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1. Introduction

Common heating systems in Germany are gas-�red boilers, oil heaters, heat pumps and
biomass heating systems [BDH24]. The heating system with the largest market share
are gas-�red condensing boilers. For instance, gas-�red condensing boilers had a market
share of over 50 percent in the German market for heating systems in 2023 [BDH23].
The global market leader in the �eld of central heating is the Vaillant Group [Vai24]. The
Vaillant Group is a family-owned German company with its headquarters in Remscheid.
The German brand of the Vaillant Group is Vaillant. In 2019, Vaillant presented its new
generation of gas-�red condensing boilers. The centerpiece of these boilers is Vaillant's
combustion control system IoniDetect [Wic19]. A core element of IoniDetect is the so-
called automatic drift adaption (ADA) procedure, which makes sure that the appliances
operate with a high combustion quality [LS17].
This study is conducted in cooperation with Vaillant and investigates the ADA procedure
from a mathematical point of view. ADA is an iterative procedure and requires a set of
parameters, the so-called ADA parameters or ADA pairs. The aim of this work is to �nd
optimized ADA parameters by computer simulation and optimization. This chapter gives
an introduction to this thesis by brie�y presenting the ADA procedure, stating the research
problem, the research aims and the research questions as well as the signi�cance of the
topic. Finally, the scope of this work is brie�y outlined.

In IoniDetect, �ame ionization is used to control combustion, which is the state of the
art [Car+18, p. 49]. Flames are ionized and thus they have an electric conductivity. This
conductivity depends on the gas/air-mixture, which allows indirect control of the gas/air-
mixture. For this purpose, an electrode is placed inside the �ames that measures the
�ames' conductivity. However, �ames are a hostile environment for the electrode and an
oxide layer accrues on the electrode's surface during boiler operation. This additional oxide
layer alters the measurement of the �ames' conductivity and the gas/air-mixture cannot
be properly controlled anymore. Therefore, a steady self-recalibration of the system is re-
quired that adapts to the accrued oxide layer [Car+18]. One solution to this problem is the
ADA procedure [LS17]. The ADA procedure requires two operating points, the so-called
start point and test point, which are both speci�ed by a fan speed and an electric cur-
rent. These four values (two fan speeds and two currents) constitute a so-called ADA pair.

Suitable ADA pairs must be selected for each "boiler class" so that the ADA procedure
can work as desired. Typically, �ve to seven ADA pairs are speci�ed for each "boiler class"
[Sch15, p. 35]. However, the documentation of the IoniDetect system provides only little
information on how to select suitable ADA pairs. Some particularities with respect to
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Chapter 1 Introduction

the selection of the fan speeds of the test points are stated in [Sch15]. A more detailed
description of the selection of the ADA pairs as well as a corresponding theoretical rea-
soning are provided in [Loc18]. However, in [Loc18] only the special case with a single
ADA pair for the situation without tolerances is considered. Therefore, the theoretical
understanding of the ADA procedure can be considered as incomplete. Accordingly, in
practice, the ADA parameters are selected based on experience as well as by trial and
error in the lab. These approaches are time consuming and do not guarantee that the
selected ADA parameters are optimal with respect to the rate of convergence of the ADA
procedure and under the in�uence of tolerances. In contrast, a systematic approach to the
ADA parameterization as well as the application of computer simulations can considerably
save development time and supports the identi�cation of close to optimal ADA parameters.

The aim of this work is to provide such a systematic approach to the ADA parameteri-
zation. To achieve this, the following research objectives are considered:

� To provide an algorithmic formulation of the ADA procedure and a corresponding
mathematical framework.

� To analyze the convergence properties of the ADA procedure.

� To state what optimal ADA parameters are and to formulate corresponding opti-
mization problems.

� To propose methods for solving the ADA optimization problems.

The following research questions are addressed in this thesis:

� What are conditions that guarantee convergence of the ADA procedure to a desired
limit with a high rate of convergence?

� How can these convergence conditions be modeled in an optimization problem?

� What are suitable methods to solve the proposed optimization models?

The analysis of the ADA procedure in this thesis contributes to the understanding of its
convergence properties. It is shown that the basic ADA procedure with a single ADA pair
implements the Picard iteration �xed point procedure. According to Banach's �xed point
theorem, its convergence properties are closely related to the corresponding iteration func-
tion's Lipschitz constant. However, in the general ADA procedure with a plurality of ADA
pairs, the Picard iteration is not applicable anymore, because the ADA pairs in�uence each
other in a certain sense. The corresponding convergence analysis is rather complicated, but
it is still possible to derive conditions that guarantee convergence of the ADA procedure
with a plurality of ADA pairs. Another result of this analysis is that tolerances with respect
to the ioni electrode's position usually alter the convergence characteristics of the ADA
procedure. In particular, such tolerances might cause that the limit of the ADA procedure
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is outside of a desired tolerance band, i.e., the corresponding gas appliance might leave
the region of feasible combustion states.
Furthermore, this work shows that optimizing the ADA pairs is a multiobjective problem,
i.e., in general we have con�icting objectives when optimizing the ADA pairs. To put it
simply, a high rate of convergence of the ADA procedure is con�icting with a short duration
of a single ADA iteration. Considering the multiobjective aspect of the ADA optimization
problem allows the decision makers to select the solution that �ts their preferences best.
It is proposed to solve the ADA optimization problem with respect to tolerances with the
Nondominated Sorting Genetic Algorithm-II (NSGA-II), which is demonstrated in a use
case. Therefore, this work also contributes an example for the application of NSGA-II in
practice.
In total, this work provides both, a thorough theoretical understanding of the ADA proce-
dure from a mathematical point of view as well as a support for the ADA parameterization
problem in practice.

Note that this thesis focuses on the algorithmic part of the ADA procedure. Other
aspects that also have an e�ect on the ADA procedure, such as the material of the ion-
ization electrode, are not in the scope of this work. Furthermore, this work is based on
measurement data provided by Vaillant. As a consequence, some aspects of modeling the
combustion process are already predetermined. For instance, the provided measurement
data is based on static signals and thus the dynamic behavior of the gas appliances is
disregarded to a certain degree.

This thesis is divided into three parts. Part I lays the technical and mathematical
foundations required for this work. The technical and combustion related backgrounds are
presented in Chapter 2. In Chapter 3, the ADA procedure is presented based on technical
documentation provided by Vaillant and Siemens. The latter is the company where the
ADA procedure was invented [LS17]. In Chapter 4, the required mathematical concepts are
presented. These are multiobjective optimization, evolutionary multiobjective optimization
and �xed point iteration procedures.
Part II thoroughly analyzes the ADA procedure from a mathematical point of view. For this,
a required formalism is �rst introduced and then used to formulate the ADA Algorithm 5.2
in Chapter 5. This algorithm is then analyzed for the special case that a single ADA pair
is considered in Chapter 6. The general case with a plurality of ADA pairs is considered in
Chapter 7.
In Part III, optimization problems for the ADA parameterization and methods to solve these
problems are proposed based on the analysis in the preceding part. In Chapter 8, two ADA
optimization problems are proposed. One problem for the case without tolerances and one
problem for the case with tolerances. Finally, suitable methods for solving these problems
are presented in Chapter 9 and demonstrated in a use case.
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Chapter 1 Introduction

Remark 1.1 To help readers to keep a better overview on the notation used in this thesis,

a notation cheat sheet is included with the printed version of this work as a bookmark. In

the digital version, the notation cheat sheet can be found at the very end of the document.

Remark 1.2 If not otherwise stated, all vectors in this thesis are row vectors.
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Part I.

Technical and Mathematical

Foundations
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2. Technical Background

This thesis is about the optimization of the ADA parameters with computer simulation.
ADA is a part of the combustion control system IoniDetect from Vaillant. This chapter
is intended to provide the necessary technical basics to describe and understand the ADA
procedure. First, some basic concepts of control theory and combustion are explained.
Then the combustion control system IoniDetect is presented. Finally, a mathematical
model is presented for modeling gas appliances with IoniDetect.
While some details and data of this chapter are con�dential, we present most of the axis
labeling in �gures without any numbers. Every graph presented in this chapter is created
with linearly interpolated measurement data provided by Vaillant.

2.1. Basics of Control Theory

This section provides the basic concepts and terms of control systems that are required
to describe and explain IoniDetect and ADA. In this thesis, 'control theory' refers to the
engineering discipline. It does not refer to the mathematical branch 'optimal control the-
ory'.
The de�nition of the term 'control system' is imprecise. Åström and Murray de�ne control
"to be the use of algorithms and feedback in engineered systems." [ÅM09, p. 3]. Doyle,
Francis, and Tannenbaum state that "Control systems are what make machines, in the
broadest sense of the term, function as intended." [DFT90, p. 1]. In this context, the
machines are gas-�red heating devices and they function as intended if they satisfy a given
heat demand while they combust gas at a desired operating point.
Control systems can be categorized as open loop and closed loop control [Wes06, p. 6].
A closed loop system contains a feedback loop, such that the controller gets information
about the actual value of the machine's process variable. In this context the process vari-
able conveys information about the combustion process. An open loop system does not
contain such a feedback loop and the controller does not have any information about the
process variable [ÅM09, p. 2]. In Figure 2.1, closed loop and open loop control are illus-
trated as block diagrams. IoniDetect is a closed loop control system and thus the focus
of this section lies on such systems. Closed loop control is also referred to as feedback
control.
In a minimalist setup, a feedback control system consists of three components, which are
denoted as plant, controller and sensor. The plant is "the object that is to be controlled"
[DFT90, p. 27], no matter if the object is a plant or something else. The controller is
the entity that controls the plant. The sensor measures the plant's output and provides a
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controller
(combustion)

system

(a) Closed-loop (combustion) control

controller
(combustion)

system

(b) Open-loop (combustion) control

Figure 2.1.: In closed loop control there is a feedback loop that provides information about
the current output of the (combustion) system to the controller. In open loop control this
information is not available to the controller. Adapted from [ÅM09, p. 1].

feedback signal to the controller [Wes06, pp. 2�4], [DFT90, p. 27].
The plant usually contains one or more actuators. An actuator transforms the commands
of the controller to physical actions [Wes06, p. 4]. For instance, the gas valve of a gas-
�red heating device is an actuator. Depending on the controller's commands, it is moved
to a more open or more closed position, which alters the gas volume �ow and thus the
combustion process.
As a real world machine a plant is prone to external disturbances. The goal of a feed-
back control system is that the output of the plant follows a desired reference signal and
that external disturbances are compensated. The sensor measures the plant's output and
provides it to the controller, which compares the sensor's output to the reference value.
The di�erence between output and reference is called error. Depending on the error the
controller determines a drive command for the actuators, such that (ideally) the absolute
value of the error is reduced, i.e., the plant's output gets closer to the reference [ÅM09,
p. 4].

Remark 2.1 In this thesis, the value of a reference signal is referred to as setpoint, which
is the term used by Vaillant.

Because no sensor is perfect, every sensor is prone to noise. Therefore, sensor noise can
be considered as an additional input of control systems [DFT90, p. 28]. This completes
the basic setup of a feedback control system, which is shown in Figure 2.2.
The ADA procedure is related to the sensor and the sensor noise of the IoniDetect com-
bustion control system. In this context, the plant is a gas-�red heating device, whose
actuators are a fan and a gas valve. Its sensor is an electrode that is used to measure
an electric current that depends on the gas �ame in the heating device [Sch15, p. 7].
The electrode is positioned in the �ames, which causes oxidation at the electrode. With
increasing operation time an oxide layer builds up on the electrode, which alters the elec-
trode's electrical characteristic and distorts the measured current. This distortion can be
interpreted as sensor noise. But in contrast to white noise, this is not a stochastic phe-
nomenon. It is rather a systematic sensor error of unknown size and the ADA procedure is
intended to compensate this systematic error. The ADA procedure is described in Chap-
ter 3. A mathematical formulation of the ADA procedure is provided in Chapter 5.

8
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Controller Plant

d r : reference
e: error
u: drive command
y : plant output
v : sensor output
d : external disturbances
n: sensor noise

r e u y

Sensor

n

�

v

Figure 2.2.: Basic feedback control system. A sensor measures the plant's output y , which
is compared to a given reference value r . Depending on the error e := r � v , the controller
gives a drive command u to the plant's actuators, which in�uences the plant's output and
closes the feedback loop. The plant and the sensor are prone to external in�uences, which
are denoted by d and n, respectively. Adapted from [DFT90, p. 27].

Control system design deals with stability, robustness etc. These are not in the scope of
this work. The IoniDetect control system and its design are considered as given.
For this thesis the notion of feedback control and the concept of the basic control system
as shown in Figure 2.2 are relevant. The following section presents the basics of combus-
tion theory related to gas-�red heating devices. Thereafter, combustion control based on
ionization is explained.

2.2. Basics of Combustion

This section deals with the basics of combustion processes in gas-�red appliances. Because
this thesis is about optimization and not about combustion, the level of detail is kept at a
minimum. More detailed information can be found in the given references.
Combustion "is a complex sequence of chemical reactions between a fuel and oxygen"
[Tan14, p. 59]. In gas-�red heating devices the fuel is usually natural gas or liquid petroleum
gas [MCF11, p. 1]. But also hydrogen enriched natural gas is gaining in importance
[Wis19]. The oxygen is provided by the ambient air [MCF11, p. 6].
The products of a combustion process depend on the mixture of fuel and oxygen, which
is usually described by the air-fuel ratio (AFR) [Tan14, p. 60]. The following de�nition is
taken from [Tan14, p. 59].

De�nition 2.2 The (mole) air-fuel ratio is de�ned by (A=F ) := na
nf
, where na denotes the

mole amount of air and nf the mole amount of fuel.

A particular mixture is the so-called stoichiometric mixture. It contains exactly the
amount of fuel and air, such that fuel and oxygen are consumed completely during com-
bustion [MCF11, p. 17].

9



Chapter 2 Technical Background

De�nition 2.3 If a combustion process consumes all fuel and oxygen atoms, the mixture

is called stoichiometric. The according AFR is denoted by (A=F )s .

In combustion engineering, it is useful and common to normalize the AFR by the stoi-
chiometric AFR [MCF11, p. 20].

De�nition 2.4 The equivalence air-fuel ratio is de�ned by � :=
(A=F )
(A=F )s

.

Remark 2.5 Combustion always requires fuel and oxygen. Therefore, the stoichiometric

AFR (A=F )s is always greater than zero and no corresponding case distinction in the de�-

nition of � is required. Furthermore, the equivalence AFR is dimensionless by construction.

A distinction with respect to � is made between the three following cases [Tan14, p. 60].

� The AFR is stoichiometric, i.e., (A=F ) = (A=F )s , � = 1.

� The AFR is smaller than the stoichiometric AFR. Then we have (A=F ) < (A=F )s ,

� < 1. This case is called fuel rich combustion, because some of the fuel atoms are
not consumed during combustion and will be left.

� The AFR is larger than the stoichiometric AFR. Then we have (A=F ) > (A=F )s ,

� > 1. This case is called fuel lean combustion, because some of the oxygen atoms
are not consumed during combustion and will be left.

A combustion with a fuel rich mixture (� < 1) has an excessive emission of carbon monox-
ide (CO) and some of the chemical energy contained in the fuel is not used and wasted
[BK16, p. 444] [MCF11, p. 180]. Therefore, a fuel rich combustion is avoided. The-
oretically, a stoichiometric AFR is su�cient and considered ideal [Tan14, p. 60]. But
the mixture in a burning chamber is usually not absolutely homogeneous and some fuel
molecules might not have reacted with oxygen. Thus an additional amount of air is re-
quired and the combustion process shall be fuel lean [BK16, p. 447], i.e., the equivalence
AFR � shall be greater than one.
On the other hand, if � gets too large, the e�ciency decreases again due to so-called
exhaust gas losses [CL17, p. 119], i.e., the exhaust gas contains heat energy that is not
used and released into the environment. In addition, the �ame temperature decreases and
as a consequence the emission of CO increases [MCF11, p. 180]. Furthermore, the �ame
length might get too large and the �ame might hit the opposite wall of an appliance's
heat exchanger. Then the temperature of the �ame rapidly decreases, which also causes
a large emission of CO [Mer+06, p. 118].
The emission of CO is critical, because inhaled CO is toxic for organisms and is lethal
even at relatively low doses [MCF11, p. 177]. Figure 2.3 shows the curve of CO emission
versus equivalence AFR for a certain constant air mass �ow. The graph was created with
linearly interpolated Vaillant measurement data and has the typical "inverted bell shape"
[MCF11, p. 180]. Around � = 1:4 the CO emission is low. But if the AFR gets more fuel
lean or more fuel rich, the CO emission increases very fast.
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1:2 1:4 1:6

equivalence AFR �

C
O

[p
pm

]

Figure 2.3.: The emission of CO versus the equivalence AFR at a constant air mass �ow.
Around � = 1:4 the emission of CO is low. Outside the interval [1:2; 1:55] the emission of
CO increases very fast.

In addition to CO emissions, the �ame speed and the �ame temperature also depend
on � [MCF11, p. 122]. Furthermore, there are lower and upper �ammability limits with
respect to � [MCF11, p. 125].
In summary, � plays a central role in controlling and monitoring combustion [BK16, p. 448].
The desired equivalence AFR of gas-�red heating devices is usually 1:24 � � � 1:44 [CL17,
p. 381]. Therefore, the amount of air and gas used for combustion has to be adjusted
accordingly, which is usually done with a combustion control system.

2.3. Combustion Control System IoniDetect

Combustion control means controlling the mixture of fuel and air in order to obtain an
optimal AFR. A common approach is an open loop control with pneumatic gas valves,
where the air �ow rate and the gas �ow rate are pneumatically coupled. There is no
feedback of the combustion process and the actual AFR is unknown. The gas valves
are adjusted once during installation of the appliances to the prevailing conditions. If
thereafter the gas quality changes, the appliances do not operate at an optimal AFR
anymore [Kie+12, pp. 1, 2]. This is becoming problematic, because the gas quality is
expected to �uctuate more and more [Kie+12, p. 2] [Car+18, p. 21]. A solution is a
closed loop and gas adaptive combustion control. Measuring the AFR directly is expensive
and not applicable in gas-�red appliances. Therefore, indirect methods were developed.
There are mainly three approaches to closed loop combustion control. The most used and
state of the art technology is based on ionization of the �ame [Car+18, pp. 45, 49]. It is
also used in the newest generation of Vaillant's gas-�red boilers. Vaillant's corresponding
combustion control system is called IoniDetect [Wic19]. The ionization technology and
IoniDetect are central for this thesis. They are described in more detail in the following
subsections.
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Figure 2.4.: Principle of ionization current measurement. An electrode is placed inside or
close to the �ames. An AC voltage supply is connected to this electrode and to the burner.
Because �ames have an electric conductivity the voltage results in an electric current that
can be measured with an ammeter. Adapted from [Res19] and [Kie+12].

2.3.1. Combustion Control Based on Ionization

In Compendium of Chemical Terminology ionization is de�ned as "the generation of one
or more ions" [Gol14]. Ions are atoms or particles "having a net electric charge" [Gol14,
p. 759]. Ionization takes place in �ames, i.e., free electrons and ions are generated in
�ames. Therefore, a �ame has an electric conductivity and can become a part of an
electric network [Res19, p. 7]. By applying a voltage across the �ame an electric current
�ows through the �ame and can be measured. This is the so-called ionization current
[Kie+12, p. 3]. To measure the ionization current an electrode has to be placed inside
or close to the �ames. An alternating current (AC) voltage supply is connected to the
electrode and to the burner. This electric circuit is closed by the �ames and the applied
voltage causes the ionization current, which can be measured. Figure 2.4 gives a schematic
illustration of this principle.

Remark 2.6 In an electric circuit �ames are far more complex than a simple ohmic re-

sistance. They have a rectifying behavior like a diode. Furthermore, they have a large

resistance and the ionization current has a small magnitude. Therefore, specialized mea-

surement setups with operational ampli�ers are used to measure and process the ionization

current [Loc16]. A thorough analysis of the physical and chemical processes inside �ames

and of their electric properties was done by Resch in her dissertation �Voruntersuchun-

gen für eine mechatronische Produktentwicklung von elektronischen Gas-Luft-Verbünden�

[Res19].

Remark 2.7 From now on ionization is abbreviated by ioni.

The ioni current depends on several factors like the AFR and the load of the appliance
[Kie+12, p. 3] [Res19, pp. 7, 8]. Therefore, it can be used as a feedback signal to control
the mixture and thus the combustion process.
But the setup with an electrode positioned in the �ames has a major drawback. Flames
are a hostile environment for the material of the electrode. The electrode su�ers from

12



2.3 Combustion Control System IoniDetect

oxidation and its electric properties change constantly. This process is also called drift of
the electrode. Because of the electrode's drift a steady self-recalibration of the system
is required [Car+18, pp. 42, 44]. The graph of ioni current versus � has a characteristic
shape. Oxidation of the electrode might shift this graph, but its shape stays similar. This
is the basis for many self-recalibration methods [Car+18, p. 42].
Vaillant decided to use the Sitherm Pro combustion control concept by Siemens. In
this thesis, Vaillant's term IoniDetect is used synonymously to Sitherm Pro. The self-
recalibration method in IoniDetect is called automatic drift adaption (ADA) [Sch15]. ADA
requires up to 28 parameters, that have to be determined for each heat engine (HE).

Remark 2.8 The HE is the module of a Vaillant gas heating device that is responsible for

the combustion. "The primary function of the heat engine . . . is to combust gas in order

to generate heat" [PHE]. Its main components are a heat exchanger, a gas valve, a fan,

a burner, electrodes and an ignitor [PHE, Module Speci�cation Peec Heat Engines].

In contrast, a boiler, for example, also has a hydraulic for the central heating and a cover

for mounting. In particular, di�erent boilers can have the same heat engine. Some detailed

schematic illustrations of a Vaillant boiler can be found in the dissertation of Resch [Res19,

pp. 5, 6].

This thesis is about determining optimized ADA parameters. Therefore, the IoniDetect
concept is described in detail in the following subsections. The ADA procedure is presented
in Chapter 3.

2.3.2. Basic Concept of IoniDetect

In 2019 Vaillant presented its new generation of gas-�red condensing boilers, called ecoTEC
exclusive. They use a combustion control based on ionization and are gas adaptive. Vaillant
named their combustion control IoniDetect [Wic19]. The kernel of IoniDetect is Sitherm
Pro by Siemens. The information presented in this section is based on the corresponding
patent �Control Facility For a Burner System� [LS17] and on the Vaillant intern document
Konzept Sitherm Pro [Sch15]. IoniDetect is used in premixed burners only [Sch15, p. 7].
In a premixed burner fuel and air are mixed �rst and thereafter the combustion takes place.
The counterpart to premixed burners are di�usion burners, where no separate mixing of
fuel and air takes place [CL17, p. 349].

Remark 2.9 For completeness it is mentioned that IoniDetect is an electronic fuel/air ratio

control system (ERC). In the European standard EN 12067-2:2022 an ERC is de�ned as

a "closed loop system consisting of the electronic control unit, actuating elements for the

fuel �ow and the air �ow as a minimum, and allocated feedback signal(s)" [Eur22, p. 9].

IoniDetect was developed in accordance with this standard and meets these requirements.

The task of the IoniDetect control system is to adjust the mixture of gas and air such
that two objectives are met. First, a given heat demand has to be satis�ed. A higher heat
demand requires more air and gas. A smaller heat demand, on the other hand, requires
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Figure 2.5.: Basic principle of the IoniDetect combustion control. Control of air volume �ow
and of gas volume �ow is decoupled to a certain degree. The air volume �ow is controlled
by the fan speed. The gas volume �ow is controlled with a feedback loop based on the ioni
current. Illustration based on [Sch15, p. 7].

less air and gas. Second, the combustion process shall have an optimal AFR [Sch15, p. 7].
Note that both objectives can be met simultaneously.
The mixture is adjusted by IoniDetect via two actuators, which are a fan and a gas valve
[Sch15, p. 7]. The fan delivers fresh air to the mixing chamber. The air volume �ow
depends on the fan speed. A larger fan speed usually results in a larger air volume �ow.
The gas volume �ow, on the other hand, is controlled by the position of the gas valve. A
more open position usually results in a larger gas volume �ow.
In IoniDetect the two objectives satisfying a heat demand and keeping the combustion at
the desired AFR are decoupled to a certain degree. The fan speed is linked to the heat
demand, while the gas valve adjusts the AFR. An ioni electrode is used as a sensor to
control the AFR [Sch15, p. 7]. The basic principle of the IoniDetect control system is
shown in Figure 2.5. The gas valve position, and thus to a certain degree also the gas
volume �ow, is controlled with a feedback loop that is based on the ioni current. A desired
ioni current setpoint iset is compared to the actual current iactual. A controller permanently
attempts to drive the di�erence �i := iset� iactual to zero. It moves the gas valve according
to the di�erence and the gas volume �ow changes. This changes the mixture and thus
also the AFR. A change in the AFR causes a change in the ioni current and the feedback
loop is closed. The following example demonstrates this principle in more detail.

Example 2.10 Let us assume a given heat demand and that the fan runs at the corre-

sponding fan speed, which is denoted by fs in this example. Let �target be the desired

equivalence AFR. Figure 2.6(a) shows the ioni current versus � graph with the fan speed

�xed at fs. The setpoint is marked by the dot, which is the unique ioni current such that

� equals �target.

Let us further assume that the combustion is not optimal and we have �actual < �target, i.e.,

the mixture is too fuel rich. According to the curve in Figure 2.6(a), we have iactual > iset
in this case. Because �i := iset � iactual < 0, the controller commands a more closed

gas valve position and the gas volume �ow decreases. Since the fan speed is still at fs,
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Figure 2.6.: The graphs are created with measurement data of the same Vaillant HE. Each
curve contains (�; ioni current) points with identical fan speed. The dots mark the setpoints
for given target � values at di�erent fan speeds.

the air volume �ow remains approximately unchanged, see also Remark 2.11 below. An

unchanged amount of air and a decreased amount of gas result in an increased AFR, i.e.,

� increases.

On the other hand, if the AFR is too large and therefore the ioni current is less than iset,

the gas valve is further opened and the AFR decreases.

Remark 2.11 If the fan speed is constant, then the air volume �ow is only approximately

constant. It also depends on the amount of gas that is sucked through the gas valve into

the mixing chamber and on pressure changes in the burner and the �ue system [AR24,

0018].

If several gas-�red boilers are connected to the same �ue system, which is sometimes

done to increase a system's heating power, there might be larger �uctuations in a boiler's

air volume �ow although its fan speed is constant. A safe combustion is not always

guaranteed in such a situation. As a mitigation, Vaillant has developed heat engines based

on IoniDetect that are equipped with a mass �ow sensor to measure the air mass �ow. In

such a heat engine the air mass �ow is the process variable and the fan speed is adjusted

such that the air mass �ow follows the desired air mass �ow setpoints. This ensures safe

combustion, even if several appliances are connected to the same �ue system.

Note that for the remainder of this thesis we consider only heat engines that are not

equipped with a mass �ow sensor. However, all the results in this thesis can also be

applied to IoniDetect heat engines equipped with a mass �ow sensor by replacing the fan

speed with the so-called virtual fan speed. The virtual fan speed is an arti�cial value, which

in a certain sense is equivalent to the air mass �ow [PHE, Item 3728, Item 3733].
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Example 2.10 demonstrates that the controller of the gas valve requires two parameters
that de�ne the setpoint. They are the desired equivalence AFR �target and the correspond-
ing ioni current iset. Figure 2.6(a) indicates that the ioni current setpoint is a function of
the fan speed. This is indeed the case, as shown in Figure 2.6(b). It is based on measure-
ment data of a Vaillant HE. The data were recorded at three di�erent fan speeds fs1, fs2
and fs3. Each of the three ioni current versus � graphs consists of points with identical
fan speed. For each fan speed let the desired equivalence AFR be �target = 1:3. The
corresponding setpoints are marked by the dots. It is apparent that each fan speed has
a di�erent ioni current setpoint. Therefore, the controller requires a function that maps
every feasible fan speed fs to its corresponding ioni current setpoint iset(fs). This function
is called control curve. It is relevant for the ADA algorithm and for the construction of the
optimization models later on and thus it is explained in detail in the following subsection.

2.3.3. Control Curve and �-Target Curve

To control the gas valve properly, an ioni current setpoint is required. As shown at the
end of the preceding subsection, the ioni current depends on the AFR and on the fan
speed. The determination of the ioni current setpoint(s) is based on measurement data of
the respective HEs and can be divided into two steps. Because the optimal AFR usually
depends on the load, i.e., on the fan speed, a desired equivalence AFR �target(fs) has
to be determined for each feasible fan speed fs �rst. Thereafter, the corresponding ioni
current setpoints iset

(
fs; �target(fs)

)
are determined [Sch15, pp. 14�16]. Of course, this

cannot be done for every fan speed in the interval of feasible fan speeds [fsmin; fsmax].
Rather, one chooses a suitable �nite subset of fan speeds and only determines �target(fs)
and iset

(
fs; �target(fs)

)
for these fan speeds. The chosen fan speeds and the according ioni

current setpoints are stored in a look up table. The controller linearly interpolates between
the entries of this table. The �rst and the last entry are extrapolated using the slopes
de�ned by their neighbored entries [Sch15, p. 15]. This interpolated and extrapolated
function is the so-called control curve. Analogously, the so-called �-target curve is the
linear interpolation of the �target versus fan speed values. However, the �-target curve is
extrapolated as a constant function.
Figure 2.7 shows an exemplary �-target curve and the corresponding control curve. It is
important to emphasize that the controller works with the control curve only. As already
mentioned, the controller does not have the capability to measure the equivalence AFR
directly, i.e., IoniDetect is blind with regard to the equivalence AFR. Therefore, the �-
target curve is irrelevant to the controller. It only represents the desired equivalence AFR
and it is only used to determine the control curve.

Remark 2.12 Because the controller is blind with regard to the equivalence AFR, the

HEs usually operate with some deviation to the target �. E.g., the electrode's position

has some tolerances and thus the measured ioni currents of two identical HEs usually

di�er from each other. Another example is the in�uence of weather. Depending on the

atmospheric pressure or the wind conditions, the pressure in the �ue system di�ers and the
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Figure 2.7.: Both curves are the linear interpolation of 32 supporting points. The �-target
curve represents the desired � as a function of the fan speed. The control curve maps any
feasible fan speed fs to an ioni current iset(fs) such that �

(
fs; iset(fs)

)
= �target(fs) (under

ideal conditions).

air mass �ow varies, although the fan speed remains unchanged. Therefore, the design of

the control curve parameters has to take these and some other tolerances into account.

This is an optimization problem on its own, but it is beyond the scope of this thesis. In the

context of the ADA problem, the control curve and the �-target curve are always assumed

to be given.

By integrating the control curve into the model of the IoniDetect combustion control
system as described in the preceding Section 2.3.2 and as illustrated in Figure 2.5, we
obtain a more complete model of IoniDetect. The resulting extended model is illustrated
in Figure 2.8. This system has only one input, which is the fan speed setpoint. The control
curve transforms the fan speed setpoint to an ioni current setpoint, which is used to control
the gas valve. Based on this extended model of IoniDetect, the ADA optimization problem
is formulated and analyzed in the course of this thesis.

Remark 2.13 Note that the model of IoniDetect according to Figure 2.8 is still basic.

There are far more details related to the control of the fan speed and the gas valve.

Especially in the context of the dynamic behavior of the combustion system, there is more

to consider. For example, there exists a feed forward control for the gas valve that allows

the system to react quickly to major load changes [Sch15, pp. 16 sq.]. Because these are

not relevant with respect to the ADA problem, they are omitted in the following. A more

detailed introduction to IoniDetect can be found in [Sch15].

Next, we de�ne a mathematical model of HEs with IoniDetect. This model is used to
explain and analyze the ADA procedure as well as to design ADA optimization models in
the course of this thesis.
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Figure 2.8.: This is an extension of the concept shown in Figure 2.5. The extended system
has only one input, which is the fan speed setpoint. It is transformed by the control curve
to an ioni current setpoint, which is used to control the gas valve. Based on [Sch15, p. 7].

2.4. Mathematical Heat Engine Model

We want to optimize the ADA parameters with computer simulations. For this, we need an
appropriate mathematical model of the IoniDetect HEs. The relevant physical sizes with
respect to the ADA procedure are the fan speed, the gas valve position, the ioni current,
the equivalence AFR and the CO emission. The goal of this section is to formulate a
mathematical model of the HE that represents these sizes as well as their relations and
interdependence appropriately.
For this, we have to take two aspects into account. First, the model has to be based
on the measurement data provided by Vaillant. The second aspect results from the fact
that all considered HEs follow some physical laws and thus have some combustion system
behavior in common. This common behavior can be derived from combustion theory and is
also present in measurement data. Thus it is postulated as universal HE properties below.
The HE model should re�ect these universal properties.

2.4.1. Measurement Data Provided by Vaillant

This subsection is based on the Vaillant intern documentation [PHE, Item 1608], where
the measurement process is described in detail. The key points are summarized in the
following.
The basic notion is that an HE is considered as a system that has two inputs and several
outputs. The inputs correspond to the positions of the two actuators, i.e., the inputs are
the fan speed and the gas valve position. The outputs are several resulting physical sizes.
Regarding the ADA problem, we are only interested in the ioni current, the equivalence
AFR and the CO emission. The latter two are indicators for the combustion quality, see
also Section 2.2. The ioni current is used to control the combustion as delineated in Sec-
tion 2.3. Other outputs like the thermal load are not relevant for the ADA problem and
thus they are ignored in the following.
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The measurement process can be summarized as follows.

� A sample set S of n, n 2 N, fan speed and gvp combinations is speci�ed, i.e.,
S =

{
(fsk ; gk

)
: k 2 [n]

}
with [n] := f1; : : : ; ng.

� For each sample point (fsk ; gk
)
2 S the fan speed is �xed at fsk and the gvp is �xed

at gk .

� Because the inputs are �xed at fsk and gk , the combustion process eventually sta-
bilizes, i.e., the output variables no longer change after a certain time. Then the
corresponding ioni current ik , the equivalence AFR �k and the CO emission cok are
recorded.

With this, one obtains n �ve-dimensional data points (fsk ; gk ; ik ; �k ; cok), k 2 [n]. These
n data points constitute a set of HE measurement data, which is called Brennfeld static

signals by Vaillant.

Remark 2.14 Brennfeld is a coinage in the German language. It is a combination of the

two words Brenner and Kennfeld.

Remark 2.15 An HE system has a thermal inertia and thus it takes a certain time until

the combustion process and the corresponding outputs have stabilized while the inputs

are kept constant. Because the outputs are only recorded once the system has stabilized,

the recorded data contains no information about the corresponding HE system's dynamic

behavior. Therefore, the denotation of the HE measurement data contains the term static
signals. A detailed introduction to signal, systems and dynamics can be found in [LJ19]

and [Ada22].

To consider only static signals reduces a system's complexity and is a simpli�cation. The

underlying assumption made by Vaillant is that an HE's dynamics are su�ciently approxi-

mated by the Brennfeld static signals.

Figure 2.9 shows the Brennfeld static signals of a Vaillant HE [PHE, Item 6371]. The
upper left part shows the sample set S that contains a total of n = 304 fan speed and gvp
combinations. The upper right part shows the recorded ioni currents against the sample
points S, i.e., the set f(fsk ; gk ; ik) : k 2 [304]g is shown. Analogously, the recorded
equivalence AFRs and the recorded CO emissions against S are shown in the lower left
and lower right part of Figure 2.9, respectively.
The data shown in the upper right part of Figure 2.9 suggests that the ioni current is
strictly increasing with the gvp if the fan speed is kept �xed. The data shown in the lower
left part of Figure 2.9 suggests that the equivalence AFR is strictly decreasing with the
gvp if the fan speed is kept �xed. This is indeed always the case and allows us to propose
universal HE properties. These properties are then used to formulate the HE model in
Section 2.4.3.
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Figure 2.9.: Brennfeld static signals of the Vaillant HE according to [PHE, Item 6371] are
shown. The �gure is intended to give an intuition of the Brennfeld static signals. The
details and scaling of the shown graphs are not important.
In the upper left part, the sample set S consisting of 304 fan speed and gvp combinations
is shown. The upper right part shows the recorded ioni currents against the sample set S.
In the lower part, the equivalence AFR � and the CO emission co against S are shown.
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Figure 2.10.: A total of 17 data points of the Brennfeld static signals according to [PHE,
Item 6371] are shown. All data points have the same fan speed fs = 6500. In the left part,
the ioni current i against the gvp g is shown. The ioni current is strictly increasing with the
gvp. In the right part, the equivalence AFR � against g is shown. The equivalence AFR is
strictly decreasing with the gvp.

2.4.2. Universal HE Properties

The �rst universal property is based on the fact that every HE has a minimum and a
maximum fan speed, both of which are positive.

De�nition 2.16 The minimum and the maximum fan speed of an HE are denoted by

fsmin and fsmax, respectively. The set of all feasible fan speeds is the closed interval

FS := [fsmin; fsmax] � R>0 := fx 2 R : x > 0g.

Remark 2.17 In practice, the fan speed can only be changed in discrete steps [WHB,

Item 4196]. Therefore, assuming that every fs 2 FS is feasible is a simpli�cation. However,

because the step size between two fan speeds is su�ciently small in practice, it is assumed

that this simpli�cation does not a�ect the ADA optimization later on.

Next, we consider some monotonicity properties of the ioni current and of the equiva-
lence AFR with respect to the gvp. The left part of Figure 2.10 shows the ioni current
against the gvp of 17 sample points (fsk ; gk), k 2 [17], where all sample points have the
same fan speed fs, i.e., fsk = fs for all k 2 [17]. In the right part of Figure 2.10, the
equivalence AFR � against the gvp g for the same 17 sample points is shown. Note that
the ioni current i is strictly increasing with the gvp g and that the equivalence AFR � is
strictly decreasing with g. Furthermore, the "slope" of the ioni current "curve" reduces
with increasing gvp and the 17-th data point seems to constitute an ioni current maximum.
In addition, the equivalence AFR of the 17-th data point is close to one.
All these observations are no coincidence. This behavior can be observed not only in this
example but in all measurement data. Apart from the empirical �ndings, a theoretical
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Figure 2.11.: The CO emission co against the gvp g for 17 data points of the Brennfeld static
signals according to [PHE, Item 6371] are shown. All data points have the same fan speed
fs = 6500. The CO emission curve is convex. In addition, the 150 ppm line is shown, which
is usually the CO limit for the ADA procedure, see also Section 8.1 below.

derivation is also possible. The monotonicity of the ioni current as well as that the ioni
current's maximum is close to � = 1 can be found in the dissertation by Resch [Res19].
That � is strictly decreasing with g while fs is �xed can be explained as follows. Let us
consider two actuator positions (fs1; g1) and (fs2; g2) with fs1 = fs2. Without loss of gen-
erality let g1 < g2. Because the fan speeds are identical but g2 is greater than g1, (fs2; g2)
results in a mixture that contains more gas than the mixture of (fs1; g1) while the amount
of air is (approximately1) identical. Therefore, the AFR of (fs2; g2) is smaller than the
AFR of (fs1; g1), i.e., �2 < �1. In addition to the monotonicity properties, it is reasonable
to assume that the graphs of i against g and of � against g with the fan speed �xed are
continuous. An actuator position (fs; g) corresponds to a certain amount of oxygen and
gas that are mixed. Their mixture results in a certain equivalence AFR during combustion.
If the fan speed or the gvp is changed slightly, the AFR also changes only slightly. The
continuity of i versus g is justi�ed analogously.
Regarding the CO emission, there exists no monotonicity property. Figure 2.11 shows the
CO emission versus the gvp for the same data points (fsk ; gk), k 2 [17], whose corre-
sponding ioni currents and equivalence AFRs have already been considered above. It is
apparent that the curve of co versus g is convex. Again, this is no coincidence, see also
Section 2.2 and [MCF11, p. 180]. Therefore, the convexity of the CO emission curve is
also considered as a universal HE property. In addition, it is also reasonable to assume
that the CO emissions change continuously with the gvp.
The monotonicity, convexity and continuity properties motivate the de�nition of the math-
ematical HE model given below.

1That the air volume �ow is only approximately constant while the fan speed is �xed is detailed in

Remark 2.11.
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2.4.3. The HE Model

Based on the kind of measurement data provided by Vaillant, i.e., we consider static
signals and no dynamic behavior, and based on the universal HE properties delineated in
the preceding subsection, a mathematical HE model is formulated. The following de�nition
as well as the results derived in this subsection are from the author of this thesis.

De�nition 2.18 An HE model is a 5-tupleH = (FS; G; �;�; �), where FS = [fsmin; fsmax] �

R>0 is the set of feasible fan speeds of the HE and:

� G = (Gfs)fs2FS is an indexed family of closed and bounded intervals that contains

for each fs 2 FS exactly one closed and bounded interval Gfs, i.e.,

Gfs 2 G ) Gfs � R is a closed and bounded interval:

A set Gfs 2 G is called the set of gas valve positions with respect to fs.

� � = (�fs)fs2FS is an indexed family of functions �fs : Gfs ! R>0 that are strictly

increasing as well as continuous and where Gfs 2 G, i.e.,

�fs 2 � ) �fs : Gfs ! R>0 s.t. Gfs 2 G and �fs strictly increasing and continuous:

A function �fs 2 � is called the ioni current function with respect to fs.

� � = (�fs)fs2FS is an indexed family of functions �fs : Gfs ! R>0 that are strictly

decreasing as well as continuous and where Gfs 2 G, i.e.,

�fs 2 � ) �fs : Gfs ! R>0 s.t. Gfs 2 G and �fs strictly decreasing and continuous:

A function �fs 2 � is called the equivalence AFR function with respect to fs.

� � = (�fs)fs2FS is an indexed family of functions �fs : Gfs ! R>0 that are convex as

well as continuous and where Gfs 2 G, i.e.,

�fs 2 � ) �fs : Gfs ! R>0 s.t. Gfs 2 G and �fs convex and continuous:

A function �fs 2 � is called the CO emission function with respect to fs.

Remark 2.19 According to De�nition 2.18, the images of all ioni current functions �fs,

of all equivalence AFR functions �fs and of all CO emission functions �fs, fs 2 FS, are

contained in R>0. This condition is justi�ed, because the ioni current is always positive

(Remark 3.5 below), the equivalence AFR is always positive (Remark 2.5) and burning

natural gas always produces CO, i.e., there is no negative emission of CO.

The following example presents an HE model according to De�nition 2.18.
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Chapter 2 Technical Background

Example 2.20 We set FS := [1; 2] and Gfs := [10 fs; 20 fs] for all fs 2 FS. Furthermore,

we de�ne for all fs 2 FS functions �fs : Gfs ! R>0, �fs : Gfs ! R>0 and �fs : Gfs ! R>0

by

�fs(g) := 10g; �fs(g) := �g + 100 and �fs(g) := g2:

Then, H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
satis�es all conditions of Def-

inition 2.18, because Gfs is a closed and bounded interval, �fs is strictly increasing and

continuous, �fs is strictly decreasing and continuous and �fs is convex and continuous for

all fs 2 FS. Furthermore, the images of all functions are contained in R>0. Therefore,

H is an HE model according to De�nition 2.18. However, the model H in this example is

arti�cial and not related to a set of measurement data.

De�nition 2.18 of H is abstract in the sense that it is possible to build an HE model
without regarding any measurement data at all as demonstrated in Example 2.20. The ab-
straction from measurement data allows to argue with the HE related properties according
to De�nition 2.18 only, i.e., the argumentation in this thesis are (almost) independent of
a particular set of measurement data or a particular regression or interpolation method.
Of course, when solving the ADA optimization problems in practice, the HE models must
be in accordance with the corresponding measurement data. How an HE model may be
generated from measurement data is discussed in the following Subsection 2.4.4. But �rst,
we derive some further mathematical properties of the HE model.

Lemma 2.21 The functions �fs and �fs of an HE model H are homeomorphisms. Their

images �fs(Gfs) and �fs(Gfs) are closed intervals.

Proof. Let H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
be an HE model. Let

fs 2 FS. According to De�nition 2.18, the function �fs is strictly increasing and continuous.
Therefore, �fs is bijective, i.e., its inverse ��1fs exists. Because �fs is strictly increasing
and its domain is an interval, ��1fs is also continuous [Gar13, p. 163]. In total, �fs is a
homeomorphism. As the image of a closed interval under a homeomorphism, the set
�fs(Gf s) is a closed interval as well.
The statements with respect to �fs are shown analogously.

The images of the HE model functions are essential for formulating and analyzing the
ADA algorithm below. Thus they are denoted as follows.

De�nition 2.22 Let H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
be an HE model

and let fs 2 FS. The set of ioni currents with respect to fs is Ifs := �fs(Gfs). The set
of equivalence AFRs with respect to fs is Lfs := �fs(Gfs). The set of CO emissions with
respect to fs is COfs := �fs(Gfs).

Corollary 2.23 The sets Ifs and Lfs are closed intervals in R>0 for all fs 2 FS.

As already mentioned, the mathematical modeling and analysis of the ADA procedure
in this thesis is based on the properties of the HE model according to De�nition 2.18 and
Lemma 2.21. In order to obtain meaningful HE models, we brie�y discuss how to generate
an HE model from measurement data.
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2.4 Mathematical Heat Engine Model

2.4.4. Generating an HE Model from Measurement Data

Let us suppose that we have a set of HE measurement data, i.e., we have some Brennfeld
static signals of an HE specimen, and we are interested in an HE model that re�ects the
measurement data. This corresponds to performing a curve �tting with the measurement
data.
To illustrate the curve �tting process, let us suppose that we have a set of n data points
f(fsk ; gk ; ik ; �k ; cok) : k 2 [n]g. An exemplary set of measurement data with n = 304

data points is shown in Figure 2.9 above. Because each of the three outputs i , � and co is
obtained from the same two inputs fs and g, we perform three curve �ttings, one for each of
the data sets f(fsk ; gk ; ik) : k 2 [n]g, f(fsk ; gk ; �k) : k 2 [n]g and f(fsk ; gk ; cok) : k 2 [n]g.
Regarding the exemplary data shown in Figure 2.9, these sets correspond to the upper right
part, to the lower left part and to the lower right part of Figure 2.9, respectively.
Let �̂, �̂ and �̂ denote the resulting �ts, respectively. Each �t is a function from a subset of
R2, which corresponds to the fan speeds and gas valve positions, to a subset of R, which
corresponds to the ioni current, the equivalence AFR and the CO emission, respectively.
From these �ts the corresponding HE model can be derived as follows.

� For each fs 2 FS, we specify a closed interval Gfs. This must be done such that
(fs; g) is in the domain of each of the three �ts �̂, �̂ and �̂ for all g 2 Gfs. Usually,
this is done by considering a suitable hull (not necessarily convex) of the sample set
S = f(fsk ; gk) : k 2 [n]g. For instance, in Matlab this corresponds to the function
boundary(S).

� In order to obtain the HE model functions �fs, �fs and �fs, the domains of the �tted
functions �̂, �̂ and �̂ are restricted to ffsg � Gfs for all fs 2 FS. I.e., for all fs 2 FS

we set
�fs := �̂jffsg�Gfs

; �fs := �̂jffsg�Gfs
and �fs := �̂jffsg�Gfs

:

Note that all these functions are well-de�ned according to the selection of the sets
Gfs in the previous step.

� Care must be taken to ensure that all these functions satisfy the conditions of De�-
nition 2.18. This means that �fs must be strictly increasing and continuous, �fs must
be strictly decreasing and continuous and �fs must be convex and continuous for all
fs 2 FS. To achieve this, the boundaries of some of the intervals Gfs may have to
be selected tighter or a di�erent regression or interpolation method may have to be
selected.

The approach with the HE model proposed in Section 2.4.3 allows �exibility in the choice
of regression method. Any interpolation or regression method is feasible as long as the
corresponding model H satis�es the conditions of De�nition 2.18. Because the data of the
Brennfeld static signals are already mean values, the Vaillant engineers prefer interpolation
of the data [PHE, Item 16668]. Two common interpolation methods are thin plate splines
and linear interpolation. If not otherwise stated, all graphs presented in this thesis as well
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as the use cases presented in Chapter 9 below are based on a variant of linear interpolation.
This is done for the following reasons. Linear interpolations are usually computationally
less expensive, i.e., they are fast to evaluate. Furthermore, with linear interpolations it is
"easier" to adhere to the monotonicity conditions according to De�nition 2.18. Finally,
the ADA procedure requires certain inverse ioni current functions ��1fs , see for instance
De�nition 6.5 below, and the inverse functions are more easy to determine/evaluate in
the case of a linear interpolation. However, whether interpolation or regression is more
appropriate and which is the best suited interpolation/regression method for generating
an HE model from Brennfeld static signals remain open questions and are left for future
research.

Next, we explain how the combustion control system IoniDetect can be simulated with
the proposed HE model. This is relevant when the ADA procedure is presented in the
following Chapter 3.

2.4.5. Relation Between the Proposed HE Model and IoniDetect

In the proposed HE model, an HE is modeled as a system with the two inputs fan speed
and gvp and the three outputs ioni current, equivalence AFR and CO emission, which
follows in a certain sense the "physical logic". This means that a fan speed and a gvp
result in a certain mixture. The combustion process corresponding to this mixture has a
certain equivalence AFR, a certain ioni current and a certain CO emission.
However, IoniDetect works the other way around. As detailed in Section 2.3, IoniDetect
is neither able to control the gas valve position directly nor to measure the equivalence
AFR. Instead, the ioni current is used as an indirect measure of the equivalence AFR to
control the gas valve, i.e., the inputs of IoniDetect are the fan speed and the ioni current.
Its outputs are the gvp, the equivalence AFR and the CO emission. The following example
demonstrates how this is modeled with the proposed HE model.

Example 2.24 Let an HE model H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
be

given. Furthermore, let fs 2 FS be a given fan speed setpoint and let i 2 Ifs be a given

ioni current setpoint. Then, IoniDetect works as follows.

The fan speed is �xed at fs and the gas valve is adjusted such that the resulting ioni current

is equal to i . The corresponding gvp is g := ��1fs (i). With the gvp at hand, we can then

calculate the resulting equivalence AFR and CO emission via � = �fs(g) and co = �fs(g).

Remark 2.25 It is important to emphasize that IoniDetect can only evaluate the inverse

ioni current function ��1fs but not the "non-inverted" ioni current function �fs, fs 2 FS.

This is particularly relevant for the ADA procedure, which is explained in the following

chapter.
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2.4.6. Discussion of the Proposed HE Model

As all models, the proposed HE model makes some simpli�cations, which are discussed in
this subsection.

Black box model The proposed HE model is a black box model in the sense that it
obscures the underlying physics [FSK08, p. 33]. It transforms the two inputs fan speed
and gvp to an equivalence AFR, an ioni current and a CO emission value without explicitly
considering physical laws. The combustion process as well as the ionization processes in
the �ame are only approximated on a macroscopic level. Because Vaillant only provides
this kind of measurement data, the black box approach is predetermined. Therefore,
considering di�erent modeling approaches is not in the scope of this work.
Challenges in modeling combustion processes based on physical laws, in particular the
ionization of �ames, are explained in [Son23, p. 63].

Static signals versus dynamic behavior As mentioned in Remark 2.15, considering only
an HE system's static signals and not its dynamic behavior is a simpli�cation. Again, be-
cause Vaillant only provides this kind of measurement data, the restriction to static signals
is predetermined. However, simulating dynamic HE properties with so-called Hammerstein-
Wiener models is promising as demonstrated by Sonnenschein in his dissertation [Son23,
pp. 64 sqq.]. Whether this is also a suitable approach in the context of the ADA optimiza-
tion problem is an open question and left for future research.

Atmospheric conditions and other impacts The comparison of several Brennfeld static
signals indicates that the ioni current depends not only on the fan speed and the gvp but also
on other in�uences such as the gas pressure and temperature or atmospheric conditions
like the air pressure and humidity. This is also pointed out by Sonnenschein [Son23,
pp. 80 sqq.]. Nevertheless, the fan speed and the gvp have the largest in�uence on the ioni
current and regarding the ADA optimization the HE model according to De�nition 2.18
has a su�cient approximation quality. But in order to obtain more precise HE models
and better simulation results, it might be worth to further investigate the in�uence of
environmental conditions on the ioni current.

Continuous fan speed and gas valve position As delineated in Remark 2.17, the fan
speed can only change in discrete steps. The same is true for the gvp. In contrast, the
proposed HE model assumes a continuous fan speed and gvp for simpli�cation. While
the step size of the fan speed is rather small, the step size of the gvp is rather large. It
is shown in Section 3.2 below that the gvp is central for the ADA procedure. Whether
better simulation results regarding the ADA optimization can be achieved by considering a
discrete gvp instead of a continuous gvp is an open question and left for future research.
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To conclude the discussion of the proposed HE model, we brie�y consider its simulation
quality.

Simulation Quality of the HE Model

Before ADA parameters are ultimately selected and stored in the combustion control soft-
ware, they are tested in the lab with a particular test procedure, which is described in [PHE,
Item 1618]. Therefore, this test procedure was also implemented with the proposed HE
model to assess ADA parameters with computer simulation. However, there is a certain
discrepancy between measured values in the lab and their simulated counterparts [PHE,
Item 16770]. For example, in one use case, the deviation of the resulting equivalence AFR
between the measured values and the simulated counterparts after 15 ADA iterations with
each ADA pair was approximately 0:1 at smaller fan speeds and approximately �0:05 at
larger fan speeds [PHE, Item 16770]. This indicates a potential shortcoming of the HE
model. Because the decision makers are nevertheless satis�ed with the ADA parameters
obtained by the methods proposed in this study [PHE, Items 3124 and 7082], the simula-
tion quality is considered to be su�cient. However, further modeling work will have to be
conducted in order to obtain better simulation quality.

This concludes the presentation of the proposed HE model and also the presentation of
the technical background required to comprehend the ADA procedure, which is presented
next.
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3. ADA: Automatic Drift Adaption

In this chapter, the automatic drift adaption (ADA) procedure is presented based on the
United States patent �Control Facility For a Burner System� [LS17] as well as on the
Vaillant intern documentations Konzept Sitherm Pro [Sch15], [WHB] and [PHE]. The
patent [LS17] was �led by Lochschmied and Schmiederer and contains the invention of
the ADA concept. In this thesis it is referred to as the 'ADA patent'. The examples and
�gures in this chapter, which are used to demonstrate and explain the ADA procedure,
as well as all formulations with respect to the HE model, are added by the author of this
thesis.

Remark 3.1 Note that the ADA patent [LS17] as well as the Vaillant intern documenta-

tions [Sch15], [WHB] and [PHE] are technical documents. They do not always provide

mathematically exact statements. Some of their statements may be based on experience

and on trial and error. In this sense, ADA is a technical procedure and can be considered

as a heuristic to compensate the drift.

Although ADA is an algorithm, the aforementioned documentations contain only a partial

algorithmic description. Therefore, the mathematical and algorithmic aspects of ADA are

secondary in this chapter. Rather it is considered a technical description of ADA. A math-

ematical description of the ADA algorithm and an analysis of its convergence properties

are provided in Chapters 5 to 7 below.

As stated in Section 2.3.1, combustion control based on ionization has a large drawback.
The ioni electrode has to be positioned in the �ames, but there it is prone to oxidation
processes. With increasing operating time an oxide layer accrues on the electrode's surface.
This oxide layer has the e�ect of an electrical insulation and reduces the conductivity of
the electrode [LS17, p. 5]. This alters the electrical characteristics of the ioni current
measurement circuit.

Remark 3.2 In the context of an ioni electrode, the process of oxidation is also called

aging or drift. In thesis, the term drift is mostly used.

We �rst describe how drift is modeled. Then, the notion behind the ADA procedure is
illustrated. Finally, the more advanced concepts of a sequence of ADA iterations and a
plurality of ADA pairs are presented.

3.1. Modeling of Drift

The in�uence of drift on combustion control is closely related to the ioni current measure-
ment circuit.
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Figure 3.1.: In the left part, the equivalence circuit diagram of the ioni current measurement
circuit is shown. It consists of a DC voltage source, a current limiting resistance, the �ame
resistance and an ammeter to measure the resulting current. The occurrence of drift is
modeled by an additional resistance rD that is connected in series. This situation is depicted
in the right part. Adapted from [LS17].

3.1.1. Ioni Current Measurement Circuit

The ioni current measurement circuit is one of the key components of IoniDetect. It is
explained in detail in the corresponding ADA patent [LS17, p. 5] and in the Vaillant intern
documentation [Loc16]. Both documents also contain a much simpler equivalent circuit
diagram of the measurement circuit. An equivalent circuit is "a simpler but functionally
equivalent form for complicated systems" [Joh03, p. 1]. The equivalent circuit correspond-
ing to the ioni current measurement circuit is illustrated in the left part of Figure 3.1. It
consists of a direct current (DC) voltage source with a known voltage U, an ammeter and
two resistances that are connected in series. The ammeter is used to measure the circuit's
current iM . This current is the ioni current that is used in IoniDetect to control the AFR
as described in Section 2.3.2. The two resistances are a current limiting resistance RCL

and the �ame resistance r
.
The current limiting resistance is an ohmic resistance with a constant size. As the name
suggests it is included in the circuit to reduce and limit the current iM . The �ame resis-
tance depends on the electric conductivity of the �ame and is a function of the air quantity
and of the fuel quantity [LS17, p. 5]. Because in IoniDetect the mixture of air and fuel is
adjusted via the fan speed and the gvp, the �ame resistance is considered as a function
of the fan speed and the gvp in following. Details about the electrical characteristics of
�ames are stated in Remark 2.6.
For the subsequent analysis of the ADA optimization problem, it is convenient to combine
the current limiting resistance and the �ame resistance to rF (fs; g) := RCL + r
(fs; g).
Because the two resistances are connected in series, the measured current is (by applying
Ohm's law)

iM(fs; g) =
U

rF (fs; g)
: (3.1)

Remark 3.3 For the remainder of this thesis, U corresponds to the DC voltage of the

equivalent circuit of the ioni current measurement circuit. As a DC voltage, U is constant.

Furthermore, U is positive, i.e., U > 0.
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Remark 3.4 Let the fan speed fs and the gvp g be such that we have a stable combus-

tion. Then, the total resistance rF (fs; g) is always greater than zero and bounded. Even if

there was a short circuit because the electrode was in contact with the burner, the current

limiting resistance would still be present and limit the current and thus rF (fs; g) > 0.

On the other hand, because we have a stable combustion, the �ame is an electrical con-

ductor and its resistance r
(fs; g) is �nite and thus rF (fs; g) < 1. If the electrode was

bent such that it is far away from the �ame, an electric current could not �ow. But such

a scenario is beyond the scope of this work.

Remark 3.5 Let the fan speed fs and the gvp g be such that we have a stable combustion.

Then, the ioni current iM(fs; g) is always greater than zero and �nite. According to

Remark 3.4, we have 0 < rF (fs; g) <1. Therefore, the ioni current iM(fs; �) = U
rF (fs;�)

is

well-de�ned and because U > 0, we have 0 < iM <1.

In the equivalent circuit of the measurement circuit, the phenomenon of drift, i.e., an
accretion of oxide on the electrode, is modeled as an additional resistance that is connected
in series [LS17, p. 5]. This situation is depicted in the right part of Figure 3.1, where the
additional resistance rD is connected in series in the equivalent circuit of the measurement
circuit. This is the so-called drift resistance.

De�nition 3.6 The additional resistance that models the electrode's drift in the equivalent

circuit is called drift resistance.

With the drift resistance present, the total resistance of the circuit is r(fs; g) = Rcl +

r
(fs; g) + rD = rF (fs; g) + rD. The measured ioni current is (by applying Ohm's law)

iM;rD(fs; g) =
U

r(fs; g)
=

U

rF (fs; g) + rD
: (3.2)

The in�uence of drift on the measured ioni current corresponds to comparing (3.1) with
(3.2). We have

rD 6= 0 ) iM(fs; g) 6= iM;rD(fs; g);

which has an impact on the combustion quality as it is shown in Section 3.1.4 below. But
�rst, we take a closer look at the assumptions with respect to the drift resistance made in
this thesis.

3.1.2. Assumptions with Respect to the Drift Resistance

A central assumption made by Vaillant is that the drift resistance does not depend on
the fan speed or the gvp, i.e., rD is not a function of the fan speed or the gvp [PHE,
Item 1618]. An ohmic resistance is (almost) constant and does not depend on the fan
speed or the equivalence AFR and is therefore suitable for simulating a constant drift.
Accordingly, Vaillant simulates drift in the laboratories by connecting an additional ohmic
resistance in series in the measuring circuit [PHE, Item 1618].
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Remark 3.7 The ADA patent [LS17] assumes the more general case that the resistance

depends on the fan speed and possibly also on the gas valve position [LS17, p. 9]. However,

practical experience by Vaillant has shown that the simpli�ed assumption of rD not being

a function of fs or g is su�cient.

Another aspect related to assumptions on the drift resistance is time dependency. Ac-
cording to the ADA patent, "drift only takes place as a creeping phenomenon" [LS17,
p. 3], i.e., the drift resistance changes slowly over time. In the simulations, we consider
rather small period of times. Therefore, the simplifying assumption is made that the drift
resistances is not a function of the time. This assumption is consistent with the already
mentioned approach to simulate drift in the lab, because the ohmic resistances used to
simulate drift are constant and thus are not time depended. The only way to simulate a
change of drift in the lab is to replace the used ohmic resistance. This is actually done
when testing ADA parameters with a certain test pattern in the lab, where three di�er-
ent drift resistances rD;1 < rD;2 < rD;3 are considered [PHE, Item 1618]. The following
assumption summarizes the considerations made so far.

Assumption 3.8 The drift resistance is always assumed to be a constant, i.e., rD 2 R. In

particular, it is assumed to be not a function of the fan speed, of the gvp or of time.

An aspect that is important in practice is the de�nition of the reference point for no
drift. A natural de�nition for no drift would be the situation that a brand new electrode and
burner are used, i.e., if the HE has zero operating hours. But Vaillant de�nes a situation
as no drift, where the ioni electrode has already been exposed to oxidation for a period of
90 hours and the burner was exposed to oxidation for a period of 20 hours. This is done,
because the e�ect of drift is particularly noticeable at the �rst hundred hours of operating
time [PHE, Item 1618]. Thereafter, the oxidation process takes place at a much slower
rate and eventually stabilizes at a certain point.
All measured ioni currents that are considered in this work were recorded according to
Vaillant's de�nition of no drift. This motivates the following de�nition.

De�nition 3.9 The term no drift, i.e., the case rD = 0, corresponds to the situation that

the ioni electrode has already been exposed to oxidation for a period of 90 hours and the

burner was exposed to oxidation for a period of 20 hours.

A consequence of De�nition 3.9 is that a negative drift resistance is possible. This
might happen if an installer mistakenly cleans the ioni electrode with a wire brush. Then,
the oxide layer is removed and the ioni current measurement circuit's total resistance is
smaller than in the situation according to De�nition 3.9. Because this is an unintended
and unlikely case, it was decided to consider only nonnegative drift resistances in this work.

Assumption 3.10 The drift resistance is always assumed to be a nonnegative constant,

i.e., rD 2 R�0 := fx 2 R : x � 0g.

Remark 3.11 According to the ADA patent [LS17], "[b]ending or displacement respectively

of the ionization electrode" might have the e�ect of a negative drift resistance [LS17, p. 6].
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This seems to be a contradiction to Assumption 3.10. But these geometric tolerances with

respect to the ioni electrode have the e�ect of an additional drift resistance. This additional

resistance is independent of the considered rD. It can even be present if we actually have

a situation with no drift. This is detailed in Sections 6.3.2 and 7.4.1 below.

We summarize that the drift of the ioni electrode is modeled as a nonnegative and
constant ohmic resistor rD that is connected in series in the equivalence circuit diagram
of the ioni current measurement circuit. The resulting drifted ioni current is calculated
by (3.2). Therefore, Equation 3.2 is added to the HE model presented in Section 2.4 to
represent drift in the HE model.

3.1.3. Drifted HE Model

The measured ioni current iM(fs; g) in the equivalence circuit diagram corresponds to �fs(g)
in the HE model, see also Section 2.4. In this subsection, we add the drifted ioni current
iM;rD(fs; g) to the HE model. Note that we only need to adjust the ioni current functions
in the HE model in the event of drift. The other variables and functions of the HE model
remain unchanged. The equivalence AFR and the CO emission depend on the mixture of
air and gas and thus they depend only on the fan speed and the gvp and not on the drift
resistance.
It is possible to express the drifted ioni current as a function of the ioni current without
drift. The corresponding ioni current without drift is iM(fs; g) = U

rF (fs;g)
according to

(3.1). Let rD � 0 be a drift resistance. Then, the corresponding ioni current with drift is
iM;rD(fs; g) =

U
rF (fs;g)+rD

according to (3.2). By plugging rF (fs; g) =
U

iM(fs;g) into (3.2), we
obtain

iM;rD(fs; g) =
U

rF (fs; g) + rD
=

U
U

iM(fs;g) + rD
=

UiM(fs; g)

rD iM(fs; g) + U
: (3.3)

Equation 3.3 motivates the following de�nition the drifted HE model.

De�nition 3.12 Let H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
be an HE model

according to De�nition 2.18 and let rD � 0 be a drift resistance. The corresponding drifted
HE model is the 5-tuple HrD =

(
FS; (Gfs)fs2FS; (�fs;rD)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
, where

(�fs;rD)fs2FS is an indexed family of functions �fs;rD : Gfs ! R>0 that are de�ned by

�fs;rD(g) :=
U�fs(g)

rD�fs(g) + U
8 g 2 Gfs: (3.4)

The functions �fs;rD are called the drifted ioni current functions with respect to fs and rD.

Lemma 3.13 Let rD � 0. Then, the drifted ioni current functions �fs;rD are well-de�ned

for all fs 2 FS.

Proof. Let rD � 0 and let fs 2 FS. According to De�nition 2.18, we have �fs(g) > 0

for all g 2 Gfs. In addition rD � 0 and U > 0, thus we have rD�fs(g) + U > 0, i.e.,
the denominator of (3.4) is greater than zero and the fraction is well-de�ned. Because
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the nominator U�fs(g) is positive as well, we have �fs;rD(g) > 0 for all g 2 Gfs, i.e,
�fs;rD(Gfs) � R>0.

Analogous to the undrifted ioni current function �fs, the drifted functions �fs;rD are also
strictly increasing homeomorphisms. To show this, we consider the following auxiliary
function, which is motivated by (3.4).

De�nition 3.14 Let rD � 0. We de�ne the auxiliary function

hrD : R>0 ! R>0; hrD(x) :=
Ux

U + rDx
:

Lemma 3.15 The function hrD is well-de�ned, continuous and strictly increasing.

Proof. That hrD is well-de�ned follows from the fact that its domain is R>0 (analogous
to the proof of Lemma 3.13). Because hrD is composed of continuous operations, it is
continuous as well. The function hrD is even di�erentiable. Its derivative is

d

dx
hrD(x) =

U(U + rDx)� UxrD
(U + rDx)2

=
U2

(U + rDx)2
:

We have d
dx hrD(x) > 0 for all x 2 R>0, i.e., hrD is strictly increasing on R>0.

Lemma 3.16 Let rD � 0 and let fs 2 FS. The drifted ioni current function �fs;rD according

to (3.4) is a strictly increasing homeomorphism.

Proof. By construction, we have �fs;rD = h � �f s . The functions �fs and h are both strictly
increasing and continuous (De�nition 2.18 and Lemma 3.15, respectively). As a compo-
sition of strictly increasing and continuous functions, �fs;rD is also strictly increasing and
continuous. In particular, �fs;rD is bijective and thus its inverse function ��1fs;rD

exists. Be-
cause �fs;rD is strictly increasing and its domain is an interval (the set Gfs is an interval
according to De�nition 2.18), ��1fs;rD

is also continuous [Gar13, p. 163]. In total, �fs;rD is a
strictly increasing homeomorphism.

The images of the drifted ioni current functions �fs;rD , fs 2 FS, play a central role in the
ADA procedure and thus they are denoted as follows.

Notation 3.17 Let HrD =
(
FS; (Gfs)fs2FS; (�fs;rD)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
be a drifted

HE model. The images of the drifted ioni current functions �fs;rD are called the sets of
drifted ioni currents (with respect to fs and rD) and are denoted by Ifs;rD := �fs;rD(Gfs) for

all fs 2 FS.

Corollary 3.18 Let fs 2 FS. The set of drifted ioni currents Ifs;rD is a closed interval in

R>0.

Proof. As the image of a closed interval under a homeomorphism, Ifs;rD is a closed interval
as well.
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Recall from Section 2.4.5 that IoniDetect can only evaluate the inverse ioni current
functions ��1fs , fs 2 FS. This also applies to the situation with drift. The following remark
is analogous to Remark 2.25.

Remark 3.19 It is important to emphasize that if a drift resistance rD is present, IoniDetect

can only evaluate the inverse of the drifted ioni current function ��1fs;rD
, fs 2 FS. It can

neither evaluate the "non-inverted" drifted ioni current function �fs;rD nor the ioni current

functions with no drift, i.e., �fs and ��1fs .

With the drift included into the HE model, we show the in�uence of drift on the com-
bustion control in the following subsection.

3.1.4. Impact of Drift

To illustrate the impact of drift, recall from Section 2.3.2 that the combustion control
system IoniDetect is blind with respect to the equivalence AFR and to the gvp. Instead,
the ioni current is used as an indirect measure of the equivalence AFR to control the
gas valve. For this, the ioni current setpoints of an HE must be determined with special
equipment to measure the equivalence AFR in the lab as stated in Section 2.3.3. It is
important to emphasize that the ioni current setpoints are determined under the condition
of no drift.
But with increasing operating time an oxide layer accrues on the electrode and we have
an additional drift resistance rD in the measurement circuit, which alters the ioni current
according to (3.3). The following example demonstrates how this change in ioni current
caused by drift in�uences combustion control and the AFR.

Example 3.20 Let H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
be an HE model

based on Vaillant measurement data according to [PHE, Item 6371]. Let us suppose that

a fan speed setpoint fs 2 FS is given. Let the corresponding ioni current setpoint according

to the control curve be iset. Then, the combustion control by IoniDetect works as follows.

The fan speed is �xed at fs. The gas valve is then moved such that the resulting ioni

current is iset. Using the HE model, this corresponds to calculating the gvp gn := ��1fs (iset),

which is equivalent to �fs(gn) = iset. The subscript n refers to the situation with no drift.

The fan speed fs and the gvp gn in turn result in the equivalence AFR �n = �fs(gn).

This situation is illustrated in Figure 3.2. The solid curve in the left part of Figure 3.2 cor-

responds to the inverse ioni current function ��1fs . With this function the gvp corresponding

to the ioni current setpoint iset is determined by IoniDetect, see also Section 2.4.5. This

gvp is denoted by gn and the corresponding point is marked by the dot in the left part of

Figure 3.2. The right part of Figure 3.2 shows the equivalence AFR function �fs. The

equivalence AFR resulting from fs and gn is �fs(gn) = 1:3. The corresponding point is

marked by the dot in the right part of Figure 3.2. An equivalence AFR of 1:3 is a common

value for normal HE operation, see also Section 2.2.

We further assume that some drift has taken place and that a drift resistance rD = 140k


is present, which is a common value [PHE, Item 1618]. In the HE model, the drifted ioni
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Figure 3.2.: The impact of drift is illustrated for a given fan speed setpoint fs and an ioni
current setpoint iset as well as the drift resistance rD = 140k
. The dot corresponds to
the situation with no drift. The circle corresponds to the situation with drift. In the case
of drift, the resulting equivalence AFR decreases from �fs(gn) = �fs � �

�1
fs (iset) = 1:3 to

�fs(gd) = �fs � �
�1
fs;rD

(iset) = 1:2. The asterisk corresponds to the setpoint that is perfectly
adapted to rD, because �fs � �

�1
fs;rD

(iset;rD) = 1:3.

current is represented by the function �fs;rD , which is calculated from �fs by (3.4). Its

inverse function ��1fs;rD
is represented by the dashed curve in the left part of Figure 3.2.

Recall that the controller does not have any direct information about the AFR. It just

follows the control curve, i.e., it controls the gas valve such that the ioni current equals

iset. In the drifted case, this results in the gvp gd = ��1fs;rD
(iset). The subscript d refers to

the situation with drift. This is illustrated by the circle in the left part of Figure 3.2. Note

that the resulting gvp is larger than the gvp in the case with no drift, i.e., gd > gn. The

increased gvp results in the reduced AFR �fs(gd) = 1:2, which is represented by the circle

in the right part of Figure 3.2. The combustion process is not optimal anymore.

In order to operate at the desired AFR �n = 1:3 also in the drifted case, the ioni current

setpoint has to be corrected. This corrected ioni current setpoint is denoted by iset;rD
and is marked by the asterisk in the left part of Figure 3.2. Then, the resulting gvp is

��1fs;rD
(iset;rD) = gn and the resulting equivalence AFR equals �n = �fs(gn) = 1:3 again.

As demonstrated in Example 3.20, if no correction is made, then the AFR becomes
more and more fuel rich with increasing drift resistance. As a consequence, the emission
of CO increases and in the worst case the appliances become toxic. Therefore, every ioni
current setpoint of the control curve has to be corrected according to Equation (3.4).
But the value of rD is unknown in general and it is hardly possible and not practical
to measure it directly. The ADA procedure is a solution to this problem. According
to the ADA patent [LS17], ADA corrects the measured current "simply and reliably"
without "exceeding predetermined limits for the combustion values" [LS17, p. 2]. The
ADA procedure is presented in the following sections.
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3.2 The Notion of ADA

3.2. The Notion of ADA

As illustrated in the previous section, in order to ensure a safe combustion, we need the
drifted ioni currents �fs;rD according to (3.4). For this, we require the unknown drift
resistance rD. The goal of ADA is to approximate rD. In this section, we illustrate how
this is done by ADA. For this, we assume for the remainder of this chapter that an HE
model H =

(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
and a drift resistance rD � 0

are given.
As a �rst step, we solve (3.4) for rD.

Lemma 3.21 Let fs 2 FS and g 2 Gfs, then

rD = U
( 1

�fs;rD(g)
�

1

�fs(g)

)
: (3.5)

Proof. Let fs 2 FS and let g 2 Gfs. Note that �fs(g) > 0 and �fs;rD(g) > 0 according to
De�nitions 2.18 and 3.12, respectively. We have

(3.4) ,
1

�fs;rD(g)
=

rD�fs(g) + U

U�fs(g)
,

1

�fs;rD(g)
=

rD
U

+
1

�fs(g)

, rD = U
( 1

�fs;rD(g)
�

1

�fs(g)

)
:

Lemma 3.21 states that if we know the undrifted and the drifted ioni current of a certain
actuator position (fs; g), then we also know rD.
In ADA, this is done at a speci�c operating point that is called test point [LS17, p. 7]
[Sch15] [WHB, Item 4229]. The test point is speci�ed by a fan speed and an ioni current.
The fan speed is called test fan speed and denoted by t in the following. The ioni current
is called test ioni current and is denoted by it in the following. It is important to emphasize
that the test ioni current corresponds to the situation with no drift.
The fan speed t and the ioni current it correspond to a unique gvp. In relation to the HE
model, the corresponding gvp of the test point is gA := ��1t (it). The subscript A stands
for ADA. To comply with the HE model, we require that t 2 FS and it 2 It = �t(Gt).
Then, ��1t (it) is well-de�ned (De�nitions 2.18 and 2.22). In particular, gA 2 Gt holds.
By plugging the data of the test point into (3.5), the drift resistance is calculated by

rD =
U

�t;rD(gA)
�

U

it
: (3.6)

The test fan speed t and the test ioni current it are selected in the lab and thus they
are known. However, the drifted test ioni current �t;rD(gA) is unknown, because rD is
unknown. If we could set the gvp to gA, then IoniDetect could simply measure the resulting
ioni current �t;rD(gA). But IoniDetect can only evaluate the inverse drifted ioni current
function ��1fs;rD

, see also Remark 3.19.
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There is one small exception. Let us suppose that we have a given fan speed fs 2 FS

and a given ioni current i . Once the gas valve has moved to the position g = ��1fs;rD
(i)

(well-de�ned if i 2 Ifs;rD), IoniDetect can �x the gvp at g. Then, this particular g can be
considered as known to IoniDetect and the drifted ioni current �t;rD(g) can be determined
(if g 2 Gt). I.e., while the gvp is �xed at g, the fan speed is changed from fs to t and
then the resulting ioni current is measured. The ADA procedure uses this small exception
to approximate �t;rD(gA), which in turn is plugged into (3.6) in order to approximate rD.
The approximation of �t;rD(gA) is a key component of ADA and is described in detail next.

3.2.1. Approximation of the Drifted Test Ioni Current and of the Drift

Resistance

In order to approximate �t;rD(gA), a second operating point, the so-called start point, is
required [LS17, p. 7]. The start point is also speci�ed by a fan speed and an ioni current.
These are denoted by s and is , respectively, in the following. The start fan speed has to be
larger than the test fan speed, i.e., s > t [LS17, p. 7] [WHB, Item 4228]. Furthermore,
the test point and the start point must have the same gvp [LS17, p. 7], i.e., the start
ioni current must be selected such that ��1s (is) = gA = ��1t (it). Note that the start
point is speci�ed for the case with no drift, i.e., �s(gA) = is (and not �s;rD(gA) = is). To
comply with the HE model, we require that s 2 FS and gA 2 Gs , because is = �s(gA), or
equivalently gA = ��1s (is), is well-de�ned in this case.
Now, let us suppose that an oxide layer has accrued on the ioni electrode that corresponds
to an unknown drift resistance rD � 0. We want to approximate rD according to (3.6)
and require the value of �t;rD(gA). With the start and the test point at hand, �t;rD(gA)
is approximated in two steps. First, the gvp gA is approximated by ĝA := ��1s;rD(is), i.e.,
the fan speed is �xed at s and the gas valve is moved such that the resulting drifted ioni
current corresponds to is . Then, the gvp is �xed at ĝA and the fan speed is reduced from
s to t. The resulting ioni current �t;rD(ĝA) is the approximation of �t;rD(gA), which is then
plugged into (3.6) to approximate rD. In total, we perform the steps

ĝA := ��1s;rD(is); ît;rD := �t;rD(ĝA) and r̂D :=
U

ît;rD
�

U

it
: (3.7)

The following example demonstrates the approximation of rD according to (3.7).

Example 3.22 The HE model considered in this example is based on Vaillant measurement

data according to [PHE, Item 6371]. Let us suppose that we have already selected a start

point with the fan speed s 2 FS and the ioni current is 2 Is as well as a test point with

the fan speed t 2 FS and the ioni current it 2 It , where s > t. Furthermore, the start and

the test point are selected such that they have the same gvp, i.e., ��1s (is) = ��1t (it) = gA
or equivalently �s(gA) = is and �t(gA) = it .

