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Abstract

The industrial production of aluminium is a very energy-intensive process. It is essential to

conduct regular bath temperature measurements to ensure stable aluminium production. How-

ever, the use of sensors installed directly in the cells for bath temperature measurement is not

feasible due to the corrosive nature of the production environment, which would rapidly cor-

rode and dissolve the sensors. Nevertheless, continuous measurement of the bath temperature

is desirable in order to gain further insights into the state of a reduction cell.

This thesis presents an analysis of data-based methods with the aim of predicting the bath

temperature. First, the interactions between process variables in aluminium electrolysis and

their influence on the bath temperature are presented. The temporal behaviour of the bath

temperature is analysed with regard to autocorrelation, periodicity and stationarity. Two

approaches for predicting the bath temperature are presented which utilise data-based models

derived form the fields of time series analysis and machine learning.

The first approach is a daily forecast of the bath temperature, which is generated by a global

autoregressive model (AR model). A comparison is made between the global AR model and

local time series models. The second approach is the nowcast of the bath temperature, which

is generated by a global random forest regression model. Furthermore, an interpretation of

the generated nowcasts by the random forest regression model is presented. This approach

represents a novel method for analysing the causes of changes in bath temperature, which,

to the best of my knowledge, has not yet been demonstrated in the field of the aluminium

electrolysis.

The results demonstrate that the global AR(10) model can replace local time series models in

predicting the bath temperature. The global AR(10) model exhibits a mean absolute error of

4.55 °C on the test data. The random forest regression model achieves a mean absolute error

of 4.53 °C for the present prediction on the same test data. In contrast to the global model, the

random forest regression model predicts changes in the bath temperature instead of absolute

bath temperature values, as this approach yields superior model performance within the cross-

validation. The combination of the two global models improves the mean absolute error to

4.31 °C.
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Zusammenfassung

Die industrielle Herstellung von Aluminium ist ein sehr energieintensiver Prozess. Eine re-

gelmäßige Kontrolle der Elektrolyttemperatur ist erforderlich, um eine stabile Produktion von

Aluminium zu gewährleisten. Eine zerstörungsfreie Messung der Elektrolyttemperatur über

eine in den Öfen angebrachte Sensorik ist jedoch nicht möglich, da die korrosive Produktions-

umgebung die Sensoren in kürzester Zeit auflösen würde. Eine kontinuierliche Messung der

Elektrolyttemperatur ist dennoch erstrebenswert, um weitere Rückschlüsse auf den Zustand

eines Elektrolyseofens zu gewinnen. Im Rahmen dieser Arbeit werden datenbasierte Methoden

auf ihre Eignung zur Vorhersage der Elektrolyttemperatur untersucht. Zunächst werden die

Wechselwirkungen von Prozessvariablen der Aluminiumelektrolyse sowie ihre Einflüsse auf die

Elektrolyttemperatur aufgezeigt. Die zeitlichen Verläufe der Elektrolyttemperaturen werden

hinsichtlich der Autokorrelation, Periodizität und Stationarität analysiert. Zwei Lösungsansätze

für die Vorhersage der Badtemperatur werden präsentiert, die Vorhersagemodelle aus dem

Bereich der Zeitreihenanalyse und des maschinellen Lernens aufgreifen.

Der erste Lösungsansatz ist eine Tagesprognose (Forecasting) der Elektrolyttemperatur, die mit-

tels eines globalen autoregressiven Modells (AR-Modell) erstellt wird. Das globale AR-Modell

wird im Rahmen der Untersuchung mit lokalen Zeitreihenmodellen verglichen. Der zweite

Lösungsansatz ist eine Gegenwartsvorhersage (Nowcasting) der Elektrolyttemperatur, die mit

einem globalen Random Forest (RF) Regressionsmodell erzeugt wird. Zudem wird ein Ansatz

aufgezeigt, um die Gegenwartsvorhersagen des RF-Regressionsmodells interpretieren zu kön-

nen. Dieser Ansatz stellt eine neuartige Methode zur Ursachenanalyse von Änderungen der

Elektrolyttemperatur dar, die nach bestemWissen im Bereich der Aluminiumelektrolyse bislang

nicht aufgezeigt wurde.

Die Ergebnisse zeigen, dass ein globales AR(10)-Modell die lokalen Zeitreihenmodelle hin-

sichtlich der Vorhersage der Elektrolyttemperatur substituieren kann. Auf den Testdaten

erreicht das globale AR(10)-Modell einen Mean Absolute Error (MAE) von 4,55 °C. Das

RF-Regressionsmodell erreicht für die Gegenwartsvorhersage auf den gleichen Testdaten einen

MAE von 4,53 °C. Anstatt der Badtemperatur sagt das RF-Regressionsmodell die Badtempera-

turänderung vorher, da dies innerhalb der Cross-Validation zu einer besseren Modellperformanz

führte. Eine Modellkombination, bestehend aus den beiden globalen Modellen, verbessert den

MAE zusätzlich auf 4,31 °C.
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KAPITEL 1

Einleitung

Die Nutzung erneuerbarer Energien spielt im Zuge der Energiewende eine wesentliche Rolle. So

wurde im Jahr 2023 ein Anteil von 51,8 % des gesamten Bruttostromverbrauchs in Deutschland

von regenerativen Energiequellen gedeckt. Der Großteil davon wird von Windkraftanlagen

an Land und von Photovoltaikanlagen erzeugt. Die Erzeugung von regenerativer Energie

ist daher maßgeblich vom Wetter abhängig, was zu Schwankungen in der Energieerzeugung

führt. Das macht neue intelligente Lösungen notwendig, um Angebot und Nachfrage auf dem

Energiemarkt gleichermaßen bedienen zu können [Umw24, S. 52; Bun].

Ein Lösungsansatz zur Bewältigung dieser Herausforderung am Energiemarkt kann in der

Flexibilisierung der industriellen Nachfrage nach Strom gesehen werden [Dü16, S. 2; DMB19,

S. 533; DDPR16, S. 571]. Der Kerngedanke besteht darin, den Stromverbrauch industrieller

Produktionsanlagen in Abhängigkeit vom aktuellen Angebot anzupassen. Infolge eines Ange-

botsengpasses im Energienetz kann die Produktion entsprechend gedrosselt werden, während

bei einem Angebotsüberschuss eine Erhöhung der Produktion erfolgt. Ein vielversprechender

Bereich für eine solche Leistungsanpassung ist die industrielle Herstellung von Aluminium,

die mit einem hohen Energieverbrauch verbunden ist und bislang mit einer nahezu konstan-

ten Energiezufuhr durchgeführt wird [DDPR16, S. 571; Dü16, S. 1–3]. Die Flexibilisierung

des Energieeintrags der Aluminiumherstellung eröffnet die Möglichkeit, auf entsprechende

Schwankungen im Energienetz zu reagieren [Dü16, S. 2]. Der Wechsel zu einer flexiblen Pro-

duktion an Aluminium bringt jedoch Schwierigkeiten im Herstellungsprozess mit sich, die es

mit entsprechenden Anpassungen der Produktionsanlagen zu bewältigen gilt. Die Anpassungen

zielen darauf ab, eine hohe Effizienz der Aluminiumproduktion aufrechtzuerhalten und einen

Ausfall der Anlagen zu verhindern [Dü16, S. 4; DMB19, S. 533].

Die industrielle Aluminiumherstellung greift auf das etablierte Verfahren nach Hall-Héroult

zurück. Das Hall-Héroult-Verfahren wurde 1886 entwickelt und ist bis heute das einzige Verfah-

ren, mit dem Aluminium industriell hergestellt wird [GK93, S. 1; RP20, S. 1895–1896]. In diesem

Verfahren wird Aluminiumoxid (Al2O3) in flüssigem Kryolith (Na3AlF6) mit einem Überschuss

an Aluminiumfluorid (AlF3) gelöst. Das gewonnene flüssige Aluminium setzt sich nach der
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Reduktion in der Schmelze mittels der Schmelzflusselektrolyse auf dem Boden des Elektrolyse-

ofens ab und wird in regelmäßigen Abständen abgesaugt [GK93, S. 1, 40; Dü16, S. 15, 44]. Eine

Flexibilisierung des Energieeintrags bewirkt nicht nur eine Änderung der Produktionsmenge

an Aluminium, sondern gleichfalls eine Veränderung der Energiebilanz des Elektrolyseofens

[Dü16, S. 4]. Dies hat wiederum Auswirkungen auf dessen Elektrolyttemperatur (Badtempe-

ratur, Temperatur der Schmelze) [STC+08, S. 309]. Im weiteren Verlauf der Arbeit wird die

Elektrolyttemperatur als Badtemperatur bezeichnet.

Die Badtemperatur eines Elektrolyseofens stellt in der Aluminiumelektrolyse eine wesentliche

Prozessvariable dar, die regelmäßig kontrolliert werden muss, um eine stabile Produktion von

Aluminium zu gewährleisten [GK93, S. 215; Dü16, S. 42]. Die Badtemperatur kann jedoch nicht

mit einer in den Öfen angebrachten Sensorik dauerhaft gemessen werden, da die korrosive Um-

gebung diese innerhalb kurzer Zeit zerstören würde [GK93, S. 215; Dü16, S. 41]. Die Messungen

werden daher in bestimmten zeitlichen Abständen von geschultem Personal manuell an jedem

Ofen durchgeführt [GK93, S. 215]. Im Anschluss werden die Messungen gespeichert und stehen

für die Prozessregelung und weitere Analysen zur Verfügung. Darüber hinaus werden weitere

Prozessdaten, wie beispielsweise die Ofenspannung und die Stromstärke, kontinuierlich und

automatisiert aufgezeichnet. Die Durchführung manueller Messungen ist jedoch mit Kosten

verbunden, die wegen der nicht zerstörungsfreien Messmethode zustande kommen [SO10, S. 1;

MAW01, S. 297].

Es stellt sich die Frage, inwieweit die gespeicherten Prozessdaten der Öfen dazu verwendet

werden können, um die Badtemperatur eines Ofens zu prognostizieren. Ansätze sind Methoden

aus dem Bereich der Zeitreihenanalyse und des maschinellen Lernens, die es ermöglichen,

anhand der gesammelten Daten Vorhersagen über ausgewählte Zielgrößen zu treffen. Eine

Literaturübersicht über den Einsatz datengetriebener Methoden in der Aluminiumelektrolyse

wird in unseren Arbeiten [GKD+18; GKD+23] dargestellt und im weiteren Verlauf dieser Arbeit

aufgegriffen.

Der Einsatz datengetriebener Methoden ermöglicht einen schnellen Überblick über den ak-

tuellen Zustand eines Elektrolyseofens. Dabei können potenzielle Ursachen für bestimmte

Prozessänderungen, die den Elektrolyseprozess beeinträchtigen, aufgezeigt werden [Maj11,

S. 191; MTC+11, S. 377]. Diese Analysen erlangen insbesondere in Zeiten der Energiewende

eine hohe Relevanz, da die Primärproduktion von Aluminium nicht mehr mit einer konstanten,

sondern mit einer variablen Energiezufuhr betrieben wird [Dü16, S. 3]. Um weiterhin einen

stabilen Produktionsprozess zu gewährleisten, sind neue Analysen und Methoden erforder-

lich, um den Zustand eines Ofens auch bei variabler Energiezufuhr überwachen zu können

[Dü16, S. 163–164]. Die Badtemperatur spielt bei der Zustandsüberwachung eines Ofens eine

wesentliche Rolle. Der Fokus dieser Arbeit liegt daher auf der Badtemperatur, die mithilfe der

Zeitreihenanalyse und dem Bereich des maschinellen Lernens untersucht und vorhergesagt

2 Kapitel 1
Einleitung



Abschnitt 1.1. Aufbau der Arbeit

wird. Es ist nicht auszuschließen, dass sich die in dieser Arbeit vorgestellten Lösungsansätze

auch auf die Liquidustemperatur übertragen lassen, die ebenfalls eine wesentliche Prozessvaria-

ble in der Aluminiumelektrolyse darstellt. Die Liquidustemperatur ist die Mindesttemperatur,

bei der die Aluminiumproduktion betrieben werden muss, ohne dass der Elektrolyt zu erstarren

beginnt [Hau16c, S. 804].

Im Rahmen dieser Arbeit werden die Wechselwirkungen der wesentlichen Prozessparameter

der Aluminiumelektrolyse detailliert dargestellt und die verschiedenen Einflüsse auf die Bad-

temperatur aufgezeigt. Die daraus resultierenden Erkenntnisse fließen in die Entwicklung von

Vorhersagemodellen ein. Für die Vorhersage der Badtemperatur werden in dieser Arbeit zwei

Modelle global eingesetzt und untersucht, das autoregressive Modell (AR-Modell) und Random

Forest (RF) Modell. Das globale AR-Modell fungiert als Basismodell und prognostiziert die

Badtemperatur für den nächsten Tag anhand historischer Badtemperaturwerte. Eine solche

Tagesprognose wird in dieser Arbeit als Forecasting bezeichnet. Im Rahmen eines Vergleichs

mit lokalen Zeitreihenmodellen wird das globale AR-Modell ebenfalls evaluiert. Aufbauend

auf den Ergebnissen aus unserer Arbeit [GKD+18] wird das globale RF-Modell für eine Gegen-

wartswartevorhersage (Nowcasting) der Badtemperatur eingesetzt. Als Nowcasting kann die

Vorhersage bezeichnet werden, die für den aktuellen Zeitpunkt, für die nahe Zukunft und nahe

Vergangenheit getätigt wird [BGR10, S. 5].

Die initiale Motivation für die vorliegende Arbeit ist aus dem Drittmittelprojekt „Thermische

Flexibilisierung der Aluminiumelektrolyse (FlexTherm)“ mit der Förderkennzeichnung EFRE-

0200490 entstanden, an dem der Aluminiumhersteller und Projektpartner TRIMET Aluminium

SE (TRIMET) beteiligt war. Im Rahmen des Projekts wurden von der TRIMET Aluminium SE

Essen (TAE) Anpassungen an den Elektrolyseöfen durchgeführt, um einen Produktionsbetrieb

mit einer variablen Stromstärke zu ermöglichen. Das Projekt wurde vom Europäischen Fonds

für regionale Entwicklung und der Europäischen Union mit einer regulären Laufzeit von drei

Jahren (2017 – 2020) gefördert. An diesem Projekt war der Lehrstuhl für Automatisierungs-

technik/Informatik (LfA) der Bergischen Universität Wuppertal beteiligt, der die TAE bei der

Auswertung der Ofenprozessdaten sowie die Erstellung von Tagesprognosen unterstützte.

1.1 Aufbau der Arbeit

In dieser Arbeit wird Fachwissen aus den Bereichen Zeitreihenanalyse und Aluminiumelek-

trolyse kombiniert, um eine Vorhersage der Badtemperatur zu ermöglichen. Die vorliegende

Arbeit richtet sich daher an Personen mit unterschiedlicher Expertise in den genannten Be-

reichen. Erfahrene Leser/-innen aus dem Bereich der Aluminiumelektrolyse können Kapitel 3

überspringen und sich stattdessen mit den Grundlagen der Zeitreihenanalyse in Kapitel 4 sowie

dem praktischen Teil der Arbeit in Kapitel 5 befassen. Für Personen mit Fachwissen aus dem

Bereich der Zeitreihenanalyse sind das Kapitel 3 sowie der praktische Teil in Kapitel 5 relevant.
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Abschnitt 1.1. Aufbau der Arbeit

Den ergebnisorientierten Leser/-innen wird die Zusammenfassung des praktischen Teils in

Kapitel 5.5 sowie das Fazit in Kapitel 6 nahegelegt. Kapitel 6 richtet sich zudem an Personen,

die weitere Informationen über noch anstehende Arbeiten erhalten wollen. Für das Verständnis

des Ziels und der Lösungsansätze dieser Arbeit ist für alle Leser/-innen Kapitel 2 wesentlich.

Weitere Informationen über den genauen Aufbau dieser Arbeit und über den Projektpartner

erhalten interessierte Personen im vorliegenden Kapitel.

Der Aufbau dieser Arbeit orientiert sich am Vorgehensmodell „Machine Learning for Pro-

duction (ML4P)“ [BP20]. Das Vorgehensmodell ML4P wurde unter der Projektleitung des

Fraunhofer-Instituts für Optronik, Systemtechnik und Bildauswertung (IOSB) entwickelt und

ermöglicht eine strukturierte Vorgehensweise für industrielle Projekte im Bereich des maschi-

nellen Lernens. Im Unterschied zu bereits bestehenden Vorgehensmodellen liegt der Schwer-

punkt des ML4P-Vorgehensmodells auf der Integration und dem Betrieb maschineller Lernver-

fahren in der industriellen Produktion [BP20, S. 2]. Das Vorgehensmodell umfasst insgesamt

sechs Phasen, die unter anderem die Zielsetzung, Datenaufbereitung, Entwicklung und Evalua-

tion von Lösungsansätzen sowie die Inbetriebnahme der entwickelten Lösungen beinhalten.

Die sechs Phasen sind in Abbildung 1.1 dargestellt.

Zieldefinition und Lösungsansätze

Proof of Concept

Systemspezifikation

Umsetzung und Inbetriebnahme

Übergabe

Betrieb

1

2

3

4

5

6

Abbildung 1.1: Die sechs Phasen des Vorgehensmodells “Machine Learning

for Production (ML4P)”. Abbildung abgeändert nach [BP20, S. 3].

Die vorliegende Arbeit umfasst die ersten drei Phasen des Vorgehensmodells. In der ersten

Phase werden die Ziele und Lösungsansätze definiert, die in Kapitel 2 vorgestellt werden. In

diesem werden der Ist-Zustand der TAE und der Ziel-Zustand betrachtet. Zudem wird ein

initiales Machine Learning Pipeline Diagramm (ML-Pipeline-Diagramm) präsentiert, um den

Ist-Zustand vom Ziel-Zustand abzugrenzen. Des Weiteren werden zwei Messgeräte für die Bad-
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Abschnitt 1.2. Projektpartner

temperaturmessung vorgestellt. Eine Literaturübersicht zeigt den Einsatz von datengetriebenen

Methoden in der Aluminiumelektrolyse auf. In Kapitel 3 werden die Grundlagen des Hall-

Héroult-Prozesses vorgestellt. Der Schwerpunkt des Kapitels liegt auf der Badtemperatur. Die

Wechselwirkungen verschiedener Prozessvariablen während des Elektrolysebetriebs werden

vorgestellt und deren Auswirkungen auf die Badtemperatur beschrieben. Eine experimentelle

Auswertung wird gezeigt, die den Einfluss einer Hallenschaltung (kontrollierte Stromabschal-

tung einer Halle) auf die Badtemperatur von vier Aluminiumelektrolyseöfen veranschaulicht.

In Kapitel 4 werden grundlegende Konzepte der Zeitreihenanalyse vorgestellt, die in der zweiten

Phase (Proof of Concept) des ML4P-Vorgehensmodells zur Analyse der Badtemperaturdaten der

TAE herangezogen werden. Ein Schwerpunkt liegt auf der Berechnung von Zeitreihenmerk-

malen, die eine Untersuchung der Eigenschaften von Zeitreihen ermöglichen. Darüber hinaus

werden das AR-Modell und RF-Modell vorgestellt, die in dieser Arbeit als globale Modelle für

eine Badtemperaturvorhersage eingesetzt werden. Die Begründung für die Wahl dieser Modelle

und der Unterschied zwischen lokalen und globalen Vorhersagemodellen werden aufgezeigt.

Außerdem werden Methoden erläutert, die im Kontext der Zeitreihenanalyse zum Training und

zur Validierung von Vorhersagemodellen zum Einsatz kommen.

Das Vorgehen der zweiten Phase (Proof of Concept) wird in Kapitel 5 beschrieben. Hierbei

werden zwei Lösungsansätze vorgestellt, die sich hinsichtlich der Art der Vorhersage unter-

scheiden. Im ersten Lösungsansatz wird mit dem AR-Modell eine Tagesprognose (Forecasting)

auf Basis von historischen Badtemperaturdaten erstellt. Im zweiten Lösungsansatz wirdmit dem

RF-Modell eine Gegenwartsvorhersage (Nowcasting) der Badtemperatur erzeugt. Im Vorfeld

werden die Badtemperaturdaten aufbereitet und mit den im Kapitel 4 vorgestellten Metho-

den untersucht. Im Anschluss werden die Daten für das Training, Validieren und Testen der

vorgestellten Vorhersagemodelle eingesetzt und die jeweils erzielte Performanz verglichen.

Außerdem wird eine Möglichkeit aufgezeigt, um die Gegenwartsvorhersagen des RF-Modells

zu interpretieren.

In Kapitel 6, das der dritten Phase (Systemspezifikation) des Vorgehensmodells zugeordnet

wird, werden die Ergebnisse aus der zweiten Phase reflektiert. Außerdem wird eine Möglichkeit

vorgestellt, die eine Integration der entwickelten Lösungen in den Produktivbetrieb ermöglicht.

Dabei wird ein interaktives Dashboard aufgezeigt, das am LfA entwickelt wurde. Im Ausblick

dieser Arbeit werden die weiteren Arbeitsschritte dargelegt, die über diese Arbeit hinausgehen.

1.2 Projektpartner

Der Aluminiumhersteller TRIMET ist in der Produktion und Entwicklung von Aluminiumpro-

dukten tätig und ist eine Tochtergesellschaft der TRIMET SE, die sich in Familienbesitz befindet.

Der Sitz der TRIMET und der Muttergesellschaft ist in Essen (Deutschland). Das Geschäft der

Kapitel 1
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Abschnitt 1.2. Projektpartner

TRIMET gliedert sich in drei Bereiche: Marketing & Sales (Essen, Berlin), Primary Products

(Essen, Hamburg, Voerde) und Recycling (Essen, Gelsenkirchen, Harzgerode). Darüber hinaus

ist die TRIMET mit 65 % an der TRIMET France SAS in Saint-Jean-de-Maurienne (Frankreich)

beteiligt [TRI21, S. 7, 45]. Im Geschäftsjahr 2020/2021 wurden 76 % des Umsatzes im Bereich

Primary Products erwirtschaftet [TRI21, S. 13].

Die industrielle Herstellung von Aluminium ist sehr energieintensiv [DDPR16, S. 571]. Laut

dem Nachhaltigkeitsbericht 2021 der TRIMET wurde im Jahr 2021 am Standort Essen elektri-

sche Energie in Höhe von 2,456 TWh umgesetzt [TRI23, S. 21]. Der spezifische Energiebe-

darf (Gleichstrom) für die Produktion von 1 Tonne Aluminium am Standort Essen wird mit

13,85 MWh angegeben [TRI23, S. 21]. Nach [Rhe22] ist der elektrische Energiebedarf für das

Werk in Essen genauso hoch wie für die gesamte Stadt Essen.

Die TRIMET betreibt an den drei Standorten Essen, Hamburg und Voerde in Deutschland

insgesamt 818 Elektrolyseöfen, um Primäraluminium zu produzieren [TRI24]. Von diesen

befinden sich 360 Öfen in Essen, die sich auf drei Hallen aufteilen. In einer Halle befinden sich

120 PreBaked Point Feeder (PBPF) Öfen in einer Ende-zu-Ende-Aufstellung [KGD+20, S. 2].

Abbildung 1.2 zeigt die Anordnung der Öfen in einer der drei Hallen bei der TAE.

Abbildung 1.2: Ende-zu-Ende-Anordnung der PBPF-Öfen, die von der

TRIMET in einer der drei Hallen in Essen betrieben werden. Das Bild wurde

von der TRIMET zur Verfügung gestellt.

Im Rahmen der Flexibilisierungsmaßnahmen wurden am Standort Essen Anpassungen an den

Aluminiumelektrolyseöfen vorgenommen. Die TRIMET hat die Ofenprozesssteuerung über-

arbeitet, jeweils eine Magnetfeldkompensation an den Öfen installiert und Wärmetauscher
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angebracht, um weiterhin einen stabilen und effizienten Produktionsbetrieb bei einer variablen

Stromstärke zu gewährleisten [Dü16, S. 3, 12; DMB19]. Während die Magnetfeldkompensation

eine Aufwölbung des flüssigen Aluminiums in den Öfen bei hohen Stromstärken verhindern

soll, sollen die Wärmetauscher die Wärmeverluste über die Ofenwand regulieren [GKD+23, S. 2;

DDPR16; DMB19, S. 535]. Die Außenluft wird mithilfe von Ventilatoren durch die Wärmetau-

scher und somit an den Ofenwänden vorbeigesaugt. Auf diese Weise kann bei einer erhöhten

Energiezufuhr die zusätzliche Wärme abgeführt und somit die Wärmebilanz eines Ofens bei-

behalten werden. Außerdem kann bei einem geringen Energieeintrag Luft im Wärmetauscher

angestaut werden, um eine zusätzliche Wärmeisolation für einen Ofen zu erzeugen [DMB19,

S. 535; Dü16, S. 4]. Abbildung 1.3 zeigt die an einem Ofen angebrachten Wärmetauscher, die

über flexible Lüftungsschläuche mit davor installierten Sammelboxen verbunden sind. Die

Installation der Wärmetauscher erfolgte zunächst zu Testzwecken in einer kleinen Gruppe an

Elektrolyseöfen und wurde später innerhalb des FlexTherm-Projekts auf die restlichen Öfen in

Halle 1 ausgeweitet.

Abbildung 1.3: Arbeiten an den Wärmetauschern, die an einem Ofen in-

stalliert sind. Die Wärmetauscher sind direkt an der Ofenwand angebracht

und mit davor befestigten Sammelboxen über flexible Lüftungsschläuche

verbunden. Das Bild wurde von der TRIMET zur Verfügung gestellt.
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KAPITEL 2

Ziel und Lösungsansätze

Anhand des ML4P-Vorgehensmodells nach [BP20], das in Kapitel 1 vorgestellt wurde, werden in

diesem Kapitel die Ziele und Lösungsansätze aufgezeigt. Der Fokus liegt auf der Badtemperatur,

die in der Aluminiumelektrolyse eine wesentliche Prozessvariable ist. In Abbildung 2.1 ist ein

initiales ML-Pipeline-Diagramm zu sehen, das den Ist-Zustand und den gewünschten Ziel-

Zustand sowie den Datenfluss aufzeigt.

Der Ist-Zustand umschreibt den aktuellen Zustand bei der TAE hinsichtlich der manuellen Bad-

temperaturmessung. Hierbei werden zwei Messgeräte vorgestellt, mit der die Badtemperatur

bei der TAE gemessen wird. Der Ziel-Zustand zeigt eine mögliche Integration von Badtem-

peraturvorhersagen in der Aluminiumelektrolyse auf und umfasst die dafür nötigen Schritte.

Beide Zustände werden in den nachfolgenden beiden Kapiteln beschrieben. Im Anschluss wird

ein Literaturüberblick gegeben, der den Einsatz von datengetriebenen Methoden in der Alu-

miniumelektrolyse beleuchtet. Dieser Überblick dient als Grundlage für die Entwicklung von

potenziellen Lösungsansätzen, die eine Vorhersage der Badtemperatur ermöglichen sollen.

Aluminiumelektrolyseofen Datenbank

Manuelle Messungen 

(u. a. Badtemperaturmessungen)

Vorverarbeitung 

der Daten

Historische 

Prozessdaten

Vorhersage der

Badtemperatur

Datenanalyse

Ergebnisse & 

Visualisierung

Weitere 

Prozessdaten

Regelung

IST Ziel

Abbildung 2.1: Initiales ML-Pipeline-Diagramm.
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2.1 Ist-Zustand

Bei der TAE werden die Prozessdaten von insgesamt 360 Aluminiumelektrolyseöfen sowohl

manuell als auch automatisiert erfasst und innerhalb einer Datenbank gespeichert. Der Daten-

fluss des Ist-Zustands ist in Abbildung 2.1 abgebildet. Die von den Aluminiumelektrolyseöfen

erfassten Daten weisen eine unterschiedliche zeitliche Auflösung auf. Die Badtemperatur wird

alle 24 bis 48 Stunden manuell gemessen und der entsprechende Messwert in eine Datenbank

gespeichert. Die Liquidustemperatur (Schmelztemperatur) und die chemische Zusammenset-

zung des Elektrolyten werden in der Regel alle 48 Stunden an jedem Ofen manuell überprüft.

Neben den manuellen Messungen werden weitere Prozessvariablen, wie beispielsweise die

Stromstärke und Ofenspannung, automatisiert aufgezeichnet und in eine Datenbank mit einem

entsprechenden Zeitstempel abgespeichert. Die zeitliche Auflösung der Stromstärke und der

Ofenspannung beträgt fünf Minuten. Des Weiteren sind an den Außenseiten von ausgewähl-

ten Öfen Thermoelemente installiert [GKD+23]. Die aufgezeichneten Temperaturdaten der

Thermoelemente dienen der Berechnung und Überwachung der Wärmebilanz dieser Öfen.

Insgesamt können mit einem Zugriff auf die Datenbank historische Daten von Öfen abgerufen

und für weitere Analysen verwendet werden.

Zur Regelung der Aluminiumelektrolyseöfen setzt die TAE die 9-Box-Matrix-Regelung ein, um

die Badtemperatur durch Anpassungen der Ofenspannung in einem gewählten Kontrollband

zu halten [RIW+16, S. 818]. Ein weiteres Ziel der 9-Box-Matrix-Regelung ist die kontrollierte

Zugabe von Aluminiumfluorid (AlF3) anhand der Liquidustemperatur [RIW+16, S. 818].

Die Aluminiumelektrolyseöfen der TAE werden insgesamt von drei Schichten überwacht. Die

erste Schicht beginnt um sechs Uhr morgens, während die dritte Schicht um diese Uhrzeit endet.

Die Arbeitszeit jeder Schicht beträgt acht Stunden. Jede Schicht übernimmt für eine Gruppe an

Öfen die Badtemperaturmessung.

Für die Messung der Badtemperatur verwendet die TAE Messgeräte der Firma Heraeus Electro-

Nite. In Abbildung 2.2a ist das FiberLab
®
-Messgerät zu sehen. Mit diesem Gerät können neben

der Badtemperatur mit einer Genauigkeit von ±1 °C auch noch die Liquidustemperatur sowie

die chemische Zusammensetzung des Elektrolyten ermittelt werden [Fiba]. Das in Abbildung

2.2b dargestellte C-V-Therm-Messgerät (Digilance) erlaubt neben der Badtemperaturmessung,

die eine Genauigkeit von ±0,5 °C aufweist, auch die Messung der Kathodenspannung (Cathode

Voltage Drop) [Dig]. Wie bereits erläutert, ist die kontinuierliche Messung der Badtemperatur

mithilfe einer in den Öfen angebrachten Sensorik nicht zerstörungsfrei möglich, da die korrosive

Produktionsumgebung diese innerhalb kurzer Zeit auflösen würde [Dü16, S. 41; GK93, S. 215].

Eine kontinuierliche Badtemperaturmessung würde jedoch nach [ZJX+94, S. 28–29] den Vorteil

bieten, dass sie als zusätzlicher Eingang für die Ofenregelung dienen kann. Des Weiteren kann

eine kontinuierliche Badtemperaturmessung nach [ZJX+94, S. 29] dazu beitragen, spezifische

10 Kapitel 2
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Effekte oder Eingriffe, wie beispielsweise Anodeneffekte oder Anodenwechsel, genauer zu

untersuchen. Dieser Hintergrund führt zum Ziel dieser Arbeit, das im nachfolgenden Kapitel

dargestellt wird.

(a) FiberLab
®
[Fibb]. (b) C-V-Therm (Digilance) [Dig].

Abbildung 2.2: Zwei Messgeräte der Firma Heraeus Electro-Nite, mit denen

die Badtemperatur der Öfen bei der TAE gemessen wird. Die Verwendung

dieser Bilder wurde von der Firma Heraeus Electro-Nite für diese Arbeit

genehmigt.

2.2 Ziel-Zustand

In Anbetracht der Problematik einer kontinuierlichen Messung der Badtemperatur [Dü16, S. 41;

GK93, S. 215] erscheint es zielführend, die aufgezeichneten Prozessdaten der TAE für eine

Badtemperaturvorhersage zu nutzen. Um den angestrebten Ziel-Zustand zu erreichen (vgl.

Abbildung 2.1), sollen die historischen Prozessvariablen aus einer zentralen Datenbank abgefragt

werden. Eine anschließende Aufbereitung der Daten wird notwendig sein, um eine Datenbasis

für die weitere Durchführung von Analysen zu schaffen. Die Datenanalysen zielen darauf ab,

neue Erkenntnisse zu schaffen, die für die Entwicklung von Vorhersagemodellen von Nutzen

sein können. Es kann nicht ausgeschlossen werden, dass die Erkenntnisse weitere Schritte in

der Datenaufbereitung erforderlich machen.

Im Anschluss an die Datenvorverarbeitung und Datenanalysen ist die Entwicklung möglicher

Lösungsansätze für eine Badtemperaturvorhersage durch datengetriebene Methoden vorgese-

hen. Die datengetriebenen Methoden sollen als Bestandteil des Betriebs zur Optimierung der

Ofenreglung eingesetzt werden. Auch die Mitarbeitenden des Betriebs können die Vorhersagen

nutzen, um Effekte innerhalb des Aluminiumelektrolyseofens genauer zu untersuchen oder

etwaige Abnormalitäten frühzeitig zu erkennen. Ferner wird in [SBMW22, S. 378] der Einsatz

Kapitel 2
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von Badtemperaturvorhersagen beschrieben, um fehlerhafte Badtemperaturmessungen zu iden-

tifizieren. Bei einer wesentlichen Abweichung zwischen der Vorhersage und der gemessenen

Badtemperatur ist eine Wiederholung der Messung erforderlich.

