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Abstract
The aim of this work is to investigate the electronic properties of the conventional

(non-magnetic) and magnetic topological insulators at the atomic scale with the use
of low-temperature scanning tunneling microscopy and spectroscopy (STM/STS).
In particular, the STM/STS measurements have been performed on one of the pro-
totypical topological insulators Bi2Te3 and recently synthesized intrinsic magnetic
topological insulators MnBi2Te4 and MnBi4Te7.

The high-resolution differential conductance maps were measured on Bi2Te3 sin-
gle crystals and allowed to reveal quasiparticle interference in this material. The
latter was used for studying electron scattering processes of both surface and bulk
origin at different energies. For that the quasiparticle interference patterns were
modeled with the use of the spin-selective joint density of states approach includ-
ing the intricate three-dimensional spin texture of this material. Based on that, the
topological properties are clearly demonstrated by the linear energy dispersion of the
dominant scattering vector and completely suppressed backscattering. Apart from
that, non-dispersive scattering modes are resolved and interpreted by scattering in-
volving both surface and bulk states which allows to approximate the bulk energy
gap range. These findings are shown to be robust against the external magnetic
field of magnitude up to 15 T.

Atomically resolved STM data acquired on the single crystals of MnBi2Te4 ex-
hibit noticeable electronic modulations related to the Mn/Bi antisite intermixing.
The zero differential conductance was measured in the tunneling spectra, which is,
most probably, one of the very first indication of the magnetic exchange gap in mag-
netic topological insulators detected by STS. The gap size of around 25 meV is in
a reasonable agreement with the surface band structure calculations on this mate-
rial including the cation intermixing. The STM/STS data provide an evidence of
the chemically inhomogeneous surface showing both gapped and gapless tunneling
spectra. From the STM data acquired on the other intrinsic magnetic topological
insulator, MnBi4Te7, two kinds of surfaces were identified in accordance with its
crystal structure suggesting two possible surface terminations. However, the qual-
ity of the measured crystals (cation intermixing) did not allow to obtain reliable
spectroscopic data.
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Chapter 1

Introduction

Since ancient times, human society has been in a continuous accumulation of
knowledge, developing and modernizing scientific theories, methods and technologies
for their subsequent practical applications. More specifically, modern experimental
physics strictly depends on novel materials and the development of the experimen-
tal research methods. One of the examples of new materials that have substantially
changed the research direction in the field of condensed matter physics, are three-
dimensional topological insulators which are literally extremely prospective for the
future of humankind. These materials were first discovered around 15 years ago
and display plenty of unusual electronic properties such as Dirac energy disper-
sion with spin-momentum locking, insulating bulk, robust surface states against
non-magnetic perturbations, high surface conduction [1–8]. The interplay of the
non-trivial topology and magnetism induced a tremendous growth of research in
this field which, in particular, has recently (in 2019) led to the discovery of intrin-
sic magnetic topological insulators combining the inverted electronic band structure
with long-range magnetic order [9–11]. These materials are expected to reveal a mag-
netic exchange energy gap in the surface electronic band structure and to exhibit
a long-sought quantum anomalous Hall effect as well as quantized magnetoelectric
phenomena [12, 13]. These materials along with the non-magnetic topological insu-
lators present a fertile platform for the study of new quantum states of matter. Fur-
thermore, they are considered promising candidates for technological applications in
low-power consumption electronics and quantum computing which can potentially
work above cryogenic temperatures up to room temperature.

To investigate the physical aspects of these emergent materials a crucial step is
to have an acceptable level of the development of the experimental methods. In
this regard, scanning tunneling microscopy and spectroscopy (STM/STS) manifests
itself as the unique and powerful technique which allows probing electronic density
of states of solids (generally, also in liquid and gaseous environments) locally with
subatomic spatial resolution [14,15]. In addition, the STM technique allows to shed
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CHAPTER 1. INTRODUCTION

more light on the electronic band structure of different materials by studying electron
scattering processes through quasiparticle interference (QPI). Another important
extension of STM such as spin-polarized scanning tunneling microscopy provides
possibilities to visualize spin structures and study magnetic phenomena at the single-
atom scale [16].

The aim of the current work is to contribute to the ongoing investigation of the
electronic properties of the prototypical topological insulator Bi2Te3 and its magnetic
related compounds MnBi2Te4 and MnBi4Te7, which were recently found to be the
first intrinsic magnetic topological insulators, by low-temperature STM/STS. This
doctoral thesis is organized in the following way:

Chapter 2 consists of the general introduction to the material classes of topolog-
ical insulators and magnetic topological insulators. In addition, the main crystal,
electronic and magnetic properties of the compounds Bi2Te3, MnBi2Te4, MnBi4Te7
investigated in this thesis are presented in that chapter.

The basics of the experimental technique STM/STS (including QPI) starting
from the quantum tunneling phenomenon are discussed in Chapter 3. This chapter
introduces different measurement modes usually exploited in the experiments. In
addition, it provides also a detailed description of the experimental setup and its
repair.

Chapter 4 is the main part of this thesis and presents the experimental results
obtained by low-temperature STM measurements (topography, STS and differential
conductance maps with the QPI) on three different materials Bi2Te3, MnBi2Te4,
MnBi4Te7 with the discussion for each of the compounds. The main results are
the QPI data acquired on Bi2Te3 single crystals in a relatively wide energy range
which allow imaging the Dirac cone (linear energy dispersion) of the surface state.
The absence of the backscattering in the experiment and the evidence of the bulk
involved scattering revealed by the QPI simulations are discussed in this chapter.
Magnetic field measurements were carried out but did not reveal new scattering
channels caused by Zeeman field. The most important result obtained by STM/STS
measurements on the magnetic topological insulator MnBi2Te4 is one of the first
detection of the magnetic exchange energy gap in the tunneling spectra. Despite a
strong disorder and rather poor quality of the crystals, the measured STM/STS data
on the related compound MnBi4Te7 allow to distinguish two surface terminations as
expected from the crystal structure.

The main conclusions of this dissertation are presented in Chapter 5.
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Chapter 2

Introduction to the materials

2.1. Topological insulators

2.1.1. Quantum Hall state and quantum spin Hall

state
Topology being originally a branch of mathematics was firmly embedded in

physics with the discovery of quantum Hall effects (integer and fractional) in the
early 1980s [17, 18] after some theoretical predictions in 1970s [19, 20]. In general,
topological phases of matter are different from ordinary phases in the sense that as
long as they do not demonstrate broken symmetries, some fundamental properties
(quantized Hall conductance, number of gapless boundary modes) remain robust
under smooth changes in material parameters unless a quantum phase transition
occurs [21]. Electrons in the quantum Hall state are confined to two dimensions
and are exposed to a strong external magnetic field which forces them to move in
cyclotron orbits. Unlike normal insulators, the drift of the cyclotron orbits caused
by an electric field results in the quantized Hall conductivity

σxy = Ne2/ℏ, (N = 1, 2, 3, ...), (2.1.1)

which is a precisely measured physical quantity (accuracy is ∼ 10−9 [22]) and inde-
pendent of the materials, geometry and temperature (e is the elementary charge and
ℏ is the Planck constant). This integer number N is indeed a topological invariant of
the quantum Hall state. According to the TKNN (Thouless, Kohmoto, Nightingale,
and den Nijs) theory [23], two-dimensional gapped band structures can be classified
topologically by an integer n (Chern invariant), to the equivalence classes of the
Bloch Hamiltonian that can be continuously deformed into one another without gap
closing. The Chern invariant can be understood physically as the total Berry flux
associated with the Bloch wave functions |um(k)⟩ (m is the index of the occupied
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CHAPTER 2. INTRODUCTION TO THE MATERIALS

band, N is their total number) in the Brillouin zone

n =
1

2π

∫
Fd2k, (2.1.2)

F =
N∑

m=1

[∇k × ⟨um(k)| i∇k |um(k)⟩]. (2.1.3)

The TKNN theory also showed that the Chern number n is identical to the
integer N in the Hall conductivity, thus, making N the topological invariant of the
quantum Hall state [23].

Lorentz force caused by the external magnetic field makes electrons moving in
cyclotron orbits but the sample boundaries interrupt this motion (leading to skip-
ping orbits) which results in the unidirectional propagation of the electronic states
along the edge (dubbed "chiral") because their backward motion is not possible
(see Fig. 2.1.1). These chiral edge states are protected against disorder by the bulk
topology of the quantum Hall state.

Fig. 2.1.1 a) Illustration of the cyclotron orbits in the quantum Hall state. Adapted
from [24]. b) Electronic band structure of the quantum Hall state with the chiral edge
state connecting the valence band with the conduction band. Adapted from [25].

However, this quantum Hall state can be realized only in an external magnetic
field. Later, in 2005 a new state of matter was predicted theoretically [21, 26, 27]
known as the quantum spin Hall state, or two-dimensional topological insulator,
for which no external field is required. In such a system strong interaction of the
electron spin with the orbital motion of electrons (strong spin-orbit coupling (SOC))
serves as an effective spin-dependent magnetic field which is opposite for spin-up and
spin-down electrons. The quantum spin Hall state can be naively understood as a
superposition of two quantum Hall systems with opposite spins. This quantum spin
Hall state is time-reversal symmetry invariant since both magnetic field and spin are
odd under the time-reversal symmetry. The quantum spin Hall state consists of a
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CHAPTER 2. INTRODUCTION TO THE MATERIALS

pair of edge states which move in opposite directions with opposite spins as shown in
Fig. 2.1.2 [26]. This pair of edge states is termed "helical", since the spin is always
correlated with the direction of the propagation. As in the quantum Hall state, the
backscattering is also suppressed but due to a different reason, in particular, the
time-reversal symmetry. Since in the quantum spin Hall state an electron has to flip
its spin for backscattering, the time-reversal symmetry would be broken. As long
as the time-reversal symmetry is preserved (there are no magnetic impurities), the
backscattering is forbidden. In other words, the pair of gapless edge states is robust
due to the time-reversal symmetry against backscattering.

Fig. 2.1.2 a) Illustration of the quantum spin Hall state in the real space. Adapted
from [24]. b) Electronic band structure of the quantum spin Hall state with the pair of
gapless edge states between the valence and the conduction bands. Adapted from [25].

For such a quantum spin Hall state the total Hall conductance is zero (and
the Chern number n = 0) since the spin-up and spin-down electrons contribute to
it equally but with the opposite sign. However, for these time-reversal symmetry
invariant systems a new topological invariant Z2 was constructed which can take
only one of two values ν = 1 or ν = 0 for the topologically non-trivial quantum spin
Hall insulators and conventional insulators, respectively [21].

This Z2 topological invariant can be interpreted by considering a Kramers pair
of the edge states. According to the quantum-mechanical Kramers’ theorem, all the
eigenstates of a time-reversal symmetry invariant Hamiltonian are at least twofold
degenerate. In the case of a quantum spin Hall insulator, two edge states at mo-
menta k and −k form a Kramers pair. Given the 2π/a (a is the lattice constant)
periodicity of the crystal, momenta k = 0 and k = π/a will be special time-reversal
invariant momenta which are invariant under k reversal. So the edge states have
to be twofold degenerate at k = 0 and k = π/a (the same for k = −π/a) if they
exist, while the spin-orbit interaction splits the degeneracy away from those special
points. Therefore, the time-reversal symmetry guarantees the topological protection
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CHAPTER 2. INTRODUCTION TO THE MATERIALS

of the edge states by crossing of two branches at k = 0 [21]. Fig. 2.1.3 shows two
possible ways of how the states at k = 0 and k = π/a can connect [1]. In the first
case presented in Fig. 2.1.3a the edge states connect the valence and conduction
bands in a zigzag way, thereby intersect the Fermi level EF an odd number of times
which corresponds to the quantum spin Hall state with topologically protected edge
states. In contrast, Fig. 2.1.3b illustrates an ordinary insulator in which the edge
states connect pairwise and can be destroyed by pushing all of the bound states out
of the gap, so the bands cross the Fermi level an even number of times.

Fig. 2.1.3 Electronic dispersion between two boundary Kramers degenerate points k = 0
and k = π/a. a) Odd number of edge states intersecting the Fermi level. b) Even number
of edge states crossings at the Fermi energy. Adapted from [1].

2.1.2. Three-dimensional topological insulators:

overview
Finally, the existence of a three-dimensional topological insulator was theoret-

ically predicted in 2006 [1–3]. Such a three-dimensional topological insulator is
characterized by the inverted and gapped bulk band structure due to the strong
SOC with the existence of unique gapless nondegenerate surface states arising from
the bulk topological order [1]. According to [1], electrons in the surface bands of a
three-dimensional topological insulator behave like two-dimensional Dirac fermions
and obey the two-dimensional Dirac equation [28]. These surface states resemble the
edge states of two-dimensional topological insulators in that sense that electrons can
propagate in any direction on the surface (one certain direction for two-dimensional
topological insulators) but their spin is always perpendicular to their linear momen-
tum (spin-momentum locking) as shown in Fig. 2.1.4.
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Fig. 2.1.4 a) Spin-momentum locking on the surface of a three-dimensional topological
insulator. b) Energy-momentum dispersion (Dirac cone) of the surface states of a three-
dimensional topological insulator. Adapted from [24].

Unlike two-dimensional topological insulators, the three-dimensional topological
insulators are characterized by four Z2 topological invariants (ν0; ν1, ν2, ν3), and
there are four independent time-reversal invariant momenta Γ1,2,3,4 in the surface
Brillouin zone. The surface states must be Kramers degenerate at these special
points, forming two-dimensional Dirac points in the surface band structure (see
Fig. 2.1.5). There are two ways of surface band connectivity for two-dimensional
topological insulators as shown in Fig. 2.1.3, but four bulk Z2 topological invari-
ants for three-dimensional topological insulators change the picture [4]. The most
important one among the four invariants, ν0, identifies two distinct subclasses of
topological insulators. When ν0 = 0, the system is a weak topological insulator
with an even number of Dirac points enclosed by the surface Fermi circle as shown
in Fig. 2.1.5a. When ν0 = 1, the system is a strong topological insulator with an
odd number of Dirac points enclosed by the surface Fermi circle (see Fig. 2.1.5b).
In the simplest case of a strong topological insulator the Fermi surface encloses one
single Dirac point (see Fig. 2.1.5c) leading to a non-trivial π Berry phase which
was found to be a universal feature of the strong topological insulators and protects
electrons from being localized in the presence of disorder as long as the bulk energy
gap remains unchanged [29].

Fig. 2.1.5 a) The surface Fermi circle for a weak topological insulator. b) The surface
Fermi circle for a strong topological insulator. c) In the simplest strong topological insulator
the Fermi circle encloses a single two-dimensional Dirac point. Adapted from [4] and [25].
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There are several approaches for the mathematical definition of the Z2 topological
invariant [2, 4, 26, 30–32]. One of them [1, 30], which is known as the Fu-Kane
method, is based on considering a unitary matrix wmn(k) = ⟨um(k)|Θ |un(-k)⟩ of
the time-reversal operator Θ ≡ eiπSy/ℏK (Θ2 = −1 for spin-1

2
electrons, Sy is the

spin operator, and K is the complex conjugate operator) in the Bloch state basis.
The Bloch Hamiltonian is time-reversal symmetric at 8 specific points in the three-
dimensional Brillouin zone. For each of these time-reversal invariant momenta one
can define [1]

δΓa =
√
det[w(Γa)])/Pf [w(Γa)] = ±1, (2.1.4)

where the Pfaffian
Pf [w(Γa)]

2 = det[w(Γa)]. (2.1.5)

This allows to define four topological indices (ν0; ν1, ν2, ν3) as following:

(−1)ν0 =
∏

nj=0,π

δn1n2n3 (2.1.6)

which has the only difference from the Z2 invariant for the two-dimensional case
in the number of the time-reversal momenta (8 unlike 4 for the two-dimensional
topological insulators), and

(−1)νi=1,2,3 =
∏

nj ̸=i=0,π;ni=π

δn1n2n3 , (2.1.7)

where nj = 0, π set the time-reversal invariant vectors in the primitive reciprocal
lattice.

According to [1], for crystals with inversion symmetry the Z2 invariant calcula-
tions can be simplified to

δΓa =
∏
m

ξm(Γa) (2.1.8)

where the Bloch states |um(Γa)⟩ are also parity eigenstates with eigenvalue
ξm(Γa) = ±1, thereby, the product has to be taken over the Kramers pairs of the
occupied bands.

Usually three-dimensional weak topological insulators can be formed by stacking
layers of a two-dimensional quantum spin Hall insulator, but the resultant surface
states are unstable to disorder because crystal dislocations are associated with the
one-dimensional helical edge states [33]. However, a three-dimensional strong topo-
logical insulator is not layered and is topologically non-trivial. It has time-reversal
symmetry protected gapless surface states and this is normally meant by the term

8



CHAPTER 2. INTRODUCTION TO THE MATERIALS

"topological insulator".
Importantly, some of the topological insulators (e.g. Bi2Se3, Bi2Te3, Sb2Te3) ex-

hibit a large 150−300 meV energy gap, i.e. much larger than the room temperature
thermal fluctuations [6–8, 34, 35]. Given these unique properties (no backscatter-
ing, robust topological surface states in the absence of the magnetic field, large
bulk bandgap) topological insulators may be of a great importance for potential
applications in room-temperature spintronic devices, high-performance electronics,
dissipationless transistors for quantum computing and, of course, for the study of
new quantum phases of matter.

2.1.3. Three-dimensional topological insulators: ex-

perimental discovery
The search for topological insulators was carried out among materials consisting

of heavy elements with strong SOC (e.g. Bi, Sb, Te, Hg,...). The quantum spin
Hall state was theoretically proposed to be realized in CdTe/HgTe/CdTe quantum
wells in 2006 [36]. Later this prediction was successfully confirmed by transport
measurements in such heterostructures [37].

Soon after the theoretical prediction [4] the first three-dimensional topological in-
sulator was experimentally discovered in 2008 which is the semiconducting Bi1−xSbx

alloy. Bi is a semimetal with strong SOC and a bulk energy gap at the L point [38]
with a Dirac-like dispersion near the L point, according to band structure calcu-
lations [39]. Sb substitution of Bi (0.07 < x < 0.22) leads to the bulk band in-
version with the occurrence of a massless Dirac point. The non-trivial topology
of Bi0.9Sb0.1 was verified by angle-resolved photoemission spectroscopy (ARPES)
where the measured electronic band structure features a bulk energy gap at the L
point and 5 surface bands crossings [40] as shown in Fig. 2.1.6a. The odd num-
ber of band crossings between time-reversal invariant points Г and M evidences the
topologically protected surface states in this material. The non-trivial topology of
the surface states of Bi0.9Sb0.1 was also revealed by spin-resolved ARPES measure-
ments of the surface states [41] which were found to be nondegenerate and strongly
spin-polarized. Mapping of the spin texture of the Fermi surface of this compound
evidences for the π Berry phase characteristic for topological insulators [41].

In addition, the topological nature of the surface states in topological insulators
can be probed locally with atomic resolution by scanning tunneling microscopy
(STM) which will be described in Chapter 3. According to the STM studies on
Bi0.92Sb0.08 [42], the absence of backscattering which is characteristic for topological
insulators was clearly proved due to the suppressed intensity in the Г-M direction
in the Fourier-transformed quasiparticle interference (FT-QPI) patterns (which will

9
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be discussed in Chapters 3, 4) indicating the chiral nature of the topological surface
states (see Fig. 2.1.6b).

Fig. 2.1.6 a) Experimental band structure of Bi0.9Sb0.1 measured by ARPES. The surface
band dispersion second-derivative image (for better representation of dispersive features)
along Г-M direction is plotted. Five Fermi level crossings between Г and M are denoted
by yellow circles with the doubly degenerate band near −kx ≈ 0.5 Å−1. The red lines
are guides to the eye. The shaded white area shows the projection of the bulk bands, b)
Quasiparticle interference pattern (in the middle) detected by STM on Bi0.92Sb0.08 is in
a better agreement with the calculations based on the spin-selective scattering than the
spin-independent calculations. This is due to the suppressed intensity of the outer intensity
peaks corresponding to the backscattering (the right figure) when backscattering was not
taken into account and, in contrast, the pronounced outer peaks (the left figure) when
backscattering was involved in the calculations. Adapted from [40] and [42].

However, the Bi1−xSbx compound has strong drawbacks as its complicated sur-
face band structure along with a relatively small bulk band gap of around 38
meV [43]. This required the search for better materials which were later called
"second generation" of three-dimensional topological insulators [5]. These are sto-
ichiometric binary compounds Bi2Se3, Bi2Te3 and Sb2Te3 [6, 7] which were widely
studied before mainly due to their peculiar thermoelectric properties. Theoretical
calculations [6] predicted a rather simple surface electronic structure with only a
single Dirac cone as depicted in Fig. 2.1.7a which was confirmed by ARPES experi-
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ments [7,8,34,35] where the helical spin texture of the surface Dirac electrons and the
spin-momentum locking were also directly observed (see Fig. 2.1.7b). These semi-
conductors with strong SOC exhibit much larger bulk energy gap than Bi1−xSbx,
in particular, ∼ 300 meV for Bi2Se3 [6, 7, 34] and ∼ 150 meV for Bi2Te3 [8, 34, 35]
which are one order of magnitude larger than the thermal energy at room temper-
ature, making them potentially usable in room temperature electronic devices with
topological protection.

Fig. 2.1.7 a) Calculated electronic band structure of Bi2Se3. b) Experimental band struc-
ture of Bi2Se3 measured by ARPES in the Г-M and Г-K high-symmetry directions. X-
shaped bands indicate the Dirac cone of the surface states. Adapted from [6] and [7].
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2.1.4. Bi2Te3: crystal and electronic structure
Bi2Te3 is one of the second generation three-dimensional topological insulators

and serves as a base for MnBi2Te4 and MnBi4Te7 compounds also studied in this
work. Bi2Te3 has a rhombohedral crystal structure with the primitive unit cell
consisting of Bi atoms with chemically inequivalent Te(1) and Te(2) sites. The
structure of this compound is more conveniently described by the hexagonal unit
cell composed of 3 so-called quintuple layers, where each of them is formed by
5 atomic layers in the sequence Te(1)-Bi-Te(2)-Bi-Te(1) stacked along the c-axis
as shown in Fig. 2.1.8 [44]. The lattice constant a ≈ 4.38 Å and the height of
one quintuple layer is around 10 Å. The quintuple layers are bonded by van der
Waals forces which are weaker than the interatomic covalent and ionic bonds in
each of the quintuple layers [45], making the crystal predominantly being cleaved on
a Te(1) terminated (111) surface and accessible for surface-sensitive characterization
by means of ARPES and STM.

Fig. 2.1.8 Crystal structure of Bi2Te3 with a) side view of two quintuple layers and b)
top view along the c-axis.

The electronic band structure calculations of Bi2Te3 predicted the presence of a
single Dirac cone of the surface state [6] which was later experimentally observed
by ARPES where a distinct single V-shaped band centered at the Г-point of the
surface Brillouin zone appears in the bulk band gap of the material (see Fig. 2.1.9)
[8, 34, 35]. This band existing for both Г-K and Г-M high-symmetry directions is
unambiguously associated with the Dirac cone of the surface states which possess
helical spin texture with spin-momentum locking. It is worth to note that the
Dirac point in Bi2Te3 is energetically located inside its bulk valence band unlike for
many other three-dimensional topological insulators as, for example, Bi2Se3, Sb2Te3,
BixSb1−x.
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Fig. 2.1.9 a) Calculated band structure of Bi2Te3, b) Experimental band structure from
the ARPES measurements. Adapted from [6,8].

In addition, according to the very first ARPES measurements on Bi2Te3 [8] the
measured surface band structure, the Dirac cone is different for Г-K and Г-M
high-symmetry directions. This deviation starts from around 200 meV above the
Dirac point as shown in Fig. 2.1.9b and Fig. 2.1.10a. It results in changes of the shape
of the surface states constant-energy contour as a function of energy as Fig. 2.1.10b
illustrates: the experimental ARPES measured constant-energy contour at some
energies becomes not circular anymore but looks like a snowflake, concave hexagram
with relatively sharp tips extending along the Г-M direction, and curves inward
in between. This Fermi surface anisotropy is called hexagonal warping and was
theoretically explained by introducing an additional, cubic in k term into the surface
Dirac Hamiltonian

H(k) = k2/(2m) + vk(kxσy − kyσx) +
λ

2
(k3+ + k3−)σz, (2.1.9)

(vk = v(1 + αk2) is the Dirac velocity with a second-order correction, σx,y,z are the
Pauli matrices, λ is the hexagonal warping parameter, k± = kx ± iky) due to the
existing crystal and time-reversal symmetries in the rhombohedral system [46]. The
first-principles calculations of the hexagonally warped Dirac cone [47] are presented
in Fig. 2.1.11b where the Fermi surface shape transforms from a circle at the energies
near the Dirac point to a hexagon and then appear as a warped hexagon further
away from the Dirac point as shown in Fig. 2.1.11. The hexagonal warping itself
induces an out-of-plane spin component sz [46]. Fig. 2.1.12 illustrates the intricate
three-dimensional spin texture of Bi2Te3, which was confirmed experimentally by
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spin-resolved ARPES [34,48].

Fig. 2.1.10 a) A three-dimensional illustration of the electronic band structure of Bi2Te3.
b) Constant-energy contours and their energy evolution. Red lines indicate the Dirac cone.
Adapted from [8].

Fig. 2.1.11 Calculated Dirac cone of the surface states in Bi2Te3 with corresponding
constant-energy contours in (kx, ky)-planes: a) ideal cone of Bi2Te3 with only circular
Fermi surfaces, b) warped cone with the constant-energy contours evolving from a circle to
a snowflake. Spin directions marked by green arrows are perpendicular to linear momenta
at each point demonstrating the helical in-plane spin texture. Adapted from [47].
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Fig. 2.1.12 The three-dimensional spin texture of Bi2Te3 for the hexagonally warped
Dirac cone. The spin orientation in the xy plane is shown by the black arrows, and the
solid dots/crosses indicate the out-of-plane component sz. kx and ky values are presented
in relative units. sz = 0 at the corners of the warped hexagon, while it reaches the largest
magnitude exactly between them with staggered signs. Adapted from [49].

2.1.5. STM and STS of Bi2Te3
Local electronic properties of Bi2Te3 were investigated by STM at cryogenic tem-

peratures [50–58]. The STM topography data of the pristine stoichiometric com-
pound reveal an atomically corrugated Te(1)-terminated surface with the presence
of various native defects arising from BiTe (Bi on a Te site) or TeBi (Te on a Bi site)
substitutions, vacancies (VTe), and interstitial defects inside the van der Waals gaps
between adjacent quintuple layers or adatoms. The identification of the observed
defect types was made with the use of density functional theory (DFT)-based cal-
culations in [50] which is illustrated in Fig. 2.1.13 for the filled states with the large
filled-states topography image.
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Fig. 2.1.13 a) 40 nm×40 nm topography of stoichiometric Bi2Te3 at Ubias = −0.4 V,
T = 4.5 K. STM simulations for filled states for BiTe defects located in the b) first (BiTe,1),
c) third (BiTe,3), d) fifth (BiTe,5), and e) sixth (BiTe,6) atomic layer, f) TeBi defects located
in the second (TeBi,2) atomic layer, (g) VTe defects located in the first (VTe,1), h) third
(VTe,3), and i) fifth (VTe,5) atomic layer, and (j) Bii defects located in between the fifth
and sixth (Bii,5-6) atomic layer and k) on top of the first (Bia) atomic layer. The notation
A(V)B,n(i,a) (A − substituting atom on a B site in the nth atomic layer, V − vacancy,
i − interstitial, a − adatom) will be also used further, in section 4.1. Adapted from [50].

The hexagonal warping effect in Bi2Te3 plays an important role in electron scat-
tering processes which were explored by QPI on the crystalline defects or atomic
step edges in the STM experiments on this material [50, 52, 53, 55, 56]. In particu-
lar, since the backscattering is suppressed by the time-reversal symmetry, relatively
weak interference effects would be expected. However, the warping of the Fermi
surface leads to the opening up of different scattering channels enhancing the QPI
signal [46,47,53] which will be discussed later, in section 4.1. All the abovementioned
QPI studies on Bi2Te3 clearly demonstrate the linear energy-momentum dispersion
of the dominant scattering vector in the six-fold symmetric FT-QPI patterns with
the absence of backscattering channel (see Fig. 2.1.14) confirming the topological
protection of the surface states in this material.
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Fig. 2.1.14 a) Example of the six-fold symmetric FT-QPI pattern measured in the warped
energy region, E = 540 meV counted from the Dirac point, I = 50 pA, T = 4.8 K. b)
Energy dispersion of the topological surface states with the linear fit (red line). Adapted
from [52].

2.2. Magnetic topological insulators

2.2.1. Theoretical background
Shortly after the theoretical prediction and the experimental observation of the

time-reversal symmetry protected three-dimensional topological insulators the nat-
ural question arose that how magnetism can interact with conventional topological
insulators. One can expect that since magnetism lifts the time-reversal symmetry,
the topological surface states would be destroyed. In fact, an indirect magnetic ex-
change mediated by the topological surface states results in a Zeeman-like energy
gap opening at the Dirac point as shown in Fig. 2.2.1.
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Fig. 2.2.1 a) Massless and b) gapped Dirac cones of the surface states with spin-
momentum locking in a topological insulator and in a magnetic topological insulator,
respectively. Similar to the integer quantum Hall systems (see 2.1.1), the chiral edge
state in b) hosts electrons which conduct electricity with no dissipation in the direction of
the sample boundary. Adapted from [12].

One important example of magnetic topological insulators, i.e. materials com-
bining both long-range magnetic ordering with the topological electronic structure,
which is, in particular, relevant to the present work is given by antiferromagnetic
topological insulators. According to a theoretical paper [59], introducing antifer-
romagnetic order into a topological insulator leads to the following: although both
time-reversal symmetry Θ and primitive-lattice translational symmetry T1/2 are bro-
ken, their combination S = ΘT1/2 symmetry is preserved leading to the Z2 topo-
logical classification. As a consequence, an exchange gap in the surface states is
induced on the symmetry-breaking surface, while the symmetry-preserving surface
hosts massless Dirac states as nonmagnetic Z2 topological insulators do.

Magnetic topological insulators provide a great opportunity to realize exotic
quantum phenomena, in particular, quantum anomalous Hall effect at zero external
magnetic field [60] as well as topological magnetoelectric and quantized magneto-
optical effects [31, 61, 62]. These effects arise from considering the surface Hall
current leading to non-trivial electrodynamics of topological insulators similar to
axion electrodynamics [31]. This makes a remarkable relation between the solid state
physics and the elementary particle physics. The axion is a hypothetical elementary
particle which is expected to be a possible component of cold dark matter [63, 64].
Modified Maxwell equations in topological insulators give rise to a peculiar axion-

18



CHAPTER 2. INTRODUCTION TO THE MATERIALS

type coupling between magnetization M and electric field E [31, 61]:

M =
e2

2h

θ

π
E =

√
ϵ0
µ0

α
θ

π
E, (2.2.1)

where θ = π in Z2 topological insulators, θ = 0 in ordinary insulators, e is the
elementary charge, h is the Planck constant, ϵ0 and µ0 are the electric and magnetic
constants, respectively.

Therefore, the magnetoelectric susceptibility in topological insulators is quan-
tized in units of α (fine structure constant). For example, at the interface between
a topologically trivial material (θ = 0) and a thin film of a magnetic topological
insulator with collinear magnetizations on both top and bottom surfaces of the film,
if the Fermi energy lies inside the exchange gap, then the spatial change of θ = ±π
through the interface. This results in a quantum anomalous Hall effect with an
integer quantized in units of e2/h Hall conductivity σxy in absence of an external
magnetic field (see Fig. 2.2.2a). In the other case with anticollinear magnetizations
the axion insulator state emerges which is characterized by vanishing longitudinal
conductivity σxx = 0 with simultaneous zero Hall-conductivity σxy = 0 as illustrated
in Fig. 2.2.2b. All these effects have a great potential for the low-power-consumption
electronics and, especially, for spintronics.

