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Kurzfassung

In vielen Bereichen des Bauwesens spielt die Methode der numerischen Simulation eine zuneh-

mend groBere Rolle. Dazu gehort unter anderem auch die (Weiter-)Entwicklung von Materi-
algesetzen sowie die Uberpriifung bzw. Erweiterung ihrer Anwendungsgrenzen zur immer rea-
listischeren Abbildung des Werkstoffverhaltens. Im Rahmen der vorliegenden Arbeit wird der
Bereich der Schadensprognose in Bezug auf die Rissbildung zementgebundener Estrichplatten
auf Ddmmschicht ndher beleuchtet. RegelméBig auftretende Schadensbilder bei dieser besonders
schwindanfilligen Bindemittelart zeigen, dass die Bemessungsgrundlage, die auf Jahrzehnte zu-
riickliegenden Versuchsreihen basiert, einer Uberpriifung bedarf. Im Bemessungskonzept bisher
unberiicksichtigte Schwindeinfliisse und daraus resultierende Aufschiisselungen an den Bauteil-
rdndern wurden als eine mégliche Ursache identifiziert.

Materialmodelle fiir die numerische Abbildung vor allem von Rissen gibt es fiir den Estrich-
dhnlichen Werkstoff Beton. Es ist anzunehmen, dass diese insbesondere fiir Zementestrich geeig-
net sind und ein sinnvolles Werkzeug bieten, um die Anwendbarkeit und Beantwortung dieser
offenen Fragestellung systematisch zu untersuchen. Dazu wurde eine Modellumgebung entwi-
ckelt, die eine ausreichende Netzunabhingigkeit der Ergebnisse gewahrleistet. Der Erhartungs-
bzw. Schwindprozess selbst wurde nicht direkt simuliert, sondern die resultierende charakteris-
tische Schiisselform vereinfacht abgeschétzt und als Vorverformung berticksichtigt. Zur Validie-
rung des Modells wurden Balken- und Plattenversuche herangezogen. Mithilfe des entwickelten
Modells wurde anhand einer Parameterstudie der Einfluss sowohl infolge Schwinden als auch
infolge verschiedener Steifigkeitseinfliisse aus Dammstoff-Zusammendriickbbarkeit und Estrich-
dicke auf das Versagen untersucht. Die hier erfolgte Extrapolation des experimentell validierten
Parameterspektrums liefl eine grundlegende Beurteilung zwar nicht zu, im validierten Bereich
zeigte sich jedoch bereits, dass der Einfluss aus Schwinden auf die Bruchlast vernachléssigbar
ist. Die Parameterstudie zeigte keinerlei Indizien dafiir auf, dass ein Variieren weiterer Randbe-
dingungen einen grofieren Einfluss der Aufschiisselung auf die Tragfahigkeit offenbaren wird.
Aufgrund fehlender Bewehrung besteht eine erhthte Notwendigkeit zur Uberpriifung der Netz-
unabhéngigkeit der Ergebnisse bei der Simulation der Biegebeanspruchung. Daher wurden die
in Abaqus und ANSYS — als fiir Rissmodellierung iibliche Software-Vertreter — implementierten
Rissmodelle und deren Umgang mit der Netzabhéngigkeit verglichen und einem weiteren Ansatz
aus der Literatur gegeniibergestellt. Als Ergebnis dieses Vergleichs ergibt sich zum einen ein bes-
seres Verstandnis des hier zur Regularisierung verwendeten Parameters der charakteristischen
Lénge, aber auch eine bessere Beurteilung der Anwendungsgrenzen der entsprechenden Soft-
warelosungen. Hier konnten bei Betrachtung eines einfachen Zugversuchs bereits Diskrepanzen
zwischen analytischer Losung und Ergebnissen in der Software herausgestellt werden.

Mithilfe des Modells wurden Balkenversuche und typische Laststellungen auf schwimmenden
Estrichplatten simuliert. Anhand verformungsgesteuert gefiihrter Biegezugprifungen liefl sich
der Nachbruchbereich numerisch sehr gut abbilden. Aufgrund stark sproden Versagens des fiir
die Platten verwendeten Flieestrichs konnte der Nachbruchbereich fiir diese nicht erfasst oder
validiert werden. Ein Vergleich der experimentellen und numerischen Daten zeigte bis zum Bruch



eine gute Ubereinstimmung.

Insgesamt lésst sich festhalten, dass sich fiir Beton entwickelte Rissmodelle auf Zementestrich
anwenden lassen, unter der Bedingung, dass die Netzunabhéngigkeit der Ergebnisse sicher ge-
stellt wird. Mithilfe des Modells lassen sich typische Laststellungen auf Estrichplatten numerisch
abbilden, wobei das Modell jedoch genauerer Validierung durch weitere experimentelle Daten
bedarf. Der Einfluss aus Schwinden und Dammsteifigkeit auf das Versagen kann im validierten
Bereich als vernachléssigbar eingestuft werden. Im Hinblick auf das Bemessungskonzept besteht
in diesem Zusammenhang zunéchst kein Handlungsbedarf. Allerdings stellen bereits die Ergeb-
nisse der experimentellen Untersuchung den in anerkannten Bemessungskonzepten als mafige-
bend identifizierte Lastfall ,Einzellast am Plattenrand“ gegeniiber dem Lastfall ,,Einzellast an
der Plattenecke“ aufgrund des kritischeren Spannungszustands, der keine Umlagerungen zulésst,
und der geringeren Versagenslast zumindest infrage. Es ist nicht eindeutig, welcher Lastfall maf3-
gebend ist. Diese Ergebnisse motivieren eine genauere Gegeniiberstellung der beiden Lastfélle,
woflir sich das hier entwickelte Modell als numerisches Werkzeug heranziehen lasst. Aus diesem
Vergleich lieflen sich unter Umstédnden bindende Handlungsempfehlungen fiir ein verbessertes
Sicherheitskonzept ableiten.
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Abstract

Numerical simulation methods are playing an increasingly important role in many areas of ci-
vil engineering. This also includes the (further) development of material laws as well as the
verification or extension of their application limits for an increasingly realistic representation
of material behavior. The present work takes a closer look at the area of damage prediction
in relation to the cracking of cement-bound floating screeds on an insulating layer. Regularly
occurring damage patterns with this particularly shrinkage-prone type of binder show that the
design basis, which is based on test series’ dating back decades, needs to be reviewed. Shrinkage
influences not previously considered in the design concept and the resulting bowling up at the
edges of the plates were identified as a possible cause.

Material models for the numerical simulation of cracks are available for concrete, a material
similar to screed. It can be assumed that these are suitable for cement-based screeds and offer
a useful tool for systematically investigating the applicability and answering this open rese-
arch aspects. For this purpose, a model environment was developed that ensures sufficient mesh
independence of the results — which is often limited in crack models. The hardening or shrin-
kage process itself was not simulated directly, but the resulting characteristic bowl shape was
estimated in a simplified manner and taken into account as a pre-deformation. Beam and slab
tests were used to validate the model. With the help of the developed model, the influence of
both shrinkage and various stiffness influences from insulation compressibility and screed thic-
kness on the failure was investigated using a parameter study. Although the extrapolation of
the experimentally validated parameter spectrum carried out here did not allow a fundamental
assessment, the validated range already showed that the influence of shrinkage on the breaking
load is negligible. The parameter study showed no indication that varying other boundary con-
ditions would reveal a greater influence of shrinkage on the load-bearing capacity.

Due to the lack of reinforcement, there is an increased need to check the mesh independence
of the results when simulating the bending stress. Therefore, the crack models implemented in
Abaqus and ANSYS - as common software representatives for crack modeling - and their handling
of mesh dependency were compared and contrasted with another approach from the literature.
The result of this comparison gives a better understanding of the parameter of the characteristic
length used here for regularization, but also a better assessment of the application limits of the
corresponding software solutions. By looking at a simple tensile test, discrepancies between the
analytical solution and the results in the software could already be identified.

The model was used to simulate beam tests and typical load positions on floating screed slabs.
Using deformation-controlled tensile bending tests, the post-cracking behaviour could be repro-
duced very well numerically. Due to the highly brittle failure of the flowing screed used for the
slabs, the post-failure range for these could not be recorded or validated. A comparison of the
experimental and numerical data showed good agreement up to the fracture.

Overall, it can be stated that crack models developed for concrete can be applied to cementitious
screed, provided that the mesh independence of the results is ensured. The model can be used to
numerically represent typical load positions on screed slabs, although the model requires more
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precise validation using further experimental data. The influence of shrinkage and insulation
stiffness on the failure can be classified as negligible in the validated range. With regard to the
design concept, at this time there is no need for action in this context. However, the results of
the experimental investigation already call into question the load case "concentrated load at the
slab edgeidentified in recognized design concepts as decisive compared to the load case "con-
centrated load at the slab corner”. This is due to the more critical stress state, which does not
allow any redistributions, and the lower failure load for the corner load case. It is not clear which
load case is decisive. These results motivate a more precise comparison of the two load cases,
for which the model developed here can be used as a numerical tool. Binding recommendations
for an improved safety concept could possibly be derived from this comparison.
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1. Einleitung

In vielen Bereichen des Bauwesens spielt die Methode der numerischen Simulation eine zuneh-
mend groBere Rolle. Dazu gehort unter anderem auch die (Weiter-)Entwicklung von Materi-
algesetzen sowie die Uberpriifung bzw. Erweiterung ihrer Anwendungsgrenzen zur immer rea-
listischeren Abbildung des Werkstoffverhaltens. Im Rahmen der vorliegenden Arbeit wird der
Bereich der Schadensprognose in Bezug auf die Rissbildung in zementgebundenen Estrichplatten

auf Dammschicht ndher beleuchtet.

RegelméaBig auftretende Schadensbilder (Miiller und Limp, 2015, Langer, 2017) bei schwimmen-
dem Zementestrich zeigen, dass die Bemessungsgrundlage, die auf Jahrzehnte zuriickliegenden
Versuchsreihen basiert (Manns und Zeus, 1980), einer Uberpriifung bedarf. Im Bemessungskon-
zept bisher unberiicksichtigte Schwindeinfliisse und daraus resultierende Aufschiisselungen an
den Bauteilrindern werden als eine moégliche Ursache identifiziert. Ergdnzend zur nahe liegen-
den und in anderen Vero6ffentlichungen bereits untersuchten Optimierung von Estrichrezepturen
hin zu schwinddrmeren Optionen wird im Folgenden die Méglichkeit zur numerischen Rissmo-

dellierung von schwimmendem Zementestrich betrachtet.

Eine Vielzahl numerischer Ansétze zur Beschreibung der Rissentwicklung von Werkstoffen ist,
insbesondere fiir quasi-sprode Werkstoffe wie Estrich und Beton, Gegenstand aktueller For-
schung. Im Vordergrund dieser Arbeit steht, daraus einen angemessenen Ansatz zur Beschrei-
bung des Rissverhaltens von Zementestrich zu wahlen, um damit numerisch zu untersuchen,
welchen Einfluss das Aufschiisseln der Estrichplatten und die Interaktion zwischen Estrich und
Dammung auf das Versagen hat, und inwiefern sich aus numerischen Simulationen in diesem
Kontext Moglichkeiten zur Entwicklung eines besseren Bemessungs- und Rissprognose-Konzepts

ergeben konnen.

1.1. Forschungsbedarf und Zielsetzung

Estriche, insbesondere zementgebundene, stellen in der Baupraxis riss- und schadensanféllige
Bauteile dar. Eine fiir tragende Bauteile tibliche ingenieurtechnische Bemessung findet in der
Regel nicht statt. Auch wenn Estrich zum Lastabtrag im Gebédude nicht beitragt, ist die Ent-
wicklung von Rissen fiir die Gebrauchstauglichkeit zu minimieren. Das Bemessungskonzept fiir

insbesondere schwindanfillige Zementestriche auf Dammschicht, welches in DIN 18560-2:2022
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geregelt ist, legt tabellarisch Estrichnenndicken in Abhéngigkeit von der Nutzlast, der Biegezug-
festigkeitsklasse und der Zusammendriickbarkeit der Dammschicht fiir verschiedene, tiber Einzel-
und Fléchenlasten definierte Nutzlastniveaus fest. Die Grundlage fiir die Bemessungstabellen
lieferten Manns und Zeus (1980). Die dort hergeleiteten Bemessungsvorschlige fiir Estriche auf
dicken Dammschichten beruhen auf empirischen Formeln nach Westergaard (1926), welche auf
dem Bettungsmodulverfahren basieren. Diese wurden fiir den Straflenbau zur Bemessung von
Bodenplatten entwickelt und idealisieren den Boden — analog zur Estrichdémmschicht — als elas-

tische Bettung.

Der Einfluss der Platte-Dammungs-Interaktion auf die Verformungen und den Spannungszu-
stand bleibt allerdings bei dieser Modellierung bisher ebenso unberiicksichtigt wie die eingangs
genannten Schwindverformungen. Bei auftretender Rissbildung kann es zu Spannungsumlage-
rungen kommen, deren Entwicklung durch verédnderte Reaktionsspannungen in der elastischen
Bettung beeinflusst werden. Zusétzlich wird das Tragverhalten von Schwindverformungen wah-
rend des Erhértungsprozesses beeinflusst. Infolge Hydratationswérme und eines ungleichméfigen
Austrocknungsprozesses iiber die Plattendicke entstehen aus einem durch die Aktivierung des
Eigengewichts behinderten Verformungsbestreben Zwangsspannungen in der Platte (Timm et al.
2019). Zwangsspannungen infolge von behinderten Schwindverformungen, insbesondere die vor
allem bei Zementestrich beobachtete Schiisselbildung (vgl. Abbildung 1.1) noch vor der eigent-
lichen Nutzlast-Beanspruchung des Estrichs, haben einen Einfluss auf den Ort und die Grofle
der Rissbildung in schwimmend gelagerten Estrichplatten. Inwiefern die genannten Effekte aus
Dammstoff-Estrich-Wechselwirkung und Schwindverformung eine fiir die Bemessung mafigeben-
de Rolle spielen und ob die bisher fehlende Beriicksichtigung im Bemessungskonzept eine Ursa-
che fiir die auftretenden Schadensfille sein konnten, soll in der vorliegenden Arbeit beleuchtet

werden.

Abbildung 1.1.: Skizze einer dreidimensionalen Verformungsfigur eines schwimmen-
den Estrichs infolge eines linearen Dehnungsgradienten: Aufschiis-
seln der Estrichrdnder und -ecken (Schiell und Wiegrink, 2005)



1.1. Forschungsbedarf und Zielsetzung

Gleichzeitig ist der Stand der Forschung weiter fortgeschritten, was die numerische Modellie-
rung physikalisch nichtlinearen Materialverhaltens quasi-sproder Werkstoffe, insbesondere die
von Stahl(faser)beton und Beton, angeht (Hofstetter, 2006; Godde, 2013). Die Tatsache, dass
die auf Basis von Bettungs- und Steifemodulverfahren zur Bemessung hergeleiteten Tabellen-
werke heutzutage durch Stabwerks- bzw. FE-Programme ersetzt werden (Vogt, 2018), spricht
dafiir, dass eine vergleichende Uberpriifung des Bemessungsansatzes mithilfe numerischer Be-

rechnungen sinnvoll und zeitgeméa$ ist.

Um die oben genannten Aspekte bei der Bemessung von Estrichplatten beriicksichtigen bzw. um
das Tragverhalten grundséatzlich numerisch untersuchen zu kénnen, wird ein Materialmodell fiir
Zementestrich bendtigt. Ein konkretes Materialgesetz, wie es fiir Beton oder Stahlbeton in Form
von Spannungs-Dehnungslinien (DIN EN 1992-1-1:2011) oder Bruchbildern (DIN EN 12390-
3:2019) bereits existiert und als gesichert gilt, gibt es fiir Zementestrich bisher weder in der
Norm noch in der Literatur (Merkblatt Zementestrich (2015)). Die Ahnlichkeit in der Zusam-
mensetzung legt jedoch nahe, dass Materialmodelle, die sich fiir Beton bewédhrt haben, auf
Zementestrich tibertragbar sind und diese das Entfestigungsverhalten auch von Zementestrich
gut numerisch abbilden kénnen. Trotz Vergleichbarkeit der Zusammensetzung mit Beton gibt es
in der Literatur bislang keine vergleichenden Untersuchungen, die das Ableiten eines Materialge-
setzes im Sinne einer klassischen ingenieurtechnischen Bemessung fiir den Werkstoff Zementest-
rich unmittelbar erméglichen wiirden. Zur Verifizierung der Realitdtsnéhe des zu entwickelnden
Modells sind experimentelle Daten an Platten aus der Literatur oder eigenen Versuchen heranzu-

ziehen und anhand dieser Daten die Ergebnisse aus den numerischen Simulationen zu validieren.

Im Bereich Zementestrich gab es bislang vorwiegend experimentelle Untersuchungen zur Beur-
teilung des Trag- und Trocknungsverhaltens. Forschungsberichte aus den 80er und 90er Jahren
zielen in der Regel darauf ab, Empfehlungen fiir die Praxis abzuleiten, sodass die dokumentierten
Daten fiir eine numerische Nachrechnung nur einige Anhaltspunkte wie die maximale Einsenkung
oder ggf. Rissbreite liefern konnen. Haufig werden in diesen Veroffentlichungen Grofiversuche an
Platten unterschiedlicher Geometrie dokumentiert, bei denen empirisch verschiedene Einfliisse
(Steifigkeit der unterliegenden Démmung, Estrichdicke, Austrocknungsverhalten (Schnell, 1983;
Manns und Zeus, 1980; Wiegrink, 2002) auf die Gebrauchstauglichkeit und das Tragverhalten
untersucht werden bzw. das geltende Bemessungskonzept anhand der Versuchsergebnisse {iber-
prift wird (Schnell, 1994; Schnell, 1990; Schnell, 1983; Manns und Zeus, 1980). Vom Institut
fir Baustoffpriifung und Fubodenforschung (IBF) wurden in den letzten 20 Jahren regelmé-
Big Veroffentlichungen zu Schadensbildern und méglichen Ursachen veroffentlicht (Miiller und
Limp, 2015; Miiller, 2017). Daneben gibt es experimentelle Untersuchungen zum Trocknungs-
und Schwindverhalten und méglicher Optimierung von Priifmethoden und Nachbehandlungs-
mafinahmen (Dollase, 2019; Schneider und Pleyers, 2003), bei denen zum Teil in jiingerer Ver-

gangenheit auch numerische Verfahren zur Modellierung der Erhartungsphase Anwendung fin-
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den (Ambroise etal., 2002; Jaafri etal., 2019). Hier liegt der Fokus auf der Untersuchung des
Schwind- bzw. Austrocknungsverhaltens, um materialtechnologisch das Rissverhalten zu verbes-
sern. Auch in diesem Zusammenhang gibt es mehr, und umfassendere Verdffentlichungen zum
Werkstoff Beton, hdufig mit dem Fokus auf Berechnung von Zwangsbeanspruchung und Riss-
breitenbegrenzung (Schlicke und Viet Tue, 2016a bzw. Schlicke und Viet Tue, 2016b, Nietner,
Schlicke und Viet Tue, 2011), und vergleichsweise sehr wenige, die sich mit Estrich befassen
(Georgin etal., 2008; Ambroise etal., 2002; Wiegrink (2002)). Das Rissverhalten wird hier nur
am Rande, und nicht unter Verwendung fiir Beton bereits iiblicher nichtlinearer Rissmodelle

untersucht.

Insgesamt kann festgestellt werden, dass die Problematik der Rissbildung unbewehrter quasi-
sproder Bauteile und der Konsequenzen der fehlenden Bewehrung im Hinblick auf eine netzunab-
héngige numerische Simulation der Rissbildung bisher wenig systematisch untersucht wurden. Im
Fall von Zementestrich wie auch Estrich im Allgemeinen gab es einige empirische und auch einige
wenige numerische Untersuchungen, die sich allerdings auf die Modellierung der Zwangseinfliisse

infolge Austrocknung beschrianken. Eine numerische Untersuchung der Rissbildung erfolgte nicht.

Stahlbeton und Stahlfaserbeton sind im Bauwesen iibliche Verbundwerkstoffe, deren Rissverhal-
ten, sowie die numerische Modellierung dessen, in der Literatur seit Jahrzehnten Forschungsge-
genstand ist. Zur Modellierung mithilfe finiter Elemente (FE) stehen verschiedene Materialmo-
delle in kommerziellen Software-Produkten (u. a. Abaqus, ANsYs, LS-DYNA, ADINA, ATENA)
zur Verfligung. Estrich wird allerdings im Gegensatz zu Beton in der Regel unbewehrt einge-
baut. In den meisten der zahlreichen Verdffentlichungen zur Rissmodellierung von Beton werden
bewehrte Bauteile untersucht (Feenstra und de Borst, 1995; V. Cervenka, J. Cervenka und Kad-
lec, 2018; Godde, 2013; Thomée, 2005). Unbewehrter Beton wird selten in groferem Umfang
numerisch simuliert bzw. fokussiert sich der Anwendungsbereich auf die Berechnung von kleinen
Formaten im Rahmen von Festigkeitsuntersuchungen (Briinig und Michalski, 2020; Thabet und
Haldane, 2001; Cotsovos und Kotsovos, 2011), und seltener groBeren Bauwerken (Riid, Fleischer
und Stephan, 2023).

Bei fehlender Bewehrung spielt der Aspekt der Netzabhéngigkeit bei Modellierung der Diskon-
tinuitét, die durch die Rissbildung im Finie-Element-Netz abzubilden ist, bei den hier verwen-
deten verschmierten Rissmodellen eine groiere Rolle als bei bewehrtem Beton ((Godde, 2013),
Dassault Systémes, 2021). Unter den genannten verschmierten Rissmodellen existieren noch
weitere Ansdtze zur Rissmodellierung neben den hier verwendeten Plastizitdtsmodellen. Nach
de Borst und Verhoosel (2016) verfolgen gradientenbasierte Modelle oder Phasenfeldmodelle
zum Beispiel ebenfalls einen verschmierten Ansatz, zielen aber darauf ab, die Diskontinuitét
so abzubilden, dass keine Netzabhéngigkeit entsteht. Bevor sich der Fokus verstirkt auf diese

verschmierten Modelle verschoben hat, wurde der gegensétzliche Ansatz einer diskreten Model-
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lierung der Diskontinuitét verfolgt (de Borst und Verhoosel, 2016). Dies hatte den Vorteil, dass
ein Riss physikalisch als Trennung der Elemente an dieser Stelle modelliert wurde. Der erhohte
Rechenaufwand und notwendige Algorithmen und Elemententwicklungen zur adaptiven Ver-
netzung fithrten zunéchst zur vermehrten Ablésung durch verschmierte Modelle. Wie de Borst
und Verhoosel (2016) beschreiben, sind durch die Weiterentwicklung der numerischen Verfahren
auch diskrete Modelle mittlerweile vermehrt in der Anwendung, wobei auch hier weiterhin For-
schungsbedarf hinsichtlich einer robusten Implementierung besteht. In der vorliegenden Arbeit
finden nur verschmierte, plastizitdtsbasierte Modelle Anwendung, da diese fiir die angestrebte
Modellierung geeignet und in den meisten kommerziellen Programmen implementiert sind, was

fiir die praktische Anwendung des entwickelten Modells von Vorteil ist.

Verschmierte Rissmodelle, die u. a. fiir quasi-sprode Werkstoffe wie Beton entwickelt wurden,
verwenden bruchmechanische Konzepte innerhalb der urspriinglich fiir homogene, duktile Werk-
stoffe (z.B. Stahl) entwickelten Plastizitatstheorie (Hofstetter, 2006; de Borst, Crisfield etal.,
2012; Godde, 2013). Aufgrund von Diskrepanzen zwischen den grundlegenden bruchmecha-
nischen Annahmen zur Beschreibung der Rissbildung und den Gegebenheiten in der Finite-
Elemente-Definition (infinitesimaler Riss ohne Ubertragung von Spannungen gegeniiber einem
kontinuierlichen Verformungszustand der finiten Elemente) kommt es in diesen Modellen zu ei-
ner Abhéngigkeit der Ergebnisse von der Netzgeometrie bzw. -verfeinerung. Diese kann u.a.
durch einen modellierungsabhéngigen Lingenparameter, die ,charakteristische Lénge“, beein-
flusst bzw. korrigiert werden (de Borst, Crisfield et al., 2012; Godde, 2013). Bei Betrachtung
von Stahlbeton wird das Entfestigungs- bzw. Rissverhalten des Betons unter Zugbeanspruchung
mafgebend vom Tragverhalten der Bewehrung iiberlagert. In diesem Fall zeigt eine mdogliche
Netzabhéngigkeit des Beton-Materialmodells u. U. keinen entscheidenden Einfluss auf die Be-
rechnungsergebnisse. Fiir unbewehrten Estrich aber hat diese Problematik in der Regel einen
signifikanten Effekt (Godde, 2013).

Die in den Software-Produkten implementierten Rissmodelle unterscheiden sich u. a. im Hinblick
auf ihren Umgang mit der Netzabhéngigkeit, wurden in der Literatur aber selten direkt verglei-
chend gegentibergestellt (Cotsovos, Zeris und Abbas, 2009). Auf die Netzabhéngigkeit wird in
vielen anderen Verdffentlichungen mit bewehrten Betonbauteilen nicht explizit eingegangen (V.
Cervenka, J. Cervenka und Kadlec, 2018; Feenstra und de Borst, 1995). Auch bei Betrachtung
unbewehrter Betonbauteile wurde im Rahmen der Materialparameter die charakteristische Lan-
ge als Modellierungsparameter bzw. die Problematik einer Netzabhéngigkeit bei Verwendung
von Strain-Softing-Modellen genannt, aber ihr Einfluss oft nicht allgemeingiiltig erlautert oder
untersucht, sondern die Netzunabhéngigkeit ggf. problemabhiingig erreicht (z. B. J. Cervenka, V.
Cervenka und Laserna, 2018; Hatzigeorgiou et al., 2001; Thabet und Haldane, 2001). Im Bereich
von Stahlfaserbeton wurde die Problematik in einigen Verdffentlichungen bereits aufgegriffen,

da der Einfluss der Netzabhéngigkeit hier weniger zu vernachlassigen ist (Godde, 2013; Thomée,
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2005). Godde (2013) entwickelte eine eigene Definition fiir den Parameter der charakteristischen
Lange und schaffte auf Basis dessen ein FE-Modell zur realitdtsnahen Simulation stabartiger
und flichenhafter Bauteile aus Stahlfaserbeton. Im Hinblick auf die Netzabhéngigkeit und den
in Software-Paketen implementierten, und daher default-méflig verwendeten, aber zum Teil we-
nig beachteten Parameter der charakteristischen Lénge besteht insbesondere im Hinblick auf

unbewehrte Bauteile weiterer Forschungsbedarf.

Die Weiterentwicklung der Moglichkeiten in der Numerik, das Rissverhalten quasi-sproder Werk-
stoffe praziser erfassen zu koénnen, und die Hinweise, dass Schadensfille bei zementgebundenem
Estrich mit dem Schwind- und Schiisselverhalten zusammenhéngen kénnten, fithren auf folgende

Zielsetzung der vorliegenden Arbeit:

1. Identifikation eines geeigneten Materialmodells und Einordnung vorhandener Regularisie-
rungskonzepte in kommerzieller Software zur netzunabhéngigen Abbildung des Entfesti-

gungsverhaltens von zementgebundenem Estrich,

2. Validierung des Modells anhand geeigneter experimenteller Untersuchungen an schwim-

mend gelagerten Estrichplatten,

3. Systematische Untersuchung des Systems ,,schwimmender Estrich“ mit dem Fokus auf dem
Einfluss der Wechselwirkung zwischen Daémmstoffsteifigkeit und Schiisselbildung auf die
Rissbildung bzw. Tragfahigkeit,

4. Erkenntnisgewinn zur Diskussion und Bewertung des genormten Bemessungskonzepts fiir
Zementestrich auf DA&mmschicht zur Reduzierung der in der Praxis auftretenden Schadens-
falle.

1.2. Vorgehen

Als Untersuchungsmethode fiir die genannten Einflussgréfien wird die numerische Vergleichs-
rechnung innerhalb des FE-Programms Abaqus gewahlt, wobei Biegezugversuche an Balken und
Platten und deren Rissbilder zur Kalibrierung des Materialmodells herangezogen werden. We-
nige, aussagekriftige Versuche werden als ausreichend vorausgesetzt, weil das zugrunde gelegte
Materialmodell (Concrete Damaged Plasticity) mit Beton bereits fiir einen dem zu untersuchen-

den Zementestrich dhnlichen Baustoff nachgewiesen bzw. kalibriert wurde.

Zur Erlduterung der Hintergrinde des infrage gestellten Bemessungskonzepts nach Manns und
Zeus (1980) dient Kapitel 2.1 und gibt einen Uberblick iiber die Eigenschaften und das Tragver-
halten von Zementestrich. Die Anwendung nichtlinearer Materialmodelle verlangt nachfolgend
eine Einfiihrung in die Theorie verschmierter Rissmodelle, ausgehend von den kontinuumsmecha-
nischen Grundlagen iiber die Kernaspekte der Verwendung eines plastizitéatstheoretisch basierten
Materialmodells innerhalb der Finite-Elemente-Methode bis hin zur Problematik der Netzab-
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hiangigkeit (Kapitel 2.2). In Abaqus steht eine umfassende Material- und Elementdatenbank zur
Verfligung. Diese wurde bereits fiir Stahlfaser- und Stahlbeton zur Abbildung des Rissverhal-
tens, insbesondere unter Verwendung des auch hier gewdhlten Konzepts zur Sicherstellung der
Netzunabhéngigkeit erfolgreich verwendet (Godde, 2013). Untersuchungen in Form einer Gegen-
iiberstellung dieses Regularisierungskonzepts mit in kommerzieller Software bereits enthaltenen
Optionen werden in Kapitel 3.1 vorgestellt, um daraus den bestmdéglichen Ansatz fiir eine objek-
tive Modellierung abzuleiten. Darauf folgt die experimentelle Ermittlung und Modellierung der
Déammsteifigkeit in Kapitel 3.2. Im so entwickelten Modell fiir das Platte-Ddmmung-System ste-
hen insbesondere Schwindeinfliisse auf die Rissbildung im Fokus. Diese sollen im Rahmen einer
Kooperation mit Prof. Nietner der HTWK Leipzig beriicksichtigt werden. Dazu werden Vorver-
formungen und ggf. Vorspannungen aus vorgelagerten thermischen, Finite-Elemente-basierten
Simulationen des Schiisselverhaltens infolge Schwindens im Modell in Abaqus eingepragt. Zur
Abbildung des anschliefenden Absenkens der Platte infolge &uflerer Belastung ist eine geeignete
Kontaktformulierung zwischen Estrich und elastischer Bettung zu definieren (Verhindern einer
Durchdringung). Das Konzept zur Modellbildung wird in Kapitel 4 noch einmal zusammenge-
fasst und fihrt {iber eine Erlduterung der daraus abgeleiteten Versuchsplanung schliellich auf
den Vergleich der experimentellen und numerischen Untersuchungen. In Kapitel 5 werden die
Ergebnisse der Balken- und in Kapitel 6 die der Plattenversuche den Simulationsergebnissen
gegeniibergestellt und das Modell validiert. Schliellich wird das Modell in Kapitel 7 zur Durch-
fithrung einer Parameterstudie zur Einordnung des Einflusses der zentralen Parameter (Schiis-
selbildung und Dammsteifigkeit) verwendet und abschlielend Erkenntnisse zur Bewertung des

Bemessungskonzepts abgeleitet.






2. Theoretische Grundlagen

Im Bereich der numerischen Rissmodellierung gibt es verschiedene Ansétze in der Literatur. Um
eine Auswahl fiir die vorliegende Anwendung bei Estrichplatten auf Ddmmschichten zu treffen,
sind die werkstofflichen und mechanischen Eigenschaften und das Tragverhalten im betrachte-
ten Anwendungsbereichs des Werkstoffs zu beriicksichtigen. Fiir einen Beitrag zur Optimierung
der Bemessung bei Lagerung auf Dédmmschichten ist die aktuelle Normung von Relevanz. Die-
ses Kapitel gibt hier einen Uberblick und liefert auf Basis offenkundiger Gemeinsamkeiten mit
dem Werkstoff Beton mégliche Rissmodell-Ansétze fiir die numerische Modellierung. Nach ei-
ner grundlegenden Einfiihrung in die Anwendung der Finite-Elemente-Methode (FE-Methode,
FEM) bei nichtlinearem Materialverhalten fiihrt ein Uberblick iiber die in der Literatur vorhan-
denen Ansétze auf die fiir diese Arbeit gewéhlten verschmierten Rissmodelle. Insbesondere wird
auf Schwachstellen wie die auftretende Netzabhéngigkeit eingegangen und welche Losungsmog-
lichkeiten die Literatur aufzeigt. Anschliefend wird mit Blick auf die konkrete Anwendung im

Programmpaket Abaqus eines dieser Modelle genauer vorgestellt.

2.1. Werkstoff Estrich

2.1.1. Zusammensetzung und mechanische Eigenschaften

Zur Beurteilung des fiir die Bemessung relevanten Tragverhaltens werden zunéchst die mecha-
nischen und werkstofflichen Eigenschaften des betrachteten Werkstoffs vorgestellt. WerkstofHlich
ist Estrich vergleichbar mit dem Werkstoff Beton: Es handelt sich um einen Verbundwerkstoff,
der unter Zugabe von Wasser aus einem Bindemittel und Zuschlagstoffen hergestellt wird. Zu-
schlagstoffe sind in der Regel mittel- bis feinkornig, iibliche Sieblinien sind B/C 8 bzw. C8.
Die Art des Bindemittels variiert im Vergleich zu Beton: Im Bauwesen werden Estriche nach
der Art des verwendeten Bindemittels in Zement-, Calciumsulfat-, Magnesia-, Gussasphalt- und
Kunstharzestriche eingeteilt. Die Auswahl des Estrichs fir einen bestimmten Anwendungsbe-
reich ist von den Eigenschaften des jeweiligen Estrichs abhingig, einen groben Uberblick iiber
die Vor- und Nachteile auf Basis des Bindemittels gibt Tabelle 2.1 (Timm, Allmendinger und
Strehle, 2019). Zum Teil werden zusétzliche Stoffe wie Fliemittel hinzugegeben, um den Wasser-
Bindemittel-Wert zu regulieren, was das Austrocknungsverhalten giinstig beeinflussen kann. Aus
diesem Grund und fiir ein ginstigeres Schwindverhalten kann einer Zementestrichmischung auch

Calciumsulfat in geringer Menge zugesetzt werden.
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Bei den beiden am héufigsten verwendeten Estricharten, Zement- und Calciumsulfatestrich, wird

dabei explizit unterschieden, ob es sich um eine konventionelle Bauart und damit erdfeuchte

Konsistenz oder um eine Ausfithrung als Flielestrich handelt. Die Zugabe von FlieBmitteln soll

eine schnellere Erhartung bzw. ein beschleunigtes Austrocknen und dadurch ein fritheres Begehen

bzw. Beanspruchen des Estrichs ermoglichen. Flielestriche werden aufgrund dieser Eigenschaften
haufig eingesetzt und national wurde in DIN 18560-2:2022 explizit das Kurzzeichen CAF fiir CA-
FlieBestrich eingefiihrt (vgl. Tabelle 2.1).

Tabelle 2.1.: Estricharten: Kurzbezeichnungen nach DIN EN 13813:2003 und Vor- und Nachteile
(nach Timm, Allmendinger und Strehle, 2019)

Kurz- Bedeutung Vorteile Nachteile
zeichen
CT Zementestrich o relativ kostengiinstig o COg-intensive
(cementitious screed) | o bewéhrt; einfache Herstellung Herstellung
(Baustellenmischung, Sackware) o schwindanfallig
o fiir fast alle Einsatzbereiche
geeignet (nicht brennbar, frost-/
tausalzbestandig, elektrisch
ableitfdhig)
CA Calciumsulfatestrich | o raumbesténdig o feuchteempfindlich
(CAF) | (calcium sulfate (Schwinden vernachlassigbar)
screed)
MA Magnesiaestrich o hohe Verschleif3-/Festigkeit o korrosiver Angriff
(magnesite screed) (geeignet als Industrieestrich) auf Metalle
o gute Durchfarbbarkeit o feuchteempfindlich
o raumbestandig o erforderliche Expertise
bei Herstellung
AS Gussasphaltestrich o frithe Belegbarkeit o ggf. gesundheits-
(mastic asphalt o geringe Einbaudicke gefahrdend bei Heif3-
screed) (geeignet im Sanierungsbereich) verarbeitung (Schutz
o thermoplastische Verformbarkeit | des Einbaupersonals)
SR Kunstharzestrich o schnelle Erhértung o feuchte- und

(synthetic resin)
screed)

o hohe Festigkeit
o optisch ansprechend

temperaturempfindlich
in der Einbauphase

o anfillig gegeniiber
Mischfehlern

o kostenintensiv

o kratzempfindlich

Im Hinblick auf die mechanischen Eigenschaften von Estrich ist die normative Beschreibung

des Tragverhaltens nicht vergleichbar mit Beton, da auch der Anwendungsbereich deutlich be-
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grenzt ist: Estriche werden sowohl im Wohnungs- als auch im Industriebau auf Massivdecken
oder Bodenplatten eingesetzt. Im Wohnungsbau kénnen sie zur Aufnahme eines Bodenbelags
dienen, als Heizestrich zur Aufnahme der Fulbodenheizung, oder auf Ddmmschicht gelagert
zum Schallschutz beitragen. Als Industriefuflboden kann Estrich selbst tragfahiger Aufnahme-
boden, oder eine mit einem Tragbeton so verbundene Schicht sein, dass ,auf ihn einwirkende
vor allem schleifende, rollende, stolende und schlagende Beanspruchungen iiber die Haftbriicke
aufgenommen werden® kénnen (Schiitze, 1973). Festlegungen zum Materialgesetz und umfang-
reiche Bemessungsregeln fiir eine ingenieurméfige Auslegung wie im Fall des Eurocodes 2 fiir
Stahlbetonbauten gibt es aufgrund des beschrankten und eher gebrauchstauglich relevanten Ein-
satzbereichs fiir Estrich bisher nicht. Auch wird Estrich in der Regel unbewehrt eingebaut, da
eine Bewehrung keine Verbesserung der Festigkeit oder Tragfahigkeit zur Folge hat und auch
eine Rissbildung nicht verhindern kann (Timm, Allmendinger und Strehle, 2019). Lediglich zur
Verhinderung eines Risseintrags in den aufliegenden Belag kann die Anordnung von Bewehrung
glinstig sein (Schnell, 1987).

Neben der Bindemittelart lassen sich Estriche vor allem hinsichtlich ihrer Verlegeart unterschei-
den, die fiir das Tragverhalten und die normative Bemessung entscheidend ist. Bei Anforde-
rungen an den Schall- und Wéarmeschutz wird der Estrich schwimmend ausgefiihrt, das heifit
als eine von angrenzenden Wéanden oder Deckendurchbrechungen getrennte, frei bewegliche, auf
Dammschicht gelagerte, lastverteilende Platte. Estrich und Dammschicht bilden so ein Masse-
Federelement, wodurch Trittschall- und Warmeddmmwirkung erhoht werden (Schiitze, 1974).
Zur Vermeidung einer riickseitigen Feuchtebelastung und aufwéndiger Untergrundvorbereitung
kann der Estrich auf Trennschicht ausgefithrt werden. Bei hohen Anforderungen an die Be-
anspruchbarkeit wird Verbundestrich eingesetzt. (Timm, Allmendinger und Strehle, 2019) In
Abbildung 2.1 sind die drei genannten Verlegearten sowie die damit einhergehenden priméren
Beanspruchungsformen dargestellt: Verbundestrich trégt vor allem iiber Druck ab, bei schwim-
mendem Estrich ist die Biegezugtragfahigkeit mafigebend. Estrich auf Trennschicht tragt iiber-

wiegend iiber Druck ab, wobei auch Biegezugspannungen auftreten kénnen.

Fiir den in dieser Arbeit betrachteten schwimmenden Estrich ist somit insbesondere das Biege-
zugtragverhalten von Bedeutung, worauf in Kapitel 2.1.3 zur Herleitung des Bemessungskonzepts
noch im Detail eingegangen wird. Im folgenden Abschnitt wird schon einmal auf die aus den
mechanischen Eigenschaften abgeleiteten Priifmethoden eingegangen, sowohl fiir den Estrich
selbst als auch fiir die Ddmmstoffunterlage. Im Anschluss wird das Schwindverhalten und das

Phénomen des Schiisselns genauer beschrieben.
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Estrichart Verbundestrich Estrich auf Trennschicht Estrich auf Ddmmschicht

: 7 Z

F
F F
N7/ *// % /// . /////////
7.
Zusammendriicken des Estrichs, Zusammendriicken des Estrichs, Uberwiegend Biegung des Estrichs,
nahezu keine Querdehnung Querdehnung und leichtes Auf- nur leichtes Zusammendriicken, dafiir
wolben (leichte Biegung) starke Verformung der Ddmmung
F
F F

Spannung 1

Lastabtrag tiber Druckspannungen Lastabtrag tiberwiegend tiber Druck- Lastabtrag iiberwiegend liber Biegezug-
spannungen, leichte Biegezugspan- spannungen, nur noch leichte Druck-
nungen spannungen

Abbildung 2.1.: Vergleich der Verlege- und Beanspruchungsarten (nach Merkblatt
Zementestrich (2015))

Priifmethoden

Estriche im Bauwesen sind in den Teilen der DIN 18560 geregelt, wobei die Klassen der mecha-
nischen Kennwerte in DIN EN 13813:2003 festgelegt sind. Fiir die oben genannten Estricharten
gilt nach DIN 18560-1:2021, dass sie den Beanspruchungen geniigen, wenn Druck- bzw. Biegezug-
festigkeitsklassen eingehalten werden. Im Falle hochbeanspruchbarer Estriche gibt es zusétzliche

Anforderungen an die Oberflachenhérte und den Verschleifiwiderstand (Teil 7 der Norm).

Zur Feststellung der mechanischen Eigenschaften werden Festigkeits- bzw. Bestatigungspriifun-
gen durchgefithrt. Die verschiedenen Teile der Reihe DIN 18560 regeln die Art der Priifung
abhéngig von der Verlegeart des Estrichs. Bei schwimmender Lagerung auf weichem Untergrund
wird die Estrichplatte wie oben beschrieben vor allem auf Biegung beansprucht und die maf3-
gebende Bemessungsgrofie ist die Biegezugfestigkeit. Diese ist nach DIN EN 13892-2:2003 (Fes-
tigkeitsprifung) bzw. DIN 18560-2:2022 (Bestétigungspriifung) zu ermitteln. Eine Beschreibung

der Priifungen ist im Anhang A dargestellt.Neben diesen genormten Priifmethoden, welche nur
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das reine Balkentragverhalten eines Estrichs beriicksichtigen, werden zur Beurteilung der Trag-
fahigkeit von schwimmend gelagerten Estrichen in der Praxis auflerdem Belastungspriifungen an
Platten auf Dadmmstoff durchgefiihrt. Dabei werden Platten auf Dammstoff hergestellt und in
der Regel die Bruchlast bei Belastung der Plattenecken mit einer Einzellast dokumentiert (IBF,
2019).

Eine schwimmende Lagerung des Estrichs dient vor allem dem Trittschall- und ggf. dem Wéarme-
schutz. DIN 4109 regelt den Schallschutz im Hochbau, wobei nur Angaben zur Ermittlung der
Trittschallminderung allgemein, nicht zu den Dammstoffeigenschaften gemacht werden. Teile
der DIN 4108 regeln den baulichen Warmeschutz: In DIN 4108-10:2021 sind mogliche Wér-
medadmmstofftypen angegeben, wobei EN-Normen wie DIN EN 13162:2015 (Mineralwolle) und
DIN EN 13163:2017 (Polystyrol (EPS)) zusétzliche Angaben zu héufig verwendeten Damm-
stofftypen machen. Darin wird auch festgelegt, mit welcher Nutzlast der aufliegende Estrich in
Abhéngigkeit der Zusammendriickbarkeit belastet werden darf. Fiir die verwendeten Dammstof-
fe gibt es genormte Priifmethoden zur Klassifizierung der fiir die Tragfahigkeit zentralen Grofie
der Zusammendriickbarkeit c,. Diese ergibt sich nach DIN EN ISO 29770:2022 aus der Diffe-
renz von (Liefer-)Dicke dy, (unter einer Belastung von 0.25 MN/m? gemessen) und der Dicke dp
(unter einer Belastung von 2 MN/m? und mindestens 120 s nach Entfernen einer ,kurzzeitigen*
zusétzlichen Last von 48 MN/m? gemessen). Die Ermittlung und Einteilung der Zusammen-

drickbarkeit ergibt sich nach der Norm des jeweiligen Dammstofftyps zu
Cp=dB—dL (2'1)

Abhéngig von diesem Wert wird festgelegt, welcher Stufe von CP2 (¢ < 2 mm, Nutzlast < 5 kPa)
bis CP5 (¢ < 5 mm, Nutzlast < 2kPa) der Ddmmstoff zuzuordnen ist. Die Angaben zur maximalen
Nutzlast entsprechen grob denen der Bemessungsnorm fiir schwimmenden Estrich (DIN 18560-
2:2022), wobei hier genauere Angaben auch zur Estrichdicke und -biegezugfestigkeit gemacht

werden. Hierauf wird in Kapitel 2.1.3 im Detail eingegangen.

Schwinden & Schiisseln

In der Vergangenheit wurde im Bauwesen aufgrund der genannten Vorteile von geringen Kos-
ten bis hin zur einfachen Herstellung vornehmlich Zementestrich eingesetzt (Schiitze, 1974). Bei
Zementestrich kommt es jedoch infolge unterschiedlicher Austrocknung bzw. Schwindens haufig
zu einer oberseitigen Verkiirzung und dadurch zu einer Verformung, die als ,,Schiisselung” be-
zeichnet wird. Ein umgekehrter Feuchtegradient fiihrt entsprechend zu einer Randabsenkung.
Beide Phénomene kénnen zu Rissen und Schiden am Bodenbelag fithren. Durch die giinstigeren
Schwind- und Trocknungseigenschaften werden zunehmend andere Estrichzusammensetzungen,
vor allem flieBfdhige Calciumsulfatestriche erforscht und eingesetzt (Schiefil und Wiegrink, 2005).

Durch das beschleunigte Austrocknen, welches bei diesen beiden Estricharten durch Einsatz als
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2. Theoretische Grundlagen

Flieflestrich erreicht werden kann, steigt allerdings die Gefahr des Schiisselns (oben schnelles,
unten langsameres Austrocknen), wodurch Zwangsspannungen infolge des zunehmend wirksa-

men Eigengewichts eingetragen werden (Timm, Allmendinger und Strehle, 2019).

Das Phénomen des Schiisselns steht in Verbindung mit der Verlegeart auf Ddmmschicht im Fo-
kus dieser Arbeit, da dies als eine zentrale Ursache fiir Schadensfille angenommen wird, wie im
folgenden Kapitel noch ndher erldutert wird. Das Zusammenwirken des Masse-Federelements
mit den Zwangsspannungen infolge Aufschiisseln ist bislang nicht im normativen Bemessungs-
konzept beriicksichtigt, wie in Kapitel 2.1.3 im Detail aufgezeigt wird. In diesen Ausfithrungen
stehen vor allem Zementestriche im Fokus, da diese Bindemittelart insbesondere schwindanféllig
ist, und auch in den zur Validierung des in dieser Arbeit entwickelten Riss-Modells durchgefiihr-
ten Versuchen ein Flie3-Zementestrich verwendet wurde. Grundsétzlich kann das Modell jedoch
auch bei anderen schwindanfélligen Estrichrezepturen mit &hnlichen Werkstoffeigenschaften An-

wendung finden.

2.1.2. Schadensfille und ihre Ursachen

Estrich ist in der Regel nicht allein tragend, sondern liegt direkt oder auf Trenn- oder Ddmm-

schicht gelagert auf einem tragenden Untergrund auf und dient nach DIN EN 13318 dazu
e eine vorgegebene Hohenlage zu erreichen,
e cinen Bodenbelag aufzunehmen,
e unmittelbar genutzt zu werden.

Erfiillt ein Estrich diese an ihn gestellten Anforderungen nicht, spricht man von Méangeln oder
Schéden am Estrich. Nach Aurnhammer (2008) werden diese zunéchst ursachenbedingt in Sché-
den eingeteilt, die bei bestimmten Konstruktions- bzw. Verlegearten vorkommen, und in solche,
die eher baustoffbedingt auftreten, also abhingig von der Zusammensetzung bzw. Bindemittel-
art des Estrichs sind. Zu den zahlreichen Schadensarten zihlen z. B. Absenkungen durch Ver-
anderungen des Untergrunds oder der Ddmmschicht (konstruktionsbedingt), oder Zerfall und
Festigkeitsverlust, z. B. infolge iiberaltertem, unzureichend reaktionsfahigem Bindemittel oder
Entmischung beim Transport (baustoffbedingt). Auch Rissbildung ist ein hdufig auftretender
Schadensfall, insbesondere bei schwimmendem Zementestrich, weshalb dieser im Fokus der vor-
liegenden Arbeit steht.

Wie Beton ist Estrich ein quasi-sproder Werkstoff und reiBt daher bei Uberschreiten der im
Gegensatz zur Druckfestigkeit geringen Zugfestigkeit. Einem Teil der auftretenden Rissbildung
wird durch Anordnung von Fugen entgegengewirkt. Dabei wird unterschieden in

o Bewegungs- und Rand-/Raumfugen (dauerhaft erforderlich, um Léngendnderungen und

vertikale Bewegungen aufzunehmen)
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2.1. Werkstoff Estrich

o Scheinfugen (zeitlich begrenzt erforderlich, Sollrissstellen; Festlegung durch z. B. Verfiil-

len).

Ein Fugenplan gibt die Lage und Art der Fugen abhéngig von u.a. thermischen und belastungs-
technischen Randbedingungen an. Scheinfugen sind Sollrissstellen, um willkiirliche Schwindrisse
im Erhértungszeitraum an kritischen Stellen wie einspringenden Ecken, Aussparungen, etc. zu
vermeiden. Grundsatzlich sollten die durch Fugen begrenzten Feldgroflen abhéngig vom Schwind-
maf geplant werden, eine feste Angabe dazu gibt es jedoch nicht (Timm, Allmendinger und
Strehle, 2019). Grundsétzlich sind Malnahmen in Form von Fugen nicht immer ausreichend zur
Verhinderung von Schiden an kritischen Stellen. Fiir eine genauere Erlauterung von Fugenarten
und ihrer Wirksamkeit sei auf die Ausfithrungen von Timm, Allmendinger und Strehle (2019)
verwiesen. Neben dem so versuchten Verhindern ungiinstiger Rissbildung besteht die M6glich-
keit, Risse zu beheben. Vor allem im Industriebereich mit zum Teil erhohten Anforderungen an
die Untergrundoberfliche (z. B. fiir Staplerverkehr, oder bei chemischem Angriff) stellen Risse
einen Mangel dar. Sie sind zu beheben, wenn sie normativ oder auftraggeberseitig festgelegte
Grenzwerte iiberschreiten, z. B. durch Kraft iibertragende Festlegung der Risse. Die Oberflache
gilt dann wieder als rissfrei. Hier ist es aber nach Timm, Allmendinger und Strehle (2019) zwin-
gend erforderlich, die Ursache zu kennen, da andernfalls z.B. bei durch Belastung entstandenen

Rissen die Gefahr einer wiederholten Rissbildung besteht.

Aurnhammer (2008) zahlt als Ursachen fiir Schdden an Estrichen auf Dammschichten folgende

auf:
¢ Schadenswirksame Spannungen und Verformungen,

— infolge Nutzlast

infolge Schwinden und thermisch bedingter Lidngenédnderung,

— infolge ungleichméfiger hygrischer oder thermischer Einfliisse,

infolge Zwangspunkten (z.B. einspringende Ecken) im Grundriss,

e Ungeniigende Festigkeit oder zu geringe Estrichdicke,

o Herstellungsbedingte Méngel,

e Absenkung durch zu weiche Ddmmschicht oder ungleiche Unterlage.
Bei herstellungsbedingten Méangeln ist hier vor allem eine der weichen Unterlage geschuldete
schwierigere Verdichtungsmoglichkeit gemeint. Dadurch weist das Estrichgefiige an der Unter-
seite u. U. eine porésere Verdichtung und geringere Festigkeit auf. Diese iiber die Dicke un-
gleichméfige Festigkeit hat Einfluss auf die Tragféhigkeit. Bei der Verwendung von Flieflestrich
mit seinem einfacheren Einbauvorgang treten diese Probleme weniger auf (Aurnhammer, 2008).
Insgesamt wird in der vorliegenden Arbeit vor allem die erste Gruppe von Ursachen betrachtet,

da diese auch fiir die Bemessung Relevanz besitzen.
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2. Theoretische Grundlagen

Estrich auf Dammschicht wird durch Einzel-Nutzlasten vor allem auf Biegung beansprucht.
Aurnhammer (2008) weist in diesem Zusammenhang auf Untersuchungen von Manns und Zeus
(1980) hin, bei denen schwimmender Estrich unter verschiedenen Lastfillen untersucht wurde.
Hier wurden letztendlich fiir Estriche im Wohnungsbau empirisch Mindestwerte fiir Schichtdi-
cke und Nennfestigkeit in Abhingigkeit der Zusammendriickbarkeit der Ddmmschicht aus einer
geringen Anzahl Versuche abgeleitet. Hieraus sind schliefllich die normativen Regelungen der
DIN 18560 entstanden.

Abbildung 2.2.: Vertikale Verformungen (Schiisselung) bei schwimmenden Zementestrichen
(sichtbarer Abstand unter der Richtplatte, siehe Markierungen in rot; Miiller
und Limp (2015))

Hygrische und thermische Einfliisse spielen bei Estrich auf Ddmm- und Trennschichten eine
grofle Rolle, da die Estrichplatte sich in diesem Fall bei ungleichméfligem Formé&nderungsbe-
streben zwischen der Ober- und Unterseite frei verkriimmen und dabei lokal von der Unterlage
abheben kann. Dies kann entweder in Form des Abhebens (Aufschiisseln, z.B. infolge Schwin-
den wahrend des Austrocknens, sieche Abbildung 2.2) oder Absenkens (z.B. Quellvorgang infolge
Wasseraufnahme an der Oberseite) der Rander erfolgen. In beiden Fallen fithrt die (wihrend der
Hydratation zunehmende) Wirkung des Platteneigengewichts zu Biegespannungen innerhalb der
Platte. Je nach Grofle der Estrichfliche und -dicke kénnen sich die abhebenden Bereiche auf-
grund der Wirkung des Eigengewichts iiber die komplette Fliche oder nur an den Randern
iiber eine gewisse Grenzliange (i.d.R. < 2 m) erstrecken (siche Abbildung 2.3, Aurnhammer,
2008). Bei mehrschichtig hergestellten Estrichen mit unterschiedlichen Stoffkennwerten tiber
die Hohe koénnen diese Phédnomene deutlicher auftreten, aber auch bei einschichtigen schwind-
anfilligen Flielestrichen ist ein Abheben in den &dufleren Bereichen wihrend des Aushértens
messbar (Aurnhammer, 2008, Timm, Allmendinger und Strehle, 2019). Eine Belastung durch
Nutzlast an Ecken und Réndern fiihrt entsprechend zu Rissen oder Abbrechen der belasteten
Bereiche, wenn sich diese Verformungen nicht im Laufe des Austrocknungsprozesses abgebaut

haben. Diesem Verhalten ldsst sich in der Regel durch eine moglichst quell- und schwindarme
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2.1. Werkstoff Estrich

Rezeptur sowie eine sachgerechte Nachbehandlung, die ein moglichst langsames Austrocknen
gewahrleistet, entgegenwirken (Timm, Allmendinger und Strehle, 2019). Dies steht allerdings
haufig dem Betriebsablauf auf der Baustelle entgegen. Bei den Rissen handelt es sich in der
Regel um Einzel-Trennrisse (Aurnhammer, 2008, Manns und Zeus, 1980). Neben dieser Rissart
konnen auch Krakelee-Riss (feine Rissnetze an der Oberflache) auftreten. Deren Wirkung auf
die mechanischen Eigenschaften ist jedoch vernachlédssigbar (Merkblatt Zementestrich (2015)),

sodass diese hier keine Beriicksichtigung finden.

& »
< >

Grenzldnge Grenzldnge

Abbildung 2.3.: Verformungsverhalten von Estrichen zunehmender Gréfle; links
unter konvexen, rechts unter konkaven Verwolbungsbestrebungen
(Aurnhammer, 2008)

Zusammenfassend lédsst sich festhalten, dass bei Estrichen auf Ddmmschichten eine Vielzahl
an Schadensfillen mit verschiedenen méglichen Ursachen bekannt ist. Bei Rissbildung lassen
sich diese Ursachen nicht immer unmittelbar zuordnen, sodass ein nachtragliches Beheben der
Schiéden bedingt moglich ist. Vor allem die fiir eine bessere Verdichtung anzustrebende wei-
chere Konsistenz, insbesondere bei dicken bzw. weichen Dadmmschichten, steht einem giinstigen
Austrocknungsverhalten bei steiferer Konsistenz mit geringerem Wasser- bzw. Zementleimgehalt
entgegen. Dieser Umstand verhindert eine ,einfache” Losung, wie sie in der Norm bzw. Literatur
angestrebt wird, bei der vor allem empirische Versuchsergebnisse herangezogen werden, um die
Schadensursachen bzw. das Tragverhalten empirisch zu beurteilen und im besten Fall durch nor-
mative Vorgaben und Nachbehandlungsmafinahmen praventiv zu verhindern (Manns und Zeus,
1980, Schnell, 1990, Schneider und Pleyers, 2003, Lorenz und Schmidt, 1996, Gebauer etal.,

2017). AuBerdem werden Verformungseinfliisse aus Schwinden in diesen Vorgaben nur bedingt
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beriicksichtigt. Das Zusammenwirken von weicher Démmstofflagerung, u. U. ungleichméflig ver-
dichtetem Estrich, Aufschiisseln infolge Schwinden und Belastung durch Einzellast ldsst sich
schwer empirisch abdecken, wie die nach wie vor auftretenden Schadensfille andeuten. Mindes-
tens wéren umfangreiche Versuchsserien notwendig, um diese sich gegenseitig beeinflussenden
Aspekte angemessen zu berticksichtigen. Bei weitem nicht alle Schadensfélle sind auf die halb-
empirische Normengrundlage zuriickzufiihren, und inwiefern eine numerische Untersuchung hier
eine Verbesserung bringen kann, ist zu untersuchen. Zunéchst soll das folgende Kapitel einen
Uberblick zum Stand der Technik hinsichtlich der Bemessung von Estrichen auf Didmmschicht

liefern.

