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Abstract

The industrial production of aluminium is a very energy-intensive process. It is essential to
conduct regular bath temperature measurements to ensure stable aluminium production. How-
ever, the use of sensors installed directly in the cells for bath temperature measurement is not
feasible due to the corrosive nature of the production environment, which would rapidly cor-
rode and dissolve the sensors. Nevertheless, continuous measurement of the bath temperature

is desirable in order to gain further insights into the state of a reduction cell.

This thesis presents an analysis of data-based methods with the aim of predicting the bath
temperature. First, the interactions between process variables in aluminium electrolysis and
their influence on the bath temperature are presented. The temporal behaviour of the bath
temperature is analysed with regard to autocorrelation, periodicity and stationarity. Two
approaches for predicting the bath temperature are presented which utilise data-based models

derived form the fields of time series analysis and machine learning.

The first approach is a daily forecast of the bath temperature, which is generated by a global
autoregressive model (AR model). A comparison is made between the global AR model and
local time series models. The second approach is the nowcast of the bath temperature, which
is generated by a global random forest regression model. Furthermore, an interpretation of
the generated nowcasts by the random forest regression model is presented. This approach
represents a novel method for analysing the causes of changes in bath temperature, which,
to the best of my knowledge, has not yet been demonstrated in the field of the aluminium

electrolysis.

The results demonstrate that the global AR(10) model can replace local time series models in
predicting the bath temperature. The global AR(10) model exhibits a mean absolute error of
4.55°C on the test data. The random forest regression model achieves a mean absolute error
of 4.53 °C for the present prediction on the same test data. In contrast to the global model, the
random forest regression model predicts changes in the bath temperature instead of absolute
bath temperature values, as this approach yields superior model performance within the cross-
validation. The combination of the two global models improves the mean absolute error to
4.31°C.






Zusammenfassung

Die industrielle Herstellung von Aluminium ist ein sehr energieintensiver Prozess. Eine re-
gelméflige Kontrolle der Elektrolyttemperatur ist erforderlich, um eine stabile Produktion von
Aluminium zu gewahrleisten. Eine zerstorungsfreie Messung der Elektrolyttemperatur iiber
eine in den Ofen angebrachte Sensorik ist jedoch nicht méglich, da die korrosive Produktions-
umgebung die Sensoren in kiirzester Zeit auflésen wiirde. Eine kontinuierliche Messung der
Elektrolyttemperatur ist dennoch erstrebenswert, um weitere Riickschliisse auf den Zustand
eines Elektrolyseofens zu gewinnen. Im Rahmen dieser Arbeit werden datenbasierte Methoden
auf ihre Eignung zur Vorhersage der Elektrolyttemperatur untersucht. Zunachst werden die
Wechselwirkungen von Prozessvariablen der Aluminiumelektrolyse sowie ihre Einfliisse auf die
Elektrolyttemperatur aufgezeigt. Die zeitlichen Verlaufe der Elektrolyttemperaturen werden
hinsichtlich der Autokorrelation, Periodizitat und Stationaritat analysiert. Zwei Losungsansitze
fir die Vorhersage der Badtemperatur werden prasentiert, die Vorhersagemodelle aus dem

Bereich der Zeitreihenanalyse und des maschinellen Lernens aufgreifen.

Der erste Losungsansatz ist eine Tagesprognose (Forecasting) der Elektrolyttemperatur, die mit-
tels eines globalen autoregressiven Modells (AR-Modell) erstellt wird. Das globale AR-Modell
wird im Rahmen der Untersuchung mit lokalen Zeitreihenmodellen verglichen. Der zweite
Losungsansatz ist eine Gegenwartsvorhersage (Nowcasting) der Elektrolyttemperatur, die mit
einem globalen Random Forest (RF) Regressionsmodell erzeugt wird. Zudem wird ein Ansatz
aufgezeigt, um die Gegenwartsvorhersagen des RF-Regressionsmodells interpretieren zu kon-
nen. Dieser Ansatz stellt eine neuartige Methode zur Ursachenanalyse von Anderungen der
Elektrolyttemperatur dar, die nach bestem Wissen im Bereich der Aluminiumelektrolyse bislang

nicht aufgezeigt wurde.

Die Ergebnisse zeigen, dass ein globales AR(10)-Modell die lokalen Zeitreihenmodelle hin-
sichtlich der Vorhersage der Elektrolyttemperatur substituieren kann. Auf den Testdaten
erreicht das globale AR(10)-Modell einen Mean Absolute Error (MAE) von 4,55°C. Das
RF-Regressionsmodell erreicht fiir die Gegenwartsvorhersage auf den gleichen Testdaten einen
MAE von 4,53 °C. Anstatt der Badtemperatur sagt das RF-Regressionsmodell die Badtempera-
turdnderung vorher, da dies innerhalb der Cross-Validation zu einer besseren Modellperformanz
fithrte. Eine Modellkombination, bestehend aus den beiden globalen Modellen, verbessert den
MAE zusitzlich auf 4,31 °C.
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KAPITEL 1

Einleitung

Die Nutzung erneuerbarer Energien spielt im Zuge der Energiewende eine wesentliche Rolle. So
wurde im Jahr 2023 ein Anteil von 51,8 % des gesamten Bruttostromverbrauchs in Deutschland
von regenerativen Energiequellen gedeckt. Der Grof3teil davon wird von Windkraftanlagen
an Land und von Photovoltaikanlagen erzeugt. Die Erzeugung von regenerativer Energie
ist daher mafigeblich vom Wetter abhéngig, was zu Schwankungen in der Energieerzeugung
fithrt. Das macht neue intelligente Losungen notwendig, um Angebot und Nachfrage auf dem

Energiemarkt gleichermaflen bedienen zu kénnen [Umw24, S. 52; Bun].

Ein Losungsansatz zur Bewaltigung dieser Herausforderung am Energiemarkt kann in der
Flexibilisierung der industriellen Nachfrage nach Strom gesehen werden [Di16, S. 2; DMB19,
S. 533; DDPR16, S. 571]. Der Kerngedanke besteht darin, den Stromverbrauch industrieller
Produktionsanlagen in Abhangigkeit vom aktuellen Angebot anzupassen. Infolge eines Ange-
botsengpasses im Energienetz kann die Produktion entsprechend gedrosselt werden, wihrend
bei einem Angebotsiiberschuss eine Erhohung der Produktion erfolgt. Ein vielversprechender
Bereich fur eine solche Leistungsanpassung ist die industrielle Herstellung von Aluminium,
die mit einem hohen Energieverbrauch verbunden ist und bislang mit einer nahezu konstan-
ten Energiezufuhr durchgefithrt wird [DDPR16, S. 571; Di16, S. 1-3]. Die Flexibilisierung
des Energieeintrags der Aluminiumherstellung eréffnet die Moglichkeit, auf entsprechende
Schwankungen im Energienetz zu reagieren [Dii16, S. 2]. Der Wechsel zu einer flexiblen Pro-
duktion an Aluminium bringt jedoch Schwierigkeiten im Herstellungsprozess mit sich, die es
mit entsprechenden Anpassungen der Produktionsanlagen zu bewéltigen gilt. Die Anpassungen
zielen darauf ab, eine hohe Effizienz der Aluminiumproduktion aufrechtzuerhalten und einen
Ausfall der Anlagen zu verhindern [Diil6, S. 4, DMB19, S. 533].

Die industrielle Aluminiumherstellung greift auf das etablierte Verfahren nach Hall-Héroult
zuriick. Das Hall-Héroult-Verfahren wurde 1886 entwickelt und ist bis heute das einzige Verfah-
ren, mit dem Aluminium industriell hergestellt wird [GK93, S. 1; RP20, S. 1895-1896]. In diesem
Verfahren wird Aluminiumoxid (Al;O3) in fliissigem Kryolith (Na3AlFs) mit einem Uberschuss

an Aluminiumfluorid (AlFs) gelost. Das gewonnene fliissige Aluminium setzt sich nach der
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Reduktion in der Schmelze mittels der Schmelzflusselektrolyse auf dem Boden des Elektrolyse-
ofens ab und wird in regelmafigen Abstanden abgesaugt [GK93, S. 1, 40; Diil6, S. 15, 44]. Eine
Flexibilisierung des Energieeintrags bewirkt nicht nur eine Anderung der Produktionsmenge
an Aluminium, sondern gleichfalls eine Veranderung der Energiebilanz des Elektrolyseofens
[Du16, S. 4]. Dies hat wiederum Auswirkungen auf dessen Elektrolyttemperatur (Badtempe-
ratur, Temperatur der Schmelze) [STC+08, S. 309]. Im weiteren Verlauf der Arbeit wird die

Elektrolyttemperatur als Badtemperatur bezeichnet.

Die Badtemperatur eines Elektrolyseofens stellt in der Aluminiumelektrolyse eine wesentliche
Prozessvariable dar, die regelméaflig kontrolliert werden muss, um eine stabile Produktion von
Aluminium zu gewahrleisten [GK93, S. 215; Dii16, S. 42]. Die Badtemperatur kann jedoch nicht
mit einer in den Ofen angebrachten Sensorik dauerhaft gemessen werden, da die korrosive Um-
gebung diese innerhalb kurzer Zeit zerstéren wiirde [GK93, S. 215; Dii16, S. 41]. Die Messungen
werden daher in bestimmten zeitlichen Abstanden von geschultem Personal manuell an jedem
Ofen durchgefithrt [GK93, S. 215]. Im Anschluss werden die Messungen gespeichert und stehen
fir die Prozessregelung und weitere Analysen zur Verfiigung. Dariiber hinaus werden weitere
Prozessdaten, wie beispielsweise die Ofenspannung und die Stromstérke, kontinuierlich und
automatisiert aufgezeichnet. Die Durchfithrung manueller Messungen ist jedoch mit Kosten
verbunden, die wegen der nicht zerstérungsfreien Messmethode zustande kommen [SO10, S. 1;
MAWO01, S. 297].

Es stellt sich die Frage, inwieweit die gespeicherten Prozessdaten der Ofen dazu verwendet
werden konnen, um die Badtemperatur eines Ofens zu prognostizieren. Ansatze sind Methoden
aus dem Bereich der Zeitreihenanalyse und des maschinellen Lernens, die es erméglichen,
anhand der gesammelten Daten Vorhersagen tiber ausgewahlte Zielgrolen zu treffen. Eine
Literaturiibersicht iiber den Einsatz datengetriebener Methoden in der Aluminiumelektrolyse
wird in unseren Arbeiten [GKD+18; GKD+23] dargestellt und im weiteren Verlauf dieser Arbeit
aufgegriffen.

Der Einsatz datengetriebener Methoden erméglicht einen schnellen Uberblick tiber den ak-
tuellen Zustand eines Elektrolyseofens. Dabei konnen potenzielle Ursachen fiir bestimmte
Prozessidnderungen, die den Elektrolyseprozess beeintrachtigen, aufgezeigt werden [Maj11,
S. 191; MTC+11, S. 377]. Diese Analysen erlangen insbesondere in Zeiten der Energiewende
eine hohe Relevanz, da die Priméarproduktion von Aluminium nicht mehr mit einer konstanten,
sondern mit einer variablen Energiezufuhr betrieben wird [Dii16, S. 3]. Um weiterhin einen
stabilen Produktionsprozess zu gewahrleisten, sind neue Analysen und Methoden erforder-
lich, um den Zustand eines Ofens auch bei variabler Energiezufuhr tiberwachen zu kénnen
[Dii16, S. 163-164]. Die Badtemperatur spielt bei der Zustandsiiberwachung eines Ofens eine
wesentliche Rolle. Der Fokus dieser Arbeit liegt daher auf der Badtemperatur, die mithilfe der

Zeitreihenanalyse und dem Bereich des maschinellen Lernens untersucht und vorhergesagt
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wird. Es ist nicht auszuschliefen, dass sich die in dieser Arbeit vorgestellten Losungsansitze
auch auf die Liquidustemperatur iibertragen lassen, die ebenfalls eine wesentliche Prozessvaria-
ble in der Aluminiumelektrolyse darstellt. Die Liquidustemperatur ist die Mindesttemperatur,
bei der die Aluminiumproduktion betrieben werden muss, ohne dass der Elektrolyt zu erstarren
beginnt [Hauléc, S. 804].

Im Rahmen dieser Arbeit werden die Wechselwirkungen der wesentlichen Prozessparameter
der Aluminiumelektrolyse detailliert dargestellt und die verschiedenen Einfliisse auf die Bad-
temperatur aufgezeigt. Die daraus resultierenden Erkenntnisse flieffen in die Entwicklung von
Vorhersagemodellen ein. Fiir die Vorhersage der Badtemperatur werden in dieser Arbeit zwei
Modelle global eingesetzt und untersucht, das autoregressive Modell (AR-Modell) und Random
Forest (RF) Modell. Das globale AR-Modell fungiert als Basismodell und prognostiziert die
Badtemperatur fiir den néachsten Tag anhand historischer Badtemperaturwerte. Eine solche
Tagesprognose wird in dieser Arbeit als Forecasting bezeichnet. Im Rahmen eines Vergleichs
mit lokalen Zeitreihenmodellen wird das globale AR-Modell ebenfalls evaluiert. Aufbauend
auf den Ergebnissen aus unserer Arbeit [GKD+18] wird das globale RF-Modell fiir eine Gegen-
wartswartevorhersage (Nowcasting) der Badtemperatur eingesetzt. Als Nowcasting kann die
Vorhersage bezeichnet werden, die fiir den aktuellen Zeitpunkt, fiir die nahe Zukunft und nahe

Vergangenheit getitigt wird [BGR10, S. 5].

Die initiale Motivation fiir die vorliegende Arbeit ist aus dem Drittmittelprojekt ,Thermische
Flexibilisierung der Aluminiumelektrolyse (FlexTherm)“ mit der Férderkennzeichnung EFRE-
0200490 entstanden, an dem der Aluminiumhersteller und Projektpartner TRIMET Aluminium
SE (TRIMET) beteiligt war. Im Rahmen des Projekts wurden von der TRIMET Aluminium SE
Essen (TAE) Anpassungen an den Elektrolyseéfen durchgefiihrt, um einen Produktionsbetrieb
mit einer variablen Stromstérke zu erméglichen. Das Projekt wurde vom Europiischen Fonds
fiir regionale Entwicklung und der Européischen Union mit einer reguldren Laufzeit von drei
Jahren (2017 — 2020) gefordert. An diesem Projekt war der Lehrstuhl fiir Automatisierungs-
technik/Informatik (LfA) der Bergischen Universitat Wuppertal beteiligt, der die TAE bei der

Auswertung der Ofenprozessdaten sowie die Erstellung von Tagesprognosen unterstiitzte.

1.1 Aufbau der Arbeit

In dieser Arbeit wird Fachwissen aus den Bereichen Zeitreihenanalyse und Aluminiumelek-
trolyse kombiniert, um eine Vorhersage der Badtemperatur zu erméglichen. Die vorliegende
Arbeit richtet sich daher an Personen mit unterschiedlicher Expertise in den genannten Be-
reichen. Erfahrene Leser/-innen aus dem Bereich der Aluminiumelektrolyse konnen Kapitel 3
tiberspringen und sich stattdessen mit den Grundlagen der Zeitreihenanalyse in Kapitel 4 sowie
dem praktischen Teil der Arbeit in Kapitel 5 befassen. Fiir Personen mit Fachwissen aus dem

Bereich der Zeitreihenanalyse sind das Kapitel 3 sowie der praktische Teil in Kapitel 5 relevant.

Kapitel 1
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Den ergebnisorientierten Leser/-innen wird die Zusammenfassung des praktischen Teils in
Kapitel 5.5 sowie das Fazit in Kapitel 6 nahegelegt. Kapitel 6 richtet sich zudem an Personen,
die weitere Informationen iiber noch anstehende Arbeiten erhalten wollen. Fiir das Versténdnis
des Ziels und der Losungsansétze dieser Arbeit ist fiir alle Leser/-innen Kapitel 2 wesentlich.
Weitere Informationen iiber den genauen Aufbau dieser Arbeit und tiber den Projektpartner

erhalten interessierte Personen im vorliegenden Kapitel.

Der Aufbau dieser Arbeit orientiert sich am Vorgehensmodell ,Machine Learning for Pro-
duction (ML4P)“ [BP20]. Das Vorgehensmodell ML4P wurde unter der Projektleitung des
Fraunhofer-Instituts fiir Optronik, Systemtechnik und Bildauswertung (IOSB) entwickelt und
ermoglicht eine strukturierte Vorgehensweise fiir industrielle Projekte im Bereich des maschi-
nellen Lernens. Im Unterschied zu bereits bestehenden Vorgehensmodellen liegt der Schwer-
punkt des ML4P-Vorgehensmodells auf der Integration und dem Betrieb maschineller Lernver-
fahren in der industriellen Produktion [BP20, S. 2]. Das Vorgehensmodell umfasst insgesamt
sechs Phasen, die unter anderem die Zielsetzung, Datenaufbereitung, Entwicklung und Evalua-
tion von Losungsansitzen sowie die Inbetriebnahme der entwickelten Losungen beinhalten.

Die sechs Phasen sind in Abbildung 1.1 dargestellt.

1 Zieldefinition und Losungsansétze
2 Proof of Concept

3 Systemspezifikation

4 Umsetzung und Inbetriebnahme
5 Ubergabe

6 Betrieb

Abbildung 1.1: Die sechs Phasen des Vorgehensmodells “Machine Learning
for Production (ML4P)”. Abbildung abgeédndert nach [BP20, S. 3].

Die vorliegende Arbeit umfasst die ersten drei Phasen des Vorgehensmodells. In der ersten
Phase werden die Ziele und Losungsansitze definiert, die in Kapitel 2 vorgestellt werden. In
diesem werden der Ist-Zustand der TAE und der Ziel-Zustand betrachtet. Zudem wird ein
initiales Machine Learning Pipeline Diagramm (ML-Pipeline-Diagramm) préisentiert, um den

Ist-Zustand vom Ziel-Zustand abzugrenzen. Des Weiteren werden zwei Messgerite fiir die Bad-
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temperaturmessung vorgestellt. Eine Literaturiibersicht zeigt den Einsatz von datengetriebenen
Methoden in der Aluminiumelektrolyse auf. In Kapitel 3 werden die Grundlagen des Hall-
Héroult-Prozesses vorgestellt. Der Schwerpunkt des Kapitels liegt auf der Badtemperatur. Die
Wechselwirkungen verschiedener Prozessvariablen wihrend des Elektrolysebetriebs werden
vorgestellt und deren Auswirkungen auf die Badtemperatur beschrieben. Eine experimentelle
Auswertung wird gezeigt, die den Einfluss einer Hallenschaltung (kontrollierte Stromabschal-

tung einer Halle) auf die Badtemperatur von vier Aluminiumelektrolyseéfen veranschaulicht.

In Kapitel 4 werden grundlegende Konzepte der Zeitreihenanalyse vorgestellt, die in der zweiten
Phase (Proof of Concept) des ML4P-Vorgehensmodells zur Analyse der Badtemperaturdaten der
TAE herangezogen werden. Ein Schwerpunkt liegt auf der Berechnung von Zeitreihenmerk-
malen, die eine Untersuchung der Eigenschaften von Zeitreihen erméglichen. Dariiber hinaus
werden das AR-Modell und RF-Modell vorgestellt, die in dieser Arbeit als globale Modelle fiir
eine Badtemperaturvorhersage eingesetzt werden. Die Begriindung fiir die Wahl dieser Modelle
und der Unterschied zwischen lokalen und globalen Vorhersagemodellen werden aufgezeigt.
Auflerdem werden Methoden erlautert, die im Kontext der Zeitreihenanalyse zum Training und

zur Validierung von Vorhersagemodellen zum Einsatz kommen.

Das Vorgehen der zweiten Phase (Proof of Concept) wird in Kapitel 5 beschrieben. Hierbei
werden zwei Losungsansitze vorgestellt, die sich hinsichtlich der Art der Vorhersage unter-
scheiden. Im ersten Losungsansatz wird mit dem AR-Modell eine Tagesprognose (Forecasting)
auf Basis von historischen Badtemperaturdaten erstellt. Im zweiten Losungsansatz wird mit dem
RF-Modell eine Gegenwartsvorhersage (Nowcasting) der Badtemperatur erzeugt. Im Vorfeld
werden die Badtemperaturdaten aufbereitet und mit den im Kapitel 4 vorgestellten Metho-
den untersucht. Im Anschluss werden die Daten fiir das Training, Validieren und Testen der
vorgestellten Vorhersagemodelle eingesetzt und die jeweils erzielte Performanz verglichen.
Auflerdem wird eine Moglichkeit aufgezeigt, um die Gegenwartsvorhersagen des RF-Modells

zu interpretieren.

In Kapitel 6, das der dritten Phase (Systemspezifikation) des Vorgehensmodells zugeordnet
wird, werden die Ergebnisse aus der zweiten Phase reflektiert. Aulerdem wird eine Moglichkeit
vorgestellt, die eine Integration der entwickelten Losungen in den Produktivbetrieb erméglicht.
Dabei wird ein interaktives Dashboard aufgezeigt, das am LfA entwickelt wurde. Im Ausblick

dieser Arbeit werden die weiteren Arbeitsschritte dargelegt, die tiber diese Arbeit hinausgehen.

1.2 Projektpartner

Der Aluminiumhersteller TRIMET ist in der Produktion und Entwicklung von Aluminiumpro-
dukten tatig und ist eine Tochtergesellschaft der TRIMET SE, die sich in Familienbesitz befindet.
Der Sitz der TRIMET und der Muttergesellschaft ist in Essen (Deutschland). Das Geschaft der

Kapitel 1
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TRIMET gliedert sich in drei Bereiche: Marketing & Sales (Essen, Berlin), Primary Products
(Essen, Hamburg, Voerde) und Recycling (Essen, Gelsenkirchen, Harzgerode). Dariiber hinaus
ist die TRIMET mit 65 % an der TRIMET France SAS in Saint-Jean-de-Maurienne (Frankreich)
beteiligt [TRI21, S. 7, 45]. Im Geschéftsjahr 2020/2021 wurden 76 % des Umsatzes im Bereich
Primary Products erwirtschaftet [TRI21, S. 13].

Die industrielle Herstellung von Aluminium ist sehr energieintensiv [DDPR16, S. 571]. Laut
dem Nachhaltigkeitsbericht 2021 der TRIMET wurde im Jahr 2021 am Standort Essen elektri-
sche Energie in Hohe von 2,456 TWh umgesetzt [TRI23, S. 21]. Der spezifische Energiebe-
darf (Gleichstrom) fir die Produktion von 1 Tonne Aluminium am Standort Essen wird mit
13,85 MWh angegeben [TRI23, S. 21]. Nach [Rhe22] ist der elektrische Energiebedarf fiir das

Werk in Essen genauso hoch wie fiir die gesamte Stadt Essen.

Die TRIMET betreibt an den drei Standorten Essen, Hamburg und Voerde in Deutschland
insgesamt 818 Elektrolysedfen, um Primaraluminium zu produzieren [TRI24]. Von diesen
befinden sich 360 Ofen in Essen, die sich auf drei Hallen aufteilen. In einer Halle befinden sich
120 PreBaked Point Feeder (PBPF) Ofen in einer Ende-zu-Ende-Aufstellung [KGD+20, S. 2].
Abbildung 1.2 zeigt die Anordnung der Ofen in einer der drei Hallen bei der TAE.

Abbildung 1.2: Ende-zu-Ende-Anordnung der PBPF-Ofen, die von der
TRIMET in einer der drei Hallen in Essen betrieben werden. Das Bild wurde
von der TRIMET zur Verfiigung gestellt.

Im Rahmen der Flexibilisierungsmafinahmen wurden am Standort Essen Anpassungen an den
Aluminiumelektrolysedfen vorgenommen. Die TRIMET hat die Ofenprozesssteuerung iiber-

arbeitet, jeweils eine Magnetfeldkompensation an den Ofen installiert und Warmetauscher
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angebracht, um weiterhin einen stabilen und effizienten Produktionsbetrieb bei einer variablen
Stromstérke zu gewahrleisten [Dii16, S. 3, 12; DMB19]. Wahrend die Magnetfeldkompensation
eine Aufwolbung des flisssigen Aluminiums in den Ofen bei hohen Stromstérken verhindern
soll, sollen die Warmetauscher die Warmeverluste iiber die Ofenwand regulieren [GKD+23, S. 2;
DDPR16; DMB19, S. 535]. Die Aufienluft wird mithilfe von Ventilatoren durch die Warmetau-
scher und somit an den Ofenwianden vorbeigesaugt. Auf diese Weise kann bei einer erhéhten
Energiezufuhr die zusétzliche Warme abgefiihrt und somit die Warmebilanz eines Ofens bei-
behalten werden. Auflerdem kann bei einem geringen Energieeintrag Luft im Warmetauscher
angestaut werden, um eine zusitzliche Warmeisolation fiir einen Ofen zu erzeugen [DMB19,
S. 535; Dii16, S. 4]. Abbildung 1.3 zeigt die an einem Ofen angebrachten Warmetauscher, die
iiber flexible Luftungsschlauche mit davor installierten Sammelboxen verbunden sind. Die
Installation der Warmetauscher erfolgte zunachst zu Testzwecken in einer kleinen Gruppe an
Elektrolysedfen und wurde spiter innerhalb des FlexTherm-Projekts auf die restlichen Ofen in

Halle 1 ausgeweitet.

S

Abbildung 1.3: Arbeiten an den Warmetauschern, die an einem Ofen in-
stalliert sind. Die Warmetauscher sind direkt an der Ofenwand angebracht
und mit davor befestigten Sammelboxen tber flexible Liiftungsschlauche
verbunden. Das Bild wurde von der TRIMET zur Verfiigung gestellt.
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KAPITEL 2

Ziel und Losungsansatze

Anhand des ML4P-Vorgehensmodells nach [BP20], das in Kapitel 1 vorgestellt wurde, werden in
diesem Kapitel die Ziele und Losungsansatze aufgezeigt. Der Fokus liegt auf der Badtemperatur,
die in der Aluminiumelektrolyse eine wesentliche Prozessvariable ist. In Abbildung 2.1 ist ein
initiales ML-Pipeline-Diagramm zu sehen, das den Ist-Zustand und den gewiinschten Ziel-

Zustand sowie den Datenfluss aufzeigt.

Der Ist-Zustand umschreibt den aktuellen Zustand bei der TAE hinsichtlich der manuellen Bad-
temperaturmessung. Hierbei werden zwei Messgerite vorgestellt, mit der die Badtemperatur
bei der TAE gemessen wird. Der Ziel-Zustand zeigt eine mogliche Integration von Badtem-
peraturvorhersagen in der Aluminiumelektrolyse auf und umfasst die dafiir nétigen Schritte.
Beide Zustande werden in den nachfolgenden beiden Kapiteln beschrieben. Im Anschluss wird
ein Literaturtiberblick gegeben, der den Einsatz von datengetriebenen Methoden in der Alu-
miniumelektrolyse beleuchtet. Dieser Uberblick dient als Grundlage fiir die Entwicklung von

potenziellen Losungsansatzen, die eine Vorhersage der Badtemperatur erméglichen sollen.

I ST iVorverarbeitung Ziel

der Daten
Manuelle Messungen
(u. a. Badtemperaturmessungen)

—’{ Datenanalyse }—l
Weitere

Prozessdaten - : ! Ergebnisse &
Hlstorlsche - Visualisierung

Prozessdaten
Alumlnlumelektrolyseofen Datenbank !

Vorhersage der
Regelung | Badtemperatur

4

A

Abbildung 2.1: Initiales ML-Pipeline-Diagramm.
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2.1 Ist-Zustand

Bei der TAE werden die Prozessdaten von insgesamt 360 Aluminiumelektrolysefen sowohl
manuell als auch automatisiert erfasst und innerhalb einer Datenbank gespeichert. Der Daten-
fluss des Ist-Zustands ist in Abbildung 2.1 abgebildet. Die von den Aluminiumelektrolyse6fen
erfassten Daten weisen eine unterschiedliche zeitliche Auflésung auf. Die Badtemperatur wird
alle 24 bis 48 Stunden manuell gemessen und der entsprechende Messwert in eine Datenbank
gespeichert. Die Liquidustemperatur (Schmelztemperatur) und die chemische Zusammenset-
zung des Elektrolyten werden in der Regel alle 48 Stunden an jedem Ofen manuell tiberprift.
Neben den manuellen Messungen werden weitere Prozessvariablen, wie beispielsweise die
Stromstérke und Ofenspannung, automatisiert aufgezeichnet und in eine Datenbank mit einem
entsprechenden Zeitstempel abgespeichert. Die zeitliche Auflésung der Stromstérke und der
Ofenspannung betrégt fiinf Minuten. Des Weiteren sind an den Auflenseiten von ausgewhl-
ten Ofen Thermoelemente installiert [GKD+23]. Die aufgezeichneten Temperaturdaten der
Thermoelemente dienen der Berechnung und Uberwachung der Warmebilanz dieser Ofen.
Insgesamt konnen mit einem Zugriff auf die Datenbank historische Daten von Ofen abgerufen

und fiir weitere Analysen verwendet werden.

Zur Regelung der Aluminiumelektrolysedfen setzt die TAE die 9-Box-Matrix-Regelung ein, um
die Badtemperatur durch Anpassungen der Ofenspannung in einem gewahlten Kontrollband
zu halten [RIW+16, S. 818]. Ein weiteres Ziel der 9-Box-Matrix-Regelung ist die kontrollierte
Zugabe von Aluminiumfluorid (AlFs;) anhand der Liquidustemperatur [RIW+16, S. 818].

Die Aluminiumelektrolysedfen der TAE werden insgesamt von drei Schichten iiberwacht. Die
erste Schicht beginnt um sechs Uhr morgens, wihrend die dritte Schicht um diese Uhrzeit endet.
Die Arbeitszeit jeder Schicht betragt acht Stunden. Jede Schicht iibernimmt fiir eine Gruppe an

Ofen die Badtemperaturmessung.

Fiir die Messung der Badtemperatur verwendet die TAE Messgerite der Firma Heraeus Electro-
Nite. In Abbildung 2.2a ist das FiberLab®-Messgerit zu sehen. Mit diesem Gerit konnen neben
der Badtemperatur mit einer Genauigkeit von £1 °C auch noch die Liquidustemperatur sowie
die chemische Zusammensetzung des Elektrolyten ermittelt werden [Fiba]. Das in Abbildung
2.2b dargestellte C-V-Therm-Messgerit (Digilance) erlaubt neben der Badtemperaturmessung,
die eine Genauigkeit von +0,5 °C aufweist, auch die Messung der Kathodenspannung (Cathode
Voltage Drop) [Dig]. Wie bereits erldutert, ist die kontinuierliche Messung der Badtemperatur
mithilfe einer in den Ofen angebrachten Sensorik nicht zerstérungsfrei méglich, da die korrosive
Produktionsumgebung diese innerhalb kurzer Zeit auflsen wiirde [Diil6, S. 41; GK93, S. 215].
Eine kontinuierliche Badtemperaturmessung wiirde jedoch nach [ZJX+94, S. 28—29] den Vorteil
bieten, dass sie als zusatzlicher Eingang fiir die Ofenregelung dienen kann. Des Weiteren kann

eine kontinuierliche Badtemperaturmessung nach [Z]JX+94, S. 29] dazu beitragen, spezifische
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Effekte oder Eingriffe, wie beispielsweise Anodeneffekte oder Anodenwechsel, genauer zu
untersuchen. Dieser Hintergrund fithrt zum Ziel dieser Arbeit, das im nachfolgenden Kapitel

dargestellt wird.

(a) FiberLab® [Fibb]. (b) C-V-Therm (Digilance) [Dig].

Abbildung 2.2: Zwei Messgerate der Firma Heraeus Electro-Nite, mit denen
die Badtemperatur der Ofen bei der TAE gemessen wird. Die Verwendung
dieser Bilder wurde von der Firma Heraeus Electro-Nite fiir diese Arbeit
genehmigt.

2.2 Ziel-Zustand

In Anbetracht der Problematik einer kontinuierlichen Messung der Badtemperatur [Dii16, S. 41;
GK93, S. 215] erscheint es zielfithrend, die aufgezeichneten Prozessdaten der TAE fiir eine
Badtemperaturvorhersage zu nutzen. Um den angestrebten Ziel-Zustand zu erreichen (vgl.
Abbildung 2.1), sollen die historischen Prozessvariablen aus einer zentralen Datenbank abgefragt
werden. Eine anschliefende Aufbereitung der Daten wird notwendig sein, um eine Datenbasis
fiir die weitere Durchfithrung von Analysen zu schaffen. Die Datenanalysen zielen darauf ab,
neue Erkenntnisse zu schaffen, die fiir die Entwicklung von Vorhersagemodellen von Nutzen
sein konnen. Es kann nicht ausgeschlossen werden, dass die Erkenntnisse weitere Schritte in

der Datenaufbereitung erforderlich machen.

Im Anschluss an die Datenvorverarbeitung und Datenanalysen ist die Entwicklung méglicher
Losungsansitze fiir eine Badtemperaturvorhersage durch datengetriebene Methoden vorgese-
hen. Die datengetriebenen Methoden sollen als Bestandteil des Betriebs zur Optimierung der
Ofenreglung eingesetzt werden. Auch die Mitarbeitenden des Betriebs konnen die Vorhersagen
nutzen, um Effekte innerhalb des Aluminiumelektrolyseofens genauer zu untersuchen oder

etwaige Abnormalitaten frithzeitig zu erkennen. Ferner wird in [SBMW?22, S. 378] der Einsatz
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von Badtemperaturvorhersagen beschrieben, um fehlerhafte Badtemperaturmessungen zu iden-
tifizieren. Bei einer wesentlichen Abweichung zwischen der Vorhersage und der gemessenen

Badtemperatur ist eine Wiederholung der Messung erforderlich.

Insgesamt erschlie3t die vorliegende Arbeit den in Abbildung 2.1 dargestellten Ziel-Zustand, um
datengetriebene Methoden in den Produktivbetrieb der TAE zu tiberfithren. Im Rahmen dieser
ErschlieBung werden die einzelnen Schritte, die Vorverarbeitung der Daten, die Durchfithrung
von entsprechenden Analysen und das Training, Validieren und Testen von ausgewahlten Vor-
hersagemethoden, vorgestellt. In den entsprechenden Schritten werden jeweils wesentliche
Schwierigkeiten aufgezeigt und Losungen prasentiert, um eine Badtemperaturvorhersage in
der Aluminiumelektrolyse zu erreichen. Dartiber hinaus wird eine Moglichkeit fiir die Visuali-
sierung der Vorhersagen prasentiert, die im Produktivbetrieb von den Mitarbeitenden der TAE

eingesetzt werden kann.