Insgesamt erschließt die vorliegende Arbeit den in Abbildung 2.1 dargestellten Ziel-Zustand, um

datengetriebene Methoden in den Produktivbetrieb der TAE zu überführen. Im Rahmen dieser

Erschließung werden die einzelnen Schritte, die Vorverarbeitung der Daten, die Durchführung

von entsprechenden Analysen und das Training, Validieren und Testen von ausgewählten Vor-

hersagemethoden, vorgestellt. In den entsprechenden Schritten werden jeweils wesentliche

Schwierigkeiten aufgezeigt und Lösungen präsentiert, um eine Badtemperaturvorhersage in

der Aluminiumelektrolyse zu erreichen. Darüber hinaus wird eine Möglichkeit für die Visuali-

sierung der Vorhersagen präsentiert, die im Produktivbetrieb von den Mitarbeitenden der TAE

eingesetzt werden kann.

2.3 Literaturüberblick

Der Einsatz datengetriebener Methoden ist in der Aluminiumelektrolyse vielfältig. Für unsere

Arbeit [GKD+18] wurde bereits Literatur über den Einsatz von datengetriebenen Methoden

im Bereich der Aluminiumelektrolyse recherchiert. Diese Recherche wird in diesem Kapitel

aufgegriffen und umweitere relevante Literatur ergänzt. Für die Recherche wurde hauptsächlich

der Literaturbereich der Aluminiumelektrolyse mit dem Fokus auf datengetriebenen Methoden

durchsucht. Die Recherche folgte keiner bestimmten Vorgehensweise.

Als Pseudo-Modell wird in diesem Kapitel ein Modell bezeichnet, das als Grundlage für einen

Vergleich mit weiteren Vorhersagemodellen dient. Beispielsweise stellen ein naives Modell,

das die letzte Beobachtung als Vorhersage verwendet, oder die Berechnung des Mittelwerts

über die Daten, der anschließend als Vorhersage eingesetzt wird, jeweils ein Pseudo-Modell dar.

Mit dem Einsatz von Pseudo-Modellen kann der Nutzen von komplexeren Vorhersagemodelle

überprüft werden. Diese sollten eine wesentlich bessere Vorhersageperformanz als Pseudo-

Modelle aufweisen, um einen praktischen Einsatz begründen zu können.

In [Maj11; MTC+11] wird ein Framework präsentiert, das eine zeitnahe Erkennung von Abnor-

malitäten, wie Anodeneffekte und Ansätze, während des Ofenbetriebs ermöglicht. In [KGD+20]

wird eine Möglichkeit beschrieben, um Anodeneffekte vorherzusagen. Mehrere Vorhersa-

gemodelle werden in der Arbeit gegenübergestellt, wobei das RF-Klassifikationsmodell die

beste Performanz auf dem Testdatensatz erzielt. In [ZXWZ18] wird zudem ein Lösungsansatz

basierend auf eXtreme Gradient Boosting (XGBoost) für die Vorhersage von Anodeneffekte

vorgestellt. Anodeneffekte sind in der Aluminiumelektrolyse problematisch, da diese zu einem

hohen Energieeintrag führen und klimaschädliche Gase freisetzen [KGD+20, S. 1]. In Kapitel

3.2 wird die Entstehung von Anodeneffekten genauer aufgezeigt. Die Erkennung von Ansät-

12 Kapitel 2
Ziel und Lösungsansätze



Abschnitt 2.3. Literaturüberblick

zen, die sich an den Anoden bilden können, ist in der Aluminiumelektrolyse wichtig, da diese

die Effizienz der Aluminiumproduktion negativ beeinflussen [KGD+21]. In [KGD+21] werden

maschinelle Lernverfahren miteinander verglichen, um Ansätze automatisiert erkennen zu

können. Das XGBoost-Modell erreicht die beste Performanz auf den Testdaten. In Kapitel 3.2

werden Ansätze an Anoden und deren Einfluss auf die Badtemperatur erklärt.

In [MYTC12] wird der k-Means-Algorithmus eingesetzt, um anhand von Produktionsdaten

Abnormalitäten voneinander abzugrenzen. Um das Verhalten von Aluminiumelektrolyse-

öfen leichter analysieren zu können, werden in [LSS+17] der Fuzzy-c-Means-Algorithmus und

k-Means-Algorithmus verwendet. Damit werden Elektrolyseöfen mit ähnlichem Verhalten

gruppiert, um eine leichtere Analyse zu ermöglichen. Auch in [HV12] werden Aluminiumelek-

trolyseöfen mit ähnlichem Verhalten in Gruppen eingeteilt, wobei das hierarchische Clustern

eingesetzt wird.

Mittels Berechnung von 20 Zeitreihenmerkmalen und der Principal Component Analysis (PCA)
1

werden in unserer Arbeit [GKD+23] nicht plausible Temperaturverläufe von Thermoelementen

identifiziert, die an Aluminiumelektrolyseöfen der TAE platziert sind. Mehrere zweidimensio-

nale Merkmalsräume werden dazu erstellt, um diese hinsichtlich auffälliger Temperaturverläufe

zu untersuchen. Außerdem wird ein interaktives Dashboard gezeigt, um einen praktischen

Einsatz der vorgestellten Lösung in der industriellen Aluminiumherstellung zu ermöglichen.

In [CSO16] wird ein neuronales Netz implementiert, um chemische Prozessvariablen und die

Badtemperatur vorherzusagen. Das neuronale Netz wird mit weiteren linearen und nicht linea-

ren Modellen bezüglich der Vorhersagefehler verglichen. Anschließendwird das neuronale Netz

für eine Simulation eingesetzt, um den Einfluss der Aluminiumfluoridzugabe auf die Badtem-

peratur und die Aluminiumfluoridkonzentration zu untersuchen. Dennoch fehlt ein Vergleich

mit einem Pseudo-Modell, um die Vorhersageperformanz des neuronalen Netzes einschätzen

zu können. Eine Analyse der Modellzusammenhänge sowie eine Interpretation der Badtempe-

raturvorhersagen ist zudem nicht vorhanden, die im Bereich der Aluminiumelektrolyse jedoch

von Vorteil sein können, wie in unserer Veröffentlichung [GKD+18] dargelegt wird.

In [JGJ21] wird für die Vorhersage der Badtemperatur ein Modell in MATLAB
®
und Simulink

®

verwendet, mit dem die gegenwärtige und die zukünftige Badtemperatur eines Ofens unter den

Bedingungen einer Strommodulation prognostiziert wird. Mit einem Optimierungsalgorith-

mus wird zunächst das Modell an den aktuellen Zustande eines Ofens angepasst, für den eine

Badtemperaturvorhersage erzeugt werden soll. Anschließend werden mit dem Modell gegen-

wärtige und zukünftige Vorhersagen der Badtemperatur erstellt. Die Abweichung zwischen

der gegenwärtigen Vorhersage und der gemessenen Badtemperatur wird mit weniger als 2 °C
1

Die PCA ist ein unüberwachtes lineares Transformationsverfahren, um die Merkmale eines Datensatzes in einen

kleineren Merkmalsraum zu projizieren. Sie wird genutzt, um Muster in Daten zu identifizieren. Hierzu werden die

Merkmale eines Datensatzes durch eine Linearkombination ersetzt. Ziel ist es, eine Linearkombination zu finden,

die zu einer Maximierung der Varianz führt [Fro18, S. 271; RM17, S. 142; HWL15, S. 1617; HK17, S. 124–125, 130].

Kapitel 2
Ziel und Lösungsansätze

13



Abschnitt 2.3. Literaturüberblick

angegeben. Als Nachteil der präsentierten Lösung wird die lange Simulationszeit von bis zu 40

Minuten erwähnt, die bis zum Vorliegen einer Vorhersage vergeht.

In [WBSK+24] wird ein dynamisches Modell vorgestellt, mit dem unter anderem die Badtem-

peratur unter dem Einfluss einer Strommodulation kontinuierlich vorhergesagt wird. Hierbei

werden die Daten von Thermoelementen für die Vorhersage berücksichtigt, die an der Ofen-

wand und in der Ofenverkleidung angebracht sind. Die vorhergesagte Badtemperatur wird

mit regelmäßigen Badtemperaturmessungen an verschiedenen Stellen im Ofen verglichen. Es

wird gezeigt, dass die kontinuierliche Vorhersage den generellen Trend der gemessenen Bad-

temperaturen nachbildet. Die Verwendung dieses dynamischen Modells erfordert jedoch den

Einsatz von Thermoelementen an den Öfen, die aufgrund der Produktionsumgebung regelmäßig

gewartet werden müssen, wie in unserer Arbeit [GKD+23] gezeigt wird.

Ein Multilayer Perceptron (MLP) wird in [SO10] als Soft-Sensor eingesetzt, um die Badtem-

peratur von Aluminiumelektrolyseöfen zu bestimmen. Es wird herausgestellt, dass das dort

präsentierte Modell Temperaturmessungen nicht vollständig ersetzen kann. Im Bereich der Alu-

miniumelektrolyse wird in [FK00a] eine Vorgehensweise basierend auf der Predictive (Feature)

Importance vorgestellt, um wesentliche Merkmale eines neuronalen Netzes identifizieren zu

können. In [FK00b] werden ein neuronales Netz zur Vorhersage der Badtemperatur verwendet

und die Merkmale mithilfe der Predictive (Feature) Importance untersucht. In der vorliegenden

Arbeit wird eine vergleichbare Vorgehensweise gewählt, um wesentliche Merkmale für die

Gegenwartsvorhersage zu identifizieren. In [SSC+19] wird ein Lösungsansatz vorgestellt, bei

dem die Badtemperatur, der Aluminiumfluoridgehalt im Elektrolyt und die Höhe des flüssigen

Aluminiums im Ofen mithilfe von neuronalen Netzen vorhergesagt wird. Dazu werden die

Aluminiumelektrolyseöfen zunächst in Gruppen eingeteilt, für die anschließend jeweils ein

neuronales Netz trainiert wird. Die Autor/-innen begründen ihre Vorgehensweise damit, dass

ein einzelnes neuronales Netz nicht das Verhalten aller Öfen abbilden könne. Auf der anderen

Seite sei jeweils ein neuronales Netz für jeden einzelnen Ofen zu aufwendig in der Anwendung

[SSC+19, S. 2–3]. Entsprechende Ergebnisse für diese Aussagen werden in der Arbeit jedoch

nicht aufgezeigt.

In den erläuterten Arbeiten [SO10], [FK00b] und [SSC+19] fehlt jeweils ein Vergleich mit einem

Pseudo-Modell, um die Performanz der Vorhersagemodelle ins Verhältnis setzen zu können.

Der Nutzen der verwendeten Modelle wird dadurch nicht ersichtlich. Darüber hinaus werden

die erstellten Vorhersagen nicht weiter interpretiert. Lediglich die erreichten Performanzen

der verwendeten Modelle werden in den Arbeiten dargestellt. Zudem weisen neuronale Netze

Eigenschaften auf, die eine Praxisimplementierung erschweren können. In Kapitel 4.2.1 wird

darauf genauer Bezug genommen.

In unserer Veröffentlichung [GKD+18] wird ein RF-Regressionsmodell implementiert, um ei-

ne Gegenwartsvorhersage für die Badtemperatur von Aluminiumelektrolyseöfen der TAE zu

14 Kapitel 2
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erstellen. Mithilfe einer Permutation Feature Importance (PFI) werden Prozessvariablen ana-

lysiert, die einen wesentlichen Einfluss auf die Vorhersage haben. Darüber hinaus wird der

Modellzusammenhang zwischen den Prozessvariablen und der Badtemperatur durch die Ver-

wendung von Partial Dependence Plots analysiert. Ein Vergleich mit einem Pseudo-Modell

wird jedoch nicht durchgeführt. In [SBMW22, S. 375–378] werden weitere Vorhersagemodelle

aus dem Bereich des maschinellen Lernens sowie ein Pseudo-Modell (naives Modell) für eine

Gegenwartsvorhersage der Badtemperatur eingesetzt. Dabei wird innerhalb der Datenvorver-

arbeitung die Aggregation von Zeitreihendaten aus unserer Arbeit [GKD+18] aufgegriffen. Das

Gradient Boosting Modell erreicht auf den Testdaten die beste Performanz [SBMW22, S. 377].

Eine Interpretation der erstellten Gegenwartsvorhersagen wird jedoch nicht aufgezeigt.

In [MAW01] wird eine Zeitreihenanalyse durchgeführt und ein ARMAX-Zeitreihenmodell ver-

wendet, um die Badtemperatur von Aluminiumelektrolyseöfen vorherzusagen. Das ARMAX-

Zeitreihenmodell wird als generisches Modell bezeichnet, da es mit Daten von insgesamt 13 Alu-

miniumelektrolyseöfen trainiert und validiert wird. Als Begründung für diese Vorgehensweise

wird in der Arbeit angeführt, dass dieses ARMAX-Zeitreihenmodell eine bessere Performanz

auf den Validierungsdaten erreicht als ein Modell mit Daten eines einzelnen Ofens. Die Arbeit

präsentiert jedoch keine empirischen Ergebnisse für diese Erkenntnis.

Im Rahmen der vorliegenden Arbeit werden zwei Lösungsansätze analysiert, die die Erstel-

lung einer 1-Schritt-Badtemperaturvorhersage (Forecasting) sowie einer Gegenwartsvorhersage

(Nowcasting) der Badtemperatur ermöglichen. Zunächst wird eine umfassende Analyse der

Badtemperatur durchgeführt, die die Ergebnisse aus [MAW01] ergänzen. Für die 1-Schritt-

Badtemperaturvorhersage erfolgt ein Vergleich zwischen einem globalen AR-Modell und lokalen

klassischen Zeitreihenmodellen. Unter den lokalen Modellen befinden sich zudem zwei Pseudo-

Modelle. Das globale AR-Modell dient als Basismodell und wird ähnlich wie in [MAW01] mit

allen Badtemperaturdaten trainiert, während die lokalen Zeitreihenmodelle lediglich mit den

Daten eines Ofens trainiert werden. Im Anschluss wird die Performanz aller Vorhersagemodelle

gegenübergestellt, um empirisch den Nutzen eines globalen AR-Modells für die Badtempera-

turvorhersage aufzuzeigen.

Der zweite Lösungsansatz wird basierend auf den Ergebnissen aus unserer Arbeit [GKD+18] mit

aktuelleren Daten umgesetzt. Hierbei werden ein RF-Regressionsmodell für eine Gegenwarts-

vorhersage der Badtemperatur eingesetzt und die Performanz mit den Modellen aus dem ersten

Lösungsansatz verglichen. Außerdem wird eine Möglichkeit für die visuelle Darstellung und In-

terpretation der Vorhersagen des RF-Regressionsmodells für den praktischen Einsatz vorgestellt.

Eine derartige Interpretation wurde bislang im Literaturbereich der Aluminiumelektrolyse nach

bestem Wissen noch nicht aufgezeigt.

Kapitel 2
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KAPITEL 3

Grundlagen der Aluminiumelektrolyse

In diesem Kapitel werden die Grundlagen der industriellen Aluminiumherstellung vorgestellt.

Zunächst wird auf den Hall-Héroult-Prozess und die wesentlichen Bestandteile eines Alumi-

niumelektrolyseofens eingegangen. Bei der industriellen Herstellung von Aluminium stellt

die Badtemperatur eine wesentliche Prozessvariable dar, die in diesem Kapitel beschrieben

wird. In diesem Zusammenhang werden zudem die Wechselwirkungen der unterschiedlichen

Prozessvariablen innerhalb der Aluminiumelektrolyse erläutert.

3.1 Hall-Héroult-Prozess

Für die industrielle Herstellung von Aluminium wird der Hall-Héroult-Prozess genutzt, bei

dem eine elektrolytische Reduktion von Aluminiumoxid (Al2O3) durchgeführt wird [GK93, S. 1;

Dü16, S. 15]. Aluminiumoxid besitzt eine hohe Schmelztemperatur von knapp über 2000 °C
[Wib08, S. 1140]. Aus diesem Grundwird Aluminiumoxid in flüssigem Kryolith (Na3AlF6) gelöst

und mit Aluminiumfluorid (AlF3) sowie Calciumfluorid (CaF2) vermischt, um die Schmelztem-

peratur in einen Bereich von 920 °C bis 970 °C zu senken [Hau16a, S. 4; Wib08, S. 1140; GK93,

S. 50]. Die Schmelztemperatur wird auch Liquidustemperatur genannt und ist abhängig von der

chemischen Zusammensetzung des Elektrolyten [Ris12, S. 17; RIW+16, S. 818]. Die Liquidus-

temperatur ist die Mindesttemperatur, bei der der Prozess betrieben werden muss, ohne dass

der Elektrolyt zu erstarren beginnt [Hau16c, S. 804].

Die Badtemperatur ist die Temperatur des Elektrolyten und liegt üblicherweise 5 °C bis 10 °C
oberhalb der Liquidustemperatur [Ree15, S. 8]. Die Differenz zwischen der Badtemperatur und

der Liquidustemperatur wird Superheat genannt. Der Superheat ist ein entscheidender Faktor

für die Lösungsfähigkeit von Aluminiumoxid dar und steht zudem im Zusammenhang mit der

Stärke der Seitenkruste, die aus erstarrtem Elektrolyt besteht und den Ofen vor Beschädigungen

schützt [Dü16, S. 10, 18; RIW+16, S. 818; GB19, S. 2137].

In Abbildung 3.1 ist eine Querschnittansicht eines Ofens zu sehen. Diese Art des Ofens kommt

auch bei der TAE zum Einsatz. Die Anoden, die in den flüssigen Elektrolyt eintauchen, bestehen

17
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aus Petrolkoks (Kohlenstoff, C) und Steinkohlenteerpech als Bindemittel [GK93, S. 4]. Die

elektrolytische Reaktion mit dem gelösten Aluminiumoxid führt zur Bildung von flüssigem

Aluminium [GK93, S. 1], das sich auf dem Kathodenblock absetzt. Des Weiteren entsteht durch

die Reaktion mit dem Sauerstoff aus dem Aluminiumoxid und dem Kohlenstoff der Anoden

gasförmiges Kohlenstoffdioxid (CO2) [GK93, S. 1; Dü16, S. 26]. Diese chemische Reaktion lässt

sich mit Gleichung 3.1 abbilden. Die Anoden brauchen sich auf, sodass sie nachgeführt werden

müssen [GK93, S. 208]. Alle 22 bis 26 Tage werden die aufgebrauchten Anoden durch neue

Anoden ersetzt, um eine kontinuierliche Produktion an Aluminium zu ermöglichen [GK93, S. 2,

5]. Das flüssige Aluminium im Ofen wird in der Regel alle 24 bis 48 Stunden abgesaugt [GK93,

S. 213]. Um einen Luftabbrand der Anoden zu vermeiden und eine thermische Isolation zu

erzeugen, werden neu eingesetzte Anoden mit Aluminiumoxid oder zerkleinertem Elektrolyt

eingedeckt [GK93, S. 202].
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Abbildung 3.1: Querschnittsansicht eines Aluminiumelektrolyseofens. Ab-

geändert nach [GB19, S. 2137].

2 Al2O3(gelöst) + 3 C(fest) = 4 Al(flüssig) + 3 CO2(gas) (3.1)

Aus 1,89 kg Aluminiumoxid kann theoretisch eine Menge von 1 kg Aluminium (Al) gewon-

nen werden [GK93, S. 3]. Die theoretische Produktionsmenge an Aluminium ist bei einem
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konstanten Wirkungsgrad proportional zur Stromstärke [Dü16, S. 4; GK93, S. 148]. Mit einer

Stromstärke von 175 kA kann in einer Zeit von 24 Stunden eine Menge von ungefähr 1409 kg
Aluminium produziert werden [GK93, S. 148]. Eine Erhöhung der Stromstärke erhöht zwar die

Produktionsmenge an Aluminium, wirkt sich aber auch auf die sensible Energiebilanz eines

Ofens aus [Dü16, S. 4].

Das Hinzufügen von Aluminiumoxid wird als Fütterung bezeichnet. Dazu wird die obere Kruste

aufgebrochen, sodass durch die Öffnung Aluminiumoxid dem flüssigen Elektrolyt hinzugefügt

werden kann [GK93, S. 79–80]. Für das Aufbrechen der Kruste sind in den Öfen der TAE Krus-

tenbrecher installiert, die ein Loch in die obere Kruste brechen. Das Aluminiumoxid befindet

sich in einem Behälter, sodass das Aluminiumoxid durch die geöffnete Kruste in Schüben in

den flüssigen Elektrolyt gelangt. Diese Technik der Fütterung wird als “Point Feeding” [GK93,

S. 80–81] bezeichnet und erfolgt bei der TAE vollständig automatisiert.

Die Zugabe von Aluminiumoxid wird anhand der Ofenspannung bzw. eines berechneten Ofen-

widerstandes (Pseudo-Widerstand) durchgeführt. In Abbildung 3.2 ist der Zusammenhang

zwischen der Aluminiumoxidkonzentration des Elektrolyten und der Ofenspannung bei un-

terschiedlichen Anode-Kathode-Abständen (Anode-Cathode Distance (ACD)) zu sehen. Üb-

licherweise wird der Ofenwiderstand für die Ofenregelung verwendet [KMSS13, S. 760]. Der

Ofenwiderstand hat gegenüber der Ofenspannung den Vorteil, dass dieser sich bei geringen

Stromstärkeänderungen nicht ändert und damit ein stabileres Eingangssignal für die Ofenre-

gelung darstellt [KMSS13, S. 760]. Die Berechnung des Ofenwiderstandes kann über die in

[KMSS13, S. 760; GK93, S. 221] angegebene Gleichung erfolgen.
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Abbildung 3.2: Zusammenhang zwischen der Aluminiumoxidkonzentration

und der Ofenspannung bei unterschiedlichen Anode-Kathode-Abständen

(ACD). Abgeändert nach [Hau16b, S. 158].
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Das Ziel der Ofenregelung ist es unter anderem, die Aluminiumoxidkonzentration des Elek-

trolyten zu überwachen und anzupassen. Der ideale Wert der Aluminiumoxidkonzentration

liegt nach [Dü16, S. 18] bei 3 %. Aus Abbildung 3.2 geht hervor, dass bei einer zu geringen

Aluminiumoxidkonzentration der Ofenwiderstand rapide ansteigt. Dieses Verhalten wird als

Anodeneffekt bezeichnet, bei dem klimaschädliche Gase freigesetzt werden (vgl. Kapitel 3.2).

Dagegen steigt der Ofenwiderstand bei einer hohen Aluminiumoxidkonzentration aufgrund

der Widerstandserhöhung des Elektrolyten an [Dü16, S. 21].

Die Badtemperatur eines Aluminiumelektrolyseofens ist eine wichtige Prozessvariable [GK93,

S. 215], die bei der TAE alle 24 bis 48 Stunden (Stand 08/2022) manuell gemessen und so angepasst

wird, dass energieeffizient produziert, Aluminiumoxid optimal gelöst und eine schützende

Randkruste erzeugt wird [Dü16, S. 42]. Die Badtemperatur wird zudem als Maß für die Stabilität

des Ofenbetriebs und als Warnsignal für Ofenabnormalitäten verwendet [GK93, S. 215]. Eine

niedrige Badtemperatur kann zudem zu einer höheren Stromausbeute und einem niedrigen

Energieverbrauch beitragen, wobei eine bestimmte Differenz zwischen der Badtemperatur

und Liquidustemperatur bestehen sollte, die für eine optimale Lösung von Aluminiumoxid im

Elektrolyt und eine schützende Randkrustenbildung sorgt [Mad92, S. 453; GK93, S. 26; Dü16,

S. 42]. Eine konstante Badtemperatur ist in der Praxis nur schwierigmöglich, da unterschiedliche

Faktoren die Badtemperatur eines Ofens beeinflussen, die in Kapitel 3.2 aufgezeigt werden.

Nach [TCY13, S. 58] schwankt die Badtemperatur in den besten Aluminiumhütten der Welt mit

einer Standardabweichung von 5 °C bis 6 °C.

3.2 Elektrolyttemperatur (Badtemperatur)

Während des Ofenbetriebs kommt es zu unterschiedlich starken Schwankungen der Elektrolyt-

temperatur (Badtemperatur), die von verschiedenen Einflussfaktoren bedingt sind. Abbildung

3.3 zeigt dieWechselwirkungen zwischen den Prozessvariablen eines Ofens, wie Badtemperatur,

Superheat, Badchemie und Seitenkruste. Die dargestellten Wechselwirkungen sind dabei nur

gültig, wenn eine Seitenkruste im Ofen vorhanden ist [STC+08, S. 309]. Eine Änderung der

Ofenspannung hat einen Einfluss auf die Energiebilanz eines Ofens, die sich über die ändernde

Wärmeverluste über die Seitenwand letztendlich selbst beeinflusst. In der Literatur lassen sich

Versuchsauswertungen finden, die die Auswirkungen von unterschiedlichen Prozessparame-

tern, Eingriffen und Störungen auf die Badtemperatur vermitteln.

Im Folgenden werden die wesentlichen Einflussfaktoren auf die Badtemperatur mithilfe der

Literatur aufgezeigt, die für die Entwicklung einesModells für die Vorhersage der Badtemperatur

relevant sein könnten. Des Weiteren wird ein Versuch präsentiert, dessen Auswertung im

Rahmen dieser Arbeit erfolgte und den Einfluss einer kontrollierten Hallenschaltung auf die

Badtemperatur aufzeigt.
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Ofenoberseite:
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Abbildung 3.3: Wechselwirkungen zwischen den einzelnen Prozessvariablen

eines Aluminiumelektrolyseofens. Abgeändert nach [STC+09, S. 312].

Ofenspannung

Für die Regelung der Badtemperatur setzt die TAE die 9-Box-Matrix-Regelung ein, die das

primäre Ziel verfolgt, die Badtemperatur mittels Anpassungen der Ofenspannung in einem

vorgegebenen Kontrollband zu halten [RIW+16, S. 817]. Rieck et al. stellten bei einer Änderung

der Ofenspannung um 100 mV (−100 mV) für 24 Stunden eine Badtemperaturänderung um

etwa 7 °C (−7 °C) fest [RIW+16, S. 820]. Die Ofenspannung ist folglich eine essentielle Größe

in der Aluminiumelektrolyse, die unmittelbar die Stabilität des Ofenbetriebs beeinflussen kann.

Die ohmschen Spannungsabfälle sind bis auf die Spannungsverluste über die Stromschienen

maßgeblich für die Wärmeentwicklung eines Ofens [Dü16, S. 20; HBGH03, S. 269]. Dabei trägt

der ohmsche Spannungsabfall über den Elektrolyt wesentlich zur Wärmentwicklung im Ofen

bei. Der ohmsche Spannungsabfall über den Elektrolyt liegt nach [GK93, S. 22–23] zwischen

1,3 und 2,0 V.

Abbildung 3.4 zeigt den Einfluss einer Erhöhung der Ofenspannung auf die Wärme- und Mate-

rialbilanz eines Ofens. Mit der Erhöhung des Anode-Kathode-Abstands (ACD) erhöht sich die

Ofenspannung, die zu einer Erhöhung der Badtemperatur und des Superheats führt. Das führt

anschließend zum Schmelzen der Seitenkruste, wodurchweiterer Kryolith in das Bad gelangt, zu

einer Verdünnung von Aluminiumfluorid (AlF3) führt und einen Anstieg der Liquidustempera-

tur verursacht. Das Aufschmelzen der Seitenkruste bewirkt außerdem, dass sich ein zusätzlicher

Kapitel 3
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Wärmeverlust des Ofens einstellt. Insgesamt stellt sich durch eine Spannungserhöhung ein

neue Wärme- und Materialbilanz des Ofens ein.

Anhebung ACD

Spannungserhöhung

Erhöhung

des Energieientrags

Badtemperatur und Superheat

steigen

Schmelzen

der Seitenkruste

Kryolith gelangt

in die Schmelze

Verdünnung von AlF3

Liquidustemperatur steigt

Zusätzlicher

Wärmeverlust

Neue Wärme- und Materialbilanz

Abbildung 3.4: Mit der Erhöhung des Energieeintrags stellt sich eine neue

Wärme- und Materialbilanz eines Ofens ein. Abgeändert nach [RIW+16,

S. 818].

Hallenstrom

Eine Veränderung der Stromstärke verursacht eine Änderung der Wärmeentwicklung im Ofen,

die die TAE durch eine Anpassung der Ofenspannung bis zu einem gewissen Grad kompensiert

[Dü16, S. 141]. Eine höhere Wärmeentwicklung im Ofen, die nicht mehr von der Verringerung

der Ofenspannung kompensiert werden kann, wird unter anderem mittels an den Ofenwänden

angebrachter Wärmetauscher kompensiert [Dü16, S. 4, 10, 141].

Als Hallenschaltung wird bei der TAE eine kontrollierte Stromabschaltung einer gesamten Halle

für einen vorgegebenen Zeitraum bezeichnet, um bestimmte Arbeiten an Öfen durchführen

zu können. Vor allem bei der Installation der Magnetfeldkompensation und Wärmetauscher

in Halle 1 im Jahr 2018 kam es zu einer hohen Anzahl an Hallenschaltungen, die die Wärme-

bilanz der Öfen beeinflussten [DMB19]. Die Funktion der Magnetfeldkompensation und der

Wärmetauscher wurde bereits in Kapitel 1.2 erläutert.

Eine durchgeführte Simulation in [DMB19, S. 537–539] zeigt, dass eine Hallenschaltung für 1,5

Stunden eine Badtemperaturänderung von etwa −30 °C verursacht. Die Autoren weisen jedoch

darauf hin, dass die ermittelten Badtemperaturänderungen im Vergleich zum realen Prozess zu
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hoch sind, da bestimmte Effekte, die die Wärmeverluste beeinflussen, in der Simulation nicht

berücksichtigt wurden.

Am 15.03.2021 wurde bei der TAE in Halle 1 gegen 12:00 Uhr eine Hallenschaltung mit einer

Dauer von einer Stunde durchgeführt, die anschließend im Rahmen dieser Arbeit ausgewertet

wurde. Vor, während und nach derHallenschaltung wurden die Badtemperaturen der Öfen 1099,

1103, 1107 und 1109 zu bestimmten Messzeitpunkten direkt nacheinander zweimal gemessen,

sodass für jeden Zeitpunkt ein Messwertpaar vorhanden ist. Die Messwertpaare sind für jeden

Ofen in Abbildung 3.5 zeitlich aufgetragen. Des Weiteren ist die gemittelte Badtemperatur,

die sich aus den jeweiligen Messwertpaaren ergibt, für jeden Zeitpunkt angegeben. Die Stan-

dardabweichung der Differenzen, die jeweils aus den Messwertpaaren berechnet wird, beträgt

2,5 °C. Die Messung um 12:45 Uhr am Ofen 1107 ist ein Ausreißer. Zu diesem Zeitpunkt wurde

eine nicht plausible Badtemperatur gemessen, die in Abbildung 3.5 als Ausreißer markiert ist

und nicht in die hier durchgeführten Berechnungen eingeflossen ist. Gegen 13:00 Uhr wurde

der Hallenstrom wieder auf das ursprüngliche Niveau angehoben.
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1Abbildung 3.5: Zeitlicher Badtemperaturverlauf der Öfen 1099, 1103, 1107

und 1109 vor, während und nach einer Hallenschaltung, die am 15.03.2021

gegen 12 Uhr stattgefunden hat. Für eine bessere Lesbarkeit der Verläufe

sind die gemittelten Badtemperaturen durch Linien miteinander verbunden.

Aus Abbildung 3.5 geht hervor, dass die Badtemperatur für jeden Ofen während der Hallen-

schaltung unterschiedlich stark abfällt. Um die Unterschiede der einzelnen Öfen aufzuzeigen,

sind die Differenzen der gemittelten Badtemperatur zwischen der letzten Messung vor der Hal-

lenschaltung und der letzten Messung während der Hallenschaltung in Tabelle 3.1 zu finden.
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Die mittlere Badtemperaturänderung liegt für die einstündige Hallenschaltung bei −12,5 °C mit

einer Standardabweichung von 2,7 °C. Auch das Verhalten der Badtemperatur nach der Hallen-

schaltung ist unterschiedlich. Für den Ofen 1109 ist ein langsamer Anstieg der Badtemperatur

direkt nach der Hallenschaltung erkennbar. Bei den übrigen Öfen setzte der Anstieg der Bad-

temperaturen erst nach einer Verzögerung von ungefähr einer Stunde nach der Hallenschaltung

ein.

Ofen Differenz (°C)

1099 −14,5
1103 −15,0
1107 −9,5
1109 −11,0

Mittelwert und Standardabweichung −12,5 ± 2,7

Tabelle 3.1: Badtemperaturdifferenz für jeden Ofen zwischen der letzten

Messung vor der Hallenschaltung und der letzten Messung während der

einstündigen Hallenschaltung am 15.03.2021. Die mittlere Differenz, die aus

den einzelnen Differenzen berechnet wurde, liegt bei −12,5 °C mit einer

Standardabweichung von 2,7 °C.

Anodenwechsel

Das thermische Verhalten eines Ofens wird maßgeblich von einem Anodenwechsel beeinflusst

[Dü16, S. 44]. Bei einem Anodenwechsel kann die Badtemperatur am Messloch um bis zu 30 °C
fallen [Mad92, S. 454]. Zudem kann es bis zu zwölf Stunden dauern, bis sich die Badtemperatur

auf das Temperaturniveau vor dem Anodenwechsel zurückbewegt hat [Mad92, S. 454; RIW+16,

S. 819].

Eine Anode verweilt bei der TAE in der Regel 28 Tage bis 32 Tage im Ofen [TRI13, S. 58–59] bis

der Stumpf der abgebrannten Anode innerhalb eines Anodenwechsels aus dem Ofen gezogen

wird. Alle zwei Tage findet bei der TAE an einem Ofen ein Anodenwechsel statt. Bei einem

Anodenwechsel werden bis zu zwei Anoden eines Ofens gewechselt [Dü16, S. 44]. Die neuen

Anoden werden vor dem Einsetzen nicht vorgeheizt und weisen daher eine Temperatur auf, die

der Umgebungstemperatur entspricht [Dü16, S. 44]. Unmittelbar nach dem Einsetzen der neuen

Anode erstarrt der Elektrolyt um die Anode, was zu einer ungleichmäßigen Stromverteilung

im Ofen führt [Dü16, S. 44].