2.1.3. Bemessungskonzept

Je grofer die Last und je grofler die Zusammendriickbarkeit der Ddmmschicht unter dem Est-
rich, desto grofler ist die Biegebeanspruchung der Platte (Aurnhammer, 2008, Manns und Zeus,
1980, Timm, Allmendinger und Strehle, 2019). Das Bemessungskonzept fiir Estrich auf Ddmm-
schicht, welches in der DIN 18560-2:2022 geregelt ist, legt tabellarisch Estrichnenndicken in
Abhéngigkeit von der Nutzlast, der Biegezugfestigkeitsklasse und der Zusammendriickbarkeit
der Dammschicht fest (DIN 18560-2:2022). Die Estrichnenndicken sind tabellarisch festgelegt,
siehe Abbildung 2.2. DIN 18560-2:2022 macht lediglich Angaben zu Einzellasten bis 4 kN bzw.
Flichenlasten bis 5 kN/m? (siche Abbildung 2.2). Grofere Einzel- oder Flichenlasten oder Fahr-
belastungen allgemein verlangen zusétzliche Uberlegungen durch die planende Person (Timm,
Allmendinger und Strehle, 2019). Die Zusammendriickbarkeit der Dammschicht ist abhingig
vom Lastniveau begrenzt auf maximal 5 bzw. 3 mm. Bei der kleinsten Flichenlast bis 2 kN/m?
sind per Fufinote auch grolere Zusammendriickbarkeiten bis 10 mm zugelassen, wobei dann die

Estrichdicke um 5 mm zu erhohen ist.

Eine erste Grundlage fiir diese normativen Festlegungen lieferten Manns und Zeus (1980). Die
1980 hergeleiteten Bemessungsvorschliage fiir Estriche auf dicken Ddmmschichten beruhen auf
vergleichenden Untersuchungen zwischen experimentellen Daten aus Belastungsversuchen gegen-
iber Ergebnissen empirischer Formeln nach Westergaard (1926), die auf dem Bettungsmodulver-
fahren basieren. Bis zu diesem Zeitpunkt war DIN 4109-4:1962 die mafligebende Bemessungsnorm
fiir schwimmende Estriche. Die dortigen Anforderungen bezogen sich im Hinblick auf Damm-
stoffdicken von maximal 35 mm auf die damaligen Angaben zum Wérme- und Schallschutz in
den Normen DIN 4108 und DIN 4109. In den 70er Jahren kam es im Zuge des Heizolpreises zum
Einbau dickerer Ddmmstoffe, um neue Regelungen im Warmeschutz einzuhalten (Schnell, 1983).
Um den Einfluss der Zusammendriickbarkeit auf die Beanspruchbarkeit des Estrichs zu beurtei-
len, wurden u. a. von Manns und Zeus (1980) und Schnell (1983) Untersuchungen zu dickeren
Démmschichten durchgefithrt. Wie Schnell (1983) ausfiihrte, sind andere Faktoren, insbesonde-
re diejenigen, die Konsistenz und Verdichtbarkeit beeinflussen, von gréflerer Bedeutung fiir die

Beanspruchbarkeit als die Ddmmstoffdicke. Schnell (1983) wies aber in seinem Uberblick zu den
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2.1. Werkstoff Estrich

Tabelle 2.2.: Auszug aus DIN 18560-2:2022: Tabelle 1 — Nenndicken und Biegezugfes-
tigkeit unbeheizter Estriche auf Ddmmschichten fir verschiedene lotrechte

Nutzlasten
Estrichart Biegezug- Estrichnenndicken® in mm Bestitigungs-
festigkeits- EL=Einzellasten? FL=Flichenlasten priifung
klasse nach Biegezugfestigkeit
DINEN 13813 OBy
bei einer Zusammendriickbarkeit der Dammschicht C N/mm2
<5mm¢ <3mm
EL<1kN EL<2kN EL <3 kN EL<4kN kleinster Mittelwert
FL<2kN/m? | FL<3kN/m? | FL<4kN/m? | FL<5kN/m? | Einzelwert
Calci F4 >35 >50 >60 >65 >3,5 >4,0
alcium-
sulfat-FlieR- F5 >35 >45 >50 >55 >4,5 >5,0
estrich CAF F7 >35 >40 >45 >50 >6,5 >7,0
Calci F4 >45 >65 >70 >75 22,0 >2,5
alcium-
sulfat- F5 240 >55 260 > 65 22,5 >3,5
estrich CA F7 >35 >50 >55 >60 >3,5 >4,5
Kunstharz- F7 >35 >50 >55 >60 245 >55
estrich SR F10 =230 =240 245 =250 26,5 27
F4 245 265 270 275 22,0 22,5
Magnesia- F5 >40 255 260 265 225 235
trich” MA
ese F7 >35 >50 >55 >60 >3,5 >4,5
Zement- F4 >45 >65 >70 >75 >2,0 >2,5
estrich CT F5 >40 >55 >60 >65 >2,5 >3,5

a Bei Dammschichten < 40 mm kann die Estrichdicke um 5 mm reduziert werden, die Mindestnenndicke von 35 mm darf nicht
unterschritten werden.

b Die Oberflichenhirte bei Steinholzestrichen muss mindestens SH30 nach DIN EN 13813 betragen.
Bei lotrechten Nutzlasten bis 2,0 kN/m2 sind im Ausnahmefall hohere Zusammendriickbarkeiten bis 10 mm zuldssig. In diesem
Fall muss die Estrichnenndicke um 5 mm erh6ht werden.

Bei Einzellasten sind fiir deren Aufstandsflichen im Allgemeinen zusitzliche planerische Uberlegungen erforderlich. Das
Gleiche gilt fiir Fahrbeanspruchung.

bis zur Ablésung von DIN 4109-4:1962 durch DIN 18560-2:1981 von verschiedenen Seiten durch-
gefiihrten praktischen und theoretischen Untersuchungen darauf hin, dass iibereinstimmend die
schwierige Verdichtbarkeit bei zu nachgiebiger Unterlage sowie die besondere Gefdhrdung der
Eck- und Randbereiche erwihnt wird. SchlieBlich waren vor allem die guten Ubereinstimmun-
gen zwischen Versuchsdaten und Formeln nach dem Bettungsmodulverfahren im Hinblick auf
die maximalen Spannungen und Verformungen bei Manns und Zeus (1980) ausschlaggebend fiir
die in DIN 18560-2:1981 iibernommenen normativen Vorgaben. (Schnell, 1983)

Der Einfluss des Dammstoffs geht in den dortigen rechnerischen Ansatz nach Westergaard tiber
die Zusammendriickbarkeit ein. Aus der Zusammendriickbarkeit ergibt sich die Bettungszahl
(KS) nach Manns und Zeus (1980) zu

p_2-025 175

KS ~ =
S dL —dB dL—dB

[MN/m?]. (2.2)

19



2. Theoretische Grundlagen

wobei diese Formel aus der fiir den Bettungsmodul mit der Pressung p und der Einsenkung s des
Baugrunds abgeleitet wird. Die Pressung entspricht der normativ geregelten Spannung, unter
der die Dicke dp (2 kPa) bzw. die Lieferdicke dj, (0.25 kPa) zu messen ist, jedoch unter Vernach-
lassigung der zwischenzeitlich aufzubringenden zusétzlichen Last von 48 kPa (vgl. Kapitel 2.1.1).
Eine mogliche Einsenkung des Unterbaus oder Untergrunds, auf dem der Dammstoff aufliegt,
wurde von (Manns und Zeus, 1980) fiir die Bettungszahl des Ddmmstoffs als vernachléssigbar

aufgrund der viel geringeren Grofie im Vergleich zur Einsenkung des Démmstoffs eingestuft.

Die genannten Westergaard-Formeln wurden fiir den Straflenbau zur Bemessung von Boden-
platten entwickelt und idealisieren den Boden — analog zur Estrichdammschicht — als elastische
Bettung. Sowohl im Straflenbau zur Berechnung von Betonplatten als auch im Fall von Industrie-
fuBboden aus Beton sowie schwimmendem Estrich finden die zum Teil iiberarbeiteten Formeln
nach Westergaard (1926) noch heute Anwendung (Lohmeyer und Ebeling, 1988; Stenzel, 2006).
Einige Aspekte der speziellen Anforderungen an Estrich bzw. der Beanspruchung des Estrichs

bleiben bei diesem Bemessungskonzept jedoch unberiicksichtigt.

WL P

(a) Qualitative Verformungen beim Steifezifferver- (b) Qualitative Verformung beim Bettungsmodul-
fahren (Vogt, 2018) verfahren

Abbildung 2.4.: Gegeniiberstellung der klassischen Modellvorstellungen zur Abbildung einer
Baugrundsetzung

Das Bettungsmodulverfahren ist eines von zwei im Straflen- und Grundbau zur Berechnung der
Schnittgréfen in elastisch gegriindeten Biegebalken oder -platten verwendeten Verfahren. Das
andere ist das Steifemodulverfahren. Die Bettungsmodultheorie beruht auf der Annahme, dass
die Reaktionen op im Untergrund vertikal und proportional den Einsenkungen s des aufliegenden
Bauwerks, zum Beispiel der aufliegenden Platte, sind, daher gilt mit C als Proportionalitéts-

konstante
oB = C-s. (2.3)

Der Baugrund wird damit als System unabhéngiger, linear elastischer Einzelfedern idealisiert.
Im Gegensatz dazu wird beim Steifemodulverfahren der Boden als linear elastischer, isotroper
Halbraum definiert, also als System gekoppelter Federn. Die Steifigkeit des Baugrunds wird hier
iiber den Steifemodul F beriicksichtigt, der sich als Ergebnis eines Oedometerversuchs, abhin-
gig von der Querkontraktion und dem Elastizitdtsmodul, als reine Bodenkenngréfle ergibt. Der

Bettungsmodul C hingegen ist keine reine Untergrundkenngrofle, sondern als Ergebnis einer Set-

20



2.1. Werkstoff Estrich

zungsberechnung oder eines Lastplattendruckversuchs unter anderem von Form und Gréfie des
Fundaments abhingig (Vogt, 2018).

Das Bettungsmodulverfahren liefert im Gegensatz zum Steifemodulverfahren lediglich fiir die
Schnittgrofen der Platte realitdtsnahe Ergebnisse, jedoch nicht fiir die Setzungen des Baugrunds.
Beim Steifemodulverfahren wird der Einfluss aus benachbartem Baugrund bei der Setzung be-
riicksichtigt (Setzungsmulde, siehe Abbildung 2.4), im Fall des Bettungsmodulverfahrens ergéabe
sich ein Setzungsgraben, bei dem nur der Boden direkt unterhalb des Fundaments nachgibt.
Nach Manns und Zeus (1980) ldsst sich die Modellvorstellung des elastisch isotropen Halbraums
fir Boden nicht auf eine Ddmmschicht vergleichsweise begrenzter Dicke auf steifer Unterlage
tibertragen, daher wahlten Manns und Zeus (1980) fir ihre Berechnungen Ansétze basierend
auf dem Bettungsmodulverfahren. Diese von Westergaard (1926) entwickelten Gleichungen lau-

ten bei

Einzellast in Plattenmitte

_0275-Q 3

h2

E-
Om (1+p)- [lg (thz;) - 0.436] [N/mm?] (2.4)
Einzellast am Plattenrand
~0.529-Q 3

OR h2

(1+0.54p) - [lg( E-h

m) - 1.08] [N/mm?] (2.5)

Einzellast in Plattenecke

mit

) = Last in MN

h = Dicke des Estrichs in m

E = Elastizitdtsmodul des Estrichs = 20000 N/ mm?
1= Querdehnzahl =0.2

a = Belastungskreishalbmesser in m
b=V1.6-a2+h%-0.675-h fir a <1.724-h in m

b=afirae>1724-hinm
1.75
dr —dp

KS = Bettungszahl MN/m3 =

Sie dienen der Bestimmung der Biegezugspannung in einem Estrich (vgl. Anhang A fiir Gleichun-

gen zur Bestimmung der Einsenkung eines schwimmenden Estrichs (Manns und Zeus, 1980)) und
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basieren auf der vereinfachenden Annahme eines konstanten und von der Grofle der Einsenkung
unabhéngigen Bettungsmoduls. Als Bettungsmodul wird hier die aus der Zusammendriickbar-
keit abgeleitete Bettungszahl des Dammstoffs eingesetzt. Manns und Zeus (1980) vergleichen
Ergebnisse der Westergaard-Formeln mit Versuchsergebnissen fiir die drei Lastfélle Einzellast in
Plattenmitte, am Plattenrand und an einer Plattenecke, gemessen an 4x4 m Estrichplatten auf
zwei unterschiedlichen Dammstoffaufbauten von 80 mm Dicke, wobei die Einzellast von 1 kN
jeweils auf einer Kreis- bzw. Halbkreisfliche mit Radius 25 mm verteilt ist. Dies wird von Manns

und Zeus (1980) als das fiir den Wohnungsbau mafigebende Einzellastfall-Niveau identifiziert.

Bettungszahl in MN/m3

0.1 1 10 100
8 T T T T] T T T T T T T T T T 1]

h =30 mm
E =20000 N/mm?

a =25 mm

(@)

Einzellast @ =1 kN

am
P]attenrand

_in Plattenecke

in Plattenmitte

Biegespannungen o in N/mm?
.

[\

2 0.2 0.02

Zusammendriickbarkeit (dy, — dp) in mm

Abbildung 2.5.: Biegespannungen in einem Estrich der Dicke h = 30 mm unter einer
Einzellast von 1 kN in Abhéingigkeit von der Zusammendriickbarkeit
der Ddmmschicht (Manns und Zeus, 1980)

Trotz der genannten Vereinfachungen hinsichtlich der Modellvorstellung lieferte die Untersu-
chung gute Ubereinstimmungen zwischen Spannungsgleichung und Versuchsergebnis fiir die
mafgeblichen Lastfille Plattenrand und -ecke. Fiir den als mafigebend identifizierten Lastfall

Einzellast am Plattenrand ergaben sich an der Plattenunterseite die maximalen Zugspannungen.
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2.1. Werkstoff Estrich

Abbildung 2.6.: Visualisierung der betrachteten Lastfille und des Orts der maxi-
malen Spannung nach Manns und Zeus (1980): Einzellast in Plat-
tenmitte ((omax an der Unterseite), am Plattenrand (omax an der
Unterseite), an der Plattenecke (omax an der Oberseite) (Schiel] und
Wiegrink, 2005)

Beim Lastfall Plattenecke sind die gemessenen Dehnungen bzw. entsprechend daraus abgelei-
teten Spannungen unter 1 kN-Einzellast fiir den weicheren Dammstoff geringfiigig kleiner, fiir
den steiferen dhnlich zum Randlastfall, allerdings ist die Bruchlast etwa halb so grofl wie am
Plattenrand. Die Maximalspannungen ergeben sich fiir den Ecklastfall an der Plattenoberseite,
fir den Randlastfall an der Unterseite (vgl. Abbildung 2.6).

Als Ergebnis der Untersuchungen geben Manns und Zeus (1980) u.a. die in Abbildung 2.5 und
Abbildung 2.7 dargestellten Diagramme an. In Abbildung 2.5 ist eine Auswertung der Span-
nungsgleichungen fiir die drei Lastfille dargestellt: Nur bei sehr harten Dammstoffunterlagen
(d. h. bei sehr geringer Zusammendriickbarkeit) wird der Lastfall Plattenecke hier mafigebend.
Der Lastfall Plattenmitte ist in der Regel von untergeordneter Bedeutung. In Abbildung 2.7
haben Manns und Zeus (1980) ein Nomogramm entwickelt, welches in Abhéngigkeit der da-
maligen Biegezugfestigkeitsklassen aufgetragen iiber der Zusammendriickbarkeit (unten) bzw.
der Bettungszahl (oben) die notwendige Estrichdicke fiir eine Einzellast am Plattenrand von
1 kN anzeigt. Mit abnehmender Zusammendriickbarkeit und zunehmender Estrichdicke bzw.
-steifigkeit nehmen die Biegespannungen ab. Die Dicke der Ddmmschicht und der Elastizitéts-
modul haben im Gegensatz zur Grofle der Lasteinleitungsfliche rechnerisch einen geringeren
Einfluss. (Aurnhammer, 2008; Schnell, 1983; Manns und Zeus, 1980)

Was diese Modellvorstellung allerdings nicht angemessen beriicksichtigen kann, ist die Schiis-
selbildung, die infolge des Austrocknungsprozesses bei Estrich héufig auftritt. In den Versuchen
wurde diese sogar explizit ausgeschlossen, indem ein verkleinerter Plattenbereich, der kein Abhe-
ben vom Dammstoff zeigte, untersucht wurde. Die Schiisselung entspricht einer Vorverformung
bzw. Vorbelastung infolge Zwang fiir den mafigebenden Bemessungslastfall, sodass fiir eine Un-

tersuchung des Einflusses dieser Schiisselung grundsétzlich ein genaueres Verfahren notwendig

23



2. Theoretische Grundlagen

Bettungszahl in MN/m3
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Dammschichten fir
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Trittschallddmmung
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(etwa Belastung im Wohnungsbau)
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Zusammendriickbarkeit (d;, —dp) in mm

Abbildung 2.7.: Erforderliche Dicke von Zementestrichen in Abhéngigkeit von der Zusammen-
driickbarkeit der Dammschicht und der Festigkeitsklasse ZE (nach Manns und
Zeus (1980) mit op — o, = 1.75 kPa; (Aurnhammer, 2008)

ist. Auch wird im beschriebenen Bemessungsansatz ein Einfluss der Mehrlagigkeit und der unter-
schiedlichen Eigenschaften des Estrichs tiber die Dicke nicht berticksichtigt. Zementestrich weist
wie bereits im vorangegangenen Kapitel erldutert an der Unterseite meist ein haufwerksporiges
Geflige auf, insbesondere verstarkt durch eine schwierigere Verdichtung bei schwimmender Ver-

legeart, sodass dieser Bereich weniger zur Gesamtfestigkeit beitragt.

Die zuletzt 2021 eingefiihrten Anderungen in DIN 18560-1:2021 beziehen sich vor allem auf die
Einfiihrung von Schwindklassen im Hinblick auf die ,,Dimensionsstabiltéit® des Estrichs. Die Be-
stimmung der Dimensionsstabiltit (d.h. des Schwindens und Quellens) wird in DIN EN 13892-
9:2018 geregelt, wobei dieser Teil der Norm 2018 neu eingefiihrt wurde. Die Anderungen in
DIN 18560-1:2021 sind mdglicherweise eine Reaktion darauf und erkennen so erstmalig den

Schwindeinfluss bei der Bemessung von Estrich normativ an. In DIN 18560-1:2021 wird festge-
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2.1. Werkstoff Estrich

stellt, dass das Schwindverhalten maf3geblichen Einfluss auf die Rissgefahr bzw. auf die Verfor-
mungen in Rand- und Fugenbereichen hat. In Teil 2 der Norm, der die Bemessung von Estrichen
auf Dammschichten behandelt, wurden fiir Zement- und Magnesia-Estriche zusétzliche, hohere
Festigeitsklassen und hohere Nenndicken eingefiihrt, deren Anwendbarkeit jedoch an die Ein-

haltung der Schwindklasse gekniipft ist.

Tabelle 2.3.: Auszug aus DIN 18560-1:2021: Tabelle 4, Teil 1 — Schwindklassen fiir Estriche

Schwindklasse Dimensionsstabilitdt DL Beschreibung
mm/m

SW3 AL >=0.5 normal
SW2 0.2 <= AL <0.5 schwindreduziert
SW1 AL <0.2 schwindarm
SWO0 AS >0 quellend

Dabei ist

AL Schwindmafl (mm/m)

AS Quellmafl (mm/m)

Zusétzlich zur beschriebenen normativen Regelung gibt es Merkblatter der Deutschen Naturstein
Akademie (DENAK), die in Teil 2 ihrer ,Bemessung von Bodenkonstruktionen“ Nomogramme
zur Bemessung der Lastverteilungsschicht z. B. in Form von schwimmendem Estrich angibt
(DENAK-Merkblatt 8-2, 2021). In Abbildung 2.8 ist beispielhaft eines dieser Nomogramme dar-
gestellt, in denen fiir eine bestimmte Aufstandsfliche (zwischen > 25 und > 2500cm? werden
sechs Diagramme abgebildet) die Belastung F' [kN] abhéngig von der mittleren Biegezugfestig-
keit, der Estrichdicke dg und der Bettungsziffer k, abgelesen werden kann. Obwohl in Teil 1 des
Merkblatts in den allgemeinen Anforderungen an die Bodenkonstruktion auch auf die Belastung
durch Temperatur und Schwinden eingegangen wird, findet dies in den Nomogrammen keine
erkennbare Beriicksichtigung. Stattdessen wird in einem gesonderten Abschnitt ein Diagramm
zur Abschitzung der Biegespannungen infolge Schwinden bzw. Aufschiisseln in Abhédngigkeit ei-
nes Mafles Ae fiir ,ungleiches Schwinden® zwischen Ober- und Unterseite der Platte angegeben
(vgl. Abb. A.1 im Anhang). Fiir eine rechnerische Bemessung wird Gleichung (2.5) auf Basis der
Untersuchungen von Manns und Zeus (1980) angegeben. Diese entspricht dem Lastfall Einzellast

am Plattenrand.

Die Formeln nach Westergaard werden daneben auch fiir die Bemessung von Betonbéden her-
angezogen (Lohmeyer und Ebeling, 1988). Bemerkenswert ist dabei allerdings, dass bei der
Abschétzung des maximalen Biegemoments fiir die drei Lastfille der Ecklastfall den grofiten
Momentenbeiwert A bezogen auf den Referenzlastfall Plattenmitte zugewiesen bekommt. Das
geringste Moment entsteht nach Lohmeyer und Ebeling (1988) fiir den Lastfall in Plattenmitte,
an der Plattenecke entsteht ein etwas mehr als doppelt so groBes (A = 2.1) und fiir den Rand
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Abbildung 2.8.: Nomogramm aus dem DENAK-Merkblatt fir eine Last-
Aufstandsfliche > 25cm? (DENAK-Merkblatt 8-2, 2021)

ergibt sich ein Wert knapp darunter (A, = 1.8) fur
miQ=Xi-kQ Mm@ =X kg Am-Qd, (2.7)

mit Biegemoment m; ¢ fiir eine Einzellast )y, Momentenbeiwerte A\; mit i = {m,r, e} fiir Mit-
te, Rand und Ecke und Lastfaktor kg abhingig von Fugenarten und Verzahnung. Bei diesem
Berechnungsansatz besteht auflerdem die Moglichkeit, den Einfluss zweier zusétzlicher Einzellas-
ten im Sinne einer Fahrbeanspruchung zu beriicksichtigen. Im Detail soll auf diesen Ansatz hier
nicht weiter eingegangen werden. Die Tatsache, dass sowohl bei der Priifung von Estrichplatten
in der Praxis als auch bei diesem Berechnungsansatz der Ecklastfall als mafigebend betrachtet
wird, motiviert eine Uberpriifung des Randlastfalls als mafigebenden Bemessungslastfall fiir die

Estrichbemessung.

2.1.4. Stand der Forschung: Numerische Modellierung

Die Zahl an Veroffentlichungen, die sich mit Estrich, insbesondere Zementestrich beschaftigen,
ist vergleichsweise klein. Neben den genannten Untersuchungen von Manns und Zeus (1980)
und Schnell (1983) sind u. a. Untersuchungen zum Schiisselverhalten von Schneider und Pleyers
(2003) im Hinblick auf die Effektivitdt von Nachbehandlungsmafinahmen zu nennen (wie Impra-

gnierung, Folienabdeckung). Konkret wurden bei Manns und Zeus (1980) quadratische Platten
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2.1. Werkstoff Estrich

(4 x 4 m) auf unterschiedlich steifer Bettung gelagert und mit Einzellasten in unterschiedlicher
Laststellung belastet. Gemessen wurden Dehnung und Einsenkung der Platte, um die Ergeb-
nisse anschlieBend wie beschrieben zur Uberpriifung von Handrechenformeln nach Westergaard
zu verwenden. Schnell (1983) untersuchte gebettete Estrichplatten verschiedener Estricharten
(etwa 3,70 m x 4,90 m und 4 m x 4 m) unter unterschiedlichen Witterungsbedingungen, zum
Teil im Rahmen echter Bauvorhaben, zum Teil in Versuchseinrichtungen. Dabei wurden u. a.
Anzahl und Lénge der entstehenden Risse sowie die Einsenkungen unter verschiedenen Lasten
gemessen. Aus nachtriglich entnommenen Proben wurden Rohdichte und Festigkeiten bestimmt.
In verschiedenen Forschungsberichten des IBF (u. a. Miiller, 2017) wurden das Schiisselverhal-
ten und dessen Einflussfaktoren empirisch dokumentiert. Dabei wurde von Miiller (2017) neben
den Festigkeits- und Feuchteeigenschaften sowie der Zusammensetzung die vertikale Verformung
wahrend des Austrocknens vor und nach der Verlegung verschiedener Bodenbelége iiber die Zeit
gemessen. Die Auswirkungen auf den Belag werden im Rahmen dieser Arbeit nicht weiter be-
trachtet.

Zum Teil sind experimentelle Auswertungen dieser Art geeignet fiir eine numerische Simulation,
zum Teil fehlen jedoch exakte Angaben z. B. zur tatsichlich wirksamen Dammsteifigkeit. In
anderen Verdffentlichungen gibt es bereits Ansétze, zumindest die Zwangsspannungen wahrend
des Erhartungsvorgangs numerisch zu erfassen. In der Literatur steht hier jedoch der Werkstoff
(Stahl-)Beton stérker im Fokus, wobei die Erkenntnisse zur Modellierung auch fiir die Simula-
tion von Zementestrich herangezogen werden koénnten. Zur Berechnung hydratationsbedingter
Zwangsspannungen mit Blick auf die Rissbreitenbegrenzung wurde in den letzten Jahren ver-
mehrt geforscht (Schlicke und Viet Tue, 2016b; Nietner, Schlicke und Viet Tue, 2011). Untersu-
chungen von Nietner, Schlicke und Viet Tue (2011) zur Zwangsbeanspruchung erhirtender Mas-
senbetonbauteile befassten sich mit dem Hydratationsprozess von Beton, wobei ein von Nietner
(2009) entwickeltes Finite-Elemente-Programm zur Berechnung des gekoppelten Warme- und
Feuchtetransports (Nietner, 2019), u. a. auf Basis von Berechnungsmodellen von Kiinzel (1994)
auch bereits auf Zementestrich angewendet wurde. Wie in Kapitel 3.2.1 noch néher erldutert
wird, findet dieses Programm indirekt auch in dieser Arbeit zur Abschétzung der Schwind- und
Hydratations-Einfliisse auf das Verformungsverhalten in den durchgefiihrten Versuchen Anwen-

dung.

Fiir Estrich gab es einige Verdffentlichungen zur numerischen Simulation, wobei auch hier die
Ursachen des Schiisselverhaltens und der chemischen Einfliisse beim Hydratationsprozess im Fo-
kus standen. Ambroise et al. (2002), Georgin et al. (2008) und Jaafri et al. (2019) haben in den
vergangenen Jahren das Schiisselverhalten vor allem von Calciumsulfatestrich numerisch un-
tersucht. Ambroise etal. (2002) fanden bei Finite-Elemente-Simulation des Aufschiisselns eine
gute Ubereinstimmung der vertikalen Verformung mit den durchgefiihrten Laborversuchen, Ge-

orgin et al. (2008) fithrten ahnliche Untersuchungen fir Zement- und Calciumsulfatestrichbinder
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durch. Dabei bestétigte sich, dass Calciumsulfatestrich ein deutlich geringeres Schwind- bzw.
Schiisselrisiko besitzt als Zementestrich. Jaafri et al. (2019) nutzten berithrungslose Messmetho-
den zur Erfassung des Schiisselns verschiedener Estrichmischungen, was ein besseres Verstédndnis
der verschiedenen chemischen Einfliisse (relative Feuchte, Porositiat, Hydratationsgrad) auf das
Schiisselverhalten liefert. Das numerische Modell zeigte sehr gute Ubereinstimmungen mit dem

experimentell gemessenen Verhalten, was zur Identifikation viskoelastischer Parameter beitragt.

Untersuchungen zum Rissverhalten, vor allem der Wechselwirkung von Aufschiisseln und Damm-
stofflagerung jenseits empirischer Versuche fehlen weitgehend. Schiel und Wiegrink (2005) un-
tersuchten Calciumsulfatestrich hinsichtlich des Einflusses einspringender Ecken auf die Rissent-
wicklung, eine numerische Untersuchung des Rissverhaltens auf Basis nichtlinearer Rissmodelle
wurde jedoch nicht durchgefithrt. Wiegrink (2002) entwickelte Nomogramme zur Bestimmung
der Trocknungszeit und Ermittlung der resultierenden Spannungen im Eckbereich infolge des
Aufschiisselns. Eine numerische Untersuchung unter Verwendung nichtlinearer Materialgesetze

und der moglichen exakteren Abschitzung der Rissbildung wird im Ausblick angedeutet.

Veroffentlichungen zur numerischen Rissmodellierung von Beton und Stahlfaserbeton gibt es
allerdings in grofem Umfang, u.a. auf Basis der FE-Methode (Hofstetter, 2006; V. Cervenka,
J. Cervenka und Kadlec, 2018; Feenstra und de Borst, 1995; Goédde, 2013; Thomée, 2005).
Die Problematik der Netzabhingigkeit verschmierter Rissmodelle spielt fiir bewehrte Bauteile
(z. B. Stahlbeton) in vielen Féllen eine untergeordnete Rolle, da ab einem bestimmten Zeitpunkt
wahrend der Entfestigung die Bewehrung aktiviert wird. Die exakte Abbildung des Betonriss-
verhaltens hat in diesem Fall eine untergeordnete Relevanz. Der Einfluss des Betons auf das
Gesamttragverhalten nimmt immer weiter ab, sodass eine Netzabhingigkeit auf die Ergebnisse
kaum Einfluss hat, wie viele Verdffentlichungen zu diesem Thema zeigen, bei denen sich die
dargestellte Problematik nicht ndher thematisiert wird (z. B. V. Cervenka, J. Cervenka und
Kadlec, 2018; Feenstra und de Borst, 1995).

Im Fall von Stahlfaserbeton spielt das Betontragverhalten eine gréflere Rolle, da die Stahlfa-
sern zum Tragverhalten des Bauteils anders beitragen als die Bewehrung und das Verhalten
eher reinem Beton mit einem duktileren Nachbruchverhalten dhnelt. Auch hier sieht man an
den Entfestigungskurven in experimentellen Versuchen, dass der abfallende Ast aufgrund der
Wirkung der Stahlfasern nicht auf Null absinkt (G6dde, 2013; Thomée, 2005). Eine Netzabhén-
gigkeit in der Betonmodellierung wiirde die Ergebnisse allerdings stérker beeinflussen und unter
Umstédnden unbrauchbar machen (Godde, 2013). Bei unbewehrten Bauteilen, so auch bei z. B.
schwimmendem Zementestrich, ist dieser Einfluss umso extremer. Auf diese Rissmodelle soll im
folgenden Kapitel ndher eingegangen werden, nachdem zunéchst eine grundlegende Einfithrung
in den kontinuumsmechanischen Rahmen und die verwendeten numerischen Losungsalgorithmen

innerhalb der nichtlinearen FE-Methode gegeben wurde.
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Fazit

Zementestrich ist ein schwindanfilliger Baustoff, der als tragender Untergrund oder Aufnah-
megrund fiir Bodenbeldge Anwendung findet. Schwimmend gelagert wirkt sich die schwindin-
duzierte Schiisselbildung auf das biegezug-gepréigte Tragverhalten und die Platte-Dadmmungs-
Interaktion aus. Inwiefern dieses im Bemessungskonzept bislang unberiicksichtigte Verhalten
Einfluss auf die Nutzlast-induzierte Rissbildung hat, ist zu iiberpriifen. Dazu soll eine numerische
Untersuchung der Einfliisse aus der Dammsoff- und Estrichsteifigkeit sowie der Schiisselbildung
erfolgen. Die Modellbildung fiir eine solche, in der Literatur bislang nicht vorhandene Simulation
erfordert zundchst die Einfiihrung in die Grundlagen der Rissmodellierung und die Wahl eines

geeigneten Rissmodells auf Basis der fiir Beton bereits etablierten Ansétze.
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2.2. Rissmodellierung im Finite-Elemente-Modell

Zur Erlduterung der verwendeten numerischen Modelle fiir die Berechnung der Rissbildung im
Estrich wird auf Elemente der Kontinuumsmechanik zuriickgegriffen. In einem fiir die Folgeka-
pitel notwendigen Rahmen wird zunéchst auf einige Definitionen eingegangen sowie grundlegend
die Theorie der Finite-Elemente-Methode bei Beriicksichtigung von Nichtlinearitdten erldutert.
In der vorliegenden Problemstellung ist vor allem das Materialgesetz nichtlinear zu betrach-
ten. Das verwendete Materialmodell und die dort eingehenden Parameter werden erldutert und
fithren schliefllich auf die gewdhlte Rissmodellierung. In diesem Kapitel konzentrieren sich die
Erlauterungen der zugrundeliegenden bruchmechanischen Ansétze auf die fiir diese Arbeit rele-
vanten Aspekte. Die folgenden Kapitel basieren auf Wriggers (2001) und Pfister (2008).

2.2.1. Kontinuumsmechanischer Rahmen

t Pseudozeit

T x, X dx=FdX Ortsvektoren

l—l P2y F Deformationsgradient

.. Q Gebiet bzw. Volumen
r Rand bzw. Oberfliche
P Dichte
Dy, D¢ Differentialoperatoren
E Elastizitdtsmatrix
Zustandsvariablen
u Verschiebungsvektor
o (s. Kapitel 2.2.3) | 2. Piola-Kirchhoff’scher

Spannungstensor®
€= % (FTF - I) Green’scher
(b) Referenz- und Momentankonfiguration Verzerrungstensor”
p Lastvektor
[+, Ty l l
BO Randbedingungen (RB)
rel, geometrische RB
Telp dynamische RB
I r» Lo “  bezogen auf Referenzkonfiguration; in der Li-
(¢) Randbedingungen teratur haufig mit S bezeichnet

bezogen auf Referenzkonfiguration; in der Li-
teratur haufig mit E bezeichnet

Abbildung 2.9.: Kontinuumsmechanischer Rahmen eines physikalischen Problems: a) Refe-
renzkonfiguration des Korpers B, definiert auf dem Gebiet €2 mit Rand T,
b) Referenz- (hell, B®,x) und Momentankonfiguration (grau, B!, X) des Kér-
pers infolge einer Deformation beschrieben durch F, ¢) Geometrische (rot) und
dynamische (griin) Randbedingungen

30



2.2. Rissmodellierung im Finite-Elemente-Modell

Die Kontinuumsmechanik liefert den Rahmen zur Beschreibung von Koérperbewegungen im
Raum, wenn diese eine gewisse Ausdehnung und Homogenitét auch im Sinne ihres Verformungs-
verhaltens und der Spannungsgrofien aufweisen. In dem Fall kann der Korper vereinfachend auf
der Makroebene betrachtet werden, ohne z. B. bei Verbundwerkstoffen einzelne Bestandteile wie
Gesteinskérnung und Zementmatrix (Mesoebene) oder die kristalline Struktur (Mikroebene) zu
betrachten. Ein Gréfitkorn von 8 mm wird bei Estrich in der Regel nicht iiberschritten, sodass
ebenso wie bei Beton eine Betrachtung der Makroebene angemessen ist. Selbst im Falle einer
Stahlfaserbewehrung wird aufgrund der zufélligen Verteilung der Stahlfasern in der Regel eine
Betrachtung der Makroebene als ausreichend erachtet (Altenbach, 2018).

Lagerung (geom. RB)

r=r, €I,
Gleichgewicht Kinematik
-p=D.c e=¢(u)
£, = Dy,

Konstitutive
Randlasten (dyn. RB) Gleichungen

T=T,eT; o =o(e, )

Olin Eslm

Abbildung 2.10.: Allgemeingiiltige Zusammenhénge zwischen inneren und &dufleren
Kraft- (o, p) bzw. Weggrolen (e, u) im Rahmen der Kontinuums-
mechanik

Auf Basis dieser Betrachtungsweise werden Bauteile als Korper (begrenzt iiber ihre Oberflache T,
mit Volumen € und Dichte p, siche Abbildung 2.9) im kartesischen Koordinatensystem definiert,
deren Bewegungen bzw. Verformungen im Raum nach Lagrange' bezogen auf die Referenzkon-
figuration (Index 0) beschrieben werden (siche Abbildung 2.9). Infolge der Lasten p erfihrt der
Korper eine Zustandsdnderung von seiner Referenz- in die Momentankonfiguration (Index t). Zur
Beschreibung der Zustandsédnderung werden die Verformungen, Verzerrungen und Spannungen
in der Regel in Tensorvariablen u, € und o formuliert, mit deren Hilfe die physikalische Problem-
stellung in einem mathematischen Randwertproblem ausgedriickt werden kann. Dafiir gelten die
in Abbildung 2.10 zunéchst fiir jede Problemstellung allgemeingiiltig dargestellten Zusammen-

hénge: Die duflere Belastungssituation p ist bekannt und muss mit den inneren Kraftgréfien

! iiblich fiir strukturmechanische Problemstellungen; Im Gegensatz dazu wird nach Euler die Momentankon-

figuration (Index t) verfolgt. Diese Betrachtungsweise wird bei Problemstellungen in der Thermodynamik
bevorzugt verwendet.
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bzw. Spannungen o im Gleichgewicht stehen. Die inneren Kraftgrofien stehen mit den inneren
Weggroflen, den Verzerrungen e, iiber konstitutive Gleichungen in Beziehung. Die Kinematik
definiert schliefilich den Zusammenhang zwischen diesen inneren und den dufleren Weggrofien,
den Verformungen u. Bei einer Gleichgewichtsbetrachtung am verformten System und einem be-
liebigen, ggf. nichtlinearen Materialgesetz, bei dem die Belastungsgeschichte zu beriicksichtigen
ist (im folgenden durch die inneren Variablen a symbolisiert), ergibt sich ein System nichlinearer
Differentialgleichungen. Diese leitet sich aus den Beziehungen in Abbildung 2.10 her, wobei die
duflere Belastungssituation den inneren, von der Verformung u abhéngigen Kréaften, gleichgesetzt
wird:

-p=R(u). (2.8)

Im linear-elastischen Fall lasst sich bei Betrachtung des unverformten Zustands (Annahme klei-

ner Verformungen) ein System linearer, partieller (Navier-) Differentialgleichungen formulieren
-p = D¢Ee = D.EDyu. (2.9)

Diese theoretische Beschreibung ist fiir jeden Tragwerkstyp (Balken, Schale, etc.) moglich. Eine
analytische Losung dieser starken Form des Randwertproblems ist jedoch selbst im Linearen fiir
die wenigsten praktischen Probleme bekannt. Aus diesem Grund werden numerische Ndherungs-

verfahren angewendet, wie die Methode der finiten Elemente.

Diese nutzt das Prinzip der virtuellen Verschiebungen und die Bedingung, dass unter Ansatz
einer beliebigen, infinitesimal kleinen virtuellen Verformungsdnderung du die innere virtuelle

Arbeit Wiy der duleren virtuellen Arbeit Wey entspricht:

5W:f 5€:crdQO—(f 5u~deO+f 6u~TdFO):O. (2.10)
0o Qo o

0 Wint ) Wext

Die virtuelle Verformungsdnderung kann man sich als mathematische Test- oder Wichtungs-
funktion vorstellen. Gleichung 2.10 stellt eine integrale und damit schwache Form des in Ab-
bildung 2.10 beschriebenen Randwertproblems im betrachteten Gebiet dar. Das heifit, diese
Formulierung liefert keine exakt analytische Losung des Systems partieller Differentialgleichun-
gen in Abbildung 2.10 (starke Form des Gleichgewichts). Es wird nur in integraler Form gelost
und es lasst sich somit bei Diskretisierung des Systems in finite Elemente und Anwendung
numerischer Algorithmen eine Néherungslésung des Randwertproblems ermitteln. Bei zuneh-
mender Verfeinerung des Elementnetzes konvergiert der Verformungszustand gegen die wahre
Losung. Im Grenzfall unendlich kleiner Elemente wiirde sich auch hier die zur starken Form des
Gleichgewichts korrespondierende exakte Losung einstellen. Auf die Theorie der FE-Methode
und relevante Algorithmen wird in Kapitel 2.2.2 fiir den nichtlinearen Fall genauer eingegangen,
fir detailliertere Ausfithrungen sei u. a. auf de Borst, Crisfield etal. (2012), Kuna (2010) und
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2.2. Rissmodellierung im Finite-Elemente-Modell

Wriggers (2001) verwiesen.

Wie in Abbildung 2.10 bereits in Zusammenhang mit der Kinematik und den konstitutiven
Gleichungen angedeutet, gibt es verschiedene Typen von Nichtlinearitét, die sich nach Wriggers

(2001) wie folgt einteilen lassen:
o Geometrische Nichtlinearitét: grofle Verschiebungen und -verdrehungen (bei kleinen Verzer-
rungen)— € = e(u)
« GroBe Deformationen: grofie Verzerrungen?
o Physikalische Nichtlinearitdt: nichtlineares Werkstoffverhalten (nichtlinear-elastisch oder
elastisch-plastisch) - o = o (g, @)
 Stabilitdtsprobleme (Reaktion auf Imperfektionen)
— geometrische Instabilitit (Verzweigung (Knicken, Beulen), Durchschlagen)
— Materialinstabilitdt (Einschniirung, Lokalisierung der Deformation (Riss))
o Nichtlineare Randbedingungen (Kontakt, Wéarmeabstrahlung)

o Gekoppelte Probleme (Kopplung unterschiedlicher Feldprobleme, z. B. thermomechanische
Kopplung beim Abbindeprozess von Beton)

Sind die konstitutiven Gleichungen aufgrund physikalischer Nichtlinearitdt oder die kinemati-
schen Gleichungen infolge zu beriicksichtigender grofler Verformungen nichtlinear anzusetzen,
sind weitergehende Ansétze zur Losung des Randwertproblems erforderlich. Bei in dieser Arbeit
betrachteter elasto-plastischer Materialformulierung héngt der Spannungszustand nichtlinear
von den Verzerrungen bzw. den Verformungen ab und die Belastungsgeschichte muss mithil-
fe zusétzlicher innerer Variablen a beriicksichtigt werden. Wie in Abbildung 2.10 dargestellt,

lassen sich in diesem Fall die Zustandsgréfien nicht unmittelbar ineinander iiberfithren.

Daneben spielen in dieser Arbeit auch Materialinstabilitdten bei der Betrachtung des Rissver-
haltens eine Rolle. Auf die Verformungslokalisierung bei entfestigendem Materialverhalten wird
in den Kapiteln 2.2.4 und 2.2.5 genauer eingegangen. Nichtlineare Einfliisse in den Randbedin-
gungen, wie im Fall zweier in Beriihrung kommender Korper, miissen ebenfalls beriicksichtigt
werden. Ein solches Kontaktproblem entsteht in der vorliegenden Arbeit beim belastungsindu-
zierten Ablegen der aufgeschiisselten Ecke des Estrichs auf dem Dammstoff. Auf die Modellierung

dieses Kontakts wird in Kapitel 3.2.1 genauer eingegangen.

Die thermomechanische Entwicklung des Schiisselns im Zuge des Abbindeprozesses des Estrichs
stellt einen fiir die Thematik dieser Arbeit relevanten Aspekt, aber auch ein fiir sich genommen
komplexes Problem dar. Daher ist dieses Thema an anderer Stelle insbesondere fiir Beton, aber

auch konkret Estrich, bereits Forschungsgegenstand (vgl. Nietner, Schlicke und Viet Tue, 2011;

2 relevant bei gummiartigen Materialien, Umformprozessen von Metall; auflerhalb des Rahmens dieser Arbeit
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Schlicke und Viet Tue, 2013; Schlicke und Viet Tue, 2016a; Ambroise et al., 2002; Georgin et al.,
2008). Der Fokus liegt hier dagegen auf der strukturmechanischen Untersuchung an der bereits
aufgeschiisselten Platte, ohne den Prozess des Aufschiisselns selbst im Detail zu simulieren. Auf
die thermomechanischen Aspekte wird nicht im Detail eingegangen, sondern auf die genannte

Literatur verwiesen.

2.2.2. FE-Methode: Losung nichtlinearer statischer Probleme

Zur Losung nichtlinearer statischer Probleme wird ein inkrementell-iterativer Ansatz verwen-
det. Wie in Abbildung 2.11 veranschaulicht, ist dafiir die integrale, schwache Form in Glei-
chung (2.10), also das Prinzip der virtuellen Verschiebungen (PVV), der Ausgangspunkt. \ ist

als skalarer Lastfaktor der betrachteten Last P zu lesen.

(1) Nichtlineare Gleichgewichtsbedingung
Rw—-1-P=0

Linearisierung &
Inkrementierung

) ) FE-Methode
(2) Inkrementelles Gleichgewicht

— Anwendung auf das PVV und Herleitung

OR .
Ru+AuwW) ~R@+ —Au=1-P des inneren Kraftvektors F;,und
( ) @) du der tangentialen Steifigkeitsmatrix Ky

l Diskretisierung l
Anwendung num. Losungsalgorithmen
(3) Diskretisiertes inkrementelles Gleichgewicht (z.B. Newton-Raphson- oder

Bogenlingenverfahren, siche Abb. 2.17)

F,,+Ki-Av=21-P

Abbildung 2.11.: Herleitung der Losung des physikalischen Problems mithilfe der
Finite-Elemente-Losung

Zunéchst wird Gleichung (2.10) inkrementiert, sodass der Verschiebungszustand durch den ge-

suchten Verschiebungszuwachs Au gegeniiber dem Grundzustand @ mit
u=0+Au (2.11)

ausgedriickt wird. Fiir eine nichtlineare Kinematik bzw. ein nichtlineares Materialgesetz lassen
sich Verzerrungs- bzw. Spannungszustand nicht unmittelbar inkrementieren. Zur Herauslésung

der Zuwachsgroflen werden Kinematik und Materialgesetz in einer Taylorreihe um den Grund-
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2.2. Rissmodellierung im Finite-Elemente-Modell

zustand entwickelt. Die Linearisierung durch Abbruch der entsprechenden Taylorreihenentwick-

lung (siehe Abbildung 2.12a) liefert folgende, mit ()* als Ndherungslosung 6W™* gekennzeichnete

Gleichung:
W™ (1, d0u, Au) = W (1, ou) + SAW (@, du, Au)
=W (q,du) + 90w (4, u) : Au
Jdu
= [/ (55:0’d(20—(f 5u-deO+f 5u-TdF0)]
o) QO To
+[/§206As:ad(20+f9055:A0'd90]:O. (2.12)
f(x) = f(x+ Ax) u =+ Au
:f()'c)+%(;)Ax+R Ae :%:Au
% 1
zf(i)+%(x)AX = 5[(1+gradTﬁ) gradTAu
X
_F(R) + AF(R AX) = [ (x) + grad? Au (1 + gradﬁ)]
dde
X 0NANe =—:A
Af(R,Ax) = a‘g—(X)Ax € Tou Y
b'e
Oo
A =—:Au=Cp: A
= di[f(i+nAx)] 7 fu "UHTYTISE
g =0 (s. Kapitel 2.2.3)
(a) Taylorreihenentwicklung einer Funktion f (b) Linearisierung der Zustandsgrofen

Abbildung 2.12.: Taylorreihenentwicklung und linearisierte Grofen in Gleichung (2.12)

Bei Annahme konservativer Lasten, deren Richtung sich durch Anderung des Verformungszu-
stands nicht dndert, ergeben sich die zugehorigen Terme der dufleren Arbeit im linearen Term
zu Null, sodass in der zweiten Klammer nur Anteile aus der inneren Arbeit enthalten sind. Ei-
ne detaillierte Herleitung des Linearisierungsvorgangs findet sich z. B. bei Pfister (2008) oder
Wriggers (2001). Hier sei lediglich auf die Zusammenstellung der linearisierten Zustandsgréfien
und ihre Variationen in Abbildung 2.12b hingewiesen. Bei Bestimmung der Variationen werden
nur die linearen Zuwéchse variiert, der Grundzustand ist bekannt und steht damit fest. Bei Cp
handelt es sich im Falle nichtlinearer konstitutiver Gleichungen um einen inkrementellen, tan-
gentialen Materialtensor, der aufgrund der Pfadabhéngigkeit des nichtlinearen Materialgesetzes
auf Materialpunktebene zur Ermittlung der Grundzustandsspannungen aus den Grundzustands-
verzerrungen integriert wird. Dies wird in Kapitel 2.2.3 bei der Beschreibung der betrachteten
Materialmodelle aufgegriffen. Seine Definition ist vom betrachteten Materialmodell abhingig

und er ist bei nichtlinearen Materialien im Allgemeinen iterativ zu bestimmen.
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2. Theoretische Grundlagen

Abbildung 2.13.: Globales Koordinatensystem X, lokales Elementeinheitskoordina-
tensystem & und Knotenfreiheitsgrade u;,u, und u, am Beispiel
eines Kontinuumselements

Entsprechend Abbildung 2.11 ist diese linearisierte Form des PVV nun im Sinne der FE-Methode
zu diskretisieren. Dafiir wird der Korper in n. finite Elemente eingeteilt, die diesen je nach Geo-
metrie und Elementform nédherungsweise erfassen. Den nkg Knoten dieser Elemente wird eine
bestimmte Zahl npg von Freiheitsgraden zugeordnet (vgl. Abbildung 2.13, hier: npg = 3 Verschie-
bungsfreiheitsgrade je Knoten zusammengefasst in v). Fiir den gesuchten Verschiebungszustand
u werden Ansatzfunktionen N (&) im Element-Einheitskoordinatensystem & und in Abhéngig-
keit dieser Freiheitsgrade gewahlt. Zur Berechnung nichtlinearer statischer Probleme hat sich die
Familie der sog. isoparametrischen Elemente bewahrt, sodass im Folgenden dieser Ansatz vor-
ausgesetzt wird (Wriggers, 2001). In diesem Fall wird fiir die Geometrie und die Verschiebungen
der gleiche funktionale Ansatz N;(§) fir die Knoten gewéhlt:

X » Xeo(€) = 3 N1(€)Xiex = N(€)X (2.13)
I=1
u~ e(€) - Iz N7 (€)uiex = N(€)uy = N(€)v (2.14)
=1
dX
X = "5 6 = 3 (2.15)

mit Jacobimatrix J und Xy, ug = v € R"™8™"F¢ ynd

Xe(€) R R
ue(E) :Rndim N ]Rndim ,
N(E) :Rndim N RnK'nFG ,
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2.2. Rissmodellierung im Finite-Elemente-Modell

wobei n die Dimension des betrachteten Raums und ngj, die Dimension des betrachteten Kor-
pers darin erfasst. Fiir iibliche Formfunktionen sei z. B. auf Wriggers (2001) verwiesen. Die im
Folgenden eingefiihrten, mithilfe der genannten Formfunktionen diskretisierten Gréflen des Prin-
zips der virtuellen Verschiebungen werden anstelle der in der Kontinuumsmechanik tiblicheren
Tensor-Notation des vorangegangenen Kapitels (z. B. Skalarprodukt fiir Tensoren de : o) in

Matrizen und Vektoren (Skalarprodukt: de’ o) ausgedriickt.

Die Zustandsgroflen konnen somit in Abhéngigkeit der Formfunktionen N(&) ausgedriickt wer-

den, sieche Abbildung 2.14. Dies liefert fiir das Prinzip der virtuellen Verschiebung folgende

Néherung:
SW* = [5vT |, BT a0l - (5vT [ NTpaols+ovT [ NTT drg)]
o Q2 re
N [5vT f GTo d0Av + 5vT [ B”CrB dQQAv] -0, (2.16)
Q0 02

Verschiebungen Verzerrungen
u (€ =N(E)v e w~e(§)=B(v
Su  w~oul(€) =N(&)dv be  w~iog.(§)=B(§)ov
Au ~Au(&)=N(&Av Ae  ~ Ae;(§) =B(§Av

dAe  w~OAel (€)= AvIG(&)dv

Spannungen

Ac  ~ Aci(€) = CrB(€)Av

Abbildung 2.14.: Diskretisierung der Zustandsgréfien und lokale Elementmatrizen und -vektoren

wobei ng jeweils mithilfe einer Jacobi-Transformation in das lokale Elementkoordinatensys-
tem € zu transformieren ist. Die Vektoren der Knotenfreiheitsgrade v’ sind konstant und
wurden daher ebenso wie ihre Variation dv! aus dem jeweiligen Integral herausgezogen. Da
Gleichung (2.16) fiir jede Variation erfiillt sein muss bzw. die triviale Losung fiir dv = 0 vernach-
lassigbar ist, kénnen auch die Variationsterme gestrichen werden und es ergibt sich die lokale

Gleichgewichtsbedingung fiir das einzelne Element zu

(KT,O' + KT,u) Av = Fipt + Fext s (217)

—_—
Kt
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wobei die Elementmatrizen und -vektoren wie folgt definiert sind:

Vektor der inneren Kréfte: Fin = /{; . B od0? (2.18)

Lastvektor: Fext = /{;0 NTpdQ? + /FO NTTdr? (2.19)

Geometrische oder Anfangsspannungsmatrix: Krs = /Q . Glad? (2.20)
Nichtlineare Steifigkeitsmatrix: Kru= fQO BTCTBng. (2.21)

B wird als Verzerrungs-Verschiebungsmatrix bezeichnet und enthélt die Formfunktionen der Ver-
zerrungen. Die Materialmoduli Ct gehen im zugehorigen Steifigkeitsterm K, im Gegensatz
zu den Grundzustandsverzerrungen nicht ein, weshalb die zugehorige Matrix auch als Anfangs-
spannungsmatrix bezeichnet wird. Die Terme fiir Fi,; und K, finden sich prinzipiell auch im
linearen Fall wieder, wobei fiir B und Cr jeweils die linearen Pendants By, und E eingesetzt
wiirden. G enthélt Terme hoherer Variationsordnung und wiirde bei linearer Kinematik ver-
schwinden. Fiir eine detaillierte Herleitung der Elementmatrizen sei z. B. auf Wriggers (2001)

verwiesen.

Losungsalgorithmen

Zur numerischen Loésung des Randwertproblems kénnen verschiedene inkrementell-iterative Al-

gorithmen verwendet werden. In dieser Arbeit finden
» das Newton-Raphson-Verfahren (NR) sowie
 das Bogenlangenverfahren (BL)

Anwendung.

Das Newton-Raphson-Verfahren ist das Standard-Verfahren fiir nichtlineare Problemstellungen
in der FE-Methode. Abbildung 2.15 zeigt den prinzipiellen Ablauf vereinfacht fiir den eindimen-
sionalen Fall. Ausgangspunkt ist ein bekannter Grundzustand j—1, hier stehen die inneren Kréafte
Fint,j—1 mit den duBeren Fey j—1 im Gleichgewicht. Aufgrund eines Lastzuwachses AP; gerit das
System von der Gleichgewichtskurve ab und der néchste, zu Feyt j = Fext j—1 + AP} korrespon-
dierende Gleichgewichtszustand j muss iterativ durch Minimierung der Ungleichgewichtskréfte
P, bestimmt werden. Der zugehorige iterative Ablauf ist in Abbildung 2.16 dargestellt. Ein-
gangswerte fiir die Iteration liefert ein Pradiktorschritt aus dem Grundzustand heraus. Aus dem
hieraus ermittelten Verformungszuwachs lassen sich die tangentiale Steifigkeit K und der Vek-

tor der inneren Kréafte Fy,; aktualisieren.

Dies geschieht auf Elementebene, wobei grundsétzlich die analytische Bestimmung der Element-
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AF
Fext,j |
Fext,j—l T
Fing,j—1
— ©
- Fint,j
v
>
>
O ) @ v
Vi_1 = V; v; \z fi

Abbildung 2.15.: Visualisierung des Iterationsablaufs innerhalb des Newton-
Raphson-Verfahrens nach Abbildung 2.16 (Kuna, 2010)

steifigkeitsmatrizen und -vektoren nur in Sonderfillen moglich ist. Andernfalls sind numerische
Integrationstechniken zur Losung der Integrale iiber das jeweilige Element notwendig. Hier wird
in der Regel die GauB-Integration verwendet, d. h. die Integranden sind in diesem Fall an den
fiir den jeweiligen Elementtyp definierten Gaufl-Punkten auszuwerten. Analog zum linearen Fall
werden die Matrizen auf Elementebene durch Integration tiber alle Integrationspunkte bestimmt.
Die so ermittelten Komponenten auf Elementebene werden zu globalen Gréflen auf Systemebene
assembliert und zur Bestimmung des Verschiebungszuwachses Av der einzelnen Freiheitsgrade
verwendet. Bei Auftreten nichtlinearen Materialverhaltens ist innerhalb eines globalen Iterati-
onsschritts zusétzlich lokales Gleichgewicht auf Materialpunktebene und damit in den einzelnen
GauB-Punkten mithilfe eines Return-Mapping-Algorithmus’ zu bestimmen. Aus der bisherigen
Belastungsgeschichte wird dazu iterativ der lokale Spannungszustand und der materialspezifi-
sche Tangentenmodul Ct berechnet. Die Ermittlung héngt von der Definition des jeweiligen

Materials ab, sodass hierauf in Kapitel 2.2.3 genauer eingegangen wird.

