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Abstract

In this dissertation we study the Hodge-Witt cohomology of the d-dimensional Drinfeld’s up-

per half space X C IP’% over a finite field k. We consider the natural action of the k-rational

points G of the linear group GLgy; on HY(X, WnQé,d), making them natural W, (k)[G]-modules.
k

To study these representations, we introduce a theory of differential operators over the Witt
vectors for smooth k-schemes X, through a quasi-coherent sheaf of W, (k)-algebras Dy, (x)-
We apply this theory to equip suitable local cohomology groups arising from H°(X ’W”OPZ)
with a F(Pg,DWn(]Pz))—module structure. Those local cohomology groups are naturally mod-

ules over some parabolic subgroup of GL411(k), and we prove that they are finitely generated
(P, Dwn(Pz))—modules.
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Introduction

Let k£ be a finite field of characteristic p > 0. The d-dimensional Drinfeld’s half space X over
k is the open affine k-subvariety of IP’% obtained by taking the complement of all k-rational
hyperplanes P(H) in P, i.e.,

x=PH\ |J PH). (0.0.1)

Hgkdﬂ

We omit the dimension d from the notation, assuming it is implicitly fixed. The finite group G of
k-rational points of the general linear algebraic group GLg41 1 acts naturally on X' by permuting
the k-rational hyperplanes in the complement V := (Jycga+1 P(H). Set Gy = GLgt1,, and let
£ be a Gy-equivariant vector bundle on IP’%. By functoriality, the cohomology group H°(X, €)
inherits a canonical structure of a k[G]-module. In the case where £ is the module of i-th
differential forms Q' on IP’% for some ¢ > 0, we may further consider, for any natural number
n > 1, the global sections Hodge-Witt cohomology H%(X, W,Q¢), which is the main object of
investigation in this thesis. It has, analogously, a natural structure of a W,,(k)[G] module, where
W, (k) is the ring of Witt vectors of level n of k. This study generalizes the work of a preprint
by Orlik [Orl24] for n > 1 in the corresponding cases.

A major example of studying representations given by taking suitable cohomology of varieties
goes back to Drinfeld [Dri74], who realised all cuspidal characters of SLy(F,) as l-adic (I # p)
cohomology with compact support of the étale covering of the 1-dimensional Drinfeld’s half space
XM given by the Drinfeld (affine) curve XY? — Y X? = 0. On a similar perspective, Lusztig
and Deligne [DL76] generalized this picture for any linear group of Lie type, introducing the
so called Deligne-Lusztig varieties, parametrised by elements of the Weyl group. In this way,
they realised all irreducible representations of a linear algebraic group of Lie type over k, in
the [-adic cohomology (with compact support and suitable coefficient system) of such Deligne-
Lusztig varieties. In particular, in the case of GLgy1 x, the Drinfeld half space identifies with the
Deligne-Lusztig variety attached to the Coxeter element.

If we allow to change the coefficient k to a p-adic field (or more generally to a non-archimedean
local field) K, the corresponding set X of may be endowed with a structure of rigid ana-
lytic variety, whose cohomology plays a role in the Langlands correspondence ([SS91],[ST02],[Orl08]).
It is stated in a conjecture by Drinfeld [Dri76|, that the l-adic cohomology of suitable étale cover-
ings of Xk realizes all cuspidal representations of GLg11(K). In this setting other cohomologies
have been studied: important examples are the l-adic and torsion cohomology of Xk (for p-adic
K) by Schneider and Stuhler [SS91], the De Rham cohomology by Orlik [Orl15], the p-adic étale
and pro-étale cohomology as well, by Colmez, Dospinescu, Niziot in [CDN20)].

The Drinfeld half space over a finite field k appears in the special fibre of a semi-stable integral
model of X, and because as a geometric object it is easier to handle than its analytic counterpart,
it is a helpful tool for a first investigation. Moreover, more generally, smooth compactifications
of Deligne-Lusztig varieties are considered for studying their crystalline cohomology by Grosse-
Klénne |GKO7]. For smooth schemes, the crystalline cohomology can be computed through the



De Rham-Witt complex, giving rise to natural modules over W, (k) which extend the scalars in
k. Moreover, to further reduce the study of the De Rham-Witt cohomology, a first inspection
should be reserved to the Hodge-Witt cohomology, which relates to the crystalline cohomology via
standard spectral sequence arguments (see [I1179]). The goal of this dissertation is, therefore, to
investigate in general the Hodge-Witt cohomology of the Drinfeld half space X and in particular
the Witt vectors cohomology. We can summarize the result of this investigation by the following
proposition:

Theorem (Proposition [5.2.2)). Assume that char(k) # 2. The Pj-module I:IEID;j(Pg,Wn(OPZ))

k
admits a submodule N, ; that is a finitely generated Pj-module over Wy (k) and a Wy, (k)-linear
epimorphism of D,,-modules

Pnj D, ®Wn(k) Nn,j —» H;ﬂ;] (Pd,Wn(OPz)).

All objects, like the W,,(k)-algebra D,, and the group P; will be introduced later on. In
the case n = 1 the reader may compare the Proposition above with similar results which have
been discussed by Kuschkowitz ([Kus16} Proposition 2.5.1.3]) and in a preprint by Orlik (|Orl24,
Proposition 3.11]). In the formulation of the Theorem above, a different cohomology group
appears instead of the global section cohomology. This is a consequence of successive reductions
of the initial problem.

In general, computing the representations H°(X, &) reduces to study certain (subgroups of)

~d—j

local cohomology groups, namely HP?; (Pg,é’), via a spectral sequence argument appearing al-

ready in [Orl01]. These subgroups have a structure of modules of the maximal parabolic group
P; C G, stabilizing P;, and they are not finitely generated k-vector spaces. Also, their algebraic
nature is not completely clear. To gain more information, one may consider the natural structure
of Dist(Gy)-module on fI[C;j_J (P{,€). We ask whether it fulfills some finiteness condition.

Over a p-adic field K a similar problem arises by considering the rigid analytic Drinfeld
upper half space and, respectively, the K-rational points of the general linear group G acting
on it. The case of the canonical bundle has been originally studied by Schneider and Teitelbaum
([ST02]) and generalized by Orlik (|Orl08]) for equivariant vector bundles. In Orlik’s approach
there are, analogously, some local cohomology groups equipped with a structure of modules
over the enveloping algebra U(Lie(Gg)). In this setting, each of those local cohomology groups
is a K[P(K)]-module for the corresponding maximal parabolic subgroup P C G (K) and it is
generated over U(Lie(G)) by a finitely generated K [P (K )]-submodule. Unfortunately, a similar
property is not satisfied in characteristic p, as observed in |[Kus16]. The strategy we adopted to
overcome this problem is to replace the distribution algebra with the ring of differential operators
Dy = D(PY}) as suggested by Orlik in [Or]24].

The Hodge-Witt cohomology of X can be seen as a generalization of the cohomology of the
k-modules HO(X,Q’H%) by means of the W,,(k)-modules HO(X,WHQE%), where for any n > 1,

WanPd denotes the (Hodge-)Witt module of differentials, appearing in the i-th degree of the
k

De Rham-Witt complex of IP’%. By functoriality, there is an action of G on the Hodge-Witt

cohomology groups, inducing a W, (k)[G]-module structure. We prove that, similarly to the

cases described above, the problem of computing the cohomology reduces to computing W, (k)-

submodules of certain local cohomology modules. This is a geometric phenomenon that only de-

pends on X, giving rise to naturally non-finitely generated W, (k)[P;]-modules I:I;);j (P4, Wnﬂfp,g).
k

More precisely, we prove it in the following proposition:

Proposition (Proposition . Let F = Wan‘pd for some ¢ > 0. There is a spectral sequence



E["® converging to H;‘T(Pd,}") and degenerating at the Eo-page, such that:
Ey? =HI(PLF) j>2, (0.0.2)
and the terms E;jﬂ’j for 7 > 1 appear as an extension of certain W, (k)[G]-modules:
0— By /M — Byt pritld o, (0.0.3)

where, the following equality hold:

Byt = Indg(dﬂ_j,j) (AL, , (P4, F) ®w, k) nSt}) (0.0.4)
E2_,“7V+SL] =1 (P, F) W (k) (nvg(d-&-l—j,lj))v’ (0.0.5)
for any 1 < j <d, and finally
Ey' = Y = Ind§ | Hpa (P F). (0.0.6)
Here, "U%dgﬁ-,u‘) is the generalized Steinberg representation of G associated to P(d F1—j11)

(1 appears j times) over Wy, (k) and ,St; is the standard Steinberg representation of G over
W, (k) (see Section [4.2.2)).

On the algebraic side, unlike the case n = 1, we do not have (a priori) a natural action
of the distribution algebra or the ring of differential operators at our disposal. Therefore, we
develop, just for the sake of application, a suitable theory of differential operators over the
Witt vectors, introducing a W, (k)-algebra Dy, x)(X) for smooth k-varieties X. Here, we
must mention that a more general theory was going to be introduced in a recent work of Dodd
[Dod24] that appeared while this thesis was being written. In particular, the author of this
thesis independently addressed the problem and provided analogous definitions. However, the
idea of proving the relations in Proposition was inspired by the analogous one in [Dod24].
Then, we construct a sheaf Dy, (x) similar to the one in [Dod24, Definition 2.33]. Even if the
techniques are different, both agree on the main idea of defining Witt differential operators as
a restriction of differential operators with additional properties (i.e. for which holds,
classically called Hasse-Schimdt derivations) on smooth lifts. Although similar, our construction
is given locally, considering local parameters of smooth algebras, while the one of Dodd is more
intrinsic. Moreover, we make consistently use of a map w,, as a replacement of a map F",
introduced and studied originally in the work of Illusie and Raynaud [IR83] and successively
extended by Berthelot et al. in [BER12|. The strategy in [Dod24] is analogous, thus there
are similarities in computations, but the author does not mention any relation with F™ and its
properties, as we do, for example, in the proof of existence of Witt differential operators (cf.
Proposition . Also, it is worth mentioning that, in contrast to Dodd, we explicitly do not
construct any canonical Witt differential operator (cf. [Dod24, Definition 2.8]).

Roughly speaking, the main feature of this theory is that any Hasse-Schmidt k-linear dif-
ferential operator over a smooth k-algebra A admits a compatible lift to some W, (k)-linear
differential operator of W,,(A). Moreover, thanks to the property , we apply this theory
to describe the Wy, (k)[P;]-modules above for the case of the Witt vectors cohomology (i.e., for

t = 0, where WnQﬁpd = W, Opa), and prove that the group ﬁg;j (P4, W,,Opa) has a structure both
of a W,,(k)[P;j]-module and of a Dy, #9) (P¢)-module generated by a finite W,,(k)[P;]-submodule,

that is precisely the meaning of the first proposition above.

We will explain the structure of this thesis in more detail. In Chapter [1} we recall definitions and



basics properties of Grothendieck’s differential operators. We focus on the properties of D(A)
when A is a Fp-algebra and give some examples. Moreover, we introduce the notion of crys-
talline Weyl algebra, to be thought as an integral version of the Weyl algebra, giving an explicit
description of the module of differential operators in characteristic p. Furthermore, we deduce
a relation between differential operators of a smooth W(k)-scheme X and its smooth nilpotent
thickenings X,, over W, (k) (cf. Proposition [1.2.9).

In Chapter |2, we recall the construction of the de Rham-Witt complex for a k-scheme X (k
perfect). We additionally consider X equipped with an action of a finite group G and we de-
fine and discuss the notion of G-equivariant W, Ox-modules. In particular, by the universal
property of de Rham-Witt complex, we deduce that any Hodge-Witt module W, Q% (i > 0) is
G-equivariant. Furthermore, following [BER12|, we explain the classical computation of the de
Rham-Witt complex for the affine space of dimension d and how to compute the Hodge-Witt
cohomology of the projective space (equipped with the natural action of G = GLgy1x(k)) of
dimension d, (cf. section . For completeness, we also introduce the map F™, in the way de-
fined in [IR83], and we provide a self-contained elementary proof of the known Proposition
classically deduced as a consequence of a more involved theory that here we do not investigate.
In the second part of the same chapter, we further give an introduction of a less known concept
of Witt line bundles (cf. section, some particular case of locally free W,,Ox-modules of rank
one (following Tanaka in [Tan22|). Then, we prove some functoriality properties and extend the
construction of the map F™ for Witt line bundles as well. Then, as an example, we furnish a
computation of the cohomology of Witt line bundles of the projective space of dimension d as a

G-module (cf. section [2.4.1)).

In Chapter 3] we introduce a theory of Witt differential operators. If A is a smooth k-algebra

of dimension d, it admits compatible lifts to some smooth W, (k)-algebras A,. The ring of dif-
ferential operators D(A) as k-algebra, is locally generated by operators 8?1 (for i = 1,...,d,
r > 0) satisfying certain relations (called Hasse-Schmidt derivations) which we treat in an ap-
pendix (c.f. ) By a lifting property of smooth morphisms (cf. Corollary , there
exist compatible W,, (k)-differential operators 82[7;]1 € D(A,) lifting GZ[T], such that the analogous
property holds. Furthermore, there is a ring monomorphism wy,—1: W, (A) — A,. Then,

a Witt differential operator is given by restriction of such 31[71 to W,,(A) via W, (cf. Proposi-
tion(3.0.4]). Moreover, for any 81[1 € D(A,) lifting az.“"] € D(A), the restriction does not depend on
the chosen lifting, but only on that differential operator in characteristic p (cf. Corollary .
Furthermore, we prove some additional properties of Witt differential operators in order to relate
them with Frobenius, Verschiebung and restriction maps on Witt vectors of level n (cf. Propo-
sition . Finally, we define a sheaf of Witt differential operators Dy, (x) for a smooth
k-scheme X, such that for n = 1, it agrees with Grothendieck’s sheaf of differential operators

(cf. Lemma [3.2.5).

In Chapter {4, we consider the W,,(k)[G]-module cohomology HY(X, F) where F may be a Witt
line bundle on ]P’g or one of the Hodge-Witt module WanPd. We explain how to reduce the
k

computation of the latter by studying certain submodules of the local cohomology Hg? (P4, F)

forany 7 =0,...,d (cf. Proposition. To prove the aforementioned Proposition, we adapt a
Orlik’s resolution of the constant sheaf Zy (introduced in [Orl01]) for the case of the Witt scheme
W,,(X), via the natural universal homeomorphism X — W, (X) (induced in the affine case by
the canonical projection W, (A) — A). We see that the dual (as a W, (k)-module) generalized
Steinberg (free finitely generated ) representations over Wy, (k) appear in the G-module structure



of HO(X, F). Tt follows that the only unknown module structures are given by I:I;j_j (P4, F).
k

The latter will be investigated as an application in Chapter[5} In order to proceed, we need a link
between local cohomology groups and D-modules. In characteristic 0, this goes back to Beilinson
and Bernstein [BB81]. An action of a reductive algebraic group G on a smooth scheme X, in-
duces a natural Dist(G)-module structure on the global section of Ox. Moreover, any element of
Dist(G) acts as a differential operator on Ox (X), inducing a natural map of associative algebras
$#9x : Dist(G) — T'(X,Dx). More generally, this reasoning works for arbitrary quasi-coherent
G-equivariant sheaves in any characteristic (cf. Proposition and Proposition hold
in any characteristic, and indeed it coincides with the construction in [HTTO8, 11, (11.1.6)] in
characteristic 0, by identifying U(g) = Dist(G)). The main difference between characteristic
0 and p is that ¢©X is not in general surjective (cf. [Smi86] for a counterexample in the case
G = SLy ), while this is true in characteristic 0 (cf. [HTTO8, Theorem 11.2.2 (i)]). Using the
theory of Witt differential operators, we can define a suitable (Teichmiiller) lift in Dy, (x) of
differential operators in Dy (cf. Proposition [5.1.15)).

As an application, we consider the natural D,, := F(Pg,Dwn(Pg))—module structure (given on
the left by evaluation of differential operators on functions) on the cohomology subgroups
H;{J (P4, WnOPg) together with the natural action of the finite parabolic subgroup Pj := P14

of G. We ask the following: Does exist a Pj-equivariant W,,(k)-submodule N, ;, such that it gen-

erates I:I;j_j (P4, WnOPz) as Dy,-module?” We answer positively in Proposition |5.2.2] The proof is

k
constructive and only requires some elementary properties of Witt vectors. Then, the statement
reduces to the characteristic p case (n = 1), by properties of Witt differential operators.
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Notation

In the course of this exposition, p is a prime number and k, when not specified, will denote a
finite field in characteristic p > 0.

The set of natural numbers N contains 0.

For any integers a, b with a < b, we denote the range of integers between a and b by [a,b] := {i €
Z | a <i < b}. For any natural number d > 1, bold symbols i = (i1,...,i4),j = (J1,---,74), etc.,
are vectors of the abelian group Z¢ or they might denote just d-uples. It will be clear from the
context. We write i < j, if and only if 4; < j; for any 1 <1 < d.



The bold symbols Gg, By, Ty, P will denote algebraic groups over k. Sometimes the index
k is omitted, when it is clear. When the index Z appears, it means that the algebraic groups are
defined over Z. All rings are assumed to be commutative with unit, unless we are talking of the
differential operators algebra, the Weyl algebra, the crystalline Weyl algebra, or the enveloping
algebra of some Lie algebra, which are generally non commutative.

The symbols, G, B,T, P denotes the k-rational points of the respective algebraic groups.
Also, when it is not specified, G is GLgy1 and generally always a reductive group; T,B are
fixed maximal torus and Borel subgroups of G and P; is the parabolic subgroup associated to a
subset I C A, where A is the set of simple roots for the root system ®(T,B) of G. In the case
of G :GLd+1, ¢ = {Oéij =€ — €5 | 0 SZ#] < d} and A = {a,- = Qg1 |’L:0,,d—1}
where ¢; € X(T) = Hom(T,G,,) is the character sending T(A) > (tg,...,tq) — t; € A, for any
k-algebra A. Also, the set of positive roots @ C @ consists of the elements «;; with i < j, while
®~ is its complement.

The gothic symbols g, U(g) denotes respectively the Lie algebra and the enveloping algebra
of G, while Dist(QG) is its distribution algebra.

The letters X, Y denote k-schemes of finite type. The index (—) 4 for any k-algebra A denotes
the base change along the structure morphism k — A.

For any k-schemes X, Y and Z we adopt the following conventions: we denote by pr;: Y xj
X — X the canonical projection given by (y,z) — z, fory € Y,z € X, priy : Z X Y X3 X —
Y x; X the projection (z,y,z) — (y,z) for z € Z,y € Y, x € X, and pry = pry o prys.

The p-typical ring of Witt vectors of length n > 1 will be denoted by W, (A) and for any ¢,
W, Q% is the W,,Ox-module appearing at the i-th degree of the De Rham-Witt complex of X.

We also consider the action of GLg4y1  on Pg given on points by

GLat14(A) x PE(A) — PY(A)

(gy[zo -+ xq]) —> [xo: -+ :xd]gfl (0.0.7)

where g € GLg11(A) and [zg : ... 24] € P{(A) for any k-algebra A.

Let A be a Fp-algebra and X a scheme over Spec(A) (simply said over A). Let Frob?: A —
A, = +— zP be the Frobenius morphism of A and Frob be the induced map of spectra. Let
X .= X X Frob,Spec(A) Spec(A) and consider the pullback square

Fx
X
o Fxya

~
~

~A
x® W . x (0.0.8)

| |

Spec(A) 25 Spec(A)

where W is the map of schemes induced by the pullback construction. The relative Frobenius
Fxjp: X = X (P) on X respect to A is the map of A-schemes given by the universal property of
pullback diagrams.

Lastly, the absolute Frobenius is given by Fx = W o Fy /4.

Let k be an algebraic closure of k and X be a k-scheme with base change X xj k =: Xj. The
geometric Frobenius is the k-scheme morphism Fyx x idg: Xj — Xj. If X = GLgj C A‘,f , then
the standard geometric Frobenius of Xy, is the restriction of the geometric Frobenius of A%2 to
the open subscheme Xj.

For a topological space X and an abelian sheaf F on X, as usual we denote by H' (X, F) be
the i-th derived functor of the global sections I'(X, —) with value in F. If U C X is an open



subset with closed complement Z = X\U, then H, (X, F) denotes the i-th derived functor of the
global section I'z(X, —) with support in Z and value in F. For such a triple (Z,U; X), we refer
to the induced long exact sequence on group cohomology of

0—-Iz(X,F)-TI'(X,F) - T(UF)—0 (0.0.9)
as the associated long exact sequence of the couple (Z,U; X):
.= HY(X,F) - H(X,F) » H(U,F) - B (X, F) — ... (0.0.10)

We denote the subgroups ker(H% (X, F) — H!(X, F)) by H. (X, F).
The for any abelian sheaf F on X, and for any integer ¢, the sheaf associated to the presheaf
given by assigning for any open U C X

U — H'(U, F)
will be denoted by H'(F). Analogously, for a closed subset Z C X, the presheaf given by
U — HY(U, F)

will be denoted by HY (F).
For a complex of abelian sheaves (F*,d), we denote by

il e ker(d: Fi — Fitl
h'(F*®) := ( JFi1 )

the i-th sheaf cohomology for any i € Z.



Chapter 1

Grothendieck’s differential operators

Let k£ be a commutative ring. In this section, we recall the definition of differential operators in
the sense of [EGAIV|, Ch. IV, Sec. 16.8] and discuss some properties found in [Smi86] for the
characteristic p case.

1.1 Basic definitions and properties

Let A be commutative, unitary k-algebra. Then, define the A-algebra D(A) given by D(A) =
UnZ Dn(A), where

D (A) := {0 € Endg(A) | [ap, [a1,-..,[am,0]...]] =0 Vag,...,am € A}.

Here (Endg(A), +, o) is the algebra of k-linear endomorphisms of A and A C Endy(A) is identified
with the left (or right) multiplication morphism; the bracket [—, —] : Endg(A) x Endg(A) —
Endy(A) is the map sending (6,7n) to 6on—mnof. We recall that the filtration D,,(A) C Dy11(A)
makes D(A) a filtered k-algebra.

For any affine scheme (of finite type) X = Spec(A), set D(X) := D(A). Then, the notion of
differential operators sheafifies (for example by [Tra98, Theorem 3.2.5]).

Definition 1.1.1. For a k-scheme X, Dx is the unique quasi-coherent Ox-module given by
I'(U,Dx) = D(U) for any Zariski open affine U C X.

Moreover, Dy is also equipped with a filtration, by setting
Fil,,Dx (U) := {0 € End(Ox)(U) | [0, a] € Fil,,,_1Dx (U),Va € Ox(U)}.

It is straightforward to see that Fil,,Dx(X) = D,,(X) for X affine. Moreover, we have a
decomposition FiliDx = Ox ® Tx where Tx is the tangent sheaf, given explicitly by

Tx(U) = {0 € End(Ox)(U) | 0(ab) = ab(b) + bB(a) Ya,be Ox(U)}

for any open affine U of X.

Assume now, that X is equipped with an action of a linear algebraic group G over k. Then,
the structure sheaf Ox as well as QfX for any i > 1 are G-equivariant in the sense of [MFK94, 1, 3,
Def. 1.3] or [BL94, pp. I, 0.2]. If G is an abstract group, with multiplication map m: Gx G — G,
the notion of linearization for quasi-coherent modules on X can be analogously formulated.
Consider (G,m) as the constant k-group [[ s Spec(k). Assume that G acts on X via an action
0: G x,; X — X. Denote by pry: G x; X — X the canonical projection, prys : G X G X, X —
G xj, X the projection (g1, g2, x) — (g2, ) for any g1,92 € G, x € X, and pry = pry o prys.



Definition 1.1.2. A quasi-coherent Ox-module F is said to be G-equivariant (or G-linearizable)
if there exists an isomorphism (called G-linearization) of Ogx, x-modules

¢:0"F = priF (1.1.1)
such that the following
(1g x o)*priF _ P, pryF
| Jomiax) e (1.1.2)

(1g x 0)*c*F —— (m x 1x)*c*F
is a commutative diagram of Ogyx, g« , x-modules.

A G-linearization induces a canonical G-action on the global sections of F, thus on each
cohomology group with coefficients in F. Indeed, since G is the constant k-group associated
to an abstract group, the definition above is equivalent to say that the collection of k-scheme

isomorphisms (¢g: 0y F — F)geq, where ag: {g} x X B @ xp X S X and bg = iy, satisfies
the property for which the following diagram

* ¢9192

09192}— F
\”¢ V (1.1.3)
05 F

commutes for any g1, g2 € G. Then, for any g € G, the adjoint morphism F — 0.0, F induces
a morphism

Hi(X, F) = H(X, 04000 F) = H(G x X, 0" F) 25 H(X, F). (1.1.4)
In this way H'(X,F) has a structure of a G-module.

Lemma 1.1.3. If G acts on a k-variety X, then Fil,,Dx and Dx are G-equivariant quasi-
coherent Ox -modules for any m > 1.

Proof. 1t is sufficient to prove the statement for Fil,,Dx, m > 1. As abuse of notation, for any
g € G, the isomorphism o4(g, —): X — X will be simply denoted by o,. We will prove that for
any g € G, the morphism o4 induces a Ox-module isomorphism

¢g : Fil,Dx = 04.Fil,, Dx. (1.1.5)

It suffices to prove it for any open affine U C X. Let Uf: Ox — (04)+Ox be the canonical map
induced by 4. For each n € Fil,,Dx (U) let ¢4(n) be defined by

Sg()(f) = o (o7, (1)) € Ox(g7".U) for any f € Ox(g~".U), (1.1.6)

E|The Ox-module homomorphism ¢, is an isomorphism, with inverse given by ¢g-1.
We prove that ¢4(n) € 04+ Fil,,;Dx (U). We proceed by induction on m. Recall that

Fil,,Dx(U) = {n € End(Ox)(U) | [n, F] € Fil,,,_.1Dx(U), VF € Ox(U)}

'"We adopt the convention that g. means to apply og4(g, —): X — X
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and
04 Fil,Dx (U) = {0 € End(Ox) (g~ .U) | [0, f] € Film—1Dx (g 'U) Vf € Ox(g  .U)}.

For m = 1, we have that Fil;Dx (U) = Ox(U) & Tx(U). We just need to prove that ¢4(n) is a
derivation if 7 is a derivation. Indeed, for f,h € Ox(g~1.U), we get

ba() (1) = o (e (1)) = oF (nlo L (N (1))
— o (e (D)ot () + oF (r(o? L (W)o? L (f)
= ¢g(M(f) - h+ f - ¢g(n)(h)-
For a generic € Fil,,,Dx(U), we have

[6g(n), F1(R) = dg(n)(fh) — fog(n)(R)

= og(n)(f) - h+ [ - dg(n)(h) — fog(n)(h)
= dg(m)(f) - I

= o ([0, o7, ()](h))-

In particular, this shows that

(b9 (n): f] = bg([n, 07 (f)]) € Fily 1 Dx(g7".U)

by inductive hypothesis.
We are left to verify the cocycle condition (1.1.3)). It follows by the straightforward equality

¢91gz (77) = ¢92 (¢91 (77)) for any ¢g1,92 € G and n € Fil,,Dx. O

Now suppose that the k-scheme X is equipped with an action ¥o: G x, X — X of a reductive
group G over k. Then, the analogous of Lemma holds true. Let G = G(k). Taking the
base change with an algebraic closure k induces an action *o: G x; Xz — Xz. We can identify
k-rational points with closed points of the scheme, |G| = Gz(k). Moreover, suppose there
is a G-stable open subscheme Uy C Xj. Thus, the restriction *o on G(k) induces an action
o: G x; U, — Ug. If there exists a k-rational structure U for Ug, then & induces an action
o: G x, U — U, via the natural map Uy = U Xy E—U. A Gj-linearization of Dy, can be
defined similarly to the Formula by replacing the respective actions with kog. Then it

induces, by restriction, the G-linearization for Dy = Dx |y defined in the lemma above.

Example 1.1.4. When X = PZ, U =& and G = GLg41, the G-linearization on Dx induces
a G-linearization of Dy such that G acts on Dx (X) via the isomorphism given by the Formula
(T.1.6).

1.2 The Weyl algebra and crystalline Weyl algebra

Let z1,...,2m be a set of variables together with symbols 0,,,...,0;,,.
Definition 1.2.1. A m-th Weyl algebra over k is a k-algebra isomorphic to
E{z1,.. . 2m,0s ., 0z, } /T = k[zi | 1 <0 <m](D,, | 1 <i<m):= Ap(k)

for some m, where k{z1,...,2m,0s,...,0s, } is the free algebra generated by the symbols z;, 0,
and J is the ideal

J = (ZZ‘ZJ‘ — 252, Ziazj — &iji + 5ij,6zi(9zj — 8Zj62i, 1<4,5<m)
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Suppose that k£ = Z . Then consider the Weyl algebra over Frac(k) = Q,
An(Q)=Qlzi |1 <i<m|(0s, | 1 <i < m).

Define the crystalline symbols being the elements of A,,(Q) given recursively by the integral

relations
ool = (7" N S) A+ seN
(] K3 r 7 Y ) bl
where for r = 0, 81[0} := 1, and for r = 1, 8” = 0, for any i. Let I C {1,...,m}, and set
8?"[] = 8}?1] . --8!:”% also z7! = zfll ~--zftt for rr,s; € NY, iy < iy < -+ < iy € I. Define S,,(Z)

be the Z-submodule of A,,(Q) generated by z;"fa}”] for any I and sz, r; € NI, Note also, that

the generators of S,,(Z) are linear independent over Z. Moreover, over Q we have 82-[r] = %8;
For any (commutative) ring k, the k-module S, (k) is the base change S,,(Z) ® k. Note that if
k — k' is a ring map, then Sy, (k) @ k' = S, (k') as k’-module.

