inequality for some K, & = 0 and
everyt = 0,

[YllLr (o.61:v) < KllullLr(o,.0) + £ (8.9)

In particular, the semilinear state space system (3, f) is L*-BIBO stable.

Proof. By Lemma 8.2.1, there exists a unique global mild solution x €
LE.([0,00); Xq) of (32, f) for zp = 0 and any u € L”([0, 00); U). Note that
z is also the state trajectory of the linear system node X(A,[B1],[§])
with input [ s(z())] € L5.([0,00); U x X) and that the corresponding
output is given by § = [¥], where y is given by (8.1). Since the linear

system node (A, [ B 1],[§]) is L*-BIBO stable, § € LZ.([0,0); Y x X,)

loc
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follows, and therefore, y € LY ([0, 0);Y). We deduce from Remark 8.2.3
and (8.8),

2l (0,7:%)
< K ollullus ooy + LB o[l o.00:x0) + K2, ([ F(0)]x,

and thus, since LK3 » < 1,

Ky o Ko o
o . < — © . e —— .
Il axn < T Il @aw + 7= fre IF Ol

Combining this with (8.7) for & = f(z) and applying (8.8) once more
yields

Yl (fo,a0:v) < NGllLe (0,677 x x0)

LkoKq o
< <k1+ 2431,

1—LK27> lullLs ([o,q:0) + &

with 8= (ky + K222 ) | £(0) . .

Corollary 8.2.5. Let the assumptions of Theorem 8.2.4 hold and denote by
M, w and ko the constants from (8.2) and (8.7). If either %_(1{0‘) <1,
or Lke < 1, then (8.9) holds, and hence, (X, f) is L*-BIBO stable.

Proof. By definition, K5, is the smallest, time independent constant
such that the mild solution = of (4, [B 1],[§]) for zp = 0, u = 0 and
@ € L*([0,00); X) satisfies for every t > 0

@ x. < Koo ll@llLe(jo.:x)-

It follows that Ko, < ko by (8.7), and also that Ka ., < W by
Remark 2.1.15. The assertion is now a consequence of Theorem 8.2.4. 1

Remark 8.2.6. In the situation of Corollary 8.2.5, it is possible to improve
the constants in (8.9) by replacing Ka o, by k2 or w suitably in
the proof of Theorem 8.2.4.

Remark 8.2.7. Theorem 8.2.4 and Corollary 8.2.5 can be easily generalized
to nonlinearities f depending also on time ¢ > 0 and satisfying (8.3) and
(8.5) for a positive and bounded function k € C([0,0)). Indeed, one has to
replace the Lipschitz constant L in the smallness conditions by [|k([r(0,)-
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8.3 Locally Lipschitz nonlinearities

We consider the following heat equation with Neumann boundary condi-
tions, internal friction represented by a cubic nonlinearity and internal
control on an open and bounded domain Q € R?, d < 3, with Lipschitz
boundary 052,

201,0) = Aa(t,0) — #(1,0) + (Bu)(Q), 120,Ce

%10 =0, t>0ceon, (610
2(0,0) = 20(C), ceq.

Here, 7 is the outward pointing unit normal vector at the boundary and
1
L e L(HL(Q),H2(00)) is the Neumann trace operator on

HA(Q) = {z e H'(Q) |Az e L*(Q)},
1
3
ol 0y = (2l @) + 1AT]Eeq))
which coincides with the normal derivative on smooth functions.
In an abstract formulation, (8.10) may be written as

{ i(t) = Ax(t) + f(z(t) + Bu(t), t>0,

#(0) = 70 (8.11)

with state space X = L2(Q), A: dom(A) € X — X given by
A=A, dom(A):= {x e HY(Q) ‘ Az e L*(Q) and % =0 on 69},
i

and f: X1 — X given by f(x) = —23. The input function u is assumed
to take values in an arbitrary Banach space U and the control operator
B: U — X is such that B e L(U, X).

