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Introduction

Common heating systems in Germany are gas-fired boilers, oil heaters, heat pumps and
biomass heating systems [BDH24|. The heating system with the largest market share
are gas-fired condensing boilers. For instance, gas-fired condensing boilers had a market
share of over 50 percent in the German market for heating systems in 2023 [BDH23].
The global market leader in the field of central heating is the Vaillant Group [Vai24]. The
Vaillant Group is a family-owned German company with its headquarters in Remscheid.
The German brand of the Vaillant Group is Vaillant. In 2019, Vaillant presented its new
generation of gas-fired condensing boilers. The centerpiece of these boilers is Vaillant’s
combustion control system loniDetect [Wicl9]. A core element of loniDetect is the so-
called automatic drift adaption (ADA) procedure, which makes sure that the appliances
operate with a high combustion quality [LS17].

This study is conducted in cooperation with Vaillant and investigates the ADA procedure
from a mathematical point of view. ADA is an iterative procedure and requires a set of
parameters, the so-called ADA parameters or ADA pairs. The aim of this work is to find
optimized ADA parameters by computer simulation and optimization. This chapter gives
an introduction to this thesis by briefly presenting the ADA procedure, stating the research
problem, the research aims and the research questions as well as the significance of the
topic. Finally, the scope of this work is briefly outlined.

In loniDetect, flame ionization is used to control combustion, which is the state of the
art [Car+18, p. 49]. Flames are ionized and thus they have an electric conductivity. This
conductivity depends on the gas/air-mixture, which allows indirect control of the gas/air-
mixture. For this purpose, an electrode is placed inside the flames that measures the
flames' conductivity. However, flames are a hostile environment for the electrode and an
oxide layer accrues on the electrode’s surface during boiler operation. This additional oxide
layer alters the measurement of the flames' conductivity and the gas/air-mixture cannot
be properly controlled anymore. Therefore, a steady self-recalibration of the system is re-
quired that adapts to the accrued oxide layer [Car+18]. One solution to this problem is the
ADA procedure [LS17]. The ADA procedure requires two operating points, the so-called
start point and test point, which are both specified by a fan speed and an electric cur-
rent. These four values (two fan speeds and two currents) constitute a so-called ADA pair.

Suitable ADA pairs must be selected for each "boiler class" so that the ADA procedure
can work as desired. Typically, five to seven ADA pairs are specified for each "boiler class"
[Sch15, p. 35]. However, the documentation of the loniDetect system provides only little
information on how to select suitable ADA pairs. Some particularities with respect to
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the selection of the fan speeds of the test points are stated in [Sch15]. A more detailed
description of the selection of the ADA pairs as well as a corresponding theoretical rea-
soning are provided in [Locl8]. However, in [Locl8] only the special case with a single
ADA pair for the situation without tolerances is considered. Therefore, the theoretical
understanding of the ADA procedure can be considered as incomplete. Accordingly, in
practice, the ADA parameters are selected based on experience as well as by trial and
error in the lab. These approaches are time consuming and do not guarantee that the
selected ADA parameters are optimal with respect to the rate of convergence of the ADA
procedure and under the influence of tolerances. In contrast, a systematic approach to the
ADA parameterization as well as the application of computer simulations can considerably
save development time and supports the identification of close to optimal ADA parameters.

The aim of this work is to provide such a systematic approach to the ADA parameteri-
zation. To achieve this, the following research objectives are considered:

e To provide an algorithmic formulation of the ADA procedure and a corresponding
mathematical framework.

e To analyze the convergence properties of the ADA procedure.

e To state what optimal ADA parameters are and to formulate corresponding opti-
mization problems.

e To propose methods for solving the ADA optimization problems.
The following research questions are addressed in this thesis:

e What are conditions that guarantee convergence of the ADA procedure to a desired
limit with a high rate of convergence?

e How can these convergence conditions be modeled in an optimization problem?

e What are suitable methods to solve the proposed optimization models?

The analysis of the ADA procedure in this thesis contributes to the understanding of its
convergence properties. It is shown that the basic ADA procedure with a single ADA pair
implements the Picard iteration fixed point procedure. According to Banach's fixed point
theorem, its convergence properties are closely related to the corresponding iteration func-
tion's Lipschitz constant. However, in the general ADA procedure with a plurality of ADA
pairs, the Picard iteration is not applicable anymore, because the ADA pairs influence each
other in a certain sense. The corresponding convergence analysis is rather complicated, but
it is still possible to derive conditions that guarantee convergence of the ADA procedure
with a plurality of ADA pairs. Another result of this analysis is that tolerances with respect
to the ioni electrode’s position usually alter the convergence characteristics of the ADA
procedure. In particular, such tolerances might cause that the limit of the ADA procedure



is outside of a desired tolerance band, i.e., the corresponding gas appliance might leave
the region of feasible combustion states.

Furthermore, this work shows that optimizing the ADA pairs is a multiobjective problem,
i.e., in general we have conflicting objectives when optimizing the ADA pairs. To put it
simply, a high rate of convergence of the ADA procedure is conflicting with a short duration
of a single ADA iteration. Considering the multiobjective aspect of the ADA optimization
problem allows the decision makers to select the solution that fits their preferences best.
It is proposed to solve the ADA optimization problem with respect to tolerances with the
Nondominated Sorting Genetic Algorithm-II (NSGA-II), which is demonstrated in a use
case. Therefore, this work also contributes an example for the application of NSGA-II in
practice.

In total, this work provides both, a thorough theoretical understanding of the ADA proce-
dure from a mathematical point of view as well as a support for the ADA parameterization
problem in practice.

Note that this thesis focuses on the algorithmic part of the ADA procedure. Other
aspects that also have an effect on the ADA procedure, such as the material of the ion-
ization electrode, are not in the scope of this work. Furthermore, this work is based on
measurement data provided by Vaillant. As a consequence, some aspects of modeling the
combustion process are already predetermined. For instance, the provided measurement
data is based on static signals and thus the dynamic behavior of the gas appliances is
disregarded to a certain degree.

This thesis is divided into three parts. Part | lays the technical and mathematical
foundations required for this work. The technical and combustion related backgrounds are
presented in Chapter 2. In Chapter 3, the ADA procedure is presented based on technical
documentation provided by Vaillant and Siemens. The latter is the company where the
ADA procedure was invented [LS17]. In Chapter 4, the required mathematical concepts are
presented. These are multiobjective optimization, evolutionary multiobjective optimization
and fixed point iteration procedures.

Part Il thoroughly analyzes the ADA procedure from a mathematical point of view. For this,
a required formalism is first introduced and then used to formulate the ADA Algorithm 5.2
in Chapter 5. This algorithm is then analyzed for the special case that a single ADA pair
is considered in Chapter 6. The general case with a plurality of ADA pairs is considered in
Chapter 7.

In Part IlI, optimization problems for the ADA parameterization and methods to solve these
problems are proposed based on the analysis in the preceding part. In Chapter 8, two ADA
optimization problems are proposed. One problem for the case without tolerances and one
problem for the case with tolerances. Finally, suitable methods for solving these problems
are presented in Chapter 9 and demonstrated in a use case.



Chapter 1  Introduction

Remark 1.1 To help readers to keep a better overview on the notation used in this thesis,
a notation cheat sheet is included with the printed version of this work as a bookmark. In
the digital version, the notation cheat sheet can be found at the very end of the document.

Remark 1.2 /f not otherwise stated, all vectors in this thesis are row vectors.



Part I.

Technical and Mathematical
Foundations






Technical Background

This thesis is about the optimization of the ADA parameters with computer simulation.
ADA is a part of the combustion control system loniDetect from Vaillant. This chapter
is intended to provide the necessary technical basics to describe and understand the ADA
procedure. First, some basic concepts of control theory and combustion are explained.
Then the combustion control system loniDetect is presented. Finally, a mathematical
model is presented for modeling gas appliances with loniDetect.

While some details and data of this chapter are confidential, we present most of the axis
labeling in figures without any numbers. Every graph presented in this chapter is created
with linearly interpolated measurement data provided by Vaillant.

2.1. Basics of Control Theory

This section provides the basic concepts and terms of control systems that are required
to describe and explain loniDetect and ADA. In this thesis, 'control theory' refers to the
engineering discipline. It does not refer to the mathematical branch 'optimal control the-
ory’.

The definition of the term "control system’ is imprecise. Astrom and Murray define control
"to be the use of algorithms and feedback in engineered systems." [AI\/I09, p. 3]. Doyle,
Francis, and Tannenbaum state that "Control systems are what make machines, in the
broadest sense of the term, function as intended." [DFT90, p. 1]. In this context, the
machines are gas-fired heating devices and they function as intended if they satisfy a given
heat demand while they combust gas at a desired operating point.

Control systems can be categorized as open loop and closed loop control [Wes06, p. 6].
A closed loop system contains a feedback loop, such that the controller gets information
about the actual value of the machine’s process variable. In this context the process vari-
able conveys information about the combustion process. An open loop system does not
contain such a feedback loop and the controller does not have any information about the
process variable [AI\/IO9, p. 2]. In Figure 2.1, closed loop and open loop control are illus-
trated as block diagrams. loniDetect is a closed loop control system and thus the focus
of this section lies on such systems. Closed loop control is also referred to as feedback
control.

In a minimalist setup, a feedback control system consists of three components, which are
denoted as plant, controller and sensor. The plant is "the object that is to be controlled"
[DFT90, p. 27], no matter if the object is a plant or something else. The controller is
the entity that controls the plant. The sensor measures the plant’s output and provides a
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(combustion) (combustion)
controller — controller ——
system system

(a) Closed-loop (combustion) control (b) Open-loop (combustion) control

Figure 2.1.: In closed loop control there is a feedback loop that provides information about
the current output of the (combustion) system to the controller. In open loop control this
information is not available to the controller. Adapted from [AMO09, p. 1].

feedback signal to the controller [Wes06, pp. 2-4], [DFT90, p. 27].

The plant usually contains one or more actuators. An actuator transforms the commands
of the controller to physical actions [Wes06, p. 4]. For instance, the gas valve of a gas-
fired heating device is an actuator. Depending on the controller’'s commands, it is moved
to a more open or more closed position, which alters the gas volume flow and thus the
combustion process.

As a real world machine a plant is prone to external disturbances. The goal of a feed-
back control system is that the output of the plant follows a desired reference signal and
that external disturbances are compensated. The sensor measures the plant’s output and
provides it to the controller, which compares the sensor’'s output to the reference value.
The difference between output and reference is called error. Depending on the error the
controller determines a drive command for the actuators, such that (ideally) the absolute
value of the error is reduced, i.e., the plant’s output gets closer to the reference [AI\/I09,

p. 4].

Remark 2.1 In this thesis, the value of a reference signal is referred to as setpoint, which
is the term used by Vaillant.

Because no sensor is perfect, every sensor is prone to noise. Therefore, sensor noise can
be considered as an additional input of control systems [DFT90, p. 28]. This completes
the basic setup of a feedback control system, which is shown in Figure 2.2.

The ADA procedure is related to the sensor and the sensor noise of the loniDetect com-
bustion control system. In this context, the plant is a gas-fired heating device, whose
actuators are a fan and a gas valve. Its sensor is an electrode that is used to measure
an electric current that depends on the gas flame in the heating device [Schl5, p. 7].
The electrode is positioned in the flames, which causes oxidation at the electrode. With
increasing operation time an oxide layer builds up on the electrode, which alters the elec-
trode’s electrical characteristic and distorts the measured current. This distortion can be
interpreted as sensor noise. But in contrast to white noise, this is not a stochastic phe-
nomenon. It is rather a systematic sensor error of unknown size and the ADA procedure is
intended to compensate this systematic error. The ADA procedure is described in Chap-
ter 3. A mathematical formulation of the ADA procedure is provided in Chapter 5.
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r: reference
l e: error
r e u y oo
> Controller Plant u: drive command
y: plant output
v V. sensor output
Sensor d: external disturbances
T n: sensor noise
n

Figure 2.2.: Basic feedback control system. A sensor measures the plant’s output y, which
is compared to a given reference value r. Depending on the error e ;== r — v, the controller
gives a drive command v to the plant’s actuators, which influences the plant’s output and
closes the feedback loop. The plant and the sensor are prone to external influences, which
are denoted by d and n, respectively. Adapted from [DFT90, p. 27].

Control system design deals with stability, robustness etc. These are not in the scope of
this work. The loniDetect control system and its design are considered as given.

For this thesis the notion of feedback control and the concept of the basic control system
as shown in Figure 2.2 are relevant. The following section presents the basics of combus-
tion theory related to gas-fired heating devices. Thereafter, combustion control based on
ionization is explained.

2.2. Basics of Combustion

This section deals with the basics of combustion processes in gas-fired appliances. Because
this thesis is about optimization and not about combustion, the level of detail is kept at a
minimum. More detailed information can be found in the given references.

Combustion "is a complex sequence of chemical reactions between a fuel and oxygen"
[Tanl4, p. 59]. In gas-fired heating devices the fuel is usually natural gas or liquid petroleum
gas [MCF11, p. 1]. But also hydrogen enriched natural gas is gaining in importance
[Wis19]. The oxygen is provided by the ambient air [MCF11, p. 6].

The products of a combustion process depend on the mixture of fuel and oxygen, which
is usually described by the air-fuel ratio (AFR) [Tanl4, p. 60]. The following definition is
taken from [Tanl4, p. 59].

Definition 2.2 The (mole) air-fuel ratio is defined by (A/F) = Z—; where n, denotes the
mole amount of air and ng the mole amount of fuel.

A particular mixture is the so-called stoichiometric mixture. It contains exactly the
amount of fuel and air, such that fuel and oxygen are consumed completely during com-
bustion [MCF11, p. 17].



Chapter 2 Technical Background

Definition 2.3 /f a combustion process consumes all fuel and oxygen atoms, the mixture
is called stoichiometric. The according AFR is denoted by (A/F)s.

In combustion engineering, it is useful and common to normalize the AFR by the stoi-
chiometric AFR [MCF11, p. 20].

Definition 2.4 The equivalence air-fuel ratio is defined by A = A/F), -

Remark 2.5 Combustion always requires fuel and oxygen. Therefore, the stoichiometric
AFR (A/F)s is always greater than zero and no corresponding case distinction in the defi-
nition of A is required. Furthermore, the equivalence AFR is dimensionless by construction.

A distinction with respect to X is made between the three following cases [Tan14, p. 60].
e The AFR is stoichiometric, i.e., (A/F) =(A/F)s & Xx=1.

e The AFR is smaller than the stoichiometric AFR. Then we have (A/F) < (A/F)s &
A < 1. This case is called fuel rich combustion, because some of the fuel atoms are
not consumed during combustion and will be left.

e The AFR is larger than the stoichiometric AFR. Then we have (A/F) > (A/F)s &
A > 1. This case is called fuel lean combustion, because some of the oxygen atoms
are not consumed during combustion and will be left.

A combustion with a fuel rich mixture (A < 1) has an excessive emission of carbon monox-
ide (CO) and some of the chemical energy contained in the fuel is not used and wasted
[BK16, p. 444] [MCF11, p. 180]. Therefore, a fuel rich combustion is avoided. The-
oretically, a stoichiometric AFR is sufficient and considered ideal [Tanl4, p. 60]. But
the mixture in a burning chamber is usually not absolutely homogeneous and some fuel
molecules might not have reacted with oxygen. Thus an additional amount of air is re-
quired and the combustion process shall be fuel lean [BK16, p. 447], i.e., the equivalence
AFR X shall be greater than one.

On the other hand, if A gets too large, the efficiency decreases again due to so-called
exhaust gas losses [CL17, p. 119], i.e., the exhaust gas contains heat energy that is not
used and released into the environment. In addition, the flame temperature decreases and
as a consequence the emission of CO increases [MCF11, p. 180]. Furthermore, the flame
length might get too large and the flame might hit the opposite wall of an appliance's
heat exchanger. Then the temperature of the flame rapidly decreases, which also causes
a large emission of CO [Mer+06, p. 118].

The emission of CO is critical, because inhaled CO is toxic for organisms and is lethal
even at relatively low doses [MCF11, p. 177]. Figure 2.3 shows the curve of CO emission
versus equivalence AFR for a certain constant air mass flow. The graph was created with
linearly interpolated Vaillant measurement data and has the typical "inverted bell shape"
[MCF11, p. 180]. Around A = 1.4 the CO emission is low. But if the AFR gets more fuel
lean or more fuel rich, the CO emission increases very fast.

10
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CO [ppm]

| |
1.2 1.4 1.6
equivalence AFR X\

Figure 2.3.: The emission of CO versus the equivalence AFR at a constant air mass flow.
Around A = 1.4 the emission of CO is low. Outside the interval [1.2, 1.55] the emission of
CO increases very fast.

In addition to CO emissions, the flame speed and the flame temperature also depend

on A [MCF11, p. 122]. Furthermore, there are lower and upper flammability limits with
respect to A [MCF11, p. 125].
In summary, A plays a central role in controlling and monitoring combustion [BK16, p. 448].
The desired equivalence AFR of gas-fired heating devices is usually 1.24 < XA < 1.44 [CL17,
p. 381]. Therefore, the amount of air and gas used for combustion has to be adjusted
accordingly, which is usually done with a combustion control system.

2.3. Combustion Control System loniDetect

Combustion control means controlling the mixture of fuel and air in order to obtain an
optimal AFR. A common approach is an open loop control with pneumatic gas valves,
where the air flow rate and the gas flow rate are pneumatically coupled. There is no
feedback of the combustion process and the actual AFR is unknown. The gas valves
are adjusted once during installation of the appliances to the prevailing conditions. If
thereafter the gas quality changes, the appliances do not operate at an optimal AFR
anymore [Kie+12, pp. 1, 2]. This is becoming problematic, because the gas quality is
expected to fluctuate more and more [Kie+12, p. 2] [Car+18, p. 21]. A solution is a
closed loop and gas adaptive combustion control. Measuring the AFR directly is expensive
and not applicable in gas-fired appliances. Therefore, indirect methods were developed.
There are mainly three approaches to closed loop combustion control. The most used and
state of the art technology is based on ionization of the flame [Car+18, pp. 45, 49]. It is
also used in the newest generation of Vaillant’s gas-fired boilers. Vaillant’s corresponding
combustion control system is called loniDetect [Wicl19]. The ionization technology and
loniDetect are central for this thesis. They are described in more detail in the following
subsections.

11
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Insulation

— O .
lonization Electrode
AC Voltage <N>

Supply

Burner

(A N_N_/N_/N_/"_
\AJ . Surface
Ammeter Zr Zf Zf

Premixed Air Fuel Mixture

Figure 2.4.: Principle of ionization current measurement. An electrode is placed inside or
close to the flames. An AC voltage supply is connected to this electrode and to the burner.
Because flames have an electric conductivity the voltage results in an electric current that
can be measured with an ammeter. Adapted from [Res19] and [Kie+12].

2.3.1. Combustion Control Based on lonization

In Compendium of Chemical Terminology ionization is defined as "the generation of one
or more ions" [Gol14]. lons are atoms or particles "having a net electric charge" [Gol14,
p. 759]. lonization takes place in flames, i.e., free electrons and ions are generated in
flames. Therefore, a flame has an electric conductivity and can become a part of an
electric network [Res19, p. 7]. By applying a voltage across the flame an electric current
flows through the flame and can be measured. This is the so-called ionization current
[Kie+12, p. 3]. To measure the ionization current an electrode has to be placed inside
or close to the flames. An alternating current (AC) voltage supply is connected to the
electrode and to the burner. This electric circuit is closed by the flames and the applied
voltage causes the ionization current, which can be measured. Figure 2.4 gives a schematic
illustration of this principle.

Remark 2.6 In an electric circuit flames are far more complex than a simple ohmic re-
sistance. They have a rectifying behavior like a diode. Furthermore, they have a large
resistance and the ionization current has a small magnitude. Therefore, specialized mea-
surement setups with operational amplifiers are used to measure and process the ionization
current [Locl6]. A thorough analysis of the physical and chemical processes inside flames
and of their electric properties was done by Resch in her dissertation “Voruntersuchun-
gen fiir eine mechatronische Produktentwicklung von elektronischen Gas-Luft-Verbiinden”
[Res19].

Remark 2.7 From now on ionization is abbreviated by ioni.

The ioni current depends on several factors like the AFR and the load of the appliance
[Kie+12, p. 3] [Res19, pp. 7, 8]. Therefore, it can be used as a feedback signal to control
the mixture and thus the combustion process.

But the setup with an electrode positioned in the flames has a major drawback. Flames
are a hostile environment for the material of the electrode. The electrode suffers from
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oxidation and its electric properties change constantly. This process is also called drift of
the electrode. Because of the electrode's drift a steady self-recalibration of the system
is required [Car+18, pp. 42, 44]. The graph of ioni current versus A has a characteristic
shape. Oxidation of the electrode might shift this graph, but its shape stays similar. This
is the basis for many self-recalibration methods [Car+18, p. 42].

Vaillant decided to use the Sitherm Pro combustion control concept by Siemens. In
this thesis, Vaillant's term loniDetect is used synonymously to Sitherm Pro. The self-
recalibration method in loniDetect is called automatic drift adaption (ADA) [Sch15]. ADA
requires up to 28 parameters, that have to be determined for each heat engine (HE).

Remark 2.8 The HE is the module of a Vaillant gas heating device that is responsible for
the combustion. ""The primary function of the heat engine ...is to combust gas in order
to generate heat" [PHE]. Its main components are a heat exchanger, a gas valve, a fan,
a burner, electrodes and an ignitor [PHE, Module Specification Peec Heat Engines].

In contrast, a boiler, for example, also has a hydraulic for the central heating and a cover
for mounting. In particular, different boilers can have the same heat engine. Some detailed
schematic illustrations of a Vaillant boiler can be found in the dissertation of Resch [Res19,

pp- 5, 6].

This thesis is about determining optimized ADA parameters. Therefore, the loniDetect
concept is described in detail in the following subsections. The ADA procedure is presented
in Chapter 3.

2.3.2. Basic Concept of loniDetect

In 2019 Vaillant presented its new generation of gas-fired condensing boilers, called ecoTEC
exclusive. They use a combustion control based on ionization and are gas adaptive. Vaillant
named their combustion control loniDetect [Wic19]. The kernel of loniDetect is Sitherm
Pro by Siemens. The information presented in this section is based on the corresponding
patent “Control Facility For a Burner System” [LS17] and on the Vaillant intern document
Konzept Sitherm Pro [Sch15]. loniDetect is used in premixed burners only [Sch15, p. 7].
In a premixed burner fuel and air are mixed first and thereafter the combustion takes place.
The counterpart to premixed burners are diffusion burners, where no separate mixing of
fuel and air takes place [CL17, p. 349].

Remark 2.9 For completeness it is mentioned that loniDetect is an electronic fuel/air ratio
control system (ERC). In the European standard EN 12067-2:2022 an ERC is defined as
a "closed loop system consisting of the electronic control unit, actuating elements for the
fuel flow and the air flow as a minimum, and allocated feedback signal(s)" [Eur22, p. 9].
loniDetect was developed in accordance with this standard and meets these requirements.

The task of the loniDetect control system is to adjust the mixture of gas and air such
that two objectives are met. First, a given heat demand has to be satisfied. A higher heat
demand requires more air and gas. A smaller heat demand, on the other hand, requires
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Figure 2.5.: Basic principle of the loniDetect combustion control. Control of air volume flow
and of gas volume flow is decoupled to a certain degree. The air volume flow is controlled
by the fan speed. The gas volume flow is controlled with a feedback loop based on the ioni
current. lllustration based on [Sch15, p. 7].

less air and gas. Second, the combustion process shall have an optimal AFR [Sch15, p. 7].
Note that both objectives can be met simultaneously.

The mixture is adjusted by loniDetect via two actuators, which are a fan and a gas valve
[Sch15, p. 7]. The fan delivers fresh air to the mixing chamber. The air volume flow
depends on the fan speed. A larger fan speed usually results in a larger air volume flow.
The gas volume flow, on the other hand, is controlled by the position of the gas valve. A
more open position usually results in a larger gas volume flow.

In loniDetect the two objectives satisfying a heat demand and keeping the combustion at
the desired AFR are decoupled to a certain degree. The fan speed is linked to the heat
demand, while the gas valve adjusts the AFR. An ioni electrode is used as a sensor to
control the AFR [Sch15, p. 7]. The basic principle of the loniDetect control system is
shown in Figure 2.5. The gas valve position, and thus to a certain degree also the gas
volume flow, is controlled with a feedback loop that is based on the ioni current. A desired
ioni current setpoint fet is compared to the actual current iperya). A controller permanently
attempts to drive the difference AJ = ket — Jactual 1O zero. It moves the gas valve according
to the difference and the gas volume flow changes. This changes the mixture and thus
also the AFR. A change in the AFR causes a change in the ioni current and the feedback
loop is closed. The following example demonstrates this principle in more detail.

Example 2.10 Let us assume a given heat demand and that the fan runs at the corre-
sponding fan speed, which is denoted by fs in this example. Let Atarget be the desired
equivalence AFR. Figure 2.6(a) shows the ioni current versus X graph with the fan speed
fixed at fs. The setpoint is marked by the dot, which is the unique ioni current such that
A equals Atarget-

Let us further assume that the combustion is not optimal and we have Ascryal < Atarget. I-€-,
the mixture is too fuel rich. According to the curve in Figure 2.6(a), we have ixctyal > lset
in this case. Because Ai ‘= iset — lactual < 0, the controller commands a more closed
gas valve position and the gas volume flow decreases. Since the fan speed is still at fs,
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Figure 2.6.: The graphs are created with measurement data of the same Vaillant HE. Each
curve contains (A, ioni current) points with identical fan speed. The dots mark the setpoints
for given target X values at different fan speeds.

the air volume flow remains approximately unchanged, see also Remark 2.11 below. An
unchanged amount of air and a decreased amount of gas result in an increased AFR, i.e.,
A Increases.

On the other hand, if the AFR is too large and therefore the ioni current is less than iset,
the gas valve is further opened and the AFR decreases.

Remark 2.11 /f the fan speed is constant, then the air volume flow is only approximately
constant. It also depends on the amount of gas that is sucked through the gas valve into
the mixing chamber and on pressure changes in the burner and the flue system [AR24,
0018].

If several gas-fired boilers are connected to the same flue system, which is sometimes
done to increase a system’s heating power, there might be larger fluctuations in a boiler’s
air volume flow although its fan speed is constant. A safe combustion is not always
guaranteed in such a situation. As a mitigation, Vaillant has developed heat engines based
on loniDetect that are equipped with a mass flow sensor to measure the air mass flow. In
such a heat engine the air mass flow is the process variable and the fan speed is adjusted
such that the air mass flow follows the desired air mass flow setpoints. This ensures safe
combustion, even if several appliances are connected to the same flue system.

Note that for the remainder of this thesis we consider only heat engines that are not
equipped with a mass flow sensor. However, all the results in this thesis can also be
applied to loniDetect heat engines equipped with a mass flow sensor by replacing the fan
speed with the so-called virtual fan speed. The virtual fan speed is an artificial value, which
in a certain sense is equivalent to the air mass flow [PHE, Item 3728, Item 3733].
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Example 2.10 demonstrates that the controller of the gas valve requires two parameters
that define the setpoint. They are the desired equivalence AFR Atarget and the correspond-
ing ioni current iser. Figure 2.6(a) indicates that the ioni current setpoint is a function of
the fan speed. This is indeed the case, as shown in Figure 2.6(b). It is based on measure-
ment data of a Vaillant HE. The data were recorded at three different fan speeds fsq, fso
and fs3. Each of the three ioni current versus A graphs consists of points with identical
fan speed. For each fan speed let the desired equivalence AFR be Atarger = 1.3. The
corresponding setpoints are marked by the dots. It is apparent that each fan speed has
a different ioni current setpoint. Therefore, the controller requires a function that maps
every feasible fan speed fs to its corresponding ioni current setpoint iset(fs). This function
is called control curve. It is relevant for the ADA algorithm and for the construction of the
optimization models later on and thus it is explained in detail in the following subsection.

2.3.3. Control Curve and \-Target Curve

To control the gas valve properly, an ioni current setpoint is required. As shown at the
end of the preceding subsection, the ioni current depends on the AFR and on the fan
speed. The determination of the ioni current setpoint(s) is based on measurement data of
the respective HEs and can be divided into two steps. Because the optimal AFR usually
depends on the load, i.e., on the fan speed, a desired equivalence AFR Atarget(fs) has
to be determined for each feasible fan speed fs first. Thereafter, the corresponding ioni
current setpoints /set(fs,ktarget(fs)) are determined [Sch15, pp. 14-16]. Of course, this
cannot be done for every fan speed in the interval of feasible fan speeds [fSmin, fSmax]-
Rather, one chooses a suitable finite subset of fan speeds and only determines Aarget(fs)
and iset (fs, Atarget(fs)) for these fan speeds. The chosen fan speeds and the according ioni
current setpoints are stored in a look up table. The controller linearly interpolates between
the entries of this table. The first and the last entry are extrapolated using the slopes
defined by their neighbored entries [Sch15, p. 15]. This interpolated and extrapolated
function is the so-called control curve. Analogously, the so-called A-target curve is the
linear interpolation of the Atarget versus fan speed values. However, the A-target curve is
extrapolated as a constant function.

Figure 2.7 shows an exemplary A-target curve and the corresponding control curve. It is
important to emphasize that the controller works with the control curve only. As already
mentioned, the controller does not have the capability to measure the equivalence AFR
directly, i.e., loniDetect is blind with regard to the equivalence AFR. Therefore, the X-
target curve is irrelevant to the controller. It only represents the desired equivalence AFR
and it is only used to determine the control curve.

Remark 2.12 Because the controller is blind with regard to the equivalence AFR, the
HEs usually operate with some deviation to the target . E.g., the electrode’s position
has some tolerances and thus the measured ioni currents of two identical HEs usually
differ from each other. Another example is the influence of weather. Depending on the
atmospheric pressure or the wind conditions, the pressure in the flue system differs and the
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Figure 2.7.: Both curves are the linear interpolation of 32 supporting points. The A-target
curve represents the desired A as a function of the fan speed. The control curve maps any
feasible fan speed fs to an ioni current is(fs) such that >\(fS, iset(fs)) = Atarget(fs) (under
ideal conditions).

air mass flow varies, although the fan speed remains unchanged. Therefore, the design of
the control curve parameters has to take these and some other tolerances into account.
This is an optimization problem on its own, but it is beyond the scope of this thesis. In the
context of the ADA problem, the control curve and the \-target curve are always assumed
to be given.

By integrating the control curve into the model of the loniDetect combustion control
system as described in the preceding Section 2.3.2 and as illustrated in Figure 2.5, we
obtain a more complete model of loniDetect. The resulting extended model is illustrated
in Figure 2.8. This system has only one input, which is the fan speed setpoint. The control
curve transforms the fan speed setpoint to an ioni current setpoint, which is used to control
the gas valve. Based on this extended model of loniDetect, the ADA optimization problem
is formulated and analyzed in the course of this thesis.

Remark 2.13 Note that the model of loniDetect according to Figure 2.8 is still basic.
There are far more details related to the control of the fan speed and the gas valve.
Especially in the context of the dynamic behavior of the combustion system, there is more
to consider. For example, there exists a feed forward control for the gas valve that allows
the system to react quickly to major load changes [Sch15, pp. 16 sq.]. Because these are
not relevant with respect to the ADA problem, they are omitted in the following. A more
detailed introduction to loniDetect can be found in [Sch15].

Next, we define a mathematical model of HEs with loniDetect. This model is used to
explain and analyze the ADA procedure as well as to design ADA optimization models in
the course of this thesis.
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Figure 2.8.: This is an extension of the concept shown in Figure 2.5. The extended system
has only one input, which is the fan speed setpoint. It is transformed by the control curve
to an ioni current setpoint, which is used to control the gas valve. Based on [Sch15, p. 7].

2.4. Mathematical Heat Engine Model

We want to optimize the ADA parameters with computer simulations. For this, we need an
appropriate mathematical model of the loniDetect HEs. The relevant physical sizes with
respect to the ADA procedure are the fan speed, the gas valve position, the ioni current,
the equivalence AFR and the CO emission. The goal of this section is to formulate a
mathematical model of the HE that represents these sizes as well as their relations and
interdependence appropriately.

For this, we have to take two aspects into account. First, the model has to be based
on the measurement data provided by Vaillant. The second aspect results from the fact
that all considered HEs follow some physical laws and thus have some combustion system
behavior in common. This common behavior can be derived from combustion theory and is
also present in measurement data. Thus it is postulated as universal HE properties below.
The HE model should reflect these universal properties.

2.4.1. Measurement Data Provided by Vaillant

This subsection is based on the Vaillant intern documentation [PHE, Item 1608], where
the measurement process is described in detail. The key points are summarized in the
following.

The basic notion is that an HE is considered as a system that has two inputs and several
outputs. The inputs correspond to the positions of the two actuators, i.e., the inputs are
the fan speed and the gas valve position. The outputs are several resulting physical sizes.
Regarding the ADA problem, we are only interested in the ioni current, the equivalence
AFR and the CO emission. The latter two are indicators for the combustion quality, see
also Section 2.2. The ioni current is used to control the combustion as delineated in Sec-
tion 2.3. Other outputs like the thermal load are not relevant for the ADA problem and
thus they are ignored in the following.
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The measurement process can be summarized as follows.

e A sample set S of n, n € IN, fan speed and gvp combinations is specified, i.e.,
S = {(fsk. gk) : k € [n]} with [n] =={1,..., n}.

e For each sample point (fsg, gk) € S the fan speed is fixed at fs; and the gvp is fixed
at gk

e Because the inputs are fixed at fs, and gx, the combustion process eventually sta-
bilizes, i.e., the output variables no longer change after a certain time. Then the
corresponding ioni current i, the equivalence AFR XA and the CO emission coy are
recorded.

With this, one obtains n five-dimensional data points (fsk, gk, ik, Ak, Cok), k € [n]. These
n data points constitute a set of HE measurement data, which is called Brennfeld static
signals by Vaillant.

Remark 2.14 Brennfeld is a coinage in the German language. It is a combination of the
two words Brenner and Kennfeld.

Remark 2.15 An HE system has a thermal inertia and thus it takes a certain time until
the combustion process and the corresponding outputs have stabilized while the inputs
are kept constant. Because the outputs are only recorded once the system has stabilized,
the recorded data contains no information about the corresponding HE system’s dynamic
behavior. Therefore, the denotation of the HE measurement data contains the term static
signals. A detailed introduction to signal, systems and dynamics can be found in [LJ19]
and [Ada22].

To consider only static signals reduces a system’s complexity and is a simplification. The
underlying assumption made by Vaillant is that an HE's dynamics are sufficiently approxi-
mated by the Brennfeld static signals.

Figure 2.9 shows the Brennfeld static signals of a Vaillant HE [PHE, Item 6371]. The

upper left part shows the sample set S that contains a total of n = 304 fan speed and gvp
combinations. The upper right part shows the recorded ioni currents against the sample
points S, i.e., the set {(fsk, gk, i) : k € [304]} is shown. Analogously, the recorded
equivalence AFRs and the recorded CO emissions against S are shown in the lower left
and lower right part of Figure 2.9, respectively.
The data shown in the upper right part of Figure 2.9 suggests that the ioni current is
strictly increasing with the gvp if the fan speed is kept fixed. The data shown in the lower
left part of Figure 2.9 suggests that the equivalence AFR is strictly decreasing with the
gvp if the fan speed is kept fixed. This is indeed always the case and allows us to propose
universal HE properties. These properties are then used to formulate the HE model in
Section 2.4.3.
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Figure 2.9.: Brennfeld static signals of the Vaillant HE according to [PHE, Item 6371] are
shown. The figure is intended to give an intuition of the Brennfeld static signals. The
details and scaling of the shown graphs are not important.

In the upper left part, the sample set S consisting of 304 fan speed and gvp combinations
is shown. The upper right part shows the recorded ioni currents against the sample set S.
In the lower part, the equivalence AFR X\ and the CO emission co against S are shown.
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Figure 2.10.: A total of 17 data points of the Brennfeld static signals according to [PHE,
Item 6371] are shown. All data points have the same fan speed fs = 6500. In the left part,
the ioni current / against the gvp g is shown. The ioni current is strictly increasing with the
gvp. In the right part, the equivalence AFR A against g is shown. The equivalence AFR is
strictly decreasing with the gvp.

2.4.2. Universal HE Properties

The first universal property is based on the fact that every HE has a minimum and a
maximum fan speed, both of which are positive.

Definition 2.16 The minimum and the maximum fan speed of an HE are denoted by
fsmin and fsmax, respectively. The set of all feasible fan speeds is the closed interval
FS = [fSmin, fSmax] € Rso0 = {x € R : x > 0}.

Remark 2.17 In practice, the fan speed can only be changed in discrete steps [WHB,
Item 4196]. Therefore, assuming that every fs € FS is feasible is a simplification. However,
because the step size between two fan speeds is sufficiently small in practice, it is assumed
that this simplification does not affect the ADA optimization later on.

Next, we consider some monotonicity properties of the ioni current and of the equiva-
lence AFR with respect to the gvp. The left part of Figure 2.10 shows the ioni current
against the gvp of 17 sample points (fsx, gk), k € [17], where all sample points have the
same fan speed fs, i.e., fs, = fs for all k € [17]. In the right part of Figure 2.10, the
equivalence AFR X against the gvp g for the same 17 sample points is shown. Note that
the ioni current / is strictly increasing with the gvp g and that the equivalence AFR X is
strictly decreasing with g. Furthermore, the "slope" of the ioni current "curve" reduces
with increasing gvp and the 17-th data point seems to constitute an ioni current maximum.
In addition, the equivalence AFR of the 17-th data point is close to one.

All these observations are no coincidence. This behavior can be observed not only in this
example but in all measurement data. Apart from the empirical findings, a theoretical
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Figure 2.11.: The CO emission co against the gvp g for 17 data points of the Brennfeld static
signals according to [PHE, Item 6371] are shown. All data points have the same fan speed
fs = 6500. The CO emission curve is convex. In addition, the 150 ppm line is shown, which
is usually the CO limit for the ADA procedure, see also Section 8.1 below.

derivation is also possible. The monotonicity of the ioni current as well as that the ioni
current’s maximum is close to A = 1 can be found in the dissertation by Resch [Res19].
That A is strictly decreasing with g while fs is fixed can be explained as follows. Let us
consider two actuator positions (fs1, g1) and (fsp, g2) with fs; = fs,. Without loss of gen-
erality let g1 < g». Because the fan speeds are identical but g, is greater than g1, (fs2, g2)
results in a mixture that contains more gas than the mixture of (fs1, g1) while the amount
of air is (approximately!) identical. Therefore, the AFR of (fsy, go) is smaller than the
AFR of (fs1, g1), i.e., A2 < A1. In addition to the monotonicity properties, it is reasonable
to assume that the graphs of / against g and of A against g with the fan speed fixed are
continuous. An actuator position (fs, g) corresponds to a certain amount of oxygen and
gas that are mixed. Their mixture results in a certain equivalence AFR during combustion.
If the fan speed or the gvp is changed slightly, the AFR also changes only slightly. The
continuity of / versus g is justified analogously.

Regarding the CO emission, there exists no monotonicity property. Figure 2.11 shows the
CO emission versus the gvp for the same data points (fsk, gk), k € [17], whose corre-
sponding ioni currents and equivalence AFRs have already been considered above. It is
apparent that the curve of co versus g is convex. Again, this is no coincidence, see also
Section 2.2 and [MCF11, p. 180]. Therefore, the convexity of the CO emission curve is
also considered as a universal HE property. In addition, it is also reasonable to assume
that the CO emissions change continuously with the gvp.

The monotonicity, convexity and continuity properties motivate the definition of the math-
ematical HE model given below.

That the air volume flow is only approximately constant while the fan speed is fixed is detailed in
Remark 2.11.
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2.4.3. The HE Model

Based on the kind of measurement data provided by Vaillant, i.e., we consider static
signals and no dynamic behavior, and based on the universal HE properties delineated in
the preceding subsection, a mathematical HE model is formulated. The following definition
as well as the results derived in this subsection are from the author of this thesis.

Definition 2.18 An HE model is a 5-tuple H = (FS, G, ¢, A, ), where FS = [fsmin, fSmax] C
R~q Is the set of feasible fan speeds of the HE and:

o G = (Gss)fsers Is an indexed family of closed and bounded intervals that contains
for each fs € FS exactly one closed and bounded interval Ggs, i.e.,

Gts € G = Gis C R is a closed and bounded interval.
A set Ggs € G is called the set of gas valve positions with respect to fs.

o . = (Ls)fscrs IS an indexed family of functions tss : Ggs — Rsqo that are strictly
increasing as well as continuous and where G¢s € G, I.e.,

Lfs €L = Lfs . Grs = Rso S.t. Gis € G and s Strictly increasing and continuous.

A function tss €  Is called the ioni current function with respect to fs.

o N = (Ass)tscrs Is an indexed family of functions Ngs : Gss — Rso that are strictly
decreasing as well as continuous and where Ggs € G, I.e.,

As €N = Mg 0 Gis = Rso s.t. Gis € G and Ngs strictly decreasing and continuous.
A function N\es € A is called the equivalence AFR function with respect to fs.

o ( = ((s)fscrs s an indexed family of functions (ss : Ggs — Rso that are convex as
well as continuous and where Gg € G, I.e.,

(s €C = (551 Gis = R s.t. Ggs € G and (s convex and continuous.

A function (s € € is called the CO emission function with respect to fs.

Remark 2.19 According to Definition 2.18, the images of all ioni current functions tss,
of all equivalence AFR functions N\t and of all CO emission functions (s, fs € FS, are
contained in Rsg. This condition is justified, because the ioni current is always positive
(Remark 3.5 below), the equivalence AFR is always positive (Remark 2.5) and burning
natural gas always produces CQO, i.e., there is no negative emission of CO.

The following example presents an HE model according to Definition 2.18.
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Example 2.20 We set FS = [1,2] and G = [10fs, 20fs] for all fs € FS. Furthermore,
we define for all fs € FS functions tgs © Ggs — R, Mg © Gs — R and (s : Gis — R0
by
us(9) =109, Aw(9) = —g+100 and (i(g) = 9g°.

Then, H = (FS, (Gts)tsers. (tfs)rmsers. (Ass)scrs. (Cts)rsers) satisfies all conditions of Def-
inition 2.18, because Gss Is a closed and bounded interval, Le is strictly increasing and
continuous, Nes is strictly decreasing and continuous and (ss Is convex and continuous for
all fs € FS. Furthermore, the images of all functions are contained in R~q. Therefore,
‘H is an HE model according to Definition 2.18. However, the model H in this example is
artificial and not related to a set of measurement data.

Definition 2.18 of H is abstract in the sense that it is possible to build an HE model
without regarding any measurement data at all as demonstrated in Example 2.20. The ab-
straction from measurement data allows to argue with the HE related properties according
to Definition 2.18 only, i.e., the argumentation in this thesis are (almost) independent of
a particular set of measurement data or a particular regression or interpolation method.
Of course, when solving the ADA optimization problems in practice, the HE models must
be in accordance with the corresponding measurement data. How an HE model may be
generated from measurement data is discussed in the following Subsection 2.4.4. But first,
we derive some further mathematical properties of the HE model.

Lemma 2.21 The functions it and N of an HE model H are homeomorphisms. Their
images tts(Gss) and Ns(Gss) are closed intervals.

Proof. Let H = (FS,(Grs)scFs, (tfs)rsers, (As)ssers, (Crs)mers) be an HE model. Let
fs € FS. According to Definition 2.18, the function i is strictly increasing and continuous.
Therefore, 1t is bijective, i.e., its inverse Lf_sl exists. Because i is strictly increasing
and its domain is an interval, Lf’sl is also continuous [Garl3, p. 163]. In total, i is a
homeomorphism. As the image of a closed interval under a homeomorphism, the set
tts(Grs) is a closed interval as well.

The statements with respect to Ass are shown analogously. ]

The images of the HE model functions are essential for formulating and analyzing the
ADA algorithm below. Thus they are denoted as follows.

Definition 2.22 Let H = (FS, (Gfs)tsers. (ts)rsers. (Ars)sers. (Crs)fsers) be an HE model
and let fs € FS. The set of ioni currents with respect to fs is It = tts(Gyss). The set
of equivalence AFRs with respect to fs is Lg i= Ats(Ggs). The set of CO emissions with
respect to fs is COss = (s(Gss).

Corollary 2.23 The sets Iss and L are closed intervals in R~q for all fs € FS.

As already mentioned, the mathematical modeling and analysis of the ADA procedure
in this thesis is based on the properties of the HE model according to Definition 2.18 and
Lemma 2.21. In order to obtain meaningful HE models, we briefly discuss how to generate
an HE model from measurement data.
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2.4 Mathematical Heat Engine Model

2.4.4. Generating an HE Model from Measurement Data

Let us suppose that we have a set of HE measurement data, i.e., we have some Brennfeld
static signals of an HE specimen, and we are interested in an HE model that reflects the
measurement data. This corresponds to performing a curve fitting with the measurement
data.

To illustrate the curve fitting process, let us suppose that we have a set of n data points
{(fsk, gk. ix. Ak, COk) : k € [n]}. An exemplary set of measurement data with n = 304
data points is shown in Figure 2.9 above. Because each of the three outputs /, A and co is
obtained from the same two inputs fs and g, we perform three curve fittings, one for each of
the data sets {(fsk, gk, ix) - k € [n]}, {(fsk, gk, Mk) : k € [n]} and {(fsk, gk, cox) : k € [n]}.
Regarding the exemplary data shown in Figure 2.9, these sets correspond to the upper right
part, to the lower left part and to the lower right part of Figure 2.9, respectively.

Let 2, A and ¢ denote the resulting fits, respectively. Each fit is a function from a subset of
R2, which corresponds to the fan speeds and gas valve positions, to a subset of R, which
corresponds to the ioni current, the equivalence AFR and the CO emission, respectively.
From these fits the corresponding HE model can be derived as follows.

e For each fs € FS, we specify a closed interval Gg. This must be done such that
(fs, g) is in the domain of each of the three fits z, A and ¢ for all g € Gg. Usually,
this is done by considering a suitable hull (not necessarily convex) of the sample set
S = {(fsk,gk) : k € [n]}. For instance, in Matlab this corresponds to the function
boundary(S).

e In order to obtain the HE model functions s, Ass and (g, the domains of the fitted
functions ¢, A and { are restricted to {fs} x Gg for all fs € FS. l.e., for all fs € FS
we set

ts = LlifeyxGe,  Ms = Mimyxa, and (e = Climsyxa,-

Note that all these functions are well-defined according to the selection of the sets
G¢s In the previous step.

e Care must be taken to ensure that all these functions satisfy the conditions of Defi-
nition 2.18. This means that tss must be strictly increasing and continuous, Ag must
be strictly decreasing and continuous and (s must be convex and continuous for all
fs € FS. To achieve this, the boundaries of some of the intervals Gg may have to
be selected tighter or a different regression or interpolation method may have to be
selected.

The approach with the HE model proposed in Section 2.4.3 allows flexibility in the choice
of regression method. Any interpolation or regression method is feasible as long as the
corresponding model H satisfies the conditions of Definition 2.18. Because the data of the
Brennfeld static signals are already mean values, the Vaillant engineers prefer interpolation
of the data [PHE, Item 16668]. Two common interpolation methods are thin plate splines
and linear interpolation. If not otherwise stated, all graphs presented in this thesis as well
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Chapter 2 Technical Background

as the use cases presented in Chapter 9 below are based on a variant of linear interpolation.
This is done for the following reasons. Linear interpolations are usually computationally
less expensive, i.e., they are fast to evaluate. Furthermore, with linear interpolations it is
"easier" to adhere to the monotonicity conditions according to Definition 2.18. Finally,
the ADA procedure requires certain inverse ioni current functions Lf_sl, see for instance
Definition 6.5 below, and the inverse functions are more easy to determine/evaluate in
the case of a linear interpolation. However, whether interpolation or regression is more
appropriate and which is the best suited interpolation/regression method for generating
an HE model from Brennfeld static signals remain open questions and are left for future
research.

Next, we explain how the combustion control system loniDetect can be simulated with
the proposed HE model. This is relevant when the ADA procedure is presented in the
following Chapter 3.

2.4.5. Relation Between the Proposed HE Model and loniDetect

In the proposed HE model, an HE is modeled as a system with the two inputs fan speed
and gvp and the three outputs ioni current, equivalence AFR and CO emission, which
follows in a certain sense the "physical logic". This means that a fan speed and a gvp
result in a certain mixture. The combustion process corresponding to this mixture has a
certain equivalence AFR, a certain ioni current and a certain CO emission.

However, loniDetect works the other way around. As detailed in Section 2.3, loniDetect
is neither able to control the gas valve position directly nor to measure the equivalence
AFR. Instead, the ioni current is used as an indirect measure of the equivalence AFR to
control the gas valve, i.e., the inputs of loniDetect are the fan speed and the ioni current.
Its outputs are the gvp, the equivalence AFR and the CO emission. The following example
demonstrates how this is modeled with the proposed HE model.

Example 2.24 Let an HE model H = (FS, (Gss)tsers, (tfs)ssers, (As)rsers, (Cts)rseFs) be
given. Furthermore, let fs € FS be a given fan speed setpoint and let i € It be a given
ioni current setpoint. Then, loniDetect works as follows.

The fan speed is fixed at fs and the gas valve is adjusted such that the resulting ioni current
is equal to i. The corresponding gvp is g == Lfgl(/). With the gvp at hand, we can then
calculate the resulting equivalence AFR and CO emission via A = Ngs(g) and co = (s(9g).

Remark 2.25 /t is important to emphasize that loniDetect can only evaluate the inverse
ioni current function Lél but not the "non-inverted" ioni current function i, fs € FS.
This is particularly relevant for the ADA procedure, which is explained in the following
chapter.
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2.4 Mathematical Heat Engine Model

2.4.6. Discussion of the Proposed HE Model

As all models, the proposed HE model makes some simplifications, which are discussed in
this subsection.

Black box model The proposed HE model is a black box model in the sense that it
obscures the underlying physics [FSK08, p. 33]. It transforms the two inputs fan speed
and gvp to an equivalence AFR, an ioni current and a CO emission value without explicitly
considering physical laws. The combustion process as well as the ionization processes in
the flame are only approximated on a macroscopic level. Because Vaillant only provides
this kind of measurement data, the black box approach is predetermined. Therefore,
considering different modeling approaches is not in the scope of this work.

Challenges in modeling combustion processes based on physical laws, in particular the
ionization of flames, are explained in [Son23, p. 63].

Static signals versus dynamic behavior As mentioned in Remark 2.15, considering only
an HE system’s static signals and not its dynamic behavior is a simplification. Again, be-
cause Vaillant only provides this kind of measurement data, the restriction to static signals
is predetermined. However, simulating dynamic HE properties with so-called Hammerstein-
Wiener models is promising as demonstrated by Sonnenschein in his dissertation [Son23,
pp. 64 sqq.]. Whether this is also a suitable approach in the context of the ADA optimiza-
tion problem is an open question and left for future research.

Atmospheric conditions and other impacts The comparison of several Brennfeld static
signals indicates that the ioni current depends not only on the fan speed and the gvp but also
on other influences such as the gas pressure and temperature or atmospheric conditions
like the air pressure and humidity. This is also pointed out by Sonnenschein [Son23,
pp. 80 sqq.]. Nevertheless, the fan speed and the gvp have the largest influence on the ioni
current and regarding the ADA optimization the HE model according to Definition 2.18
has a sufficient approximation quality. But in order to obtain more precise HE models
and better simulation results, it might be worth to further investigate the influence of
environmental conditions on the ioni current.

Continuous fan speed and gas valve position As delineated in Remark 2.17, the fan
speed can only change in discrete steps. The same is true for the gvp. In contrast, the
proposed HE model assumes a continuous fan speed and gvp for simplification. While
the step size of the fan speed is rather small, the step size of the gvp is rather large. It
is shown in Section 3.2 below that the gvp is central for the ADA procedure. Whether
better simulation results regarding the ADA optimization can be achieved by considering a
discrete gvp instead of a continuous gvp is an open question and left for future research.
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To conclude the discussion of the proposed HE model, we briefly consider its simulation
quality.

Simulation Quality of the HE Model

Before ADA parameters are ultimately selected and stored in the combustion control soft-
ware, they are tested in the lab with a particular test procedure, which is described in [PHE,
Item 1618]. Therefore, this test procedure was also implemented with the proposed HE
model to assess ADA parameters with computer simulation. However, there is a certain
discrepancy between measured values in the lab and their simulated counterparts [PHE,
Item 16770]. For example, in one use case, the deviation of the resulting equivalence AFR
between the measured values and the simulated counterparts after 15 ADA iterations with
each ADA pair was approximately 0.1 at smaller fan speeds and approximately —0.05 at
larger fan speeds [PHE, Item 16770]. This indicates a potential shortcoming of the HE
model. Because the decision makers are nevertheless satisfied with the ADA parameters
obtained by the methods proposed in this study [PHE, Items 3124 and 7082], the simula-
tion quality is considered to be sufficient. However, further modeling work will have to be
conducted in order to obtain better simulation quality.

This concludes the presentation of the proposed HE model and also the presentation of

the technical background required to comprehend the ADA procedure, which is presented
next.
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ADA: Automatic Drift Adaption

In this chapter, the automatic drift adaption (ADA) procedure is presented based on the
United States patent “Control Facility For a Burner System” [LS17] as well as on the
Vaillant intern documentations Konzept Sitherm Pro [Sch15], [WHB] and [PHE]. The
patent [LS17] was filed by Lochschmied and Schmiederer and contains the invention of
the ADA concept. In this thesis it is referred to as the 'ADA patent’. The examples and
figures in this chapter, which are used to demonstrate and explain the ADA procedure,
as well as all formulations with respect to the HE model, are added by the author of this
thesis.