Der Nachteil des Newton-Raphson-Verfahrens besteht darin, dass Extrema im Kraft-Verschiebungs-
Verlauf aufgrund der Kraftsteuerung des Verfahrens nicht iberwunden werden kénnen. Auch ein
Vorzeichenwechsel in der Verschiebung ist denkbar, sodass auch das Einprigen der Beanspru-

chung als Verschiebung nicht uneingeschrankt funktioniert (vgl. Abbildung 2.17).
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(a) Bekannter Grundzustand (GZ) im Gleichgewicht j = 0

Kro Vo= Fexto— Fingo =0 Mit Foy g =24 P

j=1

\ 4
(b) Laststeigerung um AP; = AL;P <

Neuer Lastschritt
j=j+1
Fext,j = (/1}'_1 +A;{I) P = /1] -P

Eingangswerte fir Iterationszyklus mit k=0 (Pradiktorschritt)

Avj(o) =0 und vj(o) =vj_
=0

—_—
PO =04 P+7 P —Fing s = AP,

© (<) AcD) _ p©
Ky (v) - av” = PY)

@ _ y© 1)
U=y ey

(c) Iterationszyklus

Neue
SYSTEMEBENE | Iteration

k=k+1

ELEMENTEBENE

Integration iber das Element zur Bestimmung der Elementmatrizen K{ '™

und des Elementvektors der inneren Krafte Fi(,'ft);jElem abhangig von €y und @

MATERIALPUNKTEBENE

Iterative Bestimmung des lokalen Spannungszustands () und des
materialspezifischen Tangentenmoduls (Cy) Uber einen Return-Mapping
Algorithmus: Abb. 2.23 und 2.24

Eingangswerte fiir Iterationszyklus:
Dehnungszustand und innere Variablen aus der bisherigen
Belastungsgeschichte (P, q)

Zusammensetzen zu globalen GroRen:

Tangentiale Systemsteifigkeit Ungleichgewichtskrafte
(k) (, (k) (k) _ _gp® (k)
Kt (Vj ) P, ; = Fextj = Fin; (Vj )

Losung des Gleichungssystems

W) (00 auktD) _ pk)
Krj ("i ) Av;" =Py

Konvergenz?

Update der Verschiebungen

(k1)
T 00 4 ap D Norm (P,j™) <072
J Y J Norm (Av(.k“)) <0?

J

I i

Abbildung 2.16.: Inkrementell-iterativer Newton-Raphson-Algorithmus auf System-
Ebene mit Return-Mapping-Algorithmus auf Materialpunktebene
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s P e Gleichgewichtszustand

reine
Kraftsteuerung o Lastumkehr

A Verformungsumkehr

: Verzweigungspunkt
S'teueru ng 1}ber —— Gleichgewichtspfad
die Bogenldnge

Iterationspfad

reine
Wegsteuerung

Primérpfad

Sekundérpfad

v

Abbildung 2.17.: Unterscheidung moglicher Iterationspfade bei der Anwendung
inkrementell-iterativer Algorithmen am Beispiel eines Gleichge-
wichtspfads, der lokale Extrema, Umkehrpunkte und einen Ver-
zweigungspunkt besitzt (Abb. nach Zahlten (2011))

Im Gegensatz dazu ist das Bogenldngenverfahren ein Pfadverfolgungsalgorithmus, der iiber die
Bogenlange gesteuert wird, d. h. iiber eine Grofle, die sich aus dem Lastfaktor und dem Ver-
formungsinkrement zusammensetzt, und somit in der Lage ist, auch Gleichgewichtspfade mit
Extrema und Umkehrpunkten zu berechnen. Dabei wird nicht wie bei der reinen Kraft- oder
Wegsteuerung auf einer Horizontalen oder Vertikalen iteriert, sondern wie in Abbildung 2.17 an-
gedeutet auf einem Kreis oder einer geneigten Geraden. Die Urform des Bogenldngenverfahrens
verwendet einen auf der Urtangente senkrecht stehenden Iterationspfad. Es gibt verschiedene
Definitionen fiir dieses Verfahren mit unterschiedlichen Iterationspfaden. Gemein ist allen Bo-
genldngenverfahren, dass sich die Iteration auch im Fall eines Extremums nicht horizontal tiber

dieses hinweg bewegt, sondern sich hinter dem Extremum wieder auf den Pfad iterieren kann.

Die Iteration auf einer fixen Senkrechten wurde im Ursprung von Riks, WEMPNER WESSELS
hergeleitet (Rust, 2011, Ramm, 1981). Der Pradiktorschritt infolge AP lauft wie beim Newton-
Raphson-Verfahren ab (vgl. Abb. 2.16 und 2.15 Schritt j—1). Ausgehend hiervon wird der néchste
Gleichgewichtszustand im Schnittpunkt der Normalen ng zur Tangente an den Gleichgewichts-
pfad im Grundzustand to mit dem Gleichgewichtspfad gesucht, sieche Abbildung 2.18. Aus den
nach dem Préadiktorschritt vorhandenen Ungleichgewichtkriften ergibt sich ein iterativer Zu-

wachs Awvq,, dessen korrespondierendes Lastinkrement unbekannt ist. Der Tangentenvektor ¢;
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wird durch t* ersetzt, der sich aus einem beliebigen Lastinkrement AA* mit zugehorigem Zu-

wachs Av* zusammensetzt. Nach Abbildung 2.18 ergibt sich daraus der Normalenvektor n;

Avyy, . Avq, Av”
ny = +a-tt= +a . (2.22)
0 0 AN

zu

\4

Abbildung 2.18.: Bogenldngenverfahren nach Riks/WESSELS zur Ermittlung eines
Nachbarzustands (NZ) ausgehend von einem Grundzustand (GZ)
(Rust, 2011; Abb. nach Zahlten (2011))

Aus der Bedingung, dass das Skalarprodukt zweier orthogonaler Vektoren t3 und n; Null sein

muss, lasst sich die Variable o ermitteln zu

A’UoAUlu

= 2.23
“ 7 AvoAv* + ANAN (2:23)

Die Inkremente des gesuchten Punkts 1 ergeben sich dann entsprechend zu
Av] = Aviy, + cAv® und AN = aANT. (2.24)

Die Grofle des Lastinkrements AA* ist beliebig, da nur die Richtung der zugehérigen Tangente
zur Bestimmung des néchsten Inkrements von Bedeutung ist. Auch in Abaqus ist eine Form

des Bogenlédngenverfahrens als ,modifizierte Riks-Methode“ implementiert (Dassault Systémes,

42



2.2. Rissmodellierung im Finite-Elemente-Modell

2021). Hier wird das Lastinkrement iiber die Lénge der Tangente Al = [tg| gesteuert, welche
initial vom Benutzer vorgegeben, und im weiteren Verlauf automatisiert durch den Algorithmus
abhingig von der Konvergenzrate angepasst wird. Um Extrema und Umkehrpunkte iiberwin-
den zu konnen, ist es notwendig, das Vorzeichen des Lastinkrements A\g an solchen Punkten zu
wechseln. In der Literatur gibt es auch hier verschiedene Ansétze. Crisfield (1981) leitet her, dass
bei einem Vorzeichenwechsel der Determinante der Tangentensteifigkeitsmatrix K ein Vorzei-
chenwechsel erfolgen sollte. Auf einem stabilen, d. h. ansteigenden Gleichgewichtspfad ist die
Determinante positiv und die Matrix besitzt nur positive Eigenwerte. Mit Ubergang in einen
abfallenden Ast, d. h. mit dem Uberwinden eines Extremums geht ein negativer Eigenwert der
Matrix einher. Dadurch dndert sich das Vorzeichen der Determinante. In Abaqus wird stattdes-
sen die Bedingung verwendet, dass das Skalarprodukt der aktuellen Grundzustandstangente (to
in Abb. 2.18) mit dem Vektor der Losungsinkremente aus dem vorangegangenen Schritt (s) po-
sitiv ist (Dassault Systémes, 2021). Dieses Vorgehen kann bei zu grofier Schrittweite oder starker
Kriimmung des zu verfolgenden Pfads versagen. Solche Fille werden laut Dokumentation nicht

standardméafig detektiert, da sie zu selten auftreten (Dassault Systemes, 2021).

Neben Extrema und Umkehrpunkten kann sich der Gleichgewichtspfad eines Systems an ei-
nem Verzweigungspunkt auflerdem in einen Primér- und Sekundérpfad aufteilen (vgl. Abbil-
dung 2.17). Verzweigungspunkte sind ein Zeichen fiir einen Verlust der Eindeutigkeit der Lo-
sung. Sie konnen bei der Beriicksichtigung nichtlinearer Effekte auftreten, d. h. bei geometrischer
Nichtlinearitdt zum Beispiel bei Knick- oder Beulproblemen, aber auch durch nichtlineare Ein-
flisse im Materialmodell (de Borst, Crisfield etal., 2012). Auf die Uneindeutigkeit der Losung

und die daraus resultierenden Materialinstabilitdten wird in Kapitel 2.2.6 weiter eingegangen.

Damit sind der grundlegende numerische Rahmen und die notwendigen Losungstechniken auf
globaler Systemebene gegeben. In den spéteren Simulationen finden sowohl das Newton-Raphson-
als auch das Bogenléngenverfahren je nach Problemstellung Anwendung. Auf die algorithmischen
Besonderheiten auf Materialpunktebene bei nichtlinearem Materialverhalten (vgl. Abb. 2.16,

Materialpunktebene) wird im folgenden Kapitel eingegangen.

2.2.3. Plastizitatstheorie

Das in dieser Arbeit verwendete Material- bzw. Rissmodell (Concrete-Damaged-Plasticity-Modell
(Abaqus)) nutzt zur Herleitung die Ahnlichkeit zwischen verschmierten Rissmodellen und der
Plastizitéitstheorie. Daher wird zunéchst ein Uberblick iiber die Komponenten der klassischen
Plastizitatstheorie gegeben, um im anschlieBenden Kapitel das gewahlte Materialmodell und die
bruchmechanische Basis in das Spektrum vorhandener Rissmodelle fiir quasi-sprode Materialien
einzuordnen. Nach Die folgenden Ausfiihrungen sind Simo und Hughes (2000) und de Borst,
Crisfield et al. (2012) entnommen.

43



2. Theoretische Grundlagen

Inelastisches Materialverhalten beschreibt grundsétzlich den Effekt, dass sich ein Korper bei
Entlastung nicht in seine Ausgangskonfiguration zuriick verformt. Wie in Abbildung 2.19 ge-
geniibergestellt verbleibt im Falle inelastischen, bzw. hier speziell elastisch-plastischen Mate-
rialverhaltens ein Teil der Dehnung e? im Ko6rper. Man unterscheidet grundsétzlich zwischen

ideal-plastischem, verfestigendem und entfestigendem Materialverhalten.

linear-elastisch elastisch-plastisch

e verfestigend

ideal-plastisch

Ve " nichtlinear-
elastisch
____entfestigend

v

»
|

&

Abbildung 2.19.: Elastische und elasto-plastische Materialtheorien (eindimensionale
Visualisierung)

In der Plastizitdtstheorie, die klassisch vor allem bei Metallen Anwendung findet, wird somit

zunéchst der Verzerrungszustand aufgespalten in einen elastischen und einen plastischen Anteil:

1

e=e+eP  baw. & =g+l (2.25)

mit der Anderungsrate ¢. Im Unterschied zur Elastizititstheorie wird somit eine mogliche En-
ergiedissipation als Folge bleibender, plastischer Verzerrungen bei unverédnderter Materialstei-
figkeit eingefithrt. Das Materialmodell wird dadurch pfadabhéngig: Die Belastungsgeschichte
beeinflusst das Materialverhalten. Nur in einem begrenzten Spannungsraum wird die Giiltigkeit
des Hooke’schen Gesetzes o = Ee angenommen. Jenseits dessen wirkt nur der elastische Anteil

der Verzerrungen spannungserzeugend:
o=E:e"=E:(c-¢") (2.26)

Der Raum zuléssiger Spannungszustinde wird definiert tiber die sog. Flielbedingung mit f <0,

wobei
e f <0, linear-elastisches Verhalten,

e f =0, elasto-plastisches Verhalten,
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2.2. Rissmodellierung im Finite-Elemente-Modell

e f > 0nicht aufnehmbarer Spannungszustand, im Rahmen einer ratenunabhéngigen Theorie

nicht zuléssig.

Im Dreidimensionalen entspricht diese einer begrenzenden Fliache. Im eindimensionalen (siehe
Abbildung 2.19) reduziert sich diese Flache auf einen Punkt, im Zweidimensionalen auf eine li-
nienférmige (hier elliptische) Begrenzung, wie in Abbildung 2.20 am ebenen Spannungszustand
visualisiert. Bei ideal-plastischem Materialverhalten verdndert sich die Form bzw. Position die-
ser Fliebedingung nicht, dann ist die Flielbedingung lediglich abhéngig vom Spannungszustand
f = f(o). Andernfalls wird die Belastungsgeschichte zusétzlich von inneren Variablen q erfasst,
die bestimmen, wie sich die Flielflache infolge plastischer Belastung verdndert. Hier wird unter-

schieden nach:
 isotrop: positionstreue Aufweitung der Flie3fliche,
e kinematisch: Verschiebung der Fliefliche ohne Forménderung,
 isotrop und kinematisch: Verschiebung und Aufweitung der Flie3fliche.

In der vorliegenden Arbeit wird nur der Fall isotroper Ver- bzw.Entfestigung Anwendung finden.
Entfestigendes Materialverhalten wiirde ein Zusammenziehen der Fliefifliche bedeuten. Diese
Form der Plastizitét stellt insofern einen Sonderfall dar, dass fiir Entfestigung (bzw. strain sof-
tening) das fiir stabiles Materialverhalten notwendige Drucker’sche Stabilitdtspostulat® nicht
erfiillt ist (Simo und Hughes, 2000). Auf dieses Verhalten und die daraus resultierenden Insta-

bilitdten wird in den folgenden Kapiteln noch genauer eingegangen.

Zur Beschreibung der pfadabhéngigen Evolution der Flielfliche f ist die Definition einer Flie3-
regel und ggf. eines Verfestigungsgesetzes erforderlich. Die Fliefiregel beschreibt die Entwicklung
der plastischen Dehnungen, und kann aus der Flieiflache abgeleitet (assoziiert) oder unabhéngig

davon definiert werden (nicht-assoziiert):

e’ =y .r(o,q) nicht-assoziiert (2.27)
0
ePl = . % assoziiert, (2.28)

mit Konsistenzparameter v und Funktion r zur Beschreibung des plastischen Flielens. Aus
dem genannten Stabilitdtspostulat leitet sich der Sonderfall der assoziierten Flieiregel und einer
konvexen Fliefliche ab (Thomée, 2005), um Materialinstabilitdten zu vermeiden. Bei einer as-
soziierten Fliefiregel ist sichergestellt, dass die Richtung der plastischen Verzerrungen orthogonal
zur FlieBiflache verlaufen, und die tangentiale Spannungs-Dehnungs-Beziehung symmetrisch ist,

was bei der numerischen Umsetzung vorteilhaft ist.

3 Drucker’sches Stabilitatspostulast: Die durch ein Spannungsinkrement geleistete, plastische Arbeit darf nicht

negativ sein. ¢ : P > 0
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2. Theoretische Grundlagen

Die Entwicklung der inneren Verfestigungsvariablen g wird definiert iiber das Verfestigungsgesetz

q=-v-h(o,q) nicht-assoziiert (2.29)
q=-v-D- w assoziiert. (2.30)
q

wobei die Funktion h den Prozess der Verfestigung beschreibt. Die Matrix D enthalt plastische
Verfestigungsmoduli und verbindet die im Spannungsraum definierten inneren Variablen q mit

den energetisch dquivalenten Variablen im Verzerrungsraum a: q = -Da.

Wie in Abbildung 2.20 zu sehen ist, werden im Rahmen von auf der Plastizitéitstheorie beru-
henden Materialmodellen gewisse Be- bzw. Entlastungszustdnde anhand der sog. Kuhn-Tucker-
Bedingungen unterschieden:

v20,  f<0, y-f=0 (2.31)

Hierbei ist v ein skalarer Parameter, dessen Wert die Intensitédt des plastischen FlieBens beriick-

sichtigt und der {iber die zuséatzlich herangezogene Konsistenzbedingung

v f=0 (2.32)

sicherstellt, dass der Spannungszustand bei plastischer Belastung auf der Flieflache verbleibt.
Solange v = 0 giiltig ist, tritt kein plastisches Flieflen auf. Alle Punkte innerhalb der elliptisch
dargestellten Flieiflache sind elastisch (1). Bewegt sich der Zustand des Materialpunkts auf die-
ser Berandung, ohne dass sich diese verdndert, handelt es sich um eine neutrale Belastung, die
ebenfalls keine plastischen Dehnungen hervorruft (2). Eine Bewegung von dort zuriick ins Innere
beschreibt eine elastische Entlastung (3). Um eine plastische Belastung, bei der bleibende Deh-
nungen hervorgerufen werden (7 > 0), handelt es sich, wenn sich der (Test-)Zustand (&%) aus
der Fliefiflaiche herausbewegen wiirde. Die Punkte auflerhalb der Fliefiflache beschreiben unzu-
lissige Spannungszustinde, sodass ein Herausbewegen grundsitzlich nicht méglich ist. Uber die
Konsistenzbedingung in Gleichung (2.32) wird der Wert des Konsistenzparameters «y iterativ im
jeweiligen Materialpunkt bestimmt und daraus leitet sich ab, wie sich die Fliefliche aufgrund
der entstehenden plastischen Verformungen verindert. Diese Anderung wird durch das definierte
Verfestigungsgesetz gesteuert. Im Falle der in Abbildung 2.20 veranschaulichten isotropen Ver-
festigung vergroflert sich die FlieBflache entsprechend. Bei kinematischer Verfestigung bleibt die
Form der FlieBfliche unverdndert, aber ihr Ursprung verschiebt sich in Richtung des plastischen

FlieBlens.

Die algorithmische Bestimmung der Spannungsantwort erfordert im Rahmen der Plastizitéts-
theorie besondere Uberlegungen aufgrund des nichtlinearen Zusammenhangs zwischen Span-
nung und Verzerrung. Fiir jeden Iterationsschritt auf globaler Ebene (vgl. Abbildung 2.16) ist

die iterative Auswertung der elasto-plastischen Konstitutivbeziehung auf Materialpunktebene
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Zustiande innerhalb der Flief3flache

(1) elastische Be- bzw. Entlastung
flo,q) <0,7=0

Zustande auf der FlieB3flache

(2) neutrale Belastung
f(o-vq) :Oaf(o',q) <0=>’)/=0

(3) elastische Entlastung
f(o.q)=0,f(g.q)=0und y=0

flo,q) <0

elastisch
(4) plastische Belastung
(hier: Verfestigung)

flo,q) >0 f(o,q)=0,f(o,q)>0und v >0

unzuldssig

f(o,q) =0
plastisch

Abbildung 2.20.: Visualisierung méglicher Beanspruchungszustinde innerhalb der isotropen
Plastizitdtstheorie abhéngig von den Kuhn-Tucker-Bedingungen (Abb. ange-
lehnt an Godde (2013))

erforderlich. Neben der konsistenten elasto-plastischen Matrix der Materialmoduli Cr ist der
Spannungszustand o fiir die globale inkrementell-iterative Berechnung erforderlich. Zur Formu-
lierung des zugehorigen Anfangswertproblems auf Materialpunktebene werden die oben genann-

ten Materialgleichungen und Bedingungen herangezogen (vgl. Abbildung 2.21):
o Evolutionsgleichungen (Hooke‘sches Gesetz, Flieiregel, ggf. Verfestigungsgesetz),
o Randbedingungen (Kuhn-Tucker-Bedingungen),
o Anfangsbedingungen (n-ter Schritt).

Numerische Losung des Anfangswertproblems

Die Evolutionsgleichungen werden durch Anwendung des impliziten Eulerverfahrens inkremen-
tiert. Zu einem Verzerrunginkrement Aeg, werden bei der Losung der strukturellen Gleich-
gewichtsbedingungen die unbekannten materiellen Zustandsgrofien bestimmt, also der n+1-
te Schritt der plastischen Verzerrung, der Spannung und der inneren Variablen, siche Abbil-
dung 2.21. Der numerische Return-Mapping-Algorithmus zur Bestimmung dieser Gréflen ist
in Abbildung 2.22 vereinfacht dargestellt. Aus dem vorangegangenen globalen Verschiebungs-

zuwachs ergibt sich ein Verzerrungsinkrement. Aus der Annahme, dass der plastische Verzer-

p
n+1

rungszuwachs Ae! ;= 0 ist, ldsst sich der zugehorige Testzustand mithilfe der FlieBbedingung
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Evolutionsgleichungen der klassischen ratenunabhéngigen Plastizitéitstheorie

Elastische Spannungs-Dehnungsbeziehung ]
o=C¢(g—¢£P)
Inkrementelles Anfangswertproblem (AWP)
FlieBbedingung flo,q9) <0 | g4, = £, + As,,
Oni1 =C(gpy1— €0, )
FlieRregel & =y -r(o, n+1 ntl o Sntl
8 4 ) e =& +Ay -r(o,q
Verfestigungsgesetz  q = —y - h(o,q) n+1 = 4qn — by - h(o,q)
Kuhn-Tucker- und Konsistenzbedingung ]
Yy =0,
f((T, q) <0, f(an+1l qn+1) <0
vy - flo,q9 =0 — Ay =0
Ay 'f(a'n+1' qn+1) =0
Konsistenzbedingung .
v flog=0 B

Abbildung 2.21.: Bestimmungsgleichungen einer ratenunabhéngigen Plastizitéts-
theorie und resutlierendes Anfangswertproblem auf Materialpunk-
tebene (Ae ergibt sich aus dem Verformungszuwachs infolge eines
Lastinkrements) (Simo und Hughes, 2000)

pritfen: Ist die Bedingung f! < 0 erfiillt, handelt es sich um einen elastischen Schritt und der

n+1
Testzustand entspricht dem gesuchten Spannungszustand. Ist dies nicht der Fall, ist es notwen-
dig, den plastischen Verzerrungszuwachs iterativ mithilfe der Konsistenzbedingung zu ermitteln.
Die konsistenten, tangentialen Materialmoduli werden durch Inkrementierung der elastischen
Spannungs-Dehnungs-Beziehung in Kombination mit der Fliefiregel und ggf. der Verfestigungs-
gesetze bestimmt. Als Abbruchkriterium wird bei jeder Iteration gepriift, ob die Fliebedingung
erfillt bzw. die Residuen HRg?l

ten). Fiir eine detaillierte Herleitung dieser Grofien sei auf Simo und Hughes (2000) verwiesen.

gleich Null sind (numerisch eine Schranke nahe Null unterschrei-

Anschaulich bezeichnet man das numerische Verfahren als Return-Mapping-Algorithmus, weil
es dazu dient, den initialen Test-Spannungszustand, der sich bei verfestigendem Material zu-
néchst aus dem Bereich der zulédssigen Spannungen jenseits der FlieBfliche herausbewegt, wie-
der auf die FlieBfliche zurtick abzubilden (return-mapping). In Abbildung 2.23 ist das Vorge-
hen auf zwei Arten veranschaulicht: Abbildung 2.23a zeigt fiir eine eindimensionale Spannungs-

Dehnungsbeziehung, dass sich ausgehend von Zustand o, in der Spannungs-Dehnungs-Beziehung

trial
n+1

gungsgeraden liegt. Mithilfe des Return-Mapping-Schritts wird der Materialpunkt in den zulés-

ein Testzustand o infolge des Dehnungszuwachses Aeg,, einstellt, der oberhalb der Verfesti-

sigen Spannungsbereich, und damit zuriick auf die Spannungs-Dehnungs-Linie geholt. Im mehr-
dimensionalen Fall ist der in Abbildung 2.22 beschriebene und in Abbildung 2.23b vereinfacht
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2.2. Rissmodellierung im Finite-Elemente-Modell

veranschaulichte iterative Algorithmus notwendig, bei dem iterativ der Schnittpunkt zwischen

linearisierter Randbedingung und der FlieBbedingung f = 0 gefunden wird.

Return-Mapping-Algorithmus (in jedem Gauf3-Punkt)

n+1 n
trial _ e P
Oni1 = C (2041 — €7)

qn+1 qn

trial — trial trial
n+1 - f(an+1in+1

Testzustand

trlal trial
fart SO | f317 >0

T

Jtrial
p SP

GauB-Punkt elastisch Gauf3-Punkt plastisch
Ay =0 Iterativer Algorithmus zur
(np1= ()Fial Ermittlung des
Konsistenzparameters
Ay >0
Initialisierung

(DD, = (!

Uberpriifung Residuen & FlieBbedingung v

® | = (|20 _ . ® &
||Rn+1 = |lenss —en — Ay ® -r(a‘n+1,qn+1)|| >0
k=k+1
oder <
® K
f(6n+1'qn+1) >0
Update
nein | ja Ay 1) = Ay () 1 Apy (0
p,(k+1) _ p.(F) p,(k)
n+1 = &nv1 + A€n+1
A
A 4
(Dna1=( )(k) Bestimmung des inkrementellen
il ntl Konsistenzparameters AAy ) und
Aszﬁ) in Abhéngigkeit der

konsistenten (algorithmischen)

tangentialen Materialmoduli C;kg +1

Abbildung 2.22.: Schematischer ~ Ablauf des iterativen = Return-Mapping-
Algorithmus’ (fiir Iterationsschritt k)
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,'I Return
/|| mapping
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(a) Visualisierung der Riickabbildung (”"Return- (b) Qeometrische Interpr.etation de.s itera—’
Mapping”) des (Test-)Spannungszustands Uf_ff‘ll tiven Return-Mapping-Algorithmus
auf die FlieBfliche (1D) im Spannungsraum (2D, closest point

projection)

Abbildung 2.23.: Visualisierung des Return-Mapping-Algorthimus’ (nach Simo und Hughes
(2000))

2.2.4. Rissmodellierung

Fir die numerische Modellierung von Rissen gibt es zwei grundlegend verschiedene Ansétze
in der Literatur. Bei diskreten Rissmodellen gilt es, die geometrische Diskontinuitédt als solche
durch Trennung der finiten Elemente an der Stelle des Risses zum Beispiel durch Interface-
Elemente oder Anreicherung von Elementen mit zusétzlichen Freiheitsgraden (eXtended Finite
Element Method (XFEM)) abzubilden (Hofstetter, 2006). Bei der Verwendung von Interface-
Elementen muss die Software somit {iber Algorithmen und Elementtypen verfiigen, die eine
adaptive Vernetzung gewihrleisten kénnen. Dies hat eine fortwihrende Anderung der Topologie
der Diskretisierung zur Folge, und die Rissentwicklung ist auf die Netzlinien bzw. Elementgren-
zen des Modells beschriankt. Dadurch ist es notwendig, den Rissort zumindest nédherungsweise
schon vorher zu kennen. Bei der XFEM-Methode wird der Rissverlauf durch Erweiterung die
Formfunktionen des Elements von der zugrundeliegenden Diskretisierung entkoppelt, um so die
Diskontinuitdt auch innerhalb der Elemente zu realisieren. Diskrete Modelle dieser Art sind seit
den 60er Jahren Gegenstand der Forschung, weisen aber trotz der Optimierung dieser rechen-
leistungsintensiveren Methode dennoch Limitierungen auf. Die robuste Implementierung dieser
Methoden selbst stellt ebenso eine Herausforderung dar wie eine angemessene Modellierung ge-
krimmter Rissformen innerhalb dieser Methoden. (Hofstetter, 2006; de Borst und Verhoosel,
2016)
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FEine grundlegend andere Herangehensweise wird mit der verschmierten Rissmodellierung ver-
folgt, bei der die Diskontinuitét {iber eine gewisse Breite verteilt wird. Darunter fallen sowohl
plastizitdts- als auch schadigungsbasierte Modelle, bei denen die lokale Materialdefinition eine
Entfestigung beschreibt (strain softening). Diese Entfestigung fiithrt, wie bereits im vorange-
gangenen Kapitel angedeutet, zu einer Anderung bzw. zum Verlust des elliptischen Charakters
des zuhorigen, bestimmenden partiellen Differentialgleichsungssystems. Dies bringt u. a. den
Nachteil mit sich, dass die Ergebnisse der FE-Losung netzabhéngig werden. Diese Netzabhéan-
gigkeit zu reduzieren oder gar zu vermeiden ist Gegenstand aktueller Forschung. Bei der in
kommerzieller Software héufig implementierten und auch hier verwendeten Methode wird ein
zusétzlicher Langenparameter eingefithrt, um die Objektivitiat bei Verfeinerung des Netzes zu
verbessern oder idealerweise wiederherzustellen. Die Giite der Verbesserung ist abhéngig von der
Definition des Parameters, fiir den es in der Literatur verschiedene Ansétze gibt (Oliver, 1989;
Godde, 2013; Rots, 1988; Thomée, 2005; Dassault Systémes, 2021), sowie von der Komplexitét
der Problemstellung bzw. Rissentwicklung. Haufig wird der Parameter als Elementeigenschaft
problembezogen definiert. Wie Goédde (2013) zeigte, ist mit einer energiebasierten Definition
eine theoretische Herleitung des Parameters moglich, allerdings ist die Anwendbarkeit je nach
Komplexitit des Problems mit Aufwand verbunden und schwierig zu automatisieren. Neben
dieser Art der Regulasierung gibt es in der Literatur Ansétze zur Vermeidung des genannten
Verlusts der Elliptizitdt bzw. Erhaltung der Wohl-Gestelltheit (well-posedness) des Problems
und damit auch der Netzunabhéngigkeit. Dazu zéhlen Ansétze wie die nicht-lokalen (nonlocal)
oder gradienten-erweiterten Modelle (gradient enhanced plasticity, gradient enhanced damage
models), bei denen zur Abbildung der Diskontinuitét die lokale Definition der dquivalenten Deh-
nung durch eine gemittelte Grole ersetzt (nonlocal) oder Gradienten hoherer Ordnung ergénzt
werden (gradient enhanced). Phasenfeldmodelle dagegen ersetzen die punktuelle Diskontinui-
tat mit einem finiten Bereich starken Gefélles. de Borst und Verhoosel (2016) zeigte auf, dass
Phasenfeldmodelle und gradienten-erweiterte Modelle eine vergleichbare Charakteristik, damit
jedoch auch dhnlich Nachteile, z. B. in Form einer stdrkeren Ausbreitung des Rissbereichs zei-
gen, was die Modelle zur Modellierung eines Einzel-Trennrisses weniger geeignet macht. Dieses
Verhalten kann zwar optimiert werden, dies ist jedoch mit einem erhéhten Rechenaufwand ver-
bunden. Beide Modelle sind in den vergangenen Jahren zunehmend Forschungsgegenstand. (de
Borst und Verhoosel, 2016)

Im nachfolgenden Kapitel 2.2.5 wird jedoch auf die erstgenannte Art der Regularisierung inner-
halb der verschmierten Theorie mithilfe eines Léngenparameters im Detail eingegangen. Gédde
(2013) weist die Anwendbarkeit des in Abaqus fiir Beton und andere quasi-sprode Materialien
implementierten Concrete Damagad Plasticity Models in Kombination mit seinem fiir Stahlfa-
serbeton entwickelten Regularisierungskonzept nach, dessen Tendenz zu Einzelrissbildung dem
dokumentierten Rissverhalten von Zementestrich gut entspricht. Auch wenn eine Vermeidung

der Nachteile des Strain-Softenings von vornherein erstrebenswert ist, weisen die gradienten-
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basierten Ansétze andere Einschrinkungen auf, und sind in kommerzieller Software bislang nicht
standardméaBig implementiert. Somit findet das Konzept nach Goédde (2013) aufgrund seiner
zugénglichen Anwendbarkeit und unmittelbaren Vereinbarkeit mit der verwendeten Software-
Losung in dieser Arbeit Anwendung. Dies soll eine Verwendung des entwickelten Modells fiir
auf dieser Arbeit aufbauende Untersuchungen erleichtern. Das zugrunde gelegte Materialmodell
wird in den nachfolgenden Kapiteln im Detail erldutert, nachdem im Folgenden zunéchst die

Grundlagen verschmierter Rissmodelle eingefiihrt werden.

Verschmierte Rissmodellierung

Die Bruchmechanik ist Teil der Kontinuumsmechanik. Zur Beschreibung bruchmechanischer
Prozesse werden Anderungen auf mikroskopischer Ebene durch skalare oder tensorwertige Va-
riablen im Kontinuumsmodell beriicksichtigt. Hier liegt eine Ahnlichkeit zur Plastizititstheorie
vor, bei der ebenfalls der Einfluss der Belastungsgeschichte auf das Kontinuum tiber innere
Variablen gesteuert wird. Auch wird ebenfalls die Abhéngigkeit von der Belastungsgeschichte
durch eine Be- bzw. Entlastungsfunktion &hnlich der FlieSbedingung in der Plastizitatstheorie
beschrieben, und auch die Entwicklung der inneren Variablen ist {iber eine Evolutionsgleichung
dhnlich einer Fliefiregel gegeben. Die zugehorigen Be- und Entlastungszustédnde werden iiber die
Kuhn-Tucker-Bedingungen geregelt. (de Borst, Crisfield et al., 2012)

Neben diesen Parallelen liefern bruchmechanische Konzepte die Méglichkeit, mithilfe von skala-
ren Schidigungsvariablen einen lokalen Steifigkeits- und Festigkeitsverlust sproder Materialien
zu beriicksichtigen. Allerdings sind Baumaterialien wie Beton nicht perfekt sprode. Dies mo-
tiviert die Betrachtung von Kohésionsrissmodellen (cohesive zone): An der Rissspitze existiert
ein Bereich, in dem Mikrorisse entstehen, sowie Porenbildung, -wachstum und -zusammenschluss
stattfinden (siehe Abbildung 2.24 oben). Solange dieser Bereich ausreichend klein ist, konnen die
dort wirksamen kohésiven Kréfte in der sogenannten Rissprozesszone (RPZ) vernachléssigt wer-
den, andernfalls sind diese zum Beispiel durch das fiir Beton und dhnliche Quasi-Sprodwerkstoffe
entwickelte , Fictitious Crack Model“ nach Hillerborg, Modéer und Petersson (1976) zu beriick-
sichtigen. Hieraus geht die Entwicklung sogenannter verschmierter Rissmodelle hervor. (de Borst,
Crisfield et al., 2012)

Typischerweise basieren diese verschmierten Rissmodelle auf bruchmechanischen Ansétzen. Die
Ansétze, die in der Literatur am haufigsten Anwendung finden, sind das ,Fictitious Crack Mo-
del“ (FCM) nach Hillerborg und das ,Crack Band Model“ (CBM) nach Bazant. Uber einen
realen Riss konnen keine Spannungen iibertragen werden, ein fiktiver Riss dagegen wird so
definiert, dass bis zu einer bestimmten Rissweite eine Spannungsiibertragung weiterhin mog-

lich ist. Nach anfinglicher Mikrorissbildung konzentriert sich der Riss nach Uberschreiten der
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2.2. Rissmodellierung im Finite-Elemente-Modell

Zugfestigkeit in einem rdumlich beschrinkten (infinitesimal kleinen (Hillerborg) bzw. finiten
(Bazant)) Bereich, der sogenannten Rissprozesszone. In Abbildung 2.24 ist das bruchmechani-
sche Konzept dargestellt. Im ungerissenen Bereich der Zugprobe gilt das Hooke’sche Gesetz als
Spannungs-Dehnungs-Beziehung, im gerissenen Bereich entfestigt das Material nach Erreichen
der Zugfestigkeit f;. In diesem Bereich wird das Verhalten durch eine Spannungs-Rissweiten-
Beziehung beschrieben. Fiir den in Abbildung 2.24 unten rechts dargestellten, hier linear abfal-

lenden Spannungs-Rissbreitenverlauf gibt es in der Literatur verschiedene funktionale Ansétze.

Alle haben gemeinsam, dass die Fliche unter der Kurve als Materialparameter Gy verstanden
wird. Die Bruchenergie G’y beschreibt die Energie pro Einheitsfliche, die zur vollstandigen Sepa-
ration der Rissufer notwendig ist und beschreibt somit eine Materialeigenschaft (Goédde, 2013).
Im Vergleich zum FCM (Hillerborg) wird im CBM (Bazant) ein endliches Rissband anstelle ei-
nes infinitesimalen, fiktiven Risses betrachtet. Das entfestigende Materialverhalten o(¢) wird in
Abhéngigkeit einer iiber das Rissband konstanten Dehnung e ppz formuliert und nicht {iber die
Rissweite w. Uber die Breite der Rissprozesszone brpyz lassen sich die beiden Formulierungen

jedoch weitestgehend ineinander tiberfithren (Godde, 2013):

w

ERPZ = (2.33)

brrz
Héufig sind bruchmechanische Problemstellungen durch Betrachtung von Modus I-Rissbildung
erfasst, der reinen Riss6ffnung in Richtung der Hauptzugspannung. Schubeinfliissse in Form von
Modus II (Langsscherung) und III (Querscherung) kénnen in der Definition der Bruchenergie
ebenfalls berticksichtigt werden (de Borst, Crisfield et al., 2012), finden in der vorliegenden Ar-

beit aber keine Anwendung.

Der jeweilige bruchmechanische Ansatz wird zur Verwendung innerhalb der FE-Methode in der
Regel in Materialgesetze auf Basis der klassischen Plastizitdtstheorie implementiert. Hier werden
inelastische Dehnungen anhand einer Bruchfliche analog zur Flieregel der Plastizitatstheorie
beschrieben. Bei dieser Implementierung ist allerdings darauf zu achten, dass die Netzunab-
hiingigkeit des Modells gewahrt bleibt (Hofstetter, 2006; Gédde, 2013). Durch Ubertragung des
bruchmechanischen Konzepts Gy in das diskretisierte Kontinuum entsteht eine Abhéngigkeit der
Ergebnisse von der Modellierung bzw. insbesondere von den Abmessungen des dann nicht mehr
infinitesimal kleinen Rissbands. Zur Wahrung der Objektivitdt der Ergebnisse muss sicherge-
stellt werden, dass die volumenspezifische, im diskretisierten Kontinuum dissipierte Energie g;
konsistent zur Bruchenergie des zugrundegelegten bruchmechanischen Konzepts ist. Dies wird
durch Einfithrung eines sogenannten Regularisierungskonzepts realisiert, bei dem in der Re-
gel die Spannungs-Rissweiten-Beziehung in eine Spannungs-Dehnungs-Beziehung umgewandelt
wird. Dafiir wird ein modellierungsabhéngiger Parameter, die sog. ,,charakteristische* oder ,ef-

fektive® Lénge [, eingefiihrt. Uber diese wird die Rissweite des bruchmechanischen Konzepts w
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in die innerhalb der Plastizitétstheorie vorhandene plastische Dehnung eP' iberfiihrt:

pl

el = (2.34)

w
lch .
Ar

o=f(w) 2 ﬂ:
o= f(e) Spannungs-

verteilung

w, — — - . .
cN SN Rissverteilung
~- C (schematisch)
spannungs- | Spannungsiibertragender ungeschadigter
freier Riss | Riss (Bruchprozesszone) Beton

VF

(a) Fortpflanzung der Bruchprozesszone mit zunehmender Beanspruchung ins Bauteilinnere (wie unter
Biegezugbeanspruchung); Beschreibung des Materialverhaltens nach Hillerborg {iber eine Spannungs-
Dehnungs-Beziehung auflerhalb der Bruch- bzw. Rissprozesszone (RPZ) und iiber eine Spannungs-
Rissweiten-Beziehung in einem begrenzten Rissbereich innerhalb der RPZ, in dem bis zum Erreichen
der kritischen Rissweite w, auch iiber den (fiktiven) Riss hinweg noch Spannungen tibertragen werden
konnen (Kessler-Kramer, 2002)

f s ;

A A
fe T
] L v + 6
e —>
l £ w, w
ungerissener Beton Kohdsionsriss

(b) Erstrecken der RPZ iiber den gesamten Querschnitt bei einer Zugprobe (schraffiert) und Defintion
der Bruchenergie G als Fliche unter der Spannungs-Rissweiten-Kurve (Kessler-Kramer, 2002)

Abbildung 2.24.: Definition eines fiktiven Risses nach Hillerborg

2.2.5. Netzabhangigkeit und Regularisierung

Wie bereits erlautert, wird in der vorliegenden Arbeit das Regularisierungskonzept angewendet,
welches Godde (2013) fur Stahlfaserbeton aus der Definition nach Oliver (1989) entwickelt hat.
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2.2. Rissmodellierung im Finite-Elemente-Modell

Im Folgenden werden die Grundzige wiedergegeben und die Verwendung in dieser Arbeit er-
lautert. Dies dient u. a. dazu, diesen Ansatz den implementierten Definitionen in Abagus und
ANSYs in Kapitel 3.1 gegeniiberzustellen. Fiir eine detaillierte Herleitung und Validierung des

Ansatzes sei auf Godde (2013) verwiesen.

Ansatz nach Godde (2013)

Der Ansatz nach Goédde (2013) wurde im Gegensatz zu vielen in der Literatur angegebenen
Ansétzen fir die charakteristische Lange nicht empirisch und damit problemspezifisch ermittelt,

sondern war motiviert davon, einen Ansatz zu finden, der die folgenden Anforderungen erfiillt:

o Fiir eine konsistente? Rissbandausbildung muss I, korrekt bestimmt werden. Korrekt heifit
in diesem Fall, dass eine vollstindige Regularisierung und damit eine Objektivitdt des

Ergebnisses gewéahrleistet sein muss (keine Netzabhéngigkeit)

« Fiir eine inkonsistente® Rissbandausbildung ist die Konvergenz gegen die objektive Losung
bzw. die Losung des bruchmechanischen Konzepts bei sukzessiver Netzverfeinerung zu

gewahrleisten.

o Praktikable Umsetzung des Ansatzes.

Empirisch hergeleitete Definitionen erfiillen diese Anforderungen in der Regel nicht problemun-
abhéngig. Auch in kommerziellen Software-Produkten implementierte Definitionen decken diese
Bedingungen nicht ab, wie in Kapitel 3.1 noch gezeigt wird. Das resultiert in einer Einschran-
kung der Programmsysteme hinsichtlich der Diskretisierung, aber auch hinsichtlich der Wahl des
Elementtyps, wie sich in den Folgekapiteln noch zeigen wird. In den beiden Programmsystemen
Abagus und ANSYS entspricht die charakteristische Lange einer Elementeigenschaft. Das heifit,
die Art der Rissbandausbildung und die Ausdehnung des Rissbands spielen bei der Festlegung
von l., wenn iiberhaupt eine untergeordnete Rolle und die energetische Konsistenz ist nicht

zwingend gegeben.

Der nachfolgend beschriebene Ansatz wurde durch den von Oliver (1989) inspiriert, der erst-
mals nicht iiber Empirie, sondern aufbauend auf einer Energiebilanzierung die Problematik der
Netzabhéngigkeit zu 16sen versucht (Godde, 2013). Oliver (1989) betrachtet bei seiner Herleitung
allerdings das einzelne finite Element und die jeweiligen Integrationspunkte, was die Anwendung
auf Rissbandausbildungen beschrénkt, die sich nur iiber eine einzelne Elementreihe erstrecken.
Dagegen erweitert Godde (2013) diesen Ansatz auf die Betrachtung des gesamten Rissbands, da

nur so die oben genannten Anforderungen erfiillt werden kénnen.

4 Voraussetzung: zugrunde liegende diskrete Rissbildung mit unverdnderlicher Rissrichtung und Rissbreite;

konstantes Spannungsfeld o,/; parallele Rissbandufer I'*

Die von Godde (2013) definierten Klassifizierungen der moglichen Formen der Rissbandausbildung und die
Auswirkungen auf die Bestimmung von I.;, kénnen in Kapitel 5.5.5 seiner Arbeit nachgelesen werden. Hier soll
nicht weiter darauf eingegangen, sondern vom einfachsten Fall einer mindestens ndherungsweise konsistenten
Rissbandausbildung ausgegangen werden
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Rissbildung im Kontinuum

Bei der Herleitung wird das Fictitious Crack Model (FCM) nach Hillerborg zugrunde gelegt.
Dieses wird zunéchst tiberfithrt in einen kontinuumsmechanischen Rahmen, das heifit aus der
im FCM betrachteten Rissfliche wird ein Rissbandvolumen (vgl. Abb. 2.25).

FCM - diskrete Verformung Kontinuum - plastische Dehnung

Korper Q ‘“b\R(E— Korper

Forderung:

=>

Lo Rissband Qrp
Gr = Grre Pl >0

(fiktiver) Riss Tr;gs

y w >0
L i
4 X
Rissbildung als flachenhafter Vorgang Rissbildung als volumenhafter Vorgang
Whiss = f Gf*dFRiss Wrp = f g;dQRB
TRiss Qrp

Abbildung 2.25.: Uberfiihrung des FCM ins Kontinuum: Kontinuisierung (Gdédde,
2013)

Unter der Annahme eines konstanten Spannungsfelds entlang der Risséffnungsrichtung (vgl.
Abb. 2.25: entsprechend des lokalen Koordinatensystems (z',y’, 2") im Rissband in 2’-Richtung)
wird im Kontinuum aus dem infinitesimal ausgedehnten fiktiven Riss ein Rissband der Breite
brp zwischen den Rissbandufern I'" und I'*. Die Verformungslokalisierung wird tiberfithrt in
eine Dehnungslokalisierung im Kontinuum. Die plastischen Dehnungen korrespondieren damit
zur Rissweite bzw. wird die Rissbreite w ndherungsweise als Integral der plastischen Dehnungen

in Rissoffnungsrichtung tiber die Rissbandbreite formuliert:

1'\+
w(y',#',1) Efr_ Py, 2 1) da.

Diese kontinuierliche Rissmodellierung stellt fiir bgp > 0 nur eine Naherung dar. Fiir bgrg - 0

ndhert sich der Zustand jedoch immer weiter der diskreten Lésung des FCM an.

Das Rissverhalten wird definiert iiber ein verformungsabhéngiges, nichtlineares Materialverhal-

ten. Dieses kann im Fall des flichenbezogenen FCM durch eine verformungsabhéngige Bruchener-
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FCM Kontinuum
in im
der Rissflache Rissbandvolumen
als als

Materialeigenschaft Modelleigenschaft

pl
Gx"‘(w) Definition: J’i i (e
w
i 1 _ _
f ct el = — f ct
lch
G =
!
w Ex

Abbildung 2.26.: Uberfiihrung des FCM ins Kontinuum: Entfestigungsverhalten
(Godde, 2013)

gie® pro Einheitsfliche G3(w(y',2',t)) und im Fall des volumenhaften Kontinuums durch eine
dehnungsabhéngige Rissenergie’ pro Einheitsvolumen g;(sil,(:r:',y',z’ ,t)) ausgedriickt werden.
Wie in Abbildung 2.26 dargestellt, ist es iiblich, das Materialverhalten durch eine Spannungs-
Rissbreiten- bzw. Spannungs-Dehnungs-Beziehung zu formulieren. Die Bruchenergie Gy als Fla-
che unter der Spannungs-Rissbreiten-Beziehung ist eine objektive Materialeigenschaft. Durch
Uberfiihrung in einen kontinuumsmechanischen Rahmen entsteht eine Abhéngigkeit von der
Modellierung: Die Rissenergie g¢ ist von der Rissbandausbildung bzw. von der Breite bgrp ab-
héngig. Demnach stellt gy im Kontinuum eher eine Modelleigenschaft dar. Um die Objektivitét
wiederherzustellen, muss die Spannungs-Dehnungs-Beziehung daher modellierungsabhéngig de-

finiert werden. Dazu wird der Parameter der charakteristischen Lénge eingefiihrt:

U S v (2.35)

w
v lch 8?,
Aus der Bedingung heraus, dass die Rissenergie G}’ rp» die bei einer FE-Berechnung im gesamten

Rissband dissipiert wird, der Bruchenergie des FCM G} entsprechen soll

* ! * r *
Gf = Gf,RB = - gf dl’, (236)

6 vgl. Abb. 2.26
G} (’LU = wBruch) = Gf

7 *cpl _ _pl -
9f (gz’ - Ez’,Bruch) =9r
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2. Theoretische Grundlagen

und aufgrund der Proportionalitit zwischen Rissenergie g; und plastischer Dehnung kénnen
Rissenergie und Bruchenergie des FCM analog mithilfe der charakteristischen Lénge ins Ver-
héltnis gesetzt werden (fiir eine detaillierte Herleitung siehe Godde (2013), Kapitel 5.5.2 bzw.

5.5.7):
G G
lon =~ baw., 1y =—L. (2.37)

*

gr 9y

Ubertragung ins diskretisierte Kontinuum

In Abbildung 2.27 ist beispielhaft an einer Zugprobe veranschaulicht, welche Uberlegungen not-
wendig sind, um die obige Beziehung in das Finite-Elemente-Modell zu iibertragen: Das FCM
bzw. die im gesamten Riss dissipierte Energie Wy, . (links) ist gleichzusetzen mit der im Konti-

nuum im gesamten Rissband dissipierten Energie Wi (rechts).

Fictitious Crack Model Finite-Elemente-Modell Fiktiver, energickonformer Kontinuumszustand
RB
nyp pl
Whiss = G/ lri — &' Wip = g;"B- A
T T N T T &
x x Wgg = konst.
Wriss = Wrp RB {
t=,1 I'RB = konst.
s Rissband + G; A
Rissband /1“ A r &= £B = 7
RB RB g5 IRfes
\ npp’, AR £PIRB giR® f
Riss P gn = 9 s
. x',i’ ) fii Fs _ r
Gy, lRisss W X £ 0 9fi r
: 5B
lRiss RISS
<

Wgg = konst.

Y4y ¥V 3V ¥V do * y
AR
" Yy
X

Abbildung 2.27.: Berechnungsansatz fiir /., fiir den ebenen Fall nach Godde (2013):
Die dissipierte Energie im Riss des fiktiven Rissmodells (links) ist
mit der im Finite-Elemente-Modell bzw. im Kontinuum im gesam-
ten Rissband dissipierten Energie gleichzusetzen. Im allgemeinen
Fall lasst sich so die charakteristische Lénge fiir jedes Element im
Rissband aus dem Flichenanteil und dem Verhéltnis der plasti-
schen Dehnungen ermitteln (Abb. nach Godde, 2013)

Zur Ubertragung auf das Finite-Elemente-Modell muss der Energieanteil, der in jedem Element

bzw. in jedem Integrationspunkt des Rissbands dissipiert wird, fiir W3y herangezogen werden
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2.2. Rissmodellierung im Finite-Elemente-Modell

(siehe Abbildung 2.27 Mitte). Daraus ergibt sich die Berechnungsformel

nRB Pl
6, T
lCh,i = * = FR‘B - (2.38)
gf,i Riss

fir die charakteristische Lange [, ; im Integrationspunkt ¢ mit korrespondierender Integrations-
punktfliche €; bezogen auf eine dquivalente Rissgeometrie® I’ 1%]35 (vgl. Abbildung 2.27 fiir den
ebenen Fall, und Gédde (2013), Kap. 5.5.7 fiir eine genauere Herleitung der Gleichung). Aus-
gehend von der Proportionalitit zwischen plastischer Dehnung eili und dissipierter spezifischer
Energie im jeweiligen Integrationspunkt g},i werden in dieser Formel die plastischen Dehnun-
gen 5?7; integrationspunktweise ins Verhéltnis zueinander gesetzt. Die charakteristische Lénge
wird also bestimmt vom Anteil der Energie im jeweiligen Integrationspunkt an der im gesamten
Rissband dissipierten Energie G; rp- Sie soll durch die zugrunde gelegte Energiebetrachtung
zu einer Netzunabhéngigkeit der Ergebnisse fithren (bei konsistenter Rissbandausbildung) oder
zumindest soll sich so fiir eine sukzessive Netzverfeinerung der genannte konsistente Energiezu-

stand einstellen (bei inkonsistenter Rissbandausbildung).

Praktische Umsetzung des Ansatzes

Fir die Verwendung dieser Formel miissen folgende Angaben bekannt sein bzw. festgelegt wer-

den:
o Identifizierung der Rissbandgeometrie,
« Identifizierung der Rissbandufer,
e Identifizierung der Rissorientierung bzw. Festlegung des Risskoordinatensystems.

Dies erfordert in der Regel Expertenwissen, weshalb eine Automatisierung von Gédde (2013) als
nicht praktikabel erachtet wird. Im Allgemeinen handelt es sich bei der Bestimmung der cha-
rakteristischen Liange daher um einen iterativen Prozess: Berechnung des Modells mit Vorgabe
eines geschétzten Parameters [, anschlieBende Ermittlung von [, auf Basis der tatsdchlichen
Rissbandausbildung und erneute Berechnung. In den ersten von Gédde (2013) betrachteten Bei-
spielen zur Definition der charakteristischen Lange wurde zunéchst ein akademisches Beispiel,
der einaxiale Zugversuch, behandelt. Bei diesem werden gewisse Randbedingungen wie eine
Schwichung des Rissquerschnitts durch Reduzierung der Zugfestigkeit bereits vorgegeben, was
die Identifizierung des Rissbands vorwegnimmt und damit die Ermittlung der charakteristischen
Lange erleichtert. Fiir den Zugversuch ist diese nach obiger Definition aufgrund des konstanten
Spannungsfelds im Querschnitt und der dadurch exakt abbildbaren diskreten Losung im Konti-

nuum eindeutig.

8 Jeweils in Abhéngigkeit der Rissranderorientierung

3D: dquivalente Rissfliche I'ho, = ARE. und Integrationspunktvolumen Q; = V;,
2D: dquivalente Risslinge I'he. = IR2 . und Integrationspunktfliche Q; = A;

1D: I'RB =1 [-] und Integrationspunktlinge Q; = ;
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Abbildung 2.28.: Veranschaulichung der vereinfachten charakteristischen Linge im
Rissband am Beispiel eines Biegeproblems, wobei die Rissbandele-
mente zur Induzierung der Lokalisierung durch Reduzierung der
Zugfestigkeit geschwécht wurden (Quelle: Ausschnitt aus Abb. 5.25
Godde, 2013)

Grundsétzlich gestaltet sich die Identifizierung der obigen Randbedingungen bei Beschrankung
auf konsistente Rissbandausbildungen als weitgehend unproblematisch. Im Allgemeinen kann es
jedoch zu einer rdumlichen oder sogar variierenden Rissorientierung kommen, bei der zusétzliche
Strategien zur Bestimmung der charakteristischen Lange notwendig sind. Darauf soll hier nicht
im Detail eingegangen, sondern auf Gédde (2013) verwiesen werden. Stattdessen werden im Fol-

genden Besonderheiten bei der Umsetzung in Zusammenhang mit Biegeproblemen erlédutert.

Wie in Abbildung 2.28 anhand der grofier werdenden dem Riss zugeordneten plastischen Deh-
nungen angedeutet, entstehen bei Biegeproblemen Risse mit {iber den Querschnitt zunehmender
Breite. Wenn in diesem Fall [, wie oben beschrieben auf Integrationspunktebene bestimmt
wird, enthélt das Verhéltnis der plastischen Dehnungen einen Einfluss aus Biegung bzw. der
resultierenden Rissbreitendnderung. Entweder miisste in diesem Fall — unter der Voraussetzung
einer konstanten Rissorientierung — das Rissband in Abschnitte gleicher Rissbandbreite (und
hier auch gleicher charakteristischer Lange) eingeteilt werden, um die variierenden Rissbandei-
genschaften iiber die Hohe zu kompensieren, oder die charakteristische Lange wird vereinfacht

auf Rissbandebene bestimmt: A
RB
Leh = TRiss - (2.39)
RB
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2.2. Rissmodellierung im Finite-Elemente-Modell

Dabei wird ausgenutzt, dass die in Abbildung 2.28 dargestellten plastischen Dehnungen parallel
zueinander und nahezu senkrecht zur Dickenrichtung ausgerichtet sind. Somit liegen diese quasi
in der z-y-Ebene, welche wiederum im gesamten Rissband orthogonal auf den Rissbandufern
I'" und T'* steht. Die Rissbandausbildung ergibt sich nach Gédde (2013) damit quasi homogen®
iiber die Bauteilhohe, sodass die eigentlich rdumliche Rissbandausbildung ohne nennenswerten
Fehler auf die xz-y-Ebene reduziert werden kann. Bei konsistenter Rissbandausbildung liefert
diese Definition ndherungsweise die exakte Losung, wie Godde (2013) an verschiedenen Beispie-
len zeigt. Diese vereinfachte Definition wird in Kapitel 3 aufgegriffen, um den hier definierten

Ansatz mit in kommerzieller Software implementierten Ansétzen zu vergleichen.

. . Kl mn
o] \\ s
1= \ _
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,\ _ X «
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A=l ]y
| g
1 | |
\ // > X

Abbildung 2.29.: Beispiel fiir eine variierende Rissrichtung (Goédde, 2013)

Sofern die Voraussetzungen fiir diese vereinfachte ebene Betrachtung nicht erfiillt sind, oder sich
rdaumlich gekriimmte Rissbilder ergeben, variiert nicht nur die Rissbreite, sondern auch die Riss-
richtung, sodass in diesem Fall eine entsprechende Einteilung in Bereiche gleicher Rissrichtung
vorgenommen werden muss'? (vgl. Abbildung 2.29). Bei rdumlichen Problemen lassen sich Riss-
bandgeometrie und -ausdehnung jedoch schwieriger abschétzen, sodass hier trotz vereinfachter

Definition fiir die charakteristische Lénge eine iterative Berechnung zwingend erforderlich wird.

Godde (2013) forciert nach Moglichkeit bei seinen Nachrechnungen eine homogene Rissband-

®  homogen bedeutet nach Gédde (2013), dass die charakteristische Linge fiir jedes Element des Rissbands

gleich ist.

Bei der Bereichseinteilung sind weitere Randbedingungen zu bertiicksichtigen, wie z. B. der Umstand, dass
jeder Bereich mindestens einen Knoten auf jedem der Rissbandréander besitzen sollte. Darauf soll hier jedoch
nicht weiter eingegangen werden, da dies in der vorliegenden Arbeit keine Anwendung findet
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ausbildung , d. h. eine fir das gesamte Rissband giiltigen Wert fiir die charakteristische Lange
und orientiert bei rdumlichen Biegeproblemen auflerdem das FE-Netz an der Rissbildung, um so
eine moglichst gute Regularisierung zu erhalten. Auch hieran ist erkennbar, dass die vorliegen-
de Modellierung nicht ohne Weiteres zur Vorhersage von Rissbildung an beliebigen Geometrien
verwendet werden kann. Fur eine realistische Simulation der Rissbildung muss die Rissbandaus-
bildung und Rissrichtung laut Gédde (2013) bereits weitgehend bekannt sein, um den Aufwand

bei der Modellbildung angemessen zu begrenzen.