Fig. 2.2.2 Schematic representation of the a) quantum anomalous Hall and b) axion
insulator states. Magnetization opens a gap in the top and bottom surface states. One-
dimensional chiral edge channels (pink arrows) are formed on the side surface in a) when
the magnetizations (red arrows) are collinear. The energy gap opens also on the side
surface in b) when the magnetizations are anticollinear. Adapted from [65].

2.2.2. Possible realizations in materials
The general routes to introduce magnetism into topological insulators and create

a magnetic topological insulator are the following: magnetic doping with magnetic
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3d or 4f elements [13,60,66–74], proximity effect by interfacing a topological insula-
tor with ferromagnetic/antiferromagnetic insulators [31,75–82], magnetic extension
of the topological insulator crystal structure [83–85], and construction of intrinsic
magnetic topological insulators [83–86].

The first and the most widely applied way to get a magnetic topological insula-
tor was to dope a normal non-magnetic topological insulators with magnetic atoms.
For instance, one of the first attempts was undertaken with Mn-doped Bi2Te3 which
showed a clear surface state gap measured by ARPES and the ferromagnetic order
below 12 K [68]. However, as inferred from the STM measurements on that mate-
rial, there are Mn-atoms substituting Bi-sites on the topmost layer and they are not
clustered and distributed randomly on the surface, not forming a periodic sublat-
tice. This would increase inhomogeneities in the electronic structure and magnetic
properties which have not been avoided so far, thereby, it substantially reduces the
temperature for the realization of the quantum anomalous Hall effect. For this rea-
son, the idea of magnetic doping turned out to be not viable for searching the real
candidates for magnetic topological insulators.

Another strategy to create a magnetic topological insulator is to make a direct
contact between an ordinary topological insulator and a magnetic material via the
interfacial exchange coupling, when a ferromagnetic/antiferromagnetic material (or
even a layer) is placed near the topological insulator in order to induce the mag-
netization into the region of the topological insulator. However, the best so far
obtained results (not clear quantum anomalous effect, a small exchange gap) by
such a magnetic proximity are not appropriate for the final goal of the dissipation-
less spin-based electronics at ambient conditions and leave a lot of uncertainties for
the heterostructure engineering [75,76,78,79,82].

Unlike the magnetic proximity approach, the so-called magnetic extension of
the surface of the topological insulator implies that the topological states strongly
penetrate into the magnetic film, when a ferromagnetic insulator film is deposited
on top of the topological insulator, which is structurally exactly the same as the
magnetic insulator, yielding an increase of the Dirac point gap size up to
∼100 meV [83–85]. Nevertheless, the observation of the quantum anomalous Hall
effect in these heterostructures has not been demonstrated so far.

The next idea is to implement an ideal, intrinsic magnetic topological insulator,
i.e. a material with both magnetic order and topologically non-trivial electronic
structure. Thereby, the main obstacle in raising the critical temperature of the
quantum anomalous Hall effect − inhomogeneous distribution of magnetic atoms
inside a topological insulator − is expected to be overcome. This long-sought search
has recently provided several magnetic topological insulator candidates in Mn-Bi-Te
family of materials [9–11].

20



CHAPTER 2. INTRODUCTION TO THE MATERIALS

2.2.3. Actual results
The expected gapped Dirac cone was experimentally verified on different com-

pounds. For example, Fig. 2.2.3a illustrates the ARPES measured massive Dirac
cone on magnetic Fe(Mn)-doped Bi2Se3 [13], and Fig. 2.2.3b shows the magnetism-
induced zero conductance gap of approximately 30 meV detected by STS on Cr-
doped (Bi0.1Sb0.9)1.92Te3 [87]. However, its existence in real intrinsic magnetic topo-
logical insulators is still under debate and will be discussed in next chapters.

Fig. 2.2.3 a) ARPES measured electronic band structure of 16% Fe-doped Bi2Se3 with a
gap formation at the Dirac point. Adapted from [13]. b) Gapped differential conductance
spectra of Cr-doped (Bi0.1Sb0.9)1.92Te3 and c) histogram of the gap size measured at dif-
ferent surface locations by STS. Adapted from [87].

The STM studies on magnetically doped topological insulators, e.g. Mn, Fe,
Cr-doped Bi2Te3, Bi2Se3, provide a proof of their non-trivial topology [87–89]. Ab-
sence of the backscattering revealed from the FT-QPI patterns (see section 3.3)
indicates the helical spin texture of the topological surface states even in the pres-
ence of magnetic impurities. Similar to the undoped Bi2Te3 (see section 2.1.4), the
energy evolution of the FT-QPI patterns corresponding to the hexagonally warped
Dirac cone of the surface states was observed in the Mn-doped Bi2Te3 which fur-
ther supports the topological nature of the surface states (see Fig. 2.2.4). However,
the influence of the broken time-reversal symmetry on the electronic structure was
demonstrated by opening of new scattering channels in addition to that observed in
time-reversal symmetry invariant topological insulators [89].
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Fig. 2.2.4 Mn-doped Bi2Te3: a) STM topography, b)−e) FT-QPI patterns at different
energies with respect to the Dirac point detected by STM. Adapted from [88].

Concerning the expected quantum anomalous Hall and axion insulator states,
both they have been reported in Cr- and V-doped topological insulators (see Fig. 2.2.5)
but only in the millikelvin temperature range [65–67,90–98]. The latter was caused
by the inhomogeneous magnetic doping which affects the local magnetism reduc-
ing the observing quantization temperature and impeding the applications of these
effects in room temperature electronic devices.

Fig. 2.2.5 Magnetic field dependence of Hall conductivity (σxy) and longitudinal conduc-
tivity (σxx) of the Cr-V doped (Bi,Sb)2Te3 film at T = 60 mK. Adapted from [65].
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In addition, quantum anomalous Hall and axion insulator states have been re-
ported in odd- (5 septuple layers [99]) and even numbers (6 septuple layers [100]),
respectively, of Te-Bi-Te-Mn-Te-Bi-Te septuple layers flakes of the intrinsic mag-
netic topological insulator MnBi2Te4 which will be described more in detail in next
chapters. In those transport experiments an axion insulator state was revealed at
T = 1.6 K [100], a zero-field quantum anomalous Hall was achieved at T = 1.4 K
and the quantization temperature reached 6.5 K at the external field H = 7.6 T [99].

2.3. MnBiTe-family of compounds
Eventually, the search of intrinsic magnetic topological insulators has been suc-

ceeded in the MnBi2nTe3n+1 (n = 1, 2, 3, . . . ) series of materials. Apart from the pre-
viously found MnBi2Te4 [101], novel compounds MnBi4Te7 and MnBi6Te10 [102,103]
were very recently derived from Bi2Te3 with Mn-Te bilayer intercalation. All the
materials in this MnBi2nTe3n+1 family are layered van der Waals magnets, consisting
of non-magnetic Bi2Te3 quintuple layer and magnetic MnBi2Te4 (so-called septuple
layer) blocks stacking along the c-axis and coupled by van der Waals bonds. Each
quintuple (septuple) layer represents Te-Bi-Te-Bi-Te(Te-Bi-Te-Mn-Te-Bi-Te) atomic
stacking, respectively. Unlike for MnBi2Te4, which is assembled by only magnetic
septuple layers with the length of ≈ 1.37 nm, MnBi4Te7 has an additional quintuple
layer between each neighboring septuple layer and the other compounds host more
extra quintuple layers between the septuple layers (see Fig. 2.3.1).
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Fig. 2.3.1 Crystal structures of MnBi2Te4, MnBi4Te7, MnBi6Te10 and Bi2Te3. Adapted
from [102].

The first unique property of such materials is that magnetic Mn-atoms obey
structural ordering, implying that they are positioned on the crystallographic sites
in an atomic sheet in the middle of each septuple layer. The second essential prop-
erty is that these compounds demonstrate magnetic order. MnBi2Te4 undergoes an
antiferromagnetic phase transition at T ≈ (24−25) K, while MnBi4Te7 is an antifer-
romagnet between ∼ 5 K and ∼ 13 K, and there are signatures of the ferromagnetic
order below ∼ 5 K. MnBi6Te10 has a distinct antiferromagnetic phase as MnBi2Te4
but below ≈ 11 K which can be tuned into a ferromagnetic phase below 12 K upon
delicate defect engineering, as recently reported [104, 105]. Therefore, to observe
quantum anomalous Hall effect in these magnetically coupled systems, strong exter-
nal magnetic field exceeding the saturation field is required. Indeed, the quantum
anomalous Hall effect and axion insulator state have been reported on MnBi2Te4
thin flakes but only at T ≈ 1.4 K [99, 100], though the more recent data on this
compound are controversial since the quantum anomalous Hall state was observed
in both 5-septuple layer and 6-septuple layer flakes which points to material related
issues [106].

The bulk of these materials orders into an A-type AFM structure which means
that magnetic moments experience ferromagnetic exchange within each of the sep-
tuple layers and antiferromagnetic exchange along the crystallographic c-axis with
the out-of-plane orientation of the magnetization easy axis [9, 10]. Given that the
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distances between magnetic Mn-containing layers become larger upon increasing n,
thus, the antiferromagnetic interlayer exchange coupling as well as the saturation
field is getting smaller. In contrast to the examples of the MnBi2nTe3n+1 series
(n = 1, 2), MnBi8Te13 (the first reported intrinsic robust ferromagnetic topological
insulator) has a ferromagnetic order with TC ∼ 10.5 K since the interlayer ferro-
magnetic exchange becomes energetically more favorable than the antiferromagnetic
one [107].

Therefore, one can argue that the larger the number of quintuple layer spac-
ers between the adjacent septuple layers, the more pronounced the ferromagnetic
properties of the compound which may facilitate the observation of quantum anoma-
lous Hall effect and other intriguing associated phenomena [107]. Moreover, even
the so-called single-layer magnets, where the interlayer exchange coupling vanishes,
have been theoretically predicted and experimentally observed in the MnBi2nTe3n+1

materials (n ≥ 3−4) [108]. However, in reality, due to the special requirements of
the crystal growth technique (a few ◦C temperature window between the melting
points of Bi2Te3 and MnBi2nTe3n+1), it becomes gradually much more difficult to
grow single crystals upon going from MnBi2Te4 to the higher numbers n [109, 110].
Furthermore, it appears to be much more complicated to perform surface-sensitive
experiments such as ARPES and STM where it is necessary to identify all the pos-
sible surface terminations.

First-principles DFT calculations performed on MnBi2Te4, MnBi4Te7 and
MnBi6Te10 with the assumed A-type antiferromagnetic order predict that these com-
pounds are, indeed, antiferromagnetic topological insulators since the obtained band
inversion stems from the hybridization between Te-5p and Bi-6p bands only when
SOC is taken into account [9, 11, 110–115]. The Z2 = 1 topological invariant was,
also, confirmed by calculations, which allows to propose that these materials are
intrinsic antiferromagnetic topological insulators. A direct proof of the antiferro-
magnetic topological insulator would be the presence of a gap in the surface states
at the Dirac point in the band structure measured in the antiferromagnetic phase on
the symmetry-breaking (001) surface which is a natural cleavage plane in all these
materials.

However, although there are some clear signatures of the gapped Dirac cone
observed by ARPES in MnBi2Te4, MnBi4Te7, and MnBi6Te10 [9, 11, 109, 114–120],
gapless surface states are, also, present [110,114,115,120–122], therefore, the funda-
mental puzzle of the surface electronic structure in these materials requires a more
thorough exploration.
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2.3.1. MnBi2Te4
As reported in [9], MnBi2Te4 was proved to be the first antiferromagnetic topo-

logical insulator by band structure calculations and ARPES measurements [9, 10].
MnBi2Te4 as the simplest example of Mn-Bi-Te material family is composed

of a sequence of septuple layers consisting of Te-Bi-Te-Mn-Te-Bi-Te atomic planes.
This compound possessing trigonal symmetry crystallizes in a R3m space group
(lattice parameters a ≈ 4.33 Å, c ≈ 40.9 Å) [102, 109, 123]. The main advan-
tage of MnBi2Te4 with respect to the other candidates for magnetic topological
insulators is that the former material exhibits both structural and magnetic or-
der [124, 125]. Mn-atoms are arranged periodically at the corresponding crystal-
lographic sites forming a ferromagnetic layer in the middle of each septuple layer.
Magnetic properties [9,109,117,123,126–128], neutron diffraction [123,127,129], X-
ray magnetic dichroism measurements [9,109] and first-principles calculations [9,111]
reveal that MnBi2Te4 has a magnetic ground state of A-type antiferromagnetic or-
der mentioned above. However, the single-crystal X-ray diffraction, transmission
electron microscopy and STM experiments revealed a considerable amount (several
percents) of cation intermixing in the Mn and Bi sites (and, also, Bi and Te sites)
which may result in a non-stoichiometry of the compound [109, 123] as shown in
its crystal structure in Fig. 2.3.2. It is worth to note that this cation disorder is
ubiquitous in TtBi2Te4 (Tt = Ge, Pb, Sn) crystals [109,130].

26



CHAPTER 2. INTRODUCTION TO THE MATERIALS

Fig. 2.3.2 Crystal structure of Mn0.85(3)Bi2.10(3)Te4 with mixed site occupancies. Adapted
from [109].

Magnetic properties of MnBi2Te4 crystals were scrutinized by different research
groups and bear mostly similar characteristics. The most significant of them are
listed here. Anisotropic magnetic susceptibility obtained in its temperature depen-
dence measured both at H∥c and H⊥c which evidences in favor of A-type antifer-
romagnetic order establishing below TN = (24−25) K (see Fig. 2.3.3a) while the
paramagnetic phase follows Curie-Weiss law [9, 109, 114, 117, 123, 126–128]. Apart
from that, magnetization curve M(H) exhibits a clear metamagnetic spin-flop tran-
sition (canted antiferromagnetic state [117]) at T = 2 K at H = (3.5−3.7) T shown
in Fig. 2.3.3b when H⊥(001) in accordance with the easy axis of magnetization
directed along the surface normal [9, 109, 114, 117, 123, 126]. It is also worth to
mention that MnBi2Te4 may become a magnetic Weyl semimetal under a moder-
ate external magnetic field parallel to the c-axis, according to the band structure
calculations [111, 112, 124]. The occurrence of the long-range antiferromagnetic or-
dering is, also, supported by electrical resistivity and specific heat measurements
with the indicative peak at around TN as presented in Figs. 2.3.3c,d. The resistivity
shows nearly linear behavior as typical metals but has a sharp cusp at around TN

implying a strong spin scattering due to spin fluctuations near the paramagnetic-
antiferromagnetic phase transition [9, 109, 117, 123]. A steep anomaly was found in
both electrical and Hall resistivity at H = 7.8 T (H∥c), T = 2 K where Mn spins
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are supposed to be fully polarized (Fig. 2.3.4) [123, 126]. The negative sign of the
Hall coefficient derived from the field dependence of the Hall resistivity explicitly
indicates an electron type of carriers [9, 117,123,128].

Fig. 2.3.3 MnBi2Te4 single crystals: a) magnetic susceptibility, b) field-dependent mag-
netization curves (HSF − spin-flop magnetic field), c) in-plane electrical resistivity, d)
specific heat. Adapted from [9,109].

Fig. 2.3.4 ρxx and ρxy as a function of magnetic field in MnBi2Te4 single crystals. Adapted
from [123].
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However, the saturation magnetization at H ≈ 7.8 T is around 4µB per Mn,
unlike the expected value of (4.5−5)µB suggesting a Mn2+ high-spin configuration
S = 5/2 which was also derived from neutron scattering studies [123]. As found
recently in [131], the high-field magnetization data reveal two plateaus with the
latter one occurring at around 50 T with the full magnetic moment of 4.6µB per Mn
(see Fig. 2.3.5). In other words, the full saturation of magnetization requires such
high fields due to the antiferromagnetic coupling of the Mn/Bi (Mn on a Bi-site)
ions and Mn/Mn (Mn on its expected site), leading to a ferrimagnetic structure of
the septuple layers with reduced net magnetization as found by neutron diffraction
experiments [129,132].

Fig. 2.3.5 Magnetization as a function of magnetic field parallel to the crystallographic
c-axis. The spin arrangement in the ferrimagnetic septuple layer is shown in the inset.
Adapted from [133].

The out-of-plane orientation of magnetization is supported by X-ray magnetic
circular and linear dichroism (XMCD, XMLD) measurements at the Mn L2,3 ab-
sorption edge performed at T = 2 K, where the residual XMCD signal was detected
only in the normal light incidence, unlike grazing light incidence, after the external
magnetic field was turned off [9, 109]. The probing depth was a few nanometers
which entails that the first septuple layer was explored primarily as well as that
out-of-plane magnetism extends very close to the surface. Although no strong dif-
ference in the surface and bulk magnetic states was found and the residual signal
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was reported to be consistent with the ferromagnetic intralayer coupling, mesoscopic
domains are supposed to appear on the topmost layer [9,134]. The XLD signal was
detected only in grazing (not in normal) light incidence geometry at T = 2 K and
was absent at T = 40 K (above TN), indicating its magnetic nature [109].

According to the first-principles calculations considering the A-type antiferro-
magnetism with the out-of-plane magnetization in MnBi2Te4 the natural cleavage
plane (001) inevitably gives rise to gapped surface states with the gap size of (50−90)
meV [9, 111–113]. Nevertheless, this prediction was not confirmed in several inde-
pendent ARPES experiments. The discrepancy can be reconciled with different
assumptions which will be discussed further in this work. The calculated topologi-
cally non-trivial energy gap size was found to be around (160−200) meV [9,111,112]
which is in agreement with the ARPES measurements [9,113,116,118,122,134–137].
The fundamental energy gap was shown to be inverted by varying the SOC con-
stant in the density of states (DOS) calculations indicating a non-trivial topology
of MnBi2Te4 [9] as plotted in Fig. 2.3.6.

Fig. 2.3.6 a) Spin-resolved electronic structure of the MnBi2Te4 (001) surface. The green
areas correspond to the bulk band structure projected onto the surface Brillouin zone. The
red, blue, yellow and cyan circles correspond to positive and negative in-plane and out-of-
plane components of the spin vector s. The surface Brillouin zone is shown in the inset.
b) Total DOS of bulk MnBi2Te4 calculated for the interlayer antiferromagnetic state for
different values of the SOC constant λ. The horizontal dashed lines indicate a zero DOS
level for each value of λ, and their intersections with the inclined lines mark the bulk band
gap edges. Adapted from [9].

Aiming to resolve the most important issue on the interplay between intrinsic
magnetism and topology in MnBi2Te4 numerous ARPES experiments have been
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performed on the (001) surface which is its natural cleavage plane. However, the
results seem to be rather contradictory so far. ARPES measurements on MnBi2Te4
crystals revealed bulk conduction and valence bands where the conduction band
exhibits an exchange splitting below TN [119,134,135]. Based on the results of band
structure calculations [9, 112, 113, 124], one can expect a gap-like feature inside the
bands with linear dispersion (gapped Dirac cone) inside the bulk band gap in the
electronic band structure measurements. In fact, the first ARPES experiments on
MnBi2Te4 crystals unveiled gapped Dirac surface states with a sizeable exchange
gap of 50−100 meV at the Г-point in both high-symmetry directions K-Γ-K and
M-Γ-M [9, 109, 116–119]. The surface state nature of the observed cone was con-
firmed by the absence of any photon energy dependence in the ARPES measure-
ments [9]. It is very striking that while this energy gap in the topological surface
states shows some variations, it persists even in the paramagnetic phase up to room
temperature as shown in Figs. 2.3.7a,b [9, 116, 117]. It could be caused by an in-
stantaneous out-of-plane spin polarization existing both below and above TN as
inferred by spin-resolved ARPES, XMCD, XMLD and electron spin resonance mea-
surements [9,109,134,138] or due to spin fluctuations in the magnetically disordered
phase [117, 134]. The surface electronic structure is influenced by strong spin-orbit
interaction as evidenced by spin-resolved ARPES experiments where Rashba-type
spin polarization was observed [116,119]. At the same time, one evidence of the in-
fluence of the antiferromagnetic-paramagnetic transition on the electronic structure
was demonstrated by the temperature evolution of the intensity of the topological
surface states across TN [119,134]. It experiences a sharp reduction upon approach-
ing TN from the ordered phase and remains almost constant in the paramagnetic
phase.

However, more recent ARPES experiments unexpectedly demonstrated gap-
less surface states on the (001) surface of MnBi2Te4 crystals which made the in-
vestigations of this material much more complicated [113, 122, 135–137]. For in-
stance, X-shaped bands centered at the Γ-point with clear linear dispersion were
observed inside the bulk band gap on MnBi2Te4 crystals by ARPES displaying
a little kz-dispersion pointing towards their surface character [113]. This finding
could be explained by several reasons which will be discussed in more detail in
section 4.2.2. Such ungapped Dirac surface states were found to be robust across
TN as shown [113, 122, 135] where the time-reversal symmetry gets restored (see
Figs. 2.3.7c,d). On the other hand, a diminished gap (15−18) meV in both antifer-
romagnetic and paramagnetic phases was also observed which is associated with the
persisting spin fluctuations above TN .

The existing STM and STS data measured on MnBi2Te4 crystals [139–142] will
be presented and discussed in section 4.2.
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Fig. 2.3.7 Gapped surface states in ARPES band structures of MnBi2Te4 measured at a)
T = 10 K and b) T = 80 K. Adapted from [116]. c), d) Gapless ARPES measured surface
band structures at T = 7.5 K and T = 30 K, respectively. Adapted from [135].

2.3.2. MnBi4Te7
MnBi4Te7 is another member of the Mn-Bi-Te family consisting of the alternate

stacking of quintuple layers and magnetic septuple layers separated by van der Waals
gaps (see Fig. 2.3.8) and were first synthesized by Z. Aliev et al. [102]. Similar to
MnBi2Te4, the lattice symmetry of MnBi4Te7 is trigonal (but space group P3m1),
the in-plane lattice parameter does not alter significantly: a ≈ 4.36 Å (c ≈ 23.8 Å) as
determined by X-ray diffraction and transmission electron microscopy experiments
which, also, confirm the presence of cationic disorder (mixed Mn and Bi occupancies)
as in the case of MnBi2Te4 [11,102,103,123]. These antisite defects and Mn vacancies
appear only in the septuple layer blocks and were not found in quintuple layers [11].
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Fig. 2.3.8 Crystal structure of MnBi4Te7 with the unit cell marked by thick black lines.
Adapted from [11].

Compared to MnBi2Te4, the MnBi4Te7 compound demonstrates more complex
magnetic phases. All the temperature-dependent resistivity and magnetization mea-
surements on MnBi4Te7 crystals revealed two anomalies associated with increased
electron scattering due to a modification of the magnetic structure as shown in
Fig. 2.3.9. The most pronounced one appeared at TN = (12−13) K and corresponds
to the antiferromagnetic phase transition, and the other anomaly, as seen from the
ferromagnetic hysteresis-like M(H) curves, indicates a ferromagnetic ordering at
T < 7 K [11] while the resistivity bears a jump at T = 5 K [11, 110, 114, 143]. The
observed TN is considerably smaller than that for MnBi2Te4 which is in line with
the reduced antiferromagnetic exchange interaction due to the increased spacing
between adjacent Mn magnetic layers in MnBi4Te7. Apart from that, while M(H)

curves acquired at T = 10 K show a typical metamagnetic spin-flop transition [11],
in other reports a spin-flip transition at H = 0.15 T at T = 2 K (H∥c) and a
saturation field H = 0.22 T were observed [114,136,143,144]. Lower transition and
saturation fields than in MnBi2Te4 are, also, in agreement with the weaker inter-
layer antiferromagnetism in MnBi4Te7. It is worth to note that an external magnetic
field-induced Weyl state in MnBi4Te7 single crystals has been recently experimen-
tally observed through the detection of an intrinsic anomalous Nernst effect [145].
Hall resistivity measurements indicating anomalous contribution below TN support
the long-range antiferromagnetic order and reveal another metamagnetic transition
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at low fields H ≤ 300 Oe at T ≤ 7 K [11]. The negative sign of the Hall coefficient
points towards n-type conductivity [11,114,143,144].

As in MnBi2Te4, magnetization (and resistivity as well) exhibits a strong
anisotropy since the magnetic moments measured at H∥c are much larger than for
H⊥c which indicates a preferable orientation of the net magnetization in the ordered
phase perpendicular to the layers [11, 110]. Such observations are consistent with
the A-type antiferromagnetic order predicted by DFT calculations and confirmed
by neutron diffraction measurements [127, 144]. The ordered moment was found to
be in the range (5.1−5.6)µB which is in a rough agreement with the S = 5/2 Mn2+

high-spin configuration [11, 114, 143]. The latter is endorsed by the electron spin
resonance measurements on MnBi4Te7 which, also, evidence in favor of essentially
ferromagnetic coupling inside magnetic septuple layers which persists up to
T = 30 K (correlated paramagnetic state) [11,146].

Fig. 2.3.9 Magnetic and transport properties of MnBi4Te7: a) in-plane electrical resistivity
as a function of temperature. b), c) Normalized magnetization as a function of temperature
for fields applied both perpendicular and parallel to the ab directions. d), e) Hall resistivity
and magnetization as a function of the field applied perpendicular to the ab planes. f)
Magnetization as a function of the field applied parallel to the ab planes. Adapted from [11].
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Magnetic properties of MnBi4Te7 were further explored by XMCD and XMLD
measurements at the Mn L2,3 absorption edge performed at T = (2−40) K [11].
The XMCD data corroborate the out-of-plane orientation of the net magnetization.
The remanent XMLD signal was detected only in the normal light incidence, unlike
grazing light incidence, and is monotonically decreasing with increasing temperature
as for the transition from magnetically ordered state to a paramagnetic one.

Electronic band structure calculations on the easy-cleaved (001) plane of
MnBi4Te7 considering A-type antiferromagnetism were performed by several groups
but gave controversial results [11, 110, 114, 115, 147]. Although, the fundamental
band gap was found to be inverted leading to the non-trivial topology and Z2 = 1

antiferromagnetic topological insulator state, its width varies from 75 meV [11] to 247
meV [110]. Furthermore, unlike gapless surface states in Bi2Te3, and as expected
for the symmetry-breaking (001) surface, the quintuple layer terminated surface
exhibits a massive Dirac cone with a surface states gap of ∼ 60 meV [114,115] or a
diminished gap (less than 30 meV) [11,110,147]. Such a gap reduction could be due
to a predominant localization of the topological surface states in the quintuple layer
and weaker interaction with the Mn-containing septuple layer [147]. In similar way,
assuming A-type antiferromagnetic configuration for the septuple layer termination
both gapped and gapless surface states have been reported. While sizeable gaps
(∼ 60−70 meV) were obtained in [11, 110, 115, 147], nearly gapless surface states
were unexpectedly found in [114].

Experimentally acquired electronic band structures of MnBi4Te7 are controver-
sial as well. As in MnBi2Te4, the characteristic n-doping of the samples was observed
in all ARPES measurements [11,110,114,115,121,122,147,148], which is consistent
with the Hall resistivity data on MnBi4Te7 [11, 114, 143, 144]. The Dirac point is
located at the binding energy ∼(270−300) meV below the chemical potential remi-
niscent to that in MnBi2Te4. The bulk band gap width was found to be (100−225)
meV [114, 121, 147] which is in a rough agreement with the first-principles calcula-
tions [11, 110]. The Dirac surface states exhibit a distinct energy gap of (50−100)
meV on the quintuple layer surface termination [11, 114,115,148] or remain gapless
as in three-dimensional Bi2Te3 [121,122] which could be caused by a strong suppres-
sion of the magnetization across the topmost quintuple layer. As for the septuple
layer terminated surface, in most ARPES studies the surface states are X-shaped
(ungapped) [114,115,121,122], while the gapped Dirac cone was also observed [11].
Such a frequently observed magnetic gap disappearance is supposed to be explained
by the same mechanism as in MnBi2Te4 [113, 122, 135–137] reflecting the proposed
deviation of the A-type antiferromagnetic order on the cleaved surface to a spin dis-
order or an average effect of different antiferromagnetic domains. At the same time,
one has to note that in some early ARPES experiments where a strongly gapped (90
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meV) Dirac cone was obtained, it was not possible to distinguish between two possi-
ble surface band structures due to the size of the laser beam spot (20−50) µm which
is much larger than the quintuple/septuple layers surface domain size [110, 136].
Concerning the temperature evolution of the topological surface states, they appear
to be temperature independent as evidenced by a non-vanishing magnetic gap in
the paramagnetic phase (at T = 80 K) [11] (see Fig. 2.3.10), a slightly diminished
gap at T = 300 K [110] due to persisting spin fluctuations even far above TN , or a
gapless Dirac cone for both quintuple- and septuple layer terminations [121,122] as
shown in Fig. 2.3.11.

Fig. 2.3.10 Gapped electronic structure of MnBi4Te7 measured by ARPES (along the
Γ-M-direction): a) quintuple layer termination at 8 K, b) septuple layer termination at 8
K, c) quintuple layer termination at 80 K. Adapted from [11].
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Fig. 2.3.11 Gapped and gapless ARPES data on MnBi4Te7: a) quintuple layer termination
at 7 K. b) Septuple layer termination at 7 K. c) Septuple layer termination at 30 K. Adapted
from [122].

The STM/STS investigations of MnBi4Te7 single crystals reveal two atomically
resolved (001) surfaces in agreement with the crystal structure containing alternate
quintuple and septuple layers. The observed atomic steps identified two possible
surface terminations explicitly [115, 140, 149]. The septuple layer termination hosts
Bi/Te-antisite defects (bright spots) and Mn/Bi-antisites which are present on the
quintuple layer terminated surface and appeared as dark triangles for both surfaces
which can be seen in Fig. 2.3.12.

Fig. 2.3.12 STM topography of MnBi4Te7: a) quintuple layer terminated surface, Ubias

= 0.5 V, IT = 1 nA and b) septuple layer terminated surface at Ubias = 0.5 V, IT = 200
pA. Adapted from [115].
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Fig. 2.3.13 illustrates the dI/dU tunneling spectra recorded on defect free areas
of the quintuple layer surface showing a suppression of DOS near the Dirac point
in contrast to the V-shaped dip at the Dirac point on the septuple layer surface
which is consistent in all the STS data on this compound [115, 140, 149]. It was
shown by DFT-calculations in [115] that a gapped Dirac cone on the quintuple layer
termination is created by the hybridization effect between the orbitals of the top
quintuple layer and its adjacent septuple layer. The absence of the gap on the
septuple layer terminated surface is explained by a possible spin disorder unlike
the bulk A-type antiferromagnetic order. In addition, the very recent temperature-
dependent STS studies on MnBi4Te7 reveal the presence of the electronic state at the
septuple layer step edge which vanishes above TN and does not exist at the quintuple
layer step edge (see Fig. 2.3.14). Therefore, this edge state appears to be induced
by the intrinsic magnetism of the material [149]. In the other STM/STS work on
MnBi4Te7 QPI data were obtained at T = 4.5 K [115]. Given the discrepancies in
the observed FT-QPI patterns from the calculated joint DOS (JDOS) and taking
into account the hybridization between septuple and quintuple layers, Rashba bands
observed by spin-ARPES, the spin-selective JDOS was calculated. Its comparison
with the observed FT-QPI patterns yielded the following spin textures: spin-helical
Dirac state with hexagonal warping for the quintuple layer termination, a pair of
Rashba-split states from the 2nd quintuple layer and a strongly canted helical state
from the surface sandwiched in between – for the septuple layer terminated surface.

Fig. 2.3.13 Averaged STS spectra taken at defect free areas of quintuple layer- (green
curve) and septuple layer (black curve) terminations of MnBi4Te7. Ubias = 0.5 V, IT = 500
pA, T = 4.5 K. The dashed line indicates the position of the Fermi level. Adapted from
[115].
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Fig. 2.3.14 dI/dU spectra at the step edge (upper panel) and terrace (lower panel) mea-
sured on a) septuple layer surface at 4.5 K, b) quintuple layer surface at 4.5 K, and c)
septuple layer surface at 77 K. Adapted from [149].
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Chapter 3

Experimental technique: STM and
STS

The first scanning tunneling microscope was invented in 1981 by G. Binnig and
H. Rohrer [150, 151]. Nowadays the STM has established itself as a powerful tool
for local characterization of electronic properties of surfaces of various solids (and
also molecular nanostructures) with atomic fidelity.

