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Abstract

The Quotient Multi-Grid Reduction in Time (QMGRIT) algorithm is developed and applied in this dissertation,

showing its potential to solve intricate scientific and engineering problems like electric motor modelling. We

investigate the efficacy of the QMGRIT algorithm in solving periodic time-dependent partial differential equa-

tions (PDEs), with particular attention to the heat and wave equations, aiming to scope both kinds of PDEs: the

parabolic and hyperbolic PDEs. We validate the QMGRIT algorithm by constructing its mathematical foundations

and presenting empirical analysis, demonstrating its advancement in computational mathematics. Compared to

conventional multi-grid and parallel computing techniques, we assess QMGRIT’s computing capabilities and ef-

ficiency; e.g., on QMGRIT’s forerunner algorithm, MGRIT, we find a notable improvement with QMGRIT. This

thesis also presents a parallelization paradigm for computing performance improvement and time-energy-saving

in high-performance computing (HPC) environments: ghosted QMGRIT (gQMGRIT). To improve convergence

rates and resource allocation by a range of scenarios, we evaluate the gQMGRIT and show the effectiveness of

the paradigm for QMGRIT solutions. In general, the work seeks to benefit the scientific computing community

by offering insight into the design of an innovative combination of two: a parallel-in-time multi-grid algorithm

that supplies the ghosted approach of parallelization for the periodic problems; and the objective is to facilitate the

more effective treatment of challenging, time-periodic PDEs with impacts that go beyond academia and encom-

pass diverse scientific and engineering fields.
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Chapter 1

Introduction

‘Distances are not gauged, ellipses not measured, velocities not ascer-

tained, times not known. Nevertheless, the recurrence is sure. What the

mind suffered last week, or last year, it does not suffer now; but it will

suffer again next week or next year.’

— Alice Meynella

aAlice Christiana Gertrude Meynell (*22 September 1847 in Barnes, London, Eng-
land; †27 November 1922 in London, England) was an English poet, essayist, and suf-
fragist.

The fields of natural sciences, where the development of software, models, and algorithms is of utmost

importance, have recognized the significance of scientific computing and high-performance comput-

ing (HPC) as essential components [45, 92]. HPC facilitates significant insights into practical problems

and reduces the need for costly physical experiments — thus, scientific computing, particularly high-

performance numerical simulation, has become an indispensable supplement to both experimental

and theoretical approaches when dealing with challenges and riddles in the natural sciences [30, 33].

It is pivotal in this field to have simulations that are accurate, and efficient in terms of memory, time-

to-solution, and, when possible, energy consumption. Efforts should be made to optimize resource

utilization and minimize energy consumption while employing parallelization techniques. This is

particularly true when dealing with the complexities of time-dependent PDEs. We will examine the

development of iterative methods, which have been extremely helpful in overcoming the challenges

associated with scientific computing and HPC, as the complexity of these challenges is growing at an

increasing rate.

1
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1.1 Evolution of Iterative Methods in Computational Mathe-

matics

The journey of solving linear systems has seen significant evolution, starting from the foundational

contributions of C.F. Gauss1[52] andmoving through a series of substantial advancements [29, 74, 79].

This path marks a transition from early direct elimination techniques, effective for small-scale prob-

lems, to sophisticated iterative methods more suited for large, complex systems modelling, e.g. vibra-

tions or elasticity [16, 61, 71, 103]. The shift fromGauss’s direct methods to iterative strategies signifies

a pivotal transition in numerical methods, catering to the increasing complexity and scale of compu-

tational challenges — iterative methods have become prominent, particularly for their efficiency in

coping with large and sparse matrix systems, often resulting from discretizing PDEs across various

scientific and engineering applications. Iterative methods, including Gauss-Seidel2and SOR itera-

tions [61, 103], have shown immense practical value, excelling in managing large, sparse systems —

this capability is especially relevant in discretizing time-dependent PDEs, as commonly encountered

in dynamic simulations and complex geometrical computations. A comparative analysis reveals that

iterative methods offer significant computational benefits over direct methods like Gaussian elimina-

tion, predominantly evident in their adeptness at efficiently dealing with sparse matrices, a frequent

necessity in contemporary computational tasks. The advent of multi-gridmethodsmarks a notable ad-

vancement in iterative techniques [60, 101, 114], they are essential for accelerating the convergence of

solutions in large-scale linear systems, particularly those stemming from the discretization of PDEs in

computational applied mathematics and physics — multi-grid methods have demonstrated remark-

able versatility and efficiency in practical applications, such as solving flow equations over complex

geometries in fluid dynamics and efficiently solving Maxwell’s3 equations [75, 87, 96] in electromag-

netism. Integrating iterative methods into HPC, including the application of time-parallel time inte-

gration methods [30, 92], has been a significant leap forward as well, especially given the limitations

in processor clock speeds — this has made parallelization in the time direction an increasingly essen-
1Johann Carl Friedrich Gauss (*30 April 1777 in Braunschweig, Principality of Braunschweig-Wolfenbüttel; †23 February

1855 in Göttingen, Kingdom of Hanover) was a Germanmathematician and physicist. His contributions to the fields of number
theory, statistics, differential geometry, and astronomy laid foundational principles that have influenced many areas of mathe-
matics and science.

2Philipp Ludwig von Seidel (*24 October 1821 in Zweibrücken, Kingdom of Bavaria; †13 August 1896 in Munich, Kingdom
of Bavaria) was a German mathematician and physicist renowned for his work in optics, particularly in the calculation of lens
systems. He identified the Seidel aberrations, critical in optical design and theory.

3James Clerk Maxwell FRSE FRS (*13 June 1831 in Edinburgh, Scotland; †5 November 1879 in Cambridge, England) was
a Scottish physicist and mathematician. His formulation of the classical theory of electromagnetic radiation, bringing together
for the first time electricity, magnetism, and light as different manifestations of the same phenomenon, Maxwell’s equations,
demonstrated the unity of electromagnetism.
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tial aspect of solving time-dependent PDEs [45]. The iterative approach to solving linear systems has

continually been adapted and refined to meet the challenges of modern scientific computation. This

trajectory, from its origins to its integration with cutting-edge computing techniques like parallel-in-

time (PinT) algorithms [45, 83, 90], underlines the dynamic nature of the field and its critical role in

advancing computational mathematics, and related disciplines — building on the foundational work

of Gauss and others, we now turn our focus to modern iterative and multi-grid methods [61, 113],

which represent the culmination of this evolution.

1.2 The Evolution and Importance of Multi-grid Methods

Multi-gridmethods stand at the limelight of scientific computing and represent a sophisticated class of

iterative techniques essential for precipitate the convergence of solutions in large-scale linear systems

[60, 114]. These systems frequently arise from the discretization of PDEs — a standard practice in

computational applied mathematics and, e.g., physics, where continuous functions, models, variables,

and equations are transformed into their discrete counterparts [105]. The cornerstone of multi-grid

methods lies in their use of multiple discretization levels, or ‘grids’ [10]. This hierarchical approach

deal with various frequency components of error terms effectively during the solution process [7] — in

thismanner,multi-gridmethods efficiently reduce error by copingwith high-frequency components on

finer grids, while resolving low-frequency components on coarser grids through recursive coarse-grid

correction [62]. The mutual influence between smoothing and coarse-grid correction across multiple

grid levels allows multi-grid methods to effectively deal with errors at different scales, leading to fast

convergence [60] — this optimizes computational resources by possibly tackling each error level with

the most appropriate resolution. A key attribute of multi-grid methods is their exceptional computa-

tional efficiency, indispensable for managing complex systems in contemporary scientific calculations

[113]. This efficiency arises from their multilevel approach, and the algorithm’s inherent ability, in the

case of successful design, to maintain an optimal convergence rate independent of grid size [34]. The

broad applicability of multi-grid methods across various scientific and engineering disciplines show-

cases their versatility, as demonstrated by their instrumental role in treating problems of fluid dynamics

[112] and resolving Maxwell’s equations in electromagnetism [2, 3, 6]. In addition, integrating multi-

grid methods into HPC represents a significant advancement in computational mathematics again —

their capability in navigating complex, large-scale systems aligns with the demands of modern sci-
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entific research, making them integral in computational strategies and significantly contributing to

advanced research and academic pursuits in this dynamic field [34]. Notable examples of multi-grid

methods’ application in HPC include NVIDIA’s AmgX [91] and the HYPRE library [73], which im-

prove efficiency and scalability in challenging Finite Element Method (FEM) models, particularly in

computational fluid dynamics.

1.2.1 Parallel-in-TimeMethods

In applications with a small number of degrees of freedom (DOF), such as robotics, multi-body dy-

namics, or protein folding, the opportunity for parallel resolving within each time step is minimal;

effectively harnessing the capabilities of numerous processors becomes challenging, resulting in scal-

ability issues — so, these issues become particularly pronounced when the spatial domain is thor-

oughly resolved, and there is still access to vast parallel computing resources aimed at reducing the

time required to reach a solution. The necessity for real-time responses further amplifies the need for

parallel solving across time, despite potential reductions in parallel efficiency. However, the inher-

ently sequential nature of time-stepping processes makes distributing computations across the tempo-

ral dimension a significant technical obstacle [30, 45]. Time-parallel methods have evolved as signif-

icant advancements in computational mathematics, resolving stiff differential equations, large-scale

dynamical systems, and boundary value problems — the development of PinT methods dates back at

least 60 years [90], with the majority being multi-level and iterative. Examples include Parareal [83],

the parallel full approximation scheme in space and time (PFASST) [27], and Multi-grid Reduction in

Time (MGRIT) [30]. Parareal, probably the most studied PinT method — it can be interpreted as a

multiple-shooting method or a multi-grid method in time. PFASST is based on spectral deferred cor-

rection (SDC) [26] and allows space-time parallelization using SDC on a space-time hierarchy. MGRIT

applies the principles of multi-grid reduction in the time domain. Other PinT methods include wave-

form relaxation [119], space-time multi-grid [50], and revisionist integral deferred correction [14]. For

a comprehensive overview, refer to [45, 92]. MGRIT, the method we focus on in this thesis, has been

theoretically studied [19, 34, 44, 69] and successfully applied to various problems, including linear and

nonlinear parabolic problems [30, 34], compressible fluid dynamics [32], power systems [81, 115, 116],

linear advection [19, 70], and machine learning [58, 89, 108]. Spatial coarsening in MGRIT was in-
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vestigated for the p-Laplacian4 [34] and the Burgers5 equation [70]. Motivated by the limitations of

the temporal grid hierarchy in two-grid Parareal when applied to, e.g., the induction machine model,

or processor-local multi-grid hierarchies in geometric and algebraic multi-grid for elliptic or parabolic

problems [30, 119], the structure of the multi-level hierarchy within MGRIT is both critical and chal-

lenging. The typical choice of the coarse grid in the two-level setting is based on the number of pro-

cesses [83], but for a large number of processes, the serial work on the coarsest level may dominate

the runtime. Using more than two grid levels can reduce the serial work, but the resulting large time

steps can be ineffective or infeasible for some applications [112] and may affect the convergence [18].

In [65], a new way to define the coarsest level in MGRIT was introduced (AT-MGRIT), with emphasis

on reducing the serial work while avoiding large time steps. In general, domain decomposition tech-

niques excel in multi-dimensional problems like fluid dynamics or structural analysis, breaking the

problem space into smaller sections for simultaneous solving, and improving efficiency in large-scale,

complex tasks [15]. Waveform relaxation, commonly used in circuit simulation, iteratively solves these

sub-problems, improving overall solution accuracy [40, 72]. Direct time parallel methods utilize HPC

to distribute computational tasks across multiple processors, optimizing resource use and ensuring

scalability [44]. These all aspects are particularly essential in high-resolution modelling or real-time

data analysis. In conclusion, time-parallel methods represent a significant stride in computational

mathematics, illustrating the critical relationship between theory and practical application — their

evolution mirrors technological advancements and indicates future possibilities in HPC.

1.3 Research Gap and Objectives

This research introduces the novel Quotient Multi-grid Reduction in Time (QMGRIT) algorithm, an

advancement in the field of PinT multi-grid methods — this algorithm extends the capabilities of ex-

isting two-grid approaches, offering a generalized framework for resolving periodic problems in HPC.

The primary four objectives of this dissertation are the following.

1. To present the development and theoretical foundation of the QMGRIT algorithm, including a

4Pierre-Simon Laplace (*23 March 1749 in Beaumont-en-Auge, France; †5 March 1827 in Paris, France) was a French math-
ematician and astronomer notable for his developments in celestial mechanics, statistics, and the formulation of Laplace’s equa-
tion. His work laid key foundations in mathematical physics and statistics.

5Johannes Martinus Burgers (*13 January 1895 in Arnhem, Netherlands; †7 June 1981 in Maryland, USA) was a Dutch
physicist andmathematician known for his foundational work in fluid dynamics. Burgers contributed significantly to the theory
of turbulence and the development of what is now known as the Burgers equation, a fundamental nonlinear partial differential
equation used in various areas of applied mathematics and physics.
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detailed exposition of its generalization capabilities over traditional two-grid methods, empha-

sizing its application in parallel computing (assessed in 3.2).

2. To apply the QMGRIT algorithm to a variety of periodic problems, demonstrating its broad ap-

plicability and effectiveness through specific case studies showcasing the algorithm’s practical

utility in solving complex periodic problems in computational science (emphasized in 4).

3. To analyze the computational efficiency and accuracy of the QMGRIT method, comparing its

performance against existing methods in terms of computation time and accuracy, particularly

in parallel computing environments (illustrated in 4.2).

4. To explore strategies for integrating QMGRIT with contemporary HPC frameworks, proposing

and evaluating techniques to improve the algorithm’s scalability and performance in various dis-

tributed computing environments (investigated in 3.2.3 and in 4.5).

1.3.1 Quotient Multi-grid Reduction in Time

The importance, significance, and relevance to evolve the parallel iterative multi-grid approaches align

with how the QMGRIT algorithm represents amodern keymethodologies that confront the challenges

when solving time-periodic problems — QMGRIT is a notable development beyondMGRIT because it

can better deal with and solve time-periodic problems. It is crucial to knowwhy and how it differs from

and improves upon the standard MGRIT to advance computational toolsets. Within the field of com-

putational mathematics, specifically concerning solving time-periodic problems, it is commonplace

that, to start the steady-state solution process from an initial value and proceed with the simulation till

the steady-state appearance. So, the existing methodologies may require extensive work, i.e., compu-

tationally extensive. While traditional two-grid methods are effective in many ways, they can become

limited in terms of scalability, particularly parallel scalability, making it hard to continue to use the

approaches with more and more processors, which is stagnating and restrictive. Specifically, QMGRIT

works to solve these challenges in parallel environments and utilizes amulti-level approach, improving

parallel scalability and total efficiency in logical matters of these types of computations — QMGRIT

makes the computation for time-periodic problemsmuch simpler by focusing on the period and intrin-

sically pushes past what the traditional two-grid did with parallel stagnation, which results in using a

potentially much more powerful and effective array of computational resources. QMGRIT advances

previous multi-grid methodologies in navigating the challenges of introducing periodicity specifically
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in the temporal domain, and by taking advantage of the natural structure within time-periodic prob-

lems, QMGRIT is aiming to improve convergence and parallel efficiency over the standard MGRIT —

this is done through a periodic multi-level procedure that allows information to be seamlessly passed

between different domains across periodic boundaries, eventually converging to the desired solution

—, allowing for a more scalable, and robust solution methodology.

1.4 Practical Relevance of the Research

The QMGRIT algorithm is a further development concerning the theoretical and practical sides of

numerical solutions to periodic time-dependent PDEs. The application area covers broad scientific

disciplines, such as physics, engineering and environmental science, where efficient and accurate sim-

ulation of periodic problems is essential. QMGRIT has the potential to deal with challenging time-

dependent simulations efficiently, andmay lead to improvements in computer algorithmswithin these

fields — this research represents an improvement of computational methodologies leading to more

efficient computational techniques, and can therefore be seen as a contribution towards scientificmod-

elling and problem solving across different contexts.

1.5 Structure of the Thesis

This dissertation is devoted to a thorough examination of QMGRIT algorithm, which is constructed in

a systematic manner to disentangle all the chapters of the subject comprehensively.

The thesis initiates with a Chapter 1 in the form of an introduction — the focus and background of

QMGRIT is established in this chapter, which includes the historical development of iterative methods

and the importance of multi-grid methods while concentrating particularly on the development and

application of QMGRIT.

A detailed literature review follows in Chapter 2, examining the historical evolution of multi-grid

methods and the progression toMGRIT and QMGRIT — this chapter also focuses on the analysis and

the limitations of the existing results, especially when considering the challenging problems, especially

when appreciating the tasks we aim for in this development.

The succeeding chapter cover the theoretical structure for a thorough understanding of QMGRIT,

addressed in Chapter 3, discussing time-dependent PDEs and numerical schemes for their solution

— including a prolonged discussion on the theoretical foundation of QMGRIT and the mathematical
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foundation of the algorithm’s construction, and the analytical technique behind the design of QMGRIT,

which includes the algorithm, methodologies such as gQMGRIT, and other analytical basis for the

algorithm’s construction. Several applications of QMGRIT for periodic problems — especially, heat

equation — include a complete formulation, summary, and example descriptions, examining the issue

of computational efficiency and accuracy.

An extensive context of numerical experiments and results is the significant tribute of this disserta-

tion, presented in Chapter 4, and provides an application of QMGRIT on various problems on the top

of the heat equation, including coaxial cable problem, electrical machine, and wave equation. The per-

formance analysis includes an additional portion, which provides a focus on the experimental setups

— a discussion of scalability analysis, and a fair amount of discussion of the performance analysis

applied as compared to the literature and findings in the field.

The thesis concludes with Chapter 5, which summarizes the observation and assertion of what we

have discovered and the theoretical implications or practical implications, general analysis, identifi-

cations of the challenges, and the limitations. Further, we posit areas for future development in this

context for more efficient and extended applicability of the algorithm to amuch broader problem class.

8



Chapter 2

Literature Review

The literature review aims to contextualize the significance of multi-grid methods in computational

mathematics, specifically focusing on MGRIT and the emerging QMGRIT.

2.1 Historical Development of Multi-grid Methods

Extending the historical trajectory of multi-grid methods in computational mathematics, we witness

a story of significant theoretical advancement and remarkable innovation. These methods were a

paradigm shift, first developed to overcome the shortcomings of classical iterative techniques for large-

scale linear systems — they revolutionized computational efficiency by introducing a multi-level

framework capable of controlling and eliminating errors at different scales. A. Brandt’s1 [10] ground-

breaking contributions, who cleverly proposed operating acrossmultiple grid resolutions for non-linear

problems to speedup convergence, marked the beginning of modern multi-grid methods. The founda-

tional ideas of multi-grid methods can be traced back to the pioneering works of R.P. Fedorenko2 [37]

and N.S. Bakhvalov3 [1] in the 1960s. Fedorenko introduced the concept of using a hierarchy of grids

to accelerate the convergence of iterative methods for solving elliptic PDEs, while Bakhvalov further
1Achiezer Brandt (*1938 in Givat Brenner, today in Israel) is an Israeli mathematician and computer scientist. He revolu-

tionized computational mathematics with the introduction of the multi-grid method, significantly improving the efficiency of
solving large-scale differential equations. His interdisciplinary approach has also impacted numerical linear algebra and opti-
mization problems.

2Rafail Petrovich Fedorenko (*1929 in Saratov, Soviet Union; †2011 in Moscow, Russia) was a Soviet mathematician and
economist known for his pioneering work in the development of the multi-grid method. His research laid the groundwork for
numerical solutions to PDEs, particularly in improving computational efficiency..

3Nikolai Sergeevich Bakhvalov (*29 May 1934 in Moscow, Soviet Union; †29 August 2005 in Moscow, Russia) was a Soviet
mathematician distinguished for his pioneering work in numerical methods in computational physics. His seminal contribu-
tions extend to the theory of optimization and the rigorous analysis of algorithmic complexity, making critical advancements in
the efficiency of numerical integration techniques.
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developed these ideas and provided a rigorous mathematical foundation for the convergence of multi-

grid methods. Building upon these early contributions, Brandt’s work in the 1970s [10] significantly

advanced the field by introducing the key concepts of error smoothing and recursive application over

multiple grid levels, demonstrating the asymptotic optimality of multi-grid methods and their ability

to solve elliptic PDEs with a computational complexity proportional to the number of unknowns. A

further notable step in the adaptation of multi-grid methods to broader contexts was the development

of Algebraic Multi-Grid (AMG) methods. Pioneered in [101], AMG methods offered a revolutionary

approach to dealing with large-scale linear algebraic systems that arise from the discretization of par-

tial differential equations — unlike traditional multi-grid techniques, AMG methods do not rely on

geometric information but on the algebraic properties of the matrix itself, enabling effective applica-

tion to problems lacking a clear geometric interpretation. This innovation has significantly expanded

the applicability of multi-gridmethods, making them a versatile tool for a wide range of computational

challenges [35, 101, 113]. In the following decades, W. Hackbusch4 [60, 62, 61] and others made sig-

nificant contributions to the theoretical comprehending and practical implementation of multi-grid

methods, building the understanding of all essential elements like smoothing and coarse-grid correc-

tion together, which improved the robustness and efficiency of the multi-grid framework. One notable

development in the evolution of multi-grid methods was the introduction of the Multi-grid Reduc-

tion (MGR) approach by Ries5 et al. [98], extending the multi-grid concepts to more general classes

of problems beyond elliptic PDEs. It introduced intermediate grids and specialized transfer operators

to effectively deal with anisotropic and non-symmetric problems. The MGR ideas laid the founda-

tion for the development of the Multi-grid Reduction in Time (MGRIT) method by Falgout6 et al. [30],

which creatively adapted the MGR principles to the time domain, enabling the efficient PinT solution

of time-dependent problems by introducing a hierarchy of time grids and a parallel coarse-grid correc-

tion scheme. Concurrently, theoretical and analytical advancements such as Local Fourier7Analysis

4Wolfgang Hackbusch (*October 24, 1948 in Westerstede, Lower Saxony, Germany) is a German mathematician acclaimed
for his pioneering research in numerical linear algebra and scientific computing, particularly the development of the multi-grid
method and hierarchical matrices. His distinguished work has been recognized by the prestigious Leibniz Prize, among other
honours, highlighting his influential role in the field.

5Manfred Ries (*10 July 1954 in Koblenz, Germany) is a Germanmathematician renowned for his significant contributions to
the development of scalable linear and nonlinear solvers for HPC. His work, particularly in the design and analysis of multi-grid
algorithms, plays a pivotal role in advancing computational efficiency and solving large-scale scientific problems.

6Robert D. Falgout is an American mathematician and computer scientist, best known for his work in the development of
multi-grid methods and their application to large-scale parallel computing. As a key figure in scientific computing, his contribu-
tions include the co-creation of the HYPRE library, a highly regarded toolkit for solving large, sparse linear systems of equations
on massively parallel computers.

7Jean-Baptiste Joseph Fourier (*21 March 1768 in Auxerre, Kingdom of France; †16 May 1830 in Paris, Kingdom of France)
was a French mathematician and physicist best known for initiating the investigation of Fourier series and their applications
to problems of heat transfer and vibrations. The ”Fourier transform” and ”Fourier’s law of heat conduction” are named in his
honour, profoundly influencing many branches of mathematics, physics, and engineering.
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(LFA) [7, 51, 77, 99] and Semi-Algebraic Mode Analysis (SAMA) [42] provided deeper insights into the

convergence behaviour and optimal design of multi-grid methods, instrumental in understanding the

performance characteristics of multi-grid algorithms and guiding their further development. Recent

research has focused on extending multi-grid methods to a wider range of applications beyond their

original scope, successfully applying them to solve challenging multi-physics problems, to optimize

PDE-constrained systems, and to navigate challenges in scientific computing and engineering simu-

lations [31, 80, 92]. The development of multi-grid techniques, from the early works of Fedorenko to

the latest advancements in PinT methods like MGRIT, showcases the power of combining theoretical

insights with practical application, pointing out the importance of multi-grid methods as an essential

tool for efficient and scalable solutions to challenging computational problems.

2.2 Review of Applications and Case Studies

The effectiveness of PinT methods, including MGRIT and its variants, has been demonstrated across

a wide range of applications and case studies — these methods have been successfully applied to

solve challenging problems in various domains, such as fluid dynamics, structural analysis, and elec-

tromagnetic simulations. In the field of fluid dynamics, PinT methods have been used to approach the

acceleration of the simulation of unsteady flows [112, 118]. These studies have shown a speedup and

improved scalability compared to traditional time-stepping approaches — the ability to parallelize in

time has proven particularly beneficial for long-time integration of challenging problems, where the

sequential nature of time-stepping can be a bottleneck. Structural mechanics is another area where

PinT methods have found success. The simulation of dynamic behaviour of structures, such as vibra-

tion analysis and transient response, often involves time-dependent PDEs. MGRIT and its variants

have been applied to efficiently solve these problems, enabling faster and more accurate predictions

of structural performance [6, 15]. Electromagnetic simulations, particularly those involving eddy cur-

rents and time-varying fields, also have benefited from PinT approaches. Studies have demonstrated

the effectiveness of MGRIT in reducing the computational time and memory requirements for these

simulations [47, 76, 107]. The ability to parallelize in time has opened up new possibilities for the ef-

ficient modelling and design of electromagnetic devices. In addition to these specific domains, PinT

methods have been applied to a broader range of problems, including optimization [92], uncertainty

quantification [125] andmulti-scale simulations. These studies have consistently demonstrated the po-
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tential of PinT approaches to accelerate computations and enable the solution of previously intractable

problems. As the field of PinT methods continues to evolve, it is expected that new applications and

case studies will arise, further showcasing the versatility and effectiveness of these techniques — the

ongoing development of specialized algorithms, such as QMGRIT for time-periodic problems, will

likely expand the range of problems that can benefit from PinT approaches.

2.3 Emergence of QMGRIT

Building upon the accomplishments of the MGRIT algorithm, the QMGRIT algorithm provide a new

approach for solving time-periodic problems. Although QMGRIT is a new method, it was inspired

by PinT methods like the Parareal [83] and its extensions to time-periodic problems [46, 76] and ex-

tends its scope to a multi-grid framework. QMGRIT also extends the MGRIT method by introducing

a quotient space formulation, which glues the endpoints of the time interval, in order to deal with the

time-periodicity by using the inherent structure of time-periodic problems. The intent of QMGRIT

is to achieve faster convergence and better parallel performance than the standard MGRIT, by refor-

mulating the problem of time-periodicity in a quotient space, where impositions of the periodicity

condition are immanent [78, 119, 120, 121]. Reformulating the problem in the quotient space allows

the usage of multiple coarser temporal grids and permits the propagation of information across peri-

odic boundaries efficiently. The QMGRIT algorithm utilizes a multi-level approach, similar toMGRIT,

with specialized prolongation and restriction operators that honour the periodic structure. QMGRIT

is at an early stage of its development, but due inheriting fromMGRIT, it promises to be able to solve a

broad range of fields, such as fluid dynamics [112], electromagnetism [76], and structural mechanics

[36]. The potential benefits of QMGRIT include accelerated convergence rates, reduced computational

cost, and improved scalability on parallel architectures. As QMGRIT continues to evolve, it is impor-

tant to deepen the theoretical analysis and numerical experiments to understand its performance and

robustness across a broader range of different problem classes — in this dissertation, compared with

the existing PinTmethods and traditional time-stepping techniques, there are results to suggest advan-

tages and limitations. QMGRIT represents a new and engaging direction for PinTmethods, primarily8

for time-periodic problems. By combining the successful aspects of MGRIT and working with a deep

history of multi-grid methods, QMGRIT stands to make a significant contribution to efficiently and

8Straightforwardly, not all the functions u with u(·, t1) = u(·, t2) for some points t1, t2 in time are time-periodic — still,
we may use efficient time-periodic algorithms on the interval [t1, t2].
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scalable solving time-periodic PDEs. 

