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Kurzfassung

In vielen Bereichen des Bauwesens spielt die Methode der numerischen Simulation eine zuneh-
mend größere Rolle. Dazu gehört unter anderem auch die (Weiter-)Entwicklung von Materi-
algesetzen sowie die Überprüfung bzw. Erweiterung ihrer Anwendungsgrenzen zur immer rea-
listischeren Abbildung des Werkstoffverhaltens. Im Rahmen der vorliegenden Arbeit wird der
Bereich der Schadensprognose in Bezug auf die Rissbildung zementgebundener Estrichplatten
auf Dämmschicht näher beleuchtet. Regelmäßig auftretende Schadensbilder bei dieser besonders
schwindanfälligen Bindemittelart zeigen, dass die Bemessungsgrundlage, die auf Jahrzehnte zu-
rückliegenden Versuchsreihen basiert, einer Überprüfung bedarf. Im Bemessungskonzept bisher
unberücksichtigte Schwindeinflüsse und daraus resultierende Aufschüsselungen an den Bauteil-
rändern wurden als eine mögliche Ursache identifiziert.
Materialmodelle für die numerische Abbildung vor allem von Rissen gibt es für den Estrich-

ähnlichen Werkstoff Beton. Es ist anzunehmen, dass diese insbesondere für Zementestrich geeig-
net sind und ein sinnvolles Werkzeug bieten, um die Anwendbarkeit und Beantwortung dieser
offenen Fragestellung systematisch zu untersuchen. Dazu wurde eine Modellumgebung entwi-
ckelt, die eine ausreichende Netzunabhängigkeit der Ergebnisse gewährleistet. Der Erhärtungs-
bzw. Schwindprozess selbst wurde nicht direkt simuliert, sondern die resultierende charakteris-
tische Schüsselform vereinfacht abgeschätzt und als Vorverformung berücksichtigt. Zur Validie-
rung des Modells wurden Balken- und Plattenversuche herangezogen. Mithilfe des entwickelten
Modells wurde anhand einer Parameterstudie der Einfluss sowohl infolge Schwinden als auch
infolge verschiedener Steifigkeitseinflüsse aus Dämmstoff-Zusammendrückbbarkeit und Estrich-
dicke auf das Versagen untersucht. Die hier erfolgte Extrapolation des experimentell validierten
Parameterspektrums ließ eine grundlegende Beurteilung zwar nicht zu, im validierten Bereich
zeigte sich jedoch bereits, dass der Einfluss aus Schwinden auf die Bruchlast vernachlässigbar
ist. Die Parameterstudie zeigte keinerlei Indizien dafür auf, dass ein Variieren weiterer Randbe-
dingungen einen größeren Einfluss der Aufschüsselung auf die Tragfähigkeit offenbaren wird.
Aufgrund fehlender Bewehrung besteht eine erhöhte Notwendigkeit zur Überprüfung der Netz-

unabhängigkeit der Ergebnisse bei der Simulation der Biegebeanspruchung. Daher wurden die
in Abaqus und Ansys – als für Rissmodellierung übliche Software-Vertreter – implementierten
Rissmodelle und deren Umgang mit der Netzabhängigkeit verglichen und einem weiteren Ansatz
aus der Literatur gegenübergestellt. Als Ergebnis dieses Vergleichs ergibt sich zum einen ein bes-
seres Verständnis des hier zur Regularisierung verwendeten Parameters der charakteristischen
Länge, aber auch eine bessere Beurteilung der Anwendungsgrenzen der entsprechenden Soft-
warelösungen. Hier konnten bei Betrachtung eines einfachen Zugversuchs bereits Diskrepanzen
zwischen analytischer Lösung und Ergebnissen in der Software herausgestellt werden.
Mithilfe des Modells wurden Balkenversuche und typische Laststellungen auf schwimmenden

Estrichplatten simuliert. Anhand verformungsgesteuert geführter Biegezugprüfungen ließ sich
der Nachbruchbereich numerisch sehr gut abbilden. Aufgrund stark spröden Versagens des für
die Platten verwendeten Fließestrichs konnte der Nachbruchbereich für diese nicht erfasst oder
validiert werden. Ein Vergleich der experimentellen und numerischen Daten zeigte bis zum Bruch
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eine gute Übereinstimmung.
Insgesamt lässt sich festhalten, dass sich für Beton entwickelte Rissmodelle auf Zementestrich

anwenden lassen, unter der Bedingung, dass die Netzunabhängigkeit der Ergebnisse sicher ge-
stellt wird. Mithilfe des Modells lassen sich typische Laststellungen auf Estrichplatten numerisch
abbilden, wobei das Modell jedoch genauerer Validierung durch weitere experimentelle Daten
bedarf. Der Einfluss aus Schwinden und Dämmsteifigkeit auf das Versagen kann im validierten
Bereich als vernachlässigbar eingestuft werden. Im Hinblick auf das Bemessungskonzept besteht
in diesem Zusammenhang zunächst kein Handlungsbedarf. Allerdings stellen bereits die Ergeb-
nisse der experimentellen Untersuchung den in anerkannten Bemessungskonzepten als maßge-
bend identifizierte Lastfall „Einzellast am Plattenrand“ gegenüber dem Lastfall „Einzellast an
der Plattenecke“ aufgrund des kritischeren Spannungszustands, der keine Umlagerungen zulässt,
und der geringeren Versagenslast zumindest infrage. Es ist nicht eindeutig, welcher Lastfall maß-
gebend ist. Diese Ergebnisse motivieren eine genauere Gegenüberstellung der beiden Lastfälle,
wofür sich das hier entwickelte Modell als numerisches Werkzeug heranziehen lässt. Aus diesem
Vergleich ließen sich unter Umständen bindende Handlungsempfehlungen für ein verbessertes
Sicherheitskonzept ableiten.
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Abstract

Numerical simulation methods are playing an increasingly important role in many areas of ci-
vil engineering. This also includes the (further) development of material laws as well as the
verification or extension of their application limits for an increasingly realistic representation
of material behavior. The present work takes a closer look at the area of damage prediction
in relation to the cracking of cement-bound floating screeds on an insulating layer. Regularly
occurring damage patterns with this particularly shrinkage-prone type of binder show that the
design basis, which is based on test series’ dating back decades, needs to be reviewed. Shrinkage
influences not previously considered in the design concept and the resulting bowling up at the
edges of the plates were identified as a possible cause.
Material models for the numerical simulation of cracks are available for concrete, a material

similar to screed. It can be assumed that these are suitable for cement-based screeds and offer
a useful tool for systematically investigating the applicability and answering this open rese-
arch aspects. For this purpose, a model environment was developed that ensures sufficient mesh
independence of the results – which is often limited in crack models. The hardening or shrin-
kage process itself was not simulated directly, but the resulting characteristic bowl shape was
estimated in a simplified manner and taken into account as a pre-deformation. Beam and slab
tests were used to validate the model. With the help of the developed model, the influence of
both shrinkage and various stiffness influences from insulation compressibility and screed thic-
kness on the failure was investigated using a parameter study. Although the extrapolation of
the experimentally validated parameter spectrum carried out here did not allow a fundamental
assessment, the validated range already showed that the influence of shrinkage on the breaking
load is negligible. The parameter study showed no indication that varying other boundary con-
ditions would reveal a greater influence of shrinkage on the load-bearing capacity.
Due to the lack of reinforcement, there is an increased need to check the mesh independence

of the results when simulating the bending stress. Therefore, the crack models implemented in
Abaqus and Ansys - as common software representatives for crack modeling - and their handling
of mesh dependency were compared and contrasted with another approach from the literature.
The result of this comparison gives a better understanding of the parameter of the characteristic
length used here for regularization, but also a better assessment of the application limits of the
corresponding software solutions. By looking at a simple tensile test, discrepancies between the
analytical solution and the results in the software could already be identified.
The model was used to simulate beam tests and typical load positions on floating screed slabs.

Using deformation-controlled tensile bending tests, the post-cracking behaviour could be repro-
duced very well numerically. Due to the highly brittle failure of the flowing screed used for the
slabs, the post-failure range for these could not be recorded or validated. A comparison of the
experimental and numerical data showed good agreement up to the fracture.
Overall, it can be stated that crack models developed for concrete can be applied to cementitious
screed, provided that the mesh independence of the results is ensured. The model can be used to
numerically represent typical load positions on screed slabs, although the model requires more
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precise validation using further experimental data. The influence of shrinkage and insulation
stiffness on the failure can be classified as negligible in the validated range. With regard to the
design concept, at this time there is no need for action in this context. However, the results of
the experimental investigation already call into question the load case ”concentrated load at the
slab edgeïdentified in recognized design concepts as decisive compared to the load case ”con-
centrated load at the slab corner”. This is due to the more critical stress state, which does not
allow any redistributions, and the lower failure load for the corner load case. It is not clear which
load case is decisive. These results motivate a more precise comparison of the two load cases,
for which the model developed here can be used as a numerical tool. Binding recommendations
for an improved safety concept could possibly be derived from this comparison.
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1. Einleitung

In vielen Bereichen des Bauwesens spielt die Methode der numerischen Simulation eine zuneh-
mend größere Rolle. Dazu gehört unter anderem auch die (Weiter-)Entwicklung von Materi-
algesetzen sowie die Überprüfung bzw. Erweiterung ihrer Anwendungsgrenzen zur immer rea-
listischeren Abbildung des Werkstoffverhaltens. Im Rahmen der vorliegenden Arbeit wird der
Bereich der Schadensprognose in Bezug auf die Rissbildung in zementgebundenen Estrichplatten
auf Dämmschicht näher beleuchtet.

Regelmäßig auftretende Schadensbilder (Müller und Limp, 2015, Langer, 2017) bei schwimmen-
dem Zementestrich zeigen, dass die Bemessungsgrundlage, die auf Jahrzehnte zurückliegenden
Versuchsreihen basiert (Manns und Zeus, 1980), einer Überprüfung bedarf. Im Bemessungskon-
zept bisher unberücksichtigte Schwindeinflüsse und daraus resultierende Aufschüsselungen an
den Bauteilrändern werden als eine mögliche Ursache identifiziert. Ergänzend zur nahe liegen-
den und in anderen Veröffentlichungen bereits untersuchten Optimierung von Estrichrezepturen
hin zu schwindärmeren Optionen wird im Folgenden die Möglichkeit zur numerischen Rissmo-
dellierung von schwimmendem Zementestrich betrachtet.

Eine Vielzahl numerischer Ansätze zur Beschreibung der Rissentwicklung von Werkstoffen ist,
insbesondere für quasi-spröde Werkstoffe wie Estrich und Beton, Gegenstand aktueller For-
schung. Im Vordergrund dieser Arbeit steht, daraus einen angemessenen Ansatz zur Beschrei-
bung des Rissverhaltens von Zementestrich zu wählen, um damit numerisch zu untersuchen,
welchen Einfluss das Aufschüsseln der Estrichplatten und die Interaktion zwischen Estrich und
Dämmung auf das Versagen hat, und inwiefern sich aus numerischen Simulationen in diesem
Kontext Möglichkeiten zur Entwicklung eines besseren Bemessungs- und Rissprognose-Konzepts
ergeben können.

1.1. Forschungsbedarf und Zielsetzung

Estriche, insbesondere zementgebundene, stellen in der Baupraxis riss- und schadensanfällige
Bauteile dar. Eine für tragende Bauteile übliche ingenieurtechnische Bemessung findet in der
Regel nicht statt. Auch wenn Estrich zum Lastabtrag im Gebäude nicht beiträgt, ist die Ent-
wicklung von Rissen für die Gebrauchstauglichkeit zu minimieren. Das Bemessungskonzept für
insbesondere schwindanfällige Zementestriche auf Dämmschicht, welches in DIN 18560-2:2022
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1. Einleitung

geregelt ist, legt tabellarisch Estrichnenndicken in Abhängigkeit von der Nutzlast, der Biegezug-
festigkeitsklasse und der Zusammendrückbarkeit der Dämmschicht für verschiedene, über Einzel-
und Flächenlasten definierte Nutzlastniveaus fest. Die Grundlage für die Bemessungstabellen
lieferten Manns und Zeus (1980). Die dort hergeleiteten Bemessungsvorschläge für Estriche auf
dicken Dämmschichten beruhen auf empirischen Formeln nach Westergaard (1926), welche auf
dem Bettungsmodulverfahren basieren. Diese wurden für den Straßenbau zur Bemessung von
Bodenplatten entwickelt und idealisieren den Boden – analog zur Estrichdämmschicht – als elas-
tische Bettung.

Der Einfluss der Platte-Dämmungs-Interaktion auf die Verformungen und den Spannungszu-
stand bleibt allerdings bei dieser Modellierung bisher ebenso unberücksichtigt wie die eingangs
genannten Schwindverformungen. Bei auftretender Rissbildung kann es zu Spannungsumlage-
rungen kommen, deren Entwicklung durch veränderte Reaktionsspannungen in der elastischen
Bettung beeinflusst werden. Zusätzlich wird das Tragverhalten von Schwindverformungen wäh-
rend des Erhärtungsprozesses beeinflusst. Infolge Hydratationswärme und eines ungleichmäßigen
Austrocknungsprozesses über die Plattendicke entstehen aus einem durch die Aktivierung des
Eigengewichts behinderten Verformungsbestreben Zwangsspannungen in der Platte (Timm et al.
2019). Zwangsspannungen infolge von behinderten Schwindverformungen, insbesondere die vor
allem bei Zementestrich beobachtete Schüsselbildung (vgl. Abbildung 1.1) noch vor der eigent-
lichen Nutzlast-Beanspruchung des Estrichs, haben einen Einfluss auf den Ort und die Größe
der Rissbildung in schwimmend gelagerten Estrichplatten. Inwiefern die genannten Effekte aus
Dämmstoff-Estrich-Wechselwirkung und Schwindverformung eine für die Bemessung maßgeben-
de Rolle spielen und ob die bisher fehlende Berücksichtigung im Bemessungskonzept eine Ursa-
che für die auftretenden Schadensfälle sein könnten, soll in der vorliegenden Arbeit beleuchtet
werden.

Abbildung 1.1.: Skizze einer dreidimensionalen Verformungsfigur eines schwimmen-
den Estrichs infolge eines linearen Dehnungsgradienten: Aufschüs-
seln der Estrichränder und -ecken (Schießl und Wiegrink, 2005)
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Gleichzeitig ist der Stand der Forschung weiter fortgeschritten, was die numerische Modellie-
rung physikalisch nichtlinearen Materialverhaltens quasi-spröder Werkstoffe, insbesondere die
von Stahl(faser)beton und Beton, angeht (Hofstetter, 2006; Gödde, 2013). Die Tatsache, dass
die auf Basis von Bettungs- und Steifemodulverfahren zur Bemessung hergeleiteten Tabellen-
werke heutzutage durch Stabwerks- bzw. FE-Programme ersetzt werden (Vogt, 2018), spricht
dafür, dass eine vergleichende Überprüfung des Bemessungsansatzes mithilfe numerischer Be-
rechnungen sinnvoll und zeitgemäß ist.

Um die oben genannten Aspekte bei der Bemessung von Estrichplatten berücksichtigen bzw. um
das Tragverhalten grundsätzlich numerisch untersuchen zu können, wird ein Materialmodell für
Zementestrich benötigt. Ein konkretes Materialgesetz, wie es für Beton oder Stahlbeton in Form
von Spannungs-Dehnungslinien (DIN EN 1992-1-1:2011) oder Bruchbildern (DIN EN 12390-
3:2019) bereits existiert und als gesichert gilt, gibt es für Zementestrich bisher weder in der
Norm noch in der Literatur (Merkblatt Zementestrich (2015)). Die Ähnlichkeit in der Zusam-
mensetzung legt jedoch nahe, dass Materialmodelle, die sich für Beton bewährt haben, auf
Zementestrich übertragbar sind und diese das Entfestigungsverhalten auch von Zementestrich
gut numerisch abbilden können. Trotz Vergleichbarkeit der Zusammensetzung mit Beton gibt es
in der Literatur bislang keine vergleichenden Untersuchungen, die das Ableiten eines Materialge-
setzes im Sinne einer klassischen ingenieurtechnischen Bemessung für den Werkstoff Zementest-
rich unmittelbar ermöglichen würden. Zur Verifizierung der Realitätsnähe des zu entwickelnden
Modells sind experimentelle Daten an Platten aus der Literatur oder eigenen Versuchen heranzu-
ziehen und anhand dieser Daten die Ergebnisse aus den numerischen Simulationen zu validieren.

Im Bereich Zementestrich gab es bislang vorwiegend experimentelle Untersuchungen zur Beur-
teilung des Trag- und Trocknungsverhaltens. Forschungsberichte aus den 80er und 90er Jahren
zielen in der Regel darauf ab, Empfehlungen für die Praxis abzuleiten, sodass die dokumentierten
Daten für eine numerische Nachrechnung nur einige Anhaltspunkte wie die maximale Einsenkung
oder ggf. Rissbreite liefern können. Häufig werden in diesen Veröffentlichungen Großversuche an
Platten unterschiedlicher Geometrie dokumentiert, bei denen empirisch verschiedene Einflüsse
(Steifigkeit der unterliegenden Dämmung, Estrichdicke, Austrocknungsverhalten (Schnell, 1983;
Manns und Zeus, 1980; Wiegrink, 2002) auf die Gebrauchstauglichkeit und das Tragverhalten
untersucht werden bzw. das geltende Bemessungskonzept anhand der Versuchsergebnisse über-
prüft wird (Schnell, 1994; Schnell, 1990; Schnell, 1983; Manns und Zeus, 1980). Vom Institut
für Baustoffprüfung und Fußbodenforschung (IBF) wurden in den letzten 20 Jahren regelmä-
ßig Veröffentlichungen zu Schadensbildern und möglichen Ursachen veröffentlicht (Müller und
Limp, 2015; Müller, 2017). Daneben gibt es experimentelle Untersuchungen zum Trocknungs-
und Schwindverhalten und möglicher Optimierung von Prüfmethoden und Nachbehandlungs-
maßnahmen (Dollase, 2019; Schneider und Pleyers, 2003), bei denen zum Teil in jüngerer Ver-
gangenheit auch numerische Verfahren zur Modellierung der Erhärtungsphase Anwendung fin-
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den (Ambroise et al., 2002; Jaafri et al., 2019). Hier liegt der Fokus auf der Untersuchung des
Schwind- bzw. Austrocknungsverhaltens, um materialtechnologisch das Rissverhalten zu verbes-
sern. Auch in diesem Zusammenhang gibt es mehr, und umfassendere Veröffentlichungen zum
Werkstoff Beton, häufig mit dem Fokus auf Berechnung von Zwangsbeanspruchung und Riss-
breitenbegrenzung (Schlicke und Viet Tue, 2016a bzw. Schlicke und Viet Tue, 2016b, Nietner,
Schlicke und Viet Tue, 2011), und vergleichsweise sehr wenige, die sich mit Estrich befassen
(Georgin et al., 2008; Ambroise et al., 2002; Wiegrink (2002)). Das Rissverhalten wird hier nur
am Rande, und nicht unter Verwendung für Beton bereits üblicher nichtlinearer Rissmodelle
untersucht.

Insgesamt kann festgestellt werden, dass die Problematik der Rissbildung unbewehrter quasi-
spröder Bauteile und der Konsequenzen der fehlenden Bewehrung im Hinblick auf eine netzunab-
hängige numerische Simulation der Rissbildung bisher wenig systematisch untersucht wurden. Im
Fall von Zementestrich wie auch Estrich im Allgemeinen gab es einige empirische und auch einige
wenige numerische Untersuchungen, die sich allerdings auf die Modellierung der Zwangseinflüsse
infolge Austrocknung beschränken. Eine numerische Untersuchung der Rissbildung erfolgte nicht.

Stahlbeton und Stahlfaserbeton sind im Bauwesen übliche Verbundwerkstoffe, deren Rissverhal-
ten, sowie die numerische Modellierung dessen, in der Literatur seit Jahrzehnten Forschungsge-
genstand ist. Zur Modellierung mithilfe finiter Elemente (FE) stehen verschiedene Materialmo-
delle in kommerziellen Software-Produkten (u. a. Abaqus, Ansys, LS-DYNA, ADINA, ATENA)
zur Verfügung. Estrich wird allerdings im Gegensatz zu Beton in der Regel unbewehrt einge-
baut. In den meisten der zahlreichen Veröffentlichungen zur Rissmodellierung von Beton werden
bewehrte Bauteile untersucht (Feenstra und de Borst, 1995; V. Cervenka, J. Cervenka und Kad-
lec, 2018; Gödde, 2013; Thomée, 2005). Unbewehrter Beton wird selten in größerem Umfang
numerisch simuliert bzw. fokussiert sich der Anwendungsbereich auf die Berechnung von kleinen
Formaten im Rahmen von Festigkeitsuntersuchungen (Brünig und Michalski, 2020; Thabet und
Haldane, 2001; Cotsovos und Kotsovos, 2011), und seltener größeren Bauwerken (Rüd, Fleischer
und Stephan, 2023).

Bei fehlender Bewehrung spielt der Aspekt der Netzabhängigkeit bei Modellierung der Diskon-
tinuität, die durch die Rissbildung im Finie-Element-Netz abzubilden ist, bei den hier verwen-
deten verschmierten Rissmodellen eine größere Rolle als bei bewehrtem Beton ((Gödde, 2013),
Dassault Systèmes, 2021). Unter den genannten verschmierten Rissmodellen existieren noch
weitere Ansätze zur Rissmodellierung neben den hier verwendeten Plastizitätsmodellen. Nach
de Borst und Verhoosel (2016) verfolgen gradientenbasierte Modelle oder Phasenfeldmodelle
zum Beispiel ebenfalls einen verschmierten Ansatz, zielen aber darauf ab, die Diskontinuität
so abzubilden, dass keine Netzabhängigkeit entsteht. Bevor sich der Fokus verstärkt auf diese
verschmierten Modelle verschoben hat, wurde der gegensätzliche Ansatz einer diskreten Model-
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lierung der Diskontinuität verfolgt (de Borst und Verhoosel, 2016). Dies hatte den Vorteil, dass
ein Riss physikalisch als Trennung der Elemente an dieser Stelle modelliert wurde. Der erhöhte
Rechenaufwand und notwendige Algorithmen und Elemententwicklungen zur adaptiven Ver-
netzung führten zunächst zur vermehrten Ablösung durch verschmierte Modelle. Wie de Borst
und Verhoosel (2016) beschreiben, sind durch die Weiterentwicklung der numerischen Verfahren
auch diskrete Modelle mittlerweile vermehrt in der Anwendung, wobei auch hier weiterhin For-
schungsbedarf hinsichtlich einer robusten Implementierung besteht. In der vorliegenden Arbeit
finden nur verschmierte, plastizitätsbasierte Modelle Anwendung, da diese für die angestrebte
Modellierung geeignet und in den meisten kommerziellen Programmen implementiert sind, was
für die praktische Anwendung des entwickelten Modells von Vorteil ist.

Verschmierte Rissmodelle, die u. a. für quasi-spröde Werkstoffe wie Beton entwickelt wurden,
verwenden bruchmechanische Konzepte innerhalb der ursprünglich für homogene, duktile Werk-
stoffe (z.B. Stahl) entwickelten Plastizitätstheorie (Hofstetter, 2006; de Borst, Crisfield et al.,
2012; Gödde, 2013). Aufgrund von Diskrepanzen zwischen den grundlegenden bruchmecha-
nischen Annahmen zur Beschreibung der Rissbildung und den Gegebenheiten in der Finite-
Elemente-Definition (infinitesimaler Riss ohne Übertragung von Spannungen gegenüber einem
kontinuierlichen Verformungszustand der finiten Elemente) kommt es in diesen Modellen zu ei-
ner Abhängigkeit der Ergebnisse von der Netzgeometrie bzw. -verfeinerung. Diese kann u.a.
durch einen modellierungsabhängigen Längenparameter, die „charakteristische Länge“, beein-
flusst bzw. korrigiert werden (de Borst, Crisfield et al., 2012; Gödde, 2013). Bei Betrachtung
von Stahlbeton wird das Entfestigungs- bzw. Rissverhalten des Betons unter Zugbeanspruchung
maßgebend vom Tragverhalten der Bewehrung überlagert. In diesem Fall zeigt eine mögliche
Netzabhängigkeit des Beton-Materialmodells u. U. keinen entscheidenden Einfluss auf die Be-
rechnungsergebnisse. Für unbewehrten Estrich aber hat diese Problematik in der Regel einen
signifikanten Effekt (Gödde, 2013).

Die in den Software-Produkten implementierten Rissmodelle unterscheiden sich u. a. im Hinblick
auf ihren Umgang mit der Netzabhängigkeit, wurden in der Literatur aber selten direkt verglei-
chend gegenübergestellt (Cotsovos, Zeris und Abbas, 2009). Auf die Netzabhängigkeit wird in
vielen anderen Veröffentlichungen mit bewehrten Betonbauteilen nicht explizit eingegangen (V.
Cervenka, J. Cervenka und Kadlec, 2018; Feenstra und de Borst, 1995). Auch bei Betrachtung
unbewehrter Betonbauteile wurde im Rahmen der Materialparameter die charakteristische Län-
ge als Modellierungsparameter bzw. die Problematik einer Netzabhängigkeit bei Verwendung
von Strain-Softing-Modellen genannt, aber ihr Einfluss oft nicht allgemeingültig erläutert oder
untersucht, sondern die Netzunabhängigkeit ggf. problemabhängig erreicht (z. B. J. Červenka, V.
Červenka und Laserna, 2018; Hatzigeorgiou et al., 2001; Thabet und Haldane, 2001). Im Bereich
von Stahlfaserbeton wurde die Problematik in einigen Veröffentlichungen bereits aufgegriffen,
da der Einfluss der Netzabhängigkeit hier weniger zu vernachlässigen ist (Gödde, 2013; Thomée,
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2005). Gödde (2013) entwickelte eine eigene Definition für den Parameter der charakteristischen
Länge und schaffte auf Basis dessen ein FE-Modell zur realitätsnahen Simulation stabartiger
und flächenhafter Bauteile aus Stahlfaserbeton. Im Hinblick auf die Netzabhängigkeit und den
in Software-Paketen implementierten, und daher default-mäßig verwendeten, aber zum Teil we-
nig beachteten Parameter der charakteristischen Länge besteht insbesondere im Hinblick auf
unbewehrte Bauteile weiterer Forschungsbedarf.

Die Weiterentwicklung der Möglichkeiten in der Numerik, das Rissverhalten quasi-spröder Werk-
stoffe präziser erfassen zu können, und die Hinweise, dass Schadensfälle bei zementgebundenem
Estrich mit dem Schwind- und Schüsselverhalten zusammenhängen könnten, führen auf folgende
Zielsetzung der vorliegenden Arbeit:

1. Identifikation eines geeigneten Materialmodells und Einordnung vorhandener Regularisie-
rungskonzepte in kommerzieller Software zur netzunabhängigen Abbildung des Entfesti-
gungsverhaltens von zementgebundenem Estrich,

2. Validierung des Modells anhand geeigneter experimenteller Untersuchungen an schwim-
mend gelagerten Estrichplatten,

3. Systematische Untersuchung des Systems „schwimmender Estrich“ mit dem Fokus auf dem
Einfluss der Wechselwirkung zwischen Dämmstoffsteifigkeit und Schüsselbildung auf die
Rissbildung bzw. Tragfähigkeit,

4. Erkenntnisgewinn zur Diskussion und Bewertung des genormten Bemessungskonzepts für
Zementestrich auf Dämmschicht zur Reduzierung der in der Praxis auftretenden Schadens-
fälle.

1.2. Vorgehen

Als Untersuchungsmethode für die genannten Einflussgrößen wird die numerische Vergleichs-
rechnung innerhalb des FE-Programms Abaqus gewählt, wobei Biegezugversuche an Balken und
Platten und deren Rissbilder zur Kalibrierung des Materialmodells herangezogen werden. We-
nige, aussagekräftige Versuche werden als ausreichend vorausgesetzt, weil das zugrunde gelegte
Materialmodell (Concrete Damaged Plasticity) mit Beton bereits für einen dem zu untersuchen-
den Zementestrich ähnlichen Baustoff nachgewiesen bzw. kalibriert wurde.

Zur Erläuterung der Hintergründe des infrage gestellten Bemessungskonzepts nach Manns und
Zeus (1980) dient Kapitel 2.1 und gibt einen Überblick über die Eigenschaften und das Tragver-
halten von Zementestrich. Die Anwendung nichtlinearer Materialmodelle verlangt nachfolgend
eine Einführung in die Theorie verschmierter Rissmodelle, ausgehend von den kontinuumsmecha-
nischen Grundlagen über die Kernaspekte der Verwendung eines plastizitätstheoretisch basierten
Materialmodells innerhalb der Finite-Elemente-Methode bis hin zur Problematik der Netzab-
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hängigkeit (Kapitel 2.2). In Abaqus steht eine umfassende Material- und Elementdatenbank zur
Verfügung. Diese wurde bereits für Stahlfaser- und Stahlbeton zur Abbildung des Rissverhal-
tens, insbesondere unter Verwendung des auch hier gewählten Konzepts zur Sicherstellung der
Netzunabhängigkeit erfolgreich verwendet (Gödde, 2013). Untersuchungen in Form einer Gegen-
überstellung dieses Regularisierungskonzepts mit in kommerzieller Software bereits enthaltenen
Optionen werden in Kapitel 3.1 vorgestellt, um daraus den bestmöglichen Ansatz für eine objek-
tive Modellierung abzuleiten. Darauf folgt die experimentelle Ermittlung und Modellierung der
Dämmsteifigkeit in Kapitel 3.2. Im so entwickelten Modell für das Platte-Dämmung-System ste-
hen insbesondere Schwindeinflüsse auf die Rissbildung im Fokus. Diese sollen im Rahmen einer
Kooperation mit Prof. Nietner der HTWK Leipzig berücksichtigt werden. Dazu werden Vorver-
formungen und ggf. Vorspannungen aus vorgelagerten thermischen, Finite-Elemente-basierten
Simulationen des Schüsselverhaltens infolge Schwindens im Modell in Abaqus eingeprägt. Zur
Abbildung des anschließenden Absenkens der Platte infolge äußerer Belastung ist eine geeignete
Kontaktformulierung zwischen Estrich und elastischer Bettung zu definieren (Verhindern einer
Durchdringung). Das Konzept zur Modellbildung wird in Kapitel 4 noch einmal zusammenge-
fasst und führt über eine Erläuterung der daraus abgeleiteten Versuchsplanung schließlich auf
den Vergleich der experimentellen und numerischen Untersuchungen. In Kapitel 5 werden die
Ergebnisse der Balken- und in Kapitel 6 die der Plattenversuche den Simulationsergebnissen
gegenübergestellt und das Modell validiert. Schließlich wird das Modell in Kapitel 7 zur Durch-
führung einer Parameterstudie zur Einordnung des Einflusses der zentralen Parameter (Schüs-
selbildung und Dämmsteifigkeit) verwendet und abschließend Erkenntnisse zur Bewertung des
Bemessungskonzepts abgeleitet.
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2. Theoretische Grundlagen

Im Bereich der numerischen Rissmodellierung gibt es verschiedene Ansätze in der Literatur. Um
eine Auswahl für die vorliegende Anwendung bei Estrichplatten auf Dämmschichten zu treffen,
sind die werkstofflichen und mechanischen Eigenschaften und das Tragverhalten im betrachte-
ten Anwendungsbereichs des Werkstoffs zu berücksichtigen. Für einen Beitrag zur Optimierung
der Bemessung bei Lagerung auf Dämmschichten ist die aktuelle Normung von Relevanz. Die-
ses Kapitel gibt hier einen Überblick und liefert auf Basis offenkundiger Gemeinsamkeiten mit
dem Werkstoff Beton mögliche Rissmodell-Ansätze für die numerische Modellierung. Nach ei-
ner grundlegenden Einführung in die Anwendung der Finite-Elemente-Methode (FE-Methode,
FEM) bei nichtlinearem Materialverhalten führt ein Überblick über die in der Literatur vorhan-
denen Ansätze auf die für diese Arbeit gewählten verschmierten Rissmodelle. Insbesondere wird
auf Schwachstellen wie die auftretende Netzabhängigkeit eingegangen und welche Lösungsmög-
lichkeiten die Literatur aufzeigt. Anschließend wird mit Blick auf die konkrete Anwendung im
Programmpaket Abaqus eines dieser Modelle genauer vorgestellt.

2.1. Werkstoff Estrich

2.1.1. Zusammensetzung und mechanische Eigenschaften

Zur Beurteilung des für die Bemessung relevanten Tragverhaltens werden zunächst die mecha-
nischen und werkstofflichen Eigenschaften des betrachteten Werkstoffs vorgestellt. Werkstofflich
ist Estrich vergleichbar mit dem Werkstoff Beton: Es handelt sich um einen Verbundwerkstoff,
der unter Zugabe von Wasser aus einem Bindemittel und Zuschlagstoffen hergestellt wird. Zu-
schlagstoffe sind in der Regel mittel- bis feinkörnig, übliche Sieblinien sind B/C 8 bzw. C8.
Die Art des Bindemittels variiert im Vergleich zu Beton: Im Bauwesen werden Estriche nach
der Art des verwendeten Bindemittels in Zement-, Calciumsulfat-, Magnesia-, Gussasphalt- und
Kunstharzestriche eingeteilt. Die Auswahl des Estrichs für einen bestimmten Anwendungsbe-
reich ist von den Eigenschaften des jeweiligen Estrichs abhängig, einen groben Überblick über
die Vor- und Nachteile auf Basis des Bindemittels gibt Tabelle 2.1 (Timm, Allmendinger und
Strehle, 2019). Zum Teil werden zusätzliche Stoffe wie Fließmittel hinzugegeben, um den Wasser-
Bindemittel-Wert zu regulieren, was das Austrocknungsverhalten günstig beeinflussen kann. Aus
diesem Grund und für ein günstigeres Schwindverhalten kann einer Zementestrichmischung auch
Calciumsulfat in geringer Menge zugesetzt werden.
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Bei den beiden am häufigsten verwendeten Estricharten, Zement- und Calciumsulfatestrich, wird
dabei explizit unterschieden, ob es sich um eine konventionelle Bauart und damit erdfeuchte
Konsistenz oder um eine Ausführung als Fließestrich handelt. Die Zugabe von Fließmitteln soll
eine schnellere Erhärtung bzw. ein beschleunigtes Austrocknen und dadurch ein früheres Begehen
bzw. Beanspruchen des Estrichs ermöglichen. Fließestriche werden aufgrund dieser Eigenschaften
häufig eingesetzt und national wurde in DIN 18560-2:2022 explizit das Kurzzeichen CAF für CA-
Fließestrich eingeführt (vgl. Tabelle 2.1).

Tabelle 2.1.: Estricharten: Kurzbezeichnungen nach DIN EN 13813:2003 und Vor- und Nachteile
(nach Timm, Allmendinger und Strehle, 2019)

Kurz- Bedeutung Vorteile Nachteile
zeichen
CT Zementestrich ○ relativ kostengünstig ○ CO2-intensive

(cementitious screed) ○ bewährt; einfache Herstellung Herstellung
(Baustellenmischung, Sackware) ○ schwindanfällig
○ für fast alle Einsatzbereiche
geeignet (nicht brennbar, frost-/
tausalzbeständig, elektrisch
ableitfähig)

CA Calciumsulfatestrich ○ raumbeständig ○ feuchteempfindlich
(CAF) (calcium sulfate (Schwinden vernachlässigbar)

screed)
MA Magnesiaestrich ○ hohe Verschleiß-/Festigkeit ○ korrosiver Angriff

(magnesite screed) (geeignet als Industrieestrich) auf Metalle
○ gute Durchfärbbarkeit ○ feuchteempfindlich
○ raumbeständig ○ erforderliche Expertise

bei Herstellung
AS Gussasphaltestrich ○ frühe Belegbarkeit ○ ggf. gesundheits-

(mastic asphalt ○ geringe Einbaudicke gefährdend bei Heiß-
screed) (geeignet im Sanierungsbereich) verarbeitung (Schutz

○ thermoplastische Verformbarkeit des Einbaupersonals)
SR Kunstharzestrich ○ schnelle Erhärtung ○ feuchte- und

(synthetic resin) ○ hohe Festigkeit temperaturempfindlich
screed) ○ optisch ansprechend in der Einbauphase

○ anfällig gegenüber
Mischfehlern
○ kostenintensiv
○ kratzempfindlich

Im Hinblick auf die mechanischen Eigenschaften von Estrich ist die normative Beschreibung
des Tragverhaltens nicht vergleichbar mit Beton, da auch der Anwendungsbereich deutlich be-
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grenzt ist: Estriche werden sowohl im Wohnungs- als auch im Industriebau auf Massivdecken
oder Bodenplatten eingesetzt. Im Wohnungsbau können sie zur Aufnahme eines Bodenbelags
dienen, als Heizestrich zur Aufnahme der Fußbodenheizung, oder auf Dämmschicht gelagert
zum Schallschutz beitragen. Als Industriefußboden kann Estrich selbst tragfähiger Aufnahme-
boden, oder eine mit einem Tragbeton so verbundene Schicht sein, dass „auf ihn einwirkende
vor allem schleifende, rollende, stoßende und schlagende Beanspruchungen über die Haftbrücke
aufgenommen werden“ können (Schütze, 1973). Festlegungen zum Materialgesetz und umfang-
reiche Bemessungsregeln für eine ingenieurmäßige Auslegung wie im Fall des Eurocodes 2 für
Stahlbetonbauten gibt es aufgrund des beschränkten und eher gebrauchstauglich relevanten Ein-
satzbereichs für Estrich bisher nicht. Auch wird Estrich in der Regel unbewehrt eingebaut, da
eine Bewehrung keine Verbesserung der Festigkeit oder Tragfähigkeit zur Folge hat und auch
eine Rissbildung nicht verhindern kann (Timm, Allmendinger und Strehle, 2019). Lediglich zur
Verhinderung eines Risseintrags in den aufliegenden Belag kann die Anordnung von Bewehrung
günstig sein (Schnell, 1987).

Neben der Bindemittelart lassen sich Estriche vor allem hinsichtlich ihrer Verlegeart unterschei-
den, die für das Tragverhalten und die normative Bemessung entscheidend ist. Bei Anforde-
rungen an den Schall- und Wärmeschutz wird der Estrich schwimmend ausgeführt, das heißt
als eine von angrenzenden Wänden oder Deckendurchbrechungen getrennte, frei bewegliche, auf
Dämmschicht gelagerte, lastverteilende Platte. Estrich und Dämmschicht bilden so ein Masse-
Federelement, wodurch Trittschall- und Wärmedämmwirkung erhöht werden (Schütze, 1974).
Zur Vermeidung einer rückseitigen Feuchtebelastung und aufwändiger Untergrundvorbereitung
kann der Estrich auf Trennschicht ausgeführt werden. Bei hohen Anforderungen an die Be-
anspruchbarkeit wird Verbundestrich eingesetzt. (Timm, Allmendinger und Strehle, 2019) In
Abbildung 2.1 sind die drei genannten Verlegearten sowie die damit einhergehenden primären
Beanspruchungsformen dargestellt: Verbundestrich trägt vor allem über Druck ab, bei schwim-
mendem Estrich ist die Biegezugtragfähigkeit maßgebend. Estrich auf Trennschicht trägt über-
wiegend über Druck ab, wobei auch Biegezugspannungen auftreten können.

Für den in dieser Arbeit betrachteten schwimmenden Estrich ist somit insbesondere das Biege-
zugtragverhalten von Bedeutung, worauf in Kapitel 2.1.3 zur Herleitung des Bemessungskonzepts
noch im Detail eingegangen wird. Im folgenden Abschnitt wird schon einmal auf die aus den
mechanischen Eigenschaften abgeleiteten Prüfmethoden eingegangen, sowohl für den Estrich
selbst als auch für die Dämmstoffunterlage. Im Anschluss wird das Schwindverhalten und das
Phänomen des Schüsselns genauer beschrieben.

11



2. Theoretische Grundlagen

Verbundestrich Estrich auf Trennschicht Estrich auf Dämmschicht

Zusammendrücken des Estrichs, 
nahezu keine Querdehnung

Zusammendrücken des Estrichs, 
Querdehnung und leichtes Auf-
wölben (leichte Biegung)

Überwiegend Biegung des Estrichs, 
nur leichtes Zusammendrücken, dafür
starke Verformung der Dämmung

Lastabtrag über Druckspannungen Lastabtrag überwiegend über Druck-
spannungen, leichte Biegezugspan-
nungen

Lastabtrag überwiegend über Biegezug-
spannungen, nur noch leichte Druck-
spannungen

F F
F

F F
F

Spannung

Verformung

Aufbau

Estrichart

Abbildung 2.1.: Vergleich der Verlege- und Beanspruchungsarten (nach Merkblatt
Zementestrich (2015))

Prüfmethoden

Estriche im Bauwesen sind in den Teilen der DIN 18560 geregelt, wobei die Klassen der mecha-
nischen Kennwerte in DIN EN 13813:2003 festgelegt sind. Für die oben genannten Estricharten
gilt nach DIN 18560-1:2021, dass sie den Beanspruchungen genügen, wenn Druck- bzw. Biegezug-
festigkeitsklassen eingehalten werden. Im Falle hochbeanspruchbarer Estriche gibt es zusätzliche
Anforderungen an die Oberflächenhärte und den Verschleißwiderstand (Teil 7 der Norm).

Zur Feststellung der mechanischen Eigenschaften werden Festigkeits- bzw. Bestätigungsprüfun-
gen durchgeführt. Die verschiedenen Teile der Reihe DIN 18560 regeln die Art der Prüfung
abhängig von der Verlegeart des Estrichs. Bei schwimmender Lagerung auf weichem Untergrund
wird die Estrichplatte wie oben beschrieben vor allem auf Biegung beansprucht und die maß-
gebende Bemessungsgröße ist die Biegezugfestigkeit. Diese ist nach DIN EN 13892-2:2003 (Fes-
tigkeitsprüfung) bzw. DIN 18560-2:2022 (Bestätigungsprüfung) zu ermitteln. Eine Beschreibung
der Prüfungen ist im Anhang A dargestellt.Neben diesen genormten Prüfmethoden, welche nur

12



2.1. Werkstoff Estrich

das reine Balkentragverhalten eines Estrichs berücksichtigen, werden zur Beurteilung der Trag-
fähigkeit von schwimmend gelagerten Estrichen in der Praxis außerdem Belastungsprüfungen an
Platten auf Dämmstoff durchgeführt. Dabei werden Platten auf Dämmstoff hergestellt und in
der Regel die Bruchlast bei Belastung der Plattenecken mit einer Einzellast dokumentiert (IBF,
2019).

Eine schwimmende Lagerung des Estrichs dient vor allem dem Trittschall- und ggf. dem Wärme-
schutz. DIN 4109 regelt den Schallschutz im Hochbau, wobei nur Angaben zur Ermittlung der
Trittschallminderung allgemein, nicht zu den Dämmstoffeigenschaften gemacht werden. Teile
der DIN 4108 regeln den baulichen Wärmeschutz: In DIN 4108-10:2021 sind mögliche Wär-
medämmstofftypen angegeben, wobei EN-Normen wie DIN EN 13162:2015 (Mineralwolle) und
DIN EN 13163:2017 (Polystyrol (EPS)) zusätzliche Angaben zu häufig verwendeten Dämm-
stofftypen machen. Darin wird auch festgelegt, mit welcher Nutzlast der aufliegende Estrich in
Abhängigkeit der Zusammendrückbarkeit belastet werden darf. Für die verwendeten Dämmstof-
fe gibt es genormte Prüfmethoden zur Klassifizierung der für die Tragfähigkeit zentralen Größe
der Zusammendrückbarkeit cp. Diese ergibt sich nach DIN EN ISO 29770:2022 aus der Diffe-
renz von (Liefer-)Dicke dL (unter einer Belastung von 0.25 MN/m2 gemessen) und der Dicke dB
(unter einer Belastung von 2 MN/m2 und mindestens 120 s nach Entfernen einer „kurzzeitigen“
zusätzlichen Last von 48 MN/m2 gemessen). Die Ermittlung und Einteilung der Zusammen-
drückbarkeit ergibt sich nach der Norm des jeweiligen Dämmstofftyps zu

cp = dB − dL (2.1)

Abhängig von diesem Wert wird festgelegt, welcher Stufe von CP2 (c ≤ 2 mm, Nutzlast ≤ 5 kPa)
bis CP5 (c ≤ 5 mm, Nutzlast ≤ 2kPa) der Dämmstoff zuzuordnen ist. Die Angaben zur maximalen
Nutzlast entsprechen grob denen der Bemessungsnorm für schwimmenden Estrich (DIN 18560-
2:2022), wobei hier genauere Angaben auch zur Estrichdicke und -biegezugfestigkeit gemacht
werden. Hierauf wird in Kapitel 2.1.3 im Detail eingegangen.

Schwinden & Schüsseln

In der Vergangenheit wurde im Bauwesen aufgrund der genannten Vorteile von geringen Kos-
ten bis hin zur einfachen Herstellung vornehmlich Zementestrich eingesetzt (Schütze, 1974). Bei
Zementestrich kommt es jedoch infolge unterschiedlicher Austrocknung bzw. Schwindens häufig
zu einer oberseitigen Verkürzung und dadurch zu einer Verformung, die als „Schüsselung“ be-
zeichnet wird. Ein umgekehrter Feuchtegradient führt entsprechend zu einer Randabsenkung.
Beide Phänomene können zu Rissen und Schäden am Bodenbelag führen. Durch die günstigeren
Schwind- und Trocknungseigenschaften werden zunehmend andere Estrichzusammensetzungen,
vor allem fließfähige Calciumsulfatestriche erforscht und eingesetzt (Schießl und Wiegrink, 2005).
Durch das beschleunigte Austrocknen, welches bei diesen beiden Estricharten durch Einsatz als
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Fließestrich erreicht werden kann, steigt allerdings die Gefahr des Schüsselns (oben schnelles,
unten langsameres Austrocknen), wodurch Zwangsspannungen infolge des zunehmend wirksa-
men Eigengewichts eingetragen werden (Timm, Allmendinger und Strehle, 2019).

Das Phänomen des Schüsselns steht in Verbindung mit der Verlegeart auf Dämmschicht im Fo-
kus dieser Arbeit, da dies als eine zentrale Ursache für Schadensfälle angenommen wird, wie im
folgenden Kapitel noch näher erläutert wird. Das Zusammenwirken des Masse-Federelements
mit den Zwangsspannungen infolge Aufschüsseln ist bislang nicht im normativen Bemessungs-
konzept berücksichtigt, wie in Kapitel 2.1.3 im Detail aufgezeigt wird. In diesen Ausführungen
stehen vor allem Zementestriche im Fokus, da diese Bindemittelart insbesondere schwindanfällig
ist, und auch in den zur Validierung des in dieser Arbeit entwickelten Riss-Modells durchgeführ-
ten Versuchen ein Fließ-Zementestrich verwendet wurde. Grundsätzlich kann das Modell jedoch
auch bei anderen schwindanfälligen Estrichrezepturen mit ähnlichen Werkstoffeigenschaften An-
wendung finden.

2.1.2. Schadensfälle und ihre Ursachen

Estrich ist in der Regel nicht allein tragend, sondern liegt direkt oder auf Trenn- oder Dämm-
schicht gelagert auf einem tragenden Untergrund auf und dient nach DIN EN 13318 dazu

• eine vorgegebene Höhenlage zu erreichen,

• einen Bodenbelag aufzunehmen,

• unmittelbar genutzt zu werden.

Erfüllt ein Estrich diese an ihn gestellten Anforderungen nicht, spricht man von Mängeln oder
Schäden am Estrich. Nach Aurnhammer (2008) werden diese zunächst ursachenbedingt in Schä-
den eingeteilt, die bei bestimmten Konstruktions- bzw. Verlegearten vorkommen, und in solche,
die eher baustoffbedingt auftreten, also abhängig von der Zusammensetzung bzw. Bindemittel-
art des Estrichs sind. Zu den zahlreichen Schadensarten zählen z. B. Absenkungen durch Ver-
änderungen des Untergrunds oder der Dämmschicht (konstruktionsbedingt), oder Zerfall und
Festigkeitsverlust, z. B. infolge überaltertem, unzureichend reaktionsfähigem Bindemittel oder
Entmischung beim Transport (baustoffbedingt). Auch Rissbildung ist ein häufig auftretender
Schadensfall, insbesondere bei schwimmendem Zementestrich, weshalb dieser im Fokus der vor-
liegenden Arbeit steht.

Wie Beton ist Estrich ein quasi-spröder Werkstoff und reißt daher bei Überschreiten der im
Gegensatz zur Druckfestigkeit geringen Zugfestigkeit. Einem Teil der auftretenden Rissbildung
wird durch Anordnung von Fugen entgegengewirkt. Dabei wird unterschieden in

• Bewegungs- und Rand-/Raumfugen (dauerhaft erforderlich, um Längenänderungen und
vertikale Bewegungen aufzunehmen)
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• Scheinfugen (zeitlich begrenzt erforderlich, Sollrissstellen; Festlegung durch z. B. Verfül-
len).

Ein Fugenplan gibt die Lage und Art der Fugen abhängig von u.a. thermischen und belastungs-
technischen Randbedingungen an. Scheinfugen sind Sollrissstellen, um willkürliche Schwindrisse
im Erhärtungszeitraum an kritischen Stellen wie einspringenden Ecken, Aussparungen, etc. zu
vermeiden. Grundsätzlich sollten die durch Fugen begrenzten Feldgrößen abhängig vom Schwind-
maß geplant werden, eine feste Angabe dazu gibt es jedoch nicht (Timm, Allmendinger und
Strehle, 2019). Grundsätzlich sind Maßnahmen in Form von Fugen nicht immer ausreichend zur
Verhinderung von Schäden an kritischen Stellen. Für eine genauere Erläuterung von Fugenarten
und ihrer Wirksamkeit sei auf die Ausführungen von Timm, Allmendinger und Strehle (2019)
verwiesen. Neben dem so versuchten Verhindern ungünstiger Rissbildung besteht die Möglich-
keit, Risse zu beheben. Vor allem im Industriebereich mit zum Teil erhöhten Anforderungen an
die Untergrundoberfläche (z. B. für Staplerverkehr, oder bei chemischem Angriff) stellen Risse
einen Mangel dar. Sie sind zu beheben, wenn sie normativ oder auftraggeberseitig festgelegte
Grenzwerte überschreiten, z. B. durch Kraft übertragende Festlegung der Risse. Die Oberfläche
gilt dann wieder als rissfrei. Hier ist es aber nach Timm, Allmendinger und Strehle (2019) zwin-
gend erforderlich, die Ursache zu kennen, da andernfalls z.B. bei durch Belastung entstandenen
Rissen die Gefahr einer wiederholten Rissbildung besteht.

Aurnhammer (2008) zählt als Ursachen für Schäden an Estrichen auf Dämmschichten folgende
auf:

• Schadenswirksame Spannungen und Verformungen,

– infolge Nutzlast

– infolge Schwinden und thermisch bedingter Längenänderung,

– infolge ungleichmäßiger hygrischer oder thermischer Einflüsse,

– infolge Zwangspunkten (z.B. einspringende Ecken) im Grundriss,

• Ungenügende Festigkeit oder zu geringe Estrichdicke,

• Herstellungsbedingte Mängel,

• Absenkung durch zu weiche Dämmschicht oder ungleiche Unterlage.

Bei herstellungsbedingten Mängeln ist hier vor allem eine der weichen Unterlage geschuldete
schwierigere Verdichtungsmöglichkeit gemeint. Dadurch weist das Estrichgefüge an der Unter-
seite u. U. eine porösere Verdichtung und geringere Festigkeit auf. Diese über die Dicke un-
gleichmäßige Festigkeit hat Einfluss auf die Tragfähigkeit. Bei der Verwendung von Fließestrich
mit seinem einfacheren Einbauvorgang treten diese Probleme weniger auf (Aurnhammer, 2008).
Insgesamt wird in der vorliegenden Arbeit vor allem die erste Gruppe von Ursachen betrachtet,
da diese auch für die Bemessung Relevanz besitzen.
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Estrich auf Dämmschicht wird durch Einzel-Nutzlasten vor allem auf Biegung beansprucht.
Aurnhammer (2008) weist in diesem Zusammenhang auf Untersuchungen von Manns und Zeus
(1980) hin, bei denen schwimmender Estrich unter verschiedenen Lastfällen untersucht wurde.
Hier wurden letztendlich für Estriche im Wohnungsbau empirisch Mindestwerte für Schichtdi-
cke und Nennfestigkeit in Abhängigkeit der Zusammendrückbarkeit der Dämmschicht aus einer
geringen Anzahl Versuche abgeleitet. Hieraus sind schließlich die normativen Regelungen der
DIN 18560 entstanden.

Abbildung 2.2.: Vertikale Verformungen (Schüsselung) bei schwimmenden Zementestrichen
(sichtbarer Abstand unter der Richtplatte, siehe Markierungen in rot; Müller
und Limp (2015))

Hygrische und thermische Einflüsse spielen bei Estrich auf Dämm- und Trennschichten eine
große Rolle, da die Estrichplatte sich in diesem Fall bei ungleichmäßigem Formänderungsbe-
streben zwischen der Ober- und Unterseite frei verkrümmen und dabei lokal von der Unterlage
abheben kann. Dies kann entweder in Form des Abhebens (Aufschüsseln, z.B. infolge Schwin-
den während des Austrocknens, siehe Abbildung 2.2) oder Absenkens (z.B. Quellvorgang infolge
Wasseraufnahme an der Oberseite) der Ränder erfolgen. In beiden Fällen führt die (während der
Hydratation zunehmende) Wirkung des Platteneigengewichts zu Biegespannungen innerhalb der
Platte. Je nach Größe der Estrichfläche und -dicke können sich die abhebenden Bereiche auf-
grund der Wirkung des Eigengewichts über die komplette Fläche oder nur an den Rändern
über eine gewisse Grenzlänge (i.d.R. ≤ 2 m) erstrecken (siehe Abbildung 2.3, Aurnhammer,
2008). Bei mehrschichtig hergestellten Estrichen mit unterschiedlichen Stoffkennwerten über
die Höhe können diese Phänomene deutlicher auftreten, aber auch bei einschichtigen schwind-
anfälligen Fließestrichen ist ein Abheben in den äußeren Bereichen während des Aushärtens
messbar (Aurnhammer, 2008, Timm, Allmendinger und Strehle, 2019). Eine Belastung durch
Nutzlast an Ecken und Rändern führt entsprechend zu Rissen oder Abbrechen der belasteten
Bereiche, wenn sich diese Verformungen nicht im Laufe des Austrocknungsprozesses abgebaut
haben. Diesem Verhalten lässt sich in der Regel durch eine möglichst quell- und schwindarme
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Rezeptur sowie eine sachgerechte Nachbehandlung, die ein möglichst langsames Austrocknen
gewährleistet, entgegenwirken (Timm, Allmendinger und Strehle, 2019). Dies steht allerdings
häufig dem Betriebsablauf auf der Baustelle entgegen. Bei den Rissen handelt es sich in der
Regel um Einzel-Trennrisse (Aurnhammer, 2008,Manns und Zeus, 1980). Neben dieser Rissart
können auch Krakelee-Riss (feine Rissnetze an der Oberfläche) auftreten. Deren Wirkung auf
die mechanischen Eigenschaften ist jedoch vernachlässigbar (Merkblatt Zementestrich (2015)),
sodass diese hier keine Berücksichtigung finden.

Grenzlänge Grenzlänge

Abbildung 2.3.: Verformungsverhalten von Estrichen zunehmender Größe; links
unter konvexen, rechts unter konkaven Verwölbungsbestrebungen
(Aurnhammer, 2008)

Zusammenfassend lässt sich festhalten, dass bei Estrichen auf Dämmschichten eine Vielzahl
an Schadensfällen mit verschiedenen möglichen Ursachen bekannt ist. Bei Rissbildung lassen
sich diese Ursachen nicht immer unmittelbar zuordnen, sodass ein nachträgliches Beheben der
Schäden bedingt möglich ist. Vor allem die für eine bessere Verdichtung anzustrebende wei-
chere Konsistenz, insbesondere bei dicken bzw. weichen Dämmschichten, steht einem günstigen
Austrocknungsverhalten bei steiferer Konsistenz mit geringerem Wasser- bzw. Zementleimgehalt
entgegen. Dieser Umstand verhindert eine „einfache“ Lösung, wie sie in der Norm bzw. Literatur
angestrebt wird, bei der vor allem empirische Versuchsergebnisse herangezogen werden, um die
Schadensursachen bzw. das Tragverhalten empirisch zu beurteilen und im besten Fall durch nor-
mative Vorgaben und Nachbehandlungsmaßnahmen präventiv zu verhindern (Manns und Zeus,
1980, Schnell, 1990, Schneider und Pleyers, 2003, Lorenz und Schmidt, 1996, Gebauer et al.,
2017). Außerdem werden Verformungseinflüsse aus Schwinden in diesen Vorgaben nur bedingt
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berücksichtigt. Das Zusammenwirken von weicher Dämmstofflagerung, u. U. ungleichmäßig ver-
dichtetem Estrich, Aufschüsseln infolge Schwinden und Belastung durch Einzellast lässt sich
schwer empirisch abdecken, wie die nach wie vor auftretenden Schadensfälle andeuten. Mindes-
tens wären umfangreiche Versuchsserien notwendig, um diese sich gegenseitig beeinflussenden
Aspekte angemessen zu berücksichtigen. Bei weitem nicht alle Schadensfälle sind auf die halb-
empirische Normengrundlage zurückzuführen, und inwiefern eine numerische Untersuchung hier
eine Verbesserung bringen kann, ist zu untersuchen. Zunächst soll das folgende Kapitel einen
Überblick zum Stand der Technik hinsichtlich der Bemessung von Estrichen auf Dämmschicht
liefern.

2.1.3. Bemessungskonzept

Je größer die Last und je größer die Zusammendrückbarkeit der Dämmschicht unter dem Est-
rich, desto größer ist die Biegebeanspruchung der Platte (Aurnhammer, 2008, Manns und Zeus,
1980, Timm, Allmendinger und Strehle, 2019). Das Bemessungskonzept für Estrich auf Dämm-
schicht, welches in der DIN 18560-2:2022 geregelt ist, legt tabellarisch Estrichnenndicken in
Abhängigkeit von der Nutzlast, der Biegezugfestigkeitsklasse und der Zusammendrückbarkeit
der Dämmschicht fest (DIN 18560-2:2022). Die Estrichnenndicken sind tabellarisch festgelegt,
siehe Abbildung 2.2. DIN 18560-2:2022 macht lediglich Angaben zu Einzellasten bis 4 kN bzw.
Flächenlasten bis 5 kN/m2 (siehe Abbildung 2.2). Größere Einzel- oder Flächenlasten oder Fahr-
belastungen allgemein verlangen zusätzliche Überlegungen durch die planende Person (Timm,
Allmendinger und Strehle, 2019). Die Zusammendrückbarkeit der Dämmschicht ist abhängig
vom Lastniveau begrenzt auf maximal 5 bzw. 3 mm. Bei der kleinsten Flächenlast bis 2 kN/m2

sind per Fußnote auch größere Zusammendrückbarkeiten bis 10 mm zugelassen, wobei dann die
Estrichdicke um 5 mm zu erhöhen ist.