Since A is self-adjoint and negative, it is the generator of a bounded
analytic semigroup, and hence, X 1 s well-defined, with norm given by

1 1
Hx||§(% = |1 = A2zl = alk + [(-A)22[%, zeX;. (8.12)

Thus, X 1= H!(Q2) with the standard norm, which is continuously embed-
ded into L5(£2). Therefore, the mapping f is well-defined, and a direct
computation invoking Holder’s inequality shows that f is locally Lipschitz
continuous.

The following theorem gives an upper bound on the X 1-norm of the
state trajectory of (8.10). If v = 0 and 2 is one-dimensional, it is even
known that (8.10) is stable with respect to the Xi-norm, see e.g. [15,
Chapter 11].
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Theorem 8.3.1. Let X = L2(Q), U be a Banach space and B € L(U, X).
For any initial condition xo € X1 and input u € L*([0,00);U), the
heat equation (8.10) admits a unique mild solution x € HL ([0, 0); X) n

loc
C([0,00); X1) N L2 .([0,00); X1) which satisfies the estimate

lz(®)I%, < <|~T0§( + 2] (= A) 2ok + L wé((MC) e

1
2
t
LK f e P9 (1 4 [Ju(s)[3) ds,
0

for allt = 0 and some v, K > 0 independent of t, xo and u.

Proof. Let zg € X1 and u € L*([0,00); U). Since f: X; — X is locally
Lipschitz continuous, we deduce from Lemma 8.2.1 and Remark 7.1.2 the
existence of a unique mild solution x € C([O,tl];X%) for some t; > 0.

Consequently, @ := f(z(-)) € L*([0,#:]; X) < L*([0,t1]; X3 ). Since x is
also the mild solution of the linear system

{Jb(t) = Az(t) + Bu(t) + a(t), ¢t>=0,
.’E(O) =X,

where the control operators B and I are bounded as operators into X
and therefore also into X_%. The maximal regularity property of the

analytic semigroup (Proposition 2.1.23) yields that z € H'((0,t1); X_%) N
C([0,t1]; X) Lz([O,tl];X%) and

lz@1% = llzoll%

= QL —(=A)22(s)II% + (), Bu(s)yx + (x(s), f(x(s)))x ds

for every t € [0,t;]. Similar, since z = (I — A)zz is the mild solution of
the linear system

{ 3(t) = Az(t) + (I — A)2 Bu(t) + (I — A)za(t), t=0,
2(0) = (I — A)? o,

% ), which

we obtain z € H'((0,£1); X_1) n C([0,#1]; X) n L*([0,#1]; X
). As before,

translates to z € H'((0,£1); X) nC([0,#1]; X1) nL*([0, 11 ]; X1
we have that

2% — (1 — A)Zxo]|%
= 2j ~[(=A)E2(s)|% +<2(5), I — A)E Bu(s))x, x_,
0

+(2(s), (I = A)% fz(s)))x, x_, ds

2 2
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for every t € [0,t1]. A direct computation invoking the definition of z,
(8.12) and the above representation of ||z(t)||% yields

I(=A) 2% = I(=A4) 2ok

- f |Az(s)[% + (Ax(s), Bu(s))x +(Ax(s), f(x(s)))x ds

Nl

for every t € [0,t1]. Therefore,

V() = eIk +2[(=A)7e0)]% + J’Q z(t,¢) d¢

is almost everywhere differentiable on (0, 1) with derivative

—V(z(t))

= =2||(=A) 22 (t)|% + C(t), Bu(t)x + (b, f(2(s)x
— 4] Az(t)|% — 4CAx (1), Bu(t))x — 4CAx(t), f(2(t))x
— & f(x(t)), Ax(t) + Bu(t) + f(2(t)))x

— 9= A)a(t)% - j (t,Q) dC + Ca(t), Bu(t)yx
— Al Ax(t) + Fe(0)% — KA(E) + [(2(0)), Bu(t))x.