Lemma 1.2.2. The k-module Sy, (k) is a k-algebra, and Sy, (k) @ k' ~ S;, (k') as k'-algebras.
Moreover, there is a natural isomorphism of k-algebras Sy (k) ®y - - - @ S1(k) = Spm (k) where the
tensor product is taken m times.

Proof. By base change, it is sufficient to prove the statement for k = Z.

More precisely, we need to prove that for any I, J C {1,...,m} and r7,s; € NI | s e NI
we have that zsfﬁ[rl]szﬁ[T"] € Sm(k). First of all, from the equality 8[”]8[“ 6[ ]8[”} and
zizj = zjz;, for any i # j, we can rearrange the product 27" 05 More precisely, if
h<ig<..u€e€l,ji<jo<...jpedJandly <ls <--- <l are the elements of TUJ, (with
" <t+ t’) we have that

[r1] SJB[ J]‘

t//
sp alrr] Sy ol _ si; qlry;] S
27107 V270,70 = zlilﬁli l@
=1

i (1.2.1)

where we set 7, (resp. 17, s, s’) equal 0 if such elements do not appear in ry (resp. rf], 81, SJ) It
follows that we can reduce the statement to m = 1. Set 2y =z, rf =r, sy = s,r’; =1/ ,s] =g
Claim: For any r,s,1’,s" € Z>o with s’ > 1 the relation

220l o'l = peplr=1 s =1l 4 pst1gll 5 —1g0r] (1.2.2)

holds. Indeed, for r = 1, by the equality 0,z — 20, = 1 follows 9,25 = (14 z@z)zs/_l, thus
zsazzS’aL’”] = zszs/—laﬁ“] + zs+18Zzs/_18£T }. Moreover, we see that

22029l = (1/e) 220725 0] = (1/r) 220l ~ U2 1ol 4 (1/r) 2201 20,25 1 olr]

Thus, by applying an induction on 7 with the term zsaﬁ‘”

(1/7“),238?71]z@zzslflayl] =(1- 1/r)zsa£,r71]zslflagl] + szrlay}zS/*l&[;/].

z0,, we get also

The two latter equalities imply the claim.

Set g(r,s,r’,s") = zsag]zs/&[;/]. Then by definition, g(r,s,7’,0) € Si(k) for any non nega-
tive integers r,s,7’. Now by induction on s > 1, any g(r,s,r’,s’) is a finite sum of ele-
ments ¢(r1, s1,7),0) for some integers ri,s1,7] by the relation above. In particular,
259250l € S (k).

For the last assertion, we notice that the natural isomorphism of free polynomial algebras over k

k{21781} ®k e ®k k{zmyam} l> k{217 T 7zm7817 T 78771} (123)
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induces an isomorphism
S1(k) @y, - - @k S1(k) = S (k). O

Definition 1.2.3. E| A m-th crystalline Weyl algebra over a ring k is a k-algebra isomorphic to
S (k) for some m € N.

Lemma 1.2.4. Let k be an integral domain. If K = Frac(k) is a field of characteristic zero,
then Sy (k) @ K ~ Ap,(K)

]

Proof. It is clear, because 0] = r!@i[r and r! is invertible in K. O

Example 1.2.5. (i) Let D(Q[z1, ..., zn]) be the Q-algebra of differential operators of Afj. The

Q-linear derivations % =: 0; satisfy the relations

Ziaj — szi + (5@‘ =0, 3i8j = 8]'81‘,

therefore we can identify A,,(Q) = D(Q][z1, ..., zm]). Under this identification, a crystalline sym-
bol is a differential operator sending Z[z1, ..., zm] to Z[z1, ..., zm]. Now, D(Z[z1,. .., zm]) is the
Z-subalgebra of D(Q[z1, ..., zm]) generated by those differential operators sending Z[z1, . . ., 2]
to Zlz1, ..., zm]. Moreover, any 0 € D(Z|z1,...,2m]) C D(Q[z1,...,2n]) may be uniquely writ-
ten as

0= Zaﬁy’], ar € Q.
1

Since every crystalline symbol sends Z[z1, . . ., z;,] to Z]z1, . .., zp], it follows a; € Z. This shows
that S (Z) = D(Z[z1, .. -, 2m))-

(ii) For any ring k, Sy (k) = D(Z|z1,. . .,2m]) @ k C D(k[z1,. .., 2zm]): Indeed, it suffices to prove
that any 8im € Si(k) belongs to Fil, D(k[z1,...,2zm]). We can proceed by induction on r > 0,

since 62-[0] € kl[z1,...,2m| = FilgD(k|z1,. .., zm]). For any a, f € k[z1,..., 2] we have
r—1
0", al(f) = " (af) - ad (£) = D" 0@ (f) (1.24)
s=0

where the last equality follows by Formula (B.0.9). Then, the claim follows since by inductive
hypothesis, the operator 8Z~[Tfs](a)8z[s] € Fil,_1D(k[z1,...,2n]) for any s <r — 1.

When £ is a field of characteristic p, we have the following characterization:

Proposition 1.2.6 (cf. [Smi87, Theorem 2.7]). Let k be a field of characteristic p > 0. Set

A=kl[z1,...,2m] and A, = k[zfn,...,zf):]. Then,
D(A) = | ) Endg, (4). (1.2.5)
n=0

Example 1.2.7. With the same notation of Proposition [1.2.6] a basis for the A,-module
Endy, (A) is given by the following maps : for any s = (si,...,8;,) such that 0 < s, < p"
for any 1 <r < m, let

), s [ 2 ifs=]j
Oy () = { 0 otherwise (1.2.6)

2We did not find any reference in the literature for calling such an object, so we took the freedom to give a
name.
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where i = (i1,...,im),j = (j1,.-.,jm) € N™ are such that 0 < 4,5, < p" and z! := zil congim
Then, the maps Qi(j") extends uniquely to A,-linearly independent endomorphisms of A and it is
straightforward to check that Gi(jn) = zi(?Lpn;l]zﬁ_j, where p" —1=(p" —1,...,p" —1) € N™
and the sum of m-uples is taken component-wise. Therefore, Hi(jn) € Sm(k) C D(A) for any n >0
and i,j € N™. In particular, by Proposition it follows that D(A) = Sy, (k).

Lemma 1.2.8. Let k be a field of characteristic p > 0. If X = Spec(B) is a smooth affine
k-scheme of dimension m, then D(X) is locally isomorphic to a crystalline Weyl algebra. More
precisely, there exists an open covering U = {U;}; of X, where U; is a k-scheme étale over A",
such that there is an isomorphism of k-algebras D(U;) ~ Sy, (k) ®@A? Ou, for any 1.

Proof. Since X = Spec(B) is smooth of dimension m, there exists an affine open cover U =

{U; = Spec(B;)} together with étale maps k[z1,...,2m| — B; . Then we have an isomorphism
D(U;) =~ D(k[z1,-- -, 2m]) ®klzey,...zm] Bi = Sm(k) @gfz,,....2,) Bi- The last equality is given by
Proposition O

Proposition 1.2.9. Assume that k is a field of characteristic p. Let X be a smooth scheme over
W(k) and Xn, = X Xgpec(w(k)) Wn(k). Then, there is a canonical isomorphism of Wy, (k)-algebras
D(X,) < D(X) @wr) Wa(k). (1.2.7)

Proof. Tt suffices to prove the statement locally, thus we can reduce to consider an affine W(k)-
scheme X = Spec(B). Then, X, = Spec(B,) where B, = B ®w) Wn(k), hence B — B, is
surjective. By smoothness, the modules Q% JW () and Q}Bn JWo () 1€ free respectively over B and
By, of the same rank. In particular, we have the canonical isomorphism of Bj,,-modules (by [Stal,
Tag 00RS, Lemma 10.131.7] the following is an epimorphism and by smoothness, the B,,-modules
have the same rank):

Moreover, since B is smooth over W(k) we have for any m > 1 the following exact sequence of
free B-modules (cf. [TL95, (4.2.2)]) :

where PEL/W(k) denotes the B-module of principal part of order m as defined in [EGAIV] Defini-

tion 16.3.1] (where P} IWk) = B) and Sympg(—) is the symmetric algebra functor. By induction
on m > 0, and by the natural isomorphism

we get also the isomorphism of B,-modules between principal parts
Thus the statement follows by the chain of identifications:
Homgp, (P’ s, k)» Bn) = Dm(By) < Homp, (PE)y) ©B Bn, By)
= HOmB(PE/W(k), B ®p Bn)
= Din(B) @w) Wn(k).

where from the second to third line we use that PE/W(k) is free over B. O
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Remark 1.2.10. We notice that analogously to the Example (i), since W(k) is torsion
free, then S,,(W(k)) = D(W(k)|[z1, ..., 2m]). The proof of Proposition does not depend on
Proposition therefore we may use it to deduce the equality Sy, (k) = D(k[z1, ..., zm]). More-

over, by using the maps 6 constructed in Example|1.2.7} we see that Sy, (k) = > Enda, (4).

ij

Putting all together yields a proof of Proposition [1.2.6[
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Chapter 2

Some classes of W, O y-modules

In this chapter we introduce the main geometric objects of this thesis. We recall the main
properties of the De Rham-Witt complex as defined in the absolute setting by Deligne and
Mlusie [I1179] and we introduce a less standard concept of Witt line bundles, as recently studied in
[Tan22] by the name of Teichmdiller lift of line bundles. These objects will be used as coefficients
for cohomology of schemes equipped with an action of a finite group G. Their natural structure
of W, (k)[G]-module will be further investigated in the particular case of the Drinfeld’s upper
half space in later chapters.

2.1 The (Bloch-Deligne-Illusie) de Rham-Witt complex

In this section we recall the notion of a de Rham-Witt complex of a Fj-scheme X, following the
classical paper [I1I79]. We focus on some equivariant aspects that arise by assuming that X is
equipped with an action of a finite group G. In particular, the concept of G-linearization extends
for W,,Ox-modules (see Appendix |A| for the basic definitions of the ring of Witt vectors and
its sheafification) and in the case of the de Rham-Witt complex, a natural G-linearization arises
from that one on the de Rham complex.

2.2 Action of G on W, Ox

In the following we introduce the concept of V-pro-complex. In the next section we will see that
the category of V-pro-complexes admits an initial object given by the de Rham-Witt complex.
As warm up, we describe a G-linearization on W,,Ox as a lift of the canonical G-linearization of
Ox in the category of V-pro-complexes. The same reasoning will be applied to the de Rham-Witt
complex. In this chapter k£ will denote a perfect IF,-algebra.

Definition 2.2.1. Let B be a ring and A be a commutative B-algebra. Then, (M?®,d) is said
to be a differential graded A-algebra over B if the following conditions hold:

i) (M*,d) is a complex of abelian groups;
ii) For any i € Z, M" is a A-module and d: M* — M'! is a B-linear map;
iii) For any x € M',y € M7 , i,j € Z, the following relations hold:

ry = (=1)9yz, d(zy) = (dx)y+ (—1)'zdy, x> =0 if the degree of z is odd. (2.2.1)
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Notice that the definition above without ii) corresponds to that of differential graded

(Z-)algebra (over Z).

A V-pro complex is a projective system of (sheaves of) differential graded algebras (over Z)
satisfying certain relations.

Definition 2.2.2. Let X be a k-scheme. A V-pro-complex on X consists of the following data:

a) A projective system of sheaves of differential Z-graded algebras over Z on X, {R: M? —
M;Lfl}n627

b) A collection of morphisms of sheaves of graded abelian groups on X, called Verschiebung
maps {V: My, — M} 1 nez,

satisfying the following conditions:

1. For any n,r € Z, M;], is a quasi-coherent W, Ox-module such that M, = 0 if n <
0 or r < 0; MY is a sheaf of k-algebras and M% = W, (MY?). Moreover, the maps
R: Wy 1 (M) — W,(M?) and V: W, (M) — W, 11(M?) agree respectively with the
canonical restriction and Verschiebung map of Witt vectors,

2. The Verschiebung maps are compatible with the restrictions, i.e. RV = VR holds,
3. V(xzdy) = V(z)dV(y) for z,y € MY,
4. V(y)dalpi = V([2]5  y)dV([z],) for all 2 € M? and y € M.

A morphism of V-pro-complexes is a collection of graded differential algebra morphisms f; :
M? — N2 such that they are compatible with R and V, and f2 = W,,(f?).

If we consider W,,Ox itself as a trivial graded differential algebra complex with degree (with
respect to the index r in the definition above) concentrated in 0, with d = 0 and R and V
as usual, it is a V-pro-complex. As abuse of notation, we choose to omit the subscript of the
Teichmiiller representative, when it is clear from the context.

From now on, let us consider a finite group G as constant k-group scheme and suppose G acts
on X viano: G xp X — X.

Denote by pr;: G X X — X the canonical projection, priy : G X G X X — G X X the
projection (g1, g2, ) — (g2, ) for gi,g2 € G, x € X, and pry = pr; o prys.

For any morphism of schemes over k, f: X — Y, and a W,,Oy-module F, define the pullback
f*F as the W,,Ox-module

FF=f'"F@r1w,0, WaOx. (2.2.2)

Definition 2.2.3. Let F be a quasi-coherent W,Ox-module. A G-linearization on F is an
isomorphism

¢: 0" F — priF (2.2.3)
satisfying the following cocycle condition
(m X idx)*¢ = prig¢ o (idg x ) ¢. (2.2.4)
The W,,Ox-module F is said to be G-equivariant if it has a G-linearization.

Definition 2.2.4. Let My, N} be V-pro complexes on X and let f : M} — N7 be a collection
of Ox-module morphisms. A morphism of V-pro complexes f5 : M5 — N is called a lift of
frif R lo fr = fl o R" ! at each n,r € Z.
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Remark 2.2.5. This definition says in particular that ff = f{ and for r = 0 we have fg =
W,.(f?) is uniquely determined.

So we see that in the case of (W, Ox,0, R) the notion of lifts is intrinsic in the description of
Wy,. Thus, any automorphism of Ox lifts to a unique V-pro-complex automorphism of W, Ox.
In particular, o, induces a G-linearization, given by (¢g)n = Wy ().

Remark 2.2.6. The action given by gbg is the "natural” one if we consider W,0x ~ O% as a

setl More precisely, we are saying that the rule gbg(fo, oo fnm1) = (0g(f0)s -+, dg(fr—1)) defines
a ring morphism, that simply is the functoriality of W, (—)

Rephrasing last remark yields the following:

Lemma 2.2.7. The map qgg € End(W,,Ox) is the unique morphism of V-pro complexes lifting
¢q € End(Ox).

We will see that the analogous lifting property (cf. Remark[2.3.2)) holds for the de Rham-Witt
complex.

2.3 Definition and properties of the de Rham-Witt complex

Here we are going to recall definition and properties of the Bloch-Deligne-Illusie de Rham-Witt
complex, following mainly [[1179] and [LZ04].

Proposition 2.3.1. For any commutative k-algebra A, there exists an object (W,Q%, R, V)
in the category of V-pro-complexes on Spec(A) such that W,Q% is a differential graded W, (A)-
algebra (dga) over Wy, (k) and for any other V-pro-complex (M3, R', V') such that M2 is a W,,(A)-

dga over Wy, (k) there ezists a unique map of V-pro-complexes
W,Q% — M. (2.3.1)

Proof. In the case k = F, this is [IlI79, 1.1, Theorem 1.3]. Since k is perfect, the statement
follows by loc. cit. 1.1, Proposition 1.9.2. 0

Remark 2.3.2 (Universal property of the de Rham-Witt complex). By Proposition in
particular it follows that the functor C'— W, Q2 from k-algebras to V-pro-complexes on Spec(k)
is fully faithful, i.e. for any k-algebras A, B there is a natural bijection

Homeprofc.(Spec(k))(WnQ;h WnQ.B) = Homk—alg(Aa B)7 f = f{)

We recall the construction of W, Q%. Let us denote the de Rham complex (relative to Z)
of any commutative ring B by %. We proceed inductively on n > 1. Define W1Q% = Q%
and suppose that we know W;Q% for any 1 <1 < n such that W; Q% = W;(A). The restriction
R: Wy11(A) = W, (A) induces a dga morphism Dy, 1 a) = Ny, (a)- For any n one can define
a collection {I}},en of dga ideals for QO W, (4) and additive maps (Verschiebung) V: W, Q% —

O%,.1(4)/1n+1 such that the following hold:

1) W18 = Q| ay/Insr and Wy Q) = Qg 4y = Waia (A);

2) V: W, (A) = WHQA — Wn+1QA = W,+1(A) is the Verschiebung of Witt vectors and
V(y)dz] — V([z]P~y)dV([z]) € I}, for any 2 € A,y € Wy(A) ;

lwe cannot ask more structure in order to get such an isomorphism, for example as @ x-modules.

18



3) V(adzx;...dz;) = V(a)dV(x1)...dV(x;) for any a,z1,...,2; € Wy(A), and adz; ...dz; =
Tn(a®dr1®- - -®@dx;) € T, (Q%VH(A)) where 7, : Q:Nn(A) — W, Q% is the surjective canonical
map;

4) R(Iy,,) C Iy, thus it induces a map R: W, 11Q% — W, Q5.

Moreover, V is a map of complexes respect to n and R: indeed condition 2) and 3) determine V
uniquely, then it follows from 4) and because R is a dga morphism.

The de Rham-Witt complex is equipped with a Frobenius operator lifting the Frobenius on
the Witt vectors F': Wy, 41(A) — W, (A). More precisely, there exists a unique morphism of
projective system (respect to n and R) of dga’s

F: W, 1Q% - W,,Q% (2.3.2)
such that
5) Fdz] = [z]P~1d[z]; 6) FAV =d: W, (A4) = W,Q}.

This is the content of the loc. cit. I, Theorem 2.17. Moreover, the following relations between
F,V,d, R hold (cf. loc.cit. I, Proposition 2.18):

7) FV =VF =p: W, Q) = W, }; 10) FdV = d: W, Q% — W, Q4
8) dF =pFd: W, — W, Q% 11) 2Vy = V(yF(z)), =€ W,Q4, ye W, .
9) Vd = pdV: W, — W, 10Q4;

For any k-scheme X and any open affine Spec(A) = U C X there is a unique quasi-coherent
sheaf of W, O x-modules, namely W,QY%, such that

WaQ: U — T(U, W, Q) = W, Q). (2.3.3)
We call WanX the i-th Witt differential module, or i-th Hodge- Witt module.

Remark 2.3.3. i) Since the Hodge-Witt modules are quasi-coherent, in particular, they behave
well under localisation maps: more precisely, if A — B is a localisation map, then the natural
map W, (B) ®w,(a) W, Q% — W, Q% is an isomorphism.

ii) For any morphism of k-schemes f: X — Y,f~'W,Q$ is a V-pro-complex. Thus the natural
map f~'Oy — Ox induces a morphism of V-pro-complexes f _1WnQ;/ — W,Q%. In particular,
for a point i,: z < X, from the equality i;'!Ox = Ox, follows that there is a naturalﬂ
isomorphism i, 'W,Q% = (W% )z = W% .

Moreover, Hodge-Witt modules behave well under étale morphisms of k-schemes. More
precisely, the following holds (cf. loc. cit. I, Proposition 1.14):

Proposition 2.3.4. Let X i> Y be an étale morphism between k-schemes X,Y. Then, the
natural map of W,,Ox -modules

W08 — W,0% (2.3.4)
s an isomorphism.

The action of G on X induces a G-linearization on the Hodge-Witt modules of X:

*The notation Q% , stands for Q% where A = Ox ,.
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Lemma 2.3.5. If G is a finite group acting on a k-scheme X, then for any i > 0, WnWX i
canonically a G-equivariant quasi-coherent W, O x -module.

Proof. Since G is finite, o is a local isomorphism (because Spec(k) C G is open). In particular,
o is étale; the same is true for pr; (for this case we can just notice that G x; X as a scheme over
X is a finite disjoint union of copies of X) thus by the Proposition there are isomorphisms

oW, Q% = WnQEXkX; priW, Q% <& WnQEka (2.3.5)

Composing the two maps above we get an isomorphism ¢: *W,, Q% — priW,Q%. To verify the
cocycle condition
(m X idx)*¢p = prisp o (idg x 0)*¢ (2.3.6)

we first notice that it is well defined by the relations o o priy = pry o (idg X ¢); pr; o (m x idx) =
pr;oprys = pry and (by definition of action) oo (m xidx) = oo (idg x ). Furthermore, consider
¢ as map of V-pro-complexes varying n and i. Denote by ¢?: 0*Ox — priOx the map ¢ when
n =1 and ¢ = 0. This is the natural G-linearization of the structure sheaf Oy, in particular the
cocycle condition holds for ¢9. By Remark the maps (m x idx)*¢, pris¢, (idg x 0)*¢ are the
unique morphisms of V-pro-complexes induced respectively by (m xidx)*¢Y, pri,¢?, (idg x 0)*¢Y,
therefore the cocycle condition for ¢ follows again by universal property of the de Rham-Witt
complex. O

Now suppose that X is a smooth k-scheme.

Proposition 2.3.6 (|I179, I, Prop. 3.7 (a)]). If X/k is smooth of dimension N then W, 11Q% =
0 fori> N.

For every n > 0, W,,1Q% is equipped with the following canonical filtration of dga’s:

Fil" W 10% = ¢ ker(W, 1% S W, Q%) if1<m<n+1 (2.3.7)
0 ifm>n+1

Denote by Fx: X — X the absolute Frobenius. Then F' X*Q?X is the sheaf of abelian groups QZX

with a structure of Ox-module induced by F §<: Ox — Fx+Ox. We recall the definition of the
(inverse) Cartier operator.

Proposition 2.3.7 (|[Kat70, Theorem 7.2]). There is a unique Ox-module map

. d i1
_ i i . ker(FX*Ql — FX*QH_ )
Ox': O — hY(Fx. Q%) = y AR (2.3.8)
(FX*QX )

such that Cy*(dz) = [zP~1dz] € A for any local section x € Ox, Cy'(nw) = O (n)Cy (W) for
ne we Q% and cyl = F)ﬁ( for i =0. Moreover, C)}l is an isomorphism.

‘We need C)_(l in order to define some abelian subsheaves

B,y C Z,0% C Q

3 Alternative argument: o induces an action G x W, (X) — W, (X). The classical Kihler differentials Q%iv,,,( X)
are in this way G-equivariant and, by naturality, the projection 7, is compatible with such linearizations. The
cocycle condition follows from this compatibility.
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by letting ' ' '
ByQy =0, ZyQy = Q%
BiQY = BQYy =dQ% !, Z1Q% = ZO% = Ker(d : Oy — Q1)
and inductively on n, Bn—&-ngQ respectively Zn+1Q§( are the unique subsheaves such that

Cx'(Bux) = BunQy/By;  Cx'(ZaQx) = ZuaQx /B (23.9)

We have the following relation between the graded module associated to the canonical filtration
above and the sheaves BnHQ&, ZnHQé(:

Proposition 2.3.8 ([IlI79, I, Corollary 3.9]). Let X/k be smooth and for any n,i > 0, let
gt"W,,11Q% be the n-the graded piece of the filtration ([2.3.7). Then,

a) gr"WnHQfX = Fil”WnHQfX = V”Qfx + dV”QfX where we identify QY = Wlﬂfx;
b) If gr" W, 1 Q% is equipped with the structure of a Ox-module induced by
F:Ox = W,410x/VW,,0x = W,,110x/pW,+10x, (Notice: p(gr"W,,+1Q%) = 0)

there is an exact sequence of Ox-modules:

0— F"“i%? s g W Q2 F”“ﬁ =0 (2.3.10)
X BnQS( n X Xx Zanzl

where By, is the map sending an element of the form V(z) + dV(y) to the class of y.

Q; Q!
Furthermore, F)’}IlB Qf,l and F)T*FIZ gi,l are locally free Ox-modules.
nefx netx

Remark 2.3.9. Assume that G acts on X. Since o and pr; are étale, in particular flat, mor-
phisms, it follows that o*,pr} are exact functors QCoh(G xj X) — QCoh(X). Since QY is
canonically a G-equivariant Ox-module for any 4, and d is a G-equivariant morphism, the same
holds for ZQ%,BQ&. Furthermore, the Cartier operator is functorial on maps of k-schemes,
hence it is G-equivariant. Thus, also Zn+1ﬂg<, Bn+193( are such. We conclude the short exact

sequence (2.3.10)) becomes G-equivariant.

2.3.1 Description of Wan[%_._’xd]

We are going to describe the De Rham-Witt complex of the d-dimensional affine space Ai.

A weight function is a map of sets r: [1,d] — Z[l/p]z(ﬁ The support supp(r) C [1,d] is the
subset of elements j such that r(j) := r; # 0. We say that r is nonzero if its support is nonempty.
We fix a total order on supp(r) such that E|

Up(1rq) < vp(rp) and
the ordering of supp(r) and supp(p™r) agree Vm € Z.

(2.3.11)
For any ordered subset I C supp(r), we define the weight r; as the restriction of r to I and 0 on
the complement. Moreover, let

Y a,b € supp(r), a%b@{

HI) = t(ry) = { 5“11“@61{”?(”)} i: ig C o u(l) =) = max{0, (1)}, (2.3.12)

N,d|={i€Z:1<i<d}and Z[1/p]>0 = {ap™ : a,n € Z,a > 0}.
°In particular, for a # b such that v,(r4) = vp(rs) one can fix any order (a < b or b < a) but it has to be the
same after multiplying by p™.
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We call r integral if and only if t(r) < 0. An integral weight r is called primitive if and only
if ¢(r) = 0. For any weight r, p'")r is primitive and p*(")r is integral. Let (Io,...,I;) be a
(i + 1)-tuple of pairwise disjoint subsets of supp(r) satisfying the following properties:

i) IoUIp---U I = supp(r);
i) L #0ifi>j>1;

iii) For any j =0,...,7—1, any element in /; is smaller then any element in I;; with respect

to the total order (2.3.11]).

iv) For any 0 < j <4, if a,b € I; with a < b, then for every ¢ € supp(r) with a < ¢ < b, we
have c € I;.

Denote by 77,@ be the set of such partitions.
Remark 2.3.10. The conditions i) and ii) yield |supp(r)| > i. Suppose |supp(r)| =1 > i and
write supp(r) = {a1 < ag < --- < a;}. The property iv) implies that any I; with |I;| = ¢; # 0 is
of the form I; = {as,,as;+1,...as;4+¢;—1}. By ii), ¢; # 0 and by iii), s; + ¢; — 1 < s;41 for any
j=1,...,i—1. Also, from i) it follows s; + ¢; = sj41. If ¢cg = 0, then a; € I; and the i-tuple
(c1,...,¢;) is a partition of [ of length ¢ made of positive integers. Moreover, ¢; determines
I = {ay,...,ac } and so the set I is uniquely determined by its size |I3] = co. Inductively, the
set I; is determined for any j. In the case ¢y # 0, (co,...,¢;) is a partition of [ of length i + 1
made of positive integers. Analogously, ¢y determines Iy = {a1,...,a,}, therefore any set I;
with j > 1is (inductively) uniquely determined by its size ¢;. Hence, there is a bijection between

the set Pﬁi) and (ordered) partitions of [supp(r)| of length i and i + 1 made by positive integers,
such that a (i + 1)-tuple (Ip,...,I;) € P with Io = 0 (resp. Iy # ) corresponds to a partition
of length ¢ (resp. i + 1).

Let Tj := [z;] € Wy(k[z1,...,24]) for any 1 < j < d and for any integral weight r, T" :=
Ty --- Ty Let us define the following elements of Wy, (k[z1,...,24]) and W, Q5

[T1,...,2q]

ulr u(r)r . . .
(1, 7) = Vi) (Tpu(’r>r)’ eL(1,r) = v )(Tpm-) ) if r is not integral (2.3.13)
FtO g™ if r is integral.
Let P € 777@. We combine those elements to get the following elements in \7\7,19};[%_1 wd]’
eQ(L,rp)es (L, rr) et (1,ry) if Ip # 0
en(l,T,P) - { e%(lyrll)"'e}m(l,rli) if 1—020 (2314)

The elements e, (1, r, P) satisfy the following relations with the operators F, V, d of the de Rham-
Witt complex:

pen(1,pr, P) if Iy # 0 and r not integral
en(1,pr,P) if Iy =0 or r integral

_1 . _1 .
Ven(l,r, P) = { en(1,p 7713 P) if Iy # 0 or p~'r integral

Fen(1,r, P) :{

pen(1,p~tr,P) if Iy =0 and p~!r not integral
0 if In=10
de,(1,7,P) =< en(l,r, (0, P)) if Iy # 0 and r not integral

p~ e, (1,7, (0, P)) if Iy+# 0 and r integral.
Then, the following holds:



Proposition 2.3.11 ([LZ04, Proposition 2.17]). Everyw € VVnQ’,"C[I1 zg) €N be uniquely written
as a finite sum of the form

w= > mrp-ea(l,r,P), np € Wy(k) (2.3.15)
r,PGPT(i)
where the sum runs over all weights r such that |[supp(r)| > i with p"~'r integral and all partitions
Pep.
2.3.2 An isomorphism after Illusie-Raynaud

Classically the de Rham-Witt complex is introduced to study crystalline cohomology. If X is
a smooth k-scheme admitting a smooth lift X’ over W,,(k), there is a relation between Hodge-
Witt modules and sheaf cohomology of the de Rham complex of X’/W,, (k). This is discussed in
[IR83]. The authors prove that for any n > 1, there are higher Cartier isomorphisms

C™": WoQy = B/ (W, %)

induced by the Frobenius map F": WgnQiX — W, Q% such that for n = 1, C~" agrees with the
classical inverse Cartier operator. Furthermore, by comparison of crystalline cohomology and de
Rham-Witt cohomology, there is a canonical Wy, (k)-linear isomorphism

W% pw,) = B (W),

Taking its inverse and composing with C~", we get an isomorphism

Fs Wy = W (% w,)- (2.3.16)
When i = 0, F™ can be described explicitly ([IR83, p.142, line 8]). Let (z1,...,2,) € W,Ox
and choose, respectively, some lifts Z1,...,Z, € Oxs. Then,
~ n—1 ‘ iy
F": (:El,...,wn)l—>2pz:if+l . (2.3.17)
i=0

Let ®: W, (k) — W, (k) be the Witt vector Frobenius. Here we don’t introduce the higher
Cartier operators, neither the crystalline comparison with de Rham-Witt cohomology. However,
we will prove that the latter map above is a well defined W,,(k)-®"-semilinear isomorphism by
elementary methods. We will only require the existence and injectivity of the classical Cartier
operator in order to keep the proof self-contained as much as possible. We will point out that
surjectivity of depends on k being perfect (the motivation for such a notation relies
on the more general statement of [BER12, Prop. 8.4]). Notice that p” = 0 in Ox/ and the
topological spaces underlying X and X’ are the same.