Fig. 3.0.1 illustrates the underlying idea of this experimental technique. In gen-
eral, an atomically sharp tip usually made of conducting materials (metals like W,
Pt/Ir alloy, Au,...) is attached to a piezoscanner (a tube configuration is mostly
used for achieving better lateral resolution [15]) and brought very close to the in-
vestigated material’s surface. Typically this distance d amounts to a few Ångtröms.
The movement of the piezoscanner with the tip in 3 directions x, y, z is controlled
by applying voltage to the scanner’s electrodes x+, x−, y+, y− (on the outside) and
z (on the inside) as shown in Fig. 3.0.1. A bias voltage Ubias applied to the sample
(which is always the case in the present work) leads to the shift of the Fermi level of
the sample with respect to that of the tip. Therefore, it becomes possible to detect
the tunneling current flowing in the formed tunneling junction. Depending on the
polarity of the bias voltage, the tunneling current can flow from the sample to the
tip or vice versa. For negative Ubias on the sample the current will flow from the
occupied states of the sample into the tip, while for positive Ubias the direction of
the current is opposite, thereby, the unoccupied states of the sample can be probed.
Normally the tunneling current is kept constant during scanning with the use of the
feedback loop that transforms the deviations of the current from the set point value
into variations of the tip height to get a topography of the surface.

41



CHAPTER 3. EXPERIMENTAL TECHNIQUE: STM AND STS

Fig. 3.0.1 General principle of the STM. An atomically sharp tip is scanning on an
atomically corrugated surface of Bi2Te3 measured in this work. The tunneling current IT
is measured from the tip which is fixed at the end of the scanner tube, its relative height
d is controlled by the feedback loop.

3.1. Tunneling current
In order to understand the factors affecting the tunneling current in the STM

one has to describe the STM operation involved quantum mechanics. Considering a
tunneling junction formed by a sample and a tip which are separated by vacuum as
a potential barrier of a rectangular shape with a height U0 and a width d, a simple
time-independent Schrödinger equation can be solved. It turns out that an electron
has a non-zero probability to penetrate through the barrier with the energy E < U0,
unlike that in classical mechanics. The corresponding wave functions for the regions
1 (before the barrier), 2 (within the barrier) and 3 (after tunneling) are shown in
Fig. 3.1.1. The most important is that they oscillate outside of the barrier, while the
wave function in the barrier region decays exponentially. The transmission factor for
this barrier calculated based on the boundary conditions is the following (assuming

a strongly attenuating barrier with
√

2m(U0−E)

ℏ d≫ 1 typical for STM [14]):

T ≈ 16E(U0 − E)

U2
0

exp

(
−2d

ℏ
√

2m(U0 − E)

)
, (3.1.1)

where m is the free electron mass and ℏ is the Planck constant.
This equation reflects also the exponential dependence of the tunneling current
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in the STM experiment on the tip-sample distance. In practice, every 1 Å change
of the tip height results in approximately one order of magnitude change of the
tunneling current. This extremely high sensitivity is the main reason of the high
spatial resolution of the STM.

Fig. 3.1.1 Electron tunneling schematic representation for a rectangular barrier of the
width d and the height U0. The green curves are sketches of the wave functions in the
regions 1, 2 and 3.

The next approach which considers the DOS of the sample and the tip was done
by J. Bardeen [152], where the tunneling process was considered as a transition from
the initial state to the final state (from the tip to the sample for positive bias voltage,
for example, as shown in Fig. 3.1.2) by means of the time-dependent perturbation
theory. In this case the transition probability per unit of time from the tip to the
sample is given by the Fermi’s golden rule:

wfi =
2π

ℏ
∑
i,f

|Mfi|2δ(Ef − Ei), (3.1.2)

where Mfi is the tunneling matrix element from the initial state to the final state
and δ(Ef − Ei) is the Dirac delta function.
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Fig. 3.1.2 Energy diagram of electron tunneling from the tip (blue colored) to the sample
(red colored) in STM. Positive Ubias is applied to the sample and shifts its Fermi level
down. Φt and Φs denote the work functions of the tip and sample materials, respectively.

In its turn, the tunneling matrix element is expressed through the wave functions
of the sample and the tip as

Mfi =
ℏ2

2m

∫
S

(ψt,i∇ψ∗
s,f − ψ∗

s,f∇ψt,i)dS, (3.1.3)

where S is the surface of the region between the tip and the sample. Given the
electron spin degeneracy as a factor of 2 for the transition rate wfi, the tunneling
current can be written as the following:

IT =
4πe

ℏ
∑
i,f

|Mfi|2δ(Ef − Ei). (3.1.4)

The equation 3.1.4 can be modified moving on to the DOS of the sample ρs and
the tip ρt and also taking into account the Fermi-Dirac distribution of the electrons:

IT =
4πe

ℏ

∫ eUbias

0

ρt(ϵ− eUbias)ρs(ϵ)ft(ϵ− eUbias)(1− fs(ϵ))|M(ϵ)|2dϵ, (3.1.5)

where ϵ is the energy counted from the Fermi level, and

f(ϵ) =
1

1 + exp
(

ϵ
kBT

) . (3.1.6)

which leads to a small thermal smearing (∼ kBT ) of the IT and, thus becomes
important usually for relatively high temperatures comparable with (or larger than)
the size of the investigated spectroscopic features.
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The tunneling matrix element is affected by many factors, for example, the tip
geometry and its electronic structure which can not be known explicitly. However,
it can be determined in terms of the semiclassical WKB-approximation (assuming
eUbias negligible compared to the work functions of the tip and the sample which
are normally in the range 3-4 eV) [153]:

|M(ϵ)|2 ∝ exp

(
−2d

ℏ
√
2mΦ

)
, (3.1.7)

where Φ is the half sum of the work functions of the tip and the sample. Under
this approximation the tunneling current becomes

IT =
4πe

ℏ
exp

(
−2d

ℏ
√
2mΦ

)∫ eUbias

0

ρt(ϵ− eUbias)ρs(ϵ)ft(ϵ− eUbias)(1− fs(ϵ))dϵ,

(3.1.8)
Looking at this equation the most essential parts are the exponential dependence

of the tunneling current on the tip-sample distance and the convolution of the sam-
ple’s and the tip’s DOS. To get rid of the latter the tips for the STM experiment
are normally made of materials with approximately energy-independent DOS (in
the relevant energy window) such as metals W, Pt/Ir alloy, Au and others. Within
this simplification, the tunneling current is considered to be proportional to the
integrated DOS of the sample for very low temperatures.

Another approximation was obtained by Tersoff and Hamann [154], where the
wave function of the tip was assumed as a spherically symmetric s-wave orbital.
For small bias voltages it also results in a direct proportionality of the differential
conductance to the local DOS (LDOS) of the sample.

3.2. STM measurement modes

3.2.1. Topography
Given the exponential dependence of the tunneling current IT on the distance

d between the tip and the sample, one can scan over the surface with the tip and
measure the sample’s surface topography. In general, it can be done by two different
methods. One of them, which is the most widely exploited, is called constant current
mode. IT is kept constant with the use of the feedback loop at a specified set point
value, while the tip is scanning over the investigated surface (see Fig. 3.0.1). The
resulting variations of the z-position of the tip as a function of the (x, y)-coordinates
represents the map of the sample LDOS integrated within the energy range from
−eUbias to EF . In practice, the real topography can not be detected due to local
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variations of the surface electronic structure caused, for example, by impurities, de-
fects or charge density waves [155,156]. Alternatively, one can maintain the distance
d constant and measure the variations of IT on the surface. Although this method
dubbed constant-height mode works faster than the constant-current mode with the
feedback loop involved, the former one needs very flat surfaces to avoid possible
crashes of the tip on the sample. Usually atomically resolved surfaces are studied
by STM, one example of which is shown in Fig. 3.2.1.

Fig. 3.2.1 Constant current topography acquired on 10 nm × 10 nm surface area of a
Bi2Te3 single crystal at Ubias = 300 mV, IT = 500 pA, T = 6.9 K showing clearly an
atomic corrugation along with surface defects.

3.2.2. Single point spectroscopy
By disabling the feedback loop in the STM experiment, which means fixing the

z-position (x, y-positions are also fixed) of the tip, IT can be measured when Ubias

is swept. Looking again at the equation 3.1.8, one can notice that for the temper-
atures close to 0 K the differential conductance dI/dU(x, y, Ubias) turns out to be
proportional to the sample DOS at any location (x, y) on the surface. This provides
a unique opportunity to measure electronic properties of various materials locally
at the atomic scale, unlike other spectroscopy methods. In principle, the differential
conductance spectra can be obtained by numerical derivation of the I(U) spec-
tra. However, the resulting dI/dU spectra become more noisy than that measured
directly with a commonly used lock-in amplifier by applying a small modulation
voltage (typically, of the order of a few mV or even µV). The lock-in amplifier in-
cludes a phase-sensitive detector which effectively singles out only the first harmonic
of the tunneling current at the frequency of the modulation. This component is pro-
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portional to the dI/dU and can be also averaged, whereas all the other harmonics
are cut off resulting in a tremendously high signal-to-noise ratio. However, the STS
has two main limitations. In particular, the energy resolution is affected by thermal
broadening of the Fermi-Dirac distribution (3.5 kBT ≈ 1.5 meV for the STM used
in the present work at T = 5 K, kB is the Boltzmann constant) and, on the other
hand, by the modulation voltage (2.5 eUmod) [157]:

∆E =
√
(3.5kBT )2 + (2.5eUmod)2. (3.2.1)

One example of the dI/dU spectrum measured on a Bi2Te3 crystal in the present
work can be found in Fig. 3.2.2.

3.2.3. dI/dU maps
Besides measuring single point spectra, the STM allows recording dI/dU maps

on selected energies and areas in the (x, y)-plane. One option is to measure the maps
at a certain bias voltage when scanning the surface with the closed feedback loop,
applying a small modulation voltage. This is usually called dI/dU mapping and re-
quires a time spent on each pixel during scanning larger (by one order of magnitude)
than the bias modulation period. Nevertheless, this is a less time-consuming way
to obtain the dI/dU maps (typical time ∼ several hours) than another one which is
called full spectroscopy mapping. This measurement mode allows measuring dI/dU
maps at different energies in the selected energy range and provides not only to-
pography data and differential conductance maps with high resolution for different
energies, but also the dI/dU spectra at each selected location on the surface at the
same time. This is a rather demanding method since it requires to open the feed-
back loop at each point of the map. For that one needs an ideal stability of the
tunneling junction during the whole measurement time which usually takes from
several days up to around one week (limited by the liquid helium evaporation rate
in the experimental setup) for high spatial and energy resolution data.
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Fig. 3.2.2 4-dimensional full spectroscopy map dI/dU(x, y, U) representation. Examples
of single point spectra, topography and differential conductance maps measured at different
energies on single crystals of Bi2Te3 are plotted.

3.3. Quasiparticle interference
In simple metals with parabolic energy dispersion in presence of disorder created

by point-like impurities or step edges the charge density oscillates as a function of
distance from impurity. According to [158,159], it can be written as

ρS(E, x) ∝ 1− J0[2q(E)x] (3.3.1)

for the step edge, and

ρS(E, r) ∝ 1 +
2

πqr
[cos2(qr − π

4
+ η0)− cos2(qr − π

4
)] (3.3.2)

for the point-like impurity, where E is the energy, x and r are the distances from
the step edge and the impurity, respectively, q is the amplitude of the scattering
vector at the energy E, J0 is the 0th-order Bessel function, η0 is the phase shift.

This is called Friedel oscillations [160] which were directly observed by STM in
the real space [158, 161, 162] and became one of the very remarkable discoveries of
the STM. Fig. 3.3.1a illustrates the Cu(111) surface [163]. One can clearly see mod-
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ulations of the LDOS which arise from elastic electron scattering (which for such a
simple one free-electron band material is backscattering with q = 2k as shown in
Fig. 3.3.1b) resulting in the interference pattern of incoming (ki) and outgoing (kf)
electrons with q = kf − ki. That is why it is called quasiparticle interference (QPI)
in relation to materials with more intricate electronic band structure like supercon-
ductors, heavy fermion materials, topological materials... The natural method to
get the information on scattering processes is Fourier transform (see Fig. 3.3.1c) of
the real-space STM data which allows to extract both the length and the direction
of the scattering vectors [164]. For materials with more complicated electronic band
structures, like topological insulators (which will be discussed in more detail in sec-
tion 4.1.4), the relation q = 2k is not true anymore, so one can not explicitly extract
the electron wave vector k (and, thus, the electronic band dispersion) from the STM
data. Nevertheless, the QPI allows investigating different scattering processes and
serves as a complementary tool to ARPES with the advantage of having access to
the unoccupied electronic states.

Fig. 3.3.1 a) Constant current STM image of Cu(111). Circular wave-like pattern orig-
inates from scattering around point-like defects. Adapted from [163]. b) Sketch of the
circular constant-energy contour corresponding to the band structure of Cu(111). The
red vector q indicates the scattering from ki to kf, the green vector is the backscattering
vector. c) Two-dimensional Fourier transform of a). Adapted from [163].

3.4. Experimental setup
All the experimental data presented in this work were measured with the home-

built STM called "Dip-stick STM" [165]. This STM is based on a tube design of
≈ 2 m height (see Fig. 3.4.1) and can be immersed into usual liquid 4He magnet
cryostats. By that the cryogenic vacuum is created inside the STM, which has to be
evacuated to a pressure ∼ 10−5 mbar before inserting it into the cryostat. All the
data were obtained with the Oxford Instruments magnet cryostat [166] which has
a maximal perpendicular field 15 T at 4.2 K and is lifted by a damping system for
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the vibration isolation. This STM system is considered as a variable-temperature
STM since it allows doing measurements from the base temperature of ∼ 5 K up
to the room temperature with the use of the heating cup covering the whole STM
head. The normal time for cooling down the STM from the room temperature to
the base temperature is around 17 hours. The total measurement time at the base
temperature can take up to 11 days between the consecutive refills of the liquid
helium. It is also possible to increase the measurement time up to 8 weeks by using
a liquid 4He dewar with 220 liters of volume. However, this is not the option for
measurements in magnetic fields. The Dip-stick STM in this work was operated
by different commercially available STM controllers Nanonis Specs [167] and RHK
R9 [168].

Fig. 3.4.1 a) Design of the Dip-stick STM with a section through the stainless steel tube.
The middle part of the tube is not shown for better visualization. The magnified image
shows the STM head covered by the heating cup. (1) Cleaving mechanism control, (2)
connections for electrical wiring and pumping, (3) stainless steel capillary tubes with heat
radiation baffles, (4) copper disks for thermal coupling to the helium volume, (5) thermal
connection to the STM head, (6) STM head with the heating cup, and (7) stainless steel
capillary tubes. Adapted from [165]. b) Photography of the STM system inside the magnet
cryostat.

The STM head was designed in the Pan style [169] and is mounted at the end
of the stainless steel capillary tubes as shown in Fig. 3.4.1a. All the components of
the STM head are made of non-magnetic materials to exclude their influence on the
measurements with an external magnetic field and minimize magnetic stray fields at
the sample. The most crucial part of the STM head (see Fig. 3.4.2) is the scanner
unit which consists of the sapphire prism (6), the scanner tube holder (5), and the
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scanner tube (10) which is mounted inside the sapphire prism. The piezoelectric
scanner tube [170] has five electrodes (see Fig. 3.0.1) with four x/y-electrodes on
the outside of the tube and the z-electrode on the inside. The full scanning range
at 5 K (300 K) is around 2.4 µm (600 nm) and 600 nm (250 nm) for the x/y

and z-directions, respectively. The tip is mounted at the end of the scanner tube
with the use of a Macor socket and a molybdenum spring. In this STM system
configuration the bias voltage is applied to the sample, and tunneling current is
measured from the tip. The sapphire prism is clamped inside the STM body by
six piezoelectric walker stacks (8). Each of the stacks consists of four piezoplates
glued to each other by conductive glue [171]. A polished Al2O3 plate is glued on
top of each of the piezoelectric stacks and provides the coarse approach motion by
the slip-stick-method [172]. Four of the stacks are glued to the STM body, while
the other two are glued to the counterpart plate (7) which is pressed against the
sapphire prism by a molybdenum spring (9). By changing the spring force, one can
adjust the friction between the sapphire prism and the Al2O3 plates for achieving a
reasonable approach time. For instance, at the room temperature it takes ≈ 80 s at
120 V to move the tip from the full retract position to a distance of < 1 mm from the
sample when the automatic approach can be run which takes a few minutes (usually,
less than 30 minutes) more. For the base temperature the approach procedure takes
several times (normally, around 3−4) longer due to the lower value of the piezo
constant of the material from which the piezoelectric stacks are made.
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Fig. 3.4.2 Schematic section of the STM head which can be divided into three parts: top
plate, STM body, and sample holder section: (1) thermal connection, (2) stainless steel
capillary tube, (3) cleaving wire, (4) cleaving stamp, (5) tube scanner holder (Macor [173]),
(6) sapphire prism, (7) counterpart plate, (8) shear-piezo stacks, (9) molybdenum leaf
spring, (10) tube scanner, (11) tip holder with tip, (12) sample, (13) front panel, (14)
Macor part for bias insulation, (15) bottom plate, (16) Cernox sample temperature sensor,
and (17) Cernox STM body temperature sensor. Adapted from [165].

In general, the surface-sensitive STM technique requires perfectly clean and flat
surfaces. The Dip-stick STM has a cleaving mechanism installed on top of it (see
Fig. 3.4.1a) which allows cleaving the investigated crystals in situ just before ap-
proaching the tip to the surface being already in the cryogenic vacuum conditions.
The cleaving procedure is demonstrated in Fig. 3.4.3. Each new measured sample
has to be glued with the conductive glue [171] onto a metallic sample holder (1),
then a metallic cleaving stamp (3) is glued on top of the sample (2) with the same
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glue. The cleaving wire (6) with the insulating eye (4) at its end is attached to the
cleaving stamp by the screw nut (7). The tip quality can be checked on the test
sample (5), and the tip has to be fully retracted for cleaving. The freshly cleaved
surface occurs after pulling the cleaving wire from top of the STM in such a way that
the cleaving stamp goes into the parking position (I) and can not affect the exper-
iment. This Dip-stick STM allows also to prepare and mount air-sensitive samples
inside a special Argon glovebox where the whole STM can be placed.

Fig. 3.4.3 Sketch of the sample cleaving procedure. The movement of the cleaving stamp
during the cleaving is indicated by the broad arrow. (1) Sample holder, (2) sample, (3)
cleaving stamp with a screw thread on one end, (4) insulating eye, (5) test sample (e.g.
gold on mica), (6) cleaving wire, (7) screw nut, (8) tip, (9) tip holder, (10) scanner unit, (I)
parking position of the cleaving stamp. The insulating eye is made of copper, covered by
an insulating varnish, and soldered to the cleaving wire. A coating of the insulating varnish
(GE-Varnish [174]) prevents short-circuiting Ubias and ground. Adapted from [165].

The most commonly used ways for the STM tips preparation are electrochemical
etching of W-wires and mechanical cutting of Pt/Ir-wires which were both used in
this work. The W wires were electrochemically etched by 8 % NaOH solution with
the usual formation of tungsten oxide layer on the tip. Therefore, they were further
annealed by electron beam heating at ∼ 2000 ◦C at high vacuum (∼ 10−7 mbar) in
a special flashing chamber to remove the tungsten oxide by evaporation. Some of
the experiments were performed with the tips made by simple mechanical cutting
of Pt/Ir-wires at ambient conditions since the Pt/Ir alloy is not air-sensitive.

During the current work all the parts of the STM-head (including the analogous
Dip-stick STM setup) were repaired. Since each sudden breakdown of the setup

53



CHAPTER 3. EXPERIMENTAL TECHNIQUE: STM AND STS

components (especially, piezoelectric materials) required quite thorough repair work,
very accurate handling with the STM-head is necessary. For example, after the
breakage of the scanner electrodes, they were glued and fixed, and the STM has
been put into the operation. The latter is proved by the observed atomic corrugation
both at ambient conditions on a standard STM material highly oriented pyrolytic
graphite (HOPG) and, later, at the base temperature on MnBi2Te4 as shown in
Fig. 3.4.4. However, it turned out that the piezo constant of the tube scanner was
reduced with a factor of ≈ 1.67. Therefore, the correct scanner’s calibration was
performed based on the atomically resolved topographic data and yielded the values
of the full range of the scanner mentioned above. The long-term QPI measurements
on Bi2Te3 (see sections 4.1.3 and 4.1.4), for example, further prove the successful
repair of the Dip-stick STM.

Fig. 3.4.4 a) Topography scan of HOPG at T = 298 K on air, Ubias = 200 mV, IT = 100
pA. b) Fast Fourier transform (FFT) of the image a) with the marked Bragg reflection
vector 4π√

3a
corresponding to atomic corrugation which allows to estimate the lattice con-

stant a of the material and compare it with its literature value for the calibration of the
scanner. Note that the Bragg peaks in one direction (corresponding to the slow scanning
direction in a)) look less clear than the others due to the unavoidable thermal drift at room
temperature. The average value of the extracted Bragg vectors was used for the estimation
of the correction factor of the tube scanner’s piezo constant. c) Topography of MnBi2Te4
measured at T = 6 K, Ubias = −300 mV, IT = 50 pA. d) FFT of c) with the Bragg vectors
(recognized as the most distinct six-fold symmetric spots) extracted in the same way as for
HOPG in b). The correction factor of the scanner’s piezo constant was found to be nearly
the same as in b) pointing towards the right calibration.

.
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Experimental results

The STM data measured in this work were analyzed with WSxM [175]. In
addition, other different software were intentionally developed in Python for the
dI/dU maps analysis (see program codes in Appendix C) and spin-selective joint
density of states calculations which will be discussed in section 4.1.4.

4.1. Bi2Te3
In this section the following manuscript is reproduced:

V. Nagorkin, S. Schimmel, P. Gebauer, A. Isaeva, D. Baumann, A. Koitzsch, B.
Büchner and C. Hess, Bulk and surface electron scattering in disordered Bi2Te3
probed by quasiparticle interference, submitted to Phys. Rev. B, arXiv:2409.04294v1
[cond-mat.mes-hall] (2024) (available at http://arxiv.org/abs/2409.04294).

All the crystals of the Bi2Te3 compound were cleaved in cryogenic vacuum at
the base temperature T ∼ (6−7) K just before the measurements in the Dip-stick
STM presented in section 3.4 with the Nanonis Specs STM-controller. Bias voltage
modulation was provided externally by the SR 830 lock-in amplifier with
Umod = (2−10) mV RMS and fmod = 0.667 kHz.

4.1.1. Topography
Fig. 4.1.1a depicts an overview of the surface of the measured samples in a field

of view of 50×50 nm2. This topography image represents an atomically corrugated
hexagonal Te-terminated surface with a characteristic line profile taken along the
unit cell vector a or b (which are indistinguishable) and shown in Fig. 4.1.1d, where
43 peaks on 20 nm length scale provide the oscillation period of around 4.65 Å.
Fig. 4.1.1c shows the FFT of the topography with very distinct Bragg reflection
spots indicating a hexagonal lattice and an additional six-fold symmetric pattern
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inside. The half-distances between the opposite Bragg spots measured in 3 directions
provide the values of qBragg: 1.52 1/Å, 1.54 1/Å and 1.56 1/Å. Hence, the average
value of qBragg = 1.54 1/Å and the corresponding lattice constant (as for hexagonal
HOPG in section 3.4 a = 4π√

3qBragg
) a = 4.7 ± 0.1 Å which is consistent with the

oscillation period derived from the topography line profile in Fig. 4.1.1d and is in
a reasonable agreement with the literature value of a ≈ 4.38 Å (see section 2.1.4).
Although this discrepancy which was in the range 2−7 % in the whole experiment
might come from the STM scanner artifacts, it is not essential for the QPI data
presented in sections 4.1.3, 4.1.4, 4.1.5 due to larger errors in those data. The line
profile in Fig. 4.1.1d exhibits another modulation arising from the surface defects
which is also revealed in the FFT in Fig. 4.1.1c. This inner long-wavelength six-fold
symmetric structure corresponds to the energy integrated QPI and will be discussed
further.
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Fig. 4.1.1 a) Representative topography of Bi2Te3 measured at Ubias = 100 mV, IT = 100
pA, T = 6.9 K. Examples of various defects are marked with circles of different colours.
b) The observed defect types on the left column with their corresponding DFT-based
calculations adapted from [50]. Numbers above the figures denote the densities of the
defects as the percentage of atomic sites occupied by them. The notation of the defects
is the same as in Fig. 2.1.13. c) FFT of the image a). d) Line profile of the topography
made across two defects and indicated with the blue arrow in a).

The topography image in Fig. 4.1.1a reveals numerous defects of different ori-
gin plotted in the left column of Fig. 4.1.1b. They can be grouped into different
types, according to the former experimental STM defect studies and DFT-based
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calculations of the defects in Bi2Te3 [50,51] shown in the right column of Fig. 4.1.1b
(see also the calculations for occupied states presented in a different colorscale in
Fig. 2.1.13). The comparison was based on counting the number of atoms giving the
contrast in the topography of the defects (selected fields of view of ∼100×100 nm2)
and taking into account the bias voltage dependence of the defects measured in the
current work (see Fig. 4.1.2). In particular, the defects appearing as three-fold sym-
metric dots of bright contrast arising from the crystal symmetry can be identified as
Te/Bi-antisites in the second atomic layer from top. The dark triple dots are, most
likely, Te-vacancies or Bi substitutions in the third layer of the topmost quintuple
layer (see Fig. 4.1.1b). Meanwhile, these three-fold symmetric defects (triple dots
of both dark and bright contrast) show almost no dispersion in contrast to the data
in [50]. The single dark dots can be identified as the Te-surface vacancies in the first
Te-layer. In addition, the observed single bright spots in the topography are, most
likely, Bi/Te antisite defects occurring in the first Te layer rather than Bi adatoms
since they do not show any migration while scanning on the same surface spot. All
these defects have relatively small density of ≤ 0.1 %, unlike the most abundant
defect type marked with the black circle in Fig. 4.1.1a which has a density of around
2 defects per 100 surface atoms (2 %). One can even notice that these defects are
mixed, overlap with each other. For comparison with the literature, the density of
the dominant defects does not exceed 1 %, as, for example, in [55]. Although there
is no perfect correspondence of the dominant defect in the current work with the
former DFT studies in [50], it could be potentially assigned to the Te-vacancy or
Bi substitution in the third (Te) atomic layer inside the topmost quintuple layer.
Note that its three-fold symmetry suggests a three-fold symmetric scattering poten-
tial [52,55,88]. The latter affects the QPI data and will be discussed in section 4.1.3.

It is worth to mention that the STM appearance of the abovementioned dominant
defects changes with the bias voltage as illustrated in Fig. 4.1.2 where topography
images were obtained on the same 30 nm x 30 nm surface region containing different
kinds of defects. In particular, the dominant defect looks as a triangle formed by
3 atoms of bright contrast at positive bias voltages (empty states) as shown in
Fig. 4.1.2i. At negative bias voltages (occupied states) it becomes dimmer and gets
surrounded by atoms of more dark contrast as depicted in Fig. 4.1.2k which does
not look very similar to the theoretical calculations (see Figs. 4.1.2j,l) for any kinds
of defects studied in [50].
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Fig. 4.1.2 a)−d) Topography images of Bi2Te3 measured at Ubias = −700 mV, −500 mV,
−400 mV, −100 mV, respectively. e)−h) Topographies at Ubias = 700 mV, 500 mV, 400
mV, 100 mV, respectively. i), k) Zoom-in view of the defect marked in c) and g) with their
corresponding DFT-based calculations for BiTe,3 (on the left) and VTe,3 (on the right) in
j) and l) taken from [50], respectively. The scanned area size 30 nm × 30 nm, IT = 1 nA.

This deviation of the shape of the most abundant defect from both experimental
and theoretical literature data on Bi2Te3 could suggest possible extrinsic doping of
the crystals. To verify it, they were transferred for X-ray photoelectron spectroscopy
(XPS) measurements (at first, they were cleaved) performed by Dr. A. Koitzsch at
IFW Dresden. The XPS analysis reveals the absence of extrinsic dopants (which
confirms the intrinsic origin of the defects) and no deviation from the stoichiometry
of this compound [176]. Note that there are relatively small contents of oxygen and
carbon contaminants (see Fig. 4.1.3) which are often observed in XPS experiments,
also copper and silver peaks in the spectrum are related to the sample holder and the
component of the conducting glue, respectively. At first glance, no strong differences
were recognized in the obtained spectrum compared to the previously measured XPS
spectra on Bi2Te3 [177]. However, a closer look at the relatively narrow Bi 4f peak
reveals slight deviations from its ideal shape. In order to fit the photoemission
spectrum by Voigt profiles, a second component of the Bi 4f peak needs to be taken
into account, as shown in Fig. 4.1.3. This suggests modified chemical environments
of Bi atoms, which can be evidenced by the disorder in the STM topographic data
(see the data above). Meanwhile, the additional contribution to the Bi 4f peak was
also detected by XPS in [178] where it was caused by Bi surface oxides, the latter
could occur in the crystals used in the current work as well due to their exposure to
air prior to the STM measurements.
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Fig. 4.1.3 XPS spectra of Bi2Te3 measured by Dr. A. Koitzsch at IFW Dresden. The
inset shows two components of the Bi 4f peak (red curves) derived from the fitting of the
experimental data (black curve). The cyan curve is the sum of the two red curves. Note
that the energy scale in the inset displays the kinetic energy of electrons and is different
from the one shown in the main spectrum.
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4.1.2. STS
Fig. 4.1.4 shows differential conductance spectra measured on Bi2Te3 which bear

no strong variations. These dI/dU tunneling spectra were measured as spectroscopy
maps on the surface grids across the defects as well. For example, in the spectra
taken on the three-fold symmetric defect (which is not the dominant one), as shown
in Fig. 4.1.4, one would not see detectable differences in the STS even with the
spectroscopy resolution of 3 mV.

Fig. 4.1.4 a) Topography of a 5 nm × 5 nm area where the STS map on a 10×10 grid
was measured on Bi2Te3 across one of the non-dominant three-fold symmetric defects.
Ubias = 400 mV, IT = 350 pA. b) Tunneling spectra measured along the blue arrow shown
in a) with their waterfall representation in the inset.

However, on larger lengthscales as, for example, on a 30 nm × 30 nm surface
area with the most abundant defects shown in Fig. 4.1.5 one can see more variations,
which may be a signature of the possible quasiparticle interference. Therefore, it is
especially important to investigate these changes by measuring the dI/dU maps at
different energies.

It is worth to note that the tip-induced band bending phenomenon which was
observed in semiconductors and insulators and even in topological insulators as,
for example, Bi2Se3 [179], was not found in the measured samples. To illustrate,
the Fig. 4.1.6 depicts an example of the dI/dU spectra measured at different bias
voltages of 100 mV and −350 mV and −400 mV at the same location which lie on
top of each other.
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Fig. 4.1.5 a) Surface topography of the area where the STS map on a 10×10 grid was
measured across the dominant defects at Ubias = 300 mV, IT = 500 pA. b) dI/dU spectra
measured along the blue arrow shown in a) with their waterfall representation in the inset.

Fig. 4.1.6 dI/dU spectra measured at the same surface position at 100 mV, −350 mV
and −400 mV bias voltages with IT = 1 nA.

4.1.3. dI/dU maps in zero-field
The most important data acquired in this work are the differential conductance

maps measured in a relatively large energy range from −800 meV to 500 meV with
respect to the Fermi level. The main goal of this experiment was to track the
evolution of the FFT patterns of the dI/dU maps (FT-QPI) as a function of the
energy (i.e. applied bias voltage). These FT-QPI patterns (see section 3.3) arise
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from scattering of electrons on surface step edges or defects (the latter case was
realized in the experiment) and, thus, provide information on the electronic band
structure of the sample. In general, these measurements require both rather wide
fields of view (> 40 nm for 512×512 pixels images) to gain a sufficient resolution in
the momentum space and a close to perfect stability of the STM during the whole
experiment.

