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ABSTRACT

M
achine learning has made significant progress in being used as an augmented

tool to progress research in many scientific fields. One such area is the field of

quantum chemistry where machine learning methods have been employed to ac-

celerate calculations by replacing high cost quantum chemistry computations with trained

machine learning models. While this has significantly reduced the computational resource

usage in making new calculations, there still remains the high cost of generating high ac-

curacy, or high fidelity, training data for such models.

This new overhead can be mitigated by the use of multifidelity methods which reduces

the cost of training data required to achieve a certain model accuracy. This compiled-format

dissertation develops and studies the use of multifidelity methods with machine learning

for the prediction of quantum chemical properties. The Multifidelity Machine Learning ap-

proach is developed as a time-efficient alternative to the single fidelity machine learning

methods. Novel methodological developments such as optimized Multifidelity Machine

Learning and the Γ-curve are developed in this dissertation to demonstrate that low-cost

high-accuracy machine learning for quantum chemistry is a viable option with multifi-

delity approaches. The benefit of using such multifidelity models for the prediction of sev-

eral quantum chemistry properties ranging from atomization energies to excitation ener-

gies is benchmarked. Assessments in terms of cost of generating training data versus model

accuracy of several multifidelity models are studied for the prediction of diverse quantum

chemistry properties. In addition, a multifidelity benchmark dataset with computational

time-costs is generated for the benchmarking of multifidelity models and for future devel-

opment in this field. The effect of the multifidelity data hierarchy on model accuracy and

the time-cost efficiency of several multifidelity models is also studied to provide a compre-

hensive outlook on the use of multifidelity methods for quantum chemical properties.

Two specific applications using the herein developed multifidelity methods are pre-

sented. The first, prediction of ground state energies of several small monomers which are

atmospherically relevant, is used as an additional assessment of the efficiency of the mul-

tifidelity methods in comparison to existing state of art machine learning methods used in
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quantum chemistry. Second, the novel Γ-curve is applied to predicting excitation energies

of a 16 porphyrin molecules over a 40 pico-second trajectory at a high fidelity quantum

chemical method showing significant reduction in the cost incurred to train the machine

learning model without sacrificing accuracy.

Finally, conclusions are drawn about the efficiency of multifidelity machine learning

methods for use in quantum chemistry. Extensions of the use of optimized MFML and the

Γ-curve method are discussed in order to direct future research arising from the works of

this dissertation.
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INTRODUCTION

“Begin at the beginning,” the King said gravely, “and go on till you come to the

end: then stop."

— Lewis Carroll, Alice in Wonderland

I
n recent years, machine learning (ML) has seen widespread use across industries and

areas of application. From self-driving cars [3, 4] to drug discovery [5], the use of ML

methods has significantly reduced human effort required in progress and discovery.

ML has become integral to most day-to-day activities with the advent of OpenAI’s ChatGPT

models with applications ranging from generating images and text to using the GPT mod-

els in teaching frameworks. We are truly in an augmented era of human intelligence and

artificial intelligence working side-by-side to further the frontiers of science, research, and

discovery.

Quantum Chemistry (QC) is a broad term that studies the behavior of molecules and

atoms at a quantum level to better understand the world around us. Although QC cov-

ers a large range of themes and topics, in the recent years and in this manuscript, the

term is used synonymous to computational QC, the simulation of atoms and molecules

using computational hardware. With the rapid development of computational methods in

tandem with the progress on the frontiers of hardware, QC calculations have become the

norm in research. Computational software for QC such as ORCA [6, 7], Gaussian [8], PSI4

[9], NewtonX [10], and RDkit [11] have become the staple of modern QC research. With a

varying range of numerical accuracies possible with such software, these have been used

to significantly broaden the extent of our understanding of how the quantum world works.

At its core, QC computations involve the numerical solution of the Schrödinger equation

1



CHAPTER 1. INTRODUCTION

which in it’s time dependent form [12, 13] is given as

(1.1) iħ ∂

∂t
Ψ(r , t ) =

[
− ħ2

2m
∇2

3 +V (r , t )

]
Ψ(r , t ) ,

whereΨ is the wave-function of a particle of mass, m, in space and time, ∇2
3 is the Laplacian

operator in 3-D Cartesian coordinates, ħ is the reduced Planck constant, i = p−1 , and V

is the potential representing the environment that the particle is in. Often, only the time

independent, also called the stationary, version of the Schrödinger equation is of interest.

In such a case, Eq. (1.1) reduces to

(1.2)

[
− ħ2

2m
∇2

3 +V (r )

]
Ψ(r ) = EnΨ(r ) ,

which is often written in operator form [13] as

(1.3) ĤΨ= EnΨ .

Here, En is the n-th eigenvalue of the electronic Hamiltonian operator Ĥ for the system.

In all applications described in this dissertation, the system of interest is some molecule.

The molecule is fully categorized by the number of nuclei Np in addition to the number

of electrons Ne . The eth electron, Ee can be identified with its position r e ∈ R3, while the

i th nucleus, Ni , is characterized by the tuple (r i ,mi , Zi ) ∈ R3 ×R×R where mi is its mass

and Zi is its atomic number. For a molecule that is considered without the surrounding

environment (that is V (r ) = 0), the stationary electronic Hamiltonian operator is defined

as [14]:

(1.4) Ĥ el :=−1

2

Ne∑
j=1

∇2
r j
−

Ne∑
j=1

Np∑
i=1

Zi
1

∥r j − r i∥2

+
Ne∑
j=1

Ne∑
j ′> j

1

∥r j − r j ′∥2
+

Np∑
i=1

Np∑
i ′>i

Zi Zi ′

∥r i − r i ′∥2
− 1

2

Np∑
i

1

2mi
∇2

r i
.

In Eq. (1.4), the first term describes the kinetic energy of the electrons. Subsequent terms

describe the electron-nuclei, electron-electron, and nuclei-nuclei interactions respectively.

The last term encodes the kinetic energy of the nuclei. The eigenvalues of this operator are

denoted as En in Eq. (1.3). The smallest eigenvalue, E0 is the ground state energy of the

molecule. With increasing values of n, one achieves the values of the excited state energies.

Depending on the amount of computational resources one is willing to expend, these

numerical QC calculations of the energies or other QC properties can get close to exper-

imental values [15]. QC methods that are faster and less expensive in terms of resource
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1.1. MOTIVATION

requirements do so at the cost of accuracy. For instance, the gold standard in QC computa-

tions is Coupled Cluster theory with Single, Double, and a perturbative treatment of Triple

excitations (CCSD(T)) which scales approximately as O (O2 ·N 8) where N is the number of

basis functions and O is the occupied orbitals [15]. Density functional theory (DFT) ap-

proaches and semi-empirical approaches such as LC-DFTB and ZINDO are less expensive,

and less accurate. Thus, if one is interested in the QC calculations of large molecules or

systems, it is often the case that such cheaper methods are used. For example, the use of

semi-empirical LC-DFTB has been used to study the conversion of light energy in bacteri-

ochlorophyll molecules in a 100 million atoms scale model of a chromatophore [16]. Even

the use of DFT methods for such large systems has been impossible due to the large compu-

tational times required for a single point calculations. Within DFT, there are different levels

of accuracy with respect to the ground truth that can be achieved based on the computa-

tional effort applied. This is often called the Jacob’s Ladder of DFT [17]. The key takeaway of

this discussion is this: higher accuracy requires higher amount of computational resources.

The higher the accuracy, the better the QC computation is to make conclusions about the

chemical system being studied. The term fidelity refers to the level of accuracy of the QC

calculation with respect to the ground truth value of that property. Thus, CCSD(T) would

be a high fidelity method while DFT would be a lower fidelity method.

1.1 Motivation

Solving the Schrödinger equation in Eq. (1.1) falls under the larger category of numerically

solving partial differential equations (PDEs) and is a key aspect of understanding almost

all physical problems ranging from deflection of a cantilever beam in a modern building

to modeling aerodynamics in F1 cars. While conventional solvers for such methods rely

on numerically solving the PDEs, a rapidly advancing field of research and application is

the use of data-driven models, or surrogate models (SM) to approximate the solutions to

the PDEs. That is, in order to solve a PDE such as the one in Eq. (1.1), instead of numer-

ically solving the non-parametric problem, one replaces this workflow with SMs such as

ML models. The high cost of running conventional QC computations poses a major chal-

lenge in broadening our understanding. For the past few years, ML has been making sig-

nificant progress in the prediction of QC properties and expediting discovery and research

[18, 19, 20]. This has greatly reduced the cost-budget of making new QC calculations.

The process of performing QC computations has now shifted to first training an ML

model on high fidelity training data for a QC property of interest for a given system, say,
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Figure 1.1: A general ML-QC workflow for the prediction of QC properties. Once trained,
an ML model can provide fast and accurate predictions of the property of interest on
molecules which were not part of the training data.

excitation energies of a molecule. This trained ML model is then used to make predictions

on new molecules. ML models essentially learn the mapping between the Cartesian coor-

dinates and atomic charges of the atoms constituting the molecules and the correspond-

ing QC property. To this end, the pipeline involves generating what are called molecular

descriptors or representations which convert Cartesian coordinates to machine learnable

input features [21, 19]. The next step is using a training data set consisting of the pair of

representations and QC property to train an ML method of choice such as neural networks

(NN) or kernel ridge regression (KRR). The representations for the unseen molecules from

the test set are generated and this forms the input to the trained ML model. The above de-

scribed workflow is graphically represented in Figure 1.1. The numerical PDE solver, say

for instance at the DFT fidelity, is used to generate a training dataset T f consisting of

the computed QC properties and machine learnable input descriptors, in this case, the

Coulomb Matrices (see Chapter 2). This can be used to then train an ML model of interest.

This model can then be used on unseen molecules, that is molecules that was not used to

train the model. This results in a fast prediction of the QC property that the ML model was

trained on at the fidelity of the training dataset. Notice that the numerical solver for some

fidelity f is the function g f :R3N ×RN →R for scalar properties such as excitation energies,

where N is the number of atoms in the molecule. The training dataset is of dimensions

RD ×R where D is the dimension of the molecular descriptor.
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Although the use of ML in QC has significantly reduced the cost of making new calcula-

tions, or rather predictions, this has opened up a new dimension of costs. ML models can

only predict at the fidelity they are trained on. If a ML model is trained on a high fidelity

dataset, it will predict at that fidelity. If trained on a low fidelity dataset, it can only predict

at the low fidelity for the QC property of interest. Further, a common observation in ML

models is that the larger the amount of training data, the more accurate the ML model is

[22, 23]. This creates a new bottle-neck in the process of making QC calculations: the cost

of generating high accuracy training data. It is a common observation that an ML model

trained on a specific fidelity can predict at that fidelity. Furthermore, more training data

often corresponds to a more accurate ML model. Thus in order to achieve a high accuracy

ML model that predicts at high fidelity, one needs to generate a large amount of training

data placing strain on the compute resources that are available. In order to overcome such

an obstacle, over the past years, several methods have been proposed. For instance, active

learning strategies have been proposed to effectively pick training samples and thereby

reduce the redundant training data costs [24, 25, 26, 27]. A different approach is the use

of training data from more than one fidelity, that is, multifidelity methods [28]. In such

methods, training data consists of molecular descriptors and the QC property calculated at

the highest fidelity, often called the target fidelity, and the QC property calculated also at

cheaper and less accurate fidelities. Such methods have been shown to effectively reduce

the number of high fidelity training data needed to achieve a specific model accuracy.

The earliest usage of multifidelity methods in ML for QC is the ∆-ML method where a

two fidelity dataset is used and the ML model is used to learn the difference, or ∆, between

the two [29]. The final model involved the prediction of this difference added to the QC

computation of the cheaper fidelity. Due to its simplicity, this approach has since become

a common tool in the ML-QC pipeline with applications ranging from energy band gaps

to excited state dynamics of molecules [22, 30, 31]. This was followed by a methodological

development over the ∆-ML method, termed the Combination technique Quantum Ma-

chine Learning (CQML) [32]. In this approach, several fidelities were used as opposed to

a two-fidelity approach. Further, several sub-models, identified by fidelity and number of

training set size, were trained. These sub-models were then combined in a systematic man-

ner to result in a generalized ∆-ML like model with the lowest fidelity itself being predicted

by a sub-model rather than being conventionally computed. This method was shown to

be efficient in predicting CCSD(T) atomization energies for several organic molecules. The

hierarchy structure in CQML was chosen across two dimensions, the QC method, such as

CCSD(T) or MP2, and the basis set size, such as STO-3G or 6-31G. The combination of
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the sub-models for these fidelities was carried out using approaches analogous to those in

sparse grid combination techniques (SGCT) [33, 34, 35, 36, 37, 38] which resulted in the

CQML being in some sense, a combination of ∆-ML over these different fidelities.

1.2 Objectives

Motivated by the above status of the use of ML in QC, the main aim of this dissertation

is to develop multifidelity methods that result in construction of cheaper ML models. The

developed multifidelity methods will reduce the cost of the overhead of generating training

data that restricts scalable research with high fidelity QC predictions. In order to address

this overarching theme, the following objectives are presented as checkpoints.

O1: Develop the Multifidelity Machine Learning (MFML) Method

Multifidelity methods for data driven models such as ML have been prominently used in

several fields of research. As will be discussed in Chapter 3, literature on general multi-

fidelity methods primarily deals with a bi-fidelity structure, that is one high fidelity and

one low fidelity method. This objective will further work in this area by utilizing the MFML

method to combine several fidelities with a one-dimensional hierarchy structure resulting

in a low-cost high-accuracy ML model. The multifidelity machine learning (MFML) can be

seen as a case of the CQML method where the fidelity hierarchy structure is assumed to be

along a single dimension. This development would simplify assumed hierarchy structures

within the multifidelity training data for the use of these methods in ML for QC.

Design, devise, and develop the Multifidelity Machine Learning (MFML) method for

combining several fidelities of training data in order to reduce the overall cost of an ML

model.

O2: Study Overall Cost of the ML Model Instead of Number of Training

Samples Used

The cost of generating training data is the newfound overhead of training high accuracy

ML models in QC. As discussed previously, high accuracy, high fidelity ML models need a

large amount of training data. This encumbers the ML-QC pipeline with further hurdles

of generating a lot of high fidelity training data. However, the use of MFML has been seen

to be effective in reducing the number of training samples needed at the higher fidelities
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[32]. An important question that is to be asked is if the newly developed MFML method

also reduces the overall time-cost of the training data. Through the work presented in this

dissertation the focus of model efficiency will shift from the number of high fidelity training

data needed to the overall cost of generating training data across all included fidelities. This

will ensure a meaningful metric of assessment for the model accuracy of single fidelity and

multifidelity models.

Study the cost-accuracy trade-off and overall efficiency of the MFML model in com-

parison to the single fidelity model. Replace the number of training samples used in

ML models with cost of generating training data to assessing model error as a function

of time-cost.

O3: Examine and Evaluate the Degrees of Freedom in MFML

The MFML method is built by combining sub-models trained at several fidelities. This

combination is weighted by unitary weights (±1; see section 4.1) based on research from

SGCT. Furthermore, like CQML and ∆-ML, MFML too is built with training data is nested

in nature, that is the high-fidelity data also has low-fidelity counterparts within the train-

ing structure based on previous research in multifidelity methods for Gaussian Processes

(GP)[39, 40]. Although not a strict condition for the working of multifidelity methods, it has

been recommended in applications especially in QC. Additionally, the number of training

samples used in the two fidelities of ∆-ML are identical while in CQML and MFML, each

subsequent cheaper fidelity uses twice as much data as the costlier one, that is, scaled by a

factor of 2. These are three vital points of investigation for the application of MFML in QC.

Therefore it is imperative that these three areas be further investigated to understand their

contribution to the efficiency and accuracy of the MFML method. First, in understand-

ing how optimally combining the sub-models can affect prediction error and increase the

methods robustness to non-ideal training data; this is referred to as optimized multifidelity

machine learning (o-MFML). Second, the study of both MFML and o-MFML in the case

of a strictly non-nested training data structure in QC would investigate the extremities of

the multifidelity methods. Thirdly, and finally, the study of the number of training sam-

ples to be used at each fidelity while training sub-models and understanding the resulting

cost/accuracy trade-off would push the MFML method to its limits. The investigation into

the different degrees of freedom for the MFML model will result in a better understand-

ing of not just the efficiency of the multifidelity methods but also about the contribution

of each fidelity to the overall accuracy of the MFML model. This is crucial to being able to
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reliably use the MFML method for large-scale systems in QC.

Investigating the degrees of freedom in MFML by considering optimal combination

of sub-models, non-nested training data structure, and scaling of number of training

samples per fidelity.

O4: Benchmark Time-Cost of Multifidelity Methods

After developing various multifidelity methods for ML-QC, it becomes imperative to assess

them against the primarily used multifidelity approach in QC, that is against ∆-ML. This

form of assessment needs to be carried out not just in terms of the accuracy of the models

but the overall reduction in the time-cost of generating training data, closely associated

with O2. Since existing multifidelity datasets lack the time-cost of the QC calculations for

each fidelity, this objective would require the generation of a new benchmark dataset which

also contains this information for the fidelities generated. This dataset can then be used to

carry out the test of overall efficiency of the diverse multifidelity methods in the prediction

of QC properties.

Cost-benefit benchmarking of herein developed multifidelity methods for QC using

time to generate training data and model accuracy as metrics. To this end develop a

benchmark multifidelity dataset.

1.3 Roadmap

With the above mentioned objectives, the primary focus is ensured to be the reduction of

the overall cost of the training data for an ML model in the prediction of QC properties.

In order to achieve this overarching aim, the individual objectives need to be fulfilled in a

systematic manner. This section will delineate how the objectives are accomplished with

the help of the methodological developments that are presented in this dissertation.

The Multifidelity Machine Learning (MFML) method is developed in this dissertation

as a direct fulfillment of O1. This method involves the combination of training data from

several fidelities as opposed to the use of a more common bi-fidelity approach in most

applications of multifidelity methods. Once developed this method is first assessed in the

prediction of excitation energies of small to medium size arenes as a proof of concept. Not

only is the method evaluated for the reduction in the prediction error but also for the total

time-cost of generating the training data required to achieve that error addressing O2. The
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MFML method is shown to indeed reduce the cost incurred in generating training data for

ML-QC for a desired error in prediction of the ML model. In these preliminary measure of

the MFML method, it is seen to be sensitive to the data quality of the cheaper fidelities. In

cases where the multifidelity training data is poor in quality and lacks a clear hierarchy as a

result, the MFML model struggles to provide significant benefit.

In order to develop a multifidelity method that is robust to the quality of training data,

this dissertation studies the tuning of the degrees of freedom that occur in MFML by virtue

of construction. One of these is the use of a data-adapted approach to the optimal com-

bination of fidelities in the MFML model resulting in the development of the optimized

MFML (o-MFML) method. The herein developed o-MFML method is shown to be robust in

cases of poor data quality in addition to actively lowering ML model error. Another degree

of freedom that can be manipulated is the use of heterogeneous training data across fideli-

ties. In several state of art techniques for multifidelity methods in ML-QC such as CQML

and ∆-ML, the training data at the different fidelities involves the use of homogeneous or

nested training data. That is, if a training molecular geometry is chosen at a higher fidelity

then it is de facto included also in the lower fidelities. If this assumption is relaxed with the

use of heterogeneous training data, one could potentially combine training data at several

fidelities arising from different existing datasets in order to further reduce the cost associ-

ated with an ML model in QC. An assessment of this degree of freedom in this work reveals

that the o-MFML model is robust even in cases of heterogeneous training data while the

MFML model breaks down. Regardless, a key takeaway from the study on this degree of

freedom in the multifidelity training data is to retain the nested structure of the data. Yet

another degree of freedom that can be tuned is the amount of training data that is used

across each fidelity used in the MFML model. This relates to changing the scaling factor, γ,

which has conventionally been set to 2. That is, if N f
train training samples are used at fidelity

f , then at fidelity f −1, the number of training samples used would be N f −1
train := γ ·N f

train.

The value of γ implicitly encodes the notion of sparsity of data as the fidelity of the data

increases. In this dissertation, the tuning of γ results in the development of a novel er-

ror metric for multifidelity methods and subsequently in the introduction of the Γ-curve

MFML method which is shown to be a high-accuracy low-cost multifidelity model. These

three developments assist in addressing O3 and provide to the ML-QC community a robust,

low-cost, and high-accuracy multifidelity method, that is, the Γ-curve MFML. In all these

developments, O2 is imperatively fulfilled with the focus of model efficiency shifting from

a purely training set size assessment to studying model error as a function of the time-cost

incurred in generating training data at the different fidelities. It is shown that the Γ-curve
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MFML method significantly reduces the cost in comparison to both single fidelity ML and

conventional MFML method.

After sufficient methodological development and accomplishing the respective objec-

tives, it becomes important to assess the standing of these newly developed methods vis-

á-vis the existing standard of single fidelity ML and ∆-ML methods. The key indicator for

this benchmarking is the time-cost for generating training data versus the model error. This

metric for efficiency requires that the dataset used contains the information of time-cost

for each fidelity. While there exist several multifidelity datasets, very few of them, if any,

provide this information to the ML-QC community. In order to bridge this gap, a multi-

fidelity benchmarking dataset, QeMFi (Quantum Chemistry MultiFidelity) is produced as

reported in Chapter 7. The QeMFi dataset contains several organic QC molecules with a di-

verse collection of QC properties. Moreover, the wall-time cost of each fidelity computed in

the dataset is provided. This contributes greatly towards O4. With the benchmark dataset,

since O2 has been sufficiently accomplished, multifidelity models developed in this disser-

tation are systematically assessed and benchmarked for the time-cost incurred in generat-

ing the training data in order to predict several QC properties such as excitation energies

and magnitude of molecular dipole moments. Within this framework, yet another multifi-

delity method, the MF∆ML method is introduced and shown to be superior to ∆-ML [29]

in cases where only few evaluations are to be made with ML models. In cases where several

predictions are to be made using the trained ML model, MFML is shown to be far superior

in terms of high-accuracy low-cost ML techniques.

1.4 Structure

This section presents to the reader the structure of the remainder of the dissertation. Chap-

ter 2 provides a review of existing methods in both ML and QC relevant to the dissertation

including the regression problem and molecular descriptors. This is followed by Chapter 3,

which describes the state of art in multifidelity methods. Details on how fidelities can be

combined are discussed in addition to their relevance to this dissertation. Key state of art

multifidelity methods developed for ML-QC are also presented to complete the foundation

for this thesis.

Part II of this thesis contains the compiled publications of the author. Since the meth-

ods section of multiple publications have overlaps, the methodological contributions have

been collected into Chapter 4. This chapter is in its completeness the author’s own con-

tribution to the field of multifidelity ML methods in QC. The various methods are taken
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almost as is from the original publications with the notations harmonized for this disserta-

tion. Chapter 4 develops the MFML method and provides a framework for the methodolog-

ical study of the degrees of freedom in this method resulting in o-MFML and the Γ-curve

methods. In addition, a cross-validation scheme with the use of homogeneous or nested

training data across multiple fidelities is also introduced.

Chapter 5 offers the reader the first application of MFML to QC, in particular to the

prediction of excitation energies of arenes. The time-cost of generating training data versus

the accuracy of the resulting ML model is introduced as a measure of model efficiency for

assessment. Chapter 6 reports the use of o-MFML and MFML in the prediction of excitation

energies and atomization energies of several molecules. The results indicate that o-MFML

is a successor to the MFML method that is robust to poor quality of multifidelity data and

results in a lower model error for prediction of QC properties.

Chapter 7 presents a benchmarking multifidelity dataset, QeMFi, consisting of five fi-

delities calculated with the TD-DFT formalism. The fidelities differ in their basis set choice:

STO-3G, 3-21G, 6-31G, def2-SVP, and def2-TZVP. QeMFi offers to the community a vari-

ety of QC properties such as vertical excitation properties and molecular dipole moments,

further including QC computation times allowing for a time benefit benchmark of multifi-

delity models for ML-QC. The chapter also discussed associated code scripts which can be

readily used to benchmark MFML and o-MFML models on the QeMFi dataset. This work

has been published as [41].

Chapter 8 assesses the use of non-nested (that is heterogeneous) training data configu-

ration for MFML and o-MFML for the prediction of ground state energies and first vertical

excitation energies of a diverse collection of molecules of the QeMFi dataset. Results in-

dicate that the MFML method still requires a nested structure of training data across the

fidelities. However, the o-MFML method shows promising results for non-nested multifi-

delity training data with model errors comparable to the nested configurations. This chap-

ter has been published as ref. [42].

Chapter 9 compares the data costs associated with ∆-ML, MFML, and o-MFML in con-

trast with a newly introduced Multifidelity∆-Machine Learning (MF∆ML) method for the

prediction of several QC properties from the QeMFi dataset. This assessment is made on

the basis of training data generation cost associated with each model and is compared with

the single fidelity KRR case. The results indicate that the use of multifidelity methods sur-

passes the standard ∆-ML approaches in cases of a large number of predictions. For cases,

where ∆-ML method might be favored, such as small test set regimes, the MF∆ML method

is shown to be more efficient than conventional ∆-ML.
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Chapter 10 investigates the data hierarchies for MFML and its effect on model efficiency

and accuracy in the prediction of vertical excitation energies using the QeMFi dataset. A

novel error metric, error contours of MFML, is proposed to provide a comprehensive view

of model error contributions from each fidelity. The results indicate that high model accu-

racy can be achieved with just 2 training samples at the target fidelity when a larger number

of samples from lower fidelities are used. This is further illustrated through a novel concept,

the Γ-curve, which compares model error against the time-cost of generating training sam-

ples, demonstrating that multifidelity models can achieve high accuracy while minimizing

training data costs. This chapter is published as ref. [43].

In Chapter 11, two practical applications of the herein developed MF methods is pre-

sented. First, the MF methods developed in this thesis are used to predict high accuracy

energies of several small molecules. Secondly, the use of Γ-curve for the prediction of ex-

citation energies for a system of 16 porphyrins on clay surface is discussed and shown to

be highly efficient. Only the contributions of the author are detailed. Any datasets used or

experiment designs that lie outside the ambit of the author’s own contribution are appro-

priately cited. Finally, Chapter 12 provides conclusive remarks and future outlooks for the

works presented in this dissertation.

Appendices are provided towards the end of the dissertation. Appendix A provides sup-

plementary results which are taken from the Supplementary Information files of the publi-

cations from List of Publications. Appendix B provides selected QC methods for the sake of

completeness of this thesis.
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A PRIMER OF FUNDAMENTALS

That which can be asserted without evidence, can be dismissed without evidence.

— Christopher Hitchens

T
he ambit of this part of the thesis is to present the reader with brief details about

the methodological developments that are the foundation of the work developed

in the dissertation. The part is divided into two chapters. This chapter introduces

fundamentals such as regression and Gaussian Process Regression while the forthcoming

chapter in this part describes in detail the multifidelity approach, in particular with sur-

rogate models (SM) such as ML. The rest of this chapter is structured as follows: section

2.1 describes key concepts such as molecular descriptors which are a key component of

the ML-QC pipeline, converting the Cartesian coordinates and elemental species of the

molecules into machine learnable input features. The concept of regression is introduced

in section 2.2 with special focus on kernel based methods such as Kernel Ridge Regression

(KRR) and Gaussian Process Regression (GPR). KRR and GPR are the ML models of choice

for this dissertation. Details on the metrics used to evaluate ML models are provided in

section 2.7 for completeness.

2.1 Molecular Descriptors

As presented in Chapter 1, ML in QC learns some property of interest by mapping molec-

ular geometry and other physical details such as atomic number to the property. In the

world of ML-QC frameworks, it is pertinent to first convert the Cartesian coordinates of the

molecules into a machine learnable format, which are called molecular descriptors or repre-
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sentations [44, 19, 45]. Generally speaking, molecular descriptors are required to be invari-

ant under translation, rotation, and permutation of the molecule and constituent atoms

[21]. In certain cases such as learning dipole moments, molecular descriptors are expected

to be equivariant under rotation since the dipole moment is a QC property that depends

on the orientation of the molecule itself [46, 47]. In addition, the uniqueness of the descrip-

tor is considered to be a required trait [48]. Other desirable features include computational

efficiency and universal applicability of the descriptor [22].

Several molecular descriptors are used in the ML-QC framework and the specific choice

for application depends on the QC property and scope of application of the ML model.

Since the central aim is to present multifidelity methods for ML and not to establish the

best possible molecular descriptor, only two descriptors are utilized across the different

chapters which are described below. For a comprehensive analysis of several molecular

descriptors in predicting QC properties, the interested reader is directed to ref. [48] as a

port of first entry.

Unsorted Coulomb Matrices (CM) [44, 49] are the molecular descriptors that are com-

monly used across this work. For a molecule, the entries of CM, C , are computed as

(2.1) Ci , j :=


Z 2.4
i
2 , i = j
Zi ·Z j

∥R i−R j∥ , i ̸= j ,

where the Cartesian coordinate of the i -th atom is R i with Zi being the atomic charge. The

indices i , j run over the atoms of the molecule. Note that the CM are symmetric matrix rep-

resentations, that is C T =C . That is, only the upper triangular entries of the matrix C would

be unique. Thus, for a molecule consisting of m atoms, the number of unique entries of the

corresponding CM are m(m + 1)/2. Notice that the size CM representation of a molecule

depends on the number of atoms of the molecule. In cases where the CM representation is

used to learn QC properties of molecules with different number of atoms such as the case

in Chapters 7 and 8 the CM are padded by zeros to maintain a uniform size of the descrip-

tor. For example, in Chapter 7 the largest molecule in the QeMFi dataset is o-HBDI with

22 atoms resulting in the padded CM size of 253 entries. Some literature uses a row-norm

sorted CM as molecular representation where the rows of the CM descriptor are reordered

such that: ∑
j

C1 j ≥
∑

j
C2 j ≥ . . . ≥∑

j
CN j ,

where j indexes the atoms in the molecule. The row-norm sorted CM is avoided in most of

this dissertation since this form of sorting is known to produce discontinuities in the repre-
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sentation [44, 50]. However, in Chapter 10, row-sorted CM are used to assess transferability

of the therein developed Γ-curve MFML model.

The second molecular representation that is used in this work is the Spectral London

and Axilrod-Teller-Muto (SLATM) representation [51]. The theoretical foundation of this

representation is the atoms-in-molecules formalism of QC [52]. Subsequently, the elec-

tronic density of atoms is considered in an ensemble fashion with the projection of the

system charge density on internal degrees of freedom of the system. The derivation of this

representation lies outside the scope of this work. However, the interested reader is directed

to refs. [51, 21] for a comprehensive derivation of the SLATM representation.

2.2 The Regression Problem

This section is adapted from ref. [53] on regression. Consider the set of input features X ⊂
Rd which is non empty, and a function g : X →R, one has the training set T = (X i , yi )N

i=1 ⊂
X ×R, ∀N ∈N where X i is the input feature with corresponding target yi . One can collect

the targets into a vector y , and the input features into X̂ in order to rewrite the training

dataset as T := (X̂ , y).

The standard linear regression model is interested in approximating some function g

such that g (X̂ ) = X̂
T

w , where w is the vector of weight (or parameters). Then the standard

linear regression model is

(2.2) y = g (X̂ )+ϵ,

where the noise is Gaussian with zero mean and σ2
N variance:

(2.3) ϵ∼N (0,σ2
N ) .

Assuming this form of noise in the observations results in the following likelihood:

p(y |X̂ , w ) =
N∏

i=1
p(yi |X i , w )(2.4)

=
N∏

i=1

1p
2πσN

exp

(
− (yi −X T

i w )2

2σ2
N

)
(2.5)

= 1

(2πσ2
N )N /2

exp

− 1

2σ2
N |y − X̂

T
w |21

(2.6)

=N (X̂
T

w ,σ2
N I N )(2.7)
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where the first step arises due to the independence assumption of training data. If one

employs Bayesian formalism, that is, one enforces a prior over the weights w , then

w ∼N (0,Σp )

that is, a zero mean Gaussian withΣp covariance matrix. The inference is made using Baye’s

rule as

(2.8) p(w |y , X̂ ) = p(y |X̂ , w ) ·p(w )

p(y |X̂ )
,

where

p(y |X̂ ) =
∫

p(y |X̂ , w ) ·p(w )d w

is called the marginal likelihood and is independent of w .

Thus, Eq. (2.8) of the posterior uses the prior and the likelihood in order to use all infor-

mation available about the weights. If one writes the posterior in terms of likelihood and

prior which depend on the weights1, we have

(2.9) p(w |X̂ , y) ∝ exp

(
−1

2
(w − w̄ )T · (

1

σ2
N

X̂ X̂
T +Σ−1

p ) · (w − w̄ )

)
,

with w̄ :=σ−2
N · (σ−2

N X̂ X̂
T +Σ−1

p )X̂ y).

With this setup, the predictive distribution gq ≡ g (X q ) for an unseen query input feature

X q is made as

p(gq |X q ,T ) =
∫

p(gq |X q ) ·p(w |T )d w(2.10)

=N

(
1

σ2
N

X T
q

(
1

σ2
N

X̂ X̂
T +Σp

)−1

y , X q

(
1

σ2
N

X̂ X̂
T +Σp

)−1

X q

)
.(2.11)

The prediction itself is a Gaussian distribution with the mean being related to the posterior

mean of w and the query input. The variance of the predictive distribution is a quadratic

terms which is dependent on the query input and posterior covariance.

2.3 Reproducing Kernel Hilbert Spaces

While there are several ways to approximate the regression function g from Eq. (2.2), one

method is the use of kernel based methods such as Gaussian Process Regression or Ker-

nel Ridge Regression. In order to understand how these methods function, this section

1Since the marginal likelihood is independent of w
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2.4. GAUSSIAN PROCESS REGRESSION

is a primer in the concept of Reproducing Kernel Hilbert Spaces (RKHS) and is primarily

adapted from ref. [54]. A reproducing kernel k for an arbitrary Hilbert space H , for some

domain X , is a function k : X ×X →R such that

1. k(·, X ) ∈H ∀X ∈X , and

2. f (X ) = (u,k(·, X ))H ∀u ∈H , X ∈X .

A given H is said to be reproducing (that is, a reproducing kernel Hilbert space, RKHS) if

there exists k : X ×X → R, that is, there is a reproducing kernel for the Hilbert Space. A

given continuous k is said to be positive definite on X ⊆Rd if for all n ∈N,α ∈Rn \ {0}, X̂ =
{X 1, . . . , X n} it is that

∑n
i=1

∑n
j=1αiα j k(X i , X j ) > 0. Different kernel functions such as the

Matérn kernel satisfy this requirement. These kernels are part of radial basis functions de-

picted as

(2.12) k(X , X ′) :=ϕ(∥X −X ′∥) ,

where ϕ : [0,∞) → R. Consider the specific example of a Matérn kernel which is used in

most applications in this dissertation. In the form of Eq. (2.12), this corresponds to setting

ϕ(x) ≡
Kχ− d

2
(x) ·xχ−

d
2

2χ−1 ·Γ(χ)
,χ> d

2
,

where Ko is the Bessel function of second kind with order o, Γ is the gamma function, and

χ is a positive parameter of covariance of the kernel.

Given a symmetric positive definite kernel k, one can construct for it a native space

Nk (D) by completing the pre-Hilbert space Hk (X ) := span{k(·, X |X ∈X }. This native space

can be shown to be a RKHS for k [54].

2.4 Gaussian Process Regression

The following section on Gaussian processes (GP) is adapted from refs. [53, 55]. Consider

the positive definite kernel k : X ×X →R and a real-valued function m : X →R. Then, the

function G : X →R is called a GP if for X̂ = (X 1, . . . , X N ) ⊂X for some N ∈N,

Gk,X̂ = (G(X 1), . . . ,G(X N ))T ∈RN

follows the multivariate Gaussian distribution with mean function m and covariance kernel

k. that is, Gk,X̂ ∼N (mX̂ ,kX̂ ,X̂ ) with

mX̂ := (m(X 1), . . . ,m(X N ))T
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CHAPTER 2. A PRIMER OF FUNDAMENTALS

and

kX̂ ,X̂ := (k(X i , X j ))N
i , j ,=1 ∈RN×N .

The GP is often denoted as GP (m,k). Ref. [55] shows that there is a one-one correspon-

dence between G ≡GP (m,k) and the pair (m,k). It follows that

(2.13) k(X , X ′) = E[
(G(X )−m(X )) · (G(X ′)−m(X ′))

]
, X , X ′ ∈X .

Gaussian process regression (GPR) or kriging, is a commonly used Bayesian method in

solving regression problems such as that defined in section 2.2. The key task in GPR is the

estimation of a posterior distribution for the unknown function g given three components:

(a) training dataset T ,

(b) a prior distributionΘ0 defined as a GP

(2.14) g ∼GP (m,k) ,

where, m and k are chosen specific to the problem at hand and are influenced by the

knowledge of the application domain, and

(c) a likelihood function,

(2.15) l X̂ ,X̂
′(g ) =

N∏
i=1

N
(
yi ,σ2) ,

where yi is as presented in Eq. (2.2). The above is defined for the independent and

identically distributed (i.i.d.)2 noise variables ϵi ∼N (0,σ2) for σ2 > 0 where the sym-

bols are as expressed previously for Eq. (2.2).

The posterior distribution,ΘN (g |X , X ′) is given as

(2.16) dΘN (g |X , X ′) ∝ lX ,X ′(g )dΘ0(g ) =
N∏

i=1
N

(
yi |g (X i ),σ2)dΘ0(g ) .

it can be shown [53, 55, 57] that the posterior distribution is a GP denoted as GP (m̂, k̂) with

the mean function (also called posterior mean) for a query input feature X q ∈Xq ⊂Rd

(2.17) m̂(X q ) = m(X )+K X q ,X̂

(
K X̂ ,X̂ +σ2I N

)−1
(y −mX̂ ) ,

2It should be noted that GPR does however, allow for non zero correlation between ϵi , ϵ j i , j ,∈ {1,2, . . . , N }
[56, 57].
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2.5. KERNEL RIDGE REGRESSION

and covariance function (also called posterior covariance function) given by

(2.18) k̂(X , X q ) = K (X , X q )−K X ,X̂

(
K X̂ ,X̂ +σ2I N

)−1
K X̂ ,X q

,

where the symbols are as explained above. The posterior mean function is used to make

predictions for an unseen query input feature X q , while the posterior covariance function

is used in quantifying the uncertainty of the GPR model. The hyper-parameters such as the

prior mean, prior covariance, and σ2 are determined by standard hyper-parameter opti-

mization frameworks such as grid searches or by maximizing the marginal likelihood [53].

Making the predictions with the GP over X̂ is often referred to as the inference. If one des-

ignates ĝ as the inferences, the joint distribution of the predictions and observations can

be written as

(2.19)

[
y

ĝ

]
∼N

([
m

m̂

]
,

[
K X ,X +σ2I N K X ,X̂

K T
X ,X̂

K X ,X̂

])
.

Further, the probability distribution of the predictions conditioned to the training data ob-

servations y is given as

(2.20) ĝ |y ∼N
(
m̂, k̂

)

2.5 Kernel Ridge Regression

Kernel ridge regression (KRR) is a SM approach that is also called regularized least-squares

or spline smoothing [58, 59]. KRR is the resulting SM when one performs regularized risk

minimization over an RKHS (section 2.3) as a hypothesis space [60]. This can be formally

stated as solving the optimization problem given a training dataset T :

(2.21) ĝ = arg min
g∈H

1

N

N∑
i=1

L(X i , yi , g (X ))+λ∥g∥2
H ,

where ∥·∥H denotes the norm in the RKHS, L : X ×R×R is a loss function which penalizes

the difference between the real value yi and prediction g (X i ) for input features X i , and

λ> 0 is a constant. The term λ∥g∥2
H

is a regularization term that prevents overfitting.

On setting the loss function to be equivalent to the square loss, L(X , ŷ , y) = (ŷ − y)2,

one arrives at a unique solution by employing the representer theorem [61, 62] to Eq. (2.21)

given as

(2.22) ĝ (X q ) = K X q ,X̂ (K X̂ ,X̂ +NλI N )−1 y =
N∑

i=1
αi k(X q , X i ), X i ∈ X̂ ,

where, αi are often referred to as the coefficients of KRR.
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CHAPTER 2. A PRIMER OF FUNDAMENTALS

Equivalence of GPR and KRR

On comparing Eq. (2.17) and Eq. (2.22), it can be readily deduced that GPR and KRR are

equivalent, that is, ĝ ≡ m̂ if σ2 = Nλ. In other words, under the condition of a specific

varianceσ2, the posterior mean function of GPR is the solution to the KRR optimization

problem. Loosely speaking, one can state that KRR is the expected value of a GPR.

Consider a training data set T := {(X i , yi )}Ntrain
i=1 of size Ntrain with molecular descriptors

or representations X i and their corresponding QC properties, yi , such as the first vertical

excitation energy. The KRR model for the prediction of the excitation energies yi for an

unseen query descriptor X q is denoted by

(2.23) PKRR
(

X q
)

:=
Ntrain∑
i=1

αi k
(

X q , X i
)

,

where k is the kernel function. The unknown coefficient vector α is trained by solving the

linear system of equations (K +λI Ntr ai n )α= y , with K = (
k(X i , X j )

)Ntrain
i , j=1 the kernel matrix,

I the identity matrix, y = (
y1, y2, . . . , yNtrain

)T the vector of QC properties, and λ a regulariza-

tion parameter.

This work uses two kernels throughout. First, the Matérn Kernel of order 1 with the

discrete L-2 norm

(2.24) k
(

X i , X j
)= exp

(
−
p

3

σ

∥∥X i −X j
∥∥2

2

)(
1+

p
3

σ

∥∥X i −X j
∥∥2

2

)
,

where σ denotes a length scale hyperparameter that determines the width of the kernel.

This property is, in some sense, a measure of the degree of correlation associated with the

training samples [63, 64, 65]. The second kernel used in this work is the Laplacian kernel

given by:

(2.25) k
(

X i , X j
)= exp

(
− 1

σ

∥∥X i −X j
∥∥

1

)

2.6 Cholesky Decomposition

By the construction, the kernel matrix K , is symmetric, that is K T = K . Further, it is positive

definite. That is, ∀X ̸= 0,

X T K X > 0 .

This implies that the determinant of the kernel matrix is positive and all the principle

proper sub-matrices of the kernel matrix also have positive determinants. Since we are in-

terested in solving the system of linear equations presented in section 2.5, one is interested
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2.7. MACHINE LEARNING MODEL EVALUATION METRICS

in the factorization of the kernel matrix3 given as:

K = LLT ,

where L is a lower triangular matrix that is called the Cholesky factor of K and the right

hand side of the equation is the corresponding Cholesky decomposition. if the diagonal el-

ements of the factor are strictly positive, then the factorization is unique. once the Cholesky

decomposition is performed, the solution to the system of linear equations can be written

as

(2.26) Kα= L(LTα) = Lz = y ,

where z = LTα. Therefore, one can solve first for z using Eq. (2.26) and subsequently solve

forαwith LTα= z .

The work presented in this dissertation uses the qmlcode package [66] to perform the

Cholesky decomposition and solve the linear system of equations to arrive at the values

of αi from Eq. (2.23). For a detailed description on the algorithm and derivation of the

Cholesky method, the interested reader is directed to ref. [67].

2.7 Machine Learning Model Evaluation Metrics

In order to assess the ML models studied in this thesis, certain error metrics discussed be-

low are employed. Learning curves are a well known metric in the field of KRR-based ML

methods. These depict the change in prediction error of the ML model for increasing train-

ing set size. Throughout this dissertation, all prediction errors have been reported on a

test set, V F
test := {(X ref

q , y ref
q )}Ntest

q=1 , which consist of evaluation representations and their cor-

responding reference values for property of interest (for example, excitation energy) calcu-

lated at the target fidelity F (for example, TZVP). These errors are reported mostly as Mean

Absolute Errors (MAE) which are defined by a discrete L1 norm

(2.27) MAE = 1

Ntest

Ntest∑
q=1

∣∣∣PML

(
X ref

q

)
− y ref

q

∣∣∣ .

The model PML can either be identified by the standard single fidelity KRR model or by

the various multifidelity models discussed in this dissertation. In some cases, such as the

prediction of excitation energies of diverse molecules in Chapter 10, relative MAE (RMAE)

is used since excitation energies are system specific. Relative error measures eliminate this

3Since we also use Lavrentiev regularization, w.l.o.g. we use the term kernel matrix to imply K + Iλ.
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system effect on the ML model assessment in such cases. RMAE is computed over the hold-

out test set as

(2.28) RMAE = 1

Ntest

Ntest∑
q=1

∣∣∣∣∣∣
PML

(
X ref

q

)
− y ref

q

y ref
q

∣∣∣∣∣∣ .
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3
MULTIFIDELITY MODELS

The poet only asks to get his head into the heavens. It is the logician who seeks to

get the heavens into his head. And it is his head that splits.

— G. K. Chesterton, Orthodoxy

I
n the previous chapter, several fundamental to ML in QC were introduced such as

molecular descriptors and kernel based regression such as KRR. This chapter intends

to introduce to the reader the second segment of literature, namely, multifidelity meth-

ods. Multifidelity methods in numerical simulations deal with combining simulation data

across different fidelities. In this chapter, firstly, the concept of high and low fidelity models

is discussed. A primer on categorizing these models is presented along with details on how

such models can be combined is delineated. Multifidelity methods are then discussed in

detail with focus on a recursive GP approach based on refs. [39, 40]. Several multifidelity

methods such as ∆-ML [29], CQML method [32], and multi-task GPR are also presented.

This is followed by an examination of application of MF methods in literature, in partic-

ular to quantum chemistry (QC). Throughout the chapter, boxes are provided to indicate

where in the dissertation the specific method is further developed for the MF methods of

this dissertation.

In several areas of science where computational methods are used, different numeri-

cal models can be used to study a given system of interest [39]. A numerical model, as the

name suggests, simulates the system of interest in silico, numerically. A resource extensive

numerical model, also called a HF model, usually results in a high accuracy description of

the system. In contrast, a LF model results in a less accurate description while also being

less computationally expensive. MF methods is an umbrella term to cover the approaches
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CHAPTER 3. MULTIFIDELITY MODELS

which combine outputs of HF and LF models to approximate the output of the former [68].

Mathematically, one can denote a numerical model as a mapping between some inputs

and an output. Then the HF and LF fidelity models can be defined as

gh : X →Y ,

and

gl : X →Y ,

respectively, which map some input X ∈ X ⊆ RM to the output y ∈ Y ⊆ RN . The model gh

has an associated cost ch ∈R+ for a single realization1, while the LF model gl has a cost cl ∈
R+. By assumption, ch > cl , thereby giving rise to the concept of HF and LF. Since there can

be several LF models, one can consider the general LF models g ( f )
l for f ∈ {1,2, . . . ,F−1} with

corresponding cost c( f )
l such that f = F denotes the HF model. For ease of writing the nota-

tion, hereon, the HF model is denoted as g(F ) and the LF models as g( f ) ∀ f ∈ {1,2, . . . ,F −1}.

cost

accuracy

HF model

LF1 model

LF2 model

LF3 model

LF4 model

Figure 3.1: A hypothetical HF and LF model graphic depicting the cost and accuracy of the
models. Often, the different LF models themselves can be diverse for cost and accuracy. MF
methods employ the use of LF models to achieve HF accuracy at a lower cost.

Figure 3.1 provides a graphical layout of a hypothetical case of cost versus accuracy

of HF and LF models in order to elucidate the concept of fidelity in numerical models.

Although not to scale, one can see more intuitively what the concept of fidelity means.

The model LF1 is the cheapest numerical model which is also the least accurate. On the

other hand, the model HF denotes the highest fidelity model with a high cost and a high

accuracy. In between the least accurate and most accurate numerical models, lie several

other fidelity models indicates by LFf. It is often the case that some numerical model is

more accurate than another even though it is cheaper, such as is the case for LF2 and LF3

1That is, making a single point calculation with the model.

26



3.1. CATEGORIZING LOW FIDELITY MODELS

in this hypothetical setup. In such a setup, usually the less accurate model is considered to

be the lower fidelity [28].

In multifidelity methods, one is interested in being able to meaningfully combine the

cheaper and less accurate LF models to achieve the accuracy of the HF model at a cumula-

tive cost of making one realization of the model being lower than ch . Within the collection

of LF models itself, as shown in the example from Figure 3.1, there can be some which are

costlier than the others, thereby forming a hierarchy of fidelities. Thus the first step in using

MF methods, is establishing the hierarchy of fidelities. That is, ascertaining which is more

accurate (and costly) than the others. In some cases, there is a direct relation between some

parameter and the fidelity of the resulting model. More often, a clear hierarchy between the

models is not visible and depends mostly on the context, aim, and physical property that is

being modeled [68].

3.1 Categorizing Low Fidelity Models

At this juncture, it is interesting to note that the low fidelity models can be broadly catego-

rized into the following briefly discussed types.

Model simplification

This corresponds to change in the mathematical model that is used to generate the data.

That is, simplifying the model that is used to study the phenomena of interest [68, 28]. This

is usually carried out by reducing the complexity of the PDE that governs the process. An

example of such LF models is when non-linear aspects of the modeling are ignored [69].

Several MF methods with fidelity being defined by SM complexity have been applied to

reduce the cost of sensitivity analysis with a demonstrated speed up of about 10× over sin-

gle fidelity methods in application to the Ishigami function [70, 71] which is a fundamental

benchmark test case for sensitivity analysis. Rijn et al. set up a comparison between the co-

kriging method, a co-radial basis function (RBF) approach, and a new co-Random Forest

method. They establish that the latter is faster with close to no difference in the accuracy

[72].

Optimal mixture of substrates in biogas has been modeled with co-kriging in ref. [73].

Therein, the the HF data is generated with a full-scale simulation of the biogas plant while

the HF data is generated with a faster and less accurate bio-methane potential model. Since

kriging models are best suited for continuous problems [74] and the optimization search

space for the modeling of biogas plants is discontinuous, the work implements a two-layer
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modeling approach wherein two kriging models are simultaneously created which the op-

timization procedure then switches between on the detection of a discontinuity. This ap-

proach is shown to be highly effective for such an application.

Reduced dimensionality of the problem

This approach deals with tuning the accuracy with which one solves the PDE governing

the physical phenomena, usually by manipulating grid size or time steps [28]. These are

referred to as projection based LF models and are results of employing mathematical tech-

niques to reduce the dimension of the problem structure as opposed to using the knowl-

edge of the problem domain [75]. Another example is ref. [76], where Molléro et al. propose

a MF approach in designing a cardiac electromechanical model. In this case, the LF model

is a 0-D (dimension) model of the cardiac system while the HF is the 3-D model of the

cardiac system. Parameters of the cardiac model are estimated using the 0-D model and

shown to transfer to the 3-D model resulting in a fast and accurate overall model for the

cardiac system benchmarked on over 100 different cardiac geometries.

Experimental and simulated

Experimental data versus simulated data is another categorization of HF and LF data, of-

ten shortly referred to as the source categorization. Perdikaris et al. utilize MF information

fusing with GPs to reduce high dimensional problems with high number of training data

to linear algorithmic complexity [77]. The method is benchmarked on several use-cases in-

cluding water transport in boreholes and solving the stochastic Helmholtz equation in 100

dimensions.