2.4 Critical Analysis of Current Literature

Notwithstanding the advancements in PinT methods documented in the literature, certain obstacles

persist that necessitate additional research. Scalability and efficiency on massively parallel architec-

tures are among the largest challenges — aswe increase the number of processors, load balancing and

communication overhead may have an impact on the speedup that performance will see. Particularly,

the study [44] presents a performance model for a multi-grid-in-time solver, which helps in deciding

the optimal amount of parallelism to devote to space versus time — themodel selects the best parallel

configuration in most test cases, bringing to the forefront the importance of balancing communication

and computation to achieve optimal performance. In order to deal with this obstacle, there are several

solutions can be considered: adaptive load balancing methods, where we can optimize the commu-

nications patterns, asynchronous communication techniques, the use of hierarchical parallelization,

etc.

The robustness and stability of PinTmethods across a broad range of problems also need attention.

While PinT methods can be successful on a case-by-case basis, the performance can vary based on the

underlying physics, discretization schemes of the problem, and the parameters of the problem. A better

understanding of the convergence and numerical properties of PinTmethods will be essential to using

these methods successfully and efficiently [50, 123], e.g., [123] demonstrated that the convergence of

MGRIT for advection-diffusion equations with uncertain coefficients can be significantly improved by

using the 2nd-order Lobatto IIIC (LIIIC-2) method as the coarse propagator instead of the backward

Euler9 (BE) method — they observed that the LIIIC-2 method resulted in approximately 50% reduc-

tion in the number of iterations required for convergence. Thus, developing adaptive algorithms that

can automatically adjust their parameters based on the problem characteristics could improve robust-

ness — additionally, incorporating problem-specific knowledge into the coarse-grid operators might

enhance stability for challenging problem classes.

The community faces both unique opportunities and challenges in integrating PinT methods with

advanced computational techniques such as adaptive mesh refinement, multi-scale modeling, and un-

9Leonhard Euler (*15 April 1707 in Basel, Switzerland; †18 September 1783 in Saint Petersburg, Russian Empire) was a Swiss
mathematician and physicist, one of the most prolific mathematicians in history. His work in mathematics and physics is vast,
covering areas such as infinitesimal calculus, graph theory, and introducingmuch of themodernmathematical terminology and
notation.
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certainty quantification. This integration could yield efficient and powerful solution strategies for com-

plex multi-physics problems. Notably, [125] developed a MGRIT algorithm tailored for unsteady frac-

tional Laplacian problems, introducing a generalized two-level convergence theory that expands the

applicability of the MGRIT method — their numerical experiments validated the theoretical pre-

dictions regarding the algorithm’s robustness and scalability —, the study also identified promising

future research directions, includingmultilevel convergence analysis and extensions to time-fractional

problems and adaptive time-stepping scenarios. Thus, creating unified frameworks that seamlessly in-

tegrate PinT methods with these advanced techniques may lead to more effective solution strategies,

potentially involving adaptive algorithms that dynamically allocate resources based on specific prob-

lem requirements.

In addition to these considerations, there are specific developments required to enable the applica-

tion of, and accelerate the adoption of PinTmethods in practice. Notably, the development of software

frameworks and libraries that encapsulate and enable the application of PinT methods in practice is

necessary for the community to move forward. Progress has been made in this area with, e.g., the

introduction of XBraid [124] and PyMGRIT [63]; yet, further development is needed to create more

complete and flexible tools that can be used with simulation codes in practice — it may be noted, e.g.,

that while PyMGRIT provides a Python implementation of MGRIT, integrating it with large-scale sim-

ulation codes written in other languages can be challenging due to language barriers and performance

considerations. Developing more versatile software frameworks with robust APIs and language bind-

ings could facilitate easier integration with existing codes. Additionally, creating user-friendly inter-

faces and comprehensive documentation could help broaden the adoption of PinT methods in various

scientific and engineering disciplines.

Moreover, the theoretical foundations of PinT methods, particularly in the context of non-linear

and coupled problems, also need to be refined. A careful mathematical investigation of the proper-

ties of convergence, stability, and error propagation of PinT methods will continue to be necessary to

understand the conditions that make them optimal and the theory of correctly deploying these meth-

ods, e.g., [31] studied the application of MGRIT to linear parabolic problems. They compared MGRIT

with other multi-grid methods such as space-time multi-grid and waveform relaxation multi-grid with

cyclic reduction — their results showed that MGRIT can provide significant speedup compared to

sequential time stepping when sufficient parallel resources are available, though it may require more

processors than other methods to achieve optimal performance. Thus, performing thorough mathe-
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matical analysis of the convergence, stability, and error propagation properties of PinT methods for

non-linear problems and/or coupled problems has the potential to guide the developments of more

robust algorithms — this may involve the extension of existing linear techniques to the non-linear

setting or the invention of new theoretical frameworks. Further research is needed to understand how

MGRIT and other PinTmethods perform for non-linear problems, and how their convergence behavior

might be affected by problem-specific parameters.

The gap existing between established methods such as the periodic versions of Parareal [46] and

MGRIT [30] is evident, especially when dealingwith periodic problems efficiently — periodic Parareal

can be effective for time-periodic problems, but is lacking in the scalability of multi-level methods,

while MGRIT, though powerful, may not manage periodic boundary condition as effectively. This

research aims to bridge this gap by introducing the QMGRIT algorithm, which extends the capabilities

of existing two-grid approaches to deal with periodic problems in HPC more efficiently.

Resolving the shortcomings of PinT methods, in this light, is a requisite for progress in the field of

PinTmethods. For PinTmethods to be useful in scientific computation and application in the engineer-

ing sciences, navigating and advancing PinT methods beyond the issues that are known is necessary.

2.5 Summary Overview and Research Initiation

The current literature overview provides a historical account of multi-grid methods from their origins

to the development of PinT techniques exemplified by MGRIT and QMGRIT. In addition, the current

review accentuates successful applications of these techniques across several domains, demonstrating

how and why these methods can be used to speedup simulations and solve difficult time-dependent

problems. The review of the literature also identified a number of areas where more work or research

needs to be done — these include but are not limited to the scalability and efficiency of PinT across

massively parallel architectures, robustness and stability for different problem classes, combining with

other advanced computational techniques, making these techniques usable offline dynamically so that

experts in different domain areas can easily use them, establishing a theoretical foundation for these

new techniques and algorithms, etc. Building upon this literature review, the research presented in

this manuscript will strive to deal with some of these open research areas and add to the advancement

of PinT methods, principally QMGRIT, for time-periodic problems. The following chapters will de-

velop the theory, implementation, and numerical experiments for QMGRIT, showing its potential for
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efficient and scalable PinT solvers for challenging time-periodic PDEs.

Inspired by the historical progression of multi-grid techniques and themost recent advancements in

PinT techniques, this research will guide the way aiming to push the limits of computation in scientific

computing and engineering simulations. The idea is to offer neophytes and experts in the area a new

tool and algorithm that will allow them to more easily navigate the rapidly changing and growing

complexity of problems, particularly the periodic problems, in the real-world — and be more of a

driver in cutting edge research in many different application areas.

2.5.1 Details of MGRIT

Introduced in 2014, the non-invasive O(N) solver, MGRIT, is one of the well known PinT integra-

tion methods [6, 20, 22, 30, 43, 69, 92, 111]. The MGRIT algorithm, inspired by the Parareal algo-

rithm, adopts an algebraic multi-grid approach for temporal multi-grid computations. It uses a hier-

archy of time grids and a parallel, iterative coarse-grid correction scheme based on multi-grid reduc-

tion principles [98]. Within the algebraic framework, discretization points are categorized as either

F -Points (fine) or C-Points (coarse), with corresponding smoothing processes termed F -relaxation

and C-relaxation, respectively. So the relaxation relies on two relaxation schemes and their combi-

nations. F -relaxation focuses on updating the solution at all F -Points by propagating it from aC-Point

to the subsequent F -Points until the next C-Point is reached. This process can be carried out in par-

allel for each interval of F -Points, involving (m − 1) sequential applications of the time integrator,

wherem denotes the coarsening factor. Conversely, C-relaxation updates the solution at all C-Points

by propagating it from the preceding F -Point to a C-Point, with all C-Point intervals being able to be

updated in parallel. The standard approach in theMGRIT algorithm is to employ the FCF -relaxation,

which consists of an F -relaxation, followed by a C-relaxation, and then another F -relaxation. Other

combinations of these relaxations are also feasible. Time-dependent initial value problems are com-

monly treated using time-stepping, MGRIT or other similar PinT approaches. Given an initial value

u(t1) = u1 and a coefficient matrix O in the linear case, when solving an ODE’s initial value problem

u′(t) = Ou(t) + g(t), (2.1)

u(t1) = u1, (2.2)
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using time-stepping, where bi incorporates the modified ODE’s right-hand side, we write

u1 = b1 ∧ ∀i ≥ 2 : ui = Φui−1 + bi ∈ RNx+1, (2.3)

which is equivalent to a linear system of equations,

Au ≡



I

−Φ I
. . . . . .

−Φ I


·



u1

u2

...

uNt+1


=



b1

b2
...

bNt+1


≡ b ∈ R(Nx+1)(Nt+1), (2.4)

where Φ ∈ R(Nx+1)×(Nx+1) is a constant10 square matrix representing an integrator application or a

so-called time-stepping function, where Nx + 1 and Nt + 1 denote number of spatial and temporal

DOF, respectively. The procedure of categorizing the discretization points as either F -Points or C-

Points effectively reorganizes the system matrix of a generic linear equation Au = b into block-form

A

uf

uc

 =

bf

bc

, where

A =

Aff Afc

Acf Acc

 ∈ R(Nx+1)(Nt+1)×(Nx+1)(Nt+1). (2.5)

Defining the (m− 1)× (m− 1) block matrix Am, we write

Am =



I

−Φ I
. . . . . .

−Φ I


, Aff =



Am

Am

. . .

Am


. (2.6)

10For simplicity, we assumeΦ(t) to be constant, a purely analytical convenience. However, our framework can be generalized
to scenarios where Φ(t) varies over time (see 3.4). While Fast Fourier Transformation techniques are effective for periodic
problems with constant Φ, our research allows for parallelization even when Φ(t) is not constant, ensuring applicability to a
wide range of real-world scenarios.
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The block matrices Afc and Acf are defined as follows

Afc =



−Φ

0

...

0

. . .

−Φ

0

...

0



, (2.7)

and

Acf =



0 . . . 0 −Φ

0 . . . 0 −Φ
. . .

0 . . . 0 −Φ


. (2.8)

Here, Afc and Acf are composed of (m− 1)× 1 and 1× (m− 1) sub-block matrices, respectively. In

addition, Acc = Ic. It follows

A =

 If 0

AcfA
−1
ff Ic


Aff 0

0 Acc −AcfA
−1
ff Afc


If A−1

ff Afc

0 Ic

 (2.9)

and

A−1 =

If −A−1
ff Afc

0 Ic


A−1

ff 0

0
(
Aiv

∆

)−1


 If 0

−AcfA
−1
ff Ic

 , (2.10)
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with

Aiv
∆ := Acc −AcfA

−1
ff Afc =



I

−Φm I
. . . . . .

−Φm I


, (2.11)

whereas Aiv
∆ is the Schur11 complement of matrix A. The method draws its inspiration from the goal

of mimicking a direct solver approach, utilizing a Schur complement factorization technique — this

technique involves eliminating all F -Points initially, resolving the Schur complement system at the

C-Points, and subsequently determining the F -Point values based on these coarse resolutions12. We

define the restriction operator for the MGRIT algorithm13

RI :=

(
0 Ic

)
∈ R(Nx+1)(Nt/m+1)×(Nx+1)(Nt+1), (2.12)

and the ‘ideal’ prolongation operator

P :=

−A−1
ff Afc

Ic

 =



Φ

...

Φm−1

. . .

Φ

...

Φm−1

Ic



∈ R(Nx+1)(Nt+1)×(Nx+1)(Nt/m+1). (2.13)

Then, the iteration operator of the two-gridMGRITwith an anF -relaxation followed byCF -relaxation

11Issai Schur (*10 January 1875 in Mogilev, Russian Empire (now in Belarus); †10 January 1941 in Tel Aviv, Mandatory Pales-
tine) was a German mathematician, known for his work in the theory of algebraic equations, group theory, and for the develop-
ment of Schur decomposition and Schur complements in linear algebra.

12In the context of this technique, the term ‘ideal’ is used to describe the restriction and prolongation operators.
13As the ‘ideal’ restriction operator, one would haveR :=

(
−AcfA

−1
ff Ic

)
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— or simply the two-grid MGRIT algorithm — is given by

T
(1,2)
MGRIT := P

(
Ic −A−1

c Aiv
∆

) (
Ic −Aiv

∆

)
RI , (2.14)

whereAc is the initial value system re-discretization, i.e., is an (Nc + 1)× (Nc + 1) block matrix, given

by

Ac =



I

−Φc I

. . . . . .

−Φc I


, (2.15)

where Φc denote the coarse time propagator andNc = Nt/m is the number of coarse time intervals.
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Chapter 3

QMGRIT Algorithm Development

The evolution of the QMGRIT algorithm is the subject of this chapter. First we discuss the existence of

solutions to the time-periodic problems and their uniqueness in Section 3.1.1. Going forward, we will

present the stationary basic iterative methods in Section 3.1.2 and the idea of EternalWanderlust (EW)

in Section 3.1.3. Afterwards, we consider three test equations: the heat equation in Section 3.1.4, the

Fourier-Poisson-Kelvin problem in Section 3.1.5, which incorporates diffusion, convection, and decay,

and the wave equation in Section 3.1.6. The latter equations will be used as test cases for our algorithm.

Next, we present the QMGRIT method, a multi-grid time-parallel approach, which is central to our

research in Section 3.2. The convergence properties of QMGRIT will be better understood by delving

into its spectral analysis in Section 3.2.1. We will also present the gQMGRIT parallelization paradigm

in Section 3.2.3, which is designed to improve the algorithm’s efficiency. By applying QMGRIT to

the heat equation in Section 3.2.2, we will validate the results of the spectral analysis. By analyzing

the method for this application using the SAMA methodology in Section 3.2.4, we will demonstrate

the convenience of gQMGRIT algorithm with respect to QMGRIT numerically and analytically. As

a final step, in Section 3.2.5, we will compare the QMGRIT method with the periodic Parareal ones

theoretically in order to emphasize the benefits and distinctions of these two time-parallel techniques.
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3.1 Excursus on EternalWanderlust and Test Equations

3.1.1 Existence and Uniqueness of the Solution

We consider a periodic ODE in the form

u′(t) = Ou(t) + g(t), (3.1)

u(t+ ω) = u(t), (3.2)

with O ≡ O(t) ∈ C (I,Rn × Rn) and g ∈ C (I,Rn). It is well known, e.g., [117], that for given1

u(0) = u0 the unique solution to Equation (3.1) reads

u(t) = Π (t, 0)u0 +Π(t, 0)

∫ t

0

Π(s, 0)−1g(s)ds, (3.3)

where Π(t, s) := e(t−s)O is invertible monodromy matrix. By uniqueness and periodicity from Equa-

tion (3.2), u(t) in Equation (3.3) is ω-periodic if and only if u(ω) = u(0) = u0,which is then equivalent

to

(I−Π(ω, 0))u(ω) = Π (ω, 0)

∫ ω

0

Π(s, 0)−1g(s)ds, (3.4)

where I denotes the identity matrix of corresponding size. Rearranging, Equation (3.4) is equivalent to

the following linear system of equations

(
Π(ω, 0)

−1 − I
)
u(ω) =

∫ ω

0

Π(s, 0)−1g(s)ds. (3.5)

These observations, together with the exercise [117, Chapter 3, Problem 3.43.], lead to the following.

Theorem 3.1. The inhomogeneous equation

u′(t) = Ou(t) + g(t), (3.6)

where g(t) is periodic with period ω, has a unique periodic solution with period ω if and only if λ = 1 is

not an eigenvalue of the monodromy matrix Π(ω, 0) .

Proof. If and only if the matrix

Π(ω, 0)
−1 − I = e−ωO − I (3.7)

1Without loss of generality t0 = 0.
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has full rank, so it is invertible and has a non-zero determinant, the linear system of equations in (3.5)

has the unique solution — i.e., the unique solution to this linear system reads

u(ω) =
(
Π(ω, 0)

−1 − I
)−1

∫ ω

0

Π(s, 0)−1g(s)ds, (3.8)

if and only if λ = 1 is not an eigenvalue of themonodromymatrixΠ(ω, 0). This is because on contrary,

if the determinant is zero, we have

det
(
Π(ω, 0)−1 − I

)
= 0 (3.9)

⇔ ∃v 6= 0 :
(
Π(ω, 0)−1 − I

)
v = 0 (3.10)

⇔ Π(ω, 0)−1v = v (3.11)

⇔ Π(ω, 0)v = v (3.12)

and this last Equation (3.12) is precisely the definition of λ = 1 being an eigenvalue of Π(ω, 0). Thus,

with Equations (3.3) and (3.8) the unique periodic solution to Equation (3.6) reads

u(t) = Π (t, 0)
(
Π(ω, 0)

−1 − I
)−1

∫ ω

0

Π(s, 0)−1g(s)ds+Π(t, 0)

∫ t

0

Π(s, 0)−1g(s)ds, (3.13)

if and only if λ = 1 is not an eigenvalue of Π(ω, 0) .

For further existence and uniqueness results on periodic problems refer to [8, 78, 85, 109, 121], and

especially [120], which covers an overview spanning about 500 publications. The above Theorem’s 3.1

statement is sufficient for the purpose and the setting of this work.

3.1.2 Basic Iterative Method

Let uj be any approximation of a solution u∗ of some linear problem equation, whereas L is a square

matrix,

Lu = b. (3.14)

Then, denoting

vj := u∗ − uj (3.15)
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the error of uj , and

dj := b− Luj (3.16)

the residual of uj , the corresponding residual operator is I− LB. The residual equation

Lvj = dj (3.17)

is equivalent to the original problem equation, yielding

u∗ = uj + vj . (3.18)

We note that if in Equation (3.17) L is replaced by any ‘simpler’ operator L̂ such that action of inverse

L̂−1 is known, i.e., can be computed efficiently, the solution v̂j of

L̂v̂j = dj (3.19)

gives a new approximation

uj+1 = uj + v̂j . (3.20)

Starting with a given2 u0, the successive application of an iteration operator given by

Q := I−BL, (3.21)

where B := L̂−1 and I denotes the identity of corresponding size, defines the basic iterative method

procedure [23, 61, 103, 114]. Then, it follows

vj+1 = u∗ − uj+1 = u∗ − (uj + v̂j) (3.22)

= vj − v̂j = vj − L̂−1dj = vj − L̂−1Lvj (3.23)

= (I−BL) vj = Qvj (j = 0, 1, 2, . . .) (3.24)

for the errors and

dj+1 = (I− LB)dj (j = 0, 1, 2, . . .) (3.25)

2When applying the algorithms in the following sections and chapters for each run throughout the thesis, we use a random
values initialization as the given solution approximation.
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t1 ∼ tNt+1 t2
· · ·

tm

t2m· · ·

Figure 3.1: Quotient space ansatz representing the gluing of the endpoints of a time interval to deal with
periodic problem in Equations (3.1)-(3.2) and Equation (3.26) according to the EW scheme

for the residuals. If some norm ‖.‖ is defined, the corresponding operator norms

‖I−BL‖ , ‖I− LB‖

give the error reducing factor and the residual reducing factor, respectively, per iteration step.

3.1.3 EternalWanderlust

Processing the periodic problem in Equations (3.1)-(3.2) numerically, we will use a time-stepping rou-

tine, i.e., we follow the ideas of the MGRIT algorithm, as in Section 2.5.1. We formulate the Eternal

Wanderlust scheme to satisfy the time-periodic settings, thus rearrange the variables in Equation (2.4)

and use the periodicity of u, eliminating the last point in timeNt + 1, resulting

Apup ≡



I −Φ

−Φ I
. . . . . .

−Φ I


·



u1

u2

...

uNt


=



b1

b2
...

bNt


≡ bp ∈ R(Nx+1)Nt . (3.26)

The above allows us to put together algebraic and topological points of view on periodic problems in

time as we may observe from Figure 3.1 — in Equation (3.21) consider L := Ap and L̂ := Â, where Â
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is obtained from A (see Equation (2.4)) by removing the last row and column. Then, we get

Q =



Φ

Φ2

Φ3

...

ΦNt


∈ R(Nx+1)Nt×(Nx+1)Nt (3.27)

and

I− LB =



ΦNt . . . Φ3 Φ2 Φ


. (3.28)

Theorem 3.2. If Φ is stable, i.e., ρ(Φ) < 1, it follows

ρ(Q) = ρ
(
ΦNt

)
= ρ (Φ)

Nt < 1, (3.29)

where ρ(·) is the spectral radius.

Proof. Straightforward from Equation (3.27).

Now, going through the EW iteration repetition, we conclude that EW is convergent in the following

result — so, quoting Plato3 in a post-ironic manner, ‘there is no harm in repeating a good thing’.

Corollary 3.3. For the linear iterative error system defined by vj+1 = Qvj , whereuj serves as an approx-

imation to the solution u∗ and vj = u∗ − uj , the system exhibits an asymptotically stable zero solution,

confirming the convergence of the error term vj towards zero.

Proof. Follows from Theorem 3.2.

3Plato (*428/427 or 424/423 BCE in Athens, Greece; †348/347 BCE in Athens, Greece) was a Greek philosopher, a pivotal
figure in the history of Western philosophy. The founder of the Academy in Athens, the first institution of higher learning in the
Westernworld, Plato’s work spans ethics, metaphysics, ontology, and epistemology. His dialogues, involving his teacher Socrates
and his student Aristotle, have influenced thought for over two millennia.
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Furthermore, we make use of the Löwner4 partial order, which will be used for subsequent theoret-

ical results, and show, as noted in Section 2.5.1, that imposing Φ constant is not a strict assumption.

The Löwner partial order provides a framework for comparing themagnitude of positive semi-definite

matrices of the same dimensions. Specifically, for two positive semi-definite matrices X and Y , we

say that X is less than or equal to Y under the Löwner order (denoted X � Y ) if the matrix Y − X

is positive semi-definite (this means that for any non-zero vector z, the inequality zt(Y − X)z ≥ 0

holds, where zt denotes the transpose of z). Now, for a varying time-stepping function, we conclude

the following.

Corollary 3.4. The following inequality applies

Qd =



Φt1∏
i=2,1

Φti

...∏
i=Nt,...,2,1

Φti


4



Φµ

Φ2
µ

...

ΦNt
µ


, (3.30)

whereas ρ (Φµ) = max
{
ρ (Φti)

∣∣ i = 1, 2, ..., Nt

}
applies, and

ρ(Qd) = ρ

 ∏
i=Nt,...,2,1

Φti

 ≤ ρ (Φµ)
Nt . (3.31)

Proof. Straightforward from properties of the spectral radius.

After establishing the solution’s existence and uniqueness in Theorem 3.1 and laying the theoretical

foundation in Theorem 3.2, we present an algorithmic note on EW, as delineated in Algorithm 1.

3.1.4 Heat Equation

Joseph Fourier, in his groundbreaking work from 1822 [39], introduced the heat equation, a parabolic

PDE. In his explanation, he modelled the heat equation using the Fourier transform for solving the

equation, which has become a major mathematical foundation for describing heat transfer and dif-

fusion processes since then [48, Section 1.4]. The heat equation is an important partial differential
4Karl Löwner (*19 May 1893 in Lány, Bohemia, Austro-Hungarian Empire; †22 January 1968 in Los Angeles, California,

USA) was a Czech-German mathematician, renowned for his contributions to complex analysis, differential geometry, and the
theory of real functions. Perhaps most famous for the Löwner equation in complex analysis, his work has had a lasting impact
on the mathematical community, influencing both theoretical research and practical applications in various fields.
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Algorithm 1 EternalWanderlust(Φ, u, bp):

1. Let uj be a given approximation of the solution.

2. Compute residual dj ← bp − Luj = bp −


−Φuj

Nt
+ uj

1

−Φuj
1 + uj

2
...

−Φuj
Nt−1 + uj

Nt

 .

while norm of residual is not small enough do
3. Perform periodic time-stepping

(
uj
1 ← Φuj

Nt
+ bj1, u

j
i ← Φuj

i−1 + bji , i = 2, ..., Nt

)
.

end while

equation in mathematical physics — it describes how heat conducts in materials —, this PDE de-

scribes how the temperature in a given region changes over time, with the variations attributable to the

internal heat conducting in the region. This is also why the study of it is important, because it provides

insights about such kind of processes and makes it easier to transition to studying more difficult PDEs

that are found across the many fields of science and engineering.

In this work, we only focus on a specific formulation of the heat equation. Denoted here as the

grounded 1D+1D heat equation. This variant models how heat diffuses in a one-dimensional spatial

domain over a time interval, giving us a simplified real-world problem for investigating methods to

solve the heat equation analytically and numerically. We want to investigate how the heat equation

behaves given periodic boundary conditions, employing finite difference (FD) method for discretizing

in space andBEmethod for time discretizing — thesemethods are chosen for their simplicity, stability,

and ease of implementation, making them ideal candidates for introducing and presenting numerical

analysis.

Formulation

Consider the grounded 1D+1D heat equation defined on a square domain [0, 1]2 ⊂ R2, with spatial

coordinate x and temporal coordinate t, given by

∂u(x, t)

∂t
− a

∂2u(x, t)

∂x2
= g(x, t), a > 0, x ∈ [0, 1], t ∈ [0, 1], (3.32)

u(0, t) = u(1, t) = 0, t ∈ [0, 1], (3.33)

u(x, 0) = u(x, 1), x ∈ [0, 1]. (3.34)
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The dD+1D equations for d > 1, with d ∈ N, are analogously defined on [0, 1]d+1 ⊂ Rd+1, where

x ∈ [0, 1]d ⊂ Rd. Here, u(x, t) represents the temperature at point x and time t, a is the thermal

diffusivity coefficient reflecting the material’s ability to conduct heat, and g(x, t) is a source term ac-

counting for internal heat generation or absorption. The boundary conditions u(0, t) = u(1, t) = 0

signify that the ends of the domain are kept at a constant temperature (typically normalized to zero

for simplicity). The periodic initial condition u(x, 0) = u(x, 1) introduces a cyclical time-dependency,

suggesting that the system’s thermal state resets after each unit time interval, a setup that can model

seasonal or diurnal temperature variations in simplified scenarios.