Proposition 2.3.12 (c.f. [BER12, Prop. 8.4] and [IR83, Ch. III, sec. (1.5)]). Let X be a smooth
k-scheme together with a W, (k)-smooth scheme X' lifting X. Then, the map

n—1

n—1
F": WoOx — Oxr, (21, .,20) = Y p'ab, (2.3.18)
1=0

is a well defined ®™-semilinear injective morphism of sheaves of W, (k)-algebras, inducing an

isomorphism onto ker(Ox 40l /).
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Proof. The map (2.3.18)) is well defined: if Z;1; and Ziy1 are different lifts of @41, i.e. Fi41 =
Ziy1 (mod p), then p":%f_:z = pifcfi? (mod p™). Moreover, clearly d o F™ C p"QL, = 0, thus
F"W,0x C ker(Ox % QL,).

(2.3.18)) is a ®"-semi-linear morphism of W,,(k)-modules: We observe that as map of sets, it
factorizes the n-th ghost map

n—1i

n
Wini10x Lny Oxr/y  (Y1y-- s Yng1) szyfﬂ (2.3.19)
=0

through the restriction morphism W,,+1(Ox/) = W,,11(Ox) — W,(Ox). Since the latter and
wy, are ring homomorphisms, the same is true for (2.3.18). If a = (a1,...,a,) € Wy, (k), then
([a1], .-, [an],0)(Z1,...,%n,0) € W, 411O0x is a lift of a - (x1,...,2,), where [a;] € W, (k) is the
Teichmiiller representative of a; € k. Therefore,

F'a-(z1,...,2n)) = wp(([a1], - - ., [an], 0)wn (21, - .., &, 0)) = " (a) F" ((z1, ..., xn)).
(2.3.20)
is injective: If F™((z1,...,2,)) = 0, then reducing the expression (mod p) we get
#1”" = 0 (mod p). Since X is smooth (so reduced), z; = 0. Thus, we get an expression

p¥h 4+ -+ p" 1%, = 0 (mod p"). Multiplication by p: W,_1(k) — W, (k) is injective,
therefore by smoothness of X', it implies

n—1 -

i 4+ p" %8, =0 (mod p"t).

Again reducing modulo p, we get 9 = 0. Repeating the argument, we obtain that all z;1’s are
0.

(2.3.18) is surjective onto ker(d): let y € Oxs such that dy = 0. Suppose n = 2. Then
reducing (mod p), we get § € ZQg(. Since ZQg( is generated by the elements zP with x € Ox,
there exists a1, as € Ox such that

y = al + pas. (2.3.21)

|E|It follows by applying d and dividing by p (since again multiplication by p is injective) to the
relation , that aﬁ’*ldal + day = 0 € Ox (where a; = a; (mod p) for i = 1,2). Now the
claim is that a’f_ldal can not be a boundary || More precisely the following claim holds:

Claim: Let a1,...,a,—1 € Ox, then Z:‘L:_f afn_tldai € BQY if and only if da; = 0 for any
1=1,...,n—1.

If we assume that, then da; = day = 0 and repeating the argument, we write a; = ¢ for some
yi € Ox (i = 1,2), thus we get an expression (for i = 1,2) a; = ¢/ + pb; for some y;,b; € Oy
such that y; (mod p) = y;. Replacing in , we get an expression of the form y = yzf +pyb
for y1,y2 € Oxs. Then we can proceed by induction on n > 2.

Reducing the expression dy = 0 (mod p"~!), by the inductive hypothesis, there exist
Y1y Yn_1 € Ox:/p" 1 such that

n—1—1

n—2
Y = Zp’yﬂrl (mod p™1).
=0

SHere we are using that k is perfect: write § = >, asa? = (3, fizs)? for some a; € k, x; € Ox and
Bi = (Cli)l/p € k.
"Heuristic motivation: we cannot integrate P~ ! in characteristic p.
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Lifting every y;4+1 to some g;11 € Ox, it implies that there exists a y, € Ox- such that

n 1—1 _
y— Zp P ="y (2.3.22)

Since, dy = 0, applying d to the equality above, we get that

n 1—1 1 _
Z yz—l—l dyi-‘rl) = pn 1d(_yn)- (2323)
Therefore,
n—2 s
_ 7L — 71_1 _
Z Uil djip1 € BQY,
=0
where g;+1 is the mod p reduction of y; 1. By the claim it follows that dy; = --- = dy,—1 = 0.

Thus, by , djn, = 0 € Q% from which the statement follows.

Proof of the claim: Of course if da; = 0 for any ¢, one implication is trivially verified. For
the other one, we observe that the statement is local, thus it suffices to be verified in the case of
X = Spec(A) for a smooth k-algebra A.

We notice that the claim for n = 2 is equivalent to say that the Cartier operator C~! :=
C’Zl : QY — hY(Q9) is injective, thus it holds by Proposition Moreover, C~! is F-semilinear
over A, where F': A — A,a — aP is the absolute Frobenius. It follows, that

CYa” da) = [(a? " P]C (da) = [o*"" ' da] (2.3.24)
for any a € A, r > 0. Thus, we have the following equality (mod BQY):
n—1 ) n—2 L
0= " daj=C(day_1 + Y o T'da;) (mod BQY). (2.3.25)
=1 =1

Since C~! is injective, then follows that

n—2 -
S o lda; € BOY (2.3.26)
i=1
and by induction, it follows da; = --- = da,—2 = 0. By applying the claim for n = 2 again, it
turns out that da,,_1 = 0. L]

Remark 2.3.13. When £ is not a perfect [F-algebra, the proof of Proposition 2.3.12 shows that
the map ([2.3.18) is still an injective morphism with image contained in ker(O x- 40l /)

2.3.3 Hodge-Witt cohomology of P¢

Let d > 1 be an integer and k a perfect field of characteristic p. We are going to compute the
Hodge-Witt cohomology of the projective space P := IP’%.

The same proof of Proposition can be found in [BER12, Theorem 6.4] (we only avoid
the derived category language used by Berthelot et al.). More classically the result has to be
attributed to Gros in |Gro85 Corollaire 4.2.15] depending on relevant results of Ekedahl (cf.
[Eke85|, Corollary 1.1.3]). However, we found the first approach easier and more straightforward
than the second one. The cost is that it requires the concept for a smooth and proper variety
of being ordinary, which is not used in the classical approach. Here, we will address these
considerations, as well as a proof of Proposition

The following result for the Hodge cohomology is well known:
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Proposition 2.3.14. Leti,j > 0 be integers. Then, there is a natural isomorphism of k-modules

k if0<i=j<d

i J ) —
H(P,Qp) = { 0 otherwise (2:3.27)

We will see that a similar computation for the Hodge-Witt cohomology holds true:

Proposition 2.3.15. Let i,j > 0 be integers. Then, there is a natural isomorphism of W, (k)-
modules
W, (k) if0<i=j<d

0 otherwise

H! (P, W, Q) = { (2.3.28)
What we actually prove is that Proposition [2.3.15| descends from Proposition [2.3.14l The key
point is a geometric property of the projective space P.

Definition 2.3.16. A smooth and proper scheme X over k is called ordinary if

H(X,BQY,,)=0, (B, Ay

X/k X/k — X/k) (2.3.29)

for any 4,5 > 0.

When the crystalline cohomology of X over W = W(k) is torsion free, the condition of
being ordinary can be formulated in terms of the Hodge and Newton polygons associated to
H’,,s(X/W). For the definition of Newton and Hodge polygons we refer the reader to [Kat79] .

Proposition 2.3.17 ([BK86, Proposition 7.3]). Assume that H..  (X/W) is torsion free for
any © > 0. Then, X s ordinary if and only if the Hodge polygon associated to the numbers
h? = dimH 7 (X, Qﬂ(/k) coincides with the Newton polygon given by the Frobenius action on

HéryS(X/W) for any i > 0.
Lemma 2.3.18. The projective space P over k is an ordinary scheme.

Proof. Let P = P%V(k)' The comparison of crystalline cohomology and de Rham cohomology of
the projective space over W(k) ensures that Hérys (P/W) ~ H}, R(]5 /W) is torsion free. Thus we
can apply Proposition 2.3.17]

The cohomology group HfiR(P/W) vanishes if 7 is odd such that 0 < i < 2d, or ¢ > 2d. It
follows that h#/2 =1 for i even and hJ = 0 in all other cases. Thus, the Hodge polygon has slope
i/2 and length 1 for 0 < i < 2d even, and is trivial for other i’s.

The computation of Hodge cohomology groups gives

HY(P,Q. )=

Bw PIw

(2.3.30)
0 otherwise

{ Hi/2(P,Q%2 ) if 0 <i < 2d is even

and they are all torsion free modules. Thus, the degeneration of the Hodge spectral sequence (c.f.
[DI87, Corollaire 2.5]) implies that hyp = hi/2 | where h!, denotes the rank of the cohomology
H!,,(P/W). In particular, the absolute Frobenius on P acts on the i-th crystalline cohomology
as the multiplication by p* = p/2 or as the 0 map. Hence, the Newton polygon has numbers
A =14/2 and mult(\) = 1, therefore agrees with the Hodge polygon. O

Lemma 2.3.19 ([BER12, Lemma 6.2]). Let us consider the canonical filtration on the de Rham-
Witt complex Wy, 1Q% for any n > 1. Then, for any i,j > 0 there are canonical isomorphisms

HY(P, Q) = HY(P, gr"W,,1195) (2.3.31)
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induced by the map V™ in the exact sequence (2.3.10). Let F be the absolute Frobenius of P.
When the cohomology on the left side is equipped with the k-module structure induced by the
Op-module structure of F,?HQZD and on the right side with the one induced by the Op-module

structure given in Pmposz’tz’on the isomorphisms (2.3.31]) are k-linear.

Proof. Consider the following diagram of exact sequences of Op-modules, where the vertical one
is given by the short exact sequence ([2.3.10]) :

N
>

0 —— FrHZ,0p " = Friop —— (97 /2,0p7) —— 0

W1 Y, (2.3.32)
Vn/\
0 —— FrHB,0l, — 5 Frdigl, O il /B,0%) ——— 0

A~

0

We prove by induction on n that the maps a, and b,, induce isomorphisms on the i-th cohomology
for any ¢ > 0. Indeed, for n = 1 this is true because P is ordinary.
Generally, we have the following isomorphisms:

—1

H'(P, B,QY%) % H' (P, B,+19%/BOY%) < H'(P, B 419%) (2.3.33)

where C’ISI is the inverse Cartier isomorphism and the other map is induced by the natural
projection. Since P is ordinary, then it is an isomorphism. Thus, the claim for b, follows.

For a, we can analogously consider the following commutative diagram, given by the func-
toriality of inverse Cartier isomorphism:

. . ot . . . - . .
Hi(P, Z,$¥,) —2— Hi(P, Z, 1%,/ BQY,) «=— Hi(P, Z,419%)

% l l (2.3.34)

1

: ; Cy . . : , .
H(P, Q%)) —=— HY(P,ZQ%,/BQY,) +——— HY(P, Z)

As before, the top and bottom line are isomorphisms. The left vertical map is isomorphism by
inductive hypothesis, thus the right outer vertical map is isomorphism too, yielding the claim
for a,. ]

Proof of Proposition|2.3.15. By the exact sequence of Wn+1(’)p—modules|ﬂ
0 — gr"W, 110 — W, 1% — W00 — 0, (2.3.35)

The Lemma [2.3.19| together with Proposition [2.3.14} imply that H*(P, WanD) = 0 for i # j.

Furthermore, when ¢ = j, by same considerations, we get the following short exact sequence of
W, 41(k)-modules on cohomology for any i:

0 — HY(P,gr"W,, 11Q%) — H(P,W,;1Q%) — H(P,W,Q%) = 0 (2.3.36)

8Here gr"WnHQ;) is considered naturally just as W41 0Op-module, unlikely to the O,-module structure given
in previous Lemma. Analogously, WHQ% is a W,,+10p-module via the natural restriction W, 110p — W,,Op.
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For any n > 1, define the map of abelian sheaves
d
dlog,: OF — W,Qp, s dls]

Passing to the first cohomology, the map dlog,, induces a map of groups
clpy: Z = Pic(P) — HY(P,W,Qp), (2.3.37)

such that F(clpnt1(1)) = R(clpp+1(1)) = clpn(1). Let clpy (1) € H/(P, W,Q%) be the i-th cup
product (induced by the structure of dga of W, Q%) of clp,(1). The multiplication by clp,, (1)
defines a Wy, (k)-linear map W,,(k) — H'(P, W, Q%).

Notice that for n =1, clp1(1) =: clp(1) defines the first Chern class generating the cohomol-
ogy HY(P,QL). Similarly, clp(1)® generates H!(P, Q%) for i > 0 (where clp(1)? = 1) (c.f. [Stal
Tag 0OFMG, Lemma 50.11.3]).

We have the following commutative diagram

0 —— HY(P,gr"W,,4105) —— H{(P,W,,;110%) —— H{(P,W,Q%) —— 0

V"oclp(l)ﬂ\ clp,nﬂ(lﬂ czpm(lﬂ (2.3.38)
-

0 —— Fl'k Wot1(k) ———— Wy (k) ——— 0

Here F]'k denotes the group k with the W,,1(k)-module structure induced by the iterated
Frobenius on Wy,41(k), F™: Wy41(k) — k. In this way, the sequences on top and bottom lines
are exact and the respective diagram is commutative, in the category of W,,11(k)-modules. By
induction on n, the outer maps are isomorphisms, thus it is the map in the middle too. O

Remark 2.3.20. The action of the finite group G = GLg441(k) on P is by functoriality compat-
ible with the dlog, map, thus, the identifications in Proposition [2.3.15| are G-equivariant.

2.4 Witt line bundles

We introduce the notion of Witt line bundles in the sense of [Tan22, Section 3.2]. There, the
author defines the notion of Witt divisorial sheaves, that are sheaves associated to a R-divisor
D on integral, normal, Noetherian F,-schemes, and that one of Teichmailler lift for line bundles
on general F,-schemes. Our terminology of Witt line bundles coincides with the latter one.
Moreover, when X is an integral, normal, Noetherian F)-scheme and D is a Cartier divisor on
X, both definitions agree. Let X be an integral k-scheme. Assume there is an integral W(k)-
scheme X such that X, := X X spec(W(k)) Spec(Wp(k)) is flat over W, (k) and X; = X. We
denote the total quotient ring of X with Kx (cf. [Har77, Ch. II, 6, Cartier Divisor, Definition
1] ). Notice that since X is integral, Kx agrees with the function field of X. Furthermore, for
any scheme Y, let Bun, (Y) denote the category of vector bundles of rank n over Y.

Let £ be a line bundle on X given by the collection {(U;)icr, (fij)(ij)erxr)}- By construction,
U; and f;;’s have the following properties:

e (Ui)ier is an affine Zariski open cover of X,
° fij S F(Uij, O)()X where Uij =U;N Uj,

. (fz‘jfjk:fki)\Uijk =1 for any triple (i,7,k) € I x I x I, where U;j;, := U; NU; N Uj.
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To a given line bundle £ = {(U;), fij} on X we can associate the line bundle W, L := {(U;), [fi;]}
on W, (X), defining a map

Bun; (X) Wo, Bun; (W, (X)) (2.4.1)
L— W, L.

It is induced by the Teichmiiller map O% — W,(Ox)*. In particular, it gives a group
homomorphism on the respective Picard groups:

H'(X,0%) ~ Pic(X) — Pic(W, (X)) ~ H' (X, W,(0x)*), class(L) — class(W,L). (2.4.2)

Definition 2.4.1. The line bundle on W,,(X) associated to £ via (2.4.1)) is the Witt line bundle
W, L.

More concretely, if £ = Ox(D) is the line bundle associated to a Cartier divisor D =
{(Ul‘, fz)}, with fz S F(UMK:;() then
1
fi

Lemma 2.4.2. For any integral k-scheme X, the association

W, 0x (D), = { }Wnom C Wa(Kx).

Bun; (X) 2 Bun (W, (X))
L+— W, L

is functorial, i.e. for any morhpism of line bundles E: L — M, there exists a natural morphism

of line bundles Wy (E): Wp,L£ — W, M such that Wy (idz) = idw,c and for any line bundle
morphism S: M — N, we have W, (S o E) = W, (S) o W, (E).

Proof. We need to define how W,, operates at level of morphisms. Let £ and M be line bundles
over X, and let [.] : K% — W, (Kx)* be the Teichmiiller map. Let E : £ — M be a morphism
of line bundles, and U = (U;);er be an affine open covering of X, such that Ly, = f;Oy, ~ Oy,
and My, = g:0y, = Oy, for some f; € I'(U;,K%), gi € T'(U;,K%). Moreover, the transition
maps are multiplication by some invertible sections, namely Oy,; —fi> Ouy,,; and Oy, R Ou,; s
such that f;;, gi; € T'(Usj, O%), fifi; = fj and gigij = g;. For any open Uj;, define

Wn(E)Ul : WnOUi — WnOUi,

being the unique map of W,,Opy,-modules such that W, (E)y,(1) = [E|y,(1)] ﬂ Since F is a
morphism of line bundles, we have the following commutative diagram:

Bu; U35
O, ——% Ou,,

iy “Gii 2.4.3
fz]l EU]- . lgi] ( )
Oy, — Oy,

It implies that the following diagram commutes:

WalB)v, g
WnOUij E— WnOUij
e s 2.4.4
[flj]l Wn(E)U \L[gm] ( )

J U

WnOUij E— WnOU,-j~

9 As abuse of notation , here 1 € f;Oy, >~ Oy, denotes the unique element corresponding to 1 € Oy;,.
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Indeed, we have the following equalities:

(lgi) ™" o Wil E)u, . 0 [fill) (1) = [933] ™~ [fisl W (B, (1) =
93] " fiil (B, (D] = Lo fig B, (1)] = [Bu, (D] = Wa(E)y, ([1])

where the second-last equality follows by (2.4.3). It follows that (W, (E)y,)icr glue together,
giving rise to a map of W,,Ox-modules

W, (E): W, L —- W, M.
It is also functorial. Indeed, by construction W, (id;) = idw, . Let
LEHMEN

be morphisms of line bundles on X, together with affine open cover U = (U;);er, such that L,
My, and Ny, are isomorphic to the trivial Oy,-module. Write Ey,(1) = s; for some s; € Oy,.
By construction, we have

Wo(S)u; © Wa(E)u; (1) = Wa(S)u; ([Ejy,(D)]) = [s:] Wa(S)([1]) = [s:Sv, (1)] =
[Su; (si)] = [Su; (B, (1)] = Wa(S © E)y, (1)
By linearity, it implies W,,(S) o W, (E) = W, (S o E), thus the functoriality is verified. O

Lemma 2.4.3 (c.f. [Tan22, Prop. 3.7]). Let D be a Cartier divisor on X. Let V,R,F be
respectively the Verschiebung, restriction and Frobenius (with F': Wy, 11(Kx) — W, (Kx)) map
of Wy, (Kx) and Fx the absolute Frobenius of X. Then, the following holds:

a) F(Wn+10X(D)) - WnOX(pD)
b) V(W,Ox(pD)) C W,,110x(D)
¢) R(W,+10x(D)) C W,,Ox (D).

In particular, we have the short exact sequence of W,,Ox-modules

0 — Fx,W,0x(pD) 5 W, 10x(D) 25 Ox (D) — 0. (2.4.5)
Moreover, there exists a unique morphism of W, Ox-modules
F":W,0x(D) — Ox, (p"D) (2.4.6)
where Ox, is considered as a W,Ox-module via the the map (2.3.18) and such that the compo-
sition 3
W,110x, (D) &% W, 0x, (D) = W, 0x(D) £ 0x, (p"D)

coincides with F™.

Proof. The statement is local, hence we can assume that X = U; for an affine U; = Spec(A),
where A is a k-algebra, and D = (Uy, f) for f € Frac(A)\{0}. Notice that F([f]) = [f]P and
V(a[f]P) = [f]V(a) for a € W, Op,. So a),b) easily follow, and c) holds by definition. Moreover,
R is surjective because it is induced by the surjective map W, 11(Kx) — W, (Kx). To prove
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the ([2.4.5]), we only need to verify that at level of stalks ker R"* C ImV. For, let x € X a point,
(2.4.5) has the form

0= [1/fPTWoOx2 — [1/f]Wni10x.2 23 [1/f]Ox .2 — 0. (2.4.7)
Let a = (a1, ..., an41) € Wy410x , such that R™([1/f]a) = 0. Equivalently, a;/f = 0. Then,

n+1

[1/fl(a1,...,ant1) = (0,a2/fP, ... ans1/fP ) =
V((az/f?,... ,an+1/fp”+1)) _ V([l/fp](az, e ns)).

For a generic section f/g € Ky, the condition F”([gil]) = § 7" extends the map ([2.3.18) to a
map of sheaves of rings W,,(Kx) — Ky . We prove that its restriction to W,,Ox (D) C W, (Kx)

gives the searched map. Indeed, for (2.4.6)) we can suppose that X has a model X over W(k),
thus we can assume that Uy is given by base change of a Zariski open V' of X. We denote by
Un the base change of V' with Spec(W,(k)). Take a lift f € Oy of f € Op, . Then the map

defined in (2.3.18)) is such that F"([f]) = fp" and does not depend on the chosen lifting. Since
W,.0p, (D) = [1/f]W,,Oy,, Op, (p"D) = f~P" Oy, and F" is homomorphism of sheaves of rings,
it extends to a such W,,Ox-module morphism in (2.4.6)). O

Lemma 2.4.4. Let X be a Noetherian, integral, separated k-scheme. Let U be an affine open
cover of X, and let L be a line bundle on X. Then, there is a canonical isomorphism of groups

H(U, W,L) = H(X,W,L), (2.4.8)
where H is the i-th Cech cohomology.

Proof. If D is the Cartier divisor associated to £L = Ox (D), by Lemma (2.4.3)) there is a short
exact sequence of abelian sheaves:

0 — W,_10x(pD) % W,,0x (D) — Ox (D) — 0. (2.4.9)

For n = 1, the statement is a particular case of the analogous result for quasi-coherent cohomol-
ogy. Using the long exact sequence on cohomology H and the 4-Lemma, the isomorphism (|2.4.8))
follows by induction on n. O

Lemma 2.4.5. Let f: X — Y be a morphism of integral k-schemes and E: L — M be a
morphism of line bundles over Y. Then, for any n > 1, we have that f*W,(L) = W,(f*L)
(respectively for M) and

FWo(E) = Wa(f*E): f*WaLl — F*W,M. (2.4.10)

Proof. The statement is local, thus we assume X = Spec(B), Y = Spec(A) where A, B are two
integral k-algebras. Then £, M are A-modules of rank one, respectively L ~ sp A, M ~ sp/A,
for some s, sy € Frac(A). Then f*L =B ®a s L~ hB and f*M = B®a s M ~ hy B where
hr = f(sp) = 1® sg, hayr = f(sm) = 1 ® spyr. Then, by definition, W, (f*£) = [hr]W,(B)
(analogously for M). Thus,

FWnL = Wn(B) @w,(4),w, () 5L1Wn(A) = [f(s£)]Wn(B) = [AL]Wn(B) = W, (f*L)

10Since W, L is a quasi-coherent module on the separated scheme W, (X), a long exact sequence for Cech
cohomology associated to the short exact sequence (2.4.9) exists as constructed in the proof of [Har77} I1I, Theorem
4.5].
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and analogously for M.
Moreover, by linearity W, (f*E) = f*W,(E) if and only if W, (f*E)([hz]) = f*Wn(E)([hL])-
By construction we have

W (f*E)([he]) = [f*E(hr)] = 1@ [E(sL)]
FWa(E)([h]) = 1@ Wo(E)([hr]) = 1® [E(sL)]-

Thus the equality is verified. O

Assume that X is equipped with an action o of a group GG and the line bundle £ is equipped
with a G-linearization in the sense of Chapter [I} Explicitly, an isomorphism

¢: 0" L = pril (2.4.11)

of line bundles over G x X is given such that ((1.1.2) holds. By Lemma the functor W,
commutes with pullback, thus the isomorphism ¢ induces an isomorphism W, (¢) satisfying the
cocycle condition ([2.2.4) for W, £. In other words,

Lemma 2.4.6. If L has a G-linearization, then it lifts to a G-linearization of WL for any

n—1
n > 1, such that the canonical projection W, L B ris G-equivariant. [

2.4.1 Cohomology of Witt line bundles on P{

Let d > 1 be an integer. We are going to compute the cohomology of Witt line bundles for IP%.
Denote by G the group of k-rational points of GLg441 acting on IP"kl.
Recall that we have the following G-equivariant isomorphisms of k -modules for any integers
1,7
) (k[ZO,...,Zd])T if 1=0
5 ([P’d,opg(r)) - 0 i i0,d (2.4.12)
Homy ((k [20,---,24]) _g_1_,,k) if i=d
where the index (—), denotes the r-th homogeneous degree part of the respective graded module.

Let O := OIP’%'

Lemma 2.4.7. Let b > 0 be a non negative integer and fix an integer n > 1. Then, for any
d>1 ‘
H{(P{, W,0(0) =0  Vi>0.

For b > 0 holds that H*(P¢, W, O(b)) # 0 and H(P4, W,,0) = W, (k).

Proof. The non vanishing assertion for the global section is clear (since it holds for n = 1). To
prove the vanishing of the cohomology groups H* for ¢ > 0, consider the short exact sequences
of abelian sheaves

0= W,_10(bp) 5 W, 0(b) — O(b) — 0.

Since H'(P?, O(b)) = 0 whenever i > 0, using the corresponding long exact sequence and by
induction on n, we have H! (P4, W, O(b)) = 0 for any i > 0 . The last equality follows since
HO(P{, W,,0) = W,,(H (P4, 0)) = W, (k). O

Lemma 2.4.8. Let a < 0 be a negative integer and fix an integer n > 1. Then, for any d > 1,

H(P{, W, 0(a)) =0  Vi#d. (2.4.13)
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Moreover, if d > —p™ta — 1, then
HY(P{, W,,0(a)) = 0. (2.4.14)
When d < —p"~ta — 1, the cohomology groups
VIHY(PE, W,_;0(p'a)), 1=0,...,n—1
form a non trivial descending filtration of W, (k)-sub-modules Fil* of HY(P4, W, 0(a)), such that
gr'Fil® ~ HO(PY, O(—p'a —d — 1))V
with the k-vector structure induced by F*, where F is the absolute Frobenius of ]P’ﬁ.

Proof. We have short exact sequence of Wn(’)ﬂpz—modules

0— F,W,_10(ap) Y, W,,0(a) = O(a) — 0.
Using the corresponding long exact sequence, we see, by induction on n, that
H' (P, W, O(a)) =0

for i # d. We have to determine Hd(]P’ﬁ, W,,O(a)). For any negative a the long exact sequence
has the form

0 =H"Y (P, 0(a)) — HYP{, W,,_10(pa))
— HY(PY, W,0(a)) = HY(P{, O(a))
— HL(PY, W, 10(pa)) — ...,
where the last term appearing above is 0. This means that we have a short exact sequence
0 — F,HYPY, W, _10(pa)) — HY(PY, W,0(a)) — HO(P{, O(—a —d — 1)) =0,
since HY(P¢, O(a)) ~ HO(PY,O(—a — d — 1))¥, by Serre duality. For any a and n fixed, define
V-(n)(a) = HY(P4, W,,_;O(p'a)) fori = 0,...,n—1 and Vn(n)(a) := 0. Then, we have a descending

7

chain of W,,(k)-modules
Fil*: HY(P, W,0(a) = V" (@) > V" (a) >+ > FI 71V (a) = F7HHAPE, 05" a)

such that griFil® are the k-vector spaces F’ (Vi(n) (a)/F*VZ(fl)(a)) ~ FH(PY, O(—pla —d — 1))V
for i = 0,...,n — 1. This quotient is trivial when p‘a > —d — 1. If we let

io(a) := max{i | p'a > —d — 1},

the chain above has the first ig(a) terms all isomorphic and for n > i > ig(a) the chain is formed
by non trivial proper submodules, so it is a non trivial filtration. When ig(a) > n — 1, that
precisely happens when p"~'a > —d — 1, then the chain is stationary and in this case

HY(P{, W, 0(a)) ~ FFTHO (P, O(—p"ta —d — 1))Y = 0. O

Remark 2.4.9. To compute the cohomology of Witt line bundles on the projective space, we
essentially used: short exact sequences of W,,O-modules that are G-equivariant, the group homo-
morphism and the Serre duality for projective space, which are G-equivariant, because are
both functorial morphisms. This means that all the modules involved above are also GG-modules,
and the respective maps are morphism of G-modules.
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We can summarize the computation above by the following Proposition:

Proposition 2.4.10. Let £ be a line bundle on IP’z. We have the following isomorphisms of
W, (k)[G]-modules

0 if i #0,d
0 ifi=d, L=0(a),a<0,d>—-p" ta—1
e, w,o) = § V) i=0,L=0 (2.4.15)
0 ifi=0,L=0(a),a<0
HO(P{, W, O(b)) #0 ifi=0, L=0O(b),b>0
#0 otherwise,

where G acts on W, (k) trivially.
Moreover, when £ = O(a) with a <0 and d < —p"~ta — 1, then

0# FrtHO(P{, O(—p"ta —d — 1)) ¢ HYPE, W,.L)
is a non trivial proper Wy, (k)[G]-submodule.