Metallsaugen

Das in den Öfen produzierte Aluminium wird bei der TAE in der Regel alle zwei Tage abgesaugt

[TRI13, S. 49]. Dabei kann sich die Badtemperatur im Saugloch für einen Zeitraum von bis zu

zehn Minuten reduzieren [Mad92, S. 454]. Nach dem Saugen besteht aufgrund des geringeren

Metallstands eine kleinere Kontaktfläche zwischen dem flüssigen Aluminium und der Seiten-
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wand des Ofens, wodurch sich dieser über die Zeit aufheizt [Dü16, S. 44–45]. Das Saugen von

Metall hat einen Einfluss auf das thermische Verhalten eines Ofens.

Anhand von Metallstandmessungen wird die Menge von flüssigem Metall bestimmt, die aus

einem Ofen abgesaugt werden muss, um einen optimalen Betriebszustand zu erhalten. Dabei

wird ein Eisenstab für einige Sekunden in das flüssige Aluminium getaucht. Anschließend wird

dieser wieder entnommen, sodass sich eine dünne Schicht an Bad und Aluminium auf dem

Eisenstab bildet. Anhand der Länge der Metallschicht, die sich entlang des Eisenstabs gebildet

hat, kann der Metallstand eines Ofens ermittelt werden. Der Metallstand sollte nicht zu niedrig

oder zu hoch sein, um einen stabilen Betrieb zu gewährleisten. In der Literatur wird ein Sollwert

für den Metallstand von 20 cm angegeben [GK93, S. 213].

Flusssaugen

Das Saugen von Fluss (Elektrolyt) wird unter anderem durchgeführt, wenn Öfen einen zu

niedrigen Flussstand besitzen. Dabei wird Fluss von einem Ofen abgesaugt und einem Ofen mit

niedrigem Flussstand hinzugefügt [GK93, S. 214]. Die Kontrolle des Flussstands erfolgt analog

zur Kontrolle des Metallstands. Wie bei einem zu niedrigen Metallstand heizt sich ein Ofen

bei einem zu niedrigen Flussstand auf. Demgegenüber führt ein zu hoher Flussstand zu einer

Abkühlung des Ofens. Der Flussstand hat daher einen Einfluss auf das thermische Verhalten

eines Ofens und sollte sich stets im optimalen Bereich befinden, um Probleme im Ofenbetrieb

zu vermeiden [TRI13, S. 46–47]. Nach [GK93, S. 214] ist ein Flussstand von 20 cm ein typischer

Sollwert, der in der Aluminiumelektrolyse verwendet wird.

Zugabe von Natriumcarbonat (Na2CO3)

Mittels Zugabe von Natriumcarbonat (Na2CO3), auch Soda genannt, kann der Aluminium-

fluoridgehalt eines Ofens beeinflusst werden. Eine Zugabe erfolgt zum Beispiel, wenn der

Aluminiumfluoridgehalt eines Ofens aufgrund einer falschen Dosierung zu hoch ist [WTBW11,

S. 491; GSWSK12, S. 930]. Die Zugabe von Natriumcarbonat in einen Ofen bewirkt eine Er-

höhung der Liquidustemperatur und eine Reduzierung des Superheats. Die Reduzierung des

Superheats führt zu einer Verringerung der Wärmeverluste über die Seitenwand und die obere

Seitenkruste des Ofens wird dicker, sodass die Badtemperatur des Ofens ansteigt [Kva15, S. 32].

Zugabe von Aluminiumoxid (Al2O3)

Die Zugabe von Aluminiumoxid erfolgt bei der TAE anhand der kontinuierlichen Überwachung

der Ofenspannung [Dü16, S. 10, 43]. In [Mad92, S. 454] wird von einer Reduzierung der Bad-

temperatur von bis zu 12 °C nach der Zugabe von Aluminiumoxid berichtet. Auch in [RIW+16,

S. 819] wird eine Verringerung der Badtemperatur beobachtet, nachdem kaltes Aluminiumoxid

in den Ofen gegeben wurde. Des Weiteren zeigen die Autoren in [RIW+16, S. 819] auf, dass die
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Badtemperatur innerhalb eines Fütterungszyklus Schwankungen von bis zu 5 °C unterliegen

kann.

Zugabe von Aluminiumfluorid (AlF3)

Nach Abbildung 3.6 führt eine Erhöhung der Zugabe an Aluminiumfluorid (AlF3) zunächst zu

einer Verringerung der Liquidustemperatur [RIW+16, S. 818]. Die Änderung der Liquidustempe-

ratur bewirkt eine Änderung des Superheats, der denWärmestrom durch die Seitenwände eines

Ofens aufgrund der schmelzenden Seitenkruste beeinflusst. Die Änderung des Wärmestroms

über die Seitenwand hat einen unmittelbaren Einfluss auf die Wärmebilanz des Ofens.

Erhöhung

der AlF3-Zugabe

Liquidustemperatur sinkt

Superheat steigt

Schmelzen

der Seitenkruste

Kryolith gelangt

in die Schmelze

Verdünnung von AlF3

Liquidustemperatur steigt

Zusätzlicher

Wärmeverlust

Neue Wärme- und Materialbilanz

Abbildung 3.6: Mit der Erhöhung der Zugabe an Aluminiumfluorid (AlF3)

stellt sich eine neue Wärme- und Materialbilanz des Ofens ein. Abgeändert

nach [RIW+16, S. 818].

Rieck et al. stellten in einem Versuch fest, dass die doppelte Menge an Aluminiumfluorid

eine Verringerung der Liquidustemperatur um 3 °C pro Tag bewirkte, während keine Zugabe

eine Erhöhung der Liquidustemperatur um 4 °C pro Tag zur Folge hatte [RIW+16, S. 820]. Die

Badtemperatur folgte in dem Versuch langsam der Liquidustemperatur.

Anodeneffekte

Anodeneffekte resultieren aus einer zu geringen Konzentration an gelöstem Aluminiumoxid

im Elektrolyt, sodass die Ofenspannung kurzfristig auf bis zu 80 V ansteigen kann [KGD+20,
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S. 1; GK93, S. 210; TUV16, S. 131]. Aufgrund der geringen Konzentration an Aluminium-

oxid verschlechtert sich das Benetzen der Anode mit dem Elektrolyt, da sich Gasblasen unter

der Anode bilden und den elektrischen Widerstand des Ofens erhöhen [GK93, S. 210]. Eine

solche Widerstandserhöhung resultiert in einen rapiden Anstieg der Ofenspannung, wobei

klimaschädliche Gase (Perfluorcarbone) freigesetzt werden [GK93, S. 201; WTL14, S. 529]. Der

erhöhte Energieeintrag innerhalb des Ofens kann zu einem Aufheizen des Ofens und Schmelzen

der Seitenkruste führen [KGD+20, S. 1; TUV16, S. 131].

Ansätze

Das ungleichmäßige Abbrennen einer Anode kann zu einem Ansatz unter der Anode führen,

der einen Kurzschluss verursachen kann [TCY13, S. 186]. Die Entstehung eines Ansatzes ist

in Abbildung 3.7 zu erkennen. Ablagerungen unter der Anode können eine isolierende Fläche

erzeugen, die schlechter abbrennt als der restliche Bereich der Anode. Im Laufe der Zeit bildet

sich ein zunehmend größerer Ansatz, der zu kurzzeitigen Kurzschlüssen mit dem flüssigen

Aluminium führen kann. Dies ist auf die wellenförmige Bewegung der Aluminiumoberfläche

aufgrund des Magnetfelds und der Gasentwicklung an den Anoden zurückzuführen [GK93,

S. 147]. Falls der Ansatz bis zu diesem Zeitpunkt nicht erkannt wird, kann dieser mit dem

weiteren Absenken der Anoden in das flüssige Metall ragen und einen langanhaltenden Kurz-

schluss auslösen. Ein solcher Kurzschluss beeinträchtigt die Stromausbeute und führt zu einem

zusätzlichen Wärmeeintrag [Mar17, S. 817; Mar18, S. 486–487; RWP00].

Anode Anode Anode

Elektrolyt

flüssiges Aluminium

Zeit

Abbildung 3.7: Entstehung eines Ansatzes unter einer Anode. Abgeändert

nach [KGD+21, S. 766; Mar17, S. 817; Mar18, S. 487].

Rolofs et al. [RWP00] zeigen auf, dass die Badtemperatur von Öfen mit einer hohen Anzahl an

Ansätzen und einer niedrigen durchschnittlichen Ofenspannung um durchschnittlich 4 °C höher

lag als bei unauffälligen Öfen. Die Erhöhung der Badtemperatur erklären Rolofs et al. durch
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den Kurzschluss, der einen zusätzlichen Wärmeintrag bedeutet. Der zusätzliche Wärmeeintrag

beeinflusst somit unmittelbar die Wärmebilanz eines Ofens und wirkt sich folglich auf dessen

Badtemperatur aus.

Schlammbildung

Eine Schlammbildung kann in einem Ofen auftreten, wenn das zugeführte Aluminiumoxid

nicht vollständig im Elektrolyt aufgelöst werden kann. Das nicht aufgelöste Aluminiumoxid

setzt sich auf dem Boden des Ofens ab und führt zu einer Verschlammung. Aus Abbildung 3.8

geht hervor, dass der Schlamm wie ein zusätzlicher elektrischer Widerstand wirkt und eine

ungleichmäßige Stromverteilung im Ofen erzeugt [GK93, S. 210; Tan10, S. 27; Ree15, S. 55].
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Abbildung 3.8: Der Schlamm auf den Boden eines Ofens wirkt wie ein zusätz-

licher elektrischer Widerstand und führt zu einer ungleichmäßigen Strom-

verteilung. Abgeändert nach [Tan10, S. 27].

Anodeneindeckung

Zwischen 40 % und 60 % der gesamten Wärmeverluste werden über die Oberseite eines Ofens

an die Umgebung abgegeben [GK93, S. 29–30]. Die isolierende Anodeneindeckung spielt eine

wesentliche Rolle bei der Anpassung der Wärmeverluste über die Ofenoberseite [GK93, S. 29–

30]. Für die Anodeneindeckung wird Aluminiumoxid oder zerkleinerter Elektrolyt verwendet

[GK93, S. 202]. Durch die wärmeisolierende Wirkung der Anodeneindeckung ist eine Redu-

zierung der Ofenspannung möglich, da weniger Energie für die Wärmeentwicklung umgesetzt

werden muss [TRI13, S. 32], um die Badtemperatur im Sollwertbereich zu halten. Eine zu

dick aufgetragene Eindeckung kann jedoch dazu führen, dass die Anoden überhitzen, Ansätze
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entstehen und sich die Badtemperatur des Ofens erhöht [TRI13, S. 36]. Die Anodeneindeckung

hat daher einen wesentlichen Einfluss auf die Wärmebilanz eines Ofens und beeinflusst somit

dessen Badtemperatur.

3.3 Zusammenfassung

In diesem Kapitel wurden die Grundlagen der industriellen Aluminiumherstellung aufgezeigt,

für die der Hall-Héroult-Prozess genutzt wird. Die Wechselwirkungen eines Aluminiumelektro-

lyseofens wurden dargestellt. Der Aufbau eines Aluminiumelektrolyseofens wurde gezeigt, der

in dieser Form auch bei der TAE zum Einsatz kommt. Die wesentlichen Einflüsse auf Badtempe-

ratur wurden mithilfe der Literatur präsentiert. In diesem Zuge wurden auch die Auswirkungen

einer einstündigen Hallenschaltung, die bei der TAE stattgefunden hat, auf die Badtemperatur

von vier ausgewählten Öfen dargelegt. Die Ergebnisse zeigen, dass sich bei dieser Hallenschal-

tung die Badtemperatur der Öfen im Mittel um −12,5 °C mit einer Standardabweichung von

2,7 °C geändert hat.

Insgesamt können die in diesem Kapitel dargestellten Einflüsse, die sich auf die Badtemperatur

auswirken, für die Entwicklung von Vorhersagemodellen hilfreich sein. Bevor die ersten Lö-

sungsansätze für die Vorhersage der Badtemperatur entwickelt werden, werden im nächsten

Kapitel wesentliche Grundlagen der Zeitreihenanalyse vorgestellt. Diese Grundlagen sind für

das weitere Verständnis nötig, da die Badtemperaturdaten der jeweiligen Öfen als Zeitreihe

aufgefasst werden und in Kapitel 5 mit Methoden der Zeitreihenanalyse untersucht werden.

Kapitel 3
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KAPITEL 4

Grundlagen der Zeitreihenanalyse

Das vorliegende Kapitel gliedert sich in zwei Teile: Im ersten Teil werden Grundlagen der

Zeitreihenanalyse vorgestellt. Zunächst werden die Definitionen einer Zeitreihe sowie einer

Zeitreihenvorhersage dargestellt. Anschließend werden die Komponenten beschrieben, aus

denen eine Zeitreihe besteht. Damit wird ein Übergang zu dem Bereich der Zeitreihenmerk-

male geschaffen, mit denen die Eigenschaften von Zeitreihen quantifiziert werden können.

Zeitreihenmerkmale werden in unterschiedlichen Anwendungsbereichen verwendet, die in

diesem Kapitel vorgestellt werden. Sie sind auch Bestandteil für die Gegenwartsvorhersage der

Badtemperatur, die in dieser Arbeit durchgeführt wird. Des Weiteren wird in diesem Kapitel der

Unterschied zwischen stationären und nicht stationären Zeitreihen aufgezeigt. Zudem werden

die Grundlagen mehrerer Analysemethoden vorgestellt, wie die der (partiellen) Autokorrelation

und des Periodogramms. Die aufgezeigten Methoden sind wesentlich für das Verständnis des

praktischen Teils dieser Arbeit, der nach diesem Kapitel folgt.

Der zweite Teil dieses Kapitels fokussiert sich auf die Zeitreihenvorhersage. Es werden die

Unterschiede zwischen lokalen und globalen Vorhersagemethoden aufgezeigt und die in dieser

Arbeit verwendeten Vorhersagemethoden, das AR-Modell und RF-Modell, vorgestellt. Schließ-

lich werden verschiedene Strategien zur sinnvollen Validierung und zum Testen von Vorhersa-

gemethoden im Kontext der Zeitreihenanalyse präsentiert.

4.1 Zeitreihe

Die Erfassung der Dynamiken eines Prozesses kann mittels Zeitreihen erfolgen. Hierbei werden

wiederholt Messungen über die Zeit an dem zu untersuchenden Prozess durchgeführt. Durch

die anschließende Analyse der zeitlich angeordneten Messungen kann ein Verständnis über die

Dynamik des Prozesses gewonnen werden [Ful18, S. 88]. Beispielsweise stellen die Badtempe-

raturmessungen eines Ofens, die täglich durchgeführt und zeitlich angeordnet werden, eine

Zeitreihe dar.
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Eine Zeitreihe

{yt : t = 1, . . . , n} = {y1, y2, . . . , yn} (4.1)

besteht aus n Beobachtungen, die zu diskreten Zeitpunkten 1, 2, . . . , n aufgezeichnet werden.

Wenn die Anzahl n keine Rolle spielt, dann wird Gleichung 4.1 mit {yt} abgekürzt [CM09, S. 19;

HA21, S. 23–25].

Eine Vorhersage zum Zeitpunkt t für die Zeitreihe {yt : t = 1, . . . , n} für den Zeitpunkt t + k

wird mit ŷt+k|t angegeben. So stellt ŷt+1|t eine Vorhersage für yt+1 dar, für die alle verfügbaren

Beobachtungen {y1, y2, . . . , yt} genutzt werden [CM09, S. 19; HA21, S. 23–25].

4.1.1 Komponenten einer Zeitreihe

Eine Zeitreihe kann in eine Trend-, Zyklus-, Saison- und Restkomponente zerlegt werden.

Die Trend-, Zyklus- und Saisonkomponente sind die systematischen Komponenten einer

Zeitreihe, während die Restkomponente als irreguläre Komponente angegeben wird. Trend-

und Zykluskomponente werden in der Praxis zu einer Komponente zusammengefasst, die als

Trend-Zyklus-Komponente oder Trendkomponente bezeichnet wird. Die Trendkomponente

berücksichtigt langfristige Niveauänderungen einer Zeitreihe, während die Zykluskomponente

Bewegungen einer Zeitreihe abbildet, die nicht mit einer festen Periode auftreten und im

wirtschaftlichen Kontext als Konjunkturzyklen aufgefasst werden. Die Saisonkomponente

hingegen bildet die Muster einer Zeitreihe ab, die mit einer festen Periode auftreten. Dies kann

beispielsweise ein tägliches oder wöchentliches Muster sein. Die Restkomponente umfasst die

verbleibenden Anteile einer Zeitreihe, die nicht von der Trend-Zyklus-Komponente und der

Saisonkomponente beschrieben werden können [FHK+16, S. 509–511; HA21, S. 37–39, 59].

Die Zerlegung einer Zeitreihe in eine Trend-Zyklus-Komponente, Saison- und Restkomponente

erfordert zunächst Annahmen über den Zusammenhang der einzelnen Komponenten. Häufig

wird ein additiver oder multiplikativer Zusammenhang angenommen, wobei auch eine

Mischform aus beiden Zusammenhängen möglich ist. Gleichung 4.2 zeigt den additiven

Zusammenhang, während Gleichung 4.3 den multiplikativen Zusammenhang darstellt

[FHK+16, S. 509–511; HA21, S. 64–69].

yt = St + Tt + Rt (4.2)

yt = St · Tt · Rt (4.3)

In den Gleichungen 4.2 und 4.3 stellen St die Saisonkomponente, Tt die

Trend-Zyklus-Komponente und Rt die Restkomponente mit t = 1, . . . , n dar. Der

multiplikative Zusammenhang in Gleichung 4.3 sollte gewählt werden, wenn sich die Schwan-
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kungen proportional mit dem Niveau der Zeitreihe verändern. Sofern keine proportionale

Änderung vorliegt, ist der additive Zusammenhang für eine Zeitreihenzerlegung zu verwenden

[FHK+16, S. 509–511; HA21, S. 64–69].

Für die Zerlegung einer Zeitreihe und die einzelnen Komponenten können unterschiedliche

Methoden eingesetzt werden, die in [HA21; FHK+16; CM09] beschrieben werden. Die klassische

Zeitreihenzerlegung bildet die Ausgangsbasis für weitere Zerlegungsmethoden [HA21, S. 76].

Bei der klassischen Zerlegung wird zunächst mittels eines gleitenden Durchschnitts (Moving-

Average) die Trend-Zyklus-Komponente einer Zeitreihe geschätzt [HA21, S. 69; FHK+16, S. 516].

Mit dem gleitenden Durchschnitt wird die Zeitreihe geglättet, der sich mittels Gleichung 4.4

berechnen [HA21, S. 69] lässt.

T̂t = 1
m

k∑
j=−k

yt+j (4.4)

T̂t ist der geschätzte Trend-Zyklus zum Zeitpunkt t und m stellt mit m = 2k + 1 die Ordnung

des gleitenden Durchschnitts (m-Moving-Average (MA)) dar. m wird in der Regel abhängig

von der Saisonalität der Zeitreihe gewählt. Beispielsweise wird bei monatlichen Daten eine

jährliche Saisonalität angenommen. In diesem Fall beträgt m = 12. Wenn m gerade ist, wird

nach der ersten Glättung ein weiteres Mal der gleitende Durchschnitt mit der Ordnung 2 über

die bereits geglätteten Beobachtungen berechnet (2 × m-MA), um einen zentrierten gleitenden

Durchschnitt zu erhalten [HA21, S. 72–73, 76].

Bei einer additiven Zerlegung wird anschließend eine Subtraktion yt − T̂t durchgeführt, aus

der sich die trendbereinigte Zeitreihe ergibt. Anschließend werden von der trendbereinigten

Zeitreihe die Mittelwerte anhand der entsprechenden Saisonalität gebildet. Für eine Zeitreihe

mit einer monatlichen Auflösung werden beispielsweise alle Werte des Monats Januar gemit-

telt. Die Bildung des Mittelwerts wird für alle weiteren Monate durchgeführt, woraus zwölf

gemittelte Werte resultieren. Die gemittelten Werte werden anschließend so angepasst, dass

die Summe 0 ergibt. Abschließend werden die angepassten Werte abhängig von der Länge der

ursprünglichen Zeitreihe repliziert. Die replizierten Werte ergeben die geschätzte Saisonkom-

ponente Ŝt. Durch die weitere Subtraktion yt − T̂t − Ŝt wird die geschätzte Restkomponente

R̂t ermittelt [HA21, S. 76].

Für die multiplikative Zerlegung wird nach erfolgter Glättung der Zeitreihe eine Division yt/T̂t

durchgeführt. Die weitere Vorgehensweise erfolgt analog zur additiven Zerlegung. Jedoch muss

bei der Anpassung die Summe der gemittelten Werte m ergeben. Die geschätzte Restkompo-

nente R̂t ergibt sich durch die Berechnung von yt/(T̂t · Ŝt) [HA21, S. 77].

Bedingt vom gleitenden Durchschnitt sind die ersten und letzten Werte der geschätzten

Trend-Zyklus-Komponente T̂t und der Restkomponente R̂t bei der klassischen Zeitreihen-
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zerlegung nicht vorhanden [HA21, S. 78]. Dieser und weitere Nachteile [HA21, S. 78] führen

dazu, dass in der Praxis anderweitige Zerlegungsmethoden eingesetzt werden, wie zum Beispiel

das Census X11-Verfahren, das Berliner Verfahren und das Seasonal and Trend decomposition

using Loess (STL) Verfahren [FHK+16, S. 521; HA21, S. 78–84]. Die Zerlegung einer Zeitreihe in

ihre einzelnen Komponenten erlaubt unter anderem die Berechnung von Zeitreihenmerkmale,

die die Eigenschaften einer Zeitreihe beschreiben.

4.1.2 Zeitreihenmerkmale/Anwendungsbereiche

Unter Zeitreihenmerkmalen werden numerische Beschreibungen verstanden, die die Eigen-

schaften von Zeitreihen quantifizieren [HA21, S. 89; Ful18, S. 89–90]. Einfache Zeitreihen-

merkmale umfassen beispielsweise das empirische Mittel oder den Median, die die Lage von

Zeitreihen beschreiben. Weitere Zeitreihenmerkmale, wie die Stärke der saisonalen und

Trend-Zyklus-Komponente, können mithilfe einer zuvor durchgeführten additiven Zeitreihen-

zerlegung bestimmt werden. Die Stärke der saisonalen Komponente FS wird über Gleichung

4.5 und die Stärke der Trend-Zyklus-Komponente FT über Gleichung 4.6 berechnet [HA21,

S. 92–97].

FS = max
(

0, 1 − Var(Rt)
Var(St + Rt)

)
(4.5)

FT = max
(

0, 1 − Var(Rt)
Var(Tt + Rt)

)
(4.6)

Die Berechnung von FS und FT erlaubt eine Analyse von Zeitreihendatensätzen hinsichtlich

der saisonalen und Trend-Zyklus-Komponente. Die Werte, die FS und FT annehmen können,

liegen in dem Intervall [0, 1]. Die Berechnung von FS ist hilfreich, um nicht saisonale Zeitreihen

zu identifizieren. Nach [HA21, S. 273] ist eine Zeitreihe nicht saisonal, wenn FS < 0,64 ist.

Abbildung 4.1 zeigt zwölf Zeitreihen aus dem M1- und M3-Wettbewerb [Hyn18], die unter-

schiedliche Stärken bezüglich der saisonalen Komponente und der Trend-Zyklus Komponente

aufweisen.

In Abbildung 4.1 sind in der ersten Reihe vier Zeitreihen dargestellt, die eine dominante

Trend-Zyklus-Komponente aufweisen, während die saisonale Komponente in diesen Zeitreihen

schwach ausgeprägt ist. Die mittlere Reihe zeigt vier Zeitreihen, die sich durch eine ausge-

prägte Saisonalität auszeichnen. Dies wird anhand des hohen Werts von FS für jede Zeitreihe

deutlich. Die Trend-Zyklus-Komponente ist in diesen Zeitreihen hingegen nur in geringem

Maße vorhanden. Die dritte Reihe der Abbildung 4.1 weist Zeitreihen mit einer dominanten

Trend-Zyklus- und saisonalen Komponente auf.
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FS = 0,04 FT = 0,98 FS = 0,04 FT = 1,0 FS = 0,23 FT = 0,98 FS = 0,02 FT = 1,0

FS = 0,96 FT = 0,07 FS = 0,96 FT = 0,06 FS = 0,97 FT = 0,06 FS = 0,96 FT = 0,2

FS = 0,99 FT = 1,0 FS = 0,97 FT = 0,95 FS = 0,97 FT = 0,95 FS = 0,98 FT = 1,0

Abbildung 4.1: Zwölf Zeitreihen aus dem M1- und M3-Wettbewerb [Hyn18]

besitzen unterschiedliche Stärken bezüglich der saisonalen und Trend-

Zyklus Komponente. Abbildung abgeändert nach [GKD+23, S. 2].

Insgesamt kann die Berechnung von Zeitreihenmerkmalen auch als Dimensionsreduktionsver-

fahren verstanden werden, da die Zeitreihe auf eine bestimmte Anzahl an Merkmalen reduziert

wird [WSH06, S. 339]. Die unterschiedlichen Einsatzmöglichkeiten von Zeitreihenmerkma-

len, die im Folgenden erörtert werden, legen nahe, dass die Auswahl der Zeitreihenmerkmale

anhand der spezifischen Problemstellung sowie der Eigenschaften der zu untersuchenden Zeit-

reihe getroffen werden sollte [KHL20, S. 358]. Somit wird sichergestellt, dass ein „globales Bild“

[WSH06, S. 339] von einer Zeitreihe erzeugt wird. Bei der Wahl von Zeitreihenmerkmalen

kann Expertenwissen von Mitarbeitenden aus der zu untersuchenden Domäne hilfreich sein

[GKD+23, S. 2]. Die Berechnung von Zeitreihenmerkmalen, wie dem empirischen Mittel, dem

minimalen und dem maximalen Wert, ist sinnvoll, um ungewöhnliche Sensor-Zeitreihen von

Thermoelementen im Bereich der Aluminiumelektrolyse zu identifizieren (vgl. unsere Arbeit

[GKD+23]). Im Falle eines Vergleichs von Zeitreihen mit unterschiedlichen physikalischen

Größen kann sich die Berechnung des empirischen Mittels, des minimalen und des maximalen

Werts als nicht aussagekräftig erweisen. In diesem Fall sollten Zeitreihenmerkmale gewählt

werden, die unabhängig von physikalischen Größen sind, um sinnvolle Aussagen bezüglich der

Eigenschaften von unterschiedlichen Zeitreihen treffen zu können. Solche Zeitreihenmerkmale

sind beispielsweise die Stärke der Saisonalität und die Stärke der Trend-Zyklus-Komponente.
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Anwendungsbereiche

Beschreibungen von Zeitreihen werden zusammenmit Ähnlichkeitsmaßen in unterschiedlichen

Bereichen eingesetzt, um nach Zeitreihen mit bestimmten Eigenschaften zu suchen, Anomalien

in Zeitreihen zu erkennen, wiederkehrende Verläufe in Zeitreihen zu ermitteln und Zeitrei-

hen zu gruppieren oder zu klassifizieren [Ful18, S. 91]. In unserer Arbeit [GKD+23, S. 3–4]

werden sechs unterschiedliche Anwendungsbereiche aufgezeigt, in denen Zeitreihenmerkmale

verwendet werden. Diese Anwendungsbereiche werden anschließend mit entsprechenden Lite-

raturangaben dargestellt. Auch wenn in einzelnen Arbeiten Zeitreihenmerkmale nicht explizit

erwähnt werden, lässt sich anhand der Vorgehensweise eine Verknüpfung zum diesem Bereich

herstellen.

Regression: Im Rahmen des FlexTherm Projekts wird in unserer Arbeit [GKD+18] für verschie-

dene Prozessvariablen das arithmetische Mittel oder die Summe innerhalb gleitender Fenster

berechnet. Diese berechneten Zeitreihenmerkmale werden anschließend für das Training ei-

nes RF-Regressionsmodells verwendet, um die Badtemperatur von Aluminiumelektrolyseöfen

vorherzusagen.

Klassifikation: In [KGD+20] verwenden die Autoren Zeitreihenmerkmale aus [LSK+19] und

[GGC+], die innerhalb gleitender Fenster von verschieden Prozessvariablen berechnet werden.

Die berechneten Zeitreihenmerkmale werden für das Training von Vorhersagemodellen ver-

wendet, um anschließend Anodeneffekte in Aluminiumelektrolyseöfen vorherzusagen. Des

Weiteren wird in [NAM01] ein MLP zusammen mit acht Zeitreihenmerkmalen verwendet, um

Muster in Control Charts zu klassifizieren.

Detektion von Anomalien: Um ungewöhnliche Server-Lasten bei der Internet-Firma Yahoo

zu identifizieren, werden in [HWL15] 18 Merkmale von Zeitreihen berechnet. Die Merkmale

werden anschließend in einer PCA verwendet, um ungewöhnlich Zeitreihen zu identifizieren.

Das Ziel der PCA wurde bereits in Kapitel 2.3 erläutert. In [THSM+20] wird ein Framework

vorgestellt, um abnormale Zeitreihen in einem Datenstrom zu identifizieren. Das Framework

besteht aus einer Offline- und Online-Phase. In der Offline-Phase wird ein Modell anhand von

Zeitreihen trainiert, die das gewöhnliche Verhalten des betrachteten Systems repräsentieren.

In der Online-Phase wird das trainierte Modell unter Verwendung eines gleitenden Fensters

auf neue Daten angewendet, um abnormale Zeitreihen zu erkennen. Das Framework beinhaltet

unter anderem die Berechnung von 14 Zeitreihenmerkmalen, mit denen eine PCA durchgeführt

wird. Außerdem wird ein Algorithmus vorgestellt, um nicht stationäre Systemzustände zu

erkennen und das Modell auf einen neuen Zustand einzustimmen.

Clustering: In [HV12] verwenden Horvath et al. das hierarchische Clustern, um Alumini-

umelektrolyseöfen in Gruppen mit gleichartigem Verhalten einzuteilen. Dazu werden für jede

Prozessvariable sieben Zeitreihenmerkmale berechnet, um den Umfang derDaten zu reduzieren.
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Visualisierung: In [KHSM17] werden sechs Zeitreihenmerkmale berechnet, um den M3-

Datensatz [MH00] zu visualisieren und zu analysieren. Anhand der berechneten Zeitreihen-

merkmale wird eine PCA durchgeführt und die ersten beiden Hauptkomponenten visualisiert,

um einen Überblick über die Eigenschaften des M3-Datensatzes zu erhalten. Mithilfe eines

genetischen Algorithmus werden zudem neue Zeitreihen generiert, die nicht typisch für den

M3-Datensatz sind und den Merkmalsraum des M3-Datensatzes erweitern. Darüber hinaus

vergleichen Kang et al. den Merkmalsraum mit der Performanz von ausgewählten Vorhersage-

methoden, um daraus gezielt Vorhersagemethoden abzuleiten, die geeignet für die Vorhersage

einer Zeitreihe erscheinen.

Meta-Learning: In der Arbeit [THA23] wird das Framework FFORMS (Feature-based FORe-

cast Model Selection) vorgestellt, um eine geeignete Methode für eine Zeitreihenvorhersage

zu finden. Dabei werden insgesamt 37 Zeitreihenmerkmale mit vorgegebenen Vorhersageme-

thoden über ein RF-Modell verknüpft. In [PL04] greifen Prudêncio et al. auf den Einsatz von

Algorithmen aus dem Bereich des maschinellen Lernens zurück, um die Auswahl an Vorhersa-

gemethoden für die Zeitreihenvorhersage anhand von Zeitreihenmerkmalen zu automatisieren.

Im ersten Fallbeispiel wird ein Entscheidungsbaum als Meta-Learner mit zehn Zeitreihen-

merkmalen von stationären Zeitreihen für die Klassifizierung von zwei Vorhersagemethoden

verwendet. Für das zweite Fallbeispiel werden fünf Zeitreihenmerkmale von den jährlichen

Daten aus dem M3-Datensatz [MH00] berechnet und als Eingang für drei Klassifizierer vom

Typ MLP als Meta-Learner verwendet.

Aus dieser Übersicht geht hervor, dass Zeitreihenmerkmale in unterschiedlichen Kontexten eine

Anwendung finden. Unter anderem in Kombination mit gleitenden Fenstern werden Zeitreihen-

merkmale eingesetzt, um anschließend eine Regression, Klassifikation oder Anomaliedetektion

durchzuführen. Diese Kombination wird auch für die Gegenwartsvorhersage (Nowcasting) der

Badtemperatur eingesetzt, die in Kapitel 5.4.2 dieser Arbeit durchgeführt wird.

4.1.3 Stationäre Zeitreihen

Eine Zeitreihe wird als stationär bezeichnet, wenn ihre statistischen Eigenschaften nicht von

der Zeit abhängig sind [HA21, S. 265; Nel20, S. 1175]. Stationäre Zeitreihen weisen weder

einen Trend noch eine Saisonalität auf und zeigen einen annähernd waagerechten Verlauf mit

konstanter Varianz. Zyklisches Verhalten kann jedoch enthalten sein [HA21, S. 266]. Stationäre

Zeitreihen spielen eine wichtige Rolle bei der Entwicklung von Autoregressive Integrated Mo-

ving Average (ARIMA) Modellen. Des Weiteren hilft die Unterscheidung zwischen stationären

und nicht stationären Zeitreihen bei der Wahl einer geeigneten Validierungsmethode, um eine

realistische Modellperformanz abschätzen zu können (vgl. Kapitel 4.3).