Data-fit models

The data fit LF models are the another kind of categorization which offer the flexibility of

having a black-box HF model. This is due to the premise that one is only interested in the

input and output of the HF model and not how it arrives at that relation. Data fit models

are usually derived as linear combinations of basis functions with the coefficients being

fit based on interpolation or regression of inputs and outputs from the HF models [68].

Different kinds of such interpolation and regression are possible and include radial basis

functions interpolation with kriging [53, 78].

For instance, in ref. [79], a reinforcement learning framework with MF models is pro-

posed and implemented on remote controlled cars to test self driving capabilities of such
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models. The proposed workflow for such approaches involves the transfer learning of para-

meters from a LF model to a HF model without needing to fully train the latter, thereby

reducing computation cost.

In ref. [80], a statistical approach to build a multifidelity SM is proposed with an alterna-

tive definition for fidelity being offered for cases where clear hierarchy cannot be achieved.

In particular, the definition of fidelity is presented in the form of a variance metric which is

defined based on the area of application of the surrogate model. The proposed approach is

finally used to minimize the drag coefficient for an airfoil with the use of GPs.

In another example, ref. [81] on the other hand, offers a Markov random fields frame-

work for MF co-kriging resulting in a computationally efficient ML approach and employ

it for uncertainty quantification of the Burger’s equation in fluid dynamics problems. MF

importance sampling methods combining outputs of HF and LF models have been used

to simulate non-linear time-dependent problems such as deflection of a clamped plate,

Burgers’ equation, and simulation of acoustic horn with the Helmholtz equation [82]. The

work showed that the MF method provides a significant speed up over the single HF Monte

Carlo approach.

Furthermore, a NN based MF approach has previously been used in functional approx-

imation and identifying unknown parameters in PDEs [83]. Deep neural network (DNN)

and Physics Informed Neural Network (PINN) methods are implemented to approximate

functions of both continuous and discontinuous kinds. The same NN architectures are

then employed in solving the inverse PDE problem with non-linearity. One such appli-

cation is to learn the hydraulic conductivity of for non-linear unsaturated flows in a 1-D

water column. The MF PINN is shown to be more accurate in the prediction of hydraulic

conductivity [83].

Similarly, MF Monte Carlo (MC) strategies have been implemented in the accurate pre-

diction of wildfire spread [84] and shown to be effective to this end. More recently, deep

convolutional neural networks have been used along with a MF training data strategy to

achieve efficient estimation of the distribution of a quantity of interest for parabolic PDEs

of multi-phase flow [85]. On the other hand, Xu et al. [86] leverage MF learning and bandit

learning [87] to perform fine element approximation of parametric PDEs. Such MF models

have also been used to solve the PDE for heat transport [88]. Physics guided ML (PGML)

along with MF information fusion have been used in order to predict boundary layer flow

using NNs [89].
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3.2 Combining Fidelities

A surrogate model (SM) is a data driven model that approximates the outcome of a numer-

ical model. ML methods such as GPR and KRR are examples of SMs. While the term SM is a

broader categorization of statistical and data driven models, in this chapter, they are used

synonymously with ML models.

In multifidelity methods for SMs, the central aim of combining the fidelities is to uti-

lize the characteristics of each of them to arrive at a low-cost high-accuracy SM. For the

most part, the study of MF methods in literature has been with its demonstration using

two fidelities, ergo a bi-fidelity approach, although certain cases do show the extension of

such methods to more than two fidelities [28]. Bi-fidelity SMs use data from HF models

to make LF models achieve the accuracy of the HF. There are three common archetypes

of combining bi-fidelity data using SMs which are discussed below with ref. [28] as an an-

chor point. While there is a fourth, space mapping, this is omitted due to relevance and

the interested reader is referred to ref. [28] for details. Godino classifies the integration of

bi-fidelity data in surrogate modeling into two main categories: multifidelity SMs and MF

hierarchical models (MFHM) [28]. Bi-fidelity SMs such as co-kriging use data driven surro-

gates to ‘raise‘ the LF data to the accuracy of the HF. MFHMs, on the other hand, combine

fidelities without building a surrogate architecture for MF but rather using optimization

specific to the problem domain. Importance sampling is one example of MFHMs. Although

MFHMs are actively considered as methods to combine multifidelity data, these methods

are not discussed in this dissertation due to relevance. The interested reader is directed to

refs. [90, 68, 28] for more details. Below, the approaches related to bi-fidelity SMs is dis-

cussed. In particular, the combination of data for a bi-fidelity structure is presented in this

section. That is, approaches involved in combining one LF model and one HF model2. The

section that follows will discuss details on how several fidelities can be recursively com-

bined.

3.2.1 Additive correction

As the name suggests, these methods use additive corrections to improve the accuracy of a

LF model. Additive correction is expressed as

(3.1) ŷ (F )(X ) = y ( f )(X )+∆(X ) ,

2It remains a matter of semantics to refer to bi-fidelity models as multifidelity models. This decision is
left to the reader to make.
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where ∆(X ) is the additive correction model that bridges the LF model to the HF model

accuracy. Such forms of corrections have been used in several cases, for instance, in aero-

dynamic optimization and other applications of fluid dynamics [91, 92].

In refs. [93, 94] a bi-fidelity additive correction is carried out in order to solve a diffusive

optical tomography problem. The fidelities are differentiated on the basis of coarseness of

the grid employed. In contrast, ref. [95] uses the simplification of the model as a measure of

fidelity. In all these cases, the additive terms is modeled using a Bayesian approximation.

The additive correction technique from Eq. (3.1) is used in the ∆-ML [29] model which

forms a major component of the MF ML models that are discussed in this work. More

details are presented in section 3.4.1.

3.2.2 Multiplicative correction

The multiplicative correction for multifidelity SMs is expressed as

(3.2) ŷ (F )(X ) = ρ(X ) · y ( f )(X ) ,

with the term ρ(X ) denoting the multiplicative correction factor which in some sense is

the ratio of the output of the HF and LF models. This type of correction has previously been

used in aerodynamic optimization [91, 96].

Ref. [96] utilizes a multiplicative correction between fidelities in order to perform aero-

dynamic optimization. Similar tasks have been demonstrated in ref. [97] for wing-bending

simulations in aerospace engineering. Ref. [98] utilizes the multiplicative correction method

in order to solve optimization problems. Several other works in literature perform and as-

sess multiplicative correction for a bi-fidelity model with applications ranging from surface

optimization to defect detection [99, 100, 101]. The keen reader is referred to the surveys of

Godino and Peherstorfer for more details [68, 28].

3.2.3 Comprehensive correction

When both additive and multiplicative corrections are used simultaneously to combine MF

data, it is considered to be a comprehensive correction method. Formally,

(3.3) ŷ (F )(X ) = ρ(X ) · y ( f )(X )+∆(X ) .

In such an approach, a common simplification that is made is to consider ρ(X ) ≡ ρ ∈ R
being a constant. Such a framework has been employed in design optimization, accurate
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simulations of a fluidized-bed process using linear regression, and uncertainty quantifica-

tion in fluid dynamics by studying the Burgers equation [102, 90, 103].

Another flavor of comprehensive correction given as

(3.4) ŷ (F )(X ) = w(X ) ·ρ(X ) · y ( f )(X )+ (1−w(X )) · [y ( f )(X )+∆(X )] ,

was introduced in ref. [104] for the design of supercritical high lift airfoil. Here, w(X ) is a

weight function which informs which data point is more important while training the SM.

This method has since been employed in several applications ranging from solid mechan-

ics to aerodynamic calculations in flight simulations [105, 106, 107].

3.3 Multifidelity Gaussian Processes

As has been discussed in the earlier stages of this chapter, there can exist several LF mod-

els of differing accuracy and cost leading to a hierarchy of fidelities. One can consider an

ordered hierarchy of fidelities, f ∈ {1,2, . . . ,F }. Given this, the main objective of this sec-

tion is to derive the essentials that indicate how multiple fidelities can be combined into a

multifidelity SM model. In particular, one can focus on the GPR as the SM of choice.

3.3.1 Simple Auto-regressive Model

Here, the simple auto-regressive model presented in ref. [39] is delineated. This multifi-

delity model builds a GP at fidelity f by using a comprehensive corrected GP model from fi-

delity f −1. Consider again the ordered hierarchy of multiple LF models denoted as
(
g f (X )

)F
f =1

with the HF model being identified with f = F . Each of these is now being modeled by a GP,(
G f (X )

)F
f =1, for increasing fidelity with increasing f and X ∈X ⊂Rd representing the input

features and X being the input parameter space. With this, the auto-regressive model for

1 < f ≤ F can be constructed considering a comprehensive correction of the fidelities as

from Eq. (3.3)

(3.5)


G f (X ) = ρ f −1(X )G f −1(X )+∆ f X ,

G f −1(X ) ⊥∆ f (X ) ,

ρ f −1(X ) = l T
f −1(X )αρ f −1 .

In the above equation l f is a vector of n f −1 regression functions,

(3.6) ∆ f (X ) ∼GP
(

pT
f (X )α f ,σ2

f k f (X , X ′)
)

,
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and

(3.7) G1(X ) ∼GP
(
pT

1 (X )α1,σ2
1k1(X , X ′)

)
.

Further p f is s vector of m f regression functions, k f (·, ·) is a correlation function, α f is a

vector of m f dimensions whereas αρ f −1 is a vector of dimension n f −1, and σ2
f ∈ R+. Fur-

thermore, since there is an underlying assumption of a Markov property, it is that given

X ∈X , if G f −1(X ) is known, then there is no further information to be gained about G f (X )

from G f −1(X ′) provided X ′ ̸= X . This implies [40]

(3.8) ρ f −1(X ) = cov
(
G f (X ),G f −1(X )

)
var

(
G f −1(X )

) .

However, in the applications reported in ref. [39], the parameters ρ f −1 ∀ f ∈ {2, . . . ,F } were

treated as constants. On the other hand, ref. [40] makes a case for the consideration of non-

constant values of ρ f −1.

X4 X3

X2X1

Figure 3.2: A hypothetical parameter input space X for 4 fidelities showing nested property
of the experiment design for the models of different fidelities.

One can now consider the Gaussian vector, G (F ) = (
G T

1 , . . . ,G T
F

)T
, which contains the

evaluation of the random processes defined by the models of different fidelities, (G f (X ))F
f =1.

These are now evaluated at the points within the finite subsets of X given as XF ⊆XF−1 ⊆
, . . . ,⊆ X1. This concept is graphically depicted in Figure 3.2. The different circles indicate

the input space of the corresponding fidelities. The size of the circles denote the cardinality

of the space. As one increases the fidelity of data, the cost increases, thus it is anticipated

that the size of the circles also reduces. Notice that the nested fashion of the input space

ensures that if some X ∈ X4 is chosen, it is also that this X ∈ X3, X ∈ X2, and X ∈ X1.

This property of designing the model calculations at different fidelities is called the nested

property and is not a strictly necessary pre-requisite for the MF method. However this re-

striction is often implemented since it allows for easier estimation of model parameters. In

Chapter 8, the nested property is assessed for the prediction of several QC properties.
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While for the most part, MF methods require homogeneous data on both fidelities, sev-

eral works in this field have dealt with heterogeneous data structures. Sarkar et al. present a

MF approach to solving computational fluid dynamics with heterogeneous domains using

heterogeneous transfer learning [108]. Further reading on this matter can be found in the

detailed survey of this method in ref. [109].

The effect of using nested and non-nested data for MF methods of ML in QC is studied

in Chapter 8. While the results indicate that nested training data is preferred, the o-

MFML method developed in Chapter 4 and discussed in Chapter 6 results in favorable

outcomes even for non-nested training data.

3.3.2 Recursive Multifidelity Model

While the auto-regressive model described above performs a comprehensive correction

for the GP model at fidelity f −1 in order to ’raise’ it to fidelity f , the recursive multifidelity

model described here based on ref. [40] does so recursively. The key difference therefore

is that the multifidelity model at fidelity F is built up recursively up from fidelity f = 1

with appropriate comprehensive correction being applied. That is, the LF model as f −1 is

not computed using a numerical solver but rather is in of itself a multifidelity model built

on comprehensively corrected multifidelity model of f −2 and so on. In other words, the

recursive MF model described in ref. [40] expresses the GP at some fidelity f as a function

of the GP G f −1(X ) which is conditioned on g ( f −1) = (g(1), . . . , g( f −1)) at input points taken

from the input spaces (Xi ) f −1
i=1 while still assuming the nested property. Formally,

(3.9)


G f (X ) = ρ f −1(X )Ĝ f −1(X )+∆ f (X ) ,

Ĝ f −1(X ) ⊥∆ f (X ) ,

ρ f −1(X ) = l T
f −1(X )αρ f −1 .

Here any Ĝ f for 1 < f ≤ F is a GP with a distribution given as

(3.10)
[
G f (X )|G ( f ) = g ( f ),α f ,α f −1,σ2

f

]
∼N

(
µG f (X ), s2

G f
(X )

)
.

The mean of the Gaussian distribution in the above equation can be explicitly stated as

(3.11)

µG f (X ) = ρ f −1(X )µG f −1 (X )+p f (X )Tα f +k f (X )T K −1
f

(
g f −ρ f −1(X f )

⊙
g f −1(X f )−P f α f

)
,

with K f being the matrix whose elements are
(
k f (X i , X j )

)
xi ,x j ∈X f

and P f is the matrix con-

taining p f (X ) evaluated on X f . Further, one has that the i th element of the vector k f (X )
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is given as (k f (X , X i ))X i∈X f . This mean is the SM at fidelity f for 1 ≤ f ≤ F . The variance of

the normal distribution from Eq. (3.10) is expressed as

(3.12) σ2
G f

(X ) = ρ2
f −1(X )σ2

G f −1
(X )+σ2

f

(
1−k f (X )T K f (X )−1) .

This variance can be understood as the mean squared error of the SM defined in Eq. (3.11).

Since the mean and variance of the GPR are represented recursively, that is, that at fidelity

f is expressed in terms of those from fidelity f −1, Eq. (3.9) is the recursive MF-GPR model.

If the assumption of nested property of X f holds, then it can be shown [40] that

µG f (X ) ≡ mG f (X )

and

σ2
G f

(X ) ≡ s2
G f

(X ) .

As ref. [40] argues, a benefit of the recursive model over the standard auto-regressive model

is that once the MF model is built, it can be used to evaluate the SM, g f (X ), for all f ∈
{1, . . . ,F }. Furthermore, the recursive MF model has a lower computational complexity than

the auto-regressive model.

The MFML and o-MFML model developed in this thesis are a formulation of the re-

cursive MF model. In particular, MFML corresponds to setting ρ f −1 ≡ 1 in Eq. (3.9)

and ∆ f (X ) ≡ G f (X )−G f −1(X ) with restrictions on the number of training samples to

be used to generate each of these SMs. By formulation of the nested training set, in

MFML, the orthogonality requirement of Eq. (3.9) is satisfied. This will be detailed in

Chapter 4. In o-MFML, the values of ρ f −1 are optimized over a validation set which

results in a more robust way to combine the different fidelities.

3.3.3 Multi-Task Gaussian Process Regression

Multi-task (MT) methods are another flavor of MF-SM where several regression tasks, say

M tasks, are solved simultaneously with an assumption that these tasks are related. This

can be used to learn QC properties at several fidelities in a related manner, as is done in

ref. [110] for instance. The assumption of relatedness between the tasks is made with care

such that learning several tasks simultaneously does not affect the accuracy of the model

[111, 112]. In this section, the details of MTGPR are derived along the lines of ref. [113]

where inter-task dependencies are learned without the use of task-descriptor features [114,
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115]. This form of MTGPR is the most common approach where no explicit relation be-

tween the tasks is provided but the algorithm learns the relation purely based on the obser-

vation data for each task.

Consider again, N inputs collected in X̂ = {X 1, X 2, . . . , X N } with corresponding outputs

given as y = (y11, . . . , yN 1, . . . , y12, . . . , y1M , . . . , yN M )T where each ynm is the output for the

mth task of the nth input. One can collect these as a N×M matrix given as Y with y ≡ vecY .

Assuming a zero mean GP prior over the true value functions of the tasks, {gm}, for the mth

and m′th task, it is that

(3.13) 〈gm(X̂ )gm′(X̂
′
)〉 = K g

m,m′kX̂ (X̂ , X̂
′
) ,

and

yi ,m ∼N (gm(X̂ i ),σ2
m) .

Here, K g , is the positive semi-definite matrix specifying similarities between tasks, kX is the

covariance function of the inputs, and σ2
m is the variance for noise in the mth task. Since

there is no specification of the inter-task correlation, the matrix K g is also learned during

the training process. The mean prediction of the mth task, ĝm , using MTGPR for a query

input X q is given as

(3.14) ĝm(X q ) =
(
k g

m

⊗
k X ,X q

)T
Λ−1 y ,

with

(3.15) Λ= K g
⊗

K X +Σ⊗
I N .

Here, k g
m is the mth column of K g , k X ,X q collects the covariance between the query input

and the training inputs. The matrixΣ is a diagonal of size M ×M withΣm,m =σ2
m , that is, it

models the noise in the data3. Thus, it can be deduced thatΛ is of size M N ×M N .

3.4 Multifidelity Methods in Quantum Chemistry

Quantum chemistry allows for the control of accuracy of the properties to be calculated

with a numerical simulation due to well established hierarchies [116, 117, 118]. The hi-

erarchy can be established with several metrics. Figure 3.3 depicts a hierarchy structure

for QC methods. The axes are not to scale but depict the accuracy of the methods as a

3Ref. [113] shows that if there is no noise in the data, that isΣ≡ 0, it is impossible to transfer between the
tasks.
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accuracy

computational
cost

semi-empirical

Hartree-Fock

Moller-Plesset 2nd order (MP2)

Configuration Interaction (CISD)

Coupled Cluster (CCSD(T))

DFT

((a))

accuracy

computational
costZINDO

LC-DFTB

STO-3G

3-21G

6-31G

SVP
TZVP

QZVP

((b))

Figure 3.3: A depiction of hierarchy in QC based on the (a) QC theory used and (b) choice of
basis set used for example here in DFT. ZINDO and LC-DFTB are semi-empirical methods
which are shown for easy reference.

function of the computational cost associated with them. In Figure 3.3(a), the hierarchy of

QC methods is made on the basis of the QC theory used. Semi-empirical methods are the

cheapest and often the least accurate. Density functional theory (DFT) [119, 120] is cheaper

than most Wave function theory (WFT) methods [121, 15, 122, 123] such as Hartree-Fock

and CCSD(T), the latter is often considered the ‘gold standard’ of computational chemistry

but comes at immense cost particularly with larger molecule sizes with complex atomic

species [122]. Another approach to determining the hierarchy of fidelities in QC is the use

of basis set choices. Consider for example using DFT as the QC theory. There are several

basis sets that can be used depending on the system of choice and the desired accuracy of

considering QC details [6, 7]. This is graphically depicted in Figure 3.3(b) along with two

semi-empirical methods, ZINDO and LC-DFTB. The larger the size of the basis set that is

considered, such as TZVP, the more expensive the computation is.

Having developed a general overview of the multifidelity approaches that exist in litera-

ture in the preceding sections, one can now proceed to look at some multifidelity methods

developed specifically in the field of ML-QC. In this section four such approaches are dis-

cussed. The ∆-ML method can be seen as a version of additive correction applied to the

fidelities. The CQML method is a recursive sparse approximation method which is akin

to the recursive multifidelity model described in section 3.3.2. The h-ML model is a gen-

eralization of the ∆-ML method with several fidelities and is another version of recursive

multifidelity methods. Finally, the use of a MTGPR method with ∆-ML is presented.
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3.4.1 ∆-Machine Learning Approach

The ∆-ML approach uses training data computed at two different fidelities [29] to train a

model. Consider a training set computed at some fidelity F given as T F := {(X i , yF
i )}

N F
tr ai n

i=1

where X i are the molecular descriptors and the corresponding QC property are yF
i . For the

same molecular descriptors, consider a set of QC computational calculations made at some

lower fidelity QCb < F given as T QCb := {(X i , yQCb
i )}

N F
tr ai n

i=1 . Then the ∆-ML approach trains

a ML model to learn the difference of the property between the two fidelities, that is∆F
QCb

=
y F −yQCb . Hereon, F is referred to as the target fidelity. The final prediction of a KRR model

with the ∆-ML approach is first predicting the difference between the target and baseline

fidelities to which the QC calculation of the baseline fidelity is added for the evaluation

samples. In other words, for a given query representation, X q , the∆-ML prediction is given

as:

(3.16) P F ;QCb
∆ := P

∆F
QCb

K RR (X q )+ yQCb
q ,

where, P
∆F

QCb
K RR is the KRR prediction of the difference, and yQCb

q is the QC computation of the

baseline fidelity for the query molecule.

Harnessing the effectiveness of ML methods [124, 44, 125], ∆-ML has shown to have

high accuracy in the prediction of several QC properties. In the original work from ref. [29],

authors show the effectiveness of the approach for the prediction of atomization energies

of 6,000 isomers of C7H10O2 from the GDB dataset [126, 127]. The HF, or the target fidelity

was chosen to be G4MP2 method which is considered to be at par with experimental es-

timations [128, 129]. The ∆-ML model is trained and evaluated for several cheap fidelities

resulting a a collection of two-fidelity MF models. The assessment of these models was per-

formed using model error and number of training samples used in training the ML model

to predict the difference4. The study of the model errors led to the conclusion that the more

correlated the high and low fidelities are, the lower the model error is. The key aspect of the

∆-ML method which has made it popular in the QC community is that it shows good trans-

ferability. This is due to the fact that the cheaper QC baseline fidelity is computed by con-

ventional QC methods and already incorporates a good deal of the QC theory in it. While

the work in ref. [29] introduces the ∆-ML method and performs comprehensive studies

of the effect of the QC computed baseline fidelities, it does not consider the time-cost of

making such calculations in the assessment of the time-cost of the model in comparison

with the time-cost of the single fidelity ML model built with training samples from only the

4The mathematical Ansatz of the ∆-ML approach is given in section 3.4.1.
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target fidelity. The comparison is purely made in terms of model error versus number of

training samples, in which case ∆-ML is shown to be superior.

The popularity of ∆-ML in reducing the overall ML model error by training on two fi-

delities has been utilized in several areas of predicting QC properties. For example, the

method has seen usage in prediction electronic properties such as spectra and energies

with the TD-DFT formalism for over 20k small organic molecules with up to 8 heavy atoms

(C,O,N,F) by learning the difference between CC2 and DFT fidelities of QC theory [130].

Pilania et al. have used the∆-ML approach using NNs to predict several relevant QC prop-

erties such as band gaps of solids, atomization energies, and dielectric constants at the DFT

level [131]. Elsewhere, Palizhati use the∆-ML model to predict experimental accuracy level

band gaps using HF DFT data and HF experimental data [132]. Egorova et al. use a two fi-

delity GPR model to predict the energy and crystal structure ranking of three small organic

molecules. The method is shown to cost as less as ∼6% of the compute cost of running a full

QC calculation at the HF method of DFT(PBE0). The LF employed was the GGA DFT(PBE)

method [133]. Other applications of the ∆-ML method include the prediction of potential

energy surfaces (PES) with CCSD(T) accuracy [134], crystal bandgap prediction with PBE

accuracy [135], material screening [136], and chemical reaction PES [137].

In this dissertation, the developed multifidelity methods are compared against ∆-ML

models for prediction of several QC properties in Chapter 9 and Chapter 11.

3.4.2 Combination Technique Quantum Machine Learning

Zaspel et al. introduced a systematic generalization of the ∆-ML method by not only ex-

tending to more than two fidelities, but also by replacing the QC computed baseline with a

ML predicted baseline fidelity. This approach, titled the Combination technique Quantum

Machine Learning (CQML) method was used for the prediction of atomization energies

of diverse molecules with CCSD(T) as the HF QC method[32]. For this approach, one as-

sumes that the function to be approximated, g , lies in a function space V :=V (1) ⊗ . . .V (d),

a tensor product space of d dimensions. Next, a series of lower dimensional subspaces are

introduced as V m
0 ⊂ . . . ⊂V (m)

L f
for each of the Lm dimensional V (m). Instead of the full ten-

sor product approximation for fidelity f , V f := V (1)
f

⊗
V (d)

f , one uses sparse grid combina-

tion techniques (SGCT)[37, 36, 35] to approximate g with a cheaper approach by recursive

sparse approximation of V̂ f given as

(3.17) V̂ (d)
f :=

f∑
i=0

(
V (d)

f −i −V (d)
f −1−i

)⊗
V̂ (d−1)

i .
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Once a general ML model is identified with P (s)
ML with s = (t ,b,n) being a composite index

for a subspace V 1
t

⊗
V 2

b

⊗
V 3

n , the SGCT can be transferred to ML for QC. This is called the

CQML approach. For a specific example, if one takes the case of 2-D CQML, say by fixing

b = B , then one has

(3.18) P (t ,B ,n)
CQML (X q ) :=

t∑
ft=0

P (t− ft ,B , ft )
ML (X q )−P t−1− ft ,B , ft

ML (X q ) ,

where X q is some query input features and P (t ,b,n)
ML ≡ 0 ⇐⇒ t = 0 or, b = 0 or, n = 0. The

hierarchy of fidelities was projected into a 2-D concept, the QC level of theory and the basis

set used at the level of theory. This allowed for a more systematic study of the QC hierar-

chies for each of these dimensions. The number of training samples at subsequent fidelities

in the case of CQML are set to account for sparsity of data available with each increasing

fidelity. Then the CQML model is identified as

(3.19) PCQML(X q ) :=∑
s
βs P (s)

ML ,

where the sum runs over the composite index s. As in the case of ∆-ML, the assessment

of the CQML method is performed with the number of training samples used. Since the

CQML method varies the number of training samples across fidelities, the model error is

reported as a function of the number of training samples used at the target fidelity. The

effectiveness of the multi-dimensional (QC method and basis set size) MF method is es-

tablished for the prediction of atomization energies over the QM7b dataset [138, 49]. The

1-D CQML, wherein only the basis set is modified while fixing the QC theory is called the

MF machine learning (MFML) model and is introduced in Chapter 5 of this dissertation.

The MFML method developed in Chapter 4 is a lower dimension version of the CQML

approach where the composite index corresponds to the fidelity of training data and

the number of training samples used at that fidelity.

3.4.3 Hierarchical Machine Learning

Yet another generalization of the ∆-ML that has been introduced is the hierarchical ML

(hML) approach wherein several ∆-ML models are trained for several fidelities [139]. The

method involves the use of an ad hoc optimization procedure to select the number of train-

ing samples to be used at each fidelity in the construction of the ∆-ML models. The hML

model for a target potential energy surface (PES) is defined as

(3.20) PhML(X q ) =∑
m

P (Nm )
∆m

(X q ) ,
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where each ∆-ML model P∆m is trained a number of training samples Nm . The work firstly

presents and ad hoc optimization procedure to determine the optimal number of training

samples for each ∆-ML model to achieve a target accuracy ϵu with some time budget thML.

If the error of the hML model is denoted as ϵhML and the maximum time cost of conven-

tionally calculating the PES as tfull, and su be the user defined time benefit over tfull, then

the following objective function is minimized for the number of training samples Nm

(3.21)
ϵhML

ϵu
+

thML
tfull

1− su
+ p

ϵu
,

where the last term penalizes extremely small values of Nm . The error ϵhML is estimated

with a small validation set with 100 samples. This eliminates the need to train all the ∆-

ML models. With this set-up the hML model is used to predict the PES of CH3Cl at the

CCSD(T)-F12b fidelity. The ∆-ML models are built with several cheaper fidelities. The final

hML model is then built with the appropriate number of training samples selected for each

∆-ML model. This hML model is shown to produce the PES with an error of 0.03 kcal/mol

at a fraction of the cost of tfull. Note that the reported benefit of the hML is with respect to

the use of conventional QC computation at the CCSD(T)-F12b fidelity and does not com-

pare the cost of a single fidelity model trained at CCSD(T)-F12b with respect to the hML

model. That is, the cost benefit su , is a measure of the cost of the hML model to the QC

computation. As with the case of CQML, hML also requires the nestedness of training data,

that is XF ⊆ . . . ⊆X1 for an ordered hierarchy of fidelities {1, . . . ,F }.

In Chapter 9, an elementary h-ML model is assessed against the multifidelity methods

developed in the dissertation. This assessment is made on the basis of training data

cost versus ML model error.

3.4.4 Multi-Task∆-Machine Learning

As opposed to using the different fidelities to build a recursive model, ref. [110] treats the

different fidelities as related tasks to be estimated simultaneously. This is achieved by using

MTGPR and trains a single model for the prediction of QC properties with heterogeneous

data, that is relaxing the nestedness assumption of the MF data. Within this approach, each

task is assumed to be its own regression problem given as

(3.22) y p = g (X )+ϵp

for the primary task and

(3.23) y sn
= g (X )+ϵsn ,∀n = 1,2, . . . , N −1
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for the N −1 secondary tasks. Each ϵ· is i.i.d. from a centered Normal distribution N (0,σ2).

With such a set-up, one then defines the MT based on the primary task [140] as

(3.24) gsn (X ) = ρsn (X )gp (X )+∆sn (X ) .

Notice how this resembles the comprehensive correction for MF data from Eq. (3.3). The

prior for this formulation is taken as

gp ∼GP (µp (X ),kp (X )) ,

and

∆sn ∼GP (µsn
(X ),ksn (X )) ,

that is, these follow GP distributions with a given mean and kernel function. Furthermore,

∆sn ⊥∆sm∀m ̸= n. If R is considered to be a diagonal matrix of size N −1 with its diagonal

entries to be the correlation of the corresponding secondary tasks, then the joint mean and

joint covariance of the MT can be stated as

(3.25) µMT :=


µp

Rµp +µs

µs


and

(3.26) Σ=


K p

pp +σ2I K p
psR K p

pq

RK p
sp RK p

ssR +K∆+σ2I RK p
sq

K p
qp K p

qsR K p
qq


respectively. In the joint covariance matrix, the super-scripts are used to indicate the GP

priors used. The q subscripts indicate the input queries for which the prediction is to be

made. Combined with ∆-ML, the MTGPR method is shown to be effective in the predic-

tion of QC properties such as the three-body interaction energy for water trimers and the

ionization potential of small molecules consisting of {C,O,N,H} atoms [110].

The MF∆ML method developed in Chapter 4 and further assessed in Chapter 9 and

Chapter 11 builds an MFML-like model with several∆-ML models. This approach melds

the two methods similar to what is done in the Multi-task ∆-ML approach where the

two methods that are combined are the MT-GPR and ∆-ML.
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3.5 Revisiting the Objectives

Through the last two chapters, several methodological pre-requisites to the dissertation

have been presented. Furthermore, several applications of multifidelity methods have been

delineated. An extensive survey of the applications of such methods can be found in refs. [141,

109, 68, 28]. With a better view of the landscape, it becomes easier to notice the niches

which can and will be explored in this dissertation. The objectives described in Chapter 1

can be better understood.

In most of the applications described above, the standard procedure is to establish the

method for a bi-fidelity setup of the model or training data. The CQML method developed

in ref. [32] was shown to be effective for the prediction of atomization energies but with

a very specific 3-D setup of the fidelities, along QC theory and basis set size. Often, com-

puting such intensive variations in both QC theory and basis set sizes is not feasible espe-

cially when dealing with large systems. This is specially where O1 - developing the MFML

method - would come in. Not only does it relax the assumptions made on the fidelity hier-

archy structure but it also allows, like the CQML method, for the use of several fidelities.

While several examples above discuss the reduction in number of training samples re-

quired at the highest fidelity incorporated, not many discuss the time cost incurred in gen-

erating the training data for a specific ML model accuracy. O2 - focusing on the cost of the

entire multifidelity training data instead of number of most expensive training samples -

fills this precise gap in literature. The focus now shifts from merely considering ML model

accuracy and number of training samples but now moves to studying the cost incurred

in building that ML model (which is explicitly related to the number of training samples

used in all fidelities). This approach also enables one to fulfill O3 - time-cost benchmarks

of multifidelity methods. In this dissertation several multifidelity methods described above

are benchmarked for the prediction of QC properties.

The recursive multifidelity model presented in section 3.3.2 allows for several degrees

of freedom that can be studied, for example, the choice of the multiplicative and additive

correction terms. The use if o-MFML studies how these can be optimally computed. Fur-

ther, the nested assumption within the training data is analyzed in Chapter 8. These work

in the direction of completing O3 - investigating degrees of freedom in MFML.

Overall, the last two chapters have provided a working framework and foundation for

this dissertation. In the forthcoming part, contributions made by this dissertation in the

identified niches will be discussed. The methods that are developed are presented com-

piled in Chapter 4 with specific elaborations relegated to individual chapters that follow.
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4
METHODOLOGICAL CONTRIBUTIONS

One recognizes one’s course by discovering the paths that stray from it.

— Albert Camus

I
n the previous part of this thesis, the state of art was discussed in addition to certain

key existing concepts that are used throughout the work in this dissertation. This cur-

rent chapter aims to highlight the technical and methodological developments from

this dissertation. The methods mentioned in this chapter are a harmonized version of the

methods referred to in the different publications that are compiled in this larger body of

work with some minor changes in interest of uniformity of the document itself. To fully

place them in the context of the chapters that follow, the reader is referred to the original

works in refs. [142, 143, 41, 42, 144, 43]. However, contrary to the case of the individual

publications, the notations are unified in this chapter and used across this present work.

Furthermore, the methodical details from the QC side of this work are retained within the

specific chapters for easier reference.

4.1 Multifidelity Machine Learning

Consider an ordered hierarchy of fidelities indexed by f = 1,2, . . . ,F where the cost of calcu-

lation (and usually, therefore, accuracy) increases with an increase in the index. The train-

ing set for data at some fidelity f can be then defined as T ( f ) :=
{(

X ( f )
i , y ( f )

i

)}N ( f )

i=1
. One can

define the set of molecular descriptors as X f :=
{

X f
i |

(
X f

i , y f
i

)
∈T ( f )

}
. Based on previous

work in this field as detailed in refs. [32, 142] the current state of the multifidelity method
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recommends the nestedness X F ⊆ . . . ⊆ X 2 ⊆ X 1 of the training data. In other words, if a

molecular conformation has a quantum chemistry property (such as the excitation energy)

calculated at the highest fidelity, then the property is also calculated at all other lower fi-

delities. Although this nested property of training data is retained for the most part of this

dissertation, Chapter 8 studies the effect of using non-nested training data across differ-

ent fidelities. As shown in ref. [142], a MFML model together with KRR as the ML model of

choice can iteratively be built for an ordered hierarchy of fidelities as

(4.1) P (F ; fb )
MFML

(
X q

)
:= P ( fb )

KRR

(
X q

)+ ∑
fb≤ f <F

P ( f , f +1)
KRR

(
X q

)
,

where F is the target fidelity and fb = 1,2, . . . ,F −1 is some baseline fidelity, and X q is the

molecular representation of a query molecule. The term inside the summation is calculated

as

(4.2) P ( f , f +1)
KRR

(
X q

)
:=

N
( f +1)
train∑
i=1

α
( f , f +1)
i k

(
X i , X q

)
.

The coefficients of KRR, α( f , f +1)
i , are calculated by solving a linear system of equations

given by

(4.3)
(
K +λI N ( f +1)

)
α( f , f +1) =∆y ( f , f +1) .

It is to be noted that ∆y ( f , f +1) = y f +1 − y ( f , f +1), where y f +1 is the vector of energies in the

training set T ( f +1) and y ( f , f +1) is the vector of energies in the training set T ( f ) restricted

to those conformations only found on fidelity level f +1. Thus, this definition of MFML can

be seen as one that works on the difference between the data, or simply put, data difference

MFML.

Example 4.1 (Data Difference MFML). A MFML model for a target fidelity F = 5 with a

baseline of fb = 3 can be iteratively built as

(4.4) P (5;3)
MFML

(
X q

)
:= P (3)

KRR

(
X q

)+P (3,4)
KRR

(
X q

)+P (4,5)
KRR

(
X q

)
with

(4.5a) P (3)
KRR

(
X q

)
:=

N (3)
train∑

i3=1
α(3)

i3
k

(
X i3 , X q

)
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(4.5b) P (3,4)
KRR

(
X q

)
:=

N (4)
train∑

i4=1
α(3,4)

i4
k

(
X i4 , X q

)

(4.5c) P (4,5)
KRR

(
X q

)
:=

N (5)
train∑

i5=1
α(4,5)

i5
k

(
X i5 , X q

)
The number of training samples used for each fidelity in the standard setup of MFML

differs by a scaling factor, denoted by γ, of 2 based on research on sparse grid combination

methods [37, 36, 35]. Hence, for the model in Eq. (4.4), assuming to have N (5)
train = 32 training

samples for fidelity 5 leads to N (4)
train = 64 training samples for fidelity 4 and N (3)

train = 128

training samples on fidelity 3. Thus, if the number of training samples at the target fidelity

are set to be N F
train, then the next lower fidelity uses 2×N F

train of training samples and so on.

Section 4.4 presents more details on the concept of scaling factors.

In ref. [32] it has been shown mathematically that the data difference MFML is equiv-

alent to taking the difference of models built on the two different levels while ensuring a

nested data structure. That is, P ( f , f +1)
KRR ≡ P ( f +1)

KRR −P ( f )
KRR where P ( f )

KRR is built on the training set{(
X i , y ( f , f +1)

i

)}N
( f +1)
train

i=1
with conformations restricted to those found in the training set used

for fidelity f +1. This result is further numerically verified in the supplementary material

in Appendix A in Table A.3 for the excitation energies of arenes. Models of the type P ( f +1)
KRR

and P ( f )
KRR are herein referred to as sub-models of MFML. A sub-model of MFML is built for

a specific choice of a training set. For the current work, it implies selecting a fidelity, f , and

the number of training samples at this fidelity, N ( f )
train for f = 1, . . . ,F . This formulation of

sub-models, represents a 2-dimensional multifidelity structure, that is, the fidelity, and the

number of training samples. In such a structure, it is assumed that increasing the fidelity

results in a more accurate (and therefore, a costlier) QC calculation. This in turn translates

into a more accurate (and costlier to train) sub-model. In principle, there is no limit on the

dimensions of MFML as long as a clear hierarchy can be established in each dimension

[32]. For the specific case of the 2-D structure, one can identify a sub-model with an or-

dered pair, or index, s = ( f ,η f ) where f is the fidelity and the number of training samples

chosen from this fidelity are given as N f
train = 2η f . A standard KRR model built for the index

s is then denoted as P (s)
KRR.

With this development, one arrives at the MFML method written as the linear combi-

nation of the various sub-models. To this end, some notations are introduced. The set of

indexes of all available sub-models is denoted by S . A standard KRR model for a query

molecule represented as X q is built as P (s)
KRR

(
X q

)
for s ∈ S . Further, define the set of in-
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dexes of sub-models used for a MFML model with target fidelity F , for N F
train = 2ηF , and a

baseline fb , as follows:

(4.6) S (F,ηF ; fb) :=
{

( f ,η f ) ∈S | f ∈ {
fb , . . . ,F

}
,η f ∈ {ηF , . . . ,2F− fb ·ηF },

F +ηF −1 ≤ f +η f ≤ F +ηF

}
,

where S (F,ηF ; fb ) ⊆ S . The motivation is to combine various sub-models such that only a

few expensive training samples are required, which, when combined with cheaper training

samples, yield a high-accuracy low-cost model for the target fidelity. This is achieved by the

linear combination of the sub-models from s ∈S (F,ηF ; fb ). This is denoted by

(4.7) P (F,ηF ; fb )
MFML

(
X q

)
:= ∑

s∈S (F,ηF ; fb )

βs P (s)
KRR

(
X q

)
,

where βs are the coefficients of the linear combination. These coefficients can be inter-

preted as a measure of how much each sub-model contributes to the final MFML model.

Based on work in MFML for atomization energies [32] and excitation energies [142], the

coefficients are set in such a manner that each sub-model contributes in equal magnitude

to the final MFML model. For a model of the form P (F,ηF ; fb )
MFML , the βs , are set in conventional

MFML as follows:

(4.8) βMFML
s =

+1, if f +η f = F +ηF

−1, otherwise
,

where the terms are as discussed previously.

A hypothetical 2-dimensional multifidelity structure is shown in Figure 4.1 with the di-

mension of fidelity on the y-axis and the dimension of the number of samples on the x-axis.

One can now identify various sub-models in this hypothetical structure. For instance, P (s)

with s = (6−31G ,5), represents a sub-model built at the 6-31G fidelity with 25 = 32 training

samples. In this scheme, the cost (and therefore, the accuracy to target fidelity) of the train-

ing data of the sub-models increases with increase in either of f or sη f . That is, s is more

accurate (and more expensive) than a sub-model built with s ′ = (3− 21G ,5). At the same

time, a sub-model built with s ′′ = (6−31G ,6) is more accurate (and expensive) than s from

this example.

Example 4.2 (Model Difference MFML). Consider the set of sub-models for MFML be-

ing built for target fidelity F = 4, with 22 (that is, ηF = 2) training samples at this fidelity,

and with a baseline fidelity of fb = 1. The set of MFML sub-model indexes is then given

by S (4,2;1) = {(4,2), (3,2), (3,3), (2,3), (2,4), (1,4), (1,5)}. The MFML model is built as the
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21 22 23 24 25 26

Number of Training Samples

f=1

f=2

f=3

f=F

Fid
el
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es

Figure 4.1: A hypothetical structure of sub-models for 4 fidelities is depicted here. Each sub-

model can be identified with an index pair s = ( f ,η f ) representing the fidelity with N f
train =

2η f . Thus, the circled sub-model can be denoted as s ′ = (2,3). Within this formulation, the
MFML model is built by combining the sub-models as shown with the dotted black line.
The contribution of sub-model s ′ is given by the coefficient denoted byβs ′ . In conventional
MFML, this one in particular would equal to -1.

linear combination of the individual KRR sub-models with indexes s ∈ S (4,2;1). The co-

efficients are as defined by Eq. (4.8), i.e., explicitly,

P (4,2;1)
MFML

(
X q

)
:= P ((4,2))

KRR

(
X q

)−P ((3,2))
KRR

(
X q

)+P ((3,3))
KRR

(
X q

)−P ((2,3))
KRR

(
X q

)+
P ((2,4))

KRR

(
X q

)−P ((1,4))
KRR

(
X q

)+P ((1,5))
KRR

(
X q

)
.

One can readily see that this is the very same model P (4;1)
MFML

(
X q

)
as would be arrived

at by using Eq. (4.1) with 22 training samples used at the target fidelity. The conventional

MFML model built with coefficients set by Eq. (4.8) is simply denoted as P (F ; fb )
MFML since it is

identical to the MFML model built in ref. [142].

Let us connect back the development of MFML to the recursive multifidelity model

presented in Eq. (3.9) from Chapter 3. As the example above indicates, there is clearly

a recursive approach employed in making predictions at a target fidelity. The multi-

plicative correction term in Eq. (3.9) are signed unitary weights indicated in Eq. (4.8).

The additive correction term itself, is the difference in predictions between two sub-

models trained at fidelity f and f −1 with the same number of training samples. What

remains to be seen is the orthogonality requirement from Eq. (3.9) being satisfied. Note

first, that the orthogonality requirement essentially means that there is no further in-
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formation that can be learned in the surrogate model at f − 1 other than what is al-

ready present in the additive correction term. Consider that the training data used at

different fidelities is nested (as presented above). With this setup, take the sub-models

P
( f ,η f )
KRR and P

( f ,η′f )

KRR such that η f < η′f . That is, P
( f ,η f )
KRR uses less training data than P

( f ,η′f )

KRR .

But due to the nested nature of the training samples (see also section 4.5), the train-

ing samples in sub-model P
( f ,η f )
KRR are also used in training the sub-model P

( f ,η′f )

KRR . In

other words, the information contained in the sub-model P
( f ,η f )
KRR is also contained in

the sub-model P
( f ,η′f )

KRR . Next, it is observed that the additive correction term arising in

the MFML model is the difference between the prediction of sub-models P
( f −1,η′f )

KRR and

P
( f ,η′f )

KRR . Therefore, implicitly, the orthogonality condition is satisfied. Chapter 8, where

the nestedness of multifidelity training data is relaxed, investigates the effect of the loss

of this orthogonality condition.

4.2 Optimized Multifidelity Machine Learning

Having written the MFML model in terms of the individual sub-models of multifidelity, one

can consider formulations of the coefficients, which are different from Eq. (4.8). The opti-

mized MFML (o-MFML) method optimizes the coefficients, which are model parameters,

this can be seen as a hyperparameter optimization of the different βs to yield a multifi-

delity model, which has an improved accuracy. In most ML methods, a hyperparameter is

a variable parameter which controls various aspects of the learning procedure. In KRR, for

instance, the regularization strength and kernel width are hyperparameters which control

different aspects of the learning, including penalizing overfitting.

For such an optimization, the validation set is defined as V F
val :=

{
(X val

q , yval
q )

}Nval

q=1
. To eval-

uate the accuracy of the model, define a test set V F
test :=

{
(X test

q , y test
q )

}Ntest

q=1
such that the two

are mutually exclusive. That is, V F
val ∩ V F

test = φ, where φ denotes the empty set. The split

of the validation and test sets is a common approach in ML techniques, wherein the op-

timization/ hyperparameter-tuning is performed on the former and the error of the final

model is reported on the latter. It is to be noted that the test set is never used in any stage

of the training process.

One can explicitly define a o-MFML model for a target fidelity F , with N (F ) = 2ηF train-

ing samples at the target fidelity, for a baseline fidelity fb , as

(4.9) P (F,ηF ; fb)
o−MFML

(
X q

)
:= ∑

s∈S (F,ηF ; fb )

β
opt
s P (s)

KRR

(
X q

)
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where βopt
s are optimized coefficients, and X q is the representation of a query molecule. In

general, one is interested in solving the optimization task:

β
opt
s = argmin

βs

∥∥∥∥∥Nval∑
v=1

(
y ref

v − ∑
s∈S(F,ηF ; fb )

βs P (s)
KRR (X v )

)∥∥∥∥∥
p

where one minimizes some p-norm on the validation set V F
val. This is equivalent to solving

(4.10) βopt = argmin
β

∥∥∥MS ′β− y val
∥∥∥

p

where MS (F,ηF ; fb ) =
(
P ( j )

KRR (X i )
)

i=1,...,Nval; j∈S (F,ηF ; fb )
is a Nval × |S ′| matrix, β is the vector of

coefficients with respect to S ′ as depicted in Eq. (4.9), and y val is the vector of reference

energies from V F
val. This work utilizes the ordinary least squares optimization (OLS) pro-

cedure to solve Eq. (4.10) with p = 2. In the results, the OLS o-MFML model is reported

as Po−MFML. However, it must be noted that any method that can solve the minimization

problem in Eq. (4.10) can be used to optimize the coefficients.

Thus, the complete process of building an o-MFML model can be written as follows:

1. Identify the set of sub-models for a given MFML model, S (F,ηF ; fb ).

2. Build the various KRR sub-models for sub-models s ∈S (F,ηF ; fb).

3. Optimize the coefficients, βs , on V F
val using an optimizer of choice.

4. Evaluate the final model P (F,ηF ; fb )
o−MFML on V F

test for some error metric (Section 2.7).

Chapter 6 discussed the use of o-MFML method in predicting excitation energies and

atomization energies.

4.3 Multifidelity∆-Machine Learning Method

Given the development of MFML for an ordered hierarchy of fidelities, f ∈ {1,2, . . . ,F }, one

can consider a case where all the training energies are ‘centered’ by the energies of the

lowest fidelity, f = 1. This approach essentially creates a∆-ML model over the MFML model

and can be termed as multifidelity ∆-machine learning (MF∆ML) method. The prediction

using this method for a query representation X q is given as:

(4.11) P (F,ηF ; fb ,QCb )
MF∆ML (X q ) := ∑

s∈S (F,ηF ; fb )

βs P (s)
∆

(
X q

)
.
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Here, P (s)
∆ are ∆-ML models identified by Eq. (3.16) where QCb would be the fidelity f = 1,

the target fidelity for these ∆-ML models would be fidelity f . The MF∆ML model is built

for some baseline fidelity fb > 1 for a target fidelity F . Thus, with the MF∆ML approach,

the multifidelity model predicts the difference in energies of some fidelity f and the QC-

baseline, f QC
b . With this definition one can also readily extend the concept of o-MFML to

optimized MF∆ML (o-MF∆ML).

a) Small fixed scaling
factor (γ)

b) Large fixed scaling
factor (γ)

c) QC-time informed
scaling factor

(θ)

d) Data structure evolution comparison for MFML and
the Γ-curve

Γ-curve

MFML

Figure 4.2: A hypothetical comparison of training data used across fidelities for the different
kinds of scaling factors used in this chapter. a) The multifidelity training data structure used
in MFML with a small fixed scaling factor (γ). b) Multifidelity training data structure for a
large fixed scaling factor (γ) results in a larger number of training samples being used at
the cheaper fidelities. c) The structure of multifidelity training data used for scaling factors

that are decided based on the QC-time cost, explained in section 4.4 as θF
f and θ

f
f −1. d)

Comparison of training data structure evolution for conventional MFML and the Γ-curve
introduced in section 4.7. Notice how the number of training samples used at the target (the
costliest) fidelity remain same across the data structure for the Γ-curve while they increase
for the conventional MFML method.

Chapter 4.3 discussed the use of MF∆ML method in comparison the ∆-ML approach,

the MFML method, and the o-MFML method over a benchmark multifidelity dataset
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developed in Chapter 7. Furthermore, the MF∆ML method is employed in the predic-

tion of CCSD(T) energies of several monomers in Chapter 11.

4.4 Scaling Factors

Thus far, in both MFML and o-MFML, the number of training samples used for each fidelity

are scaled by a scaling factor of γ=2 based on research on SGCT [37, 36, 35]. For instance, if

one has N (F )
train = 32 training samples for fidelity F then it is that N (F−1)

train = 2×32 = 64 training

samples for fidelity F − 1, N (F−2)
train = 2× 64 = 128 training samples on fidelity F − 2, and so

on. The scaling up of the training samples as one decreases the fidelities can be thought of

intuitively from a perspective of sparseness of data. As one increases the fidelity, the cost of

QC calculation increases. This results in lower number of point-calculations that need to be

made at this fidelity. The scaling factor can itself be varied to assess its effect on the model

error. For each value of these scaling factors, the training set size increases exponentially as

one goes down the fidelities. If one starts with N F
train samples at the target fidelity, then at

each lower fidelity, f < F , the number of training samples would be N f
train = γF− f ×N F

train.

Example 4.3 (MFML Training Data Structure). If F = 5, N F
train = 2, and γ = 3, then for

fb = 1 the training set size for each fidelity, in increasing order of the fidelity, would be

{34 ×2,33 ×2,32 ×2,3×2,2}.

The variation of the training set sizes with increasing values of γ is represented pictori-

ally in Figure 4.2(a)-(b). For a smaller γ, the scaling is not as drastic as it is for larger values

of the scaling factor. In Chapter 10, the effect of varying γ on model accuracy is studied

while also assessing the cost effectiveness of such a data scaling.

This dissertation studies two additional approaches for QC-cost adapted selection of

scaling factors. This approach takes into account the compute times for each fidelity be-

fore adaptively selecting the ratio of training samples between two consecutive fidelities.