2.2.6. Materialinstabilitat

In der klassischen Plastizitatstheorie, bei der das bereits in Kapitel 2.2.3 angesprochene Dru-
cker’sche Stabilitdtspostulat erfiillt ist, ist das Anfangswertproblem wohl-formuliert und seine
Losung eindeutig. Dieser Fall beinhaltet lediglich eine Verfestigung, und damit eine Vergrofie-

rung der Flieflflache.

Im Fall von reilendem Beton unter Zugbeanspruchung wird an der Stelle eines Risses eine Dis-
kontinuitét in das Verformungsfeld eingetragen, welche mithilfe der Plastizitétstheorie modelliert
werden kann. Hierbei wird der Riss nicht diskret modelliert, sondern ,verschmiert“ in Form der
plastischen Dehnungen abstrahiert. Somit muss jedoch das Materialmodell “tension softening*
beinhalten, um den Riss als Dehnungslokalisierung zu erzeugen. Ein abfallender, entfestigender
Ast in der Spannungs-Dehnungs-Beziehung bzw. ein Zusammenziehen der Flieifliche ist mit
einer negativen Energiedissipation verbunden. Dies verletzt die Drucker’sche Stabilitdtshypo-
these. Dadurch verliert das Anfangswertproblem die Eigenschaft der Wohl-Formuliertheit, das
Problem verliert seine Wohlformuliertheit (wird ,,ill-posed®), und die Eindeutigkeit der Losung
ist nicht mehr garantiert (Oliver (1989), Lee und Fenves (1998)). Das Materialverhalten wird
bedingt durch den Verlust der positiven Definitheit der tangentialen Materialsteifigkeit im Mate-
rialpunkt instabil. Dies hat nicht zwingend Auswirkungen auf die Stabilitdt des Gesamtsystems,
allerdings konnen lokale Instabilitaten zu strukturellen Instabilitdten fithren (de Borst, Crisfield
etal., 2012).

Eine zusétzliche Auswirkung der beschriebenen Diskontinuitét ist, dass eine Netzabhéngigkeit in
das Modell eingetragen wird. Moglichkeiten, die Netzunabhéngigkeit sicherzustellen, wurden in
den vorangegangenen Kapiteln bereits erlautert. Hier sei noch einmal darauf hingewiesen, dass
mit der eingebrachten Diskontinuitit zur Abbildung eines Risses ebenfalls ein Stabilitétsverlust
des Problems zusammenhéngt. Mathematisch kann dies auf einen Verlust der elliptischen Form
des Anfangswertproblems zuriickgefithrt werden, welche die Eindeutigkeit der Losung sicher-
stellt. Dieser Stabilitdtsverlust wird auch durch Einbringen der charakteristischen Lénge nicht
umgangen, sondern lediglich abgeschwécht. Die Uneindeutigkeit der Losung bleibt. (de Borst,

Crisfield etal., 2012) Daneben steigt auch bei Verwendung einer nicht-assoziierten Fliefiflaiche
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das Risiko fiir Instabilitdten. In dem im Folgekapitel erlduterten Materialmodell wird eine solche
FlieBflache verwendet. Lee und Fenves (1998) erwdhnen dies bereits in ihren Erlduterungen zur
von ihnen entwickelten Fliefifliche, das Risiko soll jedoch durch geschickte Wahl der eingehenden

Parameter reduzierbar sein.

In dem in dieser Arbeit verwendeten Materialmodell gibt es demnach mehrere Ursachen fiir
materielle Instabilitdten, die sich unter Umsténden gegenseitig beeinflussen und iiberlagern, was
eine Identifikation schwieriger macht (Crisfield, 1981; de Borst, 1987). In den nachfolgend be-
schriebenen numerischen Untersuchungen wird an entsprechender Stelle auf Auffalligkeiten in
den Ergebnissen hingewiesen, die auf Materialinstabilitdten zuriickzufiihren sein kénnten, und
diese entsprechend der obigen Ausfiithrungen eingeordnet. Wie u. a. de Borst (1987) und Crisfield
(1981) erldutern, lassen sich Instabilitdten und ihre Ursachen mithilfe von Eigenwertuntersuchun-
gen analog zur Handhabung bei Verzweigungs- und Durchschlagsproblemen bei geometrischer

11 ist dies ein

Nichtlinearitdt eingrenzen. Treten negative Eigenwerte in einer Berechnung au
Zeichen dafiir, dass die positive Definitheit der betrachteten Materialtangente verloren gegangen
ist. Inwiefern dies jedoch auf Materialinstabilitdten, Verzweigungspunkte oder eine physikalisch
tatsdchlich vorhandene Instabilitdt zuriickzufiihren ist, muss eine genauere Untersuchung der

konkreten Problemstellung z. B. anhand einer Eigenformanalyse zeigen.

Da eine detaillierte Untersuchung im Rahmen dieser Arbeit nicht erfolgt, soll auch hier nicht
tiefer auf die mathematischen Hintergriinde von Eigenwertuntersuchungen eingegangen werden.
Inwiefern weitergehende numerische Untersuchungen ggf. auf Basis weiterer Versuchsdaten sinn-

voll erscheinen, wird an entsprechender Stelle in den Folgekapiteln aufgezeigt.

2.2.7. Umsetzung innerhalb kommerzieller Software

In vielen kommerziellen FE-Software-Produkten sind bereits Materialmodelle zur Abbildung von
Verbundwerkstoffen wie Beton implementiert. Fiir die in dieser Arbeit angestrebte Modellierung
von schwimmendem Estrich mithilfe verschmierter Rissmodelle kommen sowohl Abaqus, wie
auch ANSYS oder vergleichbare Programmsysteme infrage. Da vor allem eine Sicherstellung der
Netzunabhéngigkeit mithilfe der von Godde (2013) vorgestellten Herangehensweise angestrebt
wird, und deren Anwendbarkeit bereits in Abaqus nachgewiesen ist, wird auch in der vorliegenden
Arbeit vor allem Abaqus verwendet. FEinige vergleichende Untersuchungen zur Netzabhéngigkeit
wurden jedoch auch mit ANSYS durchgefiihrt, sodass in den folgenden Kapiteln auch auf das
dort verwendete Modell eingegangen wird. Im Folgenden wird das in Abaqus implementierte
Modell im Detail erldutert und auf wesentliche Unterschiede zu ANSYS wird an entsprechender

Stelle eingegangen.

1 6in Null-Eigenwert ist aufgrund numerischer Rundung nicht méglich, daher kénnen nur negative Eigenwerte

nahe Null identifiziert werden
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Conrete Damaged Plasticity (CDP)

Das in Abaqus implementierte Materialmodell Concrete Damaged Plasticity (CDP) ist fir die
Modellierung von Stahlbeton geeignet, kann aber auch fiir Stahlfaser- oder unbewehrten Beton
eingesetzt werden (vgl. Dassault Systemes, 2021; Godde, 2013). Die mafigebenden Versagens-
kriterien sind Brechen unter Druck und Reiflen unter Zug. Im CDP-Modell werden eine lineare
Elastizitatstheorie mit der Option fiir skalare, isotrope Schidigung und eine Plastizitatstheorie
mit isotroper Ver- bzw. Entfestigung fiir Druck und Zug kombiniert, um das inelastische Ver-
halten von Beton und anderen Quasi-Sprodwerkstoffen zu beschreiben. Grundsétzlich soll das
Modell fiir monotone, zyklische und auch dynamische Belastungen geeignet sein. In diesem Zu-
sammenhang wiirde auch die Option auf ,damage recovery“, d.h. ein Modellieren des Schlieflens
von Rissen, bestehen. In der vorliegenden Arbeit wird eine Reduzierung der Steifigkeit infolge
Schidigung jedoch nicht weiter beriicksichtigt, und auch zyklische Belastungen oder damage

recovery finden demnach keine Anwendung.

Das Modell bzw. insbesondere die Fliefifliche basiert auf den Veroffentlichungen von Lee und
Fenves (1998) und Lubliner et al. (1989). Die Flie- bzw. Bruchflache wird beschrieben durch

- 1 - - PN -
F(0:8) = L [g-80-p+ BE) - (Fawe) - (md] ~00(E) <0 (240)
mit
Fpo-1
a=-0""  4e[0,0.5]
2Fpe0 -1
— ~pl
5= )0y (14a)
ot (€7)
5 = 2(1-K,)
2K.-1
Fyeo = a0 _ konstant , default: Fpo=1.16
0c0
7?M  q(p,0=0 2
K. = (‘_7 = _(‘7(?’_ ) = konstant, default: K. =—, K.€[0.5,1]
g g(p,0 =60) 3

Omax = Mmaximale Hauptspannung
opo = initiale dquibiaxiale Druckspannung
00 = initiale uniaxiale Druckspannung

d¢, 0¢ = uniaxiale Druck- und Zugspannung

mit K, als Verhaltniswert zwischen dem Wert der dquivalenten von-Mises-Spannung ¢ auf dem
Zugmeridian ¢“™ und dem Wert auf dem Druckmeridian gpy bei initialem Bruchniveau, wobei

Omax < 0 gilt. Die hydrostatische Druckspannung p und die dquivalente von-Mises-Spannung ¢

64
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sind als Spannungsinvarianten definiert zu:
_ 1 _
p= —gtrace(a) (2.41)

gg : S mit S=o+pl (2.42)

]l
1l

mit dem Einheitstensor I, dem deviatorischen Teil des Spannungstensors S und der Macauly-

Klammer definiert als .
= —(|z| +
() = 5 (il +2)
zur Modellierung unterschiedlicher Formen der Fliefifliche fiir Zug- und Druckbeanspruchung

(B-Term nur bei Zug, 5-Term nur bei reinem Druck aktiv). Der Querstrich (o) soll bei beriick-

sichtigtem Schadigungseinfluss effektive Groflen kennzeichnen:

o

(1-d)

G = =C(e-¢m), (2.43)
mit Cgl als ungeschéidigte Anfangssteifigkeit. In der vorliegenden Arbeit werden die Schadi-
gungsparameter d = [d.,d;]7 weder im Zug- noch Druckbereich beriicksichtigt, sodass die Un-
terscheidung nach effektiven Groflen vernachléssigt werden kann. Die Form der FlieBfliche kann

Abbildung 2.30 entnommen werden.

1 _ o
—[g-3-aptf gl-o=0 2
G, tl Ot
o, 01

|
DEC

5CC

1

—la-3-a-pl-0.=0

Abbildung 2.30.: Visualisierung der Fliefflache des Concrete Damaged Plasticity
Modells (ebener Spannungszustand) (Dassault Systémes, 2021)
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Die Evolution der plastischen Verzerrungen, und damit die Rissevolution, ist definiert iiber das

plastische Potential

H(o) = -ptan(4??) +/(cor tan(er))? + g2 (2.44)

mit

oo = initiale Zugflie- bzw. Bruchspannung,
e = Exzentrizitit (keine mechanische Bedeutung, dient der numerischen Stabilitét),
YP? = Dilatanzwinkel (Maf$ fiir die Dilatanz, d.h. den Anteil der plastischen Volumenénderung

infolge von Schervorgéingen im Beton an der plastischen Gesamtverformungsénderung) .

Die Evolutionsgleichung der plastischen Verzerrungen ergibt sich daraus (analog einer FlieSiregel)

i  9H(5)
aiti= (2.45)

mit 7 als plastischem Multiplikator (Konsistenzparameter). Die nicht-assoziierte Plastizitét in-

P!

folge der Verwendung von H anstelle von f fiir die Definition der plastischen Verzerrungsrate

hat den Verlust der Symmetrie des zu lésenden Gleichungssystems zur Folge.

Ver- und Entfestigungsgesetz

Das isotrope Aufweiten bzw. Zusammenziehen der Fliefiflache wird durch die fiir Druck und Zug
unabhéngigen Ver- bzw. Entfestigungsparameter, die sog. dquivalenten, plastischen Verzerrun-

gen, gesteuert:

N
= (2.46)

&

In Abbildung 2.31 sind die einaxialen Spannungs-Dehnungs-Beziehungen fir den Druck- und
Zugbereich dargestellt. Diese lassen sich in eine Beziehung zwischen Spannung und plastischer
Dehnung umformen, die letztendlich die Evolution der inneren Variablen &2 (Druck) und &

(Zug) steuern. Diese sind definiert tiber

= (&), 2.47)
oo (1-r(8) 2, 219
3 2
mit r (7) = 231_<0'_) (2.49)
Zi=1 ag;
mit gﬁllin und gﬁiax als der kleinste (égl) bzw. grofite Eigenwert (é’fl) des Tensors der plastischen

Verzerrungsrate é”'. Im einaxialen Fall entspricht die plastische Verzerrungsrate der dquivalenten
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plastischen Verzerrungsrate:

= ¢Pl einaxialer Zug, (2.50)
Pl = ¢Pl einaxialer Druck . (2.51)

Dies lésst sich in folgender Evolutionsgleichung zusammenfassen:

Zpl éﬂcﬂ ! D2 =pl\ ipl
el = 0l =h(o,e") ¢ (2.52)
t
. €1
_h(s.ey-| ") O ol
(5.€%) ! 00 -(1-r&) ||
€3

Der genaue funktionale Zusammenhang fiir das einaxiale Verhalten wie in Abbildung 2.31 ver-

anschaulicht, ldsst sich iiber Wertepaare (') explizit vorgeben.

Oc A o 5
Ocul
Oco |- O b
(1 - dc)EO
E,
(1 _ 4B
) | s gt
Pt gl ¢ gPl gl
(a) Druck (b) Zug

Abbildung 2.31.: Ver- bzw. Entfestigungsfunktionen des CDP-Modells fiir Druck und Zug (Das-
sault Systemes, 2021)

In Abbildung 2.32 ist der Einfluss der Entfestigung auf die Fliefflache fiir den Zug- und Druck-
bereich visualisiert. Eine Entfestigung des Zugbereichs (weile Punkte A und B) fiihrt zum Zu-
sammenziehen des positiven Spannungsbereichs, hat jedoch auf den reinen Druckbereich keinen
Einfluss. Eine Entfestigung im Druckbereich (ausgefiillte Punkte A und B) fiihrt zum Zusammen-
ziehen des negativen Spannungsbereichs, hat aber auf den reinen Zugbereich keinen Einfluss. Fiir
Informationen zum Einfluss der iibrigen Modell- und Materialparameter des CDP-Modells sei
zusdtzlich zur Dokumentation (Dassault Systeémes, 2021) auf Gédde (2013) verwiesen, der den

Wertebereich einiger Parameter insbesondere im Hinblick auf Stahlfaserbeton nédher untersucht
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O
ARfet 7
B 25
0. 5fCt gtz-)l
l
&
0.5f, c
f(,‘ B Druck
v
O, A Bruchfléche

Abbildung 2.32.: CDP: Einfluss von Ver- bzw. Entfestigung auf die Flie}flache (nach
Godde (2013))

hat. Wenn nicht anders angegeben, werden im folgenden die von Abaqus vordefinierten Stan-

dardwerte verwendet.

In dem beschriebenen Modell kann der Ansatz nach Gédde (2013) zur Sicherstellung der Netz-
unabhéangigkeit bei den in dieser Arbeit durchgefiithrten Untersuchungen leicht beriicksichtigt

werden. Zur Definition Entfestigungsverhaltens wird im Programm zwischen den Optionen

o displacement“ (Vorgabe einer o4-w-Beziehung und interne Umrechnung in oy-¢7 Z—Beziehung
durch Abaqus),

o ,strain® (direkte Vorgabe einer o-¢? !_Bezichung) und
o ,Gfi“ (Vorgabe einer Bruchenergie bei linear abfallender Enfestigung)

unterschieden. Bei Verwendung der ,strain“-Option kann der Ansatz nach Godde (2013) nach
vorheriger Umrechnung der materialspezifischen Spannungs-Rissweiten-Beziehung in eine Spannungs-
Dehnungs-Bezichung mithilfe der hergeleiteten charakteristischen Lénge in Abaqus vorgegeben
werden. Fiir das CDP-Modell existiert auch eine Abaqus-interne Definition der charakteristi-
schen Linge, die bei Wahl der Option ,displacement® oder ,,Gfi“ zur Anwendung kommt. Wie
in diesem Fall die charakteristische Lénge definiert ist und welchen Einfluss das auf die Ergeb-

nisse hat, wird im Verlauf der Arbeit ndher untersucht.
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2.3. Zusammenfassung

Fiir Estrich wie Beton ist die maigebende Versagensart Rissbildung. Diese wird bei schwimmen-
dem Einbau durch den weichen Untergrund beeinflusst. Daneben kénnen Eigenspannungen und
Vorverformungen aus der Erhértungsphase infolge Schwinden eine Rolle spielen. Zur numerischen
Untersuchung des Rissverhaltens von schwimmendem Estrich wird ein in Abaqus implementier-
tes, verschmiertes Rissmodell verwendet (CDP-Modell), welches auf der hier in Grundziigen vor-
gestellten Plastizitétstheorie basiert. Zur Losung des durch Materialnichtlinearitét entstehenden
nichtlinearen Randwertproblems wird nicht nur die Newton-Raphson-Methode verwendet, son-
dern bei der Berechnung des Nachbruchbereich sind Pfadverfolgungsalgorithmen erforderlich. In
diesem Fall wird die in Abaqus implementierte Variante des Bogenldngenverfahrens nach Riks
verwendet. Bei einem wie hier angewendeten verschmierten Rissmodell kénnen Materialinstabi-
litdten auftreten, vor allem ist die Objektivitdt der Losung unabhéngig vom Vernetzungsgrad
sicherzustellen. Dafiir wird der Ansatz nach Goédde (2013) genutzt. Vor diesem Hintergrund
werden im Folgenden zunéchst einige grundlegende, numerische Voruntersuchungen vorgestellt,
die die Eignung des Modells und die Besonderheiten, die bei der Verwendung zu beachten sind,

veranschaulichen sollen.
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Wie in Kapitel 2.2.5 bereits dargelegt, wird fiir verschmierte Rissmodelle hiufig ein Modellpara-
meter [, eingefithrt, um die in diesen Modellansédtzen enthaltene Netzabhangigkeit abzuschwa-
chen bzw. zu korrigieren. Am Zugversuch, einem einfachen akademischen Beispiel, welches einen
zentralen Mechanismus bei der Rissentstehung beschreibt, soll der Einfluss dieses Parameters
veranschaulicht werden. Da es sich bei den spéteren Versagensmechanismen um Biegeprobleme
handelt, soll darauf aufbauend auch am Biegezugversuch bzw. einigen an Estrich erfassten Mess-

daten das Materialmodell bzw. der Modellparameter ndher betrachtet werden.

Bei der Modellierung des Aufschiisselns und anschliefenden Ablegens unter Belastung gibt es
neben der Materialnichtlinearitdat vor allem infolge der Rissbildung ein nichtlineares Kontakt-
Problem zwischen Dadmmstoff und Estrich. Dieses wird iiber ein Federmodell realisiert. Hierauf
wird in Kapitel 3.2 genauer eingegangen, ebenso wie auf die experimentelle Erfassung der Da&mm-
bzw. Federsteifigkeit.

3.1. Voruntersuchungen zur Netzabhangigkeit

In den folgenden Kapiteln werden zwei verschmierte Rissmodelle, die in den FE-Programmen
Abaqus und ANSYS implementiert sind, im Hinblick auf ihre Netzabhingigkeit bzw. deren De-

finition der charakteristischen Lédnge ndher untersucht:

o Concrete Damaged Plasticity Model (Abaqus),

o Menetrey-Willam Model (ANSYS).
Das Concrete Damaged Plasticity (CDP) Model in Abaqus verwendet als bruchmechanischen
Ansatz das Fictitious Crack Model (FCM) nach Hillerborg. Im Menetrey-Willam (MW) Model
in ANSYs wird hingegen das Crack Band Model (CBM) nach Bazant verwendet. Wie bereits

in Kapitel 2.2.4 erldutert, lassen sich diese Modellvorstellungen jedoch ineinander {iberfithren,

sodass ein Vergleich der beiden Modelle Software-iibergreifend méoglich ist.

Fiir die hier betrachtete Simulation eines zentrischen Zugversuchs spielt der plastizitdtstheo-
retische Rahmen (FlieBfliche, FlieBregel, Verfestigungsgesetz im Druckbereich und zugehoérige
Parameter) eine untergeordnete Rolle, weshalb hier auf die Unterschiede in den beiden betrach-

teten Modellen nicht grundlegend eingegangen wird. Zur Definition des Entfestigungsverhaltens
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stehen im MW-Modell nur die Optionen einer linearen oder exponentiellen Entfestigung zur
Auswahl. Im CDP-Modell kann ein beliebiger Entfestigungsverlauf durch tabellarische Eingabe
von Wertepaaren vorgegeben werden. Zwischenwerte werden linear interpoliert. Die Definitionen
fir die ,effektive” oder ,charakteristische“ Lénge l.;, der beiden genannten Programmsysteme

werden dem Ansatz nach Gédde (2013) gegeniibergestellt.

Definitionen der charakteristischen Lange

Die ,effektive Elementlange“ soll laut ANSYs-Dokumentation Ansys Inc, 2021 eine Netzabhén-
gigkeit des entfestigenden Materialverhaltens verhindern. Dieser Parameter wird dimensions-

und integrationstyp-abhéngig fiir jeden Integrationspunkt definiert:

len = "R/ Qrp (3.1)

wobei Q7p dem Integrationspunktvolumen und ng;, der Elementdimension entspricht. Abhén-
gig von der Dimension d entspriche Q7p einem Volumen (ngiy, = 3), einer Fliache (ngim = 2) oder

einer Lange (ngim =1).

In der Abaqus-Dokumentation steht zur Definition der charakteristischen Lénge (Dassault Sys-
témes, 2021):

»The characteristic crack length is based on the element geometry and formulation:

it is a typical length of a line across an element for a first-order element; it is half of

the same typical length for a second-order element. “

Eine exakte Definition dieser typischen Lénge liefert die Dokumentation dariiber hinaus nicht.
Aus dieser Formulierung geht lediglich hervor, dass die Elementgeometrie und -formulierung eine
Rolle spielt und sich die Definition fiir Elemente 1. und 2. Ordnung zusétzlich um den Faktor
2 unterscheiden. Es wird darauf hingewiesen, dass die Form der Elemente moglichst rechteckig
sein und grofle Seitenverhéltnisse vermieden werden sollten. Durch eine Benutzer-Subroutine be-
steht die Moglichkeit, sich die verwendete charakteristische Lénge fiir jeden Integrationspunkt
ausgeben zu lassen. Dabei wird deutlich, dass der Wert bei Elementen zweiter Ordnung auch in-
tegrationspunktabhéngig definiert zu sein scheint, was aus der obigen Formulierung nicht direkt
erkennbar ist. Die R&D-Abteilung von Abaqus liel auf Nachfrage wissen, dass die genaue De-
finition der charakteristischen Lidnge nicht bekannt gegeben werde. In der Dokumentation wird
nicht darauf eingegangen, welche Einschriankungen es im Hinblick auf die Netzabhéngigkeit bei

der Modellierung gibt.

Auf Basis einiger Variantenuntersuchungen® verschiedener Elementtypen und Randbedingungen

und durch Vergleich mit der Definition in ANSYS wird folgende Definition fiir die in Abaqus

1 Auf einige wird im weiteren Verlauf des Kapitels eingegangen, fiir weitere Untersuchungen sei auf Brokbals

(2021) verwiesen.
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verwendete charakteristische Lange angenommen. In dieser Form wére sie auch konsistent zur

Angabe des Faktors % je nach Elementordnung in der Dokumentation:

l mdig/nrp-Q;  fiir Elemente 1. Ordnung (3.2)
hyi = '
ot % - Min/mrp-€);  flir Elemente 2. Ordnung

mit:

ngim - geometrische Dimension des Elements,

Q; - Integrationspunktvolumen/-fliche/-linge des Integrationspunkts i,
nrp - Anzahl der Integrationspunkte je Element,

Tabelle 3.1 zeigt, wie sich die charakteristische Liange als Elementeigenschaft fiir verschiedene

Integrationsmethoden in ANSYS bzw. Abaqus berechnet.

Im Ansatz nach Godde (2013) ist I, keine Elementeigenschaft, da das gesamte Rissband zur
Bestimmung der charakteristischen Lénge betrachtet werden muss. Aus Gleichung (2.38) kann
die Definition nach Gédde (2013) fiir den ebenen Fall abgeleitet werden:

pl
t,j
pl

£

RB
ZnIP Q.-
j=1 %%j
t,i

leni = —®B
Riss

€

Diese Definition entspricht fiir den Zugversuch bei konstantem Spannungsfeld und konsistenter
Rissbandausbildung der vereinfachten Definition nach Gleichung (2.39):
Arp

len,rB = JRB
Riss

3.1.1. Zentrischer Zug

Die in Abbildung 3.1 dargestellte ebene Zugprobe mit konstantem Querschnitt wird — in Er-
ginzung dhnlicher Voruntersuchungen in Gédde (2013) — zur Uberpriifung der Wirkungsweise
der verschiedenen Ansétze fiir den Parameter der charakteristischen Lénge herangezogen. Fiir
diesen Fall ist nach Abbau der Spannungen und vollstdndigem Bruch der Probe eine eindeutige
Zuordnung der Differenzverformung der Rissbandufer zu einer abgebildeten dquivalenten Riss-
breite moglich. Um eine Lokalisierung des Rissbands zu bewirken, muss das Material in einer
Elementreihe geschwécht bzw. in den iibrigen Elementen die Zugfestigkeit etwas heraufgesetzt

werden.

Fiir die Diskretisierung wird ein Elementraster von 4 x 12 quadratischen Elementen gewahlt. Fiir
das konkrete Beispiel mit den Elementabmessungen a = b = 10 mm ergeben sich die charakteristi-

schen Langen entsprechend der Tabelle 3.1 bei Elementen erster Ordnung einheitlich fiir alle In-
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Tabelle 3.1.: Charakteristische Lange in Abhéngigkeit des Integrationsschemas und der Element-
ordnung fiir den ebenen Fall

Anzahl IP np Elementtypen l.p, in ANSYS lep, in Abaqus
2x2
(1. Ordnung, 5+ ¥/ Aklem VAElem
voll
integriert)
1
(1. Ordnung, L ¥/ ARlem V/ Agtem
reduziert
integriert) |
l 5
A
3x3
(2. Ordnung, lehi-4 = 15 VABlem | leni-4= 5V ALlem
voll lens-8 = @ “VAElem | len5-8 = @ v/ AElem
integriert) leng = % vV AElem Len,g = % vV ABlem
2x2
(2. Ordnung, 2 ¥ Afiem 5/ Aklem
reduziert
integriert)

tegrationspunkte zu 5 oder 10 mm, bei quadratischen voll integrierten Elementen variiert der Pa-
rameter iiber das Element entsprechend der angegebenen Integrationpunktlage. Fiir den Ansatz
nach Goédde (2013) berechnet sich der Wert Elementtyp- und Integrationsschema-unabhingig
aufgrund der konsistenten, homogenen Rissbandausbildung und des konstanten Spannungsfelds:

exakt _ gvereinf  _
lch,Gédde = lch,Gédde =10 mm

Materialmodell: Entfestigungsverhalten

Das Nachrisstragverhalten wird fiir das Beispiel iiber eine linear fallende Spannungs-Dehnungs-
bzw. Spannungs-Rissbreiten-Beziehung vorgegeben, die iiber die Parameter der Zugfestigkeit f;
und einer Restspannung f;r gesteuert wird (vgl. Abbildung 3.2). Der Wert der materialspezifi-
schen Bruchenergie geht hier nur indirekt als Flache unter der Kurve ein.

74



3.1. Voruntersuchungen zur Netzabhéngigkeit

»
[
»
[
»
n

~

<
N

|
g

t =10 mm

[ =120 mm
[ ]

LA LSS
AOMONINIONINNNNNNNNNN

l<
<

/2 *

<

y A 4 A 4 A

e

b =40 mm

Randbedingungen:

Abmessungen: b = 40 mm,
[ =120 mm, ¢t =10 mm

E-Modul: E = 30.000 N/mm?
Querdehnung: v =0

eingepriagte Maximalverformung
u=1mm

volle Zugfestigkeit (grau):
fetwou = 5/0,9 ~ 5,56 N/mm?

reduzierte Zugfestigkeit (farbig):
f ct = 5N / mm2
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Abbildung 3.1.: Zentrische Zugprobe: System und Randbedingungen

»
»

epl

Abbildung 3.2.: Lineare Entfestigung unter Zug, wobei im numerischen Modell eine Restspan-
nung von fir nach vollstdndiger Entfestigung zuriickbleibt (numerische Stabili-

téit)

In Abaqus wird das Entfestigungsverhalten iiber Wertepaare aus Spannung und Rissweite, bzw.

Spannung und plastischer Dehnung (bei vorheriger Umrechnung aus der Rissweite) beliebig vor-

gegeben, in ANSYS kann der Benutzer fiir das MW-Modell zwischen linearer und exponentieller

Entfestigung entscheiden. Wie aus der ANSYs-Dokumentation bei Betrachtung der zugehorigen
Formeln aufféllt (ANSYS Inc., 2021, 2021), werden bei der Verwendung des linearen Entfesti-
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3. Strukturmodellierung

gungsverhaltens keine Maflnahmen gegen Netzabhéngigkeit getroffen. Die charakteristische Lén-
ge geht hier gar nicht ein. Um eine Netzabhéngigkeit zu verhindern, muss der Benutzer in jedem
Fall selbst die Spannungs-Dehnungs-Beziehung entsprechend bei Netzverfeinerung mithilfe eines

Modell-Parameters modifizieren.

In der folgenden Vergleichsrechnung? wurde das Netz nicht variiert, sondern mit der analyti-
schen Losung verglichen. Bei den ANSYS-Rechnungen wurde jeweils die charakteristische Lange
von Hand nach Gleichung (3.1) berechnet und die Spannungs-Dehnungs-Beziehung entsprechend
iiber € = ﬁ modifiziert vorgegeben. Somit wird fiir die drei betrachteten Ansétze der charakte-

(&

ristischen Lange wie folgt vorgegangen:

(i) Ansatz nach ANSyYs: Modifizierung des linearen Entfestigungsgesetzes mithilfe von Glei-
chung (3.1),

(ii) Ansatz nach Abaqus: Vorgabe einer Spannungs-Rissweiten-Beziehung (interne Anwendung

der implementierten Definition der charakteristische Lénge),

(iii) Ansatz aus der Literatur nach Gédde (2013): Vorgabe einer Spannungs-Dehnungs-Beziehung
(in Abaqus) nach Umrechnung mithilfe von Gleichung (3.1).

Vergleich der betrachteten Ansatze

In Abbildung 3.3a ist die Kraft-Verformungslinie fiir 4-knotige Elemente mit vollstdndiger In-
tegration im Vergleich zur analytischen Losung dargestellt. Die analytische Losung leitet sich
aus der vorgegebenen Spannungs-Rissweiten- bzw. -Dehnungs-Beziehung ab (siehe Abb. 3.2).
Die Verschiebung u entspricht der eingeprigten Verformung, die Zugkraft ' den aufsummierten
Auflagerkraften am Probenende. Die charakteristische Lange fiir ein Element mit den Abmes-
sungen 10 mm x 10 mm betrigt nach ANSYS fiir jeden Integrationspunkt l., =5 mm, Abaqus
kommt ebenso wie Gédde (2013) auf eine charakteristische Lénge von [, = 10 mm je Integrati-

onspunkt.

Es wird deutlich, dass sich der Faktor 2, um den sich die charakteristischen Langen un terschei-
den, im Ergebnis widerspiegelt: Die Ergebnisse aus Abaqus liefern die exakte Losung, die sich fiir
den Ansatz nach Goédde (2013) auch fiir andere Elementabmessungen und -formen nicht &ndert,
solange das Gesamtrissband gleich bleibt. Das Ergebnis aus ANSYS hingegen zeigt, dass die fiir
einen vollstdndigen Bruch notwendige Bruchenergie, also die Flache unter der Kurve, um den
Faktor 2 iiberschétzt wird. Deshalb kann bei einer Verformung von w = 1 mm noch die Hélfte
der maximalen Zugkraft tibertragen werden, wiahrend die Probe bei dieser Ausdehnung bereits

vollstdndig gebrochen sein miisste.

Da die Ansétze nach Gédde (2013) und Abaqus fiir Elemente erster Ordnung unabhéngig von

der Integrationsordnung das gleiche [, liefern, &ndert sich der Wert der charakteristischen Lange

2 mit Brokbals, 2021 entwickelt
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Abbildung 3.3.: Zugversuch: Kraft-Verformungs-Linie, 2D mit 4 Knoten
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Abbildung 3.4.: Zugversuch: Kraft-Verformungs-Linie, Verformung ermittelt aus Dehnungen
(gemittelt iiber alle IP), 2D mit 4 Knoten

bei Verwendung reduziert integrierter Elemente nicht. Fiir den ANSYS-Ansatz vergrofiert sich die

dem Integrationspunkt zugeordnete Fléche bei reduzierter Integration und die charakteristische

Léange betrdgt nun ebenfalls [, = 10 mm. Die Ergebnisse fiir diese Integrationsordnung sind in

Abbildung 3.3b dargestellt und entsprechend des gleichen Werts fiir die charakteristische Lénge

stimmen alle Graphen mit der analytischen Losung {iberein.
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3. Strukturmodellierung

Die Gesamtverformung setzt sich analytisch aus einem elastischen Anteil und der Rissweite nach
Gleichung (2.35) zusammen. Der elastische Verformungsanteil wird durch Multiplikation mit der
Probenlénge | bestimmt.

u=Aug+w=cc-h+ep Lo (3.3)

Berechnet man aus den Simulationsergebnissen fiir den jeweiligen Dehnungsanteil die Verfor-
mung iiber die Formel (3.3), ergeben sich jeweils die Graphen in Abbildung 3.4. Hier liegen
alle Graphen auf der analytischen Losung. Allerdings erreicht die ANsys-Kurve nur eine Ver-
formung von u = 0,5 mm anstelle der erwarteten u = 1 mm. Auf Nachfrage bei ANsys? wurde
dieses Verhalten damit erklart, dass bei vollstindiger Integration bzw. mehr als einer Integra-
tionspunktreihe programmintern von mehr als einem abgebildeten Riss ausgegangen wird. Im
Falle der 4-knotigen, vollintegrierten Elemente besitzt das Modell eine Elementreihe mit zwei
Integrationspunktreihen in Rissrichtung. Daher wird je Integrationspunktreihe die durch die
Spannungs-Rissweiten-Beziehung angenommene Bruchenergie abgebildet und damit ergibt sich
insgesamt fiir das System die doppelte Energie, wie in Abbildung 3.3 erkennbar. Betrachtet man
hingegen die plastische Dehnung bzw. die umgerechnete Kraft-Verformungslinie je Integrations-
punkt, wie in Abbildung 3.4, wird das erwartete Materialverhalten erkennbar. Dieses bezieht
sich jedoch nur auf einen der beiden laut Materialmodell angesetzten Risse, bzw. eine Integra-

tionspunktreihe. Daher erreicht hier die Verformung auch nur die halbe Rissbreite.

Bei der Verwendung des 8-knotigen Elements steht in ANSYS die Option, vollstdndig zu inte-
grieren, gar nicht zur Verfiigung. Daher fehlt der entsprechende Graph in Abbildung 3.5a und
3.5b. Nach Godde (2013) betriagt die charakteristische Lange je Integrationspunkt nach wie vor
len, = 10 mm. Die durch Abaqus vorgegebene charakteristische Lange ergibt sich integrations-

punktweise:

lch,IPl,..A ~ 4.1667 mm lch,IPB,..,S ~ 5.2705 mm lcthg ~ 6.6667 mm

In Abbildung 3.5b sind die Ergebnisse fiir die Diskretisierung mit reduziert integrierten Elemen-
ten dargestellt, bei denen sich die Definition der charakteristischen Lénge fiir den Abaqus- und
ANSYSs-Ansatz nicht unterscheiden und beide fiir jeden der vier Integrationspunkte den Wert
5 mm annehmen. In beiden Abbildungen sind Knicke bzw. Schwankungen im abfallenden Ast
zu beobachten, die auf algorithmische Instabilitédten zuriickgefithrt werden. Bei Betrachtung der
plastischen Dehnungen in den jeweiligen Integrationspunkten zeigt sich, dass zum Zeitpunkt
des ersten Knicks bzw. bei Abweichung von der Geraden die plastischen Dehnungen nicht mehr
konstant {iber das Rissband sind, sondern sich fiir einige Integrationspunkte abweichende Werte
ausbilden. Moglicherweise sind diese Effekte durch Stabilisierungsoptionen im jeweiligen Pro-
grammsystem zu begrenzen. Ein Variieren der Schrittweite und anderer Algorithmus-spezifischer
Parameter sowie ein Wechsel des Algorithmus’ hatten allerdings keinen zufriedenstellenden Ef-
fekt.

3 iiber den Vertriebspartner CADFEM, E-Mail vom 16.04.2021 (CADFEM, 2021)
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Abbildung 3.6.: Kraft-Verformungs-Linie, Verformung aus Dehnungen (gemittelt aus allen IP)
bestimmt, 2D mit 8 Knoten

Bis zum Erreichen des ersten Knicks in der jeweiligen Losung ist dennoch erkennbar, dass zwi-
schen den jeweils implementierten Definitionen und der von Gédde (2013) wieder der bereits

oben erwahnte Faktor 2 liegt: Wiirde die Gerade gedanklich iiber den jeweiligen ,,Storpunkt*
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hinaus verlangert, wiirde der Graph fiir « = 1 mm bei der Hélfte der maximalen Zugkraft enden.
Analog kann auch bei Darstellung der Kraft-Verformungs-Linie aus den Dehnungen eine Kor-
rektur der Lage der Kurve hin zur analytischen Losung, aber eine Verringerung der Verformung
um den Faktor 2 beobachtet werden. Bei der Umrechnung muss ein Mittelwert der plastischen
Dehnungen aus den vorhandenen Integrationspunkten je Element bzw. im Rissband gebildet
werden, da diese sich ab dem Knick im Falle der implementierten Definitionen stark voneinan-

der unterscheiden.

Aus der Tatsache, dass der Ansatz nach Godde (2013) in allen Rechnungen eine nahezu ex-
akte Ubereinstimmung mit der analytischen Losung liefert, kann abgeleitet werden, dass die
zugehdrige Definition der charakteristischen Linge wie angestrebt fiir das betrachtete Beispiel
eine vollkommen objektive Losung liefert. Wie Godde (2013) auflerdem in seiner Arbeit zeigt,
liefern auch verzerrte Elementgeometrien und andere, durch ihn differenzierte Klassen der Riss-
bandausbildung ein in der Regel exaktes Ergebnis oder zumindest eine ndherungsweise gute

Ubereinstimmung mit der exakten Losung.
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héltnisses (by, entspricht der urspriinglichen tens in z-Richtung (x, entspricht der Ur-
Elementbreite) sprungskoordinate)

Abbildung 3.7.: Kraft-Verformungs-Linie eines Zugversuchs nach Oliver (1989) mit verzerrten
Elementen bzw. variierten Seitenverhéltnissen

Beispielhaft ist in Abbildung 3.7 untersucht, wie sich eine Abweichung der Elementgeometrie
von der quadratischen Form auf die Abaqus-Definition auswirkt (b ist die variierte Elementbreite
in 3.8a, x ist die variierte x-Koordinate des verschobenen Knotens in 3.8b). Bei Definition der
charakteristischen Lénge nach Goédde (2013) zeigt sich dieses Verhalten aufgrund der gesamt-

heitlichen Betrachtung des Rissbands anstelle einer Betrachtung als Elementeigenschaft nicht.
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(a) Verzerrung durch Variieren (b) Verzerrung durch Verschie- (¢c) Unverzerrt
des Seitenverhéltnisses bung eines Knotens

Abbildung 3.8.: Beispiel fiir verzerrte Elementgeometrie (rot: geschwichte Elemente bzw. Riss-
band)

Fazit

Es zeigt sich in den betrachteten zweidimensionalen Elementen, dass die Definition nach Go6d-
de (2013) in allen Fillen element- und integrationsunabhéngig die analytische Losung abbilden
kann und damit eine objektive netzunabhéngige Regularisierung liefert. Dies ist fiir die in den
kommerziellen Programmen definierten Gréflen nicht gegeben: Abaqus liefert zwar fir die Ele-
mente 1. Ordnung zunéchst ein besseres Ergebnis als ANSYS, allerdings beruht das ,,schlechtere*
Ergebnis von ANSYS auf einer falschen Theorie-Annahme auf Basis der Dokumentation, da aus
dieser nicht hervorgeht, dass die Anzahl der Integrationspunktreihen die abgebildete Rissanzahl
vorgibt.

Dass diese zugrundegelegte Annahme nicht aus der Dokumentation hevorgeht, erschwert die
sinnvolle Anwendung des Modells. Hinzu kommt, dass bei Abbildung eines einzelnen Risses die
Verwendung von Elementen mit mehr als einem Integrationspunkt nur eingeschrénkt moglich
ist: Bei linearer Entfestigung wie im vorliegenden Fall miisste es entweder moglich sein, den In-
tegrationspunkten im Element ein unterschiedliches Materialverhalten vorzugeben?*, damit nur
eine der Integrationspunktreihen entfestigt. Alternativ misste man den Elementen eine um den
jeweiligen Faktor (bei mehr als einer Elementreihe steigert sich der Faktor auf ein Vielfaches von
2) korrigierte Spannungs-Dehnungs-Linie vorgeben, um den Effekt der Ausbildung zweier Risse
bei der Berechnung zu kompensieren. Das ist im Fall des Zugversuchs und der einfach zu identifi-
zierenden Rissrichtung und Integrationspunktreihen moglich. Aber schon bei dreidimensionalen
Elementen, bei denen die Integrationspunkte® unter Umstinden nicht in Rastern angeordnet
sind oder bei Problemen mit gekriimmter oder variierender Rissrichtung ist die Identifikation
nicht mehr ohne Weiteres moglich. Hinzu kommt, dass bei linearer Entfestigung standardméfig
keine Regularisierung vorgesehen ist, was nur durch eine genauere Betrachtung der zugehorigen
Formeln in der Dokumentation vermittelt wird ANSYS Inc., 2021.

Es ist festzuhalten, dass die Wahl der Integrationsordnung in ANSYS einen grofien Einfluss auf
die Ergebnisse hat. Bei der Modellierung eines einzelnen bzw. einer bestimmten Anzahl Risse

ist daher die Entwicklung plastischer Dehnungen in den Integrationspunkten sorgfiltig zu beur-

4 Dies ist in ANSYS nicht moglich; in Abaqus gelingt dies iiber eine Benutzer-Subroutine

wie in ANSYS: 14 Integrationspunkte beim Solid186-Element
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teilen und bei der Auswertung der Ergebnisse zu beriicksichtigen. Am Beispiel des Zugversuchs,
bei dem physikalisch nur ein Riss entstehen wiirde, ist erkennbar, dass die Verwendung voll
integrierter Elemente andernfalls zu inkonsistenten Ergebnissen fithrt. Im Fall der exponenti-
ellen Entfestigung ist der Parameter der charakteristischen Lénge im Gegensatz zum linearen
Ansatz direkt implementiert und muss nicht mehr in die Spannungs-Dehnungs-Linie in ANSYS
eingerechnet werden, um die Netzabhéngigkeit zu reduzieren. Das bedeutet allerdings auch, dass
eine Beeinflussung des Entfestigungsverhaltens zur Sicherstellung einer korrekten Abbildung der

physikalisch vorhandenen Rissanzahl schwieriger wird.

Die Ergebnisse aus Abaqus zeigen fiir Elemente 1. Ordnung im Vergleich zwar bessere Ergeb-
nisse, bei den Elementen 2. Ordnung ist das Verhalten jedoch vergleichbar mit dem in ANSYS.
Dieses Verhalten ist nicht wie in ANSYS iiber die Anzahl der abgebildeten Risse zu erklidren
(aufgrund der Inkonsistenz zu den Ergebnissen der Elemente 1. Ordnung), und wirkt aufgrund

fehlender Erlduterung in der Dokumentation fast willkiirlich (Dassault Systemes, 2021).

Weder in der Abaqus- noch in der ANSYs-Dokumentation wird im Detail auf die Besonderheiten
der Netzabhéngigkeit bei Verwendung dieser verschmierten Rissmodelle eingegangen (Dassault
Systemes, 2021; ANSYS Inc., 2021). Dieses einfache Beispiel zeigt jedoch, dass eine falsche Ver-
wendung bzw. eine Verwendung unter falschen Annahmen grofie Auswirkungen haben kann.
Natiirlich ist die Verwendung fiir unbewehrte Bauteile nicht die Regel und der einfache Zugver-
such eher ein akademisches Beispiel, dennoch sollten diese Einschrankungen bei der Modellierung

bekannt sein, sodass der Einfluss bei jedem Modell sinnvoll beurteilt werden kann.

Im Hinblick auf die Nachrechnung von Biegebalken- und Plattenversuchen soll im folgenden
Kapitel auf die zusétzlichen Besonderheiten im Hinblick auf die Verwendung der charakteristi-
schen Lange bei Biegung, insbesondere auch bei rdumlicher Rissbildung im Vergleich zum bisher

betrachteten Zugversuch, eingegangen werden.

3.1.2. Biegung

Wie bereits in Kapitel 2.2.5 erwdhnt, besteht im Vergleich zum betrachteten Zugversuch bei
Biegeproblemen wie dem Biegezugversuch die Besonderheit einer variierenden Rissbreite iiber
das Rissband. Vereinfachend kann die vereinfachte Definition nach Gleichung (2.39) Anwendung
finden, was im Rahmen der FE-Berechnung leichter umzusetzen ist. Wiirde man die exakte De-
finition implementieren, miisste man u.U. jedem Integrationspunkt bzw. jedem Bereich (vgl.
Abbildung 2.29) iterativ ein eigenes Materialgesetz zuweisen. Dies ist im Falle des Biegezugver-

suchs noch iiberschaubar, im allgemeinen Fall jedoch sehr aufwendig.

Im folgenden Kapitel werden Messdaten aus Versuchen an Estrich-Biegebalken mithilfe der ver-
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einfachten Definition nach Gleichung (2.39) nachgerechnet. Diese Definition hat sich nach Gédde
(2013) fur die Nachrechnung von Biegezugversuchen als ausreichend exakt und praktikabel er-

wiesen.

Versuchsdaten

(mm] Durchbiegungs-abhingige
Beidseitige, schadensfreie F . Lastaufbringung
Befestigung Stahlbalken an der
des Stahlbalkens Balkenunterkante zur
am Balken Messung der Durchbiegung
68 WA1
waz 11 was
340
410

Abbildung 3.9.: Randbedingungen fiir einen verformungsgesteuerten Biegezugver-
such, wobei die Messung aus Wegaufnehmer WA1 dazu dient, die
Lastaufbringung zu steuern und WA2 und WAS3 kontrollieren die
Schiefstellung des Stahlbalkens, der zur Messung der Durchbiegung
WAT1 an der Unterkante des Balkens positioniert ist (vgl. Abb. C.1)

Im Rahmen einer Untersuchung am Lehr- und Forschungsgebiet fiir Werkstoffe im Bauwesen
(BUW) wurden Prismen verschiedener Dicke systematisch untersucht. Ziel war es, den Einfluss
der Einbauhohe von Estrichen auf iiber die Héhe verdnderliche Materialeigenschaften infolge
unterschiedlich stark eingebrachter Verdichtungsenergie zu erfassen. Hierfiir wurden Proben aus
unterschiedlich dicken Platten entnommen, wobei die Proben héherer Dicke iiber die Hohe zur
Priifung in zwei bis drei Teile geteilt wurden. So konnten Zug-, Druck- und Biegezugfestigkeit
fiir verschiedene Dicken und iiber die Hohe bestimmt und verglichen werden. Fiir die vorliegende
Arbeit wurden drei Proben einer 68 mm dicken Platte zusétzlich bis in den Nachrisszugbereich
belastet, sodass hier das Nachrissverhalten mithilfe des CDP-Modells aus Abaqus nachgerech-
net werden konnte. Im Hinblick auf das verwendete Material sind keine genaueren Details zur
Zusammensetzung des Estrichs bekannt. Der Versuchsaufbau des Drei-Punkt-Biegezugversuchs
kann Abbildung 3.9 (Foto des Versuchsaufbaus siehe Abbildung C.1 im Anhang) entnommen

werden.

Die Proben zur Bestimmung der Nachrisszugfestigkeit besitzen jeweils eine Stiitzweite von
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340 mm, eine mittlere Lénge von 410 mm und Querschnittsabmessungen von d/b = 68/61 mm.
Die aus den Festigkeitspriifungen bestimmten Werte kénnen dem Anhang (Anhang C) entnom-
men werden, und dienen der Simulation als Eingangswerte fiir die Materialparameter der Druck-
und Zugfestigkeit (abgeleitet aus der Biegezugfestigkeit~ 2- Zugfestigkeit). In Abaqus wird fiir
die Bruchenergie ein Wert zwischen 0.04 und 0.12 N/mm empfohlen. Gédde (2013) verwendet
Werte zwischen 0.07 und 0.12 N/mm. Die Bruchenergie wird in den folgenden Nachrechnun-
gen zunéchst innerhalb des Intervalls [0.04;0.12] N/m variiert und die Kurve so méoglichst gut

angendhert.

System und Elementwahl

In Abbildung 3.10 ist beispielhaft ein System mit 32 x 9 Elementen dargestellt. Die Beanspru-
chung wird als Verformung an den beiden mittleren, oberen Knoten eingepridgt, um auch das
Nachbruchverhalten numerisch zu erfassen. Zur Veranschaulichung der Netzunabhéngigkeit der
Ergebnisse werden drei unterschiedliche Netze betrachtet: 16, 32 und 64 Elemente iiber die Stiitz-
weite, jeweils 9 Elemente tiber die Hohe. Das CDP-Modell (Abaqus) wird mit der vereinfachten
Definition fiir /., nach Gédde (2013) und einer exponentiell abfallenden Spannungs-Rissweiten-

Beziehung entsprechend
It

o(w) = fi e Of, mit w= Pl (3.4)
verwendet. Die charakteristische Lange ergibt sich nach vereinfachter Definition und nach Ab-
bildung 2.28 zu

len=2- lm,Elem (35)

Abbildung 3.10.: Systemplot des Biegezugbalkens mit 23 x 9 kontinuumsbasierten
Schalenelementtyps SC8R

Das in dieser Arbeit verwendete kontinuumsbasierte Schalenelement SC8R entspricht geome-
trisch einem Kontinuumselement und besitzt an jedem seiner acht Knoten drei Verschiebungs-
und keine Verdrehungsfreiheitsgrade (sieche Abbildung 3.11). Mechanisch basiert das Element auf
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einer Schalentheorie, bezieht also die inneren Kraft- und Weggrélen auf die Schalenmittelflache
und besitzt eine ,,Dickenrichtung®, in welcher entsprechend abweichende Definitionen fiir die Ki-
nematik und die Materialintegration Anwendung finden. Aufgrund der geometrischen Form l&dsst
sich das Element in Dickenrichtung stapeln (dufileres Mehrschichtenkonzept), bei nichtlinearem
Materialverhalten kann es sinnvoll sein, innere ,Layer® zu definieren (inneres Mehrschichten-
konzept zum Beispiel zur Berticksichtigung von Bewehrungseinfliissen; hier nicht angewendet).
Geméf Abaqus-Dokumentation kann das Element Biegetragwirkungen sehr gut abbilden. Insbe-
sondere Versteifungseffekte infolge Dicken- bzw. Poisson-Locking, welches durch parasitiare Di-
ckenspannungen verursacht wird, kann durch Null-Setzen einer ,,effektiven“ Poisson-Zahl zusétz-
lich zur herkdmmlichen Querdehnung verhindert werden (Godde, 2013; Jun, 2002; Koschnick,
2004; siche auch Abbildung 3.12). Im Hinblick auf die Lokalisierung infolge der Rissbildung
diirfte im betrachteten 3-Punkt-Biegezugversuch theoretisch keine Schwéchung der Rissband-
elemente notwendig sein, da die Momentenlinie unter der Last ein Maximum aufweist und dort
entsprechend der Spannungsanstieg eine Rissbildung unter der Last induziert. Allerdings zeigt
sich in der Regel bei Betrachtung der plastischen Dehnungen, dass sich auch hier ein breiteres
Rissband einstellt als erwartet. Da dieses Verhalten bisher nicht abschlielend erklért bzw. anders
verhindert werden kann, werden in den nachfolgenden Berechnungen analog zum Zugversuch die
beiden mittleren Elementreihen durch Reduzierung der Zugfestigkeit geschwécht. Wie hiermit
im Hinblick auf die weiteren Simulationen in dieser Arbeit umgegenagen wird, wird in Kapitel 4

erlautert.

u Kontinuumsbasiertes Schalenelement Pz
zy Uy Schalenelement u t - Py
ux /_\ Z uy
— ux QDx

(a) Unterscheidung zwischen kontinuumsbasiertem und klassischem Schalenelement

uZ
Uy n
7 8 4,8 T 3,7
IP | U
1
S ST O 3 1P ;
5 e L >
Dicken- - ‘< 6 ¢
icht e
richtung 11.- 2
15 2,6

(b) Dickenrichtung = Richtung der Stapelung, lokales KOS und Ort des Integrationspunkts

Abbildung 3.11.: Definition des Elementtyps SC8R

Der Elementtyp SC8R weist nur einen Gauf3-Integrationspunkt auf, was bei Biegung in der Scha-

lenebene eine Netzdichte mit mindestens zwei Elementen erforderlich macht (Dassault Systemes,
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2021). Insgesamt ist die Wahl kontinuumsbasierter Schalenelemente aufgrund der zugrundelie-
genden Schalentheorie fiir die Anwendung auf Balken- und Plattensysteme gleichermafien geeig-
net, und ist auch numerisch effizienter gegeniiber anderen Elementtypen (Godde, 2013). Nach
Godde (2013) zeigt sich bei Kontinuumselementen ein héherer Elementbedarf, der sich negativ
auf den Rechenzeitaufwand auswirkt. Zusammenfassend weist der Elementtyp gegeniiber reinen

Kontinuums- und Schalenelementen folgende Vorteile auf (Godde, 2013):

o numerische Effizienzsteigerung infolge der Schalentheorie bei biegebeanspruchten flichigen

Strukturen gegeniiber der Kontinuumstheorie,
e Mehrschichtenkonzept zur Kompensation des linearen Dehnungsansatzes iiber die Hohe,

o Hoher Lokalisierungsgrad und effektive Regularisierung infolge niedriger Elementordnung.

Simulationsergebnisse

In Abbildung 3.12a ist die zur eingeprigten Verschiebung korrespondierende Kraft gegeniiber
der Verschiebung in Balkenmitte an der Unterseite dargestellt. Vergleichend sind die Berech-
nungen dreier Vernetzungen dargestellt, und zuséatzlich auch Berechnungen mit der charakteris-
tischen Lénge nach Abaqus. Es ist erkennbar, dass die Lésungen fiir die Definition nach Gédde
(2013) netzunabhingig tibereinstimmen und die Losungen fiir die charakteristische Lange nach
Abaqus leicht davon abweicht, aber in sich auch netzunabhédngige Kurven zeigt. Worauf die Ab-
weichung zuriickzufiihren ist, konnte nicht abschlieend geklart werden. Im weiteren Verlauf
wurde das 32 x 9-Netz weiterverwendet. In Abbildung 3.12b wird der Einfluss der effektiven
Querdehnzahl, die bei Schalenelementen definiert werden kann, untersucht. Dieser Parameter
beeinflusst die Lokalisierung mafigeblich: Wird die effektive Querdehnzahl gar nicht definiert,
wird der Default-Wert v.g = 0.5 angesetzt, was zu einer schlechten Lokalisierung und damit
einer deutlichen Uberschitzung der maximalen Kraft fithrt. Damit geht ein nahezu horizonta-
ler Entfestigungsast und eine Uberschitzung der Bruchenergie einher. Bei Reduzierung dieser

Querdehnzahl senkt sich die Kurve ab und es ergibt sich der erwartete Verlauf fiir veg = 0.

In Abbildung 3.13 sind die Versuchsergebnisse zusammen mit einer homogenen (mit zwei ver-
schiedenen Werten fiir die Bruchenergie Gf) und einer iiber die Hohe in den Materialeigen-
schaften variierten Modellierung dargestellt. Fiir die letzte Variante wurden die Elemente {iber
die Hohe in drei Bereiche eingeteilt und den Elementen die an den gesdgten Balken ermittelte
Druck- und daraus abgeleitete Zugfestigkeit zugewiesen, wobei die Bruchenergie unveranderlich

iiber die Hohe bei Gy = 0.16 Nmm/mm? gehalten wurde (jeweils in N/mm?):
Obere Schicht: f, = 32, f; = 3.0
Mittlere Schicht: f. =25, f; = 2.8
Untere Schicht: f. =24, f; =2.6
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(a) Einfluss der Netzdichte, veg =0 (b) Einfluss Poisson-Locking, ngiem x = 32

Abbildung 3.12.: Simulation Biegezugversuch, Einfliisse aus Netzdichte und Poisson-Zahl,
Gy =0.16 N/mm

Fir den homogenen Fall wurden die Werte aus der unteren Schicht angesetzt. Als E-Modul
wird F = 33000 N/mm?, als Querkontraktionszahl v = 0.2 vorgegeben. Im Diagramm ist erkenn-
bar, dass sich zum einen eine gute Ubereinstimmung zwischen den Versuchsergebnissen und den
Kurven einstellt und zum anderen, dass das variierende Verhalten tiber die Querschnittshéhe im
Gegensatz zur Bruchenergie kaum einen Einfluss auf den abfallenden Ast zu haben scheint. Der
abfallende Ast stimmt mit dem Verlauf der dritten Probe fiir Gy = 0.16 Nmm/ mm? am besten
iiberein, die beiden anderen Proben liegen etwas darunter und stimmen im Nachbruchbereich

besser mit der niedrigeren Bruchenergie iiberein.

In Abbildung F.1 im Anhang F.1 sind beispielhaft die Spannungen und plastischen Dehnun-
gen iiber die Querschnittshohe dargestellt. Die Umrechnung der plastischen Dehnungen fiir
eine Durchbiegung von u = 0.64 mm am Ende der Berechnung nach Gleichung (2.35) liefert
eine Rissweite von w = 5§l “Aep, = 0.025-21.25 mm = 0.53 mm. Da die Rissweite im Versuch
nicht gemessen wurde, kann dieser Wert nicht mit Versuchswerten verglichen werden. In der
DIN EN 14651:2007, die allerdings fiir Beton mit metallischen Fasern gilt, wird eine Formel zur

Umrechnung der ,crack mouth opening displacement“ CMOD in eine Durchbiegung angegeben:
§=0.85-CMOD +0.04, mit CMOD in [mm].