2.3 Literaturuberblick

Der Einsatz datengetriebener Methoden ist in der Aluminiumelektrolyse vielfltig. Fiir unsere
Arbeit [GKD+18] wurde bereits Literatur iiber den Einsatz von datengetriebenen Methoden
im Bereich der Aluminiumelektrolyse recherchiert. Diese Recherche wird in diesem Kapitel
aufgegriffen und um weitere relevante Literatur ergénzt. Fiir die Recherche wurde hauptsichlich
der Literaturbereich der Aluminiumelektrolyse mit dem Fokus auf datengetriebenen Methoden

durchsucht. Die Recherche folgte keiner bestimmten Vorgehensweise.

Als Pseudo-Modell wird in diesem Kapitel ein Modell bezeichnet, das als Grundlage fiir einen
Vergleich mit weiteren Vorhersagemodellen dient. Beispielsweise stellen ein naives Modell,
das die letzte Beobachtung als Vorhersage verwendet, oder die Berechnung des Mittelwerts
iiber die Daten, der anschlieffend als Vorhersage eingesetzt wird, jeweils ein Pseudo-Modell dar.
Mit dem Einsatz von Pseudo-Modellen kann der Nutzen von komplexeren Vorhersagemodelle
iberprift werden. Diese sollten eine wesentlich bessere Vorhersageperformanz als Pseudo-

Modelle aufweisen, um einen praktischen Einsatz begriinden zu kénnen.

In [Maj11; MTC+11] wird ein Framework prasentiert, das eine zeitnahe Erkennung von Abnor-
malititen, wie Anodeneffekte und Ansitze, wihrend des Ofenbetriebs erméglicht. In [KGD+20]
wird eine Moglichkeit beschrieben, um Anodeneffekte vorherzusagen. Mehrere Vorhersa-
gemodelle werden in der Arbeit gegeniibergestellt, wobei das RF-Klassifikationsmodell die
beste Performanz auf dem Testdatensatz erzielt. In [ZXWZ18] wird zudem ein Losungsansatz
basierend auf eXtreme Gradient Boosting (XGBoost) fiir die Vorhersage von Anodeneffekte
vorgestellt. Anodeneffekte sind in der Aluminiumelektrolyse problematisch, da diese zu einem
hohen Energieeintrag fithren und klimaschédliche Gase freisetzen [KGD+20, S. 1]. In Kapitel

3.2 wird die Entstehung von Anodeneffekten genauer aufgezeigt. Die Erkennung von Ansit-

Kapitel 2
Ziel und Losungsansitze



Abschnitt 2.3. Literaturuberblick

zen, die sich an den Anoden bilden konnen, ist in der Aluminiumelektrolyse wichtig, da diese
die Effizienz der Aluminiumproduktion negativ beeinflussen [KGD+21]. In [KGD+21] werden
maschinelle Lernverfahren miteinander verglichen, um Ansitze automatisiert erkennen zu
konnen. Das XGBoost-Modell erreicht die beste Performanz auf den Testdaten. In Kapitel 3.2

werden Ansitze an Anoden und deren Einfluss auf die Badtemperatur erklart.

In [MYTC12] wird der k-Means-Algorithmus eingesetzt, um anhand von Produktionsdaten
Abnormalititen voneinander abzugrenzen. Um das Verhalten von Aluminiumelektrolyse-
6fen leichter analysieren zu kénnen, werden in [LSS+17] der Fuzzy-c-Means-Algorithmus und
k-Means-Algorithmus verwendet. Damit werden Elektrolysedfen mit dhnlichem Verhalten
gruppiert, um eine leichtere Analyse zu erméoglichen. Auch in [HV12] werden Aluminiumelek-
trolysedfen mit dhnlichem Verhalten in Gruppen eingeteilt, wobei das hierarchische Clustern

eingesetzt wird.

Mittels Berechnung von 20 Zeitreihenmerkmalen und der Principal Component Analysis (PCA)*
werden in unserer Arbeit [GKD+23] nicht plausible Temperaturverlaufe von Thermoelementen
identifiziert, die an Aluminiumelektrolyseéfen der TAE platziert sind. Mehrere zweidimensio-
nale Merkmalsrdume werden dazu erstellt, um diese hinsichtlich auffilliger Temperaturverlaufe
zu untersuchen. Auflerdem wird ein interaktives Dashboard gezeigt, um einen praktischen

Einsatz der vorgestellten Losung in der industriellen Aluminiumherstellung zu erméglichen.

In [CSO16] wird ein neuronales Netz implementiert, um chemische Prozessvariablen und die
Badtemperatur vorherzusagen. Das neuronale Netz wird mit weiteren linearen und nicht linea-
ren Modellen beziiglich der Vorhersagefehler verglichen. Anschlieflend wird das neuronale Netz
fiir eine Simulation eingesetzt, um den Einfluss der Aluminiumfluoridzugabe auf die Badtem-
peratur und die Aluminiumfluoridkonzentration zu untersuchen. Dennoch fehlt ein Vergleich
mit einem Pseudo-Modell, um die Vorhersageperformanz des neuronalen Netzes einschitzen
zu konnen. Eine Analyse der Modellzusammenhénge sowie eine Interpretation der Badtempe-
raturvorhersagen ist zudem nicht vorhanden, die im Bereich der Aluminiumelektrolyse jedoch

von Vorteil sein kénnen, wie in unserer Ver6ffentlichung [GKD+18] dargelegt wird.

In [JGJ21] wird fiir die Vorhersage der Badtemperatur ein Modell in MATLAB® und Simulink®
verwendet, mit dem die gegenwértige und die zukiinftige Badtemperatur eines Ofens unter den
Bedingungen einer Strommodulation prognostiziert wird. Mit einem Optimierungsalgorith-
mus wird zunichst das Modell an den aktuellen Zustande eines Ofens angepasst, fiir den eine
Badtemperaturvorhersage erzeugt werden soll. Anschlieflend werden mit dem Modell gegen-
wirtige und zukinftige Vorhersagen der Badtemperatur erstellt. Die Abweichung zwischen

der gegenwartigen Vorhersage und der gemessenen Badtemperatur wird mit weniger als 2°C

IDie PCA ist ein uniiberwachtes lineares Transformationsverfahren, um die Merkmale eines Datensatzes in einen
kleineren Merkmalsraum zu projizieren. Sie wird genutzt, um Muster in Daten zu identifizieren. Hierzu werden die
Merkmale eines Datensatzes durch eine Linearkombination ersetzt. Ziel ist es, eine Linearkombination zu finden,
die zu einer Maximierung der Varianz fithrt [Fro18, S. 271; RM17, S. 142; HWL15, S. 1617; HK17, S. 124-125, 130].
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angegeben. Als Nachteil der prasentierten Losung wird die lange Simulationszeit von bis zu 40

Minuten erwéhnt, die bis zum Vorliegen einer Vorhersage vergeht.

In [WBSK+24] wird ein dynamisches Modell vorgestellt, mit dem unter anderem die Badtem-
peratur unter dem Einfluss einer Strommodulation kontinuierlich vorhergesagt wird. Hierbei
werden die Daten von Thermoelementen fiir die Vorhersage berticksichtigt, die an der Ofen-
wand und in der Ofenverkleidung angebracht sind. Die vorhergesagte Badtemperatur wird
mit regelmafligen Badtemperaturmessungen an verschiedenen Stellen im Ofen verglichen. Es
wird gezeigt, dass die kontinuierliche Vorhersage den generellen Trend der gemessenen Bad-
temperaturen nachbildet. Die Verwendung dieses dynamischen Modells erfordert jedoch den
Einsatz von Thermoelementen an den Ofen, die aufgrund der Produktionsumgebung regelmaflig

gewartet werden miissen, wie in unserer Arbeit [GKD+23] gezeigt wird.

Ein Multilayer Perceptron (MLP) wird in [SO10] als Soft-Sensor eingesetzt, um die Badtem-
peratur von Aluminiumelektrolyseéfen zu bestimmen. Es wird herausgestellt, dass das dort
prasentierte Modell Temperaturmessungen nicht vollstidndig ersetzen kann. Im Bereich der Alu-
miniumelektrolyse wird in [FK00a] eine Vorgehensweise basierend auf der Predictive (Feature)
Importance vorgestellt, um wesentliche Merkmale eines neuronalen Netzes identifizieren zu
konnen. In [FK00b] werden ein neuronales Netz zur Vorhersage der Badtemperatur verwendet
und die Merkmale mithilfe der Predictive (Feature) Importance untersucht. In der vorliegenden
Arbeit wird eine vergleichbare Vorgehensweise gew#hlt, um wesentliche Merkmale fiir die
Gegenwartsvorhersage zu identifizieren. In [SSC+19] wird ein Lésungsansatz vorgestellt, bei
dem die Badtemperatur, der Aluminiumfluoridgehalt im Elektrolyt und die Hohe des fliissigen
Aluminiums im Ofen mithilfe von neuronalen Netzen vorhergesagt wird. Dazu werden die
Aluminiumelektrolysedfen zunichst in Gruppen eingeteilt, fiir die anschlieffend jeweils ein
neuronales Netz trainiert wird. Die Autor/-innen begriinden ihre Vorgehensweise damit, dass
ein einzelnes neuronales Netz nicht das Verhalten aller Ofen abbilden kénne. Auf der anderen
Seite sei jeweils ein neuronales Netz fiir jeden einzelnen Ofen zu aufwendig in der Anwendung
[SSC+19, S. 2-3]. Entsprechende Ergebnisse fiir diese Aussagen werden in der Arbeit jedoch
nicht aufgezeigt.

In den erlauterten Arbeiten [SO10], [FK00b] und [SSC+19] fehlt jeweils ein Vergleich mit einem
Pseudo-Modell, um die Performanz der Vorhersagemodelle ins Verhiltnis setzen zu konnen.
Der Nutzen der verwendeten Modelle wird dadurch nicht ersichtlich. Dartiber hinaus werden
die erstellten Vorhersagen nicht weiter interpretiert. Lediglich die erreichten Performanzen
der verwendeten Modelle werden in den Arbeiten dargestellt. Zudem weisen neuronale Netze
Eigenschaften auf, die eine Praxisimplementierung erschweren konnen. In Kapitel 4.2.1 wird

darauf genauer Bezug genommen.

In unserer Veréffentlichung [GKD+18] wird ein RF-Regressionsmodell implementiert, um ei-

ne Gegenwartsvorhersage fiir die Badtemperatur von Aluminiumelektrolyse6fen der TAE zu
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erstellen. Mithilfe einer Permutation Feature Importance (PFI) werden Prozessvariablen ana-
lysiert, die einen wesentlichen Einfluss auf die Vorhersage haben. Dariiber hinaus wird der
Modellzusammenhang zwischen den Prozessvariablen und der Badtemperatur durch die Ver-
wendung von Partial Dependence Plots analysiert. Ein Vergleich mit einem Pseudo-Modell
wird jedoch nicht durchgefiihrt. In [SBMW22, S. 375-378] werden weitere Vorhersagemodelle
aus dem Bereich des maschinellen Lernens sowie ein Pseudo-Modell (naives Modell) fiir eine
Gegenwartsvorhersage der Badtemperatur eingesetzt. Dabei wird innerhalb der Datenvorver-
arbeitung die Aggregation von Zeitreihendaten aus unserer Arbeit [GKD+18] aufgegriffen. Das
Gradient Boosting Modell erreicht auf den Testdaten die beste Performanz [SBMW22, S. 377].

Eine Interpretation der erstellten Gegenwartsvorhersagen wird jedoch nicht aufgezeigt.

In [MAWO01] wird eine Zeitreihenanalyse durchgefiihrt und ein ARMAX-Zeitreihenmodell ver-
wendet, um die Badtemperatur von Aluminiumelektrolysedfen vorherzusagen. Das ARMAX-
Zeitreihenmodell wird als generisches Modell bezeichnet, da es mit Daten von insgesamt 13 Alu-
miniumelektrolyseéfen trainiert und validiert wird. Als Begriindung fiir diese Vorgehensweise
wird in der Arbeit angefiihrt, dass dieses ARMAX-Zeitreihenmodell eine bessere Performanz
auf den Validierungsdaten erreicht als ein Modell mit Daten eines einzelnen Ofens. Die Arbeit

prasentiert jedoch keine empirischen Ergebnisse fiir diese Erkenntnis.

Im Rahmen der vorliegenden Arbeit werden zwei Losungsansitze analysiert, die die Erstel-
lung einer 1-Schritt-Badtemperaturvorhersage (Forecasting) sowie einer Gegenwartsvorhersage
(Nowecasting) der Badtemperatur erméglichen. Zunéchst wird eine umfassende Analyse der
Badtemperatur durchgefiihrt, die die Ergebnisse aus [MAWO01] ergédnzen. Fiir die 1-Schritt-
Badtemperaturvorhersage erfolgt ein Vergleich zwischen einem globalen AR-Modell und lokalen
klassischen Zeitreihenmodellen. Unter den lokalen Modellen befinden sich zudem zwei Pseudo-
Modelle. Das globale AR-Modell dient als Basismodell und wird dhnlich wie in [MAWO01] mit
allen Badtemperaturdaten trainiert, wihrend die lokalen Zeitreihenmodelle lediglich mit den
Daten eines Ofens trainiert werden. Im Anschluss wird die Performanz aller Vorhersagemodelle
gegeniibergestellt, um empirisch den Nutzen eines globalen AR-Modells fiir die Badtempera-

turvorhersage aufzuzeigen.

Der zweite Losungsansatz wird basierend auf den Ergebnissen aus unserer Arbeit [GKD+18] mit
aktuelleren Daten umgesetzt. Hierbei werden ein RF-Regressionsmodell fiir eine Gegenwarts-
vorhersage der Badtemperatur eingesetzt und die Performanz mit den Modellen aus dem ersten
Loésungsansatz verglichen. Auflerdem wird eine Moglichkeit fiir die visuelle Darstellung und In-
terpretation der Vorhersagen des RF-Regressionsmodells fiir den praktischen Einsatz vorgestellt.
Eine derartige Interpretation wurde bislang im Literaturbereich der Aluminiumelektrolyse nach

bestem Wissen noch nicht aufgezeigt.
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KAPITEL 3

Grundlagen der Aluminiumelektrolyse

In diesem Kapitel werden die Grundlagen der industriellen Aluminiumherstellung vorgestellt.
Zunichst wird auf den Hall-Héroult-Prozess und die wesentlichen Bestandteile eines Alumi-
niumelektrolyseofens eingegangen. Bei der industriellen Herstellung von Aluminium stellt
die Badtemperatur eine wesentliche Prozessvariable dar, die in diesem Kapitel beschrieben
wird. In diesem Zusammenhang werden zudem die Wechselwirkungen der unterschiedlichen

Prozessvariablen innerhalb der Aluminiumelektrolyse erlautert.

3.1 Hall-Héroult-Prozess

Fir die industrielle Herstellung von Aluminium wird der Hall-Héroult-Prozess genutzt, bei
dem eine elektrolytische Reduktion von Aluminiumoxid (Al;O3) durchgefiihrt wird [GK93, S. 1;
D16, S. 15]. Aluminiumoxid besitzt eine hohe Schmelztemperatur von knapp tiber 2000 °C
[Wib08, S. 1140]. Aus diesem Grund wird Aluminiumoxid in flissigem Kryolith (Na; AlFs) gelost
und mit Aluminiumfluorid (AlF;) sowie Calciumfluorid (CaF,) vermischt, um die Schmelztem-
peratur in einen Bereich von 920 °C bis 970 °C zu senken [Haul6a, S. 4; Wib08, S. 1140; GK93,
S. 50]. Die Schmelztemperatur wird auch Liquidustemperatur genannt und ist abhéngig von der
chemischen Zusammensetzung des Elektrolyten [Ris12, S. 17; RIW+16, S. 818]. Die Liquidus-
temperatur ist die Mindesttemperatur, bei der der Prozess betrieben werden muss, ohne dass

der Elektrolyt zu erstarren beginnt [Hauléc, S. 804].

Die Badtemperatur ist die Temperatur des Elektrolyten und liegt iiblicherweise 5 °C bis 10°C
oberhalb der Liquidustemperatur [Reel5, S. 8]. Die Differenz zwischen der Badtemperatur und
der Liquidustemperatur wird Superheat genannt. Der Superheat ist ein entscheidender Faktor
fur die Losungsfiahigkeit von Aluminiumoxid dar und steht zudem im Zusammenhang mit der
Stérke der Seitenkruste, die aus erstarrtem Elektrolyt besteht und den Ofen vor Beschadigungen
schiitzt [Dii16, S. 10, 18; RIW+16, S. 818; GB19, S. 2137].

In Abbildung 3.1 ist eine Querschnittansicht eines Ofens zu sehen. Diese Art des Ofens kommt

auch bei der TAE zum Einsatz. Die Anoden, die in den fliissigen Elektrolyt eintauchen, bestehen
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aus Petrolkoks (Kohlenstoff, C) und Steinkohlenteerpech als Bindemittel [GK93, S. 4]. Die
elektrolytische Reaktion mit dem gel6sten Aluminiumoxid fithrt zur Bildung von fliissigem
Aluminium [GK93, S. 1], das sich auf dem Kathodenblock absetzt. Des Weiteren entsteht durch
die Reaktion mit dem Sauerstoff aus dem Aluminiumoxid und dem Kohlenstoff der Anoden
gasformiges Kohlenstoffdioxid (CO,) [GK93, S. 1; Dii16, S. 26]. Diese chemische Reaktion lasst
sich mit Gleichung 3.1 abbilden. Die Anoden brauchen sich auf, sodass sie nachgefithrt werden
missen [GK93, S. 208]. Alle 22 bis 26 Tage werden die aufgebrauchten Anoden durch neue
Anoden ersetzt, um eine kontinuierliche Produktion an Aluminium zu erméglichen [GK93, S. 2,
5]. Das fliissige Aluminium im Ofen wird in der Regel alle 24 bis 48 Stunden abgesaugt [GK93,
S. 213]. Um einen Luftabbrand der Anoden zu vermeiden und eine thermische Isolation zu
erzeugen, werden neu eingesetzte Anoden mit Aluminiumoxid oder zerkleinertem Elektrolyt
eingedeckt [GK93, S. 202].

+ Feeder +

Aluminiumoxid

Elektrolyt

I I I I A

flussiges Aluminium

Siliziumkarbid Steine
Siliziumkarbid Steine

N N e A Y
Kathodenblock

- Stromschiene -
Schamottsteine
Isolation
Abbildung 3.1: Querschnittsansicht eines Aluminiumelektrolyseofens. Ab-
geindert nach [GB19, S. 2137].
2 AlO3(gelost) + 3 C(fest) = 4 Al(fliissig) + 3 CO2(gas) (3.1)

Aus 1,89 kg Aluminiumoxid kann theoretisch eine Menge von 1 kg Aluminium (Al) gewon-

nen werden [GK93, S. 3]. Die theoretische Produktionsmenge an Aluminium ist bei einem
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konstanten Wirkungsgrad proportional zur Stromstérke [Di16, S. 4; GK93, S. 148]. Mit einer
Stromstarke von 175 kA kann in einer Zeit von 24 Stunden eine Menge von ungefahr 1409 kg
Aluminium produziert werden [GK93, S. 148]. Eine Erhéhung der Stromstérke erhoht zwar die
Produktionsmenge an Aluminium, wirkt sich aber auch auf die sensible Energiebilanz eines
Ofens aus [Diil6, S. 4].

Das Hinzufiigen von Aluminiumoxid wird als Fiitterung bezeichnet. Dazu wird die obere Kruste
aufgebrochen, sodass durch die Offnung Aluminiumoxid dem fliissigen Elektrolyt hinzugefiigt
werden kann [GK93, S. 79-80]. Fiir das Aufbrechen der Kruste sind in den Ofen der TAE Krus-
tenbrecher installiert, die ein Loch in die obere Kruste brechen. Das Aluminiumoxid befindet
sich in einem Behalter, sodass das Aluminiumoxid durch die ge6ffnete Kruste in Schiiben in
den fliissigen Elektrolyt gelangt. Diese Technik der Fiitterung wird als “Point Feeding” [GK93,
S. 80—-81] bezeichnet und erfolgt bei der TAE vollstindig automatisiert.

Die Zugabe von Aluminiumoxid wird anhand der Ofenspannung bzw. eines berechneten Ofen-
widerstandes (Pseudo-Widerstand) durchgefiithrt. In Abbildung 3.2 ist der Zusammenhang
zwischen der Aluminiumoxidkonzentration des Elektrolyten und der Ofenspannung bei un-
terschiedlichen Anode-Kathode-Abstinden (Anode-Cathode Distance (ACD)) zu sehen. Ub-
licherweise wird der Ofenwiderstand fiir die Ofenregelung verwendet [KMSS13, S. 760]. Der
Ofenwiderstand hat gegeniiber der Ofenspannung den Vorteil, dass dieser sich bei geringen
Stromstarkednderungen nicht dndert und damit ein stabileres Eingangssignal fiir die Ofenre-
gelung darstellt [KMSS13, S. 760]. Die Berechnung des Ofenwiderstandes kann iber die in
[KMSS13, S. 760; GK93, S. 221] angegebene Gleichung erfolgen.

4,6 ,
45
S ACD 4.4 cm
on
44
g ACD 4,2 cm
2
2 43 | ACD 4,0 cm
&
o)
4,2

2 3 4 5 6 7T
%ALLO;

Abbildung 3.2: Zusammenhang zwischen der Aluminiumoxidkonzentration
und der Ofenspannung bei unterschiedlichen Anode-Kathode-Abstanden
(ACD). Abgeédndert nach [Hauléb, S. 158].
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Abschnitt 3.2. Elektrolyttemperatur (Badtemperatur)

Das Ziel der Ofenregelung ist es unter anderem, die Aluminiumoxidkonzentration des Elek-
trolyten zu iberwachen und anzupassen. Der ideale Wert der Aluminiumoxidkonzentration
liegt nach [Dii16, S. 18] bei 3 %. Aus Abbildung 3.2 geht hervor, dass bei einer zu geringen
Aluminiumoxidkonzentration der Ofenwiderstand rapide ansteigt. Dieses Verhalten wird als
Anodeneffekt bezeichnet, bei dem klimaschadliche Gase freigesetzt werden (vgl. Kapitel 3.2).
Dagegen steigt der Ofenwiderstand bei einer hohen Aluminiumoxidkonzentration aufgrund
der Widerstandserh6hung des Elektrolyten an [Diil6, S. 21].

Die Badtemperatur eines Aluminiumelektrolyseofens ist eine wichtige Prozessvariable [GK93,
S.215], die bei der TAE alle 24 bis 48 Stunden (Stand 08/2022) manuell gemessen und so angepasst
wird, dass energieeffizient produziert, Aluminiumoxid optimal gelst und eine schiitzende
Randkruste erzeugt wird [Dii16, S. 42]. Die Badtemperatur wird zudem als Maf fiir die Stabilitat
des Ofenbetriebs und als Warnsignal fiir Ofenabnormalitdten verwendet [GK93, S. 215]. Eine
niedrige Badtemperatur kann zudem zu einer hoheren Stromausbeute und einem niedrigen
Energieverbrauch beitragen, wobei eine bestimmte Differenz zwischen der Badtemperatur
und Liquidustemperatur bestehen sollte, die fiir eine optimale Lésung von Aluminiumoxid im
Elektrolyt und eine schiitzende Randkrustenbildung sorgt [Mad92, S. 453; GK93, S. 26; Diils6,
S. 42]. Eine konstante Badtemperatur ist in der Praxis nur schwierig méglich, da unterschiedliche
Faktoren die Badtemperatur eines Ofens beeinflussen, die in Kapitel 3.2 aufgezeigt werden.
Nach [TCY13, S. 58] schwankt die Badtemperatur in den besten Aluminiumhiitten der Welt mit

einer Standardabweichung von 5 °C bis 6 °C.

3.2 Elektrolyttemperatur (Badtemperatur)

Wihrend des Ofenbetriebs kommt es zu unterschiedlich starken Schwankungen der Elektrolyt-
temperatur (Badtemperatur), die von verschiedenen Einflussfaktoren bedingt sind. Abbildung
3.3 zeigt die Wechselwirkungen zwischen den Prozessvariablen eines Ofens, wie Badtemperatur,
Superheat, Badchemie und Seitenkruste. Die dargestellten Wechselwirkungen sind dabei nur
giltig, wenn eine Seitenkruste im Ofen vorhanden ist [STC+08, S. 309]. Eine Anderung der
Ofenspannung hat einen Einfluss auf die Energiebilanz eines Ofens, die sich iiber die d&ndernde
Wiérmeverluste tiber die Seitenwand letztendlich selbst beeinflusst. In der Literatur lassen sich
Versuchsauswertungen finden, die die Auswirkungen von unterschiedlichen Prozessparame-

tern, Eingriffen und Storungen auf die Badtemperatur vermitteln.

Im Folgenden werden die wesentlichen Einflussfaktoren auf die Badtemperatur mithilfe der
Literatur aufgezeigt, die fiir die Entwicklung eines Modells fiir die Vorhersage der Badtemperatur
relevant sein konnten. Des Weiteren wird ein Versuch prasentiert, dessen Auswertung im
Rahmen dieser Arbeit erfolgte und den Einfluss einer kontrollierten Hallenschaltung auf die

Badtemperatur aufzeigt.

Kapitel 3
Grundlagen der Aluminiumelektrolyse



Abschnitt 3.2. Elektrolyttemperatur (Badtemperatur)

Ofenoberseite:
Anodeneindeckung (Eindecken, Schmelzen, Einbrechen)
Ofenspannung, , I I
Hallenstrom, % Energie | o Badtemperatur‘

Stromausbeute Ht i B
A1F3, Naz 03,

J : R B p
ALO; (Fﬁtterung) D lBadChe‘mle H L1qu1dustemperatur ‘

Einfrieren/ =

Schmelzen
(Seitenkruste )«

Superheat

QSeitenwandN

| [

Hgad | Anodenwechsel
HMetall Saugen

Ofenunterseite: Bilden und Auflésen von Schlamm/Ridge

Abbildung 3.3: Wechselwirkungen zwischen den einzelnen Prozessvariablen
eines Aluminiumelektrolyseofens. Abgeandert nach [STC+09, S. 312].

Ofenspannung

Fir die Regelung der Badtemperatur setzt die TAE die 9-Box-Matrix-Regelung ein, die das
primére Ziel verfolgt, die Badtemperatur mittels Anpassungen der Ofenspannung in einem
vorgegebenen Kontrollband zu halten [RIW+16, S. 817]. Rieck et al. stellten bei einer Anderung
der Ofenspannung um 100 mV (—100mV) fiir 24 Stunden eine Badtemperaturdnderung um
etwa 7°C (—7°C) fest [RIW+16, S. 820]. Die Ofenspannung ist folglich eine essentielle Gré3e
in der Aluminiumelektrolyse, die unmittelbar die Stabilitit des Ofenbetriebs beeinflussen kann.
Die ohmschen Spannungsabfille sind bis auf die Spannungsverluste tiber die Stromschienen
mafgeblich fiir die Warmeentwicklung eines Ofens [Diil6, S. 20; HBGHO03, S. 269]. Dabei tragt
der ohmsche Spannungsabfall iiber den Elektrolyt wesentlich zur Warmentwicklung im Ofen
bei. Der ohmsche Spannungsabfall iber den Elektrolyt liegt nach [GK93, S. 22-23] zwischen
1,3und 2,0V.

Abbildung 3.4 zeigt den Einfluss einer Erh6hung der Ofenspannung auf die Warme- und Mate-
rialbilanz eines Ofens. Mit der Erh6hung des Anode-Kathode-Abstands (ACD) erhéht sich die
Ofenspannung, die zu einer Erhhung der Badtemperatur und des Superheats fithrt. Das fithrt
anschliefend zum Schmelzen der Seitenkruste, wodurch weiterer Kryolith in das Bad gelangt, zu
einer Verdiinnung von Aluminiumfluorid (AlFs) fithrt und einen Anstieg der Liquidustempera-

tur verursacht. Das Aufschmelzen der Seitenkruste bewirkt au3erdem, dass sich ein zusatzlicher
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Warmeverlust des Ofens einstellt. Insgesamt stellt sich durch eine Spannungserh6hung ein

neue Warme- und Materialbilanz des Ofens ein.

Anhebung ACD Erh6hung Badtemperatur und Superheat
des Energieientrags steigen
Spannungserhéhung /\
Schmelzen Zusétzlicher
der Seitenkruste Warmeverlust
Kryolith gelangt

in die Schmelze

Verdiinnung von AlF;
Liquidustemperatur steigt

4 Y

Neue Wirme- und Materialbilanz

Abbildung 3.4: Mit der Erh6hung des Energieeintrags stellt sich eine neue
Wiérme- und Materialbilanz eines Ofens ein. Abgeandert nach [RIW+16,
S. 818].

Hallenstrom

Eine Veranderung der Stromstérke verursacht eine Anderung der Warmeentwicklung im Ofen,
die die TAE durch eine Anpassung der Ofenspannung bis zu einem gewissen Grad kompensiert
[Dii16, S. 141]. Eine héhere Warmeentwicklung im Ofen, die nicht mehr von der Verringerung
der Ofenspannung kompensiert werden kann, wird unter anderem mittels an den Ofenwanden

angebrachter Warmetauscher kompensiert [Di16, S. 4, 10, 141].

Als Hallenschaltung wird bei der TAE eine kontrollierte Stromabschaltung einer gesamten Halle
fiir einen vorgegebenen Zeitraum bezeichnet, um bestimmte Arbeiten an Ofen durchfithren
zu kénnen. Vor allem bei der Installation der Magnetfeldkompensation und Wirmetauscher
in Halle 1 im Jahr 2018 kam es zu einer hohen Anzahl an Hallenschaltungen, die die Wérme-
bilanz der Ofen beeinflussten [DMB19]. Die Funktion der Magnetfeldkompensation und der

Wirmetauscher wurde bereits in Kapitel 1.2 erldutert.

Eine durchgefithrte Simulation in [DMB19, S. 537-539] zeigt, dass eine Hallenschaltung fiir 1,5
Stunden eine Badtemperaturanderung von etwa —30 °C verursacht. Die Autoren weisen jedoch

darauf hin, dass die ermittelten Badtemperaturdnderungen im Vergleich zum realen Prozess zu
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hoch sind, da bestimmte Effekte, die die Warmeverluste beeinflussen, in der Simulation nicht

beriicksichtigt wurden.

Am 15.03.2021 wurde bei der TAE in Halle 1 gegen 12:00 Uhr eine Hallenschaltung mit einer
Dauer von einer Stunde durchgefiihrt, die anschliefend im Rahmen dieser Arbeit ausgewertet
wurde. Vor, wihrend und nach der Hallenschaltung wurden die Badtemperaturen der Ofen 1099,
1103, 1107 und 1109 zu bestimmten Messzeitpunkten direkt nacheinander zweimal gemessen,
sodass fiir jeden Zeitpunkt ein Messwertpaar vorhanden ist. Die Messwertpaare sind fiir jeden
Ofen in Abbildung 3.5 zeitlich aufgetragen. Des Weiteren ist die gemittelte Badtemperatur,
die sich aus den jeweiligen Messwertpaaren ergibt, fiir jeden Zeitpunkt angegeben. Die Stan-
dardabweichung der Differenzen, die jeweils aus den Messwertpaaren berechnet wird, betrigt
2,5°C. Die Messung um 12:45 Uhr am Ofen 1107 ist ein Ausreifer. Zu diesem Zeitpunkt wurde
eine nicht plausible Badtemperatur gemessen, die in Abbildung 3.5 als Ausreifler markiert ist
und nicht in die hier durchgefithrten Berechnungen eingeflossen ist. Gegen 13:00 Uhr wurde

der Hallenstrom wieder auf das urspriingliche Niveau angehoben.
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X  gemessene Badtemperatur —e8— gemittelte Badtemperatur Hallenschaltung

Abbildung 3.5: Zeitlicher Badtemperaturverlauf der Ofen 1099, 1103, 1107
und 1109 vor, wihrend und nach einer Hallenschaltung, die am 15.03.2021
gegen 12 Uhr stattgefunden hat. Fiir eine bessere Lesbarkeit der Verlaufe
sind die gemittelten Badtemperaturen durch Linien miteinander verbunden.

Aus Abbildung 3.5 geht hervor, dass die Badtemperatur fiir jeden Ofen wihrend der Hallen-
schaltung unterschiedlich stark abféllt. Um die Unterschiede der einzelnen Ofen aufzuzeigen,
sind die Differenzen der gemittelten Badtemperatur zwischen der letzten Messung vor der Hal-

lenschaltung und der letzten Messung wihrend der Hallenschaltung in Tabelle 3.1 zu finden.
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Die mittlere Badtemperaturdnderung liegt fiir die einstiindige Hallenschaltung bei —12,5 °C mit
einer Standardabweichung von 2,7 °C. Auch das Verhalten der Badtemperatur nach der Hallen-
schaltung ist unterschiedlich. Fiir den Ofen 1109 ist ein langsamer Anstieg der Badtemperatur
direkt nach der Hallenschaltung erkennbar. Bei den iibrigen Ofen setzte der Anstieg der Bad-

temperaturen erst nach einer Verzégerung von ungefihr einer Stunde nach der Hallenschaltung

ein.
Ofen Differenz (°C)
1099 —14,5
1103 —15,0
1107 9,5
1109 —11,0
Mittelwert und Standardabweichung | —12,5+2,7
Tabelle 3.1: Badtemperaturdifferenz fiir jeden Ofen zwischen der letzten
Messung vor der Hallenschaltung und der letzten Messung wahrend der
einstiindigen Hallenschaltung am 15.03.2021. Die mittlere Differenz, die aus
den einzelnen Differenzen berechnet wurde, liegt bei —12.5°C mit einer
Standardabweichung von 2,7 °C.
Anodenwechsel

Das thermische Verhalten eines Ofens wird mafigeblich von einem Anodenwechsel beeinflusst
[Diil6, S. 44]. Bei einem Anodenwechsel kann die Badtemperatur am Messloch um bis zu 30 °C
fallen [Mad92, S. 454]. Zudem kann es bis zu zwolf Stunden dauern, bis sich die Badtemperatur
auf das Temperaturniveau vor dem Anodenwechsel zuriickbewegt hat [Mad92, S. 454; RTW+16,
S. 819].