The start and the test point as well as the corresponding ioni current functions are shown

in Figure 3.3. The solid orange curve corresponds to the ioni current function at the start
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Figure 3.3.: The start point (s; is) and the test point (t; it) as selected in Example 3.22 are
shown. Their ioni currents are selected such that both points have the identical gvp gA,
i.e., ��1

s (is) = ��1
t (it) =: gA. In particular, gA 2 Gs \ Gt holds.

fan speed and the solid blue curve corresponds to the ioni current function at the test fan

speed. The start and test ioni current are selected such that both points have the same

gvp gA and such that gA complies with the HE model, i.e., gA 2 Gs and gA 2 Gt . The

corresponding start ioni current is is = �s(gA) and the start point is marked by the orange

dot in Figure 3.3. Analogously, we have it = �t(gA) and the test point is marked by the

blue dot. Note that the start point and test point are speci�ed for the case with no drift.

Let us further suppose that a drift resistance rD = 140k
 is present. The corresponding

drifted ioni current functions according to (3.4) at the start fan speed and at the test fan

speed are represented by the dashed orange and blue curve, respectively, in Figure 3.3. In

the following, we demonstrate the approximation of rD according to (3.7).
First, the gvp gA is approximated with the start point, i.e., with the start fan speed s

and the start ioni current is . This corresponds to evaluating ��1s;rD(is). This situation is

depicted in Figure 3.4. The solid curve corresponds to the inverse ioni current at the start

fan speed s with no drift, ��1s . The dashed curve corresponds to the inverse drifted ioni

current function at s, ��1s;rD . In the case of no drift, the start ioni current is corresponds to

the gvp gA, i.e., �
�1
s (is) = gA. This is marked by the dot in Figure 3.4. However, because

rD is present, IoniDetect can only evaluate ��1s;rD(is), see also Remark 3.19. Therefore, the

gvp is approximated by ĝA := ��1s;rD(is). This is marked by the circle in Figure 3.4.

To approximate the drifted test ioni current it;rD := �t;rD(gA), the gvp is �xed at ĝA and

the fan speed is reduced from s to t. This situation is depicted in Figure 3.5. Analogously

to Figure 3.3, the solid and dashed blue curve correspond to �t and �t;rD , respectively.

The test point with the ioni current it and the gvp gA = ��1t (it) is marked by the dot.

The drifted test ioni current it;rD := �t;rD(gA) is marked by the asterisk. Recall that the

goal of ADA is to approximate it;rD . With the approximation ĝA of gA, we obtain the

approximation ît;rD = �t;rD(ĝA). This point is marked by the circle in Figure 3.5.

With this, we can �nally approximate the drift resistance according to (3.7). In this
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Figure 3.4.: The approximation of the gvp gA = ��1
s (is) by using the start point is shown. The

dot corresponds to the undrifted start point (is ; gA). Because IoniDetect can only evaluate
��1
s;rD

, the gvp gA is approximated by ĝA = ��1
s;rD

(is), which is represented by the circle.

example, we obtain r̂D � 84k
. Because rD = 140k
, this means that the drift resistance

was approximated by approximately 60 percent of its true value.

Approximating the drift resistance is only an intermediate step. Our ultimate goal is to
obtain the drifted ioni currents according to (3.4).

3.2.2. Approximation of Arbitrary Drifted Ioni Currents

Equation (3.4) can be interpreted as a transformation, where a given ioni current �fs(g)
is transformed to its drifted counterpart �fs;rD(g) for a given drift resistance rD � 0. By
plugging the approximated drift resistance r̂D into (3.4), we obtain the approximation

�fs;r̂D(g) =
U�fs(g)

r̂D�fs(g) + U
(3.8)

of the drifted ioni current �fs;rD(g) for fs 2 FS and g 2 Gfs.

Remark 3.23 To avoid case distinctions, we suppose that (3.8) is well-de�ned for all

considered drift resistance approximations r̂D for the moment. A function corresponding

to (3.8) and an appropriate domain for the case fs = s are formally de�ned in Chapter 5

when a mathematical formulation of the ADA algorithm is presented.

Equation (3.8) is used to approximate the drifted counterparts of the ioni current set-
points of the control curve. For instance, let fs 2 FS and let iset be the corresponding
ioni current setpoint according to the control curve. If iset is not adapted with respect
to rD, the combustion quality is not optimal anymore as demonstrated in Example 3.20.
Therefore, iset is updated according to (3.8) as soon as a drift resistance approximation
r̂D is available. Then, iset;r̂D := Uiset

r̂D iset+U
is the updated ioni current setpoint of the control

curve for the fan speed fs and the combustion quality usually improves.
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Figure 3.5.: The approximation of the drifted test ioni current it;rD = �t;rD(gA) by using the
approximation ĝA of gA is shown. The gvp is �xed at ĝA and the fan speed is adjusted to
t. This corresponds to evaluating �t;rD(ĝA) =: ît;rD , which is represented by the circle. The
undrifted test point is represented by the dot and the drifted test point is marked by the
asterisk. It is apparent that ĵit;rD � it;rD j < jit � it;rD j, i.e., the determined ît;rD is a better
approximation of it;rD than it is.

Example 3.24 This Example continues Examples 3.20 and 3.22. We consider the situation

as in Example 3.20, i.e., we have the fan speed setpoint fs and the ioni current setpoint

iset. In the case with no drift, the resulting equivalence AFR is �n = �fs � �
�1
fs (iset) = 1:3

as shown in Figure 3.2.

Furthermore, we suppose that the drift resistance rD = 140k
 is present. If iset is not cor-

rected with respect to rD, then the resulting equivalence AFR is �d = �fs��
�1
fs;rD

(iset) = 1:2

as demonstrated in Example 3.20 and according to Figure 3.2, i.e., the combustion quality

has deteriorated.

Now, let us suppose that the drift resistance is approximated by r̂D = 84k
 as done in

Example 3.22, i.e., the drift resistance is approximated by approximately 60 percent of its

true value. With this, we approximate the drifted ioni current setpoint iset;rD := Uiset
rD iset+U

by iset;r̂D := Uiset
r̂D iset+U

according to (3.8). With this, we obtain the (not perfectly) corrected

gvp gc = ��1fs;rD
(iset;r̂D), which in turn results in the equivalence AFR �fs(gc) = 1:27 and

the combustion quality has improved.

This situation is depicted in Figure 3.6. The left part of Figure 3.6 is an enlarged section of

the left part of Figure 3.2. The point resulting from the correction with the drift resistance

approximation r̂D is represented by the square. The drifted ioni current setpoint approxi-

mation iset;r̂D results in the corrected gvp gc . Analogously, the right part of Figure 3.6 is

an enlarged section of the right part of Figure 3.2. The corrected gvp gc results in the

equivalence AFR �fs(gc) = 1:27, which is again represented by the square. This is closer

to the desired equivalence AFR �n = 1:3 than �d = 1:2 to �n is, i.e, the combustion

quality has improved compared to the case with drift but without a correction.
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Figure 3.6.: The left and the right part of this �gure show an enlarged section of the left
part and of the right part of Figure 3.2, respectively. The square in the left part represents
the approximation of iset;rD that is determined by applying (3.8) with r̂D = 84k
 from
Example 3.22 and iset from Example 3.20. The resulting equivalence AFR is represented by
the square in the right part of this �gure. Because �fs(gc) = �fs � �

�1
fs;rD

(iset;r̂D) = 1:27, the
situation has improved compared to �fs(gd) = �fs � �

�1
fs;rD

(iset) = 1:2.

Next, we brie�y discuss the selection of the start and the test point. In particular, we
consider how their selection is related to the approximation quality of ît;rD and r̂D according
to (3.7).

3.2.3. Approximation Quality and Selection of the Start and Test Point

The start point (s; is) and the test point (t; it) are essential for the approximation of rD
according to (3.7). The following de�nition states how s, t, is and it have to be selected
in order to comply with the HE model and with the considerations made so far. Because a
start point and a test point are assigned to each other, the combination of both is denoted
as an ADA pair in this thesis.

De�nition 3.25 Let H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
be an HE model.

A quadruple (s; t; is ; it) is called well-de�ned ADA pair with respect to H, if

s; t 2 FS : s > t; is 2 Is and it 2 It :

It is called well-selected ADA pair with respect to H, if in addition ��1s (is) = ��1t (it) =: gA
holds.

Remark 3.26 Note that an ADA pair is only well-de�ned or well-selected in relation to an

HE model H. For instance, if a well-selected ADA pair is considered with a di�erent HE

modelH 6= H, then it might not be well-selected anymore. Such a situation is often caused

by tolerances with respect to the position of the ioni electrode relative to the burner. Then,

the condition ��1s (is) = ��1t (it) of De�nition 3.25 is usually not satis�ed anymore. This

42



3.3 Sequence of ADA Iterations

is detailed in Section 6.3.2 below. For the moment, we consider only well-selected ADA

pairs. When there is no risk of confusion, the HE model related to a well-selected ADA

pair is not explicitly stated for the remainder of this thesis.

Let (s; t; is ; it) be a well-selected ADA pair. Its approximation quality of rD according
to (3.7) depends on two aspects. First, we need a good approximation of gA, i.e.,

jĝA � gAj = j�
�1
s;rD

(is)� ��1s (is)j

should be small. Therefore, the start point should be selected such that ��1s;rD(is) and
��1s (is) are close to each other. For instance, in Example 3.22 this can be achieved by
selecting a smaller start ioni current is according to Figure 3.4. Note that this would result
in a smaller ADA gvp gA = ��1s (is), because ��1s is strictly increasing.
Second, we want that �t;rD(ĝA) is close to �t;rD(gA). Therefore, the test point should be
selected such that the absolute value of the gradient of �t;rD is small in the vicinity of gA
(under the assumption that �t;rD is di�erentiable), i.e.,∣∣ d

dg
�t;rD(g)

∣∣ is small 8 g 2 [gA � �; gA + �]; � := jgA � ĝAj:

For instance, in Example 3.22 this can be achieved by selecting a larger test ioni current
it according to Figure 3.5. However, this results in a larger ADA gvp gA = ��1t (it). This
contradicts the selection of a smaller start ioni current is , because a smaller is results in a
smaller gA.
Note that a di�erent drift resistance �rD 6= rD results in di�erent drifted ioni current func-
tions �t;�rD 6= �t;rD and ��1s;�rD 6= ��1s;rD in general, which makes the selection of an ADA pair
more complicated.
These considerations illustrate the challenges when selecting an ADA pair with respect to
the approximation quality. In addition, certain combustion limits must not be exceeded
during the function evaluations according to (3.7). This work addresses the challenge of
selecting optimized ADA pairs. The goal as well as the scope of this work are formulated
in more detail in Section 3.5.

The approximation of the drifted test ioni current and of the drift resistance according
to (3.7) as well as the approximation of arbitrary drifted ioni currents according to (3.8) are
the core of the ADA procedure. By applying a combination of (3.7) and (3.8) successively,
the approximation quality can be improved. This gives us a sequence of approximations,
which is detailed next.

3.3. Sequence of ADA Iterations

Equation (3.7) usually only partially approximates the drift resistance. For instance, in
Example 3.22 we obtained r̂D = 0:6rD. Of course, we are interested in a perfect approxi-
mation of rD, which can be achieved by successively applying (3.7).
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To illustrate this, we require the drifted start and test ioni current. These correspond to
the transformation of the start and test ioni current to their drifted counterparts according
to (3.4).

De�nition 3.27 Let (s; t; is ; it) be a well-de�ned ADA pair. The drifted start ioni current
and the drifted test ioni current are de�ned by

is;rD := �s;rD(gs) with gs = ��1s (is) and it;rD := �t;rD(gt) with gt = ��1t (it);

respectively.

Remark 3.28 Note that the drifted test ioni current it;rD according to De�nition 3.27

corresponds to the drifted test ioni current �t;rD(gA) used to illustrate the notion of ADA

in Section 3.2.

Lemma 3.29 Let (s; t; is ; it) be a well-de�ned ADA pair. Then, the drifted start and test

ioni current are well-de�ned. Furthermore, we have

is;rD =
Uis

rD is + U
and it;rD =

Uit

rD it + U
:

In particular, we have is;rD > 0 and it;rD > 0.

Proof. Because (s; t; is ; it) is a well-de�ned ADA pair, we have is 2 Is = �s(Gs) (De�ni-
tion 3.25) and thus gs = ��1s (is) 2 Gs (De�nition 2.22), i.e., gs is well-de�ned. Because
Gs is the domain of �s;rD (De�nition 3.12), �s;rD(gs) is well-de�ned as well.
By construction, we have �s(gs) = �s � �

�1
s (is) = is and thus

is;rD = �s;rD(gs) =
U�s(gs)

rD�s(gs) + U
=

Uis

rD is + U
:

Finally, U > 0, rD � 0 and is 2 Is � R0 imply that is;rD > 0.
The statements with respect to it;rD are shown analogously.

To motivate the sequence of ADA iterations, let us consider a well-de�ned ADA pair
(s; t; is ; it). In addition, let the ADA pair be well-selected, i.e., let ��1s (is) = ��1t (it) =: gA.
If we plug the drifted start ioni current is;rD into (3.7), then the drifted test ioni current
and the drift resistance are perfectly approximated, because

ît;rD = �t;rD � �
�1
s;rD

(is;rD) = �t;rD � �
�1
s;rD
� �s;rD(gA) = �t;rD(gA) = it;rD

and

r̂D =
U

ît;rD
�

U

it
=

U

it;rD
�

U

it
=

rD it + U

it
�

U

it
= rD (3.9)

in this case. However, is;rD is usually unknown. Therefore, the idea is to approximate is;rD
by applying (3.8) with the incumbent drift resistance approximation r̂D, i.e., we calculate
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3.3 Sequence of ADA Iterations

is;r̂D = Uis
r̂D is+U

. Equation (3.7) is then applied with is;r̂D instead of is . With this, we obtain
an updated approximation of the drifted test ioni current, i.e., we update

ît;rD  �t;rD � �
�1
s;rD

(is;r̂D); where is;r̂D =
Uis

r̂D is + U
and r̂D =

U

ît;rD
�

U

it
:

One such update of ît;rD is a so-called ADA iteration.

De�nition 3.30 Let (s; t; is ; it) be a well-de�ned ADA pair (not necessarily well-selected).

Let ît;rD be the incumbent approximation of the drifted test ioni current it;rD . An ADA
iteration is an update of ît;rD according to the following three steps.

Approximate the drifted start ioni current We approximate is;rD by

is;r̂D :=
Uis

r̂D is + U
with r̂D =

U

ît;rD
�

U

it
:

Move to approximated drifted start point The fan speed is �xed at s and the gvp is

adjusted such that the resulting ioni current equals is;r̂D . This results in the gvp

ĝ := ��1s;rD(is;r̂D).

Approximate the drifted test ioni current The gvp is �xed at ĝ and the fan speed is

reduced from s to t. The resulting ioni current is the updated approximation of the

drifted test ioni current, i.e., ît;rD  �t;rD(ĝ).

Remark 3.31 In the �rst iteration, usually no approximation of the drifted test ioni current

is available. Then, the undrifted test ioni current it is used as the approximation of it;rD ,

i.e., ît;rD = it is initially used [LS17, p. 10]. Note that this corresponds to the drift

resistance approximation r̂D = 0, because r̂D = U
ît;rD
� U

it
= U

it
� U

it
= 0 in this case.

Remark 3.32 De�nition 3.30 is based on the technical documentation according to [LS17],

[Sch15] and [WHB, Item 4228]. Therefore, De�nition 3.30 is rather a technical description

than a mathematical de�nition of an ADA iteration.

An algorithmic description of an ADA iteration in a mathematical sense is given in Sec-

tion 5.2.1 below after a corresponding formalism is introduced. This includes conditions

such that the function evaluations in De�nition 3.30 are well-de�ned.

By successively performing ADA iterations, we obtain a sequence of drifted test ioni
current approximations (̂ikt;rD)k2N. Ideally, this sequence converges to the true drifted test
ioni current it;rD , because then r̂D = rD according to (3.9). In addition, we are interested
in a high rate of convergence.
According to the ADA patent [LS17] both aspects are ful�lled: "By means of iterative
execution of the aforesaid test [...], there is rapid convergence" [LS17, p. 8]. And "follow-
ing one or two iterations, there is practically no deviation present any more" [LS17, p. 9].
But the patent [LS17] gives only little information if there are certain conditions required
for convergence. Conditions related to convergence are only stated in the ADA patent's
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section about the selection of the test point: "The only pre-condition is that the function
is uniformly rising or falling in the measurement range of the test point" [LS17, p. 8]. The
term function in the citation refers to the ioni current versus � curve with the fan speed
�xed at the test fan speed t. If � � 1:05, then this monotony "conditions are typically in
e�ect" [LS17, p. 8]. Other aspects of this function are not relevant and the "shape and
pro�le of the function remain unknown in this respect" [LS17, p. 8].
In Section 6.3, an analysis of the sequence's convergence behavior is done. One result
is that it is required that an ADA pair is well-selected, otherwise the sequence of ADA
iterations has not the true drifted test ioni current it;rD as its limit (if it converges at all). In
Section 6.3.4, the results of this analysis are compared to the aforementioned statements
made in the patent [LS17].

Remark 3.33 An aspect related to the sequence of drifted test ioni current approximations

(̂ikt;rD)k2N is the possibility to smoothen the results. The authors of the ADA patent

propose to average the measured drifted test ioni currents approximations and thus "reduce

scatter" [LS17, p. 9]. In IoniDetect, this is achieved by using two �lter values, which are

applied in two steps at the end of an ADA iteration [Sch15, p. 39]. Note that the term

'�lter' is used in the sense of smoothing. It is used in the ADA patent and also by Vaillant.

Essentially, the proposed �ltering limits the step size when updating the drifted test ioni

current approximation. In Section 6.2.2, it is shown that the sequence of drifted test

ioni current approximations is a monotonic sequence. Thus, limiting the step size does

not a�ect the sequence's limit, only its rate of convergence. Therefore, for the sake of

simplicity, �ltering of the ADA results is not considered in this study.

3.4. Plurality of ADA Pairs

So far, only one ADA pair (s; t; is ; it) was considered. However, the documentation sug-
gests to use a plurality of ADA pairs [Sch15, p. 35]. On the one hand, tolerances with
respect to the ioni electrode's position relative to the burner may a�ect the ioni current
measurement in a way that has the e�ect of an additional drift resistance that depends
on the fan speed and that can even be negative [LS17, p. 6]. A plurality of ADA pairs
whose test fan speeds are distributed in the set of feasible fan speeds FS = [fsmin; fsmax] is
better suited to detect and compensate this dependency on the fan speed. On the other
hand, it is useful in practice to be able to perform an ADA iteration at di�erent burner
loads. During an ADA iteration, the appliances produce heat, which must be dissipated.
The amount of produced heat depends on the fan speeds during the iteration. A small
fan speed corresponds to a small burner load and a large fan speed corresponds to a large
burner load, see also Section 2.3.2. If there is only a small heat demand, it is not possible
to perform an ADA iteration at ADA pairs with large fan speeds, because the produced
heat cannot be dissipated. This is mitigated by a plurality of ADA pairs, which allows to
perform an ADA iteration at di�erent burner loads [Sch15, p. 35].
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3.4 Plurality of ADA Pairs

3.4.1. Numbering of ADA Pairs and Corresponding Notation

To distinguish the ADA pairs, they are numbered. The numbering begins with 1 and follows
a descending order with respect to the fan speed of the test points. For example, if we
have a set of N ADA pairs, then the test point with the largest fan speed has the number
1 and the test point with the smallest fan speed has the number N. The start points get
the same number as their associated test points. The descending order is counter-intuitive
but it is a convention by Siemens and Vaillant [PHE, Item 3280] and thus it is also used
in this thesis.

Notation 3.34 Let N 2 N be the total number of ADA pairs. We de�ne [N] := f1; : : : ; Ng.

The number of an ADA pair is indicated by a superscript. The p-th ADA pair is denoted

by (sp; tp; ips ; i
p
t ), p 2 [N].

Analogously, the drifted test ioni current (De�nition 3.27) of the p-th ADA pair is denoted

by ipt;rD , p 2 [N].

Recall from De�nition 3.25 that an ADA pair is well-de�ned if it complies with the
considered HE model and if its start fan speed is larger than its test fan speed.

Remark 3.35 From now on, it is generally assumed that we have N well-de�ned ADA pairs

(sp; tp; ips ; i
p
t ), p 2 [N], in a descending order with respect to their test fan speeds, i.e.,

t1 > t2 > � � � > tN .

3.4.2. Drift Resistance Approximation Function

The ADA procedure approximates the drifted test ioni current it;rD of an ADA pair, which
in turn is used to approximate the drift resistance by applying (3.7). In the case of a
plurality of ADA pairs, the ADA procedure provides an approximation of the drifted test
ioni current for each of the N ADA pairs and thus also N approximations of the drift
resistance. Each drift resistance approximation is associated to the corresponding ADA
pair's test fan speed. Then, we have N data points (tp; r̂pD) with r̂pD = U

îpt;rD
� U

ipt
, where

îpt;rD denotes the incumbent approximation of ipt;rD , p 2 [N].
By interpolating these data points we obtain a drift resistance approximation function that
depends on the fan speed. Any suitable form of interpolation is possible [LS17, p. 11].
In IoniDetect a linear interpolation is used, which is extrapolated as a constant function
beyond the smallest and the largest test fan speed, tN and t1, respectively [Sch15, p. 35]
[WHB, Item 4268]. In order to formulate the corresponding drift resistance approximation
function, it is convenient to combine the drifted test ioni current approximations of each
ADA pair into a single vector.

De�nition 3.36 Let N ADA pairs be given and for each ADA pair let ip 2 R>0 be an

approximation of the drifted test ioni current ipt;rD , p 2 [N]. We de�ne the corresponding

vector of drifted test ioni current approximations by ît;rD := (i1; : : : ; iN).
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fsmin t3 t2 t1 fsmax
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approx. function �
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(fs)

Figure 3.7.: Example of a drift resistance approximation function �
ît;rD

(fs) with three data
points. For each p 2 [3], the data point is a combination of the test fan speed tp and
the drift resistance approximation r̂

p

D
:= U

ip
� U

i
p
t

. The approximation function is a linear
interpolation of the data points. It is extrapolated as a constant function.

Remark 3.37 By construction, we have ît;rD 2 R
N
>0 := fx 2 RN : xi > 0 8 i 2 [N]g.

This is consistent with the considerations made so far. According to De�nition 3.30, every

drifted test ioni current approximation ît;rD is determined by evaluating �t;rD(ĝ) for a certain

ĝ. Because the image of �t;rD is always greater than zero (De�nition 3.12), every drifted

test ioni current approximation determined by ADA is greater than zero.

De�nition 3.38 Let N ADA pairs (sp; tp; ips ; i
p
t ), p 2 [N], be given. Furthermore, let

ît;rD = (i1; : : : ; iN) be a vector of drifted test ioni current approximations as de�ned in

De�nition 3.36.

The drift resistance approximation function given ît;rD is the function �
ît;rD

: FS ! R

de�ned by

�
ît;rD

(fs) :=


U
iN
� U

iNt
if fs < tN ;

w
(
U
ip
� U

ipt

)
+ (1� w)

(
U
ip�1
� U

ip�1

t

)
if fs = wtp + (1� w)tp�1, w 2 (0; 1];

U
i1
� U

i1t
if fs � t1:

(Memory aid: � like (a)pproximation function.)

Figure 3.7 shows an example of a drift resistance approximation function �
ît;rD

(fs) with

three data points, i.e., for the case N = 3 and a certain ît;rD = (i1; i2; i3). The black dots
correspond to the data points

(
tp; r̂pD

)
with r̂pD := U

ip
� U

ipt
, p 2 [3], and the black line is the

corresponding drift resistance approximation function �
ît;rD

(fs).

Remark 3.39 Although the drift resistance is assumed to be a constant rD 2 R�0 accord-

ing to Assumption 3.10, the drift resistance approximation function �
ît;rD

(fs) determined

by ADA is usually not constant if a plurality of ADA pairs is used. In general the quality of

the approximation is di�erent for each ADA pair and also the number of ADA iterations

performed is di�erent for each ADA pair. Therefore, the values of the data points usually

di�er and thus their linear interpolation is not constant.
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Recall from Section 3.2.2 that the drift resistance approximation is used to correct
the ioni currents according to (3.8). With a plurality of ADA pairs, however, the drift
resistance approximation is no longer constant, but generally depends on the fan speed.
Therefore, we have to adapt (3.8) accordingly.

De�nition 3.40 Let H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
be an HE model

and let �
ît;rD

: FS ! R be a drift resistance approximation function according to De�ni-

tion 3.38. For all fs 2 FS, the corresponding drifted ioni current approximation function is

de�ned by

�fs;�
ît;rD

(g) :=
U�fs(g)

�
ît;rD

(fs)�fs(g) + U
8 g 2 Gfs: (3.10)

Remark 3.41 In general, it is not excluded that the drift resistance approximation function

�
ît;rD

is negative. Because only positive ioni currents are permitted by IoniDetect [Sch15],

it must be ensured that the result is positive when evaluating (3.10).

Remark 3.42 Regarding the ADA iteration according to De�nition 3.30, Equation (3.10)
is relevant in the �rst step, where the drifted start ioni current is approximated. With a

plurality of ADA pairs, the approximation has to be determined by applying (3.10). Let

p 2 [N], then the drifted start ioni current of the p-th ADA pair is approximated by

ips;r̂D :=
Uips

r̂D i
p
s + U

with r̂D = �
ît;rD

(sp): (3.11)

A suited domain such that the result of (3.11) is always positive is de�ned in Section 5.1

below. For the moment, we suppose that all evaluations of (3.11) considered in this

chapter are positive.

A consequence of (3.11) is that ADA pairs must not be overlapping.

3.4.3. ADA Pairs Must Not Be Overlapping

Each ADA pair (sp; tp; ips ; i
p
t ) can be associated with the interval [t

p; sp] de�ned by its test
and start fan speed. Note that the test fan speed is always smaller than the start fan speed
because we consider only well-de�ned ADA pairs (De�nition 3.25). An overlap occurs, if
the fan speed intervals of two ADA pairs intersect.

De�nition 3.43 Let (sk ; tk ; iks ; i
k
t ) and (s`; t`; i `s ; i

`
t ), k 6= `, be two ADA pairs. They are

called overlapping if

[tk ; sk ] \ [t`; s`] 6= ;:

If ADA pairs are not overlapping, then the start fan speed of ADA pair p lies between
two test fan speeds for all p 2 f2; : : : ; Ng, which is stated in the following lemma.

Lemma 3.44 If (well-de�ned) ADA pairs are not overlapping, then tp < sp < tp�1 holds

for all p 2 f2; : : : ; Ng.
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fsmin t4 t3 s4 s3 t2 s2 t1 s1 fsmax

fan speed

Overlapping and non overlapping ADA pairs

Figure 3.8.: The start and test fan speeds as well as the corresponding fan speed intervals
of four ADA pairs are shown. The ADA pairs p = 4 and p = 3 are overlapping, because
[t4; s4] \ [t3; s3] 6= ; holds. In contrast, the ADA pairs p = 2 and p = 1 have no overlap
with any other ADA pair, because all possible intersections with their respective fan speed
intervals are empty.

Proof. Let p 2 f2; : : : ; Ng and assume that ADA pairs are not overlapping. Because
we consider only well-de�ned ADA pairs, we have tp < sp. Next, let us suppose that
tp�1 � sp. Then, we have tp�1 2 [tp; sp] and tp�1 2 [tp�1; sp�1], i.e., the pairs p and
p � 1 are overlapping. This is a contradiction and thus we have sp < tp�1.

The statement of Lemma 3.44 is illustrated in the following example.

Example 3.45 Let us consider a situation with four ADA pairs and let their fan speeds be

t4 = 3, s4 = 4, t3 = 3:5, s3 = 4:5, t2 = 6, s2 = 7, t1 = 8 and s1 = 9. The fan speeds

and their corresponding fan speed intervals [tp; sp], p 2 [4], are depicted in Figure 3.8.

They are alternately colored blue and orange.

Because [t4; s4]\ [t3; s3] = [t3; s4] 6= ;, the ADA pairs p = 4 and p = 3 are overlapping.

In particular t4 < s4 < t3 does not hold. In contrast, the ADA pairs p = 2 and p = 1 are

not overlapping and t2 < s2 < t1 holds.

In Example 3.45, we have overlapping ADA pairs and thus t4 < t3 < s4 < s3 < t2.
This situation is problematic, for the following reason. Let us suppose that we perform
an ADA iteration with ADA pair p = 4 according to De�nition 3.30. In the �rst step, we
approximate the drifted start ioni current of ADA pair p = 4. For this, we need the drift
resistance approximation �

ît;rD
(s4) according to (3.11). Recall from De�nition 3.38 that

�
ît;rD

(fs) interpolates linearly between the drift resistance approximations of two adjacent

test fan speeds. Because t4 < t3 < s4 < t2, the approximation �
ît;rD

(s4) depends on the

drift resistance approximations at t3 and at t2. It does not depend on the drift resistance
approximation at t4, although this is the drift resistance approximation to be updated in the
considered ADA iteration. This might cause undesired behavior and increases complexity.
In contrast, if ADA pairs must not be overlapping, we have t4 < s4 < t3 and �

ît;rD
(s4)

depends on the drift resistance approximations at t4 and at t3. Therefore, Vaillant's
engineers decided to avoid overlapping ADA pairs [PHE, Item 3280]. As a consequence,
the maximum number of ADA pairs is limited.
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3.4.4. Recommended Number of ADA Pairs

The number of speci�ed ADA pairs has to be balanced between having a good covering
of the set of feasible fan speeds FS by the test fan speeds tp, p 2 [N], on the one hand,
and taking restrictions into account on the other hand. As stated at the beginning of
Section 3.4, tolerances with respect to the position of the ioni electrode might have the
e�ect of an additional drift resistance that depends on the fan speed. Too few data points
might miss fan speed regions of larger changes of this additional drift resistance. On the
other hand, because ADA pairs must not be overlapping and the interval of feasible fan
speeds is bounded, the number of ADA pairs is limited. As a compromise, up to seven
ADA pairs are used in IoniDetect [Sch15, p. 35]. If appropriate, it is possible to use less
than seven ADA pairs.

3.4.5. Selection of ADA Pair for Next ADA Update

With a plurality of ADA pairs, we have to specify which ADA pair p shall be selected for
the next update. However, the selection of an ADA update sequence is done automatically
by the IoniDetect system according to certain rules [WHB, Item 4228]. For instance, if
no update of ADA pair p was performed for more than 100 operating hours, an update of
p is forced [PHE, Item 12678].
Furthermore, there is no stopping criterion for ADA speci�ed, i.e., there exists no num-
ber of maximum ADA iterations. A stopping criterion is not required in practice for two
reasons. First, the ADA algorithm is rarely executed at an interval of several hours. In Ioni-
Detect, the minimum time span between two subsequent ADA updates of the same ADA
pair is 48 operating hours [WHB, Item 8529]. Second, drift is a "creeping phenomenon"
[LS17, p. 3] as stated in Section 3.1.2. Accordingly, the drift resistance changes steadily
and therefore its approximation is never completed.
To summarize, we have no in�uence on which ADA pair is updated next. Therefore, we
suppose that the ADA update sequences follow certain random distributions when analyz-
ing the ADA procedure from a mathematical point of view. This is detailed in Section 7.3
below.

This concludes the introduction to the ADA procedure. We can now formulate the goals
of this work in the following section.

3.5. Goal of This Thesis: Optimize ADA Parameters

As detailed in this chapter, each ADA pair is de�ned by four values. They are the fan
speeds and the ioni currents of the pair's start and test point. These values are refereed
to as ADA parameters in this thesis. IoniDetect uses up to seven ADA pairs. Therefore,
up to 28 ADA parameters are required.
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Remark 3.46 The controller of IoniDetect requires a lot more parameters related to ADA.

For instance, one such parameter is the time to wait until the ioni current at the test

point is measured [Sch15, p. 35]. These additional parameters are mostly related to the

dynamic behavior of the combustion system. Because only static signals are used in this

thesis, see for instance Remark 2.15, these parameters are disregarded.

As stated in Section 3.2.3, the e�ectiveness of ADA and the quality of the approximated
drift resistances strongly depend on the ADA parameters. Therefore, a good design of the
ADA parameters is essential. In the past, the parameterization of ADA was done mostly
in the lab. But this is expensive and time consuming. In addition, the results were not
very robust against tolerances such as tolerances regarding the position of the electrode
relative to the burner.
Therefore, some Vaillant employees proposed to use computer simulations for the parame-
terization of ADA. Usually, simulations are less expensive and take less time to �nd results.
In addition they o�er a good environment for optimization.
That is the starting point of this work. The goal of this thesis is to �nd optimized ADA
parameters based on computer simulations in the sense that the drift resistance is approx-
imated with a high quality while certain constraints are respected.
There are many other parameters that in�uence the function of IoniDetect, the implica-
tions of drift and the e�ectiveness of ADA. Some of them are

� electrode related like the material, size or shape of the electrode,

� measurement setup related like the frequency and amplitude of the applied voltage,

� parameters related like the control curve and

� design related like the position of the electrode relative to the burner.

All these aspects are not in the scope of this thesis. Although they might o�er further
potential for optimization, they are assumed to be given.
The optimization of the ADA parameters requires a thorough analysis of the ADA algo-
rithm, which is covered in Chapters 5 to 7. Based on this analysis suitable optimization
models are developed in Chapter 8. The optimization models are multiobjective. An intro-
duction to multiobjective optimization is given in the following chapter, where the basic
mathematical concepts required for this thesis are presented.
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4. Basic Mathematical Concepts

This chapter deals with the mathematical concepts required to work on the task of �nding
optimized ADA parameters. In the course of this thesis, we show that the ADA opti-
mization problem contains con�icting objectives. Optimization problems with con�icting
objectives are called multiobjective optimization problems and are studied in the �eld of
multiobjective optimization (MOO). Therefore, the basics of MOO are covered in the
following section. A common approach to solve multiobjective optimization problems are
evolutionary algorithms, which are presented thereafter. As ADA is a �xed point iteration
procedure, the basics of �xed point iteration procedures are also presented.

4.1. Multiobjective Optimization

This section is based on the books Multicriteria Optimization [Ehr05], Multi-Objective

Optimization using Evolutionary Algorithms [Deb01] and Nonlinear Multiobjective Opti-

mization [Mie98]. If not otherwise stated, all de�nitions, concepts and results presented
in this section are detailed in one of these books.

In optimization, one is interested in minimizing or maximizing a function for a given
feasible set. This function is called objective function. In single objective optimization,
the image space of the objective function is one-dimensional. For instance, let us suppose
that we have a feasible set X and an objective function f : X ! R, which we want to
minimize. Then, we are interested in an element x� 2 X such that f (x�) is minimal in
f (X) � R, i.e., f (x�) = minx2X f (x). The set R has a natural total order and thus we
can always state whether f (x1) � f (x2), f (x1) � f (x2) or f (x1) = f (x2) for all x1; x2 2 X.
If we have multiple objective functions, i.e., we have p objectives, p � 2, then we have a
p-dimensional objective function f : X ! Rp. Let us suppose that we want to minimize
this function f , i.e, we are interested in an element x� 2 X such that f (x�) is minimal in
f (X) � Rp. However, in contrast to R, the space Rp, p � 2, does not have a natural
total order. Therefore, we must also specify an order on Rp. This leads to the concept of
Pareto optimality, which is introduced in the following.

Remark 4.1 Without loss of generality, we consider only minimization problems for the

remainder of this thesis. This is no restriction, because a maximization problem can be

converted into an equivalent minimization problem by multiplying the objective function

with (�1) [Deb01, p. 14].
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4.1.1. Pareto Optimality

For the remainder of this section, let X be a nonempty set and let f : X ! Rp with p � 2.
We �rst de�ne the componentwise order on Rp. We then introduce Pareto optimality and
de�ne related terms.

De�nition 4.2 Let y ; �y 2 Rp. The componentwise order is the binary relation � on Rp

de�ned by

y � �y , yi � �yi 8 i 2 [p] and 9 j 2 [p] : yj < �yj :

If y � �y , one also says y (Pareto) dominates �y .

With the componentwise order at hand, we can specify an optimality notion for multi-
objective optimization problems, which are de�ned by

min
x2X

f (x) =
(
f1(x); : : : ; fp(x)

)
: (MOP)

De�nition 4.3 A solution x� 2 X is called Pareto optimal or e�cient for (MOP), if there
exists no x 2 X such that f (x) � f (x�).

The set of all Pareto optimal solutions for (MOP) is called the e�cient set and is denoted

by Xe� .

Remark 4.4 The terms Pareto optimal and e�cient are used interchangeably in this thesis.

Remark 4.5 The interpretation of Pareto optimality is as follows: Let x� be an e�cient

solution. Then it is not possible to improve an objective function value of x� without

deteriorating the function value of another objective.

Remark 4.6 Other orders, such as the lexicographic order, are also studied in MOO.

This is detailed in [Ehr05, pp. 16�19]. The most common order used in MOO is the

componentwise order, which is also relevant for the ADA optimization. Therefore, only

Pareto optimality is considered for the remainder of this thesis.

By de�nition, the e�cient points are a subset of the feasible set X. The space containing
X is called the decision space. In MOO, one is also interested in the images of X and Xe� .
Because the images of Xe� under f are not Pareto dominated in f (X), the set f (Xe�) is
called the nondominated set.

De�nition 4.7 We denote Y := f (X). The set of nondominated points of (MOP) is

de�ned by Ynd := f (Xe�).

Remark 4.8 An alternative term for the set of nondominated points is Pareto front. Both
terms are used interchangeably in this thesis.

Remark 4.9 The image space of f , Rp, is called the objective space of (MOP).

The concept of Pareto optimality as well as the related terms are brie�y demonstrated
in the following example.
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(x
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Objective Space of (MOP)
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Y n Ynd

Figure 4.1.: The image set Y of the problem (MOP) presented in Example 4.10 is illustrated.
The point f (x1) dominates f (x2) and the point f (x3) dominates f (x4). The points f (x1)
and f (x3) are nondominated in Y .

Example 4.10 Let us consider a feasible set with four elements, i.e., letX = fx1; x2; x3; x4g.

Furthermore, let us consider the two-dimensional objective function f : X ! R2 speci�ed

by

f (x1) := (1; 3); f (x2) := (1; 4); f (x3) := (2; 1) and f (x4) := (4; 2):

Figure 4.1 shows the image set Y = ff (x1); : : : ; f (x4)g in the objective space of (MOP).
It is apparent that f (x1) � f (x2) and that f (x3) � f (x4), i.e., f (x1) Pareto dominates

f (x2) and f (x3) Pareto dominates f (x4). Therefore, x2 and x4 cannot be e�cient. In

contrast, there is no point in Y that dominates f (x1) and there is no point in Y that

dominates f (x3). Therefore, the e�cient set for (MOP) is Xe� = fx1; x3g and the

nondominated set is Ynd = ff (x
1); f (x3)g = f(1; 3); (2; 1)g.

As demonstrated in Example 4.10, the Pareto optimal set and the nondominated set
usually contain more than one element (if they are not empty). This re�ects the nature
of the con�icting objectives, i.e., we usually have a trade-o� between the individual objec-
tives. Therefore, after the set of Pareto optimal solutions is determined, decision makers
are required who select the Pareto optimal solution that best �ts their needs. The decision
making process regarding the ADA optimization problem as well as some details about the
decision makers are presented in the introduction to Chapter 8.

From a mathematical point of view, we are interested in �nding the set of e�cient
solutions. An important aspect is the existence of e�cient solutions. The main idea
behind all existence statements is that the nondominated points must be located on the
boundary of the image set Y , which is denoted by bd(Y ) in the following. Because if
y =2 bd(Y ), then we can always �nd a �y 2 Y that dominates y .

Lemma 4.11 Ynd � bd(Y ).
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Proof. See [Ehr05, p. 28].

Therefore, if Y is open, then the nondominated set is empty, i.e., there exists no e�cient
solution for (MOP). In contrast, if Y is nonempty and compact, then Ynd 6= ;.

Lemma 4.12 Let Y be nonempty and compact. Then, Ynd 6= ;.

Proof. The statement follows from Theorem 2.19 in [Ehr05, p. 33].

For instance, if the feasible set X is nonempty and compact and the objective function
f is continuous, then Y = f (X) is also compact and there exist e�cient solutions, i.e.,
Xe� 6= ;.

Remark 4.13 The requirements in Lemma 4.12 are rather strong. Some weaker conditions

for the existence of e�cient solutions are discussed in detail in [Ehr05, pp. 24 sqq.].

"[T]he range of the values which nondominated points can attain" [Ehr05, p. 33] is
indicated by the so-called ideal point and nadir point. The ideal point can be interpreted
as the largest lower bound for Ynd and the nadir point can be interpreted as the smallest
upper bound for Ynd.

De�nition 4.14 Let minx2X fi(x) exist for all i 2 f1; : : : ; pg. The ideal point of (MOP)
is the point y I = (y I1; : : : ; y

I
p) de�ned by

y Ii := min
x2X

fi(x) = min
y2Y

yi ; i = 1; : : : ; p:

Let maxx2Xe�
fi(x) exist for all i 2 f1; : : : ; pg. The nadir point of (MOP) is the point

yN = (yN1 ; : : : ; y
N
p ) de�ned by

yNi := max
x2Xe�

fi(x) = max
y2Ynd

yi ; i = 1; : : : ; p:

Example 4.15 1. We determine the ideal point and the nadir point of the problem

(MOP) presented in Example 4.10. We have Ynd = f(1; 3); (2; 1)g and thus y I =

(1; 1) as well as yN = (2; 3).

2. Figure 4.2 below shows the ideal point and the nadir point for another exemplary

problem (MOP).

A further characterization of the set of nondominated points, which is needed in the
context of the ADA optimization, is connectedness. The following de�nition of a connected
set is taken from [Ehr05, p. 86]. For this, the closure of a set S is denoted by cl(S).

De�nition 4.16 A set S � Rp is called not connected, if there exist S1; S2 � R
p, S1 6= ;,

S2 6= ; such that S = S1 [ S2 and cl(S1) \ S2 = S1 \ cl(S2) = ;.

If there exist no such S1 and S2, then S is called connected.
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y I1 yN1

y I2

yN2

Objective Space of (MOP)

Y

Ynd
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I
2)

nadir point (yN1 ; y
N
2 )

Figure 4.2.: The image set Y of a two-dimensional problem (MOP) is shown. The thick curve
corresponds to the Pareto front, which is connected and nonconvex.

Example 4.17 Figure 4.2 shows the image set Y of a not further speci�ed two-dimensional

problem (MOP). The problem's nondominated set Ynd is marked by the thick curve. It is

connected and nonconvex. In addition, the ideal point (y I1; y
I
2) and the nadir point (y

N
1 ; y

N
2 )

as well as the two extreme points (y I1; y
N
2 ) and (yN1 ; y

I
2) of Ynd are shown. Note that Ynd

is a continuous curve between the two extreme points.

In contrast, the nondominated set Ynd = f(1; 3); (2; 1)g in Example 4.10 is not connected.

By selecting S1 = f(1; 3)g and S2 = f(2; 1)g, we have Ynd = S1 [ S2 and cl(S1) \ S2 =

S1 \ cl(S2) = S1 \ S2 = ;.

In Example 4.17, Ynd is a continuous curve between the two extreme points (y I1; y
N
2 )

and (yN1 ; y
I
2). This is always the case if Ynd is connected, closed and bounded as well as

(MOP) is two-dimensional, i.e., p = 2. This is the statement of the following lemma,
which is required to prove Lemma 9.18 below. Although this can be considered as a basic
statement, it is not explicitly contained in any of the books mentioned at the beginning of
this Section 4.1. Therefore, the following proof is from the author of this thesis.

Lemma 4.18 Let p = 2 and let Ynd be nonempty, closed and bounded. If Ynd is connected,

then

8 z1 2 [y I1; y
N
1 ] 9 y = (y1; y2) 2 Ynd : y1 = z1 and

8 z2 2 [y I2; y
N
2 ] 9 y = (y1; y2) 2 Ynd : y2 = z2:

Proof. Let Ynd be nonempty, closed, bounded and connected. Then, Ynd is nonempty and
compact and thus the ideal point (y I1; y

I
2) as well as the nadir point (yN1 ; y

N
2 ) exist. In

particular, there exist y = (y1; y2) 2 Ynd and �y = (�y1; �y2) 2 Ynd such that y1 = y I1 and
�y1 = yN1 .
If y I1 = yN1 , then there is nothing to show. Therefore, let y I1 6= yN1 . Let us assume that
there exists z1 2 (y I1; y

N
1 ) such that there exists no y = (y1; y2) 2 Ynd with y1 = z1. We
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show that this leads to a contradiction with respect to Ynd being connected. We select

S1 := fy = (y1; y2) 2 Ynd : y1 2 [y I1; z1)g and S2 := fy = (y1; y2) 2 Ynd : y1 2 (z1; y
N
1 ]g:

Note that S1 6= ; and S2 6= ; as well as S1 [ S2 = Ynd. It remains to show that
cl(S1) \ S2 = S1 \ cl(S2) = ;.
For this, we show that (y1; y2) 2 cl(S1) implies y1 � z1. Let us suppose that there exists
(�y1; �y2) 2 cl(S1) such that �y1 > z1. We select " := 1

2(�y1 � z1). Note that " > 0. But
we have S1 \ B"(�y1; �y2) = ; and thus (�y1; �y2) =2 cl(S1). This is a contradiction and thus
(y1; y2) 2 cl(S1) implies y1 � z1. Furthermore, (y1; y2) 2 S2 implies y1 > z1. Therefore,
we have cl(S1) \ S2 = ;. The equation S1 \ cl(S2) = ; is shown analogously.
In total, we have shown that Ynd is not connected. This is a contradiction and thus no
such z1 can exist.
The lemma's second statement for all z2 2 [y I2; y

N
2 ] is shown analogously.

Depending on the structure of a multiobjective problem (MOP), there exist di�erent
approaches for solving (MOP). For instance, if (MOP) has linear objective functions
and linear constraints, then (MOP) can be solved with a multiobjective simplex method
[Ehr05, pp. 171 sqq.]. If (MOP) has no structure that can be exploited in a direct approach
or if one is interested in a particular solution of (MOP) only, then a common approach
for generating Pareto optimal solutions of (MOP) are scalarization methods. Depending
on a parameter P , a scalarization method converts the multiobjective problem (MOP)
into a single objective problem, which is then solved with corresponding single objective
optimization methods. Depending on the selected scalarization method, P has a di�erent
meaning like, for instance, a weight or a budget restriction for each objective function.
The two most popular scalarization methods are the weighted sum scalarization and the
"-constraint scalarization. Both methods are brie�y presented in the following.

4.1.2. Weighted Sum Scalarization

The idea behind the weighted sum scalarization is straightforward. Each objective is
weighted with an individual weight and the weighted objectives are summed up to a single
objective function. Since we consider minimization problems, we allow only nonnegative
weights. Furthermore, without loss of generality we normalize the weights such that their
sum is always one.

De�nition 4.19 Let � = (�1; : : : ; �p) 2 R
p
�0 := fx 2 R

p : xi � 0g such that
∑p

i=1 �i = 1.

The corresponding weighted sum scalarization of (MOP) is the problem

min
x2X

p∑
i=1

�i fi(x): (MOPw (�))

A thorough analysis of the weighted sum scalarization is given in [Ehr05, pp. 65 sqq.].
In the following, the most important results are brie�y summarized. For this, we require
the concept of weak e�ciency.
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De�nition 4.20 A solution x� 2 X is called weakly e�cient for (MOP), if there exists no
x 2 X such that fi(x) < fi(x

�) for all i 2 [p].

Example 4.21 We consider once more the problem (MOP) from Example 4.10 with the

feasible set X = fx1; x2; x3; x4g and f (x1) := (1; 3), f (x2) := (1; 4), f (x3) := (2; 1)

as well as f (x4) := (4; 2). Recall that x1 and x3 are the e�cient points for (MOP).
Therefore, x1 and x3 are also weakly e�cient. But x2 is also weakly e�cient, although it

is not e�cient. In contrast, the solution x4 is not weakly e�cient, because f1(x
2) = 2 <

4 = f1(x
4) and f2(x

2) = 1 < 2 = f2(x
4).

The following theorem summarizes the major results regarding the weighted sum scalar-
ization.

Theorem 4.22 1. Let � 2 Rp
�0. If x� is optimal for (MOPw (�)), then x� is weakly

e�cient for (MOP). If in addition all optimal solutions for (MOPw (�)) are mapped

to the same image f (x�) 2 Y , then x� is e�cient for (MOP).

2. Let � 2 Rp
>0. If x

� is optimal for (MOPw (�)), then x� is e�cient for (MOP).

3. If (MOP) is convex, i.e., the set X is convex and the objective functions fi , i 2 [p],

are convex, then for each x� 2 Xe� there exists �� 2 Rp
�0 such that x� is optimal

for (MOPw (�)) with � = ��.

Proof. The statements follow from Theorem 3.4, Theorem 3.5, Theorem 3.6, Corol-
lary 3.7 and Proposition 3.8 in [Ehr05, pp. 69, 70].

Remark 4.23 It is important to emphasize that in general not all e�cient solutions can

be found with the weighted sum scalarization if the problem (MOP) is nonconvex. This is
detailed in [Ehr05, p. 73] or [Deb01, pp. 53, 54].

According to Theorem 4.22, several (weakly) e�cient solutions of (MOP) may be found
by varying the parameter � 2 Rp

�0. But this requires solving various single objective
optimization problems of the type (MOPw (�)), which might be computationally expensive.
The major advantages of the weighted sum scalarization are its simplicity and that no
additional constraints are added to the problem formulation. In addition, if the problem
is convex, then all e�cient solutions can be found by varying the parameter � 2 Rp

�0

appropriately.
However, specifying appropriate weight vectors � can be challenging in practice. For
instance, two di�erent weight vectors �1 6= �2 might yield the same (weakly) e�cient
solution. Another disadvantage of the weighted sum scalarization is that for nonconvex
problems it is in general impossible to �nd all e�cient solutions. In contrast, the "-
constraint scalarization, which is presented in the following, is able to �nd all e�cient
solutions also for a nonconvex problem.

59



Chapter 4 Basic Mathematical Concepts

4.1.3. "-Constraint Scalarization

As delineated in the preceding subsection, the weighted sum scalarization aggregates all
objectives into a single objective function. In contrast, in the "-constraint scalarization
"only one of the original objectives is minimized, while the others are transformed to
constraints."[Ehr05, p. 98]. For this, we require two parameters. First, an index k 2 [p]

that indicates which of the p objective functions is minimized. Second, a vector " =

("1; : : : ; "p) 2 R
p that represents the upper bounds for the objectives that are transformed

to constraints. Note that the component "k is not required and irrelevant, because fk is
kept as the single objective function to be minimized and not transformed to a constraint.
However, it is a convention to include it [Ehr05, p. 99].

De�nition 4.24 Let k 2 [p] and let " = ("1; : : : ; "p) 2 R
p. The corresponding "-constraint

scalarization of (MOP) is the problem

min
x2X

fk(x); s.t. fi(x) � "i 8 i 2 [p] n fkg: (MOPc("; k))

The functional principle of the "-constraint scalarization is, for instance, illustrated in
[Ehr05, p. 99] or [Deb01, p. 55].
The following theorem summarizes the major results regarding the "-constraint scalariza-
tion.

Theorem 4.25 1. If x� is an optimal solution of (MOPc("; k)) for some " and k , then

x� is weakly e�cient for (MOP).

2. If x� is the unique solution of (MOPc("; k)), then x� is e�cient for (MOP).

3. A solution x� 2 X is e�cient for (MOP) if and only if there exists "� 2 Rp such

that x� is optimal for (MOPc("; k)) for all k 2 [p] with " = "�.

Proof. The statements follow from Proposition 4.3, Proposition 4.4 and Theorem 4.5 in
[Ehr05, pp. 99, 100].

According to Theorem 4.25, the "-constraint scalarization is able to �nd all Pareto
optimal solutions for an arbitrary problem (MOP) by using appropriate vectors " 2 Rp.
This is also true for nonconvex problems, which is the major advantage of the "-constraint
scalarization compared to the weighted sum scalarization.
However, just as with the weighted sum scalarization it might be challenging to �nd ap-
propriate vectors " 2 Rp for the "-constraint scalarization in practice. For instance, it may
be di�cult to select " 2 Rp such that the resulting problem (MOPc("; k)) has a feasible
solution at all [Bra+08, p. 13]. Therefore, "information about the ranges of objective func-
tions in the Pareto optimal set is useful" in selecting appropriate vectors " 2 Rp [Bra+08,
p. 13].
In Section 9.1 below, we deal with the nominal ADA optimization problem with a sin-
gle ADA pair, which is a two-dimensional optimization problem. A particularity of this
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problem is that information about the range of its second objective function is available.
Furthermore, this problem is nonconvex in general. Therefore, a variant of the "-constraint
scalarization is proposed in Section 9.1.2 to solve this problem.

In addition to the scalarization methods and the brie�y mentioned direct approaches to
solve (MOP), there exists also a variety of approximation methods and (meta)heuristic
approaches. One popular class of metaheuristics are evolutionary algorithms. These are
introduced in the following, because we propose solving the ADA optimization problem
with respect to tolerances by using evolutionary algorithms in Section 9.2.2 below.

4.2. Evolutionary Multiobjective Optimization

This section is based on the books Multi-Objective Optimization using Evolutionary Algo-

rithms [Deb01] and Multiobjective Optimization [Bra+08]. The main idea behind evolu-
tionary optimization algorithms is to imitate the evolution process in nature [Deb01, p. 77].
Regarding multiobjective optimization, some of the most popular approaches are genetic
algorithms and particle swarm algorithms [Bra+08, p. 78].
A popular multiobjective genetic algorithm is the NSGA-II. "In fact, in a wide range of
benchmarks and application problems, NSGA-II was reported to yield good approximations
of Pareto fronts, in particular for the 2-D case." [CEM12, p. 21] Thus, it is proposed
to use NSGA-II to solve the ADA optimization problem with tolerances in Section 9.2.2
below. For this, the basics of genetic algorithms in general as well as some particularities
of the NSGA-II are brie�y presented in the following.

4.2.1. Genetic Algorithms

A genetic algorithm (GA) is a population based and iterative procedure. The term popu-
lation refers to a sample set of solutions that is considered in the current iteration. The
iterations of a GA are also called generations. In each generation, three operators are
successively applied to the population, which are reproduction, crossover and mutation.
These operators modify the solutions within the populations and (ideally) drive the so-
lutions from generation to generation towards optimality. After a maximum number of
generations speci�ed by the user, the procedure terminates and the solutions with the
best �tness values within the incumbent population are the approximations of the optimal
solution(s). The initial population is usually randomly generated.
For this, a �tness assignment function is required that assigns a �tness value to each
solution. The �tness value of a solution represents its degree of optimality. A feasible
solution with a better objective function value should have a better �tness value than an
infeasible solution or than a solution with a worse objection function value. If we have
no constraints, then, in the single objective case, the �tness assignment function usually
corresponds to the objective function [Deb01, p. 83].
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A �ow chart of this working principle is, for instance, illustrated in Figure 41 in [Deb01,
p. 83]. The three operators as well as some related particularities like binary representation
of a solution are introduced in the following.

Reproduction This operator "mimics Darwin's survival of the �ttest principle by making
duplicate copies of above-average solutions in the population at the expense of deleting
below-average solutions" [Bra+08, p. 66]. One of the most common methods is tourna-
ment selection. As the name suggests, in tournament selection two solutions are (ran-
domly) picked from the population and their �tness values are compared to each other.
The solution with the larger �tness value is placed in the mating pool. This procedure
is repeated until the mating pool is �lled. The mating pool is an intermediate population
from which new solutions are created by applying the crossover and the mutation operator.
A common mating pool size is half of the population size [Ses09].
There exist several other reproduction methods like proportionate selection or ranking
selection [Deb01, p. 84]. But "[i]t has been shown . . . that the tournament selection
has better or equivalent convergence and computational time complexity properties when
compared to any other reproduction operator that exists in the literature." [Deb01, p. 85].
Tournament selection is also used in NSGA-II as the reproduction operator.

Crossover In the crossover operator "two or more parent solutions are used to create
(through recombination) one or more child solutions" [Bra+08, p. 64], where the parent
solutions are randomly selected from the mating pool. Most crossover methods exchange
some "portions" of the two parent solutions. This requires a representation of the parent
solutions that allows a meaningful and reasonable exchange. A common representation are
binary strings. For instance, if we have a 10 bit representation for a decision variable, then
1024 di�erent values for this decision variable are possible. The binary string representa-
tion is usually combined with a single-point crossover. Then, the crossover "is performed
by randomly choosing a crossing site along the strings and by exchanging all bits on the
right side of the crossing site" [Deb01, p. 89]. In this way, two child solutions are created.
However, if the search space is continuous, a major disadvantage of the binary represen-
tation "is the inability to achieve any arbitrary precision in the optimal solution" [Deb01,
p. 106]. To overcome this problem a method called simulated binary crossover (SBX) was
developed. "As the name suggests, the SBX operator simulates the working principle of
the single-point crossover operator on binary strings" [Deb01, p. 109]. To illustrate how
SBX is applied, let us suppose that we have two parent solutions x1;t and x2;t , where t de-
notes the current generation. Let us further suppose that we want to perform a crossover
of the i-th component. First, a number ui 2 [0; 1) is drawn randomly. Then ui is used to
calculate

qi =

(2ui)
1

�c+1 if ui �
1
2 ;(

1
2(1�ui )

) 1

�c+1 otherwise;
(4.1)

62



4.2 Evolutionary Multiobjective Optimization

where �c � 0 is the so-called distribution index. The resulting qi in turn is used to calculate
the o�spring's i-th component via

x1;t+1
i :=

1

2

(
(1 + qi)x

1;t
i + (1� qi)x

2;t
i

)
and x2;t+1

i :=
1

2

(
(1� qi)x

1;t
i + (1 + qi)x

2;t
i

)
:

The role of the distribution index �c is as follows. "A large value of �c gives a higher prob-
ability for creating 'near-parent' solutions and a small value of �c allows distant solutions
to be selected as o�spring" [Deb01, p. 110]. Common values are �c 2 [10; 20] [Bra+08,
p. 76] [Ses09]. The relation between ui , qi and �c as well as the derivation of (4.1) are
detailed in [Deb01, pp. 109�112].
SBX is a popular crossover operator [Bra+08, p. 64] and it is also used in NSGA-II. An
overview of alternative crossover operators is given in [Deb01, pp. 107 sqq.].

Mutation The mutation operator perturbs single solutions in the mating pool to hope-
fully obtain a better solution. "The need for mutation is to keep diversity in the population"
[Deb01, p. 91]. Note that "[a] fundamental di�erence with a crossover operator is that
mutation is applied to a single solution, whereas crossover is applied to more than one
solution." [Bra+08, p. 66].
In binary representation, the bit-wise mutation operator is common. This operator "changes
a 1 to a 0 and vice versa, with a mutation probability of pm" [Deb01, p. 91]. In real-coded
GAs, the bit-wise mutation is not applicable. A common mutation operator for real-coded
GAs is the so-called polynomial mutation, which is based on a polynomial probability dis-
tribution.
To illustrate how the polynomial mutation is applied, let us suppose that we want to mu-
tate the i-th component of a solution x . Let us further suppose that the i-th component
of the feasible set is bounded by xLi and xUi . First, a number ui 2 [0; 1] is drawn randomly.
Then ui is used to calculate

qi =

(2ui)
1

�m+1 � 1 if ui <
1
2 ;

1�
(
2(1� ui)

) 1

�m+1 otherwise;
(4.2)

where �m � 0 is the so-called mutation distribution index. The resulting qi in turn is used
to calculate the i-th component of the perturbed solution, denoted by ~x , via

~xi = xi + (xUi � xLi )qi : (4.3)

Note that ~xi must not be smaller than xLi and it must not be greater than xUi in order to
obtain a feasible solution, which is in general not guaranteed by the formula according to
(4.2) and (4.3).
The perturbation of xi can be controlled with the distribution index �m. A smaller �m
produces a greater perturbation and vice versa [Deb01, p. 120]. A common value is
�m = 20 [Bra+08, p. 76] [Ses09]. The relation between ui , qi and �m as well as the
derivation of (4.2) are detailed in [Deb01, p. 120].
The polynomial mutation is also used in NSGA-II. An overview of alternative mutation
operators is given in [Deb01, pp. 118 sqq.].
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Properties of Genetic Algorithms

We brie�y discuss some of the properties of GAs. Because GAs are population based and
process several solutions simultaneously, "it is likely that the expected GA solution may
be a global solution" [Deb01, p. 92]. In addition, GAs usually do not require any further
information than objective function evaluations. In particular, no gradients are required in
general. Furthermore, because of "probabilistic transition rules and an initial random pop-
ulation", GAs are able "to recover from early mistakes" [Deb01, p. 92]. Therefore, GAs
can be applied to a wide class of optimization problems including multimodal problems.
However, the three evolutionary operators and their parameters must be selected such
that the "extent of exploration . . . through recombination and mutation operators" is bal-
anced "with the extent of exploitation through the selection1 operator" [Deb01, p. 93].
Selecting the right operators and parameters may be challenging in practice. In partic-

ular because the approximation quality of a GA is in general unknown, i.e., it is unknown
how close the output of a GA is to the true optimal solution(s) and to the true Pareto front.

This concludes the introduction to GAs. As mentioned at the beginning of Section 4.2,
we next introduce a GA speci�cally designed for solving multiobjective optimization prob-
lems.

4.2.2. Nondominated Sorting Genetic Algorithm (NSGA) II

Recall from Section 4.1.1 that a multiobjective optimization problem in general does not
have one optimal solution. Rather, there usually exist several Pareto optimal solutions,
the so-called Pareto optimal set. In continuous optimization, the Pareto optimal set is
often an in�nite set. Therefore, we are usually interested in �nding a �nite set of solutions
that is a good representation of the Pareto optimal set. This can be characterized by two
goals. First, the found solutions shall be close to the Pareto front (ideally their images
are elements of the Pareto front). Second, the found solutions shall be "as diverse as
possible" [Deb01, p. 22].
An evolutionary algorithm works with populations and thus it has a "tremendous advantage
for . . . solving multi-objective optimization problems", because "a population of Pareto-
optimal solutions can be captured in a single simulation run of an [evolutionary algorithm]"
[Deb01, p. 161]. To make use of this advantage, a �tness assignment function is required
that produces selection pressure towards Pareto optimality and diversity.
This also applies to NSGA-II, a popular genetic algorithm for solving multiobjective op-
timization problems. As a genetic algorithm its basic working principle is as described in
Section 4.2.1, i.e., in each generation the reproduction, the crossover and the mutation
operators are applied to the incumbent population. However, the particularity of NSGA-II
is its �tness assignment function, which is presented in the following. All concepts and
results presented in this subsection are based on the article �A fast and elitist multiobjective

1The term selection operator is synonymous to the reproduction operator introduced above.
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genetic algorithm: NSGA-II� [Deb+02].

Fitness Assignment Function

The main idea behind NSGA-II is that a solution is assigned a large �tness if it is not Pareto
dominated by another solution in the population and if there are no other nondominated
solutions in its vicinity in the objective space. In contrast, if a solution is dominated by
another solution in the population or if two nondominated solutions in the population
are close to each other in the objective space, then these are assigned a small �tness.
Therefore, the �tness assignment is composed of the two parts Pareto dominance and
diversity. The �tness of a solution with respect to Pareto dominance is determined by
nondominated sorting. The �tness with respect to diversity is determined with the so-
called crowding distance. In addition, NSGA-II is an elitist algorithm. All three concepts
are detailed in the following.

Nondominated sorting Let us suppose that we are in the t-th iteration and let Xt be
the set of incumbent solutions, i.e., Xt denotes the population in the t-th generation.
Let Yt := f (Xt) denote the image of Xt under the multiobjective function f . The idea
behind nondominated sorting is that the solutions in Xt are sorted for their "degree of
nondominance" in Yt . This is done iteratively. Let F1 denote the set of all points that are
nondominated in Yt . The set F1 is also called front 1 and its preimages in Xt are assigned
the rank 1. We remove the points in F1 from Yt and �lter again for nondominance. This
gives us the set F2 that contains all nondominated points in Yt n F1. The preimages of F2
in Xt are assigned the rank 2. This is continued iteratively, i.e.,

Fi+1 =
{
y 2 Yt n

i⋃
k=1

Fk : y is nondominated in Yt n

i⋃
k=1

Fk

}
;

until all elements in Xt are assigned a rank. This gives us a partition of Xt and Yt . Each
x 2 Xt is assigned exactly one rank and each y 2 Yt is contained in exactly one front.

Remark 4.26 By using an e�cient bookkeeping it is possible to perform the nondominated

sorting of Xt and Yt with a time complexity ofO(pN2) and a storage requirement ofO(N2),

where p is the number of objectives and N is the population size. The corresponding

algorithm is detailed in [Deb01, pp. 42�44] and [Deb+02, pp. 183�184].

The �tness assignment with nondominated sorting is straightforward. A solution with
a smaller rank is preferred over a solution with a larger rank. If two solutions have the
same rank, the solution that makes a greater contribution to diversity (within the front
that contains both solutions) is preferred. An indicator for the contribution of a solution
to a front's diversity is the crowding distance.
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Crowding distance Only the basic idea behind the crowding distance is presented. De-
tails as well as an algorithmic description can be found in [Deb01, pp. 236�240] and
[Deb+02, pp. 185�186]. Note that the crowding distance is only computed for solu-
tions within the same front Fk , because otherwise the solution with the lower rank is
preferred. To illustrate how the crowding distance is calculated, let us suppose that our
multiobjective problem has p, p � 2, objectives and that the front Fk has ` elements, i.e.,
Fk = fy

1; : : : ; y `g. Then, we have to compute ` crowding distances di , i 2 [`].
First, the crowding distances are initialized with zero, i.e., we set di := 0 for all i 2 [`].
Next, we proceed component by component of the objective space. For each m 2 [p],
we sort the m-th component of the elements in Fk in increasing order. For the mo-
ment, let us suppose that these components are unique, i.e., we only have strict inequal-
ities and thus a unique order. Let �m be the corresponding permutation, i.e., we have
y
�m(1)
m < y

�m(2)
m < : : : < y

�m(`)
m . In particular, we have y

�m(1)
m = minfy1m; : : : ; y

`
mg and

y
�m(`)
m = maxfy1m; : : : ; y

`
mg.

The boundaries of Fk are most important for diversity and thus we assign d�m(1)  1 as
well as d�m(`)  1. The remaining crowding distances are updated by

d�m(i)  d�m(i) +
y
�m(i+1)
m � y

�m(i�1)
m

f max
m � f min

m

8 i 2 f2; : : : ; `� 1g:

Remark 4.27 The parameters f min
m and f max

m are used to normalize the componentwise

contributions to the crowding distance. But the literature does not clearly state how f min
m

and f max
m should be selected. In [Deb01], it is suggested to select f min

m and f max
m "as

the population-minimum and population-maximum values of the m-th objective function"

[Deb01, p. 236]. However, in a subsequent example in [Deb01], f min
m and f max

m are selected

as the m-th components of the ideal point and of the nadir point, respectively [Deb01,

p. 238].

In contrast, the NSGA-II implementation by Seshadri [Ses09], which is used in the use

case in Section 9.2.4 below, uses the minimum and the maximum of the m-th component

of the elements in Fk only (and not of the whole population), i.e., f min
m = y

�m(1)
m and

f max
m = y

�m(`)
m .

Remark 4.28 The literature ([Deb01] and [Deb+02]) does not state how to deal with the

case that the ordering of the m-th component of the elements in Fk is not unique, i.e., if

there exist y i ; y j 2 Fk , i 6= j , such that y im = y jm. Because all ADA optimization problems

are continuous, it is considered very unlikely that two or more solutions within a front

have an identical component in the objective space. Therefore, this case is ignored in the

following.

An example where the crowding distance is determined step by step with hand calcula-
tions is given in [Deb01, pp. 237�240].

Elitism Elitism is "[a]n operator which preserves the better of parent and child solu-
tions (or populations) so that a previously found better solution is never deleted" [Bra+08,
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p. 65]. Elitism is also implemented in NSGA-II. The elite-preserving operator in NSGA-II
is straightforward. Let N denote the population size. Let us suppose that the three evo-
lutionary operators presented in the preceding Subsection 4.2.1, reproduction, crossover
and mutation, have already been applied in the current generation. This gives us two
populations, the original parents as well as the o�spring generated by crossover and mu-
tation. We combine both populations to an intermediate population, which has typically
the size 2N (N parents and N o�spring). From this combined intermediate population
the N solutions with the best �tness values constitute the population for the subsequent
iteration, i.e., the N solutions with the smallest rank and the largest crowding distance are
selected.
For instance, let us suppose that F1 contains N � 10 elements and that F2 contains 20
elements. Then all elements of F1 as well as the ten elements of F2 with the largest
crowding distance in F2 constitute the new population, which again has the size N.
Because all parent solutions are considered as candidates for the new population, the new
population cannot be "less optimal" than the preceding population.

The interaction of nondominated sorting, crowding distance and elitism is brie�y illus-
trated in the following example.

Example 4.29 We consider the t-th generation of a run with NSGA-II for a not further

speci�ed two-dimensional problem (MOP). The tournament, the crossover and the mu-

tation operator have already been applied in this generation. This gives us a combined

population that consists of the N parents (the incumbent population in generation t) and

of N o�spring generated by crossover and mutation. In this example, we have N = 6

and the combined population consists of 2N = 12 solutions. In Figure 4.3, the combined

population is shown in the objective space. Because it is not relevant for the following,

the parents and the o�spring are not visually distinguished, i.e., it is not apparent which

solution is a parent and which solution is an o�spring. Note that each point has a unique

preimage in the combined population under f (because exactly 12 points are shown).

We apply nondominated sorting to �nd the "best" N = 6 solutions in the combined pop-

ulation. We �lter the combined population for nondominance and obtain the front F1.

Next, we �lter the combined population without (the preimages of) F1 for nondominance

and obtain the front F2 and so on. In total, we have the four fronts F1 to F4.

We start to �ll the new population, denoted by Pt+1 in the following. The front F1 con-

tains three elements and thus we can add all solutions corresponding to F1 to Pt+1. With

this, we have 6�3 = 3 spaces left in Pt+1. However, the next front, F2 = fa; b; c; dg, has

four elements. Therefore, we use the crowding distance operator to determine which three

solutions from F2 we add to Pt+1. Without explicitly calculating the crowding distance it

is apparent from Figure 4.3 that b has the smallest crowding distance in F2. Therefore,

the solutions corresponding to a, c and d are added to Pt+1. With this, the population

for the subsequent (t + 1)st generation is constituted and the remaining solutions of the

intermediate population are discarded.
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a
b

c

d

f1(x)

f 2
(x
)

Objective Space of (MOP)

F1
F2
F3
F4

Figure 4.3.: The image of a combined population consisting of 6 parents and 6 o�spring
under a two-dimensional objective function f is shown (parents and o�spring are not visually
distinguished). The four ranked fronts F1 to F4 are a partition of the combined population's
image. Furthermore, it is apparent that the point b has the smallest crowding distance in
the front F2 = fa; b; c; dg. Adapted from Figure 139 in [Deb01, p. 237].

Remark 4.30 The computational complexity of one iteration with NSGA-II is O(pN2),

where p denotes the number of objective functions of (MOP) and N denotes the popula-

tion size [Deb01, p. 240]. This results from the nondominated sorting of the intermediate

population with the size 2N, see also Remark 4.26.

This concludes the introduction to NSGA-II. A more detailed introduction as well as
a detailed algorithmic description of NSGA-II can be found in [Deb01, pp. 233�236] and
[Deb+02].

Most multiobjective evolutionary algorithms are designed for unconstrained or box con-
strained problems. Therefore, an additional constraint handling technique (CHT) is re-
quired for solving a constrained optimization problem with such algorithms [DD15, p. 1].
This also applies to NSGA-II and thus a small overview of CHTs in evolutionary multiob-
jective optimization is given.

4.2.3. Constraint Handling Techniques

There exists a variety of CHTs for solving constrained multiobjective optimization problems
with evolutionary algorithms. A survey and taxonomy of CHTs in evolutionary multiobjec-
tive optimization is given in [Lia+23].
For this study, we are particularly interested in CHTs for NSGA-II. Deb et al. suggest
to combine NSGA-II with a CHT based on a separation of objectives and constraints
[Deb+02]. This method is called constrained dominance principle (CDP).
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Constrained Dominance Principle

If two solutions are compared, then either both solutions are feasible, one is feasible and the
other is not or both are infeasible. The idea behind CDP is to modify the Pareto dominance
relation between two solutions and include their "degree of (in)feasibility". The following
de�nition is taken from [Deb+02, p. 192].

De�nition 4.31 Let x i and x j be two solutions for (MOP) (x i and x j not necessarily

elements of X). The solution x i constrained-dominates x j if any of the following conditions
is satis�ed.

� x i and x j are both feasible and x i Pareto dominates x j , i.e., x i ; x j 2 X and f (x i) �

f (x j).

� x i is feasible and x j is not, i.e., x i 2 X and x j =2 X.

� x i and x j are both not feasible, but x i has the smaller overall constraint violation,

where the overall constraint violation is the sum of the absolute values of all con-

straint violations.

"The e�ect of using this constrained-domination principle is that any feasible solution
has a better nondomination rank than any infeasible solution" and that "among two infea-
sible solutions, the solution with a smaller constraint violation has a better rank" [Deb+02,
p. 192]. With this, NSGA-II and CDP are combined by replacing the Pareto dominance
with the constrained dominance when applying NSGA-II.
The advantages of CDP are that it does not require any additional parameters, it is simple
and it is easy to implement [Deb+02, p. 196]. Furthermore, in several tests the com-
bination of NSGA-II with CDP provided good results [Deb+02, p. 196]. However, if an
optimization problem has discrete feasible regions or infeasible barriers, then CDP might
"cause the population to fall into some local feasible regions" [Lia+23, p. 4].
Experiments have shown that satisfactory results are achieved when the ADA optimization
problems are solved by combining NSGA-II with CDP. Therefore, CDP is the only CHT
considered in this work. As already mentioned, an overview of alternative CHTs for evolu-
tionary multiobjective optimization is given in [Lia+23].

This concludes the introduction to evolutionary multiobjective optimization. In the
following section, some basics of �xed point iteration procedures are presented.

4.3. Fixed Point Iteration Procedures

In Chapter 6, it is shown that the ADA procedure with a single ADA pair corresponds to
the Picard iteration, which is a �xed point iteration procedure. Therefore, this subsection
deals with the terms �xed point and iteration procedure and is based on the book Iterative
Approximation of Fixed Points written by Berinde [Ber07]. The term �xed point and the
Picard iteration are introduced �rst. Thereafter, some convergence results are presented.
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4.3.1. Fixed Points and the Picard Iteration

As the name suggests, a �xed point of a function is an element that is mapped to itself.
The de�nition of a �xed point is very general, i.e., the underlying set and the corresponding
function do not have to have any structure.

De�nition 4.32 Let X be a nonempty set. A function f that maps the set X to X is

called selfmap.
Let f : X ! X be a selfmap. An element x 2 X with f (x) = x is called �xed point of f .
The set of �xed points of f is denoted by Fix(f ).

The following example shows that Fix(f ) can be empty, contain a certain number of
elements or can be the whole underlying set X.

Example 4.33 1. Let X be an arbitrary nonempty set and f := id the identity. Then,

we have Fix(f ) = X, because f (x) = x 8 x 2 X.

2. Let X = R and f (x) := 1
2x + 5. Then Fix(f ) = f10g, because

1

2
x + 5 = x , 5 =

1

2
x , 10 = x:

3. Let X = R and f (x) := x + 1. Suppose f has a �xed point x�. Then, we have

x� + 1 = x�, which implies 1 = 0. That is a contradiction and thus we have

Fix(f ) = ;.

It is not always possible to explicitly calculate the set of �xed points like in Example
4.33. Rather one has to rely on iterative approximation procedures [Ber07, p. 20]. Such
procedures are based on consecutive function evaluations, so we introduce a notation for
that.

Notation 4.34 Let f : X ! X be a selfmap with a nonempty set X. Then, f n(x) is the

n-th iterate of x under f . It is recursively de�ned by f 0(x) := x and f n+1(x) := f (f n(x)).

Remark 4.35 The part f 0(x) := x looks similar to the de�nition of a �xed point. But the

term f 0(x) simply denotes the element x itself.

The most basic iterative �xed point method is the so-called Picard iteration [Ber07,
p. 3].

De�nition 4.36 The sequence ff n(x0)gn2N0
� X is called the Picard iteration associated

to f starting at x0. It is also denoted by fxngn2N0
, where xn := f n(x0).

If x0 2 Fix(f ), then we obviously have f n(x0) = x0 for all n 2 N0. A major result
with respect to the Picard iteration for arbitrary starting points x0 2 X is Banach's �xed
point theorem. It is one of the most important theorems in the metrical �xed point theory
[Ber07, p. 6]. However, Banach's �xed point theorem requires that X is a complete
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metric space. A complete metric space is a metric space in which every Cauchy sequence
is convergent [Ber07, p. 5]. This is no restriction to us, since the ADA iteration function
Ai , which is de�ned and analyzed in Chapter 6 below, lives on R and it is well known that
R together with the metric d(x; y) := jx � y j is a complete metric space. Therefore, the
following de�nitions and theorems are stated for subsets of R only, although more general
versions exist.
In order to formulate Banach's �xed point theorem, we need the concept of Lipschitz
continuity. We also introduce the closely related term contractive function.

De�nition 4.37 Let X � R and let f : X ! R. The function f is called L-Lipschitzian,
if there exists L > 0 such that

jf (x)� f (y)j � Ljx � y j 8 x; y 2 X:

The corresponding constant L is called Lipschitz constant.
The function f is called contractive, if

jf (x)� f (y)j < jx � y j 8 x; y 2 X; x 6= y :

Remark 4.38 There exists a more general de�nition of Lipschitz continuity that is de�ned

for functions between two metric spaces (X1; d1) and (X2; d2). However, De�nition 4.37

is su�cient for the ADA optimization.

Theorem 4.39 (Banach's �xed point theorem) Let X � R and let f : X ! X be L-

Lipschitzian with L < 1. Then

1. f has a unique �xed point x� 2 X.

2. The Picard iteration associated to f converges to x� for an arbitrary starting point

x0 2 X.

3. The a priori error estimate jxn � x�j � Ln

1�L � jx1 � x0j holds for all n 2 N0.

4. The a posteriori error estimate jxn � x�j � L
1�L � jxn � xn�1j holds for all n 2 N0.

5. The rate of convergence can be estimated by jxn�x
�j � L�jxn�xn�1j � Ln �jx0�x

�j

for all n 2 N.

Proof. See [Ber07, p. 32].