Durch die Bildung von Differenzen einer Zeitreihe kann aus einer nicht stationären Zeitreihe ei-

ne stationäre Zeitreihe erzeugt werden. Die Differenzierung trägt dazu bei, den Mittelwert einer
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Zeitreihe zu stabilisieren. Bei der gewöhnlichen Differenzierung wird die Differenz zwischen

der aktuellen Beobachtung und der vorherigen Beobachtung gebildet. Die Berechnung der

gewöhnlich differenzierten Zeitreihe erfolgt über Gleichung 4.7. In der Literatur werden diese

differenzierten Beobachtungen auch als „erste Differenzen“ bezeichnet [HA21, S. 267–269].

y′
t = yt − yt−1 (4.7)

y′
t stellt die differenzierte Beobachtung der Zeitreihe zum Zeitpunkt t dar. Bei Zeitreihen, die

saisonalen Schwankungen unterliegen, erfolgt in der Regel eine saisonale Differenzierung,

um den Mittelwert der Zeitreihe zu stabilisieren. Bei der saisonalen Differenzierung wird die

Differenz zwischen der aktuellen Beobachtung und der Beobachtung aus der vorherigen Saison

gebildet. Eine saisonale Differenzierung mit der Periode m wird mittels Gleichung 4.8 erreicht

[HA21, S. 269].

y′
t = yt − yt−m (4.8)

Auch hier stellt y′
t die differenzierte Beobachtung der Zeitreihe zumZeitpunkt t dar. Eine Zeitrei-

he mit einer monatlichen Auflösung kann beispielsweise eine jährliche Saisonalität beinhalten.

In diesem Fall kann eine saisonale Differenzierung mit der Periode m = 12 durchgeführt

werden, da sich das Muster bei einer jährlichen Saisonalität alle zwölf Monate wiederholt.

Da saisonale Zeitreihen nicht stationär sind, ist es daher sinnvoll, diese zunächst auf enthaltene

Saisonalitäten zu untersuchen. Dazu kann nach [HA21, S. 273] das in Kapitel 4.1.2 vorgestellte

Zeitreihenmerkmal, die Stärke der Saisonalität, berechnet werden. Falls die Berechnung der

Stärke der Saisonalität ergibt, dass die Zeitreihe saisonal ist, so ist eine saisonale Differenzierung

empfehlenswert.

Anschließend kann durch den Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test [KPSS92] über-

prüft werden, ob eine gewöhnliche Differenzierung durchgeführt werden sollte. Im Rahmen

dieses Tests wird als Nullhypothese angenommen, dass die Zeitreihe stationär ist. Anhand eines

gewählten Signifikanzniveaus wird anschließend darüber entschieden, ob die Nullhypothese

abgelehnt wird. Bei Ablehnung der Nullhypothese ist die Zeitreihe nicht stationär. In diesem

Fall ist eine gewöhnliche Differenzierung empfehlenswert. Der KPSS-Test sollte danach erneut

auf die differenzierte Zeitreihe angewendet werden [HA21, S. 272–273].

4.1.4 Autokorrelation

Die Autokorrelation beschreibt den linearen Zusammenhang zwischen einer Zeitreihe und

einer von sich selbst zeitlich verschobenen Version [Nel20, S. 1182]. Die Zeitreihe wird mit sich

selbst korreliert. Dazu wird die Zeitreihe mehrfach um einen Schritt verschoben und jeweils der
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Korrelationskoeffizient zwischen der ursprünglichen Zeitreihe und ihrer verschobenen Version

berechnet. Die Autokorrelationskoeffizienten einer Zeitreihe können durch die Autokorrelati-

onsfunktion (AKF) in Gleichung 4.9 berechnet werden und liegen zwischen −1 und 1 [HA21,

S. 52; CM09, S. 33–34].

rk =

n∑
t=k+1

(yt − y)(yt−k − y)
n∑

t=1
(yt − y)2

(4.9)

rk stellt den berechneten Korrelationskoeffizient an der Verzögerungsstelle k dar. n ist die

Anzahl der Beobachtungen der Zeitreihe. y ist der Mittelwert der Zeitreihe, der mit Gleichung

4.10 berechnet wird [CM09, S. 31].

y = 1
n

n∑
t=1

yt (4.10)

In der Regel wird der berechnete Autokorrelationskoeffizient rk gegen die Verzögerungsstelle k

aufgetragen. Die resultierende Darstellung wird als Korrelogramm bezeichnet [HA21, S. 52]. In

Abbildung 4.2 ist ein Beispiel für ein Korrelogramm mit einem Konfidenzintervall von 95 % zu

sehen, das die Autokorrelationskoeffizienten zeigt, die mit Beobachtungen eines autoregressiven

Prozesses berechnet wurden [CM09, S. 81–83]. Wie aus Abbildung 4.2 ersichtlich, weisen die

Koeffizienten einen sinusförmigen Verlauf auf. Das deutet darauf hin, dass die Beobachtungen

aus einem autoregressiven Prozess stammen [HA21, S. 283].
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Abbildung 4.2: Beispiel für ein Korrelogramm der AKF. Entnommen aus

[CM09, S. 81–83].
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Neben der AKF wird üblicherweise auch die partielle Autokorrelationsfunktion (PAKF) be-

rechnet. Mit ihr wird der Effekt von übergreifenden Korrelationen aufgrund vorheriger Verzö-

gerungsstellen entfernt. Anschließend wird die Korrelation an der Stelle k berechnet [CM09,

S. 81]. Dazu kann ein autoregressives Modell, AR(k), verwendet werden, das mit den Beobach-

tungen der Zeitreihe trainiert wird. Der k-te Modellparameter des trainierten AR(k)-Modells

entspricht dann dem partiellen Autokorrelationskoeffizient αk [CM09, S. 81; HA21, S. 282]. Das

AR(k)-Modell wird in Kapitel 4.2.2 vorgestellt.

In Abbildung 4.3 ist das Korrelogramm der PAKF mit einem Konfidenzintervall von 95 % zu

sehen. Die Koeffizienten der PAKF wurden anhand der gleichen Beobachtungen ermittelt,

die bereits für das Korrelogramm in Abbildung 4.2 verwendet wurden. Mit Ausnahme des

Korrelationskoeffizient α1 sind alle weiteren Koeffizienten in Abbildung 4.3 nicht signifikant.
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Abbildung 4.3: Beispiel für ein Korrelogramm der PAKF. Entnommen aus

[CM09, S. 81–83].

In Kombination mit den Erkenntnissen aus Abbildung 4.2 lässt sich Folgendes ableiten: Die in

Abbildung 4.2 dargestellten Koeffizienten weisen einen sinusförmigen Verlauf auf, während

lediglich der Korrelationskoeffizient α1 der PAKF signifikant ist. Diese Ergebnisse lassen den

Schluss zu, dass es sich um Beobachtungen handelt, die aus einem autoregressiven Prozess

erster Ordnung AR(1) stammen [HA21, S. 283; CM09, S. 81]. Da die AKF und PAKF an der

Verzögerungsstelle k = 0 immer 1 ist, wird dieser Wert in den Abbildungen 4.2 und 4.3 nicht

angegeben.

Insgesamt kannmit der AKF und PAKF dieModellordnung k eines AR(k)-Modells ermittelt wer-

den, wenn die verwendeten Beobachtungen auch aus einem autoregressiven Prozess stammen.

Des Weiteren lässt sich mithilfe der AKF und PAKF die Ordnung eines Moving-Average-Modells
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(MA-Modells) bestimmen. Das MA-Modell sollte nicht mit dem gleitenden Durchschnitt bei

der Zeitreihenzerlegung in Kapitel 4.1.1 verwechselt werden. Im Rahmen dieser Arbeit erfolgt

keine Betrachtung des MA-Modells. Für weiterführende Informationen zum Thema MA-Modell

sei auf die Literatur [HA21; CM09; Nel20] verwiesen.

4.1.5 Periodogramm

Die Identifikation der in der Zeitreihe enthaltenen Frequenzen mittels eines Periodogramms

erlaubt Rückschlüsse auf mögliche Periodizitäten. Dabei wird eine Zeitreihe als eine Summe

an Sinusschwingungen aufgefasst. Für eine Zeitreihe {yt : t = 1, . . . , n} mit einer geraden

Anzahl an Beobachtungen kann dazu Gleichung 4.11 angegeben werden [CM09, S. 171, 173;

SS17, S. 169].

yt = a0 + a1 cos(2πt

n
) + b1 sin(2πt

n
) + . . .

+ an/2−1 cos(2(n/2 − 1)πt

n
) + bn/2−1 sin(2(n/2 − 1)πt

n
) + an/2 cos(πt)

(4.11)

Gleichung 4.11 ist ein Regressionsmodell, bei dem die Koeffizienten a1, b1, a2, b2, a3, b3, . . . ,

an/2−1, bn/2−1, an/2 geschätzt werden. Der Mittelwert der Zeitreihe ist a0. Mit Gleichung 4.12

kann die Amplitude für die m-te Harmonische berechnet werden, wobei m zwischen 1 und n/2
liegt und eine ganze Zahl ist. Die berechnete Amplitude gibt die Stärke der jeweiligen Frequenz

in der Zeitreihe an [CM09, S. 173–174; SS17, S. 169].

Am =
√

a2
m + b2

m (4.12)

Die quadrierten Amplituden A2
m werden anschließend gegen m/n aufgetragen, wodurch sich

das skalierte Periodogramm für die Zeitreihe ergibt. In der Praxis wird für die Berechnung der

Amplituden die Fast Fourier Transform (FFT) [CT65] verwendet [SS17, S. 169; CM09, S. 174].

4.2 Vorhersagemethoden

Im Bereich der Zeitreihenanalyse kann der lokale oder globale Ansatz gewählt werden, um

eine Zeitreihenvorhersage durchzuführen. Beide Ansätze werden im nachfolgenden Kapitel

erörtert. Anschließend werden das AR-Modell und RF-Modell vorgestellt, die in dieser Arbeit

für die Vorhersage der Badtemperatur verwendet werden.
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4.2.1 Lokale und globale Vorhersagemodelle

Eine übliche Vorgehensweise in der Zeitreihenvorhersage ist es, anhand einer Zeitreihe ein Vor-

hersagemodell zu trainieren, das anschließend für die Vorhersage der Zeitreihe verwendet wird.

Für jede neue Zeitreihe wir ein eigenständiges Modell trainiert. Eine solche Vorgehensweise

wird als lokal bezeichnet, da angenommen wird, dass jede Zeitreihe jeweils aus einem unter-

schiedlichen Erzeugungsprozess stammt [SFGJ20; MMH21, S. 1632]. Der lokale Ansatz kann

bei Zeitreihen mit wenigen Beobachtungen zu einer Überanpassung führen, sofern nicht mit-

tels entsprechender Gegenmaßnahmen, wie der Berücksichtigung von weiteren Informationen

oder der Einschränkung der Modellanpassung, gegengesteuert wird. Diese Gegenmaßnahmen

erfordern jedoch eine Einzelbetrachtung jeder Zeitreihe, woraus ein hoher zeitlicher Aufwand

entstehen kann [MMH21, S. 1632].

Im Vergleich zur lokalen Vorgehensweise erfolgt beim globalen Ansatz zunächst eine Zusam-

menführung aller Zeitreihen, die anschließend für das Training eines einzelnen (globalen)

Modells verwendet werden. Die größere Anzahl an verfügbaren Beobachtungen ermöglicht

es beim globalen Ansatz, eine Überanpassung zu verhindern. Der globale Ansatz basiert auf

der Annahme, dass die betrachteten Zeitreihen aus demselben Erzeugungsprozess stammen

[MMH21, S. 1633]. So werden in [BBS20] zunächst ähnliche Zeitreihen anhand von Zeitrei-

henmerkmalen (vgl. Kapitel 4.1.2) gruppiert. Anschließend wird für jede Gruppe ein globales

Modell trainiert. In [SFGJ20] wird zudem ein globales neuronales Netz, DeepAR, vorgestellt,

das auf ähnlichen Zeitreihen basiert.

In [MMH21] wird aufgezeigt, dass beim globalen Ansatz eine Ähnlichkeit von Zeitreihen

nicht erforderlich ist. Die Ergebnisse legen unter anderem nahe, dass globale Modelle auch

bei heterogenen Zeitreihen eine wettbewerbsfähige Performanz gegenüber den lokalen Mo-

dellen aufweisen. Ein lineares AR-Modell dient dabei als globales Basismodell, das einfach

zu implementieren ist und sich hinsichtlich der Modellstruktur mit dem klassischen ARIMA-

Zeitreihenmodell überschneidet [MMH21, S. 1639].

Die einfache Handhabung des globalen AR-Modells sowie dessen wettbewerbsfähigen Mo-

dellperformanz, die in [MMH21] aufgezeigt wird, sind Argumente für die Verwendung eines

globalen AR-Modells für die Tagesprognose (Forecasting) der Badtemperatur. Zwar handelt es

sich bei den aufgezeichneten Badtemperaturen um Zeitreihen, die als ähnlich angesehen werden

können, dies sollte jedoch keine Einschränkung für das globale AR-Modell darstellen. Aus dem

globalen AR-Modell ergibt sich zudem eine Ausgangsbasis für weitere Forschungsarbeiten, in

deren Rahmen zusätzliche (globale) Modelle für die Vorhersage der Badtemperatur entwickelt

und anschließend mit dem Basismodell verglichen werden können. Das globale AR-Modell

wird im nachfolgenden Kapitel 4.2.2 beschrieben.

Die Gegenwartsvorhersage (Nowcasting) der Badtemperaturwirdmit einem globalen RF-Modell

durchgeführt, das im Kapitel 4.2.3 vorgestellt wird. Die Wahl des RF-Modells wird mit den in
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[BLS+24; HG20] dargelegten Ergebnissen und Argumenten begründet. In [BLS+24] werden

klassische maschinelle Lernmodelle mit Deep Learning Modellen anhand von tabellarischen

Datensätze gegenübergestellt. Vier Datensätze werden für die Klassifikation und ein Datensatz

für die Regression verwendet. Die Gegenüberstellung belegt, dass Entscheidungsbäume, die auf

dem Gradient Boosting Verfahren basieren, die meisten Deep Learning Modelle hinsichtlich der

Vorhersageperformanz übertreffen. Des Weiteren zeigen die Ergebnisse, dass das RF-Modell

eine bessere Performanz auf dem Regressionsdatensatz aufweist als die meisten in der Arbeit

verwendeten Deep Learning Ansätze. Zwar erreicht das RF-Modell nicht die Performanz der

Gradient Boosting Modelle. Dennoch liegt es im Ergebnis direkt hinter diesen [BLS+24, S. 7511].

Auch wenn in [BLS+24] keine Zeitreihen für die Untersuchung verwendet werden, zeigen die

Ergebnisse den effektiven Einsatz des RF-Modells in unterschiedlichen Szenarien auf. Jedoch

können auch Zeitreihendaten tabellarisch strukturiert werden, wie im späteren Kapitel 5.4.2

für die Gegenwartsvorhersage (Nowcasting) aufgezeigt wird.

In [HG20, S. 325] wird vorgeschlagen, dass für eine Vorhersage mit tabellarischen Daten zu-

nächst ein RF-Modell verwendet werden soll. Gradient Boosting Modelle sind nach [HG20,

S. 325] zwar etwas genauer in der Vorhersage, gehen jedoch mit einer Vielzahl an Hyperpara-

metern einher, die erst anhand der Daten angepasst werden müssen. Des Weiteren neigt ein

RF-Modell in der Regel nicht zu einer Überanpassung, was bei Gradient Boosting Modellen

und neuronalen Netzen der Fall ist [HG20, S. 325]. Eine weitere Eigenschaft des RF-Modells ist,

dass die Daten nicht vorab normalisiert werden müssen, was bei einem Einsatz von neuronalen

Netzen in der Regel erforderlich ist [HG20, S. 325]. Das hat den Vorteil, dass die Praxisimple-

mentierung und die Wartung des RF-Modells vereinfacht wird.

Das RF-Regressionsmodell ist jedoch nicht in der Lage, eine Zielvariable zu extrapolieren [HG20,

S. 325]. Da die Badtemperatur der Aluminiumelektrolyseöfen in einem bestimmten Wertebe-

reich liegt, wie im späteren Kapitel 5.3.2 aufgezeigt wird, stellt die Schwierigkeit der Extrapola-

tion in dieser Arbeit allerdings kein Problem dar. Daher ist das RF-Modell in dieser Arbeit ein

Lösungsansatz für die Gegenwartsvorhersage der Badtemperatur, der aufbauend auf unserer

Arbeit [GKD+18] weiter untersucht wurde.

4.2.2 Autoregressives Modell

Das autoregressive Modell mit der Ordnung k, AR(k), setzt sich aus einer Linearkombination

vergangener Beobachtungen einer Zeitreihe zusammen [HA21, S. 275]. Die Vorhersage des

AR(k)-Modells für den Zeitpunkt t ist mit Gleichung 4.13 angegeben.

ŷt = c + ϕ1yt−1 + ϕ2yt−2 + · · · + ϕkyt−k (4.13)
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Gleichung 4.13 kann auch als ein multiples lineares Regressionsmodell aufgefasst werden, mit

dem Unterschied, dass vergangene Beobachtungen als Merkmale anstatt externer Prädiktoren

eingesetzt werden [HA21, S. 275]. ϕ1, . . . , ϕk stellen die zu schätzenden Parameter und c die

zu schätzende Konstante des AR(k)-Modells dar. Die Schätzung der Modellparameter und der

Konstante kann mittels Minimierung der Summe der quadratischen Fehler erfolgen [KND15,

S. 333; CM09, S. 79].

Das AR(k)-Modell lässt sich sowohl lokal als auch global einsetzen. Um ein globales AR(k)-
Modell zu erzeugen, wird ein Trainingsvorgang durchgeführt, bei dem die Modellparameter

und die Konstante in Gleichung 4.13 anhand der Beobachtungen aller vorliegenden Zeitreihen

geschätzt werden. Ziel des globalen AR(k)-Modells ist es, anhand der vergangenen Beobach-

tungen den nächsten Wert jeder Zeitreihe vorherzusagen [CTM20, S. 2004]. Dafür werden die

Beobachtungen zunächst in Abhängigkeit von der Ordnung k in eine Matrix eingebettet. Dieser

Vorgang wird in der Literatur auch als Lag Embedding bzw. Time Delay Embedding bezeichnet

[MMH21, S. 1639; CTM20, S. 2004]. Die folgende Matrix resultiert, wenn die Beobachtungen

einer Zeitreihe {y1, y2, . . . , yn} eingebettet werden [BHK18, S. 71].


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.

.

yn−k yn−k+1 . . . yn−1 yn


Die letzte Spalte der resultierenden Matrix ist die Zielvariable, während die restlichen Spalten

als Merkmale für die Vorhersage der Zielvariable eingesetzt werden. Anhand der aufgezeigten

Matrix ist erkennbar, dass eine 1-Schritt-Vorhersage durchgeführt wird. Für das globale AR(k)-
Modell wird für jede Zeitreihe eine solche Einbettung durchgeführt. Die resultierendenMatrizen

werden anschließend zu einer großen Matrix zusammengeführt, mit der das globale AR(k)-
Modell trainiert, validiert und getestet wird [MMH21, S. 1639]. In dieser Arbeit wird das globale

AR(k)-Modell durch die LinearRegression-Klasse aus der scikit-learn Bibliothek [PVG+11] in

der Version 1.3.2 umgesetzt.

4.2.3 Random Forest

Der Random Forest (RF) besteht aus einer Ansammlung an Entscheidungsbäumen, die jeweils

eine Vorhersage über eine Zielvariable tätigen. Die einzelnen Vorhersagen werden anschlie-

ßend zu einer Gesamtvorhersage aggregiert. Ein Entscheidungsbaum ist ein algorithmisches

Modell, bei dem der Datensatz in Abhängigkeit von der Zielvariable in möglichst homogene

Gruppen eingeteilt wird [Bre01b, S. 199; KND15, S. 136]. Die Basis für die Entwicklung eines

Entscheidungsbaums ist der Iterative Dichotomizer 3 (ID3) Algorithmus nach [Qui86], bei dem
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der Informationsgewinn als Metrik für die Einteilung von kategorialen Daten verwendet wird

[KND15, S. 134–137]. Darüber hinaus existieren weitere Algorithmen wie C4.5, J48 und CART

(Classification And Regression Trees), die auf dem ID3-Algorithmus aufbauen [KND15, S. 167].

Der ID3-Algorithmus erzeugt einen möglichst flachen Entscheidungsbaum mittels rekursiver

Vorgehensweise [KND15, S. 135, 144].

Grundlegend besteht ein Entscheidungsbaum aus einem Wurzelknoten, inneren Knoten und

Blättern. Die Knoten und Blätter sind über Äste miteinander verbunden [KND15, S. 121]. Die

Knoten enthalten jeweils Entscheidungsregeln, die ausgehend vom Wurzelknoten nacheinan-

der abgearbeitet werden. Abhängig vom Ergebnis der Entscheidungsregel in einem Knoten,

wird ein bestimmter Ast gewählt, um zum nächsten Knoten zu gelangen. Dieser Ablauf wird

solange fortgesetzt, bis ein Blatt erreicht wird. Das Blatt enthält die endgültige Vorhersage der

Zielvariable [KND15, S. 122]. In Abbildung 4.4 sind drei Entscheidungsbäume zu sehen, die

unterschiedlich aufgebaut sind.

Die Entscheidungsregeln in den Knoten werden mit einem geeigneten Algorithmus aus den

Daten gelernt. Für kategoriale Daten berechnet der ID3-Algorithmus den Informationsgewinn

[KND15, S. 134–135, 144]. Beginnend beim Wurzelknoten, wird das kategoriale Merkmal aus

den Daten ausgewählt, das den höchsten Informationsgewinn erzeugt. Je höher der Informa-

tionsgewinn eines kategorialen Merkmals ist, desto besser ist das Merkmal in der Lage, die

Daten hinsichtlich der Zielvariable in homogene Gruppen einzuteilen. Das Merkmal mit dem

höchsten Informationsgewinn bildet die erste Entscheidungsregel und somit denWurzelknoten.

Anhand der aufgestellten Entscheidungsregel wird der Datensatz in weitere Gruppen eingeteilt.

Für jede dieser neuen Gruppen wird der ID3-Algorithmus erneut ausgeführt. Dieser Vorgang

wird solange durchgeführt, bis jede Gruppe hinsichtlich der Zielvariable homogen ist oder eine

weitere Einteilung der Daten nicht mehr möglich ist. In jedem Pfad, der vom Wurzelknoten bis

zu einem bestimmten Blatt verläuft, wird ein Merkmal lediglich einmal für die Einteilung der

Daten herangezogen [KND15, S. 134–137].

Bei einem kontinuierlichen Merkmal wird für die ein Einteilung der Daten ein Grenzwert er-

mittelt, der den größten Informationsgewinn liefert. Anschließend wird dieser Wert mit dem

jeweiligen Informationsgewinn der restlichen Merkmale verglichen. Im Vergleich zu katego-

rialen Merkmalen kann ein kontinuierliches Merkmal mehrmals für die Einteilung der Daten

entlang eines Pfades eingesetzt werden. Für eine Zielvariable, die kontinuierliche Werte enthält,

wird die gewichtete Varianz berechnet. Das Merkmal, das die gewichtete Varianz der Zielvaria-

ble minimiert, teilt die Daten an einem Knoten weiter auf. Damit kann ein Entscheidungsbaum

auch für die Regression eingesetzt werden [KND15, S. 150, 152–154].

Entscheidungsbäume besitzen in der Regel einen geringen Verzerrungsfehler [Lou14, S. 69;

HTF09, S. 587–588]. Allerdings sind sie sensitiv gegenüber verrauschten Daten, was zu einem
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hohen Varianzfehler führt [HTF09, S. 587; KND15, S. 158–159]. In Kapitel 4.3 werden die Begriffe

Verzerrungs- und Varianzfehler erklärt.

Der RF verringert den Varianzfehler, indem mehrere Entscheidungsbäume trainiert werden, die

untereinander eine möglichst geringe Korrelation aufweisen [HTF09, S. 587–588]. Dazu wird je-

der Entscheidungsbaum auf zufällig gezogenen Daten aus dem Datensatz trainiert. Als Beispiel

ist in Abbildung 4.4 ein RF-Modell zu sehen, das aus drei unterschiedlichen Entscheidungsbäu-

men besteht. Mit jedem Entscheidungsbaumwird eine Vorhersage über die Zielvariable erzeugt.

Die einzelnen Vorhersagen werden bei einer Regression über die Berechnung des arithmeti-

schen Mittels oder des Medians zu einer Gesamtvorhersage aggregiert. Bei einer Klassifikation

wird die Gesamtvorhersage über einen Mehrheitsentscheid ermittelt [KND15, S. 165].

Datensatz

Training: Bootstrap Aggregrating & Subspace Sampling

Entscheidungsbaum Entscheidungsbaum Entscheidungsbaum

Aggregation der Einzelvorhersagen

Gesamtvorhersage

Wurzelknoten innerer Knoten Blattknoten

Abbildung 4.4: Aufbau eines RF-Modells, das aus drei Entscheidungsbäumen

besteht. Abbildung abgeändert nach [KND15, S. 166].

Die Daten für das Training der einzelnen Entscheidungsbäume werden zufällig gewählt und

können mehrmals gezogen werden (Ziehen mit Zurücklegen). Der Ziehvorgang wird so lange

wiederholt, bis die Originalgröße des Trainingsdatensatzes erreicht wird. Dieses Verfahren wird

als Bootstrap Aggregating (Bagging) bezeichnet. Aufgrund der zufällig gewählten Trainings-

daten ist jeder Entscheidungsbaum unterschiedlich aufgebaut. Neben Bagging wird beim RF

das Verfahren Subspace Sampling angewendet, bei dem nur eine bestimmte Anzahl an zufällig

46 Kapitel 4
Grundlagen der Zeitreihenanalyse



Abschnitt 4.3. Validieren und Testen

ausgewählten Merkmalen für das Training eines Entscheidungsbaums berücksichtigt wird. Die

zufällige Wahl der Merkmale findet während der Aufteilung der Daten in einem Knoten eines

Entscheidungsbaums statt [HTF09, S. 588]. Die Kombination von Bootstrap Aggregating und

Subspace Sampling ist in Abbildung 4.5 dargestellt.

Der RF wird in [Bre01a] vorgestellt und greift nach [Lou14, S. 71–72] die in [Bre96; AGW97]

vorgestellten Methoden auf. In dieser Arbeit wird ein RF-Regressionsmodell durch die

RandomForestRegression-Klasse aus der scikit-learn Biliothek [PVG+11] in der Version 1.3.2

umgesetzt.

Datensatz

ID M1 M2 M3 Y

0
... ... ... ...

1
... ... ... ...

2
... ... ... ...

Bootstrap Aggregrating & Subspace Sampling

ID M1 M2 Y

0
... ... ...

0
... ... ...

1
... ... ...

ID M2 M3 Y

1
... ... ...

2
... ... ...

1
... ... ...

ID M1 M3 Y

1
... ... ...

1
... ... ...

2
... ... ...

Abbildung 4.5: Bootstrap Aggregating (Bagging) und Subspace Sampling

angewendet auf einen Datensatz, der die Merkmale M1, M2 und M3 und die

Zielvariable Y beinhaltet. Abbildung abgeändert nach [KND15, S. 166].

4.3 Validieren und Testen

Das Training eines Vorhersagemodells erfolgt über einen Trainingsdatensatz, der ein Teil des

gesamten Datensatzes ist. Die übrigen Daten sind der Testdatensatz, der für die abschließende

Schätzung der tatsächlichenModellperformanz dient [Nel20, S. 191]. DerDatensatz wird folglich

in einen Trainings- und Testdatensatz eingeteilt.

Bei der Einteilung ist darauf zu achten, dass der Trainings- und Testdatensatz gleichermaßen die

Betriebspunkte des Prozesses enthält. Wird der Trainingsdatensatz zu klein gewählt, wodurch

Betriebspunkte des Prozesses im Trainingsdatensatz fehlen, so kann von einem Vorhersage-

modell keine hohe Vorhersageperformanz erwartet werden. Bei einem zu klein gewählten

Testdatensatz hingegen kann die Schätzung des Modellperformanz ungenau werden [Nel20,

S. 191].
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Des Weiteren ist zu beachten, dass der Trainingsdatensatz nicht für die Evaluation des Vor-

hersagemodells herangezogen wird, da dies zu einer zu optimistischen Schätzung der Modell-

performanz führt [Ras18, S. 7]. Der Grund hierfür liegt darin, dass bei der Verwendung der

Trainingsdaten lediglich der Verzerrungsfehler zu optimistisch geschätzt wird [Nel20, S. 184].

Der Verzerrungsfehler resultiert aus der Inflexibilität des Modells, das aufgrund der gewählten

Modellstruktur nicht in der Lage ist, die Zusammenhänge in den Daten zu erlernen [Nel20,

S. 178]. Ein Verzerrungsfehler liegt beispielsweise vor, wenn ein quadratischer Zusammenhang

über ein lineares Modell beschrieben werden soll. Mit dem linearen Modell ist es nicht möglich,

den quadratischen Zusammenhang in den Daten zu erlernen, auch wenn die Parameter des

linearen Modells optimal ermittelt werden können. Folglich bleibt stets ein Verzerrungsfehler

bestehen, der auf die gewählte Modellstruktur zurückzuführen ist. Inflexible Modelle erreichen

daher auf den Trainings- und Testdaten eine schlechte Performanz. In diesem Fall wird von

einer Unteranpassung (Underfitting) gesprochen [Nel20, S. 184; KND15, S. 11; RM17, S. 197].

Das Gegenteil einer Unteranpassung ist eine Überanpassung (Overfitting), die auf den Vari-

anzfehler eines Modells zurückgeführt wird. In diesem Fall übersteigt der Varianzfehler den

Verzerrungsfehler. DerVarianzfehler resultiert aus derUngenauigkeit der geschätztenModellpa-

rameter, die von den optimalen Modellparametern abweichen. Dies ist darauf zurückzuführen,

dass die Trainingsdaten, aus denen die Modellparameter geschätzt werden, in der Regel ver-

rauscht sind und nur in begrenztem Umfang zur Verfügung stehen [Nel20, S. 180]. Mit einer

größeren Anzahl an Modellparametern wird das Modell flexibler, allerdings steigt auch die

Ungenauigkeit der geschätzten Parameter, was zu einem höheren Varianzfehler führt.

Für überangepasste Modelle kann die Erhöhung der Trainingsdaten eine sinnvolle Vorgehens-

weise sein, um den Varianzfehler und damit die Überanpassung zu verringern [Nel20, S. 182]. In

vielen Fällen ist eine Erhöhung an Trainingsdaten jedoch nicht realisierbar. Alternativ kann die

Anzahl der Modellparameter verringert werden, um die Überanpassung zu reduzieren [Nel20,

S. 181]. Es ist jedoch zu beachten, dass eine zu starke Verringerung der Parameteranzahl nicht

in ein unterangepasstes Modell führt. An dieser Stelle ist der Konflikt zwischen einer Un-

teranpassung und Überanpassung ersichtlich. Eine simultane Reduzierung des Verzerrungs-

und Varianzfehlers ist durch die Änderung der Parameteranzahl daher nicht möglich. Dieses

Dilemma wird in der Literatur als Verzerrung/Varianz-Kompromiss (bias/variance tradeoff)

bezeichnet [Nel20, S. 183].

4.3.1 Three-Way Holdout

Beim maschinellen Lernen kommen Algorithmen zum Einsatz, um Modelle anhand von Trai-

ningsdaten anzupassen [Ras18, S. 6]. Solche Algorithmen besitzen Einstellungsparameter (Hy-

perparameter), um die Modellanpassung zu optimieren [Ras18, S. 20]. Bei der Anpassung stellt

beispielsweise die maximale Baumtiefe eines Entscheidungsbaums einen Hyperparameter dar.
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Die Anpassung der Hyperparameter erfolgt anhand einer Bewertung der Modellperformanz, die

für unterschiedliche Hyperparameterkonfigurationen mit einem Teil des Trainingsdatensatzes

ermittelt wird. Dieser Teil bildet den Validierungsdatensatz [KND15, S. 406].

Die Aufteilung in einen Trainings-, Validierungs- und Testdatensatz wird auch als Three-

Way-Holdout-Methode bezeichnet [Ras18, S. 22]. In Abbildung 4.6 wird die Einteilung eines

Datensatzes über die Three-Way-Holdout-Methode verdeutlicht, bei der zusätzlich die zeitliche

Komponente der Daten (Out-of-Time Sampling) [KND15, S. 412] berücksichtigt wird.

Trainingsdaten Val.-daten Testdaten

Zeit

Abbildung 4.6: Einteilung der Daten mit der Three-Way-Holdout-Methode in

einen Trainings-, Validierungs- und Testdatensatz. Die zeitliche Komponente

derDaten (Out-of-Time Sampling) [KND15, S. 412] wird dabei berücksichtigt.

In Bezug auf das Größenverhältnis von Trainings-, Validierungs- und Testdaten bestehen keine

festen Vorgaben. In der Literatur werden Verhältnisse wie 5:2:3, 4:2:4 [KND15, S. 406] und 6:2:2

[Fro18, S. 198] angegeben. Die Trainings- und Validierungsdaten dienen der Anpassung von

Vorhersagemodellen, während der Testdatensatz für die abschließende Evaluation des besten

Vorhersagemodells herangezogen wird. Ein abschließender Test ist weiterhin erforderlich, da

die Validierungsdaten aufgrund der Anpassung der Hyperparameter in das Training „durchsi-

ckern“ können und somit nicht mehr für die Abschätzung einer realistischen Modellperformanz

verwendet werden können [Ras18, S. 22].