Eine Anode verweilt bei der TAE in der Regel 28 Tage bis 32 Tage im Ofen [TRI13, S. 58—59] bis
der Stumpf der abgebrannten Anode innerhalb eines Anodenwechsels aus dem Ofen gezogen
wird. Alle zwei Tage findet bei der TAE an einem Ofen ein Anodenwechsel statt. Bei einem
Anodenwechsel werden bis zu zwei Anoden eines Ofens gewechselt [Dii16, S. 44]. Die neuen
Anoden werden vor dem Einsetzen nicht vorgeheizt und weisen daher eine Temperatur auf, die
der Umgebungstemperatur entspricht [Di16, S. 44]. Unmittelbar nach dem Einsetzen der neuen
Anode erstarrt der Elektrolyt um die Anode, was zu einer ungleichméfligen Stromverteilung
im Ofen fithrt [Dil6, S. 44].

Metallsaugen

Das in den Ofen produzierte Aluminium wird bei der TAE in der Regel alle zwei Tage abgesaugt
[TRI13, S. 49]. Dabei kann sich die Badtemperatur im Saugloch fiir einen Zeitraum von bis zu
zehn Minuten reduzieren [Mad92, S. 454]. Nach dem Saugen besteht aufgrund des geringeren

Metallstands eine kleinere Kontaktfliche zwischen dem flissigen Aluminium und der Seiten-
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wand des Ofens, wodurch sich dieser tiber die Zeit autheizt [Di16, S. 44-45]. Das Saugen von

Metall hat einen Einfluss auf das thermische Verhalten eines Ofens.

Anhand von Metallstandmessungen wird die Menge von fliissigem Metall bestimmt, die aus
einem Ofen abgesaugt werden muss, um einen optimalen Betriebszustand zu erhalten. Dabei
wird ein Eisenstab fiir einige Sekunden in das fliisssige Aluminium getaucht. Anschlielend wird
dieser wieder entnommen, sodass sich eine dinne Schicht an Bad und Aluminium auf dem
Eisenstab bildet. Anhand der Lange der Metallschicht, die sich entlang des Eisenstabs gebildet
hat, kann der Metallstand eines Ofens ermittelt werden. Der Metallstand sollte nicht zu niedrig
oder zu hoch sein, um einen stabilen Betrieb zu gewahrleisten. In der Literatur wird ein Sollwert
fiir den Metallstand von 20 cm angegeben [GK93, S. 213].

Flusssaugen

Das Saugen von Fluss (Elektrolyt) wird unter anderem durchgefiihrt, wenn Ofen einen zu
niedrigen Flussstand besitzen. Dabei wird Fluss von einem Ofen abgesaugt und einem Ofen mit
niedrigem Flussstand hinzugefiigt [GK93, S. 214]. Die Kontrolle des Flussstands erfolgt analog
zur Kontrolle des Metallstands. Wie bei einem zu niedrigen Metallstand heizt sich ein Ofen
bei einem zu niedrigen Flussstand auf. Demgegeniiber fiithrt ein zu hoher Flussstand zu einer
Abkiithlung des Ofens. Der Flussstand hat daher einen Einfluss auf das thermische Verhalten
eines Ofens und sollte sich stets im optimalen Bereich befinden, um Probleme im Ofenbetrieb
zu vermeiden [TRI13, S. 46-47]. Nach [GK93, S. 214] ist ein Flussstand von 20 cm ein typischer

Sollwert, der in der Aluminiumelektrolyse verwendet wird.

Zugabe von Natriumcarbonat (Na,CO3)

Mittels Zugabe von Natriumcarbonat (Na;COj;), auch Soda genannt, kann der Aluminium-
fluoridgehalt eines Ofens beeinflusst werden. Eine Zugabe erfolgt zum Beispiel, wenn der
Aluminiumfluoridgehalt eines Ofens aufgrund einer falschen Dosierung zu hoch ist [WTBW11,
S. 491; GSWSK12, S. 930]. Die Zugabe von Natriumcarbonat in einen Ofen bewirkt eine Er-
hohung der Liquidustemperatur und eine Reduzierung des Superheats. Die Reduzierung des
Superheats fiihrt zu einer Verringerung der Warmeverluste tiber die Seitenwand und die obere

Seitenkruste des Ofens wird dicker, sodass die Badtemperatur des Ofens ansteigt [Kval5, S. 32].

Zugabe von Aluminiumoxid (Al,03)

Die Zugabe von Aluminiumoxid erfolgt bei der TAE anhand der kontinuierlichen Uberwachung
der Ofenspannung [Dii16, S. 10, 43]. In [Mad92, S. 454] wird von einer Reduzierung der Bad-
temperatur von bis zu 12 °C nach der Zugabe von Aluminiumoxid berichtet. Auch in [RIW+16,
S. 819] wird eine Verringerung der Badtemperatur beobachtet, nachdem kaltes Aluminiumoxid

in den Ofen gegeben wurde. Des Weiteren zeigen die Autoren in [RIW+16, S. 819] auf, dass die
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Badtemperatur innerhalb eines Fiitterungszyklus Schwankungen von bis zu 5 °C unterliegen

kann.

Zugabe von Aluminiumfluorid (AIF;)

Nach Abbildung 3.6 fithrt eine Erhhung der Zugabe an Aluminiumfluorid (AlF;) zunichst zu
einer Verringerung der Liquidustemperatur [RIW+16, S. 818]. Die Anderung der Liquidustempe-
ratur bewirkt eine Anderung des Superheats, der den Wiarmestrom durch die Seitenwénde eines
Ofens aufgrund der schmelzenden Seitenkruste beeinflusst. Die Anderung des Warmestroms

uber die Seitenwand hat einen unmittelbaren Einfluss auf die Warmebilanz des Ofens.

Erhohung Liquidustemperatur sinkt
der AlF;-Zugabe | Superheat steigt
Schmelzen Zusétzlicher
der Seitenkruste Wairmeverlust
Y
Kryolith gelangt

in die Schmelze

Verdiinnung von AlF;
Liquidustemperatur steigt

Y

Neue Warme- und Materialbilanz

Abbildung 3.6: Mit der Erh6hung der Zugabe an Aluminiumfluorid (AlFs)
stellt sich eine neue Warme- und Materialbilanz des Ofens ein. Abgedndert
nach [RIW+16, S. 818].

Rieck et al. stellten in einem Versuch fest, dass die doppelte Menge an Aluminiumfluorid
eine Verringerung der Liquidustemperatur um 3 °C pro Tag bewirkte, wihrend keine Zugabe
eine Erhéhung der Liquidustemperatur um 4 °C pro Tag zur Folge hatte [RIW+16, S. 820]. Die

Badtemperatur folgte in dem Versuch langsam der Liquidustemperatur.

Anodeneffekte

Anodeneffekte resultieren aus einer zu geringen Konzentration an geléstem Aluminiumoxid

im Elektrolyt, sodass die Ofenspannung kurzfristig auf bis zu 80 V ansteigen kann [KGD+20,
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S. 1; GK93, S. 210; TUV16, S. 131]. Aufgrund der geringen Konzentration an Aluminium-
oxid verschlechtert sich das Benetzen der Anode mit dem Elektrolyt, da sich Gasblasen unter
der Anode bilden und den elektrischen Widerstand des Ofens erhéhen [GK93, S. 210]. Eine
solche Widerstandserh6hung resultiert in einen rapiden Anstieg der Ofenspannung, wobei
klimaschéadliche Gase (Perfluorcarbone) freigesetzt werden [GK93, S. 201; WTL14, S. 529]. Der
erhohte Energieeintrag innerhalb des Ofens kann zu einem Aufheizen des Ofens und Schmelzen
der Seitenkruste fithren [KGD+20, S. 1; TUV16, S. 131].

Ansatze

Das ungleichméaflige Abbrennen einer Anode kann zu einem Ansatz unter der Anode fithren,
der einen Kurzschluss verursachen kann [TCY13, S. 186]. Die Entstehung eines Ansatzes ist
in Abbildung 3.7 zu erkennen. Ablagerungen unter der Anode kénnen eine isolierende Fliache
erzeugen, die schlechter abbrennt als der restliche Bereich der Anode. Im Laufe der Zeit bildet
sich ein zunehmend grofierer Ansatz, der zu kurzzeitigen Kurzschliissen mit dem fliissigen
Aluminium fithren kann. Dies ist auf die wellenférmige Bewegung der Aluminiumoberflidche
aufgrund des Magnetfelds und der Gasentwicklung an den Anoden zuriickzufithren [GK93,
S. 147]. Falls der Ansatz bis zu diesem Zeitpunkt nicht erkannt wird, kann dieser mit dem
weiteren Absenken der Anoden in das fliissige Metall ragen und einen langanhaltenden Kurz-
schluss auslosen. Ein solcher Kurzschluss beeintréchtigt die Stromausbeute und fithrt zu einem
zusétzlichen Wirmeeintrag [Mar17, S. 817; Mar18, S. 486—487; RWP00].

Elektrolyt

flissiges Aluminium

Zeit

Abbildung 3.7: Entstehung eines Ansatzes unter einer Anode. Abgeéndert
nach [KGD+21, S. 766; Mar17, S. 817; Mar18, S. 487].

Rolofs et al. [RWP00] zeigen auf, dass die Badtemperatur von Ofen mit einer hohen Anzahl an
Ansitzen und einer niedrigen durchschnittlichen Ofenspannung um durchschnittlich 4 °C hoher

lag als bei unauffilligen Ofen. Die Erh6hung der Badtemperatur erkléaren Rolofs et al. durch
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den Kurzschluss, der einen zusétzlichen Warmeintrag bedeutet. Der zusatzliche Warmeeintrag
beeinflusst somit unmittelbar die Warmebilanz eines Ofens und wirkt sich folglich auf dessen

Badtemperatur aus.

Schlammbildung

Eine Schlammbildung kann in einem Ofen auftreten, wenn das zugefithrte Aluminiumoxid
nicht vollstandig im Elektrolyt aufgelost werden kann. Das nicht aufgeloste Aluminiumoxid
setzt sich auf dem Boden des Ofens ab und fiithrt zu einer Verschlammung. Aus Abbildung 3.8
geht hervor, dass der Schlamm wie ein zusétzlicher elektrischer Widerstand wirkt und eine
ungleichméflige Stromverteilung im Ofen erzeugt [GK93, S. 210; Tan10, S. 27; Reel5, S. 55].

Elektrolyt
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Abbildung 3.8: Der Schlamm auf den Boden eines Ofens wirkt wie ein zusétz-
licher elektrischer Widerstand und fiithrt zu einer ungleichméafligen Strom-
verteilung. Abgeéndert nach [Tan10, S. 27].

Anodeneindeckung

Zwischen 40 % und 60 % der gesamten Warmeverluste werden tiber die Oberseite eines Ofens
an die Umgebung abgegeben [GK93, S. 29-30]. Die isolierende Anodeneindeckung spielt eine
wesentliche Rolle bei der Anpassung der Wirmeverluste tiber die Ofenoberseite [GK93, S. 29—
30]. Fir die Anodeneindeckung wird Aluminiumoxid oder zerkleinerter Elektrolyt verwendet
[GK93, S. 202]. Durch die wirmeisolierende Wirkung der Anodeneindeckung ist eine Redu-
zierung der Ofenspannung moglich, da weniger Energie fiir die Warmeentwicklung umgesetzt
werden muss [TRI13, S. 32], um die Badtemperatur im Sollwertbereich zu halten. Eine zu

dick aufgetragene Eindeckung kann jedoch dazu fiithren, dass die Anoden tiberhitzen, Ansétze
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entstehen und sich die Badtemperatur des Ofens erhoht [TRI13, S. 36]. Die Anodeneindeckung
hat daher einen wesentlichen Einfluss auf die Warmebilanz eines Ofens und beeinflusst somit

dessen Badtemperatur.

3.3 Zusammenfassung

In diesem Kapitel wurden die Grundlagen der industriellen Aluminiumherstellung aufgezeigt,
fiir die der Hall-Héroult-Prozess genutzt wird. Die Wechselwirkungen eines Aluminiumelektro-
lyseofens wurden dargestellt. Der Aufbau eines Aluminiumelektrolyseofens wurde gezeigt, der
in dieser Form auch bei der TAFE zum Einsatz kommt. Die wesentlichen Einfliisse auf Badtempe-
ratur wurden mithilfe der Literatur prasentiert. In diesem Zuge wurden auch die Auswirkungen
einer einstiindigen Hallenschaltung, die bei der TAE stattgefunden hat, auf die Badtemperatur
von vier ausgewihlten Ofen dargelegt. Die Ergebnisse zeigen, dass sich bei dieser Hallenschal-
tung die Badtemperatur der Ofen im Mittel um —12,5 °C mit einer Standardabweichung von
2,7°C geéndert hat.

Insgesamt konnen die in diesem Kapitel dargestellten Einfliisse, die sich auf die Badtemperatur
auswirken, fur die Entwicklung von Vorhersagemodellen hilfreich sein. Bevor die ersten L6-
sungsansétze fiir die Vorhersage der Badtemperatur entwickelt werden, werden im néchsten
Kapitel wesentliche Grundlagen der Zeitreihenanalyse vorgestellt. Diese Grundlagen sind fiir
das weitere Verstandnis nétig, da die Badtemperaturdaten der jeweiligen Ofen als Zeitreihe

aufgefasst werden und in Kapitel 5 mit Methoden der Zeitreihenanalyse untersucht werden.
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KAPITEL 4

Grundlagen der Zeitreihenanalyse

Das vorliegende Kapitel gliedert sich in zwei Teile: Im ersten Teil werden Grundlagen der
Zeitreihenanalyse vorgestellt. Zunachst werden die Definitionen einer Zeitreihe sowie einer
Zeitreihenvorhersage dargestellt. AnschlieBend werden die Komponenten beschrieben, aus
denen eine Zeitreihe besteht. Damit wird ein Ubergang zu dem Bereich der Zeitreihenmerk-
male geschaffen, mit denen die Eigenschaften von Zeitreihen quantifiziert werden kénnen.
Zeitreihenmerkmale werden in unterschiedlichen Anwendungsbereichen verwendet, die in
diesem Kapitel vorgestellt werden. Sie sind auch Bestandteil fiir die Gegenwartsvorhersage der
Badtemperatur, die in dieser Arbeit durchgefiihrt wird. Des Weiteren wird in diesem Kapitel der
Unterschied zwischen stationéren und nicht stationiren Zeitreihen aufgezeigt. Zudem werden
die Grundlagen mehrerer Analysemethoden vorgestellt, wie die der (partiellen) Autokorrelation
und des Periodogramms. Die aufgezeigten Methoden sind wesentlich fiir das Verstindnis des

praktischen Teils dieser Arbeit, der nach diesem Kapitel folgt.

Der zweite Teil dieses Kapitels fokussiert sich auf die Zeitreihenvorhersage. Es werden die
Unterschiede zwischen lokalen und globalen Vorhersagemethoden aufgezeigt und die in dieser
Arbeit verwendeten Vorhersagemethoden, das AR-Modell und RF-Modell, vorgestellt. Schlie3-
lich werden verschiedene Strategien zur sinnvollen Validierung und zum Testen von Vorhersa-

gemethoden im Kontext der Zeitreihenanalyse prasentiert.

4.1 Zeitreihe

Die Erfassung der Dynamiken eines Prozesses kann mittels Zeitreihen erfolgen. Hierbei werden
wiederholt Messungen iiber die Zeit an dem zu untersuchenden Prozess durchgefiihrt. Durch
die anschlieende Analyse der zeitlich angeordneten Messungen kann ein Verstindnis iiber die
Dynamik des Prozesses gewonnen werden [Ful18, S. 88]. Beispielsweise stellen die Badtempe-
raturmessungen eines Ofens, die taglich durchgefithrt und zeitlich angeordnet werden, eine
Zeitreihe dar.
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Eine Zeitreihe

{ye:t=1,....n} ={y1,y2,- -, Yn} (4.1)

besteht aus n Beobachtungen, die zu diskreten Zeitpunkten 1,2, ..., n aufgezeichnet werden.
Wenn die Anzahl n keine Rolle spielt, dann wird Gleichung 4.1 mit {y, } abgekiirzt [CMO09, S. 19;
HA21, S. 23-25].

Eine Vorhersage zum Zeitpunkt ¢ fiir die Zeitreihe {y, : t = 1,...,n} fiir den Zeitpunkt ¢ + k
wird mit g; 1, angegeben. So stellt J; |, eine Vorhersage fiir y;11 dar, fiir die alle verfugbaren
Beobachtungen {y1, 32, . . ., y: } genutzt werden [CMO09, S. 19; HA21, S. 23-25].

4.1.1 Komponenten einer Zeitreihe

Eine Zeitreihe kann in eine Trend-, Zyklus-, Saison- und Restkomponente zerlegt werden.
Die Trend-, Zyklus- und Saisonkomponente sind die systematischen Komponenten einer
Zeitreihe, wahrend die Restkomponente als irregulare Komponente angegeben wird. Trend-
und Zykluskomponente werden in der Praxis zu einer Komponente zusammengefasst, die als
Trend-Zyklus-Komponente oder Trendkomponente bezeichnet wird. Die Trendkomponente
beriicksichtigt langfristige Niveaudnderungen einer Zeitreihe, wihrend die Zykluskomponente
Bewegungen einer Zeitreihe abbildet, die nicht mit einer festen Periode auftreten und im
wirtschaftlichen Kontext als Konjunkturzyklen aufgefasst werden. Die Saisonkomponente
hingegen bildet die Muster einer Zeitreihe ab, die mit einer festen Periode auftreten. Dies kann
beispielsweise ein tagliches oder wochentliches Muster sein. Die Restkomponente umfasst die
verbleibenden Anteile einer Zeitreihe, die nicht von der Trend-Zyklus-Komponente und der
Saisonkomponente beschrieben werden konnen [FHK+16, S. 509-511; HA21, S. 37-39, 59].

Die Zerlegung einer Zeitreihe in eine Trend-Zyklus-Komponente, Saison- und Restkomponente
erfordert zunidchst Annahmen tiber den Zusammenhang der einzelnen Komponenten. Haufig
wird ein additiver oder multiplikativer Zusammenhang angenommen, wobei auch eine
Mischform aus beiden Zusammenhéingen moglich ist. Gleichung 4.2 zeigt den additiven
Zusammenhang, wahrend Gleichung 4.3 den multiplikativen Zusammenhang darstellt
[FHK+16, S. 509-511; HA21, S. 64-69].

yr = St + Ty + Ry (4.2)

ye =S¢ Ty - Ry (4.3)

In den Gleichungen 4.2 und 4.3 stellen S; die Saisonkomponente, 7; die
Trend-Zyklus-Komponente und R; die Restkomponente mit ¢ = 1,...,n dar. Der

multiplikative Zusammenhang in Gleichung 4.3 sollte gew&hlt werden, wenn sich die Schwan-
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kungen proportional mit dem Niveau der Zeitreihe verdndern. Sofern keine proportionale
Anderung vorliegt, ist der additive Zusammenhang fiir eine Zeitreihenzerlegung zu verwenden
[FHK+16, S. 509-511; HA21, S. 64-69)].

Fir die Zerlegung einer Zeitreihe und die einzelnen Komponenten kénnen unterschiedliche
Methoden eingesetzt werden, die in [HA21; FHK+16; CM09] beschrieben werden. Die klassische
Zeitreihenzerlegung bildet die Ausgangsbasis fiir weitere Zerlegungsmethoden [HA21, S. 76].
Bei der klassischen Zerlegung wird zunachst mittels eines gleitenden Durchschnitts (Moving-
Average) die Trend-Zyklus-Komponente einer Zeitreihe geschatzt [HA21, S. 69; FHK+16, S. 516].
Mit dem gleitenden Durchschnitt wird die Zeitreihe geglattet, der sich mittels Gleichung 4.4
berechnen [HA21, S. 69] lasst.

T, = — ‘ 4.4
t= ZZ/H—] (4.4)

T, ist der geschitzte Trend-Zyklus zum Zeitpunkt ¢ und m stellt mit m = 2k + 1 die Ordnung
des gleitenden Durchschnitts (m-Moving-Average (MA)) dar. m wird in der Regel abhéngig
von der Saisonalitit der Zeitreihe gewahlt. Beispielsweise wird bei monatlichen Daten eine
jahrliche Saisonalitdt angenommen. In diesem Fall betragt m = 12. Wenn m gerade ist, wird
nach der ersten Glattung ein weiteres Mal der gleitende Durchschnitt mit der Ordnung 2 tiber
die bereits geglatteten Beobachtungen berechnet (2 x m-MA), um einen zentrierten gleitenden
Durchschnitt zu erhalten [HA21, S. 72-73, 76].

Bei einer additiven Zerlegung wird anschlielend eine Subtraktion y; — T, durchgefiihrt, aus
der sich die trendbereinigte Zeitreihe ergibt. Anschlieend werden von der trendbereinigten
Zeitreihe die Mittelwerte anhand der entsprechenden Saisonalitat gebildet. Fiir eine Zeitreihe
mit einer monatlichen Auflésung werden beispielsweise alle Werte des Monats Januar gemit-
telt. Die Bildung des Mittelwerts wird fiir alle weiteren Monate durchgefiihrt, woraus zwolf
gemittelte Werte resultieren. Die gemittelten Werte werden anschlieend so angepasst, dass
die Summe 0 ergibt. AbschlieBend werden die angepassten Werte abhéngig von der Lange der
urspriinglichen Zeitreihe repliziert. Die replizierten Werte ergeben die geschétzte Saisonkom-
ponente St. Durch die weitere Subtraktion y; — T y— S't wird die geschitzte Restkomponente
Ry ermittelt [HAZ21, S. 76].

Fir die multiplikative Zerlegung wird nach erfolgter Glattung der Zeitreihe eine Division y;/ T,
durchgefiihrt. Die weitere Vorgehensweise erfolgt analog zur additiven Zerlegung. Jedoch muss
bei der Anpassung die Summe der gemittelten Werte m ergeben. Die geschitzte Restkompo-
nente R; ergibt sich durch die Berechnung von y,/ (1} - S;) [HA21, S. 77].

Bedingt vom gleitenden Durchschnitt sind die ersten und letzten Werte der geschitzten

Trend-Zyklus-Komponente T, und der Restkomponente Ry bei der Klassischen Zeitreihen-

Kapitel 4
Grundlagen der Zeitreihenanalyse

33



34

Abschnitt 4.1. Zeitreihe

zerlegung nicht vorhanden [HA21, S. 78]. Dieser und weitere Nachteile [HA21, S. 78] fithren
dazu, dass in der Praxis anderweitige Zerlegungsmethoden eingesetzt werden, wie zum Beispiel
das Census X11-Verfahren, das Berliner Verfahren und das Seasonal and Trend decomposition
using Loess (STL) Verfahren [FHK+16, S. 521; HA21, S. 78-84]. Die Zerlegung einer Zeitreihe in
ihre einzelnen Komponenten erlaubt unter anderem die Berechnung von Zeitreihenmerkmale,

die die Eigenschaften einer Zeitreihe beschreiben.

4.1.2 Zeitreihenmerkmale/Anwendungsbereiche

Unter Zeitreihenmerkmalen werden numerische Beschreibungen verstanden, die die Eigen-
schaften von Zeitreihen quantifizieren [HA21, S. 89; Ful18, S. 89-90]. Einfache Zeitreihen-
merkmale umfassen beispielsweise das empirische Mittel oder den Median, die die Lage von
Zeitreihen beschreiben. Weitere Zeitreihenmerkmale, wie die Stirke der saisonalen und
Trend-Zyklus-Komponente, konnen mithilfe einer zuvor durchgefithrten additiven Zeitreihen-
zerlegung bestimmt werden. Die Starke der saisonalen Komponente Fg wird itber Gleichung
4.5 und die Stdrke der Trend-Zyklus-Komponente F7 iiber Gleichung 4.6 berechnet [HA21,
S. 92-97].

B B Var(Ry)

Fg = max (O, 1 7Var(5t n Rt)) (4.5)
B Var(Ry)

Fr = max <0, 1-— 7Var(Tt n Rt)) (4.6)

Die Berechnung von Fs und Fr erlaubt eine Analyse von Zeitreihendatensitzen hinsichtlich
der saisonalen und Trend-Zyklus-Komponente. Die Werte, die Fis und Fr annehmen kénnen,
liegen in dem Intervall [0, 1]. Die Berechnung von F ist hilfreich, um nicht saisonale Zeitreihen
zu identifizieren. Nach [HA21, S. 273] ist eine Zeitreihe nicht saisonal, wenn Fg < 0,64 ist.
Abbildung 4.1 zeigt zwolf Zeitreihen aus dem M1- und M3-Wettbewerb [Hyn18], die unter-
schiedliche Stdrken beziiglich der saisonalen Komponente und der Trend-Zyklus Komponente

aufweisen.

In Abbildung 4.1 sind in der ersten Reihe vier Zeitreihen dargestellt, die eine dominante
Trend-Zyklus-Komponente aufweisen, wiahrend die saisonale Komponente in diesen Zeitreihen
schwach ausgeprégt ist. Die mittlere Reihe zeigt vier Zeitreihen, die sich durch eine ausge-
préagte Saisonalitat auszeichnen. Dies wird anhand des hohen Werts von Fg fiir jede Zeitreihe
deutlich. Die Trend-Zyklus-Komponente ist in diesen Zeitreihen hingegen nur in geringem
Mafle vorhanden. Die dritte Reihe der Abbildung 4.1 weist Zeitreihen mit einer dominanten

Trend-Zyklus- und saisonalen Komponente auf.
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Abbildung 4.1: Zwolf Zeitreihen aus dem M1- und M3-Wettbewerb [Hyn18]
besitzen unterschiedliche Stirken beziiglich der saisonalen und Trend-
Zyklus Komponente. Abbildung abgedndert nach [GKD+23, S. 2].

Insgesamt kann die Berechnung von Zeitreihenmerkmalen auch als Dimensionsreduktionsver-
fahren verstanden werden, da die Zeitreihe auf eine bestimmte Anzahl an Merkmalen reduziert
wird [WSHO6, S. 339]. Die unterschiedlichen Einsatzmoglichkeiten von Zeitreihenmerkma-
len, die im Folgenden erortert werden, legen nahe, dass die Auswahl der Zeitreihenmerkmale
anhand der spezifischen Problemstellung sowie der Eigenschaften der zu untersuchenden Zeit-
reihe getroffen werden sollte [KHL20, S. 358]. Somit wird sichergestellt, dass ein ,globales Bild*
[WSHO06, S. 339] von einer Zeitreihe erzeugt wird. Bei der Wahl von Zeitreihenmerkmalen
kann Expertenwissen von Mitarbeitenden aus der zu untersuchenden Doméine hilfreich sein
[GKD+23, S. 2]. Die Berechnung von Zeitreihenmerkmalen, wie dem empirischen Mittel, dem
minimalen und dem maximalen Wert, ist sinnvoll, um ungewdhnliche Sensor-Zeitreihen von
Thermoelementen im Bereich der Aluminiumelektrolyse zu identifizieren (vgl. unsere Arbeit
[GKD+23]). Im Falle eines Vergleichs von Zeitreihen mit unterschiedlichen physikalischen
Groflen kann sich die Berechnung des empirischen Mittels, des minimalen und des maximalen
Werts als nicht aussagekraftig erweisen. In diesem Fall sollten Zeitreihenmerkmale gewahlt
werden, die unabhéngig von physikalischen Gréfien sind, um sinnvolle Aussagen beziiglich der
Eigenschaften von unterschiedlichen Zeitreihen treffen zu konnen. Solche Zeitreihenmerkmale

sind beispielsweise die Starke der Saisonalitiat und die Stiarke der Trend-Zyklus-Komponente.

Kapitel 4
Grundlagen der Zeitreihenanalyse

35



36

Abschnitt 4.1. Zeitreihe

Anwendungsbereiche

Beschreibungen von Zeitreihen werden zusammen mit Ahnlichkeitsmaflen in unterschiedlichen
Bereichen eingesetzt, um nach Zeitreihen mit bestimmten Eigenschaften zu suchen, Anomalien
in Zeitreihen zu erkennen, wiederkehrende Verlaufe in Zeitreihen zu ermitteln und Zeitrei-
hen zu gruppieren oder zu klassifizieren [Ful18, S. 91]. In unserer Arbeit [GKD+23, S. 3—4]
werden sechs unterschiedliche Anwendungsbereiche aufgezeigt, in denen Zeitreihenmerkmale
verwendet werden. Diese Anwendungsbereiche werden anschliefend mit entsprechenden Lite-
raturangaben dargestellt. Auch wenn in einzelnen Arbeiten Zeitreihenmerkmale nicht explizit
erwihnt werden, lasst sich anhand der Vorgehensweise eine Verkniipfung zum diesem Bereich

herstellen.

Regression: Im Rahmen des FlexTherm Projekts wird in unserer Arbeit [GKD+18] fiir verschie-
dene Prozessvariablen das arithmetische Mittel oder die Summe innerhalb gleitender Fenster
berechnet. Diese berechneten Zeitreihenmerkmale werden anschlieend fiir das Training ei-
nes RF-Regressionsmodells verwendet, um die Badtemperatur von Aluminiumelektrolyse6fen

vorherzusagen.

Klassifikation: In [KGD+20] verwenden die Autoren Zeitreihenmerkmale aus [LSK+19] und
[GGC+], die innerhalb gleitender Fenster von verschieden Prozessvariablen berechnet werden.
Die berechneten Zeitreihenmerkmale werden fiir das Training von Vorhersagemodellen ver-
wendet, um anschlieBend Anodeneffekte in Aluminiumelektrolyseéfen vorherzusagen. Des
Weiteren wird in [NAMO01] ein MLP zusammen mit acht Zeitreihenmerkmalen verwendet, um

Muster in Control Charts zu klassifizieren.

Detektion von Anomalien: Um ungewdhnliche Server-Lasten bei der Internet-Firma Yahoo
zu identifizieren, werden in [HWL15] 18 Merkmale von Zeitreihen berechnet. Die Merkmale
werden anschlieffend in einer PCA verwendet, um ungewdohnlich Zeitreihen zu identifizieren.
Das Ziel der PCA wurde bereits in Kapitel 2.3 erldutert. In [THSM+20] wird ein Framework
vorgestellt, um abnormale Zeitreihen in einem Datenstrom zu identifizieren. Das Framework
besteht aus einer Offline- und Online-Phase. In der Offline-Phase wird ein Modell anhand von
Zeitreihen trainiert, die das gew6hnliche Verhalten des betrachteten Systems représentieren.
In der Online-Phase wird das trainierte Modell unter Verwendung eines gleitenden Fensters
auf neue Daten angewendet, um abnormale Zeitreihen zu erkennen. Das Framework beinhaltet
unter anderem die Berechnung von 14 Zeitreihenmerkmalen, mit denen eine PCA durchgefiihrt
wird. Auflerdem wird ein Algorithmus vorgestellt, um nicht stationire Systemzustinde zu

erkennen und das Modell auf einen neuen Zustand einzustimmen.

Clustering: In [HV12] verwenden Horvath et al. das hierarchische Clustern, um Alumini-
umelektrolysedfen in Gruppen mit gleichartigem Verhalten einzuteilen. Dazu werden fiir jede

Prozessvariable sieben Zeitreihenmerkmale berechnet, um den Umfang der Daten zu reduzieren.
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Visualisierung: In [KHSM17] werden sechs Zeitreihenmerkmale berechnet, um den M3-
Datensatz [MHO00] zu visualisieren und zu analysieren. Anhand der berechneten Zeitreihen-
merkmale wird eine PCA durchgefiihrt und die ersten beiden Hauptkomponenten visualisiert,
um einen Uberblick iiber die Eigenschaften des M3-Datensatzes zu erhalten. Mithilfe eines
genetischen Algorithmus werden zudem neue Zeitreihen generiert, die nicht typisch fiir den
M3-Datensatz sind und den Merkmalsraum des M3-Datensatzes erweitern. Dariiber hinaus
vergleichen Kang et al. den Merkmalsraum mit der Performanz von ausgewahlten Vorhersage-
methoden, um daraus gezielt Vorhersagemethoden abzuleiten, die geeignet fiir die Vorhersage

einer Zeitreihe erscheinen.

Meta-Learning: In der Arbeit [THA23] wird das Framework FFORMS (Feature-based FORe-
cast Model Selection) vorgestellt, um eine geeignete Methode fiir eine Zeitreihenvorhersage
zu finden. Dabei werden insgesamt 37 Zeitreihenmerkmale mit vorgegebenen Vorhersageme-
thoden tiber ein RF-Modell verkniipft. In [PL04] greifen Prudéncio et al. auf den Einsatz von
Algorithmen aus dem Bereich des maschinellen Lernens zuriick, um die Auswahl an Vorhersa-
gemethoden fiir die Zeitreihenvorhersage anhand von Zeitreihenmerkmalen zu automatisieren.
Im ersten Fallbeispiel wird ein Entscheidungsbaum als Meta-Learner mit zehn Zeitreihen-
merkmalen von stationéren Zeitreihen fiir die Klassifizierung von zwei Vorhersagemethoden
verwendet. Fiir das zweite Fallbeispiel werden fiinf Zeitreihenmerkmale von den jahrlichen
Daten aus dem M3-Datensatz [MHO00] berechnet und als Eingang fiir drei Klassifizierer vom

Typ MLP als Meta-Learner verwendet.

Aus dieser Ubersicht geht hervor, dass Zeitreihenmerkmale in unterschiedlichen Kontexten eine
Anwendung finden. Unter anderem in Kombination mit gleitenden Fenstern werden Zeitreihen-
merkmale eingesetzt, um anschlieflend eine Regression, Klassifikation oder Anomaliedetektion
durchzufithren. Diese Kombination wird auch fir die Gegenwartsvorhersage (Nowcasting) der

Badtemperatur eingesetzt, die in Kapitel 5.4.2 dieser Arbeit durchgefiithrt wird.

4.1.3 Stationare Zeitreihen

Eine Zeitreihe wird als stationér bezeichnet, wenn ihre statistischen Eigenschaften nicht von
der Zeit abhangig sind [HA21, S. 265; Nel20, S. 1175]. Stationére Zeitreihen weisen weder
einen Trend noch eine Saisonalitit auf und zeigen einen anniahernd waagerechten Verlauf mit
konstanter Varianz. Zyklisches Verhalten kann jedoch enthalten sein [HA21, S. 266]. Stationare
Zeitreihen spielen eine wichtige Rolle bei der Entwicklung von Autoregressive Integrated Mo-
ving Average (ARIMA) Modellen. Des Weiteren hilft die Unterscheidung zwischen stationaren
und nicht stationdren Zeitreihen bei der Wahl einer geeigneten Validierungsmethode, um eine

realistische Modellperformanz abschitzen zu kénnen (vgl. Kapitel 4.3).

Durch die Bildung von Differenzen einer Zeitreihe kann aus einer nicht stationéren Zeitreihe ei-

ne stationire Zeitreihe erzeugt werden. Die Differenzierung triagt dazu bei, den Mittelwert einer
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Zeitreihe zu stabilisieren. Bei der gewo6hnlichen Differenzierung wird die Differenz zwischen
der aktuellen Beobachtung und der vorherigen Beobachtung gebildet. Die Berechnung der
gewohnlich differenzierten Zeitreihe erfolgt tiber Gleichung 4.7. In der Literatur werden diese

differenzierten Beobachtungen auch als ,erste Differenzen® bezeichnet [HA21, S. 267-269].