Young’s inequality and the boundedness of the operator B from U into X
implies for any € > 0

V)

—2l|(—A)ra(n)% - j A0 +elr®X  (313)
b (24 3 ) 1B O

Since L*(Q) is continuously embedded into X = L?(Q), there exists a
constant ¢ > 0 such that

2ella(t) % < 2eclle(t)]2s 0y < 22 (1 +[ e d<)

holds. Now, if we write e||z(t)[|% = —¢||lz(t)||% + 2¢]|(t)[|% in (8.13), it
follows for € > 0 with 2ec < 1 that

— V(1))

< —elle®)% - 20(=A) 72 ()% — (1 - 22¢) L a(t, Q) d¢
+ K1+ Ju(®)])
< —vV(a(t) + K1+ [lu®)]f)

dt
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for some K > 0 and v := min{l,e,1 — 2ce} > 0. Finally, Gronwall’s
inequality implies

l=()1I%

which is the desired estimate on [0,¢1]. In particular, ||z(-)||x, is bounded
2

< V(x(t) < V(zo)e ™ + KL e (L + [lu(s) ) ds,

1
2

on [0,t1] with bound independent of ¢;. As this holds on any interval
[0,¢1] on which the solutions of (8.11) exist, Lemma 8.2.1 yields that x is
the global mild solutions, hence the estimate holds on [0, c0). a

Corollary 8.3.2. The heat equation with output

%(t,() = Axz(t,¢) — 23(t,¢) + Bu(t), t=0,(eq,
J SU(O,C) =.’E0(C), CEQ,
%)=, £>0,Cen,
y(t) = CI('vt)a t = Oa

with state space X = L2(Q), input space U, control operator B € L(U, X),
output space Y and output operator C' € [,(X%,Y) is a L*-BIBO stable

semilinear state space system (X, f).

Proof. Theorem 8.3.1 implies that (8.10) admits for zp = 0 and all u €
L*(]0,00); U) a unique mild solution x € Hlloc([(), 0); X) n C([0, 0); X%) A
L2 ([0,00); X1) satisfying

i
—V| l—S K
o1, < K | 0000+ fu(s) ) ds < 1+ fulfogogon)

Consequently, z is also the mild solution to the extended system node
Y(A,[B1],[§]) with input [_}s] whose (distributional) output is [¥].

Note that y(t) = (C&D) [igg] for almost every ¢t > 0 since [28] €

dom(C&D) for almost every ¢ > 0. Now, as x takes only values in
X1 = dom(C), it suffices to show that for all ¢ > 0 we have that
ICx()|efo,:v) < m(L+ |lullLe(jo,4;0)) for some m > 0. But this bound
directly follows from the estimate of x(t) in the X 1-norm and the bound-
edness of C' as operator from X 1 to Y. a

The approach used to prove the estimate in Theorem 8.3.1 appears
promising for handling nonlinearities given by negatives of odd monomials,
assuming a suitable choice of the parameter « for the space X,. Indeed,
such nonlinear operators satisfy the sectorial condition {z, f(z))x < 0,
which may be viewed as a condition for the energy to be nonincreasing.
For instance, such a sectorial condition has already been used in [36] in
order to prove the well-posedness of nonlinear infinite-dimensional systems
like (3, f).
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8.4 An application to funnel control

After a brief introduction to funnel control, we show its applicability to a
coupled ODE-PDE system describing the evolution of chemical components
in chemical reactors. Here, the main task is to verify BIBO stability of
the semilinear PDE. Finally, numerical simulations are depicted.

We emphasize that the presented results generalize those of [38], where
the control and observation operators are assumed to satisfy strong regu-
larity assumptions and the global Lipschitz nonlinearity f is only allowed
to be defined on X.

8.4.1 Basics on funnel control

We recall the following framework for funnel control, which was already
present in the early works of the field, [42], see also [5] and the references
therein.

For the following input-output differential relation

{y(t) = N((D), S@)@) + MO, SHW, 120

y(0) = vo,

where all functions are assumed to be R-valued, y is the output and u the
input, it is supposed that the following conditions hold.

Assumption 8.4.1. The disturbance d is in L*([0, c0); R), the nonlinear
function NV is in C(R?;R) and the gain function M € C(R?;R) is strictly
positive, i.e., M(d, o) > 0 for all (d, o) € R2.