The existence of a Lipschitz constant L < 1 is a strict requirement for Banach's �xed
point theorem. If the condition is slightly weakened to f being only contractive, then
the conclusions of Banach's �xed point theorem are not valid in general. The following
example is taken from [Ber07, p. 34]. The proof presented in the example is added by the
author of this thesis.
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Example 4.40 Let X := [1;1) and f : X ! X be de�ned by f (x) := x + 1
x . Then

1. jf (x)� f (y)j < jx � y j for all x; y 2 X with x 6= y .

2. There exists no L < 1 such that jf (x)� f (y)j � L � jx � y j for all x; y 2 X.

3. Fix(f ) = ; and the Picard iteration associated to f does not converge for any starting

point x0 2 X.

Proof. 1. First, we show that f is strictly increasing. Let x; y 2 X and x < y . Then we
have

1 � x < y ) 1 < x � y )
1

xy
< 1 ) 0 < 1�

1

xy

) 0 < (y � x)(1�
1

xy
) (because y � x > 0)

) 0 < y � x �
y

xy
+

x

xy
= y +

1

y
� x �

1

x
= f (y)� f (x)) f (x) < f (y):

Now, we are able to prove the �rst statement. Let x; y 2 X with x 6= y . Without loss
of generality, let x < y . That implies 1

y �
1
x < 0 and f (x) < f (y), since f is strictly

increasing. Thus, we have

jf (x)� f (y)j = f (y)� f (x) = y +
1

y
� (x +

1

x
) = y � x + (

1

y
�

1

x
) < y � x = jx � y j:

2. Let us suppose that there exists a constant L < 1 such that jf (x)� f (y)j � L � jx � y j

for all x; y 2 X. Let x be an arbitrary element of X. We set y := x + 1
(1�L)x . Then, we

have 1 � x < y and thus

jf (x)� f (y)j = y +
1

y
� x �

1

x

> y � x �
1

x
= x +

1

(1� L)x
� x �

1

x
=

1

(1� L)x
�

1� L

(1� L)x

= L
1

(1� L)x
= L

(
x +

1

(1� L)x
� x

)
= L(y � x) = L � jx � y j:

That is a contradiction and the second statement is proven.
3. Let us suppose that the Picard iteration associated to f converges for some starting
point x 2 X. Let x� be the limit. That gives us f (x�) = x�+ 1

x� = x�, what implies 1 = 0.
Thus, the Picard iteration does not converge and the set of �xed points is empty.

However, if the ambient space has more structure than simply being a subset of R, then
even the weaker property 'contractive' is su�cient to guarantee that the Picard iteration
converges for an arbitrary starting point.
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Theorem 4.41 Let X � R be compact and let f : X ! X be contractive. Then

1. f has a unique �xed point x� 2 X and

2. the Picard iteration associated to f converges to x� for any starting point x0 2 X.

Proof. See [Ber07, p. 35].

Remark 4.42 The theorem and proof in [Ber07, p. 35] are formulated for the more general

case that X is a compact metric space.

Remark 4.43 Because there does not exist a Lipschitz constant smaller than one for a con-

tractive function in general, it is not possible to make a statement about the convergence

rate or about the error estimates of the Picard iteration in this case [Ber07, p. 35].

So far, one can guess that the Lipschitz constant plays a central in this thesis. If
di�erentiable functions are considered, there is a link between the absolute value of a
function's derivative and its Lipschitz constant. The following lemma is a well-known
result of mathematical analysis, see for instance [For23, p. 250].

Lemma 4.44 Let I � R be an interval and let f : I ! R be a di�erentiable function.

1. If there exists L > 0, such that jf 0(x)j � L for all x 2 I, then f is L-Lipschitzian.

2. If jf 0(x)j < 1 for all x 2 I, then f is contractive.

There exist a lot more iterative �xed point procedures with according convergence re-
sults. But they usually require an extended structure of the ambient space X or there are
some more speci�c requirements to the function f . But they are not applicable in the
case of the ADA procedure. However, the ADA iteration functions have a certain struc-
ture, which allows to make some ADA speci�c �xed point iteration statements. These are
presented in the following subsection.

4.3.2. Fixed Point Related Results Required for the Convergence Analysis

of the ADA Procedure

The results presented in the preceding subsection are very general. However, the ADA
iterations have a certain structure. In Chapter 6, we show that the ADA iteration func-
tions are strictly increasing and that they are de�ned on closed intervals. This information
is used to make some more speci�c statements with respect to the corresponding Picard
iteration in this subsection. All statements and proofs in this subsection were developed
by the author of this thesis.

If f is strictly increasing, contractive and has a �xed point, then f (x) is limited by x and
the �xed point. Note that f is not required to be a selfmap.
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Lemma 4.45 Let X � R. Let f : X ! R be contractive and strictly increasing and let

x� 2 X be a �xed point of f . For x 2 X, we have

x < x� ) x < f (x) < x� and x� < x ) x� < f (x) < x:

Proof. Let x 2 X such that x < x�. Because f is strictly increasing and x� is a �xed point
of f , we have

x < x� ) f (x) < f (x�) = x�:

Next, let us assume that f (x) � x . But then

f (x) � x < x� = f (x�) ) 0 < x� � x � f (x�)� f (x) ) jf (x)� f (x�)j � jx � x�j;

which is a contradiction to f being contractive. Thus, we have x < f (x).
The second statement is shown analogously.

With this, we can state that if f is a strictly increasing and contractive function on a
closed and bounded interval I, then f is a selfmap if and only if f has a �xed point.

Lemma 4.46 Let I � R be a closed and bounded interval. Let f : I ! R be contractive

and strictly increasing. Then, f has a �xed point if and only if f is a selfmap, i.e.,

9 x� 2 I : f (x�) = x� , f (I) � I:

Furthermore, if f has a �xed point, then it is unique and the Picard iteration associated

to f converges to this �xed point for an arbitrary starting point x 2 I.

Proof. ")" Let there exist x� 2 I such that f (x�) = x�. Let x 2 I. We have to show
that f (x) 2 I. For this, we do a case distinction with respect to x . If x = x�, then
f (x) = x� 2 I. If x < x�, then x < f (x) < x� according to Lemma 4.45. Because
x; x� 2 I and I is a closed interval, f (x) is also an element of I. Analogously, x� < x

implies that x� < f (x) < x and thus f (x) 2 I.
"(" Let f be a selfmap. The set I is a closed and bounded interval by assumption and
thus compact. Therefore, f is a contractive selfmap on a compact set and thus we can
apply Theorem 4.41, which states that f has a unique �xed point x� 2 I and that the
Picard iteration associated to f converges to x� for an arbitrary starting point x 2 I.

Finally, the following lemma states monotonicity properties of the Picard iterations as-
sociated to strictly increasing functions f .

Lemma 4.47 Let X � R be nonempty, let f : X ! X be strictly increasing and let x 2 X.

Then, the following holds:

1. If f (x) > x , then the Picard iteration associated to f starting at x is strictly increas-

ing.

2. If f (x) < x , then the Picard iteration associated to f starting at x is strictly de-

creasing.
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3. If f (x) = x , then x 2 Fix(f ) and the Picard iteration associated to f starting at x is

constant.

Proof. We show the �rst statement by induction. So let x 2 X and let f (x) > x .
Base case:

For n = 1 the claim follows from the assumption f (x) > x .
Induction hypothesis:

Let the statement hold for n = 1; : : : ; k , i.e., we have f n(x) > f n�1(x) for all n = 1; : : : ; k .
Induction step:

We consider n = k +1. According to the induction hypothesis, we have f k(x) > f k�1(x).
Because f is strictly increasing, we have f k+1(x) = f

(
f k(x)

)
> f

(
f k�1(x)

)
= f k(x).

This proves the �rst statement. The second statement is shown analogously. The third
statement follows from the de�nition of a �xed point.

With this we have all the statements together that are required for the convergence
analysis in Chapters 6 and 7 below.
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5. Mathematical Formulation of ADA

In this chapter, the ADA procedure is presented from a mathematical point of view. First,
a corresponding formalism is introduced and all the required sets and functions are de�ned.
This formalism is then used to formulate the full ADA Algorithm 5.2 below. "Good" con-
vergence characteristics of this algorithm are an objective in the optimization later on.
Therefore, the convergence characteristics of Algorithm 5.2 are thoroughly analyzed in
Chapters 6 and 7. The �ndings are used to develop the optimization models in Chapter 8.

The ADA procedure is presented in detail in Chapter 3. As explained there, it requires
certain parameters, the so-called ADA pairs. Each ADA pair consists of a start and a
test point. Each start and test point consists of a fan speed and of an ioni current.
The following notation brie�y summarizes the notation introduced in De�nition 3.25 and
Notation 3.34 above.

Notation 5.1 Let N 2 N be the total number of ADA pairs. We de�ne [N] := f1; : : : ; Ng.

The ADA parameters of the p-th ADA pair, p 2 [N], are denoted by

sp and tp: the ADA pair's start and test fan speed, respectively,

ips and ipt : the ADA pair's start and test ioni current, respectively.

There are certain requirements with respect to the ADA pairs. The following de�nition
extends De�nition 3.25 of a well-de�ned ADA pair.

De�nition 5.2 Let H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
be an HE model

and let p 2 [N]. A quadruple (sp; tp; ips ; i
p
t ) is called feasible ADA pair with respect to H,

if

sp; tp 2 FS : sp > tp; ips 2 Isp ; ipt 2 Itp and Gsp \ Gtp 6= ;:

Remark 5.3 This remark is analogous to Remark 3.26. When there is no risk of confusion,

the HE model related to a feasible ADA pair is not explicitly stated for the remainder of

this thesis.

Remark 5.4 An ADA pair (sp; tp; ips ; i
p
t ) is feasible if and only if it is well-de�ned and in

addition Gsp \ Gtp 6= ; holds. The condition Gsp \ Gtp 6= ; is included to avoid case

distinctions in the following. From a practical point of view, if Gsp \Gtp = ;, then feasible

combustion limits are exceeded during an ADA iteration.

Remark 5.5 If an ADA pair (sp; tp; ips ; i
p
t ) is feasible, then its ioni currents are positive,

i.e., ips > 0 and ipt > 0. This follows from Isp � R>0 and Itp � R>0 (De�nitions 2.18 and

2.22).
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Assumption 5.6 To avoid case distinctions, it is implicitly assumed that all considered

ADA pairs are feasible for the remainder of this part.

During the course of this part, we often switch between ioni currents and corresponding
resistances. This is done by applying Ohm's law with the voltage U. Recall from Re-
mark 3.3 that U is a positive constant, i.e., U > 0. It is convenient to de�ne resistances
that correspond to the start and test ioni currents.

De�nition 5.7 For all p 2 [N] we de�ne the p-th ADA pair's start and test resistance,

respectively, by

rps :=
U

ips
and rpt :=

U

ipt
:

Remark 5.8 Because ipt > 0 and ipt > 0, we have rps > 0 and rpt > 0 for all p 2 [N].

In the following section, a formalism is introduced that allows to formulate the ADA
procedure as an algorithm. For this, we implicitly assume that a drift resistance rD � 0, an
HE model H =

(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
and N feasible ADA pairs

(sp; tp; ips ; i
p
t ), p 2 [N], are given.

5.1. Formalism: Required Sets and Functions

Let ît;rD = (i1; : : : ; iN) be the incumbent vector of drifted test ioni current approximations.
According to De�nition 3.30 and Remark 3.42, an ADA iteration with the p-th ADA pair,
i.e., an update of ip, p 2 [N], is composed of the following four steps.

(A1) r̂D  �
ît;rD

(sp)

(A2) ips;r̂D  
Uips

r̂D i
p
s +U

(A3) ĝ  ��1sp;rD(i
p
s;r̂D

)

(A4) ip  �tp;rD(ĝ).

The aim of this section is to provide a formalism such that we can express steps (A1) to
(A4) with functions. We begin with step (A1) and take a closer look at the drift resistance
approximations at the start fan speeds, i.e., we take a closer look at �

ît;rD
(sp), p 2 [N].

Thereafter, we consider steps (A2) to (A4).

5.1.1. Drift Resistance Approximations at the Start Fan Speeds

In step (A1), we calculate �
ît;rD

(sp), which corresponds to calculating the incumbent drift
resistance approximation at the start fan speed sp. Recall from De�nition 3.38 that for
a given vector ît;rD = (i1; : : : ; iN) the function �

ît;rD
(fs) is a linear interpolation combined

with a constant extrapolation of the N data points (tp; r̂pD) with r̂pD = U
ip
� U

ipt
, p 2 [N].
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Calculating U
ip
� U

ipt
is essential for the ADA procedure and thus we de�ne corresponding

functions.

De�nition 5.9 For p 2 [N] we de�ne

�p : R>0 ! (�rpt ;1); �p(i) :=
U

i
�

U

ipt
=

U

i
� rpt

and (
�p

)�1
: (�rpt ;1)! R>0;

(
�p

)�1
(r) :=

U

r + rpt
:

Lemma 5.10 The functions �p and
(
�p

)�1
are well-de�ned.

Proof. Let i 2 R>0. Then, U
i is de�ned and �p(i) can be evaluated. Furthermore, we

have (because U > 0)

i 2 R>0 ) i > 0 )
U

i
> 0 ) �p(i) =

U

i
� rpt > �rpt ) �p(i) 2 (�rpt ;1):

On the other hand, let r 2 (�rpt ;1). Then we have r > �rpt and thus r+rpt > 0 holds and
U

r+rpt
=

(
�p

)�1
(r) is de�ned. Furthermore,

(
�p

)�1
(r) > 0 holds (because U > 0).

Lemma 5.11 Let p 2 [N]. The function �p is a homeomorphism. Its inverse function is(
�p

)�1
. Furthermore, both functions are strictly decreasing.

Proof. The functions �p and
(
�p

)�1
are each a composition of continuous operations on

their respective domains and thus they are continuous as well. Next, we show that they
are inverse of each other. Let i 2 R>0, then we have(

�p
)�1
� �p(i) =

(
�p

)�1(U
i
� rpt

)
=

U
U
i � rpt + rpt

= i :

Let r 2 (�rpt ;1), then we have

�p �
(
�p

)�1
(r) = �p

( U

r + rpt

)
=

U
U

r+rpt

� rpt = r + rpt � rpt = r:

To show that �p is strictly decreasing, let i1; i2 2 R>0 such that i1 < i2. Then,

0 < i1 < i2 )
U

i2
<

U

i1
)

U

i2
� rpt <

U

i1
� rpt ) �p(i2) < �p(i1)

and thus �p is strictly decreasing. As the inverse function of a strictly decreasing function,(
�p

)�1
is also strictly decreasing.

Before we use �p to reformulate the calculation of �
ît;rD

(sp), we take a closer look
at the relation between the start and the test fan speed of an ADA pair. Recall from
Section 3.4.1 that the numbering of the ADA pairs follows a descending order with respect
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to their test fan speeds, i.e., tp < tp�1 for all p 2 f2; : : : ; Ng. In addition, ADA pairs
must not be overlapping as stated in Section 3.4.3. Then, the start fan speed of ADA pair
p lies between the test fan speeds of the ADA pairs p and p � 1 for all p 2 f2; : : : ; Ng
according to Lemma 3.44 (if the ADA pairs are well-de�ned), i.e., tp < sp < tp�1 for all
p 2 f2; : : : ; Ng. Recall that all ADA pairs considered in this work are required to be not
overlapping. Therefore, we can express sp by a weighted sum of tp and tp�1 with weights
wp and 1� wp between 0 and 1 for all p 2 f2; : : : ; Ng.

De�nition 5.12 Let p 2 f2; : : : ; Ng. We de�ne

wp :=
tp�1 � sp

tp�1 � tp
:

Lemma 5.13 Let p 2 f2; : : : ; Ng. Then, we have

0 < wp < 1 and sp = wptp + (1� wp)tp�1:

Proof. Let p 2 f2; : : : ; Ng. According to Lemma 3.44, we have tp�1 > sp > tp and thus

tp�1 > sp > tp ) tp�1 � tp > tp�1 � sp > 0 ) 1 >
tp�1 � sp

tp�1 � tp
= wp > 0:

Regarding the second statement, let us consider

wptp + (1� wp)tp�1 =
tp�1 � sp

tp�1 � tp
tp +

(
1�

tp�1 � sp

tp�1 � tp
)
tp�1

=
tp�1 � sp

tp�1 � tp
tp +

tp�1 � tp � (tp�1 � sp)

tp�1 � tp
tp�1

=
tp�1 � sp

tp�1 � tp
tp +

sp � tp

tp�1 � tp
tp�1

=
�sptp + sptp�1

tp�1 � tp
=

(tp�1 � tp)sp

tp�1 � tp
= sp:

With this, we can state an equation for �
ît;rD

(sp), p 2 [N], that depends on the incum-
bent drifted test ioni current approximations.

Lemma 5.14 Let ît;rD = (i1; : : : ; iN) � R
N
>0 be a given vector of drifted test ioni current

approximations. The corresponding drift resistance approximations at the start fan speeds

are

�
ît;rD

(sp) =

{
�1(i1) if p = 1;

wp�p(ip) + (1� wp)�p�1(ip�1) if p � 2:
(5.1)

An equivalent but less concise expression is

�
ît;rD

(sp) =


U
i1
� U

i1t
if p = 1;

wp
(
U
ip
� U

ipt

)
+ (1� wp)

(
U
ip�1
� U

ip�1

t

)
if p � 2:

(5.2)
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fsmin t2 s2 t1 s1 fsmax

�1(i1)

�
ît;rD

(s2)

�2(i2)

fs

�
î t
;r
D

(f
s)

data points
�

ît;rD
(sp), p 2 [2]

Figure 5.1.: The drift resistance approximation function �
ît;rD

(fs) for a situation with two

ADA pairs and a given vector of drifted test ioni current approximations ît;rD = (i1; i2) is
shown. The black dots correspond to the data point

(
tp; �p(ip)

)
, p 2 f1; 2g. The rings

mark the corresponding drift resistance approximations at the start fan speeds s1 and s2.

Proof. The statement follows from De�nitions 3.38 and 5.9 as well as from Lemma 5.13.

Remark 5.15 Equation (5.2) of Lemma 5.14 is also found in the Vaillant documentation

[WHB, Items 4267 and 4268].

The following example demonstrates the statements of Lemma 5.14.

Example 5.16 We consider a situation with two ADA pairs, i.e., we have N = 2. For this,

let us assume that two ADA pairs (s1; t1; i1s ; i
1
t ) and (s

2; t2; i2s ; i
2
t ) are given. In accordance

with the convention of the ADA pair numbering, let t2 < t1. Let us further assume, that

we have a vector of incumbent drifted test ioni current approximations ît;rD = (i1; i2).

Then, we have two data points
(
t2; �2(i2)

)
and

(
t1; �1(i1)

)
for the drift resistance ap-

proximation function �
ît;rD

(fs).

In this example, let �2(i2) > �1(i1). This situation is depicted in Figure 5.1, where the two

data point are marked by dots. The black line is the corresponding drift resistance approx-

imation function �
ît;rD

(fs), which is a linear interpolation of these data points combined

with a constant extrapolation. The drift resistance approximations at the start fan speeds

are marked by rings. The start fan speed of ADA pair 2, s2, lies in the middle between the

two test fan speeds, i.e, we have s2 = 1
2(t

1 + t2), in this example. Therefore, ADA pair

2 has the weight w2 = 1
2 (De�nition 5.12) and we have �

ît;rD
(s2) = 1

2�
2(i2) +

1
2�

1(i1)

(Lemma 5.14). Because of �2(i2) 6= �1(i1), we have �
ît;rD

(s2) 6= �2(i2).

In contrast, the drift resistance approximation at the start fan speed of pair 1 is identical

to the drift resistance approximation at the pair's test fan speed, because the drift resis-

tance approximation function is extrapolated as a constant function beyond the data point(
t1; �1(i1)

)
. Therefore, �

ît;rD
(s1) = �

ît;rD
(t1) = �1(i1) holds, which is in accordance with

Lemma 5.14.

This demonstrates the big di�erence between the cases N = 1 and N � 2. In the case
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N = 1, we only have one data point and thus the drift resistance approximation function

�
ît;rD

(fs) is constant and we always have �
ît;rD

(s1) = �1(i1). In the case N � 2, we have

�
ît;rD

(sp) 6= �p(ip) for p � 2 in general.

The weighted sum in Lemma 5.14 plays a central role. We thus introduce the following
notation.

De�nition 5.17 Let p 2 f2; : : : ; Ng, let wp be according to De�nition 5.12 and let x; y 2

R. We de�ne

!p(x; y) := wpx + (1� wp)y :

(Memory aid: ! stands for '(w)eighted sum'.)

De�nition 5.17 gives us a concise expression for the drift resistance approximations at
the start fan speeds.

Corollary 5.18 Let ît;rD = (i1; : : : ; iN) be a given vector of drifted test ioni current approx-

imations. We have

�
ît;rD

(sp) =

{
�1(i1) if p = 1;

!p
(
�p(ip); �

p�1(ip�1)
)

if p � 2:

Proof. The statement follows from Lemma 5.14 and De�nition 5.17.

A major conclusions from Corollary 5.18 is that in the case p = 1 the approximated
drift resistance at the start fan speed sp = s1 depends only on i1. In the case p � 2, the
approximated drift resistance at the start fan speed sp depends on ip and on ip�1. This is
also the reason, why the ADA procedure with a single ADA pair is less complicated than the
ADA procedure with a plurality of ADA pairs. In the case of a single ADA pair, i.e., in the
case N = 1, the drift resistance approximation function is constant with �

ît;rD
(fs) = �1(i1)

for all fs 2 FS. In contrast, in the case N � 2, the drift resistance at the start fan speed of
the p-th ADA pair is also in�uenced by its upper neighbor p� 1 for all p � 2. Accordingly,
the cases N = 1 and N � 2 are dealt with separately. The case N = 1 is detailed in
Chapter 6 and the case N � 2 is detailed in Chapter 7.
But �rst, we formulate the ADA procedure as an algorithm. In doing so, we must ensure
that the corresponding function evaluations are well-de�ned. We specify suitable domains
for this.

5.1.2. Set of Feasible Drift Resistance Approximations

In this subsection, we specify a domain such that the successive execution of steps (A2)
to (A4) is well-de�ned. De�nition 5.19 of the set R̂p

rD below is motivated by the following
two considerations.

� Because �sp;rD : Gsp ! Isp;rD is a homeomorphism (Lemma 3.16), step (A3) is well-
de�ned if and only if is;r̂D 2 Isp;rD = �sp;rD(Gsp) if and only if ĝ := ��1sp;rD(is;r̂D) 2 Gsp .
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� Because Gtp is the domain of �tp;rD (De�nition 3.12), the function evaluation �tp;rD(ĝ)
in step (A4) is well-de�ned if and only if ĝ 2 Gtp .

De�nition 5.19 Let p 2 [N] and let (sp; tp; ips ; i
p
t ) be the p-th ADA pair. Furthermore, let

rD 2 R�0 be a drift resistance and let H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
be an HE model. The set of feasible drift resistance approximations of ADA pair p with
respect to rD and H is de�ned by

R̂p
rD

:=
U

�sp;rD(Gsp \ Gtp)
� rps :=

{
r 2 R : 9 g 2 Gsp \ Gtp s.t. r =

U

�sp;rD(g)
� rps

}
:

Lemma 5.20 The set R̂p
rD is well-de�ned.

Proof. According to De�nition 3.12, all images of �sp;rD are greater than zero and thus
R̂p
rD is well-de�ned.

Remark 5.21 When there is no risk of confusion, the HE model H and the drift resistance

rD � 0 related to R̂p
rD are not explicitly stated for the remainder of this thesis. I.e., if not

otherwise stated, we implicitly assume that an HE model H and a drift resistance rD � 0

are given.

With the set R̂p
rD as a domain, we can now specify a function that corresponds to the step

(A2).

De�nition 5.22 Let (sp; tp; ips ; i
p
t ) be the p-th ADA pair and let R̂p

rD be the set of feasible

drift resistance approximations of ADA pair p, p 2 [N]. We de�ne


p : R̂p
rD
! �sp;rD

(
Gsp \ Gtp

)
; 
p(r) := ips

U

ips � r + U
: (5.3)

Lemma 5.23 The function 
p is well-de�ned, continuous, bijective and strictly decreasing.

Proof. By De�nition 5.19, we have

r 2 R̂p
rD
) 9 g 2 Gsp \ Gtp : r =

U

�sp;rD(g)
� rps =

U

�sp;rD(g)
�

U

ips

) 9 g 2 Gsp \ Gtp : i
p
s r + U =

ips U

�sp;rD(g)

) 9 g 2 Gsp \ Gtp : �sp;rD(g) =
ips U

ips r + U
= 
p(r):

Therefore, 
p(r) exists and 
p(r) 2 �sp;rD
(
Gsp \ Gtp

)
holds, i.e., 
p is well-de�ned.

As a composition of continuous operations, 
p is also continuous.
Injectivity: Let r1; r2 2 R̂p

rD such that 
p(r1) = 
p(r2). Then, we have


p(r1) = 
p(r2) ) 
p(r1) := ips
U

ips � r1 + U
= 
p(r2) := ips

U

ips � r2 + U
) r1 = r2:
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Surjectivity: Let i 2 �sp;rD(Gsp \ Gtp). We de�ne r := U
i � rps . Then, r 2 R̂p

rD holds and
we have


p(r) = ips
U

ips
(
U
i �

U
ips

)
� U

=
ips U
ips U
i

= i :

Finally, let r1; r2 2 R̂p
rD such that r1 < r2. Because 
p(r) = ips

U
ips �r+U

2 �sp;rD(Gsp) � R>0

as well as U > 0 and ips > 0, we have ips r + U > 0 for all r 2 R̂p
rD . Therefore,

r1 < r2 ) 0 < ips r1 + U < ips r2 + U )
ips U

ips r2 + U
<

ips U

ips r1 + U
) 
p(r2) < 
p(r1)

and thus 
p is strictly decreasing.

Corollary 5.24 The successive execution of steps (A2) to (A4) with ADA pair p, p 2 [N],

is well-de�ned if and only if r̂D 2 R̂p
rD , i.e.,

�tp;rD � �
�1
sp;rD

( Uips

r̂D i
p
s + U

)
= �tp;rD � �

�1
sp;rD

� 
p(r̂D) is well-de�ned , r̂D 2 R̂p
rD
:

With this, we have all the parts together to formulate the ADA algorithm in the following
section.

5.2. The ADA Algorithm

We �rst formulate an algorithm for a single ADA iteration, i.e., an algorithm that corre-
sponds to steps (A1) to (A4). Based on this algorithm, we then present the full ADA
Algorithm 5.2 that corresponds to a sequence of ADA iterations with a plurality of ADA
pairs.

5.2.1. Algorithm for a Single ADA Iteration with ADA Pair p

An ADA iteration with ADA pair p is composed of the steps (A1) to (A4) presented at the
beginning of Section 5.1. Corollary 5.18 reformulates step (A1) such that it is expressed
as a function of the incumbent drifted test ioni current approximations. Steps (A2) to
(A4) are covered by Corollary 5.24. The following Algorithm 5.1 combines the statements
of both corollaries.

Remark 5.25 If the drift resistance approximation determined in Line 7 or 9 in Algo-

rithm 5.1 is such that the subsequent calculations are not well-de�ned, then the output is

ij = NaN for all j 2 [N]. This indicates that the ADA iteration could not be carried out

successfully, see also Remark 5.33 below.

Lemma 5.26 Let p 2 [N] and let ît;in = (i1; : : : ; iN) 2 R
N
>0 be a given vector of drifted

test ioni current approximations. The execution of Algorithm 5.1 corresponds to an ADA

iteration of ADA pair p according to De�nition 3.30 and Remark 3.42. Furthermore, all

calculations in Algorithm 5.1 are well-de�ned.
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5.2 The ADA Algorithm

Algorithm 5.1 ADA Update of the p-th Entry of the Vector ît;rD

Input:

1: H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
// HE model

2: (s j ; t j ; i js ; i
j
t), j 2 [N] // ADA parameters of N ADA pairs

3: rD 2 R�0 // drift resistance

4: ît;rD = (i1; : : : ; iN) � R
N
>0 // incumbent drifted test ioni current approximations

5: p 2 [N] // selected ADA pair for update

Calculations:

6: if p = 1 then

7: r̂D = �1(i1) // drift resistance approximation at s1

8: else if p � 2 then

9: r̂D = !p
(
�p(ip); �

p�1(ip�1)
)

// drift resistance approximation at sp, p � 2

10: end if

11: if r̂D 2 R̂p
rD then

12: ip  �tp;rD � �
�1
sp;rD

� 
p(r̂D)

13: else

14: ij  NaN 8 j 2 [N] // mark results as not valid

15: end if

Output:

16: ît;rD = (i1; : : : ; iN) // updated drifted test ioni current approximations

Proof. The statement follows from De�nition 3.30, Remark 3.42 as well as from Corol-
laries 5.18 and 5.24.

Example 5.27 In Example 3.22 above, the notion of the ADA procedure is demonstrated.

The calculations carried out there correspond to execute Algorithm 5.1 with a single ADA

pair, i.e., for the case N = 1, and thus with p = 1. The undrifted test ioni current it is

used as the incumbent drifted test ioni current approximation, i.e., ît;rD = (it). Note that

the superscript p and the subscript p are not used in Example 3.22, because only a single

ADA pair is considered there. All in all, the ADA iteration demonstrated in Example 3.22

corresponds to the update i  �t;rD � �
�1
s;rD
� 
 � �(i) with i = it .

Algorithm 5.1 is not yet the full ADA algorithm, because usually sequences of ADA
iterations are used to approximate the drifted test ioni currents, see also Section 3.3. The
full ADA algorithm is presented below.

5.2.2. Full ADA Algorithm with a Sequence of ADA Iterations

Algorithm 5.1 states how to perform a single ADA update of the p-th entry of the vector
ît;rD . But it does not contain any instructions on which ADA pair p shall be selected for
the next update or on how many updates of the p-th entry shall be performed. Therefore,
we delineate an algorithm that provides a framework for a sequence of ADA updates, i.e.,
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we delineate a coordination algorithm that is wrapped around Algorithm 5.1. This requires
the term ADA update sequence.

De�nition 5.28 Let ` 2 N and let [`] := f1; : : : ; `g. A sequence (uk)k2[`] with uk 2 [N]

for all k 2 [`] is called an ADA update sequence of length `.

Example 5.29 Let N = 3 and let ` = 6. Then (u1k )k2[`] := (1; 2; 3; 1; 2; 3) and (u2k )k2[`] :=

(1; 1; 2; 2; 3; 3) are both ADA update sequences of length `.

Remark 5.30 In�nite ADA update sequences are also possible. For instance, (uk = 1)k2N
is the in�nite ADA update sequence whose entries are all one.

Remark 5.31 If there is no risk of confusion, an ADA update sequence (uk)k2K is abbre-

viated and denoted by u in the following.

Let us suppose that an ADA update sequence u = (uk)k2[`] of length ` is given. Then,
the k-th entry of u, denoted by uk , corresponds to the ADA pair that is selected for
the ADA update with Algorithm 5.1 in the k-th iteration. A corresponding framework is
provided by Algorithm 5.2.

Algorithm 5.2 ADA Update for a given ADA Update Sequence u

Input:

1: H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
// HE model

2: (s j ; t j ; i js ; i
j
t), j 2 [N] // ADA parameters of N ADA pairs

3: rD 2 R�0 // drift resistance

4: ît;in = (i1; : : : ; iN) 2 R
N
>0 // initial drifted test ioni current approximations

5: (uk)k2[`] // ADA update sequence of length `

Calculations:

6: for k = 1 to ` do

7: p = uk
8: if p = 1 and �1(i1) 2 R̂1

rD
then

9: i1  �t1;rD � �
�1
s1;rD

� 
1 � �1(i1) // Algorithm 5.1 with p = 1

10: else if p � 2 and !p
(
�p(ip); �

p�1(ip�1)
)
2 R̂p

rD then

11: ip  �tp;rD � �
�1
sp;rD

� 
p � !p
(
�p(ip); �

p�1(ip�1)
)
// Algorithm 5.1 with p � 2

12: else

13: ij  NaN for all j 2 [N] // mark results as not valid

14: break // leave for-loop early

15: end if

16: end for

Output:

17: ît;out = (i1; : : : ; iN) // updated drifted test ioni current approximations

88



5.2 The ADA Algorithm

Lemma 5.32 All function evaluations in Algorithm 5.2 are well-de�ned. Furthermore, if

it is executed with u = (p) (the ADA update sequence of length one with the entry p),

p 2 [N], then its output vector is identical to that of Algorithm 5.1.

Proof. The statements follow from Lemma 5.26 and by construction.

Remark 5.33 If an incumbent approximation ip is such that the subsequent calculations are

not well-de�ned, then the for-loop is left early and ij = NaN is returned for all j 2 [N]. This

indicates that the ADA iterations could not be carried out successfully. From a practical

point of view, if a calculation in Algorithm 5.2 is not well-de�ned, then combustion limits

are exceeded during the corresponding ADA iteration.

In practice, if the ADA procedure could not be successfully carried out for a larger period of

time and an oxide layer accrues on the ioni electrode without being corrected, the so-called

ADA supervision function will eventually lock the appliance [WHB, Items 4228 and 24108].

Remark 5.34 A common vector of initial approximations is ît;in = (i1t ; : : : ; i
N
t ), i.e., the

undrifted test ioni currents are usually the initial approximations of the drifted test ioni

currents, see also Remark 3.31. However, the vector ît;in is not restricted to these values.

A typical situation with a di�erent initial vector is if approximations of the drifted test ioni

currents are already available.

Remark 5.35 As stated in Section 3.4.5, the selection of an ADA update sequence is

done automatically by the IoniDetect system. Therefore, we have no in�uence on the

ADA update sequence and the selection of when to update which ADA pair is not in the

scope of this study. Instead, we suppose that the ADA update sequences follow certain

random distributions. This is detailed in Section 7.3.

For the optimization of the ADA parameters we are interested in the convergence char-
acteristics of Algorithm 5.2. In particular, we are interested in the conditions under which
Algorithm 5.2 converges to a limit (if certain in�nite ADA update sequences are con-
sidered) and, if this is the case, what the rate of convergence is and whether the limit
corresponds to the sought drifted test ioni currents. These questions are addressed in the
following chapters. For this, we are interested in how the output of Algorithm 5.2 changes
if its inputs change. In particular, we are interested in ît;out as a function of the starting
vector ît;in and the ADA update sequence u. Therefore, if not otherwise stated, we always
implicitly assume that a certain HE model H, a drift resistance rD � 0 and N ADA pairs
(s j ; t j ; i js ; i

j
t), j 2 [N], are given in the following.

De�nition 5.36 Let H, rD � 0, and (s j ; t j ; i js ; i
j
t), j 2 [N], be given and �xed. Let ît;in be

an input vector, i.e., a vector with initial drifted test ioni current approximations, and let

u = (uk)k2[`] be an ADA update sequence whose entries uk are an element of [N] for all

k 2 [`]. The corresponding output of Algorithm 5.2 is denoted by ît;out(̂it;in; u).

In the following, we consider the cases N = 1 and N � 2 separately. This is done for
two reasons. First, in the case N = 1, there is no choice to be made what ADA pair
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shall be updated next, i.e., we consider only ADA update sequences whose entries are
all one. Second, by comparing Line 9 of Algorithm 5.2 with Line 11, it is apparent that
the resulting iteration function is less complicated in the case N = 1. However, some
convergence results can be transferred from the case N = 1 to the case N � 2.
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6. ADA Procedure with a Single ADA Pair

In this chapter, we analyze the ADA Algorithm 5.2 for the special case N = 1, i.e., we
consider a single ADA pair only. A plurality of ADA pairs is considered in Chapter 7. We
present an algorithm that corresponds to Algorithm 5.2 in the case N = 1 �rst. Thereafter,
the convergence properties of this algorithm are analyzed.

6.1. Ioni Current Based ADA Algorithm with a Single ADA

Pair

In the case N = 1, there is no choice with respect to what pair is selected for the next ADA
update, i.e., we consider only ADA update sequences whose entries are all one. Therefore,
Line 9 is executed in each iteration of the for-loop of Algorithm 5.2 (if �1(i1) 2 R̂1

rD
holds).

The composite function in Line 9 of Algorithm 5.2 is essential and thus it is considered in
detail.

6.1.1. Ioni Current Based ADA Iteration Function

Before we de�ne a function that corresponds to Line 9 of Algorithm 5.2, we specify
a suitable domain. Line 9 is executed if �1(i1) 2 R̂1

rD
, which motivates the following

approach.

Remark 6.1 The following motivations and statements are made for the more general

case that an ADA pair (sp; tp; ips ; i
p
t ), p 2 [N], is considered, i.e., we do not restrict the

considerations to the ADA pair p = 1. This is done, because the following de�nitions are

also essential when a plurality of ADA pairs is considered in Chapter 7.

Since �p is a homeomorphism (Lemma 5.11),
(
�p

)�1(
R̂p
rD

)
is a candidate for the sought

domain. However, we have to make an assumption to ensure that R̂p
rD is a subset of the

domain of
(
�p

)�1
, i.e., we have to make sure that R̂p

rD � (�rpt ;1) holds.

Assumption 6.2 We assume that for all p 2 [N] and for all i 2 Isp;rD = �sp;rD(Gsp) the

inequality U
i > rps � rpt holds. Practical experience has shown that

� 1:5M
 > rps > rpt > 0:9M
 and thus 0:6M
 > rps � rpt > 0 as well as

�
U

�sp;rD (g)
> 0:8M
 for all g 2 Gsp and for all considered drift resistances.

Thus, the assumption U
�sp;rD (g)

> rps � r
p
t for all g 2 Gsp is reasonable from a practical point

of view.
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De�nition 6.3 Let p 2 [N] and let Assumption 6.2 hold. By considering R̂p
rD from De�ni-

tion 5.19, we de�ne

ÎprD :=
(
�p

)�1
(R̂p

rD
):

Lemma 6.4 If Assumption 6.2 holds, then ÎprD is well-de�ned. In particular, ÎprD � R>0 and

R̂p
rD � (�rpt ;1) hold in this case.

Proof. Let p 2 [N] and let Assumption 6.2 hold. We show that R̂p
rD � (�rpt ;1) holds.

Because (�rpt ;1) is the domain of
(
�p

)�1
(De�nition 5.9),

(
�p

)�1
(R̂p

rD) is well-de�ned
in this case. Let r 2 R̂p

rD . Then, there exists g 2 Gsp \ Gtp � Gsp such that r = U
i � rps

with i = �sp;rD(g). According to Assumption 6.2, U
i > rps � rpt holds and thus we have

r =
U

i
� rps >= rps � rpt � rps = �rpt ) r 2 (�rpt ;1) )

(
�p

)�1
(r) is de�ned:

Because the codomain of
(
�p

)�1
is the set of positive real numbers, ÎprD :=

(
�p

)�1
(R̂p

rD) �

R>0 holds.

Next, we de�ne the iteration function that corresponds to Line 9 of Algorithm 5.2.

De�nition 6.5 LetH be an HE model, let rD � 0 be a drift resistance and let (sp; tp; ips ; i
p
t )

be a given ADA pair. We de�ne the corresponding ioni current based ADA iteration
function by

Ap
i;rD

: ÎprD ! R>0; A
p
i;rD

(i) := �tp;rD � �
�1
sp;rD

� 
p � �p(i): (6.1)

Remark 6.6 The subscript i of Ap
i;rD

indicates that this is the ioni current based ADA

iteration function. This is done to distinguish it from the resistance based version that is

presented in Section 6.2.

Remark 6.7 According to (3.4), the functions �tp;rD and �sp;rD depend on the drift resis-

tance rD. Therefore, the iteration function Ap
i;rD

also depends on the drift resistance. If

we have two di�erent drift resistances rD;1 6= rD;2, then we have A
p
i;rD;1

6= Ap
i;rD;2

in general.

Lemma 6.8 The ioni current based ADA iteration function Ap
i;rD

is well-de�ned, i.e., the

function Ap
i;rD

can be evaluated for all i 2 ÎprD . Furthermore, Ap
i;rD

(i) > 0 holds for all

i 2 ÎprD .

Proof. Let i 2 ÎprD . According to De�nition 6.3, we have �p(i) 2 R̂p
rD . With this, the

statement follows by applying Corollary 5.24 and from De�nition 6.5.

The ioni current based ADA iteration function Ap
i;rD

is used to formulate an algorithm
that is a special case of Algorithm 5.2 for the case N = 1.
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Algorithm 6.1 Ioni Current Based ADA Algorithm in the Case N = 1

Input:

H // HE model

(s; t; is ; it) // ADA parameters of a single ADA pair

rD � 0 // drift resistance

` 2 N // length of ADA update sequence, i.e., number of iterations

i 2 ÎrD // initial approximation of the drifted test ioni current

Calculations:

k = 1

while k � ` and i 2 ÎrD do

i  Ai ;rD(i)

k  k + 1

end while

if i =2 ÎrD then

i  NaN // no valid output

end if

Output:

i // approximation of the drifted test ioni current it;rD

6.1.2. Ioni Current Based ADA Algorithm

Since we consider a single ADA pair only, we omit the superscript p in the following.
Furthermore, we consider only ADA update sequences whose entries are all one. Thus,
only their length ` is of interest. Keeping this in mind, we formulate Algorithm 6.1.

Remark 6.9 The second condition in the header of the while-loop, i 2 ÎrD , together with

Lemma 6.8, guarantees that the function evaluations in Algorithm 6.1 are always well-

de�ned. This is required, because there might exist i 2 ÎrD such that Ai ;rD(i) =2 ÎrD , i.e.,

the ADA function Ai ;rD is not a selfmap in general and a consecutive evaluation of Ai ;rD is

not always possible. The conditions under which Ai ;rD is a selfmap are closely related to

the convergence characteristics of Algorithm 6.1. This is discussed in Section 6.2.2.

Algorithm 6.1 is indeed a special case of Algorithm 5.2.

Lemma 6.10 If Algorithm 6.1 and Algorithm 5.2 are executed with the same inputs, i.e.,

with the same H, rD, (s
1; t1; i1s ; i

1
t ), ît;in = (i) and u = (uk)k2[`], uk = 1 for all k 2 [`],

then their outputs are identical.

Proof. The statement follows from De�nition 6.3 of ÎrD as well as from De�nition 6.5 of
Ai ;rD and from the construction of Algorithm 6.1.

It is apparent that Algorithm 6.1 implements a �xed point iteration. It corresponds
to the �rst ` iterations of the Picard iteration associated to Ai ;rD starting at i . The
Picard iteration is introduced in Section 4.3. Analyzing the convergence properties and
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approximation quality of Algorithm 6.1 means analyzing the �xed point characteristics of
Ai ;rD . For this, we consider the domain of Ai ;rD �rst.

Lemma 6.11 The sets ÎrD and R̂rD
are closed, bounded and nonempty intervals. In par-

ticular, they are compact.

Proof. We have R̂rD
= U

�s;rD (Gs\Gt)
�rs (De�nition 5.19). The sets Gs and Gt are closed and

bounded intervals (De�nition 2.18) and thus Gs \Gt is also a closed and bounded interval.
Because we consider only feasible ADA pairs (Assumption 5.6), the intersection Gs \Gt is
nonempty (De�nition 5.2). Furthermore, the function �s;rD is continuous (De�nition 2.18).
In total, R̂rD

is the image of a closed, bounded and nonempty interval under a continuous
function. Thus, R̂rD

is a closed, bounded and nonempty interval as well.
According to Lemma 5.11, the function � : ÎrD ! R̂rD

is a homeomorphism. Therefore,

ÎrD =
(
�
)�1

(R̂rD
) is also a closed, bounded and nonempty interval.

Finally, because both sets are bounded and closed, they are compact.

By applying Banach's �xed point theorem, we can state the following convergence
properties.

Lemma 6.12 Let Ai ;rD be a contractive selfmap on ÎrD . Then, Ai ;rD has a unique �xed

point and the Picard iteration associated to Ai ;rD starting at i converges to this �xed point

for every i 2 ÎrD .

Proof. Because the set ÎrD is compact (Lemma 6.11), we can apply Theorem 4.41.

Remark 6.13 Note that Ai ;rD being contractive is not a necessary condition for the state-

ment of Lemma 6.12. In Appendix A, Example A.1 presents an iteration function Ai ;rD

that is not contractive but that still has a unique �xed point and for all i 2 ÎrD the Picard

iteration associated to Ai ;rD starting at i converges to this �xed point.

As a consequence of Lemma 6.12, we are particularly interested in when Ai ;rD is a
contractive selfmap. According to De�nition 6.5, the function Ai ;rD is composed of ��1s;rD
and �t;rD , among others. The functions �s;rD and �t;rD are the drifted versions of �s and
�t , respectively. According to (3.4), the drifted functions �fs;rD(g) can be considered as
rational functions with �fs(g) as the argument. This makes the convergence analysis rather
complicated. By shifting the focus from ioni current to resistance, it is possible to express
the iteration function by �t and ��1s instead of �t;rD and ��1s;rD , respectively, which facilitates
the �xed point analysis. Therefore, the resistance based approach is �rst presented and
afterwards analyzed in the following section.

6.2. Resistance Based Iteration Function with a Single ADA

Pair

In this section, we derive an iteration function that is in a certain sense "equivalent" to
the ioni current based iteration function Ai ;rD but that is more accessible to a convergence
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analysis. From a physical point of view, this approach is motivated by applying Ohm's law
to the equivalent circuit illustrated in Section 3.1.1. Instead of considering ioni currents
i , we consider corresponding resistances r by calculating r = U

i , where U is the DC
voltage of the aforementioned equivalent circuit, see also Remark 3.3. For this, we de�ne
corresponding sets of resistances and resistance functions.

De�nition 6.14 Let H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
be an HE model

and let rD � 0. For fs 2 FS let Ifs be the sets of ioni currents according to De�nition 2.22

and let Ifs;rD be the set of drifted ioni currents according to Notation 3.17. For fs 2 FS,

we de�ne:

� Rfs :=
U
Ifs

:= fr 2 R : 9 i 2 Ifs such that r = U
i g ( set of resistances with respect to

fs),

� analogously Rfs;rD := U
Ifs;rD

( set of drifted resistances with respect to fs),

� �fs : Gfs ! Rfs, �fs(g) :=
U

�fs(g)
( resistance function with respect to fs) and

� �fs;rD : Gfs ! Rfs;rD , �fs;rD(g) :=
U

�fs;rD (g)
(drifted resistance function with respect to

fs).

Lemma 6.15 The sets Rfs and Rfs;rD as well as the resistance functions �fs and �fs;rD are

well-de�ned for all fs 2 FS.

Proof. Let fs 2 FS. We have Ifs � R>0 (Corollary 2.23) and Ifs;rD � R>0 (Corollary 3.18).
Thus, the sets Rfs and Rfs;rD are well-de�ned. Furthermore, we have �fs : Gfs ! Ifs
(De�nition 2.18) and �fs;rD : Gfs ! Ifs;rD (Notation 3.17). Therefore, the functions �fs and
�fs;rD are well-de�ned by construction of the sets Rfs and Rfs;rD .

Remark 6.16 Recall that the functions �fs and �fs;rD correspond to the ioni current in the

equivalent circuit depicted in Figure 3.1 without drift resistance and with drift resistance,

respectively. The functions �fs and �fs;rD correspond to the circuit's total resistance without

drift resistance and with drift resistance, respectively.

Lemma 6.17 Let fs 2 FS. The functions �fs and �fs;rD are strictly decreasing homeomor-

phisms. Their inverse functions are

��1fs (r) = ��1fs

(U
r

)
and ��1fs;rD

(r) = ��1fs;rD

(U
r

)
:

Proof. Let fs 2 FS. Recall that �fs and �fs;rD are homeomorphisms (Lemmas 2.21 and
3.16, respectively). Therefore, �fs and �fs;rD are a composition of bijective and continuous
functions and thus they are bijective and continuous as well. To show the statement with
respect to ��1fs , let r 2 Rfs. Then, we have g := ��1fs (r) 2 Gfs as well as r = �fs(g) and
thus

r = �fs(g) =
u

�fs(g)
) �fs;rD(g) =

U

r
) g = (�fs)

�1
(U
r

)
= (�fs)

�1(r):
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The statement ��1fs;rD
(r) = ��1fs;rD

(
U
r

)
is shown analogously.

Because ��1fs and ��1fs;rD
are continuous, the compositions ��1fs (r) = ��1fs

(
U
r

)
and ��1fs;rD

(r) =

��1fs;rD

(
U
r

)
are also continuous.

It remains to show that �fs and �fs;rD are strictly decreasing. Let g1; g2 2 Gfs such that
g1 < g2. Because �fs is strictly increasing (De�nition 2.18) and U > 0, we have

g1 < g2 ) �fs(g1) < �fs(g2) ) �fs(g2) =
U

�fs(g2)
<

U

�fs(g1)
= �fs(g1):

Analogously, �fs;rD is strictly decreasing because �fs;rD is strictly increasing (Lemma 3.16).

In the following, we often add or subtract constants. It is convenient to have a corre-
sponding auxiliary function.

De�nition 6.18 For c 2 R, we de�ne

�+c : R! R; �+c (x) := x + c;

��c : R! R; ��c (x) := x � c:

Lemma 6.19 Let c 2 R. The functions �+c and ��c are homeomorphisms. Their inverse

functions are
(
�+c

)�1
= ��c and

(
��c

)�1
= �+c .

Proof. Let c 2 R. The continuity of �+c and ��c follows from the fact that sum is a
continuous operation. Regarding the inverse functions, let x 2 R. Then, we have

�+c � �
�
c (x) = (x � c) + c = x = (x + c)� c = ��c � �

+
c (x):

The function �fs can be transformed to its drifted counterpart by simply adding rD.

Lemma 6.20 Let fs 2 FS and let rD � 0, then

�fs;rD = �+rD � �fs and ��1fs;rD
= ��1fs � �

�
rD
:

Proof. Let g 2 Gfs. By applying (3.4), we have

�fs;rD(g) =
U

�fs;rD(g)
= U

rD�fs(g) + U

�fs(g)U
= rD +

U

�fs(g)
= rD + �fs(g) = �+rD � �fs(g)

and thus

idRfs
= �fs;rD � �

�1
fs;rD

= �+rD � �fs � �
�1
fs;rD

, ��rD = �fs � �
�1
fs;rD

, ��1fs � �
�
rD

= ��1fs;rD
:

Lemma 6.20 reveals the advantage of considering the resistance functions. Then, the
in�uence of drift is modeled by simply adding the drift resistance, which is in accordance
with the corresponding assumption made in the ADA patent [LS17, p. 5], see also Sec-
tion 3.1. In contrast, if ioni currents are considered, the in�uence of drift is modeled by
(3.4), which is a rational function and thus more complicated to handle. This motivates
considering the resistance based iteration function that is de�ned below.
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6.2.1. Drift Resistance Iteration Function

Recall that the ioni current based iteration function Ap
i;rD

has approximations of the drifted
test ioni current as inputs and outputs. The resistance based iteration function will be
constructed such that it has approximations of the drift resistance as inputs and outputs.
We de�ne the iteration function �rst. Its physical interpretation is presented thereafter.
For the following de�nition, recall that rps = U

ips
and rpt = U

ipt
(De�nition 5.7).

De�nition 6.21 Let H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
be an HE model,

let rD � 0 and let (sp; tp; ips ; i
p
t ) be a feasible ADA pair with respect to H. The corre-

sponding drift resistance iteration function is de�ned by

Ap
rD

: R̂p
rD
! R; Ap

rD
:= ��

rpt
� �tp;rD � �

�1
sp;rD

� �+
rps
: (6.2)

Lemma 6.22 The function Ap
rD is well-de�ned, i.e., we can evaluate Ap

rD(r) for all r 2 R̂p
rD .

Proof. Let r 2 R̂p
rD . According to De�nition 5.19, there exists g 2 Gsp \ Gtp such that

r = U
�sp;rD (g)

� rps = �sp;rD(g) � rps . This is equivalent to r + rps = �sp;rD(g) and thus

g = ��1sp;rD � �
+
rps
(r) 2 Gsp \ Gtp . Because g 2 Gtp and Gtp is the domain of �tp;rD ,

the evaluation �tp;rD(g) = �tp;rD � �
�1
sp;rD

� �+
rps
(r) is well-de�ned. Finally, subtracting the

constant rpt from �tp;rD(g) is also well-de�ned. In total, the element Ap
rD(r) exists.

The drift resistance iteration function Ap
rD is composed of four functions. This compo-

sition can be physically interpreted as follows. For this, let r̂D 2 R̂p
rD be the incumbent

drift resistance approximation.

1. �+
rps
(r̂D): The drifted start resistance is rps;rD := rps + rD according to Lemma 6.20.

This value is approximated by r̂ps;rD = rps + r̂D.

2. ��1sp;rD(r̂
p
s;rD): The fan speed is set to sp and the gas valve is moved such that the

measurement circuit's resistance stabilizes at r̂ps;rD , i.e., such that the measured ioni
current is U

r̂ps;rD
. Then, the gas valve position ĝ 2 Gsp is determined, such that

�sp;rD(ĝ) = r̂ps;rD .

3. �tp;rD(ĝ): The gas valve position is �xed at ĝ and the fan speed is reduced from sp

to tp. Then, the corresponding drifted resistance is measured. With this, the drifted
test resistance is approximated, i.e., the drifted test resistance rpt;rD = rpt + rD is
approximated by r̂pt;rD := �tp;rD(ĝ).

4. ��
rpt
(r̂tp;rD): Because r̂

p
t;rD

is the approximation of rpt;rD = rpt + rD, we approximate rD
by r̂pt;rD � rpt , i.e., the new approximation of the drift resistance at the test fan speed
is r̂D  r̂tp;rD � rpt .

One iteration with the drift resistance iteration function Ap
rD is demonstrated in Exam-

ple 6.26 below.
Our goal is to analyze the convergence properties of Algorithm 6.1 using Ap

rD . For this,
we �rst show how the iteration functions Ap

i;rD
and Ap

rD are related.
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6.2.2. Relation Between the Iteration Functions Ap
i;rD

and Ap
rD

In order to state how Ap
i;rD

and Ap
rD are related, we need some preliminary work. For this,

we implicitly assume that an HE model H, a drift resistance rD � 0 and a feasible ADA pair
(sp; tp; ips ; i

p
t ) are given for the remainder of this section. We begin with some relations

between the drifted ioni current and the drifted resistance functions.

Lemma 6.23 Let r 2 R̂p
rD , then ��1sp;rD � 


p(r) = ��1sp;rD � �
+
rps
(r).

Proof. Let r 2 R̂p
rD . By applying De�nition 5.22 of 
p, we have

��1sp;rD � 

p(r) = ��1sp;rD

(
ips

U

ips r + U

)
= ��1sp;rD

( U

r + U
ips

)
= ��1sp;rD

( U

r + rps

)
= ��1sp;rD(r + rps )

= ��1sp;rD � �
+
rps
(r);

where we used that ��1sp;rD

(
U
r

)
= ��1sp;rD(r) (Lemma 6.17).

Lemma 6.24 Let g 2 Gtp , then �tp;rD(g) =
(
�p

)�1
� ��

rpt
� �tp;rD(g).

Proof. Let g 2 Gtp . Because �tp;rD(g) 2 R>0 (De�nition 3.12), we can apply �p to
�tp;rD(g) (De�nition 5.9) and obtain

�p � �tp;rD(g) =
U

�tp;rD(g)
� rpt = �tp;rD(g)� rpt = ��

rpt
� �tp;rD(g):

Because �p is bijective (Lemma 5.11), �tp;rD(g) =
(
�p

)�1
� ��

rpt
� �tp;rD(g) holds.

With this, we are able to state and prove the relation between Ap
i;rD

and Ap
rD .

Lemma 6.25 We have

Ap
i;rD

= (�p)�1 � Ap
rD
� �p:

Proof. By using that ��1sp;rD � 
(r) = ��1sp;rD � �
+
rps
(r) for all r 2 R̂p

rD (Lemma 6.23) and that

�tp;rD(g) = (�p)�1 � ��rt � �tp;rD(g) for all g 2 Gt (Lemma 6.24), we have

Ap
i;rD

= �tp;rD � �
�1
sp;rD

� 
p � �p =
(
(�p)�1 � ��

rpt
� �tp;rD

)
�
(
��1sp;rD � �

+
rps

)
� �p

= (�p)�1 �
(
��
rpt
� �tp;rD � �

�1
sp;rD

� �+
rps

)
� �p = (�p)�1 � Ap

rD
� �p:

We demonstrate the statement of Lemma 6.25 in an example.

Example 6.26 In this example, we evaluate the iteration function Ap
rD(r) at r = 0 by

evaluating �p � Ap
i;rD
� (�p)�1(r). According to De�nition 6.5 of Ap

i;rD
, we have

Ap
i;rD
� (�p)�1(0) = �tp;rD � �

�1
sp;rD

� 
p � �p � (�p)�1(r) = �tp;rD � �
�1
sp;rD

� 
p(0):
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6.2 Resistance Based Iteration Function with a Single ADA Pair

By applying De�nition 5.22 of 
p, we obtain


p(r) =
Uips

r ips + U
) 
p(0) = ips ) Ap

i;rD
� (�p)�1(0) = �tp;rD � �

�1
sp;rD

(ips ):

Let us consider the same ADA pair (s; t; is ; it), the same drift resistance rD = 140k
 and

the same HE model as in Example 3.22, where ît;rD := �t;rD � �
�1
s;rD

(is) is determined. Note

that the superscript p notation for a plurality of ADA pairs has not yet been introduced

when Example 3.22 was presented. Thus, the superscript p is omitted for the remainder

of this example. By combining everything, we have

ArD(0) = � � Ai ;rD � (�)
�1(0) = � � �t;rD � �

�1
s;rD

(is) = �(̂it;rD) =
U

ît;rD
�

U

it
:

This value is presented at the end of Example 3.22, which is ArD(0) =
U
ît;rD
� U

it
� 0:6rD.

In other words, one iteration with ArD improves the drift resistance approximation from

r = 0 to r � 0:6rD in this example.

We are interested in the Picard iterations associated to the iteration functions Ap
i;rD

and
Ap
rD . For this, we take a look at the successive evaluation of both functions, respectively,

which requires the application of Lemma 6.25. At this point, we must make sure that
the iteration functions can be successively evaluated. According to Remark 6.9 this is not
always the case, because Ap

i;rD
and Ap

rD are not selfmaps in general. However, Ap
i;rD

is a
selfmap if and only if Ap

rD is a selfmap as is shown in the following.

Remark 6.27 If there is no risk of confusion, the subscript rD and the superscript p of

Ap
i;rD

and Ap
rD as well as of ÎprD and R̂p

rD are omitted in the following.

Lemma 6.28 We have Ai(Î) � Î if and only if A(R̂) � R̂.

Proof. ")" Let Ai(Î) � Î . Because � : Î ! R̂ is bijective, we have

r 2 R̂ ) ��1(r) 2 Î ) Ai � �
�1(r) 2 Î ) � � Ai � �

�1(r) 2 �(Î)

) A(r) 2 �(Î) = R̂:

The last implication is taken from the statement of Lemma 6.25.
"(" Let A(R̂) � R̂. Analogous to ")", we have that i 2 Î implies Ai(i) 2 Î .

Assumption 6.29 To avoid case distinctions, the iteration functions Ai and A are assumed

to be selfmaps for the remainder of this section, i.e., we assume that Ai : Î ! Î and

A : R̂ ! R̂. Under which conditions they are actually selfmaps is stated in Lemma 6.35

below.

Lemma 6.30 Let n 2 N, then we have

An
i = ��1 � An � �:
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Proof. By induction.
Base case:

For n = 1 the claim follows from Lemma 6.25.
Induction step:

Let the statement hold for n = 1; : : : ; k . We consider n = k + 1.

Ak+1
i = Ai � A

k
i = Ai � �

�1 � Ak � � = ��1 � A � � � ��1 � Ak � �

= ��1 � A � Ak � � = ��1 � Ak+1 � �:

Lemma 6.30 states how the Picard iterations associated to Ai and A are related. This
relation is used to derive some statements with respect to the limits of these Picard
iterations.

Theorem 6.31 Let i 2 Î , then the following holds

lim
n!1

An
i (i) = i� ) lim

n!1
An

(
�(i)

)
= �(i�):

Let r 2 R̂, then the following holds

lim
n!1

An(r) = r� ) lim
n!1

An
i

(
��1(r)

)
= ��1(r�):

Proof. Let i 2 Î and let limn!1 An
i (i) = i�. First, we show that �(i�) is well-de�ned,

i.e., we show that i� is an element of the domain of �, which is Î . Because (An
i )n2N � Î

and Î is closed according to Lemma 6.11, the sequence's limit i� is also an element of Î .
Analogously, we have r� 2 R̂ and thus ��1(r�) is well-de�ned.
Next, we show the �rst implication of the theorem. According to Lemma 6.30, we have
An � � = � � An

i for all n 2 N and thus

lim
n!1

(
An � �(i)

)
= lim

n!1

(
� � An

i (i)
)
= lim

n!1

( U

An
i (i)
� rt

)
=

U

limn!1 An
i (i)
� rt =

U

i�
� rt = �(i�):

Now, let r 2 R̂ and let limn!1 A(r) = r�. It is An
i � �

�1 = ��1 � An according to
Lemma 6.30. Analogous to the �rst part of the proof, we have

lim
n!1

(
An
i � �

�1(r)
)
= lim

n!1

(
��1 � An(r)

)
=

U

limn!1

(
An(r)

)
+ rt

=
U

r� + rt
= ��1(r�):

The last part of the equation follows from ��1(r) = U
r+rt

(De�nition 5.9).

Theorem 6.32 Let i 2 Î , then the Picard iteration associated to Ai starting at i converges

to a �xed point i� if and only if the Picard iteration associated to A starting at �(i)

converges to the �xed point �(i�).
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6.2 Resistance Based Iteration Function with a Single ADA Pair

Proof. The statements follows directly from Theorem 6.31.

As an important consequence, the iteration function Ai converges to the sought drifted
test ioni current if and only if the iteration A converges to the drift resistance.

Corollary 6.33 Let rD � 0 and let it;rD := Uit
rD it+U

be the drifted test ioni current according

to Lemma 3.29. Then

lim
n!1

An
i (i) = it;rD , lim

n!1
An

(
�(i)

)
= rD:

In particular, it;rD is a �xed point of Ai if and only if rD is a �xed point of A.

Proof. The statement follows from Theorem 6.32 and the fact that

�(it;rD) =
U

it;rD
�

U

it
=

U(rD it + U)

Uit
�

U

it
= rD +

U

it
�

U

it
= rD:

Theorem 6.32 and Corollary 6.33 legitimate the approach to analyze the Picard iteration
associated to A in order to obtain the convergence characteristics of the Picard iteration
associated to Ai . But �rst, to conclude this subsection about the relation between the
iteration functions Ai and A, we show that both functions are strictly increasing. Note
that the following result is also valid if they are not selfmaps.

Lemma 6.34 The ADA iteration functions Ai : Î ! R and A : R̂ ! R are strictly

increasing.

Proof. Let i1; i2 2 Î such that i1 < i2. Because � and 
 are strictly decreasing (Lemma 5.11
and 5.23, respectively) as well as (�s;rD)

�1 and �t;rD are strictly increasing (Lemma 3.16),
we have

i1 < i2 ) �(i1) > �(i2) ) 
 � �(i1) < 
 � �(i2)

) Ai(i1) = �t;rD � (�s;rD)
�1 � 
 � �(i1) < �t;rD � (�s;rD)

�1 � 
 � �(i2) = Ai(i2):

Furthermore, let r1; r2 2 R̂ such that r1 < r2. By applying A = � �Ai � �
�1 (consequence

of Lemma 6.25) and using that � as well as ��1 are strictly decreasing, we have

r1 < r2 ) ��1(r1) > ��1(r2) ) Ai � �
�1(r1) > Ai � �

�1(r2)

) A(r1) = � � Ai � �
�1(r1) < � � Ai � �

�1(r2) = A(r2):
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6.3. Convergence Characteristics of the Picard Iteration

Associated to the Drift Resistance Iteration Function

In this section, we analyze the Picard iteration associated to ArD . The analysis addresses
two questions. Under which conditions does the Picard iteration associated to ArD converge
to a (unique) �xed point? And how is this �xed point related to the drift resistance?
The approach to answer the �rst question is to apply Lemma 4.46 and Theorem 4.41 from
Section 4.3 about �xed point iteration procedures. The second answer is deduced from
the construction of the drift resistance iteration function ArD .
First, we state conditions that guarantee that ArD has a �xed point and analyze for what
starting points the Picard iteration associated to ArD converges to this �xed point. This
requires the concept of being contractive from De�nition 4.37.

Lemma 6.35 Let ArD be contractive, then the following statements are equivalent:

1. ArD has at least one �xed point.

2. ArD has a unique �xed point.

3. ArD is a selfmap.

Furthermore, if one of the three statements holds, then the Picard iteration associated to

ArD converges for every starting point r 2 R̂rD
.

Proof. Let ArD be contractive. We know that ArD is strictly increasing (Lemma 6.34)
and that the domain of ArD is a closed interval (Lemma 6.11). Therefore, we can apply
Lemma 4.46 which proves the equivalence of the three statements.
As a consequence, if one of the three items holds, then ArD is a contractive selfmap on a
compact set and we can apply Theorem 4.41, which proves the convergence statement.

Remark 6.36 Note that ArD being contractive is not a necessary condition for the state-

ment of Lemma 6.35. In Appendix A, Example A.2 presents an iteration function ArD that

is not contractive but that still has a unique �xed point and for all r 2 R̂rD
the Picard

iteration associated to ArD starting at r converges to this �xed point. Furthermore, this

example demonstrates that Ai ;rD being contractive does not imply that ArD is contractive.

The converse implication is also not true in general, i.e., ArD being contractive does not

imply that Ai ;rD is contractive, which is demonstrated in Example A.1 in Appendix A.

Therefore, focusing on contractive iteration functions ArD might exclude some cases that

still result in convergent Picard iterations. However, practical experience has shown that

such cases are not very likely. In addition, focusing on contractive iteration functions ArD

facilitates a corresponding convergence analysis.

Lemma 6.35 states that if ArD has a �xed point and is contractive, then the Picard
iteration associated to ArD converges for an arbitrary starting point r 2 R̂rD

. We �rst
analyze under which condition the �xed point of ArD corresponds to the drift resistance
rD. Thereafter, we analyze conditions such that ArD is contractive.
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6.3.1. Relation Between the Fixed Point of ArD and the Drift Resistance

The following lemma states conditions such that the �xed point of ArD is the sought drift
resistance.

Lemma 6.37 Let rD � 0, then

ArD(rD) = rD , ��1s (rs) = ��1t (rt) , ��1s (is) = ��1t (it):

In particular, if one of the three statements holds, then rD 2 R̂rD
.

Proof. Let rD � 0, then

rD = ArD(rD) , ��rt � �t;rD � �
�1
s;rD
� �+rs (rD) = rD , �t;rD � �

�1
s;rD
� �+rs (rD) = �+rt (rD)

, ��1s;rD � �
+
rs (rD) = ��1t;rD � �

+
rt (rD) , ��1s;rD(rs + rD) = ��1t;rD(rt + rD)

, ��1s;rD � �
+
rD
(rs) = ��1t;rD � �

+
rD
(rt) , ��1s (rs) = ��1t (rt)

, ��1s
(U
rs

)
= ��1t

(U
rt

)
, ��1s (is) = ��1t (it);

where the last two lines follow from Lemmas 6.20 and 6.17 as well as from De�nition 5.7.

Lemma 6.37 states that whether the drift resistance is a �xed point of ArD depends
on the ADA parameters and the HE model. If s; t; is and it are selected such that
��1s (is) = ��1t (it) holds, then the drift resistance is a �xed point of ArD . If in addition
ArD is contractive, then the Picard iteration associated to ArD converges to rD for an ar-
bitrary starting point r 2 R̂rD

according to Lemma 6.35. Therefore, the ADA parameters
are ideally selected such that ArD is contractive and ��1s (is) = ��1t (it) holds. However,
because of manufacturing tolerances, the condition ��1s (is) = ��1t (it) cannot always be
satis�ed. This is detailed in the following subsection.

6.3.2. Impact of Tolerances

The following example demonstrates the impact of tolerances with respect to the position
of the ioni electrode relative to the burner.

Example 6.38 This example is an extension of Example 3.22 and is also based on Vaillant

measurement data. Let H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
be the same

HE model as considered in Example 3.22, i.e., H is based on the Vaillant measurement data

according to [PHE, Item 6371]. Furthermore, let (s; t; is ; it) be the ADA pair as selected

in Example 3.22, i.e., we have s; t 2 FS such that s > t and ��1s (is) = ��1t (it) =: gA.

The corresponding ioni current functions �s and �t are depicted in Figure 6.1. The solid

orange curve corresponds to �s and the solid blue curve corresponds to �t . The orange

and the blue dot correspond to the start point and to the test point, respectively. Note

that both points have the identical gvp gA. Because ��1s (is) = ��1t (it), the ADA pair's
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gA

is

it

gvp g

io
ni

cu
rr
en
t
i

�s (nominal)
�t (nominal)
��s (tolerances)
��t (tolerances)

Figure 6.1.: The impact of tolerances with respect to the position of the ioni electrode is
shown. The functions �s and �t correspond to measurement data with the ioni electrode
in nominal position. In contrast, the functions ��s and ��t correspond to measurement data
of the same HE but with the ioni electrode displaced from the nominal position, which
is usually caused by manufacturing tolerances. Note that ��1

s (is) = ��1
t (it) =: gA but

���1
s (is) 6= ��t

�1(it).

iteration function ArD = ��rt � �t;rD � �
�1
s;rD
� �+rs has the desired �xed point rD according to

Lemma 6.37.

We consider a second HE model H =
(
FS; (Gfs)fs2FS; (��fs)fs2FS; (

��)fs2FS; (
��)fs2FS

)
, which

is based on Vaillant measurement data according to [PHE, Item 6344]. The Brennfeld

static signals of [PHE, Item 6344] and [PHE, Item 6371] belong to the same HE. However,

with [PHE, Item 6371] the ioni electrode is in the nominal position, while with [PHE,

Item 6344] the ioni electrode is deliberately not in the nominal position in order to simulate

manufacturing tolerances. The HE model H is referred to as the tolerance model for the

remainder of this example. Note that the ADA pair (s; t; is ; it) remains unchanged, because

an ADA pair is only selected once for an HE.

The start ioni current function ��s and the test ioni current function ��t of the tolerance

model are represented by the dashed orange and blue curve, respectively, in Figure 6.1. It

is apparent that the non-nominal position of the electrode has slightly changed the start

and test ioni current functions. The corresponding start point (���1s (is); is) and test point

(���1t (it); it) are marked with the orange and blue circle, respectively. In contrast to the

nominal case, we have ���1s (is) 6= ���1t (it) and thus rD is not a �xed point of the iteration

function �ArD := ��rt � ��t;rD � ��
�1
s;rD
� �+rs according to Lemma 6.37.

This can be veri�ed with Figure 6.2, which shows the iteration functions ArD and �ArD

for rD = 140k
. The solid black curve corresponds to ArD and the dashed black curve

corresponds to �ArD . Note that both iteration functions are strictly increasing, which is

in accordance with Lemma 6.34. In addition, the identity function is represented by the

dotted line to illustrate the �xed points of ArD and �ArD , which are marked by the dot and

the circle, respectively. While the �xed point of ArD is the desired value rD, the �xed point
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0 rD �r�

rD

�r�

r

A
r D
(r
)

ArD (nominal)
�ArD (tolerances)
identity

Figure 6.2.: In the nominal case, rD is a �xed point of ArD , which is marked by the dot. In
contrast, in the case with tolerances with respect to the position of the ioni electrode, the
�xed point of �ArD is �r � 6= rD, which is marked by the circle.

of �ArD is �r�, which is �r� = 195k
 > 140k
 = rD in this example.

In conclusion, tolerances might shift the �xed point of an iteration function �ArD away from

rD, i.e., we might have r� 6= rD. In the extreme case, the �xed point is shifted "outside"

of the set R̂rD
and the corresponding iteration function ArD is not a selfmap anymore and

thus the Picard iteration does not converge anymore (within the set R̂rD
). But even if ArD

has a �xed point r� 2 R̂rD
, it might be outside of feasible combustion limits. Therefore,

the aspect tolerances has to be considered in the ADA parameterization.

Example 6.38 demonstrates that manufacturing tolerances might in�uence the �xed
point characteristics of the selected ADA parameters. We can derive two corresponding
cases from Lemma 6.37. In the �rst case, (s; t; is ; it) are selected such that ��1s (is) =

��1t (it). Then rD is a �xed point of ArD . This is considered as the standard or nominal
situation. Accordingly, the second case is ��1s (is) 6= ��1t (it), which might be caused by
tolerances with respect to the ioni electrode's position. Then, rD is not a �xed point
of ArD . This is considered as a non-standard situation. These two cases motivate the
following de�nition.

De�nition 6.39 Let H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
be an HE model

and let (s; t; is ; rs) be an ADA pair. If ��1s (is) = ��1t (it), then H and the ADA pair are

considered to be nominal.
If ��1s (is) 6= ��1t (it), then H and the ADA pair are considered to be non-standard.

Remark 6.40 Note that the de�nition of the terms nominal and non-standard requires an

HE model and an ADA pair. This is required, because the ioni current functions �s and

�t are taken from the HE model H, while s, t, is and it are the ADA pair's parameters.

As a consequence, if an ADA pair is designed with an HE model H such that they are

nominal, the same ADA pair with a di�erent HE model H 6= H might be non-standard as

demonstrated in Example 6.38.
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Corollary 6.41 Let rD � 0. Let H be an HE model and (s; t; is ; rs) be an ADA pair. Then,

ArD(rD) = rD , H and (s; t; is ; it) are nominal:

Proof. The statement follows from Lemma 6.37 and from De�nition 6.39.

The distinction between the two cases nominal and non-standard according to De�ni-
tion 6.39 and Corollary 6.41 plays a central role when developing the ADA optimization
models in Chapter 8 below.

So far, we have analyzed the �xed points of the iteration function ArD . To guarantee
convergence of the Picard iteration associated to ArD to its �xed point (if it exists), it
is required that ArD is contractive according to Lemma 6.35. Therefore, conditions such
that ArD is contractive are detailed next.

6.3.3. Conditions Such That ArD Is Contractive

The function ArD is composed of the resistance functions �t;rD(g) = U
�t(g)

+ rD and

��1s;rD(r) = ��1s
(

U
r�rD

)
, among others. According to De�nition 2.18 of the HE model,

the functions �fs are continuous and strictly increasing, but these requirements are in gen-
eral not su�cient to ensure that ArD is contractive. I.e., in general, we are not able to
tell whether ArD is contractive or not. However, if ArD is di�erentiable, it is possible to
estimate the Lipschitz constant of ArD by considering the absolute value of its derivative.
This is the approach in this subsection.
We have to be aware of the fact that the HE model does not require that the functions �fs
are di�erentiable and thus ArD is not di�erentiable in general. Rather, the di�erentiability
of ArD depends on the selected regression method of the HE model. For instance, the
ioni current functions are di�erentiable if Gaussian processes are used. On the other hand,
piecewise linearly interpolated functions are not everywhere di�erentiable in general.
For the following analysis it is assumed that the ioni current functions �fs are everywhere
di�erentiable. This is done in the knowledge that the analysis is only valid for di�eren-
tiable HE models. This is reasonable, because the real physical ioni current functions are
assumed to be di�erentiable [Loc18, p. 11].

Lemma 4.44 from Section 4.3 states that a di�erentiable function f is contractive if the
absolute value of its derivative is bounded by 1. This motivates the following approach.
First, the derivative of ArD is determined. Thereafter, we analyze under what conditions
the derivative's absolute value is smaller than 1.

Theorem 6.42 Let �s and �t be di�erentiable and let rD � 0. Then ArD is also di�erentiable

and for all �r 2 R̂rD
we have

d

dr
ArD(�r) =

d
dg�t

(
ĝ(�r)

)
d
dg�s

(
ĝ(�r)

) (6.3)
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=

d
dg �t

(
ĝ(�r)

)
d
dg �s

(
ĝ(�r)

) � �2s (ĝ(�r))
�2t
(
ĝ(�r)

) ; (6.4)

where

ĝ(�r) := ��1s;rD � �
+
rs (�r) = ��1s � �

�
rD
� �+rs (�r) = ��1s (�r + rs � rD): (6.5)

Proof. Let �s and �t be di�erentiable. Then the corresponding resistance functions �t = U
�t

and ��1s =
(
U
�s

)�1
are also di�erentiable. According to De�nition 6.21, ArD is a compo-

sition that contains the drifted resistance functions �t;rD and ��1s;rD . We can transform
the drifted resistance functions to the corresponding resistance functions without drift by
Lemma 6.20 and we get

ArD = ��rt � �t;rD � �
�1
s;rD
� �+rs = ��rt � �

+
rD
� �t � �

�1
s � �

�
rD
� �+rs : (6.6)

As a composition of di�erentiable functions, ArD is also di�erentiable.
We apply the chain rule to the right hand side of (6.6) to deduce the derivative of ArD . We
consider single parts of the composition �rst and combine them at the end of the proof.
We de�ne r̂s;rD(r) := ��rD � �

+
rs (r) = r � rD + rs . Its derivative is d

dr r̂s;rD(r) = 1.
Next, we are interested in the derivative d

dr �
�1
s

(
r̂s;rD(r)

)
, which is obtained by applying the

inverse function rule. For this, we de�ne ĝ(r) := ��1s � �
�
rD
� �+rs (r) = ��1s � r̂s;rD(r). Note

that ĝ(r) refers to a gas valve position, because �s is a function from gvp to resistance
and thus its inverse is a function from resistance to gvp. Let �r 2 R̂rD

, then we have
��1s

(
r̂s;rD(�r)

)
= ĝ(�r). By applying the inverse function rule and the chain rule, we have

d

dr
��1s

(
r̂s;rD(�r)

)
=

1
d
dg�s

(
ĝ(�r)

) d

dr
r̂s;rD(�r) =

1
d
dg�s

(
ĝ(�r)

) :
Before we combine everything, we consider the derivative of ��rt � �

+
rD

(
x(r)

)
, which corre-

sponds to the most left part of the composition in the right hand side of (6.6). We have
d
dr (�

�
rt � �

+
rD
)
(
x(r)

)
= d

dr

(
x(r) � rt + rD

)
= d

dr x(r). Everything combined and applying
the chain rule results in

d

dr
ArD(�r) =

d

dr

(
��rt � �

+
rD
� �t � �

�1
s � r̂s;rD

)
(�r) =

d

dr

(
�t � �

�1
s � r̂s;rD

)
(�r)

=
d

dg
�t
(
ĝ(�r)

)
�
d

dr
��1s

(
r̂s;rD(�r)

)
=

d

dg
�t
(
ĝ(�r)

)
�

1
d
dg�s

(
ĝ(�r)

) ; (6.7)

which is the Theorem's �rst statement.
To prove the second statement, we express (6.7) with the ioni current functions �fs. We
have �fs(g) =

U
�fs(g)

and thus its derivative is

d

dg
�fs(g) =

d

dg

U

�fs(g)
= �U

1

�2fs(g)

d

dg
�fs(g): (6.8)
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The theorem's second statement, i.e., Equation (6.4), follows by plugging (6.8) into (6.7).