Choosing the scaling factors using the cost incurred in making the calculations for the fi-

delity can be motivated as follows: the MFML method builds sub-models at the different

fidelities by training on the data from that specific fidelity. These sub-models are then com-

bined to give the MFML model as expressed in Eq. (4.7). The sub-models are defined not

just by the fidelity but also by the number of training samples used for each sub-model. The

number of training samples in turn are chosen based on the scaling factor chosen between

two subsequent fidelities. Therefore, if one incorporates some information of the time-cost
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of the fidelity to the scaling factor, one could implicitly influence the number of training

samples based on this cost.

While there could be different ways to determine these time-informed scaling factors,

the most trivial approach is to take the nearest integer value of the ratio of the compute

times for the subsequent fidelity. That is, one can define θ f
f −1 := ⌊

T f /T f −1
⌉

, where ⌊·⌉ de-

notes integer rounding. This specific choice of scaling factors is made to take into account

the relative time-cost of the fidelities used in the MFML model. It is reasonable to assume

that the number of training samples used at consecutive fidelities should be based on the

ratio of the cost of those fidelities. Hereon, the MFML models built with this approach of

scaling factors are referred by θ f
f −1.

A second approach of implicitly incorporating the time-cost of the fidelities is to take

the ratio of the compute times with respect to the target fidelity. This approach is motivated

by posing the question, what amount of training data used at a specific fidelity would cost

the same as the training data used at the target fidelity. Once again, the nearest integer value

is considered. This leads to the definition of θ f
F := ⌊

T F /T f
⌉

for all f < F . This formulation

of scaling factors is hereon associated with θF
f . These different scaling factors are further

assessed in Chapter 10.

4.5 Cross-Validation Scheme for Nested Multifidelity Data

In all results herein, the learning curves are averaged over a 10-run random shuffling of the

MFML training set while ensuring the nestedness of the training samples. Due to the nested

structure of the training data used in MFML, conventional cross-validation methods can-

not be used. In its place, the algorithm discussed below is used. This flavor of validation set

approach for the multifidelity data structures will ensure to catch any under or over fitting

that might arise due to choice of training set. This also ensures that the results reported are

robust to any variation that might arise due to the choice of the training set. For each of the

10 runs, the procedure is as follows:

1. Randomly select N F
train = 2ηF training samples from T F . Define this as a new sampled

training set, DF ⊆T F .

2. Train the sub-model P (F,ηF )
KRR on training data from DF .

3. For the conformations X i such that
(

X F
i , yF

i

) ∈DF , train the sub-model P (F−1,ηF )
KRR with

properties yF−1,F
i , that is, the energies at fidelity F −1 for the conformations, which

are also found in D(F ).
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Figure 4.3: A hypothetical MFML error contour for fidelity f and f −1.

4. At the next lower fidelity, f = F −1, build the sampled training set

DF−1 := {(
X F

i , yF−1
i

)}N F
train

i=1 ∪
{(

X F−1
j , yF−1

j

)}2·N F
train−N F

train

j=1
,

such that
{(

X F
i , yF

i

)} ∈DF and
{(

X F−1
j , yF−1

j

)}
∈T F−1 \DF is randomly sampled.

5. Train the sub-model P F−1,ηF−1
KRR on DF−1. Similar to step 3, train P (F−2,ηF−1)

KRR .

6. Repeat steps 4 and 5 recursively until baseline fidelity, f = fb .

The cross-validation scheme that is developed above forms the essential backbone of

evaluating the multifidelity models from this dissertation. In Chapter 8, since there is

a relaxation on the assumption of nestedness of multifidelity data, for the case of non-

nested MFML and o-MFML, this scheme is not used. Apart from that, in all error metric

analysis of multifidelity methods, this form of cross-validation is used.

4.6 Error Contours of MFML

The prediction error of the different ML and MFML models can be computed using MAE

or RMAE as presented in Eq. (2.27) and Eq. (2.28) respectively. In this section, the RMAE

is considered as an indicator of error. All developments in this section can be extended to
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MAE without loss of generality. As a further development of assessment methods for mul-

tifidelity methods in ML-QC, this section introduces error contours of MFML using RMAE.

As a conceptual extension of learning curves, error contours of MFML report MFML model

error as a function not simply of training samples chosen at a single fidelity but as a func-

tion of training samples, N f
train and N f +1

train, chosen at two consecutive fidelities, f and f +1.

In other words, the error contour is the RMAE of the MFML model by varying the training

samples at two fidelities simultaneously.

As a hypothetical example, consider the error contour of MFML presented in Figure 4.3.

The rows correspond to a fixed number of training samples used at fidelity f . The columns

of the contour plot depict the number of training samples used at fidelity f −1. The color of

each block indicates the RMAE of an MFML model built with the training set consisting of

N f
train and N f −1

train with the number of training samples at other fidelities scaled accordingly.

Example 4.4 (MFML error contour data structure). Consider N F
train = 22, F = 5, and

fb = 3, that is a total of 3 fidelities, and γ= 2. The RMAE of the MFML model built with

the training structure
{

N 5
train, N 4

train, N 3
train

}≡ {
22,26,27

}
would correspond to the second

row,fourth column of the error contour plot in Figure 4.3. Similarly, the MFML model

corresponding to the third row and sixth column has the training set sizes
{
23,27,28

}
.

Notice that by definition of the training set size scaling in MFML, the lower triangle of

the error contour is not defined.

The error contours give a better view into the contribution of a multifidelity data struc-

ture to model accuracy for a given target fidelity. The investigation of error contours for

each fidelity pair indicates, in some sense, the weighted contribution of those fidelities to

the overall model. A better understanding of this contribution will aid the choice of N f
train

for each fidelity that constitutes the MFML model. The analysis of the learning curves for

the different values ofγ (see section 10.2.1 and section 10.2.2) indicate that the MFML train-

ing data structure needs only very little training samples at the higher fidelity. The contri-

bution of each fidelity and the number of training samples at each fidelity is more complex

than just the QC-time cost of the fidelity. The error contour effectively helps analyze this

contribution.
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4.7 The Γ-Curve

The study of the error contours in section 10.2.3 indicates that the multifidelity data struc-

ture can provide a high-accuracy model with a much lower number of costly training sam-

ples than the conventional MFML data structure approach. Coupled with the results of

studying the learning curves for different scaling factors (see sections 10.2.2 and 10.2.3),

a new multifidelity approach is proposed: the Γ-curve. As Figure 4.2(d) indicates, in the Γ-

curve approach, one successively builds MFML-like models with a fixed number of training

samples at the costliest fidelity, that is the target fidelity F . The data structure is different

from the conventional MFML approach in that one increases, systematically, the number

of training samples at the cheaper fidelities on the basis of the scaling factor. Formally,

consider a fixed number of training samples at F , that is N F
train. The standard MFML model

would be built with a data structure as presented in Example 4.3. This would be followed

by increasing N F
train for a fixed γ and thereby the number of training samples at the other

fidelities to generate the learning curve. However, in the Γ-curve N F
train is fixed and only γ

is varied. This results in the flattened appearance of the training data structure as seen in

Figure 4.2(d) with a sharp peak. The collection of the model error versus time-cost of gen-

erating the training data for these models is taken together to form the Γ(N F
train)-curve. This

approach is further studied in Chapter 10 for the prediction of vertical excitation energies

of several molecules.

Example 4.5 (Γ-curve training structure). Consider N F
train = 4, F = 5, and fb = 3. Then

the Γ(4)-curve would be built with the first multifidelity training data structure (in in-

creasing fidelity) as
{
22 ×4,21 ×4,4

}
. The next point would be built with a training data

structure of
{
32 ×4,31 ×4,4

}
and so on.

The study on scaling factors, error contours, and the use of Γ-curve are discussed in

Chapter 10. The Γ-curve MFML method is further used to predict excitation energies

of 90-atom porphyrin molecules in Chapter 11.
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MULTIFIDELITY MACHINE LEARNING FOR MOLECULAR

EXCITATION ENERGIES

This chapter is taken from the work published as ref. [142] in the Journal

of Chemical Theory and Computation.

E
xcited states form the basis for understanding various photo-induced processes in

physics, chemistry, and the life sciences. A detailed knowledge of their energies and

properties is key in uncovering the secrets of the intricate working of many systems.

Moreover, in many technical applications such as photovoltaics or light-emitting diodes,

excited states play a key role as well. As one particular example, we would like to mention

the collection of solar energy by light-harvesting complexes, not only in plants and algae

but also in some bacteria [145]. To be more specific, a recent model of a light-harvesting

organelle, a chromatophore, includes more than 2000 pigment molecules [16]. In order to

determine the flow of excitation energy in such a system or to study its spectroscopic prop-

erties, one usually needs to determine the time evolution of the excited states for this large

number of molecules [146, 147, 148]. At the same time, however, the determination of the

excitation energies needs to be rather accurate since small differences in energy can influ-

ence the direction of energy flow, which might be crucial for a proper functioning of the

biological process. Hence, for an accurate description of such systems, each single-point

calculation usually comes with a high computational cost, which is amplified by the large

number of those calculations.
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In recent years, machine-learning (ML) techniques have been applied to this area of

excitation and excited state calculations, resulting in predictive models that are faster than

conventional computational methods [149, 150, 151, 152, 153, 22, 154]. It is a well known

fact that it is harder for ML models to learn excited state properties in comparison to ground

state properties due to the complex chemistry that arises in excited systems [22, 155, 154].

This requires a wider training data set for excited systems of interest for ML models to

achieve reasonable accuracy. Thus, the computational effort to calculate molecular prop-

erties is shifted from an on-line calculation during the quantum chemistry computational

run to an off-line phase, in which only the training data is generated, and ML models are

trained. In such models, it has been commonly observed that the larger the number of

training samples, the better the accuracy of prediction [22, 154]. Since excitation energy

calculations at high accuracy are expensive to perform, the cost of generating the training

data imposes a demanding obstacle to train accurate ML models. Therefore, methods to

reduce the necessity for numerous highly accurate but costly calculations to generate the

necessary training data are needed.

The primary motivation in this work is thus to reduce the cost involved in generating the

training data, without compromising on the accuracy of prediction. The number of training

samples and the time to calculate individual training samples jointly contribute to this total

cost. Currently, various ways exist to reduce the total cost of generating training data. Some

of them fall under the category of selecting optimal molecular conformations for training.

For instance, active learning approaches shift the training data generation back to the on-

line phase, where training samples are adaptively added to the training set based on estima-

tors of the prediction error or the variance of the constructed model [156, 157]. In contrast,

sampling techniques like the “de novo exploration” of a potential energy surface [158] or an

ab initio random structure searching [159] select well distributed molecular samples in the

off-line phase. The ∆-ML [29, 160] approach follows a different idea. It is another off-line

phase method, but adds a second training set for the same molecular conformations with

either the same or a different chemical property, which is typically cheaper to compute.

By only learning the difference between the cheaper and more expensive property, the ap-

proach results in a prediction error comparable to that of conventional ML methods but for

a smaller training set size. It should be noted that the method still requires the same num-

ber of samples to be computed for the numerically cheaper and the more costly properties.

The ∆-ML method has been used for the prediction of various quantum chemical prop-

erties such as potential energy surfaces [134], band gaps [161], and excited state energies

[162].
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Figure 5.1: Multifidelity machine learning (MFML) based on kernel ridge regression sig-
nificantly reduces the cost of training an ML model for the prediction of quantum chem-
istry properties, here, excitation energies. In contrast to the conventional single-fidelity ML
method, the discussed method uses data from multiple fidelities with a few highly accurate
(and costly) data samples and a growing number of less accurate (hence usually cheaper)
data samples, thereby reducing the overall computational cost for the generation of the
training data.

In the multifidelity machine learning (MFML) method, also termed Combination Tech-

nique Quantum Machine Learning (CQML) [32], it is possible to combine sub-models that

utilize a few training samples of the highest fidelity, while using more samples from the

cheaper fidelities to achieve the accuracy of a certain target fidelity. The MFML approach is

a systematic generalization of the ∆-ML method and exploits the correlations across mul-

tiple levels or fidelities in order to determine a certain property. In contrast to the two-level

∆-ML approach, the MFML approach discussed in the present study uses several and not

just two levels of calculations in order to enhance the gain in numerical efficiency. More-

over, the numerical efficiency is enhanced by decreasing the number of required training

samples at higher levels of accuracy. Previously, the here discussed MFML method has been

used for the prediction of atomization energies [32]. Moreover, in Refs. [163, 131] the re-

lated two-level multifidelity co-kriging approach is applied for the prediction of band gaps.

In contrast, the hML formalism [139] was used for high-accuracy PES reconstructions us-

ing multiple ∆-ML models. The number of training samples for each of these models is
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optimized by a semi-automatic procedure and has been reported to reduce the numerical

cost of the training set generation by a large factor over a final model built with 8 different

∆-ML models [139]. In this respect, the hML approach can be seen as a specific case of the

MFML method by fixing the training samples using a semi-automatic optimization. Apart

from MFML being built with decreasing sizes of training samples at the higher fidelities,

data on the lowest fidelity level is also replaced by an ML model, which eliminates the need

to re-calculate the properties on this level during predictions.

The main aim of this work is to further develop and evaluate the MFML method for ex-

citation energy calculations. Earlier work based on the discussed approach [32] further did

not quantify the achieved speedup by using MFML. Instead, below, it will be shown that

the MFML approach allows to drastically reduce the cost of the training data generation,

while achieving the same prediction errors as classical ML models in the field. Thus, in the

off-line phase, the number of costlier calculations is substantially reduced, as the numer-

ical results in this work show. As discussed before, MFML combines sub-models that uti-

lize a few training samples of the highest accuracy or fidelity with sub-models using more

samples from cheaper fidelities to achieve the accuracy of a certain target fidelity. The sub-

models are all built using classical ML models. Although various models exist for ML in

quantum chemistry, kernel ridge regression (KRR) and neural networks (NNs) are the two

most predominantly used methods [22]. The choice of the ML method for this research is

KRR. One point is that KRR models are often considered easier to optimize for the predic-

tion [164, 165]. Furthermore, KRR is considered to be less prone to overfitting in compari-

son to NNs, where external steps like early-stopping and k-fold cross-validation are imple-

mented to prevent overfitting [22]. The regularly reported drawback of the KRR approach

lies in the cubic scaling of solving a system of linear equations, but is less threatening to the

present application since the desired low error is already achieved for a maximum kernel

matrix size of 213 = 8192.

The use of ML for the prediction of quantum chemistry properties such as the excita-

tion energy to the first excited state requires that the Cartesian geometry of the molecules

be transformed into some machine-learnable features. This transformation is achieved by

representations or molecular descriptors. The descriptors which encode the chemical and

physical properties of the molecule [44, 166, 167] become the input to the ML model and

are then used by the model to find a map between the descriptor and the property to be

predicted. For this work, unsorted Coulomb Matrices (CMs) are used. This choice is due to

their simplicity and robustness for the type of data used in this work. In the present case,

the CMs are not row-sorted since (i) this work does not require invariance under permu-
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tations for the implementation as the models are built for individual types of molecules

and not across the chemical space, (ii) the ordering of atoms is identical across individual

frames of the trajectories for all molecules studied, and (iii) row-sorting the CMs is known

to introduce discontinuities that are undesirable [44, 50]. The analysis presented in Figure

A.2 of Appendix A further shows empirically that unsorted CMs outperform their sorted

counterparts on the data considered in this study.

While the long-term interest is, for example, on light-harvesting complexes containing

chlorophyll molecules in complex environments, it is useful to first establish the present

method for smaller molecules in gas phase. To be able to do proper benchmarking, one

needs a large amount of comparison data at the highest fidelity to be able to compare the

results with and without the use of the MFML approach. The calculation of many single-

point calculations using a high-level quantum chemistry formalism can, however, get nu-

merically very expensive, and thus gaining experience with the MFML approach for exci-

tation energy calculation using smaller molecules is the way to go. Moreover, we restrain

ourselves to the prediction of the excitation energies to the first excited state. From the ma-

chine learning perspective, an extension to other excitation energies should be straightfor-

ward, though from the view point of quantum chemistry accurate training data will likely

be harder to obtain, e.g., a proper identification of the desired state can be cumbersome.

As already mentioned above, the very specific application scenario we have in mind are

large arrays of porphyrin or chlorophyll complexes, which can be present in artificial or

biological light-harvesting systems. To understand the energy flow in such aggregates, the

excitation energies to the first excited state need to be known accurately due to the shallow

energy landscape in some of these systems. Moreover, some systems contain more than

2000 pigments [16] and dynamical simulations for the systems are envisioned to obtain the

(time-dependent) spectroscopic properties [146, 150, 147, 153, 168, 148]. The present work

is a first step in the direction of these applications and benchmarks MFML and its effective-

ness on three molecules of growing size, namely benzene, naphthalene, and anthracene.

The challenge to viably cover the chemical space for such an application is beyond the

scope of this work but can include various methods such as active learning approaches

[156, 157]. It must be noted that this is a general challenge in the field of ML for quantum

chemistry and is not restricted to the work presented herein.

The training data is based on time-dependent trajectories calculated by classical molec-

ular dynamics (MD) and density functional tight-binding (DFTB) theory (see section 5.1).

As part of this work, preliminary analyses have been performed on the training data to un-

derstand the multifidelity structure. This allows to preempt any possible issues with the
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MFML models being built. This is carried out in section 5.2.1 for all the molecules used in

this work. The constructed ML models are validated by analyzing learning curves derived

from the evaluation of prediction errors on a distinct molecular trajectory. In particular,

the work first discusses how the prediction error decreases for a growing number of train-

ing samples on the most accurate but also numerically most expensive target fidelity level.

As a second analysis, the actual reduction in computation time is quantified. In a first in-

stance of such an analysis, the time cost to generate the training data required to achieve

a certain accuracy is studied for a systematic increase in the number of training samples

(and thereby the complexity of the model). This allows for clear benchmarks in the case of

excitation energies to the first excited state. Depending on the application, the various plots

of the 5.2 section show a drastic numerical gain in computational efficiency by over a fac-

tor of 30 achieved by the current method compared to classical single-fidelity KRR models.

This outcome clearly shows that MFML is a viable choice for much more complex systems

and larger data sets, where it is expected to show even stronger performance improvements

and time benefits. A general workflow and the multifidelity structure of the MFML method

used in this work is depicted in Figure 5.1.

5.1 Calculating Excitation Energies of Arenes

The training data sets for the excitation energies were generated in gas phase for the three

arenes, namely, benzene, naphthalene, and anthracene along classical MD and DFTB tra-

jectories mainly based on TD-DFT calculations with various basis sets. In the case of the

classical MD simulations, the GAFF force field prepared by the ACEPYPE interface [169]

and the GROMACS-2022.3 package [170] were employed to perform the molecular dynam-

ics simulations. First, an energy minimization was performed followed by a 100 ps-long

equilibration at 300 K. Subsequently, a 100 ps run was performed. Finally, a 15 ps-long

unbiased simulation in gas phase was carried out in which the geometries were stored

at every time step, i.e., every 1 fs. This procedure yielded a total of 15,000 frames, which

were then utilized for excited state calculations to be used as training as well as evalua-

tion data sets. In case of the DFTB simulations, the 3OB parameter set [171] was employed

as chosen in the DFTB+ package version 21.1 [172] and 15 ps-long NVT simulations were

carried out for the three molecules. Again, the trajectories were stored using a 1 fs time

step, producing 15,000 frames for the excited state calculations. Subsequently, the first

excited states of the molecules were determined along the trajectories using the TD-DFT

formalism with the CAM-B3LYP functional as implemented in the ORCA package version
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4.1.2 [6]. In all cases, five different basis sets according to their quantum chemical hierar-

chy were employed, i.e., STO-3G, 3-21G, 6-31G, def2-SVP and def2-TZVP. The exact hier-

archy of excited state calculations across the 15,000 frames is discussed in section A.1 of

Appendix A. In case of benzene, the larger basis set def2-QZVP was tested as well. During

these calculations, the Tamm-Dancoff approximation (TDA) approximation was employed

together with the Resolution of Identity approximation (RIJCOSX) in order to speed up the

calculations. In addition, the computationally cheap semi-empirical methods ZINDO/S-

CIS(10,10) and time dependent LC-DFTB [173] were employed to determine the excita-

tion energies of the benzene molecule along both the MD and the DFTB trajectories. In

shorthand notation, ZINDO/S-CIS(10,10) and time dependent LC-DFTB are described as

ZINDO and LC-DFTB in the respective parts of section 5.2. The ZINDO calculations were

performed using the ORCA package, whereas the LC-DFTB calculations were conducted

using the DFTB+ package.

5.2 Results

In MFML, cost-efficient models for a given target fidelity of the excitation energy are built.

For a large part of this study, the fidelities are given by different basis sets for the excited

states using the TD-DFT approach with the CAM-B3LYP functional (see section 5.1). There-

fore, the different fidelities are simply named after the basis set (or even a shorthand ver-

sion thereof). Single-fidelity ML for the most accurate target fidelity, F , with def2-TZVP ba-

sis set hence leads to a model, which is denoted by P (T Z V P )
KRR . Please note that the accuracy

of the data increases with the fidelity f , i.e., f = 1 denotes the least accurate and f = F the

most accurate data. The MFML approach replaces the model P (TZVP)
KRR by a cheaper-to-train

model that still targets the same fidelity but contains data from a sequence of fidelities

starting from the target fidelity (TZVP) down to a baseline fidelity, fb , e.g., 3-21G. As dis-

cussed in section section 4.1, this is mathematically realized by first constructing a single-

fidelity model on the level of the baseline fidelity and adding up several ∆-ML type inter-

mediate models for fb ≤ f < F , P ( f , f +1)
KRR between fidelities, e.g., 6-31G, def2-SVP, leading

to

P (TZVP;3-21G)
MFML := P (3-21G)

KRR +P (3-21G,6-31G)
KRR +P (6-31G,SVP)

KRR +P (SVP,TZVP)
KRR .

Typically, the prediction errors for the three studied molecules benzene, naphthalene,

and anthracene are discussed via learning curves. The main objective of this analysis is

to show, how the additional cheaper fidelities enhance the prediction. Improvements are
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reported with respect to the number of the most expensive training samples (see section

5.2.2) and with respect to the projected total time to generate the training data as dis-

cussed in section 5.2.4. The learning curves also indicate how additional training data pro-

vides a better prediction accuracy. Since the models were trained individually for sepa-

rate molecules, no tests of transferability were carried out. The task of transferability across

molecule sizes is beyond the scope of this work since this is a first study on MFML for exci-

tation energies.

Since all calculations were performed along both MD and DFTB trajectories, the main

manuscript in most cases shows only the results arising from the MD trajectories of the

molecules. For each trajectory, the training is performed with the data set structured as fol-

lows: on the target fidelity, that is TZVP, 1.5×29 = 768 excitation energies are determined.

The factor of 1.5 ensures that the training data is sufficiently different for each random

shuffling needed in the model evaluation. For each subsequent lower fidelity, this number

is scaled by a factor of 2 thus resulting in 1.5× 213 = 12288 excitation energy calculations

at the lowest fidelity, that is STO-3G. The evaluation of the MFML models is performed on

a separate holdout set, also called the evaluation set, with energies calculated at the TZVP

fidelity (see section 5.1). These conformations from the evaluation set are never used in the

training of the model. The plots for the results along the DFTB trajectories are shown in sec-

tion A.1 of Appendix A. Some final results shown here, however, include results of both MD

and DFTB trajectories as evidence of the method implementation across trajectory types.

For all analyses performed in this work, the excitation energies at the different fidelities are

mean centered. The TZVP energies of the evaluation set are centered by the mean of the

training TZVP energies. As a result, the MFML model predicts the centered energies of the

target fidelity, TZVP. To get the actual TZVP energies of the evaluation set, one must add the

mean of the TZVP energies from the training set T (F ). Centering the energies ensures that

the MFML technique does not simply learn the offsets of the different levels of theory em-

ployed. This allows the multifidelity models to truly learn the underlying structure of the

energies from the various levels of theory.

5.2.1 Multifidelity Structure Analysis

Before using the training data for the MFML approach, some of its characteristics need to

be analyzed to understand its structure. Shown in Figure 5.2A are the energy distributions,

i.e., the kernel density plots of the energy values, at different fidelities (basis sets) for the

three molecules based on the classical MD trajectory. The equivalent results for the DFTB

trajectory are shown in Figure A.3. In several cases, the energy distributions have a Gaussian
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shape, while in some cases, such as the MD based benzene and DFTB based anthracene,

the distributions are bimodal. This bimodal shape of some distributions might be due to

the finite number of samples, and could be the result of a limited coverage of the confor-

mation space arising from the use of a single trajectory. It is important to note again that

the training set for each fidelity has been individually centered by its mean energy value,

which is why the distributions are all centered around an energy of 0 EV. For comparison,

the distributions of the uncentered energies are shown in Figure A.4 for both MD and DFTB

trajectories of the molecules.

The second type of plots shown in Figure 5.2B are scatter plots between the target fi-

delity TZVP and the other fidelities, which are present in the training data. For this stage of

the analysis, only those molecular conformations were considered, which belong to X TZVP

(see section 4.1). The conformations from the evaluation set are not considered. This plot

helps to understand how the fidelities included in the MFML model deviate from the target

fidelity. For the approach to work, one anticipates that the lower fidelities have a system-

atic distribution with respect to the target fidelity. In the data based on the MD but also

the DFTB trajectories of benzene, the points are closely packed for each fidelity and show

a nearly linear dependence between the excitation energies. The same is observed for the

data based on the DFTB trajectory for naphthalene (see Figure A.3B) and the MD trajectory

for anthracene. For the MD-based naphthalene data, the SVP and 6-31G points are rela-

tively close to a line, while the 3-21G and STO-3G results show a much larger spread. The

same is the case for the DFTB-based anthracene excitation energies determined using the

STO-3G basis set when plotted against the TZVP energies, as can be seen in the third frame

of Figure A.3B. Thus, not always the same amount of improvement seems to be present

when increasing the basis set size for these cases. For certain molecular conformations, the

increase in accuracy is larger than for others. This effect might have to do with the ability

to describe the ground and/or excited state molecular orbitals with small basis sets better

for some conformations than for others. The relatively large spread in the relationship be-

tween the target fidelity and some other fidelities is a first hint that for some combinations

of trajectory and basis set, the hierarchy in the accuracies of the different fidelities might

be slightly problematic.

To further understand the training data, the mean absolute differences

∆yTZVP
f = 1

N TZVP

N TZVP∑
i=1

∣∣∣yTZVP
i − y f

i

∣∣∣
were calculated on the centered energies. In Figure 5.2C this quantity is depicted on the

vertical axis and the results are shown as a function of the different fidelities while the error
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Figure 5.2: A) Energy distributions of the different fidelities (basis sets) in the training sets
based on the MD trajectories of benzene, naphthalene, and anthracene. The complete
training data for each fidelity is represented in terms of the density plot obtained using
the kernel density estimation. B) Scatter plots comparing the excitation energies using the
TZVP basis set to the excitation energies at the other fidelities (basis sets) for the confor-
mations in the training data. C) Energy differences (including standard deviations) be-
tween the different fidelities and the target fidelity (TZVP) for the conformations in the
training data. D) Learning curves for the single-fidelity KRR model presented on a double-
logarithmic scale. All results are given for mean centered training sets, thus potential con-
stant shifts between the energies of the various the fidelities were removed.

bars correspond to the standard deviations of the absolute differences. The values of the

absolute differences varies across the molecules. In general, it is expected that the differ-

ences decay at least monotonically for growing fidelity. Except for the move from the 3-12G

to the 6-31G basis set for anthracene, this is always the case. Hence, the ordering of the
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different fidelities is appropriate for an MFML scheme. For the case of anthracene, the or-

dering of 3-21G as a lower and 6-31G as a higher fidelity is still considered, since a larger

basis set should usually lead to more accurate results, especially for these rather small basis

sets.

For the standard deviations over the differences, denoted by the error bars, it would

again be plausible to expect an at least monotonic decay for growing fidelity. Anthracene

with the 3-21G and 6-31G fidelities is again the only exception. In general, the standard

deviations are small for the MD and DFTB trajectories of benzene. This is also the case for

the MD trajectory of anthracene and the DFTB trajectory of naphthalene. In all these cases,

the standard deviation of the SVP level of theory is smaller in comparison to those of the

other fidelities. For MD-naphthalene, the error bars are large across the various fidelities

and thus the error bars span a larger range on the y-axis. The large error bars are numerical

indicators of the corresponding wide spread of the predictions found in the scatter plot, as

discussed previously. This could be a preliminary indicator that the multifidelity method

may not give the expected results for the MD-based naphthalene molecule. A similar ob-

servation is made for the DFTB-based anthracene molecule in Figure A.3C, where a large

error bar is observed for the fidelity based on the STO-3G level of quantum chemical the-

ory. It could be an indicator that the use of the STO-3G fidelity in the multifidelity structure,

might not provide sufficient benefit in this case.

As a final part of the preliminary analysis, the learning curves for single-fidelity KRR

models, that is P (TZVP)
KRR , are reported. The models are built on the training sets using only

the TZVP fidelity and target the same fidelity. Learning curves, averaged over ten randomly

shuffled training sets (see section 2.7) have been generated for these models and are pre-

sented in Figure 5.2D. It can be seen that these learning curves decay algebraically regard-

less of the molecule or on which ground state trajectory the excited state results are based.

For the DFTB-based benzene, a range of low improvement for smaller training set sizes is

observed. This is, however, the pre-asymptotic region and for larger training set sizes the

learning curve clearly depicts a reduction in the MAE. For the number of training samples,

N TZVP
train = 512, the model for the DFTB-based benzene (see Figure A.5D) reached an MAE

comparable to that of the benzene data based on the MD conformations. With 512 train-

ing samples at the TZVP level, the models for all molecules reached an MAE of the order

of 10 meV. The negative slopes of the learning curves for large N TZVP
train indicate that further

addition of training samples can potentially improve the accuracy of the predictions even

further.
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5.2.2 Multifidelity Results
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Figure 5.3: The effectiveness of the MFML method is represented through learning curves,
while the results for the evaluation set are also analyzed in the time and energy domains. A)
Multifidelity learning curves based on the excitation energies along the MD trajectories for
benzene, naphthalene, and anthracene. With the addition of lower fidelities, the prediction
error decreases, as can be seen in the difference between the standard KRR model (blue)
and the MFML model using data from all five fidelities (yellow). B) Energy distributions
based on the holdout sets using the TZVP reference calculations (red) and the predictions
from the MFML model P (TZVP;STO−3G)

MFML (black) for N TZVP
train = 512. For all molecules, it can be

observed that the predictions from the MFML model matches the reference energy dis-
tributions accurately. C) The corresponding time autocorrelation functions (ACFs) of the
excitation energies. The red lines correspond to the ACFs of the TZVP reference calcula-
tions from the holdout set, while the black lines report the ACF of the excitation energies
predicted from the MFML model for the conformations belonging to this set.
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Continuing with the present study, the results of the MFML approach are shown and

discussed next. In Figure 5.3A the MFML learning curves for the MD trajectories are de-

lineated. The top blue line in each of these panels refers to the standard single-fidelity

KRR model, as already shown in Figure 5.2D. The other lines correspond to MFML mod-

els built using an increasing number of fidelities in the models. In detail, this means that

the first MFML model includes the SVP data ( f = 4) in addition to TZVP. The subsequent

models each include an additional fidelity, i.e., 6-31G ( f = 3), 3-21G ( f = 2), and STO-3G

( f = 1). Thus, the most elaborate MFML model includes data from five different excited

state calculations, where the number of data points increases by a factor of two when go-

ing down in the fidelity. Horizontal and vertical dashed lines are included in Figure 5.3A

for the case of benzene to highlight that the addition of cheaper fidelities does in fact

reduce the MAE for a given training set size at the target fidelity. The horizontal line is

drawn at the MAE value resulting from the single fidelity standard KRR model P (TZVP)
KRR at

N TZVP
train = 256. At the position where this line intersects with the line for the MFML model

P (TZVP;STO−3G)
MFML , the left vertical dashed line is depicted. The horizontal position of this per-

pendicular line corresponds to a value of about 16 training samples at the TZVP fidelity.

Thus, the error for the MFML model P (TZVP;STO−3G)
MFML with about 16 training samples at the

TZVP level is roughly the same as the one for the single fidelity model P (TZVP)
KRR with 256

data points at the same theory level. Certainly, for the MFML approach, calculations at the

other fidelities were involved, i.e., the model is built with the number of training samples

N f = (28,27,26,25,24) = (256,128,64,32,16) at the fidelities f = (1,2,3,4,5) which are or-

dered as explained in section 4.1. This finding shows a significant reduction in the number

of samples in the numerically costly training data set required to achieve a certain MAE of

prediction. In this specific example of the benzene molecule and an MD trajectory using a

value of 512 for N TZVP
train , the MAE were 12.2 meV and 5.7 meV for P (TZVP;STO−3G)

MFML and P (TZVP)
KRR ,

respectively.

The learning curves for the excited states of naphthalene along the MD trajectory also

show a clear and systematic offset between the standard KRR model and the MFML mod-

els, as can be seen in Figure 5.3A. The addition of the STO-3G fidelity and to some extent

of the 3-21G basis set, however, did not improve the model significantly. Despite the off-

sets between the learning curves, the MAE values for P (TZVP;3−21G)
MFML and P (T Z V P ;ST O−3G)

MFML are

very similar, i.e., 8.6 meV and 8.4 meV, respectively. Already in section 5.2.1, based on the

scatter plots in Figure 5.2B and the plot of the absolute differences in Figure 5.2C, it was

anticipated that the MFML scheme might not provide perfect results. From the learning

curves, it can now be seen that the method did actually work for the present case. However,
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the improvement for some fidelity levels was only marginal, while including most of the

other fidelity levels did result in an increase in accuracy. For N TZVP
train = 512 the standard KRR

model P (TZVP)
KRR yields an MAE of 11.2 meV while P (TZVP;SVP)

MFML and P (TZVP;6−31G)
MFML reach smaller

MAE values of 9.6 meV and 8.9 meV, respectively. It is worthwhile to mention that in spite

of the irregularities in the data, the multifidelity model P (TZVP;STO−3G)
MFML still results in lower

error values than the preceding models. This finding again indicates the robustness of the

present MFML method.

For the MD trajectory of anthracene, the learning curves are reported in Figure 5.3A

as well. The addition of each cheaper fidelity shows a clear and distinct reduction in the

MAE indicating the effectiveness of the approach. For N TZVP
train = 512, the averaged MAE for

the standard KRR model, P (TZVP)
KRR , was 8.6 meV. In comparison, the multifidelity model,

P (T Z V P ;ST O−3G)
MFML resulted in an averaged MAE of 5.5 meV. In addition, Figure A.5A shows

the MFML learning curves for the DFTB-based trajectories of the various molecules. For

benzene, these show a trend similar to the MD trajectory results. The averaged MAE for

P (TZVP)
KRR and P (T Z V P ;ST O−3G)

MFML were 10.8 meV and 6.7 meV, respectively. In the learning curves

for DFTB-based naphthalene shown in Figure A.5A, the MFML models built with each ad-

ditional less accurate fidelity, show lower offsets for various training set sizes. That is, if

one considers a vertical line drawn at some N TZVP
train , then the learning curves with the less

accurate fidelities fall below the learning curves of the preceding models. There is a jump

observed for all learning curves between N TZVP
train ≈ 16 and ≈ 32, which is carried forward due

to the jump observed in the conventional KRR model. The subsequent multifidelity models

were built including the TZVP data, and thus this jump is also included in their results. For

N TZVP
train = 512, for example, the averaged MAE for P (TZVP)

KRR is 8.9 meV and for P (TZVP;STO−3G)
MFML

6.5 meV. Therefore, the addition of training samples from the less accurate but numerically

cheaper fidelities does in fact reduce the error of the models built for DFTB naphthalene.

For the DFTB-based anthracene, it can be observed that the MFML model does not

provide an improvement with the addition of STO-3G fidelity. This is shown in the MFML

learning curves on the right-hand side of Figure A.5A. For smaller training set sizes, the

learning curve corresponding to the model P (TZVP;STO−3G)
MFML crosses above that of the MFML

model built on the 3-21G baseline. However, for larger training set sizes, the robustness of

the MFML approach succeeds, resulting in a comparable MAE for P (TZVP;STO−3G)
MFML as can be

seen for N TZVP
train = 512. This issue was identified with the high spread of the energies in the

scatter plot from Figure A.3 and pointed out in section 5.2.1. The details of this specific case

are further elaborated in Appendix A under section A.1.4.

For ready reference, the MAEs of the MFML model P (TZVP;STO−3G)
MFML are listed in Table 5.1.
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This table also includes the MAEs resulting from the reference KRR model. It is evident from

these numerical values that the MFML models built across molecule size result in errors

that are very similar. Even the problematic cases of MD-based naphthalene and DFTB-

based anthracene show MAEs which are close to that of the rest of the molecules. This is an

indicator that the multifidelity method performs independent of molecule size.

MOLECULE MAE [meV] - P TZVP
KRR MAE [meV] - P (TZVP;STO3G)

MFML
MD benzene 12.179 5.778
MD naphthalene 11.257 8.343
MD anthracene 8.561 5.592
DFTB benzene 10.822 6.688
DFTB naphthalene 8.982 6.586
DFTB anthracene 8.150 5.952

Table 5.1: MAEs of the MFML model built with the STO-3G level of theory as the baseline
fidelity. The values are reported for N TZVP

train = 512 with the remaining training samples scaled
appropriately across the fidelities. For the special cases of MD-naphthalene and DFTB-
anthracene, the MAE of the MFML model are presented in bold.

5.2.3 Predictions in the Energy and Time Domains

Before analyzing the computational costs of the MFML scheme, the results of this approach

are analyzed in ways different from learning curves and slightly closer to applications, e.g.,

in the calculation of spectral densities [148]. Such properties might not really be relevant for

molecules in the gas phase, but will become essential once similar calculations will be per-

formed for molecules in non-trivial environments. To this end, Figure 5.3B compares the

distributions of the excited states along the MD trajectory. This comparison is performed

between the TZVP reference energies from the holdout set with those predicted for the

conformations in this evaluation set by the MFML formalism using five fidelities, i.e., the

P (TZVP;STO−3G)
MFML model for N TZVP

train = 512. A visual comparison yields basically no differences

for the molecules naphthalene and anthracene, while for benzene, small differences in the

peak structure are visible. For most applications, this level of accuracy is certainly more

than necessary. Looking again at only the training data at the different fidelities for ben-

zene in Figure 5.2A, it becomes evident that the training data has a bimodal distribution,

which translates to the P (TZVP;STO−3G)
MFML model. If the models were to be trained on a larger

dataset, this likely would be smoothed out since a larger section of the conformation space

would be covered and the bimodality in the training set most likely would disappear, being

an artifact of the small number of training data along a trajectory. A similar agreement is
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observed for the MFML model for the DFTB-based trajectories of the molecules, as can be

seen in Figure A.5B.

After having analyzed the data in the energy domain, the next step was to have a closer

look at the time domain. Instead of looking at individual arbitrary pieces of the trajectory,

the autocorrelation function (ACF), which can also be averaged in a meaningful way, was

analyzed. The ACF for a discrete time series can be determined as [174]

(5.1) Cm(tl ) = 1

N − l

N−l∑
k=1

∆Em(tl + tk )∆Em(tk ) ,

where ∆Em denotes the difference between the excitation energies Em and the time aver-

age 〈Em〉, i.e.,∆Em(t ) = Em(t )−〈Em〉. Moreover, N represents the number of frames present

in the respective part of the trajectory. The initial 2700 frames from the evaluation data set

were taken into account for each molecule. These trajectories were divided into ten inde-

pendent windows, each with 270 conformations. Since a time step of 1 fs was employed, an

ACF of a length of 135 fs was constructed using this data. The correlation functions were

averaged over the ten windows. In Figure 5.3C the reference data, i.e., excitation energies

along the MD trajectory determined using the TZVP fidelity, is compared to the predictions

from the P (TZVP;STO−3G)
MFML model built with N TZVP

train = 512. It is clearly visible that the predic-

tions from the MFML model in the case of this averaged ACF reproduce the results obtained

at the TZVP level with high accuracy. In Figure A.5C, a similar agreement can be observed

for the excitation energies along the DFTB trajectories.

5.2.4 Reduction of Computation Time for Generating Training Data

Finally, as the most important part of the present study, the decrease in the computation

time needed to generate the training data when using MFML is studied. To this end, the

MAE will not be studied as a function of the number of training samples on the high-

est fidelity, but as a function of the computation time to generate the complete training

data on all hierarchy levels. The average computation times of single point calculations

at the different fidelities are reported in Table A.1 for the three studied molecules. Based

on this data, the total time to generate the training sets for a given model can be deter-

mined as
∑F

f = fb
N ( f ) ·T

( f )
, where the sum runs from the baseline fidelity fb up to the tar-

get fidelity, F , which in this case is TZVP. In this expression, N ( f ) denotes the number of

training samples used for fidelity f and T
( f )

denotes the corresponding average computa-

tion time for the respective single point calculation, as reported in Table A.1. For example,

the computational time to generate the training set for benzene to construct the model
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Figure 5.4: Computation times to generate the training data sets versus the MAE of the
MFML models, verifying the computational benefits of the MFML models. A) Results for
the MD trajectories: With addition of each numerically cheaper fidelity, the training time
decreases for a specific MAE, i.e., prediction accuracy. B) Findings for the DFTB trajecto-
ries: The time benefits are clearly visible for the various molecules across the fidelities. The
efficiency of the multifidelity method is numerically visible for the DFTB trajectories.

P (TZVP;6−31G)
MFML with N TZVP

train = 4 training samples at the target fidelity can be estimated to be

T MFML
train = 4×3.53 min+8×1.02 min+16×0.65 min ≈ 32 min.

Shown in Figure 5.4A are the MAEs as a function of the the projected computation

times for generating the training data sets for conformations of the three molecules ben-

zene, naphthalene, and anthracene along the classical MD trajectory. For the case of ben-

zene, dashed lines have been included again to help to interpret the data. For N TZVP
train = 512,

the projected computation time to generate the training set only at the target fidelity is

approximately 1800 minutes. Using this data, one can generate the standard KRR model

P (TZVP)
KRR . The horizontal line shows that a similar MAE can be achieved for the MFML model

P (TZVP;STO−3G)
MFML for which the projected time to generate the training set is about 400 min-
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utes. Thus, the MFML method provides a factor of roughly 4.5 in reducing the computa-

tion time required for the generation of the training set. The plot of time to generate the

training data set versus the MAE for the MD-based naphthalene conformations in Figure

5.4A shows again that the MFML model is affected if the distribution of the fidelities with

respect to the target fidelity have a wide spread and if the absolute differences are unex-

pectedly large as was explained in section 5.2.1. Thus, it becomes all the more important

to ensure that the employed training data follows the assumed hierarchy of basis set sizes

or quantum chemistry methods and does not show any anomaly in their respective dis-

tributions. While the MFML approach still remains robust, the cost of the training data

generation might not always follow suit. In addition, the time to generate the training data

set versus MAE for anthracene based on the MD trajectory given in Figure 5.4A reflects the

results of the corresponding learning curves in Figure 5.3A. A computational cost reduc-

tion in the training data generation time is observed across the multifidelity models. The

standard KRR model P (TZVP)
KRR at N TZVP

train = 512 yields a projected time of about 16000 minutes

while the multifidelity model P (TZVP;STO−3G)
MFML gives a similar error with a training set gener-

ation time of roughly 7000 minutes, which results in a cost reduction by a factor of about

2.3 across the multifidelity model. The model P (TZVP;3−21G)
MFML results in a similar error for a

training set with a projected time of generation roughly 6000 minutes, which corresponds

to a time benefit factor of about 2.7 for the training data generation cost.

Similarly, for the molecules based on the DFTB trajectory, the time to generate the train-

ing data sets versus the error in prediction is shown in Figure 5.4B. For benzene, the benefit

of the MFML is evident. If one draws reference lines again for this plot, one observes that

the projected time to generate the training set for benzene to train the model P (TZVP)
KRR is

about 1800 minutes, whereas the time to generate the training set for P (TZVP;STO−3G)
MFML to re-

sult in a similar MAE is roughly 600. This corresponds to a saving in the computational time

by a factor of 3.

For DFTB-based naphthalene in Figure 5.4B, one observes that in the case of N TZVP
train = 32

a jump occurs for the P (TZVP;STO−3G)
MFML model. This jump occurs due to a jump which is al-

ready present in the MAE values for P (TZVP)
KRR as shown in Figure A.3D. It can be understood,

since the TZVP data is contained in both models. One has to notice, however, that the

computational time to generate 512 TZVP training samples is close to 6400 minutes. The

P (T Z V P ;ST O−3G)
MFML model results in a similar error for a computational time for generating the

training data set of about 3000 minutes. The MFML model thus reduces the time cost for

the generation of the training set by a factor of about 2 for DFTB-based naphthalene.

As can be seen in Figure 5.4B, for the DFTB-based trajectory of anthracene, the MFML
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model P (TZVP;STO−3G)
MFML performs poorly and therefore does not provide any cost reduction.

As discussed in section 5.2.1, this is due to the scattered nature of the STO-3G data, which is

depicted in Figure A.3B. The effect of such a wide scatter on the difference models is further

explained in section A.1 of Appendix A. For the other MFML models of the same system, a

reduction in computational training time is still clearly visible. The time to generate 512

training samples at the TZVP fidelity is about 16000 minutes. The prediction error achieved

by P (TZVP)
KRR for this training size can be achieved by the P (TZVP;3−21G)

MFML MFML model for a train-

ing data set with a computational time of roughly 7000 minutes. This corresponds to cost

reduction by a factor of 2.3 in the training data generation time resulting while achieving

a similar accuracy. This example once more shows the need for a clear distribution of the

energies of different levels of theory with respect to the target fidelity for the multifidelity

method to be effective.
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Figure 5.5: Computational time to generate the MFML training set versus the MAE for ben-
zene. The results for the MD-based trajectory are presented on the left-hand side, while the
right-hand side shows the results for the DFTB-based trajectory. The target fidelity is set
to QZVP. Additionally, two semi-empirical methods, ZINDO and LC-DFTB were employed.
For each numerically cheaper fidelity that is added into the model, clear offsets of the learn-
ing curves can be observed.
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5.2.4.1 Additional levels of fidelity

Calculating excited state energies for naphthalene and anthracene along trajectories using

TD-DFT with basis sets larger than TZVP, becomes numerically quite expensive. Thus, the

analysis was only furthered for the two trajectories of benzene by training the MFML model

to predict the excitation energy to the first excited state using the def2-QZVP basis set for

the TD-DFT calculations, which is considerably larger than the def2-TZVP. Thus, it is nu-

merically costlier to calculate the excited state energy for this fidelity. In addition to these

more accurate calculations for the excited states of benzene, two semi-empirical methods,

namely, LC-DFTB and ZINDO were used. It is assumed that ZINDO is the least accurate ap-

proach, followed by LC-DFTB and then TD-DFT with the CAM-B3LYP functional and the

diverse basis sets as studied above. Figure 5.5 shows the plots for the computational time

for the generation of the training data versus the MAE for benzene along the MD and the

DFTB trajectories. In this case, the models are built to target the numerically most expen-

sive QZVP fidelity.

First, we consider the plot for MD-based benzene. Already with two training samples

at QZVP, the MFML model P (QZVP;ZINDO)
MFML outperforms the standard KRR model P (QZVP)

KRR with

256 training samples. On comparing the time required to generate the training set, one

observes that the standard KRR model required about 5000 minutes while the MFML model

achieves a lower MAE for about 150 minutes. This represents a time benefit of over a factor

of 30. If the trend of the MAE for the KRR model were to continue, i.e., if the curve for P (QZVP)
KRR

would be slightly extended, we extrapolate a time benefit of over 50 while using the MFML

model.

For the benzene conformations along the DFTB trajectory, although the MAEs are slightly

larger than those for the data based on the MD trajectory, the time benefit is about a factor

of 17 with roughly 5000 versus 300 minutes for the P (QZVP)
KRR and the P (QZVP;ZINDO)

MFML models,

respectively. Even the MFML model P (QZVP;STO−3G)
MFML yields a computational time benefit of

larger than 10-fold for the DFTB and MD trajectories of benzene. Thus, it becomes evident

that for the presented MFML approach, the savings in computational time for the training

data set generation tend to be larger when the most accurate fidelity is numerically much

more expensive than the lower fidelity levels.

5.3 Conclusion

This chapter has introduced the utilization of MFML models for the prediction of excited

states, here with a focus on the first excited state. With molecules of various sizes, it has
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been shown that if the multifidelity data structure has a clear distribution with respect to

the target level of theory, this method does in fact reduce the computation time for training

the models while improving the accuracy of the predictions. The work presented herein

shows that the various ML methods can be made more efficient with the use of data in

a multifidelity structure. While in this work, the method is applied to the vertical excita-

tion energies to the first excited state, the overall method can be applied to any property

where a hierarchy of training data can be established. MFML is certainly not restricted to

the dimension of the basis set and can be generalized to multiple dimensions [32]. The nu-

merical gain using the MFML approach increases with the difference in numerical effort for

the single-point calculations for the individual levels. It is easy to foresee that when using

high-level quantum approaches for excited states like multi-configurational approaches,

equation-of-motion coupled-cluster models, or quantum Monte Carlo schemes [175] as

the target fidelity, the numerical gain in using the MFML approach for the training data

generation can be tremendously.

Optimizing the factor that scales the number of data points between the fidelities is an-

other interesting point for future research in MFML. Here, one should systematically assess

the effect of the ratio γ= N f +1/N f for all fb ≤ f < F on the prediction errors. Understanding

this relationship can potentially lead to an approach that further reduces the time required

to generate the training sets. Chapter 10 analyses this relationship in detail and shows that

the use of different values of γ does in fact reduce the cost of generating training sets.

Overall, this chapter has numerically shown that for unseen data, the MFML method

can predict the excitation energies with a high level of accuracy as made evident by the

learning curves. In tests, distributions of the respective excitation energies and their time

correlations along dynamical trajectories have been accurately reproduced, thereby being a

strong contender to high-accuracy low-cost ML models for excited state properties. Specif-

ically, for the excitation energy to the first excited state, this method has achieved a time

reduction by a factor of 30 and more. In case one wants to achieve highly accurate exci-

tation energy gaps by electronic structure methods which might scale with higher powers

in the number of atoms such as coupled cluster theories, the MFML approach very likely

will lead to even much larger numerical gain factors. Combining this with the wish to do

such calculations along trajectories, e.g., of a chromatophore with more than 2000 pigment

molecules, gives an idea how large the reduction in numerical cost reduction might be-

come. The same will be true if one wants to determine excited state potential energy sur-

faces or perform non-adiabatic dynamics.
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6
OPTIMIZED MULTIFIDELITY MACHINE LEARNING FOR

QUANTUM CHEMISTRY

This chapter is taken from the work published as ref. [143] in the Journal

of Machine Learning: Science and Technology.

F
ast and accurate calculations of chemical properties have become increasingly ac-

cessible to the community of QC in recent years with the accelerated development

of ML for QC [155, 176, 154, 31] as well as improvements in computer hardware.