Assumption 8.4.2. The map S: C(]0,0);R) — L*(][0,0);R) is a (pos-
sibly nonlinear) operator which satisfies the following conditions:

(i) BIBO property: For all k; > 0, there exists ko > 0 such that for all
y € C([0,00);R) and t > 0,

lyllLe(or) <kt = 1SW)llLe(o,qr) < ko (8.15)

(ii) Causality: For all y, 9§ € C([0,0);R) and ¢ > 0 the following impli-
cation holds

y|[0,t) = 3:/|[0,t) = S(y)|[0,t) = S@”[O,t)-

(iii) Local Lipschitz condition: For all ¢ > 0 and all y € C([0,t];R)
there exist positive constants 7, and p such that for any y;,y2 €
C([0,0);R) with y;|f0,q = y,i = 1,2, and |y;(s) — y(t)| < ¢ for all
s€ [t,t+ 7] and ¢ = 1,2 we have that

1S(y1) = SW)llve(,eer1m) < Py — v2llLe(eee-imy- (8.16)
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In [8], the authors study more general input-output relations with
memory and of relative degree r € N, under assumptions similar to As-
sumption 8.4.1 and Assumption 8.4.2. The class of systems described by
(8.14) is quite general and encompasses systems with infinite-dimensional
internal dynamics as shown, for instance, in [8] and [43].

For systems written like in (8.14), a funnel controller is an adaptive
model-free control method whose objective is to maintain the error function

e(t) = y(t) = Yret (1),

where y is the output and y,ef an a priori fixed reference signal, within the
following prescribed funnel

Fo = {(t,e(t) € [0,00) x R|p(t)e(t)] < 1},
where the function ¢ is assumed to belong to

¢ eWH((0,0);R), ¢(t) > 0Vt > 0}

o= {cb € O([0,0)R) | 4 lim inf ¢(t) > 0

As described in [7, 8] or [43], a controller that achieves the described
output tracking performance is given by

_ e
1— ¢2(t)e2(t)’

with ¢ € ® and ¢(0)|e(0)| < 1. The following theorem, coming from [42],
see also [7] with r = 1, characterizes the effectiveness of the controller
(8.17) in terms of existence and uniqueness of solutions of the closed-loop
system and in terms of output tracking performance.

u(t) (8.17)

Theorem 8.4.3. Consider System (8.14) with Assumption 8.4.1 and
Assumption 8.4.2. Let yrer € WHP((0,00);R), ¢ € ® and yo € R such
that the condition $(0)|e(0)| < 1 holds. Then, the funnel controller (8.17)
applied to (8.14) results in a closed-loop system whose solution y: [0,T) —
R, T € (0, 0], has the following properties:

(i) The solution exists globally, i.e., T = co.

(ii) The input u: [0,00) — R, the gain function k: [0,00) — R, k(t) =
W and the output y: [0,00) — R are bounded.

(iii) The tracking error e: [0,00) — R evolves in the funnel Fy and is
bounded away from the funnel boundaries in the sense that there
exists € > 0 such that, for all t = 0, |e(t)| < % —e.

Proof. We refer for the proof to [8, Theorem 2.1], which is essentially [7,
Theorem 3.1]. a
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8.4.2 Funnel control for a chemical reactor model

Consider the system depicted in Figure 8.2 comprised of a continuous
stirred-tank reactor (CSTR) and a tubular reactor with axial dispersion
(TRAD) similar to the one studied in [57].

er(t) S z(1,t)  uld)
YcsTR
rp(t)

»y(t) = zp(t)