Proof. Since Pic(P{) = Z - O(1), any line bundle £ admits a G-linearization, because O(1) does.
Here, we consider the natural linearization on O(1) induced by the natural action of GLg41  on
IP’%. So the respective cohomology groups are G-modules. By the Lemma Lemma and
Remark all the equalities follow. O
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Chapter 3

Witt differential operators

Our next goal is to define a generalization of Dx, considering the sheaf W,Ox in place of Oy,
in such a way it can be seen as a lifted version of the sheaf of differentials over W,,.

Let k be a perfect field of characteristic p > 0, and d > 1 an integer. Let A = k[t1,...,%4],
Apt1 = Wopi(k)[t1, ..., tqg) and @ : W, 41(k) — Wy41(k) the Frobenius morphism induced by
the one on k. Consider the ring homomorphism defined by the n-ghost map

Wn, Wn+1(An+1) — AnJrl-

Lemma 3.0.1. Let k be a reduced F,-algebra. Let B be a reduced k-algebra and assume for
any n > 1, a projective system of flat W, (k)-algebras B, is given such that B, /p" ! ~ B, 1
(B1 := B). If F is a lift over By, of the Frobenius o: B — B, then F is injective.

Proof. Since B is reduced, o is injective. Suppose there exists a nonzero z € B, such that
F(z) = 0. Since the reduction modulo p of F'is o, then z =0 (mod p), so there exists a nonzero
x1 € By, such that = pz; and so pF'(z;) = 0. By flatness of B,, over W,,(k), this means that
F(x1) =0 € Bj,_1 (because B,,—1 = B, W, (k) W,,—1(k) 5B, W, (k) W, (k) = B,, is injective),
thus reducing again modulo p, there is a nonzero x9 € B, _1 such that 1 = pzs. Repeating the
same argument, there should exist a nonzero z,, € B such that x,_1 = px, =0 € B; = B, then
x=pr; =p’ry=--=p" ta,_1 =0 € B,; a contradiction. ]

Proposition 3.0.2. There exists a unique ®"-semilinear morphism over W, 1(k),
Wy, - Wn+1(A) — An+1 (301)

factorizing wy: Wyi1(Apt1) = Aps1 via the restriction Wyi1(Apt+1) = Wit (A4).
Moreover, the following hold:

1) For any lift F': Apt1 — Apt1 of the absolute Frobenius o: A — A, the relation
F = Foaw, (3.0.2)

(where F" s defined as in (2.3.18) for any n > 1) holds and does not depend on the choice
of F.

2) The map Wy, is injective and maps injectively ViW,11_;(A) into p' A1, i.e. it induces an
isomorphism between V"W, 11(A) and w0, Wy 4+1(A) N p*Api1.
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Proof. Let (f1,..., fant1) € Wyny1(A) and choose some lifts fi,.., fag1 of the respective f;’s
over A,.1. Define

—1

W W1 (A) = Apir, (Froeoos for) = A5 40"+ 4 0" fusn. (3.0.3)

The map @, is well defined: if f;1 and fi+1 are different lifts of fijy1, i.e. le = fi+1 (mod p),
then p’ ?ﬁlﬂ =’ ip:l " (mod p™™).

It is clearly the unique map factorizing the ghost map w, and thus @, it is a ®"-semilinear
ring homomorphism. (compare with the proof of Proposition .

By construction, for any Frobenius lift ', we have F"t1 = F o,,. Further, if F, Fy are such
lifts, then Fy(f;) and Fa(f;) are both lifts of the same o(f;) = fP. But @, does not depend on

the choice of lifts, so

Fy(@n(fuy- s fos1)) = FL(A)P" +pFi(f2)"" + -+ + " Fi(fas1) =
U}n(a(fl)v oo 70(fn+1)) = FQ(wn(fla ceey fn+1))'

Moreover, since F' and F"t! are injective (cf. Lemma Proposition , the relation in
1) yields the injectivity of .

We are left to prove the isomorphism between ViW, 1 ;(A) and @, Wy11(A) N pA,.q:
Indeed, if f = (f1,...; fut1) € Wni1(A) is such that @, (f) = ffn +pf§” ! 4. +pnfn+1~: D'y
for some y € A, 41 and some lift fs of fs, then reducing inductively modulo p®, we get fs =0
(mod p) for any 1 < s <. O

Set X; = X = Spec(4), X, 4+1 = Spec(Apn+1) and we denote the ring of differential operators
by D(Xp+1). By Chapter recall that D(X,,41) = D(A%V(k))@)WnH(k) =D(W(k)[t1,- - ta)) @wk)
W,41(k) where D(A‘\i,v(k)) is the W(k)-algebra generated by the differential operators described

on the fraction field by 8?] = %8[2 for any natural number r > 0. The natural projection
W(k) Fnt, W,+1(k) induces a natural map D(A%V(k)) fint, D(X+1)- The image of OZ.M under

Rn+1 is 8z[,rr]z+1

Since k is perfect, in [SGA1] Section III] is proved that we can always lift smooth affine
k-schemes, together with their absolute Frobenii, over W, (k)-schemes. But we can give a direct
proof of a local statement here. More precisely,

Lemma 3.0.3. Let B be a smooth k-algebra . Then, locally for the Zariski topology on Spec(B)
the following holds:

a) There exists a projective system {By}n>1, where for any n > 1, By is a smooth Wy, (k)-
algebra such that By+1/p™ ~ B, and B; = B.

b) There exists a projective system of ring homomorphisms {Fy,: B, — Bp}n>1 such that
Fy = o is the absolute Frobenius of B.

Proof. The following argument is the analogous one of [LZ04, Prop. 3.2].

Step 1: Assume that B ~ k[z1,...,zy]. Let B, = W, (k)[x1,...,2Zn], then
F,: B, = B, z;— !, W, (k) > ar ®(a) € W, (k) (3.0.4)

determines a unique homomorphism such that F} = o.
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Step 2:

Step 3:

Assume that B is étale over a polynomial algebra A = k[x1,...,zy].

Let A, = Wy, (k)[x1,...,2m]. The surjections A,+1 — A, have nilpotent kernel, thus by
the topological invariance of the étale site [EGAIV], Theorem 18.1.2], for any étale A,-
algebra B, there exists a unique étale A, -algebra B, 1 such that B,1 ®a4,., 4, = By.
Thus, since By = B is an étale A; = A-algebra, we get by induction a system {Bj}n>1
satisfying properties in a). Consider Fy,: A, — A, be the Frobenius lift of A given in
Step 1. Then, we claim that (Fa)*Bn = Bn ®a, F,,, An is an étale A,-algebra lifting B
compatible with the morphism A,, — A. Indeed, étaleness follows since (F'4 )* By, is the
base change of A,, — B,, along Fs . Also, since F) , is compatible with F4 1, one has

FjnBn®a, A= (Bn®a,,Fs, An) ®4, A=B®ar,, A=F),B. (3.0.5)

(It is clear from the following diagrams: since by definition (Fa,)*B,®a, A = (By®a, F4 .
Ap)®a, A1 and (Fa1)"B = (B, ®a, A1) ®4,,F,, A1, the following commutative diagrams

(Bn ®4,,F4,, An) ®a, A1 +—— Ay (B ®a, A1) @4, 14, A1 +— Ay
w ] S
By @a, pa, Ap —— A, Byoa, Al — A
B T
B, A, B, < A,

(3.0.6)

where 7: A, — A; is the canonical projection, are both pushout of the maps (4, —
ToFy n=

Fp,om
Bn, A, —————— Ay)).
Since A — B is étale, and the map (Fa1)*A —- A, d ®a=da? ® 1 — d/aP is an isomor-
phism, we get that (Fa1)*"A ®4 B = (Fa1)*B = A®4 B = B is an isomorphism. This
proves that (F'a,)* B, lifts B, compatibly with the map A,, — A. Thus, the uniqueness
given by the topological invariance theorem implies that there is a unique isomorphism
(Fan)*Bn = Bp. Then, let

Fo=Fpn: By = (Fan)*B, = B, (3.0.7)

where the map on the left is the canonical morphism b — b ® 1, for any b € B,,. By
construction F'g, is compatible with Fg1 = o.

Conclusion:
Any smooth k-algebra B is locally étale over a polynomial algebra, thus we can conclude
by Step 1 and 2. O

Proposition 3.0.4. (i) Let B be a perfect Fy-algebra, and set Bpi1 := Wy1(B). Let C =

B[t], Cph+1 = Bnyi[t]. For anyr >0, let ag]ﬂ
with respect to the wvariable t. Then, 87[211 o Wy, factorizes through w,, i.e. there is a

€ D(A}BRH) be the r-th differential operator

unique W11 (B)-linear r-th order differential operator, still denoted by 87[;]L1: W1 (C) —
W,+1(C) such that the following diagram
8[7’] 1
Cn+1 — ” CnJrl
wnT w,{{ (3.0.8)
ol
W 1(C) > Wig1(C)
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commautes.

(ii) For any r > 0, and 1 < i < d, any 8Z-[7TT]L+1 o Aps1 — Apq factorizes through wy,
i.e. there is a unique Wy41(k)-linear r-th order differential operator, still denoted by

8Z[TT]L+1: Wi+1(A4) = W,11(A) such that the following diagram

[r]
i,n+1
An+1

mnT wnT (3.0.9)
Wit1(A) i Wit1(A)

commutes.

The proof of Proposition will be given after introducing some notations and some
preliminary computations.

Definition 3.0.5. Let 9 € D(X,,4+1) such that there exists a W,, 11 (k)-linear differential operator
OW,ir(A): Winr1(A) = Wy p1(A) making the diagram

”“D”I | "“D”I (3.0.10)

commute.
We call O, ., (a) the restriction to Wy,41(A) of the respective differential operator d €
D(Xni1)-

Remark 3.0.6. The reason to use the injection given by wy instead of Ft1 i simply that
81"”_,_1 o [t =0 for any 8i,n+1 S D(Xn+1).

To prove Proposition we need some computations. Let us denote by v,(.): Z\ {0} = Z
the p-adic valuation and set v,(0) = +o00. We will use frequently the following elementary
(Legendre’s) Formula (cf. [Mol12, Theorem 2.6.1]): For any natural number n,

vp(nl) = g LZJ . (3.0.11)

Lemma 3.0.7. Let z,w # 0 be natural numbers such that z < w. Then,

vy <<w>) > v, (w) — vp(2). (3.0.12)

z

Proof. The Lemma is trivially true when v,(w) < vp(2). So we can assume vy(w) > vp(2).
Any natural number w can be written uniquely in the form w = jp”®) where j is a natural
number such that (j,p) = 1. Set v,(w) =: n. By assumption, n > v,(z) =: m. Let s = z/p™,
then (s,p) = 1, thus

Vppl—sJ = jprml 1~ {SJ ., Yn—m>1>0. (3.0.13)
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For [ > n — m the inequality

VPH_W;_SJ < Ljpnml| - “J (3.0.14)

By the equality and inequality above, it follows that

pm—l e o0 jpn—m > s
T DD I L B i 4 N URD
p =1 p =1 p

pm_l e ' pvm ]
=1 (Jp"" = s) +vp(J!) + 7

p_--
p—1

—vp(s!) — (n—m). (3.0.16)

It implies that

Lt up(sh) + (0 —m)

o1

= vp(s!) —vp((spm)!)—i-sp +(n—m)=n—-m. O

p—1
Proof of Proposition[3.0.4 In both cases (ii) and (i), the uniqueness of the map and the fact

that it is a Wy,11(k)-linear, respectively Wy, y1(B)-linear r-th order differential operator is clear

by construction (It is equal to w;, ! oaz.[’;]b 410Wn, where w,; 1 is the inverse of w, on the image. The
linearity follows since wy, is ®"-semilinear, resp. ®%-semilinear where ®p: W, 1(B) = W, 11(B)

is the Frobenius morphism induced by that one on B). We only need to prove that 8% 41 breserves
Wn—l—l(C)? resp. Wn—i—l(A)'

We first notice that we can reduce to the case (i). Indeed, we have that A = B’[t;], and
Any1 = By, [ti] where here B’ and Bj_, are respectively the polynomial algebra over k and
over Wy, 11(k) in the variables t; for every j # i. The differential operator Q[T] is B'-linear, of
the form 8&% ® B’ where 83% € D(Z][t;]). Thus it is uniquely determined by the integral image
of t; =: t. Therefore, 5‘%
B := By ; be the perfect closure of B (cf. [BGA18, Section 4]). Then, 82-[% ®z Wypi1(B) =:
81-[2’_1;61# : Wot1(B)[t] = Wyip1(B)[t] defines a W,,11(B)-linear differential operator. We claim

there is a unique W,,41(B’)-linear differential operator 81[11 11t Wog i (B'[t]) = Wyt (B'[t]) such

41 is a BJ-linear differential operator compatible with 82-[r]. Let
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that we have the following commutative diagram

glrlpers
Bnpa[t] —"— Buall]
]\ 8[ ]ielrf ]\
Blt]) ““ W, 1 (B[t]) (3.0.17)

]\ Eld[r] ]\

(1) " Wit (B'H))

n+1

Indeed, by (i) applied to AL the top square above exists. Denote by ®5: Wy, 11(B) — W41 (B)
the Frobenius morphism induced by that one on B. Any f € W,41(B’'[t]) is a linear combination
of elements V!(b[t]*) with b € W,,,1_;(B’). However,

= L (0)m, (VI([1)°)).

n—l1

B (VA(B[E])) = @37 (b)p't?
Thus,
(it 0 A 0@, ) (VHB[H])) = @y (@0 (1A, (@ V! (1)) =
= 05 (0) (0 O]}y 0,) (V([H]*)).

We need to determine the image of the elements of the form V!([t]*) € W,,;1(B[t]) under ol

i,n+1°
By construction O'}75Y (VI([£]*)) € Wy g1 (B'[t]). Indeed, since
n—l
r],per r],per spn—l Sp sp—!—p
oL @ (V7)) = O e = ! (T e
if 7 < sp™~!, and 0 otherwise, by Lemma we can write
= n—up(r) i _
i(sp" T pt M, it up(r) <n—1
b ( r ) N { plw, if vp(r) >n —1, (3.0.18)
for some u,w € Z(p). It follows that
n—l o n—uvp(r)y, pop(My/ <
pl (sp >t8p Ly — b pn : t/ ) lf Up(r) >N l (3019)
T plwtP” v if vp(r) >n —1
for some ', w' € Zy). Hence,
n—I| _ n—uvp(r) u : _
1 ( i(sp sprtor) _ J uV ([t]"), ifwvp(r) <n-—I 9
a (7)) = e e S (3020

is an element of W,1(B’[t]). Since, ®5'(B)V!([{]*") = VI(b[]*") lies in Wy41(B'[t]) and for
n—vy(r) — 1 > 0, also &7 (B)V=oe® [y = Vi) @77 () [1]%) lies in W,y (B'[E]),
then 81[7;]1 L1 (VH(B[E]*)) € Why1(B'[t]) and they determine the searched map.

Let us prove (i).
Let F: Cpy1 — Chy1 be a lift of the absolute Frobenius of C. Since C' is a reduced algebra
over the reduced Fj-algebra B, F'is injective by Lemma Moreover, since B is perfect, by
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Proposition [2.3.12, F™t1 is an isomorphism between W, (C) and ker (Cn+1 LN Q(lJnJrl / Bn+1)'
To prove Proposition [3.0.4] we need to check that for any f € W,,11(C), then

A (00 (f)) € T (Wis1(C)): (3.0.21)

It suffices to verify that
dF @ (@a(f))) =0 ¥r>0. (3.0.22)

Indeed, by Proposition implies that F(@lﬁrl(wn(f))) € F""'W,,1(C). Since
Ftl = F o 4@, by injectivity of F, the follows.

By linearity, it suffices to consider f being of the form Vi(a[t]’), and a € W, 11_;(B) with
i <n+1. The map Wy, : Wy11(C) = Wy1(B[t]) = Wpi1(B)[t] = Cpy1 maps [t] — tP". With
those assumptions, we have, by definition, that

n—1i

W (V' (at))) = @ (a)p't” (3.0.23)
Then,
; i inTL=i( ) (3P g T e i e < pn—i
(ol (et i 4Jp _ ) 'y (@) (", )t ; UTr=<jJp
(8 ( 5 (a)p )> {0, otherwise.
and,

d <piq>%+1i(a) <jpni>tjpn+1i_pr> _

r

_ ) et a) (P (Gt — pr e T T e ag, i e <
0. otherwise.

Applying the result of Lemma[3.0.7] we get that

s n—1i
Up (pZ (jpr >(jpn+1_Z — pr)) >i4+n—i—uv(r)+14+uv,(jp" " —1)

>n+1—v,(r)+v(r)=n+1,

if v,(r) <mn — i, while

. ] n_i . .
Up (pz<Jpr >(jp”+1_’ —pr)) >i+14+v,0p" " —r)>i+1l4+n—i=n+1,
if vy(r) > n — 4, implying the statement. O
3.1 Properties of Witt differential operators

[r]

Let X411 = A\dzvn+1(k) = Spec(A,+1) as before. The composition of differential operators 0 410
8][831 +1 € D(Xpy1) satisfies the following relations:
T s r+s r+s
Mool = (7)ol 3.1
ol odd  =all ool | iti#j. (3.1.2)

Since the restriction to Wy, 41(A), namely ol

i1 Wit oy, the relations
above hold for the restriction too.

(4) Agrees with @, ! OGZ[TT]LH
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Remark 3.1.1. The composition could be zero depending on the p-adic valuation of (TJTTS). For
example, in the case of the A = k[t] and r = p,s = (p — 1)p , by Lemma follows that

(at[;]wl ° aﬂﬂ)onﬂ =0.
For any vector r = (r1,...,74) € N%, denote by
d
37%1 = H 8][7;]1]“ = 8{711]“ -0 Q[ZZ]H-
j=1

Let J :=supp(r) C {1,...,d} be the subset of indexes j where v,(r;) # 0. Then, set
vp(r) := minvy(r;)}

Lemma 3.1.2. Suppose that 6 € D(X,41) is some differential operator of order q. For any
x € Apy1 the following relation holds: For any m > 1,

§(z™)=0 (mod pUr(m—ve(a)) (3.1.3)
where for m such that 0 < vy(m) < v,(q), the (3.1.3) means §(x™) € Apt1.
Proof. Let us write m = jp’™ uniquely such that (j, p) = 1. Then, by [Nak70, Proposition 9]

vp(m)

§(z™) = <p ’

> ("5 (w9 +
q

! vp(m)\ [ pvp(m) _ _ Com .
Z(‘”S(p )(p e 1>W>”p( Tt (a3@)). (3.4

— S S
s=1 q

Notice that when ¢ — s = p”(™) the respective term in the sum is 0. We can then assume
that ¢ — s < p(™ thus v,(q — s) < wvy(m). We proceed by induction on v,(m). There is
nothing to prove when v,(m) = 0. Assume that the is true for every m’ such that
vp(m') < v := vy(m). Since vy(q — s) < v, by induction v, (§(27079))) > v,(q — 5) — v,(q).

Moreover, by Lemma |3.0.7
pvp(m) S
w(27))) 2 oatm) =l =),

Thanks to the sum above it follows that

vp(0(2™)) > ming=y__g-1{vp(m) —vp(q), vp(m) —vp(q — 5) +vp(q — 5) —vp(q)} = vp(m) — vp(q).
Thus the statement is verified. O

Any 8][1 € D(X,) is a differential operator satisfying B.O.lO. In particular, since X1
is smooth over W,,;1(k), there is at least a differential operator 0 on D(X,+1) satisfying the

relation (B.0.10) and lifting 6% (cf. Corollary |B.0.7]ii) ). The restriction of 9 to W, 41(A) may
depend a priori, on the chosen lift. In the next Proposition, we will see that this case indeed
does not occur.

Em in

Definition 3.1.3. Let a(g_i) ) be the coefficient (mod p"*!) of the monomial z{* - zCr

( yCm

the expansion of (3 7, 2;)”

n—1

S Z[Zl, .. .,zm].
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Lemma 3.1.4. Let 0 < j < n, and m > 1 be integers. Let ay,...,am,b1,..., by € Z[x1,...,24]
such that a; = b; (mod p) for any i =1,...,m. Moreover, let ¢1,...,cm € Z such that ¢c; + -+
:pn_-]
Then,
J 7n — J m 1
Pag, et ag =pa, Tl b b (mod pY).

Proof. Let € = min;—;,. m{vp(cz)} Without loss of generality, we can assume that v,(c1) = e.
Observethat (pzl_J) | a?") By Lemma [3.0.7] vp(a( ) ) > vp((pzl )) >n—j—e

Since a; = b; (mod(;tc;)y 7lctM)ylelds a;’ = bj" (mod ;‘1"1),0 mi).e._ for any ¢, there is a h; €
Z[x1,. .., xq) such that ai* = b} —&—peﬂh Hence for some H € Z[x1,...,x4], we have
p]“(c:, ) oasagy =
paly 08 ) ) -
Pag, ) b b pal ) .
i (")

Moreover, v, (p’a ph) > j4+n—j—e+e+1=n+1, from which the assertion follows. [

(Clvnvcm)

Proposition 3.1.5. If (97[;]&: Apt1 — Anyr is any Wyp1(k)-linear differential operator lift-
ing 8£r], satisfying the relation (B.0.10) and such that the restriction to Wy41(A) exists, then

aq[ﬂrl‘wnﬂm) does not depend on the choice of lift 8&11

Proof. Since it can be verified on each j-th coordinate separately, we can reduce to the case
d=1. ,

Let 0 <4 <nand f = Vi([fi]) € Wnp1(A), wn(f) = p'f7" " for some lift f; € A1 Write
87[;]_1 : 83['le+1' Then, by the (B.0.10)), it follows that we can write

ALy =0 > Gl ol (el (e (3.1.5)
Cltli{f;;z?mzr
Cl+--'+8m=pn_l

Because of a}fﬁl(f) = a{tﬂ(f) (mod p), then for any lift 8£tj}(f) € Apt1 of 8£tj](f), by
Lemma B.1.4]

—i ~ . n—i T A T fm
pal D oo (Do = plal Do) L oim () (mod pntY).

In particular, the (3.1.5), does not depend on choices of such lifts. O

Corollary 3.1.6. a) Any 0 € D(X1) admits some lifting in D(X,+1) of the form

=3 ol (3.1.6)

where ¢y € Apq1 and 87[;11 is obtained as product of lifts of 8J[Tf] forany 1 <j <d.

b) FUTthermOTe if the restriction é\Wn+1(A) to Wy11(A) ezists, it does not depend on the lifts
ofa i ,for any j.

1 As abuse of notation agf :Li] )Cm) denotes the integer number, rather than its reduction modulo p™**
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c) Let 01,0 € D(Xyny1) be liftings of 0. Then, if the restriction of O — Oy = =>. arﬁ[ll to
W,i1(A) exists, it is 0 if and only if ap € p**™HL A, 1 for every r.

Proof. a) The existence of such liftings follows by Proposition because we can write 0 =

dor br(?gr] for some b, € A, finitely many not zero.

b) It follows by Proposition
c) Let f = (f1,.., fa+1) € Wpny1(A), then by Lemma it follows that for any differ-

ential operator § of order ¢, p'd( ~£:1_1) € pv @A, . In partlcular o jLLl(wan+1(A)) C
p" () A, 1. Thus, if ap € p?®+1A, L, since

d
[T 0031 (@0 (Waga (A))) € p" 20 44

Jj=1

for any j, in particular

ara[r] =0.

n+1[Wny1(A)

On the other hand, suppose to have a differential operator ) a 8[1@ 1 € D(X,+1) that is 0
restricted to W, 11(A). Assume that the set S := {r € N¢ | a, & p»®+1 4,1} is not empty.

Then, we have that
[r] _
> 0w, 4 = O

res
Fix such a r = (ry,...,rq) € S. In particular, a, # 0. Let f, = V”—Up(r)(l‘[;l:l[tj]rjp’vp(”)'
Then, for any other s = (s1,...,54) € N%, we have

O (Bn(fe)) = %m( ) . (""d)Htw y

where the equality above is meant to be 0 if s; > r; for some j. Thus, we have the following
equality

d
Td s
0_§ :as n+1 2 :pn vp(r ( )...<Sd>Ht;J SJGSEAn-H-
j=1

seS s<r

77 are different varying s € S. Thus, in particular for s = r, we have

All the monomials ] i=1t;

that
p”_”P(r)ar =0€ A1

with ap # 0, implying that ap € p?»@™+1A, ; this is a contradiction to r € S. O

Remark 3.1.7. Note that we can always lift & € D(A) to a d € D(W,,41(A)) by lifting the
coefficients of 0 =) . brﬁgr] to some bV € Wp+1(A) (e.g. by taking the Teichmiiller lift).

Another consequence of Lemma is the following:

Lemma 3.1.8. For any differential operator 6 € D(Xp41) of order ¢ > 1, with vy(q) < n and
admitting a restriction to Wy11(A), then

(5|Wn+1(A) (Wn+1(A)) C Vn_vp(q)WnJrl (A) (317)
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Proof. Indeed, if f = (f1,..., fa+1) € Wp41(A4) by Lemma and Proposition we see
that

wn(é(f)) = 5(U~)n(f)) € pnivp(q)An-H N wnwn-i—l(A)-
Since w,, maps injectively V"*”P(q)WnH(A) into p" (D A, 1, then
5(f) e ViUl OwW, i (A). O
7]

In the following, we are going to prove some relations involving o i1 and R, @4, V,
where ®4: W, 11(A) = W,,11(A) denotes the Witt vectors Frobenius induced by o (the Frobe-
nius of A), and R: Wy41(A) = W,,(A4) is the natural projection.

Lemma 3.1.9. Let r > 0 be an integer, and 1 < j < d. Let 8% € D(X). Then, for any f € A

oL (P = o7, (3.1.8)
where (9][-7:1/1)] is meant to be 0 if p{r. Consequently, for any r € N¢,
alrPl(fyr = all(f). (3.1.9)
Proof. We fix such a j and with abuse of notation, we simply write 8[ g 8[7"}. By Formula
(B0.10), we have
ol =X A= X ).
Jit-tjp=r Jitetgp=r
0<J15e-5Jp<rT 0<j1,...,jp not all equal

Any partition of r of length p corresponds to a subset of

{(jla'--vjp)|j1+"'+jpzra jla"')jrzo}

whose elements are the p-uples given by permuting elements of the partition. The corresponding
subset to a partition not containing all equal elements jq, ..., j, has cardinality being a multiple
of p. Indeed, more precisely it is #}Cm!, where m is the cardinality of the set {ji,...,/jp} =
{t1,...,tm} (where t1,...,t,, are pairwise distinct) and ¢; is the number of times for which
appears in (ji,...,jp). Since by assumptions, ¢; < p for any [ =1,...,m, then p \ —+—. Thus,
the big sum in the right-most hand side above is 0. O

Remark 3.1.10. If f € Ap+1 is any lift of f € A, Lemma rephrases by the equivalence
oL (PP = )1 () (mod p).
Lemma 3.1.11. For any z,y € W,,11(A) the following relations hold:

Ry (z) = (Fowp—10R)(x) (mod p"A,i1) (3.1.10)
Wp(x) = Wn(y) (modp") ©x=y (mod V'W,4;(A4)). (3.1.11)

Proof. Let x = (z1,...,%n41) € Wpy1(A), then
Ry (x) = & + -+ 4 p" '3 = F(ip_1(21, ..., 7)) = (F oth,_1 o R)(x).

For z,y € W;41(A4) , we have wy(z) = wWn(y) (mod p") & Ry, (r) = Rin(y), thus by the
(13.1.10)), and injectivity of F™, we get

R, (z) = R (y) & F"(Rx) = F*(Ry) © Rx = Ry <z =y (mod V"W, 11(4)). O
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Proposition 3.1.12. Let r > 0 be an integer and 1 < j < d. Then the following relations hold:

oo R=Rod),, ; (3.1.12)

O yo®a=d400M (3.1.13)
ooV =Vodl; (3.1.14)

A (VIW,i1(A)) C VW1 (A) for all 0 <i<n+ 1 (3.1.15)

where 8][-%]_7_]1 is meant to be 0 if p { r and R = Ry41,,. Consequently, the analogous relations

BL12),E-L13),B-1.14),[31.15) hold for O, for any r € N4,

Proof. As in the proof of Lemma [3.1.9] we fix a j and omit its notation from the corresponding
differential operator. The last relation follows by the commutative diagram in Proposition
together with the fact that @, maps injectively VW, 1(4) to p'A,1. Firstly, assume p { r.
Then, vy(r) = 0 and by Lemma it follows that BT[LTJ]rl(WnH(A)) C V"W,41(A), so that
Ro 8,[;]r1 =0 ( € Wyn(A)). Moreover, by the relation (3.1.3), o (p'f"" ") = 0 (mod p"), for

any f € Apt1, thus a0 ®y=0.

n+1
Now, we are going to prove that R o 8311 =0d,0oR.