The dI/dU maps were measured on the same surface spot of 80 nm × 80 nm
size (see Fig. 4.1.7a) consisting of many defects which are conceivably identified as
BiTe,3 or VTe,3 (see section 4.1.1) in accordance with Fig. 4.1.1 and Fig. 4.1.2. The
tunneling current set point was deliberately set to a new value at each next energy
to keep the tunneling resistance (Ubias/IT ) constant for 19 values of the bias voltage
between 300 mV and −600 mV. In other words, since reducing the bias voltage makes
the tip-sample distance smaller, the tunneling current set point can be decreased
at the same time to lift the tip further away from the sample and avoid the set
point effect. The dI/dU maps shown in Fig. 4.1.8 demonstrate nicely an energy
dependent spatial modulation of the differential conductance with a period of (2−4)
nm which is a hallmark of the QPI. In particular, one can clearly see a continuous
increase in the modulation period in real space with reducing the bias voltage from
300 mV down to −70 mV. At lower energies the patterns become more blurred, and
one has to rely on the FT-QPI data in order to infer the energy dependence (see
Fig. 4.1.9). For better illustration, these data are plotted in Fig. 4.1.10 as a stack,
where the linear dispersion is shown by the red dotted lines with a node at about
−355 mV. The image size of 80 nm × 80 nm allows to observe both the QPI in the
differential conductance maps and the Bragg peaks as shown in Fig. 4.1.7b which is
important for the correct determination of the QPI scattering vectors directions and
lengths. The maps were measured on different samples at different conditions and
gave nearly identical FT-QPI patterns (see section 4.1.4 and Appendix A) which
unambiguosly indicates reliability and reproducibility of the obtained data.

Fig. 4.1.7 a) Topography of the surface area where dI/dU maps were measured,
Ubias = −120 mV, IT = 400 pA with its FFT in b).
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Fig. 4.1.8 Series of the dI/dU maps measured at the energies from 300 mV to −600 mV
on the same surface area. The scalebar is the same for each of the maps.

The corresponding Fourier transforms of the data shown in Fig. 4.1.8 are plotted
in Fig. 4.1.9. All the FT-QPI patterns were symmetrized according to the six-fold
symmetric crystal structure in order to achieve better signal-to-noise ratio (see more
details in Appendix B).
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Fig. 4.1.9 Series of the symmetrized FT-QPI patterns measured at the bias voltages from
300 mV to −600 mV on the same surface area. The lattice constant value a = 4.7 Å as
mentioned in section 4.1.1.
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Fig. 4.1.10 Stack of the FT-QPI patterns measured at B = 0 T. High-symmetry directions
Γ-M and Γ-K are labelled as qГM and qГK, respectively.
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At first glance, the FT-QPI data obtained at 19 bias voltages in the range from
−600 mV to 300 mV, which is presented in Fig. 4.1.9, can be classified into 5 types ac-
cording to characteristic observed structures in the FFT as illustrated in Fig. 4.1.11.

Fig. 4.1.11 a)−e) dI/dU maps (top) with corresponding FT-QPI patterns (bottom) at
specific energies of 300 mV, 50 mV, −170 mV, −370 mV, −470 mV, respectively, measured
on the surface shown in Fig. 4.1.7. High-symmetry crystallographic directions are labelled
in a). Two distinguishable sets of scattering vectors qSS and qSB are marked by magenta
and yellow ellipses, respectively. The in-plane lattice constant value a was derived from
topographic data.

To be more precise, the maps shown at high bias voltages from 300 mV to 150
mV as in Fig. 4.1.11a exhibit six arc-shaped structures of high intensity in the
Γ-M crystallographic direction, characteristic for a Dirac surface state in Bi2Te3
and denoted as qSS in Fig. 4.1.11a. Note that the Bragg peaks are not visible in
Fig. 4.1.11 and further in this chapter since they appear at significantly larger values
of the scattering vector, so the presented FFTs were obtained by cutting edges from
the raw FFTs (the same dimensions for each energy) for better demonstration of the
FT-QPI features (see an example of raw FT-QPI patterns in Appendix A). Apart
from that, another six-fold symmetric structure of weaker intensity (labelled as qSB
in Fig. 4.1.11a) collinear with the abovementioned one is clearly visible in Fig. 4.1.11a
but does not exist in Fig. 4.1.11b, i.e. at lower energies. At those energies in the
range [−70; 100] mV the FT-QPI patterns only consist of the spots that can be
assigned to qSS. With decreasing bias voltage the scattering vectors shorten (see
Figs. 4.1.9 and 4.1.10) and become more clearly defined and sharper than those
at higher energies. Going further to lower bias voltages from −120 mV down to
−320 mV the scattering vector experiences a splitting into two distinct vectors of
nearly the same intensities (see Fig. 4.1.11c). In this energy range the dispersion
becomes weaker, i.e., the QPI peak position becomes nearly energy independent (see
Fig. 4.1.11). At the bias voltage of −370 mV the scattering vector is again single, not
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splitted (see Fig. 4.1.11d), while at further lower bias voltages the FT-QPI pattern
becomes less clear with significantly weaker intensity (see Fig. 4.1.11e).

All the FT-QPI patterns in Fig. 4.1.9 reveal an enhanced intensity in the Г-M
direction, while one can notice a less pronounced intensity in the Г-K direction as
well (for more details see the next section 4.1.4 and Appendix A).

4.1.4. QPI analysis of the zero-field dI/dU maps
For the analysis of the FT-QPI data traces along the Г-M directions (where

the intensity is the highest) were taken for each of the used bias voltages, these
intensity profiles are plotted in Fig. 4.1.12c. For example, at Ubias = 300 mV in
Fig. 4.1.12a there are 2 dominant scattering vectors corresponding to 2 kinds of
the intensity peaks in Fig. 4.1.12b with the peak positions labelled as qSS and qSB.
The central peak arises due to the inevitable constant component of the tunneling
current and low-frequency noise due to mechanical vibrations of the STM, thus, it
is not relevant. The background of the intensity profiles including the central peak
was subtracted as shown in Fig. 4.1.12b for Ubias = 300 mV. Gaussian fits of the
peaks (see Fig. 4.1.12b) of the curves plotted in Fig. 4.1.12c allowed to extract the
values of qSS and qSB which are displayed on the intensity graph in Fig. 4.1.12d
as circles: black – the outer, dominant vector, red and magenta – 2 components of
the double scattering vector. The black circles were fitted by the black straight line
resembling the Dirac cone of the surface states measured by ARPES in the same
Г-M direction on Bi2Te3 (see Fig. 2.1.9). The observed linear dispersion confirms
the relativistic Dirac nature of the surface state in Bi2Te3.

The described analysis was made for all the used energies, and the extracted data
are plotted on the two-dimensional graph in Fig. 4.1.13 where as in Fig. 4.1.12 the
black squares correspond to the main vector, red and blue squares – double vector,
green squares are the inner peaks in the FFT existing only at high energies with no
certain energy dispersion which can be associated with the bulk scattering, as will
be discussed further below. The most remarkable result is the clear linear energy
dispersion which starts from 300 mV, at least, and breaks down below 100 mV. In
order to make a linear fit of the energy dispersive QPI scattering vector qSS, the
energy range from 100 mV to 300 mV was chosen, at which the Dirac velocity derived
from the slope of the linear fit of the energy dispersion, as shown in Fig. 4.1.13,
vD = (4.3 ± 0.3) × 105 m/s is in a good agreement with the existing data on this
compound [8,50,52,56,57]. The extrapolation of the linear fit of qSS at bias voltages
from 300 mV to 100 mV allows to estimate the Dirac point energy to −355 meV at
which q = 0 (see Fig. 4.1.13).

The lengths of the dominant scattering vectors extracted from the FT-QPI data
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on 5 measured samples and, in addition, on different surface areas of the same
samples are plotted in Fig. 4.1.14. From that one can clearly argue that the data
are sample independent within the batch under investigation. The linear fit for the
dominant scattering vector for 5 samples is marked by the red line resulting in the
Dirac point energy of −360 ± 40 mV and vD = (4.3 ± 0.4) × 105 m/s. The vertical
black line indicates the non-dispersive scattering mode with the average q ≈ 0.21
1/Å.

Fig. 4.1.12 a) QPI pattern obtained at Ubias = 300 mV. b) Intensity profile of the QPI
pattern in a) taken along the Г-M direction marked with the red arrow in a). qSS and qSB
are the peak positions corresponding to the outer and the inner scattering vectors in a).
Gaussian fitting of the observed peaks was performed after subtraction of the background
with the central peak. c) QPI intensity profiles along the Г-M direction at bias voltages
from 300 mV down to −600 mV. d) Intensity graph of the QPI energy dispersion obtained
from c). The data extracted from Gaussian fit of the curves in c) are plotted as circles:
black – the outer, dominant vector qSS , red and magenta – double scattering vector. The
black line is the linear fit made for biases above 100 mV. The inner scattering vector qSB
is indicated by the black ellipse.
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Fig. 4.1.13 QPI energy dispersion in the Г-M direction measured at B = 0 T. The data
corresponding to the main qSS , the inner qSB and the double scattering vectors are plotted
in black, green and red/blue colours, respectively. The black line shows the linear fit to
the data points in the bias voltage range from 300 meV to 100 meV.

Fig. 4.1.14 QPI energy dispersion in the Г-M direction obtained at B = 0 T on different
samples and different surface areas on the same samples.
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For further analysis of the experimental FT-QPI data one needs to make their
comparison with the known surface band structure data on Bi2Te3 [8, 46, 47, 53].
For that one should consider the energy evolution of the constant-energy contours
in this material which were measured by ARPES [8, 53] along with the electronic
band structure calculations [46, 47]. According to those studies the circular shape
of the constant-energy contour transforms into a hexagon which further becomes a
concave hexagram like a snowflake due to the hexagonal warping effect in Bi2Te3
upon increasing the energy starting from the Dirac point. Since the surface state in
this material is protected by time-reversal symmetry from backscattering one would
expect to see rather faint QPI signals. However, different scattering channels can
be opened up due to the hexagonal warping of the constant-energy contours of the
surface state [47].

A simplified first-order approach to model the FT-QPI patterns is provided by
joint density of states (JDOS) calculations for the surface electrons (and bulk elec-
trons as well in the present work) based on the corresponding band structure data.
According to this method, which was first proposed for topological insulators by
P. Roushan et al. [42, 180], one should consider JDOS which is a function of the
momentum difference q (i.e. scattering vector) between initial and final scattering
states on the same constant-energy contour:

JDOS(q) =
∫
I(k)I(k + q)d2k, (4.1.1)

where I(k) is the momentum dependent DOS, which can e.g., be approximated
from ARPES intensity data (see Fig. 4.1.15a). Therefore, one needs to compute the
autocorrelation of the DOS in the initial and final states integrated over the first
Brillouin zone. This calculation does not consider the spin selection rules and allows
scattering in any directions with several scattering vectors as shown in Fig. 4.1.15b
which was not observed in the experimental QPI data (see Fig. 4.1.9). In order
to take into account the helical in-plane [180] and the warping induced out-of-plane
spin texture [34,46,48], the spin-dependent scattering matrix element T (q, k) (which
characterizes the scattering probability as a function of the scattering vector and
spins of the initial and final states) can be introduced as follows:

T (q, k) ∝ (1 + cos(θf − θi)) + a2(1 + cos(3(θf − θi))), (4.1.2)

where θf and θi are the angles that define kf and ki in reciprocal space, a is the
maximal value of the ratio between the out-of-plane and the in-plane spin compo-
nents [34,46,48]. From this one can calculate spin-dependent scattering probability
patterns:
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SSP (q) =
∫
V (k)I(k)T (q, k)V (k + q)I(k + q)d2k. (4.1.3)

It is clear from the equations 4.1.2 and 4.1.3 that scattering with opposite spins
is effectively cancelled. The spin-selective scattering probability mainly results in
the suppressed intensity for the backscattering processes which appear as the outer
structure in the JDOS patterns. This is remarkably demonstrated in Fig. 4.1.15,
where the spin-dependent scattering probability in Fig. 4.1.15c reveals significantly
weaker backscattering intensity than in the corresponding JDOS calculations plotted
in Fig. 4.1.15b. Additionally, the three-fold symmetric scattering potential V [52,
55,88] related to the dominant defect type (see section 4.1.1) was also utilized in the
current work. More detailed information concerning the implementation of the spin
texture and the scattering potential can be found in Appendix A. The resulting spin-
dependent scattering probability maps can be directly compared to the experimental
FT-QPI patterns.

Fig. 4.1.15 a) Idealized sketch of the constant-energy contour in the shape of a warped
hexagon. Scattering vector q is a difference between the final (scattered) and the initial
states with wavevectors kf and ki. b) JDOS pattern in the q-space obtained from the
autocorrelation of the constant-energy contour plotted in a). c) Spin-dependent scattering
probability pattern calculated for the constant-energy contour in a). Red arrows highlight
the suppression of the backscattering. The high-symmetry directions are marked for all
the presented figures.

To make the analysis more clear, different constant-energy contours in the k-
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space for Bi2Te3 were approximately derived from the ARPES data [8, 53]. The
schematic illustration of the scattering geometry for the constant-energy contour
of the warped hexagonal shape in Bi2Te3 is shown in Fig. 4.1.16, where the QPI
is mainly determined by six scattering vectors q1−q6 connecting points on the
constant-energy contour with extremal curvatures, according to [49]. Coming back
to Fig. 4.1.15, the outer contour in Fig. 4.1.15b stems from backscattering with
vectors q1, q4 (there is also a contribution of the vector q6 which is parallel to q4),
since all these vectors are the longest scattering vectors in this geometry. The mid-
dle contour in Fig. 4.1.15b corresponds to the scattering between two neighbouring
sides of the warped hexagon and has maximal intensities at the vectors q2 and q5

(both are in the Γ-M direction). The vectors q3 and q6 contribute to the JDOS
pattern as well (both are in the Γ-K direction), and their weight can be enhanced
by making the DOS distribution on the constant-energy contour more abrupt than
in Fig. 4.1.15a. In the spin-dependent scattering probability pattern plotted in
Fig. 4.1.15c, as mentioned above, the outer structure related to the backscattering
(q1 and q4) is suppressed due to the spin-momentum locking. In addition, the vector
q3 becomes almost invisible due to the three-fold symmetric scattering potential and
the out-of-plane spin texture. Thus, only q2 and q5 scattering vectors are dominant
in the spin-dependent scattering probability pattern.

Fig. 4.1.16 Scattering geometry for the hexagonally warped surface state constant-energy
contour in Bi2Te3. The main scattering vectors q1−q6 connect points of the extremal
curvature on the constant-energy contour.

In order to implement spin-dependent scattering probability calculations, one
should note that the DOS distribution on the constant-energy contours could not
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be unambiguously derived from the ARPES data in [8, 53] (see also Fig. 4.1.17 for
surface states). For this reason, the DOS variation on each of the constant-energy
contours was qualitatively modeled with a Gaussian distribution, considering the
DOS distribution experimentally determined by ARPES. Thereby, the width of the
gaussians was chosen as to obtain reasonable simulation results. For more details
see Appendix A and one example of the program code with a brief description in
Appendix C.

Fig. 4.1.17 Constant-energy contours of the surface state band in Bi2Te3 measured by
ARPES. Strength of DOS increases from blue (no DOS) to dark red (strong contribution
to DOS). Both horizontal and vertical axes are in units of 1/Å, the edge of the hexagonal
Brillouin zone in the Г-M direction is at ∼0.8 1/Å. White arrows point to the position of
maximum in DOS (note six-fold symmetry). Adapted from [53].

Since the electronic band structure of Bi2Te3 is known at large [8,52,55], the aim
of the present work is to interpret the QPI data based on that and find some addi-
tional details in the band structure of the measured samples. As shown in Fig. 4.1.18,
the comparison of the experimental data with the spin-dependent scattering proba-
bility calculations begins with the case when there is only surface constant-energy
contour (in the bulk energy gap range) which is distorted due to the strong hexag-
onal warping. According to the ARPES data, the maximal DOS is on the warped
hexagon, in the Γ-K direction [8, 53]. This leads to the six-fold symmetric spin-
dependent scattering probability pattern in Fig. 4.1.18b, where the outer structure
arising from backscattering (marked as q1, q4) is strongly weakened. The arc-shaped
six-fold symmetric intensity spots in the Γ-M direction in Fig. 4.1.18b are in a rea-
sonable agreement with the QPI data measured at Ubias = [−70; 100] mV shown in
Fig. 4.1.18c, thus, they are related to q5 or q2 scattering processes forming the qSS

74



CHAPTER 4. EXPERIMENTAL RESULTS

mentioned above. However, it is difficult to disentangle which of those vectors (q5

or q2) dominates. On the one hand, according to [42, 180], the scattering matrix
element for q5 is three times larger than that for q2, which is favorable for q5 to
be the dominant scattering vector. On the other hand, q2 connects points with
the maximal DOS, and, in addition, the out-of-plane spin component enhances the
weight of q2 with respect to q5 [46]. For these reasons, the observed six-fold sym-
metric pattern can not be unambiguosly associated with one of the two vectors q5 or
q2, but rather with their combination dubbed qSS. It is important to note that the
QPI simulation result exhibits a flower-like shaped pattern in the Γ-M direction at
scattering vectors shorter than q5 (see Fig. 4.1.18b and Figs. 4.1.15b,c). The origin
of this pattern comes from scattering within a single arc on the hexagonally warped
constant-energy contour, thus, it cannot be totally suppressed. However, by cal-
culating the spin-dependent scattering probability with optimized resolution in the
q-space, leading to the intensity suppression at its lobes and intensity enhancement
at its center, the flower-like pattern can become consistent with the experimental
data presented in Fig. 4.1.18c.

Fig. 4.1.18 a), d) Constant-energy contours considered for different energy ranges accord-
ing to the ARPES data [8, 53]. b), e) Spin-dependent scattering probability calculations
corresponding to the constant-energy contours in a), d), respectively. c), f) QPI patterns
measured in the current work with the energy ranges indicated on top of each figure. The
high-symmetry directions and the scalebars are marked for all the presented figures. The
left and the right colorbars correspond to the data in the two columns on the left side and
the right column, respectively.
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At higher energies with respect to the Dirac point, from 150 meV to 300 meV, the
experimental FT-QPI patterns cannot be interpreted by the surface state constant-
energy contour alone (see more details in Appendix A). For this reason, the bulk
conduction band was considered in the QPI simulation as a circular continuum cen-
tered at the Γ-point with the DOS smoothly decaying away from Γ and extending
in the Γ-M direction (see Fig. 4.1.18d). In the experimental QPI data presented
in Fig. 4.1.18f, the arc-shaped structures qSS appear slightly less well defined than
those at lower energies in Fig. 4.1.18c. This is in a good agreement with the spin-
dependent scattering probability calculations involving bulk states (see Fig. 4.1.18e).
Apart from that, in the considered energy range the QPI shown in Fig. 4.1.18f ex-
hibits an enhanced non-dispersive intensity in the Γ-M direction at scattering vec-
tors even shorter than qSS (the inner ring-like structure). Therefore, the origin of
these peaks can not be explained in terms of only surface state contributions to the
constant-energy contour and comes from scattering involving bulk states. In partic-
ular, the inner ring-like structure qSB originates from the bulk-to-surface scattering
in the bulk conduction band (see Appendix A for more details). This surface-bulk
scattering scenario was previously proposed to interpret the experimental QPI data
of Bi2Se3 [181].

Unlike the linear energy dispersion of the Dirac surface states, the dispersion of
the QPI features in the experimental data acquired in the present work deviates from
the linear one below 50 mV and cannot be observed below −70 mV (see Fig. 4.1.13).
Due to the inconsistency between the linearly dispersing surface state bands and
the experimentally observed lack of dispersion in the QPI data, bulk (in particu-
lar, helical so-called bulk-surface hybridized [52,182,183]) states can be involved in
scattering processes for energies below −70 mV, too. Within this scenario, the two
observed non-dispersive scattering modes (above 100 mV and below −70 mV) allow
to roughly estimate the bulk energy gap range in the measured samples as
[−70; 100] ± 25 mV, and the gap size is consistent with the literature data on
Bi2Te3 [8]).

As mentioned before, the QPI data measured in the current work at
Ubias = [−320; −120] mV (see Fig. 4.1.9) exhibit double intensity peaks in the Γ-M
direction at q ≈ 0.16 1/Å and 0.22 1/Å. In order to interpret this experimental
finding, the surface constant-energy contour in the bulk valence band energy regime
(so-called bulk-surface hybridized states) and the DOS distribution can be mod-
eled according to the known surface band structure of Bi2Te3 [8, 52, 53, 55] (see
Fig. 4.1.19a). Apart from the non-warped Dirac cone, the constant-energy contour
consists of six-fold symmetrical pockets of elliptical shape extending in the Γ-M di-
rection and representing the bulk-surface hybridized states. The maximal DOS is
set in the Γ-M direction for all the parts of the constant-energy contour, and the
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spin texture is modeled according to [34]. The calculation of the spin-dependent
scattering probability results in two scattering peaks in the Γ-M direction consis-
tent with the experimental data acquired in the present work in the corresponding
energy range. Fig. 4.1.19b illustrates the corresponding spin-dependent scattering
probability pattern with two six-fold symmetric structures in the Γ-M direction,
resembling the experimental QPI patterns shown in Fig. 4.1.19c. However, there
is a strong difference in the shape of the abovementioned six-fold symmetric struc-
tures (see Figs. 4.1.19b and 4.1.19c), and, in the model, they exhibit an energy
dispersion, in contrast to the experimental data measured in this work. Therefore,
either a different dispersion of the bulk-surface hybridized states as described in
Ref. 52 or another, unknown, mechanism behind the non-dispersive modes should
be considered1.

Fig. 4.1.19 a) Constant-energy contour for the Dirac surface state shown as the circle
and the surface state band merging with the bulk valence band as six-fold symmetric
elliptically shaped pockets. All the states are spin-polarized, the spin texture is represented
by magenta arrows. Maximal DOS is set in the Γ-M direction for all the parts of the
constant-energy contour. Two dominant scattering vectors are indicated by red and blue
arrows. b) Spin-dependent scattering probability pattern for the constant-energy contour
plotted in a). Two scattering peaks coming from scattering processes shown in a) are
denoted by red and blue arrows. c) Exemplary FT-QPI pattern exhibiting the double
structure measured at Ubias = −170 mV.

At yet lower energies, in particular, at Ubias = −370 mV, the splitting of the
scattering vector vanishes, and a single scattering vector is detected in the Г-M
direction (see Fig. 4.1.11d). In the scenario presented for Ubias = [−320; −120] mV
which involves the bulk-surface hybridized states, this indicates an accidental match
of the length of the involved scattering vectors.

Finally, the very faint FT-QPI patterns observed at Ubias = [−600; −420] mV
exhibiting a star-like shape in the Г-M direction can be interpreted by scattering

1A double QPI structure in the Γ-M direction at different energies has also been recently
reported in Ref. 55. It was observed there at a completely different energy range, where a significant
warping of the Dirac constant-energy contour is known, and the splitting naturally results from
that warping. Note that in the energy range considered in the present work, there is practically
no warping, according to ARPES [8,53]. Thus, the splitting observed in the current work must be
of different origin.
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within the bulk valence band at the energies significantly below the Dirac point.
To further prove the absence of backscattering in the presented experimental QPI

data one has to note that backscattering would imply that there should be at least 2
structures in the FT-QPI pattern related to backscattering itself and the scattering
with smaller vectors inside the constant-energy contour at all the energies. However,
the STM data in this work reveal only one dominant scattering vector at most of
the energies. Furthermore, as Fig. 4.1.20 illustrates, the energy dispersion obtained
from the QPI can be plotted with the ARPES extracted dispersions from [8] for
all possible scattering processes in the Γ-M direction which are q2, q4, q5 in the
notation of Fig. 4.1.16. The energy scale is set to start from the Dirac point for
both QPI and ARPES data. In particular, q4, which is the backscattering vector,
has values significantly larger than that measured by STM, so it is not expected to
appear in the QPI data. At the same time, the one can not unambiguously claim
which of the QPI scattering vectors q2 or q5 dominates as was mentioned above as
well.

Fig. 4.1.20 a) QPI and ARPES energy dispersion for Г-M direction. The energies are
counted from the Dirac point for both datasets.

It is also important to note that, according to the ARPES data [8,53] for Bi2Te3,
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when the constant-energy contour is evolving from the circle to the warped hexagon,
it shows a hexagonal shape at some energy as illustrated in Fig. 4.1.21a. However,
the spin-dependent scattering probability calculated for this constant-energy con-
tour gives the pattern plotted in Fig. 4.1.21b which looks totally different from any
FT-QPI patterns observed in the present work. Therefore, given that the dI/dU
maps were measured with 50 mV step, it is very likely, that the FT-QPI pattern
corresponding to the hexagonal shape of the constant-energy contour was missed in
the experiment and was not detected.

Fig. 4.1.21 a) Constant-energy contour in the shape of the hexagon. b) Spin-dependent
scattering probability calculation for the constant-energy contour shown in a).

Comparing the energy scales from the QPI data acquired in the present work
with the former QPI and ARPES studies in Bi2Te3 [8, 50, 52, 53, 55–57], it is clear
that there is a significant difference in the bulk energy gap location with respect to
the Dirac point which are separated by around 250 meV (counting distance between
the Dirac point and the top of the bulk valence band) in the current work unlike
100−200 meV in the literature. The reason for this discrepancy is unknown. This
might be caused by the material disorder which may result in a modification of
the electronic band structure of the compound. Note that the altered Dirac cone
dispersion with respect to the bulk states naturally implies different bulk-surface
hybridized states as commonly considered [52] (see discussion of the non-dispersive
double QPI structure above).

4.1.5. Magnetic field measurements
The next aim was to measure the dI/dU maps in a magnetic field provided by

the magnet cryostat (the maximal possible field B = 15 T) in order to compare the

79



CHAPTER 4. EXPERIMENTAL RESULTS

QPI data measured in the zero field, which were discussed in sections 4.1.3 and 4.1.4,
with the in-field QPI features caused by the presence of the magnetic field, which
could break the time-reversal symmetry and the topological protection of the surface
states. There are no differential conductance maps measured in a magnetic field in
Bi2Te3 available in the literature to date which encourages this kind of experiment.
Additionally, the energy quantization of the Dirac surface electrons with possible
occurrence of the Landau levels was explored by STS which could help with a more
precise estimation of the Dirac point location.

The dI/dU maps in the magnetic field of 12 T were measured on the same 60
nm × 60 nm area at 9 bias voltages from 300 mV to −50 mV keeping the tunneling
resistance constant at each bias voltage and the same as in the zero-field measure-
ments. The samples used for the in-field measurements were different from that
where the zero-field data were obtained. Figs. 4.1.22a,c show the topography of the
scanning area at Ubias = 150 mV at B = 12 T with its Fourier transform which
look qualitatively the same as the data measured at 0 T (see section 4.1.3). The
corresponding dI/dU map acquired at Ubias = 150 mV is depicted in Fig. 4.1.22b. In
general, the dI/dU maps measured in this experiment under the magnetic field (see
all the real space data in Fig. 4.1.23) turned out to be of somewhat reduced quality
compared to the zero-field dI/dU maps in section 4.1.3 which could be explained by
not only different samples and tips but also by the lower momentum resolution (i.e.
smaller scanning area size) as well as a stronger experimental noise in the in-field
measurements. However, it is still possible to define the most pronounced features
in the FFT patterns of the dI/dU maps as shown in Fig. 4.1.22d which represents
a zoomed-in view of the hexagonally symmetrized FFT of the map in Fig. 4.1.22c
following the same procedure for scattering vectors extraction as described in sec-
tion 4.1.4. The Bragg peaks in Fig. 4.1.22c are clearly visible and, hence, allow to
match the orientation of the QPI intensity peaks with the crystallographic direc-
tions. The six-fold symmetric scattering vector pointing in the same Γ-M direction
with the scattering vectors in the zero-field maps exhibits a continuous decrease
upon the bias voltage decreases. This scattering vector exists at all the data mea-
sured with the bias voltage varying from 300 mV to −50 mV (only at 20 mV it is
hardly visible) at B = 12 T. It was previously observed in the zero-field data dis-
cussed in sections 4.1.3 and 4.1.4 and can be assigned to qSS, i.e. some combination
of scattering vectors q2 and q5.
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Fig. 4.1.22 Example of the dI/dU map measured at Ubias = 150 mV at B = 12 T: a)
60 nm × 60 nm topography scan with its FFT in c); b) dI/dU map of the area shown in
a) with its symmetrized and zoomed-in FT-QPI pattern in d). High-symmetry directions
Γ-M and Γ-K are indicated by red dashed lines in d).
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Fig. 4.1.23 Series of the dI/dU maps measured at B = 12 T and B = 15 T at the energies
from 300 mV to −50 mV at B = 12 T and at −220 mV and −370 mV at B = 15 T. The
scalebar is the same for each of the maps at B = 12 T. The scalebar for the map measured
at −370 mV (shown in the right-bottom corner) is the same as that at −220 mV.

All the FT-QPI patterns measured at B = 12 T are presented in Fig. 4.1.24 in
comparison with the corresponding data obtained at B = 0 T. One can notice slight
differences in the FT-QPI intensity distributions which could be caused by different
tunneling junctions in the zero-field and the in-field experiments. Apart from the
dominant scattering vector, another scattering channel in the magnetic field with a
vector even shorter than q5 in the Γ-M direction appears at Ubias = 300 mV, 250
mV and 200 mV (see Fig. 4.1.24). This vector demonstrates a different but unclear
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dispersion in comparison with that at B = 0 T as shown in Fig. 4.1.24. It was
already found in the zero-field data, where this scattering vector also extends down
to 150 mV and is supposed to be associated with the bulk-surface scattering mode
(see section 4.1.4). Again, as in the zero-field data at −50 mV and −20 mV, the
QPI peaks are more distinct than those observed at higher energies implying the
bulk energy gap, at least, at the bias voltages of −50 mV, −20 mV.

The linear fit of the energy dispersion of the dominant scattering vector (see
Fig. 4.1.25) gives the estimation of the Dirac point situated at Ubias = (−384 ± 37)

mV with the Dirac velocity vD = (4.5± 0.3)×105 m/s which are both consistent with
the corresponding values at B = 0 T being within the error of the measurements.
No backscattering peaks were observed in the QPI data which may reinforce the
assumption that even the external field of B = 12 T was not sufficient to lift the
topological protection of the surface state. Overall, no significant changes in the
FT-QPI patterns at B = 12 T with respect to that at B = 0 T were found as can
be seen in Fig. 4.1.24. Note that the Zeeman interaction at B = 15 T is around
0.87 meV which is significantly weaker than the spin-orbit interaction in Bi2Te3 (the
SOC constant λ = 1.25 eV for Bi and 0.49 eV for Te, respectively [6, 184]). Thus,
only a very small effect ∼0.001 of the external field could be expected. Besides that,
the Zeeman energy at B = 15 T is even smaller than the energy resolution of the
STM at T = (6−7) K which further complicates the search for signs of the influence
of the external magnetic field on the STM experiment.
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Fig. 4.1.24 Series of the symmetrized FT-QPI patterns measured at the energies from
300 mV to −50 mV at B = 12 T and from 300 mV to −70 mV at B = 0 T. The outer
intensity spots correspond to the vector qSS for each of the patterns. The inner intensity
spot (qSB) is visible only at 300 mV, 250 mV and 200 mV which is indicated by the yellow
ellipse. High-symmetry directions and the colorbar are the same for each of the patterns.
The lattice constant value a = 4.7 Å as mentioned in section 4.1.1.
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Fig. 4.1.25 QPI energy dispersion measured at B = 12 T.