Remark 3.1 Note that the ADA patent [LS17] as well as the Vaillant intern documenta-
tions [Sch15], [WHB] and [PHE] are technical documents. They do not always provide
mathematically exact statements. Some of their statements may be based on experience
and on trial and error. In this sense, ADA is a technical procedure and can be considered
as a heuristic to compensate the drift.

Although ADA is an algorithm, the aforementioned documentations contain only a partial
algorithmic description. Therefore, the mathematical and algorithmic aspects of ADA are
secondary in this chapter. Rather it is considered a technical description of ADA. A math-
ematical description of the ADA algorithm and an analysis of its convergence properties
are provided in Chapters 5 to 7 below.

As stated in Section 2.3.1, combustion control based on ionization has a large drawback.
The ioni electrode has to be positioned in the flames, but there it is prone to oxidation
processes. With increasing operating time an oxide layer accrues on the electrode's surface.
This oxide layer has the effect of an electrical insulation and reduces the conductivity of
the electrode [LS17, p. 5]. This alters the electrical characteristics of the ioni current
measurement circuit.

Remark 3.2 In the context of an ioni electrode, the process of oxidation is also called
aging or drift. In thesis, the term drift is mostly used.

We first describe how drift is modeled. Then, the notion behind the ADA procedure is
illustrated. Finally, the more advanced concepts of a sequence of ADA iterations and a
plurality of ADA pairs are presented.

3.1. Modeling of Drift

The influence of drift on combustion control is closely related to the ioni current measure-
ment circuit.
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im(fs, 9) - - im,rp (5, 9)

Rce  m(fs,g) D

® v ®
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ri(fs, g)

Figure 3.1.: In the left part, the equivalence circuit diagram of the ioni current measurement
circuit is shown. It consists of a DC voltage source, a current limiting resistance, the flame
resistance and an ammeter to measure the resulting current. The occurrence of drift is
modeled by an additional resistance rp that is connected in series. This situation is depicted
in the right part. Adapted from [LS17].

3.1.1. loni Current Measurement Circuit

The ioni current measurement circuit is one of the key components of loniDetect. It is
explained in detail in the corresponding ADA patent [LS17, p. 5] and in the Vaillant intern
documentation [Loc16]. Both documents also contain a much simpler equivalent circuit
diagram of the measurement circuit. An equivalent circuit is "a simpler but functionally
equivalent form for complicated systems" [Joh03, p. 1]. The equivalent circuit correspond-
ing to the ioni current measurement circuit is illustrated in the left part of Figure 3.1. It
consists of a direct current (DC) voltage source with a known voltage U, an ammeter and
two resistances that are connected in series. The ammeter is used to measure the circuit's
current ips. This current is the ioni current that is used in loniDetect to control the AFR
as described in Section 2.3.2. The two resistances are a current limiting resistance Rc|
and the flame resistance ry.
The current limiting resistance is an ohmic resistance with a constant size. As the name
suggests it is included in the circuit to reduce and limit the current ip;. The flame resis-
tance depends on the electric conductivity of the flame and is a function of the air quantity
and of the fuel quantity [LS17, p. 5]. Because in loniDetect the mixture of air and fuel is
adjusted via the fan speed and the gvp, the flame resistance is considered as a function
of the fan speed and the gvp in following. Details about the electrical characteristics of
flames are stated in Remark 2.6.
For the subsequent analysis of the ADA optimization problem, it is convenient to combine
the current limiting resistance and the flame resistance to re(fs, g) = RcL + m(fs, g).
Because the two resistances are connected in series, the measured current is (by applying
Ohm's law)

U

(. g)’ 31

im(fs, g) =

Remark 3.3 For the remainder of this thesis, U corresponds to the DC voltage of the
equivalent circuit of the ioni current measurement circuit. As a DC voltage, U is constant.
Furthermore, U is positive, i.e., U > 0.
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3.1 Modeling of Drift

Remark 3.4 Let the fan speed fs and the gvp g be such that we have a stable combus-
tion. Then, the total resistance re(fs, g) is always greater than zero and bounded. Even if
there was a short circuit because the electrode was in contact with the burner, the current
limiting resistance would still be present and limit the current and thus re(fs, g) > 0.

On the other hand, because we have a stable combustion, the flame is an electrical con-
ductor and its resistance ry(fs, g) is finite and thus re(fs, g) < oo. If the electrode was
bent such that it is far away from the flame, an electric current could not flow. But such
a scenario is beyond the scope of this work.

Remark 3.5 Let the fan speed fs and the gvp g be such that we have a stable combustion.
Then, the ioni current ip(fs, g) is always greater than zero and finite. According to
Remark 3.4, we have 0 < rr(fs, g) < oo. Therefore, the ioni current iy (fs, \) = Wlék) is
well-defined and because U > 0, we have 0 < iy < 00.

In the equivalent circuit of the measurement circuit, the phenomenon of drift, i.e., an
accretion of oxide on the electrode, is modeled as an additional resistance that is connected
in series [LS17, p. 5]. This situation is depicted in the right part of Figure 3.1, where the
additional resistance rp is connected in series in the equivalent circuit of the measurement
circuit. This is the so-called drift resistance.

Definition 3.6 The additional resistance that models the electrode’s drift in the equivalent
circuit is called drift resistance.

With the drift resistance present, the total resistance of the circuit is r(fs, g) = Rq +
m(fs, 9) + rp = re(fs, g) + rp. The measured ioni current is (by applying Ohm’s law)

u U
r(fs,g)  re(fs,g) +rp’

imrp (s, g) = (3.2)
The influence of drift on the measured ioni current corresponds to comparing (3.1) with
(3.2). We have

rp#0 = iu(fs, g) # imrp(fs. g),

which has an impact on the combustion quality as it is shown in Section 3.1.4 below. But
first, we take a closer look at the assumptions with respect to the drift resistance made in
this thesis.

3.1.2. Assumptions with Respect to the Drift Resistance

A central assumption made by Vaillant is that the drift resistance does not depend on
the fan speed or the gvp, i.e., rp is not a function of the fan speed or the gvp [PHE,
Item 1618]. An ohmic resistance is (almost) constant and does not depend on the fan
speed or the equivalence AFR and is therefore suitable for simulating a constant drift.
Accordingly, Vaillant simulates drift in the laboratories by connecting an additional ohmic
resistance in series in the measuring circuit [PHE, Item 1618].
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Remark 3.7 The ADA patent [LS17] assumes the more general case that the resistance
depends on the fan speed and possibly also on the gas valve position [LS17, p. 9]. However,
practical experience by Vaillant has shown that the simplified assumption of rp not being
a function of fs or g is sufficient.

Another aspect related to assumptions on the drift resistance is time dependency. Ac-
cording to the ADA patent, "drift only takes place as a creeping phenomenon" [LS17,
p. 3], i.e., the drift resistance changes slowly over time. In the simulations, we consider
rather small period of times. Therefore, the simplifying assumption is made that the drift
resistances is not a function of the time. This assumption is consistent with the already
mentioned approach to simulate drift in the lab, because the ohmic resistances used to
simulate drift are constant and thus are not time depended. The only way to simulate a
change of drift in the lab is to replace the used ohmic resistance. This is actually done
when testing ADA parameters with a certain test pattern in the lab, where three differ-
ent drift resistances rp1 < rp» < rp s are considered [PHE, Item 1618]. The following
assumption summarizes the considerations made so far.

Assumption 3.8 The drift resistance is always assumed to be a constant, i.e., rp € R. In
particular, it is assumed to be not a function of the fan speed, of the gvp or of time.

An aspect that is important in practice is the definition of the reference point for no
drift. A natural definition for no drift would be the situation that a brand new electrode and
burner are used, i.e., if the HE has zero operating hours. But Vaillant defines a situation
as no drift, where the ioni electrode has already been exposed to oxidation for a period of
90 hours and the burner was exposed to oxidation for a period of 20 hours. This is done,
because the effect of drift is particularly noticeable at the first hundred hours of operating
time [PHE, Item 1618]. Thereafter, the oxidation process takes place at a much slower
rate and eventually stabilizes at a certain point.

All measured ioni currents that are considered in this work were recorded according to
Vaillant’s definition of no drift. This motivates the following definition.

Definition 3.9 The term no drift, i.e., the case rp = 0, corresponds to the situation that
the ioni electrode has already been exposed to oxidation for a period of 90 hours and the
burner was exposed to oxidation for a period of 20 hours.

A consequence of Definition 3.9 is that a negative drift resistance is possible. This
might happen if an installer mistakenly cleans the ioni electrode with a wire brush. Then,
the oxide layer is removed and the ioni current measurement circuit’'s total resistance is
smaller than in the situation according to Definition 3.9. Because this is an unintended
and unlikely case, it was decided to consider only nonnegative drift resistances in this work.

Assumption 3.10 The drift resistance is always assumed to be a nonnegative constant,
e, rp € R ={x€R:x>0}.

Remark 3.11 According to the ADA patent [LS17], "[b]ending or displacement respectively
of the ionization electrode" might have the effect of a negative drift resistance [LS17, p. 6].
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This seems to be a contradiction to Assumption 3.10. But these geometric tolerances with
respect to the ioni electrode have the effect of an additional drift resistance. This additional
resistance is independent of the considered rp. It can even be present if we actually have
a situation with no drift. This is detailed in Sections 6.3.2 and 7.4.1 below.

We summarize that the drift of the ioni electrode is modeled as a nonnegative and
constant ohmic resistor rp that is connected in series in the equivalence circuit diagram
of the ioni current measurement circuit. The resulting drifted ioni current is calculated
by (3.2). Therefore, Equation 3.2 is added to the HE model presented in Section 2.4 to
represent drift in the HE model.

3.1.3. Drifted HE Model

The measured ioni current ips(fs, g) in the equivalence circuit diagram corresponds to t(g)
in the HE model, see also Section 2.4. In this subsection, we add the drifted ioni current
im,rp, (fs, g) to the HE model. Note that we only need to adjust the ioni current functions
in the HE model in the event of drift. The other variables and functions of the HE model
remain unchanged. The equivalence AFR and the CO emission depend on the mixture of
air and gas and thus they depend only on the fan speed and the gvp and not on the drift
resistance.

It is possible to express the drifted ioni current as a function of the ioni current without
drift. The corresponding ioni current without drift is iy (fs, g) = Wus,g) according to
(3.1). Let rp > 0 be a drift resistance. Then, the corresponding ioni current with drift is

im,rp,(fs, g) = m according to (3.2). By plugging rr(fs, g) = m into (3.2), we
obtain U U Uin(fs. 9)

. ImATS,

i (fs, g) = = = MBI (3.3)

re(fs, 9) + 1o m +rp  roim(fs,g) +U
Equation 3.3 motivates the following definition the drifted HE model.

Definition 3.12 Let H = (FS, (Gfs)tsers. (ts)rsers. (Ass)fsers. (Cs)rsers) be an HE model
according to Definition 2.18 and let rp > 0 be a drift resistance. The corresponding drifted

HE model is the 5-tuple H,, = (FS, (Gs)sers. (tis.rp )isers. (Afs)isers. (Cts)rsers), where
(ths,rp )iscFs s an indexed family of functions ifs ., : Gss — R0 that are defined by

Uits(g)

— ="V g € (. 34
rpifs(g) + U I = (34

I’fS,I’D (g) =

The functions i, ,, are called the drifted ioni current functions with respect to fs and rp.

Lemma 3.13 Let rp > 0. Then, the drifted ioni current functions tss ., are well-defined
for all fs € FS.

Proof. Let rp > 0 and let fs € FS. According to Definition 2.18, we have tr(g) > 0
for all g € Ggs. In addition rp > 0 and U > 0, thus we have rpis(g) + U > 0, ie.,
the denominator of (3.4) is greater than zero and the fraction is well-defined. Because
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the nominator Uiss(g) is positive as well, we have ig,,(9) > 0 for all g € Gg, i.e,
Lfs,rD(Gfs) C R>o. [

Analogous to the undrifted ioni current function g, the drifted functions tfs ., are also
strictly increasing homeomorphisms. To show this, we consider the following auxiliary
function, which is motivated by (3.4).

Definition 3.14 Let rp > 0. We define the auxiliary function

Ux

hrp i Rso — Rso,  hpp(x) = Ut rox’

Lemma 3.15 The function h,, is well-defined, continuous and strictly increasing.

Proof. That h,, is well-defined follows from the fact that its domain is R~o (analogous
to the proof of Lemma 3.13). Because h,, is composed of continuous operations, it is
continuous as well. The function h,, is even differentiable. Its derivative is

d U(U+ rpx) — Uxrp U?
—h,(x) = = .
dx (U+ rpx)? (U + rpx)?
We have Lh, (x) > 0 for all x € R, i.e., hy, is strictly increasing on Rso. O

Lemma 3.16 Let rp > 0 and let fs € FS. The drifted ioni current function i ,, according
to (3.4) is a strictly increasing homeomorphism.

Proof. By construction, we have i, = hoirs. The functions ts and h are both strictly
increasing and continuous (Definition 2.18 and Lemma 3.15, respectively). As a compo-
sition of strictly increasing and continuous functions, s, is also strictly increasing and
continuous. In particular, i ., is bijective and thus its inverse function Léler exists. Be-
cause fs,r, IS strictly increasing and its domain is an interval (the set Gg is an interval
according to Definition 2.18), Lgler is also continuous [Garl3, p. 163]. In total, tf,, is a

strictly increasing homeomorphism. O

The images of the drifted ioni current functions ifs . fs € FS, play a central role in the
ADA procedure and thus they are denoted as follows.

Notation 3.17 Let H,, = (FS. (Gfs)ssers. (tfs.rp )sers. (Ms)ssers. (Cis)tsers) be a drifted
HE model. The images of the drifted ioni current functions s, are called the sets of
drifted ioni currents (with respect to fs and rp) and are denoted by It ,, = tfs,r, (Gss) for
all fs € FS.

Corollary 3.18 Let fs € FS. The set of drifted ioni currents Igs ., Is a closed interval in
Rso.

Proof. As the image of a closed interval under a homeomorphism, /¢ ., is a closed interval
as well. ]
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Recall from Section 2.4.5 that loniDetect can only evaluate the inverse ioni current
functions l,f_sl, fs € FS. This also applies to the situation with drift. The following remark
is analogous to Remark 2.25.

Remark 3.19 /t is important to emphasize that if a drift resistance rp is present, loniDetect
can only evaluate the inverse of the drifted ioni current function Lf_ser, fs € FS. It can
neither evaluate the "non-inverted" drifted ioni current function iss ., nor the ioni current

functions with no drift, i.e., Lt and Lfgl.

With the drift included into the HE model, we show the influence of drift on the com-
bustion control in the following subsection.

3.1.4. Impact of Drift

To illustrate the impact of drift, recall from Section 2.3.2 that the combustion control
system loniDetect is blind with respect to the equivalence AFR and to the gvp. Instead,
the ioni current is used as an indirect measure of the equivalence AFR to control the
gas valve. For this, the ioni current setpoints of an HE must be determined with special
equipment to measure the equivalence AFR in the lab as stated in Section 2.3.3. It is
important to emphasize that the ioni current setpoints are determined under the condition
of no drift.

But with increasing operating time an oxide layer accrues on the electrode and we have
an additional drift resistance rp in the measurement circuit, which alters the ioni current
according to (3.3). The following example demonstrates how this change in ioni current
caused by drift influences combustion control and the AFR.

Example 3.20 Let H = (FS, (Gys)fsers. (bts)fsers. (Ass)fsers. (Crs)fsers) be an HE model
based on Vaillant measurement data according to [PHE, Item 6371]. Let us suppose that
a fan speed setpoint fs € FS is given. Let the corresponding ioni current setpoint according
to the control curve be iset. Then, the combustion control by loniDetect works as follows.
The fan speed is fixed at fs. The gas valve is then moved such that the resulting ioni
current is iser. Using the HE model, this corresponds to calculating the gvp g, = Lf’sl(iset),
which is equivalent to ves(gn) = kket- The subscript n refers to the situation with no drift.
The fan speed fs and the gvp g, in turn result in the equivalence AFR A, = Ns(gn).

This situation is illustrated in Figure 3.2. The solid curve in the left part of Figure 3.2 cor-
responds to the inverse ioni current function of’sl. With this function the gvp corresponding
to the ioni current setpoint iser IS determined by loniDetect, see also Section 2.4.5. This
gvp Is denoted by g, and the corresponding point is marked by the dot in the left part of
Figure 3.2. The right part of Figure 3.2 shows the equivalence AFR function N¢. The
equivalence AFR resulting from fs and g, is As(gn) = 1.3. The corresponding point is
marked by the dot in the right part of Figure 3.2. An equivalence AFR of 1.3 is a common
value for normal HE operation, see also Section 2.2.

We further assume that some drift has taken place and that a drift resistance rp = 140k
is present, which is a common value [PHE, Item 1618]. In the HE model, the drifted ioni
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Figure 3.2.: The impact of drift is illustrated for a given fan speed setpoint fs and an ioni
current setpoint it as well as the drift resistance rp = 140k<2. The dot corresponds to
the situation with no drift. The circle corresponds to the situation with drift. In the case
of drift, the resulting equivalence AFR decreases from Ax(g,) = Nis © L{Sl(iset) =13 to
Nis(gg) = Nss © Lf;ver(I'Set) = 1.2. The asterisk corresponds to the setpoint that is perfectly
adapted to rp, because A 0 Lt (leet,r,) = 1.3.

current is represented by the function i ,, which is calculated from v by (3.4). lIts
inverse function Lf’syer is represented by the dashed curve in the left part of Figure 3.2.
Recall that the controller does not have any direct information about the AFR. It just
follows the control curve, i.e., it controls the gas valve such that the ioni current equals
iset. In the drifted case, this results in the gvp g4 = L]:Sler(l'set). The subscript d refers to
the situation with drift. This is illustrated by the circle in the left part of Figure 3.2. Note
that the resulting gvp is larger than the gvp in the case with no drift, i.e., gg > ¢,. The
increased gvp results in the reduced AFR Nss(ggq) = 1.2, which is represented by the circle
in the right part of Figure 3.2. The combustion process is not optimal anymore.

In order to operate at the desired AFR A\, = 1.3 also in the drifted case, the ioni current
setpoint has to be corrected. This corrected ioni current setpoint is denoted by iset,r,
and is marked by the asterisk in the left part of Figure 3.2. Then, the resulting gvp is

Lf;,er(/set,rD) = g, and the resulting equivalence AFR equals A, = Ns(gn) = 1.3 again.

As demonstrated in Example 3.20, if no correction is made, then the AFR becomes
more and more fuel rich with increasing drift resistance. As a consequence, the emission
of CO increases and in the worst case the appliances become toxic. Therefore, every ioni
current setpoint of the control curve has to be corrected according to Equation (3.4).
But the value of rp is unknown in general and it is hardly possible and not practical
to measure it directly. The ADA procedure is a solution to this problem. According
to the ADA patent [LS17], ADA corrects the measured current "simply and reliably"
without "exceeding predetermined limits for the combustion values" [LS17, p. 2]. The
ADA procedure is presented in the following sections.
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3.2. The Notion of ADA

As illustrated in the previous section, in order to ensure a safe combustion, we need the
drifted ioni currents g ,, according to (3.4). For this, we require the unknown drift
resistance rp. The goal of ADA is to approximate rp. In this section, we illustrate how
this is done by ADA. For this, we assume for the remainder of this chapter that an HE
model H = (FS, (Gs)rsers. (ts)fsers. (As)fsers. (Crs)sers) and a drift resistance rp > 0
are given.

As a first step, we solve (3.4) for rp.

Lemma 3.21 Let fs € FS and g € Gy, then

1 1
V@ " wle)

rp =

). (3.5)

Proof. Let fs € FS and let g € Gg. Note that ts(g) > 0 and tfs,r,(g) > 0 according to
Definitions 2.18 and 3.12, respectively. We have

B rotss(g) + U 1 _Io + 1
Lfs,rp (g) Ul'fs(g) Ufs,rp (g) u Lfs(g)
1 _ 1 )
Ufs,rp (g) Lfs(g) .

34) &

= I’D:U(

[l

Lemma 3.21 states that if we know the undrifted and the drifted ioni current of a certain
actuator position (fs, g), then we also know rp.
In ADA, this is done at a specific operating point that is called test point [LS17, p. 7]
[Sch15] [WHB, Item 4229]. The test point is specified by a fan speed and an ioni current.
The fan speed is called test fan speed and denoted by t in the following. The ioni current
is called test joni current and is denoted by i¢ in the following. It is important to emphasize
that the test ioni current corresponds to the situation with no drift.
The fan speed t and the ioni current j; correspond to a unique gvp. In relation to the HE
model, the corresponding gvp of the test point is g4 = Lt’l(it). The subscript A stands
for ADA. To comply with the HE model, we require that t € FS and iy € Iy = 1+(Gy).
Then, ¢;1(i;) is well-defined (Definitions 2.18 and 2.22). In particular, ga € G holds.
By plugging the data of the test point into (3.5), the drift resistance is calculated by

U U

terp(9a) e 2

rp =
The test fan speed t and the test ioni current j; are selected in the lab and thus they
are known. However, the drifted test ioni current ¢t ,,(ga) is unknown, because rp is
unknown. If we could set the gvp to ga, then loniDetect could simply measure the resulting
ioni current ¢t ,(ga). But loniDetect can only evaluate the inverse drifted ioni current
function Lf_syer, see also Remark 3.19.
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There is one small exception. Let us suppose that we have a given fan speed fs € FS
and a given ioni current /. Once the gas valve has moved to the position g = Lf_s,er(l')
(well-defined if / € Ig ), loniDetect can fix the gvp at g. Then, this particular g can be
considered as known to loniDetect and the drifted ioni current ¢t ,,(g) can be determined
(if g € G¢). le., while the gvp is fixed at g, the fan speed is changed from fs to t and
then the resulting ioni current is measured. The ADA procedure uses this small exception
to approximate ¢t ,(g4), which in turn is plugged into (3.6) in order to approximate rp.
The approximation of ¢t ,,(ga) is a key component of ADA and is described in detail next.

3.2.1. Approximation of the Drifted Test loni Current and of the Drift
Resistance

In order to approximate ¢t ,,(ga), a second operating point, the so-called start point, is
required [LS17, p. 7]. The start point is also specified by a fan speed and an ioni current.
These are denoted by s and /s, respectively, in the following. The start fan speed has to be
larger than the test fan speed, i.e., s > t [LS17, p. 7] [WHB, Item 4228]. Furthermore,
the test point and the start point must have the same gvp [LS17, p. 7], i.e., the start
ioni current must be selected such that ¢ (is) = ga = t;*(ir). Note that the start
point is specified for the case with no drift, i.e., ts(ga) = is (and not ¢ ,,(g94) = is). To
comply with the HE model, we require that s € FS and g € G, because is = t5(ga), or
equivalently ga = t51(is), is well-defined in this case.

Now, let us suppose that an oxide layer has accrued on the ioni electrode that corresponds
to an unknown drift resistance rp > 0. We want to approximate rp according to (3.6)
and require the value of vt ,,(ga). With the start and the test point at hand, ¢¢,,(94a)
is approximated in two steps. First, the gvp ga is approximated by §a = L;}D(is), ie.
the fan speed is fixed at s and the gas valve is moved such that the resulting drifted ioni
current corresponds to is. Then, the gvp is fixed at g4 and the fan speed is reduced from
s to t. The resulting ioni current ¢t ,(ga) is the approximation of ¢t ,,(ga), which is then
plugged into (3.6) to approximate rp. In total, we perform the steps

" 1. A . . U U
9a =157 (is), ltrp =tep(ga) and Pp=—— —. (3.7)
It,I’D It

The following example demonstrates the approximation of rp according to (3.7).

Example 3.22 The HE model considered in this example is based on Vaillant measurement
data according to [PHE, Item 6371]. Let us suppose that we have already selected a start
point with the fan speed s € FS and the ioni current is € Is as well as a test point with
the fan speed t € FS and the ioni current iy € Iy, where s > t. Furthermore, the start and
the test point are selected such that they have the same gvp, i.e., Ls_l(/s) = Lt_l(it) =dga
or equivalently ts(ga) = Is and t+(ga) = Ir.

The start and the test point as well as the corresponding ioni current functions are shown
in Figure 3.3. The solid orange curve corresponds to the ioni current function at the start
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It |

ioni current /

min‘(Gt) min‘(GS) gA max‘(Gt) max‘(GS)

gvp 9

Figure 3.3.: The start point (s, is) and the test point (t,i;) as selected in Example 3.22 are
shown. Their ioni currents are selected such that both points have the identical gvp ga,
i.e., t71(is) = 7 (iy) =t ga. In particular, ga € Gs N G; holds.

fan speed and the solid blue curve corresponds to the ioni current function at the test fan
speed. The start and test ioni current are selected such that both points have the same
gvp ga and such that ga complies with the HE model, i.e., ga € Gs and g4 € G;. The
corresponding start ioni current is is = ts(ga) and the start point is marked by the orange
dot in Figure 3.3. Analogously, we have iy = t+(ga) and the test point is marked by the
blue dot. Note that the start point and test point are specified for the case with no drift.
Let us further suppose that a drift resistance rp = 140kS2 is present. The corresponding
drifted ioni current functions according to (3.4) at the start fan speed and at the test fan
speed are represented by the dashed orange and blue curve, respectively, in Figure 3.3. In
the following, we demonstrate the approximation of rp according to (3.7).

First, the gvp ga is approximated with the start point, i.e., with the start fan speed s
and the start ioni current is. This corresponds to evaluating L;}D(is). This situation is

depicted in Figure 3.4. The solid curve corresponds to the inverse ioni current at the start

fan speed s with no drift, 1,;1. The dashed curve corresponds to the inverse drifted ioni

current function at s, LS_}D. In the case of no drift, the start joni current is corresponds to
the gvp ga, i.e., L3 (is) = ga. This is marked by the dot in Figure 3.4. However, because
rp is present, loniDetect can only evaluate L;}D (is), see also Remark 3.19. Therefore, the
gvp is approximated by §a = L;}D(is). This is marked by the circle in Figure 3.4.

To approximate the drifted test ioni current iy, = tt,,(ga), the gvp is fixed at ga and
the fan speed is reduced from s to t. This situation is depicted in Figure 3.5. Analogously
to Figure 3.3, the solid and dashed blue curve correspond to iy and L¢,,, respectively.
The test point with the ioni current iy and the gvp ga = L{l(it) is marked by the dot.
The drifted test ioni current iy, ‘= ttr,(ga) is marked by the asterisk. Recall that the
goal of ADA is to approximate Iy ,. With the approximation ga of ga, we obtain the
approximation ?t,ro = tt,rp(ga). This point is marked by the circle in Figure 3.5.

With this, we can finally approximate the drift resistance according to (3.7). In this
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S,I'p

gvp g

Is
ioni current i/

Figure 3.4.: The approximation of the gvp ga = 2 1(is) by using the start point is shown. The

dot corresponds to the undrifted start point (is, ga). Because loniDetect can only evaluate

Lo+ . the gvp ga is approximated by ga = ¢_} (is), which is represented by the circle.

S.'p

example, we obtain 7p = 84kS). Because rp = 140kS2, this means that the drift resistance
was approximated by approximately 60 percent of its true value.

Approximating the drift resistance is only an intermediate step. Our ultimate goal is to
obtain the drifted ioni currents according to (3.4).

3.2.2. Approximation of Arbitrary Drifted loni Currents

Equation (3.4) can be interpreted as a transformation, where a given ioni current ts5(9g)
is transformed to its drifted counterpart vg ,,(g) for a given drift resistance rp > 0. By
plugging the approximated drift resistance 7p into (3.4), we obtain the approximation

ULfs(g)
Poifs(g) + U

of the drifted ioni current g ,,(g) for fs € FS and g € Gg.

Lfs,7p(9) = (3.8)

Remark 3.23 To avoid case distinctions, we suppose that (3.8) is well-defined for all
considered drift resistance approximations fp for the moment. A function corresponding
to (3.8) and an appropriate domain for the case fs = s are formally defined in Chapter 5
when a mathematical formulation of the ADA algorithm is presented.

Equation (3.8) is used to approximate the drifted counterparts of the ioni current set-
points of the control curve. For instance, let fs € FS and let iset be the corresponding
ioni current setpoint according to the control curve. If et is not adapted with respect
to rp, the combustion quality is not optimal anymore as demonstrated in Example 3.20.
Therefore, iset is updated according to (3.8) as soon as a drift resistance approximation
fp is available. Then, fset 7, == Foiftiu is the updated ioni current setpoint of the control
curve for the fan speed fs and the combustion quality usually improves.

40



3.2 The Notion of ADA

ioni current /

ga
gvp g

Figure 3.5.: The approximation of the drifted test ioni current i;,, = tt,,(ga) by using the
approximation ga of ga is shown. The gvp is fixed at g4 and the fan speed is adjusted to
t. This corresponds to evaluating t¢,,,(ga) = ?t,rD, which is represented by the circle. The
undrifted test point is represented by the dot and the drifted test point is marked by the
asterisk. It is apparent that |7f,rD — it | < lit — it.rp|, i.e., the determined 7t,,D is a better
approximation of i, than i is.

Example 3.24 This Example continues Examples 3.20 and 3.22. We consider the situation
as in Example 3.20, i.e., we have the fan speed setpoint fs and the ioni current setpoint
Iset. In the case with no drift, the resulting equivalence AFR is X\, = N 0 Lél(iset) =13
as shown in Figure 3.2.

Furthermore, we suppose that the drift resistance rp = 140k<Q is present. If iset IS not cor-
rected with respect to rp, then the resulting equivalence AFR is Ay = /\fsolzé'er (lset) = 1.2
as demonstrated in Example 3.20 and according to Figure 3.2, i.e., the combustion quality
has deteriorated.

Now, let us suppose that the drift resistance is approximated by fp = 84k as done in
Example 3.22, i.e., the drift resistance is approximated by approximately 60 percent of its
true value. With this, we approximate the drifted ioni current setpoint iset,r, = ngiﬁu
by lset,rp = FD(iiftiU according to (3.8). With this, we obtain the (not perfectly) corrected
gvp ge = Lé]er(l.set,fD), which in turn results in the equivalence AFR Nes(gc) = 1.27 and
the combustion quality has improved.

This situation is depicted in Figure 3.6. The left part of Figure 3.6 is an enlarged section of
the left part of Figure 3.2. The point resulting from the correction with the drift resistance
approximation fp is represented by the square. The drifted ioni current setpoint approxi-
mation iset ¢, results in the corrected gvp g.. Analogously, the right part of Figure 3.6 is
an enlarged section of the right part of Figure 3.2. The corrected gvp g. results in the
equivalence AFR Nes(gc) = 1.27, which is again represented by the square. This is closer
to the desired equivalence AFR A, = 1.3 than Ay = 1.2 to A\, Is, I.e, the combustion
quality has improved compared to the case with drift but without a correction.
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Figure 3.6.: The left and the right part of this figure show an enlarged section of the left
part and of the right part of Figure 3.2, respectively. The square in the left part represents
the approximation of iet,, that is determined by applying (3.8) with 7p = 84kQ2 from
Example 3.22 and ise: from Example 3.20. The resulting equivalence AFR is represented by
the square in the right part of this figure. Because As(g:) = MAss © Lé,lro(isetfo) = 1.27, the
situation has improved compared to Ag(gy) = A © Lf*s}rD(iset) =1.2.

Next, we briefly discuss the selection of the start and the test point. In particular, we
consider how their selection is related to the approximation quality of i+ ,, and 7p according
to (3.7).

3.2.3. Approximation Quality and Selection of the Start and Test Point

The start point (s, is) and the test point (t, /) are essential for the approximation of rp
according to (3.7). The following definition states how s, t, is and j have to be selected
in order to comply with the HE model and with the considerations made so far. Because a
start point and a test point are assigned to each other, the combination of both is denoted
as an ADA pair in this thesis.

Definition 3.25 Let 1 = (FS, (Gts)tsers. (trs)sers, (Ass)fsers. ($is)sers) be an HE model.
A quadruple (s, t, is, ir) is called well-defined ADA pair with respect to H, if

s, teFS . s>t, is€ls and i €l

It is called well-selected ADA pair with respect to H, if in addition 11 (is) = ¢ (iy) = ga
holds.

Remark 3.26 Note that an ADA pair is only well-defined or well-selected in relation to an
HE model H. For instance, if a well-selected ADA pair is considered with a different HE
model H # H, then it might not be well-selected anymore. Such a situation is often caused
by tolerances with respect to the position of the ioni electrode relative to the burner. Then,
the condition 171 (is) = 17 *(ir) of Definition 3.25 is usually not satisfied anymore. This
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is detailed in Section 6.3.2 below. For the moment, we consider only well-selected ADA
pairs. When there is no risk of confusion, the HE model related to a well-selected ADA
pair is not explicitly stated for the remainder of this thesis.

Let (s, t,is, ir) be a well-selected ADA pair. Its approximation quality of rp according
to (3.7) depends on two aspects. First, we need a good approximation of ga, i.e.,

194 = gal = leg 7, (is) — 5 (6s))

should be small. Therefore, the start point should be selected such that L;}D(is) and

Ls_l(is) are close to each other. For instance, in Example 3.22 this can be achieved by
selecting a smaller start ioni current /s according to Figure 3.4. Note that this would result
in a smaller ADA gvp ga = ¢5 *(is), because ¢g ! is strictly increasing.

Second, we want that ¢¢ ,(ga) is close to t¢,,,(ga). Therefore, the test point should be
selected such that the absolute value of the gradient of ¢t ,, is small in the vicinity of ga
(under the assumption that ¢, is differentiable), i.e.,

d ) ~
—tt,rp(g)| issmall V g € [ga — 6, 9a + 8], 6 = |ga — Jal.

g
For instance, in Example 3.22 this can be achieved by selecting a larger test ioni current
iy according to Figure 3.5. However, this results in a larger ADA gvp ga = t; *(ir). This
contradicts the selection of a smaller start ioni current is, because a smaller /s results in a
smaller ga.

Note that a different drift resistance 7p # rp results in different drifted ioni current func-
tions ¢t 7, # Lt,r, and L;%D #* L;}D in general, which makes the selection of an ADA pair
more complicated.

These considerations illustrate the challenges when selecting an ADA pair with respect to
the approximation quality. In addition, certain combustion limits must not be exceeded
during the function evaluations according to (3.7). This work addresses the challenge of
selecting optimized ADA pairs. The goal as well as the scope of this work are formulated
in more detail in Section 3.5.

The approximation of the drifted test ioni current and of the drift resistance according
to (3.7) as well as the approximation of arbitrary drifted ioni currents according to (3.8) are
the core of the ADA procedure. By applying a combination of (3.7) and (3.8) successively,
the approximation quality can be improved. This gives us a sequence of approximations,
which is detailed next.

3.3. Sequence of ADA Iterations
Equation (3.7) usually only partially approximates the drift resistance. For instance, in

Example 3.22 we obtained 7p = 0.6rp. Of course, we are interested in a perfect approxi-
mation of rp, which can be achieved by successively applying (3.7).
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To illustrate this, we require the drifted start and test ioni current. These correspond to
the transformation of the start and test ioni current to their drifted counterparts according
to (3.4).

Definition 3.27 Let (s, t, /s, it) be a well-defined ADA pair. The drifted start ioni current
and the drifted test ioni current are defined by

Is,rp = Ls.rp(gs) with gs = l,;l(is) and it = Lt.rp(gr) With gr = L;l(l't),
respectively.

Remark 3.28 Note that the drifted test ioni current i ., according to Definition 3.27
corresponds to the drifted test ioni current vt ., (ga) used to illustrate the notion of ADA
in Section 3.2.

Lemma 3.29 Let (s, t,is, ir) be a well-defined ADA pair. Then, the drifted start and test
ioni current are well-defined. Furthermore, we have

] = 7Ui5 and i = 7Uit
, - ; t, - [ )
S0 i+ U D rpi+ U

In particular, we have is ., > 0 and iz ,, > 0.
Proof. Because (s, t,is, i) is a well-defined ADA pair, we have is € Is = 15(Gs) (Defini-
tion 3.25) and thus gs = 15 1(is) € Gs (Definition 2.22), i.e., gs is well-defined. Because

Gs is the domain of s, (Definition 3.12), ts ,(9gs) is well-defined as well.
By construction, we have ts(gs) = ts o ts1(is) = is and thus

Uis(9s) _ Uis
rots(gs) +U  rpis + U’

Is.rp = Ls,rp (9s) =

Finally, U > 0, rp > 0 and is € Is C Ro imply that is ,, > 0.
The statements with respect to /i, are shown analogously. ]

To motivate the sequence of ADA iterations, let us consider a well-defined ADA pair
(s.t,is, i¢). In addition, let the ADA pair be well-selected, ie., let 17 (is) = ¢; *(it) = ga.
If we plug the drifted start ioni current is ., into (3.7), then the drifted test ioni current
and the drift resistance are perfectly approximated, because

71.‘,rD = Llt,rp © L;}D(is,rg) = lt,rp © L;}D O ls,rp (ga) = Lt rp (ga) = It rp

and _
. U U U u rmir+U U
'p = x - T = = - = — — =
It,rp It It.rp It It It

'D (39)

in this case. However, /s ,, is usually unknown. Therefore, the idea is to approximate is .,
by applying (3.8) with the incumbent drift resistance approximation 7p, i.e., we calculate
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sty = FDZ’;U. Fquation (3.7) is then applied with is 7, instead of is. With this, we obtain

an updated approximation of the drifted test ioni current, i.e., we update
Uls U U

———— and fp == - —.
fpis +U [

k) 71 . . _
It.rp < Ltrp © bgrpUsp),  Where sy =

One such update of 7“0 is a so-called ADA iteration.

Definition 3.30 Let (s, t, s, ir) be a well-defined ADA pair (not necessarily well-selected).
Let 7t,ro be the incumbent approximation of the drifted test ioni current iy ,. An ADA
iteration is an update of 7”0 according to the following three steps.

Approximate the drifted start ioni current We approximate is ,, by

Uis N V) U

ispy = ———— with fp=+———.
fpis+U Ity It

Move to approximated drifted start point The fan speed is fixed at s and the gvp is
adjusted such that the resulting foni current equals isz,. This results in the gvp

g =151 (sp).

Approximate the drifted test ioni current The gvp is fixed at § and the fan speed is
reduced from s to t. The resulting ioni current is the updated approximation of the
drifted test ioni current, i.e., iy < Lr.rp(8).

Remark 3.31 /n the first iteration, usually no approximation of the drifted test ioni current
is available. Then, the undrifted test ioni current iy is used as the approximation of it .,

ie., 7UD = I is initially used [LS17, p. 10]. Note that this corresponds to the drift

resistance approximation rp = 0, because i'p = 7” — % = % - % = 0 in this case.
t.rp

Remark 3.32 Definition 3.30 is based on the technical documentation according to [LS17],
[Sch15] and [WHB, Item 4228]. Therefore, Definition 3.30 is rather a technical description
than a mathematical definition of an ADA iteration.

An algorithmic description of an ADA iteration in a mathematical sense is given in Sec-
tion 5.2.1 below after a corresponding formalism is introduced. This includes conditions
such that the function evaluations in Definition 3.30 are well-defined.

By successively performing ADA iterations, we obtain a sequence of drifted test ioni
current approximations (7tk,rD)k€]N' Ideally, this sequence converges to the true drifted test
ioni current i, because then 7p = rp according to (3.9). In addition, we are interested
in a high rate of convergence.

According to the ADA patent [LS17] both aspects are fulfilled: "By means of iterative
execution of the aforesaid test [...], there is rapid convergence" [LS17, p. 8]. And "follow-
ing one or two iterations, there is practically no deviation present any more" [LS17, p. 9].
But the patent [LS17] gives only little information if there are certain conditions required
for convergence. Conditions related to convergence are only stated in the ADA patent's
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section about the selection of the test point: "The only pre-condition is that the function
is uniformly rising or falling in the measurement range of the test point" [LS17, p. 8]. The
term function in the citation refers to the ioni current versus A curve with the fan speed
fixed at the test fan speed t. If A > 1.05, then this monotony "conditions are typically in
effect" [LS17, p. 8]. Other aspects of this function are not relevant and the "shape and
profile of the function remain unknown in this respect" [LS17, p. 8].

In Section 6.3, an analysis of the sequence’s convergence behavior is done. One result
is that it is required that an ADA pair is well-selected, otherwise the sequence of ADA
iterations has not the true drifted test ioni current iy ,,, as its limit (if it converges at all). In
Section 6.3.4, the results of this analysis are compared to the aforementioned statements
made in the patent [LS17].

Remark 3.33 An aspect related to the sequence of drifted test ioni current approximations
(71-{(,fo)k61N is the possibility to smoothen the results. The authors of the ADA patent
propose to average the measured drifted test ioni currents approximations and thus "reduce
scatter" [LS17, p. 9]. In loniDetect, this is achieved by using two filter values, which are
applied in two steps at the end of an ADA iteration [Sch15, p. 39]. Note that the term
filter’ is used in the sense of smoothing. It is used in the ADA patent and also by Vaillant.
Essentially, the proposed filtering limits the step size when updating the drifted test ioni
current approximation. In Section 6.2.2, it is shown that the sequence of drifted test
ioni current approximations is a monotonic sequence. Thus, limiting the step size does
not affect the sequence’s limit, only its rate of convergence. Therefore, for the sake of
simplicity, filtering of the ADA results is not considered in this study.

3.4. Plurality of ADA Pairs

So far, only one ADA pair (s, t,is, i) was considered. However, the documentation sug-
gests to use a plurality of ADA pairs [Schl5, p. 35]. On the one hand, tolerances with
respect to the ioni electrode’s position relative to the burner may affect the ioni current
measurement in a way that has the effect of an additional drift resistance that depends
on the fan speed and that can even be negative [LS17, p. 6]. A plurality of ADA pairs
whose test fan speeds are distributed in the set of feasible fan speeds FS = [fSmin, fSmax] 1S
better suited to detect and compensate this dependency on the fan speed. On the other
hand, it is useful in practice to be able to perform an ADA iteration at different burner
loads. During an ADA iteration, the appliances produce heat, which must be dissipated.
The amount of produced heat depends on the fan speeds during the iteration. A small
fan speed corresponds to a small burner load and a large fan speed corresponds to a large
burner load, see also Section 2.3.2. If there is only a small heat demand, it is not possible
to perform an ADA iteration at ADA pairs with large fan speeds, because the produced
heat cannot be dissipated. This is mitigated by a plurality of ADA pairs, which allows to
perform an ADA iteration at different burner loads [Sch15, p. 35].
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3.4.1. Numbering of ADA Pairs and Corresponding Notation

To distinguish the ADA pairs, they are numbered. The numbering begins with 1 and follows
a descending order with respect to the fan speed of the test points. For example, if we
have a set of N ADA pairs, then the test point with the largest fan speed has the number
1 and the test point with the smallest fan speed has the number N. The start points get
the same number as their associated test points. The descending order is counter-intuitive
but it is a convention by Siemens and Vaillant [PHE, Item 3280] and thus it is also used
in this thesis.

Notation 3.34 Let N € IN be the total number of ADA pairs. We define [N] = {1, ..., N}.
The number of an ADA pair is indicated by a superscript. The p-th ADA pair is denoted
by (sP, tP, i€, iP), p€[N].

Analogously, the drifted test ioni current (Definition 3.27) of the p-th ADA pair is denoted
by if,.. p € [N].

Recall from Definition 3.25 that an ADA pair is well-defined if it complies with the
considered HE model and if its start fan speed is larger than its test fan speed.

Remark 3.35 From now on, it is generally assumed that we have N well-defined ADA pairs
(sP,tP,i2,i?), p € [N], in a descending order with respect to their test fan speeds, i.e.,
> > >

3.4.2. Drift Resistance Approximation Function

The ADA procedure approximates the drifted test ioni current i, of an ADA pair, which
in turn is used to approximate the drift resistance by applying (3.7). In the case of a
plurality of ADA pairs, the ADA procedure provides an approximation of the drifted test
ioni current for each of the N ADA pairs and thus also N approximations of the drift
resistance. Each drift resistance approximation is associated to the corresponding ADA

pair's test fan speed. Then, we have N data points (P, 7R) with 78 = 7,,“ — /% where
t

trp

75,@ denotes the incumbent approximation of i, , p € [N].

By interpolating these data points we obtain a drift resistance approximation function that
depends on the fan speed. Any suitable form of interpolation is possible [LS17, p. 11].
In loniDetect a linear interpolation is used, which is extrapolated as a constant function
beyond the smallest and the largest test fan speed, t" and t!, respectively [Sch15, p. 35]
[WHB, Item 4268]. In order to formulate the corresponding drift resistance approximation
function, it is convenient to combine the drifted test ioni current approximations of each
ADA pair into a single vector.

Definition 3.36 Let N ADA pairs be given and for each ADA pair let i, € Rsq be an
approximation of the drifted test ioni current /ﬁ rpr P E [N]. We define the corresponding
vector of drifted test ioni current approximations by 7t,ro =(n,..., in).

47



Chapter 3 ADA: Automatic Drift Adaption

e data points (P, 7R), p € [3]
——approx. function o  (fs)

approximated rp
=
o
T
|

! ! ! ! !
fSmin 3 t2 t1 fSmax

fs

Figure 3.7.: Example of a drift resistance approximation function a;, (fs) with three data
o

points. For each p € [3], the data point is a combination of the test fan speed t” and

the drift resistance approximation FL’; = IQ - Igp The approximation function is a linear
P t

interpolation of the data points. It is extrapolated as a constant function.

Remark 3.37 By construction, we have 7”[) € ]RQ’O ={xeRN:x;>0VielN].
This is consistent with the considerations made so far. According to Definition 3.30, every
drifted test ioni current approximation 7,5,,,) is determined by evaluating v¢,,(g) for a certain
J. Because the image of vt ., is always greater than zero (Definition 3.12), every drifted
test joni current approximation determined by ADA is greater than zero.

Definition 3.38 Let N ADA pairs (sP,tP,if,if), p € [N], be given. Furthermore, let
7t,rD = (i,...,in) be a vector of drifted test ioni current approximations as defined in
Definition 3.36.

The drift resistance approximation function given 7t,ro is the function a;”D FS =+ R
defined by

%—I_% iffs < tN,
t
o, (f5) = qw(i =) + A -m(5 - Ll) iffs = wt? + (1 - w)t"~1, w e (0,1],
gy_4g if fs > t1
i} ="

(Memory aid: o like (a)pproximation function.)

Figure 3.7 shows an example of a drift resistance approximation function o; (fs) with
D

three data points, i.e., for the case N = 3 and a certain 7t,ro = (i1, ip, i3). The black dots
U

correspond to the data points (t?, 75) with 7§ = o % p € [3], and the black line is the
corresponding drift resistance approximation function &4, (fs).

Remark 3.39 Although the drift resistance is assumed to be a constant rp € R accord-
ing to Assumption 3.10, the drift resistance approximation function o, (fs) determined
by ADA is usually not constant if a plurality of ADA pairs is used. In general the quality of
the approximation is different for each ADA pair and also the number of ADA iterations
performed is different for each ADA pair. Therefore, the values of the data points usually

differ and thus their linear interpolation is not constant.
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Recall from Section 3.2.2 that the drift resistance approximation is used to correct
the ioni currents according to (3.8). With a plurality of ADA pairs, however, the drift
resistance approximation is no longer constant, but generally depends on the fan speed.
Therefore, we have to adapt (3.8) accordingly.

Definition 3.40 Let 7 = (FS, (Gfs)tsers. (tfs)rsers. (Ars)fsers. (Crs)rsers) be an HE model
and let a;”D : FS — R be a drift resistance approximation function according to Defini-
tion 3.38. For all fs € FS, the corresponding drifted ioni current approximation function is
defined by

Uits(9)

o, ()irs(9) + U

Lfs,a;”D (9) = V g € Gfs. (3.10)
Remark 3.41 /n general, it is not excluded that the drift resistance approximation function
o, . is negative. Because only positive ioni currents are permitted by loniDetect [Sch15],
it must be ensured that the result is positive when evaluating (3.10).

Remark 3.42 Regarding the ADA iteration according to Definition 3.30, Equation (3.10)
is relevant in the first step, where the drifted start ioni current is approximated. With a
plurality of ADA pairs, the approximation has to be determined by applying (3.10). Let
p € [N], then the drifted start ioni current of the p-th ADA pair is approximated by
Ui

-p o S . P, p

Is 7y = PP U with fp = &4, (sP). (3.11)
A suited domain such that the result of (3.11) is always positive is defined in Section 5.1
below. For the moment, we suppose that all evaluations of (3.11) considered in this
chapter are positive.

A consequence of (3.11) is that ADA pairs must not be overlapping.

3.4.3. ADA Pairs Must Not Be Overlapping

Each ADA pair (s, t?, i£, i) can be associated with the interval [tP, sP] defined by its test
and start fan speed. Note that the test fan speed is always smaller than the start fan speed
because we consider only well-defined ADA pairs (Definition 3.25). An overlap occurs, if
the fan speed intervals of two ADA pairs intersect.

Definition 3.43 Let (sk, t%, ik, if) and (%, t4, ¢, if), k # £, be two ADA pairs. They are
called overlapping if
[tk sK] N [tf, s8] # 0.

If ADA pairs are not overlapping, then the start fan speed of ADA pair p lies between
two test fan speeds for all p € {2, ..., N}, which is stated in the following lemma.

Lemma 3.44 If (well-defined) ADA pairs are not overlapping, then tP < sP < tP~! holds
forallpe{2,..., N}
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Overlapping and non overlapping ADA pairs

—— L L t
fSmin % t3 5% §3 t2 52 t! sl fSmax
fan speed

Figure 3.8.: The start and test fan speeds as well as the corresponding fan speed intervals
of four ADA pairs are shown. The ADA pairs p = 4 and p = 3 are overlapping, because
[t*, s*] N [t3,s°] # 0 holds. In contrast, the ADA pairs p = 2 and p = 1 have no overlap
with any other ADA pair, because all possible intersections with their respective fan speed
intervals are empty.

Proof. Let p € {2,..., N} and assume that ADA pairs are not overlapping. Because
we consider only well-defined ADA pairs, we have t? < sP. Next, let us suppose that
tP~1 < sP. Then, we have tP~1 € [tP,sP] and tP~ ! € [tP~1 sP~1], ie., the pairs p and
p — 1 are overlapping. This is a contradiction and thus we have sP < tP—1, ]

The statement of Lemma 3.44 is illustrated in the following example.

Example 3.45 [ et us consider a situation with four ADA pairs and let their fan speeds be
t* =35 =4,1t3=3553=451t2=6,52=7,tl =8 and s! = 9. The fan speeds
and their corresponding fan speed intervals [tP, sP], p € [4], are depicted in Figure 3.8.
They are alternately colored blue and orange.

Because [t*, s*) N [t3, s3] = [t3,s*] # 0, the ADA pairs p = 4 and p = 3 are overlapping.
In particular t* < s* < t3 does not hold. In contrast, the ADA pairs p=2 and p =1 are
not overlapping and t? < s® < t holds.

In Example 3.45, we have overlapping ADA pairs and thus t* < t3 < s* < 3 < t2.
This situation is problematic, for the following reason. Let us suppose that we perform
an ADA iteration with ADA pair p = 4 according to Definition 3.30. In the first step, we
approximate the drifted start ioni current of ADA pair p = 4. For this, we need the drift
resistance approximation %, (s*) according to (3.11). Recall from Definition 3.38 that
oc?”D (fs) interpolates linearly between the drift resistance approximations of two adjacent
test fan speeds. Because t* < t3 < s* < t2, the approximation o, (s*) depends on the

drift resistance approximations at t3 and at t2. It does not depend on the drift resistance
approximation at t#, although this is the drift resistance approximation to be updated in the
considered ADA iteration. This might cause undesired behavior and increases complexity.
In contrast, if ADA pairs must not be overlapping, we have t* < s* < t3 and a, (s*)

depends on the drift resistance approximations at t* and at t3. Therefore, Vaillant's
engineers decided to avoid overlapping ADA pairs [PHE, Item 3280]. As a consequence,
the maximum number of ADA pairs is limited.
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3.5 Goal of This Thesis: Optimize ADA Parameters

3.4.4. Recommended Number of ADA Pairs

The number of specified ADA pairs has to be balanced between having a good covering
of the set of feasible fan speeds FS by the test fan speeds tP, p € [N], on the one hand,
and taking restrictions into account on the other hand. As stated at the beginning of
Section 3.4, tolerances with respect to the position of the ioni electrode might have the
effect of an additional drift resistance that depends on the fan speed. Too few data points
might miss fan speed regions of larger changes of this additional drift resistance. On the
other hand, because ADA pairs must not be overlapping and the interval of feasible fan
speeds is bounded, the number of ADA pairs is limited. As a compromise, up to seven
ADA pairs are used in loniDetect [Sch15, p. 35]. If appropriate, it is possible to use less
than seven ADA pairs.

3.4.5. Selection of ADA Pair for Next ADA Update

With a plurality of ADA pairs, we have to specify which ADA pair p shall be selected for
the next update. However, the selection of an ADA update sequence is done automatically
by the loniDetect system according to certain rules [WHB, Item 4228]. For instance, if
no update of ADA pair p was performed for more than 100 operating hours, an update of
p is forced [PHE, Item 12678].