Figure 8.2: Coupled CSTR-tubular reactor system

The input-output system is described by the coupled PDE-ODE system

o 2. ™
0.0 = DSH 0.0 = 00,0 ~ var(t.0) 4 ea(t.0) 120, (0.)
ZTRAD ‘%’(t,@) — %(t, 1)=o, >0,
z7(0,¢) = 1, ¢e(0,1),
zp(t) = a1zp(t) + agu(t) + Rxy(t,1), t=0,
YoSTR {LL'F(O) =1,
y(t) = zp(t), t=0,

with zp(t) € R and x;(¢,-) € L2(0,1). The constants v > 0 and D > 0 are
the transport and diffusion velocities in the tubular reactor, R > 0 describes
the recycling within the system, and a1, as and ¢ > 0 are constants
describing the chemical reactions within the two reactors. Furthermore, f
is a nonlinear mapping from L2(0,1) to L2(0, 1), such as e.g. the Lipschitz

continuous function f(z) = ‘x‘ﬂl from [20].
We can straightforwardly bring this system into the form (8.14),
)(t) = S(y)(t) +asu(t), t=0
(0 = SO +ar u(®) 51
y(0) =1

with the operator S: C([0,0); R) — L*(]0,0);R) given by
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where z is the solution to the system

01,0 = DZ5 (0,0 = Vo2 (0.0 = 6l + £a(1.0). £20.C€ 01,

2(0.0) =1, ¢e(0,1), (8.20)
ox Ox

S0 =n(0), F (1) =0 £>0.

While these internal dynamics are given in terms of a boundary control
system, one could — using the methods laid out in [15, Chapter 10] and
[88] — rewrite this system to arrive at one in the form of (X, f) with spaces
and operators as follows.

The state space X = L2(0,1) is equipped with the following weighted
inner product

1
rgd = fo P(O)F(Og(0)dC,

where p(¢) := e~ 5¢. Note that {-,-), is equivalent to the standard inner
product on L2(0,1). The operator A is defined by

d2z dz
for z € dom(A), given by
dom(A) := {x e H%(0,1) 3—2(0) =0= (zu)}. (8.22)
The control operator is
B:R— X |, Bu=—Ddyu, (8.23)

where dy € X 1 denotes the Dirac delta distribution at ( = 0, and the
observation operator is point measurement at ¢ = 1, i.e.,

C: X1 ->R, Cz=uz(1). (8.24)

So, the input and output space are U =Y = R.

With this framework, it is easy to see that A is a self-adjoint and strictly
negative operator by considering {-,-», as inner product. In particular, A
generates an exponentially stable and bounded analytic semigroup.

Moreover, A is a Riesz-spectral operator whose eigenvalues and nor-
malized eigenfunctions are given by

Ao = —¢7

2 4 AD2n2 72
)\n:_ﬂ#_w’ neN
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and

D

Po(C) = ﬁl[o,ﬂ(o,
bn(C) = &
TS JAn2r2D? 4 o2

respectively. Hence, the semigroup generated by A is given by

[e‘ZWDC <Sin(nﬂ'C) — D COS(ﬂﬂ'C))] , neN,

= Z e)\nt<"¢n>X¢n

n=0

with growth bound wo(T(t))i=0 = supneN0 = —1) < 0. The fractional
extrapolation spaces X_,, 0 < a <1 are glven by

X_a =4 RE€ X_l
{ n=0 |_ )\n|20

i |<Z7¢n>X_1,X1|2 < OO}

Further, X1 = H'(0,1) with [|-||x, induced by the inner product

cdf

Uovx, —Df 0% dc+wf e B¢ F(0)g(C) dc,

dC
which is equivalent to the standard inner product on H*(0,1).

Lemma 8.4.4. The operators B and C from (8.23) and (8.24) satisfy
Be L(R,X_,) for every a >+ and C € L(X1,R).

Proof. We use the notation f, ~ g, for sequences (fy,)nen, and (gn)nen,
to abbreviate the fact that there exist constants m, M > 0 such that
mfn < gn < Mf, holds for all n € Ng. For 2 = Bl = —D§y € X_1 we
have that I<z, pnyx 4. x,|* ~ nP and therefore,

(2 Pn)x1,x4 S 1
Z|ZX|MX| Y

n=0

This series converges for all o > i, which implies B1 = —Ddg € X_, and
thus, B € L(R,X_,) for any o € (,1].