Various supervised and unsupervised learning approaches have seen widespread applica-

tion in the field of QC. These applications include areas of material design and discovery

[177, 178, 179, 180, 181, 182, 22, 30, 31] excitation energies [165, 154, 162, 183, 142], poten-

tial energy surfaces [184, 185, 186, 157, 139, 134, 187], and even the prediction of chemical

reactions [188] as well as ML molecular dynamics for the simulation of infrared spectra

[189]. The usually numerically expensive QC calculations are gradually being replaced by

ML models or hybrids of ML and QC resulting in a drastic reduction of the compute cost

associated with chemical design and discovery. The core principle common to the various

ML techniques is the aim to reproduce some implicit mapping between the geometry of the

molecules to some property of interest such as atomization or excitation energies and even

complete potential energy surfaces. These quantities are usually targeted at some level of

theory which is relevant to the area of application.

The general ML-QC pipeline for such applications begins with the generation of raw
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data consisting of the Cartesian geometries of the molecules of interest and the QC calcu-

lation property to be predicted at a specific level of theory, e.g. MP2 or CCSD(T) [190], that

is deemed accurate for the application. The Cartesian coordinates are then transformed

into some input feature format, called representations or molecular descriptors, that the

ML models can map to the property of interest. In the recent past, much work has been

dedicated to the development of such representations. These include molecule-wise de-

scriptors which encode the entire molecule, e.g. inverse distance representations and their

extensions such as the CM [44, 49, 49, 125, 166, 29, 191] and BoB [192, 193, 194]. The other

category of representations are referred to as atom-wise descriptors and they encode the

atoms of each molecule in their respective environment. Commonly used atom-wise de-

scriptors include SOAP [195, 192], SLATM [51], permutationally invariant polynomials (PIP)

[134], the PaiNN representation [47], and the Faber-Christensen-Huang-Lilienfeld (FCHL)

representation [44, 49, 196, 176]. Significant research has also been performed on using

other types of representations such as SMILES strings [197, 198], graph-based representa-

tions [19], and representations that are either generated with neural network (NN) mod-

els such as the Deep Tensor NN [199, 191, 200] or are generated ad hoc [201, 202]. Once

machine interpretable features are generated, any of the various ML methods such as ker-

nel ridge regression (KRR), Gaussian Process Regression (GPR), or NN models such as ANI

[203, 204], SchNet [199, 191] and PhysNet [205], can be used to map the input features to

their respective QC properties.

Within such frameworks, it has been a common observation that the higher the num-

ber of training samples, the better the accuracy of the prediction. However, a high cost is

associated with generating this training data, since conventional electronic structure cal-

culations with at a high level of accuracy are expensive to generate. Thus, the compute cost

associated with discovery in QC is shifted from conventional QC calculations to the cost as-

sociated with generating the training data sets for these ML models. While any of the afore-

mentioned ML methods is a promising candidate to replacing the time-consuming con-

ventional calculations, only rather recently the cost of the training data generation for the

various ML models has been investigated [206, 32, 139, 142]. Previously, various techniques

and models have been implemented to reduce this cost. Among these are methods such as

the ∆-ML [29, 131, 163, 134, 207, 208], and active learning approaches [156, 158]. An ad hoc

optimization procedure for the ∆-ML method has been implemented for the ground state

potential energy surface reconstruction of C H3C l , termed hierarchical-ML (h-ML) [139].

Based on the CPU compute time of single point calculations, the training samples to be

used at various fidelities are selected by minimizing an objective function. This reduces the
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number of electronic structure calculations needed to generate the multifidelity data set

for some user-defined target error.

The previous chapter already dealt with the application of the systematic generaliza-

tion of ∆-ML method, called MFML, to the prediction of excitation energies of arenes.

The MFML method exploits the existence of varying levels of accuracy of conventional QC

methods, thereby resulting in a hierarchy of methods for properties such as excitation en-

ergies. MFML reduces the number of expensive training samples needed by training on the

difference of various fidelities between a baseline fidelity and the target fidelity. The MFML

model is built by iteratively adding models built on the difference between the excitation

energies calculated at the various fidelities. In MFML, the number of training samples is

decreased by a factor of two for each subsequent more costly fidelity [142]. Thus, there is

an inherent decrease in the number of costly training samples. For each fidelity and train-

ing set size at this corresponding fidelity, a sub-model, for a given training set size, is trained

[32]. This is recursively performed from a baseline fidelity (cheaper and less accurate) up

to the target fidelity (expensive and more accurate). The various sub-models are combined

to give the final MFML model. This combination was performed based on the sparse-grid

combination technique [34, 209, 36, 35, 37, 38, 38] as has been discussed in ref. [32] and in

section 4.1.

This chapter furthers the methodological research in MFML by introducing a novel

method of optimally combining the various sub-models built on the different fidelities. The

novel approach is inspired by Refs. [210, 33] where an optimized sparse-grid combination

technique is introduced and discussed for the solution of partial differential equations. In

contrast to that work, here, it is applied to ML for QC where the optimal combination of

the sub-models is performed with respect to a validation set of the property of interest, not

based on intrinsic approximation properties of the given problem. This results in a multi-

fidelity model that predicts the property at the target fidelity with improved accuracy (see

Section 6.2). Thus, the optimized MFML (o-MFML) presents an optimal linear combina-

tion of the sub-models. The present study benchmarks this novel method on the QM7b

dataset with the prediction of atomization energies at the CCSD(T) level of theory with the

cc-pVDZ basis set [49, 32]. Further benchmarking is carried out on the excitation energy of

arenes from the previous chapter. The results indicate that the o-MFML approach is indeed

superior to the conventional MFML scheme.

While the core methodological concepts of the o-MFML method are derived and pre-

sented in section 4.2, this chapter discusses its implementation. The chapter is structured

as follows. A brief overview of the data used for this study is reported in Section 6.1.1. Sub-
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sequently, various results of the comparison of MFML and o-MFML for the two datasets

are delineated. In Section 6.2.1 the results for the benchmark on the QM7b dataset [49, 49]

are reported, while in Section 6.2.2 the corresponding results for the excitation energy pre-

dictions are delineated.

6.1 Dataset

6.1.1 Atomization energies of QM7b

The effectiveness of the optimized MFML method is benchmarked on two independent

datasets. Firstly, it is employed for the prediction of atomization energies of the QM7b

dataset [49], which consists of a total of 7211 molecules with up to seven heavy atoms.

The atomization energies for each of these molecules were calculated in units of kcal/mol

as mentioned in Ref. [32]. The atomization energy of a molecule is the energy required to

completely dissociate all the bonds of the molecule. That is, the energy required to break a

molecule into its constituent unbound atoms. From the original dataset given in Ref. [32],

only the MP2 [211, 123, 212] and CCSD(T) [121, 122, 15] levels of theory are considered in

this work. The fidelity structure was formed by evaluating these with three varying basis set

sizes, namely: STO-3G, 6-31G, and cc-pVDZ (with increasing size). While the original use

of this dataset in Ref. [32] considers a 3-dimensional multifidelity structure, in this work

these are flattened into a 2-dimensional multifidelity structure. In this work, the multifi-

delity structure is built with the assumption that by using the basis sets in the order of their

size, for a choice of basis set, the CCSD(T) level of theory is more accurate. Thus the order

of the fidelities in the assumed hierarchy was taken as MP2–STO-3G, MP2–6-31G, MP2–

cc-pVDZ, CCSD(T)–STO-3G, CCSD(T)–6-31G, and CCSD(T)–cc-pVDZ. The CCSD(T)–cc-

pVDZ combination is set as the target fidelity, i.e., as the highest level of accuracy. Out of

the total set of 7211 molecules, 1.5 × 27 = 6144 molecules were randomly chosen as the

training set. Of the 1067 molecules which remained after separating the training data, 367

were randomly sampled and used as the validation set along with their atomization ener-

gies calculated at the CCSD(T)–cc-pVDZ fidelity. The remaining 700 molecules and their

atomization energies at the target fidelity were utilized as the test set. For the form of mul-

tifidelity models used in this work, the work in Chapter 5 recommends performing a pre-

liminary analysis to verify hierarchy structures. It is to be noted that such analysis can only

be made with respect to computational methods, and the use of experimental data in such

multifidelity structures is not considered therein. Since the atomization energy dataset is
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taken from Ref. [32] where the MFML method was already established for a similar hierar-

chy, the hierarchy assumed above is used. Certainly exceptions may arise in accuracy to the

experimental data should they be considered, as has been shown in Ref. [213].

6.1.2 Excitation energies

Secondly, o-MFML is shown to be effective for the prediction of excitation energies on a

separate and independent dataset carried forward from Chapter 5. This data is either based

on density functional tight-binding (DFTB) or on classical molecular dynamics (MD) sim-

ulations for benzene, naphthalene, and anthracene. For each, a 15 ps-long trajectory was

generated after energy minimization and equilibration. The trajectories were saved every

1 fs giving 15,000 frames which were subsequently employed as input for the excitation en-

ergy calculations using time-dependent density functional theory (TD-DFT) together with

the CAM-B3LYP functional. The resulting excitation energies served for training and eval-

uation. For training, the first Ntrain = 1.5× 213 = 12288 frames were used with excitation

energies calculated at five fidelities, i.e., basis sets: def2-TZVP, def2-SVP, 6-31G, 3-21G, and

STO-3G. The sampling and calculations are identical to those discussed in section 5.1. This

work uses the same number of fidelities provided in the original dataset. These fidelities

are calculated with the TD-DFT level of theory with the CAM-B3LYP functional. Five ba-

sis sets of increasing quantum chemical hierarchy were used for these calculations to give

the hierarchy. Namely, STO-3G, 3-21G, 6-31G, def2-SVP, and def2-TZVP. For the rest of this

work, the fidelities of the excitation energies are simply referred to by the basis sets or their

short-hand notations such as TZVP for def2-TZVP. No further calculations are performed

to increase the number of fidelities or achieve higher accuracy for the excitation energies,

since the QC calculations for excitation energies is computationally expensive and often

scales in polynomial order with number of atoms [22, 155, 154]. Therefore, not only is ex-

citation energy data scarce, it is also extremely tedious to add to existing data. For each

molecule, the 2712 samples with the target fidelity of TZVP were randomly split into 712

and 2000 samples for the validation and test set respectively. The random sampling was

performed using the Scikit-learn package [214].

6.2 Results

The effectiveness of the optimized MFML method is benchmarked on two independent

datasets. Firstly, it is employed to the prediction of atomization energies of the QM7b dataset.
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Figure 6.1: Scatter plot of the various fidelities from the training data with respect to the 1-
norm of the corresponding SLATM representation [51]. The SLATM representation serves
as a proxy to the chemical space. Thus, these scatter plots represent the spread of the at-
omization energies across the chemical space. The first row corresponds to the MP2 level
of theory for increasing basis set sizes. Similarly, the second row displays the scatter plots
for the CCSD(T) level of theory.

In particular, this work reports the prediction of atomization energies for the QM7b dataset

as calculated in Ref. [32], and the prediction of the first excitation energies for the data

used in Chapter 5. The process of the kernel generation and training of the KRR for the

work recorded here are carried out with the QML package [66].

6.2.1 Atomization Energy Prediction on QM7b

Previous work by Zaspel et al. already provided a benchmark for the MFML method in pre-

dicting atomization energies for various molecules in the QM7b dataset [32]. The same

values for the Laplacian kernel width of 400, and for the regularization of 10−10 have been

used in this work to maintain uniformity for the comparison between MFML and o-MFML.

The updated o-MFML models are benchmarked on the same dataset with modifications as

reported in Section 6.1.1. The hyperparameters of KRR are chosen to be identical to the

values reported in the previous work. In total, six fidelities are considered with the target

fidelity of CCSD(T)–cc-pVDZ being numerically most costly and the MP2-STO3G fidelity
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being the cheapest one. In essence, the order of the fidelities in the ascending order of ac-

curacy is MP2–STO-3G, MP2–6-31G, MP2–cc-pVDZ, CCSD(T)–STO-3G, CCSD(T)–6-31G,

and CCSD(T)–cc-pVDZ.

As a preliminary analysis, the scatter plot between the 1-norm of SLATM representa-

tions [51] and the atomization energies of the molecules from the training set is depicted

in Figure 6.1. This plot assists in understanding the layout of the chemical space by study-

ing the proxy of the chemical space, which in this case is the SLATM representation. On

comparing the distribution across the basis sets, that is, row-wise, one observes that in-

creasing basis set size results in clearer separation of the atomization energies across the

proxy chemical space. The higher energy clusters become clearer. A similar comparison

for an increasing level of theory shows visible differences only for the cc-pVDZ basis set.

Here, the CCSD(T) level of theory further separates clusters of molecules in comparison

to the MP2 level of theory, especially for those with atomization energies in the region of

-100 Kcal/mol. For increasing accuracy to the target fidelity of CCSD(T)–cc-pVDZ, one ob-

serves that the scatter plot of the energies with respect to the chemical space gets closer

to that of the target fidelity. The smallest basis set STO-3G does not show any atomization

energies higher than 100 kcal/mol for both MP2 and CCSD(T) levels of theory. One ob-

serves that each increasing fidelity results in a clearer, more distinct categorization of the

molecules in the QM7b dataset, which was previously discussed in Ref. [32] with respect

to the 1-norm of the CM. The STO-3G basis sets fail to provide any form of information of

the separation of the clusters of molecules. The scatter plot of the fidelities with this basis

set show a strong clustering around the 0 kcal/mol mark. For the larger basis sets, one ob-

serves that higher atomization energies show two distinct clusters. A large one around the 0

kcal/mol mark and another around the 150 kcal/mol mark. As identified in Ref. [32], these

correspond to the largest molecules of the QM7b dataset. Since this information is missing

from the smaller STO-3G basis set, one anticipates that the use of the fidelities MP2–STO-

3G and CCSD(T)–STO-3G in the conventional MFML would provide little to no benefit in

predicting the atomization energies at the target fidelity of CCSD(T)–cc-pVDZ where the

clustering is all the more distinct.

The resulting learning curves of the multifidelity analysis on the QM7b data are shown

in Figure 6.2. All the sub-models for the MFML and o-MFML methods were built with KRR

using the Laplacian Kernel, a regularization strength of 10−10 and a kernel width of 400 as

prescribed in Ref. [32]. The left panel of the figure depicts the learning curves for the con-

ventional MFML method with default coefficients for the sub-models. The learning curves

for o-MFML method are depicted in the right panel of the same figure. The conventional
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Figure 6.2: Various learning curves for the prediction of atomization energies of molecules
in the QM7b dataset. The left panel corresponds to learning curves built with the conven-

tional MFML method, that is P (F ; fb )
MFML. The o-MFML models optimized with OLS, referred

to as P (F ; fb )
o−MFML, are delineated in the right panel. In both cases, each curve corresponds to

a model where the target fidelity F is CCSD(T)–cc-pVDZ. The various baseline fidelities
fb are as shown in the figure legend. The learning curve for the conventional KRR model
(KRR-reference) is also shown for reference.

reference KRR learning curve is presented in both panes for reference. The horizontal axis

denotes the number of training samples used at the target fidelity in training the various

models. For conventional MFML learning curves, one observes distinct lowered offsets of

the learning curves with decreasing baseline fidelities. As preemptively discussed in the

preliminary analysis, the addition of MP2-STO-3G fidelity does not provide any perceiv-

able benefit to the MFML model. The model built on the CCSD(T)–STO-3G baseline, how-

ever, does show improvement. A possible reason for this could be that the test set includes

molecules with larger atomization energies, the information for which might be absent

from the training set. This indeed appears to be the case as is seen in the various distribu-

tion plots of Figure 6.1. In other words, the MFML model does not see any new information

to learn in the addition of the MP2–STO-3G fidelity.

The learning curves for the o-MFML models are presented on the right-hand side of

Figure 6.2. Firstly, one observes that even for smaller training set sizes, the o-MFML model

does not show any pre-asymptotic fluctuation. The MAE of the various models always

decreases for increasing training samples. This is contrasted to the conventional MFML

method where a pre-asymptotic region exits wherein the MAE of the model built with

fb = MP2–STO-3G fluctuates before settling down. In other words, there is a constantly
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Figure 6.3: The learning curves of the MFML (dashed lines) and o-MFML (solid lines) mod-
els are contrasted for varying baseline fidelities fb . Moreover, a scatter plot comparing the
predictions and the CCSD(T)–cc-pVDZ reference for the two models is presented for fb =
MP2–STO-3G.

lowered offset with the addition of each cheaper fidelity, even for very small training set

sizes for the o-MFML models. The same sub-models are used for both MFML and o-MFML

models. The combination of these models is optimized resulting in an increased accuracy

of prediction. Secondly, one also notices that the addition of the MP2 level of theory even

with the largest basis set size results in a significant decrease in the error of the model. The

addition of the MP2–STO-3G fidelity further improves the capability of predictions of the

o-MFML models resulting in a lower error of prediction. For N CCSD(T)–cc-pVDZ
train = 128 and the

baseline of MP2–STO-3G, the MFML method results in an MAE of 2.73 kcal/mol while the

MAE corresponding to the o-MFML method is 1.40 kcal/mol.

The improvements offered by the o-MFML method become more evident when one

compares individually the learning curves of the MFML and o-MFML models for each

baseline fidelity. This is done in Figure 6.3, where, for each baseline fidelity fb the learn-

ing curves of the MFML and o-MFML are compared for decreasing fidelity. Already for the

baselines from the CCSD(T) level of the theory the improvement of the o-MFML method

is visible, but not significantly. The stark decrease of the MAE with the addition of MP2-cc-
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pVDZ fidelity becomes evident in the right-most pane in the first row of this figure. Sub-

sequent addition of cheaper fidelities further reduces this offset in comparison to the con-

ventional MFML method. For the case of the MP2–STO-3G baseline, the o-MFML method

for the predictions of atomization energies results in an MAE that is almost twice as low

compared to the MFML method. It becomes evident that for each case of the baseline, the

o-MFML models are superior predictors in comparison to the conventional MFML meth-

ods.

A closer look at the MFML and o-MFML models for N CCSD(T)–cc-pVDZ
train = 27 = 128 clari-

fies this interpretation. The last pane in the second row of Figure 6.3 shows the scatter plot

between the reference atomization energies of the molecules from the test set and the pre-

diction of the two multifidelity methods on the same molecules. Identical training data was

used to build the various sub-models for both the MFML and o-MFML methods. One im-

mediately observes that the spread for the o-MFML model in the scatter plot is closer to the

identity mapping than that for the MFML model. Of particular interest are the areas around

-50 kcal/mol and beyond 50 kcal/mol. The MFML model consistently underestimates the

atomization energies at the lower end while over-estimating those at the upper end of the

energy range. The over-estimation in particular begins as early as about 40 kcal/mol and

becomes evident as one goes in energy. The systematic issue in estimation of higher and

lower energies could also be an artifact arising from a poor choice of hierarchy of methods,

as concluded by Ref. [213]. The o-MFML on the other hand manages to predict these higher

atomization energies with enhanced accuracy, thus bringing the distribution closer to the

diagonal.

6.2.1.1 Coefficient Study

As discussed in Section 4.2, the o-MFML method optimally combines the various sub-

models to result in a superior multifidelity method. The coefficients are optimized on the

validation set with the OLS method. In order to further understand the o-MFML method,

the analysis of these coefficients is performed as seen in Figure 6.4. The default coefficients

used in the MFML methods are depicted in the last column of the second row. Notice that

this corresponds to the discussion in Section 4.1 wherein the MFML model is built with the

differences between the sub-models. For the different o-MFML models, one observes that

the coefficients of each sub-model, P s
KRR, vary with varying baseline fidelities. This change

signifies the optimization of the MFML model with respect to the validation set.

A meaningful analysis of the different cases is the comparison of the magnitude of the

coefficients βopt
s to βMFML

s . For the o-MFML models built for baseline fidelities from the
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Figure 6.4: Values of the o-MFML coefficients for N CCSD(T)–cc-pVDZ
train = 27 = 128. For varying

baseline fidelities, the final values of the coefficients are shown. For reference, the default
coefficients used in MFML are shown for the MP2–STO-3G baseline.

CCSD(T) level of theory, the coefficients are close in magnitude to those of the conven-

tional MFML. This could imply that the MFML method was already nearly optimized for

these fidelities. With the addition of the MP2 fidelities, however, the coefficient landscape

changes. The optimization of the coefficients results in values that are significantly differ-

ent from the conventional βMFML
s values. This flexibility in combining sub-models rather

than simply adding the differences (as done in MFML) allows o-MFML to be a superior

method. The middle and right-hand side plots of the second row in Figure 6.4 assist in

comparing the values of βMFML
s and β

opt
s for the case of the MP2–STO-3G baseline. There

is significant difference in the optimized coefficients and the default MFML coefficients for

almost all sub-models. This finding shows that the conventional MFML method was not

optimized in combining the different fidelities.

In particular, one observes that the values of βopt
s for the CCSD(T)–6-31G fidelity are

small in comparison to those of the other fidelities in the central plot of the second row. This
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fact could indicate that the optimization method identified this fidelity to be less useful. In

order to verify this, an experiment was carried out by separately building two models. The

first was the usual complete model with all six fidelities with N CCSD(T)–cc-pVDZ
train = 27 and the

training samples at the other fidelities scaled by 2. The second model was built without

the CCSD(T)–6-31G fidelity, but the training samples at the other fidelities were kept to be

identical to that used in the first model, that is, (27,29,210,211,212). For these two models,

the o-MFML was generated and the MAE evaluated. The original model resulted in an MAE

of 1.421 kcal/mol while the second model resulted in an MAE of 1.431 kcal/mol which is a

difference of only 0.72%. This result is a strong indicator for the robustness of the o-MFML

method and how it can be a tool to detect whether a particular fidelity benefits the overall

multifidelity structure or not. More details on the effectiveness of the coefficient analysis

are reported in Appendix A in section A.3.3.

6.2.2 Excitation Energy Prediction

The dataset for excitation energies consists of excitation energies calculated along MD and

DFTB-based trajectories for the molecules benzene, naphthalene, and anthracene as cal-

culated in Chapter 5. A total of five fidelities were calculated and ordered as discussed in

Section 6.1.1. In brief, the target fidelity is set to be TD-DFT–def2-TZVP and the cheapest

fidelity is considered to be TD-DFT–STO-3G. All sub-models used in both the MFML and

o-MFML method are built with KRR using the Matérn Kernel of first order and the l2 norm.

A regularization strength of 10−9 is employed. The kernel widths for each molecule were

chosen as recorded in Table A.2. Unsorted coulomb matrices are used as representations

for all cases. For the case of excitation energies, the multifidelity structure was built with

varying basis sets. In increasing order of accuracy, these are STO-3G, 3-21G, 6-31G, SVP, and

TZVP. Previously, various preliminary analyses of this dataset have been discussed, and two

problematic data structures were thereby identified in Chapter 5. For MD-based naphtha-

lene, there was no clear multifidelity structure. For DFTB-based anthracene, a high spread

of the STO-3G energies with respect to the target fidelity of TZVP was also identified to be

problematic. From these, it was shown that the MFML method would not provide favorable

results for these two cases.

The learning curves of the conventional MFML method for the MD-based trajectories

of benzene, naphthalene, and anthracene are shown in the top row of Figure 6.5. At the

same time, the bottom row displays the learning curves resulting from the novel o-MFML

method. Various baselines fidelities for the multifidelity models are as shown in the legend.

Of particular interest in these findings is the case of naphthalene. The MFML results re-
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Figure 6.5: Learning curves for the MFML (top row) and o-MFML (bottom row) models
for MD-based trajectories of various molecules for the prediction of excitation energies.
The various baselines fidelities used are delineated in the legend. For each case, the KRR
reference (black curve) is provided for a single-fidelity training on TZVP. The y axes are
scaled identically for the MFML and o-MFML methods, but are different for each of the
different molecules.

flect the issue of the wide spread of the scatter, as previously identified in section 5.2.1.

However, with the o-MFML method, one observes that the model built with the 3-21G

and 6-31G fidelities still results in constant lowered offsets as opposed to the conventional

MFML method where these models do not provide much improvement. Thus, the o-MFML

method provides a robust multifidelity method even if the data distribution of the quan-

tum chemistry methods is not as anticipated for MFML. For benzene and anthracene, the

improvement in the MAEs is perceptibly small. This fact could indicate that the original

MFML model already was properly optimized for these cases.

Similarly, the learning curves for the excitation energies along DFTB-based trajectories

for the three different molecules are given in Figure 6.6. As for the case of the MD-based

trajectories, the use of the o-MFML method results in models which perform consistently

better across the various training set sizes. That is, even for smaller training set sizes, the

benefit of the multifidelity structure becomes evident. Across the molecules and for smaller

training set sizes, the learning curves for the MFML methods have various crossing points

95



CHAPTER 6. O-MFML FOR QC

2 8 32 128 512

7

10

40

70

13
16
19

M
AE

 [m
eV

]

Benzene

2 8 32 128 512

7
10

40

70
100

13
16
19

130
Naphthalene

2 8 32 128 512

7
10

40

70
100

13
16
19

Anthracene

2 8 32 128 512

NTZVP
train

7

10

40

70

13
16
19

M
AE

 [m
eV

]

2 8 32 128 512

NTZVP
train

7
10

40

70
100

13
16
19

130

2 8 32 128 512

NTZVP
train

7
10

40

70
100

13
16
19

fb

KRR-reference SVP 6-31G 3-21G STO-3G

Figure 6.6: Learning curves for MFML (top row) and o-MFML (bottom row) for excitation
energies along DFTB-based trajectories for three different molecules. The MAE is reported
for the prediction of first excitation energies. The single-fidelity (TZVP) KRR learning curve
(black line) for the prediction on the same test set as the other models is provided for refer-
ence. For the individual molecules, the scaling of the y axes is the same for the MFML and
o-MFML models to ease comparison.

indicating a distinct region of pre-asymptotics for smaller training set sizes. That is, the

benefit of using cheaper baselines does not become evident until a sufficiently large num-

ber of training samples is used. In contrast, the o-MFML method appears to have smoothed

out any pre-asymptotics. Even for very small training set sizes, the addition of each numer-

ically cheaper baseline shows an immediate decrease in the MAEs of the models. Next,

consider the case of DFTB-based anthracene. For the MFML method, the addition of the

STO-3G fidelity results in a decrease in the performance of the model, as discussed in the

previous chapter, where it was argued that the wide-spread distribution of the STO-3G fi-

delity with respect to the target fidelity of TZVP results in a poorer improvement with the

conventional MFML method. With the o-MFML method, the optimization of the coeffi-

cients results in a model that performs much better. The learning curve indicates that the

o-MFML model for the STO-3G baseline is now comparable to that of the model built with

the 3-21G baseline. The o-MFML method results in a better model in spite of the poor dis-

tribution of the STO-3G with respect to the target fidelity. Further results and analyses of the
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o-MFML employed for the prediction of the excitation energies are discussed in Appendix

A in section A.3.

Finally, a short note on the computational complexity for the OLS method employed in

this work is to be made. The OLS shows cubic scaling with respect to the number of sub-

models of multifidelity that are used. The number of sub-models only increases linearly

with the number of fidelities being used. Nonetheless, the time cost of making such an

optimization is minimal with respect to the time cost of a conventional QC calculation. As

a particular example, it took 0.09 seconds to run the optimization method for MD-based

benzene with 9 sub-models. To put this into perspective, conventional quantum chemistry

calculations for the TD-DFT–def2-TZVP fidelity in the case of MD benzene take roughly 4

minutes per training sample calculation (see Table A.1). In the opinion of the authors, the

time cost of the optimization procedure itself is negligible in this case.

6.3 Conclusion

This chapter has numerically established an improvement of the conventional MFML, termed

o-MFML, by optimally combining the various multifidelity sub-models. For the prediction

of atomization energies of molecules from the QM7b dataset, and the prediction of exci-

tation energies for three molecules of growing sizes, o-MFML has been shown to uncondi-

tionally improve the prediction capabilities of the multifidelity method. The use of o-MFML

was shown shown to be especially beneficial for cases where the hierarchy or distribution

of the cheaper fidelities is not optimal. The learning curves indicate that the use of o-MFML

yields low errors for the prediction of both atomization energies and excitation energies.

In the chapters that follow, the MFML and o-MFML method will be used in several ap-

plications such as prediction of excitation energies and ground state SCF energies. The effi-

ciency of each of these methods will be discussed later in Chapter 9 in terms of model error

versus time-cost incurred for the models.
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QEMFI: MULTIFIDELITY DATASET OF QUANTUM CHEMICAL

PROPERTIES OF MOLECULES

This chapter is taken from the work published as ref. [41] published in

Scientific Data.

R
ecent developments in the field of machine learning (ML) for quantum chemistry

(QC) have significantly changed the landscape of research and discovery in QC prop-

erties [22, 30, 155, 154] with significant reduction in the time to predict QC proper-

ties once an ML model has been trained. For such models, the protocol often involves test-

ing them against some benchmark datasets such as the MD17 [185], QM7 [138], or the QM9

dataset [126, 127]. Recently, the WS22 database was released with a collection of Wigner

Sampled geometries of 10 diverse molecules [215, 216]. With varied chemical complexity

and number of atoms, the WS22 datasets provides a collection of QC properties for these

molecules calculated at one level of theory, or fidelity. It was also shown that for this collec-

tion of molecules the use of ML methods is indeed challenging due to the wider chemical

space that the geometries cover [215, 217].

Multifidelity methods harnessing inherent QC hierarchies to cancel out errors across

different numerical QC methods have since superseded the single fidelity ML methods.

These methods include ∆-ML [29] based models such as hierarchical machine learning

[139], MFML [32], and o-MFML (Chapter 6). Certain other flavors of ML using multifidelity

data have been proposed and tested, including multi-task GP treating the different fidelities
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as interdependent tasks [110, 218]. Multifidelity methods have been applied to predicting

diverse QC properties such as band gaps in solids, excitation energies, and atomization

energies of various molecules [131, 163, 32, 142, 143].

Several QC datasets have been generated for the general work of ML for QC, some

consisting of multiple fidelities of data. Some of these include ground state energies and

electronic spectra data computed at DFT level of theory and some semi-empirical lev-

els of theory hosted in the bigQM7ω [219] dataset. The PubCheMQC project presented a

large database of electronic structure properties calculated with the DFT formalism us-

ing two distinct basis sets for use in training ML models [220]. The QM8 [130] dataset

records electronic spectra properties with DFT formalism for over 20k geometries of small

organic molecules sampled from the larger QM9 dataset [126, 127]. Ref. [163] introduced

a multifidelity dataset of 358 polymer bandgaps for benchmarking use with multifidelity

co-kriging methods. The ANI-1x and ANI-1ccx datasets provide a rich multifidelity dataset

of around 5 million data points with HF, MP2, and NNPO-CCSD(T) energies and forces

primarily created for the training of the ANI-1x potential [219, 24]. VIB5 is yet another

multifidelity dataset with ab initio quantum chemical properties including PES for five

molecules with MP2, HF, and CCSD(T) levels of theory for different basis set sizes [221].

The QM7b dataset consists of multifidelity atomization energies computed at the MP2, HF,

and CCSD(T) fidelities for three distinct basis set sizes with 7,211 small-to-medium sized

molecules [138, 49]. Ref. [222] offers orbital energies of 134k molecules for PBE and GW fi-

delities. The MultiXC-QM9 is an elaborate dataset of diverse QC properties such as reaction

energies which are computed with the DFT formalism using 76 different functionals for

three basis sets [223]. All of these above mentioned datasets have important use-cases for

multifidelity machine learning methods and related benchmarks. However, none of these

datasets offer the QC compute time for the different fidelities present. That is, although

multifidelity models can be created and benchmarked in terms of model error, it is not pos-

sible to use these datasets to perform time-cost benchmarks for multifidelity models. Since

the entire conceptualization of multifidelity methods such as ∆-ML [29] or MFML [32] is

to reduce the cost of generating training data, this key factor is necessary to meaningfully

benchmark these methods. A mere model accuracy benchmark is insufficient.

To unify the research in this rapidly developing field of multifidelity methods, it be-

comes necessary to present to the community a diverse collection of multifidelity data over

a range of molecular complexity which also includes the time-cost of the QC calculations.

Building up on existing datasets is preferred in such a scenario to prevent redundant cal-

culations and geometry generation. After all, the entire point of a multifidelity method is
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to reduce compute cost and resource usage in discovery and research. In interest of such

an approach, the WS22 database [216] was chosen to be the collection of geometries. In

addition to being a collection of molecules that are chemically complex with distinct con-

formers, the molecule in this dataset also cover a wide range of the quantum chemical

configuration space in contrast to other datasets such as MD17. The presence of flexi-

ble functional groups make the geometries, and by extension, the QC properties, of this

dataset challenging for ML models to learn [215]. These features make this collection the

preferred choice to generate multifidelity data. For each of the molecules of increasing size

and chemical complexity, this dataset offers 120,000 geometries. This creates a vast dataset

collection of diverse geometries covering various conformers of the different molecules. In

total there are around 1 million geometries in the WS22 database. Performing multifidelity

QC calculations for such a vast number of geometries is not feasible. It is more realistic and

computationally feasible to produce a multifidelity dataset for a portion of the geometries

of the WS22 database. Therefore, for each of the molecules in the WS22 database, 15,000

geometries were evenly sampled, for a total of 9× 15,000 = 135,000 geometries, and the

multifidelity QC calculations performed for these.

This dataset is provided to the ML-QC community under the name QeMFi (Quantum

Chemistry MultiFidelity) dataset [224]. A detailed description of the geometry sampling,

data generation procedure, the fidelities, and the technical details of the QeMFi dataset are

provided in the following section. In addition, scripts to generate two multifidelity mod-

els from Chapter 6, namely, MFML and optimized MFML (o-MFML) are provided. Scripts

to assess time benefit of multifidelity methods are also included in the code repository.

This makes it easy for future research in the multifidelity methods to establish a clear time

benefit for these models over standard single fidelity ML methods. The diverse collection

of molecules in QeMFi along with their multifidelity properties, provides a challenging

dataset for the domain of ML in QC. Due to the large number of multifidelity data points

along with their QC time-costs and easily usable associated scripts, we believe that QeMFi

is a significant collection that will help push the boundaries of multifidelity methods for

ML in QC properties enabling meaningful time-cost assessments for these methods.

The original WS22 database includes the following molecules (in increasing order of

number of atoms):

1. urea

2. acrolein

3. alanine
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4. 2-(methyliminomethyl)phenol (SMA)

5. 2-nitrophenol

6. urocanic acid

7. 4-(dimethylamino)benzonitrile (DMABN)

8. thymine

9. 4-(2-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one (o-HBDI)

In addition to these molecules, toluene is also included to compare with the MD17 [185]

database. Since toluene consists of a single conformer and was only introduced in WS22

for comparison to existing datasets such as MD17, this molecule was not included while

generating the QeMFi dataset. The original WS22 database was first generated as reported

extensively in ref. [215]. The pipeline involves optimized equilibrium geometries identifi-

cation for the different conformations of the molecule with DFT [211, 119]. Following this,

the respective Wigner Sampling is carried out from ground state (S0) and/or excited state

(S1) minima. For these, the geometries are subsequently interpolated by finding on a Rie-

mann manifold, an optimized geodesic curve. The metric for this is defined by a redundant

internal coordinate functions [225]. In the original WS22 database provided in ref. [216],

this results in a little over 1 million samples across 9 molecules with various properties cal-

culated at the TD-DFT level of theory using the PBE0/6-311 G* functional and basis set

combination [215].

7.1 Data Sampling and Quantum Chemistry Calculations

To build the QeMFi dataset from the WS22 database, 15,000 geometries were sampled from

the original 120,000 geometries for each of these molecules. For each of the nine molecules

from the WS22 database, 15,000 geometries were evenly sampled from the original 120,000

geometries. To achieve this, every 8th geometry for each molecule was selected from the

WS22 database resulting in a total of 9×15,000 = 135,000 point geometries for QeMFi. An

even sampling of the original dataset ensures that there are sufficient geometries from all

conformations of the molecule. Once these geometries were sampled, they were used to

perform point calculations for the QC properties.

All QC calculations were performed with the ORCA(5.0.1) QC package [7]. From these

calculations, a diverse set of QC properties were extracted including information of the
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Figure 7.1: The workflow of generating the QeMFi dataset by sampling from the WS22
database. 15,000 geometries are used for each molecule resulting in a total of 135,000 single
point geometries. For each of these, multiple QC properties are calculated at DFT level of
theory with varying basis set sizes to create the diverse multifidelity dataset.

vertical excitation states such as energies and oscillator strengths. QC calculations were

performed at the TD-DFT level of theory with the CAM-B3LYP functional. For each geom-

etry, five fidelities were calculated. These fidelities are the basis set choice of increasing

size. In increasing hierarchy of the fidelity, these are: STO-3G, 3-21G, 6-31G, def2-SVP, and

def2-TZVP. In the rest of the document, for the most part, these are referred to by their

short-hand, i.e., STO3G up to TZVP. The TightSCF keyword was employed to ensure energy

convergence of the order of 10−9 a.u. for each calculation. Resolution of Identity approxi-

mation (RIJCOSX) was employed in order to speed up the excitation energy calculations.

For any calculation, the maximum memory usage was limited to 2.0 GB. In practice, the

ORCA calculations did not use this amount of memory. A total of 10 vertical excitation en-

ergies were calculated with each fidelity for each geometry. The complete workflow of the

dataset generation process is pictorially depicted in Figure 7.1.

A note on the calculations being restricted to DFT methods is to be made here. Since
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QeMFi is a benchmark dataset and not a high accuracy model training dataset, the cost of

generating a costlier dataset, say at coupled cluster level of theory, was considered to be

excessive. The aim of this dataset is to present a diverse collection of QC properties based

on a set of complex molecules which can be used to uniformly assess MFML methods.

Therefore, the QC properties are calculated only with DFT methods and higher accuracy

methods such as the gold standard CCSD(T) are not considered.

PROPERTY DIMENSIONS/UNITS npz ID

Atomic Numbers† (n_atoms,) ‘Z’
Cartesian Coordinates† (n_atoms,)/Å ‘R’
Ground State Energies (SCF) (15000, 5)/hE ‘SCF’
Vertical Excitation Energies (15000,5,10)/cm−1 ‘EV’
Transition Dipole Moments (15000,5,10,3)/a.u. ‘TrD’
Oscillator Strength (15000,5,10) ‘fosc’
Molecular Dipole Moment (electronic) (15000,5,3)/a.u. ‘DPe’
Molecular Dipole Moment (nuclear) (15000,5,3)/a.u. ‘DPn’
Rotational Constants (15000,5,3)/cm-1 ‘RCo’
Dipole Moment Along Rotational Axis (15000,5,3)/a.u. ‘DPRo’
QC Calculation Times (5,)/seconds ‘t’

Table 7.1: List of properties available in the QeMFi dataset. The corresponding dimen-
sion(s) and units of the properties are also given with the npz file key. †From the WS22
database [215, 216]

The list of available multifidelity properties is given in Table 7.1. The Cartesian coordi-

nates and atomic numbers are taken from the WS22 database. The SCF ground state ener-

gies are reported in Hartree units. The first 10 vertical excitation energies are provided in

cm−1 with their corresponding oscillator strengths and transition dipole moments (in a.u.).

The molecular dipole moments are also a property included in the QeMFi dataset with both

the nuclear and electronic contributions being separately cataloged in atomic units (a.u.).

The rotational spectrum data is also included in the form of Rotational Constants (in cm−1)

and the total molecular dipole moments (in a.u.) aligned along rotational axes.

As an important contribution to the multifidelity research, the average time to run the

QC computations are also provided for each molecule for each fidelity. This information

can be further used to benchmark multifidelity models across QC properties as was shown

in Chapter 5 for excitation energies of arenes. The notion here is to assess the error of a

model with respect to the time it takes to generate a training set for that specific model.

Such an analysis of the model (see Chapter 5) shows the true time benefit of multifidelity

models, in this specific case, for MFML. In the QeMFi dataset, the time to run an ORCA cal-
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culation for a specific fidelity is provided for each molecule in units of seconds. The paral-

lelization of numerical codes is a challenge unto itself and usually comes with artifacts that

arise due to the form of parallelization. This results in non-uniform calculations schemes

across basis set sizes and molecules. In order to enforce consistency in the calculation

times, ORCA calculations were run on a single compute core for 10-evenly sampled geome-

tries of each molecule. The calculation times as returned by the ORCA software are then av-

eraged over these 10 geometries and reported for each fidelity for each molecule. Thus, the

time for a single-core calculation of each fidelity for each molecule is provided in units of

seconds to benchmark the time-benefit of multifidelity models against single fidelity mod-

els. This diverse collection of QC properties is made available for 9×15,000 = 135,000 ge-

ometries across five different fidelities providing ample room for development and bench-

marking of MFML methods and models.

7.2 Data Records

The various QC properties of the QeMFi dataset are stored in separate NumPy (v 1.26.4)

npz files for each molecule. These npz files have a dictionary-like format allowing for each

property to be accessed via its corresponding key denoted in Table 7.1. Each property itself

is stored as a NumPy ndarray with the first dimension being 15,000 corresponding to the

number of geometries. Thus, the QC properties can be accessed by querying the right ID.

For example, the SCF ground state energies can be accessed with the key ‘SCF’ returning

a NumPy ndarray of size 15,000×5 where the second dimension of the array corresponds

to the five fidelities used. Similarly, one can access the QC computation times using the key

‘t’ which results in a NumPy array of shape (5,) corresponding to the five fidelities used.

The compute times are stored in units of seconds. An example script to accessing the QC

properties is shown in Listing 7.1.

The dataset itself is hosted on Zenodo at https://doi.org/10.5281/zenodo.13925688 with

a detailed README file documenting the key aspects of the data. The README also pro-

vides information on how to access the different properties using Python. For the QeMFi

dataset, the various scripts involved in generating the data, including ORCA input files and

shell scripts to extract properties from the ORCA log files, are stored in the code repository

that can be accessed at https://github.com/SM4DA/QeMFi. In addition to these scripts, the

code repository also contains Python scripts to perform multifidelity benchmarks on this

dataset. These can be launched using the CLI and are a handy tool in setting benchmarks

for this dataset using current state of art multifidelity methods.
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1import numpy as np
2

3#load the dataset for alanine
4data = np.load(‘QeMFi_alanine.npz’)
5#query for the vertical excitation energies
6EV = data[‘EV’]
7#Select the second vertical state for SVP (4th fidelity)
8EV_SVP = EV[:,3,1]
9

10#load QC compute times
11QC_time = data[‘t’]

Listing 7.1: Python example to extract the SVP fidelity values of second vertical excitation
state of alanine from QeMFi.

7.3 Technical Validation

In order to verify that this form of sampling did in fact evenly cover the conformation space

of each molecule, Uniform Manifold Approximation and Projections (UMAPs) [226] are

studied herein. To further validate the QeMFi dataset and its use in benchmarking mul-

tifidelity methods, the MFML and o-MFML models presented in Chapter 6 were tested

in predicting ground state energies and the first vertical excitation energies. The multifi-

delity models are built for different baseline fidelities, which refers to the cheapest fidelity

included in the model. For example, a baseline fidelity fb =631G implies that the multifi-

delity model is built up of the fidelities 631G, SVP, and TZVP (see section 4.1). In addition

to benchmarking the multifidelity models on properties of individual molecules, the mod-

els are also tested on using data from all the molecules of the dataset. For this purpose,

the ground state energy of all molecules are used to train one single MFML and o-MFML

model. This is then tested on predicting the ground state energies of all molecules.

While these broad tests serve as a benchmark for multifidelity models on this dataset,

the benchmarks of the other properties and molecules are not reported here. However, it

is to be pointed out that the scripts provided can be readily used to generate benchmarks

for these cases using standard ML methods such as learning curves. All learning curves are

reported for a 10-run average, that is, for 10 random shuffling of the training set as directed

in section 2.7.

7.3.1 Conformation space coverage

In order to ensure that the 15,000 geometries that are sampled from the WS22 database

do cover all of the conformation space as spanned by the complete 120,000 geometries,
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Figure 7.2: Scatter plots of UMAPs for the various molecules which compose the WS22
database. The UMAPs were generated for the unsorted Coulomb Matrix (CM) molecular
descriptor for each molecule. The legend key indicates the geometries which are part of
the WS22 and the QeMFi dataset respectively. For all molecules, it can be observed that the
QeMFi dataset traverses the entirety of the configuration space that WS22 also covers.

a short study is performed. UMAPs are a powerful tool to perform dimensionality reduc-

tion of data. In addition to this, they are useful tools to visualize the multidimensional fea-

ture space in ML [226]. To assess the chemical space coverage achieved with this form of

sampling, UMAPs of the molecules can be studied. UMAPs are a dimensionality reduction
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method that is useful to visualize multidimensional data such as the molecular represen-

tations used in ML for QC. The resulting 2D embedding can then be used to visualize the

complexity of the conformation space based on the coverage that is observed. To this end,

molecular descriptors were first generated for the various molecules. The choice of descrip-

tors for this case was the unsorted Coulomb Matrix (CM) which is calculated as:

(7.1) Ci , j :=


Z 2.4
i
2 , i = j
Zi ·Z j

∥R i−R j∥ , i ̸= j ,

where, Zi is the atomic charge of the i th atom of the molecule and R i is its Cartesian co-

ordinate. For this proxy of the conformation space that geometries cover, a 2D UMAP was

generated and the resulting plots are shown in Figure 7.2 for all 9 molecules. It is observed

that the UMAPs for QeMFi uniformly cover the conformation space spanned by UMAPs of

WS22. From this plot it becomes clear that the geometries sampled for the QeMFi dataset

from the WS22 database uniformly cover the entire chemical space of WS22. This is true

even in cases of multiple localized clusters as seen in the case of alanine or urocanic acid.

Therefore, it becomes evident that even though only 15,000 geometries are sampled from

the WS22 database, these do uniformly cover the conformation space of WS22 and should

therefore offer the same level of chemical complexity for ML models.

7.3.2 Single molecule benchmarks
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Figure 7.3: Preliminary analysis of multifidelity structure of SCF ground state energies for
the SMA molecule. The three different preliminary tests for the hierarchy are performed as
prescribed in Chapter 5. The ground state energies show a normal distribution centered
around 0 hE. The scatter plot of the energies of different fidelities with respect to the TZVP
fidelity show a compact distribution for the most part. With STO3G there is a wider devia-
tion from the identity map (dashed black line).
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Figure 7.4: Learning curves for MFML and o-MFML for the SCF ground state energies of
SMA as recorded in the QeMFi database. The reference single-fidelity KRR is also shown
by training on TZVP only. The Laplacian kernel was used with a kernel width of 200.0 and
regularization of 10−10. The Global SLATM [51] molecular descriptors were used.

The technical validation carried out individually for SMA and O-HBDI molecules is in

line with the experimental set-up of Chapter 5. A total of 12,288 training samples were cho-

sen to build the multifidelity models. 712 samples were set aside as a validation set for the

o-MFML model (section 4.2), and the remaining 2,000 samples were used as a test set. The

accuracy of the models are gauged with mean absolute error (MAE) in the form of learn-

ing curves. Learning curves display the MAE with respect to increasing number of training

samples, here, at the highest fidelity, that is, TZVP. In addition, a special kind of learning

curve as seen in Chapter 5 are also shown. These are MAEs versus the total time to generate

the training set for the MFML model. These special learning curves provide a better picture

of the time-benefit of using MFML over conventional single fidelity methods. The o-MFML

method additionally requires a validation set computed at the target fidelity, F . In these

benchmarks presented herein, this is not accounted for since this work is meant as a data

descriptor and not a comprehensive comparison of the MFML and o-MFML method. For

the benchmarks that are reported here, the MFML and o-MFML methods perform similarly
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Figure 7.5: Time versus MAE plots for MFML and o-MFML models predicting the SCF
ground state energies of the SMA molecule. The time to generate the training set for MFML
is a comprehensive measure of the cost of a multifidelity model as prescribed in Chapter 5.

in terms of MAE. In such scenarios, it is to be concluded that MFML is better suited than

o-MFML due to the lack of the cost associated with a validation set.

Figures 7.3-7.5 report the multifidelity benchmarking results for SCF ground state en-

ergies for SMA. The SLATM molecular descriptor [51] was used with a Laplacian kernel to

perform kernel ridge regression. First, the preliminary analyses as recommended in Chap-

ter 5 are shown in Figure 7.3. The first of these is to study the distribution of the multifidelity

data. The second analysis is the study of mean absolute differences between each fidelity

and the target fidelity (that is, the most accurate fidelity, here, TZVP). Generally, it is antici-

pated that these differences decay monotonically for increasing fidelity. Thirdly and finally,

a scatter plot of the energies of the different fidelities with respect to the energies of the

target fidelity is generated to study how these deviate with respect to the target fidelity. The

three different preliminary analyses show a systematic ordering of the fidelities which con-

firm the assumed hierarchy as seen in the fidelity difference plots. The fidelity scatter plot

also shows a systematic distribution of the energies when compared to the target fidelity of

TZVP. In Chapter 5 this was identified as a good preliminary indicator of favorable results
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in the MFML models. In Figure 7.4, the learning curves of MFML and o-MFML (with OLS

optimization) are depicted for the prediction of the ground state energies. The multifidelity

learning curves can be understood as follows: the addition of a cheaper fidelity systemati-

cally decreases the error (here reported as mean absolute error, MAE) which is reported in

units of MhE. With each cheaper fidelity being added, one notices that the corresponding

learning curve from Figure 7.4 has a lower offset. The continuing negative slope indicates

that further addition of training samples could decrease the MAE of these models. There is

no significant difference in MAE between the MFML and o-MFML models and they both

perform similarly for the prediction of ground state energies. As a final assessment for SMA,

an MAE versus time to generate the MFML training data is also shown in Figure 7.5 for the

MFML and o-MFML models. The total time cost for a given MFML (or o-MFML) model is

the total time taken to generate all the training samples at the different fidelities. In other

words, if one picks the model P (TZVP;631G)
MFML with N TZVP

train = 2, then the total time to generate the

training set for this model would be given as TMFML = 2×tTZVP+4×tSVP+8×t631G, where t f is

the computation time corresponding to the fidelity f . Since the QeMFi dataset comes with

the average compute times for each fidelity of each molecule, this allows for a meaningful

benchmarking of multifidelity models with this form of analysis. In Figure 7.5 one observes

that with addition of cheaper baseline fidelities, the curves show an increased offset along

the time axis. Consider the very last data point of the curve corresponding to the reference

KRR for o-MFML (right-hand side plot), which corresponds to∼ 4×103 minutes. If one were

to draw an imaginary line parallel to the horizontal axis, it would intersect the curve cor-

responding to the STO3G baseline MFML model around ∼ 103 minutes. This implies that

one could use the o-MFML model with STO3G baseline to achieve similar accuracy as the

reference KRR model with a reduction in time cost by a factor of 4×103/1×103 = 4. This in-

deed shows the effectiveness of such forms of multifidelity models over conventional single

fidelity methods.