Eine erste Grundlage für diese normativen Festlegungen lieferten Manns und Zeus (1980). Die
1980 hergeleiteten Bemessungsvorschläge für Estriche auf dicken Dämmschichten beruhen auf
vergleichenden Untersuchungen zwischen experimentellen Daten aus Belastungsversuchen gegen-
über Ergebnissen empirischer Formeln nach Westergaard (1926), die auf dem Bettungsmodulver-
fahren basieren. Bis zu diesem Zeitpunkt war DIN 4109-4:1962 die maßgebende Bemessungsnorm
für schwimmende Estriche. Die dortigen Anforderungen bezogen sich im Hinblick auf Dämm-
stoffdicken von maximal 35 mm auf die damaligen Angaben zum Wärme- und Schallschutz in
den Normen DIN 4108 und DIN 4109. In den 70er Jahren kam es im Zuge des Heizölpreises zum
Einbau dickerer Dämmstoffe, um neue Regelungen im Wärmeschutz einzuhalten (Schnell, 1983).
Um den Einfluss der Zusammendrückbarkeit auf die Beanspruchbarkeit des Estrichs zu beurtei-
len, wurden u. a. von Manns und Zeus (1980) und Schnell (1983) Untersuchungen zu dickeren
Dämmschichten durchgeführt. Wie Schnell (1983) ausführte, sind andere Faktoren, insbesonde-
re diejenigen, die Konsistenz und Verdichtbarkeit beeinflussen, von größerer Bedeutung für die
Beanspruchbarkeit als die Dämmstoffdicke. Schnell (1983) wies aber in seinem Überblick zu den
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2.1. Werkstoff Estrich

Tabelle 2.2.: Auszug aus DIN 18560-2:2022: Tabelle 1 – Nenndicken und Biegezugfes-
tigkeit unbeheizter Estriche auf Dämmschichten für verschiedene lotrechte
Nutzlasten

Tabelle 1 — Nenndicken und Biegezugfestigkeit unbeheizter Estriche auf Dämmschichten für

verschiedene lotrechte Nutzlasten

Estrichnenndickena in mm

EL=Einzellastend FL=Flächenlasten

Bestätigungs-

prüfung

Biegezugfestigkeit

σBZ

bei einer Zusammendrückbarkeit der Dämmschicht C

≤5mmc ≤3mm

N/mm2

EL≤ 1 kN EL≤2 kN EL≤3 kN EL≤4 kN

Estrichart Biegezug-

festigkeits-

klasse nach

DIN EN 13813

FL ≤ 2 kN/m2 FL ≤ 3 kN/m2 FL ≤ 4 kN/m2 FL ≤ 5 kN/m2

kleinster

Einzelwert

Mittelwert

Calcium-

sulfat-Fließ-

estrich CAF

F4

F5

F7

≥35

≥35

≥35

≥50

≥45

≥40

≥60

≥50

≥45

≥65

≥55

≥50

≥3,5

≥ 4,5

≥ 6,5

≥ 4,0

≥ 5,0

≥ 7,0

Calcium-

sulfat-

estrich CA

F4

F5

F7

≥45

≥40

≥35

≥65

≥55

≥50

≥70

≥60

≥55

≥75

≥65

≥60

≥2,0

≥ 2,5

≥ 3,5

≥ 2,5

≥ 3,5

≥ 4,5

Kunstharz-

estrich SR

F7

F10

≥35

≥30

≥50

≥40

≥55

≥45

≥60

≥50

≥4,5

≥ 6,5

≥ 5,5

≥ 7

Magnesia-

estrichb MA

F4

F5

F7

≥45

≥40

≥35

≥65

≥55

≥50

≥70

≥60

≥55

≥75

≥65

≥60

≥2,0

≥ 2,5

≥ 3,5

≥ 2,5

≥ 3,5

≥ 4,5

Zement-

estrich CT

F4

F5

≥45

≥40

≥65

≥55

≥70

≥60

≥75

≥65

≥2,0

≥ 2,5

≥ 2,5

≥ 3,5
a Bei Dämmschichten ≤ 40mm kann die Estrichdicke um 5mm reduziert werden, die Mindestnenndicke von 35mm darf nicht

unterschritten werden.
b Die Oberflächenhärte bei Steinholzestrichen muss mindestens SH30 nach DINEN13813 betragen.

c Bei lotrechten Nutzlasten bis 2,0 kN/m2 sind im Ausnahmefall höhere Zusammendrückbarkeiten bis 10mm zulässig. In diesem
Fall muss die Estrichnenndicke um 5mm erhöht werden.

d Bei Einzellasten sind für deren Aufstandsflächen im Allgemeinen zusätzliche planerische Überlegungen erforderlich. Das
Gleiche gilt für Fahrbeanspruchung.

bis zur Ablösung von DIN 4109-4:1962 durch DIN 18560-2:1981 von verschiedenen Seiten durch-
geführten praktischen und theoretischen Untersuchungen darauf hin, dass übereinstimmend die
schwierige Verdichtbarkeit bei zu nachgiebiger Unterlage sowie die besondere Gefährdung der
Eck- und Randbereiche erwähnt wird. Schließlich waren vor allem die guten Übereinstimmun-
gen zwischen Versuchsdaten und Formeln nach dem Bettungsmodulverfahren im Hinblick auf
die maximalen Spannungen und Verformungen bei Manns und Zeus (1980) ausschlaggebend für
die in DIN 18560-2:1981 übernommenen normativen Vorgaben. (Schnell, 1983)

Der Einfluss des Dämmstoffs geht in den dortigen rechnerischen Ansatz nach Westergaard über
die Zusammendrückbarkeit ein. Aus der Zusammendrückbarkeit ergibt sich die Bettungszahl
(KS) nach Manns und Zeus (1980) zu

KS = p
s
≈
2 − 0.25

dL − dB
=

1.75

dL − dB
[MN/m3

] . (2.2)
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2. Theoretische Grundlagen

wobei diese Formel aus der für den Bettungsmodul mit der Pressung p und der Einsenkung s des
Baugrunds abgeleitet wird. Die Pressung entspricht der normativ geregelten Spannung, unter
der die Dicke dB (2 kPa) bzw. die Lieferdicke dL (0.25 kPa) zu messen ist, jedoch unter Vernach-
lässigung der zwischenzeitlich aufzubringenden zusätzlichen Last von 48 kPa (vgl. Kapitel 2.1.1).
Eine mögliche Einsenkung des Unterbaus oder Untergrunds, auf dem der Dämmstoff aufliegt,
wurde von (Manns und Zeus, 1980) für die Bettungszahl des Dämmstoffs als vernachlässigbar
aufgrund der viel geringeren Größe im Vergleich zur Einsenkung des Dämmstoffs eingestuft.

Die genannten Westergaard-Formeln wurden für den Straßenbau zur Bemessung von Boden-
platten entwickelt und idealisieren den Boden – analog zur Estrichdämmschicht – als elastische
Bettung. Sowohl im Straßenbau zur Berechnung von Betonplatten als auch im Fall von Industrie-
fußböden aus Beton sowie schwimmendem Estrich finden die zum Teil überarbeiteten Formeln
nach Westergaard (1926) noch heute Anwendung (Lohmeyer und Ebeling, 1988; Stenzel, 2006).
Einige Aspekte der speziellen Anforderungen an Estrich bzw. der Beanspruchung des Estrichs
bleiben bei diesem Bemessungskonzept jedoch unberücksichtigt.

(a) Qualitative Verformungen beim Steifezifferver-
fahren (Vogt, 2018)

(b) Qualitative Verformung beim Bettungsmodul-
verfahren

Abbildung 2.4.: Gegenüberstellung der klassischen Modellvorstellungen zur Abbildung einer
Baugrundsetzung

Das Bettungsmodulverfahren ist eines von zwei im Straßen- und Grundbau zur Berechnung der
Schnittgrößen in elastisch gegründeten Biegebalken oder -platten verwendeten Verfahren. Das
andere ist das Steifemodulverfahren. Die Bettungsmodultheorie beruht auf der Annahme, dass
die Reaktionen σB im Untergrund vertikal und proportional den Einsenkungen s des aufliegenden
Bauwerks, zum Beispiel der aufliegenden Platte, sind, daher gilt mit C als Proportionalitäts-
konstante

σB = C ⋅ s . (2.3)

Der Baugrund wird damit als System unabhängiger, linear elastischer Einzelfedern idealisiert.
Im Gegensatz dazu wird beim Steifemodulverfahren der Boden als linear elastischer, isotroper
Halbraum definiert, also als System gekoppelter Federn. Die Steifigkeit des Baugrunds wird hier
über den Steifemodul Es berücksichtigt, der sich als Ergebnis eines Oedometerversuchs, abhän-
gig von der Querkontraktion und dem Elastizitätsmodul, als reine Bodenkenngröße ergibt. Der
Bettungsmodul C hingegen ist keine reine Untergrundkenngröße, sondern als Ergebnis einer Set-
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2.1. Werkstoff Estrich

zungsberechnung oder eines Lastplattendruckversuchs unter anderem von Form und Größe des
Fundaments abhängig (Vogt, 2018).
Das Bettungsmodulverfahren liefert im Gegensatz zum Steifemodulverfahren lediglich für die
Schnittgrößen der Platte realitätsnahe Ergebnisse, jedoch nicht für die Setzungen des Baugrunds.
Beim Steifemodulverfahren wird der Einfluss aus benachbartem Baugrund bei der Setzung be-
rücksichtigt (Setzungsmulde, siehe Abbildung 2.4), im Fall des Bettungsmodulverfahrens ergäbe
sich ein Setzungsgraben, bei dem nur der Boden direkt unterhalb des Fundaments nachgibt.
Nach Manns und Zeus (1980) lässt sich die Modellvorstellung des elastisch isotropen Halbraums
für Boden nicht auf eine Dämmschicht vergleichsweise begrenzter Dicke auf steifer Unterlage
übertragen, daher wählten Manns und Zeus (1980) für ihre Berechnungen Ansätze basierend
auf dem Bettungsmodulverfahren. Diese von Westergaard (1926) entwickelten Gleichungen lau-
ten bei

Einzellast in Plattenmitte

σm =
0.275 ⋅Q

h2
⋅ (1 + µ) ⋅ [lg(

E ⋅ h3

KS ⋅ b4
) − 0.436] [N/mm2

] (2.4)

Einzellast am Plattenrand

σR =
0.529 ⋅Q

h2
⋅ (1 + 0.54µ) ⋅ [lg(

E ⋅ h3

KS ⋅ b4
) − 1.08] [N/mm2

] (2.5)

Einzellast in Plattenecke

σE =
3 ⋅Q

h2
⋅ [1 − (l ⋅ a ⋅

√
2)

1
.2] [N/mm2

] (2.6)

mit

Q = Last in MN

h = Dicke des Estrichs in m

E = Elastizitätsmodul des Estrichs = 20000 N/mm2

µ = Querdehnzahl = 0.2

a = Belastungskreishalbmesser in m

b =
√
1.6 ⋅ a2 + h2 − 0.675 ⋅ h für a < 1.724 ⋅ h in m

b = a für a > 1.724 ⋅ h in m

KS = Bettungszahl MN/m3
=

1.75

dL − dB

Sie dienen der Bestimmung der Biegezugspannung in einem Estrich (vgl. Anhang A für Gleichun-
gen zur Bestimmung der Einsenkung eines schwimmenden Estrichs (Manns und Zeus, 1980)) und
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2. Theoretische Grundlagen

basieren auf der vereinfachenden Annahme eines konstanten und von der Größe der Einsenkung
unabhängigen Bettungsmoduls. Als Bettungsmodul wird hier die aus der Zusammendrückbar-
keit abgeleitete Bettungszahl des Dämmstoffs eingesetzt. Manns und Zeus (1980) vergleichen
Ergebnisse der Westergaard-Formeln mit Versuchsergebnissen für die drei Lastfälle Einzellast in
Plattenmitte, am Plattenrand und an einer Plattenecke, gemessen an 4×4 m Estrichplatten auf
zwei unterschiedlichen Dämmstoffaufbauten von 80 mm Dicke, wobei die Einzellast von 1 kN
jeweils auf einer Kreis- bzw. Halbkreisfläche mit Radius 25 mm verteilt ist. Dies wird von Manns
und Zeus (1980) als das für den Wohnungsbau maßgebende Einzellastfall-Niveau identifiziert.
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2 0.2 0.02

h = 30 mm
E = 20000 N/mm2

a = 25 mm
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am Plattenrand
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Abbildung 2.5.: Biegespannungen in einem Estrich der Dicke h = 30 mm unter einer
Einzellast von 1 kN in Abhängigkeit von der Zusammendrückbarkeit
der Dämmschicht (Manns und Zeus, 1980)

Trotz der genannten Vereinfachungen hinsichtlich der Modellvorstellung lieferte die Untersu-
chung gute Übereinstimmungen zwischen Spannungsgleichung und Versuchsergebnis für die
maßgeblichen Lastfälle Plattenrand und -ecke. Für den als maßgebend identifizierten Lastfall
Einzellast am Plattenrand ergaben sich an der Plattenunterseite die maximalen Zugspannungen.
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2.1. Werkstoff Estrich

EckeMitte

Rand

Abbildung 2.6.: Visualisierung der betrachteten Lastfälle und des Orts der maxi-
malen Spannung nach Manns und Zeus (1980): Einzellast in Plat-
tenmitte ((σmax an der Unterseite), am Plattenrand (σmax an der
Unterseite), an der Plattenecke (σmax an der Oberseite) (Schießl und
Wiegrink, 2005)

Beim Lastfall Plattenecke sind die gemessenen Dehnungen bzw. entsprechend daraus abgelei-
teten Spannungen unter 1 kN-Einzellast für den weicheren Dämmstoff geringfügig kleiner, für
den steiferen ähnlich zum Randlastfall, allerdings ist die Bruchlast etwa halb so groß wie am
Plattenrand. Die Maximalspannungen ergeben sich für den Ecklastfall an der Plattenoberseite,
für den Randlastfall an der Unterseite (vgl. Abbildung 2.6).

Als Ergebnis der Untersuchungen geben Manns und Zeus (1980) u.a. die in Abbildung 2.5 und
Abbildung 2.7 dargestellten Diagramme an. In Abbildung 2.5 ist eine Auswertung der Span-
nungsgleichungen für die drei Lastfälle dargestellt: Nur bei sehr harten Dämmstoffunterlagen
(d. h. bei sehr geringer Zusammendrückbarkeit) wird der Lastfall Plattenecke hier maßgebend.
Der Lastfall Plattenmitte ist in der Regel von untergeordneter Bedeutung. In Abbildung 2.7
haben Manns und Zeus (1980) ein Nomogramm entwickelt, welches in Abhängigkeit der da-
maligen Biegezugfestigkeitsklassen aufgetragen über der Zusammendrückbarkeit (unten) bzw.
der Bettungszahl (oben) die notwendige Estrichdicke für eine Einzellast am Plattenrand von
1 kN anzeigt. Mit abnehmender Zusammendrückbarkeit und zunehmender Estrichdicke bzw.
-steifigkeit nehmen die Biegespannungen ab. Die Dicke der Dämmschicht und der Elastizitäts-
modul haben im Gegensatz zur Größe der Lasteinleitungsfläche rechnerisch einen geringeren
Einfluss. (Aurnhammer, 2008; Schnell, 1983; Manns und Zeus, 1980)

Was diese Modellvorstellung allerdings nicht angemessen berücksichtigen kann, ist die Schüs-
selbildung, die infolge des Austrocknungsprozesses bei Estrich häufig auftritt. In den Versuchen
wurde diese sogar explizit ausgeschlossen, indem ein verkleinerter Plattenbereich, der kein Abhe-
ben vom Dämmstoff zeigte, untersucht wurde. Die Schüsselung entspricht einer Vorverformung
bzw. Vorbelastung infolge Zwang für den maßgebenden Bemessungslastfall, sodass für eine Un-
tersuchung des Einflusses dieser Schüsselung grundsätzlich ein genaueres Verfahren notwendig
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Abbildung 2.7.: Erforderliche Dicke von Zementestrichen in Abhängigkeit von der Zusammen-
drückbarkeit der Dämmschicht und der Festigkeitsklasse ZE (nach Manns und
Zeus (1980) mit σB − σL = 1.75 kPa; (Aurnhammer, 2008)

ist. Auch wird im beschriebenen Bemessungsansatz ein Einfluss der Mehrlagigkeit und der unter-
schiedlichen Eigenschaften des Estrichs über die Dicke nicht berücksichtigt. Zementestrich weist
wie bereits im vorangegangenen Kapitel erläutert an der Unterseite meist ein haufwerksporiges
Gefüge auf, insbesondere verstärkt durch eine schwierigere Verdichtung bei schwimmender Ver-
legeart, sodass dieser Bereich weniger zur Gesamtfestigkeit beiträgt.

Die zuletzt 2021 eingeführten Änderungen in DIN 18560-1:2021 beziehen sich vor allem auf die
Einführung von Schwindklassen im Hinblick auf die „Dimensionsstabiltät“ des Estrichs. Die Be-
stimmung der Dimensionsstabiltät (d.h. des Schwindens und Quellens) wird in DIN EN 13892-
9:2018 geregelt, wobei dieser Teil der Norm 2018 neu eingeführt wurde. Die Änderungen in
DIN 18560-1:2021 sind möglicherweise eine Reaktion darauf und erkennen so erstmalig den
Schwindeinfluss bei der Bemessung von Estrich normativ an. In DIN 18560-1:2021 wird festge-
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stellt, dass das Schwindverhalten maßgeblichen Einfluss auf die Rissgefahr bzw. auf die Verfor-
mungen in Rand- und Fugenbereichen hat. In Teil 2 der Norm, der die Bemessung von Estrichen
auf Dämmschichten behandelt, wurden für Zement- und Magnesia-Estriche zusätzliche, höhere
Festigeitsklassen und höhere Nenndicken eingeführt, deren Anwendbarkeit jedoch an die Ein-
haltung der Schwindklasse geknüpft ist.

Tabelle 2.3.: Auszug aus DIN 18560-1:2021: Tabelle 4, Teil 1 – Schwindklassen für Estriche

Schwindklasse Dimensionsstabilität DL Beschreibungmm/m
SW3 ∆L >=0.5 normal
SW2 0.2 <= ∆L <0.5 schwindreduziert
SW1 ∆L <0.2 schwindarm
SW0 ∆S >0 quellend

Dabei ist
∆L Schwindmaß (mm/m)
∆S Quellmaß (mm/m)

Zusätzlich zur beschriebenen normativen Regelung gibt es Merkblätter der Deutschen Naturstein
Akademie (DENAK), die in Teil 2 ihrer „Bemessung von Bodenkonstruktionen“ Nomogramme
zur Bemessung der Lastverteilungsschicht z. B. in Form von schwimmendem Estrich angibt
(DENAK-Merkblatt 8-2, 2021). In Abbildung 2.8 ist beispielhaft eines dieser Nomogramme dar-
gestellt, in denen für eine bestimmte Aufstandsfläche (zwischen ≥ 25 und ≥ 2500cm2 werden
sechs Diagramme abgebildet) die Belastung F [kN] abhängig von der mittleren Biegezugfestig-
keit, der Estrichdicke dE und der Bettungsziffer kv abgelesen werden kann. Obwohl in Teil 1 des
Merkblatts in den allgemeinen Anforderungen an die Bodenkonstruktion auch auf die Belastung
durch Temperatur und Schwinden eingegangen wird, findet dies in den Nomogrammen keine
erkennbare Berücksichtigung. Stattdessen wird in einem gesonderten Abschnitt ein Diagramm
zur Abschätzung der Biegespannungen infolge Schwinden bzw. Aufschüsseln in Abhängigkeit ei-
nes Maßes ∆ε für „ungleiches Schwinden“ zwischen Ober- und Unterseite der Platte angegeben
(vgl. Abb. A.1 im Anhang). Für eine rechnerische Bemessung wird Gleichung (2.5) auf Basis der
Untersuchungen von Manns und Zeus (1980) angegeben. Diese entspricht dem Lastfall Einzellast
am Plattenrand.

Die Formeln nach Westergaard werden daneben auch für die Bemessung von Betonböden her-
angezogen (Lohmeyer und Ebeling, 1988). Bemerkenswert ist dabei allerdings, dass bei der
Abschätzung des maximalen Biegemoments für die drei Lastfälle der Ecklastfall den größten
Momentenbeiwert λ bezogen auf den Referenzlastfall Plattenmitte zugewiesen bekommt. Das
geringste Moment entsteht nach Lohmeyer und Ebeling (1988) für den Lastfall in Plattenmitte,
an der Plattenecke entsteht ein etwas mehr als doppelt so großes (λe = 2.1) und für den Rand
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Abbildung 2.8.: Nomogramm aus dem DENAK-Merkblatt für eine Last-
Aufstandsfläche ≥ 25cm2 (DENAK-Merkblatt 8-2, 2021)

ergibt sich ein Wert knapp darunter (λr = 1.8) für

mi,Q = λi ⋅ kQ ⋅mm,Q = λ ⋅ kQ ⋅ λm ⋅Qd , (2.7)

mit Biegemoment mi,Q für eine Einzellast Qd, Momentenbeiwerte λi mit i = {m,r, e} für Mit-
te, Rand und Ecke und Lastfaktor kQ abhängig von Fugenarten und Verzahnung. Bei diesem
Berechnungsansatz besteht außerdem die Möglichkeit, den Einfluss zweier zusätzlicher Einzellas-
ten im Sinne einer Fahrbeanspruchung zu berücksichtigen. Im Detail soll auf diesen Ansatz hier
nicht weiter eingegangen werden. Die Tatsache, dass sowohl bei der Prüfung von Estrichplatten
in der Praxis als auch bei diesem Berechnungsansatz der Ecklastfall als maßgebend betrachtet
wird, motiviert eine Überprüfung des Randlastfalls als maßgebenden Bemessungslastfall für die
Estrichbemessung.

2.1.4. Stand der Forschung: Numerische Modellierung

Die Zahl an Veröffentlichungen, die sich mit Estrich, insbesondere Zementestrich beschäftigen,
ist vergleichsweise klein. Neben den genannten Untersuchungen von Manns und Zeus (1980)
und Schnell (1983) sind u. a. Untersuchungen zum Schüsselverhalten von Schneider und Pleyers
(2003) im Hinblick auf die Effektivität von Nachbehandlungsmaßnahmen zu nennen (wie Imprä-
gnierung, Folienabdeckung). Konkret wurden bei Manns und Zeus (1980) quadratische Platten
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(4 × 4 m) auf unterschiedlich steifer Bettung gelagert und mit Einzellasten in unterschiedlicher
Laststellung belastet. Gemessen wurden Dehnung und Einsenkung der Platte, um die Ergeb-
nisse anschließend wie beschrieben zur Überprüfung von Handrechenformeln nach Westergaard
zu verwenden. Schnell (1983) untersuchte gebettete Estrichplatten verschiedener Estricharten
(etwa 3,70 m × 4,90 m und 4 m × 4 m) unter unterschiedlichen Witterungsbedingungen, zum
Teil im Rahmen echter Bauvorhaben, zum Teil in Versuchseinrichtungen. Dabei wurden u. a.
Anzahl und Länge der entstehenden Risse sowie die Einsenkungen unter verschiedenen Lasten
gemessen. Aus nachträglich entnommenen Proben wurden Rohdichte und Festigkeiten bestimmt.
In verschiedenen Forschungsberichten des IBF (u. a. Müller, 2017) wurden das Schüsselverhal-
ten und dessen Einflussfaktoren empirisch dokumentiert. Dabei wurde von Müller (2017) neben
den Festigkeits- und Feuchteeigenschaften sowie der Zusammensetzung die vertikale Verformung
während des Austrocknens vor und nach der Verlegung verschiedener Bodenbeläge über die Zeit
gemessen. Die Auswirkungen auf den Belag werden im Rahmen dieser Arbeit nicht weiter be-
trachtet.

Zum Teil sind experimentelle Auswertungen dieser Art geeignet für eine numerische Simulation,
zum Teil fehlen jedoch exakte Angaben z. B. zur tatsächlich wirksamen Dämmsteifigkeit. In
anderen Veröffentlichungen gibt es bereits Ansätze, zumindest die Zwangsspannungen während
des Erhärtungsvorgangs numerisch zu erfassen. In der Literatur steht hier jedoch der Werkstoff
(Stahl-)Beton stärker im Fokus, wobei die Erkenntnisse zur Modellierung auch für die Simula-
tion von Zementestrich herangezogen werden könnten. Zur Berechnung hydratationsbedingter
Zwangsspannungen mit Blick auf die Rissbreitenbegrenzung wurde in den letzten Jahren ver-
mehrt geforscht (Schlicke und Viet Tue, 2016b; Nietner, Schlicke und Viet Tue, 2011). Untersu-
chungen von Nietner, Schlicke und Viet Tue (2011) zur Zwangsbeanspruchung erhärtender Mas-
senbetonbauteile befassten sich mit dem Hydratationsprozess von Beton, wobei ein von Nietner
(2009) entwickeltes Finite-Elemente-Programm zur Berechnung des gekoppelten Wärme- und
Feuchtetransports (Nietner, 2019), u. a. auf Basis von Berechnungsmodellen von Künzel (1994)
auch bereits auf Zementestrich angewendet wurde. Wie in Kapitel 3.2.1 noch näher erläutert
wird, findet dieses Programm indirekt auch in dieser Arbeit zur Abschätzung der Schwind- und
Hydratations-Einflüsse auf das Verformungsverhalten in den durchgeführten Versuchen Anwen-
dung.

Für Estrich gab es einige Veröffentlichungen zur numerischen Simulation, wobei auch hier die
Ursachen des Schüsselverhaltens und der chemischen Einflüsse beim Hydratationsprozess im Fo-
kus standen. Ambroise et al. (2002), Georgin et al. (2008) und Jaafri et al. (2019) haben in den
vergangenen Jahren das Schüsselverhalten vor allem von Calciumsulfatestrich numerisch un-
tersucht. Ambroise et al. (2002) fanden bei Finite-Elemente-Simulation des Aufschüsselns eine
gute Übereinstimmung der vertikalen Verformung mit den durchgeführten Laborversuchen, Ge-
orgin et al. (2008) führten ähnliche Untersuchungen für Zement- und Calciumsulfatestrichbinder
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durch. Dabei bestätigte sich, dass Calciumsulfatestrich ein deutlich geringeres Schwind- bzw.
Schüsselrisiko besitzt als Zementestrich. Jaafri et al. (2019) nutzten berührungslose Messmetho-
den zur Erfassung des Schüsselns verschiedener Estrichmischungen, was ein besseres Verständnis
der verschiedenen chemischen Einflüsse (relative Feuchte, Porosität, Hydratationsgrad) auf das
Schüsselverhalten liefert. Das numerische Modell zeigte sehr gute Übereinstimmungen mit dem
experimentell gemessenen Verhalten, was zur Identifikation viskoelastischer Parameter beiträgt.

Untersuchungen zum Rissverhalten, vor allem der Wechselwirkung von Aufschüsseln und Dämm-
stofflagerung jenseits empirischer Versuche fehlen weitgehend. Schießl und Wiegrink (2005) un-
tersuchten Calciumsulfatestrich hinsichtlich des Einflusses einspringender Ecken auf die Rissent-
wicklung, eine numerische Untersuchung des Rissverhaltens auf Basis nichtlinearer Rissmodelle
wurde jedoch nicht durchgeführt. Wiegrink (2002) entwickelte Nomogramme zur Bestimmung
der Trocknungszeit und Ermittlung der resultierenden Spannungen im Eckbereich infolge des
Aufschüsselns. Eine numerische Untersuchung unter Verwendung nichtlinearer Materialgesetze
und der möglichen exakteren Abschätzung der Rissbildung wird im Ausblick angedeutet.

Veröffentlichungen zur numerischen Rissmodellierung von Beton und Stahlfaserbeton gibt es
allerdings in großem Umfang, u.a. auf Basis der FE-Methode (Hofstetter, 2006; V. Cervenka,
J. Cervenka und Kadlec, 2018; Feenstra und de Borst, 1995; Gödde, 2013; Thomée, 2005).
Die Problematik der Netzabhängigkeit verschmierter Rissmodelle spielt für bewehrte Bauteile
(z. B. Stahlbeton) in vielen Fällen eine untergeordnete Rolle, da ab einem bestimmten Zeitpunkt
während der Entfestigung die Bewehrung aktiviert wird. Die exakte Abbildung des Betonriss-
verhaltens hat in diesem Fall eine untergeordnete Relevanz. Der Einfluss des Betons auf das
Gesamttragverhalten nimmt immer weiter ab, sodass eine Netzabhängigkeit auf die Ergebnisse
kaum Einfluss hat, wie viele Veröffentlichungen zu diesem Thema zeigen, bei denen sich die
dargestellte Problematik nicht näher thematisiert wird (z. B. V. Cervenka, J. Cervenka und
Kadlec, 2018; Feenstra und de Borst, 1995).

Im Fall von Stahlfaserbeton spielt das Betontragverhalten eine größere Rolle, da die Stahlfa-
sern zum Tragverhalten des Bauteils anders beitragen als die Bewehrung und das Verhalten
eher reinem Beton mit einem duktileren Nachbruchverhalten ähnelt. Auch hier sieht man an
den Entfestigungskurven in experimentellen Versuchen, dass der abfallende Ast aufgrund der
Wirkung der Stahlfasern nicht auf Null absinkt (Gödde, 2013; Thomée, 2005). Eine Netzabhän-
gigkeit in der Betonmodellierung würde die Ergebnisse allerdings stärker beeinflussen und unter
Umständen unbrauchbar machen (Gödde, 2013). Bei unbewehrten Bauteilen, so auch bei z. B.
schwimmendem Zementestrich, ist dieser Einfluss umso extremer. Auf diese Rissmodelle soll im
folgenden Kapitel näher eingegangen werden, nachdem zunächst eine grundlegende Einführung
in den kontinuumsmechanischen Rahmen und die verwendeten numerischen Lösungsalgorithmen
innerhalb der nichtlinearen FE-Methode gegeben wurde.
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Fazit

Zementestrich ist ein schwindanfälliger Baustoff, der als tragender Untergrund oder Aufnah-
megrund für Bodenbeläge Anwendung findet. Schwimmend gelagert wirkt sich die schwindin-
duzierte Schüsselbildung auf das biegezug-geprägte Tragverhalten und die Platte-Dämmungs-
Interaktion aus. Inwiefern dieses im Bemessungskonzept bislang unberücksichtigte Verhalten
Einfluss auf die Nutzlast-induzierte Rissbildung hat, ist zu überprüfen. Dazu soll eine numerische
Untersuchung der Einflüsse aus der Dämmsoff- und Estrichsteifigkeit sowie der Schüsselbildung
erfolgen. Die Modellbildung für eine solche, in der Literatur bislang nicht vorhandene Simulation
erfordert zunächst die Einführung in die Grundlagen der Rissmodellierung und die Wahl eines
geeigneten Rissmodells auf Basis der für Beton bereits etablierten Ansätze.
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2.2. Rissmodellierung im Finite-Elemente-Modell

Zur Erläuterung der verwendeten numerischen Modelle für die Berechnung der Rissbildung im
Estrich wird auf Elemente der Kontinuumsmechanik zurückgegriffen. In einem für die Folgeka-
pitel notwendigen Rahmen wird zunächst auf einige Definitionen eingegangen sowie grundlegend
die Theorie der Finite-Elemente-Methode bei Berücksichtigung von Nichtlinearitäten erläutert.
In der vorliegenden Problemstellung ist vor allem das Materialgesetz nichtlinear zu betrach-
ten. Das verwendete Materialmodell und die dort eingehenden Parameter werden erläutert und
führen schließlich auf die gewählte Rissmodellierung. In diesem Kapitel konzentrieren sich die
Erläuterungen der zugrundeliegenden bruchmechanischen Ansätze auf die für diese Arbeit rele-
vanten Aspekte. Die folgenden Kapitel basieren auf Wriggers (2001) und Pfister (2008).

2.2.1. Kontinuumsmechanischer Rahmen
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(c) Randbedingungen

t Pseudozeit
x, X dx = FdX Ortsvektoren
F Deformationsgradient
Ω Gebiet bzw. Volumen
Γ Rand bzw. Oberfläche
ρ Dichte
Dk, De Differentialoperatoren
E Elastizitätsmatrix

Zustandsvariablen
u Verschiebungsvektor
σ (s. Kapitel 2.2.3) 2. Piola-Kirchhoff ’scher

Spannungstensora

ε = 1
2
(FTF − I) Green’scher
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p Lastvektor
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a bezogen auf Referenzkonfiguration; in der Li-
teratur häufig mit S bezeichnet

b bezogen auf Referenzkonfiguration; in der Li-
teratur häufig mit E bezeichnet

Abbildung 2.9.: Kontinuumsmechanischer Rahmen eines physikalischen Problems: a) Refe-
renzkonfiguration des Körpers B, definiert auf dem Gebiet Ω mit Rand Γ,
b) Referenz- (hell, B0,x) und Momentankonfiguration (grau, Bt,X) des Kör-
pers infolge einer Deformation beschrieben durch F, c) Geometrische (rot) und
dynamische (grün) Randbedingungen
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2.2. Rissmodellierung im Finite-Elemente-Modell

Die Kontinuumsmechanik liefert den Rahmen zur Beschreibung von Körperbewegungen im
Raum, wenn diese eine gewisse Ausdehnung und Homogenität auch im Sinne ihres Verformungs-
verhaltens und der Spannungsgrößen aufweisen. In dem Fall kann der Körper vereinfachend auf
der Makroebene betrachtet werden, ohne z. B. bei Verbundwerkstoffen einzelne Bestandteile wie
Gesteinskörnung und Zementmatrix (Mesoebene) oder die kristalline Struktur (Mikroebene) zu
betrachten. Ein Größtkorn von 8 mm wird bei Estrich in der Regel nicht überschritten, sodass
ebenso wie bei Beton eine Betrachtung der Makroebene angemessen ist. Selbst im Falle einer
Stahlfaserbewehrung wird aufgrund der zufälligen Verteilung der Stahlfasern in der Regel eine
Betrachtung der Makroebene als ausreichend erachtet (Altenbach, 2018).
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Abbildung 2.10.: Allgemeingültige Zusammenhänge zwischen inneren und äußeren
Kraft- (σ, p) bzw. Weggrößen (ε, u) im Rahmen der Kontinuums-
mechanik

Auf Basis dieser Betrachtungsweise werden Bauteile als Körper (begrenzt über ihre Oberfläche Γ,
mit Volumen Ω und Dichte ρ, siehe Abbildung 2.9) im kartesischen Koordinatensystem definiert,
deren Bewegungen bzw. Verformungen im Raum nach Lagrange1 bezogen auf die Referenzkon-
figuration (Index 0) beschrieben werden (siehe Abbildung 2.9). Infolge der Lasten p erfährt der
Körper eine Zustandsänderung von seiner Referenz- in die Momentankonfiguration (Index t). Zur
Beschreibung der Zustandsänderung werden die Verformungen, Verzerrungen und Spannungen
in der Regel in Tensorvariablen u, ε und σ formuliert, mit deren Hilfe die physikalische Problem-
stellung in einem mathematischen Randwertproblem ausgedrückt werden kann. Dafür gelten die
in Abbildung 2.10 zunächst für jede Problemstellung allgemeingültig dargestellten Zusammen-
hänge: Die äußere Belastungssituation p ist bekannt und muss mit den inneren Kraftgrößen

1 üblich für strukturmechanische Problemstellungen; Im Gegensatz dazu wird nach Euler die Momentankon-
figuration (Index t) verfolgt. Diese Betrachtungsweise wird bei Problemstellungen in der Thermodynamik
bevorzugt verwendet.
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bzw. Spannungen σ im Gleichgewicht stehen. Die inneren Kraftgrößen stehen mit den inneren
Weggrößen, den Verzerrungen ε, über konstitutive Gleichungen in Beziehung. Die Kinematik
definiert schließlich den Zusammenhang zwischen diesen inneren und den äußeren Weggrößen,
den Verformungen u. Bei einer Gleichgewichtsbetrachtung am verformten System und einem be-
liebigen, ggf. nichtlinearen Materialgesetz, bei dem die Belastungsgeschichte zu berücksichtigen
ist (im folgenden durch die inneren Variablen α symbolisiert), ergibt sich ein System nichlinearer
Differentialgleichungen. Diese leitet sich aus den Beziehungen in Abbildung 2.10 her, wobei die
äußere Belastungssituation den inneren, von der Verformung u abhängigen Kräften, gleichgesetzt
wird:

−p =R(u) . (2.8)

Im linear-elastischen Fall lässt sich bei Betrachtung des unverformten Zustands (Annahme klei-
ner Verformungen) ein System linearer, partieller (Navier-) Differentialgleichungen formulieren

−p =DeEε =DeEDku . (2.9)

Diese theoretische Beschreibung ist für jeden Tragwerkstyp (Balken, Schale, etc.) möglich. Eine
analytische Lösung dieser starken Form des Randwertproblems ist jedoch selbst im Linearen für
die wenigsten praktischen Probleme bekannt. Aus diesem Grund werden numerische Näherungs-
verfahren angewendet, wie die Methode der finiten Elemente.

Diese nutzt das Prinzip der virtuellen Verschiebungen und die Bedingung, dass unter Ansatz
einer beliebigen, infinitesimal kleinen virtuellen Verformungsänderung δu die innere virtuelle
Arbeit Wint der äußeren virtuellen Arbeit Wext entspricht:

δW = ∫
Ω0
δε ∶ σ dΩ0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δWint

−(∫
Ω0
δu ⋅ pdΩ0

+ ∫
Γ0
δu ⋅TdΓ0

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δWext

= 0 . (2.10)

Die virtuelle Verformungsänderung kann man sich als mathematische Test- oder Wichtungs-
funktion vorstellen. Gleichung 2.10 stellt eine integrale und damit schwache Form des in Ab-
bildung 2.10 beschriebenen Randwertproblems im betrachteten Gebiet dar. Das heißt, diese
Formulierung liefert keine exakt analytische Lösung des Systems partieller Differentialgleichun-
gen in Abbildung 2.10 (starke Form des Gleichgewichts). Es wird nur in integraler Form gelöst
und es lässt sich somit bei Diskretisierung des Systems in finite Elemente und Anwendung
numerischer Algorithmen eine Näherungslösung des Randwertproblems ermitteln. Bei zuneh-
mender Verfeinerung des Elementnetzes konvergiert der Verformungszustand gegen die wahre
Lösung. Im Grenzfall unendlich kleiner Elemente würde sich auch hier die zur starken Form des
Gleichgewichts korrespondierende exakte Lösung einstellen. Auf die Theorie der FE-Methode
und relevante Algorithmen wird in Kapitel 2.2.2 für den nichtlinearen Fall genauer eingegangen,
für detailliertere Ausführungen sei u. a. auf de Borst, Crisfield et al. (2012), Kuna (2010) und
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Wriggers (2001) verwiesen.

Wie in Abbildung 2.10 bereits in Zusammenhang mit der Kinematik und den konstitutiven
Gleichungen angedeutet, gibt es verschiedene Typen von Nichtlinearität, die sich nach Wriggers
(2001) wie folgt einteilen lassen:

• Geometrische Nichtlinearität: große Verschiebungen und -verdrehungen (bei kleinen Verzer-
rungen)→ ε = ε(u)

• Große Deformationen: große Verzerrungen2

• Physikalische Nichtlinearität: nichtlineares Werkstoffverhalten (nichtlinear-elastisch oder
elastisch-plastisch) → σ = σ(ε,α)

• Stabilitätsprobleme (Reaktion auf Imperfektionen)

– geometrische Instabilität (Verzweigung (Knicken, Beulen), Durchschlagen)

– Materialinstabilität (Einschnürung, Lokalisierung der Deformation (Riss))

• Nichtlineare Randbedingungen (Kontakt, Wärmeabstrahlung)

• Gekoppelte Probleme (Kopplung unterschiedlicher Feldprobleme, z. B. thermomechanische
Kopplung beim Abbindeprozess von Beton)

Sind die konstitutiven Gleichungen aufgrund physikalischer Nichtlinearität oder die kinemati-
schen Gleichungen infolge zu berücksichtigender großer Verformungen nichtlinear anzusetzen,
sind weitergehende Ansätze zur Lösung des Randwertproblems erforderlich. Bei in dieser Arbeit
betrachteter elasto-plastischer Materialformulierung hängt der Spannungszustand nichtlinear
von den Verzerrungen bzw. den Verformungen ab und die Belastungsgeschichte muss mithil-
fe zusätzlicher innerer Variablen α berücksichtigt werden. Wie in Abbildung 2.10 dargestellt,
lassen sich in diesem Fall die Zustandsgrößen nicht unmittelbar ineinander überführen.

Daneben spielen in dieser Arbeit auch Materialinstabilitäten bei der Betrachtung des Rissver-
haltens eine Rolle. Auf die Verformungslokalisierung bei entfestigendem Materialverhalten wird
in den Kapiteln 2.2.4 und 2.2.5 genauer eingegangen. Nichtlineare Einflüsse in den Randbedin-
gungen, wie im Fall zweier in Berührung kommender Körper, müssen ebenfalls berücksichtigt
werden. Ein solches Kontaktproblem entsteht in der vorliegenden Arbeit beim belastungsindu-
zierten Ablegen der aufgeschüsselten Ecke des Estrichs auf dem Dämmstoff. Auf die Modellierung
dieses Kontakts wird in Kapitel 3.2.1 genauer eingegangen.

Die thermomechanische Entwicklung des Schüsselns im Zuge des Abbindeprozesses des Estrichs
stellt einen für die Thematik dieser Arbeit relevanten Aspekt, aber auch ein für sich genommen
komplexes Problem dar. Daher ist dieses Thema an anderer Stelle insbesondere für Beton, aber
auch konkret Estrich, bereits Forschungsgegenstand (vgl. Nietner, Schlicke und Viet Tue, 2011;

2 relevant bei gummiartigen Materialien, Umformprozessen von Metall; außerhalb des Rahmens dieser Arbeit
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Schlicke und Viet Tue, 2013; Schlicke und Viet Tue, 2016a; Ambroise et al., 2002; Georgin et al.,
2008). Der Fokus liegt hier dagegen auf der strukturmechanischen Untersuchung an der bereits
aufgeschüsselten Platte, ohne den Prozess des Aufschüsselns selbst im Detail zu simulieren. Auf
die thermomechanischen Aspekte wird nicht im Detail eingegangen, sondern auf die genannte
Literatur verwiesen.

2.2.2. FE-Methode: Lösung nichtlinearer statischer Probleme

Zur Lösung nichtlinearer statischer Probleme wird ein inkrementell-iterativer Ansatz verwen-
det. Wie in Abbildung 2.11 veranschaulicht, ist dafür die integrale, schwache Form in Glei-
chung (2.10), also das Prinzip der virtuellen Verschiebungen (PVV), der Ausgangspunkt. λ ist
als skalarer Lastfaktor der betrachteten Last P zu lesen.

𝐑 𝒖 − 𝜆 ⋅ 𝑷 = 0

𝐑 ഥ𝒖+𝜟𝒖 ≈ 𝐑 ഥ𝒖 + 𝜕𝑹𝜕𝒖𝜟𝒖 = 𝜆 ⋅ 𝑷
Linearisierung & 

Inkrementierung

(1) Nichtlineare Gleichgewichtsbedingung

(2) Inkrementelles Gleichgewicht

𝑭int +𝐊𝐓 ⋅ 𝚫𝐯 = 𝜆 ⋅ 𝑷
Diskretisierung

(3) Diskretisiertes inkrementelles Gleichgewicht

Anwendung auf das PVV und Herleitung

des inneren Kraftvektors Fint und 

der tangentialen Steifigkeitsmatrix KT

Anwendung num. Lösungsalgorithmen

(z.B. Newton-Raphson- oder 

Bogenlängenverfahren, siehe Abb. 2.17)

FE-Methode

Abbildung 2.11.: Herleitung der Lösung des physikalischen Problems mithilfe der
Finite-Elemente-Lösung

Zunächst wird Gleichung (2.10) inkrementiert, sodass der Verschiebungszustand durch den ge-
suchten Verschiebungszuwachs ∆u gegenüber dem Grundzustand ū mit

u = ū +∆u (2.11)

ausgedrückt wird. Für eine nichtlineare Kinematik bzw. ein nichtlineares Materialgesetz lassen
sich Verzerrungs- bzw. Spannungszustand nicht unmittelbar inkrementieren. Zur Herauslösung
der Zuwachsgrößen werden Kinematik und Materialgesetz in einer Taylorreihe um den Grund-
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zustand entwickelt. Die Linearisierung durch Abbruch der entsprechenden Taylorreihenentwick-
lung (siehe Abbildung 2.12a) liefert folgende, mit ()∗ als Näherungslösung δW ∗ gekennzeichnete
Gleichung:

δW ∗
(ū, δu,∆u) = δW (ū, δu) + δ∆W (ū, δu,∆u)

= δW (ū, δu) +
∂δW (ū, δu)

∂u
∶∆u

= [∫
Ω0
δε ∶ σ dΩ0

− (∫
Ω0
δu ⋅ pdΩ0

+ ∫
Γ0
δu ⋅TdΓ0

)]

+ [∫
Ω0
δ∆ε ∶ σ dΩ0

+ ∫
Ω0
δε ∶∆σ dΩ0

] = 0 . (2.12)

f(x) = f(x̄ +∆x)

= f(x̄) +
∂f(x̄)

∂x
∆x +R

≈ f(x̄) +
∂f(x̄)

∂x
∆x

= f(x̄) +∆f(x̄,∆x) = f∗(x)

∆f(x̄,∆x) =
∂f(x̄)

∂x
∆x

=
d

dη
[f(x̄ + η∆x)]∣

η=0

(a) Taylorreihenentwicklung einer Funktion f

u = ū +∆u

∆ε =
∂ε

∂u
∶∆u

=
1

2
[(1 + gradT ū)gradT ∆u

+ gradT ∆u (1 + grad ū)]

δ∆ε =
∂δε

∂u
∶∆u

∆σ =
∂σ

∂u
∶∆u =CT ∶ ∆ε

(s. Kapitel 2.2.3)

(b) Linearisierung der Zustandsgrößen

Abbildung 2.12.: Taylorreihenentwicklung und linearisierte Größen in Gleichung (2.12)

Bei Annahme konservativer Lasten, deren Richtung sich durch Änderung des Verformungszu-
stands nicht ändert, ergeben sich die zugehörigen Terme der äußeren Arbeit im linearen Term
zu Null, sodass in der zweiten Klammer nur Anteile aus der inneren Arbeit enthalten sind. Ei-
ne detaillierte Herleitung des Linearisierungsvorgangs findet sich z. B. bei Pfister (2008) oder
Wriggers (2001). Hier sei lediglich auf die Zusammenstellung der linearisierten Zustandsgrößen
und ihre Variationen in Abbildung 2.12b hingewiesen. Bei Bestimmung der Variationen werden
nur die linearen Zuwächse variiert, der Grundzustand ist bekannt und steht damit fest. Bei CT
handelt es sich im Falle nichtlinearer konstitutiver Gleichungen um einen inkrementellen, tan-
gentialen Materialtensor, der aufgrund der Pfadabhängigkeit des nichtlinearen Materialgesetzes
auf Materialpunktebene zur Ermittlung der Grundzustandsspannungen aus den Grundzustands-
verzerrungen integriert wird. Dies wird in Kapitel 2.2.3 bei der Beschreibung der betrachteten
Materialmodelle aufgegriffen. Seine Definition ist vom betrachteten Materialmodell abhängig
und er ist bei nichtlinearen Materialien im Allgemeinen iterativ zu bestimmen.
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Abbildung 2.13.: Globales Koordinatensystem X, lokales Elementeinheitskoordina-
tensystem ξ und Knotenfreiheitsgrade ux, uy und uz am Beispiel
eines Kontinuumselements

Entsprechend Abbildung 2.11 ist diese linearisierte Form des PVV nun im Sinne der FE-Methode
zu diskretisieren. Dafür wird der Körper in ne finite Elemente eingeteilt, die diesen je nach Geo-
metrie und Elementform näherungsweise erfassen. Den nK Knoten dieser Elemente wird eine
bestimmte Zahl nFG von Freiheitsgraden zugeordnet (vgl. Abbildung 2.13, hier: nFG = 3 Verschie-
bungsfreiheitsgrade je Knoten zusammengefasst in v). Für den gesuchten Verschiebungszustand
u werden Ansatzfunktionen N(ξ) im Element-Einheitskoordinatensystem ξ und in Abhängig-
keit dieser Freiheitsgrade gewählt. Zur Berechnung nichtlinearer statischer Probleme hat sich die
Familie der sog. isoparametrischen Elemente bewährt, sodass im Folgenden dieser Ansatz vor-
ausgesetzt wird (Wriggers, 2001). In diesem Fall wird für die Geometrie und die Verschiebungen
der gleiche funktionale Ansatz NI(ξ) für die Knoten gewählt:

X ≈Xe(ξ) =
ne

∑
I=1

NI(ξ)Xk,I =N(ξ)Xk (2.13)

u ≈ ue(ξ) =
ne

∑
I=1

NI(ξ)uk,I =N(ξ)uk =N(ξ)v (2.14)

dX =
dX

dξ
dξ = Jdξ (2.15)

mit Jacobimatrix J und Xk, uk = v ∈ IR
nK⋅nFG und

Xe(ξ) ∶ IR
ndim → IRn ,

ue(ξ) ∶ IR
ndim → IRndim ,

N(ξ) ∶ IRndim → IRnK⋅nFG ,
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wobei n die Dimension des betrachteten Raums und ndim die Dimension des betrachteten Kör-
pers darin erfasst. Für übliche Formfunktionen sei z. B. auf Wriggers (2001) verwiesen. Die im
Folgenden eingeführten, mithilfe der genannten Formfunktionen diskretisierten Größen des Prin-
zips der virtuellen Verschiebungen werden anstelle der in der Kontinuumsmechanik üblicheren
Tensor-Notation des vorangegangenen Kapitels (z. B. Skalarprodukt für Tensoren δε ∶ σ) in
Matrizen und Vektoren (Skalarprodukt: δεTσ) ausgedrückt.

Die Zustandsgrößen können somit in Abhängigkeit der Formfunktionen N(ξ) ausgedrückt wer-
den, siehe Abbildung 2.14. Dies liefert für das Prinzip der virtuellen Verschiebung folgende
Näherung:

δW ∗
e = [δv

T
∫
Ω0

e

δBTσ dΩ0
e − (δv

T
∫
Ω0

e

NTpdΩ0
e + δv

T
∫
Γ0
e

NTTdΓ0
e)]

+ [δvT ∫
Ω0

e

GTσ dΩ0
e∆v + δvT ∫

Ω0
e

BTCTBdΩ0
e∆v] = 0 , (2.16)

Verschiebungen
u ≈ u∗e(ξ) =N(ξ)v

δu ≈ δu∗e(ξ) =N(ξ)δv

∆u ≈∆u∗e(ξ) =N(ξ)∆v

Verzerrungen
ε ≈ ε∗e(ξ) = B(ξ)v

δε ≈ δε∗e(ξ) = B(ξ)δv

∆ε ≈ ∆ε∗e(ξ) = B(ξ)∆v

δ∆ε ≈ δ∆ε∗e(ξ) =∆vTG(ξ)δv

Spannungen
∆σ ≈ ∆σ∗e(ξ) =CTB(ξ)∆v

Abbildung 2.14.: Diskretisierung der Zustandsgrößen und lokale Elementmatrizen und -vektoren

wobei dΩ0
e jeweils mithilfe einer Jacobi-Transformation in das lokale Elementkoordinatensys-

tem ξ zu transformieren ist. Die Vektoren der Knotenfreiheitsgrade vT sind konstant und
wurden daher ebenso wie ihre Variation δvT aus dem jeweiligen Integral herausgezogen. Da
Gleichung (2.16) für jede Variation erfüllt sein muss bzw. die triviale Lösung für δv = 0 vernach-
lässigbar ist, können auch die Variationsterme gestrichen werden und es ergibt sich die lokale
Gleichgewichtsbedingung für das einzelne Element zu

(KT,σ +KT,u)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
KT

∆v = Fint +Fext , (2.17)
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wobei die Elementmatrizen und -vektoren wie folgt definiert sind:

Vektor der inneren Kräfte: Fint = ∫
Ω0

e

BTσdΩ0
e (2.18)

Lastvektor: Fext = ∫
Ω0

e

NTpdΩ0
e + ∫

Γ0
e

NTTdΓ0
e (2.19)

Geometrische oder Anfangsspannungsmatrix: KT,σ = ∫
Ω0

e

GTσdΩ0
e (2.20)

Nichtlineare Steifigkeitsmatrix: KT,u = ∫
Ω0

e

BTCTBdΩ0
e . (2.21)

B wird als Verzerrungs-Verschiebungsmatrix bezeichnet und enthält die Formfunktionen der Ver-
zerrungen. Die Materialmoduli CT gehen im zugehörigen Steifigkeitsterm KT,σ im Gegensatz
zu den Grundzustandsverzerrungen nicht ein, weshalb die zugehörige Matrix auch als Anfangs-
spannungsmatrix bezeichnet wird. Die Terme für Fint und KT,u finden sich prinzipiell auch im
linearen Fall wieder, wobei für B und CT jeweils die linearen Pendants Blin und E eingesetzt
würden. G enthält Terme höherer Variationsordnung und würde bei linearer Kinematik ver-
schwinden. Für eine detaillierte Herleitung der Elementmatrizen sei z. B. auf Wriggers (2001)
verwiesen.

Lösungsalgorithmen

Zur numerischen Lösung des Randwertproblems können verschiedene inkrementell-iterative Al-
gorithmen verwendet werden. In dieser Arbeit finden

• das Newton-Raphson-Verfahren (NR) sowie

• das Bogenlängenverfahren (BL)

Anwendung.

Das Newton-Raphson-Verfahren ist das Standard-Verfahren für nichtlineare Problemstellungen
in der FE-Methode. Abbildung 2.15 zeigt den prinzipiellen Ablauf vereinfacht für den eindimen-
sionalen Fall. Ausgangspunkt ist ein bekannter Grundzustand j−1, hier stehen die inneren Kräfte
Fint,j−1 mit den äußeren Fext,j−1 im Gleichgewicht. Aufgrund eines Lastzuwachses ∆Pj gerät das
System von der Gleichgewichtskurve ab und der nächste, zu Fext,j = Fext,j−1 +∆Pj korrespon-
dierende Gleichgewichtszustand j muss iterativ durch Minimierung der Ungleichgewichtskräfte
Pu bestimmt werden. Der zugehörige iterative Ablauf ist in Abbildung 2.16 dargestellt. Ein-
gangswerte für die Iteration liefert ein Prädiktorschritt aus dem Grundzustand heraus. Aus dem
hieraus ermittelten Verformungszuwachs lassen sich die tangentiale Steifigkeit KT und der Vek-
tor der inneren Kräfte Fint aktualisieren.

Dies geschieht auf Elementebene, wobei grundsätzlich die analytische Bestimmung der Element-
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𝐹ext,𝑗

𝐹ext,𝑗−1

Δ𝑃𝑗

v𝑗−1 = v𝑗(0) v𝑗(1) v𝑗(2) v𝑗 v

𝐹

𝐹int,𝑗−1= 𝐹int,𝑗(0)

𝐹int,𝑗(1)
𝐹int,𝑗(2)

𝑃𝑢,𝑗(0) 𝑃𝑢,𝑗(1) 𝑃𝑢,𝑗(2) 𝑗

𝑗 − 1

𝐹int,𝑗

Abbildung 2.15.: Visualisierung des Iterationsablaufs innerhalb des Newton-
Raphson-Verfahrens nach Abbildung 2.16 (Kuna, 2010)

steifigkeitsmatrizen und -vektoren nur in Sonderfällen möglich ist. Andernfalls sind numerische
Integrationstechniken zur Lösung der Integrale über das jeweilige Element notwendig. Hier wird
in der Regel die Gauß-Integration verwendet, d. h. die Integranden sind in diesem Fall an den
für den jeweiligen Elementtyp definierten Gauß-Punkten auszuwerten. Analog zum linearen Fall
werden die Matrizen auf Elementebene durch Integration über alle Integrationspunkte bestimmt.
Die so ermittelten Komponenten auf Elementebene werden zu globalen Größen auf Systemebene
assembliert und zur Bestimmung des Verschiebungszuwachses ∆v der einzelnen Freiheitsgrade
verwendet. Bei Auftreten nichtlinearen Materialverhaltens ist innerhalb eines globalen Iterati-
onsschritts zusätzlich lokales Gleichgewicht auf Materialpunktebene und damit in den einzelnen
Gauß-Punkten mithilfe eines Return-Mapping-Algorithmus’ zu bestimmen. Aus der bisherigen
Belastungsgeschichte wird dazu iterativ der lokale Spannungszustand und der materialspezifi-
sche Tangentenmodul CT berechnet. Die Ermittlung hängt von der Definition des jeweiligen
Materials ab, sodass hierauf in Kapitel 2.2.3 genauer eingegangen wird.

Der Nachteil des Newton-Raphson-Verfahrens besteht darin, dass Extrema im Kraft-Verschiebungs-
Verlauf aufgrund der Kraftsteuerung des Verfahrens nicht überwunden werden können. Auch ein
Vorzeichenwechsel in der Verschiebung ist denkbar, sodass auch das Einprägen der Beanspru-
chung als Verschiebung nicht uneingeschränkt funktioniert (vgl. Abbildung 2.17).
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Abbildung 2.16.: Inkrementell-iterativer Newton-Raphson-Algorithmus auf System-
Ebene mit Return-Mapping-Algorithmus auf Materialpunktebene
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Abbildung 2.17.: Unterscheidung möglicher Iterationspfade bei der Anwendung
inkrementell-iterativer Algorithmen am Beispiel eines Gleichge-
wichtspfads, der lokale Extrema, Umkehrpunkte und einen Ver-
zweigungspunkt besitzt (Abb. nach Zahlten (2011))

Im Gegensatz dazu ist das Bogenlängenverfahren ein Pfadverfolgungsalgorithmus, der über die
Bogenlänge gesteuert wird, d. h. über eine Größe, die sich aus dem Lastfaktor und dem Ver-
formungsinkrement zusammensetzt, und somit in der Lage ist, auch Gleichgewichtspfade mit
Extrema und Umkehrpunkten zu berechnen. Dabei wird nicht wie bei der reinen Kraft- oder
Wegsteuerung auf einer Horizontalen oder Vertikalen iteriert, sondern wie in Abbildung 2.17 an-
gedeutet auf einem Kreis oder einer geneigten Geraden. Die Urform des Bogenlängenverfahrens
verwendet einen auf der Urtangente senkrecht stehenden Iterationspfad. Es gibt verschiedene
Definitionen für dieses Verfahren mit unterschiedlichen Iterationspfaden. Gemein ist allen Bo-
genlängenverfahren, dass sich die Iteration auch im Fall eines Extremums nicht horizontal über
dieses hinweg bewegt, sondern sich hinter dem Extremum wieder auf den Pfad iterieren kann.

Die Iteration auf einer fixen Senkrechten wurde im Ursprung von Riks, Wempner Wessels
hergeleitet (Rust, 2011, Ramm, 1981). Der Prädiktorschritt infolge ∆P läuft wie beim Newton-
Raphson-Verfahren ab (vgl. Abb. 2.16 und 2.15 Schritt j−1). Ausgehend hiervon wird der nächste
Gleichgewichtszustand im Schnittpunkt der Normalen n0 zur Tangente an den Gleichgewichts-
pfad im Grundzustand t0 mit dem Gleichgewichtspfad gesucht, siehe Abbildung 2.18. Aus den
nach dem Prädiktorschritt vorhandenen Ungleichgewichtkräften ergibt sich ein iterativer Zu-
wachs ∆v1u, dessen korrespondierendes Lastinkrement unbekannt ist. Der Tangentenvektor t1
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wird durch t∗ ersetzt, der sich aus einem beliebigen Lastinkrement ∆λ∗ mit zugehörigem Zu-
wachs ∆v∗ zusammensetzt. Nach Abbildung 2.18 ergibt sich daraus der Normalenvektor n1

zu

n1 =
⎛

⎝

∆v1u

0

⎞

⎠
+ α ⋅ t∗ =

⎛

⎝

∆v1u

0

⎞

⎠
+ α
⎛

⎝

∆v∗

∆λ∗
⎞

⎠
. (2.22)
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Abbildung 2.18.: Bogenlängenverfahren nach Riks/Wessels zur Ermittlung eines
Nachbarzustands (NZ) ausgehend von einem Grundzustand (GZ)
(Rust, 2011; Abb. nach Zahlten (2011))

Aus der Bedingung, dass das Skalarprodukt zweier orthogonaler Vektoren t0 und n1 Null sein
muss, lässt sich die Variable α ermitteln zu

α =
∆v0∆v1u

∆v0∆v∗ +∆λ0∆λ∗
(2.23)

Die Inkremente des gesuchten Punkts 1 ergeben sich dann entsprechend zu

∆v1 =∆v1u + α∆v∗ und ∆λ1 = α∆λ
∗ . (2.24)

Die Größe des Lastinkrements ∆λ∗ ist beliebig, da nur die Richtung der zugehörigen Tangente
zur Bestimmung des nächsten Inkrements von Bedeutung ist. Auch in Abaqus ist eine Form
des Bogenlängenverfahrens als „modifizierte Riks-Methode“ implementiert (Dassault Systèmes,
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2021). Hier wird das Lastinkrement über die Länge der Tangente ∆l = ∣t0∣ gesteuert, welche
initial vom Benutzer vorgegeben, und im weiteren Verlauf automatisiert durch den Algorithmus
abhängig von der Konvergenzrate angepasst wird. Um Extrema und Umkehrpunkte überwin-
den zu können, ist es notwendig, das Vorzeichen des Lastinkrements ∆λ0 an solchen Punkten zu
wechseln. In der Literatur gibt es auch hier verschiedene Ansätze. Crisfield (1981) leitet her, dass
bei einem Vorzeichenwechsel der Determinante der Tangentensteifigkeitsmatrix KT ein Vorzei-
chenwechsel erfolgen sollte. Auf einem stabilen, d. h. ansteigenden Gleichgewichtspfad ist die
Determinante positiv und die Matrix besitzt nur positive Eigenwerte. Mit Übergang in einen
abfallenden Ast, d. h. mit dem Überwinden eines Extremums geht ein negativer Eigenwert der
Matrix einher. Dadurch ändert sich das Vorzeichen der Determinante. In Abaqus wird stattdes-
sen die Bedingung verwendet, dass das Skalarprodukt der aktuellen Grundzustandstangente (t̄0
in Abb. 2.18) mit dem Vektor der Lösungsinkremente aus dem vorangegangenen Schritt (s) po-
sitiv ist (Dassault Systèmes, 2021). Dieses Vorgehen kann bei zu großer Schrittweite oder starker
Krümmung des zu verfolgenden Pfads versagen. Solche Fälle werden laut Dokumentation nicht
standardmäßig detektiert, da sie zu selten auftreten (Dassault Systèmes, 2021).