Die Three-Way-Holdout-Methode findet Anwendung, wenn der Datensatz eine ausreichende

Größe besitzt, sodass sowohl der Trainings- als auch der Validierungs- und Testdatensatz die

Betriebspunkte eines Prozesses gleichermaßen beinhalten. Sofern eine begrenzte Datenmenge

zur Verfügung steht, bieten sich andere Validierungsmethoden im Bereich der Zeitreihenanalyse

an, um eine realistische Modellperformanz abschätzen zu können [BHK18, S. 70; CTM20,

S. 1998]. In [CTM20] stellen Cerqueira et al. unterschiedliche Validierungsmethoden im Bereich

der Zeitreihenvorhersage vor, die im Hinblick auf die Abschätzung der Modellperformanz

empirisch untereinander verglichen werden. Cerqueira et al. weisen darauf hin, dass die Wahl

einer Validierungsmethode nicht trivial ist, da die Beobachtungen einer Zeitreihe aufgrund ihrer

zeitlichen Anordnung in der Regel nicht unabhängig voneinander sind [CTM20, S. 1997–1998].

Anhand von 174 realen Zeitreihen zeigen Cerqueira et al. auf, dass sich keine bestimmte Me-

thode von den untersuchten Validierungsmethoden für alle betrachteten Zeitreihen eignet. Sie

machen darauf aufmerksam, weitere Untersuchungen durchzuführen, in denen Zeitreihen-

merkmale (siehe Kapitel 4.1.2) in Zusammenhang mit verschiedenen Validierungsmethoden

gesetzt werden [CTM20, S. 2012]. Im Fazit empfehlen Cerqueira et al. jedoch für stationäre

Zeitreihen die Methode Blocked Cross-Validation (CV-Bl) und für nicht-stationäre Zeitreihen

Kapitel 4
Grundlagen der Zeitreihenanalyse

49



Abschnitt 4.3. Validieren und Testen

die Methode Repeated Holdout (Rep-Holdout) [CTM20, S. 2019–2020]. Die folgenden Vali-

dierungsmethoden werden im Rahmen der Modellselektion vorgestellt. Dabei werden die

Hyperparameter eines Modells innerhalb der entsprechenden Validierungsmethode solange

variiert, bis die bestmögliche Modellperformanz ermittelt wurde.

4.3.2 Blocked Cross-Validation (CV-Bl)

Die Blocked Cross-Validation (CV-Bl) ähnelt der klassischen Cross-Validation (CV) [CTM20,

S. 2002]. Bei beiden Methoden erfolgt eine Einteilung der Beobachtungen in k-Blöcke. Der

wesentliche Unterschied zwischen der CV und der CV-Bl besteht darin, dass bei der CV-Bl die

Beobachtungen nicht zufällig gemischt werden. Die zeitliche Anordnung der Beobachtungen

einer Zeitreihe bleibt bei der CV-Bl erhalten [CTM20, S. 2002]. Jeder Block wird anschließend

einmalig als Validierungsdatensatz verwendet, während die restlichen k − 1 Blöcke als Trai-

ningsdaten für das entsprechende Modell verwendet werden. Insgesamt werden k Durchläufe

durchgeführt, in denen unterschiedliche Trainings- und Validierungsdaten verwendet werden.

Abschließend werden die anhand der k Validierungsdatenätze ermittelten Performanzwerte

aggregiert, um einen endgültigen Performanzwert zu erhalten [RM17, S. 191–192; KND15,

S. 408–410; Nel20, S. 193]. Abbildung 4.7 zeigt den Ablauf der CV-Bl mit k = 10.

Trainingsdaten Val.-daten

1. Schritt

2. Schritt

3. Schritt

...

10. Schritt

Final Testdaten

Zeit

Abbildung 4.7: Ablauf der CV-Bl mit k = 10. Die zeitliche Anordnung

der Beobachtungen bleibt bei der CV-Bl erhalten. In einem finalen Schritt

werden alle Trainingsdaten für das Training des Modells mit der höchsten

Performanz verwendet, das für einen abschließenden Test auf die Testdaten

angewendet wird. Abbildung abgeändert nach [CTM20, S. 2001; RM17,

S. 192].

Die Hyperparameter eines Modells werden solange variiert, bis die bestmögliche Modellperfor-

manz innerhalb der CV-Bl ermittelt wurde. Im finalen Schritt wird das Modell mit der höchsten

Performanz mit den gesamten Trainingsdaten erneut trainiert. Der Vorteil für diesen abschlie-

ßenden Trainingsvorgang ist, dass alle Trainingsdaten verwendet werden, was in der Regel zu
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einer verbesserten Modellperformanz führt. Anschließend wird das Modell auf den separaten

Testdatensatz angewendet, um eine abschließende Modellperformanz zu ermitteln [Ras18, S. 30;

RM17, S. 192].

4.3.3 Repeated Holdout (Rep-Holdout)

Repeated Holdout (Rep-Holdout) basiert auf der wiederholten Anwendung von Out-of-Time

Sampling [KND15, S. 412]. Die Methode ist nach [CTM20, S. 2018–2020] empfehlenswert, wenn

nicht stationäre Zeitreihen vorliegen. Innerhalb eines vorher festgelegten Zeitfensters wird

zufällig ein Zeitpunkt a gewählt, der die Zeitreihe in einen Trainings- und Validierungsdatensatz

einteilt. Diese Vorgehensweise wird mehrmals durchgeführt. In dem Experiment von Cerqueira

et al. wurden 10 Durchläufe durchgeführt [CTM20, S. 2009]. Abbildung 4.8 zeigt die Rep-

Holdout-Methode für einen Durchlauf.

Die in den Durchläufen ermittelten Performanzwerte werden im Anschluss zu einem gesamten

Wert aggregiert. Der Gesamtwert dient einem Vergleich mit weiteren Modellen, die sich durch

abweichende Hyperparameter auszeichnen. Das Modell mit der bestmöglichen Performanz

kann anschließend, wie bereits bei der CV-Bl erwähnt, mit den gesamten Trainings-, und

Validierungsdaten trainiert werden. Die finale Modellperformanz kann auf einem separaten

Testdatensatz berechnet werden.

Trainingsdaten Val.-daten

a

Zeitfenster

Zeit

Abbildung 4.8: Vorgehensweise der Rep-Holdout-Methode. Aus einem vor-

her festgelegten Zeitfenster wird zufällig ein Zeitpunkt a gewählt, der die

Zeitreihe in einen Trainings- und Validierungsdatensatz einteilt. Die Eintei-

lung wird mehrmals durchgeführt. Die ermittelten Performanzwerte werden

anschließend zu einem Gesamtwert aggregiert. Abbildung abgeändert nach

[CTM20, S. 2000].

4.3.4 Prequential-Methode

Zur Vollständigkeit wird die in [CTM20, S. 2000–2001] genannte Prequential-Methode erwähnt,

die bereits in unserer Arbeit [GKD+18] für die Gegenwartsvorhersage der Badtemperatur ver-

wendet wurde. Bei der Prequential-Methode werden die Beobachtungen einer Zeitreihe in

Blöcke unterteilt, wobei die zeitliche Anordnung der Beobachtungen erhalten bleibt. An-

schließend werden die in den ersten Blöcken enthaltenen Beobachtungen als Trainingsdaten

verwendet, während die Beobachtungen in dem darauffolgenden Block als Validierungsdaten

dienen. Nach der erfolgten Validierung werden die Trainingsdaten um den nächsten Block

Kapitel 4
Grundlagen der Zeitreihenanalyse

51



Abschnitt 4.4. Zusammenfassung

erweitert. Die Beobachtungen des darauffolgenden Blocks werden für die Validierung ver-

wendet. Dieses Vorgehen wird so lange wiederholt, bis der letzte Block für die Validierung

verwendet wurde [CTM20, S. 2000]. Die in den einzelnen Schritten erzielten Performanzwerte

werden zu einem Gesamtwert aggregiert. Anschließend durchläuft ein weiteres Modell mit

abweichenden Hyperparametern die einzelnen Schritte. Das Modell, das die bestmögliche Per-

formanz erreicht, wird in einem finalen Schritt auf den gesamten Trainingsdaten trainiert, um

eine abschließende Modellperformanz auf den Testdaten zu erhalten [Ras18, S. 30]. Abbildung

4.9 zeigt den Ablauf der Prequential-Methode. Des Weiteren existieren diverse Variationen der

Prequential-Methode, die in [CTM20, S. 2000–2001] aufgezeigt werden.

Trainingsdaten Val.-daten

1. Schritt

2. Schritt

3. Schritt

...

10. Schritt

Final Testdaten

Zeit

Abbildung 4.9: Vorgehensweise der Prequential-Methode mit elf Blöcken.

Die zeitliche Anordnung der Beobachtungen bleibt bei dieser Methode er-

halten. Die schraffierten Blöcke werden in dem jeweiligen Schritt nicht

berücksichtigt. In einem finalen Schritt werden alle Trainingsdaten für das

Training des Modells mit der höchsten Performanz verwendet, das für ei-

nen abschließenden Test auf die Testdaten angewendet wird. Abbildung

abgeändert nach [CTM20, S. 2000; GKD+18, S. 5].

4.4 Zusammenfassung

In diesem Kapitel wurden Grundlagen der Zeitreihenanalyse dargestellt, die für die Proof-of-

Conept-Phase in Kapitel 5 genutzt werden. Zunächst wurde die Zeitreihenzerlegung vorgestellt,

mit der sich eine Zeitreihe in eine Trend-Zyklus-Komponente, Saison- und Restkomponente

zerlegen lässt. Mithilfe dieser Komponenten können Eigenschaften einer Zeitreihe berechnet

werden, wie beispielsweise die Stärke der Saisonalität einer Zeitreihe. Die numerische Beschrei-

bung einer bestimmten Zeitreiheneigenschaft wird auch als Zeitreihenmerkmal bezeichnet.

Anhand einer Literaturübersicht wurde herausgestellt, dass Zeitreihenmerkmale unter anderem

in Kombination mit gleitenden Fenstern in unterschiedlichen Anwendungsbereichen eingesetzt
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werden. Die Berechnung von Zeitreihenmerkmalen in gleitenden Fenstern ist Bestandteil für

die Gegenwartsvorhersage (Nowcasting) der Badtemperatur in dieser Arbeit.

Um eine Zeitreihe auf Stationarität zu überprüfen, können die Stärke der Saisonalität und der

KPSS-Test angewendet werden, die in diesem Kapitel beschrieben wurden und im praktischen

Teil dieser Arbeit auf die Badtemperaturverläufe angewendet werden. Darüber hinaus wurden

die AKF und PAKF vorgestellt. Beide Funktionen werden im nachfolgenden Kapitel verwendet,

um die Badtemperaturverläufe hinsichtlich ihrer Autokorrelationen näher zu untersuchen.

Das vorgestellte Periodogramm unterstützt zudem bei der Analyse von Periodizitäten in den

Badtemperaturverläufen.

Der Unterschied zwischen einem lokalen und globalen Vorhersagemodell wurde aufgezeigt.

Während bei einer lokalen Vorhersage für jede Zeitreihe ein eigenständiges Vorhersagemodell

trainiert wird, wird bei der globalen Vorhersage ein einziges Modell mit allen verfügbaren

Zeitreihen trainiert. In diesem Zuge wurden das AR-Modell und RF-Modell vorgestellt und

Begründungen für die Wahl dieser Modelle dargestellt. Beide Modelle werden in dieser Arbeit

für eine globale Vorhersage der Badtemperatur eingesetzt. Abschließend wurden mehrere Me-

thoden aufgezeigt, um Vorhersagemodelle im Kontext der Zeitreihenanalyse zu validieren. Die

Wahl einer Validierungsmethode findet im praktischen Teil statt, nachdem die Badtemperatur-

verläufe auf Stationarität überprüft wurden.
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KAPITEL 5

Proof of Concept

In diesem Kapitel werden die anhand der Proof-of-Concept-Phase [BP20, S. 9] durchgeführten

Schritte vorgestellt, die für die Implementierung der Lösungsansätze abgearbeitet wurden. Die

Proof-of-Concept-Phase ist von einer iterativen Vorgehensweise gekennzeichnet, mit der die

zuvor definierten Lösungsansätze umgesetzt und überprüft werden. In Abbildung 5.1 ist die-

se Vorgehensweise nach [BP20, S. 9] dargestellt. Die Proof-of-Concept-Phase beinhaltet den

Austausch mit Prozessexperten/-innen über Hypothesen und Lösungsansätze, die Datenbereit-

stellung, die Lösungsentwicklung sowie die Evaluation der entwickelten Lösungen.

Ziel

Hypothesen/Lösungsansätze

Datenbereitstellung

Lösungsentwicklung

Evaluation

Einbindung

Prozessexperten/-innen

Einbindung

Prozessbedienende

Abbildung 5.1: Iterative Vorgehensweise innerhalb der Proof-of-Concept-

Phase. Abbildung abgeändert nach [BP20, S. 9].

Zunächst werden in diesem Kapitel der Datenfluss zwischen der TAE und dem LfA durch das

angepasste initiale ML-Pipeline-Diagramm aufgezeigt und die Implementierung der Lösungs-

ansätze erörtert. Im Rahmen der Datenbereitstellung wurden die von der TAE bereitgestellten

Badtemperaturdaten aufbereitet und analysiert. Die aufbereiteten Daten dienten der anschlie-

ßenden Entwicklung von Lösungen zurVorhersage der Badtemperatur. Die Vorhersagewurde in

eine Tagesprognose (Forecasting) und in eine Gegenwartsvorhersage (Nowcasting) aufgeteilt.

Innerhalb der Evaluation erfolgte eine Gegenüberstellung der Performanz der Vorhersage-

modelle. Insgesamt wurde die Proof-of-Concept-Phase in dieser Arbeit einmal durchlaufen.
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Zeitangaben, die in der koordinierten Weltzeit (Coordinated Universial Time (UTC)) angegeben

sind, haben in diesem Kapitel den Zusatz UTC. Alle anderen Zeitangaben sind in der Zeitzone

Europa/Berlin angegeben.

5.1 Hypothesen/Lösungsansätze

Für die Vorhersage der Badtemperatur wurden für diese Arbeit zwei Lösungsansätze analysiert,

deren Vorgehensweisen in Kapitel 2 beschrieben ist. Die Wahl der globalen Vorhersagemodelle

wurde in Kapitel 4.2 begründet. Der erste Lösungsansatz ist ein Vergleich zwischen einem globa-

len AR-Modell und ausgewählten lokalen Vorhersagemodellen, mit denen eine Tagesprognose

(Forecasting) der Badtemperatur erreicht wird.

Die Erstellung von Gegenwartsvorhersagen (Nowcasting) der Badtemperatur wird mit dem

zweiten Lösungsansatz erzielt. Dazu wurde ein globales RF-Regressionsmodell trainiert und

validiert. Für das Training des RF-Regressionsmodells wurden die in Kapitel 3.2 beschriebenen

Prozessvariablen berücksichtigt, die einen wesentlichen Einfluss auf die Badtemperatur aus-

üben. In Abbildung 5.2 ist das angepasste ML-Pipeline-Diagramm abgebildet, das den Datenfluss

zwischen der TAE und dem LfA darstellt. Im Vergleich zum initialen ML-Pipeline-Diagramm

in Abbildung 2.1 ist die Berücksichtigung der Badtemperaturvorhersagen in die bestehen-

den Ofenregelung nicht eingezeichnet, da der Fokus dieser Arbeit auf der Entwicklung von

Vorhersagemodellen liegt.

Aluminiumelektrolyseofen Datenbank

Manuelle Messungen 

(u. a. Badtemperaturmessungen)

VPN

Vorverarbeitung 

der Daten
LfA

Vorhersage der

Badtemperatur

Historische 

Prozessdaten

Datenanalyse

TAE

Ergebnisse & 

Visualisierung

Weitere 

Prozessdaten

Forecasting
Lokale Modelle

Globales AR Modell

Nowcasting
Globales RF Modell

Abbildung 5.2: Angepasstes ML-Pipeline-Diagramm für die Vorhersage der

Badtemperatur.
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Auf die historischen Prozessdaten wurde über ein virtuelles privates Netzwerk (VPN) zwischen

der TAE und dem LfA zugegriffen. Wie in Kapitel 2 beschrieben, zeichnet die TAE die Betriebs-

daten der einzelnen Aluminiumelektrolyseöfen auf und überträgt diese in eine Datenbank.

Auch manuelle Messungen, wie die Messung der Badtemperatur eines Ofens, werden in einer

Datenbank abgespeichert. Der Zugriff auf die historischen Prozessdaten der TAE erlaubte eine

anschließende Weiterverarbeitung und Analyse der Daten. Die Analyseergebnisse wurden für

die Entwicklung der zuvor beschriebenenModelle eingesetzt, die eine Badtemperaturvorhersage

ermöglichen.

5.2 Datenbereitstellung

Für die Badtemperaturvorhersage wurden die Badtemperaturdaten der TAE aus dem Zeitraum

vom 01.01.2022 06:00 Uhr bis zum 24.04.2023 06:00 Uhr von den Öfen in Halle 1 aufbereitet

und analysiert. Dabei wurden ausschließlich fehlerfreie Messungen berücksichtigt. Im ersten

Schritt der Datenbereitstellung wurden die Zeitstempel der einzelnen Badtemperaturverläufe

untersucht. Daraus geht hervor, dass Badtemperaturmessungen an einem Ofen nicht exakt zur

gleichen Uhrzeit stattgefunden haben und auch mehrfach innerhalb einer Schicht aufgetreten

sind.

Des Weiteren erfolgte eine Verknüpfung der Badtemperaturdaten mit weiteren Betriebsdaten,

um ausgeschaltete Öfen zu identifizieren undRückschlüsse auf das Ofenalter zu ziehen. Öfen, die

innerhalb des Analysezeitraums erst kürzlich in Betrieb genommen wurden oder ausgeschaltet

waren, wurden in dieser Arbeit nicht berücksichtigt.

5.2.1 Anpassung der Zeitstempel

Aufgrund des manuellen Messvorgangs der Badtemperatur finden die täglichen Messungen

an einem Ofen nicht exakt zur gleichen Uhrzeit statt. Daher konnte nicht davon ausgegangen

werden, dass die zeitlichen Abstände der Badtemperaturmessungen eines Ofens immer gleich

sind. Der Arbeitstag der TAE besteht aus drei Schichten, wobei die erste Schicht regulär um 6

Uhr, die zweite Schicht um 14 Uhr und die dritte Schicht um 22 Uhr beginnt. In den Abbildungen

5.3 und A.1 ist die zeitliche Variation derMesszeitpunkte für die Öfen aus Halle 1 zu sehen. Dazu

wurde jeweils die zeitliche Differenz zwischen dem Messzeitpunkt (UTC) der Badtemperatur

und dem Beginn der ersten Schicht berechnet.

Die Abbildungen 5.3 und A.1 veranschaulichen die Zeiten der drei Schichten anhand der ver-

schobenen Boxplots. Aus diesen geht hervor, dass im Untersuchungszeitraum die Badtempe-

raturmessungen für die Öfen 1081 bis 1120 von der ersten Schicht, für die Öfen 1041 bis 1080

von der zweiten Schicht und für die Öfen 1001 bis 1040 von der dritten Schicht durchgeführt

wurden. Es gibt Messungen, die außerhalb der regulären Schicht stattgefunden haben und zum

Teil als Ausreißer in den Boxplots dargestellt sind. Gründe für diese nicht regulären Messungen
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Abbildung 5.3: Die Boxplots zeigen die Verteilung der zeitlichen Differenzen

für die Öfen der ersten Schicht. Die Differenzen wurden jeweils zwischen

dem Messzeitpunkt (UTC) der Badtemperatur und dem Beginn der ersten

Schicht berechnet.

könnten Kontrollen von auffälligen Öfen mit hoher Badtemperatur gewesen sein oder Ver-

suchsdurchführungen, bei denen zusätzliche Messungen stattgefunden haben. Als Beispiel für

eine Versuchsdurchführung kann die Untersuchung der Auswirkung einer Hallenschaltung auf

die Badtemperatur genannt werden, die in Kapitel 3.2 beschrieben wurde. Des Weiteren kann

der Ofen 1041 genannt werden, an dem am 08.03.2022 und 09.03.2022 zusätzliche Messungen

durchgeführt wurden, die in Tabelle 5.1 ersichtlich sind.

Zeitstempel (UTC) Badtemperatur (°C)

06.03.2022 17:44:00 980,4
07.03.2022 15:03:00 977,5
08.03.2022 16:27:00 978,5
08.03.2022 22:40:00 977,8
09.03.2022 00:25:00 979,6
09.03.2022 01:39:00 977,6
09.03.2022 02:23:00 978,5
09.03.2022 03:39:00 977,9
09.03.2022 04:06:00 980,2
09.03.2022 14:45:54 975,8

Tabelle 5.1: Zusätzliche Badtemperaturmessungen, die am 08.03.2022 und

09.03.2022 am Ofen 1041 durchgeführt wurden.

Anhand der Abbildungen 5.3 und A.1 sowie der Tabelle 5.1 ist ersichtlich, dass die Messungen an

einem Ofen nicht zur gleichen Uhrzeit stattgefunden haben und somit die zeitlichen Abstände
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zwischen den Messungen variieren. Zeitreihen, deren Beobachtungen mit ungleichmäßigen

Zeitabständen aufgezeichnet werden, werden als nicht reguläre Zeitreihen bezeichnet. Sie

können im Bereich der Zeitreihenanalyse zu Schwierigkeiten führen, da zahlreiche State-Of-

The-Art-Methoden reguläre Zeitreihen voraussetzen [CCV21, S. 1]. Eine Möglichkeit, um mit

dieser Problematik umzugehen, ist die Anpassung der Messzeitstempel, sodass diese zueinander

einen gleichmäßigen zeitlichen Abstand aufweisen.

In einem ersten Schritt wurden außerordentliche Badtemperaturmessungen entfernt. Lediglich

die Messungen, die von der zuständigen regulären Schicht durchgeführt wurden, wurden in

die weiteren Untersuchungen einbezogen. Beispielsweise wurden nur die Messungen vom

Ofen 1041 berücksichtigt, die innerhalb des zweiten Schichtzeitraums stattgefunden haben.

Für die Messungen am 08.03.2022 und 09.03.2022 in Tabelle 5.1 bedeutet das, dass lediglich die

Messungen am 08.03.2022 um 16:27 Uhr (UTC) und am 09.03.2022 um 14:45 Uhr (UTC) weiter

analysiert wurden. Alle restlichen Messungen, die an diesen beiden Tagen stattgefunden haben,

liegen außerhalb der zweiten Schicht (13:00 Uhr bis 21:00 Uhr (UTC)) und wurden von der

weiteren Analyse ausgeschlossen.

Bei Mehrfachmessungen innerhalb einer Schicht wurde die letzte (späteste) Badtemperaturmes-

sung betrachtet. Das lässt sich damit begründen, dass eine erneuerte Messung durchgeführt

wird, wenn Zweifel an der ersten Messung bestehen. Daher wurde für die weitere Vorgehens-

weise lediglich die letzte (späteste) Messung in einer Schicht berücksichtigt.

Das Verwerfen von Messungen hatte jedoch zur Folge, dass fehlende Einträge im Datensatz

erzeugt wurden. Fehlende Einträge treten auch dann auf, wenn Messungen an einem Ofen nicht

durchgeführt oder nicht in die entsprechende Datenbank übertragen wurden. Zum Beispiel

erzeugen Öfen, die nicht im Betrieb sind, fehlende Einträge im Datensatz, da an abgeschalteten

Öfen keine Messungen stattfinden. Tabelle 5.2 beinhaltet Messeinträge vom Ofen 1090 aus

dem Jahr 2022. Aus dieser geht hervor, dass für den 12.01.2022 und den 16.01.2022 jeweils

kein Messeintrag vorhanden ist. Für die weitere Vorgehensweise wurden Messeinträge mit

fehlendem Datum ergänzt. Der zugehörige Badtemperaturwert wurde als fehlend kennzeichnet

(n.a.).

Für die Tagesprognose der Badtemperatur spielte die Uhrzeit der jeweiligen Badtemperatur-

messung keine Rolle. Lediglich das Datum einer Messung war von Interesse. Daher wurde

nur das Datum der jeweiligen Zeitstempel berücksichtigt. Das Datum, an dem jeweils die erste

Schicht begonnen hat, wurde als Referenzdatum verwendet und jeder Badtemperaturmessung

in den folgenden drei Schichten zugeordnet. Das Referenzdatum wurde auch den Messungen

aus der dritten Schicht zugeordnet, die nach Mitternacht stattfanden. Zum Beispiel wurde am

11.01.2022 um 21:35 Uhr (UTC) eine Badtemperaturmessung am Ofen 1001 durchgeführt. Die

nächste reguläre Messung fand am 13.01.2022 um 00:43 Uhr (UTC) am Ofen 1001 statt. Die

Messung am 11.01.2022 behielt das Datum bei, da der Beginn der vorherigen ersten Schicht am
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Datum Badtemperatur (°C)

10.01.2022 953,4
11.01.2022 958,4
13.01.2022 956,1
14.01.2022 948,8
15.01.2022 954,0
17.01.2022 952,5
18.01.2022 957,2

Tabelle 5.2: In der Tabelle liegen einige Badtemperaturmessungen aus dem

Jahr 2022 vor, die am Ofen 1090 durchgeführt wurden. Für den 12.01.2022

und den 16.01.2022 ist jeweils kein Messeintrag vorhanden.

11.01.2022 um 05:00 Uhr (UTC) war. Die Messung am 13.01.2022 erhielt hingegen das Datum

12.01.2022, da die vorherige erste Schicht am 12.01.2022 um 05:00 Uhr (UTC) begann.

Aus Tabelle 5.3 ist ersichtlich, dass nun für den 12.01.2022 und 16.01.2022 jeweils ein Eintrag

vorhanden ist. Der Badtemperaturwert an den beiden Tagen ist als fehlend mit n.a. (nicht

angegeben) gekennzeichnet.

Datum Badtemperatur (°C)

10.01.2022 953,4
11.01.2022 958,4
12.01.2022 n.a.

13.01.2022 956,1
14.01.2022 948,8
15.01.2022 954,0
16.01.2022 n.a.

17.01.2022 952,5
18.01.2022 957,2

Tabelle 5.3: Die zuvor fehlenden Einträge für den Ofen 1090 sind nun für den

12.01.2022 und den 16.01.2022 in der Tabelle vorhanden, wobei der jeweilige

Badtemperaturwert als fehlend mit n.a. (nicht angegeben) gekennzeichnet

wurde.

5.2.2 Verknüpfung mit weiteren Betriebsdaten

Um Rückschlüsse darüber zu erhalten, ob fehlende Badtemperaturmessungen aufgrund von

abgeschalteten Öfen zustande gekommen sind, wurde der Betriebszustand der Öfen mit den

entsprechenden Badtemperaturmessungen verknüpft. Außerdem wurde das Alter der einzelnen

Öfen betrachtet. Neu angefahreneÖfenwerden als EarlyOperation Pots bezeichnet und besitzen

andere Sollwerteinstellungen als Öfen, die schon länger in Betrieb sind. Aus diesen Gründen ist

es sinnvoll, für Analysen das Ofenalter zu berücksichtigen, da junge Öfen ein anderes Verhalten

als alte aufweisen [KGD+21, S. 768].
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In dieser Arbeit wurden Öfen ausgeschlossen, die im Analysezeitraum außer Betrieb waren. Das

hatte den Vorteil, dass nahezu vollständige Badtemperaturverläufe analysiert und miteinander

verglichen werden konnten. So wurde die weitere Vorverarbeitung der Daten vereinfacht, da

die Tage, an denen die Öfen nicht in Betrieb waren, nicht mehr gesondert berücksichtigt werden

mussten. Da sich nach [KGD+21, S. 768] das Verhalten älterer Öfen von jungen Öfen unter-

scheidet, wurden für die weitere Untersuchung nur Öfen betrachtet, die im Analysezeitraum

älter als 100 Tage waren. Insgesamt führte dieser Ausschluss dazu, dass die Badtemperaturdaten

von 60 Öfen in der vorliegenden Arbeit weiter untersucht wurden.

5.2.3 Zusammenfassung

Mit den in diesem Kapitel aufgezeigten Vorverarbeitungsschritte wurden aus den Badtempera-

turdaten der einzelnen Öfen vollständige Zeitreihen erzeugt. Die Abbildung 5.4 zeigt jeweils

einen Ausschnitt des Badtemperaturverlaufs von dem Ofen 1001 vor und nach der Anpassung

der Daten über die in diesem Kapitel aufgezeigten Schritte. In dieser sind die Mehrfachmessun-

gen zwischen dem 06.09.2022 und dem 09.09.2022 vor der Anpassung der Badtemperaturdaten

ersichtlich, die nach der Anpassung nicht mehr vorhanden sind.

Für die Tagesprognose spielen die Uhrzeiten der einzelnen Messungen keine wesentliche Rolle.

Daher wurden die Uhrzeiten der Messungen verworfen, da lediglich der Tag der Messung

relevant war. Die originalen Messzeitpunkte blieben jedoch für weitere Analysen und die

Gegenwartsvorhersage (Nowcasting) im Datensatz erhalten.
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Abbildung 5.4: Der Badtemperaturverlauf des Ofens 1001 ab dem 01.09.2022

bis zum 30.09.2022 vor und nach der Anpassung der Badtemperaturdaten.
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5.3 Zeitreihenanalyse der Badtemperaturdaten

Im weiteren Verlauf dieser Arbeit wurde der komplette Datensatz in einen Trainings- und

Testdatensatz aufgeteilt. Anschließend wurden die Trainingsdaten näher untersucht. Zunächst

wurde die Verteilung der Badtemperaturdaten mithilfe von Boxplots dargestellt und Ausreißer

identifiziert. Bei den identifizierten Ausreißern wurde zwischen plausiblen und nicht plausiblen

Ausreißern unterschieden. Der Unterschied wird in diesem Kapitel erläutert. Besonderer Fokus

lag auf starken Badtemperaturänderungen, die hinsichtlich ihrer Plausibilität zusammen mit

der TAE untersucht wurden.

Anschließend wurden vorhandene Datenlücken in den Badtemperaturdaten untersucht und

mithilfe einer geeigneten Methode geschlossen. Zudem wurde die (partielle) Autokorrelations-

funktion für die Badtemperaturverläufe berechnet. Um Periodizitäten in den Badtemperatur-

verläufen zu identifizieren, wurde von jedem Badtemperaturverlauf jeweils ein Periodogramm

berechnet. Durch die Berechnung der Stärke der Saisonalität und die Durchführung des KPSS-

Tests wurden die Badtemperaturverläufe auf Stationarität überprüft.

5.3.1 Trainings- und Testdaten

Für die Vorhersage der Badtemperatur wurde zunächst der gesamte Datensatz in einen

Trainings- und Testdatensatz unterteilt. Die Trainingsdaten wurden für die Datenanalyse

und das Training der Vorhersagemodelle verwendet, während der Testdatensatz ausschließlich

als abschließender Test für die entwickelten Vorhersagemodelle eingesetzt wurde. Alle auf

Basis der Trainingsdaten getroffenen Entscheidungen wurden auf die Testdaten angewendet.

Informationen über die Einteilung von Trainings- und Testdatensätze wurden bereits in Kapitel

4.3 erläutert.

Aufgrund der zeitlichen Anordnung der Badtemperaturdaten wurde der in Kapitel 5.2 vorverar-

beitete Datensatz mit einer zeitlichen Trennung in einen Trainings- und Testdatensatz aufgeteilt

(vgl. Kapitel 4.3.1). Die in dieser Arbeit gewählte Aufteilung ist in Abbildung 5.5 dargestellt.

Für die Trennung wurde der Zeitpunkt 01.01.2023 gewählt. Datenpunkte vor dem 01.01.2023

wurden dem Trainingsdatensatz zugeordnet. Alle bis zum 23.04.2023 übrigen Datenpunkte

bildeten den Testdatensatz. Die Einteilung wurde so gewählt, um ein komplettes Jahr in den

Trainingsdaten zu berücksichtigen. Für die Gegenwartsvorhersage (Nowcasting) wurde außer-

dem ein Teil der Trainingsdaten als Validierungsdaten eingesetzt. Details dazu folgen in Kapitel

5.4.2. Die nachfolgenden Auswertungen erfolgten ausschließlich auf den Trainingsdaten.

5.3.2 Verteilung und Ausreißer

Um einen Überblick über die Verteilung der Badtemperaturdaten zu erhalten, eignet sich ein

Boxplot. In Abbildung 5.6 ist ein Boxplot dargestellt, dessen statistische Kennwerte anhand der
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Trainingsdaten Testdaten

01.01.2022 01.01.2023 23.04.2023

Zeit

Abbildung 5.5: Zeitliche Aufteilung der Badtemperaturdaten in einen

Trainings- und Testdatensatz.

Trainingsdaten berechnetwurden. FolgendeWerte wurden auf eine Nachkommastelle gerundet.

Aus dem Boxplot geht hervor, dass der Median der Badtemperatur 963,1 °C beträgt. 50 % der

Badtemperaturwerte liegen im Bereich von 956,6 °C bis 970,9 °C. Der Interquartilabstand

(IQA) beträgt 14,3 °C. Der untere Whisker ist bei 935,2 °C und der obere Whisker bei 992,1 °C
eingezeichnet (die Proportion des IQA beträgt 1,5). Der Mittelwert der Badtemperatur liegt

bei 963,7 °C. Die Werte streuen mit einer Standardabweichung von 9,9 °C um den Mittelwert.

Zum Vergleich sei auf die Literatur [TCY13, S. 58] verwiesen, in der angegeben wird, dass die

Badtemperatur bei den besten Aluminiumhütten der Welt mit einer Standardabweichung von

5 °C bis 6 °C streut. Auffällig ist der minimale Wert von 872,5 °C, der für den Ofenbetrieb nicht

plausibel erscheint und vermutlich von einer fehlerhaften Messung verursacht wurde.

880 900 920 940 960 980 1000
Badtemperatur (°C)

Abbildung 5.6: Ein Boxplot, der anhand aller Badtemperaturdaten berechnet

wurde.