By linearity, it suffices to test the relation on the elements of the form V¢([f]) € W,1(A).
Then,

GO, (V) = p oL, (7). (3.1.16)

By Lemma and Lemma the following hold:
3 (pp_ ) =p"' (mod p"); (3.1.17)
O\ (F) = Onsa (F)” (mod p). (3.1.18)

By [Nak70, Proposition 9] and the congruences above,

P (") 2 (p )fp“-palf’lafp) =

p
PP PO (F)P = B (VISP

n—i—1

Tlan)) (3.1.19)
By the (3.1.11)), it follows

(Ro 02 ) (V) = V(" o)), (3.1.20)
On the other hand,

W10, (RVI(]) = p" L 7" 7100(f) = et (VPR T00()) (3.1.21)

so that

n—i—1

RO (VI([f1) = V'L ou() = 0u(RVI([]))- (3.1.22)

Suppose now r > p. We can write

7 j r3 [.7 nfi] rs

y=p > (.0 (3.1.23)
1t =T
01§j1,...,yim§r

N —1

@, (VD) = AL (i
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Assume i < n, otherwise, for ¢ = n the relation R(@T[;]rl(\/"([ f1))) = 0 is trivial. The trick
here is that to compute the sum above (mod p"), it suffices to assume every j; < r/p, for any
1 <1 < p" " Indeed, if {t1,...,t,} denotes the set {ji,...,jn—i} where the t;’s are pairwise
distinct, we have the relation (since 87[1] _ﬂl’s commute)

i j 3 Upn—il 7 i n—i e ml 1 F\em

oY e (D=0 Y G ol (ol ()
Jitetim—i=r . t1<-~~<t? _
01y —i <7 c;lit-;xzquf

‘ (3.1.24)
For any such m-uple (t; < --- < t,,), the coefficient agg?iz)cm) € Z is the same appearing in the

geeey

corresponding monomial of the expansion of (Ogﬂl(f) +--F Ggﬂ(f))pnii. Indeed, in both case,
it is computed as the number of ways to partition the set {1,...,p" 1} in m subsets C1,...,Cp,
with |C;| = ¢;. Notice that we have the elementary equality (mod p™):

PO )+ + T =@ () + ol ()P

In particular, the relation (3.1.25) implies that pia(f IH) ) = 0 (mod p") if there exists some

(CLysem

n—1i n—i—1

(mod p™).  (3.1.25)

index j with 1 < j < m such that p{¢; and

i ("7
p a(cl,...,cm)

i (pnTh n
P ey /p,..em /p) (mod p")
otherwise. Thus, looking at the non zero coefficients of , we see that every t; appears a
multiple of p times among the j;’s. Thus, if there exists some ¢; > r/p, then ji + -+ 4 jn-i >
pt; > r that is impossible.

By the argument above, we can assume p | ¢ for every . Write ¢; = pcj. Thus, we have the
following equality (mod p™):

Y el Do () =

1< <tm
Clt1+"'+Cmtm:f”
cittem=p"T"
i nil t £\pc) tm]  F\pc]
p Z agil/p,,,,7)cm/p)87[z-ly]1<f)p oo 8’r[z+{(f)p "
t1<-<tm<r/p
1+t tm=r/p
C/1+"'+C,/m:pn_i_l
that gives
~ T ) i noi-l t ~\pch tm| / \pc!
RO (VD) =0 > al ol (ol (e,

t1 < <tm<r/p
C,1t1+"'+(};ntm:"r‘/p
c’l_t,_..._t,_c’Tn:p’L*l*l

In particular any term in the sum belongs to Im(F').
Together with the relation above and the (3.1.10)), it follows that

Bt ROLL (VD) = F 7 Rindl 4 (V) =
S plaly " DS o (P = 1 0f P V(1)

(C/l»"'ycm
t1<-<tm
i+t tm=r/p
bk i
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This shows that @n—lR@[ﬁrl( Vi([f]) = wp— Lol (VI([f])) € Aps1/p" =~ Ap, thus by injectivity

of @y_1, we have RO, (Vi([f])) = /P (Vi([f])). This shows the relation (3.1.12).
To prove the (3.1.13)), we can write analogously

B0l @V = ol T = YD Al al (e

b1 <<t
citit+temlm=r
et Fem=p" ™"
(3.1.26)
As before,
@BV =0l e = Y el D ol alrl (e
1< <tm
citi++emtm=r/p
c1tem=p" Tt
(3.1.27)
Now by Lemma we have
ol (Fyr = oM (f7)  (mod p). (3.1.28)
Thus, for i < n we get
D@0k H(VI((F])) = Pmadll 5 (VI([]))
= p" Do al Lo o (e
<<t
citi++cemtm=r/p
crttem=p" Tt
=y Y el oo (e
1< <t
Clt1+"'+cmtm:T/p
c1t-Fem=p" !
=t > el ) okl (e
1< <tm
citi+-+emtm=r
c1t-+em=p" "
= B0l 11 (2aV([]));
from which we deduce (3.1.13]).
To prove the (3.1.14]), we use that R® 4V = p. Then,
R0 (Vodll)=(dlloR)o®sV =R 0®4V=Rbso0 (0, 0V) (3.1.29)
This means that
ByoVodl =400 0V (mod V"W, (A)). (3.1.30)

By the injectivity of ®4, follows that Im(V o alrl aW +10V) C V"W, ,1(A). Hence, since this

holds for every n and every r, also Im(V o (9,[5:]1 - 87[57;]2 oV) C V"W, 1 5(A), thus

Rpiony1oVo 37[5:}1 — Rnjomnt10 63’112 oV =0.

Since Ry42n+1 0V = Vo R, by the relation (3.1.12)) follows that V o oo R — a}ﬁl oVoR=0.
This means that V o i) = 8[711 oV: W, (4) = W, 11(A4). O
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3.2 The ring of Witt differential operators

Let consider W,,;1(A) as a W(A)-module, via the natural restriction W(A) fnsa, W,+1(A). For
any m € Z, and any a € W(A) we view ®’y"(a) € Endw(a(1/,)(W(A4)[1/p]) by left multiplica-
tion ﬂ In particular,

Lemma 3.2.1. Let Up(r) <n for somer >1, and 1 < j < d. The composition

@Zp(r)— ( )Oa[r]

b =0 M@0l s W1 (A) = VI OW, 4 (A) € Wi (4) (3.2.1)

is a well defined W, 41(k)-linear differential operator for any a € W(A).

Proof. Since for any m > 0 the equality V™ (y) = V™ (®"}(z)y) holds for any z,y € W(A), it
follows that

O " (a) (V'MW (A)) C VW (A),
where V?*™"™W(A) = W(A) if m > n. Thus, the restriction R,11 induces a W,,11(A)-linear map
@4 "(a) € Endyy,, ,(4)(V""™W,,11(A)). Moreover, by the (3.1.7) it follows that ol llﬂ‘w L C
V=MW, 1 (A). This proves that the map (3.2.1)) is well defined, thus a W, (k)-linear dif-

[r]

ferential operator, since 9\ i n1 1s already. O

By convention, we extend the definition for » = 0, by letting
0)— 0
@UAP( ) n(a)@Lll = a-Ide+1(A).

Furthermore, as seen in the proof of Corollary 8[111 C V”_”P(r)Wn+1(A). Thus, every

n
operator of the form

vp(r)—n r vp(r)—n [T ] T
oW @k, = e T @y H Ok

J=L3#jo
with 7 > 0, and 1 < jo < d such that v,(r) = v,(rj,), defines an element of D(W,,11(A4)).

Lemma 3.2.2. Any W,,1(A)-linear combination of the form

Z @UAp(r)_n(ar)87[fJ]r1+ Z arﬁmrl

reNd reNd
vp(r)<n vp(r)>n

is trivial if and only if ay € V*EFTIW, 1 (A) for r € N? such that vy(r) < n and ay = 0
otherwise.

Proof. Indeed, as in the proof of Corollary for any r € N¢, there is an element f, €
Wip41(A), such that

ers V) ([P —r (e =8)) if > wp(s) > vy(r) or vp(r) < n < vp(s)

8[5411(]‘}) _ ) esVTT zp(sz([t] por(r —s)) ?f Up(s) < vp(r) < mor vy(s) < n < vy(r)
" er st (rs) if n < wp(s) < vp(r)
Cr st (08 if n < vp(r) < vy(s)

*For m € N, recall that &, = p%Vm.
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where ¢; g, ers € Wyy1(k) with ey = 1. It follows:

Z (I)vp as 87[111 fr Z as8g+1 fr) =

vp(8)<n vp()>n

[ v %()(a,) + linear combination of Vi([t]) s.t. I > 1 if vy(r) <n
~ | ar + linear combination of Vi([t]!) s.t. [ > 1 if vp(r) > n.
Any trivial expression yields V*~%®)(a,) = 0 € W,,11(A) or ar = 0. O

Let X = Spec(A). If A is smooth over k, then for any m € X, there exists an open neighbor-
hood U of m and local sections z1, ..., 2z, € I'(U,Ox) = A such that the scheme morphism

U — A}" = Spec(k[z1,...,2m))

induced by Ay > z; — x; € k[x1,..., 2], is étale. We say that the sections (z1,. .., z,) are local
coordinates of X associated to a local chart U. Notice that since composition of étale maps is
étale, then any open V' C U is a local chart whenever it U is. In particular, for any smooth
scheme Y over k, the collection of those open affine subsets consisting of local charts forms a basis
for the Zariski topology of Y. If A is smooth over k, then A is locally étale over a polynomial
algebra in the sense above. For any local chart U = Spec(Ay), if B denotes the corresponding
polynomial algebra over k generated by the local sections, one gets an identification of k-algebras
D(Af) ~D(B)®@p Ay (cf. [Tra98, Theorem 3.2.5]). By Corollary we can lift any derivation
of D(B) to D(W,41(B)). For any of such lifts, by Corollary e W1 (B) = Wyii(A4y)
is étale, corresponds a unique differential operator of D(W,11(Af)). Hence, we can lift any k-
linear differential operator of D(Ay) to a W11 (k)-linear differential operator in D(W,,41(Ay)).
Since, A — Ay, is also étale, the canonical map

D(A) > D(As) = D(A) @4 Ay (3.2.2)

allows to lift a differential operator in D(A) to a differential operator in D(W,,11(Ay)) for any f
associated to a local chart in the covering of X. We are going to see that we can glue together
suitable lifts in order to get a differential in D(W,,+;(A)) lifting the corresponding one in D(A).

If (#1,...,2m) are local coordinates of A, we denote by 81[7"] = 8@ for any » > 0 and by 81[ 7]z+1
its lift to W, 11(A). Also, to simplify the notation, for any a € W,,+1(A), we write for any r > 0,

aed 7]1+1 = oy )‘”<a>a£f",1+1. (3.2.3)

Notice that any sheaf for the Zariski topology of a smooth k-scheme Y is determined by an open
cover of local charts. Thus, we are lead to the following definition:

Definition 3.2.3. For a smooth k-algebra A of dimension m, let (21, ..., z;,) be local coordinates
associated to a local chart Spec(B) = U C Spec(A). For any i such that 1 <i <m, and r > 0,
let ﬁlm be the generators for the B-algebra D(B). Let us consider the lifts 82[1 +1 € D(Wip1(B))
obtained as in Proposition

We denote by Dy, ., (4)(U) the W,,1(B)-subalgebra of D(W1(B)) generated by

a’.ai[j;}L+17 for any a € Wy41(4), i=1,...,m, r > 0.

Then, we define D\;,;T( A) as the presheaf of W, (k)-algebras, given by

I'(U, Dw, ., (4)) = Dw, ., (4)(U) = Dy, (4)(B)
for any local chart U C Spec(A).
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We will prove that the presheaf DV/V;\H/( 4) 1s indeed a sheaf in the following Lemma.

Remark 3.2.4. For n = 0, the above definition coincides with Grothendieck’s sheaf of differential
operators (defined for general commutative rings). For them, we can get rid of specifying such

U. Thus, Da = Dy, (a) = D(A).

Lemma 3.2.5. Let X = Spec(A) for a smooth k-algebra A. Then, Dyy, (4 is a quasi-coherent
Wi+10x-mod.

Proof. To prove the statement, it is sufficient (and necessary) to prove that for any local chart
U = Spec(C) C X and any f € C, Us = Spec(Cy)

Dw, .1(4)(Ur) = Dw,,,(4)(U) ®w(cy Wn41(Cy). (3.2.4)

Suppose the (3.2.4) holds. Then take an open affine U = Spec(4,) C X, with g € A. An open
cover of U is given by a finite collection (Spec(Ayy,))ier for f; € A of spectra of localization at
gfi € A such that (f;);er generates (1) = Ay. Set B = A,. The sheaf condition requires to check
that

0— DWnH(A)(U) — @Dwn+l(A)(Ufi) — @ DWn+1(A)(Ufi XU Ufj) (3.2.5)

iel ijel
is an exact sequence of W (B)-modules. Using that B — By, are étale maps, we have W, 1(By, ®
By,) ~ Wny1(By,) ®w,,\ (B) Wnt1(By;) ~ Wn+1(B)[f¢fj}- Together with the (3.2.4)), the above

short exact sequence becomes,

0= Dw,,i(a)(B) = @Dwﬂ+1(A)( (il =7 @ Dw,1(4) (B)[fifj] (3.2.6)
1€l 1,7€1

It suffices to verify the exactness of at the localization By, for any maximal ideal m C B.
Thus, since (f;, i € I) = (1) = B, we can further assume that there exists some i € I such that
fi € m, implying f; is invertible in By,; we further assume that f; = 1. In this case, the (3.2.6))
is immediate. (compare with c.f. [Sta, Tag 00EK, Lemma 10.24.1]).

Let us prove the relation (3.2.4). It suffices to prove it for U = X (i.e. C = A) assuming
X has (local) coordinates z;. Thus, let f € A. For any local coordinate z; of A, the natural

map D(W,41(A)) = D(Wp41(Af)) sends c'?i 11+1 to 8[r’] sl Where aLl] w1 18 the unique ri-th

differential operator lifting 6[77],&1 € D(Wp+1(A)) (smce W,i1(A) — WnH(Af) = Wat1(A) g

Z17
is étale). Moreover, any relation

Z o ()t + Z b,y =0
op(0)<n op(0)>n

in D(Wyn41(Ay)) with ar, by € Wy41(A) yields, by Lemma ar € VOFTL (W, 11 (Af)) N
W,+1(4), and by = 0. Thus, also

Z e (a)ol L, =0
in D(W,+1(A)). Hence, it induces an injective map

Dw, 1 (4)(A) ®w, 1 a) Wat1(Ar) = Dw,, 4, (Af)-

We notice, it is also surjective. Indeed, the isomorphism D(A) ®4 Ay — D(Ay) ensures that the
collection {6[%171Jrl | 7 > 0} is a set of generators over Wy,11(Ay) for Dyy, ., (a,)(Af). O
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Definition 3.2.6. For any smooth k-scheme X, and a covering of affine local charts U := {U; =
Spec(A;) }ier define Dy, .1(x) to be the unique quasi-coherent W10 x-module such that

,DWn""l(X)\Ui >~ DWn+1(Ai)'

Remark 3.2.7. The Definition does not depend on the covering U. Indeed, let {U; =
Spec(4;)}ier and {V; = Spec(Bj)} e be two coverings of X. Set f;; : Spec(Cyj) = UixxV; = U;
and g;; : Spec(Cyj) = U; x x Vj — Vj the respective open immersions, in particular they are étale
maps. Let F, G be the unique sheaves of W,,.1 O x-modules associated respectively to the covering
{U;}; and {V;};. Then, forany i€ I,j € J

(‘an)‘UiXXVj = fi§DWn+1(Ai) ~ Dw, 1 (Cy)

and

(G )wixxv; = 9PWoi1(B;) = Pwipa (i)

Thus, there is an identity of sheaves

]:|Ui><XVj = g|Ui><XVj (3.2.7)

In particular they respect the cocycle condition for glueing sheaves with respect the covering
{Ui xx Vj}jyerxs of X. Tt follows that F = G.

Remark 3.2.8. A definition of (completed) Witt differential operators appeared recently in the
work of Dodd (c.f. [Dod24, Sec. 2]) without truncation. Our definition for the truncated case is
a subsheaf of the truncated version by Dodd. The main difference in [Dod24], is the introduction
of a canonical Hasse-Schmidt derivation, which is a specific lift over the Witt vectors of a Hasse-
Schmidt derivation (i.e. operators satisfying ) in characteristic p, determined by an explicit
formula (c.f. [Dod24] Corollary 2.6]). Further, his sheaf of Witt differential operators is defined
intrinsically, avoiding local coordinates. However, a local description (c.f. [Dod24, Theorem
2.17]) is in practice employed to give a presentation from which main properties follow.
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Chapter 4

Hodge-Witt cohomology of Drinfeld’s
half space via local cohomology

4.1 A spectral sequence for local cohomology

Let (X,0O) be a ringed space, F be an O-module and K*® a bounded from below complex of
O-modules. Let Z°® be an injective resolution of F. Then, there is a first quadrant spectral
sequence induced by the double complex Hom (K*®,Z°®) E]

E}® = Ext®(K~ ", F) = Ext**"(K*,F). (4.1.1)
Now let (X, Ox) be the d-dimensional Drinfeld upper half space over k, and ), its closed com-
plement in P4, Set O := Opﬁ’ let F be an O-module. Take an acyclic resolution Zy — J*® of
Z := Zy, the constant sheaf over ) with value in Z. Assume it is a finite resolution. Denote by
i:Y < P9 the closed immersion, thus i, is exact. Then, if we take K*® = i,J*, it is a resolution

of i,7Z and
Ext"**(K*, F) = Ext"**(i,Z, F) = H}" (Y, F).

The first equality follows by acyclicity of the complex 0 — i,Z — K*® — 0 and the last equality
follows from [SGA2, Proposition 2.3 bis. (21)]. By assumptions, J* is bounded and starts from
degree 0. Then, the spectral sequence above rewrites as

Ey" =Ext’ (K", F) = H3" (P4, F). (4.1.2)

4.2 Orlik’s acyclic resolution

Here we recall an acyclic resolution of Zy (cf. [Orl08, Section 2.1]). For any I C A, let P; C G be
the associated parabolic subgroup. Let A\I = {a;, ..., q;, } with ig <--- <, and {eo,...,eq}
be the standard basis of k%1, Let V; = >t _okes. Then, Y7 :=P(V;,) is the closed k-subvariety
of P4 stabilized by the action of P;. Notice that

y=U U ¢¥i, vi=P, (1) :=min{j|a; &I} (4.2.1)
Write @, 1 : g.Y7 < Y for the closed immersion given by the inclusion. Then, define the sheaves

= P B @0)(®1)'Z, r=0,....d-1 (4.2.2)

|[I|l=d—r—1geG/Pr

1This set of homomorphism is taken in the category of complexes of sheaves
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For any I C I' C A there are canonical inclusions P; C Pj» and closed immersions

Lrr: Y — Y. (423)
The projections
(;/]D]—>G/F)1/7 gP]HhP]/ (424)
induce also closed immersions
LI I’ 2 gYr — hYp (4.2.5)

such that @, o9 T I’ = &, ;. Furthermore, by functoriality, the map 9 T I’ induces a natural map
of sheaves on hYj::

g,h h —
(Pn,1r)” 'Z — (@1 ) (/L? 1/) (‘@h,I’) 'Z
Then, applying the functor (®5, 1)« we get a map of sheaves on Y:

P (@np)(@h1) I — (g 1) u(@gr) " 2 (4.2.6)
Let ' X
drp = (=1)" Ga(g,h)EG/P]XG/Pp p?:J if I'=1u {ai}, (4.2.7)
’ 0 otherwise

where p? T ], is meant to be 0 if gP; is not mapped to hPp. Then, the maps d;,; induce morphisms
d":J" — J' making (J*,d®) a complex (cf. [Kus16, Section 2.1.1]). The following holds:

Theorem 4.2.1 (cf. [Orl08, Theorem 2.1.1], [Kusl6, Proposition 2.1.1.1}). The complex of
sheaves 0 — Zy — J* — 0 on Y is acyclic, i.e. it is an exact sequence in the category of sheaves.

Observe that (<1>g,1)—1z = Zgy,;, that i o &, is the closed immersion of ¢.Y7 in P?, and
Ext*(—, F) commutes with direct sums. This in turn implies the following equality:

Ext’(i, ", F)= @ P Ext’((ioPg1)uZgy, F)
ICA IQEG/PI

[1|=dr—

- & O mye
ICA GG/P]
|[I|=d—r—1

= P IndgH;, @ F).
IcA
|[I|=d—r—1

4.2.1 A spectral sequence for local cohomology of W,Ops-modules
So at the end, the spectral sequence (4.1.1]) above has the shape
E;™ = P dgH; (PLF) = H (P4 F). (4.2.8)
[I|=d—r—1

Does this description hold in the context of Witt schemes? for which F? Let F be a W,,O-
module. When X is a k-scheme, the Witt scheme associated to X is the ringed space (| X |, W,,Ox).
So there is a corresponding spectral sequence to (4.1.1]), in the category of sheaves on W, (X).

Lemma 4.2.2. Let X be a k-scheme and J® be a complex of sheaves on W, (X). Consider the
natural closed immersion of schemes m: X — W, (X). If J® is an acyclic complex of sheaves on
X, then m,J*® is an acyclic complex of sheaves on W, (X).
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Proof. We need to verify that w,J® viewed as a sequence of sheaves is exact. But 7 is a closed
immersion of schemes, thus 7, is exact on the category of sheaves on W,,(X), therefore m,.J® is
acyclic. O

From Theorem the following holds:

Corollary 4.2.3. Let J® be the complex (4.2.2). Then, 0 — m.Zy — m.J* — 0 is an acyclic
complex of sheaves on W, (Y).

Observe that 7 is a closed immersion and a universal homeomorphism, since it is a nilpotent
thickening. In particular, we have
W*Zy = an(y)

This means that if J® is an acyclic resolution of Zjy of sheaves on Y, then m,J® is an acyclic
resolution of Zyy,, (y) of sheaves on W, (). Moreover, when i is a closed immersion, then W,,(3)
induces a closed immersion on the respective Witt schemes by Proposition [A.0.3] Then, again
we have identifications

Ext" 5 (W (0),.%, F) = Ext" (W (0).Zuw, s F) = Byl ) (W (BY), F) = H3 (B, ),

)
(4.2.9)
Ext® (W, (i), F)= €D IndgH;, (B4 F). (4.2.10)
[I|=d—r—1
In particular, when F = WnQﬁpd, for any ¢ = 0,...,d, the spectral sequence (4.2.8]) exists.

Evaluating the spectral sequence (4.2.8)), we hope to compute H;,(IP’d,]: ). In turn this is
related to HO(X, F) via the long exact sequence of the couple

Y Pl oo X
giving the following exact sequence
0 — HO(P%, F) —» HO(X, F) — HY(PY, F) = ker (H},(P?, F) — H' (P4, F)) — 0,  (4.2.11)

after noticing that X being affine and F quasi-coherent implies H'(X', F) = 0. The local coho-
mology group H%,(Pd, F) is related to the Fj terms of the spectral sequence. To explain how, we
need a geometric property of Witt differentials.

Lemma 4.2.4. Let d > j be fixzed non negative integers. Let F be one of the quasi-coherent
W, Opa-modules WSy for anyr =0,...,d, or WL associated to a line bundle £ of P*. Then,

a) The local cohomology group sheaves ’Hfm (F) are trivial for any i # d — j. In particular,
H, (P, F) =0, Vi<d-—j (4.2.12)
b) Hi(P4\ P/, F) =0 for any i >d—j.
¢) Hy, (P, F) ~ HI(PY, F), if i > d — j.
Proof.  a) The spectral sequence (cf. [SGA2, Theorem 2.6])

Ey® = H (P ML, (F)) = HLF (P4 F) (4.2.13)
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implies (4.2.12)) from the triviality of H%j (F) for i # d — j. We do in detail the Witt
differentials case, being the other one similar. Denote with F,, = W,Qp, for any r =
0,...,d. Recall that from Proposition [2.3.8], we have a short exact sequence,

r—1
de
r—1
Z, 0

r
0 prtl "Pd

1
X — = et Fup — Fxf
B0,

— 0. (4.2.14)

-1
Fn+1 QH:d FnJrl Q];d

where =
X * Bnﬂ;d’ X* Z"Q];dl

are locally free Opa-modules of finite rank. Since the result

in a) holds in the case of coherent Opa-modules (by arguments in [SGA2, Proposition 3.3
and Lemma 3.12] ), it follows that H%j (gr"Fpn41) = 01if i # d — j, by taking the long exact
sequence associated to (4.2.14]). The claim on F, now follows by induction on n for any
n > 1, by taking the associated long exact sequence to

0— gr"Fpi1 — Fna1 — Fn — 0. (4.2.15)

The case of Witt line bundles follows by analogy, considering the short exact sequence
(12.4.5]).

b) The corresponding result for coherent Opa-modules F (i.e. when n = 1) holds by computing
the Cech cohomology for the covering U = {Di(z)}j11<r<a of PA\P/. The resulting
complex C"(U,]-" ) has degrees between 0 and d — j — 1. Therefore, for all i« > d — j, the
cohomology vanishes. By considering the short exact sequence for Hodge-Witt
differentials, and for Witt line bundles we see that b) follows by induction on n
(since for n = 1 the vanishing holds).

c) By the long exact sequence associated to the couple (P/,P4\P/;P4), we have the exact
sequence

HH PN, F) = Hy, (P, F) — H'(P, F) — H (PI\P, F). (4.2.16)

Since ¢ — 1 > d — j, by part b) the outer terms of the above sequence are trivial, thus the
map in the middle is an isomorphism.

O]

Remark 4.2.5. For a smooth k-scheme X of dimension d, the canonical bundle wy = Ox(—d—1)
and the d-th sheaf of differentials ng agree. However, for n > 1, in general Wywx # anlgl(.

For any j =0,...,d the EI’j terms of have the property that El_r’j =0 for any r > j:
Indeed, if I € A = {ap,...,aq} is a subset of roots of G, such that [I| < d — j, then also
i(I) < d—j and so Hljéi(f) (P4, F) = 0 by the lemma above. We wish to describe as explicitly as
possible the E7 page of the spectral sequence above.

4.2.2 The generalized Steinberg modules over W, (k)

For any I C A, let us consider the Z-module given by the following quotient:

vB (Z) =Tnd@ (12)/( > Indg(1z)) (4.2.17)

GDQ22Pr
@ parabolic sbgp

where 17 denotes the ring Z as trivial Z[G]-module. If I = ), P, = B and we denote v§(Z) =:
Stg(Z). The usual action of G on the induction makes any vgl (Z) a Z|G]-module. Notice that
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vgl (k) = ng (Z) ®k gives us the generalized Steinberg representations of G. This integral version
already appears in [SS91], where in their setting G is the group of points over a local field. In
particular they consider the profinite topology on G and its subgroups, consequently the induced
representations they study are smooth. Here there is no topology involved since we deal with a
finite field, in particular G is a finite group. Relating to their result, we can just consider our
groups and subgroups equipped with the discrete topology, so that we can deduce the following
properties.

Proposition 4.2.6 (c.f. [SS91, Proposition 6.13]). For any I C A, the integral generalized

Steinberg modules ng (Z) are finitely generated free Z-modules. Moreover, for any I, there is

a simplicial complex T, with the following properties: If I = 0, Tl is the combinatorial Tits
building of GLgy1(k); HO(|TL],2) = 7z, HE-HI(T]),72) = ng(Z) and all other cohomology
groups are trivial for any I.

Before proceeding to the proof, we recall the following notations: For a Coxeter system
(W, S) and a subset I C S, the group W; C W is the subgroup of W generated by the reflections
associated to I.

The set of reduced-I elements of W, is the subset W/ C W given by the representatives w € W
of the classes in the quotient W/W; such that w has minimal length in the coset wWj. (Every
coset admits a unique reduced-I element, cf. [DM20, Lemma 3.2.1]).

Proof. The authors of the aforementioned Propositions prove that such simplicial complex exists
and it is acyclic. Then, by construction the simplicial integral cohomology has the desired
properties. We recall the main point of the proof, specifying the stronger condition of using the
discrete topology. Assume that A\l = {aj,,...,®;,, }. Let us consider the following simplicial
sets:

Y] := simplicial set of r + 1-tuples (Lo, ..., L,) of lines in k%! such that dimy iy Li < jfor
some j € {ig+1,...,4, + 1}.

7] .= simplicial set of flags (Vo C --- C V) of k-vector spaces in k%! such that dimyV; €
{io+1,...,0m+ 1} for every : =0,...,r.

Z! := bisimplicial set of (Vo C --- C V;; Lo, ..., Ls) € T, x Y such that Y35 | L; C V.

The face and degeneracy maps are given respectively by removing or doubling a vector space.
We introduce also the following simplicial set:

NTL .= simplicial set of flags (Vo C --- € V;) of k-vector spaces in k%! such that dimy V; €
{io+1,... 0+ 1} for every : =0,...,r.