Neben Extrema und Umkehrpunkten kann sich der Gleichgewichtspfad eines Systems an ei-
nem Verzweigungspunkt außerdem in einen Primär- und Sekundärpfad aufteilen (vgl. Abbil-
dung 2.17). Verzweigungspunkte sind ein Zeichen für einen Verlust der Eindeutigkeit der Lö-
sung. Sie können bei der Berücksichtigung nichtlinearer Effekte auftreten, d. h. bei geometrischer
Nichtlinearität zum Beispiel bei Knick- oder Beulproblemen, aber auch durch nichtlineare Ein-
flüsse im Materialmodell (de Borst, Crisfield et al., 2012). Auf die Uneindeutigkeit der Lösung
und die daraus resultierenden Materialinstabilitäten wird in Kapitel 2.2.6 weiter eingegangen.

Damit sind der grundlegende numerische Rahmen und die notwendigen Lösungstechniken auf
globaler Systemebene gegeben. In den späteren Simulationen finden sowohl das Newton-Raphson-
als auch das Bogenlängenverfahren je nach Problemstellung Anwendung. Auf die algorithmischen
Besonderheiten auf Materialpunktebene bei nichtlinearem Materialverhalten (vgl. Abb. 2.16,
Materialpunktebene) wird im folgenden Kapitel eingegangen.

2.2.3. Plastizitätstheorie

Das in dieser Arbeit verwendete Material- bzw. Rissmodell (Concrete-Damaged-Plasticity-Modell
(Abaqus)) nutzt zur Herleitung die Ähnlichkeit zwischen verschmierten Rissmodellen und der
Plastizitätstheorie. Daher wird zunächst ein Überblick über die Komponenten der klassischen
Plastizitätstheorie gegeben, um im anschließenden Kapitel das gewählte Materialmodell und die
bruchmechanische Basis in das Spektrum vorhandener Rissmodelle für quasi-spröde Materialien
einzuordnen. Nach Die folgenden Ausführungen sind Simo und Hughes (2000) und de Borst,
Crisfield et al. (2012) entnommen.
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Inelastisches Materialverhalten beschreibt grundsätzlich den Effekt, dass sich ein Körper bei
Entlastung nicht in seine Ausgangskonfiguration zurück verformt. Wie in Abbildung 2.19 ge-
genübergestellt verbleibt im Falle inelastischen, bzw. hier speziell elastisch-plastischen Mate-
rialverhaltens ein Teil der Dehnung εp im Körper. Man unterscheidet grundsätzlich zwischen
ideal-plastischem, verfestigendem und entfestigendem Materialverhalten.

𝜀

𝜎

𝜀

𝜎
linear-elastisch

nichtlinear-

elastisch

elastisch-plastisch

ideal-plastisch

verfestigend

entfestigend𝐸 𝐸 𝜀pl
Abbildung 2.19.: Elastische und elasto-plastische Materialtheorien (eindimensionale

Visualisierung)

In der Plastizitätstheorie, die klassisch vor allem bei Metallen Anwendung findet, wird somit
zunächst der Verzerrungszustand aufgespalten in einen elastischen und einen plastischen Anteil:

ε = εel
+ εpl bzw. ε̇ = ε̇el

+ ε̇pl (2.25)

mit der Änderungsrate ε̇. Im Unterschied zur Elastizitätstheorie wird somit eine mögliche En-
ergiedissipation als Folge bleibender, plastischer Verzerrungen bei unveränderter Materialstei-
figkeit eingeführt. Das Materialmodell wird dadurch pfadabhängig: Die Belastungsgeschichte
beeinflusst das Materialverhalten. Nur in einem begrenzten Spannungsraum wird die Gültigkeit
des Hooke’schen Gesetzes σ = Eε angenommen. Jenseits dessen wirkt nur der elastische Anteil
der Verzerrungen spannungserzeugend:

σ = E ∶ εel
= E ∶ (ε − εpl

) (2.26)

Der Raum zulässiger Spannungszustände wird definiert über die sog. Fließbedingung mit f ≤ 0,
wobei

• f < 0, linear-elastisches Verhalten,

• f = 0, elasto-plastisches Verhalten,
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• f > 0 nicht aufnehmbarer Spannungszustand, im Rahmen einer ratenunabhängigen Theorie
nicht zulässig.

Im Dreidimensionalen entspricht diese einer begrenzenden Fläche. Im eindimensionalen (siehe
Abbildung 2.19) reduziert sich diese Fläche auf einen Punkt, im Zweidimensionalen auf eine li-
nienförmige (hier elliptische) Begrenzung, wie in Abbildung 2.20 am ebenen Spannungszustand
visualisiert. Bei ideal-plastischem Materialverhalten verändert sich die Form bzw. Position die-
ser Fließbedingung nicht, dann ist die Fließbedingung lediglich abhängig vom Spannungszustand
f = f(σ). Andernfalls wird die Belastungsgeschichte zusätzlich von inneren Variablen q erfasst,
die bestimmen, wie sich die Fließfläche infolge plastischer Belastung verändert. Hier wird unter-
schieden nach:

• isotrop: positionstreue Aufweitung der Fließfläche,

• kinematisch: Verschiebung der Fließfläche ohne Formänderung,

• isotrop und kinematisch: Verschiebung und Aufweitung der Fließfläche.

In der vorliegenden Arbeit wird nur der Fall isotroper Ver- bzw.Entfestigung Anwendung finden.
Entfestigendes Materialverhalten würde ein Zusammenziehen der Fließfläche bedeuten. Diese
Form der Plastizität stellt insofern einen Sonderfall dar, dass für Entfestigung (bzw. strain sof-
tening) das für stabiles Materialverhalten notwendige Drucker’sche Stabilitätspostulat3 nicht
erfüllt ist (Simo und Hughes, 2000). Auf dieses Verhalten und die daraus resultierenden Insta-
bilitäten wird in den folgenden Kapiteln noch genauer eingegangen.

Zur Beschreibung der pfadabhängigen Evolution der Fließfläche f ist die Definition einer Fließ-
regel und ggf. eines Verfestigungsgesetzes erforderlich. Die Fließregel beschreibt die Entwicklung
der plastischen Dehnungen, und kann aus der Fließfläche abgeleitet (assoziiert) oder unabhängig
davon definiert werden (nicht-assoziiert):

ε̇pl
= γ ⋅ r(σ,q) nicht-assoziiert (2.27)

ε̇pl
= γ ⋅

∂f(σ,q)

∂σ
assoziiert, (2.28)

mit Konsistenzparameter γ und Funktion r zur Beschreibung des plastischen Fließens. Aus
dem genannten Stabilitätspostulat leitet sich der Sonderfall der assoziierten Fließregel und einer
konvexen Fließfläche ab (Thomée, 2005), um Materialinstabilitäten zu vermeiden. Bei einer as-
soziierten Fließregel ist sichergestellt, dass die Richtung der plastischen Verzerrungen orthogonal
zur Fließfläche verlaufen, und die tangentiale Spannungs-Dehnungs-Beziehung symmetrisch ist,
was bei der numerischen Umsetzung vorteilhaft ist.

3 Drucker’sches Stabilitätspostulast: Die durch ein Spannungsinkrement geleistete, plastische Arbeit darf nicht
negativ sein. σ̇ ∶ ε̇pl ≥ 0
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Die Entwicklung der inneren Verfestigungsvariablen q wird definiert über das Verfestigungsgesetz

q̇ = −γ ⋅ h(σ,q) nicht-assoziiert (2.29)

q̇ = −γ ⋅D ⋅
∂f(σ,q)

∂q
assoziiert. (2.30)

wobei die Funktion h den Prozess der Verfestigung beschreibt. Die Matrix D enthält plastische
Verfestigungsmoduli und verbindet die im Spannungsraum definierten inneren Variablen q mit
den energetisch äquivalenten Variablen im Verzerrungsraum α: q = −Dα.

Wie in Abbildung 2.20 zu sehen ist, werden im Rahmen von auf der Plastizitätstheorie beru-
henden Materialmodellen gewisse Be- bzw. Entlastungszustände anhand der sog. Kuhn-Tucker-
Bedingungen unterschieden:

γ ≥ 0, f ≤ 0, γ ⋅ f = 0 (2.31)

Hierbei ist γ ein skalarer Parameter, dessen Wert die Intensität des plastischen Fließens berück-
sichtigt und der über die zusätzlich herangezogene Konsistenzbedingung

γ ⋅ ḟ = 0 (2.32)

sicherstellt, dass der Spannungszustand bei plastischer Belastung auf der Fließfläche verbleibt.
Solange γ = 0 gültig ist, tritt kein plastisches Fließen auf. Alle Punkte innerhalb der elliptisch
dargestellten Fließfläche sind elastisch (1). Bewegt sich der Zustand des Materialpunkts auf die-
ser Berandung, ohne dass sich diese verändert, handelt es sich um eine neutrale Belastung, die
ebenfalls keine plastischen Dehnungen hervorruft (2). Eine Bewegung von dort zurück ins Innere
beschreibt eine elastische Entlastung (3). Um eine plastische Belastung, bei der bleibende Deh-
nungen hervorgerufen werden (γ > 0), handelt es sich, wenn sich der (Test-)Zustand (σ̇trial) aus
der Fließfläche herausbewegen würde. Die Punkte außerhalb der Fließfläche beschreiben unzu-
lässige Spannungszustände, sodass ein Herausbewegen grundsätzlich nicht möglich ist. Über die
Konsistenzbedingung in Gleichung (2.32) wird der Wert des Konsistenzparameters γ iterativ im
jeweiligen Materialpunkt bestimmt und daraus leitet sich ab, wie sich die Fließfläche aufgrund
der entstehenden plastischen Verformungen verändert. Diese Änderung wird durch das definierte
Verfestigungsgesetz gesteuert. Im Falle der in Abbildung 2.20 veranschaulichten isotropen Ver-
festigung vergrößert sich die Fließfläche entsprechend. Bei kinematischer Verfestigung bleibt die
Form der Fließfläche unverändert, aber ihr Ursprung verschiebt sich in Richtung des plastischen
Fließens.

Die algorithmische Bestimmung der Spannungsantwort erfordert im Rahmen der Plastizitäts-
theorie besondere Überlegungen aufgrund des nichtlinearen Zusammenhangs zwischen Span-
nung und Verzerrung. Für jeden Iterationsschritt auf globaler Ebene (vgl. Abbildung 2.16) ist
die iterative Auswertung der elasto-plastischen Konstitutivbeziehung auf Materialpunktebene
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𝜎1
𝑓 𝝈, 𝒒 > 0
unzulässig

𝜎2
ሶ𝝈trial

(4) ሶ𝝈
ሶ𝝈 = ሶ𝝈trial(2)

(3)

ሶ𝜺pl ≠ 𝟎

𝑓 𝝈, 𝒒 = 0
plastisch

ሶ𝜺pl = 𝟎

(4c)ሶ𝒒ሶ𝝈(1)

𝑓 𝝈, 𝒒 < 0
elastisch

𝜎1

𝜎2
ሶ𝝈
ሶ𝒒

𝜎1

𝜎2
ሶ𝒒

𝜀𝑐𝑝

𝜎𝑐

𝜀𝑡𝑝

𝜎𝑡
ሶ𝝈

A

B

A
B

A

B

A

B

Zustände innerhalb der Fließfläche
(1) elastische Be- bzw. Entlastung

f(σ,q) < 0, γ = 0

Zustände auf der Fließfläche
(2) neutrale Belastung

f(σ,q) = 0, ḟ(σ,q) < 0⇒ γ = 0

(3) elastische Entlastung

f(σ,q) = 0, ḟ(σ,q) = 0 und γ = 0

(4) plastische Belastung
(hier: Verfestigung)

f(σ,q) = 0, ḟ(σ,q) > 0 und γ > 0

Abbildung 2.20.: Visualisierung möglicher Beanspruchungszustände innerhalb der isotropen
Plastizitätstheorie abhängig von den Kuhn-Tucker-Bedingungen (Abb. ange-
lehnt an Gödde (2013))

erforderlich. Neben der konsistenten elasto-plastischen Matrix der Materialmoduli CT ist der
Spannungszustand σ für die globale inkrementell-iterative Berechnung erforderlich. Zur Formu-
lierung des zugehörigen Anfangswertproblems auf Materialpunktebene werden die oben genann-
ten Materialgleichungen und Bedingungen herangezogen (vgl. Abbildung 2.21):

• Evolutionsgleichungen (Hooke‘sches Gesetz, Fließregel, ggf. Verfestigungsgesetz),

• Randbedingungen (Kuhn-Tucker-Bedingungen),

• Anfangsbedingungen (n-ter Schritt).

Numerische Lösung des Anfangswertproblems

Die Evolutionsgleichungen werden durch Anwendung des impliziten Eulerverfahrens inkremen-
tiert. Zu einem Verzerrunginkrement ∆εn werden bei der Lösung der strukturellen Gleich-
gewichtsbedingungen die unbekannten materiellen Zustandsgrößen bestimmt, also der n+1-
te Schritt der plastischen Verzerrung, der Spannung und der inneren Variablen, siehe Abbil-
dung 2.21. Der numerische Return-Mapping-Algorithmus zur Bestimmung dieser Größen ist
in Abbildung 2.22 vereinfacht dargestellt. Aus dem vorangegangenen globalen Verschiebungs-
zuwachs ergibt sich ein Verzerrungsinkrement. Aus der Annahme, dass der plastische Verzer-
rungszuwachs ∆εpn+1 = 0 ist, lässt sich der zugehörige Testzustand mithilfe der Fließbedingung
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Elastische Spannungs-Dehnungsbeziehung𝝈 = 𝑪𝒆: 𝜺 − 𝜺𝐩
Fließbedingung 𝑓 𝝈,𝒒 ≤ 0
Fließregel ሶ𝜺𝒑 = 𝛾 ⋅ 𝒓 𝝈, 𝒒
Verfestigungsgesetz ሶ𝒒 = −𝛾 ⋅ 𝒉 𝝈,𝒒
Kuhn-Tucker- und Konsistenzbedingung𝜸 ≥ 𝟎,𝒇 𝝈,𝒒 ≤ 𝟎,𝜸 ⋅ 𝒇 𝝈,𝒒 = 𝟎
Konsistenzbedingung 𝜸 ⋅ ሶ𝒇 𝝈,𝒒 = 𝟎

𝜺𝑛+1 = 𝜺𝑛+𝚫𝜺𝒏𝝈𝑛+1 = 𝑪𝒆 𝜺𝑛+1− 𝜺𝑛+1𝐩𝜺𝑛+1𝐩 = 𝜺𝑛𝐩 +Δ𝛾 ⋅ 𝒓 𝝈, 𝒒𝒒𝑛+1 = 𝒒𝑛 −Δ𝛾 ⋅ 𝒉 𝝈,𝒒

Evolutionsgleichungen der klassischen ratenunabhängigen Plastizitätstheorie

Inkrementelles Anfangswertproblem (AWP)

𝑓 𝝈𝑛+1,𝒒𝑛+1 ≤ 0Δ𝛾 ≥ 0Δ𝛾 ⋅ 𝑓 𝝈𝑛+1,𝒒𝑛+1 = 0
Abbildung 2.21.: Bestimmungsgleichungen einer ratenunabhängigen Plastizitäts-

theorie und resutlierendes Anfangswertproblem auf Materialpunk-
tebene (∆ε ergibt sich aus dem Verformungszuwachs infolge eines
Lastinkrements) (Simo und Hughes, 2000)

prüfen: Ist die Bedingung f trial
n+1 ≤ 0 erfüllt, handelt es sich um einen elastischen Schritt und der

Testzustand entspricht dem gesuchten Spannungszustand. Ist dies nicht der Fall, ist es notwen-
dig, den plastischen Verzerrungszuwachs iterativ mithilfe der Konsistenzbedingung zu ermitteln.
Die konsistenten, tangentialen Materialmoduli werden durch Inkrementierung der elastischen
Spannungs-Dehnungs-Beziehung in Kombination mit der Fließregel und ggf. der Verfestigungs-
gesetze bestimmt. Als Abbruchkriterium wird bei jeder Iteration geprüft, ob die Fließbedingung
erfüllt bzw. die Residuen ∥R(k)n+1∥ gleich Null sind (numerisch eine Schranke nahe Null unterschrei-
ten). Für eine detaillierte Herleitung dieser Größen sei auf Simo und Hughes (2000) verwiesen.

Anschaulich bezeichnet man das numerische Verfahren als Return-Mapping-Algorithmus, weil
es dazu dient, den initialen Test-Spannungszustand, der sich bei verfestigendem Material zu-
nächst aus dem Bereich der zulässigen Spannungen jenseits der Fließfläche herausbewegt, wie-
der auf die Fließfläche zurück abzubilden (return-mapping). In Abbildung 2.23 ist das Vorge-
hen auf zwei Arten veranschaulicht: Abbildung 2.23a zeigt für eine eindimensionale Spannungs-
Dehnungsbeziehung, dass sich ausgehend von Zustand σn in der Spannungs-Dehnungs-Beziehung
ein Testzustand σtrial

n+1 infolge des Dehnungszuwachses ∆εn einstellt, der oberhalb der Verfesti-
gungsgeraden liegt. Mithilfe des Return-Mapping-Schritts wird der Materialpunkt in den zuläs-
sigen Spannungsbereich, und damit zurück auf die Spannungs-Dehnungs-Linie geholt. Im mehr-
dimensionalen Fall ist der in Abbildung 2.22 beschriebene und in Abbildung 2.23b vereinfacht
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veranschaulichte iterative Algorithmus notwendig, bei dem iterativ der Schnittpunkt zwischen
linearisierter Randbedingung und der Fließbedingung f = 0 gefunden wird.

Return-Mapping-Algorithmus (in jedem Gauß-Punkt)

Testzustand𝑓𝑛+1trial ≤ 0
Δ𝛾 = 0(•)𝑛+1= (•)𝑛+1trial

Gauß-Punkt elastisch

𝑓𝑛+1trial > 0
Iterativer Algorithmus zur 
Ermittlung des 
KonsistenzparametersΔ𝛾 > 0

Gauß-Punkt plastisch

InitialisierungΔ𝛾 (0)= 0• 𝑛+1(0) = (•)𝑛+1trial

Δ𝛾 (𝑘+1) = Δ𝛾 (𝑘)+ ΔΔ𝛾 (𝑘)𝜀𝑛+1𝑝,(𝑘+1) = 𝜀𝑛+1𝑝,(𝑘)+Δ𝜀𝑛+1𝑝,(𝑘)

𝑅𝑛+1(𝑘) = 𝜀𝑛+1𝑝,(𝑘)− 𝜀𝑛𝑝 − Δ𝛾 (𝑘) ⋅ 𝒓 𝝈𝑛+1k , 𝒒𝑛+1k > 0
oder𝑓 𝝈𝑛+1(k) , 𝒒𝑛+1(k) > 0

Überprüfung Residuen & Fließbedingung

Update

k=k+1

(•)𝑛+1= (•)𝑛+1(𝒌) Bestimmung des inkrementellen 
Konsistenzparameters ΔΔ𝛾 (𝑘) und Δ𝜀𝑛+1𝑝, 𝑘

in Abhängigkeit der 
konsistenten (algorithmischen) 

tangentialen Materialmoduli 𝐂𝑻,n+1(k)

nein ja

𝜺𝒏+𝟏𝒑,trial = 𝜺𝑛𝒑𝝈𝑛+1trial = 𝑪𝒆 𝜺𝑛+1− 𝜺𝑛𝒑𝒒𝑛+1trial = 𝒒𝑛𝑓𝑛+1trial = 𝑓 𝝈𝑛+1trial,𝒒𝑛+1trial

Abbildung 2.22.: Schematischer Ablauf des iterativen Return-Mapping-
Algorithmus’ (für Iterationsschritt k)
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Return

mapping

𝜎
𝜎𝑛+1𝑡𝑟𝑖𝑎𝑙

𝜎𝑛+1
𝜎𝑛

𝜀∆𝜀𝑛𝜀𝑛+1𝑃𝜀𝑛+1𝑂 𝜎𝑛+1

𝜎𝑛+1𝑡𝑟𝑖𝑎𝑙

𝜎𝑛+11
𝜎𝑛+1𝑘

𝜎𝑛+1𝑘+1
𝔼𝜎

(a) Visualisierung der Rückabbildung (”Return-
Mapping”) des (Test-)Spannungszustands σtrial

n+1
auf die Fließfläche (1D)

Return

mapping

𝜎
𝜎𝑛+1𝑡𝑟𝑖𝑎𝑙

𝜎𝑛+1
𝜎𝑛

𝜀∆𝜀𝑛𝜀𝑛+1𝑃𝜀𝑛+1𝑂 𝜎𝑛+1

𝜎𝑛+1𝑡𝑟𝑖𝑎𝑙

𝜎𝑛+11
𝜎𝑛+1𝑘

𝜎𝑛+1𝑘+1
𝔼𝜎

(b) Geometrische Interpretation des itera-
tiven Return-Mapping-Algorithmus’
im Spannungsraum (2D, closest point
projection)

Abbildung 2.23.: Visualisierung des Return-Mapping-Algorthimus’ (nach Simo und Hughes
(2000))

2.2.4. Rissmodellierung

Für die numerische Modellierung von Rissen gibt es zwei grundlegend verschiedene Ansätze
in der Literatur. Bei diskreten Rissmodellen gilt es, die geometrische Diskontinuität als solche
durch Trennung der finiten Elemente an der Stelle des Risses zum Beispiel durch Interface-
Elemente oder Anreicherung von Elementen mit zusätzlichen Freiheitsgraden (eXtended Finite
Element Method (XFEM)) abzubilden (Hofstetter, 2006). Bei der Verwendung von Interface-
Elementen muss die Software somit über Algorithmen und Elementtypen verfügen, die eine
adaptive Vernetzung gewährleisten können. Dies hat eine fortwährende Änderung der Topologie
der Diskretisierung zur Folge, und die Rissentwicklung ist auf die Netzlinien bzw. Elementgren-
zen des Modells beschränkt. Dadurch ist es notwendig, den Rissort zumindest näherungsweise
schon vorher zu kennen. Bei der XFEM-Methode wird der Rissverlauf durch Erweiterung die
Formfunktionen des Elements von der zugrundeliegenden Diskretisierung entkoppelt, um so die
Diskontinuität auch innerhalb der Elemente zu realisieren. Diskrete Modelle dieser Art sind seit
den 60er Jahren Gegenstand der Forschung, weisen aber trotz der Optimierung dieser rechen-
leistungsintensiveren Methode dennoch Limitierungen auf. Die robuste Implementierung dieser
Methoden selbst stellt ebenso eine Herausforderung dar wie eine angemessene Modellierung ge-
krümmter Rissformen innerhalb dieser Methoden. (Hofstetter, 2006; de Borst und Verhoosel,
2016)
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Eine grundlegend andere Herangehensweise wird mit der verschmierten Rissmodellierung ver-
folgt, bei der die Diskontinuität über eine gewisse Breite verteilt wird. Darunter fallen sowohl
plastizitäts- als auch schädigungsbasierte Modelle, bei denen die lokale Materialdefinition eine
Entfestigung beschreibt (strain softening). Diese Entfestigung führt, wie bereits im vorange-
gangenen Kapitel angedeutet, zu einer Änderung bzw. zum Verlust des elliptischen Charakters
des zuhörigen, bestimmenden partiellen Differentialgleichsungssystems. Dies bringt u. a. den
Nachteil mit sich, dass die Ergebnisse der FE-Lösung netzabhängig werden. Diese Netzabhän-
gigkeit zu reduzieren oder gar zu vermeiden ist Gegenstand aktueller Forschung. Bei der in
kommerzieller Software häufig implementierten und auch hier verwendeten Methode wird ein
zusätzlicher Längenparameter eingeführt, um die Objektivität bei Verfeinerung des Netzes zu
verbessern oder idealerweise wiederherzustellen. Die Güte der Verbesserung ist abhängig von der
Definition des Parameters, für den es in der Literatur verschiedene Ansätze gibt (Oliver, 1989;
Gödde, 2013; Rots, 1988; Thomée, 2005; Dassault Systèmes, 2021), sowie von der Komplexität
der Problemstellung bzw. Rissentwicklung. Häufig wird der Parameter als Elementeigenschaft
problembezogen definiert. Wie Gödde (2013) zeigte, ist mit einer energiebasierten Definition
eine theoretische Herleitung des Parameters möglich, allerdings ist die Anwendbarkeit je nach
Komplexität des Problems mit Aufwand verbunden und schwierig zu automatisieren. Neben
dieser Art der Regulasierung gibt es in der Literatur Ansätze zur Vermeidung des genannten
Verlusts der Elliptizität bzw. Erhaltung der Wohl-Gestelltheit (well-posedness) des Problems
und damit auch der Netzunabhängigkeit. Dazu zählen Ansätze wie die nicht-lokalen (nonlocal)
oder gradienten-erweiterten Modelle (gradient enhanced plasticity, gradient enhanced damage
models), bei denen zur Abbildung der Diskontinuität die lokale Definition der äquivalenten Deh-
nung durch eine gemittelte Größe ersetzt (nonlocal) oder Gradienten höherer Ordnung ergänzt
werden (gradient enhanced). Phasenfeldmodelle dagegen ersetzen die punktuelle Diskontinui-
tät mit einem finiten Bereich starken Gefälles. de Borst und Verhoosel (2016) zeigte auf, dass
Phasenfeldmodelle und gradienten-erweiterte Modelle eine vergleichbare Charakteristik, damit
jedoch auch ähnlich Nachteile, z. B. in Form einer stärkeren Ausbreitung des Rissbereichs zei-
gen, was die Modelle zur Modellierung eines Einzel-Trennrisses weniger geeignet macht. Dieses
Verhalten kann zwar optimiert werden, dies ist jedoch mit einem erhöhten Rechenaufwand ver-
bunden. Beide Modelle sind in den vergangenen Jahren zunehmend Forschungsgegenstand. (de
Borst und Verhoosel, 2016)

Im nachfolgenden Kapitel 2.2.5 wird jedoch auf die erstgenannte Art der Regularisierung inner-
halb der verschmierten Theorie mithilfe eines Längenparameters im Detail eingegangen. Gödde
(2013) weist die Anwendbarkeit des in Abaqus für Beton und andere quasi-spröde Materialien
implementierten Concrete Damagad Plasticity Models in Kombination mit seinem für Stahlfa-
serbeton entwickelten Regularisierungskonzept nach, dessen Tendenz zu Einzelrissbildung dem
dokumentierten Rissverhalten von Zementestrich gut entspricht. Auch wenn eine Vermeidung
der Nachteile des Strain-Softenings von vornherein erstrebenswert ist, weisen die gradienten-
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basierten Ansätze andere Einschränkungen auf, und sind in kommerzieller Software bislang nicht
standardmäßig implementiert. Somit findet das Konzept nach Gödde (2013) aufgrund seiner
zugänglichen Anwendbarkeit und unmittelbaren Vereinbarkeit mit der verwendeten Software-
Lösung in dieser Arbeit Anwendung. Dies soll eine Verwendung des entwickelten Modells für
auf dieser Arbeit aufbauende Untersuchungen erleichtern. Das zugrunde gelegte Materialmodell
wird in den nachfolgenden Kapiteln im Detail erläutert, nachdem im Folgenden zunächst die
Grundlagen verschmierter Rissmodelle eingeführt werden.

Verschmierte Rissmodellierung

Die Bruchmechanik ist Teil der Kontinuumsmechanik. Zur Beschreibung bruchmechanischer
Prozesse werden Änderungen auf mikroskopischer Ebene durch skalare oder tensorwertige Va-
riablen im Kontinuumsmodell berücksichtigt. Hier liegt eine Ähnlichkeit zur Plastizitätstheorie
vor, bei der ebenfalls der Einfluss der Belastungsgeschichte auf das Kontinuum über innere
Variablen gesteuert wird. Auch wird ebenfalls die Abhängigkeit von der Belastungsgeschichte
durch eine Be- bzw. Entlastungsfunktion ähnlich der Fließbedingung in der Plastizitätstheorie
beschrieben, und auch die Entwicklung der inneren Variablen ist über eine Evolutionsgleichung
ähnlich einer Fließregel gegeben. Die zugehörigen Be- und Entlastungszustände werden über die
Kuhn-Tucker-Bedingungen geregelt. (de Borst, Crisfield et al., 2012)

Neben diesen Parallelen liefern bruchmechanische Konzepte die Möglichkeit, mithilfe von skala-
ren Schädigungsvariablen einen lokalen Steifigkeits- und Festigkeitsverlust spröder Materialien
zu berücksichtigen. Allerdings sind Baumaterialien wie Beton nicht perfekt spröde. Dies mo-
tiviert die Betrachtung von Kohäsionsrissmodellen (cohesive zone): An der Rissspitze existiert
ein Bereich, in dem Mikrorisse entstehen, sowie Porenbildung, -wachstum und -zusammenschluss
stattfinden (siehe Abbildung 2.24 oben). Solange dieser Bereich ausreichend klein ist, können die
dort wirksamen kohäsiven Kräfte in der sogenannten Rissprozesszone (RPZ) vernachlässigt wer-
den, andernfalls sind diese zum Beispiel durch das für Beton und ähnliche Quasi-Sprödwerkstoffe
entwickelte „Fictitious Crack Model“ nach Hillerborg, Modéer und Petersson (1976) zu berück-
sichtigen. Hieraus geht die Entwicklung sogenannter verschmierter Rissmodelle hervor. (de Borst,
Crisfield et al., 2012)

Typischerweise basieren diese verschmierten Rissmodelle auf bruchmechanischen Ansätzen. Die
Ansätze, die in der Literatur am häufigsten Anwendung finden, sind das „Fictitious Crack Mo-
del“ (FCM) nach Hillerborg und das „Crack Band Model“ (CBM) nach Bazant. Über einen
realen Riss können keine Spannungen übertragen werden, ein fiktiver Riss dagegen wird so
definiert, dass bis zu einer bestimmten Rissweite eine Spannungsübertragung weiterhin mög-
lich ist. Nach anfänglicher Mikrorissbildung konzentriert sich der Riss nach Überschreiten der
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Zugfestigkeit in einem räumlich beschränkten (infinitesimal kleinen (Hillerborg) bzw. finiten
(Bazant)) Bereich, der sogenannten Rissprozesszone. In Abbildung 2.24 ist das bruchmechani-
sche Konzept dargestellt. Im ungerissenen Bereich der Zugprobe gilt das Hooke’sche Gesetz als
Spannungs-Dehnungs-Beziehung, im gerissenen Bereich entfestigt das Material nach Erreichen
der Zugfestigkeit ft. In diesem Bereich wird das Verhalten durch eine Spannungs-Rissweiten-
Beziehung beschrieben. Für den in Abbildung 2.24 unten rechts dargestellten, hier linear abfal-
lenden Spannungs-Rissbreitenverlauf gibt es in der Literatur verschiedene funktionale Ansätze.

Alle haben gemeinsam, dass die Fläche unter der Kurve als Materialparameter Gf verstanden
wird. Die Bruchenergie Gf beschreibt die Energie pro Einheitsfläche, die zur vollständigen Sepa-
ration der Rissufer notwendig ist und beschreibt somit eine Materialeigenschaft (Gödde, 2013).
Im Vergleich zum FCM (Hillerborg) wird im CBM (Bazant) ein endliches Rissband anstelle ei-
nes infinitesimalen, fiktiven Risses betrachtet. Das entfestigende Materialverhalten σ(ε) wird in
Abhängigkeit einer über das Rissband konstanten Dehnung εRPZ formuliert und nicht über die
Rissweite w. Über die Breite der Rissprozesszone bRPZ lassen sich die beiden Formulierungen
jedoch weitestgehend ineinander überführen (Gödde, 2013):

εRPZ =
w

bRPZ
. (2.33)

Häufig sind bruchmechanische Problemstellungen durch Betrachtung von Modus I-Rissbildung
erfasst, der reinen Rissöffnung in Richtung der Hauptzugspannung. Schubeinflüsse in Form von
Modus II (Längsscherung) und III (Querscherung) können in der Definition der Bruchenergie
ebenfalls berücksichtigt werden (de Borst, Crisfield et al., 2012), finden in der vorliegenden Ar-
beit aber keine Anwendung.

Der jeweilige bruchmechanische Ansatz wird zur Verwendung innerhalb der FE-Methode in der
Regel in Materialgesetze auf Basis der klassischen Plastizitätstheorie implementiert. Hier werden
inelastische Dehnungen anhand einer Bruchfläche analog zur Fließregel der Plastizitätstheorie
beschrieben. Bei dieser Implementierung ist allerdings darauf zu achten, dass die Netzunab-
hängigkeit des Modells gewahrt bleibt (Hofstetter, 2006; Gödde, 2013). Durch Übertragung des
bruchmechanischen Konzepts Gf in das diskretisierte Kontinuum entsteht eine Abhängigkeit der
Ergebnisse von der Modellierung bzw. insbesondere von den Abmessungen des dann nicht mehr
infinitesimal kleinen Rissbands. Zur Wahrung der Objektivität der Ergebnisse muss sicherge-
stellt werden, dass die volumenspezifische, im diskretisierten Kontinuum dissipierte Energie gf
konsistent zur Bruchenergie des zugrundegelegten bruchmechanischen Konzepts ist. Dies wird
durch Einführung eines sogenannten Regularisierungskonzepts realisiert, bei dem in der Re-
gel die Spannungs-Rissweiten-Beziehung in eine Spannungs-Dehnungs-Beziehung umgewandelt
wird. Dafür wird ein modellierungsabhängiger Parameter, die sog. „charakteristische“ oder „ef-
fektive“ Länge lch eingeführt. Über diese wird die Rissweite des bruchmechanischen Konzepts w
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in die innerhalb der Plastizitätstheorie vorhandene plastische Dehnung εpl überführt:

εpl =
w

lch
. (2.34)

Spannungsübertragender

Riss (Bruchprozesszone)

𝐹

𝐹

𝑤𝑐
𝜎 = 𝑓(𝑤) 𝜎 = 𝑓(𝜀) Spannungs-

verteilung

Rissverteilung

(schematisch)

spannungs-

freier Riss

ungeschädigter

Beton

(a) Fortpflanzung der Bruchprozesszone mit zunehmender Beanspruchung ins Bauteilinnere (wie unter
Biegezugbeanspruchung); Beschreibung des Materialverhaltens nach Hillerborg über eine Spannungs-
Dehnungs-Beziehung außerhalb der Bruch- bzw. Rissprozesszone (RPZ) und über eine Spannungs-
Rissweiten-Beziehung in einem begrenzten Rissbereich innerhalb der RPZ, in dem bis zum Erreichen
der kritischen Rissweite wc auch über den (fiktiven) Riss hinweg noch Spannungen übertragen werden
können (Kessler-Kramer, 2002)

𝑤 𝑓𝑡𝜎

𝜀

𝜎

𝑤𝑤𝑐
𝐺𝑓

ungerissener Beton Kohäsionsriss

+

(b) Erstrecken der RPZ über den gesamten Querschnitt bei einer Zugprobe (schraffiert) und Defintion
der Bruchenergie Gf als Fläche unter der Spannungs-Rissweiten-Kurve (Kessler-Kramer, 2002)

Abbildung 2.24.: Definition eines fiktiven Risses nach Hillerborg

2.2.5. Netzabhängigkeit und Regularisierung

Wie bereits erläutert, wird in der vorliegenden Arbeit das Regularisierungskonzept angewendet,
welches Gödde (2013) für Stahlfaserbeton aus der Definition nach Oliver (1989) entwickelt hat.
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Im Folgenden werden die Grundzüge wiedergegeben und die Verwendung in dieser Arbeit er-
läutert. Dies dient u. a. dazu, diesen Ansatz den implementierten Definitionen in Abaqus und
Ansys in Kapitel 3.1 gegenüberzustellen. Für eine detaillierte Herleitung und Validierung des
Ansatzes sei auf Gödde (2013) verwiesen.

Ansatz nach Gödde (2013)

Der Ansatz nach Gödde (2013) wurde im Gegensatz zu vielen in der Literatur angegebenen
Ansätzen für die charakteristische Länge nicht empirisch und damit problemspezifisch ermittelt,
sondern war motiviert davon, einen Ansatz zu finden, der die folgenden Anforderungen erfüllt:

• Für eine konsistente4 Rissbandausbildung muss lch korrekt bestimmt werden. Korrekt heißt
in diesem Fall, dass eine vollständige Regularisierung und damit eine Objektivität des
Ergebnisses gewährleistet sein muss (keine Netzabhängigkeit)

• Für eine inkonsistente5 Rissbandausbildung ist die Konvergenz gegen die objektive Lösung
bzw. die Lösung des bruchmechanischen Konzepts bei sukzessiver Netzverfeinerung zu
gewährleisten.

• Praktikable Umsetzung des Ansatzes.

Empirisch hergeleitete Definitionen erfüllen diese Anforderungen in der Regel nicht problemun-
abhängig. Auch in kommerziellen Software-Produkten implementierte Definitionen decken diese
Bedingungen nicht ab, wie in Kapitel 3.1 noch gezeigt wird. Das resultiert in einer Einschrän-
kung der Programmsysteme hinsichtlich der Diskretisierung, aber auch hinsichtlich der Wahl des
Elementtyps, wie sich in den Folgekapiteln noch zeigen wird. In den beiden Programmsystemen
Abaqus und Ansys entspricht die charakteristische Länge einer Elementeigenschaft. Das heißt,
die Art der Rissbandausbildung und die Ausdehnung des Rissbands spielen bei der Festlegung
von lch wenn überhaupt eine untergeordnete Rolle und die energetische Konsistenz ist nicht
zwingend gegeben.

Der nachfolgend beschriebene Ansatz wurde durch den von Oliver (1989) inspiriert, der erst-
mals nicht über Empirie, sondern aufbauend auf einer Energiebilanzierung die Problematik der
Netzabhängigkeit zu lösen versucht (Gödde, 2013). Oliver (1989) betrachtet bei seiner Herleitung
allerdings das einzelne finite Element und die jeweiligen Integrationspunkte, was die Anwendung
auf Rissbandausbildungen beschränkt, die sich nur über eine einzelne Elementreihe erstrecken.
Dagegen erweitert Gödde (2013) diesen Ansatz auf die Betrachtung des gesamten Rissbands, da
nur so die oben genannten Anforderungen erfüllt werden können.

4 Voraussetzung: zugrunde liegende diskrete Rissbildung mit unveränderlicher Rissrichtung und Rissbreite;
konstantes Spannungsfeld σx′ ; parallele Rissbandufer Γ s

5 Die von Gödde (2013) definierten Klassifizierungen der möglichen Formen der Rissbandausbildung und die
Auswirkungen auf die Bestimmung von lch können in Kapitel 5.5.5 seiner Arbeit nachgelesen werden. Hier soll
nicht weiter darauf eingegangen, sondern vom einfachsten Fall einer mindestens näherungsweise konsistenten
Rissbandausbildung ausgegangen werden
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Rissbildung im Kontinuum

Bei der Herleitung wird das Fictitious Crack Model (FCM) nach Hillerborg zugrunde gelegt.
Dieses wird zunächst überführt in einen kontinuumsmechanischen Rahmen, das heißt aus der
im FCM betrachteten Rissfläche wird ein Rissbandvolumen (vgl. Abb. 2.25).

FCM – diskrete Verformung Kontinuum - plastische Dehnung

Körper Ω

Ω−
Ω+

𝐺𝑓∗𝑤 > 0

𝑥′𝑦′ 𝑧′
(fiktiver) Riss Γ𝑅𝑖𝑠𝑠

𝑊𝑅𝑖𝑠𝑠 = නΓ𝑅𝑖𝑠𝑠 𝐺𝑓∗𝑑Γ𝑅𝑖𝑠𝑠
𝑥

𝑦
𝑧

Rissbildung als flächenhafter Vorgang

𝐺𝑓∗ = 𝐺𝑓,𝑅𝐵∗
Forderung:

!

Körper Ω

𝑔𝑓∗

𝑥′𝑦′ 𝑧′
𝑏𝑅𝐵

Rissband Ω𝑅𝐵𝜀𝑥′𝑝𝑙 > 0 Γ+Γ−
Rissbildung als volumenhafter Vorgang𝑊𝑅𝐵 = නΩ𝑅𝐵 𝑔𝑓∗𝑑Ω𝑅𝐵

Abbildung 2.25.: Überführung des FCM ins Kontinuum: Kontinuisierung (Gödde,
2013)

Unter der Annahme eines konstanten Spannungsfelds entlang der Rissöffnungsrichtung (vgl.
Abb. 2.25: entsprechend des lokalen Koordinatensystems (x′, y′, z′) im Rissband in x′-Richtung)
wird im Kontinuum aus dem infinitesimal ausgedehnten fiktiven Riss ein Rissband der Breite
bRB zwischen den Rissbandufern Γ− und Γ+. Die Verformungslokalisierung wird überführt in
eine Dehnungslokalisierung im Kontinuum. Die plastischen Dehnungen korrespondieren damit
zur Rissweite bzw. wird die Rissbreite w näherungsweise als Integral der plastischen Dehnungen
in Rissöffnungsrichtung über die Rissbandbreite formuliert:

w(y′, z′, t) =̃∫
Γ+

Γ−
εplx′(x

′, y′, z′, t) dx′ .

Diese kontinuierliche Rissmodellierung stellt für bRB > 0 nur eine Näherung dar. Für bRB → 0

nähert sich der Zustand jedoch immer weiter der diskreten Lösung des FCM an.

Das Rissverhalten wird definiert über ein verformungsabhängiges, nichtlineares Materialverhal-
ten. Dieses kann im Fall des flächenbezogenen FCM durch eine verformungsabhängige Bruchener-
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𝑙𝑐ℎ

FCM

in

der Rissfläche

als

Materialeigenschaft

Kontinuum

im

Rissbandvolumen

als

Modelleigenschaft𝜎𝑥′(𝑤)𝑓𝑐𝑡 𝐺𝑓 𝑤
𝜀𝑝𝑙 = 𝑤𝑙𝑐ℎDefinition: 𝑓𝑐𝑡𝜎𝑥′ 𝜀𝑥′

𝑝𝑙

𝜀𝑥′𝑝𝑙𝑔𝑓 = 𝐺𝑓𝑙𝑐ℎ
Abbildung 2.26.: Überführung des FCM ins Kontinuum: Entfestigungsverhalten

(Gödde, 2013)

gie6 pro Einheitsfläche G∗f(w(y
′, z′, t)) und im Fall des volumenhaften Kontinuums durch eine

dehnungsabhängige Rissenergie7 pro Einheitsvolumen g∗f (ε
pl
x′(x

′, y′, z′, t)) ausgedrückt werden.
Wie in Abbildung 2.26 dargestellt, ist es üblich, das Materialverhalten durch eine Spannungs-
Rissbreiten- bzw. Spannungs-Dehnungs-Beziehung zu formulieren. Die Bruchenergie Gf als Flä-
che unter der Spannungs-Rissbreiten-Beziehung ist eine objektive Materialeigenschaft. Durch
Überführung in einen kontinuumsmechanischen Rahmen entsteht eine Abhängigkeit von der
Modellierung: Die Rissenergie gf ist von der Rissbandausbildung bzw. von der Breite bRB ab-
hängig. Demnach stellt gf im Kontinuum eher eine Modelleigenschaft dar. Um die Objektivität
wiederherzustellen, muss die Spannungs-Dehnungs-Beziehung daher modellierungsabhängig de-
finiert werden. Dazu wird der Parameter der charakteristischen Länge eingeführt:

εplx′ =
w

lch
⇔ lch =

w

εplx′
. (2.35)

Aus der Bedingung heraus, dass die Rissenergie G∗f,RB, die bei einer FE-Berechnung im gesamten
Rissband dissipiert wird, der Bruchenergie des FCM G∗f entsprechen soll

G∗f
!
= G∗f,RB = ∫

Γ+

Γ−
g∗f dx′ (2.36)

6 vgl. Abb. 2.26
G∗f(w = wBruch) = Gf

7 g∗f(εplx′ = εplx′,Bruch) = gf
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und aufgrund der Proportionalität zwischen Rissenergie g∗f und plastischer Dehnung können
Rissenergie und Bruchenergie des FCM analog mithilfe der charakteristischen Länge ins Ver-
hältnis gesetzt werden (für eine detaillierte Herleitung siehe Gödde (2013), Kapitel 5.5.2 bzw.
5.5.7):

lch =
Gf

gf
bzw. lch =

G∗f
g∗f

. (2.37)

Übertragung ins diskretisierte Kontinuum

In Abbildung 2.27 ist beispielhaft an einer Zugprobe veranschaulicht, welche Überlegungen not-
wendig sind, um die obige Beziehung in das Finite-Elemente-Modell zu übertragen: Das FCM
bzw. die im gesamten Riss dissipierte Energie W ∗

Riss (links) ist gleichzusetzen mit der im Konti-
nuum im gesamten Rissband dissipierten Energie W ∗

RB (rechts).

𝑡 = „1“

lRiss
Riss𝐺𝑓∗, 𝑙Riss, 𝑤

𝜎

𝜎𝑊Riss = 𝐺𝑓∗⋅ 𝑙RissFictitious Crack Model

𝑦
𝑥 𝑊RB∗ = konst.

𝑊Riss∗ = 𝑊RB∗ 𝑊RB∗ = konst.
ΓRB = konst.

Fiktiver, energiekonformer Kontinuumszustand𝑊RB∗ = 𝑔𝑓∗ RB⋅ 𝐴RB

𝑊RB∗ = 𝐺𝑓∗ ⋅ 𝑙Riss𝑅𝐵

𝑙𝑐ℎRB = 𝐺𝑓∗𝑔𝑓∗RB = 𝐴𝑅𝐵𝑙Riss𝑅𝐵

𝑥′
𝑦′

RissbandARB𝜀𝑥′pl,RB, 𝑔𝑓∗RB
𝑙RissRB

Γ+
Γ− Γ𝑠Γ𝑠 lch(𝑦′)

Finite-Elemente-Modell

𝑊𝑅𝐵∗ = 𝑔𝑓,𝑖∗ ⋅ ෍𝑗=1𝑛IPRB 𝐴𝑗 ⋅ 𝜀𝑥′,𝑗pl𝜀𝑥′,𝑖pl

𝑙𝑐ℎ,𝑖 = 𝐺𝑓∗𝑔𝑓,𝑖∗

RissbandnIPRB, ARB𝜀𝑥′,𝑖pl , 𝑔𝑓,𝑖∗
Γ+
Γ−

Γ𝑠Γ𝑠

ΓRB =Γ+ ∩ Γ− ∩ Γ𝑠 Ai
𝑥′

𝑦′𝜀𝑥′,𝑖pl , 𝑔𝑓,𝑖∗

Abbildung 2.27.: Berechnungsansatz für lch für den ebenen Fall nach Gödde (2013):
Die dissipierte Energie im Riss des fiktiven Rissmodells (links) ist
mit der im Finite-Elemente-Modell bzw. im Kontinuum im gesam-
ten Rissband dissipierten Energie gleichzusetzen. Im allgemeinen
Fall lässt sich so die charakteristische Länge für jedes Element im
Rissband aus dem Flächenanteil und dem Verhältnis der plasti-
schen Dehnungen ermitteln (Abb. nach Gödde, 2013)

Zur Übertragung auf das Finite-Elemente-Modell muss der Energieanteil, der in jedem Element
bzw. in jedem Integrationspunkt des Rissbands dissipiert wird, für W ∗

RB herangezogen werden
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(siehe Abbildung 2.27 Mitte). Daraus ergibt sich die Berechnungsformel

lch,i =
G∗f
g∗f,i
=

∑
nRB

IP
j=1 Ωj ⋅

εpl
t,j

εpl
t,i

ΓRB
Riss

(2.38)

für die charakteristische Länge lch,i im Integrationspunkt i mit korrespondierender Integrations-
punktfläche Ωi bezogen auf eine äquivalente Rissgeometrie8 ΓRB

Riss (vgl. Abbildung 2.27 für den
ebenen Fall, und Gödde (2013), Kap. 5.5.7 für eine genauere Herleitung der Gleichung). Aus-
gehend von der Proportionalität zwischen plastischer Dehnung εpl

t,i und dissipierter spezifischer
Energie im jeweiligen Integrationspunkt g∗f,i werden in dieser Formel die plastischen Dehnun-
gen εpl

t,i integrationspunktweise ins Verhältnis zueinander gesetzt. Die charakteristische Länge
wird also bestimmt vom Anteil der Energie im jeweiligen Integrationspunkt an der im gesamten
Rissband dissipierten Energie G∗f,RB. Sie soll durch die zugrunde gelegte Energiebetrachtung
zu einer Netzunabhängigkeit der Ergebnisse führen (bei konsistenter Rissbandausbildung) oder
zumindest soll sich so für eine sukzessive Netzverfeinerung der genannte konsistente Energiezu-
stand einstellen (bei inkonsistenter Rissbandausbildung).

Praktische Umsetzung des Ansatzes

Für die Verwendung dieser Formel müssen folgende Angaben bekannt sein bzw. festgelegt wer-
den:

• Identifizierung der Rissbandgeometrie,

• Identifizierung der Rissbandufer,

• Identifizierung der Rissorientierung bzw. Festlegung des Risskoordinatensystems.

Dies erfordert in der Regel Expertenwissen, weshalb eine Automatisierung von Gödde (2013) als
nicht praktikabel erachtet wird. Im Allgemeinen handelt es sich bei der Bestimmung der cha-
rakteristischen Länge daher um einen iterativen Prozess: Berechnung des Modells mit Vorgabe
eines geschätzten Parameters lch, anschließende Ermittlung von lch auf Basis der tatsächlichen
Rissbandausbildung und erneute Berechnung. In den ersten von Gödde (2013) betrachteten Bei-
spielen zur Definition der charakteristischen Länge wurde zunächst ein akademisches Beispiel,
der einaxiale Zugversuch, behandelt. Bei diesem werden gewisse Randbedingungen wie eine
Schwächung des Rissquerschnitts durch Reduzierung der Zugfestigkeit bereits vorgegeben, was
die Identifizierung des Rissbands vorwegnimmt und damit die Ermittlung der charakteristischen
Länge erleichtert. Für den Zugversuch ist diese nach obiger Definition aufgrund des konstanten
Spannungsfelds im Querschnitt und der dadurch exakt abbildbaren diskreten Lösung im Konti-
nuum eindeutig.
8 Jeweils in Abhängigkeit der Rissränderorientierung

3D: äquivalente Rissfläche ΓRB
Riss = ARB

Riss und Integrationspunktvolumen Ωj = Vj ,
2D: äquivalente Risslänge ΓRB

Riss = lRB
Riss und Integrationspunktfläche Ωj = Aj

1D: ΓRB
Riss = 1 [-] und Integrationspunktlänge Ωj = lj
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𝐴RB𝑙Riss RB=𝑏

𝜀𝑥′𝑝𝑙𝑙𝑐ℎRB = Ω𝑅𝐵ΓRissRB ⋅ 𝑛Risse

ℎ
Draufsicht

Ansicht

Γ+Γ−Γ
𝑆

Γ𝑆
Abbildung 2.28.: Veranschaulichung der vereinfachten charakteristischen Länge im

Rissband am Beispiel eines Biegeproblems, wobei die Rissbandele-
mente zur Induzierung der Lokalisierung durch Reduzierung der
Zugfestigkeit geschwächt wurden (Quelle: Ausschnitt aus Abb. 5.25
Gödde, 2013)

Grundsätzlich gestaltet sich die Identifizierung der obigen Randbedingungen bei Beschränkung
auf konsistente Rissbandausbildungen als weitgehend unproblematisch. Im Allgemeinen kann es
jedoch zu einer räumlichen oder sogar variierenden Rissorientierung kommen, bei der zusätzliche
Strategien zur Bestimmung der charakteristischen Länge notwendig sind. Darauf soll hier nicht
im Detail eingegangen, sondern auf Gödde (2013) verwiesen werden. Stattdessen werden im Fol-
genden Besonderheiten bei der Umsetzung in Zusammenhang mit Biegeproblemen erläutert.

Wie in Abbildung 2.28 anhand der größer werdenden dem Riss zugeordneten plastischen Deh-
nungen angedeutet, entstehen bei Biegeproblemen Risse mit über den Querschnitt zunehmender
Breite. Wenn in diesem Fall lch wie oben beschrieben auf Integrationspunktebene bestimmt
wird, enthält das Verhältnis der plastischen Dehnungen einen Einfluss aus Biegung bzw. der
resultierenden Rissbreitenänderung. Entweder müsste in diesem Fall – unter der Voraussetzung
einer konstanten Rissorientierung – das Rissband in Abschnitte gleicher Rissbandbreite (und
hier auch gleicher charakteristischer Länge) eingeteilt werden, um die variierenden Rissbandei-
genschaften über die Höhe zu kompensieren, oder die charakteristische Länge wird vereinfacht
auf Rissbandebene bestimmt:

lRBch =
ARB

lRissRB

. (2.39)
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Dabei wird ausgenutzt, dass die in Abbildung 2.28 dargestellten plastischen Dehnungen parallel
zueinander und nahezu senkrecht zur Dickenrichtung ausgerichtet sind. Somit liegen diese quasi
in der x-y-Ebene, welche wiederum im gesamten Rissband orthogonal auf den Rissbandufern
Γ− und Γ+ steht. Die Rissbandausbildung ergibt sich nach Gödde (2013) damit quasi homogen9

über die Bauteilhöhe, sodass die eigentlich räumliche Rissbandausbildung ohne nennenswerten
Fehler auf die x-y-Ebene reduziert werden kann. Bei konsistenter Rissbandausbildung liefert
diese Definition näherungsweise die exakte Lösung, wie Gödde (2013) an verschiedenen Beispie-
len zeigt. Diese vereinfachte Definition wird in Kapitel 3 aufgegriffen, um den hier definierten
Ansatz mit in kommerzieller Software implementierten Ansätzen zu vergleichen.

Γ−

Γ+

𝐴𝑅𝐵

ሚ𝐼𝑅𝑖𝑠𝑠
𝑅𝐵

y

𝑥

𝜀
𝑥′
𝑝𝑙

𝑥′𝑦′

𝑥′

𝑦′

𝑥′

𝑦′

Abbildung 2.29.: Beispiel für eine variierende Rissrichtung (Gödde, 2013)

Sofern die Voraussetzungen für diese vereinfachte ebene Betrachtung nicht erfüllt sind, oder sich
räumlich gekrümmte Rissbilder ergeben, variiert nicht nur die Rissbreite, sondern auch die Riss-
richtung, sodass in diesem Fall eine entsprechende Einteilung in Bereiche gleicher Rissrichtung
vorgenommen werden muss10 (vgl. Abbildung 2.29). Bei räumlichen Problemen lassen sich Riss-
bandgeometrie und -ausdehnung jedoch schwieriger abschätzen, sodass hier trotz vereinfachter
Definition für die charakteristische Länge eine iterative Berechnung zwingend erforderlich wird.

Gödde (2013) forciert nach Möglichkeit bei seinen Nachrechnungen eine homogene Rissband-

9 homogen bedeutet nach Gödde (2013), dass die charakteristische Länge für jedes Element des Rissbands
gleich ist.

10 Bei der Bereichseinteilung sind weitere Randbedingungen zu berücksichtigen, wie z. B. der Umstand, dass
jeder Bereich mindestens einen Knoten auf jedem der Rissbandränder besitzen sollte. Darauf soll hier jedoch
nicht weiter eingegangen werden, da dies in der vorliegenden Arbeit keine Anwendung findet
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ausbildung , d. h. eine für das gesamte Rissband gültigen Wert für die charakteristische Länge
und orientiert bei räumlichen Biegeproblemen außerdem das FE-Netz an der Rissbildung, um so
eine möglichst gute Regularisierung zu erhalten. Auch hieran ist erkennbar, dass die vorliegen-
de Modellierung nicht ohne Weiteres zur Vorhersage von Rissbildung an beliebigen Geometrien
verwendet werden kann. Für eine realistische Simulation der Rissbildung muss die Rissbandaus-
bildung und Rissrichtung laut Gödde (2013) bereits weitgehend bekannt sein, um den Aufwand
bei der Modellbildung angemessen zu begrenzen.

2.2.6. Materialinstabilität

In der klassischen Plastizitätstheorie, bei der das bereits in Kapitel 2.2.3 angesprochene Dru-
cker’sche Stabilitätspostulat erfüllt ist, ist das Anfangswertproblem wohl-formuliert und seine
Lösung eindeutig. Dieser Fall beinhaltet lediglich eine Verfestigung, und damit eine Vergröße-
rung der Fließfläche.

Im Fall von reißendem Beton unter Zugbeanspruchung wird an der Stelle eines Risses eine Dis-
kontinuität in das Verformungsfeld eingetragen, welche mithilfe der Plastizitätstheorie modelliert
werden kann. Hierbei wird der Riss nicht diskret modelliert, sondern „verschmiert“ in Form der
plastischen Dehnungen abstrahiert. Somit muss jedoch das Materialmodell “tension softening“
beinhalten, um den Riss als Dehnungslokalisierung zu erzeugen. Ein abfallender, entfestigender
Ast in der Spannungs-Dehnungs-Beziehung bzw. ein Zusammenziehen der Fließfläche ist mit
einer negativen Energiedissipation verbunden. Dies verletzt die Drucker’sche Stabilitätshypo-
these. Dadurch verliert das Anfangswertproblem die Eigenschaft der Wohl-Formuliertheit, das
Problem verliert seine Wohlformuliertheit (wird „ill-posed“), und die Eindeutigkeit der Lösung
ist nicht mehr garantiert (Oliver (1989), Lee und Fenves (1998)). Das Materialverhalten wird
bedingt durch den Verlust der positiven Definitheit der tangentialen Materialsteifigkeit im Mate-
rialpunkt instabil. Dies hat nicht zwingend Auswirkungen auf die Stabilität des Gesamtsystems,
allerdings können lokale Instabilitäten zu strukturellen Instabilitäten führen (de Borst, Crisfield
et al., 2012).

Eine zusätzliche Auswirkung der beschriebenen Diskontinuität ist, dass eine Netzabhängigkeit in
das Modell eingetragen wird. Möglichkeiten, die Netzunabhängigkeit sicherzustellen, wurden in
den vorangegangenen Kapiteln bereits erläutert. Hier sei noch einmal darauf hingewiesen, dass
mit der eingebrachten Diskontinuität zur Abbildung eines Risses ebenfalls ein Stabilitätsverlust
des Problems zusammenhängt. Mathematisch kann dies auf einen Verlust der elliptischen Form
des Anfangswertproblems zurückgeführt werden, welche die Eindeutigkeit der Lösung sicher-
stellt. Dieser Stabilitätsverlust wird auch durch Einbringen der charakteristischen Länge nicht
umgangen, sondern lediglich abgeschwächt. Die Uneindeutigkeit der Lösung bleibt. (de Borst,
Crisfield et al., 2012) Daneben steigt auch bei Verwendung einer nicht-assoziierten Fließfläche
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das Risiko für Instabilitäten. In dem im Folgekapitel erläuterten Materialmodell wird eine solche
Fließfläche verwendet. Lee und Fenves (1998) erwähnen dies bereits in ihren Erläuterungen zur
von ihnen entwickelten Fließfläche, das Risiko soll jedoch durch geschickte Wahl der eingehenden
Parameter reduzierbar sein.