Exact Solution and Analysis

For the given problem setup, in Equations (3.32)-(3.34) with

g(x, t) = 2πx(x− 1)cos(2πt)− 2a sin(2πt), (3.35)

the analytical solution is given by

u(x, t) = x(x− 1) sin(2πt). (3.36)

This solution will serve as a benchmark for evaluating the accuracy and efficiency of our numerical

methods. By comparing the numerical results to the analytical solution, we can assess the methods’

performance and identify potential areas for refinement exactly.

The grounded 1D+1D heat equation presents a valuable model for studying fundamental aspects

of heat diffusion and numerical solution strategies. Through analytical and numerical exploration, this

work aims to deepen our understanding of the effectiveness of computational methods in simulating

such phenomena — the interconnection between theory and computation underlines the broader

significance of mathematicalmodelling in solving real-world problems (see Section 4.2). Building upon

the Theorem 3.1, we conclude the following.

Corollary 3.5. The induced by the grounded dD+1D heat equation semi-discrete inhomogeneous equa-

tion

u′(t) = Ou(t) + g(t), (3.37)

where g(t) is a periodic function of period ω andO is anM-Matrix of the FD discretizationmethod for the
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dD-Laplacian operator, has unique periodic solution of period ω.

Proof. Using the Theorem 3.1, we provide a simple proof for d = 2. The proof for any other d ∈ N\{2}

is analogous. The Gershgorin5 circle theorem [53] implies λO ∈
(
0, 8

∆x2

)
, where∆x is the equidistant

spatial discretization parameter and λO denotes an eigenvalue of the matrixO. It follows that λeωO ∈(
1, e

8ω
∆x2

)
and, thus, one is not an eigenvalue of eωO.

Discretization

The first step in numerically solving a differential equation is to convert the continuous problem to

a discrete model. The usual approach for discretizing time-dependent PDEs is to first discretize the

spatial dimensions and leave the time dimension continuous — this generally results in a system of

ODEs in terms of time only and is referred to as a semi-discrete system. The semi-discrete system is

then discretized in time by a time integration method, yielding a discretization of the complete set of

algebraic equations. To numerically solve the heat equation, we use a spatial discretization method

based on the FD method and a temporal integration method based on the BE — the FD method ap-

proximates derivatives by taking differences between values of a function at discrete points, while the

BE is an implicit time-stepping scheme that is unconditionally stable, thereby providing an appropriate

choice for stiff equations [67, 68]. The convergence of these numerical methods, and their ability to

approximate the solution accurately as the resolution is increased, is a very fundamental part of our

future analysis — it is crucial that we compare the order of convergence of the numerical solution

against theoretical expectations. Furthermore, we will also examine the prediction outcomes of The-

orem 3.2. On top, to provide a bit more insight into the process of possible discretization approaches,

we offer a brief comment on the following

u̇ = ∆u
BE
=⇒ −∆t∆ui + ui = ui−1, (3.38)

5Semyon Aronovich Gershgorin (*1901 in Pinsky, Russian Empire; †1933 in Leningrad, Soviet Union) was a Soviet mathe-
matician known for the Gershgorin circle theorem, which provides a method to estimate the location of eigenvalues of a square
matrix. His theorem has profound implications in numerical analysis, particularly in the study and computation of eigenvalues
and eigenvectors.
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FD:

(∆tO + I)ui = ui−1,

⇔ ui = (∆tO + I)−1ui−1

=: Φ(ui−1),

FEM:

(∆tW + S)ui = Sui−1,

⇔ ui = (∆tW + S)−1Sui−1

=: Φ(ui−1),

where S andW aremass and stiffnessmatrices, respectively. For details on FEM see Appendix B. Now,

we demonstrate an equidistant discretization, using a FD scheme in spatial dimension and the BE

method in time, simultaneously — this leads us to the following discrete approximation of Equation

(3.32)
uj,i − uj,i−1

∆t
− a (uj−1,i − 2uj,i + uj+1,i)

∆x2
= gj,i, (3.39)

with∆t = t1 − t0 and∆x = x1 − x0, or equivalently

(
1 + 2a

∆t

∆x2

)
uj,i − a

∆t

∆x2
(uj−1,i + uj+1,i) = uj,i−1 +∆tgj,i. (3.40)

If one takes the spatial homogeneous boundary conditions into account, one recognizes that in each

time-step this is a linear system of equations

Mui = ui−1 +∆tgi, (3.41)

of Nx − 1 equations for as many unknowns (as there are in the interior of [0, 1], see Equation (3.33)).

With Equation (3.40) and r := ∆t/∆x2, the coefficient matrix is obviously

M =



1 + 2ar −ar 0 . . . 0

−ar 1 + 2ar −ar
...

0
. . . . . . . . . 0

... −ar 1 + 2ar −ar

0 . . . 0 −ar 1 + 2ar


, (3.42)

i.e.,

• M = tridiag
[
−ar, 1 + 2ar,−ar

]
(when using a stencil notation);

• M = T (f), where f = 1 + 2ar − 2ar cos θ (when using a notation as a tridiagonal Toeplitz6

6Otto Toeplitz (*1 August 1881 in Breslau, German Empire (nowWroclaw, Poland); †15 February 1940 in Jerusalem, British
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matrix generated by 1 + 2ar− 2ar cos θ; the eigenvalues of a symmetric tridiagonal Toeplitz are

known and given by the sampling of f over the equispaced τ -algebra grid [9]).

Now, denote Φ := M−1 and bi := ∆tΦgi — so, with periodic condition in time, u1 = uNt+1, we

conclude to the global linear system of equations, as considered in Equation (3.26). We calculate the

eigenvalues of Φ, which are the reciprocals of the eigenvalues of M — the latter are well-known and

given by

λM ∈

{
1 + 2ar − 2ar cos

(
kπ

Nx

) ∣∣∣∣∣ k = 1, ..., Nx − 1

}
. (3.43)

These are clearly greater than one, thus the eigenvalues of Φ are less than one, and Theorem 3.2 is

applicable.

Numerical Analysis Verification

This section — and the following sections with Tables 3.6, 3.11 and 4.9 for other test equations —

verifies that the algorithm’s implementation executes correctly as designed, adhering to the underlying

theoretical model. The error measurement,

max
j,i
|u(xj , ti)− uj,i|, (3.44)

focuses on the maximum absolute error across the spatial-temporal grid. Table 3.1 compares the exact

solutionu(xj , ti)with the numerical approximationuj,i at grid points (xj , ti). Solutions obtained using

the EWmethod are iterated until numerical convergence and then compared to the analytical solution.

Our analysis directly observes that the BE method, serving as a first-order FD discretization method

in the time dimension with its error magnitude dominating over the second-order discretization in the

spatial dimension, performs as anticipated. Consequently, the deviation of the numerical solution from

the analytical solution is approximately halved, aligning with the expected first-order convergence rate

— this behavior agrees with theoretical expectations, demonstrating the effectiveness of both the EW

method and its implementation.

Mandate of Palestine) was a German mathematician known for his work in the field of linear algebra and for the formulation
of the Toeplitz matrices. His contributions have had a lasting impact on various areas of mathematics and its applications,
especially in signal processing and numerical analysis, where Toeplitz matrices play a crucial role.
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Table 3.1: EW error reduction for diagonal Nt = Nx and different thermal diffusivity coefficients a

Nt = Nx a = 0.1 a = 1 a = 10

24 = 16 4.71e-02 2.47e-02 3.11e-03
25 = 32 2.43e-02 1.30e-02 1.59e-03
26 = 64 1.22e-02 6.63e-03 7.99e-04
27 = 128 6.14e-03 3.35e-03 4.00e-04
28 = 256 3.08e-03 1.68e-03 2.00e-04
29 = 512 1.54e-03 8.44e-04 1.00e-04
210 = 1024 7.70e-04 4.23e-04 5.01e-05

Numerical Convergence Factors

This section — alongside the following sections featuring Tables 3.7 and 3.12, 4.5, 4.7 and 4.9 for ad-

ditional test equations — examines in Table 3.2 the numerical convergence factors of the EW scheme

for the heat equation using FD methods in spatial dimensions and the BE methods in temporal di-

mension. We concentrate on the scenario of Nt = Nx where we observe the scheme’s behavior for

uniformly discretized in time and space domains. In Table 3.2, we show the convergence factors in the

Nt = Nx scenario, across a range from 24 to 210 — the study shows a consistent trend: the number

of DOFs increases, the convergence factor decreases; and this suggests that the convergence rates of

the EW scheme are improved when using finer discretizations, thus demonstrating the suitability of

the EW scheme to high-resolution problem settings. A detailed look at the decrease in convergence

factor as the thermal diffusivity coefficient a approaches zero emphasizes the significance of the sen-

sitivity of the EW scheme convergence factor with respect to the thermal properties in the system. The

results confirm the challenges of low thermal diffusivity scenario — these observations are pertinent

to the recognition of the limitations of the numerical approach and may reveal the general need to

investigate strategies aimed at improving the performance of numerical methods. The information

presented here provides a baseline reference for the readers who might be pursuing new research on

the performance of the EW scheme — the search for a more efficient computational method is neces-

sary as the complexity to model and solve equations representing physical phenomena becomes more

sophisticated —, perhaps the analysis of the EW convergence factor in the following sections could

provide the reader with a reference point for future work on refining numerical algorithms to increase

the efficiency of the simulation results.
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Table 3.2: EW numerical convergence factors for diagonal Nt = Nx and different thermal diffusivity coefficient
a

Nt = Nx a = 0.1 a = 1 a = 10

24 = 16 3.85e-01 4.67e-04 2.15e-14
25 = 32 3.78e-01 1.85e-04 2.84e-20
26 = 64 3.75e-01 1.03e-04 1.18e-26
27 = 128 3.75e-01 7.43e-05 1.69e-32
28 = 256 3.77e-01 6.23e-05 5.58e-37
29 = 512 3.79e-01 5.51e-05 6.37e-40
210 = 1024 3.63e-01 5.42e-05 1.20e-41

Numerical Analysis Validation

This section presents — alongside the following sections featuring Tables 3.8-3.10, 3.13-3.15, 4.6, 4.8

and 4.9 for other test equations — Tables 3.3 through 3.5, which describe the largest eigenvalues

of the inverted matrices M resulting from the discretization of the grounded 1D+1D heat equation.

In the discretization process, we used FD schemes in the spatial dimensions and BE schemes in the

temporal domains, over a range of Nt and Nx values ranging from 24 to 210, with changes in both Nt

and Nx based on powers of two. The EW scheme is believed to converge with a convergence factor

ρ(ΦNt) according to Theorem 3.2, where ρ is the spectral radius. These tables give the spectral radii for

a number of Nt andNx pairs, which represent important evidence about the quality of the numerical

scheme — in particular, they provide an indication of the stability of the numerical scheme we were

using. Consequently, the checks on the eigenvalues that measure the stability of the scheme, and the

checks on the convergence factor, whichmeasures how quickly the numerical solution approaches the

exact solution as the grid is refined, are closely connected. An important observation from the tables

in this analysis is that the spectral radii, particularly along the diagonals of the tables, are numerically

the same as the numerical convergence factors from earlier analysis, see Table 3.2: this highlight the

validity of the numerical convergence factors as a robust measure of the quality and effectiveness of

the numerical scheme — the validation of the numerical analysis using eigenvalues in this discussion

reinforces the theoretical discourse, and this evidence underlines the practical application of the EW

scheme in solving the heat equation (with a comprehensive argument about the performance dynamics

of the EW scheme).
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Table 3.3: ρ(Φ)Nt for different Nt and Nx for a = 0.1

Nt\Nx 16 32 64 128 256 512 1024

24 3.85e-01 3.84e-01 3.84e-01 3.84e-01 3.84e-01 3.84e-01 3.84e-01
25 3.79e-01 3.79e-01 3.78e-01 3.78e-01 3.78e-01 3.78e-01 3.78e-01
26 3.77e-01 3.76e-01 3.76e-01 3.76e-01 3.76e-01 3.76e-01 3.76e-01
27 3.75e-01 3.74e-01 3.74e-01 3.74e-01 3.74e-01 3.74e-01 3.74e-01
28 3.75e-01 3.74e-01 3.74e-01 3.74e-01 3.74e-01 3.74e-01 3.74e-01
29 3.74e-01 3.73e-01 3.73e-01 3.73e-01 3.73e-01 3.73e-01 3.73e-01
210 3.74e-01 3.73e-01 3.73e-01 3.73e-01 3.73e-01 3.73e-01 3.73e-01

Table 3.4: ρ(Φ)Nt for different Nt and Nx for a = 1

Nt\Nx 16 32 64 128 256 512 1024

24 4.68e-04 4.61e-04 4.59e-04 4.59e-04 4.58e-04 4.58e-04 4.58e-04
25 1.88e-04 1.85e-04 1.84e-04 1.84e-04 1.84e-04 1.84e-04 1.84e-04
26 1.06e-04 1.04e-04 1.03e-04 1.03e-04 1.03e-04 1.03e-04 1.03e-04
27 7.65e-05 7.48e-05 7.44e-05 7.43e-05 7.43e-05 7.43e-05 7.43e-05
28 6.42e-05 6.27e-05 6.24e-05 6.23e-05 6.23e-05 6.23e-05 6.23e-05
29 5.69e-05 5.68e-05 5.68e-05 5.68e-05 5.68e-05 5.68e-05 5.68e-05
210 5.42e-05 5.42e-05 5.42e-05 5.42e-05 5.42e-05 5.42e-05 5.42e-05

3.1.5 Fourier-Poisson-Kelvin Problem: Diffusion, Convection, and Decay

The analysis of transport phenomena in porous media, particularly the spreading and decay of solutes,

is a subject of primary interest dealing with applications that span from environmental engineering to

biophysics. The central mathematical model that encompasses these processes is the Fourier-Poisson7-

Kelvin8 problem, described by a convection-diffusion-decay equation with prescribed boundary con-

ditions. This model offers a comprehensive context in which to understand the relationship between

various components — diffusion, convection (or drift), and decay mechanisms — in the transport of

a chemical solute. Consider the equation

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
− ν

∂u(x, t)

∂x
− λu(x, t) + g(x, t), x ∈ [0, 1], t ∈ [0, 1], (3.45)

u(0, t) = u(1, t) = 0, t ∈ [0, 1], (3.46)

u(x, 0) = u(x, 1), x ∈ [0, 1], (3.47)

7Siméon Denis Poisson (*21 June 1781 in Pithiviers, Kingdom of France; †25 April 1840 in Sceaux, Kingdom of France)
was a French mathematician and physicist known for his work on definite integrals, theory of potentials, and for the Poisson
equation in electrostatics and fluid dynamics. The Poisson distribution in probability theory also bears his name, reflecting his
contributions to the field of mathematical statistics.

8William Thomson, 1st Baron Kelvin (26 June 1824 in Belfast, United Kingdom of Great Britain and Ireland; †17 December
1907 in Largs, Scotland, United Kingdom) was a British mathematician, physicist, and engineer, best known for developing the
Kelvin scale of temperature. His contributions to thermodynamics, electrical engineering, and hydrodynamics were founda-
tional, and he played a key role in laying the first transatlantic telegraph cable.

35



Chapter 3. QMGRIT Algorithm Development April 11, 2025

Table 3.5: ρ(Φ)Nt for different Nt and Nx for a = 10

Nt\Nx 16 32 64 128 256 512 1024

24 2.15e-14 2.08e-14 2.06e-14 2.06e-14 2.06e-14 2.06e-14 2.06e-14
25 3.01e-20 2.84e-20 2.80e-20 2.79e-20 2.78e-20 2.78e-20 2.78e-20
26 1.32e-26 1.20e-26 1.18e-26 1.17e-26 1.17e-26 1.17e-26 1.17e-26
27 2.01e-32 1.76e-32 1.70e-32 1.69e-32 1.68e-32 1.68e-32 1.68e-32
28 7.01e-37 5.90e-37 5.65e-37 5.59e-37 5.58e-37 5.58e-37 5.57e-37
29 8.30e-40 6.80e-40 6.47e-40 6.39e-40 6.37e-40 6.37e-40 6.36e-40
210 1.60e-41 1.29e-41 1.22e-41 1.20e-41 1.20e-41 1.20e-41 1.20e-41

where u represents the concentration of the solute, dispersion magnitude D > 0 quantifies the rate

at which, e.g., the solute spreads out from its initial location, accounting for both molecular diffusion

and mechanical mixing, drift velocity ν > 0 reflects the average velocity of the solute particles due to

convection, driven by external forces like pressure gradients, and decay magnitude λ > 0 represents

the rate of decrease in solute concentration over time, due to processes like chemical reactions, adsorp-

tion, or biological decay. The periodicity in time, u(x, t) = u(x, t + ω), models scenarios where the

transport conditions vary in a predictable, periodic manner that may been often observed in natural

and industrial processes.

This kind of considerationmay be important in, e.g., environmental engineering, groundwater con-

tamination studies, and in design of chemical reactors, where how solute is distributed as a function of

time and space is crucial to predicting pollutant impact, designing efficient separation processes, or to

or optimizing reaction conditions. We observe that through study of the Fourier-Poisson-Kelvin prob-

lem, one may have been seen a rich and very complex set of phenomena that are central to the study

of transport processes in porous media — this real-world problem and its mathematical form with

prescribed boundary conditions then provide a framework in which one can study how solutes move,

spread, and degrade over time, which is highly interesting and a topic that holds promise to study and

learn a lot for many scientific and engineering problems.

Exact Solution and Discretization

Given the source term

g(x, t) = 2πx(x− 1) cos(2πt) + (ν(2x− 1)− 2D + λx(x− 1)) sin(2πt), (3.48)

36



Chapter 3. QMGRIT Algorithm Development April 11, 2025

the analytical solution to Equations (3.45)-(3.47) reads

u(x, t) = x(x− 1) sin(2πt). (3.49)

From this point we then proceed analogously as in the case of the heat equation and calculate the

tridiagonal matrix

M = tridiag
[
−Dr − νp, 1 + 2Dr + λ∆t, −Dr + νp

]
, (3.50)

where r := ∆t
∆x2 and p := ∆t

2∆x .

Numerical Analysis Verification

The evaluation of error, represented by max
j,i
|u(xj , ti)− uj,i|, targets the highest absolute discrepancy

within the spatial-temporal domain. Demonstrated inTable 3.6, this approach benchmarks the numer-

ical approximation uj,i against the exact solution u(xj , ti) at each coordinate (xj , ti) — computations

continue iteratively until achieving convergence, followed by a comparative analysiswith the analytical

solution.

Table 3.6: EW error reduction for diagonal Nt = Nx and different parameters D = ν = λ

Nt = Nx D = ν = λ = 0.1 D = ν = λ = 1 D = ν = λ = 10

24 = 16 4.70e-02 2.27e-02 2.78e-03
25 = 32 2.42e-02 1.20e-02 1.42e-03
26 = 64 1.22e-02 6.13e-03 7.16e-04
27 = 128 6.13e-03 3.10e-03 3.59e-04
28 = 256 3.07e-03 1.56e-03 1.80e-04
29 = 512 1.54e-03 7.81e-04 8.98e-05
210 = 1024 7.70e-04 3.91e-04 4.49e-05

Numerical Convergence Factors

This section presents the numerical convergence factors of the EW scheme, as shown in Table 3.7,

applied to the convection-diffusion-decay equation — this application employs FDmethods for spatial

discretization and BE methods for time-stepping, particularly in scenarios where Nt = Nx. The table

provides the convergence factors for scenarios withNt = Nx, spanning from 24 to 210.
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Table 3.7: EW numerical convergence factors for diagonal Nt = Nx and different parameters D = ν = λ

Nt = Nx D = ν = λ = 0.1 D = ν = λ = 1 D = ν = λ = 10

24 = 16 3.42e-01 2.20e-04 4.11e-15
25 = 32 3.36e-01 7.21e-05 1.53e-21
26 = 64 3.32e-01 3.53e-05 1.03e-28
27 = 128 3.30e-01 2.34e-05 1.75e-35
28 = 256 3.27e-01 1.87e-05 7.87e-41
29 = 512 3.33e-01 1.67e-05 1.99e-44
210 = 1024 3.40e-01 1.57e-05 1.43e-46

Numerical Analysis Validation

This segment details Tables 3.8-3.10, showcasing the principal eigenvalues of the inverse matricesM

derived from the discretization of the 1D+1D advection-diffusion-decay equation. Utilizing FDmeth-

ods for spatial discretization andBEmethods for temporal propagation, the discretization spans various

Nt and Nx values, each as power of two, from 24 to 210. In line with Theorem 3.2, it is demonstrated

that our approach to the advection-diffusion-decay equation attains convergence, characterized by a

convergence factor ρ(ΦNt) — the tables reveal the maximal eigenvalues for every Nt and Nx pair,

indicating the numerical scheme’s stability and precision.

Table 3.8: ρ(Φ)Nt for different Nt and Nx for D = ν = λ = 0.1

Nt\Nx 16 32 64 128 256 512 1024

24 3.85e-01 3.84e-01 3.84e-01 3.84e-01 3.84e-01 3.84e-01 3.84e-01
25 3.79e-01 3.79e-01 3.78e-01 3.78e-01 3.78e-01 3.78e-01 3.78e-01
26 3.77e-01 3.76e-01 3.76e-01 3.76e-01 3.76e-01 3.76e-01 3.76e-01
27 3.75e-01 3.74e-01 3.74e-01 3.74e-01 3.74e-01 3.74e-01 3.74e-01
28 3.75e-01 3.74e-01 3.74e-01 3.74e-01 3.74e-01 3.74e-01 3.74e-01
29 3.74e-01 3.73e-01 3.73e-01 3.73e-01 3.73e-01 3.73e-01 3.73e-01
210 3.74e-01 3.73e-01 3.73e-01 3.73e-01 3.73e-01 3.73e-01 3.73e-01

Table 3.9: ρ(Φ)Nt for different Nt and Nx for D = ν = λ = 1

Nt\Nx 16 32 64 128 256 512 1024

24 4.68e-04 4.61e-04 4.59e-04 4.59e-04 4.58e-04 4.58e-04 4.58e-04
25 1.88e-04 1.85e-04 1.84e-04 1.84e-04 1.84e-04 1.84e-04 1.84e-04
26 1.06e-04 1.04e-04 1.03e-04 1.03e-04 1.03e-04 1.03e-04 1.03e-04
27 7.65e-05 7.48e-05 7.44e-05 7.43e-05 7.43e-05 7.43e-05 7.43e-05
28 6.42e-05 6.27e-05 6.24e-05 6.23e-05 6.23e-05 6.23e-05 6.23e-05
29 5.86e-05 5.73e-05 5.69e-05 5.68e-05 5.68e-05 5.68e-05 5.68e-05
210 5.60e-05 5.47e-05 5.43e-05 5.42e-05 5.42e-05 5.42e-05 5.42e-05
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Table 3.10: ρ(Φ)Nt for different Nt and Nx for D = ν = λ = 10

Nt\Nx 16 32 64 128 256 512 1024

24 2.15e-14 2.08e-14 2.06e-14 2.06e-14 2.06e-14 2.06e-14 2.06e-14
25 3.01e-20 2.84e-20 2.80e-20 2.79e-20 2.78e-20 2.78e-20 2.78e-20
26 1.32e-26 1.20e-26 1.18e-26 1.17e-26 1.17e-26 1.17e-26 1.17e-26
27 2.01e-32 1.76e-32 1.70e-32 1.69e-32 1.68e-32 1.68e-32 1.68e-32
28 7.01e-37 5.90e-37 5.65e-37 5.59e-37 5.58e-37 5.58e-37 5.57e-37
29 8.30e-40 6.80e-40 6.47e-40 6.39e-40 6.37e-40 6.37e-40 6.36e-40
210 1.60e-41 1.29e-41 1.22e-41 1.20e-41 1.20e-41 1.20e-41 1.20e-41

3.1.6 Wave Equation

The wave equation is a fundamental concept in physics and engineering, providing principles that gov-

ern waves. It is a second-order partial differential equation that is used to model the behavior of many

different types of waves, which include acoustic, elastic, and electromagnetic waves that travel through

materials. The inhomogeneous wave equation model adds an extra layer of complexity in that it con-

siders external forces of the media and includes how they would affect the behavior of the wave. This

equation has substantial implications in fields as diverse as geophysics, where it underpins seismic

exploration, to medical science, where it informs imaging technologies. Jean-Baptiste le Rond d’Alem-

bert9 studied themodel of a vibrating string in his seminal book from 1747 [17], for an introduction see,

e.g., [48, Section 1.6]. The inhomogeneous wave equation is central to the study of wave propagation,

explained by a second-order hyperbolic partial differential equation, it also captures the fact that waves

propagate at finite speeds. It represents real-world wave phenomena including reflection, refraction,

and diffraction. There are a couple of options for the boundary conditions and we will consider the

Dirichlet10 boundary conditions in this work. We want to investigate the behavior of the wave at the

edges of an area where the wave is confined, a box in our case, i.e., the Dirichlet boundary condition

includes holding the wave function fixed at the boundaries, simulating the behavior of the wave that

is confined in a certain space. Multi-level iterative methods, including multi-grid algorithms, have

demonstrated some effectiveness as for solving such equation [69, 112] — these methods utilize the

principles of hierarchical problem solving to accelerate convergence to a solution, knowingly outper-

forming classical iterative approaches in both speed and efficiency, however, they are also struggling

9Jean-Baptiste le Rond d’Alembert (*16 November 1717 in Paris, Kingdom of France; †29 October 1783 in Paris, Kingdom of
France) was a French mathematician, mechanician, physicist, philosopher, and music theorist. He is widely recognized for his
contributions to the development of mathematical physics, especially in fluid dynamics, wave theory, and celestial mechanics.

10Johann Peter Gustav Lejeune Dirichlet (*13 February 1805 in Düren, Rhine Province, Kingdom of Prussia; †5 May 1859 in
Göttingen, Kingdom of Hanover) was a German mathematician who made profound contributions to number theory, analysis,
andmathematical physics. He is best known for his rigour in analysis, and for Dirichlet series that are pivotal in analytic number
theory.
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with selection of an appropriate coarse-grid operator for these problems [20]. Some diagonalization-

based technique were proposed to overcome the poor convergence: block circulant preconditioning

[88] and block ε−circulant preconditioning [82]; introducing a weight parameter ε, one gets indepen-

dent convergence for spatial mesh-size and time-step width, but still depends on the assumption to use

the same linear time integrator for all steps.

This section is motivated by the desire to optimize multi-grid algorithms, tailoring them to reach

faster rates of convergence without sacrificing the stringency of requirements due to and the demands

of real-world applications. The challenges posed by the wave equation are diverse, the underlying

character of the equation can cause solutions to contain discontinuities even when the initial data is

smooth, which requires the careful numerical treatment given the inherent hyperbolic character of the

equation. Analytic methods are limited in the face of the complexity of the wave equation, particularly

in the presence of inhomogeneous conditions and non-trivial geometries. This makes computational

approaches valuable, as they offer both the precision and adaptability required, especially when ana-

lytical approaches are insufficiently effective. For dealing with computational difficulties that appear

in solving hyperbolic PDEs, this study looks for robust solutions, focusing on the necessary discretiza-

tion techniques that convert the continuous mathematical model into a form that is computationally

executable. We are most interested in the stability and accuracy of the iterative scheme over the com-

putational domain, which is necessary due to the hyperbolic nature of the equation and the prescribed

inhomogeneity. This search for efficient computational solutions to the inhomogeneouswave equation

has implications that can be far-reaching and practical — having an understanding and being able

to accurately model the wave propagation is necessary for interpreting data in seismic exploration, for

optimizing the architectural acoustic design, and in medical imaging for diagnostic capabilities; this

requires that one can solve the wave equation accurately and efficiently since understanding both the

theory and the application in an accurate and efficient way will have extensive influence in the ad-

vancement of technology and in how well we understand the natural world.