Furthermore, there is no stopping criterion for ADA specified, i.e., there exists no num-
ber of maximum ADA iterations. A stopping criterion is not required in practice for two
reasons. First, the ADA algorithm is rarely executed at an interval of several hours. In loni-
Detect, the minimum time span between two subsequent ADA updates of the same ADA
pair is 48 operating hours [WHB, Item 8529]. Second, drift is a "creeping phenomenon"
[LS17, p. 3] as stated in Section 3.1.2. Accordingly, the drift resistance changes steadily
and therefore its approximation is never completed.

To summarize, we have no influence on which ADA pair is updated next. Therefore, we
suppose that the ADA update sequences follow certain random distributions when analyz-
ing the ADA procedure from a mathematical point of view. This is detailed in Section 7.3
below.

This concludes the introduction to the ADA procedure. We can now formulate the goals
of this work in the following section.

3.5. Goal of This Thesis: Optimize ADA Parameters

As detailed in this chapter, each ADA pair is defined by four values. They are the fan
speeds and the ioni currents of the pair's start and test point. These values are refereed
to as ADA parameters in this thesis. loniDetect uses up to seven ADA pairs. Therefore,
up to 28 ADA parameters are required.
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Remark 3.46 The controller of loniDetect requires a lot more parameters related to ADA.
For instance, one such parameter is the time to wait until the ioni current at the test
point is measured [Sch15, p. 35]. These additional parameters are mostly related to the
dynamic behavior of the combustion system. Because only static signals are used in this
thesis, see for instance Remark 2.15, these parameters are disregarded.

As stated in Section 3.2.3, the effectiveness of ADA and the quality of the approximated
drift resistances strongly depend on the ADA parameters. Therefore, a good design of the
ADA parameters is essential. In the past, the parameterization of ADA was done mostly
in the lab. But this is expensive and time consuming. In addition, the results were not
very robust against tolerances such as tolerances regarding the position of the electrode
relative to the burner.

Therefore, some Vaillant employees proposed to use computer simulations for the parame-
terization of ADA. Usually, simulations are less expensive and take less time to find results.
In addition they offer a good environment for optimization.

That is the starting point of this work. The goal of this thesis is to find optimized ADA
parameters based on computer simulations in the sense that the drift resistance is approx-
imated with a high quality while certain constraints are respected.

There are many other parameters that influence the function of loniDetect, the implica-
tions of drift and the effectiveness of ADA. Some of them are

e electrode related like the material, size or shape of the electrode,

e measurement setup related like the frequency and amplitude of the applied voltage,
e parameters related like the control curve and

e design related like the position of the electrode relative to the burner.

All these aspects are not in the scope of this thesis. Although they might offer further
potential for optimization, they are assumed to be given.

The optimization of the ADA parameters requires a thorough analysis of the ADA algo-
rithm, which is covered in Chapters 5 to 7. Based on this analysis suitable optimization
models are developed in Chapter 8. The optimization models are multiobjective. An intro-
duction to multiobjective optimization is given in the following chapter, where the basic
mathematical concepts required for this thesis are presented.
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Basic Mathematical Concepts

This chapter deals with the mathematical concepts required to work on the task of finding
optimized ADA parameters. In the course of this thesis, we show that the ADA opti-
mization problem contains conflicting objectives. Optimization problems with conflicting
objectives are called multiobjective optimization problems and are studied in the field of
multiobjective optimization (MOQO). Therefore, the basics of MOO are covered in the
following section. A common approach to solve multiobjective optimization problems are
evolutionary algorithms, which are presented thereafter. As ADA is a fixed point iteration
procedure, the basics of fixed point iteration procedures are also presented.

4.1. Multiobjective Optimization

This section is based on the books Multicriteria Optimization [Ehr05], Multi-Objective
Optimization using Evolutionary Algorithms [Deb01] and Nonlinear Multiobjective Opti-
mization [Mie98]. If not otherwise stated, all definitions, concepts and results presented
in this section are detailed in one of these books.

In optimization, one is interested in minimizing or maximizing a function for a given
feasible set. This function is called objective function. In single objective optimization,
the image space of the objective function is one-dimensional. For instance, let us suppose
that we have a feasible set X and an objective function f : X — R, which we want to
minimize. Then, we are interested in an element x* € X such that f(x*) is minimal in
f(X) CR,ie., f(x*) = minyex f(x). The set R has a natural total order and thus we
can always state whether f(x1) < f(x2), f(x1) > f(x2) or f(x1) = f(x2) for all x1, x> € X.
If we have multiple objective functions, i.e., we have p objectives, p > 2, then we have a
p-dimensional objective function f : X — RRP. Let us suppose that we want to minimize
this function f, i.e, we are interested in an element x* € X such that f(x*) is minimal in
f(X) C RP. However, in contrast to R, the space RP, p > 2, does not have a natural
total order. Therefore, we must also specify an order on R”. This leads to the concept of
Pareto optimality, which is introduced in the following.

Remark 4.1 Without loss of generality, we consider only minimization problems for the
remainder of this thesis. This is no restriction, because a maximization problem can be
converted into an equivalent minimization problem by multiplying the objective function
with (=1) [Deb01, p. 14].
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4.1.1. Pareto Optimality

For the remainder of this section, let X be a nonempty set and let f : X — R” with p > 2.
We first define the componentwise order on R”. We then introduce Pareto optimality and
define related terms.

Definition 4.2 Let y,y € RP. The componentwise order is the binary relation < on R”
defined by

y<y & yi<yVielpland3je€lp]:y <y
If y <y, one also says y (Pareto) dominates y.

With the componentwise order at hand, we can specify an optimality notion for multi-
objective optimization problems, which are defined by

min £(x) = (00, . (). (MOP)

Definition 4.3 A solution x* € X is called Pareto optimal or efficient for (MOP), if there
exists no x € X such that f(x) < f(x*).

The set of all Pareto optimal solutions for (MOP) is called the efficient set and is denoted
by Xeft-

Remark 4.4 The terms Pareto optimal and efficient are used interchangeably in this thesis.

Remark 4.5 The interpretation of Pareto optimality is as follows: Let x* be an efficient
solution. Then it is not possible to improve an objective function value of x* without
deteriorating the function value of another objective.

Remark 4.6 Other orders, such as the lexicographic order, are also studied in MOO.
This is detailed in [Ehr05, pp. 16—-19]. The most common order used in MOO is the
componentwise order, which is also relevant for the ADA optimization. Therefore, only
Pareto optimality is considered for the remainder of this thesis.

By definition, the efficient points are a subset of the feasible set X. The space containing
X is called the decision space. In MOO, one is also interested in the images of X and Xesr.
Because the images of Xef under f are not Pareto dominated in f(X), the set f(Xefr) is
called the nondominated set.

Definition 4.7 We denote Y = f(X). The set of nondominated points of (MOP) is
defined by Yng = f(Xeff).

Remark 4.8 An alternative term for the set of nondominated points is Pareto front. Both
terms are used interchangeably in this thesis.

Remark 4.9 The image space of f, RP, is called the objective space of (MOP).

The concept of Pareto optimality as well as the related terms are briefly demonstrated
in the following example.
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Objective Space of (MOP)

>’<Ynd
i .f(Xz) | .Y\Ynd

4
31 #f(xh) )
2
1

fa(x)

L Of(X4) |
- *f(X3)

fi(x)

Figure 4.1.: The image set Y of the problem (MOP) presented in Example 4.10 is illustrated.
The point f(x*) dominates f(x?) and the point f(x3) dominates f(x*). The points f(x!)
and f(x®) are nondominated in Y.

Example 4.10 Let us consider a feasible set with four elements, i.e., let X = {x', x?, x3, x*}.
Furthermore, let us consider the two-dimensional objective function f : X — R? specified

by
f(xh) =(1,3), f(x?)=(1,4), f(x}>=(21) and f(x*) :=(472).

Figure 4.1 shows the image set Y = {f(x'), ..., f(x*)} in the objective space of (MOP).
It is apparent that f(x') < f(x?) and that f(x3) < f(x*), i.e., f(x') Pareto dominates
f(x?) and f(x3) Pareto dominates f(x*). Therefore, x> and x* cannot be efficient. In
contrast, there is no point in Y that dominates f(x') and there is no point in Y that
dominates f(x3). Therefore, the efficient set for (MOP) is Xer = {x*,x3} and the
nondominated set is Yog = {f(x1), f(x3)} = {(1,3), (2, 1)}.

As demonstrated in Example 4.10, the Pareto optimal set and the nondominated set
usually contain more than one element (if they are not empty). This reflects the nature
of the conflicting objectives, i.e., we usually have a trade-off between the individual objec-
tives. Therefore, after the set of Pareto optimal solutions is determined, decision makers
are required who select the Pareto optimal solution that best fits their needs. The decision
making process regarding the ADA optimization problem as well as some details about the
decision makers are presented in the introduction to Chapter 8.

From a mathematical point of view, we are interested in finding the set of efficient
solutions. An important aspect is the existence of efficient solutions. The main idea
behind all existence statements is that the nondominated points must be located on the
boundary of the image set Y, which is denoted by bd(Y') in the following. Because if
y ¢ bd(Y), then we can always find a ¥ € Y that dominates y.

Lemma 4.11 Y4 C bd(Y).
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Proof. See [Ehr05, p. 28]. O

Therefore, if Y is open, then the nondominated set is empty, i.e., there exists no efficient
solution for (MOP). In contrast, if Y is nonempty and compact, then Ynq # 0.

Lemma 4.12 Let Y be nonempty and compact. Then, Ynq # 0.

Proof. The statement follows from Theorem 2.19 in [Ehr05, p. 33]. O]

For instance, if the feasible set X is nonempty and compact and the objective function
f is continuous, then Y = f(X) is also compact and there exist efficient solutions, i.e.,

XefF 7é @

Remark 4.13 The requirements in Lemma 4.12 are rather strong. Some weaker conditions
for the existence of efficient solutions are discussed in detail in [Ehr05, pp. 24 sqq.].

"[T]he range of the values which nondominated points can attain" [Ehr05, p. 33] is
indicated by the so-called ideal point and nadir point. The ideal point can be interpreted
as the largest lower bound for Y;q and the nadir point can be interpreted as the smallest
upper bound for Yq.

Definition 4.14 [et minycx fi(x) exist for all i € {1, ..., p}. The ideal point of (MOP)
is the point y! = (yi,..., y}) defined by

"=minfi(x)=miny;, i=1,..., )
y; = min 1(x) min yi p

Let maxyex,, fi(x) exist for all i € {1,..., p}. The nadir point of (MOP) is the point
yN = ... yY) defined by

yN = max fi(x) = maxy;, i=1,..., p.

X € Xeff YE€Ynd
Example 4.15 1. We determine the ideal point and the nadir point of the problem
(MOP) presented in Example 4.10. We have Yaq = {(1,3),(2,1)} and thus y' =
(1,1) as well as yN = (2,3).

2. Figure 4.2 below shows the ideal point and the nadir point for another exemplary
problem (MOP).

A further characterization of the set of nondominated points, which is needed in the
context of the ADA optimization, is connectedness. The following definition of a connected
set is taken from [Ehr05, p. 86]. For this, the closure of a set S is denoted by cl(S).

Definition 4.16 A set S C R” is called not connected, if there exist S1, So C RP, S1 £ 0,
Sy # 0 such that S = S1 U S, and C|(51) NS,=51N C|(52) = 0.
If there exist no such Sy and S, then S is called connected.
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Objective Space of (MOP)

Y
— I'nd
Wl 1| o ideal point (y{, y4)
& nadir point (y{', yV)
v | i
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Figure 4.2.: The image set Y of a two-dimensional problem (MOP) is shown. The thick curve
corresponds to the Pareto front, which is connected and nonconvex.

Example 4.17 Figure 4.2 shows the image set 'Y of a not further specified two-dimensional
problem (MOP). The problem’s nondominated set Ynq is marked by the thick curve. It is
connected and nonconvex. In addition, the ideal point (y{, y3) and the nadir point (y{', y)
as well as the two extreme points (yi,yN) and (y{,y3) of Yag are shown. Note that Yo
is a continuous curve between the two extreme points.

In contrast, the nondominated set Ynq = {(1,3),(2,1)} in Example 4.10 is not connected.
By selecting S1 = {(1,3)} and S, = {(2,1)}, we have Y = S1US2 and cl(S51) N Sy =
51N C|(52) =5NS =0.

In Example 4.17, Y;q is a continuous curve between the two extreme points (y1, y4')
and (yl’V,yz’). This is always the case if Y4 is connected, closed and bounded as well as
(MOP) is two-dimensional, i.e., p = 2. This is the statement of the following lemma,
which is required to prove Lemma 9.18 below. Although this can be considered as a basic
statement, it is not explicitly contained in any of the books mentioned at the beginning of
this Section 4.1. Therefore, the following proof is from the author of this thesis.

Lemma 4.18 Let p = 2 and let Yng be nonempty, closed and bounded. If Ynq is connected,
then

Vz e,y 3y=01y) €Yoa iy =2 and
V7€ [J/2IVJ/2N] Jy=01.)2) €Yod 1 )2 = 2.

Proof. Let Y,q4 be nonempty, closed, bounded and connected. Then, Y;q is nonempty and
compact and thus the ideal point (y{,y4) as well as the nadir point (y{, y¥) exist. In
particular, there exist y = (y1,y2) € Yng and ¥ = (1, ¥2) € Ynq such that y; = y{ and
1=y

If y/ =y, then there is nothing to show. Therefore, let yi # y{'. Let us assume that
there exists z1 € (¥, y{') such that there exists no y = (y1,y2) € Ynq with y1 = z1. We
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show that this leads to a contradiction with respect to Ynq being connected. We select

Si={y=01.y2) €EYaa: 1 €y z1)} and So == {y = (y1.¥2) € Yna : 11 € (21, ¥I']}.

Note that S; # @ and S, # (0 as well as S; U S; = Yqq. It remains to show that
cl(S1) NSy, = S1Ncl(S2) = 0.

For this, we show that (yi1,y») € cl(S1) implies y; < z;. Let us suppose that there exists
(71, %) € cl(S1) such that y; > z;. We select ¢ = %()71 — z1). Note that € > 0. But
we have S1 N Be(¥1, ¥%2) = 0 and thus (31, y») ¢ cl(S1). This is a contradiction and thus
(y1,y2) € cl(S51) implies y; < z1. Furthermore, (y1,y2) € Sz implies y1 > z1. Therefore,
we have cl(S1) NS, = 0. The equation S; Ncl(Sy) = (0 is shown analogously.

In total, we have shown that Y4 is not connected. This is a contradiction and thus no
such z; can exist.

The lemma's second statement for all z, € [y4, y4'] is shown analogously. O

Depending on the structure of a multiobjective problem (MOP), there exist different
approaches for solving (MOP). For instance, if (MOP) has linear objective functions
and linear constraints, then (MOP) can be solved with a multiobjective simplex method
[Ehr05, pp. 171 sqq.]. If (MOP) has no structure that can be exploited in a direct approach
or if one is interested in a particular solution of (MOP) only, then a common approach
for generating Pareto optimal solutions of (MOP) are scalarization methods. Depending
on a parameter P, a scalarization method converts the multiobjective problem (MOP)
into a single objective problem, which is then solved with corresponding single objective
optimization methods. Depending on the selected scalarization method, P has a different
meaning like, for instance, a weight or a budget restriction for each objective function.
The two most popular scalarization methods are the weighted sum scalarization and the
g-constraint scalarization. Both methods are briefly presented in the following.

4.1.2. Weighted Sum Scalarization

The idea behind the weighted sum scalarization is straightforward. Each objective is
weighted with an individual weight and the weighted objectives are summed up to a single
objective function. Since we consider minimization problems, we allow only nonnegative
weights. Furthermore, without loss of generality we normalize the weights such that their
sum is always one.

Definition 4.19 Let A = (A\1,...,Xp) € R2, = {x € RP : x; > 0} such that ) "_; X\; = L.
The corresponding weighted sum scalarization of (MOP) is the problem

p
min > Aif;(x). (MOP,,(A))
i=1

A thorough analysis of the weighted sum scalarization is given in [Ehr05, pp. 65 sqq.].
In the following, the most important results are briefly summarized. For this, we require
the concept of weak efficiency.
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Definition 4.20 A solution x* € X is called weakly efficient for (MOP), if there exists no
x € X such that fi(x) < fi(x*) for all i € [p].

Example 4.21 We consider once more the problem (MOP) from Example 4.10 with the
feasible set X = {x% x2,x3,x*} and f(x!) = (1,3), f(x*) = (1,4), f(x3) = (2,1)
as well as f(x*) = (4,2). Recall that x' and x* are the efficient points for (MOP).
Therefore, x and x3 are also weakly efficient. But x? is also weakly efficient, although it
is not efficient. In contrast, the solution x* is not weakly efficient, because fi(x?) =2 <
4= f(x*) and H(x?) =1 <2 =fH{(x*).

The following theorem summarizes the major results regarding the weighted sum scalar-
ization.

Theorem 4.22 1. Let X € RE,. If x* is optimal for (MOP (X)), then x* is weakly
efficient for (MOP). If in addition all optimal solutions for (MOP,,()\)) are mapped
to the same image f(x*) € Y, then x* is efficient for (MOP).

2. Let X e R,. If x* is optimal for (MOP (X)), then x* is efficient for (MOP).

3. If (MOP) is convex, i.e., the set X is convex and the objective functions f;, i € [p],
are convex, then for each x* € X there exists A* € ]R’;O such that x* is optimal
for (MOP, (X)) with A = \*.

Proof. The statements follow from Theorem 3.4, Theorem 3.5, Theorem 3.6, Corol-
lary 3.7 and Proposition 3.8 in [Ehr05, pp. 69, 70]. O]

Remark 4.23 /t is important to emphasize that in general not all efficient solutions can
be found with the weighted sum scalarization if the problem (MOP) is nonconvex. This is
detailed in [Ehr05, p. 73] or [Deb01, pp. 53, 54].

According to Theorem 4.22, several (weakly) efficient solutions of (MOP) may be found
by varying the parameter A € ]R‘;O. But this requires solving various single objective
optimization problems of the type (MOP,,())), which might be computationally expensive.
The major advantages of the weighted sum scalarization are its simplicity and that no
additional constraints are added to the problem formulation. In addition, if the problem
is convex, then all efficient solutions can be found by varying the parameter X\ € ]R’;O
appropriately. B
However, specifying appropriate weight vectors A can be challenging in practice. For
instance, two different weight vectors A1 # A? might yield the same (weakly) efficient
solution. Another disadvantage of the weighted sum scalarization is that for nonconvex
problems it is in general impossible to find all efficient solutions. In contrast, the e-
constraint scalarization, which is presented in the following, is able to find all efficient
solutions also for a nonconvex problem.
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4.1.3. -Constraint Scalarization

As delineated in the preceding subsection, the weighted sum scalarization aggregates all
objectives into a single objective function. In contrast, in the g-constraint scalarization
"only one of the original objectives is minimized, while the others are transformed to
constraints."[Ehr05, p. 98]. For this, we require two parameters. First, an index k € [p]
that indicates which of the p objective functions is minimized. Second, a vector € =
(€1, ...,€p) € RP that represents the upper bounds for the objectives that are transformed
to constraints. Note that the component g, is not required and irrelevant, because fi is
kept as the single objective function to be minimized and not transformed to a constraint.
However, it is a convention to include it [Ehr05, p. 99].

Definition 4.24 Let k € [p] and lete = (€1,...,€p) € RP. The corresponding e-constraint
scalarization of (MOP) is the problem

min fi(x), s.t. fi(x) <& Vi€ p]\ {k}. (MOP(e. k))

The functional principle of the e-constraint scalarization is, for instance, illustrated in
[Ehr05, p. 99] or [Deb01, p. 55].
The following theorem summarizes the major results regarding the g-constraint scalariza-
tion.

Theorem 4.25 1. If x* is an optimal solution of (MOP(g, k)) for some € and k, then
x* is weakly efficient for (MOP).

2. If x* is the unique solution of (MOP.(¢, k)), then x* is efficient for (MOP).

3. A solution x* € X is efficient for (MOP) if and only if there exists €* € RP such
that x* is optimal for (MOP (e, k)) for all k € [p] with ¢ = €*.

Proof. The statements follow from Proposition 4.3, Proposition 4.4 and Theorem 4.5 in
[Ehr05, pp. 99, 100]. O

According to Theorem 4.25, the g-constraint scalarization is able to find all Pareto
optimal solutions for an arbitrary problem (MOP) by using appropriate vectors € € RP.
This is also true for nonconvex problems, which is the major advantage of the g-constraint
scalarization compared to the weighted sum scalarization.

However, just as with the weighted sum scalarization it might be challenging to find ap-
propriate vectors € € RP for the e-constraint scalarization in practice. For instance, it may
be difficult to select € € RP such that the resulting problem (MOP,(¢, k)) has a feasible
solution at all [Bra+08, p. 13]. Therefore, "information about the ranges of objective func-
tions in the Pareto optimal set is useful" in selecting appropriate vectors € € R” [Bra+08,
p. 13].

In Section 9.1 below, we deal with the nominal ADA optimization problem with a sin-
gle ADA pair, which is a two-dimensional optimization problem. A particularity of this
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problem is that information about the range of its second objective function is available.
Furthermore, this problem is nonconvex in general. Therefore, a variant of the g-constraint
scalarization is proposed in Section 9.1.2 to solve this problem.

In addition to the scalarization methods and the briefly mentioned direct approaches to
solve (MOP), there exists also a variety of approximation methods and (meta)heuristic
approaches. One popular class of metaheuristics are evolutionary algorithms. These are
introduced in the following, because we propose solving the ADA optimization problem
with respect to tolerances by using evolutionary algorithms in Section 9.2.2 below.

4.2. Evolutionary Multiobjective Optimization

This section is based on the books Multi-Objective Optimization using Evolutionary Algo-
rithms [Deb01] and Multiobjective Optimization [Bra+08]. The main idea behind evolu-
tionary optimization algorithms is to imitate the evolution process in nature [Deb01, p. 77].
Regarding multiobjective optimization, some of the most popular approaches are genetic
algorithms and particle swarm algorithms [Bra+08, p. 78].

A popular multiobjective genetic algorithm is the NSGA-II. "In fact, in a wide range of
benchmarks and application problems, NSGA-II was reported to yield good approximations
of Pareto fronts, in particular for the 2-D case." [CEM12, p. 21] Thus, it is proposed
to use NSGA-II to solve the ADA optimization problem with tolerances in Section 9.2.2
below. For this, the basics of genetic algorithms in general as well as some particularities
of the NSGA-II are briefly presented in the following.

4.2.1. Genetic Algorithms

A genetic algorithm (GA) is a population based and iterative procedure. The term popu-
lation refers to a sample set of solutions that is considered in the current iteration. The
iterations of a GA are also called generations. In each generation, three operators are
successively applied to the population, which are reproduction, crossover and mutation.
These operators modify the solutions within the populations and (ideally) drive the so-
lutions from generation to generation towards optimality. After a maximum number of
generations specified by the user, the procedure terminates and the solutions with the
best fitness values within the incumbent population are the approximations of the optimal
solution(s). The initial population is usually randomly generated.

For this, a fitness assignment function is required that assigns a fitness value to each
solution. The fitness value of a solution represents its degree of optimality. A feasible
solution with a better objective function value should have a better fitness value than an
infeasible solution or than a solution with a worse objection function value. If we have
no constraints, then, in the single objective case, the fitness assignment function usually
corresponds to the objective function [Deb01, p. 83].
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A flow chart of this working principle is, for instance, illustrated in Figure 41 in [Deb01,
p. 83]. The three operators as well as some related particularities like binary representation
of a solution are introduced in the following.

Reproduction This operator "mimics Darwin’s survival of the fittest principle by making
duplicate copies of above-average solutions in the population at the expense of deleting
below-average solutions" [Bra+08, p. 66]. One of the most common methods is tourna-
ment selection. As the name suggests, in tournament selection two solutions are (ran-
domly) picked from the population and their fitness values are compared to each other.
The solution with the larger fitness value is placed in the mating pool. This procedure
is repeated until the mating pool is filled. The mating pool is an intermediate population
from which new solutions are created by applying the crossover and the mutation operator.
A common mating pool size is half of the population size [Ses09].

There exist several other reproduction methods like proportionate selection or ranking
selection [Deb01, p. 84]. But "[i]t has been shown ...that the tournament selection
has better or equivalent convergence and computational time complexity properties when
compared to any other reproduction operator that exists in the literature." [Deb01, p. 85].
Tournament selection is also used in NSGA-II as the reproduction operator.

Crossover In the crossover operator "two or more parent solutions are used to create
(through recombination) one or more child solutions" [Bra+08, p. 64], where the parent
solutions are randomly selected from the mating pool. Most crossover methods exchange
some "portions" of the two parent solutions. This requires a representation of the parent
solutions that allows a meaningful and reasonable exchange. A common representation are
binary strings. For instance, if we have a 10 bit representation for a decision variable, then
1024 different values for this decision variable are possible. The binary string representa-
tion is usually combined with a single-point crossover. Then, the crossover "is performed
by randomly choosing a crossing site along the strings and by exchanging all bits on the
right side of the crossing site" [Deb01, p. 89]. In this way, two child solutions are created.
However, if the search space is continuous, a major disadvantage of the binary represen-
tation "is the inability to achieve any arbitrary precision in the optimal solution" [Deb01,
p. 106]. To overcome this problem a method called simulated binary crossover (SBX) was
developed. "As the name suggests, the SBX operator simulates the working principle of
the single-point crossover operator on binary strings" [Deb01, p. 109]. To illustrate how
SBX is applied, let us suppose that we have two parent solutions xU't and x%t, where t de-
notes the current generation. Let us further suppose that we want to perform a crossover
of the i-th component. First, a number u; € [0,1) is drawn randomly. Then u; is used to
calculate
e if g < L
L (a.1)
(m)m‘+1 otherwise,
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where . > 0 is the so-called distribution index. The resulting g; in turn is used to calculate
the offspring’s i-th component via

1 1
= (L @XM+ (L= ) and s = (1 gt (1 g3,

i i

The role of the distribution index n. is as follows. "A large value of 1. gives a higher prob-
ability for creating 'near-parent’ solutions and a small value of 7. allows distant solutions
to be selected as offspring" [Deb01, p. 110]. Common values are 1. € [10,20] [Bra+08,
p. 76] [Ses09]. The relation between u;, g; and n. as well as the derivation of (4.1) are
detailed in [Deb01, pp. 109-112].

SBX is a popular crossover operator [Bra+08, p. 64] and it is also used in NSGA-Il. An
overview of alternative crossover operators is given in [Deb01, pp. 107 sqq.].

Mutation The mutation operator perturbs single solutions in the mating pool to hope-
fully obtain a better solution. "The need for mutation is to keep diversity in the population"
[Deb01, p. 91]. Note that "[a] fundamental difference with a crossover operator is that
mutation is applied to a single solution, whereas crossover is applied to more than one
solution." [Bra+08, p. 66].
In binary representation, the bit-wise mutation operator is common. This operator "changes
a 1 to a 0 and vice versa, with a mutation probability of p," [Deb01, p. 91]. In real-coded
GAs, the bit-wise mutation is not applicable. A common mutation operator for real-coded
GAs is the so-called polynomial mutation, which is based on a polynomial probability dis-
tribution.
To illustrate how the polynomial mutation is applied, let us suppose that we want to mu-
tate the i-th component of a solution x. Let us further suppose that the /-th component
of the feasible set is bounded by x- and xV. First, a number u; € [0, 1] is drawn randomly.
Then u; i1s used to calculate
N T ifu < 1
o — (2u;)m+T — 1 N if uj < .2, (4.2)
1—(2(1 = u;))™*  otherwise,

where n,, > 0 is the so-called mutation distribution index. The resulting g; in turn is used
to calculate the i-th component of the perturbed solution, denoted by X, via

X=X + (X,-U — X,-L)q,-. (4.3)

Note that X; must not be smaller than xt and it must not be greater than x” in order to
obtain a feasible solution, which is in general not guaranteed by the formula according to
(4.2) and (4.3).

The perturbation of x; can be controlled with the distribution index n,. A smaller n,
produces a greater perturbation and vice versa [Deb01, p. 120]. A common value is
Nm = 20 [Bra+08, p. 76] [Ses09]. The relation between u;, g; and m,, as well as the
derivation of (4.2) are detailed in [Deb01, p. 120].

The polynomial mutation is also used in NSGA-II. An overview of alternative mutation
operators is given in [Deb01, pp. 118 sqq.].
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Properties of Genetic Algorithms

We briefly discuss some of the properties of GAs. Because GAs are population based and
process several solutions simultaneously, "it is likely that the expected GA solution may
be a global solution" [Deb01, p. 92]. In addition, GAs usually do not require any further
information than objective function evaluations. In particular, no gradients are required in
general. Furthermore, because of "probabilistic transition rules and an initial random pop-
ulation", GAs are able "to recover from early mistakes" [Deb01, p. 92]. Therefore, GAs
can be applied to a wide class of optimization problems including multimodal problems.
However, the three evolutionary operators and their parameters must be selected such
that the "extent of exploration .. .through recombination and mutation operators" is bal-
anced "with the extent of exploitation through the selection! operator" [Deb01, p. 93].
Selecting the right operators and parameters may be challenging in practice. In partic-
ular because the approximation quality of a GA is in general unknown, i.e., it is unknown
how close the output of a GA is to the true optimal solution(s) and to the true Pareto front.

This concludes the introduction to GAs. As mentioned at the beginning of Section 4.2,
we next introduce a GA specifically designed for solving multiobjective optimization prob-
lems.

4.2.2. Nondominated Sorting Genetic Algorithm (NSGA) Il

Recall from Section 4.1.1 that a multiobjective optimization problem in general does not
have one optimal solution. Rather, there usually exist several Pareto optimal solutions,
the so-called Pareto optimal set. In continuous optimization, the Pareto optimal set is
often an infinite set. Therefore, we are usually interested in finding a finite set of solutions
that is a good representation of the Pareto optimal set. This can be characterized by two
goals. First, the found solutions shall be close to the Pareto front (ideally their images
are elements of the Pareto front). Second, the found solutions shall be "as diverse as
possible" [Deb01, p. 22].

An evolutionary algorithm works with populations and thus it has a "tremendous advantage
for ...solving multi-objective optimization problems", because "a population of Pareto-
optimal solutions can be captured in a single simulation run of an [evolutionary algorithm]"
[Deb01, p. 161]. To make use of this advantage, a fitness assignment function is required
that produces selection pressure towards Pareto optimality and diversity.

This also applies to NSGA-II, a popular genetic algorithm for solving multiobjective op-
timization problems. As a genetic algorithm its basic working principle is as described in
Section 4.2.1, i.e., in each generation the reproduction, the crossover and the mutation
operators are applied to the incumbent population. However, the particularity of NSGA-II
is its fitness assignment function, which is presented in the following. All concepts and
results presented in this subsection are based on the article “A fast and elitist multiobjective

1The term selection operator is synonymous to the reproduction operator introduced above.
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genetic algorithm: NSGA-II" [Deb+02].

Fitness Assignment Function

The main idea behind NSGA-II is that a solution is assigned a large fitness if it is not Pareto
dominated by another solution in the population and if there are no other nondominated
solutions in its vicinity in the objective space. In contrast, if a solution is dominated by
another solution in the population or if two nondominated solutions in the population
are close to each other in the objective space, then these are assigned a small fitness.
Therefore, the fitness assignment is composed of the two parts Pareto dominance and
diversity. The fitness of a solution with respect to Pareto dominance is determined by
nondominated sorting. The fitness with respect to diversity is determined with the so-
called crowding distance. In addition, NSGA-II is an elitist algorithm. All three concepts
are detailed in the following.

Nondominated sorting Let us suppose that we are in the t-th iteration and let X; be
the set of incumbent solutions, i.e., X; denotes the population in the t-th generation.
Let Y; == f(X;) denote the image of X; under the multiobjective function f. The idea
behind nondominated sorting is that the solutions in X; are sorted for their "degree of
nondominance" in Y;. This is done iteratively. Let F; denote the set of all points that are
nondominated in Y;. The set F1 is also called front 1 and its preimages in X; are assigned
the rank 1. We remove the points in F; from Y; and filter again for nondominance. This
gives us the set F, that contains all nondominated points in Y; \ F1. The preimages of f;
in Xy are assigned the rank 2. This is continued iteratively, i.e.,

i i
Fir1 = {y € Ye\ U Fx : y is nondominated in Y; \ U Fk},
k=1 k=1

until all elements in X; are assigned a rank. This gives us a partition of X; and Y;. Each
x € Xy is assigned exactly one rank and each y € Y; is contained in exactly one front.

Remark 4.26 By using an efficient bookkeeping it is possible to perform the nondominated
sorting of Xy and Y; with a time complexity of O(pN?) and a storage requirement of O(N?),
where p is the number of objectives and N is the population size. The corresponding
algorithm is detailed in [Deb01, pp. 42-44] and [Deb+02, pp. 183-184].

The fitness assignment with nondominated sorting is straightforward. A solution with
a smaller rank is preferred over a solution with a larger rank. If two solutions have the
same rank, the solution that makes a greater contribution to diversity (within the front
that contains both solutions) is preferred. An indicator for the contribution of a solution
to a front's diversity is the crowding distance.
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Crowding distance Only the basic idea behind the crowding distance is presented. De-
tails as well as an algorithmic description can be found in [Deb01, pp. 236-240] and
[Deb+02, pp. 185-186]. Note that the crowding distance is only computed for solu-
tions within the same front Fj, because otherwise the solution with the lower rank is
preferred. To illustrate how the crowding distance is calculated, let us suppose that our
multiobjective problem has p, p > 2, objectives and that the front F; has £ elements, i.e.,
Fi = {y',... y%}. Then, we have to compute £ crowding distances d;, i € [4].

First, the crowding distances are initialized with zero, i.e., we set d; := 0 for all i € [].
Next, we proceed component by component of the objective space. For each m € [p],
we sort the m-th component of the elements in Fx in increasing order. For the mo-
ment, let us suppose that these components are unique, i.e., we only have strict inequal-
ities and thus a unique order. Let o, be the corresponding permutation, i.e., we have

yom@) o yom@) o yem® g particular, we have y2m® = min{yt,...,yt} and
m e
yor® = max{yk, ... yb}.

The boundaries of Fy are most important for diversity and thus we assign d,, (1) ¢ oc as
well as d, (g < oo. The remaining crowding distances are updated by

y’?r;m(H‘l) _ yr(?’:’m(/._l)

max _ £min
fm fm

dcrm(i) < dgm(,-) + Vie{2,...,£—1}.

Remark 4.27 The parameters fM" and £ are used to normalize the componentwise
contributions to the crowding distance. But the literature does not clearly state how fmn
and M3 should be selected. In [Deb01], it is suggested to select fMM and fMa 'as
the population-minimum and population-maximum values of the m-th objective function"
[Deb01, p. 236]. However, in a subsequent example in [Deb01], " and M3 are selected
as the m-th components of the ideal point and of the nadir point, respectively [Deb01,
p. 238].

In contrast, the NSGA-II implementation by Seshadri [Ses09], which is used in the use
case in Section 9.2.4 below, uses the minimum and the maximum of the m-th component

of the elements in Fy only (and not of the whole population), i.e., fnTi” = y,%”’(l) and

om(4
nt’_T,wX — m’"( )

Remark 4.28 The literature ([Deb01] and [Deb+02]) does not state how to deal with the
case that the ordering of the m-th component of the elements in Fy is not unique, i.e., if
there exist y',y € Fy, i # j, such that yi. = yl,. Because all ADA optimization problems
are continuous, it is considered very unlikely that two or more solutions within a front
have an identical component in the objective space. Therefore, this case is ignored in the
following.

An example where the crowding distance is determined step by step with hand calcula-
tions is given in [Deb01, pp. 237-240].

Elitism Elitism is "[a]n operator which preserves the better of parent and child solu-
tions (or populations) so that a previously found better solution is never deleted" [Bra+08,
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p. 65]. Elitism is also implemented in NSGA-II. The elite-preserving operator in NSGA-II
is straightforward. Let N denote the population size. Let us suppose that the three evo-
lutionary operators presented in the preceding Subsection 4.2.1, reproduction, crossover
and mutation, have already been applied in the current generation. This gives us two
populations, the original parents as well as the offspring generated by crossover and mu-
tation. We combine both populations to an intermediate population, which has typically
the size 2N (N parents and N offspring). From this combined intermediate population
the N solutions with the best fitness values constitute the population for the subsequent
iteration, i.e., the N solutions with the smallest rank and the largest crowding distance are
selected.

For instance, let us suppose that F; contains N — 10 elements and that F» contains 20
elements. Then all elements of F; as well as the ten elements of Fy with the largest
crowding distance in F» constitute the new population, which again has the size N.
Because all parent solutions are considered as candidates for the new population, the new
population cannot be "less optimal" than the preceding population.

The interaction of nondominated sorting, crowding distance and elitism is briefly illus-
trated in the following example.

Example 4.29 We consider the t-th generation of a run with NSGA-II for a not further
specified two-dimensional problem (MOP). The tournament, the crossover and the mu-
tation operator have already been applied in this generation. This gives us a combined
population that consists of the N parents (the incumbent population in generation t) and
of N offspring generated by crossover and mutation. In this example, we have N = 6
and the combined population consists of 2N = 12 solutions. In Figure 4.3, the combined
population is shown in the objective space. Because it is not relevant for the following,
the parents and the offspring are not visually distinguished, i.e., it is not apparent which
solution is a parent and which solution is an offspring. Note that each point has a unique
preimage in the combined population under f (because exactly 12 points are shown).

We apply nondominated sorting to find the "best" N = 6 solutions in the combined pop-
ulation. We filter the combined population for nondominance and obtain the front Fi.
Next, we filter the combined population without (the preimages of) F1 for nondominance
and obtain the front F» and so on. In total, we have the four fronts Fy to F4.

We start to fill the new population, denoted by P41 in the following. The front F1 con-
tains three elements and thus we can add all solutions corresponding to F1 to Piy1. With
this, we have 6 —3 = 3 spaces left in Pr+1. However, the next front, F» = {a, b, c, d}, has
four elements. Therefore, we use the crowding distance operator to determine which three
solutions from F, we add to Pry1. Without explicitly calculating the crowding distance it
is apparent from Figure 4.3 that b has the smallest crowding distance in F». Therefore,
the solutions corresponding to a, ¢ and d are added to P.y1. With this, the population
for the subsequent (t + 1)st generation is constituted and the remaining solutions of the
intermediate population are discarded.
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Objective Space of (MOP)
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Figure 4.3.: The image of a combined population consisting of 6 parents and 6 offspring
under a two-dimensional objective function f is shown (parents and offspring are not visually
distinguished). The four ranked fronts F; to F4 are a partition of the combined population’s
image. Furthermore, it is apparent that the point b has the smallest crowding distance in
the front F, = {a, b, ¢, d}. Adapted from Figure 139 in [Deb01, p. 237].

Remark 4.30 The computational complexity of one iteration with NSGA-II is O(pN?),
where p denotes the number of objective functions of (MOP) and N denotes the popula-
tion size [Deb01, p. 240]. This results from the nondominated sorting of the intermediate
population with the size 2N, see also Remark 4.26.

This concludes the introduction to NSGA-II. A more detailed introduction as well as
a detailed algorithmic description of NSGA-II can be found in [Deb01, pp. 233-236] and
[Deb+02].

Most multiobjective evolutionary algorithms are designed for unconstrained or box con-
strained problems. Therefore, an additional constraint handling technique (CHT) is re-
quired for solving a constrained optimization problem with such algorithms [DD15, p. 1].
This also applies to NSGA-II and thus a small overview of CHTs in evolutionary multiob-
jective optimization is given.

4.2.3. Constraint Handling Techniques

There exists a variety of CHTs for solving constrained multiobjective optimization problems
with evolutionary algorithms. A survey and taxonomy of CHTs in evolutionary multiobjec-
tive optimization is given in [Lia+23].

For this study, we are particularly interested in CHTs for NSGA-II. Deb et al. suggest
to combine NSGA-II with a CHT based on a separation of objectives and constraints
[Deb+02]. This method is called constrained dominance principle (CDP).
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Constrained Dominance Principle

If two solutions are compared, then either both solutions are feasible, one is feasible and the
other is not or both are infeasible. The idea behind CDP is to modify the Pareto dominance
relation between two solutions and include their "degree of (in)feasibility". The following
definition is taken from [Deb+02, p. 192].

Definition 4.31 Let x' and x/ be two solutions for (MOP) (x' and x/ not necessarily
elements of X ). The solution x' constrained-dominates x/ if any of the following conditions
Is satisfied.

o x' and X/ are both feasible and x' Pareto dominates x/, i.e., x',x) € X and f(x') <
f(x).

o x' is feasible and x/ is not, i.e., x' € X and x/ ¢ X.

e x' and x/ are both not feasible, but x' has the smaller overall constraint violation,
where the overall constraint violation is the sum of the absolute values of all con-
straint violations.

"The effect of using this constrained-domination principle is that any feasible solution
has a better nondomination rank than any infeasible solution" and that "among two infea-
sible solutions, the solution with a smaller constraint violation has a better rank" [Deb+02,
p. 192]. With this, NSGA-Il and CDP are combined by replacing the Pareto dominance
with the constrained dominance when applying NSGA-II.

The advantages of CDP are that it does not require any additional parameters, it is simple
and it is easy to implement [Deb+02, p. 196]. Furthermore, in several tests the com-
bination of NSGA-II with CDP provided good results [Deb+02, p. 196]. However, if an
optimization problem has discrete feasible regions or infeasible barriers, then CDP might
""cause the population to fall into some local feasible regions" [Lia+23, p. 4].
Experiments have shown that satisfactory results are achieved when the ADA optimization
problems are solved by combining NSGA-Il with CDP. Therefore, CDP is the only CHT
considered in this work. As already mentioned, an overview of alternative CHTs for evolu-
tionary multiobjective optimization is given in [Lia+23].

This concludes the introduction to evolutionary multiobjective optimization. In the
following section, some basics of fixed point iteration procedures are presented.

4.3. Fixed Point lteration Procedures

In Chapter 6, it is shown that the ADA procedure with a single ADA pair corresponds to
the Picard iteration, which is a fixed point iteration procedure. Therefore, this subsection
deals with the terms fixed point and iteration procedure and is based on the book /terative
Approximation of Fixed Points written by Berinde [Ber07]. The term fixed point and the
Picard iteration are introduced first. Thereafter, some convergence results are presented.
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4.3.1. Fixed Points and the Picard lteration

As the name suggests, a fixed point of a function is an element that is mapped to itself.
The definition of a fixed point is very general, i.e., the underlying set and the corresponding
function do not have to have any structure.

Definition 4.32 Let X be a nonempty set. A function f that maps the set X to X is
called selfmap.

Let f : X — X be a selfmap. An element x € X with f(x) = x is called fixed point of f.
The set of fixed points of f is denoted by Fix(f).

The following example shows that Fix(f) can be empty, contain a certain number of
elements or can be the whole underlying set X.

Example 4.33 1. Let X be an arbitrary nonempty set and f = id the identity. Then,
we have Fix(f) = X, because f(x) =xV x € X.

2. Let X =R and f(x) == 3x + 5. Then Fix(f) = {10}, because

1 1
§X—|—5:X & 5:§x < 10 = x.

3. Let X = R and f(x) = x+ 1. Suppose f has a fixed point x*. Then, we have

x* 4+ 1 = x*, which implies 1 = 0. That is a contradiction and thus we have
Fix(f) = 0.

It is not always possible to explicitly calculate the set of fixed points like in Example
4.33. Rather one has to rely on iterative approximation procedures [Ber07, p. 20]. Such
procedures are based on consecutive function evaluations, so we introduce a notation for
that.

Notation 4.34 [et f : X — X be a selfmap with a nonempty set X. Then, f"(x) is the
n-th iterate of x under f. It is recursively defined by fO(x) = x and f"T1(x) := f (f"(x)).

Remark 4.35 The part f9(x) := x looks similar to the definition of a fixed point. But the
term fO(x) simply denotes the element x itself.

The most basic iterative fixed point method is the so-called Picard iteration [Ber07,
p. 3].

Definition 4.36 The sequence {f"(xo0)}nen, C X is called the Picard iteration associated
to f starting at xo. It is also denoted by {xn}nev,, Where x, = f"(xo).

If xg € Fix(f), then we obviously have f"(xg) = xp for all n € INg. A major result
with respect to the Picard iteration for arbitrary starting points xo € X is Banach's fixed
point theorem. It is one of the most important theorems in the metrical fixed point theory
[Ber07, p. 6]. However, Banach's fixed point theorem requires that X is a complete
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metric space. A complete metric space is a metric space in which every Cauchy sequence
is convergent [Ber07, p. 5]. This is no restriction to us, since the ADA iteration function
A;, which is defined and analyzed in Chapter 6 below, lives on IR and it is well known that
R together with the metric d(x,y) = |x — y| is a complete metric space. Therefore, the
following definitions and theorems are stated for subsets of R only, although more general
versions exist.

In order to formulate Banach's fixed point theorem, we need the concept of Lipschitz
continuity. We also introduce the closely related term contractive function.

Definition 4.37 Let X C R and let f : X — R. The function f is called L-Lipschitzian,
if there exists L > 0 such that

If(x) = fWI < Lix=y|¥YxyeX

The corresponding constant L is called Lipschitz constant.
The function f is called contractive, if

100 —fNI<Ix=ylVx.yeX x#y.

Remark 4.38 There exists a more general definition of Lipschitz continuity that is defined
for functions between two metric spaces (X1, dv) and (X2, do). However, Definition 4.37
is sufficient for the ADA optimization.

Theorem 4.39 (Banach's fixed point theorem) Let X C R and let f : X — X be L-
Lipschitzian with L < 1. Then

1. f has a unique fixed point x* € X.

2. The Picard iteration associated to f converges to x* for an arbitrary starting point
Xp € X.

3. The a priori error estimate |x, — x*| < % - |x1 — Xo| holds for all n € Ny.
4. The a posteriori error estimate |x, — x*| < ﬁ - |Xp — Xnp—1| holds for all n € Np.

5. The rate of convergence can be estimated by |xp—x*| < L-|xp—xp—1| < L"-|x0—x*|
for all n € IN.

Proof. See [Ber07, p. 32]. O

The existence of a Lipschitz constant L < 1 is a strict requirement for Banach's fixed
point theorem. If the condition is slightly weakened to f being only contractive, then
the conclusions of Banach’s fixed point theorem are not valid in general. The following
example is taken from [Ber07, p. 34]. The proof presented in the example is added by the
author of this thesis.
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Example 4.40 Let X :=[1,00) and f : X — X be defined by f(x) = x + % Then
1 |f(x) = f(y)| < |x—y| forallx,y e X withx # y.
2. There exists no L < 1 such that |f(x) —f(y)| < L-|x—y| forallx,y € X.

3. Fix(f) = () and the Picard iteration associated to f does not converge for any starting
point xg € X.

Proof. 1. First, we show that f is strictly increasing. Let x,y € X and x < y. Then we
have

1 1
1<x<y = 1<xy=> —<1=0<1-—
Xy Xy

1
= 0<(y—x)(1 - E) (because y — x > 0)

3% X 1 1
—Xx— =+ —= T ox—==f(y)-f f f
=0<y Xlw+yy y+y X = (y) —f(x) = f(x) < f(y)

Now, we are able to prove the first statement. Let x,y € X with x # y. Without loss
of generality, let x < y. That implies 5> — 5 < 0 and f(x) < f(y), since f is strictly

increasing. Thus, we have
F0) = F = )~ F) =y + - = (x+ 1) o)< |
X) — = —f(x) = ——(x+)=y—x+(-—= —x=|x-y|.
y y y y X y v x y y
2. Let us suppose that there exists a constant L < 1 such that |f(x) —f(y)| < L-|x—y]|

for all x,y € X. Let x be an arbitrary element of X. We set y .= x + ﬁ Then, we
have 1 < x < y and thus

IHM—fUN:y+i_X_i
L _ 1 11 1-1L
Y X T AT Oy T T x T @=Dx  -Dx
1 1
:L(].—L)X:L<X+(]__L)X_X>:L(y_X)ZL|X_y|

That is a contradiction and the second statement is proven.

3. Let us suppose that the Picard iteration associated to f converges for some starting
point x € X. Let x* be the limit. That gives us f(x*) = X*—I—X—l* = x*, what implies 1 = 0.
Thus, the Picard iteration does not converge and the set of fixed points is empty. L]

However, if the ambient space has more structure than simply being a subset of R, then
even the weaker property ‘contractive’ is sufficient to guarantee that the Picard iteration
converges for an arbitrary starting point.
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Theorem 4.41 [ et X C R be compact and let f : X — X be contractive. Then
1. f has a unique fixed point x* € X and
2. the Picard iteration associated to f converges to x* for any starting point xg € X.

Proof. See [Ber07, p. 35]. O

Remark 4.42 The theorem and proof in [Ber07, p. 35] are formulated for the more general
case that X is a compact metric space.

Remark 4.43 Because there does not exist a Lipschitz constant smaller than one for a con-
tractive function in general, it is not possible to make a statement about the convergence
rate or about the error estimates of the Picard iteration in this case [Ber07, p. 35].

So far, one can guess that the Lipschitz constant plays a central in this thesis. If
differentiable functions are considered, there is a link between the absolute value of a
function's derivative and its Lipschitz constant. The following lemma is a well-known
result of mathematical analysis, see for instance [For23, p. 250].

Lemma 4.44 Let | C R be an interval and let f : | — R be a differentiable function.
1. If there exists L > 0, such that |f'(x)| < L for all x € I, then f is L-Lipschitzian.
2. If|f'(x)| < 1 for all x € I, then f is contractive.

There exist a lot more iterative fixed point procedures with according convergence re-
sults. But they usually require an extended structure of the ambient space X or there are
some more specific requirements to the function f. But they are not applicable in the
case of the ADA procedure. However, the ADA iteration functions have a certain struc-
ture, which allows to make some ADA specific fixed point iteration statements. These are
presented in the following subsection.

4.3.2. Fixed Point Related Results Required for the Convergence Analysis
of the ADA Procedure

The results presented in the preceding subsection are very general. However, the ADA
iterations have a certain structure. In Chapter 6, we show that the ADA iteration func-
tions are strictly increasing and that they are defined on closed intervals. This information
is used to make some more specific statements with respect to the corresponding Picard
iteration in this subsection. All statements and proofs in this subsection were developed
by the author of this thesis.

If f is strictly increasing, contractive and has a fixed point, then f(x) is limited by x and
the fixed point. Note that f is not required to be a selfmap.
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Lemma 4.45 [et X C R. Let f : X — R be contractive and strictly increasing and let
x* € X be a fixed point of f. For x € X, we have

X< X" = x<f(x)<x* and x*<x = x"<f(x)<x.

Proof. Let x € X such that x < x*. Because f is strictly increasing and x* is a fixed point
of f, we have
x < x* = f(x) < f(x*)=x"

Next, let us assume that f(x) < x. But then
f(x) <x<x*=f(x*) = 0<x* —x<f(x*)—f(x) = |f(x)—Ff(x")] > |x—x7

which is a contradiction to f being contractive. Thus, we have x < f(x).
The second statement is shown analogously. O

With this, we can state that if f is a strictly increasing and contractive function on a
closed and bounded interval /, then f is a selfmap if and only if f has a fixed point.

Lemma 4.46 Let | C R be a closed and bounded interval. Let f : | — R be contractive
and strictly increasing. Then, f has a fixed point if and only if f is a selfmap, i.e.,

Ax el f(x)=x" < f(I)cCl.

Furthermore, if f has a fixed point, then it is unique and the Picard iteration associated
to f converges to this fixed point for an arbitrary starting point x € [.

Proof. "=" Let there exist x* € / such that f(x*) = x*. Let x € I. We have to show
that f(x) € [. For this, we do a case distinction with respect to x. If x = x*, then
f(x) =x* el If x<x* then x < f(x) < x* according to Lemma 4.45. Because
x,x* € I and | is a closed interval, f(x) is also an element of /. Analogously, x* < x
implies that x* < f(x) < x and thus f(x) € I.

"<" Let f be a selfmap. The set / is a closed and bounded interval by assumption and
thus compact. Therefore, f is a contractive selfmap on a compact set and thus we can
apply Theorem 4.41, which states that f has a unique fixed point x* € | and that the
Picard iteration associated to f converges to x* for an arbitrary starting point x € /. [

Finally, the following lemma states monotonicity properties of the Picard iterations as-
sociated to strictly increasing functions f.

Lemma 4.47 Let X C R be nonempty, let f : X — X be strictly increasing and let x € X.
Then, the following holds:

1. If f(x) > x, then the Picard iteration associated to f starting at x is strictly increas-
ing.

2. If f(x) < x, then the Picard iteration associated to f starting at x is strictly de-
creasing.
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3. If f(x) = x, then x € Fix(f) and the Picard iteration associated to f starting at x is
constant.

Proof. We show the first statement by induction. So let x € X and let f(x) > x.

Base case:

For n =1 the claim follows from the assumption f(x) > x.

Induction hypothesis:

Let the statement hold forn =1, ..., k. ie., wehave f(x) > f""Y(x)foralln=1, .., k.
Induction step:

We consider n = k + 1. According to the induction hypothesis, we have f*(x) > fx=1(x).
Because f is strictly increasing, we have f&*1(x) = f(fk(x)) > f(fk71(x)) = fK(x).
This proves the first statement. The second statement is shown analogously. The third
statement follows from the definition of a fixed point. O

With this we have all the statements together that are required for the convergence
analysis in Chapters 6 and 7 below.
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Mathematical Formulation of ADA

In this chapter, the ADA procedure is presented from a mathematical point of view. First,
a corresponding formalism is introduced and all the required sets and functions are defined.
This formalism is then used to formulate the full ADA Algorithm 5.2 below. "Good" con-
vergence characteristics of this algorithm are an objective in the optimization later on.
Therefore, the convergence characteristics of Algorithm 5.2 are thoroughly analyzed in
Chapters 6 and 7. The findings are used to develop the optimization models in Chapter 8.