A similar benchmarking procedure was carried out for the prediction of first vertical

excitation energies of o-HBDI. In this case, the unsorted CM were used with the Matérn

Kernel. As for the case of SMA, a preliminary analysis study was performed with the result-

ing plots shown in Figure 7.6. The difference in fidelities plot in the center indicates that

the assumed hierarchy holds true for the fidelities. However, the fidelity scatter plot on the

right hand side shows two distinct clusters. These correspond to the two main conformers

of o-HBDI, namely the cis and trans conformers. The scatter plot also shows some cases

where the STO3G fidelity covers a wider range of values and is less localized than the other
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Figure 7.6: Preliminary analysis of multifidelity structure of the first vertical excitation en-
ergies for the o-HBDI molecule. The different fidelities show distinct peaks around 0 cm−1

with a small bump around 18000 cm−1. The difference in the fidelities shows a distinct hi-
erarchy with reducing difference with increasing fidelity.
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Figure 7.7: Learning curves for MFML and o-MFML for the first vertical excitation energy
of o-HBDI from the QeMFi database. The reference single-fidelity KRR is also shown by
training on TZVP only. The Matérn kernel of first order with L2-norm was used with a kernel
width of 150.0 and regularization of 10−10. Unsorted CM descriptors were used for these
cases.
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Figure 7.8: Time versus MAE plots for the prediction of first vertical excitation energy for the
o-HBDI molecule. The time to generate the MFML training set is calculated as described in
Chapter 5.

fidelities. This could indicate that the use of STO3G in the MFML models would result in a

lower improvement of the accuracy of the model.

The learning curves for the prediction of the first vertical excitation energies of o-HBDI

from QeMFi are shown in Figure 7.7. The MAE are reported in cm−1 with the axes identi-

cally scaled for both MFML and o-MFML. With the addition of cheaper fidelities, the learn-

ing curves show a constant reduction in the offset of the MAE as seen in the near paral-

lel learning curves of the different baselines fidelities. As anticipated from the preliminary

analysis, the addition of the STO3G fidelity does not provide significant improvement es-

pecially for larger training samples. However, this is rectified, as expected, by the o-MFML

method which was indeed shown to fix this very issue in Chapter 6. Indeed, in the MAE

versus time to generate training data plots seen in Figure 7.8 for o-HBDI, one observes that

the STO3G baseline model fails to provide a reasonable improvement in the time benefit

unlike observed for the case of SMA in Figure 7.5. However, for models built with with the

other baseline fidelities, a time improvement is still visible. These results are a strong in-

dicator towards the possibility of further research in the field of multifidelity methods for
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Figure 7.9: Learning curves for MFML and o-MFML for SCF ground state energies based
on the cumulative use of the QeMFi dataset. 1,500 samples were randomly chosen from
each molecule to perform this example test. The single fidelity KRR is also shown for com-
parison. The scatter plot of MFML predicted versus reference ground state energies is also
shown. The MFML and o-MFML models perform well on the cumulative dataset showing
errors in the range of a few hE for the ground state energies.

QC.

7.3.3 Cumulative use of the dataset

The QeMFi dataset contains multifidelity QC properties of 9 molecules for 15,000 geome-

tries. This totals to 9× 15,000 = 135,000 point calculations of the QC properties. This is

therefore the largest collection of multifidelity dataset which can be used in various bench-

marking processes. To demonstrate this form of cumulative use of the dataset, multifidelity

models from Chapter 6 were tested against this in predicting the ground state energies of

the molecules. From each molecule of the QeMFi dataset, 1,500 geometries were randomly

chosen and compiled into a total of 9×1,500 = 13,500 data points. From the 13,500 sam-

ples, a random set of 11,000 samples were used as the multifidelity training data. Of the

remaining, 500 samples were used as a validation set and 2,000 as the holdout test set. With

this setup learning curves were generated for the different multifidelity models in the same

fashion as prescribed in Chapter 6.

The results of this test are shown in Figure 7.9 for MFML and o-MFML models. The

learning curves show a decreasing slope for both cases for the different baseline fideli-

ties. The addition of each cheaper fidelity results in a lower offset of MAE. The constant

slope on the log-log axis indicates that addition of training samples can further decrease

the MAE. On the right-hand side plot the scatter of reference TZVP versus MFML predicted

SCF ground state energies are delineated. Across the energy ranges the MFML model pre-

dicts the SCF ground state energies accurately as can be inferred from the scatter of the
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Figure 7.10: MAE versus time taken to generate a training set for MFML and o-MFML for the
cumulative use of the QeMFi dataset. Here one observes the time-benefit of using MFML
over single fidelity KRR for each cheaper baseline fidelity.

values being close to the identity mapping line.

For completeness, the MAE versus time to generate the multifidelity training data are

reported in Figure 7.10 for MFML and o-MFML for this cumulative use of the QeMFi dataset.

In this specific case for the cumulative use of the QeMFi dataset, the time to generate the

multifidelity training data is calculated based on the molecular geometry that is included

in the model. It is observed in Figure 7.10, that the addition of each baseline fidelity results

in a distinct reduction in the time cost of generating training data. The resulting curves

indicate a time benefit factor of about 6 for the STO3G baseline fidelity.

7.4 Usage Notes

In addition to the multifidelity dataset, various tools to assess and benchmark multi-

fidelity methods are also provided. These include scripts to perform preliminary analysis

of the data based on the property of choice as recommended in Chapter 5, and the scripts

to produce learning curves. Further, scripts to generate unsorted Coulomb Matrices, and

the global SLATM descriptors are provided which are built upon the qmlcode package [66].

The scripts are easy to use and well documented allowing for a streamlined benchmarking

process with an example shown in Listing 7.3 for the preliminary analysis. Listing 7.2 shows

an example to generate the multifidelity learning curves.
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1# this code is running in an activated conda environment
2

3#this creates the SLATM representations
4(conda) $ python GenerateSLATM.py -m=‘sma’ \
5-d=‘../ dataset/’
6

7#this runs the code to generate learning curves of \gls{MFML}
8(conda) $ python LearningCurves.py -m=‘sma’ \
9-d=‘../ dataset/’ \
10-p=‘SCF’ \
11-n=10 \
12-w=200.0 \
13-rep=‘CM’ \
14-k=‘laplacian ’ \
15-r=1e-10 \
16--seed =42 \
17--centeroffset
18

19#this creates the various MAE files in npy format
20#the following command will plot the learning curves as a PDF file
21(conda) $ python LC_plots.py -m=‘sma’ \
22-p=‘SCF’ \
23-u=‘hE’ \
24-rep=‘CM’ \
25--centeroffset \
26--saveplot

Listing 7.2: Python example to generate the global SLATM representations, multifidelity
learning curves, and the corresponding plot of SCF ground state energies for the SMA
molecule.

1# this code is running in an activated conda environment
2(conda) $ python PrelimAnalysis.py -m=‘sma’ \
3-d=‘../ dataset/’ \
4-p=‘SCF’ \
5-u=‘hE’ \
6--centeroffset \
7--saveplot

Listing 7.3: Python example to perform preliminary analysis of SCF ground state
multifidelity data for the SMA molecule.
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7.5 Code availability

All scripts needed to assess the QeMFi dataset are hosted at https://github.com/SM4DA/QeMFi.

This includes scripts to run ORCA calculations, extract properties from the output log files,

generating CM and SLATM molecular descriptors, and generating learning curves.

7.6 Conclusion

In this chapter the details of a new multifidelity dataset generated have been discussed with

detailed information about accessing and utilizing it to benchmark multifidelity models. In

particular, the MFML and o-MFML model have been benchmarked in this chapter on the

QeMFi dataset. A diverse collection of QC properties are provided in the QeMFi dataset for

9 different molecules. It was shown that what sets the QeMFi dataset apart from the others

is the compute-times for each fidelity and molecule are included allowing for time-cost

benchmarks as presented in sections 7.3.2 and 7.3.3.

The QeMFi dataset will be used extensively in the following chapters. For instance, the

nestedness of training data will be assessed for MFML and o-MFML using the QeMFi data

in the next chapter. The efficiency of the MFML and o-MFML models will be evaluated

alongside ∆-ML and its variants in the Chapter 8. In Chapter 10 the QeMFi dataset will

be used to study the effect of the data hierarchy on the model accuracy for multifidelity

models.
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ASSESSING NON-NESTED CONFIGURATIONS OF

MULTIFIDELITY MACHINE LEARNING

This chapter is taken from the work published as ref. [42] in the Journal

of Machine Learning: Science and Technology.

M
achine learning (ML) for QC has become a rapidly developing field of research

for the prediction of various QC properties [30, 154, 31]. With a focus on reducing

the time taken for new computation with such ML-QC methods, research has

recently begun focusing on reducing the time it takes to generate a training set, for such

ML models. The introduction of the ∆-ML method [29] has allowed for ML models to be

trained on the difference of two properties, one computationally expensive and other other

computationally cheaper, sometimes even semi-empirical.

Multifidelity Machine Learning (MFML) following refs. [32, 142] was introduced to be a

systematic methodological improvement of ∆-ML. The term fidelity is used to refer to the

accuracy of the QC method used to train the model. In general, a high accuracy QC method

is also cost-expensive. Here, multiple QC methods are used to create multiple sub-models,

which are finally summed up to predict QC properties such as excitation energies at the

most expensive QC method, or target fidelity. MFML was shown to produce low-cost high-

accuracy models. A methodological improvement of MFML was introduced in Chapter 6

and shown to be superior to MFML in prediction atomization energies of molecules and

vertical excitation energies along molecular trajectories.
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Research in multifidelity methods has increased to cover a wide range of formulations

including those that are different from ∆-ML based methods. Variations include hierarchi-

cal ML (h-ML) model which was shown to significantly reduce training data generation

time in predicting the potential energy surface (PES) of CH3Cl [139]. The h-ML method

used more than two QC methods of calculations and implemented an ad hoc optimization

procedure to select the number of training samples to be used at each level or fidelity of

QC calculation. Multi-task GPR (MTGPR) have also begun to utilize the different fidelities

to train one ML model simultaneously for multiple fidelities [110, 218]. Here, each fidelity

is treated as inter-related to the others and a surrogate MTGPR model is created. Further, a

diverse multifidelity dataset consisting of 135,000 point geometries has recently been made

available [224, 41] with various QC properties, such as vertical excitation energies, calcu-

lated with DFT formalism. The QeMFi dataset is described in Chapter 7. The fidelities are

differentiated by the choice of basis set used in the calculation. This dataset will be used in

all benchmarks of this study.

In most variations of multifidelity methods, which have been used in predicting a range

of QC properties [201, 32, 163, 139, 132, 142], there has been one similarity: the use of nested

training data. Simply put, it refers to using the same molecular geometries across the dif-

ferent fidelities. If a molecular geometry is used at the highest fidelity, then it is also used

at the subsequent lower fidelities. This approach was recommended in ref. [32] based on

research from sparse-grid combination techniques [37, 36, 35] and carried forward in the

works presented in Chapter 5 and Chapter 6. In ref. [83], multifidelity physics informed

neural networks (MPINNs) are investigated for their ability in functional approximations

of PDEs. Here as well, nested data is employed in the sense that the high and low fideli-

ties are evaluated along the same inputs for most of the presented examples. However, it

must be noted that ref. [83] does not assume nested data for the method proposed therein

to work. In the cases where nested data is presented, it is shown that the MPINN model

for the lower fidelity can be eliminated. Recently, ref. [110] investigated building multitask

surrogate models with heterogeneous data. However, it is to be pointed out that the data

used did not ensure complete non-nestedness since some training data at the lower fidelity

included at least a few samples which were used as test data in the final surrogate model.

While most ML-QC approaches with multifidelity methods use nested configurations of

training data, this is not necessarily the case for the broader field of multifidelity methods.

For instance, ref. [108] discusses the use of Gaussian processes (GP) with multifidelity data

that is taken from different domains in order to solve fluid flow around an airfoil. this is

achieved by learning a heterogeneous mapping function across the domains based on het-
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erogeneous transfer learning [109]. The comparison of this to the QC application would be

not just the use of non-nested geometries, but also different molecular descriptors at each

fidelity. A similar multifidelity method has recently been employed to model laser directed

energy deposition with GP [227]. Refs. [141, 109] provide a detailed review of non-nested

data configurations of multifidelity methods with applications to fields such as image de-

tection [228, 229] and drug efficacy [230].

A note is to be made on the motivation for the need of a non-nested configuration of

training data for MFML in QC. The current state of MFML models usually trains them on

nested datasets restricting their ability to be transferred across unrelated datasets. On the

other hand, having non-nested configurations of MFML methods could enable the use of

disparate datasets resulting in more flexible multifidelity methods without necessitating

calculations at costlier fidelities. Thus, it becomes relevant to inquire the effectiveness of

fully non-nested configurations of MFML for QC. In addition to reducing training data gen-

eration for multifidelity methods, it would result in more versatile MFML models which can

combine across the molecular space without restrictions. While Chapter 6 introduced the

o-MFML method, it was restricted to nested configurations of training data for excitation

energies. In addition, therein, the excitation energies were studied for molecular trajecto-

ries of arenes. In contrast, this work uses a collection of diverse molecules from the QeMFi

dataset for the study of both of ground state and excitation energies. Furthermore, the use

of non-nested data for training multifidelity models is thoroughly analyzed here for both

excitation and ground state energies. Therefore, even though the multifidelity methodology

used in this work is similar to that from Chapter 6, the entire set-up of dataset, multifidelity

data structure, and the applications thereof are entirely different.

This chapter compares the use of fully non-nested configurations of training data ver-

sus the nested configurations for multifidelity methods. The assessment is performed for

the MFML and optimized MFML (o-MFML) models introduced in Chapter 4. These mod-

els are built to predict the ground state energies and first vertical excitation energies for

molecules of the QeMFi dataset from Chapter 7.

8.1 Non-Nested Multifidelity Data from QeMFi

QeMFi contains various QC properties calculated at 5 fidelities for nine diverse molecules,

namely: acrolein, alanine, thymine, urea, urocaninc acid, 2-nitrophenol, DMABN, SMA,

and o-HBDI. For each of these molecules 15,000 geometries are provided with proper-

ties such as ground state energies and excitation energies calculated at different fidelities.
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These are all TD-DFT calculations with varying basis sets constituting the different fideli-

ties. The hierarchy of fidelities is taken as follows in increasing order: STO3G, 321G, 631G,

def2-SVP, def2-TZVP. For the remainder of this work, these are referred to by their shortened

nomenclature such as TZVP and SVP.

The QeMFi dataset contains a total of 135,000 point geometries of 9 diverse molecules.

To ensure that the data chosen would indeed be non-nested the following strategy was

employed: 1.5× 29 = 768 samples were randomly chosen from the 135,000 for the TZVP

fidelity. Of the remaining 134,288 samples, 1.5× 210 = 1,536 samples were chosen for the

SVP fidelity. In this way, the STO3G fidelity contains 1.5× 213 = 12,288 training samples

in total. Thus the total training set spans 768+ . . .+12,288 = 23,808 training samples with

the respective sampling for each fidelity. For the case of nested training data, across five

fidelities, the corresponding number of training samples as mentioned above were chosen.

For the validation set to be used in o-MFML, 1,000 samples were chosen at random

from the QeMFi dataset after removing all the training data. Similarly, a holdout test set

was chosen consisting of 2,192 samples. In other words, the test set is never used in any

stage of training the multifidelity models. The validation set and the test set are fixed and

not changed during the course of the experiments in this work.

8.2 Results

To numerically study the effect of nestedness of training data for multifidelity methods, the

two multifidelity models from Chapter 6 were built with details as reported in section 4.2.

These were built to predict two QC properties from the QeMFi dataset [224, 41], namely,

the ground state energies, and the first vertical excitation energies. In this section, a pre-

liminary analysis as recommended in Chapter 5 is performed for the multifidelity data for

ground state and excitation energies. Following this, the multifidelity learning curves for

these two properties are analyzed for nested and non-nested training data set-ups with

MFML and o-MFML models.

8.2.1 Preliminary data analysis

An assessment of using different descriptors for single fidelity KRR was performed between

the Spectral London and Axilrod-Teller-Muto (SLATM) representation [51] and sorted and

unsorted CM. Unsorted CM are simply molecular descriptors as returned by Eq. (2.1). In

some application cases using CM matrices that are sorted by row-norm have been studied.
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Figure 8.1: Comparison of the use of unsorted and row-norm sorted CM [44] and SLATM
[51] representations for the prediction of ground state and excitation energies with single
fidelity KRR at the TZVP fidelity. For both ground state and excitation energies, the unsorted
CM outperforms the other representations.

This is usually noticed to introduce undesirable discontinuities in the representations [44,

50]. To assess the best molecular descriptor for this work, a short test was performed on

the use of unsorted CM and SLATM representations for single fidelity KRR models. The

TZVP fidelity properties were predicted with these models. The resulting learning curves

are shown in Fig. 8.1 for both ground state and excitation energies. The horizontal axis on

the left-hand side is scaled for the ground state energies, while the one on the right-hand

side corresponds to the excitation energies. It becomes evident from the learning curves

that the unsorted CM outperforms the SLATM representations for both ground state and

excitation energies. Based on these results, the unsorted CM are used for the remainder of

this work. The results are in favor of unsorted CM and therefore, the molecular descriptor

used for this work is the unsorted CM. All multifidelity and single fidelity models hereon

are built with unsorted CM representations.

Chapter 5 on MFML for excitation energies recommends that preliminary analysis be

performed for multifidelity data to determine clear hierarchy of the fidelities and a system-

atic distribution of the fidelities to the target fidelity. The first preliminary analysis is to ob-

serve the multifidelity data distribution of the properties of interest, that is, to look at how

the values are distributed across the energy domain. The second analysis measures the ab-

solute difference of each fidelity to the target fidelity (in this case, TZVP). In this work, this

specific analysis is depicted by the use of mean-marked box-plots. The final analysis for the
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Figure 8.2: Preliminary analysis for the multifidelity structure of ground state energies. The
distribution of the ground state energies shows that it covers a wider range of values. The
absolute difference of the various fidelities to the target fidelity of TZVP shows that for the
most part this decreases with increasing fidelity. A scatter plot of the various fidelity ener-
gies with respect to TZVP shows a systematic distribution of the energies as can be seen in
the inset image.

preliminary assessment of the multifidelity data is a scatter plot of the property calculated

at different fidelities with respect to the target fidelity.

This form of analysis for the ground state energies is depicted in Fig. 8.2 with the ener-

gies being in HE. Since the ground state energies belong to a conglomerate of molecules,

the different peaks of the values are visible in the distribution plot. These peaks appear

since the dataset consists of multiple molecules, each with a significantly different ground

state energy on average. It is also to be noted that the energy distribution is also occasion-

ally zero at certain locations on the energy domain for all fidelities. This will not be a chal-

lenge since the test set is also sampled from the QeMFi dataset and would lack energies

within these valleys of the density plot. The difference in values for various fidelities, as

seen in the center pane of the figure, shows a decreasing difference to the target fidelity for

the most part, with the exception of SVP which is slightly more than its preceding fidelity

of 6-31G. This minor deviation is not anticipated to cause any break down on the MFML

model since Chapter 5 also identified such cases with MFML models still showing reason-

able error reductions for nested configurations. The analysis recommended in Chapter 5

proposes a multifidelity data structure where the distribution of the energies of a fidelity

are systematic with respect to the target fidelity. The exact values of the energy difference

are not shown to make a significant difference to the MFML model. The box plot seen in

the center pane of Fig. 8.2 shows the absolute difference in the energies of a given fidelity

to the target fidelity of TZVP. The mean-line of the box plots are at different values for the

different fidelities indicating that the MFML model could learn the energy differences with-
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Figure 8.3: The multifidelity structure of the first vertical excitation energies are analyzed
to confirm the assumption of hierarchy. The distribution of the energies on the left-most
plot shows distinct peaks which correspond to the different molecules. The difference in
fidelities to the TZVP fidelity decreases on average with STO3G having a larger ranges as
can be seen in the box plot in the center. This is confirmed in the scatter-plot from the left-
most plot as well where the STO3G energies show a wide distribution with respect to TZVP
energies.

out having to struggle with the degeneracy of the fidelities. The right-hand side scatter plot

does not show any clear distributions since the energies are spread over a large range of val-

ues. However, the inset shows that there is indeed a systematic distribution of the fidelities

with respect to the target fidelity of TZVP. This systematic distribution of energies across

different fidelities generally results in a meaningful MFML model as shown in Chapter 5.

Therefore, one anticipates that the conventional MFML model for nested configuration will

indeed show decreasing errors with addition of cheaper fidelities.

A similar analysis for the excitation energies sampled from QeMFi was performed and

the results are shown in Fig. 8.3 for the energies in eV. Since the excitation energies are not

as large as the ground state energies, in this case, one is able to better observe the different

fidelities. The distribution plot shows various local variations for each fidelity. This is simply

an indicator of the diversity of the data. Here one observes that most of the fidelities show

a predominantly bimodal distribution. However, STO3G shows a slightly different distri-

bution of energies. The central pane of Fig. 8.3 shows the fidelity difference mean marked

box-plot where one observes that STO3G shows a larger range in contrast to the other fi-

delities. The fidelity difference depicts a decreasing value as one increases the fidelity. This

means that the assumed hierarchy of methods is indeed correct. Finally, the scatter plot of

energies calculated at various fidelities with respect to the TZVP fidelity shows a systematic

distribution for all fidelities. Since STO3G has a wider spread in comparison to the other fi-

delities, it could potentially be less effective in a multifidelity model. However, as the work
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in Chapter 6 has shown, the o-MFML method can still result in a fairly accurate model su-

perseding conventional MFML.

8.2.2 Ground state energies

The learning curves for the diverse multifidelity models for the prediction of ground state

energies are shown in Fig. 8.4 for the MFML and o-MFML models. The first row of the plots

corresponds to the case, where the training data across various fidelities is from a nested

data setup. Multifidelity learning curves are interpreted a little different from the conven-

tional ML learning curves. Consider the case of nested MFML as seen in the top left pane

of Fig. 8.4. The top learning curve corresponds to the standard KRR single fidelity method.

Here, addition of training samples directly corresponds to the values of the x-axis. The next

line is a MFML learning curve for fb =SVP. In this case, if the x-axis shows N TZVP
train = 4, then it

also includes 2×4 = 8 samples at the SVP fidelity. Similarly as one goes down the baseline

fidelities, the number of training samples used in the different fidelities are indicated by the

number of training samples used at TZVP. For instance, the point on the learning curve of

the STO3G baseline fidelity with 8 training samples at TZVP implies that the MFML model

has [8,16,32,64,128] training samples at TZVP, SVP, 631G, 321G, and STO3G respectively.

The learning curves for decreasing baseline fidelity for ground state energies are shown

in Fig. 8.4 and show clearly lowered offsets. Consider the learning curve of single fidelity

KRR with 128 training samples. If one were to draw a horizontal line at the corresponding

MAE, it would intersect the multifidelity learning curve corresponding to STO3G at around

N TZVP
train = 8. This implies that MFML with STO3G baseline can be built with a lower number

of expensive training samples and achieve the same error as a standard KRR model. For

N TZVP
train = 512, both the models P STO3G

MFML and P STO3G
o−MFML report an error 0.010 hE (∼ 6.2 kcal/-

mol) which shows that these two models are close in performance. One reason these mod-

els perform nearly same could be that the default MFML combination of the sub-models

is already optimized. Such results have been previously reported in Chapter 6 for some

cases. In such nested training data configurations, where MFML and o-MFML show simi-

lar performance in terms of model accuracy, it is better to opt for the less computationally

expensive MFML method. The o-MFML would incur the cost of an additional validation

set at the target fidelity.

The second row of Fig. 8.4 shows the MFML and o-MFML learning curves for the case

of non-nested training data of ground state energies, as explained in 4.1. One immediately

notices that the conventional MFML model breaks down with a non-nested multifidelity

training dataset. It fails to provide any reasonable improvement for the different baseline
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Figure 8.4: Learning curves of the MFML and o-MFML models built for ground state ener-
gies. The top row corresponds to nested training set case while the bottom row shows the
results when non-nested training sets are used to build multifidelity models. Both conven-
tional MFML and o-MFML are assessed here with the help of learning curves. The reference
single fidelity KRR is also shown.
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Figure 8.5: A study of the optimized coefficient values of o-MFML in predicting the ground
state energies of the QeMFi dataset. (a)Nested configuration of training data. (b) Non-
nested configuration of training data. (c) The default coefficients of MFML are also reported
for comparison.

fidelities. Regardless of the training set sizes, the conventional MFML models fail to re-

duce the MAE in comparison to the single fidelity KRR model. On the other hand, for the

o-MFML models built with varying baseline fidelities shows improvement similar to the

MFML and o-MFML models built with nested training data. For N TZVP
train = 512, the MAE of

P STO3G
o−MFML is 0.015 hE (∼ 9.4 kcal/mol) which is only negligibly larger than it was for the case

of the nested training data. For N TZVP
train up to about 24, the non-nested configuration of o-

MFML results in model error that is comparable to the nested configuration of o-MFML.

However, it must be noted that for the non-nested case of o-MFML, the reduction in error

with addition of cheaper fidelities is not as pronounced as it is for the nested configuration

for larger number of training samples. The learning curves for baseline fidelities of 321G

and 631G appear to be converging. This goes to show that non-nested configurations are

indeed a challenging task.

To better comprehend the behavior of o-MFML and the corresponding results, one can

study the optimized coefficients, βopt
s , of o-MFML. For the ground state energies, these are

shown in Fig. 8.5 with the default MFML coefficients shown in Fig. 8.5(c) for reference. The

values ofβopt
s are also reported in Table 8.1 for the nested and non-nested configurations of

o-MFML to aide easy comparison. For each plot in Fig. 8.5, the x-axis implicitly depicts the

value of training samples used at the fidelities, which are denoted on the y-axis. Each box,

therefore, represents a sub-model used to build the final multifidelity model. The values of

the coefficients are shown inside the square boxes and correspond to βopt
s for o-MFML and

βMFML
s for conventional MFML.

Fig. 8.5(a) shows the values of the coefficients for the case of nested training data. One
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s = ( f ,η f ) Nested Non-nested

(TZVP,9) 0.64 −1.7×10−5

(SVP,9) −0.66 0.15
(SVP,10) 0.99 0.05

(6-31G,10) −0.97 −0.13
(6-31G,11) 0.94 0.46
(3-21G,11) −1.0 −0.38
(3-21G,12) 1.1 0.83

(STO-3G,12) −0.87 −0.50
(STO-3G,13) 0.84 0.34

Table 8.1: Coefficient values of o-MFML for nested and non-nested configurations for the
prediction of ground state energies for the QeMFi dataset.

observes that the values of the coefficients of o-MFML for the nested configuration, both

magnitude and sign, are close to the default MFML coefficient values. This could be due to

the conventional MFML model already being optimal. Furthermore, the magnitudes of the

coefficients are similar implying that the each sub-model contributes almost similarly to

the overall multifidelity model.

For the non-nested configuration of o-MFML, the resulting values of βopt
s are shown

in Fig. 8.5(b). One notices a significant deviation from the the default coefficient values of

MFML. Further, the values of the coefficients cover a wider range of values in comparison

to the nested configuration of o-MFML.

In Fig. 8.5(b) it is observed that the magnitude of the coefficient for the sub-model built

with TZVP fidelity training data is small, of the order of 10−5. This is about 3 orders of mag-

nitudes smaller than the coefficients of the sub-models for other fidelities. Chapter 6 did

identify a similar case except for an intermediate fidelity. Following this, the fidelity with

exceedingly small coefficients were removed and o-MFML models were rebuilt. The chap-

ter reported an MAE comparable to having included the fidelity. In line with this test, for

this current work, o-MFML models were built with non-nested configurations. The first

was for the complete multifidelity structure for N TZVP
train = 512 which results in 1024 samples

at SVP. This is the same non-nested multifidelity structure that is used across the major-

ity of this work. This model results in a model MAE of 0.015 hE. A second o-MFML model

is built by ignoring training data at TZVP altogether. That is, the non-nested multifidelity

structure now only contains STO3G, 321G, 631G, and SVP fidelities. This mode is now built

with N SVP
train = 1024 for uniform comparison. It is to be noted that this model too is opti-

mized on the same validation set as before and evaluated on the same test set as for the

previous model. This results in a MAE of 0.468 hE. These results indicate that although the
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o-MFML model results in a very small magnitude of the coefficient for the sub-model built

with the TZVP fidelity, this fidelity is still pertinent for the model to accurately approximate

this target fidelity.

This could further confirm, in addition to the learning curves, that the non-nested con-

figuration does in fact pose a challenge to the multifidelity model. A strong deviation ofβopt
s

from the values of βMFML
s indicates a significant change in the contribution of the corre-

sponding sub-models in the final multifidelity model. This could imply that with the non-

nested configuration, each sub-model being trained on distinct training data, cannot be

combined as in Eq. (4.7) but perhaps requires something different. However, the flexibility

of o-MFML in optimizing the coefficients allows it to optimally combine the sub-models

even if the samples are non-nested resulting in a multifidelity model that still reduce errors

with addition of cheaper fidelities. The optimization over the validation set for this model

makes it superior over the conventional MFML model in the non-nested configuration.

8.2.3 Excitation energies

The prediction of excitation energies is in general considered to be more challenging than

predicting ground state energies [22, 154]. The multifidelity learning curves for the pre-

diction of excitation energies is shown in Fig. 8.6 for both nested and non-nested config-

urations of MFML and o-MFML models. The nested configuration for both categories of

multifidelity models shows promising results for the prediction of excitation energies. A

constantly lowered offset is observed with addition of cheaper baselines in addition to a

negative slope of the learning curves. Similar to the case of ground state energies, the neg-

atively sloped learning curves indicate that the addition of further training samples could

potentially decrease the error of prediction. It is also observed that MFML and o-MFML

have similar model errors. In nested configurations of training data for multifidelity meth-

ods, it is then recommended to use the MFML method since it is computationally less ex-

pensive. Although the o-MFML model reports an error of 0.05 eV (∼ 1.1kcal/mol), it is to

be pointed out that this is the ML model error. The overall error further includes the error

of the method the ML model was trained on. Therefore, we refrain from arguing that the

o-MFML model may provide predictions for excitation energies at chemical accuracy.

However, for the non-nested configuration for MFML, the learning curves indicate a

poor performance of the models. For MFML, similar to the case of ground state energies,

the entire multifidelity structure seems to have broken down with no meaningful model be-

ing formed for any baselines fidelity being added. In fact, the addition of cheaper baselines

worsens the model. It is a ready conclusion that the non-nested configuration of MFML
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Figure 8.6: Multifidelity learning curves for the prediction of first vertical excitation ener-
gies. The first row shows the results for MFML and o-MFML with nested training set data.
Similarly, the second row delineates the learning curves for the case of non-nested training
data. The learning curve for a single fidelity KRR model is also shown for reference.

fails for the prediction of excitation energies similar to the ground state energies. On the
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Figure 8.7: o-MFML coefficient values for the prediction of excitation energies of the QeMFi
dataset. (a)Nested configuration of training data. (b) Non-nested configuration of training
data. (c) The default coefficients of MFML are also presented for ready reference.

other hand, with o-MFML, the non-nested configuration performs noticeably better as in

the case for ground state energies. The addition of SVP and 631G fidelities in the multifi-

delity structure improves the model albeit not as well as seen in the nested configuration

of o-MFML. The learning curves show lowered offsets for these baseline fidelities, although

for SVP, the difference is not as significant as it was for the nested configuration of o-MFML.

With the 321G and STO3G fidelities, the o-MFML model shows improvements for small to

medium training set sizes. But with N TZVP
train = 512, the learning curve for the 321G base-

line fidelity converges to MAE values close to that corresponding to fb =631G. This is also

observed for the STO3G baselines, where even for medium training set sizes, the multifi-

delity learning curve converges to that with fb =321G. One possible reason for this could

be that as larger training samples are used at TZVP, the number of training samples at the

lower fidelities scales by 2. For large enough TZVP training samples, therefore, the multifi-

delity model has a larger amount of non-nested data to combine and the OLS optimization

struggles to optimize these large and seemingly unrelated (due to non-nestedness) sub-

models. For the most part the learning curves show a constant slope which could indicate

that the addition of further training samples might reduce the prediction error of the model

resulting in more optimal values of βopt
s .

A further analysis of the o-MFML models can be performed with the study of the value

of βopt
s for nested and non-nested configurations of o-MFML for the prediction of exci-

tation energies. These are shown in Fig. 8.7 where Fig. 8.7(c) also shows the default coef-

ficients of MFML for reference. The coefficients for nested configuration of o-MFML are

delineated in Fig. 8.7(a). Here, one observes that most of the coefficients lie in the same

range of values and closer to the default values of conventional MFML coefficients. As ar-
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s = ( f ,η f ) Nested Non-nested

(TZVP,9) 0.7 0.24
(SVP,9) −0.68 0.14

(SVP,10) 1.1 0.13
(6-31G,10) −1.2 −0.074
(6-31G,11) 1.3 0.28
(3-21G,11) −1.1 −0.19
(3-21G,12) 0.76 0.66

(STO-3G,12) −0.89 −0.68
(STO-3G,13) 0.91 0.61

Table 8.2: Coefficient values of o-MFML for nested and non-nested configurations for the
prediction of excitation energies of the QeMFi dataset.

gued in Chapter 6, this could indicate that the combination of the sub-models was already

optimized with the default values of the coefficients. The values of βopt
s for the non-nested

configuration of o-MFML are shown in Fig. 8.7(b). The values of the coefficients for the

three cheapest fidelities change significantly in comparison with the nested configuration.

For 321G and STO3G the change is not very significant. This could be due to the addi-

tional noise that these fidelities include into the multifidelity model due to the non-nested

training data. As noted in the case for ground state energies, the large number of training

samples which are unrelated due to the non-nested configuration might prove challeng-

ing to the OLS optimizer. Thus, it becomes additionally difficult to discard the noise from

this training data structure to optimally combine the sub-models to provide a multifidelity

model. The values of the coefficients are also reported in tabular format for this case in

Table 8.2.

8.3 Conclusion

Through the various numerical tests employed in this chapter, the effect of nestedness of

training data has been evaluated for multifidelity models. It is seen that nested configura-

tions of MFML and o-MFML generally out perform their non-nested counterparts. How-

ever, the use of o-MFML with non-nested training data shows promising outlooks. A fo-

cus on improving the optimization routine and possibly including steps to account for the

noise incorporated by the non-nested training data could potentially make this a vital tool

in ML for QC. Future work on non-nested configurations of training data could include the

use of other multifidelity methods such as h-ML or multi-task methods. Improved multi-

fidelity models for non-nested configurations would allow for a more flexible use of these
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models.

Overall, the work presented here opens up areas for research in the use of non-nested

configurations of multifidelity models. The scope of using methods such as o-MFML to

tackle non-nested and heterogeneous multifidelity data has become evident through the

numerical examples in this chapter. Although using non-nested training data seems to be a

bottle neck for current multifidelity models, further research in this direction can certainly

improve them.
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9
BENCHMARKING DATA EFFICIENCY IN ∆-ML AND

MULTIFIDELITY MODELS

This chapter is taken from the work ref. [144] hosted at the time of this

submission as a pre-print on arXiv.

S
imultaneous progress in both quantum chemistry (QC) theory and machine learn-

ing(ML) methods has resulted in a wide range of applications ranging from molecu-

lar dynamics to alloy design [231, 231, 232, 30]. Such ML models are often optimized

to predict singular molecular properties such as atomization energies [138, 32] or molec-

ular dipole moments [46], however also covering potential energy surfaces at both ground

and excited states [139, 22, 181].

Once trained, ML models for QC are capable of reducing the time-cost of making new

predictions for unseen data tremendously in comparison to conventional QC computation

[31, 30, 22]. However, it is a common observation in ML-QC that the more samples a ML

model is trained on, the better the accuracy of the model [22, 165, 154]. Recent research in

developing ML methods for QC has therefore begun posing a slightly different question to

this entire approach: how long does it take to generate training data for such ML models?

Various methodological improvements have since been developed to tackle this specific

aspect of the ML-QC approach. These include ∆-ML [29], MFML [32], and hierarchical-

ML [139]. The ∆-ML approach trains an ML model on the difference between two fidelities

of QC data. The term fidelity refers to the accuracy of the QC method. It is generally the
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MFML
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Validation
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MFΔML
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Δ-ML
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QC Computed
Baseline

QC Computed
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MFML

MFΔML

Δ

Δ-ML
Unseen Test Data

Figure 9.1: A visual depiction of the different ML methods benchmarked in this chapter.
The MFML and o-MFML models do not need any further QC-calculations for the unseen
test set once they have been trained. In contrast, ∆-ML method and the MF∆ML method
that is introduced herein, both require additional QC computations at the QC-baseline that
is used in these models. This work benchmarks these different models to understand the
time-cost versus model accuracy efficiency.

case that a higher fidelity is associated with a higher compute-cost. Thus, ∆-ML trains on a

costly fidelity, called the target fidelity, and a cheaper fidelity, referred to herein as the QC-

baseline fidelity. This is pictorially depicted at the top of Figure 9.1. The final predictions

involve making the QC-baseline fidelity calculations and adding to that the difference pre-

dicted by the ∆-ML model. The h-ML approach builds several ∆-ML like models for more

than two fidelities where the training samples at each fidelity are decided by minimizing a

cost function based on user defined error and compute-cost budget in generating training

data. This model was shown to be effective in predicting the potential energy surface of the

ground state energies in the C H3C l molecule [139].

Multifidelity machine learning (MFML) was introduced as a systematic generalization
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of the∆-ML method [32] with several ML models, called sub-models, being built with differ-

ent fidelities and number of training samples. The method provides several methodological

improvements over the ∆-ML approach in that the cheaper fidelity is no longer calculated

but are predicted within the MFML method. In both MFML and∆-ML, the training samples

needed at the cheaper fidelities include the training samples used at the target fidelity. This

property of the training data is referred to as the nestedness of training data [32], that is, the

training data is homogeneous. A methodological development over the MFML method is

the optimized MFML (o-MFML) method (see section 4.2) which uses a validation set com-

puted at the target fidelity to optimally combine the sub-models of MFML. This method

was shown to be superior in prediction of excitation energies and atomization energies in

Chapter 6 and shown to be better in use cases where the training data is heterogeneous, or

non-nested, in Chapter 8. The MFML and o-MFML methods are depicted in the middle of

Figure 9.1. Note that the conventional MFML method only needs the training data while the

o-MFML method requires the validation set computed at the target fidelity. The prediction

is made without any further computation of the baseline fidelities. Another flavor of ML

methods that has recently been introduced is the use of multitask Gaussian processes (MT-

GPR) to predict molecular properties such as ionization potentials with a training data cost

reduction of almost an order of magnitude when coupled with the ∆-ML approach [110].

Yet another MF approach that was recently introduced is the minimal multi-level scheme

which optimizes a loss function in association with a loss function to arrive at optimal cost-

error balance of the MF model [233].

This chapter provides a time-cost versus model accuracy benchmark of the∆-ML, MFML,

and o-MFML methods. A uniform assessment requires that these models be evaluated on

the same dataset. For this purpose, the QeMFi dataset from Chapter 7 is used which con-

tains five fidelities of QC properties for nine diverse molecules. Specifically, the ground

state energies, the first and second vertical excitation energies, and the magnitude of the

electronic contribution to molecular dipole moments are used from the QeMFi dataset in

order to make time-cost efficiency benchmarks for the MF models. Since the compute cost

of each fidelity for each molecule is given in the QeMFi dataset, a uniform assessment of

the data efficiency, that is, the cost of generating training data for a certain model accuracy.

In addition to the benchmarks for the there above stated models, this chapter introduces

another MF method in interest of reducing the training data cost for the ML-QC pipeline.

This is the multifidelity∆-ML (MF∆ML) method from section 4.3, wherein, a MFML model

is built with several∆-ML models which predict the QC property for different fidelities. This

concept of this method is depicted at the bottom of Figure 9.1. The QC-baseline fidelity is
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used to create the ∆-ML models of the higher fidelities in the training data structure. The

final prediction requires the calculation of the QC-baseline fidelity to which the prediction

from the MF∆ML model are appended. This method is also benchmarked alongside the

∆-ML, MFML, and o-MFML methods for the time-cost incurred in generating the training

data.

9.1 Dataset and Machine Learning Details
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Figure 9.2: Distribution of training, validation, and test sets from the QemFI dataset used
in this chapter. All the nine molecules of the QeMFi dataset are evenly present in each of
the sets. The same train/test/validation split is used for all QC properties studied in this
chapter.

In this chapter, the different ML models are evaluated for the following QC properties

of the QeMFi dataset:

• ground state energies,
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• first vertical excitation energies (E(1)),

• second vertical excitation energies (E(2)),

• magnitude of electronic dipole moments (|µe |)

Although ground state energies are considered easier than excitation energies for ML mod-

els to predict [22], both of these are studied in this work to ensure that the efficiency analysis

of the MF methods is less dependent of the QC property. The magnitude of the electronic

contribution to molecular dipole moments is studied instead of a component-wise vector

prediction of the property since the latter requires specialized molecular representations

which are equivariant under rotation and translation [46] unlike for the case of energies

where invariance is mandated [21]. This is since the vector quantity of dipole moments is

dependent on the orientation of the molecule itself. On the other hand, the magnitude is a

rotation and translation invariant QC property which can be modeled with most conven-

tional molecular descriptors such as the Coulomb Matrices used in this work (see section

2.1). The use and development of specialized descriptors for dipole moments lies outside

the aim of this work, which is focused on the efficiency of the MF methods. Furthermore,

only the electronic contribution is studied since the nuclear contribution to the molecular

dipole moment is identical for a molecule regardless of the fidelity of data used.

The split of data into training, validation, and test sets was uniform across these dif-

ferent QC properties. Of the 135,000 geometries, a random collection of 54,000 data points

were removed to be used for the necessary training data sets. From the remaining geome-

tries, 1,000 samples were chosen at random to be the validation set to be used for the

optimization procedure in o-MFML. The remaining 85,000 samples were set aside as the

test set. It is to be noted that the test set is not used at any stage of training the models

and is therefore a true proxy for unseen data. Since the QeMFi dataset consists of nine

molecules of different sizes and chemical complexities, one should make sure that the dif-

ferent molecules are sufficiently represented in the training and test sets. In interest of this

sanity check, the composition of the training, validation, and test sets is shown in Figure 9.2

based on this selection choice. It can be seen that the nine molecules are uniformly repre-

sented in all three sets. This form of sampling ensures that there is no separate influence of

the composition of the dataset itself.

The molecular descriptor used in this assessment is the unsorted CM discussed in sec-

tion 2.1. The Matérn kernel of first order with L2 norm is employed with a kernel width, σ,

of 150.0 for ground state energies, 20.0 for excitation energies, and 3000.0 for the magni-
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tude of electronic contribution to molecular dipole moments based on a hyper-parameter

grid search. For KRR, the value of the Lavrentiev regularizer, λ was set to 10−10.

9.2 Results

In order assess the various MF models, the models were trained on a pool of MF data taken

from the QeMFi dataset, partitioned as explained above. The models are evaluated on a

holdout test set sampled as explained in the previous section. Learning curves are studied

to understand model accuracy as a function of the number of training samples used at

the costliest fidelity, that is TZVP. Next, the cost of training the MF models is calculated

including any additional costs such as the validation set cost for o-MFML, or QC-baseline

computation for the∆-ML variants. This is the benchmark that is presented in this chapter.

The time-cost of using the different MF methods are studied with recommendations of

which method to use when based on the results.

9.2.1 Learning curves

Figure 9.3 reports the learning curves for the ∆-ML method with varying baseline fidelities

for the (a) prediction of ground state energies, (b) first excitation energies (E(1)), (c) second

excitation energies (E(1)), and (d) the magnitude of electronic contribution to the molecular

dipole moment (µe ). For all QC properties, one notices that the use of cheaper QCb offsets

the learning curves upwards. In other words, the closer QCb is to the target fidelity of F ,

the better the ∆-ML model is. The difference in MAE between the STO-3G baseline and the

SVP baseline for ∆-ML is observed to be almost an order of magnitude. This observation

is similar to what is made in ref. [29], where the ∆-ML approach was first introduced. In

Appendix A, the results of similar experiment for the QM7b dataset [49] are reported in

section A.4.1. In that experiment, different QC levels of theory are considered as fidelities,

as opposed to the different basis sets that are considered as fidelities in this chapter. The

results once again confirm the trend of the ∆-ML model resulting in lower error for a QC-

baseline that is closer to the target fidelity as seen in Figure A.13.

Figure 9.4 reports the learning curves for MFML and o-MFML models. Note that the

vertical axis are scaled differently for each QC property with the units of the energies being

reported in Kcal/mol while using Debye for dipole moments. For each cheaper fb , one ob-

serves that the learning curve is lowered by a constant offset. For ground state energies, as

seen in Figure 9.4(a), there is a region of pre-asymptotics that is observed for small training
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Figure 9.3: Learning curves for ∆-ML with varying QCb . These are shown for the prediction
of ground state energies, first vertical excitation energies (E(1)), second vertical excitation
energies (E(2)), and the magnitude of electronic contribution to molecular dipole moments
(|µe |). Across the QC properties, it is observed that the closer the QCb is in hierarchy to the
target fidelity, the better the model accuracy, as also observed in ref. [29].

set sizes up to N TZVP
train = 16. However, for larger training set sizes, the learning curves show

constant lowered offsets and nearly constant slope on the log-scaled axes. For both E(1) and

E(2), this behavior of the learning curves is observed even for small training set sizes. As

seen in Figure 9.4(d), the learning curves for the prediction of |µe | too show lowered offsets
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Figure 9.4: MFML and o-MFML learning curves for different QC properties studied in this
chapter. The different baselines used in the MFML and o-MFML models are reported in
the legend. It is seen that the o-MFML model does not provide a significant improvement
over the conventional MFML model in terms of MAE. This could indicate that the MFML
combination of sub-models is already sufficiently optimized.

with the addition of cheaper baseline fidelities. In all cases, the learning curves continue to

have constant negative slope for large training set sizes. This indicates that further addition

of training samples could indeed reduce model error. The learning curves for MFML and

o-MFML do not show much difference in the model accuracy for any of the QC properties.
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Figure 9.5: Learning curves for the MF∆ML and o-MF∆ML with differing baseline fidelities
for the prediction of ground state energies, first vertical excitation energies (E(1)), second
vertical excitation energies (E(2)), and the magnitude of electronic contribution to molecu-
lar dipole moments (|µe |) of the QeMFi dataset.

This could be due to the small size of the validation set in comparison to the large training

and test set sizes that are considered. In Chapter 6 it was argued that such a behavior could

also be due to the conventional MFML model being already optimized for the combination

of the multifidelity sub-models. In such outcomes, it is to be noted that the MFML model

is computationally more efficient over the o-MFML model, since there is no added cost of
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generating a validation set. More about this is discussed in section 9.2.2 in relation with the

time-cost results.

Finally, the learning curves for the MF∆ML and o-MF∆ML methods as introduced in

section 4.3 are presented in Figure 9.5 for the different QC properties studied in this chap-

ter. In this case, the energies are offset by the STO-3G fidelity. That is, the STO-3G energies

are subtracted from the energies at the other fidelities as explained in section 3.4.1. Thus

the lowest baseline that is used for the MF∆ML model is the 3-21G fidelity. The learning

curves are contrasted with the ∆-ML model built for F =TZVP and fb=STO-3G. All learn-

ing curves show a region of pre-asymptotics for training set sizes up to N TZVP
train = 64. In this

region of pre-asymptotics, the o-MF∆ML method provides some improvement for the 3-

21G baseline fidelity. Beyond that, the MF∆ML and o-MF∆ML methods result in very sim-

ilar MAE values. With MF∆ML, it can be seen that the addition of cheaper fidelities to the

model results in a constant lowered offset with a negative slope. The learning curves for the

cheaper baselines of MF∆ML are seen to be below the conventional ∆-ML model.

Property/Model KRR MFML ∆-ML MF∆ML

Ground state energies [kcal/mol] 11.41 2.93 2.54 1.3
E(1) [kcal/mol] 2.54 1.42 1.72 1.18
E(2) [kcal/mol] 2.69 1.92 2.6 1.93
|µe | [Debye] 0.16 0.07 0.06 0.04

Table 9.1: MAE in appropriate units for single fidelity KRR and multifidelity models with
N TZVP

train = 211 for different QC properties for STO-3G as the cheapest fidelity included. MAEs
for o-MFML and o-MF∆ML are not shown since they are very close in value to the conven-
tional MFML and MF∆ML values.

Table 9.1 reports the MAEs of single fidelity KRR and the different multifidelity models

for comparison of the model accuracies for different QC properties. The MAEs correspond

to models built with N TZVP
train = 211. The MFML model is built with fb=STO-3G, the ∆-ML

model with QCb =STO-3G, and the MF∆ML model with QCb =STO-3G and fb =3-21G.

These correspond to the last data point in the learning curves presented in this section.

One observes in Table 9.1 that the MF∆ML model has the lowest error regardless of the QC

property that is studied. However, for |µe | the difference is not as pronounced with respect

to MFML and ∆-ML. The largest difference in the errors is seen for ground state energies,

while both the excitation energies show considerable difference in the MAEs between sin-

gle fidelity KRR and other multifidelity models. Thus, if only the model error is considered,

the MF∆ML method is seen to be a methodological improvement over both MFML and

∆-ML approaches.
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Figure 9.6: Time-cost assessment of the different multifidelity models for diverse QC prop-
erties. The x-axis reports Ttrain−data in minutes which is the time taken to generate training
data. For ∆-ML models this also includes the cost of the QC-baseline calculations.

9.2.2 Time-Cost assessment

The various ML methods studied in this chapter have promising results when the MAE is

presented as a function of the training samples required at the target fidelity. However, as

the reader is probably familiar by now in reading this dissertation, the total cost to generate

the training data is to be studied. For the MFML models, this corresponds to all the training
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Figure 9.7: Time-cost versus MAE for MFML and o-MFML in comparison with single fidelity
KRR for the prediction of diverse properties of the QeMFi dataset.

data used in the multifidelity structure. This is computed as TMFML =∑
f N f ·T f , where T f

is the time to perform the QC computation for fidelity f and N f is the number of samples

used by the MFML model at this fidelity. For o-MFML this calculation would further include

the cost of the validation set, Nval ·TF . For ∆-ML, the cost of the model for the prediction

of some property for a molecule would be given as T∆−ML = N F
train · (T fb +TF )+T fb . In case

several predictions are made, that is Ntest number of predictions, then this cost becomes

T∆−ML = NF ·(T fb +TF )+Ntest ·T fb . Note that TF and T fb are different for different molecules
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Figure 9.8: Time versus MAE for ∆-ML, MF∆ML, and o-MF∆ML models in prediction of
different QC properties of the QeMFi dataset.

from the QeMFi dataset. However, since the the dataset provides the compute costs for

each molecule, this can readily be incorporated into the computation. In short, for the ∆-

ML variants, the cost of the model includes the cost of making the calculations of the QCb

for each geometry of the test set. Note that the term ‘test set’ here is referred not to the small

collection of molecules which would be used to assess the ML models before deployment.

On the other hand, the large number of samples in this set allow it to be a meaningful

proxy of actual use-case scenario where the ML model is used to predict the QC property
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of interest several times for several different geometries. Note here, again, that for larger

amounts of evaluations of the model, i.e. for larger test sets, the total time for the required

QC calculations grows as will be observed in the following parts of this chapter.