Yo=Yt — Y1 (4.7)

y; stellt die differenzierte Beobachtung der Zeitreihe zum Zeitpunkt ¢ dar. Bei Zeitreihen, die
saisonalen Schwankungen unterliegen, erfolgt in der Regel eine saisonale Differenzierung,
um den Mittelwert der Zeitreihe zu stabilisieren. Bei der saisonalen Differenzierung wird die
Differenz zwischen der aktuellen Beobachtung und der Beobachtung aus der vorherigen Saison
gebildet. Eine saisonale Differenzierung mit der Periode m wird mittels Gleichung 4.8 erreicht
[HA21, S. 269].

Yo =Yt — Yt—m (4.8)

Auch hier stellt y; die differenzierte Beobachtung der Zeitreihe zum Zeitpunkt ¢ dar. Eine Zeitrei-
he mit einer monatlichen Auflésung kann beispielsweise eine jahrliche Saisonalitat beinhalten.
In diesem Fall kann eine saisonale Differenzierung mit der Periode m = 12 durchgefiihrt

werden, da sich das Muster bei einer jahrlichen Saisonalitat alle zwolf Monate wiederholt.

Da saisonale Zeitreihen nicht stationar sind, ist es daher sinnvoll, diese zuniachst auf enthaltene
Saisonalitdten zu untersuchen. Dazu kann nach [HA21, S. 273] das in Kapitel 4.1.2 vorgestellte
Zeitreihenmerkmal, die Starke der Saisonalitit, berechnet werden. Falls die Berechnung der
Starke der Saisonalitit ergibt, dass die Zeitreihe saisonal ist, so ist eine saisonale Differenzierung

empfehlenswert.

Anschlieflend kann durch den Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test [KPSS92] iiber-
priift werden, ob eine gewohnliche Differenzierung durchgefithrt werden sollte. Im Rahmen
dieses Tests wird als Nullhypothese angenommen, dass die Zeitreihe stationér ist. Anhand eines
gewihlten Signifikanzniveaus wird anschlieffend dariiber entschieden, ob die Nullhypothese
abgelehnt wird. Bei Ablehnung der Nullhypothese ist die Zeitreihe nicht stationar. In diesem
Fall ist eine gewohnliche Differenzierung empfehlenswert. Der KPSS-Test sollte danach erneut
auf die differenzierte Zeitreihe angewendet werden [HA21, S. 272-273].

4.1.4 Autokorrelation

Die Autokorrelation beschreibt den linearen Zusammenhang zwischen einer Zeitreihe und
einer von sich selbst zeitlich verschobenen Version [Nel20, S. 1182]. Die Zeitreihe wird mit sich

selbst korreliert. Dazu wird die Zeitreihe mehrfach um einen Schritt verschoben und jeweils der
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Korrelationskoeflizient zwischen der urspriinglichen Zeitreihe und ihrer verschobenen Version
berechnet. Die Autokorrelationskoeffizienten einer Zeitreihe konnen durch die Autokorrelati-
onsfunktion (AKF) in Gleichung 4.9 berechnet werden und liegen zwischen —1 und 1 [HA21,
S. 52; CM09, S. 33-34].

2 =)Wk =)

(4.9)
= (v —9)?

7y, stellt den berechneten Korrelationskoeffizient an der Verzégerungsstelle k dar. n ist die

Anzahl der Beobachtungen der Zeitreihe. 7 ist der Mittelwert der Zeitreihe, der mit Gleichung

4.10 berechnet wird [CMO09, S. 31].

Z Yt (4.10)

In der Regel wird der berechnete Autokorrelationskoeflizient r, gegen die Verzogerungsstelle &k
aufgetragen. Die resultierende Darstellung wird als Korrelogramm bezeichnet [HA21, S. 52]. In
Abbildung 4.2 ist ein Beispiel fiir ein Korrelogramm mit einem Konfidenzintervall von 95 % zu
sehen, das die Autokorrelationskoeffizienten zeigt, die mit Beobachtungen eines autoregressiven
Prozesses berechnet wurden [CM09, S. 81-83]. Wie aus Abbildung 4.2 ersichtlich, weisen die
Koeffizienten einen sinusformigen Verlauf auf. Das deutet darauf hin, dass die Beobachtungen

aus einem autoregressiven Prozess stammen [HA21, S. 283].
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Abbildung 4.2: Beispiel fiir ein Korrelogramm der AKF. Entnommen aus
[CM09, S. 81-83].
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Neben der AKF wird tiblicherweise auch die partielle Autokorrelationsfunktion (PAKF) be-
rechnet. Mit ihr wird der Effekt von tibergreifenden Korrelationen aufgrund vorheriger Verzo-
gerungsstellen entfernt. Anschlieflend wird die Korrelation an der Stelle k£ berechnet [CM09,
S. 81]. Dazu kann ein autoregressives Modell, AR(k), verwendet werden, das mit den Beobach-
tungen der Zeitreihe trainiert wird. Der k-te Modellparameter des trainierten AR(k)-Modells
entspricht dann dem partiellen Autokorrelationskoeffizient o, [CM09, S. 81; HA21, S. 282]. Das
AR(k)-Modell wird in Kapitel 4.2.2 vorgestellt.

In Abbildung 4.3 ist das Korrelogramm der PAKF mit einem Konfidenzintervall von 95 % zu
sehen. Die Koeffizienten der PAKF wurden anhand der gleichen Beobachtungen ermittelt,
die bereits fiir das Korrelogramm in Abbildung 4.2 verwendet wurden. Mit Ausnahme des

Korrelationskoeffizient a; sind alle weiteren Koeffizienten in Abbildung 4.3 nicht signifikant.
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Verzogerungsstelle k

Abbildung 4.3: Beispiel fiir ein Korrelogramm der PAKF. Entnommen aus
[CMO09, S. 81-83].

In Kombination mit den Erkenntnissen aus Abbildung 4.2 lasst sich Folgendes ableiten: Die in
Abbildung 4.2 dargestellten Koeffizienten weisen einen sinusférmigen Verlauf auf, wihrend
lediglich der Korrelationskoeffizient oy der PAKF signifikant ist. Diese Ergebnisse lassen den
Schluss zu, dass es sich um Beobachtungen handelt, die aus einem autoregressiven Prozess
erster Ordnung AR(1) stammen [HA21, S. 283; CM09, S. 81]. Da die AKF und PAKF an der
Verzogerungsstelle £ = 0 immer 1 ist, wird dieser Wert in den Abbildungen 4.2 und 4.3 nicht

angegeben.

Insgesamt kann mit der AKF und PAKF die Modellordnung k eines AR(k)-Modells ermittelt wer-
den, wenn die verwendeten Beobachtungen auch aus einem autoregressiven Prozess stammen.
Des Weiteren ldsst sich mithilfe der AKF und PAKF die Ordnung eines Moving-Average-Modells
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(MA-Modells) bestimmen. Das MA-Modell sollte nicht mit dem gleitenden Durchschnitt bei
der Zeitreihenzerlegung in Kapitel 4.1.1 verwechselt werden. Im Rahmen dieser Arbeit erfolgt
keine Betrachtung des MA-Modells. Fiir weiterfithrende Informationen zum Thema MA-Modell
sei auf die Literatur [HA21; CM09; Nel20] verwiesen.

4.1.5 Periodogramm

Die Identifikation der in der Zeitreihe enthaltenen Frequenzen mittels eines Periodogramms
erlaubt Riickschliisse auf mogliche Periodizitidten. Dabei wird eine Zeitreihe als eine Summe
an Sinusschwingungen aufgefasst. Fiir eine Zeitreihe {y; : t = 1,...,n} mit einer geraden
Anzahl an Beobachtungen kann dazu Gleichung 4.11 angegeben werden [CM09, S. 171, 173;
SS17, S. 169].

2mt 27t
Yy = ag + a; cos(i) + b1 sin(l) +
n " (4.11)
2(n/2 — 1)mt 2(n/2 — 1)mt

+ @y 91 cos( ) 4 bp 21 sin( ) + n 2 cos(mt)

n n

Gleichung 4.11 ist ein Regressionsmodell, bei dem die Koeffizienten ay, b1, ag, b2, as, bs, .. .,
A /2-15 bpja—1, Gy 2 geschitzt werden. Der Mittelwert der Zeitreihe ist ag. Mit Gleichung 4.12
kann die Amplitude fiir die m-te Harmonische berechnet werden, wobei m zwischen 1 und n/2
liegt und eine ganze Zahl ist. Die berechnete Amplitude gibt die Stdrke der jeweiligen Frequenz
in der Zeitreihe an [CMO09, S. 173-174; SS17, S. 169].

Ay =/a2, + b2, (4.12)

Die quadrierten Amplituden A2, werden anschlieffend gegen m /n aufgetragen, wodurch sich
das skalierte Periodogramm fiir die Zeitreihe ergibt. In der Praxis wird fiir die Berechnung der
Amplituden die Fast Fourier Transform (FFT) [CT65] verwendet [SS17, S. 169; CM09, S. 174].

4.2 Vorhersagemethoden

Im Bereich der Zeitreihenanalyse kann der lokale oder globale Ansatz gewahlt werden, um
eine Zeitreihenvorhersage durchzufithren. Beide Ansitze werden im nachfolgenden Kapitel
erortert. Anschliefend werden das AR-Modell und RF-Modell vorgestellt, die in dieser Arbeit

fiir die Vorhersage der Badtemperatur verwendet werden.
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4.2.1 Lokale und globale Vorhersagemodelle

Eine tibliche Vorgehensweise in der Zeitreihenvorhersage ist es, anhand einer Zeitreihe ein Vor-
hersagemodell zu trainieren, das anschlieffend fiir die Vorhersage der Zeitreihe verwendet wird.
Fiir jede neue Zeitreihe wir ein eigenstiandiges Modell trainiert. Eine solche Vorgehensweise
wird als lokal bezeichnet, da angenommen wird, dass jede Zeitreihe jeweils aus einem unter-
schiedlichen Erzeugungsprozess stammt [SFGJ20; MMH21, S. 1632]. Der lokale Ansatz kann
bei Zeitreihen mit wenigen Beobachtungen zu einer Uberanpassung fithren, sofern nicht mit-
tels entsprechender Gegenmafinahmen, wie der Beriicksichtigung von weiteren Informationen
oder der Einschrankung der Modellanpassung, gegengesteuert wird. Diese Gegenmafinahmen
erfordern jedoch eine Einzelbetrachtung jeder Zeitreihe, woraus ein hoher zeitlicher Aufwand
entstehen kann [MMHZ21, S. 1632].

Im Vergleich zur lokalen Vorgehensweise erfolgt beim globalen Ansatz zunéchst eine Zusam-
menfithrung aller Zeitreihen, die anschlielend fiir das Training eines einzelnen (globalen)
Modells verwendet werden. Die grofiere Anzahl an verfiigbaren Beobachtungen ermdoglicht
es beim globalen Ansatz, eine Uberanpassung zu verhindern. Der globale Ansatz basiert auf
der Annahme, dass die betrachteten Zeitreihen aus demselben Erzeugungsprozess stammen
[MMH21, S. 1633]. So werden in [BBS20] zunachst dhnliche Zeitreihen anhand von Zeitrei-
henmerkmalen (vgl. Kapitel 4.1.2) gruppiert. Anschlieend wird fiir jede Gruppe ein globales
Modell trainiert. In [SFGJ20] wird zudem ein globales neuronales Netz, DeepAR, vorgestellt,

das auf dhnlichen Zeitreihen basiert.

In [MMH21] wird aufgezeigt, dass beim globalen Ansatz eine Ahnlichkeit von Zeitreihen
nicht erforderlich ist. Die Ergebnisse legen unter anderem nahe, dass globale Modelle auch
bei heterogenen Zeitreihen eine wettbewerbsfahige Performanz gegeniiber den lokalen Mo-
dellen aufweisen. Ein lineares AR-Modell dient dabei als globales Basismodell, das einfach
zu implementieren ist und sich hinsichtlich der Modellstruktur mit dem klassischen ARIMA-
Zeitreihenmodell iiberschneidet [MMHZ21, S. 1639].

Die einfache Handhabung des globalen AR-Modells sowie dessen wettbewerbsfahigen Mo-
dellperformanz, die in [MMH21] aufgezeigt wird, sind Argumente fiir die Verwendung eines
globalen AR-Modells fiir die Tagesprognose (Forecasting) der Badtemperatur. Zwar handelt es
sich bei den aufgezeichneten Badtemperaturen um Zeitreihen, die als dhnlich angesehen werden
konnen, dies sollte jedoch keine Einschrankung fiir das globale AR-Modell darstellen. Aus dem
globalen AR-Modell ergibt sich zudem eine Ausgangsbasis fiir weitere Forschungsarbeiten, in
deren Rahmen zusitzliche (globale) Modelle fiir die Vorhersage der Badtemperatur entwickelt
und anschlieend mit dem Basismodell verglichen werden kénnen. Das globale AR-Modell

wird im nachfolgenden Kapitel 4.2.2 beschrieben.
Die Gegenwartsvorhersage (Nowcasting) der Badtemperatur wird mit einem globalen RF-Modell

durchgefiihrt, das im Kapitel 4.2.3 vorgestellt wird. Die Wahl des RF-Modells wird mit den in
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[BLS+24; HG20] dargelegten Ergebnissen und Argumenten begriindet. In [BLS+24] werden
klassische maschinelle Lernmodelle mit Deep Learning Modellen anhand von tabellarischen
Datensitze gegentibergestellt. Vier Datensétze werden fiir die Klassifikation und ein Datensatz
fiir die Regression verwendet. Die Gegeniiberstellung belegt, dass Entscheidungsbiaume, die auf
dem Gradient Boosting Verfahren basieren, die meisten Deep Learning Modelle hinsichtlich der
Vorhersageperformanz tibertreffen. Des Weiteren zeigen die Ergebnisse, dass das RF-Modell
eine bessere Performanz auf dem Regressionsdatensatz aufweist als die meisten in der Arbeit
verwendeten Deep Learning Ansitze. Zwar erreicht das RF-Modell nicht die Performanz der
Gradient Boosting Modelle. Dennoch liegt es im Ergebnis direkt hinter diesen [BLS+24, S. 7511].
Auch wenn in [BLS+24] keine Zeitreihen fiir die Untersuchung verwendet werden, zeigen die
Ergebnisse den effektiven Einsatz des RF-Modells in unterschiedlichen Szenarien auf. Jedoch
koénnen auch Zeitreihendaten tabellarisch strukturiert werden, wie im spateren Kapitel 5.4.2

fir die Gegenwartsvorhersage (Nowcasting) aufgezeigt wird.

In [HG20, S. 325] wird vorgeschlagen, dass fiir eine Vorhersage mit tabellarischen Daten zu-
nichst ein RF-Modell verwendet werden soll. Gradient Boosting Modelle sind nach [HG20,
S. 325] zwar etwas genauer in der Vorhersage, gehen jedoch mit einer Vielzahl an Hyperpara-
metern einher, die erst anhand der Daten angepasst werden miissen. Des Weiteren neigt ein
RF-Modell in der Regel nicht zu einer Uberanpassung, was bei Gradient Boosting Modellen
und neuronalen Netzen der Fall ist [HG20, S. 325]. Eine weitere Eigenschaft des RF-Modells ist,
dass die Daten nicht vorab normalisiert werden miissen, was bei einem Einsatz von neuronalen
Netzen in der Regel erforderlich ist [HG20, S. 325]. Das hat den Vorteil, dass die Praxisimple-

mentierung und die Wartung des RF-Modells vereinfacht wird.

Das RF-Regressionsmodell ist jedoch nicht in der Lage, eine Zielvariable zu extrapolieren [HG20,
S. 325]. Da die Badtemperatur der Aluminiumelektrolysedfen in einem bestimmten Wertebe-
reich liegt, wie im spéteren Kapitel 5.3.2 aufgezeigt wird, stellt die Schwierigkeit der Extrapola-
tion in dieser Arbeit allerdings kein Problem dar. Daher ist das RF-Modell in dieser Arbeit ein
Loésungsansatz fir die Gegenwartsvorhersage der Badtemperatur, der aufbauend auf unserer

Arbeit [GKD+18] weiter untersucht wurde.

4.2.2 Autoregressives Modell

Das autoregressive Modell mit der Ordnung k, AR(k), setzt sich aus einer Linearkombination
vergangener Beobachtungen einer Zeitreihe zusammen [HA21, S. 275]. Die Vorhersage des
AR(k)-Modells fiir den Zeitpunkt ¢ ist mit Gleichung 4.13 angegeben.

Uy = Cc+ P1Ys—1 + P2Ys—2 + - - - + Pryi—i; (4.13)
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Gleichung 4.13 kann auch als ein multiples lineares Regressionsmodell aufgefasst werden, mit
dem Unterschied, dass vergangene Beobachtungen als Merkmale anstatt externer Pradiktoren
eingesetzt werden [HA21, S. 275]. ¢1, ..., ¢ stellen die zu schitzenden Parameter und c die
zu schitzende Konstante des AR(k)-Modells dar. Die Schitzung der Modellparameter und der
Konstante kann mittels Minimierung der Summe der quadratischen Fehler erfolgen [KND15,
S. 333; CM09, S. 79].

Das AR(k)-Modell lasst sich sowohl lokal als auch global einsetzen. Um ein globales AR(k)-
Modell zu erzeugen, wird ein Trainingsvorgang durchgefiithrt, bei dem die Modellparameter
und die Konstante in Gleichung 4.13 anhand der Beobachtungen aller vorliegenden Zeitreihen
geschétzt werden. Ziel des globalen AR(k)-Modells ist es, anhand der vergangenen Beobach-
tungen den niachsten Wert jeder Zeitreihe vorherzusagen [CTM20, S. 2004]. Dafiir werden die
Beobachtungen zunichst in Abhéngigkeit von der Ordnung k in eine Matrix eingebettet. Dieser
Vorgang wird in der Literatur auch als Lag Embedding bzw. Time Delay Embedding bezeichnet
[MMH21, S. 1639; CTM20, S. 2004]. Die folgende Matrix resultiert, wenn die Beobachtungen
einer Zeitreihe {y1,y2, ...,y } eingebettet werden [BHK18, S. 71].

U1 Y2 S Yk Yk+1
Yt—k Yt—k+1 -+ Yt—1 Yt
L Yn—k Yn—k+1 -+ Yn—1 Yn ]

Die letzte Spalte der resultierenden Matrix ist die Zielvariable, wihrend die restlichen Spalten
als Merkmale fiir die Vorhersage der Zielvariable eingesetzt werden. Anhand der aufgezeigten
Matrix ist erkennbar, dass eine 1-Schritt-Vorhersage durchgefithrt wird. Fir das globale AR(k)-
Modell wird fiir jede Zeitreihe eine solche Einbettung durchgefiihrt. Die resultierenden Matrizen
werden anschlieffend zu einer groflen Matrix zusammengefiihrt, mit der das globale AR(k)-
Modell trainiert, validiert und getestet wird [MMH21, S. 1639]. In dieser Arbeit wird das globale
AR(k)-Modell durch die LinearRegression-Klasse aus der scikit-learn Bibliothek [PVG+11] in

der Version 1.3.2 umgesetzt.

4.2.3 Random Forest

Der Random Forest (RF) besteht aus einer Ansammlung an Entscheidungsbdumen, die jeweils
eine Vorhersage uiber eine Zielvariable titigen. Die einzelnen Vorhersagen werden anschlie-
Bend zu einer Gesamtvorhersage aggregiert. Ein Entscheidungsbaum ist ein algorithmisches
Modell, bei dem der Datensatz in Abhingigkeit von der Zielvariable in moglichst homogene
Gruppen eingeteilt wird [Bre01b, S. 199; KND15, S. 136]. Die Basis fiir die Entwicklung eines
Entscheidungsbaums ist der Iterative Dichotomizer 3 (ID3) Algorithmus nach [Qui86], bei dem
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der Informationsgewinn als Metrik fiir die Einteilung von kategorialen Daten verwendet wird
[KND15, S. 134-137]. Dariiber hinaus existieren weitere Algorithmen wie C4.5, J48 und CART
(Classification And Regression Trees), die auf dem ID3-Algorithmus aufbauen [KND15, S. 167].
Der ID3-Algorithmus erzeugt einen moglichst flachen Entscheidungsbaum mittels rekursiver
Vorgehensweise [KND15, S. 135, 144].

Grundlegend besteht ein Entscheidungsbaum aus einem Wurzelknoten, inneren Knoten und
Blittern. Die Knoten und Blétter sind tiber Aste miteinander verbunden [KND15, S. 121]. Die
Knoten enthalten jeweils Entscheidungsregeln, die ausgehend vom Wurzelknoten nacheinan-
der abgearbeitet werden. Abhéngig vom Ergebnis der Entscheidungsregel in einem Knoten,
wird ein bestimmter Ast gewahlt, um zum nichsten Knoten zu gelangen. Dieser Ablauf wird
solange fortgesetzt, bis ein Blatt erreicht wird. Das Blatt enthilt die endgiiltige Vorhersage der
Zielvariable [KND15, S. 122]. In Abbildung 4.4 sind drei Entscheidungsbiaume zu sehen, die

unterschiedlich aufgebaut sind.

Die Entscheidungsregeln in den Knoten werden mit einem geeigneten Algorithmus aus den
Daten gelernt. Fiir kategoriale Daten berechnet der ID3-Algorithmus den Informationsgewinn
[KND15, S. 134-135, 144]. Beginnend beim Wurzelknoten, wird das kategoriale Merkmal aus
den Daten ausgewahlt, das den hochsten Informationsgewinn erzeugt. Je hoher der Informa-
tionsgewinn eines kategorialen Merkmals ist, desto besser ist das Merkmal in der Lage, die
Daten hinsichtlich der Zielvariable in homogene Gruppen einzuteilen. Das Merkmal mit dem
héchsten Informationsgewinn bildet die erste Entscheidungsregel und somit den Wurzelknoten.
Anhand der aufgestellten Entscheidungsregel wird der Datensatz in weitere Gruppen eingeteilt.
Fiir jede dieser neuen Gruppen wird der ID3-Algorithmus erneut ausgefithrt. Dieser Vorgang
wird solange durchgefiihrt, bis jede Gruppe hinsichtlich der Zielvariable homogen ist oder eine
weitere Einteilung der Daten nicht mehr moglich ist. In jedem Pfad, der vom Wurzelknoten bis
zu einem bestimmten Blatt verlauft, wird ein Merkmal lediglich einmal fiir die Einteilung der

Daten herangezogen [KND15, S. 134-137].

Bei einem kontinuierlichen Merkmal wird fiir die ein Einteilung der Daten ein Grenzwert er-
mittelt, der den grofiten Informationsgewinn liefert. AnschlieBend wird dieser Wert mit dem
jeweiligen Informationsgewinn der restlichen Merkmale verglichen. Im Vergleich zu katego-
rialen Merkmalen kann ein kontinuierliches Merkmal mehrmals fiir die Einteilung der Daten
entlang eines Pfades eingesetzt werden. Fiir eine Zielvariable, die kontinuierliche Werte enthalt,
wird die gewichtete Varianz berechnet. Das Merkmal, das die gewichtete Varianz der Zielvaria-
ble minimiert, teilt die Daten an einem Knoten weiter auf. Damit kann ein Entscheidungsbaum
auch fiir die Regression eingesetzt werden [KND15, S. 150, 152-154].

Entscheidungsbiume besitzen in der Regel einen geringen Verzerrungsfehler [Loul4, S. 69;

HTF09, S. 587-588]. Allerdings sind sie sensitiv gegeniiber verrauschten Daten, was zu einem
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hohen Varianzfehler fithrt [HTF09, S. 587; KND15, S. 158-159]. In Kapitel 4.3 werden die Begriffe

Verzerrungs- und Varianzfehler erklart.

Der RF verringert den Varianzfehler, indem mehrere Entscheidungsbdume trainiert werden, die
untereinander eine moglichst geringe Korrelation aufweisen [HTF09, S. 587-588]. Dazu wird je-
der Entscheidungsbaum auf zufillig gezogenen Daten aus dem Datensatz trainiert. Als Beispiel
ist in Abbildung 4.4 ein RF-Modell zu sehen, das aus drei unterschiedlichen Entscheidungsbéu-
men besteht. Mit jedem Entscheidungsbaum wird eine Vorhersage iiber die Zielvariable erzeugt.
Die einzelnen Vorhersagen werden bei einer Regression iiber die Berechnung des arithmeti-
schen Mittels oder des Medians zu einer Gesamtvorhersage aggregiert. Bei einer Klassifikation
wird die Gesamtvorhersage iber einen Mehrheitsentscheid ermittelt [KND15, S. 165].

Training: Bootstrap Aggregrating & Subspace Sampling ‘

Entscheidungsbaum ‘ | Entscheidungsbaum | ’ Entscheidungsbaum

Aggregation der Einzelvorhersagen

|

Gesamtvorhersage

- Waurzelknoten |:|innerer Knoten 77| Blattknoten

Abbildung 4.4: Aufbau eines RF-Modells, das aus drei Entscheidungsbaumen
besteht. Abbildung abgeandert nach [KND15, S. 166].

Die Daten fiir das Training der einzelnen Entscheidungsbaume werden zufillig gewahlt und
konnen mehrmals gezogen werden (Ziehen mit Zuriicklegen). Der Ziehvorgang wird so lange
wiederholt, bis die Originalgrofie des Trainingsdatensatzes erreicht wird. Dieses Verfahren wird
als Bootstrap Aggregating (Bagging) bezeichnet. Aufgrund der zufillig gewahlten Trainings-
daten ist jeder Entscheidungsbaum unterschiedlich aufgebaut. Neben Bagging wird beim RF

das Verfahren Subspace Sampling angewendet, bei dem nur eine bestimmte Anzahl an zufillig
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ausgewdihlten Merkmalen fir das Training eines Entscheidungsbaums beriicksichtigt wird. Die
zufallige Wahl der Merkmale findet wihrend der Aufteilung der Daten in einem Knoten eines
Entscheidungsbaums statt [HTF09, S. 588]. Die Kombination von Bootstrap Aggregating und
Subspace Sampling ist in Abbildung 4.5 dargestellt.

Der RF wird in [BreO1a] vorgestellt und greift nach [Loul4, S. 71-72] die in [Bre96; AGW97]
vorgestellten Methoden auf. In dieser Arbeit wird ein RF-Regressionsmodell durch die

RandomForestRegression-Klasse aus der scikit-learn Biliothek [PVG+11] in der Version 1.3.2

umgesetzt.
Datensatz
ID M1 M2 M3 Y
0
1
2

|

’ Bootstrap Aggregrating & Subspace Sampling ‘

| | |

ID M1 M2 Y ID M2 M3 Y ID M1 M3 Y

Abbildung 4.5: Bootstrap Aggregating (Bagging) und Subspace Sampling
angewendet auf einen Datensatz, der die Merkmale M1, M2 und M3 und die
Zielvariable Y beinhaltet. Abbildung abgeandert nach [KND15, S. 166].

4.3 Validieren und Testen

Das Training eines Vorhersagemodells erfolgt tiber einen Trainingsdatensatz, der ein Teil des
gesamten Datensatzes ist. Die tibrigen Daten sind der Testdatensatz, der fiir die abschlielende
Schatzung der tatsichlichen Modellperformanz dient [Nel20, S. 191]. Der Datensatz wird folglich

in einen Trainings- und Testdatensatz eingeteilt.

Bei der Einteilung ist darauf zu achten, dass der Trainings- und Testdatensatz gleichermafien die
Betriebspunkte des Prozesses enthéilt. Wird der Trainingsdatensatz zu klein gewahlt, wodurch
Betriebspunkte des Prozesses im Trainingsdatensatz fehlen, so kann von einem Vorhersage-
modell keine hohe Vorhersageperformanz erwartet werden. Bei einem zu klein gewéhlten
Testdatensatz hingegen kann die Schéatzung des Modellperformanz ungenau werden [Nel20,
S. 191].
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Des Weiteren ist zu beachten, dass der Trainingsdatensatz nicht fiir die Evaluation des Vor-
hersagemodells herangezogen wird, da dies zu einer zu optimistischen Schatzung der Modell-
performanz fiithrt [Ras18, S. 7]. Der Grund hierfiir liegt darin, dass bei der Verwendung der
Trainingsdaten lediglich der Verzerrungsfehler zu optimistisch geschitzt wird [Nel20, S. 184].

Der Verzerrungsfehler resultiert aus der Inflexibilitit des Modells, das aufgrund der gewéhlten
Modellstruktur nicht in der Lage ist, die Zusammenhénge in den Daten zu erlernen [Nel20,
S. 178]. Ein Verzerrungsfehler liegt beispielsweise vor, wenn ein quadratischer Zusammenhang
iiber ein lineares Modell beschrieben werden soll. Mit dem linearen Modell ist es nicht méglich,
den quadratischen Zusammenhang in den Daten zu erlernen, auch wenn die Parameter des
linearen Modells optimal ermittelt werden kénnen. Folglich bleibt stets ein Verzerrungsfehler
bestehen, der auf die gewéhlte Modellstruktur zuriickzufiihren ist. Inflexible Modelle erreichen
daher auf den Trainings- und Testdaten eine schlechte Performanz. In diesem Fall wird von
einer Unteranpassung (Underfitting) gesprochen [Nel20, S. 184; KND15, S. 11; RM17, S. 197].

Das Gegenteil einer Unteranpassung ist eine Uberanpassung (Overfitting), die auf den Vari-
anzfehler eines Modells zurtickgefiihrt wird. In diesem Fall iibersteigt der Varianzfehler den
Verzerrungsfehler. Der Varianzfehler resultiert aus der Ungenauigkeit der geschétzten Modellpa-
rameter, die von den optimalen Modellparametern abweichen. Dies ist darauf zuriickzufiithren,
dass die Trainingsdaten, aus denen die Modellparameter geschatzt werden, in der Regel ver-
rauscht sind und nur in begrenztem Umfang zur Verfiigung stehen [Nel20, S. 180]. Mit einer
grofieren Anzahl an Modellparametern wird das Modell flexibler, allerdings steigt auch die

Ungenauigkeit der geschétzten Parameter, was zu einem hoheren Varianzfehler fiihrt.

Fiir iberangepasste Modelle kann die Erhohung der Trainingsdaten eine sinnvolle Vorgehens-
weise sein, um den Varianzfehler und damit die Uberanpassung zu verringern [Nel20, S. 182]. In
vielen Fallen ist eine Erhohung an Trainingsdaten jedoch nicht realisierbar. Alternativ kann die
Anzahl der Modellparameter verringert werden, um die Uberanpassung zu reduzieren [Nel20,
S. 181]. Es ist jedoch zu beachten, dass eine zu starke Verringerung der Parameteranzahl nicht
in ein unterangepasstes Modell fithrt. An dieser Stelle ist der Konflikt zwischen einer Un-
teranpassung und Uberanpassung ersichtlich. Eine simultane Reduzierung des Verzerrungs-
und Varianzfehlers ist durch die Anderung der Parameteranzahl daher nicht moglich. Dieses
Dilemma wird in der Literatur als Verzerrung/Varianz-Kompromiss (bias/variance tradeoff)
bezeichnet [Nel20, S. 183].

4.3.1 Three-Way Holdout

Beim maschinellen Lernen kommen Algorithmen zum Einsatz, um Modelle anhand von Trai-
ningsdaten anzupassen [Ras18, S. 6]. Solche Algorithmen besitzen Einstellungsparameter (Hy-
perparameter), um die Modellanpassung zu optimieren [Ras18, S. 20]. Bei der Anpassung stellt

beispielsweise die maximale Baumtiefe eines Entscheidungsbaums einen Hyperparameter dar.
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Die Anpassung der Hyperparameter erfolgt anhand einer Bewertung der Modellperformanz, die
fiir unterschiedliche Hyperparameterkonfigurationen mit einem Teil des Trainingsdatensatzes
ermittelt wird. Dieser Teil bildet den Validierungsdatensatz [KND15, S. 406].

Die Aufteilung in einen Trainings-, Validierungs- und Testdatensatz wird auch als Three-
Way-Holdout-Methode bezeichnet [Ras18, S. 22]. In Abbildung 4.6 wird die Einteilung eines
Datensatzes iiber die Three-Way-Holdout-Methode verdeutlicht, bei der zusétzlich die zeitliche
Komponente der Daten (Out-of-Time Sampling) [KND15, S. 412] beriicksichtigt wird.

| Trainingsdaten | Val-daten | Testdaten ‘

- Zeit

Abbildung 4.6: Einteilung der Daten mit der Three-Way-Holdout-Methode in
einen Trainings-, Validierungs- und Testdatensatz. Die zeitliche Komponente
der Daten (Out-of-Time Sampling) [KND15, S. 412] wird dabei berticksichtigt.

In Bezug auf das Groflenverhéltnis von Trainings-, Validierungs- und Testdaten bestehen keine
festen Vorgaben. In der Literatur werden Verhéltnisse wie 5:2:3, 4:2:4 [KND15, S. 406] und 6:2:2
[Fro18, S. 198] angegeben. Die Trainings- und Validierungsdaten dienen der Anpassung von
Vorhersagemodellen, wihrend der Testdatensatz fiir die abschliefende Evaluation des besten
Vorhersagemodells herangezogen wird. Ein abschliefender Test ist weiterhin erforderlich, da
die Validierungsdaten aufgrund der Anpassung der Hyperparameter in das Training ,,durchsi-
ckern® kénnen und somit nicht mehr fiir die Abschatzung einer realistischen Modellperformanz

verwendet werden konnen [Ras18, S. 22].

Die Three-Way-Holdout-Methode findet Anwendung, wenn der Datensatz eine ausreichende
Grofle besitzt, sodass sowohl der Trainings- als auch der Validierungs- und Testdatensatz die
Betriebspunkte eines Prozesses gleichermaflen beinhalten. Sofern eine begrenzte Datenmenge
zur Verfiigung steht, bieten sich andere Validierungsmethoden im Bereich der Zeitreihenanalyse
an, um eine realistische Modellperformanz abschétzen zu kénnen [BHK18, S. 70; CTM20,
S.1998]. In [CTM20] stellen Cerqueira et al. unterschiedliche Validierungsmethoden im Bereich
der Zeitreihenvorhersage vor, die im Hinblick auf die Abschiatzung der Modellperformanz
empirisch untereinander verglichen werden. Cerqueira et al. weisen darauf hin, dass die Wahl
einer Validierungsmethode nicht trivial ist, da die Beobachtungen einer Zeitreihe aufgrund ihrer

zeitlichen Anordnung in der Regel nicht unabhéngig voneinander sind [CTM20, S. 1997-1998].