The ADA procedure is presented in detail in Chapter 3. As explained there, it requires
certain parameters, the so-called ADA pairs. Each ADA pair consists of a start and a
test point. Each start and test point consists of a fan speed and of an ioni current.
The following notation briefly summarizes the notation introduced in Definition 3.25 and
Notation 3.34 above.

Notation 5.1 Let N € IN be the total number of ADA pairs. We define [N] = {1, ..., N}.
The ADA parameters of the p-th ADA pair, p € [N], are denoted by

sP and tP: the ADA pair’s start and test fan speed, respectively,
i and i?: the ADA pair’s start and test ioni current, respectively.

There are certain requirements with respect to the ADA pairs. The following definition
extends Definition 3.25 of a well-defined ADA pair.

Definition 5.2 Let H = (FS, (Ggs)rers. (tfs)rsers. (Ars)ssers. (Crs)rsers) be an HE model
and let p € [N]. A quadruple (sP, tP, 8, if) is called feasible ADA pair with respect to H,
if

sP tP € FS: s > tP, /_56/5/3, /feltp and Ggpo NG #£ 0.

Remark 5.3 This remark is analogous to Remark 3.26. When there is no risk of confusion,
the HE model related to a feasible ADA pair is not explicitly stated for the remainder of
this thesis.

Remark 5.4 An ADA pair (sP, tP, £, i) is feasible if and only if it is well-defined and in
addition Gs» N G £ O holds. The condition Gs» N G #£ O is included to avoid case
distinctions in the following. From a practical point of view, if Gso NGy = (), then feasible
combustion limits are exceeded during an ADA iteration.

Remark 5.5 If an ADA pair (sP, tP,if,if) is feasible, then its ioni currents are positive,
ie., i€ >0 and i’ > 0. This follows from Isp C Rsq and Iy» C R (Definitions 2.18 and
2.22).
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Assumption 5.6 7o avoid case distinctions, it is implicitly assumed that all considered
ADA pairs are feasible for the remainder of this part.

During the course of this part, we often switch between ioni currents and corresponding
resistances. This is done by applying Ohm’s law with the voltage U. Recall from Re-
mark 3.3 that U is a positive constant, i.e., U > 0. It is convenient to define resistances
that correspond to the start and test ioni currents.

Definition 5.7 For all p € [N] we define the p-th ADA pair’s start and test resistance,
respectively, by
U
— b
re = 3 and r{ = e

Remark 5.8 Because i > 0 and if > 0, we have r® > 0 and rf > 0 for all p € [N].
In the following section, a formalism is introduced that allows to formulate the ADA
procedure as an algorithm. For this, we implicitly assume that a drift resistance rp > 0, an

HE model H = (FS, (Ggs)rsers. (trs)rsers. (Afs)fsers. (Cs)isers) and N feasible ADA pairs
(sP,tP, i€ iP), p € [N], are given.

5.1. Formalism: Required Sets and Functions

Let 7t,ro =(i,..., in) be the incumbent vector of drifted test ioni current approximations.
According to Definition 3.30 and Remark 3.42, an ADA iteration with the p-th ADA pair,
i.e., an update of ip, p € [N], is composed of the following four steps.

(A1) 7p + o, (sP)

D uig
(A2) Is.ip < #piP+U

(A3) g1, (17

s,’p
(A4) i, < 10,1, (9).

The aim of this section is to provide a formalism such that we can express steps (Al) to
(A4) with functions. We begin with step (A1) and take a closer look at the drift resistance
approximations at the start fan speeds, i.e., we take a closer look at %, (sP), p € [N].
Thereafter, we consider steps (A2) to (A4).

5.1.1. Drift Resistance Approximations at the Start Fan Speeds

In step (A1), we calculate a;; =~ (sP), which corresponds to calculating the incumbent drift
. . . D .
resistance approximation at the start fan speed sP. Recall from Definition 3.38 that for
a given vector iy, = (i1, ..., iy) the function a; (fs) is a linear interpolation combined
.fD

with a constant extrapolation of the N data points (t?,78) with 7f = % - l% p € [N].
t
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Calculating % — I% is essential for the ADA procedure and thus we define corresponding
t

functions.

Definition 5.9 For p € [N] we define

. u U U
BP i Rso — (—rf, ), BP(i) ::T—i—p:—,—rf
t
and U
(6°) " (=t ) = Boo, (69) (0 = s

Lemma 5.10 The functions BP and (ﬁp)_l are well-defined.

Proof. Let i € Rsq. Then, % is defined and BP(i) can be evaluated. Furthermore, we
have (because U > 0)

) )
I€ERsg = i>0 = 7>O = ﬁp(/):T—rf>—r{? = BP(i) € (—rf, ).

On the other hand, let r € (—rf, 00). Then we have r > —rf and thus r+rf > 0 holds and
U — (6°)'(r) is defined. Furthermore, (8°) "(r) > 0 holds (because U >0).  [J

r+rf

Lemma 5.11 Let p € [N]. The function BP is a homeomorphism. Its inverse function is
(ﬁp)_l. Furthermore, both functions are strictly decreasing.

Proof. The functions B° and (/5”9)_1 are each a composition of continuous operations on
their respective domains and thus they are continuous as well. Next, we show that they
are inverse of each other. Let i € R+, then we have

U

-1 . -1
(8°) "o B7(i) = (8°) (7—ff):m:’
Let r € (—rf, 00), then we have
B0 (6) () =B°( p) = g~ =r it =r
r+rf e

To show that B” is strictly decreasing, let i1, > € R~q such that i1 < i». Then,

. . u u U U . .
0<ii<h = ~<— = ——rP<——rP = BP(h) < B(ih)
I I I I
and thus BP is strictly decreasing. As the inverse function of a strictly decreasing function,
(,6")71 is also strictly decreasing. O

Before we use pP to reformulate the calculation of o; (sP), we take a closer look
at the relation between the start and the test fan speed of an ADA pair. Recall from
Section 3.4.1 that the numbering of the ADA pairs follows a descending order with respect
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to their test fan speeds, ie., t? < tP"Lforall p € {2,..., N}. In addition, ADA pairs
must not be overlapping as stated in Section 3.4.3. Then, the start fan speed of ADA pair
p lies between the test fan speeds of the ADA pairs p and p—1 forall p € {2,..., N}
according to Lemma 3.44 (if the ADA pairs are well-defined), i.e., t? < sP < tP~1 for all
pe{2, ..., N}. Recall that all ADA pairs considered in this work are required to be not
overlapping. Therefore, we can express sP by a weighted sum of t” and tP~! with weights
wP and 1 — wP between 0 and 1 for all p € {2,..., N}.

Definition 5.12 Let p € {2,..., N}. We define

—1
Wp - tp — Sp
tP=l —tp
Lemma 5.13 Let p € {2,..., N}. Then, we have

O<wP<1l and sP=wPtP+(1—wP)tP

Proof. Let p € {2,..., N}. According to Lemma 3.44, we have t?~! > s > tP and thus
1 1 1 Pl —sP
tP~ >Sp>tp = P —tp>tp_ —5p>0 == 1>m:Wp>O
Regarding the second statement, let us consider

th—1 _gp =1 _op

PP byl 8 TS - T2 N\4p—1
wPEP 4 (1 - wh)tP™ = ot + (1 tpfl—tp)t

Pl Pl P — (1P - P) (-1

Sl —gp tp—1 — P
tp—l _gP gP — tP

= tP+ Pt
tp—1 _ ¢p th—1 _ ¢p
A S G 0 L

tP=1l — tp tP=1 — tp

]

With this, we can state an equation for a; (sP), p € [N], that depends on the incum-
: o .k
bent drifted test ioni current approximations.

Lemma 5.14 Let 7”0 =(it,...,Iny) C ]RQ’O be a given vector of drifted test ioni current
approximations. The corresponding drift resistance approximations at the start fan speeds
are
1 . .
i ifp=1,
o, (=171 Lo (5.1)
D wPBP(ip) + (1 — wP)BP~*(ip—1) ifp>2.
An equivalent but less concise expression is
u_u -
a. (sP)y=4" (5.2)

it.rp

Wp(% _ %) +(1- W”)(,-,,% - ifL_l) ifp>2.
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T I I
edata points
. ooy (s?), p € [2]
£ BA(?) g
Q
= 2
é: Ol;”D (S ) - |
BL(iY) a
| | | | | |
fSrmin t2 52 tl st fSmax

fs

Figure 5.1.: The drift resistance approximation function a; (fs) for a situation with two
-
ADA pairs and a given vector of drifted test ioni current approximations iy, = (i1, i) is
shown. The black dots correspond to the data point (t?, B”(ip)), p € {1,2}. The rings
mark the corresponding drift resistance approximations at the start fan speeds s and s2.

Proof. The statement follows from Definitions 3.38 and 5.9 as well as from Lemma 5.13.
O

Remark 5.15 Equation (5.2) of Lemma 5.14 is also found in the Vaillant documentation
[WHB, Items 4267 and 4268].

The following example demonstrates the statements of Lemma 5.14.

Example 5.16 We consider a situation with two ADA pairs, i.e., we have N = 2. For this,
let us assume that two ADA pairs (s*, t*, ik, i}) and (s?, t2, 2, i?) are given. In accordance
with the convention of the ADA pair numbering, let t? < t'. Let us further assume, that
we have a vector of incumbent drifted test ioni current approximations ?t,ro = (i1, h).
Then, we have two data points (t2, 82(i»)) and (t', B (i)) for the drift resistance ap-

proximation function o (fs).
D

In this example, let 2(i») > B(i1). This situation is depicted in Figure 5.1, where the two
data point are marked by dots. The black line is the corresponding drift resistance approx-
imation function %, (fs), which is a linear interpolation of these data points combined
with a constant extrapolation. The drift resistance approximations at the start fan speeds
are marked by rings. The start fan speed of ADA pair 2, 52, lies in the middle between the
two test fan speeds, i.e, we have s? = 3(t! + t?), in this example. Therefore, ADA pair
2 has the weight w?> = % (Definition 5.12) and we have a?“D(sz) = 1B%(i) + 3B (ir)
(Lemma 5.14). Because of B2(ix) # B*(i1), we have o, (s?) # B?(ir).

In contrast, the drift resistance approximation at the start fan speed of pair 1 is identical
to the drift resistance approximation at the pair’'s test fan speed, because the drift resis-
tance approximation function is extrapolated as a constant function beyond the data point
(t, B'(i1)). Therefore, o, (s1) = a?”D(tl) = BY(i1) holds, which is in accordance with
Lemma 5.14.

This demonstrates the big difference between the cases N = 1 and N > 2. In the case
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N =1, we only have one data point and thus the drift resistance approximation function

a; (fs) is constant and we always have c; ~ (s') = B*(i). In the case N > 2, we have
D D

as  (sP) # BP(ip) for p > 2 in general.

itrp
The weighted sum in Lemma 5.14 plays a central role. We thus introduce the following
notation.

Definition 5.17 Let p € {2, ..., N}, let wP be according to Definition 5.12 and let x,y €
R. We define
wP(x,y) = wPx+ (1 —wP)y.

(Memory aid: w stands for '(w)eighted sum’.)

Definition 5.17 gives us a concise expression for the drift resistance approximations at
the start fan speeds.

Corollary 5.18 Let 7t,ro =(i,..., in) be a given vector of drifted test ioni current approx-
imations. We have

b B (ir) ifp=1,
a;t.r (S ) - P{RP(; p—1¢; t
D wP (BP(ip), BP H(ip—1)) ifp>2.
Proof. The statement follows from Lemma 5.14 and Definition 5.17. OJ

A major conclusions from Corollary 5.18 is that in the case p = 1 the approximated
drift resistance at the start fan speed s? = s depends only on i;. In the case p > 2, the
approximated drift resistance at the start fan speed s? depends on i, and on i,_;. Thisis
also the reason, why the ADA procedure with a single ADA pair is less complicated than the
ADA procedure with a plurality of ADA pairs. In the case of a single ADA pair, i.e., in the
case N =1, the drift resistance approximation function is constant with %4, (fs) = B1(i1)
for all fs € FS. In contrast, in the case N > 2, the drift resistance at the start fan speed of
the p-th ADA pair is also influenced by its upper neighbor p — 1 for all p > 2. Accordingly,
the cases N = 1 and N > 2 are dealt with separately. The case N = 1 is detailed in
Chapter 6 and the case N > 2 is detailed in Chapter 7.

But first, we formulate the ADA procedure as an algorithm. In doing so, we must ensure
that the corresponding function evaluations are well-defined. We specify suitable domains
for this.

5.1.2. Set of Feasible Drift Resistance Approximations

In this subsection, we specify a domain such that the successive execution of steps (A2)
to (A4) is well-defined. Definition 5.19 of the set RA”,’D below is motivated by the following
two considerations.

e Because tsp 1 Gsp — lop,r, IS @ homeomorphism (Lemma 3.16), step (A3) is well-
defined if and only i is 7, € lsp,r, = Lop,ry (Gsr) if and only if § =15, (isz,) € Gov.
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e Because Gy» is the domain of vye ,, (Definition 3.12), the function evaluation ¢, (§)
in step (A4) is well-defined if and only if § € Gg».

Definition 5.19 Let p € [N] and let (sP, tP, i£,if) be the p-th ADA pair. Furthermore, let
rp € Rxo be a drift resistance and let H = (FS, (Ggs)scrs. (4fs)tsers. (As)ssers, (Cis)fseFs)
be an HE model. The set of feasible drift resistance approximations of ADA pair p with
respect to rp and H is defined by

5p U

RP =
D LSP'rD(GsP N th)

U
— p': . = — — p
e {rE]R. g€ Gsr NGy st 1 v 1 (9) rs}.

Lemma 5.20 The set R}, is well-defined.

Proof. According to Definition 3.12, all images of s ,, are greater than zero and thus
R? is well-defined. O

Remark 5.21 When there is no risk of confusion, the HE model H and the drift resistance
rp > 0 related to ﬁ",’D are not explicitly stated for the remainder of this thesis. l.e., if not
otherwise stated, we implicitly assume that an HE model H and a drift resistance rp > 0
are given.

With the set R’ED as a domain, we can now specify a function that corresponds to the step
(A2).

Definition 5.22 Let (s”, tP, i€, i) be the p-th ADA pair and let R}, be the set of feasible
drift resistance approximations of ADA pair p, p € [N]. We define

. ) U
VP RP = e, (Gsr N Go),  YP(r) = 18—

oAU (5:3)

Lemma 5.23 The function yP is well-defined, continuous, bijective and strictly decreasing.

Proof. By Definition 5.19, we have

A U u U
reRP = 39gcGoprNGp i t=——r—v—tP=—  —
D I s * LsP,rp (9) s Lsprp (9)
= 39g€Geop NG : iPr+U sU
e r = ——
I s s LSP,rD(g)
U
= 3 g & GSP ﬂth . LsP,rD(g) = ipf+U =7 (I’)
s

Therefore, ¥P(r) exists and ¥P(r) € tsp r, (Gor N Gyo) holds, i.e., ¥ is well-defined.
As a composition of continuous operations, y” is also continuous.

Injectivity: Let ri, 1 € I?L’D such that v(r1) = v(r2). Then, we have

= I = mn.

P(n) =9P(rn) = ¥(n) =f5——F =79"(n) = if 57—
Y () =~"(n) = ¥°(n) ey v°(r2) Py
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Surjectivity: Let i € tgp p(Gsp N Gro). We define r = Y — r2. Then, r € RP, holds and
we have
. U LU
/Yp(r)zlf-pu U U:iSPU:I'
(% - f) - =

Ié)l(‘J-‘rU S LSP'rD(GsP) C ]R>O

as well as U > 0 and i£ > 0, we have i¥r + U > 0 for all r € RP,. Therefore,
PU PU
iLro+U i£ri+U

Finally, let r1, r» € RP such that r; < rp. Because y°(r) = i¥

n<mn = 0<iPn+U<iPn+lU = = YP(r) <¥P(n)

and thus P is strictly decreasing. ]

Corollary 5.24 The successive execution of steps (A2) to (A4) with ADA pair p, p € [N],
is well-defined if and only if Fp € I?’,’D, ie.,
Uif

- -1 P(7~Y _defi 7 ;5P
o+ U) = Ltr,rp © bgp,,, © Y (FD) Is well-defined < Fp € RY.

-1
[’tp,l’D O Lsp",D (

With this, we have all the parts together to formulate the ADA algorithm in the following
section.

5.2. The ADA Algorithm

We first formulate an algorithm for a single ADA iteration, i.e., an algorithm that corre-
sponds to steps (Al) to (A4). Based on this algorithm, we then present the full ADA
Algorithm 5.2 that corresponds to a sequence of ADA iterations with a plurality of ADA
pairs.

5.2.1. Algorithm for a Single ADA Iteration with ADA Pair p

An ADA iteration with ADA pair p is composed of the steps (A1) to (A4) presented at the
beginning of Section 5.1. Corollary 5.18 reformulates step (A1) such that it is expressed
as a function of the incumbent drifted test ioni current approximations. Steps (A2) to
(A4) are covered by Corollary 5.24. The following Algorithm 5.1 combines the statements
of both corollaries.

Remark 5.25 /f the drift resistance approximation determined in Line 7 or 9 in Algo-
rithm 5.1 is such that the subsequent calculations are not well-defined, then the output is
i = NaN for all j € [N]. This indicates that the ADA iteration could not be carried out
successtully, see also Remark 5.33 below.

Lemma 5.26 Let p € [N] and let iyin = (i1, ..., in) € RQO be a given vector of drifted
test joni current approximations. The execution of Algorithm 5.1 corresponds to an ADA
iteration of ADA pair p according to Definition 3.30 and Remark 3.42. Furthermore, all
calculations in Algorithm 5.1 are well-defined.
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5.2 The ADA Algorithm

Algorithm 5.1 ADA Update of the p-th Entry of the Vector 7“D

Input:
L1 H = (FS, (Grs)ssers. (tfs)sers. (Ass)isers. (Crs)rsers) // HE model
20 (¢t i, i), je[N] // ADA parameters of N ADA pairs
3: rp € Ryo // drift resistance
4: 7”D =(i,..., in) C ]RQO // incumbent drifted test ioni current approximations
5. p € [N] // selected ADA pair for update

Calculations:
6: if p =1 then

7 Pp = B(i1) // drift resistance approximation at s*
8: else if p > 2 then
9: Pp = wP(BP(ip), BP *(ip—1)) // drift resistance approximation at sP, p > 2
10: end if
11: if ?p € RP, then
12: Ip <= Lgppp © L;,%,D oyP(7p)
13: else
14: ij <= NaN Vv e [N] // mark results as not valid
15: end if
Output:
16: 7”D =(n,..., in) // updated drifted test ioni current approximations

Proof. The statement follows from Definition 3.30, Remark 3.42 as well as from Corol-
laries 5.18 and 5.24. O

Example 5.27 In Example 3.22 above, the notion of the ADA procedure is demonstrated.
The calculations carried out there correspond to execute Algorithm 5.1 with a single ADA
pair, i.e., for the case N = 1, and thus with p = 1. The undrifted test ioni current iy is
used as the incumbent drifted test ioni current approximation, i.e., 7“,3 = (i). Note that
the superscript p and the subscript p are not used in Example 3.22, because only a single
ADA pair is considered there. All in all, the ADA iteration demonstrated in Example 3.22
corresponds to the update i < tt,r, © L7 07y o B(i) with i = it

Algorithm 5.1 is not yet the full ADA algorithm, because usually sequences of ADA
iterations are used to approximate the drifted test ioni currents, see also Section 3.3. The
full ADA algorithm is presented below.

5.2.2. Full ADA Algorithm with a Sequence of ADA Iterations

Algorithm 5.1 states how to perform a single ADA update of the p-th entry of the vector
7UD. But it does not contain any instructions on which ADA pair p shall be selected for
the next update or on how many updates of the p-th entry shall be performed. Therefore,
we delineate an algorithm that provides a framework for a sequence of ADA updates, i.e.,
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we delineate a coordination algorithm that is wrapped around Algorithm 5.1. This requires
the term ADA update sequence.

Definition 5.28 Let £ € IN and let [] = {1,..., £} A sequence (uk)kepg with ux € [N]
for all k € [£] is called an ADA update sequence of length £.

Example 5.29 Let N =3 and let £ = 6. Then (ug)kepg = (1.2,3,1,2,3) and (U7 )kepg =
(1,1,2,2,3,3) are both ADA update sequences of length £.

Remark 5.30 /nfinite ADA update sequences are also possible. For instance, (Ux = 1)ken
is the infinite ADA update sequence whose entries are all one.

Remark 5.31 /f there is no risk of confusion, an ADA update sequence (uy)xek is abbre-
viated and denoted by u in the following.

Let us suppose that an ADA update sequence u = (Uk)ke[g] of length £ is given. Then,
the k-th entry of u, denoted by wug, corresponds to the ADA pair that is selected for
the ADA update with Algorithm 5.1 in the k-th iteration. A corresponding framework is
provided by Algorithm 5.2.

Algorithm 5.2 ADA Update for a given ADA Update Sequence u

Input:
1 H = (FS, (Grs)ssers, (ts)ssers, (Ass)rsers, (Crs)sers) // HE model
20 (¢, i i), j€[N] // ADA parameters of N ADA pairs
3: rp € R>o // drift resistance
4 g = (i, ..., iv) € RY, // initial drifted test ioni current approximations
5: (Uk)kele) // ADA update sequence of length £

Calculations:
6: for k=110 ¢ do

7 p = Uy

&  if p=1and B(i1) € Rl then

9: i 4= L1y, © L;%rD ovyloBl(iy) // Algorithm 5.1 with p =1
10 elseif p>2and wP(BP(ip), B (ip—1)) € RE, then

11: ip <= Leprp © Lpyy © YP 0 WP (BP(ip), BP *(ip-1)) // Algorithm 5.1 with p > 2
12: else

13: i; <= NaN for all j € [N] // mark results as not valid
14: break // leave for-loop early
15: end if

16: end for
Output:

17: dpout = (i1, ..., in) // updated drifted test ioni current approximations
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5.2 The ADA Algorithm

Lemma 5.32 A/l function evaluations in Algorithm 5.2 are well-defined. Furthermore, if
it is executed with u = (p) (the ADA update sequence of length one with the entry p),
p € [N], then its output vector is identical to that of Algorithm 5.1.

Proof. The statements follow from Lemma 5.26 and by construction. ]

Remark 5.33 /f an incumbent approximation iy is such that the subsequent calculations are
not well-defined, then the for-loop is left early and i; = NaN is returned for all j € [N]. This
indicates that the ADA iterations could not be carried out successfully. From a practical
point of view, if a calculation in Algorithm 5.2 is not well-defined, then combustion limits
are exceeded during the corresponding ADA iteration.

In practice, if the ADA procedure could not be successfully carried out for a larger period of
time and an oxide layer accrues on the ioni electrode without being corrected, the so-called
ADA supervision function will eventually lock the appliance [WHB, Items 4228 and 24108].

Remark 5.34 A common vector of initial approximations is 7t,in = (i}, ..., /tN), i.e., the
undrifted test ioni currents are usually the initial approximations of the drifted test ioni
currents, see also Remark 3.31. However, the vector 7”,1 is not restricted to these values.
A typical situation with a different initial vector is if approximations of the drifted test ioni
currents are already available.

Remark 5.35 As stated in Section 3.4.5, the selection of an ADA update sequence is
done automatically by the loniDetect system. Therefore, we have no influence on the
ADA update sequence and the selection of when to update which ADA pair is not in the
scope of this study. Instead, we suppose that the ADA update sequences follow certain
random distributions. This is detailed in Section 7.3.

For the optimization of the ADA parameters we are interested in the convergence char-
acteristics of Algorithm 5.2. In particular, we are interested in the conditions under which
Algorithm 5.2 converges to a limit (if certain infinite ADA update sequences are con-
sidered) and, if this is the case, what the rate of convergence is and whether the limit
corresponds to the sought drifted test ioni currents. These questions are addressed in the
following chapters. For this, we are interested in how the output of Algorithm 5.2 changes
if its inputs change. In particular, we are interested in 7t,out as a function of the starting
vector 7“,1 and the ADA update sequence u. Therefore, if not otherwise stated, we always
implicitly assume that a certain HE model #H, a drift resistance rp > 0 and N ADA pairs
(s/, /. i, i), j €[N], are given in the following.

Definition 5.36 Let H, rp > 0, and (s/,t/, i, i), j € [N], be given and fixed. Let i ;, be
an input vector, i.e., a vector with initial drifted test ioni current approximations, and let
u= (Uk)ke[g] be an ADA update sequence whose entries uy are an element of [N] for all
k € [€]. The corresponding output of Algorithm 5.2 is denoted by iy out (ig,in, U).

In the following, we consider the cases N = 1 and N > 2 separately. This is done for
two reasons. First, in the case N = 1, there is no choice to be made what ADA pair
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shall be updated next, i.e., we consider only ADA update sequences whose entries are
all one. Second, by comparing Line 9 of Algorithm 5.2 with Line 11, it is apparent that
the resulting iteration function is less complicated in the case N = 1. However, some
convergence results can be transferred from the case N =1 to the case N > 2.
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ADA Procedure with a Single ADA Pair

In this chapter, we analyze the ADA Algorithm 5.2 for the special case N = 1, i.e., we
consider a single ADA pair only. A plurality of ADA pairs is considered in Chapter 7. We
present an algorithm that corresponds to Algorithm 5.2 in the case N = 1 first. Thereafter,
the convergence properties of this algorithm are analyzed.

6.1. loni Current Based ADA Algorithm with a Single ADA
Pair

In the case N =1, there is no choice with respect to what pair is selected for the next ADA
update, i.e., we consider only ADA update sequences whose entries are all one. Therefore,
Line 9 is executed in each iteration of the for-loop of Algorithm 5.2 (if (1) € R} holds).
The composite function in Line 9 of Algorithm 5.2 is essential and thus it is considered in
detail.

6.1.1. loni Current Based ADA Iteration Function

Before we define a function that corresponds to Line 9 of Algorithm 5.2, we specify
a suitable domain. Line 9 is executed if B1(j;) € RL ., which motivates the following
approach.

Remark 6.1 The following motivations and statements are made for the more general
case that an ADA pair (sP, tP,i2,i?), p € [N], is considered, i.e., we do not restrict the
considerations to the ADA pair p = 1. This is done, because the following definitions are
also essential when a plurality of ADA pairs is considered in Chapter 7.

Since B8P is a homeomorphism (Lemma 5.11), (ﬂp)fl(ﬁ’fD) is a candidate for the sought
domain. However, we have to make an assumption to ensure that R’ED is a subset of the
domain of (ﬁp)_l, i.e., we have to make sure that RP, C (—rf, c0) holds.

Assumption 6.2 We assume that for all p € [N] and for all i € Isp,;y = tep s, (Gsr) the
inequa//ty% > rf — rf holds. Practical experience has shown that

o 1.5MQ > rf > rf > 0.9MQ and thus 0.6MQ > rf — rf > 0 as well as

% > 0.8MS2 for all g € G and for all considered drift resistances.

LsP.rp

Thus, the assumption ﬁ > rf —rf for all g € Gsp is reasonable from a practical point
S} .I'D

of view.
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Definition 6.3 Let p € [N] and let Assumption 6.2 hold. By considering R, from Defini-
tion 5.19, we define

2 = (") TH(RD).

Lemma 6.4 /f Assumption 6.2 holds, then ffD is well-defined. In particular, ffD C Rsq and
RP C (—rP, 00) hold in this case.

Proof. Let p € [N] and let Assumption 6.2 hold. We show that R?, C (—rf, c0) holds.
Because (—rf, o0) is the domain of (ﬁ")_1 (Definition 5.9), (,BP)_I(R’ED is well-defined
in this case. Let r € RP). Then, there exists g € Go» N G C Ggp such that r = Y — 2

with i = tse, 1, (g). According to Assumption 6.2, ¥ > rf — rP holds and thus we have

A B B
r=- rg >=1rg — Iy

P =—rP = re(=rP o) = (B°)7}(r) is defined,
Because the codomain of (/3")71 is the set of positive real numbers, fFD = (ﬁp)fl(ﬁ’ﬁ)) -
R-g holds. ]

Next, we define the iteration function that corresponds to Line 9 of Algorithm 5.2.

Definition 6.5 Let H be an HE model, let rp > 0 be a drift resistance and let (sP, tP, i, if)
be a given ADA pair. We define the corresponding ioni current based ADA iteration
function by

AP TP = Rao, AL, (i) = Loy 0 Ly, 0 Y7 0 BP(i). (6.1)

1,r'p 1,rp

Remark 6.6 The subscript i of Af o indicates that this is the ioni current based ADA
iteration function. This is done to distinguish it from the resistance based version that is
presented in Section 6.2.

Remark 6.7 According to (3.4), the functions s ;, and vsp , depend on the drift resis-
tance rp. Therefore, the iteration function Aﬁ o also depends on the drift resistance. If
we have two different drift resistances rp 1 # rp o, then we have A? ol 7 AP 10, [N general.

Lemma 6.8 The joni current based ADA iteration function Aﬁ "o is well-defined, i.e., the
function A7 ., can be evaluated for all i € [P, Furthermore, A7 ., (i) > 0 holds for all
i€l

Proof. Let i € IF,. According to Definition 6.3, we have BP(i) € RF,. With this, the
statement follows by applying Corollary 5.24 and from Definition 6.5. ]

The ioni current based ADA iteration function Afm is used to formulate an algorithm
that is a special case of Algorithm 5.2 for the case N = 1.
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Algorithm 6.1 loni Current Based ADA Algorithm in the Case N =1

Input:
H // HE model
(s, t,is, i) // ADA parameters of a single ADA pair
>0 // drift resistance
LeN // length of ADA update sequence, i.e., number of iterations
i€ f,D // initial approximation of the drifted test ioni current
Calculations:
k=1
while k < ¢and i €], do
| Ai,rD(i)
k+—k+1
end while
if i ¢ ], then
i + NaN // no valid output
end if
Output:
i // approximation of the drifted test ioni current it r,

6.1.2. loni Current Based ADA Algorithm

Since we consider a single ADA pair only, we omit the superscript p in the following.
Furthermore, we consider only ADA update sequences whose entries are all one. Thus,
only their length £ is of interest. Keeping this in mind, we formulate Algorithm 6.1.

Remark 6.9 The second condition in the header of the while-loop, | € f,D, together with
Lemma 6.8, guarantees that the function evaluations in Algorithm 6.1 are always well-
defined. This is required, because there might exist i € I, such that A; ., (i) & I,,. ie.,
the ADA function A; ,, is not a selfmap in general and a consecutive evaluation of A, r, is
not always possible. The conditions under which A; . is a selfmap are closely related to
the convergence characteristics of Algorithm 6.1. This is discussed in Section 6.2.2.

Algorithm 6.1 is indeed a special case of Algorithm 5.2.

Lemma 6.10 /f Algorithm 6.1 and Algorithm 5.2 are executed with the same inputs, i.e.,
with the same H, rp, (st.t1, i, i}), iein = (i) and u = (uK)kepy. uk = 1 for all k € [¢],
then their outputs are identical.

Proof. The statement follows from Definition 6.3 of f,D as well as from Definition 6.5 of
A, and from the construction of Algorithm 6.1. ]

i,l’D

It is apparent that Algorithm 6.1 implements a fixed point iteration. It corresponds
to the first £ iterations of the Picard iteration associated to A;,, starting at /. The
Picard iteration is introduced in Section 4.3. Analyzing the convergence properties and
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approximation quality of Algorithm 6.1 means analyzing the fixed point characteristics of

Aj r,. For this, we consider the domain of A;,, first.

Lemma 6.11 The sets f,D and I@,D are closed, bounded and nonempty intervals. In par-

ticular, they are compact.

Proof. We have I@,D = m—rs (Definition 5.19). The sets G and G; are closed and
bounded intervals (Definition 2.18) and thus Gs N G is also a closed and bounded interval.
Because we consider only feasible ADA pairs (Assumption 5.6), the intersection GsN G is
nonempty (Definition 5.2). Furthermore, the function ¢s ,, is continuous (Definition 2.18).
In total, RA’rD is the image of a closed, bounded and nonempty interval under a continuous
function. Thus, R, is a closed, bounded and nonempty interval as well.

According to Lemma 5.11, the function B : — Ii’,D is a homeomorphism. Therefore,

'D
I, = (ﬁ)fl(ﬁ’m) is also a closed, bounded and nonempty interval.
Finally, because both sets are bounded and closed, they are compact. ]

By applying Banach's fixed point theorem, we can state the following convergence
properties.

Lemma 6.12 Let A, ,, be a contractive selfmap on f,D. Then, A
point and the Picard iteration associated to A
for every i € frD.

i.rp has a unique fixed

i.rp Starting at i converges to this fixed point

Proof. Because the set frD is compact (Lemma 6.11), we can apply Theorem 4.41. [

Remark 6.13 Note that A; ., being contractive is not a necessary condition for the state-
ment of Lemma 6.12. In Appendix A, Example A.1 presents an iteration function A; .,
that is not contractive but that still has a unique fixed point and for all i € f,D the Picard

iteration associated to A; ,, starting at | converges to this fixed point.

As a consequence of Lemma 6.12, we are particularly interested in when A; ., is a
contractive selfmap. According to Definition 6.5, the function A, ,, is composed of L;}D
and tt,,,, among others. The functions s, and ¢; ., are the drifted versions of ¢s and
L¢, respectively. According to (3.4), the drifted functions g ,,(g) can be considered as
rational functions with ts(g) as the argument. This makes the convergence analysis rather
complicated. By shifting the focus from ioni current to resistance, it is possible to express
the iteration function by ¢+ and ¢! instead of vt ,, and v}, respectively, which facilitates
the fixed point analysis. Therefore, the resistance based approach is first presented and
afterwards analyzed in the following section.

6.2. Resistance Based Iteration Function with a Single ADA
Pair

In this section, we derive an iteration function that is in a certain sense "equivalent" to

the ioni current based iteration function A; ., but that is more accessible to a convergence
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analysis. From a physical point of view, this approach is motivated by applying Ohm'’s law
to the equivalent circuit illustrated in Section 3.1.1. Instead of considering ioni currents
i, we consider corresponding resistances r by calculating r = % where U is the DC
voltage of the aforementioned equivalent circuit, see also Remark 3.3. For this, we define
corresponding sets of resistances and resistance functions.

Definition 6.14 Let H = (FS, (Gfs)tsers. (tfs)rsers. (Ass)sers. (Crs)rsers) be an HE model
and let rp > 0. Forfs € FS let Iss be the sets of ioni currents according to Definition 2.22
and let Igs ., be the set of drifted ioni currents according to Notation 3.17. For fs € FS,
we define:

o Rp = % ={reR: 3 i€l such that r = %} (set of resistances with respect to
fs),

e analogously Res rp, = ,fL (set of drifted resistances with respect to fs),
s,rp
® 0t Gis — Rys, p1s(g9) = ﬁ (resistance function with respect to fs) and

® 0ty Grs = Rtsrp, Py (9) = Lm.% (drifted resistance function with respect to
fs).

Lemma 6.15 The sets Ry and Rgs , as well as the resistance functions pgs and pss ,, are
well-defined for all fs € FS.

Proof. Let fs € FS. We have /ts C R~ (Corollary 2.23) and /g, C R0 (Corollary 3.18).
Thus, the sets Rg and Ry, are well-defined. Furthermore, we have it @ Ggs — s
(Definition 2.18) and v, : Ggs — Issr, (Notation 3.17). Therefore, the functions pg and
prs.r, are well-defined by construction of the sets Rg and Ry . ]

Remark 6.16 Recall that the functions it and i, correspond to the ioni current in the
equivalent circuit depicted in Figure 3.1 without drift resistance and with drift resistance,
respectively. The functions pss and pss r, correspond to the circuit’s total resistance without
drift resistance and with drift resistance, respectively.

Lemma 6.17 Let fs € FS. The functions pgs and pss ., are strictly decreasing homeomor-
phisms. Their inverse functions are

pfsl(r) = lg (U> and ,ofsr (r) =g rn(g)'

Proof. Let fs € FS. Recall that tfs and g, are homeomorphisms (Lemmas 2.21 and
3.16, respectively). Therefore, pgs and prs -, are a composition of bijective and continuous
functions and thus they are bijective and continuous as well. To show the statement with
respect to pf_sl, let r € Rs. Then, we have g = pél(r) € Ggs as well as r = pg(g) and
thus

P () = s = (@ = = 9= ()7 (T) = (o)1)
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The statement ,of_ser(r) = Lf_ser (%) is shown analogously.

-1 -1 : o 1 _ ,—1(U -1 _
Because ¢~ and Ls,r, Are continuous, the compositions pg." (1) = v (r) and pfS’rD(r) =

l’fs,rD r
It remains to show that pg and psg,, are strictly decreasing. Let g1, g» € Ggs such that
g1 < go. Because i is strictly increasing (Definition 2.18) and U > 0, we have
U U
<
Lfs(92) Lfs(gl)

Analogously, pss r, is strictly decreasing because ifs -, is strictly increasing (Lemma 3.16).
]

—1 <Q> are also continuous.

91 < g2 = i1fs(91) <ts(92) = prs(92) = = prs(91).

In the following, we often add or subtract constants. It is convenient to have a corre-
sponding auxiliary function.

Definition 6.18 For c € R, we define

ol :R—R, of(x)=x+c,

oo :R—=R, o/(x) =x-—c.
Lemma 6.19 Let ¢ € R. The functions o and o_ are homeomorphisms. Their inverse
functions are (07) " = o7 and (07) ' = o

Proof. Let ¢ € R. The continuity of o/ and o, follows from the fact that sum is a
continuous operation. Regarding the inverse functions, let x € R. Then, we have

ofooi(X)=(x—-c)+c=x=(x+c)—c=0o0)(x).
O
The function pgs can be transformed to its drifted counterpart by simply adding rp.
Lemma 6.20 Let fs € FS and let rp > 0, then
Prarp = O 0 prs and pt =ploa, .
Proof. Let g € Gss. By applying (3.4), we have
U rpts(g) + U u +
pfs, = = =+ ——< =1ID+ps(g) =0y, 0 pf
2ol =@ Y (oU (9) +(9) =7 © ps(9)
and thus
: _ -1 _ _+ —1 - _ -1 -1 - _ -1
Ides = Pis,rp © Pgs .y, = Orp © Pfs © O & Oy = Prs © Pts.rp < Pr OO0, = Pts.rp -
O

Lemma 6.20 reveals the advantage of considering the resistance functions. Then, the
influence of drift is modeled by simply adding the drift resistance, which is in accordance
with the corresponding assumption made in the ADA patent [LS17, p. 5], see also Sec-
tion 3.1. In contrast, if ioni currents are considered, the influence of drift is modeled by
(3.4), which is a rational function and thus more complicated to handle. This motivates
considering the resistance based iteration function that is defined below.
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6.2.1. Drift Resistance lteration Function

Recall that the ioni current based iteration function AﬁrD has approximations of the drifted
test ioni current as inputs and outputs. The resistance based iteration function will be
constructed such that it has approximations of the drift resistance as inputs and outputs.
We define the iteration function first. Its physical interpretation is presented thereafter.

For the following definition, recall that rf = & and rf = 5 (Definition 5.7).
s t

Definition 6.21 Let 7 = (FS, (Gs)sers. (ts)ssers. (Ass)rsers. (Cs)ssers) be an HE model,

let rp > 0 and let (sP, tP,if, i) be a feasible ADA pair with respect to H. The corre-
sponding drift resistance iteration function is defined by

p . P [ —1 +
AL DR =R, AP = Tp © Pto.rp © Pop,rp © o (6.2)

Lemma 6.22 The function A7, is well-defined, i.e., we can evaluate AP, (r) for all r € RY, .

Proof. Let r € I?’,’D. According to Definition 5.19, there exists g € Gg N Gy such that

ﬁ — 1P = psr.rp(g) — rf. This is equivalent to r + rf = pser,(g) and thus

g = ps_pI’,D ° J:Z(r) € Gsp N Gpo. Because g € G and Gy is the domain of pir ),

r =

the evaluation ps ,,(9) = ptr,r, © ps_pl’,D o a:’p(r) is well-defined. Finally, subtracting the
constant rf from pe r,(g) is also well-defined. In total, the element A7, (r) exists. O

The drift resistance iteration function A’,’D is composed of four functions. This compo-
sition can be physically interpreted as follows. For this, let 7p € R”,’D be the incumbent
drift resistance approximation.

1. GZ,(FD): The drifted start resistance is rf,, = rf + rp according to Lemma 6.20.
This value is approximated by 72, = rf + 7p.

2. ,o;}'rD(Fé’,,D): The fan speed is set to s” and the gas valve is moved such that the

measurement circuit’s resistance stabilizes at 72, i.e., such that the measured ioni

current is =2—. Then, the gas valve position § € G is determined, such that

S.fD
pSp,fD(g) = Fsp,rD-

3. per.r,(9): The gas valve position is fixed at § and the fan speed is reduced from sP
to tP. Then, the corresponding drifted resistance is measured. With this, the drifted
test resistance is approximated, i.e., the drifted test resistance rﬁrD = rf 4+ rp is
approximated by 7, = pw 5 (9)-

o _ o o b p .
4. Cfrf(ftp,rD)- Because 7y, is the approximation of ry, = r{ + rp, we approximate rp

by 7P

Frp r,_f’, i.e., the new approximation of the drift resistance at the test fan speed
is Pp < Peprp — 1L

One iteration with the drift resistance iteration function Af, is demonstrated in Exam-

ple 6.26 below.

Our goal is to analyze the convergence properties of Algorithm 6.1 using A7,. For this,

we first show how the iteration functions A7 and A7, are related.
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Chapter 6 ADA Procedure with a Single ADA Pair

6.2.2. Relation Between the Iteration Functions A7 ~and A?

In order to state how AfrD and A7 are related, we need some preliminary work. For this,
we implicitly assume that an HE model H, a drift resistance rp > 0 and a feasible ADA pair
(sP,tP, il iP) are given for the remainder of this section. We begin with some relations
between the drifted ioni current and the drifted resistance functions.

Lemma 6.23 Let r € RY,, then 1, ovP(r) = pg', o aZ,(r).

Proof. Let r € /i’fD. By applying Definition 5.22 of 4P, we have

U ) )
P _ D _,—1 _,—1 _ 1 P
Ory (I’) [’sp rD<Is I.Spf—i-U) - [’sP,rD(r_i_%) - Lsp,rD(r+rSl7> _psp,rD(r+rs)

s
-1
= Psp,rp © 0-:27(/’)'

where we used that ¢! " (g) = Pgp, rD(r) (Lemma 6.17). O

Lemma 6.24 Let g € Gy, then i, (9) = (ﬁp)_l 00 50 p1p,rp (9)-

Proof. Let g € Guw. Because i ,(g9) € Rso (Definition 3.12), we can apply B° to
ter,r,(g) (Definition 5.9) and obtain

BP0 e (9) = rf = perp(9) = 1 = 0,p 0 Pro.rp(9)-

l’tp,I’D(g) B
Because B” is bijective (Lemma 5.11), t4p.,,(g) = (,6”)_1 ©0 50 po,rp(g) holds. O
t
With this, we are able to state and prove the relation between AﬁrD and A’,’D.

Lemma 6.25 We have
= (B°) Lo AP o pP.

Proof. By using that 1., o¥(r) = p, o0 p(r) for all r € R? (Lemma 6.23) and that
Ler,rp(9) = (BP) too, opw,(g) forall ge Gt (Lemma 6. 24) we have

II’D

A= b © by 0 1P 0 BP = ((B°) M 00,50 pnp) © (P, 0 0 )p) © BP

:(ﬁp)flo( r*poptprDopSprDogp) BP = (BP)~ 10Ap o BP.

We demonstrate the statement of Lemma 6.25 in an example.

Example 6.26 /n this example, we evaluate the iteration function AP (r) at r = 0 by
evaluating BP o AP o (BP) 1(r). According to Definition 6.5 of A7, . we have

1,Ip

ero(ﬁp) 1(0)_[’t”foo[’sf’rDo’y oﬁpo(ﬁp) l(r)_[’fprol’sprDoryp(O)
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6.2 Resistance Based Iteration Function with a Single ADA Pair

By applying Definition 5.22 of ¥°, we obtain

uig
rif +

YP(r) = = P0) =P = AP, o (BP) 1(0) = Lewry 0 g, (iP).

1LIp

Let us consider the same ADA pair (s, t, s, it), the same drift resistance rp = 140k$2 and
the same HE model as in Example 3.22, where 7“D =Lty © L;}D(is) is determined. Note
that the superscript p notation for a plurality of ADA pairs has not yet been introduced
when Example 3.22 was presented. Thus, the superscript p is omitted for the remainder
of this example. By combining everything, we have

_ -1, - U U
ArD(O) = :B o Ai,rD o (IB) 1(0) = :B © l’t‘,l’D © Ls,}D(IS) = IB(It,I’D) = 7 - ;
t,rp
This value is presented at the end of Example 3.22, which is A,,(0) = — = IQ ~ 0.6rp.
t.rp t

In other words, one iteration with A,, improves the drift resistance apbroximation from
r=0tor = 0.6rp in this example.

We are interested in the Picard iterations associated to the iteration functions AﬁrD and
AP . For this, we take a look at the successive evaluation of both functions, respectively,
which requires the application of Lemma 6.25. At this point, we must make sure that
the iteration functions can be successively evaluated. According to Remark 6.9 this is not
always the case, because AﬁrD and AP, are not selfmaps in general. However, AﬁrD is a
selfmap if and only if A’,’D is a selfmap as is shown in the following.

Remark 6.27 If there is no risk of confusion, the subscript rp and the superscript p of
AﬁrD and A7 as well as of IF, and RP, are omitted in the following.

Lemma 6.28 We have A;(I) T if and only if A(R) C R.
Proof. "=" Let A;(I) C I. Because B : | — R is bijective, we have

reR = B YUrnNel = Ao Yr)el = BoAiop (r)ep(l)
= A(nep()=R.

The last implication is taken from the statement of Lemma 6.25.
"e" Let A(R) C R. Analogous to "=", we have that i € | implies A;(i) € I. O

Assumption 6.29 7o avoid case distinctions, the iteration functions A; and A are assumed
to be selfmaps for the remainder of this section, i.e., we assume that A; : I — [ and
A: R — R. Under which conditions they are actually selfmaps is stated in Lemma 6.35
below.

Lemma 6.30 Let n € IN, then we have

A'=B"1o A0 8.
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Chapter 6 ADA Procedure with a Single ADA Pair

Proof. By induction.

Base case:

For n =1 the claim follows from Lemma 6.25.

Induction step:

Let the statement hold forn=1, .. _, k. We consider n =k 4+ 1.

:ﬁ_lvoAkoﬁ:ﬁ_loAk+loﬁ.
]

Lemma 6.30 states how the Picard iterations associated to A; and A are related. This
relation is used to derive some statements with respect to the limits of these Picard
iterations.

Theorem 6.31 Let i € [, then the following holds
nImeAf(i) =i = nImeA”(ﬁ(i)) = B(i*).
Let r € R, then the following holds

nli_)mooA”(r) =r" = nIi_}mOOA,’-’(/S_l(r)) = B7L(r").
Proof. Let i € I and let limp_eo AT(i) = i*. First, we show that B(i*) is well-defined,
i.e., we show that /* is an element of the domain of 8, which is /. Because (A pew C I
and [ is closed according to Lemma 6.11, the sequence's limit i* is also an element of [
Analogously, we have r* € R and thus B~1(r*) is well-defined.

Next, we show the first implication of the theorem. According to Lemma 6.30, we have
A"o = oA for all n € IN and thus

lim (A" o B(7))

i (40 B0) = fin (80 A7) = i

noo  AN() T
U U -
Timee A T TP
Now, let r € R and let limpoo A(r) = r*. Itis Ao B~ = B~ o A" according to
Lemma 6.30. Analogous to the first part of the proof, we have

U U
lim (A7 o 71(r)) = lim (670 A(r)) = = =6 1(r").
ngmoo( 7oB () anm(ﬁ o A"(r)) Mo (AT (D)) + e Pt 1t B (r)
The last part of the equation follows from B=1(r) = ri’rt (Definition 5.9). ]

Theorem 6.32 Let i € [, then the Picard iteration associated to A; starting at i converges
to a fixed point i* if and only if the Picard iteration associated to A starting at B(i)
converges to the fixed point B(i*).
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6.2 Resistance Based Iteration Function with a Single ADA Pair

Proof. The statements follows directly from Theorem 6.31. L]

As an important consequence, the iteration function A; converges to the sought drifted
test ioni current if and only if the iteration A converges to the drift resistance.

Corollary 6.33 Let rp > 0 and let ir ,, = rD[I{"er be the drifted test ioni current according
to Lemma 3.29. Then

lim A?(i) = ier, < lim A" (B(i)) = .

n—oo

In particular, iz r, Is a fixed point of A; if and only if rp is a fixed point of A.

Proof. The statement follows from Theorem 6.32 and the fact that

. U U Ulrpir +U U u u
,B(lt,rD)Z. —.—:M—_—:rp—i————:@.

It,rp It Ult It it it

O

Theorem 6.32 and Corollary 6.33 legitimate the approach to analyze the Picard iteration
associated to A in order to obtain the convergence characteristics of the Picard iteration
associated to A;. But first, to conclude this subsection about the relation between the
iteration functions A; and A, we show that both functions are strictly increasing. Note
that the following result is also valid if they are not selfmaps.

Lemma 6.34 The ADA iteration functions A; : I' - Rand A: R — R are strictly
increasing.

Proof. Let iy, i» € I suchthat i < i». Because B and <y are strictly decreasing (Lemma 5.11
and 5.23, respectively) as well as (ts,,) ™% and ¢y, are strictly increasing (Lemma 3.16),
we have

<k = B(i1)>B(h) = voPB(i) <voB(ir)
= Ai(i) = terp 0 (bsrp) oy 0 B(i1) < ey © (bsry) Loy o B(ia) = Ai(i).

Furthermore, let rq, r» € R such that ri < ry. By applying A= Bo Ajo 1 (consequence
of Lemma 6.25) and using that 8 as well as B! are strictly decreasing, we have

n<rn = B Hn)>BpHn) = AocpHn)>A B Hn)
= A(n) =BoAiof (n) <BoAiof (n)=Am).
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Chapter 6 ADA Procedure with a Single ADA Pair

6.3. Convergence Characteristics of the Picard Iteration
Associated to the Drift Resistance Iteration Function

In this section, we analyze the Picard iteration associated to A,,. The analysis addresses
two questions. Under which conditions does the Picard iteration associated to A,, converge
to a (unique) fixed point? And how is this fixed point related to the drift resistance?
The approach to answer the first question is to apply Lemma 4.46 and Theorem 4.41 from
Section 4.3 about fixed point iteration procedures. The second answer is deduced from
the construction of the drift resistance iteration function A, .

First, we state conditions that guarantee that A,, has a fixed point and analyze for what
starting points the Picard iteration associated to A,, converges to this fixed point. This
requires the concept of being contractive from Definition 4.37.

Lemma 6.35 Let A,, be contractive, then the following statements are equivalent:

1. A,, has at least one fixed point.
2. A, has a unique fixed point.

3. Ay, is a selfmap.

Furthermore, if one of the three statements holds, then the Picard iteration associated to

A, converges for every starting point r € I?,D.

Proof. Let A,, be contractive. We know that A,, is strictly increasing (Lemma 6.34)

and that the domain of A, is a closed interval (Lemma 6.11). Therefore, we can apply

Lemma 4.46 which proves the equivalence of the three statements.

As a consequence, if one of the three items holds, then A, is a contractive selfmap on a

compact set and we can apply Theorem 4.41, which proves the convergence statement.
O

Remark 6.36 Note that A,, being contractive is not a necessary condition for the state-
ment of Lemma 6.35. In Appendix A, Example A.2 presents an iteration function A, that
is not contractive but that still has a unique fixed point and for all r € R’rD the Picard
iteration associated to A,, starting at r converges to this fixed point. Furthermore, this
example demonstrates that A; ., being contractive does not imply that A, is contractive.
The converse implication is also not true in general, i.e., A,, being contractive does not
imply that A; ,, Is contractive, which is demonstrated in Example A.1 in Appendix A.
Therefore, focusing on contractive iteration functions A,, might exclude some cases that
still result in convergent Picard iterations. However, practical experience has shown that
such cases are not very likely. In addition, focusing on contractive iteration functions A,
facilitates a corresponding convergence analysis.

Lemma 6.35 states that if A,, has a fixed point and is contractive, then the Picard
iteration associated to A,, converges for an arbitrary starting point r € I?rD. We first
analyze under which condition the fixed point of A, corresponds to the drift resistance
rp. Thereafter, we analyze conditions such that A,, is contractive.
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6.3.1. Relation Between the Fixed Point of A, and the Drift Resistance

The following lemma states conditions such that the fixed point of A, is the sought drift
resistance.

Lemma 6.37 Let rp > 0, then

Ap(rp) =1 & pt(rs) = pit(n) & 51 (is) = o (i)
In particular, if one of the three statements holds, then rp € I?,D.