The comparison of model MAE and time to generate training data for the diverse mod-

els studied in this work are shown in Figure 9.6. The horizontal axis reports Ttrain−data which

is the cost of generating training data for the ML models. For the ∆-ML variants, this also

includes the cost of the QC-baseline calculations. Figure 9.6 displays the results for all the

models studied in this work, namely,

1. KRR with a single fidelity, in this case, TZVP,

2. MFML and o-MFML with fb : STO-3G,

3. ∆-ML with QCb : STO-3G,

4. MF∆ML and o-MF∆ML with QCb : STO-3G and fb : 3-21G.

In the cases of the ∆-ML variants, the QC-baseline is the QC method that is subtracted

from all the fidelities which is not to be confused with fb , which is the baseline fidelity for

the multifidelity methods. The MAE is reported in appropriate units of the QC property,

while the time-cost is reported in minutes. While this figure serves the purpose of over-

all comparison of methods, each multifidelity method is compared separately in separate

figures.

Consider the plot for the MFML curves seen in Figure 9.7. For ground state energies as

seen in Figure 9.7(a), with around 103 min time-cost, the MFML model results in MAE of

∼ 30 kcal/mol. The o-MFML model is shifted along the time-cost axis and results in a sim-

ilar error for a cost of ∼ 8 ·103 min. This is due to the the additional cost incurred to com-

pute the validation set used in the optimization procedure involved in o-MFML. This offset

is more pronounced in the Qc properties studied here since the o-MFML method did not

additionally provide any improvement to the multifidelity model, possibly due to the con-

ventional MFML combination already being optimal. In cases, where the o-MFML method

does provide an improvement over conventional MFML method, such as that reported in

Chapter 6, o-MFML might result in a better MAE versus time-cost trade-off. For example,

consider Figure 9.7(b) and Figure 9.7(c) for the excitation energies. Here, although MFML

initially shows better efficiency in terms of reaching a certain error for a lower time-cost

that o-MFML, close to 5 ·104 min, the o-MFML method results in a lower, albeit marginally,

MAE for the same time cost as compared to MFML.
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Figure 9.8(a)-(d) shows the time-cost versus MAE for the ∆-ML, and MF∆ML variants

for the prediction of diverse QC properties. These correspond to the furthest cluster of

curves seen in Figure 9.6. Due to the large test set size of 80,000 samples, the cost of the

QC calculation of the baseline outweighs the plausible benefit of the ∆-ML and its vari-

ants. Since fully trained ML models are generally used for a large number of predictions,

it becomes evident that the use of ∆-ML models for such cases becomes costly. Even so,

the MF∆ML model performs better than the conventional ∆-ML model, although not by

a large margin. The cost of generating the QC baseline for the ∆-ML models contributes

the most to the overall cost of the models. The MFML (and by extension, o-MFML) method

does not incur this cost since the baseline fidelity is predicted as opposed to QC computed.

For each QC property, it is seen that the MF∆ML model is more efficient than the conven-

tional∆-ML model. The optimized version, the o-MF∆ML model, is less efficient due to the

additional cost of the validation set that is incurred.

As one additional assessment, the time taken to merely train the models, that is given

a training dataset, return a ML model that can be used for predictions, was also studied

for the different ML models. This is reported in the section A.4.4 of Appendix A. The curve

of time taken to train the model as a function of the number of training samples used at

the TZVP fidelity is shown in Figure A.16. The explicit values of the time taken are reported

in Table A.4. For N train
train = 211, the time taken to train a single fidelity KRR model, and by

extension, the standard ∆-ML model was 0.8 seconds. For MFML with fb :STO-3G, that is

total of 5 fidelities, this time was ∼ 4300 seconds, and for MF∆ML with fb :3-21G, that is 4

total fidelities, this time was∼ 440 seconds. These time-costs are marginal in comparison to

the training data generation cost. Thus, this cost can be neglected as a contributing factor

in the efficiency analysis of the MF models.

9.2.3 Large Test Set Sizes

The above time-cost results reveal crucial aspects of using multifidelity methods for QC.

When employing the ML-QC pipeline for large test set size, such as in the case of molecular

trajectories, the MFML and o-MFML methods supersede the ∆-ML variants. As the test set

size increases, at the model accuracy versus cost trade-off for the ∆-ML variants becomes

difficult to justify. To really put in perspective the time-cost incurred in ∆-ML, Figure 9.9

reports single fidelity KRR, MFML, and ∆-ML MAE versus time-costs for the different QC

properties for a hypothetical test set size of 1 million geometries. The single fidelity and

MFML models are unaffected by the size of the test set and therefore do not show any

change, the ∆-ML model, however, shifts significantly to the right due to the cost incurred
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Figure 9.9: Time-cost versus model error for MFML and ∆-ML for a hypothetical test set
size of 1 million geometries for the prediction of diverse QC properties.

in the calculation of QCb . The cost of using the ∆-ML variants becomes a lot more evident

here once again delineating the possible benefit of using the MFML method. As for the

question of using a cheaper QC-baseline for∆-ML, the results of Figure 9.3 and Figure A.13

inform that the use of cheaper QC-baselines comes at the cost of model accuracy as is also

evident from ref. [29]. The use of MFML is therefore recommended for cases where one is

generally interested in predicting QC properties for a very large test set size. However, if the
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use-case only demands a small number of predictions, the ∆-ML methods would still be a

useful method. In particular, as shown in this work in Figure 9.5 and Figure 9.8, the MF∆ML

method would then be preferred.

9.3 Conclusion

This chapter set up time-cost benchmarks for the MF models developed in this disserta-

tion for the prediction of several QC properties from the QeMFi dataset. These were as-

sessed alongside the commonly used ∆-ML method and shown to be more efficient. In

addition, the MF∆ML method was introduced and shown to be more effective than ∆-ML.

The MF∆ML method could be preferred over MFML in areas of application that require

only a small number of model evaluations. However, since such cases are rare in the field,

and one generally predicts QC properties for a large collection of molecules or a long tra-

jectory of a molecules, the MFML or o-MFML method are preferred.
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10
INVESTIGATING DATA HIERARCHIES IN MULTIFIDELITY

MACHINE LEARNING

This chapter is taken from the work published as ref. [43] in the Journal

of Chemical Theory and Computation.

M
achine learning (ML) and quantum chemistry (QC) have become increasingly in-

terlinked over the recent times. Both have seen rapid development in tandem

allowing for quick prediction of QC properties in place of the costly conventional

calculations [156, 181, 22, 234, 30, 235]. This has allowed researchers to perform prelim-

inary examination of complex QC problems with much speed. The ML-QC pipeline first

identifies a QC property of interest. Next, a training set is calculated for a desired QC method,

say Density Functional Theory (DFT); this is also referred to as a fidelity, that is, the level

of accuracy of the method with respect to what would be considered ground truth. Once a

training dataset is computed, a ML model of choice is trained.

The bottleneck in such a pipeline is often the high cost of generating training data. A ML

model can only be as good as the data it is trained on. It is often noted that a larger number

of training samples results in a more accurate ML model [22, 154]. This observation im-

plies that either one needs to use a less accurate, and thereby less expensive QC method to

train the ML model, or have less training samples at a higher fidelity thereby, resulting in

a less accurate ML model, when it comes to the prediction error relative to the data. Sev-

eral methodological improvements over the single fidelity ML methods for QC have been
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proposed to overcome this hurdle in the ML-QC pipeline, including ∆-ML [29], where one

trains on the difference between two fidelities. This method has been shown to reduce the

number of training samples needed at the expensive fidelity and has since been modified

in various flavors including hierarchical ML [139], multifidelity ML (MFML), and optimized

MFML (o-MFML). MFML and its variant of o-MFML, systematically combine several∆-ML

like models with more than two fidelities. This method has been shown to be superior in

predicting excitation energies along molecular trajectories in Chapter 5. A recent work has

also introduced the use of multitask Gaussian processes to harness heterogeneous multifi-

delity data in order to predict three-body interaction energy in water trimer with coupled

cluster accuracy [110]. MFML differs from the conventional∆-ML method not just in terms

of the number of fidelities that are used but also in the number of training samples used at

each fidelity. Conventionally, the ∆-ML method uses the same number of samples at both

the fidelities. In MFML, these training samples are scaled down as one increases the fidelity

of the training data. This further reduced the number of costly training samples needed at

the highest fidelity, also called the target fidelity. This scaling factor, in previous studies was

set to be 2, meaning that at each subsequently lower fidelity, the number of training sam-

ples would be scaled up by a factor of 2 [32] which was decided based on previous work

related to sparse grid combination techniques (SGCT) [37, 36, 35].

The scaling factor, the ratio of training samples used at two consecutive fidelities, or lev-

els, directly controls the total number of training samples used for MFML and thereby the

cost of generating a training set for the approach. Understanding the effect of this param-

eter in the efficiency and accuracy of the MFML approach would potentially provide op-

portunities to further improve the overall multifidelity approach for QC. The scaling factor,

the ratio of training samples used at two consecutive fidelities, or levels, directly controls

the total number of training samples used for MFML and thereby the cost of generating a

training set for the approach. Understanding the effect of this parameter in the efficiency

and accuracy of the MFML approach would potentially provide opportunities to further

improve the overall multifidelity approach for QC. Previously, ref. [163] has studied a two-

fidelity MFML model with varying the number of training samples at the cheaper fidelity.

By increasing the number of training samples at the lowest fidelity in an additive manner,

the model error has been shown to decrease for the prediction of polymer bandgaps. A

similar study has been performed in ref. [135] for the study of bandgaps in solids. However,

these studies lack any systematic assessment of the scaling factor itself but rather loosely

study the effect of training data size within a two-fidelity data structure. This work assesses

scaling factors that are different from those used thus far in literature. Several fixed scal-
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ing factors, that is, the same scaling factors across the different fidelities are systematically

tested. These are evaluated on the recently released benchmarking multifidelity dataset,

QeMFi [224, 41], which consists of 135,000 geometries of nine complex molecules. Since

the QeMFi dataset also provides the compute time for each fidelity for each molecule type,

two time-cost informed scaling factors are also assessed.

Studying model accuracy in relation to the cost of generating the training set for the

model also provides a robust measure of how the diverse MFML models behave with re-

spect to the single fidelity models as has been shown in refs. [142, 41]. Therefore, assess-

ment of model accuracy and time-cost of generating corresponding training data is made

for the diverse scaling factors. In interest of a complete investigation not only into the scal-

ing factors but also into better understanding the multifidelity data structure, this work

further introduces a new error metric for multifidelity methods for QC, namely error con-

tours of MFML. Error contours describe the model error with respect to training samples

used at two fidelities thereby giving a more comprehensive analysis of the contribution of

each fidelity to the overall accuracy of the MFML model. The study of the error contours

of MFML indicates that using much lower training samples at the costlier fidelity while in-

creasing the number of training samples at the lowest fidelity results in an MFML model

of high accuracy at a much lower cost than the conventional MFML approach with a fixed

scaling factor. To systematically assess this, this work studies multifidelity models built with

a small number of fixed training samples at the target fidelity and increasing the scaling fac-

tor. This gives rise to the notion of theΓ-curve as delineated in secction 4.7. The models that

are build in such a manner are shown to be superior to the conventional MFML approach

in terms of model error for a given cost of generating the training data.

This chapter assesses scaling factors that are different from those used thus far in lit-

erature. Several fixed scaling factors, that is, the same scaling factors across the different

fidelities are tested. These are evaluated on the recently released benchmarking multifi-

delity dataset, QeMFi from Chapter 7, which consists of 135,000 geometries of nine com-

plex molecules. Since the QeMFi dataset also provides the compute time for each fidelity

for each molecule type, two time-cost informed scaling factors are also assessed.

The concepts of scaling factors and the tools used in this chapter have already been pre-

sented in section 4.4 in addition to the theoretical development of the error contours and

Γ-curve in sections 4.6 and 4.7 respectively. However, a small refresher is provided below for

the sake of continuity of this chapter. This is followed by the results of MFML and o-MFML

models for the prediction of excitation energies with the different scaling factors in section

10.2. In addition to the time-cost of the different MFML models in section 10.2.2, the error
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contours of MFML and the Γ-curves are studied in sections 10.2.3 and 10.2.4 respectively.

Inferences on these results are made followed by a discussion and outlook of this chapter.

10.1 Methodological Refresher

10.1.1 Scaling factors

This chapter studies two the effect of varying scaling factors, γ, on the overall MFML model

accuracy and cost incurred to generate training data. In particular, five values of scaling

factors γ ∈ {2,3,4,5,6} are studied. Two additional approaches for QC-cost adapted selec-

tion of scaling factors are also studied in this chapter. The latter takes into account the

compute times for each fidelity before adaptively selecting the ratio of training samples

between two consecutive fidelities. The QeMFi dataset, introduced in Chapter 7, provides

the QC compute time in seconds for each of the five fidelities when computed on a single

core. This information can be used to determine a time-informed scaling factor for each

fidelity as opposed to setting a single scaling factor for all the fidelities. The two time-cost

informed scaling factors were already introduced in section 4.4 as θ f
f −1 := ⌊

T f /T f −1
⌉

and

θ
f
F := ⌊

T F /T f
⌉

. Here, these are explained in light of the QeMFi dataset that is used.

Since QeMFi is a collection of different molecules, this approach was carried out with

reference to the compute times for the largest molecule in the database: o-HBDI. This re-

sults in scaling factors θ f
f −1 = {3,1,2,1} for increasing fidelity. That is, at SVP, the same num-

ber of training samples as TZVP are used while at the 631-G fidelity, it is twice, and so on.

However, MFML models are built in such a way that subsequently cheaper fidelities have

some more training samples than the previous fidelity so that the difference between the

sub-models can be taken. In order to achieve this, after the number of training samples

are decided by the scaling factors, if fidelity f − 1 has the same number of training sam-

ples as fidelity f , then one additional sample is added to the sub-model at fidelity f − 1.

As an example, if N TZVP
train = 2, then the training samples for the different fidelities would be

{12,4+1,4,2+1,2}.

As for the case of θ f
f −1, the reference molecule was chosen to be o-HBDI. This leads

to scaling factors θF
f = {9,3,2,1} for increasing fidelity. Since the SVP fidelity is scaled by a

factors of 1, as discussed earlier, one additional training samples was added each time to

maintain the multifidelity structure required for MFML. As an example, consider the case

for N TZVP
train = 2. Then the training samples at the different fidelities would be {108,12,4,2+

1,2}.
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10.1.2 Error contours

The learning curve is used as an indicator of the ability of the ML model to predict over

unseen data. Learning curves form a major part of the analysis offered in this chapter.

In addition to the usual RMAE versus training samples learning curves, this chapter also

studies the RMAE versus cost of generating training data for the multifidelity model as first

proposed and implemented in Chapter 5 for excitation energies. Error contours of MFML

introduced in section 4.6 are also implemented in this chapter. Since the QeMFi dataset

from Chapter 7 is used, the error contours of MFML are studied for the following fidelity

pairs: TZVP-SVP, SVP-631G, 631G-321G, and 321G-STO3G. Since the error contours are a

function of two variables, N f
train and N f +1

train, they are reported as contour plots. Herein, error

contours of MFML are discussed only for γ= 2.

10.1.3 Γ-curve

As expressed in section 4.7, in this approach, a fixed number of training samples are cho-

sen at the highest fidelity, N TZVP
train . Notice that since the QeMFi dataset is used, the highest

fidelity is TZVP. With the fixed number of training samples at TZVP, an o-MFML model is

built with γ = 2. The cost of the training data is noted along with the model error over the

holdout test set. For the next step of this curve, instead of varying N TZVP
train , γ is increased by

an integer value. This curve is identified as Γ(N TZVP
train )-curve and is a measure of MAE versus

time-cost of training data of the multifidelity model for varying γ.

Example 10.1 (Γ-curve training structure). If one were to set N TZVP
train = 2, fb : 321G, then

the Γ(2)-curve would be built with the first multifidelity training data structure (in in-

creasing fidelity) as {23 · 2,22 · 2,21 · 2,2}. The next point would be built with a training

data structure of {33 ·2,32 ·2,31 ·2,2} and so on.

In general, for a Γ(N TZVP
train )-curve, the training data structure for f : b 321G is given as

{γ3 ·N TZVP
train ,γ2 ·N TZVP

train ,γ1 ·N TZVP
train }. For reasons explained in section 10.2.2 and section 10.2.3,

the STO3G baseline is not considered. In this chapter, the Γ(·)-curve is studied for N TZVP
train ∈

{2,8,64} to further assess the multifidelity structure of training data and evaluate the limits

of the multifidelity approach. Since there is no trivial way to express the number of training

samples used at a certain fidelity and relate it to the MAE of the model, the Γ(·)-curve is

plotted only as MAE versus multifidelity training data generation cost.
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Figure 10.1: Multifidelity learning curves for the prediction of excitation energies taken
from the QeMFi dataset. The top row corresponds to the MFML models while the bottom
row is for the o-MFML models. Different fixed scaling factors are used to scale the data
across each fidelity in the multifidelity models as explained section 4.4. The scaling factors
are reported on the top of each column.

10.2 Results

This section presents the analysis of varying the scaling factor for MFML and o-MFML. The

results are presented in two major formats. First, standard learning curves of MAE versus

number of training samples used at the highest fidelity of TZVP are presented. Following

this, the model error is assessed a function of the time-cost of generating the training data

for the model. This assessment informs of the effectiveness of the diverse models that are

studied in this chapter. Once these results are interpreted, error contours of MFML as de-

scribed in section 4.6 are studied.

10.2.1 Learning curves

The primary assessment of the effect of different scaling factors is carried out using learn-

ing curves for the resulting MFML and o-MFML models. These learning curves are shown

in Figure 10.1 for different scaling factors. In all cases, the scaling factors are constant across

the different fidelities as explained in section 4.4. The top row of the figure depicts the learn-

ing curves for MFML while the bottom row corresponds to the o-MFML models. The learn-

ing curves are shown for varying baseline fidelities. A single fidelity KRR learning curve is

also shown for reference. The RMAEs are reported as unitless quantities.

In Figure 10.1, the first column shows the learning curves for the scaling factor of 2.
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This is the original scaling factor used in ref. [32] and the preceding chapters of this disser-

tation. This scaling factor is used as a reference to evaluate the other scaling factors against.

Within these reference results, one observes that the addition of cheaper baselines results

in a constantly lowered offset of the learning curves. The interpretation from the lowered

offsets is that similar models errors can be achieved with lower number of training sam-

ples at the target fidelity with the addition of cheaper fidelities. With the cheapest fidelity,

STO3G, being added to the multifidelity model, one observes an one observes RMAE of 0.4

with around 200 training samples at TZVP.

In comparison to this, an increase of of the scaling factor, γ, provides MFML models

that achieve similar errors for lower number of training samples at TZVP. A comparison

of the MFML models built with different values of γ for the STO3G baseline fidelity are

shown in Figure 10.3. For example with a scaling factor of 3, the STO3G baseline MFML

model achieves an RMAE of 0.4 with N TZVP
train = 32. With a scaling factor of 6, the number

of training samples at TZVP needed to achieve this same error is lowered further to about

4. The learning curves for o-MFML also indicate the same across varying scaling factors.

There is little difference between the learning curves for MFML and o-MFML. This could be

due to the MFML combination being already optimal for this multifidelity data structure as

has been argued in Chapter 6. There is however, slight improvement in all cases of o-MFML

and it does result in reduced RMAEs across the different scaling factors.

From these results it appears that a higher number of training samples with cheaper

fidelities improves the predictive capabilities of the MFML and o-MFML models. One pos-

sible reason for this could be that the use of larger data at the cheaper fidelities results in

more information about the overall multifidelity structure being included into the MFML

models.

In addition to the fixed scaling factors across fidelities, two special cases of scaling fac-

tors were introduced in section 4.4 based on the QC compute time of each fidelity. These

were denoted by θ f
f −1 and θF

f as explained in section 4.4 in detail. Learning curves were

generated for both MFML and o-MFML models for both these cases. The results are shown

in Figure 10.2 for both scaling factor cases with various baseline fidelities. The single fidelity

KRR learning curves is also depicted for reference.

Figure 10.2(a) depicts the results for θ f
f −1 with the left pane for MFML and right pane

for o-MFML. As explained in section 4.4, these scaling factors are based on the ratio of QC-

compute times of subsequent fidelities. Between some fidelities - namely between TZVP

and SVP, and between 631G and 321G - this scaling was observed to be 1. It is anticipated

that these fidelities will not significantly improve the MFML models since there is very little
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((a)) Scaling factors, θ f
f −1, between fidelities chosen as ratios of the QC compute time of

subsequent fidelities. Single fidelity KRR at TZVP is also shown for reference.
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((b)) Scaling factors, θF
f , between fidelities selected as ratios of the QC compute time of

that fidelity to the compute time of TZVP, that is the target fidelity.

Figure 10.2: MFML and o-MFML learning curves time informed scaling factors (see sec-
tion 4.4). The two time informed scaling factors are described in detail in section 4.4. Single
fidelity KRR learning curves are also provided for reference. The legend describes the base-
line fidelity, fb , of the multifidelity model.

additional information that is being added to the model. Indeed, as seen in Figure 10.2(a),

the multifidelity model built with SVP baseline does not provide any improvement over the

single fidelity KRR. This is due to the fact that the number of training samples at both fideli-

ties are nearly identical, only different by 1 sample, due to the scaling factor. This same ob-

servation can be made for the learning curves with 321G as baseline fidelity. With 631G and
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STO3G baselines, however, one observes improvement of the MFML and o-MFML models.

With the STO3G baseline, MFML and o-MFML reach an RMAE of 0.03 with roughly 500

training samples at TZVP.

Similarly, Figure 10.2(b) reports the learning curves for θF
f . The left-pane shows the re-

sults for MFML, while the right pane shows those for o-MFML. Similarly, Figure 10.2(b)

reports the learning curves for θF
f . The left-pane shows the results for MFML, while the

right pane shows those for o-MFML. The SVP baseline fidelity once again shows very little

improvement over the single fidelity KRR due to the scaling factor being unity (see section

4.4). However, each additional cheaper baseline fidelity, results in lowered offsets of the

corresponding learning curves. With N TZVP
train = 256, the multifidelity models with the STO3G

baseline result in RMAE of ∼0.03.
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Figure 10.3: Comparison of learning curves for fixed scaling factors γ, θ f
f −1, and θF

f with fb :

STO3G. The x-axis reports the number of training samples used at the highest fidelity, that
is, TZVP. Both MFML and o-MFML models are compared. Increasing values of γ result in
a constant lowered offset of the learning curves. The cost informed scaling factors show a
higher value of MAE.

To aid comparison of the different scaling factors discussed so far, Figure 10.3 depicts

the learning curves for the MFML and o-MFML models built with the STO3G fidelity as

baseline. The various factors are delineated in the legend of the plot. This plots shows that

increasing values of γ result in a lowered constant offset of the learning curves. In con-

trast, the multifidelity models built with time-informed scaling factors, θ f
f −1 and θF

f both

show the highest model error. This observation is consistent for both MFML and o-MFML

models as can be seen from the two plots shown in Figure 10.3. Furthermore, the o-MFML
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Factor MFML o-MFML

2 0.0790 0.0754
3 0.0486 0.0472
4 0.0371 0.0297
5 0.0312 0.0264
6 0.0290 0.0264

θ
f
f −1 0.1201 0.1143

θF
f 0.0844 0.0854

Table 10.1: RMAE rounded off to 4 decimal points for MFML and o-MFML models built
with the STO3G baseline fidelity for N TZVP

train = 25. This allows for a uniform comparison of
the model accuracy not just between MFML and o-MFML but also across the scaling factors
that are studied in this work. Notice that the learning curve forγ= 6 only goes up to N TZVP

train =
25 and therefore this is chosen as a comparison point for all other curves.

models show lower errors than the MFML counterparts for all the cases as seen in table 10.1

which reports the RMAEs for the MFML and o-MFML models with various scaling factors

for the STO3G baseline for N TZVP
train = 25 for ready reference. This training set size is chosen so

that there is uniform comparison between the different scaling factors. The behavior of the

MFML models with increasing γ is in some sense expected since an increasing value of the

scaling factor implies an increased amount of training data, albeit only at the cheaper fideli-

ties. This could be one potential reason to explain the lowered offsets that are observed. An

increased amount of training samples at the lowered fidelities, due to the nested structure

of the multifidelity training data, could impart meaningful information about the confor-

mational phase-space and its relation to the excitation energies. The limited improvement

that is seen from the learning curves of θ f
f −1 and θF

f , which both had a much larger number

of training samples at the cheapest fidelity in comparison to the other fidelities, could be

due to the lack of sufficient training data in the fidelities that lie between the baseline and

target fidelities. Furthermore, the value of θ f
f −1 for the SVP and 321G fidelities was 1 which

did not provide any additional information to the MFML model as was pointed out in the

discussion for Figure 10.2(a). This in turn affects the overall model that is built with the

STO3G baseline fidelity. A similar argument can be made for why the MFML model with

θF
f has limitations. Regardless, the MFML model built with θF

f does in fact achieve model

RMAE that are comparable to the MFML model built with γ= 2.

The results for fixed scaling factors, γ, indicate that a higher γ results in a lower model

error, or, smaller number of training samples at the costly target fidelity are needed. For

the time-informed scaling factors, it was seen that these do not perform as well as was

anticipated. However, one must be cautious about the results from Figure 10.1 and Figure
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10.2 before considering them to be improvements over the conventional MFML method

with γ = 2. Since one uses much more training samples at the cheaper fidelities as one

increases the value of γ, the cost of generating training data needs to be assessed to better

understand the cost-accuracy trade-off in these multifidelity models. In interest of such an

analysis, the time-cost of generating training data versus model MAE are discussed in the

next section. Although the MFML and o-MFML models show similar RMAEs, only o-MFML

models are discussed hereon. This is due to the observation of Chapter 6 that the o-MFML

method provides a superior model even in cases of poor data distribution of the cheaper

fidelities. Since all o-MFML models use the same validation set, the cost of generating the

validation set is not included in the time-analysis plots.

10.2.2 Time benefit analysis

As presented in the preceding chapters, a good assessment of multifidelity methods is the

study of model error versus the time to generate the training samples for the model. In

interest of such a study, the RMAE versus training data generation time are studied for the

just discussed test cases. The time to generate data for a multifidelity model is the sum

over the times for generation of all the training samples used at all fidelities that form the

multifidelity model. That is, T MF ML
tr ai n−d at a := ∑

fb≤ f ≤F N f
train ·T f

QC where N f
train is the number

of training samples used at some fidelity f , and T f
QC is the corresponding single-point QC-

compute time for that fidelity. The QC-compute times recorded in the QeMFi dataset are

those for a single-core computation and are provided for each fidelity for each molecule

type as discussed in Chapter 7.

The RMAE versus T MF ML
tr ai n−d at a plots for the various scaling factors are shown in Figure

10.4 for o-MFML. Only o-MFML is shown since it has a lower error compared to MFML

for all the cases (see Figures 10.1,10.2(a), and 10.2(b)). The RMAE and the time axes are

both presented in log-scaled values. The axes of the plots are scaled identically for easy

comparison among the different scaling factors. The bottom-right corner plot compares

the time-cost based scaling factors to the case of γ = 2 for the MFML model built with fb :

321G and not for the cheapest STO3G baseline for reasons discussed below.

For the different cases of scaling factors shown in Figure 10.4, it can be seen that the

addition of cheaper baselines helps achieve a specific model accuracy with less time cost

to generate the training data. In general, fixing a specific MAE, one can see that the curves

of the cheaper baseline achieve this error earlier with respect to the time axis. Alternatively,

if one were to set a time budget and draw a vertical line at that value (as on the x-axis), then

the cheaper baseline models result in lower RMAEs than the single fidelity KRR model. The
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Figure 10.4: Time to generate training data versus RMAE of the corresponding o-MFML
model for the diverse scaling factors studied. The different scaling factors used are denoted
as sub-titles. The RMAE is unitless while the time-cost is in minutes. The single fidelity KRR
case is also depicted for reference. As one increases the scaling factors across the fidelities,
one observes that the learning curves of the MFML models shifts further due to the larger

amount of training samples used. The two cases of θ f
f −1 and θF

f are explained in Scaling

Factors. The bottom-right corner plot compares the o-MFML curves for the 321G baseline
for the two time-informed scaling factors and the case of γ= 2.

case of STO3G baseline is an exception. For all scaling factors, the addition of the STO3G

baseline does not provide significant improvement of the model. In fact, it increases the

training data generation cost. The STO3G energies do not provide major improvement to

the o-MFML model over the 321G baseline. This could be due to poor data distribution that

has previously been noted for the STO3G fidelity for excitation energies of molecules (see

Chapter 5). The time-cost versus RMAE plots make this evident. Although the analysis of

conventional learning curves from section 10.2.1 indicated that the STO3G baseline fidelity

improved the MFML model, these time-cost plots indicate that this comes at a cost which

supersedes the RMAE improvement that is observed. However, consider the case of the

special scaling factors θF
f , which are decided by the ratio of the QC-compute times of a fi-

delity f to the QC-compute time of the target fidelity F . For some portions of learning curve

for fb = STO3G, o-MFML does provide lower errors as is expected from such multifidelity
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models This could indicate that the use of o-MFML could improve the model accuracy

even for the cases of poor data distribution as seen in the STO3G fidelity. For the o-MFML

models that are built with the 32G baseline fidelity, the time benefit of the multifidelity ap-

proach becomes all the more perceptible across the various scaling factors. For instance,

in the case of γ= 3, the o-MFML model results in an RMAE of 0.1 with a time cost of ∼ 200

minutes. The KRR model achieves a similar error with a time-cost of ∼ 1,000 minutes. This

indicates a time benefit of about 5 times with this baseline fidelity for γ = 3. Similarly, for

γ = 5, the KRR model achieves an RMAE of 0.07 with a time cost of ∼ 2,000 minutes while

the o-MFML model achieves a similar error for a time cost of ∼ 300 minutes resulting in a

time benefit of about 6 times. Similar observations can be made for the other values of γ.

The time benefit is less pronounced for the cases of θ f
f −1 and θF

f but is still present for fb :

321G.

While each scaling factor does improve the time-cost needed to achieve a certain RMAE

vis-á-vis the single fidelity KRR, it is also important to see which scaling factor performs

better with respect to the others for a given baseline fidelity. The bottom-right plot of Figure

10.4 compares the time-cost versus RMAE curves of MFML models for γ = 2, θ f
f −1, and

θF
f for the baseline fidelity of 321G. The STO3G baseline is not considered due to its poor

distribution. These specific scaling factors are chosen to better understand the standing of

the time-informed scaling factors with respect to the fixed scaling factors. The time-cost

versus RMAE of different γ are compared in Figure 10.6 in light of the discussion about the

γ(·)-curves. This comparison in Figure 10.4 for the 321G fidelity shows that the fixed scaling

factor of γ= 2 performs better than both the time-cost informed scaling factors (see section

4.4). The MFML model built with θF
f does perform only as well as that built with γ = 2,

which is the default set-up for MFML. This could indicate that just the QC-compute time-

cost information might not suffice to select the training samples at each fidelity. It could

be that the model accuracy and multifidelity training structure relation is more complex

than just accounting for the QC-compute cost. To better understand how each fidelity and

the number of training samples at each fidelity contribute to the overall model error, the

next section studies a new error metric, error contours (see section 4.6 for details). This is

intended to give a better view into the inner mechanisms of the multifidelity data structure

in building a MFML model.

10.2.3 Multifidelity error contours

The time versus RMAE results for different scaling factors hint that one might not necessar-

ily need many training samples at the target fidelity. This would imply that one could build

165



CHAPTER 10. DATA HIERARCHIES IN MFML

22 23 24 25 26 27 28 29 210

NSVP
train

2

22

23

24

25

26

27

28

29

N
TZ

VP
tr

ai
n

0.025

0.063

TZVP and SVP

23 24 25 26 27 28 29 210 211

N631G
train

22

23

24

25

26

27

28

29

210
N

SV
P

tr
ai

n

0.03

0.064

SVP and 631G

24 25 26 27 28 29 210 211 212

N321G
train

23

24

25

26

27

28

29

210

211

N
63

1G
tr

ai
n

0.031

0.062

631G and 321G

25 26 27 28 29 210 211 212 213

NSTO3G
train

24

25

26

27

28

29

210

211

212

N
32

1G
tr

ai
n

0.088

0.066

321G and STO3G

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

RMAE Contours of o-MFML

Figure 10.5: Excitation energy prediction error contours with o-MFML for different training
samples at different fidelities. The details of the method are explained in section 4.4 for
each case. In each plot, the vertical axis depicts the number of training samples used at the
costlier fidelity, f , while horizontal axis reports the training samples used at the cheaper
fidelity f −1. The resulting error for the o-MFML model with the specific choice of training
samples used at fidelity f and f −1 are depicted as the error contours. Here, the RMAE are
depicted as contour plots for different training samples spanned across two fidelities. Two
specific RMAEs are enumerated for all 4 cases: first, that for the smallest training set size at
the higher fidelity, f , and the largest training set size at f −1; second, for the case where the
training sample at f and f −1 have the scaling factor of 2.
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a cheap multifidelity model with a large number of training samples at the cheaper fideli-

ties and then ‘raise’ it to the target fidelity with an exceptionally small number of training

samples at the target fidelity. This can be further studied with the error contours of multifi-

delity. These contours involve studying the model prediction error by varying the training

sizes along fidelity f and f −1 for all f ≤ F . As was discussed in section 4.4, this is performed

for consecutive fidelity pairs TZVP-SVP, SVP-631G, 631G-321G, and 321G-STO3G.

Figure 10.5 illustrates the multifidelity error contours of o-MFML for different fidelity

pairs for γ= 2. Consider the top-left plot corresponding to the TZVP-SVP fidelity pair. The

y-axis denotes the number of training samples used at TZVP, while the x-axis depicts the

number of training samples used at the SVP fidelity. The colors of the plot itself correspond

to the MAE. In the usual o-MFML approach, the number of training samples used at SVP

with respect to the number of training samples used at TZVP would be scaled by the factor

γ (in this case by 2). However, for this set-up there is no trivial scaling of training data that

is carried out. Instead, the multifidelity model is built with a specific selection of training

samples. For example, take the case for N TZVP
train = 2 and N SVP

train = 210 which is marked by the

top-corner red circle. The RMAE reported here, 0.025, is for a multifidelity model that is

built with the following multifidelity training structure (with increasing fidelity): {23 ·210,22 ·
210,2 ·210,210,2}. In other words, the scaling factor is only applied for the fidelities that are

not studied as part of the error contour. In contrast, in the usual o-MFML the training data

structure would be {24 ·2,23 ·2,22 ·2,2 ·2,2}, this is the block that corresponds to (N SVP
train =

22, N TZVP
train = 2) on the plot. The accompanying color-bar depicts that this regular o-MFML

model results in a higher RMAE than 0.025. In general, the diagonal of the contour plot

depicts the regular o-MFML model which is identified in the learning curves of Figure 10.1

for γ = 2. The RMAE for (N SVP
train = 26, N TZVP

train = 25) is highlighted as well reporting an RMAE

of about 0.063 which is over twice of what is observed for (N SVP
train = 210, N TZVP

train = 2). This is a

remarkable observation in that simply using two training samples at TZVP while increasing

the training size at the lower fidelities results in a model that is more than twice as accurate.

Furthermore, the RMAE for the block (N SVP
train = 210, N TZVP

train = 2) is similar to the model block

(N SVP
train = 210, N TZVP

train = 29). In general, it is seen that a lower number of TZVP training samples

with a larger training set size at the cheaper fidelities results in more accurate multifidelity

model.

Similar observations and inferences can be made for the error contour for the SVP-631G

fidelity pair as seen on the top-right plot of Figure 10.5. In this set-up, consider the top right

corner which is marked with a circle. This is identified as (N 631G
train = 211, N SVP

train = 22) and has

the following multifidelity data structure (with increasing fidelity): {213,212,211,22,2}. As in
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the previous case, the training data scaling is only applied to the fidelities that are not stud-

ied as part of the error contour. This mode reports 0.030 as the RMAE. Once again, the

diagonal of the contour plot corresponds to the regular o-MFML model. Consider then,

the block identified by (N 631G
train = 26, N SVP

train = 27) which has a training data structure (in in-

creasing order of fidelity): {29,28,27,26,25}. This regular o-MFML model reports an RMAE

0.064, over twice as much as for the previous one. The overall contour plot reveals that the

use of very few training samples at SVP paired with a larger number of training samples

at the lower fidelities results in RMAEs that are comparable to the cases where one would

use a lot more training samples at the SVP fidelity. In particular, this form of flattening out

the multifidelity training structure by using few training samples at the top fidelities and

increasing the training samples at the cheaper fidelities, outperforms the regular o-MFML

model (which are the diagonal blocks of the error contour).

Similar observations are made for the 631G-321G and 321G-STO3G pairs of fidelities

which are seen in the bottom row of Figure 10.5. It is interesting to note, however, that the

321G-STO3G error contours do not follow the same trend as the others. Using very little

321G training samples and increasing the training samples at the STO3G fidelity does not

result in lower RMAE as seen from the top-corner red marker error being 0.088 while the

center marker reporting RMAE of 0.066. This is once again explained by the poor data dis-

tribution that has previously been reported for the STO3G fidelity in Chapter 5, Chapter 6,

and Chapter 8.

The error contours for the multifidelity model hint at an interesting mechanism in the

MFML approach. Based on the behavior of the model error as discussed above, it appears

that one does not necessarily need to use many training samples at the higher fidelities,

in particular at the target fidelity. This is indeed something that has been previously been

hinted at in ref. [139] using the optimization procedure for h-ML albeit with a larger num-

ber of training samples at the target fidelity. However, a thorough investigation of the mul-

tifidelity structure such as that performed in Figure 10.5 reveals that not only can a mul-

tifidelity model be built with low number of training samples at the costlier fidelities, but

that this number is far smaller than what would be anticipated in the general MFML and

similar methods. The error contours indicate that there is still a great deal of information

available at the cheaper fidelities which only need to be ‘raised up’ to the target fidelity

with a surprisingly small number of training samples. With such an understanding of the

multifidelity training structure, one can begin to think of ways to select training samples

at the different fidelities that need not necessarily follow the concept of a scaling factor be-

tween the fidelities. Furthermore, the results of varying γ from Figure 10.4 hint at a possible
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approach which is pursued in the following section.

10.2.4 Γ-curves

The contour plots of Figure 10.5 provide an interesting observation about MFML. One

can potentially build cheaper multifidelity models by limiting the training samples used at

the expensive fidelities and then proceeding to add cheap fidelity data to the multifidelity

model.
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Figure 10.6: (a) Time to generate training data and corresponding o-MFML model error
as RMAE for constant scaling factors, γ used in this study. An inset between 1,500-3,000
minutes is provided for the comparison of the curves for all γ studied in this work to readily
compare in regions that are too crowded to be observed in the main plot. (b) RMAE versus
time-cost for different Γ(N TZVP

train )-curves. Increasing the number of training samples at TZVP
improves the model accuracies along the Γ(·)-curves with a saturation observed towards
the end of each curve.

Consider first the left-hand side plot of Figure 10.6 which shows the RMAE curves of o-

MFML with fb : 321G for the different γ studied in this work for comparison. An inset plot

is provided which zooms into the region between 1,000-3,000 minutes to show the differ-

ent curves clearly. In addition, a new curve as introduced in 4.7, the Γ(2)-curve is depicted

in the plot. The Γ(2)-curve is essentially the case where the number of training samples at

TZVP are constrained to 2 but the remaining multifidelity data structure is allowed to grow
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as per the scaling factor γ. That is, the Γ(2)-curve is built with the first point of the curves

for the different γ values. In some sense, this translates into it being a learning curve not as

a function of N TZVP
train but rather of γ. From Figure 10.6, it becomes evident that even for as lit-

tle as 2 training samples at the highest fidelity, if one adds cheaper data to the multifidelity

model - which corresponds to increasing the value of γ without increasing N TZVP
train - the er-

ror of the o-MFML model decreases. For the same time-cost of a conventional o-MFML

model built with γ= 2, if one were to chose the models along the Γ(2)-curve, a lower RMAE

can be achieved. The Γ(2)-curve in Figure 10.6 shows data points for up to γ = 10 where

the multifidelity training data structure (for increasing fidelity) is: {20000,2000,200,20,2}.

In the inset of the plot, one observes that the Γ(2)-curve results in errors that are lower than

the o-MFML learning curves for fixed γ. However, the Γ(2)-curve converges to the o-MFML

model built with γ= 6. One potential reason for this could be the saturation of the multifi-

delity model built along the Γ(2)-curve. Due to a very large number of training samples at

the cheaper fidelities (for instance, 2 ·104 at 321G for the last point on the Γ(2)-curve), the

model is no longer able to clearly learn the correction between SVP and TZVP.

The right-hand plot of Figure 10.6 further investigates this saturation by comparing the

Γ(N TZVP
train )-curves for N TZVP

train ∈ {2,8,32}. The y-axis reports the RMAE while the x-axis denotes

the time-cost in minutes to generate the training data used in the multifidelity models.

An inset is provided for the interval between 103 − 104 minutes for a better view of the

Γ(·)curves. The o-MFML learning curve for γ= 2 is provided for reference.

Since the model errors throughout this work were reported in unitless RMAE, in order

to understand how this translates to actual energy prediction, predictions are made for the

holdout test set. For this purpose, the multifidelity model corresponding to Γ(32) is used

with γ= 10. Using this model, the prediction of the first vertical excitation energies is made

on the holdout test set. The absolute error values are then computed as |yref−ypred|. The re-

sulting values are reported in Table 10.2. This includes the mean of the absolute error, min-

imum absolute error, maximum absolute error, and the standard deviation of the absolute

error. For all molecules, it can be seen that the model error is nearly identical indicating that

the final multifidelity model built with the Γ-curve is not affected by the difference of the

molecule. This is of course due to the fact that the training data consists of these molecules.

In all cases, the model reports a mean absolute error close to 1 kcal/mol.

10.2.5 Transferability Assessment

Transferability in ML refers to the concept of ML models being trained on specific type of

dataset and having it predict the QC property for an out of sample dataset. For example,
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Molecule mean min max Std. Deviation

urea 1.0178 0.9940 1.0264 0.0035
acrolein 1.0145 0.9928 1.0220 0.0034
alanine 1.0145 0.9928 1.0222 0.0035

SMA 1.0147 0.9928 1.0224 0.0035
2-nitrophenol 1.0147 0.9928 1.0224 0.0035

urocanic 1.0146 0.9928 1.0224 0.0035
DMABN 1.0145 0.9928 1.0220 0.0034
thymine 1.0145 0.9928 1.0224 0.0035
o-HBDI 1.0146 0.9928 1.0224 0.0035

Table 10.2: Absolute difference in prediction and reference of excitation energies of
molecules in QeMFi using Γ(32) with γ = 10. The mean, range, and standard deviation of
the absolute differences are also listed.

one could train ML models on the QeMFi dataset for excitation energies and use these

trained ML models to predict the excitation energies of molecules that do not belong to the

9 molecules of the QeMFi dataset. The transferability of ML models in QC has long been a

challenging issue [236, 22, 237]. In general, since ML is a statistical method, transferability

is restricted by the type of data the model is trained on. That is, if a model is trained only on,

say, benzene configurations, it is not expected to perform well in predicting for methanol

or acrolein. Not only so, the type of molecular representation that is used in the model

makes a major difference to the overall transferability of the model [22, 237]. However, in

this subsection, the robustness of the Γ-curve method is investigated for transferability in

order to complete the discussion on the development of this method.

The QUESTDB database is a collection of several small molecules for which high accu-

racy excitation energies are available [238, 239]. The energies for these molecules are com-

puted with mostly CC levels of theory. In order to properly assess the transferability, which

is challenging as is, the excitation energies of 90 molecules from QUESTDB were computed

with the DFT method using CAMB3LYP functional with the def2-TZVP basis set in the exact

same manner as was done for the QeMFi dataset. This in principle curtails artifacts arising

by virtue of comparing two different QC fidelities as reference and ML predicted values of

excitation energies.

The geometries from the QUESTDB database have an additional challenge in testing for

transferability. This is the issue of index invariance in generating the unsorted CM molec-

ular descriptor. Since the geometries of the molecules from QeMFi are arranged in such a

way to ensure index permutation invariance, one can use unsorted CM to train and eval-

uate ML models. However, this is not the case with the QUESTDB database. To overcome

171



CHAPTER 10. DATA HIERARCHIES IN MFML

this fundamental issue, the following tests are performed using row-norm sorted CM rep-

resentations wherein the regular CM representation is built and then the rows are sorted

based on L2 norm [44, 19]. That is, all models are trained and tested using sorted CM rep-

resentations unlike the unsorted CM used in the preceding sections. The protocol followed

to demonstrate the performance of the Γ-MFML models is as given below:

• Calculate the TD-DFT CAM-B3LYP def2-TZVP energies for the 90 molecules from

QUESTDB

• Generate row-norm sorted CM for QeMFi

• Generate row-norm sorted CM for 90 molecules from QUESTDB

• Train single fidelity KRR model on QeMFi with 210 training samples, Matérn kernel

from Eq. (2.24) using σ= 200, and λ= 10−10

• Train Γ(8) and Γ(32) MFML models with γ = 10 on QeMFi as discussed in preceding

sections

• Predict energies for the 90 molecules from QUESTDB using KRR andΓ-MFML models

from step 3 and step 4

• Compare prediction to reference computed excitation energies from step 1

A scatter plot of reference excitation energies versus ML predicted excitation energies

is shown in Figure 10.7. The scatter plot is shown for Γ(8) and Γ(32) MFML models. The

best 10, that is those with the lowest relative error, are highlighted in green along with the

worst 10 in red. For each of the Γ-curve models, for the best and worst predictions, the

corresponding predictions of the single fidelity KRR model are also presented. This is done

for two reasons. Firstly to indicate that it is a challenge even for single fidelity ML models to

handle transferability tests. Secondly, it is interesting to assess how well the MFML models

performed with respect to the single fidelity KRR models.

Consider the left pane of Figure 10.7 for Γ(8) MFML model. The overall prediction of

the Γ(8) MFML model is poor for the QUESTDB database. There is a wide scatter of the

points across the identity line (dashed black line). Admittedly, the best 10 predictions do

lie on or close to this identity line. Consider the predictions made by the single fidelity KRR

model for these very geometries which corresponds to the translucent green square mark-

ers. These are much further away from the identity line. In other words, theΓ-curve method

is somewhat better than the single fidelity KRR method. Even for the 10 worst predictions of

172



10.2. RESULTS

0 20000 40000 60000
Reference (TZVP) [cm 1]

300000

200000

100000

0

100000

200000

Pr
ed

ict
ed

 (T
ZV

P)
 [c

m
1 ]

(a) (8)-MFML

0 20000 40000 60000
Reference (TZVP) [cm 1]

(b) (32)-MFML

-MFML
KRR Best 10
KRR Worst 10
 Best 10
 Worst 10

Figure 10.7: Scatter of reference and ML predicted excitation energies for transferability
tests of Γ-curve on molecules from the QUESTDB database. The best 10 and worst 10 pre-
dictions are highlighted along with their predictions made using the single fidelity KRR
model.

the Γ(8) model, the corresponding KRR predictions given as translucent red square mark-

ers, lie further away from the identity mapping.

Similar observations can be made for the case of Γ(32) on the right-hand side pane

of Figure 10.7. The best 10 predictions of the Γ-curve model are close to the identity line

while the predictions of the KRR model are more loosely scattered. However, in this case,

the poorest predicted molecules for single fidelity KRR do have some points close to the

identity mapping line. Certainly, the overall scatter plot for Γ(32) MFML looks closer to the

identity mapping line as compared to the Γ(8) MFML model. Based on these results, one

can hold on to what was stated before we started this assessment, the transferability of ML

models remains a challenge, even for multifidelity approaches. Certainly the Γ(8) MFML

model is more efficient, and more accurate as has been sufficiently established in preceding

sections. The key takeaway from this discussion on transferability is not the trump of one

model over the other but rather the fact that transferability is a difficult task for both single

fidelity and multifidelity ML models.

To complete this discussion on transferability one can take a closer look into the errors

of the Γ(8) MFML model. Figure 10.8 presents the molecules which comprise the 10 best

predictions and 10 worst predictions along with the relative absolute error. It is unsurpris-
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Figure 10.8: Best 10 (green) and worst 10 (red) predictions of the Γ(8)-MFML model over
the QUESTDB dataset. The numbers under the name of the molecules indicate the relative
absolute error.

ing to notice that the DMABN and acrolein geometries from the QUESTDB database have

well predicted energies since the QeMFi dataset consists of geometries of these molecules.

As argued previously, this is due to the fact that the ML model trained on specific geome-

tries does well in predicting the energies of similar geometries from ‘unseen’ datasets. Con-

sider the molecules that are not well predicted, the bottom two rows of Figure 10.8. Radicals

such as carbon dimer and trimer along with molecules containing species which were not

present in the QeMFi dataset are the primary inhabitants of this group. Once again, it be-

comes clear how important the initial training dataset is to the ability of a ML model in

predicting QC properties.

For the Γ(32) MFML model, the 10 molecules with lowest and highest errors of predic-

tion are shown in Figure 10.9 along with the relative absolute error under the names of the

molecules. Again, excitation energies for DMABN and acrolein are well predicted. In ad-

dition, several other aromatic compounds such as naphthalene and phthalazine show low
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Figure 10.9: Best 10 (green) and worst 10 (red) predictions of the Γ(32)-MFML model over
the QUESTDB dataset. The numbers under the name of the molecules indicate the relative
absolute error.

relative absolute errors. In the bottom 2 rows depicting the molecules with the highest error

in prediction, one observes radicals and molecules with elements such as sulfur and silicon

which are not present in the QeMFi dataset.

Concluding this digression on testing the Γ-curve for transferability, some final remarks

are made here. As has become evident, the task of transferability of a ML model is challeng-

ing and demands investigation in its own right [237]. The analysis of this short subsection

is not indicative of an issue in the Γ-curve approach itself but rather ties into the larger

picture of training general purpose ML models for QC [240, 241]. The reader is reminded

that the work presented in this manuscript is intended to perform a training data hierarchy

assessment for multifidelity ML methods in QC.
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10.3 Conclusion

This chapter discussed the concept of scaling for the number of training data across differ-

ent fidelities for MFML and o-MFML in the prediction of excitation energies of the QeMFi

dataset. Constant scaling factors, γ, were studied along with QC-calculation time-cost in-

formed scaling factors, θ f
f −1 and θF

f . It is seen in the results that the use of constant scaling

factors,γ, is effective with a higher value of γ resulting in lower model errors for reason-

able time-cost of generating training data. A new error metric, the error contour of MFML,

was introduced and results discussed for the prediction of first vertical excitation energies

of the QeMFi dataset. Such an analysis revealed that the data requirements for MFML-like

methods is not as trivial as has been previously employed. In fact, one can achieve simi-

lar model accuracies with much less costly training samples if one increases the number

of training samples at the lower end of the multifidelity data structure. The error contours

revealed that one could potentially use as little as 2 training sample at the target fidelities

and achieve exceptional model accuracy if the subsequent fidelities used a larger number

of training samples in comparison to MFML models built with some γ. This was systemat-

ically studied with the newly introduced Γ-curve for a fixed number of training samples at

the target fidelity and an increasing value of γ. The models built in this fashion were shown

to be time-cost efficient over conventional MFML approach.