Exact Solution and Discretization

Given the wave equation in a one-dimensional domain,

∂2u

∂t2
− c2

∂2u

∂x2
= g(x, t), (3.51)
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where c is the wave speed, u(x, t) is the wave function, and g(x, t) is the source term. The specific case

study within this research considers a form of inhomogeneity shaped by a sinusoidal forcing function

g(x, t) = (4c2π − 16π2) sin(4πt) sin(2πx), (3.52)

which corresponds to a wave influenced by an external force oscillating in both space and time. This

choice is reflective of scenarios where waves are generated or disturbed by periodic forces, common in

various physical and engineering contexts. The analytical solution in this case is given by

u(x, t) = sin(4πt) sin(2πx). (3.53)

Step 1: Discretize the Temporal Derivative

Using a central difference approximation for the second derivative in time, we get

∂2u

∂t2
≈ un+1 − 2un + un−1

∆t2
, (3.54)

where∆t is the time step size.

Step 2: Discretize the Spatial Derivative

Applying a central difference approximation for the spatial second derivative, we have

∂2u

∂x2
≈ ui+1 − 2ui + ui−1

∆x2
, (3.55)

where∆x is the spatial step size.

Combining These Approximations

We combine the temporal and spatial discretizations into the wave equation, ensuring to keep the time

step consistent across both discretizations for un+1

un+1
i − 2un

i + un−1
i

∆t2
= c2

un+1
i+1 − 2un+1

i + un+1
i−1

∆x2
+ g(xi, tn). (3.56)
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Again, such equation forms the basis for constructing an implicit method leading to a linear system

that can be solved for un+1
i , the wave function at all spatial points i at the next time step n+1, using EW

method. To arrange this into a solvable system, we recognize that the left-hand side involves a temporal

difference that relates three consecutive time steps, and the right-hand side represents a spatial operator

acting on the state at the next time step. Rearranging the equation to isolate terms involving un+1 gives

us

−c2 ∆t2

∆x2
un+1
i−1 +

(
1 + 2c2

∆t2

∆x2

)
un+1
i − c2

∆t2

∆x2
un+1
i+1 = 2un

i − un−1
i +∆t2g(xi, tn). (3.57)

This can be represented in matrix form as Mun+1 = 2un − un−1 + b, where M is the tridiagonal

matrix constructed from the coefficients of un+1
i and its spatial neighbours, and b is the vector on the

right-hand side incorporating the source term.

Step 3: Matrix Construction

Definingw :=
(
∆t
∆x

)2 and rearranging the equation to solve for un+1, we construct the matrix equation

for the system. The matrixM embody the spatial and time discretization — the construction of M

involves setting up a tridiagonal matrix where the central diagonal is modified to account for the wave

equation’s discretized form

M = triadiag
[
−c2 · w, (1 + 2c2 · w), −c2 · w

]
. (3.58)

As the matrixΦwas defined earlier,Φ = M−1, we now construct the 2×2-block time-stepping matrix

Ψ using the following operations [33], as the time discretization in Equation (3.57) uses two previous

time points, i.e., we are dealing with two-step method

• The top-left block is −Φ,

• The bottom-left block is 2Φ2,

• The top-right block is −2Φ,

• The bottom-right block is 4Φ2 − Φ.

Thus, the matrix Ψ is constructed as

Ψ =

−Φ −2Φ

2Φ2 4Φ2 − Φ

 , (3.59)
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and we have

wn =

 u2n

u2n+1


=

 Φ2n (u2n−1, u2n−2) + b2n

Φ2n+1 (Φ2n (u2n−1, u2n−2) + b2n, u2n−1) + b2n+1


= Ψn


 u2n−2

u2n−1


+

 b2n

b2n+1

 = Ψ(wn) + bn,

(3.60)

so the EW iteration matrixQwave is given by

Qwave =



Ψ

Ψ2

Ψ3

...

ΨNt/2


. (3.61)

Numerical Analysis Verification

The error metric max
j,i
|u(xj , ti) − uj

i | centers on identifying the peak absolute deviation throughout

the spatial-temporal domain. Demonstrated in Table 3.11, it contrasts the exact solution u(xj , ti) with

the numerical solution uj
i at the grid locations (xj , ti) — calculations proceed until convergence is

reached, after which they are evaluated against the analytical solution.

Table 3.11: EW error reduction for diagonal Nt = Nx and different parameters c

Nt = Nx c = 1 c = 10 c = 100

24 = 16 2.07e-01 7.35e-01 7.16e-01
25 = 32 1.23e-01 3.98e-01 3.84e-01
26 = 64 6.44e-02 2.03e-01 1.95e-01
27 = 128 3.26e-02 1.02e-01 9.81e-02
28 = 256 1.63e-02 5.11e-02 4.91e-02
29 = 512 8.18e-03 2.56e-02 2.46e-02
210 = 1024 4.09e-03 1.28e-02 1.23e-02
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Numerical Convergence Factors

In this section, we also elucidate the numerical convergence factors associated with the EW scheme,

indicated in Table 3.12 for the wave equation — this involves the use of FD method for spatial dis-

cretization and BE method for temporal advancement, with a focus on cases where Nt = Nx. Below,

the table details the convergence factors across eachmatching condition of Nt = Nx, with values from

24 to 210.

Table 3.12: EW numerical convergence factors of EW for diagonal Nt = Nx and different parameters c

Nt = Nx c = 1 c = 10 c = 100

24 = 16 7.40e-01 5.00e-05 2.12e-21
25 = 32 8.68e-01 2.77e-04 2.07e-32
26 = 64 9.31e-01 9.79e-04 2.10e-45
27 = 128 9.65e-01 3.21e-02 3.35e-55
28 = 256 9.83e-01 1.12e-01 5.81e-52
29 = 512 9.91e-01 3.88e-01 3.05e-36
210 = 1024 9.96e-01 6.27e-01 9.23e-21

Numerical Analysis Validation

This section introduces Tables 3.13-3.15, featuring the maximal eigenvalues of the inverse matrices

M , resulting from discretizing the 1D+1D wave equation. The discretization process, incorporating

FD method in spatial dimensions and BE method in temporal dimension, accommodates a range of

Nt and Nx values — these values extend as powers of two from 24 to 210. Conforming to Theorem

3.2, the wave equation’s approach is confirmed to converge, marked by a convergence factor ρ
(
Ψ

Nt
2

)
.

Subsequent tables catalogue the peak eigenvalues for each Nt and Nx configuration, underlining the

employed numerical scheme’s stability and accuracy.

Table 3.13: ρ
(
Ψ

Nt
2

)
for different Nt and Nx and c = 1

Nt\Nx 16 32 64 128 256 512 1024

24 7.40e-1 7.39e-1 7.39e-1 7.39e-1 7.39e-1 7.39e-1 7.39e-1
25 8.58e-1 8.58e-1 8.58e-1 8.58e-1 8.58e-1 8.58e-1 8.58e-1
26 9.26e-1 9.26e-1 9.26e-1 9.26e-1 9.26e-1 9.26e-1 9.26e-1
27 9.62e-1 9.62e-1 9.62e-1 9.62e-1 9.62e-1 9.62e-1 9.62e-1
28 9.81e-1 9.81e-1 9.81e-1 9.81e-1 9.81e-1 9.81e-1 9.81e-1
29 9.90e-1 9.90e-1 9.90e-1 9.90e-1 9.90e-1 9.90e-1 9.90e-1
210 9.95e-1 9.95e-1 9.95e-1 9.95e-1 9.95e-1 9.95e-1 9.95e-1
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Table 3.14: ρ
(
Ψ

Nt
2

)
for different Nt and Nx and c = 10

Nt\Nx 16 32 64 128 256 512 1024

24 3.30e-06 3.25e-06 3.24e-06 3.24e-06 3.24e-06 3.24e-06 3.24e-06
25 2.10e-05 2.06e-05 2.05e-05 2.04e-05 2.04e-05 2.04e-05 2.04e-05
26 1.02e-03 1.00e-03 1.00e-03 1.00e-03 1.00e-03 1.00e-03 1.00e-03
27 2.39e-02 2.37e-02 2.37e-02 2.37e-02 2.37e-02 2.37e-02 2.37e-02
28 1.48e-01 1.48e-01 1.48e-01 1.48e-01 1.48e-01 1.48e-01 1.48e-01
29 3.83e-01 3.82e-01 3.82e-01 3.82e-01 3.82e-01 3.82e-01 3.82e-01
210 6.19e-01 6.18e-01 6.18e-01 6.18e-01 6.18e-01 6.18e-01 6.18e-01

Table 3.15: ρ
(
Ψ

Nt
2

)
for different Nt and Nx and c = 100

Nt\Nx 16 32 64 128 256 512 1024

24 2.06e-21 2.02e-21 2.01e-21 2.01e-21 2.01e-21 2.01e-21 2.01e-21
25 1.61e-32 1.55e-32 1.53e-32 1.53e-32 1.53e-32 1.53e-32 1.53e-32
26 1.80e-45 1.67e-45 1.64e-45 1.63e-45 1.63e-45 1.63e-45 1.63e-45
27 7.86e-55 6.89e-55 6.66e-55 6.61e-55 6.59e-55 6.59e-55 6.59e-55
28 1.09e-51 9.07e-52 8.66e-52 8.56e-52 8.54e-52 8.53e-52 8.53e-52
29 3.73e-36 3.15e-36 3.02e-36 2.99e-36 2.98e-36 2.98e-36 2.98e-36
210 1.15e-20 1.03e-20 1.00e-20 9.98e-21 9.96e-21 9.95e-21 9.95e-21

3.2 Excursus on QMGRIT

Going from the EW scheme, we construct a novel multi-level algorithm QMGRIT consisting of the

following seven steps corresponding to the MGRIT construction, as we observe in the Figures 3.2-3.3.

t0 ∼ tNt
t1

· · ·

tm

t2m· · ·

Φ

F -relaxation
Φ

C-relaxation

Figure 3.2: FCF -Smoothing construction with F -
Points (black) and C-Points (red), F -relaxation and
C-relaxation illustrated

Figure 3.3: QMGRIT construction, illustrating a
three-grid example with given parameter of Nt = 64
and coarsening factor m = 4

1. Initialization:

• Set the number of time points to Nt = 2n, the coarsening factor to m = 2αm , and the

number of levels to L = 2, firstly.

• Partition the time points intoC-Points and F -Points, such that for each set ofm neighbour-

ing points, there arem− 1 F -Points and one C-Point.
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• Assume the first time point is a C-Point for simplicity, the number of C-Points is given by

Nc =
Nt

m .

2. Fine-grid relaxation:

• Perform F -relaxation updating solution at F -Points using the previous time point and Φ.

• Perform CF -relaxation for a specified number of iterations (ν):

– Update the first C-Point using the last F -Point and Φ.

– Update the remaining C-Points using the previous time point and Φ.

– Perform F -relaxation within each C-relaxation iteration to update the solution at F -

Points.

3. Residual computation:

• Compute the residual at the firstC-Point using the lastF -point,Φ, and the current solution.

• Compute the residual at the remaining C-Points using the previous C-Point, Φ, and the

current solution.

4. Coarse-grid solve:

• Perform γ EW iterations on the residual equation of the coarse-grid solve at the coarsest

grid level, Update the time points using the time integration operator Φc.

5. Coarse-grid correction:

• Correct the approximation at C-Points using the coarse-grid correction obtained from the

coarse-grid solve.

• PerformF -relaxation to correct the approximation atF -Points using the previous time point

and Φ.

6. Iteration:

• Repeat steps 2-5 until a desired level of convergence is achieved or a maximum number of

iterations is reached.

7. Return:

• Return the updated solution and residual.
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This explicit representation of the QMGRIT algorithm focuses on the two-grid case and provides a

high-level overview of the key components involved. The algorithm starts with initialization, where

the time points are partitioned into C-Points and F -Points. It then proceeds with the fine-grid relax-

ation, residual computation, coarse-grid solve, and coarse-grid correction steps — these steps are

iteratively repeated until convergence or a maximum number of iterations is reached. Finally, the up-

dated solution and residual are returned. Furthermore, to obtain a multilevel method with L levels

apply the algorithm recursively L−1 times in step 4. We write the resulting multi-grid algorithm as

follows in Algorithm 2, and refer to the prototyping implementation in [5]. If problem in Equation

Algorithm 2 γ-QMGRIT-ν[A(.)
p ,u(.),b(.)p ](l + 1):

if l is the coarsest level, L then smooth γ-times the coarse-system with EW iteration.
else

1. Relax on A
(l)
p u(l) = b(l)p using F (CF )ν -relaxations.

2. Compute and restrict residual using injection,

b(l+1)
p = RI

(
b(l)p −A(l)

p u(l)
)

3. Solve on next level: γ-QMGRIT-ν [A(l+1)
p ,u(l+1),b(l+1)

p ].
3. Correct using ‘ideal’ interpolation, u(l) ← u(l) + Pu(l+1).

end if

(3.1) is nonlinear, QMGRIT scheme can be generalized with the Full Approximation Storage (FAS)

scheme [10] in Algorithm 3. The key idea of FAS is the method it uses to solve nonlinear equations

Algorithm 3 γ-QMGRIT-ν FAS[A(.)
p ,u(.),b(.)p ](l + 1) :

if l is the coarsest level, L then smooth γ-times the coarse-system with EW iteration.
else

1. Relax on A
(l)
p u(l) = b(l)p using F (CF )ν -relaxations.

2. Compute and restrict residual using injection,

b(l+1)
p = R

(
b(l)p −A(l)

p u(l)
)

3. Solve on next level: γ-QMGRIT-ν FAS[A(l+1)
p , v(l+1), A

(l+1)
p

(
RIu(l)

)
+ b(l+1)

p ].
3. Correct using ‘ideal’ interpolation, u(l) ← u(l) + P

(
v(l+1) −RIu(l)

)
.

end if

using multi-grid methods — as opposed to linear multi-grid approaches, FAS moves the solution as

well as the residual to and from the coarse grid via restriction and prolongation operators; FAS can

effectively resolve the nonlinear problem because FAS is dealing with the full nonlinear equation on

all grid levels. By solving the coarse grid equation involving the restricted solution and the restricted
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residual and interpolating the correction term back to the fine grid, a global correction to the solution

is given on the finer grid.

3.2.1 Excursus to the Spectral Analysis of QMGRIT

The next step is to examine the iteration operators and analyze the two-grid structure. We considerAp

in block-form

Ap =

Aff Afc

Acf Acc

 ∈ RNt(Nx+1)×Nt(Nx+1), (3.62)

with

Aff =



I

−Φ I
. . . . . .

−Φ I
. . .

I

−Φ I
. . . . . .

−Φ I



, Afc =



−Φ

0

...

0

. . .

−Φ

0

...

0



, (3.63)

Acf =



0 . . . 0 0 0 . . . 0 −Φ

0 . . . 0 −Φ 0 . . . 0 0

. . . . . .

0 . . . 0 −Φ 0 . . . 0 0


. (3.64)

It follows

Ap =

 If 0

AcfA
−1
ff Ic


Aff 0

0 Acc −AcfA
−1
ff Afc


If A−1

ff Afc

0 Ic

 (3.65)
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and

A−1
p =

If −A−1
ff Afc

0 Ic


A−1

ff 0

0 A−1
∆


 If 0

−AcfA
−1
ff Ic

 , (3.66)

with periodic Schur complement

A∆ := Acc −AcfA
−1
ff Afc =



I −Φm

−Φm I

−Φm I
. . . . . .

−Φm I


. (3.67)

We note the ‘ideal’ restriction operator

Rideal :=

(
−AcfA

−1
ff Ic

)
(3.68)

=



0 . . . 0 Φm−1 . . . Φ

∣∣∣∣
Φm−1 . . . Φ 0 . . . 0

∣∣∣∣∣∣∣∣ Ic

. . . . . .

∣∣∣∣∣
Φm−1 . . . Φ 0 . . . 0

∣∣∣∣


. (3.69)

Then, the QMGRIT restriction operator is given by

RI :=

(
0 Ic

)
∈ R(Nx+1)Nt/m×(Nx+1)Nt , (3.70)
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and the QMGRIT ‘ideal’ prolongation operator is given by

P :=

−A−1
ff Afc

Ic

 =



Φ

...

Φm−1

. . .

Φ

...

Φm−1

Ic



∈ R(Nx+1)Nt×(Nx+1)Nt/m. (3.71)

We write the iteration operator of the two-grid γ-QMGRIT-1 algorithm as

P (Ic −A−1
c A∆)

γ(Ic −A∆)
1RI , (3.72)

and analyze the action of the parameters N 3 γ, ν ≥ 0, κ > 0, within the operator

Q(γ, ν, κ) :=
(
P
(
Ic −A−1

c A∆

)γ
(Ic −A∆)

ν
RI

)κ
, (3.73)

whereAc is the initial value system re-discretization of corresponding size andA∆ is the periodic Schur

complement.

Remark 3.6. Before stating an analytical result, we may explicitly clarify the difference between MGRIT

(see Section 2.5.1) and QMGRIT. As we have one fewer C-Point (in our construction, the last one) for

QMGRIT, we efficiently demonstrate this difference by providing the explicit form of the restriction and

prolongation operators, i.e., working with the generic linear equationAu = b without reordering into the
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block-form. For MGRIT, we have

P =



I

Φ

...

Φm−1

. . .

I

Φ

...

Φm−1

I



andRI =



I

0 · · · 0 I
. . .

0 · · · 0 I


. (3.74)

For QMGRIT we have

P =



I

Φ

...

Φm−1

. . .

I

Φ

...

Φm−1



andRI =



I 0 . . . 0

I 0 . . . 0

. . .

I 0 . . . 0


.

(3.75)

Theorem3.7. For the groundeddD+1D heat equation, the linear iterative error system vj+1 = Q(1, ν, κ)vj

has asymptotically stable zero solution. For ν = qNc − 1, with N 3 q ≥ 1, the order of convergence is

given by

ρ(Q(1, ν, κ)) = max
{
ρ
(
Φκ(ν+1)m

)
, ρ ((Φm − Φc)

κ
Φκνm)

}
< 1. (3.76)

Proof. Firstly, with γ = 0, κ = 1, ν = 0 we have the F -relaxation as operatorQ(0, 0, 1). The matrices

P (Ic −A∆)
ν
RI = Q(0, ν, 1) (3.77)

51



Chapter 3. QMGRIT Algorithm Development April 11, 2025

describe the two-grid 0-QMGRIT-ν, where

Q(0, 1, 1) =



Φm

...

Φ2m−1

Φm

...

Φ2m−1

. . .

Φm

...

Φ2m−1



(3.78)

and

Q(0, ν, 1) =



Φνm

...

Φνm+m−1

. . .
. . .

Φνm

...

Φνm+m−1



(3.79)

for all ν ≡ qNc, with N 3 q ≥ 1. We define

By
x :=


ΦyΦx

c 0 . . . 0

...
...

...
...

Φy+m−1Φx
c 0 . . . 0

 ∈ R(Nx+1)m×(Nx+1)m (3.80)
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and

B̄y
x :=


(Φm − Φc)Φ

yΦx
c 0 . . . 0

...
...

...
...

(Φm − Φc)Φ
y+m−1Φx

c 0 . . . 0

 ∈ R(Nx+1)m×(Nx+1)m. (3.81)

Secondly, let γ = κ = 1. Then for ν = 0 we can write the coarse-grid correction procedure with the

EW scheme and F -relaxation as

Q(1, 0, 1) =



0 . . . . . . 0 Bm
0

B̄0
0 0 . . . 0 Bm

1

B̄0
1 B̄0

0

. . . 0 Bm
2

...
...

. . .
...

...

B̄0
Nc−2 B̄0

Nc−3 . . . B̄0
0 Bm

Nc−1


. (3.82)

Thirdly, for all ν ≡ qNc, with q ≥ 1, we write

Q(1, ν, 1) =



0 . . . . . . 0 B
(ν+1)m
0

B̄νm
0 0 . . . 0 B

(ν+1)m
1

B̄νm
1 B̄νm

0

. . . 0 B
(ν+1)m
2

...
...

. . .
...

...

B̄νm
Nc−2 B̄νm

Nc−3 . . . B̄νm
0 B

(ν+1)m
Nc−1


. (3.83)

Let γ = 1 and ν = qNc − 1, with q ≥ 1, for κ ≥ 1, from Equations (3.82) and (3.83) we conclude

Q(1, ν, κ) =



B
(ν+1)m
0 0 . . . . . . 0

B
(ν+1)m
1 B̄νm

0 0 . . . 0

B
(ν+1)m
2 B̄νm

1 B̄νm
0

. . . 0

...
...

...
. . .

...

B
(ν+1)m
Nc−1 B̄νm

Nc−2 B̄νm
Nc−3 . . . B̄νm

0



κ

. (3.84)

In consequence of Equation (3.84), for ν = qNc− 1, with q ≥ 1, the eigenvalues of Q(1, ν, κ) are equal

to zero and to the eigenvalues of Φκ(ν+1)m and (Φm − Φc)
κ
Φκνm. Therefore, we conclude to Equation
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(3.76) and

ρ(Q(1, ν, κ))→ 0, (3.85)

as 0 4 Φc 4 Φ 4 I, and ν,m or κ goes to infinity.

Thus, similar to time-stepping or the EW scheme, two-grid QMGRIT eventually reduces the resid-

ual bellow a given tolerance and provides the periodic solution.

The recursive definition of QMGRIT allows us to proceed with the analysis of the three-grids al-

gorithm, additional steps to analyze the multi-grid full algorithm continue in a similar manner. The

two-grid iteration matrix for QMGRIT is

Q(1, 1, 1) =
(
I− PΦA

−1
c RIAp

)
PΦ (I−A∆)RI = PΦ

(
I−A−1

c A∆

)
(I−A∆)RI , (3.86)

so for the three-grid iteration matrix we have

Q3(

γ
q

1,

ν0
q

1 ,

ν1
q

1 ,

κ
q

1) =
(
I− PΦ

(
Ic −QFCF

2,3

)
A−1

p,cRIAp

)
PΦ (I−A∆)RI , (3.87)

where ν0 and ν1 describe the number of CF -smoothing steps on the fine and intermediate grids, re-

spectively, and QFCF
2,3 is analogous to Equation (3.86). It is necessary to note that when transitioning

from a fine grid to an intermediate one, an approximation of the solution through re-discretization of

Ap, Ap,c — an approximation to the periodic linear system — is used

Ap,c =



I −Φc

−Φc I
. . . . . .

−Φc I


∈ R(Nx+1)

Nt
m0

×(Nx+1)
Nt
m0 , (3.88)

where m0 denotes the coarsening factor from the fine grid to the intermediate one. Only when tran-

sitioning from the penultimate grid to the coarsest grid, we use the Nt

m0m1
× Nt

m0m1
block matrix Acc,

which is the re-discretization of the initial value problem without the last time point (see Equation

(3.27)), where m1 denotes the coarsening factor from the intermediate grid to the coarsest one. Un-

fortunately, to the best of our knowledge, this results in the loss of the convenient structure that, in a

two-grid case, allowed for the reduction of the analysis to manipulations with just the time-stepping

operator.
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Remark 3.8. If we proceed with the three-grid, as

Q̃3(1, 1, 1, 1) =
(
I − PΦ

(
Ic −QFCF

2,3

)
A−1

c RIAp

)
PΦ (I −A∆)RI , (3.89)

where again QFCF
2,3 is analog to (3.86), we are able to write the block with dominant eigenvalues of the

interest for ν’s as previously for the two-grid

Q̃3(1, ν0, ν1, κ) =

Φ(ν1+1)m1

(
I − Φ

(ν0+1)m0
c

)
0 . . . 0 Φν1m1Φ

(ν0+1)m0
c 0 . . . 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Φ(ν1+2)m1−1
(
I − Φ

(ν0+1)m0
c

)
0 . . . 0 Φ(ν1+1)m1−1Φ

(ν0+1)m0
c 0 . . . 0

Φ(ν1+1)m1Φc

(
I − Φ

(ν0+1)m0
c

)
0 . . . 0 Φν1m1

(
Φm + Φ

(ν0+1)m0+1
c − Φc

) .
.
. . . .

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

Φ(ν1+2)m1−1Φc

(
I − Φ

(ν0+1)m0
c

)
0 . . . 0 Φ(ν1+1)m1−1

(
Φm + Φ

(ν0+1)m0+1
c − Φc

)
0 . . . 0

.

.

.
.
.
.

.

.

.
.
.
. . . .

.

.

.
.
.
.

.

.

.
. . .

∗ 0 . . . 0 ∗
.
.
. . . .

.

.

.
. . . ∗ 0 . . . 0 ∗ 0 . . . 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
. 0

.

.

. 0

.

.

. 0

.

.

. 0

∗ 0 . . . 0 ∗ 0 . . . 0 . . . ∗ 0 . . . 0 ∗ 0 . . . 0



κ

.,

(3.90)

and the non-singular eigenvalues of this dominant block are the eigenvalues of

Φ(ν1+1)m1

and the eigenvalues of −Φ(ν1+1)m1Φ
(ν0+1)m0
c +Φ(ν1+1)m1 +Φν1m1Φ

(ν0+1)m0+1
c − Φν1m1Φc, which is

Φν1m1

(
(Φm1 − Φc)

(
I − Φ(ν0+1)m0

c

))
.

What again appears as an interesting result, it should be clearly noted that if there are negative eigenvalues

in the operator Φc, issues with convergence due to properties of
(
I − Φ

(ν0+1)m0
c

)
might arise. Further

consideration of such an algorithm modification is out of the scope of this research.

3.2.2 Numerical Analysis Validation

We substantiate Theorem 3.7 and the associated convergence properties delineated in (3.76) through a

series of numerical experiments on the grounded heat equation. The analysis, as illustrated in Figures

3.4 and 3.5, examines the QMGRIT algorithm’s performance under various configurations, employing

adaptive sampling strategies for the time steps, Nt, in relation to the coarsening factor, m. Figure 3.4
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exemplifies the application of two-grid QMGRIT with variable number of CF -relaxations, maintain-

ing a constantNc = 25 andNx = 211. Notably, the right subfigure accentuates the predictive accuracy

of our model for convergence rates when ν = Nc − 1, a key assertion of the Theorem 3.7. This predic-

tive capability is further confirmed in the comparative analysis showcased in Figure 3.5. Here, the left

subfigure signifies an optimized configuration at Nc = 4, and the right subfigure provides a detailed

comparative analysis of Q(1, ν, κ) and Q(ν, ν, κ). To elucidate the adaptability of our approach, we

emphasize that the sampling of Nt is dynamically adjusted to satisfy the ratio Nt/m = Nc, thereby

achieving a consistent coarse-grid resolution across varying fine-grid dimensions. In essence, the em-

pirical data presented in our figures validate the theoretical predictions of Theorem 3.7. The conver-

gence behavior, as anticipated by (3.76) for the cases where ν = Nc − 1, aligns remarkably well with

the numerical outcomes. The adaptivemethodology adopted for the selection of Nt in correlation with

m underpins a flexible yet rigorous framework. This framework facilitates an incisive exploration of

the QMGRIT algorithm’s efficiency, underlining its practical applicability and confirming its theoreti-

cal foundations. In summary, the numerical experiments presented in this section provide compelling

evidence supporting the validity of Theorem 3.7 and the convergence properties described in (3.76).