Proof. Let rp > 0, then

D= Arp(ID) € 0,0 Pt © Pspy 005 (ID) = 1D & Pt © P51y © 01 (D) = 075 (D)
& 057, 007 (0) = Py 00 (D) & 51, (s + D) = oy, (1 + 1)

S pgroot(rs)=pi 00t () & pgt(rs) =p; ()
U LU . 1.
< [’sl(g) :"tl(ft) And ”sl(’S):"tl(/t)v

where the last two lines follow from Lemmas 6.20 and 6.17 as well as from Definition 5.7.
O

Lemma 6.37 states that whether the drift resistance is a fixed point of A,, depends
on the ADA parameters and the HE model. If s,t,is and j; are selected such that
17 (is) = ¢; (i) holds, then the drift resistance is a fixed point of A, . If in addition
A, is contractive, then the Picard iteration associated to A,, converges to rp for an ar-
bitrary starting point r € Ii’rD according to Lemma 6.35. Therefore, the ADA parameters
are ideally selected such that A,, is contractive and 15 1(is) = ¢; (i) holds. However,
because of manufacturing tolerances, the condition t71(is) = ¢; *(i;) cannot always be
satisfied. This is detailed in the following subsection.

6.3.2. Impact of Tolerances

The following example demonstrates the impact of tolerances with respect to the position
of the ioni electrode relative to the burner.

Example 6.38 This example is an extension of Example 3.22 and is also based on Vaillant
measurement data. Let H = (FS, (Gs)rscrs. (ts)sers. (Ats)fscrs. (Crs)fscrs) be the same
HE model as considered in Example 3.22, i.e., H is based on the Vaillant measurement data
according to [PHE, Item 6371]. Furthermore, let (s, t,is,ir) be the ADA pair as selected
in Example 3.22, i.e., we have s, t € FS such that s > t and 121 (is) = ¢; *(ir) = ga.

The corresponding ioni current functions vs and vy are depicted in Figure 6.1. The solid
orange curve corresponds to ts and the solid blue curve corresponds to t+. The orange
and the blue dot correspond to the start point and to the test point, respectively. Note
that both points have the identical gvp ga. Because 131 (is) = Lt_l(/t), the ADA pair’s
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ts (nominal)
—— ¢ (nominal)

Ls (tolerances)
--- Iy (tolerances)

ioni current /

I

ga
gvp g

Figure 6.1.: The impact of tolerances with respect to the position of the ioni electrode is
shown. The functions ¢s and ¢; correspond to measurement data with the ioni electrode
in nominal position. In contrast, the functions zs and z; correspond to measurement data
of the same HE but with the ioni electrode displaced from the nominal position, which
is usually caused by manufacturing tolerances. Note that v71(is) = ¢;*(i;) = ga but

0 t(is) # & (i),

iteration function A;, = 0, © ptr, © ,os_}D ) aﬁg has the desired fixed point rp according to
Lemma 6.37.

We consider a second HE model H = (FS, (Gfs)crs. (0 )isers (Mieers: (Qgsers) . which
is based on Vaillant measurement data according to [PHE, Item 6344]. The Brennfeld
static signals of [PHE, Item 6344] and [PHE, Item 6371] belong to the same HE. However,
with [PHE, Item 6371] the ioni electrode is in the nominal position, while with [PHE,
Item 6344] the ioni electrode is deliberately not in the nominal position in order to simulate
manufacturing tolerances. The HE model H is referred to as the tolerance model for the
remainder of this example. Note that the ADA pair (s, t, is, i) remains unchanged, because
an ADA pair is only selected once for an HE.

The start ioni current function ts and the test ioni current function ity of the tolerance
model are represented by the dashed orange and blue curve, respectively, in Figure 6.1. It
is apparent that the non-nominal position of the electrode has slightly changed the start
and test joni current functions. The corresponding start point (i;*(is), is) and test point
(z; *(i¢), ir) are marked with the orange and blue circle, respectively. In contrast to the
nominal case, we have T3 (is) # T; *(ir) and thus rp is not a fixed point of the iteration
function A,, = 0, © Pt © P51, © O according to Lemma 6.37.

This can be verified with Figure 6.2, which shows the iteration functions A,, and A,
for rp = 140kS2. The solid black curve corresponds to A,, and the dashed black curve
corresponds to A,D. Note that both iteration functions are strictly increasing, which is
in accordance with Lemma 6.34. In addition, the identity function is represented by the
dotted line to illustrate the fixed points of A,, and /_\rD, which are marked by the dot and
the circle, respectively. While the fixed point of A, is the desired value rp, the fixed point
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— A, (nominal)
- A, (tolerances)
identity

AfD(r)

Figure 6.2.: In the nominal case, rp is a fixed point of A,,, which is marked by the dot. In
contrast, in the case with tolerances with respect to the position of the ioni electrode, the
fixed point of A,D is F* # rp, which is marked by the circle.

ofA,D is 7*, which is 7* = 195k > 140k = rp in this example.

In conclusion, tolerances might shift the fixed point of an iteration function /_\,D away from
rp, L.e., we might have T* # rp. In the extreme case, the fixed point is shifted "outside"
of the set R’,D and the corresponding iteration function ZrD is not a selfmap anymore and
thus the Picard iteration does not converge anymore (within the set R, ). But even if A,
has a fixed point T* € R, , it might be outside of feasible combustion limits. Therefore,
the aspect tolerances has to be considered in the ADA parameterization.

Example 6.38 demonstrates that manufacturing tolerances might influence the fixed
point characteristics of the selected ADA parameters. We can derive two corresponding
cases from Lemma 6.37. In the first case, (s,t, s, ;) are selected such that v *(is) =
L;l(/t). Then rp is a fixed point of A,,. This is considered as the standard or nominal
situation. Accordingly, the second case is t31(is) # ¢; *(ir), which might be caused by
tolerances with respect to the ioni electrode’s position. Then, rp is not a fixed point
of A,,. This is considered as a non-standard situation. These two cases motivate the
following definition.

Definition 6.39 Let 7 = (FS, (Gfs)tsers. (ts)msers. (Ass)fsers. (Crs)rsers) be an HE model
and let (s, t,is, rs) be an ADA pair. If 171(is) = 171 (i), then H and the ADA pair are
considered to be nominal.

If L5 (i) # ¢ 2 (i), then H and the ADA pair are considered to be non-standard.

Remark 6.40 Note that the definition of the terms nominal and non-standard requires an
HE model and an ADA pair. This is required, because the ioni current functions vs and
Ly are taken from the HE model H, while s, t, is and iy are the ADA pair’s parameters.
As a consequence, if an ADA pair is designed with an HE model H such that they are
nominal, the same ADA pair with a different HE model H # H might be non-standard as
demonstrated in Example 6.38.
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Corollary 6.41 et rp > 0. Let H be an HE model and (s, t, is, rs) be an ADA pair. Then,
Ap(rp) =rp & H and (s, t,is, ir) are nominal.
Proof. The statement follows from Lemma 6.37 and from Definition 6.39. U]

The distinction between the two cases nominal and non-standard according to Defini-
tion 6.39 and Corollary 6.41 plays a central role when developing the ADA optimization
models in Chapter 8 below.

So far, we have analyzed the fixed points of the iteration function A,,. To guarantee
convergence of the Picard iteration associated to A,, to its fixed point (if it exists), it
is required that A, is contractive according to Lemma 6.35. Therefore, conditions such
that A, is contractive are detailed next.

6.3.3. Conditions Such That A, Is Contractive

The function A,, is composed of the resistance functions p¢,,(g) = TUg) + rp and

P51 (r) = 151 (72=), among others. According to Definition 2.18 of the HE model,

the functions s are continuous and strictly increasing, but these requirements are in gen-
eral not sufficient to ensure that A,, is contractive. l.e., in general, we are not able to
tell whether A, is contractive or not. However, if A, is differentiable, it is possible to
estimate the Lipschitz constant of A,, by considering the absolute value of its derivative.
This is the approach in this subsection.

We have to be aware of the fact that the HE model does not require that the functions s
are differentiable and thus A, is not differentiable in general. Rather, the differentiability
of A,, depends on the selected regression method of the HE model. For instance, the
ioni current functions are differentiable if Gaussian processes are used. On the other hand,
piecewise linearly interpolated functions are not everywhere differentiable in general.

For the following analysis it is assumed that the ioni current functions v¢s are everywhere
differentiable. This is done in the knowledge that the analysis is only valid for differen-
tiable HE models. This is reasonable, because the real physical ioni current functions are
assumed to be differentiable [Loc18, p. 11].

Lemma 4.44 from Section 4.3 states that a differentiable function f is contractive if the
absolute value of its derivative is bounded by 1. This motivates the following approach.
First, the derivative of A, is determined. Thereafter, we analyze under what conditions
the derivative’s absolute value is smaller than 1.

Theorem 6.42 Let 15 and v+ be differentiable and let rp > 0. Then A, is also differentiable
and for all € /@,D we have

d d%,ot(@(F))

= A (F) = - 6.3
0= o (60) o)

dr
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d N =
 agte(3(P) 2(a(m)
- Lus(g(n) 2(am)’ (04)
where
9(F) = ps 1,00 (F)=pst oo, 00 (F)=p, (F+rs — rp). (6.5)
U

Proof. Let ts and ¢ be differentiable. Then the corresponding resistance functions p; = ”

-1
and p;t = (g) are also differentiable. According to Definition 6.21, A, is a compo-

Ls
sition that contains the drifted resistance functions o, and p;}D. We can transform
the drifted resistance functions to the corresponding resistance functions without drift by
Lemma 6.20 and we get

— o -1 gt —g-ogt 1,45 oat
Ay =0, 00,005, 00, =0, 00, 0000, 00, 00,. (6.6)

As a composition of differentiable functions, A, is also differentiable.

We apply the chain rule to the right hand side of (6.6) to deduce the derivative of A,,. We
consider single parts of the composition first and combine them at the end of the proof.
We define s, (r) := 07, 0 0/ (r) = r — rp + rs. Its derivative is $-7 ,,(r) = 1.

Next, we are interested in the derivative £ p=1 (7, (r)), which is obtained by applying the
inverse function rule. For this, we define §(r) = ps* o 0,, 00,[(r) = ps* o 75, (r). Note
that g(r) refers to a gas valve position, because ps is a function from gvp to resistance
and thus its inverse is a function from resistance to gvp. Let 7 € R’,D, then we have
s (Ps,r,(F)) = §(F). By applying the inverse function rule and the chain rule, we have

d 1 d 1
—Ps (Fs,r (F)) =T p(F) = .
dr™> 2 agps(9(P) dr =P F0s(9(P))
Before we combine everything, we consider the derivative of o}, o 0% (x(r)), which corre-
sponds to the most left part of the composition in the right hand side of (6.6). We have
Lo, 00:)(x(r) = ZL(x(r) = re + rp) = &x(r). Everything combined and applying
the chain rule results in

d, . _d _ “1op V) =2 Tlof,)(F
EArD(r):E(O-rtOO—;FDoptopslorS,fD)(r):E(pfopslor&@)(r)
d o d _{,. _
= dfg,ot(g(r)) : E’DS l(rS’,D(r))
d
=—pe(9(N) 7= (6.7)
dg 3 )jgps(g(f))

which is the Theorem's first statement.
To prove the second statement, we express (6.7) with the ioni current functions tss. We
have pgs(g) = % and thus its derivative is

d d U 1 d

7p —_ —_ —f—_
dg rs(9) dg i1s(9) 2(g) dg

tis(9)- (6.8)
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The theorem's second statement, i.e., Equation (6.4), follows by plugging (6.8) into (6.7).
O

Recall that we are interested in the case that |%A,D(r)| < 1 or equivalently —1 <
%A,D(r) < 1. According to Lemma 6.34, A, is strictly increasing and thus we always
have 0 < %A,D(r). Therefore, it is sufficient to consider the upper boundary of %A,D(r)
only.

Theorem 6.43 As in Theorem 6.42, we define §(r) = p5*(r +rs — rp) forr € R’,D
Let vs and vy be differentiable and let rp > 0. If

jgm(@(r)) > opslo) Y reR, or (6.9)
d % g d . .

then A, is contractive on R,

Proof. For r € /@,D let §(r) = p5 (r + rs — rp). We show that (6.9) holds if and only if
(6.10) holds if and only if Al (r) <1 forall r € I?rD

According to Lemma 6.17, the functions ps and p; are strictly decreasing, i.e., their deriva-
tives are negative. By applying (6.3) of Theorem 6.42, we have

d Lpe(a(r)) d d
WArD(r) = ddz,os(@(f)) <1l < ?gpt(g( r) > 7,05( ().

In contrast, the ioni current functions ¢s and ¢+ are strictly increasing according to Defini-
tion 2.18, i.e., their derivatives are greater than zero. By applying (6.4) of Theorem 6.42,
we have

te(9(r)) 13(a(n) @(en) d

O LRI —Lf( (1) < £ <=1 (9(r).
ts(9(r)) 3 (g(r) 2(g(r)) 99

On the other hand, the derivative of A, is always greater than zero according to Lemma 6.34.
Therefore, we have

d d
?ArD(r) = di

A (NI <1VreR, < (6.9) < (6.10)
and the statement follows from Lemma 4.44. O

Remark 6.44 The gas valve positions §(r) = ps'(r +rs — rp) with r € /@,D in Theo-
rems 6.42 and 6.43 correspond to the set Gs N G;. According to Definitions 5.19 and 6.14
as well as to Lemma 6.20, we have I?,D = ps(Gs N Gt) — rs + rp and thus

rel%rD & 39geGsNGrips(g)—rs+mp=r
<~ ElgeGsmGt39:p§1(r_rD+rs):§(r)-
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So far, we have the statement that A,,(r)’ < 1 implies that A, is contractive. We get
an even stronger statement, if we additionally assume that A,, is continuously differen-
tiable.

Lemma 6.45 Let A,, be continuously differentiable. If AL < 1, then there exists L <1
such that A,, is L-Lipschitzian.

Proof. Let A,, be continuously differentiable and let A’rD < 1. The domain of A, is a
closed and bounded interval according to Lemma 6.11. Thus A’rD IS a continuous mapping
on a compact set. By applying the extreme value theorem, we know that A’,D attains its
maximum and minimum on its domain R’,D. Because A, < 1, there exists L < 1 such
that A, < L. On the other hand, we have A} > 0 according to Lemma 6.34 and thus
|AL | < L. The statement follows by applying Lemma 4.44. m

Being L-Lipschitzian with L < 1 is a stronger statement in the sense that it implies being
contractive. Furthermore, in the context of ADA and the corresponding Picard iteration,
it has the advantage that we get rate of convergence estimations from Banach's fixed
point theorem:.

Lemma 6.46 Let A,, be L-Lipschitzian with L < 1. If A,, has a fixed point r*, then the
following rate of convergence estimations for a starting point r € RA’,D hold:

[ra = r*| <Ll =1 <L"-|r=r*|VneN,
where r, == A7 (r).

Proof. Let A,, be L-Lipschitzian with L < 1. Then A,, is contractive. Furthermore, let
Ar, have a fixed point. Then A, is a selfmap according to Lemma 6.35. But then we can
apply Banach’s fixed point theorem and the rate of convergence statement follows from
Theorem 4.39. ]

Remark 6.47 At this point, we can analyze the influence that the selection of the ADA
parameters s, t, is and iy has on the fixed point convergence characteristics of A,,. Recall
that the iteration function A,, depends on the start and test ioni current functions vs and
Le, respectively. Therefore, by selecting s and t, the corresponding iteration function A,
might have a smaller or larger Lipschitz constant. In the worst case, the resulting iteration
function is not contractive and the ADA algorithm might not be convergent. On the
other hand, if the Lipschitz constant of A,, Is small, we have a fast rate of convergence
according to Lemma 6.46.

By selecting the start and the test ioni current is and iy, respectively, the fixed point
is determined (if it exists), see also Lemma 6.37. If the ioni currents are not properly
selected, the fixed point of A,, might differ significantly from the drift resistance or the
HE might leave feasible combustion limits while performing an ADA iteration, which both
might result in undesired outcomes of the ADA algorithm.
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Chapter 6 ADA Procedure with a Single ADA Pair

Therefore, the question whether the ADA procedure is capable to successfully com-
pensate possible drift resistances depends to a large extent on the selection of the ADA
parameters. This is the motivation to develop and solve a corresponding optimization
model in this thesis.

So far, we have deduced conditions such that the ADA algorithm with a single ADA pair
is convergent. There exists a document by Siemens that also states some conditions for
convergence of the ADA algorithm with a single ADA pair. In the following subsection,
these conditions are compared to the results presented in this subsection.

6.3.4. Comparison with the Documentation by Siemens

As stated in Section 2.3.2, the combustion control system loniDetect, and as a part of
it also the ADA procedure, were developed by Siemens. Siemens provides a document
with the title Funktionsweise ADA [Loc18] that contains a brief description of the ADA
concept and also conditions for the convergence of the ADA procedure [Locl8, p. 8]. In
this subsection, we compare the convergence conditions stated in the Siemens document
[Loc18] with the results of the preceding subsection. For the remainder of this subsection,
the term "Siemens document" refers to [Loc18].

The approach in the Siemens document to state some convergence conditions for the
ADA procedure is similar to the approach taken in this thesis. The authors of the Siemens
document also begin with the equivalence circuit of the ioni current measurement circuit
and state that the measured ioni current corresponds to the circuit's resistance by applying
Ohm’s law, i.e., r = % However, they discuss the ADA procedure with ioni currents and
the resistances considered as functions of the equivalence AFR X. In contrast, in this thesis
the ioni currents and the resistances are considered as functions of the gas valve position.
In this subsection, it will be shown that both approaches can be considered as equivalent
under the conditions of Assumption 6.48 given below.

To illustrate the approach of the Siemens document, let us assume that an ADA pair
(s, t,is,it) is given. We further assume that we have a nominal situation, i.e., ¢ 1(is) =
L;l(/t) =: ga holds. Let Ag and A; be the corresponding equivalence AFR functions
according to Definition 2.18 of the HE model. With this, we can determine the equivalence
AFR of the start and of the test point, which are As = As(ga) and Ay = A¢(ga).
respectively. In the Siemens document, the following assumption with respect to the
relation between the gas valve position and the equivalence AFR X is made.

Assumption 6.48 For all feasible gas valve positions, we assume that if the gas valve
position is kept constant and the fan speed is reduced from s to t, then the difference of
the corresponding A values is always AN '= \s — A\t [Locl8, p. 6].

Expressed in the notation of the HE model, this reads

Ns(g) — Ne(g) = ANV g € Gs N Gy, where AX == Xg — A¢. (6.11)
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Remark 6.49 Assumption 6.48 is also mentioned in the ADA patent [LS17]. The ADA
patent states that if the fan speed is reduced from s to t with the gvp kept constant, then

"the air coefficient is lowered by a more or less constant change in the air coefficient AX"
[LS17, p. 7]

By composing certain functions of the HE model, we can define the functions that
correspond to the approach in the Siemens document. l.e., we consider the resistance as
a function of X instead of the gvp g. Recall from Definitions 2.18 and 2.22 that for all
fs € FS the function Ag : Ggs — Lgs IS @ homeomorphism between the set of gas valve
positions Gg and the set of their corresponding equivalence AFRs Lg.

Definition 6.50 Let H = (FS, (Gfs)tscrs. (trs)fsers. (Afs)rsers. (s )rsers) be an HE model
and let pss 1 Gis — Rys, fs € FS, be the homeomorphism according to Definition 6.14. For
fs € FS, we define

Pats i Lis = Ris by pass = prs o AL (6.12)
Remark 6.51 The function p s is well-defined by construction.

The central statement of the Siemens document is, that the ADA algorithm converges
if the derivatives of py s and py ¢ fulfill certain conditions [Loc18, p. 9].

Statement 6.52 Let Assumption 6.48 hold. If

d - d - o
ﬁpx,s(ks) > ﬁpx,t(kt) V feasible s = At + AN, (6.13)

then the ADA procedure with a single ADA pair converges.
Remark 6.53 From a mathematical point of view, Statement 6.52 is imprecise.

e The Siemens document does not explicitly state that the functions px s and px  are
differentiable. The differentiability is assumed only implicitly.

e The Siemens document does not specify the sets of feasible s and ;. They just
state that only such X; in the neighborhood of \; shall be considered, that can be
realistically reached by drift [Locl8, p. 11].

e No statement with respect to the existence and uniqueness of the fixed point is done.

Remark 6.54 Although the content of Statement 6.52 can be considered as central with
respect to the ADA procedure, it is not formulated as a theorem in this thesis. This is
done, because from a mathematical point of view, the Siemens document does not provide
a corresponding proof. The authors provide a sketch of proof only.

In the opinion of the author of this thesis, a corresponding complete proof of State-
ment 6.52 would be no shorter and similarly elaborate as the proofs presented so far.

In the following, we show that if Assumption 6.48 holds, then Statement 6.52 can be
considered to be equivalent to Theorem 6.43.
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Chapter 6 ADA Procedure with a Single ADA Pair

Theorem 6.55 Let v, L, As and Ay be differentiable. Furthermore, let Assumption 6.48
hold. Forg € Gs N Gy, we define As = Ns(g) and A¢ = N¢(g). Then, we have

S3Pns00) > o) & 2opdg) > (o).

Proof. According to Definition 6.50, we have px s = /ofso/\f’s1 and thus we apply the chain
rule to show the statement.

First, we focus on the derivatives of A; T and A;l. By Assumption 6.48, we have A(g) =
A+(g) + AX for all g € Gs N G¢. Furthermore, As and A; are strictly decreasing according
to Definition 2.18. Hence, we have

S(g) /\ +(9) <0V geGsNGy. (6.14)

As a consequence, the inverse functions As(g)~! and A:(g)~! are also differentiable. By
applying the inverse function rule, we obtain

A0 = o A =
with g € Gs N Gy and As = Ag(9) as well as Ay = A(9).
Now, we apply the chain rule to py s and px ¢, which gives us
P30 > o) @ oale) o> ond0)
o 2 ,05(9) ‘ pt(g)
where the second equivalence results from (6.14). O

Corollary 6.56 Let s, ¢y, Ns and Ny be differentiable and let A,, have a fixed point.
Furthermore, let Assumption 6.48 hold. If for all g € Gs N Gy

d - o _ - _
—pxt(Ae), with Xs = As(9) and A+ = A(9),

d _
— A
p)\,s( 5) > d)\

dA

then A, Is contractive and the ADA algorithm converges to the fixed point for an arbitrary
starting point r € R,

Corollary 6.56 is a nice result in the sense that the convergence conditions presented in
the Siemens document are consistent with the results of the analysis in this thesis. How-
ever, similar to the ADA patent [Loc16], the Siemens document can be considered rather a
technical document and less a mathematical paper, as already mentioned in Remarks 6.53
and 6.54.

A drawback of the approach in the Siemens document is, that the stated convergence
conditions require that Assumption 6.48 is met. In contrast, the convergence conditions
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deduced in this thesis and stated in Theorem 6.43 do not require that Assumption 6.48 is
met. Therefore, Theorem 6.43 can be considered as a more general result.

The Siemens document considers the nominal situation and a single ADA pair only. Results
with respect to the non-standard situation or to a plurality of ADA pairs are not provided.
Therefore, a comparison of results related to a non-standard situation or to a plurality of
ADA pairs cannot be done.

Another document that contains some statements about convergence conditions of
ADA is the ADA patent [LS17], which was filed by Siemens. In Chapter 3 above, the
ADA algorithm is presented in detail based on this patent. As mentioned in Section 3.3,
the ADA patent contains only little information about convergence conditions. The ADA
patent’s authors state that "[t]he only pre-condition is that the function is uniformly rising
or falling in the measurement range of the test point" [LS17, p. 8]. The term function in
the citation refers to the ioni current versus A curve with the fan speed fixed at the test
fan speed t. Furthermore, they state that other aspects of this function are not relevant
and the "shape and profile of the function remain unknown in this respect" [LS17, p. 8].
At this point, we can conclude that the convergence conditions stated in the patent are not
sufficient in general. Because in order to guarantee convergence, the gradient at the test
and at the start point have to be considered according to Theorem 6.43, Statement 6.52
and Corollary 6.56.

This concludes the analysis of the ADA algorithm with respect to a single ADA pair.
The next section briefly summarizes the results so far.

6.4. Conclusion of Analysis with Respect to a Single ADA Pair

In this chapter, we have analyzed the ADA algorithm with a single ADA pair. The following
list briefly recaps the findings.

e The ADA algorithm is based on a Picard iteration (Algorithm 6.1).

e The goal of ADA is to approximate the drifted test ioni current. The corresponding
iteration function is A; , (Definition 6.5). By applying Ohm'’s law, a resistance based
variant of the ADA algorithm can be deduced that approximates the drift resistance
and has the iteration function A,, (Definition 6.21). Both variants are "equivalent"
in the sense that their fixed point characteristics are identical (Theorem 6.32). The
resistance based variant is more accessible to a theoretical analysis.

e If A, is contractive, then it is a selfmap if and only if it has a unique fixed point.
Then, the Picard iteration associated to A,, converges to this fixed point for an
arbitrary feasible starting point (Lemma 6.35).

o If L t(is) = Lt’l(it) holds, then the sought drift resistance rp is a fixed point of A,
(Lemma 6.37). This case is considered to be the nominal case. A situation with
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17 (is) # ¢ (ir) is considered to be non-standard (Definition 6.39). Tolerances with
respect to the ioni electrode’s position cause non-standard situations. This becomes
relevant in the following chapter, where a plurality of ADA pairs is considered.

Under which conditions is A,, contractive? Some statements are possible if A,
is differentiable, which is the case if the ioni current functions ts and ¢y of the
corresponding HE model are differentiable. If the absolute value of the derivative of
A, is smaller than one, then A, is contractive (Lemma 4.44). This is the case, if
d%,ot(g) > d%ps(g) for all g € Gs N Gy (Theorem 6.43). This result is consistent
with convergence statements provided by Siemens (Section 6.3.4).

A major conclusion is that the selection of the ADA parameters has a big influence
on the convergence characteristics and thus on the success of the ADA procedure.
Therefore, the optimization of the ADA parameters is closely related to their corre-
sponding convergence characteristics (Remark 6.47).

The results so far can only partially be generalized to the case that a plurality of ADA pairs
is considered. This is delineated in the following chapter.
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ADA Procedure with a Plurality of ADA
Pairs

In the preceding chapter, the convergence characteristics of the ADA Algorithm 5.2 in the
case of a single ADA pair are thoroughly analyzed. However, as stated in Section 3.4.4,
up to seven ADA pairs are usually used by Vaillant [Sch15, p. 35]. In this chapter, we
analyze the fixed point and convergence characteristics of Algorithm 5.2 if a plurality of
ADA pairs is considered, i.e., we consider the case N > 2. For this, let N € IN, N > 2, be
arbitrary but fixed.

The difficulty in the analysis of Algorithm 5.2 in the case of a plurality of ADA pairs is
that an ADA update of ADA pair p, p > 2, depends on the values of i, and i,_1, which is
Ip & Ltp,rp © L;%,D oyP owP(BP(ip), BP~1(ip—1)) according to Line 11 of Algorithm 5.2. In
contrast, an update of ADA pair p = 1 depends on /1 only according to Line 9.

This problem can be partly overcome by considering a situation where the incumbent
drifted test ioni current approximation of ADA pair p—1 is constant. For instance, such a
situation occurs if the ioni current iteration function of ADA pair one, A,-lyrD, has a unique
fixed point /i and the first component of the incumbent drifted test ioni current vector i
is equal to if. Because if is the fixed point of A,-ler, i = A},D(il) holds in each iteration
of Algorithm 5.2 with p =1 in this case. Then, in each update with ADA pair p = 2 the
same i; = ij is used and the update function corresponding to Line 11 of Algorithm 5.2
can be considered as a one-dimensional iteration function that depends on i» only, which
is

i 4= Ly2,p, © L;:’LrD oy?ow?(B%(i), B(i7)). (7.1)

Let us suppose, that the iteration function corresponding to (7.1) is a contractive self-
map. Then, it has a certain unique fixed point /5 and the Picard iteration associated to this
function converges to i3 for an arbitrary (feasible) starting point. Thus, after sufficiently
many subsequent updates of ADA pair p = 2, the second component of the incumbent
vector, fp, gets arbitrary close to i5. When thereafter ADA pair p = 3 is updated, we can
assume fp to be (almost) fixed at i3 and so on, i.e., we can recursively construct a vector
of corresponding fixed points.

The major result of this chapter is Theorem 7.68, which states that the output of Al-
gorithm 5.2, 7t,out(?t,in, u), converges to the aforementioned vector of fixed points if the
considered ADA update sequence u contains sufficiently many iterations with each ADA
pair and the considered input vector 7“,1 is "feasible". Similar to the case N = 1, this
convergence property is shown by considering a resistance based approach that is in a
certain sense equivalent but more accessible to a convergence analysis.
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The aforementioned vector of fixed points and a required corresponding formalism are
detailed in the following section. This includes the definition of the iteration function
corresponding to (7.1) and its domain for the more general case p > 2. Thereafter, a
resistance based approach is introduced and finally the convergence statement is proven.

Recall that Algorithm 5.2 also has the inputs H, (s/,#, 2, #), j € [N], and rp in
addition' to 7“,1 and u. Therefore, we implicitly assume that an HE model #H, N ADA pairs

s/, 4, ik, 1), j € [N], as well as a drift resistance rp > O are given for the remainder of
t
this chapter.

7.1. The Super Fixed Point Vector

The goal of this section is to define the vector of fixed points mentioned in the introduction
to this chapter. Because the components of this vector are fixed points that are recursively
constructed from preceding fixed points, this vector is called the super fixed point vector
in Definition 7.14 below. In the course of this chapter it is shown that under certain
conditions the super fixed point vector is the limit of the ADA Algorithm 5.2 and thus
it is essential for the analysis of the ADA algorithm’s convergence characteristics. The
definition of the super fixed point vector requires a certain formalism, which is delineated
in the following.
According to Line 11 of Algorithm 5.2, an update with ADA pair p, p > 2, is done by
calculating

ip <= Lep.rp © Loy 0¥ 0 WP (BP(ip), B° (ip—1)) (7.2)
If we suppose that i,_1 is fixed, we can treat (7.2) as a one-dimensional iteration function
with i, as the only argument. This motivates the following definition, where the weighted
sum function w”(x, y) = wPx+ (1 —wP)y from Definition 5.17 is considered as a function
of the first argument x only.

Definition 7.1 Let p € {2, ..., N} and let y € R. We define
wh R—=R,  wh(x) =wPx+(1-wP)y,
where wP is the weight according to Definition 5.12.

Lemma 7.2 The function wf is a homeomorphism. Its inverse function is (wf) ™ (z) =
L(z— (1 — wP)y). Furthermore, both functions are strictly increasing.

Proof. According to Lemma 5.13, we have 0 < wP < 1 and thus
z=wh(x) & z=wx+ (1 -wP)y & wx=z—-(1-wP)y

1 -1
& x= m(z— (L—wP)y) = (wh) "(2) Vx €R.

. . -1 . .
As linear functions, w) and (w})™" are continuous. Their slopes are w” and -1, respec-

tively. Since 0 < w” < 1, both functions are strictly increasing. L]
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We use w) to reformulate (7.2) to a function with a single argument. For this, let

us assume that i1 € Rso is given and fixed. Then, ﬁpfl(ip,l) = ,p% — I% exists
- t

and we have wP(BP(ip), BP *(ip—1)) = wgp_l(ipil) o BP(ip). Therefore, the composition
Lep rp © L;;ler oqPo wgp_l(ipil) o BP is the resulting iteration function if ip—1 is fixed. Before

we formally define a corresponding function, we specify an appropriate domain.
Recall from Lemma 5.32 and Line 10 of Algorithm 5.2 that an update of the p-th com-

ponent of the incumbent drifted test ioni current vector it ,, = (i1, ..., in) is well-defined,
if wP(BP(ip), B> 1(ip—1)) € RF, holds. Expressed in the notation with i,_1 fixed, we are
interested in elements i, such that wg, ., ,© BP(ip) € Rr,. Because Wep1(;, ;) and B

are homeomorphisms, the set (/3”)_1 o (ng—l(ip,l))_l(ﬁrpo) is a candidate for the sought

domain. However, we have to make sure that this set is well-defined. This is not always
the case and depends on the element BP~1(i,_1). The following definition reflects this
fact. Recall that the sets IQED are nonempty, closed and bounded intervals (Lemma 6.11)
and thus their minima exist.

Remark 7.3 In the following Definition 7.4, the physical interpretation of the real number
visv = ﬁp_l(ip,l), i.e., v corresponds to the drift resistance approximation of ADA
pair p — 1 if the drifted test ioni current approximation ip—1 Is given. In other words, the
elements v are abbreviations for elements of the type P~ 1(ip—1).

Furthermore, because the fan speeds of ADA pair p— 1 are greater than the fan speeds of
ADA pair p, the ADA pair p — 1 is also referred to as the upper neighbor of ADA pair p.

Definition 7.4 Let p € {2,..., N} and let rp > 0. The set of feasible upper neighbor
drift resistance approximations of ADA pair p with respect to rp is defined by

D
1—wp

min R, + wPrP
\/r‘;::{VE]R:v< d t}

where 0 < wP < 1 are the weights from Definition 5.12.
Let v € v,g be fixed. The set of feasible drift resistance approximations of ADA pair p
given v is defined by

RE = (wh) N(RE) = {%(r —(1—wP) reRp} = %(/@L’D — (1 - wP)v).

p.,v

The set of feasible drifted test ioni current approximations of ADA pair p given v is defined

by
A U
reRP } = .
o R

p . (pP\ " Lrpp _ u .
/rD,v — (,6 ) (RrD,v) - {r+ rf .

Lemma 7.5 ThesetsV,>, RP, , and IY, , are well-defined. Furthermore, R}, , C (—rf, o)
and 1%, , C Rsq hold.

Proof. Let p € {2,..., N}. Because R? is a closed and nonempty interval (Lemma 6.11),
its minimum min I?ED exists. Furthermore, 0 < wP < 1 holds (Lemma 5.13) and thus the
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set V2 is well-defined.
Let v € V/2. Because w) : R — R is a homeomorphism (Lemma 7.2), the set R, =
(wB) TH(RE,) is well-defined.

To show that 17, , = ([3”)_1(?’,’,},\, is well-defined, we have to show that RP , C
(—rf,o0), because (—rf, oo) is the domain of (/3”)71 (Definition 5.9). So, let r, € R, .
Then, there exists r € R such that r, = (w’\f)_l(r) = L (r— (1 — wP)v). Because

v e VP and r > minRY,, we have

min RE, + wPrf  r+ wPrf
1—wr - 1l-wP

= (1-wP)v<r+whrf

v <

= —wPrf <r—(1-wP)y
1 -1
= —rP< ﬁ(r—(l—wp)v) =wh) (N=n = rne(-rf ).

Furthermore, we have

ielr, = 3IneR  i=(B")Hn)= = i>0,

ry+rf
where the last implication follows from Rf, , C (—r¢, 00) and U > 0. O

Remark 7.6 The sets Vi, RP., and IF, , are abstract in the sense that they are only
introduced to guarantee that the following steps are well-defined. For instance, for the
optimization models that are developed in Chapter 8 the set \/,’; is not required anymore,
see also Remark 8.8. From a practical point of view, they are irrelevant, because drifted
test ioni current approximations not contained in /Ai’D,V usually correspond to infeasible
combustion states.

Lemma 7.7 Let p € {2,...,N} and let v € /5. The sets R, , and I?, , are closed,
bounded and nonempty intervals.

Proof. The set /i’,pD is a closed, bounded and nonempty interval (Lemma 6.11) and the
functions B” and w) are homeomorphisms (Lemmas 5.11 and 7.2, respectively). Therefore,
RE ., = (w’\f)_l(?’,’D) and 12, = (,6”)_1(1@,’,3,\, = (/3”)_1 o (w.‘,’)_l(ﬁ’fD) are also closed,
bounded and nonempty intervals. O

Now, we have all the parts together to define the aforementioned iteration function that
corresponds to (7.2) with i,_1 fixed.

Definition 7.8 Let p € {2,...,N}, let rp > 0 and let i1 € Rso such that v =
BPL(ip—1) € V2. The ioni current based iteration function of ADA pair p given v is
defined by

.7 A —1 :
BI[’)D,V . III’)D,V — R>0, Brl‘)D,v(l) = l’tp,fD © LSP,I’D O/Yp o we ° :Bp(l)-

118



7.1 The Super Fixed Point Vector

Remark 7.9 Note that the superscript p indicates the ADA pair number. It does not
indicate the successive evaluation of the function in the context of the Picard iteration.

Lemma 7.10 The function BY, , is well-defined, i.e., it can be evaluated for all i € IF, .
Furthermore, Bf, (i) > 0 holds for all i € IF, .

Proof. Let i € If, ,. By Definition 7.4, we have 17, , = (,6”)71 o (wﬁ)fl(li’,pD) and thus

e, = 3reR i=(B") "o (W) H(r) = wlopP(i)eRE.
Because (¢ ., © L;%,D oyP(r) is well-defined for all r € R, (Corollary 5.24) and the image
of tr, is a subset of Rso (Notation 3.17 and Corollary 3.18), we have Bf, (i) =

_oPowd o B(i) > 0. U

-1
Ltprp © bgp f

We use the domains /7, , according to Definition 7.4 and the functions Bf, , according
to Definition 7.8 and reformulate Algorithm 5.2 to Algorithm 7.1, which facilitates the
analysis of its convergence characteristics later on.

Algorithm 7.1 Reformulated Version of Algorithm 5.2

Input:
1 H = (FS, (Grs)ssers. (trs)rsers. (Ass)ssers. (Cs)sers) // HE model
2. (s, ¢, i), j€[N] // ADA parameters of N ADA pairs
3: rp € Rxo // drift resistance
4 Q= (i, ..., iv) € RY, // initial drifted test ioni current approximations
5 (Uk)kelq // ADA update sequence of length £

Calculations:
6: for k=11to £ do

7 p = Uk
8 ifp=1andi e/l then
9: I+ Ail,rD(il)
10: else if p>2and i, € ifD,ﬁpfl(/p_l) then
11: Ip BfD’ﬁp_l(ipil)(ip)
12: else
13: Ij <= NaN for all j € [N] // mark results as not valid
14: break // leave for-loop early
15: end if
16: end for
Output:
17: 7t,out =(in, ..., in) // updated drifted test ioni current approximations

Lemma 7.11 Given the same inputs, the outputs of Algorithm 5.2 and Algorithm 7.1 are
identical.
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Proof. The framework around the for-loops of both algorithms is identical. It remains to
show that the calculations within both for-loops are identical.

e Definition 6.3: i1 € f,lD & B(i) € /@}D and thus Line 8 of Algorithm 7.1 corre-
sponds to Line 8 of Algorithm 5.2.

e Definition 65: A? (i) = ttp,rp © Lgp'y, © ¥° © BP(I) V i € If, and thus Line 9 of
Algorithm 7.1 corresponds to Line 9 of Algorithm 5.2.

- o ~1,4 -1 ~1, 5
e Definition 7.4: Ifo,ﬁp—l(ip,l) = (87) (er)D,ﬁP—l(ip,l)) = (87) O(wgp—l(ip,l)) (RY),
ie. ip € /g,,,l(,.p_l) & wgp,l(ip_l)ogp(/p) = wP(BP(ip), BP (ip-1)) € R, and thus

Line 10 of Algorithm 7.1 corresponds to Line 10 of Algorithm 5.2.

e Definition 7.8: B, (i) = vt © L'y, ©¥P 0 wh 0 BP(I) = tewry © Lgpy, 0 YP ©
wP(BP(i),v) ¥ i € I}, and thus Line 11 of Algorithm 7.1 corresponds to Line 11
of Algorithm 5.2.

The subsequent lines are identical in both for-loops. ]

Remark 7.12 Aiming at a better readability, when there is no risk of confusion, the sub-
script rp of the sets RY,, IF,, VP, R, and I, , as well as of the iteration functions A},
AfrD and Bf, , is omitted for the remainder of this chapter.

Now, we have all the parts together to define the aforementioned super fixed point
vector. The basic idea behind this vector is presented in the introduction to this chapter.
At this point, this idea is briefly repeated but this time by utilizing the iteration functions
B? and the reformulated Algorithm 7.1. For this, we introduce a notation for the situation
that a function f has a unique fixed point.

Notation 7.13 Let X C R and let f : X — X be a selfmap. If f has a unique fixed point
x* € X, then this fixed point is denoted by fix(f), i.e., fix(f) = x*.

Let the ioni current iteration function of the first ADA pair, A,-l, have the unique fixed
point fix(Al). If the first component of the incumbent drifted test ioni current vector
is ih = fix(A,.l), then j; does not change anymore independent of arbitrary subsequent
ADA iterations. Therefore, we can consider i; = fix(A,-l) as constant. In this case, the
iteration function for ADA updates with the second ADA pair is Bél(,-) =B% , CIf

1 B (fix(AD))

in addition the second component of the incumbent vector is i, = fix(B2 _ ) then
B (fix(AD))

i» also remains constant independent of arbitrary subsequent ADA iterations and so on.

This recursive construction is formally defined in the following. The corresponding vector

is called super fixed point vector, because its components are fixed points of functions that

are related to the fixed points of the preceding components.
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7.1 The Super Fixed Point Vector

Definition 7.14 Let N ADA pairs (sP,tP,i£,if), p € [N], an HE model H and a drift
resistance rp > 0 be given. The corresponding super fixed point vector i** = (if*, ..., N’
is recursively defined by

e JTix(AD) i fix(A}) exists,
NaN else,

and forpe {2,..., N} by
<) ifiyty # NaN and ﬁx(ng,l(,.;il)) exists,
NaN else.

The super fixed point vector is called feasible, if i** € RN holds, i.e., if none of its
components is NaN.

Remark 7.15 The definition of the super fixed point vector depends on the iteration func-
tions A}’rD andBY,,, pe{2,..., N}. Therefore, it is implicitly related to the ADA pairs,
to the HE model H and to the drift resistance rp.

Definition 7.16 The consideration of N ADA pairs (sP, tP,i£,if), p € [N], an HE model
H and a drift resistance rp > 0 such that i** is feasible is referred to as a feasible scenario.

In other words, we a have a feasible scenario if and only if i** € RN.
Lemma 7.17 The super fixed point vector is unique.

Proof. According to Notation 7.13, fix(f) implies that fix(f) is the unique fixed point of
f. With this, the uniqueness of i** follows by construction. ]

Lemma 7.18 If the super fixed point vector is feasible, then i** € ]RQ’O, i.e., all components
of i** are positive.

Proof. Let i** = (if*, ..., i) be feasible, ie., i7* € R for all p € [N]. Then, we have
i;* € I'. Because I C Rso (Lemma 6.4), i* > 0 holds. For p > 2, we have i** € If
and /2 € Rsg (Lemma 7.5) with v = BP~1(ix*1). Therefore, iz* > 0 holds for all
pe{2,..., N} as well. O

Remark 7.19 An example of a super fixed point vector is given in Example 7.44 below, after
the drift resistance based iteration function C fD,V is introduced in Definition 7.36 below.
This is done, because a corresponding example with drift resistance iteration functions is
more straightforward.

As already mentioned, under certain conditions the super fixed point vector is the limit
of the output of Algorithm 5.2 according to Theorem 7.68 below. However, Algorithm 5.2
is only defined for finite ADA update sequences, because otherwise its for-loop would not
terminate. A concept to consider the output of Algorithm 5.2 for infinite ADA update
sequences is to consider the first n elements of an infinite ADA update sequence. Then,
we can analyze the behavior of the Algorithm's output if n is successively increased. This
motivates the following definitions.

121



Chapter 7 ADA Procedure with a Plurality of ADA Pairs

Definition 7.20 Let u = (up)neg be an ADA update sequence of length £, £ € IN. The
ADA subsequence that contains the first k elements of u is denoted by u(k), k € [£]. It is
element-wise defined by u(k), := up for all n € [k]. This definition is also valid for infinite
ADA update sequences u = (Up)peN.

Example 7.21 Let N = 3 and let v = (1,2,3,1,2,3,1,2,3) be an ADA sequence of
length £ = 9. Then, the ADA subsequence corresponding to k = 4 is u(k) = (1,2,3,1).

Definition 7.22 [ et 7““ € ]RQO be an input vector and let u be an ADA update sequence
(finite or infinite). The n-th ADA iterate with respect to 7t,in and u is defined by

A - A <Z ifuisoflength{
i" (e in. 1) = It out (Iin, u(n)), where n o
€ IN if u is an infinite sequence,

where it out (it.in, u(n)) is the output of Algorithm 5.2 given the inputs i, and u(n) ac-
cording to Definition 5.36. The components of the n-th ADA iterate are denoted by
i"(pn, ) = (0. ., iny.

Corollary 7.23 By construction, the n-th ADA iterate i”(7t,in, u) corresponds to the in-
cumbent drifted test ioni current vector after the n-th iteration with the for-loop of Algo-
rithm 7.1 given the inputs 7t,in and u.

The ADA iterates can be recursively calculated, if the corresponding outputs of Algo-
rithm 5.2 are valid, i.e., if no component of the corresponding output vectors is NaN. To
avoid case distinctions with respect to such a situation a feasibility condition is introduced
before the recursive formula to calculate the ADA iterates is presented.

Definition 7.24 An input vector 7t,in € RQO and an ADA update sequence u are called
feasible input combination, if all ADA iterates i” = (if, ..., in) are an element of RV, i.e.,
if iy # NaN for all p € [N] and for all n € [£] (u of length £) or for all n € IN (u infinite
sequence).

Remark 7.25 Note that Definition 7.24 is implicitly related to an HE model ‘H, the ADA
parameters (s/, t/, i, i), j € [N], and the drift resistance rp. For instance, let H # H
be two different HE models. Then, 7t,in and u being a feasible input combination for H,
(sf, t, /é i{), J € [N], and rp does not imply that they are a feasible input combination for
H, (¢ ¢, L, i), je[N] and rp.

Remark 7.26 As already mentioned at the introduction to this Chapter 7, it is implicitly
assumed that an HE model H, a drift resistance rp > 0 and N ADA pairs (sP, tP, i, i),
p € [N], are given for the remainder of this chapter.

For feasible input combinations the ADA iterates can be recursively calculated as follows.
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7.1 The Super Fixed Point Vector

Lemma 7.27 Let iy, € RY, be an input vector and let u = (Un)nepgg (n € IN) be a
finite (infinite) ADA update sequence such that they are a feasible input combination.
Let i"(ipin, u) = (i1 ..... /N) be the corresponding n-th ADA iterate. Then, the following
recursion with i%(iin, u) = ip.in holds for all n € [£] (n € IN):

oy = 4 B Tl
' (it ... in- L gn (i 1)(/" L, ’p+1 ..... i 1) ifu, =p>2.
In particular, i"(iyin, u) € ]RQO holds.
Proof. Let i" = (i, ..., i) be an input vector and let u = (up)nefq be an ADA update

sequence of length £ such that 7t in and u are a feasible input combination. Because 7t in and

u are a feasible input combination, the conditions i~ Ve ' (if u,=1) and Iy € l‘ﬁ’p e

(if up > 2 =: p) are met for all n € [£] (Definition 7.24), i.e., all considered function
evaluations are well-defined in this proof. In the following, the statement is shown by
induction over the length n of the ADA subsequences u(n), i.e., over the first n entries of
u, n € [f.

Base case:

Let n =1, then u(n) = (u1) with uy € [N]. The corresponding output of Algorithm 7.1 is
(Al(/'”) B /,'\',1) ifug =1,

/l:t, t ; ,U(l) = _I i .
ou (t'n ) (,Iln _____ ﬁP i )(/'”) ’p+1 ..... /,'\'}) if ug =p>2.

Because i (iin. U) = itout (it.in. u(1)) according to Definition 7.22, (7.3) hods for n = 1.
Induction hypothesis:

For a certain k < £ let (7.3) hold for all n < k.

Induction step:

Let uk11 be the (k+1)st entry of the ADA update sequence u. According to Corollary 7.23,
the incumbent vector after the k-th iteration of the for-loop of Algorithm 7.1 is the k-th
ADA iterate i*(ipin, u) = (if, ..., iX), which is recursively calculated by (7.3) according
to the induction hypothesis. In the (k + 1)st iteration, the for-loop is executed with
(i, ..., iv) =@k, ..., /%) and with p = ug41. Only the p-th component is updated by

/ {A,-l(il) fp=1 o JAGD ifp=1

2 N L, Uy T = P o
ng—l(ipil)(lp) ifp>2, Bﬁpfl(f;,(_l)(lp) if p>2.

+1 _

— jk

The remaining components are not updated in the (k + 1)st iteration and thus /k 5

holds for p € [N]\ {p}. In total, (7.3) also holds for n = k + 1.
The base case and the induction step are also valid for infinite ADA update sequences and
thus (7.3) holds for infinite ADA update sequences as well.
Because the codomains of all considered iteration functions are Rso (Lemmas 6.8 and
7.10), i"(ipn, u) € RY, holds for all n € [4].

O
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Chapter 7 ADA Procedure with a Plurality of ADA Pairs

With the concept of ADA iterates at hand, we can consider the output of Algorithm 5.2
for infinite ADA update sequences. Let u be an infinite ADA update sequence and let
7““ be an input vector such that 7t,in and u are a feasible input combination. Then, we
are interested in whether lim (i in, u) exists and if so, does lim i"(iin, u) = i** hold?

. . n—oQ . . . n—oo .
Similar to the case N = 1, we consider a resistance based variant to answer these questions.
In the following section we define and analyze a resistance based iteration function that is
closely related to BY but that is more accessible to a corresponding fixed point analysis.

7.2. Resistance Based Approach

As detailed in Section 5.1.1, the drifted test ioni current approximation i, and the corre-
sponding drift resistance approximation Fg at the test fan speed t? of ADA pair p, p € [N],
are related by 73 = BP(ip), see also Definition 5.9. This relation is used to construct the
resistance based approach in this section.

7.2.1. Drift Resistance Super Fixed Point Vector

In the previous section, the (ioni current based) ADA iterate i"(igin, 1) and the super fixed
point vector i** are defined. In this subsection, their resistance based counterparts are
defined. The p-th component of i”(7t,in, u) corresponds to the incumbent drifted test ioni
current approximation of ADA pair p after the n-th iteration. This approximation can be
transformed to the corresponding drift resistance approximation by applying the function

B

Definition 7.28 Let iy, € RNy = (i, ..., il") be an input vector and let u be a finite or
infinite ADA update sequence such that 7“,, and u are a feasible input combination. For
n € [4] (u has length £) or n € IN (u is an infinite sequence) let i"(iyin. u) = (7, .. i
be the corresponding n-th ADA iterate.

The n-th resistance based ADA iterate with respect to 7t,in and u is the vector

r"(iyin, 1) = (/... 1) defined by ry = BP(ip) ¥ p € [N].

Lemma 7.29 The n-th resistance based ADA iterate is well defined for all n € [£] (n € IN,
if u is an infinite ADA update sequence).

Proof. Let 7““ be an input vector and let u be an ADA update sequence such that 7””
and u are a feasible input combination. Let i”(izin, u) = (i7, ..., iy) be the corresponding
n-th ADA iterate. According to Lemma 7.27, i > 0 holds for all p € [N]. Because R
is the domain of P (Definition 5.9), B°(i) is defined for all p € [N]. O

If the limit of the ioni current based ADA iterates exists, it is related to the limit of the
resistance based ADA iterates.

124



7.2 Resistance Based Approach

Theorem 7.30 Let u be an infinite ADA update sequence and let 7,_5", be an input vector

such that 7t,in and u are a feasible input combination. Let i* = (if,...,iy) € RQO.
Then, the following holds:
. .n/s o . < 1/ % N/ ox
im i"(Gpin,u) =i = im i, u) = (B2(07). ... B (iR)).

Proof. Let u be an infinite ADA update sequence and let 7t,in be an input vector such that
ir.in and u(n) are a feasible input combination for all n € IN and let i* = (i, ..., in) €
RQO. Aiming at a better readability, the n-th ADA iterate i"(iy;n, u) is abbreviated by i".
Analogously, the n-th resistance based ADA iterate is abbreviated by r”. The components
of the n-th iterates are denoted by i" = (if, ..., i) and r" = (r{, ..., ryy). Recall from
Definition 7.28 that r] = BP(i]) for all p € [N] and for all n € IN.
"=" Let limpo i7 = i*. According to Lemma 7.27, we have (i")pen € ]RQ’O for all
n € IN. Furthermore, lim, s i" € ]RQ’O holds by assumption. Therefore, for all p € [N]
there exists imin,p, > 0 such that ipn, < i,g for all n € IN as well as iminp < /';;. We set
imin = Minperp)(imin,p)- Then, we have

0<imn<ip Vpe[N]VneN and inn<iyVpelN]
Let € > 0 arbitrary but fixed. We set € = '%}”5. Note that jmin > 0 and thus € > 0 and
therefore

lim "= = IAEN:[|i"— i*||max <EV N> 7
n—oo

= iy —iy| <EVpE[N]VYn>n.