Die Abbildung 5.7 zeigt für jeden Ofen einen Boxplot. Anhand des IQA können Öfen identifiziert

werden, deren Badtemperaturwerte stärker streuen. Mit einemWert von 19,4 °C weist der Ofen

1091 den größten IQA auf, während für den Ofen 1114 mit 9,2 °C der kleinste IQA berechnet

wurde. In Bezug auf den Median weist der Ofen 1108 mit 959,7 °C den niedrigsten Wert und

der Ofen 1095 mit 967,2 °C den höchsten Wert auf.

Auffällig sind die Boxplots mit Ausreißern. Ausreißer können nach [KND15, S. 69] in plau-

sible und nicht plausible Ausreißer unterteilt werden. Als plausible Ausreißer werden Werte

bezeichnet, die im Hinblick auf den zu untersuchenden Prozess gültig sind, sich jedoch von den

restlichen Werten deutlich unterscheiden. Bezogen auf die Badtemperatur stellt beispielsweise

der maximale Wert von 1002,3 °C, der am Ofen 1042 gemessen wurde, einen Ausreißer dar.

Im Hinblick auf den Ofenprozess scheint dieser Ausreißer plausibel zu sein, da in der Alumi-

niumelektrolyse derartige hohe Badtemperaturen auftreten können. Demgegenüber kann die
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minimale Badtemperatur von 872,5 °C des Ofens 1115 bei einem regulären Ofenbetrieb als ein

nicht plausibler Ausreißer eingestuft werden, der auf einen Messfehler zurückzuführen ist.
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Abbildung 5.7: Ein Boxplot für jeden der 60 untersuchten Öfen, berechnet

aus den jeweiligen Badtemperaturen. Eine größere Version dieser Abbildung

befindet sich in Anhang A.2.

Um einen Eindruck vom zeitlichen Verlauf der Badtemperaturen zu erhalten, sind in Abbildung

5.8 die Verläufe von vier ausgewählten Öfen dargestellt. Die vertikalen Markierungen kenn-

zeichnen Datenlücken in den Badtemperaturverläufen. Die Badtemperaturen in Abbildung

5.8 befinden sich auf einem konstanten Niveau, da die Badtemperatur eines Ofens geregelt

wird (vgl. Kapitel 3.2). Auffällig ist das zyklische Muster der einzelnen Verläufe, das sich in

einer langsamen Auf- und Abbewegung bemerkbar macht und mit einer Periode von ungefähr

30 Tagen auftritt. Zudem sind Temperaturspitzen zu sehen: Ein niedriger Temperaturwert

ist Anfang November 2022 für den Ofen 1115 zu erkennen, der unter 930 °C liegt. Eine hohe

Temperaturspitze ist gegen Ende April für den Ofen 1058 ersichtlich.
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Abbildung 5.8: Badtemperaturverläufe von vier Öfen in einem Zeitraum

vom 01.01.2022 bis zum 31.12.2022. Die vertikalen Markierungen zeigen

Datenlücken in den Badtemperaturverläufen an.

Abbildung 5.9 zeigt einen Ausschnitt der Badtemperaturverläufe für die gleichen Öfen im

Oktober 2022. In dieser sind zusätzlich unterschiedliche starke Schwankungen zu erkennen, die

dem zyklischen Muster überlagert sind. Teilweise geht aus diesen Verläufen ein Dreiecksverlauf

hervor. Die Temperaturwerte liegen an jedem zweiten Tag höher als am Vortag.
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Abbildung 5.9: Badtemperaturverläufe von vier Öfen in einem Zeitraum

vom 01.10.2022 bis zum 31.10.2022. Die vertikalen Markierungen zeigen

Datenlücken in den Badtemperaturverläufen an.
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Bei der visuellen Betrachtung der Badtemperaturverläufe fallen große Badtemperaturänderun-

gen auf, beispielsweise für den Ofen 1058 vom 26.10.2022 auf den 27.10.2022 (vgl. Abbildung

5.9). Da starke Badtemperaturänderungen in der Aluminiumelektrolyse auffällig sind, wurden

diese genauer untersucht.

Um starke Badtemperaturänderungen zu identifizieren, wurde für jeden Ofen die Differenz zum

vorherigen Badtemperaturwert berechnet. Anschließend wurden die berechneten Differenzen

über einen weiteren Boxplot dargestellt, um Öfen zu identifizieren, die eine besonders starke

Badtemperaturänderung aufweisen. Die Frage bestand darin, ob starke Badtemperaturände-

rungen aufgrund einer fehlerhaften Messung zustanden gekommen sind oder ein plausibles

Ofenverhalten widerspiegeln. Abbildung 5.10 zeigt für jeden Ofen einen solchen Boxplot der

Badtemperaturdifferenzen. Aus diesen geht hervor, dass Badtemperaturänderungen in Höhe

von ±20 °C von einem auf den nächsten Tag nicht unüblich sind. Einige Ausreißer stechen

besonders hervor, wie beispielsweise die Ausreißer der Öfen 1019, 1034, 1054 und 1058. Die

beiden extremen Ausreißer des Ofens 1115 sind auf den bekannten Messfehler von 872,5 °C
zurückzuführen.

10
01

10
05

10
09

10
10

10
13

10
15

10
19

10
21

10
25

10
26

10
27

10
28

10
32

10
34

10
35

10
36

10
37

10
39

10
41

10
42

10
45

10
46

10
48

10
51

10
52

10
53

10
54

10
57

10
58

10
60

10
61

10
62

10
65

10
67

10
68

10
69

10
70

10
73

10
75

10
76

10
81

10
82

10
83

10
87

10
88

10
89

10
91

10
93

10
95

10
98

11
05

11
06

11
08

11
09

11
10

11
12

11
14

11
15

11
18

11
19

Ofen

−100

−75

−50

−25

0

25

50

75

100

Ä
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Abbildung 5.10: Ein Boxplot für jeden der 60 untersuchten Öfen, berechnet

aus den jeweiligen Badtemperaturänderungen. Eine größere Version dieser

Abbildung befindet sich in Anhang A.3.

In Abbildung 5.11 sind die Badtemperaturverläufe der Öfen 1019, 1034, 1054 und 1058 zu sehen,

die besonders starke Badtemperaturänderungen aufweisen. Für die Öfen 1019 und 1034 ist

eine starke negative Badtemperaturänderung vom 07.07.2022 auf den 08.07.2022 erkennbar. Für

den Ofen 1019 beträgt die Änderung −42,5 °C und für den Ofen 1034 −53,3 °C. Eine weitere

Badtemperaturänderung von 51,6 °C ist für den Ofen 1054 zu sehen. Der Badtemperaturverlauf

für den Ofen 1058 zeigt zunächst eine Badtemperaturänderung von 51,4 °C mit einer anschlie-
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Abbildung 5.11: Badtemperaturverläufe von vier Öfen, die eine starke Bad-

temperaturänderung aufweisen.

ßenden Änderung von −51,3 °C. Auffällig an dem Ausreißer des Ofens 1058 ist, dass dieser

nicht mit dem weiteren Badtemperaturverlauf übereinstimmt, während die Badtemperaturen

der anderen Öfen nach dem jeweiligen Ausreißer plausibel weiter verlaufen.

5.3.3 Badtemperaturänderungen

Zusammen mit der TAE wurden die Ausreißer von den Öfen 1019, 1034 und 1054 genauer

untersucht. Aufgrund der in Kapitel 3.2 vorgestellten Einflüsse, die auf die Badtemperatur eines

Ofens wirken, erwies sich eine Plausibilitätsbetrachtung von Ausreißern lediglich auf Basis

der Badtemperaturverläufe als wenig aussagekräftig. Daher wurden weitere Prozessvariablen

herangezogen, um die starken Badtemperaturänderungen der einzelnen Öfen zu erklären. In

Abbildung 5.12 ist der Badtemperaturverlauf des Ofens 1019 zu sehen. Der Badtemperaturver-

lauf wurde mithilfe der tatsächlichen Messzeitpunkte aufgetragen. Für einen besseren Überblick

sind die Temperaturmesswerte und die Badtemperaturänderungen zum Vortag im unteren Teil

der Abbildung dargestellt. Die angegebenen Temperaturwerte sind auf eine Nachkommastel-

le gerundet. Des Weiteren sind in dieser die Zeitpunkte von AlF3-Zugaben, entdeckten und

beseitigten AlF3-Durchläufern, Ansätzen, Anodenkontrollen, Metallsaugen, Flusssaugen, Fluss-

zugaben, Sodazugaben, Anodeneffekten, Anodenwechseln und Stromabfällen, beispielsweise

aufgrund einer Hallenschaltung, berücksichtigt. Somit kann ein möglicher Zusammenhang

zwischen den Einflüssen und den Badtemperaturänderungen hergestellt werden.

Bei der Betrachtung von Abbildung 5.12 ist zu beachten, dass für Flusssaugen, Flusszugaben,

Sodazugaben und entdeckte Spikes lediglich der Schichtbeginnzeitstempel von der Schicht an-

gegeben ist, in der der jeweilige Einfluss stattgefunden hat bzw. entdeckt wurde. Beispielsweise
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weist ein Datenbankeintrag für eine Sodazugabe den Zeitstempel 03.01.2022 05:00 Uhr (UTC,

Beginn der ersten Schicht) auf. Das bedeutet, dass eine Sodazugabe am 03.01.2022 zwischen

5:00 Uhr (UTC) und 13:00 Uhr (UTC) stattgefunden hat. Die genaue Uhrzeit für die Sodazugabe

ist jedoch nicht bekannt. Für Metallsaugen, Flusssaugen, Flusszugaben und Sodazugaben sind

zusätzliche Gewichtsangaben für die Zugaben bzw. für das jeweilige Saugen angegeben. Im

Falle eines Anodeneffekts wird die umgesetzte Energie angegeben.
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Abbildung 5.12: Zeitlicher Verlauf der Prozessvariablen des Ofens 1019.

Vor dem 07.07.2022 befand sich die Badtemperatur des Ofens 1019 auf einem relativ niedrigen

Niveau. Am 04.07.2022 und am 05.07.2022 wurde dem Ofen jeweils 45 kg Soda hinzugegeben.

Die Badtemperatur stieg in den darauffolgenden zwei Tagen auf bis zu 957,5 °C an und fiel

anschließend auf den niedrigen Temperaturwert von 915,0 °C. Vermutlich waren die Sodazu-

gaben nicht ausreichend, um den starken Abfall der Badtemperatur auf 915,0 °C zu verhindern.

Zudem könnte die Flusszugabe von 400 kg einen Einfluss auf die Badtemperaturmessung vom

08.07.2022 gespielt haben, abhängig davon, zu welcher Uhrzeit die Flusszugabe stattgefunden

hat. Wie bereits in Kapitel 3.2 beschrieben, erhöht eine Flusszugabe die Kontaktfläche zwischen

Fluss und Seitenwand, die zu einer Abkühlung des Ofens führt. Inwiefern der Stromabfall am

08.07.2022 zu der starken Badtemperaturänderung beigetragen hat, lässt sich nicht beantwor-

ten. Weitere Sodazugaben fanden am 08.07.2022, 09.07.2022 und 11.07.2022 statt. In diesem

Zeitraum ist ein Anstieg der Badtemperatur zu erkennen. Der Anodeneffekt am 12.07.2022
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könnte zusätzlich zu einem weiteren Anstieg der Badtemperatur beigetragen haben. Die Bad-

temperaturänderung um −42,5 °C auf 915,0 °C scheint insgesamt plausibel zu sein.

In Abbildung 5.13 sind die Badtemperatur und Prozessvariablen für den Ofen 1034 zeitlich aufge-

tragen. Dabei ist zu sehen, dass vom 07.07.2022 auf den 08.07.2022 eine Badtemperaturänderung

von −53,3 °C aufgetreten ist, die wahrscheinlich auf den AlF3-Durchläufer zurückzuführen

ist, der am 06.07.2022 entdeckt wurde. AlF3-Durchläufer treten auf, wenn der Zylinder der

AlF3-Dosiereinheit nicht richtig schließt, wodurch kontinuierlich AlF3 in den Ofen gelangt.

Aufgrund dieser unkontrollierten Zugabe an AlF3 können die Liquidus- und Badtemperatur

abfallen. Der AlF3-Durchläufer wurde schließlich am 07.07.2022 beseitigt. Auch für diesen Ofen

lässt sich die Auswirkung des Stromabfalls am 08.07.2022 auf die Badtemperatur nicht genau

beantworten. Jedoch scheint die Badtemperaturänderung von −53,3 °C insgesamt plausibel zu

sein.

Eine Maßnahme gegen einen überhöhten Gehalt an AlF3 im Fluss ist die Zugabe von Soda

[TRI13, S. 163], die auch mehrfach in den darauffolgenden Tagen am Ofen 1034 durchgeführt

wurde. Der Anodeneffekt am 11.07.2022 mit einem Energieeintrag von 244 kWh könnte zu-

sätzlich zu einem Anstieg der Badtemperatur beigetragen haben.
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Abbildung 5.13: Zeitlicher Verlauf der Prozessvariablen des Ofens 1034.
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In Abbildung 5.14 ist ein starker Temperaturanstieg von 946,5 °C auf 998,1 °C für den Ofen

1054 zu sehen. Dieser Temperaturanstieg um 51,6 °C kann mit der Zugabe von 60 kg Soda

und dem Saugen von 400 kg Fluss jeweils am 15.07.2022 sowie mit dem Anodeneffekt mit

einem Energieeintrag von 37 kWh am 16.07.2022 begründet werden. Daher scheint auch diese

Badtemperaturänderung des Ofens 1054 plausibel zu sein.
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Abbildung 5.14: Zeitlicher Verlauf der Prozessvariablen des Ofens 1054.

Ein Gegenbeispiel stellt der Ofen 1058 dar, dessen Badtemperaturverlauf mit weiteren Prozess-

variablen in Abbildung 5.15 zeitlich aufgetragen sind. In dieser ist zu sehen, dass ein kurzzeitiger

Temperatursprung auf 994,1 °C am 26.03.2022 stattgefunden hat, der sich nicht über die hier

dargestellten Prozessvariablen erklären lässt. Wie bereits festgestellt, widerspricht dieser Tem-

peratursprung dem restlichen Verlauf der Badtemperatur. Daher wird davon ausgegangen, dass

es sich bei der Temperaturmessung am 26.03.2022 um eine Fehlmessung handelt. Diese Aussage

wird bestätigt, weil in der Datenbank der TAE für den gleichen Tag eine Badtemperaturmessung

mit 954,2 °C eingetragen ist, die ca. 3 Stunden vorher stattgefunden hat. Die Messung von

954,2 °C stimmt im Gegensatz zu 994,1 °C auch mit dem restlichen Temperaturverlauf überein.

An dieser Stelle ist noch einmal zu erwähnen, dass die Messung von 954,2 °C aufgrund der

Vorverarbeitung der Badtemperaturdaten in Kapitel 5.2 nicht in Abbildung 5.15 auftritt, da

immer nur die letzte in einer Schicht durchgeführte Messung berücksichtigt wurde. In diesem
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Fall ist die Messung von 994,1 °C die letzte Badtemperaturmessung gewesen, die in der zweiten

Schicht durchgeführt wurde und sich daher im vorverarbeiteten Datensatz befindet.
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Abbildung 5.15: Zeitlicher Verlauf der Prozessvariablen des Ofens 1058.

Insgesamt zeigen die durchgeführten Plausibilitätsbetrachtungen auf, dass starke Badtempe-

raturänderungen von ±50 °C in der Aluminiumelektrolyse auftreten. Für die Erklärung von

Badtemperaturänderungen ist es erforderlich, weitere Prozessvariablen in der Analyse zu be-

rücksichtigen. Die unterschiedlichen Einflüsse auf die Badtemperatur wurden bereits in Kapitel

3.2 beleuchtet. Die aufgezeigten Badtemperaturänderungen der Öfen 1019, 1034 und 1054

wurden in dieser Analyse als plausibel eingestuft. Eine Ausnahme stellt die Badtemperatur-

änderung des Ofens 1058 dar, die auf einen Messfehler zurückgeführt werden kann. Auch die

eigentlichen Badtemperaturwerte scheinen bis auf den niedrigen Wert von 872,5 °C, der im

Boxplot in Abbildung 5.6 zu erkennen ist, plausibel zu sein.

Eine Filterung von Ausreißern anhand von Temperaturschwellwerten erscheint nicht sinnvoll,

da mit einer solche Filterung auch Badtemperaturwerte herausgefiltert werden könnten, die im

Hinblick auf den Zustand eines Ofens plausibel sind. Aufgrund des hohen Aufwands wurde in

dieser Arbeit auf eine ausführliche Plausibilitätsanalyse von Ausreißern verzichtet. In Kapitel

5.4.3 wird jedoch eine Möglichkeit vorgestellt, um die Ursachenanalyse mithilfe eines RF-

Regressionsmodells verbessern zu können.
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Insgesamt wurden für die weitere Analyse Badtemperaturwerte unter 900 °C im Trainings-

und Testdatensatz mit n.a. überschrieben. Davon ist beispielsweise der gemessene Badtempe-

raturwert von 872,5 °C des Ofens 1115 im Trainingsdatensatz betroffen. Die maximale Bad-

temperatur, die in den Trainingsdaten vorkommt, liegt bei 1002,3 °C und ist eine plausible

Badtemperatur. Dennoch ist auch das Auftreten von hohen Badtemperaturmessungen zu be-

rücksichtigen, die nicht plausibel für den Ofenbetrieb sind. In diesem Fall kann es sinnvoll

sein, auch einen oberen Schwellwert zu definieren, um hohe Badtemperaturmesswerte zu iden-

tifizieren. Ein großzügig gewählter Schwellwert von 1050 °C könnte hierfür eine geeignete

Basis sein. Eine Überprüfung der Testdaten ergibt, dass keine Badtemperaturmesswerte im

Testdatensatz existieren, die den Schwellwert von 1050 °C übersteigen.

5.3.4 Datenlücken

Aus Tabelle 5.3 geht hervor, dass Datenlücken in den Badtemperaturdaten vorhanden sind,

die mit n.a. gekennzeichnet sind. In Abbildung 5.16 ist ein Balkendiagramm zu sehen, das die

Anzahl an Datenlücken in den Badtemperaturdaten für die 60 betrachteten Öfen aus Halle 1

im Jahr 2022 (Trainingsdaten) aufzeigt. Der Ofen 1037 hat mit zwei Datenlücken die niedrigste

Anzahl, während der Ofen 1118 mit 14 Datenlücken die höchste Anzahl aufweist. Insgesamt

sind 404 Datenlücken im gesamten Trainingsdatensatz vorhanden. Es fällt auf, dass die Öfen

aus der ersten Schicht im Median eine höhere Anzahl an Datenlücken aufweisen als die Öfen

der übrigen zwei Schichten.

Die höhere Anzahl an Datenlücken für die Öfen aus der ersten Schicht ist in Abbildung 5.17

erkennbar. Hier fallen vor allem die zusammenhängenden Datenlücken vom 05.09.2022 bis

einschließlich 08.09.2022 für die Öfen zwischen 1081 und 1120 auf. Der Grund für die zusam-

menhängenden Datenlücken ist darin zu finden, dass die Badtemperaturmessungen an den

betreffenden Öfen vom 05.09.2022 bis 07.09.2022 in der dritten Schicht durchgeführt wurden,

anstatt wie vorgesehen von der ersten Schicht. Badtemperaturmessungen, die nicht von der

zuständigen Schicht durchgeführt worden sind, wurden in der Datenvorverarbeitung dieser

Arbeit verworfen. Dadurch sind Datenlücken im Datensatz entstanden (vgl. Kapitel 5.2.1). Für

den 08.09.2022 liegen gar keine Badtemperaturmessungen für die Öfen zwischen 1081 und 1120

vor. Ab dem 09.09.2022 wurden wieder die Badtemperaturmessungen an diesen Öfen innerhalb

der ersten Schicht durchgeführt.
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Abbildung 5.16: Anzahl an Datenlücken in den Badtemperaturdaten für

jeden der 60 untersuchten Öfen aus Halle 1 im Jahr 2022. Eine größere

Version dieser Abbildung befindet sich in Anhang A.4.
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Abbildung 5.17: Zeitlich aufgetragene Datenlücken in den Badtemperatur-

daten, die für 60 Öfen aus Halle 1 im Jahr 2022 ermittelt wurden. Ein grüner

Punkt stellt eine Datenlücke dar.

Der Umgang mit Datenlücken stellt eine wesentliche Herausforderung dar, da nicht jede

Analyse- und Vorhersagemethode mit Datenlücken umgehen kann [RM17, S. 107; HA21, S. 427].

Um diese Schwierigkeit zu vermeiden, können die Datenlücken in den Badtemperaturverläu-

fen mit einer geeigneten Methode aufgefüllt werden. Aufgrund der zeitlichen Anordnung

der Badtemperaturwerte bieten sich Methoden an, die die zeitliche Komponente der Daten
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berücksichtigen. In [MBB17] werden verschiedene Methoden erörtert, die darauf abzielen,

Datenlücken in univariaten Zeitreihen zu schließen.

Nach [KND15, S. 74] sind zunächst einfache Methoden für das Auffüllen von Datenlücken zu

bevorzugen. Daher wurde in dieser Arbeit die Methode Last Observation Carried Forward

(LOCF) verwendet, da diese einfach zu implementieren ist. Bei der LOCF-Methode wird jeweils

die letzte vorhandene Beobachtung vor der Datenlücke verwendet, um die Lücke zu schließen.

Für die Werte in Tabelle 5.3 bedeutet das, dass die Datenlücke (n.a.) vom 12.01.2022 mit dem

Wert 958,4 °C vom Vortag aufgefüllt wird, während für die Datenlücke (n.a.) vom 16.01.2022 der

Badtemperaturwert 954,0 °C verwendet wird. Die Anwendung von LOCF erfolgte in gleicher

Weise auf dem Trainings- und Testdatensatz.

Abbildung 5.18 zeigt vier Badtemperaturverläufe der Öfen 1001, 1058, 1110 und 1115. Dabei

stellen die grünen Punkte die Werte dar, die durch LOCF für Datenlücken eingesetzt wurden.

Für die Öfen 1110 und 1115 ist zu sehen, dass die Datenlücken vom 05.09., 06.09., 07.09. und

08.09.2022 mit dem Badtemperaturwert vom 04.09.2022 aufgefüllt wurden.
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Abbildung 5.18: Badtemperaturverläufe von den Öfen 1001, 1058, 1110 und

1115. Die grünen Punkte stellen die Werte dar, die für das Auffüllen der

Datenlücken mithilfe der LOCF-Methode verwendet wurden.

5.3.5 Autokorrelation

Um einen ersten Eindruck über die Korrelationen der Badtemperaturen zu gewinnen, wurden,

ähnlichwie in [MAW01, S. 298], über alle 60 Öfen die Koeffizienten der AKF und PAKF berechnet

und gemittelt. In Abbildung 5.19 sind die gemittelten Koeffizienten der AKF und PAKF zu sehen,

die jeweils bis zur Verzögerungsstelle k = 35 berechnet wurden. Die gemittelten Koeffizienten

der AKF (vgl. Abbildung 5.19a) zeigen einen annähernd sinusförmigen Verlauf.
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Die Koeffizienten der PAKF (vgl. Abbildung 5.19b) sind nach der Verzögerungsstelle k = 9 nicht

mehr signifikant. Auffallend sind die ersten acht signifikanten Koeffizienten der AKF. Dabei

lässt sich beobachten, dass jeder zweite signifikante Koeffizient höher liegt als der vorherige

Koeffizient. Dieses Verhalten deutet auf eine Periodizität bzw. Saisonalität hin, die sich alle

zwei Tage wiederholt. Das ist auch in Abbildung 5.9 anhand des Dreiecksverlaufs der Badtem-

peraturen ersichtlich. In vielen Fällen liegt jede zweite gemessene Badtemperatur höher als die

am Vortag gemessene Temperatur, was mit dem Anodenwechsel begründet werden kann, der

in der Regel alle zwei Tage bei der TAE stattfindet.
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Abbildung 5.19: Für jeden Ofen wurden die AKF und PAKF bis zur Verzö-

gerungsstelle k = 35 berechnet. Die Koeffizienten wurden anschließend

gemittelt und gegen die Verzögerungsstellen aufgetragen. In (a) sind die

gemittelten Koeffizienten der AKF und in (b) die gemittelten Koeffizienten

der PAKF jeweils mit einem Konfidenzintervall von 95 % zu sehen.

Darüber hinaus geht aus [MAW01, S. 298] hervor, dass es sich bei den dort untersuchten Bad-

temperaturverläufen um Zeitreihen handelt, die aus einem autoregressiven Prozess resultieren.

Bei der Betrachtung der Korrelogramme in Abbildung 5.19 kann diese Aussage auch auf die

vorliegenden Badtemperaturverläufe übertragen werden, da die Koeffizienten der AKF einen

sinusförmigen Verlauf aufweisen und die Koeffizienten der PAKF nach der neunten Verzö-

gerungsstelle nicht mehr signifikant sind. Nach [HA21, S. 283; SS17, S. 99] lassen sich diese

Eigenschaften als Indizien für einen autoregressiven Prozess werten.
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5.3.6 Periodogramm

In Abbildung 5.20 ist für jeden einzelnen Badtemperaturverlauf das Periodogramm sowie das ge-

mittelte Periodogramm zu sehen. Das Periodogrammwurde bereits in Kapitel 4.1.5 beschrieben.

Aus Abbildung 5.20 geht hervor, dass eine Häufung der Spektren im unteren Frequenzbereich

vorhanden ist. Diese Erkenntnis wurde bereits von McFadden et al. [MAW01] erlangt und

deutet darauf hin, dass es sich bei den Badtemperaturverläufen um einen sich „langsam be-

wegenden“ [MAW01, S. 298] Prozess handelt. Die linke gemittelte Frequenzspitze entspricht

einer Periode von ungefähr 30 Tagen. Das bedeutet, dass sich in den Badtemperaturverläufen

ein ausgeprägtes Muster befindet, das sich alle 30 Tage wiederholt. Diese Erkenntnis wurde

bereits in Abbildung 5.8 ersichtlich. Insgesamt wurden in dieser Arbeit solche „langsamen“

Bewegungen als Zyklus gewertet (vgl. Kapitel 4.1.1).
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Abbildung 5.20: Für jeden einzelnen Badtemperaturverlauf wurde ein Peri-

odogramm ohne anschließende Glättung berechnet. Anschließend wurden

die einzelnen Periodogramme gemittelt, um einen globalen Eindruck über

sich wiederholende Muster in den Badtemperaturverläufen zu erhalten.

Eine weitere Frequenzspitze deutet auf eine Bewegung hin, die sich ungefähr alle sieben Tage

wiederholt. Diese ist jedoch nicht sonderlich stark ausgeprägt. Ursachen konnten für diese sich

wiederholende Bewegung nicht identifiziert werden. Des Weiteren ist eine Frequenzspitze bei

zwei Tagen ersichtlich. Diese wurde bereits bei der Analyse der Korrelogramme in Kapitel 5.3.5

erkannt und mit dem Anodenwechsel der TAE begründet.

Für die weitere Vorgehensweise wurden die Badtemperaturverläufe auf Stationarität überprüft,

wobei die zweitägige Periode im Fokus stand. Die siebentägige Periode wurde nicht weiter

berücksichtigt, da diese nicht sonderlich stark im gemittelten Periodogramm ausgeprägt ist.

76 Kapitel 5
Proof of Concept



Abschnitt 5.3. Zeitreihenanalyse der Badtemperaturdaten

5.3.7 Stationarität

Die Koeffizienten der AKF in Abbildung 5.19 und das Periodogramm in Abbildung 5.20 weisen

auf eine Periodizität in den Badtemperaturverläufen hin, die mit dem Anodenwechsel begründet

wird, der üblicherweise alle zwei Tage bei der TAE stattfindet. Periodische bzw. saisonale

Zeitreihen sind nicht stationär (vgl. Kapitel 4.1.3). Es wurde daher überprüft, in welchem

Umfang die zweitägige Saisonalität in den Badtemperaturverläufen ausgeprägt ist, um eine

saisonale Differenzierung zu rechtfertigen. Dazu wurde die Stärke der Saisonalität mithilfe der

Gleichung 4.5 für jeden Badtemperaturverlauf berechnet.

Sofern der errechnete Wert unter dem Schwellwert von 0,64 liegt, ist eine saisonale Differenzie-

rung für den entsprechenden Badtemperaturverlauf nicht notwendig [HA21, S. 273]. Insgesamt

wurde für 58 von 60 Öfen jeweils ein Wert berechnet, der unter dem Schwellwert von 0,64 liegt.

Nur für die Badtemperaturverläufe der Öfen 1005 und 1013 liegt der jeweilige Wert knapp über

dem Schwellwert. Somit zeigt sich, dass die zweitägige Saisonalität für 58 Badtemperaturver-

läufe nur eine untergeordnete Rolle spielt, sodass auf eine saisonale Differenzierung verzichtet

wurde. Die ermittelten Werte sind als Boxplot in Abbildung 5.21 aufgeführt. Aus diesem lässt

sich ableiten, dass derMedian bei 0,49 liegt. Das untere Quartil liegt bei 0,43, während das obere
Quartil bei 0,54 liegt. Aufgrund dieser Ergebnisse wurde für den anschließenden KPSS-Test

keine saisonale Differenzierung an den Badtemperaturverläufen vorgenommen.
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FS

Abbildung 5.21: Stärke der zweitägigen Saisonalität, die für jeden Badtem-

peraturverlauf in den Trainingsdaten berechnet wurde. Die Verteilung der

berechneten Werte ist mit dem Boxplot dargestellt.

Mithilfe des KPSS-Tests, der im Kapitel 4.1.3 vorgestellt wurde, wurden die Badtemperaturen

für jeden Ofen auf Stationarität überprüft. Das Signifikanzniveau wurde mit 5 % (α = 0,05)
festgelegt. Für 14 von 60 Badtemperaturverläufen wird die Nullhypothese des KPSS-Tests

verworfen. Diese Badtemperaturverläufe sind nach demKPSS-Test nicht stationär. In Abbildung

5.22 sind die Badtemperaturverläufe von vier Öfen zu sehen, für die die Nullhypothese des

KPSS-Tests verworfen wird. Da für die restlichen 46 Badtemperaturverläufe die Nullhypothese

des KPSS-Tests nicht abgelehnt wird, wurden diese als stationär eingestuft. Dieses Ergebnis

ist vergleichbar mit den Ergebnissen von McFadden et al. [MAW01], die ihre untersuchten
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Badtemperaturverläufe anhand eines durchgeführten „run test“ ebenfalls als stationär eingestuft

haben.

Anhand der in diesem Kapitel dargelegten Ergebnisse wurde angenommen, dass die in dieser

Arbeit untersuchten Badtemperaturverläufe insgesamt stationär sind. Anhand dieses Ergeb-

nisses wurde eine geeignete Methode gewählt, um die Performanz von Vorhersagemodellen

abzuschätzen. Wie bereits in Kapitel 4.3 erläutert, wird nach [CTM20, S. 1] die CV-Bl für

stationäre Zeitreihen empfohlen.
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Abbildung 5.22: Badtemperaturverläufe (nicht saisonal differenziert) von den

Öfen 1009, 1027, 1028 und 1036, für die die Nullhypothese des KPSS-Tests

abgelehnt wird.

5.4 Lösungsentwicklung

Im Rahmen der weiteren Vorgehensweise nach Abbildung 5.1 werden in diesem Kapitel Lösun-

gen aufgezeigt, die eine Badtemperaturvorhersage ermöglichen sollen. Es wird zwischen einer

Tagesprognose (Forecasting) und einer Gegenwartsvorhersage (Nowcasting) unterschieden.

Bei der Tagesprognose wird eine Badtemperatur für den nächsten Tag vorhergesagt. Dazu

wurde ein globales AR-Modell trainiert und validiert. Um die Modellperformanz einschät-

zen zu können, erfolgte ein Vergleich des globalen AR-Modells mit vier ausgewählten lokalen

Zeitreihenmodellen auf einem Testdatensatz.

Als Gegenwartsvorhersage (Nowcasting) kann die Vorhersage bezeichnet werden, die für

den aktuellen Zeitpunkt, für die nahe Zukunft und die nahe Vergangenheit getätigt wird

[BGR10, S. 5]. Für die Gegenwartsvorhersage der Badtemperatur wurde ein globales RF-

Regressionsmodell mit weiteren Prozessvariablen aus der Aluminiumelektrolyse sowie un-
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terschiedlichen Hyperparameterkombinationen trainiert und validiert. Zuvor wurde eine Ver-

arbeitung der Prozessdaten durchgeführt, bei der Zeitreihenmerkmale in einem festgelegten

zeitlichen Intervall berechnet und mit der gemessenen Badtemperatur verknüpft wurden.

Die Analyse des RF-Regressionsmodells mithilfe einer PFI diente der Identifikation von Prozess-

variablen, die einen wesentlichen Einfluss auf die Gegenwartsvorhersage ausüben. Außerdem

wird eine Möglichkeit aufgezeigt, die eine Interpretation der Gegenwartsvorhersagen des RF-

Modells ermöglichte. Im Rahmen eines abschließenden Tests wurden alle verwendeten Modelle

anhand eines reduzierten Testdatensatzes verglichen.