N 7'£ is said to be the "normalization” of 7,7, where all the flags are assumed to not have repeated
vector spaces. Notice that since k is finite, the sets of vertices of the simplicial sets above are
finite. In particular, for them the profinite topology coincides with the discrete topology. The
constant abelian sheaf Z on any of this (discrete) simplicial sets assigns to any (finite) subset U,
the corresponding abelian group C(U, Z) generated by all (set theoretical) maps U — Z. By a
cosimplicial normalization theorem (see loc.cit. proof of Proposition 3.6), the natural inclusion
CWNTLZ) — C(T],Z) is a homotopic equivalence. Since for r > d — |I|, NTL = (), then
H"(|T!|,Z) = 0 for r > d — |I|. By loc. cit. Lemma 3.3 and Lemma 3.4, the natural maps
Z,I’s ELN Y] and Z,{ « 2 77 induce respectively quasi-isomorphism of complexes C’(Z{S,Z) —

C(Y],z) and C(2!,,Z) < C(T!,Z) for any r, sﬂ In particular the cohomology of the total
complex of Z,{,, computes the simplicial cohomology of T.l. Therefore, we have a second E|

?Here it is a sketched argument: the sheaves Zyy (vesp. Zyy) and Zz;  are flasque and fo (resp. ge) induces
an acyclic resolution ZY.I — foxZ zI, of ZY.I (resp. ZT.I): it is enough to check it on stalk, and then apply loc.cit.

Lemma 3.3; Since flasque sheaves are global section-acyclic, the claim follows.
31.e. whose filtration on the total complex is given by removing successive rows.
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spectral sequence that read as

EYY=h%(C(2L,,2)) = H(T}|,2). (4.2.18)

.,T’?
Next step is proving that the following sequence induced by fo
0— C(K'I7Z) - C(Z({,WZ) — 7 C(Zéflf\ﬂfr,r?Z) (4219)

is exact. With a bit of work that we here omit, it follows essentially by loc. cit. Lemma 3.3
again. Therefore, we deduce that E{® = 0if r+s < d— |[I[| —1 and s > 0, E}* = C(Y,!,Z)
for r <d—1—|I|, and C(YdI_l_m,Z) C Efflful’o. Furthermore, by loc. cit. Lemma 3.3 the
complex

02— CYy,2) == CY], ;,2) (4.2.20)

is exact, therefore also 0 — Z — E} for < d—1—|1] it is so. It implies ES° = Z and E}* = 0
for 0 <r+s < d—1-—|I], from which the vanishing result follows. To compute the highest
cohomology group we consider the normalized simplicial complex (by homotopic invariance of
simplicial cohomology). For any J C I, consider the flag

Jo Jr
=0 ke S > key) (4.2.21)
1=0 1=0

where ¢; fori = 0,...,d is the standard basis of k41 and A\J = {a, ..., a;, } with jo < -+ < jj.
Then the parabolic subgroup P; C G is the stabilizer of 7;. Moreover, the natural map

|| G/Py—NT., gPj— g7, (4.2.22)
IcJcA
|J]|=d—1—r

is a bijection. Hence,
CNTLZ)= @ ndf (1z).

ICJCA
|J|=d—1—r

The cohomology group H*=HI(|T1| Z) is equal to

coker (C(NTZI*Q*\II’ Z) — C(NTfl,lfm, Z)) = coker( @ IndIGDIUa (1) — Ind% (]l)) = vf;'] (Z).
a€A\I

To check the Z-freeness of ng’ we prove that it has a finite descending filtration whose successive

quotient are Z-free. Let W be the Weyl group of G and let W! C W be the subset of reduced-I
elements. Notice that for I ¢ J, W/ c W!. The Bruhat decomposition yields the equality

G/Pr= | | BwP/P; (4.2.23)
weWwl

and the surjections C(w) := BwB/B — BwP;/P; =: Cr(w) are actually bijections for any
w € W! (compare cf. [BT72, Proposition 3.16 (ii)] and Remark . Fix an order on W/ =
{w1,...,wy} such that a < b if and only if {(w,) < [(wp). Denote by F7 = {f € Ind%(]l) :
f(Cr(ws)) =0,1<s<r}. Then, {0} =F" C Fj" ' C-.-C FY:= Ind%(ﬂ) has the property
that for any a < b

Fi/Fp=C( | | Ci(ws),Z) (4.2.24)

a<s<b
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Indeed, any coset f+ F? with f € F'¢ can be represented by an £, supported in Uges<p Cr(ws):
indeed, by taking f,; be the extension by 0 of f||_|a<s<b Cr(ws)s 1t follows that f+ Fb = }.a,b +(f—
fap) + F? = fap + Fb. Viceversa, the set {fup € C(Uyeoep Cr(ws),Z) : fap = 0} N FF C FP.
The filtration F} induces a finite filtration F? on the quoti:ent vgl. We distinguish between the
case where w, € WY} for some a € A\I or not. In the first case we have a natural bijection

Cr(wr) = Crufay (wy) (4.2.25)

inducing an isomorphism

C(C]U{a}(wr),Z) — C(C[(U),«),Z). (4.2.26)

If f € F#~! then fici(w,) € C(Cr(wy),Z) corresponds to a unique fe C(Crufay(wy), Z). Then,
if h € Ind%U () (1) denotes the extension by 0 of f, by construction it follows that f — h € Fy,
thus we have the following equality of cosets

Fi'sf+ Y Wdg (1)=(f-h)+ Y Indg  (1)€F;
a€A\I a€A\I

Therefore, ;' = FJ. Now, suppose w, & UaeA\I WwlHe}l  We claim that F;_I/F"” = F;_I/F}’.
It is equivalent to check the relation F; !N DIIINY; Ind%u{a} (1) C Fr. If f € Fj~! is such that
f= ZaeA\I fo with f, € IndIGDIU{a}(]l) then we can find a writing of f = ZQEA\I Jo With
Ja € F}”_l N IndIG;IU{a}(]l). By induction we can suppose f, € FI”—2. If at most one « exists such

that w,_, € W2} the latter assertion can be proved with the same argument as in loc. cit.
Prop. 4.4. Otherwise, if there exist different o # 8 such that w,_1 € WA@Y as before we
have a bijection

Crufay(wr-1) = Cru(a,s) (Wr-1) (4.2.27)

and similarly to the argument above, we can find an h € F; 2 ﬂInd%U{a 5 (1) such that f,—h €

Ff‘l. Then we get a rewriting of f replacing respectively fu, f3 by go := fo —h and gg := fz+h
(for other v € A\(L U {e,fB}), let g, := f,). Then the claim follows inductively. Lastly,
notice that the condition on w, implies that for any a € A\I there is some s(a) < r for
which Crigay(wr) = Crufa)(Wsa)) © when w, & W!9ie} then there exists some element in
(I U{a})\I = {a}, i.e. « itself, such that l(w,s,) < l(w,) where s, is the simple reflection
associated to a. In particular the permutation wy (with s # r) of minimal length in wrWr{a)
must satisfy I(w;) < I(w,), thus s(a) = s < r. Therefore, F; ' N IndIG;IU{a}(IL) C F}. This show
that the successive quotients of F'¢ are of the form C(U,Z) for some (finite) subset U C G/ Py,
thus they are finitely generated free over Z. O

Remark 4.2.7. If F: G; — Gy, denotes the standard geometric Frobenius on the k-scheme
Gy, then GEF = G, Pf,—c = PI,BEF = B. In the part of the proof related to verify Z-freeness,

F
k>
where W is the Weyl group for Gy.

we used the Bruhat decomposition associated to the (B, N)-pair of Gf, induced by that one

on Gz. Then, the Weyl group we consider is W = Wl—f ,
For any w € W/ the bijection C(w) — Cr(w) then follows by the analogous statement for the
schemes G /P 1. (cf. [BT72, Proposition 3.16 (ii)]) and by the bijection (G,—C/P”-C)F =G/Py(ie
comparing the two Bruhat decompositions, the cardinality of BwPr/P; and (BywP /P ka)F ,

we can deduce |Cr(w)| = \(B,;wPL,;/PL,;)F\).
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Hence by the proof of Proposition |4.2.6} it follows that the following augmented G-equivariant
complex is acyclic:

0-Z— @ Idf (1z) = - — Idf (1z) = v§ (Z) — 0. (4.2.28)
ICJCA
|J=d—1
Set by definition nv% = v% (Z) ® Wy (k). When I =0, and G = GL;, then nUng =: St;
is the Steinberg representation of GL; over W,, (k).

Corollary 4.2.8. The following complex of W,,(k)[G]-modules is acyclic:

0= Wn(k) = € Idf (lw,w) — - = Ind® (lw, @) = w0, — 0. (4.2.29)
R

Proof. The complex (4.2.29)) is obtained by tensoring the complex (4.2.28) (namely K*®) with
W, (k). The restriction of the functor — ®z W, (k) on the full subcategory of projective Z-
modules is exact. Since K*® is an acyclic complex of free modules, it follows K*® ®z Wy, (k) is an
acyclic complex of free W, (k)-modules. O

4.3 Computation of the FEs-page

In this section we will prove that similarly to the case of coherent Opa-modules cohomology
[Kus16| cf. Theorem 2.1.2.1], the computation of Hodge-Witt cohomology of the Drinfeld’s upper
half space over k, as well as the cohomology of Witt line bundles, can be described in terms of
W,,(k)[G]-modules, given by certain local cohomology groups. This is reached by evaluating the
Ey-page of ([£.2.8). When £ = Ox (D) is a Witt line bundle for some Cartier Divisor D on a
k-scheme X, we denote pL := Ox (pD).

We recall a property of projective finitely generated modules over a ring R:

Lemma 4.3.1. Let R be a commutative ring and P, P’ be R-modules. Assume that at least one
between P or P’ is finitely generated projective over R. Then,

Hompg(P ®g P', R) ~ Homg(P, R) @ g Hompg(P', R) (4.3.1)
s a canonical isomorphism of R-modules

Proof. Without loss of generality, we can assume P be finitely generated projective. Then,
Homp(P, —) is an exact endofunctor of R-mod and since P is also finitely generated, there is a
canonical bijection, functorial on R-modules @ (cf. [Bou98, 11, 4.2, Proposition 2 (i)]):

Hompg(P,Q) ~ Hompg (P, R) ®p Q. (4.3.2)

Moreover, the functor —® g P’ is left adjoint to Homp (P, —). Therefore, we have the following
natural identifications:

Hompg(P ®g P', R) ~ Homg(P,Homg(P', R)) ~ Hompg (P, R) ®r Homg (P, R). O

We have the following:
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Proposition 4.3.2. With the same notation of Lemma the spectral sequence (4.2.8]) de-
generates at Eo. Moreover, _ 4
EY =H/(PL,F) j>2, (4.3.3)

and the terms Ey "™ for j > 1 appear as an extension of certain W, (k)|G]-modules:
iy Y oy
0— EZJN T By — E2,3v.s. 7 0, (4.3.4)

where, the following equality hold:

By = dg, (0, , (P, F) ®w, ) nSt)) (4.3.5)
B = WELF) @w,0 o, )Y (4.3.6)
for any 1 < j <d, and finally
Bt = BV = Indg | Hpa o (P4, F). (4.3.7)
Proof. We will prove that for any j = 1,...,d, E] 7 defines an exact sequence of modules. Define

A; be the set of all subsets I C A such that ag,...,aq—j—1 € I, and ag_; € I. When j = d,
ap ¢ I is the only condition. By Lemma a), if i(I) < d — j, then

Yy, (P!, F) = 1)

2 (P4 F) =0. (4.3.8)

It follows that we can write any E7 7 as

= @ P w,.elne @ P ul,@hr. (4.3.9)

ICA e€G/P, ICA €G/ P,
2 e 9SG T 2 e 9SG T
i(I)=d—j i(1)>d—j

The condition i(/) = d—j is equivalent to I € A;. Also, i(I) > d—j is equivalent to ag, ..., aq—; €
1. Then, for any G-equivariant quasi-coherent W,,Opa-module F, define

"EYL(F)i= P d§ L, P F), (4.3.10)
IEAJ'
|[I|=d—1+e
and . .
"EYL(F) = @ mdGH/(PLF) (agelifj=d) (4.3.11)
ICA
[I|=d—1+e

ao,...,ad,]’,1€I
be complexes where the differentials are induced by that one of EI’j . By construction, they

satisfy a short exact sequence (of complexes) of W,,(k)-modules,

0—"E}Y — EYY - "E}Y

1,w.s.

— 0. (4.3.12)
Indeed, it is induced by the following short exact sequences of complexes:

0 — Ind, B, ,(P?, F) - Indf H., (P4, F) — Indf W/ (P4, F) — 0, if I € A;
0 — 0 — Indg H/(P%, F) — Ind% B/ (P4, F) - 0, if ag,...,aq—; €I C A

(0), otherwise
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It suffices to prove exactness for "E}” and "E}7 .

To start, we first claim that we have the following equality:

0. GL; =~
"Bl = Indg(d+1—j,j>( @ Indp,” (1) ® H,; (P4, F)) (4.3.13)

ICAGLj

[I|=j—1+e

and ' |
"B s = ( a Ind%(]l)) ® HI (P4, F) (4.3.14)
IcA
I|=d—1+e

ao,...,ad,j,161

Moreover, if F is any equivariant W,, Opa-module, then the complexes above define exact sequence
of W,,(k)[G]-modules.

Assume the equality (4.3.13]) and (4.3.14)) are verified. Taking the tensor product of complexes
with H/(P?, F) and with Hﬁm_j (P4, F) does not in general defines exact functors. However, by
Corollary [4.2.8] the complex appearing inside Indg(dﬂijyj) of defines an exact sequence
of free Wy, (k)[P(441—j,j)]-modules. Further, the parabolic induction is an exact functor, therefore
the sequence stays exact. In the relation , note that the index set of I has the
following property: for any such I containing ao, ..., ®4—j-1, then P D Py 1_j15). Viceversa,
any parabolic @ such that @ D Pgyq_j1s) is of the form Py for some I of such form. Hence,
"Effus coincides with the complex C(./\/Tiao""’adfjfl}, W, (k)) tensor with H7(P?, F). Therefore,
exactness again follows from Corollary[1.2.8] This proves the exactness property for G-equivariant
(quasi-coherent) W,,Opa-modules.

The equality follows by definition, since H7(P?, F) is a G-module.

Consider I € Aj. Then Pyy1_j15) C Pr C Pgy1-j,5) holds true and by transitivity of parabolic

P, i P, s
IndP(d+1 39 and Ind]G; = IDdIGg N IndP(d+1 J»J). )
) 1 (d+1—3,19) (d+1—3,5) (d+1—4,19)

induction, we have Ind% = Indg(d+1 -
=77

Moreover, the natural identifications of the quotients
Plat1-j.4)/ Plati-j) ~ GL;/ (BN GLy)

and

Blas1-j5/Pr ~ GL;/(Pr N GL;)

induce for any k[Ps]-module M (resp. k[P 441 15)]-module M') isomorphism of representations

Ind " (M) =~ Indgy Ay, (M), Indg:i::ﬁ) (M') ~ Ind§iy, (M), (4.3.15)
Note that if I = {ag,...,q—j_1,Qig, -, i, 5}, for some 7, then Pr N GL; is the parabolic
subgroup Qj of GL; C L(g41—j ;) associated to I = {Bi—arjr1s---»Bi,,,;_o—dr+jr1}, Where
Agr,; = {Bo, ..., Bj—1} is the usual system of simple roots for GL;. Observing that H[]éd,j (P4, F)
is a Pgq1—; )-module, then the relation readily follows. Moreover, the isomorphisms
do not depend on the base ring of the representations, in particular they hold true for
any (equivariant) Wy, (k)-module.
The degeneration is immediate. Indeed, dy ™ : By ™ — E; "7 is always the 0 map: Since

r,.j —r+2,5—1
, By a

EI 7 defines exact sequences for any j = 1,...,d, it follows that both terms Fy re

“cf. [Orl08, Proposition 2.2.4], where the analogous property is fulfilled in the case of representations over a
field (n = 1 here) in characteristic 0.
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0 whenever 0 < r < j —1; when r =0, or r = j — 1 at least one of the terms is 0. Then we get
that A
or*Hy (P, F) = €D By (4.3.16)
j—r=s

In particular, when s > 1, it follows

gI‘.Hf/(Pd,F) —_ @ES_LJ — EgvS. (4317)
Jj=1
This implies that
Egs _ H;(Pd,f) ~ HS(Pd7f> (5 > 1) (4318)

where the last canonical isomorphism follows by the long exact sequence of the couple (X, Y; Pd).
Notice that for j > 1, the map d;’ 17 induces a morphism of complexes relative to (4.3.12)) for
e =—j+1,—j+ 2. Applying the snake Lemma, we get the exact sequence (4.3.4)), where

—j+lg —j+1 42,5
Ey37 7 = ker <”E19, = "By j), 7€ {w.s., ~}.

Also, notice that the collection of {P; N GL; | I € A;} are the parabolic subgroups containing
B N GLj, and those such that [I| = d — j + 1, are the minimal ones. So,

coker< P ndp i, (1) — IndgﬁfGLj(]l)> — ,St;. (4.3.19)
]EAJ'
T|=d+1—j
Since I:I%,d,j (P4, F) is a P41, j-module, we see that

(E£i+1,j)v ~ Coker(("ELfij)V N (nELi+1,j)v>

~ I:Iﬁ;,d_j P F)Y @ Ind%dHlYlj)(]l)/(ﬁﬁ;d_j (P, F)V @ Z Ind%(]l))
I€A,
[1|=d—j+1

G 1] d

= IndP(d+1,jyj)(Hﬁbd—j (P ’}-)v QOw, (k) nStj)
implies
G ‘1] d _ _;’_17 .
Indp,. o (Hp (P4 F) @w, g nSt;") = B, L7 (4.3.20)

In the last isomorphism, we use that the Steinberg module is a finitely generated free module
over W (k), thus it is compatible with tensor product. For Ej IT17 4 similar argument holds.

Notice that the cohomology H’(P?, F) is a G-module (so also the dual is), and then

—J+LI\Vv _ G G 3§ (md v
(B3 35H) —Coker< 1@ IndPI(]l)—>Indp<dHl’lj)(]l)> ® (H/(PY,F)Y.  (4.3.21)
[I|=d—j+1

Q,..,qg—j_1€l

The collection {P; | I C A,,...,0q—j—1 € I} is the set of all parabolic subgroups of G
containing Py_;;115). This means that

G G _ G
coker< D IndPI(]l)—>IndP(dHl’lj)(]l))—nvp(djﬂ,l],). (4.3.22)
IcA
[|=d—j+1

ag,...,ad,j,1€I
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Since nU}GD(d f is finitely generated free over Wy, (k), it implies
—j+1,1

By = W (P F) @, iy (a0

Playi-j,10)

)V. (4.3.23)
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Chapter 5

Revisiting the crystalline
Beilinson—Bernstein map

In characteristic 0, Dx is notably interesting for its relationship with Lie algebras representations.
More precisely, If K is a field of characteristic 0 and G is a reductive group over K, acting on a
flag K-variety X, then there exists a map

6% :U(g) - T(X,Dx)

obtained by ”differentiating the action of G”, that we call Beilinson-Bernstein (ab. BB) map,
motivated by [BB81]. This notion comes precisely from the following. Let Z be a representation
of G, then we can associate with it a representation of the Lie algebra g: if ( € g and f € Z,
then

C.f:= % (exp(€¢)-f)je=o (5.0.1)

(see for example [Rom21| Sec. 4]). The operator % is a differential of order 1, so this action

extends to the map ¢“* above (comparing filtration of the enveloping algebra and filtration of
the differential operators). In characteristic 0, the main feature lies on the fact that ¢©X is
surjective. In a field k of characteristic p > 0, we can adapt this construction to produce a map
Dist(Gy) — I'(X, Dx), but it is no longer surjective (cf. [Smi86, Theorem 3.11]). Those maps
are used, for example, in [Orl24] and [Smi86]. Then we can also describe a lift of this map,
namely W, (¢9X) : Dist(G},) — I'(X, Dy, (x)), in order to investigate geometric representations
over W, (k).

5.1 Description of the Beilinson—Bernstein map in positive char-
acteristic

For seek of completeness and since we are not able to find a reference where it is described,
we will define a crystalline BB map in such way it agrees with the one used in |Orl24; |Smi86]
similarly to the characteristic 0 case (see [BLM21; |Rom21]). Let k be a field of characteristic
p > 0. Let G = Gz be an algebraic reductive group, and X be a smooth k-variety equipped
with an action of G, = G ® k.

Let m = {f € I'(Gy,Og,) | f(1) =0} be the maximal ideal of Og, 1.

Definition 5.1.1. The Lie algebra g is the tangent space at 1 of Gy, i.e. gp = (m/m?)* =
Homy,_ji,.(m/m?, k) as a k-module.
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Let consider the first infinitesimal neighborhood of the identity Spec(Og, /m?) =: G,(;) . The
k-algebra Og, /m? is isomorphic to k & eg} =: k[GS)] where €2 = 0
Lemma 5.1.2 (cf. [Mill3| Proposition 3.4]). There are natural bijections

e—0

ker(Gr(kle/(€2)) <2% G(k)) < Derp(k[GV], k) > (m/m®)*, 1+ eC — ¢ (5.1.1)
Moreover, the group structure of ker(Gyg(kle]/(€2)) 20, Gy (k)) corresponds to the additive struc-
ture of (m/m?)*, while the k-linear structure is given by \.(1+ €C) := 1+ eX( , for any X € k.

*

The Lie algebra structure on (m/m?2)* is given in the following way:
Let ¢,n € Homy_j;p. (m/m? k) = Derk(k[GS)],k:), and let A be the comultiplication of the
algebraic group G](el). Then, we define

¢ KIG] 2 kG @ kG 2 ko k ~ k (5.1.2)

where the last map is the multiplication in k. Set [¢, 7] := (.n — n.¢ € (m/m?)*.

Lemma 5.1.3. The k-module (m/m?)* endowed with the operation [—,—] is a Lie algebra.

Proof. This is cf. |[Jan03, Part I, 7.7]. O

e—0

It follows that 1 + ¢[—, —] makes ker(Gy(k[e]/(€?)) —— G (k)) a Lie algebra too.

We consider the restriction of the action of Gy on X to the action o: G,(j) XX — X. Let M

be a quasi-coherent G-linearizable O x-module. The restriction on G,(Cl) induces a linearization

¢: 0" M — priM. (5.1.3)
Proposition 5.1.4. The isomorphism ¢ induces a Lie algebra homomorphism

p:gr — Endg (M), (5.1.4)
such that, for any open affine U C X, ( € gk, m € T(U,M), s € Ox(U), we have

p(C)(sm) = sp(C)(m) + p(C)(s)m. (5.1.5)
Proof. For any open affine U C X, we have that

DGV x U, piM) = kG @, T(U, M) (5.1.6)

Now, consider the isomorphisms of schemes ¢;: G,(:) x X — GS) x X for i € {1,2}, given on

points by €1(g,z) = (g,gr) and ex(g,x) = (9,9 'x) for g € G,(cl), z € X. Clearly, 1 = ¢, and

pry o 1 = 0. Therefore, we have the following equalities:

!Since we require that €2 = 0, this is the same of giving the ”extension by 0” multiplication structure on k& gj,
Le. (¢,€) - (c',m) = (cc’,en + Q).
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where the last equality is satisfied since as a topological space G,gl) is a singleton and g.U = U

for g € G,gl), since G,(Cl) is a neighbourhood of the identity of G. Therefore, ¢ induces an
isomorphism

KGWM @ (U, M) S KGY) @, T(U, M). (5.1.7)
The composition with the natural morphism ¢# : I'(U, M) — k[GS)] ®k I'(U, M) induces a map

A

r(U, M) 27 kiG] @, T(U, M) (5.1.8)

such that
(1®Id)o¢oo™ =1Id, (5.1.9)
(poo™)® Tdy gy o (90 o) = Idrm @ Ao (poo™) (5.1.10)

where 1: k[GL] — k is the k-rational point corresponding to the neutral element of G,gl) (In

particular ¢ o o7 is a comodule map over the Hopf algebra k[G,(Cl)]). For any ¢ € g, we define p
given by the following map:

o
p(Q): T(U, M) L75 k[GID) @), T(U, M) 225 T(U, M). (5.1.11)
Let s € Ox(U) and m € I'(U, M), then we have

p(¢)(sm) = (¢ ® Id) o (¢ o o™ (sm))
= (C® Id)(a™(s) - (¢ 0 07)(m))
= (@ 1d)(o™(5)) - (1@ Id) o (¢ 0 o™)(m) + (1@ Id)(a7(5)) - (( ® Id) o (¢ 0 ) (m)
= p(Q)(s) - m + s p(C)(m).

Since ¢ o o7 is a comodule map, it follows that p is a Lie algebra map by [Jan03, Part I, 7.11
(2)]- O

In particular, for M = Ox the (b.1.4)) is the Lie algebra homomorphism
gr — Derp(D(U,0x)), ¢ (f = (Id®¢) 0 0¥ (f)), for any ¢ € gi, f € T (U, Ox)
that we call differentiated contragradient action (cf. [Jan03| 1.2.7, 1.2.8, 1.7.11 (1)]).

Remark 5.1.5. In particular, note that the Lie algebra of an algebraic group could act on a
scheme, even if the algebraic group does not. For example, in the case of X C P¢, the projective
space is equipped with an action of GLgy1k, thus HO(X, Oplz) inherits an action of gl by
the construction above. However, GLg;1 1 does not act on X' (not to be confused with the finite
group of k-rational points GLg11(k)).

There is an alternative description of the Lie algebra map above, better adapted for later
computations:

Definition 5.1.6. Let o be an action of Gj on a smooth k-variety X. The canonical differential
action of o is the map 9o : g — Endy(I'(U, Ox)) given by

901 = (o1 + () (5.1.12)

le=0
for f e I'(U,Ox) and ¢ € gy.

2The (5.1.9),(5.1.10) follow by the definition of linearization: in particular, (1 x Idx)*¢ = Idap: M — M
implies (5.1.9) and pris¢ o (1 x 0)*¢ = (m X idx)* ¢ implies (5.1.10).
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Remark 5.1.7. The map appearing Definition [5.1.6| reminds the shape of the differential action
in characteristic 0 (5.0.1). Here, we formally truncate the expansion of the exponential function
at the first order. That is the reason for calling it ”canonical differential action”.

Lemma 5.1.8. For any ¢ € gk, the map 0o (C) is a k-linear derivation.

Proof. Let (,¢" € g and f, f' € T(U, Ox). Since o(1 + €() is a k-algebra homomorphism, then

00(Q)(11) = 5 (1 +QGS)) = (o4 Qo1 +)(F))

e=
= o(1)() 5 (71 + ()

le=0
o5 (e +en)
= fOo(f)+ f'Oo(f). (5.1.13)

This shows that do(gr) C Dery(I'(U, Ox)). O

le=0

Lemma 5.1.9. The maps (5.1.4) and 0o agree when M = Ox. In particular, 0o is a Lie
algebra homomorphism.

Proof. Set Oy :=T'(U,Ox) and O, := Oyle]/(€?). Let ¢ € gp. We view (j: k:[G,E})] — k asa
derivation. Equivalently, it is a k-algebra homomorphism 1 + eC: k[G1] — k[e]/(e?). Then, the
statement follows by the commutative diagram

Ov, % 0y, @ G TS0y, © ke /() = Oy @ ke /(e2) @ kld/()

| [

(’)U*>(9U®k: » Oy @ kle]

W l
de |e=0

Here, m: k[e]/(€?) ® kle]/(e?) — k[e]/(¢?) denotes the multiplication, %|€=0 : Oplel/(?) — Oy

is the map sending a + be 5 b , Oy, = Oy @ kle]/(€?) and o = o# ® k[e]/(¢?). Then, by
definition we can read

o(1+€C): Oy = Oy @ k[GV] = Oyle)/(é),

following the vertical left, top horizontal, and top vertical right arrows. In the bottom, we have
the contragradient action of G,(Cl). Since 1+€(: k[G,(:)] — kle]/(¢?) corresponds to the derivation

d
de |e=0

¢: k[GS)] — k, compatibly with k[e]/(e?) —— k, then the diagram above commutes. O

Remark 5.1.10. From now on, when we talk about ”differentiating an action” we mean to
consider the canonical differential action.

Thus
do :gr — I'(U,Fi1Dx) Cc I'(U, Dx)

is a morphism of Lie algebras and extends to a morphism of associative algebras U(gx) —
I'(X, Dx ) sending Uy, (g) to I'(U, Fil,;, Dx ). Further, there is another natural morphism of filtered
algebras U(gx) — Dist(Gy) induced (by the universal property of enveloping algebras) by the
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natural inclusion of gi C Dist(Gy). Here, the filtration on Dist(Gy) is given by distributions of
order n, i.e. Fil"Dist(Gy) = Dist,,(Gy).
Choose an ordered basis of gz, namely

B = {La,Hg,Y_o,h1,..., hy | @ € @7 B € A}.

It is formed in the following way:

For any a € ®T, Ly € (92)a,Y_-o € (9z)_a are the generators of the corresponding one
dimensional weight spaces associated to the roots +« and H, = [La,Y_o]. The subset By =
{Hg,h1,...,hm | B € A} form a basis for Lie(T7) C gz. Also, it contains a semisimple part,
given by the subset By C Bt formed by the elements Hg with 8 € A.