The adaptive sampling strategy for Nt based on the coarsening factor m has proven to be a powerful

tool for analyzing the QMGRIT algorithm’s performance across a wide range of grid configurations.

The close agreement between the theoretical predictions and the empirical results underlines the ro-

bustness and accuracy of our mathematical framework. Moreover, the identification of convenience

configurations, such asNc = 4 and the effectiveness of the algorithmwhen ν = Nc−1, offers valuable

insights for practitioners seeking to maximize the efficiency of the QMGRIT algorithm in their specific

applications.

3.2.3 Ghosted QMGRIT

In this section, we present a novel paradigm for parallelizing the solution of time-depending time-

periodic problems. Based on the QMGRIT algorithm and the fact that its iterations converge to an

analytic solution (in time-stepping sense) starting from arbitrary initial values, we propose starting

two copies of solvers with a shifted distribution at F - andC-Points (see Figure 3.6) and the subsequent

predefined overlap of the two provided iteration’s results (see Equation (3.97)). Thus for each iteration,

we are able to compute an additionalC-smoothingwhichmay speedup the convergence. The basic idea

of the application is to optimize the use of idle processors on the lower coarse levels when applying the
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(a) Initial CF -relaxation comparison for m values, showing
performance at Nx = 211 resolution

(b) Extended CF -relaxation analysis with ν ≡ 1 · 25 − 1,
bringing to the forefront the convergence rates of analysis

Figure 3.4: Applying two-grid QMGRIT with 1-4 CF -relaxations (left) and ν ≡ 1·25−1 CF -relaxations (right),
fixing Nc = 25, Nx = 211, and adaptively sampling m for Nt

(a) By sampling Nt’s (m adaptively) for the different Nx’s
and a set of CF -relaxations we screen a greedy, light and
fast constellation, where Nc = 4

(b) Equivalently to Q(1, ν, κ) on the two last subplots
blocks for ν = 1, 2, 3, 4 we observe the numerical behaviour
of Q(ν, ν, κ) with γ = ν = 1, 2, 3, 4, again, comparing with
(3.76) on Q(1, ν, κ)

Figure 3.5: Comparative analysis of QMGRIT efficiency across different configurations, focusing on adaptive
sampling strategies for m (based on Nt), and evaluating the numerical behavior of Q(γ, ν, κ) for varying γ and
ν values. The left subfigure identifies a light, fast, and efficient configuration with Nc = 4, while the right
subfigure explores detailed comparisons of Q(1, ν, κ) and Q(ν, ν, κ), illustrating the algorithm’s performance.
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multilevel algorithm — however, a straightforward algorithmic two-grid application is also possible,

as in the case of sub-optimal processor load-sharing, e.g., as in the case of the two-grid algorithm

application and having more processors than necessary for optimal loading of all processors by given

fixed discretization size.

t1 ∼ tNt+1 t2
· · ·

tm

t2m· · ·

t1 ∼ tNt+1 t2
· · ·

tm

t2m· · ·

Figure 3.6: gQMGRIT Construction: Illustration of two copies of the temporal grid, showing the shifted distri-
bution at F -Points (black) and C-Points (red)

We consider the matrix system Equation (3.26) and note two restriction operators. The first one is the

standard QMGRIT restriction operator

R1 :=



I 0 . . . 0

I 0 . . . 0

. . .

I 0 . . . 0


. (3.91)

The second one is the restriction operator with the shifted distribution at F and C points

R2 :=



0 I 0 . . . 0

I 0 . . . 0

. . .

I 0 . . .


. (3.92)

Furthermore, we consider two prolongation operators with the shifted distribution at F and C points.

That is, the classical P1 and the shifted copy ones, P2
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P1 :=



I

Φ

...

Φm−1

. . .

I

Φ

...

Φm−1



, P2 :=



Φm−1

I

Φ

...

Φm−1

. . .

I

Φ

...

Φm−2



. (3.93)

In addition, we note two interchangeable operators, which give us the possibility of creating the de-

sired calculation by plaiting the braid of two solutions after two simultaneous iterations. Through this

plaiting, all points in the resulting solution have undergone an F -relaxation.

G1 :=



0

I
. . .

I

0

I
. . .

I

0



,
G2 :=



I

0

. . .

0

I

0

. . .

0

I



.

(3.94)

Once more, withAc as the initial value system re-discretization andA∆ as the periodic Schur comple-

ment, we construct two copies of two-grid QMGRIT application as follows

Q1 := P1(Ic −A−1
c A∆)(Ic −A∆)R1 (3.95)

and

Q2 := P2(Ic −A−1
c A∆)(Ic −A∆)R2, (3.96)
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so that the iteration operator of the two-grid gQMGRIT is defined as

Qg := G1Q1 +G2Q2. (3.97)

Exploiting the operators structure, the following result holds.

Theorem 3.9.

‖Qg‖max < ‖Q1‖max (3.98)

and

‖Qg‖1 < ‖Q1‖1. (3.99)

Proof. For the sake of readability and a better graphic visualization of large matrices — due to space

limitations on a small sheet of paper and for a better visual introduction to the gQMGRIT operators,

we present a proof for Nt = 8 and Nc = 4 (wherem = Nt/Nc = 2). The generalization to any feasible

combination of m,Nc, andNt follows the same approach. We will use the calculus from Theorem 3.7

and write down the first operator

Q1 =

0 0 0 0 Φ2m 0 0 0

0 0 0 0 Φ3m−1 0 0 0

0 0 0 0 Φ2mΦc 0 Φm (Φm − Φc) 0

0 0 0 0 Φ3m−1Φc 0 Φ2m−1 (Φm − Φc) 0

Φm (Φm − Φc) 0 0 0 Φ2mΦNc−2
c 0 ΦmΦc (Φm − Φc) 0

Φ2m−1 (Φm − Φc) 0 0 0 Φ3m−1ΦNc−2
c 0 Φm+1Φc (Φm − Φc) 0

ΦmΦc (Φm − Φc) 0 Φm (Φm − Φc) 0 Φ2mΦNc−1
c 0 ΦmΦ2

c (Φ
m − Φc) 0

Φ2m−1Φc (Φm − Φc) 0 Φ2m−1 (Φm − Φc) 0 Φ3m−1ΦNc−1
c 0 Φ2m−1Φ2

c (Φ
m − Φc) 0


.

(3.100)
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For the given discretization parameters, the second operator is

Q2 =

0 Φ3Φc
(
Φ2 − Φc

)
0 Φ3

(
Φ2 − Φc

)
0 Φ5Φ3

c 0 Φ3Φ2
c

(
Φ2 − Φc

)
0 0 0 0 0 Φ4 0 0

0 0 0 0 0 Φ5 0 0

0 0 0 0 0 Φ4Φc 0 Φ2
(
Φ2 − Φc

)
0 0 0 0 0 Φ5Φc 0 Φ3

(
Φ2 − Φc

)
0 Φ2

(
Φ2 − Φc

)
0 0 0 Φ4Φ2

c 0 Φ2Φc
(
Φ2 − Φc

)
0 Φ3

(
Φ2 − Φc

)
0 0 0 Φ5Φ2

c 0 Φ3Φc
(
Φ2 − Φc

)
0 Φ2Φc

(
Φ2 − Φc

)
0 Φ2

(
Φ2 − Φc

)
0 Φ4Φ3

c 0 Φ2Φ2
c

(
Φ2 − Φc

)


. (3.101)

Therefore, we can directly conclude the gQMGRIT operator

Qg =

0 Φ3Φc

(
Φ2 − Φc

)
0 Φ3

(
Φ2 − Φc

)
0 Φ5Φ3

c 0 Φ3Φ2
c

(
Φ2 − Φc

)
0 0 0 0 Φ5 0 0 0

0 0 0 0 0 Φ5 0 0

0 0 0 0 Φ5Φc 0 Φ3
(
Φ2 − Φc

)
0

0 0 0 0 0 Φ5Φc 0 Φ3
(
Φ2 − Φc

)
Φ3

(
Φ2 − Φc

)
0 0 0 Φ5Φ2

c 0 Φ3Φc

(
Φ2 − Φc

)
0

0 Φ3
(
Φ2 − Φc

)
0 0 0 Φ5Φ2

c 0 Φ3Φc

(
Φ2 − Φc

)
Φ3Φc

(
Φ2 − Φc

)
0 Φ3

(
Φ2 − Φc

)
0 Φ5Φ3

c 0 Φ3Φ2
c

(
Φ2 − Φc

)
0


.

(3.102)

Now, we calculate the maximum norm

‖Qg‖max = max
1≤i,j≤8(Nx+1)

| (Qg)ij |

= max{‖Φ3
(
Φ2 − Φc

)
‖max, ‖Φ5‖max}

= ‖Φ5‖max

< ‖Φ4‖max = ‖Q2‖max

= ‖Q1‖max.

This leads to (3.98). Considering the columns, we further observe the action of gQMGRIT paradigm,

which involves the division of all columns, and particularly the fifth dominant block-column of Q1

(corresponding to the sixth block-column of Q2) into two distinct parts. Thus, (3.99) is evident.

Remark 3.10. Since Q2 is obtained by circularly shifting the elements of Q1, we can express their rela-
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tionship using the permutation matrix S as follows

Q2 = StQ1S, (3.103)

where S is the permutation matrix given by

S =



0 1 · · · 0

...
...

. . .
...

0 0 · · · 1

1 0 · · · 0


. (3.104)

Thus, we can conclude that Q1 and Q2 are similar matrices, Q1 ∼ Q2, which implies that they share

the same eigenvalues, while their eigenvectors are related by the permutation matrix S. In other words,

if λ is an eigenvalue of Q1 with corresponding eigenvector v, then λ is also an eigenvalue of Q2 with

corresponding eigenvector Stv.

3.2.4 Alternative Analysis Methodology with SAMA

Semi-Algebraic Mode Analysis expands the analysis possibilities available in the toolkit for analysis of

multi-grid methods generalizing LFA — this method creatively merges LFA in space with an exact

algebraic approach in time to provide a new perspective, which is a contemporary and precise way

to analyze multi-grid methods. SAMA’s inception, credited to Friedhoff and MacLachlan11, noted a

prominent advance in the predictive analysis of such methods, particularly valuable for systems char-

acterized by non-circulantmatriceswhichmulti-grid iterationmatrices often exhibit [20, 40, 42, 59, 72].

When dealing with periodic problems, where the system matrix traditionally assumes a circulant

structure conducive to LFA, the QMGRIT method’s iteration matrix presents a challenge because of

its non-circulant nature — this complexity arises from approximating the coarse problem with an

initial value problem within QMGRIT, rendering LFA less effective (see Appendix A) and thus elevat-

ing the importance of SAMA for our analysis. By using SAMA, we produce a richer understanding

of the QMGRIT method by obtaining an algebraic decomposition that shows the method’s eigenvalue

structure, which is essential for predicting performance accurately. By representing matrices for time

11Scott P. MacLachlan is a mathematician recognized for his contributions to numerical analysis, particularly in the develop-
ment of multi-grid and AMG methods. His work has advanced the efficiency and theoretical understanding of computational
methods for solving partial differential equations in scientific and engineering applications.
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stepping and spatial discretization with the Kronecker12 product, we also illustrate the algebraic so-

phistication of SAMA’s approach. We write

Apup = (J ⊗ INx + INt ⊗O)up = bp, (3.105)

where

J =
1

∆t



1 −1

−1 1

−1 1

−1 1

. . . . . .


, O =

1

∆x2



2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 2


. (3.106)

Then, we have

Ap =



J0 +O J−1

J−1 J0 +O
. . . . . .

J−1 J0 +O


(3.107)

with J0 = (1/∆t) INx and J−1 = − (1/∆t) INx . Applying the SAMA, which involves block-wise

Fourier transformation, F , and permutation of the system matrix, P , such that the time direction is

the innermost, we obtain

P−1F−1ApFP =



B
(Ap)
1

B
(Ap)
2

. . .

B
(Ap)
Nx


, (3.108)

12Leopold Kronecker (*7 December 1823 in Liegnitz, Prussia (now Legnica, Poland); †29 December 1891 in Berlin, Germany)
was a Germanmathematician known for his work in algebra, number theory, and the foundations of mathematics. Kronecker’s
contributions include the Kronecker delta and the Kronecker product, as well as his views on the philosophy of mathematics,
particularly his dictum: ‘God made the integers; all else is the work of man’.
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where

B
(Ap)
k =



j0 + λk j−1

j−1 j0 + λk

. . . . . .

j−1 j0 + λk


, (3.109)

and also

P−1F−1PΦFP =



B
(PΦ)
1

B
(PΦ)
2

. . .

B
(PΦ)
Nx−1


, (3.110)

where B(PΦ)
k = INt/m ⊗ v with v =

(
1, λk, λ

2
k, . . . , λ

m−1
k

)T
. Furthermore,

B
(Âp)
k =



1 −λ̂k

−λ̂k 1

. . . . . .

−λ̂k 1


, B

(Âc)
k =



1

−λ̂c;k 1

. . . . . .

−λ̂c;k 1


(3.111)

with the eigenvalues λ̂k =
(
1 + 4∆t

∆x2 sin2
(

kπ
2Nx

))−1

for the fine equations system, and

λ̂c;k =
(
1 + 4m∆t

∆x2 sin2
(

kπ
2Nx

))−1

for the coarse one. Complementing the analysis we also note the

following

B

(
SF

)
k =



Z

(
SF

)

Z

(
SF

)
. . .

Z

(
SF

)


,

B

(
SC

)
k =



Z

(
SC

)
λ̂kê1ê

T
m

λ̂kê1ê
T
m Z

(
SC

)
. . . . . .

λ̂kê1ê
T
m Z

(
SC

)


(3.112)

with
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Z

(
SF

)
=



1

λ̂k

λ̂2
k

...

λ̂m−1
k


, Z

(
SC

)
=



0

1

1

. . .

1


, (3.113)

ê1 = [1, 0, 0, . . . , 0]T , and êm = [0, . . . , 0, 0, 1]T . Putting the corresponding matrices together into the

iteration operator for each eigenvalue in spatial dimension, we get

B
Q(1,1,1)
k =

I−B
(PΦ)
k

(
B

(
Âc

)
k

)−1

B
(RI)
k B

(Âp)
k

B

(
SF

)
k B

(
SC

)
k B

(
SF

)
k , (3.114)

and so define the SAMA prediction on the convergence factor for an iteration

ρsama (Q(1, 1, 1)) := sup
k

{∥∥∥BQ(1,1,1)
k

∥∥∥
2

}
. (3.115)

In our investigation, we include the SAMA asmore of a sidekick for our previously done spectral study

of the QMGRIT. This method helps us understand the dynamics of the multi-grid method more fully

thanwewould get if we only had the spectral study — especially since this iterationmatrix of QMGRIT

is non-circulant. On top, wehope thiswork exemplifies howSAMA is a very robust framework andhow

it complements the depth and insight gained from doing a spectral study by hand — this framework is

also the embodiment of howutilizing SAMAcould provide a useful predictive indicator of convergence

and an extension of the analysis that we propose in this research. Incorporating SAMA with spectral

analysis of QMGRIT in Section 3.2.1manifests a deepened understanding of its behavior, thatmay help

us to understand the theoretical and practical consequences of the work in the field of computational

mathematics.

Numerical Validation with SAMA

Following definition of gQMGRIT in Equation (3.97), definition of SAMA prediction in (3.115) and

Remark 3.10, in this section, we utilize the SAMA methodology, applying it to both the QMGRIT and

the gQMGRIT algorithms — this approach allows us to compare these two methods in terms of ana-

lytical predictions on convergence behaviour. Applying the QMGRIT algorithm and comparing it with
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the gQMGRIT, we analyze both using SAMA on the grounded 1D+1D heat equation — this analy-

sis is vital for understanding the convergence behaviour of these algorithms and for evaluating their

performance in practical applications.

Figure 3.7: A discrete composition of convergence behavior as functions of Nt = Nx in four samplings with
one hundred realizations: two numerical calculations and two analytic SAMA predictions (for QMGRIT and
gQMGRIT, respectively). The SAMA analysis accurately predicts the numerical behavior of the algorithms,
showcasing the distinct advantage of the gQMGRIT paradigm over the standard QMGRIT application.

Our numerical findings suggest the superiority of the gQMGRIT approach over the counterpart, the

plain QMGRIT, and we verify that we can obtain 30%more efficient convergence factors for the given

heat equation model problem, as proved in the SAMAmethodology — the improvement for the heat

equation model problem, as proven by the SAMAmethodology, is remarkable and indicates profound

improvement in algorithm performance and convergence rate. From Figures 3.7 and 3.8, we collect a

comprehensive data set of numerical 1D+1D-dimensional grounded heat equation simulations and

respective analysis calculations for the convergence factor. These figures illustrate the superior per-

formance of the gQMGRIT algorithm, demonstrating its potential for significantly improving the con-

vergence rate in solving the heat equation. The additive representation of the convergence rate im-

provement, as depicted in Figure 3.8, provides a clear and quantifiable measure of the gQMGRIT’s

advantage over QMGRIT, further validating the SAMA methodology as a powerful tool for predicting

and comparing the performance of numerical algorithms. For a comparison of SAMA with LFA see

Appendix A.
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Figure 3.8: Using the formula 100

(
ρsama

(
T

(1,1,2)
QMGRIT

)
ρsama

(
TgQMGRIT

) − 1

)
%, this figure plots an additive representation of the

algorithmic convergence rate improvement of the gQMGRIT algorithm compared to the QMGRIT.

3.2.5 Comparison with periodic Parareal

Parareal-End

To derive the Parareal for time-periodic problems, one uses the relationship of the Parareal algorithm to

themultiple-shootingmethod [46]. To this end, one notes the fitting conditions fulfilled by the solution

u,

U1 − uN (T1,UN ) = 0,U2 − u1 (T2,U1) = 0, . . . ,UN − uN−1 (TN ,UN−1) = 0, (3.116)

where un (Tn+1,Un) , n = 1, . . . , N , denotes the solution at Tn+1 of the corresponding problem with

initial valueUn. These fitting conditions form a nonlinear system of equations

F(U) = 0, U =
(
UT

1 ,U
T
2 , . . . ,U

T
N

)T
, (3.117)

and applying Newton’s13 method to solve it leads to

Uk+1 = Uk − J−1
F

(
Uk
)
F
(
Uk
)
, (3.118)

13Sir Isaac Newton (*25 December 1642 in Woolsthorpe, Lincolnshire, England; †20 March 1727 in Kensington, Middlesex,
England) was an English mathematician, physicist, astronomer, and author, widely recognized as one of the most influential
scientists of all time and a key figure in the scientific revolution. His work Philosophiæ Naturalis Principia Mathematica (Math-
ematical Principles of Natural Philosophy), first published in 1687.
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where the Jacobian14 JF of F is given by

JF =



I − ∂uN

∂UN

(
T1,Uk

N

)
− ∂u1

∂U1

(
T2,Uk

1

)
I

− ∂u2

∂U2

(
T3,Uk

2

)
I

. . . . . .

− ∂uN−1

∂UN−1

(
TN ,Uk

N−1

)
I


. (3.119)

Multiplying (3.118) with JF
(
Uk
)
, we get the recurrence of the multiple shooting method applied to

the time-periodic problem [46]

Uk+1
1 = uN

(
T1,Uk

N

)
+

∂uN

∂UN

(
T1,Uk

N

) (
Uk+1

N −Uk
N

)
,

Uk+1
n+1 = un

(
Tn+1,Uk

n

)
+

∂un

∂Un

(
Tn+1,Uk

n

) (
Uk+1

n −Uk
n

)
, n = 1, . . . , N − 1.

(3.120)

Approximating the exact solution in the multiple shooting method (3.120) by an accurate numerical

approximation, denoted by F (the fine propagator), un

(
Tn+1,Uk

n

)
≈ F

(
Tn+1, Tn,Uk

n

)
, and if one

approximates the term from the Jacobian by a FD of a cheap numerical approximation, denoted by G

(the coarse propagator),

∂un

∂Un

(
Tn+1,Uk

n

) (
Uk+1

n −Uk
n

)
≈ G

(
Tn+1, Tn,Uk+1

n

)
−G

(
Tn+1, Tn,Uk

n

)
, (3.121)

then one gets the following Parareal algorithm, PP-PC15 [46], for the time-periodic problems

Uk+1
1 = F

(
TN+1, TN ,Uk

N

)
+G

(
TN+1, TN ,Uk+1

N

)
−G

(
TN+1, TN ,Uk

N

)
,

Uk+1
n+1 = F

(
Tn+1, Tn,Uk

n

)
+G

(
Tn+1, Tn,Uk+1

n

)
−G

(
Tn+1, Tn,Uk

n

)
, n = 1, . . . , N − 1.

(3.122)

Similarly, one gets another, ‘relaxed’ one, method, PP-IC16 [46],

Uk+1
1 = Uk

N+1,

Uk+1
n+1 = F

(
Tn+1, Tn,Uk

n

)
+G

(
Tn+1, Tn,Uk+1

n

)
−G

(
Tn+1, Tn,Uk

n

)
, n = 1, . . . , N.

(3.123)

14Carl Gustav Jacob Jacobi (*10 December 1804 in Potsdam, Kingdom of Prussia; †18 February 1851 in Berlin, Kingdom of
Prussia) was a Germanmathematician, making pivotal contributions to elliptic functions, differential equations, andmechanics.
Jacobi’s work in developing the theory of Jacobi elliptic functions and the application of his methods to the theory of dynamics
has had a profound impact on the development of mathematics in the 19th century.

15Periodic Parareal - Periodic Coarse
16Periodic Parareal - Initial Coarse
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Note the distinction in the index n′s range between the two approaches: for the first, n ranges from 1

toN − 1, while for the second, n extends from 1 toN , inclusively.

QMGRIT-End

Our objective is to delineate the periodic Parareal algorithm within the framework of QMGRIT. We

will adopt the methodology outlined in [49] for this representation. To this end, we apply the periodic

Parareal technique to our periodic linear equation system, as detailed in Equation (3.124), discretized

on C-Points, according to Equation (3.126) — so, let

Au ≡



I −Φ

−Φ I

−Φ I
. . . . . .

−Φ I


·



u1

u2

u3

...

uN


=



b1

b2

b3
...

bN


≡ b. (3.124)

We define

Ac :=



I −Φc

−Φc I

−Φc I
. . . . . .

−Φc I


(3.125)

and write

Acuc = bc, (3.126)

where bc is the discretized on theC-Points modified right hand side of some given ODE. Furthermore,

we calculate

A∆uc = Ridealb = bc. (3.127)

Applying the Parareal algorithm (3.122) to solve the linear system (3.126) induced from the given ODE,

we write
uk+1
1,c := Φmuk

N,c + b1,c +Φcu
k+1
N,c − Φcu

k
N,c,

uk+1
i+1,c := Φmuk

i,c + bi+1,c +Φcu
k+1
i,c − Φcu

k
i,c, i = 1, 2, . . . , N − 1.

(3.128)
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It follows,

u(k+1)
c = u(k)

c +A−1
c

(
bc −A∆u(k)

c

)
, (3.129)

so when solving the Equation (3.127), one is therefore able to denote the error propagation operator of

the periodic Parareal PP-PC by

P (Ic −A−1
c A∆)RI , (3.130)

and then, relaxing the scheme by approximating on the coarse grid the matrix Ac with the matrix Ãc,

whereas

Ãc :=



IR

−Φc IR

−Φc IR
. . . . . .

−Φc IR


, (3.131)

one denotes error propagation operator for the periodic Parareal PP-IC, considered up to a projection

map that glues endpoints in time, by the following expression

P (Ic − Ã−1
c A∆)RI . (3.132)

This representation inherently includes the modulo projection map adjustment, making PP-IC equiv-

alent to the two-grid 1-QMGRIT-0 method, i.e., the PP-IC provides the solution at all time points, with

the first time point being a copy of the last time point, and in contrast, the two-grid 1-QMGRIT-0

method provides the solution at all time points except the last one, which can be appended as a copy

of the first time point, yielding the same result as the PP-IC solution.

3.3 Intermediate Conclusion

To wrap up, this chapter was devoted to the introduction and the underlying theory of the QMGRIT

algorithm, which provides a new alternative to classical multi-gridmethods for the solution of periodic

time-dependent PDEs — it has shown the extension of the application of the QMGRIT algorithm to

situations where standard two-grid methods could be applied, as well as the possibility of further scal-
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ing up for the efficient and scalable solving of PDEs in a parallel programming context. This chapter,

accessing the primary four objectives of this thesis, sets the stage for subsequent numerical experiments

by the following.

• Providing themathematicalmodel and the constituent algorithms that form theQMGRITmethod,

which illustrates its unique multi-level structure and its special operators to address periodicity

in the time domain.

• Discussing the advantages of QMGRIT over classical MGRIT and comparing theoretically with

known two-grid PinT algorithms.

• Focusing on the respective convergence rates estimationmethodologies, such as spectral analysis

and SAMA

• Providing the strategy for integratingQMGRIT into existingHPCplatforms, such as the gQMGRIT

parallelization paradigm, to exploit its performance and its capabilities in parallel and scalable

computations.

Our numerical investigations will further verify the theory presented and solidify the effectiveness and

efficiency of the QMGRIT method across a number of periodic problems, and provide empirical evi-

dence that the QMGRIT algorithm has the potential to change the way periodic problems are solved in

computational science and engineering in terms of speed and robustness — aswe progress, the results

in conjunction with those of both the analytical and numerical studies will help us to comprehend the

potential of QMGRIT alongside its limitations and possible advancements, which will be the basis for

drawing then our summary and conclusions in the final chapter.
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Chapter 4

Numerical Experiments

This chapter will examine the convergence and performance of QMGRIT by applying it to different

test problems. The scalability of the linear and non-linear model problem will be investigated, and nu-

merical results will be compared with the analytical solution, in the first test case of the coaxial cable

problem in Section 4.1. After this, we show results on the acceleration of computations by applying

QMGRIT to a linear and non-linear test model of an electrical machine in Section 4.2. We also com-

pare the numerical results with the analytical solution and examine whether QMGRIT converges for

the convection-diffusion-decay test equation in Section 4.3. After that, we examine the convergence of

QMGRIT for the test wave equation case, also comparing the provided solutions to the analytical so-

lution, while reviewing the wave equation as a two-variable problem in Section 4.4. Lastly, in order to

clarify the possible relationship between the following two solving approaches, we will conduct an em-

pirical study on QMGRIT’s usage as a preconditioner for the Generalized Minimal Residual (GMRES)

method in Section 4.5.