In dem in dieser Arbeit verwendeten Materialmodell gibt es demnach mehrere Ursachen für
materielle Instabilitäten, die sich unter Umständen gegenseitig beeinflussen und überlagern, was
eine Identifikation schwieriger macht (Crisfield, 1981; de Borst, 1987). In den nachfolgend be-
schriebenen numerischen Untersuchungen wird an entsprechender Stelle auf Auffälligkeiten in
den Ergebnissen hingewiesen, die auf Materialinstabilitäten zurückzuführen sein könnten, und
diese entsprechend der obigen Ausführungen eingeordnet. Wie u. a. de Borst (1987) und Crisfield
(1981) erläutern, lassen sich Instabilitäten und ihre Ursachen mithilfe von Eigenwertuntersuchun-
gen analog zur Handhabung bei Verzweigungs- und Durchschlagsproblemen bei geometrischer
Nichtlinearität eingrenzen. Treten negative Eigenwerte in einer Berechnung auf11, ist dies ein
Zeichen dafür, dass die positive Definitheit der betrachteten Materialtangente verloren gegangen
ist. Inwiefern dies jedoch auf Materialinstabilitäten, Verzweigungspunkte oder eine physikalisch
tatsächlich vorhandene Instabilität zurückzuführen ist, muss eine genauere Untersuchung der
konkreten Problemstellung z. B. anhand einer Eigenformanalyse zeigen.

Da eine detaillierte Untersuchung im Rahmen dieser Arbeit nicht erfolgt, soll auch hier nicht
tiefer auf die mathematischen Hintergründe von Eigenwertuntersuchungen eingegangen werden.
Inwiefern weitergehende numerische Untersuchungen ggf. auf Basis weiterer Versuchsdaten sinn-
voll erscheinen, wird an entsprechender Stelle in den Folgekapiteln aufgezeigt.

2.2.7. Umsetzung innerhalb kommerzieller Software

In vielen kommerziellen FE-Software-Produkten sind bereits Materialmodelle zur Abbildung von
Verbundwerkstoffen wie Beton implementiert. Für die in dieser Arbeit angestrebte Modellierung
von schwimmendem Estrich mithilfe verschmierter Rissmodelle kommen sowohl Abaqus, wie
auch Ansys oder vergleichbare Programmsysteme infrage. Da vor allem eine Sicherstellung der
Netzunabhängigkeit mithilfe der von Gödde (2013) vorgestellten Herangehensweise angestrebt
wird, und deren Anwendbarkeit bereits in Abaqus nachgewiesen ist, wird auch in der vorliegenden
Arbeit vor allem Abaqus verwendet. Einige vergleichende Untersuchungen zur Netzabhängigkeit
wurden jedoch auch mit Ansys durchgeführt, sodass in den folgenden Kapiteln auch auf das
dort verwendete Modell eingegangen wird. Im Folgenden wird das in Abaqus implementierte
Modell im Detail erläutert und auf wesentliche Unterschiede zu Ansys wird an entsprechender
Stelle eingegangen.

11 ein Null-Eigenwert ist aufgrund numerischer Rundung nicht möglich, daher können nur negative Eigenwerte
nahe Null identifiziert werden
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Conrete Damaged Plasticity (CDP)

Das in Abaqus implementierte Materialmodell Concrete Damaged Plasticity (CDP) ist für die
Modellierung von Stahlbeton geeignet, kann aber auch für Stahlfaser- oder unbewehrten Beton
eingesetzt werden (vgl. Dassault Systèmes, 2021; Gödde, 2013). Die maßgebenden Versagens-
kriterien sind Brechen unter Druck und Reißen unter Zug. Im CDP-Modell werden eine lineare
Elastizitätstheorie mit der Option für skalare, isotrope Schädigung und eine Plastizitätstheorie
mit isotroper Ver- bzw. Entfestigung für Druck und Zug kombiniert, um das inelastische Ver-
halten von Beton und anderen Quasi-Sprödwerkstoffen zu beschreiben. Grundsätzlich soll das
Modell für monotone, zyklische und auch dynamische Belastungen geeignet sein. In diesem Zu-
sammenhang würde auch die Option auf „damage recovery“, d.h. ein Modellieren des Schließens
von Rissen, bestehen. In der vorliegenden Arbeit wird eine Reduzierung der Steifigkeit infolge
Schädigung jedoch nicht weiter berücksichtigt, und auch zyklische Belastungen oder damage
recovery finden demnach keine Anwendung.

Das Modell bzw. insbesondere die Fließfläche basiert auf den Veröffentlichungen von Lee und
Fenves (1998) und Lubliner et al. (1989). Die Fließ- bzw. Bruchfläche wird beschrieben durch

f(σ, ε̃pl) =
1

1 − α
⋅ [q − 3α ⋅ p + β(ε̃pl) ⋅ ⟨ˆ̄σmax⟩ − γ̌ ⋅ ⟨−ˆ̄σmax⟩] − σC(ε̃

pl
) ≤ 0 (2.40)

mit

α =
Fbc0 − 1

2Fbc0 − 1
, α ∈ [0,0.5]

β =
σ̄c(ε̃

pl
c )

σ̄t(ε̃
pl
t )
(1 − α) − (1 + α)

γ̌ =
2(1 −Kc)

2Kc − 1

Fbc0 =
σb0
σc0
= konstant , default: Fbc0 = 1.16

Kc =
q̄ZM

q̄DM
=
q̄(p̄, θ̄ = 0)

q̄(p̄, θ̄ = 60)
= konstant , default: Kc =

2

3
, Kc ∈ [0.5,1]

ˆ̄σmax = maximale Hauptspannung

σb0 = initiale äquibiaxiale Druckspannung

σc0 = initiale uniaxiale Druckspannung

σ̄c, σ̄t = uniaxiale Druck- und Zugspannung

mit Kc als Verhältniswert zwischen dem Wert der äquivalenten von-Mises-Spannung q auf dem
Zugmeridian qZM und dem Wert auf dem Druckmeridian qDM bei initialem Bruchniveau, wobei
σ̂max < 0 gilt. Die hydrostatische Druckspannung p und die äquivalente von-Mises-Spannung q
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sind als Spannungsinvarianten definiert zu:

p̄ = −
1

3
trace(σ̄) (2.41)

q̄ =

√
3

2
S̄ ∶ S̄ mit S = σ + pI (2.42)

mit dem Einheitstensor I, dem deviatorischen Teil des Spannungstensors S̄ und der Macauly-
Klammer definiert als

⟨x⟩ =
1

2
(∣x∣ + x)

zur Modellierung unterschiedlicher Formen der Fließfläche für Zug- und Druckbeanspruchung
(β-Term nur bei Zug, γ̌-Term nur bei reinem Druck aktiv). Der Querstrich ¯(●) soll bei berück-
sichtigtem Schädigungseinfluss effektive Größen kennzeichnen:

σ̄ =
σ

(1 − d)
= Cel

0 (ε − ε̃
pl
) , (2.43)

mit Cel
0 als ungeschädigte Anfangssteifigkeit. In der vorliegenden Arbeit werden die Schädi-

gungsparameter d = [dc, dt]
T weder im Zug- noch Druckbereich berücksichtigt, sodass die Un-

terscheidung nach effektiven Größen vernachlässigt werden kann. Die Form der Fließfläche kann
Abbildung 2.30 entnommen werden.

ത𝜎𝑐

ത𝜎1ത𝜎𝑡ത𝜎𝑡𝑡
ത𝜎2ത𝜎𝑡ത𝜎𝑐

11 − 𝛼 𝑞 − 3 ⋅ 𝛼 ⋅ 𝑝 − 𝜎𝑐 = 0

11 − 𝛼 𝑞 − 3 ⋅ 𝛼 ⋅ 𝑝 + 𝛽 ⋅ ത𝜎3 − 𝜎𝑐 = 0

ത𝜎𝑐𝑐
Abbildung 2.30.: Visualisierung der Fließfläche des Concrete Damaged Plasticity

Modells (ebener Spannungszustand) (Dassault Systèmes, 2021)
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Die Evolution der plastischen Verzerrungen, und damit die Rissevolution, ist definiert über das
plastische Potential

H(σ) = −p tan(ψpq) +
√
(εσt0 tan(ψpq))2 + q2 (2.44)

mit

σt0 = initiale Zugfließ- bzw. Bruchspannung,

ε = Exzentrizität (keine mechanische Bedeutung, dient der numerischen Stabilität),

ψpq = Dilatanzwinkel (Maß für die Dilatanz, d.h. den Anteil der plastischen Volumenänderung

infolge von Schervorgängen im Beton an der plastischen Gesamtverformungsänderung) .

Die Evolutionsgleichung der plastischen Verzerrungen ergibt sich daraus (analog einer Fließregel)
zu

ε̇pl = γ
∂H(σ̄)

∂σ̄
(2.45)

mit γ als plastischem Multiplikator (Konsistenzparameter). Die nicht-assoziierte Plastizität in-
folge der Verwendung von H anstelle von f für die Definition der plastischen Verzerrungsrate
hat den Verlust der Symmetrie des zu lösenden Gleichungssystems zur Folge.

Ver- und Entfestigungsgesetz

Das isotrope Aufweiten bzw. Zusammenziehen der Fließfläche wird durch die für Druck und Zug
unabhängigen Ver- bzw. Entfestigungsparameter, die sog. äquivalenten, plastischen Verzerrun-
gen, gesteuert:

ε̃pl =

⎡
⎢
⎢
⎢
⎢
⎣

ε̃plc

ε̃plt

⎤
⎥
⎥
⎥
⎥
⎦

(2.46)

In Abbildung 2.31 sind die einaxialen Spannungs-Dehnungs-Beziehungen für den Druck- und
Zugbereich dargestellt. Diese lassen sich in eine Beziehung zwischen Spannung und plastischer
Dehnung umformen, die letztendlich die Evolution der inneren Variablen ε̃plc (Druck) und ε̃plt
(Zug) steuern. Diese sind definiert über

˙̃εplt = r ( ˆ̄σ)
ˆ̇εplmax , (2.47)

˙̃εplc = −(1 − r ( ˆ̄σ)) ˆ̇ε
pl
min (2.48)

mit r ( ˆ̄σ) =
∑

3
i=1⟨ ˆ̄σi⟩
∑

3
i=1 ∣ ˆ̄σi∣

(2.49)

mit ˆ̇εplmin und ˆ̇εplmax als der kleinste (ˆ̇εpl3 ) bzw. größte Eigenwert (ˆ̇εpl1 ) des Tensors der plastischen
Verzerrungsrate ε̇pl. Im einaxialen Fall entspricht die plastische Verzerrungsrate der äquivalenten
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plastischen Verzerrungsrate:

˙̃εplt = ε̇
pl
11 einaxialer Zug , (2.50)

˙̃εplc = ε̇
pl
11 einaxialer Druck . (2.51)

Dies lässt sich in folgender Evolutionsgleichung zusammenfassen:

˙̃εpl =

⎡
⎢
⎢
⎢
⎢
⎣

ε̃plc

ε̃plt

⎤
⎥
⎥
⎥
⎥
⎦

T

= ĥ ( ˆ̄σ, ε̃pl) ⋅ ˆ̇εpl (2.52)

= ĥ ( ˆ̄σ, ε̃pl) =

⎡
⎢
⎢
⎢
⎢
⎣

r ( ˆ̄σ) 0 0

0 0 −(1 − r ( ˆ̄σ))

⎤
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ˆ̇ε1
ˆ̇ε2
ˆ̇ε3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Der genaue funktionale Zusammenhang für das einaxiale Verhalten wie in Abbildung 2.31 ver-
anschaulicht, lässt sich über Wertepaare σ(ε̃pl) explizit vorgeben.

𝜎𝑡
𝜎𝑡0

𝜀𝑐

𝜎𝑐
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(1 − 𝑑𝑐)𝐸0 𝐸0
(1 − 𝑑𝑡)𝐸0

(a) Druck

𝜎𝑡
𝜎𝑡0

𝜀𝑐

𝜎𝑐
𝜎𝑐0

ǁ𝜀𝑐𝑝𝑙

𝜎𝑐𝑢

𝜀𝑐𝑒𝑙 𝜀𝑡𝑒𝑙ǁ𝜀𝑡𝑝𝑙 𝜀𝑡
𝐸0

(1 − 𝑑𝑐)𝐸0 𝐸0
(1 − 𝑑𝑡)𝐸0

(b) Zug

Abbildung 2.31.: Ver- bzw. Entfestigungsfunktionen des CDP-Modells für Druck und Zug (Das-
sault Systèmes, 2021)

In Abbildung 2.32 ist der Einfluss der Entfestigung auf die Fließfläche für den Zug- und Druck-
bereich visualisiert. Eine Entfestigung des Zugbereichs (weiße Punkte A und B) führt zum Zu-
sammenziehen des positiven Spannungsbereichs, hat jedoch auf den reinen Druckbereich keinen
Einfluss. Eine Entfestigung im Druckbereich (ausgefüllte Punkte A und B) führt zum Zusammen-
ziehen des negativen Spannungsbereichs, hat aber auf den reinen Zugbereich keinen Einfluss.Für
Informationen zum Einfluss der übrigen Modell- und Materialparameter des CDP-Modells sei
zusätzlich zur Dokumentation (Dassault Systèmes, 2021) auf Gödde (2013) verwiesen, der den
Wertebereich einiger Parameter insbesondere im Hinblick auf Stahlfaserbeton näher untersucht
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𝜎𝑡
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Abbildung 2.32.: CDP: Einfluss von Ver- bzw. Entfestigung auf die Fließfläche (nach
Gödde (2013))

hat. Wenn nicht anders angegeben, werden im folgenden die von Abaqus vordefinierten Stan-
dardwerte verwendet.

In dem beschriebenen Modell kann der Ansatz nach Gödde (2013) zur Sicherstellung der Netz-
unabhängigkeit bei den in dieser Arbeit durchgeführten Untersuchungen leicht berücksichtigt
werden. Zur Definition Entfestigungsverhaltens wird im Programm zwischen den Optionen

• „displacement“ (Vorgabe einer σt-w-Beziehung und interne Umrechnung in σt-εplt -Beziehung
durch Abaqus),

• „strain“ (direkte Vorgabe einer σt-εplt -Beziehung) und

• „Gfi“ (Vorgabe einer Bruchenergie bei linear abfallender Enfestigung)

unterschieden. Bei Verwendung der „strain“-Option kann der Ansatz nach Gödde (2013) nach
vorheriger Umrechnung der materialspezifischen Spannungs-Rissweiten-Beziehung in eine Spannungs-
Dehnungs-Beziehung mithilfe der hergeleiteten charakteristischen Länge in Abaqus vorgegeben
werden. Für das CDP-Modell existiert auch eine Abaqus-interne Definition der charakteristi-
schen Länge, die bei Wahl der Option „displacement“ oder „Gfi“ zur Anwendung kommt. Wie
in diesem Fall die charakteristische Länge definiert ist und welchen Einfluss das auf die Ergeb-
nisse hat, wird im Verlauf der Arbeit näher untersucht.
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2.3. Zusammenfassung

Für Estrich wie Beton ist die maßgebende Versagensart Rissbildung. Diese wird bei schwimmen-
dem Einbau durch den weichen Untergrund beeinflusst. Daneben können Eigenspannungen und
Vorverformungen aus der Erhärtungsphase infolge Schwinden eine Rolle spielen. Zur numerischen
Untersuchung des Rissverhaltens von schwimmendem Estrich wird ein in Abaqus implementier-
tes, verschmiertes Rissmodell verwendet (CDP-Modell), welches auf der hier in Grundzügen vor-
gestellten Plastizitätstheorie basiert. Zur Lösung des durch Materialnichtlinearität entstehenden
nichtlinearen Randwertproblems wird nicht nur die Newton-Raphson-Methode verwendet, son-
dern bei der Berechnung des Nachbruchbereich sind Pfadverfolgungsalgorithmen erforderlich. In
diesem Fall wird die in Abaqus implementierte Variante des Bogenlängenverfahrens nach Riks
verwendet. Bei einem wie hier angewendeten verschmierten Rissmodell können Materialinstabi-
litäten auftreten, vor allem ist die Objektivität der Lösung unabhängig vom Vernetzungsgrad
sicherzustellen. Dafür wird der Ansatz nach Gödde (2013) genutzt. Vor diesem Hintergrund
werden im Folgenden zunächst einige grundlegende, numerische Voruntersuchungen vorgestellt,
die die Eignung des Modells und die Besonderheiten, die bei der Verwendung zu beachten sind,
veranschaulichen sollen.

69





3. Strukturmodellierung

Wie in Kapitel 2.2.5 bereits dargelegt, wird für verschmierte Rissmodelle häufig ein Modellpara-
meter lch eingeführt, um die in diesen Modellansätzen enthaltene Netzabhängigkeit abzuschwä-
chen bzw. zu korrigieren. Am Zugversuch, einem einfachen akademischen Beispiel, welches einen
zentralen Mechanismus bei der Rissentstehung beschreibt, soll der Einfluss dieses Parameters
veranschaulicht werden. Da es sich bei den späteren Versagensmechanismen um Biegeprobleme
handelt, soll darauf aufbauend auch am Biegezugversuch bzw. einigen an Estrich erfassten Mess-
daten das Materialmodell bzw. der Modellparameter näher betrachtet werden.

Bei der Modellierung des Aufschüsselns und anschließenden Ablegens unter Belastung gibt es
neben der Materialnichtlinearität vor allem infolge der Rissbildung ein nichtlineares Kontakt-
Problem zwischen Dämmstoff und Estrich. Dieses wird über ein Federmodell realisiert. Hierauf
wird in Kapitel 3.2 genauer eingegangen, ebenso wie auf die experimentelle Erfassung der Dämm-
bzw. Federsteifigkeit.

3.1. Voruntersuchungen zur Netzabhängigkeit

In den folgenden Kapiteln werden zwei verschmierte Rissmodelle, die in den FE-Programmen
Abaqus und Ansys implementiert sind, im Hinblick auf ihre Netzabhängigkeit bzw. deren De-
finition der charakteristischen Länge näher untersucht:

• Concrete Damaged Plasticity Model (Abaqus),

• Menetrey-Willam Model (Ansys).

Das Concrete Damaged Plasticity (CDP) Model in Abaqus verwendet als bruchmechanischen
Ansatz das Fictitious Crack Model (FCM) nach Hillerborg. Im Menetrey-Willam (MW) Model
in Ansys wird hingegen das Crack Band Model (CBM) nach Bazant verwendet. Wie bereits
in Kapitel 2.2.4 erläutert, lassen sich diese Modellvorstellungen jedoch ineinander überführen,
sodass ein Vergleich der beiden Modelle Software-übergreifend möglich ist.

Für die hier betrachtete Simulation eines zentrischen Zugversuchs spielt der plastizitätstheo-
retische Rahmen (Fließfläche, Fließregel, Verfestigungsgesetz im Druckbereich und zugehörige
Parameter) eine untergeordnete Rolle, weshalb hier auf die Unterschiede in den beiden betrach-
teten Modellen nicht grundlegend eingegangen wird. Zur Definition des Entfestigungsverhaltens
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3. Strukturmodellierung

stehen im MW-Modell nur die Optionen einer linearen oder exponentiellen Entfestigung zur
Auswahl. Im CDP-Modell kann ein beliebiger Entfestigungsverlauf durch tabellarische Eingabe
von Wertepaaren vorgegeben werden. Zwischenwerte werden linear interpoliert. Die Definitionen
für die „effektive“ oder „charakteristische“ Länge lch der beiden genannten Programmsysteme
werden dem Ansatz nach Gödde (2013) gegenübergestellt.

Definitionen der charakteristischen Länge

Die „effektive Elementlänge“ soll laut Ansys-Dokumentation Ansys Inc, 2021 eine Netzabhän-
gigkeit des entfestigenden Materialverhaltens verhindern. Dieser Parameter wird dimensions-
und integrationstyp-abhängig für jeden Integrationspunkt definiert:

lch =
ndim
√
ΩIP (3.1)

wobei ΩIP dem Integrationspunktvolumen und ndim der Elementdimension entspricht. Abhän-
gig von der Dimension d entspräche ΩIP einem Volumen (ndim = 3), einer Fläche (ndim = 2) oder
einer Länge (ndim = 1).

In der Abaqus-Dokumentation steht zur Definition der charakteristischen Länge (Dassault Sys-
tèmes, 2021):

„The characteristic crack length is based on the element geometry and formulation:
it is a typical length of a line across an element for a first-order element; it is half of
the same typical length for a second-order element. “

Eine exakte Definition dieser typischen Länge liefert die Dokumentation darüber hinaus nicht.
Aus dieser Formulierung geht lediglich hervor, dass die Elementgeometrie und -formulierung eine
Rolle spielt und sich die Definition für Elemente 1. und 2. Ordnung zusätzlich um den Faktor
2 unterscheiden. Es wird darauf hingewiesen, dass die Form der Elemente möglichst rechteckig
sein und große Seitenverhältnisse vermieden werden sollten. Durch eine Benutzer-Subroutine be-
steht die Möglichkeit, sich die verwendete charakteristische Länge für jeden Integrationspunkt
ausgeben zu lassen. Dabei wird deutlich, dass der Wert bei Elementen zweiter Ordnung auch in-
tegrationspunktabhängig definiert zu sein scheint, was aus der obigen Formulierung nicht direkt
erkennbar ist. Die R&D-Abteilung von Abaqus ließ auf Nachfrage wissen, dass die genaue De-
finition der charakteristischen Länge nicht bekannt gegeben werde. In der Dokumentation wird
nicht darauf eingegangen, welche Einschränkungen es im Hinblick auf die Netzabhängigkeit bei
der Modellierung gibt.

Auf Basis einiger Variantenuntersuchungen1 verschiedener Elementtypen und Randbedingungen
und durch Vergleich mit der Definition in Ansys wird folgende Definition für die in Abaqus
1 Auf einige wird im weiteren Verlauf des Kapitels eingegangen, für weitere Untersuchungen sei auf Brokbals

(2021) verwiesen.
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3.1. Voruntersuchungen zur Netzabhängigkeit

verwendete charakteristische Länge angenommen. In dieser Form wäre sie auch konsistent zur
Angabe des Faktors 1

2 je nach Elementordnung in der Dokumentation:

lch,i =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ndim
√
nIP ⋅Ωi für Elemente 1. Ordnung

1
2 ⋅

ndim
√
nIP ⋅Ωi für Elemente 2. Ordnung

(3.2)

mit:
ndim - geometrische Dimension des Elements,
Ωi - Integrationspunktvolumen/-fläche/-länge des Integrationspunkts i,
nIP - Anzahl der Integrationspunkte je Element,

Tabelle 3.1 zeigt, wie sich die charakteristische Länge als Elementeigenschaft für verschiedene
Integrationsmethoden in Ansys bzw. Abaqus berechnet.

Im Ansatz nach Gödde (2013) ist lch keine Elementeigenschaft, da das gesamte Rissband zur
Bestimmung der charakteristischen Länge betrachtet werden muss. Aus Gleichung (2.38) kann
die Definition nach Gödde (2013) für den ebenen Fall abgeleitet werden:

lch,i =
∑
nRB

IP
j=1 Ωj ⋅

εpl
t,j

εpl
t,i

lRB
Riss

Diese Definition entspricht für den Zugversuch bei konstantem Spannungsfeld und konsistenter
Rissbandausbildung der vereinfachten Definition nach Gleichung (2.39):

lch,RB =
ARB

lRB
Riss

.

3.1.1. Zentrischer Zug

Die in Abbildung 3.1 dargestellte ebene Zugprobe mit konstantem Querschnitt wird – in Er-
gänzung ähnlicher Voruntersuchungen in Gödde (2013) – zur Überprüfung der Wirkungsweise
der verschiedenen Ansätze für den Parameter der charakteristischen Länge herangezogen. Für
diesen Fall ist nach Abbau der Spannungen und vollständigem Bruch der Probe eine eindeutige
Zuordnung der Differenzverformung der Rissbandufer zu einer abgebildeten äquivalenten Riss-
breite möglich. Um eine Lokalisierung des Rissbands zu bewirken, muss das Material in einer
Elementreihe geschwächt bzw. in den übrigen Elementen die Zugfestigkeit etwas heraufgesetzt
werden.

Für die Diskretisierung wird ein Elementraster von 4×12 quadratischen Elementen gewählt. Für
das konkrete Beispiel mit den Elementabmessungen a = b = 10 mm ergeben sich die charakteristi-
schen Längen entsprechend der Tabelle 3.1 bei Elementen erster Ordnung einheitlich für alle In-
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3. Strukturmodellierung

Tabelle 3.1.: Charakteristische Länge in Abhängigkeit des Integrationsschemas und der Element-
ordnung für den ebenen Fall

Anzahl IP nIP Elementtypen lch in Ansys lch in Abaqus

𝑙𝑥
𝑙𝑦2 x 2

(1. Ordnung, 1
2 ⋅

2
√
AElem

2
√
AElem

voll
integriert)

𝑙𝑥
𝑙𝑦1

(1. Ordnung, 2
√
AElem

2
√
AElem

reduziert
integriert)

1 2

3 4

5

6 9 7

8

𝑙𝑥
𝑙𝑦3 x 3

(2. Ordnung, lch,1−4 = 5
18 ⋅
√
AElem lch,1−4 = 5

12 ⋅
√
AElem

voll lch,5−8 =
√
10
9 ⋅
√
AElem lch,5−8 =

√
10
6 ⋅
√
AElem

integriert) lch,9 =
4
9 ⋅
√
AElem lch,9 =

2
3 ⋅
√
AElem

𝑙𝑥
𝑙𝑦2 x 2

(2. Ordnung, 1
2 ⋅

2
√
AElem

1
2

2
√
AElem

reduziert
integriert)

tegrationspunkte zu 5 oder 10 mm, bei quadratischen voll integrierten Elementen variiert der Pa-
rameter über das Element entsprechend der angegebenen Integrationpunktlage. Für den Ansatz
nach Gödde (2013) berechnet sich der Wert Elementtyp- und Integrationsschema-unabhängig
aufgrund der konsistenten, homogenen Rissbandausbildung und des konstanten Spannungsfelds:

lexakt
ch,Gödde = l

vereinf
ch,Gödde = 10 mm

Materialmodell: Entfestigungsverhalten

Das Nachrisstragverhalten wird für das Beispiel über eine linear fallende Spannungs-Dehnungs-
bzw. Spannungs-Rissbreiten-Beziehung vorgegeben, die über die Parameter der Zugfestigkeit ft
und einer Restspannung ftr gesteuert wird (vgl. Abbildung 3.2). Der Wert der materialspezifi-
schen Bruchenergie geht hier nur indirekt als Fläche unter der Kurve ein.
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3.1. Voruntersuchungen zur Netzabhängigkeit𝑝, 𝑢/2𝑡 =
10 mm

𝑝, 𝑢/2
𝑤

𝑏 = 40 𝑚𝑚

𝑙=120
𝑚𝑚

𝑢/2𝑡 = 10 mm

𝑢/2

𝑤

𝑏 = 40 mm

𝑙=120
 m

m

Randbedingungen:

• Abmessungen: b = 40 mm,
l = 120 mm, t = 10 mm

• E-Modul: E = 30.000 N/mm2

• Querdehnung: ν = 0

• eingeprägte Maximalverformung
u = 1 mm

• volle Zugfestigkeit (grau):
fct,voll = 5/0,9 ≈ 5,56 N/mm2

• reduzierte Zugfestigkeit (farbig):
fct = 5 N/mm2

• Diskretisierung: quadratische Elemente
im Raster 4x12

Abbildung 3.1.: Zentrische Zugprobe: System und Randbedingungen

𝜎

𝜀𝑝𝑙ftr
ft

Abbildung 3.2.: Lineare Entfestigung unter Zug, wobei im numerischen Modell eine Restspan-
nung von ftr nach vollständiger Entfestigung zurückbleibt (numerische Stabili-
tät)

In Abaqus wird das Entfestigungsverhalten über Wertepaare aus Spannung und Rissweite, bzw.
Spannung und plastischer Dehnung (bei vorheriger Umrechnung aus der Rissweite) beliebig vor-
gegeben, in Ansys kann der Benutzer für das MW-Modell zwischen linearer und exponentieller
Entfestigung entscheiden. Wie aus der Ansys-Dokumentation bei Betrachtung der zugehörigen
Formeln auffällt (ANSYS Inc., 2021, 2021), werden bei der Verwendung des linearen Entfesti-
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3. Strukturmodellierung

gungsverhaltens keine Maßnahmen gegen Netzabhängigkeit getroffen. Die charakteristische Län-
ge geht hier gar nicht ein. Um eine Netzabhängigkeit zu verhindern, muss der Benutzer in jedem
Fall selbst die Spannungs-Dehnungs-Beziehung entsprechend bei Netzverfeinerung mithilfe eines
Modell-Parameters modifizieren.

In der folgenden Vergleichsrechnung2 wurde das Netz nicht variiert, sondern mit der analyti-
schen Lösung verglichen. Bei den Ansys-Rechnungen wurde jeweils die charakteristische Länge
von Hand nach Gleichung (3.1) berechnet und die Spannungs-Dehnungs-Beziehung entsprechend
über ε = w

lch
modifiziert vorgegeben. Somit wird für die drei betrachteten Ansätze der charakte-

ristischen Länge wie folgt vorgegangen:

(i) Ansatz nach Ansys: Modifizierung des linearen Entfestigungsgesetzes mithilfe von Glei-
chung (3.1),

(ii) Ansatz nach Abaqus: Vorgabe einer Spannungs-Rissweiten-Beziehung (interne Anwendung
der implementierten Definition der charakteristische Länge),

(iii) Ansatz aus der Literatur nach Gödde (2013): Vorgabe einer Spannungs-Dehnungs-Beziehung
(in Abaqus) nach Umrechnung mithilfe von Gleichung (3.1).

Vergleich der betrachteten Ansätze

In Abbildung 3.3a ist die Kraft-Verformungslinie für 4-knotige Elemente mit vollständiger In-
tegration im Vergleich zur analytischen Lösung dargestellt. Die analytische Lösung leitet sich
aus der vorgegebenen Spannungs-Rissweiten- bzw. -Dehnungs-Beziehung ab (siehe Abb. 3.2).
Die Verschiebung u entspricht der eingeprägten Verformung, die Zugkraft F den aufsummierten
Auflagerkräften am Probenende. Die charakteristische Länge für ein Element mit den Abmes-
sungen 10 mm x 10 mm beträgt nach ANSYS für jeden Integrationspunkt lch = 5 mm, Abaqus
kommt ebenso wie Gödde (2013) auf eine charakteristische Länge von lch = 10 mm je Integrati-
onspunkt.

Es wird deutlich, dass sich der Faktor 2, um den sich die charakteristischen Längen un terschei-
den, im Ergebnis widerspiegelt: Die Ergebnisse aus Abaqus liefern die exakte Lösung, die sich für
den Ansatz nach Gödde (2013) auch für andere Elementabmessungen und -formen nicht ändert,
solange das Gesamtrissband gleich bleibt. Das Ergebnis aus Ansys hingegen zeigt, dass die für
einen vollständigen Bruch notwendige Bruchenergie, also die Fläche unter der Kurve, um den
Faktor 2 überschätzt wird. Deshalb kann bei einer Verformung von u = 1 mm noch die Hälfte
der maximalen Zugkraft übertragen werden, während die Probe bei dieser Ausdehnung bereits
vollständig gebrochen sein müsste.

Da die Ansätze nach Gödde (2013) und Abaqus für Elemente erster Ordnung unabhängig von
der Integrationsordnung das gleiche lch liefern, ändert sich der Wert der charakteristischen Länge
2 mit Brokbals, 2021 entwickelt
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Abbildung 3.3.: Zugversuch: Kraft-Verformungs-Linie, 2D mit 4 Knoten

0 0.2 0.4 0.6 0.8 1
0

500

1,000

1,500

2,000

Verschiebung u [mm]

Z
ug

kr
af

t
F

[N
]

Ansys
Abaqus/Gödde
analytisch

(a) vollständig integriert

0 0.2 0.4 0.6 0.8 1
0

500

1,000

1,500

2,000

Verschiebung u [mm]

Z
ug

kr
af

t
F

[N
]

Ansys
Abaqus/Gödde
analytisch

(b) reduziert integriert

Abbildung 3.4.: Zugversuch: Kraft-Verformungs-Linie, Verformung ermittelt aus Dehnungen
(gemittelt über alle IP), 2D mit 4 Knoten

bei Verwendung reduziert integrierter Elemente nicht. Für den Ansys-Ansatz vergrößert sich die
dem Integrationspunkt zugeordnete Fläche bei reduzierter Integration und die charakteristische
Länge beträgt nun ebenfalls lch = 10 mm. Die Ergebnisse für diese Integrationsordnung sind in
Abbildung 3.3b dargestellt und entsprechend des gleichen Werts für die charakteristische Länge
stimmen alle Graphen mit der analytischen Lösung überein.
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3. Strukturmodellierung

Die Gesamtverformung setzt sich analytisch aus einem elastischen Anteil und der Rissweite nach
Gleichung (2.35) zusammen. Der elastische Verformungsanteil wird durch Multiplikation mit der
Probenlänge l bestimmt.

u =∆uel +w = εel ⋅ h + εpl ⋅ lch (3.3)

Berechnet man aus den Simulationsergebnissen für den jeweiligen Dehnungsanteil die Verfor-
mung über die Formel (3.3), ergeben sich jeweils die Graphen in Abbildung 3.4. Hier liegen
alle Graphen auf der analytischen Lösung. Allerdings erreicht die Ansys-Kurve nur eine Ver-
formung von u = 0,5 mm anstelle der erwarteten u = 1 mm. Auf Nachfrage bei Ansys3 wurde
dieses Verhalten damit erklärt, dass bei vollständiger Integration bzw. mehr als einer Integra-
tionspunktreihe programmintern von mehr als einem abgebildeten Riss ausgegangen wird. Im
Falle der 4-knotigen, vollintegrierten Elemente besitzt das Modell eine Elementreihe mit zwei
Integrationspunktreihen in Rissrichtung. Daher wird je Integrationspunktreihe die durch die
Spannungs-Rissweiten-Beziehung angenommene Bruchenergie abgebildet und damit ergibt sich
insgesamt für das System die doppelte Energie, wie in Abbildung 3.3 erkennbar. Betrachtet man
hingegen die plastische Dehnung bzw. die umgerechnete Kraft-Verformungslinie je Integrations-
punkt, wie in Abbildung 3.4, wird das erwartete Materialverhalten erkennbar. Dieses bezieht
sich jedoch nur auf einen der beiden laut Materialmodell angesetzten Risse, bzw. eine Integra-
tionspunktreihe. Daher erreicht hier die Verformung auch nur die halbe Rissbreite.

Bei der Verwendung des 8-knotigen Elements steht in Ansys die Option, vollständig zu inte-
grieren, gar nicht zur Verfügung. Daher fehlt der entsprechende Graph in Abbildung 3.5a und
3.5b. Nach Gödde (2013) beträgt die charakteristische Länge je Integrationspunkt nach wie vor
lch = 10 mm. Die durch Abaqus vorgegebene charakteristische Länge ergibt sich integrations-
punktweise:

lch,IP1,..,4 ≈ 4.1667 mm lch,IP5,..,8 ≈ 5.2705 mm lch,IP9 ≈ 6.6667 mm

In Abbildung 3.5b sind die Ergebnisse für die Diskretisierung mit reduziert integrierten Elemen-
ten dargestellt, bei denen sich die Definition der charakteristischen Länge für den Abaqus- und
Ansys-Ansatz nicht unterscheiden und beide für jeden der vier Integrationspunkte den Wert
5 mm annehmen. In beiden Abbildungen sind Knicke bzw. Schwankungen im abfallenden Ast
zu beobachten, die auf algorithmische Instabilitäten zurückgeführt werden. Bei Betrachtung der
plastischen Dehnungen in den jeweiligen Integrationspunkten zeigt sich, dass zum Zeitpunkt
des ersten Knicks bzw. bei Abweichung von der Geraden die plastischen Dehnungen nicht mehr
konstant über das Rissband sind, sondern sich für einige Integrationspunkte abweichende Werte
ausbilden. Möglicherweise sind diese Effekte durch Stabilisierungsoptionen im jeweiligen Pro-
grammsystem zu begrenzen. Ein Variieren der Schrittweite und anderer Algorithmus-spezifischer
Parameter sowie ein Wechsel des Algorithmus’ hatten allerdings keinen zufriedenstellenden Ef-
fekt.

3 über den Vertriebspartner Cadfem, E-Mail vom 16.04.2021 (CADFEM, 2021)
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Abbildung 3.5.: Kraft-Verformungs-Linie, 2D mit 8 Knoten
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Abbildung 3.6.: Kraft-Verformungs-Linie, Verformung aus Dehnungen (gemittelt aus allen IP)
bestimmt, 2D mit 8 Knoten

Bis zum Erreichen des ersten Knicks in der jeweiligen Lösung ist dennoch erkennbar, dass zwi-
schen den jeweils implementierten Definitionen und der von Gödde (2013) wieder der bereits
oben erwähnte Faktor 2 liegt: Würde die Gerade gedanklich über den jeweiligen „Störpunkt“
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hinaus verlängert, würde der Graph für u = 1 mm bei der Hälfte der maximalen Zugkraft enden.
Analog kann auch bei Darstellung der Kraft-Verformungs-Linie aus den Dehnungen eine Kor-
rektur der Lage der Kurve hin zur analytischen Lösung, aber eine Verringerung der Verformung
um den Faktor 2 beobachtet werden. Bei der Umrechnung muss ein Mittelwert der plastischen
Dehnungen aus den vorhandenen Integrationspunkten je Element bzw. im Rissband gebildet
werden, da diese sich ab dem Knick im Falle der implementierten Definitionen stark voneinan-
der unterscheiden.

Aus der Tatsache, dass der Ansatz nach Gödde (2013) in allen Rechnungen eine nahezu ex-
akte Übereinstimmung mit der analytischen Lösung liefert, kann abgeleitet werden, dass die
zugehörige Definition der charakteristischen Länge wie angestrebt für das betrachtete Beispiel
eine vollkommen objektive Lösung liefert. Wie Gödde (2013) außerdem in seiner Arbeit zeigt,
liefern auch verzerrte Elementgeometrien und andere, durch ihn differenzierte Klassen der Riss-
bandausbildung ein in der Regel exaktes Ergebnis oder zumindest eine näherungsweise gute
Übereinstimmung mit der exakten Lösung.
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Abbildung 3.7.: Kraft-Verformungs-Linie eines Zugversuchs nach Oliver (1989) mit verzerrten
Elementen bzw. variierten Seitenverhältnissen

Beispielhaft ist in Abbildung 3.7 untersucht, wie sich eine Abweichung der Elementgeometrie
von der quadratischen Form auf die Abaqus-Definition auswirkt (b ist die variierte Elementbreite
in 3.8a, x ist die variierte x-Koordinate des verschobenen Knotens in 3.8b). Bei Definition der
charakteristischen Länge nach Gödde (2013) zeigt sich dieses Verhalten aufgrund der gesamt-
heitlichen Betrachtung des Rissbands anstelle einer Betrachtung als Elementeigenschaft nicht.
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Abbildung 3.8.: Beispiel für verzerrte Elementgeometrie (rot: geschwächte Elemente bzw. Riss-
band)

Fazit

Es zeigt sich in den betrachteten zweidimensionalen Elementen, dass die Definition nach Göd-
de (2013) in allen Fällen element- und integrationsunabhängig die analytische Lösung abbilden
kann und damit eine objektive netzunabhängige Regularisierung liefert. Dies ist für die in den
kommerziellen Programmen definierten Größen nicht gegeben: Abaqus liefert zwar für die Ele-
mente 1. Ordnung zunächst ein besseres Ergebnis als Ansys, allerdings beruht das „schlechtere“
Ergebnis von Ansys auf einer falschen Theorie-Annahme auf Basis der Dokumentation, da aus
dieser nicht hervorgeht, dass die Anzahl der Integrationspunktreihen die abgebildete Rissanzahl
vorgibt.

Dass diese zugrundegelegte Annahme nicht aus der Dokumentation hevorgeht, erschwert die
sinnvolle Anwendung des Modells. Hinzu kommt, dass bei Abbildung eines einzelnen Risses die
Verwendung von Elementen mit mehr als einem Integrationspunkt nur eingeschränkt möglich
ist: Bei linearer Entfestigung wie im vorliegenden Fall müsste es entweder möglich sein, den In-
tegrationspunkten im Element ein unterschiedliches Materialverhalten vorzugeben4, damit nur
eine der Integrationspunktreihen entfestigt. Alternativ müsste man den Elementen eine um den
jeweiligen Faktor (bei mehr als einer Elementreihe steigert sich der Faktor auf ein Vielfaches von
2) korrigierte Spannungs-Dehnungs-Linie vorgeben, um den Effekt der Ausbildung zweier Risse
bei der Berechnung zu kompensieren. Das ist im Fall des Zugversuchs und der einfach zu identifi-
zierenden Rissrichtung und Integrationspunktreihen möglich. Aber schon bei dreidimensionalen
Elementen, bei denen die Integrationspunkte5 unter Umständen nicht in Rastern angeordnet
sind oder bei Problemen mit gekrümmter oder variierender Rissrichtung ist die Identifikation
nicht mehr ohne Weiteres möglich. Hinzu kommt, dass bei linearer Entfestigung standardmäßig
keine Regularisierung vorgesehen ist, was nur durch eine genauere Betrachtung der zugehörigen
Formeln in der Dokumentation vermittelt wird ANSYS Inc., 2021.

Es ist festzuhalten, dass die Wahl der Integrationsordnung in Ansys einen großen Einfluss auf
die Ergebnisse hat. Bei der Modellierung eines einzelnen bzw. einer bestimmten Anzahl Risse
ist daher die Entwicklung plastischer Dehnungen in den Integrationspunkten sorgfältig zu beur-
4 Dies ist in Ansys nicht möglich; in Abaqus gelingt dies über eine Benutzer-Subroutine
5 wie in Ansys: 14 Integrationspunkte beim Solid186-Element
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teilen und bei der Auswertung der Ergebnisse zu berücksichtigen. Am Beispiel des Zugversuchs,
bei dem physikalisch nur ein Riss entstehen würde, ist erkennbar, dass die Verwendung voll
integrierter Elemente andernfalls zu inkonsistenten Ergebnissen führt. Im Fall der exponenti-
ellen Entfestigung ist der Parameter der charakteristischen Länge im Gegensatz zum linearen
Ansatz direkt implementiert und muss nicht mehr in die Spannungs-Dehnungs-Linie in Ansys
eingerechnet werden, um die Netzabhängigkeit zu reduzieren. Das bedeutet allerdings auch, dass
eine Beeinflussung des Entfestigungsverhaltens zur Sicherstellung einer korrekten Abbildung der
physikalisch vorhandenen Rissanzahl schwieriger wird.

Die Ergebnisse aus Abaqus zeigen für Elemente 1. Ordnung im Vergleich zwar bessere Ergeb-
nisse, bei den Elementen 2. Ordnung ist das Verhalten jedoch vergleichbar mit dem in Ansys.
Dieses Verhalten ist nicht wie in Ansys über die Anzahl der abgebildeten Risse zu erklären
(aufgrund der Inkonsistenz zu den Ergebnissen der Elemente 1. Ordnung), und wirkt aufgrund
fehlender Erläuterung in der Dokumentation fast willkürlich (Dassault Systèmes, 2021).

Weder in der Abaqus- noch in der Ansys-Dokumentation wird im Detail auf die Besonderheiten
der Netzabhängigkeit bei Verwendung dieser verschmierten Rissmodelle eingegangen (Dassault
Systèmes, 2021; ANSYS Inc., 2021). Dieses einfache Beispiel zeigt jedoch, dass eine falsche Ver-
wendung bzw. eine Verwendung unter falschen Annahmen große Auswirkungen haben kann.
Natürlich ist die Verwendung für unbewehrte Bauteile nicht die Regel und der einfache Zugver-
such eher ein akademisches Beispiel, dennoch sollten diese Einschränkungen bei der Modellierung
bekannt sein, sodass der Einfluss bei jedem Modell sinnvoll beurteilt werden kann.

Im Hinblick auf die Nachrechnung von Biegebalken- und Plattenversuchen soll im folgenden
Kapitel auf die zusätzlichen Besonderheiten im Hinblick auf die Verwendung der charakteristi-
schen Länge bei Biegung, insbesondere auch bei räumlicher Rissbildung im Vergleich zum bisher
betrachteten Zugversuch, eingegangen werden.

3.1.2. Biegung

Wie bereits in Kapitel 2.2.5 erwähnt, besteht im Vergleich zum betrachteten Zugversuch bei
Biegeproblemen wie dem Biegezugversuch die Besonderheit einer variierenden Rissbreite über
das Rissband. Vereinfachend kann die vereinfachte Definition nach Gleichung (2.39) Anwendung
finden, was im Rahmen der FE-Berechnung leichter umzusetzen ist. Würde man die exakte De-
finition implementieren, müsste man u.U. jedem Integrationspunkt bzw. jedem Bereich (vgl.
Abbildung 2.29) iterativ ein eigenes Materialgesetz zuweisen. Dies ist im Falle des Biegezugver-
suchs noch überschaubar, im allgemeinen Fall jedoch sehr aufwendig.

Im folgenden Kapitel werden Messdaten aus Versuchen an Estrich-Biegebalken mithilfe der ver-
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3.1. Voruntersuchungen zur Netzabhängigkeit

einfachten Definition nach Gleichung (2.39) nachgerechnet. Diese Definition hat sich nach Gödde
(2013) für die Nachrechnung von Biegezugversuchen als ausreichend exakt und praktikabel er-
wiesen.

Versuchsdaten

68

410

F

WA1

WA2 WA3

340

Beidseitige, schadensfreie

Befestigung

des Stahlbalkens

am Balken

Stahlbalken an der 

Balkenunterkante zur

Messung der Durchbiegung

Durchbiegungs-abhängige

Lastaufbringung

[mm]

Abbildung 3.9.: Randbedingungen für einen verformungsgesteuerten Biegezugver-
such, wobei die Messung aus Wegaufnehmer WA1 dazu dient, die
Lastaufbringung zu steuern und WA2 und WA3 kontrollieren die
Schiefstellung des Stahlbalkens, der zur Messung der Durchbiegung
WA1 an der Unterkante des Balkens positioniert ist (vgl. Abb. C.1)

Im Rahmen einer Untersuchung am Lehr- und Forschungsgebiet für Werkstoffe im Bauwesen
(BUW) wurden Prismen verschiedener Dicke systematisch untersucht. Ziel war es, den Einfluss
der Einbauhöhe von Estrichen auf über die Höhe veränderliche Materialeigenschaften infolge
unterschiedlich stark eingebrachter Verdichtungsenergie zu erfassen. Hierfür wurden Proben aus
unterschiedlich dicken Platten entnommen, wobei die Proben höherer Dicke über die Höhe zur
Prüfung in zwei bis drei Teile geteilt wurden. So konnten Zug-, Druck- und Biegezugfestigkeit
für verschiedene Dicken und über die Höhe bestimmt und verglichen werden. Für die vorliegende
Arbeit wurden drei Proben einer 68 mm dicken Platte zusätzlich bis in den Nachrisszugbereich
belastet, sodass hier das Nachrissverhalten mithilfe des CDP-Modells aus Abaqus nachgerech-
net werden konnte. Im Hinblick auf das verwendete Material sind keine genaueren Details zur
Zusammensetzung des Estrichs bekannt. Der Versuchsaufbau des Drei-Punkt-Biegezugversuchs
kann Abbildung 3.9 (Foto des Versuchsaufbaus siehe Abbildung C.1 im Anhang) entnommen
werden.

Die Proben zur Bestimmung der Nachrisszugfestigkeit besitzen jeweils eine Stützweite von
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340 mm, eine mittlere Länge von 410 mm und Querschnittsabmessungen von d/b = 68/61 mm.
Die aus den Festigkeitsprüfungen bestimmten Werte können dem Anhang (Anhang C) entnom-
men werden, und dienen der Simulation als Eingangswerte für die Materialparameter der Druck-
und Zugfestigkeit (abgeleitet aus der Biegezugfestigkeit≈ 2⋅ Zugfestigkeit). In Abaqus wird für
die Bruchenergie ein Wert zwischen 0.04 und 0.12 N/mm empfohlen. Gödde (2013) verwendet
Werte zwischen 0.07 und 0.12 N/mm. Die Bruchenergie wird in den folgenden Nachrechnun-
gen zunächst innerhalb des Intervalls [0.04; 0.12] N/m variiert und die Kurve so möglichst gut
angenähert.

System und Elementwahl

In Abbildung 3.10 ist beispielhaft ein System mit 32 × 9 Elementen dargestellt. Die Beanspru-
chung wird als Verformung an den beiden mittleren, oberen Knoten eingeprägt, um auch das
Nachbruchverhalten numerisch zu erfassen. Zur Veranschaulichung der Netzunabhängigkeit der
Ergebnisse werden drei unterschiedliche Netze betrachtet: 16, 32 und 64 Elemente über die Stütz-
weite, jeweils 9 Elemente über die Höhe. Das CDP-Modell (Abaqus) wird mit der vereinfachten
Definition für lch nach Gödde (2013) und einer exponentiell abfallenden Spannungs-Rissweiten-
Beziehung entsprechend

σ(w) = ft ⋅ e
−w ft

Gft , mit w = εpl
x ⋅ lch (3.4)

verwendet. Die charakteristische Länge ergibt sich nach vereinfachter Definition und nach Ab-
bildung 2.28 zu

lch = 2 ⋅ lx,Elem (3.5)

u

u

Abbildung 3.10.: Systemplot des Biegezugbalkens mit 23 × 9 kontinuumsbasierten
Schalenelementtyps SC8R

Das in dieser Arbeit verwendete kontinuumsbasierte Schalenelement SC8R entspricht geome-
trisch einem Kontinuumselement und besitzt an jedem seiner acht Knoten drei Verschiebungs-
und keine Verdrehungsfreiheitsgrade (siehe Abbildung 3.11). Mechanisch basiert das Element auf
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einer Schalentheorie, bezieht also die inneren Kraft- und Weggrößen auf die Schalenmittelfläche
und besitzt eine „Dickenrichtung“, in welcher entsprechend abweichende Definitionen für die Ki-
nematik und die Materialintegration Anwendung finden. Aufgrund der geometrischen Form lässt
sich das Element in Dickenrichtung stapeln (äußeres Mehrschichtenkonzept), bei nichtlinearem
Materialverhalten kann es sinnvoll sein, innere „Layer“ zu definieren (inneres Mehrschichten-
konzept zum Beispiel zur Berücksichtigung von Bewehrungseinflüssen; hier nicht angewendet).
Gemäß Abaqus-Dokumentation kann das Element Biegetragwirkungen sehr gut abbilden. Insbe-
sondere Versteifungseffekte infolge Dicken- bzw. Poisson-Locking, welches durch parasitäre Di-
ckenspannungen verursacht wird, kann durch Null-Setzen einer „effektiven“ Poisson-Zahl zusätz-
lich zur herkömmlichen Querdehnung verhindert werden (Gödde, 2013; Jun, 2002; Koschnick,
2004; siehe auch Abbildung 3.12). Im Hinblick auf die Lokalisierung infolge der Rissbildung
dürfte im betrachteten 3-Punkt-Biegezugversuch theoretisch keine Schwächung der Rissband-
elemente notwendig sein, da die Momentenlinie unter der Last ein Maximum aufweist und dort
entsprechend der Spannungsanstieg eine Rissbildung unter der Last induziert. Allerdings zeigt
sich in der Regel bei Betrachtung der plastischen Dehnungen, dass sich auch hier ein breiteres
Rissband einstellt als erwartet. Da dieses Verhalten bisher nicht abschließend erklärt bzw. anders
verhindert werden kann, werden in den nachfolgenden Berechnungen analog zum Zugversuch die
beiden mittleren Elementreihen durch Reduzierung der Zugfestigkeit geschwächt. Wie hiermit
im Hinblick auf die weiteren Simulationen in dieser Arbeit umgegenagen wird, wird in Kapitel 4
erläutert. 1 2

345 6
7 8 𝑢𝑧 𝑢𝑦𝑢𝑥

Dicken-

richtung

𝑢𝑧 𝑢𝑦𝑢𝑥 𝑢𝑧 𝑢𝑦𝑢𝑥
𝜑𝑧 𝜑𝑦𝜑𝑥Kontinuumsbasiertes

Schalenelement
Schalenelement

IP

𝜂
𝜉

4,8 3,7

1,5 2,6

IP

𝜁

(a) Unterscheidung zwischen kontinuumsbasiertem und klassischem Schalenelement

1 2
345 6

7 8 𝑢𝑧 𝑢𝑦𝑢𝑥
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𝑢𝑧 𝑢𝑦𝑢𝑥 𝑢𝑧 𝑢𝑦𝑢𝑥
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Schalenelement Schalenelement
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𝜂
𝜉
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1,5 2,6

IP

𝜁
(b) Dickenrichtung = Richtung der Stapelung, lokales KOS und Ort des Integrationspunkts

Abbildung 3.11.: Definition des Elementtyps SC8R

Der Elementtyp SC8R weist nur einen Gauß-Integrationspunkt auf, was bei Biegung in der Scha-
lenebene eine Netzdichte mit mindestens zwei Elementen erforderlich macht (Dassault Systèmes,
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2021). Insgesamt ist die Wahl kontinuumsbasierter Schalenelemente aufgrund der zugrundelie-
genden Schalentheorie für die Anwendung auf Balken- und Plattensysteme gleichermaßen geeig-
net, und ist auch numerisch effizienter gegenüber anderen Elementtypen (Gödde, 2013). Nach
Gödde (2013) zeigt sich bei Kontinuumselementen ein höherer Elementbedarf, der sich negativ
auf den Rechenzeitaufwand auswirkt. Zusammenfassend weist der Elementtyp gegenüber reinen
Kontinuums- und Schalenelementen folgende Vorteile auf (Gödde, 2013):

• numerische Effizienzsteigerung infolge der Schalentheorie bei biegebeanspruchten flächigen
Strukturen gegenüber der Kontinuumstheorie,

• Mehrschichtenkonzept zur Kompensation des linearen Dehnungsansatzes über die Höhe,

• Hoher Lokalisierungsgrad und effektive Regularisierung infolge niedriger Elementordnung.

Simulationsergebnisse

In Abbildung 3.12a ist die zur eingeprägten Verschiebung korrespondierende Kraft gegenüber
der Verschiebung in Balkenmitte an der Unterseite dargestellt. Vergleichend sind die Berech-
nungen dreier Vernetzungen dargestellt, und zusätzlich auch Berechnungen mit der charakteris-
tischen Länge nach Abaqus. Es ist erkennbar, dass die Lösungen für die Definition nach Gödde
(2013) netzunabhängig übereinstimmen und die Lösungen für die charakteristische Länge nach
Abaqus leicht davon abweicht, aber in sich auch netzunabhängige Kurven zeigt. Worauf die Ab-
weichung zurückzuführen ist, konnte nicht abschließend geklärt werden. Im weiteren Verlauf
wurde das 32 × 9-Netz weiterverwendet. In Abbildung 3.12b wird der Einfluss der effektiven
Querdehnzahl, die bei Schalenelementen definiert werden kann, untersucht. Dieser Parameter
beeinflusst die Lokalisierung maßgeblich: Wird die effektive Querdehnzahl gar nicht definiert,
wird der Default-Wert νeff = 0.5 angesetzt, was zu einer schlechten Lokalisierung und damit
einer deutlichen Überschätzung der maximalen Kraft führt. Damit geht ein nahezu horizonta-
ler Entfestigungsast und eine Überschätzung der Bruchenergie einher. Bei Reduzierung dieser
Querdehnzahl senkt sich die Kurve ab und es ergibt sich der erwartete Verlauf für νeff = 0.

In Abbildung 3.13 sind die Versuchsergebnisse zusammen mit einer homogenen (mit zwei ver-
schiedenen Werten für die Bruchenergie Gf ) und einer über die Höhe in den Materialeigen-
schaften variierten Modellierung dargestellt. Für die letzte Variante wurden die Elemente über
die Höhe in drei Bereiche eingeteilt und den Elementen die an den gesägten Balken ermittelte
Druck- und daraus abgeleitete Zugfestigkeit zugewiesen, wobei die Bruchenergie unveränderlich
über die Höhe bei Gf = 0.16 Nmm/mm2 gehalten wurde (jeweils in N/mm2):

Obere Schicht:fc = 32, ft = 3.0

Mittlere Schicht: fc = 25, ft = 2.8

Untere Schicht: fc = 24, ft = 2.6
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Abbildung 3.12.: Simulation Biegezugversuch, Einflüsse aus Netzdichte und Poisson-Zahl,
Gf = 0.16 N/mm

Für den homogenen Fall wurden die Werte aus der unteren Schicht angesetzt. Als E-Modul
wird E = 33000 N/mm2, als Querkontraktionszahl ν = 0.2 vorgegeben. Im Diagramm ist erkenn-
bar, dass sich zum einen eine gute Übereinstimmung zwischen den Versuchsergebnissen und den
Kurven einstellt und zum anderen, dass das variierende Verhalten über die Querschnittshöhe im
Gegensatz zur Bruchenergie kaum einen Einfluss auf den abfallenden Ast zu haben scheint. Der
abfallende Ast stimmt mit dem Verlauf der dritten Probe für Gf = 0.16 Nmm/mm2 am besten
überein, die beiden anderen Proben liegen etwas darunter und stimmen im Nachbruchbereich
besser mit der niedrigeren Bruchenergie überein.

In Abbildung F.1 im Anhang F.1 sind beispielhaft die Spannungen und plastischen Dehnun-
gen über die Querschnittshöhe dargestellt. Die Umrechnung der plastischen Dehnungen für
eine Durchbiegung von u = 0.64 mm am Ende der Berechnung nach Gleichung (2.35) liefert
eine Rissweite von w = εplx ⋅ lch = 0.025 ⋅ 21.25 mm = 0.53 mm. Da die Rissweite im Versuch
nicht gemessen wurde, kann dieser Wert nicht mit Versuchswerten verglichen werden. In der
DIN EN 14651:2007, die allerdings für Beton mit metallischen Fasern gilt, wird eine Formel zur
Umrechnung der „crack mouth opening displacement“ CMOD in eine Durchbiegung angegeben:

δ = 0.85 ⋅CMOD + 0.04 , mit CMOD in [mm] .

Nach dieser Formel ergäbe sich bei Einsetzen der umgerechneten Rissweite für CMOD eine
Durchbiegung von 0.49 mm, also ein etwas geringerer Wert als die ermittelte Durchbiegung
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Abbildung 3.13.: Nachrechnung Biegezugversuch (Messdaten aus Roschkowski, 2021)

von etwa 0.64 mm, aber zumindest die Größenordnung ist passend. Die Abweichung kann aus
der fehlenden Eignung für Estrich der CMOD-Formel, aber auch aus Versuchsungenauigkeiten
rühren. Die Ursache wird hier nicht genauer untersucht.

Fazit

Die Untersuchungen zu infolge Biegung induzierten Rissen zeigt eine sehr gute Übereinstimmung
zwischen Messdaten und Simulation eines Biegezugversuchs bis in den Nachbruchbereich. Dass
der gewählte Elementtyp inklusive der Regulierung von Locking-Effekten, die das Rissverhalten
numerisch beeinflussen können, für die Abbildung von biegebeansprucht reißenden Strukturen
gut geeignet ist, bestätigen die Simulationsergebnisse. Durch die vereinfachte Definition der
charakteristischen Länge nach Gödde (2013) ist keine Netzabhängigkeit erkennbar, sodass das
hier verwendete Modell für die weitere Validierung gebetteter Strukturen herangezogen wird.
Zunächst sind jedoch Festlegungen zur Dämmsteifigkeit und zur Kontaktmodellierung zu treffen.
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3.2. Bettungsmodellierung

3.2.1. Modellierung des Aufschüsselns: Kontaktproblem

Wie in Kapitel 2.1.1 erläutert, kann es vor allem während der Erhärtung infolge von Schwin-
den zu einem Aufschüsseln der Estrichplatte kommen, dem das Eigengewicht entgegenwirkt. In
Abhängigkeit der Geometrie, der Estrichrezeptur und den äußeren Randbedingungen führt dies
zu einer initial aufgeschüsselten Verformungsfigur und einem initialen Spannungszustand aus
Zwang infolge Eigengewichts. Daraus ergeben sich für die Modellierung zwei Problemstellungen:
Zum einen die Ermittlung der Initialverformungen und -spannungen, zum anderen die Model-
lierung des Kontaktproblems, sobald sich die Plattenecke infolge äußerer Belastung wieder auf
dem Dämmstoff ablegt.