Since point evaluation is bounded on X 1= H!(0,1), we also have
CeL(Xy,Y). Q

To apply Theorem 8.4.3 to (8.18) and thereby ensure the effectiveness
of funnel control for the chemical reactor model, we need to verify that S,
given by (8.19), satisfies Assumption 8.4.2. Note that Assumption 8.4.1 is
clearly satisfied.
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First, we show L*-BIBO stability of (8.20) considered as a semilinear
state space system (X, f) with operators A, B and C given by (8.21)—(8.24)
and suitable nonlinearity f. To this end, we apply Corollary 8.2.5, so,
we shall first check that the extended linear system (4, [B1],[]) is
L”-BIBO stable.

Proposition 8.4.5. The extended linear system (A, [B1],[§]) with
operators (8.21)-(8.24) is L*-BIBO stable.

Proof. We will apply Proposition 8.1.4. The operator A generates an expo-
nentially stable and bounded analytic semigroup, and B is L™-admissible
by Lemma 8.4.4 and Lemma 2.1.14. Further, [89, Proposition 4.5] states
that whenever B € L(U,X_,) and C € L(X3,Y) with o + 8 < 1, then
the system node 3(A4, B, C, G) is L*-BIBO stable. Since B e L(U, X _,)
for a > 3, I € L(X) = L(X, Xo) and C € L(X},Y), we conclude that
%(A, B,C,G) and X(A, I,C,C(I — A)~ ') are L*-BIBO stable. Hence, all
assumptions of Proposition 8.1.4 are satisfied and the assertion follows. O

Theorem 8.4.6. Consider the system (8.20) as a semilinear state space
system (3, f) with operators A, B and C given by (8.21)—(8.24). If
f: Xo — X is globally Lipschitz continuous for some a € (0, %) with
Lipschitz constant L bounded by

(1 _ a)lfozeaqulfa

L
ST T=a)

(8.25)

then (8.20) is L*-BIBO stable.

Proof. We will apply Corollary 8.2.5 to prove the assertion. It is shown
in Proposition 8.4.5 that the extended linear system node is L*-BIBO
stable. Since B € L(R,X_,) for n > 1, we have for o € (0,2) that
B e LU, X_(1-a)) and (=A)*B € L(U,X p) for some § € (0,1). In
particular, (—A)®B is L*-admissible by Lemma 2.1.14. Next, for a € (0, 2)
and w € (0,%) we estimate the constant M, from (8.2). For z € X we

have
(A T(t)z = D (=An)** ', Pn)x_, x, Pns
n=0

hence,
[(—A) et T(1)|| = sup (—A,)*t¥ePnFwlt,

neNg

For fixed t > 0 let g(n) = (=\,)*t%P»+“)t For n = 0, taking the
supremum over ¢t > 0 yields

g(0) < a%e™® (__Ao)a .

)\0—&.}
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Now consider n > 1. Extend the formula of A, for n > 1 to n € (0,00).
Then, g is a differentiable function on (0, c0) which attains its maximum
in n* € (0,0) determined by « + A, xt = 0. Thus, maximizing g(n*) in ¢
as before and using A\, < A\g as well as w > 0 yields for all n > 1,

g(n) < g(n*) < a%e™ <_/\”*) < a% @ <_)‘0> )

—Apt — W —Ao —w

Altogether, we obtain for w € (0,) that

P —w

where we inserted —\g = 1. Finally, we deduce from Corollary 8.2.5 that
(8.20) is L**-BIBO stable if W"Lﬁiw < 1 holds for some w € (0,). By
the definition of M, , this translates to

|<—A>at“eMT<t>|<aaea( Y ) M,

wl—aea(w _ w)a

L < gera=ay

(8.26)

The right-hand side attains its maximum with respect to w in w = (1 —
a)y € (0,1) and with this choice, (8.26) becomes (8.25) and is therefore
satisfied by assumption. a

Remark 8.4.7. The proof of Theorem 8.4.6 shows how M, (depending on
w € (0,%)) can be chosen such that (8.2) holds for A given by (8.21). In
particular, for w = (1 — @), we can choose M, = e~®. Hence, the infinite-
time L”-admissibility constant Ks ,, of (—A)* for a € (0, 2) satisfies

L B
Ky < e *T'(1 - «) '
; (1 —a)l-ayl-a
Finally, to apply Theorem 8.4.3 to our tank reactor model, it remains
to show that the map S is causal and locally Lipschitz continuous in the
sense of Assumption 8.4.2.