4.1 Coaxial Cable Problem

In a specified, finite domainΩwithinR3 and during a time interval I = [t0, tend] that belongs toR≥ 0,

the behavior of electromagnetic fields within Ω× I is determined by Maxwell’s equations [75]

∇× E = −∂tB, ∇×H = ∂tD + J, (4.1)

∇ ·B = 0, ∇ ·D = ρ, (4.2)
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r0

r1

r2

Figure 4.1: Illustration of a cable with a central conductor (see also [38]), including a 2D cross-sectional view
in x-y-plane. The wire is represented by the central dark grey region, 0 ≤ r ≤ r0, while the conducting sheath
is shown in lighter grey, r1 ≤ r ≤ r2, and the space between r0 and r1 is filled with the air.

accompanied by appropriate initial and boundary conditions at time t0 and along ∂Ω, respectively.

In our scenario, involving constitutive relation between mentioned physical quantities, these founda-

tional equations are augmented by relationships

D = εE, J = σE + Js, B = µH. (4.3)

Here,H denotes the magnetic field intensity,B the magnetic flux density,E the electric field intensity,

D the electric displacement field. J , Jσ = σE, Jd = ∂tD and Js signify, respectively, the total, Ohmic,

displacement, and source current densities, with ρ denoting the charge density. The constants σ ≥

0, ε > 0, and µ > 0, respectively, represent the electrical conductivity, permittivity, and magnetic

permeability of the material, assumed here to be scalar quantities [41].

This work explores the scenario where the displacement current, indicative of capacitive effects, is

minor compared to the source currents, expressed as

‖Jd‖ = ‖∂tD‖ � ‖Js‖. (4.4)

A discussion on themodel’s accuracy in the described approximation is available in [106]. Ignoring the

displacement current, i.e., setting ∂tD = 0 in Maxwell’s equations, introduces the concept of the mag-

netoquasistatic approximation, also known as the eddy current problem — this approach explains the

skin effect, where increasing frequency causes currents to concentrate near the surface of a conductor

(see [41] and [75, Chapter 5.18]).
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4.1.1 The Partial Differential Equation

Within themagnetoquasistatic approximation, we employ themagnetic vector potentialA to both char-

acterizemagnetic fields and, implicitly, electric fields through temporal derivatives — this streamlines

the electromagnetic phenomena under the assumption of negligible displacement currents. The elec-

tric field E is derived from the time rate of change of A, effectively simplifying the analysis

E = −∂tA, (4.5)

leading to a PDE written with the curl-curl operator

∇× (ν∇×A) + σ
∂A

∂t
= Js, (4.6)

where ν = µ−1 denotes again the reluctivity (inverse of permeability), σ represents the conductivity;

Js is the source current density from external source, expressed as Js(x, y, z, t) = J0(x, y, z) sin(ωt)

with ω = 2πf , linking to the source’s frequency f . For cases with minimal spatial variation along one

dimension, it is practical to limit the analysis to a 2D cross-section, the x-y-cross-section in our test

case, as illustrated in Figure 4.1 — this reduction permits assumptions

Js = (0, 0, Js,z), (4.7)

B = (Bx, By, 0), (4.8)

A = (0, 0, Az), (4.9)

that to further simplify the governing equations. Focusing on the z-component of A, we reduce the

Equation (4.6) to

∇ · (ν∇Az(x, y, t)) + σ
∂Az(x, y, t)

∂t
= Js,z, (4.10)

which mirrors the structure of the heat equation (see Section 3.1.4), distinguished by the non-negative

conductivity σ [41] (when comparing with thermal diffusivity coefficient a).

4.1.2 Derivation of the Analytical Solution

To obtain an analytical solution for the Equation (4.6), we will consider further symmetries. The series

of transformation and simplification from the original PDE that describes electromagnetic phenomena
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are specified by a number of mathematical steps. The final outcome of this process is documented in

[41], but the intermediate steps are omitted — thus, we will undertake the task of exploring these

steps independently.

1. By transitioning topolar coordinates and exploiting the radial symmetry of the coaxial structure

(assuming no angular variation), we build on (4.10) and simplify equation (4.6) further — this

adjustment aligns the physical symmetries of the coaxial cable with the mathematical model

polar coordinates⇐⇒
∂Az(ϕ,r,t)/∂ϕ=0

−1

r

∂

∂r

(
rν

∂Az(r, t)

∂r

)
+ σ

∂Az(r, t)

∂t
= J0(r, t). (4.11)

2. The application of phasor calculus1 transforms the time-domain equation into the frequency

domain, facilitating the analysis of the system’s steady-state response to sinusoidal inputs —

from Equation (4.11) we proceed to

phasor⇐⇒
calculus

−1

r

∂

∂r

(
rν

∂Az(r) cos(ωt+ ϕ0)

∂r

)
+ σ

∂Az(r) cos(ωt+ ϕ0)

∂t
= J0(r) cos(ωt+ ϕ0).

(4.12)

3. Adjusting for phase shift, specifically setting the initial phase to zero, focuses the analysis on

the real components — simplifying the mathematical treatment by neglecting phase shifts in

sinusoidal functions — so, the Equation (4.12) leads to

ϕ0=0⇐⇒ −1

r

∂

∂r

(
rν

∂<
{
Az(r)e

iωt
}

∂r

)
+ σ

∂<
{
Az(r)e

iωt
}

∂t
= <{J0(r)eiωt}. (4.13)

4. Through the use of differential calculus — the equation is decomposed into real and imagi-

nary parts —, and concentrating on the real part from (4.13) we get

differential⇐⇒
calculus

<
{
−1

r

∂

∂r

(
rν

∂Az(r)

∂r

)
eiωt

}
+ <

{
iωσAz(r)e

iωt
}
= <{J0(r)eiωt}. (4.14)

5. A bijective time shift is applied to (4.14) to provide the imaginary component of the system’s

response, allowing for a forthcoming employment of both magnitude and phase aspects of the

1Phasor calculus represents sinusoidal functions as complex numbers, transforming time-domain Maxwell’s equations into
frequency-domain algebraic equations for simplified analysis of linear, time-invariant electromagnetic systems with sinusoidal
steady-state signals [55].
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magnetic vector potential linked to the source current density

t↪→→t− π
2ω⇐⇒ =

{
−1

r

∂

∂r

(
rν

∂Az(r)

∂r

)
eiωt

}
+ =

{
iωσAz(r)e

iωt
}
= ={J0(r)eiωt}. (4.15)

6. The combination of real and imaginary formulations leads to a comprehensive equation

that considers both the magnitude and phase of the system’s response — this equation, in its

simplified form, directly relates the magnetic vector potentialAz with the source current density

J0
(4.14)+i·(4.15)

=⇒ −1

r

∂

∂r

(
rν

∂Az(r)

∂r

)
eiωt + iωσAz(r)e

iωt = J0(r)e
iωt. (4.16)

Each step in the previous sequence of six reformulation steps systematically refines and transforms the

problem into a form amenable to analytical solution. From Equation (4.16) we get

·e−iωt

⇐⇒ −1

r

∂

∂r

(
rν

∂Az(r)

∂r

)
+ iωσAz(r) = J0(r), (4.17)

showcasing the mathematical strategies employed in solving the PDE and/or simulating electromag-

netic fields within coaxial cables — this modelling leads further to a series of following equations,

each representing different regions within the cable, see Figure 4.1, and their respective boundary con-

ditions. The following set of equations delineates the formulations across these different regions

=⇒



− 1
r

∂
∂r

(
r ∂Az(r)

∂r

)
= µ0J0, for r < r0

− 1
r

∂
∂r

(
r ∂Az(r)

∂r

)
= 0, for r0 < r < r1

− 1
r

∂
∂r

(
rν2

∂Az(r)
∂r

)
+ iωσ2Az(r) = 0, for r1 < r < r2

Hϕ(r) = −ν ∂Az(r)
∂r .

(4.18)

Whereas the formulations across different radial distances from the coaxial cable’s centre are derived

under following specific assumptions.

• Inside the inner conductor (r < r0): The magnetic vector potential A
(0)
z (r) and the corre-

spondingmagnetic field strengthH(0)
ϕ are derived considering the presence of the source current

density J0; the solution reflects the physical behavior of themagnetic fields within the inner con-

ductor.

77



Chapter 4. Numerical Experiments April 11, 2025

• In the insulating region (r0 < r < r1): This region is characterized by the absence of free

currents, leading to a simpler form of the magnetic vector potential A(1)
z (r) and magnetic field

strength H
(1)
ϕ ; the logarithmic nature of the potential in this region stems from the cylindrical

geometry of the problem.

• Within the outer conductor (r1 < r < r2): Here, the impact of the material’s properties,

including its conductivity σ2 and permeability µ2, on the magnetic vector potential A
(2)
z (r) and

field strengthH
(2)
ϕ is considered; the solution involves modified Bessel2 functions, reflecting the

complex behavior in this conductive region under alternating currents.

So, a set of equations in (4.18) can be resolved into

=⇒



A
(0)
z (r) = −J0r

2µ0

4 − C0 ln(r)− C5, for r < r0

H
(0)
ϕ = J0r

2 , for r < r0

A
(1)
z (r) = C3 ln(r) + C4, for r0 < r < r1

H
(1)
ϕ = −C3

1
rµ0

, for r0 < r < r1

A
(2)
z (r) = C1

I0(ξr)
I0(ξr2)

+ C2
K0(ξr)
K0(ξr2)

, for r1 < r < r2

H
(2)
ϕ (r) = −C1ν2ξ

I1(ξr)
I0(ξr2)

+ C2ν2ξ
K1(ξr)
K0(ξr2)

, for r1 < r < r2

|Az(0)| <∞

A
(0)
z (r0) = A

(1)
z (r0)

H
(0)
ϕ (r0) = H

(1)
ϕ (r0)

A
(1)
z (r1) = A

(2)
z (r1)

H
(1)
ϕ (r1) = H

(2)
ϕ (r1)

A
(2)
z (r2) = 0,

(4.19)

with the Helmholtz3 constant ξ := (1+ i)/δ, where δ :=
√

2/ωµ2σ2 is the skin depth of the tube region.

2FriedrichWilhelm Bessel (*22 July 1784 in Minden, Minden-Ravensberg, Holy Roman Empire; †17 March 1846 in Königs-
berg, Kingdom of Prussia) was a German mathematician, astronomer, and geodesist, best known for his work in astronomy on
the parallax of 61 Cygni, which allowed for the determination of the distance from the Earth to a star. His contributions tomath-
ematics include the development of Bessel functions, critical for the solutions of certain differential equations with applications
in physics and engineering.

3Hermann vonHelmholtz (*31 August 1821 in Potsdam, Kingdom of Prussia; †8 September 1894 in Charlottenburg, German
Empire) was a German physicist and physician, renowned for his contributions to the understanding of the conservation of
energy, electrodynamics, thermodynamics, and acoustics. His work laid foundational principles for the fields of biomechanics
and visual and auditory perception, influencing both science and philosophy.
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Iα and Kα are zeroth-order modified Bessel functions of the first and second kind, respectively. Fur-

thermore, the continuity conditions at the boundaries between different regions ensure the physical

feasibility of the solution, as follows.

• The continuity of the magnetic vector potential and magnetic field strength across the interfaces

at r = r0 and r = r1 leads to a set of equations for determining the constants C0, C1, C2, C3, C4,

and C5.

• The Helmholtz constant ξ, related to the skin depth δ, plays a key role in describing the eddy

current, the electromagnetic field’s penetration into the outer sheath.

Solving (4.19) leads to

=⇒



A
(0)
z (r) = −J0r

2µ0

4 − C5, for r < r0

H
(0)
ϕ (r) = J0r

2 , for r < r0

A
(1)
z (r) = C3 ln(r) + C4, for r0 < r < r1

H
(1)
ϕ (r) = −C3

1
rµ0

, for r0 < r < r1

A
(2)
z (r) = C1

I0(ξr)
I0(ξr2)

+ C2
K0(ξr)
K0(ξr2)

, for r1 < r < r2

H
(2)
ϕ (r) = −C1ν2ξ

I1(ξr)
I0(ξr2)

+ C2ν2ξ
K1(ξr)
K0(ξr2)

, for r1 < r < r2

C1 = −C2,

C2 =
((

I1(ξr1)
I0(ξr2)

+ K1(ξr1)
K0(ξr2)

)
ν2ξ
)−1

J0r
2
0

2r1
,

C3 = −J0r
2
0µ0

2 ,

C4 = C2

(
I0(ξr1)
I0(ξr2)

− K0(ξr1)
K0(ξr2)

)
+

J0r
2
0µ0

2 ln(r1),

C5 = −J0r
2
0µ0

4 +
J0r

2
0µ0

2 ln(r0)− C4.

(4.20)

Upon computing the Bessel functions Iα and Kα, we determine the constants Ci for i = 1, 2, 3, 4, 5,

enabling the calculation of Az and Hϕ across the three specified radial domains. The final step to

obtain the analytical solution for the desired cable modelling involves transitioning back to the time

domain — this is achieved by multiplying the frequency domain solutions by exp(iωt) and taking the

real part, thus capturing the electromagnetic fields’ temporal behavior across these domains.
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4.1.3 Model Parameters

This section outlines explicitly the particular parameters and configuration of a cylindrical tubemodel,

illustrated in Figure 4.1. The model features a conducting wire within a pipe, characterized by distinct

material properties and geometric dimensions [41] , and consists of a straight cylindrical tube, with a

Table 4.1: Overview of Model Parameters and Material Properties

Parameter Value/Description

R Radius of the tube = 0.0254 m
r0 Radius of the wire = 0.1R
r1 Inner radius of the pipe = 0.5R
r2 Outer radius of the pipe = R
Iω Current amplitude = 100 A
f Frequency = 50 Hz
ω Angular frequency = 2πf rad/s
ν0, ν1, ν2 Reluctivity of regions = µ−1

0 , µ−1
1 , µ−1

2 respectively
µ0, µ1 Permeability of the wire and air = 795774.71545948−1 H/m
µ2 Permeability of the tube = 1000µ0 H/m
σ2 Conductivity of the tube = 10000000 S/m
J
(1)
0 (r) Current density in the wire = 100/πr20 A/m2

J
(2)
0 (r), J

(3)
0 (r) Current density in air and tube = 0 A/m2

conductingwire at its centre carrying a current Iω = 100, resulting in a current densityJ (1)
0 = Iω/(πr

2
0)

that varies sinusoidally at an angular frequency ω. The wire, with radius r0 = 0.00254, is encased

within a pipe characterized by inner and outer radii r1 = 0.0157 and r2 = 0.0254, respectively. Eddy

currents in the wire are neglected, implying σ0 = σ1 = 0. The intervening space between the wire and

the pipe is filled with air. The material properties specified for each region detailed in Table 4.1.

4.1.4 Non-linear Model Formulation

In models of significant practical relevance, the governing relationships of material properties fre-

quently display nonlinear characteristics. A critical aspect to consider, especially within the context

of eddy current analysis, is the saturation phenomenon prevalent in magnetic materials — this can

be mathematically represented as

H = ν(‖B‖2)B, (4.21)

where ν(·) denotes a suitable monotonic function characterized by well-established properties, as de-

tailed in [4]. Incorporating this non-linear material behaviour leads to the formulation of a non-linear
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version of the eddy current problem

∇ · (ν(‖∇A‖2)∇Az(x, y, t)) + σ
∂Az(x, y, t)

∂t
= Js,z. (4.22)

The operator exhibits a specific form of non-linearity, which is influenced by the derivative of the

variable under consideration, reminiscent of the well-known p-Laplace equation [41].

4.1.5 Numerics of QMGRIT

For a brief discussion on FEM see Appendix B. In our exploration, we look into the testing of vary-

ing γ in the γ-QMGRIT algorithm. Specifically, we employ a three-grid γ-QMGRIT and γ-QMGRIT

FAS algorithms complemented by a standard FCF -relaxation strategy. The algorithms are applied to

a 2D + 1D model problem, utilizing FEM on a triangulated spatial domain. This problem incorpo-

rates partially equal to zeros jumping coefficients and employs BE methods for spatial and temporal

dimensions, respectively. Thus navigating the challenges of a differential-algebraic equation system.

Linear Problem

Table 4.2 quantifies the impact of changing the electrical conductivity, σ2, and the number of coarseEW

iterations, γ, on computational efficiency. We clarify that the conductivity in other regions, i.e., σ0 and

σ1, is unchanged with the details presented in Table 4.1. We present the number of iterations required

to achieve a tolerance of 10−5, underlining the interaction between σ2 and γ. On the leftmost column

of the table, we list σ2 values. The remaining columns enumerate the needed iterations required to

reach this tolerance for an array of γ values ranging between 1 and 32. We observe a constant trend:

as σ2 increases, the number of iterations to achieve the tolerance also increases. On the other hand,

for each value of σ2, as γ increases, we observe that the number of iterations required decreases. This

observation accentuates that changing the number of coarse EW iterations has a impactful change on

the computational performance, especially as σ2 increases.

Parallelization Result

Figure 4.2 depicts the strong scaling performance of the 65-QMGRIT algorithm with a tolerance of

10−5 for a spatial-temporal problem. The x-axis consists of cores with numbers from 21 to 28, and

the y-axis consists of the time to solve in seconds (on a log scale). The graph shows two lines, the
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Table 4.2: Iterations required to achieve tolerance across varying σ2 and γ values

σ2

γ 1 2 4 8 16 32

1.0e+05 6 5 5 5 5 5
3.2e+05 13 6 5 5 5 5
1.0e+06 37 18 10 5 4 4
3.2e+06 102 50 26 13 7 4
1.0e+07 291 139 71 36 18 9

65-QMGRIT line, and what we term the ideal scaling line — the ideal scaling line is what the solver

would achieve if it had a doubling of the number of cores and that halved the solve time. The 65-

QMGRIT line decreases rapidly and tracks with the ideal scaling line perfectly when the numbers of

cores increase from 21 to 24. This indicates that the strong scaling performance is very good, i.e., as

the users adds more cores, the solver is making efficient use of the extra cores, and they will observe

a direct speedup in the amount of time. As the number of cores continues to increase from 24 to 28,

there is still a decrease in time to solve; however, it decreases less rapidly than when increasing from

21 to 24. This is a common behavior in parallel algorithms because running a larger number of cores

does increase the communication overhead, and it will become increasingly more difficult to evenly

balance the amount of work. Even though when the we add more cores past approximately 24, and

the 65-QMGRIT line deviates from the ideal scaling line, the 65-QMGRIT algorithm still enables a

pretty good amount of scaling and speedup. The time needed to solve the problem is reduced from

approximately 215 seconds on 21 cores to about 29 seconds on 28 cores — a significant decrease in

the time needed to solve the problem. In all, the figure demonstrates the strong scaling behavior of the

65-QMGRIT algorithm showing good performance and speedup up to 24 cores, and continued scaling,

though at a more gradual pace, as the number of cores increases. The simulations were conducted on

an Intel Xeon Phi Cluster consisting of four 1.4 GHz Intel Xeon Phi processors.

Non-linear Problem

In Table 4.3, analogously to the linear problem, the computational efficiency for non-linear scenarios

is catalogued meticulously in terms of changes of electrical conductivity, σ2, and the number of coarse

EW iterations, γ. The conductivity values for the other regions, outlined in Table 4.1, are kept constant

to ensure a consistent basis for comparison. The table details the iterations to satisfy a tolerance level

of 10−5 for each region, illustrating how σ2 and γ are related. The first column represents various σ2

values thatwere investigated, and the following columns account for thenumber of iterations necessary
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Figure 4.2: Scaling results with the five-grid 65-QMGRIT and tolerance 10−5

to satisfy the defined tolerance for a range of γ, from 1 to 32. From the data represented, there is again a

noticeable trend. A higher σ2 value requiredmore iterations to satisfy the tolerance, whichwas also the

case for linear constellation. For increasing values of γ, a lower number of iterationswere necessary for

each corresponding σ2 value investigated — the significance of γ in being able to lower the iteration

count with a higher σ2 value in a non-linear calculation is therefore noteworthy.

Table 4.3: Iterations required to achieve tolerance across varying σ2 and γ values in non-linear computations

σ2

γ 1 2 4 8 16 32

1.0e+05 6 4 4 4 4 4
3.2e+05 14 7 4 4 4 4
1.0e+06 38 14 10 7 4 4
3.2e+06 57 58 27 10 9 7
1.0e+07 110 163 66 18 23 13

Summing up, firstly used for the cable problem here, the new — in comparison with MGRIT —

intrinsic algorithmic leverage parameter, γ, which is based on the periodic iterative EW routine for

solving the coarse grid problem, provides a powerful tool for leveraging the convergence performance
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of QMGRIT.

4.2 Electrical Machine

We approach a challenging problem from the industrial engineering discourse, extensively studied in

recent years using PinT methods. Therefore, we note only briefly the consideration to a generalization

of the Coaxial Cable Problem application, a coupled equations system, which we will now introduce

in the forthcoming section. For more details, refer to [64, 65, 115, 116], and especially [66].

4.2.1 Numerical Experiments with QMGRIT andMachine — Speedup

In this section, we consider the governing parabolic PDE coupled with two kinematic equations for

a squirrel-cage induction motor steady-state modelling. We demonstrate the advantage of the algo-

rithmic non-invasiveness, parallel scalability, and high accuracy of the novel QMGRIT scheme in a

modern industrial task. We use an external 3kW four-pole electric machine model ‘im_3_kw’, as il-

lustrated in Figure 4.3, whose definition assumes a two-dimensional vector potential formulation of a

magnetic field problem [24] — it means we consider a simplification of Maxwell’s equations so that

only the components of the current respectively induction densities orthogonal to a machine’s spatial

two-dimensional cross-section respectively the machine’s shaft are taken into account [57, 107]. The

two kinematic equations with the periodic boundary condition in time are

θt = ν and Iνt + Cν + κθ = T (u), (4.23)

where θ and ν is the rotor angular displacement and the rotor angular velocity, respectively, I the mo-

ment of inertia, C and κ the friction and the torsion coefficient, respectively, u ∈ Rn is the vector

of (line-integrated) magnetic vector potentials, and T is the mechanical excitation given by the mag-

netic field. The no-load condition is considered levying the periodic operation of the motor [6, 47].

Our QMGRIT and QMGRIT FAS implementations extend an existing, efficient construction of the

MGRIT algorithm applied to the non-invasive machine simulation in the Python package PyMGRIT

[63]; whereas the non-invasive time step calculations are carried out utilizing an external, widely tun-

able library GetDP [25, 54], which is a FEM solver adapted for an integration in time with the BE
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Figure 4.3: Mesh view of the four-pole induction motor from the GetDP library [54]

method. As a stopping criterion we consider the Euclidean4 norm of a space-time residual of the main

electrical machine characteristics, Joule5 losses and rotor torque, less than 10−3. The following tests

were performed on an Intel Xeon Phi cluster consisting of four 1.4 GHz Intel Xeon Phi processors. In

an invasive manner, similar work was done in [3]. We inspect the model problem settings with lin-

ear reluctivity and represent results in Figure 4.4 and in Figure 4.5. The calculation shows that the
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(a) The Joule losses solution discretized in time
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Figure 4.4: The electrical machine behaviour discretized in time with a (biased) representation on the steady-
state simulation by the 10th period

time-stepping solution reaches the periodic solution at the 19th period. Table 4.4 lists experiments on

speedupwith three-gridQMGRIT solvers for themodel problemdiscretized on a space-time grid of size

4449× 1024 coarsing bym0 = m1 = 8 in time; whereas the periodic Parareal, PP-IC [46], respectively

4Euclid (*circa 300 BCE in Alexandria, Ptolemaic Egypt) was an ancient Greekmathematician often referred to as the ”father
of geometry.” His most famous work, ”Elements,” is a comprehensive compilation of geometry knowledge of his time and has
been one of the most influential works in the history of mathematics; his systematic approach and axiomatic method have laid
the foundations for modern mathematical rigour and logical reasoning.

5James Prescott Joule (*24 December 1818 in Salford, Lancashire, England; †11 October 1889 in Sale, Cheshire, England) was
an English physicist and brewer, best known for his research in thermodynamics and for establishing the mechanical equivalent
of heat. His discoveries led to the development of the first law of thermodynamics and laid the foundation for the modern field
of energy conservation.
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the time-stepping, the MGRIT, and the Parareal [83] solves are performed on a space-time grid of size

4449× 1024 respectively 4449× 19456. Table 4.4 provides an in-depth comparison of the performance

improvements achieved through various configurations of the MGRIT and QMGRIT algorithms. The

analysis concentrates on the speedup in time to the periodic solution for the machine model, utilizing

a discretized space-time grid and harnessing the computational power of an Intel Xeon Phi cluster.

Table 4.4: When modelling the steady-state of the machine, we show a speedup in time-to-solution compared
to the periodic solution. We compare the algorithms MGRIT and QMGRIT, respectively, with time-stepping
applied to the model discretized on a space-time grid of size 4449 × 19456 and 4449 × 1024. Tests were
performed on an Intel Xeon Phi Cluster consisting of four 1.4 GHz Intel Xeon Phi processors.

Algorithm
1-level

Time step
1 processor

two-grid
Parareal

128 processors

two-grid
Per. Parareal
128 processors

two-grid
Per. Parareal
32 processors

three-grid
MGRIT

128 processors

three-grid
MGRIT

128 processors
Coarsing - m0 = 152 m0 = 8 m0 = 32 m0 = 8,m1 = 8 m0 = 152,m1 = 8
Speedup
in time to

the periodic solution
1 2.98 4.39 9.16 1.68 2.26

Algorithm
1-level

Time step
1 processor

three-grid
1-QMGRIT
128 processors

three-grid
2-QMGRIT
128 processors

three-grid
3-QMGRIT
128 processors

three-grid
4-QMGRIT
128 processors

Coarsing - m0 = m1 = 8 m0 = m1 = 8 m0 = m1 = 8 m0 = m1 = 8
Speedup
in time to

the periodic solution
1 8.48 12.05 13.74 14.63

Key insights. The Table 4.4 showcases the effectiveness of the MGRIT and QMGRIT algorithms

in accelerating the time to reach a periodic solution in computational models.

• The transition from traditional time-stepping (1 processor) to a two-grid Parareal [83] approach

on 128 processors yields a speedup factor of 2.98, demonstrating the basic efficiency of parallel

solving.

• Implementing PP-IC [46] with optimal coarsening strategies, where the number of coarse time

intervals equals the number of processors (m0 = 32 for 32 processors andm0 = 8 for 128 proces-

sors), significantly improves performance. However, the speedup factor of 9.16 on 32 processors

is notably higher than the speedup factor of 4.39 on 128 processors. This difference is due to the

increased communication overhead and reduced workload per processor when using more pro-

cessors, potentially limiting the algorithm’s scalability — these findings suggest the necessity of

multi-grid development, which allows for simultaneous calculations on multiple levels or grids,

enabling feasible scalability on a larger number of processors.

• The introduction of a third level in the algorithm further improves the speedup, with the three-
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grid 1-QMGRIT configuration achieving an 8.48 speedup factor. This improvement is evenmore

pronounced in configurations with enhanced γ-QMGRIT strategies, γ = 2, 3, 4, culminating in

a 14.63 speedup factor for the three-grid 4-QMGRIT setup. The results are again underlining the

importance of QMGRIT’s algorithmic parameter γ.

Increased speeds were observed when quantized multi-grid strategies and processor mapping were

used in HPC environments. The process reconstitution and processor configuration uncovered by the

QMGRIT algorithm show promise in improving the overall time for solving large problems.