Nach dieser Formel ergébe sich bei Einsetzen der umgerechneten Rissweite fiir CMOD eine

Durchbiegung von 0.49 mm, also ein etwas geringerer Wert als die ermittelte Durchbiegung
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Abbildung 3.13.: Nachrechnung Biegezugversuch (Messdaten aus Roschkowski, 2021)

von etwa 0.64 mm, aber zumindest die Groflenordnung ist passend. Die Abweichung kann aus
der fehlenden Eignung fiir Estrich der CMOD-Formel, aber auch aus Versuchsungenauigkeiten

rihren. Die Ursache wird hier nicht genauer untersucht.

Fazit

Die Untersuchungen zu infolge Biegung induzierten Rissen zeigt eine sehr gute Ubereinstimmung
zwischen Messdaten und Simulation eines Biegezugversuchs bis in den Nachbruchbereich. Dass
der gewéhlte Elementtyp inklusive der Regulierung von Locking-Effekten, die das Rissverhalten
numerisch beeinflussen kénnen, fir die Abbildung von biegebeansprucht reifenden Strukturen
gut geeignet ist, bestdtigen die Simulationsergebnisse. Durch die vereinfachte Definition der
charakteristischen Linge nach Goédde (2013) ist keine Netzabhingigkeit erkennbar, sodass das
hier verwendete Modell fiir die weitere Validierung gebetteter Strukturen herangezogen wird.

Zunéchst sind jedoch Festlegungen zur Dammsteifigkeit und zur Kontaktmodellierung zu treffen.

88



3.2. Bettungsmodellierung

3.2. Bettungsmodellierung

3.2.1. Modellierung des Aufschiisselns: Kontaktproblem

Wie in Kapitel 2.1.1 erldutert, kann es vor allem wéahrend der Erhédrtung infolge von Schwin-
den zu einem Aufschiisseln der Estrichplatte kommen, dem das Eigengewicht entgegenwirkt. In
Abhéngigkeit der Geometrie, der Estrichrezeptur und den dufleren Randbedingungen fiihrt dies
zu einer initial aufgeschiisselten Verformungsfigur und einem initialen Spannungszustand aus
Zwang infolge Eigengewichts. Daraus ergeben sich fir die Modellierung zwei Problemstellungen:
Zum einen die Ermittlung der Initialverformungen und -spannungen, zum anderen die Model-
lierung des Kontaktproblems, sobald sich die Plattenecke infolge duflerer Belastung wieder auf

dem Démmstoff ablegt.

Vorverformungen aus Schwinden

Um den Einfluss auf die Rissbildung zu erfassen, wurden sowohl die Schwindverformungen ex-
perimentell aufgezeichnet als auch die Initialverformung und Vorbeanspruchung bei der Nach-
rechnung der Plattenversuche beriicksichtigt. Eine tiefer gehende Einarbeitung in die komplexe
Problematik der Erhartungs- und Schwindsimulation wiirde den Rahmen dieser Arbeit iiberstei-
gen. Nietner (2009) hat zur Untersuchung des Schwindverhaltens von Betonen und Estrichen das
FE-Programm croc entwickelt (vgl. Nietner, 2009, croc-Handbuch (2019)%). Um das Schwind-
verhalten der in dieser Arbeit untersuchten Platte zu beriicksichtigen, wurden die Ergebnisse

einer croc-Simulation als Ausgangspunkt der eigenen Risssimulation verwendet.

Bei der in croc durchgefiithrten Simulation handelt es sich um eine gekoppelte Wéarme- und
Feuchtetransport-Berechnung, wobei sich die Estrich-Eigenschaften infolge Hydratation wah-
rend der Berechnung fortlaufend dndern. Fiir Informationen zu den Eingangsparametern sei auf
die Angaben in Anhang B verwiesen. Fiir die nichtlineare Simulation wurden fiir die feuchte-
technischen Materialkennwerte (Hydratationsgrad abhéngig von der Warmeentwicklung, Festig-
keitsentwicklungen abhéngig vom Hydratationsgrad) Annahmen basierend auf Literaturanga-
ben (Wiegrink, 2002, Kiinzel, 1994, Foos, 2005) und Erfahrungswerten getroffen. Hinsichtlich
der Zusammensetzung und korrespondierender Eigenschaften wird ein iiblicher Zementestrich
zugrunde gelegt, da genauere Angaben zur Zusammensetzung fiir den im Versuch verwendeten
Estrich (vgl. Kap. 4) nicht ndher bekannt waren. Es ist aufgrund des zusétzlichen Gips-Anteils
im verwendeten Estrich davon auszugehen, dass die Annahme eines rein zementgebundenen
Estrichs in der Simulation nur eine Néherung liefert. Auch wird der errechnete Spannungszu-
stand aufgrund fehlender Dehnungsmessung und damit fehlender realer Messwerte wihrend der
Erhéartung nur ndherungsweise mit dem tatséchlichen Zustand iibereinstimmen. Fiir die ange-

strebte Untersuchung, inwieweit Vorverformung und eingeprigte Zwangsspannungen iiberhaupt

6 geschrieben in FreePascal zur Berechnung gekoppelter thermischer, hygrischer und mechanischer Probleme
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Einfluss auf die Rissbildung haben, ist dieser Ansatz jedoch ausreichend.

Symmetrierand-
bedingungen

Abbildung 3.14.: Symmetrieausnutzung bei Simulation der Aufschiisselung der Plat-
te infolge Schwinden

In der Schwind-Simulation wird nur ein Viertel der Platte modelliert (vgl. Abbildung 3.14),
um den erheblichen Rechenzeitaufwand moéglichst gering zu halten. Die Viertelplatte wird in
Plattenmitte (Kreuzungspunkt der Symmetrieachsen) vertikal gehalten und weist mechanisch
nur Symmetrie-Randbedingungen auf (Unterbau bzw. Dammstoff werden in croc nicht mit mo-
delliert). Diese Lagerung wurde aufgrund der erwarteten Verformungsfigur gewéhlt (Abheben
der Ecken und Rénder). Aufgrund der isolierenden Folie zwischen Estrich und Unterbau spielt
der Unterbau fiir den simulierten Warme- und Feuchtetransport keine Rolle. Der Lastfall Ei-
gengewicht wird daher auch erst nach Import in Abaqus und unter Bettungsrandbedingungen
betrachtet. Da sich herausgestellt hat, dass der Einfluss der so ermittelten Eigenspannungen
auf die Ergebnisse im untersuchten Fall vernachldssigbar ist (vgl. Abbildung F.4 im Anhang),
wurde schlieffilich nur die aufgeschiisselte Verformungsfigur aus croc als Ausgangszustand fir
die weiteren in Abaqus untersuchten Lastfille verwendet. Hierauf wird bei der Auswertung der
Plattenversuche noch genauer eingegangen. Die croc-Simulation lieferte demnach lediglich die
Verschiebungsfigur relativ zur fest gehaltenen Plattenmitte, was beim spéteren Vergleich mit
den Messwerten berticksichtigt werden muss. Die Vorgabe des Verformungszustands erfolgte bei
Ubernahme des Elementnetzes aus croc iiber die Definition der Knotenkoordinaten entsprechend
der verformten Konfiguration. Fiir die Vorgabe eines initialen Spannungszustands gibt es in Ab-
aqus verschiedene Moglichkeiten: Der Spannungszustand kann elementweise vorgegeben werden,
d.h. in Form von elementweise gemittelten Spannungen. Alternativ wird den Integrationspunkten
der Elemente durch Verwendung einer Benutzer-Subroutine die ungemittelte Spannung zugewie-

sen.
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Modellierung des Kontakts

In kommerzieller Software wie ANSYS oder Abaqus sind Verfahren zur Kontaktmodellierung
implementiert, die zum Beispiel iiber Penalty-Verfahren verhindern, dass sich zwei Kérper durch-
dringen. In der Regel ist ein Koérper dabei als ,,Master bzw. ,,Contact“-Koérper und der andere
als ,,Slave“- bzw. ,Target“-Korper definiert. Diese Definition sollte sich u.a. nach der Kriimmung
der Oberfliachen, der Steifigkeit der in Berithrung kommenden Materialien sowie der Netzfeinheit
der beiden Kérper richten, um ein stabiles Verhalten sicherzustellen (ANSYS Inc., 2021). Es gibt
verschiedene Verfahren, den Kontakt zu modellieren. In jedem Fall entsteht dadurch eine zusétz-
liche nichtlineare Komponente, die die Stabilitat der Berechnung beeinflusst. Da die Bewegung
des Estrichs auf den Dadmmstoff iiber eine geringe Distanz erfolgt und der zuriickgelegte Weg im
Vorhinein bekannt ist, soll der Modellaufbau nicht durch komplexe Kontaktbedingungen ver-
kompliziert werden. Um auflerdem eine gewisse Transparenz bei der Modellierung des Kontakts
zu gewéhrleisten, was bei den vorimplemenierten Algorithmen nicht zwingend gegeben ist, wird
der Kontakt stattdessen iiber nichtlineare Federn modelliert, die zwischen den kontinuumsba-
sierten Schalenelementen des Estrichs und den ebenfalls durch Federn modellierten Dammstoff

zwischengeschaltet sind.

In Abbildung 3.15 ist der theoretische Ablauf bei der Modellierung des Kontakts durch Ablegen
der Platte infolge des Eigengewichts nach Aufschiisseln infolge von Schwindeinfliissen zu sehen.
Links ist die reale Situation dargestellt: Zunéachst ist nur der Dédmmstoff frei in der Schalung
eingebaut (a). Unmittelbar nach der Betonage ist der Dammstoff durch das Eigengewicht (EG)
der Platte um ein unbekanntes Mafl komprimiert (b). Infolge des Erhértungs- und Schwindpro-
zesses schiisselt die Platte auf, sodass der Dammstoff an den Réndern und Ecken entlastet wird,
da sich die Platte anhebt, und in Plattenmitte weiter zusammengedriickt wird (c). Um diesen
Vorgang néherungsweise korrekt numerisch abzubilden, werden die Verformungsfigur sowie ggf.
die Spannungen infolge von Erhédrtung und Schwinden aus croc nach Abaqus importiert. Das
Eigengewicht ist hier noch nicht beriicksichtigt (d). In Abaqus wird die Platte auf ein System
aus Einzelfedern gelagert, deren Steifigkeitseigenschaften die Bettung auf dem jeweiligen Damm-
stoff abbilden (e, blaue Federn). Zwischen diesen Federn und der aufgeschiisselten Platte werden
nichtlineare Einzelfedern angeordnet (rot), deren Steifigkeit zu Beginn der Simulation bis zum
Uberwinden der jeweiligen Federlinge niherungsweise Null ist und dann stark ansteigt und die
Federn ndherungsweise unendlich steif werden. Dariiber wird der Kontakt zwischen Platte und
Federsystem realisiert, sobald das Eigengewicht der Platte aufgebracht wird, und die Platte sich
dadurch absenkt (f). Der Zustand in (f) sollte die reale Situation in (c) ausreichend gut anné-
hern. Es entsteht lediglich ein Fehler aufgrund des unbekannten Absolutmafles der Einsenkung
des Estrichs in den Dammstoff (a — b). Im Versuch gemessen und entsprechend in der Simula-
tion vorgegeben werden kann nur die relativ gemessene Verschiebung zwischen (b) und (c). Das
Einsenkmafl von (a) nach (b) ist unbekannt, beeinflusst aber den tatséchlichen Abstand zwi-

schen Estrich und Dammstoff im aufgeschiisselten Zustand (c). Dadurch stimmt die Ordinate der
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Abbildung 3.15.: Gegeniiberstellung der Aufbringung des Eigengewichts (EG) und anschliefien-
der Schwindwirkung im Versuch (links) gegeniiber der numerischen Modellbil-
dung bei Beriticksichtigung des Schwindeinflusses aus externer Rechnung (croc)
als Vorverformung und anschlieBendem Aufbringen des Eigengewichts; Veran-
schaulichung der Kontaktmodellierung iiber zwischengeschaltete nichtlineare
Federn (rot) zwischen Estrich und Bettung (blau, rechts)

Aufschiisselung an der Ecke (f) zum Endzeitpunkt nach Wirkung des Eigengewichts bei Vorga-
be einer relativen Aufschiisselung (d) mit dem gemessenen, relativen (b-c) Maximalwert an der
Ecke nicht zwingend tberein, da diese auch von der Dadmmstoffwirkung zuvor (a-b) abhingt.
Diese Unsicherheit ist in den nachfolgend in Kapitel 6.3 und 7.1 beschriebenen Simulationen
stets enthalten. Alternativ miisste die Ordinate der initial vorgegebenen Schiisselung iterativ an
die aus den Messdaten (und damit ebenfalls nur gendherte) Schiisselung angepasst werden. Es
wird davon ausgegangen, dass der Einfluss auf die zentrale Untersuchung des Schwindeinflusses
gering ist, da dieser Effekt in allen Berechnungen gleichermaflen unberticksichtigt bleibt. Unter
der Annahme, dass die GroBlenordnung dieses Fehlers im mm-Bereich und damit héchstens im

Bereich iiblicher Messungenauigkeiten liegt, wird dies nachfolgend vernachléssigt.

3.2.2. Ermittlung der Steifigkeitseigenschaften des Dammstoffs im Versuch

Neben dem Federgesetz fiir den Kontakt sind fiir die darunter angeordneten Federn zur Mo-

dellierung des Dammstoffs die Steifigkeitseigenschaften zu ermitteln. Fiir die im Rahmen dieser
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Arbeit durchgefithrten Untersuchungen wurde als Dammstoffmaterial Steinwolle gewédhlt, da
die Verwendung als Ddmmmaterial in der vorliegenden Anwendung iiblich ist und Varianten
gleichen Materials und unterschiedlicher Steifigkeit zur Verfiigung stehen. Um einen Eindruck
zu erhalten, welchen Einfluss die Steifigkeit des Dammstoffs auf die Rissbildung hat, wurde
der Dammstoff mit der hochsten (,TP“) und niedrigsten Zusammendriickbarkeit (, TP-GP¢,
Herstellerangabe nach DIN EN 13162:2015, siehe Tabelle 3.2) im Sortiment der Firma Knauf

Insulation ausgewahlt.

Tabelle 3.2.: Kennzahlen des gewéhlten Dammstoffmaterials (nach Produktdatenblatt, Zusam-
mendriickbarkeit bestimmt nach DIN EN ISO 29770:2022 und daraus abgeleitete
Bettungszahl KS nach Manns und Zeus (1980))

Bezeichnung | Material Dicke | Verkehrslast | Zusammendriickbarkeit ¢, | KS
Hersteller (Messwert im Versuch) [MN/m3]
TP Steinwolle | 30 mm | bis 5 kPa < 5mm (2.6 mm) 0.35 (0.67)
TP-GP Steinwolle | 20 mm | bis 20 kPa | < lmm (0.4 mm) 1.75 (4.38)

Versuche in Anlehnung an Zusammendriickbarkeitsermittlung

Die vom Hersteller angegebene, normative Zusammendriickbarkeit ist lediglich ein Anhaltswert
fiir die Obergrenze der Steifigkeit des jeweiligen Dédmmstoffs. Um eine realistische Steifigkeit und
eine mogliche Belastungsabhéngigkeit in den zugehorigen Simulationen beriicksichtigen zu koén-
nen, wurden Lastplattendruckversuche an Proben der beiden gewahlten Dammstoffe gefahren.
Wie in Abbildung 3.16a zu sehen, besteht der zugehorige Versuchsstand aus zwei iibereinander
angeordneten Stahlplatten, wobei die untere fest montiert und die obere iiber eine Kalotte be-
weglich gelagert ist. Bei der Versuchsdurchfiihrung wurde die Platte horizontal ausgerichtet und
die Probekorper zentral darunter eingemessen. Uber die obere Stahlplatte wurde kraftgesteuert
eine Last auf den Probekorper aufgebracht. Die vorhandene Druckpriifmaschine (DPM) ist auf
deutlich hohere Lasten ausgelegt und dadurch fiir sehr geringe Lastbereiche weniger geeignet,
weshalb es vor allem bei den kleinen Probekérpern zu maschinenbedingten Ungenauigkeiten
kommen kann. Die vertikale Verformung der Lastplatte wurde iiber vier an den Ecken angeord-

nete Wegaufnehmer gemessen (Abbildung 3.16a). Dabei betrug die Abtastfrequenz 20 Hz.

Die Versuchsdurchfithrung orientiert sich an den normativen Vorgaben in DIN EN ISO 29770:2022.
Zur Bestimmung eines genaueren Last-Verformungs-Zusammenhangs wurden, neben den nor-
mativ vorgegebenen Spannungsniveaus von 0.25, 2 und 50 kPa, zuséitzliche Laststufen beriick-
sichtigt (vgl. Tabellen D.1 und D.2 in Anhang D.1). Die aus den Versuchen abgeleitete Zusam-
mendriickbarkeit ist in Tabelle 3.2 in Klammern angegeben und stimmt trotz der ergédnzten
Zwischen-Laststufen zumindest fiir TP-GP mit der Einstufung des Herstellers iiberein. Fiir TP
ergibt sich eine etwas geringere Zusammendriickbarkeit. Tendenziell passt die Einteilung von

TP als weicher und TP-GP als steifer zu den Herstellerangaben.
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3. Strukturmodellierung

(a) Versuchsstand (b) Dammstoff TP (¢) Dammstoff TP-GP

Abbildung 3.16.: Versuchsstand und Dammstoffproben

Um einen GroéBeneinfluss im Hinblick auf die spatere Modellierung der Plattenversuche auszu-
schliefien, wurden auflerdem verschiedene Probekoérperabmessungen und -formen untersucht. Die
untersuchten ProbekorpergréBen und -formen sind in Abbildung 3.16 (b) und (c) dargestellt. Fiir

beide Dammstofftypen wurden jeweils Probekorper mit folgenden Abmessungen untersucht:
e quadratisch mit Kantenldnge a =10, 20, 30 cm,
e rund mit Durchmesser D =10, 30 cm,

wobei die obere Lastplatte etwas breiter als der mit 30 cm grofite Probekorper ist. Die Ver-
wendung unterschiedlicher Probekorpergrofien dient zur Untersuchung des Einflusses aus Quer-
dehnung. Bei der Priifung der Estrichplatten wird die Querdehnung des Dadmmstoffs zu einem
gewissen Grad behindert sein. Bei der Bestimmung der Steifigkeit in der Druckpriifmaschine
konnen sich die Probekorper jedoch beliebig zur Seite ausdehnen. Die Verwendung unterschied-
licher Gréflen und Formen (unterschiedlich grofie Mantelfldiche) soll diesen Einfluss identifizieren

bzw. auszuschlieflen helfen.

Die einzelnen Spannungsstufen wurden entsprechend DIN EN ISO 29770:2022 jeweils etwa 120 s
gehalten. In Abbildung 3.17 ist links beispielhaft die iiber die vier Aufnehmer gemittelte Verschie-
bung der Lastplatte an den Proben TP-GP-20-4 bzw. TP-20-4 (quadratische Form, Abmessung
20 cm, Probe 4) tiber die Zeit dargestellt. Die Verldufe der iibrigen Proben sind vergleichbar (vgl.
Abb. 3.18). Es ist erkennbar, dass in der jeweiligen Laststufe die Verformung eine zunehmend
schwéichere Steigung beschreibt und nach jeweils 120 s fast horizontal verlauft. Dieses Verhalten

wird mit zunehmendem Belastungsniveau ausgepragter, in den niedrigeren Lastbereichen zeigt
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3.2. Bettungsmodellierung

sich tendenziell ein rein horizontaler Verlauf iiber die Zeit. Diese Anderung bzw. die Zeitabhin-
gigkeit der Verformung unter héherer Last deutet darauf hin, dass bei zunehmender Belastung
kein elastisches Verhalten mehr vorliegt, und damit bleibende Verformungen eingepriagt werden.
Rechts ist die zugehorige Spannungs- Verschiebungs-Beziehung dargestellt. Die Last wurde in den
ersten Versuchen (Proben 20-1 bis 20-3, vgl. Tabellen im Anhang D.1 bzw. Abb. 3.19) zunéchst
bis zu einer wirksamen Spannung von etwa 1.25 N/mm? gesteigert (das entspricht dem 25-fachen
der maximal normativ vorgegebenen Spannung zur Bestimmung der Zusammendriickbarkeit),
um einen Anhaltspunkt fiir den funktionalen Verlauf der Spannungs-Verformungs-Beziehung zu
erhalten. Da sich der relevante Verformungsbereich in den spéteren Estrichversuchen bis maxi-
mal 10 mm bewegt, wurden die iibrigen Probekorper lediglich bis zu einer Spannung von etwa
0.06 N/mm2 belastet. Dies entspricht eher einem Lastniveau, welches auch zur Bestimmung
der normativen Zusammendriickbarkeit aufgebracht wird (hochste Laststufe 0.05 N/mm?). Zur
niherungsweisen Uberpriifung der normativen Herstellerangabe wird die Verschiebung bis 120 s
nach Entlastung auf 2 kPa (entsprechend DIN EN ISO 29770:2022) aufgezeichnet, sodass hier-

aus der Vergleichswert in Tabelle 3.2 ermittelt wird.

16 £ 0.08
Y o -0 Versuch-TP-GP-20-4
14 0 0.07 -0 Versuch-TP-20-4
& -
— 12 : 5 0.06 ® S
: < =
e J g
= 10 & Z005 ¢ [
60 = = ?; -4t
2 8 g © 004 o s s
5 & g 34 L
= : =
% 6 £ (? g 0.03+ ¢ ,0"3
g : ® a o0 o ]
> 4 - H 0002 6 &
[+ p 63 o 8
9 | : & o 0.01 ¢ @
0 o ‘ t f R i 0 ﬁ oo ‘ .
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Zeit t [s] Verschiebung u [mm]

Abbildung 3.17.: Vertikale Verformung und Spannungs-Verformungs-Kurve aus dem Lastplat-
tendruckversuch, beispielhaft dargestellt sind die Proben TP-20-4 und TP-GP-
20-4 (Abtastfrequenz im Versuch 20 Hz, hier dargestellt 0.1 Hz)

Fiir eine bessere Ubersichtlichkeit werden im Folgenden die dargestellten Verliufe auf die Mess-

werte jeweils am Ende der 120 s-Intervalle reduziert, und nur der Belastungspfad dargestellt. Die
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Abbildung 3.18.: Gemittelte Spannungs-Verformungs-Kurven fiir unterschiedliche Durchmesser
(D [mm)]) und Abmessung (quadratisch a [mm]) der Probekorper bei Prifung
im Lastplattendruckversuch mit Angabe der normativen Spannungsniveaus bei
Bestimmung der Zusammendriickbarkeit

gemittelten Verldufe der Lastplattendruckversuche an den unterschiedlich grofien bzw. geform-
ten Proben sind in Abbildung 3.18 dargestellt (Durchmesser D [mm]| bei runder und Abmessung
a [mm] bei quadratischer Form). Die Lage der Verlaufe variiert leicht zwischen den unterschied-
lichen Priifkérper-Gréflen und -Formen. Entscheidend fiir die Beurteilung der Steifigkeit ist die
Steigung der Verldufe. Diese stimmt unabhingig von Probekorpergrofie und -form ndherungs-
weise gut iiberein, weshalb davon auszugehen ist, dass ein Einfluss aus Querdehnung in den
vorliegenden Versuchen nicht messbar und daher vernachléssigbar gering ist. In Abbildung 3.19
ist der Spannungs-Verschiebungs-Verlauf der beiden Ddmmstofftypen noch einmal anhand der
20er-Proben vergleichend dargestellt. Oben ist der Gesamtverlauf dargestellt, der eine Art S-
Verlauf beschreibt: Anfangs etwas steiler (bis etwa 5mm (TP)/ 2.5mm (TP-GP)), danach ein
Bereich mit geringerer Steigung (bis etwa 10/20mm) bis sich der Ddmmstoff hin zu einem fast

vertikalen Verlauf versteift (ab etwa 15/25mm).

Vereinfachend wird darauf verzichtet, dem beschriebenen Gesamtverlauf eine moglichst exakte
funktionale Beziehung zuzuweisen. Stattdessen wird eine stiickweise lineare Ausgleichsfunktion
definiert, um diese vor allem an den im Rahmen der spateren Simulationen relevanten Bereich
in Abb. 3.19 unten bestmoéglich anzupassen bzw. diesen auch im Rahmen der Simulationen
leichter variieren zu kénnen. Fiir TP entspricht dieser Ausgleichsverlauf im relevanten Bereich bis

maximal 10 mm einer Geraden, fiir TP-GP ist eine Steigungsinderung bei 2.5 mm beriicksichtigt.
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Abbildung 3.19.: Priifung in der Druckpriifmaschine: Ddmmstoff TP-GP (steifer) und TP (wei-
cher), wobei oben der gesamte Versuchsverlauf dargestellt ist, unten ein ver-
groflerter Ausschnitt des hier relevanten Bereichs
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3. Strukturmodellierung

Versuche im Anschluss an die Plattenpriifung

Unter anderem die normative Vorgabe, bei Bestimmungs der Zusammendriickbarkeit eine tem-
porare Zusatzlast von 48 kPa zu beriicksichtigen und die Dicke dp erst nach Entlastung zu mes-
sen, motiviert eine Untersuchung der Steifigkeitseigenschaften der Dadmmstoffe nach Durchfiih-
rung der Estrichversuche. Zunéchst wurde der Einfluss der Déammstoffunterlage ausgeschlossen:
Der Vergleich der Ausgleichsfunktion mit einer nachtréglich im Feld auf Sandbett eingebauten,
unbelasteten Démmstoffprobe (Feld, oV) zeigt eine gute Ubereinstimmung (vgl. Abb. 3.21 in

rot verglichen mit schwarz durchgezogener Ausgleichsgerade).

Zur Uberpriifung des Eigengewichtseinfluss der auf-
liegenden Estrichplatte auf die Steifigkeitseigen-

schaften der Ddmmstoffe wurden nach Priifung der

Hydraulikzylinder
(Lastaufbringung)

Platten und Entfernen der Bruchstiicke Priifungen
an der darunterliegenden Dammstofffliche durchge-
fithrt. Zum einen wurden die so vorbelasteten (mV,
im Vergleich zu unbelasteten Proben (0V)) Ddmm- .
stoffe im Versuchsfeld eingebaut (Feld) belassen und
dort unter einem runden Laststempel mit 15 cm
Durchmesser gepriift. Zum anderen wurden Probe-
korper mit diesem Durchmesser (15 c¢cm) entnom-
men und in der Druckpriifmaschine (DPM) getes-
tet. Die Lastaufbringung im Feld erfolgte analog zur

Lastaufbrigung im Zuge der Plattenpriifung (vgl.

Kap. 6) mithilfe eines Hydraulikzylinders, der zwi-

schen einem Stahlbalken und dem Laststempel (Ka- Abbildung 3.20.: Stempelaufban

im Déammstoff-
Abb. 3.20) angeordnet war. Im Vergleich zur Plat- Feldversuch

tenpriifung wird hier eine feinere Kraftmessdose (bis

lotte, Durchmesser 15 cm, Laststempelaufbau siehe

2 kN) aufgrund der geringeren Last zwischengeschaltet. Die Spannungs-Verschiebungs-Verldufe

wurden um das Eigengewicht des Lastaufbaus nachtraglich korrigiert.

Die in Abbildung 3.21 fiir die Ddmmstofftypen getrennt dargestellten Spannungs-Verschiebungs-
Verlaufe (blau) zeigen deutliche Abweichungen in der Steigung im Vergleich zu den Ausgleichs-
funktionen der vorherigen Untersuchungen (schwarz, durchgezogen). Auch fiir den vorbelas-
teten Spannungs-Verschiebungs-Verlauf wird jeweils eine Ausgleichsgerade definiert (schwarz,
gestrichelt). Die durch das Estrich-Eigengewicht und die anschlieBende Priifung (vgl. Kapitel 6)
vorbelastete, steifere Dadmmstoffplatte in Abbildung 3.21a zeigt bei Belastung in der Druckpriif-

maschine zu Beginn eine geringere Steifigkeit (DPM, mV) und erst im Bereich ab etwa 2 mm eine
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3.2. Bettungsmodellierung

dhnliche Steigung wie die der Ausgleichsfunktion ohne Vorbelastung. Ahnlich sieht der Verlauf
bei Priifung im Feld (Feld, mV) mit einer am Ende etwas groBeren Steigung aus. Fiir den weiche-
ren Dammstoff (Abb. 3.21b) zeigt sich ein gegenteiliges Bild: Die vorbelastete und anschlieend
erneut im Feld belastete Dammplatte (Feld, mV) weist im betrachteten Verformungsbereich ei-
nen von Beginn an deutlich steileren Verlauf auf. Der in der DPM belastete Verlauf zeigt eine
davon abweichende, flachere Steigung zu Beginn, die sich ab etwa 6 mm Verformung dem Feld-

versuch bzw. der Ausgleichsgerade angleicht.

Zusammenfassend lasst sich festhalten, dass der Einfluss aus dem Versuchsaufbau vernachléssig-
bar zu sein scheint: Unabhéngig davon, ob es sich um Feld (F)- oder DPM-Priifungen handelt,
weisen die Verldufe eine vergleichbare Steigung auf. Der Einfluss aus Vorbelastung hingegen ist
deutlich erkennbar. Durch die Estrichbelastung sinkt die Steifigkeit der steiferen Démmstoffs

und die des weicheren steigt an.
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3. Strukturmodellierung

Spannung o [N/mm?]

Spannung o [N/mm?]
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(b) Dammstoff TP (weicher)

Abbildung 3.21.: Vergleich unbelasteter (oV) und vorbelasteter (mV) Dammstoffproben, gepriift
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3.3. Schlussfolgerungen fiir die Modellierung schwimmenden Estrichs

3.3. Schlussfolgerungen fiir die Modellierung schwimmenden Estrichs

Estrichmodellierung

Die Nachrechnung der verformungsgesteuerten Biegezugversuche zeigt eine sehr gute Uberein-
stimmung mit den Versuchsdaten bis in den Nachbruchbereich, sodass das ausgewahlte CDP-
Modell in Kombination mit dem gewéhlten Elementtyp und den tiibrigen Randbedingungen fiir
die weiteren Untersuchungen als geeignet erkannt wird. Hinsichtlich der Eingangsparameter fiir
das Materialmodell werden die hier gewahlten Parameter als Richtwerte iibernommen, deren ge-
naue Eingrenzung im Zuge der weiteren Versuchsnachrechnung erfolgt. Die Netzunabhéingigkeit

konnte fiir die betrachteten Beispiele nachgewiesen werden.

Dammstoffmodellierung

Fir die Ddmmstoffmodellierung ergeben sich die in Abbildung 3.22 dargestellten Spannungs-
Verschiebungsgesetze, die in Abhéngigkeit des Einflussbereichs der modellierten Einzelfedern
je nach Vernetzung des aufliegenden Estrichs noch entsprechend in Kraft-Weg-Gesetze umzu-
rechnen sind. Die tatsdchlich wirksame Dammsteifigkeit liegt jeweils im Bereich zwischen den
Verlaufen ohne und mit Vorbelastung. Fiir die Simulation der Plattenversuche wird fiir die
Déammsteifigkeit letztendlich nach Variieren in diesem Bereich jeweils der Verlauf mit Beriick-
sichtigung der Vorverformung (jeweils die blau gestrichelten Geraden), und damit im wirksamen

Verformungsbereich ein linearer Verlauf gewéhlt.

/."' —— Ausgleichsfunktion TP-GP oV
0.1 Pl --=-+ Ausgleichsfunktion TP-GP mV
L0 —— Ausgleichsfunktion TP oV
& [ ----- Ausgleichsfunktion TP mV
E 008 T .,‘r
g
~ 4
£ 006 :
6 pEa e
80 I e
g /" - -
s 0.04 7
g .
5] .I. P
) .
n f’ g -
0.02 1 fiopnld ot
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Verschiebung v [mm]

Abbildung 3.22.: Ausgleichfunktionen
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3. Strukturmodellierung

Die Spannungs-Verschiebungs-Beziehung bzw. ihre Steigung lisst sich als Steifigkeit cxg [MN/m?]
formulieren. Diese Steife-Kennziffer ist jedoch nicht gleichzusetzen mit der von Manns und Zeus
(1980) definierten Bettungszahl KS, die aus der Zusammendriickbarkeit, und damit aus eine
Produktkennzahl, abgeleitet wird. Eine unmittelbare Uberfithrung dieser Kennzahl in die phy-

sikalisch wirksame und in der Simulation beriicksichtigte Steifigkeit cig ist nicht moglich.
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4. Konzept zur Validierung des numerischen
Modells

Um die Eignung der vorgestellten Ansédtze fiir die numerische Modellierung schwimmenden Est-
richs nachzuweisen, sind vergleichende experimentelle Untersuchungen notwendig. Fiir eine erste
Beurteilung der Modellierung wurde zunéchst die grundlegende Estrich-Dammungs-Interaktion
an einfachen Balken untersucht (1D-Spannungszustand). Hier wurden Estrichdicke und Damm-
stoff variiert, um Festigkeitsparameter des Estrichs (aus begleitenden Festigkeitspriifungen) so-
wie die Steifigkeitsparameter des Dammstoffs (vgl. Kapitel 3.2.2) zu verifizieren und Bruchpa-

rameter wie die Bruchenergie abzuschitzen. Folgende Varianten wurden betrachtet:
o Estrichdicken: 20, 40, 60, 80 mm, und
« Dammstoffe: TP-GP (Dicke 20 mm, steifer: cxg ~ 13 MN/m?), TP (Dicke 30 mm, weicher:
cks ~ 7 MN/m?).
Darauf aufbauend wurden zwei gréflere Estrichplatten der gleichen Dicke mit d = 60 mm auf den

beiden Démmstoffen
o Platte S auf Dammstofftyp TP-GP (steifer)
o Platte W auf Dammstofftyp TP (weicher)

untersucht. Damit bereits in den Balkenversuchen das Plattenverhalten in einer ersten Néahe-
rung betrachtet werden kann, wurde ein &hnliches Bruchverhalten bzw. ein dhnliches statisches

System angestrebt.

Entsprechend der in der Literatur (Manns und Zeus, 1980, Schnell, 1990) betrachteten Lastfélle
werden die Estrichplatten jeweils an der Plattenecke und am Plattenrand mit einer Einzellast
bis zum Bruch beansprucht. Besonderer Fokus liegt hier jedoch auf dem Lastfall Plattenecke,
da dieser fiir die Bruchlast magebend ist und in der Praxis bei Platten-Laborpriifungen in der
Regel Anwendung findet (IBF, 2019). Dies hat hinsichtlich der Validierung den Vorteil, dass
an einer Platte vier Priifungen fiir diesen Lastfall erfolgen konnten. Manns und Zeus (1980)
definierten den Randlastfall als mafigebend, sodass dieser auch fiir die Norm und andere Bemes-
sungsgrundlagen die Basis liefert, weshalb zusétzlich auch jeweils die Rander gepriift wurden.
Hier konnte je Platte jedoch nur eine Priifung fiir die quadratische Geometrie durchgefiihrt wer-

den.
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4. Konzept zur Validierung des numerischen Modells

Lastfall
v Lastfall EG | |EL Bcke

I

Abbildung 4.1.: Schema des statischen System der gebetteten Platte mit qualitativer Verfor-
mungsfigur, resultierenden Bettungsspannungen und Momentenbeanspruchung
entlang der Plattendiagonalen

Bei Belastung der Plattenecke wirkt die diagonal gegeniiberliegende Plattenhélfte {iber das Ei-
gengewicht der Belastung entgegen, sodass nahe der belasteten Plattenecke oberseitig die ma-
ximale Biegebeanspruchung und damit schliellich ein Einzelriss in der Platte entsteht. Durch
das Eigengewicht und die Bettungsreaktionen der Dadmmung entsteht eine Einspannwirkung
(vgl. Abb. 4.1). Je steifer die unterliegende Ddmmung ist, desto néher entsteht der Riss an der
Plattenecke. Bei einer quadratischen Platte mit einer Abmessung von [ =2500 mm ist davon
auszugehen, dass Beanspruchungen benachbarter Ecken keinen grofieren Einfluss aufeinander
haben. Die vier an einer Platte durchgefithrten Eckpriifungen lassen sich somit als unabhéngig
vergleichbar betrachten, sodass diese Datenbasis fiir eine erste grundlegende Validierung des

Modells ausreichend ist.

Um dem beschriebenen Trag- bzw. dem erwarteten Bruchverhalten der Platten moglichst nahe
zu kommen, wurde fiir die Balkenversuche die in Abbildung 4.2 dargestellte Lagerung gewéahlt.
Das statische System ist eine Art auf Bettung gelagerter Kragarm: Die Einspannung links wird
iiber ein Kréiftepaar erzeugt, das ,freie“ Ende wird durch den Dammstoff gestiitzt. Bei einem
klassischen Kragarm wiirde der Riss stets in der Einspannung entstehen, eine Rissentstehung
im kragenden Bereich wiirde den Verhéltnissen in der Platte jedoch ndher kommen. Wie in
Abbildung 4.2 entlang der Plattendiagonale visualisiert, wirkt das Eigengewicht der Platte der
Einzellast-Beanspruchung an der Ecke entgegen, sodass sich die dargestellte Verformungsfigur
und Biegebeanspruchung mit einem Maximum im Bereich der Plattenecke einstellt. Auch um die
Rissentstehung besser beobachten und den Dehnungsverlauf mithilfe von Dehnungsmessstreifen
aufzeichnen zu konnen, wurde somit fiir den Balken ein statisches System mit Zwischenauflager
gewahlt. Das bettungsgestiitzte Ende sollte abhédngig von der Balkendicke eine gewisse Min-
destlénge tiberschreiten, andernfalls wiirde sich die maximale Biegung und damit der Riss nicht

in diesem Bereich, sondern direkt tiber dem zweiten Lager einstellen. Bei ausreichender Linge
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wirken die Reaktionskrifte der Bettung der eingetragenen Biegung entgegen, um das maximale

Moment nach rechts zu verlagern.

v Lastfall EG

A Az33333333233232
—_— Verformung

MBiegung

Abbildung 4.2.: Schema des statischen System des gebetteten Balkens mit qualitativer Biegel-
inie, resultierenden Bettungsspannungen und Momentenlinie; Der Verlauf der
Momentenlinie ist abhéngig vom Verhéltnis der Querschnittshéhe zur System-
lange (L=70 cm, durchgezogen: d < 60 mm, gestrichelt: d > 60 mm)

Die in diesem Sinne dickenabhéngig notwendige Linge der auf Dammung gelagerten Ecke wur-
de numerisch durch Variieren der Lagerabstdnde und Kraglingen ermittelt. Allerdings sollten
aufgrund der einfachen Herstellung Standard-Balken-Priiflangen untersucht werden, sodass die
Lénge der Probekorper auf 70 cm festgelegt wurde. Bei dieser Lange und der mit der Balkendicke
einhergehenden Steifigkeit entsteht der Riss bei d > 60 mm iiber dem Zwischenauflager, fiir die
diinneren, weicheren Balken mit 20 und 40 mm Dicke aufgrund des gréfleren Bettungseinflus-
ses wie angestrebt im Bereich zwischen Lager und Lastaufbringung. Dennoch kénnen auch die
Versuche mit groferer Dicke zur Validierung der Bruchkraft herangezogen werden, das Tragver-
halten weicht in diesem Fall nur insofern stérker ab, dass der Ort der Rissbildung nicht durch die
Déammsteifigkeit beeinflusst wird. Der Dehnungsverlauf im Bereich des so feststehenden Rissbe-
reichs lasst sich hingegen durch prézise Platzierung der Dehnungsmessstreifen iiber dem Lager

sicher messtechnisch erfassen.

Grundsétzlich sind die so geplanten Laborversuche nicht umfassend genug, um das Modell fiir
jeden Estrich beliebiger Zusammensetzung, Geometrie und Lagerung (Art und Steifigkeit des
Dammstoffs) als gesichert beurteilen zu kénnen. Vor allem fir den Lastfall Einzellast am Plat-
tenrand wird zwar eine vergleichende Simulation erstellt, fiir eine detaillierte Beurteilung des
Modells fiir diesen Lastfall reichen die Messdaten nicht aus. Anhand der Eckversuche lasst sich
aber durchaus zeigen, dass eine sehr gute Ubereinstimmung zwischen Versuch und Numerik

erreichbar ist. Eine Ubertragung auf Estriche mit anderen Randbedingungen ist méglich.
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4. Konzept zur Validierung des numerischen Modells

Herstellung der Probekorper und begleitende Festigkeitspriifungen

Fir die Versuche wurden zwei Estrichplatten mit quadratischer Grundfliche und [ =2500 mm
und Dicke d =60 mm sowie zwolf Balken der Abmessungen 700x150 mm? und zusétzliche Pris-
men zur Festigkeitspriifung aus dem gleichen Material hergestellt. Das Material wurde von der
Firma SAKRET Bausysteme zur Verfiigung gestellt. Es handelte sich um einen als schwind-
kompensiert und nach 24 Stunden belegbar gekennzeichneten ZementflieBestrich (ZTEfast). Die
Probekorperherstellung und -lagerung und sémtliche Versuche erfolgten in der Versuchshalle des

Instituts fiir konstruktiven Ingenieurbau der BU Wuppertal.

Die Herstellung des schnell erhdrtenden Flielestrichs erfolgte hidndisch, unter Anleitung eines
Mitarbeiters der Herstellerfirma. Nach Feststellung des angestrebten Ausbreitmafes und Luftpo-
rengehalts wurde der Estrich eimerweise auf die innerhalb der Holzschalung mit Folie abgedeckte
Dimmung eingebracht. Nach stichprobenartiger Uberpriifung der erforderlichen Dicke wurde die
Oberflache geglattet (Fotos siche Anhang D.2.1). Im Gegensatz zu den Platten wurden die Bal-
ken separat, also nicht auf dem Dimmstoff, sondern in 700x150 mm? Stahl-Schalung betoniert

und erst fiir die Prifung auf dem Dammstoff positioniert.

Bei den Balken wurden keine besonderen Nachbehandlungsmafinahmen unternommen. Die bei-
den Platten wurden fiir eine angestrebte langsamere Austrocknung die ersten vier Tage mit
einer Folie bedeckt und waren danach den Umgebungsbedingen in der Versuchshalle ausgesetzt.
Aufgrund der schnellen Erhdrtung des Estrichs konnten schon wenige Stunden nach Einbau
Wegaufnehmer zur Messung der Schiisselverformung infolge Schwinden auf der Platte ange-
bracht werden. Zusétzlich wurden Prismen zur Bestimmung der Druck- und Biegezugfestigkeit
hergestellt.Die Ergebnisse der Festigkeitspriifungen sind in Anhang C zusammen mit weiteren
Versuchsdaten zu finden und sind zum Teil im Folgenden als Eingangswerte des Modells aufge-
fithrt.

Numerisches Modell

Fir die Definition des numerischen Modells kénnen folgende Festlegungen aus den Voruntersu-

chungen und Festigkeitspriifungen (vgl. Anhang C) abgeleitet werden:
Elastizititsmodul E=25000 N /mm?
Druckfestigkeit f. =40 N/mm?
Biegezugfestigkeit f;, = 6.8 N/mm?
Zugfestigkeit f; = 3.0 N/mm? (~ % - fb)
Bruchenergie G = 0.2 Nmm/mm?
Eine weitere Vorgabe hinsichtlich der Rissbildung ergibt sich aus der Versuchsbeobachtung: In

allen Versuchen versagt das Bauteil infolge Einzelrissbildung. Mikrorisse sind bei den Versuchen
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nicht festzustellen. Dieses Verhalten ist in der Simulation entsprechend abzubilden, um eine gute
Ubereinstimmung mit den Versuchsdaten zu erzielen. Der Nachbruchbereich ist nicht aussage-
kraftig, da eine Validierung anhand von verformungsgesteuerten Balkenversuchen entsprechend
der Versuche aus Kapitel 3.1.2 fiir das hier verwendete Material nicht erfolgt ist. Die durchge-
fithrten Balken- und Plattenversuche zeigten sprodes Versagen. Dadurch war eine Aufzeichnung
des Nachbruchverhaltens mit den gewéhlten Versuchsrandbedingungen nicht moglich. Fiir die
zentrale Frage der Schwindeinfliisse auf das Trag- bzw. Rissverhalten ist das Verhalten bis zum

Bruch mafigebend.

Als Beurteilungskriterium fiir das numerische Modell diente vor allem der Vergleich mit den
Versuchsdaten. Auflerdem sollte mit zunehmender Netzfeinheit Konvergenz zu einer eindeutigen
Losung sichtbar werden. Daraus ergeben sich als Beurteilungskriterien fiir eine nachfolgende
Validierung des Modells:

e Vergleich mit den Versuchsdaten,
— Kraft-Verformungslinie,
— Verformungs- bzw. Dehnungsverlauf entlang der Diagonalen (Ecke) bzw. der Mittel-
linie (Rand),
— Ort des Risses,

o Konvergenz der numerischen Ergebnisse.

Ermittlung der charakteristischen Lange

Zur Ermittlung der charakteristischen Lénge entsprechend des auf einer begrenzten Rissprozess-
zone beruhenden Ansatzes nach Gédde (2013) wurde bei den hier durchgefithrten Simulationen
ein Konzept zur gezielten Schwichung bzw. Lokalisierung des Risses angesetzt. Dadurch sollte
die Entwicklung plastischer Dehnungen auf die Rissprozesszone begrenzt und aus dieser die cha-
rakteristische Lénge abgeleitet werden. Dazu wurde ein iteratives Vorgehen zur Identifikation
der Rissprozesszone angewendet:

(i) Abschétzen der charakteristischen Lénge basierend auf der gewédhlten Vernetzung und der
erwarteten Rissbildung; Berechnung ohne Schwéchung und Identifizieren eines Rissbands
bei Erreichen der Bruchlast; ggf. Anpassung der charakteristischen Lénge,

(ii) Berechnung mit Schwéchung: Leichte Erhohung (etwa 10 %) der Zugfestigkeit der Elemente
auflerhalb des in (i) identifizierten Rissbands und Uberpriifung der Lokalisierung; ggf.
iterative Korrektur der definierten RPZ und der charakteristischen Lénge,

[(iii) ] (nur unter bestimmten Voraussetzungen zielfithrend bzw. zuléssig) Berechnung mit vor-
gegebenem Rissband: Deutliches Anheben der Zugfestigkeit der Elemente auflerhalb des

Rissbands, sodass nur im Rissband plastische Dehnungen entstehen.

Schritte (i) und (ii) stimmen mit dem von Goédde (2013) empfohlenen Vorgehen iiberein. Bei
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4. Konzept zur Validierung des numerischen Modells
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Abbildung 4.3.: Beispielhafte Entwicklung der plastischen Dehnung in der Platte

den bisher und auch nachfolgend beschriebenen Balkensimulationen ist dieses Vorgehen zur
Identifikation des Rissbands und zur Berechnung einer mit den Versuchsergebnissen konsisten-
ten Rissentwicklung hinreichend. Bei Betrachtung der Simulation der Platten, insbesondere der
im Fokus stehenden Eckprifungen, stellt sich jedoch in der Simulation ein Verhalten ein, wel-
ches der Beobachtung im Versuch zum Teil widerspricht. Es entstehen plastische Dehnungen
in einem grofleren Bereich als nur konzentriert in einigen benachbarten Elementreihen. Wie
Abbildung 4.3 rechts gegeniiber dem erwarteten Zustand links zeigt, teilt sich die zunéchst in
(i) erkannte Lokalisierung in der anschlielenden geschwéchten Rechnung (ii) offenbar in zwei
oder mehr Risse auf, anstatt wie im Versuch nur einen einzelnen Trennriss auszubilden. Alle
Versuche (Variieren der Lastaufbringung, der Rissbandform, verschiedener Materialparameter;
Andern der Federsteifigkeiten), die zu einer Korrektur dieses simulierten Verhaltens unternom-
men wurden, haben nicht die gewiinschte Wirkung gezeigt, sodass die Ursache ungeklart ist.
Dennoch wurde aufgrund der speziell bei den Eckpriifungen vorliegenden Randbedingungen der
unter (iii) beschriebene Losungsansatz verfolgt. Nachteilig an diesem Vorgehen bzw. am resultie-
renden Modell ist die Beeinflussung des resultierenden Spannungszustands im Zuge der Starkung
des Materials auflerhalb der RPZ. Bei einer moglichen Spannungsumlagerung hétte dies insbe-
sondere einen verfilschenden Charakter. Aufgrund der Belastungssituation bei der Eckpriifung,
die keine Spannungsumlagerungen zulésst, und da der Nachbruchbereich nicht betrachtet wird,
auf den die genannte Beeinflussung des Spannungszustands eher einen Einfluss haben diirfte,
wurde dieses Vorgehen mit Blick auf die Zielsetzung dieser Arbeit als zielfithrend erachtet. Da im
Versuch keine Mikrorissbildung oder weitere Risse zuséatzlich zum Trennriss sichtbar waren, die
mit dem Vorhandensein plastischer Dehnungen auflerhalb der Rissprozesszone korrespondieren,
kann andernfalls keine zwingende Ubereinstimmung mit den Versuchswerten erwartet werden.

Eine vergleichende Auswertung der Modelle fiir Schritt (ii) und (iii) zeigte fiir die vorliegende
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Untersuchung eine sehr gute Ubereinstimmung der Kraft-Verformungs-Kurven und beide Rech-
nungen liefern die gleiche Bruchlast (vgl. Abb. 6.13). Hierauf wird an entsprechender Stelle in
Kapitel 6.2.2 noch weiter eingegangen. Weiterhin wird das oben beschriebene Vorgehen als ange-
messen erachtet, da der Manipulation des Modells ein weitgehend objektiver, iterativer Prozess
zur Festlegung des Rissbands vorausgeht, wobei wie in Kapitel 2.2.5 erlautert, die Rissrichtung,
wenn auch nicht die genaue Stelle, als weitgehend bekannt vorausgesetzt wird (Abb. 3.9). Bei

komplexerer Rissbandausbildung miisste ein genaueres Vorgehen herangezogen werden.
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Abbildung 4.4.: Bestimmung der charakteristischen Lénge [, [mm] nach der verein-
fachten Definition nach Gédde (2013) als Breite der Rissprozesszone
am Beispiel der beiden Netze [gjen = 25 und 50 mm (hier: Ausbrei-
tung tber je zwei Elementreihen)

In Abbildung 4.4 ist fiir das numerische Plattenmodell fiir zwei verschiedene Netzgeometrien
(Lglem = 50 bzw. 25) die Lokalisierung der plastischen Dehnungen bei Einzelrissbildung tiber ei-
ne (heller eingeférbt) oder zwei Rissreihen veranschaulicht. Dabei wird mit Blick auf die parallele
Ausrichtung der plastischen Dehnungen in Richtung der Plattendiagonalen (vgl. entsprechend
Abb. 4.3 links) ebenso wie in Abb. 2.29 eine nédherungsweise konsistente, homogene Rissbandaus-
bildung angenommen. Die Rissbandufer sind parallel und stehen senkrecht auf den plastischen
Dehnungen. Somit kann wie im Biegezugversuch die dargestellte 2’-y’-Ebene zur ebenen Berech-
nung von [, nach Gleichung (2.39) herangezogen werden. Die charakteristische Lange ergibt sich
wie hier visualisiert zu 35 mm bei einer Elementreihe oder 2 x 35 mm fiir zwei Elementreihen fiir
das grobere Netz mit Elementabmessung 50 mm ermittelt. Entsprechend sind in Abbildung 4.5
die Funktionsverldaufe des Entfestigungsgesetzes dargestellt, die im CDP-Modell (Abaqus) als
Wertepaare abhéngig von der charaktertistischen Lange (hier: Breite der Rissprozesszone) bzw.

der Vernetzung vorgegeben werden.
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4. Konzept zur Validierung des numerischen Modells
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Abbildung 4.5.: Exponentiell abfallende Spannungs-Dehnungs-Beziehung wie im CDP-
Modell als Wertepaare fiir die Entfestigung im Zugbereich vorgegeben
fiir eine Bruchenergie von 0.2 Nmm/mm?

Fazit

Damit ist die Strukturmodellierung sowie die Herangehensweise fiir die Versuche vollstdndig
beschrieben. In den nachfolgenden Kapiteln 5 und 6 wird jeweils der experimentelle Aufbau
und Besonderheiten bei der Versuchsdurchfithrung beschrieben, bevor die gemessenen Daten
erldutert und den Simulationsergebnissen gegeniibergestellt werden. Auf die vorstehend genann-
ten Einschrankungen bei der Regularisierung der Plattensimulationen wird an entsprechender
Stelle noch einmal eingegangen. Es sei darauf hingewiesen, dass das beschriebene Vorgehen auf-
grund des nachweislich geringen Einflusses auf die Kraft-Verformungs-Kurven und damit auch
die Bruchlast als ausreichend erachtet wird. Eine Netzunabhanhgigkeit kann so ndherungsweise
erreicht werden und Abweichungen im Spannungszustand aufgrund der verdnderten Material-
eigenschaften haben erst im Nachbruchbereich Auswirkungen, da bei der Belastungssituation
ohnehin keine Spannungsumlagerungen zu erwarten sind. Bei Betrachtung des Randlastfalls,
bei dem der Nachbruchbereich eine gréflere Rolle spielt, ist das Vorgehen nicht ohne Weiteres
iibertragbar. Hier kann es zu Spannungsumlagerungen kommen, sodass ein optimiertes Vorgehen
notwendig ist, sodass die nachfolgende Auswertung des Randlastfalls nur eine erste Ndherung

darstellt.
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5. Gebetteter Balken (1D-Spannungszustand)

Zur Eingrenzung der Modell- und Materialparameter wird zunéchst eine Balkenserie verschie-
dener Dicken im Versuch gepriift. Nach Erlduterung des Versuchsstands und der Versuchser-
gebnisse werden die Randbedingungen anhand eines vereinfachten linear-elastischen Modells
kalibriert und schliefllich auch die Eignung des nichtlinearen Materialmodells gezeigt. Aufgrund
eines starken, unmittelbaren Sprodversagens bei sdmtlichen Probekorpern konnte jedoch der

Nachbruchbereich nicht genauer validiert werden.

5.1. Versuche

5.1.1. Versuchsaufbau und -ablauf

Fiir die nachfolgend beschriebene Versuchsserie wurden insgesamt zwolf Balken mit einer Grund-
fliche von 700x 150 mm? in unterschiedlicher Dicke hergestellt. Der schematische Versuchsaufbau
kann Abbildung 5.1 entnommen werden. Die Seitenansicht in Abbildung 5.1a zeigt die Lagerung
und den Laststempel-Aufbau. Eine Seite des Balkens ist vertikal gegen Abheben gelagert und im
Abstand L, ist ein Rollenlager unterhalb des Balkens angeordnet. Aulerdem liegt der gesamte
Balken auf einer auf den Balken zugeschnittenen Dammstoffplatte auf. Die Probekorper 60-4 bis
60-6 (vgl. Tabelle 5.1) werden mit dem weichen Dammstoff (TP) kombiniert, um den Einfluss
der Dammsteifigkeit zu erfassen. Alle anderen Balken werden auf Dammstofftyp TP-GP (dem

steiferen der beiden untersuchten Démmstoffe) gelagert:
e 20-1 bis 60-3, 80-1, 80-2 auf Dammstofftyp TP-GP
e 60-4 bis 60-6 auf Dammstofftyp TP.

Wirksam ist die Ddmmung wéihrend des Versuchs nur rechts des Zwischenauflagers, fiir einen
einfacheren Einbau wird der Dédmmstoff unter dem gesamten Balken eingebaut. In der zweiten
Ansicht in Abbildung 5.1b sind die Wegaufnehmer-Positionen und in der Draufsicht darunter

(Abb. 5.1c) zusétzlich die Position der Dehnungsmessstreifen eingezeichnet.

In Tabelle 5.1 sind die Léngenvariablen wie in Abbildung 5.1 fiir die einzelnen Probekoérper
dokumentiert. Der Grund fiir die verschiedenen Lagerabstédnde fiir die unterschiedlich starke
Dicke der Balken ist das in Kapitel 4 erlduterte unterschiedliche Rissverhaltenn zwischen ge-
ringerer (Riss im ,Kragbereich“) und hoherer (Riss iiber dem Lager) Balkendicke. Bei d < 40

ist das Zwischenauflager etwas ndher am Endauflager, um die Rissbildung im ,Kragbereich® zu
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5. Gebetteter Balken (1D-Spannungszustand)
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5.1. Versuche

Tabelle 5.1.: Abmessungen und Bruchlasten der Balkenversuche [mm)]

Probe | d |dp | La=L1 | L | Lo Ls Ly | Ls | Lpms | Lriss | Rissort | Bruchlast [kN]
20-1 20 | 20 40 165 | 165 | 355 | 510 | 38 475 475 DMS 1 2.0
20-2 20 | 20 40 165 | 165 | 355 | 510 | 38 475 353 - 1.64
20-3 20 | 20 40 165 | 165 | 355 | 510% | 38 475 359 - 1.64
40-1 40 | 20 40 165 | 165 | 355 525 | 38 260 166 - 2.53
40-2 40 | 20 40 1757 | 165 | 355 525 | 38 260 260 DMS 1 2.60
60-1 60 | 20 50 355 | 175 | 350% | 525 | 38 240 355 DMS 3 2.69
60-2 60 | 20 50 300 | 175 | 350% | 525 | 38 240 320 | DMS 2/3 3.0
60-3 60 | 20 50 300 | 175 | 380% | 525 | 38 240 282 | DMS 1/2 2.76
60-4 60 | 30 50 300 | 175 | 380 525 | 38 240 305 DMS 2 1.61
60-5 60 | 30 50 300 | 175 | 380 525 | 38 240 310 DMS 2 1.56
80-1 80 | 20 50 300 | 175 | 380% | 525 | 38 240 280 | DMS 1/2 3.24
80-2 80 | 20 50 300 | 175 | 380% | 525 | 38 240 282 | DMS 1/2 3.0

a

verschoben aufgrund von DMS-Anordnung ° fehlerhaft eingemessen

begiinstigen. Dies hat jedoch bei Probe 40-1 keine Wirkung gezeigt (vgl. Lriss in Tabelle 5.1),

die Probe ist dennoch direkt iber dem Lager gerissen.