Proposition 8.4.8. Consider (8.20) with global Lipschitz map f: X, —
X for some o€ [1,2) with f(0) = 0 whose Lipschitz constant L satisfies
(8.25). Then, the operator S defined by (8.19) satisfies Assumption 8.4.2.
Proof. The BIBO-property of S follows from Theorem 8.4.6.

Next, fix t > 0 and consider an arbitrary 7 > 0. Let 1,1y €
C([0,0);R) with mij0.1 = 7 = m2l[,q for some fixed n € C([0,t];R).
It follows from Lemma 8.4.4, Lemma 8.2.1 and Remark 8.2.2 that System
(8.20) with 71 and 79 as inputs, admits unique mild solutions z; and 5 in
C([0, 0); X), respectively. Clearly, 2; and x5 coincide on [0, ], which is
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the causality of S. Furthermore, for £ € [t,t + 7], the mild solutions satisfy

(—A)%2;(f) = (A)*T(E - t)ai(t) + L T(t = s)(=A)"f(wi(s)) ds

t
+ J T(t — s)(—A)*Bn;(s)ds,
t
where 7 = 1,2. We infer from this representation and Remark 8.4.7 that

21 — 22|l (1t t471:X0)
e *T'(l—-«a)L
< WH% — @|ree ([t 4715 x0)

+ K1,ollm — n2lue gt,04001)

where K .. is the infinite-time L*-admissibility constant of (—A)z B.

Since (e*ar(1—a)L

Tap—egi=a < 1 by assumption, there exists a constant p > 0 such
that

21 = @2l (fte4r1sx0) < Pl = M2l ([t e riR) -

Finally, since o > %7 the space X, is continuously embedded into X 1
Assumption (8.25) together with the boundedness of C' from X1 toR
conclude the proof. d

According to Theorem 8.4.3, funnel control is applicable to (8.20) with
Lipschitz maps f: X, — X which satisfy f(0) = 0 and (8.25) for some
13

a € [3,7) provided that the initial error between the output and the

tracked reference is in the prescribed funnel.

8.4.3 Numerical simulations

As parameters for the PDE and the ODE in (8.20), we consider the
following values D = 0.1,v = 0.4,¢ = 2.8,a1 = —1,a3 = 2, R = 3. The
nonlinear mapping f: R - R, f(z) = 1f“$‘ is globally Lipschitz continuous
as mapping from X 1 to X with Lipschitz constant L < 1 and it satisfies

(8.25) for a = 3.

The reference signal that the output zg(t) is supposed to track is
1

set as Yrer(t) = 5 cos(t), while the prescribed funnel in which the output
error evolves is determined by ¢(¢) = (2¢ 2% +0.2) 1. The spatial interval
[0,1] is discretized into n = 100 equidistant subintervals. Then the PDE—
ODE system as a closed-loop system with the funnel controller (8.17) is
discretized by using finite differences and it is integrated afterwards with
the ODE solver ode23s of Matlab©. The resulting state x;(t, () of the
PDE (8.20) is depicted in Figure 8.3. The error between the output zp ()
and the reference signal y,e¢(t) together with the prescribed funnel are

given in Figure 8.4. The funnel controller is depicted in Figure 8.5.
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Figure 8.3: State variable z;(t, () of the PDE (8.20).

2 —y(t) = Yres ()
|
15 —— ——

()" o(t)

Figure 8.4: Output error tracking e(t) = y(t) — yrer(t) with the funnel

whose boundaries are the functions —ﬁ and ﬁ
03
0.2
0.1
]
— 0.1
t/ -0.2
3 -0.3
0.4
-0.5
0.6

-0'70 5 10 15

t

Figure 8.5: Funnel controller u(t) = #&22@
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