Vorverformungen aus Schwinden

Um den Einfluss auf die Rissbildung zu erfassen, wurden sowohl die Schwindverformungen ex-
perimentell aufgezeichnet als auch die Initialverformung und Vorbeanspruchung bei der Nach-
rechnung der Plattenversuche berücksichtigt. Eine tiefer gehende Einarbeitung in die komplexe
Problematik der Erhärtungs- und Schwindsimulation würde den Rahmen dieser Arbeit überstei-
gen. Nietner (2009) hat zur Untersuchung des Schwindverhaltens von Betonen und Estrichen das
FE-Programm croc entwickelt (vgl. Nietner, 2009, croc-Handbuch (2019)6). Um das Schwind-
verhalten der in dieser Arbeit untersuchten Platte zu berücksichtigen, wurden die Ergebnisse
einer croc-Simulation als Ausgangspunkt der eigenen Risssimulation verwendet.

Bei der in croc durchgeführten Simulation handelt es sich um eine gekoppelte Wärme- und
Feuchtetransport-Berechnung, wobei sich die Estrich-Eigenschaften infolge Hydratation wäh-
rend der Berechnung fortlaufend ändern. Für Informationen zu den Eingangsparametern sei auf
die Angaben in Anhang B verwiesen. Für die nichtlineare Simulation wurden für die feuchte-
technischen Materialkennwerte (Hydratationsgrad abhängig von der Wärmeentwicklung, Festig-
keitsentwicklungen abhängig vom Hydratationsgrad) Annahmen basierend auf Literaturanga-
ben (Wiegrink, 2002, Künzel, 1994, Foos, 2005) und Erfahrungswerten getroffen. Hinsichtlich
der Zusammensetzung und korrespondierender Eigenschaften wird ein üblicher Zementestrich
zugrunde gelegt, da genauere Angaben zur Zusammensetzung für den im Versuch verwendeten
Estrich (vgl. Kap. 4) nicht näher bekannt waren. Es ist aufgrund des zusätzlichen Gips-Anteils
im verwendeten Estrich davon auszugehen, dass die Annahme eines rein zementgebundenen
Estrichs in der Simulation nur eine Näherung liefert. Auch wird der errechnete Spannungszu-
stand aufgrund fehlender Dehnungsmessung und damit fehlender realer Messwerte während der
Erhärtung nur näherungsweise mit dem tatsächlichen Zustand übereinstimmen. Für die ange-
strebte Untersuchung, inwieweit Vorverformung und eingeprägte Zwangsspannungen überhaupt
6 geschrieben in FreePascal zur Berechnung gekoppelter thermischer, hygrischer und mechanischer Probleme
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Einfluss auf die Rissbildung haben, ist dieser Ansatz jedoch ausreichend.

Symmetrierand-

bedingungen

Abbildung 3.14.: Symmetrieausnutzung bei Simulation der Aufschüsselung der Plat-
te infolge Schwinden

In der Schwind-Simulation wird nur ein Viertel der Platte modelliert (vgl. Abbildung 3.14),
um den erheblichen Rechenzeitaufwand möglichst gering zu halten. Die Viertelplatte wird in
Plattenmitte (Kreuzungspunkt der Symmetrieachsen) vertikal gehalten und weist mechanisch
nur Symmetrie-Randbedingungen auf (Unterbau bzw. Dämmstoff werden in croc nicht mit mo-
delliert). Diese Lagerung wurde aufgrund der erwarteten Verformungsfigur gewählt (Abheben
der Ecken und Ränder). Aufgrund der isolierenden Folie zwischen Estrich und Unterbau spielt
der Unterbau für den simulierten Wärme- und Feuchtetransport keine Rolle. Der Lastfall Ei-
gengewicht wird daher auch erst nach Import in Abaqus und unter Bettungsrandbedingungen
betrachtet. Da sich herausgestellt hat, dass der Einfluss der so ermittelten Eigenspannungen
auf die Ergebnisse im untersuchten Fall vernachlässigbar ist (vgl. Abbildung F.4 im Anhang),
wurde schließlich nur die aufgeschüsselte Verformungsfigur aus croc als Ausgangszustand für
die weiteren in Abaqus untersuchten Lastfälle verwendet. Hierauf wird bei der Auswertung der
Plattenversuche noch genauer eingegangen. Die croc-Simulation lieferte demnach lediglich die
Verschiebungsfigur relativ zur fest gehaltenen Plattenmitte, was beim späteren Vergleich mit
den Messwerten berücksichtigt werden muss. Die Vorgabe des Verformungszustands erfolgte bei
Übernahme des Elementnetzes aus croc über die Definition der Knotenkoordinaten entsprechend
der verformten Konfiguration. Für die Vorgabe eines initialen Spannungszustands gibt es in Ab-
aqus verschiedene Möglichkeiten: Der Spannungszustand kann elementweise vorgegeben werden,
d.h. in Form von elementweise gemittelten Spannungen. Alternativ wird den Integrationspunkten
der Elemente durch Verwendung einer Benutzer-Subroutine die ungemittelte Spannung zugewie-
sen.
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3.2. Bettungsmodellierung

Modellierung des Kontakts

In kommerzieller Software wie ANSYS oder Abaqus sind Verfahren zur Kontaktmodellierung
implementiert, die zum Beispiel über Penalty-Verfahren verhindern, dass sich zwei Körper durch-
dringen. In der Regel ist ein Körper dabei als „Master“ bzw. „Contact“-Körper und der andere
als „Slave“- bzw. „Target“-Körper definiert. Diese Definition sollte sich u.a. nach der Krümmung
der Oberflächen, der Steifigkeit der in Berührung kommenden Materialien sowie der Netzfeinheit
der beiden Körper richten, um ein stabiles Verhalten sicherzustellen (ANSYS Inc., 2021). Es gibt
verschiedene Verfahren, den Kontakt zu modellieren. In jedem Fall entsteht dadurch eine zusätz-
liche nichtlineare Komponente, die die Stabilität der Berechnung beeinflusst. Da die Bewegung
des Estrichs auf den Dämmstoff über eine geringe Distanz erfolgt und der zurückgelegte Weg im
Vorhinein bekannt ist, soll der Modellaufbau nicht durch komplexe Kontaktbedingungen ver-
kompliziert werden. Um außerdem eine gewisse Transparenz bei der Modellierung des Kontakts
zu gewährleisten, was bei den vorimplemenierten Algorithmen nicht zwingend gegeben ist, wird
der Kontakt stattdessen über nichtlineare Federn modelliert, die zwischen den kontinuumsba-
sierten Schalenelementen des Estrichs und den ebenfalls durch Federn modellierten Dämmstoff
zwischengeschaltet sind.

In Abbildung 3.15 ist der theoretische Ablauf bei der Modellierung des Kontakts durch Ablegen
der Platte infolge des Eigengewichts nach Aufschüsseln infolge von Schwindeinflüssen zu sehen.
Links ist die reale Situation dargestellt: Zunächst ist nur der Dämmstoff frei in der Schalung
eingebaut (a). Unmittelbar nach der Betonage ist der Dämmstoff durch das Eigengewicht (EG)
der Platte um ein unbekanntes Maß komprimiert (b). Infolge des Erhärtungs- und Schwindpro-
zesses schüsselt die Platte auf, sodass der Dämmstoff an den Rändern und Ecken entlastet wird,
da sich die Platte anhebt, und in Plattenmitte weiter zusammengedrückt wird (c). Um diesen
Vorgang näherungsweise korrekt numerisch abzubilden, werden die Verformungsfigur sowie ggf.
die Spannungen infolge von Erhärtung und Schwinden aus croc nach Abaqus importiert. Das
Eigengewicht ist hier noch nicht berücksichtigt (d). In Abaqus wird die Platte auf ein System
aus Einzelfedern gelagert, deren Steifigkeitseigenschaften die Bettung auf dem jeweiligen Dämm-
stoff abbilden (e, blaue Federn). Zwischen diesen Federn und der aufgeschüsselten Platte werden
nichtlineare Einzelfedern angeordnet (rot), deren Steifigkeit zu Beginn der Simulation bis zum
Überwinden der jeweiligen Federlänge näherungsweise Null ist und dann stark ansteigt und die
Federn näherungsweise unendlich steif werden. Darüber wird der Kontakt zwischen Platte und
Federsystem realisiert, sobald das Eigengewicht der Platte aufgebracht wird, und die Platte sich
dadurch absenkt (f). Der Zustand in (f) sollte die reale Situation in (c) ausreichend gut annä-
hern. Es entsteht lediglich ein Fehler aufgrund des unbekannten Absolutmaßes der Einsenkung
des Estrichs in den Dämmstoff (a → b). Im Versuch gemessen und entsprechend in der Simula-
tion vorgegeben werden kann nur die relativ gemessene Verschiebung zwischen (b) und (c). Das
Einsenkmaß von (a) nach (b) ist unbekannt, beeinflusst aber den tatsächlichen Abstand zwi-
schen Estrich und Dämmstoff im aufgeschüsselten Zustand (c). Dadurch stimmt die Ordinate der
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Symmetrieachse

(a) Ausgangslage Versuch: Unbelastete Däm-
mung vor Betonage

(b) Wirkung EG: Platte auf Dämmung direkt
nach Betonage (Dämmung zusammenge-
drückt)

(c) EG & Schwinden: Qualitative Verformung
nach Erhärtung (Dämmung in Plattenmitte
unter Druck, am Rand entlastet)

Symmetrieachse

(d) Ausgangslage Numerik (croc): Verfor-
mungsfigur infolge Erhärtung & Schwinden
ohne EG

(e) Auf Federn gebettetes System mit obiger In-
itialverformung (Verformung aus Croc nach
Abaqus importiert)

(f) Qualitative Verformung nach Aufbringen
des Eigengewichts

Abbildung 3.15.: Gegenüberstellung der Aufbringung des Eigengewichts (EG) und anschließen-
der Schwindwirkung im Versuch (links) gegenüber der numerischen Modellbil-
dung bei Berücksichtigung des Schwindeinflusses aus externer Rechnung (croc)
als Vorverformung und anschließendem Aufbringen des Eigengewichts; Veran-
schaulichung der Kontaktmodellierung über zwischengeschaltete nichtlineare
Federn (rot) zwischen Estrich und Bettung (blau, rechts)

Aufschüsselung an der Ecke (f) zum Endzeitpunkt nach Wirkung des Eigengewichts bei Vorga-
be einer relativen Aufschüsselung (d) mit dem gemessenen, relativen (b-c) Maximalwert an der
Ecke nicht zwingend überein, da diese auch von der Dämmstoffwirkung zuvor (a-b) abhängt.
Diese Unsicherheit ist in den nachfolgend in Kapitel 6.3 und 7.1 beschriebenen Simulationen
stets enthalten. Alternativ müsste die Ordinate der initial vorgegebenen Schüsselung iterativ an
die aus den Messdaten (und damit ebenfalls nur genäherte) Schüsselung angepasst werden. Es
wird davon ausgegangen, dass der Einfluss auf die zentrale Untersuchung des Schwindeinflusses
gering ist, da dieser Effekt in allen Berechnungen gleichermaßen unberücksichtigt bleibt. Unter
der Annahme, dass die Größenordnung dieses Fehlers im mm-Bereich und damit höchstens im
Bereich üblicher Messungenauigkeiten liegt, wird dies nachfolgend vernachlässigt.

3.2.2. Ermittlung der Steifigkeitseigenschaften des Dämmstoffs im Versuch

Neben dem Federgesetz für den Kontakt sind für die darunter angeordneten Federn zur Mo-
dellierung des Dämmstoffs die Steifigkeitseigenschaften zu ermitteln. Für die im Rahmen dieser
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Arbeit durchgeführten Untersuchungen wurde als Dämmstoffmaterial Steinwolle gewählt, da
die Verwendung als Dämmmaterial in der vorliegenden Anwendung üblich ist und Varianten
gleichen Materials und unterschiedlicher Steifigkeit zur Verfügung stehen. Um einen Eindruck
zu erhalten, welchen Einfluss die Steifigkeit des Dämmstoffs auf die Rissbildung hat, wurde
der Dämmstoff mit der höchsten („TP“) und niedrigsten Zusammendrückbarkeit („TP-GP“,
Herstellerangabe nach DIN EN 13162:2015, siehe Tabelle 3.2) im Sortiment der Firma Knauf
Insulation ausgewählt.

Tabelle 3.2.: Kennzahlen des gewählten Dämmstoffmaterials (nach Produktdatenblatt, Zusam-
mendrückbarkeit bestimmt nach DIN EN ISO 29770:2022 und daraus abgeleitete
Bettungszahl KS nach Manns und Zeus (1980))

Bezeichnung Material Dicke Verkehrslast Zusammendrückbarkeit cp KS
Hersteller (Messwert im Versuch) [MN/m3]
TP Steinwolle 30 mm bis 5 kPa ≤ 5mm (2.6 mm) 0.35 (0.67)
TP-GP Steinwolle 20 mm bis 20 kPa ≤ 1mm (0.4 mm) 1.75 (4.38)

Versuche in Anlehnung an Zusammendrückbarkeitsermittlung

Die vom Hersteller angegebene, normative Zusammendrückbarkeit ist lediglich ein Anhaltswert
für die Obergrenze der Steifigkeit des jeweiligen Dämmstoffs. Um eine realistische Steifigkeit und
eine mögliche Belastungsabhängigkeit in den zugehörigen Simulationen berücksichtigen zu kön-
nen, wurden Lastplattendruckversuche an Proben der beiden gewählten Dämmstoffe gefahren.
Wie in Abbildung 3.16a zu sehen, besteht der zugehörige Versuchsstand aus zwei übereinander
angeordneten Stahlplatten, wobei die untere fest montiert und die obere über eine Kalotte be-
weglich gelagert ist. Bei der Versuchsdurchführung wurde die Platte horizontal ausgerichtet und
die Probekörper zentral darunter eingemessen. Über die obere Stahlplatte wurde kraftgesteuert
eine Last auf den Probekörper aufgebracht. Die vorhandene Druckprüfmaschine (DPM) ist auf
deutlich höhere Lasten ausgelegt und dadurch für sehr geringe Lastbereiche weniger geeignet,
weshalb es vor allem bei den kleinen Probekörpern zu maschinenbedingten Ungenauigkeiten
kommen kann. Die vertikale Verformung der Lastplatte wurde über vier an den Ecken angeord-
nete Wegaufnehmer gemessen (Abbildung 3.16a). Dabei betrug die Abtastfrequenz 20 Hz.

Die Versuchsdurchführung orientiert sich an den normativen Vorgaben in DIN EN ISO 29770:2022.
Zur Bestimmung eines genaueren Last-Verformungs-Zusammenhangs wurden, neben den nor-
mativ vorgegebenen Spannungsniveaus von 0.25, 2 und 50 kPa, zusätzliche Laststufen berück-
sichtigt (vgl. Tabellen D.1 und D.2 in Anhang D.1). Die aus den Versuchen abgeleitete Zusam-
mendrückbarkeit ist in Tabelle 3.2 in Klammern angegeben und stimmt trotz der ergänzten
Zwischen-Laststufen zumindest für TP-GP mit der Einstufung des Herstellers überein. Für TP
ergibt sich eine etwas geringere Zusammendrückbarkeit. Tendenziell passt die Einteilung von
TP als weicher und TP-GP als steifer zu den Herstellerangaben.
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3. Strukturmodellierung

(a) Versuchsstand (b) Dämmstoff TP (c) Dämmstoff TP-GP

Abbildung 3.16.: Versuchsstand und Dämmstoffproben

Um einen Größeneinfluss im Hinblick auf die spätere Modellierung der Plattenversuche auszu-
schließen, wurden außerdem verschiedene Probekörperabmessungen und -formen untersucht. Die
untersuchten Probekörpergrößen und -formen sind in Abbildung 3.16 (b) und (c) dargestellt. Für
beide Dämmstofftypen wurden jeweils Probekörper mit folgenden Abmessungen untersucht:

• quadratisch mit Kantenlänge a =10, 20, 30 cm,

• rund mit Durchmesser D =10, 30 cm,

wobei die obere Lastplatte etwas breiter als der mit 30 cm größte Probekörper ist. Die Ver-
wendung unterschiedlicher Probekörpergrößen dient zur Untersuchung des Einflusses aus Quer-
dehnung. Bei der Prüfung der Estrichplatten wird die Querdehnung des Dämmstoffs zu einem
gewissen Grad behindert sein. Bei der Bestimmung der Steifigkeit in der Druckprüfmaschine
können sich die Probekörper jedoch beliebig zur Seite ausdehnen. Die Verwendung unterschied-
licher Größen und Formen (unterschiedlich große Mantelfläche) soll diesen Einfluss identifizieren
bzw. auszuschließen helfen.

Die einzelnen Spannungsstufen wurden entsprechend DIN EN ISO 29770:2022 jeweils etwa 120 s
gehalten. In Abbildung 3.17 ist links beispielhaft die über die vier Aufnehmer gemittelte Verschie-
bung der Lastplatte an den Proben TP-GP-20-4 bzw. TP-20-4 (quadratische Form, Abmessung
20 cm, Probe 4) über die Zeit dargestellt. Die Verläufe der übrigen Proben sind vergleichbar (vgl.
Abb. 3.18). Es ist erkennbar, dass in der jeweiligen Laststufe die Verformung eine zunehmend
schwächere Steigung beschreibt und nach jeweils 120 s fast horizontal verläuft. Dieses Verhalten
wird mit zunehmendem Belastungsniveau ausgeprägter, in den niedrigeren Lastbereichen zeigt
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sich tendenziell ein rein horizontaler Verlauf über die Zeit. Diese Änderung bzw. die Zeitabhän-
gigkeit der Verformung unter höherer Last deutet darauf hin, dass bei zunehmender Belastung
kein elastisches Verhalten mehr vorliegt, und damit bleibende Verformungen eingeprägt werden.
Rechts ist die zugehörige Spannungs-Verschiebungs-Beziehung dargestellt. Die Last wurde in den
ersten Versuchen (Proben 20-1 bis 20-3, vgl. Tabellen im Anhang D.1 bzw. Abb. 3.19) zunächst
bis zu einer wirksamen Spannung von etwa 1.25 N/mm2 gesteigert (das entspricht dem 25-fachen
der maximal normativ vorgegebenen Spannung zur Bestimmung der Zusammendrückbarkeit),
um einen Anhaltspunkt für den funktionalen Verlauf der Spannungs-Verformungs-Beziehung zu
erhalten. Da sich der relevante Verformungsbereich in den späteren Estrichversuchen bis maxi-
mal 10 mm bewegt, wurden die übrigen Probekörper lediglich bis zu einer Spannung von etwa
0.06 N/mm2 belastet. Dies entspricht eher einem Lastniveau, welches auch zur Bestimmung
der normativen Zusammendrückbarkeit aufgebracht wird (höchste Laststufe 0.05 N/mm2). Zur
näherungsweisen Überprüfung der normativen Herstellerangabe wird die Verschiebung bis 120 s
nach Entlastung auf 2 kPa (entsprechend DIN EN ISO 29770:2022) aufgezeichnet, sodass hier-
aus der Vergleichswert in Tabelle 3.2 ermittelt wird.
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Abbildung 3.17.: Vertikale Verformung und Spannungs-Verformungs-Kurve aus dem Lastplat-
tendruckversuch, beispielhaft dargestellt sind die Proben TP-20-4 und TP-GP-
20-4 (Abtastfrequenz im Versuch 20 Hz, hier dargestellt 0.1 Hz)

Für eine bessere Übersichtlichkeit werden im Folgenden die dargestellten Verläufe auf die Mess-
werte jeweils am Ende der 120 s-Intervalle reduziert, und nur der Belastungspfad dargestellt. Die
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(b) TP-GP

Abbildung 3.18.: Gemittelte Spannungs-Verformungs-Kurven für unterschiedliche Durchmesser
(D [mm]) und Abmessung (quadratisch a [mm]) der Probekörper bei Prüfung
im Lastplattendruckversuch mit Angabe der normativen Spannungsniveaus bei
Bestimmung der Zusammendrückbarkeit

gemittelten Verläufe der Lastplattendruckversuche an den unterschiedlich großen bzw. geform-
ten Proben sind in Abbildung 3.18 dargestellt (Durchmesser D [mm] bei runder und Abmessung
a [mm] bei quadratischer Form). Die Lage der Verläufe variiert leicht zwischen den unterschied-
lichen Prüfkörper-Größen und -Formen. Entscheidend für die Beurteilung der Steifigkeit ist die
Steigung der Verläufe. Diese stimmt unabhängig von Probekörpergröße und -form näherungs-
weise gut überein, weshalb davon auszugehen ist, dass ein Einfluss aus Querdehnung in den
vorliegenden Versuchen nicht messbar und daher vernachlässigbar gering ist. In Abbildung 3.19
ist der Spannungs-Verschiebungs-Verlauf der beiden Dämmstofftypen noch einmal anhand der
20er-Proben vergleichend dargestellt. Oben ist der Gesamtverlauf dargestellt, der eine Art S-
Verlauf beschreibt: Anfangs etwas steiler (bis etwa 5mm (TP)/ 2.5mm (TP-GP)), danach ein
Bereich mit geringerer Steigung (bis etwa 10/20mm) bis sich der Dämmstoff hin zu einem fast
vertikalen Verlauf versteift (ab etwa 15/25mm).

Vereinfachend wird darauf verzichtet, dem beschriebenen Gesamtverlauf eine möglichst exakte
funktionale Beziehung zuzuweisen. Stattdessen wird eine stückweise lineare Ausgleichsfunktion
definiert, um diese vor allem an den im Rahmen der späteren Simulationen relevanten Bereich
in Abb. 3.19 unten bestmöglich anzupassen bzw. diesen auch im Rahmen der Simulationen
leichter variieren zu können. Für TP entspricht dieser Ausgleichsverlauf im relevanten Bereich bis
maximal 10 mm einer Geraden, für TP-GP ist eine Steigungsänderung bei 2.5 mm berücksichtigt.
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Abbildung 3.19.: Prüfung in der Druckprüfmaschine: Dämmstoff TP-GP (steifer) und TP (wei-
cher), wobei oben der gesamte Versuchsverlauf dargestellt ist, unten ein ver-
größerter Ausschnitt des hier relevanten Bereichs

97



3. Strukturmodellierung

Versuche im Anschluss an die Plattenprüfung

Unter anderem die normative Vorgabe, bei Bestimmungs der Zusammendrückbarkeit eine tem-
poräre Zusatzlast von 48 kPa zu berücksichtigen und die Dicke dB erst nach Entlastung zu mes-
sen, motiviert eine Untersuchung der Steifigkeitseigenschaften der Dämmstoffe nach Durchfüh-
rung der Estrichversuche. Zunächst wurde der Einfluss der Dämmstoffunterlage ausgeschlossen:
Der Vergleich der Ausgleichsfunktion mit einer nachträglich im Feld auf Sandbett eingebauten,
unbelasteten Dämmstoffprobe (Feld, oV) zeigt eine gute Übereinstimmung (vgl. Abb. 3.21 in
rot verglichen mit schwarz durchgezogener Ausgleichsgerade).

Hydraulikzylinder 
(Lastaufbringung)

Kraftmessdose

Weg-
aufnehmer

Dämmstoff-
platte

Laststempel
(Kalotte)

Abbildung 3.20.: Stempelaufbau
im Dämmstoff-
Feldversuch

Zur Überprüfung des Eigengewichtseinfluss der auf-
liegenden Estrichplatte auf die Steifigkeitseigen-
schaften der Dämmstoffe wurden nach Prüfung der
Platten und Entfernen der Bruchstücke Prüfungen
an der darunterliegenden Dämmstofffläche durchge-
führt. Zum einen wurden die so vorbelasteten (mV,
im Vergleich zu unbelasteten Proben (oV)) Dämm-
stoffe im Versuchsfeld eingebaut (Feld) belassen und
dort unter einem runden Laststempel mit 15 cm
Durchmesser geprüft. Zum anderen wurden Probe-
körper mit diesem Durchmesser (15 cm) entnom-
men und in der Druckprüfmaschine (DPM) getes-
tet. Die Lastaufbringung im Feld erfolgte analog zur
Lastaufbrigung im Zuge der Plattenprüfung (vgl.
Kap. 6) mithilfe eines Hydraulikzylinders, der zwi-
schen einem Stahlbalken und dem Laststempel (Ka-
lotte, Durchmesser 15 cm, Laststempelaufbau siehe
Abb. 3.20) angeordnet war. Im Vergleich zur Plat-
tenprüfung wird hier eine feinere Kraftmessdose (bis
2 kN) aufgrund der geringeren Last zwischengeschaltet. Die Spannungs-Verschiebungs-Verläufe
wurden um das Eigengewicht des Lastaufbaus nachträglich korrigiert.

Die in Abbildung 3.21 für die Dämmstofftypen getrennt dargestellten Spannungs-Verschiebungs-
Verläufe (blau) zeigen deutliche Abweichungen in der Steigung im Vergleich zu den Ausgleichs-
funktionen der vorherigen Untersuchungen (schwarz, durchgezogen). Auch für den vorbelas-
teten Spannungs-Verschiebungs-Verlauf wird jeweils eine Ausgleichsgerade definiert (schwarz,
gestrichelt). Die durch das Estrich-Eigengewicht und die anschließende Prüfung (vgl. Kapitel 6)
vorbelastete, steifere Dämmstoffplatte in Abbildung 3.21a zeigt bei Belastung in der Druckprüf-
maschine zu Beginn eine geringere Steifigkeit (DPM, mV) und erst im Bereich ab etwa 2 mm eine
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ähnliche Steigung wie die der Ausgleichsfunktion ohne Vorbelastung. Ähnlich sieht der Verlauf
bei Prüfung im Feld (Feld, mV) mit einer am Ende etwas größeren Steigung aus. Für den weiche-
ren Dämmstoff (Abb. 3.21b) zeigt sich ein gegenteiliges Bild: Die vorbelastete und anschließend
erneut im Feld belastete Dämmplatte (Feld, mV) weist im betrachteten Verformungsbereich ei-
nen von Beginn an deutlich steileren Verlauf auf. Der in der DPM belastete Verlauf zeigt eine
davon abweichende, flachere Steigung zu Beginn, die sich ab etwa 6 mm Verformung dem Feld-
versuch bzw. der Ausgleichsgerade angleicht.

Zusammenfassend lässt sich festhalten, dass der Einfluss aus dem Versuchsaufbau vernachlässig-
bar zu sein scheint: Unabhängig davon, ob es sich um Feld (F)- oder DPM-Prüfungen handelt,
weisen die Verläufe eine vergleichbare Steigung auf. Der Einfluss aus Vorbelastung hingegen ist
deutlich erkennbar. Durch die Estrichbelastung sinkt die Steifigkeit der steiferen Dämmstoffs
und die des weicheren steigt an.
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Abbildung 3.21.: Vergleich unbelasteter (oV) und vorbelasteter (mV) Dämmstoffproben, geprüft
im Feld und in der Druckprüfmaschine (DPM)
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3.3. Schlussfolgerungen für die Modellierung schwimmenden Estrichs

Estrichmodellierung

Die Nachrechnung der verformungsgesteuerten Biegezugversuche zeigt eine sehr gute Überein-
stimmung mit den Versuchsdaten bis in den Nachbruchbereich, sodass das ausgewählte CDP-
Modell in Kombination mit dem gewählten Elementtyp und den übrigen Randbedingungen für
die weiteren Untersuchungen als geeignet erkannt wird. Hinsichtlich der Eingangsparameter für
das Materialmodell werden die hier gewählten Parameter als Richtwerte übernommen, deren ge-
naue Eingrenzung im Zuge der weiteren Versuchsnachrechnung erfolgt. Die Netzunabhängigkeit
konnte für die betrachteten Beispiele nachgewiesen werden.

Dämmstoffmodellierung

Für die Dämmstoffmodellierung ergeben sich die in Abbildung 3.22 dargestellten Spannungs-
Verschiebungsgesetze, die in Abhängigkeit des Einflussbereichs der modellierten Einzelfedern
je nach Vernetzung des aufliegenden Estrichs noch entsprechend in Kraft-Weg-Gesetze umzu-
rechnen sind. Die tatsächlich wirksame Dämmsteifigkeit liegt jeweils im Bereich zwischen den
Verläufen ohne und mit Vorbelastung. Für die Simulation der Plattenversuche wird für die
Dämmsteifigkeit letztendlich nach Variieren in diesem Bereich jeweils der Verlauf mit Berück-
sichtigung der Vorverformung (jeweils die blau gestrichelten Geraden), und damit im wirksamen
Verformungsbereich ein linearer Verlauf gewählt.

0 1 2 3 4 5 6 7 8

0.02

0.04

0.06

0.08

0.1

Verschiebung u [mm]

Sp
an

nu
ng

σ
[N

/m
m

2
]

Ausgleichsfunktion TP-GP oV
Ausgleichsfunktion TP-GP mV
Ausgleichsfunktion TP oV
Ausgleichsfunktion TP mV

Abbildung 3.22.: Ausgleichfunktionen

101



3. Strukturmodellierung

Die Spannungs-Verschiebungs-Beziehung bzw. ihre Steigung lässt sich als Steifigkeit cKS [MN/m3]
formulieren. Diese Steife-Kennziffer ist jedoch nicht gleichzusetzen mit der von Manns und Zeus
(1980) definierten Bettungszahl KS, die aus der Zusammendrückbarkeit, und damit aus eine
Produktkennzahl, abgeleitet wird. Eine unmittelbare Überführung dieser Kennzahl in die phy-
sikalisch wirksame und in der Simulation berücksichtigte Steifigkeit cKS ist nicht möglich.
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4. Konzept zur Validierung des numerischen
Modells

Um die Eignung der vorgestellten Ansätze für die numerische Modellierung schwimmenden Est-
richs nachzuweisen, sind vergleichende experimentelle Untersuchungen notwendig. Für eine erste
Beurteilung der Modellierung wurde zunächst die grundlegende Estrich-Dämmungs-Interaktion
an einfachen Balken untersucht (1D-Spannungszustand). Hier wurden Estrichdicke und Dämm-
stoff variiert, um Festigkeitsparameter des Estrichs (aus begleitenden Festigkeitsprüfungen) so-
wie die Steifigkeitsparameter des Dämmstoffs (vgl. Kapitel 3.2.2) zu verifizieren und Bruchpa-
rameter wie die Bruchenergie abzuschätzen. Folgende Varianten wurden betrachtet:

• Estrichdicken: 20, 40, 60, 80 mm, und

• Dämmstoffe: TP-GP (Dicke 20 mm, steifer: cKS ≈ 13 MN/m3), TP (Dicke 30 mm, weicher:
cKS ≈ 7 MN/m3).

Darauf aufbauend wurden zwei größere Estrichplatten der gleichen Dicke mit d = 60 mm auf den
beiden Dämmstoffen

• Platte S auf Dämmstofftyp TP-GP (steifer)

• Platte W auf Dämmstofftyp TP (weicher)

untersucht. Damit bereits in den Balkenversuchen das Plattenverhalten in einer ersten Nähe-
rung betrachtet werden kann, wurde ein ähnliches Bruchverhalten bzw. ein ähnliches statisches
System angestrebt.

Entsprechend der in der Literatur (Manns und Zeus, 1980, Schnell, 1990) betrachteten Lastfälle
werden die Estrichplatten jeweils an der Plattenecke und am Plattenrand mit einer Einzellast
bis zum Bruch beansprucht. Besonderer Fokus liegt hier jedoch auf dem Lastfall Plattenecke,
da dieser für die Bruchlast maßgebend ist und in der Praxis bei Platten-Laborprüfungen in der
Regel Anwendung findet (IBF, 2019). Dies hat hinsichtlich der Validierung den Vorteil, dass
an einer Platte vier Prüfungen für diesen Lastfall erfolgen konnten. Manns und Zeus (1980)
definierten den Randlastfall als maßgebend, sodass dieser auch für die Norm und andere Bemes-
sungsgrundlagen die Basis liefert, weshalb zusätzlich auch jeweils die Ränder geprüft wurden.
Hier konnte je Platte jedoch nur eine Prüfung für die quadratische Geometrie durchgeführt wer-
den.
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4. Konzept zur Validierung des numerischen Modells

Lastfall 

EL Ecke

Verformung

mBiegung

Lastfall EG

Abbildung 4.1.: Schema des statischen System der gebetteten Platte mit qualitativer Verfor-
mungsfigur, resultierenden Bettungsspannungen und Momentenbeanspruchung
entlang der Plattendiagonalen

Bei Belastung der Plattenecke wirkt die diagonal gegenüberliegende Plattenhälfte über das Ei-
gengewicht der Belastung entgegen, sodass nahe der belasteten Plattenecke oberseitig die ma-
ximale Biegebeanspruchung und damit schließlich ein Einzelriss in der Platte entsteht. Durch
das Eigengewicht und die Bettungsreaktionen der Dämmung entsteht eine Einspannwirkung
(vgl. Abb. 4.1). Je steifer die unterliegende Dämmung ist, desto näher entsteht der Riss an der
Plattenecke. Bei einer quadratischen Platte mit einer Abmessung von l =2500 mm ist davon
auszugehen, dass Beanspruchungen benachbarter Ecken keinen größeren Einfluss aufeinander
haben. Die vier an einer Platte durchgeführten Eckprüfungen lassen sich somit als unabhängig
vergleichbar betrachten, sodass diese Datenbasis für eine erste grundlegende Validierung des
Modells ausreichend ist.

Um dem beschriebenen Trag- bzw. dem erwarteten Bruchverhalten der Platten möglichst nahe
zu kommen, wurde für die Balkenversuche die in Abbildung 4.2 dargestellte Lagerung gewählt.
Das statische System ist eine Art auf Bettung gelagerter Kragarm: Die Einspannung links wird
über ein Kräftepaar erzeugt, das „freie“ Ende wird durch den Dämmstoff gestützt. Bei einem
klassischen Kragarm würde der Riss stets in der Einspannung entstehen, eine Rissentstehung
im kragenden Bereich würde den Verhältnissen in der Platte jedoch näher kommen. Wie in
Abbildung 4.2 entlang der Plattendiagonale visualisiert, wirkt das Eigengewicht der Platte der
Einzellast-Beanspruchung an der Ecke entgegen, sodass sich die dargestellte Verformungsfigur
und Biegebeanspruchung mit einem Maximum im Bereich der Plattenecke einstellt. Auch um die
Rissentstehung besser beobachten und den Dehnungsverlauf mithilfe von Dehnungsmessstreifen
aufzeichnen zu können, wurde somit für den Balken ein statisches System mit Zwischenauflager
gewählt. Das bettungsgestützte Ende sollte abhängig von der Balkendicke eine gewisse Min-
destlänge überschreiten, andernfalls würde sich die maximale Biegung und damit der Riss nicht
in diesem Bereich, sondern direkt über dem zweiten Lager einstellen. Bei ausreichender Länge
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wirken die Reaktionskräfte der Bettung der eingetragenen Biegung entgegen, um das maximale
Moment nach rechts zu verlagern.

F

Verformung

Lastfall EG

MBiegung

Abbildung 4.2.: Schema des statischen System des gebetteten Balkens mit qualitativer Biegel-
inie, resultierenden Bettungsspannungen und Momentenlinie; Der Verlauf der
Momentenlinie ist abhängig vom Verhältnis der Querschnittshöhe zur System-
länge (L=70 cm, durchgezogen: d < 60 mm, gestrichelt: d ≥ 60 mm)

Die in diesem Sinne dickenabhängig notwendige Länge der auf Dämmung gelagerten Ecke wur-
de numerisch durch Variieren der Lagerabstände und Kraglängen ermittelt. Allerdings sollten
aufgrund der einfachen Herstellung Standard-Balken-Prüflängen untersucht werden, sodass die
Länge der Probekörper auf 70 cm festgelegt wurde. Bei dieser Länge und der mit der Balkendicke
einhergehenden Steifigkeit entsteht der Riss bei d ≥ 60 mm über dem Zwischenauflager, für die
dünneren, weicheren Balken mit 20 und 40 mm Dicke aufgrund des größeren Bettungseinflus-
ses wie angestrebt im Bereich zwischen Lager und Lastaufbringung. Dennoch können auch die
Versuche mit größerer Dicke zur Validierung der Bruchkraft herangezogen werden, das Tragver-
halten weicht in diesem Fall nur insofern stärker ab, dass der Ort der Rissbildung nicht durch die
Dämmsteifigkeit beeinflusst wird. Der Dehnungsverlauf im Bereich des so feststehenden Rissbe-
reichs lässt sich hingegen durch präzise Platzierung der Dehnungsmessstreifen über dem Lager
sicher messtechnisch erfassen.

Grundsätzlich sind die so geplanten Laborversuche nicht umfassend genug, um das Modell für
jeden Estrich beliebiger Zusammensetzung, Geometrie und Lagerung (Art und Steifigkeit des
Dämmstoffs) als gesichert beurteilen zu können. Vor allem für den Lastfall Einzellast am Plat-
tenrand wird zwar eine vergleichende Simulation erstellt, für eine detaillierte Beurteilung des
Modells für diesen Lastfall reichen die Messdaten nicht aus. Anhand der Eckversuche lässt sich
aber durchaus zeigen, dass eine sehr gute Übereinstimmung zwischen Versuch und Numerik
erreichbar ist. Eine Übertragung auf Estriche mit anderen Randbedingungen ist möglich.
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4. Konzept zur Validierung des numerischen Modells

Herstellung der Probekörper und begleitende Festigkeitsprüfungen

Für die Versuche wurden zwei Estrichplatten mit quadratischer Grundfläche und l =2500 mm
und Dicke d =60 mm sowie zwölf Balken der Abmessungen 700×150 mm2 und zusätzliche Pris-
men zur Festigkeitsprüfung aus dem gleichen Material hergestellt. Das Material wurde von der
Firma SAKRET Bausysteme zur Verfügung gestellt. Es handelte sich um einen als schwind-
kompensiert und nach 24 Stunden belegbar gekennzeichneten Zementfließestrich (ZTEfast). Die
Probekörperherstellung und -lagerung und sämtliche Versuche erfolgten in der Versuchshalle des
Instituts für konstruktiven Ingenieurbau der BU Wuppertal.

Die Herstellung des schnell erhärtenden Fließestrichs erfolgte händisch, unter Anleitung eines
Mitarbeiters der Herstellerfirma. Nach Feststellung des angestrebten Ausbreitmaßes und Luftpo-
rengehalts wurde der Estrich eimerweise auf die innerhalb der Holzschalung mit Folie abgedeckte
Dämmung eingebracht. Nach stichprobenartiger Überprüfung der erforderlichen Dicke wurde die
Oberfläche geglättet (Fotos siehe Anhang D.2.1). Im Gegensatz zu den Platten wurden die Bal-
ken separat, also nicht auf dem Dämmstoff, sondern in 700×150 mm2 Stahl-Schalung betoniert
und erst für die Prüfung auf dem Dämmstoff positioniert.

Bei den Balken wurden keine besonderen Nachbehandlungsmaßnahmen unternommen. Die bei-
den Platten wurden für eine angestrebte langsamere Austrocknung die ersten vier Tage mit
einer Folie bedeckt und waren danach den Umgebungsbedingen in der Versuchshalle ausgesetzt.
Aufgrund der schnellen Erhärtung des Estrichs konnten schon wenige Stunden nach Einbau
Wegaufnehmer zur Messung der Schüsselverformung infolge Schwinden auf der Platte ange-
bracht werden. Zusätzlich wurden Prismen zur Bestimmung der Druck- und Biegezugfestigkeit
hergestellt.Die Ergebnisse der Festigkeitsprüfungen sind in Anhang C zusammen mit weiteren
Versuchsdaten zu finden und sind zum Teil im Folgenden als Eingangswerte des Modells aufge-
führt.

Numerisches Modell

Für die Definition des numerischen Modells können folgende Festlegungen aus den Voruntersu-
chungen und Festigkeitsprüfungen (vgl. Anhang C) abgeleitet werden:

Elastizitätsmodul E=25000 N/mm2

Druckfestigkeit fc = 40 N/mm2

Biegezugfestigkeit fb = 6.8 N/mm2

Zugfestigkeit ft = 3.0 N/mm2 (≈ 1
2 ⋅ fb)

Bruchenergie Gf = 0.2 Nmm/mm2

Eine weitere Vorgabe hinsichtlich der Rissbildung ergibt sich aus der Versuchsbeobachtung: In
allen Versuchen versagt das Bauteil infolge Einzelrissbildung. Mikrorisse sind bei den Versuchen
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nicht festzustellen. Dieses Verhalten ist in der Simulation entsprechend abzubilden, um eine gute
Übereinstimmung mit den Versuchsdaten zu erzielen. Der Nachbruchbereich ist nicht aussage-
kräftig, da eine Validierung anhand von verformungsgesteuerten Balkenversuchen entsprechend
der Versuche aus Kapitel 3.1.2 für das hier verwendete Material nicht erfolgt ist. Die durchge-
führten Balken- und Plattenversuche zeigten sprödes Versagen. Dadurch war eine Aufzeichnung
des Nachbruchverhaltens mit den gewählten Versuchsrandbedingungen nicht möglich. Für die
zentrale Frage der Schwindeinflüsse auf das Trag- bzw. Rissverhalten ist das Verhalten bis zum
Bruch maßgebend.

Als Beurteilungskriterium für das numerische Modell diente vor allem der Vergleich mit den
Versuchsdaten. Außerdem sollte mit zunehmender Netzfeinheit Konvergenz zu einer eindeutigen
Lösung sichtbar werden. Daraus ergeben sich als Beurteilungskriterien für eine nachfolgende
Validierung des Modells:

• Vergleich mit den Versuchsdaten,

– Kraft-Verformungslinie,

– Verformungs- bzw. Dehnungsverlauf entlang der Diagonalen (Ecke) bzw. der Mittel-
linie (Rand),

– Ort des Risses,

• Konvergenz der numerischen Ergebnisse.

Ermittlung der charakteristischen Länge

Zur Ermittlung der charakteristischen Länge entsprechend des auf einer begrenzten Rissprozess-
zone beruhenden Ansatzes nach Gödde (2013) wurde bei den hier durchgeführten Simulationen
ein Konzept zur gezielten Schwächung bzw. Lokalisierung des Risses angesetzt. Dadurch sollte
die Entwicklung plastischer Dehnungen auf die Rissprozesszone begrenzt und aus dieser die cha-
rakteristische Länge abgeleitet werden. Dazu wurde ein iteratives Vorgehen zur Identifikation
der Rissprozesszone angewendet:

(i) Abschätzen der charakteristischen Länge basierend auf der gewählten Vernetzung und der
erwarteten Rissbildung; Berechnung ohne Schwächung und Identifizieren eines Rissbands
bei Erreichen der Bruchlast; ggf. Anpassung der charakteristischen Länge,

(ii) Berechnung mit Schwächung: Leichte Erhöhung (etwa 10 %) der Zugfestigkeit der Elemente
außerhalb des in (i) identifizierten Rissbands und Überprüfung der Lokalisierung; ggf.
iterative Korrektur der definierten RPZ und der charakteristischen Länge,

[(iii) ] (nur unter bestimmten Voraussetzungen zielführend bzw. zulässig) Berechnung mit vor-
gegebenem Rissband: Deutliches Anheben der Zugfestigkeit der Elemente außerhalb des
Rissbands, sodass nur im Rissband plastische Dehnungen entstehen.

Schritte (i) und (ii) stimmen mit dem von Gödde (2013) empfohlenen Vorgehen überein. Bei

107



4. Konzept zur Validierung des numerischen Modells

(a) Entwicklung bei Schwächung der Elemente
im identifizierten Rissband

(b) Entwicklung bei starker Schwächung der
Elemente und erzwungener Begrenzung der
plastischen Dehnungen auf die RPZ

Abbildung 4.3.: Beispielhafte Entwicklung der plastischen Dehnung in der Platte

den bisher und auch nachfolgend beschriebenen Balkensimulationen ist dieses Vorgehen zur
Identifikation des Rissbands und zur Berechnung einer mit den Versuchsergebnissen konsisten-
ten Rissentwicklung hinreichend. Bei Betrachtung der Simulation der Platten, insbesondere der
im Fokus stehenden Eckprüfungen, stellt sich jedoch in der Simulation ein Verhalten ein, wel-
ches der Beobachtung im Versuch zum Teil widerspricht. Es entstehen plastische Dehnungen
in einem größeren Bereich als nur konzentriert in einigen benachbarten Elementreihen. Wie
Abbildung 4.3 rechts gegenüber dem erwarteten Zustand links zeigt, teilt sich die zunächst in
(i) erkannte Lokalisierung in der anschließenden geschwächten Rechnung (ii) offenbar in zwei
oder mehr Risse auf, anstatt wie im Versuch nur einen einzelnen Trennriss auszubilden. Alle
Versuche (Variieren der Lastaufbringung, der Rissbandform, verschiedener Materialparameter;
Ändern der Federsteifigkeiten), die zu einer Korrektur dieses simulierten Verhaltens unternom-
men wurden, haben nicht die gewünschte Wirkung gezeigt, sodass die Ursache ungeklärt ist.
Dennoch wurde aufgrund der speziell bei den Eckprüfungen vorliegenden Randbedingungen der
unter (iii) beschriebene Lösungsansatz verfolgt. Nachteilig an diesem Vorgehen bzw. am resultie-
renden Modell ist die Beeinflussung des resultierenden Spannungszustands im Zuge der Stärkung
des Materials außerhalb der RPZ. Bei einer möglichen Spannungsumlagerung hätte dies insbe-
sondere einen verfälschenden Charakter. Aufgrund der Belastungssituation bei der Eckprüfung,
die keine Spannungsumlagerungen zulässt, und da der Nachbruchbereich nicht betrachtet wird,
auf den die genannte Beeinflussung des Spannungszustands eher einen Einfluss haben dürfte,
wurde dieses Vorgehen mit Blick auf die Zielsetzung dieser Arbeit als zielführend erachtet. Da im
Versuch keine Mikrorissbildung oder weitere Risse zusätzlich zum Trennriss sichtbar waren, die
mit dem Vorhandensein plastischer Dehnungen außerhalb der Rissprozesszone korrespondieren,
kann andernfalls keine zwingende Übereinstimmung mit den Versuchswerten erwartet werden.
Eine vergleichende Auswertung der Modelle für Schritt (ii) und (iii) zeigte für die vorliegende
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Untersuchung eine sehr gute Übereinstimmung der Kraft-Verformungs-Kurven und beide Rech-
nungen liefern die gleiche Bruchlast (vgl. Abb. 6.13). Hierauf wird an entsprechender Stelle in
Kapitel 6.2.2 noch weiter eingegangen. Weiterhin wird das oben beschriebene Vorgehen als ange-
messen erachtet, da der Manipulation des Modells ein weitgehend objektiver, iterativer Prozess
zur Festlegung des Rissbands vorausgeht, wobei wie in Kapitel 2.2.5 erläutert, die Rissrichtung,
wenn auch nicht die genaue Stelle, als weitgehend bekannt vorausgesetzt wird (Abb. 3.9). Bei
komplexerer Rissbandausbildung müsste ein genaueres Vorgehen herangezogen werden.

Rissprozess-
zonen

50 25Rissprozess-
zonen

𝜀𝑥′𝑝𝑙
Abbildung 4.4.: Bestimmung der charakteristischen Länge lch [mm] nach der verein-

fachten Definition nach Gödde (2013) als Breite der Rissprozesszone
am Beispiel der beiden Netze lElem = 25 und 50 mm (hier: Ausbrei-
tung über je zwei Elementreihen)

In Abbildung 4.4 ist für das numerische Plattenmodell für zwei verschiedene Netzgeometrien
(LElem = 50 bzw. 25) die Lokalisierung der plastischen Dehnungen bei Einzelrissbildung über ei-
ne (heller eingefärbt) oder zwei Rissreihen veranschaulicht. Dabei wird mit Blick auf die parallele
Ausrichtung der plastischen Dehnungen in Richtung der Plattendiagonalen (vgl. entsprechend
Abb. 4.3 links) ebenso wie in Abb. 2.29 eine näherungsweise konsistente, homogene Rissbandaus-
bildung angenommen. Die Rissbandufer sind parallel und stehen senkrecht auf den plastischen
Dehnungen. Somit kann wie im Biegezugversuch die dargestellte x′-y′-Ebene zur ebenen Berech-
nung von lch nach Gleichung (2.39) herangezogen werden. Die charakteristische Länge ergibt sich
wie hier visualisiert zu 35 mm bei einer Elementreihe oder 2×35 mm für zwei Elementreihen für
das gröbere Netz mit Elementabmessung 50 mm ermittelt. Entsprechend sind in Abbildung 4.5
die Funktionsverläufe des Entfestigungsgesetzes dargestellt, die im CDP-Modell (Abaqus) als
Wertepaare abhängig von der charaktertistischen Länge (hier: Breite der Rissprozesszone) bzw.
der Vernetzung vorgegeben werden.
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4. Konzept zur Validierung des numerischen Modells
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Abbildung 4.5.: Exponentiell abfallende Spannungs-Dehnungs-Beziehung wie im CDP-
Modell als Wertepaare für die Entfestigung im Zugbereich vorgegeben
für eine Bruchenergie von 0.2 Nmm/mm2

Fazit

Damit ist die Strukturmodellierung sowie die Herangehensweise für die Versuche vollständig
beschrieben. In den nachfolgenden Kapiteln 5 und 6 wird jeweils der experimentelle Aufbau
und Besonderheiten bei der Versuchsdurchführung beschrieben, bevor die gemessenen Daten
erläutert und den Simulationsergebnissen gegenübergestellt werden. Auf die vorstehend genann-
ten Einschränkungen bei der Regularisierung der Plattensimulationen wird an entsprechender
Stelle noch einmal eingegangen. Es sei darauf hingewiesen, dass das beschriebene Vorgehen auf-
grund des nachweislich geringen Einflusses auf die Kraft-Verformungs-Kurven und damit auch
die Bruchlast als ausreichend erachtet wird. Eine Netzunabhänhgigkeit kann so näherungsweise
erreicht werden und Abweichungen im Spannungszustand aufgrund der veränderten Material-
eigenschaften haben erst im Nachbruchbereich Auswirkungen, da bei der Belastungssituation
ohnehin keine Spannungsumlagerungen zu erwarten sind. Bei Betrachtung des Randlastfalls,
bei dem der Nachbruchbereich eine größere Rolle spielt, ist das Vorgehen nicht ohne Weiteres
übertragbar. Hier kann es zu Spannungsumlagerungen kommen, sodass ein optimiertes Vorgehen
notwendig ist, sodass die nachfolgende Auswertung des Randlastfalls nur eine erste Näherung
darstellt.

110



5. Gebetteter Balken (1D-Spannungszustand)

Zur Eingrenzung der Modell- und Materialparameter wird zunächst eine Balkenserie verschie-
dener Dicken im Versuch geprüft. Nach Erläuterung des Versuchsstands und der Versuchser-
gebnisse werden die Randbedingungen anhand eines vereinfachten linear-elastischen Modells
kalibriert und schließlich auch die Eignung des nichtlinearen Materialmodells gezeigt. Aufgrund
eines starken, unmittelbaren Sprödversagens bei sämtlichen Probekörpern konnte jedoch der
Nachbruchbereich nicht genauer validiert werden.

5.1. Versuche

5.1.1. Versuchsaufbau und -ablauf

Für die nachfolgend beschriebene Versuchsserie wurden insgesamt zwölf Balken mit einer Grund-
fläche von 700×150 mm2 in unterschiedlicher Dicke hergestellt. Der schematische Versuchsaufbau
kann Abbildung 5.1 entnommen werden. Die Seitenansicht in Abbildung 5.1a zeigt die Lagerung
und den Laststempel-Aufbau. Eine Seite des Balkens ist vertikal gegen Abheben gelagert und im
Abstand La ist ein Rollenlager unterhalb des Balkens angeordnet. Außerdem liegt der gesamte
Balken auf einer auf den Balken zugeschnittenen Dämmstoffplatte auf. Die Probekörper 60-4 bis
60-6 (vgl. Tabelle 5.1) werden mit dem weichen Dämmstoff (TP) kombiniert, um den Einfluss
der Dämmsteifigkeit zu erfassen. Alle anderen Balken werden auf Dämmstofftyp TP-GP (dem
steiferen der beiden untersuchten Dämmstoffe) gelagert:

• 20-1 bis 60-3, 80-1, 80-2 auf Dämmstofftyp TP-GP

• 60-4 bis 60-6 auf Dämmstofftyp TP.

Wirksam ist die Dämmung während des Versuchs nur rechts des Zwischenauflagers, für einen
einfacheren Einbau wird der Dämmstoff unter dem gesamten Balken eingebaut. In der zweiten
Ansicht in Abbildung 5.1b sind die Wegaufnehmer-Positionen und in der Draufsicht darunter
(Abb. 5.1c) zusätzlich die Position der Dehnungsmessstreifen eingezeichnet.

In Tabelle 5.1 sind die Längenvariablen wie in Abbildung 5.1 für die einzelnen Probekörper
dokumentiert. Der Grund für die verschiedenen Lagerabstände für die unterschiedlich starke
Dicke der Balken ist das in Kapitel 4 erläuterte unterschiedliche Rissverhaltenn zwischen ge-
ringerer (Riss im „Kragbereich“) und höherer (Riss über dem Lager) Balkendicke. Bei d ≤ 40

ist das Zwischenauflager etwas näher am Endauflager, um die Rissbildung im „Kragbereich“ zu
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5.1. Versuche

Tabelle 5.1.: Abmessungen und Bruchlasten der Balkenversuche [mm]
Probe d dD LA = L1 LB L2 L3 L4 L5 LDMS LRiss Rissort Bruchlast [kN]
20-1 20 20 40 165 165 355 510a 38 475 475 DMS 1 2.0
20-2 20 20 40 165 165 355 510a 38 475 353 - 1.64
20-3 20 20 40 165 165 355 510a 38 475 359 - 1.64
40-1 40 20 40 165 165 355 525 38 260 166 - 2.53
40-2 40 20 40 175b 165 355 525 38 260 260 DMS 1 2.60
60-1 60 20 50 355b 175 350a 525 38 240 355 DMS 3 2.69
60-2 60 20 50 300 175 350a 525 38 240 320 DMS 2/3 3.0
60-3 60 20 50 300 175 380a 525 38 240 282 DMS 1/2 2.76
60-4 60 30 50 300 175 380 525 38 240 305 DMS 2 1.61
60-5 60 30 50 300 175 380 525 38 240 310 DMS 2 1.56
80-1 80 20 50 300 175 380a 525 38 240 280 DMS 1/2 3.24
80-2 80 20 50 300 175 380a 525 38 240 282 DMS 1/2 3.0

a verschoben aufgrund von DMS-Anordnung b fehlerhaft eingemessen

begünstigen. Dies hat jedoch bei Probe 40-1 keine Wirkung gezeigt (vgl. LRiss in Tabelle 5.1),
die Probe ist dennoch direkt über dem Lager gerissen.

Wegaufnehmer

Lastaufbringung

Kraftmessdose

Vierkantstab

Balkenende

Abbildung 5.2.: Lastaufbringung Balken

Bei der Durchführung der Balkenversuche kam es
zu Komplikationen beim Versuchsaufbau, da die Di-
cke des Dämmstoffs zum Teil etwas über der ange-
gebenen Lieferdicke lag. Der Rollendurchmesser für
das Zwischenauflager entsprach exakt den 2 bzw.
3 cm Lieferdicke, sodass bei einigen Versuchen die
Zwischenauflager-Rolle mit Unterlegscheiben leicht
angehoben werden musste. Dennoch kamen bei eini-
gen Versuchen die Balken erst nach Lastaufbringung
auf dem Zwischenauflager zum Liegen. Auch das
Klemmlager am Balkenanfang hatte mehr Spiel als
erwartet. Die Fixierung durch die Muttern in Wech-
selwirkung mit der Lagerung des Balkens auf dem
Dämmstoff war daher im ersten Versuch (Probe 60-
1) noch deutlich zu locker, wurde bei den restlichen
Versuchen zwar angepasst, zeigte aber immer noch
eine geringe Bewegung (vgl. Messwerte der Wegauf-
nehmer WA1 bis WA3 in Anhang D).

Der in Abbildung 5.2 dargestellte Stempel-Aufbau zeigt die Zylinderstange, über die weggeregelt
die Belastung aufgebracht wurde. Eine zusätzlich zwischengeschaltete Kraftmessdose (KMD)
hat die Last aufgezeichnet. Der darunterliegende Vierkantstab diente der Lastverteilung über
die Breite. Um eine lokale Schädigung aus der Lastaufbringung zu vermeiden, wurde ein elas-
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tisches Material untergelegt. Da die KMD das zusätzliche Gewicht aus diesem Aufbau nicht
erfassen kann, wurde die Messung zu Beginn auf Null gesetzt und anschließend die Daten um
das Eigengewicht des Stempelaufbaus korrigiert.

5.1.2. Ergebnisse

Wie bereits angedeutet sind die Probekörper spröde gebrochen, das heißt ohne Ankündigung
durch sichtbare Rissbildung. Die Versuche liefern somit nur Daten bis zum Bruch, der Nach-
bruchbereich konnte mit dem gewählten Versuchsaufbau nicht erfasst werden. In Abbildung 5.3
ist beispielhaft das Bruchbild der Proben 20-1 und 60-3 dargestellt. Der Bruch verläuft vertikal
und weitgehend gerade durch die Probe.

(a) Draufsicht Probe 20-1 mit angeklebten
DMS (Riss durch DMS 1)

(b) Ansicht Probe 60-3: Einzelner Trennriss oh-
ne erkennbar Mikrorissbildung

Abbildung 5.3.: Beispiele für die Einzelrissbildung der Balkenproben

Kraft-Verformungs-Linien

Die Kraft-Verformungs-Kurven in Abbildung 5.4 zeigen die gemessene Kraft über der Verschie-
bung des Aufnehmers WA5 (nahe Lastaufbringung, vgl. Abbildung 5.1b). Die Verläufe der üb-
rigen Aufnehmer sind Anhang E.1 zu entnehmen. Wie in Abbildung E.1 und E.2 zu sehen
ist, wurden über den Auflagern zum Teil deutliche Verschiebungen infolge der Lastaufbringung
gemessen. Auf die Rissbildung hat dies nicht zwingend Einfluss. Bei der Nachrechnung des Ver-
suchs sind diese Verschiebungen jedoch zu berücksichtigen. Außerdem ist der Winkel, auf dem
der Wegaufnehmer WA5 angebracht war, während der Prüfung der Probe 40-1 abgefallen. So ist
der horizontale Verlauf dieser Probe ab einer Verformung von etwa 1.75 mm zu erklären (siehe
Abbildung 5.4). In Tabelle 5.1sind die Ergebnisse zusammengestellt: In Abhängigkeit der Dicke
dD des Dämmstoffs und der Position des ersten DMS lDMS zeigt die Tabelle die Position des Ris-
ses lRiss, an welchem DMS und bei welcher maximalen Last dieser entstanden ist. Bei fehlender
Angabe („-“) ist der Riss außerhalb des DMS-Bereichs aufgetreten. Bei den dünneren Balken
zeigt sich somit eine Abweichung von der auf Basis der Vorsimulation erwarteten Rissposition.
Hierfür können verschiedene Ursachen infrage kommen, u.a. genannte Abweichungen bei der
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Installation der Lagerung, der Aufbringung der Last oder eine lokale unplanmäßige Schwächung
des Materials.