Remark 4.1. In general, our experiments with results on speedup provide neither aminimumnor amax-

imum of the speedup. First, because there is ample reason to debate the fairness of comparison based on

the starting constellations for the different approaches, such as the number of additionalCF -relaxations,

the coarsening factors, the randomness by the initial values or the number of EW relaxations for QMGRIT,

the nested iteration application, etc. Second, the load of processors that maximizes the potential for paral-

lelism for both approaches differs not only a priori due to the number of points required to simulate with

both approaches at a fixed discretization size, but also depends on a particular parallel architecture and

implementation. Therefore, performance modelling may be a part of future research, e.g., see [44, 66].

Figure 4.5 is used to illustrate a comparison between the QMGRIT solution and the biased seeking

of the machine steady-state simulation at the 10th period. Subfigures 4.5a and 4.5b show the Joule loss

and the rotor torque solutions, discretized in time, at one period. Subfigure 4.5c shows the periodical

rotor torque and Joule loss solutions, discretized in time for one period. For the steady-state simula-

tion of the electrical machine at the 10th periods, the bias is considerable, as can be observed visually.

To achieve a QMGRIT solution, the MGRIT algorithm requires more or fewer periods depending on

the predefined tolerance and material parameter settings. When considering linear material param-

eters, the MGRIT algorithm requires 19 periods to reach a tolerance of 10−3, as stated in Figure 4.5,

and 26 periods to reach a tolerance of 10−5. Considering non-linear material parameters, the MGRIT

algorithm requires 16 periods to reach a tolerance of 10−3 and 22 periods to reach a tolerance of 10−5.

These findings underline the critical importance of choosing the right number of periods a priori, when

modelling with the MGRIT algorithm to obtain accurate periodic solutions. The QMGRIT algorithm

does well in the simulation of the true steady-state behavior of the electrical machine, dealing a priori

with the only one period, thus overcoming the limitation of simulations over some fixed amount of

periods with MGRIT.
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Figure 4.5: Comparison of MGRIT and QMGRIT solutions: the machine’s steady-state simulation at the 10th
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4.3 Convection-Diffusion-Decay Equation

Building on the discussion of Section 3.1.5, we address the following topic: the convergence behavior

analysis of the multi-grid method.

4.3.1 Multi-grid Convergence

This section presents a convergence comparison between numerical convergence and analytical con-

vergence for each of the two-grid and three-grid approaches. We examine the convergence factors

that arise from QMGRIT, as well as the convergence factors obtained from an analytical convergence

analysis for two-grid and three-grid (explicitly calculating the eigenvalues of the three-grid iteration op-

erator) approaches; these four tables are presented in Tables 4.5 and 4.6 for the two-grid and in Tables

4.7 and 4.8 for the three-grid specifically. This comparison allows us to determine the correspondence

Table 4.5: Two-grid QMGRIT numerical convergence factors for diagonal Nt = Nx and different parameters
D = ν = λ

Nt = Nx D = ν = λ = 0.1 D = ν = λ = 1 D = ν = λ = 10

24 = 16 3.05e-01 4.92e-02 8.59e-04
25 = 32 2.92e-01 8.08e-02 4.01e-03
26 = 64 2.92e-01 8.86e-02 1.49e-02

Table 4.6: Two-grid QMGRIT analytical convergence factors for diagonal Nt = Nx and different parameters
D = ν = λ

Nt = Nx D = ν = λ = 0.1 D = ν = λ = 1 D = ν = λ = 10

24 = 16 3.05e-01 4.94e-02 8.69e-04
25 = 32 2.95e-01 8.14e-02 4.11e-03
26 = 64 2.92e-01 8.96e-02 1.49e-02

Table 4.7: Three-grid QMGRIT numerical convergence factors for diagonal Nt = Nx and different parameters
D = ν = λ

Nt = Nx D = ν = λ = 0.1 D = ν = λ = 1 D = ν = λ = 10

24 = 16 3.30e-01 4.93e-02 8.94e-04
25 = 32 2.86e-01 7.04e-02 4.59e-03
26 = 64 2.70e-01 1.06e-01 1.70e-02

between the numerical results and the expected behavior of the analytical results, and evaluates how

well QMGRIT can solve the convection-diffusion-decay equation.
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Table 4.8: Three-grid QMGRIT analytical convergence factors for diagonal Nt = Nx and different parameters
D = ν = λ

Nt = Nx D = ν = λ = 0.1 D = ν = λ = 1 D = ν = λ = 10

24 = 16 3.30e-01 5.13e-02 9.32e-04
25 = 32 2.87e-01 7.08e-02 4.69e-03
26 = 64 2.70e-01 9.90e-02 1.74e-02

Open Problem 1. Objective: The convection-diffusion-decay equation with periodic boundary

conditions of the first type — pure boundary value problem on a semi-infinite domain [84].

In this open problem, our attention is drawn to the exploration of Equation (4.24), particularly with in

Equation (4.25) — on contrary to Equations (3.45)-(3.47) — posited periodic boundary value condi-

tions (that alternatively may be seen as time-periodic initial value conditions in spatial dimension). Our

interests continue with parallel efforts for the wave equation, with a particular interest in applications to

medical imaging. The aim of the concern is the Fourier-Poisson-Kelvin problem for diffusion with convec-

tion and decay given by the equations

ut = Duxx − νux − λu, x > 0, t ∈ R, (4.24)

u(0, t) = g(t), g(t+ ω) = g(t), t ∈ R, (4.25)

where u represents the concentration of a substance, e.g., such as a drug or a biological marker, moving

through a biological medium. This is influenced by dispersion D > 0, drift velocity ν > 0, decay λ > 0,

and the function g(t) that is a bounded, continuous function, showing ω-periodicity, which can reflect,

e.g., the cyclical nature of biological processes or treatment schedules — in the field of medical science,

the equation may play a big role, resolving the dispersion and transport of pharmaceuticals in the human

body and the subsequent diffusion processes in tissues. Moreover, modelling the dispersion and magni-

fication of micro-, nano- or macro-particles in biological environments may also play an important role

in understanding how these foreign substances could move in cellular environments — these models are

essential for drug delivery systems, target therapy, and designing medical treatments that need to control

the distribution and concentration of active substances very precisely. An analytical solution exists under

specific conditions, presenting a foundation for further exploration within applications, in particular the

solution for a bounded, continuous function g on R is [84]

u(x, t) =
2√
π
eνx/2D

∫ ∞

0

e
−η2− (λ+ν2/4D)x2

4Dη2 f

(
t− x2

4Dη2

)
dη. (4.26)
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This suggests that if g is ω-periodic, then so is c(x, t), offering intriguing possibilities for, e.g., cyclic treat-

ment strategies in medical protocols.

Still, when dealing with possibility to solve the equation analytically to be able to apply the solution

to a real-world problems, there are considerable computational obstacles when trying to put this theory

into practice. As we moved to apply the multi-grid algorithm developed during the research to this specific

problem, we discovered that a complex interaction of challenges faced us — despite the fervent effort, best

intentions, careful use of available time and resources, we were unable to apply the algorithm successfully.

This experience demonstrates the complexity of the problem. It also demonstrates the fact that the cur-

rent methodology may have limitations under some circumstances. We therefore pose this as an openly,

unsolved problem for the community. We are looking for any and all new thoughts, new strategies, and a

possible rethinking of the current algorithms, including those suggested in this work. The potential for con-

tributions to medicine from the numerical methodology to solve the convection-diffusion-decay equation

with periodic boundary conditions are significant — there is potential for future researchers to see this

problemas a pathway for contributing to a fieldwhich intersectsmathematicalmodels and understanding

of complex biological systems.

4.4 Wave Equation

Open Problem 2. Even with looking at this in great detail the multi-grid method is not completely suc-

cessful in tackling the discrete, one-dimensional system as presented in Section 3.1.6. Indeed, this is the

second open problem in this thesis — we must deal with this instability which does not lend itself to the

traditional understanding of numerical solutions to the wave equation as well as a more profound exami-

nation of the relationship between discretization approaches andmulti-gridmethods. In an effort improve

upon this, we will moving forward to analyze a two-variable system.

4.4.1 Two-variable System — Discretization and Numerical Solution

The inhomogeneous wave equation presents a complexmodel that describes wave dynamics under the

influence of external forces. Now, its numerical resolution requires the equation to be expressed as a

system of first-order equations, capturing the wave’s displacement u and velocity v — these equations
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are

∂u

∂t
= v, (4.27)

∂v

∂t
= c2∇2u+ g(x, t), (4.28)

where c denotes the wave speed and g(x, t) the external force. The numerical approach to solving these

equations is again rooted in their discretization in both space and time.

Temporal Discretization

Temporal discretization is treated using the BEmethod. This method necessitates the solution of a sys-

temof algebraic equations at each time step, updating thewave function by incorporating the boundary

and initial conditions inherent to the wave equation — the updates of the equations for u and v at

each time step n using the BE method are given by

un+1
i = un

i +∆t · vn+1
i , (4.29)

vn+1
i = vni +∆t ·

(
c2

un+1
i+1 − 2un+1

i + un+1
i−1

∆x2
+ g(xi, tn+1)

)
. (4.30)

Discrete Laplacian Operator and Spatial Discretization

The spatial domain is discretized into a finite grid, leading to the approximation of spatial derivatives

using FD. The discrete Laplacian operator O, which arises from the central difference approximation

of the second spatial derivative, is constructed as

O =
1

∆x2



−2 1 0 · · · 0 0

1 −2 1 · · · 0 0

0
. . . . . . . . .

...
...

... · · · 1 −2 1 0

0 · · · 0 1 −2 1

0 · · · 0 0 1 −2


. (4.31)
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Moreover, the second-order spatial derivative incorporating the time-stepping for the two-variable

wave equation can be discretized using FD schemes, yielding a tridiagonal matrix

M =



1 0 0 · · · 0 0 0

0 − c2∆t2

2∆x2 1 + c2∆t2

∆x2 − c2∆t2

2∆x2 · · ·
. . . 0

0 0
. . . . . . . . . . . .

...

0
... · · · − c2∆t2

2∆x2 1 + c2∆t2

∆x2 − c2∆t2

2∆x2 0

0 0 · · · 0 0 0 1


, (4.32)

where∆x is the spatial step size, and c is thewave speed. Note that the boundary conditions are applied

to the first and last rows, ensuring that the operator does not apply beyond the computational domain.

Construction of the Time-Stepping Block Matrix

For the two-variable time-stepping routine, a 2× 2 block matrix F is constructed, enabling the simul-

taneous update of the displacement u and the velocity v. The matrix F is explicitly defined in terms of

its sub-matrices as follows

F =

Fu ∆t · Fu

Fv I +∆t · Fv

 , (4.33)

where

Fu = M−1, (4.34)

with M being the matrix arising from the discretization of the second-order spatial derivatives of u,

incorporating the wave speed c and time step∆t. The matrix Fv is defined as

Fv = c2 ·∆t · O · Fu, (4.35)

which incorporates the acceleration term due to the spatial variation of the displacement field and

the external force represented by the discrete Laplacian operator O. To apply the Dirichlet boundary

conditions, a diagonal matrix DBC is constructed with ones on the diagonal, except for the entries

corresponding to the boundary nodes, which are set to zero. The modified time-stepping block matrix

F̃ incorporating the boundary conditions is then obtained by

F̃ = DBC · F. (4.36)
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The assembly of matrix F̃ facilitates the update of both displacement and velocity fields within each

time step, ensuring that the iterative solver captures dynamics of the inhomogeneous wave equation

while satisfying the prescribed Dirichlet boundary conditions. The one-grid solution results, as pre-

sented in Table 4.9, provide a baseline for evaluating the possible performance of the multi-grid algo-

rithm — the table compares the numerical and predicted convergence factors for different problem

sizes, ranging from Nt = Nx = 24 to 210. The close agreement between the numerical and predicted

values indicates the accuracy of the theoretical analysis and serves as a foundation to assess the possible

efficiency gains achieved through the multi-grid approach.

Table 4.9: EW results for Nt = Nx and c = 1

Nt = Nx Error Numerical Convergence Factor Predicted Convergence Factor

24 = 16 1.18e-01 8.71e-01 8.59e-01
25 = 32 6.37e-02 9.22e-01 9.26e-01
26 = 64 3.25e-02 9.64e-01 9.62e-01
27 = 128 1.63e-02 9.91e-01 9.81e-01
28 = 256 8.18e-03 9.91e-01 9.90e-01
29 = 512 4.35e-03 9.95e-01 9.95e-01
210 = 1024 2.05e-03 9.98e-01 9.98e-01

4.4.2 Two-grid Solution

Convergence Overview form = 2

This subsection presents the analysis of convergence behaviour as influenced by the number of coarse-

fine smoothing steps within the multi-grid algorithm framework. The CF smoothing steps are helpful

in improving the convergence rate, and their optimization is important for the efficiency of the multi-

grid solver. Figures 4.6 and 4.7 illustrate the convergence behaviour of the two-grid solution with a

coarsening factor of m = 2 at discretization levels Nt = Nx = 26 and 27, respectively. The plots com-

pare the numerically obtained convergence factors with the predicted values for different numbers of

CF -smoothing steps. The close agreement between the numerical and predicted results validates the

accuracy of the convergence prediction model in Theorem 3.76 and accentuates the limited effective-

ness of the observed CF -smoothing steps number in reducing the error at both resolution levels.
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Figure 4.6: Convergence factor review for a coars-
ening factor m = 2 at discretization level Nt =
Nx = 26. The plot displays the convergence factors
obtained with different numbers of CF -smoothing
steps. The numerical results are juxtaposed with the
predicted outcomes, indicating the efficacy of each
smoothing step count. The alignment between nu-
merical and predicted data points suggests that the
model used to predict convergence factors is accu-
rate for this number of smoothing steps at the given
discretization level.

Figure 4.7: Convergence factor review for a coars-
ening factor m = 2 at a higher discretization level
Nt = Nx = 27. The plot similarly compares the
numerical and predicted convergence factors as the
number of CF -smoothing steps varies. Consistency
between numerical and predicted values is observed,
indicating that the solver’s performance is limitedly
maintained when increasing the discretization points,
but this suggests also that the increasing the CF -
smoothing steps may improve relaxation of the error
at both levels of discretization.

Convergence Overview form = 4

This subsection examines how varying the number of CF -smoothing steps affects the convergence

factors at a coarsening factor of m = 4. Figures 4.8 and 4.9 present the convergence analysis for a

coarsening factor ofm = 4 at discretization levelsNt = Nx = 26 andNt = Nx = 27, respectively. The

plots compare the numerically obtained convergence factors with the predicted values across a range

of CF -smoothing steps, when applying the results from Theorem 3.7. The close agreement between

the numerical results and predictions, even at the bigger coarsing factor, demonstrates the robustness

of the solver and its ability to maintain efficiency with an increased coarsening — these findings may

provide guidance for selecting the number of CF -smoothing steps to achieve decent convergence at

different discretization scales.

Tabulated Data

Table 4.10 presents the convergence factors obtained from the two-grid solution for various problem

sizes Nt = Nx, numbers of CF smoothing steps ν, and EW iterations γ. The results demonstrate the

impact of these parameters on the convergence behaviour of the multi-grid solver. As the problem

size increases, the convergence factors tend to approach unity, indicating slower convergence rates.
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Figure 4.8: Convergence factor review with m = 4
and discretization level Nt = Nx = 26. The plot
compares the convergence factors obtained numeri-
cally with respect those predicted across a range of
CF -smoothing steps. The close correspondence be-
tween the numerical results and predictions at this
level of discretization indicates that the prediction
model is reliable. The variance in convergence fac-
tors with different CF -smoothing step counts may
provide valuable information for selecting the most
efficient number of steps to optimize convergence.

Figure 4.9: Convergence factor review with m = 4
at a higher discretization level Nt = Nx = 27.
Here, the numerical and predicted convergence fac-
tors are also compared as the CF -smoothing steps
vary. Despite the finer discretization, the results do
not deviate from the predictions, suggesting that the
solver maintains its efficacy with an increased num-
ber of smoothing steps according to the theoretical
results. This underlines the robustness of the solver
and may help to determine the necessary number of
CF -smoothings for feasible convergence at different
discretization scales.

Increasing the number of CF smoothing steps and EW iterations generally leads to improved conver-

gence factors, especially for larger problem sizes. These findings stress the importance to carefully seek

further and select the algorithmic parameters optimizing the performance of the solver for the wave

equation.

Table 4.10: Results of a two-grid solutions for Nt = Nx of the wave equation with different number of CF -
smoothings and EW iterations, m = 2

Nt = Nx
γ = 1 γ = 2 γ = 5

ν = 1 ν = 2 ν = 5 ν = 1 ν = 2 ν = 5 ν = 1 ν = 2 ν = 5
26 = 64 8.79e-01 8.85e-01 9.04e-01 8.34e-01 8.32e-01 8.30e-01 6.03e-01 6.08e-01 6.01e-01
27 = 128 9.31e-01 9.34e-01 9.39e-01 9.09e-01 9.08e-01 9.06e-01 7.65e-01 7.68e-01 7.68e-01
28 = 256 9.63e-01 9.64e-01 9.66e-01 9.51e-01 9.51e-01 9.50e-01 8.70e-01 8.71e-01 8.71e-01

4.4.3 Three-grid and Four-grid Solutions

Table 4.11 presents the convergence factors obtained from the three-grid solution for various prob-

lem sizes, numbers of CF -smoothing steps, and EW iterations. Compared to the two-grid solution,

the three-grid approach generally exhibits improved convergence factors, especially for larger prob-

lem sizes and higher numbers of CF -smoothing steps and EW iterations — this improvement in
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convergence behaviour can be attributed to the additional level of coarse-grid correction introduced

by the three-grid scheme, which further reduces the low-frequency error components and accelerates

the total convergence rate. Table 4.12 presents the convergence factors obtained from the four-grid

Table 4.11: Three-grid, Convergence Factors for Various Parameters, Nt = Nx, m = 2

Nt = Nx
γ = 1 γ = 2 γ = 5

ν = 1 ν = 2 ν = 5 ν = 1 ν = 2 ν = 5 ν = 1 ν = 2 ν = 5
26 = 64 8.06e-01 8.47e-01 9.46e-01 6.98e-01 6.89e-01 6.81e-01 5.61e-01 5.25e-01 4.94e-01
27 = 128 8.93e-01 8.88e-01 9.37e-01 8.23e-01 8.20e-01 8.16e-01 6.37e-01 6.17e-01 6.23e-01
28 = 256 9.40e-01 9.38e-01 9.36e-01 9.02e-01 9.02e-01 9.00e-01 7.62e-01 7.59e-01 7.51e-01

solution for various problem sizes, numbers of CF -smoothing steps, and EW iterations. The four-grid

approach introduces an additional level of coarse-grid correction compared to the three-grid scheme,

which could further improve the convergence behaviour, especially for larger problem sizes — but

the improvement in convergence factors is not pronounced, as by the transition from two-grid to three-

grid solutions, suggesting a diminishing return in performance as the number of grid levels increases.

The results from the three-grid and four-grid solutions demonstrate limited effectiveness of multi-grid

Table 4.12: Four-grid, Convergence Factors for Various Parameters, Nt = Nx, m = 2

Nt = Nx
γ = 1 γ = 2 γ = 5

ν = 1 ν = 2 ν = 5 ν = 1 ν = 2 ν = 5 ν = 1 ν = 2 ν = 5
26 = 64 8.30e-01 9.28e-01 6.75e-01 7.64e-01 7.02e-01 6.15e-01 7.54e-01 6.28e-01 5.69e-01
27 = 128 9.02e-01 8.89e-01 9.68e-01 8.13e-01 8.14e-01 7.84e-01 7.84e-01 7.21e-01 6.91e-01
28 = 256 9.41e-01 9.37e-01 9.48e-01 8.92e-01 8.84e-01 8.69e-01 8.12e-01 7.71e-01 7.69e-01

methods in accelerating the convergence of the wave equation solver. The incorporation of multi-

ple coarse-grid correction levels may allow for efficient reduction of low-frequency error components,

leading to faster convergence rates — but the optimal choice of the number of grid levels may depend

on the specific problem size and the desired balance between convergence speed and computational

complexity.

4.4.4 Four-grid and Five-grid Solutions — Achieving a ‘Convenient’ Conver-

gence Factor at the Cost of High Computational Overhead

The search for higher rates of convergence inmulti-grid can often lead investigators to contemplate the

prospect of looking at even higher levels of grid hierarchy. This subsection covers this area of explo-

ration in which we consider convergence performance and computational expense for four-grid and

five-grid solutions for the two-variable wave equation. We conduct four-grid and five-grid experiments

to understand the scalability and optimality of the method under investigation. Notably, in this study,
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we are willing to accept significantly higher computational costs in order to achieve the well desired

convergence properties. Furthermore, the calculation of the numerical convergence factor differs from

all previous solutions, as it captures all iterations, including the first one (which is usually much bet-

ter than the converged convergence factor), via the geometric mean of convergence factors between

iterations — this approach sets the following analysis apart from our earlier discussions.

Four-grid Solution

Table 4.13 presents the convergence factors obtained from the four-grid solution for various combina-

tions of smoothing steps ν and coarse-grid iterations γ. The results demonstrate a general trend of

improving convergence factors with increasing γ and ν. However, it is important to recognize that the

computational cost associated with higher values of these parameters can be substantial.

Table 4.13: Convergence factors for the four-grid solution with various smoothing steps ν and coarse-grid
iterations γ, Nt = Nx = 28, m = 2; the lowest convergence factor attained is marked in green

γ
Convergence Factors

ν = 16 ν = 32 ν = 64 ν = 128 ν = 256
16 5.81e-01 6.19e-01 4.39e-01 3.01e-01 2.00e-01
32 6.37e-01 5.88e-01 4.62e-01 3.19e-01 2.00e-01
64 5.86e-01 5.65e-01 4.72e-01 2.99e-01 1.57e-01
128 6.32e-01 5.32e-01 4.25e-01 3.35e-01 1.79e-01
256 6.26e-01 5.88e-01 4.49e-01 3.70e-01 2.20e-01

Five-grid Solution

Table 4.14 presents the convergence factors obtained from the five-grid solution for various combi-

nations of smoothing steps ν and coarse-grid iterations γ. The results exhibit a similar trend to the

four-grid solution, with improving convergence factors as γ and ν increase, but the computational cost

associated with the five-grid solution is even higher than that of the four-grid solution. While the four-

grid and five-grid solutions demonstrate the potential for achieving ‘convenient’ convergence factors, it

is essential to consider the trade-off between convergence improvement and computational cost. The

excessive computational cost associated with these higher-level grid hierarchies, γ, and ν may render

them impractical for many applications, particularly those with time-sensitive requirements or limited

computational resources. In summary, the multi-grid techniques showcase the ability to achieve im-

proved convergence factors for the wave equation, when leverage with γ and ν — but the pursuit of

these improvements comes at the expense of significantly increased computational cost. Further care-

98



Chapter 4. Numerical Experiments April 11, 2025

ful consideration must be given to the balance between convergence performance and computational

efficiency when selecting the appropriate level of grid hierarchy for a given problem and numbers of

EW iterations or CF -relaxations.

Table 4.14: Convergence factors for the five-grid solution with various smoothing steps ν and coarse-grid
iterations γ, Nt = Nx = 28, m = 2; the lowest convergence factor attained is marked in green

γ
Convergence Factors

ν = 16 ν = 32 ν = 64 ν = 128 ν = 256
16 6.28e-01 6.34e-01 4.51e-01 2.15e-01 1.72e-01
32 7.13e-01 6.29e-01 4.73e-01 2.88e-01 1.05e-01
64 7.26e-01 6.39e-01 4.93e-01 3.40e-01 1.28e-01
128 7.20e-01 6.49e-01 4.61e-01 2.72e-01 1.69e-01
256 7.20e-01 6.33e-01 4.27e-01 2.53e-01 1.29e-01

4.5 Interplay with QMGRIT on GMRES — Empirical Analysis

Yousef Saad6 and Martin H. Schultz7 developed the GMRES method in 1986 [104]. The GMRES

method is used to solve large, sparse linear systems of equations that are non-symmetric. It is amethod

that has been successfully used in a wide range of computational applications in applied mathematics

and HPC, most notably for its ability to tackle non-symmetric matrices — the algorithm computes an

approximation of the solution in a Krylov8 subspace by minimizing the residual of the equation, pro-

viding a sequence of approximate solutions that decrease the residual and refine the solution, while

acknowledging the effect of the matrix on the space of possible solutions. The GMRES method can

be used with preconditioner, which has become common in modeling time-dependent partial differ-

ential equations — the next section discusses preconditioning with QMGRIT and the first studies of

the GMRES method using the QMGRIT as preconditioner while looking at the effect of the number

of QMGRIT iterations. The investigations of this section will evaluate efficiency, convergence, and

accuracy and reason on its potential utility in an HPC environment.

6Yousef Saad is a contemporary mathematician and computer scientist, widely recognized for his contributions to numerical
linear algebra and iterative methods for solving large-scale linear systems. His work on the development of efficient algorithms,
such as the conjugate gradient method and GMRES, has had a significant impact on computational science and engineering.

7Martin H. Schultz is an American mathematician known for his pioneering work in the development of sparse matrix
technology and iterative methods in numerical linear algebra. His contributions have been fundamental to the advancement of
computationalmethods used in scientific computing and engineering, particularly through his work on the generalizedminimal
residual method.

8Alexey Nikolayevich Krylov (*15 August 1863 in Visyaga, Simbirsk Governorate, Russian Empire; †26 October 1945 in
Leningrad, Soviet Union) was a Soviet mathematician, naval engineer, and physicist known for his work in applied mathe-
matics and for the development of methods to solve linear operator equations, leading to what is now known as Krylov subspace
methods.
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Preconditioning

In this section, we employ a single three-grid QMGRIT iteration as a preconditioner for the GMRES

method, utilizing the MATLAB function gmres. By applying this preconditioning strategy to a range

of problem sizes, with Nx = Nt varying from 24 to 210, we aim to assess its impact on the conver-

gence behavior and computational efficiency of the iterative solver. The results of this investigation

are presented in the following Table 4.15, which focuses on the relationship between problem size,

preconditioning, and the performance of the GMRES algorithm. The table presents a comparison of

Table 4.15: Time-to-solution performance comparison, pointing out the significant impact of QMGRIT as a
preconditioner for GMRES; −1 indicates failing convergence

Nt = Nx 24 25 26 27 28 29 210

GMRES 8.19e-1 1.02e-1 3.83e+0 4.58e+1 −1 −1 −1
QMGRIT 1.50e-1 1.54e-1 7.20e-1 2.72e+0 1.38e+1 1.15e+2 4.40e+3
QMGRIT+GMRES 5.05e-2 2.61e-2 8.22e-2 2.96e-1 1.55e+0 1.37e+1 −1

time-to-solution performance for GMRES, QMGRIT, and QMGRIT+GMRES across different problem

sizes. The maximum number of iterations for the GMRES and QMGRIT application alone is set to
NxNt

2 , for QMGRIT+GMRES to five iterations. The solution tolerance (the norm of the global space-

time residual for QMGRIT and relative residual error for GMRES) to be 10−5. Here are following some

key observations and insights.

• GMRES alone struggles to solve larger problems efficiently, as indicated by the −1 values for

Nt = Nx ≥ 28. This means that GMRES reaches its limit9 in terms of computational resources

for these problem sizes.