Recall that we are interested in the case that j ddrArD(r)j < 1 or equivalently �1 <
d
drArD(r) < 1. According to Lemma 6.34, ArD is strictly increasing and thus we always
have 0 < d

drArD(r). Therefore, it is su�cient to consider the upper boundary of d
drArD(r)

only.

Theorem 6.43 As in Theorem 6.42, we de�ne ĝ(r) := ��1s (r + rs � rD) for r 2 R̂rD
.

Let �s and �t be di�erentiable and let rD � 0. If

d

dg
�t
(
ĝ(r)

)
>

d

dg
�s
(
ĝ(r)

)
8 r 2 R̂rD

or (6.9)

d

dg
�t
(
ĝ(r)

)
<

�2t
(
ĝ(r)

)
�2s
(
ĝ(r)

) � d
dg

�s
(
ĝ(r)

)
8 r 2 R̂rD

; (6.10)

then ArD is contractive on R̂rD
.

Proof. For r 2 R̂rD
let ĝ(r) := ��1s (r + rs � rD). We show that (6.9) holds if and only if

(6.10) holds if and only if A0rD(r) < 1 for all r 2 R̂rD
.

According to Lemma 6.17, the functions �s and �t are strictly decreasing, i.e., their deriva-
tives are negative. By applying (6.3) of Theorem 6.42, we have

d

dr
ArD(r) =

d
dg�t

(
ĝ(r)

)
d
dg�s

(
ĝ(r)

) < 1 ,
d

dg
�t
(
ĝ(r)

)
>

d

dg
�s
(
ĝ(r)

)
:

In contrast, the ioni current functions �s and �t are strictly increasing according to De�ni-
tion 2.18, i.e., their derivatives are greater than zero. By applying (6.4) of Theorem 6.42,
we have

d

dr
ArD(r) =

d
dg �t

(
ĝ(r)

)
d
dg �s

(
ĝ(r)

) � �2s (ĝ(r))
�2t
(

^g(r)
) < 1 ,

d

dg
�t
(
ĝ(r)

)
<

�2t
(
ĝ(r)

)
�2s
(

^g(r)
) � d

dg
�s
(
ĝ(r)

)
:

On the other hand, the derivative of ArD is always greater than zero according to Lemma 6.34.
Therefore, we have

jA0rD(r)j < 1 8 r 2 R̂rD
, (6.9) , (6.10)

and the statement follows from Lemma 4.44.

Remark 6.44 The gas valve positions ĝ(r) := ��1s (r + rs � rD) with r 2 R̂rD
in Theo-

rems 6.42 and 6.43 correspond to the set Gs \Gt . According to De�nitions 5.19 and 6.14

as well as to Lemma 6.20, we have R̂rD
= �s(Gs \ Gt)� rs + rD and thus

r 2 R̂rD
, 9 g 2 Gs \ Gt : �s(g)� rs + rD = r

, 9 g 2 Gs \ Gt : g = ��1s (r � rD + rs) = ĝ(r):
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So far, we have the statement that ArD(r)
0 < 1 implies that ArD is contractive. We get

an even stronger statement, if we additionally assume that ArD is continuously di�eren-
tiable.

Lemma 6.45 Let ArD be continuously di�erentiable. If A0rD < 1, then there exists L < 1

such that ArD is L-Lipschitzian.

Proof. Let ArD be continuously di�erentiable and let A0rD < 1. The domain of ArD is a
closed and bounded interval according to Lemma 6.11. Thus A0rD is a continuous mapping
on a compact set. By applying the extreme value theorem, we know that A0rD attains its
maximum and minimum on its domain R̂rD

. Because A0rD < 1, there exists L < 1 such
that A0rD � L. On the other hand, we have A0rD > 0 according to Lemma 6.34 and thus
jA0rD j � L. The statement follows by applying Lemma 4.44.

Being L-Lipschitzian with L < 1 is a stronger statement in the sense that it implies being
contractive. Furthermore, in the context of ADA and the corresponding Picard iteration,
it has the advantage that we get rate of convergence estimations from Banach's �xed
point theorem.

Lemma 6.46 Let ArD be L-Lipschitzian with L < 1. If ArD has a �xed point r�, then the

following rate of convergence estimations for a starting point r 2 R̂rD
hold:

jrn � r�j � L � jrn � rn�1j � Ln � jr � r�j 8 n 2 N;

where rn := An
rD
(r).

Proof. Let ArD be L-Lipschitzian with L < 1. Then ArD is contractive. Furthermore, let
ArD have a �xed point. Then ArD is a selfmap according to Lemma 6.35. But then we can
apply Banach's �xed point theorem and the rate of convergence statement follows from
Theorem 4.39.

Remark 6.47 At this point, we can analyze the in�uence that the selection of the ADA

parameters s, t, is and it has on the �xed point convergence characteristics of ArD . Recall

that the iteration function ArD depends on the start and test ioni current functions �s and

�t , respectively. Therefore, by selecting s and t, the corresponding iteration function ArD

might have a smaller or larger Lipschitz constant. In the worst case, the resulting iteration

function is not contractive and the ADA algorithm might not be convergent. On the

other hand, if the Lipschitz constant of ArD is small, we have a fast rate of convergence

according to Lemma 6.46.

By selecting the start and the test ioni current is and it , respectively, the �xed point

is determined (if it exists), see also Lemma 6.37. If the ioni currents are not properly

selected, the �xed point of ArD might di�er signi�cantly from the drift resistance or the

HE might leave feasible combustion limits while performing an ADA iteration, which both

might result in undesired outcomes of the ADA algorithm.
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Therefore, the question whether the ADA procedure is capable to successfully com-

pensate possible drift resistances depends to a large extent on the selection of the ADA

parameters. This is the motivation to develop and solve a corresponding optimization

model in this thesis.

So far, we have deduced conditions such that the ADA algorithm with a single ADA pair
is convergent. There exists a document by Siemens that also states some conditions for
convergence of the ADA algorithm with a single ADA pair. In the following subsection,
these conditions are compared to the results presented in this subsection.

6.3.4. Comparison with the Documentation by Siemens

As stated in Section 2.3.2, the combustion control system IoniDetect, and as a part of
it also the ADA procedure, were developed by Siemens. Siemens provides a document
with the title Funktionsweise ADA [Loc18] that contains a brief description of the ADA
concept and also conditions for the convergence of the ADA procedure [Loc18, p. 8]. In
this subsection, we compare the convergence conditions stated in the Siemens document
[Loc18] with the results of the preceding subsection. For the remainder of this subsection,
the term "Siemens document" refers to [Loc18].
The approach in the Siemens document to state some convergence conditions for the
ADA procedure is similar to the approach taken in this thesis. The authors of the Siemens
document also begin with the equivalence circuit of the ioni current measurement circuit
and state that the measured ioni current corresponds to the circuit's resistance by applying
Ohm's law, i.e., r = U

i . However, they discuss the ADA procedure with ioni currents and
the resistances considered as functions of the equivalence AFR �. In contrast, in this thesis
the ioni currents and the resistances are considered as functions of the gas valve position.
In this subsection, it will be shown that both approaches can be considered as equivalent
under the conditions of Assumption 6.48 given below.
To illustrate the approach of the Siemens document, let us assume that an ADA pair
(s; t; is ; it) is given. We further assume that we have a nominal situation, i.e., ��1s (is) =

��1t (it) =: gA holds. Let �s and �t be the corresponding equivalence AFR functions
according to De�nition 2.18 of the HE model. With this, we can determine the equivalence
AFR of the start and of the test point, which are �s := �s(gA) and �t := �t(gA),
respectively. In the Siemens document, the following assumption with respect to the
relation between the gas valve position and the equivalence AFR � is made.

Assumption 6.48 For all feasible gas valve positions, we assume that if the gas valve

position is kept constant and the fan speed is reduced from s to t, then the di�erence of

the corresponding � values is always �� := �s � �t [Loc18, p. 6].

Expressed in the notation of the HE model, this reads

�s(g)� �t(g) = �� 8 g 2 Gs \ Gt ; where �� := �s � �t : (6.11)
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Remark 6.49 Assumption 6.48 is also mentioned in the ADA patent [LS17]. The ADA

patent states that if the fan speed is reduced from s to t with the gvp kept constant, then

"the air coe�cient is lowered by a more or less constant change in the air coe�cient ��"

[LS17, p. 7].

By composing certain functions of the HE model, we can de�ne the functions that
correspond to the approach in the Siemens document. I.e., we consider the resistance as
a function of � instead of the gvp g. Recall from De�nitions 2.18 and 2.22 that for all
fs 2 FS the function �fs : Gfs ! Lfs is a homeomorphism between the set of gas valve
positions Gfs and the set of their corresponding equivalence AFRs Lfs.

De�nition 6.50 Let H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
be an HE model

and let �fs : Gfs ! Rfs, fs 2 FS, be the homeomorphism according to De�nition 6.14. For

fs 2 FS, we de�ne

��;fs : Lfs ! Rfs by ��;fs := �fs � �
�1
fs : (6.12)

Remark 6.51 The function ��;fs is well-de�ned by construction.

The central statement of the Siemens document is, that the ADA algorithm converges
if the derivatives of ��;s and ��;t ful�ll certain conditions [Loc18, p. 9].

Statement 6.52 Let Assumption 6.48 hold. If

d

d�
��;s(�s) >

d

d�
��;t(�t) 8 feasible �s = �t + ��; (6.13)

then the ADA procedure with a single ADA pair converges.

Remark 6.53 From a mathematical point of view, Statement 6.52 is imprecise.

� The Siemens document does not explicitly state that the functions ��;s and ��;t are

di�erentiable. The di�erentiability is assumed only implicitly.

� The Siemens document does not specify the sets of feasible �s and �t . They just

state that only such �t in the neighborhood of �t shall be considered, that can be

realistically reached by drift [Loc18, p. 11].

� No statement with respect to the existence and uniqueness of the �xed point is done.

Remark 6.54 Although the content of Statement 6.52 can be considered as central with

respect to the ADA procedure, it is not formulated as a theorem in this thesis. This is

done, because from a mathematical point of view, the Siemens document does not provide

a corresponding proof. The authors provide a sketch of proof only.

In the opinion of the author of this thesis, a corresponding complete proof of State-

ment 6.52 would be no shorter and similarly elaborate as the proofs presented so far.

In the following, we show that if Assumption 6.48 holds, then Statement 6.52 can be
considered to be equivalent to Theorem 6.43.
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Theorem 6.55 Let �s , �t , �s and �t be di�erentiable. Furthermore, let Assumption 6.48

hold. For g 2 Gs \ Gt , we de�ne �s := �s(g) and �t := �t(g). Then, we have

d

d�
��;s(�s) >

d

d�
��;t(�t) ,

d

dg
�t(g) >

d

dg
�s(g):

Proof. According to De�nition 6.50, we have ��;fs = �fs ��
�1
fs and thus we apply the chain

rule to show the statement.
First, we focus on the derivatives of ��1s and ��1t . By Assumption 6.48, we have �s(g) =
�t(g) + �� for all g 2 Gs \ Gt . Furthermore, �s and �t are strictly decreasing according
to De�nition 2.18. Hence, we have

d

dg
�s(g) =

d

dg
�t(g) < 0 8 g 2 Gs \ Gt : (6.14)

As a consequence, the inverse functions �s(g)�1 and �t(g)
�1 are also di�erentiable. By

applying the inverse function rule, we obtain

d

d�
��1s (�s) =

1
d
dg�s(g)

and
d

d�
��1t (�t) =

1
d
dg�t(g)

;

with g 2 Gs \ Gt and �s = �s(g) as well as �t = �t(g).
Now, we apply the chain rule to ��;s and ��;t , which gives us

d

d�
��;s(�s) >

d

d�
��;t(�t) ,

d

dg
�s(g) �

1
d
dg�s(g)

>
d

dg
�t(g) �

1
d
dg�t(g)

,
d

dg
�s(g) <

d

dg
�t(g);

where the second equivalence results from (6.14).

Corollary 6.56 Let �s , �t , �s and �t be di�erentiable and let ArD have a �xed point.

Furthermore, let Assumption 6.48 hold. If for all g 2 Gs \ Gt

d

d�
��;s(�s) >

d

d�
��;t(�t); with �s := �s(g) and �t := �t(g);

then ArD is contractive and the ADA algorithm converges to the �xed point for an arbitrary

starting point r 2 R̂rD
.

Corollary 6.56 is a nice result in the sense that the convergence conditions presented in
the Siemens document are consistent with the results of the analysis in this thesis. How-
ever, similar to the ADA patent [Loc16], the Siemens document can be considered rather a
technical document and less a mathematical paper, as already mentioned in Remarks 6.53
and 6.54.
A drawback of the approach in the Siemens document is, that the stated convergence
conditions require that Assumption 6.48 is met. In contrast, the convergence conditions
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deduced in this thesis and stated in Theorem 6.43 do not require that Assumption 6.48 is
met. Therefore, Theorem 6.43 can be considered as a more general result.
The Siemens document considers the nominal situation and a single ADA pair only. Results
with respect to the non-standard situation or to a plurality of ADA pairs are not provided.
Therefore, a comparison of results related to a non-standard situation or to a plurality of
ADA pairs cannot be done.

Another document that contains some statements about convergence conditions of
ADA is the ADA patent [LS17], which was �led by Siemens. In Chapter 3 above, the
ADA algorithm is presented in detail based on this patent. As mentioned in Section 3.3,
the ADA patent contains only little information about convergence conditions. The ADA
patent's authors state that "[t]he only pre-condition is that the function is uniformly rising
or falling in the measurement range of the test point" [LS17, p. 8]. The term function in
the citation refers to the ioni current versus � curve with the fan speed �xed at the test
fan speed t. Furthermore, they state that other aspects of this function are not relevant
and the "shape and pro�le of the function remain unknown in this respect" [LS17, p. 8].
At this point, we can conclude that the convergence conditions stated in the patent are not
su�cient in general. Because in order to guarantee convergence, the gradient at the test
and at the start point have to be considered according to Theorem 6.43, Statement 6.52
and Corollary 6.56.

This concludes the analysis of the ADA algorithm with respect to a single ADA pair.
The next section brie�y summarizes the results so far.

6.4. Conclusion of Analysis with Respect to a Single ADA Pair

In this chapter, we have analyzed the ADA algorithm with a single ADA pair. The following
list brie�y recaps the �ndings.

� The ADA algorithm is based on a Picard iteration (Algorithm 6.1).

� The goal of ADA is to approximate the drifted test ioni current. The corresponding
iteration function is Ai ;rD (De�nition 6.5). By applying Ohm's law, a resistance based
variant of the ADA algorithm can be deduced that approximates the drift resistance
and has the iteration function ArD (De�nition 6.21). Both variants are "equivalent"
in the sense that their �xed point characteristics are identical (Theorem 6.32). The
resistance based variant is more accessible to a theoretical analysis.

� If ArD is contractive, then it is a selfmap if and only if it has a unique �xed point.
Then, the Picard iteration associated to ArD converges to this �xed point for an
arbitrary feasible starting point (Lemma 6.35).

� If ��1s (is) = ��1t (it) holds, then the sought drift resistance rD is a �xed point of ArD

(Lemma 6.37). This case is considered to be the nominal case. A situation with
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��1s (is) 6= ��1t (it) is considered to be non-standard (De�nition 6.39). Tolerances with
respect to the ioni electrode's position cause non-standard situations. This becomes
relevant in the following chapter, where a plurality of ADA pairs is considered.

� Under which conditions is ArD contractive? Some statements are possible if ArD

is di�erentiable, which is the case if the ioni current functions �s and �t of the
corresponding HE model are di�erentiable. If the absolute value of the derivative of
ArD is smaller than one, then ArD is contractive (Lemma 4.44). This is the case, if
d
dg�t(g) >

d
dg�s(g) for all g 2 Gs \ Gt (Theorem 6.43). This result is consistent

with convergence statements provided by Siemens (Section 6.3.4).

� A major conclusion is that the selection of the ADA parameters has a big in�uence
on the convergence characteristics and thus on the success of the ADA procedure.
Therefore, the optimization of the ADA parameters is closely related to their corre-
sponding convergence characteristics (Remark 6.47).

The results so far can only partially be generalized to the case that a plurality of ADA pairs
is considered. This is delineated in the following chapter.
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7. ADA Procedure with a Plurality of ADA

Pairs

In the preceding chapter, the convergence characteristics of the ADA Algorithm 5.2 in the
case of a single ADA pair are thoroughly analyzed. However, as stated in Section 3.4.4,
up to seven ADA pairs are usually used by Vaillant [Sch15, p. 35]. In this chapter, we
analyze the �xed point and convergence characteristics of Algorithm 5.2 if a plurality of
ADA pairs is considered, i.e., we consider the case N � 2. For this, let N 2 N, N � 2, be
arbitrary but �xed.
The di�culty in the analysis of Algorithm 5.2 in the case of a plurality of ADA pairs is
that an ADA update of ADA pair p, p � 2, depends on the values of ip and ip�1, which is
ip  �tp;rD � �

�1
sp;rD
� 
p �!p

(
�p(ip); �

p�1(ip�1)
)
according to Line 11 of Algorithm 5.2. In

contrast, an update of ADA pair p = 1 depends on i1 only according to Line 9.
This problem can be partly overcome by considering a situation where the incumbent
drifted test ioni current approximation of ADA pair p�1 is constant. For instance, such a
situation occurs if the ioni current iteration function of ADA pair one, A1

i ;rD
, has a unique

�xed point i�1 and the �rst component of the incumbent drifted test ioni current vector i1
is equal to i�1 . Because i�1 is the �xed point of A1

i ;rD
, i1 = A1

i ;rD
(i1) holds in each iteration

of Algorithm 5.2 with p = 1 in this case. Then, in each update with ADA pair p = 2 the
same i1 = i�1 is used and the update function corresponding to Line 11 of Algorithm 5.2
can be considered as a one-dimensional iteration function that depends on i2 only, which
is

i2  �t2;rD � �
�1
s2;rD

� 
2 � !2
(
�2(i2); �

1(i�1 )
)
: (7.1)

Let us suppose, that the iteration function corresponding to (7.1) is a contractive self-
map. Then, it has a certain unique �xed point i�2 and the Picard iteration associated to this
function converges to i�2 for an arbitrary (feasible) starting point. Thus, after su�ciently
many subsequent updates of ADA pair p = 2, the second component of the incumbent
vector, i2, gets arbitrary close to i�2 . When thereafter ADA pair p = 3 is updated, we can
assume i2 to be (almost) �xed at i�2 and so on, i.e., we can recursively construct a vector
of corresponding �xed points.
The major result of this chapter is Theorem 7.68, which states that the output of Al-
gorithm 5.2, ît;out(̂it;in; u), converges to the aforementioned vector of �xed points if the
considered ADA update sequence u contains su�ciently many iterations with each ADA
pair and the considered input vector ît;in is "feasible". Similar to the case N = 1, this
convergence property is shown by considering a resistance based approach that is in a
certain sense equivalent but more accessible to a convergence analysis.
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The aforementioned vector of �xed points and a required corresponding formalism are
detailed in the following section. This includes the de�nition of the iteration function
corresponding to (7.1) and its domain for the more general case p � 2. Thereafter, a
resistance based approach is introduced and �nally the convergence statement is proven.

Recall that Algorithm 5.2 also has the inputs H, (s j ; t j ; i js ; i
j
t), j 2 [N], and rD in

addition to ît;in and u. Therefore, we implicitly assume that an HE model H, N ADA pairs
(s j ; t j ; i js ; i

j
t), j 2 [N], as well as a drift resistance rD � 0 are given for the remainder of

this chapter.

7.1. The Super Fixed Point Vector

The goal of this section is to de�ne the vector of �xed points mentioned in the introduction
to this chapter. Because the components of this vector are �xed points that are recursively
constructed from preceding �xed points, this vector is called the super �xed point vector
in De�nition 7.14 below. In the course of this chapter it is shown that under certain
conditions the super �xed point vector is the limit of the ADA Algorithm 5.2 and thus
it is essential for the analysis of the ADA algorithm's convergence characteristics. The
de�nition of the super �xed point vector requires a certain formalism, which is delineated
in the following.
According to Line 11 of Algorithm 5.2, an update with ADA pair p, p � 2, is done by
calculating

ip  �tp;rD � �
�1
sp;rD

� 
p � !p
(
�p(ip); �

p�1(ip�1)
)

(7.2)

If we suppose that ip�1 is �xed, we can treat (7.2) as a one-dimensional iteration function
with ip as the only argument. This motivates the following de�nition, where the weighted
sum function !p(x; y) = wpx+(1�wp)y from De�nition 5.17 is considered as a function
of the �rst argument x only.

De�nition 7.1 Let p 2 f2; : : : ; Ng and let y 2 R. We de�ne

!p
y : R! R; !p

y (x) := wpx + (1� wp)y ;

where wp is the weight according to De�nition 5.12.

Lemma 7.2 The function !p
y is a homeomorphism. Its inverse function is

(
!p
y

)�1
(z) =

1
wp

(
z � (1� wp)y

)
. Furthermore, both functions are strictly increasing.

Proof. According to Lemma 5.13, we have 0 < wp < 1 and thus

z = !p
y (x) , z = wpx + (1� wp)y , wpx = z � (1� wp)y

, x =
1

wp

(
z � (1� wp)y

)
=:

(
!p
y

)�1
(z) 8 x 2 R:

As linear functions, !p
y and

(
!p
y

)�1
are continuous. Their slopes are wp and 1

wp , respec-
tively. Since 0 < wp < 1, both functions are strictly increasing.
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We use !p
y to reformulate (7.2) to a function with a single argument. For this, let

us assume that ip�1 2 R>0 is given and �xed. Then, �p�1(ip�1) = U
ip�1
� U

ipt
exists

and we have !p
(
�p(ip); �

p�1(ip�1)
)
= !p

�p�1(ip�1)
� �p(ip). Therefore, the composition

�tp;rD � �
�1
sp;rD
� 
p �!p

�p�1(ip�1)
� �p is the resulting iteration function if ip�1 is �xed. Before

we formally de�ne a corresponding function, we specify an appropriate domain.
Recall from Lemma 5.32 and Line 10 of Algorithm 5.2 that an update of the p-th com-
ponent of the incumbent drifted test ioni current vector ît;rD = (i1; : : : ; iN) is well-de�ned,
if !p

(
�p(ip); �

p�1(ip�1)
)
2 R̂p

rD holds. Expressed in the notation with ip�1 �xed, we are
interested in elements ip such that !p

�p�1(ip�1)
� �p(ip) 2 R̂p

rD . Because !p
�p�1(ip�1)

and �p

are homeomorphisms, the set
(
�p

)�1
�
(
!p
�p�1(ip�1)

)�1
(R̂p

rD) is a candidate for the sought
domain. However, we have to make sure that this set is well-de�ned. This is not always
the case and depends on the element �p�1(ip�1). The following de�nition re�ects this
fact. Recall that the sets R̂p

rD are nonempty, closed and bounded intervals (Lemma 6.11)
and thus their minima exist.

Remark 7.3 In the following De�nition 7.4, the physical interpretation of the real number

v is v = �p�1(ip�1), i.e., v corresponds to the drift resistance approximation of ADA

pair p � 1 if the drifted test ioni current approximation ip�1 is given. In other words, the

elements v are abbreviations for elements of the type �p�1(ip�1).

Furthermore, because the fan speeds of ADA pair p�1 are greater than the fan speeds of

ADA pair p, the ADA pair p � 1 is also referred to as the upper neighbor of ADA pair p.

De�nition 7.4 Let p 2 f2; : : : ; Ng and let rD � 0. The set of feasible upper neighbor
drift resistance approximations of ADA pair p with respect to rD is de�ned by

V p
rD

:=
{
v 2 R : v <

min R̂p
rD + wprpt

1� wp

}
;

where 0 < wp < 1 are the weights from De�nition 5.12.

Let v 2 V p
rD be �xed. The set of feasible drift resistance approximations of ADA pair p

given v is de�ned by

R̂p
rD;v

:=
(
!p
v

)�1
(R̂p

rD
) =

{ 1

wp

(
r � (1� wp)v

)
: r 2 R̂p

rD

}
=:

1

wp

(
R̂p
rD
� (1� wp)v

)
:

The set of feasible drifted test ioni current approximations of ADA pair p given v is de�ned

by

ÎprD;v :=
(
�p

)�1
(R̂p

rD;v
) =

{ U

r + rpt
: r 2 R̂p

rD;v

}
=:

U

R̂p
rD;v + rpt

:

Lemma 7.5 The sets V p
rD , R̂

p
rD;v and Î

p
rD;v are well-de�ned. Furthermore, R̂p

rD;v � (�rpt ;1)

and ÎprD;v � R>0 hold.

Proof. Let p 2 f2; : : : ; Ng. Because R̂p
rD is a closed and nonempty interval (Lemma 6.11),

its minimum min R̂p
rD exists. Furthermore, 0 < wp < 1 holds (Lemma 5.13) and thus the
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set V p
rD is well-de�ned.

Let v 2 V p
rD . Because !p

v : R ! R is a homeomorphism (Lemma 7.2), the set R̂p
rD;v :=(

!p
v

)�1
(R̂p

rD) is well-de�ned.

To show that ÎprD;v :=
(
�p

)�1
(R̂p

rD;v ) is well-de�ned, we have to show that R̂p
rD;v �

(�rpt ;1), because (�rpt ;1) is the domain of (�p
)�1

(De�nition 5.9). So, let rv 2 R̂p
rD;v .

Then, there exists r 2 R̂p
rD such that rv =

(
!p
v

)�1
(r) = 1

wp

(
r � (1 � wp)v

)
. Because

v 2 V p
rD and r � min R̂p

rD , we have

v <
min R̂p

rD + wprpt
1� wp

�
r + wprpt
1� wp

) (1� wp)v < r + wprpt

) � wprpt < r � (1� wp)v

) � rpt <
1

wp

(
r � (1� wp)v

)
=

(
!p
v

)�1
(r) = rv ) rv 2 (�rpt ;1):

Furthermore, we have

i 2 ÎprD;v ) 9 rv 2 R̂p
rD;v

: i = (�p)�1(rv ) =
U

rv + rpt
) i > 0;

where the last implication follows from R̂p
rD;v � (�rt ;1) and U > 0.

Remark 7.6 The sets V p
rD , R̂

p
rD;v and ÎprD;v are abstract in the sense that they are only

introduced to guarantee that the following steps are well-de�ned. For instance, for the

optimization models that are developed in Chapter 8 the set V p
rD is not required anymore,

see also Remark 8.8. From a practical point of view, they are irrelevant, because drifted

test ioni current approximations not contained in ÎprD;v usually correspond to infeasible

combustion states.

Lemma 7.7 Let p 2 f2; : : : ; Ng and let v 2 V p
rD . The sets R̂p

rD;v and ÎprD;v are closed,

bounded and nonempty intervals.

Proof. The set R̂p
rD is a closed, bounded and nonempty interval (Lemma 6.11) and the

functions �p and !p
v are homeomorphisms (Lemmas 5.11 and 7.2, respectively). Therefore,

R̂p
rD;v =

(
!p
v

)�1
(R̂p

rD) and ÎprD;v =
(
�p

)�1
(R̂p

rD;v ) =
(
�p

)�1
�
(
!p
v

)�1
(R̂p

rD) are also closed,
bounded and nonempty intervals.

Now, we have all the parts together to de�ne the aforementioned iteration function that
corresponds to (7.2) with ip�1 �xed.

De�nition 7.8 Let p 2 f2; : : : ; Ng, let rD � 0 and let ip�1 2 R>0 such that v :=

�p�1(ip�1) 2 V p
rD . The ioni current based iteration function of ADA pair p given v is

de�ned by

Bp
rD;v

: ÎprD;v ! R>0; Bp
rD;v

(i) := �tp;rD � �
�1
sp;rD

� 
p � !p
v � �

p(i):
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Remark 7.9 Note that the superscript p indicates the ADA pair number. It does not

indicate the successive evaluation of the function in the context of the Picard iteration.

Lemma 7.10 The function Bp
rD;v is well-de�ned, i.e., it can be evaluated for all i 2 ÎprD;v .

Furthermore, Bp
rD;v (i) > 0 holds for all i 2 ÎprD;v .

Proof. Let i 2 ÎprD;v . By De�nition 7.4, we have ÎprD;v =
(
�p

)�1
�
(
!p
v

)�1
(R̂p

rD) and thus

i 2 ÎprD;v ) 9 r 2 R̂p
rD

: i =
(
�p

)�1
�
(
!p
v

)�1
(r) ) !p

v � �
p(i) 2 R̂p

rD
:

Because �tp;rD � �
�1
sp;rD
� 
p(r) is well-de�ned for all r 2 R̂p

rD (Corollary 5.24) and the image
of �tp;rD is a subset of R>0 (Notation 3.17 and Corollary 3.18), we have Bp

rD;v (i) :=

�tp;rD � �
�1
sp;rD

� 
p � !p
v � �

p(i) > 0.

We use the domains ÎprD;v according to De�nition 7.4 and the functions Bp
rD;v according

to De�nition 7.8 and reformulate Algorithm 5.2 to Algorithm 7.1, which facilitates the
analysis of its convergence characteristics later on.

Algorithm 7.1 Reformulated Version of Algorithm 5.2

Input:

1: H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
// HE model

2: (s j ; t j ; i js ; i
j
t), j 2 [N] // ADA parameters of N ADA pairs

3: rD 2 R�0 // drift resistance

4: ît;in = (i1; : : : ; iN) 2 R
N
>0 // initial drifted test ioni current approximations

5: (uk)k2[`] // ADA update sequence of length `

Calculations:

6: for k = 1 to ` do

7: p = uk
8: if p = 1 and i1 2 Î1rD then

9: i1  A1
i ;rD

(i1)

10: else if p � 2 and ip 2 Îp
rD;�p�1(ip�1)

then

11: ip  Bp
rD;�p�1(ip�1)

(ip)

12: else

13: ij  NaN for all j 2 [N] // mark results as not valid

14: break // leave for-loop early

15: end if

16: end for

Output:

17: ît;out = (i1; : : : ; iN) // updated drifted test ioni current approximations

Lemma 7.11 Given the same inputs, the outputs of Algorithm 5.2 and Algorithm 7.1 are

identical.
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Proof. The framework around the for-loops of both algorithms is identical. It remains to
show that the calculations within both for-loops are identical.

� De�nition 6.3: i1 2 Î1rD , �1(i1) 2 R̂1
rD

and thus Line 8 of Algorithm 7.1 corre-
sponds to Line 8 of Algorithm 5.2.

� De�nition 6.5: Ap
i;rD

(i) := �tp;rD � �
�1
sp;rD

� 
p � �p(i) 8 i 2 ÎprD and thus Line 9 of
Algorithm 7.1 corresponds to Line 9 of Algorithm 5.2.

� De�nition 7.4: Îp
rD;�p�1(ip�1)

=
(
�p

)�1(
R̂p
rD;�p�1(ip�1)

)
=

(
�p

)�1
�
(
!p
�p�1(ip�1)

)�1
(R̂p

rD),

i.e., ip 2 Îp
�p�1(ip�1)

, !p
�p�1(ip�1)

��p(ip) = !p
(
�p(ip); �

p�1(ip�1)
)
2 R̂p

rD , and thus
Line 10 of Algorithm 7.1 corresponds to Line 10 of Algorithm 5.2.

� De�nition 7.8: Bp
rD;v (i) := �tp;rD � �

�1
sp;rD

� 
p � !p
v � �

p(i) = �tp;rD � �
�1
sp;rD

� 
p �

!p
(
�p(i); v

)
8 i 2 ÎprD;v and thus Line 11 of Algorithm 7.1 corresponds to Line 11

of Algorithm 5.2.

The subsequent lines are identical in both for-loops.

Remark 7.12 Aiming at a better readability, when there is no risk of confusion, the sub-

script rD of the sets R̂p
rD , Î

p
rD , V

p
rD , R̂

p
rD;v and ÎprD;v as well as of the iteration functions Ap

rD ,

Ap
i;rD

and Bp
rD;v is omitted for the remainder of this chapter.

Now, we have all the parts together to de�ne the aforementioned super �xed point
vector. The basic idea behind this vector is presented in the introduction to this chapter.
At this point, this idea is brie�y repeated but this time by utilizing the iteration functions
Bp
v and the reformulated Algorithm 7.1. For this, we introduce a notation for the situation

that a function f has a unique �xed point.

Notation 7.13 Let X � R and let f : X ! X be a selfmap. If f has a unique �xed point

x� 2 X, then this �xed point is denoted by �x(f ), i.e., �x(f ) := x�.

Let the ioni current iteration function of the �rst ADA pair, A1
i , have the unique �xed

point �x(A1
i ). If the �rst component of the incumbent drifted test ioni current vector

is i1 = �x(A1
i ), then i1 does not change anymore independent of arbitrary subsequent

ADA iterations. Therefore, we can consider i1 = �x(A1
i ) as constant. In this case, the

iteration function for ADA updates with the second ADA pair is B2
�1(i1)

= B2

�1

(
�x(A1

i
)
). If

in addition the second component of the incumbent vector is i2 = �x
(
B2

�1

(
�x(A1

i
)
)), then

i2 also remains constant independent of arbitrary subsequent ADA iterations and so on.
This recursive construction is formally de�ned in the following. The corresponding vector
is called super �xed point vector, because its components are �xed points of functions that
are related to the �xed points of the preceding components.
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De�nition 7.14 Let N ADA pairs (sp; tp; ips ; i
p
t ), p 2 [N], an HE model H and a drift

resistance rD � 0 be given. The corresponding super �xed point vector i
�� = (i��1 ; : : : ; i��N )

is recursively de�ned by

i��1 :=

{
�x(A1

i ) if �x(A1
i ) exists;

NaN else;

and for p 2 f2; : : : ; Ng by

i��p :=

�x
(
Bp
�p�1(i��p�1

)

)
if i��p�1 6= NaN and �x

(
Bp
�p�1(i��p�1

)

)
exists;

NaN else:

The super �xed point vector is called feasible, if i
�� 2 RN holds, i.e., if none of its

components is NaN.

Remark 7.15 The de�nition of the super �xed point vector depends on the iteration func-

tions A1
i ;rD

and Bp
rD;v , p 2 f2; : : : ; Ng. Therefore, it is implicitly related to the ADA pairs,

to the HE model H and to the drift resistance rD.

De�nition 7.16 The consideration of N ADA pairs (sp; tp; ips ; i
p
t ), p 2 [N], an HE model

H and a drift resistance rD � 0 such that i
�� is feasible is referred to as a feasible scenario.

In other words, we a have a feasible scenario if and only if i
�� 2 RN .

Lemma 7.17 The super �xed point vector is unique.

Proof. According to Notation 7.13, �x(f ) implies that �x(f ) is the unique �xed point of
f . With this, the uniqueness of i

�� follows by construction.

Lemma 7.18 If the super �xed point vector is feasible, then i
�� 2 RN

>0, i.e., all components

of i
�� are positive.

Proof. Let i
�� = (i��1 ; : : : ; i��N ) be feasible, i.e., i��p 2 R for all p 2 [N]. Then, we have

i��1 2 Î1. Because Î1 � R>0 (Lemma 6.4), i��1 > 0 holds. For p � 2, we have i��p 2 Îpv
and Îpv � R>0 (Lemma 7.5) with v = �p�1(i��p�1). Therefore, i��p > 0 holds for all
p 2 f2; : : : ; Ng as well.

Remark 7.19 An example of a super �xed point vector is given in Example 7.44 below, after

the drift resistance based iteration function Cp
rD;v is introduced in De�nition 7.36 below.

This is done, because a corresponding example with drift resistance iteration functions is

more straightforward.

As already mentioned, under certain conditions the super �xed point vector is the limit
of the output of Algorithm 5.2 according to Theorem 7.68 below. However, Algorithm 5.2
is only de�ned for �nite ADA update sequences, because otherwise its for-loop would not
terminate. A concept to consider the output of Algorithm 5.2 for in�nite ADA update
sequences is to consider the �rst n elements of an in�nite ADA update sequence. Then,
we can analyze the behavior of the Algorithm's output if n is successively increased. This
motivates the following de�nitions.
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De�nition 7.20 Let u = (un)n2[`] be an ADA update sequence of length `, ` 2 N. The

ADA subsequence that contains the �rst k elements of u is denoted by u(k), k 2 [`]. It is

element-wise de�ned by u(k)n := un for all n 2 [k ]. This de�nition is also valid for in�nite

ADA update sequences u = (un)n2N.

Example 7.21 Let N = 3 and let u := (1; 2; 3; 1; 2; 3; 1; 2; 3) be an ADA sequence of

length ` = 9. Then, the ADA subsequence corresponding to k = 4 is u(k) = (1; 2; 3; 1).

De�nition 7.22 Let ît;in 2 R
N
>0 be an input vector and let u be an ADA update sequence

(�nite or in�nite). The n-th ADA iterate with respect to ît;in and u is de�ned by

i
n (̂it;in; u) := ît;out

(̂
it;in; u(n)

)
; where n

{
� ` if u is of length `

2 N if u is an in�nite sequence;

where ît;out

(̂
it;in; u(n)

)
is the output of Algorithm 5.2 given the inputs ît;in and u(n) ac-

cording to De�nition 5.36. The components of the n-th ADA iterate are denoted by

i
n (̂it;in; u) = (in1 ; : : : ; i

n
N).

Corollary 7.23 By construction, the n-th ADA iterate i
n (̂it;in; u) corresponds to the in-

cumbent drifted test ioni current vector after the n-th iteration with the for-loop of Algo-

rithm 7.1 given the inputs ît;in and u.

The ADA iterates can be recursively calculated, if the corresponding outputs of Algo-
rithm 5.2 are valid, i.e., if no component of the corresponding output vectors is NaN. To
avoid case distinctions with respect to such a situation a feasibility condition is introduced
before the recursive formula to calculate the ADA iterates is presented.

De�nition 7.24 An input vector ît;in 2 R
N
>0 and an ADA update sequence u are called

feasible input combination, if all ADA iterates i
n = (in1 ; : : : ; i

n
N) are an element of RN , i.e.,

if inp 6= NaN for all p 2 [N] and for all n 2 [`] (u of length `) or for all n 2 N (u in�nite

sequence).

Remark 7.25 Note that De�nition 7.24 is implicitly related to an HE model H, the ADA

parameters (s j ; t j ; i js ; i
j
t), j 2 [N], and the drift resistance rD. For instance, let H 6= H

be two di�erent HE models. Then, ît;in and u being a feasible input combination for H,

(s j ; t j ; i js ; i
j
t), j 2 [N], and rD does not imply that they are a feasible input combination for

H, (s j ; t j ; i js ; i
j
t), j 2 [N], and rD.

Remark 7.26 As already mentioned at the introduction to this Chapter 7, it is implicitly

assumed that an HE model H, a drift resistance rD � 0 and N ADA pairs (sp; tp; ips ; i
p
t ),

p 2 [N], are given for the remainder of this chapter.

For feasible input combinations the ADA iterates can be recursively calculated as follows.
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Lemma 7.27 Let ît;in 2 R
N
>0 be an input vector and let u = (un)n2[`] (n 2 N) be a

�nite (in�nite) ADA update sequence such that they are a feasible input combination.

Let i
n (̂it;in; u) = (in1 ; : : : ; i

n
N) be the corresponding n-th ADA iterate. Then, the following

recursion with i
0(̂it;in; u) := ît;in holds for all n 2 [`] (n 2 N):

i
n (̂it;in; u) =


(
A1
i (i

n�1
1 ); in�12 ; : : : ; in�1N

)
if un = 1;(

in�11 ; : : : ; in�1p�1 ; B
p

�p�1(in�1

p�1
)
(in�1p ); in�1p+1 ; : : : ; i

n�1
N

)
if un =: p � 2:

(7.3)

In particular, i
n (̂it;in; u) 2 R

N
>0 holds.

Proof. Let i in = (i in1 ; : : : ; i
in
N ) be an input vector and let u = (un)n2[`] be an ADA update

sequence of length ` such that ît;in and u are a feasible input combination. Because ît;in and
u are a feasible input combination, the conditions in�11 2 Î1 (if un = 1) and inp 2 Îp

�p�1(in�1

p�1
)

(if un � 2 =: p) are met for all n 2 [`] (De�nition 7.24), i.e., all considered function
evaluations are well-de�ned in this proof. In the following, the statement is shown by
induction over the length n of the ADA subsequences u(n), i.e., over the �rst n entries of
u, n 2 [`].
Base case:

Let n = 1, then u(n) = (u1) with u1 2 [N]. The corresponding output of Algorithm 7.1 is

ît;out

(̂
it;in; u(1)

)
=


(
A1
i (i

in
1 ); i

in
2 ; : : : ; i

in
N

)
if u1 = 1;(

i in1 ; : : : ; i
in
p�1; B

p

�p�1(i inp�1
)
(i inp ); i

in
p+1; : : : ; i

in
N

)
if u1 =: p � 2:

Because i
1(̂it;in; u) = ît;out

(̂
it;in; u(1)

)
according to De�nition 7.22, (7.3) hods for n = 1.

Induction hypothesis:

For a certain k < ` let (7.3) hold for all n � k .
Induction step:

Let uk+1 be the (k+1)st entry of the ADA update sequence u. According to Corollary 7.23,
the incumbent vector after the k-th iteration of the for-loop of Algorithm 7.1 is the k-th
ADA iterate i

k (̂it;in; u) = (ik1 ; : : : ; i
k
N), which is recursively calculated by (7.3) according

to the induction hypothesis. In the (k + 1)st iteration, the for-loop is executed with
(i1; : : : ; iN) = (ik1 ; : : : ; i

k
N) and with p = uk+1. Only the p-th component is updated by

ip  

{
A1
i (i1) if p = 1

Bp
�p�1(ip�1)

(ip) if p � 2;
i.e., ik+1

p =

A1
i (i

k
1 ) if p = 1

Bp

�p�1(ikp�1
)
(ikp ) if p � 2:

The remaining components are not updated in the (k + 1)st iteration and thus ik+1
�p = ik�p

holds for �p 2 [N] n fpg. In total, (7.3) also holds for n = k + 1.
The base case and the induction step are also valid for in�nite ADA update sequences and
thus (7.3) holds for in�nite ADA update sequences as well.
Because the codomains of all considered iteration functions are R>0 (Lemmas 6.8 and
7.10), i

n (̂it;in; u) 2 R
N
>0 holds for all n 2 [`].
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Chapter 7 ADA Procedure with a Plurality of ADA Pairs

With the concept of ADA iterates at hand, we can consider the output of Algorithm 5.2
for in�nite ADA update sequences. Let u be an in�nite ADA update sequence and let
ît;in be an input vector such that ît;in and u are a feasible input combination. Then, we
are interested in whether lim

n!1
i
n (̂it;in; u) exists and if so, does lim

n!1
i
n (̂it;in; u) = i

�� hold?

Similar to the case N = 1, we consider a resistance based variant to answer these questions.
In the following section we de�ne and analyze a resistance based iteration function that is
closely related to Bp

v but that is more accessible to a corresponding �xed point analysis.

7.2. Resistance Based Approach

As detailed in Section 5.1.1, the drifted test ioni current approximation ip and the corre-
sponding drift resistance approximation r̂pD at the test fan speed tp of ADA pair p, p 2 [N],
are related by r̂pD = �p(ip), see also De�nition 5.9. This relation is used to construct the
resistance based approach in this section.

7.2.1. Drift Resistance Super Fixed Point Vector

In the previous section, the (ioni current based) ADA iterate i
n (̂it;in; u) and the super �xed

point vector i
�� are de�ned. In this subsection, their resistance based counterparts are

de�ned. The p-th component of i
n (̂it;in; u) corresponds to the incumbent drifted test ioni

current approximation of ADA pair p after the n-th iteration. This approximation can be
transformed to the corresponding drift resistance approximation by applying the function
�p.

De�nition 7.28 Let ît;in 2 R
N
>0 = (i in1 ; : : : ; i

in
N ) be an input vector and let u be a �nite or

in�nite ADA update sequence such that ît;in and u are a feasible input combination. For

n 2 [`] (u has length `) or n 2 N (u is an in�nite sequence) let i
n (̂it;in; u) = (in1 ; : : : ; i

n
N)

be the corresponding n-th ADA iterate.

The n-th resistance based ADA iterate with respect to ît;in and u is the vector

r
n (̂it;in; u) = (rn1 ; : : : ; r

n
N) de�ned by rnp := �p(inp ) 8 p 2 [N]:

Lemma 7.29 The n-th resistance based ADA iterate is well de�ned for all n 2 [`] (n 2 N,

if u is an in�nite ADA update sequence).

Proof. Let ît;in be an input vector and let u be an ADA update sequence such that ît;in

and u are a feasible input combination. Let i
n (̂it;in; u) = (in1 ; : : : ; i

n
N) be the corresponding

n-th ADA iterate. According to Lemma 7.27, inp > 0 holds for all p 2 [N]. Because R>0

is the domain of �p (De�nition 5.9), �p(inp ) is de�ned for all p 2 [N].

If the limit of the ioni current based ADA iterates exists, it is related to the limit of the
resistance based ADA iterates.
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Theorem 7.30 Let u be an in�nite ADA update sequence and let ît;in be an input vector

such that ît;in and u are a feasible input combination. Let i
� = (i�1 ; : : : ; i

�
N) 2 R

N
>0.

Then, the following holds:

lim
n!1

i
n (̂it;in; u) = i

� , lim
n!1

r
n (̂it;in; u) =

(
�1(i�1 ); : : : ; �

N(i�N)
)
:

Proof. Let u be an in�nite ADA update sequence and let ît;in be an input vector such that
ît;in and u(n) are a feasible input combination for all n 2 N and let i

� = (i�1 ; : : : ; i
�
N) 2

RN
>0. Aiming at a better readability, the n-th ADA iterate i

n (̂it;in; u) is abbreviated by i
n.

Analogously, the n-th resistance based ADA iterate is abbreviated by r
n. The components

of the n-th iterates are denoted by i
n = (in1 ; : : : ; i

n
N) and r

n = (rn1 ; : : : ; r
n
N). Recall from

De�nition 7.28 that rnp = �p(inp ) for all p 2 [N] and for all n 2 N.
")" Let limn!1 i

n = i
�. According to Lemma 7.27, we have (in)n2N 2 R

N
>0 for all

n 2 N. Furthermore, limn!1 i
n 2 RN

>0 holds by assumption. Therefore, for all p 2 [N]

there exists imin;p > 0 such that imin;p � inp for all n 2 N as well as imin;p � i�p . We set
imin := minp2[N](imin;p). Then, we have

0 < imin � inp 8 p 2 [N] 8 n 2 N and imin � i�p 8 p 2 [N]:

Let " > 0 arbitrary but �xed. We set " :=
i2
min

U ". Note that imin > 0 and thus " > 0 and
therefore

lim
n!1

i
n = i

� ) 9 �n 2 N : kin � i
�kmax < " 8 n � �n

) jinp � i�p j < " 8 p 2 [N] 8 n � �n:

In total, for p 2 [N] and for n � �n, we have∣∣rnp � �p(i�p )
∣∣ = ∣∣�p(inp )� �p(i�p )

∣∣ = ∣∣∣U
inp
� rpt �

(U
i�p
� rpt

)∣∣∣ = U
∣∣∣ 1
inp
�

1

i�p

∣∣∣
= U

∣∣∣ i�p
inp i

�
p

�
inp
inp i

�
p

∣∣∣ = U

inp i
�
p

ji�p � inp j �
U

inp i
�
p

kin � i
�kmax

<
U

inp i
�
p

" =
U

inp i
�
p

imin
2

U
" � ":

Therefore,
∥∥r

n�
(
�1(i�1 ); : : : ; �

N(i�N)
)∥∥

max
< " for all n � �n and thus limn!1 r

n (̂it;in; u) =(
�1(i�1 ); : : : ; �

N(i�N)
)
holds.

"(" Let limn!1 r
n (̂it;in; u) =

(
�1(i�1 ); : : : ; �

N(i�N)
)
. Recall that �p : R>0 ! (�rpt ;1)

is bijective (Lemma 5.11). Because rnp = (�p)�1(inp ), we have rnp > �rpt for all p 2 [N]

and for all n 2 N. Furthermore, i�p > 0 by assumption and thus �p(i�p ) > �rt holds for all
p 2 [N] as well. Therefore, for all p 2 [N] there exists rmin;p > �r

p
t such that rmin;p � rnp

for all n 2 N and rmin;p � �p(i�p ). We set rmin := minp2[N](rmin;p + rpt ). Then, we have
rmin > 0 and

rmin � rmin;p + rpt � rnp + rpt 8 p 2 [N] 8 n 2 N as well as rmin � �p(i�p )+ rpt 8 p 2 [N]:
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Let " > 0 arbitrary but �xed. We set " :=
r2
min

U ". Note that rmin > 0 and thus " > 0. By
using the abbreviation r

� =
(
�1(i�1 ); : : : ; �

N(i�N)
)
, we have

lim
n!1

r
n = r

� ) 9 �n 2 N : krn � r
�kmax < " 8 n � �n

)
∣∣rnp � �p(i�p )

∣∣ < " 8 p 2 [N] 8 n � �n:

With this, we can state that for all p 2 [N] and for all n � �n

jinp � i�p j =
∣∣(�p)�1 � �p(inp )� (�p)�1 � �p(i�p )

∣∣ = ∣∣(�p)�1(rnp )� (�p)�1 � �p(i�p )
∣∣

=
∣∣∣ U

rnp + rpt
�

U

�p(i�p ) + rpt

∣∣∣ = U

(rnp + rpt )(�
p(i�p ) + rpt )

j�p(i�p )� rnp j

<
U

(rnp + rpt )(�
p(i�p ) + rpt )

" =
U

(rnp + rpt )(�
p(i�p ) + rpt )

r2min

U
"

=
rmin

rnp + rpt
�

rmin

�p(i�p ) + rpt
� " � 1 � 1 � " = ":

Therefore,
∥∥i

n � i
�kmax < " for all n � �n and thus limn!1 i

n (̂it;in; u) = i
� holds.

Remark 7.31 From a practical point of view, the requirement of Theorem 7.30 that the

limit i
� is an element of RN

>0, i.e., i
�
p > 0 for all p 2 [N], is not restrictive. Indeed, in

practice every drifted and undrifted ioni current is greater than zero, see also Remarks 3.4

and 3.5.

Theorem 7.30 motivates the following de�nition of the drift resistance super �xed point
vector.

De�nition 7.32 Let i
�� = (i��1 ; : : : ; i��N ) be the super �xed point vector of a feasible scenario

according to De�nition 7.16. The corresponding drift resistance super �xed point vector
is de�ned by

r
�� :=

(
�1(i��1 ); : : : ; �N(i��N )

)
:

Lemma 7.33 The vector r
�� is well-de�ned.

Proof. Let i
�� = (i��1 ; : : : ; i��N ) be feasible. Then, i��p > 0 holds for all p 2 [N] (Lemma 7.18).

Because (0;1) is the domain of �p, r��p = �p(i��p ) is well-de�ned for all p 2 [N].

Remark 7.34 The drift resistance super �xed point vector r
�� is de�ned for the case of a

feasible scenario only.

Corollary 7.35 Let there be a feasible scenario, i.e., let i
�� 2 RN

>0. Furthermore, let u be

a given in�nite ADA update sequence and let ît;in be a given input vector. If ît;in and u are

a feasible input combination, then

lim
n!1

i
n (̂it;in; u) = i

�� , lim
n!1

r
n (̂it;in; u) = r

��:

Proof. The statement follows from Theorem 7.30 and De�nition 7.32.
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7.2 Resistance Based Approach

Corollary 7.35 legitimates the approach to consider the resistance based iterates in order
to analyze the convergence characteristics of Algorithm 5.2 in the case N � 2. There
exists a resistance based iteration function Cp

rD;v that allows to recursively calculate the
drift resistance super �xed point vector and to recursively calculate the resistance based
ADA iterates. This function is essential for the analysis of the �xed point characteristics
of Algorithm 5.2 and thus it is detailed in the following.

7.2.2. Resistance Based ADA Iteration Function with a Plurality of ADA

Pairs

The resistance based iteration function for the case N � 2 is based on the iteration function
Ap
rD : R̂p

rD ! R for the case N = 1. The function Ap
rD is introduced in De�nition 6.21 and

its �xed point characteristics are thoroughly analyzed in Chapter 6. The domain of the
resistance based iteration function for the case N � 2 is the set R̂p

rD;v from De�nition 7.4.

De�nition 7.36 Let rD � 0 and let p 2 f2; : : : ; Ng. Furthermore, let ip�1 2 R>0 such

that v := �p�1(ip�1) 2 V p
rD . The resistance based iteration function of ADA pair p given

v is de�ned by

Cp
rD;v

: R̂p
rD;v
! R; Cp

rD;v
:= Ap

rD
� !p

v = ��
rpt
� �tp;rD � �

�1
sp;rD

� �+
rps
� !p

v :

Remark 7.37 The physical interpretation of Cp
rD;v is as follows. According to Remark 7.3,

v := �p�1(ip�1) corresponds to the drift resistance approximation at the test fan speed of

ADA pair p � 1. Then, !p
v (r) = wpr + (1� wp)v is the weighted sum of r and v , where

r is an approximation of the drift resistance at the test fan speed of ADA pair p. This

weighted sum corresponds to the drift resistance approximation at the start fan speed sp

of ADA pair p (Lemmas 5.13 and 5.14). Thereafter, this drift resistance approximation is

plugged into the drift resistance iteration function Ap
rD , which is detailed in Section 6.2.

In contrast, in the case N = 1, the drift resistance approximation function is constant with

the fan speed, because only a single ADA pair is considered. Accordingly, the drift resistance

approximation at the fan speed sp corresponds to the drift resistance approximation at the

test fan speed of ADA pair p in this case. Therefore, the drift resistance approximation r

of pair p is plugged directly into Ap
rD , i.e., the weighted sum is omitted in the case N = 1.

In Example 7.44, the function Cp
rD;v is illustrated in the context of the drift resistance super

�xed point vector r
��.

Remark 7.38 Analogously to Remark 7.12, if there is no risk of confusion, the subscript

rD of Cp
rD;v is omitted in the following.

Lemma 7.39 The function Cp
v is well-de�ned, i.e., it can be evaluated for all r 2 R̂p

v .

Proof. Let r 2 R̂p
v . Because R̂

p
v =

(
!p
v

)�1
(R̂p) (De�nition 7.4), we have q := !p

v (r) 2 R̂p.
The set R̂p is the domain of Ap and thus Cp

v (r) = Ap � !p
v (r) = Ap(q) exists.
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The following lemma states how the resistance based iteration function Cp
v and the ioni

current based iteration function Bp
v are related.

Lemma 7.40 Let p 2 f2; : : : ; Ng and let v 2 V p. Then, we have

Cp
v = �p � Bp

v � (�
p)�1 :

Proof. Using that

� Cp
v = Ap � !p

v (De�nition 7.36),

� Ap = �p � Ap
i �

(
�p

)�1
(Lemma 6.30),

� Ap
i = �tp;rD � �

�1
sp;rD

� 
p � �p (De�nition 6.5),

� �p �
(
�p

)�1
= id(�rpt ;1) (Lemma 5.11),

� Bp
v = �tp;rD � �

�1
sp;rD

� 
p � !p
v � �

p (De�nition 7.8),

we have

Cp
v = Ap � !p

v =
(
�p � Ap

i � (�
p)�1

)
� !p

v

= �p � (�tp;rD � �
�1
sp;rD

� 
p � �p) � (�p)�1 � !p
v

= �p � �tp;rD � �
�1
sp;rD

� 
p � !p
v �

(
�p � (�p)�1

)
= �p � (�tp;rD � �

�1
sp;rD

� 
p � !p
v � �

p) �
(
�p

)�1
= �p � Bp

v �
(
�p

)�1
:

In the third line, we used that R̂p
v is the domain of Cp

v and that �p �
(
�p

)�1
(R̂p

v ) = R̂p
v

holds (Lemma 7.5).

The �xed points of Bp
v and Cp

v are also related (if they exist).

Lemma 7.41 Let p 2 f2; : : : ; Ng and let v 2 V p. Then i� is a �xed point of Bp
v if and

only if �p(i�) is a �xed point of Cp
v .

Proof. According to Lemma 7.40, we have Bp
v = (�p)�1 � Cp

v � �
p and thus

Bp
v (i

�) = i� , (�p)�1 � Cp
v � �

p(i�) = i� , Cp
v � �

p(i�) = �p(i�):

Recall from De�nition 7.14 that the components of the super �xed point vector i
�� are

�xed points of certain ioni current based iteration functions Bp
v . Because the �xed points

of Bp
v and Cp

v are related according to Lemma 7.41, the components of the drift resistance
super �xed point vector r

�� are �xed points of certain associated resistance based iteration
functions Cp

v .
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Lemma 7.42 Let there be a feasible scenario, i.e., let i
�� = (i��1 ; : : : ; i��N ) 2 RN

>0, and let

r
�� = (r��1 ; : : : ; r��N ) be the corresponding drift resistance super �xed point vector. Then,

the following recursion holds:

r��1 = �x(A1) and r��p = �x
(
Cp
r��p�1

)
8 p 2 f2; : : : ; Ng:

Proof. For this proof, recall that r��p = �p(i��) for all p 2 [N] (De�nition 7.32). We begin

with p = 1. By considering that i��1 = �x(A1
i ) (De�nition 7.14) and A1

i =
(
�1

)�1
�A1 ��1

(Lemma 6.25), we have

i��1 = A1
i (i

��
1 ) =

(
�1

)�1
� A1 � �1(i��1 ) , r��1 = �1(i��1 ) = A1 � �1(i��1 ) = A1(r��1 ):

Next, let p 2 f2; : : : ; Ng. By considering that i��p = �x
(
Bp
�p�1(i��p�1

)

)
(De�nition 7.14),

�p�1(i��p�1) = r��p�1 (De�nition 7.32), Bp
v (i

�) = i� if and only if Cp
v � �

p(i�) = �p(i�)

(Lemma 7.41) and r��p = �p(i��p ) (De�nition 7.32), we have

i��p = Bp
�p�1(i��p�1

)
(i��p ) = Bp

r��p�1

(i��p ) , �p(i��p ) = Cp
r��p�1

� �p(i��p ) , r��p = Cp
r��p�1

(r��p ):

Lemma 7.42 gives us a resistance based condition to check whether a scenario is feasible
or not.

Lemma 7.43 A scenario is feasible if and only if the N �xed points recursively de�ned by

r1 = �x(A1) and rp = �x
(
Cp
rp�1

)
8 p 2 f2; : : : ; Ng

exist.

Proof. ")" Let there be a feasible scenario. Then the super �xed point r
�� = (r��1 ; : : : ; r��N )

exists (De�nition 7.32) and rp = r��p holds for all p 2 [N] (Lemma 7.42).
"(" Let the N �xed points recursively de�ned by r1 = �x(A1) and rp = �x

(
Cp
rp�1

)
8 p 2

f2; : : : ; Ng exist. Then, rp, p 2 [N], must be an element of the domain of the cor-
responding function, i.e., r1 2 R̂1 and rp 2 R̂p

rp�1
for p 2 f2; : : : ; Ng. As a conse-

quence, (�p)�1(rp) exists for all p 2 [N] and (�p)
�1(rp) > 0 holds (Lemmas 6.4 and

7.5). We set ip := (�p)�1(rp) for all p 2 [N]. In the following, we show by induction
that i

�� = (i1; : : : ; ip) holds, where i
�� is the super �xed point vector according to De�ni-

tion 7.14. Because ip > 0 for all p 2 [N], the scenario is feasible in this case.
Base case: By applying Lemma 6.25, we have

r1 = A1(r1) ) �1 � A1
i � (�

1)�1(r1) ) (�1)�1(r1) = A1
i � (�

1)�1(r1) ) i1 = �x(A1
i ):

Because i��1 = �x(A1
i ) (De�nition 7.14), i

��
1 = i1 holds. In particular, we have i��1 = i1 > 0.

Induction hypothesis: Let there exist k 2 [N � 1] such that i��p = ip = (�p)�1(rp) for all
p 2 [k ].
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Induction step: Let p = k + 1. By applying Lemma 7.40, we have

rp = Cp
rp�1

(rp) = �p � Bp
rp�1
� (�p)�1 (rp) ) (�p)�1 (rp) = Bp

rp�1
(�p)�1 (rp)

) ip = Bp
rp�1

(ip):

Because rp�1 = �p�1(i��p�1) (induction hypothesis), we have ip = �x
(
Bp
�p�1(i��p�1

)

)
and thus

i��p = ip according to De�nition 7.14. In particular, i��p > 0 holds and the induction step is
completed. In total, we have i��p 6= NaN for all p 2 [N] and thus the scenario is feasible.

The recursive construction of the drift resistance super �xed point vector according to
Lemma 7.42 is demonstrated in the following example. This also includes a demonstration
of the corresponding iteration functions Cp

v .

Example 7.44 In this example, we determine the drift resistance super �xed point vector

r
�� = (r��1 ; r��2 ; r��3 ) of a feasible scenario with three ADA pairs, i.e, we have N = 3. For

the sake of simplicity, the considered functions and values are arti�cial. Furthermore, we

assume that the domains R̂p, p 2 [3], as well as the sets V 2 and V 3 are su�ciently large

such that all considered function evaluations are well-de�ned. Therefore, no domains or

other sets are speci�ed in this example. Let us suppose that

A1(r) :=
1

2
r +

1

2
; A2(r) :=

1

3
r; and A3(r) :=

1

4
r:

Then, Ap is strictly increasing, contractive and a selfmap for p 2 [3] (if the domains

contain the corresponding �xed points). Because A1(1) = 1
2+

1
2 = 1, we have �x(A1) = 1.

According to Lemma 7.42, the �rst component of the drift resistance super �xed point

vector is r��1 = �x(A1) = 1.

For the second and third component of r
��, we need the weights of the corresponding

weighted sums. In this example, let the weights be w2 = 1
2 and w3 = 4

5 , i.e., we have

!2
v (r) = w2r + (1� w2)v =

1

2
r +

1

2
v and !3

v (r) = w3r + (1� w3)v =
4

5
r +

1

5
v :

Because Cp
v = Ap � !p

v (De�nition 7.36), we have

C2
v1 =

1

3
(
1

2
r+

1

2
v1) =

1

6
r+

1

6
v1; v1 2 V 2 and C3

v2 =
1

4
(
4

5
r+

1

5
v2) =

1

5
r+

1

20
v2; v2 2 V 3:

To avoid confusions with the used indices, recall from Remark 7.3 that V p is the set

of feasible drift resistance approximations of the upper neighbor of ADA pair p. I.e.,

the physical interpretation of vp�1 2 V p is that vp�1 is the incumbent drift resistance

approximation of ADA pair p � 1, which in�uences the drift resistance approximation of

ADA pair p.

Note that C2
v and C3

v are both strictly increasing and contractive. This is no coincident.

Corresponding statements is presented in Lemmas 7.46 and 7.48 below. In particular,

Lemma 4.46 can be applied, which states that both functions are selfmaps if and only if
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their (unique) �xed points exist. Because we assume that the domains R̂2
v and R̂3

v as well

as the sets of feasible upper neighbors V 2 and V 3 are su�ciently large in this example, the

�xed points �x(C2
v1) and �x(C3

v2) exist.

We continue to recursively determine the drift resistance �xed point vector r
��. According

to Lemma 7.42, r��2 = �x(C2
r��
1

) holds. Because r��1 = 1, we have

C2
r��
1
(r) =

1

6
r +

1

6
r��1 =

1

6
r +

1

6
) �x(C2

r��
1
) =

1

5

(
since C2

r��
1
(
1

5
) =

1

30
+

1

6
=

6

30
=

1

5

)
and thus r��2 = 1

5 . Analogously, we have

C3
r��
2
(r) =

1

5
r+

1

20
r��2 =

1

5
r+

1

100
) �x(C3

r��
2
) =

1

80

(
since C3

r��
2
(
1

80
) =

1

400
+

1

100
=

5

400

)
and thus r��3 = 1

80 . With this, the drift resistance super �xed point vector is fully determined

as r
�� =

(
1; 15 ;

1
80

)
. The corresponding super �xed point vector i

�� = (i��1 ; : : : ; i��N ) can be

calculated from r
�� with i��p =

(
�p

)�1
(r��p ) (De�nition 7.32). However, this requires the

voltage U and the test ioni current ipt of each ADA pair p, p 2 [3]. Because U and the

test ioni currents are only implicitly given in this example, we refrain from calculating i
��.

A further bene�t from the fact that Cp
v and Bp

v are related by Cp
v = �p � Bp

v � (�
p)�1

is that the resistance based ADA iterates r
n (̂it;in; u) can also be recursively calculated by

certain functions Cp
v .

Lemma 7.45 Let ît;in 2 R
N
>0 = (i in1 ; : : : ; i

in
N ) be an input vector and let u = (un)n2[`]

be an ADA update sequence of length `, ` 2 N, such that ît;in and u are a feasible

input combination. For n 2 [`] let r
n (̂it;in; u) = (rn1 ; : : : ; r

n
N) be the corresponding n � th

resistance based ADA iterate. With r0p := �p(i inp ) for all p 2 [N] the following recursion

holds:

r
n (̂it;in; u) =


(
A1(rn�11 ); rn�12 ; : : : ; rn�1N

)
if un = 1;(

rn�11 ; : : : ; rn�1p�1 ; C
p

rn�1

p�1

(rn�1p ); rn�1p+1 ; : : : ; r
n�1
N

)
if un =: p � 2:

(7.4)

This recursion also holds for in�nite ADA update sequences.

Proof. The statement is shown by induction over n.
Base case:

Let n = 1 and let r
1(̂it;in; u) = (r11 ; : : : ; r

1
N) be the corresponding �rst resistance based

ADA iterate as well as i (̂it;in; u) = (i11 ; : : : ; i
1
N) the corresponding �rst ioni current based

ADA iterate. Then, r1p = �1(i1p ) holds for all p 2 [N] (De�nition 7.28). According to
Lemma 7.27, we have

i
1
(̂
it;in; u

)
=


(
A1
i (i

in
1 ); i

in
2 ; : : : ; i

in
N

)
if u1 = 1;(

i in1 ; : : : ; i
in
p�1; B

p

�p�1(i inp�1
)
(i inp ); i

in
p+1; : : : ; i

in
N

)
if u1 =: p � 2:
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Let u1 = 1. Then, we have

r11 = �1 � A1
i (i

in
1 ) = �1 � A1

i � (�
1)�1 � (�1)(i in1 ) = �1 � A1

i � (�
1)�1(r01 ) = A1(r01 );

where the last equality follows from Lemma 6.25. For �p 2 f2; : : : ; Ng, we have r1�p =

� �p(i1�p ) = � �p(i in�p ) = r0�p . Therefore, (7.4) holds for n = 1 and u1 = 1.
Now, let u1 = p, p � 2. By construction, we have �p�1(i inp�1) = r0p�1 and thus

r1p = �p(i1p ) = �p � Bp

�p�1(i inp�1
)
(i inp ) = �p � Br0p�1

(i inp ) = �p � Br0p�1
� (�p)�1 � �p(i inp )

= �p � Br0p�1
� (�p)�1(r0p ) = Cp

r0p�1

(r0p );

where the last equality follows from Lemma 7.40. With this, (7.4) also holds in the case
u1 � 2 and the base case is proved.
Induction hypothesis:

For a certain k < `, k 2 N, let (7.4) hold for all n � k .
Induction step:

According to Lemma 7.27, the (k + 1)st ADA iterate is

i
k+1(̂it;in; u) =


(
A1
i (i

k
1 ); i

k
2 ; : : : ; i

k
N

)
if uk+1 = 1;(

ik1 ; : : : ; i
k
p�1; B

p

�p�1(ikp�1
)
(ikp ); i

k
p+1; : : : ; i

k
N

)
if uk+1 =: p � 2:

Analogous to the base case, we have

r
k+1(̂it;in; u) =


(
A1(r k1 ); r

k
2 ; : : : ; r

k
N

)
if uk+1 = 1;(

r k1 ; : : : ; r
k
p�1; C

p

rkp�1

(r kp ); r
k
p+1; : : : ; r

k
N

)
if uk+1 =: p � 2:

Therefore, by considering the induction hypothesis, (7.4) holds for all n � k + 1 and the
induction is completed.
Because the base case and the induction step are also valid for in�nite ADA update se-
quences, (7.4) holds for in�nite ADA update sequences as well.

Our goal is to show that lim
n!1

r
n (̂it;in; u) = r

�� for certain inputs ît;in and u. Because

r
n (̂it;in; u) and r

�� can be calculated by functions Cp
v according to Lemmas 7.45 and 7.42,

respectively, the resistance based iteration function is considered in more detail in the
following subsection.

7.2.3. Properties of the Resistance Based ADA Iteration Function Cp
v

Since Cp
v is a composite function that contains Ap, Cp

v inherits some of the properties
of Ap. Because Cp

v is only de�ned for p � 2, we assume that p 2 f2; : : : ; Ng for the
remainder of this subsection.

Lemma 7.46 The function Cp
v is strictly increasing.
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Proof. The functions !p
v and Ap are strictly increasing according to Lemmas 7.2 and 6.34,

respectively. As a composition of strictly increasing functions, Cp
v = Ap �!p

v is also strictly
increasing.

A bene�t of the fact that Cp
v is strictly increasing is that Lemma 4.46 can be applied.

Corollary 7.47 Let Cp
v : R̂p

v ! R be contractive. Then, Cp
v is a selfmap if and only if Cp

v

has a �xed point. Furthermore, if Cp
v has a �xed point, it is unique, and the Picard iteration

associated to Cp
v converges to this �xed point for an arbitrary starting point r 2 R̂p

v .

Proof. Because Cp
v is strictly increasing (Lemma 7.46) and its domain R̂p

v is a closed and
bounded interval (Lemma 7.7), Lemma 4.46 can be applied.

Since we are interested in "good" convergence characteristics of the Picard iteration
associated to Cp

v , we are interested in conditions that guarantee that C
p
v is contractive and

that Cp
v is a selfmap. These are closely related to the corresponding conditions for Ap.

Lemma 7.48 If Ap is contractive, then Cp
v is contractive.

Proof. Let Ap be contractive and let r1; r2 2 R̂p
v with r1 6= r2. We have to show that

jCp
v (r1)� Cp

v (r2)j < jr1 � r2j. According to Lemma 5.13, we have 0 < wp < 1 and thus∣∣!p
v (r1)� !p

v (r2)
∣∣ = ∣∣∣wpr1 + (1� wp)v �

(
wpr2 + (1� wp)v

)∣∣∣ = wpjr1 � r2j < jr1 � r2j:

Furthermore, Ap is contractive by assumption and thus

jCp
v (r1)� Cp

v (r2)j = jA
p � !p

v (r1)� Ap � !p
v (r2)j < j!

p
v (r1)� !p

v (r2)j < jr1 � r2j:

The converse is not true in general, i.e., if Cp
v is contractive, then this does not imply

that Ap is contractive. This is brie�y demonstrated in the following counterexample.

Example 7.49 Let Ap be de�ned by Ap(r) = 2r and let wp = 1
3 , i.e., !

p
v (r) =

1
3 r +

2
3v .

Then, Ap is not contractive, because jA(r1)�A(r2)j = 2jr1� r2j > jr1� r2j for all r1 6= r2.

However, Cp
v (r) = Ap � !p

v (r) = 2
(
1
3 r +

2
3v

)
is contractive, because

∣∣Cp
v (r1)� Cp

v (r2)
∣∣ = ∣∣2

3
r1 +

4

3
v � (

2

3
r2 +

4

3
v)
∣∣ = 2

3
jr1 � r2j < jr1 � r2j 8 r1 6= r2:

Furthermore, if Ap has a �xed point, then this does in general not imply that Cp
v has a

�xed point. As a consequence, if Ap is a selfmap, then this does in general not imply that
Cp
v is a selfmap. Both aspects are demonstrated in the following counterexample.

Example 7.50 Let R̂p = [�1; 1] and let Ap : R̂p ! R be de�ned by Ap(r) := 1
2 r .

Furthermore, let wp = 1
2 , which is in accordance with Lemma 5.13. In this example, the
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test resistance rpt is not further speci�ed. However, rpt > 0 holds according to Remark 5.8.

Because

rpt > 0 )
min R̂p + wprpt

1� wp
= 2

(
�1 +

1

2
rpt
)
= �2 + rpt > �2;

we can state that (�1;�2] � V p :=
{
v 2 R : v <

min R̂p+wprpt
1�wp

}
(De�nition 7.4). We

select v := �2. Because v 2 V p in this example, the corresponding set R̂p
v and function

Cp
v are well-de�ned. We have !p

v (x) = wpx + (1� wp)v = 1
2x +

1
2(�2) and thus

Cp
v (r) = Ap � wp(r) =

1

2
(
1

2
r � 1) =

1

4
r �

1

2
:

According to De�nition 7.4, the domain of Cp
v is

R̂p
v =

(
!p
v

)�1
(R̂p) =

1

wp

(
R̂p � (1� wp)v

)
= 2

(
R̂p �

1

2
(�2)

)
= 2

(
[�1; 1] + 1

)
= [0; 4]:

Let us consider Ap �rst. The absolute value of its gradient is
∣∣ d
drA(r)

∣∣ = 1
2 and thus

smaller than one and therefore Ap is contractive. Furthermore, Ap has the �xed point

r� = 0. Thus, Ap is a selfmap according to Lemma 6.35.

Next, we consider the function Cp
v . Note that C

p
v is also contractive, which is in accordance

with Lemma 7.48. If Cp
v was considered as a function over R, then it would have the unique

�xed point r�v := �2
3 . But r

�
v is not an element of R̂p

v = [0; 4] and thus Cp
v does not have

a �xed point (within its domain). As a consequence, according to Corollary 7.47 we see

that Cp
v is not a selfmap, i.e., we have Cp

v (R̂
p
v ) * R̂p

v .

The drift resistance iteration function Cp
v is introduced to facilitate the convergence

analysis of Algorithm 5.2. In order to prove the convergence statements of Theorem 7.68
below, it is required that Cp

v is a selfmap for all v within a certain "-ball centered at r��p�1
for all p 2 f2; : : : ; Ng. However, as demonstrated in Example 7.50, it is not su�cient to
require that Ap is a selfmap to guarantee that Cp

v is a selfmap for all v 2 V p. Furthermore,
it is also not su�cient to require that a single Cp

�v , �v 2 V p, is a contractive selfmap to
guarantee that Cp

v is a contractive selfmap for all v 2 V p. In general, if Cp
v is a contractive

selfmap, then there might exist x 2 V p, x 6= v , such that Cp
x is not a selfmap. This is

demonstrated in the following example.

Example 7.51 Let us consider R̂p := [�1
2 ; 1] and let Ap(r) := 1

2 r for all r 2 R̂p. Note

that Ap is strictly increasing, contractive and has the �xed point r� = 0 2 R̂p. Thus,

Ap is also a selfmap according to Lemma 6.35. Let us consider a weight of wp = 1
2 and

let us assume that v := 1 and x := �1 are elements of V p. This gives us
(
!p
v

)�1
(r) =

1
wp

(
r � (1 � wp)v

)
= 2(r � 1

2 � 1) = 2r � 1. Because R̂p
v =

(
!p
v

)�1
(R̂p), we have

R̂p
v = [�2; 1] Analogously, we have

(
!p
x

)�1
(r) = 2r + 1 and R̂p

x = [0; 3].

Considering the iteration functions Cp
v and Cp

x , we have

Cp
v (r) = Ap � !p

v (r) =
1

2

(
wpr + (1� wp)v

)
=

1

2

(1
2
r +

1

2
� 1

)
=

1

4
r +

1

4
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and analogously Cp
x (r) =

1
4 r �

1
4 . Both functions are strictly increasing and contractive,

which is consistent with Lemmas 7.46 and 7.48. However, Cp
v is a selfmap on its domain

R̂p
v , whereas Cp

x is not a selfmap on its domain R̂p
x , which is shown in the following.

Note that r�v = 1
3 2 R̂p

v is a �xed point of Cp
v and thus Cp

v is a selfmap according to

Corollary 7.47. On the other hand, for r := 0 2 R̂p
x , we have Cp

x (r) = �
1
4 =2 R̂p

x and thus

Cp
x is not a selfmap on its domain.

However, if I = [v1; v2] � V p, then it is su�cient to check that Cp
v is a selfmap for

the boundaries v1 and v2 to guarantee that Cp
v is a selfmap for all v 2 I. To prove this,

some preliminary work must be done. Some of this preliminary work is also used to prove
the convergence statements in the following section. We begin with some monotonicity
properties of Cp

v .

Lemma 7.52 Let v1; v2 2 V p such that v1 < v2. Then, the following statements hold:

� !p
v1(r) < !p

v2(r) 8 r 2 R,

� Cp
v1(r) < Cp

v2(r) 8 r 2 R̂p
v1 \ R̂

p
v2 .

Proof. Let r 2 R. Because 0 < wp < 1 (Lemma 5.13), we have

v1 < v2 ) (1� wp)v1 < (1� wp)v2 ) wpr + (1� wp)v1 < wpr + (1� wp)v2

) !p
v1(r) < !p

v2(r):

Furthermore, because Ap is strictly increasing (Lemma 6.34), we have

Cp
v1(r) = Ap � !p

v1(r) < Ap � !p
v2(r) = Cp

v2(r)

for all r 2 R̂p
v1 \ R̂

p
v2 .

The following lemma is an auxiliary statement.

Lemma 7.53 Let v ; x 2 V p. Then, the following holds:

R̂p
v =

(
!p
v

)�1
� !p

x (R̂
p
x ) and r 2 R̂p

x , r +
1� wp

wp
(x � v) 2 R̂p

v :

Proof. By De�nition 7.4, we have R̂p
v =

(
!p
v

)�1
(R̂p) and R̂p

x =
(
!p
x

)�1
(R̂p). Therefore,

we have R̂p = !p
x (R̂

p
x ) and thus R̂p

v =
(
!p
v

)�1
(R̂p) =

(
!p
v

)�1
� !p

x (R̂
p
x ).

Let r 2 R̂p
x . According to Lemma 7.2, we have(

!p
v

)�1
� !p

x (r) =
(
!p
v

)�1(
wpr + (1� wp)x

)
=

1

wp

((
wpr + (1� wp)x

)
� (1� wp)v

)
= r +

1� wp

wp
(x � v)

and thus r 2 R̂p
x if and only if r + 1�wp

wp (x � v) 2 R̂p
v .
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If two iteration functions Cp
v and Cp

x are contractive selfmaps, then their �xed points
�x(Cp

v ) and �x(Cp
x ), respectively, exist (Corollary 7.47). The following lemma states that

the �xed point of Cp
v is contained in the domain of Cp

x and vice versa.