The dI/dU maps were also measured at the maximal achievable field of 15 T at
the bias voltages of −220 mV and −370 mV. The corresponding FT-QPI patterns are
presented in Fig. 4.1.26 with the data measured at B = 0 T at respective energies.
However, even with a better momentum resolution provided by 200 nm × 200 nm
surface areas which were different in each of the presented data on the same sample,
no substantial differences with respect to the zero-field data at those energies were
found. In particular, the symmetrized FT-QPI patterns obtained at Ubias = −220

mV and Ubias = −370 mV (see Fig. 4.1.26) demonstrate six-fold symmetric peaks
that split into doublets and single (not splitted) peaks, respectively, in agreement
with the corresponding zero-field data. The only difference is that an inner structure
appears in the 15 T FT-QPI pattern (see Fig. 4.1.26) which could be related to the
bulk scattering processes in the valence band. However, this is not a unique FT-
QPI pattern at Ubias = −370 mV since it was found to be totally different in the
other measurement at B = 15 T (see Fig. 4.1.26), where, in particular, the QPI
peaks become splitted into doublets with no visible other scattering channels. This
ambiguous appearance of the FT-QPI patterns at −370 mV which were measured on
the same surface but at different locations might indicate possible spatial variations
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of the Dirac point energy. One can also not rule out that the more noisy FT-QPI
pattern at this energy, where only one scattering vector was found, smears out two
scattering vectors making them appear as a single vector. Nevertheless, there is
not enough data measured at B = 15 T for making strict conclusions. The energy
dispersion E(q) obtained at B = 15 T is presented in Fig. 4.1.27 and is also shown
in Fig. 4.1.28 along with the QPI dispersion measured at B = 12 T and B = 0 T.

Fig. 4.1.26 Symmetrized FT-QPI patterns measured at Ubias = −220 mV and
Ubias = −370 mV at B = 15 T in comparison with the data measured at B = 0 T at the
same energies. Two different FT-QPI patterns at Ubias = −370 mV at B = 15 T were
measured on the same cleavage but at different surface areas. The colorbar is the same for
each of the patterns.
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Fig. 4.1.27 QPI energy dispersion measured at B = 15 T.

Fig. 4.1.28 QPI energy dispersion measured at B = 0 T, 12 T and 15 T.

Apart from that, since the investigated surface of Bi2Te3 manifests itself as a two-
dimensional electron system which in the presence of a perpendicular magnetic field
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experiences the quantization of the energy spectrum with the occurrence of Landau
levels which allow to determine the Dirac point energy, the tunneling spectra of
Bi2Te3 were also measured in the field B = 15 T. The quantized energy spectrum
of the massless Dirac fermions can be derived from both the semiclassical approach
and the relativistic Dirac equation resulting in the following expression [185]:

En = ED + sgn(n)vD
√
2eℏ|n|B, (4.1.4)

where En is the energy of the nth Landau level (n = 0, ±1, ±2,...), ℏ is the Plank
constant and e is the elementary charge. Therefore, unlike the Landau levels in a
parabolic dispersion two-dimensional electron system, the levels are not equidistant
with En∝

√
|n|B. Besides, the Landau level with n = 0 (E0 = ED) is independent

on the magnetic field B as shown in Fig. 4.1.29, thus, it could be used for a more
precise than the QPI energy dispersion estimation of ED. The Landau levels were
successfully measured by means of STS on various two-dimensional electron sys-
tems [186–192], including the topological insulators as Bi2Se3, Sb2Te3 [179,193,194]
and only on a structurally deformed surface of Bi2Te3 [57]. The latter one further
motivates the search of the Landau levels on the atomically flat surface of Bi2Te3 in
the present work.

Fig. 4.1.29 Landau quantization of the topological surface states obtained by STS in
Bi2Se3. Adapted from [179].

However, as it is clearly seen from the representative dI/dU spectrum measured
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at B = 15 T with 1.2 mV step in Fig. 4.1.30, no signatures of the Landau levels
which are expected to appear as LDOS oscillations at the energies indicated with
dashed lines were found. The presented spectrum was measured at the energies both
below and above ED. Its value along with the Dirac velocity were taken from the
linear fit of the energy dispersion of the QPI peaks at B = 12 T (see Fig. 4.1.25).
The calculated distances between the neighbouring n = 0 and n = 1, n = 1 and
n = 2 Landau levels at B = 15 T are around 61 meV and 25 meV, respectively, which
further decrease with increasing n as illustrated in Fig. 4.1.30. Given that there is
no exact shape of the background, since no spectra at B = 0 T were measured with
the same tip on the same surface, no anomalies found in the in-field spectra point
towards the conclusion that the Landau levels peaks in the in-field spectra could
not be resolved. The most plausible reason of the absence of the Landau levels in
the STS is the intrinsic material disorder mentioned in section 4.1.1 which leads to
broadening of the Landau levels and, less likely, bulk contribution to the spectra and
the experimental rather low signal-to-noise ratio. The former is also supported by
the Landau levels suppression in Bi2Se3 [179] where it occurred at magnetic lengths
comparable with the average distance between the defects. Indeed, the magnetic
length even at the highest possible field B = 15 T lB =

√
ℏ
eB

≈ 6.6 nm exceeds the
average distance between the observed dominant defects in Bi2Te3 which is in the
range of 2−4 nm as found from the topography data (see section 4.1.1).

Fig. 4.1.30 The measured tunneling spectrum at B = 15 T, Ubias = −450 mV, IT = 1.5
nA with the marked positions of the expected Landau levels. The numbers are the Landau
levels numbers n.

89



CHAPTER 4. EXPERIMENTAL RESULTS

4.1.6. Conclusions
Topography measurements on Bi2Te3 single crystals demonstrate atomically cor-

rugated Te-terminated surface with the presence of numerous defects of different
origin generally consistent with the literature data. The XPS data on the used sam-
ples reveals no extrinsic doping and no deviation from the stoichiometry but the
indication of possible material disorder in comparison to former studies performed
on this compound by other groups. The QPI data were taken in a wide energy
range [−600; 300] mV and provide different kinds of the interference patterns which
were interpreted based on the spin-dependent scattering probability and JDOS cal-
culations (for both surface and bulk states) according to the scattering geometry
for each of the considered energy ranges. The linear energy-momentum dispersion
and the absence of the backscattering were clearly demonstrated proving the helical
spin texture of the material. The QPI data allowed to roughly compare the elec-
tronic band structure of the material with its known band structure based on the
experimental and simulated QPI data. In particular, the observed non-dispersive
scattering was detected and associated with the bulk-involved scattering from which
the bulk energy gap range was identified, and its value is consistent with the known
value. The QPI data are not only reliable and reproducible but are of even better
quality than the existing QPI data on Bi2Te3 as evidenced by rather sharp structures
in the FT-QPI patterns even in the presence of the chemical disorder in the material.
QPI data were measured, probably, for the first time in the magnetic field in Bi2Te3.
However, their comparison with the zero-field QPI data shows no substantial differ-
ences in the FT-QPI patterns with the scattering vectors amplitudes showing very
similar linear energy dispersion. No backscattering peaks were found in the FT-QPI
patterns in the magnetic field data, thus, the topological protection of the surface
state survives even at B = 12 T due to the strong spin-orbit coupling in Bi2Te3.
The chemical disorder of the material impedes the observation of the Landau levels
as demonstrated by the STS data measured at the maximal field B = 15 T.
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4.2. MnBi2Te4
All the STM/STS measurements on Mn2Bi2Te4 single crystals presented in this

section were performed at the base temperature of 5 K with the RHK R9 and
Nanonis Specs STM-controllers.

4.2.1. Topography
The topography data shown in Fig. 4.2.1a reveal the typical Te-terminated (since

the topmost layer in the crystal structure of MnBi2Te4 consists of Te-atoms) surface
of 50 nm squared size. Its FFT (see Fig. 4.2.1b) exhibits not only six-fold symmetric
Bragg spots corresponding to the hexagonal crystal lattice (providing the lattice
constant a ≈ 4.3 ± 0.2 Å which is consistent with the literature value of 4.33
Å) but other ordered structures inside which can be better understood from the
zoom-in area of Fig. 4.2.1a (see Fig. 4.2.1c). In particular, the atomic corrugation
is superimposed by an electronic modulation which manifests itself as a weakly
ordered hexagonal structure (superstructure 1, further in the text) in the FFT with
rather broad and blurred spots oriented along the Bragg peaks. The superstructure
1 in the FFT appears at all the bias voltages from −500 mV to 500 mV used in
the experiment (see Fig. 4.2.2) and has a period of approximately double lattice
constant in the real space as can be seen from the topography image in Fig. 4.2.1c
where there are some bright spots separated by around 8 Å on top of the atomic
corrugation. This unusual modulated atomic corrugation is demonstrated on the
representative topographic line profile (see Fig. 4.2.1d) and is larger than that for a
pure atomic corrugation as in the parent compound Bi2Te3 in Fig. 4.1.1, for example.
The peaks with the average period of ∼4.3 Å are distinguished on the right side of
Fig. 4.2.1d and, thus, correspond to the atomic corrugation, while on the left their
period is around 8 Å, nearly the same as found for the superstructure 1 from the
FFT. At the same time, in most of the plotted FFT patterns in Fig. 4.2.2 one
can also find spots of slightly lower intensity in the Γ-K direction compared to the
spots in the Γ-M direction which is collinear with the Bragg peaks. The observed
electronic modulations could be caused by possible strain in the lattice and might
be also associated with a charge (spin) density wave which, however, has never been
reported in the literature on this compound.
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Fig. 4.2.1 a) Topography at Ubias = −100 mV, IT = 100 pA. b) FFT of the image in
a). c) 14 nm x 14 nm zoom-in of the image a). d) Line profile marked with the red arrow
in c), the yellow arrows indicate the characteristic period of the superstructure 1 and the
lattice constant in real space. The superstructure 2 is not resolved in these data.
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Fig. 4.2.2 a)−o) Topography scans (on the left sides) at different bias voltages from −500
mV to 500 mV with corresponding FFTs shown on the right sides. Images a), b), d)−m),
o) were measured on 50 nm x 50 nm areas, while n) and p) correspond to 30 nm x 30 nm
areas and c) was obtained on 80 nm x 80 nm surface spot. The superstructure 1 persists
at each of the plotted images at nearly the same positions as inferred the FFTs. Note
that the resolution of the images d), l), m), o) was not high enough to clearly resolve the
superstructure 1.
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Apart from that, another hexagonal structure (superstructure 2, further in the
text) in the FFT of topography of the 80 nm × 80 nm field of view (i.e. better
momentum resolution compared to Fig. 4.2.1) shown in Fig. 4.2.3 appeared with
a larger period corresponding to the long-wavelength modulation which is less pro-
nounced in Fig. 4.2.1b but it is better seen in the FFT of the dI/dU maps (see
section 4.2.3). It is worth to note that the superstructure 2 can be also found in the
FFTs of Figs. 4.2.2j,k. The superstructure 2 has a period of a few nanometers (could
not be determined with higher precision) which, probably, arises from the distances
between the electronic clouds (areas of bright or dark contrast) in topography.

Fig. 4.2.3 a) Topography at Ubias = −300 mV, IT = 50 pA. b) FFT of the image in
a). Both superstructures 1 and 2 are indicated with white arrows and aligned in the same
direction with the Bragg spots.

According to the recent STM studies of MnBi2Te4 crystals [139–142], the topog-
raphy of this material reveals several kinds of defects, in particular, dark triangular
depressions and, more rarely, bright circular protrusions which were assigned to
Mn/Bi antisites in the second Bi layer and Bi substitution of the topmost Te atoms,
respectively, as, also, observed in the current work (see section 4.1.1) and in the
literature on Bi2Te3 [50, 51]. The representative topographies from [139–142] are
depicted in Fig. 4.2.4. The Bi/Mn antisite defect was also identified in [141] which
appears as bright spot in Fig. 4.2.4. However, according to [140, 142], all those de-
fects are especially pronounced at bias voltages larger than 0.6 V for both polarities
at which there is no data in the present work. On the other hand, at lower bias volt-
ages within ±0.5 V with respect to EF instead of the abovementioned defects, there
are areas of bright and dark contrast (see Figs. 4.2.4b,d) resembling that shown in
Fig. 4.2.1. It is worth to note, that the bright areas in Fig. 4.2.4b were interpreted
in [140] as another kind of defects, presumably, in the Mn layer, inducing resonance
states at the Dirac point energy ED. However, it is difficult to define the bright

94



CHAPTER 4. EXPERIMENTAL RESULTS

clouds as a defect with corresponding chemical species in the data measured in the
present work. The absence of three-fold symmetric defects typical for Bi2Te3 (see
Fig. 2.1.13 and Fig. 4.1.1), the presence of the electronic modulations with almost
bias-independent positions of the superstructure 1, and the Mn origin of the defects
found by other STM studies [139–142] on this compound lead to a speculation that
in the current work the superstructures arise from the structural defects in the Mn-
consisting septuple layers. To be more precise, relatively high influence of randomly
distributed Mn and Bi atoms known as the Mn/Bi antisite disorder reported ubiq-
uitously in the MnBiTe-compounds with the concentration varying from 3 to 17.5
% [11,103,109,115,116,123,139–141,195] may result in such an unusual topography
(superstructures 1 and 2) observed in the present work.

Fig. 4.2.4 a)−d) STM topography images at Ubias = −1.2 V, −0.2 V, −0.8 V, 0.3 V,
from [139–142], respectively. Images a) and c) are taken in the field of view of
30 nm × 30 nm. The scalebars in b) and d) correspond to 7 nm and 4 nm, respectively.
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4.2.2. STS
Spectroscopic data of these crystals were acquired by the standard lock-in tech-

nique with a sinusoidal modulation signal of 2 mV RMS amplitude at a frequency
of 1.111 kHz. For instance, the differential conductance tunneling spectra with the
corresponding I(U) curves averaged over 20 repetitions are presented in Fig. 4.2.5
and were measured with the set point of IT = 100 pA in a voltage range of ±100

mV as well as ±400 mV.

Fig. 4.2.5 a) Topography at Ubias = −100 mV, IT = 100 pA. b), c) I(U) and dI/dU
spectra taken on 7 surface points marked in red color within ±100 mV. d), e) I(U) and
dI/dU spectrum measured within ±400 mV.

The spectra taken from −100 mV to 100 mV on seven different positions on
the surface shown as red circles in Fig. 4.2.5a illustrate a very important finding
in this experiment which is the detection of an energy gap in the dI/dU spectra.
All these spectra show a distinct gap at the bias voltages from −25 mV to 0 mV
which is supported by the zero tunneling current in the same range as shown in
Figs. 4.2.5b,d. It is worth to say that there is a noticeable difference in the spectra
taken on the spots with bright and dark contrast reflecting a strong influence of the
chemical inhomogeneity of the material on its electronic DOS similar to the bulk
disorder in Mn-doped topological insulators [88]. Meanwhile, the spectrum taken at
a larger [−400; 400] mV bias voltage range (see Figs. 4.2.5d,e) shows a small shift
of the gap towards positive bias. One can not argue on the type of charge carriers
doping (which is expected to be of the n-type as reported in [9,117,123,128] with the
Dirac point located at around 300 meV below EF ) since the edges of bulk conduction
and valence bands are not prominent in the tunneling spectra. However, one can
conclude that the samples used in this STM studies are more p-doped than that
used in the ARPES experiments (taking into account the relative position of the
observed energy gap and EF ) even though produced by the same group [9,109,116].
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The comparison of the acquired spectra with the spectra measured by other
groups [139–141] shows no clear agreement but from the comparison of the regions
with the suppressed DOS (see Fig. 4.2.6a) it appears to be an energy band shifts of
the samples used in the current work of around 400 mV with respect to the spectra
from [139, 141] and around 200 mV [140] towards the valence band. This implies
a different charge carriers doping of the samples resulting in the shift of the bulk
energy gap and the Dirac point closer to EF in the measured samples in this work.

Despite the strong discrepancy in the STS data most of the rest spectra (see
Fig. 4.2.6b) measured at the bias voltages ∼[−100; 100] mV (at which the gap was
found) on different samples (4 of them marked with black, red, blue and magenta
colors were obtained on the same cleaving but on different surface areas) with topog-
raphy similar to that plotted in Fig. 4.2.1a show a common feature. In particular, a
dip-like DOS suppression at around EF but not a true gap which could be ascribed
to the spatially inhomogeneous surface magnetic and electronic structures of the
material and will be discussed further. In addition, no systematic changes in the
measured DOS on bright and dark regions were found which does not allow to as-
sociate the electronic clouds in topography with the defects which induce resonance
states near ED as reported in [140].

Fig. 4.2.6 Different examples of the dI/dU spectra taken on the MnBi2Te4 surface. a)
Comparison with the literature. b) Spectra measured on 3 different samples in the current
work. Black, red, blue and magenta were obtained from the same sample (sample 1). IT
was set to the values in the range 150−500 pA. Each of the plotted spectra represents
an average of 140−200 spectra taken at different surface points within 50 nm × 50 nm
investigated surface areas.

It should be pointed out that the tip-induced band bending phenomenon men-
tioned in section 4.1.2 and occurring in some topological insulators as, for example,
in Bi2Se3 [179], most probably, does not appear in the measured samples since there
are no strong deviations between the spectra acquired with different bias voltage set
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point values as illustrated by Fig. 4.2.7. One of these spectra is shown in Fig. 4.2.6a
with the red color. Because of the chosen lower energy resolution in the wide en-
ergy range spectra the dip-like DOS suppression near EF is not as pronounced in
Fig. 4.2.7 as that in Fig. 4.2.6.

Fig. 4.2.7 dI/dU spectra measured at 300 mV and −500 mV bias voltages at IT = 200
pA.

The observed energy gap size is around 25 meV which is one order of magnitude
smaller than the bulk band gap predicted in calculations and measured by ARPES
[9, 111–113, 116, 134, 135]. As an example, Figs. 4.2.8a,b show the band structure
calculations and ARPES measurements, respectively, on MnBi2Te4 with the bulk
gap size of ∼200 meV. One could also assume that the gap observed in the current
work could be related to the charge (spin) density wave coming from possible periodic
lattice distortions. However, until now there are no any evidences of this revealed by
other experimental techniques even measured on the same crystals [9,109,116,148].
Therefore, the gap measured in this work is, apparently, the surface state gap which
width was experimentally found to be in the range (15−90) meV [9, 109, 111, 112,
116, 117, 119, 134, 196–199] and seems to be one of the first manifestation of the
magnetic exchange gap in magnetic topological insulators detected by local STS to
date [200–202].
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Fig. 4.2.8 a) Electronic band structure calculations on the (0001) surface. Regions with
a continuous spectrum correspond to the bulk states. b) ARPES measured band structure
at T = 17 K, hν = 9 eV. Adapted from [9].

For the interpretation of the differenсe in the surface states gap size with respect
to that expected from theoretical calculations one should note that the surface mag-
netism is supposed to be a valid reason of the contradiction in both ARPES and
STM data on this compound. For example, according to the band structure cal-
culations for the out-of-plane A-type antiferromagnetic order which is realized in
the bulk MnBi2Te4 a surface state gap of around 90 meV [9, 112, 142] should ap-
pear, but the other possible surface magnetic structures (spin disorder or, less likely,
G-type antiferromagnetic order – both interlayer and intralayer antiferromagnetic
coupling, A-type antiferromagnetism with in-plane magnetic moments) which have
not been experimentally proved lead to gapless surface states [112,122,137]. There-
fore, the characteristic energy scale of the observed gap of 25 meV implies that
the expected gap [9] is diminished by possible rearrangement of magnetic moments
on the surface, unlike A-type antiferromagnetism in the bulk, with a formation of
surface magnetic domains with parallel or antiparallel directions of magnetization
as proposed in [9, 113, 135]. Moreover, magnetic domains with sizes of hundreds of
nanometers have been experimentally visualized in MnBi2Te4 by cryogenic magnetic
force microscopy [203, 204]. Other considerations might be reasonable as well such
as impurity-induced resonance states reported in [140], the cleavage process in the
STM and ARPES experiments [122, 134, 139] along with the ubiquitous Mn/Bi an-
tisite intermixing in MnBi2Te4 [103, 109, 115, 116, 123, 134, 139, 140, 195] which may
strongly modify the surface’s magnetic and crystal structures. This can result in a
surface reconstruction, so the Dirac surface states may be shifted deeper, to the sec-
ond septuple layer and, thereby, experience a compensated magnetic moment of the

99



CHAPTER 4. EXPERIMENTAL RESULTS

two topmost septuple layers [134]. The diminished magnetic gap size in MnBi2Te4
which was observed in the STS data in the present work might be also caused by
negative surface charge emerging from structural defects on the surface which was
proposed by DFT calculations [196,198,199].

However, according to the very recent studies [142], it seems that the most plau-
sible factor which affects the magnetic exchange gap size is the Mn/Bi intermixing
which was indeed found in the crystals used in the present work [109]. Due to
the antiferromagnetic coupling between the main Mn-layer and the Mn/Sb atoms
in the isostructural compound MnSb2Te4 inferred from neutron diffraction exper-
iments [205, 206] the real magnetic structure turns out to be ferrimagnetic which
leads to a reduction of the magnetic exchange gap size. Fig. 4.2.9 illustrates the
shrinking of the Dirac point gap from 90 meV for the ideal defectless surface of
MnBi2Te4 to 37 meV for Mn/Bi exchange in the second atomic layer and even to 3.5
meV (almost gapless surface states) when it appears in the sixth layer as obtained by
DFT calculations [142]. This fact is proposed to explain the differences of the Dirac
point gap size for different samples and sample cleavages observed by ARPES and
STS [142]. Therefore, the spatial inhomogeneous cation intermixing in MnBi2Te4
seems to be a reasonable scenario for the surface state magnetic gap variations on
the surface for different samples, while the other aforementioned explanations may
also affect the gap size. The STS results obtained in the current work point to
the intrinsic structural disorder in the crystals which has a strong impact on the
electronic structure of this material. To achieve a homogeneity of the electronic
properties, one needs more efforts in tuning the crystal growth process.

Fig. 4.2.9 DFT surface electronic structure calculations of a) ideal and defective MnBi2Te4
with Mn/Bi defect located in the b) second and c) sixth atomic layers counting from top
of the surface septuple layer. Adapted from [142].
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4.2.3. dI/dU mapping
In order to elucidate the origin of the hexagonally ordered superstructures which

appear in the FFT of topographic images, dI/dU maps were measured at 11 values
of the bias voltage in the ranges from −400 mV to −50 mV and from 150 mV to
400 mV. These data were taken on a 50 nm squared area (see Fig. 4.2.10) with the
set point IT = 150 pA and the internal lock-in of the RHK R9 controller. The bias
voltage modulation parameters Umod = 14 mV RMS, fmod = 1.111 kHz were kept
the same at each energy except for Ubias = ±20 mV where the modulation amplitude
was set to 4 mV RMS.

Fig. 4.2.10 dI/dU map measured at Ubias = −100 mV and IT = 150 pA with its Fourier
transformation. The white line (in the Γ-M direction) indicates the direction of the Bragg
spots and the inner spots related to the superstructures 1 and 2.

Fig. 4.2.10 depicts one example of the dI/dU map at Ubias = −100 mV where
one can notice two kinds of the inner six-fold symmetric spots similar to those
observed in the topographic data in section 4.2.1 (superstructures 1 and 2) which
are unidirectional with the Bragg peaks (Γ-M direction). The spots with the real
space period related to the superstructure 1 are rather diffuse and persist at most
of the energies as observed in the topography presented in Fig. 4.2.2. The others
(superstructure 2) are hardly visible and could be clearly distinguishable only at
200 mV and 300 mV. All the measured dI/dU maps are plotted in Fig. 4.2.11 for
different bias voltages and reveal LDOS modulations which is a signature of the
QPI.
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Fig. 4.2.11 Real space dI/dU maps measured with the corresponding bias voltages from
−400 mV to 400 mV, IT = 150 pA. The length scalebar is the same for each image.

The series of the FFT patterns of the dI/dU maps in Fig. 4.2.12 shows the energy
evolution of the intensity peaks related to the superstructure 1. For instance, one
can notice its enhanced intensity at the bias voltages of −200 mV, −150 mV, and
−100 mV where additional peaks pointing at the Γ-K direction also appear (see
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Fig. 4.2.12). Meanwhile, only two of the maps which were measured at 200 mV
and 300 mV exhibit the additional long-wavelength feature (superstructure 2) in
the FFT. This superstructure as the other one (superstructure 1) consists of six-fold
symmetric spots pointing in the Γ-M direction which are rather blurred in contrast to
Bi2Te3 (see Fig. 4.1.12), which could be caused by material chemical inhomogeneity
in MnBi2Te4 as also observed in [139, 140]. The line profiles of the FFT of each
of the dI/dU maps taken along the spots were fitted by Gaussian functions which
allowed to extract the peak positions with the corresponding errors as illustrated in
Fig. 4.2.13 and Fig. 4.2.14.
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Fig. 4.2.12 Symmetrized FFTs (see more details on the procedure in Appendix B) of
the dI/dU maps plotted in Fig. 4.2.11 with the corresponding bias voltages from −400
mV to 400 mV, IT = 150 pA. Numbers 1 and 2 indicate the superstructures 1 and 2,
respectively. High-symmetry directions are labelled in the FT-QPI at Ubias = −400 mV
and are the same for each of the patterns. The lattice constant a = 4.27 Å was inferred
from the position of the Bragg peaks. Note that both superstructures were not resolved at
Ubias = 400 mV.
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Fig. 4.2.13 Examples of the QPI intensity profiles taken along the Γ-M direction at bias
voltages of −200 mV in a) and 200 mV in b) with corresponding Gaussian fits.

Fig. 4.2.14 a) Energy dispersion for the observed superstructures 1 and 2 in FT-QPI. b)
Comparison of the derived QPI dispersion with [139].

As mentioned above, the superstructure 1 shows no energy dependence, at least,
within the error of the measurements and roughly corresponds to (1.9 ± 0.5) of the
lattice parameter in real space. This might be a signature of the antiferromagnetic
order if the superstructure 1 corresponds to a spin density wave arising from possible
lattice distortions or electronic modulations. On the other hand, the superstructure
2 at two energies 200 mV and 300 mV have different scattering vector lengths.
Moreover, unlike for the superstructure 1, the lengths of this QPI scattering vector
are in the same order of magnitude with the ones shown in [139, 140] as illustrated
in Fig. 4.2.14b which corroborates their origin from the QPI of the Dirac surface
electrons in MnBi2Te4. The linear fit of the QPI peaks made for only 200 mV
and 300 mV results in the Dirac point energy located at 215 meV below the EF (see
Fig. 4.2.14a) which is not in agreement with the observed energy gap (see Fig. 4.2.5b)
in the range (−25; 0) meV measured on a different area of the same cleaved surface.
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However, taking into account the error of the Dirac point energy estimation from
only 2 points as well as a possible deviation from the linear dispersion of the surface
states band as evidenced by ARPES [113, 119, 134, 135, 207], the given value of 215
meV might be significantly different from the real one. Given this considerable
inconsistency one can speculate that the surface chemical inhomogeneity (Mn/Bi
antisite disorder) could be a reason of the substantial spatial variations in the surface
electronic structure. Most of the ARPES data on this compound reported on the
Dirac point positioned at ∼(300 ± 50) meV below the EF but these values are
spatially averaged on a few (or even larger) micrometers scale areas depending on
the beam spot size. Considering the possible energy band shifts (due to different
doping) towards the valence band with respect to the data in [139–141] mentioned
in section 4.2.2, it would result in the Dirac point located at the bias voltages of
−80 or 130 mV which is also not consistent with neither the QPI nor the STS data
in the present work. Thus, the idea that the electronic structure at the nanometer
scale might be strongly modified can be viable.

The obtained QPI scattering vector related to the superstructure 2 is oriented
along the Γ-M direction and has comparable values with the existing QPI data
on this material [139, 140] keeping in mind possible energy band shifts. However,
according to the QPI calculations based on the constant-energy contour with an
out-of-plane A-type antiferromagnetic, in-plane A-type antiferromagnetic and out-
of-plane ferromagnetic orders [139], the length (and the direction in some cases) of
the simulated QPI scattering vector for the out-of-plane A-type AFM at 0.4 eV, 0.5
eV and 0.6 eV above the Dirac point energy, for example, is not consistent with the
experimental data in [139, 140]. This appears to be also inconsistent with the data
measured in the present work since the QPI vector observed in the Γ-M direction
is not as much (more than two times) different from the experimental QPI vector
in [139]. Moreover, in those calculations the scattering vector in the Γ-K direction
exists at the energies of 0.4 eV, 0.5 eV and 0.6 eV above the Dirac point energy
for the out-of-plane A-type antiferromagnetic order (see Fig. 4.2.15) but there are
Γ-K scattering intensity peaks only at the bias voltages of −200 mV, −150 mV,
and −100 mV in the current work which are, most probably, much closer to the
Dirac point. This has already considered the possible energy band shifts, although
the energy scale can not be compared precisely based on the data obtained in this
work. In this regard, there could be no A-type AFM on the surface area where
the dI/dU maps were measured, therefore, no energy gap in tunneling spectra can
be expected. This fact refers to the explanation of the observed STS gap (see
section 4.2.2), which is smaller than that expected from the calculations, in that
sense that the magnetic order on the surface is different from its bulk with possible
spin disorder or occurrence of different magnetic domains with a short-range
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∼ (10−100) nm magnetic order. Another essential reason could be a chemically
and, thus, magnetically inhomogeneous surface. In particular, there may be areas
on the sample surface with higher concentration of Mn/Bi-antisites leading to the
deviation from the A-type antiferromagnetism and, therefore, the Dirac point gap
reduction, while there may be areas with lower concentration of the Mn/Bi-antisites
implying nearly intact short-range A-type antiferromagnetic order and larger Dirac
point gap size.

Fig. 4.2.15 a)−c) Simulated QPI patterns based on constant-energy contours with out-
of-plane A-type antiferromagnetic order at ED + 0.4 eV, ED + 0.5 eV, ED + 0.6 eV,
respectively. The red arrows indicate the QPI scattering vectors measured in [139]. The
blue arrows show the QPI scattering vectors obtained in the current work assuming that
ED = −215 meV as inferred from Fig. 4.2.14a. The corresponding calculated constant-
energy contours are plotted in the insets.

4.2.4. Conclusions
Within the presented low-temperature (T = 5 K) STM data on MnBi2Te4 an

atomically corrugated hexagonal surface with appreciable electronic modulation that
reveals two superstructures in the FFT were obtained. The origin of the super-
structures formation is potentially associated with the Mn structural defects, most
probably, Mn/Bi antisite intermixing. The noticeable energy gap of approximately
25 meV width was detected by STS on the 50 nm × 50 nm surface area which is,
conceivably, a magnetic exchange gap but with significantly smaller width than that
expected from calculations for the ideal compound without the cation intermixing.
According to the recent studies of MnBi2Te4, the Mn/Bi intermixing is considered
as the crucial factor affecting the surface state gap size. Most probably, the mea-
sured surfaces are chemically inhomogeneous with different concentrations of Mn/Bi
and Bi/Mn defects resulting in the regions with higher (smaller) influence on the
electronic structure of the material with gapless (gapped) tunneling spectra. Other
scenarios proposed in the literature such as altered surface magnetism (not A-type
antiferromagnetism as in the bulk), magnetic domains, resonance states, surface
states relocation to deeper layers are also reasonable and can not be neglected.
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4.3. MnBi4Te7
The STM/STS measurements on MnBi4Te7 single crystals were performed with

the Nanonis SPM controller and the external SR 830 lock-in amplifier operated at
Umod = 14 mV RMS and fmod = 1.111 kHz. The measurements were done, also, at
different temperatures in the range (5−20) K aiming to track the evolution of the
electronic structure crossing TN = 13 K.

4.3.1. Topography
Since MnBi4Te7 is supposed to be built up of the alternate sequence of the quintu-

ple layer and septuple layer blocks, the natural important question is at which layer
the sample is cleaved. Two obviously different surfaces were observed on different
samples at T = 5 K which may be a signature of two possible surface terminations
as illustrated in Fig. 4.3.1.

Fig. 4.3.1 Crystal structure of MnBi4Te7. Mn, Bi and Te atoms are marked with green,
blue and yellow colors, respectively. Adapted from [102].