In total, for p € [N] and for n > 7, we have

. . LU U 11
i = B)| = 8°5) = B = | = v = (5 = rt)| = U — =
p p p b
b Ip U v o
= _ = — < —_
U _ U iminz
- <e.
SRt T U =f
Therefore, |[r"— (B1(i7). .. .. BN || < € Tor all n > 7 and thus limp_e0 1" (it in, 1) =
(B1(i%). ..., BN(i3,)) holds,
"= Let impooo r"(iin, u) = (B'(if). ..., BY(iy)). Recall that P : Rso — (—rf, 00)

is bijective (Lemma 5.11). Because r}] = (/3”)_1(/[’)’), we have rJ > —rf for all p € [N]
and for all n € IN. Furthermore, /5 > 0 by assumption and thus B”(i5) > —r; holds for all
p € [N] as well. Therefore, for all p € [N] there exists fminp > —rf such that rminp, < ry
forall n € IN and riin,p < BP(i5). We set rmin = minpein)(fmin,p + rf). Then, we have
Imin > 0 and

fmin < fminp 1 Sl +rfVpe[NVneN aswellas ryin < BP(iy)+rf ¥V p € [N].
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2
Let € > 0 arbitrary but fixed. We set € .= r’“—d“e. Note that rnin > 0 and thus € > 0. By
using the abbreviation r* = (8(if). ..., BN(ix)). we have

3

im r"=r"" = FAEN:||[r" —r||max <EVY n>
n—oo

= | —pBP(i)| <EVpE[N VN>

ST

With this, we can state that for all p € [N] and for all n > 7

lip = i1 = (87 0 BP(ig) = (B°) ™ 0 B°(ip)| = |(B°) ™ (r) — (87) ™1 0 B° ()]
v v - U P(* n
mf BPls) + ff’ () (8P (i) + 7y 187 (ia) = 15

U _ u rr%in
(g +)BP () + 1) (5 + D) (B°(i3) +f) U
Imin Imin

= . - -e<l-1-e=¢.
4l Beiz)+rf T

Therefore, Hi” — i*||max < € for all n> 7 and thus lim,_ys0 i"(iz.in, 1) = i* holds. O

Remark 7.31 From a practical point of view, the requirement of Theorem 7.30 that the
limit i* is an element of RY,, ie., iy > 0 for all p € [N], is not restrictive. Indeed, in
practice every drifted and undrifted ioni current is greater than zero, see also Remarks 3.4
and 3.5.

Theorem 7.30 motivates the following definition of the drift resistance super fixed point
vector.

Definition 7.32 Let i** = (i7", ..., ix;") be the super fixed point vector of a feasible scenario
according to Definition 7.16. The corresponding drift resistance super fixed point vector
is defined by

ro=(B(i*). ..., BN(iR)).
Lemma 7.33 The vector r** is well-defined.

Proof. Leti** = (i{*,..., i) be feasible. Then, i* > 0 holds for all p € [N] (Lemma 7.18).
Because (0, c0) is the domain of B, r;* = BP(iy*) is well-defined for all p € [N]. O

Remark 7.34 The drift resistance super fixed point vector r** is defined for the case of a
feasible scenario only.

Corollary 7.35 Let there be a feasible scenario, i.e., let i** € RY,. Furthermore, let u be
a given infinite ADA update sequence and let 7t,in be a given input vector. lf7t,in and u are
a feasible input combination, then

lim i"(ipin. u) = "™ < lim (i, u) = r**.
n—oo n—oo

Proof. The statement follows from Theorem 7.30 and Definition 7.32. L]
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7.2 Resistance Based Approach

Corollary 7.35 legitimates the approach to consider the resistance based iterates in order
to analyze the convergence characteristics of Algorithm 5.2 in the case N > 2. There
exists a resistance based iteration function CfD,V that allows to recursively calculate the
drift resistance super fixed point vector and to recursively calculate the resistance based
ADA iterates. This function is essential for the analysis of the fixed point characteristics
of Algorithm 5.2 and thus it is detailed in the following.

7.2.2. Resistance Based ADA lteration Function with a Plurality of ADA
Pairs

The resistance based iteration function for the case N > 2 is based on the iteration function
AP RP — R for the case N = 1. The function A7, is introduced in Definition 6.21 and
its fixed point characteristics are thoroughly analyzed in Chapter 6. The domain of the
resistance based iteration function for the case N > 2 is the set /i’,pD,v from Definition 7.4.

Definition 7.36 Let rp > 0 and let p € {2, ..., N}. Furthermore, let ip—1 € Rsqo such
that v = BP~1(i,_1) € /2. The resistance based iteration function of ADA pair p given
v Is defined by

+

g

cP-RP SR, CP

rp.v rp.v v T AEDOW'\? :arzﬂopt",mop;’%m °ag ow\‘/’_

Remark 7.37 The physical interpretation of CFD,V is as follows. According to Remark 7.3,
v = ,6"_1(/,,_1) corresponds to the drift resistance approximation at the test fan speed of
ADA pair p— 1. Then, wb(r) = wPr + (1 — wP)v is the weighted sum of r and v, where
r is an approximation of the drift resistance at the test fan speed of ADA pair p. This
weighted sum corresponds to the drift resistance approximation at the start fan speed sP
of ADA pair p (Lemmas 5.13 and 5.14). Thereafter, this drift resistance approximation is
plugged into the drift resistance iteration function A?_, which is detailed in Section 6.2.
In contrast, in the case N = 1, the drift resistance approximation function is constant with
the fan speed, because only a single ADA pair is considered. Accordingly, the drift resistance
approximation at the fan speed sP corresponds to the drift resistance approximation at the
test fan speed of ADA pair p in this case. Therefore, the drift resistance approximation r
of pair p is plugged directly into A’,’D, i.e., the weighted sum is omitted in the case N = 1.
In Example 7.44, the function C fD,V is illustrated in the context of the drift resistance super
fixed point vector r**.

Remark 7.38 Analogously to Remark 7.12, if there is no risk of confusion, the subscript
rp of CF, , is omitted in the following.

Lemma 7.39 The function CP is well-defined, i.e., it can be evaluated for all r € RF.

Proof. Let r € RP. Because R = (w’\f)_l(ﬁ’p) (Definition 7.4), we have g := w?(r) € RP.
The set RP is the domain of AP and thus CE(r) = AP o wh(r) = AP(q) exists. ]

127



Chapter 7 ADA Procedure with a Plurality of ADA Pairs

The following lemma states how the resistance based iteration function CY and the ioni
current based iteration function BY are related.

Lemma 7.40 Letpe {2,..., N} and let v € VP. Then, we have
Co=p"0oBlo(F)".
Proof. Using that
e C) = AP o w! (Definition 7.36),

o AP=pPoAlo (ﬁp)_l (Lemma 6.30),

AP = Lo 1y 0 Lgs, 0 ¥P o BP (Definition 6.5),

pP o (5")71 = id(_;» o0y (Lemma 5.11),

o BY =100, 0P owb o P (Definition 7.8),

we have
Ce = AP o(,.)“/7 = (ﬁp oA? o (ﬁp)_l) o(;./“/7
=P o (Lpp 0Lz, 0P 0 fP) o (BP) Towl
=pPo Lp,rp O L;)%rD oyPo we o (ﬁp o (ﬁp)_l)

_ - -1
=pPo ([,tp’rD o [’sP%rD oyPo w‘v’ oBP)o (ﬁp) 1_ BP o Be o (ﬁp) .

In the third line, we used that R% is the domain of C2 and that 67 o (6°) '(RE) = R?
holds (Lemma 7.5). O

The fixed points of BY and CP are also related (if they exist).

Lemma 7.41 let p € {2,..., N} and let v € VP. Then i* is a fixed point of BY if and
only if BP(i*) is a fixed point of CJ.

Proof. According to Lemma 7.40, we have B2 = (BP) ' o CP o 8P and thus
BE(i*) =i* & (BP) o CPoBP(i*) =i* & CPopP(i*)=pBP(i").
]

Recall from Definition 7.14 that the components of the super fixed point vector i** are
fixed points of certain ioni current based iteration functions BY. Because the fixed points
of BY and C! are related according to Lemma 7.41, the components of the drift resistance
super fixed point vector r** are fixed points of certain associated resistance based iteration
functions C?.

128



7.2 Resistance Based Approach

Lemma 7.42 Let there be a feasible scenario, i.e., let i** = (i{*,..., i) € RY,, and let
r = (... ry’) be the corresponding drift resistance super fixed point vector. Then,

the following recursion holds:

ri* =fix(AY) and r* =fix(Ch. )V pe{2, ..., N}.

p 1

Proof. For this proof, recall that r;* = gP(;**) for all p € [N] (Definition 7.32). We begin
with p = 1. By considering that if* = fix(A}) (Definition 7.14) and Al = (,81)71 o Alopgl
(Lemma 6.25), we have

= AL = (B) T o Ao BH(iY) @ i = BT = Ato BL(IT) = AN().

Next, let p € {2,..., N}. By considering that i3* = fix(ng_l(i** )) (Definition 7.14),
p—1

5p71(,-;j1 = ry*, (Definition 7.32), BY(i*) = i* if and only if CJ o BP(i*) = BP(i*)
(Lemma 7.41) and r;* = BP(i;*) (Definition 7.32), we have

b’ = ng—l(i;jl)(/;*) = B%*_l(i;*) & BP(p7) = Cfp**_l °opP(ip7) & = C%il(r:*)_
U

Lemma 7.42 gives us a resistance based condition to check whether a scenario is feasible
or not.

Lemma 7.43 A scenario is feasible if and only if the N fixed points recursively defined by
n="fix(A') and r,=fix(CE_)Vpe{2..., N}
exist.

Proof. "=" Let there be a feasible scenario. Then the super fixed point r** = (r{*, ..., '
exists (Definition 7.32) and r, = r;* holds for all p € [N] (Lemma 7.42).
"<" Let the N fixed points recursively defined by r; = fix(A!) and r, = fix(CP_,) V p €

{2,..., N} exist. Then, r,, p € [N], must be an element of the domain of the cor-
responding function, i.e., n € R and rp € Ii’ﬁg_l for p € {2,..., N}. As a conse-

quence, (BP) 1(r,) exists for all p € [N] and (B,) !(r,) > 0 holds (Lemmas 6.4 and
7.5). We set i, == (BP)"1(r,) for all p € [N]. In the following, we show by induction
that i** = (i, ..., ip) holds, where i** is the super fixed point vector according to Defini-
tion 7.14. Because i, > 0 for all p € [N], the scenario is feasible in this case.

Base case: By applying Lemma 6.25, we have

n=A(n) = BoAo(B) H(n) = (B) H(n)=Aio(B) H(n) = i=fix(A}).

Because i;* = fix(A}) (Definition 7.14), i;* = i1 holds. In particular, we have if* = i1 > 0.
Induction hypothesis: Let there exist k € [N — 1] such that i;* = i, = (BP)~Y(r,) for all
p € [k].
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Induction step: Let p = k + 1. By applying Lemma 7.40, we have

rp=CP (1) =BPoBE o(B°) " () = (B”) " (rp) = BL_, (67" (1)
= iy =B2_ (ip).

Because r, 1 = BP~1(i** ;) (induction hypothesis), we have i, = fix(ng,l(I_;*_l)) and thus

£k

Iy* = ip according to Definition 7.14. In particular, i;* > 0 holds and the induction step is

completed. In total, we have i;* # NaN for all p € [N] and thus the scenario is feasible. [

The recursive construction of the drift resistance super fixed point vector according to
Lemma 7.42 is demonstrated in the following example. This also includes a demonstration
of the corresponding iteration functions CP.

Example 7.44 In this example, we determine the drift resistance super fixed point vector
r* = (r{*,r3*, r3*) of a feasible scenario with three ADA pairs, i.e, we have N = 3. For
the sake of simplicity, the considered functions and values are artificial. Furthermore, we
assume that the domains RP, p € [3], as well as the sets \/? and V/* are sufficiently large
such that all considered function evaluations are well-defined. Therefore, no domains or
other sets are specified in this example. Let us suppose that

AL(r) = %r—i— % A%(r) = %r, and A3(r) = %r.
Then, AP s strictly increasing, contractive and a selfmap for p € [3] (if the domains
contain the corresponding fixed points). Because A}(1) = £+ =1, we have fix(Al) = 1.
According to Lemma 7.42, the first component of the drift resistance super fixed point
vector is ri* = fix(Al) = L.
For the second and third component of r**, we need the weights of the corresponding
weighted sums. In this example, let the weights be w? = % and w® = £, i.e., we have

1 1 4 1
w2(r) = w?r+ (1 —w?)v = Sr+5v and W =wir+(1-wdv= =V

Because CY = AP o wb (Definition 7.36), we have

C% = %(%H—%vl) = %r—l—%vl, vi € V2 and CfQ = %(grjtém) = %H—%VQ, vy € V3,
To avoid confusions with the used indices, recall from Remark 7.3 that VP is the set
of feasible drift resistance approximations of the upper neighbor of ADA pair p. le.,
the physical interpretation of v, € VP is that vp,_1 is the incumbent drift resistance
approximation of ADA pair p — 1, which influences the drift resistance approximation of
ADA pair p.

Note that C2 and C? are both strictly increasing and contractive. This is no coincident.
Corresponding statements is presented in Lemmas 7.46 and 7.48 below. In particular,
Lemma 4.46 can be applied, which states that both functions are selfmaps if and only if
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their (unique) fixed points exist. Because we assume that the domains R2 and R3 as well
as the sets of feasible upper neighbors VV? and V' are sufficiently large in this example, the
fixed points fix(C2 ) and fix(C3) exist.

We continue to recursively determine the drift resistance fixed point vector r**. According

to Lemma 7.42, r3* = fix(C .) holds. Because r{* =1, we have
1 1 1 1 1 1 6 1
- —_— = - f 2xx = — 2xx = — - _— = —
(r) r+ 5 i 6r+ 5 = ix(Cr) c (smceC ( ) = 30 + 5= 30 5)

and thus r3* = % Analogously, we have

1 1 1 1 1 1 1 5
= fr+— = ﬁx(C3 ) = — (since C%*(%) = —+ =

1
C3>:<>:< — - =
() =griggn’ 100 80 400 100 = 400)

and thus r;* = 8i With this, the drift resistance super fixed point vector is fully determ/ned
as r** = (1 % %). The corresponding super fixed point vector i** = (if*, ..., if) can be
calculated from r** with i* = (ﬁp)_l(rl’;*) (Definition 7.32). However, this requ/res the
voltage U and the test ioni current i of each ADA pair p, p € [3]. Because U and the
test ioni currents are only implicitly given in this example, we refrain from calculating i**

A further benefit from the fact that C2 and BY are related by CE = 8P o BE o (BP)*
is that the resistance based ADA iterates r”(7t,in, u) can also be recursively calculated by
certain functions CP.

Lemma 7.45 Let ir;, € RY) = (i, ..., iN) be an input vector and let u = (Un)aeqy
be an ADA update sequence of length £, £ € IN, such that ?t,in and u are a feasible
input combination. For n € [{] let r"(iyin, u) = (1, ..., ryy) be the corresponding n — th

resistance based ADA iterate. With rg = ﬁp(i;,”) for all p € [N] the following recursion
holds:

o (AY (=), it ) ifu, =1,
)= | 7.4
r (lt,m U) (rffl ’’’’’ n 1 Cp 1(rn 1) p+1 _____ rlr\7/ 1) ifu, = p>2. ( )
This recursion also holds for infinite ADA update sequences.
Proof. The statement is shown by induction over n.
Base case:
Let n = 1 and let r'(ipin, u) = (1}, ..., ry) be the corresponding first resistance based
ADA iterate as well as i(iyin, u) = (i, ..., iL) the corresponding first ioni current based
ADA iterate. Then, ri = B*(i}) holds for all p € [N] (Definition 7.28). According to
Lemma 7.27, we have
(AL(iny, in . i) if oy =1,

it (i n, ) = (i

n ng—l(i;n,l)(’;?n)' TR in)  fu=p>2
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Let vy = 1. Then, we have

=P oANI") = B oAl o (B) o (BY)(I") = BT o Al o (BY) (1) = AN(rD),

where the last equality follows from Lemma 6.25. For p € {2,..., N}, we have r} =

_ o P
BP(i2) = BP(i") = rY. Therefore, (7.4) holds for n =1 and uy = 1.
Now, let u; = p, p > 2. By construction, we have BP~1(il" ;) = r§  and thus
ry=BP(iy) = BP0 Bp, 1 \(ig) = BP0 By (i) =B7 0B o (B) "o BP(if)
o1 P P

—BPo Br,?,l o (5;3)*1(@9) = Cfoil(rg),

where the last equality follows from Lemma 7.40. With this, (7.4) also holds in the case
u1 > 2 and the base case is proved.

Induction hypothesis:

For a certain k < £, k € IN, let (7.4) hold for all n < k.

Induction step:

According to Lemma 7.27, the (k + 1)st ADA iterate is

K1y 1) (CHEN S i) if U1 =1
t,in» - . . .
" (lf ..... ’;1:(—1 Bﬁpfl(,k )(/p) /[7‘_'_1 ..... /N) if up1 =p>2

(rf, ..., k.. Cfpk_l(r,f), Ko i) if U = p>2.

Therefore, by considering the induction hypothesis, (7.4) holds for all n < k + 1 and the
induction is completed.

Because the base case and the induction step are also valid for infinite ADA update se-
quences, (7.4) holds for infinite ADA update sequences as well. O

Our goal is to show that lim r"(iin, u) = r** for certain inputs iy, and u. Because
n—oo

r”(7t,in, u) and r** can be calculated by functions CP according to Lemmas 7.45 and 7.42,
respectively, the resistance based iteration function is considered in more detail in the
following subsection.

7.2.3. Properties of the Resistance Based ADA Iteration Function C?

Since CF is a composite function that contains A?, CP inherits some of the properties
of AP. Because CP is only defined for p > 2, we assume that p € {2,..., N} for the
remainder of this subsection.

Lemma 7.46 The function CF is strictly increasing.
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Proof. The functions w? and AP are strictly increasing according to Lemmas 7.2 and 6.34,
respectively. As a composition of strictly increasing functions, CP = AP ow! is also strictly
increasing. ]

A benefit of the fact that CP is strictly increasing is that Lemma 4.46 can be applied.

Corollary 7.47 Let CP . RY — R be contractive. Then, CE is a selfmap if and only if CP
has a fixed point. Furthermore, if CY has a fixed point, it is unique, and the Picard iteration
associated to CE converges to this fixed point for an arbitrary starting point r € RP.

Proof. Because C? is strictly increasing (Lemma 7.46) and its domain R” is a closed and
bounded interval (Lemma 7.7), Lemma 4.46 can be applied. O

Since we are interested in "good" convergence characteristics of the Picard iteration
associated to C!, we are interested in conditions that guarantee that CZ is contractive and
that CP is a selfmap. These are closely related to the corresponding conditions for AP,

Lemma 7.48 If AP is contractive, then C! is contractive.

Proof. Let AP be contractive and let r1,» € R”J with 1 # rn,. We have to show that
|C0(r) — CP(r)| < |n — ra|. According to Lemma 5.13, we have 0 < w” < 1 and thus

wh(r) — wh(r2)| = ’wprl + (1 =wP)v— (WPr+ (1 - Wp)V)‘ =wP|rn — | <|rn—rl.
Furthermore, AP is contractive by assumption and thus
1CV(n) = CU(rn)| = [AP o wy(n) — AP owi(r)| < lwy(n) —wy(r2)| <ln—rl
O

The converse is not true in general, i.e., if CF is contractive, then this does not imply
that AP is contractive. This is briefly demonstrated in the following counterexample.

Example 7.49 [et AP be defined by AP(r) = 2r and let wP = % e, wh(r) = %r + %v.
Then, AP is not contractive, because |A(r1) — A(rR)| = 2|rn —ra| > |rn — | for all rp # .
However, CJ(r) = AP ow{(r) = 2(3r + v) is contractive, because

2 4 2 4 2
|CP(n) = CB(rn)| = ‘grl +tav- (§f2 + gv)‘ = §|f1 —nl<|n—n|VYn#n.

Furthermore, if AP has a fixed point, then this does in general not imply that C has a
fixed point. As a consequence, if AP is a selfmap, then this does in general not imply that
CP is a selfmap. Both aspects are demonstrated in the following counterexample.

Example 7.50 Let RP = [-1,1] and let AP : RP — R be defined by AP(r) = ir.
Furthermore, let wP = % which is in accordance with Lemma 5.13. In this example, the
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test resistance rf is not further specified. However, rf > 0 holds according to Remark 5.8.

Because ~
min R 4+ wPrP 1

we can state that (—oo, —2] C VP = {veR:v < %} (Definition 7.4). We
select v .= —2. Because v € VP in this example, the corresponding set I?ff and function
Cl are well-defined. We have wi(x) = wPx + (1 — wP)v = %x + %(—2) and thus

1,1 1 1
Co(r)=APowP(r) = §(§r -1)= et

According to Definition 7.4, the domain of C is

. 14 1,4 ~ 1

RE = (wh) H(RP) = (R = (1= wP)v) =2(RP — 5(~2)) = 2([~1,1] + 1) = [0,4]
Let us consider AP first. The absolute value of its gradient is | SA(r)| = % and thus
smaller than one and therefore AP is contractive. Furthermore, AP has the fixed point
r* =0. Thus, AP is a selfmap according to Lemma 6.35.

Next, we consider the function CY. Note that CY is also contractive, which is in accordance
with Lemma 7.48. If CL was considered as a function over R, then it would have the unique
fixed point ri = —%. But r¥ is not an element of R = [0,4] and thus C? does not have

a fixed point (within its domain). As a consequence, according to Corollary 7.47 we see
that CL is not a selfmap, i.e., we have CE(RD) ¢ RY.

The drift resistance iteration function C! is introduced to facilitate the convergence
analysis of Algorithm 5.2. In order to prove the convergence statements of Theorem 7.68
below, it is required that CL is a selfmap for all v within a certain e-ball centered at r;il
forall pe {2,..., N}. However, as demonstrated in Example 7.50, it is not sufficient to
require that A” is a selfmap to guarantee that C? is a selfmap for all v € VP. Furthermore,
it is also not sufficient to require that a single CE, v € VP, is a contractive selfmap to
guarantee that C? is a contractive selfmap for all v € VP. In general, if CP is a contractive
selfmap, then there might exist x € VP, x # v, such that CZ is not a selfmap. This is
demonstrated in the following example.

Example 7.51 Let us consider RP = [~3,1] and let AP(r) = 3r for all r € RP. Note
that AP s strictly increasing, contractive and has the fixed point r* = 0 € RP. Thus,
AP s also a selfmap according to Lemma 6.35. Let us consider a weight of wP = % and
let us assume that v = 1 and x = —1 are elements of \/?. This gives us (w@)fl(r) =
L(r—= (1 —-wP)v) =2(r—3%-1) = 2r — 1. Because R} = (w’\f)_l(ﬁ’p), we have

wP

RE = [~2, 1] Analogously, we have (w2) *(r) = 2r +1 and RE = [0,3].
Considering the iteration functions CY and CE, we have

1
r—+

CE(r) = AP 0 wi(r) = 5

N —

(

N —

(WPr+ (1= wP)v) =

N —
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and analogously CE(r) = %r — %. Both functions are strictly increasing and contractive,

which is consistent with Lemmas 7.46 and 7.48. However, C is a selfmap on its domain
RP, whereas CP is not a selfmap on its domain K2, which is shown in the following.
Note that rf = % € RP is a fixed point of C2 and thus CP is a selfmap according to
Corollary 7.47. On the other hand, for r =0 € RY, we have C{(r) = —1 ¢ RY and thus
CP is not a selfmap on its domain.

However, if / = [vi, vs] C VP, then it is sufficient to check that C{ is a selfmap for
the boundaries v; and v» to guarantee that CP is a selfmap for all v € /. To prove this,
some preliminary work must be done. Some of this preliminary work is also used to prove
the convergence statements in the following section. We begin with some monotonicity
properties of CP.

Lemma 7.52 Let vq, vo» € VP such that vi < v». Then, the following statements hold:
e wh(r)<wh(r)VreR,
e CO(N<CL(NYreRlNRY,

Proof. Let r € R. Because 0 < w” < 1 (Lemma 5.13), we have

vi<v = (1-wPlvy <1 -=wP)v, = wPr+(1—-wP)vy <wPr+ (1 - wP)wv,
= wh (r) <wb (r).

Furthermore, because AP is strictly increasing (Lemma 6.34), we have
Ch(r) = AP owy (r) < AP owy, (r) = CU,(r)
for all r € R, NRY,. O
The following lemma is an auxiliary statement.

Lemma 7.53 Let v, x € VP. Then, the following holds:

p ~
d (x—v) € RP.

RS = (wp) "owl(RY) and reRE & r4 T

Proof. By Definition 7.4, we have RE = (wf) “(RP) and RE = (wf) '(RP). Therefore,
we have RP = w?(R?) and thus R = (w.‘,’)_l(l?p) = (w"f)_l o w?(RY).
Let r € R2. According to Lemma 7.2, we have

(Wﬁ)’l owp(r) = (w’\f)*l(w”r—k (1—-wP)x) = %((Wpr +(1—wP)x) — (1 - Wp)v>

1—wP

=r+ o (x—v)
and thus r € RY if and only if r + =% (x — v) € RY. O
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If two iteration functions C? and C£ are contractive selfmaps, then their fixed points
fix(CP) and fix(CF), respectively, exist (Corollary 7.47). The following lemma states that
the fixed point of CP is contained in the domain of C? and vice versa.

Lemma 7.54 Let v, x € VP and let CP as well as CP be contractive selfmaps on RY and
R?, respectively. Then, we have

fix(CP) € RPN RP and fix(CP) € RPN RP.

Proof. Because CP and C? are contractive selfmaps, their unique fixed points fix(C?) € R?
and fix(CP) € R?, respectively, exist (Corollary 7.47). Let us consider 7 = (wf,’)_l o
w¥ (fix(CE)), which is an element of RY (Lemma 7.53). Therefore, we have

CP(F) = AP o wB(F) = AP 0wl o (wB) H o wh (fix(CP))

= AP o Wl (fix(CP)) = CE(fix(CE)) = fix(CP).

Because C¥ is a selfmap on R%, fix(C2) = C2(F) € R? holds. The statement fix(C?) € R?
is shown analogously by swapping the roles of v and x. ]

A consequence of Lemma 7.54 is that if a starting point r € RE N R? is considered, then
each iterate of the Picard iteration associated to C starting at r and each iterate of the
Picard iteration associated to CP starting at r is contained in this intersection.

Corollary 7.55 Let v, x € VP and let CP as well as CP be contractive selfmaps on R" and
RE, respectively. Furthermore, let r € RE N RP. Then, we have

YneN: (CBY(r)eRENRY and (CP)'(r) € RENRE.

Proof. \We begin with the first part and show (Cf)"(r) € R} N R% for all n € IN. Because
r € R} and CJ is a selfmap on R} by assumption, (C7)"(r) € RY holds for all n € N. To
show (Cvp)n(r) € R?, we have to consider the fixed point of C?. Because CP and C? are
contractive selfmaps (by assumption), their fixed points fix(CP) and fix(CZ), respectively,
exist and fix(CP) € R® holds (Lemma 7.54). In the following, we distinguish three cases.
First, let r = fix(CD). Then, (CP)"(r) = r € RY holds for all n € IN. Next, let r < fix(CY).
Because R? is a closed interval (Lemma 7.7) and r € R% as well as fix(CP) € RE, we have
[r, fix(CP)] C RE. By applying Lemma 4.45 inductively, r < (C{)"(r) < fix(Cl) holds for
all n € IN and thus (C)"(r) € [r, fix(CD)] C RE for all n € IN. The third case, r > fix(C}),
is shown analogously to the second case, r < fix(Cl). In total, (Cf)”(r) e R” holds for
all n € N in all three cases.

The second part of the statement, (Cf)"(r) € RPN R? for all n € IN, is shown analogously
by swapping the roles of v and x. O

Next, we show a monotonicity property between elements v € VP and the fixed points
of the corresponding iteration functions, fix(CP).
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Lemma 7.56 Let v, x € VP and let CP as well as CF be contractive selfmaps. Then,
v<x = fix(Ch) < fix(CP)
holds.

Proof. Let v < x, then we have CE(r) < CB(r) for all r € RE N RE (Lemma 7.52).
Furthermore, we have fix(CP), fix(CE) € RD N RE (Lemma 7.54) and thus Cf (fix(C})) >
Cl(fix(CP)) = fix(CP). Then, the Picard iteration associated to C¥ starting at fix(C?) is
strictly increasing according to Lemma 4.47. Because the Picard iteration associated to C?
converges to fix(CP) for an arbitrary starting point in R2 (Corollary 7.47), fix(C2) > fix(CP)
holds. O

There is also a relation between elements v € V” and the domains RA”J of the corre-
sponding iteration functions CJ.

Lemma 7.57 Let vi,vo € VP with vi < w. Then, the following holds:
X € [vi, vo] = li”‘jl N 1%52 C l%)’?

Proof. By Definition 7.4, we have RS, = (wf) '(RP) and RE, = (wB) '(RP). Let
F € RP NRP,, then there exist ry, r» € RP such that 7 = (wﬁl)fl(rl) and 7 = (wﬁz)fl(rg).
By considering Lemma 7.52, we have

vi <x<v = rn=wh(7) Swh(F) Swh (7)) =r.
Recall that RP is a closed interval (Lemma 6.11) and thus we have
WAF) el | CRP = wl(F) eRP = Fe (wh) (R =REV x € [vi, v,
m

With this, we can finally state that if C, and CJ, are both (contractive) selfmaps, where
v1 and v, are the boundaries of an interval | = [vq, w] C VP, then CP is a selfmap for all
vel

Theorem 7.58 Let AP be contractive. Let vy, vo € VP with vi < vo and let CJ, as well as
C?l, be selfmaps. Then,

X € [vi, ] = CPF is contractive selfmap

holds.

Proof. Let x € [vi,vs]. Because VP is an interval (Definition 7.4) and vy, v € VP by
assumption, [v1, ] C VP holds and the function C2 : R2 — R exists (Definition 7.36).
Furthermore, CJ,, C¥ and CY, are contractive, because AP is contractive (Lemma 7.48).
Because CP, and CY, are contractive selfmaps, the fixed points fix(C},) and fix(C{,) exist
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(Corollary 7.47) and fix(CE,) < fix(Cl,) holds (Lemma 7.56). Furthermore, according to
Lemmas 7.54 and 7.57,

[fix(CE). fix(CP)] C RE NRE C RE

holds and thus we can evaluate C¥ (fix(Cl,)) and C£ (fix(Cl))).

In the following, we show that the Picard iteration associated to C£ starting at fix(C,) is
strictly increasing and is bounded from above by fix(CL,). Because x € [vi, v»], we have
v1 < x. If vy = x there is nothing to show, because C{ = CJ, in this case. Therefore,
let v < x. Then, we have fix(Cl,) = Cl (fix(C,)) < CE(fix(Cl,)) (Lemma 7.52).
Therefore, the Picard iteration associated to C¥ starting at fix(CF,) is strictly increasing
(Lemma 4.47). Next, we show that this Picard iteration is bounded from above by fix(CY,).
This is done by induction over the number of iterations n. But first, we consider the
following auxiliary statement. Because x < vo, AP as well as w! are both strictly increasing
and according to Lemma 7.52, the following holds for all r € RE N RE,:

r <fix(Ch) = wh(r) <wb (r) <wh (fix(CP))
= APowl(r) < APowl (r) < AP owh (fix(Ch))
> CP(r) < CP (fix(CP)) = fix(CE). (7.5)

Base case:

For n= 0, we have (C2)°(fix(CB)) = fix(CB) < fix(CE,).

Induction hypothesis:

Let the statement hold for n=20, ..., m.

Induction step:

We consider n = m+ 1. The inequality (C£)™ (fix(C%,)) < fix(C%,) holds according to the
induction hypothesis. By considering (7.5), we have

(CE)™(fix(CE)) <fix(CE) = (CB)™ (fix(CE)) = CE((CB)™ (fix(CE)) ) < fix(CE).

As a strictly increasing and bounded sequence, the considered Picard iteration converges to
a point r = limp—oe (C2)" (fix(CL)) € [fix(CL,), fix(CD,)] C RE. The following argument
why r} is a fixed point of Cf is taken from [Ber07, p. 32]:

C(ry) = lim (€)™ (fix(CE,)) = lim (C2)"(fix(CE)) = ry.

Because C? is contractive, the existence of a fixed point of C2 implies that C? is a selfmap
(Corollary 7.47) and the statement is shown.
O

As already mentioned, the importance of Theorem 7.58 is that it reduces the list of
requirements of the convergence theorem that is presented in the following section. Be-
cause if C%*ﬁﬁg and Cf**,ﬁe are selfmaps and A” is contractive, then CF is a contractive
selfmap for all v that are an element of the closed e-ball centered at r;* ;.

As a final preparation, we consider the intersection of two resistance based domains.
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Lemma 7.59 let p€ {2,..., N} and let vi, vo € VP, Furthermore, let R’@l = rﬂl“”, r&‘fax
and let RY), = [rm'n ry, 1. Then, the following holds:

Vi< vp = R‘p ﬁRp — [pmin pmax]

- V]_ r vy

Proof. According to Lemma 7.7, the domains /i”.fl and li”.fz are nonempty and closed in-
tervals and thus there exist ri™ < rM3 and TN < rM3 syuch that RY, = [rM", r*] and
RE, = [rm'” rp]. Let vi < va. F|rst we show that rm'n < rm'” and ryp® < rn®, which
is somehow counter-intuitive. Let us consider

1 1—wP 1—wP

1
P _ 1 = _
0<w <1:>1<Wp:>O<Wp 1= v andi: (vi —wv2) <0.

With this and by applying Lemma 7.53, we have

. R 1 WP
r‘zm — r\?:m _|_ (Vl _ VQ) < rmln and r\r/w;ax — r\;}:ax + (Vl _ V2) < rmax_
Therefore, r € RY, N RY, if and only if r € [N, rmax], ]

This completes the analysis of the properties of the resistance based iteration function C5
and we finally have all the parts together to state and prove the convergence characteristics
of Algorithm 5.2 with a plurality of ADA pairs.

7.3. Convergence Characteristics of the ADA Algorithm with a
Plurality of ADA Pairs

In this section, we state conditions that guarantee that the output of Algorithm 5.2 con-
verges to the super fixed point vector i**. For this, we require the concept of a sufficiently
well distributed ADA update sequence. We consider an ADA update sequence as suffi-
ciently well distributed, if after each entry of the sequence there follows an infinite number
of entries of each p € [N].

Definition 7.60 An infinite ADA update sequence u = (un)nen is called sufficiently well
distributed if for all n € IN and for all p € [N] there exist an infinite subsequence (U, )keN
such that ny > n and u,, = p for all k € IN.

Example 7.61 Let u = (un)new be an infinite ADA update sequence defined by

1, ifIkelNg: n=kN+1

N, ifdkelNg:n=kN+ N,

Let n > 1 and let p € [N]. Then, up, with nx = (k+ n)N + p is a subsequence of u
whose entries are all p such that ny > n. Therefore, u is a sufficiently well distributed
ADA update sequence.
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In contrast, let v = (vn)new be the infinite ADA update sequence whose entries are all
one, i.e., vp, =1 for all n € IN. The sequence v is not sufficiently well distributed because,
for example, there does not exist a subsequence whose entries are all two.

We continue with an important auxiliary statement. Recall from Remark 7.3 that v € VP
denotes the incumbent drift resistance approximation of ADA pair p — 1 and that we are
interested in the fixed points of C! for certain v € VP according to Lemma 7.42. We define
an auxiliary function that provides a link between the neighborhood of the drift resistance
super fixed point r;;il of ADA pair p — 1, which is a subset of V”, and the fixed points
of CP for elements v taken from this neighborhood. This function is contractive, which is
essential for the proof of the major convergence Theorem 7.68 below and the reason why

the resistance based approach was taken in the first place.

Definition 7.62 Let i** € RY, and let r*™ = (r}*,..., ry) be the corresponding drift

resistance super fixed point vector. Let p € {2,..., N} and let € > 0. We set m(e) =
rnry—¢€and M(e) =r;*; +e. If

e m(e) € VP and M(g) € VP,
o AP js a contractive selfmap and

e CP

m(e) @5 well as C ;’ﬂ( o) are selfmaps,

then we define

P [m(g), M(e)] — [fix(CP )),fix(C,’\)/,(s))], P (v) = fix(CP).

m(e
Theorem 7.63 The function @2 is well-defined, strictly increasing and contractive.

Proof. Let p € {2,..., N}, let m = r;*; —eand M = r;*, + €. To show that ¢f is

well-defined, we have to show that for all v € [m, M]
e the function C? is well-defined,
e the function C! is a contractive selfmap (and thus fix(CP) exists),
e the image of [m, M] under ¢¢ is a subset of [fix(CF,), fix(Ch,)].

Because V? is an interval (Definition 7.4), m, M € VP implies that [m, M] C VP. There-
fore, the function CP is well-defined for all v € [m, M] (Definition 7.36). By assumption,
AP is contractive and the functions Cf, as well as Ck, are both selfmaps. Then, the
function CP is also a contractive selfmap for all v € [m, M] (Theorem 7.58). Therefore,
the unique fixed point fix(Cl) exists for all v € [m, M] (Corollary 7.47). To show that
@2 (Im, M) C [fix(Ch,). fix(Ch,)]. we first show that ¥ is strictly increasing. For this, let
v,x € [m, M] such that v < x. Then, p2(v) = fix(C}) < fix(CE) = ¢£(x) holds according
to Lemma 7.56 and thus @? is strictly increasing. With this, we have

velmM = m<v<M = 92(m) <@2(v) <@2(M) = @2(v) € [pE(m), 2(M)].
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Finally, we show that ¢? is contractive. For this, let v, x € [m, M] such that v # x. We
denote r} = fix(CP) and r} = fix(C{). By using that AP is contractive, it follows that

[02(v) = 02(0)| = |r0 — 7| = |CO(r)) = CR(rD)| = [AP 0 wi(r)) = AP 0w (1))
< |wB(r) = wh(r)| = |wPri + (1= wP)v = (wPry + (1= w”)x)|
= |wP(ry = ) + (1= wP)(v = %)
<wP|ry — |+ (1 —wP)|v — x|

= wP|2(v) — @2(x)| + (1 = wP)|v — x|
holds and thus we have (because 0 < wP < 1)

|02(v) = 92(x)| < wP|p2(v) = 2()] + (1 = wP)|v = x|
= (1= w”)|e2(v) — o2(x)| < (1 = wP)lv — x|
= [0l(v) = p2(x)| < |v —x].

O

As a consequence of ¢f being contractive, the closed e-ball centered at rpq is mapped
to the open e-ball centered at r,’;*. In this thesis, the e-ball centered at xg € R is denoted
and defined by Be(xp) == {x € R : |[x — xo| < €}. The closed e-ball centered at xp € R is
denoted by B.(xg). Note that this notation is similar to that of the iteration function BY.
However, the two notations can be distinguished from each other by the superscript p.

Corollary 7.64 If f exists, then g (Bc(r;*;)) C Be(r;*) holds.

Proof. Let p € {2,..., N} and let € > 0. Recall from Lemma 7.42 that r}* = fix(Cf** )

R p-1
and thus @g(r;* 1) = r;* holds by construction of @g. Let v € Be(ry*;). Because ¢ is

contractive (Theorem 7.63), we have
02(v) — " = |02(v) = @2(p2)| < Iv =21l <& = wl(v) € Be(rp").
O

The function ¢? and the statement of Corollary 7.64 are demonstrated in the following
example.

Example 7.65 This example is an extension of Example 7.44, where a drift resistance super
fixed point vector r** = (r{* ry* r;*) for the case N = 3 is determined. In particular,
we reuse the function A, A% as well as w2 and we again assume that the corresponding
domains are sufficiently large.
With this, we have AY(r) = 3r+ 1 and thus r;* = fix(A') = 1. Furthermore, we have

1

1 1 1 1
A%(r) = 3" and ws(r):§r+§v = Cs(r):A2ow§(r):6r—|—6vVVEV2.
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We consider ©f for p = 2. In this example, <p§ can be written as an explicit function.
Recall from Definition 7.62 that <p§ maps certain drift resistance approximations v of ADA
pair p—1 =1 to the fixed points of the corresponding iteration functions CE of ADA pair
p = 2. These fixed points can be calculated by

1 1 5 1 1 1
Ca(r*):r* RN 6r*—kgv:r* = gr*:6v = r*ZgV = w?(V)ng

In particular, we have ri* =1 and thus r;* = fix(Crzf*) =1, see also Example 7.44.

To demonstrate Corollary 7.64, let € > 0. Then, we have Be(ri*) = [L —€,1 + €] and
thus

B =[5~ 5 + gl =1 — £+ Tl C (3 — e ) = Beli3").

We continue with an auxiliary lemma, which considers an ADA pair p, p > 2. The
lemma states that if there is a sequence of drift resistance approximations of the upper
neighbor of p, i.e., a sequence of drift resistance approximations of ADA pair p — 1, that
converges to the drift resistance super fixed pomt * ;. then the sequence of corresponding
iteration functions converges pointwise to C,H .

Lemma 7.66 Let i** € RY; and let r** = (r{*, ..., r}}) be the corresponding drift resis-
tance super fixed point vector. Letp € {2, ..., N} and let AP be contractive. Furthermore,
let m, M € VP such that m < r;*; < M and let (v")pen C [m, M] be a sequence such
that lim v" = r;*,. Then, the following holds:

n—oo

im Cfn(r) = Cf**l(r) YreRLNRE,.
p

Proof. According to Lemma 7.57, Rh,NRL, C RY holds for all v € [m, M]. Therefore, the
function evaluation CP,(r) is well-defined for all r € R, N R?, and for all n € IN. Because
CP = AP o WP (Definition 7.36) and AP is contractive by assumption, we have

|CPa(r) — Cf**_l(r)‘ = |AP o wb,(r) — AP owp**l(r)‘

rp_
< |wba(r) = w%*l(rﬂ = [wPr+ (1= wP)v" — (WPr+ (1= wP)ry*,)]|
=1 -wP)|V" =,

and thus for (n — oo) we have
Vit = VT =0 = |CRl(r) - Cf;il(r)\ -0 = Ch(r)— Cf;il(r).
]

As a final preparation, the following statement is considered. If the (p—1)th component
of the resistance based ADA iterates converges to the (p — 1)th component of the drift
resistance super fixed point vector r;il, then the p-th component of the resistance based
ADA iterates converges to r;* under certain conditions. This statement is required in the
induction step of the proof of the major convergence Theorem 7.68 below.
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Theorem 7.67 [et i** € RQO and let r* = (r{*, ..., ryx*) be the corresponding drift
resistance super fixed point vector. Let p > 2.

o [et AP be contractive.

o Let there exist 6 > 0 such that [r;*; — &, r;*; + 8] C VP and C re 5 as well as
p
Cr,;;‘*,l L are selfmaps.

e Let u be a sufficiently well distributed ADA update sequence and iy, = (i, ..., il
be a given input vector such that 7”,1 and u are a feasible input combination.

For n € IN let r"(ip.n, u) = (r], ..., ryy) be the corresponding n-th resistance based ADA
iterate. Then, the following holds:

lim rf g =r" = lim rf=r

ko
n—oo p= n—oo p P

Proof. Let I|m rp_1 = . Let € > 0 arbitrary but fixed. Without loss of generality, let

€ <6, where 5 >0is the constant from the theorem’s requirements. Then, there exists
i € N such that |r]_; —rp;* [ <eforalln 2 n. Aiming at a better readability, we suppose

without loss of generality that 7 = 1 e, |rf_y —ry*y| < e forall n € N. Furthermore,
we denote m = r;*; —€ and M = r;*, +¢. Because € <4, we have
ro_y € [m,M] = BE( ) Clrpiy =0, 5 +6]VneN. (7.6)

Recall from Lemma 7.45 that in the (n+1)st iteration the p-th component of the resistance
based ADA iterate is either updated by rf*t = CF, 1(r,;’) (if upe1 = p) or it remains
i

unchanged, i.e., r,g’“ = r (if upy1 # p). The following argumentation aIIows to assume

without loss of generality that up = p for all n € IN and simultaneously I|m rpq =1y
This is assumed to avoid a corresponding case distinction between up+1 = p and Unt1 # P-
Then, we have

it = C”n (VY neN (7.7)

according to Lemma 7.45. The assumption without loss of generality is valid for the
following three reasons. First, we consider a sufficiently well distributed ADA update
sequence and thus there exist infinite many updates with ADA pair p. Second, we have
nlmm ry_y = ry*y by assumption. In particular, we have r] ; € [m, M] for all n € IN by
construction. Therefore, we can execute the updates with ADA pair p — 1 only implicitly
and focus only on the updates with ADA pair p. Finally, an ADA iteration with an ADA
pair g, g > por g < p—1, does not affect ADA pair p and thus such ADA iterations can
be omitted in this proof, see also Lemma 7.45.

The road map for this proof is to show that:

1. There exists k € N such that rk € Rp, N RY),.

2. If rk € RE, N RE, then (CB)'(rk) < rktt < (CB) (k) V L eI,
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3. If rk € Rh, N R}, then there exists £ € IN such that \(C,’%)ﬁ(rﬁ’,‘) fix(Ch)| < € and
(C ) (rk)—ﬂx(C M| <eforalle> 2

4. [fix(Ch) — ry*| < € and | fix(Cyy) — r*| < €.

By combining Items 1 to 4 at the end of this proof, we obtain [rf — ri*| < 2¢ for all £ > £
and the statement is shown.

First, we make some considerations that are relevant throughout the proof. Because 7t,in
and u are a feasible input combination, all considered ADA iterates r”(?t,m, u) exist and
the corresponding function evaluations are well-defined for all n € IN.

Furthermore, AP is contractive and C”, re —5 a8 well as C o 4 are selfmaps by assumption.

Therefore, CP is a contractive selfmap and the umque f|xed point fix(CP) exists for all
v et =38,y +38] (Theorem 7.58 and Corollary 7.47). In particular, 3, and Cy, are
contractive selfmaps. In addition, C! is strictly increasing for all v € VP (Lemma 7.46)
and thus Lemma 4.45 can be applied to all C? with v € [m, M], i.e., for all r € R?

r <fix(CP) = r<CB(r) <fix(CO(r)) and r>fix(CP) = r>CD(r)> fix(CE(r)).

(7.8)
Now, we begin with [tem 1. Because the domains are closed intervals, let R, = [r™in, rmax]
and R, = [rli", rm3] and thus Rf, N R, = [rmin, rmaX] (Lemma 7.59). Then, we have
forallne N

n min n n+1 n max n n+1
fp <rm' = 1, <r, and ry >y = ) > (7.9)

Equation (7.9) holds, because
e m<r) <M = fix(Ch) < f|x(C ) < fix(Ch,) (Lemma 7.56) and

o fix(Ch) € Rh, = [r™n rmax] je rmin < fix(Ch), and thus

<t = ) < fix(Ch) < fix(Ch

) ) = ry <Cr,, (r”) ”+1 < fix(Ch

rl] rl7

where the last implication follows from (7.8).
e Analogously, we have fix(Ch,) € RE, = [riin, r1ex] ie., fix(CR)) < r®, and thus

] > = ) > fix(Chy) > ﬁx(cf:_l) = 5> Cfg_l(r,f) =t > fiX(CZ;_l)-

We use (7.9) to show that there exists k 6 IN such that rg e RPN R’j\’ﬂ. There are three
cases: rmn < r1 < r < rmin and r > . In the first case, there is nothing to
show.

So let r} < rii". Let us suppose that there exists no k € IN such that r¥ > " ie.,
ry < rp" for all n € IN. Then, the sequence (rlg’),,G]N is strictly increasing according to
(7.9) and it is bounded by rji"™. Therefore, there exists r* < r,'" such that nIi_)moo ry=rr.

In the following, we show that this leads to a contradiction. By construction, we have
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p—1
Ch is a selfmap on its domain R%,, fix(C5) € Rh, = [r™, rMax] holds, and thus

m=ry*; —¢e < ry*; and thus fix(Ch) < fix(Cf**l) (Lemma 7.56). Furthermore, because
pu

rmin < fix(CP) < f|x(C s ) = rmin < Cpxx (rm'") < fix(Ch. 1),
where the last implication follows from (7.8) with C? = Cf**l and r = rmn Therefore,
Cp. (™) # r™ holds and we set

-
= 1 C min mln O
= 5|Che (™) = "] > 0.

By considering that m < r" . < M for all n € IN, lim r" , = r**. and r™" € RPN R*,
g p—1 1 p—1 m M

n—oo p=

; p min — P min
we have nll_}moo(Crgil(rm ) = C,;il(rm ) (Lemma 7.66) and thus
I € N:|Ch (rmM) = CP. (r™| <&V n>ny.
p—1 p—1
Let n > ny, then

g+ ‘C’l,)n 1(rmmin) - Cf**l(rni”” <& = ‘C (rmln) mm}
2 p—
<_’ l%il(rlllm) I’;fl(rfr;;m)‘ + ‘( l’” (I’mm)) In’

and thus
5 <|Cr,, (rm'“) it Y on > g (7.10)

Furthermore, (r,g),,elN is convergent and thus it is a Cauchy sequence. Therefore,

AmeN: |-t <&V n>n. (7.11)
Because C¥, ) is contractive for all n € IN and Cr” (r,f) = rg“, we have
o
‘C (rm'”) ot = ‘C (r,’,?'”) — C%_l(rl’;’)‘ |rmin — 7. (7.12)
Recall that we suppose that r) < rii" for all n € IN and thus | — /| = 00 — /2.
Furthermore, because C?, 3 is strictly increasing (Lemma 7.46), we have C ,n (rm'”) >
r,, (r5) = ri*t and thus }Cr,, (rm'”) ot = r,, (rm'“) ritt for all n e ]N There-

fore we have

(7.12) = Cfg_l(rn”;i”) -ttt — ) = Cpn (rm'") Fmin < ottt =g (7.13)

By considering that (r})sen is strictly increasing, we have rJt1 — 2 = |0t — 7] Fur-
thermore, because m < ry_; and thus fix(Ch) < fix(Ch, 1) (Lemma 7.56) as well as
.
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fix(CP) € RB, = [rmin, rMmaX] we have r™mi" < fix(Ch) < fIX(Crn ) By applying (7.8) with
Ch = Cf,’;,l and r = r™" we obtain rM" < Cfgil(r,’,*,“”) < f|x(Cr’H), and thus

(7.13) = |[C]y () =t < |t =gV ne . (7.14)
Finally, by considering (7.14) together with (7.10) and (7.11) we obtain
< ‘( " (rm'”)) mi”‘ < ‘rl’,ﬂ'l - rl’,’] <&V n>max{ny, n}.

This is a contradiction and thus there exists k € IN such that rX > rmin.

Recall that our goal is to show that there exists k € IN such that rf € [r[0", ri®].
Therefore, it remains to show that r* < rfj@*. For this, let k € IN such that rf=! < rfin
and rX > r" which exists as shown above and because we are in the case r} < riin.

Because m < ri=} < M (Equation (7.6)), we have fix(Ch) < fix(C”k_l) < fix(Chy)

(Lemma 7.56). Furthermore, fix(Ch) € R, = [, rmaX] and fix(Ch, ) € [rpin, rmax]
holds and thus

rlffl < rmin < fix(CP) < f|x(C - 1) < fix(Chy) < ™.

By applying (7.8) with Cy = C%,_, and r = rk=1 we obtain

Mp—1 P
k—1 k—1 14 k—1 : P
ry < ﬂX(C;f 11) = r, < Cr,i‘:f(rp ) < ﬂX(Cr,f:f)
= 1y = Cla(p™h) <fix(Chy) < ™,
p

p—1

In total rk € [rmin, rmaX] = R, ﬂ R®, holds, i.e., Item 1 of the proof's road map holds in
the case rp1 < rMin - The case r > rmaX can be shown analogously by swapping the roles
of ri)™ and ry;®™ as well as con5|der|ng > and > instead of < and <, respectively.
Next, we prove ltem 2 of the proof's road map. We show by induction over £ that

TkeN:rfeRENRE, = (CB)(HA) << (CB)(rf)veeN.  (7.15)

By assumption, AP is contractive and C _s5 as well as C 45 are selfmaps. Therefore,

CP is a contractive selfmap and the umque fixed point fIX(CP) exists for all v € [ —
8, ry* 1 +6] (Theorem 7.58 and Corollary 7.47). In particular, Cf; and Cy, are contractlve
selfmaps. As a consequence, Rh, N R?, C RY holds for all v € [m, M] (Lemma 7.57) and
thus C2(r) is well-defined for all v € [m, M] and for all r € /i% N RY,. With this, we begin
the induction over £. So, let there exist kK € IN such that r € RPN Ii’p

Base case: Let £ = 1. According to (7.6), we have r} ; € [m, M]. Then according to
Lemma 7.52 and according to (7.7),

Ch(r) < Ch (1) =™t < Cly(r)
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holds and the base case is proved.

Induction hypothesis: For a certain j € IN let (7.15) hold for all £ < .

Induction step: We show that (7.15) holds for £ = j+1. According to Corollary 7.55, we
have {(CR) (rf), (Ch,) (rf)} € RE, N RY,. Because Rf, N R, is the intersection of two
closed intervals, Rf, N R4, is a closed interval as well and thus [(CF) (r¥), (Ch) (k)] C
Rf, N K%, holds. According to the induction hypothesis, we have (C5)'(rk) < it <
(CBY(rf) and thus ry™ € RB,N RE,.

Furthermore, Cf, and Ch, are both strictly increasing (Lemma 7.46). By considering the
induction hypothesis again, we have

(CBY () < i = ca((CaY (k) < k™) = (CB) () < Chri™)

and analogously CP,(r&t) < (C?, )Hl(r")
According to (7.6), we have m < rk+J < M. By applying Lemma 7.52 and considering that
it e Rh,NRY,, we have C,’«’n(rpﬂ) <C kﬂ(rpﬂ) <CP (rp+J). By combining everything,

we have
+1 j - j - j+1
(ChY T ) < Chr ™) < Cy () = 791 < R < (YT ()

and the induction step is completed.