Lemma 7.54 Let v ; x 2 V p and let Cp
v as well as Cp

x be contractive selfmaps on R̂p
v and

R̂p
x , respectively. Then, we have

�x(Cp
v ) 2 R̂p

v \ R̂
p
x and �x(Cp

x ) 2 R̂p
v \ R̂

p
x :

Proof. Because Cp
v and Cp

x are contractive selfmaps, their unique �xed points �x(Cp
v ) 2 R̂p

v

and �x(Cp
x ) 2 R̂p

x , respectively, exist (Corollary 7.47). Let us consider �r :=
(
!p
v

)�1
�

!p
x

(
�x(Cp

x )
)
, which is an element of R̂p

v (Lemma 7.53). Therefore, we have

Cp
v (�r) = Ap � !p

v (�r) = Ap � !p
v �

(
!p
v

)�1
� !p

x

(
�x(Cp

x )
)

= Ap � !p
x

(
�x(Cp

x )
)
= Cp

x

(
�x(Cp

x )
)
= �x(Cp

x ):

Because Cp
v is a selfmap on R̂p

v , �x(C
p
x ) = Cp

v (�r) 2 R̂p
v holds. The statement �x(Cp

v ) 2 R̂p
x

is shown analogously by swapping the roles of v and x .

A consequence of Lemma 7.54 is that if a starting point r 2 R̂p
v \ R̂

p
x is considered, then

each iterate of the Picard iteration associated to Cp
v starting at r and each iterate of the

Picard iteration associated to Cp
x starting at r is contained in this intersection.

Corollary 7.55 Let v ; x 2 V p and let Cp
v as well as Cp

x be contractive selfmaps on R̂p
v and

R̂p
x , respectively. Furthermore, let r 2 R̂p

v \ R̂
p
x . Then, we have

8 n 2 N :
(
Cp
v

)n
(r) 2 R̂p

v \ R̂
p
x and

(
Cp
x

)n
(r) 2 R̂p

v \ R̂
p
x :

Proof. We begin with the �rst part and show
(
Cp
v

)n
(r) 2 R̂p

v \ R̂
p
x for all n 2 N. Because

r 2 R̂p
v and Cp

v is a selfmap on R̂p
v by assumption,

(
Cp
v

)n
(r) 2 R̂p

v holds for all n 2 N. To
show

(
Cp
v

)n
(r) 2 R̂p

x , we have to consider the �xed point of Cp
v . Because Cp

v and Cp
x are

contractive selfmaps (by assumption), their �xed points �x(Cp
v ) and �x(Cp

x ), respectively,
exist and �x(Cp

v ) 2 R̂p
x holds (Lemma 7.54). In the following, we distinguish three cases.

First, let r = �x(Cp
v ). Then,

(
Cp
v

)n
(r) = r 2 R̂p

x holds for all n 2 N. Next, let r < �x(Cp
v ).

Because R̂p
x is a closed interval (Lemma 7.7) and r 2 R̂p

x as well as �x(Cp
v ) 2 R̂p

x , we have
[r; �x(Cp

v )] � R̂p
x . By applying Lemma 4.45 inductively, r <

(
Cp
v

)n
(r) < �x(Cp

v ) holds for
all n 2 N and thus

(
Cp
v

)n
(r) 2 [r; �x(Cp

v )] � R̂p
x for all n 2 N. The third case, r > �x(Cp

v ),
is shown analogously to the second case, r < �x(Cp

v ). In total,
(
Cp
v

)n
(r) 2 R̂p

x holds for
all n 2 N in all three cases.
The second part of the statement,

(
Cp
x

)n
(r) 2 R̂p

v \ R̂
p
x for all n 2 N, is shown analogously

by swapping the roles of v and x .

Next, we show a monotonicity property between elements v 2 V p and the �xed points
of the corresponding iteration functions, �x(Cp

v ).
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Lemma 7.56 Let v ; x 2 V p and let Cp
v as well as Cp

x be contractive selfmaps. Then,

v < x ) �x(Cp
v ) < �x(Cp

x )

holds.

Proof. Let v < x , then we have Cp
v (r) < Cp

x (r) for all r 2 R̂p
v \ R̂p

x (Lemma 7.52).
Furthermore, we have �x(Cp

v ); �x(C
p
x ) 2 R̂p

v \ R̂
p
x (Lemma 7.54) and thus Cp

x

(
�x(Cp

v )
)
>

Cp
v

(
�x(Cp

v )
)
= �x(Cp

v ). Then, the Picard iteration associated to Cp
x starting at �x(Cp

v ) is
strictly increasing according to Lemma 4.47. Because the Picard iteration associated to Cp

x

converges to �x(Cp
x ) for an arbitrary starting point in R̂

p
x (Corollary 7.47), �x(C

p
x ) > �x(Cp

v )

holds.

There is also a relation between elements v 2 V p and the domains R̂p
v of the corre-

sponding iteration functions Cp
v .

Lemma 7.57 Let v1; v2 2 V p with v1 � v2. Then, the following holds:

x 2 [v1; v2] ) R̂p
v1 \ R̂

p
v2 � R̂p

x

Proof. By De�nition 7.4, we have R̂p
v1 =

(
!p
v1

)�1
(R̂p) and R̂p

v2 =
(
!p
v2

)�1
(R̂p). Let

�r 2 R̂p
v1 \ R̂

p
v2 , then there exist r1; r2 2 R̂p such that �r =

(
!p
v1

)�1
(r1) and �r =

(
!p
v2

)�1
(r2).

By considering Lemma 7.52, we have

v1 � x � v2 ) r1 = !p
v1(�r) � !p

x (�r) � !p
v2(�r) = r2:

Recall that R̂p is a closed interval (Lemma 6.11) and thus we have

!p
x (�r) 2 [r1; r2] � R̂p ) !p

x (�r) 2 R̂p ) �r 2
(
!p
x

)�1
(R̂p) = R̂p

x 8 x 2 [v1; v2]:

With this, we can �nally state that if Cp
v1 and C

p
v2 are both (contractive) selfmaps, where

v1 and v2 are the boundaries of an interval I = [v1; v2] � V p, then Cp
v is a selfmap for all

v 2 I.

Theorem 7.58 Let Ap be contractive. Let v1; v2 2 V p with v1 � v2 and let Cp
v1 as well as

Cp
v2 be selfmaps. Then,

x 2 [v1; v2] ) Cp
x is contractive selfmap

holds.

Proof. Let x 2 [v1; v2]. Because V p is an interval (De�nition 7.4) and v1; v2 2 V p by
assumption, [v1; v2] � V p holds and the function Cp

x : R̂p
x ! R exists (De�nition 7.36).

Furthermore, Cp
v1 , C

p
x and Cp

v2 are contractive, because Ap is contractive (Lemma 7.48).
Because Cp

v1 and Cp
v2 are contractive selfmaps, the �xed points �x(Cp

v1) and �x(Cp
v2) exist
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(Corollary 7.47) and �x(Cp
v1) � �x(Cp

v2) holds (Lemma 7.56). Furthermore, according to
Lemmas 7.54 and 7.57, [

�x(Cp
v1); �x(C

p
v2)

]
� R̂p

v1 \ R̂
p
v2 � R̂p

x

holds and thus we can evaluate Cp
x

(
�x(Cp

v1)
)
and Cp

x

(
�x(Cp

v2)
)
.

In the following, we show that the Picard iteration associated to Cp
x starting at �x(Cp

v1) is
strictly increasing and is bounded from above by �x(Cp

v2). Because x 2 [v1; v2], we have
v1 � x . If v1 = x there is nothing to show, because Cp

x = Cp
v1 in this case. Therefore,

let v1 < x . Then, we have �x(Cp
v1) = Cp

v1

(
�x(Cp

v1)
)
< Cp

x

(
�x(Cp

v1)
)
(Lemma 7.52).

Therefore, the Picard iteration associated to Cp
x starting at �x(Cp

v1) is strictly increasing
(Lemma 4.47). Next, we show that this Picard iteration is bounded from above by �x(Cp

v2).
This is done by induction over the number of iterations n. But �rst, we consider the
following auxiliary statement. Because x � v2, Ap as well as !p

v are both strictly increasing
and according to Lemma 7.52, the following holds for all r 2 R̂p

x \ R̂
p
v2 :

r � �x(Cp
v2) ) !p

x (r) � !p
v2(r) � !p

v2

(
�x(Cp

v2)
)

) Ap � !p
x (r) � Ap � !p

v2(r) � Ap � !p
v2

(
�x(Cp

v2)
)

) Cp
x (r) � Cp

v2

(
�x(Cp

v2)
)
= �x(Cp

v2): (7.5)

Base case:

For n = 0, we have
(
Cp
x

)0(
�x(Cp

v1)
)
= �x(Cp

v1) � �x(Cp
v2).

Induction hypothesis:

Let the statement hold for n = 0; : : : ; m.
Induction step:

We consider n = m+1. The inequality
(
Cp
x

)m(
�x(Cp

v1)
)
� �x(Cp

v2) holds according to the
induction hypothesis. By considering (7.5), we have(
Cp
x

)m(
�x(Cp

v1)
)
� �x(Cp

v2) )
(
Cp
x

)m+1(
�x(Cp

v1)
)
= Cp

x

((
Cp
x

)m(
�x(Cp

v1)
))
� �x(Cp

v2):

As a strictly increasing and bounded sequence, the considered Picard iteration converges to
a point r�x := limn!1

(
Cp
x

)n(
�x(Cp

v1)
)
2
[
�x(Cp

v1); �x(C
p
v2)

]
� R̂p

x . The following argument
why r�x is a �xed point of Cp

x is taken from [Ber07, p. 32]:

Cp
x (r

�
x ) = lim

n!1

(
Cp
x

)n+1(
�x(Cp

v1)
)
= lim

n!1

(
Cp
x

)n(
�x(Cp

v1)
)
= r�x :

Because Cp
x is contractive, the existence of a �xed point of Cp

x implies that Cp
x is a selfmap

(Corollary 7.47) and the statement is shown.

As already mentioned, the importance of Theorem 7.58 is that it reduces the list of
requirements of the convergence theorem that is presented in the following section. Be-
cause if Cp

r��p�1
�" and Cp

r��p�1
+" are selfmaps and Ap is contractive, then Cp

v is a contractive

selfmap for all v that are an element of the closed "-ball centered at r��p�1.
As a �nal preparation, we consider the intersection of two resistance based domains.
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Lemma 7.59 Let p 2 f2; : : : ; Ng and let v1; v2 2 V p. Furthermore, let R̂p
v1 = [rmin

v1 ; rmax
v1 ]

and let R̂p
v2 = [rmin

v2 ; rmax
v2 ]. Then, the following holds:

v1 < v2 ) R̂p
v1 \ R̂

p
v2 = [rmin

v1 ; rmax
v2 ]:

Proof. According to Lemma 7.7, the domains R̂p
v1 and R̂p

v2 are nonempty and closed in-
tervals and thus there exist rmin

v1 � rmax
v1 and rmin

v2 � rmax
v2 such that R̂p

v1 = [rmin
v1 ; rmax

v1 ] and
R̂p
v2 = [rmin

v2 ; rmax
v2 ]. Let v1 < v2. First, we show that rmin

v2 < rmin
v1 and rmax

v2 < rmax
v1 , which

is somehow counter-intuitive. Let us consider

0 < wp < 1 ) 1 <
1

wp
) 0 <

1

wp
� 1 =

1� wp

wp
)

1� wp

wp
(v1 � v2) < 0:

With this and by applying Lemma 7.53, we have

rmin
v2 = rmin

v1 +
1� wp

wp
(v1 � v2) < rmin

v1 and rmax
v2 = rmax

v1 +
1� wp

wp
(v1 � v2) < rmax

v1 :

Therefore, r 2 R̂p
v1 \ R̂

p
v2 if and only if r 2 [rmin

v1 ; rmax
v2 ].

This completes the analysis of the properties of the resistance based iteration function Cp
v

and we �nally have all the parts together to state and prove the convergence characteristics
of Algorithm 5.2 with a plurality of ADA pairs.

7.3. Convergence Characteristics of the ADA Algorithm with a

Plurality of ADA Pairs

In this section, we state conditions that guarantee that the output of Algorithm 5.2 con-
verges to the super �xed point vector i

��. For this, we require the concept of a su�ciently
well distributed ADA update sequence. We consider an ADA update sequence as su�-
ciently well distributed, if after each entry of the sequence there follows an in�nite number
of entries of each p 2 [N].

De�nition 7.60 An in�nite ADA update sequence u = (un)n2N is called su�ciently well
distributed if for all �n 2 N and for all p 2 [N] there exist an in�nite subsequence (unk )k2N
such that n1 � �n and unk = p for all k 2 N.

Example 7.61 Let u = (un)n2N be an in�nite ADA update sequence de�ned by

un :=


1; if 9 k 2 N0 : n = kN + 1
:::

N; if 9 k 2 N0 : n = kN + N;

i.e., u = (1; 2; : : : ; N; 1; 2; : : : ; N; : : : ):

Let �n � 1 and let p 2 [N]. Then, unk with nk := (k + �n)N + p is a subsequence of u

whose entries are all p such that n1 � �n. Therefore, u is a su�ciently well distributed

ADA update sequence.
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In contrast, let v = (vn)n2N be the in�nite ADA update sequence whose entries are all

one, i.e., vn = 1 for all n 2 N. The sequence v is not su�ciently well distributed because,

for example, there does not exist a subsequence whose entries are all two.

We continue with an important auxiliary statement. Recall from Remark 7.3 that v 2 V p

denotes the incumbent drift resistance approximation of ADA pair p � 1 and that we are
interested in the �xed points of Cp

v for certain v 2 V p according to Lemma 7.42. We de�ne
an auxiliary function that provides a link between the neighborhood of the drift resistance
super �xed point r��p�1 of ADA pair p � 1, which is a subset of V p, and the �xed points
of Cp

v for elements v taken from this neighborhood. This function is contractive, which is
essential for the proof of the major convergence Theorem 7.68 below and the reason why
the resistance based approach was taken in the �rst place.

De�nition 7.62 Let i
�� 2 RN

>0 and let r
�� = (r��1 ; : : : ; r��N ) be the corresponding drift

resistance super �xed point vector. Let p 2 f2; : : : ; Ng and let " > 0. We set m(") :=

r��p�1 � " and M(") := r��p�1 + ". If

� m(") 2 V p and M(") 2 V p,

� Ap is a contractive selfmap and

� Cp
m(")

as well as Cp
M(")

are selfmaps,

then we de�ne

'p
" : [m(");M(")]! [�x(Cp

m(")
); �x(Cp

M(")
)]; 'p

"(v) := �x(Cp
v ):

Theorem 7.63 The function 'p
" is well-de�ned, strictly increasing and contractive.

Proof. Let p 2 f2; : : : ; Ng, let m := r��p�1 � " and M := r��p�1 + ". To show that 'p
" is

well-de�ned, we have to show that for all v 2 [m;M]

� the function Cp
v is well-de�ned,

� the function Cp
v is a contractive selfmap (and thus �x(Cp

v ) exists),

� the image of [m;M] under 'p
" is a subset of [�x(Cp

m); �x(C
p
M)].

Because V p is an interval (De�nition 7.4), m;M 2 V p implies that [m;M] � V p. There-
fore, the function Cp

v is well-de�ned for all v 2 [m;M] (De�nition 7.36). By assumption,
Ap is contractive and the functions Cp

m as well as Cp
M are both selfmaps. Then, the

function Cp
v is also a contractive selfmap for all v 2 [m;M] (Theorem 7.58). Therefore,

the unique �xed point �x(Cp
v ) exists for all v 2 [m;M] (Corollary 7.47). To show that

'p
"

(
[m;M]

)
� [�x(Cp

m); �x(C
p
M)], we �rst show that 'p

" is strictly increasing. For this, let
v ; x 2 [m;M] such that v < x . Then, 'p

"(v) = �x(Cp
v ) < �x(Cp

x ) = 'p
"(x) holds according

to Lemma 7.56 and thus 'p
" is strictly increasing. With this, we have

v 2 [m;M] ) m � v � M ) 'p
"(m) � 'p

"(v) � 'p
"(M) ) 'p

"(v) 2
[
'p
"(m); 'p

"(M)
]
:
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Finally, we show that 'p
" is contractive. For this, let v ; x 2 [m;M] such that v 6= x . We

denote r�v := �x(Cp
v ) and r�x := �x(Cp

x ). By using that Ap is contractive, it follows that∣∣'p
"(v)� 'p

"(x)
∣∣ = ∣∣r�v � r�x

∣∣ = ∣∣Cp
v (r

�
v )� Cp

x (r
�
x )
∣∣ = ∣∣Ap � !p

v (r
�
v )� Ap � !p

x (r
�
x )
∣∣

<
∣∣!p

v (r
�
v )� !p

x (r
�
x )
∣∣ = ∣∣∣wpr�v + (1� wp)v �

(
wpr�x + (1� wp)x

)∣∣∣
=

∣∣wp(r�v � r�x ) + (1� wp)(v � x)
∣∣

< wpjr�v � r�x j+ (1� wp)jv � x j

= wp
∣∣'p

"(v)� 'p
"(x)

∣∣+ (1� wp)jv � x j

holds and thus we have (because 0 < wp < 1)∣∣'p
"(v)� 'p

"(x)
∣∣ < wp

∣∣'p
"(v)� 'p

"(x)
∣∣+ (1� wp)jv � x j

) (1� wp)
∣∣'p

"(v)� 'p
"(x)

∣∣ < (1� wp)jv � x j

)
∣∣'p

"(v)� 'p
"(x)

∣∣ < jv � x j:

As a consequence of 'p
� being contractive, the closed "-ball centered at r��p�1 is mapped

to the open "-ball centered at r��p . In this thesis, the "-ball centered at x0 2 R is denoted
and de�ned by B"(x0) := fx 2 R : jx � x0j < "g. The closed "-ball centered at x0 2 R is
denoted by B"(x0). Note that this notation is similar to that of the iteration function Bp

v .
However, the two notations can be distinguished from each other by the superscript p.

Corollary 7.64 If 'p
" exists, then 'p

"

(
B"(r

��
p�1)

)
� B"(r

��
p ) holds.

Proof. Let p 2 f2; : : : ; Ng and let " > 0. Recall from Lemma 7.42 that r��p = �x
(
Cp
r��p�1

)
and thus 'p

"(r
��
p�1) = r��p holds by construction of 'p

" . Let v 2 B"(r
��
p�1). Because 'p

" is
contractive (Theorem 7.63), we have∣∣'p

"(v)� r��p
∣∣ = ∣∣'p

"(v)� 'p
"(r

��
p�1)

∣∣ < jv � r��p�1j � " ) 'p
"(v) 2 B"(r

��
p ):

The function 'p
� and the statement of Corollary 7.64 are demonstrated in the following

example.

Example 7.65 This example is an extension of Example 7.44, where a drift resistance super

�xed point vector r
�� = (r��1 ; r��2 ; r��3 ) for the case N = 3 is determined. In particular,

we reuse the function A1, A2 as well as !2
v and we again assume that the corresponding

domains are su�ciently large.

With this, we have A1(r) := 1
2 r +

1
2 and thus r��1 = �x(A1) = 1. Furthermore, we have

A2(r) :=
1

3
r and !2

v (r) =
1

2
r +

1

2
v ) C2

v (r) = A2 � !2
v (r) =

1

6
r +

1

6
v 8 v 2 V 2:
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We consider 'p
" for p = 2. In this example, '2

" can be written as an explicit function.

Recall from De�nition 7.62 that '2
" maps certain drift resistance approximations v of ADA

pair p� 1 = 1 to the �xed points of the corresponding iteration functions Cp
v of ADA pair

p = 2. These �xed points can be calculated by

C2
v (r

�) = r� ,
1

6
r� +

1

6
v = r� ,

5

6
r� =

1

6
v , r� =

1

5
v ) '2

"(v) =
1

5
v :

In particular, we have r��1 = 1 and thus r��2 = �x(C2
r��
1

) = 1
5 , see also Example 7.44.

To demonstrate Corollary 7.64, let " > 0. Then, we have B"(r
��
1 ) = [1 � "; 1 + "] and

thus

'2
"

(
B"(r

��
1 )

)
= [

1

5
�

"

5
;
1

5
+

"

5
] = [r��2 �

"

5
; r��2 +

"

5
] � (r��2 � "; r��2 + ") = B"(r

��
2 ):

We continue with an auxiliary lemma, which considers an ADA pair p, p � 2. The
lemma states that if there is a sequence of drift resistance approximations of the upper
neighbor of p, i.e., a sequence of drift resistance approximations of ADA pair p � 1, that
converges to the drift resistance super �xed point r��p�1, then the sequence of corresponding
iteration functions converges pointwise to Cp

r��p�1

.

Lemma 7.66 Let i
�� 2 RN

>0 and let r
�� = (r��1 ; : : : ; r��N ) be the corresponding drift resis-

tance super �xed point vector. Let p 2 f2; : : : ; Ng and let Ap be contractive. Furthermore,

let m;M 2 V p such that m < r��p�1 < M and let (vn)n2N � [m;M] be a sequence such

that lim
n!1

vn = r��p�1. Then, the following holds:

lim
n!1

Cp
vn(r) = Cp

r��p�1

(r) 8 r 2 R̂p
m \ R̂

p
M :

Proof. According to Lemma 7.57, R̂p
m\ R̂

p
M � R̂p

v holds for all v 2 [m;M]. Therefore, the
function evaluation Cp

vn(r) is well-de�ned for all r 2 R̂p
m \ R̂

p
M and for all n 2 N. Because

Cp
v = Ap � !p

v (De�nition 7.36) and Ap is contractive by assumption, we have∣∣Cp
vn(r)� Cp

r��p�1

(r)
∣∣ = ∣∣Ap � !p

vn(r)� Ap � !p
r��p�1

(r)
∣∣

<
∣∣!p

vn(r)� !p
r��p�1

(r)
∣∣ = ∣∣wpr + (1� wp)vn �

(
wpr + (1� wp)r��p�1

)∣∣
= (1� wp)

∣∣vn � r��p�1
∣∣

and thus for (n !1) we have

vn ! r��p�1 )
∣∣vn � r��p�1

∣∣! 0 )
∣∣Cp

vn(r)� Cp
r��p�1

(r)
∣∣! 0 ) Cp

vn(r)! Cp
r��p�1

(r):

As a �nal preparation, the following statement is considered. If the (p�1)th component
of the resistance based ADA iterates converges to the (p � 1)th component of the drift
resistance super �xed point vector r��p�1, then the p-th component of the resistance based
ADA iterates converges to r��p under certain conditions. This statement is required in the
induction step of the proof of the major convergence Theorem 7.68 below.
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Theorem 7.67 Let i
�� 2 RN

>0 and let r
�� = (r��1 ; : : : ; r��N ) be the corresponding drift

resistance super �xed point vector. Let p � 2.

� Let Ap be contractive.

� Let there exist � > 0 such that [r��p�1 � �; r��p�1 + �] � V p and Cp
r��p�1

�� as well as

Cp
r��p�1

+� are selfmaps.

� Let u be a su�ciently well distributed ADA update sequence and ît;in = (i in1 ; : : : ; i
in
N )

be a given input vector such that ît;in and u are a feasible input combination.

For n 2 N let r
n (̂it;in; u) = (rn1 ; : : : ; r

n
N) be the corresponding n-th resistance based ADA

iterate. Then, the following holds:

lim
n!1

rnp�1 = r��p�1 ) lim
n!1

rnp = r��p :

Proof. Let lim
n!1

rnp�1 = r��p�1. Let " > 0 arbitrary but �xed. Without loss of generality, let

" � �, where � > 0 is the constant from the theorem's requirements. Then, there exists
�n 2 N such that jrnp�1� r

��
p�1j < " for all n � �n. Aiming at a better readability, we suppose

without loss of generality that �n = 1, i.e., jrnp�1 � r��p�1j < " for all n 2 N. Furthermore,
we denote m := r��p�1 � " and M := r��p�1 + ". Because " � �, we have

rnp�1 2 [m;M] = �B"(r
��
p�1) � [r��p�1 � �; r��p�1 + �] 8 n 2 N: (7.6)

Recall from Lemma 7.45 that in the (n+1)st iteration the p-th component of the resistance
based ADA iterate is either updated by rn+1

p = Cp
rnp�1

(rnp ) (if un+1 = p) or it remains

unchanged, i.e., rn+1
p = rnp (if un+1 6= p). The following argumentation allows to assume

without loss of generality that un = p for all n 2 N and simultaneously lim
n!1

rnp�1 = r��p�1.

This is assumed to avoid a corresponding case distinction between un+1 = p and un+1 6= p.
Then, we have

rn+1
p = Cp

rnp�1

(rnp ) 8 n 2 N (7.7)

according to Lemma 7.45. The assumption without loss of generality is valid for the
following three reasons. First, we consider a su�ciently well distributed ADA update
sequence and thus there exist in�nite many updates with ADA pair p. Second, we have
lim
n!1

rnp�1 = r��p�1 by assumption. In particular, we have rnp�1 2 [m;M] for all n 2 N by

construction. Therefore, we can execute the updates with ADA pair p � 1 only implicitly
and focus only on the updates with ADA pair p. Finally, an ADA iteration with an ADA
pair q, q > p or q < p� 1, does not a�ect ADA pair p and thus such ADA iterations can
be omitted in this proof, see also Lemma 7.45.
The road map for this proof is to show that:

1. There exists k 2 N such that r kp 2 R̂p
m \ R̂

p
M .

2. If r kp 2 R̂p
m \ R̂

p
M then

(
Cp
m

)`
(r kp ) � r k+`p �

(
Cp
M

)`
(r kp ) 8 ` 2 N.
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3. If r kp 2 R̂p
m \ R̂

p
M then there exists �̀2 N such that

∣∣(Cp
m

)`
(r kp ) � �x(Cp

m)
∣∣ < " and∣∣(Cp

M

)`
(r kp )� �x(Cp

M)
∣∣ < " for all ` � �̀.

4. j �x(Cp
m)� r��p j < " and j �x(Cp

M)� r��p j < ".

By combining Items 1 to 4 at the end of this proof, we obtain jr `p � r��p j < 2" for all ` � �̀

and the statement is shown.
First, we make some considerations that are relevant throughout the proof. Because ît;in

and u are a feasible input combination, all considered ADA iterates r
n (̂it;in; u) exist and

the corresponding function evaluations are well-de�ned for all n 2 N.
Furthermore, Ap is contractive and Cp

r��p�1
�� as well as C

p
r��p�1

+� are selfmaps by assumption.

Therefore, Cp
v is a contractive selfmap and the unique �xed point �x(Cp

v ) exists for all
v 2 [r��p�1 � �; r��p�1 + �] (Theorem 7.58 and Corollary 7.47). In particular, Cp

m and Cp
M are

contractive selfmaps. In addition, Cp
v is strictly increasing for all v 2 V p (Lemma 7.46)

and thus Lemma 4.45 can be applied to all Cp
v with v 2 [m;M], i.e., for all r 2 R̂p

v

r < �x(Cp
v ) ) r < Cp

v (r) < �x
(
Cp
v (r)

)
and r > �x(Cp

v ) ) r > Cp
v (r) > �x

(
Cp
v (r)

)
:

(7.8)
Now, we begin with Item 1. Because the domains are closed intervals, let R̂p

m = [rmin
m ; rmax

m ]

and R̂p
M = [rmin

M ; rmax
M ] and thus R̂p

m \ R̂
p
M = [rmin

m ; rmax
M ] (Lemma 7.59). Then, we have

for all n 2 N

rnp < rmin
m ) rnp < rn+1

p and rnp > rmax
M ) rnp > rn+1

p : (7.9)

Equation (7.9) holds, because

� m � rnp�1 � M ) �x(Cp
m) � �x(Cp

rnp�1

) � �x(Cp
M) (Lemma 7.56) and

� �x(Cp
m) 2 R̂p

m = [rmin
m ; rmax

m ], i.e., rmin
m � �x(Cp

m), and thus

rnp < rmin
m ) rnp < �x(Cp

m) � �x(Cp
rnp�1

) ) rnp < Cp
rnp�1

(rnp ) = rn+1
p < �x(Cp

rnp�1

);

where the last implication follows from (7.8).

� Analogously, we have �x(Cp
M) 2 R̂p

M = [rmin
M ; rmax

M ], i.e., �x(Cp
M) � rmax

M , and thus

rnp > rmax
M ) rnp > �x(Cp

M) � �x(Cp
rnp�1

) ) rnp > Cp
rnp�1

(rnp ) = rn+1
p > �x(Cp

rnp�1

):

We use (7.9) to show that there exists k 2 N such that r kp 2 R̂p
m \ R̂

p
M . There are three

cases: rmin
m � r1p � rmax

M , r1p < rmin
m and r1p > rmax

M . In the �rst case, there is nothing to
show.
So let r1p < rmin

m . Let us suppose that there exists no k 2 N such that r kp � rmin
m , i.e.,

rnp < rmin
m for all n 2 N. Then, the sequence (rnp )n2N is strictly increasing according to

(7.9) and it is bounded by rmin
m . Therefore, there exists r� � rmin

m such that lim
n!1

rnp = r�.

In the following, we show that this leads to a contradiction. By construction, we have
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m = r��p�1 � " < r��p�1 and thus �x(Cp
m) < �x

(
Cp
r��p�1

)
(Lemma 7.56). Furthermore, because

Cp
m is a selfmap on its domain R̂p

m, �x(C
p
m) 2 R̂p

m = [rmin
m ; rmax

m ] holds, and thus

rmin
m � �x(Cp

m) < �x
(
Cp
r��p�1

)
) rmin

m < Cp
r��p�1

(rmin
m ) < �x

(
Cp
r��p�1

)
;

where the last implication follows from (7.8) with Cp
v = Cp

r��p�1

and r = rmin
m . Therefore,

Cp
r��p�1

(rmin
m ) 6= rmin

m holds and we set

�" :=
1

2

∣∣Cp
r��p�1

(rmin
m )� rmin

m

∣∣ > 0:

By considering that m � rnp�1 � M for all n 2 N, lim
n!1

rnp�1 = r��p�1 and rmin
m 2 R̂p

m \ R̂
p
M ,

we have lim
n!1

(
Cp
rnp�1

(rmin
m )

)
= Cp

r��p�1

(rmin
m ) (Lemma 7.66) and thus

9 n1 2 N :
∣∣Cp

rnp�1

(rmin
m )� Cp

r��p�1

(rmin
m )

∣∣ < �" 8 n � n1:

Let n � n1, then

�"+
∣∣Cp

rnp�1

(rmin
m )� Cp

r��p�1

(rmin
m )

∣∣ <2�" = ∣∣Cp
r��p�1

(rmin
m )� rmin

m

∣∣
�
∣∣Cp

r��p�1

(rmin
m )� Cp

rnp�1

(rmin
m )

∣∣+ ∣∣(Cp
rnp�1

(rmin
m )

)
� rmin

m

∣∣
and thus

�" <
∣∣Cp

rnp�1

(rmin
m )� rmin

m

∣∣ 8 n � n1: (7.10)

Furthermore, (rnp )n2N is convergent and thus it is a Cauchy sequence. Therefore,

9 n2 2 N :
∣∣rnp � rn+1

p

∣∣ < �" 8 n � n2: (7.11)

Because Cp
rnp�1

is contractive for all n 2 N and Cp
rnp�1

(rnp ) = rn+1
p , we have

∣∣Cp
rnp�1

(rmin
m )� rn+1

p

∣∣ = ∣∣Cp
rnp�1

(rmin
m )� Cp

rnp�1

(rnp )
∣∣ < ∣∣rmin

m � rnp
∣∣: (7.12)

Recall that we suppose that rnp < rmin
m for all n 2 N and thus jrmin

m � rnp j = rmin
m � rnp .

Furthermore, because Cp
rnp�1

is strictly increasing (Lemma 7.46), we have Cp
rnp�1

(rmin
m ) >

Cp
rnp�1

(rnp ) = rn+1
p and thus

∣∣Cp
rnp�1

(rmin
m )� rn+1

p

∣∣ = Cp
rnp�1

(rmin
m )� rn+1

p for all n 2 N. There-

fore, we have

(7.12) ) Cp
rnp�1

(rmin
m )� rn+1

p < rmin
m � rnp ) Cp

rnp�1

(rmin
m )� rmin

m < rn+1
p � rnp : (7.13)

By considering that (rnp )n2N is strictly increasing, we have rn+1
p � rnp = jrn+1

p � rnp j. Fur-
thermore, because m � rnp�1 and thus �x(Cp

m) � �x(Cp
rnp�1

) (Lemma 7.56) as well as
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�x(Cp
m) 2 R̂p

m = [rmin
m ; rmax

m ], we have rmin
m � �x(Cp

m) � �x(Cp
rnp�1

). By applying (7.8) with

Cp
v = Cp

rnp�1

and r = rmin
m , we obtain rmin

m � Cp
rnp�1

(rmin
m ) � �x(Cp

rnp�1

), and thus

(7.13) )
∣∣Cp

rnp�1

(rmin
m )� rmin

m

∣∣ < ∣∣rn+1
p � rnp

∣∣ 8 n 2 N: (7.14)

Finally, by considering (7.14) together with (7.10) and (7.11) we obtain

�" <
∣∣(Cp

rnp�1

(rmin
m )

)
� rmin

m

∣∣ < ∣∣rn+1
p � rnp

∣∣ < �" 8 n � maxfn1; n2g:

This is a contradiction and thus there exists k 2 N such that r kp � rmin
m .

Recall that our goal is to show that there exists k 2 N such that r kp 2 [rmin
m ; rmax

M ].
Therefore, it remains to show that r k � rmax

M . For this, let k 2 N such that r k�1p < rmin
m

and r kp � rmin
m , which exists as shown above and because we are in the case r1p < rmin

m .
Because m � r k�1p�1 � M (Equation (7.6)), we have �x(Cp

m) � �x
(
Cp

rk�1

p�1

)
� �x(Cp

M)

(Lemma 7.56). Furthermore, �x(Cp
m) 2 R̂p

m = [rmin
m ; rmax

m ] and �x(Cp
M) 2 [rmin

M ; rmax
M ]

holds and thus

r k�1p < rmin
m � �x(Cp

m) � �x
(
Cp

rk�1

p�1

)
� �x(Cp

M) � rmax
M :

By applying (7.8) with Cp
v = Cp

rk�1

p�1

and r = r k�1p , we obtain

r k�1p < �x
(
Cp

rk�1

p�1

)
) r k�1p < Cp

rk�1

p�1

(r k�1p ) < �x
(
Cp

rk�1

p�1

)
) r kp = Cp

rk�1

p�1

(r k�1p ) < �x
(
Cp

rk�1

p�1

)
� rmax

M :

In total r kp 2 [rmin
m ; rmax

M ] = R̂p
m \ R̂

p
M holds, i.e., Item 1 of the proof's road map holds in

the case r1p < rmin
m . The case r1p > rmax

M can be shown analogously by swapping the roles
of rmin

m and rmax
M as well as considering > and � instead of < and �, respectively.

Next, we prove Item 2 of the proof's road map. We show by induction over ` that

9 k 2 N : r kp 2 R̂p
m \ R̂

p
M )

(
Cp
m

)`
(r kp ) � r k+` �

(
Cp
M

)`
(r kp ) 8 ` 2 N: (7.15)

By assumption, Ap is contractive and Cp
r��p�1

�� as well as C
p
r��p�1

+� are selfmaps. Therefore,

Cp
v is a contractive selfmap and the unique �xed point �x(Cp

v ) exists for all v 2 [r��p�1 �

�; r��p�1 + �] (Theorem 7.58 and Corollary 7.47). In particular, Cp
m and Cp

M are contractive
selfmaps. As a consequence, R̂p

m \ R̂
p
M � R̂p

v holds for all v 2 [m;M] (Lemma 7.57) and
thus Cp

v (r) is well-de�ned for all v 2 [m;M] and for all r 2 R̂p
m \ R̂

p
M . With this, we begin

the induction over `. So, let there exist k 2 N such that r kp 2 R̂p
m \ R̂

p
M .

Base case: Let ` = 1. According to (7.6), we have r kp�1 2 [m;M]. Then, according to
Lemma 7.52 and according to (7.7),

Cp
m(r

k
p ) � Cp

rkp�1

(r kp ) = r k+1
p � Cp

M(r kp )
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holds and the base case is proved.
Induction hypothesis: For a certain j 2 N let (7.15) hold for all ` � j .
Induction step: We show that (7.15) holds for ` = j +1. According to Corollary 7.55, we
have

{(
Cp
m

)j
(r kp );

(
Cp
M

)j
(r kp )

}
� R̂p

m \ R̂
p
M . Because R̂p

m \ R̂
p
M is the intersection of two

closed intervals, R̂p
m \ R̂

p
M is a closed interval as well and thus

[(
Cp
m

)j
(r kp );

(
Cp
M

)j
(r kp )

]
�

R̂p
m \ R̂p

M holds. According to the induction hypothesis, we have
(
Cp
m

)j
(r kp ) � r k+jp �(

Cp
M

)j
(r kp ) and thus r k+jp 2 R̂p

m \ R̂
p
M .

Furthermore, Cp
m and Cp

M are both strictly increasing (Lemma 7.46). By considering the
induction hypothesis again, we have(

Cp
m

)j
(r kp ) � r k+jp ) Cp

m

((
Cp
m

)j
(r kp )

)
� Cp

m(r
k+j
p ) )

(
Cp
m

)j+1
(r kp ) � Cp

m(r
k+j
p )

and analogously Cp
M(r k+jp ) �

(
Cp
M

)j+1
(r kp ).

According to (7.6), we have m � r k+jp�1 � M. By applying Lemma 7.52 and considering that

r k+jp 2 R̂p
m\ R̂

p
M , we have Cp

m(r
k+j
p ) � Cp

rk+j
p�1

(r k+jp ) � Cp
M(r k+jp ). By combining everything,

we have(
Cp
m

)j+1
(r kp ) � Cp

m(r
k+j
p ) � Cp

rk+j
p�1

(r k+jp ) = r k+j+1
p � Cp

M(r k+jp ) �
(
Cp
M

)j+1
(r kp )

and the induction step is completed.
Next, we show that Item 3 holds. Since Cp

m and Cp
M are contractive selfmaps, the Picard

iteration associated to Cp
m converges to the unique �xed point �x(Cp

m) for an arbitrary
starting point in R̂p

m and the Picard iteration associated to Cp
M converges to �x(Cp

M) for
an arbitrary starting point in R̂p

M . Let k 2 N0 such that r kp 2 R̂p
m \ R̂p

M , which exists
according to Item 1. Then, there exists nm 2 N and nM 2 N such that∣∣(Cp

m

)n
(r kp )� �x(Cp

m)
∣∣ < " 8 n � nm and

∣∣(Cp
M

)n
(r kp )� �x(Cp

M)
∣∣ < " 8 n � nM :

By setting �̀ := maxfnm; nMg, Item 3 holds.
We continue with Item 4. Recall that m := r��p�1 � " and M := r��p�1 + " with " � �.
Because Ap is contractive, [m;M] � V p and Cp

m as well as Cp
M are selfmaps by assump-

tion, the requirements of De�nition 7.62 are met and thus the function 'p
" : [m;M] ![

�x(Cp
m); �x(C

p
M)

]
exists. According to Corollary 7.64, we have

'p
"(m) = �x(Cp

m) 2 B"(r
��
p ) ) j �x(Cp

m)� r��p j < "

and analogously j �x(Cp
M)� r��p j < ".

Finally, we combine all four statements. Let k 2 N such that r kp 2 R̂p
m \ R̂

p
M , which exists

according to Item 1. Let �̀2 N such that
∣∣(Cp

m

)`
(r kp ) � �x(Cp

m)
∣∣ < " and

∣∣(Cp
M

)`
(r kp ) �

�x(Cp
M)

∣∣ < " for all ` � �̀, which exists according to Item 3. Furthermore, we have
j �x(Cp

m)� r��p j < " and j �x(Cp
M)� r��p j < " according to Item 4. With this, we obtain∣∣(Cp

m

)n
(r kp )� r��p

∣∣ = ∣∣(Cp
m

)n
(r kp )� �x(Cp

m) + �x(Cp
m)� r��p

∣∣
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�
∣∣(Cp

m

)n
(r kp )� �x(Cp

m)
∣∣+ ∣∣ �x(Cp

m)� r��p
∣∣

< "+ " = 2" 8 n � �̀

and
∣∣(Cp

M

)n
(r kp )� r

��
p

∣∣ < 2" for all n � �̀analogously. This result is combined with Item 2,
which yields

r��p � 2" <
(
Cp
m

)n
(r kp ) � r k+np �

(
Cp
M

)n
(r kp ) < r��p + 2" ) j r k+np � r��p j < 2" 8 n � �̀;

i.e., lim
n!1

rnp = r��p .

Finally, we can present the main convergence statement if the ADA Algorithm 5.2 is
considered with a plurality of ADA pairs.

Theorem 7.68 Let i
�� 2 RN

>0 and let r
�� = (r��1 ; : : : ; r��N ) be the corresponding drift

resistance super �xed point vector.

� Let Ap be contractive for all p 2 [N].

� Let A1 be a selfmap.

� Let there exist � > 0 such that [r��p�1 � �; r��p�1 + �] � V p and Cp
r��p�1

�� as well as

Cp
r��p�1

+� are selfmaps for all p 2 f2; : : : ; Ng.

� Let u be an in�nite and su�ciently well distributed ADA update sequence and let

ît;in = (i in1 ; : : : ; i
in
N ) be a given input vector such that ît;in and u are a feasible input

combination.

Then, the following holds:

lim
n!1

ît;out

(̂
it;in; u(n)

)
= i

��:

Proof. Let r
n (̂it;in; u) = (rn1 ; : : : ; r

n
N) be the corresponding n-th ADA iterate according to

De�nition 7.28. We show that lim
n!1

r
n (̂it;in; u) = r

�� = (r��1 ; : : : ; r��N ) by induction over

the numbering of the ADA pairs. For this, let " > 0 arbitrary but �xed.
Base case:

We consider ADA pair p = 1. Because A1 is a contractive selfmap by assumption and
ît;in as well as u are a feasible input combination, the Picard iteration associated to A1

starting at r01 := �1(i in1 ) converges to the �xed point �x(A1). Recall that �x(A1) = r��1
(Lemma 7.42). Since u is su�ciently well distributed, there exists a subsequence of u
whose entries are all one and thus lim

n!1
rn1 = r��1 holds (Lemma 7.45.). In particular, there

exists n1 2 N such that jrn1 � r��1 j < " for all n � n1.
Induction hypothesis:

There exists k < N such that lim
n!1

rnp = r��p for all p 2 [k ]. Furthermore, there exists

nk 2 N such that jrnp � r��p j < " for all p 2 [k ] and for all n � nk .
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Induction step:

We consider ADA pair p = k + 1. According to the induction hypothesis, lim
n!1

rnk = r��k
holds. Note that all requirements to apply Theorem 7.67 are met and thus lim

n!1
rnk+1 =

r��k+1 holds as well. In particular, there exists nk+1 � nk such that jrnk+1 � r��k+1j < " for all
n � nk+1 and the induction is completed.
In total, we have

k(rn1 ; : : : ; r
n
N)� r

��kmax < " 8 n � nN ) lim
n!1

r
n (̂it;in; u) = lim

n!1
(rn1 ; : : : ; r

n
N) = r

��:

We apply Theorem 7.30 as well as De�nition 7.32 and obtain

lim
n!1

i
n (̂it;in; u) =

(
(�1)�1(r��1 ); : : : ; (�N)�1(r��N )

)
= (i��1 ; : : : ; i��N ) = i

��:

The importance of Theorem 7.68 is that the super �xed point vector can be considered
as the �xed point of the output of Algorithm 5.2 in the sense that every feasible input
vector ît;in eventually converges to i

�� if a su�ciently well distributed ADA update sequence
u is considered. However, if an in�nite ADA update sequence u is considered that is
not su�ciently well distributed, then lim

n!1
i
n (̂it;in; u) = i

�� does not hold in general, as

demonstrated in the following example.

Example 7.69 Let there be a feasible scenario, i.e., let i
�� = (i��1 ; : : : ; i��N ) 2 RN

>0.

� Let u = (un)n2N be the in�nite ADA update sequence whose entries are all one, i.e.,

un = 1 for all n 2 N.

� Let ît;in = (i in1 ; : : : ; i
in
N ) be an input vector with i in1 2 Î1 and such that there exists

p 2 f2; : : : ; Ng with i inp 6= i��p .

� Let ît;in and u be a feasible input combination.

� Let A1
i be a contractive selfmap.

Because un = 1 for all n 2 N, only the incumbent drifted test ioni current approximation

of ADA pair p = 1 is updated. The approximations of the other ADA pairs remain at the

input values. Therefore, the n-th ADA iterate is i
n (̂it;in; u) =

((
A1
i

)n
(i in1 ); i

in
2 ; : : : ; i

in
N

)
for

all n 2 N according to Lemma 7.27. Because A1
i is a contractive selfmap and i in1 2 Î1,

lim
n!1

(
A1
i

)n
(i in1 ) = �x(A1

i ) = i��1 holds and thus we have

lim
n!1

i
n (̂it;in; u) = (i��1 ; i in2 ; : : : ; i

in
N ) 6= (i��1 ; i��2 ; : : : ; i��n ) = i

��:

The inequality follows from the requirement that there exists p 2 f2; : : : ; Ng such that

i inp 6= i��p .
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We can summarize that, depending on the ADA update sequence u and the input vector
ît;in, di�erent limits can exist for the output of Algorithm 5.2. However, in practice, the
ADA update sequences are usually su�ciently well distributed. Of course, all ADA update
sequences are �nite in practice. But as stated in Section 3.4.5, the ADA update sequence
is automatically selected by the IoniDetect system [WHB, Item 4228]. In particular, if an
ADA pair was not update for a longer period of time, a corresponding ADA update is forced
[PHE, Item 12678]. Therefore, it is reasonable to assume that in practice su�ciently many
updates with each ADA pair are performed and that the resulting sequence of updates is
su�ciently mixed.
A further requirement of Theorem 7.68 is that ît;in and u are a feasible input combination.
If that is not the case, the output vector of Algorithm 5.2 eventually becomes NaN in
all components to indicate that the sequence of ADA iterations could not be successfully
carried out. From a practical point of view, such a situation usually occurs if the range of
feasible combustion states is left, see also Remark 5.33. In the optimization later on, this
is avoided by specifying appropriate constraints.
So far, we know that if the iteration functions have certain "nice" properties according
to the requirements of Theorem 7.68 and the inputs are "feasible", then the output of
Algorithm 5.2 converges to the super �xed point vector i

��. Recall that the goal of ADA is
to approximate the drifted test ioni current ipt;rD for each ADA pair p 2 [N]. Therefore, the
following section addresses the question under which conditions i��p = ipt;rD or equivalently
r��p = rD holds for all p 2 [N].

7.4. Approximation Quality: Relation Between the Drift

Resistance and the Super Fixed Point Vector

As detailed in Section 3.3 above, the ADA procedure ideally returns the drifted test ioni
current ipt;rD for each ADA pair p 2 [N]. Because in this case the approximated drift
resistance at the test fan speed tp equals the sought drift resistance rD for all p 2 [N]

according to Equation (3.9) and the corresponding drift resistance approximation function
is �

ît;out
(fs) = rD for all fs 2 FS according to De�nition 3.38. Therefore, we are interested

in conditions under which the components of the super �xed point vector i
�� correspond

to the drifted test ioni currents, i.e., under which i��p = ipt;rD for all p 2 [N].
The following lemma states that this is the case if and only if r��p = rD for all p 2 [N],
where r

�� = (r��1 ; : : : ; r��N ) is the drift resistance super �xed point vector corresponding to
i
�� according to De�nition 7.32.

Lemma 7.70 Let rD � 0. Furthermore, let there be a feasible scenario, i.e., let i
�� =

(i��1 ; : : : ; i��N ) 2 RN
>0, and let r

�� = (r��1 ; : : : ; r��N ) be the corresponding drift resistance

super �xed point vector. Then, the following holds for all p 2 [N]:

i��p = ipt;rD , r��p = rD:
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Proof. Let p 2 [N]. Recall from De�nition 3.27 that ipt;rD = �tp;rD(g
p
t ) with gpt = ��1tp (i

p
t ).

By applying (3.4), we obtain

�tp;rD(g
p
t ) =

U�tp(g
p
t )

rD�tp(g
p
t ) + U

=
U�tp � �

�1
tp (i

p
t )

rD�tp � �
�1
tp (i

p
t ) + U

=
Uipt

rD i
p
t + U

:

Furthermore, we have r��p = �p(i��p ) (De�nition 7.32) and thus

i��p = ipt;rD , r��p = �p(i
p
t;rD

) =
U

itp;rD
�

U

ipt
=

rD i
p
t + U

ipt
�

U

ipt
= rD:

Therefore, we focus on the relation between the drift resistance rD and the components
r��p , p 2 [N], of the drift resistance super �xed point vector. Recall from Lemma 7.42 that
r��p = �x

(
Cp
r��p�1

)
, i.e., there is a recursive relation between the components of r

��. However,

it is possible to decouple the elements r��p�1 and r��p to a certain degree by considering the
iteration function Ap instead of the iteration function Cp

r��p�1

for p 2 f2; : : : ; Ng. Recall

from De�nition 6.21 that Ap is the corresponding drift resistance iteration function if the
ADA pair p is considered individually. The following lemma states how the �xed point of
Ap and that of Cp

v , v 2 V p, are related (if they exist).

Lemma 7.71 Let p 2 f2; : : : ; Ng and let v 2 V p. Let Ap and Cp
v be both contractive

selfmaps and let �x(Ap) 2 R̂p be the �xed point of Ap as well as �x(Cp
v ) 2 R̂p

v be the

�xed point of Cp
v (existence and uniqueness are guaranteed according to Lemma 6.35 and

Corollary 7.47). Then,

1. v < �x(Ap) , �x(Cp
v ) < �x(Ap),

2. v > �x(Ap) , �x(Cp
v ) > �x(Ap) and

3. v = �x(Ap) , �x(Cp
v ) = �x(Ap).

Proof. As a preliminary step, we show that the �xed point of Ap is an element of R̂p
v , which

is the domain of Cp
v . Because �x(Ap) 2 R̂p and R̂p

v :=
(
!p
v

)�1
(R̂p) (De�nition 7.4), we

have �r :=
(
!p
v

)�1(
�x(Ap)

)
2 R̂p

v , i.e., C
p
v (�r) is well-de�ned. Furthermore, Cp

v : R̂p
v ! R̂p

v

is a selfmap by assumption and Cp
v = Ap � !p

v (De�nition 7.36) and thus

Cp
v (�r) = Ap � !p

v �
(
!p
v

)�1(
�x(Ap)

)
= Ap

(
�x(Ap)

)
= �x(Ap) 2 R̂p

v : (7.16)

With this, we show the statements. We show the implications ")" of Items 1 to 3 �rst.
Thereafter, the implications "(" are proved. Aiming at a better readability, we denote
r� := �x(Ap).
We begin with Item 1, so let v < r�. Because 0 < wp < 1, we have

v < r� ) (1� wp)v < (1� wp)r�

) !p
v (r

�) = wpr� + (1� wp)v < wpr� + (1� wp)r� = r�:
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According to Equation (7.16), r� 2 R̂p
v holds and thus Cp

v (r
�) exists. By considering

that Ap is strictly increasing, we have

!p
v (r

�) < r� ) Cp
v (r

�) = Ap � !p
v (r

�) < Ap(r�) = r�:

This implies that the Picard iteration associated to Cp
v starting at r� is strictly decreasing

(Lemma 4.47). According to Corollary 7.47, the Picard iteration associated to Cp
v con-

verges for every starting point to the unique �xed point �x(Cp
v ). Therefore, the �xed point

�x(Cp
v ) has to be smaller than r�, i.e., �x(Cp

v ) < r� = �x(Ap) holds.
Item 2, i.e., the case v > r�, is shown analogously by

v > r� ) !p
v (r

�) > r� ) Cp
v (r

�) > Ap(r�) = r� ) �x(Cp
v ) > r�:

To show Item 3, let v = r�. Then, we have

Cp
v (r

�) = Ap � !p
v (r

�) = Ap
(
wpr� + (1� wp)v

)
= Ap

(
wpr� + (1� wp)r�

)
= Ap(r�)

= r�;

i.e., r� is a �xed point of Cp
v . Because the �xed point of Cp

v is unique, �x(Cp
v ) = r� holds.

With this, we can show the implications "(" of all three items by contradiction. Let
�x(Cp

v ) < r� and let us suppose that v � r�. According to ")" of Items 2 and 3, v � r�

implies �x(Cp
v ) � r�, which is a contradiction. Thus, v < r� holds. The implications "("

of Items 2 and 3 are shown analogously.

The statement of Lemma 7.71 is a bit counterintuitive, because the element v corre-
sponds to the drift resistance approximation of ADA pair p � 1 while �x(Ap) is related to
ADA pair p, i.e., we compare drift resistance approximations of two di�erent ADA pairs.
However, this re�ects the entanglement of neighbored ADA pairs. With Lemma 7.71 we
get a criterion to check if r��p = rD holds for all p 2 [N] by considering the �xed points of
the iteration functions Ap.

Theorem 7.72 Let rD � 0. Let i
�� 2 RN

>0 and let r
�� = (r��1 ; : : : ; r��N ) be the correspond-

ing drift resistance super �xed point vector. Furthermore, let Ap be a contractive selfmap

for all p 2 [N]. Then, the following holds:

�x(Ap) = rD 8 p 2 [N] , r��p = rD 8 p 2 [N]:

Proof. ")" Let �x(Ap) = rD for all p 2 [N]. We perform an induction over p.
Base case: According to Lemma 7.42, we have r��1 = �x(A1). Because �x(A1) = rD by
assumption, r��1 = rD holds.
Induction hypothesis: For a certain k < N let r��p = rD for all p 2 [k ].
Induction step: Let us consider p = k + 1. We have r��k = rD (induction hypothesis),
�x(Ak+1) = rD (by assumption) and r��k+1 = �x

(
Ck+1
r��
k

)
(Lemma 7.42). By applying Item 3

of Lemma 7.71, we obtain

r��k = rD = �x(Ak+1) ) r��k+1 = �x
(
Ck+1
r��
k

)
= �x(Ak+1) = rD:
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"(" Let r��p = rD for all p 2 [N]. We consider p = 1 �rst. We have r��1 = �x(A1)

(Lemma 7.42) and r��1 = rD (by assumption) and thus �x(A1) = rD.
Now, let p 2 f2; : : : ; Ng. Because r��p�1 = r��p = rD (by assumption) and r��p = �x

(
Cp
r��p�1

)
(Lemma 7.42), we have

rD = r��p ) rD = �x
(
Cp
r��p�1

)
= �x

(
Cp
rD

)
) Cp

rD
(rD) = rD

) rD = Ap � !p
rD
(rD) = Ap(wprD + (1� wp)rD) = Ap(rD)

) �x(Ap) = rD:

The bene�t of Theorem 7.72 is two-fold. First, if �x(Ap) = rD for all p 2 [N], then
the ADA pairs are decoupled and we can deal with each ADA pair p individually. Second,
the iteration function Ap has already been thoroughly analyzed in Section 6.3 and we can
reuse some results of this analysis. Under which conditions �x(Ap) = rD holds is analyzed
in Section 6.3.2 above, where the impact of tolerances is discussed. With this, we show
that the relation between r

�� and rD is closely related to the impact of tolerances.

7.4.1. Impact of Tolerances

Corollary 6.41 states that �x(Ap) = rD if and only if the considered HE model H and the
ADA pair p are nominal. Recall from De�nition 6.39 that H and the ADA pair (sp;p ; ips ; i

p
t )

are called nominal if and only if ��1sp (i
p
s ) = ��1tp (i

p
t ). If that is not the case, H and the ADA

pair p are called non-standard and we have �x(Ap) 6= rD. A non-standard situation is
usually caused by tolerances. This issue is discussed in detail in Example 6.38.
In total, we have the following criterion to check whether the super �xed point vector i

��

corresponds to the sought drifted test ioni currents.

Theorem 7.73 Let rD � 0. Let an HE model H be given such that we have a feasible

scenario, i.e., i
�� = (i��1 ; : : : ; i��N ) 2 RN

>0, and let r
�� = (r��1 ; : : : ; r��N ) be the corresponding

drift resistance super �xed point vector. Furthermore, let Ap be a contractive selfmap for

all p 2 [N]. Then, the following statements are equivalent:

1. i��p = ipt;rD 8 p 2 [N],

2. r��p = rD 8 p 2 [N],

3. �x(Ap) = rD 8 p 2 [N],

4. the HE model H and ADA pair p are nominal, i.e., ��1sp (i
p
s ) = ��1tp (t

p) 8 p 2 [N].

Proof. The statement follows from Lemma 7.70, Theorem 7.72 and Corollary 6.41.

The statement of Theorem 7.73 as well as the impact of tolerances with a plurality of
ADA pairs are demonstrated in the following example.
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Example 7.74 As in Example 7.44, the functions and values considered in this example

are arti�cial and we assume that all domains and required sets are su�ciently large such

that all considered function evaluations are well-de�ned. Therefore, no domains or other

sets are speci�ed in this example.

We consider a situation with three ADA pairs and no drift, i.e., we have N = 3 and

rD = 0. Furthermore, let the iteration functions corresponding to the three ADA pairs be

A1(r) = A2(r) = A3(r) = 1
2 r , i.e., all ADA pairs have the same ADA iteration function in

this example. It is apparent, that �x(A1) = �x(A2) = �x(A3) = 0. Note that �x(Ap) = rD
holds for all p 2 [3]. Therefore, all three ADA pairs and H are nominal according to

Corollary 6.41.

Recall that the functions Ap, p 2 [3], are the correct iteration functions if the ADA pairs are

considered individually. However, we are interested in the case with a plurality of ADA pairs

and thus we require the weights w2 and w3 in addition. In this example, let w2 = w3 = 1
2 .

This gives us C2
v (r) = A2 � !2

v (r) = A2
(
w2r + (1� w2)v

)
= 1

2

(
1
2 r +

1
2v

)
= 1

4 r +
1
4v and

analogously C3
v (r) =

1
4 r +

1
4v .

We construct the drift resistance super �xed point vector r
�� = (r��1 ; : : : ; r��N ) analogously

to Example 7.44. In the �rst component, we have r��1 = �x(A1) = 0. Regarding the

second component, we have

C2
r��
1
(r) =

1

4
r +

1

4
r��1 =

1

4
r ) r��2 = �x

(
C2
r��
1

)
= 0 and analogously r��3 = �x

(
C3
r��
2

)
= 0:

In total, r��p = 0 = rD holds for all p 2 [3], which is in accordance with Theorem 7.73,

since �x(Ap) = rD for all p 2 [3]. In particular, �i��(fs) = rD holds for all fs 2 FS.

Now, let us assume that we have a second HE model H that belongs to a specimen of

the same HE type as H, but this time the ioni electrode's position di�ers slightly because

of manufacturing tolerances. All functions and �xed points related to H are denoted by

an overline in the following. Let the corresponding iteration function of ADA pair one be

altered to �A1(r) = 1
2 r +1, while the iteration functions of ADA pair two and three remain

unchanged, i.e., �A2(r) = A2(r) and �A3(r) = A3(r). Because the iteration functions of

ADA pairs two and three are unchanged, the corresponding iteration functions given v

remain also unchanged, i.e., �Cp
v (r) = �Ap � !p

v (r) = Ap � !p
v (r) = Cp

v (r) =
1
4 r +

1
4v for

p 2 f2; 3g.

We have �x( �A1) = 2, because �A1(2) = 1
22 + 1 = 2. Note that �x( �A1) 6= rD. Therefore,

in contrast to r��, the drift resistance super �xed point r
�� has components that are not

equal to rD according to Theorem 7.73. This is illustrated by determining r
��. Its �rst

component is �r��1 = �x( �A1) = 2. Regarding the second and third component, we have

�C2
�r��
1
(r) =

1

4
r +

1

4
�r��1 =

1

4
r +

1

4
2 =

1

4
r +

1

2
) �r��2 = �x

(
�C2
�r��
1

)
=

2

3

and

�C3
�r��
2
(r) =

1

4
r +

1

4
�r��2 =

1

4
r +

1

4

2

3
=

1

4
r +

1

6
) �r��3 = �x

(
�C3
�r��
2

)
=

2

9
;
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respectively. It is particularly noteworthy that �r��2 6= rD and �r��3 6= rD although �x( �A2) =

�x( �A3) = rD holds. This is in accordance with Lemma 7.71, because

2 = �r��1 > �x(A
2
) = rD = 0 ) �r��2 = �x

(
�C2
�r��
1

)
> �x(A

2
) = rD

and analogously �r��2 > �x(A
3
) implies �r��3 = �x

(
�C3
�r��
2

)
> �x(A

3
).

As demonstrated in Example 7.74, we can distinguish two cases as a consequence of
Theorem 7.73. These two cases play a central role when formulating the ADA optimization
problems Chapter 8 below.

� If �x(Ap) = rD holds for all p 2 [N], then the ADA pairs can be considered individually
in order to determine the components of the drift resistance super �xed point vector.
Such a situation is also referred to as the nominal case.

� If there exists p 2 [N] such that �x(Ap) 6= rD, then some components of the drift
resistance super �xed point are not equal to the sought rD. In particular, it is
not possible to consider the ADA pairs individually in order to determine r

��, i.e.,
the components of r

�� have to be calculated recursively according to Lemma 7.42.
It is important to emphasize that an individual consideration of the ADA pairs is
misleading in this case as demonstrated in Example 7.74. Such a situation is also
referred to as the non-standard case and is usually caused by tolerances.

Regarding the �xed points we can consider the ADA pairs individually if we have a nominal
situation. However, in general the rates of convergence are di�erent if the ADA pairs are
considered individually and not as a plurality.

7.4.2. Comparison of Rates of Convergence in the Nominal Case

Let us suppose a nominal situation. Then, we have �x(A1) = rD and �x(Ap) = �x(Cp
r��p�1

) =

rD for all p 2 f2; : : : ; Ng according to Theorem 7.73. Because Ap and Cp
r��p�1

have an

identical �xed point for p � 2, we can compare their rates of convergence in this case.

Lemma 7.75 Let i
�� 2 RN

>0 and let r
�� = (r��1 ; : : : ; r��N ) be the corresponding drift resis-

tance super �xed point vector. Let this be a nominal situation, i.e., r��p = rD = �x(Ap)

holds for all p 2 [N]. Let p 2 f2; : : : ; Ng, then

jCp
r��p�1

(r)� rDj < jA
p(r)� rDj 8 r 2 R̂p \ R̂p

r��p�1

; r 6= rD:

Proof. Let r 2 R̂p \ R̂p
r��p�1

, i.e., we can evaluate Ap(r) and Cp
r��p�1

(r). Furthermore, let

r 6= rD. We consider the case r < rD �rst. Because 0 < wp < 1, we have

r < rD ) wpr + (1� wp)r < wpr + (1� wp)rD ) r < !p
rD
(r) < rD:
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By considering that Ap is strictly increasing and that rD is the �xed point of Ap by as-
sumption, we obtain

Ap(r) < Ap �!p
rD
(r) < Ap(rD) ) Ap(r) < Cp

rD
(r) < rD ) jCp

rD
(r)� rDj < jA

p(r)� rDj:

Because r��p�1 = rD, jC
p
r��p�1

(r)� rDj < jA
p(r)� rDj holds in this case.

The case r > rD is shown analogously.

Remark 7.76 The interpretation of Lemma 7.75 is as follows. Let us suppose that ADA

pair p�1 has already converged to its �xed point, which is the drift resistance in the nominal

case. Then, the Picard iteration associated to Cp
r��p�1

starting at r converges faster to rD

than the Picard iteration associated to Ap starting at r (if both functions are contractive

selfmaps). I.e., ADA pair p has a faster rate of convergence if a plurality of ADA pairs is

considered and not the pair p individually under the condition that the approximation of

ADA pair p � 1 is already at (or close to) rD.

The faster rate of convergence of Cp
r��p�1

can be quanti�ed to a certain degree. For this,

we look at the relation between the Lipschitz constants of Ap and Cp
v .

Lemma 7.77 Let Ap be L-Lipschitzian. Then, Cp
v is (L � wp)-Lipschitzian.

Proof. Let Ap be L-Lipschitzian and let x; y 2 R̂p
v such that x 6= y . Then, the following

holds:∣∣Cp
v (x)� Cp

v (y)
∣∣ = ∣∣Ap � !p

v (x)� Ap � !p
v (y)

∣∣
� L

∣∣!p
v (x)� !p

v (y)
∣∣ = L

∣∣wpx + (1� wp)v �
(
wpy + (1� wp)v

)∣∣
= L

∣∣wpx � wpy
∣∣ = Lwp

∣∣x � y
∣∣:

As a consequence, if Cp
v is a contractive selfmap, we can state an upper bound for the

rate of convergence of the Picard iteration associated to Cp
v .

Lemma 7.78 Let Ap be L-Lipschitzian and let Cp
v be a contractive selfmap. For an arbitrary

starting point r0 2 R̂p
v , the estimation∣∣rn � �x(Cp
v )
∣∣ � Lwp �

∣∣rn � rn�1
∣∣ � (Lwp)n �

∣∣r0 � �x(Cp
v )
∣∣ 8 n 2 N

holds, where rn :=
(
Cp
v

)n
(r0).

Proof. Because Cp
v is Lwp-Lipschitzian (Lemma 7.77), the statement follows from Ba-

nach's �xed point Theorem 4.39.

Remark 7.79 The statement of Lemma 7.78 holds for arbitrary v 2 V p, i.e., also for

v 6= rD. However, if v 6= rD = �x(Ap), then Ap and Cp
v have di�erent �xed points

according to Lemma 7.71. Thus, the better bound for the rate of convergence of Cp
v

156



7.5 Conclusion and Considerations for Optimization

might come at the price of a "worse" �xed point in the sense that the �xed point of Cp
v

might have a non-negligible distance to rD if v 6= rD. This is typical for a non-standard

situation, as demonstrated in Example 7.74.

The actual relation between the rate of convergence of the iteration functions and their

Lipschitz constants is discussed in detail in Section 8.3 below.

As a summary of this subsection, the super �xed point vector can be determined by con-
sidering the ADA pairs individually in the nominal case. To be precise, the super �xed point
vector is known in advance in the nominal case. In contrast, the recursion of Lemma 7.42
has to be applied to determine the super �xed point vector in the non-standard case.
In addition, particular attention must be paid whether the super �xed point vector stays
within feasible limits if we optimize the ADA parameters with a plurality of ADA pairs in
the non-standard case, because in this case the resulting drift resistance approximations
can signi�cantly di�er from the true drift resistance as demonstrated in Example 7.74.
The convergence rate, on the other hand, is of secondary importance in the sense that it
has better bounds if the plurality of ADA pairs is considered.

This concludes the analysis of the ADA procedure with a plurality of ADA pairs. The
results of this chapter are summarized in the following section.

7.5. Conclusion and Considerations for Optimization

The following list brie�y recaps the results and �ndings of this chapter.

� The di�culty with a plurality of ADA pairs is that an update of ADA pair p, p � 2,
depends on the incumbent ioni currents ip and ip�1 (Line 11 of Algorithm 5.2).
To deal with this dependency, a set of feasible upper neighbor drift resistances V p

rD

(De�nition 7.4) and a corresponding ioni current based iteration function Bp
rD;v with

v = �p�1(ip�1) 2 V p
rD (De�nition 7.8) are introduced for p � 2.

� Based on A1
i ;rD

and on iteration functions of the type Bp
rD;v for p � 2, the (ioni

current based) super �xed point vector i
�� is recursively de�ned (De�nition 7.14). If

all components of i
�� are not NaN, then i

�� is called feasible and the underlying HE
model H, the N ADA pairs and the drift resistance rD are called a feasible scenario.

� The major result of this chapter is that the output of Algorithm 5.2 converges to
i
�� under certain conditions (Theorem 7.68). Because this holds for all feasible
input combinations ît;in and u, where u is a su�ciently well distributed ADA update
sequence, i

�� can be interpreted as the �xed point of (the output of) Algorithm 5.2.
However, there can exist di�erent limits for the output of Algorithm 5.2 if not
su�ciently well distributed ADA update sequences are considered (Example 7.69).

� Because the output of Algorithm 5.2 converges to i
�� = (i��1 ; : : : ; i��N ) (under certain

conditions), we are interested in whether i��p = ipt;rD holds for all p 2 [N], i.e., whether
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the drifted test ioni currents are perfectly approximated. This is the case if and only
if �x(Ap

rD) = rD holds for all p 2 [N], which corresponds to the nominal situation
(Theorem 7.73).
The case that there exists p 2 [N] such that �x(Ap

rD) 6= rD is called non-standard
situation. A non-standard situation is usually caused by tolerances (Example 7.74).

� As a consequence, the ADA pairs can be considered individually in a nominal situ-
ation. In particular, the super �xed point vector is known in advance in this case
(i��p = ipt;rD for all p 2 [N]).

� In the case of a non-standard situation, the super �xed point vector must be cal-
culated by the recursion of Lemma 7.27. In particular, the resulting drift resistance
approximations can di�er signi�cantly from rD even if �x(Ap) = rD holds for all but
one ADA pair (Example 7.74).

� The rate of convergence is usually faster if the plurality of ADA pairs is considered
and not each ADA pair individually. However, this faster rate of convergence might
come at the price of a "worse" super �xed point vector in the non-standard situation
(Remark 7.79).

In the case of a single ADA pair, the found convergence characteristics of Algorithm 5.2 are
compared to the results and documentation provided by Siemens in Section 6.3.4 above.
However, Siemens has not published a documentation for the case of a plurality of ADA
pairs. Therefore, the results in this chapter are new and they close a research gap in the
context of the ADA parameterization.

Based on the analysis and the results from this and the previous chapter, two optimiza-
tion models for the ADA parameterization are proposed in the following Chapter 8, one
optimization model for the nominal case and one optimization model for the case with
tolerances. The two cases are dealt with separately, because in the nominal case the ADA
pairs can be considered individually to a certain degree, which makes the optimization
less complex. In contrast, in the non-standard case, the plurality of ADA pairs has to be
considered, which makes the optimization more complicated.
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8. Optimization Models

The optimization of the ADA parameters is divided into two parts. First, corresponding
mathematical optimization models are proposed in this chapter. Thereafter, optimization
algorithms to solve these models are proposed in the following Chapter 9.
Modeling an optimization problem means to convert "the description of an optimization
problem" to a "mathematical representation of the problem" [Sán20, p. 13]. This repre-
sentation is referred to as the optimization model [Sán20, p. 13]. An optimization model
is composed of data, decision variables, constraints and objective functions [Sán20, p. 3].
Our goal in this chapter is to formulate the optimization of the ADA parameters as an
optimization model. This requires a description of the ADA optimization problem in the
�rst place, which is presented in the following Section 8.1. Two optimization models are
then derived step by step from this description. One optimization model for the nominal
case without tolerances and one model for the case with tolerances, which are presented
in Sections 8.6 and 8.7, respectively.
These models have con�icting objectives, which puts us in the �eld of multiobjective op-
timization and decision making. Because the objectives are con�icting, not all objectives
can be simultaneously optimized. Rather, one obtains a set of Pareto optimal solutions,
see also Section 4.1. Therefore, usually two parties are involved in the multiobjective op-
timization process, which are a decision maker (DM) and an analyst [Bra+08, p. 2].
"In general, the DM is a person who is assumed to know the problem considered and be
able to provide preference information related to the objectives and/or di�erent solutions
in some form. . . . An analyst is a person or a computer program responsible for the math-
ematical modeling and computing sides of the solution process." [Bra+08, p. 2]. Based on
preference information speci�ed by the DM a "preference model is built from preference
information and this model is exploited in order to �nd solutions that better �t the DM's
preferences." [Bra+08, p. 2].
In the context of the ADA optimization, the decision makers are the two Vaillant engi-
neers who were responsible for the ADA parameterization of the HEs at Vaillant during
the period of writing this thesis. The role of the analyst was assumed by the author of this
thesis.
In the following section a description of the ADA optimization problem is speci�ed that
corresponds to the preferences of the decision makers. The subsequent mathematical
modeling is the work of the author of this thesis.
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8.1. Description of the ADA Optimization Problem

For the description of the ADA optimization problem, the terms speci�cations and ob-

jective criterion introduced in Modelling in Mathematical Programming [Sán20] are used.
Speci�cations are "regulations, impositions or limitations that must be ful�lled" and that
"give rise to the constraints of the problem" [Sán20, p. 15]. The di�erence between speci-
�cations and constraints is that a constraint is "a single mathematical expression, whereas
the speci�cation is a characteristic . . . that is implemented in one or more constraints"
[Sán20, p. 15]. Objective criterion is an additional speci�cation "expressing the criteria
that guide the resolution" of the problem [Sán20, p. 15]. In particular, the objective cri-
terion leads to the objective function(s) [Sán20, p. 191]. However, it might "also lead to
. . . the de�nition of speci�c constraints" [Sán20, p. 15].
The following description of the ADA optimization problem is the result of an interac-
tive process with the decision makers. Together with the decision makers an initial draft
of the description of the optimization problem and a corresponding optimization model
were created. These were gradually developed further in iterative loops until the decision
makers were satis�ed with the optimized ADA parameters. This process is similar to the
conventional design cycle presented in [MN22, pp. 3�4]. The following description is the
�nal result of this process.

The decision makers want N ADA pairs (sp; tp; ips ; i
p
t ), p 2 [N], that ful�ll the following

objective criterion (O) and the speci�cations (S1) to (S7).

(O) The ADA Algorithm 5.2 shall have good convergence characteristics in the scenarios
speci�ed by the decision makers.

(S1) The CO emissions during an ADA iteration must never exceed a limit speci�ed by
the decision makers, which is denoted by comax in the following. A common value
used by Vaillant is comax = 150ppm [PHE, Item 15498].

(S2) The equivalence AFR during an ADA iteration must never fall below a lower bound
speci�ed by the decision makers, which is denoted by �min. A common value used
by Vaillant is �min = 1:05 [PHE, Item 15498]. This speci�cation is given for two
reasons. First, a combustion with an equivalence AFR close to one usually has a
high �ame temperature, which places a great strain on the material of the heating
device and is therefore undesirable. Second, the ioni current as a function of � has a
maximum close to � = 1. In Figure 2.6(b) this property is illustrated by the dashed
curve. However, the ADA algorithm and the HE model require that the ioni current
functions are strictly decreasing, see also De�nition 2.18. The bound �min serves as
a safety margin to � � 1.

(S3) The equivalence AFR during an ADA iteration must never exceed an upper bound
speci�ed by the decision makers, which is denoted by �max. A common value used
by Vaillant is �max = 1:6 [PHE, Item 15498]. This is done to limit the start point
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8.1 Description of the ADA Optimization Problem

increment in order to avoid too large time spans for an ADA iteration. The start
point increment is introduced and discussed in Section 8.4 below. Furthermore, a
large equivalence AFR corresponds to a small ioni current. At a certain point, the
ioni current is too small and can no longer be measured reliably.

(S4) The start and test ioni currents must be feasible in the sense that they must be
selected from the appropriate sets according to the HE model, i.e., ips 2 �sp(Gsp) =

Isp and ipt 2 �tp(Gtp) = Itp , see also De�nitions 5.2 and 2.22.

(S5) The decision makers want that the start ioni current is larger or equal to the corre-
sponding point on the control curve and that the test ioni current is smaller or equal
to the corresponding point on the control curve [PHE, Item 15498]. The control
curve is introduced in Section 2.3.3. In other words, the test point shall stay in a
more fuel-rich range and the start point shall stay in a more fuel-lean range compared
to the desired equivalence AFR. This is supposed to provide a certain robustness with
respect to tolerances of the position of the ioni electrode and to avoid too large time
spans for an ADA iteration.

(S6) The equivalence AFRs of the (undrifted) start and test point shall have a minimum
distance, denoted by ��min. This is necessary in order to have a clear distinction
between the start and the test point, which is also supposed to provide a certain
robustness with respect to tolerances of the position of the ioni electrode. A common
value used by Vaillant is ��min = 0:1 [PHE, Item 3280].

(S7) The start and the test fan speeds must be selected as follows [PHE, Item 3280]:

� The test fan speeds follow a descending order, i.e., t1 > t2 > � � � > tN ,

� the start fan speed of an ADA pair must be larger than the corresponding pair's
test fan speed, i.e., tp < sp for all p 2 [N],

� ADA pairs must not be overlapping, i.e., sp < tp�1 for all p 2 f2; : : : ; Ng,

� the test fan speed of ADA pair N must not be smaller than the HE's minimum
fan speed, i.e., tN � fsmin, and

� the start fan speed of ADA pair one must not be larger than the HE's maximum
fan speed, i.e., s1 � fsmax.

These restrictions are in accordance with the considerations made in Section 3.4 as
well as with De�nition 5.2.

Therefore, we can already state that the decision variables of the optimization models are
the ADA parameters (sp; tp; ips ; i

p
t ), p 2 [N].

The objective criterion (O) is composed of the two aspects "good convergence char-
acteristics" and "scenarios speci�ed by the decision makers", which are analyzed in more
detail in this subsection. The speci�cations (S1) to (S7) and their corresponding con-
straints are detailed in Section 8.5.
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8.1.1. Scenarios Speci�ed by the Decision Makers

From a practical point of view, only certain scenarios are of interest. The decision makers
decided to consider only scenarios, where all of the following items (Sc1) to (Sc3) are
ful�lled, which reduces the complexity of the optimization problems to a certain degree.

(Sc1) Only a nonnegative and �xed drift resistance rD is considered, i.e., rD is not sup-
posed to change over time or to be negative. This is in accordance with the as-
sumptions made in Section 3.1.2. Vaillant typically considers rD = 140
 [PHE,
Item 1618]. Two other common values are rD = 80k
 and rD = 200k
 [PHE,
Item 1618].

(Sc2) Only the vector ît;in = (i in1 ; : : : ; i
in
N ) with i inp = ipt for all p 2 [N], i.e., the vector

that is composed of the (undrifted) test ioni currents, is considered as a starting
vector for the ADA Algorithm 5.2 [PHE, Item 1618]. This vector corresponds to
the situation in which no correction has yet been determined. It is a typical starting
vector, see also Remark 5.34.

(Sc3) The decision makers specify the test fan speeds tp, p 2 [N], in advance.

While (Sc1) and (Sc2) are straightforward, (Sc3) requires further explanation. What
distinguishes the test fan speeds from the other ADA parameters, i.e., why do the decision
makers specify the test fan speeds in advance? Recall from Section 3.4.2 that ADA
provides N data points (tp; r̂pD(ip)) for the approximation of the drift resistance function
rD(fs), see also De�nition 3.38 and Figure 3.7. Depending on the situation, the decision
makers prefer data points that have a certain distribution in the set of feasible fan speeds
[PHE, Item 3280]. Usually, the decision makers want that:

� An ADA iteration can be performed when the burner is close to its minimum load.
Thus, the smallest test fan speed should be close to the considered HE's minimum
fan speed.