These results provide a window into the inner mechanisms of MFML-like methods al-

lowing for a better understanding of how they can be employed for accurate predictions

of excitation energies with low cost of training data generation. The development of the

Γ-curve approach in this work in its current form is only benchmarked for a specific DFT

functional and this could be a potential limitation of this work. A possible extension of this

work could be the study of the Γ-curve approach for a wider range of DFT functionals. At

the moment this is inhibited by the lack of compute cost times in most large-scale multifi-

delity datasets. Another interesting area of research can be the use of approaches developed

in this work to assess the efficiency of multifidelity approaches for fidelity structures built

on CC level of theory and would be of particular interest since CC is considered the gold

standard in QC.
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11
MULTIFIDELITY MACHINE LEARNING IN PRACTICAL

APPLICATIONS

Whatever it is you are seeking won’t come in the form you are expecting.

— Haruki Murakami, Kafka on the Shore

T
he recurring theme of this dissertation was the development of MFML in order to

reduce the overall cost incurred in generating training data for applications in the

field of QC. The works presented in the preceding chapters dealt mostly with the

development phase with some applications to small-scale QC molecules. These developed

methods showed great improvement over existing single fidelity methods and the popu-

lar ∆-ML method. The methods developed in this dissertation have already been imple-

mented extended applications to QC. Below, two such applications are discussed. These

are adapted from refs. [1, 2] with only those portions which pertain to the contributions

made by the author of this dissertation being presented. Dataset details when borrowed

from the publications, are appropriately cited and contributions acknowledged. This chap-

ter is a peek into realistic application of the MFML method and related approaches in the

field of QC.

11.1 Molecular Energies of Monomers

This section is adapted from ref. [1] titled “Predicting molecular energies of small or-

ganic molecules with multifidelity methods". Only those sections which were con-

tributed by the author of the dissertation are included here. Any further additions such
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as description of data is appropriately cited. This application is based on the methods

developed and presented in Chapter 9. In particular, the MF∆ML approach and MFML

method are compared for prediction of ground state energies at the DLPNO-CCSD(T)

fidelity.

In order to understand day-to-day chemical processes such as atmospheric chemistry, it

is pertinent that high accuracy thermochemical calculations be made. Coupled cluster QC

theory is considered to be the gold standard method in computational Quantum Chem-

ical methods. In particular, the Coupled cluster single, double, and a perturbative treat-

ment of triple excitations (CCSD(T)), which accurately describes the electron correlation

in molecules [15]. This increased accuracy in calculations comes with an increased cost

of computation which scales non-linearly, approximately as O2(N 8), where N is the num-

ber of basis functions considered and O is occupied orbitals. Approximations such as the

domain-based local pair natural orbital (DLPNO) method help reduce this cost without

drastically altering the accuracy of the method [242, 243].

The use of ML in QC has significantly reduced the computational cost for large chem-

ical systems [44, 49, 155, 244, 245, 22, 31]. The ML models learn a mapping between the

Cartesian coordinates along with the respective atomic number, often converted to ma-

chine learnable input features called molecular descriptors or representations, and the QC

property of interest such as ground state energies. This allows them to make predictions of

the QC properties for molecules that the model has not previously been trained on. While

ML in QC has provided a major respite to the cost of making costly calculations, a new

overhead has since been presented to the use-case of ML-QC pipelines. This is the cost of

generating the training data required for an ML model to achieve a certain accuracy. It is a

common observation that the more training samples one uses, the better the model is able

to predict the QC property of interest [22, 154].

Several methods to reduce the cost of training data have been introduced in this dis-

sertation, including but not limited to the ∆-ML method [29]. In ∆-ML, training data from

two different fidelities are used to train an ML model on the difference between the two fi-

delities. It is observed with the application of ∆-ML based methods that it is easier to learn

the difference rather than the explicit value at the highest fidelity [29, 22, 31, 154]. The fi-

nal prediction with an ∆-ML model involves the QC calculation of the cheap fidelity and

the prediction of the difference. Since its introduction in the QC community, it has become

a ubiquitous tool for a vast array of applications, including excitation energies, potential

energy surfaces, electronic spectra, and isomerization enthalpies [29, 130, 206, 22, 31, 154,

134, 207, 208]. The method demonstrated that a smaller number of training samples could
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be used to achieve a higher level of accuracy in the model. Previously, in ref. [208] some

of the present authors used the ∆-ML approach to learn the CCSD(T) corrections over the

CCSD energies for a collection of small organic molecules. In another related work, the ∆-

ML was employed to predict the CCSD(T) energies of small organic monomers based on

DFT results [246]. It is to be noted that ∆-ML is slightly different from transfer learning

(TL)[247] which is another common approach used in ML-QC to reduce the use of costly

data and has been employed in diverse applications such as thermochemistry and material

analysis [248, 249, 250]. The key difference is that while ∆-ML trains on the explicit differ-

ence between two fidelities, TL first trains an ML model on the low fidelity and uses that

to train for model parameters such as in the case of a neural network, the weights of the

different hidden layers. The model parameters from this cheap-fidelity network are then

‘transferred’ to a new model, which is trained on the sparsely available high fidelity data.

Multifidelity Machine Learning (MFML) was introduced in Chapter 4 and shown to be

superior in efficiency and accuracy to the single fidelity method. Alternative variations of

the∆-ML and MFML method have been introduced. Hierarchical-ML (hML) builds several

∆-ML like models for different fidelities in a manner similar to an MFML approach, how-

ever, with the number of training samples chosen to use an ad hoc optimization scheme

[139]. The method has been shown to be effective in predicting ground state potential en-

ergy surfaces for CH3Cl. In Chapter 4, optimized MFML (o-MFML), was developed as a

methodological improvement over the conventional MFML approach by optimally com-

bining the sub-models used for MFML. The o-MFML method uses a validation set com-

puted at the target fidelity to optimize the combination of the sub-models and has been

shown to provide better accuracy for the overall prediction for both excitation energies and

atomization energies in Chapter 6 and in cases where training data might be heterogeneous

as shown in Chapter 8.

Other ML methods have also been studied in their effect to reduce the computational

cost associated with the generation of training data. Hierarchical-ML uses solves a mini-

mization problem for a use defined target error and a number of training samples to be

used at the different fidelities [139]. The method has been used to predict a full basis set

approximation of the ground state potential energy surface for CH3Cl. Multi-task Gaussian

processes are yet another method introduced recently and have been seen to reduce the

overall cost associated with a multifidelity model [110]. The model was seen to be effec-

tive in the prediction of many-body interaction terms for water and showed favorable re-

sults even in cases of heterogeneous training data. Another useful approach to reduce the

cost of training data is the recently introduced minimal multilevel machine learning (M3L)
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method, an update of the MFML method. In this method, the number of training samples

to be used at each fidelity are optimally computed using Bayesian optimization of a cost

function for a target model error [233].

This study of model efficiency for several multifidelity methods in Chapter 9 revealed

that the use of MFML is beneficial when requiring large numbers of predictions. The mul-

tifidelity ∆-ML (MF∆ML) method was also developed in Chapter 4. In this method, several

∆-ML like sub-models are combined in a manner similar to that in MFML. This method

was shown to be superior to the conventional ∆-ML method in model error and overall ef-

ficiency. These benchmarks in Chapter 9 were performed for models that are trained and

evaluated across different fidelities restricted to the DFT level of theory. In the application

presented herein, single fidelity KRR,∆-ML, MFML, and MF∆ML methods are employed in

the prediction of CCSD(T) accuracy energies of small organic molecules.

Dataset details taken from ref. [1]

The database from a previous study [246] was extended in ref. [1]. In ref. [246], around

8000 monomers were randomly selected from a public database which focuses on de-

termining the enthalpies of radical reactions for small organic molecules [251], and

then geometry optimized at the B3LYP-D3(BJ)/cc-pVTZ level of theory and then their

single-point energies were computed using DLPNO-CCSD(T) theory. More than 12000

additional molecules from the same quantum chemistry database were geometry op-

timized at the B3LYP-D3(BJ)/cc-pVTZ level of theory. The free radicals in the database

are important intermediates in combustion and atmospheric chemistry and their en-

ergies are essential to determine the thermodynamics and kinetics of reaction path-

ways. In order to save the time cost for advanced quantum chemical calculations, only

a small molecules in the database (no more than ten heavy atoms) were selected. The

molecular energy and weight distributions of the dataset are given in the supplemen-

tary information of ref. [1]. After checking for duplicates via the generated SMILES,

12340 molecules remained in the database (4606 data points with DLPNO-CCSD(T)

single-point energies from the previous database and 7734 additional molecules) con-

sisting of only hydrogen, carbon, nitrogen, and oxygen atoms. All these molecules were

then subjected to DFT single-point energy computations using the B3LYP-D3(BJ) func-

tional in conjunction with the STO-3G basis set. Subsequently, 1500 data points with

DLPNO-CCSD(T) energies were randomly selected as the test set for the ML models,

and all the rest were used for training.

The dataset generation process was carried out by the collaborative authors of ref. [1]
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L. Dongyu, M. Ruth, P. Schreiner, and U. Kleinekathöfer.
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Figure 11.1: Comparing representations for single fidelity KRR at the DLPNO-CCSD(T) fi-
delity. Results are shown for an average of ten runs with shuffled training data. The SLATM
representation performs the best out of the three, and the sorted Coulomb Matrices (CM)
performs better than the unsorted CM.

A preliminary assessment of molecular descriptors was made to prepare for the use

of multifidelity methods to the dataset. Unsorted CM, row-norm sorted CM, and SLATM

molecular descriptors were tested since these are the most common descriptors for such

applications. The results of the assessment are shown in Figure 11.1 for a single fidelity KRR

model trained only on the target fidelity DLPNO-CCSD(T). The learning curves indicate

that the SLATM representation performs the best out of the three. The sorted CM performs

better than the unsorted CM. This could be due to the fact that the sorted CM and SLATM

representations retain index invariance of the descriptor, which is missing in the unsorted

CM descriptor. For a use case such as the one presented here where the models are trained

and evaluated on different molecules as opposed to training on a trajectory of the same

molecule as in ref. [142], the retention of indexing invariance is pertinent [44, 252, 22, 19].

At the same time, the sorted CM performs worse than the SLATM representation. This

could be due to the fact that the sorting of the CM results in undesirable discontinuities

[44, 19] which potentially deter the ML models from being able to learn anything meaning-

ful. Based on this assessment, for the remainder of this work, the SLATM representation is

used throughout for all ML models. The preliminary data assessment of the training data as

prescribed in ref. [142] is given in Figure A.17. The analysis indicates that the chosen hier-
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archy of the fidelities is indeed conducive to effective working of the multifidelity models.

The mean absolute difference in the energy values of the fidelities shows a systematic de-

crease and is a first indicator of the abilities of MFML model in predicting the target fidelity

with good accuracy.
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Figure 11.2: MFML and o-MFML learning curves with varying baseline fidelities. The learn-
ing curve for the single fidelity KRR model built with only DLPNO-CCSD(T) training data
is also shown for reference.

MFML and o-MFML models were built with varying baseline fidelities for the prediction

of energies for the monomers. The resulting learning curves are presented in Figure 11.2

for both these models. The single fidelity KRR built with only DLPNO-CCSD(T) training

samples is shown for reference. With the addition of cheaper fidelities, the learning curves

of the models show a constant lowered offset. That is, for the same number of training

samples as used for the single fidelity KRR model, the MFML models result in a lower MAE.

While the o-MFML model is a methodological improvement over the MFML method, in

this case the difference is not very pronounced and the model MAEs for MFML and o-

MFML are rather similar.

In this work, the ∆-ML and MF∆ML methods are also evaluated. The reader is referred

to Figure A.18 and Figure A.19 in Appendix A for results of ∆-ML with different values of

QCb . The overall trend is as expected based on the study from refs. [29, 144] and as dis-
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Figure 11.3: Learning curves for MF∆ML. The QC baseline is DFT/STO-3G. The different
baseline fidelities of the MF∆ML model are shown in the legend. The learning curve of ∆-
ML model built with DFT/STO-3G as QC-baseline and DLPNO-CCSD(T) target fidelity is
also plotted.

cussed in Chapter 9. That is, with a QCb that is closer to the target fidelity, the ∆-ML model

shows a higher accuracy in prediction. However, as Figure A.19 indicates, the time-cost

incurred in using higher QCb far outweighs this benefit. As described in section 4.3, the

MF∆ML method builds a multifidelity model consisting of various ∆-ML models. The re-

sulting learning curves are shown in Figure 11.3. In addition to the learning curves for

MF∆ML, the learning curve for the standard ∆-ML model built with the DFT/STO-3G as

QC-baseline is shown as well. Once again, as for the case of MFML, the addition of a cheaper

fidelity to the basic∆-ML model results in a lower offset of the learning curve. However, for

large enough training set sizes, N CCSD(T)
train = 512, this offset is not very pronounced vis-á-

vis the ∆-ML model. Furthermore, the learning curve for MF∆ML with fb CCSD and fb

DFT/cc-PVTZ converge at this point. This convergence could be an indication of the satu-

ration of the model due to the very similar structures of the monomers.

Figure 11.4 depicts the difference between ML model prediction and reference DLPNO-

CCSD(T) energies for the holdout test set used for the study of learning curves. The results

are shown for both the MFML and MF∆ML models with varying baseline fidelities. The

error distribution of the single fidelity KRR with only DLPNO-CCSD(T) energies and the

standard ∆-ML model with DFT/STO-3G as the QC-baseline are also shown for reference.

Consider the left-hand side plot of Figure 11.4 which is the case for the single fidelity KRR

and MFML models. It is seen that all the ML models predict with a difference centered

around 0 kcal/mol. However, the single fidelity KRR model has a wide spread of the differ-
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Figure 11.4: Distribution of difference in model prediction and computed reference
DLPNO-CCSD(T) energies over the holdout test set of 1,500 samples for MFML and
MF∆ML models with varying values of fb .

ence between reference and prediction. With each additional cheaper fidelity that is added

to create the MFML model, the peak of the differences gets tighter around 0 kcal/mol mean-

ing, the MFML models predict the DLPNO-CCSD(T) energies with increasing accuracy as

one decreases the baseline fidelity. This agrees with the study of learning curves that was

presented in Figure 11.2.

The right-hand side plot of Figure 11.4 depicts the distribution of the difference be-

tween reference DLPNO-CCSD(T) energies and the energies predicted by the different ∆-

ML models that were studied in this work. These are built with the DFT/STO-3G fidelity as

the QC baseline as explained in Section 4.3. Note that the x-axis, marking the differences,

is different from that for the MFML models on the left-hand side plot, almost by an order

of magnitude. On comparing the distribution of differences for the different ∆-ML models,

the standard ∆-ML model (denoted in the legend by the DLPNO-CCSD(T)) has the widest

distribution range with a peak that is shifted towards the left of 0 kcal/mol. With the ad-

dition of cheaper baselines to create the MF∆ML models, the peak becomes narrower and

centered around 0 kcal/mol. This is once again in agreement with the analysis of the learn-

ing curves for MF∆ML models from Figure 11.3 performed above.

The outliers in the plots of Figure 11.4 warrant some discussion of possible reasons. The

large difference in predictions could arise due to lack of diversity in the training data. Ho-

mogeneity in the training data results in the ML models ending up being overfitted to the

simplistic training data and struggling to make predictions for out of sample data. Alter-
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Figure 11.5: Model MAE versus the time to generate the training data. Three test set sizes
are compared.

natively, outliers in prediction could be due to the complexity of certain molecules being

under-represented in the training dataset, e.g., cyclobuta-1,3-diene. Even so, as expressed

above, the majority of the predictions are close to the reference values as seen by the peaks

being centered around 0 kcal/mol.

While these are interesting results about the capabilities of both MFML and MF∆ML

methods, it becomes pertinent to also account for the time cost associated with these dif-

ferent models when predicting DLPNO-CCSD(T) energies. Figure 11.5 depicts the model

MAE as a function of generating the training data for the collection of ML models that

are compared in this work. This comparison is made for the single fidelity KRR, MFML

and o-MFML models built with DFT/STO-3G baseline fidelity, the ∆-ML model with the

QC-baseline fidelity, and the MF∆ML model with the DFT/cc-PVTZ fidelity. For the MFML

model, the training data cost accounts for the complete multifidelity training structure,

similar to what is discussed in ref. [142]. That is, the cost of training data at all the fideli-

ties used in the MFML model. For o-MFML model, the time-cost also includes the cost of

generating a validation set over which the optimization procedure is carried out. For ∆-ML

and MF∆ML models the cost includes the time to make the QC-baseline calculations.

Figure 11.5 compares the time cost versus MAE for three hypothetical test set sizes, i.e.,

1.5k, 15k, and 150k samples. The actual MAE values are calculated over the fixed test set of

1.5k samples. However, since the MAE values reported are for an average over ten runs, it

is expected that the model MAE would be similar for a larger test set. The interesting thing

to note is the time cost of generating the training data. In cases where one needs to predict

energies for a few geometries, 1.5k in this case, the MF∆ML model performs the best. As

one increases the test set size, the time cost of making the QC-baseline calculations for the
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Eval
Size

DLPNO-
CCSD(T)

KRR ∆-ML MFML o-
MFML

MF∆ML

1500 1.64×105
5.61×104 5.66×104 (1.59)

1.11×105 2.04×105 1.11×105 (1.28)
15000 1.64×106 5.95×104 (1.59) 1.14×105 (1.28)
150000 1.64×107

(13.64)
8.85×104 (1.59)

(3.46) (3.44)
1.43×105 (1.28)

1500000 1.64×108 3.79×105 ( 1.59 ) 4.33×105 ( 1.28 )

Table 11.1: Time-costs (in minutes) for different sizes of the test set. The reference cost
on using DLPNO-CCSD(T) conventional computation is contrasted alongside. For the ML
models, the time cost is computed for N CCSD(T)

train = 29 with remaining multifidelity data
structure being accounted for as expressed in the main text. The values in the parenthe-
sis denote the MAE of the ML models. It is to be noted that the ∆-ML and MF∆ML models
also have the cost of the QC-baseline fidelity.

∆-ML and MF∆ML models outweighs the potential benefit of the method. In contrast, the

MFML model is unaffected by the size of the test set. This is due to the fact that the MFML

approach also predicts the baseline fidelity rather than using QC computed values. In large

test set size regimes, this sets the MFML to be the more efficient method. The o-MFML

method, across the different test set sizes, is the most expensive model to build. This is

expected since the cost of the validation set is affected by the target fidelity, which in this

case is the DLPNO-CCSD(T), an expensive QC method. Table 11.1 reports the time-costs

in minutes for the different ML models in contrast to using conventional QC computations

for the DLPNO-CCSD(T) fidelity. The ML models are built with 29 training samples at the

target fidelity of DLPNO-CCSD(T). It is evident that the use of any ML method is better

than the use of conventional QC computational methods. Notice that the time-costs for

KRR, MFML, and o-MFML are fixed regardless of the size of the test set. The ∆-ML and

MF∆ML, although lower in model MAE are sensitive to the size of the test set. To make this

clearer, in the table a test set size of 1.5 million samples is also presented. In contrast, the

MFML model is unaffected by the size of test set since even the fb fidelity is predicted with

an ML model.

While this is a glimpse into the ML related aspects presented in ref. [1], the fully trained

models were thereby used to test for transferability over three additional datasets and showed

great promise. The results indicate that MFML and MF∆ML are efficient high-accuracy ML

methods in the field of QC and provides a compelling narrative for the use of MFML in

predicting DLPNO-CCSD(T) energies.
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11.2 Excitation Energy Transfer in Porphyrins

This section is adapted from ref. [2] titled “Excitation energy transfer between por-

phyrin dyes on a clay surface: a study employing multifidelity machine learning". Only

those sections which were contributed by the author Vivin Vinod are included here.

Any further additions such as description of data is appropriately cited. The applica-

tion is based on the work developed in Chapter 10, in particular, the Γ-curve approach.

The keen reader will recall that one motivation to developing MFML methods in Chap-

ter 5 was to assess the method for excitation energies to better understand its scope for

large scale systems. After favorable results presented in this dissertation, the MFML and Γ-

curve MFML approach (see Chapter 10) were implemented in such an application. Ref. [2]

presents a study of exciton transfer in several porphyrin molecules on a montmorillonite

clay surface, that is (K , N a)x[Si4O8][Al(2−x)M gxO2(OH)2]. Porphyrin was chosen based on

interesting results arising from experimental synthesis demonstrating high-efficiency en-

ergy transfer.

Two porphyrin molecule types, namely, m-TMPyP and p-TMPyP were studied on the

clay surface for a total of 16 molecules. The QM/MM and MD simulations were run as

presented in ref. [2] with a total of 40,000 snapshots per molecule being generated with

QM/MM as the training geometries for ML models. The surrounding point charge electro-

static potential environment was considered. For each porphyrin molecule, time depen-

dent LC-DFTB fidelity [173] was used to calculate the excitation energies. In order to gener-

ate multifidelity training data, the TD-DFT formalism with the CAM-B3LYP functional was

used. The fidelities were distinguished on the basis set size, namely, STO-3G, 3-21G, 6-31G

and def2-SVP with the excitation energies computed with a time stride of 8, 16, 32 and 64

fs, respectively. Further details on the clay surface and related assumptions can be found in

ref. [2].

Expensive calculations of the excitation energy for the first excited state at the def2-SVP

fidelity are replaced by evaluations of MFML models, one model for all 12 p-type molecules

and one model for all m-type molecules. The final models for the prediction of the exci-

tation energies of the p-TMPyP and m-TMPyP porphyrin pigments are multifidelity ma-

chine learning models (MFML). Such a MFML model involves the use of quantum chem-

istry training data at different fidelities, which refer to the accuracy of the data with respect

to the actual value [32]. The MFML models are built with respect to some target fidelity

and a baseline fidelity. The former, denoted hereon as F , refers to the most accurate (and

thereby costliest) fidelity that one is interested in predicting with the ML model. The base-
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line fidelity, fb , is the cheapest (and thereby the least accurate) fidelity data that is used

in the MFML model. This MFML model is denoted by P (F,ηF ; fb )
MFML where 2ηF = N (F )

train is the

number of training samples used at the target fidelity. The number of training samples at

the subsequently cheaper fidelities are determined by the use of a scaling factor, γ which

is conventionally set to 2 based on ref. [32]. That is, N f
train = γ ·N f −1

train for all fb < f ≤ F . In

this specific application, the target fidelity is TD-DFT/CAM-B3LYP with the def2-SVP basis

set while the cheapest baseline fidelity is the LC-DFTB approach. These will be reported

using a shorthand notation, that is SVP and DFTB, respectively. The different ML models

are assessed based on the MAE using learning curves which depict the MAE as a function

of the number of training samples used at the target fidelity. In addition, the MAE is stud-

ied as a function of the time-cost of generating training data for a specific ML model, be it

single fidelity GPR or MFML models with different values of fb (see section 2.7). These are

reported alongside the Γ-curve, introduced in Chapter 10, which fixes the number of train-

ing samples at fidelity F and varies only the value of γ (see Chapter 10). This is shown to be

superior to the conventional approach of MFML in providing a low-cost high-accuracy ML

model for the prediction of excitation energies of porphyrin.

Single fidelity GPR models and MFML models were built and compared on the single

pigment p-TMPyP-9 and on the union over all p-TMPyP pigments for transferability rea-

sons. In addition tests are conducted on the union over all m-TMPyP pigments. In the all-

pigment models an even sampling of the training data is used. The models are tested on a

separated holdout test set for which the excitation energies are calculated at the target fi-

delity, that is SVP. For p-TMPyP pigments, 2,000 test samples are used, while for m-TMPyP

pigments 500 test samples are considered, to account for the lower total amount of data.

The resulting MFML learning curves for the different cases are shown in Figure 11.6. The

shown learning curves are an average over ten learning curves created from shuffling the

training data set. The different learning curves in a single study are given for a growing

number of utilized fidelity levels starting from the baseline fidelity fb , as indicated in the

legend.

The case of training and testing on the same trajectory of p-TMPyP porphyrin molecules

is shown in Figure 11.6(a) for different fb . With the addition of cheaper baseline fideli-

ties, one observes that the MFML model predicts with a lower MAE in comparison to the

single fidelity GPR model built with training samples only from the target fidelity. For in-

stance, with N SVP
train = 1024, the GPR model results in an MAE of 24.7 meV while the MFML

model with the baseline fidelity fb set to DFTB results in an MAE of 13.9 meV. While this is

a promising result, the transferability study from above indicated that a joint model for
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Figure 11.6: MFML learning curves for three cases of predicting excitation energies for por-
phyrin molecules. The prediction error (as MAE) of the single fidelity GPR and of the MFML
model with the DFTB baseline fidelity are explicitly stated for N SVP

train = 1024.
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all pigments of one type should be constructed. For this reason, the final MFML mod-

els that are used to predict the excitation energies for the porphyrin molecules are built

with training data taken from a pool of trajectories for each type of porphyrin molecule.

The MFML learning curves for the p-TMPyP porphyrin molecules are delineated in Fig-

ure 11.6(b) for different baseline fidelities. While the addition of cheaper baselines does

decrease the model MAE, this drop is not as significant as seen in the case for the single tra-

jectory. The drop in error between single fidelity GPR and MFML with the DFTB baseline

fidelity is about 6 meV for N SVP
train = 1024. However, this is anticipated since both the sin-

gle fidelity GPR and the MFML models have to cover a wider region of the conformational

phase space (see discussion on the UMAPs in ref. [2]) as opposed to a smaller region that

is to be covered in the case for the single trajectory models. A similar observation is made

for the MFML learning curves for m-TMPyP porphyrin molecules as seen in Figure 11.6(c)

with the single fidelity GPR model reporting an MAE of 22 meV and the MFML model with

DFTB baseline reaching an MAE of 19 meV with 1024 training samples at the SVP fidelity.

The slightly overall lower MAE for the m-TMPyP porphyrin dyes can be explained once

again by the fact that the concatenated trajectories of this porphyrin type result in a lower

number of geometries which in turn could span a smaller region of the conformational

phase-space as opposed to the case for the p-TMPyP porphyrin molecules. That is, the m-

TMPyP set has a smaller number of total geometries when concatenated in comparison

to the total geometries of the p-TMPyP set. The larger number of total geometries for the

p-TMPyP set implies that the MFML model with N SVP
train would contain a smaller amount of

information about the conformation space of the molecule, in contrast to the MFML model

built for m-TMPyP set. This fact is reflected in the learning curves.

In order to better assess the computational impact of single fidelity and MFML models

for porphyrin molecules, the model error is studied as a function of the cost of generating

the training data used in the ML model. In this work, the QC calculation times as returned

by the ORCA computing software [7] and DFTB+ software [172, 253] are used. For the GPR,

this cost is directly related to the number of training samples. For the MFML model, this

cost includes not only the training samples used at the top fidelity, but also the cost of

the training samples used at the subsequent lower fidelities. These curves are shown in

Figure 11.7. The time required for training the models and predictions over the holdout

test set of the MFML model for the largest training set size used (that is, N SVP
train = 1024) was

12.97 seconds and 12.45 seconds for the p-TMPyP and m-TMPyP porphyrin molecules,

respectively. Since this is such a small contribution, only the total time for generating the

training data is considered in the MAE versus time-cost curves.

192



11.2. EXCITATION ENERGY TRANSFER IN PORPHYRINS

101 102 103 104

Ttrain data [hr]

20

30

50
60

15

25

40

M
AE

 [m
eV

]

GPR (SVP)
MFML(DFTB)
(8)

((a)) Based only on a trajectory of porphyrin
pigment p-TMPyP-9.

101 102 103 104

Ttrain data [hr]

20

30

50
60

15

25

40

M
AE

 [m
eV

]

GPR (SVP)
MFML(DFTB)
(8)

((b)) Concatenated trajectories of the p-TMPyP
pigments.

101 102 103 104

Ttrain data [hr]

20

30

50
60

15

25

40

M
AE

 [m
eV

]

GPR (SVP)
MFML(DFTB)
(8)

((c)) Concatenated trajectories of the m-
TMPyP pigments.

Figure 11.7: Time-cost of generating training data versus MAE in meV for a single fidelity
KRR contrasted with that for the MFML model built with baseline fidelity fb DFTB. The
Γ(8)-curve is also depicted for increasing values of γ as explained in 4.1.
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In addition to the single fidelity GPR and MFML models, a recently introduced MFML

approach, referred to as the Γ-curve [143], is analyzed as well. In conventional MFML the-

ory, the training samples at the various fidelities are decided by a scaling factor, γ, that is,

N f
train = γ·N f −1

train for f ∈ {2, . . . ,F }. Conventionally, a MFML model is built with γ= 2. The use

of different values of γ was shown to result in a more efficient approach titled the Γ-curve

in Chapter 10. The Γ-curve is a plot of MAE versus time-cost of the MFML model with in-

creasing values of γ. The Γ-curve is built with a fixed number of training samples at the

target fidelity, SVP. Figure 11.7 reports the Γ(8) curve, that is, with N M SVP
train = 8 with varying

values of γ. Different values of N SVP
train were considered and are shown in Figure A.27.

Figure 11.7(a) depicts the MAE versus time-cost of the ML models for the case of the

single trajectory of p-TMPyP porphyrin molecules. One observes that for a given time-

cost on the horizontal axis, the curve for the MFML model is always below that for the

single fidelity GPR curve. This implies that for a given time-cost, the MFML model re-

sults in a lower error than the single fidelity GPR model. Furthermore, the Γ(8) curve lies

lower than the conventional MFML curve. Once again, this implies that for a given time-

cost, the multifidelity model built along the Γ(8)-curve results in a lower MAE. A simi-

lar observation is made for the case of concatenated trajectories of the p-TMPyP and m-

TMPyP molecules in Figures 11.7(b) and 11.7(c), respectively. Although for the m-TMPyP

porphyrin molecules, the GPR curve does reach close to the conventional MFML curve,

the Γ(8)-curve always lies beneath it. The final multifidelity models that are used in this

work for the prediction of excitation energies correspond to the final data point of the Γ(8)

curve, which corresponds to γ = 12. The multifidelity training structure for this model is

{8,12 ·8 = 216,122 ·8 = 1152,123 ·8 = 13824} with decreasing fidelity. For the p-molecules,

this model results in an MAE of ∼ 25 meV with a time cost of about 1500 hours, while the

conventional MFML model reports a similar error with a time cost of roughly 8000 hours.

The single fidelity GPR model only reaches an MAE of 29 meV with a time-cost of 2000

hours. The use of the multifidelity model along the Γ(8) curve results in a time-cost ben-

efit of roughly 5 over the conventional MFML model with γ = 2 and N SVP
train = 1024. For the

p-TMPyP porphyrin molecules, the corresponding time-benefit of using the multifidelity

model along the Γ(8) curve over the conventional MFML model is about the same with

the former reporting an MAE of about 17 meV for a time-cost of roughly 1500 hours, while

the latter costs as much as 8000 hours for an MAE of about 19 meV. In terms of an overall

comparison, if one were to employ conventional QC computation for the excitation energy

computations at the SVP fidelity, it would cost 640,000×2 hrs ≈ 150 years of CPU time. This

was achieved at a cost of some 1500 hrs which is a time-cost saving of ∼ 850x! Such speed
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up factors are indeed a promising output from the methods developed in this dissertation.

These promising results for multifidelity methods such as MFML andΓ-curve are strong

statements to their efficiency and possibility for future applications. Their implementation

to large-scale systems such as 16 porphyrins on clay surfaces are is a good indicator that

these can be further employed to accelerate research on complex light harvesting systems.
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CONCLUSION

And on the seventh day God ended His work which He had done, and He rested

on the seventh day from all His work which He had done.

— Genesis 2:2, The Holy Bible [NKJV]

T
he use of ML in QC has been progressing at a strong pace with trained ML models

being used in tandem with conventional computation methods. In some sense this

has resulted in the shift of the cost of discovery from expensive single point calcula-

tions to a smaller amount of costly calculations needed to train ML models. The work col-

lated in this dissertation provides a detailed methodological anchor point for the reduction

of time-costs incurred to train ML models for the prediction of QC properties. Specifically

the cost of generating training data is addressed in this document in detail with MF meth-

ods of ML being offered as a solution to reduce this overhead. MFML and o-MFML models

were numerically shown to reduce the amount of costly training data needed for a specific

model accuracy.

12.1 Summary

In the introductory chapter of this thesis, after motivating the need for MF methods in the

field of ML-QC, 4 key objectives were laid out to be fulfilled. At this juncture, it is clear that

these objectives lie completed. This dissertation started by examining existing the state

of art for MF methods and how certain aspects had been extended in implementation to

the ML-QC pipeline. The MFML, o-MFML, MF∆ML, o-MF∆ML, and Γ-curve methods were

developed for the prediction of diverse scalar QC properties. MFML was shown to be a high-
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accuracy low-cost method in the prediction of excitation energies for molecular trajectories

of arenes. The o-MFML method was shown to be a robust and accurate successor to MFML.

After the benchmark MF dataset of QC properties, QeMFi was introduced in Chapter

7, it was used to assess the effect of non-nested configurations of training data for MFML

and o-MFML. While the nested configuration of training data is recommended, o-MFML

was shown to be effective even in cases of non-nested training data. Data efficiency assess-

ments were made for MFML, o-MFML, and ∆-ML on the basis of time-costs of generating

training data for each method. The MF∆ML method was shown to be preferred over simple

∆-ML in cases of small number of evaluations.

A comprehensive study of the data hierarchy of MF training data was performed to un-

derstand its effect on model accuracy. A novel error metric, error contours of MFML, was

introduced to better understand the contribution of each fidelity to the overall model ac-

curacy. Inferences were drawn from this error metric which led to the development of the

Γ-curve which demonstrated that high accuracy MF models can be built with low compu-

tational cost with as little as 2 training samples at the costliest fidelity. Finally, in the previ-

ous chapter practical applications of the MF methods developed in this dissertation were

discussed showing how effective these methods really are in application to large systems.

12.2 Outlook

Several areas of future research can be branched off of this dissertation. Future work in

MFML should address the challenges of spanning the typically wide conformation space by

employing active learning techniques [25, 26, 27]. Spanning the conformation space with

viable cost is a challenge that is not specific to MFML. If successful, integration of active

learning strategies [25, 26] with MFML can greatly improve the capabilities over the method

established in this work. This will allow the MFML models to also predict rare events, which

might not be part of the usual simulated trajectory. Overall, an enhanced sampling of the

conformation space would provide a great improvement for large scale systems of interest

such as light-harvesting systems. Similarly, active learning can certainly be of use for a good

transferability of MFML models across different molecules.

The o-MFML method introduced in Chapter 6 opens up further research avenues for

MF methods in QC. For instance, the coefficients can be used as an indicator of the num-

ber of training samples to choose at each fidelity. Active learning strategies used in tandem

with o-MFML could lead to large benefits in reducing the numerical costs for generating

training data. For o-MFML, the optimization procedure and the choice of a validation set

198



12.2. OUTLOOK

implicitly decide the accuracy of the final model. A refined choice of the validation set could

improve the results and provide a better optimized model even for the non-nested case.

One example with QeMFi for instance is as follows: choosing validation set geometries cor-

responding to the largest molecule of the QeMFi dataset, o-HDBI while the sub-models are

trained on the other molecules. There is indeed a wide range of modifications that can be

made to fully and comprehensively assess each caveat of o-MFML. Another area of inves-

tigation with o-MFML could be the use of alternative optimization functions to compute

the optimal coefficients. A potential candidate in this case is to carry out the optimization

procedure in the RKHS as opposed to using a validation set as is done in this dissertation.

There is increasing interest in the applications of the ML-QC pipeline to vector QC

properties. The application of o-MFML in its nested and non-nested configurations to vec-

tor properties such as molecular dipole moments and molecular forces is another interest-

ing area of future work. As discussed in Chapter 5, the MFML approach can in principle

be applied to any ML method that shows a systematic prediction error behavior. Of great

interest will be its application to more recent NN approaches [22, 191, 204]. These would

further enable the use of MFML for vector QC properties.

Since the QeMFi dataset from Chapter 7 contains the molecular geometries of the di-

verse molecules, yet another potential future outlook of this work is the use of MF data

generated by other QC method such as HF, MP2, or even CASPT2. While this computation

lies beyond the scope of the current work, the study on the effectiveness of MFML and o-

MFML for fidelities based on different QC theory methods as opposed to different basis

sets could provide interesting results for the QC community. A primer to this was already

presented in Chapter 6 and Chapter 11 with several QC theory methods being combined.

Overall the work presented in this dissertation is a strong step in the direction of re-

ducing the cost of generating training data for the use of ML in QC. Systematic reduction

of error with the addition of cheaper fidelity was observed for diverse QC properties. With

the application of Γ-curve MFML, it was seen that one could potentially further reduce the

overall cost of generating training data for a multifidelity ML model. This dissertation has

rigorously developed and tested several multifidelity methods, each with its own benefits

to the realm of QC. This work has shown without a doubt that the use of such multifidelity

methods in ML-QC does indeed reduce to the cost of research by mitigating the amount of

compute resources spent on generating training data for ML models.
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APPENDIX A - SUPPLEMENTARY RESULTS

This appendix contains supplementary information (SI) files of the works presented in this

dissertation. These are adapted from the supplementary information of respective publi-

cations as indicated at the beginning of each section. These results are intended to go along

with the Chapters of the main sections of this dissertation.

A.1 Additional Details and Analysis for Arenes

Adapted from the SI file of [142].

A.1.1 Generating training and evaluation data

As discussed in section 5.1, trajectories with 15000 conformations and a time step of 1 fs

were generated for benzene, naphthalene, and anthracene using the MD and DFTB ap-

proaches. Starting from these conformations, training sets and evaluation sets were gener-

ated. While the first Ntrain = 1.5 ·213 = 12288 frames of the trajectory were used for training

data generation, the last Neval = 2712 conformations at a time step of 1 fs were used as the

evaluation set V F := {(X ref
q ,E ref

q )}Neval
q=1 . Thereby, it is assured that the calculated prediction

errors indeed reflect the generalization properties of the models on a later, unseen part of

the trajectory.

A pool of training data for each fidelity was generated. This data pool is structured as

follows: on the target fidelity, that is the TZVP level of theory, 1.5 ·29 = 768 excitation ener-
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Figure A.1: The structure of the training and evaluation data set for the benzene molecule of
both MD and DFTB-based trajectories. The STO-3G level of theory was sampled using a 1fs
time step. The 3-21G level of theory was sampled using a 2fs time step. Each subsequently
costlier level of quantum chemistry was sampled using a time step increased by a factor of
2. Thus, the TZVP level was sampled using a time step of 16fs.

gies were determined. The factor of 1.5 ensures that the training data is sufficiently different

for each random shuffling needed in the model evaluation. For each subsequent lower fi-

delity, this number is scaled by a factor of 2 thus resulting in 1.5 · 213 = 12288 excitation

energy calculations at the lowest fidelity, that is STO-3G. The time step between the chosen

conformations for the training data pool is increased by a factor of two for growing fidelity.

That is, the STO-3G fidelity was calculated for the training trajectory using a time step of

1 fs. This resulted in 12288 excitation energies at STO-3G fidelity1. The next fidelity, that is

3-21G, was calculated along the training trajectory using a 2 fs time step resulting in 6144

calculations. At each subsequent fidelity, the time step was scaled upward by a factor of two.

This results in 768 calculations at the TZVP fidelity with a time difference of 16 fs. Addition-

1This same time step was employed for the LC-DFTB and ZINDO fidelities in the case of Benzene.
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ally, for benzene, the QZVP level was calculated at a time difference of 32 fs resulting in

384 calculations. Figure A.1 sketches the chosen approach. This process of generating the

training data across the fidelities guarantees that the data pool contains data that is evenly

distributed over the trajectory. The reader is reminded that the cheaper fidelities such as

STO-3G or ZINDO are only used to enrich the final MFML model. These cheaper fidelities

are not the target of prediction. Rather, the most expensive fidelities, TZVP or QZVP are the

target fidelities.

Table A.1 lists the averaged single point calculation times for each fidelity for the differ-

ent molecules involved in this study. These are calculated as an average of the time taken to

calculate the excitation energies to the first excited state at a fidelity for the MD and DFTB-

based trajectories. All results in this study were obtained on single cores (serial execution)

on Intel Xeon E5-2640 2.50 GHz CPUs with 32 GB RAM running openSUSE Linux.

Molecule/Fidelity Benzene Naphthalene Anthracene

QZVP 20.00 - -
TZVP 3.53 12.46 31.10
SVP 1.02 3.10 8.00
6-31G 0.65 2.06 5.04
3-21G 0.43 1.25 2.85
STO-3G 0.44 1.16 2.35
LC-DFTB 0.26 - -
ZINDO 0.02 - -

Table A.1: Average computational times of point calculations in minutes for the excitation
energies at different fidelities. The time is calculated as the average over the two trajectory
types and as an average over the total number of frames.

A.1.2 ML details for the prediction of excitation energies

Beyond the Coulomb Matrices (CM) [29, 44, 191, 49, 125, 166] used in this study, various

molecular descriptors or representations have previously been used in machine learning

(ML) for quantum chemistry calculations. These include inverted distance matrices, Bag of

Bonds (BoB) [193, 194, 192], neural networks [191, 199, 205], Smooth Overlap of Atomic Po-

sitions (SOAP) [195, 192], various ad hoc descriptors [201, 202], and the Faber-Christensen-

Huang-Lilienfeld (FCHL) representation [196, 176, 49, 44]. While FCHL is a superior rep-

resentation, it is observed that the time to generate the representation and the kernel cor-

responding to this representation for Kernel Ridge Regression increases strongly with the

number of atoms in the molecule. Thus, it may happen that the time for predictions us-
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Figure A.2: Comparison of sorted and unsorted CM representations and the related BoB
representation for MD based benzene and anthracene. The learning curves are built for a
single fidelity KRR model with the TZVP fidelity used as both training and target. The results
are shown here for a 10-run average. For both the cases, the unsorted CM representation
outperforms the sorted CM and BoB.

ing ML using the FCHL representation far exceeds the cost of the conventional methods in

quantum chemistry [196, 65, 50]. Therefore, this superior representation is not used, here.

Instead, unsorted Coulomb matrices are used, as argued in Chapter 5. Figure A.2 shows that

unsorted Coulomb matrices indeed outperform the sorted CM representation and also the

BoB representation.

For a given training set T := {(X i ,Ei )}Ntrain
i=1 , the coefficients of KRR,α, are calculated by

solving the minimization problem given by

(A.1) α= argmin
θ

Ntrain∑
i=1

(PKRR (X i )−Ei )2 +λθT Kθ ,

where K = (
k(X i , X j )

)Ntrain
i , j=1 is called the kernel matrix and λ is a Lavrentiev regularization

parameter that is usually chosen to be small. As shown elsewhere [53, 167, 44, 63], the min-

imizer is found by solving the linear system of equations

(A.2) (K +λI )α= y .

In the present study, the entire process of KRR including kernel generation was per-

formed using the qmlpackage [66] which employs a Cholesky decomposition to solve Eq. (A.2).
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The kernels, kernel widths, and the regularization parameter are hyperparameters that can

be optimized using a grid search or cross-validation techniques [160, 167, 254, 125]. In this

research, however, the kernel width for the Matérn kernel has been converged manually,

see Table A.2, and the regularization parameter is set to λ= 10−9.

Molecule Benzene Naphthalene Anthracene
MD 715.0 1300.0 2455.0

DFTB 940.0 1200.0 2200.0

Table A.2: Manually converged kernel widths of the utilized Matérn kernel for the various
data sets employed in this study.

A.1.3 Supplementary results for MFML

In this section, supplementary figures and results for Chapter 5 are presented and dis-

cussed. Figures A.3 and A.5 give the preliminary data analysis and multifidelity results for

the DFTB trajectories. Both have been discussed in Chapter 5. Adding up to this discussion,

a particular focus is here on the multifidelity results for anthracene based on a DFTB tra-

jectory, additional scatter plots for prediction errors across fidelities and a study that shows

the impact of using several fidelities instead of two fidelities in MFML. For comparison to

the centered energies used in this work, the distribution of the uncentered energies of the

MD and DFTB trajectories are shown in Figure A.4.

A.1.4 Further discussion of DFTB-based anthracene

For DFTB-based anthracene, the learning curve corresponding to P (TZVP;STO−3G)
MFML shows poor

improvement in comparison to that of the previous model. This is especially true for smaller

training sizes. This behavior of the P (TZVP;STO−3G)
MFML model follows from strong variance in the

STO-3G results when compared to the target fidelity TZVP, as seen in row B of Figure A.3.

To make clearer the reason for such behavior in the model, the error in prediction from

the ground up by building models for the MD trajectory and the DFTB trajectory is investi-

gated.

Figure A.6 shows the absolute differences |ϵ| of the standard KRR model P (3−21G)
KRR and

the model P (TZVP;STO−3G)
KRR +P (STO−3G,3−21G)

KRR compared to the reference TZVP values. These

errors have been evaluated on the first 200 conformations of the respective evaluation set.

The reason these two very specific models are picked, is justified as follows: the learning

curve indicates that it is the addition of the STO-3G fidelity, which negatively affects the
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Figure A.3: A) Energy distributions of the different fidelities (basis sets) in the training sets
for DFTB trajectory of benzene, naphthalene, and anthracene. The complete training data
is represented here in terms of the kernel density plot. B) Comparing TZVP to the other
fidelities of the training data for benzene, naphthalene, and anthracene. For this scatter
plot, only those molecular conformations have been considered, which have been evalu-
ated at the TZVP fidelity. C) Energy difference between the fidelities and target fidelity in
the training set. D) Single-Fidelity model learning curves for the molecules presented with
a double-logarithmic scale.

model. The concept of multifidelity machine learning (MFML) implies that the error from

both these models should be similar. Failure to do so indicates an unsuitable nature of the
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Figure A.4: Uncentered energy distributions of the different fidelities (basis sets) of the
training set for the MD and DFTB trajectories of benzene, naphthalene, and anthracene.

data used at the STO-3G fidelity. These models are picked for N TZVP
train = 24, since the learning

curves for DFTB-based anthracene in row A of Figure A.5 shows sufficient difference be-

tween the different models and thereby any adverse effect arising due to the addition of the

STO-3G fidelity will be more pronounced. For DFTB-based anthracene, one observes that

the errors of the two models are far more spread out than for MD-based anthracene. Over-

all, the addition of data from STO-3G produces a large fluctuation of error in this molecule.

For MD-based anthracene, on the other hand, in agreement with the observations from

row B of Figure 5.2, we see that the two models produce errors with lower fluctuation be-

tween them. This indicates that the training data for DFTB-based anthracene is anomalous

at the STO-3G fidelity if targeting the TZVP fidelity.

It should be noted that the learning curves for the multifidelity models built for DFTB

anthracene excluding the STO-3G fidelity, in fact, follow the expectation of the approach as

is evident in the left-hand side pane of row A in Figure A.5. The averaged MAE for P (TZVP)
KRR
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Figure A.5: Results of the MFML method for the DFTB-based trajectory of benzene, naph-
thalene, and anthracene. A) The learning curves associated with the MFML method are de-
picted with the standard KRR model represented in blue and the MFML model built with
the lowest fidelity depicted in yellow. B) Energy distributions based on the holdout sets us-
ing the TZVP reference calculations (red) and the predictions from P (TZVP;STO−3G)

MFML (black) for
N TZVP

train = 512 are shown. For all molecules, it can be observed that the predictions from the
MFML model matches the reference energy distributions more accurately. C) Time auto-
correlation functions (ACF) of the excitation energies. The red lines correspond to the ACF
of the TZVP reference calculations from the holdout evaluation set. The black lines report
the ACF of the excitation energies predicted from the MFML model for the conformations
belonging to this evaluation set.
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Figure A.6: Comparison of error of models for anthracene based on MD and DFTB trajec-
tories to understand the effect of adding STO-3G. In particular, errors with respect to the
target fidelity TZVP for the conventional KRR model built on the 3-21G fidelity (navy) and
the model that consists of the conventional KRR model built with the STO-3G fidelity and
the KRR model built on the difference between STO-3G and 3-21G fidelities (salmon) are
compared. One observes that the two models are in reasonable agreement for MD-based
anthracene, while there is a large difference for DFTB-based anthracene.

is 8.1 meV and is 5.9 meV for P (TZVP;3−21G)
MFML . The multifidelity approach works as long as the

required data structure is satisfied. The reader is reminded again that the robustness of the

method succeeds to lower the offset of the P (TZVP;STO−3G)
MFML model for larger training set sizes.

A.1.5 Scatter plots of the excitation energies

To extend on the discussion of the prediction quality of the multifidelity model, Figure A.7

give scatter plots for each of the sub-models and the joint multifidelity models for the dif-

ferent molecules and trajectories. The plots correspond to N TZVP
train = 29 scaled across the

fidelities as explained in Section 4. Each model is built with the same randomly shuffled

nested structure of the training data. For each plot, the first column corresponds to the

conventional KRR models P (f)
KRR built at some fidelity f . The second column corresponds to

the different multifidelity models P (TZVP;f)
MFML built with same the baseline fidelity fb .

One way to read these results is to begin at the bottom left-hand side of each individual

plot, for example, MD-based anthracene in Figure A.7(c). This scatter plot comes from the

predictions of the conventional model built on the STO-3G fidelity, when compared with

the reference TZVP energies on the evaluation set. Next, moving up one cell to the scat-
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Figure A.7: Scatter plots between the target fidelity, TZVP, and predictions by the single-

fidelity models P ( fb )
KRR (left column) and predictions by the MFML models P (TZVP;fb)

MFML (right
column) are reported for each molecule.
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ter plot corresponding to the predictions of the 3-21G conventional KRR model, predic-

tions come closer to the reference TZVP data, i.e., one observes a numerically lower MAE.

This trend continues while further moving up the left column. The top cell indicates the

deviation between the TZVP reference energies and those predicted by the conventional

KRR model built on the TZVP fidelity, that is P TZVP
KRR . Obviously, this model approximates

the TZVP data in the best way for the various KRR models shown. In the second column,

as discussed before, the predictions by the various MFML models are studied for benzene

based on an MD trajectory. At the top, the same scatter plot as for P (TZVP)
KRR is provided, since

the MFML model for the TZVP data and baseline fidelity TZVP is just the single-fidelity

model. One plot further down gives the MFML model that additionally uses training data

at the SVP fidelity. While the individual use of the SVP data, see left column, was still sub-

optimal in order to predict the TZVP data, the addition of this cheaper to compute data

to the MFML model depicted on the right-hand side improves the accuracy of the MFML

model. This trend continues when further moving down the results. Hence, when adding

more and more lower levels of fidelity to the multifidelity model, the results are consistently

improved.

The observations of the learning curves and the preliminary data analysis appear evi-

dently in these scatter plots. Specifically, the scatter plots for naphthalene with the MD tra-

jectory and anthracene with the DFTB trajectory show how the model P (STO−3G)
KRR results in a

wider spread due to the anomalies in the training data available at that fidelity. Considering

the scatter plots for DFTB-based anthracene from Figure A.7(f), the results corresponding

to P (STO−3G)
KRR shows a large spread of the predictions, especially for the higher values. This

is in strong contrast to the scatter plots resulting from the other single fidelity KRR mod-

els that one observes as one goes up the column. It is a clear indicator that the spread

of the data observed in Figure A.3B results in a poorly trained model with the addition of

the STO-3G fidelity. It is important to note again that the MFML models built without the

STO-3G provide a very distinct reduction in the error, as seen in the second column. The

robustness of the multifidelity becomes all the clearer, when one observes the results for

the P (TZVP;STO−3G)
MFML , where the reported MAE is in fact similar to that for P (TZVP;3−21G)

MFML . This

could indicate that the multifidelity method still improves when trained on the difference

between these fidelities.