Anhand von 174 realen Zeitreihen zeigen Cerqueira et al. auf, dass sich keine bestimmte Me-
thode von den untersuchten Validierungsmethoden fiir alle betrachteten Zeitreihen eignet. Sie
machen darauf aufmerksam, weitere Untersuchungen durchzufiihren, in denen Zeitreihen-
merkmale (siehe Kapitel 4.1.2) in Zusammenhang mit verschiedenen Validierungsmethoden
gesetzt werden [CTM20, S. 2012]. Im Fazit empfehlen Cerqueira et al. jedoch fiir stationére
Zeitreihen die Methode Blocked Cross-Validation (CV-BI) und fiir nicht-stationire Zeitreihen
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die Methode Repeated Holdout (Rep-Holdout) [CTM20, S. 2019-2020]. Die folgenden Vali-
dierungsmethoden werden im Rahmen der Modellselektion vorgestellt. Dabei werden die
Hyperparameter eines Modells innerhalb der entsprechenden Validierungsmethode solange

variiert, bis die bestmdgliche Modellperformanz ermittelt wurde.

4.3.2 Blocked Cross-Validation (CV-BI)

Die Blocked Cross-Validation (CV-BI) dhnelt der klassischen Cross-Validation (CV) [CTM20,
S. 2002]. Bei beiden Methoden erfolgt eine Einteilung der Beobachtungen in k-Blocke. Der
wesentliche Unterschied zwischen der CV und der CV-BI besteht darin, dass bei der CV-BI die
Beobachtungen nicht zufillig gemischt werden. Die zeitliche Anordnung der Beobachtungen
einer Zeitreihe bleibt bei der CV-BI erhalten [CTM20, S. 2002]. Jeder Block wird anschlielend
einmalig als Validierungsdatensatz verwendet, wihrend die restlichen £ — 1 Blocke als Trai-
ningsdaten fiir das entsprechende Modell verwendet werden. Insgesamt werden k£ Durchlaufe
durchgefiihrt, in denen unterschiedliche Trainings- und Validierungsdaten verwendet werden.
Abschlieflend werden die anhand der k£ Validierungsdatenitze ermittelten Performanzwerte
aggregiert, um einen endgiiltigen Performanzwert zu erhalten [RM17, S. 191-192; KND15,
S. 408-410; Nel20, S. 193]. Abbildung 4.7 zeigt den Ablauf der CV-Bl mit £ = 10.

| Trainingsdaten | | Val.-daten |

L. schritt [ ]

2. sehritt [ ]

3. Schritt [ ]

1. sehritt] [ e

Final | | | | | | | | | | | Testdaten |

> Zeit

Abbildung 4.7: Ablauf der CV-Bl mit £ = 10. Die zeitliche Anordnung
der Beobachtungen bleibt bei der CV-BI erhalten. In einem finalen Schritt
werden alle Trainingsdaten fiir das Training des Modells mit der héchsten
Performanz verwendet, das fiir einen abschlief3enden Test auf die Testdaten
angewendet wird. Abbildung abgeandert nach [CTM20, S. 2001; RM17,
S. 192].

Die Hyperparameter eines Modells werden solange variiert, bis die bestmégliche Modellperfor-
manz innerhalb der CV-Bl ermittelt wurde. Im finalen Schritt wird das Modell mit der héchsten
Performanz mit den gesamten Trainingsdaten erneut trainiert. Der Vorteil fiir diesen abschlie-

Benden Trainingsvorgang ist, dass alle Trainingsdaten verwendet werden, was in der Regel zu
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einer verbesserten Modellperformanz fithrt. Anschliefend wird das Modell auf den separaten
Testdatensatz angewendet, um eine abschlieBende Modellperformanz zu ermitteln [Ras18, S. 30;
RM17, S. 192].

4.3.3 Repeated Holdout (Rep-Holdout)

Repeated Holdout (Rep-Holdout) basiert auf der wiederholten Anwendung von Out-of-Time
Sampling [KND15, S. 412]. Die Methode ist nach [CTM20, S. 2018-2020] empfehlenswert, wenn
nicht stationére Zeitreihen vorliegen. Innerhalb eines vorher festgelegten Zeitfensters wird
zufdllig ein Zeitpunkt a gewahlt, der die Zeitreihe in einen Trainings- und Validierungsdatensatz
einteilt. Diese Vorgehensweise wird mehrmals durchgefiihrt. In dem Experiment von Cerqueira
et al. wurden 10 Durchldufe durchgefithrt [CTM20, S. 2009]. Abbildung 4.8 zeigt die Rep-
Holdout-Methode fiir einen Durchlauf.

Die in den Durchldufen ermittelten Performanzwerte werden im Anschluss zu einem gesamten
Wert aggregiert. Der Gesamtwert dient einem Vergleich mit weiteren Modellen, die sich durch
abweichende Hyperparameter auszeichnen. Das Modell mit der bestméglichen Performanz
kann anschlieend, wie bereits bei der CV-Bl erwahnt, mit den gesamten Trainings-, und
Validierungsdaten trainiert werden. Die finale Modellperformanz kann auf einem separaten

Testdatensatz berechnet werden.

| Trainingsdaten Val-daten |

> Zeit
a
Zeitfenster

Abbildung 4.8: Vorgehensweise der Rep-Holdout-Methode. Aus einem vor-
her festgelegten Zeitfenster wird zufillig ein Zeitpunkt o gewihlt, der die
Zeitreihe in einen Trainings- und Validierungsdatensatz einteilt. Die Eintei-
lung wird mehrmals durchgefiihrt. Die ermittelten Performanzwerte werden
anschlieffend zu einem Gesamtwert aggregiert. Abbildung abgeandert nach
[CTM20, S. 2000].

4.3.4 Prequential-Methode

Zur Vollstandigkeit wird die in [CTM20, S. 2000-2001] genannte Prequential-Methode erwéhnt,
die bereits in unserer Arbeit [GKD+18] fiir die Gegenwartsvorhersage der Badtemperatur ver-
wendet wurde. Bei der Prequential-Methode werden die Beobachtungen einer Zeitreihe in
Blocke unterteilt, wobei die zeitliche Anordnung der Beobachtungen erhalten bleibt. An-
schlieflend werden die in den ersten Blocken enthaltenen Beobachtungen als Trainingsdaten
verwendet, wiahrend die Beobachtungen in dem darauffolgenden Block als Validierungsdaten

dienen. Nach der erfolgten Validierung werden die Trainingsdaten um den nichsten Block
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erweitert. Die Beobachtungen des darauffolgenden Blocks werden fiir die Validierung ver-
wendet. Dieses Vorgehen wird so lange wiederholt, bis der letzte Block fiir die Validierung
verwendet wurde [CTM20, S. 2000]. Die in den einzelnen Schritten erzielten Performanzwerte
werden zu einem Gesamtwert aggregiert. Anschlieffend durchlauft ein weiteres Modell mit
abweichenden Hyperparametern die einzelnen Schritte. Das Modell, das die bestmogliche Per-
formanz erreicht, wird in einem finalen Schritt auf den gesamten Trainingsdaten trainiert, um
eine abschlieBende Modellperformanz auf den Testdaten zu erhalten [Ras18, S. 30]. Abbildung
4.9 zeigt den Ablauf der Prequential-Methode. Des Weiteren existieren diverse Variationen der
Prequential-Methode, die in [CTM20, S. 2000-2001] aufgezeigt werden.

[Trainingsdaten | | Val-daten |
1. Schritt | | %
2. Schritt | | |
3. Schritt | | |
10. schritt [T ]
Final [T Testdaten |

- Zeit

Abbildung 4.9: Vorgehensweise der Prequential-Methode mit elf Blocken.
Die zeitliche Anordnung der Beobachtungen bleibt bei dieser Methode er-
halten. Die schraffierten Blocke werden in dem jeweiligen Schritt nicht
beriicksichtigt. In einem finalen Schritt werden alle Trainingsdaten fiir das
Training des Modells mit der hochsten Performanz verwendet, das fiir ei-
nen abschlieflenden Test auf die Testdaten angewendet wird. Abbildung
abgedndert nach [CTM20, S. 2000; GKD+18, S. 5].

4.4 Zusammenfassung

In diesem Kapitel wurden Grundlagen der Zeitreihenanalyse dargestellt, die fiir die Proof-of-
Conept-Phase in Kapitel 5 genutzt werden. Zunéchst wurde die Zeitreihenzerlegung vorgestellt,
mit der sich eine Zeitreihe in eine Trend-Zyklus-Komponente, Saison- und Restkomponente
zerlegen ldsst. Mithilfe dieser Komponenten konnen Eigenschaften einer Zeitreihe berechnet
werden, wie beispielsweise die Stirke der Saisonalitét einer Zeitreihe. Die numerische Beschrei-
bung einer bestimmten Zeitreiheneigenschaft wird auch als Zeitreihenmerkmal bezeichnet.
Anhand einer Literaturiibersicht wurde herausgestellt, dass Zeitreihenmerkmale unter anderem

in Kombination mit gleitenden Fenstern in unterschiedlichen Anwendungsbereichen eingesetzt
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werden. Die Berechnung von Zeitreihenmerkmalen in gleitenden Fenstern ist Bestandteil fiir

die Gegenwartsvorhersage (Nowcasting) der Badtemperatur in dieser Arbeit.

Um eine Zeitreihe auf Stationaritat zu tiberpriifen, konnen die Starke der Saisonalitat und der
KPSS-Test angewendet werden, die in diesem Kapitel beschrieben wurden und im praktischen
Teil dieser Arbeit auf die Badtemperaturverlidufe angewendet werden. Dariiber hinaus wurden
die AKF und PAKF vorgestellt. Beide Funktionen werden im nachfolgenden Kapitel verwendet,
um die Badtemperaturverlaufe hinsichtlich ihrer Autokorrelationen naher zu untersuchen.
Das vorgestellte Periodogramm unterstiitzt zudem bei der Analyse von Periodizitdten in den

Badtemperaturverlaufen.

Der Unterschied zwischen einem lokalen und globalen Vorhersagemodell wurde aufgezeigt.
Wihrend bei einer lokalen Vorhersage fiir jede Zeitreihe ein eigenstandiges Vorhersagemodell
trainiert wird, wird bei der globalen Vorhersage ein einziges Modell mit allen verfiigbaren
Zeitreihen trainiert. In diesem Zuge wurden das AR-Modell und RF-Modell vorgestellt und
Begriindungen fiir die Wahl dieser Modelle dargestellt. Beide Modelle werden in dieser Arbeit
fir eine globale Vorhersage der Badtemperatur eingesetzt. Abschlieflend wurden mehrere Me-
thoden aufgezeigt, um Vorhersagemodelle im Kontext der Zeitreihenanalyse zu validieren. Die
Wabhl einer Validierungsmethode findet im praktischen Teil statt, nachdem die Badtemperatur-

verldufe auf Stationaritit iiberpriift wurden.
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KAPITEL 5

Proof of Concept

In diesem Kapitel werden die anhand der Proof-of-Concept-Phase [BP20, S. 9] durchgefiithrten
Schritte vorgestellt, die fiir die Implementierung der Losungsansétze abgearbeitet wurden. Die
Proof-of-Concept-Phase ist von einer iterativen Vorgehensweise gekennzeichnet, mit der die
zuvor definierten Losungsansitze umgesetzt und iiberpriift werden. In Abbildung 5.1 ist die-
se Vorgehensweise nach [BP20, S. 9] dargestellt. Die Proof-of-Concept-Phase beinhaltet den
Austausch mit Prozessexperten/-innen iiber Hypothesen und Losungsansétze, die Datenbereit-

stellung, die Losungsentwicklung sowie die Evaluation der entwickelten Losungen.

Einbindun " "
Prozessexperten/-innen — ’ Hypothesen/Lésungsansitze ‘
’ Evaluation ‘ Ziel ’ Datenbereitstellung ‘
[ Losungscntviekdung | | o gt .

Abbildung 5.1: Iterative Vorgehensweise innerhalb der Proof-of-Concept-
Phase. Abbildung abgeéndert nach [BP20, S. 9].

Zunichst werden in diesem Kapitel der Datenfluss zwischen der TAE und dem LfA durch das
angepasste initiale ML-Pipeline-Diagramm aufgezeigt und die Implementierung der Losungs-
ansitze erdrtert. Im Rahmen der Datenbereitstellung wurden die von der TAE bereitgestellten
Badtemperaturdaten aufbereitet und analysiert. Die aufbereiteten Daten dienten der anschlie-
Benden Entwicklung von Losungen zur Vorhersage der Badtemperatur. Die Vorhersage wurde in
eine Tagesprognose (Forecasting) und in eine Gegenwartsvorhersage (Nowcasting) aufgeteilt.
Innerhalb der Evaluation erfolgte eine Gegeniiberstellung der Performanz der Vorhersage-

modelle. Insgesamt wurde die Proof-of-Concept-Phase in dieser Arbeit einmal durchlaufen.
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Zeitangaben, die in der koordinierten Weltzeit (Coordinated Universial Time (UTC)) angegeben
sind, haben in diesem Kapitel den Zusatz UTC. Alle anderen Zeitangaben sind in der Zeitzone

Europa/Berlin angegeben.

5.1 Hypothesen/Losungsansatze

Fir die Vorhersage der Badtemperatur wurden fiir diese Arbeit zwei Losungsansiatze analysiert,
deren Vorgehensweisen in Kapitel 2 beschrieben ist. Die Wahl der globalen Vorhersagemodelle
wurde in Kapitel 4.2 begriindet. Der erste Losungsansatz ist ein Vergleich zwischen einem globa-
len AR-Modell und ausgewahlten lokalen Vorhersagemodellen, mit denen eine Tagesprognose

(Forecasting) der Badtemperatur erreicht wird.

Die Erstellung von Gegenwartsvorhersagen (Nowcasting) der Badtemperatur wird mit dem
zweiten Losungsansatz erzielt. Dazu wurde ein globales RF-Regressionsmodell trainiert und
validiert. Fiir das Training des RF-Regressionsmodells wurden die in Kapitel 3.2 beschriebenen
Prozessvariablen berticksichtigt, die einen wesentlichen Einfluss auf die Badtemperatur aus-
iiben. In Abbildung 5.2 ist das angepasste ML-Pipeline-Diagramm abgebildet, das den Datenfluss
zwischen der TAE und dem LfA darstellt. Im Vergleich zum initialen ML-Pipeline-Diagramm
in Abbildung 2.1 ist die Beriicksichtigung der Badtemperaturvorhersagen in die bestehen-
den Ofenregelung nicht eingezeichnet, da der Fokus dieser Arbeit auf der Entwicklung von

Vorhersagemodellen liegt.

TA E ‘orverarbeitung Lf A
E ; derEﬁten

Manuelle Messungen
(u. a. Badtemperaturmessungen)

l — Datenanalyse }—l
Weitere

Prozessdaten - VPN | Ergebnisse &

: ! Historische | Visualisierung
E . 'Prozessdaten
:Aluminiumelektrolyseofen Datenbank ! :

Vorhersage der

Badtemperatur
______________________________________________________________ F Y

Forecasting Nowcasting
Lokale Modelle Globales RF Modell
Globales AR Modell

Abbildung 5.2: Angepasstes ML-Pipeline-Diagramm fiir die Vorhersage der
Badtemperatur.
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Auf die historischen Prozessdaten wurde iiber ein virtuelles privates Netzwerk (VPN) zwischen
der TAE und dem LfA zugegriffen. Wie in Kapitel 2 beschrieben, zeichnet die TAE die Betriebs-
daten der einzelnen Aluminiumelektrolyse6fen auf und iibertragt diese in eine Datenbank.
Auch manuelle Messungen, wie die Messung der Badtemperatur eines Ofens, werden in einer
Datenbank abgespeichert. Der Zugriff auf die historischen Prozessdaten der TAE erlaubte eine
anschliefende Weiterverarbeitung und Analyse der Daten. Die Analyseergebnisse wurden fiir
die Entwicklung der zuvor beschriebenen Modelle eingesetzt, die eine Badtemperaturvorhersage

ermoglichen.

5.2 Datenbereitstellung

Fiir die Badtemperaturvorhersage wurden die Badtemperaturdaten der TAE aus dem Zeitraum
vom 01.01.2022 06:00 Uhr bis zum 24.04.2023 06:00 Uhr von den Ofen in Halle 1 aufbereitet
und analysiert. Dabei wurden ausschliellich fehlerfreie Messungen berticksichtigt. Im ersten
Schritt der Datenbereitstellung wurden die Zeitstempel der einzelnen Badtemperaturverldufe
untersucht. Daraus geht hervor, dass Badtemperaturmessungen an einem Ofen nicht exakt zur
gleichen Uhrzeit stattgefunden haben und auch mehrfach innerhalb einer Schicht aufgetreten

sind.

Des Weiteren erfolgte eine Verkniipfung der Badtemperaturdaten mit weiteren Betriebsdaten,
um ausgeschaltete Ofen zu identifizieren und Riickschliisse auf das Ofenalter zu ziehen. Ofen, die
innerhalb des Analysezeitraums erst kiirzlich in Betrieb genommen wurden oder ausgeschaltet

waren, wurden in dieser Arbeit nicht berticksichtigt.

5.2.1 Anpassung der Zeitstempel

Aufgrund des manuellen Messvorgangs der Badtemperatur finden die tdglichen Messungen
an einem Ofen nicht exakt zur gleichen Uhrzeit statt. Daher konnte nicht davon ausgegangen
werden, dass die zeitlichen Abstédnde der Badtemperaturmessungen eines Ofens immer gleich
sind. Der Arbeitstag der TAE besteht aus drei Schichten, wobei die erste Schicht reguldr um 6
Uhr, die zweite Schicht um 14 Uhr und die dritte Schicht um 22 Uhr beginnt. In den Abbildungen
5.3 und A.1 ist die zeitliche Variation der Messzeitpunkte fiir die Ofen aus Halle 1 zu sehen. Dazu
wurde jeweils die zeitliche Differenz zwischen dem Messzeitpunkt (UTC) der Badtemperatur

und dem Beginn der ersten Schicht berechnet.

Die Abbildungen 5.3 und A.1 veranschaulichen die Zeiten der drei Schichten anhand der ver-
schobenen Boxplots. Aus diesen geht hervor, dass im Untersuchungszeitraum die Badtempe-
raturmessungen fiir die Ofen 1081 bis 1120 von der ersten Schicht, fiir die Ofen 1041 bis 1080
von der zweiten Schicht und fiir die Ofen 1001 bis 1040 von der dritten Schicht durchgefiihrt
wurden. Es gibt Messungen, die aulerhalb der reguldren Schicht stattgefunden haben und zum

Teil als Ausreif3er in den Boxplots dargestellt sind. Griinde fiir diese nicht reguldren Messungen
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Abbildung 5.3: Die Boxplots zeigen die Verteilung der zeitlichen Differenzen
fiir die Ofen der ersten Schicht. Die Differenzen wurden jeweils zwischen
dem Messzeitpunkt (UTC) der Badtemperatur und dem Beginn der ersten
Schicht berechnet.

koénnten Kontrollen von auffilligen Ofen mit hoher Badtemperatur gewesen sein oder Ver-

suchsdurchfithrungen, bei denen zusétzliche Messungen stattgefunden haben. Als Beispiel fiir

eine Versuchsdurchfithrung kann die Untersuchung der Auswirkung einer Hallenschaltung auf

die Badtemperatur genannt werden, die in Kapitel 3.2 beschrieben wurde. Des Weiteren kann
der Ofen 1041 genannt werden, an dem am 08.03.2022 und 09.03.2022 zusétzliche Messungen

durchgefiithrt wurden, die in Tabelle 5.1 ersichtlich sind.

Zeitstempel (UTC)

Badtemperatur (°C)

06.03.2022 17:44:00
07.03.2022 15:03:00
08.03.2022 16:27:00
08.03.2022 22:40:00
09.03.2022 00:25:00
09.03.2022 01:39:00
09.03.2022 02:23:00
09.03.2022 03:39:00
09.03.2022 04:06:00
09.03.2022 14:45:54

980,4
977.5
978.,5
977.8
979,6
977.6
978.,5
977.9
980,2
975.,8

Tabelle 5.1: Zusatzliche Badtemperaturmessungen, die am 08.03.2022 und
09.03.2022 am Ofen 1041 durchgefiihrt wurden.

Anhand der Abbildungen 5.3 und A.1 sowie der Tabelle 5.1 ist ersichtlich, dass die Messungen an

einem Ofen nicht zur gleichen Uhrzeit stattgefunden haben und somit die zeitlichen Abstande
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zwischen den Messungen variieren. Zeitreihen, deren Beobachtungen mit ungleichméfligen
Zeitabstinden aufgezeichnet werden, werden als nicht reguldre Zeitreihen bezeichnet. Sie
konnen im Bereich der Zeitreihenanalyse zu Schwierigkeiten fithren, da zahlreiche State-Of-
The-Art-Methoden regulire Zeitreihen voraussetzen [CCV21, S. 1]. Eine Moglichkeit, um mit
dieser Problematik umzugehen, ist die Anpassung der Messzeitstempel, sodass diese zueinander

einen gleichméafiigen zeitlichen Abstand aufweisen.

In einem ersten Schritt wurden auflerordentliche Badtemperaturmessungen entfernt. Lediglich
die Messungen, die von der zustindigen reguldren Schicht durchgefithrt wurden, wurden in
die weiteren Untersuchungen einbezogen. Beispielsweise wurden nur die Messungen vom
Ofen 1041 beriicksichtigt, die innerhalb des zweiten Schichtzeitraums stattgefunden haben.
Fir die Messungen am 08.03.2022 und 09.03.2022 in Tabelle 5.1 bedeutet das, dass lediglich die
Messungen am 08.03.2022 um 16:27 Uhr (UTC) und am 09.03.2022 um 14:45 Uhr (UTC) weiter
analysiert wurden. Alle restlichen Messungen, die an diesen beiden Tagen stattgefunden haben,
liegen auflerhalb der zweiten Schicht (13:00 Uhr bis 21:00 Uhr (UTC)) und wurden von der

weiteren Analyse ausgeschlossen.

Bei Mehrfachmessungen innerhalb einer Schicht wurde die letzte (spateste) Badtemperaturmes-
sung betrachtet. Das lasst sich damit begriinden, dass eine erneuerte Messung durchgefiihrt
wird, wenn Zweifel an der ersten Messung bestehen. Daher wurde fiir die weitere Vorgehens-

weise lediglich die letzte (spateste) Messung in einer Schicht beriicksichtigt.

Das Verwerfen von Messungen hatte jedoch zur Folge, dass fehlende Eintrage im Datensatz
erzeugt wurden. Fehlende Eintrage treten auch dann auf, wenn Messungen an einem Ofen nicht
durchgefithrt oder nicht in die entsprechende Datenbank tibertragen wurden. Zum Beispiel
erzeugen Ofen, die nicht im Betrieb sind, fehlende Eintrige im Datensatz, da an abgeschalteten
Ofen keine Messungen stattfinden. Tabelle 5.2 beinhaltet Messeintrige vom Ofen 1090 aus
dem Jahr 2022. Aus dieser geht hervor, dass fiir den 12.01.2022 und den 16.01.2022 jeweils
kein Messeintrag vorhanden ist. Fiir die weitere Vorgehensweise wurden Messeintrage mit
fehlendem Datum ergénzt. Der zugehorige Badtemperaturwert wurde als fehlend kennzeichnet

(n.a.).

Fiir die Tagesprognose der Badtemperatur spielte die Uhrzeit der jeweiligen Badtemperatur-
messung keine Rolle. Lediglich das Datum einer Messung war von Interesse. Daher wurde
nur das Datum der jeweiligen Zeitstempel beriicksichtigt. Das Datum, an dem jeweils die erste
Schicht begonnen hat, wurde als Referenzdatum verwendet und jeder Badtemperaturmessung
in den folgenden drei Schichten zugeordnet. Das Referenzdatum wurde auch den Messungen
aus der dritten Schicht zugeordnet, die nach Mitternacht stattfanden. Zum Beispiel wurde am
11.01.2022 um 21:35 Uhr (UTC) eine Badtemperaturmessung am Ofen 1001 durchgefiihrt. Die
nichste regulare Messung fand am 13.01.2022 um 00:43 Uhr (UTC) am Ofen 1001 statt. Die
Messung am 11.01.2022 behielt das Datum bei, da der Beginn der vorherigen ersten Schicht am

Kapitel 5
Proof of Concept

59



Abschnitt 5.2. Datenbereitstellung

Datum | Badtemperatur (°C)
10.01.2022 953,4
11.01.2022 958.,4
13.01.2022 956,1
14.01.2022 948.8
15.01.2022 954,0
17.01.2022 952.5
18.01.2022 957,2

Tabelle 5.2: In der Tabelle liegen einige Badtemperaturmessungen aus dem
Jahr 2022 vor, die am Ofen 1090 durchgefiithrt wurden. Fir den 12.01.2022
und den 16.01.2022 ist jeweils kein Messeintrag vorhanden.

11.01.2022 um 05:00 Uhr (UTC) war. Die Messung am 13.01.2022 erhielt hingegen das Datum
12.01.2022, da die vorherige erste Schicht am 12.01.2022 um 05:00 Uhr (UTC) begann.

Aus Tabelle 5.3 ist ersichtlich, dass nun fiir den 12.01.2022 und 16.01.2022 jeweils ein Eintrag
vorhanden ist. Der Badtemperaturwert an den beiden Tagen ist als fehlend mit n.a. (nicht

angegeben) gekennzeichnet.

Datum Badtemperatur (°C)
10.01.2022 953,4
11.01.2022 958.,4
12.01.2022 n.a.
13.01.2022 956,1
14.01.2022 948.8
15.01.2022 954,0
16.01.2022 n.a.
17.01.2022 952,5
18.01.2022 957,2

Tabelle 5.3: Die zuvor fehlenden Eintrége fiir den Ofen 1090 sind nun fiir den
12.01.2022 und den 16.01.2022 in der Tabelle vorhanden, wobei der jeweilige
Badtemperaturwert als fehlend mit n.a. (nicht angegeben) gekennzeichnet
wurde.

5.2.2 Verkniipfung mit weiteren Betriebsdaten

Um Riickschliisse dariiber zu erhalten, ob fehlende Badtemperaturmessungen aufgrund von
abgeschalteten Ofen zustande gekommen sind, wurde der Betriebszustand der Ofen mit den
entsprechenden Badtemperaturmessungen verkniipft. Auflerdem wurde das Alter der einzelnen
Ofen betrachtet. Neu angefahrene Ofen werden als Early Operation Pots bezeichnet und besitzen
andere Sollwerteinstellungen als Ofen, die schon linger in Betrieb sind. Aus diesen Griinden ist
es sinnvoll, fiir Analysen das Ofenalter zu beriicksichtigen, da junge Ofen ein anderes Verhalten
als alte aufweisen [KGD+21, S. 768].
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In dieser Arbeit wurden Ofen ausgeschlossen, die im Analysezeitraum aufler Betrieb waren. Das
hatte den Vorteil, dass nahezu vollstdndige Badtemperaturverlaufe analysiert und miteinander
verglichen werden konnten. So wurde die weitere Vorverarbeitung der Daten vereinfacht, da
die Tage, an denen die Ofen nicht in Betrieb waren, nicht mehr gesondert beriicksichtigt werden
mussten. Da sich nach [KGD+21, S. 768] das Verhalten alterer Ofen von jungen Ofen unter-
scheidet, wurden fiir die weitere Untersuchung nur Ofen betrachtet, die im Analysezeitraum
alter als 100 Tage waren. Insgesamt fithrte dieser Ausschluss dazu, dass die Badtemperaturdaten

von 60 Ofen in der vorliegenden Arbeit weiter untersucht wurden.

5.2.3 Zusammenfassung

Mit den in diesem Kapitel aufgezeigten Vorverarbeitungsschritte wurden aus den Badtempera-
turdaten der einzelnen Ofen vollstindige Zeitreihen erzeugt. Die Abbildung 5.4 zeigt jeweils
einen Ausschnitt des Badtemperaturverlaufs von dem Ofen 1001 vor und nach der Anpassung
der Daten tiber die in diesem Kapitel aufgezeigten Schritte. In dieser sind die Mehrfachmessun-
gen zwischen dem 06.09.2022 und dem 09.09.2022 vor der Anpassung der Badtemperaturdaten

ersichtlich, die nach der Anpassung nicht mehr vorhanden sind.

Fiir die Tagesprognose spielen die Uhrzeiten der einzelnen Messungen keine wesentliche Rolle.
Daher wurden die Uhrzeiten der Messungen verworfen, da lediglich der Tag der Messung
relevant war. Die originalen Messzeitpunkte blieben jedoch fiir weitere Analysen und die

Gegenwartsvorhersage (Nowcasting) im Datensatz erhalten.

Ofen 1001: Vor Anpassung

=
o
(==
S

980

960

940 T T T - T . ] i

Ofen 1001: Nach Anpassung
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Abbildung 5.4: Der Badtemperaturverlauf des Ofens 1001 ab dem 01.09.2022
bis zum 30.09.2022 vor und nach der Anpassung der Badtemperaturdaten.
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5.3 Zeitreihenanalyse der Badtemperaturdaten

Im weiteren Verlauf dieser Arbeit wurde der komplette Datensatz in einen Trainings- und
Testdatensatz aufgeteilt. AnschlieBend wurden die Trainingsdaten niher untersucht. Zunachst
wurde die Verteilung der Badtemperaturdaten mithilfe von Boxplots dargestellt und Ausreifler
identifiziert. Bei den identifizierten Ausreiflern wurde zwischen plausiblen und nicht plausiblen
Ausreiflern unterschieden. Der Unterschied wird in diesem Kapitel erlautert. Besonderer Fokus
lag auf starken Badtemperaturanderungen, die hinsichtlich ihrer Plausibilitit zusammen mit

der TAE untersucht wurden.

Anschlieflend wurden vorhandene Datenliicken in den Badtemperaturdaten untersucht und
mithilfe einer geeigneten Methode geschlossen. Zudem wurde die (partielle) Autokorrelations-
funktion fiir die Badtemperaturverlaufe berechnet. Um Periodizitaten in den Badtemperatur-
verlaufen zu identifizieren, wurde von jedem Badtemperaturverlauf jeweils ein Periodogramm
berechnet. Durch die Berechnung der Starke der Saisonalitit und die Durchfithrung des KPSS-

Tests wurden die Badtemperaturverldufe auf Stationaritat tiberpriift.

5.3.1 Trainings- und Testdaten

Fur die Vorhersage der Badtemperatur wurde zunichst der gesamte Datensatz in einen
Trainings- und Testdatensatz unterteilt. Die Trainingsdaten wurden fiir die Datenanalyse
und das Training der Vorhersagemodelle verwendet, wihrend der Testdatensatz ausschlief}lich
als abschlieflender Test fiir die entwickelten Vorhersagemodelle eingesetzt wurde. Alle auf
Basis der Trainingsdaten getroffenen Entscheidungen wurden auf die Testdaten angewendet.
Informationen tiber die Einteilung von Trainings- und Testdatenséitze wurden bereits in Kapitel

4.3 erlautert.

Aufgrund der zeitlichen Anordnung der Badtemperaturdaten wurde der in Kapitel 5.2 vorverar-
beitete Datensatz mit einer zeitlichen Trennung in einen Trainings- und Testdatensatz aufgeteilt
(vgl. Kapitel 4.3.1). Die in dieser Arbeit gewahlte Aufteilung ist in Abbildung 5.5 dargestellt.
Fir die Trennung wurde der Zeitpunkt 01.01.2023 gewahlt. Datenpunkte vor dem 01.01.2023
wurden dem Trainingsdatensatz zugeordnet. Alle bis zum 23.04.2023 {ibrigen Datenpunkte
bildeten den Testdatensatz. Die Einteilung wurde so gew#hlt, um ein komplettes Jahr in den
Trainingsdaten zu berticksichtigen. Fir die Gegenwartsvorhersage (Nowcasting) wurde aufler-
dem ein Teil der Trainingsdaten als Validierungsdaten eingesetzt. Details dazu folgen in Kapitel

5.4.2. Die nachfolgenden Auswertungen erfolgten ausschliefilich auf den Trainingsdaten.

5.3.2 Verteilung und Ausreifler

Um einen Uberblick tiber die Verteilung der Badtemperaturdaten zu erhalten, eignet sich ein

Boxplot. In Abbildung 5.6 ist ein Boxplot dargestellt, dessen statistische Kennwerte anhand der
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| Trainingsdaten | Testdaten

| | > Zeit
01.01.2022 01.01.2023 23.04.2023

Abbildung 5.5: Zeitliche Aufteilung der Badtemperaturdaten in einen
Trainings- und Testdatensatz.

Trainingsdaten berechnet wurden. Folgende Werte wurden auf eine Nachkommastelle gerundet.
Aus dem Boxplot geht hervor, dass der Median der Badtemperatur 963,1 °C betragt. 50 % der
Badtemperaturwerte liegen im Bereich von 956,6 °C bis 970,9 °C. Der Interquartilabstand
(IQA) betragt 14,3 °C. Der untere Whisker ist bei 935,2 °C und der obere Whisker bei 992,1°C
eingezeichnet (die Proportion des IQA betrdgt 1,5). Der Mittelwert der Badtemperatur liegt
bei 963,7 °C. Die Werte streuen mit einer Standardabweichung von 9,9 °C um den Mittelwert.
Zum Vergleich sei auf die Literatur [TCY13, S. 58] verwiesen, in der angegeben wird, dass die
Badtemperatur bei den besten Aluminiumhiitten der Welt mit einer Standardabweichung von
5°C bis 6 °C streut. Auffillig ist der minimale Wert von 872,5°C, der fiir den Ofenbetrieb nicht

plausibel erscheint und vermutlich von einer fehlerhaften Messung verursacht wurde.

- -

]
880 900 920 940 960 980 1000
Badtemperatur (°C)

8

Abbildung 5.6: Ein Boxplot, der anhand aller Badtemperaturdaten berechnet
wurde.

Die Abbildung 5.7 zeigt fiir jeden Ofen einen Boxplot. Anhand des IQA kénnen Ofen identifiziert
werden, deren Badtemperaturwerte stirker streuen. Mit einem Wert von 19,4 °C weist der Ofen
1091 den grofiten IQA auf, wihrend fiir den Ofen 1114 mit 9,2 °C der kleinste IQA berechnet
wurde. In Bezug auf den Median weist der Ofen 1108 mit 959,7 °C den niedrigsten Wert und
der Ofen 1095 mit 967,2 °C den hochsten Wert auf.