Grundsätzlich zeigen die Kraft-Verformungs-Kurven eine übereinstimmende Tendenz bei glei-
chen Eigenschaften. Je weicher der Dämmstoff desto geringer die Bruchlast. Je höher die Dicke
des Balkensm desto höher die Bruchlast bei geringerer Maximalverformung. Die erwartete Riss-
position weicht zum Teil etwas von den Versuchsdaten ab. Für d = 20 ergibt sich bei Probe
20-1 eine etwas größere Maximallast und Verformung, die im Vergleich zu den beiden anderen
Proben mit einer versetzten Rissposition einhergeht. Die Rissposition der Probe 20-1 stimmt
mit der Rissprognose auf Basis der Vorsimulationen überein (Riss genau auf Höhe des mittleren
DMS). Dass die Rissposition der Proben 2 und 3 miteinander übereinstimmt, lässt vermuten,
dass der Rissversatz im Vergleich zur Vorsimulation nicht auf eine willkürliche, lokale Materi-
alschwächung der beiden Balken zurückzuführen ist. Was stattdessen die Ursache ist, konnte
nicht abschließend geklärt werden. Der Verlauf von Kurve 60-1 weicht von den beiden anderen
(60-2, 60-3) ab, was auf die bereits genannte Nachgiebigkeit der Lagerung zurückzuführen ist.
Eine ähnliche Abweichung zeigt sich auch bei den Verläufen der 80er-Proben mit gleicher Ur-
sache (vgl. Anhang, Abb. E.1). Die Kurven 60-4 und 60-5, die auf dem weicheren Dämmstoff
geprüft wurden, weisen im Vergleich zu den übrigen 60er-Kurven eine deutlich geringere Last
(FTP ≈ 0.5 FTP-GP) und reduzierte Maximalverschiebung auf (wTP ≈ 0.75 wTP-GP). Die Bruch-
last steigt und die Verformung sinkt mit zunehmender Dicke. Es gibt eine leichte Tendenz, dass
der weichere Dämmstoff und die dünneren Balken eine weniger ausgeprägte Krümmung in der
Kraft-Verformungslinie zeigen als der steifere Dämmstoff und die dickeren Balken.

Die Kraft-Verformungs-Kurven in Abbildung 5.4 weisen keine wie in Biegezugprüfungen üb-
licherweise messbare Schwächung kurz vor dem Bruch (Abflachen der Kurve) bzw. Abfallen
gegenüber dem elastischen Pfad auf. Im Gegenteil kommt es in einigen Kurven eher zu einem
Anstieg der Steigung, also zu einer Versteifung des Systems. Dies ist möglicherweise darauf zu-
rückzuführen, dass der jeweilige Balken zu Versuchsbeginn noch nicht kraftschlüssig auf dem
Dämmstoff auflag und nach vollständiger Kontaktherstellung ein steilerer Anstieg der Kurve
erfolgt. Grundsätzlich zeigen die dünneren Balken einen eher abflachenden als versteifenden
Verlauf im Vergleich zu den dickeren Balken, deren Verlauf umgekehrt eher zunehmend verstei-
fend ist.

Eine grundlegende inhaltliche Interpretation der Ergebnisse im Hinblick auf das Balkentrag-
verhalten bei elastischer Bettung ist aufgrund der genannten zahlreichen, wenn auch kleineren
Abweichungen vom geplanten Versuchshergang nicht angebracht. Inwiefern aus der Dämmstoff-
wirkung versteifende oder aufweichende Kurvenverläufe resultieren, bleibt hier offen. Das Ziel
der Balkenversuche war es jedoch vor allem, eine erste Näherung des Estrichtragverhaltens auf
Dämmschicht zu validieren. Dies gelingt auch mit den kleineren Abweichungen im Versuchsablauf
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Abbildung 5.4.: Ergebnisse der Balkenversuche: Kraft-Verformungs-Kurven WA5

durch entsprechende Abbildung im Modell. Wie im folgenden Kapitel aus den vergleichenden
Simulationen abzuleiten ist, ist die beobachtete Tendenz mindestens zum Teil auf die bereits ge-
nannte ungeplant nachgiebigere Lagerung zurückzuführen: Die Verläufe folgen der nichtlinearen
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Nachgiebigkeit der Lager (siehe gemessene Verformung an den Auflagern (WA1 bzw. WA2/3)
in Anhang D). Ohne Berücksichtigung der beweglichen Lagerung ergeben sich bei den Balken
größerer Dicke deutliche Abweichungen zwischen Versuch und Simulation.

5.2. Simulationen

5.2.1. System und Randbedingungen

Aufgrund des nicht messbaren Nachbruchbereichs ist es für eine erste numerische Näherung
der gemessenen Kraft-Verformungslinien ausreichend, das System auf eindimensionale Balken-
elemente mit linear elastischem Materialverhalten zu reduzieren. Die Eingangslängenparameter
für dieses Modell sind abhängig von der Lage der Fixierungen im Versuch in Abbildung 5.5
und Tabelle 5.2 angegeben. Als Belastung wurde die maximal gemessene Kraft aufgebracht (vgl.
Tabelle 5.1)

p

𝐿𝑍𝑤𝐿 = 𝐿𝐵 − 𝐿𝐴 𝐿 − 𝐿𝐴 𝐿𝐹 𝐿5

F

Abbildung 5.5.: Systemplot des gebetteten Balkens (Diskretisierung mit Balkenelementen (oben)
bzw. kontinuumsbasierten Schalenelementen (unten))

Tabelle 5.2.: Abmessungen Balkensimulationen
d L = 700-LA LZwL = LB −LA Last [kN]

TP-GP TP
20 660 135 2.0 -
40 660 125 2.5 -
60 650 250 2.7 1.5
80 650 250 3.25 -
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5. Gebetteter Balken (1D-Spannungszustand)

In Abbildung 5.5 ist auch das numerische Modell für eine materiell-nichtlineare Berechnung
der Balkenversuche anhand eines Volumenmodells dargestellt. Um die Messdaten des Wegauf-
nehmers WA5 auf dem Winkel am Balkenende der Lastaufbringung mit den Simulationsdaten
vergleichen zu können, wird ein Element mit entsprechender Länge an dieser Stelle in beiden
Modelltypen ergänzt. Die nachgiebige Lagerung wird so modelliert, dass an den Lagern eine dem
Messverlauf entsprechende Verformung eingeprägt wird. Der Dämmstoff wird über unabhängige
Federn an jedem Knoten modelliert. Die in Kapitel 3.3 erläuterten Steifigkeitsverläufe werden
entsprechend der Elementabmessung bzw. der dadurch entstehenden Feder-Einzugsfläche be-
rechnet und dem Federelement als Kraft-Weg-Eigenschaft zugewiesen.

5.2.2. Vergleich mit den Messdaten

Kraft-Verformungslinien

In Abbildung 5.6 sind die Messergebnisse (schwarz) gegenüber den linear-elastischen Simulati-
onsergebnissen (rot) dargestellt. Die gestrichelten Kurven zeigen Simulationsverläufe, bei denen
die Lagerbedingungen als nicht nachgiebig angesetzt sind. Es ist deutlich zu erkennen, dass bei
d = 20 mm der Einfluss der festen Lagerung im Vergleich zur nachgiebigen im Versuch vernach-
lässigbar ist. Das liegt zum einen daran, dass die Lager bei diesen Versuchen deutlich weniger
nachgiebig waren (WA1 kaum Bewegung, WA2 in geringem Maß, siehe Anhang Abb. E.1 und
E.2). Zum anderen spielt die Lagernachgiebigkeit bei den dickeren Balken eine größere Rolle, weil
die abhebende Kraft am ersten Lager im Zuge der höheren Balkensteifigkeit größer ist. Für die
Balken größerer Dicke ist die Modellierung der Lagernachgiebigkeit zwingend notwendig, um den
Kraft-Verformungsverlauf zu simulieren. Für alle Berechnungen gilt, dass die Übereinstimmung
gut ist, solange die Randbedingungen den Versuchsbedingungen entsprechen: Die berechnete
Verformung bei vorgegebener Maximallast entspricht in etwa den am Balkenende gemessenen
Verformungen. Bei der geringsten und höchsten Dicke wird die Verformung im Vergleich zu den
Versuchen leicht über- bzw. unterschätzt, aber die Abweichung ist mit etwa 15 % bei dem vor-
handenen Datenumfang mit versuchstechnischen Abweichungen zu erklären.

Um neben dem bei der elastischen Rechnung bereits eingegangenen E-Modul auch die übrigen
Materialeigenschaften wie Zugfestigkeit und Entfestigungsparameter hinsichtlich der maximalen
Verformung und Bruchlast zu beurteilen, wird eine nichtlineare Berechnung mit Volumenele-
menten durchgeführt, jedoch nur für die Proben der Dicke 20 und 60 mm (jeweils mit steiferem
und weicherem Dämmstoff), d.h. für die in Abbildung 5.6 jeweils links dargestellten Daten, da
dies zur Beurteilung der Eingangsparameter ausreichend ist. Die Ergebnisse dazu sind in Abbil-
dung 5.7 dargestellt.

Entscheidend ist vor allem die Übereinstimmung der maximal gemessenen Kraft und Verfor-
mung: Für die in blau dargestellten Kurven mit den Eingangsparametern entsprechend der in
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Kapitel 4 gewählten Werte (ft = 3 N/mm2, Gf = 0.2 Nmm/mm2) zeigt sich bei allen Verläufen
ein entfestigender Abfall der Steigung hin zum Maximum. Die Krümmung der Kurve in diesem
Bereich ausgeprägter zu sehen als bei den beiden anderen Modellen. Für Dicke 20 mm ist die
Krümmung am schwächsten und wird erst kurz vor dem Bruch überhaupt leicht erkennbar.
Dieser Abfall der Steigung ist in den gemessenen Daten ganz leicht bei d = 20 mm zu erahnen,
bei den übrigen Kurven gar nicht sichtbar. Für d = 20 mm zeigt sich eine Unterschätzung der
Verformung für die nichtlineare Berechnung, für Gf = 0.2 deutlicher als für Gf = 0.3 Nmm/mm2.
Diese ist bei den dickeren Balken unabhängig von der Dämmsteifigkeit besser getroffen. Bei allen
Verläufen wird die Bruchlast etwas unterschätzt, bei d = 20 mm ebenfalls deutlicher.

Variiert wurde der Wert für die Bruchenergie, um diesen näher einzugrenzen. Bei höherer Bru-
chenergie von 0.3 (hellblau) statt 0.2 Nmm/mm2 (dunkelblau) steigt die mögliche Belastung
auf etwa das gemessene Niveau (bei d = 20 mm immer noch etwas unterschätzt), allerdings
wird dafür die Verformung größer. Eine Änderung der Zugfestigkeit würde die Werte ähnlich
beeinflussen, insofern ist es schwierig, mit den vorhandenen Daten diese präzise einzugrenzen.
Ein Variieren des Dilatanzwinkels zeigte keinen merkbaren Einfluss. Die vorhandene Untersu-
chung zeigt, dass die Größenordnung der angenommenen Werte in Ordnung ist und auch für die
Platten Anwendung finden kann.

Dehnungs- und Verformungsverläufe

Die in den Abbildungen 5.8 bis 5.10 sowie im Anhang (Abb. F.2 und F.3) dargestellten Deh-
nungsverläufe (jeweils oben: Dehnung über die Balkenlänge) und Verformungsverläufe (jeweils
unten: vertikale Verschiebung über die Balkenlänge) zum Bruchzeitpunkt zeigen eine gute Über-
einstimmung mit den Messpunkten im Rahmen der zu erwartenden versuchsbedingten Streuung.
In Abbildung 5.8 weisen die Messwerte, hier als einzelne Marker dargestellt, bei den Proben 60-
2 und 60-3 einen Ausreißer auf Höhe des Zwischenauflagers auf, was auf äußere Störungen der
Wegaufnehmer WA2 und WA3 bei der Prüfung zurückzuführen ist. Die in den Dehnungsverläu-
fen dargestellten vertikalen Markierungen kennzeichnen den Ort der gemessenen Rissbildung.
Neben den punktuell am Ort der Messaufnehmer dargestellten Versuchsdaten sind hier jeweils
die lineare Simulation als schwarze durchgezogene Kurve, sowie die nichtlinearen Simulationen
in Graustufen (dunkel: Gf = 0.2, hell: Gf = 0.3) abgebildet.

Qualitativ stimmen bereits die linear-elastisch ermittelten Dehnungsverläufe recht gut mit den
DMS-Werten überein. Die durch die 20 mm langen DMS gemessenen Werte sind als Mittelwert
über die Länge zu verstehen, sodass die Messwerte die tatsächlichen Dehnung tendenziell etwas
unterschätzen. Die nichtlinearen Verläufe liegen in der Regel unter den linear-elastischen Verläu-
fen, und weichen im Rissbereich deutlich ab, da hier eine Art Diskontinuität bzw. Singularität
im Rissbereich sichtbar wird. Die linear elastisch ermittelte, maximale Dehnung trifft die Mes-
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Abbildung 5.6.: Vergleich der Messdaten (schwarz) mit der linearen Simulation (Sim, rot): Kraft-
Verformungs-Kurven
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Abbildung 5.7.: Vergleich der Messdaten (schwarz) mit der linearen (rot) bzw. nichtlinearen
Simulation (Sim, hellblau/blau): Kraft-Verformungs-Kurven (Gf [Nmm/mm2])

sung zum dargestellten Bruchzeitpunkt gut. Ein Vergleich der beiden nichtlinearen Rechnungen
mit unterschiedlicher Bruchenergie zeigt tendenziell höhere Werte bei kleinerer Bruchenergie.
Beide unterschätzen die gemessenen Werte. Für d = 20 mm liegen die beiden Kurven außerhalb
des Rissbereichs nahezu aufeinander, im Rissbereich ist die Abweichung umso ausgeprägter.
Der Sprödbruch der Probekörper lässt einen Vergleich der Rissbreite im Versuch mit der durch
Umrechnung der plastischen Dehnung über die charakteristischen Länge ermittelten Rissbreite
nicht zu (vgl. Kapitel 3.1.2).

Die Verformungsfiguren zeigen eine recht gute Übereinstimmung mit den gemessenen Werten.
Vor allem der Verlauf der Probe 60-1 sticht aufgrund der Nachgiebigkeit des Lagers und des in
dieser Darstellung deutlichen Versatzes nach oben im Vergleich zu den anderen Proben heraus.
Abgesehen von den Ausreißern bei Wegaufnehmer WA3 zeigen die nachgerechneten Verläufe bei
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Berücksichtigung der Lagernachgiebigkeit jedoch eine gute Übereinstimmung. Die nichtlinearen
Verläufe zeigen eine etwas größere Durchbiegung bei d = 60 mm für beide Dämmstofftypen, wie
schon im Kraft-Verformungs-Diagramm gezeigt.
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Abbildung 5.8.: Dehnungs- und Verformungsverlauf der Balken mit d = 60, TP-GP (vertikale
Markierung oben: Stelle des Risses im Versuch)
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Abbildung 5.9.: Dehnungs- und Verformungsverlauf der Balken mit d = 60, TP (vertikale Mar-
kierung oben: Stelle des Risses im Versuch)
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Abbildung 5.10.: Dehnungs- und Verformungsverlauf der Balken mit d = 20, TP-GP (vertikale
Markierung oben: Stelle des Risses im Versuch)
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5. Gebetteter Balken (1D-Spannungszustand)

5.3. Zusammenfassung

Aus der Auswertung der Balkenversuche und der numerischen Simulation der Ergebnisse lassen
sich die aus den Festigkeitsprüfungen und Voruntersuchungen ermittelten Eingangsparameter
(Festigkeiten, Bruchenergie, Elastizitätsmodul) und Modellrandbedingungen (Federsteifigkeit,
Elementtyp SC8R) im Rahmen des eindimensionalen Spannungszustands und ohne Betrach-
tung des Nachbruchbereichs bestätigen und für die folgenden Untersuchungen der Plattenver-
suche übernehmen. Im Rahmen der nachfolgend beschriebenen Plattensimulationen wurde der
Parameter der Bruchenergie sowie die Zugfestigkeit im hier eingegrenzten Rahmen variiert:

• Zugfestigkeit ft ∈ [2.5,3.5] N/mm2

• Bruchenergie Gf ∈ [0.2,0.3] Nmm/mm2.

Die übrigen Parameter wurden aus den Balkenuntersuchungen übernommen, so auch die Feder-
gesetze.

124



6. Gebettete Platte (3D-Spannungszustand)

Der Vergleich der Ergebnisse aus den durchgeführten Plattenversuchen mit der numerischen Si-
mulation soll die Eignung des numerischen Modells zur Berechnungs des Rissverhaltens validie-
ren. Die Versuche umfassen lediglich zwei Platten auf zwei unterschiedlich steifen Dämmstoffen
des gleichen Typs. Zusätzlich zu den Belastungsprüfungen wurden während der Erhärtungsphase
Schwindverformungen gemessen, deren Einfluss auf das Bruchverhalten zu untersuchen ist. Zu-
nächst wird im Folgenden der Systemaufbau sowie die Anordnung der Messtechnik erläutert. Die
Auswertung der gemessenen Schwindverformungen und der anschließenden Belastungsversuche
dient als Grundlage für die numerische Simulation der schwimmend hergestellten Platte.

6.1. Versuchsaufbau und -ablauf

6.1.1. Aufbau

Wegaufnehmer wurden zur Schwindmessung wenige Stunden nach Herstellung des Estrichs in
einem 3× 3-Raster auf den Platten angeordnet, um die vertikale Eck- bzw. Randverformung im
Vergleich zur Verformung in Plattenmitte zu erfassen, siehe Abbildung 6.1. Nach drei Wochen
wurde die Schwindmessung planmäßig abgebrochen, da als Vorbereitung für die geplante Prüfung
der Platten nach etwa 28 Tagen zusätzlich Dehnungsmessstreifen (DMS) auf der Plattenober-
seite aufgeklebt werden sollten, und die Arbeit auf der Platte die weitere Messung verfälscht
hätte. Die Messung der Dehnung sollte einen Anhaltspunkt für die zeitliche Entwicklung des
Dehnungs- bzw. Spannungszustands während der Belastung der Platte bis zum Bruch liefern,
und einen möglichen Effekt aus Spannungsumlagerung infolge der Bettung detektieren. Hierfür
wurde auch eine innen liegende Messsensorik in Betracht gezogen. Bei der Untersuchung unbe-
wehrter Bauteile besteht jedoch bei der Verwendung optischer Dehnungssensoren das Problem,
dass die Positionstreue der Sensoren ohne Einbau zusätzlicher Fixierhilfen nicht gewährleistet
werden kann. Bei Stahl- oder Spannbeton können die Sensoren an der Bewehrung befestigt
werden, dies ist bei unbewehrten Bauteilen jedoch nicht möglich, bzw. der zusätzliche Einbau
anderer Materialien könnte einen bewehrenden Effekt haben und damit das Bauteilverhalten
grundlegend beeinflussen.

Die Anordnung der Dehnungsmessstreifen orientiert sich an der erwarteten Rissbildung. Bei
Belastung der Plattenecke bricht diese in einem gewissen Abstand zum Laststempel mit leicht
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6. Gebettete Platte (3D-Spannungszustand)
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Abbildung 6.1.: Anordnung der Wegaufnehmer (WA) zur Messung der Schwindverfor-
mung (Bezeichnung: E/R/M (Ecke/Rand/Mitte), V/H (vorne/hinten), R/L
(rechts/links))

gekrümmtem Rissverlauf ab, bei Laststellung in Randmitte ist die Ausbildung eines größeren
Bruchradius um die Last herum zu erwarten (vgl. u.a. Manns und Zeus, 1980). Die Position die-
ser Einzelrissbildung ist vor allem von der Dämmstoffsteifigkeit und der Plattengeometrie und
-dicke abhängig. Unter Verwendung der in den Vorversuchen am verwendeten Dämmstoff (vgl.
Kapitel 3.2) ermittelten Bettungssteifigkeit wurden Vorsimulationen in Abaqus durchgeführt,
um die Dehnungsmessstreifen im Bereich der so prognostizierten Rissbildung anzubringen. Der
Einfachheit halber wurde für beide Platten an den Ecken die gleiche DMS-Anordnung gewählt:
Im Abstand von 200 mm zur Ecke werden drei lineare DMS jeweils im Abstand von 60 mm ange-
bracht, um den erwarteten Rissbereich von etwa 25 mm (steifer Dämmstoff TP-GP) bis 35 mm
(weicher Dämmstoff TP) abzudecken. Im Abstand von weiteren 60 mm ist eine DMS-Rosette
angeordnet, die an den erwarteten Hauptspannungsrichtungen orientiert aufgeklebt wurde. Die
Anordnung der DMS kann Abbildung 6.2 entnommen werden.
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6.1. Versuchsaufbau und -ablauf
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6. Gebettete Platte (3D-Spannungszustand)

Hydraulikzylinder 
(Lastaufbringung)

Weg-
aufnehmer

Kraftmessdose

Laststempel

Abbildung 6.3.: Stempelaufbau Platte

Die Last wurde über einen runden Stempel mit
einem Durchmesser von 50 mm aufgebracht. Die
Laststeigerung erfolgte mithilfe eines Hydraulikzy-
linders, der zwischen einem auf die erwartete Ma-
ximallast ausgelegten Stahlbalken und der Estrich-
platte über eine Handpumpe ausgefahren wurde und
den Stempel so auf die Platte gedrückt hat. Un-
ter dem Stempel wurde zusätzlich eine elastische
Unterlage untergelegt, um keine lokale Schädigung
aus Durchstanzbeanspruchung zu riskieren. Unter-
halb des Hydraulikzylinders wurde eine Kalotte für
eine bessere Kraftschlüssigkeit der Verbindung des
in Abbildung 6.3 dargestellten Aufbaus angeord-
net. Über eine darunter angeordnete Kraftmessdose
wurde die über den Hydraulikzylinder aufgebrachte
Kraft aufgezeichnet. Da die Verformung infolge des
Eigengewichts dieses Aufbaus nicht messbar war,
wurden zu Beginn der Messung alle Kanäle genullt und die Kraft-Verformungs-Kurven im fol-
genden Kapitel nachträglich um das gemessene Gewicht des Aufbaus korrigiert.

6.1.2. Ablauf (Gesamtrissbild)

Zentrales Ziel der Versuche ist die Untersuchung des Lastfalls Einzellast auf Plattenecke. Al-
ternativ zum gewählten Versuchsaufbau wären Eckprüfungen an mehreren kleineren Platten
möglich gewesen, allerdings besteht bei Platten mit zu geringer Abmessung das Problem, dass
die Platte unter Einzellast lediglich eine Kippbewegung auf dem Dämmstoff erfährt und das
tatsächliche Abbruchverhalten, welches in der Praxis zu beobachten ist, nicht ohne zusätzli-
che Randbedingungen (Festhaltung gegen Kippen) reproduziert werden kann. Alternativ wurde
schließlich eine größere Plattenabmessung (quadratische Abmessung L = 2500 mm), und damit
einhergehend eine geringere Anzahl an Platten, gewählt.

Zunächst wurde Platte S (steifer Dämmstoff) geprüft. Aufgrund des aufwendigeren Umsetzens
des Stahlbalkens, der dem Hydraulik-Zylinder als Gegenlager dient, wurde nach Prüfung der
ersten beiden Ecken die Prüfung des dazwischen liegenden Randes vorgezogen. Dabei wurde
jedoch ein zusätzlicher Riss quer durch die Platte erzeugt. Die restlichen beiden Eckprüfungen
konnten somit nur noch an der auf die halbe Platte reduzierten Geometrie durchgeführt werden
(L ×L/2). Bei Prüfung der zweiten Platte wurden zuerst alle Eck-Lastfälle durchgeführt, bevor
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6.1. Versuchsaufbau und -ablauf

(a) Platte S (steifer Dämmstoff)

(b) Platte W (weicher Dämmstoff)

Abbildung 6.4.: Plattenprüfung: Finales Rissbild
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6. Gebettete Platte (3D-Spannungszustand)

anschließend Lastfall W-RL (Rand links) geprüft wurde, bei dem ebenfalls eine Halbierung der
Platte die Folge war. Aufgrund des großen Bruchradius infolge des weicheren Dämmstoffs war bei
den noch übrigen Teilbruchstücken keine näherungsweise rechteckige Geometrie mehr vorhan-
den. Fotos und Abbildungen zum Aufbau, Ablauf und weitere Informationen zur Messtechnik
können Anhang D.2.2 entnommen werden. Die nach Abschluss der Prüfung aufgenommenen
Rissbilder der beiden Platten sind in Abbildung 6.4 dargestellt. Der Versuchsablauf mit den
einzelnen schematischen Bruchbildern ist im Anhang in Abbildung E.5 visualisiert.
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6.2. Versuchsergebnisse

6.2. Versuchsergebnisse

6.2.1. Schwinden

Zur Berücksichtigung der Schwindverformungen soll eine gewisse Vorbeanspruchung im nume-
rischen Plattenmodell eingeprägt werden. Durch Vorgabe einer aufgeschüsselten Initialkonfi-
guration und Lagerung der Platte auf nichtlinearen Einzelfedern, wie bereits in Kapitel 3.2.1
erläutert, wird die Vorverformung der Platte infolge Schwindens berücksichtigt. Die zugehörige
Verformungsfigur hätte aus den gemessenen Eckwerten der Platte und Näherung an eine para-
bolische Schüssel-Form ermittelt werden können. Bei dieser Vorgehensweise würde allerdings der
korrespondierende Spannungszustand infolge der Schwindverformung entgegenwirkenden Eigen-
gewichts nicht berücksichtigt. Um einen möglichen Einfluss auf die anschließende Rissbildung
infolge äußerer Last zu prüfen, sollten die entstehenden Zwangsspannungen betrachtet werden.
Während der Erhärtung des Estrichs wurden jedoch nur die Verformungen und keine Spannun-
gen oder Dehnungen gemessen, um daraus eine Vorbeanspruchung ableiten zu können. Auch
wäre eine großflächige Abschätzung des Spannungszustands auf Basis einzelner Messwerte mit
großen Unsicherheiten behaftet.

Daraus ergibt sich die Notwendigkeit, den Lastfall Schwinden rein numerisch zu berücksichtigen
und die resultierenden Verformungen und Spannungen als Initialzustand bei der Risssimulation
anzunehmen. Auf die konkreten Randbedingungen und Ergebnisse dieser Schwindsimulationen
wird in Anhang B genauer eingegangen (siehe auch Kapitel 3.2.1).

In Abbildung 6.5 sind zunächst die vertikal gemessenen Verschiebungen der Ecken, Ränder und
Plattenmitte der beiden betonierten Platten dargestellt. Zu sehen ist ein zunehmend asympto-
tischer Verlauf der Kurven, wobei zum Zeitpunkt des Messabbruchs nur bei wenigen Kurven
eine Stagnation in Form eines näherungsweise horizontalen Verlaufs sichtbar ist. Die Kurve des
Wegaufnehmers in Plattenmitte der steiferen Platte S zeigt sogar eine leicht zurückgehende Ver-
formung.

Die Aufnehmer an den Ecken bzw. Rändern weisen jeweils eine gute Übereinstimmung1 auf. Die
Kurven der steifer gelagerten Platte S (Abb. 6.5a) stimmen mit denen der weicheren Platte W
ebenfalls gut überein (Abb. 6.5b), wobei die Kurven in (b) tendenziell leicht höhere Verformun-
gen aufweisen. An der Plattenmitte zeigt sich eine zunehmende Abweichung von bis zu etwa
0.5 mm.

Zur Ermittlung eines numerischen Vorverformungs- bzw. Vorspannungszustands, der diesen

1 mit Ausnahme des Aufnehmers EHL (=Ecke hinten links) aufgrund eines instabilen Stativs; Aufnehmer EHL
wird nachfolgend vernachlässigt
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6. Gebettete Platte (3D-Spannungszustand)

Messdaten möglichst gut entspricht, stehen rechnerische Ergebnisse aus dem Programmsystem
croc zur Verfügung, wobei hier noch kein Eigengewicht berücksichtigt ist (vgl. Kapitel 3.2.1).
Ein Vergleich der Messkurven in Abbildung 6.5 mit durch Eigengewicht beaufschlagten croc-
Simulationsergebnissen über die Zeit ist nicht ohne Weiteres möglich, da hierfür jedes Zeitschritt-
Ergebnis aus croc in Abaqus importiert und mit Eigengewicht belastet werden müsste. Statt eines
Vergleichs der absoluten Schwindverformung, werden die gemessenen Relativverformungen mit
den Ergebnisse aus croc verglichen.

In Abbildung 6.6 sind die jeweils gemittelten, gemessenen vertikalen Eck (E)- und Rand (R)-
Verformungen abzüglich der Verformungen in Plattenmitte (M) dargestellt. Der direkte Ver-
gleich der Differenz-Messkurven der beiden Platten zeigt aufgrund der stärkeren Verschiebung
des Aufnehmers in Plattenmitte bei Platte W eine Abweichung von etwa 0.5 mm, sowohl für
die Ecke2 als auch für den Rand. Zusätzlich sind hier die in croc ohne Eigengewicht an einer
Viertelplatte (Symmetrieausnutzung, siehe Abbildung 3.14) berechneten Relativverschiebungen
an Ecke und Rand relativ zur festgehaltenen Plattenmitte dargestellt. Unter der Annahme,
dass das Eigengewicht bei den Messungen gleichmäßig wirkt, sollten die berechneten Daten mit
den gemessenen Relativverschiebungen übereinstimmen. Die Simulationen in croc wurden für
verschiedene Vernetzungen durchgeführt:

• Netz 1: gleichmäßig, Elementabmessung 50mm,

• Netz 2/4: gleichmäßig: Elementabmessung 25mm (mit 8- und 20-Knoten-Elementen),

• Netz 3: Verfeinerung des Netzes hin zur Ecke.

Es fällt auf, dass im Gegensatz zu den Messkurven in der Simulation vor Abnahme der Folie
ein horizontaler Verlauf zu verzeichnen ist, sich bis zur modellierten Abnahme der Folie nach 4
Tagen keine Verformung im Modell ergibt. Um den Verlauf der gemessenen mit den simulierten
Kurven nach 4 Tagen besser vergleichen zu können, wurden daher die berechneten Kurven um
das mittlere Maß der im Versuch zum Zeitpunkt der Folienabnahme Verformung verschoben.
Dies geschieht gleichermaßen für alle betrachteten Vernetzungen. Der Vergleich der verschiede-
nen Netze zeigt keine Konvergenz bei feinerer Vernetzung, sondern eine Streuung, die im Fall
der Randverformungen bereits deutlich ist, im Fall der Eckverformung noch größer. Die Simula-
tionsergebnisse zeigen die von den Messergebnissen nahezu erreichte Stagnation im betrachteten
Zeitraum weniger, und weisen kurz nach Entfernung der Folie einen etwas flacheren Anstieg auf
als die Messkurven. Die Größenordnung der maximalen Verschiebung ist mit den Werten im
Versuch zumindest vergleichbar.

Der zu den beschriebenen Verformungen korrespondierende Spannungszustand während der
Schwindsimulation weist die gleichen Diskrepanzen hinsichtlich einer eindeutigen Konvergenz
auf wie die Verformungen. Die Hauptspannungen übersteigen aber weder Zug- noch Druckfes-
tigkeit (vgl. Abbildung F.5), sodass infolge Schwinden nicht mit Rissbildung zu rechnen ist,

2 die aufgrund des instabilen Stativs fehlerhafte Messung wurde bei der Mittelung nicht berücksichtigt

132



6.2. Versuchsergebnisse

2 4 6 8 10 12 14 16 18 20

−1

1

2

3
Folie
entfernt

Stativ
instabil

Ecke

Rand

Mitte

Zeit [d]

vert. Verschiebung [mm] EVL
EVR
EHL
EHR
RV
RL
RH
RR
M

(a) Platte S mit steiferem Dämmstoff

2 4 6 8 10 12 14 16 18 20

−1

1

2

3
Folie
entfernt

Ecke

Rand

Mitte

Zeit [d]

vert. Verschiebung [mm] EVL
EVR
EHL
EHR
RV
RH
M

(b) Platte W mit weicherem Dämmstoff

Abbildung 6.5.: Schwindmessung im Versuch (Bezeichnung der Wegaufnehmer vgl Abb. 6.1)

weshalb das geplante stufenweise Vorgehen im vorliegenden Fall möglich ist:

(i) Implementierung der Ergebnisse der Schwindberechnung ohne Eigengewicht aus croc als
Ausgangszustand,

(ii) anschließendes Aufbringen des Eigengewichts und der Einzellast innerhalb Abaqus.

Aufgrund der guten Übereinstimmung der berechneten mit der gemessenen vertikalen Verschie-
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Abbildung 6.6.: Ergebnis der Schwindsimulation in croc: Vertikale Verformungen an der Ecke
(E) bzw. am Rand (R) relativ zur in der Simulation fest gelagerten Plattenmit-
te (M) im Vergleich zur gemessenen Relativverformung zwischen Plattenmitte
und Ecke (E-M) bzw. Rand (E-R) (Elementnetz: (1) – regelmäßig 50 mm,(2)
−− regelmäßig 25 mm, (3) ⋅− zur Ecke verfeinert, (4) ⋅ ⋅ ⋅ 20-knotige Elemente,
regelmäßig 25 mm)

bung wird die berechnete Verformungsfigur sowie der zugehörige, in croc ermittelte Spannungs-
zustand infolge Schwinden für einige Voruntersuchungen des Rissverhaltens an der Platte berück-
sichtigt. Es zeigt sich in Abbildung F.4 im Anhang, dass der Einfluss aus Zwangsspannungen, so
wie sie croc liefert, auf das Verformungs- oder Rissverhalten der Platte vernachlässigbar ist. Der
Einfluss der Vorverformung ist jedoch deutlich. Da es außerdem aufgrund fehlender Messungen
keine Möglichkeit gab, die innerhalb croc ermittelten Spannungen und deren Implementierung
in das vorhandene Modell auf Realitätsnähe bzw. Korrektheit zu überprüfen, werden in den
folgenden Rechnungen nur die Vorverfomungen berücksichtigt. Dabei werden entweder die aus
croc gegebenen Vernetzungen übernommen oder bei abweichender Vernetzung diese entspre-
chend daraus interpoliert. Qualitativ ist der Verformungszustand für alle Netze ähnlich, nur die
Maximalordinate am Rand bzw. an der Ecke sind stark unterschiedlich. Die vorgegebene Vorver-
formung wird bei den Berechnungen in Abaqus jedoch ohnehin auf die gemessene Eckverformung
von 3.4 mm (Platte S) bzw. 4.1 mm (Platte W) skaliert.
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6.2. Versuchsergebnisse

Fazit

Zusammenfassend lässt sich festhalten, dass die Messdaten der vertikalen Verschiebung wäh-
rend des Erhärtungszeitraums ein Schüsselverhalten, d. h. ein Abheben der Ränder und Ecken
bei gleichzeitigem Einsinken der Plattenmitte zeigen, wobei Platte W etwas weiter einsinkt als
Platte S. Dies könnte u. a. mit dem weicheren Dämmstoff unter Platte W und einer dadurch
insgesamt tieferen Einsenkung dieser Platte zusammenhängen. Die tendenziell höheren Eck-
und Randverformungen dieser Platte sprechen allerdings dagegen. Inwiefern die Unterschiede
zwischen den beiden Platten ggf. auch auf äußere Einflüsse oder Ungenauigkeiten während der
Messung zurückzuführen sind (bzw. ob die Ungenauigkeit eher im Rand-/Eckbereich oder in
Plattenmitte zu suchen ist), oder dies mit lokal unterschiedlicher Verdichtung der Platten oder
anderen Ursachen zusammenhängt, kann nicht abschließend geklärt werden. Aufgrund der in
beiden Fällen gleichermaßen unterliegenden Folie ist ein Einfluss unterschiedlicher Isolationswir-
kung nach unten während der Austrocknung auszuschließen.

Die Annahme des simulierten qualitativen 21-Tage-Verformungszustands skaliert auf die maxi-
mal gemessene Eckverformung als Grundlage für die Nachrechnung der Belastungsversuche, die
erst nach 28 bzw. 36 Tagen erfolgten, ist für den Zweck einer grundlegenden Beurteilung des
Schwind-Einflusses ausreichend genau. Die fehlende Konvergenz bei den Ergebnissen aus croc
kann im Fall der Vorverformungen aufgrund des Abgleichs mit den Messdaten vernachlässigt
werden. Bei Anwendung des Modells auf andere, schwind-intensivere Estrichtypen und verglei-
chender, quantitativer Beurteilung der Simulationsergebnisse sollten diese Annahmen jedoch
noch einmal überprüft und der Dehnungszustand während der Erhärtungsphase mithilfe von
DMS erfasst und abgeglichen werden. Im Folgenden wird auf die Belastung der Platte im An-
schluss an die Erhärtungsphase näher eingegangen.

6.2.2. Belastung

Aufgrund der – mit Blick auf die erwartete Rissposition an der jeweiligen Plattenecke – großen
Abmessung der Platte wird angenommen, dass die Eck-Lastfälle sich nicht gegenseitig beein-
flussen. Somit können die vier Eckprüfungen als voneinander unabhängig beurteilt werden und
sollten bei gleicher Geometrie vergleichbare Ergebnisse liefern. Aufgrund des bereits erläuterten
ungünstigen Versuchsablaufs bei Platte S, wodurch die Platte vor Belastung der beiden Ecken
vorne links (Abkürzung im folgenden entsprechend Abb. 6.1: EVL (Ecke vorne links)) und hinten
links (EHL) durchgebrochen ist, sind diese beiden Ecken im weiteren Verlauf nicht einzubezie-
hen. Wie bereits anhand der Rissbilder in Abbildung 6.4 erläuert ist der Bruchradius unter der
Randlast bei der weicheren Dämmung deutlich größer als der der steifer gelagerten Platte. Diese
Tendenz eines größeren Bruchradius bei weicherer Dämmung zeigt sich weniger ausgeprägt auch
bei den Eckprüfungen.
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6. Gebettete Platte (3D-Spannungszustand)

In den Tabellen E.1 und E.2 sind die Abmessungen und Bruchlasten der Eck- und Randbruch-
körper der jeweiligen Platte erfasst (vgl. Abb. 6.7), Tabelle 6.1 zeigt jeweils Mittelwerte der
quadratischen Platte und der halbierten Platte. Die Bruchlasten wurden gemittelt sofern meh-
rere Versuche gleicher Randbedingung vorlagen (vgl. letzte Spalte mit Bezeichnung der be-
rücksichtigten Versuche). Die Bruchlast steigt durch die Halbierung der Geometrie bei steiferer
Unterlage3 an: an der Ecke um etwa 0.7 kN, am Rand etwa 2.1 kN. Durch die Halbierung der
Platte werden die Eck- und Randbruchstücke der Platte S tendenziell etwas kleiner, die Bruch-
stückgrößen liegen aber unabhängig von der veränderten Geometrie nah beieinander. In Spalte
„d“ der Tabelle 6.1 zeigt sich außerdem eine Schwankung bei der Plattendicke zwischen 60.5 mm
und 68 mm anstelle der geplanten 60 mm. In dieser Größenordnung sollten Auswirkungen dieser
Schwankungen auf die Versuchsergebnisse, z. B. auf die Höhe der Bruchlast, vernachlässigbar
sein, können nicht gänzlich ausgeschlossen werden.

Tabelle 6.1.: Gemittelte Abmessungen der Bruchkörper [mm] und mittlere Bruchlasten [kN],
vgl. Tabellen E.1 und E.2 im Anhang für die ungemittelten Messdaten

Platte Lastfall Geometrie Lm d FBruch,m

S Ecke quadratisch 242.5 60.5 6.79 S-EVR, S-EHR
W Ecke quadratisch 334.3 62 7.43 W, alle Ecken

S Rand quadratisch 315 63 13.55 S-RR
W Rand quadratisch 785 68 15.17 W-RL

S Ecke rechteckig 239 63 7.5 S-EVL, S-EHL

S Rand rechteckig 272.5 60.5 15.62 S-RH, S-RV

L
m

d

d

Abbildung 6.7.: Form und Abmessung der Bruchkörper (links Eck-, rechts Randprüfung), vgl.
Tabelle 6.1

Belastung an der Ecke

In den Abbildungen 6.8 und 6.9 sind die zu den Eck-Lastfällen zugehörigen Kraft-Verformungs-
kurven zusammengestellt, vgl. Tabelle 6.1 (Zeilen 1 und 2). In Abbildung 6.8 sind die vertikalen
Verformungen direkt an der Stelle der Lastaufbringung sowie entlang der zugehörigen Diagona-
3 bei weicherer Unterlage war der Versuch am Plattenrand bei durchgebrochener Platte fehlerhaft
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6.2. Versuchsergebnisse

len aufgetragen (vgl. die Bilder zur Laststellung (●) und WA-Stellung (x), die an den jeweiligen
Kurven abgebildet sind). In Abbildung 6.9 sind die sich gegenüberliegenden Rand- bzw. Eck-
verformungen der übrigen Messstellen dargestellt. In allen Abbildungen zeigt sich eine deutliche
Gruppierung gleicher Messstellen bzw. eine gute Übereinstimmung der vertikalen Verformungen
für die Ecklastfälle.

Anhand der Kraft-Verformungskurven wird ersichtlich, dass sich die Platte unter der Last nicht
nur biegt, sondern vor allem zu Beginn der Belastung „kippt“, da sich die jeweils gegenüber-
liegende Ecke nach oben bewegt. Diese Bewegung flacht im Fall des steiferen Dämmstoffs (vgl.
Abb. 6.8a) mit zunehmender Kraft hin zu einem vertikal asymptotischen Kraft-Verformungs-
Verlauf ab, die Kippbewegung stagniert. Diese Tendenz ist bei Platte W nicht zu beobach-
ten, die zugehörige Kraft-Verformungs-Kurve weist einen nahezu linearen Verlauf auf (vgl.
Abb. 6.8b). Analog zu den Messungen an den gebetteten Balken weisen auch hier die Kraft-
Verformungskurven im ansteigenden Ast kaum Anzeichen für die Ankündigung eines Bruchs
durch Abflachung der Kurve auf. Ein Großteil der Kurven zeigt vielmehr eine anfänglich schwä-
chere Steigung mit späterer Versteifung bis hin zu einem plötzlichen Eintreten des Bruchs. Diese
Verläufe bestätigen, dass es vor dem Bruch infolge der Sprödigkeit des Estrichs nicht zu Span-
nungsumlagerungen kommt. In Abbildung 6.9 ist die vertikale Verformung der Platte abseits der
vom Lastangriffspunkt aus betrachteten Diagonallinie dargestellt. Die steifere Platte (Abb. 6.9a)
zeigt eine deutlich bessere Übereinstimmung der verschiedenen Ecken, jedoch auch des rechten
und linken „Plattenflügels“. Die farblich gruppierten Kurven (rot/ magenta/ hellbau/ dunkel-
blau) stimmen recht gut überein. Die Platte zeigt somit bezogen auf die Diagonale in den beiden
Prüfungen eine weitgehend symmetrische Verformungsfigur. Bei der weicheren Platte (Abb. 6.9b)
sind die Kurven weiter aufgefächert, hier sinkt eine Plattenseite etwas mehr ab als die andere.
Dieser Effekt ist auf nicht perfekt symmetrische Randbedingungen im Versuch zurückzuführen.
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(a) Platte S (steifer gelagert), Laststellung Ecke ((nVersuche = 2)
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(b) Platte W (weicher gelagert), Laststellung Ecke (nVersuche = 4)

Abbildung 6.8.: Verschiebungsmessung auf der Diagonalen bei Eckbelastung (vgl. Position auf
der Platte mit ●=Laststellung, x=Wegaufnahmerstelle (WA) von der Stelle der
Last über Stelle Z (vgl. Abb. 6.2) und die Plattenmitte bis zur gegenüberliegen-
den Ecke)
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(b) Platte W (weicher gelagert), Laststellung Ecke (nVersuche = 4)

Abbildung 6.9.: Verschiebungsmessung jenseits der Diagonalen bzw. an den Diagonalflügeln bei
Eckbelastung (vgl. Position auf der Platte mit ●=Laststellung, x=Wegaufnah-
merstelle (WA))
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Fazit

Für die Validierung des numerischen Modells werden die in Tabelle 6.1 grau unterlegten Mess-
ergebnisse herangezogen, da sich hier bei mehreren Versuchen gleicher Randbedingung eine gute
Übereinstimmung der Ergebnisse zeigt. Die Kraft-Verformungslinien der einzelnen Versuche zei-
gen eine gute Übereinstimmung. Der Bruch kündigt sich auch in den Messdaten nicht durch
ein Abflachen der Kurve an, im Gegenteil zeigt sich eher eine leicht versteifende Tendenz am
Lastangriffspunkt. Dies ist wahrscheinlich auf die anfängliche Überwindung der Aufschüsselung
und die dadurch erst spätere Aktivierung des Dämmstoffs zurückzuführen. Der vor allem beim
weicheren Dämmstoff beobachtete Effekt, dass sich unter Last ein Plattenflügel etwas mehr senkt
als der andere, wird sich bei der numerischen Nachrechnung nicht einstellen. Das numerische
Modell ist eindeutig symmetrisch, sodass dies eine Ursache für eventuelle, leichte Abweichungen
zum Versuch darstellen kann. Für den Lastfall Einzellast am Plattenrand ist die Belastbarkeit
der Messdaten fraglich. Infolge des Durchbrechens der Platte nach Prüfung des ersten Rands
liegt nur jeweils ein Versuch für die beiden unterschiedlich steif gelagerten Platten vor, und
aufgrund der Größe des Bruchradius’ kann ein Einfluss aus vorheriger Prüfung der Ecken nicht
ausgeschlossen werden. Auf die erfassten Versuchsdaten wird dennoch in Kapitel 6.3.2 unmit-
telbar in Zusammenhang mit einer Vergleichssimulation eingegangen, um Eck- und Randlastfall
im Hinblick auf die Bemessungsrelevanz gegenüberzustellen.
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6.3. Simulationen

6.3.1. System und Randbedingungen

In Abbildung 6.10 ist das numerische Modell für die Simulation der 2500×2500×60 mm bemes-
senden Platte dargestellt. Für die Elementabmessungen werden drei verschiedene, gleichmäßige
Netze mit dem Raster

• 50 × 50 × 10 Elemente (grob),

• 70 × 70 × 10 Elemente (mittel),

• 100 × 100 × 10 Elemente (fein).

untersucht. Für das grobe und das feine Netz konnten die Vernetzung und Schüsselverformun-
gen unmittelbar aus croc übernommen und skaliert werden, für das mittlere Netz wurden die
Daten zur Beschreibung der Schüsselform entsprechend über das feinere Netz interpoliert. Die
Platte ist vollständig auf knotenweise mit der unteren Elementlage verbundenen Einzelfedern
gelagert. Dies geschieht analog zur Modellierung des Balken-Modells mit dem Unterschied, dass
im Bereich der Schüsselung im äußeren Bereich der Platte jeweils Federn zwischengeschaltet
sind (ausgenommen ist nur ein kleiner Bereich in Plattenmitte mit vernachlässigbarem Ab-
stand zum Dämmstoff; der Mittelknoten liegt entsprechend der Vorgabe aus croc direkt auf dem
Dämmstoff auf). Dieses Vorgehen wurde bereits in Kapitel 3.2.1 erläutert. Entsprechend erhalten
die zwischengeschalteten Federn ein nichtlineares Kraft-Verschiebungs-Gesetz, welches bis zur
Überbrückung des Abstands zwischen Platte und Dämmstoff näherungsweise eine Steifigkeit von
Null aufweist und anschließend in eine im Verhältnis zum restlichen System unendlich großen
Steifigkeit übergeht. Die restlichen Federn weisen ein Federgesetz entsprechend der ermittelten
Dämmsteifigkeit auf. Die Maximalordinate der Schüsselform wird abhängig von der Dämmstei-
figkeit im Versuch aus der Messung übernommen (Platte W: 4.1 mm, Platte S: 3. mm). Die Last
wird als Druck und im Fall des groben Netzes auf ein einzelnes Element aufgebracht, da dies
etwa der belasteten Fläche im Versuch entspricht. In den beiden feineren Netzen wird die Last
auf 4 Elemente verteilt, vergleiche Abbildung 6.10 rechts in rot.

p

Dämm-

steifigkeit

Kontaktfedern
SC8R 

(Kontinuums-

schalenelement)

Abbildung 6.10.: Systemplot der Platte für das mittlere Netz mit 70 × 70 × 10 Elementen
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6.3.2. Vergleich mit den Messdaten

Rissbilder und Kraft-Verformungslinien

Wie bereits in Kapitel 4 erläutert, wurden zur Realisierung der vorhandenen Rissbildung in
den Versuchen bei der numerischen Modellierung die Elemente mit den größten Hauptspannun-
gen gegenüber dem restlichen Modell geschwächt, um eine Konzentration des Risses auf wenige
Elementreihen zu erzwingen. Der Einfluss dieses Vorgehens auf die Kraft-Verformungslinie wird
nachfolgend veranschaulicht. In den Abbildungen 6.11 und 6.12 sind die resultierenden Rissbilder
für die drei verschiedenen Netze in Form von auftretenden plastischen Dehnungen dargestellt
(dunkle Einfärbung). Der hier dargestellte Zustand ergibt sich bei Schwächung der Elemente
im Rissband durch eine um 10 % niedrigere Zugfestigkeit. Bei diesen nur leicht geschwächten
Elementen in der RPZ breiten sich die plastischen Dehnungen in einen größeren Bereich aus und
beschränken sich nicht auf das initial identifizierte Rissband. Dabei entwickelten sich in der Regel
in zwei Elementreihen die mit einigem Abstand größten plastischen Dehnungen, wobei eine der
beiden Reihen in der Regel dominanter ist. Um eine Vergleichbarkeit mit der Einzelrissbildung
in den Versuchen herzustellen, wurde eine ausschließlich auf das Rissband beschränkte Lokali-
sierung durch eine deutliche Steigerung der Zugfestigkeit außerhalb des designierten Rissbands
induziert. Die zu dieser Modellierung zugehörigen Rissbilder sind in Anhang F.3.2 dargestellt.
Jeweils in rot dargestellt sind die in den Versuchen festgestellten, gemittelten Risspositionen.
Für das mittlere Netz zeigte sich für die genannte dominantere Reihe eine sehr gute Überein-
stimmung mit der weicher gelagerten Platte W (Abb. 6.11 bzw. F.7), für das gröbste Netz mit
der steifer gelagerten Platte S (Abb. 6.12 bzw. F.8). Die Tendenz, dass sich für den weicheren
im Gegensatz zum steiferen Dämmstoff ein etwas größerer Bruchradius ausbildet, ist kaum aus-
zumachen, die Risslinien liegen grundsätzlich sehr nah beieinander. Die Abweichung hängt mit
der Identifizierung des Rissbands aus der Rechnung im ungeschwächten Zustand zusammen und
nicht mit der anschließenden Lokalisierung durch Schwächung.

Die mit geschwächtem Rissband und mittlerer Vernetzung bestimmten Kraft-Verformungslinien
(rot) sind mit den auf der Plattendiagonale gemessenen Kurven (schwarz) in Abbildung 6.13
dargestellt. In blau sind die Ergebnisse auf Basis einer erzwungenen Begrenzung der plastischen
Dehnungen auf die RPZ visualisiert. Es wird deutlich, dass der Unterschied zwischen den beiden
Modellierungen vernachlässigbar ist. Die Ausbreitung der plastischen Dehnungen in einem grö-
ßeren Bereich als der RPZ bzw. die Verteilung auf zwei unzusammenhängende Elementreihen
hat auf das simulierte Systemtragverhalten keinen entscheidenden Einfluss. Vergleicht man die-
se Versuchsergebnisse mit dem Versuch ergibt sich für die steifer gelagerte Platte S eine etwas
höhere Bruchlast als im Versuch von etwa 7.4 kN (Versuch: 6.79 kN). Die Simulation der Platte
W liefert einen etwas geringeren Wert von etwa 7.2 kN und liegt damit unter dem Versuchswert
(Versuch: 7.43 kN). In der Simulation liefert somit die steifere Lagerung die höhere Bruchlast, im
Versuch ist es umgekehrt. Die maximale Verformung unter der Last ist bei der steiferen Lagerung
gut getroffen, bei der weicheren Lagerung wird sie unterschätzt. An den anderen Messpunkten
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(a) 50 (b) 35 (c) 25

Abbildung 6.11.: Entwicklung der plastischen Dehnungen (Graustufen) für Platte W im Ver-
gleich zur in rot dargestellten Rissposition im Versuch (Breite des dargestellten
Plattenausschnitts 0.625 m)

(a) 50 (b) 35 (c) 25

Abbildung 6.12.: Entwicklung der plastischen Dehnungen (Graustufen) für Platte S im Vergleich
zur in rot dargestellten Rissposition im Versuch (Breite des dargestellten Plat-
tenausschnitts 0.625 m)

entlang der Diagonale wird die berechnete im Vergleich zur gemessenen Verformung für bei-
de Dämmstoffvarianten jeweils unterschätzt. Der Kurvenverlauf unter der Last (jeweils linke
Kurve) ist für die weiche Lagerung fast identisch zu der im Versuch, bei steifer Lagerung zeigt
sich ab einer Einsenkung von etwa 1.5 mm ein etwas zu steifer Verlauf. Zieht man zur Beurtei-
lung Abbildung 6.14 heran, bei der die Kraft-Verformungslinien unter der Last, und zusätzlich
das Ergebnis einer Berechnung ohne Vorverformung (gestrichelt: linear elastisch, durchgezogen:
nichtlinear, jeweils rot) dargestellt sind, ist erkennbar, dass der flachere und dann versteifende
Verlauf der Rückbildung der Vorverformung bzw. Aufschüsselung zuzuschreiben ist. Was sich in
den Versuchs- und Simulationsdaten gleichermaßen zeigt: Ein „Kippeffekt“ ist tendenziell eher
bei weicherer Lagerung erkennbar. Die Tendenz, dass bei weicherem Dämmstoff die Messpunkte
in Plattenmitte und an der unbelasteten Ecke (Kurven rechts) stärker voneinander abweichen,
die Ecke also etwas mehr abhebt als die Plattenmitte, zeigt sich auch in der Simulation, wenn
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auch bei deutlich kleineren Absolutwerten und mit zunehmend asymptotischen Verlauf im Ge-
gensatz zum Versuch. Die beiden rechten Kurven der steiferen Lagerung liegen dagegen näher
beieinander, in der Simulation sind die Kurven fast deckungsgleich.

Neben den bereits angesprochenen vergleichenden Rechnungen ohne Aufschüsselung sind in Ab-
bildung 6.14 außerdem die Kraft-Verformungslinien am Lastangriffspunkt bei unterschiedlicher
Vernetzung dargestellt: Für beide Lagerungen ergibt sich eine sehr gute Übereinstimmung der
Verläufe, mit leichten Abweichungen bei der Bruchlast bzw. der maximalen Verformung. Es
kann von Konvergenz gegen eine eindeutige Lösung gesprochen werden, sodass für die weiteren
Rechnungen im Folgekapitel das mittlere Netz als ausreichend gilt.

Schließlich wird in Abbildung 6.15 gezeigt, welchen Einfluss die Schwächung der Elemente im
Rissband gegenüber einer ungeschwächten Simulation hat: In schwarz dargestellt ergibt sich eine
etwas größere Last und Verformung, und im Gegensatz zu den geschwächten Simulationen, die
bis zum Bruch nahezu mit der Kurve einer elastischen Berechnung übereinstimmen, zeigt sich
im ungeschwächten Verlauf weiter vor dem Bruch ein deutlich entfestigendes Verhalten. Außer-
dem wird anhand dieses ungeschwächten Systems der Einfluss verschiedener anderer Parameter
aufgezeigt:

• Elementtyp: Die Kurve mit Elementtyp C3D8, der bei den Voruntersuchungen zum Bie-
gezugversuch ein Einschnürungsverhalten gezeigt hat und u.a. deshalb durch das kontinu-
umsbasierte Element ersetzt wurde, zeigt einen qualitativ ähnlichen Verlauf, jedoch mit
deutlich größerer Last und Verformung zum Bruchzeitpunkt.

• Bruchenergie: Bei dreifach höherer Bruchenergie steigen Bruchlast und maximale Verfor-
mung wie erwartet deutlich an. Die Bruchenergie hat demnach nicht nur auf den Nach-
bruchbereich, sondern bereits auf die Bruchlast einen deutlich Einfluss

Dehnungs- und Verformungsverläufe

Die in Abbildung 6.16 und Abbildung 6.17 abgebildeten relativen Verschiebungs- bzw. Deh-
nungsverläufe zeigen für verschiedene Netze eine gute Übereinstimmung miteinander und mit
den Messdaten. Dargestellt sind die relativen Verformungen infolge der Belastung (Verschie-
bungsversatz für den Lastschritt Einzellast) zum Zeitpunkt des Bruchs. Der Verlauf entspricht
somit nicht der tatsächlichen Lage der Platte. Der Dehnungszustand entspricht dem zum Zeit-
punkt des Bruchs. Im Vergleich zu den an den jeweiligen Messpunkten der Wegaufnehmer bzw.
Dehnungsmessstreifen gemessenen, punktweise dargestellten Werten zeigen die Dehnungen in
der Berechnung etwas niedrigere Werte. Vertikal dargestellt ist die Rissposition im Versuch,
die recht gut mit der Position der Dehnungssingularität übereinstimmt, die die Rissbildung im
Dehnungsverlauf kennzeichnet. Die Verformungen werden im Vergleich zu den Messdaten et-
was unterschätzt, zeigen aber wie bereits in den Kraft-Verformungslinien festgestellt eine gute
Übereinstimmung.
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Abbildung 6.13.: Kraft-Verformungslinien bei Eckbelastung: Vergleich der Messwerte (schwarz)
mit den Simulationswerten bei geschwächter (Sim, rot) bzw. erzwungener (Sim
(RPZ erzw), blau) Rissprozesszonne, dargestellt entlang der Plattendiagonale
(vgl. Position auf der Platte mit ●=Laststellung, x=Wegaufnahmerstelle (WA))
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Abbildung 6.14.: Kraft-Verformungslinien am Lastangriffspunkt bei Eckbelastung: Einfluss un-
terschiedlicher Vernetzung (Elementlänge Lelem) und der Vorverformung (Aus-
wertung der Verschiebung an der Lasteinleitungsstelle)

Fazit Lastfall Ecke

Grundsätzlich zeigen die Bruchlasten in der Simulation eine gute Übereinstimmung mit denen
der Versuche. Dass in der Simulation der steifere Dämmstoff die höhere Bruchlast liefert, was sich
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Abbildung 6.15.: Kraft-Verformungslinien am Lastangriffspunkt bei Eckbelastung (steifere La-
gerung): Einfluss verschiedener Randbedingungen: Einfluss Dilatanz (ψ = 15
anstelle 38), Elementtyp (C3D8 anstelle SC8R), Entfestigungsgesetz

im Versuch andersherum ergibt, stellt eine leichte Abweichung dar. Da die Bruchlasten grund-
sätzlich sehr nah beieinander liegen, kann dies in Ungenauigkeiten der Versuchsdurchführung
begründet sein, zum Beispiel in einer ungleichmäßigen Plattendicke in den Versuchen. Auch der
Verlauf der Kraft-Verformungslinien ist für numerische und experimentelle Daten vergleichbar.
Die Abweichung zwischen Versuch und Messung im Verlauf für Platte S ist am ehesten darauf zu-
rückzuführen, dass der Abstand zwischen Dämmstoff und Platte größer war als die Messung der
Schwindverformung gezeigt hat. Dies kann auch mit der Wechselwirkung zwischen Einsenkung
in Plattenmitte abhängig von der Dämmsteifigkeit im Vergleich zum Abheben an den Rändern
zusammenhängen. Die Abweichung der Verläufe bei den übrigen Messpunkten (Abbildung 6.13)
scheint ebenfalls auf eine etwas zu frühe Versteifung im Zuge des Ablegens der Platte auf dem
Dämmstoff zurückzuführen zu sein. Die Diskrepanz zwischen der Einzelrissbildung im Versuch
und einer stärker ausgebreiteten Zone plastischer Dehnungen im Modell hat auf das Gesamt-
tragverhalten mit Blick auf die ermittelte Bruchlast bzw. die Kraft-Verformungskurven keinen
nennenswerten Einfluss. Da im Ecklastfall keine Spannungsumlagerungen auftreten können und
auch der Nachbruchbereich für die Frage des Schwindeinflusses eine untergeordnete Rolle spielt,
ist es hier ein adäquates Mittel, die Entwicklung der plastischen Dehnungen stärker zu begren-
zen. Bei dieser Modellierung ergeben sich nahezu die gleichen Verläufe. Beim Randlastfall, auf
den im folgenden eingegangen wird, stellt sich dies anders dar.
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(b) Verformungsfigur

Abbildung 6.16.: Vergleich der punktell gemessenen Versuchsergebnisse mit der Dehnungslinie
und Verformungsfigur der Simulation entlang der Diagonalen für Platte S

Belastung am Rand

Trotz der bereits angeführten Bedenken hinsichtlich der Belastbarkeit der Versuchsdaten für den
Randlastfall soll hier auf die Ergebnisse der Messdaten im Vergleich zu einer ersten Tastsimu-
lation eingegangen werden. Der Randlastfall wird aufgrund der höheren Biegespannungen von
Manns und Zeus (1980) als maßgebend für die Bemessung eingestuft, sodass eine Einordnung
gegenüber den bisherigen Ergebnissen des Ecklastfalls vor diesem Hintergrund erfolgt.