Bei der Durchfithrung der Balkenversuche kam es
zu Komplikationen beim Versuchsaufbau, da die Di-
cke des Dammstoffs zum Teil etwas iiber der ange-
gebenen Lieferdicke lag. Der Rollendurchmesser fiir
das Zwischenauflager entsprach exakt den 2 bzw.
3 cm Lieferdicke, sodass bei einigen Versuchen die
Zwischenauflager-Rolle mit Unterlegscheiben leicht
angehoben werden musste. Dennoch kamen bei eini-
gen Versuchen die Balken erst nach Lastaufbringung
auf dem Zwischenauflager zum Liegen. Auch das
Klemmlager am Balkenanfang hatte mehr Spiel als
erwartet. Die Fixierung durch die Muttern in Wech-
selwirkung mit der Lagerung des Balkens auf dem
Déammstoff war daher im ersten Versuch (Probe 60-
1) noch deutlich zu locker, wurde bei den restlichen
Versuchen zwar angepasst, zeigte aber immer noch
eine geringe Bewegung (vgl. Messwerte der Wegauf-
nehmer WA1 bis WA3 in Anhang D).

Lastaufbringung

Abbildung 5.2.: Lastaufbringung Balken

Der in Abbildung 5.2 dargestellte Stempel-Aufbau zeigt die Zylinderstange, liber die weggeregelt

die Belastung aufgebracht wurde. Eine zusitzlich zwischengeschaltete Kraftmessdose (KMD)

hat die Last aufgezeichnet. Der darunterliegende Vierkantstab diente der Lastverteilung tiber

die Breite. Um eine lokale Schidigung aus der Lastaufbringung zu vermeiden, wurde ein elas-
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5. Gebetteter Balken (1D-Spannungszustand)

tisches Material untergelegt. Da die KMD das zusétzliche Gewicht aus diesem Aufbau nicht
erfassen kann, wurde die Messung zu Beginn auf Null gesetzt und anschliefend die Daten um

das Eigengewicht des Stempelaufbaus korrigiert.

5.1.2. Ergebnisse

Wie bereits angedeutet sind die Probekorper spréode gebrochen, das heifit ohne Ankiindigung
durch sichtbare Rissbildung. Die Versuche liefern somit nur Daten bis zum Bruch, der Nach-
bruchbereich konnte mit dem gewahlten Versuchsaufbau nicht erfasst werden. In Abbildung 5.3
ist beispielhaft das Bruchbild der Proben 20-1 und 60-3 dargestellt. Der Bruch verlauft vertikal
und weitgehend gerade durch die Probe.

(a) Draufsicht Probe 20-1 mit angeklebten (b) Ansicht Probe 60-3: Einzelner Trennriss oh-
DMS (Riss durch DMS 1) ne erkennbar Mikrorissbildung

Abbildung 5.3.: Beispiele fiir die Einzelrissbildung der Balkenproben

Kraft-Verformungs-Linien

Die Kraft-Verformungs-Kurven in Abbildung 5.4 zeigen die gemessene Kraft iiber der Verschie-
bung des Aufnehmers WAS5 (nahe Lastaufbringung, vgl. Abbildung 5.1b). Die Verlaufe der iib-
rigen Aufnehmer sind Anhang E.1 zu entnehmen. Wie in Abbildung E.1 und E.2 zu sehen
ist, wurden iiber den Auflagern zum Teil deutliche Verschiebungen infolge der Lastaufbringung
gemessen. Auf die Rissbildung hat dies nicht zwingend Einfluss. Bei der Nachrechnung des Ver-
suchs sind diese Verschiebungen jedoch zu beriicksichtigen. Auflerdem ist der Winkel, auf dem
der Wegaufnehmer WA5 angebracht war, wihrend der Priifung der Probe 40-1 abgefallen. So ist
der horizontale Verlauf dieser Probe ab einer Verformung von etwa 1.75 mm zu erkléren (siche
Abbildung 5.4). In Tabelle 5.1sind die Ergebnisse zusammengestellt: In Abhéangigkeit der Dicke
dp des Dadmmstoffs und der Position des ersten DMS Ipyg zeigt die Tabelle die Position des Ris-
ses [Riss, an welchem DMS und bei welcher maximalen Last dieser entstanden ist. Bei fehlender
Angabe (,-“) ist der Riss auflerhalb des DMS-Bereichs aufgetreten. Bei den diinneren Balken
zeigt sich somit eine Abweichung von der auf Basis der Vorsimulation erwarteten Rissposition.

Hierfiir kénnen verschiedene Ursachen infrage kommen, u.a. genannte Abweichungen bei der
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5.1. Versuche

Installation der Lagerung, der Aufbringung der Last oder eine lokale unplanméfige Schwiachung

des Materials.

Grundsétzlich zeigen die Kraft-Verformungs-Kurven eine iibereinstimmende Tendenz bei glei-
chen Eigenschaften. Je weicher der Dammstoff desto geringer die Bruchlast. Je hoher die Dicke
des Balkensm desto hoher die Bruchlast bei geringerer Maximalverformung. Die erwartete Riss-
position weicht zum Teil etwas von den Versuchsdaten ab. Fiir d = 20 ergibt sich bei Probe
20-1 eine etwas groflere Maximallast und Verformung, die im Vergleich zu den beiden anderen
Proben mit einer versetzten Rissposition einhergeht. Die Rissposition der Probe 20-1 stimmt
mit der Rissprognose auf Basis der Vorsimulationen iiberein (Riss genau auf Hohe des mittleren
DMS). Dass die Rissposition der Proben 2 und 3 miteinander iibereinstimmt, ldsst vermuten,
dass der Rissversatz im Vergleich zur Vorsimulation nicht auf eine willkiirliche, lokale Materi-
alschwiachung der beiden Balken zuriickzufiihren ist. Was stattdessen die Ursache ist, konnte
nicht abschlieSend geklart werden. Der Verlauf von Kurve 60-1 weicht von den beiden anderen
(60-2, 60-3) ab, was auf die bereits genannte Nachgiebigkeit der Lagerung zuriickzufiihren ist.
Eine dhnliche Abweichung zeigt sich auch bei den Verldufen der 80er-Proben mit gleicher Ur-
sache (vgl. Anhang, Abb. E.1). Die Kurven 60-4 und 60-5, die auf dem weicheren Dammstoff
gepriift wurden, weisen im Vergleich zu den {ibrigen 60er-Kurven eine deutlich geringere Last
(Frp » 0.5 Frp.gp) und reduzierte Maximalverschiebung auf (wrp » 0.75 wrp.gp). Die Bruch-
last steigt und die Verformung sinkt mit zunehmender Dicke. Es gibt eine leichte Tendenz, dass
der weichere Dammstoff und die diinneren Balken eine weniger ausgeprigte Krimmung in der

Kraft-Verformungslinie zeigen als der steifere Dammstoff und die dickeren Balken.

Die Kraft-Verformungs-Kurven in Abbildung 5.4 weisen keine wie in Biegezugpriifungen iib-
licherweise messbare Schwéchung kurz vor dem Bruch (Abflachen der Kurve) bzw. Abfallen
gegeniiber dem elastischen Pfad auf. Im Gegenteil kommt es in einigen Kurven eher zu einem
Anstieg der Steigung, also zu einer Versteifung des Systems. Dies ist moglicherweise darauf zu-
riickzufithren, dass der jeweilige Balken zu Versuchsbeginn noch nicht kraftschliissig auf dem
Dammstoff auflag und nach vollstandiger Kontaktherstellung ein steilerer Anstieg der Kurve
erfolgt. Grundsétzlich zeigen die diinneren Balken einen eher abflachenden als versteifenden
Verlauf im Vergleich zu den dickeren Balken, deren Verlauf umgekehrt eher zunehmend verstei-
fend ist.

Eine grundlegende inhaltliche Interpretation der Ergebnisse im Hinblick auf das Balkentrag-
verhalten bei elastischer Bettung ist aufgrund der genannten zahlreichen, wenn auch kleineren
Abweichungen vom geplanten Versuchshergang nicht angebracht. Inwiefern aus der Dadmmstoff-
wirkung versteifende oder aufweichende Kurvenverldufe resultieren, bleibt hier offen. Das Ziel
der Balkenversuche war es jedoch vor allem, eine erste Néaherung des Estrichtragverhaltens auf

Déammschicht zu validieren. Dies gelingt auch mit den kleineren Abweichungen im Versuchsablauf
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Abbildung 5.4.: Ergebnisse der Balkenversuche: Kraft-Verformungs-Kurven WAS5

durch entsprechende Abbildung im Modell. Wie im folgenden Kapitel aus den vergleichenden
Simulationen abzuleiten ist, ist die beobachtete Tendenz mindestens zum Teil auf die bereits ge-

nannte ungeplant nachgiebigere Lagerung zuriickzufithren: Die Verldufe folgen der nichtlinearen
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Nachgiebigkeit der Lager (siehe gemessene Verformung an den Auflagern (WA1 bzw. WA2/3)
in Anhang D). Ohne Beriicksichtigung der beweglichen Lagerung ergeben sich bei den Balken

groflerer Dicke deutliche Abweichungen zwischen Versuch und Simulation.

5.2. Simulationen

5.2.1. System und Randbedingungen

Aufgrund des nicht messbaren Nachbruchbereichs ist es fiir eine erste numerische Ndherung
der gemessenen Kraft-Verformungslinien ausreichend, das System auf eindimensionale Balken-
elemente mit linear elastischem Materialverhalten zu reduzieren. Die Eingangsldngenparameter
fiir dieses Modell sind abhéngig von der Lage der Fixierungen im Versuch in Abbildung 5.5
und Tabelle 5.2 angegeben. Als Belastung wurde die maximal gemessene Kraft aufgebracht (vgl.
Tabelle 5.1)

o P R PR I PR SRR IR

A $555355535553555550555550505555%5¢%
Ly, =Lp—1Ly F| =5
L — LA Fﬁ‘/

Abbildung 5.5.: Systemplot des gebetteten Balkens (Diskretisierung mit Balkenelementen (oben)
bzw. kontinuumsbasierten Schalenelementen (unten))

Tabelle 5.2.: Abmessungen Balkensimulationen

d |L=700-L4 | Lzwr=Lp-Ls | Last [kN]|
TP-GP [ TP
20 660 135 2.0 -
40 660 125 25 -
60 650 250 27 | 15
80 650 250 325 | -
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5. Gebetteter Balken (1D-Spannungszustand)

In Abbildung 5.5 ist auch das numerische Modell fiir eine materiell-nichtlineare Berechnung
der Balkenversuche anhand eines Volumenmodells dargestellt. Um die Messdaten des Wegauf-
nehmers WA5 auf dem Winkel am Balkenende der Lastaufbringung mit den Simulationsdaten
vergleichen zu koénnen, wird ein Element mit entsprechender Linge an dieser Stelle in beiden
Modelltypen erginzt. Die nachgiebige Lagerung wird so modelliert, dass an den Lagern eine dem
Messverlauf entsprechende Verformung eingepriagt wird. Der Dédmmstoff wird iiber unabhéngige
Federn an jedem Knoten modelliert. Die in Kapitel 3.3 erliduterten Steifigkeitsverldufe werden
entsprechend der Elementabmessung bzw. der dadurch entstehenden Feder-Einzugsfliche be-

rechnet und dem Federelement als Kraft-Weg-Eigenschaft zugewiesen.

5.2.2. Vergleich mit den Messdaten
Kraft-Verformungslinien

In Abbildung 5.6 sind die Messergebnisse (schwarz) gegeniiber den linear-elastischen Simulati-
onsergebnissen (rot) dargestellt. Die gestrichelten Kurven zeigen Simulationsverldufe, bei denen
die Lagerbedingungen als nicht nachgiebig angesetzt sind. Es ist deutlich zu erkennen, dass bei
d =20 mm der Einfluss der festen Lagerung im Vergleich zur nachgiebigen im Versuch vernach-
lassigbar ist. Das liegt zum einen daran, dass die Lager bei diesen Versuchen deutlich weniger
nachgiebig waren (WA1 kaum Bewegung, WA2 in geringem Maf, sieche Anhang Abb. E.1 und
E.2). Zum anderen spielt die Lagernachgiebigkeit bei den dickeren Balken eine grofiere Rolle, weil
die abhebende Kraft am ersten Lager im Zuge der hoheren Balkensteifigkeit grofer ist. Fiir die
Balken grofierer Dicke ist die Modellierung der Lagernachgiebigkeit zwingend notwendig, um den
Kraft-Verformungsverlauf zu simulieren. Fiir alle Berechnungen gilt, dass die Ubereinstimmung
gut ist, solange die Randbedingungen den Versuchsbedingungen entsprechen: Die berechnete
Verformung bei vorgegebener Maximallast entspricht in etwa den am Balkenende gemessenen
Verformungen. Bei der geringsten und hochsten Dicke wird die Verformung im Vergleich zu den
Versuchen leicht iiber- bzw. unterschatzt, aber die Abweichung ist mit etwa 15 % bei dem vor-

handenen Datenumfang mit versuchstechnischen Abweichungen zu erklaren.

Um neben dem bei der elastischen Rechnung bereits eingegangenen E-Modul auch die tibrigen
Materialeigenschaften wie Zugfestigkeit und Entfestigungsparameter hinsichtlich der maximalen
Verformung und Bruchlast zu beurteilen, wird eine nichtlineare Berechnung mit Volumenele-
menten durchgefiihrt, jedoch nur fiir die Proben der Dicke 20 und 60 mm (jeweils mit steiferem
und weicherem Démmstoff), d.h. fiir die in Abbildung 5.6 jeweils links dargestellten Daten, da
dies zur Beurteilung der Eingangsparameter ausreichend ist. Die Ergebnisse dazu sind in Abbil-
dung 5.7 dargestellt.

Entscheidend ist vor allem die Ubereinstimmung der maximal gemessenen Kraft und Verfor-

mung: Fiir die in blau dargestellten Kurven mit den Eingangsparametern entsprechend der in
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Kapitel 4 gewihlten Werte (f; = 3 N/mm?, G ¢=0.2 Nmm/ mm?) zeigt sich bei allen Verldufen
ein entfestigender Abfall der Steigung hin zum Maximum. Die Krimmung der Kurve in diesem
Bereich ausgepragter zu sehen als bei den beiden anderen Modellen. Fiir Dicke 20 mm ist die
Kriimmung am schwéchsten und wird erst kurz vor dem Bruch {iberhaupt leicht erkennbar.
Dieser Abfall der Steigung ist in den gemessenen Daten ganz leicht bei d = 20 mm zu erahnen,
bei den {ibrigen Kurven gar nicht sichtbar. Fiir d = 20 mm zeigt sich eine Unterschatzung der
Verformung fiir die nichtlineare Berechnung, fiir Gy = 0.2 deutlicher als fiir Gy = 0.3 Nmm/ mm?.
Diese ist bei den dickeren Balken unabhéngig von der Ddmmsteifigkeit besser getroffen. Bei allen

Verldufen wird die Bruchlast etwas unterschétzt, bei d = 20 mm ebenfalls deutlicher.

Variiert wurde der Wert fiir die Bruchenergie, um diesen ndher einzugrenzen. Bei héherer Bru-
chenergie von 0.3 (hellblau) statt 0.2 Nmm/mm? (dunkelblau) steigt die mégliche Belastung
auf etwa das gemessene Niveau (bei d = 20 mm immer noch etwas unterschétzt), allerdings
wird dafiir die Verformung gréBer. Eine Anderung der Zugfestigkeit wiirde die Werte &hnlich
beeinflussen, insofern ist es schwierig, mit den vorhandenen Daten diese prézise einzugrenzen.
Ein Variieren des Dilatanzwinkels zeigte keinen merkbaren Einfluss. Die vorhandene Untersu-
chung zeigt, dass die GroBlenordnung der angenommenen Werte in Ordnung ist und auch fiir die

Platten Anwendung finden kann.

Dehnungs- und Verformungsverlaufe

Die in den Abbildungen 5.8 bis 5.10 sowie im Anhang (Abb. F.2 und F.3) dargestellten Deh-
nungsverlaufe (jeweils oben: Dehnung iiber die Balkenlédnge) und Verformungsverlaufe (jeweils
unten: vertikale Verschiebung iiber die Balkenlinge) zum Bruchzeitpunkt zeigen eine gute Uber-
einstimmung mit den Messpunkten im Rahmen der zu erwartenden versuchsbedingten Streuung.
In Abbildung 5.8 weisen die Messwerte, hier als einzelne Marker dargestellt, bei den Proben 60-
2 und 60-3 einen Ausreifler auf Hohe des Zwischenauflagers auf, was auf duflere Stérungen der
Wegaufnehmer WA2 und WA3 bei der Priifung zuriickzufithren ist. Die in den Dehnungsverlau-
fen dargestellten vertikalen Markierungen kennzeichnen den Ort der gemessenen Rissbildung.
Neben den punktuell am Ort der Messaufnehmer dargestellten Versuchsdaten sind hier jeweils
die lineare Simulation als schwarze durchgezogene Kurve, sowie die nichtlinearen Simulationen
in Graustufen (dunkel: Gf = 0.2, hell: G = 0.3) abgebildet.

Qualitativ stimmen bereits die linear-elastisch ermittelten Dehnungsverldufe recht gut mit den
DMS-Werten iiberein. Die durch die 20 mm langen DMS gemessenen Werte sind als Mittelwert
iiber die Lénge zu verstehen, sodass die Messwerte die tatsdchlichen Dehnung tendenziell etwas
unterschétzen. Die nichtlinearen Verldufe liegen in der Regel unter den linear-elastischen Verlau-
fen, und weichen im Rissbereich deutlich ab, da hier eine Art Diskontinuitit bzw. Singularitét

im Rissbereich sichtbar wird. Die linear elastisch ermittelte, maximale Dehnung trifft die Mes-
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Abbildung 5.6.: Vergleich der Messdaten (schwarz) mit der linearen Simulation (Sim, rot): Kraft-
Verformungs-Kurven
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Abbildung 5.7.: Vergleich der Messdaten (schwarz) mit der linearen (rot) bzw. nichtlinearen
Simulation (Sim, hellblau/blau): Kraft-Verformungs-Kurven (G [Nmm/mm?))

sung zum dargestellten Bruchzeitpunkt gut. Ein Vergleich der beiden nichtlinearen Rechnungen
mit unterschiedlicher Bruchenergie zeigt tendenziell hohere Werte bei kleinerer Bruchenergie.
Beide unterschitzen die gemessenen Werte. Fiir d = 20 mm liegen die beiden Kurven auflerhalb
des Rissbereichs nahezu aufeinander, im Rissbereich ist die Abweichung umso ausgeprigter.
Der Sprédbruch der Probekorper lasst einen Vergleich der Rissbreite im Versuch mit der durch

Umrechnung der plastischen Dehnung iiber die charakteristischen Lénge ermittelten Rissbreite
nicht zu (vgl. Kapitel 3.1.2).

Die Verformungsfiguren zeigen eine recht gute Ubereinstimmung mit den gemessenen Werten.
Vor allem der Verlauf der Probe 60-1 sticht aufgrund der Nachgiebigkeit des Lagers und des in
dieser Darstellung deutlichen Versatzes nach oben im Vergleich zu den anderen Proben heraus.

Abgesehen von den Ausreiflern bei Wegaufnehmer WA3 zeigen die nachgerechneten Verldufe bei
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5. Gebetteter Balken (1D-Spannungszustand)

Beriicksichtigung der Lagernachgiebigkeit jedoch eine gute Ubereinstimmung. Die nichtlinearen
Verlaufe zeigen eine etwas grofiere Durchbiegung bei d = 60 mm fiir beide Dammstofftypen, wie

schon im Kraft-Verformungs-Diagramm gezeigt.

£ 300 |
g
=200 |
50
g
= 100 |
< Rissorte
A 0 : : : ‘ ‘ ‘ :
0 100 200 300 400 500 600 700
Position in Balkenldngsrichtung [mm]
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Position in Balkenldngsrichtung [mm]

(b) Verformungsfigur

Abbildung 5.8.: Dehnungs- und Verformungsverlauf der Balken mit d = 60, TP-GP (vertikale
Markierung oben: Stelle des Risses im Versuch)
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Abbildung 5.9.: Dehnungs- und Verformungsverlauf der Balken mit d = 60, TP (vertikale Mar-
kierung oben: Stelle des Risses im Versuch)
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Abbildung 5.10.: Dehnungs- und Verformungsverlauf der Balken mit d = 20, TP-GP (vertikale
Markierung oben: Stelle des Risses im Versuch)
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5.3. Zusammenfassung

Aus der Auswertung der Balkenversuche und der numerischen Simulation der Ergebnisse lassen
sich die aus den Festigkeitspriifungen und Voruntersuchungen ermittelten Eingangsparameter
(Festigkeiten, Bruchenergie, Elastizitdtsmodul) und Modellrandbedingungen (Federsteifigkeit,
Elementtyp SC8R) im Rahmen des eindimensionalen Spannungszustands und ohne Betrach-
tung des Nachbruchbereichs bestétigen und fiir die folgenden Untersuchungen der Plattenver-
suche ibernehmen. Im Rahmen der nachfolgend beschriebenen Plattensimulationen wurde der

Parameter der Bruchenergie sowie die Zugfestigkeit im hier eingegrenzten Rahmen variiert:
o Zugfestigkeit f; € [2.5,3.5] N/mm?
o Bruchenergie G € [0.2,0.3] Nmm/mm?.
Die iibrigen Parameter wurden aus den Balkenuntersuchungen ibernommen, so auch die Feder-

gesetze.
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6. Gebettete Platte (3D-Spannungszustand)

Der Vergleich der Ergebnisse aus den durchgefiihrten Plattenversuchen mit der numerischen Si-
mulation soll die Eignung des numerischen Modells zur Berechnungs des Rissverhaltens validie-
ren. Die Versuche umfassen lediglich zwei Platten auf zwei unterschiedlich steifen Ddmmstoffen
des gleichen Typs. Zusétzlich zu den Belastungspriifungen wurden wéahrend der Erhdrtungsphase
Schwindverformungen gemessen, deren Einfluss auf das Bruchverhalten zu untersuchen ist. Zu-
néchst wird im Folgenden der Systemaufbau sowie die Anordnung der Messtechnik erldutert. Die
Auswertung der gemessenen Schwindverformungen und der anschlieBenden Belastungsversuche

dient als Grundlage fiir die numerische Simulation der schwimmend hergestellten Platte.

6.1. Versuchsaufbau und -ablauf

6.1.1. Aufbau

Wegaufnehmer wurden zur Schwindmessung wenige Stunden nach Herstellung des Estrichs in
einem 3 x 3-Raster auf den Platten angeordnet, um die vertikale Eck- bzw. Randverformung im
Vergleich zur Verformung in Plattenmitte zu erfassen, siche Abbildung 6.1. Nach drei Wochen
wurde die Schwindmessung planméfig abgebrochen, da als Vorbereitung fiir die geplante Priifung
der Platten nach etwa 28 Tagen zusétzlich Dehnungsmessstreifen (DMS) auf der Plattenober-
seite aufgeklebt werden sollten, und die Arbeit auf der Platte die weitere Messung verfilscht
hétte. Die Messung der Dehnung sollte einen Anhaltspunkt fiir die zeitliche Entwicklung des
Dehnungs- bzw. Spannungszustands wéihrend der Belastung der Platte bis zum Bruch liefern,
und einen moglichen Effekt aus Spannungsumlagerung infolge der Bettung detektieren. Hierfiir
wurde auch eine innen liegende Messsensorik in Betracht gezogen. Bei der Untersuchung unbe-
wehrter Bauteile besteht jedoch bei der Verwendung optischer Dehnungssensoren das Problem,
dass die Positionstreue der Sensoren ohne Einbau zusétzlicher Fixierhilfen nicht gewéhrleistet
werden kann. Bei Stahl- oder Spannbeton kénnen die Sensoren an der Bewehrung befestigt
werden, dies ist bei unbewehrten Bauteilen jedoch nicht moéglich, bzw. der zusédtzliche Einbau
anderer Materialien kénnte einen bewehrenden Effekt haben und damit das Bauteilverhalten

grundlegend beeinflussen.

Die Anordnung der Dehnungsmessstreifen orientiert sich an der erwarteten Rissbildung. Bei

Belastung der Plattenecke bricht diese in einem gewissen Abstand zum Laststempel mit leicht
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Abbildung 6.1.: Anordnung der Wegaufnehmer (WA) zur Messung der Schwindverfor-
mung (Bezeichnung: E/R/M (Ecke/Rand/Mitte), V/H (vorne/hinten), R/L
(rechts/links))

gekriimmtem Rissverlauf ab, bei Laststellung in Randmitte ist die Ausbildung eines grofieren
Bruchradius um die Last herum zu erwarten (vgl. u.a. Manns und Zeus, 1980). Die Position die-
ser Einzelrissbildung ist vor allem von der Dammstoffsteifigkeit und der Plattengeometrie und
-dicke abhéngig. Unter Verwendung der in den Vorversuchen am verwendeten Dammstoff (vgl.
Kapitel 3.2) ermittelten Bettungssteifigkeit wurden Vorsimulationen in Abaqus durchgefiihrt,
um die Dehnungsmessstreifen im Bereich der so prognostizierten Rissbildung anzubringen. Der
Einfachheit halber wurde fiir beide Platten an den Ecken die gleiche DMS-Anordnung gewahlt:
Im Abstand von 200 mm zur Ecke werden drei lineare DMS jeweils im Abstand von 60 mm ange-
bracht, um den erwarteten Rissbereich von etwa 25 mm (steifer Dammstoff TP-GP) bis 35 mm
(weicher Dammstoff TP) abzudecken. Im Abstand von weiteren 60 mm ist eine DMS-Rosette
angeordnet, die an den erwarteten Hauptspannungsrichtungen orientiert aufgeklebt wurde. Die

Anordnung der DMS kann Abbildung 6.2 entnommen werden.
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Abbildung 6.2.: Anordnung der Dehnungsmessstreifen (DMS)
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Die Last wurde iiber einen runden Stempel mit
einem Durchmesser von 50 mm aufgebracht. Die
Laststeigerung erfolgte mithilfe eines Hydraulikzy-

linders, der zwischen einem auf die erwartete Ma-

Hydraulikzylinder

(Lastaufbringung)

- 3 -
-

—,
!
-

ximallast ausgelegten Stahlbalken und der Estrich-
platte iiber eine Handpumpe ausgefahren wurde und
den Stempel so auf die Platte gedriickt hat. Un-
ter dem Stempel wurde zusétzlich eine elastische
Unterlage untergelegt, um keine lokale Schidigung
aus Durchstanzbeanspruchung zu riskieren. Unter-
halb des Hydraulikzylinders wurde eine Kalotte fir
eine bessere Kraftschliissigkeit der Verbindung des
in Abbildung 6.3 dargestellten Aufbaus angeord-

net. Uber eine darunter angeordnete Kraftmessdose

de die iiber den Hydraulikzylind fgebracht
wade die e.r ey ra.ul Zymeer au‘ sebrAciie Abbildung 6.3.: Stempelaufbau Platte
Kraft aufgezeichnet. Da die Verformung infolge des
Eigengewichts dieses Aufbaus nicht messbar war,
wurden zu Beginn der Messung alle Kanéle genullt und die Kraft-Verformungs-Kurven im fol-

genden Kapitel nachtriaglich um das gemessene Gewicht des Aufbaus korrigiert.

6.1.2. Ablauf (Gesamtrissbild)

Zentrales Ziel der Versuche ist die Untersuchung des Lastfalls Einzellast auf Plattenecke. Al-
ternativ zum gewéhlten Versuchsaufbau wiren Eckpriifungen an mehreren kleineren Platten
moglich gewesen, allerdings besteht bei Platten mit zu geringer Abmessung das Problem, dass
die Platte unter Einzellast lediglich eine Kippbewegung auf dem Dammstoff erfihrt und das
tatsachliche Abbruchverhalten, welches in der Praxis zu beobachten ist, nicht ohne zusatzli-
che Randbedingungen (Festhaltung gegen Kippen) reproduziert werden kann. Alternativ wurde
schlieBlich eine groflere Plattenabmessung (quadratische Abmessung L = 2500 mm), und damit

einhergehend eine geringere Anzahl an Platten, gewéhlt.

Zunéachst wurde Platte S (steifer Dammstoff) geprift. Aufgrund des aufwendigeren Umsetzens
des Stahlbalkens, der dem Hydraulik-Zylinder als Gegenlager dient, wurde nach Priifung der
ersten beiden Ecken die Priifung des dazwischen liegenden Randes vorgezogen. Dabei wurde
jedoch ein zusétzlicher Riss quer durch die Platte erzeugt. Die restlichen beiden Eckpriifungen
konnten somit nur noch an der auf die halbe Platte reduzierten Geometrie durchgefiihrt werden
(L x L/2). Bei Prufung der zweiten Platte wurden zuerst alle Eck-Lastfélle durchgefiihrt, bevor
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(b) Platte W (weicher Dammstoff)

Abbildung 6.4.: Plattenpriifung: Finales Rissbild
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6. Gebettete Platte (3D-Spannungszustand)

anschliefend Lastfall W-RL (Rand links) gepriift wurde, bei dem ebenfalls eine Halbierung der
Platte die Folge war. Aufgrund des grofien Bruchradius infolge des weicheren Ddmmstoffs war bei
den noch iibrigen Teilbruchstiicken keine nédherungsweise rechteckige Geometrie mehr vorhan-
den. Fotos und Abbildungen zum Aufbau, Ablauf und weitere Informationen zur Messtechnik
konnen Anhang D.2.2 entnommen werden. Die nach Abschluss der Priifung aufgenommenen
Rissbilder der beiden Platten sind in Abbildung 6.4 dargestellt. Der Versuchsablauf mit den

einzelnen schematischen Bruchbildern ist im Anhang in Abbildung E.5 visualisiert.
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6.2. Versuchsergebnisse

6.2.1. Schwinden

Zur Beriticksichtigung der Schwindverformungen soll eine gewisse Vorbeanspruchung im nume-
rischen Plattenmodell eingepriagt werden. Durch Vorgabe einer aufgeschiisselten Initialkonfi-
guration und Lagerung der Platte auf nichtlinearen Einzelfedern, wie bereits in Kapitel 3.2.1
erlautert, wird die Vorverformung der Platte infolge Schwindens berticksichtigt. Die zugehorige
Verformungsfigur hétte aus den gemessenen Eckwerten der Platte und Néherung an eine para-
bolische Schiissel-Form ermittelt werden kénnen. Bei dieser Vorgehensweise wiirde allerdings der
korrespondierende Spannungszustand infolge der Schwindverformung entgegenwirkenden Eigen-
gewichts nicht beriicksichtigt. Um einen mdglichen Einfluss auf die anschlieende Rissbildung
infolge auflerer Last zu priifen, sollten die entstehenden Zwangsspannungen betrachtet werden.
Wiéhrend der Erhértung des Estrichs wurden jedoch nur die Verformungen und keine Spannun-
gen oder Dehnungen gemessen, um daraus eine Vorbeanspruchung ableiten zu kénnen. Auch
ware eine grofflachige Abschitzung des Spannungszustands auf Basis einzelner Messwerte mit

groflen Unsicherheiten behaftet.

Daraus ergibt sich die Notwendigkeit, den Lastfall Schwinden rein numerisch zu beriicksichtigen
und die resultierenden Verformungen und Spannungen als Initialzustand bei der Risssimulation
anzunehmen. Auf die konkreten Randbedingungen und Ergebnisse dieser Schwindsimulationen

wird in Anhang B genauer eingegangen (siehe auch Kapitel 3.2.1).

In Abbildung 6.5 sind zunéchst die vertikal gemessenen Verschiebungen der Ecken, Rénder und
Plattenmitte der beiden betonierten Platten dargestellt. Zu sehen ist ein zunehmend asympto-
tischer Verlauf der Kurven, wobei zum Zeitpunkt des Messabbruchs nur bei wenigen Kurven
eine Stagnation in Form eines ndherungsweise horizontalen Verlaufs sichtbar ist. Die Kurve des
Wegaufnehmers in Plattenmitte der steiferen Platte S zeigt sogar eine leicht zuriickgehende Ver-

formung.

Die Aufnehmer an den Ecken bzw. Rindern weisen jeweils eine gute Ubereinstimmung® auf. Die
Kurven der steifer gelagerten Platte S (Abb. 6.5a) stimmen mit denen der weicheren Platte W
ebenfalls gut iiberein (Abb. 6.5b), wobei die Kurven in (b) tendenziell leicht héhere Verformun-
gen aufweisen. An der Plattenmitte zeigt sich eine zunehmende Abweichung von bis zu etwa

0.5 mm.

Zur Ermittlung eines numerischen Vorverformungs- bzw. Vorspannungszustands, der diesen

! mit Ausnahme des Aufnehmers EHL (=Ecke hinten links) aufgrund eines instabilen Stativs; Aufnehmer EHL

wird nachfolgend vernachlassigt
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6. Gebettete Platte (3D-Spannungszustand)

Messdaten moglichst gut entspricht, stehen rechnerische Ergebnisse aus dem Programmsystem
croc zur Verfliigung, wobei hier noch kein Eigengewicht berticksichtigt ist (vgl. Kapitel 3.2.1).
Ein Vergleich der Messkurven in Abbildung 6.5 mit durch Eigengewicht beaufschlagten croc-
Simulationsergebnissen iiber die Zeit ist nicht ohne Weiteres moglich, da hierfiir jedes Zeitschritt-
Ergebnis aus croc in Abaqus importiert und mit Eigengewicht belastet werden miisste. Statt eines
Vergleichs der absoluten Schwindverformung, werden die gemessenen Relativverformungen mit

den Ergebnisse aus croc verglichen.

In Abbildung 6.6 sind die jeweils gemittelten, gemessenen vertikalen Eck (E)- und Rand (R)-
Verformungen abziiglich der Verformungen in Plattenmitte (M) dargestellt. Der direkte Ver-
gleich der Differenz-Messkurven der beiden Platten zeigt aufgrund der starkeren Verschiebung
des Aufnehmers in Plattenmitte bei Platte W eine Abweichung von etwa 0.5 mm, sowohl fiir
die Ecke? als auch fiir den Rand. Zusétzlich sind hier die in croc ohne Eigengewicht an einer
Viertelplatte (Symmetrieausnutzung, siche Abbildung 3.14) berechneten Relativverschiebungen
an Ecke und Rand relativ zur festgehaltenen Plattenmitte dargestellt. Unter der Annahme,
dass das Eigengewicht bei den Messungen gleichméflig wirkt, sollten die berechneten Daten mit
den gemessenen Relativverschiebungen iibereinstimmen. Die Simulationen in croc wurden fiir

verschiedene Vernetzungen durchgefiihrt:
e Netz 1: gleichméfig, Elementabmessung 50mm,
o Netz 2/4: gleichméBig: Elementabmessung 25mm (mit 8- und 20-Knoten-Elementen),
e Netz 3: Verfeinerung des Netzes hin zur Ecke.

Es fallt auf, dass im Gegensatz zu den Messkurven in der Simulation vor Abnahme der Folie
ein horizontaler Verlauf zu verzeichnen ist, sich bis zur modellierten Abnahme der Folie nach 4
Tagen keine Verformung im Modell ergibt. Um den Verlauf der gemessenen mit den simulierten
Kurven nach 4 Tagen besser vergleichen zu kénnen, wurden daher die berechneten Kurven um
das mittlere Maf§ der im Versuch zum Zeitpunkt der Folienabnahme Verformung verschoben.
Dies geschieht gleichermaflen fiir alle betrachteten Vernetzungen. Der Vergleich der verschiede-
nen Netze zeigt keine Konvergenz bei feinerer Vernetzung, sondern eine Streuung, die im Fall
der Randverformungen bereits deutlich ist, im Fall der Eckverformung noch gréfier. Die Simula-
tionsergebnisse zeigen die von den Messergebnissen nahezu erreichte Stagnation im betrachteten
Zeitraum weniger, und weisen kurz nach Entfernung der Folie einen etwas flacheren Anstieg auf
als die Messkurven. Die Gréflenordnung der maximalen Verschiebung ist mit den Werten im

Versuch zumindest vergleichbar.

Der zu den beschriebenen Verformungen korrespondierende Spannungszustand wéihrend der
Schwindsimulation weist die gleichen Diskrepanzen hinsichtlich einer eindeutigen Konvergenz
auf wie die Verformungen. Die Hauptspannungen iibersteigen aber weder Zug- noch Druckfes-

tigkeit (vgl. Abbildung F.5), sodass infolge Schwinden nicht mit Rissbildung zu rechnen ist,

2 die aufgrund des instabilen Stativs fehlerhafte Messung wurde bei der Mittelung nicht beriicksichtigt
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EVL
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vert. Verschiebung [mm]
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inﬁtabﬂ 1 ZelF [d]
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Mitte

(a) Platte S mit steiferem Dammstoff
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Ecke —— EHL
—— EHR
RV
——RH
—— M

vert. Verschiebung [mm]

Folie
entfernt

s Rand

Zeit [d]
16 18 20

Mitte

(b) Platte W mit weicherem Dammstoff

Abbildung 6.5.: Schwindmessung im Versuch (Bezeichnung der Wegaufnehmer vgl Abb. 6.1)

weshalb das geplante stufenweise Vorgehen im vorliegenden Fall méglich ist:

(i) Implementierung der Ergebnisse der Schwindberechnung ohne Eigengewicht aus croc als

Ausgangszustand,
(ii) anschlieBendes Aufbringen des Eigengewichts und der Einzellast innerhalb Abaqus.

Aufgrund der guten Ubereinstimmung der berechneten mit der gemessenen vertikalen Verschie-
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—— Versuchl: E-M
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Abbildung 6.6.: Ergebnis der Schwindsimulation in croc: Vertikale Verformungen an der Ecke
(E) bzw. am Rand (R) relativ zur in der Simulation fest gelagerten Plattenmit-
te (M) im Vergleich zur gemessenen Relativverformung zwischen Plattenmitte
und Ecke (E-M) bzw. Rand (E-R) (Elementnetz: (1) — regelméfig 50 mm,(2)
—— regelméfig 25 mm, (3) -— zur Ecke verfeinert, (4) --- 20-knotige Elemente,
regelméflig 25 mm)

bung wird die berechnete Verformungsfigur sowie der zugehorige, in croc ermittelte Spannungs-
zustand infolge Schwinden fiir einige Voruntersuchungen des Rissverhaltens an der Platte beriick-
sichtigt. Es zeigt sich in Abbildung F.4 im Anhang, dass der Einfluss aus Zwangsspannungen, so
wie sie croc liefert, auf das Verformungs- oder Rissverhalten der Platte vernachléssigbar ist. Der
Einfluss der Vorverformung ist jedoch deutlich. Da es auflerdem aufgrund fehlender Messungen
keine Moglichkeit gab, die innerhalb croc ermittelten Spannungen und deren Implementierung
in das vorhandene Modell auf Realitdtsndhe bzw. Korrektheit zu tiberpriifen, werden in den
folgenden Rechnungen nur die Vorverfomungen beriicksichtigt. Dabei werden entweder die aus
croc gegebenen Vernetzungen iibernommen oder bei abweichender Vernetzung diese entspre-
chend daraus interpoliert. Qualitativ ist der Verformungszustand fiir alle Netze &hnlich, nur die
Maximalordinate am Rand bzw. an der Ecke sind stark unterschiedlich. Die vorgegebene Vorver-
formung wird bei den Berechnungen in Abaqus jedoch ohnehin auf die gemessene Eckverformung
von 3.4 mm (Platte S) bzw. 4.1 mm (Platte W) skaliert.
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Fazit

Zusammenfassend lasst sich festhalten, dass die Messdaten der vertikalen Verschiebung wéh-
rend des Erhirtungszeitraums ein Schiisselverhalten, d. h. ein Abheben der Rénder und Ecken
bei gleichzeitigem Einsinken der Plattenmitte zeigen, wobei Platte W etwas weiter einsinkt als
Platte S. Dies konnte u. a. mit dem weicheren Dammstoff unter Platte W und einer dadurch
insgesamt tieferen Einsenkung dieser Platte zusammenhéngen. Die tendenziell hheren Eck-
und Randverformungen dieser Platte sprechen allerdings dagegen. Inwiefern die Unterschiede
zwischen den beiden Platten ggf. auch auf duflere Einfliisse oder Ungenauigkeiten wahrend der
Messung zuriickzufithren sind (bzw. ob die Ungenauigkeit eher im Rand-/Eckbereich oder in
Plattenmitte zu suchen ist), oder dies mit lokal unterschiedlicher Verdichtung der Platten oder
anderen Ursachen zusammenhéngt, kann nicht abschlieend gekléart werden. Aufgrund der in
beiden Fillen gleichermaflen unterliegenden Folie ist ein Einfluss unterschiedlicher Isolationswir-

kung nach unten wéhrend der Austrocknung auszuschlielen.

Die Annahme des simulierten qualitativen 21-Tage-Verformungszustands skaliert auf die maxi-
mal gemessene Eckverformung als Grundlage fiir die Nachrechnung der Belastungsversuche, die
erst nach 28 bzw. 36 Tagen erfolgten, ist fiir den Zweck einer grundlegenden Beurteilung des
Schwind-Einflusses ausreichend genau. Die fehlende Konvergenz bei den Ergebnissen aus croc
kann im Fall der Vorverformungen aufgrund des Abgleichs mit den Messdaten vernachléssigt
werden. Bei Anwendung des Modells auf andere, schwind-intensivere Estrichtypen und verglei-
chender, quantitativer Beurteilung der Simulationsergebnisse sollten diese Annahmen jedoch
noch einmal iiberpriift und der Dehnungszustand wahrend der Erhartungsphase mithilfe von
DMS erfasst und abgeglichen werden. Im Folgenden wird auf die Belastung der Platte im An-

schluss an die Erhartungsphase ndher eingegangen.

6.2.2. Belastung

Aufgrund der — mit Blick auf die erwartete Rissposition an der jeweiligen Plattenecke — grofien
Abmessung der Platte wird angenommen, dass die Eck-Lastfélle sich nicht gegenseitig beein-
flussen. Somit kénnen die vier Eckpriifungen als voneinander unabhéngig beurteilt werden und
sollten bei gleicher Geometrie vergleichbare FErgebnisse liefern. Aufgrund des bereits erlduterten
ungiinstigen Versuchsablaufs bei Platte S, wodurch die Platte vor Belastung der beiden Ecken
vorne links (Abkiirzung im folgenden entsprechend Abb. 6.1: EVL (Ecke vorne links)) und hinten
links (EHL) durchgebrochen ist, sind diese beiden Ecken im weiteren Verlauf nicht einzubezie-
hen. Wie bereits anhand der Rissbilder in Abbildung 6.4 erlduert ist der Bruchradius unter der
Randlast bei der weicheren Ddmmung deutlich gréfer als der der steifer gelagerten Platte. Diese
Tendenz eines grofleren Bruchradius bei weicherer DAmmung zeigt sich weniger ausgepriagt auch

bei den Eckpriifungen.
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In den Tabellen E.1 und E.2 sind die Abmessungen und Bruchlasten der Eck- und Randbruch-
korper der jeweiligen Platte erfasst (vgl. Abb. 6.7), Tabelle 6.1 zeigt jeweils Mittelwerte der
quadratischen Platte und der halbierten Platte. Die Bruchlasten wurden gemittelt sofern meh-
rere Versuche gleicher Randbedingung vorlagen (vgl. letzte Spalte mit Bezeichnung der be-
riicksichtigten Versuche). Die Bruchlast steigt durch die Halbierung der Geometrie bei steiferer
Unterlage® an: an der Ecke um etwa 0.7 kN, am Rand etwa 2.1 kN. Durch die Halbierung der
Platte werden die Eck- und Randbruchstiicke der Platte S tendenziell etwas kleiner, die Bruch-
stlickgréflen liegen aber unabhéngig von der verdnderten Geometrie nah beieinander. In Spalte
,,d*“ der Tabelle 6.1 zeigt sich auflerdem eine Schwankung bei der Plattendicke zwischen 60.5 mm
und 68 mm anstelle der geplanten 60 mm. In dieser GréBlenordnung sollten Auswirkungen dieser
Schwankungen auf die Versuchsergebnisse, z. B. auf die Hohe der Bruchlast, vernachlassigbar

sein, konnen nicht génzlich ausgeschlossen werden.

Tabelle 6.1.: Gemittelte Abmessungen der Bruchkorper [mm] und mittlere Bruchlasten [kN],
vgl. Tabellen E.1 und E.2 im Anhang fiir die ungemittelten Messdaten

Platte | Lastfall | Geometrie L., d FBruch,m

S Ecke quadratisch | 242.5 | 60.5 | 6.79 S-EVR, S-EHR

W Ecke quadratisch | 334.3 | 62 7.43 W, alle Ecken

S Rand quadratisch | 315 63 13.55 S-RR

W Rand quadratisch | 785 68 15.17 W-RL

S | Ecke | rechteckig | 239 |63 | 7.5 | S-EVL, S-EHL

S | Rand | rechteckig | 272.5 | 60.5 | 15.62 | S-RH, S-RV
AR

Ve
Llu AV

Abbildung 6.7.: Form und Abmessung der Bruchkoérper (links Eck-, rechts Randpriifung), vgl.
Tabelle 6.1

Belastung an der Ecke

In den Abbildungen 6.8 und 6.9 sind die zu den Eck-Lastfillen zugehérigen Kraft-Verformungs-
kurven zusammengestellt, vgl. Tabelle 6.1 (Zeilen 1 und 2). In Abbildung 6.8 sind die vertikalen

Verformungen direkt an der Stelle der Lastaufbringung sowie entlang der zugehorigen Diagona-

3 bei weicherer Unterlage war der Versuch am Plattenrand bei durchgebrochener Platte fehlerhaft
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len aufgetragen (vgl. die Bilder zur Laststellung (o) und WA-Stellung (x), die an den jeweiligen
Kurven abgebildet sind). In Abbildung 6.9 sind die sich gegeniiberliegenden Rand- bzw. Eck-
verformungen der iibrigen Messstellen dargestellt. In allen Abbildungen zeigt sich eine deutliche
Gruppierung gleicher Messstellen bzw. eine gute Ubereinstimmung der vertikalen Verformungen
fir die Ecklastféille.

Anhand der Kraft-Verformungskurven wird ersichtlich, dass sich die Platte unter der Last nicht
nur biegt, sondern vor allem zu Beginn der Belastung ,kippt“, da sich die jeweils gegeniiber-
liegende Ecke nach oben bewegt. Diese Bewegung flacht im Fall des steiferen Dammstoffs (vgl.
Abb. 6.8a) mit zunehmender Kraft hin zu einem vertikal asymptotischen Kraft-Verformungs-
Verlauf ab, die Kippbewegung stagniert. Diese Tendenz ist bei Platte W nicht zu beobach-
ten, die zugehorige Kraft-Verformungs-Kurve weist einen nahezu linearen Verlauf auf (vgl.
Abb. 6.8b). Analog zu den Messungen an den gebetteten Balken weisen auch hier die Kraft-
Verformungskurven im ansteigenden Ast kaum Anzeichen fiir die Ankiindigung eines Bruchs
durch Abflachung der Kurve auf. Ein Grofiteil der Kurven zeigt vielmehr eine anfinglich schwi-
chere Steigung mit spéaterer Versteifung bis hin zu einem plétzlichen Eintreten des Bruchs. Diese
Verlaufe bestétigen, dass es vor dem Bruch infolge der Sprodigkeit des Estrichs nicht zu Span-
nungsumlagerungen kommt. In Abbildung 6.9 ist die vertikale Verformung der Platte abseits der
vom Lastangriffspunkt aus betrachteten Diagonallinie dargestellt. Die steifere Platte (Abb. 6.9a)
zeigt eine deutlich bessere Ubereinstimmung der verschiedenen Ecken, jedoch auch des rechten
und linken ,Plattenfliigels“. Die farblich gruppierten Kurven (rot/ magenta/ hellbau/ dunkel-
blau) stimmen recht gut iiberein. Die Platte zeigt somit bezogen auf die Diagonale in den beiden
Prifungen eine weitgehend symmetrische Verformungsfigur. Bei der weicheren Platte (Abb. 6.9b)
sind die Kurven weiter aufgefachert, hier sinkt eine Plattenseite etwas mehr ab als die andere.

Dieser Effekt ist auf nicht perfekt symmetrische Randbedingungen im Versuch zuriickzufiihren.
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x gl —— WA Last
& -+- WA Z
--+-- WA Mitte

Kraft [kN]

vert. Verschiebung [mm]

(a) Platte S (steifer gelagert), Laststellung Ecke ((nversuche = 2)

—— WA Last
-+- WA Z

--+-- WA Mitte
-+ WA Ecke

Kraft [kN]

vert. Verschiebung [mm]

(b) Platte W (weicher gelagert), Laststellung Ecke (nversuche = 4)

Abbildung 6.8.: Verschiebungsmessung auf der Diagonalen bei Eckbelastung (vgl. Position auf

der Platte mit e=Laststellung, x=Wegaufnahmerstelle (WA) von der Stelle der

Last iiber Stelle Z (vgl. Abb. 6.2) und die Plattenmitte bis zur gegeniiberliegen-
den Ecke)
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’ x : 1 b —— WA Rand nahe Last 1
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(b) Platte W (weicher gelagert), Laststellung Ecke (nversuche = 4)
Abbildung 6.9.: Verschiebungsmessung jenseits der Diagonalen bzw. an den Diagonalfliigeln bei

Eckbelastung (vgl. Position auf der Platte mit e=Laststellung, x=Wegaufnah-
merstelle (WA))

139



6. Gebettete Platte (3D-Spannungszustand)

Fazit

Fiir die Validierung des numerischen Modells werden die in Tabelle 6.1 grau unterlegten Mess-
ergebnisse herangezogen, da sich hier bei mehreren Versuchen gleicher Randbedingung eine gute
Ubereinstimmung der Ergebnisse zeigt. Die Kraft-Verformungslinien der einzelnen Versuche zei-
gen eine gute Ubereinstimmung. Der Bruch kiindigt sich auch in den Messdaten nicht durch
ein Abflachen der Kurve an, im Gegenteil zeigt sich eher eine leicht versteifende Tendenz am
Lastangriffspunkt. Dies ist wahrscheinlich auf die anfingliche Uberwindung der Aufschiisselung
und die dadurch erst spitere Aktivierung des Dammstoffs zuriickzufiihren. Der vor allem beim
weicheren Dammstoff beobachtete Effekt, dass sich unter Last ein Plattenfliigel etwas mehr senkt
als der andere, wird sich bei der numerischen Nachrechnung nicht einstellen. Das numerische
Modell ist eindeutig symmetrisch, sodass dies eine Ursache fiir eventuelle, leichte Abweichungen
zum Versuch darstellen kann. Fiir den Lastfall Einzellast am Plattenrand ist die Belastbarkeit
der Messdaten fraglich. Infolge des Durchbrechens der Platte nach Priifung des ersten Rands
liegt nur jeweils ein Versuch fiir die beiden unterschiedlich steif gelagerten Platten vor, und
aufgrund der Grole des Bruchradius’ kann ein Einfluss aus vorheriger Priifung der Ecken nicht
ausgeschlossen werden. Auf die erfassten Versuchsdaten wird dennoch in Kapitel 6.3.2 unmit-
telbar in Zusammenhang mit einer Vergleichssimulation eingegangen, um Eck- und Randlastfall

im Hinblick auf die Bemessungsrelevanz gegeniiberzustellen.
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6.3. Simulationen

6.3.1. System und Randbedingungen

In Abbildung 6.10 ist das numerische Modell fiir die Simulation der 2500 x 2500 x 60 mm bemes-
senden Platte dargestellt. Fiir die Elementabmessungen werden drei verschiedene, gleichméaflige

Netze mit dem Raster
o 50 x50 x 10 Elemente (grob),
e 70 x 70 x 10 Elemente (mittel),
e 100 x 100 x 10 Elemente (fein).

untersucht. Fiir das grobe und das feine Netz konnten die Vernetzung und Schiisselverformun-
gen unmittelbar aus croc iibernommen und skaliert werden, fiir das mittlere Netz wurden die
Daten zur Beschreibung der Schiisselform entsprechend iiber das feinere Netz interpoliert. Die
Platte ist vollsténdig auf knotenweise mit der unteren Elementlage verbundenen Einzelfedern
gelagert. Dies geschieht analog zur Modellierung des Balken-Modells mit dem Unterschied, dass
im Bereich der Schiisselung im &ufleren Bereich der Platte jeweils Federn zwischengeschaltet
sind (ausgenommen ist nur ein kleiner Bereich in Plattenmitte mit vernachldssigbarem Ab-
stand zum Dammstoff; der Mittelknoten liegt entsprechend der Vorgabe aus croc direkt auf dem
Dammstoff auf). Dieses Vorgehen wurde bereits in Kapitel 3.2.1 erlautert. Entsprechend erhalten
die zwischengeschalteten Federn ein nichtlineares Kraft-Verschiebungs-Gesetz, welches bis zur
Uberbriickung des Abstands zwischen Platte und Dimmstoff niherungsweise eine Steifigkeit von
Null aufweist und anschlieend in eine im Verhéltnis zum restlichen System unendlich grofien
Steifigkeit iibergeht. Die restlichen Federn weisen ein Federgesetz entsprechend der ermittelten
Déammsteifigkeit auf. Die Maximalordinate der Schiisselform wird abhéngig von der Ddmmstei-
figkeit im Versuch aus der Messung iibernommen (Platte W: 4.1 mm, Platte S: 3. mm). Die Last
wird als Druck und im Fall des groben Netzes auf ein einzelnes Element aufgebracht, da dies
etwa der belasteten Flache im Versuch entspricht. In den beiden feineren Netzen wird die Last

auf 4 Elemente verteilt, vergleiche Abbildung 6.10 rechts in rot.

A‘ ~ Dimm-
steifigkeit
Kontaktfedern
D s8R
(Kontinuums-
schalenelement)

Abbildung 6.10.: Systemplot der Platte fiir das mittlere Netz mit 70 x 70 x 10 Elementen
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6.3.2. Vergleich mit den Messdaten
Rissbilder und Kraft-Verformungslinien

Wie bereits in Kapitel 4 erlautert, wurden zur Realisierung der vorhandenen Rissbildung in
den Versuchen bei der numerischen Modellierung die Elemente mit den groffiten Hauptspannun-
gen gegeniiber dem restlichen Modell geschwécht, um eine Konzentration des Risses auf wenige
Elementreihen zu erzwingen. Der Einfluss dieses Vorgehens auf die Kraft-Verformungslinie wird
nachfolgend veranschaulicht. In den Abbildungen 6.11 und 6.12 sind die resultierenden Rissbilder
fiir die drei verschiedenen Netze in Form von auftretenden plastischen Dehnungen dargestellt
(dunkle Einférbung). Der hier dargestellte Zustand ergibt sich bei Schwichung der Elemente
im Rissband durch eine um 10 % niedrigere Zugfestigkeit. Bei diesen nur leicht geschwéchten
Elementen in der RPZ breiten sich die plastischen Dehnungen in einen grofieren Bereich aus und
beschranken sich nicht auf das initial identifizierte Rissband. Dabei entwickelten sich in der Regel
in zwei Elementreihen die mit einigem Abstand gréfiten plastischen Dehnungen, wobei eine der
beiden Reihen in der Regel dominanter ist. Um eine Vergleichbarkeit mit der Einzelrissbildung
in den Versuchen herzustellen, wurde eine ausschliellich auf das Rissband beschriankte Lokali-
sierung durch eine deutliche Steigerung der Zugfestigkeit auflerhalb des designierten Rissbands
induziert. Die zu dieser Modellierung zugehérigen Rissbilder sind in Anhang F.3.2 dargestellt.
Jeweils in rot dargestellt sind die in den Versuchen festgestellten, gemittelten Risspositionen.
Fiir das mittlere Netz zeigte sich fiir die genannte dominantere Reihe eine sehr gute Uberein-
stimmung mit der weicher gelagerten Platte W (Abb. 6.11 bzw. F.7), fir das grobste Netz mit
der steifer gelagerten Platte S (Abb. 6.12 bzw. F.8). Die Tendenz, dass sich fiir den weicheren
im Gegensatz zum steiferen Dadmmstoff ein etwas grofierer Bruchradius ausbildet, ist kaum aus-
zumachen, die Risslinien liegen grundsétzlich sehr nah beieinander. Die Abweichung hingt mit
der Identifizierung des Rissbands aus der Rechnung im ungeschwéchten Zustand zusammen und

nicht mit der anschlieBenden Lokalisierung durch Schwéichung.

Die mit geschwéichtem Rissband und mittlerer Vernetzung bestimmten Kraft-Verformungslinien
(rot) sind mit den auf der Plattendiagonale gemessenen Kurven (schwarz) in Abbildung 6.13
dargestellt. In blau sind die Ergebnisse auf Basis einer erzwungenen Begrenzung der plastischen
Dehnungen auf die RPZ visualisiert. Es wird deutlich, dass der Unterschied zwischen den beiden
Modellierungen vernachlassigbar ist. Die Ausbreitung der plastischen Dehnungen in einem gro-
Beren Bereich als der RPZ bzw. die Verteilung auf zwei unzusammenhéngende Elementreihen
hat auf das simulierte Systemtragverhalten keinen entscheidenden Einfluss. Vergleicht man die-
se Versuchsergebnisse mit dem Versuch ergibt sich fiir die steifer gelagerte Platte S eine etwas
hohere Bruchlast als im Versuch von etwa 7.4 kN (Versuch: 6.79 kN). Die Simulation der Platte
W liefert einen etwas geringeren Wert von etwa 7.2 kN und liegt damit unter dem Versuchswert
(Versuch: 7.43 kN). In der Simulation liefert somit die steifere Lagerung die hohere Bruchlast, im
Versuch ist es umgekehrt. Die maximale Verformung unter der Last ist bei der steiferen Lagerung

gut getroffen, bei der weicheren Lagerung wird sie unterschétzt. An den anderen Messpunkten
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(a) 50 (b) 35 (c) 25

Abbildung 6.11.: Entwicklung der plastischen Dehnungen (Graustufen) fiir Platte W im Ver-
gleich zur in rot dargestellten Rissposition im Versuch (Breite des dargestellten
Plattenausschnitts 0.625 m)

(a) 50 (b) 35 (c) 25

Abbildung 6.12.: Entwicklung der plastischen Dehnungen (Graustufen) fiir Platte S im Vergleich
zur in rot dargestellten Rissposition im Versuch (Breite des dargestellten Plat-
tenausschnitts 0.625 m)

entlang der Diagonale wird die berechnete im Vergleich zur gemessenen Verformung fiir bei-
de Dammstoffvarianten jeweils unterschitzt. Der Kurvenverlauf unter der Last (jeweils linke
Kurve) ist fur die weiche Lagerung fast identisch zu der im Versuch, bei steifer Lagerung zeigt
sich ab einer Einsenkung von etwa 1.5 mm ein etwas zu steifer Verlauf. Zieht man zur Beurtei-
lung Abbildung 6.14 heran, bei der die Kraft-Verformungslinien unter der Last, und zusétzlich
das Ergebnis einer Berechnung ohne Vorverformung (gestrichelt: linear elastisch, durchgezogen:
nichtlinear, jeweils rot) dargestellt sind, ist erkennbar, dass der flachere und dann versteifende
Verlauf der Riickbildung der Vorverformung bzw. Aufschiisselung zuzuschreiben ist. Was sich in
den Versuchs- und Simulationsdaten gleichermaflen zeigt: Ein , Kippeffekt“ ist tendenziell eher
bei weicherer Lagerung erkennbar. Die Tendenz, dass bei weicherem Dammstoff die Messpunkte
in Plattenmitte und an der unbelasteten Ecke (Kurven rechts) stérker voneinander abweichen,
die Ecke also etwas mehr abhebt als die Plattenmitte, zeigt sich auch in der Simulation, wenn
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auch bei deutlich kleineren Absolutwerten und mit zunehmend asymptotischen Verlauf im Ge-
gensatz zum Versuch. Die beiden rechten Kurven der steiferen Lagerung liegen dagegen nédher

beieinander, in der Simulation sind die Kurven fast deckungsgleich.