5.4.1 Forecasting (AR-Modell)

In diesem Kapitel wird die Anwendung des in Kapitel 4.2 vorgestellten globalen AR-Modells

dargelegt. Dieses wurde mit lokalen Vorhersagemodellen verglichen, um die Eignung des

globalen AR-Modells zu überprüfen. Der Fokus lag auf der Badtemperaturvorhersage für

den nächsten Tag (Tagesprognose). Vorhersagen für einen größeren Horizont waren nicht

Bestandteil dieser Arbeit. Das globale AR-Modell und die lokalen Modelle wurden anhand der

Trainingsdaten trainiert. Die folgenden lokalen Modelle wurden mithilfe des R-Pakets fable

[OWHW23] im Schritt der Evaluation nach Abbildung 5.1 verwendet:

• MEAN

• NAÏVE

• ETS (auto)

• ARIMA (auto)

Das MEAN-Modell berechnet den Mittelwert der Trainingsdaten, der anschließend für die

Vorhersage verwendet wird. Das NAÏVE-Modell verwendet jeweils die letzte Beobachtung

für die Vorhersage. ExponenTial Smoothing (ETS) ist ein statistisches Framework [HA21,

S. 250, 252], das mithilfe eines Informationskriteriums aus unterschiedlichen Exponential-

Smoothing-Modellen ein für die Zeitreihe passendes Modell bestimmt. Die Suche nach einem

passenden ETS-Modell wurde in dieser Arbeit mit dem R-Paket fable [OWHW23] automatisiert

durchgeführt. Darüber hinaus wurde für jeden Badtemperaturverlauf ein ARIMA-Modell in

einer automatisierten Vorgehensweise gewählt, wofür der Hyndman-Khandakar-Algorithmus

[HK08; HA21, S. 285–287] mithilfe des R-Pakets fable zum Einsatz kam. Für die Modelle ETS

und ARIMA wurde als Argument eine Periode von zwei Tagen angegeben, um eine potenzielle

zweitägige Saisonalität zu berücksichtigen. Weitere Informationen zu den hier genannten

lokalen Modellen können der Literatur [HA21] entnommen werden. Als Bewertungsmaß der

einzelnen Modelle wurde der Mean Absolute Error (MAE) verwendet, der mithilfe der folgende

Gleichung 5.1 berechnet wird [KND15, S. 444; HK06, S. 682]:

MAE =

n∑
t=1

abs(yt − ŷt)

n
(5.1)
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yt ist eine Beobachtung und ŷt eine Vorhersage jeweils zum Zeitpunkt t. Die Anzahl der

Vorhersagen ist mit n angegeben. Im Vergleich zum Root Mean Squared Error (RMSE) ist

der MAE weniger empfindlich gegenüber Ausreißern [HK06, S. 682]. Zudem lässt sich der

MAE leichter interpretieren. Der Vergleich zwischen den lokalen Modellen und dem globalen

AR-Modell wurde mit dem Testdatensatz aus Kapitel 5.3.1 durchgeführt.

Um das globale AR-Modell zu trainieren, wurde ein Lag Embedding mit jedem Badtempera-

turverlauf durchgeführt. Nähere Informationen zum Lag Embedding sind in Kapitel 4.2.2 zu

finden. Die Ordnung des globalen AR-Modells wurde anhand der CV-Bl bestimmt, da diese von

Cerqueira et al. [CTM20, S. 2019] für stationäre Zeitreihen vorgeschlagen wird. Wie bereits

in Kapitel 5.3.7 festgestellt wurde, ist die Mehrheit der untersuchten Badtemperaturverläufe

stationär. Die maximale zu überprüfende Ordnung (Anzahl an Verzögerungsstellen) des AR-

Modells wurde auf 35 festgelegt, um die ausgeprägte Frequenzspitze von etwa 30 Tagen zu

berücksichtigen (vgl. Kapitel 5.3.6).

Die Anzahl an Folds, die mit der CV-Bl erstellt werden, wurde mit k = 10 festgelegt. Dieser

Wert ist im Kontext der CV ein üblicher Literaturwert, der in der Arbeit von Kohavi [Koh95]

ermittelt wurde. In Abbildung 5.23 sind die über die zehn Folds gemittelten MAE-Werte zu

sehen, die jeweils gegen die Verzögerungsstellen des globalen AR-Modells aufgetragen sind.

Neben dem Mittelwert ist die Standardabweichung für jede Verzögerungsstelle eingezeichnet.
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Abbildung 5.23: Gemittelter MAE, der jeweils gegen die berücksichtigten

Verzögerungsstellen eines globalen AR-Modells aufgetragen ist.

Aus Abbildung 5.23 geht hervor, dass die größte Verbesserung des MAE mit Hinzufügen der

zweiten Verzögerungsstelle erreicht wird. Nach der zehnten Verzögerungsstelle treten keine

wesentlichen Verbesserungen mehr auf. Daher wurde für die weitere Vorgehensweise ein
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globales AR(10)-Modell mithilfe der gesamten Trainingsdaten trainiert. Anschließend wurde

dieses anhand des Testdatensatzes mit den lokalen Modellen verglichen. Der Testdatensatz

umfasst die Badtemperaturdaten vom 01.01.2023 bis einschließlich dem 23.04.2023 (vgl. Kapitel

5.3.1). Tabelle 5.4 zeigt den MAE, den das globale AR(10)-Modell und die lokalen Modelle auf

dem Testdatensatz erreichen.

Modell Art der Vorhersage MAE (°C)

AR(10) Global 4,59
ETS (auto) Lokal 4,60
ARIMA (auto) Lokal 4,67
NAÏVE Lokal 5,81
MEAN Lokal 7,95

Tabelle 5.4: MAE, den die Modelle auf den Testdaten erzielten. Angaben

sind auf zwei Nachkommastellen gerundet.

Die mit der LOCF-Methode aufgefüllten Badtemperaturwerte (vgl. Kapitel 5.3.4) wurden bei

der Berechnung des MAE nicht berücksichtigt. Aus Tabelle 5.4 geht hervor, dass das globale

AR(10)-Modell den kleinsten MAE erreicht. Die lokalen Modelle ETS und ARIMA liegen dicht

dahinter. Das MEAN-Modell erreicht den höchsten MAE, da dieses lediglich den Mittelwert der

Badtemperaturverläufe aus den Trainingsdaten als Vorhersage verwendet. Insgesamt zeigen

die Ergebnisse, dass das globale AR(10)-Modell in der Lage ist, die lokalen Modelle hinsichtlich

der Badtemperaturvorhersage zu substituieren. Daraus resultiert ein praktischer Vorteil, da

ein einziges globales AR(10)-Modell in der Lage ist, vergleichbare Badtemperaturvorhersagen

für alle 60 Öfen zu erstellen. Die lokalen Modelle ETS und ARIMA erreichen eine ähnliche

Vorhersageperformanz wie das globale AR(10)-Modell, jedoch werden diese pro Ofen trainiert,

wodurch 60 ETS und 60 ARIMA Modelle entstehen, die anschließend in den Produktivbetrieb

überführt werden müssen. Ein weiterer Vorteil eines bereits trainierten globalen AR-Modells

besteht darin, dass dieses auch unmittelbar für neu in Betrieb genommene Öfen eingesetzt

werden kann. Ein weiterer Trainingsvorgang ist in diesem Fall nicht mehr notwendig. Dagegen

müssen für eine Vorhersage mit einem lokalen Modell zunächst ausreichend Daten eines neuen

Ofens verfügbar sein, um ein lokales Modell zu trainieren. Es zeigt sich, dass der Einsatz des

globalen AR(10)-Modells gegenüber den lokalen Modellen praktische Vorteile mit sich bringt,

ohne eine Verschlechterung hinsichtlich der Vorhersageperformanz eingehen zu müssen.

5.4.2 Nowcasting (Random Forest)

Das globale AR(10)-Modell führt eine Badtemperaturvorhersage für den nächsten Tag (Ta-

gesprognose) anhand vergangener Badtemperaturmessungen durch. Es kann als Basismodell

angesehen werden und als Vergleichsgrundlage für weitere Vorhersagemodelle dienen. Wie

bereits im Kapitel 3.2 erwähnt, können verschiedene Faktoren die Badtemperatur beeinflussen.
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Anhand der Abbildungen 5.12, 5.13, 5.14 und 5.15 wurde der Einfluss mehrerer Prozessvariablen

auf die Badtemperatur untersucht. Die Analyse der Auswirkungen einzelner Prozessvariablen

auf die Badtemperatur ist jedoch zeitaufwendig. Es stellte sich daher die Frage, ob eine solche

Analyse mit einem Vorhersagemodell unterstützt werden kann.

Für die nachfolgende Analyse muss erwähnt werden, dass sich in dem Trainings- und Testzeit-

raum (vgl. Abbildung 5.5) Öfen befinden, die mit einer neuen Prozesssteuerung ausgestattet

wurden. Für diese Öfen wurden bestimmte Prozessvariablen nicht mehr in der ursprünglichen

Datenbank aufgezeichnet. Aus diesem Grund wurden Öfen mit neuer Prozesssteuerung vom

zweiten Lösungsansatz ausgeschlossen. Die Anzahl verkleinerte sich auf 51 Öfen, die in der

anschließenden Untersuchung berücksichtigt wurden.

In unsererArbeit [GKD+18]wurde ein RF als Regressionsmodell verwendet, um die Badtempera-

tur anhand von mehreren Prozessvariablen vorherzusagen. Anschließend wurde das RF-Modell

mithilfe der PFI und von Partial Dependence Plots analysiert, um den Zusammenhang zwischen

den betrachteten Prozessvariablen und der Badtemperaturvorhersage zu bestimmen. Es wurde

ausgesagt, dass die über das RF-Modell gefundenen Zusammenhänge zwischen den Prozess-

variablen und der Badtemperaturvorhersage nicht unbedingt auf den tatsächlichen Prozess

der Aluminiumelektrolyse zutreffen. Die in [GKD+18] erstellten Vorhersagen können auch als

Gegenwartsvorhersagen [BGR10, S. 5; SBMW22, S. 375] bezeichnet werden. Dabei werden die

bis zu einem bestimmten Zeitpunkt verfügbaren Informationen genutzt, um eine Vorhersage

über die Zielvariable (Badtemperatur) durchzuführen [SBMW22, S. 376]. Abbildung 5.24 zeigt

den Ablauf der Gegenwartsvorhersage für die Badtemperatur.
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Abbildung 5.24: Ablauf der Gegenwartsvorhersage der Badtemperatur. Ab-

geändert nach [SBMW22, S. 376].
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Die Gegenwartsvorhersage findet hierbei zum Zeitpunkt einer Badtemperaturmessung statt, um

die Gegenwartsvorhersage mit der tatsächlichen Badtemperatur vergleichen zu können. Der

tatsächliche Verlauf der Badtemperatur ist zwischen den Badtemperaturmessungen unbekannt.

Wie bereits in unserer Arbeit [GKD+18, S. 4] erwähnt wird, werden in der Aluminiumindustrie

die Prozessvariablen eines Ofens mit unterschiedlichen zeitlichen Auflösungen aufgezeichnet.

Anhand der in Kapitel 3.2 und Kapitel 5.3.3 aufgezeigten Einflüsse auf die Badtemperatur wurde

eine Vorauswahl an Prozessvariablen getroffen, die anschließend für das RF-Regressionsmodell

eingesetzt wurden. Die in Tabelle 5.5 dargestellten Prozessvariablen bildeten die Ausgangsbasis

für die in dieser Arbeit durchgeführten Gegenwartsvorhersage.

Prozessvariable Einheit/Datentyp Auflösung
Hallenstrom A 5 min
Ofenspannung V 5 min
Fütterungsrate % 5 min
Zugabe von AlF3 bool 5 min
Anodenwechsel bool 5 min
Metallsaugen bool 5 min
Anodeneffekt bool 5 min
AlF3-Durchläufer entdeckt bool Zeitpunkt der Entdeckung

Flusssaugen kg Schichtzeitstempel

Zugabe von Soda (Na2CO3) kg Schichtzeitstempel

Ansatz entdeckt Anzahl Schichtzeitstempel

Tabelle 5.5: Für die Gegenwartsvorhersage verwendete Prozessvariablen.

Die in Tabelle 5.5 aufgezeigten Prozessvariablen stammen aus verschiedenen Datenquellen, die

für diese Arbeit zusammengeführt wurden, um eine Gegenwartsvorhersage der Badtemperatur

zu ermöglichen. Eine Schwierigkeit bei der Zusammenführung der Prozessvariablen waren die

unterschiedlichen zeitlichen Auflösungen. Während für den Hallenstrom und die Ofenspannung

alle fünf Minuten ein Wert vorlag, wurde für die Entdeckung eines Ansatzes oder die Zugabe

von Soda (Na2CO3) nur der Beginn der Schicht als Zeitstempel angegeben, in der der Ansatz

entdeckt wurde oder eine Zugabe von Soda erfolgt ist. Daher wurde bei der Vorverarbeitung

der Prozessvariablen darauf geachtet, dass alle Prozessvariablen zeitlich korrekt miteinander

verknüpft wurden. Als Referenz wurden die Zeitstempel der 5 min-Daten genutzt, an die alle

weiteren Daten angefügt wurden. Diese Vorgehensweise gewährleistet, dass nur zum Zeitpunkt

der Gegenwartsvorhersage bereits vorhandene Daten einbezogen wurden.

Damit das RF-Regressionsmodell aus unterschiedlich aufgelösten Daten lernen kann, wurden

die Prozessvariablen geeignet aufbereitet. In [GKD+18, S. 4; SBMW22, S. 375–376] werden

dazu Zeitreihenmerkmale innerhalb von Zeitintervallen über die betrachteten Prozessvariablen

gebildet. Dabei wird der jeweilige Verlauf der Prozessvariablen innerhalb der zeitlichen Inter-

valle mit einem numerischen Wert quantifiziert. Als Zeitreihenmerkmale werden in [GKD+18,
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S. 4; SBMW22, S. 376] unter anderem der Mittelwert, der Median und die Standardabweichung

verwendet.

In dieser Arbeit wurden ebenfalls Zeitreihenmerkmale anhand der in Tabelle 5.5 dargestellten

Prozessvariablen berechnet. Für den Hallenstrom, die Ofenspannung sowie die Fütterungsrate

wurde jeweils der Mittelwert berechnet, während für die restlichen Prozessvariablen die Anzahl

ihrer Vorkommnisse (Summe) berechnet wurde. Das Zeitintervall für die Berechnung der Zeit-

reihenmerkmale wurde mit 24 Stunden festgelegt. Die Wahl des gewählten Zeitintervalls und

der Zeitreihenmerkmale basiert auf den Ergebnissen unserer Arbeit [GKD+18] und gewährleis-

tet, dass vergangene Werte der Prozessvariablen für die Gegenwartsvorhersage berücksichtigt

werden. Mittels dieser Vorgehensweise kann die Performanz der Gegenwartsvorhersage gestei-

gert werden [GKD+18, S. 5]. Abbildung 5.25 zeigt die Berechnung von Zeitreihenmerkmalen

über die 5 min-Daten in dem 24 Stunden Intervall. Anschließend wurden die berechneten

Zeitreihenmerkmale mit der jeweiligen Badtemperaturmessung verknüpft.
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Abbildung 5.25: Erstellung von Zeitreihenmerkmalen über die 5 min-Daten
in einem 24 Stunden Intervall. Abgeändert nach [KGD+21, S. 771].

Für die Validierung des RF-Regressionsmodells wurde die CV-Bl mit zehn Folds durchgeführt.

Die in Abbildung 5.5 dargestellte Aufteilung des Trainings- und Testzeitraums blieb weiterhin
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erhalten. Die Validierung des RF-Regressionsmodells wurde ausschließlich auf den Trainings-

daten durchgeführt. Die Bewertung des Modells erfolgte über den MAE nach Gleichung 5.1.

Während der Validierung wurden mehrere Versuche durchgeführt und die Auswirkungen auf

die Modellperformanz ausgewertet. Im ersten Versuch wurden die gemessene Badtemperatur

als Zielvariable und die zuvor beschriebenen Zeitreihenmerkmale verwendet. Im zweiten Ver-

such wurde zusätzlich der Wert der letzten Badtemperaturmessung als Merkmal berücksichtigt.

Beide Versuche wurden wiederholt, wobei diesmal die Änderung der Badtemperatur als Ziel-

variable definiert wurde (Versuch 3 und 4). Bei allen Versuchen wurde darauf geachtet, dass

jeweils die gleichen Validierungsdaten verwendet wurden, um einen fairen Vergleich zwischen

den Versuchen zu gewährleisten. Während der Validierung wurden unterschiedliche Hyper-

parameterkombinationen validiert. In Tabelle 5.6 ist der kleinste auf zwei Nachkommastellen

gerundete MAE für jeden Versuch zu finden, der jeweils mit der folgenden Hyperparameterkom-

bination ermittelt wurde: Anzahl an Bäumen: 100, Maximale Anzahl an zufälligen Daten für

das Training eines Baumes: 1000, Minimale Anzahl an Daten pro Blattknoten: 1, Kein Subspace

Sampling. Es sei darauf hingewiesen, dass für den dritten Versuch ein geringfügig kleinerer

MAE erreicht wurde, wenn ein Subspace Sampling mit

√
Anzahl der Merkmale durchgeführt

wird. Gerundet entspricht dieser MAE jedoch dem angegebenen Wert in Tabelle 5.6.

Versuch MAE (°C)

1 6,39 ± 0,37
2 4,59 ± 0,34
3 4,84 ± 0,40
4 4,55 ± 0,36

Tabelle 5.6: MAE mit Standardabweichung, die in vier Versuchen innerhalb

der CV-Bl für das RF-Regressionsmodell ermittelt wurden. Angaben sind auf

zwei Nachkommastellen gerundet.

Aus Tabelle 5.6 geht hervor, dass im vierten Versuch der kleinste MAE erreicht wird. In diesem

Versuch wurde die Badtemperaturänderung als Zielvariable definiert und als zusätzliches Merk-

mal der Wert der Badtemperaturmessung vom Vortag berücksichtigt. Es ist zu vermuten, dass

ähnliche Ausprägungen der einzelnen Merkmale zu einer ähnlichen Badtemperaturänderung

führen. So war das RF-Regressionsmodell besser in der Lage, die Daten hinsichtlich der Zielva-

riable in homogene Gruppen einzuteilen. Wird beispielsweise davon ausgegangen, dass jeder

Anodenwechsel die gleiche Badtemperaturänderung hervorruft, dann ist dieser Zusammen-

hang vermutlich besser durch das RF-Regressionsmodell zu erlernen als der Zusammenhang

zwischen Anodenwechsel und der Badtemperatur.

Diese Vermutung wird von den Ergebnissen der weiteren Versuche bestärkt. Im ersten Ver-

such wurde lediglich die Badtemperatur vorhergesagt, was zum größten MAE innerhalb der

CV-Bl führt. Der MAE verbessert sich bereits im zweiten Versuch wesentlich, bei dem der
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Wert der letzten Badtemperaturmessung als zusätzliches Merkmal berücksichtigt wurde. Daher

hatte das RF-Regressionsmodell die Möglichkeit, die vorherige Badtemperatur in der Gegen-

wartsvorhersage zu berücksichtigen. Der dritte Versuch zeigt gegenüber dem ersten Versuch

eine wesentliche Verbesserung hinsichtlich der Vorhersageperformanz und bestätigt die zuvor

aufgestellte Vermutung. In diesem Versuch wurde lediglich die Badtemperaturänderung vor-

hergesagt. Wie bereits erwähnt, wird der kleinste MAE im vierten Versuch erreicht, bei dem die

Badtemperaturänderung als Zielvariable definiert und der Wert der letzten Badtemperaturmes-

sung zusätzlich berücksichtigt wurden. Aus den Versuchen lässt sich insgesamt ableiten, dass

eine Vorhersage der Badtemperaturänderung gegenüber der Badtemperatur zu bevorzugen ist,

da eine bessere Modellperformanz erreicht wird.

Um einen Einblick in das Zusammenspiel zwischen den verwendeten Merkmalen und der Ziel-

variable zu erhalten, wurde die PFI berechnet. Die PFI gibt an, wie wesentlich ein Merkmal für

die Vorhersage der Zielvariable ist. Dazu wird zunächst ein entsprechendes Vorhersagemodell

trainiert und die Performanz anhand von Validierungsdaten ermittelt. Diese ermittelte Perfor-

manz stellt die Basis für die Berechnung der PFI dar. Anschließend werden die Ausprägungen

eines Merkmals aus den Validierungsdaten zufällig permutiert. Mit dem permutierten Merkmal

und allen weiteren Merkmalen wird dann erneut eine Performanz ermittelt und aufgezeichnet.

Dieses Vorgehen wird solange wiederholt, bis alle Ausprägungen eines jeden Merkmals zufällig

permutiert wurden. Der Unterschied zwischen der Basisperformanz und der Performanz, die

mit einem zufällig permutierten Merkmal ermittelt wird, gibt eine Einschätzung darüber, wie

wesentlich das entsprechende Merkmal für die Vorhersage ist [Bre01a, S. 23].

Bei der Interpretation der PFI sollten die Korrelationen zwischen den einzelnen Merkmalen

berücksichtigt werden. In Abbildung A.5 sind die Korrelationen der berechneten Zeitreihen-

merkmale und der beiden Zielvariablen, Badtemperatur und Badtemperaturänderung, angege-

ben. Die angegebenen Korrelationskoeffizienten wurden nach Pearson berechnet. In Abbildung

A.6 sind zudem die Korrelationskoeffizienten zu sehen, die nach Spearman berechnet wurden.

Merkmale, die miteinander stark korrelieren, können sich gegenseitig substituieren. Bestehende

Korrelationen zwischen Merkmalen sollten daher bei der Analyse der PFI beachtet werden,

indem die korrelierenden Merkmale bei der Berechnung der PFI gemeinsam permutiert wer-

den [PTCH18]. Aus den Korrelationen geht insgesamt hervor, dass zwischen den Merkmalen

keine stärkeren Korrelationen vorliegen, die eine Zusammenführung von Merkmalen für die

Berechnung der PFI rechtfertigten. Die stärkste Korrelation besteht in Abbildung A.5 zwischen

der Ofenspannung und dem Hallenstrom, während in Abbildung A.6 die stärkste Korrelation

zwischen der Fütterungsrate und dem Anodenwechsel vorliegt. Wie bereits erläutert, sind

auch die Korrelationen der Zielvariablen in beiden Abbildungen A.5 und A.6 zu sehen. Aus

diesen geht hervor, dass die Badtemperatur (Zielvariable) mit der vorherigen Badtemperatur

(Messwert vom Vortag) korreliert. Eine solche Korrelation wurde bereits aus der berechneten

Autokorrelation in Kapitel 5.3.5 ersichtlich. Mit der Badtemperaturänderung (Zielvariable)
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korrelieren der Anodenwechsel und die vorherige Badtemperatur am stärksten. In Abbildung

5.26 ist die berechnete PFI als Balkendiagramm mit zugehöriger Standardabweichung für jedes

Merkmal dargestellt. Die PFI wurde während der CV-Bl auf den jeweiligen Validierungsdaten

für jeden der vier Versuche anhand des RF-Regressionsmodells ermittelt. Für die Messung der

jeweiligen Performanz wurde der MAE berechnet. Die Daten geben die Änderung des MAE für

die einzelnen Merkmale an.
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AlF3-Durchläufer entdeckt
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Änderung MAE (°C)

Anodenwechsel

Vorherige Badtemp.

Fütterungsrate

Ofenspannung

Hallenstrom

Metallsaugen

Flusssaugen

Zugabe von AlF3

Anodeneffekt

Ansatz entdeckt

Zugabe von Soda (Na2CO3)
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Abbildung 5.26: Berechnete PFI für jeden Versuch. (a) Die Zielvariable ist

die Badtemperatur. (b) Die Zielvariable ist die Badtemperatur. Der Wert

der letzten Badtemperaturmessung wird als Merkmal berücksichtigt. (c)

Die Zielvariable ist die Badtemperaturänderung. (d) Die Zielvariable ist die

Badtemperaturänderung. Der Wert der letzten Badtemperaturmessung wird

als Merkmal berücksichtigt.
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Im ersten Versuch (vgl. Abbildung 5.26a) kommt die größte Änderung des MAE durch das

Merkmal Fütterungsrate zustande. In diesem Fall steigt der MAE um etwa 1,4 °C gegenüber der

Basisperformanz. Im zweiten Versuch (vgl. Abbildung 5.26b) verursacht der Wert der letzten

Badtemperaturmessung die größte Änderung des MAE, während im dritten und vierten Versuch

(vgl. Abbildung 5.26c und 5.26d) jeweils der Anodenwechsel sich als wesentliches Merkmal

herausstellt. Wie bereits in [GKD+18, S. 9] festgestellt, gilt es bei der Interpretation der PFI zu

beachten, dass diese nicht zwangsläufig den kausalen Zusammenhang zwischen denMerkmalen

und der Zielvariable darstellen. Dennoch gibt die PFI einen ersten Überblick über Merkmale,

die wesentlich für die Vorhersage der Badtemperatur sind.

Das RF-Regressionsmodell aus dem vierten Versuch wurde näher untersucht, da dieses den

geringsten MAE erzielt hat. Die für den vierten Versuch berechnete PFI (vgl. Abbildung 5.26d)

zeigt, dass einige Merkmale kaum zu einer Änderung des MAE beitragen. Aus diesem Grund

wurden Merkmale mit einem geringen Beitrag entfernt und erneut ein RF-Regressionsmodell

mit einer reduzierten Anzahl an Merkmalen mithilfe der CV-Bl trainiert und validiert. Folgende

Merkmale wurden weiter berücksichtigt: Anodenwechsel, Wert der Badtemperaturmessung

vom Vortag (vorherige Badtemp.), Fütterungsrate, Ofenspannung, Hallenstrom und Metallsau-

gen. Die restlichen Merkmale wurden aufgrund ihrer geringen Werte in der PFI verworfen.

Als Zielvariable wurde die Änderung der Badtemperatur definiert und unterschiedliche Hy-

perparameterkombinationen validiert. Der kleinste MAE von 4,56 °C ± 0,36 °C wurde mit den

Hyperparametern aus dem ersten Durchlauf ohne Subspace Sampling erzielt. Der MAE ist nur

geringfügig schlechter als der MAE aus dem vierten Versuch im ersten Durchlauf (vgl. Tabelle

5.6).

0 2 4 6
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Abbildung 5.27: PFI des RF-Regressionsmodells mit reduzierten Merkmalen.
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Diese Erkenntnis legt nahe, dass die ausgeschlossenen Merkmale nicht wesentlich für

die Vorhersage der Badtemperatur sind. Abbildung 5.27 veranschaulicht die PFI des RF-

Regressionsmodells mit den reduzierten Merkmalen. Ein Vergleich mit Abbildung 5.26d zeigt,

dass die Reihenfolge der dargestellten Merkmale erhalten bleibt.

Im nächsten Schritt wurde das RF-Regressionsmodell auf den kompletten Trainingsdaten trai-

niert, um das endgültige Modell zu erhalten. Für den Trainingsvorgang wurde die Hyper-

parameterkombination aus dem ersten bzw. zweiten Durchlauf verwendet. Die Anzahl an

Entscheidungsbäume wurde jedoch auf 1000 erhöht. Nach [HG20, S. 299] verbessert sich die

Modellperformanz, je mehr Entscheidungsbäume trainiert werden. Eine zusätzlich in dieser

Arbeit durchgeführte CV-Bl unterstützt diese Aussage. Allerdings verbesserten 2000 Entschei-

dungsbäume die Modellperformanz nicht weiter. Aus diesem Grund wurden 1000 Entschei-

dungsbäume für den abschließenden Test verwendet.

Das Modell wurde anschließend auf den Testdaten getestet, um eine abschließende Performanz

zu ermitteln. Bei diesem Test erreichte das RF-Regressionsmodell einen MAE von 4,53 °C
auf den Testdaten. Auch in diesem abschließenden Test wurden die Badtemperaturwerte, die

durch die LOCF-Methode ersetzt wurden (vgl. Kapitel 5.3.4), nicht berücksichtigt. In Abbildung

5.28 ist weiterhin der MAE für jeden Ofen dargestellt, den das RF-Regressionsmodell auf den

entsprechenden Testdaten erzielt hat.

10
58

10
05

10
37

10
61

10
53

10
35

10
60

10
65

10
10

11
05

10
19

10
27

10
83

10
95

10
89

10
32

10
48

10
46

10
70

10
87

10
26

10
13

10
42

10
82

10
34

10
45

10
67

10
25

10
88

10
76

10
21

10
36

10
91

10
93

10
57

10
09

10
41

10
75

10
15

10
62

10
98

10
39

10
28

11
08

10
81

10
68

10
73

10
54

10
69

11
06

10
01

Ofen

0

1

2

3

4

5

6

M
A

E
(°

C
)

Abbildung 5.28: MAE für jeden Ofen, den das RF-Regressionsmodell auf den

Testdaten erzielt.

Der Abbildung 5.28 ist zu entnehmen, dass das RF-Regressionsmodell für den Ofen 1001 den

höchsten MAE und für den Ofen 1058 den geringsten MAE erzielte. Für die beiden Öfen 1001

und 1058 lassen sich exemplarisch die Gegenwartsvorhersagen des RF-Modells, die Standardab-
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weichung für jede Vorhersage (σ RF) und die gemessene Badtemperatur (Ziel) vom 09.04.2023

bis zum 23.04.2023 in Abbildung 5.29 entnehmen. In dieser sind die Gegenwartsvorhersagen der

Badtemperaturänderung und der Badtemperatur zu sehen. Die Vorhersage der Badtemperatur

ergibt sich hierbei aus der Vorhersage der Badtemperaturänderung. Die Standardabweichung

wurde über die Gegenwartsvorhersagen der einzelnen Entscheidungsbäume berechnet. Die

Standardabweichung dient als Maß für die Unsicherheit der jeweiligen Vorhersage. Eine kleine

Standardabweichung bedeutet ein größeres Vertrauen, das in die Vorhersage gesetzt werden

kann. Vorhersagen, die eine relativ hohe Standardabweichung aufweisen, sollten mit Vorsicht

betrachtet werden [HG20, S. 302–303]. Zum Beispiel besitzt die Gegenwartsvorhersage des

Ofens 1001 für den 10.04.2024 eine relativ hohe Standardabweichung.

Für den Ofen 1001 ist in Abbildung 5.29 zu erkennen, dass für den 15.04.2023 kein Messwert bzw.

Zielwert vorhanden ist. Lediglich die Gegenwartsvorhersage des RF-Regressionsmodells ist zu

sehen, die für diesen Tag eine negative Badtemperaturänderung prognostiziert. Die Vorhersage

wurde zu Beginn der dritten Schicht getätigt, da diese Schicht für die Badtemperaturmessung

des Ofens 1001 zuständig ist (vgl. Abbildung A.1).
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Abbildung 5.29: Zeitlich aufgetragene Gegenwartsvorhersagen des RF-

Regressionsmodells für die Öfen 1001 und 1058. Zum Vergleich sind wei-

terhin die tatsächlich gemessenen Badtemperaturen aufgetragen. Die Stan-

dardabweichung (σ RF) gibt die Streuung der Gegenwartsvorhersagen der

einzelnen Entscheidungsbäume des RF-Modells an.

5.4.3 Analyse (Nowcasting)

Die Gegenwartsvorhersagen der einzelnen Entscheidungsbäume, die in dem RF-

Regressionsmodell enthalten sind, werden zu einer Gesamtvorhersage aggregiert. Mit

dem Aufbau eines Entscheidungsbaums lässt sich der Beitrag der Merkmale zu jeder Gegen-
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wartsvorhersage ermitteln. Hierzu wird der Pfad vom Wurzelknoten bis zum Blattknoten

eines jeden Entscheidungsbaums für eine bestimmte Vorhersage analysiert [Saa14]. Eine

solche Analyse hilft bei der Interpretation einer jeden Gegenwartsvorhersage und bietet die

Möglichkeit einer Ursachenanalyse von Badtemperaturänderungen, die nach bestem Wissen

im Bereich der Aluminiumelektrolyse noch nicht aufgezeigt wurde.

Für die Interpretation der Gegenwartsvorhersagen wurde das Python-Paket treeinterpreter

[Saa21] in der Version 0.2.3 verwendet. Um den Einfluss der einzelnen Merkmale auf die Gegen-

wartsvorhersage darstellen zu können, wurde des Weiteren ein Waterfall-Chart eingesetzt, der

mithilfe des Python-Pakets waterfallcharts [Csi17] in derVersion 3.8mit eigenenModifikationen

realisiert wurde.

Ausgehend von dem Bias, der sich aus den Trainingsdaten ergibt, sind in Abbildung 5.30 die

einzelnen Beiträge der Merkmale zu sehen, aus denen sich die Gesamtvorhersage für den

14.04.2024 für den Ofen 1001 zusammensetzt. Die Summe der einzelnen Beiträge ergibt die

Gegenwartsvorhersage des RF-Modells. An dieser Stelle wird darauf hingewiesen, dass die

in Abbildung 5.30 aufgezeigten Merkmale die berechneten Zeitreihenmerkmale darstellen,

die innerhalb des 24 Stunden Intervalls berechnet wurden (vgl. Kapitel 5.4.2). Zum Beispiel

stellt das Merkmal Anodenwechsel die Anzahl der Anodenwechsel der letzten 24 Stunden

dar. Für die Ofenspannung oder den Hallenstrom ist das der jeweilige Mittelwert in diesem

Intervall. Aus Abbildung 5.30 geht hervor, dass der Anodenwechsel den größten Beitrag zur

Gegenwartsvorhersage vom 14.04.2023 des Ofens 1001 liefert.
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Abbildung 5.30: Ein Waterfall-Chart, der die Zusammensetzung der Gegen-

wartsvorhersage vom 14.04.2023 des Ofens 1001 darstellt. Angaben sind auf

zwei Nachkommastellen gerundet.
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Erwähnenswert hierbei ist, dass ausgehend vom Zeitpunkt der Gegenwartsvorhersage in den

letzten 24 Stunden kein Anodenwechsel am Ofen 1001 stattgefunden hat. Das führt zu ei-

nem positiven Beitrag bei der Gegenwartsvorhersage. Auch der Hallenstrom trägt mit einem

negativen Beitrag wesentlich zur Gesamtvorhersage bei. Die Summe aus Bias und den Bei-

trägen der Merkmale ergibt die Gegenwartsvorhersage, die mit 3,74 °C auf der rechten Seite

der Abbildung 5.30 angegeben ist. Ein weiteres Beispiel ist in Abbildung 5.31 zu sehen. In

dieser sind die Beiträge der einzelnen Gegenwartsvorhersage vom 19.04.2023 für den Ofen 1058

zu sehen. Die vorhergesagte Badtemperaturänderung beträgt −4,01 °C. Wesentlich für diese

Gegenwartsvorhersage ist das Merkmal Anodenwechsel. In dem 24-Stunden-Zeitraum haben

zwei Anodenwechsel stattgefunden, die insgesamt mit −4,06 °C zur Gegenwartsvorhersage

beitragen.
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Abbildung 5.31: Ein Waterfall-Chart, der die Zusammensetzung der Gegen-

wartsvorhersage vom 19.04.2023 des Ofens 1058 aufzeigt. Angaben sind auf

zwei Nachkommastellen gerundet.