Lemma 5.1.11 (cf. [Jan03, Part II, 1, 1.12] and [Stel6, Ch. 2, Corollary to Lemma 5]). The
distribution algebra Dist(G) is the Z-subalgebra of U(gz) @ Q generated by L[a“] : 1 Lo,

Y[b“] = bl,Yb“, and ( ) foraoe Aand j=1,...,m such that hj € Bp\B7F,aq,ba,cj € N.
Thus, by Lemma [5.1.11f we get the following:

Proposition 5.1.12. Assume that X has a smooth lift over Z, i.e. there exists a smooth Z-
scheme Xz such that X ~ Xz X k, and the action o lifts to an action oz of G on Xyz. Then, for
any open U C X, there is a unique well defined morphism of k-algebras

¢% : Dist(Gy,) = Dist(G) ® k — I'(U, Dx), (5.1.14)
sending
ﬁLaa ®1— E@a( o ®1)% for all ao, € N
ﬁYf‘;®1'—>—aa( "0 @ 1)be for alla € Ab, €N
<2> o1 <aa(hcjj )>’ for all hj € Bp\ B, ¢j € N.

Proof. Let dim(X) = d. Let X := Xz x Q and 0g = 07 ® Q. Similarly, U = Uz x Q for some
Uz, C X7z open such that Uz x k ~ U. We have that Dist(G) C Dist(G) ® Q = U(gg) is a free
Z-module. Moreover, I'(U, Dx) ~ Sq(k) = k[z1,. .., 24| <8£i1}, . .85”’]) =S4(Z) R k.

We notice that S4(Q) ~Uo (1 (TX(U))

By the universal property of enveloping Lie algebras, the differential of the action og:

dog: 9o — Tx(U), (5.1.15)
is a Lie algebra homomorphism that lifts uniquely to a map of associative (Q-algebras
¢: U(gg) = Uo ) (Tx (D). (5.1.16)

Moreover, for any a € A and any m € N, m!LZn} =L, m!Ylm] Ym.oom ( l) = hi(h; —
1)---(hi —m + 1) hold in Dist(G). Applying ¢, we get respectively the equality m!qﬁ(Lgn]) =

3The notation 4 (L) means the universal enveloping algebra of a Lie-Rinehart algebra £ over a commutative
k-algebra A (cf. [Rin63| Section 2]).
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00z(La)™, ml(Y™) = o5(Y_ o)™, mig((")) = doz(hi)do7(hi—1) - - - Doz (hi—m~+1) therefore
the algebra map ¢ induces an associative Z-algebra map

¢z Dist(G) — I'(Uz, Dx,). (5.1.17)
Hence, we get the searched map after tensor by k. O

Definition 5.1.13. We call the morphism (5.1.14)) the Beilinson-Bernstein map (BB ) w.r.t.
Ox.

We have by definition a commutative diagram

U(gr) id » I(X, Dx)

~

DiSt(Gk)

of associative k-algebras. Hence, the map (5.1.14)) is a morphism of filtered associative algebras,
so for any distribution ¢ of order n, and any distribution 7 of order m,

¢°* ([¢.n]) = [¢°%(0), 89X (n)] € T(X,Fil"t™ D).

Lemma 5.1.14. If X is a smooth scheme over k, the natural inclusion (and homeomorphism)
i: X = W,(X), induces a surjective morphism of sheaves:

i*: Dy, (x) — ixDx (5.1.18)

Proof. By the Corollary [3.1.6] it follows that the induced map on the stalks of any point of X is
surjective, thus the map of sheaves is surjective as well. ]

We can define a section for this map (in the category of sheaves of sets).
Proposition 5.1.15. There exists a map of sheaves of sets
[]: isDx — Dy, (x) (5.1.19)
such that i* o [.] = id.
Proof. Let U C X be an open subset. We define the map

[.]UI F(U, Dx) — F(U, DWn(X)) (5.1.20)

such that if 0 € I'(U, Dx) is one of the 8,[;}, for local coordinates z, then [0y := 0y, , as defined

-

in Proposition Otherwise, there is a unique way to write any 9 € I'(U, Dx) as
0= b0, by € Ox(U). (5.1.21)
r

In that case, let

Bl == > [br]OLh (5.1.22)

r

“The corresponding elements (Z)(L([lm]) = -L00(La)™ and (b(YYf) = -L00(Y_o)™ are well defined, since for
any 6 € Tx,(Uz), and m € N, 6™ is a Z-linear combination of elements of the form H‘f:l GZ” with r; > 0. Also
¢((£¢7)) = (aﬁ:i)) is well defined: Indeed, since h; € Lie(T), then do(h;) acts diagonally on I'(Uz, Ox,) (c.f.

[Jan03, pp. II, 1.19]) by looking at the weight space decomposition.
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where [.] is the Teichmiiller map Ox(U) — W,Ox(U). We have the following commutative
diagram, for any V C U:

(U, Dx) 2 T(U, Dy, ()

lpw lp% (5.1.23)

DV, Dx) —2 D(V, Dy, x))

Indeed, it is clear for the differential operators of the form 8[;], since they uniquely determine
lifts 83]” In the general case, it follows since the restriction of .|y to W, Ox is the Teichmiiller
map, for which such a diagram is commutative. In particular, the maps [.]y define a map of
sheaves with the desired property. ]

Definition 5.1.16. For any smooth k-scheme X, we define the map of sets
Ox\ . T $Ox []
Wi (¢™X) : Dist(Gy) — I'(X,Dx) — I'(X, Dw,(x))- (5.1.24)

5.1.1 Examples

Here, we want to describe the BB map for some reductive group G, acting on the flag variety
X = G/B, where B is a fixed Borel subgroup. We suppose that all groups are defined over Z.
The index (—); means we are tensoring with k, as done before.

Example 5.1.17 (G = SLy). For G = SLs, we have X = P!. The Lie algebra g = sly is
generated by the matrices

L:<8 é) H:(é _01>, Y:(? 8). (5.1.25)

The Kostant’s Z-form of g = sl is the Z-algebra Uy generated by
L* (H) _ HH-1)...(H-b+1) vl _Ye

fal ._
L= b ! ’ R

al’
where a,b,c € Z>.

Lemma 5.1.18. The Z-algebra generated by the following sections of Dp1 (not a priori globally
defined)

[s]
zr<g) , for allr;s € N such that 0 <r < 2s,
0z

is a Z-subalgebra of T'(P', Dp1).

Proof. If [xg : 1] are the coordinates of a point in X, the standard covering of X is given byﬂ

(Up = Xyy =~ A, Uy = X, =~ Al). Denote with z the local coordinate of Uy and w for the local

coordinate of Us. On the intersection we have w = % Then we have

I(Up, Dp1) = Z[z]<(§z>[8}, 5> 0>,

i.e. the crystalline Weyl algebra Sj(7Z) is generated by z and the differential operator % ( cf.

Lemma [1.2.8)). Similarly,
0\ s
[ (Uso, Dp1) = Z[w]<<a—w) 5> 0>.

X for a regular function f denotes the standard open X \ Z(f).
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On the intersection Uy N Uy, we have that

9 _ 20
ow 0z’

S
equality T'(P!, Dp1) = ['(Uy, Dp1) N T(Uso, Dp1) where the intersection is taken in D(Z[z,1/z]),

[s]
means that T'(P', Dp1) is generated by the operators of the form 2" (%) ’ sending Z|z] to Z[z]

[s]
For any m € Z, we have that zr<%) (™) = (M)2""T™ #£ 0 if and only if [m| > s. The

[s]
and Z[w] to Z[w]. Therefore, zr(%) is a global section if and only if r and s are such that

— > >
{r s+m>0  VYm>s (5.1.26)

r—s+m<0 Vm< —s

that is equivalent to 0 < r < 2s. O

To understand the BB map, we have to look at the action of G on Ox: we choose the natural

action given by
a(9)(f)([zo s 1)) == flg™" - [wo:21]) g €SLa, f € Ox

Proposition 5.1.19. (¢f. [Smi86, p. 175]) For G = SLy and X = G/B ~ P! the BB map is
the map of filtered k-algebras given on generators by:
#Ox : Dist(Gy) ~ Uz @ k —> L(PL. Dp1)
L®l %%? (5.1.27)
Y®1— —

&.

Proof. We need to compute the canonical differential action of o for the elements L,Y € sly. We
can make such computation on the chart Uy. For any Q(z) € Op1(Uy), we get

00(L)QE) = g _ o1+ L)(Q()

d z
- &‘EZOQ <1 — 62)

IR Y
_1—€Z|€:082 1—ez le=0

= 2220
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Example 5.1.20 (G = SLg41,7). The example of SLy reflects the situation in general for the
group G = SLg417. Let A be a basis of a root system ® = &+ U@~ of G. Consider t = Lie(T),
where T' is a fixed maximal torus, g, = Lie(G,), where G, is the one dimensional subgroup
associated to the root a € ®T (resp. ®7) of the unipotent group U (resp. U™ ) . Then we denote
by

Lo €ga, a €PT, Yy€g4, a€®, Hy=I[Ly,Y olEt, acdf

their generators. Then, g is the Z-module spanned by L., Y_,, H, with o € ®T.

For any o € @7, the triple { Ly, Y_q, Hy } generates a copy of slp 7 in g. In the case of SLg;1 we
have d(d+1) roots, d(d+1)/2 of them are the positive roots, each one corresponding to an injective
morphisms of Lie algebras s;;: slo < slgy1 for any oy € ®*. The variety X = G/B =~ e
is covered by the standard open cover of affine schemes: denote with [xo,...,z4] € P? point
coordinates, then

Vo= X~ A4 V=X, ~ A9

is the standard cover of X. For each 0 < i # j < d the intersection V; N V; admits local
coordinates

T T T4
2 = (Z()i R R 2 7)
and A
i) €y Td
Zj :(Z()j = f""’f""’zdj = 7)
ZL'J CC] .’EJ
such that
1
Zijg = ——- (5.1.28)
Zji

So we can see z;; and zj; respectively as local coordinates of a copy of Al C V; and Al C V.
After glueing those affine lines along (5.1.28)) we get a copy of P'. Now for every a;; € D1, we
get an sly-triple together with a BB map of P'. Then consider the closed immersion

P — P [wo:ay]— [0 imgi---iay o2 0]

where, in the coordinate of P4, g,z are respectively in the i-th and j-th position. We have a
natural morphism of Ops-mod, 1, Tp1 — 1l*Tpa. Moreover, let Z C Opa the sheaf ideal cutting
out P! via the closed immersion . Then, there is a natural Ops-module isomorphism Tpa /ZTpa ~
L l*Tpa. Thus we get a natural map

TP, Tp1) = TP 1. Tp1) — D(PY, Tpa /T Tpa)

mapping (locally) 8% > %, where z is a local coordinate for A’ ¢ P!. Thus, we have a
ij

commutative diagram
sly i) F(Pl,'ﬁpl)

b
slar1 —27 T(B, Tpa)
of Lie algebra morphisms, extending by construction to the analogous one for ¢©x.

Example 5.1.21 (G = GLg11 4, X = }P’g). In the case G = GLg41 1, we consider the flag variety
G/ P (1 4),x given by taking the quotient over the parabolic subgroup associated to the partition
(1,d). Let

o: G x P4 — P (5.1.29)
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be the action given on closed points by,
(9,20 -+ :2aq)) ¥ [20: -+ : zq)g~ " for any g € Gy.

Thus, the induced contragradient action is given by g.f(z) = f(zg) for f € O]P’i’

The Lie algebra g acts on I'(U, Opa), for any open U C P?, via the canonical differential
action do.

For any o € ®* we compute the image of L, € g, and Y_,, € g_,, under do. Let f € Opa(U).
Write a = ; for some 0 < i < j < d. For any 0 <1 <d, put V; := D, ().

It suffices to compute do(Lq)(f), resp. 0o(Y_q)(f) in the local chart Vj, resp. V;. Therefore,
we have

d
00 (La)(Fvi = go, _ o1+ Laye)(f) (5.1.30)
= (ZE|6()f(ZOi"”’€+Zﬂ""’zdi) (5.1.31)

d
= (5.1.32)

where we wrote f as a function in the local coordinates (z;);; of V. Similarly we obtain

0
Vi — 0%;j

9o (Y_a)(f)

f. (5.1.33)

On the intersection V; N'V; we have the relation z;; = 2:]2 , thus follows that 8 f = —z;; 8? f
ij
on V;NVj. Following this computation, we can consider L, Y_, as derivations after taklng their

images under ¢©%, i.e. we let

@ . —. 3
z] 6213 =¢ X( Oézj) = Yai; = Yij if Qij € ot

‘ 5.1.34
e = 09¥(Yoay) =t Yay, =t Y5 if ay € OF o430

Then the description of F(Pg, DE”Z) can be given locally as crystalline Weyl algebra generated by
[m]

zi; and differentials yq,;. More precisely,

Lemma 5.1.22. For any 0 < j <d,

[(Vj, Dpg) 2 klzij | # 3)(0omi e, | > 0, iy € @),
Proof. The open subvariety V; = Dy (z;) C P¢ is a local chart of IPd With local coordinates
zi = 2z, for 0 <@ # j < d, isomorphic to Aﬁ. AlSo, Ysgn(i—j)as; = 8 12]38 ifi>j.
Then, the result follows by Lemma [T.2.§] O

5.2 Applications

In this section let k be a finite field of characteristic p and P? := Pg. Here, we are going to apply
the content of Chapter [3]to lift the operators above to differential operators over the Witt scheme
W, (P?). The action of Gj, =: G on P?, as described by ¢ in Example is considered. If
g € G is a k-rational point and U C P¢ is an open such that 04(U) = U, then the G-linearization

(1-1.5) induces an isomorphism [J
Dpa(U) = Dpa(U), nw>7n:(f = (041 0n00,)(f))- (5.2.1)

5As abuse of notation, here we use o, to denote the action on the structure sheaf Opa.
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For any a € &, s € N, let W,,(y s L) (resp. Wn(ygf})) be the image of Y_[So]é € Dist(G) (resp.

L([l]) under the map (5.1.24). Those are elements of I'(P?, Dy, (p4y)-
For any a € ®, write a = ay; with ¢ # j (0 <4, < d). We introduce

Zo = Zij 1= Ze k(P?) = Frac(Opa(Vo....a)),
Zj
where V) 4= ﬂ;i Vi, Vii=Dy () C P4 for any 0 < [ < d and k(P?) is the function field of P¢.
The sheaves W;,Oy; have a natural (left) Dy, (v;)-module structure, given by evaluating a
differential operator to functions, thus the canomcal map Dwn(ﬁpg) — Dw,,(v;) induces a (left)
Dwn(Pg)—mod structure.

Let P = P; := P41 q—j) be the maximal parabolic subgroup of G associated to the partition
d+1=(j+1)+(d—j) with Levi decomposition P; = L;Uj.

Lemma 5.2.1. For any 8 € ®, the differential operators 25 y[p}ﬁ € D(A?) are elements of
D(PY).

Proof. We notice that if 8 = a4 (with ¢ < [), we have er y[p] € D(Dy (%)) ~ D(A?) and

B
under the identification k[22, ..., 2] = k[Z] @y k[Z- | 7 # 4,1] we have 7 y[p] sk, ... 2]) =
ZB 1y[p]ﬁ(k[%]) ® 1. Thus we can assume d = 1. Hence, let 23 = z and y_g = 0.. Then, it follows
by Lemma [5.1.1§ O

We can get a generalization of [Kusl6, Proposition 2.1.5.3] and |Orl24, Proposition 3.11] in
the case & = Opq, by the following. Let Dy, := (P9, Dy, (p4y)-

Proposition 5.2.2. Assume that char(k) # 2. Then, the Pj-module Hd ](IP’d W, (O]P;d)) ad-

mits a submodule N, ; that is a finitely generated Pj-module over W, (k:) and a W, (k)-linear
epimorphism of Dy-modules

S
Before proving the proposition we need some technical preparation. Let S C Zt! be a finite
set. Let W, (k)[T] = W, (k)[Tv,...,Tq] and T := (Tp,...,T;). Consider the polynomial algebra

W (k)[T™ | m € S| as Wy (k)-module. Let W,,(k)[I™ | m € S|, be the W,,(k)-submodule of
W, (k)[T™ | m € S] consisting of homogeneous polynomials of degree r. Denote by

W()[Tm|m€S = UW [T | m € S,

The latter is a free W,,(k)-module with a W,,(k)-basis consisting of elements of the form

meS
with > cgim =p", 0 <7 <l and ip > 0 for any m € S.

Definition 5.2.3. Let k[2]5(S;1) € W, (k[z]) be the W, (k)-submodule generated by the el-
ements of the form Vl(Hmes(Im)iﬂ) where T; := [z] for 0 < i < d and Hmes(zm)im €

Wy (k)[T™ | m € SEII)L
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Remark 5.2.4. Since S is finite, k[2]5(S5;1) is a finitely generated W,,(k)-module.

Remark 5.2.5. We may choose a bijection between the sets S and {1,...,|S|}. Thus, for any
m € S corresponds a unique natural number s = s(m). Under this bijection, the variable 7™
corresponds to a variable Xs. Then, k[2]=(S;1) is generated over W,,(k) by V!(f) where f runs
over homogeneous monomials f € Wy, _(k)[X1, ..., X|g] of degree p” for some 0 <r <.

Definition 5.2.6. Let A be a unitary commutative k-algebra. Let aq,...,a, € A be pairwise
distinct. For any ¢ € N, define A,,({a1,...,a,};i) be the W,,(k)-submodule of W, (A) generated
by Vl(ngl[aj]mj) for 0 <1 <m with 370 m; = pli.

Remark 5.2.7. Let A = k[z] as above and S C Z4*! be a finite set. Then, for each m € S
corresponds a distinct monomial z™ € A. We see by construction that

kleln({2™ [ m € S}1) C k[2]5(S31) (5.2.3)

is a W, (k)-submodule. The symbol ”<” underlines the condition on the degree of an element of
the form V!(f).

Lemma 5.2.8. Let A be a unitary commutative k-algebra. Let a,b € A two distinct elements
and [—]: A — W, (A) be the Teichmiiller map. Then, [a + b]* € A, ({a,b};i).

Proof. 1f q(a,b) = 377, cja’b"™I € k[a,b] is a homogeneous polynomial of degree r > 1, there
exist polynomials ¢;(a,b), ..., qn—1(a,b) € k[a, b] such that

T

la(a, b)) = | Y lejllal (b +ZVZ [:(a, b))

7=0

Moreover, for any i = 1,...,n—1, g;(a, b) is homogeneous of degree p'r. Indeed, the existence of
some polynomials is clear; we need to prove that are of that kind. Applying the i-th ghost map
w; to both sides of the latter equality, we get the relations

r 1 T i i - i— 17— ; %
ST I pg (a0 + pPaa(a, )P+ + plaia,b) = gla, b)P
=0

for each ¢ = 1,...,n — 1. By induction on 4, it shows that g;(a,b) is a homogeneous polynomial
of degree p'r. Now consider ¢(a,b) = (a + b)*. By the reasoning above we can write

n—1
la+0]" = to(a,b) + > _ V'([ai(a, b))
=1

with deg(q;(a, b)) = pli, to(a,b) € A,({a,b};q) and [g(a,b)] € W,_;(k[a,b]). Then, we can apply
the same argument to each ¢;(a ,b):
We have an equality

n—Il—1

[ai(a,b)] =t10(a,b) + Z Vl q”/ a,b)])
I'=1

where deg(q;y(a,b)) = PV, t; is a homogeneous polynomial of degree p'i in the variables [a]
and [b], and [g; 1 (a,b)] € Wy,_;_p(k[a, b]).
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Thus we can write

V([a(a,b)]) = ti(a, b) + Z VY ([q,—p (a, b))
'=Il+1

where deg(q; —)(a,b)) = i, t = Vi(to) € An({a,b};i), and [@,—1)(a,b)] € Wy,_y(k[a,b]) for
n > 1> 1+ 1. Hence, we can iterate the same argument to every polynomial g; y(a,b), until we
get an expression of [a + b] in A, ({a,b};7). O

Corollary 5.2.9. Let A be a unitary commutative k-algebra with char(k) # 2. Letay,...,a, € A
pairwise distinct. Then, [37_, ajl' € An({as, ..., a. };i).

Proof. We proceed by induction for r > 2, using the previous lemma as the base case. Then,
assume 1 > 2. Up to permutations of the indices of a;, we can assume b, = a1 + -+ ar_1 # ar
(otherwise 2a; = >._; a; for any j, contradicting the hypothesis of having distinct a;’s). By
Lemma it follows that [a, + b,]° = [>5=1 ajl" € An({by,a,};i). Thus [a, + b,]" is a

linear combination of elements of the form V'(Jay + - -+ + ayr—1][a,]P'*7) for 0 < | < n. By

inductive hypothesis [a1 + -+ + a,—1) € A, ({a1,...,a,—1};7), thus it is a linear combina-
tion of elements of the form VS(HZ_ll[au]m") with Zmu =p’jand 0 < s < m —[. Since
VIV T ™) ) = V(YT ™) € An({an,-oardid), it follows
also that [a; + -+ +a,])' € Ap({a1,...,a,};1). O
Lemma 5.2.10. Let A be a k-algebra, and m,r be non negative integers. Let aq,...,a, € A.

Let dy,...,d, € N™ and denote by [a]% := [a1]9)1 .. [a,,])m € W, (A) for any 1 <i < r. Let
S1y--.,8 € N. Assume s, = max;{s;}. Then

r

TV (la)) = pottorrysr ([a] S Pk (5.2.4)
i=1

where p*r~%d, € N is defined by (p* ~%d;); = p*~~%(d;); for any 1 < j < m.

Proof. Without loss of generality, we can assume s; < --- < s,.. We can proceed by induction

on r > 1. The base case is trivially true. Then, we have

HVS"([Q]QZ') :p81+"'+8T72V5r71([Q]Z: L pPro1Ttid, )VEr ([a]r)
i=1

'rle

:ps1+-..+5r—2VSr—1( 2= P I_SidiFST_lvsrd ]dr))
:psl+---+87-71VSr 1( S pTiT A 1([a]dr))
= pt sy (Ve Q)P i P 1751-42.))

:p81+~-~+ST71VSr([Q]Z:: P s’dz)'

For any d = (d1,...,dy) € N™ let the degree of d be deg(d) :==> ", d; € N.
The following is immediate:

Corollary 5.2.11. Letm € N, A = k[z forz =(21,...,2m), @; = z with [z]) =T;,i=1,...,m
Finally let s;, d,,v as in Lemma Then, T1;_, Vi(T9%) = V5(f) for a homogeneous

=1

monomial f € Wy_s(k)[T] of degree deg(f) =iy p* %ideg(d;), where s = max;{s;}. O
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Proof of Proposition [5.2.9. Rephrasing the statement, it is equivalent to say that the cohomology
group H;;] (P¢, WH(OPZ)) is generated as D,-module by a Pj-module N, ; finitely generated over

W, (k). Vlife define the following sets

1= {(mg,...,md) € 741 ’mo,...,mj Zoamj—l-l,---amd<Oazimi:0}7
Iii={(m;); €I |my=—1 Vi>j+1}

Notice that the set I is infinite and closed under the sum (component-wise), while I; is a finite
set. Firstly, we need to prove that in the category of W, (k)-modules the following holds:

WK1, 24]) /W (k) if d—j=1,
Y (B Wa(Opy)) = W Bmmarer k770 o2 2 2) i d =22,
0 it d=j,

(5.2.5)

Notice that @, mper® " 20" ...z?jzﬁjffl ...zy" is not a unitary ring. Thus we set by

definition, in the second line of ([5.2.5)),

Wn( @ k-zp™ .. .z;nj z;n_ffl . z;”d) := W, (k)-module generated by V!([22]),

(mo,...,md)GI

where 2™ := H?:o z" and 0 < I < n. To check the (5.2.5), we use the the long exact sequence
k
— H (P, Wa(Opg)) — B (BE\B], Wi (Opg)) = 0.
If d — j > 2, then HY™9 (B, Wy, (Opg)) = 0, thus

B9 (B, W (Opg)) = Y (BB, W (Opy)).

If d—j =1, then H*J _I(Pg,wn(OPz)) = W, (k). Hence, we have the short exact sequence

0 — Wi (k) = HO(PI\P™, Wi (Opg)) — Hiaos (PR, Wi(Opg)) — 0.

d—1
Pk

Since IP’%\IPZf1 ~ Az, we get the first line of (5.2.5). The case d = j is trivial. Now consider the

open cover of
d

PAB, = |J Dalz).
i=j+1

The Cech complex associated to this covering has its highest components of degree d — j — 2
and d — j — 1, given by

d i— . d
= @ T () Dale) WalOpy) | T T =T | () D), Wa(Ogy)
i1=j+1 iy =

j+1<i<d
(5.2.6)
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Then, Hd_j_l(]Pﬁ\IP’j , Wn(OPg)) = coker(9%7772). We have that

T () D), Wal(Opa) | = Wal(kl20,- - Zd)zyir. 21, 2))
1<l

where the superscript 0 means that we are considering the degree 0 elements in the localization.
By the natural inclusion

Wn((k[ZO, RS Zd]zj+1.uzfl...2d)0) - Wn(k[zﬂv s 7Zd])[zj'+1...z§1‘..zd}7

we see that W, ((k[zo, .. ., Zd]zHl...zgl...zd)O) is generated as Wy, (k)-module by the elements of the
form

0<li<n-—1,
deo m; + pl de oml=0
. 1 tptm! Lo/ 1= i=j4+1""% ’
Vi([zgo ... z;n’z;:ffl Pl z;ndﬂ) ™4]) such that < my, + plmg1 >0, (5.2.7)
Mgy <0,
mo,...,mq > 0.
Analogously,
r m D+ ZZ O]P’d) = Wn((k[z(b R Zd]ZjJrlmZd)O) - Wn(k[zﬂa s azd])[zj+1...zd}
i=7+1
is generated by
0<i<n—1,
/ , d
Vi([zmo ... zmjzr-anrlerlmj+1 o zmd+plmd]) such that Z Comi+p YL =1 =0, (5.2.8)
0 7oAt d ]+17" ,ml, <0,
mg,...,mg >0

as W, (k)-module. It follows that coker(9¢=7=2) is generated as W, (k)-module by the elements

0<li<n-—1,
Zd mi—|—plzc.l_. m. =0
. + 1,7 z 0 i=j+1 7 )
Vl([zglo...z;nj ﬁjfl v ...z:lnder ™d]) such that ]H,..., <0, (5.2.9)
m,<p|m’]]+1<z<d
mo,...,mq =0

Finally, we see that these elements generate (since for any fixed 1, m; —p' |m/| take all the negative
integer values) W, ( Dno,...mayer k27 - - z;-nj ;njl“

Set Y =N —jt1 D+(z) and Y;, = ﬂj+i1¢<ii1<d D, (z;) for any j+1 < iy <d.

We regard the W,,(k)-modules C’d*j*f,é’d*j*l respectively with the natural structure of
D-module, induced respectively by I'(P{, Dy, @d)) = T(Yi,, Dy, pg)) and F(Pg,Dwn(Pg)) —
r(y, Dwnmg))- Thus also the local cohomology Hd I (P, Wn(OPg)) inherits a F(Pdvan(lpg))‘

module structure.
From now on,let 0 <a<jand j+1<b<d.

mq
- 2g
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Write a Teichmiiller representative T, of z4, as % =T =: TaTb_l. If m := (mg,...,mq), an
element

m .__ Mmoo Mg 41 mq . ,mo mj Mj+1 mq
=T TTR T e W (@ ke )

(moy...,mq)EL
is well-defined whenever (my,...,mg) € I. With this notation, the action of D,, on an element
of W”<®(mo,...,md)61 k-zy".. z;n] z;rjrjfl . .z;n‘i) induces an action on the set I. As matter of
notation, write just m to denote an element of I;. Let N, ; be the finitely generated W, (k)-

module k[z]([;;1). For n = 1, Ny; = Dino,...m Lyomt)el; B - 26”0...z;n] ]+11 .z is a
Pj-module.

If n > 1, any € N,,j can be written as z = 37— 0 al 1Vl(Hm€I (™)) where i = (im)mer,
and a;; € Wy (k). If g € Pj, then[]

o

gV TT @™ ) =V [T 2™ | =V T | DS b 2™ (5.2.10)

mGIj mEIj mEIj _m’EI]‘

where by, i, € k and ) im = p" for some 0 < r < [. For any m € I; the corresponding

mEIj

’ im
[Zmle 1 bm i 2™ } lies in k[z],—i(Ij;im) by Corollary 5.2.9] thus it is a linear combination of

elements of the form

Vem H (Im’)r(m’,sm,im)

m/GIj
where 7(m’, Sy, im) € N are such that Zm,el r(m/, $m,im) = p*™im. Choose a bijection of I;
with {1,2...,|;|} and denote by s1,s2,..., s, (resp. i1,...,4|7,|) the corresponding elements

Sm (resp. i,, ) via the chosen bijection. The expression in the right hand side of ( m is a
linear combination of elements of the form

1751

H Vu H (Im’)r(m'7su,iu) . (5211)
u=1

m/EIj

Let s = maxys, and 7(sy,i,) € Nl be given by letting 7(Suyiy)y = 7(V, Sy, iy). By Corol-
lary applied to A = k[z™ | m € I;] and a; = 2™ for i = 1,...,|I;|, where m is the unique
element of I; corresponding to ¢ under the chosen bijection, the quantity is equal to
Vs (f) for a homogeneous monomial f € W,,_;_¢(k)[T™ | m € I;] of degree

I I I I
deg(f Zps Sudeg(r(susiu)) Zps Su Z (v, Su,iy) | = Zps_s“ps“iu = p5t",
u=1 v=1 u=1

Since s +r < s+ 1, it shows that VI+5(f) € k[2]5(I;;1), thus g.V! (HmGI (xrmy m) €N, . It
follows that Ny, ; is a Pj-module for any n > 1. Furthermore, since operators in D,, are compatible
with Verschiebung maps (by the (3.1.14))), we need to prove the proposition for n = 1. We achieve
the result by applying the following procedure.