� An ADA iteration can be performed when the burner is close to its maximum load.
Thus, the largest test fan speed shall be close to the considered HE's maximum fan
speed fsmax. But not too close, because the corresponding start fan speed, which is
larger than the test fan speed, must not be larger than fsmax according to (S7).

� The test fan speeds in between are uniformly distributed in order to have a good
distribution of the test points in the set of fan speeds, i.e., tp�tp+1 = 1

N�1(t
1�tN)

for all p 2 [N � 1].

Note that these three items with respect to the test fan speeds are not mandatory. For
instance, in one use case it turned out that ADA pairs with the test fan speed in a particular
range of the fan speeds have a too slow rate of convergence for a certain type of HE. The
decision makers decided to not place an ADA pair in this fan speed range for this type of
HE [PHE, Item 3855].

164
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Because all test fan speeds must be within the HE model's set of feasible fan speeds
[fsmin; fsmax] and because they must follow a descending order according to (S7), the
following de�nition of the set of feasible test fan speeds is provided.

De�nition 8.1 Let H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
be an HE model.

A set T := ft1; : : : ; tNg � R>0 is called set of feasible test fan speeds with respect to H,
if

fsmin � tN < tN�1 < � � � < t1 < fsmax :

Remark 8.2 In an early phase of the modeling process, the test fan speeds were not

considered as �xed. Rather, they were also a part of the decision variables. But the results

were not satisfactory. Furthermore, it has been observed in practice that small changes

in the test fan speed of an ADA pair only cause small changes in the ADA convergence

characteristics of the corresponding ADA pair. This means that a test fan speed a few

percent larger or smaller makes only a small di�erence to the rate of convergence. With

this observation in mind, the decision makers decided to select the N test fan speeds �rst

and keep them �xed during the optimization process.

Remark 8.3 It is an empirical �nding that small changes in the test fan speed of an ADA

pair usually cause only small changes in the corresponding rate of convergence, which

cannot be proved with the properties of the HE model. Rather, this seems to be a property

of the considered HE type itself. In general, it is thinkable that there are HE types such

that this property does not hold. If it turns out that an HE type is such that the rates of

convergence are sensitive to small changes in the test fan speeds, it may make sense to

revise the optimization model and also include the optimization of the test fan speeds.

It is important to emphasize that because the test fan speeds are provided by the decision
makers, the selection of the test fan speeds is not a part of the proposed optimization
models. This has the advantage, that the ADA pairs are decoupled and can be considered
individually, see also Remark 8.50 below. This reduces the complexity of the optimization
model and simpli�es the decision making process.
For the remainder of this chapter, only the case where (Sc1), (Sc2) and (Sc3) hold is
considered. In particular, the proposed optimization models require that (Sc1), (Sc2) and
(Sc3) hold.
With these considerations in mind, the second aspect of (O) is discussed and we analyze
what good convergence characteristics of Algorithm 5.2 are.

8.1.2. Good Convergence Characteristics

As stated in Section 7.4, the ADA Algorithm 5.2 ideally returns the drifted test ioni current
ipt;rD for each ADA pair p 2 [N]. Recall from De�nition 3.27 that ipt;rD = �tp;rD � �

�1
tp (i

p
t ),

p 2 [N]. In addition, the ADA pairs should be chosen such that each ADA pair p 2 [N]

has a fast rate of convergence to ipt;rD . This allows us to break down the objective criterion
(O) further. Ideally:
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(O1) The super �xed point vector i
�� = (i��1 ; : : : ; i��N ) approximates the drifted test ioni

currents perfectly, i.e., i��p = ipt;rD holds for all p 2 [N].

(O2) For the input vector ît;in = (i1t ; : : : ; i
N
t ), which is the only relevant input vector

according to (Sc2), and for all su�ciently well distributed ADA update sequences
u, we have lim

n!1
i
n (̂it;in; u) = i

��, i.e., the corresponding sequences of ADA iterates

and thus the corresponding output of Algorithm 5.2 converge to i
��.

(O3) The sequence i
n (̂it;in; u), where ît;in = (i1t ; : : : ; i

N
t ) and u is a su�ciently well dis-

tributed ADA update sequence, has a high rate of convergence in the sense that only
a few ADA iterations with each ADA pair are required to get close to i

��.

Items (O1) and (O2) can be considered as mandatory. Hence, they become a part of
the constraints of the optimization models. They are dealt with in detail in the following
section. Under all the ADA pairs that ful�ll (O1) and (O2), we are interested in those that
have the fastest rate of convergence. Therefore, (O3) becomes a part of the optimization
goals. Item (O3) is dealt with in detail in Sections 8.3 and 8.4.
However, the �nal optimization models contain more constraints according to the speci�-
cations (S1) to (S7), which are detailed in Section 8.5. All objectives and constraints are
then combined to the proposed optimization model for the nominal case without tolerances
in Section 8.6. Finally, Section 8.7 extends the nominal optimization model for the case
with tolerances.

8.2. Convergence Related Requirements

In this section, we �rst derive requirements such that (O1) and (O2) are satis�ed. Corre-
sponding constraints for the optimization model are then derived from these requirements.
According to Theorem 7.73, (O1) is satis�ed if and only if �x(Ap

rD) = rD for all p 2 [N].
Therefore, the following requirement guarantees that (O1) is satis�ed.

(R1) �x(Ap
rD) = rD for all p 2 [N].

However, �nding requirements such that (O2) is satis�ed is more complicated and is divided
into two steps. First, we derive conditions such that ît;in = (i1t ; : : : ; i

N
t ) and an arbitrary

update sequence u are a feasible input combination for Algorithm 5.2. Thereafter, we
derive conditions such that limn!1 i

n (̂it;in; u) = i
�� for all su�ciently well distributed ADA

update sequences u.

8.2.1. Feasible Input Combination for the ADA Algorithm

Let ît;in = (i1t ; : : : ; i
N
t ) and let u be an arbitrary ADA update sequence. Without loss of

generality, let u be an in�nite sequence. This is done to avoid case distinctions with respect
to the length of u. The input vector ît;in and u are a feasible input combination if and only
if the ioni current based ADA iterates i

n (̂it;in; u) = (in1 ; : : : ; i
n
N) are contained in RN for all

n 2 N according to De�nition 7.24.
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The approach to show that ît;in and u are a feasible input combination is to show that
the corresponding resistance based ADA iterates r

n (̂it;in; u) = (rn1 ; : : : ; r
n
N) are contained

in the set [0; rD]N for all n 2 N. Because rnp = �p(inp ) and rnp 2 [0; rD], we have inp =

(�p)�1(rnp ) 2 R for all p 2 [N] in this case, see also De�nitions 7.28 and 5.9.
The following lemmas are auxiliary statements that are needed to prove the following
Theorem 8.10 about ît;in and u being feasible inputs. First, we state conditions such that
the ADA iteration function Ap

rD is a selfmap on the interval [0; rD]. For this, recall that
R̂p
rD is the domain of Ap

rD , see also De�nition 6.21.

Lemma 8.4 Let rD � 0 and let p 2 [N]. Furthermore, let Ap
rD be contractive, let �x(Ap

rD) =

rD and let 0 2 R̂p
rD . Then,

r 2 [0; rD] ) Ap
rD
(r) 2 [0; rD]:

Proof. Because R̂p
rD is a closed interval (Lemma 6.11) and 0 2 R̂p

rD as well as rD 2 R̂p
rD (by

assumption), we have [0; rD] � R̂p
rD , i.e., A

p
rD(r) is well-de�ned for all r 2 [0; rD]. If rD = 0,

then [0; rD] = f0g and Ap
rD(r) = rD = 0 for all r 2 [0; rD]. Next, let rD > 0. Because Ap

rD

is strictly increasing (Lemma 6.34) and Ap
rD is contractive, we can apply Lemma 4.45 and

obtain
0 � r � rD = �x(Ap

rD
) ) 0 < Ap

rD
(r) � �x(Ap

rD
) = rD:

A similar relation exists for the weighted sum function !p
v according to De�nition 7.1.

Lemma 8.5 Let rD � 0 and let p 2 f2; : : : ; Ng, then

r 2 [0; rD] and v 2 [0; rD] ) !p
v (r) 2 [0; rD]:

Proof. Let r 2 [0; rD] and let v 2 [0; rD]. Because 0 < wp < 1 (Lemma 5.13), we have

0 � r � rD and 0 � v � rD

) 0 � wpr � wprD and 0 � (1� wp)v � (1� wp)rD

) 0 � wpr + (1� wp)v � wprD + (1� wp)rD

) 0 � !p
v (r) = wpr + (1� wp)v � rD:

With this, we can state conditions such that Cp
rD;v is a selfmap on [0; rD].

Lemma 8.6 Let rD � 0 and let p 2 f2; : : : ; Ng. Furthermore, let Ap
rD be contractive, let

�x(Ap
rD) = rD and let 0 2 R̂p

rD . Then,

r 2 [0; rD] and v 2 [0; rD] ) Cp
rD;v

(r) 2 [0; rD]:

In particular Cp
rD;v (r) is well-de�ned.
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Proof. Let r 2 [0; rD] and let v 2 [0; rD]. Then, !p
v (r) 2 [0; rD] (Lemma 8.5) and thus

Ap
rD � !

p
v (r) is well-de�ned and Ap

rD � !
p
v (r) 2 [0; rD] holds (Lemma 8.4). With this, the

statement follows from Cp
rD;v := Ap

rD � !
p
v (De�nition 7.36).

An analogous statement exists for the ioni current based iteration function de�ned in
De�nition 7.8.

Corollary 8.7 Let rD � 0 and let p 2 f2; : : : ; Ng. Furthermore, let Ap
rD be contractive, let

�x(Ap
rD) = rD and let 0 2 R̂p

rD . Then,

i 2 (�p)�1
(
[0; rD]

)
and v 2 [0; rD] ) Bp

rD;v
(i) 2 (�p)�1

(
[0; rD]

)
:

In particular Bp
rD;v (i) is well-de�ned in this case.

Proof. Because rpt > 0 (Remark 5.8), (�p)�1(r) = U
r+rpt

is well-de�ned for all r 2 [0; rD],

i.e., the set (�p)�1
(
[0; rD]

)
is well-de�ned.

Let i 2 (�p)�1
(
[0; rD]

)
and let v 2 [0; rD]. By applying Lemma 8.6, we have

i 2 (�p)�1
(
[0; rD]

)
) �p(i) 2 [0; rD] ) Cp

rD;v
� �p(i) 2 [0; rD]

) (�p)�1 � Cp
rD;v
� �p(i) 2 (�p)�1

(
[0; rD]

)
;

i.e., (�p)�1 � Cp
rD;v � �

p(i) is well-de�ned and thus Bp
rD;v (i) is also well-de�ned according

to Lemma 7.40.

Remark 8.8 In De�nition 7.4, the set V p
rD , p 2 f2; : : : ; Ng, is introduced to make sure

that the functions Bp
rD;v and Cp

rD;v are well-de�ned under all circumstances (Lemma 7.10).

According to Lemma 8.6 and Corollary 8.7, we know that under certain conditions v 2

[0; rD] implies that Bp
rD;v and Cp

rD;v are well-de�ned. This is independent of v being an

element of V p
rD . Therefore, the set V

p
rD is considered as super�uous in this section. Rather,

it is replaced by the condition v 2 [0; rD] in the following. This does not impair any result

from the previous chapter, because in all corresponding proofs the set V p
rD is only required

to make sure that Bp
rD;v and Cp

rD;v are well-de�ned, which is guaranteed by Lemma 8.6 and

Corollary 8.7 if v 2 [0; rD] and r 2 [0; rD] are considered.

Corollary 8.9 Let rD � 0 and let p 2 f2; : : : ; Ng. Furthermore, let Ap
rD be contractive, let

�x(Ap
rD) = rD and let 0 2 R̂p

rD . Then,

v 2 [0; rD] ) Cp
rD;v
j[0;rD] is a contractive selfmap and �x(Cp

rD;v
) 2 [0; rD]:

Proof. Let v 2 [0; rD]. Because Ap
rD is contractive (by assumption), Cp

rD;v is contrac-
tive as well (Lemma 7.48). Furthermore, we have r 2 [0; rD] implies Cp

rD;v (r) 2 [0; rD]

(Lemma 8.6) and thus Cp
rD;v restricted to [0; rD] is a selfmap.

As a strictly increasing and contractive selfmap, Cp
rD;v restricted to [0; rD] has the unique

�xed point �x(Cp
rD;v ) (Corollary 7.47). Furthermore, �x(Cp

rD;v ) has to be an element of
[0; rD]. If not, this would be a contradiction to being a selfmap on [0; rD].
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Finally, we can show that ît;in = (i1t ; : : : ; i
N
t ) and an arbitrary ADA update sequence u

are a feasible input combination.

Theorem 8.10 Let rD � 0. Let Ap
rD be contractive, let �x(Ap

rD) = rD and let 0 2 R̂p
rD for

all p 2 [N]. Then, ît;in := (i1t ; : : : ; i
N
t ) and u are a feasible input combination, where u is

an arbitrary (�nite or in�nite) ADA update sequence.

Proof. Aiming at a better readability, the subscript rD of R̂P
rD
, Ap

rD and Cp
rD;v is omitted

throughout the proof.
Let u be an arbitrary ADA update sequence. Without loss of generality, let u be in�nite,
i.e., u = (un)n2N. Let i

n (̂it;in; u) = (in1 ; : : : ; i
n
N) be the n-th ioni current based ADA iterate

according to De�nition 7.22. To show that ît;in and u are a feasible input combination,
we have to guarantee that for all n 2 N and for all p 2 [N] inp 6= NaN holds, see also
De�nition 7.24. For this, we consider the corresponding resistance based ADA iterates
r
n (̂it;in; u) = (rn1 ; : : : ; r

n
N) de�ned by rnp := �p(inp ) according to De�nition 7.28. They can

be recursively calculated by

r
n (̂it;in; u) =


(
A1(rn�11 ); rn�12 ; : : : ; rn�1N

)
if un = 1;(

rn�11 ; : : : ; rn�1p�1 ; C
p

rn�1

p�1

(rn�1p ); rn�1p+1 ; : : : ; r
n�1
N

)
if un =: p � 2:

(8.1)

with r0p := �p(i inp ) for all p 2 [N] (Lemma 7.45). We show by induction over n that
rnp 2 [0; rD] for all p 2 [N] and for all n 2 N0.
Base case: Let n = 0. By construction, we have

r0p = �p(i inp ) = �p(ipt ) =
U

ipt
�

U

ipt
= 0 8 p 2 [N]:

Induction hypothesis: For a certain k 2 N let r `p 2 [0; rD] for all p 2 [N] and for all
` 2 [k ].
Induction step: Let n = k + 1. According to (8.1), we have rnp = rn�1p = r kp for all
p 2 [N] n fung. Because r kp 2 [0; rD] according to the induction hypothesis, rnp 2 [0; rD]

holds for all p 2 [N] n fung. It remains to show that rnun 2 [0; rD].
If un = 1, then rn1 = A1(rn�11 ) according to (8.1). Because rn�11 2 [0; rD] (induction
hypothesis), we have rn1 = A1(rn�11 ) 2 [0; rD] (Lemma 8.4).
If un =: p 2 f2; : : : ; Ng, then rnp = Cp

rn�1

p�1

(rn�1p ) according to (8.1). Because rn�1p�1 2 [0; rD]

as well as rn�1p 2 [0; rD] (induction hypothesis), we have rnp = Cp

rn�1

p�1

(rn�1p ) 2 [0; rD]

(Lemma 8.6) and the induction is completed.
Because inp = (�p)�1(rnp ) and rnp 2 [0; rD] and [0; rD] � R̂p (which is the domain of
(�p)�1), we have inp 2 (�p)�1([0; rD]) for all p 2 [N] and for all n 2 N. In particular
inp 6= NaN for all p 2 [N] and for all n 2 N and thus ît;in and u are a feasible input
combination.

According to the proof of Theorem 8.10, all components of all resistance based ADA
iterates are contained in the interval [0; rD].
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Corollary 8.11 Let rD � 0. Let Ap
rD be contractive, let �x(Ap

rD) = rD and let 0 2 R̂p
rD for

all p 2 [N]. Let ît;in := (i1t ; : : : ; i
N
t ), let u be an arbitrary (in�nite) ADA update sequence

and let r
n (̂it;in; u) = (rn1 ; : : : ; r

n
N) be the corresponding n-th resistance based ADA iterate.

Then, rnp 2 [0; rD] for all p 2 [N] for all n 2 N.

With this, we can prove that ADA Algorithm 5.2 given the inputs ît;in = (i1t ; : : : ; i
N
t ) and

a su�ciently well distributed ADA update sequence u converges to the super �xed point
vector i

��.

8.2.2. Convergence of the ADA Algorithm

The following theorem states conditions such that the ADA Algorithm 5.2 converges to
the super �xed point vector i

�� = (i��1 ; : : : ; i��N ) with i��p = ipt;rD for all p 2 [N]. From the
theorem's requirements we then derive conditions such that (O2) is satis�ed.

Theorem 8.12 Let rD � 0. For all p 2 [N] let Ap
rD be contractive, �x(Ap

rD) = rD and

0 2 R̂p
rD . Then,

� i
�� = (i��1 ; : : : ; i��N ) with i��p = ipt;rD for all p 2 [N] and

� lim
n!1

i
n (̂it;in; u) = i

��, where ît;in = (i1t ; : : : ; i
N
t ) and u is an arbitrary su�ciently well

distributed ADA update sequence.

Proof. Let u be an arbitrary su�ciently well distributed ADA update sequence. To show
the statement, we apply Theorem 7.68. We check the necessary prerequisites for this.

� Feasible scenario: Because �x(Ap
rD) = rD for all p 2 [N] by assumption, we have i��p =

ipt;rD for all p 2 [N] (Theorem 7.73) and thus i��p 2 R for all p 2 [N]. In particular,
the corresponding resistance based super �xed point vector is r

�� = (r��1 ; : : : ; r��N )

with r��p = rD for all p 2 [N].

� The iteration function Ap
rD is contractive for all p 2 [N] by assumption.

� The starting vector ît;in = (i1t ; : : : ; i
N
t ) and u are a feasible input combination ac-

cording to Theorem 8.10.

� It remains to show that "there exists � > 0 such that [r��p�1 � �; r��p�1 + �] � V p
rD and

Cp
rD;r

��

p�1
�� as well as Cp

rD;r
��

p�1
+� are selfmaps for all p 2 f2; : : : ; Ng" (third require-

ment of Theorem 7.68).
According to Corollary 8.11, all resistance based ADA iterates are elements of [0; rD].
Therefore, we always have the situation "v 2 [0; rD]" (recall that v is the incum-
bent drift resistance approximation of ADA pair p � 1 for p 2 f2; : : : ; Ng, see also
Remark 7.3). As a consequence, we can safely assume that Cp

rD;v (r) is well-de�ned
for all p 2 f2; : : : ; Ng and for all r 2 [0; rD], i.e., the set V p

rD is not required in this
case, see also Remark 8.8.
We select � := rD. According to the �rst item of this proof, we have r��p�1 = rD for all
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p 2 f2; : : : ; Ng and thus Cp
rD;v j[0;rD] is a selfmap for all v 2 [0; rD] = [r��p�1 � �; r��p�1]

(Corollary 8.9). However, we cannot make a statement about the iteration function
Cp
rD;r

��

p�1
+�. We do not even know whether this function is well-de�ned. The fol-

lowing argumentation shows that it is su�cient to consider the iteration functions
Cp
rD;v j[0;rD] with v 2 [0; rD] = [r��p�1 � �; r��p�1] in the speci�c case considered in this

theorem, where we have v 2 [0; rD].
Because A1

rD
is a selfmap on [0; rD] (Lemma 8.4) as well as Cp

rD;v j[0;rD], p 2 f2; : : : ; Ng,
are selfmaps, the components of all ADA iterates are in the interval [0; rD]. There-
fore, a situation with v > rD never occurs under the conditions of this theorem. In
visual terms, all drift resistance approximations of ADA pair p stay "left of rD" (or
are equal to rD) for all p 2 [N]. Thus, no information about what "happens right of
rD" is required.

With this, all requirements to apply Theorem 7.68 are met and thus lim
n!1

i (̂it;in; u) = i
��.

Furthermore, i��p = ipt;rD holds for all p 2 [N]

Remark 8.13 Note that all considerations made so far in this section are also valid if

Ap
rD is only contractive over [0; rD], i.e., if only Ap

rD j[0;rD] is contractive. Therefore, the

requirement "Ap
rD being contractive" is more restrictive than necessary. However, practical

experience has shown that Ap
rD j[0;rD] being contractive usually implies that Ap

rD is contractive

over its whole domain R̂p
rD . Furthermore, from a practical point of view, it is convenient

if Ap
rD is contractive over a larger set than [0; rD], because this leaves some room for the

case that a drift resistance approximation r 2 R̂p
rD n [0; rD] is considered for some reason.

Therefore, the more general requirement Ap
rD being contractive over R̂p

rD is considered in

the following.

Item (O2) is satis�ed if the requirements of Theorem 8.12 are met. Note that rD � 0

and �x(Ap
rD) = rD for all p 2 [N] are already covered by (Sc1) and (R1), respectively. The

remaining requirements are:

(R2) Ap
rD is contractive for all p 2 [N].

(R3) 0 2 R̂p
rD for all p 2 [N].

In conclusion, if (R1) to (R3) (as well as (Sc1)) hold, then (O1) and (O2) are satis�ed.
However, (R1) to (R3) are not constraints from a mathematical modeling point of view,
because constraints "are functions of the design1 variables that we want to restrict in
some way" [MN22, p. 12]. In the following, we reformulate (R1) to (R3) and express
them in dependence of the ADA parameters (sp; tp; ips ; i

p
t ), p 2 [N]. With this, we obtain

constraints such that (O1) and (O2) are covered.

Remark 8.14 Usually, strict inequalities are not allowed as constraints [Sán20, p. 9]. Be-

cause if a strict inequality is used and it is the active constraint, then there might be

1The term "design variable" is synonymous to the term "decision variable" used in this work.
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no optimal solution [MN22, p. 12]. Therefore, we follow the recommendation in [Sán20,

p. 9]: Whenever we derive a constraint that is a strict inequality, we add (or subtract) an

arbitrary small " > 0 and transform the strict inequality to a not-strict inequality.

Furthermore, for a better overview and simpli�cation, we consider only equalities and less

than or equal to inequalities as constraints in this work.

8.2.3. Derived Constraints for the Optimization Models

Let rD � 0 be a given drift resistance and let T = ft1; : : : ; tNg be a given set of feasible
test fan speeds.

Requirement (R1): We want that �x(Ap
rD) = rD for all p 2 [N]. According to Theo-

rem 7.73, we have

�x(Ap
rD
) = rD 8 p 2 [N] , ��1sp (i

p
s ) = ��1tp (i

p
t ) 8 p 2 [N]:

The condition ��1sp (i
p
s ) = ��1tp (i

p
t ) is already expressed in dependence of the ADA parameters

and can be used as a constraint. Thus, in order to satisfy (R1), we include the constraint

(C-R1) ��1sp (i
p
s )� ��1tp (i

p
t ) = 0 for all p 2 [N].

Requirement (R2): We want that Ap
rD is contractive for all p 2 [N]. Whether Ap

rD is
contractive depends on its Lipschitz constant, which is denoted as follows.

Notation 8.15 Let p 2 [N] and let Ap
rD be Lipschitzian. Then, the Lipschitz constant of

Ap
rD is denoted by Lp.

If Lp < 1, then Ap
rD is contractive. Thus, we are interested in ADA parameters

(sp; tp; ips ; i
p
t ) such that Lp < 1.

Remark 8.16 There exist functions that are contractive whose Lipschitz constant is L = 1.

However, the rate of convergence of a Picard iteration associated to such a function is

usually slow, which is why this special case is not considered in the optimization model.

Therefore, we de�ne a function that maps the ADA parameters (sp; tp; ips ; i
p
t ), for a

given p 2 [N], with tp taken from T , to the Lipschitz constant of the corresponding ADA
iteration function Ap

rD (if it exists).

De�nition 8.17 Let T = ft1; : : : ; tNg be a set of feasible test fan speeds and let rD � 0

be given. For p 2 [N], we de�ne LpT;rD : R3 ! R�0 [ f1g by

LpT;rD(s
p; ips ; i

p
t ) :=

{
Lp (Lipschitz constant of Ap

rD) if Ap
rD is Lipschitzian;

1 else;

where

Ap
rD
(r) = ��

rpt
� �tp;rD � �

�1
sp;rD

� �+
rps
(r) = �tp;rD � �

�1
sp;rD

(
r +

U

ips

)
�

U

ipt
;

see also De�nition 6.21.
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Remark 8.18 The function Lptp;rD(s
p; ips ; i

p
t ) is well-de�ned by construction.

In order to satisfy (R2), Lptp;rD(s
p; ips ; i

p
t ) < 1 for all p 2 [N] is a suitable constraint.

However, no strict inequalities are allowed as constraints according to Remark 8.14. There-
fore, we make us of an arbitrary small " > 0 to transform the strict inequality to a not-strict
inequality and we include the following constraint.

(C-R2) LpT;rD(s
p; ips ; i

p
t ) � 1� " for all p 2 [N], where " > 0 is arbitrary small and �xed.

Requirement (R3): We want that 0 2 R̂p
rD for all p 2 [N].

Lemma 8.19 Let rD � 0 and let p 2 [N], then

0 2 R̂p
rD
,

ips U

�ips rD + U
2 �sp(Gsp \ Gtp)

, min �sp(Gsp \ Gtp) �
ips U

�ips rD + U
� max �sp(Gsp \ Gtp):

Proof. By applying De�nitions 5.19 and 6.14 as well as Lemma 6.20, we have

R̂p
rD

= �sp;rD(Gsp \ Gtp) + rps = �sp(Gsp \ Gtp) + rD + rps =
U

�sp(Gsp \ Gtp)
+ rD � rps

and thus

0 2 R̂p
rD
, 0 2

U

�sp(Gsp \ Gtp)
+ rD � rps ,

U

rps � rD
2 �sp(Gsp \ Gtp)

,
U

U
ips
� rD

=
ips U

�ips rD + U
2 �sp(Gsp \ Gtp):

Furthermore, �sp(Gsp \ Gtp) is a closed and nonempty interval, because Gsp and Gtp are
closed intervals and �sp is a homeomorphism (De�nition 2.18) as well as Gsp \ Gtp 6= ;

(De�nition 5.2).

Thus, in order to satisfy (R3), we include the following constraints, where we denote
Gp
st := Gsp \ Gtp .

(C-R3) min �sp(G
p
st)�

ips U
�ips rD+U

� 0 and ips U
�ips rD+U

�max �sp(G
p
st) � 0 8 p 2 [N].

At this point, we have made sure that (O1) and (O2) are covered and that optimized ADA
parameters have a good approximation quality. But according to (O3), we also want a
fast rate of convergence, which is dealt with below.
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8.3. Optimization Objective: Fast Rate of Convergence

In this section, we deal with the remaining item (O3) and discuss how a fast rate of
convergence can be modeled for the ADA optimization. Since (O1) and (O2) are con-
sidered as mandatory, we can restrict our considerations to situations where the corre-
sponding requirements (R1) to (R3) are ful�lled. I.e., for all p 2 [N] we assume that
�x(Ap

rD) = rD, Lp < 1 and 0 2 R̂p
rD . Then, rnp 2 [0; rD] for all p 2 [N] and for all n 2 N,

where r
n (̂it;in; u) = (rn1 ; : : : ; r

n
N) is the n-th resistance based ADA iterate with respect to

ît;in = (i1t ; : : : ; i
N
t ) and an arbitrary (in�nite) ADA update sequence u (Corollary 8.11).

Therefore, for each ADA pair it is su�cient to consider only drift resistance approxima-
tions in the interval [0; rD] in this case. If in addition u is su�ciently well distributed, then
lim
n!1

r
n (̂it;in; u) = (rD; : : : ; rD) (Theorem 8.12).

In the following, we show that for all p 2 [N] a small Lipschitz constant Lp of the iteration
function Ap

rD is an indicator for a fast rate of convergence regarding the drift resistance
approximation by ADA pair p. As in the previous chapters, we make a case distinction
with respect to p, because the iteration function of ADA pair p = 1 is di�erent to those
of the remaining ADA pairs.

8.3.1. Rate of Convergence of ADA Pair p = 1

Let r1 be the incumbent drift resistance approximation of ADA pair p = 1. Then, an
ADA iteration with ADA pair p = 1 corresponds to evaluating A1

rD
(r1). A sequence of

ADA iterations with ADA pair p = 1 starting at r1 corresponds to the Picard iteration
associated to A1

rD
starting at r1, as delineated in Chapter 6. Therefore, we can apply

Banach's �xed point Theorem 4.39 to estimate the rate of convergence in this case.

Lemma 8.20 Let �x(A1
rD
) = rD and let A1

rD
be L1-Lipschitzian with L1 < 1, then∣∣rD � (

A1
rD

)n
(r1)

∣∣ � (
L1

)n∣∣rD � r1
∣∣ 8 r1 2 R̂1

rD
:

Proof. Because A1
rD

is contractive and has a �xed point, it is also a selfmap (Lemma 6.35).
Thus, we can apply Theorem 4.39.

Therefore, a small Lipschitz constant L1 is an indicator for a fast rate of convergence
regarding the drift resistance approximation by ADA pair p = 1.

8.3.2. Rate of Convergence of ADA Pair p, p � 2

Regarding the rate of convergence of ADA pair p, p � 2, things are more complicated.
Recall that an iteration with pair p, p � 2, corresponds to evaluating Cp

rD;v (r), where r

and v are the incumbent drift resistance approximations of the ADA pairs p and p � 1,
respectively, see also De�nition 7.36 and Remark 7.3.

Remark 8.21 Aiming at a better readability, the subscript rD of R̂p
rD , A

p
rD and Cp

rD;v is

omitted in this subsection.
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As in the case p = 1, we are interested in an estimate of the relation between
∣∣rD�Cp

v (r)
∣∣

and jrD � r j, i.e., we want to estimate how much closer Cp
v (r) is to rD than r is to rD.

Since we consider the speci�c case where we assume that (R1) to (R3) hold, it is su�cient
to consider only v 2 [0; rD] and r 2 [0; rD] according to Corollary 8.11 and as delineated
at the beginning of this Section 8.3.
First, we estimate how close the �xed point of Cp

v is to rD, because �x(C
p
v ) 6= rD in general.

Note that the �xed point of Cp
v exists for all v 2 [0; rD] and that �x(C

p
v ) 2 [0; rD] according

to Corollary 8.9. Furthermore, recall that 0 < wp < 1 according to Lemma 5.13.

Lemma 8.22 Let p 2 f2; : : : ; Ng, let Ap be Lp-Lipschitzian with Lp < 1, let �x(Ap) = rD,

let 0 2 R̂p and let v 2 [0; rD]. Then, the following inequality holds:

j �x(Cp
v )� rDj �

(1� wp)Lp

1� Lpwp
jv � rDj: (8.2)

Proof. Let v 2 [0; rD], then �x(C
p
v ) 2 [0; rD] (Corollary 8.9). Because Ap is Lp-Lipschitzian,

Cp
v is Lpwp-Lipschitzian (Lemma 7.77). Furthermore, �x(Ap) = rD by assumption. With

this, we obtain∣∣ �x(Cp
v )� rD

∣∣ = ∣∣Cp
v

(
�x(Cp

v )
)
� Ap(rD)

∣∣
�

∣∣Cp
v

(
�x(Cp

v )
)
� Cp

v (rD)
∣∣+ ∣∣Cp

v (rD)� Ap(rD)
∣∣

=
∣∣Cp

v

(
�x(Cp

v )
)
� Cp

v (rD)
∣∣+ ∣∣Ap � !p

v (rD)� Ap(rD)
∣∣

� Lpwp
∣∣ �x(Cp

v )� rD
∣∣+ Lp

∣∣!p
v (rD)� rD

∣∣
= Lpwp

∣∣ �x(Cp
v )� rD

∣∣+ Lp
∣∣wprD + (1� wp)v � rD

∣∣
= Lpwp

∣∣ �x(Cp
v )� rD

∣∣+ Lp(1� wp)
∣∣v � rD

∣∣
and thus

(1� Lpwp)
∣∣ �x(Cp

v )� rD
∣∣ � Lp(1� wp)

∣∣v � rD
∣∣

)
∣∣ �x(Cp

v )� rD
∣∣ � Lp(1� wp)

1� Lpwp

∣∣v � rD
∣∣:

The inequality in (8.2) is tight, which is demonstrated in Example 8.25 below. But �rst,
we use Lemma 8.22 to estimate the distance between rD and Cp

v (r) for r 2 [0; �x(Cp
v )].

Lemma 8.23 Let p 2 f2; : : : ; Ng, let Ap be Lp-Lipschitzian with Lp < 1, let �x(Ap) = rD,

let 0 2 R̂p and let v 2 [0; rD]. If r 2 [0; �x(Cp
v )], then

rD � Cp
v (r) � LprD � Lp

(
wpr + (1� wp)v

)
: (8.3)

Proof. Let 0 � v � rD and let 0 � r � �x(Cp
v ). Note that �x(Cp

v ) � rD (Corollary 8.9),
which implies r 2 [0; rD]. Therefore Cp

v (r) is well-de�ned (Lemma 8.6). Because Cp
v is
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strictly increasing, we have Cp
v (r) � Cp

v

(
�x(Cp

v )
)
= �x(Cp

v ) (Lemma 4.45). Furthermore,
Cp
v is Lpwp-Lipschitzian (Lemma 7.77). With this, we have

�x(Cp
v )� Cp

v (r) = Cp
v

(
�x(Cp

v )
)
� Cp

v (r) =
∣∣Cp

v

(
�x(Cp

v )
)
� Cp

v (r)
∣∣ � Lpwp

∣∣ �x(Cp
v )� r

∣∣
= Lpwp

(
�x(Cp

v )� r
)

and thus
(1� Lpwp) �x(Cp

v ) + Lpwpr � Cp
v (r): (8.4)

We use the bound for j �x(Cp
v )� rDj according to Lemma 8.22, c.f. (8.2), and we obtain

(note that 0 < wp < 1 and 0 < Lp < 1)

rD � �x(Cp
v ) = jrD � �x(Cp

v )j �
(1� wp)Lp

1� Lpwp
jv � rDj =

(1� wp)Lp

1� Lpwp
(rD � v)

and thus

(1� Lpwp) �x(Cp
v ) � (1� Lpwp)rD + (1� wp)Lp(v � rD)

= rD � LpwprD + (1� wp)Lpv � LprD + wpLprD

= (1� Lp)rD + (1� wp)Lpv : (8.5)

Finally, we combine (8.4) and (8.5), which yields

Cp
v (r) � (1� Lp)rD + (1� wp)Lpv + Lpwpr = (1� Lp)rD + Lp

(
wpr + (1� wp)v

)
and thus

rD � Cp
v (r) � LprD � Lp

(
wpr + (1� wp)v

)
:

Remark 8.24 Lemma 8.23 requires that r 2 [0; �x(Cp
v )]. It can be shown, that the case

r > �x(Cp
v ) never happens in the speci�c case considered where (R1) to (R3) hold and

thus the requirement r 2 [0; �x(Cp
v )] is not restrictive. However, the proof is lengthy and

omitted for the following reason.

If r > �x(Cp
v ) (which never happens in the speci�c case considered), we can also estimate

rD � Cp
v (r), because r > �x(Cp

v ) implies �x(Cp
v ) < Cp

v (r) < r according to Lemma 4.45

and thus rD �Cp
v (r) < rD � �x(Cp

v ) and rD � �x(Cp
v ) can be estimated by (8.2) according

to Lemma 8.22.

The following example demonstrates that the inequalities (8.2) and (8.3) are tight.

Example 8.25 Let rD � 0. Let us suppose that

Ap : [0; rD]! R; Ap(r) := Lp(r � rD) + rD with 0 < Lp < 1:

Note that (R1) to (R3) hold. In particular, Ap is contractive with Lp < 1 and Ap(rD) = rD,

i.e., �x(Ap) = rD. We are interested in the �xed point of Cp
v = Ap � !p

v for v 2 [0; rD].

Let r� := �x(Cp
v ), which exists according to Corollary 8.9. Then,
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r� = Cp
v (r

�) = Ap � !p
v (r

�) = Lp
(
wpr� + (1� wp)v � rD

)
+ rD

= Lpwpr� + (1� wp)Lpv + (1� Lp)rD

) r� =
(1� wp)Lpv + (1� Lp)rD

1� Lpwp

and thus

rD � r� =
(1� Lpwp)rD �

(
(1� wp)Lpv + (1� Lp)rD

)
1� Lpwp

=
rD � LpwprD � (1� wp)Lpv � rD + LprD

1� Lpwp
=

(1� Lp)wp(rD � v)

1� Lpwp
:

Therefore, the inequality (8.2) is tight in this case.

Next, we consider a function evaluation of Cp
v with an arbitrary r 2 [0; r�]. We have

Cp
v (r) = Lp

(
wpr + (1� wp)v � rD

)
+ rD = (1� Lp)rD + Lpwpr + Lp(1� wp)v

and thus rD �Cp
v (r) = LprD �Lp

(
wpr +(1�wp)v

)
, i.e., the lower bound in (8.3) is also

tight.

Finally, we can state how much the approximation of rD by ADA pair p, p � 2, improves
with a single ADA iteration. For this, we consider the two cases r � v and r > v separately.
Both cases are then interpreted and discussed with regard to a fast rate of convergence.

Lemma 8.26 Let p 2 f2; : : : ; Ng, let Ap be Lp-Lipschitzian with Lp < 1, let �x(Ap) = rD
and let 0 2 R̂p. If v 2 [0; rD] and r 2 [0; �x(Cp

v )], then

r � v ) rD � Cp
v (r) � Lp(rD � r):

Proof. We have

r � v ) wpr + (1� wp)v � wpr + (1� wp)r = r ) �
(
wpr + (1� wp)v

)
� �r

and thus

(8.3) ) rD � Cp
v (r) � LprD � Lp

(
wpr + (1� wp)v

)
� LprD � Lpr = Lp(rD � r):

In the case r > v , we cannot apply the estimation according to Lemma 8.26. But at
least we can estimate the distance to the �xed point of Cp

v . The following statement holds
for all r 2 [0; �x(Cp

v )], i.e., it is not restricted to r > v .

Lemma 8.27 Let p 2 f2; : : : ; Ng, let Ap be Lp-Lipschitzian with Lp < 1, let �x(Ap) = rD
and let 0 2 R̂p. If v 2 [0; rD] and r 2 [0; �x(Cp

v )], then

�x(Cp
v )� Cp

v (r) � Lpwp
(
�x(Cp

v )� r
)
:

Proof. The statement follows from the fact that Cp
v is Lpwp-Lipschitzian (Lemma 7.77)

and because r � �x(Cp
v ) implies Cp

v (r) � �x(Cp
v ) (Lemma 4.45).
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Interpretation and Discussion of the Results with Regard to a Fast Rate of

Convergence

In Section 8.3.1, a clear statement regarding the rate of convergence of the approximation
of rD by ADA pair p = 1 is given. This is not possible for the case p � 2, because in
this case an iteration with ADA pair p depends on r and v . Recall that r and v are the
incumbent approximations of rD by ADA pairs p and p � 1, respectively, as stated at the
beginning of this Subsection 8.3.2. The di�culty in the case p � 2 is that two subsequent
ADA iterations with ADA pair p are not done with the same iteration function Cp

v in
general, because the value of v might change between these two iterations. For instance
this is the case if the considered ADA update sequence is u = (: : : ; p; p � 1; p; : : : ).
Therefore, two subsequent iterations with p cannot be calculated by

(
Cp
v

)2
(r) in general.

Rather, because the incumbent approximation of the drift resistance by ADA pair p � 1

might have changed between the two iterations with ADA pair p, we have two di�erent
incumbent approximations by ADA pair p� 1, denoted by v1 and v2 for the moment, and
one calculates Cp

v2

(
Cp
v1
(r)

)
.

However, as long as the incumbent values are such that r � v in each ADA iteration with
ADA pair p, the approximation error of the approximation by ADA pair p is reduced by
the factor Lp according to Lemma 8.26. Therefore, a small Lipschitz constant of Ap is an
indicator for a fast rate of convergence in this case.
In the case r > v things are di�erent. In this case, we can only state that the approximation
error to the �xed point of Cp

v (and not to rD) is reduced by Lpwp according to Lemma 8.27.
However, if the distance between �x(Cp

v ) and rD is small, ADA pair p can still approximate
rD with a small approximation error in this case. According to Lemma 8.22, we have

j �x(Cp
v )� rDj �

(1� wp)Lp

1� Lpwp
jv � rDj =

1� wp

1
Lp � wp

jv � rDj: (8.6)

Because Lp > 0 is �xed and wp < 1 is �xed, ADA pair p has the chance to approximate
rD with an arbitrarily small approximation error only if v gets close to rD. Since we assume
su�ciently well distributed ADA update sequences, v will eventually converge to rD and
ADA pair p will eventually approximate rD arbitrary well. Nevertheless. a small Lipschitz
constant Lp is advantageous with regard to the rate of convergence in the case p � 2 for
two reasons. First, a small Lp guarantees a fast convergence to �x(Cp

v ). Second, a smaller
Lp reduces the distance between �x(Cp

v ) and rD according to (8.6), which improves the
approximation quality by ADA pair p even if v << rD (the extreme case is v = 0).

In total, a small Lp can be considered as an indicator for a fast rate of convergence in
all cases, i.e., if p = 1 and p � 2. Therefore, one goal of the ADA optimization is to
reduce the Lipschitz constants of all iteration functions Ap, p 2 [N].

Remark 8.28 Analogously to Remark 8.13, it is su�cient to consider the Lipschitz con-

stant of Ap over [0; rD]. However, in order to have some margin, the Lipschitz constant of

Ap over its whole domain R̂p is considered in the following. If it turns out that this is too

restrictive, it may make sense to consider the Lipschitz constant of Ap over [0; rD] only.
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(G1) Minimize the Lipschitz constant Lp of Ap for all p 2 [N].

Note that (G1) is not an objective function. Rather, this is an interim result that leads to
an objective function in the course of this chapter. The corresponding objective function
is de�ned in Section 8.6.2 below when the nominal optimization model is de�ned.
In order to reduce Lp, Vaillant uses a method called "start point increment". However,
this method causes con�icting objectives, which is shown next.

8.4. Con�icting Objectives: Small Lp Versus a Small Start

Point Increment of ADA Pair p

In the previous section, the optimization goal (G1) is identi�ed, which is to minimize the
Lipschitz constant Lp for all p 2 [N]. In this section, we show that Lp can be reduced by
making the start point of the considered ADA pair more fuel-lean, i.e., the ratio of fuel to
air is decreased or equivalently the AFR is increased, i.e., � at the start point is increased.
Therefore, this method is called "start point increment". However, an increased start point
also has some disadvantages. Accordingly, the decision makers are interested in a good
trade-o� between a fast rate of convergence (small Lp) and a small start point increment.
In the following, the start point increment method and its in�uence on Lp are detailed.
Thereafter, its disadvantages are delineated, which results in a further optimization goal.
Because we are only interested in the case where (Sc1) to (Sc3) as well as the requirements
(R1) to (R3) are satis�ed, we assume that rD � 0 and that the corresponding constraints
(C-R1) to (C-R3) are satis�ed for the remainder of this section.

8.4.1. Working Principle of the Start Point Increment

If Ap
rD is di�erentiable, then Lp is equal to the maximum of the absolute value of the

derivative of Ap
rD , i.e., Lp = maxr2R̂p

rD

(
j
dAp

rD

dr (r)j
)
(Lemma 4.44). Therefore, we can

reduce Lp by reducing the maximum of the derivative of Ap
rD (recall that Ap

rD is strictly
increasing and thus its derivative is always greater than zero).
The derivative of Ap

rD is determined in Section 6.3.3. Let �sp and �tp be di�erentiable.
Then Ap

rD is also di�erentiable and for all �r 2 R̂p
rD we have

d

dr
Ap
rD
(�r) =

d
dg �tp

(
g(�r)

)
d
dg �sp

(
g(�r)

) � �2sp(g(�r))
�2tp

(
g(�r)

) ; (8.7)

where

g(�r) = ��1sp (�r + rps � rD) = ��1sp
( U

�r + rps � rD

)
= ��1sp

( ips U

ips (�r � rD) + U

)
(8.8)

according to Theorem 6.42 and Lemma 6.17. The basic idea to reduce Lp is to reduce
�sp

(
g(�r)

)
while keeping the other values in (8.7) (approximately) constant.
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To illustrate how �sp
(
g(�r)

)
can be reduced, let us suppose that we want to parameterize

ADA pair p and that we have already selected a test point, i.e., tp and ipt are already
selected. Let g0 denote the corresponding gas valve position, i.e., g0 := ��1tp (i

p
t ). Because

we assume that the constraint (C-R1) is satis�ed, we have

��1sp (i
p
s ) = ��1tp (i

p
t ) ) ��1sp (i

p
s ) = g0 ) ips = �sp(g0);

i.e., the start point has the same gas valve position as the test point. Therefore, we must
select the start fan speed sp and the start ioni current ips such that �sp(g0) = ips holds.
Such a situation is depicted in Figure 8.1, which is based on real HE measurement data.
The left part of Figure 8.1 shows the ioni current as a function of the fan speed with the
gas valve position �xed at g0. The blue dot marks the already selected test point. Note
that �tp(g0) = ipt . The start point must be selected such that it is an element of this curve,
because it must have the same gas valve position as the test point. It is apparent that the
ioni current decreases with increasing fan speed. Therefore, the larger the selected start
fan speed sp is, the smaller is the corresponding start ioni current ips . Let us suppose that
we have three candidates for the start point of ADA pair p, denoted by a, b and c . Let their
fan speeds be sp;a, sp;b and sp;c , respectively, such that tp < sp;a < sp;b < sp;c . They are
depicted in Figure 8.1 by the turquoise, the yellow and the orange dot, respectively. Since
our goal is to obtain a small start ioni current, we would select a large start fan speed, i.e.,
we would select candidate c with the fan speed sp;c and the ioni current ip;cs (and the gas
valve position g0).
However, a small start ioni current comes at the prize of a large start equivalence AFR.
The right part of Figure 8.1 shows the equivalence AFR as a function of the fan speed
with the gas valve position �xed at g0. Again, the blue dot marks the already selected test
point. It is apparent that the equivalence AFR is strictly increasing with the fan speed.
This is consistent with the physics of combustion, because an increased fan speed results in
an increased air volume �ow while the �xed gas valve position results in an (approximately)
constant gas volume �ow and thus the AFR increases. Because the AFR increases when a
smaller (but usually better) start ioni current is selected, this method is called "start point
increment" [PHE, Item 3280].

Remark 8.29 The given explanation of the working principle of the start point increment

so far is rudimentary. For instance, we are not only interested in the one value of the ioni

current at the start fan speed sp and at the gas valve position g0. Rather, we are interested

in the ioni currents for all gas valve positions g(r) = ��1sp
(

ips U
ips (r�rD)+U

)
for r 2 [0; rD]

according to (8.8) and Corollary 8.11. This is demonstrated in more detail in Example 8.36.

The start point increment is essential for the ADA optimization problem. Therefore, a
corresponding de�nition is provided in the following.

8.4.2. De�nition of the Start Point Increment

For the de�nition of the start point increment, we need a baseline, i.e., a condition that
corresponds to a start point increment of zero. For this, we make use of the control curve,
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tp sp;a sp;b sp;c

ipt

ip;as

ip;bs

ip;cs

fs

�fs(g0) 8 fs 2 FS

tp sp;a sp;b sp;c

�pt = 1:18

�p;as = 1:30

�p;bs = 1:38

�p;cs = 1:46

fs

�fs(g0) 8 fs 2 FS

Figure 8.1.: The ioni current and the equivalence AFR are shown as a function of the fan
speed with the gas valve position �xed at g0 in the left and in the right part, respectively.
The set FS denotes the considered fan speeds. The blue dot marks an already selected
test point with the fan speed tp, the gas valve position g0, the ioni current i

p
t and the

equivalence AFR �
p
t . Three start point candidates a, b and c , marked by the turquoise,

the yellow and the orange dot, respectively, are also shown. With increasing start fan speed
sp;k , k 2 fa; b; cg, the corresponding ioni current ip;ks decreases and the corresponding
equivalence AFR �p;ks increases.

which is introduced in Section 2.3.3. Recall that the control curve is a function that maps
every feasible fan speed fs 2 [fsmin; fsmax] to an ioni current setpoint iset(fs) and that the
control curve is used to control the combustion process during normal boiler operation. An
exemplary control curve is depicted in the right part of Figure 2.7. Because it is essential
for the start point increment, we provide a formal de�nition of the control curve with
respect to the HE model.

De�nition 8.30 Let H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
be an HE model.

A control curve with respect to H is a function iset that maps every feasible fan speed to

a feasible ioni current setpoint, i.e., iset : FS! R>0 such that iset(fs) 2 Ifs for all fs 2 FS.

The corresponding operating point equivalence AFR is de�ned by

�op(fs) := �fs � �
�1
fs � iset(fs) 8 fs 2 FS :

Lemma 8.31 The operating point equivalence AFR is well-de�ned for all fs 2 FS.

Proof. Let fs 2 FS. According to De�nitions 2.18 and 2.22, we have ��1fs : Ifs ! Gfs and
�fs : Gfs ! Lfs. Because iset(fs) 2 Ifs (De�nition 8.30), �op(fs) := �fs � �

�1
fs � iset(fs) is

well-de�ned.

Remark 8.32 The operating point equivalence AFR corresponds to the equivalence AFR

during normal HE operation. For instance, let us suppose that we have a heat demand that
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corresponds to a certain fan speed fs 2 FS. Then, IoniDetect sets the fan speed to fs and

moves the gas valve such that the resulting ioni current equals iset(fs). This in turn results

in the equivalence AFR �op(fs). Ideally, �op(fs) equals the desired target equivalence AFR

at the fan speed fs, see also Section 2.3.3 and Remark 2.12.

Usually, the start point's ioni current is placed on the control curve, because in this case
an ADA iteration can be started out of normal boiler operation with (almost) no delay
[PHE, Item 3280]. Thus, a good baseline for the start point's ioni current is the value of
the control curve that corresponds to the start fan speed sp, i.e., ips = iset(s

p). However,
regarding combustion physics, the start point's equivalence AFR and not its ioni current
is the relevant physical quantity, see also Sections 2.2 and 2.3. Therefore, the operating
point equivalence AFR at the start fan speed is the relevant size and thus �op(sp) serves
as the baseline for the start point increment.
For the following de�nition, keep in mind that the gvp of the start point is gps = ��1sp (i

p
s ) and

thus the equivalence AFR at the start point is �ps = �sp(g
p
s ) = �sp � �

�1
sp (i

p
s ). Furthermore,

we assume that (C-R1) is satis�ed and thus ��1sp (s
p) = ��1tp (t

p) holds. In this case, the
equivalence AFR at the start point is �ps = �sp � �

�1
tp (t

p).

De�nition 8.33 Let H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
be an HE model

and let iset be a corresponding control curve. Let p 2 [N] and let (sp; tp; ips ; i
p
t ) be the

ADA parameters of ADA pair p such that ��1sp (s
p) = ��1tp (t

p).

The start point increment of ADA pair p is de�ned by

�ps;incr(s
p; tp; ips ; i

p
t ) := �ps � �op(s

p) = �sp � �
�1
tp (i

p
t )� �sp � �

�1
sp � iset(s

p):

Remark 8.34 Note that the start point increment is only de�ned for ADA parameters

(sp; tp; ips ; i
p
t ) such that ��1sp (s

p) = ��1tp (t
p) holds.

Lemma 8.35 The start point increment is well-de�ned. Furthermore,

ips = iset(s
p) , �ps;incr(s

p; tp; ips ; i
p
t ) = 0:

Proof. By assumption, we have ��1sp (i
p
s ) = ��1tp (i

p
t ) =: g0 and thus g0 2 Gsp \Gtp . Because

Gsp is the domain of �sp (De�nition 2.18), �sp
(
��1tp (i

p
t )
)
is well-de�ned. Since �sp � ��1sp �

iset(s
p) is well-de�ned as well (Lemma 8.31), �ps;incr(s

p; tp; ips ; i
p
t ) is also well-de�ned.

Furthermore, by considering that ��1sp (i
p
s ) = ��1tp (i

p
t ), we have

ips = iset(s
p) , �sp � �

�1
tp (i

p
t ) = �sp � �

�1
sp (i

p
s ) = �sp � �

�1
sp � iset(s

p)

, �ps;incr(s
p; tp; ips ; i

p
t ) = �sp � �

�1
tp (i

p
t )� �sp � �

�1
sp � iset(s

p) = 0:

The following example demonstrates the start point increment.
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Example 8.36 To demonstrate the start point increment, we consider the situation de-

picted in Figure 8.1. I.e., we have a test point de�ned by tp and ipt as well as the three

start point candidates a, b and c . Their fan speeds are sp;a, sp;b and sp;c , respectively.

Since we assume that (C-R1) is satis�ed, i.e., ��1sp (s
p) = ��1tp (t

p), the gvp of the start

point is already de�ned by the test point. The corresponding gvp is g0 = ��1tp (i
p
t ). This

gives us the start point candidates' equivalence AFRs, which are �p;as := �sp;a(g0) = 1:3,

�p;bs := �sp;b(g0) = 1:38 and �p;cs := �sp;c (g0) = 1:46 according to the right part of Fig-

ure 8.1.

In order to determine the start point increment of a, b and c , we also need the corre-

sponding control curve equivalence AFRs according to De�nition 8.33. For simplicity, let

us suppose that �op(s
p;a) = �op(s

p;b) = �op(s
p;c) = 1:3, i.e., the three start point candi-

dates have an identical operating point equivalence AFR of 1:3, which is a common value.

With this, we obtain �p;as;incr = �p;as � �op(s
p;a) = 1:3� 1:3 = 0 and analogously �p;bs;incr =

1:38 � 1:3 = 0:08 as well as �p;cs;incr = 1:46 � 1:3 = 0:16. In particular, we have

�p;as;incr < �p;bs;incr < �p;cs;incr.

However, regarding the start ioni currents of a, b and c , we have ip;as > ip;bs > ip;cs ac-

cording to the left part of Figure 8.1. Therefore, a smaller start ioni current comes at the

price of a larger start point increment in this example.

Remark 8.37 As in Example 8.36, the start ioni current and the start point increment are

usually inversely proportional. But most likely, this does not hold in general. However,

this is not required for the optimization model. Rather, optimized ADA parameters should

have a small start ioni current and a small start point increment, which is explained in

Section 8.4.3 below.

Recall that we are interested in small start ioni currents in order to reduce Lp. This is
demonstrated in the following example.

Example 8.38 This example is based on the same HE measurement data as Figure 8.1

and Example 8.36. To be precise, this example continues Example 8.36, in which the start

point increments of the three start point candidates a, b and c are determined.

In this example, we consider the corresponding ADA iteration functions Ap;a
rD , Ap;b

rD and

Ap;c
rD , respectively. We are particularly interested in their Lipschitz constants. For this, we

use the drift resistance rD = 140k
, which is a typical value used by Vaillant as already

mentioned before in (Sc1).
As with previous examples, most details of the measurement data are omitted for reasons

of con�dentiality. Therefore, the iteration functions are presented without specifying any

parameters or HE model functions in the following. However, the considered HE model,

the test point's ADA parameters (tp; ipt ) as well as the start point candidates' ADA pa-

rameters (sp;a; ip;as ), (sp;b; ip;bs ) and (sp;c ; ip;cs ) are identical to those in Figure 8.1 and in

Example 8.36.

This gives us three candidates for ADA pair p, which are (sp;k ; tp; ip;ks ; ipt ), k 2 fa; b; cg.
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0 rD

50:0

72:5

96:6

122:9

rD = 140:0

r

Iteration functions Ap;k
rD , k 2 fa; b; cg

Ap;a
rD

Ap;b
rD

Ap;c
rD

id

0 rD

0:53

0:32

0:13

r

Derivatives d
drA

p;k
rD , k 2 fa; b; cg

Figure 8.2.: In the left part, three ADA iteration functions restricted to the interval [0; rD]
are shown. They correspond to the ADA pairs that are presented in Example 8.36 and in
Figure 8.1, i.e., they correspond to the three start point candidates a, b and c together with
the same test point (tp; ipt ). The �xed point of all three functions is rD, which is marked
by the black dot. The iteration function Ap;c

rD
has the fastest rate of convergence and the

iteration function Ap;a
rD

has the slowest rate of convergence, because Ap;c
rD

(r) > Ap;b
rD

(r) >

Ap;c
rD

(r) for all r 2 [0; rD).
In the right part, the corresponding derivatives are shown. The maximum of each derivative,
which corresponds to the Lipschitz constant of the considered iteration function in the
considered interval, is marked by a dotted line. The iteration function with the fastest rate
of convergence has the smallest Lipschitz constant (over [0; rD]) and vice versa.

The corresponding (resistance based) ADA iteration functions are

Ap;k
rD

= ��
rpt
� �tp;rD � �

�1
sp;k ;rD

� �+
rp;ks

; k 2 fa; b; cg;

according to De�nition 6.21. Since we consider the speci�c case where we assume that

(R1) to (R3) hold, we can restrict their domains without loss of generality to the interval

[0; rD] according to Corollary 8.11 and as delineated at the beginning of Section 8.3.

The three iteration functions are shown in the left part of Figure 8.2, where the turquoise

curve corresponds to Ap;a
rD , the yellow curve to Ap;b

rD and the orange curve to Ap;c
rD . In

addition, the identity function is shown by the dashed line. Because �x(Ap;k
rD ) = rD for

k 2 fa; b; cg, all three iteration functions intersect the identity at rD. Furthermore, it is

apparent that the three iteration functions are strictly increasing and that the identity has

a steeper slope, i.e., the derivatives of all three iteration functions are positive and smaller

than one for all r 2 [0; rD].

This can be veri�ed with the right part of Figure 8.2, which shows the corresponding

derivatives d
drA

p;k
rD over [0; rD], k 2 fa; b; cg. The black dotted lines are used to visualize

the maxima of the derivatives. These maxima correspond to the Lipschitz constants Lp;k

over [0; rD], k 2 fa; b; cg. We have Lp;a � 0:53, Lp;b � 0:32 and Lp;c � 0:13. That
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the derivatives' maxima are at the boundary of the interval [0; rD] results from the fact

that we consider Ap;k
rD over [0; rD] only and not over the whole domain R̂p;k

rD , k 2 fa; b; cg.

Nevertheless, it is thinkable that a function Ap
rD exists whose derivative's maximum is in

the interior of [0; rD].

To summarize this example, the ADA pair with the start point candidate c has the smallest

Lipschitz constant, i.e., we would prefer candidate c according to (G1). However, this

comes at the price of the largest start point increment, which is �p;cs;incr = 0:16, whereas

�p;bs;incr = 0:08 and �p;as;incr = 0 according to Example 8.36.

As demonstrated in Example 8.38, the Lipschitz constant Lp can be reduced (and thus
the rate of convergence can be increased) by increasing the start point. However, an
increased start point also has disadvantages.

8.4.3. Disadvantages of the Start Point Increment Lead to Con�icting

Objectives

Increasing the start point has two main disadvantages. As explained in Section 2.2, beyond
� � 1:4 the emission of carbon monoxide (CO) increases with increasing equivalence AFR.
Therefore, an increased equivalence AFR of the start point results in larger CO emissions
during the execution of an ADA iteration. These emissions are permissible as long as
certain limit values are not exceeded. However, it is generally desirable for an appliance
to emit as few pollutants as possible. In addition, getting closer to a CO limit means less
robustness in the case of tolerances, i.e., the margin to the lean CO limit is reduced.
Furthermore, an increased start point means that an ADA iteration with the corresponding
ADA pair requires a larger time span. Recall that in practice an ADA iteration is started
from normal heating operation. If the start point of ADA pair p is selected such that it
is close to the normal operating point at the start fan speed sp, i.e., the start point is
on or close to the control curve, then the ADA procedure can be (almost) immediately
started. However, if a start point increment is used, the appliance must leave the range
of normal operation and drive to the more fuel-lean start point at the beginning of an
ADA iteration, which takes some time. This additional required time reduces the chance
that an ADA iteration can be successfully completed. For instance, this is the case if the
heat demand reduces while an ADA iteration is executed, see also Section 3.4. Therefore,
a short duration of the ADA iteration is desired, which is contrary to a large start point
increment. Thus, a second optimization goal is introduced for each ADA pair p, p 2 [N]:

(G2) Minimize the start point increment �ps;incr for all p 2 [N].

Just like (G1), (G2) is also not an objective function. Rather, (G2) is an interim result that
leads to an objective function in the course of this chapter. The corresponding objective
function is de�ned in De�nition 8.59 in Section 8.6.2.
With this, we have the con�icting optimization goals minimize Lp and minimize �ps;incr for
all p 2 [N] and the resulting optimization models are multiobjective.
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Remark 8.39 Even if the start point increment usually reduces the Lipschitz constant of

the corresponding iteration function, this characteristic is not guaranteed by the properties

of the HE model. However, since we optimize both goals, this is not a problem. In

the extreme case that Lp and �ps;incr can be minimized simultaneously, there is a single

nondominated point, which is the ideal point (if the problem is feasible).

As demonstrated in Example 8.36, the start point increment can signi�cantly reduce Lp

and thus improve the rate of convergence of the ADA algorithm with respect to the p-th
ADA pair. Of course, there are limits to the start point increment.
On the one hand, the equivalence AFR at the start point is limited by the CO emissions as
already mentioned at the beginning of this subsection. Since CO is lethal, there exist strict
limits for the emission of CO, which is covered by speci�cation (S1). On the other hand,
because ADA pairs must not be overlapping, the start fan speed of ADA pair p is limited
by the test fan speed of its upper neighbor p � 1 for p 2 f2; : : : ; Ng, i.e., sp < tp�1, see
also Lemma 3.44. In the case p = 1, the start fan speed is limited by the HE's maximum
fan speed fsmax, see also De�nition 5.2. These limitations are covered by the speci�cation
(S7).
All speci�cations (S1) to (S7) are discussed in detail in the following section, where cor-
responding constraints are derived.

8.5. Constraints

So far, we have considered the objective criterion (O) in detail. In this section, the
speci�cations (S1) to (S7) are covered and converted to corresponding constraints.
The speci�cations (S1) to (S3) are closely related, because they all depend on the same
gas valve position. Due to monotonicity properties with respect to the gas valve position,
it is su�cient to check that the bounds according to (S1) to (S3) are satis�ed only for
certain situations, which makes solving the optimization problem more e�cient. This is
delineated in the following. Thereafter, corresponding constraints are derived.

8.5.1. Monotonicity with Respect to the Gas Valve Position

We are interested in the � and CO values during the ADA iterations. Recall from De�ni-
tion 2.18 that the � values are represented by the function �fs(g) and the CO values are
represented by the function �fs(g), where fs 2 FS and g 2 Gfs. In an ADA iteration with
ADA pair p, p 2 [N], the start and the test fan speed, sp and tp, respectively, are the
relevant fan speeds. The relevant gvp during an ADA iteration is determined in step (A3)
presented in Section 5.1. According to Lines 9 and 11 of Algorithm 5.2, this gvp is

gA = ��1sp;rD � 

p �

{
�1(i1); if p = 1

!p
(
�p(ip); �

p�1(ip�1)
)
; if p 2 f2; : : : ; Ng;

(8.9)
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where ît;rD = (i1; : : : ; iN) is the incumbent vector of drifted test ioni current approxima-
tions. By plugging g = gA into the HE model's equivalence AFR function and CO function
with respect to the start fan speed sp, i.e., by calculating �sp(gA) and �sp(gA), we obtain
the � value and the CO value, respectively, of the start point during the ADA iteration
with ADA pair p. Analogously, �tp(gA) is the � value and �tp(gA) is the CO value of the
test point during this ADA iteration.
Because the gvp gA is essential for the following considerations, we provide a de�nition of
the gas valve position that is used in the n-th ADA iteration based on (8.9). This de�nition
requires the resistance based ADA iterates according to De�nition 7.28. Just as in the
previous sections, we implicitly assume that an HE model H, a drift resistance rD � 0 and
N ADA pairs (sp; tp; ips ; i

p
t ), p 2 [N], are given for the remainder of this section.

De�nition 8.40 Let ît;in = (i in1 ; : : : ; i
in
N ) be an input vector and let u = (un)n2N be an

in�nite ADA update sequence such that ît;in and u are a feasible input combination. For

n 2 N let r
n (̂it;in; u) = (rn1 ; : : : ; r

n
N) be the corresponding n-th resistance based ADA

iterate. The corresponding n-th gas valve position iterate is de�ned by

gn (̂it;in; u) :=

��1
s1
(rn�11 + r1s � rD); if un = 1

��1sp
(
!p

rn�1

p�1

(rn�1p ) + rps � rD
)

if p := un 2 f2; : : : ; Ng;

where r0p := �p(i inp ) for all p 2 [N], see also Lemma 7.45.

Lemma 8.41 The gas valve position iterate gn (̂it;in; u) corresponds to the gas valve position

during the n-th iteration with Algorithm 5.2 given the inputs ît;in and u. In particular,

gn (̂it;in; u) is well-de�ned.

Proof. Because ît;in = (i in1 ; : : : ; i
in
N ) and u are a feasible input combination, all correspond-

ing ADA iterates (ioni current based and resistance based) and the corresponding function
evaluations are well-de�ned.
Let n 2 N and let i

n (̂it;in; u) = (in1 ; : : : ; i
n
N) be the corresponding n-th ioni current based

ADA iterate. According to Corollary 7.23, i
n (̂it;in; u) corresponds to the incumbent drifted

test ioni current vector after the n-th iteration with the for-loop of Algorithm 7.1 given
the inputs ît;in and u. Therefore, the gas valve position during the n-th ADA iteration with
ADA pair p is

gA = ��1sp;rD � 

p �

{
�1(in�11 ); if p = 1

!p
(
�p(in�1p ); �p�1(in�1p�1 )

)
; if p 2 f2; : : : ; Ng;

according to (8.9), where i0p := i inp for all p 2 [N]. By considering that

� rnp = �p(inp ) for all p 2 [N] (De�nition 7.28),

� !p
(
�p(inp ); �

p�1(ip�1n)
)
= !p

rnp�1

(rnp ) for p 2 f2; : : : ; Ng (De�nition 7.1) and
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� ��1sp;rD � 

p(r) = ��1sp;rD � �

+
rps
(r) = ��1sp (r + rps � rD) for all r 2 R̂p

rD (Lemmas 6.23 and
6.20),

we obtain for the gas valve position in the n-th ADA iteration with ADA pair p

gA =

��1
s1
(rn�11 + r1s � rD); if p = 1

��1sp
(
!p

rn�1

p�1

(rn�1p ) + rps � rD
)

if p 2 f2; : : : ; Ng:

Since we consider only the input vector ît;in = (i1t ; : : : ; i
N
t ) and situations where the

requirements (R1) to (R3) are met, we have rnp 2 [0; rD] for all p 2 [N] and for all n 2 N0

according to Corollary 8.11. Under these circumstances, we can state a lower and an upper
bound for the gas valve position iterates. For the following de�nition, recall that ��1fs is
strictly decreasing for all fs 2 FS (Lemma 6.17).

De�nition 8.42 Let rD � 0 and let 0 2 R̂p
rD as well as rD 2 R̂p

rD . For all p 2 [N], we de�ne

gpmin := ��1sp (r
p
s ) and gpmax := ��1sp (r

p
s � rD):

Lemma 8.43 Let rD � 0. Let Ap
rD be contractive, let �x(Ap

rD) = rD and let 0 2 R̂p
rD for

all p 2 [N]. Furthermore, let ît;in := (i1t ; : : : ; i
N
t ) and let u be an arbitrary (in�nite) ADA

update sequence. Then,

un = p ) gpmin � gn (̂it;in; u) � gpmax 8 n 2 N:

In particular, gpmin and gpmax are well-de�ned.

Proof. Let p 2 [N]. By assumption, we have 0 2 R̂p
rD as well as rD 2 R̂p

rD and thus
[0; rD] � R̂p

rD , i.e., A
p
rD(r) = ��

rpt
� �tp;rD � �

�1
sp;rD

� �+
rps
(r) is well-de�ned for all r 2 [0; rD].

Therefore, ��1sp;rD � �
+
rps
(r) = ��1sp (r + rps � rD) is well-de�ned for all r 2 [0; rD] and thus

gpmin := ��1sp (r
p
s ) as well as g

p
max := ��1sp (r

p
s � rD) are well-de�ned.

For the following, recall that rnp 2 [0; rD] for all n 2 N (Corollary 8.11) and that ��1sp is
strictly decreasing for all p 2 [N] (Lemma 6.17). Furthermore, r0p = �p(ipt ) =

U
ipt
� U

ipt
= 0

for all p 2 [N]. Let n 2 N. First, let p = 1. Then,

0 � rn�11 � rD ) 0 + r1s � rD � rn�11 + r1s � rD � rD + r1s � rD = r1s

) ��1
s1
(r1s � rD) � ��1

s1
(rn�11 + r1s � rD) � ��1

s1
(r1s )

) g1max � gn (̂it;in; u) � g1min:

Next, let p 2 f2; : : : ; Ng. Because 0 < wp < 1 (Lemma 5.13), we have
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0 � rn�1p � rD and 0 � rn�1p�1 � rD

) 0 � wprn�1p � wprD and 0 � (1� wp)rn�1p�1 � (1� wp)rD

) 0 � wprn�1p + (1� wp)rn�1p�1 � wprD + (1� wp)rD = rD

) 0 � !p

rn�1

p�1

(rn�1p ) � rD

) 0 + rps � rD � !p

rn�1

p�1

(rn�1p ) + rps � rD � rD + rps � rD = rps

) ��1sp (r
p
s � rD) � ��1sp

(
!p

rn�1

p�1

(rn�1p ) + rps � rD
)
� ��1sp (r

p
s )

) gpmax � gn (̂it;in; u) � gpmin:

With the bounds for the gas valve position according to Lemma 8.43, we can formulate
constraints corresponding to the speci�cations (S1) to (S3) in the following.

8.5.2. Combustion Related Constraints

In this subsection, we derive constraints corresponding to the speci�cations (S1) to (S3).
The remaining speci�cations (S4) to (S7) are dealt with in the following Subsection 8.5.3.

Speci�cation (S1): The CO emissions during all ADA iterations must never exceed
comax. As delineated at the beginning of the preceding Subsection 8.5.1, the CO emissions
at the start and at the test point during an ADA iteration result from the gas valve
position that is de�ned in De�nition 8.40. Because the CO emission is represented by
�fs(g) (De�nition 2.18) the CO emissions during an ADA iteration are as follows.

De�nition 8.44 Let ît;in and (un)n2N be a feasible input combination. For n 2 N, the

corresponding n-th start and test CO iterate are de�ned by

cons (̂it;in; u) := �sp
(
gn (̂it;in; u)

)
and cont (̂it;in; u) := �tp

(
gn (̂it;in; u)

)
;

respectively, where p := un.

Corollary 8.45 Let ît;in and (un)n2N be a feasible input combination. During the n-th

ADA iteration with Algorithm 5.2 given the inputs ît;in and u, the CO emission at the start

point is cons (̂it;in; u) and the CO emission at the test point is cont (̂it;in; u).

Proof. The statement follows from Lemma 8.41 and from De�nition 2.18 of the HE
model.

According to the HE model, �fs is convex (De�nition 2.18). Therefore, it is su�cient to
check that comax is not exceeded at the minimum and at the maximum gas valve position
of the start and of the test point (if ît;in = (i1t ; : : : ; i

N
t ), rD � 0 and the requirements (R1)

to (R3) are met).
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Lemma 8.46 Let rD � 0. Let Ap
rD be contractive, let �x(Ap

rD) = rD and let 0 2 R̂p
rD for

all p 2 [N]. Furthermore, let ît;in := (i1t ; : : : ; i
N
t ) and let u be an arbitrary (in�nite) ADA

update sequence. Then, the following holds for all n 2 N:

un = p ) cons (̂it;in; u) � max
{
�sp(g

p
min); �sp(g

p
max)

}
and

un = p ) cont (̂it;in; u) � max
{
�tp(g

p
min); �tp(g

p
max)

}
:

Proof. The statement follows from Lemma 8.43, from Corollary 8.45 and from the fact
that �fs is convex for all fs 2 [fsmin; fsmax] (De�nition 2.18).

Lemma 8.46 implies that it is su�cient to check that the CO limit at the start and at
the test fan speed is not exceeded for gpmin and gpmax only. It is not required to check the
CO emissions for each ADA iteration separately. By considering that gpmin = ��1sp (

U
ips
) and

that gpmax = ��1sp (
U
ips
� rD) (De�nition 8.42), we obtain the following constraints.

(C-S1) For all p 2 [N]:

�sp � �
�1
sp (

U

ips
) � comax; �sp � �

�1
sp (

U

ips
� rD) � comax and

�tp � �
�1
sp (

U

ips
) � comax; �tp � �

�1
sp (

U

ips
� rD) � comax :

Speci�cation (S2): The equivalence AFR during an ADA iteration must never fall below
�min. Because �fs is strictly decreasing (De�nition 2.18), it is su�cient to check that
�min � �sp(g) and that �min � �tp(g) for the gas valve position bounds gmin and gmax

only. Analogous to the CO emissions, the equivalence AFRs during an ADA iteration are
as follows.

De�nition 8.47 Let ît;in and (un)n2N be a feasible input combination. For n 2 N, the

corresponding n-th start-� and test-� iterate are de�ned by

�ns (̂it;in; u) := �sp
(
gn (̂it;in; u)

)
and �nt (̂it;in; u) := �tp

(
gn (̂it;in; u)

)
;

respectively, where p := un.

Corollary 8.48 Let ît;in and (un)n2N be a feasible input combination. During the n-th ADA

iteration with Algorithm 5.2 given the inputs ît;in and u, the equivalence AFR of the start

point is �ns (̂it;in; u) and the equivalence AFR of the test point is �nt (̂it;in; u).

Proof. The statement follows from Lemma 8.41 and from De�nition 2.18 of the HE
model.

According to the HE model, �sp(g) and �tp(g) are strictly decreasing (De�nition 2.18).
This allows us to state bounds for the equivalence AFR during the ADA iterations.
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Lemma 8.49 Let rD � 0. Let Ap
rD be contractive, let �x(Ap

rD) = rD and let 0 2 R̂p
rD for

all p 2 [N]. Furthermore, let ît;in := (i1t ; : : : ; i
N
t ) and let u be an arbitrary (in�nite) ADA

update sequence. Then, the following holds for all n 2 N:

un = p ) �sp(g
p
max) � �ns (̂it;in; u) � �sp(g

p
min)

and

un = p ) �tp(g
p
max) � �nt (̂it;in; u) � �tp(g

p
min):

Proof. Let n 2 N and let un = p. Then gpmin � gn (̂it;in; u) � gpmax (Lemma 8.43). Because
�sp and �tp are strictly decreasing (De�nition 2.18), we have

�fs(g
p
min) � �fs

(
gn (̂it;in; u)

)
� �fs(g

p
max); fs 2 fsp; tpg:

According to De�nition 8.47, we have �ns (̂it;in; u) = �sp
(
gn (̂it;in; u)

)
and �nt (̂it;in; u) =

�tp
(
gn (̂it;in; u)

)
and the statement is proved.

Lemma 8.49 implies that it is su�cient to check that the equivalence AFR does not
fall below �min for the actuator positions (sp; gmax) and (tp; gmax) (if ît;in = (i1t ; : : : ; i

N
t ),

rD � 0 and the requirements (R1) to (R3) are met). It is not required to check the
equivalence AFR for each ADA iteration separately. By considering that gpmax = ��1sp (

U
ips
�

rD) (De�nition 8.42), we obtain the following constraints.

(C-S2) For all p 2 [N]: ��sp � ��1sp (
U
ips
� rD) � ��min and ��tp � ��1sp (

U
ips
� rD) � ��min.

Speci�cation (S3): The equivalence AFR during an ADA iteration must never exceed
�max. Analogous to (S2) and (C-S2), it is su�cient to check that the equivalence AFR does
not exceed �max for the actuator positions (sp; gmin) and (tp; gmin) (if ît;in = (i1t ; : : : ; i

N
t ),

rD � 0 and the requirements (R1) to (R3) are met) according to Lemma 8.49. By
considering that gpmin = ��1sp (

U
ips
) (De�nition 8.42), we obtain the following constraints.

(C-S3) For all p 2 [N]: �sp � ��1sp (
U
ips
) � �max and �tp � �

�1
sp (

U
ips
) � �max.

In total, if the constraints (C-S1) to (C-S3) are met, then the speci�cations (S1) to (S3)
are satis�ed.

8.5.3. General Feasibility Constraints

In this subsection, we derive constraints corresponding to the speci�cations (S4) to (S7).

Speci�cation (S4): It is required that ips 2 �sp(Gsp) and ipt 2 �tp(Gtp). Because Gfs is a
closed interval and �fs is a homeomorphism, �fs(Gfs) is a closed interval as well for all fan
speeds fs 2 FS. Therefore, it is su�cient to check that ips and ipt are within the boundaries
of the corresponding intervals and we obtain the following constraints.

(C-S4) For all p 2 [N]:

min �sp(Gsp)� ips � 0; �max �sp(Gsp) + ips � 0 and

min �tp(Gtp)� ipt � 0; �max �tp(Gtp) + ipt � 0:
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Speci�cation (S5): The start ioni current shall be on or below the control curve and
the test ioni current shall be on or above the control cure. Expressed with the control
curve function iset(fs) according to De�nition 8.30, this corresponds to ips � iset(s

p) and
iset(t

p) � ipt . Thus, we include the following constraints.

(C-S5) ips � iset(s
p) � 0 and iset(t

p)� ipt � 0 for all p 2 [N].

Speci�cation (S6): The distance between the equivalence AFR at the undrifted start
point and the equivalence AFR at the undrifted test point must be at least ��min. The
term "undrifted" refers to a situation with rD = 0. In this case we can use the HE model
functions without drift according to De�nition 2.18. Therefore, the gvp at the start point is
gsp = ��1sp (i

p
s ) and the corresponding equivalence AFR is �ps := �sp � �

�1
sp (i

p
s ). Analogously,

we have �pt := �tp � �
�1
tp (i

p
t ). With �ps � �pt � ��min, we obtain the following constraints.

(C-S6) ��sp � �
�1
sp (i

p
s ) + �tp � �

�1
tp (i

p
t ) � ���min for all p 2 [N].