Auftallig sind die Boxplots mit Ausreiflern. Ausreifler konnen nach [KND15, S. 69] in plau-
sible und nicht plausible Ausreifler unterteilt werden. Als plausible Ausreifler werden Werte
bezeichnet, die im Hinblick auf den zu untersuchenden Prozess giiltig sind, sich jedoch von den
restlichen Werten deutlich unterscheiden. Bezogen auf die Badtemperatur stellt beispielsweise
der maximale Wert von 1002,3 °C, der am Ofen 1042 gemessen wurde, einen Ausreifler dar.
Im Hinblick auf den Ofenprozess scheint dieser Ausreifier plausibel zu sein, da in der Alumi-

niumelektrolyse derartige hohe Badtemperaturen auftreten konnen. Demgegeniiber kann die
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minimale Badtemperatur von 872,5 °C des Ofens 1115 bei einem reguldren Ofenbetrieb als ein

nicht plausibler Ausreifler eingestuft werden, der auf einen Messfehler zuriickzufithren ist.
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Abbildung 5.7: Ein Boxplot fiir jeden der 60 untersuchten Ofen, berechnet
aus den jeweiligen Badtemperaturen. Eine groflere Version dieser Abbildung
befindet sich in Anhang A.2.

Um einen Eindruck vom zeitlichen Verlauf der Badtemperaturen zu erhalten, sind in Abbildung
5.8 die Verldufe von vier ausgewihlten Ofen dargestellt. Die vertikalen Markierungen kenn-
zeichnen Datenliicken in den Badtemperaturverldufen. Die Badtemperaturen in Abbildung
5.8 befinden sich auf einem konstanten Niveau, da die Badtemperatur eines Ofens geregelt
wird (vgl. Kapitel 3.2). Auffillig ist das zyklische Muster der einzelnen Verldufe, das sich in
einer langsamen Auf- und Abbewegung bemerkbar macht und mit einer Periode von ungefahr
30 Tagen auftritt. Zudem sind Temperaturspitzen zu sehen: Ein niedriger Temperaturwert
ist Anfang November 2022 fiir den Ofen 1115 zu erkennen, der unter 930 °C liegt. Eine hohe
Temperaturspitze ist gegen Ende April fiir den Ofen 1058 ersichtlich.
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Abbildung 5.9 zeigt einen Ausschnitt der Badtemperaturverlaufe fir die gleichen Ofen im
Oktober 2022. In dieser sind zusétzlich unterschiedliche starke Schwankungen zu erkennen, die

dem zyklischen Muster iberlagert sind. Teilweise geht aus diesen Verldufen ein Dreiecksverlauf
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Abbildung 5.8: Badtemperaturverlaufe von vier Ofen in einem Zeitraum
vom 01.01.2022 bis zum 31.12.2022. Die vertikalen Markierungen zeigen

Datenliicken in den Badtemperaturverldufen

an.

hervor. Die Temperaturwerte liegen an jedem zweiten Tag hoher als am Vortag.
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Abbildung 5.9: Badtemperaturverldufe von vier Ofen in einem Zeitraum

vom 01.10.2022 bis zum 31.10.2022. Die ver
Datenliicken in den Badtemperaturverlaufen

tikalen Markierungen zeigen
an.
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Bei der visuellen Betrachtung der Badtemperaturverldufe fallen grofle Badtemperaturanderun-
gen auf, beispielsweise fiir den Ofen 1058 vom 26.10.2022 auf den 27.10.2022 (vgl. Abbildung
5.9). Da starke Badtemperaturianderungen in der Aluminiumelektrolyse auffallig sind, wurden

diese genauer untersucht.

Um starke Badtemperaturdnderungen zu identifizieren, wurde fiir jeden Ofen die Differenz zum
vorherigen Badtemperaturwert berechnet. Anschlieffend wurden die berechneten Differenzen
iiber einen weiteren Boxplot dargestellt, um Ofen zu identifizieren, die eine besonders starke
Badtemperaturianderung aufweisen. Die Frage bestand darin, ob starke Badtemperaturénde-
rungen aufgrund einer fehlerhaften Messung zustanden gekommen sind oder ein plausibles
Ofenverhalten widerspiegeln. Abbildung 5.10 zeigt fiir jeden Ofen einen solchen Boxplot der
Badtemperaturdifferenzen. Aus diesen geht hervor, dass Badtemperaturanderungen in Hohe
von +20°C von einem auf den nichsten Tag nicht uniiblich sind. Einige Ausreifler stechen
besonders hervor, wie beispielsweise die Ausreiier der Ofen 1019, 1034, 1054 und 1058. Die
beiden extremen Ausreifier des Ofens 1115 sind auf den bekannten Messfehler von 872,5°C

zuriuckzufiithren.
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Abbildung 5.10: Ein Boxplot fiir jeden der 60 untersuchten Ofen, berechnet
aus den jeweiligen Badtemperaturanderungen. Eine grofiere Version dieser
Abbildung befindet sich in Anhang A.3.

In Abbildung 5.11 sind die Badtemperaturverliufe der Ofen 1019, 1034, 1054 und 1058 zu sehen,
die besonders starke Badtemperaturanderungen aufweisen. Fir die Ofen 1019 und 1034 ist
eine starke negative Badtemperaturdnderung vom 07.07.2022 auf den 08.07.2022 erkennbar. Fiir
den Ofen 1019 betragt die Anderung —42,5°C und fiir den Ofen 1034 —53,3 °C. Eine weitere
Badtemperaturdnderung von 51,6 °C ist fiir den Ofen 1054 zu sehen. Der Badtemperaturverlauf

fiir den Ofen 1058 zeigt zunéchst eine Badtemperaturanderung von 51,4 °C mit einer anschlie-
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Abbildung 5.11: Badtemperaturverlaufe von vier Ofen, die eine starke Bad-
temperaturdnderung aufweisen.

Benden Anderung von —51,3°C. Auffallig an dem Ausreifler des Ofens 1058 ist, dass dieser
nicht mit dem weiteren Badtemperaturverlauf iibereinstimmt, wihrend die Badtemperaturen

der anderen Ofen nach dem jeweiligen Ausreifler plausibel weiter verlaufen.

5.3.3 Badtemperaturanderungen

Zusammen mit der TAE wurden die Ausreifler von den Ofen 1019, 1034 und 1054 genauer
untersucht. Aufgrund der in Kapitel 3.2 vorgestellten Einfliisse, die auf die Badtemperatur eines
Ofens wirken, erwies sich eine Plausibilititsbetrachtung von Ausreiflern lediglich auf Basis
der Badtemperaturverldufe als wenig aussagekréftig. Daher wurden weitere Prozessvariablen
herangezogen, um die starken Badtemperaturanderungen der einzelnen Ofen zu erklaren. In
Abbildung 5.12 ist der Badtemperaturverlauf des Ofens 1019 zu sehen. Der Badtemperaturver-
lauf wurde mithilfe der tatsichlichen Messzeitpunkte aufgetragen. Fiir einen besseren Uberblick
sind die Temperaturmesswerte und die Badtemperaturanderungen zum Vortag im unteren Teil
der Abbildung dargestellt. Die angegebenen Temperaturwerte sind auf eine Nachkommastel-
le gerundet. Des Weiteren sind in dieser die Zeitpunkte von AlF;-Zugaben, entdeckten und
beseitigten AlFs-Durchldufern, Ansétzen, Anodenkontrollen, Metallsaugen, Flusssaugen, Fluss-
zugaben, Sodazugaben, Anodeneffekten, Anodenwechseln und Stromabfallen, beispielsweise
aufgrund einer Hallenschaltung, beriicksichtigt. Somit kann ein méglicher Zusammenhang

zwischen den Einfliissen und den Badtemperaturdnderungen hergestellt werden.

Bei der Betrachtung von Abbildung 5.12 ist zu beachten, dass fiir Flusssaugen, Flusszugaben,
Sodazugaben und entdeckte Spikes lediglich der Schichtbeginnzeitstempel von der Schicht an-

gegeben ist, in der der jeweilige Einfluss stattgefunden hat bzw. entdeckt wurde. Beispielsweise
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weist ein Datenbankeintrag fiir eine Sodazugabe den Zeitstempel 03.01.2022 05:00 Uhr (UTC,
Beginn der ersten Schicht) auf. Das bedeutet, dass eine Sodazugabe am 03.01.2022 zwischen
5:00 Uhr (UTC) und 13:00 Uhr (UTC) stattgefunden hat. Die genaue Uhrzeit fiir die Sodazugabe
ist jedoch nicht bekannt. Fiir Metallsaugen, Flusssaugen, Flusszugaben und Sodazugaben sind
zusitzliche Gewichtsangaben fiir die Zugaben bzw. fiir das jeweilige Saugen angegeben. Im

Falle eines Anodeneffekts wird die umgesetzte Energie angegeben.
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Abbildung 5.12: Zeitlicher Verlauf der Prozessvariablen des Ofens 1019.

Vor dem 07.07.2022 befand sich die Badtemperatur des Ofens 1019 auf einem relativ niedrigen
Niveau. Am 04.07.2022 und am 05.07.2022 wurde dem Ofen jeweils 45 kg Soda hinzugegeben.
Die Badtemperatur stieg in den darauffolgenden zwei Tagen auf bis zu 957,5°C an und fiel
anschlieffend auf den niedrigen Temperaturwert von 915,0 °C. Vermutlich waren die Sodazu-
gaben nicht ausreichend, um den starken Abfall der Badtemperatur auf 915,0 °C zu verhindern.
Zudem konnte die Flusszugabe von 400 kg einen Einfluss auf die Badtemperaturmessung vom
08.07.2022 gespielt haben, abhéngig davon, zu welcher Uhrzeit die Flusszugabe stattgefunden
hat. Wie bereits in Kapitel 3.2 beschrieben, erhtht eine Flusszugabe die Kontaktfldche zwischen
Fluss und Seitenwand, die zu einer Abkiithlung des Ofens fithrt. Inwiefern der Stromabfall am
08.07.2022 zu der starken Badtemperaturanderung beigetragen hat, l4sst sich nicht beantwor-
ten. Weitere Sodazugaben fanden am 08.07.2022, 09.07.2022 und 11.07.2022 statt. In diesem

Zeitraum ist ein Anstieg der Badtemperatur zu erkennen. Der Anodeneffekt am 12.07.2022
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konnte zusatzlich zu einem weiteren Anstieg der Badtemperatur beigetragen haben. Die Bad-

temperaturanderung um —42.5 °C auf 915,0 °C scheint insgesamt plausibel zu sein.

In Abbildung 5.13 sind die Badtemperatur und Prozessvariablen fiir den Ofen 1034 zeitlich aufge-
tragen. Dabei ist zu sehen, dass vom 07.07.2022 auf den 08.07.2022 eine Badtemperaturanderung
von —53,3°C aufgetreten ist, die wahrscheinlich auf den AlFs-Durchldufer zuriickzufithren
ist, der am 06.07.2022 entdeckt wurde. AlFs-Durchlaufer treten auf, wenn der Zylinder der
AlF;-Dosiereinheit nicht richtig schlieit, wodurch kontinuierlich AlF; in den Ofen gelangt.
Aufgrund dieser unkontrollierten Zugabe an AlF; konnen die Liquidus- und Badtemperatur
abfallen. Der AlFs;-Durchldufer wurde schlieBlich am 07.07.2022 beseitigt. Auch fiir diesen Ofen
lasst sich die Auswirkung des Stromabfalls am 08.07.2022 auf die Badtemperatur nicht genau
beantworten. Jedoch scheint die Badtemperaturdnderung von —53,3 °C insgesamt plausibel zu

sein.

Eine Maflnahme gegen einen tiberhéhten Gehalt an AlF; im Fluss ist die Zugabe von Soda
[TRI13, S. 163], die auch mehrfach in den darauffolgenden Tagen am Ofen 1034 durchgefiihrt
wurde. Der Anodeneffekt am 11.07.2022 mit einem Energieeintrag von 244 kWh kénnte zu-

sitzlich zu einem Anstieg der Badtemperatur beigetragen haben.
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Abbildung 5.13: Zeitlicher Verlauf der Prozessvariablen des Ofens 1034.
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In Abbildung 5.14 ist ein starker Temperaturanstieg von 946,5°C auf 998,1°C fiir den Ofen
1054 zu sehen. Dieser Temperaturanstieg um 51,6 °C kann mit der Zugabe von 60 kg Soda
und dem Saugen von 400 kg Fluss jeweils am 15.07.2022 sowie mit dem Anodeneffekt mit
einem Energieeintrag von 37 kWh am 16.07.2022 begriindet werden. Daher scheint auch diese

Badtemperaturdnderung des Ofens 1054 plausibel zu sein.
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Abbildung 5.14: Zeitlicher Verlauf der Prozessvariablen des Ofens 1054.

Ein Gegenbeispiel stellt der Ofen 1058 dar, dessen Badtemperaturverlauf mit weiteren Prozess-
variablen in Abbildung 5.15 zeitlich aufgetragen sind. In dieser ist zu sehen, dass ein kurzzeitiger
Temperatursprung auf 994,1 °C am 26.03.2022 stattgefunden hat, der sich nicht iiber die hier
dargestellten Prozessvariablen erklaren lasst. Wie bereits festgestellt, widerspricht dieser Tem-
peratursprung dem restlichen Verlauf der Badtemperatur. Daher wird davon ausgegangen, dass
es sich bei der Temperaturmessung am 26.03.2022 um eine Fehlmessung handelt. Diese Aussage
wird bestatigt, weil in der Datenbank der TAE fiir den gleichen Tag eine Badtemperaturmessung
mit 954,2°C eingetragen ist, die ca. 3 Stunden vorher stattgefunden hat. Die Messung von
954,2 °C stimmt im Gegensatz zu 994,1 °C auch mit dem restlichen Temperaturverlauf iiberein.
An dieser Stelle ist noch einmal zu erwihnen, dass die Messung von 954,2 °C aufgrund der
Vorverarbeitung der Badtemperaturdaten in Kapitel 5.2 nicht in Abbildung 5.15 auftritt, da

immer nur die letzte in einer Schicht durchgefithrte Messung beriicksichtigt wurde. In diesem
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Fall ist die Messung von 994,1 °C die letzte Badtemperaturmessung gewesen, die in der zweiten

Schicht durchgefithrt wurde und sich daher im vorverarbeiteten Datensatz befindet.
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Abbildung 5.15: Zeitlicher Verlauf der Prozessvariablen des Ofens 1058.

Insgesamt zeigen die durchgefithrten Plausibilititsbetrachtungen auf, dass starke Badtempe-
raturanderungen von £50 °C in der Aluminiumelektrolyse auftreten. Fiir die Erklarung von
Badtemperaturanderungen ist es erforderlich, weitere Prozessvariablen in der Analyse zu be-
riicksichtigen. Die unterschiedlichen Einfliisse auf die Badtemperatur wurden bereits in Kapitel
3.2 beleuchtet. Die aufgezeigten Badtemperaturinderungen der Ofen 1019, 1034 und 1054
wurden in dieser Analyse als plausibel eingestuft. Eine Ausnahme stellt die Badtemperatur-
anderung des Ofens 1058 dar, die auf einen Messfehler zuriickgefiithrt werden kann. Auch die
eigentlichen Badtemperaturwerte scheinen bis auf den niedrigen Wert von 872.,5°C, der im

Boxplot in Abbildung 5.6 zu erkennen ist, plausibel zu sein.

Eine Filterung von Ausreiflern anhand von Temperaturschwellwerten erscheint nicht sinnvoll,
da mit einer solche Filterung auch Badtemperaturwerte herausgefiltert werden konnten, die im
Hinblick auf den Zustand eines Ofens plausibel sind. Aufgrund des hohen Aufwands wurde in
dieser Arbeit auf eine ausfithrliche Plausibilitatsanalyse von Ausreiflern verzichtet. In Kapitel
5.4.3 wird jedoch eine Mdglichkeit vorgestellt, um die Ursachenanalyse mithilfe eines RF-

Regressionsmodells verbessern zu kénnen.
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Insgesamt wurden fiir die weitere Analyse Badtemperaturwerte unter 900 °C im Trainings-
und Testdatensatz mit n.a. iiberschrieben. Davon ist beispielsweise der gemessene Badtempe-
raturwert von 872,5°C des Ofens 1115 im Trainingsdatensatz betroffen. Die maximale Bad-
temperatur, die in den Trainingsdaten vorkommt, liegt bei 1002,3 °C und ist eine plausible
Badtemperatur. Dennoch ist auch das Auftreten von hohen Badtemperaturmessungen zu be-
riicksichtigen, die nicht plausibel fiir den Ofenbetrieb sind. In diesem Fall kann es sinnvoll
sein, auch einen oberen Schwellwert zu definieren, um hohe Badtemperaturmesswerte zu iden-
tifizieren. Ein grofziigig gewahlter Schwellwert von 1050 °C koénnte hierfiir eine geeignete
Basis sein. Eine Uberpriifung der Testdaten ergibt, dass keine Badtemperaturmesswerte im

Testdatensatz existieren, die den Schwellwert von 1050 °C tibersteigen.

5.3.4 Datenliicken

Aus Tabelle 5.3 geht hervor, dass Datenliicken in den Badtemperaturdaten vorhanden sind,
die mit n.a. gekennzeichnet sind. In Abbildung 5.16 ist ein Balkendiagramm zu sehen, das die
Anzahl an Datenliicken in den Badtemperaturdaten fiir die 60 betrachteten Ofen aus Halle 1
im Jahr 2022 (Trainingsdaten) aufzeigt. Der Ofen 1037 hat mit zwei Datenliicken die niedrigste
Anzahl, wihrend der Ofen 1118 mit 14 Datenliicken die hochste Anzahl aufweist. Insgesamt
sind 404 Datenliicken im gesamten Trainingsdatensatz vorhanden. Es fillt auf, dass die Ofen
aus der ersten Schicht im Median eine hohere Anzahl an Datenliicken aufweisen als die Ofen

der iibrigen zwei Schichten.

Die hohere Anzahl an Datenliicken fiir die Ofen aus der ersten Schicht ist in Abbildung 5.17
erkennbar. Hier fallen vor allem die zusammenhéngenden Datenliicken vom 05.09.2022 bis
einschliefllich 08.09.2022 fiir die Ofen zwischen 1081 und 1120 auf. Der Grund fir die zusam-
menhédngenden Datenliicken ist darin zu finden, dass die Badtemperaturmessungen an den
betreffenden Ofen vom 05.09.2022 bis 07.09.2022 in der dritten Schicht durchgefiithrt wurden,
anstatt wie vorgesehen von der ersten Schicht. Badtemperaturmessungen, die nicht von der
zustandigen Schicht durchgefiihrt worden sind, wurden in der Datenvorverarbeitung dieser
Arbeit verworfen. Dadurch sind Datenliicken im Datensatz entstanden (vgl. Kapitel 5.2.1). Fiir
den 08.09.2022 liegen gar keine Badtemperaturmessungen fiir die Ofen zwischen 1081 und 1120
vor. Ab dem 09.09.2022 wurden wieder die Badtemperaturmessungen an diesen Ofen innerhalb

der ersten Schicht durchgefiihrt.
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Anzahl an Datenliicken

Abbildung 5.16: Anzahl an Datenliicken in den Badtemperaturdaten fiir
jeden der 60 untersuchten Ofen aus Halle 1 im Jahr 2022. Eine groflere
Version dieser Abbildung befindet sich in Anhang A.4.

1111
1101
1091
1081
1071 —
1061
1051
1041
1031 wo
1021
1011

1001
2022 Feb Mrz Apr Mai Jun Jul Aug Sep Okt Nov Dez

°
XIRX
ool o4
O
L ]

°

]

5o Moo © | SV 4

® e

©° oo ecoee
.

x
]

o og 00 000 00 o
°

b
o

Ofen

o0 90 060 o0 o
% P o8 o000

)
o eed
°
°

Py
°
° PO N IS oo

o0 00 0 0

c
oo oo & )

© 0(00 09 04 o ©

Abbildung 5.17: Zeitlich aufgetragene Datenliicken in den Badtemperatur-
daten, die fiir 60 Ofen aus Halle 1 im Jahr 2022 ermittelt wurden. Ein griiner
Punkt stellt eine Datenliicke dar.

Der Umgang mit Datenliicken stellt eine wesentliche Herausforderung dar, da nicht jede
Analyse- und Vorhersagemethode mit Datenliicken umgehen kann [RM17, S. 107; HA21, S. 427].
Um diese Schwierigkeit zu vermeiden, konnen die Datenliicken in den Badtemperaturverldu-
fen mit einer geeigneten Methode aufgefiillt werden. Aufgrund der zeitlichen Anordnung

der Badtemperaturwerte bieten sich Methoden an, die die zeitliche Komponente der Daten
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beriicksichtigen. In [MBB17] werden verschiedene Methoden erortert, die darauf abzielen,

Datenliicken in univariaten Zeitreihen zu schlief3en.

Nach [KND15, S. 74] sind zunichst einfache Methoden fiir das Auffillen von Datenliicken zu
bevorzugen. Daher wurde in dieser Arbeit die Methode Last Observation Carried Forward
(LOCF) verwendet, da diese einfach zu implementieren ist. Bei der LOCF-Methode wird jeweils
die letzte vorhandene Beobachtung vor der Datenliicke verwendet, um die Liicke zu schlielen.
Fur die Werte in Tabelle 5.3 bedeutet das, dass die Datenliicke (n.a.) vom 12.01.2022 mit dem
Wert 958,4 °C vom Vortag aufgefiillt wird, wahrend fiir die Datenliicke (n.a.) vom 16.01.2022 der
Badtemperaturwert 954,0 °C verwendet wird. Die Anwendung von LOCF erfolgte in gleicher

Weise auf dem Trainings- und Testdatensatz.

Abbildung 5.18 zeigt vier Badtemperaturverldufe der Ofen 1001, 1058, 1110 und 1115. Dabei
stellen die griinen Punkte die Werte dar, die durch LOCEF fiir Datenliicken eingesetzt wurden.
Fiir die Ofen 1110 und 1115 ist zu sehen, dass die Datenliicken vom 05.09., 06.09., 07.09. und
08.09.2022 mit dem Badtemperaturwert vom 04.09.2022 aufgefiillt wurden.
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Abbildung 5.18: Badtemperaturverldufe von den Ofen 1001, 1058, 1110 und
1115. Die griinen Punkte stellen die Werte dar, die fiir das Auffiillen der
Datenliicken mithilfe der LOCF-Methode verwendet wurden.

5.3.5 Autokorrelation

Um einen ersten Eindruck tiber die Korrelationen der Badtemperaturen zu gewinnen, wurden,
ahnlich wie in [MAWO01, S. 298], iiber alle 60 Ofen die Koeffizienten der AKF und PAKF berechnet
und gemittelt. In Abbildung 5.19 sind die gemittelten Koeffizienten der AKF und PAKF zu sehen,
die jeweils bis zur Verzogerungsstelle k = 35 berechnet wurden. Die gemittelten Koeffizienten

der AKF (vgl. Abbildung 5.19a) zeigen einen anndhernd sinusférmigen Verlauf.

Kapitel 5
Proof of Concept



Abschnitt 5.3. Zeitreihenanalyse der Badtemperaturdaten

Die Koeffizienten der PAKF (vgl. Abbildung 5.19b) sind nach der Verzogerungsstelle £ = 9 nicht
mehr signifikant. Auffallend sind die ersten acht signifikanten Koeffizienten der AKF. Dabei
lasst sich beobachten, dass jeder zweite signifikante Koeffizient hoher liegt als der vorherige
Koeffizient. Dieses Verhalten deutet auf eine Periodizitat bzw. Saisonalitit hin, die sich alle
zwei Tage wiederholt. Das ist auch in Abbildung 5.9 anhand des Dreiecksverlaufs der Badtem-
peraturen ersichtlich. In vielen Fillen liegt jede zweite gemessene Badtemperatur hoher als die
am Vortag gemessene Temperatur, was mit dem Anodenwechsel begriindet werden kann, der

in der Regel alle zwei Tage bei der TAE stattfindet.
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Abbildung 5.19: Fiir jeden Ofen wurden die AKF und PAKF bis zur Verzo-
gerungsstelle k = 35 berechnet. Die Koeffizienten wurden anschlieBend
gemittelt und gegen die Verzdgerungsstellen aufgetragen. In (a) sind die
gemittelten Koeffizienten der AKF und in (b) die gemittelten Koeffizienten
der PAKF jeweils mit einem Konfidenzintervall von 95 % zu sehen.

Dartiber hinaus geht aus [MAWO1, S. 298] hervor, dass es sich bei den dort untersuchten Bad-
temperaturverldufen um Zeitreihen handelt, die aus einem autoregressiven Prozess resultieren.
Bei der Betrachtung der Korrelogramme in Abbildung 5.19 kann diese Aussage auch auf die
vorliegenden Badtemperaturverldufe iibertragen werden, da die Koeffizienten der AKF einen
sinusféormigen Verlauf aufweisen und die Koeffizienten der PAKF nach der neunten Verzé-
gerungsstelle nicht mehr signifikant sind. Nach [HA21, S. 283; SS17, S. 99] lassen sich diese

Eigenschaften als Indizien fiir einen autoregressiven Prozess werten.
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5.3.6 Periodogramm

In Abbildung 5.20 ist fiir jeden einzelnen Badtemperaturverlauf das Periodogramm sowie das ge-
mittelte Periodogramm zu sehen. Das Periodogramm wurde bereits in Kapitel 4.1.5 beschrieben.
Aus Abbildung 5.20 geht hervor, dass eine Haufung der Spektren im unteren Frequenzbereich
vorhanden ist. Diese Erkenntnis wurde bereits von McFadden et al. [MAWO01] erlangt und
deutet darauf hin, dass es sich bei den Badtemperaturverlaufen um einen sich ,langsam be-
wegenden” [MAWO1, S. 298] Prozess handelt. Die linke gemittelte Frequenzspitze entspricht
einer Periode von ungefihr 30 Tagen. Das bedeutet, dass sich in den Badtemperaturverlaufen
ein ausgeprigtes Muster befindet, das sich alle 30 Tage wiederholt. Diese Erkenntnis wurde
bereits in Abbildung 5.8 ersichtlich. Insgesamt wurden in dieser Arbeit solche ,Jangsamen®

Bewegungen als Zyklus gewertet (vgl. Kapitel 4.1.1).
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Abbildung 5.20: Fiir jeden einzelnen Badtemperaturverlauf wurde ein Peri-
odogramm ohne anschlieBende Glattung berechnet. Anschliefend wurden
die einzelnen Periodogramme gemittelt, um einen globalen Eindruck tiber
sich wiederholende Muster in den Badtemperaturverldaufen zu erhalten.

Eine weitere Frequenzspitze deutet auf eine Bewegung hin, die sich ungefihr alle sieben Tage
wiederholt. Diese ist jedoch nicht sonderlich stark ausgepragt. Ursachen konnten fiir diese sich
wiederholende Bewegung nicht identifiziert werden. Des Weiteren ist eine Frequenzspitze bei
zwei Tagen ersichtlich. Diese wurde bereits bei der Analyse der Korrelogramme in Kapitel 5.3.5

erkannt und mit dem Anodenwechsel der TAE begriindet.

Fir die weitere Vorgehensweise wurden die Badtemperaturverldufe auf Stationaritit iiberprift,
wobei die zweitagige Periode im Fokus stand. Die siebentdgige Periode wurde nicht weiter

berticksichtigt, da diese nicht sonderlich stark im gemittelten Periodogramm ausgepragt ist.
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5.3.7 Stationaritat

Die Koeffizienten der AKF in Abbildung 5.19 und das Periodogramm in Abbildung 5.20 weisen
auf eine Periodizitat in den Badtemperaturverlaufen hin, die mit dem Anodenwechsel begriindet
wird, der ublicherweise alle zwei Tage bei der TAE stattfindet. Periodische bzw. saisonale
Zeitreihen sind nicht stationar (vgl. Kapitel 4.1.3). Es wurde daher iiberpriift, in welchem
Umfang die zweitdgige Saisonalitét in den Badtemperaturverlaufen ausgepragt ist, um eine
saisonale Differenzierung zu rechtfertigen. Dazu wurde die Stirke der Saisonalitit mithilfe der

Gleichung 4.5 fiir jeden Badtemperaturverlauf berechnet.

Sofern der errechnete Wert unter dem Schwellwert von 0,64 liegt, ist eine saisonale Differenzie-
rung fiir den entsprechenden Badtemperaturverlauf nicht notwendig [HA21, S. 273]. Insgesamt
wurde fiir 58 von 60 Ofen jeweils ein Wert berechnet, der unter dem Schwellwert von 0,64 liegt.
Nur fiir die Badtemperaturverldufe der Ofen 1005 und 1013 liegt der jeweilige Wert knapp tiber
dem Schwellwert. Somit zeigt sich, dass die zweitdgige Saisonalitét fiir 58 Badtemperaturver-
laufe nur eine untergeordnete Rolle spielt, sodass auf eine saisonale Differenzierung verzichtet
wurde. Die ermittelten Werte sind als Boxplot in Abbildung 5.21 aufgefiihrt. Aus diesem lasst
sich ableiten, dass der Median bei 0,49 liegt. Das untere Quartil liegt bei 0,43, wiahrend das obere
Quartil bei 0,54 liegt. Aufgrund dieser Ergebnisse wurde fiir den anschlieSenden KPSS-Test

keine saisonale Differenzierung an den Badtemperaturverldufen vorgenommen.

I I
0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
Fs

Abbildung 5.21: Stiarke der zweitdgigen Saisonalitit, die fiir jeden Badtem-
peraturverlauf in den Trainingsdaten berechnet wurde. Die Verteilung der
berechneten Werte ist mit dem Boxplot dargestellt.

Mithilfe des KPSS-Tests, der im Kapitel 4.1.3 vorgestellt wurde, wurden die Badtemperaturen
fiir jeden Ofen auf Stationaritit iiberpriift. Das Signifikanzniveau wurde mit 5 % (« = 0,05)
festgelegt. Fiir 14 von 60 Badtemperaturverldufen wird die Nullhypothese des KPSS-Tests
verworfen. Diese Badtemperaturverldufe sind nach dem KPSS-Test nicht stationar. In Abbildung
5.22 sind die Badtemperaturverldufe von vier Ofen zu sehen, fiir die die Nullhypothese des
KPSS-Tests verworfen wird. Da fiir die restlichen 46 Badtemperaturverldufe die Nullhypothese
des KPSS-Tests nicht abgelehnt wird, wurden diese als stationér eingestuft. Dieses Ergebnis

ist vergleichbar mit den Ergebnissen von McFadden et al. [MAWO01], die ihre untersuchten
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Badtemperaturverldufe anhand eines durchgefiihrten ,run test” ebenfalls als stationér eingestuft

haben.

Anhand der in diesem Kapitel dargelegten Ergebnisse wurde angenommen, dass die in dieser
Arbeit untersuchten Badtemperaturverlaufe insgesamt stationér sind. Anhand dieses Ergeb-
nisses wurde eine geeignete Methode gewihlt, um die Performanz von Vorhersagemodellen
abzuschitzen. Wie bereits in Kapitel 4.3 erldutert, wird nach [CTM20, S. 1] die CV-BI fiir

stationdre Zeitreihen empfohlen.

Ofen 1009 Ofen 1027
___ 1000 ___ 1000
I e
5 980 5 980
2. 960 1 2. 960
g g
e z
T 940 T 040
M M
Ofen 1028 Ofen 1036
1000 1000
I I
5 9807 5 980
= =
by 5}
2 960 - 2 960
g g
= N
F 040 S 940
M s
2022  Mrz  Mai Jul Sep Nov 2022  Mrz  Mai Jul Sep Nov

Abbildung 5.22: Badtemperaturverldufe (nicht saisonal differenziert) von den
Ofen 1009, 1027, 1028 und 1036, fiir die die Nullhypothese des KPSS-Tests
abgelehnt wird.

5.4 Losungsentwicklung

Im Rahmen der weiteren Vorgehensweise nach Abbildung 5.1 werden in diesem Kapitel Losun-
gen aufgezeigt, die eine Badtemperaturvorhersage ermoglichen sollen. Es wird zwischen einer
Tagesprognose (Forecasting) und einer Gegenwartsvorhersage (Nowcasting) unterschieden.
Bei der Tagesprognose wird eine Badtemperatur fiir den nichsten Tag vorhergesagt. Dazu
wurde ein globales AR-Modell trainiert und validiert. Um die Modellperformanz einschat-
zen zu konnen, erfolgte ein Vergleich des globalen AR-Modells mit vier ausgewéahlten lokalen

Zeitreihenmodellen auf einem Testdatensatz.

Als Gegenwartsvorhersage (Nowcasting) kann die Vorhersage bezeichnet werden, die fiir
den aktuellen Zeitpunkt, fiir die nahe Zukunft und die nahe Vergangenheit getatigt wird
[BGR10, S. 5]. Fiir die Gegenwartsvorhersage der Badtemperatur wurde ein globales RF-

Regressionsmodell mit weiteren Prozessvariablen aus der Aluminiumelektrolyse sowie un-
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terschiedlichen Hyperparameterkombinationen trainiert und validiert. Zuvor wurde eine Ver-
arbeitung der Prozessdaten durchgefiithrt, bei der Zeitreihenmerkmale in einem festgelegten

zeitlichen Intervall berechnet und mit der gemessenen Badtemperatur verkniipft wurden.

Die Analyse des RF-Regressionsmodells mithilfe einer PFI diente der Identifikation von Prozess-
variablen, die einen wesentlichen Einfluss auf die Gegenwartsvorhersage ausiiben. Aulerdem
wird eine Moglichkeit aufgezeigt, die eine Interpretation der Gegenwartsvorhersagen des RF-
Modells ermoglichte. Im Rahmen eines abschlieffenden Tests wurden alle verwendeten Modelle

anhand eines reduzierten Testdatensatzes verglichen.