In Abbildung 6.18 sind die Kraft-Verformungskurven entlang der Mittellinie der Platte auf
Höhe der Lasteinleitung dargestellt. Die Bruchlast im Versuch ist für die weicher gelagerte
Platte W mit etwa 15 kN etwas höher als die der steifer gelagerten Platte S mit 13.5 kN. Die
berechneten Bruchlasten der Simulation sind hingegen auf einem ähnlichen Niveau: 19.3 kN
für Platte S und 19.7 kN für Platte W, und damit deutlich über den im Versuch ermittelten
Lasten. Die Steigung der Kraft-Verformungs-Kurven zeigt dennoch bei niedrigem Lastniveau
eine gute Übereinstimmung, weicht aber vor allem bei weicher Lagerung mit zunehmender Last
deutlicher von den Versuchsergebnissen ab. Platte W zeigt vor allem am Rand im Versuch
ein aufweichendes Verhalten als in der Simulation. In Abbildung 6.19 (und Abbildung F.9 als
Draufsicht, siehe Anhang) zeigt sich in Form des plastischen Dehnungszustands ein ähnliches
Rissverhalten wie im Versuch. Statt eines einzelnen Risses an der Plattenoberseite wie im Falle
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(b) Verformungsfigur

Abbildung 6.17.: Vergleich der punktell gemessenen Versuchsergebnisse mit der Dehnungslinie
und Verformungsfigur der Simulation entlang der Diagonalen für Platte W

der Eckbelastung stellt sich eine Kombination aus Schädigung an der Plattenunterseite direkt
an der Lasteinleitung, und eine großflächige Rissbildung an der Plattenoberseite mit einem zum
Plattenrand parallel verlaufenden Maximum in einem gewissen Abstand zur Lasteinleitung ein.
Die radiale, im Versuch beobachtete Ausprägung des Risses an der Oberseite deutet sich in der
Simulation nur in Form einer Konzentration höherer plastischer Dehnungen an. Der Radius bzw.
der Abstand dieser Dehnungskonzentration vom Plattenrand ist im Vergleich zur Simulation (S
und W: etwa 535 mm) im Versuch für Platte S (315 mm) kleiner und für Platte W (785 mm)
größer.

Grundsätzlich können diese Abweichungen in beiden Fällen verschiedene Ursachen haben, unter
anderem ist ohne nähere Untersuchung folgendes festzustellen:

• Der Einfluss aus dem Versuchsablauf bzw. der zuvor geprüften benachbarten Eck-Prüfungen
wurde in der Simulation nicht berücksichtigt. Die Daten-Grundlage wird als zu schwach
angesehen, um eine Validierung des Rand-Lastfalls zu erzielen, daher wurde auf eine
Nachsimulation des vollständigen Versuchsablaufs zur Berücksichtigung einer eventuellen
Vorschädigung verzichtet. Stattdessen wurde wie bei den übrigen Simulationen zum Eck-
Lastfall als Vorbeanspruchung der Platte lediglich die Vorverformung infolge Schwinden
eingeprägt.
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(b) Platte W (weicher gelagert), Laststellung Rand (nVersuche = 1) [lok. Maxumum auf
kurze Lastreduzierung im Versuchsablauf zurückzuführen]

Abbildung 6.18.: Kraft-Verformungslinien bei Randbelastung: Vergleich der Messwerte
(schwarz) mit den Simulationswerten (rot) entlang der Mittellinie (vgl.
Position auf der Platte mit ●=Laststellung, x=Wegaufnahmerstelle (WA)
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6.3. Simulationen

• In der Berechnung wurde kein Schwächungskonzept (entsprechend Kapitel 4) berücksich-
tigt. Wie in Abbildung 6.19 zu sehen ist, liefern die Simulationen ein ähnliches Rissverhal-
ten wie es auch in den Versuchen zu beobachten war, jedoch stellt sich hier nicht eindeutig
ein einzelner Riss bzw. eine eindeutige linienförmige Rissprozesszone wie im Ecklastfall
ein. Inwiefern das Schwächungskonzept hier sinnvoll anwendbar ist, ist grundsätzlich durch
weitere Rechnungen bzw. Abgleich mit weiteren Versuchsdaten zu überprüfen.
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Abbildung 6.19.: Entwicklung der plastischen Dehnungen bei Randbelastung an der Ober- und
Unterseite der Platte, jeweils ausgewertet bei Erreichen der Bruchlast

Ein Vergleich der gemessenen Rissbreite an der Plattenkante (vgl. Aufnehmer 7 und 8 in Abbil-
dung 6.2) mit den vorliegenden Simulationsergebnissen ist nicht zielführend. Für einen quanti-
tativen Vergleich der Rissbreite ist es erforderlich, die Rissprozesszone zu identifizieren und ein
entsprechendes Regularisierungskonzept bei der Simulation anzuwenden (vgl. Kapitel 4). Die
Identifizierung der Rissbänder (hier entsteht eines an der Unterseite der Platte entlang der Plat-
tenmittellinie, und eines an der Oberfläche) stellt sich für den Randlastfall nicht so eindeutig
dar wie für den Ecklastfall, sodass in den vorliegenden Berechnungen keine Einteilung in Riss-
prozesszonen oder eine Schwächung des Materials in diesem Bereich Anwendung gefunden hat.
Außerdem ist zu klären, wie mit den unterschiedlichen Rissprozesszonen an Ober- und Unter-
seite umzugehen ist. Weitergehende Untersuchungen für ein angemessenes Konzept übersteigen
den Umfang der vorliegenden Arbeit.
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6. Gebettete Platte (3D-Spannungszustand)

Insgesamt können die Werte aus den Randsimulationen auch aus diesem Grund nur Indizien
für eine Beurteilung des Bemessungskonzepts liefern. Zum einen ist eine Validierung der Er-
gebnisse durch den Vergleich mit einer einzelnen Messung nicht belastbar, zum anderen treten
bei diesem Vergleich Abweichungen auf. Die Abweichungen betreffen nicht nur quantitativ den
Kraft-Verformungsverlauf bzw. die zugehörige Verformung und Versagenslast, sondern auch qua-
litativ zeigen sich in einem deutlich größeren Bereich der Platte plastische Dehnungen, die auch
im Bereich des Maximums unter der Versagenslast nicht exakt mit dem im Versuch ermittelten
Rissverlauf übereinstimmen. Zusätzlich wurde lediglich eine einzelne Simulation durchgeführt,
ohne eine Konvergenzkontrolle für den Randlastfall durchzuführen. All dies sind Unsicherheiten,
die in den Simulationswerten des Randlastfalls noch enthalten sind. Eine recht gute Überein-
stimmung der Versuchswerte mit den simulierten Verformungswerten vor allem im niedrigeren
Lastbereich, bei dem noch keine Plastizität auftritt, lassen dennoch eine eingeschränkte verglei-
chende Untersuchung der beiden betrachteten Lastfälle im Hinblick auf das vorhandene Bemes-
sungskonzept zu. Hierauf wird in Kapitel 7 noch eingegangen.
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6.4. Zusammenfassung

Das Rissverhalten eines schwimmend gelagerten Estrichs bis zum Bruch lässt sich mit dem entwi-
ckelten Modell sehr gut abbilden. Die Versuchsergebnisse sind aufgrund einiger Ungenauigkeiten
z. B. im Hinblick auf die absolute Einsenkung der Platte nach Einbringen des Estrichs nicht exakt
mit den Simulationen in Einklang zu bringen, allerdings zeigt sich dennoch eine sehr gute Über-
einstimmung, sowohl im zeitlichen Verlauf, als auch in den Werten der maximalen Verschiebung
bzw. der Bruchlast. Eine Untersuchung verschiedener Netze zeigt ein stabiles Konvergenzverhal-
ten. Ein Variieren verschiedener Modellparameter stellt das Modell im experimentell validierten
Bereich auf eine gute Grundlage. Lediglich die Entwicklung der plastischen Dehnungen zeigt
Diskrepanzen hinsichtlich der Einzelrissbildung im Versuch auf und grundsätzlich konnte der
Nachbruchbereich experimentell nicht erfasst und daher auch numerisch nicht validiert werden.
Beide Einschränkungen können für den primär zur Untersuchung des Schwindeinflusses betrach-
teten Ecklastfall unter den erläuterten Bedingungen vernachlässigt bzw. umgangen werden. Um
einige Anwendungsmöglichkeiten des Modells aufzuzeigen und schließlich die Frage nach dem
Ausmaß des Schwind- und Dämmstoffeinflusses zu beantworten, soll im folgenden Kapitel eine
Parameterstudie und ein Rückbezug zum Bemessungskonzept auf Basis von Manns und Zeus
(1980) erfolgen.
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7. Anwendung des Modells

Nachdem das Modell für die vorhandenen Versuchsdaten für den Ecklastfall eine gute Über-
einstimmung liefert, soll das so validierte Modell bei der Beantwortung der eingangs gestellten
Frage nach dem Einfluss der Wechselwirkung zwischen Dämmstoffsteifigkeit und Schüsselung
auf die Rissbildung bzw. Tragfähigkeit helfen. Dazu werden im Rahmen einer Parameterstudie
die Parameter der Vorverformung, Dämmsteifigkeit und Dicke des Estrichs numerisch variiert
und das Bruch- bzw. Verformungsverhalten untersucht. Diese Extrapolation gegenüber dem
validierten Parameterbereich ist mit einer gewissen Unsicherheit verbunden, sodass die ermit-
telten Verformungs- und Spannungswerte quantitativ nicht belastbar sind. Eine Aussage dazu,
ob überhaupt ein Einfluss der untersuchten Parameter festzustellen ist, ist dennoch möglich.
Im Anschluss wird das Modell außerdem verwendet, um die Informationen aus der Numerik in
Zusammenhang zum Bemessungskonzept zu setzen und ggf. vorhandene Defizite und Verbesse-
rungsmöglichkeiten zu diskutieren.

7.1. Parameterstudie

Dicke / Vorverformung 2 mm 4 mm 8 mm
20 mm ww w s ss
60 mm ww w s ss ww w s ss ww w s ss
80 mm ww w s ss

ww - cKS = 1 w - cKS = 8
s - cKS = 13 ss - cKS = 100

Tabelle 7.1.: Matrix der variierten Parameter

Mithilfe des entwickelten numerischen Modells können verschiedene Einflüsse auf die maxima-
le Bruchkraft untersucht werden. Im Folgenden wird zunächst die bisherige Plattengeometrie
beibehalten und der Einfluss der Plattendicke sowie Schüsselintensität bei einer weiteren Band-
breite von Dämmsteifigkeiten untersucht. In Tabelle 7.1 ist die Untersuchungsmatrix dargestellt,
wobei die Einträge in der Tabelle jeweils für die angegebene Dämmsteifigkeit bzw. Bettungszahl
stehen:

• ww: cKS = 1 MN/m3,

• w: cKS = 8 MN/m3 (TP),
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7. Anwendung des Modells

• s: cKS = 13 MN/m3 (TP-GP),

• ss: cKS = 100 MN/m3.

Zusätzlich zu den beiden in den Versuchen betrachteten Dämmsteifigkeiten kommen demnach
noch eine sehr weiche und sehr steife Bettungszahl hinzu, um eine ähnliche Bandbreite abzude-
cken wie es schon bei Manns und Zeus (1980) oder auch in jüngeren Richtlinien zur Abschätzung
der Tragfähigkeit in Form von Nomogrammen üblich ist (DENAK-Merkblatt 8-2, 2021). Für
diese Simulationen wird wie bisher die Zugfestigkeit zu ft = 3 N/mm2 und die Bruchenergie
zu Gf = 0.2 Nmm/mm2 festgelegt. Für die Berechnungen wird das mittlere Netz (70 × 70 × 12)
verwendet, da dieses bei geringerer Rechenzeit aufgrund der sehr guten Übereinstimmung mit
dem feineren Netz im vorangegangenen Kapitel ausreichend ist.

Bei der im Folgenden vorgestellten Parameterstudie gibt es zusätzliche numerische Herausfor-
derungen infolge der Kontaktmodellierung (s. Kapitel 4) und der hierfür definierten Federstei-
figkeit der zwischengeschalteten Federn. Bei der Verwendung des Bogenlängenverfahrens kann
die Schrittweite nicht präzise gesteuert werden, sodass der Algorithmus bei einer ungünstigen
Schrittweite unter Umständen in einem zu großen Schritt über den Übergang von sehr kleiner
zu sehr großer Steifigkeit hinweg zu iterieren versucht. Dies führt zu numerischen Instabilitäten
bzw. dazu, dass kein Gleichgewicht gefunden wird und die Berechnung abbricht. Dieses Pro-
blem tritt bei sehr hoher Dämmsteifigkeit auf. Eine genaue Ursache zu identifizieren bzw. eine
Regel zur Definition der Kontakt-Federsteifigkeit zu definieren ist pauschal schwierig, da die-
ses Verhalten einem ungünstigen Verhältnis zwischen Dämm-, Kontakt- und Estrichsteifigkeit
zugeschrieben wird. Bei einer größeren Estrichdicke tritt diese numerische Instabilität auch bei
mittlerer Dämmsteifigkeit auf. Auch die Vernetzung hat einen Effekt, möglicherweise ebenso
wie die Geometrie (Plattenausdehnung, -form), wobei dies hier nicht näher untersucht wurde.
Zusammenfassend kann festgehalten werden, dass das Auftreten dieser Instabilität von den kon-
kreten Steifigkeits- und Netzeigenschaften des Modells abhängt. Eine leichte Vergrößerung der
Anfangssteifigkeit nahe Null hat einen stabilisierenden Effekt. Ein geschicktes Vorgehen zur Defi-
nition der Kontaktsteifigkeit ist es daher, für die höchste Dämmsteifigkeit bzw. Dicke eine stabile
Anfangssteifigkeit zu finden, die ausreichend nah an Null liegt, um ein realitätsnahes Ablegen
der Platte zu ermöglichen. Für weitere, weniger steife Parameter mit geringerer Systemsteifigkeit
sollten diese ebenfalls stabil sein.

Zusätzlich überschreiten die Verformungen bei der sehr weichen Dämmung mit einer Bettungs-
zahl von 1 MN/m3 deutlich die Dicke eines realen Dämmstoffs (hier 2 bzw. 3 cm Dicke). Die
Federlänge muss hier entsprechend vergrößert werden, um eine – zumindest theoretische – Bruch-
kraft zu ermitteln. In der Realität wäre eine Begrenzung der Verformung durch eine begrenzte
Federlänge hingegen sinnvoll, da dies der realen Geometrie entspricht, bei der die Dämmstoff-
dicke die Verformung der Platte begrenzt. In dieser aus Mangel an Versuchsdaten zunächst
akademischen Untersuchung wird das vernachlässigt.
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Einfluss auf die Bruchlast
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Abbildung 7.1.: Kraft-Verformungslinien im Rahmen der durchgeführten Parameterstudie (et-
was vergrößert in Abb. F.12 im Anhang dargestellt)
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In Abbildung 7.1 sind die Kraft-Verformungs-Kurven dargestellt, in Tabelle 7.2 die zugehörigen
Bruchkräfte. An den Kraft-Verformungslinien lässt sich ein Gruppieren bzw. „Anschmiegen“
im Anfangsbereich bei den Kurven gleicher Dicke bzw. gleicher Vorverformung erkennen, wobei
die Kurven mit sehr weicher Unterlage infolge einer größeren Verformung etwas versetzt zu
den übrigen Steifigkeiten verlaufen. Nach diesem Anfangsbereich laufen die Kurven zunehmend
auseinander. Die Kurven weisen mit steiferer Unterlage einen entsprechend versteifenden Verlauf
auf.

Vorverformung
Dicke 2 mm 4 mm 8 mm
cKS ww w s ss ww w s ss ww w s ss

20 mm 0.96 1.22 1.16 1.85
60 mm 6.86 7.44 7.60 8.63 6.84 7.22 7.39 8.27 6.86 7.00 6.91 7.43
80 mm 11.66 11.78 11.90 12.90

Tabelle 7.2.: Ergebnis der Parameterstudie: Bruchlast

In den Abbildungen 7.2 und 7.3 sind die Werte der Tabelle 7.2 mit der zugehörigen vertikalen
Verschiebung über der Dicke bzw. Vorverformung aufgetragen. Es lassen sich folgende Beobach-
tungen festhalten:

• Der Einfluss der Plattendicke auf die Bruchlast ist weitgehend unabhängig von der
Dämmsteifigkeit deutlich erkennbar: Je größer die Dicke, desto deutlich höher wird die
Bruchlast. (Abb. 7.2a).

• Der Einfluss der Vorverformung auf die Bruchlast ist im Vergleich zum Einfluss der Dicke
deutlich geringer. Bei höherer Dämmsteifigkeit ist dies am ehesten erkennbar, dann gilt:
Je kleiner die Vorverformung ist, desto höher wird die Bruchlast. Bei geringer Dämmstei-
figkeit ist der Einfluss aus Vorverformung kaum sichtbar. Bei steiferer Unterlage wirkt
sich die Vorverformung stärker aus, da bei einer weichen Unterlage die Schüsselung durch
Eindrücken in den Dämmstoff kompensiert werden kann (Abb. 7.2b).

• Die Wirkung der Plattendicke auf die Verformung ist bei kleinerer Dämmsteifigkeit aus-
geprägter: Je größer die Dicke, desto höher die Verformung. Mit höherer Dämmsteifigkeit
sinkt dieser Einfluss, bis er bei KS=100 gar nicht sichtbar ist (Abb. 7.3a nahezu horizon-
taler Verlauf). Je steifer das System, desto desto geringer wird die relative Verformung
infolge Last.

• Der Einfluss der Vorverformung auf die Endverformung ist ausgeprägter: Je größer die
anfängliche Vorverformung, desto höher die Verformung. Es besteht ein linearer Verlauf
bei Auftragen der Werte über der Vorverformung (dies zeigt sich ebenso bei der Bruchlast,
Abb. 7.2b): Die unterschiedlich hohen Werte der Anfangverwölbung zeigen sich unmittelbar
im Abstand zwischen den jeweiligen Endverformungen (Abb. 7.3b)

• Unabhängig von der Vorverformung und der Dicke gilt: Je größer die Dämmsteifigkeit,
desto geringer die Verformung und desto höher die Bruchlast.
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Abbildung 7.2.: Parameterstudie: Einfluss auf Bruchkraft
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Abbildung 7.3.: Parameterstudie: Einfluss auf Verformung

Rissbilder

In den Abbildungen 7.4 und 7.5 sind die simulierten Rissbilder der beiden Parameterstudien für
das Variieren der Dicke und der Vorverformung dargestellt. Dabei wird die jeweilige Dämmstei-
figkeit von oben (SS) nach unten (WW) weicher. Als Referenz sind auch hier die in den Versuchen
gemessenen Risslinien mit abgebildet (in rot; gestrichelt: Platte S, durchgezogen: Platte W. Es
zeigt sich

• Je weicher der Dämmstoff, desto größer der Bruchradius.

• Je dicker die Platte, desto größer der Bruchradius.

• Bei steifem Dämmstoff zeigt sich bei größerer Vorverformung auch ein größerer Bruchra-
dius. Dieser Effekt nimmt mit abnehmender Dämmsteifigkeit ebenfalls ab.

• Zwischen einer Vorverformung von 2 im Vergleich zu 4 mm zeigt sich im Bruchbild kein
Unterschied.
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ODB: platte_steif35_pl_el_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch4_mehrZeitschritte.odb    Abaqus/Standard 2020    Tue Aug 29 16:34:35 GMT+02:00 2023

X

Y

Z

X

Y

Z
(Avg: 75%)

SNEG, (fraction = −1.0)

PE, Max. In−Plane Principal

+0.000e+00
+9.001e−05
+1.800e−04
+2.700e−04
+3.600e−04
+4.500e−04
+5.400e−04
+6.300e−04
+7.200e−04
+8.101e−04
+9.001e−04
+9.901e−04
+1.080e−03

Step: apply_load
Increment    230: Step Time =   0.4302
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte80_steif35_pl_el_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch4_NR_Fedlaenger2.odb    Abaqus/Standard 2020    Sat Aug 12 16:57:32 GMT+02:00 2023

X

Y

Z

X

Y

Z

(Avg: 75%)

SNEG, (fraction = −1.0)

PE, Max. In−Plane Principal

+0.000e+00
+3.429e−05
+6.858e−05
+1.029e−04
+1.372e−04
+1.714e−04
+2.057e−04
+2.400e−04
+2.743e−04
+3.086e−04
+3.429e−04
+3.772e−04
+4.115e−04

Step: apply_load
Increment     27: Arc Length =   5.1092E−04
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte20_tpgp35_pl_el_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch4.odb    Abaqus/Standard 2020    Sat Aug 12 15:58:23 GMT+02:00 2023

X

Y

Z

X

Y

Z
(Avg: 75%)

SNEG, (fraction = −1.0)

PE, Max. In−Plane Principal

+0.000e+00
+5.740e−05
+1.148e−04
+1.722e−04
+2.296e−04
+2.870e−04
+3.444e−04
+4.018e−04
+4.592e−04
+5.166e−04
+5.740e−04
+6.314e−04
+6.888e−04

Step: apply_load
Increment     63: Arc Length =   8.4553E−04
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte_tpgp35_pl_el_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch4.odb    Abaqus/Standard 2020    Tue Aug 29 11:41:35 GMT+02:00 2023

X

Y

Z

X

Y

Z
(Avg: 75%)

SNEG, (fraction = −1.0)

PE, Max. In−Plane Principal

+0.000e+00
+8.016e−05
+1.603e−04
+2.405e−04
+3.206e−04
+4.008e−04
+4.810e−04
+5.611e−04
+6.413e−04
+7.214e−04
+8.016e−04
+8.818e−04
+9.619e−04

Step: apply_load
Increment    146: Arc Length =   4.1093E−03
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte80_tpgp35_pl_el_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch4.odb    Abaqus/Standard 2020    Sun Aug 13 11:30:33 GMT+02:00 2023

X

Y

Z

X

Y

Z

(Avg: 75%)

SNEG, (fraction = −1.0)

PE, Max. In−Plane Principal

+0.000e+00
+4.525e−05
+9.051e−05
+1.358e−04
+1.810e−04
+2.263e−04
+2.715e−04
+3.168e−04
+3.620e−04
+4.073e−04
+4.525e−04
+4.978e−04
+5.431e−04

Step: apply_load
Increment     17: Arc Length =   1.0477E−03
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte20_tp35_pl_geschw_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch4.odb    Abaqus/Standard 2020    Sat Aug 12 14:03:17 GMT+02:00 2023

X

Y

Z

(Avg: 75%)

SNEG, (fraction = −1.0)

PE, Max. In−Plane Principal

+0.000e+00
+7.013e−05
+1.403e−04
+2.104e−04
+2.805e−04
+3.506e−04
+4.208e−04
+4.909e−04
+5.610e−04
+6.312e−04
+7.013e−04
+7.714e−04
+8.415e−04

Step: apply_load
Increment     53: Arc Length =   2.4813E−03
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte_tp35_pl_el_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch4.odb    Abaqus/Standard 2020    Tue Aug 29 07:47:34 GMT+02:00 2023

X

Y

Z

X

Y

Z
(Avg: 75%)

SNEG, (fraction = −1.0)

PE, Max. In−Plane Principal

+0.000e+00
+6.559e−05
+1.312e−04
+1.968e−04
+2.623e−04
+3.279e−04
+3.935e−04
+4.591e−04
+5.247e−04
+5.903e−04
+6.559e−04
+7.215e−04
+7.870e−04

Step: apply_load
Increment    115: Arc Length =   8.6915E−03
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte80_tp35_pl_el_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch4.odb    Abaqus/Standard 2020    Sat Aug 12 16:58:47 GMT+02:00 2023

X

Y

Z

X

Y

Z

(Avg: 75%)

SNEG, (fraction = −1.0)

PE, Max. In−Plane Principal

+0.000e+00
+5.569e−05
+1.114e−04
+1.671e−04
+2.227e−04
+2.784e−04
+3.341e−04
+3.898e−04
+4.455e−04
+5.012e−04
+5.569e−04
+6.125e−04
+6.682e−04

Step: apply_load
Increment      7: Arc Length =   6.9580E−04
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte20_weich35_pl_el_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch4_Fedlaenger_2.odb    Abaqus/Standard 2020    Sat Aug 12 15:58:49 GMT+02:00 2023

X

Y

Z

X

Y

Z

(a) 20

(Avg: 75%)

SNEG, (fraction = −1.0)

PE, Max. In−Plane Principal

+0.000e+00
+6.088e−05
+1.218e−04
+1.826e−04
+2.435e−04
+3.044e−04
+3.653e−04
+4.262e−04
+4.870e−04
+5.479e−04
+6.088e−04
+6.697e−04
+7.306e−04

Step: apply_load
Increment     32: Arc Length =   5.4120E−03
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte_weich35_pl_el_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch4_Fedlaenger.odb    Abaqus/Standard 2020    Wed Aug 30 11:42:29 GMT+02:00 2023

X

Y

Z

X

Y

Z

(b) 60

(Avg: 75%)

SNEG, (fraction = −1.0)

PE, Max. In−Plane Principal

+0.000e+00
+7.621e−05
+1.524e−04
+2.286e−04
+3.048e−04
+3.811e−04
+4.573e−04
+5.335e−04
+6.097e−04
+6.859e−04
+7.621e−04
+8.383e−04
+9.145e−04

Step: apply_load
Increment     31: Step Time =   0.3887
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte80_weich35_pl_el_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch4_NR_Fedlaenger2.odb    Abaqus/Standard 2020    Sun Aug 13 16:37:02 GMT+02:00 2023

X

Y

Z

X

Y

Z

(c) 80

Abbildung 7.4.: Rissbilder der Parameterstudie – Variieren der Plattendicke (Ausschnitt eines
Sechzehntels der Platte, von oben steifer nach unten weicher Dämmstoff)
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7.1. Parameterstudie

(Avg: 75%)

SNEG, (fraction = −1.0)

PE, Max. In−Plane Principal

+0.000e+00
+8.263e−05
+1.653e−04
+2.479e−04
+3.305e−04
+4.131e−04
+4.958e−04
+5.784e−04
+6.610e−04
+7.436e−04
+8.263e−04
+9.089e−04
+9.915e−04

Step: apply_load
Increment     53: Arc Length =   1.3743E−03
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte_steif35_pl_el_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch2_fart.odb    Abaqus/Standard 2020    Tue Aug 29 16:34:19 GMT+02:00 2023

X

Y

Z

X

Y

Z
(Avg: 75%)

SNEG, (fraction = −1.0)

PE, Max. In−Plane Principal

+0.000e+00
+7.575e−05
+1.515e−04
+2.273e−04
+3.030e−04
+3.788e−04
+4.545e−04
+5.303e−04
+6.060e−04
+6.818e−04
+7.575e−04
+8.333e−04
+9.090e−04

Step: apply_load
Increment    102: Arc Length =   7.5055E−04
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte_steif35_pl_el_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch4_mehrZeitschritte.odb    Abaqus/Standard 2020    Tue Aug 29 16:34:35 GMT+02:00 2023

X

Y

Z

X

Y

Z
(Avg: 75%)

SNEG, (fraction = −1.0)

PE, Max. In−Plane Principal

+0.000e+00
+6.018e−05
+1.204e−04
+1.806e−04
+2.407e−04
+3.009e−04
+3.611e−04
+4.213e−04
+4.815e−04
+5.417e−04
+6.018e−04
+6.620e−04
+7.222e−04

Step: apply_load
Increment     19: Arc Length =   2.4114E−03
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte_steif35_pl_el_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch8_fart5.odb    Abaqus/Standard 2020    Wed Aug 30 21:04:33 GMT+02:00 2023

X

Y

Z

X

Y

Z

(Avg: 75%)

SNEG, (fraction = −1.0)

PE, Max. In−Plane Principal

+0.000e+00
+7.313e−05
+1.463e−04
+2.194e−04
+2.925e−04
+3.656e−04
+4.388e−04
+5.119e−04
+5.850e−04
+6.582e−04
+7.313e−04
+8.044e−04
+8.776e−04

Step: apply_load
Increment     43: Arc Length =   4.7140E−03
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte_tpgp35_pl_el_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch2.odb    Abaqus/Standard 2020    Tue Aug 29 11:40:57 GMT+02:00 2023

X

Y

Z

X

Y

Z
(Avg: 75%)

SNEG, (fraction = −1.0)

PE, Max. In−Plane Principal

+0.000e+00
+5.740e−05
+1.148e−04
+1.722e−04
+2.296e−04
+2.870e−04
+3.444e−04
+4.018e−04
+4.592e−04
+5.166e−04
+5.740e−04
+6.314e−04
+6.888e−04

Step: apply_load
Increment     63: Arc Length =   8.4553E−04
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte_tpgp35_pl_el_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch4.odb    Abaqus/Standard 2020    Tue Aug 29 11:41:35 GMT+02:00 2023

X

Y

Z

X

Y

Z
(Avg: 75%)

SNEG, (fraction = −1.0)

PE, Max. In−Plane Principal

+0.000e+00
+6.189e−05
+1.238e−04
+1.857e−04
+2.476e−04
+3.095e−04
+3.714e−04
+4.332e−04
+4.951e−04
+5.570e−04
+6.189e−04
+6.808e−04
+7.427e−04

Step: apply_load
Increment      6: Arc Length =   2.5313E−03
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte_tpgp35_pl_el_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch8_fart5_TEST.odb    Abaqus/Standard 2020    Tue Aug 29 23:49:56 GMT+02:00 2023

X

Y

Z

X

Y

Z

(Avg: 75%)

SNEG, (fraction = −1.0)

PE, Max. In−Plane Principal

+0.000e+00
+7.096e−05
+1.419e−04
+2.129e−04
+2.838e−04
+3.548e−04
+4.258e−04
+4.967e−04
+5.677e−04
+6.386e−04
+7.096e−04
+7.806e−04
+8.515e−04

Step: apply_load
Increment     40: Arc Length =   7.9119E−03
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte_tp35_pl_el_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch2.odb    Abaqus/Standard 2020    Tue Aug 29 07:47:17 GMT+02:00 2023

X

Y

Z

X

Y

Z
(Avg: 75%)

SNEG, (fraction = −1.0)

PE, Max. In−Plane Principal

+0.000e+00
+7.013e−05
+1.403e−04
+2.104e−04
+2.805e−04
+3.506e−04
+4.208e−04
+4.909e−04
+5.610e−04
+6.312e−04
+7.013e−04
+7.714e−04
+8.415e−04

Step: apply_load
Increment     53: Arc Length =   2.4813E−03
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte_tp35_pl_el_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch4.odb    Abaqus/Standard 2020    Tue Aug 29 07:47:34 GMT+02:00 2023

X

Y

Z

X

Y

Z
(Avg: 75%)

SNEG, (fraction = −1.0)

PE, Max. In−Plane Principal

+0.000e+00
+5.910e−05
+1.182e−04
+1.773e−04
+2.364e−04
+2.955e−04
+3.546e−04
+4.137e−04
+4.728e−04
+5.319e−04
+5.910e−04
+6.501e−04
+7.092e−04

Step: apply_load
Increment     70: Arc Length =   9.3065E−04
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte_tp35_pl_el_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch8_f8.odb    Abaqus/Standard 2020    Tue Aug 29 23:50:22 GMT+02:00 2023

X

Y

Z

X

Y

Z

(Avg: 75%)

SNEG, (fraction = −1.0)

PE, Max. In−Plane Principal

+0.000e+00
+6.943e−05
+1.389e−04
+2.083e−04
+2.777e−04
+3.471e−04
+4.166e−04
+4.860e−04
+5.554e−04
+6.249e−04
+6.943e−04
+7.637e−04
+8.331e−04

Step: apply_load
Increment     23: Step Time =   0.6864
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte_weich35_pl_el_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch2_Fedlaenger_NR.odb    Abaqus/Standard 2020    Wed Aug 30 11:42:02 GMT+02:00 2023

X

Y

Z

X

Y

Z

(a) 60-2

(Avg: 75%)

SNEG, (fraction = −1.0)

PE, Max. In−Plane Principal

+0.000e+00
+6.088e−05
+1.218e−04
+1.826e−04
+2.435e−04
+3.044e−04
+3.653e−04
+4.262e−04
+4.870e−04
+5.479e−04
+6.088e−04
+6.697e−04
+7.306e−04

Step: apply_load
Increment     32: Arc Length =   5.4120E−03
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte_weich35_pl_el_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch4_Fedlaenger.odb    Abaqus/Standard 2020    Wed Aug 30 11:42:29 GMT+02:00 2023

X

Y

Z

X

Y

Z

(b) 60-4

(Avg: 75%)

SNEG, (fraction = −1.0)

PE, Max. In−Plane Principal

+0.000e+00
+5.713e−05
+1.143e−04
+1.714e−04
+2.285e−04
+2.857e−04
+3.428e−04
+3.999e−04
+4.571e−04
+5.142e−04
+5.713e−04
+6.285e−04
+6.856e−04

Step: apply_load
Increment     42: Arc Length =   5.6761E−03
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte_weich35_pl_el_SC8R_abf02_ft30_2reihen_D_nlg_psi38_sch8_Fedlaenger.odb    Abaqus/Standard 2020    Wed Aug 30 21:05:02 GMT+02:00 2023

X

Y

Z

X

Y

Z

(c) 60-8

Abbildung 7.5.: Rissbilder der Parameterstudie – Variieren der Vorverformung (Ausschnitt eines
Sechzehntels der Platte, von oben steifer nach unten weicher Dämmstoff)
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7. Anwendung des Modells

Betrachtet man jeweils die beiden mittleren Reihen, die den Dämmsteifigkeiten aus den Versu-
chen entsprechen, ließe sich daraus ableiten, dass die Abweichungen zwischen den Rissradien im
Versuch von denen in der Simulation von Ungenauigkeiten bei der Herstellung einer gleichmäßi-
gen 60 mm Dicke stammen und zusätzlich die Vorverformung messtechnisch nicht exakt erfasst
wurde: Bei punktuell geringerer Dicke und geringerem Abstand zwischen Platte und Dämmstoff
im Versuch (z.B. infolge stärkerem Einsenkens durch Eigengewicht) zeigt sich in der Studie ein
weiter innen liegender Riss, wie auch im Versuch gemessen. Auch hier handelt es sich nur um
Indizien, die durch weitere experimentelle Untersuchung überprüft werden müssten, vor allem
da neben den hier betrachteten Parametern noch weitere Einflussgrößen wie Geometrie, Eigen-
spannungen oder experimentelle Schwankungen eine Rolle spielen können. Die entsprechenden
Abbildungen der nur leicht geschwächten Berechnungen im Vergleich zur hier begrenzten RPZ
zeigen prinzipiell die gleiche Tendenz (vgl. Abb. F.10 und F.11 im Anhang).

Verformungsfiguren

In den Abbildungen 7.6 und 7.7 sind jeweils für unterschiedliche Dicke und Vorverformung die
Verformungsfiguren infolge der beiden Lastfälle dargestellt: jeweils oben die Verschiebungsfigur
infolge Eigengewicht und darunter die Verschiebungsfigur infolge der Einzellast. An der Ver-
formungsfigur infolge Eigengewicht wird noch einmal deutlich, dass im Zuge des Einprägens
der Vorverformung mit nachträglichem Aufbringen des Eigengewichts eine leichte Abweichung
zwischen der relativ gemessenen Ordinate der angehobenen Ecke (3.36 mm für Steifigkeit S (TP-
GP), 4.12 mm für Steifigkeit W (TP)) und der wirksamen Ordinate in der Simulation (etwas
geringer im Bereich 2.5 mm) vorhanden ist. Auch die gemessene Ordinate kann dem Abstand
zwischen Dämmstoff und Estrich an der betrachteten Stelle nicht exakt entsprechen, da die Ein-
senkung infolge Eigengewicht hier nicht erfasst ist (vgl. Kapitel 3.2.1).

Die Kurven sind jeweils über der Diagonalen aufgetragen, die Einzellast wirkt rechts. Es zeigt
sich Folgendes für den Einfluss der Dicke (s. Abb. 7.6):

• Bei Betrachtung der Verformungsfigur infolge Eigengewicht fällt auf, dass abgesehen von
den Kurven mit 20er Dicke (gepunktet) alle Linien nah beieinander liegen bzw. parallel
verlaufen (Abb. 7.6a). Die Dicke zeigt hier einen geringen Einfluss. Dieser bzw. die Ein-
senkung steigt leicht mit abnehmender Dämmsteifigkeit (blau stark eingesunken, gelb am
geringsten). Die Verformungsfiguren der 20er-Platten verlaufen deutlich flacher (die Krüm-
mung infolge Aufschüsseln außen wird stärker zurückgebildet, während bei den steiferen
Platten das Eigengewicht primär ein Absenken der gekrümmten weiterhin aufgeschüsselten
Platte bewirkt).

• Auch die Linien infolge Einzellast (Abb. 7.6b) liegen größtenteils nah beieinander, mit
Ausnahme derer mit kleiner Bettungszahl (gelb). Für die übrigen Linien gilt, dass die
Verformung links, d.h. an der nicht belasteten Ecke, bei steiferer Platte größer ist: Die
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7.1. Parameterstudie
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(b) Verformungsfigur infolge EL

Abbildung 7.6.: Parameterstudie: Einfluss der Dicke – Verformungsfigur entlang der Diagonale
infolge EG und einer der hier rechts angeordneten Einzellast auf Plattenecke

steifere Platte ist eher kippanfällig.

Für den Einfluss der Vorverformung ergibt sich (s. Abb. 7.7):

• Bei Betrachtung der Verformungsfigur infolge Eigengewicht verlaufen die Linien gleicher
Vorverformung parallel zueinander, wobei gilt: Je größer die Vorverformung, desto ge-
krümmter sind die Verläufe, da das Eigengewicht allein nicht ausreicht, um die weiter
aufgeschüsselten Ecken auf den Dämmstoff zurückzubringen. Je höher die Dämmsteifig-
keit, desto niedriger die Einsenkung (Abb. 7.7a). Die Kurven mit weicher Dämmsteifigkeit
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(b) Verformungsfigur infolge EL

Abbildung 7.7.: Parameterstudie: Einfluss der Vorverformung – Verformungsfigur entlang der
Diagonale infolge EG und einer der hier rechts angeordneten Einzellast (EL)
auf Plattenecke

weichen infolge einer größeren Einsenkung von ihrer Lage her von den übrigen Kurven
gleicher Vorverformung ab.

• Ein Kippeffekt ist kaum vorhanden, dieser ist nur bei weichem Dämmstoff ausgeprägt.
Bei den restlichen Varianten wirkt der Kippeffekt auf der linken Seite der Platte zwar
auch größer (Abb. 7.7b), das entspricht aber nur der noch in der Platte vorhandenen
Schüsselung, die das Eigengewicht nicht reduziert hat. Die 60 mm Platte ist ausreichend
steif, um diese Verformung auch unter Last zu halten. Links ist eine deutliche Gruppierung
je nach Vorverformung zu sehen (gepunktete, gestrichelte, durchgezogene Linien liegen
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jeweils aufeinander, mit Ausnahme der blauen Kurven infolge des weicheren Dämmstoffs).

• In Abb. 7.7b sieht man rechts unter der Last ebenfalls eine Gruppierung, hier jedoch nach
Dämmsteifigkeit: Je weicher der Dämmstoff, desto stärker die Verformung. Bei geringer
Aufschüsselung (gepunktet) sind die Kurven infolge der Last stärker in eine Richtung
gekrümmt, bei größerer Aufschüsselung bildet sich infolge der Überlagerung der Aufschüs-
selung mit den Folgen einer einseitigen Belastung eine leichte S-Form aus.

Zusammenfassend lässt sich noch einmal hervorheben, dass auch bei deutlich weicheren bzw.
steiferen Dämmungswerten der Einfluss auf die Maximallast infolge Vorverformung nicht sehr
ausgeprägt ist. Für steife Dämmstoffe ist die Wirkung etwas ausgeprägter, bei knapp 9 kN (2 mm
Vorverformung) zu etwa 7.5 kN (8 mm, vgl. Abb. 7.2), jedoch sind weiche Dämmsteifigkeiten
im Bereich von KS=1 MN/m3 für Trittschalldämmungen weniger üblich. Einen etwas stärkeren
Einfluss hat die Vorverformung auf die Verschiebung, dies ist jedoch vor allem auf eine wider-
standsfreie Rückverformung der Aufschüsselung zurückzuführen.

Ein deutlich stärkerer Einfluss auf die Bruchlast aufgrund der Estrichdicke war zu erwarten. Dies
wird durch die Studie bestätigt. Inwiefern das Modell hier quantitativ korrekte Werte liefert und
wie es bei anderen Estrichzusammensetzungen reagiert, ist weiter zu untersuchen. Auf die ma-
ximale Verformung unter der Last hat eine geänderte Dicke jedoch kaum Auswirkungen. Die
Estrichdicke beeinflusst hier mehr die Ausprägung des Kippverhaltens je nach Plattensteifigkeit
(und Geometrie).

Für den Einfluss der Vorverformung lässt sich festhalten, dass sich infolge dieser Schüsselung eine
leicht S-förmige Verschiebungsfigur entlang der Diagonalen ausbildet. Dies ist bei dünneren Plat-
ten noch stärker ausgeprägt (Abb. 7.6b, gepunktet). Ein weiteres Abheben unbelasteter Ränder
infolge Kippen ist nicht zwingend gegeben (bei ausreichend steifer Unterlage und Platte), aber
man erhält durch die Vorverformung eine ungleichmäßige Verformungsfigur im Vergleich zu einer
Platte ohne Vorverformung, die das Bruchverhalten unter Last insgesamt beeinflussen könnte.
Inwiefern dies auch dem realen Verhalten entspricht oder das Modell durch weitere Versuche
an dünneren bzw. dickeren Platten mit unterschiedlichem Schwindverhalten noch nachvalidiert
werden muss oder dieses schon gut abbildet, bedarf weiterer Untersuchung.

165



7. Anwendung des Modells

7.2. Mögliche Schlussfolgerungen für die Bemessung

Vergleich mit Manns und Zeus (1980)

Um einen ersten Bezug zum Bemessungskonzept für Estriche auf Dämmschichten herzustellen,
wurden die von Manns und Zeus (1980) verwendeten Bemessungsformeln nach Westergaard her-
angezogen, vgl. Formeln (2.4) bis (2.6) sowie (A.2) bis (A.4). Die für den auch von Manns und
Zeus (1980) betrachteten Fall einer 30 mm bzw. 60 mm dicken Platte mit einem Belastungs-
radius von 25 mm (E-Modul abweichend 25000N/mm2) und einer Last von 1 kN ermittelten
maximalen Spannungen und Verformungen jeweils für den Rand- und Ecklastfall sind in Ab-
bildung 7.8 als Kurven logarithmisch über der Dämmsteifigkeit aufgetragen. Schwindeinflüsse
bleiben in den Berechnungsformeln unberücksichtigt. Die Formeln setzen lineares Werkstoffver-
halten voraus, sodass ein Simulationsvergleich nur für diesen Fall erwartet werden kann. Bei der
hier betrachteten Last von 1 kN ist von linearem Tragverhalten auszugehen.

In den Diagrammen sind die Ergebnisse numerischer Berechnungen ohne Berücksichtigung ei-
ner Aufschüsselung für eine Dicke von 30 mm (○) und 60 mm (◻) für den Ecklastfall (rot)
eingetragen. Es zeigt sich, dass die Simulationen für die 30 mm Platte eine unbefriedigende Ab-
weichung von der Westergaard’schen Verformung liefern. Der Wert bei kleinerer Bettungszahl
von 0.35 MN/m³ weicht im oberen Diagramm für die Verformung für die dünnere Platte mit
30 mm am deutlichsten ab, recht gut getroffen ist bei größerer Bettungszahl der Wert für die
60 mm Platte. Die 60 mm Platte liefert in der Simulation etwas bzw. deutlich niedrigere Werte
als die Formeln. Eine umgekehrte Abweichung nach oben zeigt sich dagegen bei einem Vergleich
der Spannungen im unteren Diagramm. Die 30 mm-Spannungen hingegen liegen unterhalb der
formelbasierten Rechnung.

Für die Spannungsbetrachtung werden zusätzlich die Berechnungen, die die Schüsselung mit
berücksichtigen, sowohl für den Eck- als auch für den Randlastfall bei 60 mm Plattendicke
mit abgebildet. Eine Darstellung der Verformungen wäre in diesem Zusammenhang irreführend
aufgrund des Ablaufs der Rechnung (Reihenfolge Aufschüsselung als Vorverformung und nach-
trägliches Einsinken infolge Eigengewicht, vergleiche Kapitel 3.2). Die Spannungen liegen für den
Ecklastfall in einem ähnlichen Bereich wie die der Simulation ohne Aufschüsseln. Für den Rand-
lastfall wurde keine Berechnung ohne Aufschüsseln aufgestellt. Bei Vergleich der formelbasierten
Spannungswerte unter Vernachlässigung des Schüsselns gegenüber den Werten der schüsselungs-
basierten Simulation zeigt sich für beide Lastfälle eine vergleichbare Unterschätzung durch die
Formeln. Außerdem fällt auf, dass der Randlastfall in der Simulation kleinere Werte liefert als
der Ecklastfall, was bei den Westergaard’schen Formeln umgekehrt ist, weswegen sich letztlich
auch der Randlastfall bei Manns und Zeus (1980) als maßgebend durchgesetzt hat.
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Abbildung 7.8.: Vergleich der Berechnungsformeln (Auswertung als Geraden dargestellt, vgl.
Gleichungen (2.4) bis (2.6)) nach Westergaard bzw. Manns und Zeus (1980) mit
dem Berechnungsmodell, a = 25 mm,E = 25000 N/mm2, F = 1 kN (Simulation
(Sim), mit KS nach Tabelle 3.2, z.T. mit Vorverformung (mV))

Dass die Wirkung der Aufschüsselung in der Simulation auf die maximale Spannung vernachläs-
sigbar ist, stützt auf den ersten Blick die Beobachtung aus der Versuchsauswertung, bei der die
Eck-Bruchlasten nah beieinander lagen. Allerdings bezieht sich die Darstellung ausschließlich auf
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ein Belastungsniveau von 1 kN, bei einer höheren Last könnte sich dies auch anders darstellen.
Hier würde der Einfluss aus Nichtlinearität jedoch auch größer, bei dem ein Vergleich mit den
Formeln nicht sinnvoll wäre. Außerdem stimmen bei geringerem Lastniveau die Stellen der ma-
ximalen Spannung zwischen initial aufgeschüsselter und aufliegender Platte nicht überein. Der
Spannungszustand in der Platte gleicht sich erst bei höherem Lastniveau bzw. rückgebildeter
Aufschüsselung infolge Belastung an.

Insgesamt zeigt sich eine unbefriedigende Abweichung bei den Verformungen mit den Werten
der Westergaard-Formeln, und eine qualitativ und quantitativ schlechte Übereinstimmung bei
den Spannungswerten für beide Plattendicken. Der hier betrachtete Vergleich bezieht sich aus-
schließlich auf das Lastniveau von 1 kN Einzellast, welches von Manns und Zeus (1980) als für
den damaligen Wohnungsbau angemessen eingeordnet wurde. Das Beanspruchungsniveau für
Estrich ist jedoch mit der Zeit gestiegen, sodass im Folgenden auch höhere Lastniveaus und
insbesondere das Verhältnis zwischen Rand- und Eckbeanspruchung hinsichtlich der Bedeutung
für die Bemessung genauer untersucht werden soll.

Gegenüberstellung der Lastfälle bei höherem Lastniveau und Vergleich mit Westergaard

In Abbildung 7.9 und Tabelle 7.3 sind die Werte der maximalen Hauptspannung grafisch und
tabellarisch aufgeführt. In der Tabelle finden sich zusätzlich Hinweise auf die Stelle der maxima-
len Spannung im System. In den rot dargestellten Simulationswerten zeigt sich bei Erreichen der
Zugfestigkeit jeweils ein Knick, der auf das Einsetzen nichtlinearer Einflüsse zurückzuführen ist.
Der Steigungsanstieg im Verlauf der gestrichelten, roten Verläufe (Randlastfall) zwischen 3 und
4 kN ist in den Verläufen der rot gepunkteten Ecklastfall-Linien nicht zu beobachten. Grund
hierfür ist der Wechsel des Auswertungsorts beim Randlastfall von der Maximalspannung an
der Plattenoberseite zur -unterseite direkt unterhalb der Last. Im Vergleich zu den Spannungs-
werten, die sich auf den Formeln nach Westergaard ergeben, liegen die Spannungen aus der
Simulation bei 1 kN Last etwa um das 1.3- bzw. 1.5-fache höher. Der Einfluss der beiden unter-
schiedlichen Dämmstoffe ist in allen Kurven weitgehend vernachlässigbar. Im Bereich 2 bis 3 kN
übersteigen die Spannungswerte der Westergaard-Formeln die der Simulation und übersteigen
aufgrund des linearen Anstiegs spätestens bei Erreichen des plastischen Dehnungsniveaus (vgl.
Tabelle 7.3, ab 4 bis 5 kN Einwirkung) die Werte aus den Simulationen deutlich. Zwischen 3
und 5 kN (2 und 4 kN beim Ecklastfall) zeigen die Kurven zumindest einen ähnlichen Anstieg,
und für den Ecklastfall auch eine recht gute Übereinstimmung.

Wie bereits im vorangegangenen Kapitel erläutert, wurde bei den hier dargestellten Werten
keine Begrenzung der Rissprozesszone durch Schwächung bestimmter Elementreihen zugrunde
gelegt. Die Ergebnisse sind dadurch und durch fehlende Validierung mit einer belastbaren Ver-
suchsdatenlage eingeschränkt quantitativ auswertbar. Dennoch zeigt sich bereits im elastischen
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Tabelle 7.3.: Simulationsauswertung der maximalen Hauptspannung unter verschiedenen Ein-
zellastniveaus unter Angabe des Werts und der Stelle innerhalb der Platte (grau
unterlegt: Auftreten plastischer Dehnungen)

max. Haupt-
[spannung N/mm²] Platte W (weicher gelagert) Platte S (steifer gelagert)

Rand Ecke Rand Ecke
Last [kN] σmax Ort σmax Ort σmax Ort σmax Ort

1 1.26 Plattenmitte,
Oberseite 1.41 nahe Plattenmitte,

Oberseite 1.36 Plattenmitte,
Oberseite 1.55 nahe Plattenmitte,

Oberseite

2 1.44 ” 1.88
leicht exzentrisch

hin zum Lastangriff,
Oberseite

1.44 ” 1.95
leicht exzentrisch

hin zum Lastangriff,
Oberseite

3 1.56
leicht exzentrisch

hin zum Lastangriff,
Oberseite

2.42
näher hin zum

Lastangriff,
Oberseite

1.55
leicht exzentrisch

hin zum Lastangriff,
Oberseite

2.34
näher hin zum

Lastangriff,
Oberseite

4 2.37 Lastangriff,
Unterseite 2.96

Entfernung vom
Lastangriff,
Oberseite

2.11 Lastangriff,
Unterseite 2.98 ”

5 2.99 ” 3.0 ” 2.99 ” 3.0
Entfernung vom

Lastangriff,
Oberseite

6 2.95 ” 3.0 ” 2.95 ” 3.0 ”
7.15

(Bruchlast
Ecke)

3.0 im Feld,
Oberseite 3.0 ” 3.0 im Feld,

Oberseite 3.0 ”

Bereich, der von dem fehlenden Regularisierungskonzept unbeeinflusst ist und in dem auch die
Spannungs-Dehnungsverläufe zwischen Versuch und Simulationen recht gut übereinstimmen,
eine Diskrepanz zwischen der von Manns und Zeus (1980) angenommenen bzw. in den Wester-
gaard’schen Formeln enthaltenen Tendenz, dass der Randlastfall ein höheres Spannungsniveau
aufweist als der Ecklastfall.

Vergleicht man hingegen die gemessenen Dehnungsverläufe für den Eck- (Abb. E.7 und E.8)
bzw. Randlastfall (Abb. E.9) miteinander, wird deutlich, dass die in den DMS zum Teil erfasste
Bruchdehnung im Ecklastfall mit etwa 250 µm/m im Randlastfall im Bereich der geklebten DMS
auf der Plattenoberseite nicht annähernd erfasst wurde. Hier beträgt die maximal gemessene
Dehnung lediglich etwa 150 µm/m. Bei Betrachtung der DMS an der Plattenkante in Abbil-
dung E.10 und Vergleich der Kraftniveaus entsteht schon bei einer Last von etwas über 4 kN
im Randlastfall ein erster Riss an der Plattenunterseite, erkennbar am plötzlichen Anstieg der
gemessenen Dehnungswerte weit jenseits der genannten Eck-Bruchdehnung von 250 µm/m. Das
Lastniveau bei Eintreten des Risses stimmt mit den in den Simulationsergebnissen beschriebenen
Wechsel des Orts der Maximalspannung an die Plattenunterseite und dem Auftreten plastischer
Dehnungen im Lastbereich zwischen 4 und 5 kN überein. Dies stützt zum einen die Simulations-
ergebnisse zusätzlich, weicht jedoch die obige Tendenz auf, dass der Eck-Lastfall zur Bewertung
der Beanspruchbarkeit des Estrichs herangezogen werden sollte. Die Entstehung des Risses an
der Plattenunterseite setzt somit vor Auftreten des Bruchs im Ecklastfall ein. Der Riss führt
jedoch nicht instantan zum Versagen wie im Ecklastfall, dieses tritt deutlich später auf.
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Abschließend lässt sich zusammenfassen, dass die Simulationsergebnisse auch für den Randlast-
fall im Hinblick auf die Rissentstehung an der Plattenunterseite qualitativ gut mit den gemes-
senen Daten der DMS übereinstimmen, insbesondere das Lastniveau betreffend, unter der der
dortige Riss einsetzt. Dies zeigt, dass trotz der Unsicherheiten, mit denen die Randlastsimula-
tionen belegt sind, und abgesehen von der erreichten Bruchlast mindestens qualitative Aussagen
aus den Simulationsergebnissen ableitbar sind:

• Das Spannungsniveau der Simulationsergebnisse des Ecklastfalls übersteigt die des Rand-
lastfalls.

• Das Bruchlastniveau des Ecklastfalls liegt unter dem des Randlastfalls.

• Der Riss an der Plattenunterseite im Falle einer Randbelastung setzt vor dem Bruch im
Ecklastfall ein, führt jedoch nicht unmittelbar zum Versagen. Im Randlastfall sind Span-
nungsumlagerungen möglich, sodass der Bruch erst später auftritt.
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Abbildung 7.9.: Entwicklung der plastischen Dehnungen bei Randbelastung an der Ober- und
Unterseite der Platte, jeweils ausgewertet bei Erreichen der Bruchlast

Hieraus lässt sich ableiten, dass eine Belastung der Ecke zur Ermittlung der maßgebenden Bruch-
last sinnvoller ist als die Belastung des Randes. Im Hinblick auf ein Bemessungskonzept ist jedoch
entscheidend, ob eine Rissfreiheit an Ober- und Unterseite gewährleistet sein muss. In diesem
Fall wäre wie im aktuellen Bemessungskonzept zugrundegelegt der Randlastfall als maßgebend
vorzuziehen. Der Einfluss des Schüsselns wurde in der vorliegenden Arbeit nur für den Ecklast-
fall (zumindest unter den validierten Randbedingungen) zufriedenstellend als vernachlässigbar
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beurteilt. Auch die betrachteten Dämmstoffe spielen für das Bruchlastniveau in den betrachte-
ten Bereichen der Dämmsteifigkeit zwischen 8 und 13 MN/m3 eine untergeordnete Rolle. Bei
wesentlich steiferem Dämmstoff nimmt der Einfluss etwas zu.

Vergleich mit DENAK-Merkblatt

9 5.4 4.98

4.375

0.67

Abbildung 7.10.: Nomogramm aus dem DENAK-Merkblatt für eine Last-
Aufstandsfläche ≥ 25cm2 (DENAK-Merkblatt 8-2, 2021)

Bei Betrachtung der in Kapitel 2.1.3 erwähnten Bemessungs-Nomogramme für Bodenkonstruk-
tionen der DENAK zeigt sich in Abbildung 7.10 bzw. Tabelle 7.4 eine Abweichung der Simu-
lationsergebnisse von der aus dem Nomogramm ablesbaren maximal zulässigen Last. Das No-
mogramm basiert allerdings auf dem von Manns und Zeus (1980) als maßgebend identifizierten
Randlastfall, und können daher nicht wirklich konsistent mit den Ergebnissen des numerischen
Modells verglichen werden. Dies wäre für den Randlastfall bei ausreichender Datengrundlage
eher möglich. Die in Tabelle 7.4 dargestellten Werte berücksichtigen bei der Biegezugfestigkeit
den im Merkblatt angegeben Sicherheitskorrekturfaktor nicht. Die maximale Last wird für die
in den Festigkeitsprüfungen ermittelte Biegezugfestigkeit von σBZ = 6.8 ≈ 7 N/mm2 charakteris-
tisch abgelesen.
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Wird das Versuchsergebnis von im Mittel 7.15 kN (Ecke) bzw. 14.25 kN (Rand) bei mittelsteifer
Unterlage (10 MN/m3) und 60 mm dicker Platte herangezogen, stimmt dieser Wert mit der Si-
mulation wie bereits im vorangegangenen Kapitel dargestellt beim Ecklastfall recht gut, für den
Randlastfall nicht überein (Zeilen 1 und 2, und Spalte ≈ 4 mm Vorverformung der Tabelle 7.4).
Im Vergleich dazu ergibt sich aus der DENAK-Richtlinie ein kleinerer Wert von 5 kN. Insbe-
sondere für den vergleichbaren Randlastfall ist die Abweichung sehr deutlich, der DENAK-Wert
entspricht etwa einem Drittel der Versuchsbruchlast. Grundsätzlich liegen die DENAK-Werte
bei noch hinzukommender Berücksichtigung des Sicherheitsfaktors unabhängig von Schwind-
einflüssen für eine 60 mm Platte sehr deutlich auf der sicheren Seite, wenn die Annahme des
Randlastfalls als maßgebend angemessen ist. Für die 80 mm Platte wurde keine Simulation des
Randlastfalls durchgeführt, aber das Verhältnis der Ecksimulationen zu den DENAK-Werten ist
für beide Plattendicken vergleichbar, sodass sich der Unterschied zur Randsimulation ähnlich
ergeben dürfte.

Tabelle 7.4.: Vergleich der Simulationsergebnisse mit den Werten aus dem DENAK-Merkblatt
zur Bemessung von Bodenkonstruktionen

[kN] KS=0.67 MN/m³ KS=4.375 MN/m³
Schüsseln [mm] 2 4 8 2 4 8
60mm (SIM Ecke) 7.44 7.22 (V: 7.43) 6.00 7.60 7.39 (V: 6.79) 6.96
60mm (SIM Rand) 19.63 (V: 15.17) 19.30 (V: 13.55)
60mm (DENAK) 4.9 5.4
80mm (SIM Ecke) 11.78 11.90
80mm (DENAK) 8 9

Die auf den ersten Blick großen Diskrepanzen zwischen den Westergaard’schen Formeln und den
Simulationsergebnissen sollten nicht überbewertet werden. Für eine grundlegende Bewertung
sind weitere Untersuchungen, vor allem belastbare Simulationen für den Randlastfall, und eine
Sicherheitsbetrachtung mit Blick auf das für die Anwendung entscheidende Versagens- bzw.
Gebrauchstauglichkeitskriterium notwendig.

172



8. Zusammenfassung und Anschlusspunkte

8.1. Zusammenfassung

Eine Untersuchung des Schwind- und Dämmsteifigkeitseinflusses auf den maßgebenden Versa-
genmechanismus schwimmenden Estrichs und daraus abzuleitende Rückschlüsse auf das gültige
Bemessungskonzept der DIN 18560-2:2022 standen im Fokus dieser Arbeit. Dazu wurde ein
Modell zur Versagensmodellierung schwimmenden Estrichs unter punktförmiger Belastung an
der Plattenecke erstellt, welches eine – bei verschmierten Rissmodellen häufig eingeschränkte –
Netzunabhängigkeit der Ergebnisse gewährleistet und eine für den Kontakt zwischen Dämmung
und Estrich leicht reproduzierbare Variante in Form von Einzelfedern verwendet. Mithilfe der
durchgeführten Balken- und Plattenversuche konnte das Modell schrittweise gut für den betrach-
teten Parameterbereich validiert werden. Für eine erste Beurteilung der genannten Einflüsse auf
das Bemessungskonzept liefert dies eine gute Grundlage.