Speci�cation (S7): The speci�cation (S7) corresponds to the restrictions with respect
to the start fan speeds and to the test fan speeds. Because we consider only sets of feasible
test fan speeds T = ft1; : : : ; tNg according to (Sc3), the conditions t1 > t2 > � � � > tN

as well as t1 � fsmin are already satis�ed according to De�nition 8.1. The remaining
restrictions are tp < sp for all p 2 [N], sp < tp�1 for all p 2 f2; : : : ; Ng and s1 �

fsmax. Recall that strict inequalities are not allowed in the optimization model according
to Remark 8.14. Thus, we make once more use of an arbitrary small but �xed " > 0.
Because the test fan speeds tp are taken from the set T , they are considered as constants
and not as a part of the decision variables. Therefore, they are placed on the right hand
side of the following inequalities. With this, we include the following constraints.

(C-S7) �sp � �(tp + ") 8 p 2 [N], sp � tp�1 � " 8 p 2 f2; : : : ; Ng and s1 � fsmax.

To summarize this section, if the constraints (C-S1) to (C-S7) are satis�ed, then the
speci�cations (S1) to (S7) are satis�ed as well. With this, we have all the parts together
to de�ne the feasible set of the optimization model for the case without tolerances in the
following section.

8.6. Optimization Model for the Nominal Case Without

Tolerances

In this section, an optimization model for the nominal case without tolerances is proposed
based on the considerations made in this chapter so far. This means that we want to
optimize the ADA parameters of N ADA pairs with the goals (G1) and (G2) given the
scenarios (Sc1) to (Sc3) and under the constraints (C-R1) to (C-R3) as well as (C-S1)
to (C-S7). As already mentioned in Section 8.1, the decision variables are the parameters
(sp; tp; ips ; i

p
t ) of each ADA pair p, p 2 [N].
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The test fan speed tp can be considered as given and �xed, because the decision makers
specify the set of feasible test fan speeds T = ft1; : : : ; tNg in advance according to (Sc3).
Therefore, the three parameters sp, ips and ipt are left as decision variables for each ADA
pair p, p 2 [N]. This gives us a total of 3N decision variables.
However, it is possible to optimize each ADA pair individually. In a certain sense, the ADA
pairs can be considered as decoupled, which results in N optimization problems each with
a three-dimensional decision space.
Why is it possible to consider the ADA pairs individually? Regarding ADA pair p, p 2 [N],
each constraint (C-R1) to (C-R3) as well as (C-S1) to (C-S6) depends only on the ADA
parameters of ADA pair p, i.e., these constraints depend only on sp, ips , i

p
t and tp. In

particular, they do not depend on sq, i rs , i
m
t for all q; r;m 2 [N] n fpg.

Constraint (C-S7) is a little di�erent, because in addition to sp and tp this constraint
depends also on tp�1 if p � 2, which is the only coupling of the ADA pairs. However, tp

and tp�1 are speci�ed in advance, which cancels out the coupling of the ADA pairs in this
case.
The same holds for the objective functions corresponding to the goals (G1) and (G2),
because the Lipschitz constant Lp as well as the start point increment of ADA pair p,
p 2 [N], depend only on sp, ips , i

p
t and tp. The objective functions is de�ned and detailed

in Section 8.6.2 below after the feasible set is de�ned.

Remark 8.50 The ADA pairs can be considered individually for two reasons. First, the

test fan speeds are speci�ed by the decision makers in advance, as already delineated.

Secondly, we only consider situations where �x(Ap
rD) = rD for all p 2 [N] according to

(R1). With this, the drift resistance super �xed point vector is r
�� = (r��1 ; : : : ; r��N ) with

r��p = rD for all p 2 [N] (Theorem 7.73). I.e., the super �xed point vector is already known

and it is not required to determine it with the recursion according to Lemma 7.42 in this

case. Therefore, the coupling of the ADA pairs related to the super �xed point vector is

not relevant in this case.

Remark 8.51 As stated in the preceding Remark 8.50, the requirement (R1) is essential
for the decoupling of the ADA pairs. The corresponding constraints is (C-R1). It is equiv-
alent to ��1sp (i

p
s ) = ��1tp (i

p
t ), which is the nominal condition according to De�nition 6.39.

Therefore, the optimization problem proposed in this section is called the nominal opti-

mization problem.

However, as delineated in Section 7.4.1 and as demonstrated in Example 7.74, because

of tolerances with respect to the position of the ioni electrode the nominal condition is

not always ful�lled. In such a case it is not possible to satisfy (R1) and the ADA pairs

cannot be optimized individually anymore, because the super �xed point vector r
�� has to

be determined with the recursion according to Lemma 7.42. This is discussed in detail in

Section 8.7, where a corresponding optimization model to optimize the ADA parameters

in the case with tolerances is proposed.

In the following, a set of feasible ADA parameters for the ADA pair p, p 2 [N], with
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respect to T and rD � 0 is de�ned. Thereafter, the objective functions are discussed and
�nally the corresponding optimization model is presented.

8.6.1. Set of Feasible Solutions with Respect to ADA Pair p

As already mentioned, for a �xed p 2 [N] the decision space under the conditions speci�ed
at the beginning of Section 8.6 is three-dimensional. Its dimensions are the three ADA
parameters sp, ips and ipt . The fourth ADA parameter tp is already speci�ed in the set T .
The de�nition of the feasible set is straightforward. A solution is de�ned as feasible, if the
ADA parameters (sp; tp; ips ; i

p
t ) ful�ll all constraints (C-R1) to (C-R3) as well as (C-S1)

to (C-S7).

De�nition 8.52 Let H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
be a given HE

model. Let T = ft1; : : : ; tNg be a set of feasible test fan speeds, let rD � 0 and let �min,

�max, comax as well as ��min be the combustion limits speci�ed by the decision makers.

Furthermore, let " > 0 be small and �xed. For p 2 [N], the set of the feasible ADA
parameters of ADA pair p with respect to T and rD, denoted by Xp

T;rD
, contains exactly

all vectors x = (sp; ips ; i
p
t ) 2 R

3 that ful�ll all of the following constraints:

(C-R1) ��1sp (i
p
s )� ��1tp (i

p
t ) = 0;

(C-R2) LpT;rD(s
p; ips ; i

p
t ) � 1� ";

(C-R3) min �sp(G
p
st)�

ips U

�ips rD + U
� 0;

ips U

�ips rD + U
�max �sp(G

p
st) � 0;

(C-S1) �sp � �
�1
sp (

U

ips
) � comax; �sp � �

�1
sp (

U

ips
� rD) � comax;

�tp � �
�1
sp (

U

ips
) � comax; �tp � �

�1
sp (

U

ips
� rD) � comax;

(C-S2) � �sp � �
�1
sp (

U

ips
� rD) � ��min; � �tp � �

�1
sp (

U

ips
� rD) � ��min;

(C-S3) �sp � �
�1
sp (

U

ips
) � �max; �tp � �

�1
sp (

U

ips
) � �max;

(C-S4) min �sp(Gsp)� ips � 0; �max �sp(Gsp) + ips � 0;

min �tp(Gtp)� ipt � 0; �max �tp(Gtp) + ipt � 0;

(C-S5) ips � iset(s
p) � 0; iset(t

p)� ipt � 0;

(C-S6) �tp � �
�1
tp (i

p
t )� �sp � �

�1
sp (i

p
s ) � ���min;

(C-S7) � sp � �(tp + ") 8 p 2 [N]; sp �

{
fsmax if p = 1;

tp�1 � " if p 2 f2; : : : ; Ng:

Remark 8.53 According to De�nition 8.52, the set Xp
T;rD

of feasible ADA parameters of

ADA pair p implicitly depends on the HE model H, on " as well as on the limits �min,

�max, comax and ��min speci�ed by the decision makers. For better readability, these are

not shown in the notation of this set. Rather, they are implicitly assumed to be given.
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Remark 8.54 De�nition 8.52 of Xp
T;rD

contains redundancies. Constraint (C-R1) implies

that ��1sp (i
p
s ) and ��1tp (i

p
t ) are well-de�ned. This in turn implies that ips 2 �sp(Gsp) and

ipt 2 �tp(Gtp), which is equivalent to the constraint (C-S4). Thus, (C-S4) in De�nition 8.52
can be omitted. But aiming at a better overview, it is still listed in De�nition 8.52.

Remark 8.55 The set Xp
T;rD

is bounded. According to (C-S7), the start fan speed sp is

bounded from below by tp+" and from above by tp�1�" (if p � 2) or by fsmax (if p = 1).

Furthermore, we have ips 2 �sp(Gsp) and i
p
t 2 �tp(Gtp) according to (C-S4), where �sp(Gsp)

and �tp(Gtp) are closed intervals according to Lemma 2.21.

Whether the set Xp
T;rD

is compact or not is not easy to answer and remains an open

question in this work. If it is not compact, then the set of Pareto optimal points and the

Pareto front might be empty, see also Section 4.1.1. However, from a practical point of

view, a good approximation of the nondominated set in the closure of the image of Xp
T;rD

under the objective functions is su�cient.

Remark 8.56 Note that Xp
T;rD
� R3

>0. This follows from De�nition 2.18 of the HE model,

because sp 2 [fsmin; fsmax] � R>0, i
p
s 2 �sp(Gsp) = Isp � R>0 and ipt 2 �tp(Gtp) = Itp �

R>0.

Remark 8.57 That the feasible set Xp
T;rD

is continuous is a relaxation. In practice, the

ADA parameters, i.e., the start and the test fan speed as well as the start and the test

ioni current, have to be integers. Therefore, the components of an optimized x 2 Xp
T;rD

must be rounded to their nearest integer. However, the resulting di�erence in the objective

function values usually has the order of magnitude of measurement errors and the decision

makers are satis�ed with the rounded relaxed solutions [PHE, Items 3124 and 7082].

The following theorem summarizes some properties if the N ADA pairs p, p 2 [N], are
all obtained from the feasible sets Xp

T;rD
, p 2 [N].

Theorem 8.58 Let T = ft1; : : : ; tNg be a set of feasible test fan speeds and let rD � 0.

Furthermore, let (sp; tp; ips ; i
p
t ) be the ADA parameters of ADA pair p, p 2 [N].

If (sp; ips ; i
p
t ) 2 Xp

T;rD
for all p 2 [N] and ît;in = (i1t ; : : : ; i

p
t ), then the following holds:

� i
�� = (i1t;rD ; : : : ; i

N
t;rD

), where ipt;rD is the drifted test ioni current according to De�ni-

tion 3.27 for all p 2 [N],

� if u is a su�ciently well distributed ADA update sequence, then lim
n!1

i
n (̂it;in; u) = i

��,

� the equivalence AFRs are in the interval [�min; �max] and the CO emissions do not

exceed comax during all iterations with the ADA Algorithm 5.2 given the inputs ît;in

and u, where u is an arbitrary ADA update sequence, and

� all start and test fan speeds are in the interval FS = [fsmin; fsmax] and the ADA pairs

are not overlapping.

Proof. The statement follows from the construction of the sets Xp
T;rD

for all p 2 [N].

Next, we consider the objective functions.
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8.6.2. Objective Functions

When optimizing ADA pair p, p 2 [N], we have the two optimization goals (G1) and
(G2), which are a small Lipschitz constant Lp and a small start point increment �ps;incr,
respectively.

A function that maps the ADA parameters (sp; tp; ips ; i
p
t ), where t

p is taken from T , to
the corresponding Lipschitz constant Lp (if it exists) has already been de�ned in De�ni-
tion 8.17. This function is denoted by LpT;rD . Therefore, to satisfy (G1) the �rst objective
is to minimize LpT;rD(x) with x 2 Xp

T;rD
.

Regarding (G2), we de�ne a corresponding objective function in the following. The
start point increment �ps;incr(s

p; tp; ips ; i
p
t ) has already been de�ned in De�nition 8.33. Be-

cause tp can be considered as given and �xed, we de�ne a function that maps the re-
maining three ADA parameters sp, ips and ipt to the corresponding start point increment
�ps;incr(s

p; tp; ips ; i
p
t ).

De�nition 8.59 Let H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
be an HE model

and let iset be a corresponding control curve. Let T = ft1; : : : ; tNg be a set of feasible

test fan speeds and let rD � 0. The start point increment function of ADA pair p with
respect to T and rD is the function SpT;rD : Xp

T;rD
! R de�ned by

ST;rD(s
p; ips ; i

p
t ) := �ps;incr(s

p; tp; ips ; i
p
t ) = �sp � �

�1
tp (i

p
t )� �sp � �

�1
sp � iset(s

p):

Lemma 8.60 The start point increment function is well-de�ned and nonnegative, i.e.,

SpT;rD(x) � 0 for all x 2 Xp
T;rD

.

Proof. Let x = (sp; ips ; i
p
t ) 2 Xp

T;rD
. Then, we have ��1tp (i

p
t ) = ��1sp (i

p
s ) according to (C-R1)

and thus SpT;rD(x) is well-de�ned (De�nition 8.33 and Lemma 8.35).

To show that SpT;rD(x) � 0, we use that ips � iset(s
p) according to (C-S5), that ��1sp is

strictly increasing (De�nition 2.18), that �sp is strictly decreasing (De�nition 2.18) and
that ��1tp (i

p
t ) = ��1sp (i

p
s ), which gives us

ips � iset(s
p) ) ��1sp (i

p
s ) � ��1sp

(
iset(s

p)
)
) �sp

(
��1sp (i

p
s )
)
� �sp

(
��1sp

(
iset(s

p)
))

) ST;rD(s
p; ips ; i

p
t ) = �sp

(
��1tp (i

p
t )
)
� �sp

(
��1sp

(
iset(s

p)
))
� 0:

Therefore, to satisfy (G2) the second objective is to minimize SpT;rD(x) with x 2 Xp
T;rD

.
This completes the speci�cation of the objective functions and we can combine everything
to the proposed nominal optimization model.
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8.6.3. The Optimization Model

We want to optimize the ADA parameters of ADA pair p, p 2 [N]. For this, we assume
that a set of feasible test fan speeds T = ft1; : : : ; tNg and a drift resistance rD � 0 are
given. I.e., we want to �nd optimal parameters sp, ips and ipt given the test fan speed
tp 2 T and the drift resistance rD. As stated in Remark 8.51, the set of feasible solutions
Xp
T;rD

contains the constraint ��1sp (i
p
s ) = ��1tp (i

p
t ), which is the nominal condition according

to De�nition 6.39, and thus the corresponding optimization problem is called the nominal
optimization problem.

De�nition 8.61 Let H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
be an HE model

and let iset be a corresponding control curve. Let N 2 N be the number of ADA pairs

to be parameterized. Let T = ft1; : : : ; tNg be a set of feasible test fan speeds and let

rD � 0. The nominal optimization problem for ADA pair p, p 2 [N], is de�ned by

min
x2Xp

T;rD

f nom ;p(x) :=
(
f nom ;p
1 (x) = LpT;rD(x); f

nom ;p
2 (x) = SpT;rD(x)

)
(nom-P p

T;rD
)

Remark 8.62 The nondominated set with respect to (nom-P p
T;rD

) is not convex in general.
An example is illustrated in Figure 9.2 below. The purple curve segments in the right part

of Figure 9.2 correspond to the nondominated set of a problem of the type (nom-P p
T;rD

),
which is not convex in this case.

If we want to optimize all N ADA pairs, which is usually the case, we have to solve the
problem (nom-P p

T;rD
) for each p 2 [N], i.e., we have to solve N biobjective optimization

problems. A huge advantage of this approach is that the ADA pairs can be optimized
individually (once the set T is �xed). A method how to approximate the Pareto front of
the problem (nom-P p

T;rD
) is proposed in Section 9.1 below.

As already mentioned, all ADA pairs optimized with (nom-P p
T;rD

) ful�ll the nominal
condition according to De�nition 6.39. However, as delineated in Section 7.4.1 and as
demonstrated in Example 7.74, because of tolerances with respect to the position of the
ioni electrode the nominal condition is not always ful�lled. In such a case, the ADA pairs
cannot be optimized individually anymore, because the super �xed point vector i

�� has
to be determined with the recursion according to De�nition 7.14 (or equivalently r

�� has
to be determined with the recursion according to Lemma 7.42) and thus (nom-P p

T;rD
)

cannot be applied. Therefore, an optimization model to optimize the ADA parameters
with tolerances is proposed in the following section.

8.7. Optimization Model for the Case with Tolerances

According to the objective criterion (O1), the optimized ADA parameters shall approximate
the drifted test ioni currents exactly, i.e., the super �xed point vector i

�� = (i��1 ; : : : ; i��N )

shall satisfy i��p = ipt;rD for all p 2 [N]. This is the case if and only if ��1sp (i
p
s ) = ��1tp (t

p) for
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all p 2 [N] according to Theorem 7.73. Therefore, the constraint (C-R1) is included in
the de�nition of the feasible set Xp

T;rD
of (nom-P p

T;rD
) (De�nition 8.52).

If an HE model H and an ADA pair (sp; tp; ips ; i
p
t ) are such that ��1sp (i

p
s ) = ��1tp (t

p) holds,
this situation is called nominal. But as demonstrated in Example 7.74, tolerances with
respect to the ioni electrode's position might cause that this condition is not ful�lled
anymore. Then, such a situation is called non-standard according to De�nition 6.39.
Therefore, in the non-standard situation, i.e., in the case with tolerances, we have to relax
the objective criterion (O1). A corresponding optimization model that deals with non-
standard situations is proposed in this section. It is closely related to the approach taken
by Vaillant how to deal with tolerances with respect to the ioni electrode's position, which
is detailed in the following.

8.7.1. Approach by Vaillant to Deal with Tolerances of the Ioni Electrode's

Position

For con�dentiality reasons, the following explanations are kept at a general level and with-
out explicitly specifying parameters. Vaillant de�nes the position of the ioni electrode by
two dimensions. The �rst dimension is the distance between the tip of the ioni electrode
and a reference point in the burning chamber, denoted by d in the following. The second
dimension is an angle between the axis of the ioni electrode and a reference axis, denoted
by � in the following.
With this, Vaillant de�nes an ideal or nominal position (dnom; �nom) of the ioni electrode.
Furthermore, they specify a maximal allowable deviation from the nominal distance and
from the nominal angle that may be caused by tolerances. They are denoted by �dmax

and ��max, respectively. The maximal allowable deviations are used to de�ne four extreme
cases with respect to the ioni electrode's position, which are (dnom��dmax; �nom���max),
(dnom+�dmax; �nom���max), (dnom��dmax; �nom+��max) and (dnom+�dmax; �nom+

��max). These extreme cases can be considered as worst case scenarios in the sense that
Vaillant makes the assumption that if a set of N ADA pairs "works" for all four extreme
ioni electrode positions, then these ADA pairs also work for an arbitrary intermediate po-
sition.
In order to deal with the tolerances with respect to the ioni electrode's position, HE mea-
surement data for each of the four extreme positions is determined in the lab. This gives
us four corresponding HE models, which form a scenario set for the ADA optimization with
tolerances. In the �eld of robust optimization, the scenario set is also called uncertainty
set and is usually denoted by U [DZG18, p. 147]. Since the considerations made in this
section are closely related to robust optimization, the term uncertainty set is used in this
work.
The following de�nition of an uncertainty set with respect to tolerances considers the more
general case with k sets of measurement data with respect to tolerances, where k 2 N0.

De�nition 8.63 Let there be k , k 2 N0, sets of measurement data related to k scenarios

with respect to tolerances. The corresponding HE models are called tolerance HE models
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8.7 Optimization Model for the Case with Tolerances

and are denoted by Hj
tol =

(
FSj ; (Gj

fs)fs2FS; (�
j
fs)fs2FS; (�

j
fs)fs2FS; (�

j
fs)fs2FS

)
, j 2 [k ].

The corresponding uncertainty set with respect to tolerances is the collection of the tol-

erance HE models. It is de�ned by

Utol :=
⋃
j2[k]

fHj
tolg:

In addition to the uncertainty set Utol that contains the tolerance HE models we also
require an HE model that corresponds to the nominal case.

Notation 8.64 The HE model that is based on nominal measurement data is called nominal
HE model and is denoted by Hnom =

(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
.

Remark 8.65 Usually, in addition to a nominal HE model there are four tolerance HE

models that correspond to the four extreme positions of the ioni electrode, i.e., the case

k = 4 is common in practice. However, k can be arbitrary and depends on the use case.

Even the case k = 0 is allowed, which corresponds to the situation that there is only a

nominal HE model and no tolerance HE model. This is done to avoid corresponding case

distinctions in the course of this section.

How are the tolerance HE models and the uncertainty set Utol related to the ADA opti-
mization? According to (O1), the decision makers want that the super �xed point vector
i
�� = (i��1 ; : : : ; i��N ) satis�es i��p = ipt;rD for all p 2 [N]. However, the super �xed point vec-
tor depends on the HE model and on the ADA parameters according to De�nition 7.14. If
the same N ADA pairs (sp; tp; ips ; i

p
t ), p 2 [N], are considered with di�erent HE models, we

obtain in general di�erent �xed point vectors and (O1) cannot be simultaneously satis�ed
for di�erent HE models. Therefore, we have to adapt the ADA optimization model if we
consider tolerances with respect to the ioni electrode's position.
For this, we introduce a notation that re�ects the dependency of the super �xed point vec-
tor on the considered ADA parameters and on the considered HE model. The underlying
de�nition of the super �xed point vector is not changed.

Notation 8.66 Let A :=
{
(sp; tp; ips ; i

p
t ) : p 2 [N]

}
be a set of N ADA pairs and let H be

an HE model. The corresponding super �xed point vector according to De�nition 7.14 is

denoted by i
��(A;H).

A common approach to optimize the ADA pairs with respect to tolerances would be
to �nd a set of ADA parameters A such that the corresponding super �xed point vectors
come as close as possible to the vector of drifted test ioni currents. For instance, this
could be modeled by

min
A feasible

max
H2U

∥∥i
��(A;H)� (i1t;rD ; : : : ; i

N
t;rD

)
∥∥
1
;

which corresponds to the concept of strict robustness in the �eld of robust optimization
[DZG18, p. 149].
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However, the decision makers argue that the nominal situation is the common case and
that convergence characteristics should be designed for this. They do not want that
the convergence characteristics of nominal HEs are worsened in order to improve the
convergence characteristics of HEs with tolerances. Rather, it is su�cient to check that
in the worst case scenarios the ADA Algorithm 5.2 has a certain minimum approximation
quality and a certain minimum rate of convergence as well as that certain combustion
limits are not exceeded. From the perspective of robust optimization, one may argue that
the optimization goals are related to the mean position of the ioni electrode, i.e., to the
nominal position, while the constraints are related to the worst-case scenarios. This is the
approach that the decision-makers ultimately opted for [PHE, Item 3280].
In the following, an optimization model is proposed that corresponds to this approach. We
begin with the corresponding speci�cations provided by the decision makers.

8.7.2. Speci�cations with Respect to Tolerances

Regarding the nominal HE model, the objective criteria (O1) to (O3) as well as the spec-
i�cations (S1) to (S7) remain valid according to the approach presented in the preceding
Subsection 8.7.1. Also, again only the case where the scenarios (Sc1) to (Sc3) hold is
considered.
Regarding the tolerance HE models contained in Utol, we introduce additional scenarios
and speci�cations. The following consideration motivates the introduction of the addi-
tional scenario (Sc-T1) below. In contrast to the nominal case, we cannot guarantee that
the components of all resistance based ADA iterates related to the tolerance HE models
stay in the interval [0; rD]. It might be computationally expensive (or even impossible) to
check that the incumbent solutions of Algorithm 5.2 given the inputs ît;in = (i1t ; : : : ; i

N
t )

and an arbitrary su�ciently well distributed ADA update sequence u stay within certain
bounds.Therefore, the approach taken is that the decision makers specify a single su�-
ciently well distributed ADA update sequence ~u, which they consider very likely, and that
the optimization speci�cations are related only to ~u and not to all su�ciently well dis-
tributed ADA update sequences u.
If the ADA parameters are designed manually, only the speci�c ADA update sequence
(1; : : : ; N; 1; : : : ; N; : : : ) is considered for technical reasons [PHE, Item 15936]. In addi-
tion, the decision makers consider this sequence likely. Therefore, the decision makers
decided to use it for the optimization model with respect to tolerances. In this thesis, it is
called the periodic ADA update sequence and it is denoted as follows.

Notation 8.67 The periodic ADA update sequence with N ADA pairs is denoted by

~u := f1; 2; : : : ; N; 1; 2; : : : ; N; : : : g:

The corresponding scenario is:

(Sc-T1) Regarding the tolerance HE models H 2 Utol, Algorithm 5.2 is only considered
with the sequence ~u (and the input vector ît;in = (i1t ; : : : ; i

N
t ) according to (Sc2)).
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In addition to the scenario (Sc-T1), the decision makers want that the optimized set of
ADA pairs A satis�es the following tolerance related counterparts to the objective criteria
(O1) to (O3) as well as to the speci�cations (S1) to (S4).

(S-T1) For all H 2 Utol the super �xed point vector i
��(A;H) is feasible and the ADA

Algorithm 5.2 given the inputs ît;in = (i1t ; : : : ; i
N
t ) and ~u converges to i

��(A;H) at
a certain minimum rate of convergence [PHE, Item 15936]. This can be considered
as the tolerance related counterpart to (O2) and (O3).

(S-T2) A drift compensation with the super �xed point vector i
��(A;H) guarantees a

minimum combustion quality for all H 2 Utol [PHE, Items 3280 and 15500]. This
can be considered as the relaxed counterpart to (O1).

(S-T3) For all H 2 Utol the following must hold. During all iterations with ADA Algo-
rithm 5.2 given the inputs ît;in = (i1t ; : : : ; i

N
t ) and ~u the CO values must not exceed

comax, the equivalence AFR must never fall below �min and the equivalence AFR
must never exceed �max [PHE, Item 3280]. This is analogous to the speci�cations
(S1), (S2) and (S3) for the nominal case. In particular, the bounds comax, �min and
�max are the same as for (S1), (S2) and (S3).

(S-T4) The start and the test ioni currents must be feasible in the sense that they must
be contained in the corresponding sets of the tolerance HE models, i.e., ips 2 �sp(Gsp)

and ipt 2 �tp(Gtp) for all H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
2 Utol.

This is analogous to the speci�cation (S4) for the nominal case.

Remark 8.68 So far, we have speci�ed tolerance related counterparts to (O1) to (O3) as
well as to (S1) to (S4). The speci�cations (S5) and (S7) are independent of tolerances in
the sense that they are satis�ed for the nominal HE model if and only if they are satis�ed

for the tolerance HE models. Therefore, corresponding speci�cations with respect to

tolerances are not required.

The speci�cation (S6) is not applicable in the case with tolerances, because in the case

with tolerances the start and the test point do not have a common gas valve position

in general. Thus, it is not possible to compare the equivalence AFR at the start and at

the test point in a meaningful way in this case. Therefore, a speci�cation with respect to

tolerances corresponding to (S6) is not given.

Before we derive constraints corresponding to the speci�cations (S-T1) to (S-T4), we
need to specify the decision space.

8.7.3. Decision Space in the Case with Tolerances

In the nominal case, i.e., with the problem (nom-P p
T;rD

), we consider the ADA pairs in-
dividually and the corresponding decision space is three-dimensional. In the case with
tolerances this is not possible in general, because the super �xed point vector has to be
determined with the recursion according to De�nition 7.14, i.e., all N ADA pairs must be
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simultaneously considered. Therefore, the decision space is 3N-dimensional in this case
and its elements are vectors of the form

x = (s1; i1s ; i
1
t ; : : : ; s

N ; iNs ; i
N
t ) 2 R

3N :

As a consequence, we need a transformation from the 3N-dimensional decision space and
a given vector of feasible test fan speeds T to the N ADA pairs, which is de�ned as follows.

De�nition 8.69 Let x = (s1; i1s ; i
1
t ; : : : ; s

N ; iNs ; i
N
t ) 2 R

3N and let T = ft1; : : : ; tNg be a

set of feasible test fan speeds. The set of corresponding ADA pairs is de�ned by

AT (x) :=
{
(s1; t1; i1s ; i

1
t ); : : : ; (s

N ; tN ; iNs ; i
N
t )

}
:

Based on this, we can formulate the speci�cations (S-T1) to (S-T4) as inequalities that
depend on the decision variables x .

8.7.4. Constraints with Respect to Tolerances

As a preliminary step, we introduce a notation that re�ects the dependency of the ioni
current based ADA iterates and of the resistance based ADA iterates on the set of ADA
pairs A and on the considered HE model H, see also De�nitions 7.22 and 7.28. This is
done analogously to Notation 8.66 of i

��(A;H). The underlying De�nitions 7.22 and 7.28
of the ADA iterates are not changed.

Notation 8.70 Let A :=
{
(sp; tp; ips ; i

p
t ) : p 2 [N]

}
be a set of N ADA pairs and let H be

an HE model. Furthermore, let ît;in be an input vector and let u be an in�nite ADA update

sequence such that ît;in and u are a feasible input combination with respect to A and H,

see also Remark 7.25.

The n-th ioni current based and resistance based ADA iterate with respect to ît;rD , u, A

and H are denoted by i
n (̂it;in; u;A;H) and r

n (̂it;in; u;A;H), respectively, for all n 2 N.

Analogously, we introduce a notation for the iteration functions Ap
rD , p 2 [N], according

to De�nition 6.21.

Notation 8.71 Let rD � 0, let A :=
{
(sp; tp; ips ; i

p
t ) : p 2 [N]

}
be a set of N ADA pairs

and let H be an HE model. The corresponding drift resistance ADA iteration functions

are denoted by Ap
rD;A;H

for all p 2 [N].

With this, we derive constraints such that the speci�cations (S-T1) to (S-T4) are
satis�ed.

Speci�cation (S-T1) Let A be a set of N ADA pairs. We want that i
��(A;H) 2 RN and

that Algorithm 5.2 given the inputs ît;in = (i1t ; : : : ; i
N
t ) and ~u converges to i

��(A;H) with
a certain minimum rate of convergence for all H 2 Utol. The convergence characteristics
of Algorithm 5.2 are thoroughly analyzed in Chapter 7 above. One major result of this
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analysis is Theorem 7.68, which states conditions for the convergence of Algorithm 5.2
to i

��(A;H), i.e., conditions such that lim
n!1

i
n (̂it;in; u;A;H) = i

��(A;H). However, in

practice it is di�cult to check some of the requirements of Theorem 7.68. For instance,
Theorem 7.68 requires that i

��(A;H) is known in advance, which is in general not appli-
cable in the case with tolerances.
The idea to overcome this problem is to approximate i

��(A;H) by simply applying Algo-
rithm 5.2 with the inputs ît;in = (i1t ; : : : ; i

N
t ) and ~u as well as the considered set of ADA

pairs A and the considered tolerance HE model H. As a by-product, we also receive the
information whether ît;in and ~u are a feasible input combination with respect to A and H.
If they are not, Algorithm 5.2 will abort at some point and eventually return the vector
whose components are all NaN.
Because ~u is an in�nite sequence, we have to manually terminate Algorithm 5.2 at a
suitable point. For this, we specify a maximum number of iterations nmax. Furthermore,
we specify a small threshold value ithr > 0 to check if Algorithm 5.2 can be considered
as su�ciently well converged after nmax iterations. Recall from Corollary 7.23 that the
intermediate result after the n-th iteration of Algorithm 5.2 given the inputs ît;in and ~u

corresponds to the n-th ADA iterate i
n (̂it;in; ~u;A;H). With this, the approach is as fol-

lows:
If
∥∥i

nmax (̂it;in; ~u;A;H) � i
nmax+N (̂it;in; ~u;A;H)

∥∥
1
� ithr and Ap

rD;A;H
is contractive for all

p 2 [N], then we assume that

lim
n!1

i
n (̂it;in; ~u;A;H) = i

��(A;H) and i
��(A;H) � i

nmax+N (̂it;in; ~u;A;H):

The condition
∥∥i

nmax (̂it;in; ~u;A;H)� i
nmax+N (̂it;in; ~u;A;H)

∥∥
1
� ithr is an indicator for the

convergence of Algorithm 5.2 given the inputs ît;in and ~u. The condition that Ap
rD;A;H

is
contractive for all p 2 [N] ensures the uniqueness of the super �xed point vector, see also
Lemma 6.35, Lemma 7.48 and Corollary 7.47. In particular, we assume that ît;in and ~u

are a feasible input combination in this case, because Algorithm 5.2 did not abort early.

Remark 8.72 It is not su�cient to compare i
nmax (̂it;in; ~u;A;H) with i

nmax+1(̂it;in; ~u;A;H).

Indeed, according to Lemma 7.27, in the (nmax + 1)st iteration only the p-th component

of the ADA iterate i
n (̂it;in; ~u;A;H) is updated, where p = ~unmax+1 is the (nmax+1)st entry

of the update sequence ~u.

But we want to make sure that each of the N components of i
nmax (̂it;in; ~u;A;H) is changed

by at most ithr in its next update. By construction of the ADA update sequence ~u, after

N iterations with ~u each component of the ADA iterate was updated exactly once (Nota-

tion 8.67). Therefore, we have to compare i
nmax (̂it;in; ~u;A;H) with i

nmax+N (̂it;in; ~u;A;H).

Of course this is only a heuristic. It is neither guaranteed that i
nmax+N (̂it;in; ~u;A;H) is

close to the real super �xed point vector (if it even exists), nor that Algorithm 5.2 given the
inputs ît;in and ~u converges at all. However, this approach worked well in the considered
use cases.
In order to formalize this approach and to formulate corresponding constraints, we need a
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function that maps an element x of the decision space and a set of feasible test fan speeds
T to the Lipschitz constants of the function Ap

rD;A;H
, p 2 [N].

De�nition 8.73 Let rD � 0, let T be a set of feasible test fan speeds and let H be an HE

model. For p 2 [N] and x 2 R3N , we de�ne the function �LpT;rD;H : R3N 7! R [ f1g by

�LpT;rD;H(x) :=

{
Lipschitz constant of Ap

rD;AT (x);H
if Ap

rD;AT (x);H
is Lipschitzian;

1 else:

Remark 8.74 The function �LpT;rD;H is well-de�ned by construction. The overline notation

is used to distinguish it from the function LpT;rD according to De�nition 8.17 used in the

nominal case.

With this, we can �nally specify constraints such that (S-T1) is "approximately" satis-
�ed.

(C-T1.1)
∥∥i

nmax (̂it;in; ~u;AT (x);H)� i
nmax+N (̂it;in; ~u;AT (x);H)

∥∥
1
� ithr for all H 2 Utol.

(C-T1.2) �LpT;rD;H(x) � 1� " 8 p 2 [N] 8 H 2 Utol (with a certain " > 0 small but �xed).

Remark 8.75 With the parameters nmax and ithr a minimum rate of convergence as well

as the accuracy of the super �xed point vector approximation are controlled. In the use

cases, nmax = 50N, i.e., 50 iterations with each ADA pair, and ithr = 10�4 were a good

compromise between required computation time and accuracy.

The components of the super �xed point vector usually have values in the range from 6000

to 8000. Therefore, a di�erence of ithr = 10�4 usually corresponds to a relative di�erence

of approximately 1:25 � 10�8 to 1:67 � 10�8.

Speci�cation (S-T2) We need an indicator for the "quality" of i
��(A;H). For this, the

control curve and the �-target curve are used. Recall from Section 2.3.3 that the control
curve maps every feasible fan speed fs 2 FS to an ioni current setpoint iset(fs) and that
the corresponding desired equivalence AFR is called �-target and is denoted by �target(fs).
An exemplary �-target curve and control curve are shown in Figure 2.7. The control curve
is formally de�ned in De�nition 8.30 above.
Furthermore, recall from Sections 3.2.2 and 3.4.2 that the incumbent vector of drifted test
ioni current approximations ît;rD is used to correct the control curve for the in�uence of the
drift resistance. For this, let fs 2 FS. First, ît;rD is used to approximate the drift resistance
at the fan speed fs according to De�nition 3.38, i.e., r̂D := �

ît;rD
(fs) is determined. The

ioni current setpoint iset(fs) is then corrected by plugging iset(fs) and r̂D into (3.10), see
also De�nition 3.40.
The idea to indicate whether the approximation quality of i

��(A;H) is su�cient is as fol-
lows: If the control curve is corrected with ît;rD = i

��(A;H), then the resulting equivalence
AFRs are allowed to di�er only by a certain �xed tolerance �wp;tol from �target(fs) for all
fs 2 FS and for all H 2 Utol [PHE, Item 3280]. A common value used by Vaillant is
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8.7 Optimization Model for the Case with Tolerances

�wp;tol = 0:1 [PHE, Item 15500].
For this, we de�ne the �-working-point function �wp(fs; ît;rD ;H), whose image corresponds
to the equivalence AFR that results from correcting the ioni current setpoint at the fan
speed fs with the incumbent vector ît;rD while the HE model H is considered.

De�nition 8.76 Let rD � 0. Let H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
,

H 2 Utol, be a tolerance HE model and let iset(fs) be a given control curve. Let ît;rD

be an incumbent vector of drifted test ioni current approximations and let �rD(fs) be the

corresponding drift resistance approximation function according to De�nition 3.38.

Let fs 2 FS. The working point equivalence AFR at the fan speed fs related to rD, ît;rD

and H is de�ned by

�wp(fs; ît;rD ;H) := �fs � �
�1
fs;rD

( Uiset(fs)

r̂D iset(fs) + U

)
with r̂D = �

ît;rD
(fs): (8.10)

Remark 8.77 The working point equivalence AFR is closely related to the operating point

equivalence AFR �op(fs) = �fs ��
�1
fs � iset(fs) de�ned in De�nition 8.30. In deed, if r̂D = rD

(and the sameH is considered), then �wp(fs; ît;rD ;H) = �op(fs). By applying Lemmas 6.17

and 6.20, we have

��1fs;rD
(i) = ��1fs;rD

(U
i

)
= ��1fs

(U
i
� rD

)
and thus (with r̂D = rD)

��1fs;rD

( Uiset(fs)

r̂D iset(fs) + U

)
= ��1fs

( r̂D iset(fs) + U

iset(fs)
� rD

)
= ��1fs

( U

iset(fs)
+ r̂D � rD

)
= ��1fs

( U

iset(fs)

)
= ��1fs

(
iset(fs)

)
:

Remark 8.78 A statement about �wp(fs; ît;rD ;H) being well-de�ned is not provided. This

is not necessary, because ADA parameters such that evaluating (8.10) is not well-de�ned
are considered to be infeasible in the optimization model with tolerances.

With this, the corresponding condition to satisfy (S-T2) is∣∣�wp(fs; ît;rD ;H)� �target(fs)
∣∣ � �wp;tol 8 fs 2 FS 8 H 2 Utol: (8.11)

However, in practice it is usually not possible to check whether (8.11) holds for all fs 2 FS,
because the function �wp(fs; ît;rD ;H) is not available in an explicit form in general, nor
does it have a certain monotonic behavior in general. Therefore, we have to fall back on a
sample set of FS, i.e., we only check for certain fan speed samples whether (8.11) holds.
This sample set is denoted by FSsample in the following. In the use cases, a sample set
with 100 equidistantly distributed points between fsmin and fsmax worked well.
With this, we have all the parts together to specify a constraint such that (S-T2) is
"approximately" satis�ed. For this, recall that the super �xed point vector i

��
(
AT (x);H

)
is approximated by i

nmax+N
(̂
it;in; ~u;AT (x);H

)
.

(C-T2)
∣∣∣�wp(fs; inmax+N

(̂
it;in; ~u;AT (x);H

)
;H

)
��target(fs)

∣∣∣ � �wp;tol for all fs 2 FSsample

and for all H 2 Utol.
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Speci�cation (S-T3) This speci�cation is related to combustion limits with respect to
the CO emission and to the equivalence AFR. The corresponding constraints for the case
with tolerances are derived analogously to the nominal case by considering the CO iterates
and the � iterates, see also Section 8.5.2. For this, we adapt the notation of the CO
iterates (De�nition 8.44) and of the � iterates (De�nition 8.47) such that the dependency
on the set of ADA pairs A and on the HE model H is re�ected. As with all adapted
notations in this section, the underlying de�nitions are not changed. In particular, the
statements of Corollaries 8.45 and 8.48 remain valid.

Notation 8.79 Let A :=
{
(sp; tp; ips ; i

p
t ) : p 2 [N]

}
be a set of N ADA pairs and let H be

an HE model. Furthermore, let ît;in be an input vector and let u be an in�nite ADA update

sequence.

The corresponding n-th start and test CO iterates according to De�nition 8.44 are denoted

by cons (̂it;in; u;A;H) and cont (̂it;in; u;A;H), respectively.

The corresponding n-th start and test � iterates according to De�nition 8.47 are denoted

by �ns (̂it;in; u;A; h) and �nt (̂it;in; u;A;H), respectively.

In contrast to the nominal case, in the case with tolerances it is in general not su�cient
to check the combustion limits for certain inputs only. Rather, for each tolerance HE
model H, H 2 Utol, we have to check that comax and �max are never exceeded and that
the equivalence AFR never falls below �min in each ADA iteration. Recall from Remark 8.72
that we are only interested in the �rst nmax+N ADA iterations. Therefore, it is su�cient
to check that the CO and � iterates are within the speci�ed limits for the �rst nmax + N

iterations. The corresponding constraints are as follows.

(C-T3) For all H 2 Utol and for all n 2 [nmax + N]:

cons
(̂
it;in; ~u;AT (x);H

)
� comax; cons

(̂
it;in; ~u;AT (x);H

)
� comax;

� �ns
(̂
it;in; ~u;AT (x);H

)
� ��min; �ns

(̂
it;in; ~u;AT (x);H

)
� �max;

� �nt
(̂
it;in; ~u;AT (x);H

)
� ��min; �nt

(̂
it;in; ~u;AT (x);H

)
� �max:

Speci�cation (S-T4) This speci�cation is related to the set of feasible gas valve positions
Gfs and to the ioni current functions �fs, fs 2 FS, of the tolerance HE models H, H 2 Utol.
The corresponding constraints are analogous to (C-S4).

(C-T4) For all H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
2 Utol and for all

ADA pairs (sp; tp; ips ; i
p
t ) 2 AT (x), p 2 [N]:

min �sp(Gsp)� ips � 0; �max �sp(Gsp) + ips � 0 and

min �tp(Gtp)� ipt � 0; �max �tp(Gtp) + ipt � 0:

8.7.5. Feasible Set

As stated at the beginning of Section 8.7.2, the objective criteria (O1) to (O3) as well as
the speci�cations (S1) to (S7) from the nominal case must still be satis�ed with respect
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8.7 Optimization Model for the Case with Tolerances

to the nominal HE model. Therefore, regarding the nominal HE model Hnom the feasible
sets Xp

T;rD
, p 2 [N], from (nom-P p

T;rD
) are reused. To make clear that the sets Xp

T;rD
,

p 2 [N] refer to a certain HE model the following notation is introduced.

Notation 8.80 Let H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
be an HE model

and let p 2 [N]. We denote by Xp
T;rD

(H) the situation where the functions �fs, �fs and �fs
of H specify the considered feasible set Xp

T;rD
according to De�nition 8.52.

With this, we have all the parts together to de�ne the set of feasible solutions for the
optimization model with tolerances.

De�nition 8.81 Let N 2 N be �xed. Let T = ft1; : : : ; tNg be a set of feasible test fan

speeds and let rD � 0. Let �min, �max, comax, ��min, �wp;tol, nmax, ithr and FSsample

be the combustion limits and approximation parameters speci�ed by the decision makers.

Let Hnom be a nominal HE model and let Utol be a collection of k tolerance HE models,

k 2 N0. Furthermore, let ît;in = (i1t ; : : : ; i
N
t ) and let ~u = (1; : : : ; N; 1 : : : ; N; : : : ) be the

periodic ADA update sequence as de�ned in Notation 8.67.

The corresponding set of feasible solutions with respect to tolerances, which is denoted

by Xtol
T;rD

(Hnom;Utol), is de�ned as the set of all vectors

x = (s1; i1s ; i
1
t ; : : : ; s

N ; iNs ; i
N
t ) 2 R

3N

such that all of the following constraints are satis�ed:

(C-R1)� (C-R3) and (C-S1)� (C-S7) (sp; ips ; i
p
t ) 2 Xp

T;rD
(Hnom) 8 p 2 [N]

and for all H 2 Utol:

(C-T1.1)
∥∥i

nmax (̂it;in; ~u;AT (x);H)� i
nmax+N (̂it;in; ~u;AT (x);H)

∥∥
1
� ithr;

(C-T1.2) �LpT;rD;H(x) � 1� " 8 p 2 [N] (" > 0 small but �xed);

(C-T2)
∣∣∣�tol(fs; inmax+N

(̂
it;in; ~u;AT (x);H

)
;H

)
� �target(fs)

∣∣∣ � �wp;tol 8 fs 2 FSsample;

(C-T3) conk
(̂
it;in; ~u;AT (x);H

)
� comax 8 n 2 [nmax + N]; k 2 fs; tg;

� �nk
(̂
it;in; ~u;AT (x);H

)
� ��min 8 n 2 [nmax + N]; k 2 fs; tg;

�nk
(̂
it;in; ~u;AT (x);H

)
� �max 8 n 2 [nmax + N]; k 2 fs; tg;

(C-T4) min �kp(Gkp)� ipk � 0 8 p 2 [N]; k 2 fs; tg;

�max �kp(Gkp) + ipk � 0 8 p 2 [N]; k 2 fs; tg:

With the set of feasible solutions de�ned, we detail the objective functions next.

8.7.6. Objective Functions

As delineated at the end of Section 8.7.1, the decision makers argue that optimal con-
vergence characteristics of the ADA pairs with the nominal HE model is most important.
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They do not want to improve convergence characteristics with tolerance HE models at the
prize of worsened convergence characteristics for the nominal HE model. Therefore, the
objective functions remain unchanged, i.e., we minimize the Lipschitz constant of Ap

rD and
the start point increment �ps;incr of each ADA pair p, p 2 [N], with respect to the nominal
HE model Hnom.
However, because we cannot consider the ADA pairs individually anymore, we have to mini-
mize both objective functions for all N ADA pairs simultaneously, i.e., we have 2N objective
functions and not two as in (nom-P p

T;rD
). Furthermore, we have to slightly modify the def-

initions of the objective functions LpT;rD (De�nition 8.17) and SpT;rD (De�nition 8.59) to
make them compatible with the feasible set with respect to tolerances Xtol

T;rD
(Hnom;Utol).

De�nition 8.82 For x = (s1; i1s ; i
1
t ; : : : ; s

N ; iNs ; i
N
t ) 2 Xtol

T;rD
(Hnom;Utol) and p 2 [N], we

de�ne

L
p
T;rD

(x) := LpT;rD(s
p; ips ; i

p
t ) and S

p
T;rD

(x) := SpT;rD(s
p; ips ; i

p
t );

where LpT;rD and SpT;rD are related to the nominal HE model Hnom.

Lemma 8.83 The functions L
p
T;rD

and S
p
T;rD

are well-de�ned for all p 2 [N].

Proof. Let x = (s1; i1s ; i
1
t ; : : : ; s

N ; iNs ; i
N
t ) 2 Xtol

T;rD
(Hnom;Utol). By construction, we have

(sp; ips ; i
p
t ) 2 Xp

T;rD
(Hnom) for all p 2 [N] (De�nition 8.81). Because Xp

T;rD
(Hnom) is

the domain of SpT;rD (De�nition 8.59) and R3 is the domain of LpT;rD (De�nition 8.17),

L
p
T;rD

(x) and S
p
T;rD

(x) are well-de�ned for all p 2 [N].

With this, we can �nally formulate the ADA optimization model with respect to toler-
ances.

8.7.7. The Optimization Model with Respect to Tolerances

The proposed optimization model to optimize the ADA parameters with respect to toler-
ances is as follows.

De�nition 8.84 Let N 2 N be �xed. Let T = ft1; : : : ; tNg be a set of feasible test fan

speeds and let rD � 0. Let �min, �max, comax, ��min, �wp;tol, nmax, ithr and FSsample

be the combustion limits and approximation parameters speci�ed by the decision makers.

Let Hnom be a nominal HE model and let Utol be a collection of k tolerance HE models,

k 2 N0.

The corresponding ADA optimization problem with respect to tolerances is de�ned by

min
x2Xtol

T;rD
(Hnom;Utol)

f tol(x) :=
(
f tol1 (x); : : : ; f tol2N (x)

)
(tol-PT;rD)

with

f tolk (x) :=

{
L
k
T;rD

(x) if k 2 f1; : : : ; Ng

S
(k�N)
T;rD

(x) if k 2 fN + 1; : : : ; 2Ng:
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Remark 8.85 Note that the order of the objective functions is irrelevant with respect to

Pareto optimality.

A method how to approximate the Pareto front of (tol-PT;rD) is proposed in the following
Chapter 9. But before that, the di�erences and similarities between the two optimization
models (nom-P p

T;rD
) and (tol-PT;rD) are brie�y discussed.

8.8. Comparison of the Two Optimization Models

Let us suppose that we want to optimize N ADA pairs. Because the super �xed point
vector has to be determined with the recursion according to De�nition 7.14 in the case
of tolerances, we cannot decouple the ADA pairs in the optimization model with tol-
erances (tol-PT;rD). Accordingly, the problem (tol-PT;rD) is much more complex than
(nom-P p

T;rD
). In (tol-PT;rD), the decision space is 3N-dimensional and the objective space

is 2N-dimensional. In contrast, the decision space and the objective space of the problems
(nom-P p

T;rD
) are three-dimensional and two-dimensional, respectively, for p 2 [N]. How-

ever, we have to solve the problem (nom-P p
T;rD

) for all p 2 [N], i.e., we have to solve N

biobjective optimization problems in the nominal case.
The totality of all N problems (nom-P p

T;rD
), p 2 [N], can be interpreted as a special case

of the more complex problem (tol-PT;rD). If the uncertainty set Utol is empty, i.e., if we
only have a nominal HE model but no tolerance HE models, then every combination of
exactly one Pareto optimal solution from each (nom-P p

T;rD
), p 2 [N], can be combined to

a Pareto optimal solution of (tol-PT;rD) and vice versa.
For this, we �rst show that the Pareto optimal solutions of (nom-P p

T;rD
) and (tol-PT;rD)

correspond to each other in a certain sense if Utol = ;.

Lemma 8.86 Let a nominal HE model Hnom be given and let Utol = ;. Furthermore, let

T = ft1; : : : ; tNg be a set of feasible test fan speeds and let rD � 0. Let Xtol
T;rD

(Hnom;Utol)

be the corresponding feasible set with respect to tolerances. Then,

(sp; ips ; i
p
t ) 2 Xp

T;rD
(Hnom) 8 p 2 [N] , (s1; i1s ; i

1
t ; : : : ; s

N ; iNs ; i
N
t ) 2 Xtol

T;rD
(Hnom;Utol):

Proof. The statement follows from the constraint (sp; ips ; i
p
t ) 2 Xp

T;rD
(Hnom) for all p 2 [N]

in De�nition 8.81 and from the fact that the remaining constraints (C-T1.1) to (C-T4)
in De�nition 8.81 do not apply in the case Utol = ;.

With this, we can show that the totality of Pareto optimal solutions of (nom-P p
T;rD

),
p 2 [N], and the Pareto optimal solutions of (tol-PT;rD) correspond to each other in the
case Utol = ;.

Theorem 8.87 Let a nominal HE model Hnom be given and let Utol = ;. Furthermore, let

T = ft1; : : : ; tNg be a set of feasible test fan speeds and let rD � 0.

If (nom-P p
T;rD

) is related to Hnom for all p 2 [N] and (tol-PT;rD) is related to Hnom as well

as to Utol, then the following two statements are equivalent:
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1. xp;� = (sp;�; ip;�s ; ip;�t ) is Pareto optimal with respect to (nom-P p
T;rD

) 8 p 2 [N].

2. x� = (s1;�; i1;�s ; i1;�t ; : : : ; sN;�; iN;�s ; iN;�t ) is Pareto optimal with respect to (tol-PT;rD).

Proof. "1. ) 2." For all p 2 [N] let xp;� = (sp;�; ip;�s ; ip;�t ) be Pareto optimal with respect
to (nom-P p

T;rD
). Let x� := (s1;�; i1;�s ; i1;�t ; : : : ; sN;�; iN;�s ; iN;�t ). According to Lemma 8.86,

x� 2 Xtol
T;rD

(Hnom;Utol), i.e., x� is feasible with respect to (tol-PT;rD).
Let us suppose that x� is not Pareto optimal with respect to (tol-PT;rD). Then, there
exists �x = (�x1;�i1s ;�i

1
t ; : : : ; �x

N ;�iNs ;�i
N
t ) 2 Xtol

T;rD
(Hnom;Utol) such that f tol(�x) � f tol(x�), i.e.,

f toli (�x) � f toli (x�) for all i 2 [2N] and there exists j 2 [2N] such that f tolj (�x) < f tolj (x�).
Without loss of generality, let j = 1. Then, f tol1 (�x) < f tol1 (x�) and f tolN+1(�x) � f tolN+1(x

�).
According to De�nitions 8.84 and 8.82, we have

L1T;rD(�s
1;�i1s ;�i

1
t ) < L

1
T;rD

(s1;�; i1;�s ; i1;�t ) and S1T;rD(�s
1;�i1s ;�i

1
t ) � S

1
T;rD

(s1;�; i1;�s ; i1;�t ):

Because �x1 := (�s1;�i1s ;�i
1
t ) 2 X1

T;rD
(Lemma 8.86), this implies f nom ;1(�x1) � f nom ;1(x1;�)

(De�nition 8.61). This is a contradiction to x1;� being Pareto optimal with respect to
(nom-P p

T;rD
) with p = 1. Thus, x� has to be Pareto optimal with respect to (tol-PT;rD).

"2. ) 1." Let x� := (s1;�; i1;�s ; i1;�t ; : : : ; sN;�; iN;�s ; iN;�t ) be Pareto optimal with respect to
(tol-PT;rD). Then, x

p;� := (sp;�; ip;�s ; ip;�t ) 2 Xp
T;rD

for all p 2 [N] (Lemma 8.86).
Let us suppose that there exists p 2 [N] such that xp;� is not Pareto optimal with respect
to (nom-P p

T;rD
). Without loss of generality, let p = 1. Then, there exists �x1 = (�s1;�i1s ;�i

1
t ) 2

X1
T;rD

such that f nom ;1(�x1) � f nom ;1(x1;�). We set

�x := (�s1;�i1s ;�i
1
t ; s

2;�; i2;�s ; i2;�t ; : : : ; sN;�; iN;�s ; iN;�t ):

Then, �x 2 Xtol
T;rD

(Hnom;Utol) (Lemma 8.86) and f tol(�x) is well-de�ned. By construction,
and because f nom ;1(�x1) � f nom ;1(x1;�), we have f toli (�x) � f toli (x�) for all i 2 [2N].
Furthermore, by considering De�nitions 8.61, 8.82 and 8.84 as well as f nom ;1(�x1) �

f nom ;1(x1;�), we have f tol1 (�x) < f tol1 (x�) or f tolN+1(�x) < f tolN+1(x
�). In total, �x dominates

x�. This is a contradiction to x� being Pareto optimal with respect to (tol-PT;rD) and
thus xp;� = (sp;�; ip;�s ; ip;�t ) has to be Pareto optimal with respect to (nom-P p

T;rD
) for all

p 2 [N].

This concludes the chapter on modeling the optimization of the ADA parameters. In the
following chapter, two methods to approximate the Pareto fronts of the ADA optimization
problems are proposed, one for (nom-P p

T;rD
) and one for (tol-PT;rD).
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9. Solving the ADA Optimization Problems

In this chapter, algorithms to solve the problems (nom-P p
T;rD

) and (tol-PT;rD) are proposed.
Recall that both problems are multiobjective optimization problems. In the book Multiob-

jective Optimization [Bra+08], several desirable properties of multiobjective optimization
methods are listed. Among others, "the method should generate Pareto optimal solutions
reliably, it should help the DM to get an overview of the set of Pareto optimal solutions, it
should not require too much time from the DM . . . and the method should support the DM
in �nding the most preferred solution as the �nal one so that the DM could be convinced
of its relative goodness." [Bra+08, p. 2]. These requirements were kept in mind when
developing and selecting the algorithms presented in this chapter.
Two common approaches in multiobjective optimization are a priori methods and a pos-

teriori methods [Bra+08, p. 3]: "In a priori methods, the DM �rst articulates preference
information and one's aspirations and then the solution process tries to �nd a Pareto op-
timal solution satisfying them as well as possible. This is a straightforward approach but
the di�culty is that the DM does not necessarily know the possibilities and limitations
of the problem beforehand and may have too optimistic or pessimistic expectations." In
contrast, in a posteriori methods "a representation of the set of Pareto optimal solutions
is �rst generated and then the DM is supposed to select the most preferred one among
them" [Bra+08, p. 3]. The a posteriori approach has the advantage that the DMs have
the information about the trade-o�s between di�erent solutions available and can select
the best compromise according to their preferences. However, "if there are more than two
objectives in the problem, it may be di�cult for the DM to analyze the large amount of
information . . . and, on the other hand, generating the set of Pareto optimal solutions may
be computationally expensive." [Bra+08, p. 3].
Because the DMs are interested in the trade-o� information and they cannot specify aspi-
ration levels in advance, only the a posteriori approach is considered here. Therefore, we
are interested in �nding good representations of the sets of Pareto optimal solutions of
(nom-P p

T;rD
) and (tol-PT;rD) [Bra+08, p. 15].

9.1. Solving the Nominal ADA Optimization Problem

The problem (nom-P p
T;rD

) is a constrained, continuous, nonlinear, biobjective optimization
problem. Furthermore, we have to consider the following aspects.

� In general, the Pareto front of (nom-P p
T;rD

) is not convex, which is demonstrated in
Subsection 9.1.4 below.
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� Multimodality cannot be excluded.

� Depending on the regression/interpolation method used for the HE model, the objec-
tive functions and the constraints of (nom-P p

T;rD
) are not di�erentiable everywhere in

general. For instance, this is the case if an interpolation method is used that is based
on a piecewise linear interpolation. Even if the HE model consists of di�erentiable
functions, the objective functions and the constraints will usually be not available
as an analytical expressions. Rather, they can be considered as black box functions.
Therefore, a symbolic di�erentiation or automatic di�erentiation of the functions is
not possible in general. However, numerical di�erentiation by �nite di�erences can
usually be applied.

Taking all these aspects into account, only derivative-free methods are investigated, i.e.,
gradient-based methods are not considered in this work.

Two common derivative-free approaches in multiobjective optimization are direct search
methods and evolutionary multiobjective optimization algorithms [CEM12, p. 3]. Another
common approach to solve multiobjective optimization problems, which can be combined
with derivative-free methods, is based on scalarization [Eic21, p. 3]. As delineated in Sec-
tion 4.1, a scalarization combines all objective functions of a multiobjective problem into
a single objective function.
Two of the most popular scalarization methods are the weighted-sum scalarization and
the "-constraint scalarization [Eic21, p. 4]. Both methods are introduced and discussed
in Sections 4.1.2 and 4.1.3, respectively. As stated in Remark 4.23, the weighted-sum
scalarization generally does not �nd all Pareto optimal solutions if the multiobjective op-
timization problem is nonconvex. Because the Pareto front of (nom-P p

T;rD
) is not convex

in general, the weighted-sum scalarization is not used in this work. In contrast, the "-
constraint scalarization can �nd Pareto optimal solutions in the nonconvex part of the
Pareto front. However, a di�culty with the "-constraint scalarization is to chose suit-
able "-vectors [Deb01, p. 58], [Eic21, p. 13]. The "-vectors must be selected such that
their components are within the corresponding objective functions' minimum and maxi-
mum value. In particular, with an increased number of objectives it might become more
di�cult to specify suitable "-vectors [Deb01, p. 58].
In the course of this section, we show that the biobjective problem (nom-P p

T;rD
) has a

certain structure, which allows to specify tight bounds for its second objective function.
With this, a combination of a simple direct search method and a modi�ed "-constraint
scalarization is proposed to solve (nom-P p

T;rD
), which is presented in the following.

9.1.1. Idea Behind the Proposed Method to Solve (nom-P p
T;rD

)

The idea behind the proposed algorithm to solve (nom-P p
T;rD

) is based on two observations.
For this, let p 2 [N]. Recall that for a given set of feasible test fan speeds T and a drift
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9.1 Solving the Nominal ADA Optimization Problem

resistance rD � 0 the feasible set to optimize ADA pair p is Xp
T;rD

according to De�ni-
tion 8.52. I.e., the decision space is three-dimensional with the three decision variables sp,
ips and ipt .
The �rst observation is that as soon as the start fan speed sp and one of the two ioni
currents are selected, the remaining ioni current follows from the feasibility condition
��1sp (i

p
s ) = ��1tp (i

p
t ) according to (C-R1) in De�nition 8.52. We have

sp and ips given ) ipt = �tp � �
�1
sp (i

p
s ) as well as sp and ipt given ) ips = �sp � �

�1
tp (i

p
t ):

(9.1)
It is therefore possible to consider a two-dimensional search space, even though the decision
space is three-dimensional.
The second observation is related to the second objective function of (nom-P p

T;rD
). Recall

from De�nitions 8.59 and 8.61 that for x = (sp; ips ; i
p
t ) 2 XT;rD , we have

f nom ;p
2 (x) = SpT;rD(s

p; ips ; i
p
t ) = �sp

(
��1tp (i

p
t )
)
� �sp

(
��1sp

(
iset(s

p)
))

= �sp
(
��1sp (i

p
s )
)
� �sp

(
��1sp

(
iset(s

p)
))
; (9.2)

where the second line follows from the feasibility condition ��1sp (i
p
s ) = ��1tp (i

p
t ). According

to (9.2), the second objective function depends on sp and ips only, i.e., it is independent
of tp and ipt . Furthermore, because �sp is a homeomorphism, the corresponding start ioni
current x2 = ips can be calculated from x1 = sp and from the function value f nom ;p

2 (x).
This allows us to de�ne a two-dimensional set whose components are the start fan speed
and the start point increment that is equivalent to Xp

T;rD
in the sense that there exists a

bijection between the two-dimensional set and Xp
T;rD

. This is formalized in the following
de�nition. Because the second objective function corresponds to the start point increment,
its function value is denoted by �ps;incr in the following, see also De�nition 8.33 above.

De�nition 9.1 Let p 2 [N] and let a set of feasible test fan speeds T as well as a drift

resistance rD � 0 be given. The corresponding set of feasible start points is de�ned by

Xp;s
T;rD

:=
{
(sp; �ps;incr) 2 R

2 : 9 x = (sp; ips ; i
p
t ) 2 Xp

T;rD
s.t. f nom ;p

2 (x) = �ps;incr
}
:

The corresponding transformation function is de�ned by

�p : Xp
T;rD
! Xp;s

T;rD
; x = (sp; ips ; i

p
t ) 7!

(
sp; f nom ;p

2 (x)
)
:

Lemma 9.2 The set Xp;s
T;rD

and the function �p are well-de�ned. Furthermore, �p is

bijective. If x = (�p)�1(sp; �ps;incr), then

x1 = sp; x2 = �sp � �
�1
sp

(
�ps;incr +�sp

(
��1sp

(
iset(s

p)
)))

and x3 = �tp � �
�1
sp (x2) (9.3)

for all (sp; �s;incr) 2 Xp;s
T;rD

.
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Proof. According to De�nitions 8.59 and 8.61, the set Xp
T;rD

is the domain of the second
objective function f nom ;p

2 . In particular, f nom ;p
2 is well-de�ned (Lemma 8.60). Therefore,

Xp;s
T;rD

and �p are well-de�ned. Next, we show that �p is bijective.
Surjective: �p is surjective by construction of the set Xp;s

T;rD
.

Injective: Let x1 = (sp;1; ip;1s ; ip;1t ) and x2 = (sp;2; ip;2s ; ip;2t ) such that x1; x2 2 Xp
T;rD

and
�p(x1) = �p(x2). Then, we have sp;1 = sp;2 and f nom ;p

2 (x1) = f nom ;p
2 (x2). By applying

(9.2), we have

�sp;1
(
��1
sp;1

(ip;1s )
)
� �sp;1

(
��1
sp;1

(
iset(s

p;1)
))

= �sp;2
(
��1
sp;2

(ip;2s )
)
� �sp;2

(
��1
sp;2

(
iset(s

p;2)
))
:

With additional consideration of sp;1 = sp;2, we obtain

sp;1 = sp;2 ) �sp;1
(
��1
sp;1

(
iset(s

p;1)
))

= �sp;2
(
��1
sp;2

(
iset(s

p;2)
))

) �sp;1
(
��1
sp;1

(ip;1s )
)
= �sp;2

(
��1
sp;2

(ip;2s )
)

) ip;1s = ip;2s ;

where the last implication follows from the fact that �sp;1 and �sp;1 are bijections.
Finally, by applying (9.1), we have

ip;1t = �tp � �
�1
sp;1

(ip;1s ) = �tp � �
�1
sp;2

(ip;2s ) = ip;2t :

In total, x1 = x2 holds and �p is injective.
It remains to show that (9.3) is correct. Let (sp; �ps;incr) 2 Xp;s

T;rD
. Because �p is bijective,

there exists a unique x = (sp; ips ; i
p
t ) 2 Xp

T;rD
such that f nom ;p

2 (x) = �ps;incr. Note that
x1 = sp by construction. By applying (9.2), we have

f nom ;p
2 (x) = f nom ;p

2

(
(sp; ips ; i

p
t )
)
= �sp

(
��1sp (i

p
s )
)
� �sp

(
��1sp

(
iset(s

p)
))

= �ps;incr

, x2 = ips = �sp � �
�1
sp

(
�ps;incr + �sp

(
��1sp

(
iset(s

p)
)))

:

Finally, x3 = ipt = �tp � �
�1
sp (i

p
s ) follows from (9.1).

With this, we can reformulate (nom-P p
T;rD

) to an optimization problem that is in a certain
sense equivalent but less complex, which is thus called the simpli�ed nominal model. For
this, we de�ne two objective functions that correspond to the nominal objective functions
f nom ;p
1 and f nom ;p

2 but that have the domain Xp;s
T;rD

instead of Xp
T;rD

.

De�nition 9.3 Let T = ft1; : : : ; tNg be a set of feasible test fan speeds and let rD � 0.

For p 2 [N], we de�ne

f sim ;p
1 : Xp;s

T;rD
! R; f sim ;p

1 (sp; �ps;incr) := f nom ;p
1 � (�p)�1(sp; �ps;incr);

f sim ;p
2 : Xp;s

T;rD
! R; f sim ;p

2 (sp; �ps;incr) := �ps;incr

and

f sim ;p : Xp;s
T;rD
! R2; f sim ;p :=

(
f sim ;p
1 ; f sim ;p

2

)
:
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Lemma 9.4 Let T = ft1; : : : ; tNg be a set of feasible test fan speeds, let rD � 0 and let

p 2 [N]. Then,

f nom ;p = f sim ;p � �p and f sim ;p = f nom ;p � (�p)�1:

In particular, the functions f sim ;p
1 , f sim ;p

2 and f sim ;p are well-de�ned.

Proof. That f sim ;p
1 is well-de�ned follows from the facts that (�p)�1 : Xp;s

T;rD
! Xp

T;rD
is

well-de�ned and that Xp
T;rD

is the domain of f nom ;p
1 . The function f sim ;p

2 is the second
projection map, which is well-de�ned even on R2. With this, f sim ;p is also well-de�ned.
Next, we show component-wise that f sim ;p = f nom ;p � (�p)�1. We have f sim ;p

1 = f nom ;p
1 �

(�p)�1 by construction (De�nition 9.3). To show that f sim ;p
2 = f nom ;p

2 � (�p)�1, let
(sp; �ps;incr) 2 Xp;s

T;rD
. According to Lemma 9.2, we have (�p)�1((sp; �ps;incr)) = (sp; ips ; it)

with

ips = �sp � �
�1
sp

(
�ps;incr + �sp

(
��1sp

(
iset(s

p)
)))

and ipt = �tp � �sp(i
p
s ):

By plugging (sp; ips ; i
p
t ) into f nom ;p

2 and by considering that ��1tp (i
p
t ) = ��1sp (i

p
s ), we obtain

with De�nitions 8.59 and 8.61

f nom ;p
2 (sp; ips ; i

p
t ) = �sp

(
��1tp (i

p
t )
)
� �sp

(
��1sp

(
iset(s

p)
))

= �sp
(
��1sp (i

p
s )
)
� �sp

(
��1sp

(
iset(s

p)
))

= �sp � �
�1
sp � �sp � �

�1
sp

(
�ps;incr + �sp

(
��1sp

(
iset(s

p)
)))

� �sp
(
��1sp

(
iset(s

p)
))

= �ps;incr + �sp
(
��1sp

(
iset(s

p)
))
� �sp

(
��1sp

(
iset(s

p)
))

= �ps;incr

= f sim ;p
2 (sp; �ps;incr):

Therefore, f sim ;p
2 = f nom ;p

2 � (�p)�1 holds and thus f sim ;p = f nom ;p � (�p)�1 holds as well.
With this, we �nally have f nom ;p = f nom ;p � (�p)�1 � �p = f sim ;p � �p.

De�nition 9.5 Let T = ft1; : : : ; tNg be a set of feasible test fan speeds and let rD � 0.

The simpli�ed nominal optimization problem for ADA pair p, p 2 [N], is de�ned by

min
(sp;�p

s;incr
)2Xp;s

T;rD

(
f sim ;p
1 (sp; �ps;incr); f

sim ;p
2 (sp; �ps;incr) = �ps;incr

)
: (simple-P p

T;rD
)

Remark 9.6 The problem (simple-P p
T;rD

) may be expected to be less complex than the

problem (nom-P p
T;rD

), because its feasible set is two-dimensional and its second objective

function is simply the projection of a feasible solution to its second component.

However, evaluating the �rst objective function f sim ;p
1 (sp; �ps;incr) (and also evaluating

f nom ;p
1 (sp; ips ; i

p
t )) is expected to be computationally expensive. Recall that these objec-

tive functions correspond to the determination of the Lipschitz constant Lp of the ADA

iteration function Ap. Since Ap is usually not available as an analytical expression, we have

to approximate Lp by �nite di�erences, i.e., we have to evaluate Ap several times. The

computational costs to evaluate Ap in turn depend on the selected HE model, because Ap
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is composed of the two HE model functions ��1sp;rD and �tp;rD . Therefore, the computational

costs of evaluating the HE model are crucial for the computational costs of the proposed

ADA optimization methods.

With this, (simple-P p
T;rD

) is a so-called heterogeneous problem [Eic21, p. 4]. Its �rst ob-

jective function is computationally expensive to evaluate, while an evaluation of its second

objective function as a projection is computationally cheap (almost for free).

The following lemma and corollary state how the Pareto optimal solutions and the Pareto
fronts of (nom-P p

T;rD
) and (simple-P p

T;rD
) are related.

Lemma 9.7 Let T = ft1; : : : ; tNg be a set of feasible test fan speeds, let rD � 0 and let

p 2 [N].

Then, x� 2 Xp
T;rD

is Pareto optimal with respect to (nom-P p
T;rD

) if and only if �p(x�) is

Pareto optimal with respect to (simple-P p
T;rD

).

Proof. By considering that f nom ;p = f sim ;p � �p (Lemma 9.4), we have

x� Pareto optimal wrt. (nom-P p
T;rD

)

, @ x 2 Xp
T;rD

: f nom ;p(x) � f nom ;p(x�)

, @ x 2 Xp
T;rD

: f sim ;p � �p(x) � f sim ;p � �p(x�)

, @ �x 2 Xp;s
T;rD

= �p(Xp
T;rD

) : f sim ;p(�x) � f sim ;p � �p(x�)

, �p(x�) Pareto optimal wrt. (simple-P p
T;rD

):

Corollary 9.8 Let Y p
N (X

p
T;rD

) be the Pareto front of (nom-P p
T;rD

) and let Y p
N (X

p;s
T;rD

) be the

Pareto front of (simple-P p
T;rD

). Then, Y p
N (X

p
T;rD

) = Y p
N (X

p;s
T;rD

).

Proof. This follows directly from Lemma 9.7. "�" Let y 2 Y p
N (X

p
T;rD

). Then, there exists
Pareto optimal x 2 Xp

T;rD
such that f nom ;p(x) = y . By applying Lemma 9.7, we know

that �p(x) is Pareto optimal with respect to (simple-P p
T;rD

). Therefore, f sim ;p � �p(x) =

f nom ;p(x) = y must be in the Pareto front of (simple-P p
T;rD

).
"�" Let y 2 Y p

N (X
p;s
T;rD

). Then, there exists Pareto optimal x 2 Xp;s
T;rD

such that f sim ;p(x) =

y . By applying Lemma 9.7, we know that (�p)�1(x) is Pareto optimal with respect to
(nom-P p

T;rD
). Therefore, f nom ;p � (�p)�1(x) = f sim ;p(x) = y must be in the Pareto front

of (nom-P p
T;rD

).

Lemma 9.7 and Corollary 9.8 justify the approach to focus on (simple-P p
T;rD

) in order
to solve (nom-P p

T;rD
). The approach taken in this work is to approximate the Pareto

front of (simple-P p
T;rD

) with a variant of the "-constraint scalarization. We keep the �rst

objective function f sim ;p
1 and move the second objective function as an equality constraint

for certain start point increment samples �ps;incr to the constraint set. This method di�ers
from the classical "-constraint scalarization, which is presented in Section 4.1.3, in that the
restriction of f sim ;p

2 is formulated as an equation and not as an inequality. The advantage

216



9.1 Solving the Nominal ADA Optimization Problem

of adding f sim ;p
2 as an equality constraint is that the corresponding scalarized problem

has a one-dimensional search space, see also Remark 9.12 below. In contrast, if f sim ;p
2

is added as an inequality constraint, then the scalarized problem's search space is two-
dimensional. However, this comes at the price that an optimal solution of a scalarized
problem with f sim ;p

2 as an equality constraint is in general not Pareto optimal with respect
to (simple-P p

T;rD
). In Lemma 9.18 below, it is shown that an optimal solution of such a

scalarized problem is Pareto optimal with respect to (simple-P p
T;rD

) if the Pareto front of

(simple-P p
T;rD

) is connected and the equality constraint with respect to f sim ;p
2 is selected

such that the value of f sim ;p
2 is between the ideal point and the nadir point.

The corresponding algorithm is presented �rst. It is then demonstrated in a use case.
Thereafter, its advantages and disadvantages are discussed.

9.1.2. Proposed Algorithm to Solve (nom-P p
T;rD

)

First, we de�ne the scalarized problem.

De�nition 9.9 For a given "2 2 R, we de�ne the corresponding scalarized variant of

(simple-P p
T;rD

) by

min
(sp;"2)2X

p;s
T;rD

f sim ;p
1 (sp; "2): (simple-P p

T;rD
("2))

Remark 9.10 An equivalent but less concise variant of (simple-P p
T;rD

("2)) is

min
(sp;�p

s;incr
)2Xp;s

T;rD

f sim ;p
1 (sp; �ps;incr) s.t. �ps;incr = "2:

Remark 9.11 Depending on the selection of "2, the problem (simple-P p
T;rD

("2)) might not

be feasible. A mitigation of this issue is discussed in Remark 9.14 below.

Remark 9.12 The problem (simple-P p
T;rD

("2)) has a one-dimensional search space in the

sense that the only free decision variable is sp.

Because we want to solve (simple-P p
T;rD

("2)) for several values of "2, we need a corre-
sponding sample set.

Notation 9.13 The start point increment sample set is denoted by S�p
s;incr

. It is implicitly

assumed that the sample set is �nite and that its elements are in strictly increasing order,

i.e., S�p
s;incr

= f�p;1s;incr; : : : ; �
p;n
s;incrg with �p;is;incr < �p;i+1

s;incr for all i 2 [n � 1], where n is the

cardinality of S�p
s;incr

.

Remark 9.14 It is possible to state "good" bounds for the sample set S�p
s;incr

such that the

risk of infeasibilty of (simple-P p
T;rD

("2)) is reduced without being too restrictive. According
to Lemma 8.60, we have �ps;incr = S

p
T;rD

(x) � 0 for all x 2 Xp
T;rD

. Therefore, it is suggested

to select S�p
s;incr

such that minS�p
s;incr

= 0.

Regarding the maximal element of S�p
s;incr

, recall from Lemma 8.35 that a start point
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increment of zero corresponds to the equivalence AFR that results from the control curve

and the start fan speed sp. For all fan speeds, the AFR corresponding to the control

curve is usually greater or equal to � = 1:3, see also Sections 2.2 and 2.3.3. On the

other hand, the equivalence AFR must not be greater than �max according to (C-S3) in
De�nition 8.52. Usually, we have �max = 1:6 according to (S3). Therefore, it is suggested
to select S�p

s;incr
such that maxS�p

s;incr
= �max � 1:3 = 0:3.

Note that these suggestions do not guarantee feasibility of (simple-P p
T;rD

("2)) for "2 2

S�p
s;incr

. Rather, feasibility is more likely for such "2 compared to the general cases "2 2 R

or "2 2 R�0. Of course, if a di�erent �max is considered or if the control curve is changed,

it may make sense to revise the upper bound of the sample set.

Remark 9.15 The exploration of the Pareto front of (simple-P p
T;rD

) (and thus also of

(nom-P p
T;rD

)) with respect to the second objective can be controlled with the selection

of the set S�p
s;incr

. This is possible, because the elements of S�p
s;incr

are used as additional

equality constraints for the second objective. For instance, if a uniform exploration of the

Pareto front with respect to the second objective is desired, a uniform spacing in S�s;incr
is suggested. Or if one is particularly interested in a solution with a small start point

increment, the spacing of S�s;incr could be selected such that it is dense for small start

point increments and sparse for larger start point increments.

In all cases, the selected spacing is a compromise between accuracy and computation time.

A good compromise for a uniform spacing is ��s;incr = 0:001 to ��s;incr = 0:005.

With this, Algorithm 9.1 to �nd an approximation of the set of Pareto optimal solutions
of (simple-P p

T;rD
) is proposed. The framework of Algorithm 9.1 is straightforward. For

each �ps;incr 2 S�p
s;incr

, the scalarized problem (simple-P p
T;rD

("2)) is solved with "2 = �ps;incr.
Because we are in the biobjective case and the elements in S�p

s;incr
follow an increasing

order, we can simultaneously �lter the results for Pareto nondominance.

Remark 9.16 If the problem (simple-P p
T;rD

("2)) has an optimal solution that is not unique,

then one arbitrary solution of the set of optimal solutions may be selected and added to

the set of approximated e�cient solutions in Line 9 of Algorithm 9.1. However, the case

that the optimal solution of (simple-P p
T;rD

("2)) is not unique is considered very unlikely in

practice for numerical reasons alone.

Algorithm 9.1 is rather a heuristic and only approximates the set of e�cient solutions of
(simple-P p

T;rD
). Nevertheless, some theoretical statements about its output with respect

to Pareto nondominance as well as Pareto optimality are possible.

Lemma 9.17 Let ~Xp
e� be the output of Algorithm 9.1. If ~Xp

e� is nonempty, then all

elements in f sim ;p( ~Xp
e�) are (within this set) nondominated.