Eine solche Zusammensetzung kann auch für jede weitere Gegenwartsvorhersage des RF-

Regressionsmodells erzeugt werden, um eine Interpretation der Gegenwartsvorhersagen zu

ermöglichen. Anhand des Waterfall-Charts können Prozessvariablen identifiziert werden, die

die Gegenwartsvorhersage maßgeblich beeinflussen. Allerdings muss bei diesen Analysen

beachtet werden, dass die Zusammenhänge nicht unbedingt den realen Prozess der Aluminium-

herstellung widerspiegeln, wie bereits in unserer Arbeit [GKD+18, S. 9] festgestellt wurde. Die

hier gezeigten Beiträge, aus denen sich die jeweilige Gegenwartsvorhersage zusammensetzt,

lassen dennoch Rückschlüsse auf die Modellzusammenhänge zu, die von den Trainingsda-

ten erlernt wurden. Die Interpretation der Gegenwartsvorhersagen (Ursachenanalyse) muss

allerdings im Praxisbetrieb der Aluminiumelektrolyse erprobt werden.

92 Kapitel 5
Proof of Concept



Abschnitt 5.4. Lösungsentwicklung

5.4.4 Evaluation

DerMAE von 4,53 °C des RF-Regressionsmodells wurde anhand eines Testdatensatzes ermittelt,

der lediglich Öfen ohne neue Prozessteuerung beinhaltet. Ein direkter Vergleich mit den lokalen

Modellen und dem globalen AR(10)-Modell (vgl. Tabelle 5.4) war daher zunächst nicht möglich.

Um dennoch einen Vergleich zwischen den einzelnen Modellen durchführen zu können, wurde

jeweils die Performanz der lokalen Modelle und des globalen AR(10)-Modells auf dem reduzier-

ten Testdatensatz berechnet. So war ein direkter Vergleich zwischen allen Modellen möglich, da

die gleichen Testdaten verwendet wurden. Auch für diesen Test wurden die Badtemperaturen,

die durch die LOCF-Methode ermittelt wurden (vgl. Kapitel 5.3.4), vom Test ausgeschlossen.

Die Ergebnisse können Tabelle 5.7 entnommen werden.

Modell Art der Vorhersage MAE (°C)

RF Nowcasting (Global) 4,53
AR(10) Forecasting (Global) 4,55
ETS (auto) Forecasting (Lokal) 4,55
ARIMA (auto) Forecasting (Lokal) 4,62
NAÏVE Forecasting (Lokal) 5,76
MEAN Forecasting (Lokal) 7,88

Tabelle 5.7: MAE, der von dem jeweiligen Modell auf den Testdaten (ohne

Öfen mit neuer Prozessteuerung) erzielt wurde. Die Angaben wurden zu-

nächst aufsteigend sortiert und anschließend auf zwei Nachkommastellen

gerundet. Als Forecasting wird die Tagesprognose bezeichnet.

Aus Tabelle 5.7 geht hervor, dass das globale RF-Modell mit einem MAE von 4,53 °C die beste

Performanz auf den Testdaten erzielt. Es sei darauf hingewiesen, dass dieses im Vergleich zu

den restlichen Modellen eine Gegenwartsvorhersage durchführt. Auf das RF-Modell folgen das

globale AR(10)-Modell und das lokale ETS-Modell mit einem MAE von jeweils 4,55 °C. Den

höchsten MAE erreicht das MEAN-Modell. Der Performanzvergleich zeigt auch hier, dass das

globale AR(10)-Modell eine Alternative zu den lokalen Modellen ist, um die Badtemperatur

vorherzusagen. Während bei den lokalenModellen für jede Zeitreihe ein entsprechendesModell

trainiert wird, wird beim globalen Ansatz ein Modell anhand von allen verfügbaren Zeitreihen

trainiert. Daraus ergibt sich ein praktischer Vorteil, da mit einem einzigen globalen Modell

Badtemperaturvorhersagen für mehrere Aluminiumelektrolyseöfen erstellt werden können.

Je nach Einsatzszenario sind beide globalen Modelle für eine Vorhersage der Badtemperatur

zu empfehlen. Für eine Tagesprognose kann das globale lineare AR-Modell als Basismodell

eingesetzt werden. Bei der Gegenwartsvorhersage mit dem RF-Modell steht zusätzlich die

Möglichkeit einer Interpretation der erzeugten Vorhersagen zur Verfügung.

In Abbildung 5.32 sind die Verteilungen der Vorhersagefehler auf den Testdaten jeweils anhand

eines Boxplots für beide globalen Modelle zu sehen. Der Vorhersagefehler ist die Differenz
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zwischen der gemessenen Badtemperatur und der Vorhersage. Bei beiden Boxplots ist der

Median jeweils negativ. Das bedeutet, dass die Vorhersagen beider globalen Modelle im Median

höher liegen als die tatsächlich gemessene Badtemperatur. Zudem sind für beide globalen

Modelle Ausreißer hinsichtlich der jeweiligen Vorhersagefehler zu erkennen. Für das globale

AR(10)-Modell in Abbildung 5.32a liegt der größte absolute Vorhersagefehler bei 34,71 °C. Beim

RF-Modell in Abbildung 5.32b liegt der größte absolute Fehler bei 31,59 °C. Die Standardab-

weichung der Vorhersagefehler liegt für das globale AR(10)-Modell bei 5,82 °C und für das

RF-Modell bei 5,72 °C.

−40 −30 −20 −10 0 10 20 30 40
Vorhersagefehler (°C)

(a) Boxplot für die Vorhersagefehler des globalen AR(10)-Modells.

−40 −30 −20 −10 0 10 20 30 40
Vorhersagefehler (°C)

(b) Boxplot für die Vorhersagefehler des globalen RF-Regressionsmodells.

Abbildung 5.32: Verteilungen der Vorhersagefehler der globalen Modelle auf

den Testdaten.

Eine weitere Idee bestand noch darin, die Vorhersagen der beiden globalen Modelle miteinan-

der zu kombinieren, um eine potenzielle Verbesserung hinsichtlich der Vorhersageperformanz

zu erreichen. Dazu wurde der Mittelwert anhand der Gegenwartsvorhersage des globalen

RF-Regressionsmodells und der Tagesprognose des globalen AR(10)-Modells für jeden Tag be-

rechnet. Die gemittelten Vorhersagen wurden anschließend auf den Testdaten evaluiert. Die

Modellkombination erreichte einen MAE von 4,31 °C auf den Testdaten. Aus diesem Ergebnis

ist ersichtlich, dass mittels einfacher Mittelung eine Verbesserung der Vorhersageperformanz

erreicht werden konnte. In Abbildung 5.33 ist ein Boxplot für die Vorhersagefehler der Mo-

dellkombination zu sehen. Aus dieser geht unter anderem hervor, dass der größte absolute

Vorhersagefehler unter 30 °C liegt. Die Standardabweichung der Vorhersagefehler der Modell-

kombination beträgt 5,49 °C und ist kleiner als die der einzelnen globalen Modelle.
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Abbildung 5.33: Boxplot für die Vorhersagefehler der Modellkombination

auf den Testdaten.

5.5 Zusammenfassung

In diesem Kapitel wurde zunächst die umfangreiche Aufbereitung der Badtemperaturdaten

aufgezeigt. Es wurden Daten von Öfen aus der ersten Halle der TAE in einem Zeitraum vom

01.01.2022 06:00 Uhr bis zum 24.04.2023 06:00 Uhr betrachtet. Da die Messzeitpunkte der

Badtemperatur eines Ofens variieren, wurden die Zeitstempel angepasst. Außerplanmäßige

Badtemperaturmessungen wurden von der weiteren Analyse ausgeschlossen. Anschließend

wurde die Verteilung der Badtemperaturmesswerte anhand von mehreren Boxplots untersucht.

Dabei ist ein nicht plausibler Badtemperaturwert von 872,5 °C aufgefallen, der daraufhin aus

den Daten entfernt wurde. Des Weiteren wurden starke Badtemperaturänderungen von vier

Öfen identifiziert, die mit Hilfe der TAE und der Betrachtung weiterer Prozessvariablen näher

untersucht wurden. Es stellte sich heraus, dass Badtemperaturänderungen von ±50 °C von

einem auf den anderen Tag auftreten und auf bestimmte Ursachen zurückgeführt werden

können. Lediglich die am 26.03.2022 gemessene Badtemperatur des Ofens 1058 wurde auf einen

Messfehler zurückgeführt (vgl. Abbildung 5.15). Da die Unterscheidung von plausiblen und

nicht plausiblen Ausreißern in den Badtemperaturdaten zeitlich aufwendig ist, wurde in dieser

Arbeit auf eine ausführliche Korrektur von Ausreißern verzichtet.

Datenlücken in den Badtemperaturdaten wurden mithilfe der LOCF-Methode geschlossen. An-

schließend wurden die Badtemperaturverläufe hinsichtlich ihrer Autokorrelation untersucht,

aus der eine zweitägige Periodizität bzw. Saisonalität ersichtlich wurde. Die zweitägige Sai-

sonalität wurde mit Anodenwechsel erklärt, der bei der TAE in der Regel alle zwei Tage an

einem Ofen durchgeführt wird und zu einem Dreiecksverlauf in den Badtemperaturen führt.

Zusätzlich wurde für jeden Badtemperaturverlauf ein Periodogramm erstellt, um ausgeprägte

Frequenzen in den Badtemperaturverläufen zu identifizieren. Aus den Periodogrammen gingen

ausgeprägte Frequenzspitzen bei ungefähr sieben und 30 Tagen hervor. Die Frequenzspitze bei

30 Tagen wurde in Verbindung mit einem zyklischen Muster in den Badtemperaturverläufen

gebracht. Für die Frequenzspitze bei sieben Tagen konnte keine Ursache identifiziert werden.

Die Überprüfung der Stationarität der Badtemperaturverläufe wurde mittels Berechnung der

Stärke der Saisonalität und mittels Anwendung des KPSS-Tests durchgeführt. Anhand der
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Abschnitt 5.5. Zusammenfassung

Ergebnisse wurde festgestellt, dass die Mehrheit der untersuchten Badtemperaturverläufe sta-

tionär ist. Diese Erkenntnis deckt sich mit den Ergebnissen aus [MAW01, S. 298–299].

Für die Badtemperaturvorhersage wurde zunächst ein globales AR-Modell trainiert, das eine

Badtemperaturvorhersage (Forecasting) für den nächsten Tag ermöglicht. Dabei wurde ein AR-

Modell mit unterschiedlichen Ordnungen validiert. Aus der Validierung ging hervor, dass nach

der zehnten Ordnung keine wesentlichen Verbesserungen in der Modellperformanz erreicht

wurden. Für die weitere Analyse wurde daher ein globales AR(10)-Modell auf den kompletten

Trainingsdaten trainiert und anschließend mit vier lokalen Modellen auf den Testdaten ver-

glichen. Bei diesem Vergleich erreichte das globale AR(10)-Modell mit 4,59 °C den niedrigsten

MAE. Darauf folgte mit einem MAE von 4,60 °C das lokale ETS-Modell.

Zudem wurde die Vorgehensweisen aus unserer Arbeit [GKD+18] aufgegriffen, um eine Ge-

genwartsvorhersage (Nowcasting) durchzuführen. Dazu wurde ein RF-Regressionsmodell mit

weiteren Prozessvariablen trainiert und validiert. Während der Validierung ist aufgefallen, dass

die Gegenwartsvorhersage der Badtemperaturänderung zu einem kleineren MAE führte als

die Vorhersage der Badtemperatur. Mithilfe der PFI wurden Prozessvariablen identifiziert, die

nicht wesentlich für die Gegenwartsvorhersage waren und für das endgültige Training auf dem

kompletten Trainingsdatensatz ausgeschlossen wurden. Das endgültige RF-Regressionsmodell

erreichte auf den Testdaten einen MAE von 4,53 °C. Es wurde erwähnt, dass dieser Wert auf ei-

nem reduzierten Testdatensatz erzielt wurde, da Öfen mit neuer Prozessteuerung vom Training

und Test ausgeschlossen wurden. Grund ist, dass wegen der neuen Prozesssteuerung bestimmte

Prozessvariablen nicht mehr in der ursprünglichen Datenbank aufgezeichnet wurden. Daher

wurden für das globale AR(10)-Modell und die lokalenModelle ebenfalls die Performanz auf dem

reduzierten Testdatensatz ermittelt, um einen direkten Vergleich mit dem RF-Regressionsmodell

durchführen zu können.

Tabelle 5.7 zeigt, dass das RF-Regressionsmodell mit dem bereits erwähnten MAE von 4,53 °C
die beste Performanz auf den reduzierten Testdaten erzielt. Darauf folgen das globale AR(10)-

Modell und das lokale ETS-Modell mit einem MAE von jeweils 4,55 °C. Bei diesem Vergleich

sollte berücksichtigt werden, dass das RF-Regressionsmodell eine Gegenwartsvorhersage er-

zeugt, während das globale AR(10)-Modell und die lokalen Modelle jeweils eine Badtempera-

turvorhersage für den nächsten Tag (Tagesprognose) ermitteln. Insgesamt stellt das globale

AR(10)-Modell eine Alternative zu den lokalen Modellen dar, um eine Badtemperaturvorhersage

in der Aluminiumelektrolyse durchzuführen. Die praktischen Vorteile beider globalen Modellen

wurden in diesem Kapitel präsentiert. Des Weiteren wurde gezeigt, dass die Modellkombination

aus dem globalen AR(10)-Modell und dem globalen RF-Regressionsmodell den MAE auf 4,31 °C
verbessert.

Mithilfe der Python-Pakete treeinterpreter [Saa21] und waterfallcharts [Csi17] wurde eine

Möglichkeit gezeigt, um die Gegenwartsvorhersagen des RF-Regressionsmodells interpretieren
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Abschnitt 5.5. Zusammenfassung

zu können, indem die Zusammensetzung der entsprechenden Gegenwartsvorhersage aus den

einzelnen Merkmalen aufgezeigt wird. Zwar ermöglicht eine Interpretation der Gegenwarts-

vorhersagen auch eine Ursachenanalyse von Badtemperaturänderungen, diese sollte jedoch

durch Praxiserfahrungen aus der Aluminiumelektrolyse bestätigt werden.
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KAPITEL 6

Fazit und Ausblick

Im Rahmen dieser Arbeit wurden datengetriebene Methoden zur Vorhersage der Elektrolyt-

temperatur (Badtemperatur) in der Aluminiumelektrolyse untersucht und gegenübergestellt.

Die Badtemperatur stellt in der industriellen Aluminiumherstellung eine wesentliche Prozess-

variable dar. Mittels regelmäßiger manueller Messung der Badtemperatur können wichtige

Rückschlüsse auf den Zustand eines Aluminiumelektrolyseofens gewonnen werden. Zudem

dient die Badtemperatur als Maß für die Erkennung von Ofenabnormitäten [GK93, S. 215] und

beeinflusst maßgeblich die Effizienz der Aluminiumproduktion [ZJX+94, S. 28]. Die korrosi-

ve Produktionsumgebung erschwert jedoch eine kontinuierliche Messung der Badtemperatur

mittels einer in den Öfen angebrachte Sensorik, da der Elektrolyt diese innerhalb kurzer Zeit

zerstören würde [GK93, S. 215; Dü16, S. 41].

Der Aufbau dieser Arbeit orientierte sich am Vorgehensmodell Machine Learning for Produc-

tion (ML4P), das unter der Projektleitung des Fraunhofer-Instituts für Optronik, Systemtechnik

und Bildauswertung (IOSB) entwickelt wurde [BP20]. In Kapitel 1 wurden der Aluminiumher-

steller und Projektpartner TRIMET Aluminium SE (TRIMET) und das EFRE-Drittmittelprojekt

„Thermische Flexibilisierung der Aluminiumelektrolyse (FlexTherm)“ vorgestellt. Aus diesem

Drittmittelprojekt ist die initiale Motivation für die vorliegende Arbeit entstanden. In Kapitel 2

wurden das Ziel und mögliche Lösungsansätze präsentiert, um eine Badtemperaturvorhersage

in der Aluminiumelektrolyse zu ermöglichen. Dazu wurde ein Machine Learning Pipeline

Diagramm (ML-Pipeline-Diagramm) erläutert, um den Ist- vom Ziel-Zustand abzugrenzen.

Außerdem wurde ein Literaturüberblick gegeben, der den unterschiedlichen Einsatz von da-

tengetriebenen Methoden im Bereich der Aluminiumelektrolyse umfasst. Es wurden Arbeiten

aufgezeigt, in denen bereits eine Vorhersage der Badtemperatur durchgeführt wurde.

In Kapitel 3 wurden die Grundlagen der industriellen Aluminiumherstellung vorgestellt. Die

Wechselwirkungen von Prozessvariablen eines Elektrolyseofens wurden erläutert und die Aus-

wirkungen unterschiedlicher Einflüsse auf die Badtemperatur aufgezeigt. Unter anderem wur-

den die Auswirkungen einer kontrollierten Stromabschaltung (Hallenschaltung) auf die Bad-

temperatur von vier Öfen bei der TRIMET Aluminium SE Essen (TAE) untersucht und die
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Ergebnisse dargestellt. Das Kapitel 4 ging auf wesentliche Grundlagen der Zeitreihenanalyse

ein, die für die in dieser Arbeit durchgeführten Analysen der Badtemperatur essentiell waren.

Die numerische Beschreibung von Zeitreihen mittels Zeitreihenmerkmalen und deren An-

wendungsbereiche wurden präsentiert. Die in dieser Arbeit verwendeten Vorhersagemodelle

umfassen das AR-Modell und RF-Modell. Die Wahl dieser Modelle erfolgte aufgrund ihrer

wettbewerbsfähigen Vorhersageperformanz sowie ihrer einfachen Handhabung und Praxisim-

plementierung. Des Weiteren wurden unterschiedliche Methoden aufgezeigt, um im Bereich

der Zeitreihenanalyse Vorhersagemodelle zu validieren und zu testen.

Der erste Teil des Kapitels 5 zeigte die Vorverarbeitung der Badtemperaturdaten auf. Dabei wur-

den Schwierigkeiten in den Daten, wie Datenlücken und Datenausreißer, sowie entsprechende

Lösungen aufgezeigt. Eine Analyse hinsichtlich der Stationarität ergab, dass die Mehrheit der

Badtemperaturverläufe stationär ist. Dieses Ergebnis deckt sich mit den Aussagen aus [MAW01,

S. 299–299]. Außerdem wurden starke Badtemperaturänderungen von Öfen analysiert. Da-

bei wurden Änderungen in der Badtemperatur von ±50 °C festgestellt, für die entsprechende

Ursachen diskutiert wurden. Diese Ursachenforschungen für starke Badtemperaturänderun-

gen lieferten weitere Ergebnisse, die für die Entwicklung von Vorhersagemodellen eingesetzt

werden konnten.

Für die Vorhersage der Elektrolyttemperatur wurden in dieser Arbeit zwei Lösungsansätze

verfolgt, die im zweiten Teil des Kapitels 5 dargestellt wurden. Der erste Ansatz umfasste

ein globales AR-Modell, mit dem eine Tagesprognose (Forecasting) der Badtemperatur erstellt

wurde. Das globale AR-Modell wurde anschließend mit lokalen Zeitreihenmodellen verglichen.

Bei diesem Vergleich erzielte das globale AR(10)-Modell eine wettbewerbsfähige Performanz auf

den Testdaten. Mit einem MAE von 4,59 °C erreichte das AR(10)-Modell den kleinsten Fehler.

Das lokale ETS-Modell lag mit einem MAE von 4,60 °C dicht dahinter.

Im zweiten Lösungsansatz wurde eine Gegenwartsvorhersage (Nowcasting) mit einem RF-

Regressionsmodell durchgeführt. Das RF-Regressionsmodell wurde auf einem reduzierten

Datensatz trainiert und getestet, da bestimmte Öfen im untersuchten Zeitraum mit einer neuen

Prozesssteuerung ausgestattet waren. Das hatte den Effekt, dass einige Prozessvariablen nicht

mehr in der ursprünglichen Datenbank aufgezeichnet wurden. Aus diesem Grund wurden

die Öfen mit neuer Prozessteuerung aus dem Datensatz entfernt. Somit reduzierte sich der

Datensatz von 60 auf 51 Öfen, die für das Training und Testen des RF-Regressionsmodells

verwendet wurden. Während der Validierung des RF-Regressionsmodells stellte sich heraus,

dass die Vorhersage der Badtemperaturänderung einen kleineren MAE innerhalb der CV-Bl

erzeugt als wenn die Badtemperatur vorhergesagt wird. Diese Erkenntnis wurde damit be-

gründet, dass ähnliche Merkmalsausprägungen zu einer ähnlichen Badtemperaturänderung

führen. So sind die einzelnen Entscheidungsbäume besser in der Lage, den Datensatz hin-

sichtlich der Badtemperaturänderung in homogene Gruppen einzuteilen. Als Beispiel kann
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das Merkmal Anodenwechsel genannt werden, das sich auch als prädiktives Merkmal in der

CV-Bl herausstellte (vgl. Kapitel 5.4.2). Wird davon ausgegangen, dass ein Anodenwechsel

zur einer gleichen Badtemperaturänderung führt, dann kann das RF-Regressionsmodell diesen

Zusammenhang wahrscheinlich besser lernen als wenn die Badtemperatur direkt vorhergesagt

wird. Für das weitere Vorgehen wurde daher entschieden, die Änderung der Badtemperatur von

einem auf den nächsten Tag vorherzusagen. Letztendlich erlangte das RF-Regressionsmodell

auf dem reduzierten Testdatensatz einen MAE von 4,53 °C. Die für diesen Test verwendeten

Hyperparameter wurden innerhalb einer CV-Bl mit zehn Folds ermittelt.

In einem abschließenden Test wurden alle in dieser Arbeit verwendeten Vorhersagemodelle

auf dem reduzierten Testdatensatz mit 51 Öfen gegenübergestellt. Das RF-Regressionsmodell

erreichte in diesem Vergleich den kleinsten MAE. Mit einem MAE von jeweils 4,55 °C lagen

das globale AR-Modell und das lokale ETS-Modell dicht dahinter. Den höchsten MAE erziel-

te das MEAN-Modell (vgl. Tabelle 5.7). Insgesamt zeigte dieser Vergleich, dass das globale

AR(10)-Modell eine Alternative zu den verwendeten lokalen Zeitreihenmodellen ist. Das globa-

le AR-Modell besitzt den praktischen Vorteil, dass es die in dieser Arbeit verwendeten lokalen

Zeitreihenmodelle substituieren kann. Während bei der lokalen Vorhersage für jeden Badtem-

peraturverlauf ein lokales Modell trainiert wird, werden beim globalen AR-Modell zunächst

alle verfügbaren Badtemperaturverläufe mit einem Lag Embedding (vgl. Kapitel 4.2.2) in eine

Matrix eingebettet, mit der das globale AR-Modell anschließend trainiert wird. Dadurch können

Tagesprognosen für mehrere Öfen über ein einziges globales AR-Modell erzeugt werden. Die

Mittelung der Vorhersagen der beiden globalen Modelle verbesserte den MAE auf den Testdaten

auf 4,31 °C.

In dieser Arbeit wurden Gegenwartsvorhersagen zum Zeitpunkt einer Badtemperaturmessung

erstellt, um die Performanz des RF-Modells zu ermitteln. Das RF-Regressionsmodell ermöglicht

jedoch auch die Erstellung einer Gegenwartsvorhersage zu einem beliebigen Zeitpunkt. Dies

eröffnet einen weiteren Weg, um kontinuierlich auf die Badtemperatur eines Ofens zu schlie-

ßen. Die zeitliche Auflösung der Vorhersagenerstellung richtet sich dabei nach der kleinsten

zeitlichen Auflösung der verwendeten Prozessvariablen. Diese lag in dieser Arbeit bei fünf

Minuten, da bei der TAE unter anderem der Hallenstrom und die Ofenspannung mit einer

zeitlichen Auflösung von fünf Minuten aufgezeichnet wurden. Das RF-Regressionsmodell wäre

damit in der Lage, eine Badtemperaturvorhersage alle fünf Minuten zu erstellen. Dennoch ist

zu beachten, dass die Gegenwartsvorhersagen für einen beliebigen Zeitpunkt in fortführenden

Arbeiten untersucht werden müssen. Dazu kann das RF-Modell parallel zum Betrieb bei der TAE

eingesetzt und die Plausibilität der Gegenwartsvorhersagen mit den Mitarbeitenden besprochen

werden.

In Kapitel 5.4.3 wurde eine Möglichkeit vorgestellt, um die Gegenwartsvorhersagen des RF-

Modells interpretieren zu können. Es wurde gezeigt, dass diese Interpretation auch für eine
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Ursachenanalyse von Badtemperaturänderungen eingesetzt werden kann. Ein solche Ursa-

chenanalyse mithilfe des RF-Regressionsmodells wurde im Bereich der Aluminiumelektrolyse

nach bestem Wissen noch nicht aufgezeigt. Eine Schwierigkeit besteht jedoch darin, dass die

in dem Kapitel 5.4.3 präsentierten Zusammenhänge nicht unbedingt auf den realen Prozess

zutreffen müssen. Weiterhin gilt es zu beachten, dass stellenweise die Gegenwartsvorhersage

und die tatsächliche Badtemperatur weit auseinanderliegen. Das kann dazu führen, dass die

Interpretation der Gegenwartsvorhersage und die Ursachenforschung zu diesen Zeitpunkten

nicht besonders aussagekräftig sind. Daher sind auch in diesem Bereich weitere Arbeiten erfor-

derlich, um den praktischen Nutzen einer Ursachenanalyse von Badtemperaturänderungen im

Praxisbetrieb zu evaluieren. Die Zerlegung der Gegenwartsvorhersagen und die anschließende

Darstellung über einen Waterfall-Chart können dennoch als Hilfsmittel eingesetzt werden, um

einen ersten Hinweis auf Ursachen für bestimmte Badtemperaturänderungen zu erhalten.

Folgend wird ein interaktives Dashboard vorgestellt, das in [Abd23] entwickelt wurde und einen

praxistauglichen Einsatz der Badtemperaturvorhersagen in der Aluminiumelektrolyse ermögli-

chen soll. In Abbildung 6.1 ist die Übersichtsseite des Dashboards für das RF-Regressionsmodell

zu sehen.
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Abbildung 6.1: Dashboard für die Analyse der Gegenwartsvorhersagen des

RF-Regressionsmodells. Abgeändert nach [Abd23, S. 51].

Auf der linken Seite der Abbildung 6.1 sind die Gegenwartsvorhersagen in blau und die aus

den gemessenen Badtemperaturen berechneten Änderungen in rot für den Ofen 1076 zeit-
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lich aufgetragen. Weitere Öfen lassen sich über das Dropdown-Menü auswählen. Für jeden

Zeitpunkt einer Badtemperaturmessung wird zudem die Abweichung zwischen der Vorher-

sage und der gemessenen Badtemperatur angezeigt. Weiter unten lässt sich der gewünschte

Zeitraum auswählen, der angezeigt werden soll. Auf der rechten Seite des Dashboards ist ein

Waterfall-Chart dargestellt, der die Zerlegung der Gegenwartsvorhersage für den 11.01.2022

aufzeigt und somit eine interaktive Ursachenanalyse für Badtemperaturänderungen ermöglicht.

Der Waterfall-Chart lässt sich für jede erstellte Gegenwartsvorhersage anzeigen. Im oberen

Bereich des Dashboards kann zudem die Übersichtsseite für die Tagesprognosen (Forecasting)

des globalen AR-Modells ausgewählt werden. Insgesamt soll das Dashboard einen benutzer-

freundlichen Umgang mit den erstellten Badtemperaturvorhersagen im Produktivbetrieb der

Aluminiumelektrolyse ermöglichen. Für die weitere Vorgehensweise gilt es, innerhalb der

dritten Phase des ML4P-Vorgehensmodells in einen Austausch mit den Prozessexperten/-innen

der TAE zu treten, um eine sinnvolle Integration des Dashboards in den Produktionsbetrieb zu

erörtern.

In dieser Arbeit wurden die ersten drei der sechs Phasen des ML4P-Vorgehensmodells [BP20]

behandelt, um eine Badtemperaturvorhersage in der Aluminiumelektrolyse zu ermöglichen. In

weiterführenden Arbeiten sollten die letzten drei Phasen des Vorgehensmodells abgearbeitet

werden. Das beinhaltet unter anderem die Absprache mit den Mitarbeitenden der TAE, um die

erstellten Vorhersagemodelle in den Produktivbetrieb zu überführen. Eine Schwierigkeit, die es

dabei zu bewältigen gilt, ist die Änderung der Messfrequenz der Badtemperatur. Die Messungen

finden bei der TAE für die Öfen aus Halle 1 mittlerweile nur noch alle zwei Tage statt. Eine

mögliche Lösung hierfür stellen die Badtemperaturvorhersagen des globalen AR(10)-Modells

dar. Diese können für die Tage eingesetzt werden, an denen keine Badtemperaturmessung

stattfindet. Das AR(10)-Modell erstellt somit eine Tagesprognose basierend auf gemessenen und

vorhergesagten Badtemperaturen. Die Vorhersagen können anschließend für die Ofenregelung

eingesetzt werden. Da das RF-Regressionsmodell den letzten gemessenen Badtemperaturwert

als Merkmal nutzt, könnte dieses auch auf die Tagesprognose des globalen AR(10)-Modells

zurückgreifen. Diese Vorgehensweise gilt es aber mit weiteren Arbeiten zu validieren. Eine

Verbesserung der Vorhersageperformanz des RF-Regressionsmodells könnte unter Berücksichti-

gung weiterer Merkmale erreicht werden. In dieser Arbeit wurde beispielsweise der potenzielle

Einfluss der an den Öfen installierten Wärmetauscher (vgl. Kapitel 1) auf die Badtemperatur

nicht berücksichtigt. Aus diesem Grund sollte in einer weiteren Analyse der Einfluss der Wär-

metauscher untersucht und geeignete Merkmale für das Training des RF-Regressionsmodells

ausgewählt werden.

Die Liquidustemperatur spielt in der Aluminiumelektrolyse ebenfalls eine wichtige Rolle. Sie

stellt die Mindesttemperatur dar, bei der der Prozess betrieben werden muss, ohne dass der

Elektrolyt zu erstarren beginnt [Hau16c, S. 804]. Daher wird die Liquidustemperatur in regel-
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mäßigen Abständen bei der TAE ermittelt. Es ist möglich, dass die in dieser Arbeit entwickelten

Lösungen auch für eine Vorhersage der Liquidustemperatur eingesetzt werden könnten.

In der vorliegenden Arbeit wurden zwei Lösungen präsentiert, die eine Badtemperaturvorher-

sage in der Aluminiumelektrolyse ermöglichen. Der Ziel-Zustand, der in Kapitel 2 beschrieben

und vom ML-Pipeline-Diagramm in Abbildung 2.1 dargestellt wird, wurde in dieser Arbeit bis

auf die Integration der Vorhersagemodelle in die bestehende Ofenregelung erreicht. Vor allem

in Zeiten der Energiewende sind neuartige Konzepte hinsichtlich der Analyse von Ofenpro-

zessdaten notwendig, da die Aluminiumelektrolyse nicht mehr mit einer konstanten sondern

variablen Energiezufuhr betrieben wird [Dü16, S. 163–164]. Vor diesem Hintergrund wurden

die in dieser Arbeit aufgezeigten Lösungen entwickelt.

Für eine Tagesprognose der Badtemperatur in der Aluminiumelektrolyse wird der Einsatz

eines globalen linearen AR-Modells empfohlen, da es in der Lage ist, die in dieser Arbeit

verwendeten klassischen lokalen Vorhersagemodelle zu substituieren. Ein globales lineares AR-

Modell sollte daher in zukünftigen Arbeiten für eine Tagesprognose zusätzlich berücksichtigt

werden, da es gegenüber den verwendeten lokalen Modellen praktische Vorteile mit sich bringt.

Liegt der Fokus auf einer Gegenwartsvorhersage, so bietet sich ein RF-Regressionsmodell an.

Hierbei sollte die Badtemperaturänderung anstatt der Badtemperatur vorhergesagt werden, da

so eine bessere Vorhersageperformanz erreicht werden konnte. Darüber hinaus können die

Gegenwartsvorhersagen des RF-Regressionsmodells durch die in dieser Arbeit vorgestellten

Analysemethode interpretiert werden.

Die Arbeitsschritte, die notwendig sind, um das abschließende Ziel einer Aluminiumelektroly-

se mit flexiblem Energieeintrag unter dem Einsatz datengetriebener Methoden zu erreichen,

wurden in diesem Kapitel aufgezeigt. Nun gilt es die in dieser Arbeit entwickelten Methoden

in den Produktivbetrieb zu überführen.
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Abbildung A.1: Die Boxplots zeigen die Verteilung der zeitlichen Differenzen

für die Öfen der zweiten und dritten Schicht. Die Differenzen wurden jeweils

zwischen dem Messzeitpunkt (UTC) der Badtemperatur und Beginn (UTC)

der ersten Schicht berechnet.
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