• QMGRIT alone performs better than GMRES for larger problem sizes, successfully solving prob-

lems up to Nt = Nx = 210, but the time-to-solution for QMGRIT increases significantly as the

problem size grows, reaching 4.40e+ 3 seconds forNt = Nx = 210.

• The combination of QMGRIT and GMRES (QMGRIT+GMRES) demonstrates the impressive

performance improvement. Regardless of the problem’s discretization size, the GMRES, when

preconditionedwithQMGRIT, consistently achieved convergencewithin just four iterations. For

problem sizes up to Nt = Nx = 29, QMGRIT+GMRES achieves a much lower time-to-solution

9Specifically, on the provided personal computer, the requested arrays exceed MATLAB’s maximum array size preference of
32 GB, leading to resource limitations.
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compared to QMGRIT alone — this accentuates the effectiveness of using QMGRIT as a pre-

conditioner for GMRES. The efficiency gain of QMGRIT+GMRES over QMGRIT alone becomes

more pronounced as the problem size increases. AtNt = Nx = 29, QMGRIT+GMRES takes only

1.37e+ 1 seconds, while QMGRIT alone takes 1.15e+ 2 seconds — this represents a reduction

in time-to-solution of approximately 88%, illustrating the significant impact of preconditioning.

• The scalability of the QMGRIT+GMRES approach is evident from the consistent performance

improvement across increasing problem sizes. For the largest problem size tested, with Nt =

Nx = 210, QMGRIT+GMRES fails to provide a solution, as indicated by the −1 value. This

suggests that there may be limitations to the scalability of the preconditioning strategy for ex-

tremely large problems — the issue is not due to QMGRIT not working effectively in the given

combination of QMGRIT+GMRES, but rather because there may be insufficient memory when

constructing a global spatiotemporal matrix and allocating a certain number of vectors of the

appropriate size needed for GMRES.

A summary of QMGRIT being used as a preconditioner for GMRES is provided herein, emphasiz-

ing the improvement in performance observed, particularly as the problem size increases. The results

successfully incorporate the QMGRIT with GMRES. They demonstrate a significant speedup in time-

to-solution, thereby easing the development of advanced preconditioning techniques for HPC envi-

ronments to solve challenging problems. While the approach may suffer from scalability restraints for

very large problems, efficiency gains underscore the worthwhile pursuit of such techniques. The re-

sults confirm the effectiveness of QMGRIT as a preconditioner, which leads to more efficiently using

computation and a better performing solver for a range of problems. Therefore indicate that it is the

role of modern preconditioner in computational mathematics and scientific computing, which should

be a point of interest for future work in PinT methods for hyperbolic problems like the wave equation.

To wrap up, this research provides new contributions from exploring the impact of algorithmic pa-

rameter optimization on convergence and scalability; the role of preconditioning in boosting solver

efficiency is highlighted, particularly in the case of a hyperbolic PDE — these discoveries advance

PinTmethods and present considerations for future research thatmay enrich and generalize PinT tech-

niques10.
10Here, we acknowledge the diversity of possible approaches to parallelizing GMRES itself, as evidenced by multiple imple-

mentations [13, 21, 28, 93, 110]. Furthermore, the exploration of flexible GMRES variants in the context of non-linear precon-
ditioning may provide the way for further solver capabilities [12, 56, 102], namely by combining QMGRIT FAS and flexible
GMRES.
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Chapter 5

Summary, Conclusions and Future

Work

The chapter will summarize the key results of the dissertation study in relation to the research aims

and questions, value and contribution, and review the limitations of the study and suggested areas for

future research. TheQuotientMulti-grid Reduction inTime algorithm, developed and implemented in

this study, has shown potential to solve complex problems in science and engineering, and in particular

for periodic time-dependent partial differential equations.

5.0.1 Summery, Achievement of Research Aims and Objectives

This study outlines theQMGRIT algorithm for efficaciously scaling and solving periodic time-dependent

PDEs in HPC environments — the research covers a series of topics, which have a common theme:

the derivation, development, analysis, and application of QMGRIT. It is anticipated that this research

will advance computational mathematics, and solve challenging problems that arise in the scientific

and engineering domains. Addressing the primary four objectives of this dissertation, the major con-

tributions and findings of the thesis include the following.

• We have laid out the principle of Eternal Wanderlust, and although the idea is obviously not

unique in its novelty, it has become evident in Theorem 3.2 how transitions from period to period

in time carry information with the eigenvalues of the spatial integration function. Then, wewere

able to utilize the EW principle for the context of multi-grid algorithm — the development of
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the QMGRIT algorithm extends the capabilities of traditional two-grid and multi-grid methods

— it introduces a multi-level framework and specialized operators to deal with periodicity in

the temporal domain. Furthermore, the introducing of γ as algorithmic parameter for QMGRIT

provides an exquisite leveraging tool for the solver’s performance (see Section 3.2 and Algorithm

2 within).

• By performing theoretical analysis and empirical comparison of QMGRIT with existing PinT

methods, bringing to the forefront its potential for faster convergence and improved parallel ef-

ficiency, we accurately examined the immanent structure of the QMGRIT operator in Theorem

3.7. Furthermore, we defined the iterative structure of multi-grid generalization. We approach

distinguishingQMGRIT and ideas of near-laying periodic two-gridmethod based on Parareal an-

alytically in Section 3.2.5 and then comparing the approaches on the Electrical Machine problem

numerically in Section 4.2.

• The gratifying finding of the study, validated by SAMA application, is the introduction of the

gQMGRIT parallelization paradigm in Section 3.2.3 to optimize resource usage and reduce com-

putation times across various possible applications — it promises generic power-saving in nu-

merical simulations.

• Numerical experiments demonstrating QMGRIT’s effectiveness and scalability across a range

of periodic problems, including the heat equation, convection-diffusion-decay equation, coaxial

cable problem, steady-state of an electric motor, and wave equation. Particularly, Table 4.4 and

Table 4.15 are underlining the results for (industrially challenging) parabolic PDE problem and

(computationally challenging) hyperbolic PDE problem, respectively.

The investigation presented in this thesis has significance for the progression of computationalmethod-

ologies in science and engineering and provides tools to overcome challenging time-periodic phenom-

ena effectively; the findings from this work are expected to inspire other advances to HPC and allow

the solution of more challenging problems.

5.0.2 Limitations of the Study

The raison d’être of this thesis, and this chapter in particular, is not only to describe the main achieve-

ments of the work, as in the previous paragraph, or to outline possible next steps in research, as in
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the following paragraph, but also to recognize limitations and weaknesses, drawing a clear line of self-

assessment.

• As observed in research on initial value problems in the PinT context, we encountered challenges

with periodic domains — our limited success with hyperbolic problems revealed algorithmic

performance issues, which somemight describe as multi-grid scaling degradation. Nevertheless,

we propose successful strategies to overcome these issues, including expanding on smoothing in-

tensity for QMGRIT in Section 4.4.4, and combinations with GMRES for preconditioning in Sec-

tion 4.5. Still, this experience prompts a more precise discussion about the somewhat ‘heuristic

topology’ underlying the ‘quotient’ term in the QMGRIT algorithm’s name. It may be beneficial

to revisit foundational ideas (e.g., [78]) with careful attention to detail. Furthermore, the thesis

lacks a pure V -cycle analysis, an omission stemming from the generic complexities of research

process — for instance, in three-level algorithms or higher, approximating periodic problems

with multiple shortened initial value problems (Remark 3.8) proves ineffective. However, the

operator in 3.90 emerges with elegant simplicity, highlighting the general limitation in research

time afterwards. It is noteworthy that with r = ∆t/∆x2 and∆t = ∆x, increasing DOF through

spatial refinement, similarly as in the case, where the thermal diffusivity a → 0, leads conse-

quently to that the time-step matrix tends towards identity — this aspect constrains the breadth

of the date of some numerical tests for considered test equations, particularly due to the con-

straintNt = Nx.

5.0.3 Directions for Future Research

Expanding upon the limitations, findings and insights gained in this dissertation, we suggest several

directions beneficial for future research.

• Collaborate with industry partners to apply QMGRIT to real-world engineering and scientific

challenges to validate its applicability in practical environments and to understand areas for the

further possible optimization.

• Expand the possibilities of the applications of QMGRIT idea to a broader set of problems, includ-

ing quasi-periodic, almost-periodic, and stochastic PDEs, to potentially extend the demonstration

of its universality and robustness.

• Investigate the integration of QMGRIT with emerging computational paradigms like machine
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learning or even quantum computing to investigate potential synergies for new solutionmethod-

ologies.

• Consider the theoretical foundations of QMGRIT in more detail, particularly in relation to elec-

tronic band structures calculations, photonic orbits calculation, and to the class of complex val-

ued functions, e.g. to the class of Schrödinger 1 equations, to extend its application to quantum

mechanical problems or the study of time crystals.

• Refine the gQMGRIT parallelization strategy and investigate alternative methods that improve

the scalability and efficiency of QMGRIT in an HPC setting. Specifically, combine GMRES with

gQMGRIT as preconditioner.

5.0.4 Concluding Thought

This dissertation has demonstrated that QMGRIT can drive progress in scientific computing and facil-

itate resolving difficult problems in many scientific and engineering fields — the results of this study

can serve as a sound platform for further research, which may lead to new progress in HPC and the

design of cutting-edge computational tools. To the very end it is obvious that the QMGRIT algorithm

is presented as a new and promising multi-level approach to efficiently solving time-dependent PDEs

with periodic boundary conditions in time.

1Erwin Schrödinger (*12 August 1887 in Vienna, Austria-Hungary; †4 January 1961 in Vienna, Austria) was an Austrian
physicist and Nobel laureate known for his foundational contributions to quantum mechanics. Schrödinger’s wave equation,
formulated in 1926, revolutionized the understanding of the behavior of subatomic particles and is a cornerstone of modern
quantum theory.
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LFA vs. SAMA

Figure A.1: LFA vs. SAMA Comparison, m = 2

We build upon the comprehensive analysis presented by [20]. We apply the LFA and SAMA analysis

methodologies to the two-grid QMGRIT method for the grounded heat equation (see Section 3.1.4).

Varying the spatial and temporal grid sizes such that Nt = Nx, as a byproduct of the research, we

gain valuable insights from the Figures A.1-A.3. The LFA consistently overestimates the amplitude

of convergence factors, while SAMA exhibits a remarkable correspondence with the numerical re-

sults — the excellent results of SAMA, which deals with time-similar dimension algebraically, are

not surprising in this context, as it represents a generalization and modern evolution of the analysis

methodology developed within the LFA, which was founded almost fifty years ago by [10] — SAMA,

as presented by [42], builds upon the foundation laid by LFA and extends its capabilities to provide

a more accurate and comprehensive analysis of multi-grid algorithms. The mentioned figures clearly
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demonstrate the convergence behavior of the QMGRIT method for different values of m, the coarsen-

ing factor — while Nt = Nx increase, and asm increases from two to five and finally to ten, we ob-

serve a consistent behaviour in convergence rates, with SAMA closely matching the numerical results.

Figure A.2: LFA vs. SAMA Comparison, m = 5

The convergence factors are bounded by

≈ 0.11 and this observation underlines the

high effectiveness of QMGRIT algorithm

for the parabolic PDE. Therefore, an ana-

lyzing the QMGRIT for the grounded heat

equation within SAMAmethodology yields

valuable insights into solver convergence

behavior and performance — further-

more, in contrast to the overestimation by

LFA, the close agreements between SAMA

and numerical results underline the signifi-

cance to employ state-of-the-art analysis techniques to guide the development and refinement of PinT

multi-grid algorithms for PDEs.

Figure A.3: LFA vs. SAMA Comparison, m = 10
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FEM

The Finite Element Method (FEM) is a powerful numerical technique for solving challenging PDEs

by discretizing the problem domain into smaller, simpler elements. FEM is widely used due to its

ability to deal with complex geometries and provide accurate approximate solutions for a wide range

of physical problems. We will adopt the methodologies outlined in [99, 105] and references within

for the construction of FEM on triangular grids. The core idea of FEM is to partition the domain Ω

into smaller elements, such as triangles in 2D, and approximate the PDE locally on these elements

using basis functions within a variational or weak formulation, as illustrated in Figure B.1a — the

local approximations are then assembled to form a global system of equations, representing a discrete

version of the original problem, exemplified by the hexagonal tiling and its triangular subdivisions

shown in Figure B.1b. FEM relies on various function spaces, such as the Lebesgue1 space

L2(Ω) :=

{
f : Ω→ R

∣∣∣∣∣
∫
Ω

|f |2 <∞

}
, (B.1)

and Sobolev2 spacesW s,p(Ω), defined as

W s,p(Ω) :=
{
φ ∈ Lp(Ω)

∣∣∣ ∂αφ ∈ Lp(Ω), |α| ≤ s
}
, (B.2)

1Henri Léon Lebesgue (*28 June 1875 in Beauvais, France; †26 July 1941 in Paris, France) was a French mathematician best
known for his theory of integration, which was fundamental in the development of modern analysis. His introduction of the
Lebesgue integral revolutionized the way mathematicians measure functions, significantly impacting the fields of real analysis
and probability theory.

2Sergei L’vovich Sobolev (*6 October 1908 in St. Petersburg, Russian Empire; †3 January 1989 in Moscow, Soviet Union) was
a Soviet mathematician who made foundational contributions to the field of functional analysis, partial differential equations,
and mathematical physics. Best known for introducing the concept of Sobolev spaces, which are critical in the study of partial
differential equations and their numerical solutions.
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where s ∈ Z+ and 1 ≤ p <∞. The Hilbert spacesHs(Ω),

Hs(Ω) :=
{
u ∈ C∞

0 (Ω)′
∣∣∣ u = U |Ω for some U ∈W s,2

(
Rd
)}

, (B.3)

where s ∈ Z+, particularlyH1(Ω) and its subspace

H1
0 (Ω) :=

{
v ∈ H1(Ω)

∣∣∣ v = 0 on ∂Ω
}
, (B.4)

play a fundamental role in FEM formulations. The discretization process involves creating a triangula-

tion Th of the domain, numbering the nodes {xn,m} (vertices of the triangles), and constructing a set of

nodal basis functions {ϕn,m}, demonstrated in Figure B.1. The discrete solution space Vh, a subspace

of H1(Ω), consists of continuous piece-wise linear functions on each elementK ∈ Th

Vh :=
{
vh ∈ C(Ω)

∣∣∣ vh|K ∈ P1,∀K ∈ Th
}
, (B.5)

where P1 is the space of linear polynomials

P1 :=
{
p(x1, x2) = a0 + a1x1 + a2x2

∣∣∣ a0, a1, a2 ∈ R
}
, (B.6)

shown in Figure B.1a. The subspace V 0
h contains functions that vanish on the boundary ∂Ω. In the

time-dependent case, FEM employs time-stepping schemes to approximate the solution at each time-

step by solving a weak formulation of the PDE


Find un+1 ∈ H1(Ω) such that

δn

∫
Ω

∇un+1 · ∇ϕ+

∫
Ω

un+1ϕ =

∫
Ω

unϕ+ δn

∫
Ω

fn+1ϕ, ∀ϕ ∈ H1
0 (Ω),

(B.7)

where δn is the time step size and fn+1 is the source term at time tn+1. The discrete variational for-

mulation leads to a linear system involving the stiffness matrix W , the mass matrix M , and the load

vector fn+1

(δnW +M)un+1 = Mun + fn+1. (B.8)

The solution vector un+1 represents the approximate solution at the nodes of the triangulation. The

subsequent paragraphswill providemore details on the construction of the stiffness andmassmatrices,
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which are central components of the FEM formulation.

ϕi

xi

(a) Nodal basis function ϕi associated with node xi

within a finite element mesh

xn,m

T1

T2

T3

T4

T5

T6

xn+1,m

xn+1,m+1xn,m+1

xn−1,m

xn−1,m−1 xn,m−1

(b) A hexagon divided into sub-triangles T1 to T6
around node xn,m

Figure B.1: Illustration of (a) the nodal basis function and element subdivision used in FEM mesh generation
and (b) a hexagon with its local numbering and division into triangles

Stiffnessmatrix The stiffnessmatrixW captures the relationship between forces and displacements

in the system — it is constructed as

W :=


0

∫
T2∪T3

∇ϕn,m+1 · ∇ϕn,mdx
∫
T1∪T2

∇ϕn+1,m+1 · ∇ϕn,mdx∫
T3∪T4

∇ϕn−1,m · ∇ϕn,mdx
∫
∪6

i=1Ti
∇ϕn,m · ∇ϕn,mdx

∫
T1∪T6

∇ϕn+1,m · ∇ϕn,mdx∫
T4∪T5

∇ϕn−1,m−1 · ∇ϕn,mdx
∫
T5∪T6

∇ϕn,m−1 · ∇ϕn,mdx 0

 .

(B.9)

Mass matrix The mass matrixM reflects the system’s inertial properties — it is defined by

M :=


0

∫
T2∪T3

ϕn,m+1ϕn,mdx
∫
T1∪T2

ϕn+1,m+1ϕn,mdx∫
T3∪T4

ϕn−1,mϕn,mdx
∫
∪6

i=1Ti
ϕn,mϕn,mdx

∫
T1∪T6

ϕn+1,mϕn,mdx∫
T4∪T5

ϕn−1,m−1ϕn,mdx
∫
T5∪T6

ϕn,m−1ϕn,mdx 0

 . (B.10)

The FEM approach devises stiffness and mass matrices to capture the physical system. Let us examine

into the calculation specifics. Consider the transformation defined by

x1

x2

 = FH(x̂) := BH

x̂1

x̂2

+ bH , (B.11)
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where the transformation matrix BH and bias vector bH are given by

BH :=

 xn+1,m − xn,m xn+1,m+1 − xn+1,m

yn+1,m − yn,m yn+1,m+1 − yn+1,m

 , bH :=

 xn,m

yn,m

 . (B.12)

This transformation aids to map a reference triangle onto the finite elements and their gradients as

follows

ϕ̂k,l = ϕn+k,m+l ◦ FH , ∇ϕ̂k,l = Bt
H (∇ϕn+k,m+l ◦ FH) . (B.13)

The mapping of basis functions ϕ̂k,l under transformation FH yields

ϕ̂1,0(x̂, ŷ) =

 x̂− ŷ, (x̂, ŷ) ∈ T̂1

x̂, (x̂, ŷ) ∈ T̂6,
ϕ̂1,1(x̂, ŷ) =

 ŷ, (x̂, ŷ) ∈ T̂1,

x̂, (x̂, ŷ) ∈ T̂2,

ϕ̂0,1(x̂, ŷ) =

 ŷ − x̂, (x̂, ŷ) ∈ T̂2,

ŷ, (x̂, ŷ) ∈ T̂3,
ϕ̂−1,0(x̂, ŷ) =

 −x̂, (x̂, ŷ) ∈ T̂3,

ŷ − x̂, (x̂, ŷ) ∈ T̂4,

ϕ̂−1,−1(x̂, ŷ) =

 −ŷ, (x̂, ŷ) ∈ T̂4,

−x̂, (x̂, ŷ) ∈ T̂5,
ϕ̂0,−1(x̂, ŷ) =

 x̂− ŷ, (x̂, ŷ) ∈ T̂5,

−ŷ, (x̂, ŷ) ∈ T̂6,

ϕ̂0,0(x̂, ŷ) =



1− x̂, (x̂, ŷ) ∈ T̂1,

1− ŷ, (x̂, ŷ) ∈ T̂2,

1 + x̂− ŷ, (x̂, ŷ) ∈ T̂3,

1 + x̂, (x̂, ŷ) ∈ T̂4,

1 + ŷ, (x̂, ŷ) ∈ T̂5,

1− x̂+ ŷ, (x̂, ŷ) ∈ T̂6,

(B.14)
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with the integral transformations being calculated accordingly to the integration by substitution3 for

multiple variables to capture the interaction within the elements,

∫
T

ϕn+k,m+lϕn,m = |det(BH)|
∫
T̂

ϕ̂k,lϕ̂0,0, (B.15)

enabling the forthcoming evaluation of stiffness and mass matrices — the integration over triangular

elements is performed as follows

∫
T

∇ϕn+k,m+l · ∇ϕn,m = |det(BH)|
∫
T̂

(∇ϕn+k,m+l ◦ FH) · (∇ϕn,m ◦ FH) (B.16)

= |det(BH)|
∫
T̂

(
B−t

H ∇ϕ̂k,l

)
·
(
B−t

H ∇ϕ̂0,0

)
(B.17)

= |det(BH)|
∫
T̂

CH∇ϕ̂k,l · ∇ϕ̂0,0 (B.18)

= |det(BH)|
(
cH11Ŝxx + cH12Ŝxy + cH21Ŝyx + cH22Ŝyy

)
(B.19)

= |det(BH)|
(
cH11Ŝxx + 2cH12Ŝxy + cH22Ŝyy

)
, (B.20)

where CH = B−1
H B−t

H , and Ŝxx, Ŝxy, Ŝyy , respectively, are structured matrices representing the dis-

cretized domain’s spatial derivatives

CH =

cH11 cH12

cH21 cH22

 := B−1
H B−t

H , (B.21)

3If sloppily formulated, because otherwise one would shall calculate the derivation of FH and trace the following theorem’s
statement, in some extend, a corollary nowadays [122]: that was first proposed by Euler when he developed the notion of double
integrals in 1769, although expanded to triple integrals by Lagrange4 in 1773, andfirst generalized ton variables byOstrogradsky5
in 1836 — specifically, let U be an open subset of Rn and ϕ : U → Rn be a bi-Lipschitz mapping, let f : ϕ(U) → R

be measurable, then
∫
ϕ(U)

f(x)dx =

∫
U
(f ◦ ϕ)(x)| detDϕ(x)|dx (in the sense that if either integral exists, or is properly

infinite, then so does the other one, and they have the same value).
4Joseph-Louis Lagrange (*25 January 1736 in Turin, Kingdom of Sardinia; †10 April 1813 in Paris, France) was an Italian-

French mathematician and astronomer. Renowned for his contributions to the fields of analysis, number theory, and both
classical and celestial mechanics, Lagrange’s work, including the Lagrangian mechanics framework, has profoundly influenced
the development of mathematical physics and engineering.

5Mikhail Ostrogradsky (*24 September 1801 in Pashennaya, Poltava Governorate, Ukraine; †1 January 1862 in Poltava,
Ukraine) was a Ukrainian mathematician and physicist. Known for his contributions to the theory of partial differential equa-
tions, calculus of variations, and the divergence theorem in vector calculus, Ostrogradsky’s work has had a lasting impact on
mathematical physics and engineering.
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and

Ŝxx =


0

∫
T̂2∪T̂3

∂xϕ̂0,1 · ∂xϕ̂0,0dx
∫
T̂1∪T̂2

∂xϕ̂1,1 · ∂xϕ̂0,0dx∫
T̂3∪T̂4

∂xϕ̂−1,0 · ∂xϕ̂0,0dx
∫⋃6

i=1 T̂i
∂xϕ̂0,0 · ∂xϕ̂0,0dx

∫
T̂1∪T̂6

∂xϕ̂1,0 · ∂xϕ̂0,0dx∫
T̂4∪T̂5

∂xϕ̂−1,−1 · ∂xϕ̂0,0dx
∫
T̂5∪T̂6

∂xϕ̂0,−1 · ∂xϕ̂0,0dx 0


(B.22)

=


0 0 0

−1 2 −1

0 0 0

 , (B.23)

Ŝxy =


0

∫
T̂2∪T̂3

∂xϕ̂0,1 · ∂yϕ̂0,0dx
∫
T̂1∪T̂2

∂xϕ̂1,1 · ∂yϕ̂0,0dx∫
T̂3∪T̂4

∂xϕ̂−1,0 · ∂yϕ̂0,0dx
∫
∪6

i=1T̂i
∂xϕ̂0,0 · ∂yϕ̂0,0dx

∫
T̂1∪T̂6

∂xϕ̂1,0 · ∂yϕ̂0,0dx∫
T̂4∪T̂5

∂xϕ̂−1,−1 · ∂yϕ̂0,0dx
∫
T̂5∪T̂6

∂xϕ̂0,−1 · ∂yϕ̂0,0dx 0


(B.24)

=


0 1 −1

1 −2 1

−1 1 0

 , (B.25)

Ŝyy =


0

∫
T̂2∪T̂3

∂yϕ̂0,1 · ∂yϕ̂0,0dx
∫
T̂1∪T̂2

∂yϕ̂1,1 · ∂yϕ̂0,0dx∫
T̂3∪T̂4

∂yϕ̂−1,0 · ∂yϕ̂0,0dx
∫
∪6

i=1T̂i
∂yϕ̂0,0 · ∂yϕ̂0,0dx

∫
T̂1∪T̂6

∂yϕ̂1,0 · ∂yϕ̂0,0dx∫
T̂4∪T̂5

∂yϕ̂−1,−1 · ∂yϕ̂0,0dx
∫
T̂5∪T̂6

∂yϕ̂0,−1 · ∂yϕ̂0,0dx 0


(B.26)

=


0 −1 0

0 2 0

0 −1 0

 . (B.27)

Following the FEM framework, we evaluate from (B.9)–(B.10) the mass matrix M and stiffness ma-

trix W further, which are pivotal in numerically building up the system’s dynamic behavior — the

determinant of the transformation matrixBH , reflecting the geometric transformations applied to the
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finite elements, plays a key role here, as observed in B.15 and illustrated via the appendix-footnote B

afterwards. Thus, the mass matrix is given by

M = |det(BH)|


0 1/12 1/12

1/12 1/2 1/12

1/12 1/12 0

 , (B.28)

indicating the distribution of mass across the elements and the stiffness matrix, encapsulating the sys-

tem’s response to e.g. elastic deformations, is expressed as

W = |det(BH)|

cH11


0 0 0

−1 2 −1

0 0 0

+ 2cH12


0 1 −1

1 −2 1

−1 1 0

+ cH22


0 −1 0

0 2 0

0 −1 0


 . (B.29)

Both factored by the determinant of BH to account for the element’s orientation and scale.

Calculation for ahexagon-stencil: The previous considerations lead us to the following conclusion.

For any specific triangular element inducing a spatial 2D hexagonal tiling characterized by side length

h, and angles α and β, we can calculate a revealing result

BH =

h −h sin(α) cos(β)
sin(α+β)

0 h sin(α) sin(β)
sin(α+β)

 , (B.30)

det(BH) =
h2 sin(α) sin(β)

sin(α) cos(β) + sin(β) cos(α)
, (B.31)

CH =

 1
h2 sin2(β)

1
tan(β)

+ 1
tan(α)

h2 tan(β)
1

tan(β)
+ 1

tan(α)

h2 tan(β)
sin2(α+β)

h2 sin2(α) sin2(β)

 , (B.32)

W =
|det(BH)|

h2


0 −

1
tan(β)

+ 1
tan(α)

tan(α) −
1

tan(α)
+ 1

tan(β)

tan(β)(
−1 + 1

tan(α) tan(β)

) (
−2 + 2

tan(α) tan(β) +
2

sin2(β) +
2

sin2(α)

) (
−1 + 1

tan(α) tan(β)

)
−

1
tan(β)

+ 1
tan(α)

tan(β) −
1

tan(β)
+ 1

tan(α)

tan(α) 0

 .

(B.33)
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