"The operation g. denotes the action of G
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We say that a monomial z™ = Hmiem z" contains z;" if it appears in the product with
m; # 0. Also, every monomial is parametrized by a scalar and the vector m € I, that we refer

[r]

as the associated vector to z™. We recall that the differential operators y;

my
[7"] . ;rnz H st ( >szl+r mp—r H st

mel mel
sFi,l 1,1

act in such a way:

m—1)...(m—r+1)
r! :

for any i # [, where for m < 0, () := m(

Step 1: Apply yab,...,ygb_l € D1 to (the monomials with associated vector) m € I;: starting
by the element z;" ...zj : +11 zdl, one gets all monomials with assomated vectors
(mo,...,mj,mMjt1,...,mq)suchthat mjqq,...,mqg € {—1,...,—p}; Note that (—1)...(—m) #
0 (mod p) if m < p.

Step 2: Apply y[p] € D, tom € I;:

We have y[p]( Ma g [Tmer 2™) = (=1)P20 P2 P [ mer 2™ with mg +p > p; we wish
i#£a,b i#a,b

Mgq _1_p my
Za Zb H Zi

mel
i#a,b

for which m, < p. If j = 0, the latter condition is empty since in this case my > p+1 (since
a =0, in this case mo > 0 and m; < 0 for any ¢ # 0, with mo + (—p — 1) >, 49, M = 0).

to produce those

Thus, we can assume j > 0. For # < j and x # a, apply Thy yﬁﬂ € D;:

1 . 1 1 [Me+ D 1 .
o | O R e (R B S ) | I

xra x
p

mel mel
i#a,b i#a,b,x
Mg + D 1 -1 )
— < a > Zgla-f-p 1Zb nglac+1 H Z,’an
p mel
i#a,b,x

Since we can assume m, < p, we have p{ (m‘;ﬂ’).

More generally, we have by induction that

p—1 Mma+p—s ,—1-p mi\ _ ma+p—s—1_—1-p_mz+1 m;
(Taa: y%)( Za 2y H 2 ) =U- 2z, 2y R 2

)
mel mel
i1#a,b i1#a,b,x

for 1 <s<m, and u = (m’l;”*s) € Z(Xp); For p > s > m,, we have that m, +p — s < p,
thus we can apply

ym(zgaa—i-p—s—lzljlfngnm—o—l H szz) — (ma +p— S)Zgna—i-p—s—lzbflfp H Zlmi
mel mel
i#a,b,x i#a,b
having non zero coefficient.
Step 3: Restart from applying Step 1 to the associated vectors of the form (mq,...,mj, —(p +
1),...,—(p+1)) € I in place of m € I;.
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It remains to show that this algorithm is well-defined and generates all elements in I. In Step

1 we produce all associated vectors in I such that |m;y1],...,|mq| < p. Elements obtained in
Step 1 and Step 2 form the subset of I where |mjt1],...,|mq| < p+ 1. In this way, we see that
at any iteration r, Step 3 is well-defined, since p +1,2p + 1,...7p 4+ 1 are not 0 modulo p, and
it generates all associated vectors in I such that |mji1],...,|mq| < rp+ 1. Thus the union for
each r > 0 gives 1. O

Remark 5.2.12. We recall that W,, is not defined in the category of modules. In particular,
we cannot take any "image” of W, in order to define a certain N, ; as the natural "lift” of some
k-module. The definition of k[z]S(I;;1) try to solve this problem in the sense that for n =1 it
coincides with the Pj-module N; defined in (|Orl24, Section 3]).
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Appendix A

Witt vectors

In the following appendix we recall definition and properties of Witt vectors. Every result
mentioned here can be found in [III79, Ch. 0, 1],[LZ04, Appendix A] or more generally in
[Hes15|. All rings and algebras considered are commutative and unitary.

Let A be a ring. The ring of p-typical Witt vectors W, (A) of length n > 1 is the ring object
defined by the following property:

Proposition A.0.1 (cf. [Heslb, Proposition 1.2]). For any ring A, there exists a unique ring
W, (A) functorial in the category of rings such that:

a) The underlying set is Wy,(A) = A X A x --- x A, where the cartesian product is taken
n-times;

b) For anyi=0,...,n— 1, the i-th ghost map w; defined by
wi: Wp(A) = A, (a1,...,a,) — Z}ﬂag’:l] (A.0.1)
j=0

is a ring homomorphism.

The ring map
w = (wo,...,wp—1) : Wp(A4) — A"

where on the target we consider the product ring structure, is called the ghost map.
There are unique ring homomorphisms, functorial in A, called Frobenius maps,

F:W,(A) - W,_1(4),
such that wo F = F¥ o w where F* : A" — A"~ ! is the shift map

FY(a1,a9,...,a,) = (a2,as,...,ay).

Notice that w,_1 = F"~': W,(A) — A.
For any n, there are surjective ring homomorphisms (restrictions) R : W,,11(A4) — W,,(A) defined
by
R(al, . ,an_H) = (al, ceey an) R (al, R ,an+1) S Wn+1(A).
Notice that wy = R"*: W, (A) — A. Moreover, RF = FR.

Also, there are natural additive maps, functorial in A, called Verschiebung maps V: W,,_1(A) —
W,,(A) defined by

V(ai,az,...,a,) = (0,a1,a9,...,a,), (a1,...,a,) € Wy(A).
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We have that RV =V R.

Finally one has the multiplicative map, called the Teichmiiller map, [ ] =[], : A — W, (A),

where [a] = (a,0,0,...,0) € W,(A) for any a € A. The Teichmiiller map is compatible with R.
These maps are related by the following identities:

1. F(V(a)) =pa, a€ W,(A).

2. aV(d') =V (F(a)d), a,a € Wy(A). In particular, VW, (A) C W, (A) is an ideal.

3. F([a]) = [a?], a€ A.

4. If pA =0, then V(F(a)) =pa, a€ W,(A).
Furthermore, for any n,r, we have the following exact sequence:

0= Wi(A) 25 W (4) 25 Wi (4) — 0. (A.0.2)

Therefore, the ring of Witt vectors W(A) := @n( = Wpii(A) KN W, (A) — --+) is separated
and complete for the V-filtration defined by the ideals V"W (A) for any n > 0.
The definition of the maps V, F,[]| extends compatibly on the projective limit W(A). The
Formulas 1-4 above hold also for W(A). Moreover, there is an exact sequence:

0— W(A) 25 W(A) & W, (4) =0, (A.0.3)

where here R is the canonical restriction defined by the projective limit.

Assume that A is a k-algebra, where k is a perfect field of characteristic p.

Then, W, (A) (resp. W(A), let us say for n = oo by definition) is canonically a W, (k)-algebra
(resp. a W(k)-algebra ). Let ¢p: k — k, ¢4: A — A be the Frobenius morphism z — zP, and
set & = W, (¢r), Pa = Wy(pa). Then, if n < oo, the relation ' = R o ®4 holds. If n = oo,
then F = ®,. Furthermore, by the Formula 2), the Verschiebung map V is a ®~!-semilinear
map over Wy, (k) (resp. over W(k) if n = 00).

The following properties hold:

Proposition A.0.2. Let R be a ring such that p € R is nilpotent. Set n > 1 be a an integer.
Then,

a) Let A be a ring. If S C A is a multiplicative subset, the image of S in W, (A) under

[] is a multiplicative subset [S] and there is an identification between the localizations
W, (S71A) = [S]71W,,(4).

b) If f: A — B is an étale morphism of R-algebras, then W, (f) is an étale morphism of
W, (R)-algebras.

c) If A,B are R-algebras such that A is étale over R, then the canonical map W,(B) —
Wn(A®g B) is étale and induces an isomorphism Wy(A) @w, (r) Wn(B) = W, (AQR B).

Proof. The assertion a) follows by arguments in [[1179, Ch. 0, Sec. 1.5]; b) is [LZ04, Proposition
A.8] and ¢) is [LZ04, Corollary A.12]. O

If (X,Ox) is a k-scheme, then the presheaf
WnOX: U~ Wn(OX(U)),

where U C X is open, is a sheaf of W, (k)-algebras and the locally ringed space W, (X) :=
(1X],W,Ox) is a W,,(k)-scheme. The maps F,V,R,[ ], w sheafify on W, Ox (cf. [IlI79, Sec.
1.5)).
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Proposition A.0.3 (cf. [[1I79, Proposition 1.5.6]). If X — Y is an open (resp. closed) immer-
sion of k-schemes, then W, (f) is an open (resp. closed) immersion of W, (k)-schemes.
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Appendix B

Lifting properties

In this appendix we collect some results about lifting properties of differential operators over
smooth algebras. All rings and algebras are commutative with unit.

Definition B.0.1 ([EGAIV, Ch. 0, Definition 19.3.1]). A ring map f: A — B is formally
smooth (resp.formally étale), or equivalently B is a formally smooth A-algebra, (resp. formally
étale A-algebra) if for any commutative diagram of ring maps

fI J I (B.0.1)

where [ is a nilpotent ideal, there exists (resp. exists and it is unique) a ring map §: B — C
making the diagram above commutative.

We say that f is smooth (resp. étale) if f is formally smooth (resp. formally étale) and of finite
presentation.

Proposition B.0.2 ([EGAIV, Theorem 18.1.2] Topological invariance of étale site). i) Let S =
T a surjective ring map such that ker (7) is nilpotent. Then, for any étale T-algebra T' there

exists a unique étale S-algebra S and a ring map S = T’ such that the following

ST
T T (B.0.2)
S —"-T

s a pushout diagram in the category of commutative rings.
i) (Second formulation) For S = T as in i), the base change functor

{ Etale S — algebras} — { Etale T — algebras}, S +— 8’ @gT =: T (B.0.3)
is an equivalence between the categories of étale S-algebras and étale T-algebras.

Let R be a base ring.

Lemma B.0.3. Let A be an R-algebra and D: A — Ale]/(€") be a R-algebra homomorphism

such that A 2 Ale]/(€7) 0 A s the identity of A. Then, for any R-algebra B that is an étale
A-algebra, there exists a unique R-algebra homomorphism

D: B — Ble]/(€") (B.0.4)
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such that B 2, Ble]/(€") 2% B s the identity of B and compatible with D. In particular,
D=D®yB.

Proof. We have that Ble]/(€") is an A-algebra via the pushout square

B Ble]/(¢")

fT / T (B.0.5)

AL Ald/(e)

D®aB
—

By definition of D we have a commutative diagram

B—“ . p

a o (B.0.6)
A —2 Bl/(€)

Thus, since f is formally étale there exists a unique ring map D: B — Ble]/(€") such that the
diagram above commutes. O

Proposition B.0.4. Let A be a torsionfree R-algebra. For any integer r > 0, let d": A — A
be additive maps, such that 8 := 0 is a R-linear derivation and for any integers r,s > 0 the
following relations hold:

9 — i, ol o ol — ( + S)awsl. (B.0.7)
r
Then, any 0"} only depends on & and the map
D A= Ale]/(eh), x Y doll(x) (B.0.8)
i=0

(r)
is a R-algebra homomorphism such that A o Ale]/(ert1) < 29 4 agrees with id 4.

Proof. Any 0"} only depends on d: Indeed, by the relation 8" ~U o & = rdl"l, this follows by
induction on r, being trivially satisfied for r =1 .
For any z,y € A, we claim that for every r > 1,

ol (zy) Za[ll yolr=i(y). (B.0.9)

For r = 1, the latter is just the Leibniz rule for 0. We proceed by induction on r. We have that
rol (zy) = OV~ (0(xy))
= 0 (zd(y) + yo())
= o (@a(y)) + 0" (yo(x))

ﬁ
|
—

oW (z)a" == (a(y)) + 0% (y)o" " (0(x))

I
)

S ..

]

<.

5 ©

=7y l(z)alr(y).
=0

87



By assumptions on A, the latter equality implies the (B.0.9). Then, we have that D(T)(l) =1
and the following relation for D) follows:

r

D (zy) = dll(ay)

=0
=D > M@ ly) =Y el @) ol (y)
=0 s=0 =0 s=0
= D" (2)DM)(y). O

Remark B.0.5. By induction on s applied to the product =i ---xs, with z1,...,x25s € A, the

generalizes to
OMlar-a) = 3 M@y 0(,). (B.0.10)

i14is=r

Corollary B.0.6. Let A be a R-algebra and aﬁ]: A — A be a collection of R-linear maps

satisfying (B.0.10) and . Then, for any R-algebra B that is an étale A-algebra, there is
a unique collection of additive maps 8?: B — B such that 81[91] is a R-linear derivation, the

relations (B.0.10) hold and they are compatible with 81[5].

Proof. By Lemma |B.0.3| the corresponding R-algebra homomorphism DX) defined as in Propo-
sition [B.0.4{lifts to a unique R-algebra homomorphism Dg). Then 8][;} is determined by writing
Dg) (x) =x+edp(z)+ -+ 6’“8][;] (). The relations (B.0.10) then hold. O

Corollary B.0.7. Let T be an R-algebra.

i) Let T, R be torsionfree rings equipped with surjective ring maps T — T, R — R. Assume,
the diagram

— T
T (B.0.11)

—— N

R—— R

]

:T = T as in Proposition |B.0.4
]

is a pushout square. Then, any collection of maps Gg

induces a collection of maps 8[TT]: T — T, compatible with 8;3:]. In particular, 8¥

the relation (B.0.10) for any r > 0;

i1) Let S i) T be a surjective R-algebra homomorphism with nilpotent kernel. Assume that S

is a smooth R-algebra. Any collection of maps &E,f]: T — T satisfiyng the relation (B.0.10)

lifts to some collection of maps 8[57:]: S — S compatible with 83:}.

satifies

Proof. i): By Proposition [B.0.4} let Dg ) denote the corresponding R-algebra homomorphism

to Hg]. The base change of Dg ) along T — T, induces a R-algebra homomorphism Dg )T
Tle]/(e"*1). Writing Dg) (x) =z +edr(x)+ -+ e’”ﬁgj (z) for any x € T, we get a collection of
maps 8¥] with the desired properties.

i1): The assumptions ensure that the map Dg )= Yoo ei(‘)gj: T — T[e]/(€"1) is an R-algebra
morphism. Since S is smooth, it is in particular formally smooth. Moreover, the natural map

S[el/ () L2 Tl (et
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induced by the tensor product of f with Rle]/(¢"*!), is surjective with nilpotent kernel, thus by
formally smoothness the following solid square

D(T)o

s 2520 e e

] S T (B.0.12)
SA

R

— S[e]/(¢*)

admits a R-algebra homomorphism Dg): S — S[e]/(et1). Now as in i), the Q[qr}: S = 8
are defined by expanding the writing of Dg)(a:) for any x € S and they are by construction
compatible with &E,f]. O

Corollary B.0.8. Let T' be a smooth k-algebra. Then the following holds:
i) There exist a collection of k-linear maps a[TJ: T — T’ satisfying (B.0.10))

ii) There exists a projective system of smooth Wy (k)-algebras S), such that S| = T' and for
any r > 0, a projective system of W, (k)-linear maps 8[7",] Sl — S! satisfying (B.0.10)),
lifting 8¥J

Proof. We verify the statement for T' "'=T = k[z] being a polynomial algebra over k.
Let R = k, R = W(k). The polynomial algebra T' := W(k)[z] over W(k) is a torsionfree
lift of 7. The assumptions of Corollary i) are then satisfied. By Proposition any

W(k)-linear derivation 0 of T determines uniquely a collection of W (k)-linear maps 8;3:], thus

by Corollary i), they induce k-linear maps 8%7:} satisfying the relation (B.0.10). Let S, =
W, (k)[z] and consider T' as W, (k)-algebra via the restriction W, (k) — k. Then, the map

Sp — T satisfies the assumptions of Corollary ii), thus the collection 07[7:] lift to W, (k)-
linear maps 821 satisfying the relation . Also, the W,,;1(k)-algebra map S,+1 — Sy
satisfies the condition of Corollary ii), therefore for any r > 0 we can find a projective
system of W,,(k)-linear maps {8};1 }n with respect to the surjections S, 11 — Sy, satisfying the

(B:0.10).
[7]

A generic smooth T” is étale over a polynomial algebra T, and such 8:,1:, are induced uniquely

by 87[7:] by Corollary (and do not depend on the choice of local coordinates).

Now, assume that 7" is étale over some polynomial algebra T = k[z] over k. Then, there
exists a projective system of smooth lifts S, over W,,(k): Indeed, the natural ring map S,, =
W, (k)[z] = Wp_1(k)[z] = S,—1 satisfies the condition of Proposition therefore applying
the same proposition successively for any n > 1, we get a projective system of étale W, (k)[z]-
algebras S/. In particular, S/, is smooth over W,, (k). A general 7" smooth over k is locally étale
over a polynomial algebra T'. Hence, there exist locally such étale T-algebras S),. Since Spec(T")
is smooth affine, the obstruction class to glue the S),’s is 0 (cf. [SGA1, Theorem 6.3]). Therefore,
by glueing we get a smooth scheme over W,, (k) lifting T' E|

Thus, by applying Corollary ii) and induction on n to the ring maps S, ; — S,,, we

n’

get a projective system of W, (k)-linear lifts {8[T,] }n of 87[7:,] for any r > 0. O

!Note that this lift is affine, since any scheme admitting a surjective integral map from an affine scheme is affine
(c.f. [Stal Tag 05YU, Lemma 32.11.2]).

89



Bibliography

[BBS1]

[BER12]

[BGA18]
[BKSG6]
[BLY4|
[BLM21]
[Bor08]

[Bou9s]

[BT72]
[CDN20]
[DI87]
[DL76]
[DM20]
[Dod24]
[Dri74]

[Dri76]

Alexandre Beilinson and Joseph Bernstein. “Localisation de g-modules”. In: C. R.
Acad. Sci. Paris Sér. I Math. 292.1 (1981), pp. 15-18.

Pierre Berthelot, Hélene Esnault, and Kay Riilling. “Rational points over finite fields
for regular models of algebraic varieties of Hodge type > 1”. In: Ann. of Math. (2)
176.1 (2012), pp. 413-508.

Alessandra Bertapelle and Cristian D. Gonzéalez-Avilés. “On the perfection of schemes”.
In: Ezpo. Math. 36.2 (2018), pp. 197-220.

Spencer Bloch and Kazuya Kato. “p-adic etale cohomology”. In: Publications Mathématiques
de 'IHES 63 (1986), pp. 107-152.

Joseph Bernstein and Valery Lunts. Equivariant sheaves and functors. Vol. 1578.
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1994, pp. iv+139.

Bhargav Bhatt, Jacob Lurie, and Akhil Mathew. “Revisiting the de Rham—Witt com-
plex”. In: Astérisque 424 (2021), pp. viii+165.

James Borger. “The basic geometry of Witt vectors, I: The affine case”. In: Algebra
and Number Theory 5 (Jan. 2008).

Nicolas Bourbaki. Algebra I. Chapters 1-3. Elements of Mathematics (Berlin). Trans-
lated from the French, Reprint of the 1989 English translation [MR0979982 (90d:00002)].
Springer-Verlag, Berlin, 1998, pp. xxiv+709.

Armand Borel and Jacques Tits. “Compléments a ’article Groupes réductifs”. In:
Publications Mathématiques de 'THES 41 (1972), pp. 253-276.

Pierre Colmez, Gabriel Dospinescu, and Wiest awa Niziol. “Cohomology of p-adic
Stein spaces”. In: Invent. Math. 219.3 (2020), pp. 873-985.

P. Deligne and L. Illusie. “Relevements modulo p? et decomposition du complexe de
de Rham.” fre. In: Inventiones mathematicae 89 (1987), pp. 247-270.

P. Deligne and G. Lusztig. “Representations of reductive groups over finite fields”.
In: Ann. of Math. (2) 103.1 (1976), pp. 103-161.

Frangois Digne and Jean Michel. Representations of Finite Groups of Lie Type. 2nd ed.
London Mathematical Society Student Texts. Cambridge University Press, 2020.

Christopher Dodd. Witt Differential Operators. 2024. arXiv: 2308.03720 [math.AG].
URL: https://arxiv.org/abs/2308.03720.

V. G. Drinfeld. “Elliptic modules”. In: Mat. Sb. (N.S.) 94(136) (1974), pp. 594-627,
656.

V. G. Drinfeld. “Coverings of p-adic symmetric domains”. In: Funkcional. Anal. i
PriloZen. 10.2 (1976), pp. 29-40. 1sSN: 0374-1990.

90


https://arxiv.org/abs/2308.03720
https://arxiv.org/abs/2308.03720

[EGAIV] Alexander Grothendieck and Jean Dieudonné. Eléments de géométrie algébrique IV.
Vol. 20, 24, 28, 32. Publications Mathématiques. Institute des Hautes Etudes Scien-
tifiques., 1964-1967.

[Eke85]  Torsten Ekedahl. “On the multiplicative properties of the de Rham-Witt complex.
I1.” In: Arkiv for Matematik 23.1-2 (1985), pp. 53 —102.

[GKOT] Elmar Grosse-Klonne. “On the crystalline cohomology of Deligne-Lusztig varieties”.
In: Finite Fields Appl. 13.4 (2007), pp. 896-921.

[Gro85] Michel Gros. Classes de Chern et classes de cycles en cohomologie de Hodge- Witt loga-
rithmique. Mémoires de la Société Mathématique de France 21. Société mathématique
de France, 1985.

[Har77]  Robin Hartshorne. Algebraic geometry. Vol. No. 52. Graduate Texts in Mathematics.
Springer-Verlag, New York-Heidelberg, 1977, pp. xvi4496.

[Hes15]  Lars Hesselholt. “The big de Rham-Witt complex”. In: Acta Math. 214.1 (2015),
pp- 135-207.

[HTTO08] Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki. D-modules, perverse sheaves,
and representation theory. Japanese. Vol. 236. Progress in Mathematics. Birkh&user
Boston Inc. Boston MA, 2008, pp. xii+407.

[1179] Luc Illusie. “Complexe de de Rham-Witt et cohomologie cristalline”. fr. In: Annales
scientifiques de I’Ecole Normale Supérieure 4e série, 12.4 (1979), pp. 501-661.

[IR83] Luc lusie and Michel Raynaud. “Les suites spectrales associées au complexe de de
Rham-Witt”. fre. In: Publications Mathématiques de ’THES 57 (1983), pp. 73-212.

[Jan03] Jens Carsten Jantzen. Representations of algebraic groups. Second. Vol. 107. Math-
ematical Surveys and Monographs. American Mathematical Society, Providence, RI,
2003, pp. xiv+576.

[Kat70]  Nicholas M Katz. “Nilpotent connections and the monodromy theorem: Applications
of a result of Turrittin”. In: Publications mathématiques de ’IHES 39 (1970), pp. 175~
232.

[Kat79]  Nicholas M. Katz. “Slope filtration of F-crystals”. In: Journées de Géométrie Algébrique
de Rennes - (Juillet 1978) (1) : Groupe formels, représentations galoisiennes et coho-

mologie des variétés de caractéristique positive. Astérisque 63. Société mathématique
de France, 1979, pp. 113-163.

[Kus16]  Mark Kuschkowitz. “Equivariant Vector Bundles and Rigid Cohomology on Drinfeld’s
Upper Half Space over a Finite Field”. In: PhD Dissertation, Wuppertal (2016).

[LZ04] Andreas Langer and Thomas Zink. “De Rham—Witt cohomology for a proper and
smooth morphism”. In: Journal of the Institute of Mathematics of Jussieu 3 (2004),
pp- 231 -314.

[Maul9]  Andreas Maurischat. “A chain rule formula for higher derivations and inverses of
polynomial maps”. In: Comm. Algebra 47.7 (2019), pp. 2617-2633.

[MFK94] D. Mumford, J. Fogarty, and F. Kirwan. Geometric invariant theory. Third. Vol. 34.
Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and
Related Areas (2)]. Springer-Verlag, Berlin, 1994, pp. xiv+292.

[Mil13] James S. Milne. Lie Algebras, Algebraic Groups, and Lie Groups. 2013.

91



[Mol12]

[Nak70]
[0r101]
(Orl08]
[Orl15]
[Or124]
[Rin63]

[Rom21]

[SGA1]

[SGA2]

[Smig6]

[Smi8&7]

SS91]
[ST02]
[Sta]

[Stel6]

[Tan22]

[TL95]

Victor H. Moll. Numbers and functions. Vol. 65. Student Mathematical Library. From
a classical-experimental mathematician’s point of view. American Mathematical So-
ciety, Providence, RI, 2012, pp. xxiv+504.

Yoshikazu Nakai. “High order derivations I (Dedicated to Professor Keizo Asano on
his 60th birthday)”. In: Osaka Journal of Mathematics 7.1 (June 1970), pp. 1-27.

Sascha Orlik. “The cohomology of period domains for reductive groups over finite
fields”. In: Ann. Sci. Ecole Norm. Sup. (4) 34.1 (2001), pp. 63-77.

Sascha Orlik. “Equivariant vector bundles on Drinfeld’s upper half space”. In: Invent.
Math. 172.3 (2008), pp. 585-656.

Sascha Orlik. “The de Rham cohomology of Drinfeld’s half space”. In: Minster J.
Math. 8.1 (2015), pp. 169-179.

Sascha Orlik. “Equivariant vector bundles on Drinfeld’s halfspace over a finite field”.
Preprint. 2024.

George S. Rinehart. “Differential Forms on General Commutative Algebras”. In:
Transactions of the American Mathematical Society 108.2 (1963), pp. 195-222.

Anna Romanov. “Four examples of Beilinson-Bernstein localization”. In: Lie groups,
number theory, and vertexr algebras. Vol. 768. Contemp. Math. Amer. Math. Soc.,
[Providence|, RI, 2021, pp. 65-85.

Revétements étales et groupe fondamental (SGA 1). Vol. 3. Documents Mathématiques
(Paris) [Mathematical Documents (Paris)]. Société Mathématique de France, Paris,
2003, pp. xviii4327.

Alexander Grothendieck. Cohomologie locale des faisceaux cohérents et théorémes de
Lefschetz locauz et globauz (SGA 2). Vol. 2. Advanced Studies in Pure Mathematics.
Augmenté d’un exposé par Michele Raynaud, Séminaire de Géométrie Algébrique du
Bois-Marie, 1962. North-Holland Publishing Co., Amsterdam, 1968, pp. vii+287.

S. P. Smith. “Differential operators on the affine and projective lines in characteristic
p > 07. In: Séminaire d’algébre Paul Dubreil et Marie-Paule Malliavin, 37éme année
(Paris, 1985). Vol. 1220. Lecture Notes in Math. Springer, Berlin, 1986, pp. 157-177.

S.P Smith. “The global homological dimension of the ring of differential operators on
a nonsingular variety over a field of positive characteristic”. In: Journal of Algebra
107.1 (1987), pp. 98-105.

P. Schneider and U. Stuhler. “The cohomology of p-adic symmetric spaces”. In: Invent.
Math. 105.1 (1991), pp. 47-122.

Peter Schneider and Jeremy Teitelbaum. “p-adic boundary values”. In: 278. Coho-
mologies p-adiques et applications arithmétiques, 1. 2002, pp. 51-125.

The Stacks project authors. The Stacks project. https://stacks.math.columbia.
edul

Robert Steinberg. Lectures on Chevalley groups. corrected. Vol. 66. University Lecture
Series. Notes prepared by John Faulkner and Robert Wilson, With a foreword by
Robert R. Snapp. American Mathematical Society, Providence, RI, 2016, pp. xi+160.

Hiromu Tanaka. “Vanishing theorems of Kodaira type for Witt canonical sheaves”.
In: Selecta Math. (N.S.) 28.1 (2022), Paper No. 12, 50.

Anders Thorup and Dan Laksov. “Weierstrass points on schemes.” In: Journal fiir
die reine und angewandte Mathematik 1995.460 (1995), pp. 127-164.

92


https://stacks.math.columbia.edu
https://stacks.math.columbia.edu

[Tra9g] William Nathaniel Traves. Differential operators and Nakai’s conjecture. Thesis (Ph.D.)—-
University of Toronto (Canada). ProQuest LLC, Ann Arbor, MI, 1998, p. 112.

93



	Introduction
	Acknowledgements
	Notation

	Grothendieck's differential operators
	Basic definitions and properties
	The Weyl algebra and crystalline Weyl algebra

	Some classes of WnOX-modules
	The (Bloch-Deligne-Illusie) de Rham-Witt complex
	Action of G on WnOX
	Definition and properties of the de Rham-Witt complex
	Description of Wnk[x1,…,xd]
	An isomorphism after Illusie-Raynaud
	Hodge-Witt cohomology of Pdk 

	Witt line bundles
	Cohomology of Witt line bundles on Pkd


	Witt differential operators
	Properties of Witt differential operators
	The ring of Witt differential operators

	Hodge-Witt cohomology of Drinfeld's half space via local cohomology
	A spectral sequence for local cohomology
	Orlik's acyclic resolution
	A spectral sequence for local cohomology of WnOPd-modules
	The generalized Steinberg modules over Wn(k)

	Computation of the E2-page

	Revisiting the crystalline Beilinson–Bernstein map
	Description of the Beilinson–Bernstein map in positive characteristic 
	Examples

	Applications

	Witt vectors
	Lifting properties