5.4.1 Forecasting (AR-Modell)

In diesem Kapitel wird die Anwendung des in Kapitel 4.2 vorgestellten globalen AR-Modells
dargelegt. Dieses wurde mit lokalen Vorhersagemodellen verglichen, um die Eignung des
globalen AR-Modells zu tiberpriifen. Der Fokus lag auf der Badtemperaturvorhersage fiir
den nichsten Tag (Tagesprognose). Vorhersagen fiir einen grofieren Horizont waren nicht
Bestandteil dieser Arbeit. Das globale AR-Modell und die lokalen Modelle wurden anhand der
Trainingsdaten trainiert. Die folgenden lokalen Modelle wurden mithilfe des R-Pakets fable
[OWHW?23] im Schritt der Evaluation nach Abbildung 5.1 verwendet:

« MEAN « ETS (auto)

. NAIVE . ARIMA (auto)

Das MEAN-Modell berechnet den Mittelwert der Trainingsdaten, der anschliefSend fir die
Vorhersage verwendet wird. Das NAIVE-Modell verwendet jeweils die letzte Beobachtung
fiir die Vorhersage. ExponenTial Smoothing (ETS) ist ein statistisches Framework [HA21,
S. 250, 252], das mithilfe eines Informationskriteriums aus unterschiedlichen Exponential-
Smoothing-Modellen ein fiir die Zeitreihe passendes Modell bestimmt. Die Suche nach einem
passenden ETS-Modell wurde in dieser Arbeit mit dem R-Paket fable [OWHW?23] automatisiert
durchgefithrt. Dariiber hinaus wurde fiir jeden Badtemperaturverlauf ein ARIMA-Modell in
einer automatisierten Vorgehensweise gew#hlt, wofiir der Hyndman-Khandakar-Algorithmus
[HK08; HA21, S. 285-287] mithilfe des R-Pakets fable zum Einsatz kam. Fiir die Modelle ETS
und ARIMA wurde als Argument eine Periode von zwei Tagen angegeben, um eine potenzielle
zweitdgige Saisonalitdt zu beriicksichtigen. Weitere Informationen zu den hier genannten
lokalen Modellen kénnen der Literatur [HA21] entnommen werden. Als Bewertungsmaf} der
einzelnen Modelle wurde der Mean Absolute Error (MAE) verwendet, der mithilfe der folgende
Gleichung 5.1 berechnet wird [KND15, S. 444; HKO06, S. 682]:

Il M=

abs(ye — G¢)

MAE=%2 (5.1)
n
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Yy ist eine Beobachtung und §j; eine Vorhersage jeweils zum Zeitpunkt ¢. Die Anzahl der
Vorhersagen ist mit n angegeben. Im Vergleich zum Root Mean Squared Error (RMSE) ist
der MAE weniger empfindlich gegeniiber Ausreiflern [HKO06, S. 682]. Zudem lasst sich der
MAE leichter interpretieren. Der Vergleich zwischen den lokalen Modellen und dem globalen
AR-Modell wurde mit dem Testdatensatz aus Kapitel 5.3.1 durchgefiihrt.

Um das globale AR-Modell zu trainieren, wurde ein Lag Embedding mit jedem Badtempera-
turverlauf durchgefiihrt. Nahere Informationen zum Lag Embedding sind in Kapitel 4.2.2 zu
finden. Die Ordnung des globalen AR-Modells wurde anhand der CV-Bl bestimmt, da diese von
Cerqueira et al. [CTM20, S. 2019] fiir stationdre Zeitreihen vorgeschlagen wird. Wie bereits
in Kapitel 5.3.7 festgestellt wurde, ist die Mehrheit der untersuchten Badtemperaturverldufe
stationdr. Die maximale zu Gberpriifende Ordnung (Anzahl an Verzogerungsstellen) des AR-
Modells wurde auf 35 festgelegt, um die ausgeprigte Frequenzspitze von etwa 30 Tagen zu

berticksichtigen (vgl. Kapitel 5.3.6).

Die Anzahl an Folds, die mit der CV-BI erstellt werden, wurde mit £ = 10 festgelegt. Dieser
Wert ist im Kontext der CV ein iiblicher Literaturwert, der in der Arbeit von Kohavi [Koh95]
ermittelt wurde. In Abbildung 5.23 sind die tiber die zehn Folds gemittelten MAE-Werte zu
sehen, die jeweils gegen die Verzdgerungsstellen des globalen AR-Modells aufgetragen sind.

Neben dem Mittelwert ist die Standardabweichung fiir jede Verzogerungsstelle eingezeichnet.

6.00
—e— Val.-daten (Mittelwert)
5.751 Val -daten (Std.)
5.50 1
5.25 1

0 5 10 15 20 25 30 35
Verzogerungsstelle (Lag)

Abbildung 5.23: Gemittelter MAE, der jeweils gegen die beriicksichtigten
Verzogerungsstellen eines globalen AR-Modells aufgetragen ist.

Aus Abbildung 5.23 geht hervor, dass die grofite Verbesserung des MAE mit Hinzufiigen der
zweiten Verzogerungsstelle erreicht wird. Nach der zehnten Verzogerungsstelle treten keine

wesentlichen Verbesserungen mehr auf. Daher wurde fiir die weitere Vorgehensweise ein
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globales AR(10)-Modell mithilfe der gesamten Trainingsdaten trainiert. AnschlieBend wurde
dieses anhand des Testdatensatzes mit den lokalen Modellen verglichen. Der Testdatensatz
umfasst die Badtemperaturdaten vom 01.01.2023 bis einschliefSlich dem 23.04.2023 (vgl. Kapitel
5.3.1). Tabelle 5.4 zeigt den MAE, den das globale AR(10)-Modell und die lokalen Modelle auf

dem Testdatensatz erreichen.

Modell Art der Vorhersage | MAE (°C)
AR(10) Global 4,59
ETS (auto) Lokal 4,60
ARIMA (auto) Lokal 4,67
NAIVE Lokal 5,81
MEAN Lokal 7,95

Tabelle 5.4: MAE, den die Modelle auf den Testdaten erzielten. Angaben
sind auf zwei Nachkommastellen gerundet.

Die mit der LOCF-Methode aufgefiillten Badtemperaturwerte (vgl. Kapitel 5.3.4) wurden bei
der Berechnung des MAE nicht beriicksichtigt. Aus Tabelle 5.4 geht hervor, dass das globale
AR(10)-Modell den kleinsten MAE erreicht. Die lokalen Modelle ETS und ARIMA liegen dicht
dahinter. Das MEAN-Modell erreicht den hochsten MAE, da dieses lediglich den Mittelwert der
Badtemperaturverlidufe aus den Trainingsdaten als Vorhersage verwendet. Insgesamt zeigen
die Ergebnisse, dass das globale AR(10)-Modell in der Lage ist, die lokalen Modelle hinsichtlich
der Badtemperaturvorhersage zu substituieren. Daraus resultiert ein praktischer Vorteil, da
ein einziges globales AR(10)-Modell in der Lage ist, vergleichbare Badtemperaturvorhersagen
fiir alle 60 Ofen zu erstellen. Die lokalen Modelle ETS und ARIMA erreichen eine dhnliche
Vorhersageperformanz wie das globale AR(10)-Modell, jedoch werden diese pro Ofen trainiert,
wodurch 60 ETS und 60 ARIMA Modelle entstehen, die anschlieflend in den Produktivbetrieb
iiberfithrt werden miissen. Fin weiterer Vorteil eines bereits trainierten globalen AR-Modells
besteht darin, dass dieses auch unmittelbar fiir neu in Betrieb genommene Ofen eingesetzt
werden kann. Ein weiterer Trainingsvorgang ist in diesem Fall nicht mehr notwendig. Dagegen
missen fiir eine Vorhersage mit einem lokalen Modell zunachst ausreichend Daten eines neuen
Ofens verfiigbar sein, um ein lokales Modell zu trainieren. Es zeigt sich, dass der Einsatz des
globalen AR(10)-Modells gegeniiber den lokalen Modellen praktische Vorteile mit sich bringt,

ohne eine Verschlechterung hinsichtlich der Vorhersageperformanz eingehen zu miissen.

5.4.2 Nowcasting (Random Forest)

Das globale AR(10)-Modell fithrt eine Badtemperaturvorhersage fiir den néachsten Tag (Ta-
gesprognose) anhand vergangener Badtemperaturmessungen durch. Es kann als Basismodell
angesehen werden und als Vergleichsgrundlage fiir weitere Vorhersagemodelle dienen. Wie

bereits im Kapitel 3.2 erwihnt, konnen verschiedene Faktoren die Badtemperatur beeinflussen.
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Anhand der Abbildungen 5.12, 5.13, 5.14 und 5.15 wurde der Einfluss mehrerer Prozessvariablen
auf die Badtemperatur untersucht. Die Analyse der Auswirkungen einzelner Prozessvariablen
auf die Badtemperatur ist jedoch zeitaufwendig. Es stellte sich daher die Frage, ob eine solche

Analyse mit einem Vorhersagemodell unterstiitzt werden kann.

Fiir die nachfolgende Analyse muss erwahnt werden, dass sich in dem Trainings- und Testzeit-
raum (vgl. Abbildung 5.5) Ofen befinden, die mit einer neuen Prozesssteuerung ausgestattet
wurden. Fir diese Ofen wurden bestimmte Prozessvariablen nicht mehr in der urspriinglichen
Datenbank aufgezeichnet. Aus diesem Grund wurden Ofen mit neuer Prozesssteuerung vom
zweiten Losungsansatz ausgeschlossen. Die Anzahl verkleinerte sich auf 51 Ofen, die in der

anschlieBenden Untersuchung beriicksichtigt wurden.

In unserer Arbeit [GKD+18] wurde ein RF als Regressionsmodell verwendet, um die Badtempera-
tur anhand von mehreren Prozessvariablen vorherzusagen. AnschlieBend wurde das RF-Modell
mithilfe der PFI und von Partial Dependence Plots analysiert, um den Zusammenhang zwischen
den betrachteten Prozessvariablen und der Badtemperaturvorhersage zu bestimmen. Es wurde
ausgesagt, dass die iiber das RF-Modell gefundenen Zusammenhinge zwischen den Prozess-
variablen und der Badtemperaturvorhersage nicht unbedingt auf den tatsichlichen Prozess
der Aluminiumelektrolyse zutreffen. Die in [GKD+18] erstellten Vorhersagen konnen auch als
Gegenwartsvorhersagen [BGR10, S. 5; SBMW?22, S. 375] bezeichnet werden. Dabei werden die
bis zu einem bestimmten Zeitpunkt verfiigbaren Informationen genutzt, um eine Vorhersage
iiber die Zielvariable (Badtemperatur) durchzufithren [SBMW22, S. 376]. Abbildung 5.24 zeigt

den Ablauf der Gegenwartsvorhersage fiir die Badtemperatur.

A

Badtemperaturmessung

Badtemperaturmessung
Gegenwartsvorhersage

Badtemperatur (°C)

Verwendung von weiteren Informationen bis hier

Zeit
21.06.2022 07:52 Uhr 22.06.2022 08:12 Uhr

Abbildung 5.24: Ablauf der Gegenwartsvorhersage der Badtemperatur. Ab-
gedndert nach [SBMW?22, S. 376].
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Die Gegenwartsvorhersage findet hierbei zum Zeitpunkt einer Badtemperaturmessung statt, um
die Gegenwartsvorhersage mit der tatsachlichen Badtemperatur vergleichen zu kdnnen. Der
tatsichliche Verlauf der Badtemperatur ist zwischen den Badtemperaturmessungen unbekannt.
Wie bereits in unserer Arbeit [GKD+18, S. 4] erwihnt wird, werden in der Aluminiumindustrie
die Prozessvariablen eines Ofens mit unterschiedlichen zeitlichen Auflésungen aufgezeichnet.
Anhand der in Kapitel 3.2 und Kapitel 5.3.3 aufgezeigten Einfliisse auf die Badtemperatur wurde
eine Vorauswahl an Prozessvariablen getroffen, die anschlieend fiir das RF-Regressionsmodell
eingesetzt wurden. Die in Tabelle 5.5 dargestellten Prozessvariablen bildeten die Ausgangsbasis

fir die in dieser Arbeit durchgefithrten Gegenwartsvorhersage.

Prozessvariable Einheit/Datentyp Auflosung
Hallenstrom A 5 min
Ofenspannung A% 5 min
Fitterungsrate % 5 min
Zugabe von AlF; bool 5 min
Anodenwechsel bool 5 min
Metallsaugen bool 5 min
Anodeneffekt bool 5 min
AlFs-Durchlaufer entdeckt bool Zeitpunkt der Entdeckung
Flusssaugen kg Schichtzeitstempel
Zugabe von Soda (Na;COs;) kg Schichtzeitstempel
Ansatz entdeckt Anzahl Schichtzeitstempel

Tabelle 5.5: Fiir die Gegenwartsvorhersage verwendete Prozessvariablen.

Die in Tabelle 5.5 aufgezeigten Prozessvariablen stammen aus verschiedenen Datenquellen, die
fir diese Arbeit zusammengefiithrt wurden, um eine Gegenwartsvorhersage der Badtemperatur
zu ermoglichen. Eine Schwierigkeit bei der Zusammenfiithrung der Prozessvariablen waren die
unterschiedlichen zeitlichen Auflésungen. Wahrend fiir den Hallenstrom und die Ofenspannung
alle finf Minuten ein Wert vorlag, wurde fiir die Entdeckung eines Ansatzes oder die Zugabe
von Soda (NayCOj3) nur der Beginn der Schicht als Zeitstempel angegeben, in der der Ansatz
entdeckt wurde oder eine Zugabe von Soda erfolgt ist. Daher wurde bei der Vorverarbeitung
der Prozessvariablen darauf geachtet, dass alle Prozessvariablen zeitlich korrekt miteinander
verkniipft wurden. Als Referenz wurden die Zeitstempel der 5 min-Daten genutzt, an die alle
weiteren Daten angefiigt wurden. Diese Vorgehensweise gewahrleistet, dass nur zum Zeitpunkt

der Gegenwartsvorhersage bereits vorhandene Daten einbezogen wurden.

Damit das RF-Regressionsmodell aus unterschiedlich aufgelosten Daten lernen kann, wurden
die Prozessvariablen geeignet aufbereitet. In [GKD+18, S. 4; SBMW22, S. 375-376] werden
dazu Zeitreihenmerkmale innerhalb von Zeitintervallen {iber die betrachteten Prozessvariablen
gebildet. Dabei wird der jeweilige Verlauf der Prozessvariablen innerhalb der zeitlichen Inter-

valle mit einem numerischen Wert quantifiziert. Als Zeitreihenmerkmale werden in [GKD+18,
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S. 4, SBMW22, S. 376] unter anderem der Mittelwert, der Median und die Standardabweichung

verwendet.

In dieser Arbeit wurden ebenfalls Zeitreihenmerkmale anhand der in Tabelle 5.5 dargestellten
Prozessvariablen berechnet. Fiir den Hallenstrom, die Ofenspannung sowie die Fitterungsrate
wurde jeweils der Mittelwert berechnet, wiahrend fiir die restlichen Prozessvariablen die Anzahl
ihrer Vorkommnisse (Summe) berechnet wurde. Das Zeitintervall fiir die Berechnung der Zeit-
reihenmerkmale wurde mit 24 Stunden festgelegt. Die Wahl des gew#hlten Zeitintervalls und
der Zeitreihenmerkmale basiert auf den Ergebnissen unserer Arbeit [GKD+18] und gewahrleis-
tet, dass vergangene Werte der Prozessvariablen fiir die Gegenwartsvorhersage beriicksichtigt
werden. Mittels dieser Vorgehensweise kann die Performanz der Gegenwartsvorhersage gestei-
gert werden [GKD+18, S. 5]. Abbildung 5.25 zeigt die Berechnung von Zeitreihenmerkmalen
iiber die 5 min-Daten in dem 24 Stunden Intervall. Anschliefend wurden die berechneten

Zeitreihenmerkmale mit der jeweiligen Badtemperaturmessung verkniipft.

Badtemperaturmessung
) ~24h
=
Z ®
<
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M o\ (6]
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............. . Verkniipfung mit
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Anzahl Vorkommnisse (Summe)

Zeit

Abbildung 5.25: Erstellung von Zeitreihenmerkmalen tiber die 5 min-Daten
in einem 24 Stunden Intervall. Abgeandert nach [KGD+21, S. 771].

Fiir die Validierung des RF-Regressionsmodells wurde die CV-Bl mit zehn Folds durchgefiihrt.
Die in Abbildung 5.5 dargestellte Aufteilung des Trainings- und Testzeitraums blieb weiterhin
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erhalten. Die Validierung des RF-Regressionsmodells wurde ausschliefilich auf den Trainings-
daten durchgefithrt. Die Bewertung des Modells erfolgte iiber den MAE nach Gleichung 5.1.
Wiéhrend der Validierung wurden mehrere Versuche durchgefiihrt und die Auswirkungen auf
die Modellperformanz ausgewertet. Im ersten Versuch wurden die gemessene Badtemperatur
als Zielvariable und die zuvor beschriebenen Zeitreihenmerkmale verwendet. Im zweiten Ver-
such wurde zusétzlich der Wert der letzten Badtemperaturmessung als Merkmal beriicksichtigt.
Beide Versuche wurden wiederholt, wobei diesmal die Anderung der Badtemperatur als Ziel-
variable definiert wurde (Versuch 3 und 4). Bei allen Versuchen wurde darauf geachtet, dass
jeweils die gleichen Validierungsdaten verwendet wurden, um einen fairen Vergleich zwischen
den Versuchen zu gewéhrleisten. Wahrend der Validierung wurden unterschiedliche Hyper-
parameterkombinationen validiert. In Tabelle 5.6 ist der kleinste auf zwei Nachkommastellen
gerundete MAE fiir jeden Versuch zu finden, der jeweils mit der folgenden Hyperparameterkom-
bination ermittelt wurde: Anzahl an Badumen: 100, Maximale Anzahl an zufalligen Daten fiir
das Training eines Baumes: 1000, Minimale Anzahl an Daten pro Blattknoten: 1, Kein Subspace

Sampling. Es sei darauf hingewiesen, dass fiir den dritten Versuch ein geringfiigig kleinerer

MAE erreicht wurde, wenn ein Subspace Sampling mit v/ Anzahl der Merkmale durchgefiihrt
wird. Gerundet entspricht dieser MAE jedoch dem angegebenen Wert in Tabelle 5.6.

Versuch ‘ MAE (°C)

1 6,39 & 0,37
2 4,59 4 0,34
3 4,84 +0,40
4 4,55 % 0,36

Tabelle 5.6: MAE mit Standardabweichung, die in vier Versuchen innerhalb
der CV-Bl fiir das RF-Regressionsmodell ermittelt wurden. Angaben sind auf
zwei Nachkommastellen gerundet.

Aus Tabelle 5.6 geht hervor, dass im vierten Versuch der kleinste MAE erreicht wird. In diesem
Versuch wurde die Badtemperaturinderung als Zielvariable definiert und als zusétzliches Merk-
mal der Wert der Badtemperaturmessung vom Vortag berticksichtigt. Es ist zu vermuten, dass
ahnliche Auspragungen der einzelnen Merkmale zu einer dhnlichen Badtemperaturinderung
fithren. So war das RF-Regressionsmodell besser in der Lage, die Daten hinsichtlich der Zielva-
riable in homogene Gruppen einzuteilen. Wird beispielsweise davon ausgegangen, dass jeder
Anodenwechsel die gleiche Badtemperaturanderung hervorruft, dann ist dieser Zusammen-
hang vermutlich besser durch das RF-Regressionsmodell zu erlernen als der Zusammenhang

zwischen Anodenwechsel und der Badtemperatur.

Diese Vermutung wird von den Ergebnissen der weiteren Versuche bestarkt. Im ersten Ver-
such wurde lediglich die Badtemperatur vorhergesagt, was zum gréfiten MAE innerhalb der

CV-BI fithrt. Der MAE verbessert sich bereits im zweiten Versuch wesentlich, bei dem der
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Wert der letzten Badtemperaturmessung als zusétzliches Merkmal beriicksichtigt wurde. Daher
hatte das RF-Regressionsmodell die Moglichkeit, die vorherige Badtemperatur in der Gegen-
wartsvorhersage zu beriicksichtigen. Der dritte Versuch zeigt gegeniiber dem ersten Versuch
eine wesentliche Verbesserung hinsichtlich der Vorhersageperformanz und bestétigt die zuvor
aufgestellte Vermutung. In diesem Versuch wurde lediglich die Badtemperaturéanderung vor-
hergesagt. Wie bereits erwahnt, wird der kleinste MAE im vierten Versuch erreicht, bei dem die
Badtemperaturanderung als Zielvariable definiert und der Wert der letzten Badtemperaturmes-
sung zusatzlich beriicksichtigt wurden. Aus den Versuchen lasst sich insgesamt ableiten, dass
eine Vorhersage der Badtemperaturdnderung gegeniiber der Badtemperatur zu bevorzugen ist,

da eine bessere Modellperformanz erreicht wird.

Um einen Einblick in das Zusammenspiel zwischen den verwendeten Merkmalen und der Ziel-
variable zu erhalten, wurde die PFI berechnet. Die PFI gibt an, wie wesentlich ein Merkmal fiir
die Vorhersage der Zielvariable ist. Dazu wird zunéchst ein entsprechendes Vorhersagemodell
trainiert und die Performanz anhand von Validierungsdaten ermittelt. Diese ermittelte Perfor-
manz stellt die Basis fiir die Berechnung der PFI dar. Anschlieffend werden die Auspragungen
eines Merkmals aus den Validierungsdaten zufillig permutiert. Mit dem permutierten Merkmal
und allen weiteren Merkmalen wird dann erneut eine Performanz ermittelt und aufgezeichnet.
Dieses Vorgehen wird solange wiederholt, bis alle Auspriagungen eines jeden Merkmals zufallig
permutiert wurden. Der Unterschied zwischen der Basisperformanz und der Performanz, die
mit einem zufillig permutierten Merkmal ermittelt wird, gibt eine Einschiatzung dariiber, wie

wesentlich das entsprechende Merkmal fiir die Vorhersage ist [Bre0la, S. 23].

Bei der Interpretation der PFI sollten die Korrelationen zwischen den einzelnen Merkmalen
beriicksichtigt werden. In Abbildung A.5 sind die Korrelationen der berechneten Zeitreihen-
merkmale und der beiden Zielvariablen, Badtemperatur und Badtemperaturdnderung, angege-
ben. Die angegebenen Korrelationskoeffizienten wurden nach Pearson berechnet. In Abbildung
A.6 sind zudem die Korrelationskoeffizienten zu sehen, die nach Spearman berechnet wurden.
Merkmale, die miteinander stark korrelieren, konnen sich gegenseitig substituieren. Bestehende
Korrelationen zwischen Merkmalen sollten daher bei der Analyse der PFI beachtet werden,
indem die korrelierenden Merkmale bei der Berechnung der PFI gemeinsam permutiert wer-
den [PTCH18]. Aus den Korrelationen geht insgesamt hervor, dass zwischen den Merkmalen
keine stirkeren Korrelationen vorliegen, die eine Zusammenfithrung von Merkmalen fiir die
Berechnung der PFI rechtfertigten. Die starkste Korrelation besteht in Abbildung A.5 zwischen
der Ofenspannung und dem Hallenstrom, wihrend in Abbildung A.6 die stirkste Korrelation
zwischen der Fiitterungsrate und dem Anodenwechsel vorliegt. Wie bereits erldutert, sind
auch die Korrelationen der Zielvariablen in beiden Abbildungen A.5 und A.6 zu sehen. Aus
diesen geht hervor, dass die Badtemperatur (Zielvariable) mit der vorherigen Badtemperatur
(Messwert vom Vortag) korreliert. Eine solche Korrelation wurde bereits aus der berechneten

Autokorrelation in Kapitel 5.3.5 ersichtlich. Mit der Badtemperaturanderung (Zielvariable)
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korrelieren der Anodenwechsel und die vorherige Badtemperatur am starksten. In Abbildung
5.26 ist die berechnete PFI als Balkendiagramm mit zugehoriger Standardabweichung fiir jedes
Merkmal dargestellt. Die PFI wurde wahrend der CV-Bl auf den jeweiligen Validierungsdaten
fiir jeden der vier Versuche anhand des RF-Regressionsmodells ermittelt. Fiir die Messung der

jeweiligen Performanz wurde der MAE berechnet. Die Daten geben die Anderung des MAE fiir

die einzelnen Merkmale an.
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(b) Zweiter Versuch.

Anodenwechsel
Vorherige Badtemp.
Fiitterungsrate

k

b

%

Ofenspannung

Hallenstrom

Metallsaugen

Flusssaugen

Zugabe von AlF3
Anodeneffekt

Ansatz entdeckt

Zugabe von Soda (NayCOs3)
AlF3-Durchlaufer entdeckt

0 2 4 6
Anderung MAE (°C)

(d) Vierter Versuch.

Abbildung 5.26: Berechnete PFI fiir jeden Versuch. (a) Die Zielvariable ist
die Badtemperatur. (b) Die Zielvariable ist die Badtemperatur. Der Wert
der letzten Badtemperaturmessung wird als Merkmal beriicksichtigt. (c)
Die Zielvariable ist die Badtemperaturanderung. (d) Die Zielvariable ist die
Badtemperaturanderung. Der Wert der letzten Badtemperaturmessung wird

als Merkmal beriicksichtigt.
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Im ersten Versuch (vgl. Abbildung 5.26a) kommt die grofite Anderung des MAE durch das
Merkmal Fiitterungsrate zustande. In diesem Fall steigt der MAE um etwa 1,4 °C gegeniiber der
Basisperformanz. Im zweiten Versuch (vgl. Abbildung 5.26b) verursacht der Wert der letzten
Badtemperaturmessung die grofite Anderung des MAE, wihrend im dritten und vierten Versuch
(vgl. Abbildung 5.26¢ und 5.26d) jeweils der Anodenwechsel sich als wesentliches Merkmal
herausstellt. Wie bereits in [GKD+18, S. 9] festgestellt, gilt es bei der Interpretation der PFI zu
beachten, dass diese nicht zwangsldufig den kausalen Zusammenhang zwischen den Merkmalen
und der Zielvariable darstellen. Dennoch gibt die PFI einen ersten Uberblick {iber Merkmale,

die wesentlich fiir die Vorhersage der Badtemperatur sind.

Das RF-Regressionsmodell aus dem vierten Versuch wurde niaher untersucht, da dieses den
geringsten MAE erzielt hat. Die fiir den vierten Versuch berechnete PFI (vgl. Abbildung 5.26d)
zeigt, dass einige Merkmale kaum zu einer Anderung des MAE beitragen. Aus diesem Grund
wurden Merkmale mit einem geringen Beitrag entfernt und erneut ein RF-Regressionsmodell
mit einer reduzierten Anzahl an Merkmalen mithilfe der CV-Bl trainiert und validiert. Folgende
Merkmale wurden weiter beriicksichtigt: Anodenwechsel, Wert der Badtemperaturmessung
vom Vortag (vorherige Badtemp.), Fiitterungsrate, Ofenspannung, Hallenstrom und Metallsau-
gen. Die restlichen Merkmale wurden aufgrund ihrer geringen Werte in der PFI verworfen.
Als Zielvariable wurde die Anderung der Badtemperatur definiert und unterschiedliche Hy-
perparameterkombinationen validiert. Der kleinste MAE von 4,56 °C £ 0,36 °C wurde mit den
Hyperparametern aus dem ersten Durchlauf ohne Subspace Sampling erzielt. Der MAE ist nur
geringfiigig schlechter als der MAE aus dem vierten Versuch im ersten Durchlauf (vgl. Tabelle
5.6).

Anodenwechsel

Vorherige Badtemp.

Fiitterungsrate
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Abbildung 5.27: PFI des RF-Regressionsmodells mit reduzierten Merkmalen.
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Diese Erkenntnis legt nahe, dass die ausgeschlossenen Merkmale nicht wesentlich fiir
die Vorhersage der Badtemperatur sind. Abbildung 5.27 veranschaulicht die PFI des RF-
Regressionsmodells mit den reduzierten Merkmalen. Ein Vergleich mit Abbildung 5.26d zeigt,
dass die Reihenfolge der dargestellten Merkmale erhalten bleibt.

Im néchsten Schritt wurde das RF-Regressionsmodell auf den kompletten Trainingsdaten trai-
niert, um das endgiiltige Modell zu erhalten. Fir den Trainingsvorgang wurde die Hyper-
parameterkombination aus dem ersten bzw. zweiten Durchlauf verwendet. Die Anzahl an
Entscheidungsbaume wurde jedoch auf 1000 erh6ht. Nach [HG20, S. 299] verbessert sich die
Modellperformanz, je mehr Entscheidungsbaume trainiert werden. Eine zusétzlich in dieser
Arbeit durchgefithrte CV-Bl unterstitzt diese Aussage. Allerdings verbesserten 2000 Entschei-
dungsbiume die Modellperformanz nicht weiter. Aus diesem Grund wurden 1000 Entschei-

dungsbdume fiir den abschliefenden Test verwendet.

Das Modell wurde anschlieflend auf den Testdaten getestet, um eine abschlieffende Performanz
zu ermitteln. Bei diesem Test erreichte das RF-Regressionsmodell einen MAE von 4,53 °C
auf den Testdaten. Auch in diesem abschlieBenden Test wurden die Badtemperaturwerte, die
durch die LOCF-Methode ersetzt wurden (vgl. Kapitel 5.3.4), nicht beriicksichtigt. In Abbildung
5.28 ist weiterhin der MAE fiir jeden Ofen dargestellt, den das RF-Regressionsmodell auf den

entsprechenden Testdaten erzielt hat.

Abbildung 5.28: MAE fiir jeden Ofen, den das RF-Regressionsmodell auf den
Testdaten erzielt.

Der Abbildung 5.28 ist zu entnehmen, dass das RF-Regressionsmodell fiir den Ofen 1001 den
hochsten MAE und fiir den Ofen 1058 den geringsten MAE erzielte. Fiir die beiden Ofen 1001

und 1058 lassen sich exemplarisch die Gegenwartsvorhersagen des RF-Modells, die Standardab-

Kapitel 5
Proof of Concept

89



90

Abschnitt 5.4. Losungsentwicklung

weichung fiir jede Vorhersage (o RF) und die gemessene Badtemperatur (Ziel) vom 09.04.2023
bis zum 23.04.2023 in Abbildung 5.29 entnehmen. In dieser sind die Gegenwartsvorhersagen der
Badtemperaturidnderung und der Badtemperatur zu sehen. Die Vorhersage der Badtemperatur
ergibt sich hierbei aus der Vorhersage der Badtemperaturanderung. Die Standardabweichung
wurde uber die Gegenwartsvorhersagen der einzelnen Entscheidungsbaume berechnet. Die
Standardabweichung dient als Maf} fiir die Unsicherheit der jeweiligen Vorhersage. Eine kleine
Standardabweichung bedeutet ein grofieres Vertrauen, das in die Vorhersage gesetzt werden
kann. Vorhersagen, die eine relativ hohe Standardabweichung aufweisen, sollten mit Vorsicht
betrachtet werden [HG20, S. 302-303]. Zum Beispiel besitzt die Gegenwartsvorhersage des
Ofens 1001 fiir den 10.04.2024 eine relativ hohe Standardabweichung.

Fiir den Ofen 1001 ist in Abbildung 5.29 zu erkennen, dass fiir den 15.04.2023 kein Messwert bzw.
Zielwert vorhanden ist. Lediglich die Gegenwartsvorhersage des RF-Regressionsmodells ist zu
sehen, die fiir diesen Tag eine negative Badtemperaturdnderung prognostiziert. Die Vorhersage
wurde zu Beginn der dritten Schicht getitigt, da diese Schicht fiir die Badtemperaturmessung
des Ofens 1001 zusténdig ist (vgl. Abbildung A.1).
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Abbildung 5.29: Zeitlich aufgetragene Gegenwartsvorhersagen des RF-
Regressionsmodells fiir die Ofen 1001 und 1058. Zum Vergleich sind wei-
terhin die tatsachlich gemessenen Badtemperaturen aufgetragen. Die Stan-
dardabweichung (o RF) gibt die Streuung der Gegenwartsvorhersagen der
einzelnen Entscheidungsbaume des RF-Modells an.

5.4.3 Analyse (Nowcasting)

Die Gegenwartsvorhersagen der einzelnen Entscheidungsbdume, die in dem RF-
Regressionsmodell enthalten sind, werden zu einer Gesamtvorhersage aggregiert. Mit

dem Aufbau eines Entscheidungsbaums lasst sich der Beitrag der Merkmale zu jeder Gegen-
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wartsvorhersage ermitteln. Hierzu wird der Pfad vom Wurzelknoten bis zum Blattknoten
eines jeden Entscheidungsbaums fiir eine bestimmte Vorhersage analysiert [Saa14]. Eine
solche Analyse hilft bei der Interpretation einer jeden Gegenwartsvorhersage und bietet die
Maoglichkeit einer Ursachenanalyse von Badtemperaturdnderungen, die nach bestem Wissen

im Bereich der Aluminiumelektrolyse noch nicht aufgezeigt wurde.

Fir die Interpretation der Gegenwartsvorhersagen wurde das Python-Paket treeinterpreter
[Saa21] in der Version 0.2.3 verwendet. Um den Einfluss der einzelnen Merkmale auf die Gegen-
wartsvorhersage darstellen zu kénnen, wurde des Weiteren ein Waterfall-Chart eingesetzt, der
mithilfe des Python-Pakets waterfallcharts [Csi17] in der Version 3.8 mit eigenen Modifikationen

realisiert wurde.

Ausgehend von dem Bias, der sich aus den Trainingsdaten ergibt, sind in Abbildung 5.30 die
einzelnen Beitrdge der Merkmale zu sehen, aus denen sich die Gesamtvorhersage fiir den
14.04.2024 fiir den Ofen 1001 zusammensetzt. Die Summe der einzelnen Beitrage ergibt die
Gegenwartsvorhersage des RF-Modells. An dieser Stelle wird darauf hingewiesen, dass die
in Abbildung 5.30 aufgezeigten Merkmale die berechneten Zeitreihenmerkmale darstellen,
die innerhalb des 24 Stunden Intervalls berechnet wurden (vgl. Kapitel 5.4.2). Zum Beispiel
stellt das Merkmal Anodenwechsel die Anzahl der Anodenwechsel der letzten 24 Stunden
dar. Fir die Ofenspannung oder den Hallenstrom ist das der jeweilige Mittelwert in diesem
Intervall. Aus Abbildung 5.30 geht hervor, dass der Anodenwechsel den groiten Beitrag zur
Gegenwartsvorhersage vom 14.04.2023 des Ofens 1001 liefert.
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Abbildung 5.30: Ein Waterfall-Chart, der die Zusammensetzung der Gegen-
wartsvorhersage vom 14.04.2023 des Ofens 1001 darstellt. Angaben sind auf
zwei Nachkommastellen gerundet.
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Erwahnenswert hierbei ist, dass ausgehend vom Zeitpunkt der Gegenwartsvorhersage in den
letzten 24 Stunden kein Anodenwechsel am Ofen 1001 stattgefunden hat. Das fithrt zu ei-
nem positiven Beitrag bei der Gegenwartsvorhersage. Auch der Hallenstrom tragt mit einem
negativen Beitrag wesentlich zur Gesamtvorhersage bei. Die Summe aus Bias und den Bei-
tragen der Merkmale ergibt die Gegenwartsvorhersage, die mit 3,74 °C auf der rechten Seite
der Abbildung 5.30 angegeben ist. Ein weiteres Beispiel ist in Abbildung 5.31 zu sehen. In
dieser sind die Beitrage der einzelnen Gegenwartsvorhersage vom 19.04.2023 fiir den Ofen 1058
zu sehen. Die vorhergesagte Badtemperaturdnderung betragt —4,01 °C. Wesentlich fiir diese
Gegenwartsvorhersage ist das Merkmal Anodenwechsel. In dem 24-Stunden-Zeitraum haben
zwei Anodenwechsel stattgefunden, die insgesamt mit —4,06 °C zur Gegenwartsvorhersage

beitragen.
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Abbildung 5.31: Ein Waterfall-Chart, der die Zusammensetzung der Gegen-
wartsvorhersage vom 19.04.2023 des Ofens 1058 aufzeigt. Angaben sind auf
zwei Nachkommastellen gerundet.