Most of the obtained data on MnBi4Te7 demonstrate atomically resolved surface
with the hexagonally symmetric Bragg peaks in FFT corresponding to the lattice
constant value a ≈ 4.3 ± 0.2 Å which is consistent with the literature value of 4.36
Å. An exemplary topography image is shown Fig. 4.3.2. It reveals a distinct atomic
corrugation with the three-fold symmetric defects which were already observed on
pristine Bi2Te3 in the present work (see section 4.1.1) and in the literature [50–52,58].
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According to these studies, the dark circular and the bright clover-shaped defects
are Te-vacancies in the first Te-layer and Te/Bi-antisite defects residing on the first
Bi-layer from top, respectively. This fact points towards the conclusion that this
was indeed the quintuple layer surface termination.

Fig. 4.3.2 a) 22 nm × 22 nm topography at Ubias = 100 mV, IT = 70 pA, T = 5 K. b)
FFT of the image in a) with the indication of the superstructure 1 and Bragg peaks. c)
Height distribution of the surface shown in a) with the Gaussian fit indicated as the red
curve. The blue scalebar in a) is equal to 4 nm.

Fig. 4.3.3 shows the topography scans with atomic defects detected at T = 14

K and at T = 20 K, i.e. above TN , on the area where full STS maps (which will be
discussed in section 4.3.2) were measured as well.
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Fig. 4.3.3 Topographies at 20 K (a) and 14 K (b) on the left with the corresponding FFT
on the right, Ubias = 500 mV, IT = 150 pA.

The other kind of surface shown in Fig. 4.3.4 has no intrinsic Bi2Te3 defects and
looks similar to the topography of MnBi2Te4 shown in Fig. 4.2.1 and measured in
this work (note that both crystals were produced by the same group in a similar
way). In addition, the surface illustrated in Fig. 4.3.4 looks more rough as can be
inferred from the height distribution of this surface in Fig. 4.3.4d with the broader
Gaussian fit compared to that for the other surface in Fig. 4.3.2c (both surfaces are
of the same size and the number of pixels). Although the FFT of both surfaces
in Fig. 4.3.2b and Fig. 4.3.4b reveal superstructures similar to that observed in
MnBi2Te4 (superstructure 1 as seen from Fig. 4.2.1), the surface in Fig. 4.3.4 exhibits
pronounced local electronic modulations resulting in the additional superstructure
in the FFT (see Fig. 4.3.4b). This superstructure is reminiscent of that resolvable
in some topography of MnBi2Te4 (superstructure 2) with high enough momentum
resolution (see Fig. 4.2.3) and signal-to-noise ratio (see Figs. 4.2.2j,k) but has never
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been found on Bi2Te3. Therefore, it allows to identify the surface in Fig. 4.3.4 as the
septuple layer terminated surface. It is worth to note, that the blurry superstructure
1 in the FFT exists on both surfaces highlighting the influence of the Mn layer even
when it is beneath the topmost quintuple layer and, thus, indicating a surface-bulk
hybridization as mentioned in the literature for this compound [115] as well as for
MnBi2Te4 [120].

Fig. 4.3.4 a) 50 nm × 50 nm topography at Ubias = 100 mV, IT = 50 pA, T = 5 K.
b) FFT of the image in a) with the indication of the superstructures 1 and 2 and Bragg
peaks. Note that here the superstructure 1 consists of intensity spots not only in the Γ-M
direction (which is collinear with the Bragg peaks) but also in the Γ-K direction as was
also found in MnBi2Te4 (see section 4.2.1). c) 22 nm × 22 nm zoom-in view of the image
a). d) Height distribution of the field of view shown in c) with the Gaussian fit (red curve).

Multiple atomic steps with very different heights varying from 0.2 nm to more
than 2 nm were observed in one of the measured samples. Fig. 4.3.5 represents
different sequences of atomic steps, for example, repetitions of, most likely, two
septuple layers (Fig. 4.3.5a) and two quintuple layers (Fig. 4.3.5b), the expected
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alternation of quintuple and septuple layers in Fig. 4.3.5c or even unusual heights
of the steps which can not be attributed neither to quintuple nor septuple layers
(Fig. 4.3.5d).

Fig. 4.3.5 Different examples of step heights observed on MnBi4Te7 crystals.

In order to estimate the step heights, statistical analysis of the roughness was
performed for the topographic scans with steps. In total 57 steps were taken into
account. The obtained height distribution illustrates distinct peaks in the number
of counts which indicate the heights of the terraces, while the differences between
each of adjacent peaks are the step heights (see Fig. 4.3.6 and Fig. 4.3.5). The error
of the heights values estimated in this way is determined by the standard deviation
of the Gaussian fit which amounts to 0.1−0.2 nm. The plotted height histogram
in Fig. 4.3.7 shows the dominating step height which is very close to that of the
quintuple layer (≈10 Å) (this is consistent with the ARPES data on MnBi4Te7
[11] which indicates an abundance of the quintuple layer terminated surface) and
contradicts the reasonable expectation to observe quintuple layer and septuple layer
steps on this compound with nearly equal probability.
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Fig. 4.3.6 Single quintuple layer atomic step: topographic line profile and the height
distribution, Ubias = 400 mV, IT = 70 pA, T = 12 K.

Fig. 4.3.7 Height histogram of all the steps heights observed on MnBi4Te7.
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The single step in Fig. 4.3.6 which height is close to that for the quintuple layer
within the error of the measurement reveals similar hexagonal atomic corrugation
with triangular shaped defects on both sides of the step. For a spectroscopic char-
acterization of this kind of step a full STS map was measured on both terraces of
another quintuple layer step from which a similar electronic structure (dI/dU spec-
tra) on both sides of the step was inferred (see Fig. 4.3.8). It is worth to mention
that the spectra exhibit some change near the step edge. However, one can not claim
on the magnetic origin of this step edge state which was found in [149], since there
are no analogous STS data measured on other surfaces and at higher temperatures.
Given the noticeable difference between two observed surfaces of this compound (see
Figs. 4.3.2 and 4.3.4), similar spectra along with the similar topographies on both
sides of the step edge lead to the assumption that, most probably, this sample had
sequences of quintuple layers as illustrated in Fig. 4.3.9.

Fig. 4.3.8 a) Quintuple layer step edge, Ubias = 500 mV, IT = 150 pA, T = 12 K. b)
dI/dU spectroscopic line profile across the step edge shown along the line indicated in a).
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Fig. 4.3.9 Two ideal cleaving situations and the one (on the right) apparently realized in
the MnBi4Te7 STM-experiment. Here QL and SL are abbreviations of "quintuple layer"
and "septuple layer", respectively.

4.3.2. Temperature-dependent STS
As mentioned above, one of the most intriguing STM experiment on MnBi4Te7

compound could be temperature-dependent spectroscopy measurements across
TN = 13 K in order to reveal changes of the DOS of the sample driven by the
magnetic phase transitions.

At first, Fig. 4.3.10 shows spatially averaged spectra taken at 12 K, 14 K and 20
K on defect-free regions of the surface shown in Fig. 4.3.3.

Fig. 4.3.10 Spatially averaged tunneling spectra measured at 12 K, 14 K, 20 K, Ubias = 500
mV, IT = 150 pA. Numbers of the averaged spectra are indicated next to the corresponding
curves.
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From Fig. 4.3.10 it is clear that there is no systematic evolution of the DOS
spectra as a function of temperature. There is an enhanced DOS at T = 12 K near
Ubias = −300 mV, which is, presumably, very close to the Dirac point energy found
by ARPES [11,110,114,115,121,122,147,148]. Similar increase of DOS at the Dirac
point was observed in the STM experiment on MnBi2Te4 crystals and was attributed
to resonance states caused by defects in Mn atomic layers [140]. However, the data
displayed in Fig. 4.3.10 were measured, most probably, on the Bi2Te3-terminated
surface (see Fig. 4.3.3). At the same time, it is worth to note that the spectroscopic
map at T = 12 K was taken on a different region, not on that where the maps at 14
K and 20 K were measured. Therefore, one can not rule out that due to the observed
inhomogeneities of the samples the measured local electronic structure could vary
by changing the measurement position on the surface. In other words, the presence
of the cationic intermixing and, also, the stepping faults in the crystal stacking can
be reasonable factors which affect the measured tunneling spectra (see Appendix D
with more data as well).

With this in mind, point spectroscopy measurements at T = 5−20 K were also
carried out while keeping the same defect-free surface spot of 15 nm x 15 nm of
a different cleave (at T = 5 K) which shows clearly triangular shaped defects as
in pure Bi2Te3. It was repeated on 2 different surfaces of the same cleavage (see
Fig. 4.3.11a and Fig. 4.3.11b). The measurements were done on 10 selected points
both on defects and on defect-free regions at different temperatures from 5 K to 20
K. These STS experiments were rather stable since at each of the measured point
20 sweeps of the bias voltage within the error provided the same spectra. The tip-
induced band bending mentioned in sections 4.1.2 and 4.2.2 is also excluded for
MnBi4Te7 (see Fig. 4.3.12) because the spectra measured at different bias voltages
lie on top of each other. Besides, there was no strong variation of the spectra with
the position on the surface. Therefore, the averaged over 200 spectra at a certain
temperature are plotted as a function of temperature as shown on Fig. 4.3.11 where
dI/dU spectra show almost no temperature dependence as expected for Bi2Te3, but
not for MnBi2Te4, at least, in its bulk. One should also note that the change in the
spectral shape from 12.0 K to 8.2 K in Fig. 4.3.11b was due to the tip-state change
in the experiment. Since the measured surfaces in Fig. 4.3.11a and Fig. 4.3.11b are
supposed to be of the quintuple layer-type, the fact that they do not reveal striking
changes in the temperature-dependent STS below and above TN could be related
to possible crystal imperfections and/or the idea of a reduced magnetization across
the topmost quintuple layer which is not strong enough to open the surface states
gap [121] as supported by the gapless spectra in Fig. 4.3.11.
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Fig. 4.3.11 STS at different temperatures for 2 experiments a) and b) with the corre-
sponding topographies, 20 nm x 20 nm, Ubias = 500 mV, IT = 200 pA.
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Fig. 4.3.12 dI/dU spectra measured at the same surface position at 400 mV, −400 mV
and 500 mV bias voltages with IT = 200 pA, T = 5 K.

4.3.3. Conclusions
To summarize, two kinds of surfaces corresponding to two different cleavage

(Bi2Te3- and MnBi2Te4-terminations) possibilities were identified by the topographic
measurements. However, the existence of very different atomic step edges evidences
a relatively poor quality of the crystals. This inhomogeneous crystal structure with
possible repetitions of quintuple layers may result in different cleaving, unlike two
ideal cases to cleave either on quintuple layer or on septuple layer. The STS data are
sample-dependent and, very likely, tip-state dependent. It is noteworthy that the
obtained spectra bear no clear similarities with the STS spectra in [115, 140, 149].
Presumably, the discrepancy of the spectroscopy data is related to the cation ex-
change as well as the abovementioned imperfection of the crystal stacking. Never-
theless, the reliable temperature-dependent STS data on the quintuple layer surface
termination show no signatures of both the antiferromagnetic phase transition and
the surface state gap opening.
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Summary

In this work two material classes were investigated at the atomic scale by means of
low-temperature STM. Namely, they are conventional topological insulators (Bi2Te3)
and intrinsic magnetic topological insulators (MnBi2Te4 and MnBi4Te7). All the
experimental results are shown in Chapter 4.

Measurements on Bi2Te3 single crystals reveal atomically flat surfaces with densely
distributed defects of various origin consistent with the literature data. High resolu-
tion QPI data were measured in a relatively large energy range [−600; 300] mV and
provide energy dependent interference patterns as expected for dispersive electronic
structures. For their comparison with the existing ARPES band structure data the
calculations of the spin-selective JDOS (including the intricate three-dimensional
spin texture of the material) were performed, which show a considerable agreement
with the experimental data. Topological properties of the investigated compound
were clearly demonstrated by the absence of the backscattering along with the linear
energy dispersion of the dominant QPI vector. In addition, non-dispersive scattering
was observed at some energies and associated with the bulk-to-surface scattering.
This allowed to give a rough estimation of the bulk energy gap width in the mea-
sured samples. To the best knowledge, the QPI data were measured for the first
time in the magnetic field on this compound. It was found that there are no signif-
icant changes in the QPI caused by magnetic fields up to 15 T. The backscattering
processes do not manifest themselves even at such a strong field proving that the
strong spin-orbit coupling in Bi2Te3 prevents the lifting of the topological protection
of the surface states in this material.

Single crystals of MnBi2Te4 show atomically corrugated surface with pronounced
electronic modulations revealing two superstructures in the Fourier transform which
appear due to the ubiquitous Mn/Bi antisite intermixing in these crystals. The STS
data provide an example of the dI/dU spectra with a zero DOS region below the
Fermi energy. This is, most probably, one of the very first magnetic exchange gap
in magnetic topological insulators measured by STS. The gap width of 25 meV is
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in a reasonable agreement with the surface band structure calculations of MnBi2Te4
including the cation intermixing. From the topographic, point spectroscopic and
QPI data one can conclude that the measured surfaces are chemically inhomoge-
neous with different concentrations of Mn/Bi defects which lead to the regions with
their higher (smaller) influence on the electronic structure of the compound, thus
exhibiting ungapped (gapped) tunneling spectra. Meanwhile, other proposed sce-
narios (altered surface magnetism different from that in the bulk, magnetic domains
formation, resonance states, surface states relocation to deeper layers) are also viable
and can not be neglected.

The STM data obtained on the other example of the intrinsic magnetic topologi-
cal insulators, MnBi4Te7 allow to distinguish two kinds of surfaces since the material
has two cleaving options (quintuple layer and septuple layer terminations). Differ-
ent atomic step heights were found and possible repetitions of quintuple layers point
towards a poor (but improvable) quality of the crystals. Besides that, the obtained
dI/dU spectra show no clear similarities with the literature data on this compound.
The cation exchange and the quality of the crystals are supposed to affect the STS
data. Although, no signatures of the antiferromagnetic phase transition and the
surface states gap opening were found from some reliable temperature-dependent
STS data on the quintuple layer surface termination.

It is also worth to highlight that on high quality crystals of Bi2Te3 even with
strong intrinsic disorder the quality of the obtained data turned out to be fairly
good. As for MnBi2Te4 and MnBi4Te7, the crystals which were measured in this
work are of a pioneering stage of research, and, first of all, the existing crystal growth
techniques need to be improved to reduce the cation disorder which is also still
reported in the most recent literature [208,209]. This explains the abovementioned
difficulties to reliably obtain the data on these materials, and, therefore, this should
be readdressed to a future work.
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Appendix A

Additional experimental and
simulated QPI data on Bi2Te3

More QPI data measured on the Bi2Te3 samples are presented in this section.
The data were acquired on 5 different cleaved samples of the same crystal in total.
In general, no significant differences in the FT-QPI patterns measured at different
conditions (sample, surface spot location and size, IT , T ) were found. There are
some changes in the intensity distributions (see Fig. A.0.1a) which could stem from
different sample-tip combinations used in the experiments or slightly different sto-
ichiometry of the samples. One representative example for comparison is shown in
Fig. A.0.1a, where 2 FT-QPI patterns measured on different samples at Ubias = 300

mV are presented. Both FT-QPI patterns demonstrate almost identical two six-fold
symmetric scattering vectors oriented in the Г-M direction. Note that their length-
scales are nearly the same for both data. The dI/dU maps were also measured at
the energies higher than those mentioned in section 4.1.3. In particular, the data
obtained at Ubias = 350, 400, 450, and 500 mV (see Fig. A.0.1b) show a little in-
crease of the dominant scattering vector’s length. The extracted energy dispersion
in the Г-M direction (where the intensity is the most pronounced) of all the FT-QPI
patterns was shown in Fig. 4.1.14. The main trend in the data is a clear linear en-
ergy dispersion confirmed by several measurements. The inner QPI intensity peaks
were found only at high energies and have no certain energy dispersion, thus, they
are, most likely, of the bulk origin as mentioned in section 4.1.4. The scattering
vector splitting observed in the current work (see section 4.1.4) on "sample 1" was
not resolved on another sample ("sample 2") due to likely higher noise in the ex-
periment on that sample. In addition, the dI/dU maps were also measured at the
bias voltages from −600 mV down to −800 mV but at those energies the FT-QPI
patterns remain rather ill-defined.
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Fig. A.0.1 a) Representative symmetrized FT-QPI patterns measured on different samples
at the same Ubias = 300 mV. The data obtained on the "sample 1" were presented in
sections 4.1.3 and 4.1.4. The high-symmetry directions are indicated with red lines. b)
FT-QPI patterns (after the symmetrization) measured on the same 60 nm × 60 nm surface
spot of the "sample 2" at Ubias = 350, 400, 450, and 500 mV. The scalebar is indicated on
the left image and is the same for all the patterns.

As mentioned in section 4.1.4, the FT-QPI patterns of the dI/dU maps discussed
there exhibit intensity variations not only in the Г-M direction, but also in the
Г-K direction. In general, the QPI peak intensities are weaker in the Г-K direction
compared to the Г-M direction as illustrated in Fig. A.0.2b for Ubias = 200 mV,
for example. The QPI intensity profiles in the Г-K direction were analyzed in the
same way as for the Г-M direction using Gaussian fit of the peaks. The resulting
energy dispersion in both high-symmetry directions is shown in Fig. A.0.2c, where
ARPES extracted dispersions for all possible scattering vectors q1−q6 are plotted
on top for comparison. The dominant QPI scattering vector in the Г-K direction
has values which are very close to that for the Г-M direction (mainly associated with
qSS, i.e. some combination of q2 and q5). The linear fit of the energy dispersion in
the Г-K direction provides the Dirac point energy value of around −372 mV with
the Dirac velocity of around 4.6 × 105 m/s similar to the values derived from the
Г-M dispersion. There is also the second peak (dubbed qSB in section 4.1.4) in the
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QPI intensity profiles in the Г-K direction at the bias voltages 100−250 mV with
no certain dispersion as was found in section 4.1.4 for the Г-M direction. Unlike for
the Г-M direction, it was not possible to find a splitting of the scattering vector in
the Г-K direction because of less pronounced intensity peaks. The dominant scat-
tering vector in the Г-K direction in the QPI data (see Fig. A.0.2c) has significantly
different dispersion compared to the vectors q3, q6 and q1 (the backscattering vec-
tor which must not exist). Given that, one could assume that the intensity peaks
in the Г-K direction might arise from the q3 or q6 scattering process if the shape
of constant-energy contour and/or the DOS variations are different from that one
which was measured by ARPES [8,53]. Possible deviations of the electronic structure
could occur due to the material disorder.
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Fig. A.0.2 a) Symmetrized FT-QPI pattern obtained at Ubias = 200 mV. b) Intensity
profiles of the FT-QPI pattern in a) taken along the Г-M and Г-K directions marked with
the red and blue arrows in a), respectively. c) QPI and ARPES energy dispersion for both
Г-M and Г-K directions. The energies are counted from the Dirac point estimated from
the linear dispersion in the Г-M direction.

As mentioned in section 4.1.3, the symmetrized FT-QPI patterns presented there
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were cut at the edges for better demonstration of the QPI features. This led to the
fact that, in particular, the Bragg peaks were also cut out. One example of raw
FT-QPI patterns with visible Bragg peaks is presented in Fig. A.0.3.

Fig. A.0.3 a) Example of a raw FT-QPI pattern measured at Ubias = 250 mV. The
intensity spots in the Г-M direction qSS and qSB discussed in Chapter 4 are marked by
green and magenta ellipses, respectively, while one of the six-fold symmetric Bragg peaks
is indicated by the black circle. High-symmetry crystallographic directions are labelled.

Concerning the QPI simulations, as mentioned in section 4.1.4, the three-fold
symmetric scattering potential was used in the QPI simulations. It comes from
the dominant defect type in the measured STM data. The scattering potential was
modeled as follows:

V = const×



exp(−|θ − π/6|
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(A.0.1)

where the angle θ defines the vector k in reciprocal space and was introduced in
section 4.1.4.

Fig. A.0.4 represents an example of the effect of the influence of the scattering
potential and the out-of-plane spin component on the spin-dependent scattering
probability pattern for the hexagonally warped constant-energy contour. Fig. A.0.4a
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shows the result, when both are not taken into account. Fig. A.0.4b corresponds
to the case, when only the scattering potential is considered, and results in the
suppressed spin-dependent scattering probability intensity of the inner flower-like
shaped pattern. Fig. A.0.4c illustrates a weaker suppression of this inner pattern
which is caused by including the out-of-plane spin component. The final result is
plotted in Fig. A.0.4d and was obtained taking into account both the scattering
potential and the out-of-plane spin component, and the inner flower-like pattern
becomes significantly suppressed compared to Fig. A.0.4a.

Fig. A.0.4 Schematic illustration of the spin-dependent scattering probability calculations
with the out-of-plane spin component and the scattering potential. The constant-energy
contour is shown on the left sides in a) and b) before and after the three-fold scattering
potential was implemented, respectively. The out-of-plane spin texture is plotted on the
left sides in c) and d). The high-symmetry directions and the scalebars are the same for
all the presented figures.

The DOS was modeled by the Gaussian distribution on each of the six arcs of the

constant-energy contour, e.g., for θ = [0;π/3] it is proportional to exp(−(i− n/12)2

2σ2
),

where i and n = 1000 are the index of a certain point and the total number of
points on the modeled constant-energy contour. Fig. A.0.5 shows the evolution of
the spin-dependent scattering probability patterns for the hexagonally warped sur-
face constant-energy contour when the width σ of the Gaussian distribution of the
DOS is changing from 10 to 80. The best match to the measured QPI data was
found at σ = 40, which corresponds to the DOS ratio of about 10:1 in the middle of
the arc of the constant-energy contour and at the corner. In particular, at lower σ
values the shape of the spin-dependent scattering probability scattering peaks differs
from that obtained in the experiment, and at higher values of σ the inner flower-like
shaped pattern becomes more intense (because it results from scattering within a
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single arc, which has a larger DOS at the corners at higher σ values).

Fig. A.0.5 Hexagonally warped constant-energy contours (on the left sides) with different
widths σ of the Gaussian distribution of the DOS and the corresponding spin-dependent
scattering probability patterns (on the right sides). The high-symmetry directions and the
scales are the same for all the presented figures. The color scale is the same as that in
Fig. A.0.4.

By analyzing the FT-QPI data measured in the energy range at which the bulk
conduction band appears, it is important to distinguish contributions of the surface
states and the bulk states into the spin-dependent scattering probability pattern (see
the constant-energy contour in Fig. A.0.6a). Fig. A.0.6b represents a superposition of
3 spin-dependent scattering probability patterns arising from scattering only within
the surface constant-energy contour, bulk-to-surface scattering and scattering only
within the bulk conduction band, which are plotted separately in Figs. A.0.6c-e,
respectively.
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Fig. A.0.6 Different contributions to the total spin-dependent scattering probability pat-
tern in b) for the constant-energy contour plotted in a) corresponding to the bulk conduc-
tion band. In particular, spin-dependent scattering probability calculations results for the
surface-to-surface, bulk-to-surface and bulk-to-bulk scattering are presented in c), d) and
e), respectively. The color scale is the same as that in Fig. A.0.4.
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Symmetrization procedure of the
FT-QPI patterns

All the FT-QPI patterns presented in this work on both Bi2Te3 and MnBi2Te4
compounds were symmetrized according to the six-fold symmetric crystal structure.
The aim was to increase the signal-to-noise ratio for a more accurate analysis of the
QPI features. The symmetrization procedure was performed with the use of WSxM
software [175] in the following way. As an example, the dI/dU map measured
at Ubias = 300 mV at B = 0 T on Bi2Te3 with its Fourier transformation are
presented in Figs. B.0.1a,b. For the symmetrization of the FT-QPI pattern shown
in Fig. B.0.1b one needs to take in WSxM QPI intensity profiles across two opposite
QPI spots (the most pronounced spots are in the Г-M direction) unless the line
profile looks the most symmetrical. Using the option "Rotate angle" in WSxM one
can rotate the FT-QPI pattern in the way that those two opposite spots become
aligned horizontally (or vertically). Note that by doing this the number of pixels
in the pattern becomes larger, and the new pixels at the edges acquire the average
intensity of the entire image. Further, one can take one of the directions 1, 2 or 3 in
Fig. B.0.1b (for example, the direction 1 shown in Fig. B.0.1c) to mirror the pattern
vertically (see Fig. B.0.1d) and horizontally (see Fig. B.0.1e) and mirror the last one
again vertically (see Fig. B.0.1f). All these 4 patterns shown in Figs. B.0.1c-f can
be averaged providing one pattern plotted in Fig. B.0.2a.
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Fig. B.0.1 a) dI/dU map measured at Ubias = 300 mV at B = 0 T on Bi2Te3 in the
present work. b) FT-QPI pattern of the data shown in a). c) FT-QPI pattern obtained
by a rotation of the image b) making the direction 1 horizontal. d) The FT-QPI pattern
shown in c) flipped around the vertical axis. e) The FT-QPI pattern shown in c) flipped
around the horizontal axis. f) The FT-QPI pattern shown in e) flipped around the vertical
axis.
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The same procedure has to be done for two other equivalent directions 2 and 3
in the initial FT-QPI pattern shown in Fig. B.0.1b. Finally, 3 patterns of different
pixels numbers (see Figs. B.0.2a-c) have to be averaged. For that, the pattern with
the lowest number of pixels remains unchanged, while the two others have to be
cut at the edges in order to have the same number of pixels with the first one. All
the three patterns are averaged and provide the final symmetrized FT-QPI pattern
plotted in Fig. B.0.2d. Comparing the raw FT-QPI pattern (see Fig. B.0.1b) with
the final one (see Fig. B.0.2d), it can be seen with the naked eye that the latter
one looks less noisy than the former one. The signal-to-noise ratio is enhanced with
respect to the initial data in Fig. B.0.1b because the signal was averaged while the
noise in different directions was suppressed. It should be noted that one needs to
take care of the symmetry of the patterns (i.e. they have to be symmetrical with
respect to the center of the image) at each step of the symmetrization procedure in
order not to lose the signal-to-noise ratio.

Fig. B.0.2 a) FT-QPI pattern obtained by averaging of Figs. B.0.1c-f. b-c) FT-QPI
patterns obtained by the procedure described for a) but for the directions 2 and 3 in
Fig. B.0.1b, respectively. d) The final symmetrized FT-QPI pattern.
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Appendix C

Program codes

One example of the Python program code for JDOS and spin-dependent scat-
tering probability calculations discussed in section 4.1.4 is presented below. This
corresponds to the constant-energy contour including both warped hexagon for sur-
face states and bulk conduction states as shown in Fig. 4.1.18d. In this case, one
warped hexagon with maximal DOS on the arcs was considered with two inner and
two outer warped hexagons of lower DOS and bulk conduction states inside. The
DOS variation on the warped hexagons and the bulk conduction band was modeled
using the Gaussian distribution with maximal DOS in the middle on the arcs of the
warped hexagon and also in the Г-point, respectively. Since the DOS distribution
on the constant-energy contour could not be explicitly extracted from the existing
ARPES data on Bi2Te3 [8,53], the parameters of the Gaussians were adjusted as to
obtain reasonable simulation results.

""" """ """ """"""""""""""" """ """ """""""""""""
Author: Vladislav Nagorkin
Created: 29.08.2022
""""""" """ """ """ """"""""""""""" """ """ """"""

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm

X = [] #array for qx
Y = [] #array for qy
Z = [] #array for JDOS
Z1 = [] #array for spin -dependent scattering probability

#number of points on one warped hexagonal constant -energy contour
n = 1000

t = np.arange(0, 1, 1/n)
#define the middle warped hexagon(which has the maximal DOS)
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def kxmiddle(t):
return 5*np.cos(2*np.pi*t) + 0.8*np.cos (10*np.pi*t)

def kymiddle(t):
return 5*np.sin(2*np.pi*t) - 0.8*np.sin (10*np.pi*t)

plt.plot(kxmiddle(t), kymiddle(t), color = ’red’)
plt.axis(’scaled ’)
plt.show()

#define the inner warped hexagon
def kxinner(t):

return 0.95*(5* np.cos (2*np.pi*t) + 0.8*np.cos (10*np.pi*t))
def kyinner(t):

return 0.95*(5* np.sin (2*np.pi*t) - 0.8*np.sin (10*np.pi*t))
plt.plot(kxinner(t), kyinner(t), color = ’black ’)
plt.axis(’scaled ’)
plt.show()

#define the outer warped hexagon
def kxouter(t):

return 1.05*(5* np.cos (2*np.pi*t) + 0.8*np.cos (10*np.pi*t))
def kyouter(t):

return 1.05*(5* np.sin (2*np.pi*t) - 0.8*np.sin (10*np.pi*t))
plt.plot(kxouter(t), kyouter(t), color = ’black ’)
plt.axis(’scaled ’)
plt.show()

#define the inner inner warped hexagon
def kxinnerinner(t):

return 0.98*(5* np.cos (2*np.pi*t) + 0.8*np.cos (10*np.pi*t))
def kyinnerinner(t):

return 0.98*(5* np.sin (2*np.pi*t) - 0.8*np.sin (10*np.pi*t))
plt.plot(kxinnerinner(t), kyinnerinner(t), color = ’black’)
plt.axis(’scaled ’)
plt.show()

#define the outer outer warped hexagon
def kxouterouter(t):

return 1.02*(5* np.cos (2*np.pi*t) + 0.8*np.cos (10*np.pi*t))
def kyouterouter(t):

return 1.02*(5* np.sin (2*np.pi*t) - 0.8*np.sin (10*np.pi*t))
plt.plot(kxouterouter(t), kyouterouter(t), color = ’black’)
plt.axis(’scaled ’)
plt.show()

kax = np.zeros (5*n+414+312)
kay = np.zeros (5*n+414+312)
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#define an array of DOS
intensity = np.zeros (5*n+414+312)

#define Gaussian function
def gaussian(x,amp=1,mean=0,sigma =1):

return amp*np.exp(-(x-mean)**2/(2* sigma **2))

sz = np.zeros (5*n+0) #out -of-plane spin component
sp = np.zeros (5*n+0) #scattering potential

sigma1 = 40
#modeling the DOS distribution for the middle hexagon
for i in np.arange (0, n//6, 1):

t = i/n
kax[i] = kxmiddle(t)
kay[i] = kymiddle(t)
intensity[i] = gaussian(i,5,n//12, sigma1)

for i in np.arange (n//6, n//3, 1):
t = i/n
kax[i] = kxmiddle(t)
kay[i] = kymiddle(t)
intensity[i] = gaussian(i,5,n//4, sigma1)

for i in np.arange (n//3, n//2, 1):
t = i/n
kax[i] = kxmiddle(t)
kay[i] = kymiddle(t)
intensity[i] = gaussian(i,5,5*n//12, sigma1)

for i in np.arange (n//2, 2*n//3, 1):
t = i/n
kax[i] = kxmiddle(t)
kay[i] = kymiddle(t)
intensity[i] = gaussian(i,5,7*n//12, sigma1)

for i in np.arange (2*n//3, 5*n//6, 1):
t = i/n
kax[i] = kxmiddle(t)
kay[i] = kymiddle(t)
intensity[i] = gaussian(i,5,3*n//4, sigma1)

for i in np.arange (5*n//6, n, 1):
t = i/n
kax[i] = kxmiddle(t)
kay[i] = kymiddle(t)
intensity[i] = gaussian(i,5,11*n//12, sigma1)