A.1.6 Impact of the use of several fidelities in MFML

To underline the positive impact of the use of more than two fidelities in the MFML method,

three models are studied - a reference KRR model P TZVP
KRR , an MFML model built with the
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Figure A.8: Comparing the MFML and two-level ML models to motivate the need for a mul-
tifidelity training structure. The reference KRR model is also provided.

baseline fidelity of STO-3G and several intermediate fidelities, that is P (TZVP;STO−3G)
MFML , and

finally, a model P TZVP
STO−3G which is built with the same principle as the MFML method but

which assumes that the fidelity structure consists only of TZVP and STO-3G fidelity. The

prediction of this model for a query representation, X q , is given as:

P TZVP
STO−3G

(
X q

)
:= P STO−3G

KRR (X q )+P (STO−3G,TZVP)
KRR

(
X q

)
,

with

P (STO−3G,TZVP)
KRR

(
X q

)
:=

N T Z V P
train∑
i=1

α(STO−3G,TZVP)
i k

(
X i , X q

)
.

Here, the α(STO−3G,TZVP) are KRR coefficients which are derived by solving the usual KRR

problem by using the difference of the energies at TZVP and STO-3G levels of theory.

The results of this experiment are shown in Figure A.8 as learning curves for all the

molecules used in this study. The results across the molecules show that the MFML model

outperforms the two-level method significantly. The one case, in which the two-level method

is even worse than the single-fidelity model is DFB-based anthracene, where the use of
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STO-3G had a strong negative impact, anyway. Overall, these results are a strong motiva-

tion to use several levels for the training.

A.2 Ordinary Least Squares

OLS is a popular ML method to solve linear regression problems. This primer is presented

here for completeness of the discussion for o-MFML. Consider a training set of size N that

consists of a D-dimensional features x i ∈ RD and corresponding 1-D outputs, yi ∈ R. The

aim of OLS is to solve for the weights, ω ∈ RD , in the regression equation yi = ωT x i for

i = {1,2, . . . , N }. This is equivalent to minimizing the loss function given by:

(A.3) L(ω) = (
Xω− y

)T (
Xω− y

)= ∥∥Xω− y
∥∥2

2 ,

where, y is simply the vector of the outputs from the training set, and the matrix X is

commonly referred to as the design matrix with (X )i , j = xi , j with i = {1,2, . . . , N } and j =
{1,2, . . . ,D}. The solution to this problem can be arrived at by taking the gradient of Eq. (A.3)

with respect toω and setting it equal to 0. This readily reduces to solving the following sys-

tem of equations:

(A.4)
(

X T X
)
ωOLS = X T y .

Here, ωOLS denotes the OLS weights of the regression problem. The Scikit-learn package

[214] is used to run the OLS optimization procedure in this work.

A.3 Supplementary Results for o-MFML

Adapted from the SI file of [143].

A.3.1 Comparison of difference in data and difference in model

implementation of MFML

As discussed in Chapter 6, for the MFML model with the KRR as a choice of ML method,

one can show that the difference in data approach, P ( f , f +1)
KRR , is equivalent to the difference

in model approach, P ( f +1)
KRR −P ( f )

KRR. Theoretically, Ref. [32] has already shown that the data-

difference MFML is equivalent to the model-difference MFML for Kernel Ridge Regression

(KRR). In order to numerically establish this, the following experiment was carried out for
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the first excitation energy multifidelity data of arenes from Chapter 5. The entire multifi-

delity structure of the training set was used for each molecule. This amounts to 1.5·29 = 768

training samples at the highest fidelity with the subsequent lower fidelities being scaled

with a factor of 2 resulting in 1.5·213 = 12288 samples at the baseline fidelity. For this model

setup, the data-difference MFML model was built as presented in Chapter 5. The model-

difference MFML model was built as discussed section 4.1. The predictions of these two

models on the same holdout evaluation set was performed and the resulting MAEs are re-

ported in Table. A.3. The equivalence of the two models is now numerically evident with

the difference in MAE in all cases being smaller than the order of 10−7.

Molecule Model MFML Data difference MFML Abs. difference

MD benzene 0.00556086 0.0055611 2.465·10−7

MD naphthalene 0.0080742 0.00807421 7.15·10−9

MD anthracene 0.00527777 0.00527759 1.758·10−7

DFTB benzene 0.00624935 0.00624899 3.558·10−7

DFTB naphthalene 0.00617296 0.00617296 9.708·10−10

DFTB anthracene 0.00554352 0.00554331 2.114·10−7

Table A.3: MAE (eV) of MFML for the prediction of the first excitation energy. The first col-
umn corresponds to the model built with the difference taken for different sub-models. The
second column correspond to taking the difference in the data and building the MFML on
these differences. The last column reports the absolute difference in the MAE for these two
methods.

A.3.2 Generalization capabilities of the o-MFML for atomization

energies

As an additional investigation into the effectiveness of the o-MFML model, the kernel den-

sity plots of the atomization energies at the target fidelity, that is CCSD(T)–cc-pVDZ, are

presented in Figure A.9. The plots show the atomization energies from the training set used

in the multifidelity model, the validation set used for the o-MFML method, and the com-

mon test set. In addition, the kernel density plots of the predicted atomization energies

from the MFML and o-MFML methods for the MP2-STO3G baseline with N CCSD(T)–cc-pVDZ
train =

128 are shown. The left panel of the figure shows the kernel density plots for the entire range

of the atomization energies of the CCSD(T)–cc-pVDZ fidelity. The right panel zooms into

the range from 50 to 140 kcal/mol and the corresponding density values. In that panel, it

can be seen that both the training and validation set peak around 0 kcal/mol with a slight

skew towards the negative values. The predictions and the training set density curves show
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Figure A.9: Kernel density plots of the various data splits for atomization energies of the
QM7b dataset. Only the CCSD(T)–cc-pVDZ fidelity is depicted. The left-hand side of the
figure shows the density plots for the entire range of the atomization energies while the
second plot zooms in to the range of 50-140 kcal/mol for better visualization of the outlying
cases.

good agreement close to the peak at 0 kcal/mol. There appears to be an almost complete

agreement in the predictions of the MFML and o-MFML methods around this region. How-

ever, there is a small deviation in the curve of the MFML method from the test set curve in

the negative regime. The two methods diverge at around the 50 kcal/mol with a more pro-

nounced difference. This finding is in agreement with the scatter plot observed in Figure

6.1.

Considering the various curves in the right panel of Figure A.9, the curve correspond-

ing to the training set shows no specific characteristics in this region, implying the lack of

specific structure which might be statistically useful for an ML model to generalize in this

region. The curve of the validation set shows no presence in the region after 80 kcal/mol.

Next, the test set shows a distinctive peak around 90 kcal/mol with almost complete dips

in the immediate vicinity of the peak. The difficulty of learning such a niche becomes evi-

dent in the curve corresponding to the MFML method. The curve of the predicted atomiza-

tion energies deviates almost entirely from that of the test set from 55 kcal/mol and over-

estimates the atomization energies in the range of 55-140 kcal/mol. The o-MFML, however,

is able to reproduce the peak with good accuracy in addition to being able to truthfully

replicate the dips of the curve.
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This result is a strong indicator about the capabilities of the o-MFML method in be-

ing able to generalize over unseen data by optimally combining the information from the

cheaper fidelities which allow it to reproduce the peak. Thus, the method is more capable

of predicting the atomization energies at the higher ranges from 50 kcal and beyond. The

optimal combination of the sub-models results in a final multifidelity model which shows

a strong capability to generalize prediction across the ranges of the atomization energies.

This makes a strong argument in favor of the transferable nature and generalization capac-

ity of the multifidelity method.

A.3.3 Coefficient analysis of o-MFML

A.3.3.1 Atomization energies
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Figure A.10: Evolution of β
opt
s for o-MFML for the QM7b dataset. The evolution is

shown across training size of CCSD(T)–cc-pVDZ and the final state of the coefficients for
N CCSD(T)–cc-pVDZ

train = 28 = 128 are shown on the right hand side which is the same as shown
in Figure 6.4.

As was discussed in section 6.2.1.1, the analysis of the coefficients allowed one to com-

pletely eliminate the CCSD(T)–6-31G fidelity and still arrive at a model with similar accu-

racy of prediction. While this was only shown for the model built with 128 training samples

at CCSD(T)–6-31G, it will be useful only if this same idea can be established for smaller

training set sizes. This imposition will allow users to test with very small number of QC

calculations whether the use of a certain fidelity will improve the model. This will reduce

redundancy of calculation. In Figure A.10, the evolution of the coefficients βopt
s is shown

for varying training sizes of CCSD(T)–6-31G. On the right hand side, the final state of the

coefficients is shown, which is the same as seen in Figure 6.4, provided here for easy ref-
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erence. One observes that the value of the coefficients for the CCSD(T)–6-31G fidelity is

almost always stable around the final values. In other words, one can simply build a small

o-MFML model for some small number of training samples at fidelity F and already iden-

tify fidelities, f , which do not contribute significantly to the final multifidelity model. This

fact makes the o-MFML a self-contained tool for an optimal implementation of the multi-

fidelity method.

A.3.3.2 Excitation energies

The study of the coefficients for the o-MFML method for predicting the first excitation ener-

gies could provide useful insights into the workings of the method for such a data structure.

The coefficients can be interpreted as a measure of the contribution of each sub-model into

the final multifidelity model. The coefficients of the o-MFML model built with the STO-3G
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Figure A.11: o-MFML coefficient values for N TZVP
train = 29 = 512 for MD-based trajectories of

benzene, naphthalene, and anthracene.

baseline fidelity for MD-based trajectories of molecules are shown in Figure A.11. For all

three molecules, one notices how different these values are from the default coefficients,

which are ±1. This optimization of the combination of the sub-models is why the corre-

sponding learning curve shows an improvement over its counterpart in the conventional

MFML. Consider the values of the various βopt
s as seen in the last pane of Figure A.11 for

MD-based anthracene. The coefficients are close to the ±1 values as prescribed in the con-

ventional MFML method. That is, the values of βopt
s are close to the values of βMF ML

s . This

indicates that the conventional MFML model was already optimal as reasoned in Chapter

6. The learning curves for the MFML and o-MFML methods were seen to be comparable

for this case. This figure makes that very case with numerical evidence.
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Figure A.12: The coefficient values for N TZVP
train = 29 = 512 for DFTB-based trajectories of ben-

zene, naphthalene, and anthracene.

Similarly, the values of βopt
s of the STO-3G baseline for the DFTB-based trajectories

are shown in Figure A.12. Of particular interest is the anthracene molecule. For the con-

ventional MFML, it was previously reported in Chapter 5 that the addition of the STO-3G

fidelity resulted in a breakdown of the multifidelity structure due to its distribution with

respect to the target fidelity, TZVP. As a result, the learning curve of the MFML model with

this baseline fidelity shown no improvement in the prediction error for first excitation ener-

gies as seen in the top row of Figure 6.6. However, the o-MFML method drastically changed

this outlook for the STO-3G baseline and resulted in a learning curve (bottom row of Figure

6.6) which again displays the trend that is expected of a multifidelity method. The right-

most panel of Figure A.12 provides a window into understanding this improvement. The

values of the βopt
s for all fidelities other than STO-3G are close to those prescribed by the

conventional MFML method. However, for the sub-models built on the STO-3G fidelity, the

absolute values of the coefficients are far smaller. The o-MFML method selectively elimi-

nates the STO-3G fidelity while retaining the required information to provide a superior

MFML model for this baseline fidelity.

A.4 Additional Results for Data Efficiency Assessment

Adapted from the SI file of [144].

A.4.1 ∆-ML for atomization energies of QM7b

In order to assess whether the behavior of the ∆-ML model as seen in Chapter 9 was influ-

enced by the fidelities only varying by basis set choices, the same test was replicated for the
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QM7b dataset [49] . The QM7b dataset consists of a total of 7,211 molecules with a maxi-

mum of seven heavy atoms. The atomization energies for each of these molecules is com-

puted with 3 levels of Qc theory, namely, Hartree Fock (denoted here as HF), Møller–Plesset

perturbation theory (MP2) [211, 123, 212], and Coupled Cluster Singles and Doubles per-

turbative Triples (CCSD(T)) [121, 122, 15]. For each level, 3 basis sets are used, STO-3G, 6-

31G, and cc-pVDZ (with increasing size). The atomization energy of a molecule is defined

as the energy required to completely dissociate all the bonds of the molecule and break it

into its constituent free atoms.

From the 7,211 geometries of the dataset, a random collection of 6,144 geometries were

set aside as the training set, and the remaining were set aside as a test set. Since the QM7b

dataset does not provide the compute times for the different fidelities, it is only used to

check for the behavior of the ∆-ML models across the different levels of QC theory, as op-

posed to varying basis set sizes. The data efficiency benchmarks are only made using the

QeMFi dataset. Regardless, the QM7b dataset serves as a key indicator in studying the ef-

fects of varying QC theory levels as opposed to basis set sizes, which is the case for QeMFi.
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Figure A.13: Learning curves for ∆-ML with varying baseline fidelities for the atomization
energies of the QM7b dataset. The different basis sets are denoted as subplot titles.

In order to assess whether the results of the ∆-ML method seen in Chapter 9 were

merely due to the fidelities being described by basis set choice, with this dataset, a different

approach was employed. The basis set was fixed and the fidelities were then assumed to be

the different QC levels of theory. That is, for each basis set that constitutes the multifidelity

dataset of QM7b, the ordered fidelity in increasing order was considered to be HF, MP2, and

then CCSD(T). Thus, for each basis set choice, the∆-ML model was built with F =CCSD(T)

for HF and MP2 as fb . Based on previous research for the QM7b dataset in ref. [32], the
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Laplacian kernel was used for KRR withσ= 400. The resulting learning curves are shown in

Figure A.13 for the different basis set choices. The ∆-ML model built with fb =MP2 results

in a lower model error in comparison to that built with HF as the baseline fidelity. This is

observed regardless of the choice of the basis set. Thus it becomes evident that the results

in Chapter 9 are not simply an artifact of the basis sets being set as fidelities. This is a gen-

eral observation that the closer the baseline fidelity is to the target fidelity, the better the

∆-ML model is at prediction of the QC property.

A.4.2 Predicting QCb for∆-ML
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Figure A.14: Learning curves (row (i)) and time-cost assessment (row (ii)) for a non-
optimized two fidelity hML model, a predicted QCb ∆-ML variant, and MFML model for
the prediction of ground state energies, first and second vertical excitation energies, and
magnitude of electronic contribution to molecular dipole moments. The error in predic-
tion of QCb with the non-optimized hML model is also depicted (in gray). The predicted
QCb model is trained on 214 training samples at the STO-3G fidelity.

Based on the results for∆-ML variants and MFML variants from the main text, a natural

line of research is to consider a case for ∆-ML, where one does not need to perform the

baseline QC computations but uses an ML model to predict those QC-baseline energies

instead. This would be somewhat similar to what is performed in MFML for fb . Two such

models are studied in this section. First, since the ∆-ML model uses the baseline fidelity to

train the differences, these same are used to train a model for the QC-baseline prediction
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over the test set. If the ∆-ML model uses 2 samples, then these same samples are used to

predict the baseline over the test set. Thus there is no additional cost incurred in the this

predicted-∆-ML model. This model is equivalent to a 2-level hML [139] model built with

the same number of training samples at both fidelities, that is, a hML model that does not

run the ad hoc optimization procedure for the number of training samples. Therefore, this

model is referred to hereon as non-optimized hML model. Second, a model is trained with

214 samples for the STO-3G fidelity to predict QCb . The predictions from this model are

used to replace yQCb from Eq. (3.16). This model is referred to as ‘Predicted∆-ML (STO-3G;

214)’.

The analysis for the predicted-∆-ML model is shown in Figure A.14 along with the con-

ventional∆-ML and MFML methods for the prediction of the different QC properties stud-

ied in this work. Row (i) shows the learning curves as a function of the number of training

samples used at TZVP. In addition, the learning curve for the prediction of QCb used in the

non-optimized hML model over the test set is provided for reference. The results indicate

that the error of predicting the baseline QC-fidelity is a huge contributor to the overall error

of the predicted-∆-ML model, as also stated in ref. [139], where the authors report that the

use of identical number of training points for all fidelities does not provide any benefit over

the single fidelity model in terms of model error. The two curves are almost entirely over-

laid on each other for the most part with only a small deviation observed for N TZVP
train = 211 for

most of the QC properties. For E(2), the error of the prediction of the QC-baseline is higher

possibly due to the added chemical complexity of the second vertical excitation state. Al-

though the learning curves for ∆-ML and MFML were already discussed in Figure 9.3 and

Figure 9.4 respectively, here they are visible in contrast with each other. The two learning

curves seem to converge to similar MAE values for large training set sizes. Further, the Pre-

dicted ∆-ML (STO-3G; 214) model initially has MAE comparable to the ∆-ML model for the

case of ground state energies but saturates for N TZVP
train > 27. For E(1), E(2), and |µe | this model

has MAE comparable to the MFML model for the most part with some saturation observed

for larger training set sizes.

Figure A.14(ii) studies the time-cost analysis of the two predicted QCb models in con-

trast with the ∆-ML and MFML models. First it is observed that the non-optimized hML

model does not provide any benefit over MFML as was reasoned above. Second, the pre-

dicted ∆-ML (STO-3G; 214) model for all QC properties is shifted to the right-hand side

of the plots due to the cost of training data for the prediction of QCb : STO-3G. For all QC

properties, the MFML method has a lower MAE than this predicted∆-ML variant for a given

time-cost. The ∆-ML model is shifted by a large time-cost that is incurred due to the QC-
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baseline calculation as was discussed previously in light of Figure 9.8. These results from

Figure A.14 strongly indicate that the use of the predicted ∆-ML variants does not provide

any foreseeable benefit.

A.4.3 Validation set and o-MFML learning curves
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Figure A.15: MFML and o-MFML learning curves for the various QC properties with the
validation set size being accounted for o-MFML.

In o-MFML, as has been discussed in Chapter 6, one uses a validation set consisting
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of representations and QC properties computed at the highest fidelity, target fidelity. In all

the learning curves of the main text, the learning curves for o-MFML did not include these.

The validation set cost was included only in the time-cost assessments. Figure A.15 shows

the reader the kind of learning curves one would get if the validation set was included in

standard learning curves. The figure depicts MFML and o-MFML learning curves for the

prediction of several QC properties from the QeMFi dataset in association with the work

presented in Chapter 9. It becomes evident that the incorporation of this information into

the standard learning curves does not help in making any additional inferences and only

makes the visual less appealing overall. This is the reason the main text omits this in the

standard learning curves. However, it must be reiterated that the cost associated with the

validation set is very much considered in all efficiency assessments made in this disserta-

tion.

A.4.4 Training time of the models
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Figure A.16: Time to train different ML models as a function of number of training samples
used at the TZVP fidelity. The time is reported here in minutes to provide ready comparison
to the time-cost assessment curves of the main text.

Throughout this dissertation the discussion has been focused on the efficiency of MFML

in terms of training data costs. It is also interesting to briefly look at the time cost of actually
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training the models, that is, the time taken to solve the linear system of equations for KRR

for the different sub-models of MFML. This was performed for the setup related to the data

efficiency analysis in Chapter 9. The time taken to train the different single fidelity and MF

models is depicted graphically in Figure A.16. The single fidelity KRR model is the cheap-

est, naturally, due to the fact that there is only one fidelity that needs to be trained. The

MF∆ML is slightly cheaper than the MFML for a similar reason, there is one fidelity less in

this model than the MFML. However, as can be seen also in Table A.4, the costs for even

large training set sizes is at most ∼ 70 minutes which is marginal compared to the time to

generate the training data which was of the order of 105 minutes for N TZVP
train = 2048. It is for

this reason that the time-cost of training the models are not included in the cost-efficiency

analyses of Chapter 9.

N TZVP
train KRR MFML MF∆ML

2 0.0277 0.4257 0.3188
4 0.0001 0.4232 0.3226
8 0.0001 0.4364 0.3209

16 0.0001 0.4353 0.3277
32 0.0001 0.4631 0.3354
64 0.0002 0.6198 0.3632

128 0.0007 1.6126 0.5163
256 0.0028 9.1021 1.5134
512 0.0154 69.3421 9.1189

1024 0.1095 548.575 69.2028
2048 0.8366 4343.7689 550.4958

Table A.4: Time taken to train different ML models based on number of training samples
chosen at the TZVP fidelity. The time is reported here in seconds and rounded to the fourth
decimal.

A.5 Supplementary Results for Ground State Energies of

Monomers

Adapted from the SI file of [1].

These are certain additional analyses and results for ref. [1] discussed in section 11.1. A

preliminary data analysis of the multifidelity training structure for monomers is shown in

Figure A.17. This is to keep with the recommendation prescribed in Chapter 5 to check for

discrepancy in the multifidelity data structure, which could cause issues with the training

226



A.5. SUPPLEMENTARY RESULTS FOR GROUND STATE ENERGIES OF MONOMERS

4 3 2 1 0
yf [kcal/mol] 1e5

0

2

4

6

8

De
ns

ity

1e 6 Distribution
DFT/STO-3G
DFT/cc-pVTZ
CCSD
CCSD(T)

DFT/STO-3G DFT/cc-pVTZ CCSD

102

103

yCC
SD

(T
)

f
 [k

ca
l/m

ol
]

Fidelity Difference

3 2 1
yf [kcal/mol] 1e5

3.5

3.0

2.5

2.0

1.5

1.0

0.5

yCC
SD

(T
)  [

kc
al

/m
ol

]

1e5 Fidelity Scatter
DFT/STO-3G
DFT/cc-pVTZ
CCSD

Figure A.17: Preliminary multifidelity data analysis of the monomers for the different fideli-
ties used in this work.

of the MFML models. The left-hand side of the figure shows the distribution of the energies

for different fidelities. The CCSD and CCSD(T) fidelities are nearly identical in distribu-

tion and show a normally distributed landscape of the energies. The cheaper DFT fidelities

show several spikes in the data distribution. The middle pane of Figure A.17 shows the ab-

solute difference of a given fidelity f with respect to the target fidelity CCSD(T). That is,

∆CC SD(T )
f = |yCC SD(T ) − y f | for varying f . The difference to the target fidelity is seen to be

monotonically decreasing with increasing accuracy of the fidelities. The error bars of the

plot indicate the standard deviation of the absolute differences. The right most plot of Fig-

ure A.17 shows the scatter of the energies of a fidelity with respect to the target fidelity

energies at CCSD(T) for the training data. Since the energy range covered is quite large,

105−4·105 kcal/mol, the scatter is not clearly visible. To aid this, an inset is provided around

2.8 ·105.

Figure A.18 compares the learning curves for ∆-ML with different baselines. The re-

sults indicate that the closer the QC-baseline is to the target fidelity, the lower the error

can get. Indeed, the case for the CCSD QC-baseline reports the MAE 0.2 kcal/mol with

NCC SD(T )
tr ai n = 512, which is similar to the case reported in Ref. [208] for a similar number

of training samples where the ∆-ML approach is used to learn the perturbative difference

between CCSD and CCSD(T) fidelities.

The time-cost comparisons of the different ∆-ML models are presented in Figure A.19

for differing QC-baselines. Three test set sizes are shown: 1,500, 15,000, and 150,000. With

increasing proximity of the QC-baseline to the target fidelity, although the MAE decreases,

the cost of implementing the ∆-ML model for new predictions becomes unreasonable.

With a large test set size, the use of the costlier QC-baselines can not be justified as seen

from the plot for 150,000 test set size, with the ∆-ML model with CCSD QC-baseline being
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Figure A.18: Learning curves for ∆-ML approach of KRR with different QC-baseline for the
target fidelity CCSD(T). It is observed that the closer the QC-baseline is to the target fidelity,
the lower the model error is.
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Figure A.19: Training data time-cost for ∆-ML approach of KRR with different QC-baseline
for the target fidelity CCSD(T). The cost of the QC-baseline calculations is considered for
different test set sizes.

two orders of magnitude costlier than the one with DFT-STO3G as the QC-baseline. This

high cost is associated with the cost of making the QC-baseline calculations, which are

then added to the prediction of the difference between the QC-baseline and target fidelity.
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A.6 Supplementary Results for Excitation Energies of

Porphyrin

Adapted from the SI file of [2].

This section reports additional results for ref. [2] discussed in section 11.2.

A.6.1 Multifidelity data analysis
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Figure A.20: Preliminary multifidelity data analysis for porphyrin molecule p-TMPyP-9. The
STO-3G fidelity shows an unfavorable distribution with respect to the target fidelity of SVP.

Figure A.20 reports the preliminary multifidelity data structure analysis as recommended

in Chapter 5 for one single molecule, p-TMPyP-9 of porphyrin, on the clay surface that is

discussed in section 11.2. This first analysis includes all the fidelities that were generated

for this system. With such a preliminary study, based on the fidelity difference plot and

fidelity scatter plot of Figure A.20, it was ascertained that the STO-3G fidelity would not

offer significant improvement in the MFML model. Therefore, a new fidelity hierarchy was

assumed omitting STO-3G, namely, LC-DFTB, 3-21G, 6-31G, and def2-SVP, in increasing

order of accuracy.

Figure A.21 shows the preliminary data analysis for the case of the single molecule, p-

TMPyP-9 with the STO-3G fidelity removed from consideration. In this case, a ordered hi-

erarchy is visible in the fidelity difference plot and the scatter of energies with respect to

the target fidelity of SVP shows a tighter clustering.

A similar data analysis was performed for the concatenated trajectories of the p-TMPyP

porphyrin molecules. The results are delineated in Figure A.22 which includes the STO-3G

fidelity. Although the excitation energies all show uni-modal distributions, in the assumed
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Figure A.21: Preliminary multifidelity data analysis for porphyrin molecule p-TMPyP-9
omitting STO-3G from the hierarchy.
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Figure A.22: Preliminary multifidelity data analysis for the concatenated trajectories of the
p-TMPyP porphyrin molecules. The STO-3G fidelity shows a poor positioning in the data
hierarchy and an unfavorable distribution with respect to the target fidelity of SVP.

hierarchy structure, the STO-3G fidelity once again shows a poor fidelity difference with

wide range of outliers as seen in the error bars on the center plot for fidelity difference.

Furthermore, in the scatter plot of the energies of different fidelities with respect to SVP, the

STO-3G fidelity has a loose clustering. This once again indicates that STO-3G might not be

favorable to use in the multifidelity training data structure. On removing this fidelity from

the assumed hierarchy structure, one immediately notices that the difference in fidelities

shows a monotonic decrease and the scatter plot shows a tight clustering as seen in Figure

A.23. Therefore, the STO-3G fidelity is no longer considered in the main application for

training MFML models for p-TMPyP porphyrin molecules.

For completeness, the preliminary multifidelity data analysis was repeated for the con-

catenated trajectories of m-TMPyP porphyrin molecules with similar inferences as stated

previously. The resulting plots are shown in Figure A.24 and Figure A.25 including the STO-
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Figure A.23: Preliminary multifidelity data analysis for the concatenated trajectories of the
p-TMPyP porphyrin molecules after omitting STO-3G data.
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Figure A.24: Preliminary multifidelity data analysis for the concatenated trajectories of the
m-TMPyP porphyrin molecules. The STO-3G fidelity shows unfavorable distribution with
respect to the target fidelity of SVP.

3G fidelity and omitting it respectively.

Based on the analysis of the data presented in this section, it was decided to omit STO-

3G from the multifidelity data structure for the models used to predict excitation energies

of porphyrin.

A.6.2 Full learning curves

While the learning curves for porphyrins in section 11.2 are for MFML models which omit

the STO-3G fidelity, in Figure A.26, learning curves for all fidelities are provided. That is,

the learning curves for different fb including the STO-3G fidelity are shown. The learning

curves show the anticipated reduction in error as one adds the cheaper fidelities to the

multifidelity models. For the concatenated trajectories of porphyrin, it can be seen how
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Figure A.25: Preliminary multifidelity data analysis for the concatenated trajectories of the
m-TMPyP porphyrin molecules after removing STO-3G from the multifidelity training data
structure.
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Figure A.26: MFML learning curves for porphyrins with STO-3G fidelity included.

the addition of the STO-3G fidelity provides close to no improvement for large training set

sizes. With the full fidelity structure including STO-3G, the standard MFML model results

in MAEs of 12.3 meV, 24.7 meV, and 17.8 meV for p-TMPyP-9, concatenated p-TMPyP, and

concatenated m-TMPyP porphyrin molecules respectively.

A.6.3 Additional Γ-curves

In addition to the Γ(8)-curve MFML that is used in the main predictions for porphyrins,

other variants were also tested for their accuracy versus efficiency. Theses reported in Fig-

ure A.27 for the different set-up used for porphyrins. The differentΓ-curves show consistent

improvement in comparison to standard MFML. it becomes evident that the Γ(8)-curve

provides the most meaningful efficiency for a given error, although the others are within

similar ranges.
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Figure A.27: Time-cost versus model error for additional Γ-curve variants.
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APPENDIX B - SELECTED QUANTUM CHEMISTRY DETAILS

For the sake of completeness, certain details of the QC methods are provided here. This

ensures that the dissertation can be understood in its fullness. Furthermore, this section

becomes pertinent since it is the output of such QC calculations which form the training

data for the ML models in this work. Only a general overview of QC methods is provided

here, the interested reader is directed to refs. [13, 255, 120] and related works for an in-

depth treatment of QC methods.

For this segment, we will consider the Born-Oppenheimer approximation [256] wherein

there is considered to be a separation of the electronic and nuclear degrees of freedom of

the molecule. Broadly speaking, there are two pathways to perform calculations of the elec-

tronic properties of molecules, namely, wave function theory (WFT), and density functional

theory (DFT) [257]. WFT involves the solution of the electronic form of the Schrödinger

equation from Eq. (1.3) with the electronic Hamiltonian operator Ĥ el given as

(B.1) Ĥ el (R ,r ) |Ψ(R ,r )〉 = En |Ψ(R ,r )〉 .

Here, r and R denote the electronic and nuclear coordinates respectively. Once eq. (B.1) is

solved for the eigenvalues and eigenvectors, any QC property of the molecule/system can

be arrived at. The computational solution of the Schrödinger equation is known in theory

but in reality is not feasible for molecules which are complex [258]. WFT is the approxima-

tions that are used to cater to such systems making the computation of larger and more

complex systems more feasible. On the other hand, DFT methods compute the energy of a

system in terms of the ground state electron density. While DFT is quicker and is perhaps
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one of the most commonly used method in the field of QC research, it is not exact in the

sense that the equations that need to be solved are themselves unknowns [22]. The accu-

racy of the results of DFT, therefore, depend on the choice of the functional that is used in

the calculation process [258]. Below, WFT and DFT are discussed in brief.

B.1 Wave Function Theory

The Hartree-Fock method is often the starting point to discuss ab initio methods1. In the

Hartree-Fock method, the electronic wave function from Eq. (B.1) is denoted by a single

Slater determinant[259], φ0. This results in the problem being changed from a decoupled

Ne -electron problem to Ne coupled single electron problems. The exact details of how φ0

is computed is omitted here. However, naïvely speaking, it involves the electronic wave

functions and some form of spin orbital. The spin orbital in most cases is the molecular

orbitals which are reformulated as a linear combination of the atomic orbitals which are

in turn expressed in terms of a basis set. In theory, the latter expansion is performed for an

infinite basis set size. This is approximated in the calculations of WFT by employing a finite

basis set, also called the basis set size limit. The approximations thus made are understood

to result in an incomplete description of the molecule/system because no information of

the electronic correlation, which accounts for how one electron is affected by the others, is

included.

In the Hartree-Fock method, the electronic correlation is accounted for by the correla-

tion energy since in this method, the effect of the ensemble of electrons is considered as an

average when it influences another electron. This forms the basis of solving the electronic

Schrödinger equation. subsequent QC theories involve the use of more Slater determinants

and the corresponding wave function is then expanded in a three step approach: first as a

linear combination of the determinants, each of which is expanded in terms of a molecu-

lar orbital, each of which is in turn expanded in terms of the atomic orbitals. In this pro-

cess, two category of coefficients can be optimized: those for the determinants and those

for molecular orbitals. The Hartree-Fock method is often used as the reference calculation

point to arrive at the orbitals which are then fixed for the remainder of the calculation. The

wave function is expanded as a weighted sum of the different Slater determinants for some

excited state i as:

(B.2) |Ψi 〉 =
∑

I
ci I |ψI 〉 ,

1Meaning derived from first-principles without any parametrization.
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withψ0 being calculated from the Hartree-Fock method. The coefficients ci I are calculated

by minimizing the total energy of the molecule with the constraints of fixed orbitals. This

general approach is called the configuration interaction (CI) method.

A size-extensive and size-consistent version of the CI method is the coupled cluster (CC)

method. CC is considered the gold standard of ab initio method for ground state energy

calculation [260]. The single and double excitation are accounted for by using the excitation

operator, T̂ as

(B.3) |ΨCC 〉 = exp(T̂ ) |φ0〉 =
(
1+ T̂ + 1

2!
T̂ 2 + . . .

)
|φ0〉 .

There are several other CI methods such as CASCF, MCSCF, full CI, and MR-CI. These are

omitted here since they are not used through this dissertation. Interested readers are re-

ferred to ref. [260]. It is also to be noted that the use of CI methods and WFT has a high

compute costs associated with them.

WFT is the primary QC method used to compute the atomization energies of the QM7b

dataset used in Chapter 6 with a variation of the CC method, namely CCSD(T), being

employed.

B.2 Density Functional Theory

DFT formulates the problem of solving the Schrödinger equation in terms of the electron

density, ρ(r ), of the system. In the presence of an external potential V (r ), there is a direct

correspondence to ρ(r ) as the potential affects the electron density. This energy is writ-

ten down in the form of a universal functional of the electronic density, F [ρ(r )]. Thus, the

ground state energy of the system is computed through the following equation:

(B.4) E [ρ(r )] =
∫

V (r )ρ(r )dr +F [ρ(r )] .

F [ρ(r )] is separated into Coulombic and non-Coulombic parts. The non-Coulombic com-

ponents can be split into the kinetic energy of the electrons that do not interact and the cor-

relation term which describes the interaction of electrons, that is the exchange-correlation

functional. This is the unknown component of DFT. Finding the right correlation functional

is a key component of DFT and the approximation of it is critical to the usage of the method.

For further details the reader is directed to the original derivations in refs. [261, 261]. The

review and in depth critique presented in ref. [258] is a splendid read to better comprehend

the effectiveness of DFT for the calculation of electronic properties.

237



APPENDIX B. APPENDIX B - SELECTED QUANTUM CHEMISTRY DETAILS

DFT forms the core of most computations made in the works presented in this disser-

tation. Chapter 7 presents a multifidelity dataset with QC properties computed with

DFT.
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[174] A. Damjanović, I. Kosztin, U. Kleinekathöfer, and K. Schulten, “Excitons in a pho-

tosynthetic light-harvesting system: A combined molecular dynamics, quantum

chemistry and polaron model study,” Phys. Rev. E, vol. 65, p. 031919, 2002.

[175] L. González and R. Lindh, eds., Quantum Chemistry and Dynamics of Excited States.

Wiley, 2020.

[176] B. Huang and O. A. von Lilienfeld, “Ab initio machine learning in chemical compound

space,” Chem. Rev., vol. 121, pp. 10001–10036, aug 2021.

[177] E. O. Pyzer-Knapp, K. Li, and A. Aspuru-Guzik, “Learning from the harvard clean en-

ergy project: The use of neural networks to accelerate materials discovery,” Adv.

Funct. Mater., vol. 25, no. 41, pp. 6495–6502, 2015.

[178] P. Raccuglia, K. C. Elbert, P. D. Adler, C. Falk, M. B. Wenny, A. Mollo, M. Zeller, S. A.

Friedler, J. Schrier, and A. J. Norquist, “Machine-learning-assisted materials dis-

covery using failed experiments,” Nature, vol. 533, no. 7601, pp. 73–76, 2016.

[179] R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim, “Machine

learning in materials informatics: recent applications and prospects,” npj Com-

put. ‘Materials, vol. 3, no. 1, p. 54, 2017.

[180] M. Rupp, O. A. von Lilienfeld, and K. Burke, “Guest Editorial: Special Topic on Data-

Enabled Theoretical Chemistry,” J. Chem. Phys., vol. 148, p. 241401, 06 2018.

[181] K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, “Machine learning

for molecular and materials science,” Nature, vol. 559, no. 7715, pp. 2336–2347,

2018.

[182] O. A. von Lilienfeld, “Quantum machine learning in chemical compound space,”

Angew. Chem. Int. Ed., vol. 57, no. 16, pp. 4164–4169, 2018.

[183] E. Cignoni, L. Cupellini, and B. Mennucci, “Machine Learning Exciton Hamiltonians

in Light-Harvesting Complexes,” J. Chem. Theory Comput., 01 2023.

[184] S. Kondati Natarajan, T. Morawietz, and J. Behler, “Representing the potential-energy

surface of protonated water clusters by high-dimensional neural network poten-

tials,” Phys. Chem. Chem. Phys., vol. 17, pp. 8356–8371, 2015.

[185] S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Schütt, and K.-R. Müller,

“Machine learning of accurate energy-conserving molecular force fields,” Sci.

Adv., vol. 3, no. 5, p. e1603015, 2017.

255



BIBLIOGRAPHY

[186] S. Chmiela, H. E. Sauceda, K.-R. Müller, and A. Tkatchenko, “Towards exact molecular

dynamics simulations with machine-learned force fields,” Nat. Commun., vol. 9,

no. 1, p. 3887, 2018.

[187] C. Qu, P. L. Houston, R. Conte, A. Nandi, and J. M. Bowman, “Breaking the coupled

cluster barrier for machine-learned potentials of large molecules: The case of 15-

atom acetylacetone,” J. Phys. Chem. Lett., vol. 12, no. 20, pp. 4902–4909, 2021.

[188] D. T. Ahneman, J. G. Estrada, S. Lin, S. D. Dreher, and A. G. Doyle, “Predicting reaction

performance in C–N cross-coupling using machine learning,” Science, vol. 360,

no. 6385, pp. 186–190, 2018.

[189] M. Gastegger, J. Behler, and P. Marquetand, “Machine learning molecular dynamics

for the simulation of infrared spectra,” Chem. Sci., vol. 8, pp. 6924–6935, 2017.

[190] F. Jensen, Introduction to Computational Chemistry.

Wiley, 3rd edition ed., 2017.

[191] K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller,

“Schnet–a deep learning architecture for molecules and materials,” J. Chem.

Phys., vol. 148, no. 24, p. 241722, 2018.

[192] A. P. Bartók, R. Kondor, and G. Csányi, “On representing chemical environments,”

Phys. Rev. B, vol. 87, no. 18, p. 184115, 2013.

[193] K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O. A. Von Lilienfeld, K.-R. Müller,

and A. Tkatchenko, “Machine learning predictions of molecular properties: Ac-

curate many-body potentials and nonlocality in chemical space,” J. Phys. Chem.

Lett., vol. 6, no. 12, pp. 2326–2331, 2015.

[194] S. De, A. P. Bartók, G. Csányi, and M. Ceriotti, “Comparing molecules and solids

across structural and alchemical space,” Phys. Chem. Chem. Phys., vol. 18, no. 20,

pp. 13754–13769, 2016.

[195] A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, “Gaussian approximation po-

tentials: The accuracy of quantum mechanics, without the electrons,” Phys. Rev.

Lett., vol. 104, no. 13, p. 136403, 2010.

[196] A. S. Christensen, L. A. Bratholm, F. A. Faber, and O. A. von Lilienfeld, “FCHL revisited:

Faster and more accurate quantum machine learning,” J. Chem. Phys., vol. 152,

p. 044107, jan 2020.

256



BIBLIOGRAPHY

[197] D. Weininger, “SMILES, a chemical language and information system. 1. introduction

to methodology and encoding rules,” J. Chem. Inf. Comput. Sci., vol. 28, no. 1,

pp. 31–36, 1988.

[198] B. Kang, C. Seok, and J. Lee, “Prediction of molecular electronic transitions using ran-

dom forests,” J. Chem. Inf. Model., vol. 60, no. 12, pp. 5984–5994, 2020.

[199] K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller, and A. Tkatchenko, “Quantum-

chemical insights from deep tensor neural networks,” Nat. Commun., vol. 8, no. 1,

pp. 1–8, 2017.

[200] K. T. Schütt, M. Gastegger, A. Tkatchenko, K.-R. Müller, and R. J. Maurer, “Unifying

machine learning and quantum chemistry with a deep neural network for molec-

ular wavefunctions,” Nat. Comm., vol. 10, p. 5024, 11 2019.

[201] G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, and R. Ramprasad, “Accelerating mate-

rials property predictions using machine learning,” Sci. Rep., vol. 3, no. 1, pp. 1–6,

2013.

[202] J. Carrete, W. Li, N. Mingo, S. Wang, and S. Curtarolo, “Finding unprecedentedly low-

thermal-conductivity half-heusler semiconductors via high-throughput materi-

als modeling,” Phys. Rev. X, vol. 4, no. 1, p. 011019, 2014.

[203] J. S. Smith, O. Isayev, and A. E. Roitberg, “ANI-1: An extensible neural network poten-

tial with DFT accuracy at force field computational cost,” Chem. Sci., vol. 8, no. 4,

pp. 3192–3203, 2017.

[204] X. Gao, F. Ramezanghorbani, O. Isayev, J. S. Smith, and A. E. Roitberg, “TorchANI:

A free and open source pytorch-based deep learning implementation of the ani

neural network potentials,” J. Chem. Inf. Modeling, vol. 60, no. 7, pp. 3408–3415,

2020.

[205] O. T. Unke and M. Meuwly, “Physnet: A neural network for predicting energies, forces,

dipole moments, and partial charges,” J. Chem. Theory Comput., vol. 15, no. 6,

pp. 3678–3693, 2019.

[206] G. Sun and P. Sautet, “Toward fast and reliable potential energy surfaces for metal-

lic Pt clusters by hierarchical delta neural networks,” J. Chem. Theory Comput.,

vol. 15, no. 10, pp. 5614–5627, 2019.

[207] Y. Liu and J. Li, “Permutation-Invariant-Polynomial neural-network-based δ-

machine learning approach: A case for the HO2 self-reaction and its dynamics

study,” J. Phys. Chem. Lett., vol. 13, no. 21, pp. 4729–4738, 2022.

257



BIBLIOGRAPHY

[208] M. Ruth, D. Gerbig, and P. R. Schreiner, “Machine learning of Coupled Cluster (T)-

energy corrections via delta (∆)-learning,” J. Chem. Theory and Comp., vol. 18,

no. 8, pp. 4846–4855, 2022.

[209] C. Reisinger, “Analysis of linear difference schemes in the sparse grid combination

technique,” IMA J. Numer. Anal., vol. 33, pp. 544–581, 09 2012.

[210] J. Garcke, “Regression with the optimised combination technique,” in Proceedings of

the 23rd international conference on Machine learning, pp. 321–328, 2006.

[211] D. Quiñonero, C. Garau, A. Frontera, P. Ballester, A. Costa, and P. M. Deyà, “Structure

and binding energy of anion-π and cation-π complexes: A comparison of mp2,

ri-mp2, dft, and df-dft methods,” J. Phys. Chem. A, vol. 109, no. 20, pp. 4632–4637,

2005.

[212] J. Pogrebetsky, A. Siklitskaya, and A. Kubas, “MP2-based correction scheme to ap-

proach the limit of a complete pair natural orbitals space in DLPNO-CCSD(T)

calculations,” J. Chem. Theory Comput., vol. 19, no. 13, pp. 4023–4032, 2023.

[213] K. L. Bak, P. Jørgensen, J. Olsen, T. Helgaker, and W. Klopper, “Accuracy of atomization

energies and reaction enthalpies in standard and extrapolated electronic wave

function/basis set calculations,” J. Chem. Phys., vol. 112, pp. 9229–9242, 06 2000.

[214] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-

peau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning

in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011.

[215] M. Pinheiro Jr, S. Zhang, P. O. Dral, and M. Barbatti, “WS22 database, Wigner

Sampling and geometry interpolation for configurationally diverse molecular

datasets,” Sci. Data, vol. 10, p. 95, 02 2023.

[216] M. P. Jr, S. Zhang, P. O. Dral, and M. Barbatti, “WS22 database: combining Wigner

Sampling and geometry interpolation towards configurationally diverse molecu-

lar datasets,” 08 2022.

[217] Y.-F. Hou, F. Ge, and P. O. Dral, “Explicit learning of derivatives with the KREG and

pKREG models on the example of accurate representation of molecular potential

energy surfaces,” J. Chem. Theory Comput., vol. 19, no. 8, pp. 2369–2379, 2023.

[218] K. Ravi, V. Fediukov, F. Dietrich, T. Neckel, F. Buse, M. Bergmann, and H.-J. Bungartz,

“Multi-fidelity gaussian process surrogate modeling for regression problems in

physics,” Mach. Learn.: Sci. Tech., vol. 5, p. 045015, 10 2024.

258



BIBLIOGRAPHY

[219] J. S. Smith, R. Zubatyuk, B. Nebgen, N. Lubbers, K. Barros, A. E. Roitberg, O. Isayev,

and S. Tretiak, “The ANI-1ccx and ANI-1x data sets, coupled-cluster and density

functional theory properties for molecules,” Sci. Data, vol. 7, p. 134, 05 2020.

[220] M. Nakata and T. Shimazaki, “PubChemQC project: A large-scale first-principles

electronic structure database for data-driven chemistry,” J. Chem. Inf. Model.,

vol. 57, p. 1300–1308, 06 2017.

[221] L. Zhang, S. Zhang, A. Owens, S. N. Yurchenko, and P. O. Dral, “VIB5 database with

accurate ab initio quantum chemical molecular potential energy surfaces,” Sci.

Data, vol. 9, p. 84, 03 2022.

[222] A. Fediai, P. Reiser, J. E. O. Peña, P. Friederich, and W. Wenzel, “Accurate GW frontier

orbital energies of 134 kilo molecules,” Sci. Data, vol. 10, p. 581, 09 2023.

[223] S. Nandi, T. Vegge, and A. Bhowmik, “MultiXC-QM9: Large dataset of molecular

and reaction energies from multi-level quantum chemical methods,” Sci. Data,

vol. 10, p. 783, 11 2023.

[224] V. Vinod and P. Zaspel, “QeMFi: A multifidelity dataset of quantum chemical proper-

ties of diverse molecules (1.1.0) [dataset],” Zenodo, 10 2024.

[225] X. Zhu, K. C. Thompson, and T. J. Martínez, “Geodesic interpolation for reaction

pathways,” J. Chem. Phys., vol. 150, p. 164103, 04 2019.

[226] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform manifold approximation and

projection for dimension reduction,” arXiv, no. 1802.03426, 2020.

[227] N. Menon and A. Basak, “Multi-fidelity surrogate with heterogeneous input spaces

for modeling melt pools in laser-directed energy deposition,” Addit. Manuf.,

vol. 94, p. 104440, 2024.

[228] Y. Zhu, Y. Chen, Z. Lu, S. Pan, G.-R. Xue, Y. Yu, and Q. Yang, “Heterogeneous transfer

learning for image classification,” in Proceedings of the AAAI conference on artifi-

cial intelligence, vol. 25, pp. 1304–1309, 2011.

[229] W. Li, L. Duan, D. Xu, and I. W. Tsang, “Learning with augmented features for su-

pervised and semi-supervised heterogeneous domain adaptation,” IEEE Trans-

actions on Pattern analysis and machine intelligence, vol. 36, no. 6, pp. 1134–1148,

2013.

[230] X. Shi, Q. Liu, W. Fan, S. Y. Philip, and R. Zhu, “Transfer learning on heterogenous

feature spaces via spectral transformation,” in 2010 IEEE international conference

on data mining, pp. 1049–1054, IEEE, 2010.

259



BIBLIOGRAPHY

[231] F. Häse, S. Valleau, E. Pyzer-Knapp, and A. Aspuru-Guzik, “Machine learning exciton

dynamics,” Chem. Sci., vol. 7, pp. 5139–5147, 07 2016.

[232] D. Khatamsaz, B. Vela, and R. Arróyave, “Multi-objective Bayesian alloy design using

multi-task Gaussian processes,” Mater. Lett., vol. 351, p. 135067, 11 2023.

[233] S. Heinen, D. Khan, G. F. von Rudorff, K. Karandashev, D. J. A. Arrieta, A. J. A. Price,

S. Nandi, A. Bhowmik, K. Hermansson, and O. A. von Lilienfeld, “Reducing train-

ing data needs with minimal multilevel machine learning (M3L),” Mach. Learn.:

Sci. Technol., vol. 5, p. 025058, 06 2024.

[234] F. Noé, A. Tkatchenko, K.-R. Müller, and C. Clementi, “Machine learning for molecu-

lar simulation,” Annu. Rev. Phys. Chem., vol. 71, pp. 361–390, 2020.

[235] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Müller, “Explaining

deep neural networks and beyond: A review of methods and applications,” Pro-

ceedings of the IEEE, vol. 109, no. 3, pp. 247–278, 2021.

[236] J. Westermayr and P. Marquetand, “Deep learning for uv absorption spectra with

schnarc: First steps toward transferability in chemical compound space,” J. Chem.

Phys., vol. 153, p. 154112, 10 2020.

[237] Y. Zhang, S. Ye, J. Zhang, C. Hu, J. Jiang, and B. Jiang, “Efficient and accurate simula-

tions of vibrational and electronic spectra with symmetry-preserving neural net-

work models for tensorial properties,” J. Phys. Chem. B, vol. 124, no. 33, pp. 7284–

7290, 2020.

[238] M. Véril, A. Scemama, M. Caffarel, F. Lipparini, M. Boggio-Pasqua, D. Jacquemin, and

P.-F. Loos, “QUESTDB: A database of highly accurate excitation energies for the

electronic structure community,” WIREs Comput. Mol. Sci., vol. 11, no. 5, p. e1517,

2021.

[239] P.-F. Loos, A. Scemama, A. Blondel, Y. Garniron, M. Caffarel, and D. Jacquemin, “A

mountaineering strategy to excited states: Highly accurate reference energies and

benchmarks,” J. Chem. Theory Comput., vol. 14, no. 8, pp. 4360–4379, 2018.

[240] S. L. Krug, D. Khan, and O. A. von Lilienfeld, “Alchemical harmonic approxima-

tion based potential for iso-electronic diatomics: Foundational baseline for ∆-

machine learning,” arXiv, no. 2409.18007, 2024.

[241] I. Batatia, P. Benner, Y. Chiang, A. M. Elena, D. P. Kovács, J. Riebesell, X. R. Advincula,

M. Asta, M. Avaylon, W. J. Baldwin, F. Berger, N. Bernstein, A. Bhowmik, S. M. Blau,
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