Eine solche Zusammensetzung kann auch fir jede weitere Gegenwartsvorhersage des RF-
Regressionsmodells erzeugt werden, um eine Interpretation der Gegenwartsvorhersagen zu
ermoglichen. Anhand des Waterfall-Charts kénnen Prozessvariablen identifiziert werden, die
die Gegenwartsvorhersage mafigeblich beeinflussen. Allerdings muss bei diesen Analysen
beachtet werden, dass die Zusammenhénge nicht unbedingt den realen Prozess der Aluminium-
herstellung widerspiegeln, wie bereits in unserer Arbeit [GKD+18, S. 9] festgestellt wurde. Die
hier gezeigten Beitrdge, aus denen sich die jeweilige Gegenwartsvorhersage zusammensetzt,
lassen dennoch Riickschliisse auf die Modellzusammenhénge zu, die von den Trainingsda-
ten erlernt wurden. Die Interpretation der Gegenwartsvorhersagen (Ursachenanalyse) muss

allerdings im Praxisbetrieb der Aluminiumelektrolyse erprobt werden.
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5.4.4 Evaluation

Der MAE von 4,53 °C des RF-Regressionsmodells wurde anhand eines Testdatensatzes ermittelt,
der lediglich Ofen ohne neue Prozessteuerung beinhaltet. Ein direkter Vergleich mit den lokalen
Modellen und dem globalen AR(10)-Modell (vgl. Tabelle 5.4) war daher zunichst nicht méglich.
Um dennoch einen Vergleich zwischen den einzelnen Modellen durchfithren zu kénnen, wurde
jeweils die Performanz der lokalen Modelle und des globalen AR(10)-Modells auf dem reduzier-
ten Testdatensatz berechnet. So war ein direkter Vergleich zwischen allen Modellen méglich, da
die gleichen Testdaten verwendet wurden. Auch fiir diesen Test wurden die Badtemperaturen,
die durch die LOCF-Methode ermittelt wurden (vgl. Kapitel 5.3.4), vom Test ausgeschlossen.

Die Ergebnisse konnen Tabelle 5.7 entnommen werden.

Modell Art der Vorhersage | MAE (°C)
RF Nowcasting (Global) 4,53
AR(10) Forecasting (Global) 4,55
ETS (auto) Forecasting (Lokal) 4,55
ARIMA (auto) | Forecasting (Lokal) 4,62
NAIVE Forecasting (Lokal) 5,76
MEAN Forecasting (Lokal) 7,88

Tabelle 5.7: MAE, der von dem jeweiligen Modell auf den Testdaten (ohne
Ofen mit neuer Prozessteuerung) erzielt wurde. Die Angaben wurden zu-
nichst aufsteigend sortiert und anschlieffend auf zwei Nachkommastellen
gerundet. Als Forecasting wird die Tagesprognose bezeichnet.

Aus Tabelle 5.7 geht hervor, dass das globale RF-Modell mit einem MAE von 4,53 °C die beste
Performanz auf den Testdaten erzielt. Es sei darauf hingewiesen, dass dieses im Vergleich zu
den restlichen Modellen eine Gegenwartsvorhersage durchfithrt. Auf das RF-Modell folgen das
globale AR(10)-Modell und das lokale ETS-Modell mit einem MAE von jeweils 4,55 °C. Den
hochsten MAE erreicht das MEAN-Modell. Der Performanzvergleich zeigt auch hier, dass das
globale AR(10)-Modell eine Alternative zu den lokalen Modellen ist, um die Badtemperatur
vorherzusagen. Wahrend bei den lokalen Modellen fiir jede Zeitreihe ein entsprechendes Modell
trainiert wird, wird beim globalen Ansatz ein Modell anhand von allen verfiigbaren Zeitreihen
trainiert. Daraus ergibt sich ein praktischer Vorteil, da mit einem einzigen globalen Modell
Badtemperaturvorhersagen fiir mehrere Aluminiumelektrolysedfen erstellt werden konnen.
Je nach Einsatzszenario sind beide globalen Modelle fiir eine Vorhersage der Badtemperatur
zu empfehlen. Fiir eine Tagesprognose kann das globale lineare AR-Modell als Basismodell
eingesetzt werden. Bei der Gegenwartsvorhersage mit dem RF-Modell steht zusétzlich die

Moglichkeit einer Interpretation der erzeugten Vorhersagen zur Verfigung.

In Abbildung 5.32 sind die Verteilungen der Vorhersagefehler auf den Testdaten jeweils anhand

eines Boxplots fiir beide globalen Modelle zu sehen. Der Vorhersagefehler ist die Differenz
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zwischen der gemessenen Badtemperatur und der Vorhersage. Bei beiden Boxplots ist der
Median jeweils negativ. Das bedeutet, dass die Vorhersagen beider globalen Modelle im Median
hoher liegen als die tatsiachlich gemessene Badtemperatur. Zudem sind fiir beide globalen
Modelle Ausreifler hinsichtlich der jeweiligen Vorhersagefehler zu erkennen. Fiir das globale
AR(10)-Modell in Abbildung 5.32a liegt der grof3te absolute Vorhersagefehler bei 34,71 °C. Beim
RF-Modell in Abbildung 5.32b liegt der grofite absolute Fehler bei 31,59 °C. Die Standardab-
weichung der Vorhersagefehler liegt fiir das globale AR(10)-Modell bei 5,82 °C und fiir das
RF-Modell bei 5,72 °C.
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(a) Boxplot fiir die Vorhersagefehler des globalen AR(10)-Modells.
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(b) Boxplot fir die Vorhersagefehler des globalen RF-Regressionsmodells.

Abbildung 5.32: Verteilungen der Vorhersagefehler der globalen Modelle auf
den Testdaten.

Eine weitere Idee bestand noch darin, die Vorhersagen der beiden globalen Modelle miteinan-
der zu kombinieren, um eine potenzielle Verbesserung hinsichtlich der Vorhersageperformanz
zu erreichen. Dazu wurde der Mittelwert anhand der Gegenwartsvorhersage des globalen
RF-Regressionsmodells und der Tagesprognose des globalen AR(10)-Modells fiir jeden Tag be-
rechnet. Die gemittelten Vorhersagen wurden anschlieflend auf den Testdaten evaluiert. Die
Modellkombination erreichte einen MAE von 4,31 °C auf den Testdaten. Aus diesem Ergebnis
ist ersichtlich, dass mittels einfacher Mittelung eine Verbesserung der Vorhersageperformanz
erreicht werden konnte. In Abbildung 5.33 ist ein Boxplot fiir die Vorhersagefehler der Mo-
dellkombination zu sehen. Aus dieser geht unter anderem hervor, dass der grofite absolute
Vorhersagefehler unter 30 °C liegt. Die Standardabweichung der Vorhersagefehler der Modell-

kombination betrdgt 5,49 °C und ist kleiner als die der einzelnen globalen Modelle.
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Abbildung 5.33: Boxplot fiir die Vorhersagefehler der Modellkombination
auf den Testdaten.

5.5 Zusammenfassung

In diesem Kapitel wurde zunichst die umfangreiche Aufbereitung der Badtemperaturdaten
aufgezeigt. Es wurden Daten von Ofen aus der ersten Halle der TAE in einem Zeitraum vom
01.01.2022 06:00 Uhr bis zum 24.04.2023 06:00 Uhr betrachtet. Da die Messzeitpunkte der
Badtemperatur eines Ofens variieren, wurden die Zeitstempel angepasst. Au3erplanméfiige
Badtemperaturmessungen wurden von der weiteren Analyse ausgeschlossen. Anschlieflend
wurde die Verteilung der Badtemperaturmesswerte anhand von mehreren Boxplots untersucht.
Dabei ist ein nicht plausibler Badtemperaturwert von 872,5 °C aufgefallen, der daraufhin aus
den Daten entfernt wurde. Des Weiteren wurden starke Badtemperaturdnderungen von vier
Ofen identifiziert, die mit Hilfe der TAE und der Betrachtung weiterer Prozessvariablen naher
untersucht wurden. Es stellte sich heraus, dass Badtemperaturdnderungen von +50°C von
einem auf den anderen Tag auftreten und auf bestimmte Ursachen zuriickgefithrt werden
konnen. Lediglich die am 26.03.2022 gemessene Badtemperatur des Ofens 1058 wurde auf einen
Messfehler zuriickgefithrt (vgl. Abbildung 5.15). Da die Unterscheidung von plausiblen und
nicht plausiblen Ausreifiern in den Badtemperaturdaten zeitlich aufwendig ist, wurde in dieser

Arbeit auf eine ausfithrliche Korrektur von Ausreiflern verzichtet.

Datenliicken in den Badtemperaturdaten wurden mithilfe der LOCF-Methode geschlossen. An-
schlieend wurden die Badtemperaturverldufe hinsichtlich ihrer Autokorrelation untersucht,
aus der eine zweitdgige Periodizitiat bzw. Saisonalitit ersichtlich wurde. Die zweitagige Sai-
sonalitdt wurde mit Anodenwechsel erklért, der bei der TAE in der Regel alle zwei Tage an
einem Ofen durchgefithrt wird und zu einem Dreiecksverlauf in den Badtemperaturen fiihrt.
Zusétzlich wurde fiir jeden Badtemperaturverlauf ein Periodogramm erstellt, um ausgepragte
Frequenzen in den Badtemperaturverldufen zu identifizieren. Aus den Periodogrammen gingen
ausgepragte Frequenzspitzen bei ungefahr sieben und 30 Tagen hervor. Die Frequenzspitze bei
30 Tagen wurde in Verbindung mit einem zyklischen Muster in den Badtemperaturverldaufen

gebracht. Fir die Frequenzspitze bei sieben Tagen konnte keine Ursache identifiziert werden.

Die Uberpriifung der Stationaritit der Badtemperaturverliaufe wurde mittels Berechnung der

Starke der Saisonalitat und mittels Anwendung des KPSS-Tests durchgefithrt. Anhand der
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Ergebnisse wurde festgestellt, dass die Mehrheit der untersuchten Badtemperaturverlaufe sta-
tiondr ist. Diese Erkenntnis deckt sich mit den Ergebnissen aus [MAWO01, S. 298-299].

Fir die Badtemperaturvorhersage wurde zunéchst ein globales AR-Modell trainiert, das eine
Badtemperaturvorhersage (Forecasting) fiir den nichsten Tag ermdglicht. Dabei wurde ein AR-
Modell mit unterschiedlichen Ordnungen validiert. Aus der Validierung ging hervor, dass nach
der zehnten Ordnung keine wesentlichen Verbesserungen in der Modellperformanz erreicht
wurden. Fir die weitere Analyse wurde daher ein globales AR(10)-Modell auf den kompletten
Trainingsdaten trainiert und anschlieBend mit vier lokalen Modellen auf den Testdaten ver-
glichen. Bei diesem Vergleich erreichte das globale AR(10)-Modell mit 4,59 °C den niedrigsten
MAE. Darauf folgte mit einem MAE von 4,60 °C das lokale ETS-Modell.

Zudem wurde die Vorgehensweisen aus unserer Arbeit [GKD+18] aufgegriffen, um eine Ge-
genwartsvorhersage (Nowcasting) durchzufithren. Dazu wurde ein RF-Regressionsmodell mit
weiteren Prozessvariablen trainiert und validiert. Wahrend der Validierung ist aufgefallen, dass
die Gegenwartsvorhersage der Badtemperaturanderung zu einem kleineren MAE fiihrte als
die Vorhersage der Badtemperatur. Mithilfe der PFI wurden Prozessvariablen identifiziert, die
nicht wesentlich fiir die Gegenwartsvorhersage waren und fiir das endgiiltige Training auf dem
kompletten Trainingsdatensatz ausgeschlossen wurden. Das endgiiltige RF-Regressionsmodell
erreichte auf den Testdaten einen MAE von 4,53 °C. Es wurde erwihnt, dass dieser Wert auf ei-
nem reduzierten Testdatensatz erzielt wurde, da Ofen mit neuer Prozessteuerung vom Training
und Test ausgeschlossen wurden. Grund ist, dass wegen der neuen Prozesssteuerung bestimmte
Prozessvariablen nicht mehr in der urspriinglichen Datenbank aufgezeichnet wurden. Daher
wurden fiir das globale AR(10)-Modell und die lokalen Modelle ebenfalls die Performanz auf dem
reduzierten Testdatensatz ermittelt, um einen direkten Vergleich mit dem RF-Regressionsmodell

durchfithren zu konnen.

Tabelle 5.7 zeigt, dass das RF-Regressionsmodell mit dem bereits erwéahnten MAE von 4,53 °C
die beste Performanz auf den reduzierten Testdaten erzielt. Darauf folgen das globale AR(10)-
Modell und das lokale ETS-Modell mit einem MAE von jeweils 4,55 °C. Bei diesem Vergleich
sollte beriicksichtigt werden, dass das RF-Regressionsmodell eine Gegenwartsvorhersage er-
zeugt, wahrend das globale AR(10)-Modell und die lokalen Modelle jeweils eine Badtempera-
turvorhersage fiir den niachsten Tag (Tagesprognose) ermitteln. Insgesamt stellt das globale
AR(10)-Modell eine Alternative zu den lokalen Modellen dar, um eine Badtemperaturvorhersage
in der Aluminiumelektrolyse durchzufithren. Die praktischen Vorteile beider globalen Modellen
wurden in diesem Kapitel prasentiert. Des Weiteren wurde gezeigt, dass die Modellkombination
aus dem globalen AR(10)-Modell und dem globalen RF-Regressionsmodell den MAE auf 4,31 °C

verbessert.

Mithilfe der Python-Pakete treeinterpreter [Saa21] und waterfallcharts [Csil7] wurde eine

Moglichkeit gezeigt, um die Gegenwartsvorhersagen des RF-Regressionsmodells interpretieren
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Abschnitt 5.5. Zusammenfassung

zu konnen, indem die Zusammensetzung der entsprechenden Gegenwartsvorhersage aus den
einzelnen Merkmalen aufgezeigt wird. Zwar ermoglicht eine Interpretation der Gegenwarts-
vorhersagen auch eine Ursachenanalyse von Badtemperaturdnderungen, diese sollte jedoch

durch Praxiserfahrungen aus der Aluminiumelektrolyse bestétigt werden.
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KAPITEL 6

Fazit und Ausblick

Im Rahmen dieser Arbeit wurden datengetriebene Methoden zur Vorhersage der Elektrolyt-
temperatur (Badtemperatur) in der Aluminiumelektrolyse untersucht und gegeniibergestellt.
Die Badtemperatur stellt in der industriellen Aluminiumherstellung eine wesentliche Prozess-
variable dar. Mittels regelmafliger manueller Messung der Badtemperatur kénnen wichtige
Riickschliisse auf den Zustand eines Aluminiumelektrolyseofens gewonnen werden. Zudem
dient die Badtemperatur als Maf3 fiir die Erkennung von Ofenabnormititen [GK93, S. 215] und
beeinflusst mafigeblich die Effizienz der Aluminiumproduktion [ZJX+94, S. 28]. Die korrosi-
ve Produktionsumgebung erschwert jedoch eine kontinuierliche Messung der Badtemperatur
mittels einer in den Ofen angebrachte Sensorik, da der Elektrolyt diese innerhalb kurzer Zeit
zerstoren wiirde [GK93, S. 215; Dii16, S. 41].

Der Aufbau dieser Arbeit orientierte sich am Vorgehensmodell Machine Learning for Produc-
tion (ML4P), das unter der Projektleitung des Fraunhofer-Instituts fiir Optronik, Systemtechnik
und Bildauswertung (IOSB) entwickelt wurde [BP20]. In Kapitel 1 wurden der Aluminiumher-
steller und Projektpartner TRIMET Aluminium SE (TRIMET) und das EFRE-Drittmittelprojekt
»Thermische Flexibilisierung der Aluminiumelektrolyse (FlexTherm)“ vorgestellt. Aus diesem
Drittmittelprojekt ist die initiale Motivation fiir die vorliegende Arbeit entstanden. In Kapitel 2
wurden das Ziel und moégliche Losungsansitze prisentiert, um eine Badtemperaturvorhersage
in der Aluminiumelektrolyse zu erméglichen. Dazu wurde ein Machine Learning Pipeline
Diagramm (ML-Pipeline-Diagramm) erldutert, um den Ist- vom Ziel-Zustand abzugrenzen.
Auflerdem wurde ein Literaturiiberblick gegeben, der den unterschiedlichen Einsatz von da-
tengetriebenen Methoden im Bereich der Aluminiumelektrolyse umfasst. Es wurden Arbeiten

aufgezeigt, in denen bereits eine Vorhersage der Badtemperatur durchgefiihrt wurde.

In Kapitel 3 wurden die Grundlagen der industriellen Aluminiumherstellung vorgestellt. Die
Wechselwirkungen von Prozessvariablen eines Elektrolyseofens wurden erldutert und die Aus-
wirkungen unterschiedlicher Einfliisse auf die Badtemperatur aufgezeigt. Unter anderem wur-
den die Auswirkungen einer kontrollierten Stromabschaltung (Hallenschaltung) auf die Bad-
temperatur von vier Ofen bei der TRIMET Aluminium SE Essen (TAE) untersucht und die
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Ergebnisse dargestellt. Das Kapitel 4 ging auf wesentliche Grundlagen der Zeitreihenanalyse
ein, die fiir die in dieser Arbeit durchgefithrten Analysen der Badtemperatur essentiell waren.
Die numerische Beschreibung von Zeitreihen mittels Zeitreihenmerkmalen und deren An-
wendungsbereiche wurden prasentiert. Die in dieser Arbeit verwendeten Vorhersagemodelle
umfassen das AR-Modell und RF-Modell. Die Wahl dieser Modelle erfolgte aufgrund ihrer
wettbewerbsfahigen Vorhersageperformanz sowie ihrer einfachen Handhabung und Praxisim-
plementierung. Des Weiteren wurden unterschiedliche Methoden aufgezeigt, um im Bereich

der Zeitreihenanalyse Vorhersagemodelle zu validieren und zu testen.

Der erste Teil des Kapitels 5 zeigte die Vorverarbeitung der Badtemperaturdaten auf. Dabei wur-
den Schwierigkeiten in den Daten, wie Datenliicken und Datenausreifier, sowie entsprechende
Losungen aufgezeigt. Eine Analyse hinsichtlich der Stationaritét ergab, dass die Mehrheit der
Badtemperaturverliufe stationér ist. Dieses Ergebnis deckt sich mit den Aussagen aus [MAWO1,
S. 299-299]. Auflerdem wurden starke Badtemperaturanderungen von Ofen analysiert. Da-
bei wurden Anderungen in der Badtemperatur von +50 °C festgestellt, fiir die entsprechende
Ursachen diskutiert wurden. Diese Ursachenforschungen fiir starke Badtemperaturénderun-
gen lieferten weitere Ergebnisse, die fiir die Entwicklung von Vorhersagemodellen eingesetzt

werden konnten.

Fur die Vorhersage der Elektrolyttemperatur wurden in dieser Arbeit zwei Losungsansétze
verfolgt, die im zweiten Teil des Kapitels 5 dargestellt wurden. Der erste Ansatz umfasste
ein globales AR-Modell, mit dem eine Tagesprognose (Forecasting) der Badtemperatur erstellt
wurde. Das globale AR-Modell wurde anschliefend mit lokalen Zeitreihenmodellen verglichen.
Bei diesem Vergleich erzielte das globale AR(10)-Modell eine wettbewerbsfahige Performanz auf
den Testdaten. Mit einem MAE von 4,59 °C erreichte das AR(10)-Modell den kleinsten Fehler.
Das lokale ETS-Modell lag mit einem MAE von 4,60 °C dicht dahinter.

Im zweiten Losungsansatz wurde eine Gegenwartsvorhersage (Nowcasting) mit einem RF-
Regressionsmodell durchgefiithrt. Das RF-Regressionsmodell wurde auf einem reduzierten
Datensatz trainiert und getestet, da bestimmte Ofen im untersuchten Zeitraum mit einer neuen
Prozesssteuerung ausgestattet waren. Das hatte den Effekt, dass einige Prozessvariablen nicht
mehr in der urspriinglichen Datenbank aufgezeichnet wurden. Aus diesem Grund wurden
die Ofen mit neuer Prozessteuerung aus dem Datensatz entfernt. Somit reduzierte sich der
Datensatz von 60 auf 51 Ofen, die fiir das Training und Testen des RF-Regressionsmodells
verwendet wurden. Wihrend der Validierung des RF-Regressionsmodells stellte sich heraus,
dass die Vorhersage der Badtemperaturanderung einen kleineren MAE innerhalb der CV-BI
erzeugt als wenn die Badtemperatur vorhergesagt wird. Diese Erkenntnis wurde damit be-
griindet, dass dhnliche Merkmalsauspragungen zu einer dhnlichen Badtemperaturanderung
fihren. So sind die einzelnen Entscheidungsbdume besser in der Lage, den Datensatz hin-

sichtlich der Badtemperaturidnderung in homogene Gruppen einzuteilen. Als Beispiel kann

Kapitel 6
Fazit und Ausblick



das Merkmal Anodenwechsel genannt werden, das sich auch als pradiktives Merkmal in der
CV-BI herausstellte (vgl. Kapitel 5.4.2). Wird davon ausgegangen, dass ein Anodenwechsel
zur einer gleichen Badtemperaturidnderung fiihrt, dann kann das RF-Regressionsmodell diesen
Zusammenhang wahrscheinlich besser lernen als wenn die Badtemperatur direkt vorhergesagt
wird. Fiir das weitere Vorgehen wurde daher entschieden, die Anderung der Badtemperatur von
einem auf den nichsten Tag vorherzusagen. Letztendlich erlangte das RF-Regressionsmodell
auf dem reduzierten Testdatensatz einen MAE von 4,53 °C. Die fiir diesen Test verwendeten

Hyperparameter wurden innerhalb einer CV-Bl mit zehn Folds ermittelt.

In einem abschlielenden Test wurden alle in dieser Arbeit verwendeten Vorhersagemodelle
auf dem reduzierten Testdatensatz mit 51 Ofen gegeniibergestellt. Das RF-Regressionsmodell
erreichte in diesem Vergleich den kleinsten MAE. Mit einem MAE von jeweils 4,55 °C lagen
das globale AR-Modell und das lokale ETS-Modell dicht dahinter. Den hochsten MAE erziel-
te das MEAN-Modell (vgl. Tabelle 5.7). Insgesamt zeigte dieser Vergleich, dass das globale
AR(10)-Modell eine Alternative zu den verwendeten lokalen Zeitreihenmodellen ist. Das globa-
le AR-Modell besitzt den praktischen Vorteil, dass es die in dieser Arbeit verwendeten lokalen
Zeitreihenmodelle substituieren kann. Wihrend bei der lokalen Vorhersage fiir jeden Badtem-
peraturverlauf ein lokales Modell trainiert wird, werden beim globalen AR-Modell zunachst
alle verfiigbaren Badtemperaturverlaufe mit einem Lag Embedding (vgl. Kapitel 4.2.2) in eine
Matrix eingebettet, mit der das globale AR-Modell anschlieffend trainiert wird. Dadurch kénnen
Tagesprognosen fiir mehrere Ofen tiber ein einziges globales AR-Modell erzeugt werden. Die
Mittelung der Vorhersagen der beiden globalen Modelle verbesserte den MAE auf den Testdaten
auf 4,31°C.

In dieser Arbeit wurden Gegenwartsvorhersagen zum Zeitpunkt einer Badtemperaturmessung
erstellt, um die Performanz des RF-Modells zu ermitteln. Das RF-Regressionsmodell erméglicht
jedoch auch die Erstellung einer Gegenwartsvorhersage zu einem beliebigen Zeitpunkt. Dies
eroffnet einen weiteren Weg, um kontinuierlich auf die Badtemperatur eines Ofens zu schlie-
Ben. Die zeitliche Auflosung der Vorhersagenerstellung richtet sich dabei nach der kleinsten
zeitlichen Auflésung der verwendeten Prozessvariablen. Diese lag in dieser Arbeit bei finf
Minuten, da bei der TAE unter anderem der Hallenstrom und die Ofenspannung mit einer
zeitlichen Auflésung von fiinf Minuten aufgezeichnet wurden. Das RF-Regressionsmodell ware
damit in der Lage, eine Badtemperaturvorhersage alle fiinf Minuten zu erstellen. Dennoch ist
zu beachten, dass die Gegenwartsvorhersagen fiir einen beliebigen Zeitpunkt in fortfithrenden
Arbeiten untersucht werden miissen. Dazu kann das RF-Modell parallel zum Betrieb bei der TAE
eingesetzt und die Plausibilitat der Gegenwartsvorhersagen mit den Mitarbeitenden besprochen

werden.

In Kapitel 5.4.3 wurde eine Moglichkeit vorgestellt, um die Gegenwartsvorhersagen des RF-

Modells interpretieren zu konnen. Es wurde gezeigt, dass diese Interpretation auch fiir eine
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Ursachenanalyse von Badtemperaturanderungen eingesetzt werden kann. Ein solche Ursa-
chenanalyse mithilfe des RF-Regressionsmodells wurde im Bereich der Aluminiumelektrolyse
nach bestem Wissen noch nicht aufgezeigt. Eine Schwierigkeit besteht jedoch darin, dass die
in dem Kapitel 5.4.3 priasentierten Zusammenhinge nicht unbedingt auf den realen Prozess
zutreffen miissen. Weiterhin gilt es zu beachten, dass stellenweise die Gegenwartsvorhersage
und die tatsdchliche Badtemperatur weit auseinanderliegen. Das kann dazu fithren, dass die
Interpretation der Gegenwartsvorhersage und die Ursachenforschung zu diesen Zeitpunkten
nicht besonders aussagekraftig sind. Daher sind auch in diesem Bereich weitere Arbeiten erfor-
derlich, um den praktischen Nutzen einer Ursachenanalyse von Badtemperaturdnderungen im
Praxisbetrieb zu evaluieren. Die Zerlegung der Gegenwartsvorhersagen und die anschlieffende
Darstellung iiber einen Waterfall-Chart kénnen dennoch als Hilfsmittel eingesetzt werden, um

einen ersten Hinweis auf Ursachen fiir bestimmte Badtemperaturanderungen zu erhalten.

Folgend wird ein interaktives Dashboard vorgestellt, das in [Abd23] entwickelt wurde und einen
praxistauglichen Einsatz der Badtemperaturvorhersagen in der Aluminiumelektrolyse erméogli-
chen soll. In Abbildung 6.1 ist die Ubersichtsseite des Dashboards fiir das RF-Regressionsmodell

zu sehen.
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Abbildung 6.1: Dashboard fiir die Analyse der Gegenwartsvorhersagen des
RF-Regressionsmodells. Abgeéndert nach [Abd23, S. 51].

Auf der linken Seite der Abbildung 6.1 sind die Gegenwartsvorhersagen in blau und die aus

den gemessenen Badtemperaturen berechneten Anderungen in rot fiir den Ofen 1076 zeit-
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lich aufgetragen. Weitere Ofen lassen sich iiber das Dropdown-Menti auswéhlen. Fiir jeden
Zeitpunkt einer Badtemperaturmessung wird zudem die Abweichung zwischen der Vorher-
sage und der gemessenen Badtemperatur angezeigt. Weiter unten lasst sich der gewiinschte
Zeitraum auswihlen, der angezeigt werden soll. Auf der rechten Seite des Dashboards ist ein
Waterfall-Chart dargestellt, der die Zerlegung der Gegenwartsvorhersage fiir den 11.01.2022
aufzeigt und somit eine interaktive Ursachenanalyse fiir Badtemperaturdnderungen erméglicht.
Der Waterfall-Chart lasst sich fiir jede erstellte Gegenwartsvorhersage anzeigen. Im oberen
Bereich des Dashboards kann zudem die Ubersichtsseite fiir die Tagesprognosen (Forecasting)
des globalen AR-Modells ausgew#hlt werden. Insgesamt soll das Dashboard einen benutzer-
freundlichen Umgang mit den erstellten Badtemperaturvorhersagen im Produktivbetrieb der
Aluminiumelektrolyse erméglichen. Fiir die weitere Vorgehensweise gilt es, innerhalb der
dritten Phase des ML4P-Vorgehensmodells in einen Austausch mit den Prozessexperten/-innen
der TAE zu treten, um eine sinnvolle Integration des Dashboards in den Produktionsbetrieb zu

erortern.

In dieser Arbeit wurden die ersten drei der sechs Phasen des ML4P-Vorgehensmodells [BP20]
behandelt, um eine Badtemperaturvorhersage in der Aluminiumelektrolyse zu ermdglichen. In
weiterfilhrenden Arbeiten sollten die letzten drei Phasen des Vorgehensmodells abgearbeitet
werden. Das beinhaltet unter anderem die Absprache mit den Mitarbeitenden der TAE, um die
erstellten Vorhersagemodelle in den Produktivbetrieb zu tiberfithren. Eine Schwierigkeit, die es
dabei zu bewiltigen gilt, ist die Anderung der Messfrequenz der Badtemperatur. Die Messungen
finden bei der TAE fir die Ofen aus Halle 1 mittlerweile nur noch alle zwei Tage statt. Eine
mogliche Losung hierfiir stellen die Badtemperaturvorhersagen des globalen AR(10)-Modells
dar. Diese konnen fiir die Tage eingesetzt werden, an denen keine Badtemperaturmessung
stattfindet. Das AR(10)-Modell erstellt somit eine Tagesprognose basierend auf gemessenen und
vorhergesagten Badtemperaturen. Die Vorhersagen konnen anschlieSend fiir die Ofenregelung
eingesetzt werden. Da das RF-Regressionsmodell den letzten gemessenen Badtemperaturwert
als Merkmal nutzt, kénnte dieses auch auf die Tagesprognose des globalen AR(10)-Modells
zuriickgreifen. Diese Vorgehensweise gilt es aber mit weiteren Arbeiten zu validieren. Eine
Verbesserung der Vorhersageperformanz des RF-Regressionsmodells konnte unter Berticksichti-
gung weiterer Merkmale erreicht werden. In dieser Arbeit wurde beispielsweise der potenzielle
Einfluss der an den Ofen installierten Wirmetauscher (vgl. Kapitel 1) auf die Badtemperatur
nicht beriicksichtigt. Aus diesem Grund sollte in einer weiteren Analyse der Einfluss der Wir-
metauscher untersucht und geeignete Merkmale fiir das Training des RF-Regressionsmodells

ausgewahlt werden.

Die Liquidustemperatur spielt in der Aluminiumelektrolyse ebenfalls eine wichtige Rolle. Sie
stellt die Mindesttemperatur dar, bei der der Prozess betrieben werden muss, ohne dass der

Elektrolyt zu erstarren beginnt [Haulé6c, S. 804]. Daher wird die Liquidustemperatur in regel-
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méfligen Abstanden bei der TAE ermittelt. Es ist moglich, dass die in dieser Arbeit entwickelten

Lésungen auch fiir eine Vorhersage der Liquidustemperatur eingesetzt werden konnten.

In der vorliegenden Arbeit wurden zwei Losungen présentiert, die eine Badtemperaturvorher-
sage in der Aluminiumelektrolyse ermoglichen. Der Ziel-Zustand, der in Kapitel 2 beschrieben
und vom ML-Pipeline-Diagramm in Abbildung 2.1 dargestellt wird, wurde in dieser Arbeit bis
auf die Integration der Vorhersagemodelle in die bestehende Ofenregelung erreicht. Vor allem
in Zeiten der Energiewende sind neuartige Konzepte hinsichtlich der Analyse von Ofenpro-
zessdaten notwendig, da die Aluminiumelektrolyse nicht mehr mit einer konstanten sondern
variablen Energiezufuhr betrieben wird [Dii16, S. 163-164]. Vor diesem Hintergrund wurden

die in dieser Arbeit aufgezeigten Losungen entwickelt.

Fir eine Tagesprognose der Badtemperatur in der Aluminiumelektrolyse wird der Einsatz
eines globalen linearen AR-Modells empfohlen, da es in der Lage ist, die in dieser Arbeit
verwendeten klassischen lokalen Vorhersagemodelle zu substituieren. Ein globales lineares AR-
Modell sollte daher in zukiinftigen Arbeiten fiir eine Tagesprognose zusétzlich beriicksichtigt
werden, da es gegeniiber den verwendeten lokalen Modellen praktische Vorteile mit sich bringt.
Liegt der Fokus auf einer Gegenwartsvorhersage, so bietet sich ein RF-Regressionsmodell an.
Hierbei sollte die Badtemperaturidnderung anstatt der Badtemperatur vorhergesagt werden, da
so eine bessere Vorhersageperformanz erreicht werden konnte. Dartiber hinaus kénnen die
Gegenwartsvorhersagen des RF-Regressionsmodells durch die in dieser Arbeit vorgestellten

Analysemethode interpretiert werden.

Die Arbeitsschritte, die notwendig sind, um das abschlieflende Ziel einer Aluminiumelektroly-
se mit flexiblem Energieeintrag unter dem Einsatz datengetriebener Methoden zu erreichen,
wurden in diesem Kapitel aufgezeigt. Nun gilt es die in dieser Arbeit entwickelten Methoden

in den Produktivbetrieb zu uberfiithren.
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Abbildung A.1: Die Boxplots zeigen die Verteilung der zeitlichen Differenzen

fiir die Ofen der zweiten und dritten Schicht. Die Differenzen wurden jeweils

zwischen dem Messzeitpunkt (UTC) der Badtemperatur und Beginn (UTC)

der ersten Schicht berechnet.
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Abbildung A.3: Ein Boxplot fiir jeden der 60 untersuchten Ofen, berechnet

aus den jeweiligen Badtemperaturédnderungen.
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Abbildung A.6: Korrelationen nach Spearman zwischen den berechneten
Zeitreihenmerkmalen in den Trainingsdaten. Weiterhin sind die Korrelatio-
nen der Badtemperatur und der Badtemperaturdnderung zu sehen.
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