#modeling the DOS distribution for the inner hexagon
for i in np.arange (n, n + n//6, 1):

tprime = (i-n)/n
kax[i] = kxinner(tprime)
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kay[i] = kyinner(tprime)
intensity[i] = gaussian(i,1,n + n//12, sigma1)

for i in np.arange (n + n//6, n + n//3, 1):
tprime = (i-n)/n
kax[i] = kxinner(tprime)
kay[i] = kyinner(tprime)
intensity[i] = gaussian(i,1,n + n//4, sigma1)

for i in np.arange (n + n//3, n + n//2, 1):
tprime = (i-n)/n
kax[i] = kxinner(tprime)
kay[i] = kyinner(tprime)
intensity[i] = gaussian(i,1,n + 5*n//12, sigma1)

for i in np.arange (n + n//2, n + 2*n//3, 1):
tprime = (i-n)/n
kax[i] = kxinner(tprime)
kay[i] = kyinner(tprime)
intensity[i] = gaussian(i,1,n + 7*n//12, sigma1)

for i in np.arange (n + 2*n//3, n + 5*n//6, 1):
tprime = (i-n)/n
kax[i] = kxinner(tprime)
kay[i] = kyinner(tprime)
intensity[i] = gaussian(i,1,n + 3*n//4, sigma1)

for i in np.arange (n + 5*n//6, 2*n, 1):
tprime = (i-n)/n
kax[i] = kxinner(tprime)
kay[i] = kyinner(tprime)
intensity[i] = gaussian(i,1,n + 11*n//12, sigma1)

#modeling the DOS distribution for the outer hexagon
for i in np.arange (2*n, 2*n + n//6, 1):

tprime = (i-2*n)/n
kax[i] = kxouter(tprime)
kay[i] = kyouter(tprime)
intensity[i] = gaussian(i,1,2*n + n//12, sigma1)

for i in np.arange (2*n + n//6, 2*n + n//3, 1):
tprime = (i-2*n)/n
kax[i] = kxouter(tprime)
kay[i] = kyouter(tprime)
intensity[i] = gaussian(i,1,2*n + n//4, sigma1)

for i in np.arange (2*n + n//3, 2*n + n//2, 1):
tprime = (i-2*n)/n
kax[i] = kxouter(tprime)
kay[i] = kyouter(tprime)
intensity[i] = gaussian(i,1,2*n + 5*n//12, sigma1)

for i in np.arange (2*n + n//2, 2*n + 2*n//3, 1):
tprime = (i-2*n)/n
kax[i] = kxouter(tprime)
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kay[i] = kyouter(tprime)
intensity[i] = gaussian(i,1,2*n + 7*n//12, sigma1)

for i in np.arange (2*n + 2*n//3, 2*n + 5*n//6, 1):
tprime = (i-2*n)/n
kax[i] = kxouter(tprime)
kay[i] = kyouter(tprime)
intensity[i] = gaussian(i,1,2*n + 3*n//4, sigma1)

for i in np.arange (2*n + 5*n//6, 3*n, 1):
tprime = (i-2*n)/n
kax[i] = kxouter(tprime)
kay[i] = kyouter(tprime)
intensity[i] = gaussian(i,1,2*n + 11*n//12, sigma1)

#modeling the DOS distribution for the inner inner hexagon
for i in np.arange (3*n, 3*n + n//6, 1):

tprime = (i-3*n)/n
kax[i] = kxinnerinner(tprime)
kay[i] = kyinnerinner(tprime)
intensity[i] = gaussian(i,3,3*n + n//12, sigma1)

for i in np.arange (3*n + n//6, 3*n + n//3, 1):
tprime = (i-3*n)/n
kax[i] = kxinnerinner(tprime)
kay[i] = kyinnerinner(tprime)
intensity[i] = gaussian(i,3,3*n + n//4, sigma1)

for i in np.arange (3*n + n//3, 3*n + n//2, 1):
tprime = (i-3*n)/n
kax[i] = kxinnerinner(tprime)
kay[i] = kyinnerinner(tprime)
intensity[i] = gaussian(i,3,3*n + 5*n//12, sigma1)

for i in np.arange (3*n + n//2, 3*n + 2*n//3, 1):
tprime = (i-3*n)/n
kax[i] = kxinnerinner(tprime)
kay[i] = kyinnerinner(tprime)
intensity[i] = gaussian(i,3,3*n + 7*n//12, sigma1)

for i in np.arange (3*n + 2*n//3, 3*n + 5*n//6, 1):
tprime = (i-3*n)/n
kax[i] = kxinnerinner(tprime)
kay[i] = kyinnerinner(tprime)
intensity[i] = gaussian(i,3,3*n + 3*n//4, sigma1)

for i in np.arange (3*n + 5*n//6, 4*n, 1):
tprime = (i-3*n)/n
kax[i] = kxinnerinner(tprime)
kay[i] = kyinnerinner(tprime)
intensity[i] = gaussian(i,3,3*n + 11*n//12, sigma1)

#modeling the DOS distribution for the outer outer hexagon
for i in np.arange (4*n, 4*n + n//6, 1):
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tprime = (i-4*n)/n
kax[i] = kxouterouter(tprime)
kay[i] = kyouterouter(tprime)
intensity[i] = gaussian(i,3,4*n + n//12, sigma1)

for i in np.arange (4*n + n//6, 4*n + n//3, 1):
tprime = (i-4*n)/n
kax[i] = kxouterouter(tprime)
kay[i] = kyouterouter(tprime)
intensity[i] = gaussian(i,3,4*n + n//4, sigma1)

for i in np.arange (4*n + n//3, 4*n + n//2, 1):
tprime = (i-4*n)/n
kax[i] = kxouterouter(tprime)
kay[i] = kyouterouter(tprime)
intensity[i] = gaussian(i,3,4*n + 5*n//12, sigma1)

for i in np.arange (4*n + n//2, 4*n + 2*n//3, 1):
tprime = (i-4*n)/n
kax[i] = kxouterouter(tprime)
kay[i] = kyouterouter(tprime)
intensity[i] = gaussian(i,3,4*n + 7*n//12, sigma1)

for i in np.arange (4*n + 2*n//3, 4*n + 5*n//6, 1):
tprime = (i-4*n)/n
kax[i] = kxouterouter(tprime)
kay[i] = kyouterouter(tprime)
intensity[i] = gaussian(i,3,4*n + 3*n//4, sigma1)

for i in np.arange (4*n + 5*n//6, 5*n, 1):
tprime = (i-4*n)/n
kax[i] = kxouterouter(tprime)
kay[i] = kyouterouter(tprime)
intensity[i] = gaussian(i,3,4*n + 11*n//12, sigma1)

#define bulk conduction band points
sigma2 = 1
for i in np.arange (5*n, 5*n+40, 1):

kax[i] = 1.6*np.cos((i-5*n)*np.pi/20)
kay[i] = 1.6*np.sin((i-5*n)*np.pi/20)
intensity[i] = gaussian (1.1,3, 0, sigma2)

for i in np.arange (5*n+40, 5*n+78, 1):
kax[i] = 1.5*np.cos((i-5*n-40)*np.pi/19)
kay[i] = 1.5*np.sin((i-5*n-40)*np.pi/19)
intensity[i] = gaussian (1.04,3, 0, sigma2)

for i in np.arange (5*n+78, 5*n+114, 1):
kax[i] = 1.4*np.cos((i-5*n-78)*np.pi/18)
kay[i] = 1.4*np.sin((i-5*n-78)*np.pi/18)
intensity[i] = gaussian (0.98,3, 0, sigma2)

for i in np.arange (5*n+114, 5*n+148, 1):
kax[i] = 1.3*np.cos((i-5*n-114)*np.pi/17)
kay[i] = 1.3*np.sin((i-5*n-114)*np.pi/17)
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intensity[i] = gaussian (0.92,3, 0, sigma2)
for i in np.arange (5*n+148, 5*n+180, 1):

kax[i] = 1.2*np.cos((i-5*n-148)*np.pi/16)
kay[i] = 1.2*np.sin((i-5*n-148)*np.pi/16)
intensity[i] = gaussian (0.86,3, 0, sigma2)

for i in np.arange (5*n+180, 5*n+210, 1):
kax[i] = 1.1*np.cos((i-5*n-180)*np.pi/15)
kay[i] = 1.1*np.sin((i-5*n-180)*np.pi/15)
intensity[i] = gaussian (0.8,3, 0, sigma2)

for i in np.arange (5*n+210, 5*n+238, 1):
kax[i] = 1*np.cos((i-5*n-210)*np.pi/14)
kay[i] = 1*np.sin((i-5*n-210)*np.pi/14)
intensity[i] = gaussian (0.74,3, 0, sigma2)

for i in np.arange (5*n+238, 5*n+264, 1):
kax[i] = 0.9*np.cos((i-5*n-238)*np.pi/13)
kay[i] = 0.9*np.sin((i-5*n-238)*np.pi/13)
intensity[i] = gaussian (0.68,3, 0, sigma2)

for i in np.arange (5*n+264, 5*n+288, 1):
kax[i] = 0.8*np.cos((i-5*n-264)*np.pi/12)
kay[i] = 0.8*np.sin((i-5*n-264)*np.pi/12)
intensity[i] = gaussian (0.62,3, 0, sigma2)

for i in np.arange (5*n+288, 5*n+310, 1):
kax[i] = 0.7*np.cos((i-5*n-288)*np.pi/11)
kay[i] = 0.7*np.sin((i-5*n-288)*np.pi/11)
intensity[i] = gaussian (0.56,3, 0, sigma2)

for i in np.arange (5*n+310, 5*n+330, 1):
kax[i] = 0.6*np.cos((i-5*n-310)*np.pi/10)
kay[i] = 0.6*np.sin((i-5*n-310)*np.pi/10)
intensity[i] = gaussian (0.5,3, 0, sigma2)

for i in np.arange (5*n+330, 5*n+348, 1):
kax[i] = 0.5*np.cos((i-5*n-330)*np.pi/9)
kay[i] = 0.5*np.sin((i-5*n-330)*np.pi/9)
intensity[i] = gaussian (0.44,3, 0, sigma2)

for i in np.arange (5*n+348, 5*n+364, 1):
kax[i] = 0.4*np.cos((i-5*n-348)*np.pi/8)
kay[i] = 0.4*np.sin((i-5*n-348)*np.pi/8)
intensity[i] = gaussian (0.38,3, 0, sigma2)

for i in np.arange (5*n+364, 5*n+378, 1):
kax[i] = 0.33*np.cos((i-5*n-364)*np.pi/7)
kay[i] = 0.33*np.sin((i-5*n-364)*np.pi/7)
intensity[i] = gaussian (0.32,3, 0, sigma2)

for i in np.arange (5*n+378, 5*n+390, 1):
kax[i] = 0.26*np.cos((i-5*n-378)*np.pi/6)
kay[i] = 0.26*np.sin((i-5*n-378)*np.pi/6)
intensity[i] = gaussian (0.26,3, 0, sigma2)

for i in np.arange (5*n+390, 5*n+400, 1):
kax[i] = 0.2*np.cos((i-5*n-390)*np.pi/5)
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kay[i] = 0.2*np.sin((i-5*n-390)*np.pi/5)
intensity[i] = gaussian (0.2,3, 0, sigma2)

for i in np.arange (5*n+400, 5*n+408, 1):
kax[i] = 0.14*np.cos((i-5*n-400)*np.pi/4)
kay[i] = 0.14*np.sin((i-5*n-400)*np.pi/4)
intensity[i] = gaussian (0.14,3, 0, sigma2)

for i in np.arange (5*n+408, 5*n+414, 1):
kax[i] = 0.05*np.cos((i-5*n-408)*np.pi/3)
kay[i] = 0.05*np.sin((i-5*n-408)*np.pi/3)
intensity[i] = gaussian (0.05,3, 0, sigma2)

#bulk conduction band points in Gamma -M direction
sigma3 = 2
for i in np.arange (5*n+414, 5*n+414+6 , 1):

kax[i] = 1.9*np.cos((i-5*n-414)*np.pi/3)
kay[i] = 1.9*np.sin((i-5*n-414)*np.pi/3)
intensity[i] = gaussian (1.07,2,0, sigma3)

for i in np.arange (5*n+414+6 , 5*n+414+12 , 1):
kax[i] = 1.9*np.cos((i-5*n-414 -6)*np.pi/3 + 2*np.pi/n)
kay[i] = 1.9*np.sin((i-5*n-414 -6)*np.pi/3 + 2*np.pi/n)
intensity[i] = gaussian (1.07,2,0, sigma3)

for i in np.arange (5*n+414+12 , 5*n+414+18 , 1):
kax[i] = 1.9*np.cos((i-5*n-414 -12)*np.pi/3 - 2*np.pi/n)
kay[i] = 1.9*np.sin((i-5*n-414 -12)*np.pi/3 - 2*np.pi/n)
intensity[i] = gaussian (1.07,2,0, sigma3)

for i in np.arange (5*n+414+18 , 5*n+414+24 , 1):
kax[i] = 1.9*np.cos((i-5*n-414 -18)*np.pi/3 + 2*2*np.pi/n)
kay[i] = 1.9*np.sin((i-5*n-414 -18)*np.pi/3 + 2*2*np.pi/n)
intensity[i] = gaussian (1.07,2,0, sigma3)

for i in np.arange (5*n+414+24 , 5*n+414+30 , 1):
kax[i] = 1.9*np.cos((i-5*n-414 -24)*np.pi/3 - 2*2*np.pi/n)
kay[i] = 1.9*np.sin((i-5*n-414 -24)*np.pi/3 - 2*2*np.pi/n)
intensity[i] = gaussian (1.07,2,0, sigma3)

for i in np.arange (5*n+414+30 , 5*n+414+36 , 1):
kax[i] = 1.9*np.cos((i-5*n-414 -30)*np.pi/3 + 9*np.pi/n)
kay[i] = 1.9*np.sin((i-5*n-414 -30)*np.pi/3 + 9*np.pi/n)
intensity[i] = gaussian (1.07,2,0, sigma3)

for i in np.arange (5*n+414+36 , 5*n+414+42 , 1):
kax[i] = 1.9*np.cos((i-5*n-414 -36)*np.pi/3 - 9*np.pi/n)
kay[i] = 1.9*np.sin((i-5*n-414 -36)*np.pi/3 - 9*np.pi/n)
intensity[i] = gaussian (1.07,2,0, sigma3)

for i in np.arange (5*n+414+42 , 5*n+414+48 , 1):
kax[i] = 1.7*np.cos((i-5*n-414 -42)*np.pi/3 + 6*2*np.pi/n)
kay[i] = 1.7*np.sin((i-5*n-414 -42)*np.pi/3 + 6*2*np.pi/n)
intensity[i] = gaussian (1.065,2,0, sigma3)

for i in np.arange (5*n+414+48 , 5*n+414+54 , 1):
kax[i] = 1.7*np.cos((i-5*n-414 -48)*np.pi/3 - 6*2*np.pi/n)
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kay[i] = 1.7*np.sin((i-5*n-414 -48)*np.pi/3 - 6*2*np.pi/n)
intensity[i] = gaussian (1.065,2,0, sigma3)

for i in np.arange (5*n+414+54 , 5*n+414+60 , 1):
kax[i] = 2.1*np.cos((i-5*n-414 -54)*np.pi/3)
kay[i] = 2.1*np.sin((i-5*n-414 -54)*np.pi/3)
intensity[i] = gaussian (1.11,2,0, sigma3)

for i in np.arange (5*n+414+60 , 5*n+414+66 , 1):
kax[i] = 2.1*np.cos((i-5*n-414 -60)*np.pi/3 + 2*np.pi/n)
kay[i] = 2.1*np.sin((i-5*n-414 -60)*np.pi/3 + 2*np.pi/n)
intensity[i] = gaussian (1.11,2,0, sigma3)

for i in np.arange (5*n+414+66 , 5*n+414+72 , 1):
kax[i] = 2.1*np.cos((i-5*n-414 -66)*np.pi/3 - 2*np.pi/n)
kay[i] = 2.1*np.sin((i-5*n-414 -66)*np.pi/3 - 2*np.pi/n)
intensity[i] = gaussian (1.11,2,0, sigma3)

for i in np.arange (5*n+414+72 , 5*n+414+78 , 1):
kax[i] = 2.1*np.cos((i-5*n-414 -72)*np.pi/3 + 2*2*np.pi/n)
kay[i] = 2.1*np.sin((i-5*n-414 -72)*np.pi/3 + 2*2*np.pi/n)
intensity[i] = gaussian (1.11,2,0, sigma3)

for i in np.arange (5*n+414+78 , 5*n+414+84 , 1):
kax[i] = 2.1*np.cos((i-5*n-414 -78)*np.pi/3 - 2*2*np.pi/n)
kay[i] = 2.1*np.sin((i-5*n-414 -78)*np.pi/3 - 2*2*np.pi/n)
intensity[i] = gaussian (1.11,2,0, sigma3)

for i in np.arange (5*n+414+84 , 5*n+414+90 , 1):
kax[i] = 2.1*np.cos((i-5*n-414 -84)*np.pi/3 + 6*np.pi/n)
kay[i] = 2.1*np.sin((i-5*n-414 -84)*np.pi/3 + 6*np.pi/n)
intensity[i] = gaussian (1.11,2,0, sigma3)

for i in np.arange (5*n+414+90 , 5*n+414+96 , 1):
kax[i] = 2.1*np.cos((i-5*n-414 -90)*np.pi/3 - 6*np.pi/n)
kay[i] = 2.1*np.sin((i-5*n-414 -90)*np.pi/3 - 6*np.pi/n)
intensity[i] = gaussian (1.11,2,0, sigma3)

for i in np.arange (5*n+414+96 , 5*n+414+102 , 1):
kax[i] = 2.4*np.cos((i-5*n-414 -96)*np.pi/3)
kay[i] = 2.4*np.sin((i-5*n-414 -96)*np.pi/3)
intensity[i] = gaussian (1.15,2,0, sigma3)

for i in np.arange (5*n+414+102 , 5*n+414+108 , 1):
kax[i] = 2.4*np.cos((i-5*n-414 -102)*np.pi/3 + 2*np.pi/n)
kay[i] = 2.4*np.sin((i-5*n-414 -102)*np.pi/3 + 2*np.pi/n)
intensity[i] = gaussian (1.15,2,0, sigma3)

for i in np.arange (5*n+414+108 , 5*n+414+114 , 1):
kax[i] = 2.4*np.cos((i-5*n-414 -108)*np.pi/3 - 2*np.pi/n)
kay[i] = 2.4*np.sin((i-5*n-414 -108)*np.pi/3 - 2*np.pi/n)
intensity[i] = gaussian (1.15,2,0, sigma3)

for i in np.arange (5*n+414+114 , 5*n+414+120 , 1):
kax[i] = 2.4*np.cos((i-5*n-414 -114)*np.pi/3 + 5.5*np.pi/n)
kay[i] = 2.4*np.sin((i-5*n-414 -114)*np.pi/3 + 5.5*np.pi/n)
intensity[i] = gaussian (1.15,2,0, sigma3)

for i in np.arange (5*n+414+120 , 5*n+414+126 , 1):
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kax[i] = 2.4*np.cos((i-5*n-414 -120)*np.pi/3 - 5.5*np.pi/n)
kay[i] = 2.4*np.sin((i-5*n-414 -120)*np.pi/3 - 5.5*np.pi/n)
intensity[i] = gaussian (1.15,2,0, sigma3)

for i in np.arange (5*n+414+126 , 5*n+414+132 , 1):
kax[i] = 2.6*np.cos((i-5*n-414 -126)*np.pi/3)
kay[i] = 2.6*np.sin((i-5*n-414 -126)*np.pi/3)
intensity[i] = gaussian (1.19,2,0, sigma3)

for i in np.arange (5*n+414+132 , 5*n+414+138 , 1):
kax[i] = 2.6*np.cos((i-5*n-414 -132)*np.pi/3 + 2*np.pi/n)
kay[i] = 2.6*np.sin((i-5*n-414 -132)*np.pi/3 + 2*np.pi/n)
intensity[i] = gaussian (1.19,2,0, sigma3)

for i in np.arange (5*n+414+138 , 5*n+414+144 , 1):
kax[i] = 2.6*np.cos((i-5*n-414 -138)*np.pi/3 - 2*np.pi/n)
kay[i] = 2.6*np.sin((i-5*n-414 -138)*np.pi/3 - 2*np.pi/n)
intensity[i] = gaussian (1.19,2,0, sigma3)

for i in np.arange (5*n+414+144 , 5*n+414+150 , 1):
kax[i] = 2.6*np.cos((i-5*n-414 -144)*np.pi/3 + 4.5*np.pi/n)
kay[i] = 2.6*np.sin((i-5*n-414 -144)*np.pi/3 + 4.5*np.pi/n)
intensity[i] = gaussian (1.19,2,0, sigma3)

for i in np.arange (5*n+414+150 , 5*n+414+156 , 1):
kax[i] = 2.6*np.cos((i-5*n-414 -150)*np.pi/3 - 4.5*np.pi/n)
kay[i] = 2.6*np.sin((i-5*n-414 -150)*np.pi/3 - 4.5*np.pi/n)
intensity[i] = gaussian (1.19,2,0, sigma3)

for i in np.arange (5*n+414+156 , 5*n+414+162 , 1):
kax[i] = 2.9*np.cos((i-5*n-414 -156)*np.pi/3)
kay[i] = 2.9*np.sin((i-5*n-414 -156)*np.pi/3)
intensity[i] = gaussian (1.23,2,0, sigma3)

for i in np.arange (5*n+414+162 , 5*n+414+168 , 1):
kax[i] = 2.9*np.cos((i-5*n-414 -162)*np.pi/3 + 2*np.pi/n)
kay[i] = 2.9*np.sin((i-5*n-414 -162)*np.pi/3 + 2*np.pi/n)
intensity[i] = gaussian (1.23,2,0, sigma3)

for i in np.arange (5*n+414+168 , 5*n+414+174 , 1):
kax[i] = 2.9*np.cos((i-5*n-414 -168)*np.pi/3 - 2*np.pi/n)
kay[i] = 2.9*np.sin((i-5*n-414 -168)*np.pi/3 - 2*np.pi/n)
intensity[i] = gaussian (1.23,2,0, sigma3)

for i in np.arange (5*n+414+174 , 5*n+414+180 , 1):
kax[i] = 2.9*np.cos((i-5*n-414 -174)*np.pi/3 + 3.5*np.pi/n)
kay[i] = 2.9*np.sin((i-5*n-414 -174)*np.pi/3 + 3.5*np.pi/n)
intensity[i] = gaussian (1.23,2,0, sigma3)

for i in np.arange (5*n+414+180 , 5*n+414+186 , 1):
kax[i] = 2.9*np.cos((i-5*n-414 -180)*np.pi/3 - 3.5*np.pi/n)
kay[i] = 2.9*np.sin((i-5*n-414 -180)*np.pi/3 - 3.5*np.pi/n)
intensity[i] = gaussian (1.23,2,0, sigma3)

for i in np.arange (5*n+414+186 , 5*n+414+192 , 1):
kax[i] = 3.1*np.cos((i-5*n-414 -186)*np.pi/3)
kay[i] = 3.1*np.sin((i-5*n-414 -186)*np.pi/3)
intensity[i] = gaussian (1.23,2,0, sigma3)
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for i in np.arange (5*n+414+192 , 5*n+414+198 , 1):
kax[i] = 3.1*np.cos((i-5*n-414 -192)*np.pi/3 + 3*np.pi/n)
kay[i] = 3.1*np.sin((i-5*n-414 -192)*np.pi/3 + 3*np.pi/n)
intensity[i] = gaussian (1.23,2,0, sigma3)

for i in np.arange (5*n+414+198 , 5*n+414+204 , 1):
kax[i] = 3.1*np.cos((i-5*n-414 -198)*np.pi/3 - 3*np.pi/n)
kay[i] = 3.1*np.sin((i-5*n-414 -198)*np.pi/3 - 3*np.pi/n)
intensity[i] = gaussian (1.23,2,0, sigma3)

for i in np.arange (5*n+414+204 , 5*n+414+210 , 1):
kax[i] = 3.4*np.cos((i-5*n-414 -204)*np.pi/3)
kay[i] = 3.4*np.sin((i-5*n-414 -204)*np.pi/3)
intensity[i] = gaussian (1.27,2,0, sigma3)

for i in np.arange (5*n+414+210 , 5*n+414+216 , 1):
kax[i] = 3.4*np.cos((i-5*n-414 -210)*np.pi/3 + 2.5*np.pi/n)
kay[i] = 3.4*np.sin((i-5*n-414 -210)*np.pi/3 + 2.5*np.pi/n)
intensity[i] = gaussian (1.27,2,0, sigma3)

for i in np.arange (5*n+414+216 , 5*n+414+222 , 1):
kax[i] = 3.4*np.cos((i-5*n-414 -216)*np.pi/3 - 2.5*np.pi/n)
kay[i] = 3.4*np.sin((i-5*n-414 -216)*np.pi/3 - 2.5*np.pi/n)
intensity[i] = gaussian (1.27,2,0, sigma3)

for i in np.arange (5*n+414+222 , 5*n+414+228 , 1):
kax[i] = 3.7*np.cos((i-5*n-414 -222)*np.pi/3)
kay[i] = 3.7*np.sin((i-5*n-414 -222)*np.pi/3)
intensity[i] = gaussian (1.31,2,0, sigma3)

for i in np.arange (5*n+414+228 , 5*n+414+234 , 1):
kax[i] = 3.7*np.cos((i-5*n-414 -228)*np.pi/3 + 2*np.pi/n)
kay[i] = 3.7*np.sin((i-5*n-414 -228)*np.pi/3 + 2*np.pi/n)
intensity[i] = gaussian (1.31,2,0, sigma3)

for i in np.arange (5*n+414+234 , 5*n+414+240 , 1):
kax[i] = 3.7*np.cos((i-5*n-414 -234)*np.pi/3 - 2*np.pi/n)
kay[i] = 3.7*np.sin((i-5*n-414 -234)*np.pi/3 - 2*np.pi/n)
intensity[i] = gaussian (1.31,2,0, sigma3)

for i in np.arange (5*n+414+240 , 5*n+414+246 , 1):
kax[i] = 4*np.cos((i-5*n-414 -240)*np.pi/3)
kay[i] = 4*np.sin((i-5*n-414 -240)*np.pi/3)
intensity[i] = gaussian (1.35,2,0, sigma3)

for i in np.arange (5*n+414+246 , 5*n+414+252 , 1):
kax[i] = 4*np.cos((i-5*n-414 -246)*np.pi/3 + 1.5*np.pi/n)
kay[i] = 4*np.sin((i-5*n-414 -246)*np.pi/3 + 1.5*np.pi/n)
intensity[i] = gaussian (1.35,2,0, sigma3)

for i in np.arange (5*n+414+252 , 5*n+414+258 , 1):
kax[i] = 4*np.cos((i-5*n-414 -252)*np.pi/3 - 1.5*np.pi/n)
kay[i] = 4*np.sin((i-5*n-414 -252)*np.pi/3 - 1.5*np.pi/n)
intensity[i] = gaussian (1.35,2,0, sigma3)

for i in np.arange (5*n+414+258 , 5*n+414+264 , 1):
kax[i] = 4.3*np.cos((i-5*n-414 -258)*np.pi/3)
kay[i] = 4.3*np.sin((i-5*n-414 -258)*np.pi/3)
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intensity[i] = gaussian (1.39,2,0, sigma3)
for i in np.arange (5*n+414+264 , 5*n+414+270 , 1):

kax[i] = 4.3*np.cos((i-5*n-414 -264)*np.pi/3 + 1.1*np.pi/n)
kay[i] = 4.3*np.sin((i-5*n-414 -264)*np.pi/3 + 1.1*np.pi/n)
intensity[i] = gaussian (1.39,2,0, sigma3)

for i in np.arange (5*n+414+270 , 5*n+414+276 , 1):
kax[i] = 4.3*np.cos((i-5*n-414 -270)*np.pi/3 - 1.1*np.pi/n)
kay[i] = 4.3*np.sin((i-5*n-414 -270)*np.pi/3 - 1.1*np.pi/n)
intensity[i] = gaussian (1.39,2,0, sigma3)

for i in np.arange (5*n+414+276 , 5*n+414+282 , 1):
kax[i] = 4.6*np.cos((i-5*n-414 -276)*np.pi/3)
kay[i] = 4.6*np.sin((i-5*n-414 -276)*np.pi/3)
intensity[i] = gaussian (1.43,2,0, sigma3)

for i in np.arange (5*n+414+282 , 5*n+414+288 , 1):
kax[i] = 4.6*np.cos((i-5*n-414 -282)*np.pi/3 + 0.7*np.pi/n)
kay[i] = 4.6*np.sin((i-5*n-414 -282)*np.pi/3 + 0.7*np.pi/n)
intensity[i] = gaussian (1.43,2,0, sigma3)

for i in np.arange (5*n+414+288 , 5*n+414+294 , 1):
kax[i] = 4.6*np.cos((i-5*n-414 -288)*np.pi/3 - 0.7*np.pi/n)
kay[i] = 4.6*np.sin((i-5*n-414 -288)*np.pi/3 - 0.7*np.pi/n)
intensity[i] = gaussian (1.43,2,0, sigma3)

for i in np.arange (5*n+414+294 , 5*n+414+300 , 1):
kax[i] = 4.9*np.cos((i-5*n-414 -294)*np.pi/3)
kay[i] = 4.9*np.sin((i-5*n-414 -294)*np.pi/3)
intensity[i] = gaussian (1.46,2,0, sigma3)

for i in np.arange (5*n+414+300 , 5*n+414+306 , 1):
kax[i] = 5.2*np.cos((i-5*n-414 -300)*np.pi/3)
kay[i] = 5.2*np.sin((i-5*n-414 -300)*np.pi/3)
intensity[i] = gaussian (1.48,2,0, sigma3)

for i in np.arange (5*n+414+306 , 5*n+414+312 , 1):
kax[i] = 5.5*np.cos((i-5*n-414 -306)*np.pi/3)
kay[i] = 5.5*np.sin((i-5*n-414 -306)*np.pi/3)
intensity[i] = gaussian (1.5,2,0, sigma3)

a = 0.6
def cosine(x,mean =0):

return a*np.cos((x-mean)*np.pi/(n//6))
def expon(x,mean =0):

return np.exp(-np.abs((x-mean))/(n//12))
#modeling the scattering potential
for i in np.arange (0, n//4, 1):

sp[i] = expon(i,n//12)
for i in np.arange (n//4, 7*n//12, 1):

sp[i] = expon(i,5*n//12)
for i in np.arange (7*n//12, 11*n//12, 1):

sp[i] = expon(i,3*n//4)
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for i in np.arange (11*n//12, n+n//4, 1):
sp[i] = expon(i,n+n//12)

for i in np.arange (n+n//4, n+7*n//12, 1):
sp[i] = expon(i,n+5*n//12)

for i in np.arange (n+7*n//12, n+11*n//12, 1):
sp[i] = expon(i,n+3*n//4)

for i in np.arange (n+11*n//12, 2*n+n//4, 1):
sp[i] = expon(i,2*n+n//12)

for i in np.arange (2*n+n//4, 2*n+7*n//12, 1):
sp[i] = expon(i,2*n+5*n//12)

for i in np.arange (2*n+7*n//12, 2*n+11*n//12, 1):
sp[i] = expon(i,2*n+3*n//4)

for i in np.arange (2*n+11*n//12, 3*n+n//4, 1):
sp[i] = expon(i,3*n+n//12)

for i in np.arange (3*n+n//4, 3*n+7*n//12, 1):
sp[i] = expon(i,3*n+5*n//12)

for i in np.arange (3*n+7*n//12, 3*n+11*n//12, 1):
sp[i] = expon(i,3*n+3*n//4)

for i in np.arange (3*n+11*n//12, 4*n+n//4, 1):
sp[i] = expon(i,4*n+n//12)

for i in np.arange (4*n+n//4, 4*n+7*n//12, 1):
sp[i] = expon(i,4*n+5*n//12)

for i in np.arange (4*n+7*n//12, 4*n+11*n//12, 1):
sp[i] = expon(i,4*n+3*n//4)

for i in np.arange (4*n+11*n//12, 5*n, 1):
sp[i] = expon(i,5*n+n//12)