Next, we show that Item 3 holds. Since C5, and Cf, are contractive selfmaps, the Picard
iteration associated to Ch, converges to the unique fixed point fix(Ch,) for an arbitrary
starting point in R?, and the Picard iteration associated to Chy converges to fix(Cy,) for
an arbitrary starting point in Rp . Let k € INg such that r[,‘ e RPN Rj\’”, which exists
according to Item 1. Then, there exists n,, € IN and nps € IN such that

[(CB)"(rk)y —fix(CB)| < eV n>nm and |(Ch)"(rk) —fix(C)| <€V n> ny.

By setting £ := max{nm, ny}. ltem 3 holds.

We continue with Item 4. Recall that m = r;*; — € and M = r;*; + € with ¢ < 4.
Because AP is contractive, [m, M] C VP and C§, as well as Cﬁﬂ are selfmaps by assump-
tion, the requirements of Definition 7.62 are met and thus the function 2 : [m, M] —
[fix(Ch), fix(Ch,)] exists. According to Corollary 7.64, we have

e2(m) =fix(Cf)) € Be(ry*) = [fix(Ch) — ¥ <e€

and analogously | fix(Cy,) — rp*| < €.
Finally, we combine all four statements. Let k € IN such that r,f e RPN /i’f\’/,, which exists

according to Item 1. Let £ € IN such that |(C )Z(rk) fix(Ch)| < € and |(CE,) e(rk) —
fix(Ch, )\ < ¢ for all £ > £, which exists according to Item 3. Furthermore, we have
| fix(Ch) — r3*| < € and [fix(Cy,) — rp*| < € according to Item 4. With this, we obtain

‘(C,’;)n(r,f) — r;‘*‘ = ‘(C,’;)n(r,f) — fix(Ch,) + fix(CH,) — r*
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< |(CR)"(rky — fix(CB)| + | fix(CR) — r3*
<e+e=22eVn>1{

and | (Chy)"(rk) — rz*| < 2¢ for all n > £ analogously. This result is combined with Item 2,
which yields

it —2e < (CR)"(rk) <kt < (CR) () <428 = | kT ¥ <2e V>4,

ie., lim r7 = r**, OJ
n—oo P p

Finally, we can present the main convergence statement if the ADA Algorithm 5.2 is
considered with a plurality of ADA pairs.

Theorem 7.68 Let i** € RY, and let r** = (ri*,..., r}}) be the corresponding drift
resistance super fixed point vector.

e [et AP be contractive for all p € [N].
o Let Al be a selfmap.

e Let there exist § > 0 such that [r;*y — 6, ;%) +6] C VP and Cf**ﬁé as well as
p
CP. s are selfmaps for all p € {2, .., NY.
p—1

e et u be an infinite and sufficiently well distributed ADA update sequence and let
irin = (", ..., i) be a given input vector such that iy, and u are a feasible input
combination.

Then, the following holds:
n'Lmoo?t,out (7t,inv U(”)) =i,

Proof. Let r"(in, u) = (r{ ..., ryy) be the corresponding n-th ADA iterate according to
Definition 7.28. We show that Ii_)m r"(ipin, 1) = r'™ = (ri*, .., ry*) by induction over
the numbering of the ADA pairs.n Fgor this, let € > 0 arbitrary but fixed.

Base case:

We consider ADA pair p = 1. Because Al is a contractive selfmap by assumption and
7““ as well as u are a feasible input combination, the Picard iteration associated to Al
starting at r) := B1(ii") converges to the fixed point fix(A!). Recall that fix(Al) = rf*
(Lemma 7.42). Since u is sufficiently well distributed, there exists a subsequence of u
whose entries are all one and thus nIi_)mOO r{ = r{* holds (Lemma 7.45.). In particular, there

exists n1 € IN such that |r{! — r{*| < ¢ for all n > n;.

Induction hypothesis:
There exists k < N such that ILm ry = ry* for all p € [k]. Furthermore, there exists
n—od

ng € IN such that [r] — r;*| < & for all p € [k] and for all n > ny.
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Induction step:
We consider ADA pair p = k + 1. According to the induction hypothesis, Ii_)m e =r
n—od
holds. Note that all requirements to apply Theorem 7.67 are met and thus Ii_)m r,’(”’Jr]L =
n—oo

kk 1 1 n K3k

resq holds as well. In particular, there exists ngy1 > ng such that [r , — rz% [ < e for all
n > ng+1 and the induction is completed.

In total, we have

(i, ..., m) = llmax <eVn>ny = nIme r"(igin, u) = nIi_}mOO(rf ..... m)=r

The importance of Theorem 7.68 is that the super fixed point vector can be considered
as the fixed point of the output of Algorithm 5.2 in the sense that every feasible input
vector7,_5in eventually converges to i** if a sufficiently well distributed ADA update sequence
u is considered. However, if an infinite ADA update sequence u is considered that is
not sufficiently well distributed, then nIi_)mOO i"(ipin, 1) = i** does not hold in general, as
demonstrated in the following example.

Example 7.69 Let there be a feasible scenario, i.e., let i** = (i{*,. .., i) e RY,.

o Let u = (un)nen be the infinite ADA update sequence whose entries are all one, i.e.,
up, =1 for all n € IN.

o Letip, = (i, ..., i) be an input vector with i € ' and such that there exists
pe{2 ..., N} with i,i,” # "

o Letiyin and u be a feasible input combination.
o Let Al be a contractive selfmap.

Because u, = 1 for all n € IN, only the incumbent drifted test ioni current approximation
of ADA pair p = 1 is updated. The approximations of the other ADA pairs remain at the
input values. Therefore, the n-th ADA iterate is i"(igin. 1) = ((A,-l)n(i{”), oo /}{,‘) for
all n € IN according to Lemma 7.27. Because A} is a contractive selfmap and iiln el
lim (AN)"(i") = fix(A}) = i#* holds and thus we have

n—oo
Nim 7o w) = (78R #7570 = 07
The inequality follows from the requirement that there exists p € {2,..., N} such that

fin ok
Iy # "
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We can summarize that, depending on the ADA update sequence v and the input vector
7t,in, different limits can exist for the output of Algorithm 5.2. However, in practice, the
ADA update sequences are usually sufficiently well distributed. Of course, all ADA update
sequences are finite in practice. But as stated in Section 3.4.5, the ADA update sequence
is automatically selected by the loniDetect system [WHB, Item 4228]. In particular, if an
ADA pair was not update for a longer period of time, a corresponding ADA update is forced
[PHE, Item 12678]. Therefore, it is reasonable to assume that in practice sufficiently many
updates with each ADA pair are performed and that the resulting sequence of updates is
sufficiently mixed.

A further requirement of Theorem 7.68 is that 7t,in and v are a feasible input combination.
If that is not the case, the output vector of Algorithm 5.2 eventually becomes NaN in
all components to indicate that the sequence of ADA iterations could not be successfully
carried out. From a practical point of view, such a situation usually occurs if the range of
feasible combustion states is left, see also Remark 5.33. In the optimization later on, this
is avoided by specifying appropriate constraints.

So far, we know that if the iteration functions have certain "nice" properties according
to the requirements of Theorem 7.68 and the inputs are "feasible", then the output of
Algorithm 5.2 converges to the super fixed point vector i**. Recall that the goal of ADA is
to approximate the drifted test ioni current ’f,m for each ADA pair p € [N]. Therefore, the
following section addresses the question under which conditions /',’;* = If,rD or equivalently

ry* = rp holds for all p € [N].

7.4. Approximation Quality: Relation Between the Drift
Resistance and the Super Fixed Point Vector

As detailed in Section 3.3 above, the ADA procedure ideally returns the drifted test ioni
current /f,rD for each ADA pair p € [N]. Because in this case the approximated drift
resistance at the test fan speed t” equals the sought drift resistance rp for all p € [N]
according to Equation (3.9) and the corresponding drift resistance approximation function
is a?t.out(fs) = rp for all fs € FS according to Definition 3.38. Therefore, we are interested
in conditions under which the components of the super fixed point vector i** correspond
to the drifted test ioni currents, i.e., under which i5* =i for all p € [N].

The following lemma states that this is the case if and only if r;* = rp for all p € [N],
where r** = (r{*, ..., ry’) is the drift resistance super fixed point vector corresponding to

i** according to Definition 7.32.

Lemma 7.70 Let rp > 0. Furthermore, let there be a feasible scenario, i.e., let i** =
(i3, ... %) € RNy, and let r** = (r}*,...,rj7") be the corresponding drift resistance
super fixed point vector. Then, the following holds for all p € [N]:

Pk

_ P *k
Ip _It,rD = fp =Ip.
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Proof. Let p € [N]. Recall from Definition 3.27 that if, ) = L, (gr) with gf = Lt (iP).
By applying (3.4), we obtain

U (g?)  Uwwoipt(if) UL
robew(92) + U rpiw ot t(iP)+U  rpif + U

LtP,rD (gf) =
Furthermore, we have ry* = BP(i;*) (Definition 7.32) and thus

ok sk

U U fD/p + U U
P *k P t
IP If,rD = rp ﬁp(lt,rD) - = =—>5  — p~=ID

D D
itp,rp I I I

O

Therefore, we focus on the relation between the drift resistance rp and the components
ry*, p € [N], of the drift resistance super fixed point vector. Recall from Lemma 7.42 that

= fix(Cf** ) i.e., there is a recursive relation between the components of r**. However,
p—1

it is possible to decouple the elements r;*; and r;* to a certain degree by considering the
iteration function AP instead of the iteration function Cf;il for p € {2,..., N}. Recall
from Definition 6.21 that AP is the corresponding drift resistance iteration function if the
ADA pair p is considered individually. The following lemma states how the fixed point of
AP and that of CJ, v € VP, are related (if they exist).

Lemma 7.71 Let p € {2,..., N} and let v € VP. Let AP and CP be both contractive
selfmaps and let fix(AP) € RP be the fixed point of AP as well as fix(CP) € R be the
fixed point of CP (existence and uniqueness are guaranteed according to Lemma 6.35 and
Corollary 7.47). Then,

1. v < fix(AP) & fix(CP) < fix(AP),
2 v > fix(AP) & fix(CP) > fix(AP) and
3. v =fix(AP) & fix(Cl) = fix(AP).

Proof. As a preliminary step, we show that the fixed point of A® is an element of Ii’@, which
is the domain of CZ. Because fix(A) € RP and R = (wf) "(RP) (Definition 7.4), we
have 7 = (w@)fl(fix(Ap)) € RP. ie., CE(F) is well-defined. Furthermore, C? : RF — RP
is a selfmap by assumption and CY = AP o wi (Definition 7.36) and thus

CP(F) = AP o wP o (wh) T (fix(AP)) = AP (fix(AP)) = fix(AP) € RY. (7.16)

With this, we show the statements. We show the implications "=-" of Items 1 to 3 first.
Thereafter, the implications "<" are proved. Aiming at a better readability, we denote
r* = fix(AP).
We begin with Item 1, so let v < r*. Because 0 < w” < 1, we have

v<rt = (1=-wP)v < (1—wP)r*

= W) =wPri+ (1 -wP)v < wPr+ (1 —wP)r* =r*.
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According to Equation (7.16), r* € RP holds and thus C2(r*) exists. By considering
that AP is strictly increasing, we have

wh(r'y<r® = CP(r')=APowl(r*) < AP(r*) =r"*.

This implies that the Picard iteration associated to CP starting at r* is strictly decreasing
(Lemma 4.47). According to Corollary 7.47, the Picard iteration associated to CJ con-
verges for every starting point to the unique fixed point fix(C!). Therefore, the fixed point
fix(CP) has to be smaller than r*, i.e., fix(CP) < r* = fix(AP) holds.

ltem 2, i.e., the case v > r*, is shown analogously by

v>rt = Wwh(r)Y >t = CPUrt) > AP(rf) =" = fix(CP) > r*.
To show Item 3, let v = r*. Then, we have

CO(r*) = AP owb(r*) = AP(WPr* + (1 — wP)v) = AP (WPr* + (1 — wP)r*) = AP(r*)

= r*,

*is a fixed point of CJ. Because the fixed point of C¥ is unique, fix(CY) = r* holds.

With this, we can show the implications "<«<=" of all three items by contradiction. Let
fix(CP) < r* and let us suppose that v > r*. According to "=" of Items 2 and 3, v > r*
implies fix(CP) > r*, which is a contradiction. Thus, v < r* holds. The implications "<"
of Items 2 and 3 are shown analogously. O

ie.,r

The statement of Lemma 7.71 is a bit counterintuitive, because the element v corre-
sponds to the drift resistance approximation of ADA pair p — 1 while fix(AP) is related to
ADA pair p, i.e., we compare drift resistance approximations of two different ADA pairs.
However, this reflects the entanglement of neighbored ADA pairs. With Lemma 7.71 we
get a criterion to check if r;* = rp holds for all p € [N] by considering the fixed points of
the iteration functions AP,

Theorem 7.72 Let rp > 0. Let i** € RY and let r** = (r}*, ..., ry') be the correspond-
ing drift resistance super fixed point vector. Furthermore, let AP be a contractive selfmap
for all p € [N]. Then, the following holds:

fix(AP) =rpVp€e[N] & r," =rp Vpe[N]

Proof. "=" Let fix(AP) = rp for all p € [N]. We perform an induction over p.

Base case: According to Lemma 7.42, we have ri* = fix(A!). Because fix(Al) = rp by
assumption, r;* = rp holds.

Induction hypothesis: For a certain k < N let r;* = rp for all p € [].

Induction step: Let us consider p = k + 1. We have r;* = rp (induction hypothesis),
fix(A*T1) = rp (by assumption) and rg*; = fix(Cfgl) (Lemma 7.42). By applying Item 3
of Lemma 7.71, we obtain

et =rp = fix(AAY) = x = fix(ka*irl) = fix(AFT1) = rp.
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"" Let r;* = rp for all p € [N]. We consider p = 1 first. We have r{* = fix(A!)
(Lemma 7.42) and r;* = rp (by assumption) and thus fix(Al) = rp.

Now, let p € {2, ..., N}. Because ry*; = ri* = rp (by assumption) and ry* = fix(Cf**l)
p.
(Lemma 7.42), we have
=1y = rp= ﬁX(Cf"il) =fix(CP)) = CP(rp)=rp
= rp=APow; (rp) = AP(WPrp + (1 — wP)rp) = AP(rp)
= fix(A®) = 1p.
]

The benefit of Theorem 7.72 is two-fold. First, if fix(AP) = rp for all p € [N], then
the ADA pairs are decoupled and we can deal with each ADA pair p individually. Second,
the iteration function AP has already been thoroughly analyzed in Section 6.3 and we can
reuse some results of this analysis. Under which conditions fix(AP) = rp holds is analyzed
in Section 6.3.2 above, where the impact of tolerances is discussed. With this, we show
that the relation between r** and rp is closely related to the impact of tolerances.

7.4.1. Impact of Tolerances

Corollary 6.41 states that fix(AP) = rp if and only if the considered HE model H and the
ADA pair p are nominal. Recall from Definition 6.39 that H and the ADA pair (sP,P, if, i)
are called nominal if and only if ;' (if) = ¢,,' (i). If that is not the case, H and the ADA
pair p are called non-standard and we have fix(AP) # rp. A non-standard situation is
usually caused by tolerances. This issue is discussed in detail in Example 6.38.

In total, we have the following criterion to check whether the super fixed point vector i**
corresponds to the sought drifted test ioni currents.

Theorem 7.73 Let rp > 0. Let an HE model ‘H be given such that we have a feasible
scenario, i.e., i** = (if*, ..., i) € RYy, and let r** = (rf*, ..., ry*) be the corresponding
drift resistance super fixed point vector. Furthermore, let AP be a contractive selfmap for
all p € [N]. Then, the following statements are equivalent:

1iyx=if,, Y pe[N],

2.y =rp VY pelN],

3. fix(AP) =rp V¥V p € [N],

4. the HE model H and ADA pair p are nominal, i.e., 1, (if) = 1, (tP) V p € [N].
Proof. The statement follows from Lemma 7.70, Theorem 7.72 and Corollary 6.41. [

The statement of Theorem 7.73 as well as the impact of tolerances with a plurality of
ADA pairs are demonstrated in the following example.
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Example 7.74 As in Example 7.44, the functions and values considered in this example
are artificial and we assume that all domains and required sets are sufficiently large such
that all considered function evaluations are well-defined. Therefore, no domains or other
sets are specified in this example.

We consider a situation with three ADA pairs and no drift, i.e., we have N = 3 and
rp = 0. Furthermore, let the iteration functions corresponding to the three ADA pairs be
AY(r) = A2%(r) = A3(r) = &r, i.e., all ADA pairs have the same ADA iteration function in
this example. It is apparent, that fix(Al) = fix(A?) = fix(A%) = 0. Note that fix(AP) = rp
holds for all p € [3]. Therefore, all three ADA pairs and H are nominal according to
Corollary 6.41.

Recall that the functions AP, p € [3], are the correct iteration functions if the ADA pairs are
considered individually. However, we are interested in the case with a plurality of ADA pairs
and thus we require the weights w? and w® in addition. In this example, let w? = w3 = 1.
This gives us C2(r) = A2 o w2(r) = A2(W?r+ (1 —w?)v) =2 (3r+3v) = 2r+ }v and
analogously C3(r) = #r+ sv.

We construct the drift resistance super fixed point vector r** = (r;™*, ..., ry*) analogously
to Example 7.44. In the first component, we have ri* = fix(Al) = 0. Regarding the
second component, we have

Ce(r) = %r + %r{‘* = %r = 3% = fix(Ck-) = 0 and analogously r3* = fix(C}-) = 0.
In total, r;* = 0 = rp holds for all p € [3], which is in accordance with Theorem 7.73,
since fix(AP) = rp for all p € [3]. In particular, aj(fs) = rp holds for all fs € FS.

Now, let us assume that we have a second HE model FH that belongs to a specimen of
the same HE type as H, but this time the ioni electrode’s position differs slightly because
of manufacturing tolerances. All functions and fixed points related to H are denoted by
an overline in the following. Let the corresponding iteration function of ADA pair one be
altered to Al(r) = %r + 1, while the iteration functions of ADA pair two and three remain
unchanged, i.e., A>(r) = A%(r) and A3(r) = A3(r). Because the iteration functions of
ADA pairs two and three are unchanged, the corresponding iteration functions given v
remain also unchanged, i.e., C(r) = AP owf(r) = AP o wl(r) = CO(r) = Lr + Lv for
p € {2, 3}

We have fix(Al) = 2, because A}(2) = 3241 = 2. Note that fix(A') # rp. Therefore,
in contrast to r**, the drift resistance super fixed point ¥** has components that are not
equal to rp according to Theorem 7.73. This is illustrated by determining ¥**. Its first

component is F;* = fix(A) = 2. Regarding the second and third component, we have

~ 1 1 1 1 1 1 ~ 2
2 _ = Tookk T _ = - —kk £ 2 _ =
CFT*(/’)— 4I’+4r1 — 4I’+42— 4I’+2 = 1’2 —f|X(C’7{*) — 3

and
- 1 1, 1 12 1 1 = 2
C%*(r):Zr—i_Zrz =yrty3=t: = B :ﬂx(C%*):@,
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respectively. It is particularly noteworthy that r3* # rp and 5% # rp although fix(Ay) =
fix(As) = rp holds. This is in accordance with Lemma 7.71, because

2= > fix(A) =rp =0 = B =fix(CZ.) > fix(A”) = rp

and analogously 7* > fix(A’) implies 75* = fix(C%.) > fix(A’).

As demonstrated in Example 7.74, we can distinguish two cases as a consequence of
Theorem 7.73. These two cases play a central role when formulating the ADA optimization
problems Chapter 8 below.

e If fix(AP) = rp holds for all p € [N], then the ADA pairs can be considered individually
in order to determine the components of the drift resistance super fixed point vector.
Such a situation is also referred to as the nominal case.

o If there exists p € [N] such that fix(AP) # rp, then some components of the drift
resistance super fixed point are not equal to the sought rp. In particular, it is
not possible to consider the ADA pairs individually in order to determine r**, ie.,
the components of r** have to be calculated recursively according to Lemma 7.42.
[t is important to emphasize that an individual consideration of the ADA pairs is
misleading in this case as demonstrated in Example 7.74. Such a situation is also
referred to as the non-standard case and is usually caused by tolerances.

Regarding the fixed points we can consider the ADA pairs individually if we have a nominal
situation. However, in general the rates of convergence are different if the ADA pairs are
considered individually and not as a plurality.

7.4.2. Comparison of Rates of Convergence in the Nominal Case

Let us suppose a nominal situation. Then, we have fix(Al) = rp and fix(AP) = fix(Cf**l) =
.
rp for all p € {2,..., N} according to Theorem 7.73. Because AP and Cf**1 have an
.
identical fixed point for p > 2, we can compare their rates of convergence in this case.

Lemma 7.75 Let i** € RY, and let r** = (r}*, ..., r}7") be the corresponding drift resis-
tance super fixed point vector. Let this be a nominal situation, i.e., r;* = rp = fix(AP)
holds for all p € [N]. Letp€ {2,..., N}, then

|Cf;i1(r) —rp| <|AP(r) —rp| ¥V r e RPN I%‘rp;*_l, r#rp.

Proof. Let r € RPN RA’f**l, i.e., we can evaluate AP(r) and Cf**l(r). Furthermore, let
2 P—
r # rp. We consider the case r < rp first. Because 0 < wP < 1, we have

r<mp = wr+ 1 -wP)r<wPr+ (1 -wP)rp = r<wl (r)<rm.
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By considering that AP is strictly increasing and that rp is the fixed point of AP by as-
sumption, we obtain

AP(r) < APowf (r) < AP(rp) = AP(r) < CP (r)<rp = |CP (r)—rp| <|AP(r)—rpl.

Because r3* ) = rp, |Cf**l(r) — rp| < |AP(r) — rp| holds in this case.

il
The case r > rp is shown analogously. ]
Remark 7.76 The interpretation of Lemma 7.75 is as follows. Let us suppose that ADA

pair p—1 has already converged to its fixed point, which is the drift resistance in the nominal
case. Then, the Picard iteration associated to C f**l starting at r converges faster to rp

than the Picard iteration associated to AP starting at r (if both functions are contractive
selfmaps). l.e., ADA pair p has a faster rate of convergence if a plurality of ADA pairs is
considered and not the pair p individually under the condition that the approximation of
ADA pair p — 1 is already at (or close to) rp.

The faster rate of convergence of Cf** can be quantified to a certain degree. For this,
p—1
we look at the relation between the Lipschitz constants of A? and CF.

Lemma 7.77 Let AP be L-Lipschitzian. Then, C0 is (L - wP)-Lipschitzian.

Proof. Let AP be L-Lipschitzian and let x,y € RP such that x # y. Then, the following
holds:

|C2(x) = C2(y)| = |AP o wl(x) — AP o wi(y)]
< L{we(x) - we(y)‘ = L}pr—i— (1—=wP)v— (wPy +(1- Wp)V)‘
= L!W”X— Wpy‘ = pr‘x—y‘.
]

As a consequence, if CP is a contractive selfmap, we can state an upper bound for the
rate of convergence of the Picard iteration associated to C?.

Lemma 7.78 Let AP be L-Lipschitzian and let CL be a contractive selfmap. For an arbitrary
starting point ry € RE, the estimation

| = fix(CO)| < LwP - |y = ro—1| < (LwP)" - |rg — fix(CD)| V n € N
holds, where r, == (C0)"(ro).

Proof. Because Cl is LwP-Lipschitzian (Lemma 7.77), the statement follows from Ba-
nach’s fixed point Theorem 4.39. ]

Remark 7.79 The statement of Lemma 7.78 holds for arbitrary v € VP, ie., also for
v # rp. However, if v # rp = fix(AP), then AP and CP have different fixed points
according to Lemma 7.71. Thus, the better bound for the rate of convergence of CP
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might come at the price of a "worse" fixed point in the sense that the fixed point of C}
might have a non-negligible distance to rp if v # rp. This is typical for a non-standard
situation, as demonstrated in Example 7.74.

The actual relation between the rate of convergence of the iteration functions and their
Lipschitz constants is discussed in detail in Section 8.3 below.

As a summary of this subsection, the super fixed point vector can be determined by con-
sidering the ADA pairs individually in the nominal case. To be precise, the super fixed point
vector is known in advance in the nominal case. In contrast, the recursion of Lemma 7.42
has to be applied to determine the super fixed point vector in the non-standard case.
In addition, particular attention must be paid whether the super fixed point vector stays
within feasible limits if we optimize the ADA parameters with a plurality of ADA pairs in
the non-standard case, because in this case the resulting drift resistance approximations
can significantly differ from the true drift resistance as demonstrated in Example 7.74.
The convergence rate, on the other hand, is of secondary importance in the sense that it
has better bounds if the plurality of ADA pairs is considered.

This concludes the analysis of the ADA procedure with a plurality of ADA pairs. The
results of this chapter are summarized in the following section.

7.5. Conclusion and Considerations for Optimization

The following list briefly recaps the results and findings of this chapter.

e The difficulty with a plurality of ADA pairs is that an update of ADA pair p, p > 2,
depends on the incumbent ioni currents i, and i,_; (Line 11 of Algorithm 5.2).
To deal with this dependency, a set of feasible upper neighbor drift resistances \/,’;
(Definition 7.4) and a corresponding ioni current based iteration function BY, , with
v =pBP 1(ip_1) € V2 (Definition 7.8) are introduced for p > 2.

e Based on A}’rD and on iteration functions of the type Bf, , for p > 2, the (ioni
current based) super fixed point vector i** is recursively defined (Definition 7.14). If
all components of i** are not NaN, then i** is called feasible and the underlying HE
model H, the N ADA pairs and the drift resistance rp are called a feasible scenario.

e The major result of this chapter is that the output of Algorithm 5.2 converges to
i** under certain conditions (Theorem 7.68). Because this holds for all feasible
input combinations ?t,in and u, where u is a sufficiently well distributed ADA update
sequence, i** can be interpreted as the fixed point of (the output of) Algorithm 5.2.
However, there can exist different limits for the output of Algorithm 5.2 if not

sufficiently well distributed ADA update sequences are considered (Example 7.69).

e Because the output of Algorithm 5.2 converges to i** = (ii*, ..., iy*) (under certain
conditions), we are interested in whether i3* = if, _ holds for all p € [N], i.e., whether
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the drifted test ioni currents are perfectly approximated. This is the case if and only
if fix(AF,) = rp holds for all p € [N], which corresponds to the nominal situation
(Theorem 7.73).

The case that there exists p € [N] such that fix(Af,) # rp is called non-standard
situation. A non-standard situation is usually caused by tolerances (Example 7.74).

e As a consequence, the ADA pairs can be considered individually in a nominal situ-
ation. In particular, the super fixed point vector is known in advance in this case
(1" = /ﬁ,D for all p € [N]).

e In the case of a non-standard situation, the super fixed point vector must be cal-
culated by the recursion of Lemma 7.27. In particular, the resulting drift resistance
approximations can differ significantly from rp even if fix(AP) = rp holds for all but
one ADA pair (Example 7.74).

e The rate of convergence is usually faster if the plurality of ADA pairs is considered
and not each ADA pair individually. However, this faster rate of convergence might
come at the price of a "worse" super fixed point vector in the non-standard situation
(Remark 7.79).

In the case of a single ADA pair, the found convergence characteristics of Algorithm 5.2 are
compared to the results and documentation provided by Siemens in Section 6.3.4 above.
However, Siemens has not published a documentation for the case of a plurality of ADA
pairs. Therefore, the results in this chapter are new and they close a research gap in the
context of the ADA parameterization.

Based on the analysis and the results from this and the previous chapter, two optimiza-
tion models for the ADA parameterization are proposed in the following Chapter 8, one
optimization model for the nominal case and one optimization model for the case with
tolerances. The two cases are dealt with separately, because in the nominal case the ADA
pairs can be considered individually to a certain degree, which makes the optimization
less complex. In contrast, in the non-standard case, the plurality of ADA pairs has to be
considered, which makes the optimization more complicated.
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Optimization of the ADA
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Optimization Models

The optimization of the ADA parameters is divided into two parts. First, corresponding
mathematical optimization models are proposed in this chapter. Thereafter, optimization
algorithms to solve these models are proposed in the following Chapter 9.

Modeling an optimization problem means to convert "the description of an optimization
problem" to a "mathematical representation of the problem" [San20, p. 13]. This repre-
sentation is referred to as the optimization model [San20, p. 13]. An optimization model
is composed of data, decision variables, constraints and objective functions [San20, p. 3].
Our goal in this chapter is to formulate the optimization of the ADA parameters as an
optimization model. This requires a description of the ADA optimization problem in the
first place, which is presented in the following Section 8.1. Two optimization models are
then derived step by step from this description. One optimization model for the nominal
case without tolerances and one model for the case with tolerances, which are presented
in Sections 8.6 and 8.7, respectively.

These models have conflicting objectives, which puts us in the field of multiobjective op-
timization and decision making. Because the objectives are conflicting, not all objectives
can be simultaneously optimized. Rather, one obtains a set of Pareto optimal solutions,
see also Section 4.1. Therefore, usually two parties are involved in the multiobjective op-
timization process, which are a decision maker (DM) and an analyst [Bra+08, p. 2].

"In general, the DM is a person who is assumed to know the problem considered and be
able to provide preference information related to the objectives and/or different solutions
in some form. ... An analyst is a person or a computer program responsible for the math-
ematical modeling and computing sides of the solution process." [Bra+08, p. 2]. Based on
preference information specified by the DM a "preference model is built from preference
information and this model is exploited in order to find solutions that better fit the DM's
preferences." [Bra+08, p. 2].

In the context of the ADA optimization, the decision makers are the two Vaillant engi-
neers who were responsible for the ADA parameterization of the HEs at Vaillant during
the period of writing this thesis. The role of the analyst was assumed by the author of this
thesis.

In the following section a description of the ADA optimization problem is specified that
corresponds to the preferences of the decision makers. The subsequent mathematical
modeling is the work of the author of this thesis.
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8.1. Description of the ADA Optimization Problem

For the description of the ADA optimization problem, the terms specifications and ob-
Jective criterion introduced in Modelling in Mathematical Programming [San20] are used.
Specifications are "regulations, impositions or limitations that must be fulfilled" and that
""give rise to the constraints of the problem" [San20, p. 15]. The difference between speci-
fications and constraints is that a constraint is "a single mathematical expression, whereas
the specification is a characteristic ...that is implemented in one or more constraints"
[San20, p. 15]. Objective criterion is an additional specification "expressing the criteria
that guide the resolution" of the problem [San20, p. 15]. In particular, the objective cri-
terion leads to the objective function(s) [San20, p. 191]. However, it might "also lead to
... the definition of specific constraints" [San20, p. 15].

The following description of the ADA optimization problem is the result of an interac-
tive process with the decision makers. Together with the decision makers an initial draft
of the description of the optimization problem and a corresponding optimization model
were created. These were gradually developed further in iterative loops until the decision
makers were satisfied with the optimized ADA parameters. This process is similar to the
conventional design cycle presented in [MN22, pp. 3—4]. The following description is the
final result of this process.

The decision makers want N ADA pairs (s, tP,if,if), p € [N], that fulfill the following
objective criterion (O) and the specifications (S1) to (57).

(0) The ADA Algorithm 5.2 shall have good convergence characteristics in the scenarios
specified by the decision makers.

(S1) The CO emissions during an ADA iteration must never exceed a limit specified by
the decision makers, which is denoted by comax in the following. A common value
used by Vaillant is comax = 150ppm [PHE, Item 15498].

(S2) The equivalence AFR during an ADA iteration must never fall below a lower bound
specified by the decision makers, which is denoted by Amin. A common value used
by Vaillant is Amin = 1.05 [PHE, Item 15498]. This specification is given for two
reasons. First, a combustion with an equivalence AFR close to one usually has a
high flame temperature, which places a great strain on the material of the heating
device and is therefore undesirable. Second, the ioni current as a function of A has a
maximum close to A = 1. In Figure 2.6(b) this property is illustrated by the dashed
curve. However, the ADA algorithm and the HE model require that the ioni current
functions are strictly decreasing, see also Definition 2.18. The bound A, serves as
a safety margin to A = 1.

(S3) The equivalence AFR during an ADA iteration must never exceed an upper bound
specified by the decision makers, which is denoted by Amax. A common value used
by Vaillant is Amax = 1.6 [PHE, Item 15498]. This is done to limit the start point
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(54)

(S5)

(S6)

(87)

increment in order to avoid too large time spans for an ADA iteration. The start
point increment is introduced and discussed in Section 8.4 below. Furthermore, a
large equivalence AFR corresponds to a small ioni current. At a certain point, the
ioni current is too small and can no longer be measured reliably.

The start and test ioni currents must be feasible in the sense that they must be
selected from the appropriate sets according to the HE model, ie., if € 15 (Gsp) =
Isp and if € 14o(Gpo) = Ito, see also Definitions 5.2 and 2.22.

The decision makers want that the start ioni current is larger or equal to the corre-
sponding point on the control curve and that the test ioni current is smaller or equal
to the corresponding point on the control curve [PHE, Item 15498]. The control
curve is introduced in Section 2.3.3. In other words, the test point shall stay in a
more fuel-rich range and the start point shall stay in a more fuel-lean range compared
to the desired equivalence AFR. This is supposed to provide a certain robustness with
respect to tolerances of the position of the ioni electrode and to avoid too large time
spans for an ADA iteration.

The equivalence AFRs of the (undrifted) start and test point shall have a minimum
distance, denoted by AXmin. This is necessary in order to have a clear distinction
between the start and the test point, which is also supposed to provide a certain
robustness with respect to tolerances of the position of the ioni electrode. A common
value used by Vaillant is A\min = 0.1 [PHE, ltem 3280].

The start and the test fan speeds must be selected as follows [PHE, Item 3280]:

The test fan speeds follow a descending order, i.e., t1 > tp > --- > ty,

the start fan speed of an ADA pair must be larger than the corresponding pair's
test fan speed, i.e., tP < sP for all p € [N],

ADA pairs must not be overlapping, i.e., s? < tP~1 forall p € {2,.. ., N},

the test fan speed of ADA pair N must not be smaller than the HE's minimum
fan speed, i.e., tN > fsi,, and

the start fan speed of ADA pair one must not be larger than the HE's maximum
fan speed, i.e., s < fSrax.

These restrictions are in accordance with the considerations made in Section 3.4 as
well as with Definition 5.2.

Therefore, we can already state that the decision variables of the optimization models are
the ADA parameters (sP, tP,i2,iP), p € [N].

The objective criterion (O) is composed of the two aspects "good convergence char-
acteristics" and "scenarios specified by the decision makers", which are analyzed in more
detail in this subsection. The specifications (S1) to (S7) and their corresponding con-
straints are detailed in Section 8.5.
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8.1.1. Scenarios Specified by the Decision Makers

From a practical point of view, only certain scenarios are of interest. The decision makers
decided to consider only scenarios, where all of the following items (Scl) to (Sc3) are
fulfilled, which reduces the complexity of the optimization problems to a certain degree.

(Sc1) Only a nonnegative and fixed drift resistance rp is considered, i.e., rp is not sup-
posed to change over time or to be negative. This is in accordance with the as-
sumptions made in Section 3.1.2. Vaillant typically considers rp = 140Q2 [PHE,
ltem 1618]. Two other common values are rp = 80k and rp = 200k [PHE,
ltem 1618].

(Sc2) Only the vector pjn = (i, ..., i) with /" = if for all p € [N], i.e., the vector
that is composed of the (undrifted) test ioni currents, is considered as a starting
vector for the ADA Algorithm 5.2 [PHE, Item 1618]. This vector corresponds to
the situation in which no correction has yet been determined. It is a typical starting
vector, see also Remark 5.34.

(Sc3) The decision makers specify the test fan speeds t?, p € [N], in advance.

While (Scl) and (Sc2) are straightforward, (Sc3) requires further explanation. What
distinguishes the test fan speeds from the other ADA parameters, i.e., why do the decision
makers specify the test fan speeds in advance? Recall from Section 3.4.2 that ADA
provides N data points (t?, 75(i,)) for the approximation of the drift resistance function
rp(fs), see also Definition 3.38 and Figure 3.7. Depending on the situation, the decision
makers prefer data points that have a certain distribution in the set of feasible fan speeds

[PHE, Item 3280]. Usually, the decision makers want that:

o An ADA iteration can be performed when the burner is close to its minimum load.
Thus, the smallest test fan speed should be close to the considered HE's minimum
fan speed.

o An ADA iteration can be performed when the burner is close to its maximum load.
Thus, the largest test fan speed shall be close to the considered HE's maximum fan
speed fsmax. But not too close, because the corresponding start fan speed, which is
larger than the test fan speed, must not be larger than fs;,ax according to (S7).

e The test fan speeds in between are uniformly distributed in order to have a good
distribution of the test points in the set of fan speeds, i.e., tP —tP*1 = 1 (¢! —tV)
for all p € [N —1].

Note that these three items with respect to the test fan speeds are not mandatory. For
instance, in one use case it turned out that ADA pairs with the test fan speed in a particular
range of the fan speeds have a too slow rate of convergence for a certain type of HE. The
decision makers decided to not place an ADA pair in this fan speed range for this type of
HE [PHE, Item 3855].
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Because all test fan speeds must be within the HE model’s set of feasible fan speeds
[fSmin, fSmax] and because they must follow a descending order according to (S7), the
following definition of the set of feasible test fan speeds is provided.

Definition 8.1 Let H = (FS, (Grs)fsers. (trs)rsers, (As)fsers. (Cts)rseFs) be an HE model,
Aset T = {t!, ... tN} C Rso is called set of feasible test fan speeds with respect to H,
if

fSmin < th <tV <l < fSmax -

Remark 8.2 In an early phase of the modeling process, the test fan speeds were not
considered as fixed. Rather, they were also a part of the decision variables. But the results
were not satisfactory. Furthermore, it has been observed in practice that small changes
in the test fan speed of an ADA pair only cause small changes in the ADA convergence
characteristics of the corresponding ADA pair. This means that a test fan speed a few
percent larger or smaller makes only a small difference to the rate of convergence. With
this observation in mind, the decision makers decided to select the N test fan speeds first
and keep them fixed during the optimization process.

Remark 8.3 /t is an empirical finding that small changes in the test fan speed of an ADA
pair usually cause only small changes in the corresponding rate of convergence, which
cannot be proved with the properties of the HE model. Rather, this seems to be a property
of the considered HE type itself. In general, it is thinkable that there are HE types such
that this property does not hold. If it turns out that an HE type is such that the rates of
convergence are sensitive to small changes in the test fan speeds, it may make sense to
revise the optimization model and also include the optimization of the test fan speeds.

It is important to emphasize that because the test fan speeds are provided by the decision
makers, the selection of the test fan speeds is not a part of the proposed optimization
models. This has the advantage, that the ADA pairs are decoupled and can be considered
individually, see also Remark 8.50 below. This reduces the complexity of the optimization
model and simplifies the decision making process.

For the remainder of this chapter, only the case where (Scl), (Sc2) and (Sc3) hold is
considered. In particular, the proposed optimization models require that (Scl), (Sc2) and
(Sc3) hold.

With these considerations in mind, the second aspect of (O) is discussed and we analyze
what good convergence characteristics of Algorithm 5.2 are.

8.1.2. Good Convergence Characteristics

As stated in Section 7.4, the ADA Algorithm 5.2 ideally returns the drifted test ioni current
it , for each ADA pair p € [N]. Recall from Definition 3.27 that i, = i, © vt (iP),
p € [N]. In addition, the ADA pairs should be chosen such that each ADA pair p € [N]
has a fast rate of convergence to if, . This allows us to break down the objective criterion

(O) further. Ideally:
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(01) The super fixed point vector i** = (i{*, ..., ix)) approximates the drifted test ioni
currents perfectly, i.e., iy* = i, holds for all p € [N].
(02) For the input vector irin = (il ..., i), which is the only relevant input vector

according to (Sc2), and for all sufficiently well distributed ADA update sequences

u, we have lim i”(7t,in, u) = i**, i.e., the corresponding sequences of ADA iterates
n—oo

and thus the corresponding output of Algorithm 5.2 converge to i**.

(03) The sequence i"(igin, u), where ipin = (i}, ..., iM) and v is a sufficiently well dis-
tributed ADA update sequence, has a high rate of convergence in the sense that only
a few ADA iterations with each ADA pair are required to get close to i**.

ltems (O1) and (O2) can be considered as mandatory. Hence, they become a part of
the constraints of the optimization models. They are dealt with in detail in the following
section. Under all the ADA pairs that fulfill (O1) and (O2), we are interested in those that
have the fastest rate of convergence. Therefore, (O3) becomes a part of the optimization
goals. ltem (O3) is dealt with in detail in Sections 8.3 and 8.4.

However, the final optimization models contain more constraints according to the specifi-
cations (S1) to (S7), which are detailed in Section 8.5. All objectives and constraints are
then combined to the proposed optimization model for the nominal case without tolerances
in Section 8.6. Finally, Section 8.7 extends the nominal optimization model for the case
with tolerances.

8.2. Convergence Related Requirements

In this section, we first derive requirements such that (O1) and (O2) are satisfied. Corre-
sponding constraints for the optimization model are then derived from these requirements.
According to Theorem 7.73, (O1) is satisfied if and only if fix(Af,) = rp for all p € [N].
Therefore, the following requirement guarantees that (O1) is satisfied.

(R1) fix(Af,) = rp for all p € [N].

However, finding requirements such that (O2) is satisfied is more complicated and is divided
into two steps. First, we derive conditions such that 7t,in = (i},..., i) and an arbitrary
update sequence u are a feasible input combination for Algorithm 5.2. Thereafter, we
derive conditions such that lim,_ i”(7t,m, u) = i** for all sufficiently well distributed ADA
update sequences u.

8.2.1. Feasible Input Combination for the ADA Algorithm

Let irin = (it ..., iN) and let v be an arbitrary ADA update sequence. Without loss of
generality, let u be an infinite sequence. This is done to avoid case distinctions with respect
to the length of u. The input vector 7“,1 and v are a feasible input combination if and only
if the ioni current based ADA iterates i"(iyin, u) = (if, ..., in) are contained in RN for all
n € IN according to Definition 7.24.
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The approach to show that 7”,1 and u are a feasible input combination is to show that

the corresponding resistance based ADA iterates r"(ipn, u) = (17, ..., ryy) are contained
in the set [0, rp]" for all n € IN. Because ry = BP(iy) and r] € [0, rp], we have ij =

(,BP)_l(r[’]) € R for all p € [N] in this case, see also Definitions 7.28 and 5.9.

The following lemmas are auxiliary statements that are needed to prove the following
Theorem 8.10 about 7“,1 and u being feasible inputs. First, we state conditions such that
the ADA iteration function A7, is a selfmap on the interval [0, rp]. For this, recall that
R? is the domain of A7 . see also Definition 6.21.

Lemma 8.4 Let rp > 0 and let p € [N]. Furthermore, let A7, be contractive, let fix(A7,) =
rp and let 0 € RP,. Then,

rel0,rp] = AP (r) €0, rp].

Proof. Because R?, is a closed interval (Lemma 6.11) and 0 € R%, as well as rp € R, (by
assumption), we have [0, rp] C RP, ie., AP (r) is well-defined for all r € [0, rp]. If rp = 0,
then [0, rp] = {0} and A? (r) = rp =0 for all r € [0, rp]. Next, let rp > 0. Because Af,
is strictly increasing (Lemma 6.34) and A7, is contractive, we can apply Lemma 4.45 and
obtain

0<r<rmp=fix(Al)) = 0 <AL (r) <fix(A2)) =rp.

U
A similar relation exists for the weighted sum function wf according to Definition 7.1.

Lemma 8.5 Let rp >0 andletpe {2,..., N}, then
rel0,rp] and v € [0,rp] = wh(r) €0, rp].
Proof. Let r € [0, rp] and let v € [0, rp]. Because 0 < wP < 1 (Lemma 5.13), we have

0<r<rpand 0<v<rp
=0<wPr<wPrpand 0 <(1—-wP)v <(1—-wP)rp
=0<wlr+1-wPlv<wPrp+ (1 —-wP)rp
=0<wl(r)=wPr+(1—-wP)v <rp.

With this, we can state conditions such that C7, , is a selfmap on [0, rp].

Lemma 8.6 Letrp >0 andlet pe{2,..., N}. Furthermore, let A7, be contractive, let
fix(AP,)) = rp and let 0 € RP. Then,
rel0,rp] and v €[0,rp] = CP (r) €0, rp].

p.,v

In particular CF, ,(r) is well-defined.
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Proof. Let r € [0, rp] and let v € [0, rp]. Then, w(r) € [0, rp] (Lemma 8.5) and thus
AP o wh(r) is well-defined and Af, o wh(r) € [0, rp] holds (Lemma 8.4). With this, the
statement follows from C7, , == AP, o wy (Definition 7.36). O

An analogous statement exists for the ioni current based iteration function defined in
Definition 7.8.

Corollary 8.7 Letrp >0 andletp € {2, ..., N}. Furthermore, let A7 be contractive, let
fix(AP)) = rp and let 0 € RY. Then,

i€ (8°) (10, pl) and v € [0,r0] = B2, (i) € (8°) (0. rp]).

In particular BY, (i) is well-defined in this case.

Proof. Because rf > 0 (Remark 5.8), (8°)~1(r) = rfrp is well-defined for all r € [0, rp],
i.e., the set (BP)71([0, rp]) is well-defined.
Let i € (BP) ([0, rp]) and let v € [0, rp]. By applying Lemma 8.6, we have

i€ (BP)H([0.mp]) = BP()e0.ro] = CP,oBP(i) €0, rp]
= (B°) 1o Ch , 0 BP(i) € (B”)*([0. rol).

i.e., (BP) 1o CP , o BP(i) is well-defined and thus Bf, ,(i) is also well-defined according
to Lemma 7.40. OJ

Remark 8.8 In Definition 7.4, the set VP, p € {2,..., N}, is introduced to make sure
that the functions Bf, , and CF, , are well-defined under all circumstances (Lemma 7.10).
According to Lemma 8.6 and Corollary 8.7, we know that under certain conditions v €
[0, rp] implies that BF, , and Cf, , are well-defined. This is independent of v being an
element of \/,’;. Therefore, the set \/r’; is considered as superfluous in this section. Rather,
it is replaced by the condition v € [0, rp] in the following. This does not impair any result
from the previous chapter, because in all corresponding proofs the set \/,’; is only required
to make sure that BY , and CF, , are well-defined, which is guaranteed by Lemma 8.6 and
Corollary 8.7 if v € [0, rp] and r € [0, rp] are considered.

Corollary 8.9 Letrp >0 andletp e {2,.. ., N}. Furthermore, let A7 be contractive, let
fix(AP)) = rp and let 0 € R, Then,

ve[0,rp] = CP .l s @ contractive selfmap and fix(CF ) € [0, rp].

Proof. Let v € [0, rp]. Because A7) is contractive (by assumption), CF, , is contrac-
tive as well (Lemma 7.48). Furthermore, we have r € [0, rp] implies CF, ,(r) € [0, rp]
(Lemma 8.6) and thus Cf, , restricted to [0, rp] is a selfmap.

As a strictly increasing and contractive selfmap, Cﬁ’D,V restricted to [0, rp] has the unique
fixed point fix(Cr, ,) (Corollary 7.47). Furthermore, fix(Cr, ,) has to be an element of
[0, rp]. If not, this would be a contradiction to being a selfmap on [0, rp]. O
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Finally, we can show that 7pin = (i}, ... i) and an arbitrary ADA update sequence u
are a feasible input combination.

Theorem 8.10 Let rp > 0. Let AP, be contractive, let fix(A?,) = rp and let 0 € RY for
all p € [N]. Then, iyin = (il ..., iN) and u are a feasible input combination, where u is
an arbitrary (finite or infinite) ADA update sequence.

Proof. Aiming at a better readability, the subscript rp of I?ﬁ), A7 and Cr, , is omitted
throughout the proof.

Let u be an arbitrary ADA update sequence. Without loss of generality, let v be infinite,
e, u=(tp)pen. Let i"Ciin, u) = (7, ..., iy) be the n-th ioni current based ADA iterate
according to Definition 7.22. To show that 7t,in and u are a feasible input combination,
we have to guarantee that for all n € IN and for all p € [N] iJ # NaN holds, see also
Definition 7.24. For this, we consider the corresponding resistance based ADA iterates
r"(igin, ) = (10, ..., ry) defined by rj = BP(i]) according to Definition 7.28. They can
be recursively calculated by

(AY (= hy, it A1) if up =

r"(ign, u) = - - _ _ _ : '
" (1 r[’;’fll,Cfg:il(r[’)7 DN ) fuy=p>2.

(8.1)

with r§ = BP(i") for all p € [N] (Lemma 7.45). We show by induction over n that
ri € [0, rp] for all p € [N] and for all n € No.
Base case: Let n = 0. By construction, we have

=) =B = 5~ =0V pe N,
Induction hypothesis: For a certain k € IN let r,f € [0, rp] for all p € [N] and for all
L€ [k].
Induction step: Let n = k + 1. According to (8.1), we have r) = rj = r,f for all
p € [N]\ {un}. Because ré‘ € [0, rp] according to the induction hypothesis, r) € [0, rp]
holds for all p € [N]\ {u,}. It remains to show that [} € [0, rp].
If u, = 1, then rf = AX(rf™1) according to (8.1). Because r/~! € [0, rp] (induction
hypothesis), we have rl! = AX(r!~1) € [0, rp] (Lemma 8.4).
Ifu,=pe{2, ..., N}, then r] = Cf:,ll(rlg_l) according to (8.1). Because r,g’:ll € [0, rp]

P P
(Lemma 8.6) and the induction is completed.

Because ij = (ﬁp)_l(rg) and rj € [0,rp] and [0, rp] C RP (which is the domain of
(BP)1), we have il € (B”) ([0, rp]) for all p € [N] and for all n € IN. In particular
iy # NaN for all p € [N] and for all n € IN and thus i, and v are a feasible input

combination. O

as well as r;~' € [0,rp] (induction hypothesis), we have r) = C%_,(rf=") € [0,rp]
p—1

According to the proof of Theorem 8.10, all components of all resistance based ADA
iterates are contained in the interval [0, rp].
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Corollary 8.11 Let rp > 0. Let AP be contractive, let fix(AY,)) = rp and let 0 € RY for
allp € [N]. Letipin = (i},..., iN), let u be an arbitrary (infinite) ADA update sequence
and let r"(igjn, u) = (r], . . ., ry) be the corresponding n-th resistance based ADA iterate.
Then, ry € [0, rp] for all p € [N] for all n € IN.

With this, we can prove that ADA Algorithm 5.2 given the inputs igin = (il, ..., i) and
a sufficiently well distributed ADA update sequence u converges to the super fixed point
vector i**.

8.2.2. Convergence of the ADA Algorithm

The following theorem states conditions such that the ADA Algorithm 5.2 converges to
the super fixed point vector i** = (i7*,. .., i) with i3 =if for all p € [N]. From the

theorem’s requirements we then derive conditions such that (O2) is satisfied.

Theorem 8.12 Let rp > 0. For all p € [N] let A7, be contractive, fix(A7,)) = rp and
0e li’fD. Then,

o = (If* ..... ’/>‘\</*) with /;* = if,rD for all p € [N] and

o lim i"(ipin. u) = i**, where iy, = (i}, .. iNY and u is an arbitrary sufficiently well
n—oo
distributed ADA update sequence.

Proof. Let u be an arbitrary sufficiently well distributed ADA update sequence. To show
the statement, we apply Theorem 7.68. We check the necessary prerequisites for this.

e Feasible scenario: Because fix(A7,) = rp for all p € [N] by assumption, we have j5* =
’f,rD for all p € [N] (Theorem 7.73) and thus i;* € R for all p € [N]. In particular,
the corresponding resistance based super fixed point vector is r** = (r{*, ..., 0
with ry* = rp for all p € [N].

e The iteration function A7, is contractive for all p € [N] by assumption.

e The starting vector irjn = (il ..., iN) and u are a feasible input combination ac-
cording to Theorem 8.10.

e It remains to show that "there exists § > 0 such that [r;*; — ¢, r;*; + 4] C Vi and

p p . .
Cro,rp**_lfé as well as CrD,r;*_1+5 are selfmaps for all p € {2, ..., N} (third require-

ment of Theorem 7.68).

According to Corollary 8.11, all resistance based ADA iterates are elements of [0, rp].
Therefore, we always have the situation "v € [0, rp]" (recall that v is the incum-
bent drift resistance approximation of ADA pair p—1 for p € {2,..., N}, see also
Remark 7.3). As a consequence, we can safely assume that CF, ,(r) is well-defined
forall pe{2,..., N} and for all r € [0, rp], i.e., the set V/2 is not required in this
case, see also Remark 8.8.

We select § := rp. According to the first item of this proof, we have ry=qy = rp for all

170



8.2 Convergence Related Requirements

pef2, ..., N} and thus CF, \ljo,rp] is @ selfmap for all v € [0, rp] = [r3* — 6, r3* 1]
(Corollary 8.9). However, we cannot make a statement about the iteration function
Cfo,rp**_ﬁé' We do not even know whether this function is well-defined. The fol-
lowing argumentation shows that it is sufficient to consider the iteration functions
Cro.vlio.rp) With v € [0, rp] = [r;*; — &, ;%] in the specific case considered in this
theorem, where we have v € [0, rp].

Because A}D is a selfmap on [0, rp] (Lemma 8.4) aswell as C7, ylj0.rp]. P € {2.- - -, N},
are selfmaps, the components of all ADA iterates are in the interval [0, rp]. There-
fore, a situation with v > rp never occurs under the conditions of this theorem. In
visual terms, all drift resistance approximations of ADA pair p stay "left of rp" (or
are equal to rp) for all p € [N]. Thus, no information about what "happens right of

rp" is required.