Proof. Let ~Xp
e� be nonempty. Let us suppose there exists x = (sp; �ps;incr) 2

~Xp
e� such

that f sim ;p(x) is dominated in f sim ;p( ~Xp
e�). Then there exists x� = (sp;�; �p;�s;incr) 2

~Xp
e�

such that f sim ;p(x�) � f sim ;p(x), i.e., f sim ;p
1 (x�) � f sim ;p

1 (x) and f sim ;p
2 (x�) � f sim ;p

2 (x)
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Algorithm 9.1 Algorithm to Approximate the Set of E�cient Solutions of (simple-P p
T;rD

)

Input:

1: S�p
s;incr

= f�p;1s;incr; : : : ; �
p;n
s;incrg // start point increment sample set in increasing order

Calculations:

2: X̃p
e�  ; // set of approximated e�cient solutions

3: f best1  1 // incumbent best value of �rst objective function

4: for all i = 1 to n do

5: "2  �p;is;incr

6: solve (simple-P p
T;rD

("2))
7: if (simple-P p

T;rD
("2)) has an optimal solution sp;� with the function value f �1 then

8: if f �1 < f best1 then

9: X̃p
e�  X̃p

e� [ f(s
p;�; �p;is;incr)g

10: f best1  f �1
11: end if

12: end if

13: end for

Output:

14: X̃p
e� // approximated e�cient solutions of (simple-P p

T;rD
)

and f sim ;p(x�) 6= f sim ;p(x). Because f sim ;p
2 (x�) = �p;�s;incr and f sim ;p

2 (x) = �ps;incr, we have
�p;�s;incr � �ps;incr. Note that �p;�s;incr and �ps;incr must be contained in the sample set S�p

s;incr
,

because otherwise they cannot be a part of the output of Algorithm 9.1.
Let us suppose that �p;�s;incr < �ps;incr. In the for-loop in Line 4 of Algorithm 9.1 the elements
of S�p

s;incr
are selected in increasing order, thus �p;�s;incr is selected before �ps;incr in this case.

But then (sp; �ps;incr) can only be added to ~Xp
e� if f sim ;p

1 (x) < f sim ;p
1 (x�) according to

Line 8 of Algorithm 9.1. This is a contradiction to f sim ;p
1 (x�) � f sim ;p

1 (x).
Next, let us suppose that f sim ;p

1 (x�) < f sim ;p
1 (x). Then, (sp;�; �p;�s;incr) is added to ~Xp

e�

after the point (sp; �ps;incr) according to Line 8 of Algorithm 9.1. Because in the for-loop
in Line 4 of Algorithm 9.1 the elements of S�p

s;incr
are taken in a strictly increasing order,

we have �ps;incr < �p;�s;incr. This is a contradiction to �p;�s;incr � �ps;incr.
Since all cases lead to a contradiction, there cannot be a dominated point in f sim ;p( ~Xp

e�).

If the samples in S�p
s;incr

are selected such that they are between the ideal and the nadir

point and if the Pareto front of (simple-P p
T;rD

) is connected, then all points in the output
of Algorithm 9.1 are e�cient with respect to (simple-P p

T;rD
).

Lemma 9.18 Let (sp;I ; �p;Is;incr) be the ideal point and let (sp;N ; �p;Ns;incr) be the nadir point

of (simple-P p
T;rD

). Let S�p
s;incr

be such that �p;Is;incr � minS�p
s;incr

and maxS�p
s;incr
� �p;Ns;incr.

Let ~Xp
e� be the corresponding output of Algorithm 9.1.
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If the Pareto front of (simple-P p
T;rD

) is connected, then ~Xp
e� is a subset of the e�cient

solutions of (simple-P p
T;rD

).

Proof. Let the Pareto front of (simple-P p
T;rD

) be connected. Let us suppose that there

exists x� = (sp;�; �p;�s;incr) 2
~Xp
e� that is not Pareto optimal with respect to (simple-P p

T;rD
).

Because x� 2 ~Xp
e� , we have �

p;�
s;incr 2 S�p

s;incr
and thus �p;Is;incr � �p;�s;incr � �p;Ns;incr. Because the

Pareto front is connected, for all �s;incr 2 [�p;Is;incr; �
p;N
s;incr] there exists a Pareto optimal so-

lution x 2 Xp;s
T;rD

whose second component is �p;�s;incr according to Lemma 4.18. Therefore,
there exists a Pareto optimal solution �x = (�sp; ��ps;incr) with ��ps;incr = �p;�s;incr. Because �x is

Pareto optimal and x� is not and because ��ps;incr = �p;�s;incr, i.e., f
sim ;p
2 (�x) = f sim ;p

2 (x�), we

have f sim ;p
1 (�x) < f sim ;p

1 (x�). This means that �x is an optimal solution of (simple-P p
T;rD

("2))
for "2 := ��ps;incr = �p;�s;incr and x� is not (De�nition 9.9). But then the solution �x and not
the solution x� is added to ~Xp

e� according to Line 7 of Algorithm 9.1, i.e., x� =2 ~Xp
e� . This

is a contradiction to x� 2 ~Xp
e� .

In practice, the requirements of Lemma 9.18 are not always satis�ed. On the one hand,
the ideal point and the nadir point are not known in advance in general and thus it may be
di�cult to specify the sample set S�p

s;incr
accordingly. On the other hand, the Pareto front

of (simple-P p
T;rD

) is not always connected. This is illustrated in Subsection 9.1.4, where
Algorithm 9.1 is demonstrated in a use case.
But �rst, another aspect of Algorithm 9.1 is considered. In Line 6 of Algorithm 9.1, the
scalarized problem (simple-P p

T;rD
("2)) must be solved and we need a corresponding solver.

This is brie�y discussed in the following subsection.

9.1.3. Solver for the Scalarized Problems

The problem (simple-P p
T;rD

("2)) is constrained, nonlinear and multimodal (and thus non-

convex) in general. Two exemplary objective functions f sim ;p
1 (sp; "2) are shown in Fig-

ure 9.1. Their global minimum is each marked by a black dot. Both shown objective
functions are determined with the same HE model, which is based on a piecewise linear
interpolation. The HE model's underlying measurement data is provided by Vaillant and
corresponds to [PHE, Item 6371]. In the left part of Figure 9.1, the scalarized objective
function for the case with tp = 6000 and "2 = �s;incr = 0:12 is shown. This function is
"nice" in the sense that it is convex (and unimodal) and a variety of solvers is suited to
�nd its minimum.
The right part of Figure 9.1 shows the scalarized objective function for the case with
tp = 2500 and "2 = �s;incr = 0:12. In contrast to the objective function shown in the left
part, this function has multiple local minima, i.e., it is multimodal. In such a situation, it
might happen that an optimization method �nds only a local minimum but not the global
minimum. Therefore, a global method to solve (simple-P p

T;rD
("2)) is required that does

not get stuck in a local minimum.
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Figure 9.1.: Two exemplary objective functions of the scalarized problem (simple-P p

T;rD
("2))

are shown. Both functions were determined with the same HE model based on a piecewise
linear interpolation of measurement data provided by Vaillant. The function in the right part
is multimodal and thus a global solver that does not get stuck in local minima is required.

Remark 9.19 The "roughness" of the function depicted in the right part of Figure 9.1

might be caused by the HE model, which is based on a piecewise linear interpolation. If a

smoother regression method, for instance a local weighted linear regression, is used, the

objective function might be smoother. Nevertheless, it can be expected that the function

is also multimodal in this case.

In the following, we propose a direct search method to solve the scalarized problems
(simple-P p

T;rD
("2)). Direct search methods are a common class of derivative-free methods

to solve constrained single objective optimization problems [CSV09, p. 242] [CEM12, p. 5].
They are iterative procedures, whose iterations are composed of a search step, a poll step
and a parameter update. In the search step, the objective function is evaluated at a �nite
set of sample points. The poll step is a subsequent local search at the sample point with
the best function value from the preceding search step. Depending on the results of the
search and/or the poll step, some parameters like the step size or the search directions
are updated at the end of each iteration [CEM12, p. 7]. The search step is optional and
usually introduced to improve e�ciency [CSV09, p. 117]. Finally, when a stopping criterion
is reached, the procedure is terminated. There exists a variety of strategies for the search
step, the poll step, the parameter updates and the stopping criterion. These strategies
as well as a corresponding framework are covered in detail in the book Introduction to

Derivative-Free Optimization [CSV09].
In order to reduce the risk that only a local minimum and not the global minimum is
approximated, we propose an initial search step with an equidistant spacing in the sample
set to solve (simple-P p

T;rD
("2)). This initial sample set of start fan speeds is denoted by

Ssp in the following.

Remark 9.20 From an empirical point of view, solutions with a small start fan speed

(sp � tp) or a large start fan speed (sp > 1:4tp) are usually infeasible due to some of
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the combustion limits according to De�nition 8.52. Therefore, minSsp = 1:05tp and

maxSsp = minf1:4tp; tp�1 � "g (maxSs1 = minf1:4t1; fsmaxg) are proposed, which is in

accordance with (C-S7) in De�nition 8.52.

The step size of the equidistant spacing depends on the desired accuracy and on the
allowed maximum computation time. In the considered use cases, �sp = 0:002tp was a
good compromise. For instance, if tp = 6000, then the step size �sp = 12 is suggested.
The initial search step is straightforward. Let Ssp have the cardinality n. For every
sp;i 2 Ssp , i 2 [n], we check whether (sp;i ; "2) is feasible, i.e., if (sp;i ; "2) 2 Xp;s

T;rD
. If

(sp;i ; "2) =2 Xp;s
T;rD

for all i 2 [n], then the problem is considered to be infeasible. Of all

feasible solutions, the start fan speed sp;i with the smallest function value f sim ;p
1 (sp;i ; "2)

is used as the incumbent approximation of the optimal solution of (simple-P p
T;rD

("2)). In
the subsequent poll step, a local search at the incumbent solution is performed.
In practice, it has been found that the incumbent solution after the initial search step ap-
proximates the optimal solution of (simple-P p

T;rD
("2)) su�ciently well and that subsequent

poll steps are not necessarily required. Therefore, it is proposed to just perform the initial
search step with an appropriate sample set Ssp to approximate the optimal solution of
(simple-P p

T;rD
("2)).

Remark 9.21 As a supplement or as an alternative to the sampling approach, a warm

start strategy could be used. For this, let S�p
s;incr

= f�p;1s;incr; : : : ; �
p;n
s;incrg be the sample set

of start point increments in increasing order, which is the set from which the "2-values

are taken for the scalarization according to Algorithm 9.1. Let us suppose that we have

approximated the optimal solution of (simple-P p
T;rD

("2)) for the �rst element in S�p
s;incr

,

i.e., for "2 = �p;1s;incr. This approximation of the optimal solution is denoted by sp;1;� for

the moment. Then, to solve (simple-P p
T;rD

("2)) for the subsequent "2 = �p;2s;incr, we can

perform a warm start with sp;1;�. I.e., instead of performing the search step with a start

fan speed sample set Ssp , we perform a local search around sp;1;�.

However, this warm start method has not been tested in practice and is left for future

research.

In the following subsection, Algorithm 9.1 together with the proposed sampling approach
to solve the scalarized problems is demonstrated in a use case.

9.1.4. Demonstration of Algorithm 9.1 in a Use Case

In this use case, we want to �nd optimal ADA parameters for the Vaillant HE with the
measurement data corresponding to [PHE, Item 6371]. For this, we consider an HE
model that is based on a piecewise linear interpolation. Let us suppose that the deci-
sion makers want to optimize two ADA pairs, i.e., we are in the case N = 2. Further-
more, we suppose that the decision makers speci�ed the set of feasible test fan speeds
by T = ft1 = 10000; t2 = 6000g. The drift resistance is speci�ed by rD = 140k
.
The problem's parameters are speci�ed by the common values �min = 1:05, �max = 1:6,
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9.1 Solving the Nominal ADA Optimization Problem

comax = 150 and ��min = 0:1. Our goal is to �nd the Pareto optimal solutions of
(nom-P p

T;rD
) for p = 1 and p = 2.

For this, we approximate a subset of the Pareto optimal solutions of (simple-P p
T;rD

) for

each p 2 [2] with Algorithm 9.1. These approximated sets are denoted by X̃p
e� , p 2 [2],

in the following. Then, (�p)�1(X̃p
e�) is an approximation of the set of Pareto optimal

solutions of (nom-P p
T;rD

), p 2 [2], according to Lemma 9.7.
All results presented in the course of this subsection are determined with corresponding
implementations in Matlab evaluated on an AMD Ryzen 5800x system.

We begin with the smaller test fan speed, i.e., we consider the case p = 2 �rst. In order
to apply Algorithm 9.1, we need a start point increment sample set S�2

s;incr
. In addition, we

need a start fan speed sample set Ss2 to solve the scalarized problems (simple-P p
T;rD

("2)),
p = 2.

Start point increment sample set: We specify the sample set S�2
s;incr

according to Re-
marks 9.14 and 9.15, i.e., we select S�2

s;incr
such that minS�2

s;incr
= 0 and maxS�2

s;incr
= 0:3.

Let us suppose that we are interested in a uniform exploration of the Pareto front. There-
fore, we select a uniform spacing. In this use case, we select ��2s;incr = 0:01. This is a
rather large spacing, but it enables a clear visualization of the set of sample points and
of the approximation of the Pareto front in Figure 9.2 below. The resulting sample set is
S�2

s;incr
:= f0; 0:01; 0:02; : : : ; 0:3g and contains 31 samples.

Start fan speed sample set: As suggested in Remark 9.20, we select Ss2 such that
minSs2 = 1:05t2 = 6300 and maxSs2 = 1:4t2 = 8400. Analogous to the selected spac-
ing in the start point increment sample set, we consider a rather coarse start fan speed
sample set. For illustration purposes, we select the spacing such that Ss2 is composed of
30 equidistant points, which results in a spacing of �s2 � 72:4.
Note that we use the same start fan speed sample set Ss2 to solve every instance of
(simple-P p

T;rD
("2)), p = 2, i.e., for all "2 = �2;is;incr 2 S�2

s;incr
. Using the same sample

set Ssp to approximate the optimal solution of each scalarized problem (simple-P p
T;rD

("2)),
"2 2 S�p

s;incr
, is not restricted to this use case. This is possible, because in practice a sample

set Ssp with the suggested minimum minSsp = 1:05tp and maximum maxSsp = 1:4tp cov-
ers the feasible set for all �ps;incr 2 S�p

s;incr
� [0; 0:3] su�ciently without being too restrictive.

In total, this approach corresponds to considering a sample set of solutions for (simple-P p
T;rD

),
p = 2, that is the Cartesian product G := Ss2 � S�2

s;incr
. The set G is a square grid in the

(s2; �2s;incr) plane and consists of jSs2 j � jS�2
s;incr
j = 30 � 31 = 930 sample points. In other

words, Algorithm 9.1 in combination with the sampling approach to solve the scalarized
problems corresponds to determine the nondominated points in the set G \X2;s

T;rD
.

This situation is depicted in Figure 9.2. The left part of Figure 9.2 shows the deci-
sion space of (simple-P p

T;rD
), p = 2. The region within the green curve corresponds to
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the feasible set X2;s
T;rD

. The purple curve segments correspond to all e�cient solutions in

X2;s
T;rD

. The sample points, i.e., the set G, are represented by the gray dots. The feasible

sample points, i.e., the set G \ X2;s
T;rD

, are represented by the green dots. The black dots

correspond to the output of Algorithm 9.1, which is denoted by ~X2
e� . Note that these

points are the nondominated solutions in G \ X2;s
T;rD

. The run time required to determine
~X2
e� was approximately 0:79 seconds.

The right part of Figure 9.2 shows the corresponding objective space in the same color
scheme. The green dots correspond to f sim ;2(G \ X2;s

T;rD
), the black dots correspond to

f sim ;2( ~X2
e�) and the purple curve segments correspond to the Pareto front of the prob-

lem (simple-P p
T;rD

), p = 2. The approximated nondominated points f sim ;2( ~X2
e�) are not

a subset of the Pareto front of (simple-P p
T;rD

), p = 2, in this case. The approximation
quality should improve when re�ning the grid, but beyond that we generally have no infor-
mation about the approximation quality of the output of Algorithm 9.1. However, most
of the points in f sim ;2( ~X2

e�) are close to the Pareto front in this case. In addition, the
set f sim ;2( ~X2

e�) provides a uniform representation of the Pareto front of (simple-P p
T;rD

),
p = 2, with respect to the second objective function.

Remark 9.22 The boundary of the feasible set and the Pareto front shown in the left and

in the right part of Figure 9.2, respectively, are only approximations. They were determined

with sample sets Ss2 and S�2
s;incr

that each contains 1000 equidistant elements, i.e., the

corresponding grid was composed of one million (s2; �2s;incr) samples. The required run

time was approximately 507:6 seconds.

Next, we approximate the Pareto optimal solutions of (simple-P p
T;rD

) for the case p = 1.
This is done analogously to the case p = 2. In particular, we select the same set of
start point increment samples, i.e., we select S�1

s;incr
:= S�2

s;incr
. Regarding the start fan

speed sample set, we select Ss1 such that minSs1 = 1:05t1 = 10500 and such that
maxSs1 = minf1:4t1; fsmaxg = fsmax = 12200. Analogously to Ss2 , the spacing is se-
lected such that we have 30 equidistant points in Ss1 , which corresponds to a spacing of
�s1 � 58:6.
This situation is depicted in Figure 9.3. It is analogous to Figure 9.2, i.e., it uses the

same color scheme and the same legend. The left part of Figure 9.3 shows the decision
space and the right part shows the objective space. The depicted boundary of the feasible
set as well as the depicted Pareto front are approximations that were again determined by
1000 by 1000 search grid, which required a run time of approximately 706:4 seconds.
As in the case p = 2, it is apparent that the approximated nondominated points are not a
subset of the Pareto front of (simple-P p

T;rD
), p = 1. However, they can be considered as

a good approximation of the Pareto front of (simple-P p
T;rD

), p = 1. The run time required

to determine ~X1
e� was approximately 0:6 seconds.

In contrast to the case p = 2, a uniform exploration of the Pareto front with respect to the
second objective is not given in this case. This can be seen in the right part of Figure 9.3.
The vertical distance between the second and the third black dot (counted from left to
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Figure 9.3.: In the left part the decision space and in the right part the objective space of
(simple-P p

T;rD
) for the case p = 1 are shown. The color scheme and the legend are identical

to those of Figure 9.2

right) is 3��1s;incr = 0:03. In contrast, all remaining black dots have a vertical distance of
1��1s;incr = 0:01 to their neighbors.

Since we follow an a posteriori method, the next step in the optimization and decision
making process would be the selection of the �nal solutions by the decision makers. I.e,
for each p 2 [2] the decision makers select a solution from ~Xp

e� based on the approximated
Pareto front of (simple-P p

T;rD
) (and thus also of (nom-P p

T;rD
) according to Corollary 9.8)

that best �ts their preferences. This concludes the use case and the demonstration of
Algorithm 9.1.
As a �nal remark, regarding the problem (simple-P p

T;rD
), the considered use case shows

that the e�cient solutions can lie in the interior and on the boundary of the feasible set,
that the Pareto front is not convex and that the Pareto front is not connected in general.

Some advantages and disadvantages of Algorithm 9.1 and of the sampling approach
to solve (simple-P p

T;rD
("2)) have already been mentioned in this subsection. These are

discussed in detail in the following.

9.1.5. Discussion of the Proposed Grid Search Method

The advantages and disadvantages of Algorithm 9.1 are discussed �rst. Thereafter, it is
assessed from a practical point of view.

Advantages The major advantage of Algorithm 9.1 is that the problem (nom-P p
T;rD

) is
not required to have a special structure. In particular, the Pareto front is not required to
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be convex and the problem may be multimodal. As a consequence, the proposed method
is robust in the sense that it works with a variety of HE types and HE models.
A further advantage is that by the selection of the sample points in S�p

s;incr
the exploration

of the Pareto front with respect to the second objective of (nom-P p
T;rD

) can be controlled
to a certain degree. For instance, in the use case presented in Section 9.1.4 a uniform
spacing in S�2

s;incr
was selected, which resulted in a uniform spacing of the approximated

Pareto front as shown in the right part of Figure 9.2. This provides a good overview of
the set of Pareto optimal solutions to the decision makers. However, this does not hold in
general as demonstrated in the use case with the case p = 1, see also Figure 9.3.
Furthermore, Algorithm 9.1 has a simple structure and is rather easy to implement. This is
also re�ected by the fact that Algorithm 9.1 requires only a few parameters to be speci�ed,
which are the speci�cations of the sample set(s). In addition, with the selected size of the
sample set(s) the computational e�ort of Algorithm 9.1 can be directly controlled.
Finally, Algorithm 9.1 is easy to parallelize, because the scalarized problems that must be
solved in each iteration of the for-loop in Algorithm 9.1 are independent of each other.

Disadvantages If the Pareto front of (nom-P p
T;rD

) is connected and the start point
increment sample set S�p

s;incr
is selected such that its bounds are between the second

components of the ideal and of the nadir point, then Algorithm 9.1 returns a subset of the
Pareto optimal solutions according to Corollary 9.8 (if the scalarized optimization problems
(simple-P p

T;rD
("2)) are solved exactly in Line 6 of Algorithm 9.1). But as demonstrated in

the use case in Section 9.1.4, the Pareto front of (nom-P p
T;rD

) is not connected in general.
Furthermore, in general the scalarized problem (simple-P p

T;rD
("2)) is multimodal and its

objective function and constraints are not di�erentiable and thus one usually has to fall
back on approximation methods to solve (simple-P p

T;rD
("2)).

The major disadvantage of Algorithm 9.1 is that its approximation quality is unknown in
general. The objective functions and the constraint functions depend on the structure of
the measurement data, which in turn depends on the considered HE type and the measuring
instruments used. Furthermore, they depend on the considered regression/interpolation
method of the HE model as well as on HE parameters like the control curve. This results
in an unmanageable number of cases that need to be considered in order to determine the
approximation quality.
Because the approximation quality is unclear, the optimal size and spacing of the sample
set(s) are unclear as well. In particular, it is not clear by how much the approximation quality
improves when the number of sample points is increased or the sample set's boundaries
are adjusted. In the worst case, the computational e�ort increases without increasing the
approximation quality.

Assessment from a practical point of view In the introduction to this Chapter 9, some
desired properties of a multiobjective optimization method are listed. The method should
provide reliable results, should give the decision makers a good overview of the Pareto
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optimal set, should not require too much time and should support the decision makers in
�nally selecting the preferred solution [Bra+08, p. 2]. In the use case in Section 9.1.4, the
outputs of Algorithm 9.1 provide a good approximation and representation of the Pareto
fronts even with a rather small sample grid. Furthermore, the calculations were not very
time consuming. For instance, an approximation of the Pareto optimal set with a 30 by
31 sample grid in the presented use case took approximately 0:6 to 0:8 seconds on an
AMD Ryzen 5800x system. A similar characteristic was observed in all other use cases
by Vaillant. Therefore, in the opinion of the author of this thesis, the above mentioned
desired properties of a multiobjective optimization method are ful�lled by Algorithm 9.1 in
combination with the sampling approach to solve (simple-P p

T;rD
("2)). But the approach's

blind spot in terms of approximation quality remains a disadvantage and must be kept in
mind.
Because the decision-makers are satis�ed with the optimization process based on Algo-
rithm 9.1, no further methods to solve (nom-P p

T;rD
) were investigated. However, if the

approximation quality is considered to be not su�cient, subsequent poll steps, i.e., a local
search, could be used to obtain better approximations, see also Section 9.1.3. Further-
more, a warm start in combination with a local search could improve the e�ciency as well
as the approximation quality as delineated in Remark 9.21. Finally, if one is interested in
a completely di�erent approach, evolutionary multiobjective optimization algorithms could
be a good alternative to solve (nom-P p

T;rD
).

This concludes the optimization of the ADA parameters in the nominal case. An ap-
proach based on evolutionary multiobjective optimization to solve the ADA optimization
problem with tolerances is presented and discussed in the following section.

9.2. Solving the ADA Optimization Problem with Tolerances

The ADA optimization problem with tolerances (tol-PT;rD) has a 2N-dimensional objective
space according to De�nition 8.84. Usually, up to seven ADA pairs are optimized, i.e.,
we usually have N = 7. In this case the objective space is 14-dimensional. Such a
high-dimensional objective space makes the decision making more di�cult, because it is
di�cult to visualize the trade-o�s between the individual objectives. Furthermore, higher-
dimensional optimization problems are usually harder to solve [Bra+08, p. 3].
Because the decision makers are mostly interested in minimizing the largest Lipschitz
constant and minimizing the largest start point increment, it is proposed to aggregate all
Lipschitz constants to a single objective function and to aggregate all start point increments
to a single objective function where the largest values are weighted over proportionally.
Then, the resulting problem is always biobjective, regardless of N.
This biobjective problem is detailed in the following subsection. A method how to solve
the biobjective problem is then proposed, which is demonstrated in a subsequent use case.
Finally, the results of this section are brie�y discussed.
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9.2.1. Aggregate Objectives to Reduce Dimension of Objective Space

The aggregated objective functions and the corresponding optimization model are de�ned
as follows.

De�nition 9.23 Let �L 2 (0; 1) and let ��s;incr 2 (0; 1). The aggregated Lipschitz con-
stant function is de�ned for all x 2 Xtol

T;rD
(Hnom;Utol) by

L
agg
T;rD

(x) := �LL
j
T;rD

(x) +
1� �L

N � 1

∑
p2[N]nfjg

L
p
T;rD

(x);

where j 2 [N] such that L
j
T;rD

(x) � L
p
T;rD

(x) for all p 2 [N].

The aggregated start point increment function is de�ned for all x 2 Xtol
T;rD

(Hnom;Utol) by

S
agg
T;rD

(x) := ��s;incrS
k
T;rD

(x) +
1� ��s;incr

N � 1

∑
p2[N]nfkg

S
p
T;rD

(x);

where k 2 [N] such that S
k
T;rD

(x) � S
p
T;rD

(x) for all p 2 [N].

The ADA optimization model with respect to tolerances with aggregated objective func-
tions is de�ned by

min
x2Xtol

T;rD
(Hnom;Utol)

f tol;agg(x) :=
(
L
agg
T;rD

(x);S
agg
T;rD

(x)
)
: (tol-agg-P )

Remark 9.24 Note that the indices j and k in De�nition 9.23 are not necessarily unique.

However, the aggregated functions L
agg
T;rD

and S
agg
T;rD

are also well-de�ned in such a case.

Remark 9.25 De�nition 9.23 is rather general and also allows small factors �L and ��s;incr .

In order to weight the largest Lipschitz constant over proportionally, one has to select

�L > 1
N , which is equivalent to �L > 1��L

N�1 , because (with 0 < �L < 1 and N � 2)

�L >
1

N
, N >

1

�L
, N � 1 >

1

�L
� 1 =

1� �L

�L
, �L >

1� �L

N � 1
:

The same is true for the start point increment.

In the use case with N = 6 presented in Section 9.2.4 below, the factors �L = 0:8 and

��s;incr = 0:8 are selected.

A solution that is Pareto optimal with respect to (tol-agg-P ) is also Pareto optimal with
respect to (tol-PT;rD).

Lemma 9.26 If x� is e�cient with respect to (tol-agg-P ), then x� is also e�cient with

respect to (tol-PT;rD).

Proof. Let x� be e�cient with respect to (tol-agg-P ) and let us suppose that x� is not
e�cient with respect to (tol-PT;rD). Then, there exists ~x 2 Xtol

T;rD
(Hnom;Utol) such that

f tol(~x) � f tol(x�), i.e.,

f toli (~x) � f toli (x�) 8 i 2 [2N] and 9 ` 2 [2N] : f tol` (~x) < f tol` (x�):

229



Chapter 9 Solving the ADA Optimization Problems

In particular, we have L
p
T;rD

(~x) � L
p
T;rD

(x�) and S
p
T;rD

(~x) � S
p
T;rD

(x�) for all p 2 [N].
Note that the indices j and k according to De�nition 9.23 might be di�erent for x = x�

and for x = ~x .
As an intermediate result we show that L

agg
T;rD

(~x) � L
agg
T;rD

(x�) and S
agg
T;rD

(~x) � S
agg
T;rD

(x�).

For this, let ~j 2 [N] such that L
p
T;rD

(~x) � L
~j
T;rD

(~x) for all p 2 [N] and let j� 2 [N] such

that L
p
T;rD

(x�) � L
j�

T;rD
(x�) for all p 2 [N]. Then,

L
j�

T;rD
(~x) � L

~j
T;rD

(~x) � L
~j
T;rD

(x�) � L
j�

T;rD
(x�)

holds. For the following, recall that �L > 0 and 1��L

N�1 > 0. If ~j 6= j�, then

L
agg
T;rD

(~x) = �LL
~j
T;rD

(~x) +
1� �L

N � 1
L
j�

T;rD
(~x) +

1� �L

N � 1

∑
p2[N]nf~j;j�g

L
p
T;rD

(~x)

� �LL
j�

T;rD
(x�) +

1� �L

N � 1
L
~j
T;rD

(x�) +
1� �L

N � 1

∑
p2[N]nf~j;j�g

L
p
T;rD

(x�)

= L
agg
T;rD

(x�):

If ~j = j�, then

L
agg
T;rD

(~x) = �LL
~j
T;rD

(~x) +
1� �L

N � 1

∑
p2[N]nf~jg

L
p
T;rD

(~x)

� �LL
~j
T;rD

(x�) +
1� �L

N � 1

∑
p2[N]nf~jg

L
p
T;rD

(x�) = L
agg
T;rD

(x�):

In particular, if there exists m 2 [N] such that L
m
T;rD

(~x) < L
m
T;rD

(x�), then L
agg
T;rD

(~x) <

L
agg
T;rD

(x�) (in both cases ~j = j� and ~j 6= j�).
The inequality S

agg
T;rD

(~x) � S
agg
T;rD

(x�) is shown analogously.
Next, we perform a case distinction with respect to ` (the index such that f tol` (~x) <

f tol` (x�)). If ` 2 [N], then

L
`
T;rD

(~x) < L
`
T;rD

(x�) ) L
agg
T;rD

(~x) < L
agg
T;rD

(x�):

Because S
agg
T;rD

(~x) � S
agg
T;rD

(x�), we have f tol;agg(~x) � f tol;agg(x�) in this case. But this is
a contradiction to x� being e�cient with respect to (tol-agg-P ).
If ` 2 fN + 1; : : : ; 2Ng, then

S
`�N
T;rD

(~x) < S
`�N
T;rD

(x�) ) S
agg
T;rD

(~x) < S
agg
T;rD

(x�):

Because L
agg
T;rD

(~x) � L
agg
T;rD

(x�), f tol;agg(~x) � f tol;agg(x�) also applies in this case. Again,
this is a contradiction to x� being e�cient with respect to (tol-agg-P ). Therefore, x�

must also be e�cient with respect to (tol-PT;rD).
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Remark 9.27 The converse is not true in general, i.e., x� e�cient with respect to (tol-PT;rD)
does not imply x� e�cient with respect to (tol-agg-P ). For this, we consider the following
brief counterexample with N = 2. Let us suppose that we have two solutions x� and ~x

that are e�cient with respect to (tol-PT;rD). Let us further suppose that

L
1
T;rD

(x�) = 0:6; L
2
T;rD

(x�) = 0:6 and L
1
T;rD

(~x) = 0:8; L
2
T;rD

(~x) = 0:1

as well as S
p
T;rD

(x�) = S
p
T;rD

(~x) =: �ps;incr for p 2 [2]. Then, we have

f tol(x�) = (0:6; 0:6; �1s;incr; �
2
s;incr) and f tol(~x) = (0:8; 0:1; �1s;incr; �

2
s;incr):

Note that f tol(x�) � f tol(~x) and that f tol(~x) � f tol(x�), which is consistent with x� and

~x being e�cient with respect to (tol-PT;rD).
However, regarding the aggregated objective functions with �L = 0:8, we have

L
agg
T;rD

(x�) = 0:8 � 0:6 + 0:2 � 0:6 = 0:6 and L
agg
T;rD

(~x) = 0:8 � 0:8 + 0:2 � 0:1 = 0:66

as well as S
agg
T;rD

(x�) = S
agg
T;rD

(~x), i.e., f tol;agg(x�) � f tol;agg(~x) and thus ~x cannot be

e�cient with respect to (tol-agg-P ).

According to Remark 9.27, by solving (tol-agg-P ) we do not �nd all Pareto optimal
solutions of (tol-PT;rD) in general. However, because the decision makers are particularly
interested in solutions where the largest Lipschitz constant as well as the largest start point
increment are small and in order to make decision making easier, it is proposed to solve
the aggregated problem (tol-agg-P ) instead of the problem (tol-PT;rD), which provides a
subset of the Pareto optimal solutions of (tol-PT;rD).
In the following subsection, a method based on evolutionary multiobjective optimization
algorithms is proposed to solve (tol-agg-P ).

9.2.2. Proposed Method to Solve (tol-agg-P )

To solve the problem (tol-agg-P ), we again focus on derivative-free methods, because

� non-convexity of the Pareto front of (tol-agg-P ) cannot be excluded,

� multimodality cannot be excluded,

� in general, gradients are not available.

This is analogous to the nominal problem (nom-P p
T;rD

), see also Section 9.1. To solve
(nom-P p

T;rD
), a grid search method is proposed. However, this method is not suited to

solve (tol-agg-P ) for the following reason:
In the nominal case, the decision space has the dimension three. In contrast, the decision
space of (tol-agg-P ) has the dimension 3N according to De�nitions 9.23 and 8.81. For
instance, in the common case N = 7, the decision space has the dimension 21 and it is
practically impossible to build a dense search grid. This phenomenon is also called the
curse of dimensionality [HTF09, p. 22].
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Because it is a "major challenge" allowing direct search methods "to tackle higher
dimensional problems" [CEM12, p. 8], direct search methods to solve (tol-agg-P ) are not
investigated in this work. Rather, we focus on evolutionary algorithms, which are "relatively
robust and �exible for solving nonlinear optimization problems" [CEM12, p. 14]. One of
the most popular evolutionary multiobjective optimization algorithms, in particular for two-
and three-dimensional problems, is the NSGA-II [Coe+20, p. 223]. Therefore, it is proposed
to use NSGA-II to solve (tol-agg-P ).
NSGA-II and its working principle are presented in Section 4.2.2. Because NSGA-II assumes
that the underlying problem is unconstrained, we also need a constraint handling technique
(CHT). A CHT that was designed for NSGA-II is the constrained dominance principle
(CDP), which is detailed in Section 4.2.3. Therefore, it is proposed to combine NSGA-II
with CDP for solving (tol-agg-P ).
In the following, some details and particularities of a corresponding implementation are
covered. Thereafter, solving (tol-agg-P ) with NSGA-II and CDP is demonstrated in a use
case.

9.2.3. Details and Particularities of the Implementation

NSGA-II is a popular algorithm and there already exists a variety of implementations. To
solve (tol-agg-P ), the Matlab implementation by Seshadri [Ses09] is used. The key points
of this implementation are as follows.

Box constraints: Because an evolutionary optimization algorithm needs a space from
which the considered solutions are drawn and generated, box constraints are "usually
trivially enforced" in an evolutionary algorithm [DD15, p. 3]. This also applies to the
implementation by Seshadri. Therefore, we have to specify suitable box constraints such
that the feasible set Xtol

T;rD
(Hnom;Utol) is covered without being too relaxed.

Remark 9.28 A box constraint with respect to the i-th variable xi is of the form xLi �

xi � xUi [DD15, p. 3].

According to De�nition 8.81 of the feasible set Xtol
T;rD

(Hnom;Utol), we have

(s1; i1s ; i
1
t ; : : : ; s

N ; iNs ; i
N
t ) 2 Xtol

T;rD
(Hnom;Utol) ) (sp; ips ; i

p
t ) 2 Xp

T;rD
(Hnom) 8 p 2 [N]:

Therefore, we can select the box constraints for each ADA pair individually. Further-
more, one may consider only the sets Xp

T;rD
(Hnom), p 2 [N], when selecting the box

constraints. The set Xp
T;rD

(Hnom) is the feasible set of the nominal ADA optimization
problem (nom-P p

T;rD
), p 2 [N], and thus it has already been analyzed in the preceding

Section 9.1.
Let p 2 [N]. As delineated in Section 9.1.1, there exists a two-dimensional set Xp;s

T;rD
and

a bijection �p such that �p
(
Xp
T;rD

)
= Xp;s

T;rD
. Recall from De�nition 9.1 that the two com-

ponents of the set Xp;s
T;rD

are the start fan speed sp and the start point increment �ps;incr.
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Remark 9.20 states that 1:05tp and minf1:4tp; tp�1� "g (minf1:4t1; fsmaxg if p = 1) are
suitable lower and upper bounds, respectively, for sp. Remark 9.14 states that 0 and 0:3

are suitable lower and upper bounds, respectively, for �ps;incr.
Therefore, we select the box constraints for the two-dimensional sets Xp;s

T;rD
, p 2 [N], as

follows. For each p 2 [N], we select sp;L = 1:05tp and sp;U = minf1:4tp; tp�1 � "g

(s1;U = minf1:4t1; fsmaxg) as well as �
p;L
s;incr = 0 and �p;Us;incr = 0:3.

The resulting approach is straightforward. The search space consists of all elements
(s1; �1s;incr; : : : ; s

N ; �Ns;incr) 2 R
2N such that sp;L � sp � sp;U and �p;Ls;incr � �ps;incr � �p;Us;incr

for all p 2 [N]. By applying (�p)�1 to (sp; �ps;incr) for all p 2 [N] and concatenating the im-
ages, we obtain the corresponding x = (s1; i1s ; i

1
t ; : : : ; s

N ; iNs ; i
N
t ) at which the constraints

and the objective functions of (tol-agg-P ) are evaluated.

Remark 9.29 According to De�nition 9.1, the function (�p)�1 is only de�ned for elements

(sp; �ps;incr) 2 Xp;s
T;rD

. Therefore, one has to pay attention that all transformations from

the box constrained search space to Xtol
T;rD

(Hnom;Utol) via (�p)�1 are well-de�ned.

The same is true for evaluating the objective functions, because the obtained x is not

necessarily an element of Xtol
T;rD

(Hnom;Utol) (otherwise we would not require a constraint

handling technique at all).

A major advantage of this approach is that the search space is 2N-dimensional. In
contrast, the original feasible set Xtol

T;rD
(Hnom;Utol) is 3N-dimensional.

Used genetic operators: As delineated in Section 4.2, as a genetic algorithm NSGA-II
requires a reproduction, a crossover and a mutation operator. The implementation by
Seshadri uses tournament selection, simulated binary crossover and polynomial mutation,
respectively, which is a common choice [Deb+02, p. 178] [Bra+08, p. 76]. These operators
are detailed in Section 4.2.1.

Meaningful objective function values of infeasible solutions: Regarding infeasible so-
lutions, we have to consider two aspects. First, we have to make sure that infeasible
solutions can be evaluated, i.e., that the constraints and the objective functions are well-
de�ned for all infeasible solutions within the box constraints, see also Remark 9.29. For
instance, this can be done by arti�cially extending the domains of the constraints and the
objective functions. However, this must be done in a meaningful way.
This is the second aspect we have to consider. It is required because the selected CHT is
CDP. With CDP it may happen that two infeasible solutions are compared with each other
for "less infeasibility". Therefore, it is required that infeasible solutions get an indicator
for their degree of infeasibility. This has to be taken into account when the domains of
constraints and of objective functions are arti�cially extended.

This concludes the details of the implementation used to solve (tol-agg-P ). Next, the
implementation is demonstrated in a use case.
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9.2.4. Use Case

We want to �nd optimal ADA parameters for a Vaillant HE. In contrast to the use case
presented in Section 9.1.4, we also consider tolerances with respect to the position of
the ioni electrode this time. As in Section 9.1.4, the nominal HE measurement data
corresponds to [PHE, Item 6371] and all HE models considered in this use case are based
on a piecewise linear interpolation. The HE's tolerance measurement data corresponds to
[PHE, Item 6168], [PHE, Item 6177], [PHE, Item 6200], [PHE, Item 6327] and [PHE,
Item 6344], i.e., the considered uncertainty set Utol consists of �ve tolerance HE models.
Let us suppose that the decision makers want to optimize six ADA pairs, i.e., we are in
the case N = 6. Furthermore, we suppose that the decision makers speci�ed the set of
feasible test fan speeds by T = ft1 = 10000; t2 = 8500; t3 = 7000; t4 = 5500; t5 =

4000; t6 = 2500g. The drift resistance is speci�ed by rD = 140k
. Our goal is to �nd
the Pareto optimal solutions of (tol-agg-P ). The problem's parameters are speci�ed by
the common values �min = 1:05, �max = 1:6, comax = 150, ��min = 0:1, �wp;tol = 0:1,
nmax = 50 and ithr = 3 �10�4. The set FSsample consists of 100 equidistant points between
the HE's minimum and maximum fan speed fsmin = 2200 and fsmax = 12000, respectively.
To solve this instance of (tol-agg-P ), we use an implementation of NSGA-II as proposed
and described in Sections 9.2.2 and 9.2.3.
The used implementation of NSGA-II also requires some parameters, which are selected
as follows:

� Population size: The population size indicates how many individuals are considered
at the beginning of each generation. In this use case, a population size of 200 is
selected.

� Number of generations: The number of generations indicates how many iterations
with the NSGA-II are executed. In this use case, we consider 300 generations.

� Mating pool size: The mating pool size indicates how often the reproduction op-
erator is executed. A common value is half of the population size. In this use case
this corresponds to a mating pool size of 100.

� Simulated binary crossover parameter �c : In this use case we use �c = 20, which
is a common value. For details of �c see Section 4.2.1.

� Mutation parameter �m: In this use case we use �m = 20, which is a common
value. For details of �m see Section 4.2.1.

We perform a single run of the NSGA-II implementation with these parameters. In each
generation, the genetic operators are applied and the resulting population is sorted for
nondominance. Figure 9.4 shows the corresponding set of nondominated points in the
objective space of (tol-agg-P ) after 20, 50, 100, 200, and 300 generations. It is apparent
that with increasing number of iterations the approximation quality of the Pareto front
improves. Note that the di�erence between the nondominated sets after 200 and after
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Figure 9.4.: The nondominated sets in the objective space of the aggregated problem
(tol-agg-P ) after 20, 50, 100, 200 and 300 generations with the NSGA-II are displayed.
The point with the smallest aggregated Lipschitz constant is highlighted by the green tri-
angle. The point with the smallest aggregated start point increment is highlighted by the
green square.

300 generations is rather small, in particular in regions with a small second objective func-
tion value. It can therefore be assumed that beyond 300 generations the approximation
quality improves only slightly, if at all. However, the true Pareto front and therefore the
true approximation quality remain unknown.
The required computation time for 20, 50, 100, 200 and 300 generations on a system with
an AMD Ryzen 5800x was 81:7 seconds, 297:2 seconds, 652:4 seconds, 1344:9 seconds
and 1991:3 seconds, respectively.
Recall that a point in the objective space of (tol-agg-P ) represents the aggregated ob-
jective functions L

agg
T;rD

and S
agg
T;rD

. Ultimately, however, we are interested in the Lipschitz
constant and in the start point increment of each ADA pair individually. We therefore
take a closer look at the two extreme solutions after 300 generations as examples. Let
xa 2 Xtol

T;rD
(Hnom;Utol) be the solution such that f tol;agg(xa) corresponds to the non-

dominated point with the smallest aggregated Lipschitz constant after 300 generations.
Analogously, let xb 2 Xtol

T;rD
(Hnom;Utol) be the solution such that f tol;agg(xb) corresponds

to the nondominated point with the smallest aggregated start point increment after 300
generations. Their images are marked in Figure 9.4 by the green triangle and by the green
square, respectively. The corresponding aggregated objective function values as well as
the corresponding ADA pairs' individual Lipschitz constant and start point increment are
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x L
agg
T;rD

(x) L
1
T;rD

(x) L
2
T;rD

(x) L
3
T;rD

(x) L
4
T;rD

(x) L
5
T;rD

(x) L
6
T;rD

(x)

xa 0:2897 0:2914 0:2914 0:2586 0:2830 0:2859 0:2889

xb 0:6269 0:3622 0:3732 0:6513 0:6469 0:5279 0:6156

S
agg
T;rD

(x) S
1
T;rD

(x) S
2
T;rD

(x) S
3
T;rD

(x) S
4
T;rD

(x) S
5
T;rD

(x) S
6
T;rD

(x)

xa 0:1425 0:0606 0:0815 0:1151 0:1384 0:1037 0:1511

xb 0:0638 0:0458 0:0636 0:0650 0:0625 0:0651 0:0505

Table 9.1.: This table compares the aggregated objective function values of two exemplary
solutions with the Lipschitz constant and the start point increment of each individual ADA
pair p, p 2 [6]. The considered solutions xa and xb correspond to the two nondominated
extreme points in Figure 9.4. The largest Lipschitz constant and the largest start point
increment of the two solutions are highlighted in bold.

shown in Table 9.1. The largest Lipschitz constant and the largest start point increment
of xa and xb are highlighted in bold.
The aggregated function values are smaller than but close to the largest individual func-
tion values, which is to be expected since we weighted the largest values with a factor
of �L = 0:8 and ��s;incr = 0:8. However, the individual function values can di�er from
the aggregated value signi�cantly. For instance, the aggregated Lipschitz constant of
xb is L

agg
T;rD

(xb) = 0:6269 while the corresponding Lipschitz constant of ADA pair one is

L
1
T;rD

(xb) = 0:3622.
This concludes the use case. The advantages and disadvantages of the approach with
aggregated function values and of the selected solution method based on NSGA-II are
discussed next.

9.2.5. Discussion of the Proposed Approach

We discuss the approach to solve the aggregated problem (tol-agg-P ) in order to obtain
Pareto optimal solutions of the original problem (tol-PT;rD) �rst. Using NSGA-II to solve
(tol-agg-P ) is then discussed.

The aggregated Problem (tol-agg-P ): Our goal is to solve the tolerance ADA opti-
mization problem (tol-PT;rD), which has 2N objectives, where N is the number of ADA
pairs to be optimized. In order to make the decision making easier, the aggregated problem
(tol-agg-P ) is introduced, which is always biobjective. It is true that the trade-o� between
two solutions of the aggregated problem (tol-agg-P ) can be presented clearly. But this
comes at a price.
The aggregated objective function values contain no information about the variance of
the individual objective function values. This is brie�y mentioned at the end of the pre-
ceding subsection, where the function values listed in Table 9.1 represent a corresponding
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Figure 9.5.: The nondominated sets after 300 generations with NSGA-II for two di�erent
random starting populations are displayed. The randomness in the evolutionary algorithm
causes the outputs to di�er signi�cantly.

example. Furthermore, because a nondominated point in the objective space represents
N ADA pairs at once, it is unclear how each ADA pair is a�ected if a di�erent solution
is selected. For instance, two neighbored points in the objective space might have signi�-
cantly di�erent ADA parameters, i.e., the ADA pairs and their Lipschitz constants as well
as their start point increments might di�er signi�cantly. Therefore, the decision maker has
less possibilities to �ne-tune the solution in the selection process.
If the decision makers are not satis�ed with the decision making process using the aggre-
gated problem (tol-agg-P ), it may make sense to revise the aggregated problem (tol-agg-P )
or to even solve the original problem (tol-PT;rD).

NSGA-II: As an evolutionary algorithm, NSGA-II has some randomness by intention.
However, from a user's perspective this might be disturbing, because it is (almost) im-
possible to reproduce solutions that were once obtained in a di�erent run with NSGA-II.
In particular, two di�erent runs with NSGA-II might produce two signi�cantly di�erent
approximations of the Pareto front. This is illustrated in Figure 9.5. The yellow dots cor-
respond to the nondominated set after a single run of NSGA-II with 300 generations. The
green dots also correspond to the nondominated set after a single run with 300 generations
but with a di�erent (randomly generated) starting population. Both runs were performed
with the same parameters as selected in the use case presented in Section 9.2.4. In the
run corresponding to the yellow solutions smaller aggregated Lipschitz constants were ex-
plored. In contrast, in the run corresponding to the green solutions smaller aggregated
start point increments were explored.
However, having signi�cantly di�erent nondominated sets o�ers potential for obtaining a
better approximation of the true Pareto front. For this, the nondominated sets of several
runs with NSGA-II are combined into a single set. This combined set is �ltered for Pareto
nondominance to obtain the corresponding set of nondominated points, which is usually
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larger than each of the original nondominated sets. In Figure 9.5, this nondominated set
corresponds to all nondominated points in the union of the yellow and the green points
(not explicitly illustrated). Therefore, instead of increasing the number of generations or
the population size in order to obtain a better approximation of the Pareto front, it might
be more e�ective to start several runs with di�erent starting populations. However, for
the special case that (single-objective) additively separable functions are considered, an
analytical study suggests that "for di�cult problems . . . the best alternative is to use a
single run with the largest population possible" [CG03, p. 811].
Selecting a suitable population size and number of generations as well as selecting suitable
other parameters for NSGA-II (pool size, crossover factor and mutation factor) might be
challenging, because the true Pareto front is unknown in general. I.e., it is hard to assess
whether the selected parameters are appropriate. However, the results obtained with the
parameters selected in the use case in Section 9.2.4 are satisfactory for the practitioners.
The same is true for the selected constraint handling technique. The constrained dom-
inance principle performed well in the use case. After approximately 100 generations all
found solutions are feasible and stay feasible in the subsequent generations (because NSGA-
II is an elitist algorithm). However, it cannot be excluded that other constraint handling
techniques perform even better, since we do not know how close we are to the true Pareto
front. In particular, it is not guaranteed that the selected methods �nd a feasible solution
at all. This may be further analyzed in future research.
Another aspect regarding the constraint handling is that the HE model must provide mean-
ingful outputs for certain infeasible solutions, as stated at the end of Section 9.2.3. In the
use case, this was achieved by arti�cially extending the domains of the HE model functions
such that their monotonicity properties are preserved.
Finally, depending on the population size and on the number of generations, the required
computation time is rather large. In the use case, the NSGA-II required 1991:3 seconds
for 300 generations with a population size of 200. Because the optimization is run only
once during the design process, the required computation time is acceptable.
To summarize this discussion, the selected combination of NSGA-II and constrained domi-
nance principle is suited to solve the aggregated tolerance problem (tol-agg-P ). However,
its approximation quality remains hard to assess. Furthermore, the randomness of the
evolutionary algorithm on the one hand may be disturbing to the decision makers. On
the other hand, by combining the results of several runs it can be used to improve the
approximation quality in some cases.
For future research, it might be of interest to investigate how methods other than NSGA-II
perform when solving (tol-agg-P ). An interesting alternative could be the so-called Multi-
Objective Evolutionary Algorithm based on Decomposition [Coe+20, p. 224].

By proposing, demonstrating and discussing methods for solving the ADA optimization
problems (nom-P p

T;rD
) and (tol-PT;rD), the remaining research question from the introduc-

tory Chapter 1 was addressed in this chapter. The following chapter concludes this thesis
by summarizing the most important results.
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10. Conclusion

This chapter concludes the thesis by summarizing the main �ndings in relation to the re-
search aims and research questions. The contributions of this work as well as its limitations
are then reviewed and further research is suggested.

This thesis analyzes the ADA procedure from a mathematical point of view and assists
in �nding optimized ADA parameters by computer simulation. The analysis shows that the
convergence properties of the ADA Algorithm 5.2 depend strongly on the drift resistance
ADA iteration functions Ap

rD , p 2 [N], from De�nition 6.21. Because Ap
rD depends on

the ADA parameters (sp; tp; ipt ; i
p
s ), p 2 [N], the selection of suitable ADA parameters is

essential for the ADA procedure to function properly.

If the ADA parameters are selected such that Ap
rD is a contractive selfmap and such

that ��1sp (i
p
s ) = ��1tp (i

p
t ) holds for all p 2 [N], then the ADA Algorithm 5.2 converges to

the sought vector of drifted test ioni currents, i.e., the drift resistance is perfectly approx-
imated by all ADA pairs. The rate of convergence depends on the Lipschitz constants of
the functions Ap

rD , p 2 [N]. Small Lipschitz constants of the iteration functions guarantee
a high rate of convergence. Therefore, one goal of the ADA optimization is to �nd ADA
parameters such that the iteration functions' Lipschitz constants are small.
However, as delineated in Section 8.4, this goal usually con�icts with the requirement that
the duration of a single ADA iteration should be short. An indicator for the duration re-
quired for an ADA iteration is the so-called start point increment de�ned in Section 8.4.2.
A small start point increment corresponds to a short duration of an ADA iteration. As a
consequence, the proposed optimization models are multiobjective, where the objectives
are to minimize the iteration functions' Lipschitz constants as well as the corresponding
start point increments simultaneously.
A further �nding is that the condition ��1sp (i

p
s ) = ��1tp (i

p
t ) for all p 2 [N] is usually not

satis�ed if tolerances with respect to the position of the ioni electrode are present. Then,
the limit of the ADA Algorithm 5.2 does not correspond to the sought drifted test ioni
currents (if the limit exits at all). In this case, it must be ensured that the algorithm's
limit does not result in combustion states that exceed permissible limits. This was taken
into account when developing the optimization models by considering the two cases "tol-
erances are not present" and "tolerances are present" separately. The resulting models
are (nom-P p

T;rD
) and (tol-PT;rD), respectively. A particularity of (nom-P p

T;rD
) is that the

ADA pairs are considered individually. In contrast, in the case with tolerances this is not
possible and thus the problem (tol-PT;rD) considers all ADA pairs simultaneously.
Finally, this thesis proposes to solve (nom-P p

T;rD
) with a grid search combined with a vari-
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ant of the "-constraint scalarization and to solve (tol-PT;rD) with NSGA-II. Regarding the
constraint handling, it is proposed to combine NSGA-II with the constrained dominance
principle. Both methods are demonstrated in a use case.

This thesis provides a deeper insight into the properties of the ADA procedure. In the
literature, i.e., in the technical documentation of IoniDetect, the ADA procedure is only
considered in the special case with a single ADA pair and without tolerances. In this
thesis, also the cases with a plurality of ADA pairs as well as with tolerances are ana-
lyzed, which �lls this gap. Furthermore, understanding the multiobjective character of the
ADA parameterization might assist the decision makers to select ADA parameters that �t
their preferences best. Finally, the use cases provide examples of applying the "-constraint
scalarization and NSGA-II in practice.
The practical contribution of this work is that the developed models and proposed methods
support the engineers at Vaillant in the ADA parameterization. In particular, the ADA pa-
rameters can be selected by computer simulation, which reduces required lab capacities and
development time. Moreover, optimized ADA parameters yield better convergence charac-
teristics and are more robust with respect to tolerances of the position of the ioni electrode.

Although the decision makers are satis�ed with the ADA parameters optimized according
to the results of this work and the methods presented, there is still a discrepancy between
simulation results and measured values when the optimized ADA parameters are veri�ed
in the lab. The discrepancy might result from limitations of the HE model de�ned in Sec-
tion 2.4. The HE model does not take dynamic behavior into account. Furthermore, the
HE model assumes continuous gas valve positions, ioni currents and fan speeds. Assuming
a continuous gas valve position is particularly disputable, because the outputs of an HE
system corresponding to two neighboring discrete gas valve positions (with the same fan
speed) can di�er signi�cantly. This might be problematic, because the gas valve position
plays a central role in the ADA iteration function and in the ADA procedure. Although this
is a potential shortcoming, a continuous HE model facilitates the convergence analysis of
the ADA procedure, because the considered iteration functions have continuous domains
and images in this case.
That the HE model disregards dynamic HE behavior is a consequence of the measurement
data provided by Vaillant. However, practical experience indicates that dynamics might
in�uence the results of the ADA procedure. Furthermore, the in�uence of environmental
and atmospheric conditions such as the air pressure and humidity or the gas pressure and
temperature are not considered in the HE model.
A further limitation related to the modeling aspect is that the drift resistance is considered
to be constant. It cannot be excluded in practice that the drift resistance is a function of
the fan speed and/or the equivalence AFR.
Finally, regarding the proposed optimization models and methods, there are two major
limitations. First, the proposed optimization methods are heuristics and not exact meth-
ods, i.e., we have no information about the "degree of optimality" of a found solution.
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Secondly, the proposed optimization models are relaxations. But at least in the simulation,
a relaxed solution has barely better objective function values than its rounded to nearest
integer counterpart.

Further modeling work will have to be conducted in order to understand and reduce the
discrepancy between simulation results and measured values in the lab. This could include
considering discrete gas valve positions, dynamics of the HE systems and in�uence of en-
vironmental conditions. In addition, further research should be undertaken to analyze the
in�uence of a discrete gas valve position and a variable drift resistance on the convergence
characteristics of the ADA procedure. Furthermore, it might be of interest to investigate
the precise mechanism by which tolerances with respect to the position of the ioni electrode
in�uence the resulting ioni current. If this is better understood, it might be possible to
simulate the in�uence of tolerances which helps to further reduce required lab capacities.
A further study could assess whether discrete optimization models and methods obtain
(signi�cantly) better ADA parameters than the relaxed continuous models and methods
proposed in this thesis. Finally, further research might explore how other deposits than the
oxide layer on the ioni electrode in�uence the ioni current. For example, at the time of
writing, Vaillant engineers are investigating the in�uence of silicates deposited on the ioni
electrode. The silicates come from detergents used in washing machines.

In summary, despite its limitations, this work signi�cantly contributes to the understand-
ing of the ADA procedure and provides practical support for the ADA parameterization.
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A. Examples with Respect to the ADA

Iteration Functions

Example A.1 This example shows that there exists an ADA iteration function Ap
i;rD

that is

not contractive but that still has a unique �xed point i� and the Picard iteration associated

to Ap
i;rD

converges to i� for every starting point i 2 ÎprD . The example is based on arti�cial

data and uses only the properties of the HE model according to De�nition 2.18.

The idea behind this example is as follows. We construct a drift resistance iteration func-

tion Ap
rD according to De�nition 6.21 such that Ap

rD is a contractive selfmap but its ioni

current based counterpart Ap
i;rD

is not contractive. Then, Ap
rD has a unique �xed point r�

and the Picard iteration associated to Ap
rD converges to r� for all starting points r 2 R̂p

rD

(Lemma 6.35). According to Theorems 6.31 and 6.32, the Picard iteration associated to

Ap
i;rD

converges to i� := ��1(r�) for all starting points i 2 ÎprD and i� is the unique �xed

point of Ap
i;rD

.

Aiming at a better readability, the superscript p is omitted throughout this example. Fur-

thermore, we consider rD = 0. First, we construct linear start and test resistance functions

�s(g) := msg + ds and �t = mtg + dt such that ArD(r) = ��rt � �t;rD � �
�1
s;rD
� �+rs (r) is

contractive. Note that rD = 0 implies that �s;rD = �s and �t;rD = �t . We select

ms = �0:105; ds = 3 and mt = �0:1; dt = 1:

With these selections, �s and �t are both strictly decreasing, which is in accordance with

Lemma 6.17. As linear functions, �s and �t are de�ned on R. The domains of �s and �t
are implicitly speci�ed in the course of this example, when the set R̂rD

is speci�ed below.

To obtain ArD , we are interested in the inverse of �s and consider

�s(g) = msg + dt , ��1s (r) =
1

ms
(r � ds):

Therefore, the drift resistance iteration function is

ArD(r) = ��rt � �t;rD � �
�1
s;rD
� �+rs (r) = ��rt � �t � �

�1
s � �

+
rs (r)

= ��rt � �t;rD
( 1

ms
(r � ds + rs)

)
=

mt

ms
(r � ds + rs) + dt � rt

= m(r � ds + rs) + dt � rt ; with m :=
mt

ms
:

Because m = mt

ms
= �0:1

�0:105 = 100
105 < 1, the drift resistance function ArD(r) is contractive.

In particular, it is Lipschitz with the Lipschitz constant L := m < 1. Note that ArD(r) is
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strictly increasing, which is in accordance with Lemma 6.34. The �xed point of ArD(r) is

determined by

ArD(r
�) = r� , m(r� � ds + rs) + dt � rt = r� , m(rs � ds) + dt � rt = (1�m)r�

, r� =
m(rs � ds) + dt � rt

1�m
:

In this example, we specify the parameters rs and rt by

rs := �s(gs) with gs = 2:6 and rt := �t(gt) with gt = 2:4 ) rs = 2:727 and rt = 0:76;

which results in the �xed point r� = �0:42.

Although this particular iteration function ArD is de�ned on R, we must make sure that

its domain R̂rD
satis�es R̂rD

� (�rt ;1) to be consistent with the assumptions made in

this thesis (Lemma 6.4). Let us suppose that the domains Gs and Gt of the functions

�s and �t , respectively, are selected such that R̂rD
= [�rt + 0:1;�rt + 5]. In particular,

R̂rD
� (�rt ;1) is satis�ed in this case. Furthermore, we have r� 2 R̂rD

. In total, ArD is

a contractive function on R̂rD
with the �xed point r� 2 R̂rD

and thus the Picard iteration

associated to ArD starting at r converges to r� for all r 2 R̂rD
(Lemma 6.35).

Next, we consider the corresponding ioni current iteration function Ai ;rD . Recall from

De�nition 5.9 that �(i) = U
i � rt and thus ��1(r) = U

r+rt
. By applying Lemma 6.25, we

obtain

Ai ;rD(i) = ��1 � ArD � �(i) = ��1 � ArD(
U

i
� rt) = ��1

(
m(

U

i
� rt � ds + rs) + dt � rt

)
=

U

m(Ui � rt � ds + rs) + dt � rt + rt
=

U

m(Ui � rt � ds + rs) + dt
8 i 2 ÎrD :

(A.1)

Let us suppose that U = 1 in this example. By plugging the values for U, m, rs , rt , ds and

dt into (A.1), we have

Ai ;rD(i) =
1

100
105(

1
i � 0:76� 3 + 2:727) + 1

=
105

100(1i � 1:033) + 105
=

105
100
i + 1:7

8 i 2 ÎrD :

Recall further, that ÎrD = ��1(R̂rD
) (De�nition 6.3), i.e., for all i 2 ÎrD there exists (a

unique) r 2 R̂rD
such that i = U

r+rt
.

With this, we can �nally select to elements to show that the Lipschitz constant L of

Ai ;rD is greater than one. Let us consider r1 := 5 � rt and r2 := 4 � rt . Because

R̂rD
= [�rt + 0:1;�rt + 5], we have r1 2 R̂rD

and r2 2 R̂rD
and thus i1 := ��1(r1) =

U
r1+rt

= 1
5�rt+rt

= 1
5 2 ÎrD and analogously i2 := ��1(r2) =

1
4 2 ÎrD . We have

ji1 � i2j =
1

20
as well as jAi ;rD(i1)� Ai ;rD(i2)j =

∣∣∣ 105

501:7
�

105

401:7

∣∣∣ > 0:052

and thus

L �
jAi ;rD(i1)� Ai ;rD(i2)j

ji1 � i2j
> 0:052 � 20 = 1:04;
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i.e., the Lipschitz constant of Ai ;rD is greater than one and Ai ;rD cannot be contractive. In

particular, this example demonstrates that ArD being contractive does not imply that Ai ;rD

is contractive.

Example A.2 This example shows that Ap
i;rD

being contractive does not imply that the

corresponding drift resistance based ADA iteration function Ap
rD is contractive. Aiming at

a better readability, the superscript p is omitted throughout this example. The approach

in this example is very similar to that in the preceding Example A.1. We again consider the

case rD = 0 and construct linear resistance functions �s and �t . But this time, these are

constructed such that ArD is not contractive but Ap
i;rD

is. Furthermore, the construction

is more complicated, because this time �t is composed of two piecewise linear functions.

We specify the required gvp sets by Gs = Gt = [�4; 2], which is in accordance with

De�nition 2.18. With this, we de�ne for all g 2 Gs = Gt

�s(g) := msg + ds and �t(g) :=

{
mt;`g + dt if g � 0 =: gx ;

mt;rg + dt if g > 0

with

ms = �0:1; ds = 3 as well as mt;` = �0:05; mt;r = �0:103 and dt = 2:

Furthermore, we select

rs = �s(gA) and rt = �t(gA) with gA = �1 ) rs = 3:1 and rt = 2:05:

We are interested in the drift resistance ADA iteration function ArD(r) = ��rt ��t;rD ��
�1
s;rD
�

�+rs (r) = ��rt ��t ��
�1
s ��

+
rs (r). We consider its domain �rst. Because R̂rD

= �s(Gs\Gt)�rs
(De�nitions 5.19 and 6.14), we have R̂rD

= [�0:3; 0:3]. Because �t is a piecewise linear

function with two segments and the changepoint gx , the iteration function ArD consists of

two segments as well. For this, we de�ne rx := �s(gx)� rs = �s(0)� rs = ds � rs = �0:1.

Note that rx 2 R̂rD
and by construction ��1s (rx+rs) = ��1s

(
�s(0)�rs+rs

)
= ��1s

(
�s(0)

)
=

0 = gx . Therefore, rx is the changepoint of the two segments of ArD . Because ��1s is

strictly decreasing (Lemma 6.17), we have for all r 2 R̂rD

r � rx , r + rs � rx + rs , ��1s (r + rs) � ��1s (rx + rs) = 0;

i.e., if r � rx , we have to consider the "right segment" of �t and vice versa. Thus,

analogously to Example A.1, the drift resistance ADA iteration function is

ArD(r) =

{
mt;r

ms
(r � ds + rs) + dt � rt if r � rx ;

mt;`

ms
(r � ds + rs) + dt � rt if r > rx

for all r 2 R̂rD
. Because mt;r

ms
= �0:103

�0:1 = 103
100 > 1, the Lipschitz constant of ArD is greater

than one and thus ArD is not contractive.

Next, we consider the corresponding ioni current based ADA iteration function Ai ;rD . Our
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goal is to show that Ai ;rD is contractive. We begin with its domain, which is ÎrD =

��1(R̂rD
) = U

R̂rD
+rt

= [imin := 1
2:35 ; imax := 1

1:75 ]. Beacause ArD is composed of two

segments and Ai ;rD(i) = ��1�ArD ��(i) (Lemma 6.25), Ai ;rD is composed of two segments

as well. The changeover point is ix := ��1(rx) =
U

rx+rt
= 1

1:95 2 ÎrD . Note that for all

i 2 ÎrD

i � ix , �(i) =
U

i
� rt �

U

ix
� rt = �(ix) = rx ;

i.e., if i � ix , we have to consider the "right segment" of ArD and vise versa. Thus,

analogously to Example A.1, we have

Ai ;rD(i) =


U

m`(
U
i
�rt�ds+rs)+dt

if i � ix ;

U
mr (

U
i
�rt�ds+rs)+dt

if i > ix

with m` :=
mt;`

ms
and mr :=

mt;r

ms
for all i 2 ÎrD . By considering c` := m`(�rt � ds + rs) + dt

and cr := mr (�rt � ds + rs) + dt , we can bring Ai ;rD into a more concise form, which is

Ai ;rD(i) =


U

m`
U
i
+c`

= U
(
m`

U
i + c`

)�1
if i � ix ;

U
mr

U
i
cr
= U

(
mr

U
i + cr

)�1
if i > ix

for i 2 ÎrD . Since we are interested in the Lipschitz constant of Ai ;rD , we consider the

derivatives of the two segments. We apply the chain rule to the left segment of Ai ;rD to

obtain its derivative, which is

d

di
Ai ;rD(i) = U(�1)

(
m`

U

i
+ c`

)�2
m`U(�1)

1

i2
= m`

U2

i2
1(

m`
U
i + c`

)2
=

m`(
m` +

c`
U i

)2 8 i 2 ÎrD \ (�1; ix):

Analogously, we have

d

di
Ai ;rD(i) =

mr(
mr +

cr
U i

)2 8 i 2 ÎrD \ (ix ;1):

We determine the maximum of each derivative, which corresponds to the Lipschitz constant

of the corresponding segment of Ai ;rD . We consider the left part �rst, i.e., we consider

the case that i � ix . For this, we require the value of c`, which is

c` = m`(�rt � ds + rs) + dt =
�0:05

�0:1
(�2:05� 3 + 3:1) + 2 =

1

2
(�1:95) + 2 = 1:025:

Because c` > 0, we have for all i 2 ÎrD = [imin; imax]

0 < imin � i ) 0 < m` +
c`
U
imin � m` +

c`
U
i ) 0 <

(
m` +

c`
U
imin

)2
�

(
m` +

c`
U
i
)2
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)
m`(

m` +
c`
U i

)2 � m`(
m` +

c`
U imin

)2 =
1

2

1(
1
2 + 1:025 1

2:35

)2 =
2209

3872
=: L` < 1:

In other words, d
diAi ;rD(i) � L` < 1 for all i 2 [imin; ix).

We proceed analogously with the right side and consider

cr = mr (�rt � ds + rs) + dt =
103

100
(�2:05� 3 + 3:1) + 2 =

103

100
(�1:95) + 2 = �0:0085:

In particular, we have cr < 0. Furthermore, we have

m` +
c`
U
imax =

103

100
+
�0:0085

1:75
=

897

875
> 0:

and thus for all i 2 ÎrD = [imin; imax]

i � imax ) cr i � cr imax ) mr +
cr

U
i � mr +

cr

U
imax > 0

)
(
mr +

cr

U
i
)2
�

(
mr +

cr

U
imax

)2
> 0

)
mr(

mr +
cr
U i

)2 � mr(
mr +

cr
U ix

)2 =
103

100

(875
897

)2
=

3154375

3218436
=: Lr < 1:

In other words, d
diAi ;rD(i) � Lr < 1 for all i 2 (ix ; imax]. Because Ai ;rD is continuous in ix ,

the Lipschitz constant of Ai ;rD is L = maxfL`; Lrg = Lr < 1 and thus Ai ;rD is contractive.

In total Ai ;rD is contractive while its counterpart Ar;rD is not.

To conclude this example, we consider the �xed points of the iteration functions. First,

we show that the �xed point of the drift resistance iteration function ArD is r� = 0. Recall

that rD = 0, gA = 0 and rs = �s(gA) as well as rt = �t(gA). Therefore, we have

ArD(0) = ��rt � �t � �
�1
s � �

+
rs (0) = ��rt � �t � �

�1
s � �s(gA) = ��rt � �t(gA) = rt � rt = 0:

According to Theorem 6.31, i� := ��1(r�) is the �xed point of Ai ;rD . Therefore, the Picard

iteration associated to Ai ;rD starting at i converges to i� for all i 2 ÎrD (Lemma 6.35).

Then, the Picard iteration associated to ArD starting at r converges to r� for all r 2 R̂rD

(Theorem 6.32). This is noteworthy, because Ar;rD is not contractive.
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Notation Cheat Sheet Dissertation Tobias Suszka

Constants

U 2 R>0 := fx 2 R : x > 0g: DC voltage (is �xed and constant)
rD 2 R�0 := fx 2 R : x � 0g: drift resistance (Assumption 3.10)

HE model (without drift and with drift)

Def. 2.18: H =
(
FS; (Gfs)fs2FS; (�fs)fs2FS; (�fs)fs2FS; (�fs)fs2FS

)
FS = [fsmin; fsmax]: set of feasible fan speeds
Gfs: set of feasible gas valve positions wrt. fs 2 FS; is closed and bounded interval
�fs : Gfs ! Ifs � R>0: ioni current function wrt. fs; is strictly increasing homeomorphism
�fs : Gfs ! Lfs � R>0: equivalence AFR function wrt. fs; is strictly decreasing homeomorphism
�fs : Gfs ! R>0: CO emission function wrt. fs; is convex and continuous
Ifs := �fs(Gfs), Lfs := �fs(Gfs); both are closed and bounded intervals (Def. 2.22)
�fs;rD := U�fs

rD�fs+U
: drifted ioni current function wrt. fs; is strictly increasing homeo. (Def. 3.12)

Ifs;rD := �fs;rD(Gfs) � R>0: set of drifted ioni currents wrt. fs (Notation 3.17)

ADA Parameters / ADA pairs

[N] := f1; : : : ; Ng for �xed N 2 N

sp; tp 2 FS: start and test fan speed of the p-th ADA pair (Notation 5.1)
ips 2 Isp and i

p
t 2 Itp : start and test ioni current, respectively, of pair p (Notation 5.1)

(sp; tp; ips ; i
p
t ): ADA parameters of the p-th ADA pair, p 2 [N] (Def. 5.2)

rps := U

i
p
s
, rpt = U

i
p
t

: start and test resistance, respectively, of the p-th ADA pair (Def. 5.7)

ips;rD := i
p
s U

i
p
s rD+U

, ipt;rD :=
i
p
t U

i
p
t rD+U

: drifted start and test ioni current, respectively (Def. 3.27)

ît;rD = (i1; : : : ; iN) � R
N
>0: vector of drifted test ioni current approximations (Alg. 5.1)

�
ît;rD

: FS! R: drift resistance approximation function given the vector ît;rD , maps a fan speed to
the corresponding drift resistance approximation (Def. 3.38)
wp: weight with 0 < wp < 1, s.t. sp = wptp + (1� wp)tp�1 (Def. 5.12 and Lemma 5.13)

Formalism: sets and functions

R̂p
rD
:= U

�sp ;rD
(Gsp\Gtp )

� rps : set of feasible drift resistance approximations of pair p (Def. 5.19)

�p : R>0 ! (�rpt ;1), �p(i) := U
i
� U

i
p
t

: transforms approximation of ipt;rD to corresponding approx-
imation of rD at the test fan speed tp; is decreasing homeomorphism (Def. 5.9 and L. 5.11)
ÎprD := (�p)�1(R̂p

rD
): set of feasible drifted test ioni current approximations of pair p (Def. 6.3)


p : R̂p ! �sp ;rD
(
Gsp \ Gtp

)
, 
p(r) := ips

U

i
p
s �r+U

: maps approximation of rD to the corresponding
approximation of ips;rD ; is strictly decreasing (Def. 5.22)
!p(x; y) = wpx + (1� wp)y : weighted sum of x and y with weight wp (Def. 5.17)

ADA procedure with a single ADA pair: ioni current based
A
p

i;rD
: ÎprD ! R; A

p

i;rD
:= �tp ;rD � �

�1
sp ;rD

� 
p � �p: ioni current based ADA iteration function of the
p-th ADA pair (Def. 6.5)



ADA procedure with a single ADA pair: resistance based

Rfs :=
U
Ifs
: set of resistances wrt. fs, fs 2 FS (Def. 6.14)

Rfs;rD := U
Ifs;rD

: set of drifted resistances at the fan speed fs (Def. 6.14)

�+
c : R! R, �+

c (x) := x + c : auxiliary function that adds the constant c (Def. 6.18)
�fs : Gfs ! Rfs, �fs :=

U
�fs
: resistance function wrt. fs (Def. 6.14)

�fs;rD : Gfs ! Rfs;rD , �fs;rD := U
�fs;rD

= �+
rD
��fs: drifted resistance fct. wrt. fs (Def. 6.14 and L. 6.20)

Ap
rD
: R̂p

rD
! R, Ap

rD
:= ��

r
p
t

� �tp ;rD � �
�1
sp ;rD

� �+
r
p
s
: drift resistance iteration function of the p-th ADA

pair (Def. 6.21)

ADA procedure with a plurality of pairs (following de�nitions are only valid for p � 2)
!p
v (r) := wpr + (1� wp)v : "one-dimensional" weighted sum function (Def. 7.1)

V p
rD
: set of feasible upper neighbor drift resistance approximations of ADA pair p, i.e., v 2 V p

rD

corresponds to the drift resistance approximation of pair p � 1 (Def. 7.4)
R̂p
rD ;v

:=
(
!p
v

)�1
(R̂p

rD
): set of feasible drift resistance approximations of pair p given v (Def. 7.4)

ÎprD ;v :=
(
�p

)�1
(R̂p

rD ;v
): set of feasible drifted test ioni current approximations of pair p given v

(Def. 7.4)
Bp
rD ;v

: ÎprD ;v ! R, Bp
rD ;v

:= �tp ;rD � �
�1
sp ;rD

� 
p �!p
v ��

p: ioni current based iteration function of ADA
pair p given v with v = �p�1(ip�1) 2 V p

rD
(Def. 7.8)

Cp
rD ;v

: R̂p
rD ;v

! R, Cp
rD ;v

:= Ap
rD
� !p

v = ��
r
p
t

� �tp ;rD � �
�1
sp ;rD

� �+
r
p
s
� !p

v : resistance based iteration
function of ADA pair p given v , v 2 V p

rD
(Def. 7.36)

u(n): ADA subsequence that contains �rst n entries of u (Def. 7.20)
i
n (̂it;in; u) = (in1 ; : : : ; i

n
N) := ît;out

(̂
it;in; u(n)

)
: n-th (ioni current based) ADA iterate (Def. 7.22),

corresponds to output of Algorithm 5.2 after n-th iteration (Corollary 7.23)
r
n (̂it;in; u) = (rn1 ; : : : ; r

n
N), with rnp := �p(inp ): n-th resistance based ADA iterate (Def. 7.28)

i
�� = (i��1 ; : : : ; i��N ): (ioni current based) super �xed point vector recursively de�ned by i��1 = �x(A1

i )

and i��p = �x
(
B

p

�p�1(i��
p�1

)

)
for p � 2 (Def. 7.14)

r
�� = (r ��1 ; : : : ; r ��N ): drift resistance super �xed point vector de�ned by r ��p = �p(i��p ) (Def. 7.32)
and recursively calculated by r ��1 = �x(A1) and r ��p = �x

(
C
p

r ��
p�1

)
for p � 2 (Lemma 7.42)

feasible super �xed point vector : if i
�� 2 RN holds (Def. 7.14)

feasible scenario: we consider (sp; tp; ips ; i
p
t ), p 2 [N], H and rD � 0 s.t. i

�� 2 RN
>0 (Def. 7.16)

feasible input combination: input vector ît;in and ADA update sequence u such that for all n 2 N
(or n 2 [`]) i

n (̂it;in; u) 2 R
N
>0 holds (Def. 7.24)

Optimization models

T = ft1; : : : ; tNg s.t. fsmin � tN < � � � < t1 < fsmax: set of feasible test fan speeds (Def. 8.1)

Lp

T;rD
(sp; ips ; i

p
t ): Lipschitz constant of A

p
rD

wrt. ADA pair (sp; tp; ips ; i
p
t ) (Def. 8.17)

ST;rD(s
p; ips ; i

p
t ) = �sp � �

�1
tp (i

p
t )� �sp � �

�1
sp � iset(s

p): start point increment of pair p (Def. 8.59)

X
p

T;rD
: set of feasible ADA parameters of ADA pair p wrt. T and rD (Def. 8.52)

(nom-P p

T;rD
): nominal optimization problem for ADA pair p (Def. 8.61)

Xtol
T;rD

(Hnom;Utol): set of feasible solutions with respect to tolerances (Def. 8.81)

(tol-PT;rD): ADA optimization problem with respect to tolerances (Def. 8.84)
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