#modeling the out -of -plane spin texture for the middle hexagon
for i in np.arange (0, n//6, 1):

sz[i] = cosine(i,n//12)
for i in np.arange (n//6, n//3, 1):

sz[i] = -cosine(i,n//4)
for i in np.arange (n//3, n//2, 1):

sz[i] = cosine(i,5*n//12)
for i in np.arange (n//2, 2*n//3, 1):

sz[i] = -cosine(i,7*n//12)
for i in np.arange (2*n//3, 5*n//6, 1):

sz[i] = cosine(i,3*n//4)
for i in np.arange (5*n//6, n, 1):

sz[i] = -cosine(i,11*n//12)
#modeling the out -of -plane spin texture for the inner hexagon
for i in np.arange (n, n+n//6, 1):

sz[i] = cosine(i,n+n//12)
for i in np.arange (n+n//6, n+n//3, 1):
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sz[i] = -cosine(i,n+n//4)
for i in np.arange (n+n//3,n+n//2, 1):

sz[i] = cosine(i,n+5*n//12)
for i in np.arange (n+n//2, n+2*n//3, 1):

sz[i] = -cosine(i,n+7*n//12)
for i in np.arange (n+2*n//3, n+5*n//6, 1):

sz[i] = cosine(i,n+3*n//4)
for i in np.arange (n+5*n//6, 2*n, 1):

sz[i] = -cosine(i,n+11*n//12)
#modeling the out -of -plane spin texture for the outer hexagon
for i in np.arange (2*n, 2*n+n//6, 1):

sz[i] = cosine(i,2*n+n//12)
for i in np.arange (2*n+n//6, 2*n+n//3, 1):

sz[i] = -cosine(i,2*n+n//4)
for i in np.arange (2*n+n//3, 2*n+n//2, 1):

sz[i] = cosine(i,2*n+5*n//12)
for i in np.arange (2*n+n//2, 2*n+2*n//3, 1):

sz[i] = -cosine(i,2*n+7*n//12)
for i in np.arange (2*n+2*n//3, 2*n+5*n//6, 1):

sz[i] = cosine(i,2*n+3*n//4)
for i in np.arange (2*n+5*n//6, 3*n, 1):

sz[i] = -cosine(i,2*n+11*n//12)
#modeling the out -of -plane spin texture for the inner inner hexagon
for i in np.arange (3*n, 3*n+n//6, 1):

sz[i] = cosine(i,3*n+n//12)
for i in np.arange (3*n+n//6, 3*n+n//3, 1):

sz[i] = -cosine(i,3*n+n//4)
for i in np.arange (3*n+n//3, 3*n+n//2, 1):

sz[i] = cosine(i,3*n+5*n//12)
for i in np.arange (3*n+n//2, 3*n+2*n//3, 1):

sz[i] = -cosine(i,3*n+7*n//12)
for i in np.arange (3*n+2*n//3, 3*n+5*n//6, 1):

sz[i] = cosine(i,3*n+3*n//4)
for i in np.arange (3*n+5*n//6, 4*n, 1):

sz[i] = -cosine(i,3*n+11*n//12)
#modeling the out -of -plane spin texture for the outer outer hexagon
for i in np.arange (4*n, 4*n+n//6, 1):

sz[i] = cosine(i,4*n+n//12)
for i in np.arange (4*n+n//6, 4*n+n//3, 1):

sz[i] = -cosine(i,4*n+n//4)
for i in np.arange (4*n+n//3, 4*n+n//2, 1):

sz[i] = cosine(i,4*n+5*n//12)
for i in np.arange (4*n+n//2, 4*n+2*n//3, 1):

sz[i] = -cosine(i,4*n+7*n//12)
for i in np.arange (4*n+2*n//3, 4*n+5*n//6, 1):

sz[i] = cosine(i,4*n+3*n//4)
for i in np.arange (4*n+5*n//6, 5*n, 1):
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sz[i] = -cosine(i,4*n+11*n//12)

#plot the constant -energy contour
fig = plt.figure(figsize =(6 ,6))
ax1 = fig.add_subplot (111)
ax1.set_aspect(’equal’)
sc = plt.scatter(kax [:5*n],kay [:5*n], c=intensity [:5*n], cmap=’BuGn

’, marker=’o’, s=1)
sc1 = plt.scatter(kax [5*n+414:5*n+414+312] , kay [5*n+414:5*n

+414+312] ,c=intensity [5*n+414:5*n+414+312] , cmap=’BuGn’, vmin=0,
vmax=5, marker=’o’, s=40)

sc2 = plt.scatter(kax [5*n:5*n+414] ,kay[5*n:5*n+414], c=intensity [5*
n:5*n+414], cmap=’BuGn’, vmin=0, vmax=5, marker=’o’, s=50)

plt.axis(’off’)
plt.show()

#JDOS and SSP calculations

#applying the scattering potential
for i in np.arange (0, 5*n+0, 1):

intensity[i] = intensity[i]*sp[i]*5

#only surface state scattering
for i in np.arange (0, 5*n+0, 1):

kx1 = kax[i]
ky1 = kay[i]
sz1 = sz[i]
intensity1 = intensity[i]
if kx1 > 0:

theta1 = np.arctan(ky1/kx1)
else:

theta1 = np.pi + np.arctan(ky1/kx1)
for j in np.arange (0, 5*n, 1):

kx2 = kax[j]
ky2 = kay[j]
sz2 = sz[j]
intensity2 = intensity[j]
qx = kx2 - kx1
qy = ky2 - ky1
if kx2 > 0:

theta2 = np.arctan(ky2/kx2)
else:

theta2 = np.pi + np.arctan(ky2/kx2)
for_jdos = 1

#suppressed backscattering
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for_ssp = 0.5*(1/2*(1 + np.cos(theta2 -theta1)) + 1/2*a*a*(1
+ np.cos (3* theta2)*np.cos(3* theta1) + sz1*sz2/a/a))/(1+a*a)*2

z = intensity1*for_jdos*intensity2
z1 = intensity1*for_ssp*intensity2
X.append(qx)
Y.append(qy)
Z.append(z)
Z1.append(z1)

#surface -to -bulk scattering
for i in np.arange (0, 5*n, 1):

kx1 = kax[i]
ky1 = kay[i]
intensity1 = intensity[i]
if kx1 > 0:

theta1 = np.arctan(ky1/kx1)
else:

theta1 = np.pi + np.arctan(ky1/kx1)
for j in np.arange (5*n, 5*n+414+312 , 1):

kx2 = kax[j]
ky2 = kay[j]
intensity2 = intensity[j]
qx = kx2 - kx1
qy = ky2 - ky1
if kx2 > 0:

theta2 = np.arctan(ky2/kx2)
else:

theta2 = np.pi + np.arctan(ky2/kx2)

for_jdos = 1

#allowed backscattering
for_ssp = 1

z = intensity1*for_jdos*intensity2
z1 = intensity1*for_ssp*intensity2
X.append(qx)
Y.append(qy)
Z.append(z)
Z1.append(z1)

#surface -to -bulk scattering
for i in np.arange (5*n, 5*n+414+312 , 1):

kx1 = kax[i]
ky1 = kay[i]
intensity1 = intensity[i]
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if kx1 > 0:
theta1 = np.arctan(ky1/kx1)

else:
theta1 = np.pi + np.arctan(ky1/kx1)

for j in np.arange (0, 5*n, 1):
kx2 = kax[j]
ky2 = kay[j]
intensity2 = intensity[j]
qx = kx2 - kx1
qy = ky2 - ky1
if kx2 > 0:

theta2 = np.arctan(ky2/kx2)
else:

theta2 = np.pi + np.arctan(ky2/kx2)

for_jdos = 1

#allowed backscattering
for_ssp = 1

z = intensity1*for_jdos*intensity2
z1 = intensity1*for_ssp*intensity2
X.append(qx)
Y.append(qy)
Z.append(z)
Z1.append(z1)

#only bulk scattering
for i in np.arange (5*n, 5*n+414+312 , 1):

kx1 = kax[i]
ky1 = kay[i]
intensity1 = intensity[i]
if kx1 > 0:

theta1 = np.arctan(ky1/kx1)
else:

theta1 = np.pi + np.arctan(ky1/kx1)
for j in np.arange (5*n, 5*n+414+312 , 1):

kx2 = kax[j]
ky2 = kay[j]
intensity2 = intensity[j]
qx = kx2 - kx1
qy = ky2 - ky1
if kx2 > 0:

theta2 = np.arctan(ky2/kx2)
else:

theta2 = np.pi + np.arctan(ky2/kx2)
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for_jdos = 1

#allowed backscattering
for_ssp = 1

z = intensity1*for_jdos*intensity2
z1 = intensity1*for_ssp*intensity2
X.append(qx)
Y.append(qy)
Z.append(z)
Z1.append(z1)

#plot the constant -energy contour with 3-fold symmetry
fig = plt.figure(figsize =(6 ,6))
ax1 = fig.add_subplot (111)
ax1.set_aspect(’equal’)
sc = plt.scatter(kax [:5*n],kay [:5*n], c=intensity [:5*n], cmap=’BuGn

’, marker=’o’, s=1)
sc1 = plt.scatter(kax [5*n+414:5*n+414+312] , kay [5*n+414:5*n

+414+312] , c=intensity [5*n+414:5*n+414+312] , cmap=’BuGn’, vmin
=0, vmax=5, marker=’o’, s=40)

sc2 = plt.scatter(kax [5*n:5*n+414] ,kay[5*n:5*n+414], c=intensity [5*
n:5*n+414], cmap=’BuGn’, vmin=0, vmax=5, marker=’o’, s=50)

plt.axis(’off’)
plt.show()

#plot the out -of-plane spin component
fig = plt.figure(figsize =(6 ,6))
ax1 = fig.add_subplot (111)
ax1.set_aspect(’equal’)
sc = plt.scatter(kax [:5*n],kay [:5*n], c=sz, cmap=’BuGn’, marker=’o’

, s=1)
cbar = fig.colorbar(sc, orientation=’vertical ’, fraction =0.046 , pad

=0.04)
plt.show()

# create grids for qx und qy
qx_grid = np.linspace(np.min(X), np.max(X), 600)
qy_grid = np.linspace(np.min(Y), np.max(Y), 600)

# create density map (2D-histogram)
density_map , _, _ = np.histogram2d(X, Y, bins=(qx_grid , qy_grid),

weights=Z1)
# plot the density map
fig , ax = plt.subplots ()
plt.imshow(density_map.T, origin=’lower’, extent =(np.min(qx_grid),

np.max(qx_grid), np.min(qy_grid), np.max(qy_grid)), cmap=’BuGn’,
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vmax=np.max(density_map)/38)
ax.axis(’off’)
plt.show()

The code example below was written to open and analyze dI/dU maps measured
at a certain bias voltage with the RHK R9 STM controller. This Python program
code allows to load the experimental data which were saved in the ASCII format
with further cutting the maps, taking their FFT and FFT linecuts for the data
analysis.

""" """ """ """"""""""""""" """ """ """""""""""""
Author: Vladislav Nagorkin
Created: 27.01.2020
""""""" """ """ """ """"""""""""""" """ """ """"""

import numpy as np
import matplotlib.pyplot as plt
n=512 #number of pixels
with open("1MnBi2Te4_11_11_19__0991 Image LIA Current_ Forward.txt"

) as inp:
alldata = list(map(float ,inp.read().split()))

#create an array of the y-coordinate values of each line
x1=[]
for i in range(0, n*(n+1), n+1):

x1.append(alldata[i])
#create an array of the dI/dU values of all the pixels
didv =[]
for j in range(0,n,1):

for i in range(1,n+1,1):
didv.append(alldata[i+(n+1)*j])

#create a 2D array of the dI/dU values at all the pixels
d2 = [[0 for i in range(n)] for j in range(n)]
for j in range(0,n,1):

for i in range(0,n,1):
d2[i][j]=didv[i+n*j]

from matplotlib import cm
# x and y coordinates
#plot a dI/dU map on the (x,y)-grid as a heatmap
x = np.arange(0,n,1)
y = np.arange(0,n,1)
data = np.zeros((len(x),len(y)))

for j, xx in enumerate(x):
for i, yy in enumerate(y):

data[i,j] = 10**12* d2[n-1-j][n-1-i] #dI/dU values in pA
#In the beginning of the program I assigned i-indexes while

changing
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#x-coordinate , j - while changing y-coordinate.
#But matshow sets i-indexes on y-axis , j - on x-axis
#Also , I assign the right -upper pixel which is named (0,0)
#the number (n,n) and the left -bottom pixel (n,n) -
#the number (0,0) in order to have the map corresponding to the
#topography which starts from the right -upper pixel -> n-i, n-j

#create an array of all the dI/dU values
didv_slice=np.zeros ([n,n])
for b in range(0,n,1):

for a in range(0,n,1):
didv_slice[a,b]=d2[n-1-a][n-1-b]

#show a dI/dU map at a certain bias voltage
img_didv=didv_slice [:, :]
plt.figure(figsize =(12, 12))
plt.subplot(1, 3, 1)
plt.imshow(img_didv , cmap=cm.magma , interpolation=’bilinear ’)
plt.colorbar(fraction =0.046 , pad =0.04)
#FFT of the dI/dU map
array_fft = np.zeros([n,n])
x2 = np.arange(n)
w_func_hamm_g = 0.54 -0.46*np.cos (2*np.pi*x2/(n-1))+0.0* np.cos(4*np.

pi*x2/(n-1)) -0.0*np.cos (6*np.pi*x2/(n-1)) # Hamming window
w_func_hamm = np.outer(w_func_hamm_g , w_func_hamm_g)
array_fft [:,:] = np.fft.fftshift(np.abs(np.fft.fft2(( didv_slice

[:,:]-1*np.mean(didv_slice [:,:])+0* abs(np.min(didv_slice [:,:])))
*w_func_hamm)))

#cut a piece of the dI/dU map for its further FFT
mapcut=np.zeros([n,n])
for b in range(0,n,1):

for a in range(0,n,1):
mapcut[a-0,b-0]= didv_slice[a,b]

img_didv_cut=mapcut[:, :]
plt.figure(figsize =(12, 12))
plt.subplot(2, 1, 1)
plt.imshow(img_didv_cut , cmap=cm.gnuplot2 , origin=’lower ’,

interpolation=’bilinear ’)
#FFT of a piece of the dI/dU map
array_fft_cut = np.zeros([n,n])
x2 = np.arange(n)
w_func_hamm_g = 0.54 -0.46*np.cos (2*np.pi*x2/(n-1))+0.0* np.cos(4*np.

pi*x2/(n-1)) -0.0*np.cos (6*np.pi*x2/(n-1)) # Hamming window
w_func_hamm = np.outer(w_func_hamm_g , w_func_hamm_g)
array_fft_cut [:,:] = np.fft.fftshift(np.abs(np.fft.fft2(( mapcut

[:,:]-1*np.mean(mapcut [: ,:])+0*abs(np.min(mapcut [:,:])))*
w_func_hamm)))

img_fft=array_fft_cut [:,:]
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plt.subplot(2, 1, 2)
plt.imshow(img_fft , cmap=cm.gnuplot2 , interpolation=’none’)
#take a linecut of the dI/dU map along a certain direction
x, y = np.mgrid [0:n:1, 0:n:1]
z = array_fft_cut[x,y]
plt.figure(figsize =(12, 12))
plt.imshow(z, cmap=cm.gnuplot2 , interpolation=’none’)

x0 , y0 = 409, 0 # these are in pixel coordinates
x1 , y1 = 105, 511
num = int(np.hypot(x1 -x0, y1-y0))
x, y = np.linspace(x0, x1 , num), np.linspace(y0 , y1, num)
# extract the values along the line , using cubic interpolation
# swap x and y here in order to show the linecut properly -
#in normal x - horizontal and y - vertical coordinates in the FFT

image
zi = z[y.astype(np.int), x.astype(np.int)]
plt.figure(figsize =(12, 12))
plt.imshow(z, cmap=cm.gnuplot2 , interpolation=’none’)
plt.plot([x0, x1], [y0 , y1], ’ro -’)
plt.show()
plt.plot(y,zi)
plt.show()

The program code presented below was written also in Python and allows to
process full STS maps acquired with the RHK R9 STM controller. Similar to the
previous case, the program opens the experimental data saved in the ASCII format
and allows analyzing the dI/dU maps with their FFT as well as the differential
conductance spectra.

""" """ """ """"""""""""""" """ """ """""""""""""
Author: Vladislav Nagorkin
Created: 13.09.2018
""""""" """ """ """ """"""""""""""" """ """ """"""

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
#n - number of pixels , p - number of points in each spectrum ,
#m - number which counts forward and backward lines
n=256; p=126; m=2
with open("1MnBi2Te4_11_11_19__0783_LIA Current.txt") as inp:

alldata = list(map(float ,inp.read().split()))
#create an array of the y-coordinate values of each line
x1=[]
for i in range(0, m*n, m):

x1.append(alldata[i])
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print(x1)
y1=[]
for i in range(m*n*n, 2*m*n*n, m*n):

y1.append(alldata[i])
print(y1)

x=[10**9* x1[j] for j in range(0,n)] #x-coordinate in nm
y=[10**9* y1[j] for j in range(0,n)] #y-coordinate in nm
plt.plot(x,y)
plt.xlabel(’x (nm)’)
plt.ylabel(’y (nm)’)
plt.show()
#create an array of the bias voltages
v=[]
for i in range (2*m*n*n, 2*m*n*n+(p-1)*(m*n*n+1)+1, m*n*n+1):

v.append(alldata[i])
print(v)
#create an array of dI/dU values of the pixel #10 as an axample
didv10 =[]
for u in range (2*m*n*n+1+m*10, 2*m*n*n+1+m*10+(p-1)*(m*n*n+1)+1, m*

n*n+1):
didv10.append(alldata[u])

x=[1000*v[j] for j in range(0,p)]
y=[ didv10[q] for q in range(0,p)]
plt.plot(x,y)
plt.xlabel(’Bias voltage (mV)’,fontsize =18)
plt.ylabel(’dI/dU (a.u.)’,fontsize =18)
plt.show()
#create an array of the dI/dU values of all the pixels
didv =[]
for k in range(0,p,1):

for j in range(0,n,1):
for i in range(0,n,1):

didv.append(alldata [2*m*n*n+1+m*i+m*n*j+(m*n*n+1)*k])
#create a 3D array of the dI/dU values of all the pixels
d3 = [[[0 for i in range(n)] for j in range(n)] for voltage in

range(n)]
for voltage in range(0,p,1):

for j in range(0,n,1):
for i in range(0,n,1):

d3[i][j][ voltage ]=didv[i+n*j+n*n*voltage]
# x and y coordinates
#plot a dI/dU map on the (x,y)-grid as a heatmap
x = np.arange(0,n,1)
y = np.arange(0,n,1)
data = np.zeros((len(x),len(y)))
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for j, xx in enumerate(x):
for i, yy in enumerate(y):

data[i,j] = 10**12* d3[n-1-j][n-1-i][4] #dI/dU values in pA
#In the beginning of the program I assigned i-indexes while
#changing x-coordinate , j - while changing y-coordinate.
#But matshow sets i-indexes on y-axis , j - on x-axis
#Also , I want to assign the right -upper pixel which is named (0,0)
#the number (n,n) and the left -bottom pixel (n,n) -
#the number (0,0) in order to have the map corresponding to the
#topography which starts from the right -upper pixel -> n-i, n-j

# Use matshow to create a heatmap
fig , ax = plt.subplots ()
ms = ax.matshow(data , cmap = cm.jet , vmin=data.min() - 0.0,

vmax=data.max() + 0.0, origin = ’lower ’)
# x and y axis ticks
ax.set_xticklabels ([str(xx) for xx in x])
ax.set_yticklabels ([str(yy) for yy in y])
ax.xaxis.tick_bottom ()
# Put the x- and y-axis ticks at the middle of each cell
#ax.set_xticks(np.arange(data.shape [1]), minor = False)
#ax.set_yticks(np.arange(data.shape [0]), minor = False)
# Set custom ticks and ticklabels for colorbar
cbar = fig.colorbar(ms,ticks = np.arange (0 ,1.5 ,0.5))
plt.show()
#create an array of all the dI/dU values
didv_slice=np.zeros ([n,n,p])
for c in range(0,p,1):

for b in range(0,n,1):
for a in range(0,n,1):

didv_slice[a,b,c]=d3[n-1-b][n-1-a][c]
#show a dI/dU map at a certain bias voltage
img_didv=didv_slice [:, :, 0]
plt.figure(figsize =(5, 5))
plt.imshow(img_didv , cmap=cm.gnuplot2 , origin=’lower ’,

interpolation=’none’)
plt.colorbar ()

#show the dI/dU maps at all the energies
vs=-0.05 #initial bias voltage in volts
ve=0 #final bias voltage in volts
for t in range(0,p,1):

img=didv_slice [:, :, t]
img_ = plt.figure(figsize =(12, 12))
fig = plt.imshow(img , cmap=cm.jet)
plt.xlabel(’Bias voltage (mV)’, fontsize =18)
plt.ylabel(’dI/dU averaged (a.u.)’, fontsize =18)
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plt.imshow(img , cmap=cm.gnuplot2 , origin=’lower ’, interpolation
=’none’)
plt.colorbar ()
print(vs *1000 - t*1000*(vs -ve)/(p-1))
print(’mV’)
plt.close(img_)

#FFT of the dI/dU maps
array_fft = np.zeros([n,n,p])
x2 = np.arange(n)
w_func_hamm_g = 0.54 -0.46*np.cos (2*np.pi*x2/(n-1))+0.0* np.cos(4*np.

pi*x2/(n-1)) -0.0*np.cos (6*np.pi*x2/(n-1)) # Hamming window
w_func_hamm = np.outer(w_func_hamm_g , w_func_hamm_g)
for ii in range(p):

array_fft [:,:,ii] = np.fft.fftshift(np.abs(np.fft.fft2((
didv_slice [:,:,ii]-1*np.mean(didv_slice [:,:,ii])+0*abs(np.min(
didv_slice [:,:,ii])))*w_func_hamm)))

img_fft=array_fft [:,:,11]
plt.figure(figsize =(12, 12))
plt.subplot(1, 3, 1)
plt.imshow(img_fft , cmap=cm.gnuplot2 , origin=’lower ’, interpolation

=’bilinear ’)
#show the FFT of dI/dU maps at all energies
for t in range(0,p, 1):

imge1=array_fft [:, :, t]
imge1_ = plt.figure(figsize =(12, 12))
fige1 = plt.imshow(imge1 , cmap =cm.jet)
plt.imshow(imge1 , cmap=cm.gnuplot2 , origin=’lower ’,
interpolation=’bilinear ’)
print(vs *1000 - t*1000*(vs -ve)/(p-1))
print(’mV’)
plt.close(imge1_)

#plot an averaged dI/dU spectrum of the whole map
fig = plt.figure ()
q=np.zeros(p)
xx =[1000*v[j] for j in range(0,p,1)]
for sp in range (0,p,1):

for bb in range (0,n,1):
for aa in range (0,n,1):

q[sp]=np.mean(didv_slice[aa ,bb ,sp])
plt.plot(xx,q)
plt.xlabel(’Bias voltage (mV)’, fontsize =18)
plt.ylabel(’dI/dU averaged (a.u.)’, fontsize =18)
plt.show()
#choose some area of the map and show dI/dU spectra from all the

points there
fig = plt.figure ()
for b in range (0,n,1):
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for a in range (0,n,1):
plt.plot(xx,didv_slice[a,b,:])
plt.axhline(y=0,color=’k’)
plt.xlabel(’Bias voltage (mV)’, fontsize =18)
plt.ylabel(’dI/dU (a. u.)’, fontsize =18)

plt.plot(xx,q, color=’black ’, linewidth =5)
plt.show()
#cut a piece of the dI/dU map for its further FFT
mapcut=np.zeros ([35,35,p])
for c in range(0,p,1):

for b in range (12 ,47 ,1):
for a in range (12 ,47 ,1):

mapcut[a-12,b-12,c]= didv_slice[a,b,c]
img_didv_cut=mapcut[:, :, 4]
#show a piece of the dI/dU map at a certain bias voltage
plt.figure(figsize =(12, 12))
plt.subplot(1, 3, 1)
plt.imshow(img_didv_cut , cmap=cm.gnuplot2 , origin=’lower’,

interpolation=’none’)
array_fftcut = np.zeros ([35,35,p])
#FFT of the piece of the dI/dU map at a certain bias voltage
x2 = np.arange (35)
w_func_hamm_g = 0.54 -0.46*np.cos (2*np.pi*x2/(n-1))+0.0* np.cos(4*np.

pi*x2/(n-1)) -0.0*np.cos (6*np.pi*x2/(n-1)) # Hamming window
w_func_hamm = np.outer(w_func_hamm_g , w_func_hamm_g)
for ii in range(p):

array_fftcut [:,:,ii] = np.fft.fftshift(np.abs(np.fft.fft2((
mapcut[:,:,ii]-1*np.mean(mapcut[:,:,ii])+0* abs(np.min(mapcut
[:,:,ii])))*w_func_hamm)))

img_fft=array_fftcut [:,:,4]
plt.figure(figsize =(12, 12))
plt.subplot(1, 3, 1)
plt.imshow(img_fft , cmap=cm.gnuplot2 , origin=’lower ’, interpolation

=’bilinear ’)
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Appendix D

Additional STS data on MnBi4Te7

In addition, temperature-dependent full STS maps on a presumably quintuple
layer surface termination were taken on very small defect-free 2 nm x 2 nm spots.
Although the tip did not give atomic resolution all the time, it was stable enough for
STS providing negligibly small variations in all 288 spectra on each map. Started
from T = 5.4 K, the STS maps were measured at 7.7 K, 11.1 K, 12.9 K and 16.6
K as well. However, these measurements were strongly influenced by accidental tip
changes and were surface dependent as inferred from totally different spectra shape
at a certain temperature (e.g. at 7.7 K, 12.9 K) (see Fig. D.0.1). Therefore, no
strict conclusion from this dataset can be derived.

Fig. D.0.1 Averaged temperature-dependent spectra taken on 2 nm x 2 nm areas,
Ubias = −500 mV, IT = 200 pA. Black, red, blue, green and magenta colors correspond
to spectra measured 5.4 K, 7.7 K, 11.1 K, 12.9 K and 16.6 K, respectively. Each curve
represents an averaged of 288 spectra taken on a grid. Different spectra at 7.7 K were
recorded with different tip state, the spectra at 12.9 K were obtained on different surface
areas.
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Gu, and J. C. Séamus Davis. Imaging Dirac-mass disorder from magnetic
dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2−xTe3.
Proceedings of the National Academy of Sciences, 112(5):1316–1321, 2015.

[88] Haim Beidenkopf, Pedram Roushan, Jungpil Seo, Lindsay Gorman, Ilya Droz-
dov, Yew San Hor, R. J. Cava, and Ali Yazdani. Spatial fluctuations of he-
lical Dirac fermions on the surface of topological insulators. Nature Physics,
7(12):939–943, 2011.

[89] Yoshinori Okada, Chetan Dhital, Wenwen Zhou, Erik D. Huemiller, Hsin Lin,
S. Basak, A. Bansil, Y.-B. Huang, H. Ding, Z. Wang, Stephen D. Wilson,
and V. Madhavan. Direct Observation of Broken Time-Reversal Symmetry on
the Surface of a Magnetically Doped Topological Insulator. Phys. Rev. Lett.,
106:206805, May 2011.

[90] Cui-Zu Chang, Jinsong Zhang, Xiao Feng, Jie Shen, Zuocheng Zhang,
Minghua Guo, Kang Li, Yunbo Ou, Pang Wei, Li-Li Wang, Zhong-Qing Ji,
Yang Feng, Shuaihua Ji, Xi Chen, Jinfeng Jia, Xi Dai, Zhong Fang, Shou-
Cheng Zhang, Ke He, Yayu Wang, Li Lu, Xu-Cun Ma, and Qi-Kun Xue. Ex-
perimental Observation of the Quantum Anomalous Hall Effect in a Magnetic
Topological Insulator. Science, 340(6129):167–170, 2013.

[91] J. G. Checkelsky, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, Y. Kozuka,
J. Falson, M. Kawasaki, and Y. Tokura. Trajectory of the anomalous Hall
effect towards the quantized state in a ferromagnetic topological insulator.
Nature Physics, 10(10):731–736, 2014.

[92] Xufeng Kou, Shih-Ting Guo, Yabin Fan, Lei Pan, Murong Lang, Ying Jiang,
Qiming Shao, Tianxiao Nie, Koichi Murata, Jianshi Tang, Yong Wang, Liang
He, Ting-Kuo Lee, Wei-Li Lee, and Kang L. Wang. Scale-Invariant Quantum
Anomalous Hall Effect in Magnetic Topological Insulators beyond the Two-
Dimensional Limit. Phys. Rev. Lett., 113:137201, Sep 2014.

[93] S. Grauer, S. Schreyeck, M. Winnerlein, K. Brunner, C. Gould, and L. W.
Molenkamp. Coincidence of superparamagnetism and perfect quantization in
the quantum anomalous Hall state. Phys. Rev. B, 92:201304, Nov 2015.

170



BIBLIOGRAPHY

[94] Xufeng Kou, Lei Pan, Jing Wang, Yabin Fan, Eun Sang Choi, Wei-Li Lee,
Tianxiao Nie, Koichi Murata, Qiming Shao, Shou-Cheng Zhang, and Kang L.
Wang. Metal-to-insulator switching in quantum anomalous Hall states. Nature
Communications, 6(1):8474, 2015.

[95] Abhinav Kandala, Anthony Richardella, Susan Kempinger, Chao-Xing Liu,
and Nitin Samarth. Giant anisotropic magnetoresistance in a quantum anoma-
lous Hall insulator. Nature Communications, 6(1):7434, 2015.

[96] Cui-Zu Chang, Weiwei Zhao, Duk Y. Kim, Haijun Zhang, Badih A. Assaf,
Don Heiman, Shou-Cheng Zhang, Chaoxing Liu, Moses H. W. Chan, and Ja-
gadeesh S. Moodera. High-precision realization of robust quantum anomalous
Hall state in a hard ferromagnetic topological insulator. Nature Materials,
14(5):473–477, 2015.

[97] Yang Feng, Xiao Feng, Yunbo Ou, Jing Wang, Chang Liu, Liguo Zhang,
Dongyang Zhao, Gaoyuan Jiang, Shou-Cheng Zhang, Ke He, Xucun Ma, Qi-
Kun Xue, and Yayu Wang. Observation of the Zero all Plateau in a Quantum
Anomalous Hall Insulator. Phys. Rev. Lett., 115:126801, Sep 2015.

[98] M. Mogi, M. Kawamura, R. Yoshimi, A. Tsukazaki, Y. Kozuka, N. Shirakawa,
K. S. Takahashi, M. Kawasaki, and Y. Tokura. A magnetic heterostructure of
topological insulators as a candidate for an axion insulator. Nature Materials,
16(5):516–521, 2017.

[99] Yujun Deng, Yijun Yu, Meng Zhu Shi, Zhongxun Guo, Zihan Xu, Jing Wang,
Xian Hui Chen, and Yuanbo Zhang. Quantum anomalous Hall effect in in-
trinsic magnetic topological insulator MnBi2Te4. Science, 367(6480):895–900,
2020.

[100] Chang Liu, Yongchao Wang, Hao Li, Yang Wu, Yaoxin Li, Jiaheng Li, Ke He,
Yong Xu, Jinsong Zhang, and Yayu Wang. Robust axion insulator and Chern
insulator phases in a two-dimensional antiferromagnetic topological insulator.
Nature Materials, 19(5):522–527, 2020.

[101] Dong Sun Lee, Tae-Hoon Kim, Cheol-Hee Park, Chan-Yeup Chung, Young Soo
Lim, Won-Seon Seo, and Hyung-Ho Park. Crystal structure, properties and
nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4.
CrystEngComm, 15:5532–5538, 2013.

[102] Ziya S. Aliev, Imamaddin R. Amiraslanov, Daria I. Nasonova, Andrei V.
Shevelkov, Nadir A. Abdullayev, Zakir A. Jahangirli, Elnur N. Orujlu,
Mikhail M. Otrokov, Nazim T. Mamedov, Mahammad B. Babanly, and

171



BIBLIOGRAPHY

Evgueni V. Chulkov. Novel ternary layered manganese bismuth tellurides of
the MnTe-Bi2Te3 system: Synthesis and crystal structure. Journal of Alloys
and Compounds, 789:443–450, 2019.

[103] Daniel Souchay, Markus Nentwig, Daniel Günther, Simon Keilholz, Johannes
de Boor, Alexander Zeugner, Anna Isaeva, Michael Ruck, Anja UB Wolter,
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