Neben den bereits angesprochenen vergleichenden Rechnungen ohne Aufschiisselung sind in Ab-
bildung 6.14 aulerdem die Kraft-Verformungslinien am Lastangriffspunkt bei unterschiedlicher
Vernetzung dargestellt: Fiir beide Lagerungen ergibt sich eine sehr gute Ubereinstimmung der
Verldufe, mit leichten Abweichungen bei der Bruchlast bzw. der maximalen Verformung. Es
kann von Konvergenz gegen eine eindeutige Losung gesprochen werden, sodass fiir die weiteren

Rechnungen im Folgekapitel das mittlere Netz als ausreichend gilt.

Schliefllich wird in Abbildung 6.15 gezeigt, welchen Einfluss die Schwéichung der Elemente im
Rissband gegeniiber einer ungeschwachten Simulation hat: In schwarz dargestellt ergibt sich eine
etwas groflere Last und Verformung, und im Gegensatz zu den geschwéchten Simulationen, die
bis zum Bruch nahezu mit der Kurve einer elastischen Berechnung iibereinstimmen, zeigt sich
im ungeschwéchten Verlauf weiter vor dem Bruch ein deutlich entfestigendes Verhalten. Aufler-
dem wird anhand dieses ungeschwéchten Systems der Einfluss verschiedener anderer Parameter
aufgezeigt:
e Elementtyp: Die Kurve mit Elementtyp C3D8, der bei den Voruntersuchungen zum Bie-
gezugversuch ein Einschniirungsverhalten gezeigt hat und u.a. deshalb durch das kontinu-
umsbasierte Element ersetzt wurde, zeigt einen qualitativ &hnlichen Verlauf, jedoch mit

deutlich gréflerer Last und Verformung zum Bruchzeitpunkt.

e Bruchenergie: Bei dreifach héherer Bruchenergie steigen Bruchlast und maximale Verfor-
mung wie erwartet deutlich an. Die Bruchenergie hat demnach nicht nur auf den Nach-

bruchbereich, sondern bereits auf die Bruchlast einen deutlich Einfluss

Dehnungs- und Verformungsverlaufe

Die in Abbildung 6.16 und Abbildung 6.17 abgebildeten relativen Verschiebungs- bzw. Deh-
nungsverliufe zeigen fiir verschiedene Netze eine gute Ubereinstimmung miteinander und mit
den Messdaten. Dargestellt sind die relativen Verformungen infolge der Belastung (Verschie-
bungsversatz fiir den Lastschritt Einzellast) zum Zeitpunkt des Bruchs. Der Verlauf entspricht
somit nicht der tatsdchlichen Lage der Platte. Der Dehnungszustand entspricht dem zum Zeit-
punkt des Bruchs. Im Vergleich zu den an den jeweiligen Messpunkten der Wegaufnehmer bzw.
Dehnungsmessstreifen gemessenen, punktweise dargestellten Werten zeigen die Dehnungen in
der Berechnung etwas niedrigere Werte. Vertikal dargestellt ist die Rissposition im Versuch,
die recht gut mit der Position der Dehnungssingularitit ibereinstimmt, die die Rissbildung im
Dehnungsverlauf kennzeichnet. Die Verformungen werden im Vergleich zu den Messdaten et-
was unterschétzt, zeigen aber wie bereits in den Kraft-Verformungslinien festgestellt eine gute

Ubereinstimmung.
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(b) Platte W

Abbildung 6.13.: Kraft-Verformungslinien bei Eckbelastung: Vergleich der Messwerte (schwarz)

mit den Simulationswerten bei geschwéchter (Sim, rot) bzw. erzwungener (Sim
(RPZ erzw), blau) Rissprozesszonne, dargestellt entlang der Plattendiagonale
(vgl. Position auf der Platte mit e=Laststellung, x=Wegaufnahmerstelle (WA))

145



6. Gebettete Platte (3D-Spannungszustand)
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Abbildung 6.14.: Kraft-Verformungslinien am Lastangriffspunkt bei Eckbelastung: Einfluss un-
terschiedlicher Vernetzung (Elementlinge Leje,,) und der Vorverformung (Aus-
wertung der Verschiebung an der Lasteinleitungsstelle)

Fazit Lastfall Ecke

Grundsétzlich zeigen die Bruchlasten in der Simulation eine gute Ubereinstimmung mit denen

der Versuche. Dass in der Simulation der steifere Ddmmstoff die hohere Bruchlast liefert, was sich
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-----Sim, elastisch, ohne Vorverf
—=— Sim, ohne Vorverf
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vert. Verschiebung [mm]

Abbildung 6.15.: Kraft-Verformungslinien am Lastangriffspunkt bei Eckbelastung (steifere La-
gerung): Einfluss verschiedener Randbedingungen: Einfluss Dilatanz (¢ = 15
anstelle 38), Elementtyp (C3D8 anstelle SC8R), Entfestigungsgesetz

im Versuch andersherum ergibt, stellt eine leichte Abweichung dar. Da die Bruchlasten grund-
sétzlich sehr nah beieinander liegen, kann dies in Ungenauigkeiten der Versuchsdurchfithrung
begriindet sein, zum Beispiel in einer ungleichméfiigen Plattendicke in den Versuchen. Auch der
Verlauf der Kraft-Verformungslinien ist fiir numerische und experimentelle Daten vergleichbar.
Die Abweichung zwischen Versuch und Messung im Verlauf fiir Platte S ist am ehesten darauf zu-
riickzufithren, dass der Abstand zwischen Dammstoff und Platte grofier war als die Messung der
Schwindverformung gezeigt hat. Dies kann auch mit der Wechselwirkung zwischen Einsenkung
in Plattenmitte abhédngig von der Dédmmsteifigkeit im Vergleich zum Abheben an den Réandern
zusammenhéngen. Die Abweichung der Verldufe bei den tibrigen Messpunkten (Abbildung 6.13)
scheint ebenfalls auf eine etwas zu frithe Versteifung im Zuge des Ablegens der Platte auf dem
Déammstoff zuriickzufithren zu sein. Die Diskrepanz zwischen der Einzelrissbildung im Versuch
und einer stirker ausgebreiteten Zone plastischer Dehnungen im Modell hat auf das Gesamt-
tragverhalten mit Blick auf die ermittelte Bruchlast bzw. die Kraft-Verformungskurven keinen
nennenswerten Einfluss. Da im Ecklastfall keine Spannungsumlagerungen auftreten konnen und
auch der Nachbruchbereich fiir die Frage des Schwindeinflusses eine untergeordnete Rolle spielt,
ist es hier ein addquates Mittel, die Entwicklung der plastischen Dehnungen stérker zu begren-
zen. Bei dieser Modellierung ergeben sich nahezu die gleichen Verldaufe. Beim Randlastfall, auf

den im folgenden eingegangen wird, stellt sich dies anders dar.
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(b) Verformungsfigur

Abbildung 6.16.: Vergleich der punktell gemessenen Versuchsergebnisse mit der Dehnungslinie
und Verformungsfigur der Simulation entlang der Diagonalen fiir Platte S

Belastung am Rand

Trotz der bereits angefiihrten Bedenken hinsichtlich der Belastbarkeit der Versuchsdaten fiir den
Randlastfall soll hier auf die Ergebnisse der Messdaten im Vergleich zu einer ersten Tastsimu-
lation eingegangen werden. Der Randlastfall wird aufgrund der héheren Biegespannungen von
Manns und Zeus (1980) als mafigebend fiir die Bemessung eingestuft, sodass eine Einordnung

gegeniiber den bisherigen Ergebnissen des Ecklastfalls vor diesem Hintergrund erfolgt.

In Abbildung 6.18 sind die Kraft-Verformungskurven entlang der Mittellinie der Platte auf
Hohe der Lasteinleitung dargestellt. Die Bruchlast im Versuch ist fiir die weicher gelagerte
Platte W mit etwa 15 kN etwas hoher als die der steifer gelagerten Platte S mit 13.5 kN. Die
berechneten Bruchlasten der Simulation sind hingegen auf einem &hnlichen Niveau: 19.3 kN
fir Platte S und 19.7 kN fiir Platte W, und damit deutlich iiber den im Versuch ermittelten
Lasten. Die Steigung der Kraft-Verformungs-Kurven zeigt dennoch bei niedrigem Lastniveau
eine gute Ubereinstimmung, weicht aber vor allem bei weicher Lagerung mit zunehmender Last
deutlicher von den Versuchsergebnissen ab. Platte W zeigt vor allem am Rand im Versuch
ein aufweichendes Verhalten als in der Simulation. In Abbildung 6.19 (und Abbildung F.9 als
Draufsicht, sieche Anhang) zeigt sich in Form des plastischen Dehnungszustands ein &hnliches

Rissverhalten wie im Versuch. Statt eines einzelnen Risses an der Plattenoberseite wie im Falle
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(b) Verformungsfigur

Abbildung 6.17.: Vergleich der punktell gemessenen Versuchsergebnisse mit der Dehnungslinie
und Verformungsfigur der Simulation entlang der Diagonalen fiir Platte W

der Eckbelastung stellt sich eine Kombination aus Schadigung an der Plattenunterseite direkt
an der Lasteinleitung, und eine grofflichige Rissbildung an der Plattenoberseite mit einem zum
Plattenrand parallel verlaufenden Maximum in einem gewissen Abstand zur Lasteinleitung ein.
Die radiale, im Versuch beobachtete Auspriagung des Risses an der Oberseite deutet sich in der
Simulation nur in Form einer Konzentration héherer plastischer Dehnungen an. Der Radius bzw.
der Abstand dieser Dehnungskonzentration vom Plattenrand ist im Vergleich zur Simulation (S
und W: etwa 535 mm) im Versuch fir Platte S (315 mm) kleiner und fiir Platte W (785 mm)

grofier.

Grundsétzlich konnen diese Abweichungen in beiden Féllen verschiedene Ursachen haben, unter

anderem ist ohne nahere Untersuchung folgendes festzustellen:

e Der Einfluss aus dem Versuchsablauf bzw. der zuvor gepriiften benachbarten Eck-Priifungen
wurde in der Simulation nicht beriicksichtigt. Die Daten-Grundlage wird als zu schwach
angesehen, um eine Validierung des Rand-Lastfalls zu erzielen, daher wurde auf eine
Nachsimulation des vollstdndigen Versuchsablaufs zur Beriicksichtigung einer eventuellen
Vorschédigung verzichtet. Stattdessen wurde wie bei den iibrigen Simulationen zum Eck-
Lastfall als Vorbeanspruchung der Platte lediglich die Vorverformung infolge Schwinden
eingepragt.
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(b) Platte W (weicher gelagert), Laststellung Rand (nversuche = 1) [lok. Maxumum auf
kurze Lastreduzierung im Versuchsablauf zurtickzufithren]

Abbildung 6.18.: Kraft-Verformungslinien bei Randbelastung: Vergleich der Messwerte
(schwarz) mit den Simulationswerten (rot) entlang der Mittellinie (vgl.
Position auf der Platte mit e=Laststellung, x=Wegaufnahmerstelle (WA)
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e In der Berechnung wurde kein Schwéichungskonzept (entsprechend Kapitel 4) beriicksich-
tigt. Wie in Abbildung 6.19 zu sehen ist, liefern die Simulationen ein &hnliches Rissverhal-
ten wie es auch in den Versuchen zu beobachten war, jedoch stellt sich hier nicht eindeutig
ein einzelner Riss bzw. eine eindeutige linienférmige Rissprozesszone wie im Ecklastfall
ein. Inwiefern das Schwéchungskonzept hier sinnvoll anwendbar ist, ist grundsétzlich durch

weitere Rechnungen bzw. Abgleich mit weiteren Versuchsdaten zu tiberpriifen.
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(b) Platte W (weicher gelagert)

Abbildung 6.19.: Entwicklung der plastischen Dehnungen bei Randbelastung an der Ober- und
Unterseite der Platte, jeweils ausgewertet bei Erreichen der Bruchlast

Ein Vergleich der gemessenen Rissbreite an der Plattenkante (vgl. Aufnehmer 7 und 8 in Abbil-
dung 6.2) mit den vorliegenden Simulationsergebnissen ist nicht zielfithrend. Fir einen quanti-
tativen Vergleich der Rissbreite ist es erforderlich, die Rissprozesszone zu identifizieren und ein
entsprechendes Regularisierungskonzept bei der Simulation anzuwenden (vgl. Kapitel 4). Die
Identifizierung der Rissbéander (hier entsteht eines an der Unterseite der Platte entlang der Plat-
tenmittellinie, und eines an der Oberfliache) stellt sich fiir den Randlastfall nicht so eindeutig
dar wie fiir den Ecklastfall, sodass in den vorliegenden Berechnungen keine Einteilung in Riss-
prozesszonen oder eine Schwichung des Materials in diesem Bereich Anwendung gefunden hat.
Auflerdem ist zu kldren, wie mit den unterschiedlichen Rissprozesszonen an Ober- und Unter-
seite umzugehen ist. Weitergehende Untersuchungen fiir ein angemessenes Konzept iibersteigen

den Umfang der vorliegenden Arbeit.
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Insgesamt konnen die Werte aus den Randsimulationen auch aus diesem Grund nur Indizien
fiir eine Beurteilung des Bemessungskonzepts liefern. Zum einen ist eine Validierung der Er-
gebnisse durch den Vergleich mit einer einzelnen Messung nicht belastbar, zum anderen treten
bei diesem Vergleich Abweichungen auf. Die Abweichungen betreffen nicht nur quantitativ den
Kraft-Verformungsverlauf bzw. die zugehorige Verformung und Versagenslast, sondern auch qua-
litativ zeigen sich in einem deutlich grofieren Bereich der Platte plastische Dehnungen, die auch
im Bereich des Maximums unter der Versagenslast nicht exakt mit dem im Versuch ermittelten
Rissverlauf iibereinstimmen. Zusétzlich wurde lediglich eine einzelne Simulation durchgefiihrt,
ohne eine Konvergenzkontrolle fiir den Randlastfall durchzufiithren. All dies sind Unsicherheiten,
die in den Simulationswerten des Randlastfalls noch enthalten sind. Eine recht gute Uberein-
stimmung der Versuchswerte mit den simulierten Verformungswerten vor allem im niedrigeren
Lastbereich, bei dem noch keine Plastizitdt auftritt, lassen dennoch eine eingeschrénkte verglei-
chende Untersuchung der beiden betrachteten Lastfille im Hinblick auf das vorhandene Bemes-

sungskonzept zu. Hierauf wird in Kapitel 7 noch eingegangen.
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6.4. Zusammenfassung

Das Rissverhalten eines schwimmend gelagerten Estrichs bis zum Bruch l4sst sich mit dem entwi-
ckelten Modell sehr gut abbilden. Die Versuchsergebnisse sind aufgrund einiger Ungenauigkeiten
z. B. im Hinblick auf die absolute Einsenkung der Platte nach Einbringen des Estrichs nicht exakt
mit den Simulationen in Einklang zu bringen, allerdings zeigt sich dennoch eine sehr gute Uber-
einstimmung, sowohl im zeitlichen Verlauf, als auch in den Werten der maximalen Verschiebung
bzw. der Bruchlast. Eine Untersuchung verschiedener Netze zeigt ein stabiles Konvergenzverhal-
ten. Ein Variieren verschiedener Modellparameter stellt das Modell im experimentell validierten
Bereich auf eine gute Grundlage. Lediglich die Entwicklung der plastischen Dehnungen zeigt
Diskrepanzen hinsichtlich der Einzelrissbildung im Versuch auf und grundsétzlich konnte der
Nachbruchbereich experimentell nicht erfasst und daher auch numerisch nicht validiert werden.
Beide Einschrénkungen kénnen fiir den primér zur Untersuchung des Schwindeinflusses betrach-
teten Ecklastfall unter den erlduterten Bedingungen vernachlassigt bzw. umgangen werden. Um
einige Anwendungsmoglichkeiten des Modells aufzuzeigen und schliefllich die Frage nach dem
Ausmaf} des Schwind- und Dadmmstoffeinflusses zu beantworten, soll im folgenden Kapitel eine
Parameterstudie und ein Riickbezug zum Bemessungskonzept auf Basis von Manns und Zeus
(1980) erfolgen.
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Nachdem das Modell fiir die vorhandenen Versuchsdaten fiir den Ecklastfall eine gute Uber-
einstimmung liefert, soll das so validierte Modell bei der Beantwortung der eingangs gestellten
Frage nach dem Einfluss der Wechselwirkung zwischen Dammstoffsteifigkeit und Schiisselung
auf die Rissbildung bzw. Tragfahigkeit helfen. Dazu werden im Rahmen einer Parameterstudie
die Parameter der Vorverformung, Ddmmsteifigkeit und Dicke des Estrichs numerisch variiert
und das Bruch- bzw. Verformungsverhalten untersucht. Diese Extrapolation gegeniiber dem
validierten Parameterbereich ist mit einer gewissen Unsicherheit verbunden, sodass die ermit-
telten Verformungs- und Spannungswerte quantitativ nicht belastbar sind. Eine Aussage dazu,
ob iberhaupt ein Einfluss der untersuchten Parameter festzustellen ist, ist dennoch mdoglich.
Im Anschluss wird das Modell auflerdem verwendet, um die Informationen aus der Numerik in
Zusammenhang zum Bemessungskonzept zu setzen und ggf. vorhandene Defizite und Verbesse-

rungsmoglichkeiten zu diskutieren.

7.1. Parameterstudie

Dicke / Vorverformung 2 mm 4 mm 8 mm
20 mm WW | W | S| sS
60 mm ww‘w‘s‘ss WW | W | S| sS WW‘W‘S‘SS
80 mm WW | W | S| ss
wWw - cgs=1 W CcKs =8
s - cgs=13 ss - cks = 100

Tabelle 7.1.: Matrix der variierten Parameter

Mithilfe des entwickelten numerischen Modells kénnen verschiedene Einfliisse auf die maxima-
le Bruchkraft untersucht werden. Im Folgenden wird zunéchst die bisherige Plattengeometrie
beibehalten und der Einfluss der Plattendicke sowie Schiisselintensitéit bei einer weiteren Band-
breite von Dédmmsteifigkeiten untersucht. In Tabelle 7.1 ist die Untersuchungsmatrix dargestellt,
wobei die Eintrage in der Tabelle jeweils fiir die angegebene Dammsteifigkeit bzw. Bettungszahl

stehen:
o ww: cgg = 1 MN/m3,

e W: cks =8 MN/m? (TP),
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e s: cks = 13 MN/m? (TP-GP),

o s8: cks = 100 MN/m?.
Zusétzlich zu den beiden in den Versuchen betrachteten Dédmmsteifigkeiten kommen demnach
noch eine sehr weiche und sehr steife Bettungszahl hinzu, um eine dhnliche Bandbreite abzude-
cken wie es schon bei Manns und Zeus (1980) oder auch in jiingeren Richtlinien zur Abschétzung
der Tragfahigkeit in Form von Nomogrammen iiblich ist (DENAK-Merkblatt 8-2, 2021). Fiir
diese Simulationen wird wie bisher die Zugfestigkeit zu f; = 3 N/mm? und die Bruchenergie
zu Gy = 0.2 Nmm/mm? festgelegt. Fiir die Berechnungen wird das mittlere Netz (70 x 70 x 12)
verwendet, da dieses bei geringerer Rechenzeit aufgrund der sehr guten Ubereinstimmung mit

dem feineren Netz im vorangegangenen Kapitel ausreichend ist.

Bei der im Folgenden vorgestellten Parameterstudie gibt es zuséatzliche numerische Herausfor-
derungen infolge der Kontaktmodellierung (s. Kapitel 4) und der hierfiir definierten Federstei-
figkeit der zwischengeschalteten Federn. Bei der Verwendung des Bogenldngenverfahrens kann
die Schrittweite nicht prézise gesteuert werden, sodass der Algorithmus bei einer ungiinstigen
Schrittweite unter Umstéinden in einem zu groSien Schritt iiber den Ubergang von sehr kleiner
zu sehr grofler Steifigkeit hinweg zu iterieren versucht. Dies fithrt zu numerischen Instabilitdten
bzw. dazu, dass kein Gleichgewicht gefunden wird und die Berechnung abbricht. Dieses Pro-
blem tritt bei sehr hoher Dammsteifigkeit auf. Eine genaue Ursache zu identifizieren bzw. eine
Regel zur Definition der Kontakt-Federsteifigkeit zu definieren ist pauschal schwierig, da die-
ses Verhalten einem ungiinstigen Verhéltnis zwischen Damm-, Kontakt- und Estrichsteifigkeit
zugeschrieben wird. Bei einer grofieren Estrichdicke tritt diese numerische Instabilitét auch bei
mittlerer Dadmmsteifigkeit auf. Auch die Vernetzung hat einen Effekt, moglicherweise ebenso
wie die Geometrie (Plattenausdehnung, -form), wobei dies hier nicht ndher untersucht wurde.
Zusammenfassend kann festgehalten werden, dass das Auftreten dieser Instabilitét von den kon-
kreten Steifigkeits- und Netzeigenschaften des Modells abhéngt. Fine leichte Vergroflerung der
Anfangssteifigkeit nahe Null hat einen stabilisierenden Effekt. Ein geschicktes Vorgehen zur Defi-
nition der Kontaktsteifigkeit ist es daher, fiir die hochste Dammsteifigkeit bzw. Dicke eine stabile
Anfangssteifigkeit zu finden, die ausreichend nah an Null liegt, um ein realitdtsnahes Ablegen
der Platte zu ermoglichen. Fiir weitere, weniger steife Parameter mit geringerer Systemsteifigkeit

sollten diese ebenfalls stabil sein.

Zusétzlich iberschreiten die Verformungen bei der sehr weichen Ddmmung mit einer Bettungs-
zahl von 1 MN/m?® deutlich die Dicke eines realen Diammstoffs (hier 2 bzw. 3 cm Dicke). Die
Federldange muss hier entsprechend vergrofiert werden, um eine — zumindest theoretische — Bruch-
kraft zu ermitteln. In der Realitdt wére eine Begrenzung der Verformung durch eine begrenzte
Federldnge hingegen sinnvoll, da dies der realen Geometrie entspricht, bei der die Ddmmstoff-
dicke die Verformung der Platte begrenzt. In dieser aus Mangel an Versuchsdaten zunéchst

akademischen Untersuchung wird das vernachléssigt.
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Einfluss auf die Bruchlast

14

12 1

10 {

0 2 4 6 8 10 12 14 16 18
vert. Verschiebung [mm)]

(a) Einfluss Dicke

Kraft [kN]

0 ‘ ‘ ‘ s 10 12 14 16
vert. Verschiebung [mm]

(b) Einfluss Vorverformung

---60-4 ww
—80-4 ww

---60-4 ww
—60-8 ww

Abbildung 7.1.: Kraft-Verformungslinien im Rahmen der durchgefiihrten Parameterstudie (et-

was vergroflert in Abb. F.12 im Anhang dargestellt)
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In Abbildung 7.1 sind die Kraft-Verformungs-Kurven dargestellt, in Tabelle 7.2 die zugehorigen

Bruchkrifte. An den Kraft-Verformungslinien ldsst sich ein Gruppieren bzw. ,,Anschmiegen*

im Anfangsbereich bei den Kurven gleicher Dicke bzw. gleicher Vorverformung erkennen, wobei

die Kurven mit sehr weicher Unterlage infolge einer grofleren Verformung etwas versetzt zu

den tibrigen Steifigkeiten verlaufen. Nach diesem Anfangsbereich laufen die Kurven zunehmend

auseinander. Die Kurven weisen mit steiferer Unterlage einen entsprechend versteifenden Verlauf

auf.
Vorverformung
Dicke 2 mm 4 mm 8 mm
CKS ww ‘ w ‘ S ‘ SS ww w S SS ww ‘ w ‘ S ‘ SS
20 mm 096 [1.22 [1.16 | 1.85
60 mm | 6.86 | 7.44 | 7.60 | 8.63 | 6.84 [ 7.22 | 7.39 [8.27 |6.86|7.00]6.91 | 7.43
80 mm 11.66 | 11.78 | 11.90 | 12.90

Tabelle 7.2.: Ergebnis der Parameterstudie: Bruchlast

In den Abbildungen 7.2 und 7.3 sind die Werte der Tabelle 7.2 mit der zugehorigen vertikalen

Verschiebung iiber der Dicke bzw. Vorverformung aufgetragen. Es lassen sich folgende Beobach-

tungen festhalten:
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Der Einfluss der Plattendicke auf die Bruchlast ist weitgehend unabhéngig von der
Déammsteifigkeit deutlich erkennbar: Je gréfler die Dicke, desto deutlich héher wird die
Bruchlast. (Abb. 7.2a).

Der Einfluss der Vorverformung auf die Bruchlast ist im Vergleich zum Einfluss der Dicke
deutlich geringer. Bei hoherer Dammsteifigkeit ist dies am ehesten erkennbar, dann gilt:
Je kleiner die Vorverformung ist, desto hoher wird die Bruchlast. Bei geringer Dammstei-
figkeit ist der Einfluss aus Vorverformung kaum sichtbar. Bei steiferer Unterlage wirkt
sich die Vorverformung stérker aus, da bei einer weichen Unterlage die Schiisselung durch

Eindriicken in den Dammstoff kompensiert werden kann (Abb. 7.2b).

Die Wirkung der Plattendicke auf die Verformung ist bei kleinerer Dammsteifigkeit aus-
geprigter: Je grofer die Dicke, desto hoher die Verformung. Mit héherer Dadmmsteifigkeit
sinkt dieser Einfluss, bis er bei KS=100 gar nicht sichtbar ist (Abb. 7.3a nahezu horizon-
taler Verlauf). Je steifer das System, desto desto geringer wird die relative Verformung

infolge Last.

Der Einfluss der Vorverformung auf die Endverformung ist ausgepréigter: Je grofler die
anfiangliche Vorverformung, desto hoher die Verformung. Es besteht ein linearer Verlauf
bei Auftragen der Werte iiber der Vorverformung (dies zeigt sich ebenso bei der Bruchlast,
Abb. 7.2b): Die unterschiedlich hohen Werte der Anfangverwolbung zeigen sich unmittelbar
im Abstand zwischen den jeweiligen Endverformungen (Abb. 7.3b)

Unabhéngig von der Vorverformung und der Dicke gilt: Je grofler die Dédmmsteifigkeit,

desto geringer die Verformung und desto hoher die Bruchlast.
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Abbildung 7.2.: Parameterstudie: Einfluss auf Bruchkraft
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Abbildung 7.3.: Parameterstudie: Einfluss auf Verformung
Rissbilder

In den Abbildungen 7.4 und 7.5 sind die simulierten Rissbilder der beiden Parameterstudien fiir
das Variieren der Dicke und der Vorverformung dargestellt. Dabei wird die jeweilige Dammstei-
figkeit von oben (SS) nach unten (WW) weicher. Als Referenz sind auch hier die in den Versuchen
gemessenen Risslinien mit abgebildet (in rot; gestrichelt: Platte S, durchgezogen: Platte W. Es
zeigt sich

e Je weicher der Dadmmstoff, desto grofler der Bruchradius.
o Je dicker die Platte, desto gréfler der Bruchradius.

e Bei steifem Dammstoff zeigt sich bei groflerer Vorverformung auch ein groferer Bruchra-

dius. Dieser Effekt nimmt mit abnehmender Ddmmsteifigkeit ebenfalls ab.

e Zwischen einer Vorverformung von 2 im Vergleich zu 4 mm zeigt sich im Bruchbild kein
Unterschied.
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Abbildung 7.4.: Rissbilder der Parameterstudie — Variieren der Plattendicke (Ausschnitt eines
Sechzehntels der Platte, von oben steifer nach unten weicher Dammstoff)
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(a) 60-2 (b) 60-4 (c) 60-8

Abbildung 7.5.: Rissbilder der Parameterstudie — Variieren der Vorverformung (Ausschnitt eines
Sechzehntels der Platte, von oben steifer nach unten weicher Ddmmstoff)
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Betrachtet man jeweils die beiden mittleren Reihen, die den Dammsteifigkeiten aus den Versu-
chen entsprechen, liefle sich daraus ableiten, dass die Abweichungen zwischen den Rissradien im
Versuch von denen in der Simulation von Ungenauigkeiten bei der Herstellung einer gleichmafi-
gen 60 mm Dicke stammen und zusétzlich die Vorverformung messtechnisch nicht exakt erfasst
wurde: Bei punktuell geringerer Dicke und geringerem Abstand zwischen Platte und Dammstoff
im Versuch (z.B. infolge stiarkerem Einsenkens durch Eigengewicht) zeigt sich in der Studie ein
weiter innen liegender Riss, wie auch im Versuch gemessen. Auch hier handelt es sich nur um
Indizien, die durch weitere experimentelle Untersuchung iiberpriift werden miissten, vor allem
da neben den hier betrachteten Parametern noch weitere Einflussgrofien wie Geometrie, FEigen-
spannungen oder experimentelle Schwankungen eine Rolle spielen kénnen. Die entsprechenden
Abbildungen der nur leicht geschwéchten Berechnungen im Vergleich zur hier begrenzten RPZ

zeigen prinzipiell die gleiche Tendenz (vgl. Abb. F.10 und F.11 im Anhang).

Verformungsfiguren

In den Abbildungen 7.6 und 7.7 sind jeweils fiir unterschiedliche Dicke und Vorverformung die
Verformungsfiguren infolge der beiden Lastfille dargestellt: jeweils oben die Verschiebungsfigur
infolge Figengewicht und darunter die Verschiebungsfigur infolge der Einzellast. An der Ver-
formungsfigur infolge Eigengewicht wird noch einmal deutlich, dass im Zuge des Einpréigens
der Vorverformung mit nachtraglichem Aufbringen des Eigengewichts eine leichte Abweichung
zwischen der relativ gemessenen Ordinate der angehobenen Ecke (3.36 mm fiir Steifigkeit S (TP-
GP), 4.12 mm fir Steifigkeit W (TP)) und der wirksamen Ordinate in der Simulation (etwas
geringer im Bereich 2.5 mm) vorhanden ist. Auch die gemessene Ordinate kann dem Abstand
zwischen Dammstoff und Estrich an der betrachteten Stelle nicht exakt entsprechen, da die Ein-

senkung infolge Eigengewicht hier nicht erfasst ist (vgl. Kapitel 3.2.1).

Die Kurven sind jeweils iiber der Diagonalen aufgetragen, die Einzellast wirkt rechts. Es zeigt
sich Folgendes fiir den Einfluss der Dicke (s. Abb. 7.6):

e Bei Betrachtung der Verformungsfigur infolge Eigengewicht fallt auf, dass abgesehen von
den Kurven mit 20er Dicke (gepunktet) alle Linien nah beieinander liegen bzw. parallel
verlaufen (Abb. 7.6a). Die Dicke zeigt hier einen geringen Einfluss. Dieser bzw. die Ein-
senkung steigt leicht mit abnehmender Dammsteifigkeit (blau stark eingesunken, gelb am
geringsten). Die Verformungsfiguren der 20er-Platten verlaufen deutlich flacher (die Kriim-
mung infolge Aufschiisseln auflen wird stdrker zuriickgebildet, wihrend bei den steiferen
Platten das Eigengewicht primér ein Absenken der gekriimmten weiterhin aufgeschiisselten
Platte bewirkt).

o Auch die Linien infolge Einzellast (Abb. 7.6b) liegen grofitenteils nah beieinander, mit
Ausnahme derer mit kleiner Bettungszahl (gelb). Fiir die iibrigen Linien gilt, dass die

Verformung links, d.h. an der nicht belasteten Ecke, bei steiferer Platte grofler ist: Die
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Abbildung 7.6.: Parameterstudie: Einfluss der Dicke — Verformungsfigur entlang der Diagonale
infolge EG und einer der hier rechts angeordneten Einzellast auf Plattenecke

steifere Platte ist eher kippanféllig.
Fiir den Einfluss der Vorverformung ergibt sich (s. Abb. 7.7):

e Bei Betrachtung der Verformungsfigur infolge Eigengewicht verlaufen die Linien gleicher
Vorverformung parallel zueinander, wobei gilt: Je grofler die Vorverformung, desto ge-
kritmmter sind die Verldufe, da das Figengewicht allein nicht ausreicht, um die weiter
aufgeschiisselten Ecken auf den Dadmmstoff zuriickzubringen. Je héher die Ddmmsteifig-

keit, desto niedriger die Einsenkung (Abb. 7.7a). Die Kurven mit weicher Dammsteifigkeit
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vert. Verschiebung [mm]

vert. Verschiebung [mm]

-1.5 -1 -0.5 0 0.5 1 1.5
Position in Plattendiagonalrichtung [m]
(a) Verformungsfigur infolge EG

60-2ss
—-10 + 60-4ss
60-8ss
....... 60-25
=5 - - - 60-4s
—— 60-8s
el O TUTEERNGL L e 60-2w
O - 60-dw
60-8w
S O S0 S 60-2ww
--- 60-4ww
— 60-8ww
10 |
15 ¢

15 -1 0.5 0 05 1 15

Position in Plattendiagonalrichtung [m)]

(b) Verformungsfigur infolge EL

Abbildung 7.7.: Parameterstudie: Einfluss der Vorverformung — Verformungsfigur entlang der
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Diagonale infolge EG und einer der hier rechts angeordneten Einzellast (EL)
auf Plattenecke

weichen infolge einer grofleren Einsenkung von ihrer Lage her von den tibrigen Kurven

gleicher Vorverformung ab.

FEin Kippeffekt ist kaum vorhanden, dieser ist nur bei weichem Dammstoff ausgeprégt.
Bei den restlichen Varianten wirkt der Kippeffekt auf der linken Seite der Platte zwar
auch grofer (Abb. 7.7b), das entspricht aber nur der noch in der Platte vorhandenen
Schiisselung, die das Eigengewicht nicht reduziert hat. Die 60 mm Platte ist ausreichend
steif, um diese Verformung auch unter Last zu halten. Links ist eine deutliche Gruppierung

je nach Vorverformung zu sehen (gepunktete, gestrichelte, durchgezogene Linien liegen



7.1. Parameterstudie

jeweils aufeinander, mit Ausnahme der blauen Kurven infolge des weicheren Dammstoffs).

e In Abb. 7.7b sieht man rechts unter der Last ebenfalls eine Gruppierung, hier jedoch nach
Déammsteifigkeit: Je weicher der Dammstoff, desto stérker die Verformung. Bei geringer
Aufschiisselung (gepunktet) sind die Kurven infolge der Last starker in eine Richtung
gekriilmmt, bei groferer Aufschiisselung bildet sich infolge der Uberlagerung der Aufschiis-

selung mit den Folgen einer einseitigen Belastung eine leichte S-Form aus.

Zusammenfassend ldsst sich noch einmal hervorheben, dass auch bei deutlich weicheren bzw.
steiferen Dadmmungswerten der Einfluss auf die Maximallast infolge Vorverformung nicht sehr
ausgepragt ist. Fir steife Dammstoffe ist die Wirkung etwas ausgepragter, bei knapp 9 kN (2 mm
Vorverformung) zu etwa 7.5 kN (8 mm, vgl. Abb. 7.2), jedoch sind weiche Dammsteifigkeiten
im Bereich von KS=1 MN/m? fiir Trittschalldimmungen weniger iiblich. Einen etwas stirkeren
Einfluss hat die Vorverformung auf die Verschiebung, dies ist jedoch vor allem auf eine wider-

standsfreie Riickverformung der Aufschiisselung zuriickzufiihren.

Ein deutlich stiarkerer Einfluss auf die Bruchlast aufgrund der Estrichdicke war zu erwarten. Dies
wird durch die Studie bestétigt. Inwiefern das Modell hier quantitativ korrekte Werte liefert und
wie es bei anderen Estrichzusammensetzungen reagiert, ist weiter zu untersuchen. Auf die ma-
ximale Verformung unter der Last hat eine gednderte Dicke jedoch kaum Auswirkungen. Die
Estrichdicke beeinflusst hier mehr die Auspragung des Kippverhaltens je nach Plattensteifigkeit

(und Geometrie).

Fiir den Einfluss der Vorverformung lasst sich festhalten, dass sich infolge dieser Schiisselung eine
leicht S-féormige Verschiebungsfigur entlang der Diagonalen ausbildet. Dies ist bei diinneren Plat-
ten noch stirker ausgepréigt (Abb. 7.6b, gepunktet). Ein weiteres Abheben unbelasteter Rander
infolge Kippen ist nicht zwingend gegeben (bei ausreichend steifer Unterlage und Platte), aber
man erhélt durch die Vorverformung eine ungleichméflige Verformungsfigur im Vergleich zu einer
Platte ohne Vorverformung, die das Bruchverhalten unter Last insgesamt beeinflussen kénnte.
Inwiefern dies auch dem realen Verhalten entspricht oder das Modell durch weitere Versuche
an diinneren bzw. dickeren Platten mit unterschiedlichem Schwindverhalten noch nachvalidiert

werden muss oder dieses schon gut abbildet, bedarf weiterer Untersuchung.
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7.2. Mogliche Schlussfolgerungen fiir die Bemessung

Vergleich mit Manns und Zeus (1980)

Um einen ersten Bezug zum Bemessungskonzept fir Estriche auf Dadmmschichten herzustellen,
wurden die von Manns und Zeus (1980) verwendeten Bemessungsformeln nach Westergaard her-
angezogen, vgl. Formeln (2.4) bis (2.6) sowie (A.2) bis (A.4). Die fiir den auch von Manns und
Zeus (1980) betrachteten Fall einer 30 mm bzw. 60 mm dicken Platte mit einem Belastungs-
radius von 25 mm (E-Modul abweichend 25000N/mm?) und einer Last von 1 kN ermittelten
maximalen Spannungen und Verformungen jeweils fiir den Rand- und Ecklastfall sind in Ab-
bildung 7.8 als Kurven logarithmisch {iber der Dammsteifigkeit aufgetragen. Schwindeinfliisse
bleiben in den Berechnungsformeln unberiicksichtigt. Die Formeln setzen lineares Werkstoffver-
halten voraus, sodass ein Simulationsvergleich nur fiir diesen Fall erwartet werden kann. Bei der

hier betrachteten Last von 1 kN ist von linearem Tragverhalten auszugehen.

In den Diagrammen sind die Ergebnisse numerischer Berechnungen ohne Beriicksichtigung ei-
ner Aufschiisselung fiir eine Dicke von 30 mm (o) und 60 mm (O) fiir den Ecklastfall (rot)
eingetragen. Es zeigt sich, dass die Simulationen fiir die 30 mm Platte eine unbefriedigende Ab-
weichung von der Westergaard’schen Verformung liefern. Der Wert bei kleinerer Bettungszahl
von 0.35 MN/m? weicht im oberen Diagramm fiir die Verformung fir die diinnere Platte mit
30 mm am deutlichsten ab, recht gut getroffen ist bei groflerer Bettungszahl der Wert fiir die
60 mm Platte. Die 60 mm Platte liefert in der Simulation etwas bzw. deutlich niedrigere Werte
als die Formeln. Eine umgekehrte Abweichung nach oben zeigt sich dagegen bei einem Vergleich
der Spannungen im unteren Diagramm. Die 30 mm-Spannungen hingegen liegen unterhalb der

formelbasierten Rechnung.

Fir die Spannungsbetrachtung werden zusétzlich die Berechnungen, die die Schiisselung mit
beriicksichtigen, sowohl fiir den Eck- als auch fiir den Randlastfall bei 60 mm Plattendicke
mit abgebildet. Eine Darstellung der Verformungen wiére in diesem Zusammenhang irrefithrend
aufgrund des Ablaufs der Rechnung (Reihenfolge Aufschiisselung als Vorverformung und nach-
tragliches Einsinken infolge Eigengewicht, vergleiche Kapitel 3.2). Die Spannungen liegen fiir den
Ecklastfall in einem &hnlichen Bereich wie die der Simulation ohne Aufschiisseln. Fiir den Rand-
lastfall wurde keine Berechnung ohne Aufschiisseln aufgestellt. Bei Vergleich der formelbasierten
Spannungswerte unter Vernachlassigung des Schiisselns gegeniiber den Werten der schiisselungs-
basierten Simulation zeigt sich fiir beide Lastfille eine vergleichbare Unterschiatzung durch die
Formeln. Auflerdem fallt auf, dass der Randlastfall in der Simulation kleinere Werte liefert als
der Ecklastfall, was bei den Westergaard’schen Formeln umgekehrt ist, weswegen sich letztlich
auch der Randlastfall bei Manns und Zeus (1980) als mafigebend durchgesetzt hat.
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—— Ecke — 30mm

- +- Ecke — 60mm
o Sim Ecke — 30mm
o Sim Ecke — 60mm
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Abbildung 7.8.: Vergleich der Berechnungsformeln (Auswertung als Geraden dargestellt, vgl.
Gleichungen (2.4) bis (2.6)) nach Westergaard bzw. Manns und Zeus (1980) mit
dem Berechnungsmodell, a = 25 mm, F = 25000 N/ mm?, F =1 kN (Simulation
(Sim), mit KS nach Tabelle 3.2, z.T. mit Vorverformung (mV))

Dass die Wirkung der Aufschiisselung in der Simulation auf die maximale Spannung vernachlés-
sigbar ist, stiitzt auf den ersten Blick die Beobachtung aus der Versuchsauswertung, bei der die

Eck-Bruchlasten nah beieinander lagen. Allerdings bezieht sich die Darstellung ausschliellich auf
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ein Belastungsniveau von 1 kN, bei einer hoheren Last konnte sich dies auch anders darstellen.
Hier wiirde der Einfluss aus Nichtlinearitét jedoch auch gréfler, bei dem ein Vergleich mit den
Formeln nicht sinnvoll wire. Auflerdem stimmen bei geringerem Lastniveau die Stellen der ma-
ximalen Spannung zwischen initial aufgeschiisselter und aufliegender Platte nicht iiberein. Der
Spannungszustand in der Platte gleicht sich erst bei héherem Lastniveau bzw. riickgebildeter

Aufschiisselung infolge Belastung an.

Insgesamt zeigt sich eine unbefriedigende Abweichung bei den Verformungen mit den Werten
der Westergaard-Formeln, und eine qualitativ und quantitativ schlechte Ubereinstimmung bei
den Spannungswerten fiir beide Plattendicken. Der hier betrachtete Vergleich bezieht sich aus-
schlieBlich auf das Lastniveau von 1 kN Einzellast, welches von Manns und Zeus (1980) als fiir
den damaligen Wohnungsbau angemessen eingeordnet wurde. Das Beanspruchungsniveau fiir
Estrich ist jedoch mit der Zeit gestiegen, sodass im Folgenden auch hohere Lastniveaus und
insbesondere das Verhéltnis zwischen Rand- und Eckbeanspruchung hinsichtlich der Bedeutung

fiir die Bemessung genauer untersucht werden soll.

Gegeniiberstellung der Lastfdlle bei hoherem Lastniveau und Vergleich mit Westergaard

In Abbildung 7.9 und Tabelle 7.3 sind die Werte der maximalen Hauptspannung grafisch und
tabellarisch aufgefiihrt. In der Tabelle finden sich zusétzlich Hinweise auf die Stelle der maxima-
len Spannung im System. In den rot dargestellten Simulationswerten zeigt sich bei Erreichen der
Zugfestigkeit jeweils ein Knick, der auf das Einsetzen nichtlinearer Einfliisse zurtickzufiihren ist.
Der Steigungsanstieg im Verlauf der gestrichelten, roten Verldufe (Randlastfall) zwischen 3 und
4 kN ist in den Verldufen der rot gepunkteten Ecklastfall-Linien nicht zu beobachten. Grund
hierfiir ist der Wechsel des Auswertungsorts beim Randlastfall von der Maximalspannung an
der Plattenoberseite zur -unterseite direkt unterhalb der Last. Im Vergleich zu den Spannungs-
werten, die sich auf den Formeln nach Westergaard ergeben, liegen die Spannungen aus der
Simulation bei 1 kN Last etwa um das 1.3- bzw. 1.5-fache hoher. Der Einfluss der beiden unter-
schiedlichen Dammstoffe ist in allen Kurven weitgehend vernachlassigbar. Im Bereich 2 bis 3 kN
iibersteigen die Spannungswerte der Westergaard-Formeln die der Simulation und iibersteigen
aufgrund des linearen Anstiegs spétestens bei Erreichen des plastischen Dehnungsniveaus (vgl.
Tabelle 7.3, ab 4 bis 5 kN Einwirkung) die Werte aus den Simulationen deutlich. Zwischen 3
und 5 kN (2 und 4 kN beim Ecklastfall) zeigen die Kurven zumindest einen &hnlichen Anstieg,

und fiir den Ecklastfall auch eine recht gute Ubereinstimmung.

Wie bereits im vorangegangenen Kapitel erldutert, wurde bei den hier dargestellten Werten
keine Begrenzung der Rissprozesszone durch Schwéichung bestimmter Elementreihen zugrunde
gelegt. Die Ergebnisse sind dadurch und durch fehlende Validierung mit einer belastbaren Ver-

suchsdatenlage eingeschrinkt quantitativ auswertbar. Dennoch zeigt sich bereits im elastischen
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Tabelle 7.3.: Simulationsauswertung der maximalen Hauptspannung unter verschiedenen Ein-
zellastniveaus unter Angabe des Werts und der Stelle innerhalb der Platte (grau
unterlegt: Auftreten plastischer Dehnungen)

[sp;ii);}lg?\?/p;mz] Platte W (weicher gelagert) Platte S (steifer gelagert)
Rand Ecke Rand Ecke
Last [kN] Omax Ort Omax Ort Omax Ort Omax Ort
Plattenmitte, nahe Plattenmitte, Plattenmitte, nahe Plattenmitte,
! 1.26 Oberseite 141 Oberseite 1.36 Oberseite 1.55 Oberseite
leicht exzentrisch leicht exzentrisch
2 1.44 ? 1.88 | hin zum Lastangriff, | 1.44 7 1.95 | hin zum Lastangriff,
Oberseite Oberseite
leicht exzentrisch naher hin zum leicht exzentrisch néher hin zum
3 1.56 | hin zum Lastangriff, | 2.42 Lastangriff, 1.55 | hin zum Lastangriff, | 2.34 Lastangriff,
Oberseite Oberseite Oberseite Oberseite
. Entfernung vom .
4 2.37 Lastangrif, 2.96 Lastangfiﬁ, 2.11 Lastangriff, 2.98 »
Unterseite . Unterseite
Oberseite
Entfernung vom
5 2.99 ? 3.0 ? 2.99 7 3.0 Lastangriff,
Oberseite
6 2.95 ? 3.0 ? 2.95 7 3.0 ?
7.15 . .
(Bruchlast 3.0 im Feld, 3.0 3.0 im Feld, 3.0 ”
Oberseite Oberseite
Ecke)

Bereich, der von dem fehlenden Regularisierungskonzept unbeeinflusst ist und in dem auch die
Spannungs-Dehnungsverldufe zwischen Versuch und Simulationen recht gut iibereinstimmen,
eine Diskrepanz zwischen der von Manns und Zeus (1980) angenommenen bzw. in den Wester-
gaard’schen Formeln enthaltenen Tendenz, dass der Randlastfall ein héheres Spannungsniveau

aufweist als der Ecklastfall.

Vergleicht man hingegen die gemessenen Dehnungsverlaufe fir den Eck- (Abb. E.7 und E.8)
bzw. Randlastfall (Abb. E.9) miteinander, wird deutlich, dass die in den DMS zum Teil erfasste
Bruchdehnung im Ecklastfall mit etwa 250 gm/m im Randlastfall im Bereich der geklebten DMS
auf der Plattenoberseite nicht anndhernd erfasst wurde. Hier betrigt die maximal gemessene
Dehnung lediglich etwa 150 pm/m. Bei Betrachtung der DMS an der Plattenkante in Abbil-
dung E.10 und Vergleich der Kraftniveaus entsteht schon bei einer Last von etwas iiber 4 kN
im Randlastfall ein erster Riss an der Plattenunterseite, erkennbar am plétzlichen Anstieg der
gemessenen Dehnungswerte weit jenseits der genannten Eck-Bruchdehnung von 250 pm/m. Das
Lastniveau bei Eintreten des Risses stimmt mit den in den Simulationsergebnissen beschriebenen
Wechsel des Orts der Maximalspannung an die Plattenunterseite und dem Auftreten plastischer
Dehnungen im Lastbereich zwischen 4 und 5 kN {iberein. Dies stiitzt zum einen die Simulations-
ergebnisse zuséatzlich, weicht jedoch die obige Tendenz auf, dass der Eck-Lastfall zur Bewertung
der Beanspruchbarkeit des Estrichs herangezogen werden sollte. Die Entstehung des Risses an
der Plattenunterseite setzt somit vor Auftreten des Bruchs im Ecklastfall ein. Der Riss fithrt

jedoch nicht instantan zum Versagen wie im Ecklastfall, dieses tritt deutlich spéter auf.
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7. Anwendung des Modells

Abschlieflend lésst sich zusammenfassen, dass die Simulationsergebnisse auch fiir den Randlast-
fall im Hinblick auf die Rissentstehung an der Plattenunterseite qualitativ gut mit den gemes-
senen Daten der DMS iibereinstimmen, insbesondere das Lastniveau betreffend, unter der der
dortige Riss einsetzt. Dies zeigt, dass trotz der Unsicherheiten, mit denen die Randlastsimula-
tionen belegt sind, und abgesehen von der erreichten Bruchlast mindestens qualitative Aussagen

aus den Simulationsergebnissen ableitbar sind:
e Das Spannungsniveau der Simulationsergebnisse des Ecklastfalls iibersteigt die des Rand-
lastfalls.
e Das Bruchlastniveau des Ecklastfalls liegt unter dem des Randlastfalls.
e Der Riss an der Plattenunterseite im Falle einer Randbelastung setzt vor dem Bruch im
FEcklastfall ein, fithrt jedoch nicht unmittelbar zum Versagen. Im Randlastfall sind Span-

nungsumlagerungen moglich, sodass der Bruch erst spéter auftritt.

4 £y 17 0
/I// Rand — TP
£/ Rand — TPGP
,'/¢/¢‘¢ -4 Ecke — TP
s .o Ecke - TPGP
3+ /://\.s*‘ﬂeenas - 4- Rand — TP, Westergaard
— e - o- Rand — TPGP, Westergaard
Ng ,é;}?}“' -4 Fcke — TP, Westergaard
i ,’,I'.é‘" @ Ecke — TPGP, Westergaard
Z, /.~/’{.:"‘
s
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Abbildung 7.9.: Entwicklung der plastischen Dehnungen bei Randbelastung an der Ober- und
Unterseite der Platte, jeweils ausgewertet bei Erreichen der Bruchlast

Hieraus lasst sich ableiten, dass eine Belastung der Ecke zur Ermittlung der maf3gebenden Bruch-
last sinnvoller ist als die Belastung des Randes. Im Hinblick auf ein Bemessungskonzept ist jedoch
entscheidend, ob eine Rissfreiheit an Ober- und Unterseite gewéhrleistet sein muss. In diesem
Fall wire wie im aktuellen Bemessungskonzept zugrundegelegt der Randlastfall als maigebend
vorzuziehen. Der Einfluss des Schiisselns wurde in der vorliegenden Arbeit nur fiir den Ecklast-

fall (zumindest unter den validierten Randbedingungen) zufriedenstellend als vernachléssigbar

170



7.2. Mbogliche Schlussfolgerungen fiir die Bemessung

beurteilt. Auch die betrachteten Dammstoffe spielen fiir das Bruchlastniveau in den betrachte-
ten Bereichen der Dammsteifigkeit zwischen 8 und 13 MN/m?® eine untergeordnete Rolle. Bei

wesentlich steiferem Dammstoff nimmt der Einfluss etwas zu.

Vergleich mit DENAK-Merkblatt
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Abbildung 7.10.: Nomogramm aus dem DENAK-Merkblatt fiir eine Last-
Aufstandsfliche > 25cm? (DENAK-Merkblatt 8-2, 2021)

Bei Betrachtung der in Kapitel 2.1.3 erwdhnten Bemessungs-Nomogramme fiir Bodenkonstruk-
tionen der DENAK zeigt sich in Abbildung 7.10 bzw. Tabelle 7.4 eine Abweichung der Simu-
lationsergebnisse von der aus dem Nomogramm ablesbaren maximal zuldssigen Last. Das No-
mogramm basiert allerdings auf dem von Manns und Zeus (1980) als mafigebend identifizierten
Randlastfall, und kénnen daher nicht wirklich konsistent mit den Ergebnissen des numerischen
Modells verglichen werden. Dies wére fir den Randlastfall bei ausreichender Datengrundlage
eher moglich. Die in Tabelle 7.4 dargestellten Werte beriicksichtigen bei der Biegezugfestigkeit
den im Merkblatt angegeben Sicherheitskorrekturfaktor nicht. Die maximale Last wird fiir die
in den Festigkeitspriifungen ermittelte Biegezugfestigkeit von opz = 6.8 ~ 7 N/mm? charakteris-

tisch abgelesen.
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Wird das Versuchsergebnis von im Mittel 7.15 kN (Ecke) bzw. 14.25 kN (Rand) bei mittelsteifer
Unterlage (10 MN/m?) und 60 mm dicker Platte herangezogen, stimmt dieser Wert mit der Si-
mulation wie bereits im vorangegangenen Kapitel dargestellt beim Ecklastfall recht gut, fiir den
Randlastfall nicht {iberein (Zeilen 1 und 2, und Spalte » 4 mm Vorverformung der Tabelle 7.4).
Im Vergleich dazu ergibt sich aus der DENAK-Richtlinie ein kleinerer Wert von 5 kN. Insbe-
sondere fiir den vergleichbaren Randlastfall ist die Abweichung sehr deutlich, der DENAK-Wert
entspricht etwa einem Drittel der Versuchsbruchlast. Grundsétzlich liegen die DENAK-Werte
bei noch hinzukommender Beriicksichtigung des Sicherheitsfaktors unabhidngig von Schwind-
einfliissen fiir eine 60 mm Platte sehr deutlich auf der sicheren Seite, wenn die Annahme des
Randlastfalls als mafigebend angemessen ist. Fiir die 80 mm Platte wurde keine Simulation des
Randlastfalls durchgefiihrt, aber das Verhaltnis der Ecksimulationen zu den DENAK-Werten ist
fiir beide Plattendicken vergleichbar, sodass sich der Unterschied zur Randsimulation &hnlich

ergeben diirfte.

Tabelle 7.4.: Vergleich der Simulationsergebnisse mit den Werten aus dem DENAK-Merkblatt
zur Bemessung von Bodenkonstruktionen

[kN] KS=0.67 MN/m? KS=4.375 MN/m?
Schiisseln [mm)] 2 4 8 2 4 8
60mm (SIM Ecke) | 7.44 [ 7.22 (V: 7.43) [ 6.00 [ 7.60 | 7.39 (V: 6.79) | 6.96
60mm (SIM Rand) 19.63 (V: 15.17) 19.30 (V: 13.55)
60mm (DENAK) 4.9 5.4

80mm (SIM Ecke) |17 | 1190 |
80mm (DENAK) 8 9

Die auf den ersten Blick groflen Diskrepanzen zwischen den Westergaard’schen Formeln und den
Simulationsergebnissen sollten nicht iiberbewertet werden. Fiir eine grundlegende Bewertung
sind weitere Untersuchungen, vor allem belastbare Simulationen fiir den Randlastfall, und eine
Sicherheitsbetrachtung mit Blick auf das fiir die Anwendung entscheidende Versagens- bzw.

Gebrauchstauglichkeitskriterium notwendig.
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8.1. Zusammenfassung

Eine Untersuchung des Schwind- und Dammsteifigkeitseinflusses auf den mafigebenden Versa-
genmechanismus schwimmenden Estrichs und daraus abzuleitende Riickschliisse auf das giiltige
Bemessungskonzept der DIN 18560-2:2022 standen im Fokus dieser Arbeit. Dazu wurde ein
Modell zur Versagensmodellierung schwimmenden Estrichs unter punktférmiger Belastung an
der Plattenecke erstellt, welches eine — bei verschmierten Rissmodellen haufig eingeschrankte —
Netzunabhéngigkeit der Ergebnisse gewéhrleistet und eine fiir den Kontakt zwischen Ddmmung
und Estrich leicht reproduzierbare Variante in Form von Einzelfedern verwendet. Mithilfe der
durchgefiihrten Balken- und Plattenversuche konnte das Modell schrittweise gut fiir den betrach-
teten Parameterbereich validiert werden. Fiir eine erste Beurteilung der genannten Einfliisse auf

das Bemessungskonzept liefert dies eine gute Grundlage.