Theoretische Basis

Die Basis für die vorliegenden Untersuchungen stellen Estrich-ähnliche Betonmodelle dar, die zur
Abbildung des Rissverhaltens von Stahl- und Stahlfaserbeton bereits als geeignet gelten. Aus-
gewählt wurden dabei verschmierte Rissmodelle, die auf bruchmechanischen Prinzipien und der
Plastizitätstheorie beruhen. Angewendet auf in der Regel unbewehrt eingebauten Zementestrich
spielt bei der Modellierung der Diskontinuität im Dehnungszustand zum einen die Gewährleis-
tung der Netzunabhängigkeit eine Rolle, zum anderen können bei entfestigendem Materialverhal-
ten dieser Art grundsätzlich Materialinstabilitäten auftreten. Dies stellt für die Lösungsfindung
innerhalb der Finite-Elemente-Methode eine Herausforderung dar. Neben der Materialnichtli-
nearität war bei Berücksichtigung des Aufschüsselns bzw. Ablegens der Plattenränder unter
Belastung der Kontakt zwischen Estrich und Dämmstoff zu modellieren.

Gewährleistung der Netzunabhängigkeit und Dämmstoffmodellierung

Somit wurden zunächst die Modellgrundlagen geschaffen: Zum einen wurden Untersuchungen
zur Netzunabhängigkeit und zur Modellierung des Rissprozesses, insbesondere des Nachbruch-
bereichs, durchgeführt, zum anderen lieferten Versuche am in den späteren Plattenversuchen
verwendeten Dämmstoff eine Grundlage zur Modellierung der Dämmsteifigkeit.
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Aufgrund fehlender Bewehrung besteht eine erhöhte Relevanz der Frage nach der Netzunabhän-
gigkeit. Zur Sicherstellung netzunabhängiger Ergebnisse bei der Simulation der Biegebeanspru-
chung werden in der Literatur verschiedene Möglichkeiten betrachtet, wobei die Einführung der
charakteristischen Länge als Korrekturparameter vor allem in kommerzieller Software die aktuell
üblichste standardmäßig implementierte Option darstellt. Daher wurden zwei in kommerzieller
Software implementierte Modelle, das Concrete Damaged Plasticity-Modell in Abaqus und das
Menetrey-Willam-Modell in Ansys – als für Rissmodellierung übliche Software-Vertreter – und
deren Umgang mit der Netzabhängigkeit verglichen und dem energiebasiert hergeleiteten An-
satz nach Gödde (2013) gegenübergestellt. Dabei wird der Sonderfall eines reinen Zugversuchs
untersucht, da dieser eine analytische Lösung besitzt und eine eindeutige Definition der cha-
rakteristischen Länge liefert. Als Ergebnis dieses Vergleichs ergibt sich zum einen ein besseres
Verständnis des hier zur Regularisierung verwendeten Parameters der charakteristischen Länge,
aber auch eine bessere Beurteilung der Anwendungsgrenzen der betrachteten Softwarelösun-
gen. Hier konnten bei Betrachtung eines einfachen Zugversuchs bereits Diskrepanzen zwischen
analytischer Lösung und Ergebnissen in der Software herausgestellt werden. Die in Abaqus nicht
transparent offen gelegte Definition dieses Parameters verhinderte eine abschließende Evaluation
der Ursache für diese Diskrepanz. Durch den Vergleich der beiden Software-Ansätze kann jedoch
zumindest eine gezielte Vermutung hinsichtlich der in Abaqus zugrunde gelegten Definition der
charakteristischen Länge geliefert werden. Diese kann für weitere Anwendungen dieses Modells,
vor allem im Hinblick auf tiefergehende Untersuchungen der Auswirkung dieser Definition, ge-
nutzt werden.

Um die Steifigkeit des verwendeten Dämmstoffs möglichst realistisch zu erfassen, wurden Ver-
suche an Dämmstoffproben durchgeführt. Diese orientierten sich hinsichtlich des maximalen
Belastungsbereichs an den normativen Vorgaben zur Bestimmung der Zusammendrückbarkeit
eines Dämmstoffs, welche für die normative Estrichbemessung eine Rolle spielt. Neben der Prü-
fung der beiden unterschiedlich steifen Faserdämmstofftypen im gelieferten Zustand wurden auch
Prüfungen an Proben durchgeführt, die nach der Prüfung der Estrichplatte aus dem dort ver-
wendeten Dämmstoff entnommen wurden. Die experimentellen Untersuchungen des Dämmstoffs
zeigten einen Unterschied zwischen der unbelasteten Prüfung des Faserdämmstoffs im Vergleich
zur Prüfung nach Belastung durch den darauf liegenden Estrich: Der steifere Dämmstoff ver-
liert offenbar durch die Belastung an Steifigkeit, der weichere der beiden Dämmstoffe zeigt nach
Belastung eine etwa doppelt so hohe Steifigkeit. Wie diese Veränderung im Detail zu erklären
und inwiefern diese Diskrepanz auch bei anderen Dämmstofftypen vorhanden ist, bedarf wei-
terer experimenteller Untersuchung. Es ist möglich, dass die strukturelle Beschaffenheit eines
Faserdämmstoffs für diesen Effekt anfälliger ist als andere für Trittschalldämmprodukte übli-
che Werkstoffe wie z.B. Polystyrol (EPS). Festhalten lässt sich jedoch, dass zur numerischen
Abbildung der Steifigkeit nicht allein der Wert der Zusammendrückbarkeit ausreichend ist, der
zwar zur Einordnung der Steifigkeit gegenüber anderen Produkten dient, aber das physikalische
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8.1. Zusammenfassung

Verhalten im Sinne einer Federsteifigkeit nicht erfasst.

Die Modellierung des Dämmstoffs erfolgte ebenso wie die Kontaktmodellierung über nichtli-
neare Einzelfedern: Die Dämmstoffversuche lieferten ein stückweise lineares Kraft-Weg-Gesetz
zur Beschreibung der Steifigkeit, wobei sich der resultierende Verformungsbereich in der Regel
auf den linearen Anfangsbereich beschränkt. Die Kontaktfedern erhielten ebenfalls ein stück-
weise lineares Gesetz, welches vom anfänglichen Abstand des Estrichs vom Dämmstoff infolge
der Vorverformung aus Schwinden abhing. Der Erhärtungs- bzw. Schwindprozess selbst wur-
de nicht direkt simuliert, sondern die resultierende charakteristische Schüsselform vereinfacht
abgeschätzt und als Vorverformung berücksichtigt. Die in vergleichbarer Software reproduzier-
bare und transparent kontrollierbare Kontaktmodellierung über Einzelfedern, die zwischen die
Dämmstofffedern und die Estrichelemente zwischengeschaltet wurden, bildet das Ablegen der
Platte auf dem Dämmstoff gut und effizient ab.

Validierung des Modells

Mithilfe des so entwickelten Modells lassen sich nun Werkstoffprüfungen sowie typische Laststel-
lungen auf schwimmenden Estrichbalken und -platten simulieren. Anhand verformungsgesteuert
geprüfter Estrichbalken im Dreipunktbiegezugversuch konnte die Eignung des in Abaqus ent-
haltenen CDP-Materialmodells zur Berechnung des Nachbruchbereichs bestätigt werden. Die
Übereinstimmung der Kraft-Verformungs-Kurven zwischen Experiment und Simulation ist sehr
gut. Bei den übrigen Versuchen an auf Dämmstoff gebetteten Balken und Platten wurde der
Nachbruchbereich nicht erfasst und daher im Hinblick auf das Materialmodell nicht beurteilt.
Bis zum Erreichen der Bruchlast zeigte sich eine gute Übereinstimmung zwischen Versuch und
Simulation. Der Materialparameter der Bruchenergie Gf ergibt sich dabei zu 0.2 Nmm/mm2

und ist damit eher hoch im Vergleich zu typischen Werten für Beton oder Stahlfaserbeton (üb-
licherweise bis 0.12 Nmm/mm2). Ob eine dies eine grundsätzliche Tendenz bei schwindarmen
Zementfließestrichen hoher Festigkeit (Biegezugfestigkeitsklasse F7) ist, lässt sich auf Basis einer
einzelnen Stichprobe nicht beurteilen.

Die Validierung beschränkt sich auf die konkret betrachteten Parameter, da die beeinflussen-
den Variablen wie Dicke (d = 60 mm), Geometrie (quadratische Platte), Rezeptur (eine Art von
Fließestrich, F7), Belastungsart (Einzellast Ecke) sowie Art (Faserdämmstoff) und Steifigkeit der
Unterlage (zwei verschiedene Zusammendrückbarkeiten bzw. Bettungszahlen) nicht bzw. nur in
begrenztem Umfang variiert wurden. Insbesondere für den Randlastfall ist die Datenlage zur
abschließenden Validierung nur begrenzt verwendbar. Insbesondere zeigte sich bei der Beurtei-
lung des Rissbilds für die Simulation beider Lastfälle, dass sich eine im Versuch beobachtete
eindeutige Einzelrissbildung auch bei Schwächung der Elemente im Rissband nicht unmittel-
bar numerisch einstellt. Solange der Nachbruchbereich keine höhere Relevanz hat und bei der
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8. Zusammenfassung und Anschlusspunkte

betrachteten Laststellung keine Spannungsumlagerung zu erwarten ist, ist das Modell in der
vorliegenden Form ausreichend. Andernfalls sind weitergehende Untersuchungen und ggf. ein
Überdenken des Regularisierungskonzepts oder sogar der Modellgrundlage notwendig.

Beurteilung des Schwindeinflusses

Das so validierte Modell konnte schließlich zur Beurteilung des Schwindeinflusses herangezogen
werden. Die Untersuchung erfolgte anhand einer Parameterstudie durch Variieren der Estrich-
dicke, Dämmsteifigkeit und Vorverformungsintensität. Die Parametervariation beschränkt sich
darauf, jeweils nur eine Größe (Dicke oder Vorverformung) zu variieren, um die Unsicherheit in
den auf Extrapolation des experimentell validierten Parameterbereichs basierenden Ergebnissen
zu minimieren. Diese Extrapolation stellt dennoch eine Unsicherheit bei der grundlegenden Be-
urteilung des Schwindeinflusses auf schwimmenden Estrich im Allgemeinen dar. Im validierten
Bereich einer 60 mm Platte zeigte sich jedoch bereits, dass der Einfluss aus Schwinden auf die
Bruchlast vernachlässigbar ist und auch die Parameterstudie weist keinerlei Indizien dafür auf,
dass andere Randbedingungen einen größeren Einfluss der Aufschüsselung auf die Tragfähigkeit
offenbaren werden.

Abweichungen der quantitativen Verformungs- und Bruchlastgrößen sind ohne einen Abgleich
mit weiteren Versuchen nicht auszuschließen, qualitativ sind die Ergebnisse der Parameterstudie
jedoch als realistisch einzustufen. Die Ergebnisse für die extremalen Dämmsteifigkeiten mit Bet-
tungszahlen von 1 und 100 MN/m3 können lediglich als Tendenz der tatsächlichen Verformung
bzw. Bruchlast verstanden werden. Allein die Verformung weicht bei sehr weichem Dämmstoff
von realistischen Werten deutlich ab.

Bestrebungen, das Rissverhalten hochfester Fließestriche durch schichtweises Einbringen und
dadurch reduzierter Schwindeinflüsse zu verbessern, sind auf Basis der vorliegenden Ergebnisse
nicht zielführend. Festhalten lässt sich, dass je steifer der Dämmstoff ist, desto eher ein Einfluss
der Vorverformung auf die Bruchlast erkennbar ist. Die Dämmsteifigkeit selbst hat wenig Ein-
fluss auf die Bruchlast, auch unabhängig von der Dicke des Estrichs. Die Estrichdicke hingegen
bestätigt sich als maßgeblich für die Bruchlast.

Beurteilung des Bemessungskonzepts

Im Anschluss konnte das genormte Bemessungskonzept auf Basis der Ergebnisse beurteilt wer-
den. Die Hypothese, dass der Einfluss aus Schwinden bzw. Schüsseln in Wechselwirkung mit der
Dämmsteifigkeit einen entscheidenden Einfluss auf das Bruchlastniveau schwimmenden Estrichs
hat, konnten die dargestellten Untersuchungen nicht nachweisen. Zumindest für die im Versuch
betrachtete Dicke von d =60 mm zeigt sich unabhängig von der Berücksichtigung einer schüs-
selförmigen Vorverformung ein ähnliches Bruchlastniveau in den Simulationen. Daher erscheint
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8.1. Zusammenfassung

eine Anpassung des Bemessungskonzepts hinsichtlich des Schwindeinflusses zunächst nicht zwin-
gend erforderlich.

Da das Bemessungskonzept auf Manns und Zeus (1980) zurückgeht, beziehen sich auch Bemes-
sungsrichtlinien wie die der DENAK auf den Randlastfall, der von Manns und Zeus (1980) als
maßgebend identifiziert wurde. Dabei wurde jedoch ein für den damaligen Wohnungsbau ange-
messenes Lastniveau vorausgesetzt, welches durch heutige Lastniveaus vor allem im Industrie-
bau deutlich überschritten wird. Die Bruchlasten wie auch das Spannungsniveau des Ecklastfalls
übersteigen die des Randlastfalls bei Lastniveaus jenseits der von Manns und Zeus (1980) an-
gesetzten 1 kN-Einzellast deutlich. Auch widersprechen die Simulationsergebnisse insofern den
Formeln nach Westergaard, bei denen ebenfalls der Randlastfall grundsätzlich höhere Werte lie-
fert. Dadurch lässt sich der als maßgebend identifizierte Lastfall „Einzellast am Plattenrand“
gegenüber der Belastung an der Ecke aufgrund des kritischeren Spannungszustands, der keine
Umlagerungen zulässt, und der geringeren Versagenslast zumindest infrage stellen.

Anzumerken ist hier, dass die Ergebnisse der Tastsimulationen, die für den Randlastfall durchge-
führt wurden, aufgrund geringer Versuchsdatengrundlage und Diskrepanzen zwischen Simulation
und Versuch im Bereich des Rissorts und der in der Simulation vernachlässigten Vorschädigung
durch die vorgelagerten Eckprüfungen nur bedingt belastbar sind. Dass aber bereits im elasti-
schen Bereich eine Abweichung zu den Annahmen von Manns und Zeus (1980) bzw. den Wes-
tergaard’schen Formeln vorliegt und der Ecklastfall ein höheres Spannungsniveau aufweist als
der Randlastfall, ist unabhängig von den genannten Unsicherheiten bemerkenswert.

Das Versagen unter Eckbelastung, welches in der Praxis üblicherweise zur Begutachtung der
Estrichtragfähigkeit herangezogen wird, setzt jedoch später ein als die Erstrissbildung an der
Plattenunterseite bei Randbelastung, auch wenn diese nicht unmittelbar Versagen-induzierend
ist. Es ist also nicht eindeutig, welcher Lastfall maßgebend ist. Diese Beobachtungen motivieren
eine anforderungsbedingt genauere Gegenüberstellung und ggf. Festlegung eines maßgebenden,
und damit einheitlich zu betrachtenden Lastfalls für die Praxis.

Diese Ergebnisse zeigen auf, dass der Einfluss aus Schwinden auf das Versagen und damit Schä-
den an schwimmendem Estrich weniger entscheidend ist als bisher angenommen, und sich daraus
kein Bedarf zur Anpassung des Bemessungskonzepts ableitet. Dagegen unterstreicht die Auswer-
tung, dass die Diskrepanz zwischen dem für die Bemessung als maßgebend erachteten Randlast-
fall und dem in der Praxis üblicherweise betrachteten Ecklastfall zur Traglastermittlung einer
genaueren Gegenüberstellung bedarf. Dabei lässt sich das hier entwickelte Modell als numerisches
Werkzeug heranziehen. Aus dem Vergleich der Lastfälle ließen sich unter Umständen bindende
Handlungsempfehlungen für ein verbessertes Sicherheitskonzept ableiten.
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8.2. Ausblick

Reduzierung notwendiger experimenteller Untersuchungen

Bei Beanspruchungen jenseits der normativ erfassten Standardanwendung und Lastniveaus ist es
in der Praxis üblich, die Tragfähigkeit des geplanten Estrichs über experimentelle Untersuchun-
gen an großformatigen Platten zu ermitteln. Dies ist zeit- und kostenintensiv. Bei weiterer Vali-
dierung des numerischen Modells für weitere Dicken und andere Dämmstofftypen ließe sich eine
solche Untersuchung unter Umständen durch eine numerische Rechnung ersetzen. Möglicherwei-
se ist es in diesem Zusammenhang im Zuge weiterer Untersuchungen verschiedener Geometrien
auch denkbar, ein kostengünstigeres Versuchskonzept zur Ermittlung der Tragfähigkeit zu ent-
wickeln, welches die gleichen Kenndaten liefert wie die aktuell großformatigen Plattenversuche.
Daneben ließen sich schließlich komplexere Geometrien, erhöhrte Lastniveaus oder besondere
Laststellungen, die einer besseren Datengrundlage hinsichtlich für Risse kritischer Situationen
bedürfen, für die Planung unterstützend simulieren.

Weitergehende Anwendung des Modells

Zur Verbesserung des spröden Materialverhaltens und der geringen Zugfestigkeit werden in der
Baupraxis neben der Anordnung stabförmiger Stahlzulagen immer häufiger zusätzlich oder als
Ergänzung kurze, räumlich verteilte Stahlfasern eingesetzt. Vor allem im Industriefußbodenbau
ist die Verwendung von Stahlfaserbeton üblich. Im Hinblick auf die Verbesserung der Tragfähig-
keit bzw. des Rissverhaltens ist auch für schwimmenden Estrich eine Faserbewehrung denkbar.
Numerische Untersuchungen im Hinblick auf Faserorientierung und -verteilung lassen sich mit
dem entwickelten Modell durchführen, wie ebenfalls u.a. Gödde (2013) zeigt. Bei faserverstärk-
tem Estrich steigt jedoch die Bedeutung des Nachbruchbereichs, sodass vor allem hier eine
weitere Validierung des Modells notwendig ist. Erste Untersuchungen zum Nachbruchbereich
an verformungsgesteuerten Biegezugversuchen sind in dieser Arbeit bereits erfolgt, ein nächster
Schritt könnte sein, diesen Nachbruchbereich auch für faserverstärkte Balken zu untersuchen
und zu validieren. Den Nachbruchbereich für gebettete Balken oder Platten experimentell zu
erfassen und daran das Modell weiter zu validieren hat sich in der vorliegenden Arbeit bereits
als nicht trivial gezeigt. Bei einer weniger spröde reagierenden Estrichrezeptur und einer verbes-
serten, verformungsgesteuerten Lastaufbringung ist es unter Umständen dennoch möglich, den
Nachbruchbereich zu erfassen. Die Untersuchungen zum Ecklastfall haben außerdem gezeigt,
dass kaum Potential für Spannungsumlagerungen existiert. Um den Nachbruchbereich zu erfas-
sen und zunächst das Modell zu validieren, ist eine andere Laststellung am Rand möglicherweise
besser geeignet. Hier kann außerdem, wie in den vorliegenden Versuchen gezeigt, zusätzlich an
der Kante die Rissöffnungsweite des Risses an der Plattenunterseite seitlich über DMS erfasst
und bei Entwicklung eines angemessenen Regularisierungskonzepts für den Randlastfall validiert
werden.
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Netzabhängigkeit bei unbewehrtem Verbundwerkstoffen

Abschließend sei außerdem noch einmal auf die Bedeutung der Netzabhängigkeit bei verschmier-
ten Rissmodellen hingewiesen. Insbesondere bei unbewehrten Verbundwerkstoffen wie Beton
oder Estrich ist ein Regularisierungskonzept zur Reduzierung des Einflusses notwendig. In die-
ser Arbeit konnte gezeigt werden, dass auch kommerzielle Materialmodelle in dieser Hinsicht
Schwachstellen aufweisen, bzw. zum Teil nicht einmal transparent offen legen, auf welcher Grund-
lage die implementierte charakteristische Länge basiert. Das erschwert eine Anwendung der Mo-
delle bzw. eine Beurteilung des Einflusses der Netzabhängigkeit sehr. Für Stahlbeton ist der
Einfluss aus dieser Unsicherheit meist noch ausreichend gering, fehlt die Bewehrung jedoch oder
handelt es sich um Stahlfaserbewehrung, ist der Einfluss nicht zu vernachlässigen. Die Definition
nach Gödde (2013) liefert im Gegensatz dazu gute Ergebnisse hinsichtlich der Netzunabhängig-
keit und ist zumindest bei einfachen Bauteil- bzw. Rissgeometrien leicht zu berücksichtigen.
Daneben gibt es weitere Ansätze zur grundlegenden Umgehung der Netzunabhängigkeit (vgl.
Kapitel 2.2.4), sodass diese möglicherweise die aufgezeigten Einschränkungen des Modells be-
seitigen können, wenn diese Methoden (wie z.B. gradienten-erwaiterte Modelle) zukünftig stan-
dardmäßig in kommerzieller Software zugänglicher wären.
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Anhang





A. Theoretische Grundlagen: Werkstoff Estrich

Biegezugfestigkeitsprüfung nach DIN EN 13892-2:2003

Bei der Festigkeitsprüfung werden drei Prüfkörper mit den Maßen 40 × 40 × 160 mm hergestellt
und unmittelbar nach 28 Tagen im Lagerungsklima geprüft. Die Stützweite im Drei-Punkt-
Biegezugversuch beträgt 100 mm. DIN EN 13813:2003 legt die Festigkeitsklasse in Abhängig-
keit des Ergebnisses der Festigkeitsprüfung fest. Bestätigungsprüfungen werden in Sonderfällen
durchgeführt, wenn z.B. erhebliche Zweifel an der Güte des Estrichs bestehen. In diesem Fall
werden aus hergestellten Platten der Dicke d und der Länge 8 d drei bis fünf Prüfstreifen der
Länge 6 d und der Breite b = 60 mm herausgeschnitten. Diese sind im Normalklima zu lagern
und nach Erreichen der Massenkonstanz im Drei-Punkt-Biegezugversuch mit einer Stützweite
von l = 5d zu prüfen. In beiden Fällen ergibt sich die Biegezugfestigkeit aus der ermittelten
Bruchkraft der mittig als Streifenlast angreifenden Last F zu

βBZ =
1.5 ⋅ F ⋅ l

b ⋅ d2
(A.1)

Formeln nach Westergaard

Manns und Zeus (1980) geben neben den Westergaard-Formeln zur Bestimmung der Biegespan-
nungen außerdem Formeln nach Westergaard zur Bestimmung der Einsenkung eines schwim-
menden Estrichs an:

Einzellast in Plattenmitte
ym =

Q

8 ⋅KS ⋅ l2
⋅ 1000 [mm] (A.2)

Einzellast am Plattenrand

yR =
1
√
6
⋅ (1 + 0.4µ) ⋅

Q

KS ⋅ l2
⋅ 1000 [mm] (A.3)

Einzellast in Plattenecke

yE = (1.1 − 0.88 ⋅
a
√
2 ⋅ l
) ⋅

Q

KS ⋅ l2
⋅ 1000 [mm] (A.4)
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mit

Q = Last in MN

h = Dicke des Estrichs in m

E = Elastizitätsmodul des Estrichs = 20000 N/mm2

µ = Querdehnzahl = 0.2

a = Belastungskreishalbmesser in m

b =
√
1.6 ⋅ a2 + h2 − 0.675 ⋅ h für a < 1.724 ⋅ h in m

b = a für a > 1.724 ⋅ h in m

KS = Bettungszahl MN/m3
=

1.75

dL − dB

l = elastische Länge = 4

¿
Á
ÁÀ E ⋅ h3

12 ⋅ (1 − µ2) ⋅KS
in m .

Ungleiches Schwinden (DENAK)

Abbildung A.1.: Nomogramm aus dem DENAK-Merkblatt zur Abschätzung der
Biegespannung aus ungleichem Schwinden (DENAK-Merkblatt 8-
1, 2021)

192



B. Schwindsimulationen in croc:
Randbedingungen

Bei dem Berechnungsprogramm croc handelt es sich um ein FE-Programm zur Berechnung ge-
koppelter thermischer, hygrischer und mechanischer Probleme, vgl. croc-Handbuch (2019). Das
Programm wurde von Nietner (2009) ursprünglich vor allem zur Untersuchung von Zwangsbe-
anspruchungen erhärtender Massenbetonbauteile entwickelt. In der vorliegenden Arbeit dient
das Programm der Simulation des Hydratationsprozesses der hier untersuchten Estrichplatten.
Zur Berechnung des Wärme- und Feuchtetransports bei der Betrachtung des Hydratationspro-
zesses wurden Modelle basierend auf Nietner (2009) und Künzel (1994) verwendet. Eingangs-
parameter sind u.a. die Betonrezeptur, Witterungseinflüsse und wärme- und feuchtetechnische
Eigenschaften des betrachteten Baustoffs. Mechanisch geht vor allem die zeitliche Entwicklung
des E-Moduls ein (vgl. Nietner, Schlicke und Viet Tue, 2011).

Die möglichen Dehnungseinflüsse während der Hydratation zeigen sich in der folgenden Deh-
nungsbilanz (vgl. Röhling, 2009):

εT + εcds + εcas = εunbeh
+ εbeh

+ εψ + εRiss

Dabei ist
εT Dehnung infolge Temperaturänderung
εcds Dehnung infolge Trocknungsschwinden
εcas Dehnung infolge autogenem Schwinden
εunbeh aufgrund der Nachgiebigkeit der Konstruktion als freie Verformung messbarer

Dehnungsanteil
εbeh behinderter elastischer Dehnungsanteil
εψ Dehnungsanteil aus viskoplastischer Formänderung (Kriechen und Relaxation)
εRiss Rissbildung

Letztendlich liefert das Programm für jeden Zeitschritt ein in das finite Element eingepräg-
tes lastunabhängiges Dehnungsinkrement, welches sich aus dem aktuellen Temperaturinkrement
und den bis zu diesem Zeitpunkt aufsummierten viskoelastischen Dehnungsinkrementen der vor-
angegangenen Zwangszustände zusammensetzt. U.a. Nietner, Schlicke und Viet Tue (2011) for-
mulieren die zugehörigen Differentialgleichungen, diskutieren getroffene Annahmen zur Lösung
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dieser, und welche Einschränkungen mit diesen einhergehen. Zu den theoretischen Hintergründen
der Implementierung innerhalb von croc liefert das zugehörige croc-Handbuch (2019) genauere
Informationen, wobei sich das Programm und damit auch das Handbuch zum Zeitpunkt der
Entstehung der vorliegenden Arbeit noch in der Entwicklung befindet.

Zur Berechnung der Vorverformungen und Zwangsspannungen infolge Hydratation wurden für
die in der vorliegenden Arbeit untersuchten Estrichplatten folgende Annahmen zur Vorgabe im
Berechnungsprogramm croc (vgl. croc-Handbuch (2019)1) getroffen:

Rezeptur1

Zementgehalt: 370 kg/m3 (CEM I)
Wassergehalt: 259 kg/m3

Rohdichte (>28d): 2100 kg/m3

Mechanische Eigenschaften
E-Modul (>28d): 17000 N/mm2

Druckfestigkeit (>28d): 25 N/mm2

Zugfestigkeit (>28d): 2.5 N/mm2

Querdehnzahl: 0.2

Wärmetechnische Eigenschaften
Wärmedehnzahl: 9.2 ⋅ 10−6 1/K
Wärmeleitfähigkeit: 7.5 kJ/(mhK)
spez. Wärmekapazität 1000 J/(kg⋅K)

Feuchtetechnische Eigenschaften2

Feuchtedehnzahl: 1.5 ⋅ 10−6 1/(kgm3)

1 noch nicht veröffentlicht, Kontaktaufnahme zum Autor möglich
1 Seitens des Estrich-Herstellers gab es zur Zusammensetzung lediglich die Information, dass es sich um ein

ternäres Bindemittelsystem auf Basis eines Calcium-Aluminat-Zements (Hauptanteil), Anhydrits und CEM
I-Zements handelt (E-Mail-Auskunft).

2 Seitens des Estrich-Herstellers wird der Schwund angegeben mit 0.14mm/m nach 42d (E-Mail-Auskunft).
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Entwicklungskurven
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Abbildung B.1.: Mechanische Vorgaben (Angaben aus Kontakt mit Programmentwickler bzw.
Ersteller der Schwindsimulationen)
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Abbildung B.2.: Feuchtetechnische Vorgaben (Angaben aus Kontakt mit Ersteller des Pro-
gramms bzw. der Schwindsimulationen)

Weitere Randbedingungen

Wie bereits in Kapitel 3.2.1 erläutert, wird nur ein Viertel der Platte modelliert, um den Rechen-
zeitaufwand möglichst gering zu halten. Die Viertelplatte wird zusätzlich zu den Symmetrie-

195



B. Schwindsimulationen in croc: Randbedingungen

Randbedingungen in Plattenmitte (Kreuzungspunkt der Symmetrieachsen) vertikal gehalten.
Aufgrund der isolierenden Folie zwischen Estrich und Unterbau spielt der Unterbau für den
simulierten Wärme- und Feuchtetransport keine Rolle und wird nicht modelliert. Der Lastfall
Eigengewicht wird daher auch erst nach Import in Abaqus und unter Bettungsrandbedingungen
betrachtet.

Die Austrocknung nach unten wird behindert aufgrund der unterliegenden Folie. Zusätzlich
zur Folie zwischen Dämmstoff und Estrich wurde der Estrich nach Betonage mit einer Folie
abgedeckt, die nach vier Tagen wieder abgenommen wurde. Die Lufttemperatur wurde konstant
zu 20°C, die relative Luftfeuchte zu 60 % angenommen.
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C. Festigkeitsprüfungen

Verformungsgesteuerter Drei-Punkt-Biegezugversuch (Kapitel 3.1.2)

Abbildung C.1.: Aufbau eines verformungsgesteuerten Biegezugversuchs

Aus den Festigkeitsprüfungen wurden folgende Werte bestimmt:

• Zugfestigkeit: ft,gew =
ffl
2 = 2.0 N/mm2 ≠ ft,mess = 1.26 N/mm2,

• Druckfestigkeit: fc = 27.1 N/mm2,

• Biegezugfestigkeit: ffl = 6.0 N/mm2.

Festigkeitsprüfungen im Vorfeld der Balken- und Plattenversuche (vgl. Kapitel 4 ff.)

In Abbildung C.2 ist das Ergebnis eines Biegezugversuchs dargestellt. An der Unterseite des
Probekörpers wurde ein Dehnungsmessstreifen (DMS) zentrisch aufgeklebt. Der prismatische
Probekörper mit den Querschnittsabmessungen bxh = 60x57 mm wurde mit einer Stützweite
von 290 mm im Dreipunktbiegezugversuch bis zum Bruch belastet. Die maximale Last beträgt
1.72 kN, dies entspricht bei Annahme linear elastischen Tragverhaltens einer Spannung von
4.5 N/mm2 (Biegezugfestigkeit) bei einer gemessenen Bruchdehnung von 195 µm/m. Daraus
ergibt sich ein E-Modul von etwa 23000 N/mm2. Die Prüfung wurde am 11.03.22, und damit 21
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C. Festigkeitsprüfungen

Tage nach Betonage (14.02.22) durchgeführt. Eine weitere Prüfung wurde mit leicht exzentrisch
neben der Lasteinleitung aufgeklebtem DMS an der Balken-Oberseite durchgeführt. Hier ergibt
sich eine Bruchdehnung von 173 µm/m und eine rechnerische Biegezugfestigkeit von 4.6 N/mm2.
Daraus ergibt sich ein E-Modul von etwa 23700 N/mm2.

Aus den nachfolgenden Tabellen können die Ergebnisse der übrigen Festigkeitsprüfungen (Druck-
und Biegezugfestigkeit) entnommen werden. Die Biegezugfestigkeiten liegen leicht unterhalb der
oben ermittelten Werte. Die Ursache könnte in einer möglicherweise unterschiedlichen Lagerung
begründet liegen, kann aber nicht sicher identifiziert werden. Wie aus Tabellen C.3 und C.4
hervorgeht, erreicht die Biegezugfestigkeit bei weiterer Erhärtung bzw. Lagerung im Normkli-
ma bis zur Massenkonstanz einen Wert von bis zu knapp 7 N/mm2. Es ist davon auszugehen,
dass nicht nur die Festigkeit, sondern auch der E-Modul zum Zeitpunkt der gebetteten Platten-
(15.3./23.03.22 28/36 Tage) und Balkenprüfungen (28./29.04./02.05., etwa 72 Tage) noch ange-
stiegen ist.
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Abbildung C.2.: Biegezugversuch mit zentrisch an Unterseite aufgeklebtem DMS, Datum:
11.03.2022 (Tag 25 nach Betonage)
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Abbildung C.3.: Nachrechnung der Biegezugprüfung: Einfluss der Zugfestigkeit und Bruchener-
gie

Tag der Herstellung: 14.02.2022
Tag der Prüfung: 01.03.2022
Prüfmaschine: 400 kN
Norm: DIN EN 196-1
Vorbereitung zur Prüfung:
Stützweite: 100 mm
Bemerkungen: Biegezugfestigkeit: 50N/s, Druckfestigkeit: 2400 N/s

Tabelle C.1.: Festigkeiten nach 14 Tagen

Proben-
bezeichnung

b
[mm]

d
[mm]

L
[mm]

Gewicht
naturf.

[g]

Fmax
[kN]

Biegezug-
festigkeit
[N/mm²]

Druck-
festigkeit
[N/mm²]

4 41.2 39.9 160.3 585.7 1.629 3.7
40.390 24.55
40.540 24.64

5 41.2 39.9 160.2 584.1 1.654 3.8
40.380 24.58
39.740 24.19

6 41.0 39.9 160.2 577.9 1.635 3.8
38.400 23.45
39.040 23.84
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Tag der Herstellung: 14.02.2022
Tag der Prüfung: 14.03.2022
Prüfmaschine: 400 kN
Norm: DIN EN 196-1
Vorbereitung zur Prüfung:
Stützweite 100 mm
Bemerkungen: Biegezugfestigkeit: 50N/s, Druckfestigkeit: 2400 N/s,

Prüfung nach niedriger, zyklischer Belastung
(E-Modul nach DIN EN 13412-2006)

Tabelle C.2.: Festigkeiten nach 28 Tagen

Proben-
bezeichnung

b
[mm]

d
[mm]

L
[mm]

Gewicht
naturf.

[g]

Fmax
[kN]

Biegezug-
festigkeit
[N/mm²]

Druck-
festigkeit
[N/mm²]

7 42.2 39.9 160.0 601.5 1.753 3.9
44.710 26.55
43.090 25.59

8 41.0 39.9 160.2 574.9 1.594 3.7
44.240 27.04
40.170 24.56

9 41.4 40.0 160.0 582.9 1.529 3.5
43.580 26.32
44.520 26.88
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Tag der Herstellung: 14.02.2022
Tag der Prüfung: 13.04.2022
Prüfmaschine: 400 kN
Norm: DIN EN 196-1
Vorbereitung zur Prüfung: Wasserlagerung bis 23.3. & 21 Tage Normklima
Stützweite: 100 mm
Bemerkungen: Biegezugfestigkeit: 50N/s, Druckfestigkeit: 2400 N/s

Tabelle C.3.: Festigkeiten nach Wasserlagerung und 21 Tage Normklima

Proben-
bezeichnung

b
[mm]

d
[mm]

L
[mm]

Gewicht
[g]

Fmax
[kN]

Biegezug-
festigkeit
[N/mm²]

Druck-
festigkeit
[N/mm²]

1 41.9 40.0 160.1 567.7 2.918 6.5
64.000 38.22
65.280 38.98

2 41.8 39.9 160.2 566.0 2.807 6.3
65.300 39.19
64.640 38.79

3 41.8 39.9 160.0 569.9 3.020 6.8
65.020 38.99
64.170 38.48
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Tag der Herstellung: 14.02.2022
Tag der Prüfung: 27.04.2022
Prüfmaschine: 100 kN
Norm: DIN 18560-2
Vorbereitung zur Prüfung: Lagerung in Normklima bis Massenkonstanz
Stützweite: 280 mm
Bemerkungen: 43 N/s

Tabelle C.4.: Biegezugfestigkeiten nach Massenkonstanz

Proben-
bezeichnung

b
[mm]

d
[mm]

L
[mm]

Fmax
[kN]

Biegezug-
festigkeit
[N/mm²]

1 59.8 53.6 330 2.714 6.6
2 59.6 55.5 332 2.757 6.3
3 60.2 53.7 330 2.665 6.5
4 60.2 53.5 330 2.645 6.5
5 60.0 52.0 330 2.398 6.2
6 60.1 52.3 330 2.751 7.0
7 60.3 53.3 330 2.518 6.2

Tabelle C.5.: Gewichtsmessung bis zur Massenkonstanz

Proben-
bezeichnung

Gewicht
[g]
ohne Gips

Gewicht
[g]
mit Gips

Gewicht
[g]
Normklima

Gewicht
[g]
Normklima

Gewicht
[g]
Normklima

Gewicht
[g]
Normklima

Gewicht
[g]
Normklima

Gewicht
[g]
Normklima

Gewicht
[g]
Normklima
(ohne Gips)

10.03.2022 10.03.2022 14.03.2022 18.03.2022 25.03.2022 31.03.2022 01.04.2022 27.04.2022 29.04.2022
1 2287 2322.4 2298.5 2294.1 2288.7 2285.7 2285.5 2279
2 2346.5 2379.5 2362.2 2356.6 2351.3 2348.3 2348.1 2341.5
3 2293.1 2354.2 2331.2 2324.4 2319.2 2316.4 2316.1 2309.9
4 2271.2 2340.8 2313.3 2307 2301.7 2299.2 2298.9 2292.9
5 2214.6 2271.9 2249.4 2244.5 2239.6 2237.5 2237.1 2231.4
6 2243.3 2282.4 2262 2257 2252 2249.8 2249.6 2243.8
7 2272.1 2340.9 2320.3 2315.5 2310.5 2308.3 2307.9 2302.3 2239.8
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D. Versuche: Randbedingungen und Fotos

D.1. Dämmstoffversuche

Laststufen

In den folgenden Tabellen sind die aufgebrachten Lastschritte zur Bestimmung der lastabhängi-
gen Steifigkeit der verwendeten Dämmstoffe in Abhängigkeit ihrer Größe und Form aufgeführt.
Die in grün eingefärbten Zellen entsprechen den nach Norm DIN EN 12431:2013 geforderten
Laststufen. Die rot hinterlegten Zellen zeigen an, bei welchen Laststufen die Spannung maschi-
nell nicht eingestellt werden konnte.

Tabelle D.1.: Laststufen quadratischer Probekörper
Abmessung

[cm]
20 10 30

Fläche
[m²]

0.04 0.01 0.09

Spannungs-
stufen

Kraft
[kN]

Spannung
[kN/m²]

Kraft
[kN]

Spannung
[kN/m²]

Kraft
[kN]

Spannung
[kN/m²]

0.25 0.1 1.11111111
2 0.1 2.5 0.18 2
5 0.2 5 0.08 8 0.45 5
10 0.4 10 0.1 10 0.9 10
15 0.6 15 0.15 15 1.35 15
20 0.8 20 0.2 20 1.8 20
25 1 25 0.25 25 2.25 25
30 1.2 30 0.3 30 2.7 30
35 1.4 35 0.35 35 3.15 35
40 1.6 40 0.4 40 3.6 40
45 1.8 45 0.45 45 4.05 45
50 2 50 0.5 50 4.5 50
60 2.4 60 0.6 60 5.4 60
25 1 25 0.25 25 2.25 25
5 0.2 5 0.1 10 0.45 5
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Table D.1 continued from previous page
Abmessung

[cm]
20 10 30

2 0.1 2.5 0.08 8 0.18 2
0.1 1.11111111

Tabelle D.2.: Laststufen runder Probekörper
Abmessung

[cm]
10 30

Fläche
[m²]

0.007853982 0.070685835

Spannungs-
stufen

Kraft
[kN]

Spannung
[kN/m²]

Kraft
[kN]

Spannung
[kN/m²]

0.25 0.1 1.41471061
2 0.14 1.98059485
5 0.35 4.95148712
10 0.1 12.7323954 0.7 9.90297424
15 0.12 15.2788745 1.05 14.8544614
20 0.16 20.3718327 1.4 19.8059485
25 0.2 25.4647909 1.75 24.7574356
30 0.24 30.5577491 2.1 29.7089227
35 0.27 34.3774677 2.45 34.6604098
40 0.31 39.4704259 2.8 39.6118969
45 0.35 44.5633841 3.15 44.5633841
50 0.39 49.6563422 3.5 49.5148712
60 0.47 59.8422586 4.2 59.4178454
25 0.2 25.4647909 1.75 24.7574356
5 0.1 12.7323954 0.35 4.95148712
2 0.14 1.98059485

0.1 1.41471061
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D.2. Estrichversuche

D.2. Estrichversuche

D.2.1. Herstellung Probekörper

Hergestellte Zwei Platten in der Dicke 60mm (248 x 248mm Abmessung),
Prüflinge: sowie eine zusätzliche Platte (50 x 50mm) zur Entnahme

von Bestätigungsproben
13 Balken in den Dicken 20, 40, 60, 80 mm (L=70mm, b=150mm)
9 Prismen in der Dicke 40 mm (L=100mm, b=42mm)

Material: Estrich: SAKRET ZementFließEstrich ZFE fast
Dämmstoff: Knauf Insulation Trittschall-Dämmplatte TP-GP, dD = 20 mm

Knauf Insulation Trittschall-Dämmplatte TP, dD = 30 mm

Prüfziel: Bestätigungsprüfungen an Estrichen in Anlehnung an DIN 18560-2:2022
Prüfung der Druck- und Biegezugfestigkeit (DIN EN 196-1:2016, 2016)
Platten/Balken auf Dämmstoff: Ermittlung der Bruchlast unter
Einzellast, nach Möglichkeit inkl. Nachbruchbereich

Alle Proben wurden am 14.02.2022 in der Versuchshalle des Instituts für konstruktiven Inge-
nieurbau der BU Wuppertal unter Anleitung eines Mitarbeiters der Firma SAKRET hergestellt.
Die Platten wurden jeweils auf einer auf Sandbett gelagerten Dämmstoffschicht betoniert:

Platte S: Dämmstoffplatte TP-GP

Platte W: Dämmstoffplatte TP

Die Hallentemperatur zum Zeitpunkt der Betonage betrug 20.7 °C, bei 32.3 % rel. Luftfeuchte.
Das Ausbreitmaß wurde zu 41.2 cm, der Luftporengehalt zu 5% bestimmt.

Abbildung D.1.: Bestimmung Ausbreitmaß und LP-Gehalt

D.2.2. Messtechnik Platten und Balken

Direkt nach der Betonage wurden Wegaufnehmer auf den Platten angebracht, um das Schüs-
selverhalten infolge Hydratation bzw. Schwinden in den ersten drei Wochen zu erfassen. Eine
Übersicht über die Anordnung der Wegaufnehmer befindet sich in Kapitel 6.1.1. Dabei handelt
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es sich um induktive Wegaufnehmer mit Nennmessbereichen zwischen 10 und 50 mm, die auch
bei der anschließenden Plattenprüfung verwendet werden.

Nach drei Wochen wurden Dehnungsmessstreifen (DMS: Typ 1-LY41-20/120 der Firma HBM)
auf den Platten und Balken angebracht, um während der Prüfung die Dehnung an der Platten-
oberseite zu messen. Eine Übersicht über die Anordnung der Wegaufnehmer und DMS während
der Prüfung befindet sich ebenfalls in den jeweiligen Abschnitten 5.1.1 und 6.1.1.

Abbildung D.2.: Aufbau Balkenversuch (Probe 60-2)
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(a) Dämmstoff TP (b) Dämmstoff TP-GP

Abbildung D.3.: Schalung mit eingebauter Dämmung

Abbildung D.4.: Aufbau WA Platte S
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Abbildung D.5.: Aufbau WA Platte W

Abbildung D.6.: Risskrümmung Plattenkante
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E. Versuche: Weitere Messdaten

E.1. Balken

Nachfolgend sind die Aufnehmer WA1 bis WA4 der Balkenversuche abgebildet. Es ist vor allem
für WA1 und WA2, bei denen aufgrund der angestrebten, festen Lagerung wenig bis keine
Verformung gemessen werden sollte, erkennbar, dass die Lagerung nachgiebiger war.
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Abbildung E.1.: Ergebnisse der Balkenversuche: Kraft-Verformungs-Kurven WA1
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Abbildung E.2.: Ergebnisse der Balkenversuche: Kraft-Verformungs-Kurven WA2
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Abbildung E.3.: Ergebnisse der Balkenversuche: Kraft-Verformungs-Kurven WA3
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Abbildung E.4.: Ergebnisse der Balkenversuche: Kraft-Verformungs-Kurven WA4
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E.2. Platte

E.2.1. Versuchsablauf
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Abbildung E.5.: Ablauf der Plattenversuche: Reihenfolge der Prüfung

Tabelle E.1.: Abmessungen der Bruchkörper
für LF Ecke, vgl. Abb. 6.7
Lm Llu Lru Llo Lro d

S-EVR 280 340 370 315 330 60
S-EHR 205 282 283 250 245 61
S-EVL 213 303 313 280 283 63
S-EHL 265 360 360 330 335 63
W-EHR 362 435 425 410 400 65
W-EVR 305 330 385 315 360 62
W-EVL 360 440 405 425 385 65
W-EHL 310 380 360 360 340 56

Tabelle E.2.: Abmessungen der Bruchkörper
für LF Rand, vgl. Abb. 6.7

Lm Llu Lru Llo Lro d

S-RR 315 490 560 440 500 63
S-RH 265 430 300 393 274 63
S-RV 280 333 387 315 355 58
W-RL 785 68
W-RV 310 387 355 60

L
m

d

d

Abbildung E.6.: Form und Abmessung der Bruchkörper (links Eck-, rechts Randprüfung)
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E.2.2. Dehnungsverläufe

In Abbildung E.7 oben sind die Messwerte der linearen DMS für die beiden Eck-Lastfälle an
Platte S (a=b) dargestellt, wobei die Position der Rosette HR nicht 6, sondern 12 cm gegen-
über den linearen DMS versetzt ist (versehentlich falsche Markierung beim Anbringen). In der
gleichen Abbildung unten sind die Messwerte aus der DMS-Rosette bzw. die daraus von CAT-
MAN automatisch berechneten Hauptspannungen abgebildet. Daraus lässt sich ablesen, dass die
Ausrichtung der Rosetten sehr gut mit den Hauptspannungsrichtungen übereingestimmt hat. In
diesen Verläufen lässt sich außerdem eine mit den Kraft-Verformungs-Kurven vergleichbare Ver-
steifung erahnen.

Die in Abbildung E.8 dargestellten Kraft-Dehnungsverläufe unter Ecklast an Platte W sind
vergleichbar mit denen der Platte S Auch die Kraft-Dehnungsverläufe der beiden übrigen Ecken
der Platte S zeigen ähnliche Verläufe, allerdings mit etwas niedrigerer maximaler Dehnung im
Vergleich zu Abbildung E.7 (etwa 225 statt 250 µm/m). In Tabelle E.3 ist der Ort der Rissbildung
in Bezug auf die DMS aufgeführt.

Tabelle E.3.: Platte: Ort der Rissbildung (DMS)
Platte Lastfall Rissort in Bezug auf DMS
S EVR zw. DMS 2 und 3 (nahe 2)
S EHR DMS 1
S EVL DMS 1
S EHL DMS 2
W EVR zw. DMS 2 und 3 (nahe 3)
W EHR zw. DMS 3 und 6 (nahe 6)
W EVL zw. DMS 3 und 6 (nahe 6)
W EHL DMS 3
S RR keine DMS vorhanden
W RL weit jenseits von Rosette

Die in Abbildung E.9 dargestellten Kraft-Dehnungsverläufe bei Prüfung der weicheren Platte für
den Lastfall Randlast links (RL) zeigen einen deutlich anderen Verlauf als die bei Eckbelastung:
Etwa bis zum Erreichen der Hälfte der Maximalkraft steigt die Dehnung immer stärker an, bis
sie plötzlich deutlich abfällt und danach schwächer wieder ansteigt bis zum Bruch. Dieser Verlauf
ist auch in Abbildung E.10 zu erkennen. Die Dehnungs-Zeitverläufe wurden hier ergänzt um die
linearen DMS, die an der linken (RL) bzw. rechten (RR, zur Laststellung gegenüberliegenden)
Kante angeordnet waren, um den Rissfortschritt ausgehend von der Plattenunterseite zu erfassen.
In der unteren Darstellung sind nur noch die Dehnungsverläufe der drei DMS an den Kanten
dagestellt, allerdings nicht in µm/m, sondern %. Aus den Kurven kann die Ursache für das lokale
Maximum in den oberflächlichen DMS nicht eindeutig abgelesen werden. Es ist zu vermuten,
dass es zu diesem Dehnungs- bzw. Spannungsabfall infolge des Rissfortschritts an der Unterseite
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Abbildung E.7.: Dehnungsmessung bei Eckbelastung Platte S (steifer) – a=b (Anm.: Bei An-
zeichen für Risse wurde Druck auf Hydraulikzylinder einmal nachgelassen, um
Nachbruchbereich evtl zu erfassen; daher rührt Abfall in Verlauf kurz vor dem
Bruch)
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E. Versuche: Weitere Messdaten
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Abbildung E.8.: Dehnungsmessung bei Eckbelastung Platte W (weicher)
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Abbildung E.9.: Dehnungsmessung bei Randbelastung Platte W (weicher): Rand links

der Platte kommt, da das lokale Maximum in den linearen DMS (oben) zeitlich etwas versetzt
auftritt. In der unteren Graphik ist erkennbar, dass der untere DMS an Kante RL zuerst bricht,
gefolgt von einem plötzlichen Bruch des DMS an der gegenüberliegenden Kante, der bis dahin
eine Druckdehnung gemessen hat, wonach schließlich auch der DMS 7 kaputt geht. Kurz danach
zeigen auch die linearen DMS an der Oberseite den Bruch der Platte an.
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Abbildung E.10.: Dehnungsmessung über die Dicke bei Randbelastung Platte W (weicher): Be-
lastung Rand links
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F. Simulationen: Weitere Daten

F.1. Biegezugversuch
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Abbildung F.1.: Spannungen und plastische Dehnungen über den Querschnitt am Lastangriff-
punkt

In der Legende bezeichnet „el“ den letzten elastischen Schritt und „pl“ den ersten, darauf folgen-
den Schritt mit plastischen Dehnungen. In Abbildung F.1b sind diese jedoch nicht erkennbar, da
sie im Vergleich zu den plastischen Dehnungen am Ende der Berechnung (etwa bei Durchbiegung
u = 0.64 mm, vergleiche Abb. 3.13) zu klein sind.

In Abbildung F.1a verläuft die Spannung im Elastischen linear über den Querschnitt, wobei eine
leichte Störung an der Querschnittsoberseite infolge der knotenweise eingeprägten Verformung
erkennbar ist. Der Spannungsverlauf knickt im nächsten Schritt (Kurve „pl“) an der Quer-
schnittsunterseite ab, da hier das elastische Niveau erreicht ist. Der letzte Berechnungsschritt
zeigt, wie die Spannung ab einer bestimmten Rissöffnungsbreite bzw. ab einem bestimmten Ni-
veau der plastischen Dehnung exponentiell auf näherungsweise Null abfällt, wobei im Druckbe-
reich das Spannungsniveau deutlich höher ist und daher der Verlauf an der Querschnittsoberseite
steil ansteigt.
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F. Simulationen: Weitere Daten

F.2. Balken
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Abbildung F.2.: Dehnungs- und Verformungsverlauf der Balken mit d = 80, TP-GP (vertikale
Markierung oben: Stelle des Risses im Versuch)
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Abbildung F.3.: Dehnungs- und Verformungsverlauf der Balken mit d = 40, TP-GP (vertikale
Markierung oben: Stelle des Risses im Versuch)
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F.3. Platte

F.3. Platte

F.3.1. Eigenspannungen aus Schwinden
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Abbildung F.4.: Vergleich Dehnungsverlauf und Verformungsfigur: mit und ohne Eigenspannun-
gen aus Schwinden

Die in Abbildung F.5 dargestellten Hauptspannungen zeigen nach Abnahme der Folie einen
steilen Anstieg und danach eine deutliche Entspannung. Auch hier zeigt sich eine deutliche
Abweichung im Bereich nach Abnahme der Folie, vor allem bei den maximalen Hauptspannungen
I und II. Diese Kurven der horizontal wirkenden Hauptspannungen weichen außerdem unerwartet
mit fortschreitender Zeit leicht voneinander ab, während sie anfangs noch aufeinander liegen.
Eine inhaltliche Bewertung der Verläufe ist nicht sinnvoll, da es sich hierbei um maximale bzw.
minimale Werte des Spannungszustands der gesamten Platte handelt. Die Verläufe liefern so nur
eine pauschale Abschätzung des Vernetzungseinflusses und der maximal bzw. minimal während
des simulierten Schwindprozesses auftretenden Werte. Das Maximum wurde hier unabhängig
vom Ort in der Platte abgebildet. Abbildung F.5 zeigt den ungefähren Ort der maximalen
Spannung an der Oberkante der Platte, sowie die Verläufe der Hauptspannung σI über die
Plattendicke, welche repräsentativ für alle betrachteten Vernetzungen sind.
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F. Simulationen: Weitere Daten
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F.3. Platte

(a) Darstellung des Orts der maximalen Hauptspannung in der Viertelplatte, wobei die exakte Stelle in
diesem Bereich leicht variiert zum Zeitpunkt der maximal auftretenden Spannung nach Abb. F.5
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(b) Darstellung des Verlaufs der maximalen Hauptspannung über die Plattendicke für jeden Zeitschritt:
Die maximale Hauptspannung entsteht zum in Abb. F.5 angegebenen Zeitpunkt an der Plattenober-
kante. In Richtung der unteren Plattenhälfte wechselt die Spannung das Vorzeichen. Bei niedrigerem
Spannungsniveau verändert sich auch der Verlauf über den Querschnitt leicht, wobei ein typischer
Eigenspannungsverlauf erkennbar ist.

Abbildung F.6.: Darstellung des Orts in der Viertelplatte (croc) bzw. des Verlaufs der maximalen
Hauptspannung über die Plattendicke für jeden Zeitschritt
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F. Simulationen: Weitere Daten

F.3.2. Rissbilder

(Avg: 75%)
SNEG, (fraction = −1.0)
PE, Max. In−Plane Principal

+0.000e+00
+9.089e−05
+1.818e−04
+2.727e−04
+3.636e−04
+4.545e−04
+5.453e−04
+6.362e−04
+7.271e−04
+8.180e−04
+9.089e−04
+9.998e−04
+1.091e−03

Step: apply_load
Increment     55: Arc Length =   2.9029E−03
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte_tp50_pl_el_riks_SC8R_abf02_ft30_1reihe_C_KORR_nlg_last.odb    Abaqus/Standard 2020    Wed Dec 21 15:18:34 GMT+01:00 2022(a) 50

(Avg: 75%)
SNEG, (fraction = −1.0)
PE, Max. In−Plane Principal

+0.000e+00
+8.684e−05
+1.737e−04
+2.605e−04
+3.474e−04
+4.342e−04
+5.210e−04
+6.079e−04
+6.947e−04
+7.816e−04
+8.684e−04
+9.552e−04
+1.042e−03

Step: apply_load
Increment     57: Arc Length =   4.8222E−03
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte_tp35_pl_el_SC8R_abf02_ft30_2reihen_C_KORR_nlg_psi38_loadrichtig.odb    Abaqus/Standard 2020    Mon Feb 27 08:06:52 GMT+01:00 2023(b) 35

(Avg: 75%)
SNEG, (fraction = −1.0)
PE, Max. In−Plane Principal

+0.000e+00
+1.159e−04
+2.317e−04
+3.476e−04
+4.635e−04
+5.793e−04
+6.952e−04
+8.111e−04
+9.269e−04
+1.043e−03
+1.159e−03
+1.275e−03
+1.390e−03

Step: apply_load
Increment     18: Arc Length =   2.3505E−03
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte_tp25_pl_el_riks_SC8R_abf02_ft30_2reihen_C_KORR_nlg.odb    Abaqus/Standard 2020    Thu Dec 29 23:46:30 GMT+01:00 2022(c) 25

Abbildung F.7.: Entwicklung der plastischen Dehnungen bei erzwungen begrenzter RPZ für
Platte W im Vergleich zur in rot dargestellten Rissposition im Versuch (Breite
des dargestellten Plattenausschnitts 0.625 m)

(Avg: 75%)
SNEG, (fraction = −1.0)
PE, Max. In−Plane Principal

+0.000e+00
+8.148e−05
+1.630e−04
+2.444e−04
+3.259e−04
+4.074e−04
+4.889e−04
+5.704e−04
+6.518e−04
+7.333e−04
+8.148e−04
+8.963e−04
+9.778e−04

Step: apply_load
Increment     48: Arc Length =   1.7909E−03
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte_tpgp50_pl_el_riks_SC8R_abf02_ft30_1reihe_C_KORR_nlg_last.odb    Abaqus/Standard 2020    Wed Dec 21 18:09:23 GMT+01:00 2022(a) 50

(Avg: 75%)
SNEG, (fraction = −1.0)
PE, Max. In−Plane Principal

+0.000e+00
+7.309e−05
+1.462e−04
+2.193e−04
+2.924e−04
+3.655e−04
+4.385e−04
+5.116e−04
+5.847e−04
+6.578e−04
+7.309e−04
+8.040e−04
+8.771e−04

Step: apply_load
Increment     49: Arc Length =   2.7103E−03
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte_tpgp35_pl_el_SC8R_abf02_ft30_2reihen_C_KORR_nlg_psi38_2_loadrichtig.odb    Abaqus/Standard 2020    Tue Feb 28 22:45:22 GMT+01:00 2023(b) 35

(Avg: 75%)
SNEG, (fraction = −1.0)
PE, Max. In−Plane Principal

+0.000e+00
+1.184e−04
+2.368e−04
+3.551e−04
+4.735e−04
+5.919e−04
+7.103e−04
+8.286e−04
+9.470e−04
+1.065e−03
+1.184e−03
+1.302e−03
+1.421e−03

Step: apply_load
Increment     22: Arc Length =   8.2691E−03
Primary Var: PE, Max. In−Plane Principal

 N, mm, kg
ODB: platte_tpgp25_pl_el_riks_SC8R_abf02_ft30_2reihen_C_KORR_nlg2a.odb    Abaqus/Standard 2020    Wed Jan 11 22:56:12 GMT+01:00 2023(c) 25

Abbildung F.8.: Entwicklung der plastischen Dehnungen bei erzwungen begrenzter RPZ für
Platte S im Vergleich zur in rot dargestellten Rissposition im Versuch (Breite
des dargestellten Plattenausschnitts 0.625 m)
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F.3. Platte
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(a) Platte S (steifer gelagert)
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(b) Platte W (weicher gelagert)

Abbildung F.9.: Entwicklung der plastischen Dehnungen bei Randbelastung: Draufsicht Ober-
(links) und Unterseite (rechts), jeweils ausgewertet bei Erreichen der Bruchlast
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F. Simulationen: Weitere Daten

F.3.3. Parameterstudie: Rissbilder

(a) 20 (b) 60 (c) 80

Abbildung F.10.: Rissbilder der Parameterstudie – Variieren der Plattendicke (Ausschnitt eines
Sechzehntels der Platte, von oben steifer nach unten weicher Dämmstoff)

228



F.3. Platte

(a) 60-2 (b) 60-4 (c) 60-8

Abbildung F.11.: Rissbilder der Parameterstudie – Variieren der Vorverformung (Ausschnitt ei-
nes Sechzehntels der Platte, von oben steifer nach unten weicher Dämmstoff)
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F. Simulationen: Weitere Daten

F.3.4. Parameterstudie: Kraft-Verformungs-Linien
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Abbildung F.12.: Kraft-Verformungslinien im Rahmen der durchgeführten Parameterstudie
(leicht vergrößerte Darstellung)
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Hinweis: Der Lebenslauf ist aus Datenschutzgründen in der elektronischen Fassung nicht enthalten.
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