Theoretische Basis

Die Basis fiir die vorliegenden Untersuchungen stellen Estrich-&hnliche Betonmodelle dar, die zur
Abbildung des Rissverhaltens von Stahl- und Stahlfaserbeton bereits als geeignet gelten. Aus-
gewahlt wurden dabei verschmierte Rissmodelle, die auf bruchmechanischen Prinzipien und der
Plastizitatstheorie beruhen. Angewendet auf in der Regel unbewehrt eingebauten Zementestrich
spielt bei der Modellierung der Diskontinuitdt im Dehnungszustand zum einen die Gewéhrleis-
tung der Netzunabhéngigkeit eine Rolle, zum anderen kénnen bei entfestigendem Materialverhal-
ten dieser Art grundsétzlich Materialinstabilitdten auftreten. Dies stellt fiir die Losungsfindung
innerhalb der Finite-Elemente-Methode eine Herausforderung dar. Neben der Materialnichtli-
nearitdt war bei Berlicksichtigung des Aufschiisselns bzw. Ablegens der Plattenrdnder unter

Belastung der Kontakt zwischen Estrich und Dammstoff zu modellieren.

Gewahrleistung der Netzunabhadngigkeit und Dammstoffmodellierung

Somit wurden zunédchst die Modellgrundlagen geschaffen: Zum einen wurden Untersuchungen
zur Netzunabhéngigkeit und zur Modellierung des Rissprozesses, insbesondere des Nachbruch-
bereichs, durchgefithrt, zum anderen lieferten Versuche am in den spéteren Plattenversuchen

verwendeten Dammstoff eine Grundlage zur Modellierung der Dadmmsteifigkeit.
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Aufgrund fehlender Bewehrung besteht eine erhohte Relevanz der Frage nach der Netzunabhén-
gigkeit. Zur Sicherstellung netzunabhéngiger Ergebnisse bei der Simulation der Biegebeanspru-
chung werden in der Literatur verschiedene Moglichkeiten betrachtet, wobei die Einfithrung der
charakteristischen Léinge als Korrekturparameter vor allem in kommerzieller Software die aktuell
iiblichste standardméfig implementierte Option darstellt. Daher wurden zwei in kommerzieller
Software implementierte Modelle, das Concrete Damaged Plasticity-Modell in Abaqus und das
Menetrey-Willam-Modell in ANSYS — als fiir Rissmodellierung {ibliche Software-Vertreter — und
deren Umgang mit der Netzabhéngigkeit verglichen und dem energiebasiert hergeleiteten An-
satz nach Godde (2013) gegeniibergestellt. Dabei wird der Sonderfall eines reinen Zugversuchs
untersucht, da dieser eine analytische Losung besitzt und eine eindeutige Definition der cha-
rakteristischen Lange liefert. Als Ergebnis dieses Vergleichs ergibt sich zum einen ein besseres
Verstandnis des hier zur Regularisierung verwendeten Parameters der charakteristischen Lénge,
aber auch eine bessere Beurteilung der Anwendungsgrenzen der betrachteten Softwarelosun-
gen. Hier konnten bei Betrachtung eines einfachen Zugversuchs bereits Diskrepanzen zwischen
analytischer Losung und Ergebnissen in der Software herausgestellt werden. Die in Abaqus nicht
transparent offen gelegte Definition dieses Parameters verhinderte eine abschlieflende Evaluation
der Ursache fiir diese Diskrepanz. Durch den Vergleich der beiden Software-Ansétze kann jedoch
zumindest eine gezielte Vermutung hinsichtlich der in Abagus zugrunde gelegten Definition der
charakteristischen Lange geliefert werden. Diese kann fiir weitere Anwendungen dieses Modells,
vor allem im Hinblick auf tiefergehende Untersuchungen der Auswirkung dieser Definition, ge-

nutzt werden.

Um die Steifigkeit des verwendeten Dammstoffs moglichst realistisch zu erfassen, wurden Ver-
suche an Dammstoffproben durchgefiihrt. Diese orientierten sich hinsichtlich des maximalen
Belastungsbereichs an den normativen Vorgaben zur Bestimmung der Zusammendriickbarkeit
eines Dammstoffs, welche fiir die normative Estrichbemessung eine Rolle spielt. Neben der Prii-
fung der beiden unterschiedlich steifen Faserddmmstofftypen im gelieferten Zustand wurden auch
Prifungen an Proben durchgefiihrt, die nach der Priifung der Estrichplatte aus dem dort ver-
wendeten Dammstoff entnommen wurden. Die experimentellen Untersuchungen des Démmstoffs
zeigten einen Unterschied zwischen der unbelasteten Priifung des Faserddmmstoffs im Vergleich
zur Priifung nach Belastung durch den darauf liegenden Estrich: Der steifere Démmstoff ver-
liert offenbar durch die Belastung an Steifigkeit, der weichere der beiden Dammstoffe zeigt nach
Belastung eine etwa doppelt so hohe Steifigkeit. Wie diese Verdnderung im Detail zu erklaren
und inwiefern diese Diskrepanz auch bei anderen Dammstofftypen vorhanden ist, bedarf wei-
terer experimenteller Untersuchung. Es ist moglich, dass die strukturelle Beschaffenheit eines
Faserdédmmstoffs fiir diesen Effekt anfélliger ist als andere fiir Trittschallddmmprodukte tbli-
che Werkstoffe wie z.B. Polystyrol (EPS). Festhalten ldsst sich jedoch, dass zur numerischen
Abbildung der Steifigkeit nicht allein der Wert der Zusammendriickbarkeit ausreichend ist, der

zwar zur Einordnung der Steifigkeit gegeniiber anderen Produkten dient, aber das physikalische
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Verhalten im Sinne einer Federsteifigkeit nicht erfasst.

Die Modellierung des Dammstoffs erfolgte ebenso wie die Kontaktmodellierung tiiber nichtli-
neare Einzelfedern: Die Dammstoffversuche lieferten ein stiickweise lineares Kraft-Weg-Gesetz
zur Beschreibung der Steifigkeit, wobei sich der resultierende Verformungsbereich in der Regel
auf den linearen Anfangsbereich beschriankt. Die Kontaktfedern erhielten ebenfalls ein stiick-
weise lineares Gesetz, welches vom anfiénglichen Abstand des Estrichs vom Dammstoff infolge
der Vorverformung aus Schwinden abhing. Der Erhértungs- bzw. Schwindprozess selbst wur-
de nicht direkt simuliert, sondern die resultierende charakteristische Schiisselform vereinfacht
abgeschatzt und als Vorverformung beriicksichtigt. Die in vergleichbarer Software reproduzier-
bare und transparent kontrollierbare Kontaktmodellierung iiber Einzelfedern, die zwischen die
Déammstofffedern und die Estrichelemente zwischengeschaltet wurden, bildet das Ablegen der

Platte auf dem Dammstoff gut und effizient ab.

Validierung des Modells

Mithilfe des so entwickelten Modells lassen sich nun Werkstoffpriifungen sowie typische Laststel-
lungen auf schwimmenden Estrichbalken und -platten simulieren. Anhand verformungsgesteuert
geprifter Estrichbalken im Dreipunktbiegezugversuch konnte die Eignung des in Abaqus ent-
haltenen CDP-Materialmodells zur Berechnung des Nachbruchbereichs bestétigt werden. Die
Ubereinstimmung der Kraft-Verformungs-Kurven zwischen Experiment und Simulation ist sehr
gut. Bei den iibrigen Versuchen an auf Dadmmstoff gebetteten Balken und Platten wurde der
Nachbruchbereich nicht erfasst und daher im Hinblick auf das Materialmodell nicht beurteilt.
Bis zum Erreichen der Bruchlast zeigte sich eine gute Ubereinstimmung zwischen Versuch und
Simulation. Der Materialparameter der Bruchenergie G'; ergibt sich dabei zu 0.2 Nmm/ mm?
und ist damit eher hoch im Vergleich zu typischen Werten fiir Beton oder Stahlfaserbeton (iib-
licherweise bis 0.12 Nmm/mm?). Ob eine dies eine grundsitzliche Tendenz bei schwindarmen
ZementflieBestrichen hoher Festigkeit (Biegezugfestigkeitsklasse F7) ist, lasst sich auf Basis einer

einzelnen Stichprobe nicht beurteilen.

Die Validierung beschrénkt sich auf die konkret betrachteten Parameter, da die beeinflussen-
den Variablen wie Dicke (d = 60 mm), Geometrie (quadratische Platte), Rezeptur (eine Art von
FlieBestrich, F7), Belastungsart (Einzellast Ecke) sowie Art (Faserddmmstoff) und Steifigkeit der
Unterlage (zwei verschiedene Zusammendriickbarkeiten bzw. Bettungszahlen) nicht bzw. nur in
begrenztem Umfang variiert wurden. Insbesondere fiir den Randlastfall ist die Datenlage zur
abschlieBenden Validierung nur begrenzt verwendbar. Insbesondere zeigte sich bei der Beurtei-
lung des Rissbilds fiir die Simulation beider Lastfélle, dass sich eine im Versuch beobachtete
eindeutige Einzelrissbildung auch bei Schwichung der Elemente im Rissband nicht unmittel-

bar numerisch einstellt. Solange der Nachbruchbereich keine héhere Relevanz hat und bei der
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betrachteten Laststellung keine Spannungsumlagerung zu erwarten ist, ist das Modell in der
vorliegenden Form ausreichend. Andernfalls sind weitergehende Untersuchungen und ggf. ein

Uberdenken des Regularisierungskonzepts oder sogar der Modellgrundlage notwendig.

Beurteilung des Schwindeinflusses

Das so validierte Modell konnte schliefSlich zur Beurteilung des Schwindeinflusses herangezogen
werden. Die Untersuchung erfolgte anhand einer Parameterstudie durch Variieren der Estrich-
dicke, Dammsteifigkeit und Vorverformungsintensitiat. Die Parametervariation beschrankt sich
darauf, jeweils nur eine Grofie (Dicke oder Vorverformung) zu variieren, um die Unsicherheit in
den auf Extrapolation des experimentell validierten Parameterbereichs basierenden Ergebnissen
zu minimieren. Diese Extrapolation stellt dennoch eine Unsicherheit bei der grundlegenden Be-
urteilung des Schwindeinflusses auf schwimmenden Estrich im Allgemeinen dar. Im validierten
Bereich einer 60 mm Platte zeigte sich jedoch bereits, dass der Einfluss aus Schwinden auf die
Bruchlast vernachléssigbar ist und auch die Parameterstudie weist keinerlei Indizien dafiir auf,
dass andere Randbedingungen einen grofieren Einfluss der Aufschiisselung auf die Tragfahigkeit

offenbaren werden.

Abweichungen der quantitativen Verformungs- und Bruchlastgrofien sind ohne einen Abgleich
mit weiteren Versuchen nicht auszuschliefen, qualitativ sind die Ergebnisse der Parameterstudie
jedoch als realistisch einzustufen. Die Ergebnisse fiir die extremalen Dammsteifigkeiten mit Bet-
tungszahlen von 1 und 100 MN/m? koénnen lediglich als Tendenz der tatséchlichen Verformung
bzw. Bruchlast verstanden werden. Allein die Verformung weicht bei sehr weichem Dammstoff

von realistischen Werten deutlich ab.

Bestrebungen, das Rissverhalten hochfester Flieflestriche durch schichtweises Einbringen und
dadurch reduzierter Schwindeinfliisse zu verbessern, sind auf Basis der vorliegenden Ergebnisse
nicht zielfithrend. Festhalten lasst sich, dass je steifer der Dammstoff ist, desto eher ein Einfluss
der Vorverformung auf die Bruchlast erkennbar ist. Die Dadmmsteifigkeit selbst hat wenig Ein-
fluss auf die Bruchlast, auch unabhéngig von der Dicke des Estrichs. Die Estrichdicke hingegen
bestétigt sich als mafigeblich fiir die Bruchlast.

Beurteilung des Bemessungskonzepts

Im Anschluss konnte das genormte Bemessungskonzept auf Basis der Ergebnisse beurteilt wer-
den. Die Hypothese, dass der Einfluss aus Schwinden bzw. Schiisseln in Wechselwirkung mit der
Dammsteifigkeit einen entscheidenden Einfluss auf das Bruchlastniveau schwimmenden Estrichs
hat, konnten die dargestellten Untersuchungen nicht nachweisen. Zumindest fiir die im Versuch
betrachtete Dicke von d =60 mm zeigt sich unabhingig von der Beriicksichtigung einer schiis-

selférmigen Vorverformung ein dhnliches Bruchlastniveau in den Simulationen. Daher erscheint
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eine Anpassung des Bemessungskonzepts hinsichtlich des Schwindeinflusses zunéchst nicht zwin-

gend erforderlich.

Da das Bemessungskonzept auf Manns und Zeus (1980) zuriickgeht, beziehen sich auch Bemes-
sungsrichtlinien wie die der DENAK auf den Randlastfall, der von Manns und Zeus (1980) als
mafgebend identifiziert wurde. Dabei wurde jedoch ein fiir den damaligen Wohnungsbau ange-
messenes Lastniveau vorausgesetzt, welches durch heutige Lastniveaus vor allem im Industrie-
bau deutlich iiberschritten wird. Die Bruchlasten wie auch das Spannungsniveau des Ecklastfalls
tibersteigen die des Randlastfalls bei Lastniveaus jenseits der von Manns und Zeus (1980) an-
gesetzten 1 kN-FEinzellast deutlich. Auch widersprechen die Simulationsergebnisse insofern den
Formeln nach Westergaard, bei denen ebenfalls der Randlastfall grundsétzlich hohere Werte lie-
fert. Dadurch ldsst sich der als mafligebend identifizierte Lastfall ,Einzellast am Plattenrand“
gegeniiber der Belastung an der Ecke aufgrund des kritischeren Spannungszustands, der keine

Umlagerungen zulésst, und der geringeren Versagenslast zumindest infrage stellen.

Anzumerken ist hier, dass die Ergebnisse der Tastsimulationen, die fiir den Randlastfall durchge-
fiihrt wurden, aufgrund geringer Versuchsdatengrundlage und Diskrepanzen zwischen Simulation
und Versuch im Bereich des Rissorts und der in der Simulation vernachléssigten Vorschadigung
durch die vorgelagerten Eckpriifungen nur bedingt belastbar sind. Dass aber bereits im elasti-
schen Bereich eine Abweichung zu den Annahmen von Manns und Zeus (1980) bzw. den Wes-
tergaard’schen Formeln vorliegt und der Ecklastfall ein hoheres Spannungsniveau aufweist als

der Randlastfall, ist unabhéngig von den genannten Unsicherheiten bemerkenswert.

Das Versagen unter Eckbelastung, welches in der Praxis iiblicherweise zur Begutachtung der
Estrichtragfdhigkeit herangezogen wird, setzt jedoch spéter ein als die Erstrissbildung an der
Plattenunterseite bei Randbelastung, auch wenn diese nicht unmittelbar Versagen-induzierend
ist. Es ist also nicht eindeutig, welcher Lastfall mafigebend ist. Diese Beobachtungen motivieren
eine anforderungsbedingt genauere Gegeniiberstellung und ggf. Festlegung eines mafigebenden,

und damit einheitlich zu betrachtenden Lastfalls fur die Praxis.

Diese Ergebnisse zeigen auf, dass der Einfluss aus Schwinden auf das Versagen und damit Scha-
den an schwimmendem Estrich weniger entscheidend ist als bisher angenommen, und sich daraus
kein Bedarf zur Anpassung des Bemessungskonzepts ableitet. Dagegen unterstreicht die Auswer-
tung, dass die Diskrepanz zwischen dem fiir die Bemessung als mafigebend erachteten Randlast-
fall und dem in der Praxis tiblicherweise betrachteten Ecklastfall zur Traglastermittlung einer
genaueren Gegeniiberstellung bedarf. Dabei lisst sich das hier entwickelte Modell als numerisches
Werkzeug heranziehen. Aus dem Vergleich der Lastfélle lielen sich unter Umsténden bindende

Handlungsempfehlungen fiir ein verbessertes Sicherheitskonzept ableiten.
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8.2. Ausblick

Reduzierung notwendiger experimenteller Untersuchungen

Bei Beanspruchungen jenseits der normativ erfassten Standardanwendung und Lastniveaus ist es
in der Praxis iiblich, die Tragfahigkeit des geplanten Estrichs iiber experimentelle Untersuchun-
gen an groflformatigen Platten zu ermitteln. Dies ist zeit- und kostenintensiv. Bei weiterer Vali-
dierung des numerischen Modells fiir weitere Dicken und andere Dammstofftypen liefle sich eine
solche Untersuchung unter Umstdnden durch eine numerische Rechnung ersetzen. Moglicherwei-
se ist es in diesem Zusammenhang im Zuge weiterer Untersuchungen verschiedener Geometrien
auch denkbar, ein kostengiinstigeres Versuchskonzept zur Ermittlung der Tragfdhigkeit zu ent-
wickeln, welches die gleichen Kenndaten liefert wie die aktuell groformatigen Plattenversuche.
Daneben lieflen sich schlieflich komplexere Geometrien, erhohrte Lastniveaus oder besondere
Laststellungen, die einer besseren Datengrundlage hinsichtlich fiir Risse kritischer Situationen

bediirfen, fiir die Planung unterstiitzend simulieren.

Weitergehende Anwendung des Modells

Zur Verbesserung des sproden Materialverhaltens und der geringen Zugfestigkeit werden in der
Baupraxis neben der Anordnung stabférmiger Stahlzulagen immer héufiger zusétzlich oder als
Erginzung kurze, rdumlich verteilte Stahlfasern eingesetzt. Vor allem im IndustriefuBbodenbau
ist die Verwendung von Stahlfaserbeton iiblich. Im Hinblick auf die Verbesserung der Tragfahig-
keit bzw. des Rissverhaltens ist auch fiir schwimmenden Estrich eine Faserbewehrung denkbar.
Numerische Untersuchungen im Hinblick auf Faserorientierung und -verteilung lassen sich mit
dem entwickelten Modell durchfiithren, wie ebenfalls u.a. Godde (2013) zeigt. Bei faserverstark-
tem Estrich steigt jedoch die Bedeutung des Nachbruchbereichs, sodass vor allem hier eine
weitere Validierung des Modells notwendig ist. Erste Untersuchungen zum Nachbruchbereich
an verformungsgesteuerten Biegezugversuchen sind in dieser Arbeit bereits erfolgt, ein nichster
Schritt kénnte sein, diesen Nachbruchbereich auch fir faserverstédrkte Balken zu untersuchen
und zu validieren. Den Nachbruchbereich fiir gebettete Balken oder Platten experimentell zu
erfassen und daran das Modell weiter zu validieren hat sich in der vorliegenden Arbeit bereits
als nicht trivial gezeigt. Bei einer weniger sprode reagierenden Estrichrezeptur und einer verbes-
serten, verformungsgesteuerten Lastaufbringung ist es unter Umsténden dennoch moglich, den
Nachbruchbereich zu erfassen. Die Untersuchungen zum Ecklastfall haben auflerdem gezeigt,
dass kaum Potential fiir Spannungsumlagerungen existiert. Um den Nachbruchbereich zu erfas-
sen und zunédchst das Modell zu validieren, ist eine andere Laststellung am Rand moglicherweise
besser geeignet. Hier kann auflerdem, wie in den vorliegenden Versuchen gezeigt, zusétzlich an
der Kante die Rissoffnungsweite des Risses an der Plattenunterseite seitlich iiber DMS erfasst
und bei Entwicklung eines angemessenen Regularisierungskonzepts fiir den Randlastfall validiert

werden.
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Netzabhangigkeit bei unbewehrtem Verbundwerkstoffen

Abschlieflend sei auflerdem noch einmal auf die Bedeutung der Netzabhéngigkeit bei verschmier-
ten Rissmodellen hingewiesen. Insbesondere bei unbewehrten Verbundwerkstoffen wie Beton
oder Estrich ist ein Regularisierungskonzept zur Reduzierung des Einflusses notwendig. In die-
ser Arbeit konnte gezeigt werden, dass auch kommerzielle Materialmodelle in dieser Hinsicht
Schwachstellen aufweisen, bzw. zum Teil nicht einmal transparent offen legen, auf welcher Grund-
lage die implementierte charakteristische Lange basiert. Das erschwert eine Anwendung der Mo-
delle bzw. eine Beurteilung des Einflusses der Netzabhédngigkeit sehr. Fiir Stahlbeton ist der
Einfluss aus dieser Unsicherheit meist noch ausreichend gering, fehlt die Bewehrung jedoch oder
handelt es sich um Stahlfaserbewehrung, ist der Einfluss nicht zu vernachléssigen. Die Definition
nach Godde (2013) liefert im Gegensatz dazu gute Ergebnisse hinsichtlich der Netzunabhéngig-
keit und ist zumindest bei einfachen Bauteil- bzw. Rissgeometrien leicht zu beriicksichtigen.
Daneben gibt es weitere Ansétze zur grundlegenden Umgehung der Netzunabhingigkeit (vgl.
Kapitel 2.2.4), sodass diese moglicherweise die aufgezeigten Einschrankungen des Modells be-
seitigen konnen, wenn diese Methoden (wie z.B. gradienten-erwaiterte Modelle) zukiinftig stan-

dardméBig in kommerzieller Software zugénglicher wéren.
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A. Theoretische Grundlagen: Werkstoff Estrich

Biegezugfestigkeitspriifung nach DIN EN 13892-2:2003

Bei der Festigkeitspriifung werden drei Priifkérper mit den Maflen 40 x 40 x 160 mm hergestellt
und unmittelbar nach 28 Tagen im Lagerungsklima gepriift. Die Stiitzweite im Drei-Punkt-
Biegezugversuch betragt 100 mm. DIN EN 13813:2003 legt die Festigkeitsklasse in Abhéngig-
keit des Ergebnisses der Festigkeitspriifung fest. Bestéatigungspriifungen werden in Sonderféllen
durchgefiihrt, wenn z.B. erhebliche Zweifel an der Giite des Estrichs bestehen. In diesem Fall
werden aus hergestellten Platten der Dicke d und der Léange 8 d drei bis fiinf Priifstreifen der
Léange 6 d und der Breite b = 60 mm herausgeschnitten. Diese sind im Normalklima zu lagern
und nach Erreichen der Massenkonstanz im Drei-Punkt-Biegezugversuch mit einer Stiitzweite
von | = 5d zu prifen. In beiden Féllen ergibt sich die Biegezugfestigkeit aus der ermittelten

Bruchkraft der mittig als Streifenlast angreifenden Last F' zu

1.5-F-1

Bz =~ (A1)

Formeln nach Westergaard
Manns und Zeus (1980) geben neben den Westergaard-Formeln zur Bestimmung der Biegespan-

nungen auBerdem Formeln nach Westergaard zur Bestimmung der Einsenkung eines schwim-

menden Estrichs an:

Einzellast in Plattenmitte

Q
Einzellast am Plattenrand
1
YR = % (1+0.4p) - %S 1000 [mm ] (A.3)
Einzellast in Plattenecke
YE = (1.1 -0.88- \/g-l) . K? B - 1000 [mm] (A.4)
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mit

@ = Last in MN
h = Dicke des Estrichs in m
E = Elastizitdtsmodul des Estrichs = 20000 N/ mm?
i = Querdehnzahl =0.2

a = Belastungskreishalbmesser in m

b=V16-a2+h2-0.675-h fir a<1.724-hin m
b=afira>1724-hinm

KS = Bettungszahl MN/m® =

[ = elastische Lange = q

Ungleiches Schwinden (DENAK)
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Abbildung A.1.: Nomogramm aus dem DENAK-Merkblatt zur Abschiatzung der
Biegespannung aus ungleichem Schwinden (DENAK-Merkblatt 8-

1, 2021)



B. Schwindsimulationen in croc:
Randbedingungen

Bei dem Berechnungsprogramm croc handelt es sich um ein FE-Programm zur Berechnung ge-
koppelter thermischer, hygrischer und mechanischer Probleme, vgl. croc-Handbuch (2019). Das
Programm wurde von Nietner (2009) urspriinglich vor allem zur Untersuchung von Zwangsbe-
anspruchungen erhértender Massenbetonbauteile entwickelt. In der vorliegenden Arbeit dient
das Programm der Simulation des Hydratationsprozesses der hier untersuchten Estrichplatten.
Zur Berechnung des Warme- und Feuchtetransports bei der Betrachtung des Hydratationspro-
zesses wurden Modelle basierend auf Nietner (2009) und Kiinzel (1994) verwendet. Eingangs-
parameter sind u.a. die Betonrezeptur, Witterungseinfliisse und warme- und feuchtetechnische
Eigenschaften des betrachteten Baustoffs. Mechanisch geht vor allem die zeitliche Entwicklung
des E-Moduls ein (vgl. Nietner, Schlicke und Viet Tue, 2011).

Die moglichen Dehnungseinfliisse wihrend der Hydratation zeigen sich in der folgenden Deh-
nungsbilanz (vgl. Rohling, 2009):

€T + Ecds 4 g6as = é_unbeh + Ebeh T 61/} + gRISS

Dabei ist

el Dehnung infolge Temperaturdnderung

gods Dehnung infolge Trocknungsschwinden

ges Dehnung infolge autogenem Schwinden

gmbeh  auferund der Nachgiebigkeit der Konstruktion als freie Verformung messbarer

Dehnungsanteil
gheh behinderter elastischer Dehnungsanteil
¥ Dehnungsanteil aus viskoplastischer Formédnderung (Kriechen und Relaxation)

eRiss  Rissbildung

Letztendlich liefert das Programm fiir jeden Zeitschritt ein in das finite Element eingeprég-
tes lastunabhéngiges Dehnungsinkrement, welches sich aus dem aktuellen Temperaturinkrement
und den bis zu diesem Zeitpunkt aufsummierten viskoelastischen Dehnungsinkrementen der vor-
angegangenen Zwangszustinde zusammensetzt. U.a. Nietner, Schlicke und Viet Tue (2011) for-

mulieren die zugehorigen Differentialgleichungen, diskutieren getroffene Annahmen zur Loésung

193



B. Schwindsimulationen in croc: Randbedingungen

dieser, und welche Einschrankungen mit diesen einhergehen. Zu den theoretischen Hintergriinden
der Implementierung innerhalb von croc liefert das zugehorige croc-Handbuch (2019) genauere
Informationen, wobei sich das Programm und damit auch das Handbuch zum Zeitpunkt der

Entstehung der vorliegenden Arbeit noch in der Entwicklung befindet.

Zur Berechnung der Vorverformungen und Zwangsspannungen infolge Hydratation wurden fiir
die in der vorliegenden Arbeit untersuchten Estrichplatten folgende Annahmen zur Vorgabe im

Berechnungsprogramm croc (vgl. croc-Handbuch (2019)!) getroffen:

Rezeptur! Mechanische Eigenschaften
Zementgehalt: 370 kg/m3 (CEM 1) E-Modul (>28d): 17000 N/mm?
Wassergehalt: 259 kg/m? Druckfestigkeit (>28d): 25 N/mm?
Rohdichte (>28d): 2100 kg/m? Zugfestigkeit (>28d): 2.5 N/mm?

Querdehnzahl: 0.2

Warmetechnische Eigenschaften Feuchtetechnische Eigenschaften?

Warmedehnzahl: 9.2-107° 1/K Feuchtedehnzahl:  1.5-107¢ 1/(kgm?)

Wiarmeleitfahigkeit: 7.5 kJ/(mhK)
spez. Warmekapazitat 1000 J/(kg-K)

noch nicht veroffentlicht, Kontaktaufnahme zum Autor moglich
Seitens des Estrich-Herstellers gab es zur Zusammensetzung lediglich die Information, dass es sich um ein

terndres Bindemittelsystem auf Basis eines Calcium-Aluminat-Zements (Hauptanteil), Anhydrits und CEM
I-Zements handelt (E-Mail-Auskunft).
2 Seitens des Estrich-Herstellers wird der Schwund angegeben mit 0.14mm/m nach 42d (E-Mail-Auskunft).
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Entwicklungskurven
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Abbildung B.1.: Mechanische Vorgaben (Angaben aus Kontakt mit Programmentwickler bzw.
Ersteller der Schwindsimulationen)

asserdampf-Diffusionswiderstandszahl u [%)] Feuchteanspruch [kg/m?®]
15 |
100 |
10 + 50 |
Feuchtegehalt Hydratationsgrad [%]
20 40 60 80 100 20 40 60 80 100

Abbildung B.2.: Feuchtetechnische Vorgaben (Angaben aus Kontakt mit Ersteller des Pro-
gramms bzw. der Schwindsimulationen)

Weitere Randbedingungen

Wie bereits in Kapitel 3.2.1 erlautert, wird nur ein Viertel der Platte modelliert, um den Rechen-

zeitaufwand moglichst gering zu halten. Die Viertelplatte wird zusédtzlich zu den Symmetrie-

195



B. Schwindsimulationen in croc: Randbedingungen

Randbedingungen in Plattenmitte (Kreuzungspunkt der Symmetrieachsen) vertikal gehalten.
Aufgrund der isolierenden Folie zwischen Estrich und Unterbau spielt der Unterbau fiir den
simulierten Wérme- und Feuchtetransport keine Rolle und wird nicht modelliert. Der Lastfall
Eigengewicht wird daher auch erst nach Import in Abaqus und unter Bettungsrandbedingungen
betrachtet.

Die Austrocknung nach unten wird behindert aufgrund der unterliegenden Folie. Zusétzlich
zur Folie zwischen Ddmmstoff und Estrich wurde der Estrich nach Betonage mit einer Folie
abgedeckt, die nach vier Tagen wieder abgenommen wurde. Die Lufttemperatur wurde konstant

zu 20°C, die relative Luftfeuchte zu 60 % angenommen.
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Verformungsgesteuerter Drei-Punkt-Biegezugversuch (Kapitel 3.1.2)

Abbildung C.1.: Aufbau eines verformungsgesteuerten Biegezugversuchs

Aus den Festigkeitspriifungen wurden folgende Werte bestimmt:
o Zugfestigkeit: f; gew = % =2.0 N/mm? # Jtmess = 1.26 N/mm?
o Druckfestigkeit: f.=27.1 N/mm?,
o Biegezugfestigkeit: fs; = 6.0 N/mm?.

Festigkeitspriifungen im Vorfeld der Balken- und Plattenversuche (vgl. Kapitel 4 ff.)

In Abbildung C.2 ist das Ergebnis eines Biegezugversuchs dargestellt. An der Unterseite des
Probekorpers wurde ein Dehnungsmessstreifen (DMS) zentrisch aufgeklebt. Der prismatische
Probekorper mit den Querschnittsabmessungen bxh = 60x57 mm wurde mit einer Stiitzweite
von 290 mm im Dreipunktbiegezugversuch bis zum Bruch belastet. Die maximale Last betragt
1.72 kN, dies entspricht bei Annahme linear elastischen Tragverhaltens einer Spannung von
4.5 N/mm? (Biegezugfestigkeit) bei einer gemessenen Bruchdehnung von 195 pm/m. Daraus
ergibt sich ein E-Modul von etwa 23000 N/mm?. Die Priifung wurde am 11.03.22, und damit 21
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Tage nach Betonage (14.02.22) durchgefiihrt. Eine weitere Priifung wurde mit leicht exzentrisch
neben der Lasteinleitung aufgeklebtem DMS an der Balken-Oberseite durchgefiihrt. Hier ergibt
sich eine Bruchdehnung von 173 pm/m und eine rechnerische Biegezugfestigkeit von 4.6 N /mm?.
Daraus ergibt sich ein E-Modul von etwa 23700 N/mm?.

Aus den nachfolgenden Tabellen kénnen die Ergebnisse der tibrigen Festigkeitspriifungen (Druck-
und Biegezugfestigkeit) entnommen werden. Die Biegezugfestigkeiten liegen leicht unterhalb der
oben ermittelten Werte. Die Ursache konnte in einer moglicherweise unterschiedlichen Lagerung
begriindet liegen, kann aber nicht sicher identifiziert werden. Wie aus Tabellen C.3 und C.4
hervorgeht, erreicht die Biegezugfestigkeit bei weiterer Erhartung bzw. Lagerung im Normkli-
ma bis zur Massenkonstanz einen Wert von bis zu knapp 7 N/ mm?. Es ist davon auszugehen,
dass nicht nur die Festigkeit, sondern auch der E-Modul zum Zeitpunkt der gebetteten Platten-

(15.3./23.03.22 28/36 Tage) und Balkenpriifungen (28./29.04./02.05., etwa 72 Tage) noch ange-
stiegen ist.

Kraft [kN]

! I I I I L i N |
0 0.2 0.4 0.6 0.8 1 00 200 400 600 800

Durchbiegung [mm] Dehnung [pum/m]

Abbildung C.2.: Biegezugversuch mit zentrisch an Unterseite aufgeklebtem DMS, Datum:
11.03.2022 (Tag 25 nach Betonage)
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Abbildung C.3.: Nachrechnung der Biegezugpriifung: Einfluss der Zugfestigkeit und Bruchener-

gie

Tag der Herstellung: 14.02.2022

Tag der Priifung: 01.03.2022

Priifmaschine: 400 kN

Norm: DIN EN 196-1

Vorbereitung zur Priifung:

Stiitzweite: 100 mm

Bemerkungen: Biegezugfestigkeit: 50N /s, Druckfestigkeit: 2400 N /s

Tabelle C.1.: Festigkeiten nach 14 Tagen

Gewicht Biegezug- | Druck-
Proben- b d L Fmax S o
i naturf. festigkeit | festigkeit
bezeichnung | [mm]| | [mm] | [mm)] [kN] ) )
] N/mm?] | [N/mm?]

4 41.2 | 39.9 | 160.3 | 585.7 1.629 3.7
40.390 24.55
40.540 24.64

5 41.2 | 39.9 | 160.2 | 584.1 1.654 3.8
40.380 24.58
39.740 24.19

6 41.0 | 39.9 | 160.2 | 5779 1.635 3.8
38.400 23.45
39.040 23.84
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C. Festigkeitspriifungen

Tag der Herstellung;: 14.02.2022

Tag der Priifung: 14.03.2022

Priifmaschine: 400 kN

Norm: DIN EN 196-1

Vorbereitung zur Priifung:

Stiitzweite 100 mm

Bemerkungen: Biegezugfestigkeit: 50N /s, Druckfestigkeit: 2400 N/s,

Prifung nach niedriger, zyklischer Belastung
(E-Modul nach DIN EN 13412-2006)

Tabelle C.2.: Festigkeiten nach 28 Tagen

Gewicht Biegezug- | Druck-
Proben- b d L Fmax S o
i naturf. festigkeit | festigkeit
bezeichnung | [mm]| | [mm] | [mm] [kN] ) )
] N/mm?] | [N/mm?]

7 42.2 | 39.9 | 160.0 | 601.5 1.753 3.9
44.710 26.55
43.090 25.59

8 41.0 | 39.9 | 160.2 | 574.9 1.594 3.7
44.240 27.04
40.170 24.56

9 41.4 | 40.0 | 160.0 | 582.9 1.529 3.5
43.580 26.32
44.520 26.88
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Tag der Herstellung:

Tag der Priifung:

Priifmaschine:

Norm:

Vorbereitung zur Priifung:

Stiitzweite:

Bemerkungen:

14.02.2022
13.04.2022
400 kN
DIN EN 196-1
Wasserlagerung bis 23.3. & 21 Tage Normklima
100 mm

Biegezugfestigkeit: 50N /s, Druckfestigkeit: 2400 N/s

Tabelle C.3.: Festigkeiten nach Wasserlagerung und 21 Tage Normklima

. Biegezug- | Druck-
Proben- b d L Gewicht | Fmax

. festigkeit | festigkeit

bezeichnung | [mm] | [mm] | [mm] g] [kN] ‘
[N/mm?] | [N/mm?

1 41.9 | 40.0 | 160.1 | 567.7 2.918 6.5
64.000 38.22
65.280 38.98

2 41.8 | 39.9 | 160.2 | 566.0 2.807 6.3
65.300 39.19
64.640 38.79

3 41.8 | 39.9 | 160.0 | 569.9 3.020 6.8
65.020 38.99
64.170 38.48
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C. Festigkeitspriifungen

Tag der Herstellung:

Tag der Priifung:

Prifmaschine:

Norm:

Vorbereitung zur Priifung:

Stitzweite:

Bemerkungen:

Tabelle C.4.: Biegezugfestigkeiten nach Massenkonstanz

14.02.2022
27.04.2022

100 kN

DIN 18560-2

Lagerung in Normklima bis Massenkonstanz

280 mm

43 N/s

Biegezug-
Proben- b d L Fmax
] festigkeit
bezeichnung | [mm] | [mm] | [mm] | [kN] ‘

[N/mm?]

1 59.8 | 53.6 | 330 | 2.714 6.6

2 59.6 | 55.5 | 332 | 2.757 6.3

3 60.2 | 53.7 | 330 | 2.665 6.5

4 60.2 | 53.5 | 330 | 2.645 6.5

5 60.0 | 52.0 | 330 | 2.398 6.2

6 60.1 | 52.3 | 330 | 2.751 7.0

7 60.3 | 53.3 | 330 | 2.518 6.2

Tabelle C.5.: Gewichtsmessung bis zur Massenkonstanz

. . . . . . . . Gewicht
Gewicht Gewicht Gewicht Gewicht Gewicht Gewicht Gewicht Gewicht
Proben- gl
. [¢] [e] (g] [e] [e] [e] [e] [g] .
bezeichnung X L X . . . X . Normklima
ohne Gips | mit Gips Normklima | Normklima | Normklima | Normklima | Normklima | Normklima .
(ohne Gips)
10.03.2022 | 10.03.2022 | 14.03.2022 | 18.03.2022 | 25.03.2022 | 31.03.2022 | 01.04.2022 | 27.04.2022 | 29.04.2022
1 2287 2322.4 2298.5 2294.1 2288.7 2285.7 2285.5 2279
2 2346.5 2379.5 2362.2 2356.6 2351.3 2348.3 2348.1 2341.5
3 2293.1 2354.2 2331.2 2324.4 2319.2 2316.4 2316.1 2309.9
4 2271.2 2340.8 2313.3 2307 2301.7 2299.2 2298.9 2292.9
5 2214.6 2271.9 2249.4 2244.5 2239.6 2237.5 2237.1 2231.4
6 2243.3 2282.4 2262 2257 2252 2249.8 2249.6 2243.8
7 2272.1 2340.9 2320.3 2315.5 2310.5 2308.3 2307.9 2302.3 2239.8
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D. Versuche: Randbedingungen und Fotos

D.1. Dammstoffversuche

Laststufen

In den folgenden Tabellen sind die aufgebrachten Lastschritte zur Bestimmung der lastabhingi-
gen Steifigkeit der verwendeten Dammstoffe in Abhéngigkeit ihrer Grofie und Form aufgefiihrt.
Die in griin eingefarbten Zellen entsprechen den nach Norm DIN EN 12431:2013 geforderten
Laststufen. Die rot hinterlegten Zellen zeigen an, bei welchen Laststufen die Spannung maschi-

nell nicht eingestellt werden konnte.

Tabelle D.1.: Laststufen quadratischer Probekorper

Abmessung
20 10 30
fem)
Flache
0.04 0.01 0.09
m?]
Spannungs- | Kraft | Spannung | Kraft | Spannung | Kraft | Spannung
stufen [kN] | [kN/m? | [kN] | [kN/m?] | [kN] [kN/m?]

0.25 0.1 | 1.11111111
2 0.1 2.5 0.18 2
5 0.2 5 0.08 8 0.45 5
10 0.4 10 0.1 10 0.9 10
15 0.6 15 0.15 15 1.35 15
20 0.8 20 0.2 20 1.8 20
25 1 25 0.25 25 2.25 25
30 1.2 30 0.3 30 2.7 30
35 1.4 35 0.35 35 3.15 35
40 1.6 40 0.4 40 3.6 40
45 1.8 45 0.45 45 4.05 45
50 2 50 0.5 50 4.5 50
60 24 60 0.6 60 5.4 60
25 1 25 0.25 25 2.25 25
5 0.2 5 0.1 10 0.45 5
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Table D.1 continued from previous page

Abmessung
20 10 30
fem)
2 0.1 2.5 0.08 8 0.18 2
0.1 | 1.11111111
Tabelle D.2.: Laststufen runder Probekorper
Abmessung
10 30
[cm]
Fléche
0.007853982 0.070685835

[m?]

Spannungs- | Kraft | Spannung | Kraft | Spannung
stufen [kN] [kN /m?] [kN] [kN /m?]

0.25 0.1 1.41471061
2 0.14 | 1.98059485
5 0.35 | 4.95148712
10 0.1 | 12.7323954 | 0.7 | 9.90297424
15 0.12 | 15.2788745 | 1.05 | 14.8544614
20 0.16 | 20.3718327 | 1.4 | 19.8059485
25 0.2 | 25.4647909 | 1.75 | 24.7574356
30 0.24 | 30.5577491 | 2.1 | 29.7089227
35 0.27 | 34.3774677 | 2.45 | 34.6604098
40 0.31 | 39.4704259 | 2.8 | 39.6118969
45 0.35 | 44.5633841 | 3.15 | 44.5633841
50 0.39 | 49.6563422 | 3.5 | 49.5148712
60 0.47 | 59.8422586 | 4.2 | 59.4178454
25 0.2 | 25.4647909 | 1.75 | 24.7574356
0.1 12.7323954 | 0.35 | 4.95148712
0.14 | 1.98059485
0.1 | 1.41471061




D.2. Estrichversuche

D.2. Estrichversuche
D.2.1. Herstellung Probekorper

Hergestellte Zwei Platten in der Dicke 60mm (248 x 248mm Abmessung),
Priiflinge: sowie eine zusétzliche Platte (50 x 50mm) zur Entnahme
von Bestatigungsproben
13 Balken in den Dicken 20, 40, 60, 80 mm (L=70mm, b=150mm)
9 Prismen in der Dicke 40 mm (L=100mm, b=42mm)

Material: Estrich: SAKRET ZementFlie$Estrich ZFE fast
Dammstoff: Knauf Insulation Trittschall-Dammplatte TP-GP, dp = 20 mm
Knauf Insulation Trittschall-Ddmmplatte TP, dp = 30 mm

Priifziel: Bestéatigungspriifungen an Estrichen in Anlehnung an DIN 18560-2:2022
Priifung der Druck- und Biegezugfestigkeit (DIN EN 196-1:2016, 2016)
Platten/Balken auf Dammstoff: Ermittlung der Bruchlast unter
Einzellast, nach Moglichkeit inkl. Nachbruchbereich

Alle Proben wurden am 14.02.2022 in der Versuchshalle des Instituts fiir konstruktiven Inge-
nieurbau der BU Wuppertal unter Anleitung eines Mitarbeiters der Firma SAKRET hergestellt.

Die Platten wurden jeweils auf einer auf Sandbett gelagerten Dammstoffschicht betoniert:
Platte S: Dammstoffplatte TP-GP
Platte W: Dammstoffplatte TP

Die Hallentemperatur zum Zeitpunkt der Betonage betrug 20.7 °C, bei 32.3 % rel. Luftfeuchte.
Das Ausbreitmafl wurde zu 41.2 cm, der Luftporengehalt zu 5% bestimmt.

_ q \¢
@ W N
& - G = .,,,ﬁ S

s g W——
Abbildung D.1.: Bestimmung Ausbreitmafl und LP-Gehalt

D.2.2. Messtechnik Platten und Balken

Direkt nach der Betonage wurden Wegaufnehmer auf den Platten angebracht, um das Schiis-
selverhalten infolge Hydratation bzw. Schwinden in den ersten drei Wochen zu erfassen. Eine
Ubersicht iiber die Anordnung der Wegaufnehmer befindet sich in Kapitel 6.1.1. Dabei handelt
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es sich um induktive Wegaufnehmer mit Nennmessbereichen zwischen 10 und 50 mm, die auch

bei der anschliefenden Plattenpriifung verwendet werden.

Nach drei Wochen wurden Dehnungsmessstreifen (DMS: Typ 1-LY41-20/120 der Firma HBM)
auf den Platten und Balken angebracht, um wéhrend der Priifung die Dehnung an der Platten-
oberseite zu messen. Eine Ubersicht iiber die Anordnung der Wegaufnehmer und DMS wihrend

der Priifung befindet sich ebenfalls in den jeweiligen Abschnitten 5.1.1 und 6.1.1.

-y

. 4
S =R
—
{
14

Abbildung D.2.: Aufbau Balkenversuch (Probe 60-2)
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D.2. Estrichversuche

(a) Dammstoff TP (b) Dammstoff TP-GP

Abbildung D.3.: Schalung mit eingebauter DA&mmung

Abbildung D.4.: Aufbau WA Platte S
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Abbildung D.5.: Aufbau WA Platte W

Abbildung D.6.: Risskriimmung Plattenkante
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E. Versuche: Weitere Messdaten

E.1. Balken

Nachfolgend sind die Aufnehmer WA1 bis WA4 der Balkenversuche abgebildet. Es ist vor allem
fir WA1 und WAZ2, bei denen aufgrund der angestrebten, festen Lagerung wenig bis keine

Verformung gemessen werden sollte, erkennbar, dass die Lagerung nachgiebiger war.
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3.5 %
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) ) } ) 0.02
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vert. Verschiebung [mm]
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E
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0 : : : : : :
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vert. Verschiebung [mm]

(b) Balken: unterschiedlicher Ddmmstoff

Abbildung E.1.: Ergebnisse der Balkenversuche: Kraft-Verformungs-Kurven WA1
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E.1. Balken

3.5 7
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(b) Balken: unterschiedlicher Ddmmstoff

Abbildung E.2.: Ergebnisse der Balkenversuche: Kraft-Verformungs-Kurven WA2
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(b) Balken: unterschiedlicher Ddmmstoff

Abbildung E.3.: Ergebnisse der Balkenversuche: Kraft-Verformungs-Kurven WA3
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E.1. Balken
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(b) Balken: unterschiedlicher Ddmmstoff

Abbildung E.4.: Ergebnisse der Balkenversuche: Kraft-Verformungs-Kurven WA4
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E.2. Platte

E.2. Platte

E.2.1. Versuchsablauf

R R
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Abbildung E.5.: Ablauf der Plattenversuche: Reihenfolge der Priifung

Tabelle E.1.: Abmessungen der Bruchkérper Tabelle E.2.: Abmessungen der Bruchkorper

fur LF Ecke, vgl. Abb. 6.7 fur LF Rand, vgl. Abb. 6.7

Ly | Liw | Lrw | Lio | Lo | d Ly | Liw | Lyw | Lio | Lo | d
S-EVR | 280 | 340 | 370 | 315 | 330 | 60 S-RR | 315 | 490 | 560 | 440 | 500 | 63
S-EHR | 205 | 282 | 283 | 250 | 245 | 61 S-RH | 265 | 430 | 300 | 393 | 274 | 63
S-EVL | 213 | 303 | 313 | 280 | 283 | 63 S-RV | 280 | 333 | 387 | 315 | 355 | 58
S-EHL | 265 | 360 | 360 | 330 | 335 | 63 W-RL | 785 68
W-EHR | 362 | 435 | 425 | 410 | 400 | 65 W-RV | 310 387 355 | 60
W-EVR | 305 | 330 | 385 | 315 | 360 | 62
W-EVL | 360 | 440 | 405 | 425 | 385 | 65
W-EHL | 310 | 380 | 360 | 360 | 340 | 56

’ w

Llu W

Abbildung E.6.: Form und Abmessung der Bruchkérper (links Eck-, rechts Randpriifung)
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E. Versuche: Weitere Messdaten

E.2.2. Dehnungsverlaufe

In Abbildung E.7 oben sind die Messwerte der linearen DMS fiir die beiden Eck-Lastfille an
Platte S (a=b) dargestellt, wobei die Position der Rosette HR nicht 6, sondern 12 cm gegen-
tiber den linearen DMS versetzt ist (versehentlich falsche Markierung beim Anbringen). In der
gleichen Abbildung unten sind die Messwerte aus der DMS-Rosette bzw. die daraus von CAT-
MAN automatisch berechneten Hauptspannungen abgebildet. Daraus lasst sich ablesen, dass die
Ausrichtung der Rosetten sehr gut mit den Hauptspannungsrichtungen iibereingestimmt hat. In
diesen Verldufen ldsst sich auflerdem eine mit den Kraft-Verformungs-Kurven vergleichbare Ver-

steifung erahnen.

Die in Abbildung E.8 dargestellten Kraft-Dehnungsverldufe unter Ecklast an Platte W sind
vergleichbar mit denen der Platte S Auch die Kraft-Dehnungsverlédufe der beiden tibrigen Ecken
der Platte S zeigen dhnliche Verlaufe, allerdings mit etwas niedrigerer maximaler Dehnung im
Vergleich zu Abbildung E.7 (etwa 225 statt 250 gm/m). In Tabelle E.3 ist der Ort der Rissbildung
in Bezug auf die DMS aufgefiihrt.

Tabelle E.3.: Platte: Ort der Rissbildung (DMS)
’ Platte \ Lastfall \ Rissort in Bezug auf DMS ‘

S EVR zw. DMS 2 und 3 (nahe 2)
S EHR DMS 1
S EVL DMS 1
S EHL DMS 2
W EVR zw. DMS 2 und 3 (nahe 3)
W EHR zw. DMS 3 und 6 (nahe 6)
W EVL zw. DMS 3 und 6 (nahe 6)
W EHL DMS 3
’ S \ RR ‘ keine DMS vorhanden ‘
’ W% ‘ RL ‘ weit jenseits von Rosette ‘

Die in Abbildung E.9 dargestellten Kraft-Dehnungsverldufe bei Priifung der weicheren Platte fiir
den Lastfall Randlast links (RL) zeigen einen deutlich anderen Verlauf als die bei Eckbelastung:
Etwa bis zum Erreichen der Hélfte der Maximalkraft steigt die Dehnung immer stirker an, bis
sie plotzlich deutlich abfillt und danach schwicher wieder ansteigt bis zum Bruch. Dieser Verlauf
ist auch in Abbildung E.10 zu erkennen. Die Dehnungs-Zeitverldufe wurden hier ergdnzt um die
linearen DMS, die an der linken (RL) bzw. rechten (RR, zur Laststellung gegeniiberliegenden)
Kante angeordnet waren, um den Rissfortschritt ausgehend von der Plattenunterseite zu erfassen.
In der unteren Darstellung sind nur noch die Dehnungsverldufe der drei DMS an den Kanten
dagestellt, allerdings nicht in gm/m, sondern %. Aus den Kurven kann die Ursache fiir das lokale
Maximum in den oberflichlichen DMS nicht eindeutig abgelesen werden. Es ist zu vermuten,

dass es zu diesem Dehnungs- bzw. Spannungsabfall infolge des Rissfortschritts an der Unterseite
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7 —— VR-DMS 1
—— VR-DMS 2
6.5 | ——VR-DMS 3
—«— VR-DMS 6
6 il HR-DMS 1
—=5— HR-DMS 2
—D.D a HR-DMS 3
i —=— HR-DMS 6 (etwas versetzt)
£ S .
o
<45 1
4 .
3.5 i
3 | | | | | | |
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— —— VR-DMS 4
] HR-DMS 4
&£ VR-DMS Schub
£ i HR-DMS Schub
.
|
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Abbildung E.7.: Dehnungsmessung bei Eckbelastung Platte S (steifer) — a=b (Anm.: Bei An-
zeichen fiir Risse wurde Druck auf Hydraulikzylinder einmal nachgelassen, um

Nachbruchbereich evtl zu erfassen; daher rithrt Abfall in Verlauf kurz vor dem
Bruch)
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Abbildung E.8.: Dehnungsmessung bei Eckbelastung Platte W (weicher)



E.2. Platte
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Abbildung E.9.: Dehnungsmessung bei Randbelastung Platte W (weicher): Rand links

der Platte kommt, da das lokale Maximum in den linearen DMS (oben) zeitlich etwas versetzt
auftritt. In der unteren Graphik ist erkennbar, dass der untere DMS an Kante RL zuerst bricht,
gefolgt von einem plotzlichen Bruch des DMS an der gegeniiberliegenden Kante, der bis dahin
eine Druckdehnung gemessen hat, wonach schliellich auch der DMS 7 kaputt geht. Kurz danach

zeigen auch die linearen DMS an der Oberseite den Bruch der Platte an.
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Abbildung E.10.: Dehnungsmessung iiber die Dicke bei Randbelastung Platte W (weicher): Be-
lastung Rand links
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F. Simulationen: Weitere Daten

F.1. Biegezugversuch
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Abbildung F.1.: Spannungen und plastische Dehnungen tiber den Querschnitt am Lastangriff-
punkt

In der Legende bezeichnet ,,el“ den letzten elastischen Schritt und ,,pl“ den ersten, darauf folgen-
den Schritt mit plastischen Dehnungen. In Abbildung F.1b sind diese jedoch nicht erkennbar, da
sie im Vergleich zu den plastischen Dehnungen am Ende der Berechnung (etwa bei Durchbiegung
u = 0.64 mm, vergleiche Abb. 3.13) zu klein sind.

In Abbildung F.1a verlduft die Spannung im Elastischen linear iiber den Querschnitt, wobei eine
leichte Stérung an der Querschnittsoberseite infolge der knotenweise eingepréigten Verformung
erkennbar ist. Der Spannungsverlauf knickt im nédchsten Schritt (Kurve ,pl“) an der Quer-
schnittsunterseite ab, da hier das elastische Niveau erreicht ist. Der letzte Berechnungsschritt
zeigt, wie die Spannung ab einer bestimmten Risséffnungsbreite bzw. ab einem bestimmten Ni-
veau der plastischen Dehnung exponentiell auf ndherungsweise Null abfillt, wobei im Druckbe-
reich das Spannungsniveau deutlich héher ist und daher der Verlauf an der Querschnittsoberseite

steil ansteigt.
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F. Simulationen: Weitere Daten

F.2. Balken
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(b) Verformungsfigur

Abbildung F.2.: Dehnungs- und Verformungsverlauf der Balken mit d = 80, TP-GP (vertikale
Markierung oben: Stelle des Risses im Versuch)
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(b) Verformungsfigur

Abbildung F.3.: Dehnungs- und Verformungsverlauf der Balken mit d = 40, TP-GP (vertikale
Markierung oben: Stelle des Risses im Versuch)
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F.3. Platte

F.3. Platte

F.3.1. Eigenspannungen aus Schwinden
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(b) Verformungsfigur

Abbildung F.4.: Vergleich Dehnungsverlauf und Verformungsfigur: mit und ohne Eigenspannun-
gen aus Schwinden

Die in Abbildung F.5 dargestellten Hauptspannungen zeigen nach Abnahme der Folie einen
steilen Anstieg und danach eine deutliche Entspannung. Auch hier zeigt sich eine deutliche
Abweichung im Bereich nach Abnahme der Folie, vor allem bei den maximalen Hauptspannungen
I und II. Diese Kurven der horizontal wirkenden Hauptspannungen weichen auflerdem unerwartet
mit fortschreitender Zeit leicht voneinander ab, wéhrend sie anfangs noch aufeinander liegen.
Eine inhaltliche Bewertung der Verldufe ist nicht sinnvoll, da es sich hierbei um maximale bzw.
minimale Werte des Spannungszustands der gesamten Platte handelt. Die Verldufe liefern so nur
eine pauschale Abschétzung des Vernetzungseinflusses und der maximal bzw. minimal wahrend
des simulierten Schwindprozesses auftretenden Werte. Das Maximum wurde hier unabhéngig
vom Ort in der Platte abgebildet. Abbildung F.5 zeigt den ungefdhren Ort der maximalen
Spannung an der Oberkante der Platte, sowie die Verldufe der Hauptspannung o; iiber die

Plattendicke, welche repréasentativ fiir alle betrachteten Vernetzungen sind.
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F. Simulationen: Weitere Daten
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Abbildung F.5.: Ergebnis der Schwindsimulation in croc: Eigenspannungen in Form von extremalen Hauptspannungen oy bis oy, aus-
gewertet iiber den gesamten Berechnungszeitraum und die gesamte Platte (Extremalstellen 6rtlich nicht einheitlich)
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F.3. Platte
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(a) Darstellung des Orts der maximalen Hauptspannung in der Viertelplatte, wobei die exakte Stelle in
diesem Bereich leicht variiert zum Zeitpunkt der maximal auftretenden Spannung nach Abb. F.5
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(b) Darstellung des Verlaufs der maximalen Hauptspannung iiber die Plattendicke fiir jeden Zeitschritt:
Die maximale Hauptspannung entsteht zum in Abb. F.5 angegebenen Zeitpunkt an der Plattenober-
kante. In Richtung der unteren Plattenhilfte wechselt die Spannung das Vorzeichen. Bei niedrigerem
Spannungsniveau verdndert sich auch der Verlauf iiber den Querschnitt leicht, wobei ein typischer
Eigenspannungsverlauf erkennbar ist.

Abbildung F.6.: Darstellung des Orts in der Viertelplatte (croc) bzw. des Verlaufs der maximalen
Hauptspannung iiber die Plattendicke fiir jeden Zeitschritt
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F. Simulationen: Weitere Daten

F.3.2. Rissbilder

(a) 50 (b) 35 (c) 25

Abbildung F.7.: Entwicklung der plastischen Dehnungen bei erzwungen begrenzter RPZ fiir
Platte W im Vergleich zur in rot dargestellten Rissposition im Versuch (Breite
des dargestellten Plattenausschnitts 0.625 m)

(a) 50 (b) 35 (c) 25

Abbildung F.8.: Entwicklung der plastischen Dehnungen bei erzwungen begrenzter RPZ fiir
Platte S im Vergleich zur in rot dargestellten Rissposition im Versuch (Breite
des dargestellten Plattenausschnitts 0.625 m)
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F.3. Platte

(a) Platte S (steifer gelagert)

(b) Platte W (weicher gelagert)

Abbildung F.9.: Entwicklung der plastischen Dehnungen bei Randbelastung: Draufsicht Ober-
(links) und Unterseite (rechts), jeweils ausgewertet bei Erreichen der Bruchlast
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F. Simulationen: Weitere Daten

F.3.3. Parameterstudie: Rissbilder

Abbildung F.10.: Rissbilder der Parameterstudie — Variieren der Plattendicke (Ausschnitt eines
Sechzehntels der Platte, von oben steifer nach unten weicher Ddmmstoff)
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F.3. Platte

(a) 60-2 (b) 60-4 (c) 60-8

Abbildung F.11.: Rissbilder der Parameterstudie — Variieren der Vorverformung (Ausschnitt ei-
nes Sechzehntels der Platte, von oben steifer nach unten weicher Dammstoff)
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F. Simulationen: Weitere Daten

F.3.4. Parameterstudie: Kraft-Verformungs-Linien
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Abbildung F.12.: Kraft-Verformungslinien im Rahmen der durchgefithrten Parameterstudie
(leicht vergroBerte Darstellung)
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