With this, all requirements to apply Theorem 7.68 are met and thus lim i(7t,in, uy = i**.
n—oo
Furthermore, i* = if, holds for all p € [N] O

Remark 8.13 Note that all considerations made so far in this section are also valid if
A?, is only contractive over [0, rp], i.e., if only A7, |, is contractive. Therefore, the
requirement ”A’,’D being contractive" is more restrictive than necessary. However, practical
experience has shown that A‘,’D |[0,,D] being contractive usually implies that A’,’D is contractive
over its whole domain R’fD. Furthermore, from a practical point of view, it is convenient
if AY is contractive over a larger set than [0, rp), because this leaves some room for the
case that a drift resistance approximation r € /i’fD \ [0, rp] is considered for some reason.
Therefore, the more general requirement AP being contractive over R, is considered in
the following.

ltem (O2) is satisfied if the requirements of Theorem 8.12 are met. Note that rp >0
and fix(A?,) = rp for all p € [N] are already covered by (Scl) and (R1), respectively. The
remaining requirements are:

(R2) A? is contractive for all p € [N].
(R3) 0 € RY forall p € [N].

In conclusion, if (R1) to (R3) (as well as (Scl)) hold, then (O1) and (O2) are satisfied.
However, (R1) to (R3) are not constraints from a mathematical modeling point of view,
because constraints "are functions of the design! variables that we want to restrict in
some way'" [MN22, p. 12]. In the following, we reformulate (R1) to (R3) and express
them in dependence of the ADA parameters (s, t?,if,if), p € [N]. With this, we obtain
constraints such that (O1) and (O2) are covered.

Remark 8.14 Usually, strict inequalities are not allowed as constraints [San20, p. 9]. Be-
cause if a strict inequality is used and it is the active constraint, then there might be

1The term "design variable" is synonymous to the term "decision variable" used in this work.
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no optimal solution [MN22, p. 12]. Therefore, we follow the recommendation in [San20,
p. 9]: Whenever we derive a constraint that is a strict inequality, we add (or subtract) an
arbitrary small € > 0 and transform the strict inequality to a not-strict inequality.
Furthermore, for a better overview and simplification, we consider only equalities and less
than or equal to inequalities as constraints in this work.

8.2.3. Derived Constraints for the Optimization Models

Let rp > 0 be a given drift resistance and let T = {t!,...,t"} be a given set of feasible
test fan speeds.

Requirement (R1): We want that fix(AF,) = rp for all p € [N]. According to Theo-
rem 7.73, we have

fix(Af,) = rp ¥ p € [N] & 15 (i8) = 157 (if) ¥ p € [N].

The condition L;}(if) = L;;l(if) is already expressed in dependence of the ADA parameters
and can be used as a constraint. Thus, in order to satisfy (R1), we include the constraint

(C-R1) H(i8) — Lz (if) = 0 for all p € [N].

Requirement (R2): We want that A7 is contractive for all p € [N]. Whether A7 is
contractive depends on its Lipschitz constant, which is denoted as follows.

Notation 8.15 Let p € [N] and let AL, be Lipschitzian. Then, the Lipschitz constant of
A7 is denoted by LP.

If LP < 1, then A, is contractive. Thus, we are interested in ADA parameters
(sP,tP, i€ iP) such that LP < 1.

Remark 8.16 There exist functions that are contractive whose Lipschitz constantis L = 1.
However, the rate of convergence of a Picard iteration associated to such a function is
usually slow, which is why this special case is not considered in the optimization model.

Therefore, we define a function that maps the ADA parameters (sP, t?,if,if), for a
given p € [N], with tP taken from T, to the Lipschitz constant of the corresponding ADA
iteration function AP, (if it exists).

Definition 8.17 Let T = {t!, ..., tN} be a set of feasible test fan speeds and let rp > 0
be given. For p € [N], we define L7 R® — Rxo U {oo} by

b . o o o
L“% (sP P, iP) = {L (Lipschitz constant of Ar, if A7, is Lipschitzian,
D

00 else,
where U U
p — -1 + _ -1
AI’D(r) _Jrfoptp,l’oopspyrDOo-rf(r)_ptp,fDopsp’rD(r—i_E) _?v

see also Definition 6.21.
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Remark 8.18 The function E’t’pm (sP, 8, i) is well-defined by construction.

In order to satisfy (R2), £y, (sP.i5,if) < 1 for all p € [N] is a suitable constraint.

However, no strict inequalities are allowed as constraints according to Remark 8.14. There-
fore, we make us of an arbitrary small € > 0 to transform the strict inequality to a not-strict
inequality and we include the following constraint.

(C-R2) L% (sP,ig,if) <1 —¢ forall p € [N], where e > 0 is arbitrary small and fixed.

Requirement (R3): We want that 0 € R?. for all p € [N].

Lemma 8.19 Let rp > 0 and let p € [N], then

~ i2U
0e R’[?D <~ m € LSP(GSP N th)
: iPU
< min LSP(GSP N GtP) < m < max LSP(GSP N th).

Proof. By applying Definitions 5.19 and 6.14 as well as Lemma 6.20, we have

U P

R)ED = psp,rp (Gsp N Gyo) + 12 = por (Gsp N Gyo) + 1p + 1P = 1o (Go NG +rp —rf

and thus
0eRP & 0e————+mp—1" & € 10(Ger NG
o bsP(GsPﬂGtP) + b s I’_cf)—l’D SP( sP tp)
U LU
& = — € Lsp(Ggp N Gyp).
%—I’D _IéyrD_i_U SP( sP tp)

Is

Furthermore, tsp(Gse N Gye) is a closed and nonempty interval, because Gsr and Gy are
closed intervals and tgr is a homeomorphism (Definition 2.18) as well as Ggp N Gyo # ()
(Definition 5.2). O

Thus, in order to satisfy (R3), we include the following constraints, where we denote
GP, = Gep N Gyo.

(C-R3) mintse(GE) — _é{;ﬂru < 0 and _I.é{ngU — maxter(GE,) <0V p e [N].

At this point, we have made sure that (O1) and (O2) are covered and that optimized ADA
parameters have a good approximation quality. But according to (O3), we also want a
fast rate of convergence, which is dealt with below.
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8.3. Optimization Objective: Fast Rate of Convergence

In this section, we deal with the remaining item (O3) and discuss how a fast rate of
convergence can be modeled for the ADA optimization. Since (O1) and (O2) are con-
sidered as mandatory, we can restrict our considerations to situations where the corre-
sponding requirements (R1) to (R3) are fulfilled. l.e., for all p € [N] we assume that
fix(AP)) = rp, LP < 1 and 0 € RP,. Then, r} € [0, rp] for all p € [N] and for all n € IN,
where r"(igjn, u) = (r{, ..., ry) is the n-th resistance based ADA iterate with respect to
[ iN) and an arbitrary (infinite) ADA update sequence u (Corollary 8.11).
Therefore, for each ADA pair it is sufficient to consider only drift resistance approxima-
tions in the interval [0, rp] in this case. If in addition v is sufficiently well distributed, then

lim r"(igin. u) = (rp, . . .. rp) (Theorem 8.12).
n—oo

In the following, we show that for all p € [N] a small Lipschitz constant L” of the iteration
function A7, is an indicator for a fast rate of convergence regarding the drift resistance
approximation by ADA pair p. As in the previous chapters, we make a case distinction
with respect to p, because the iteration function of ADA pair p = 1 is different to those
of the remaining ADA pairs.

8.3.1. Rate of Convergence of ADA Pair p =1

Let r; be the incumbent drift resistance approximation of ADA pair p = 1. Then, an
ADA iteration with ADA pair p = 1 corresponds to evaluating A}D(rl). A sequence of
ADA iterations with ADA pair p = 1 starting at r; corresponds to the Picard iteration
associated to A}D starting at r;, as delineated in Chapter 6. Therefore, we can apply
Banach's fixed point Theorem 4.39 to estimate the rate of convergence in this case.

Lemma 8.20 Let fix(A} ) = rp and let A} be L'-Lipschitzian with L* < 1, then
Iro = (AL)"(r)| < (LYo —n| ¥ e Ry

Proof. Because A}D is contractive and has a fixed point, it is also a selfmap (Lemma 6.35).
Thus, we can apply Theorem 4.39. ]

Therefore, a small Lipschitz constant L1 is an indicator for a fast rate of convergence
regarding the drift resistance approximation by ADA pair p = 1.

8.3.2. Rate of Convergence of ADA Pair p, p > 2

Regarding the rate of convergence of ADA pair p, p > 2, things are more complicated.
Recall that an iteration with pair p, p > 2, corresponds to evaluating CfD,V(r), where r
and v are the incumbent drift resistance approximations of the ADA pairs p and p — 1,
respectively, see also Definition 7.36 and Remark 7.3.

Remark 8.21 Aiming at a better readability, the subscript rp of RP,, AP and CP , is
omitted in this subsection.
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8.3 Optimization Objective: Fast Rate of Convergence

As in the case p = 1, we are interested in an estimate of the relation between \rD—Cﬁ(r)\
and |rp — r|, i.e., we want to estimate how much closer C(r) is to rp than r is to rp.
Since we consider the specific case where we assume that (R1) to (R3) hold, it is sufficient
to consider only v € [0, rp] and r € [0, rp] according to Corollary 8.11 and as delineated
at the beginning of this Section 8.3.

First, we estimate how close the fixed point of C{ is to rp, because fix(Cl) # rp in general.
Note that the fixed point of C¥ exists for all v € [0, rp] and that fix(C}) € [0, rp] according
to Corollary 8.9. Furthermore, recall that 0 < w” < 1 according to Lemma 5.13.

Lemma 8.22 Letpe {2,..., N}, let AP be LP-Lipschitzian with LP < 1, let fix(AP) = rp,
let 0 € RP and let v € [0, rp]. Then, the following inequality holds:

(1 —wP)LP

i Py _
[fix(CE) — ol < T

v —rpl. (8.2)

Proof. Let v € [0, rp], then fix(C) € [0, rp] (Corollary 8.9). Because AP is LP-Lipschitzian,
Cl is LPwP-Lipschitzian (Lemma 7.77). Furthermore, fix(AP) = rp by assumption. With
this, we obtain

| fix(CE) — rp| = |CL(fix(CD)) — AP(rp))|
< |CE(fix(CD)) — CE(rp)| + |CE(rp) — AP(rp))|
— |2 (fix(CE)) — CB(rp)| + | AP 0 wB(rp) — A°(rp)|
< LPWP|fix(CE) — rp| + LP|wb(rp) — 1D
= LPwP|fix(CP) — rp| + LP|wPrp + (1 — wP)v — rp|
= LPwP|fix(CP) = rp| 4+ LP(1 = wP)|v — rp|

and thus
(1- Lpr)’ fix(CP) — rD| < LP(1- W”)’v - 1p|

= |fx(ct) - ro] < EUZ M)y ).
]

The inequality in (8.2) is tight, which is demonstrated in Example 8.25 below. But first,
we use Lemma 8.22 to estimate the distance between rp and CY(r) for r € [0, fix(CP)].

Lemma 8.23 [etp € {2, ..., N}, let AP be LP-Lipschitzian with [P < 1, let fix(AP) = rp,
let 0 € RP and let v € [0, rp]. If r € [0, fix(CP)], then

rp— CO(r) < LPrp — LP(wPr + (1 — wP)v). (8.3)

Proof. Let 0 < v < rp and let 0 < r < fix(Cl). Note that fix(CY) < rp (Corollary 8.9),
which implies r € [0, rp]. Therefore CP(r) is well-defined (Lemma 8.6). Because CL is
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strictly increasing, we have CL(r) < Cl(fix(Cl)) = fix(Cl) (Lemma 4.45). Furthermore,
Cl is LPwP-Lipschitzian (Lemma 7.77). With this, we have
fix(CP) — CL(r) = CP(fix(CP)) — CP(r) = |CP(fix(CD)) — CO(r)| < LPwP|fix(CP) — r]|
= LPwP (fix(CD) — r)
and thus
(1 = LPwP)fix(CP) + LPwPr < CP(r). (8.4)
We use the bound for | fix(CP) — rp| according to Lemma 8.22, c.f. (8.2), and we obtain
(notethat 0 < wP < land 0 < LP < 1)
(1 —wP)LP
1—LPwPk

(1 —wP)LP

rp — fix(CP) = |rp — fix(CY)[ < ETYE

lv—rp| = (rp —v)

and thus
(1= LPwWP)fix(CP) > (1 = LPwWP)rp + (1 — wP)LP(v — rp)

=rrp—L°wWPrp + (1 —wP)LPv — LPrp + wPLPrp

= (1= LP)rp+ (1 — wP)LPv. (8.5)
Finally, we combine (8.4) and (8.5), which yields

Co(r)> (1= LP)rp+ (L= wP)LPv + LPwPr = (1 — LP)rp + LP(WPr + (1 — wP)v)
and thus
ro— CE(r) < LPrp — LP(WPr + (1 — wP)v).
O

Remark 8.24 Lemma 8.23 requires that r € [0, fix(CP)]. It can be shown, that the case
r > fix(C¥) never happens in the specific case considered where (R1) to (R3) hold and
thus the requirement r € [0, fix(C[)] is not restrictive. However, the proof is lengthy and
omitted for the following reason.

If r > fix(C0) (which never happens in the specific case considered), we can also estimate
rp — CE(r), because r > fix(CP) implies fix(CP) < C0(r) < r according to Lemma 4.45
and thus rp — CE(r) < rp —fix(CL) and rp — fix(CP) can be estimated by (8.2) according
to Lemma 8.22.

The following example demonstrates that the inequalities (8.2) and (8.3) are tight.
Example 8.25 Let rp > 0. Let us suppose that
AP [0, rp] = R, AP(r) =LP(r—rp)+rp with0 < LP < 1.

Note that (R1) to (R3) hold. In particular, AP is contractive with LP < 1 and AP(rp) = rp,
i.e., fix(AP) = rp. We are interested in the fixed point of CP = AP o wl for v € [0, rp].
Let r* := fix(CP), which exists according to Corollary 8.9. Then,
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r*=Clr*)=APowl(r*) = LP(WPr* + (1 = wP)v — 1p) + rp
= LPWPr* + (1 — wP)LPv + (1 — LP)rp
(I =wP)LPv+ (1 - LP)rp

*

- 1— Lowp
and thus
. (=LPwP)rp— ((1 = wP)LPv + (1 — LP)rp)
'p —r =
1—LPwPk
o= LPwPrp — (1= wP)LPv —rp+ LPrp (1= LP)wP(rp —v)
N 1— LPwP N 1 — LPwP '

Therefore, the inequality (8.2) is tight in this case.
Next, we consider a function evaluation of CE with an arbitrary r € [0, r*]. We have

Co(r)=LP(WPr+ (1 —wP)v—rp) +rp=(1—LP)rp+ LPwWPr+ LP(1 — wP)v

and thus rp — CO(r) = LPrp — LP(wPr + (1 — wP)v), i.e., the lower bound in (8.3) is also
tight.

Finally, we can state how much the approximation of rp by ADA pair p, p > 2, improves
with a single ADA iteration. For this, we consider the two cases r < v and r > v separately.
Both cases are then interpreted and discussed with regard to a fast rate of convergence.

Lemma 8.26 Letp e {2,..., N}, let AP be LP-Lipschitzian with LP < 1, let fix(AP) = rp
and let 0 € RP. If v € [0, rp] and r € [0, fix(CP)], then

r<v = rp—CP(r)<LP(rp—r).
Proof. We have
r<v = wPr+(1-wPlv>wPr+ 1 -wPr=r = —(WPr+(1-wP)v) < —r
and thus
(8.3) = rp—CE(r) < LPrp — LP(wPr+ (L= wP)v) < LPrp — LPr=LP(rp —r).
]

In the case r > v, we cannot apply the estimation according to Lemma 8.26. But at
least we can estimate the distance to the fixed point of C/. The following statement holds
for all r € [0, fix(CD)]. i.e., it is not restricted to r > v.

Lemma 8.27 Letp € {2,.. ., N}, let AP be LP-Lipschitzian with LP < 1, let fix(AP) = rp
and let 0 € RP. If v € [0, rp] and r € [0, fix(CP)], then

fix(CP) — CP(r) < LPwP (fix(CP) — r).

Proof. The statement follows from the fact that C? is LPwP-Lipschitzian (Lemma 7.77)
and because r < fix(CP) implies CP(r) < fix(CP) (Lemma 4.45). ]
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Interpretation and Discussion of the Results with Regard to a Fast Rate of
Convergence

In Section 8.3.1, a clear statement regarding the rate of convergence of the approximation
of rp by ADA pair p = 1 is given. This is not possible for the case p > 2, because in
this case an iteration with ADA pair p depends on r and v. Recall that r and v are the
incumbent approximations of rp by ADA pairs p and p — 1, respectively, as stated at the
beginning of this Subsection 8.3.2. The difficulty in the case p > 2 is that two subsequent
ADA iterations with ADA pair p are not done with the same iteration function CE in
general, because the value of v might change between these two iterations. For instance
this is the case if the considered ADA update sequence is u = (...,p,p—1,p,...).
Therefore, two subsequent iterations with p cannot be calculated by (C.‘,’)Q(r) in general.
Rather, because the incumbent approximation of the drift resistance by ADA pair p — 1
might have changed between the two iterations with ADA pair p, we have two different
incumbent approximations by ADA pair p — 1, denoted by v! and v for the moment, and
one calculates CP, (CP, (r)).

However, as long as the incumbent values are such that r < v in each ADA iteration with
ADA pair p, the approximation error of the approximation by ADA pair p is reduced by
the factor LP according to Lemma 8.26. Therefore, a small Lipschitz constant of AP is an
indicator for a fast rate of convergence in this case.

In the case r > v things are different. In this case, we can only state that the approximation
error to the fixed point of CP (and not to rp) is reduced by LPwP according to Lemma 8.27.
However, if the distance between fix(CP) and rp is small, ADA pair p can still approximate
rp with a small approximation error in this case. According to Lemma 8.22, we have

| (1 - wP)LP 1— wh
PY _ ol < W2 Y,
fix(CV) = rol < 5. 5 lv —rol 1 oV =l (8.6)

Because LP > 0 is fixed and w” < 1 is fixed, ADA pair p has the chance to approximate
rp with an arbitrarily small approximation error only if v gets close to rp. Since we assume
sufficiently well distributed ADA update sequences, v will eventually converge to rp and
ADA pair p will eventually approximate rp arbitrary well. Nevertheless. a small Lipschitz
constant LP is advantageous with regard to the rate of convergence in the case p > 2 for
two reasons. First, a small LP guarantees a fast convergence to fix(Cl). Second, a smaller
LP reduces the distance between fix(CL) and rp according to (8.6), which improves the
approximation quality by ADA pair p even if v << rp (the extreme case is v = 0).

In total, a small LP can be considered as an indicator for a fast rate of convergence in
all cases, i.e., if p =1 and p > 2. Therefore, one goal of the ADA optimization is to
reduce the Lipschitz constants of all iteration functions A”, p € [N].

Remark 8.28 Analogously to Remark 8.13, it is sufficient to consider the Lipschitz con-
stant of AP over [0, rp]. However, in order to have some margin, the Lipschitz constant of
AP over its whole domain RP is considered in the following. If it turns out that this is too
restrictive, it may make sense to consider the Lipschitz constant of AP over [0, rp] only.
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p

(G1) Minimize the Lipschitz constant LP of AP for all p € [N].

Note that (G1) is not an objective function. Rather, this is an interim result that leads to
an objective function in the course of this chapter. The corresponding objective function
is defined in Section 8.6.2 below when the nominal optimization model is defined.

In order to reduce LP, Vaillant uses a method called "start point increment". However,
this method causes conflicting objectives, which is shown next.

8.4. Conflicting Objectives: Small L” Versus a Small Start
Point Increment of ADA Pair p

In the previous section, the optimization goal (G1) is identified, which is to minimize the
Lipschitz constant LP for all p € [N]. In this section, we show that LP can be reduced by
making the start point of the considered ADA pair more fuel-lean, i.e., the ratio of fuel to
air is decreased or equivalently the AFR is increased, i.e., A at the start point is increased.
Therefore, this method is called "start point increment". However, an increased start point
also has some disadvantages. Accordingly, the decision makers are interested in a good
trade-off between a fast rate of convergence (small LP) and a small start point increment.
In the following, the start point increment method and its influence on LP are detailed.
Thereafter, its disadvantages are delineated, which results in a further optimization goal.
Because we are only interested in the case where (Scl) to (Sc3) as well as the requirements
(R1) to (R3) are satisfied, we assume that rp > 0 and that the corresponding constraints
(C-R1) to (C-R3) are satisfied for the remainder of this section.

8.4.1. Working Principle of the Start Point Increment

If AP is differentiable, then LP is equal to the maximum of the absolute value of the
derivative of AP, ie., LP = maxre,i,fD(|%(r)|) (Lemma 4.44). Therefore, we can
reduce LP by reducing the maximum of the derivative of A7 (recall that A?, is strictly
increasing and thus its derivative is always greater than zero).

The derivative of AP is determined in Section 6.3.3. Let ts and te» be differentiable.
Then A7 is also differentiable and for all 7 € R7, we have

o, Sewelen) ()
a0 9P) Bl &7
where
2
o) =0+ 2= =12 (g ) = P g yrm) 09

according to Theorem 6.42 and Lemma 6.17. The basic idea to reduce LP” is to reduce
ts»(g(F)) while keeping the other values in (8.7) (approximately) constant.
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To illustrate how tgp (g(F)) can be reduced, let us suppose that we want to parameterize
ADA pair p and that we have already selected a test point, i.e., tP and /'f are already
selected. Let go denote the corresponding gas valve position, i.e., gg = L;;l(if). Because

we assume that the constraint (C-R1) is satisfied, we have

b (2) = ' (if) = 1 (B) =90 = i£ = tsr(90),
i.e., the start point has the same gas valve position as the test point. Therefore, we must
select the start fan speed s” and the start ioni current £ such that ts(go) = i£ holds.
Such a situation is depicted in Figure 8.1, which is based on real HE measurement data.
The left part of Figure 8.1 shows the ioni current as a function of the fan speed with the
gas valve position fixed at gg. The blue dot marks the already selected test point. Note
that t4»(go) = if. The start point must be selected such that it is an element of this curve,
because it must have the same gas valve position as the test point. It is apparent that the
ioni current decreases with increasing fan speed. Therefore, the larger the selected start
fan speed s” is, the smaller is the corresponding start ioni current if. Let us suppose that
we have three candidates for the start point of ADA pair p, denoted by a, b and c. Let their
fan speeds be sP3, sP-b and sP-¢ respectively, such that tP < sP@ < sPb < sP-€ They are
depicted in Figure 8.1 by the turquoise, the yellow and the orange dot, respectively. Since
our goal is to obtain a small start ioni current, we would select a large start fan speed, i.e.,
we would select candidate ¢ with the fan speed s and the ioni current /£ (and the gas
valve position go).

However, a small start ioni current comes at the prize of a large start equivalence AFR.
The right part of Figure 8.1 shows the equivalence AFR as a function of the fan speed
with the gas valve position fixed at gg. Again, the blue dot marks the already selected test
point. It is apparent that the equivalence AFR is strictly increasing with the fan speed.
This is consistent with the physics of combustion, because an increased fan speed results in
an increased air volume flow while the fixed gas valve position results in an (approximately)
constant gas volume flow and thus the AFR increases. Because the AFR increases when a
smaller (but usually better) start ioni current is selected, this method is called "start point
increment" [PHE, Item 3280].

Remark 8.29 The given explanation of the working principle of the start point increment
so far is rudimentary. For instance, we are not only interested in the one value of the ioni
current at the start fan speed s” and at the gas valve position go. Rather, we are interested
. . . L. _1 'fU

in the ioni currents for all gas valve positions g(r) = tg (m) for r € [0, rp]

according to (8.8) and Corollary 8.11. This is demonstrated in more detail in Example 8.36.

The start point increment is essential for the ADA optimization problem. Therefore, a
corresponding definition is provided in the following.

8.4.2. Definition of the Start Point Increment

For the definition of the start point increment, we need a baseline, i.e., a condition that
corresponds to a start point increment of zero. For this, we make use of the control curve,
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t:s(g0) V fs € FS

/\fs(go) VY fs € FS
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° APd =130
p.b | |
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\ A =1.18]
et \ :
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fs

tP
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fs

Figure 8.1.: The ioni current and the equivalence AFR are shown as a function of the fan
speed with the gas valve position fixed at gy in the left and in the right part, respectively.
The set FS denotes the considered fan speeds. The blue dot marks an already selected
test point with the fan speed tP, the gas valve position gg, the ioni current if and the
equivalence AFR AL. Three start point candidates a, b and ¢, marked by the turquoise,
the yellow and the orange dot, respectively, are also shown. With increasing start fan speed
sPk, k € {a, b, c}, the corresponding ioni current i?’¥ decreases and the corresponding
equivalence AFR A2% increases.

which is introduced in Section 2.3.3. Recall that the control curve is a function that maps
every feasible fan speed fs € [fspin, fSmax] t0 an ioni current setpoint iset(fs) and that the
control curve is used to control the combustion process during normal boiler operation. An
exemplary control curve is depicted in the right part of Figure 2.7. Because it is essential
for the start point increment, we provide a formal definition of the control curve with
respect to the HE model.

Definition 8.30 Let 7 = (FS, (Grs)sers. (tfs)ssers. (Ass)rsers. (Crs)ssers) be an HE model.
A control curve with respect to H is a function isex that maps every feasible fan speed to
a feasible ioni current setpoint, i.e., iset : FS — R~q such that iset(fs) € Iss for all fs € FS.
The corresponding operating point equivalence AFR is defined by

Aop(fs) = Ags 0 Lt 0 iser(fs) V fs € FS.
Lemma 8.31 The operating point equivalence AFR is well-defined for all fs € FS.

Proof. Let fs € FS. According to Definitions 2.18 and 2.22, we have Lf_sl -l — Ggs and
Nes © Gis = Lgs. Because iet(fs) € Igs (Definition 8.30), Aop(fs) = Ags © Lfgl 0 lget(fs) is
well-defined. ]

Remark 8.32 The operating point equivalence AFR corresponds to the equivalence AFR
during normal HE operation. For instance, let us suppose that we have a heat demand that

181



Chapter 8 Optimization Models

corresponds to a certain fan speed fs € FS. Then, loniDetect sets the fan speed to fs and
moves the gas valve such that the resulting ioni current equals iset(fs). This in turn results
in the equivalence AFR Aop(fs). Ideally, Aop(fs) equals the desired target equivalence AFR
at the fan speed fs, see also Section 2.3.3 and Remark 2.12.

Usually, the start point’s ioni current is placed on the control curve, because in this case

an ADA iteration can be started out of normal boiler operation with (almost) no delay
[PHE, Item 3280]. Thus, a good baseline for the start point's ioni current is the value of
the control curve that corresponds to the start fan speed s, i.e., ¥ = iset(s”). However,
regarding combustion physics, the start point's equivalence AFR and not its ioni current
is the relevant physical quantity, see also Sections 2.2 and 2.3. Therefore, the operating
point equivalence AFR at the start fan speed is the relevant size and thus Aqp(s”) serves
as the baseline for the start point increment.
For the following definition, keep in mind that the gvp of the start point is g2 = ¢, (if) and
thus the equivalence AFR at the start point is Af = Asr(g8) = Asp oty L(iP). Furthermore,
we assume that (C-R1) is satisfied and thus 3} (sP) = ¢3! (tP) holds. In this case, the
equivalence AFR at the start point is A2 = Ag» 0 1" (tP).

Definition 8.33 Let 7 = (FS, (Gss)tsers. (trs)fscrs. (Ass)rsers. (Crs)rsers) be an HE model
and let et be a corresponding control curve. Let p € [N] and let (sP, tP,if,iP) be the
ADA parameters of ADA pair p such that vt (sP) = 1., (tP).

The start point increment of ADA pair p is def/ned by

Aglncr(sp' tP, i.fv /f) = Ag - AOD(SP) = A 0 ";’1(’.1{7) —Agp 0 ";71 ° iset(Sp)-

Remark 8.34 Note that the start point increment is only defined for ADA parameters
(sP, tP,i2,iP) such that 13t (sP) = 1" (tP) holds.

Lemma 8.35 The start point increment is well-defined. Furthermore,

P =let(sP) & NP _(sP,tP,iPiP)=0.

S, mcr(

Proof. By assumption, we have ¢! (if) = ¢! (if) = go and thus go € Gs» NGy». Because
Gse is the domain of As» (Definition 2.18), Ase (17 (if)) is well-defined. Since Agp 0 1! o
iset(SP) is well-defined as well (Lemma 8.31), AL (8P, P, i, i) is also well-defined.
Furthermore, by considering that ¢! (if) = Lt,,l(/ ), we have

/p — Iset(sp) <~ /\sp o Ltp (/ ) — /\sp o Lsp (/ ) — /\sp o Lsp o Iset(sp)

& Aspmcr(s”, tPiP i) = Nsp 0 Lpn (/t) —Ngp 0 l,spl 0 iset(s”) = 0.

The following example demonstrates the start point increment.
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Example 8.36 7o demonstrate the start point increment, we consider the situation de-
picted in Figure 8.1. l.e., we have a test point defined by tP and if as well as the three
start point candidates a, b and c. Their fan speeds are sP2, sP® and sP€, respectively.
Since we assume that (C-R1) is satisfied, i.e., 1o (sP) = 1" (tP), the gvp of the start
point is already defined by the test point. The corresponding gvp is gg = L;l(if ). This
gives us the start point candidates’ equivalence AFRs, which are A\ = Agp.a(go) = 1.3,
AP = Ags(go) = 1.38 and A2'© == Agrc(go) = 1.46 according to the right part of Fig-
ure 8.1.

In order to determine the start point increment of a, b and ¢, we also need the corre-
sponding control curve equivalence AFRs according to Definition 8.33. For simplicity, let
us suppose that Aop(sP?) = Aop(sP'P) = Aop(sP€) = 1.3, i.e., the three start point candi-
dates have an identical operating point equivalence AFR of 1.3, which is a common value.
With this, we obtain \P2 = X2'@ — \p(sP@) = 1.3 — 1.3 = 0 and analogously A\ =

s,incr s,incr

1.38 — 1.3 = 0.08 as well as Asp:iicr = 146 — 1.3 = 0.16. In particular, we have
, b ,
A?,iicr < A?,incr < Ag,iicr‘

However, regarding the start ioni currents of a, b and ¢, we have if® > PP > P a¢c-
cording to the left part of Figure 8.1. Therefore, a smaller start ioni current comes at the
price of a larger start point increment in this example.

Remark 8.37 As in Example 8.36, the start ioni current and the start point increment are
usually inversely proportional. But most likely, this does not hold in general. However,
this is not required for the optimization model. Rather, optimized ADA parameters should
have a small start ioni current and a small start point increment, which is explained in
Section 8.4.3 below.

Recall that we are interested in small start ioni currents in order to reduce LP. This is
demonstrated in the following example.

Example 8.38 This example is based on the same HE measurement data as Figure 8.1
and Example 8.36. To be precise, this example continues Example 8.36, in which the start
point increments of the three start point candidates a, b and ¢ are determined.

In this example, we consider the corresponding ADA iteration functions A7, A’,’[’)b and
A‘,’E'f, respectively. We are particularly interested in their Lipschitz constants. For this, we
use the drift resistance rp = 140kS2, which is a typical value used by Vaillant as already
mentioned before in (Scl).

As with previous examples, most details of the measurement data are omitted for reasons
of confidentiality. Therefore, the iteration functions are presented without specifying any
parameters or HE model functions in the following. However, the considered HE model,
the test point’'s ADA parameters (tP,if) as well as the start point candidates’ ADA pa-
rameters (sP@, i), (sPb, iP"P) and (sP€, i) are identical to those in Figure 8.1 and in
Example 8.36.

This gives us three candidates for ADA pair p, which are (sP* tP iP* iP) k € {a, b, c}.
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Figure 8.2.: In the left part, three ADA iteration functions restricted to the interval [0, rp]

are shown. They correspond to the ADA pairs that are presented in Example 8.36 and in
Figure 8.1, i.e., they correspond to the three start point candidates a, b and ¢ together with
the same test point (t”,if). The fixed point of all three functions is rp, which is marked
by the black dot. The iteration function A has the fastest rate of convergence and the
iteration function AP has the slowest rate of convergence, because A%:“(r) > AP(r) >
AL-C(r) for all r € [0, rp).
In the right part, the corresponding derivatives are shown. The maximum of each derivative,
which corresponds to the Lipschitz constant of the considered iteration function in the
considered interval, is marked by a dotted line. The iteration function with the fastest rate
of convergence has the smallest Lipschitz constant (over [0, rp]) and vice versa.

The corresponding (resistance based) ADA iteration functions are

Alr)[’)k = U;f O Ptr,rp © p;p:,lk’rD ° O-:s;,k’ k €{a, b,c},
according to Definition 6.21. Since we consider the specific case where we assume that
(R1) to (R3) hold, we can restrict their domains without loss of generality to the interval
[0, rp] according to Corollary 8.11 and as delineated at the beginning of Section 8.3.

The three iteration functions are shown in the left part of Figure 8.2, where the turquoise
curve corresponds to AP, the yellow curve to A‘,’E')b and the orange curve to AR, In
addition, the identity function is shown by the dashed line. Because fix(A’,’,'Dk = rp for
k € {a, b, c}, all three iteration functions intersect the identity at rp. Furthermore, it is
apparent that the three iteration functions are strictly increasing and that the identity has
a steeper slope, i.e., the derivatives of all three iteration functions are positive and smaller
than one for all r € [0, rp].

This can be verified with the right part of Figure 8.2, which shows the corresponding
derivatives %A‘,’bk over [0,rp], k € {a, b, c}. The black dotted lines are used to visualize
the maxima of the derivatives. These maxima correspond to the Lipschitz constants LPk

over [0,rp], k € {a, b, c}. We have LP? =~ 0.53, LP* ~ 0.32 and LP€ =~ 0.13. That

184
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p

the derivatives’ maxima are at the boundary of the interval [0, rp] results from the fact
that we consider A% over [0, rp] only and not over the whole domain RP;*, k € {a, b, c}.
Nevertheless, it is thinkable that a function A7, exists whose derivative’'s maximum is in
the interior of [0, rp].

To summarize this example, the ADA pair with the start point candidate ¢ has the smallest

Lipschitz constant, i.e., we would prefer candidate c according to (Gl). However, this

comes at the price of the largest start point increment, which is Ag,'if]cr = 0.16, whereas
A?y’iﬁcr =0.08 and \Z . = 0 according to Example 8.36.

As demonstrated in Example 8.38, the Lipschitz constant LP can be reduced (and thus
the rate of convergence can be increased) by increasing the start point. However, an
increased start point also has disadvantages.

8.4.3. Disadvantages of the Start Point Increment Lead to Conflicting
Objectives

Increasing the start point has two main disadvantages. As explained in Section 2.2, beyond
A =~ 1.4 the emission of carbon monoxide (CO) increases with increasing equivalence AFR.
Therefore, an increased equivalence AFR of the start point results in larger CO emissions
during the execution of an ADA iteration. These emissions are permissible as long as
certain limit values are not exceeded. However, it is generally desirable for an appliance
to emit as few pollutants as possible. In addition, getting closer to a CO limit means less
robustness in the case of tolerances, i.e., the margin to the lean CO limit is reduced.
Furthermore, an increased start point means that an ADA iteration with the corresponding
ADA pair requires a larger time span. Recall that in practice an ADA iteration is started
from normal heating operation. If the start point of ADA pair p is selected such that it
is close to the normal operating point at the start fan speed s, i.e., the start point is
on or close to the control curve, then the ADA procedure can be (almost) immediately
started. However, if a start point increment is used, the appliance must leave the range
of normal operation and drive to the more fuel-lean start point at the beginning of an
ADA iteration, which takes some time. This additional required time reduces the chance
that an ADA iteration can be successfully completed. For instance, this is the case if the
heat demand reduces while an ADA iteration is executed, see also Section 3.4. Therefore,
a short duration of the ADA iteration is desired, which is contrary to a large start point
increment. Thus, a second optimization goal is introduced for each ADA pair p, p € [N]:
(G2) Minimize the start point increment X\?.__ for all p € [N].

s,incr

Just like (G1), (G2) is also not an objective function. Rather, (G2) is an interim result that
leads to an objective function in the course of this chapter. The corresponding objective
function is defined in Definition 8.59 in Section 8.6.2.

With this, we have the conflicting optimization goals minimize L” and minimize A
all p € [N] and the resulting optimization models are multiobjective.

p

s,incr for
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Remark 8.39 Even if the start point increment usually reduces the Lipschitz constant of
the corresponding iteration function, this characteristic is not guaranteed by the properties
of the HE model. However, since we optimize both goals, this is not a problem. In
the extreme case that LP and AP can be minimized simultaneously, there is a single

s,incr
nondominated point, which is the ideal point (if the problem is feasible).

As demonstrated in Example 8.36, the start point increment can significantly reduce LP
and thus improve the rate of convergence of the ADA algorithm with respect to the p-th
ADA pair. Of course, there are limits to the start point increment.

On the one hand, the equivalence AFR at the start point is limited by the CO emissions as
already mentioned at the beginning of this subsection. Since CO is lethal, there exist strict
limits for the emission of CO, which is covered by specification (S1). On the other hand,
because ADA pairs must not be overlapping, the start fan speed of ADA pair p is limited
by the test fan speed of its upper neighbor p — 1 for p € {2,..., N}, ie., sP < tP~ 1 see
also Lemma 3.44. In the case p = 1, the start fan speed is limited by the HE's maximum
fan speed fsax, see also Definition 5.2. These limitations are covered by the specification
(S7).

All specifications (S1) to (S7) are discussed in detail in the following section, where cor-
responding constraints are derived.

8.5. Constraints

So far, we have considered the objective criterion (O) in detail. In this section, the
specifications (S1) to (S7) are covered and converted to corresponding constraints.

The specifications (S1) to (S3) are closely related, because they all depend on the same
gas valve position. Due to monotonicity properties with respect to the gas valve position,
it is sufficient to check that the bounds according to (S1) to (S3) are satisfied only for
certain situations, which makes solving the optimization problem more efficient. This is
delineated in the following. Thereafter, corresponding constraints are derived.

8.5.1. Monotonicity with Respect to the Gas Valve Position

We are interested in the A and CO values during the ADA iterations. Recall from Defini-
tion 2.18 that the X values are represented by the function Ag(g) and the CO values are
represented by the function (ts(g), where fs € FS and g € Gg. In an ADA iteration with
ADA pair p, p € [N], the start and the test fan speed, sP and t”, respectively, are the
relevant fan speeds. The relevant gvp during an ADA iteration is determined in step (A3)
presented in Section 5.1. According to Lines 9 and 11 of Algorithm 5.2, this gvp is

_ B (i), Tp=1
= 1 o po .
e {wp(ﬁp(fpmp—l(fpl)), toez .m0
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where ?t,ro =(n,..., in) is the incumbent vector of drifted test ioni current approxima-
tions. By plugging g = ga into the HE model’s equivalence AFR function and CO function
with respect to the start fan speed sP, i.e., by calculating Agr(ga) and {sr(ga), we obtain
the A value and the CO value, respectively, of the start point during the ADA iteration
with ADA pair p. Analogously, Atr(ga) is the X value and (tr(ga) is the CO value of the
test point during this ADA iteration.

Because the gvp g4 is essential for the following considerations, we provide a definition of
the gas valve position that is used in the n-th ADA iteration based on (8.9). This definition
requires the resistance based ADA iterates according to Definition 7.28. Just as in the
previous sections, we implicitly assume that an HE model #, a drift resistance rp > 0 and
N ADA pairs (sP, tP,if,if), p € [N], are given for the remainder of this section.

Definition 8.40 Let i;;, = (i, .., iy be an input vector and let u = (up)nen be an
infinite ADA update sequence such that 7t,in and u are a feasible input combination. For
n €W let r"(igin,u) = (], ..., ryy) be the corresponding n-th resistance based ADA

iterate. The corresponding n-th gas valve position iterate is defined by

G 0) pa (7t rd = o), ifu, =1

It in, U) = _ _ i

g Mein P (w’:n,ll(r[’} BWtrl—rmp) ifp=u€{2..., N},
-

where rg = 5"(/;)”) for all p € [N], see also Lemma 7.45.

Lemma 8.41 The gas valve position iterate g”(7t,in, u) corresponds to the gas valve position
during the n-th iteration with Algorithm 5.2 given the inputs 7“” and u. In particular,
9" (iy.in, ) is well-defined.

Proof. Because itin = (i, ..., /™) and u are a feasible input combination, all correspond-
ing ADA iterates (ioni current based and resistance based) and the corresponding function
evaluations are well-defined.

Let n € IN and let i"(ipin, u) = (i, ..., iy) be the corresponding n-th ioni current based
ADA iterate. According to Corollary 7.23, i”(?t,in, u) corresponds to the incumbent drifted
test ioni current vector after the n-th iteration with the for-loop of Algorithm 7.1 given
the inputs 7“,1 and u. Therefore, the gas valve position during the n-th ADA iteration with
ADA pair p is

o, By, ifp=1
IA= Lo OV ON bigp(in-1y go-1(jn-1 ;
wP(BP(in~1), BP0~ 1)), ifped2,..., N},

according to (8.9), where /g = /',i;‘ for all p € [N]. By considering that
o ) = pP(i7) for all p € [N] (Definition 7.28),

o wP(BP(ID). BP(ip—10)) = w%_l(rlg’) forpe {2, ..., N} (Definition 7.1) and
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o 1t onP(r) =03, oa;;(r) = pt(r+rf —rp) forall r € RY, (Lemmas 6.23 and
6.20),

we obtain for the gas valve position in the n-th ADA iteration with ADA pair p

ot (™ + =), ifp=1
ga = — _ .
' (wf,,fll(r,g’ D+rf—rmp) ifpef2..., NY.
o
L]
Since we consider only the input vector 7t,in = (itl ,,,,, /1_!\/) and situations where the

requirements (R1) to (R3) are met, we have ] € [0, rp] for all p € [N] and for all n € INg
according to Corollary 8.11. Under these circumstances, we can state a lower and an upper
bound for the gas valve position iterates. For the following definition, recall that ,of’s1 is
strictly decreasing for all fs € FS (Lemma 6.17).

Definition 8.42 Let rp > 0 and let 0 € R?, as well as rp € RF,. For all p € [N], we define
Imin = P (12) and - gBe, = pH(rf = rp).

Lemma 8.43 Let rp > 0. Let AP be contractive, let fix(AP,)) = rp and let 0 € RE, for
all p € [N]. Furthermore, let irin = (i}, ..., iN) and let u be an arbitrary (infinite) ADA
update sequence. Then,

Up=p = go. < 9" (i in, u) < 9PV nelN
In particular, gF. = and ghax are well-defined.

Proof. Let p € [N]. By assumption, we have 0 € R as well as rp € RF, and thus
[0,rp] C RE,, ie., AP (r) = Tp © Prr.rp © p;}m o J:ZJ(r) is well-defined for all r € [0, rp].
Therefore, p;,ly,D o 0':2;(/’) = p'(r+ rf — rp) is well-defined for all r € [0, rp] and thus
g2 = 0 (rf) as well as ghax == p' (rf — rp) are well-defined.
For the following, recall that r] € [0, rp] for all n € IN (Corollary 8.11) and that pt is
strictly decreasing for all p € [N] (Lemma 6.17). Furthermore, r§ = pP(if) = I% - I% =0
t t

for all p € [N]. Let n € IN. First, let p=1. Then,

Ogrl”_1 <rp => 0+rsl—rDSrf_l—f—rsl—ngrDersl—rD:rsl
= o (s =) > p (i + 1 —rp) > pit(rd)
= Gmax = 9" (tjn, 1) > G

Next, let p € {2,..., N}. Because 0 < wP < 1 (Lemma 5.13), we have
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0< r,f_l <rpand 0 < rgjll <rp
=0< W”rg—1 <wPrpand 0 < (1— W”)r,;’__l1 <(1-=wP)rp
=0< W”rg*1 +(1- Wp)l’g:ll <wPrp+(1-=wP)rp=rp

= 0<wh (7)<
o

=0+rP—1p Sw%:%(rg*1)+ff—fD <rmp+rP—rp=r~F
= 05 (1 = 10) 2 0! (W)oy (71 12 = 1D) 2 05 (r2)
= Ghax > 9" (irin. 1) > gh.
0

With the bounds for the gas valve position according to Lemma 8.43, we can formulate
constraints corresponding to the specifications (S1) to (S3) in the following.

8.5.2. Combustion Related Constraints

In this subsection, we derive constraints corresponding to the specifications (S1) to (S3).
The remaining specifications (S4) to (S7) are dealt with in the following Subsection 8.5.3.

Specification (S1): The CO emissions during all ADA iterations must never exceed
Comax. As delineated at the beginning of the preceding Subsection 8.5.1, the CO emissions
at the start and at the test point during an ADA iteration result from the gas valve
position that is defined in Definition 8.40. Because the CO emission is represented by
Crs(g) (Definition 2.18) the CO emissions during an ADA iteration are as follows.

Definition 8.44 Let i; i, and (u,)sew be a feasible input combination. For n € N, the
corresponding n-th start and test CO iterate are defined by

ol (igjn, ) = € (g"(itin, 1)) and  cof(iin, u) = Ceo (9" (i in, 1)),
respectively, where p ‘= up.

Corollary 8.45 Let 7t,in and (up)new be a feasible input combination. During the n-th
ADA iteration with Algorithm 5.2 given the inputs ?t,in and u, the CO emission at the start
point is co;’(?t,in, u) and the CO emission at the test point is co’t’(?t,m, u).

Proof. The statement follows from Lemma 8.41 and from Definition 2.18 of the HE
model. O

According to the HE model, (s is convex (Definition 2.18). Therefore, it is sufficient to
check that comax is not exceeded at the minimum and at the maximum gas valve position
of the start and of the test point (if iz = (il, ..., iM), rp > 0 and the requirements (R1)
to (R3) are met).
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Lemma 8.46 Let rp > 0. Let AP be contractive, let fix(AP)) = rp and let 0 € RF, for
all p € [N]. Furthermore, let iy;n = (i}, ..., iN) and let u be an arbitrary (infinite) ADA
update sequence. Then, the following holds for all n € IN:

Up=p = Cog(it,inx U) < max {Cs”(ggqin)v Cs”(grewax)}

and
Un=p = CO?Gt,inv U) < max {Ct”(gr,;in)r Ctp(gr%ax)}-
Proof. The statement follows from Lemma 8.43, from Corollary 8.45 and from the fact

that (s is convex for all fs € [fspin, fsmax] (Definition 2.18). O

Lemma 8.46 implies that it is sufficient to check that the CO limit at the start and at
the test fan speed is not exceeded for gr’;in and ghax only. It is not required to check the
CO emissions for each ADA iteration separately. By considering that gr’;in = ps_,,l(l.%) and

that ghax = ps_pl(l.% — rp) (Definition 8.42), we obtain the following constraints.

(C-S1) For all p € [N]:
Y U
(e 0 pspl(l.—p) < COmax, (sp © pspl(l.fp —rp) < COmax and
S S

_,U 4, U
Cep 0 pspl(ij) < COmax, (o pspl(iT - rD) < COmax -
5 s

Specification (S2): The equivalence AFR during an ADA iteration must never fall below
Amin- Because Ag is strictly decreasing (Definition 2.18), it is sufficient to check that
Amin < Asp(g) and that Apin < Awe(g) for the gas valve position bounds gmin and gmax

only. Analogous to the CO emissions, the equivalence AFRs during an ADA iteration are
as follows.

Definition 8.47 Let 7”,1 and (un)new be a feasible input combination. For n € IN, the
corresponding n-th start-A and test-\ iterate are defined by

N (g ins 1) = Asp (g”(7t,in, u)) and A (igin, 1) = Nep (g”(?t,in, u)),
respectively, where p = u,.

Corollary 8.48 Let 7“,1 and (un)new be a feasible input combination. During the n-th ADA
iteration with Algorithm 5.2 given the inputs 7”,1 and u, the equivalence AFR of the start
point is AQ(?t,m, u) and the equivalence AFR of the test point is Xg(?t,m, u).

Proof. The statement follows from Lemma 8.41 and from Definition 2.18 of the HE
model. U]

According to the HE model, Ag»(g) and Ae(g) are strictly decreasing (Definition 2.18).
This allows us to state bounds for the equivalence AFR during the ADA iterations.
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Lemma 8.49 Let rp > 0. Let AP be contractive, let fix(AP)) = rp and let 0 € RP, for
all p € [N]. Furthermore, let ip;n = (i}, ..., iN) and let u be an arbitrary (infinite) ADA
update sequence. Then, the following holds for all n € IN:

un=p = Nsp(ghax) < Ath,inr u) < /\s”(grl;in)
and

up =p = Ner(Ghax) < Aitin, 1) < Aer(gpin)-
Proof. Let n € N and let u, = p. Then gf. < 9" (iyin, 1) < ghax (Lemma 8.43). Because
Nsr and A are strictly decreasing (Definition 2.18), we have

/\fs(gg]in) > N (gn(?t,inv U)) > /\fs(gr%ax)v fs € {s”, t"}.

According to Definition 8.47, we have A’;(?Lm, u) = Ner (g”(?t,in, u)) and )\’t’(ﬂ,in, u) =
Ao (9"(itin, u)) and the statement is proved. O

Lemma 8.49 implies that it is sufficient to check that the equivalence AFR does not
fall below Amin for the actuator positions (s, gmax) and (tP, gmax) (if 7”,1 = (i},..., iM),
rp > 0 and the requirements (R1) to (R3) are met). It is not required to check the
equivalence AFR for each ADA iteration separately. By considering that ghax = p;,l(% -
rp) (Definition 8.42), we obtain the following constraints.

(C-S2) Forall p € [N]: —Agp 0 p;;l(% —1rp) < =Amin and —Agp 0 p;,l(% —p) < —Amin-

Specification (S3): The equivalence AFR during an ADA iteration must never exceed
Amax. Analogous to (S2) and (C-S2), it is sufficient to check that the equivalence AFR does
not exceed Amax for the actuator positions (sP, gmin) and (tP, gmin) (if 7tvm = (i, ..., iM),
rp > 0 and the requirements (R1) to (R3) are met) according to Lemma 8.49. By
considering that g° .= = p;}(%) (Definition 8.42), we obtain the following constraints.
(C-S3) For all p € [N]: Asp 0 ps_pl(%) < Amax and A o p;l(%) < Amax-

In total, if the constraints (C-S1) to (C-S3) are met, then the specifications (S1) to (S3)
are satisfied.

8.5.3. General Feasibility Constraints

In this subsection, we derive constraints corresponding to the specifications (S4) to (S7).

Specification (S4): It is required that if € tsp(Gsr) and i € 14o(Gyr). Because Ggs is a
closed interval and ¢ is @ homeomorphism, tt5(Gss) is a closed interval as well for all fan
speeds fs € FS. Therefore, it is sufficient to check that /£ and if are within the boundaries
of the corresponding intervals and we obtain the following constraints.

(C-S4) For all p € [N]:
mintse(Gsp) — if <0,  —maxier(Gsr) +i2 <0 and
min Ltp(th) - I'tp < 0, - maxatp(th) + If < 0.
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Specification (S5): The start ioni current shall be on or below the control curve and
the test ioni current shall be on or above the control cure. Expressed with the control
curve function iset(fs) according to Definition 8.30, this corresponds to if < iset(sP) and
let(tP) < if. Thus, we include the following constraints.

(C-S5) £ — iset(sP) < 0 and ieet(tP) — if < 0 for all p € [N].

Specification (S6): The distance between the equivalence AFR at the undrifted start
point and the equivalence AFR at the undrifted test point must be at least AX\nin. The
term "undrifted" refers to a situation with rp = 0. In this case we can use the HE model
functions without drift according to Definition 2.18. Therefore, the gvp at the start point is
gs» = Ly (i) and the corresponding equivalence AFR is A2 := Agp 0 1, (if). Analogously,
we have A? == Aw ot (iF). With A2 — A2 > A\, we obtain the following constraints.

(C-S6) —Agp 0 1, (i) + Ao 0 1 (i) < —Admin for all p € [N].

Specification (S7): The specification (S7) corresponds to the restrictions with respect
to the start fan speeds and to the test fan speeds. Because we consider only sets of feasible

test fan speeds T = {t!, ..., tN} according to (Sc3), the conditions t* > t2 > ... > tN
as well as t' > fs, are already satisfied according to Definition 8.1. The remaining
restrictions are tP < sP for all p € [N], sP < tP~! forall p € {2,..., N} and s <

fsmax. Recall that strict inequalities are not allowed in the optimization model according
to Remark 8.14. Thus, we make once more use of an arbitrary small but fixed € > 0.
Because the test fan speeds t” are taken from the set T, they are considered as constants
and not as a part of the decision variables. Therefore, they are placed on the right hand
side of the following inequalities. With this, we include the following constraints.

(C-S7) —sP < —(tP+e)Vpe[N],sP<tPl—eVpe{2 ..., N} and s! < fspax.

To summarize this section, if the constraints (C-S1) to (C-S7) are satisfied, then the
specifications (S1) to (S7) are satisfied as well. With this, we have all the parts together
to define the feasible set of the optimization model for the case without tolerances in the
following section.

8.6. Optimization Model for the Nominal Case Without
Tolerances

In this section, an optimization model for the nominal case without tolerances is proposed
based on the considerations made in this chapter so far. This means that we want to
optimize the ADA parameters of N ADA pairs with the goals (G1) and (G2) given the
scenarios (Scl) to (Sc3) and under the constraints (C-R1) to (C-R3) as well as (C-S1)
to (C-S7). As already mentioned in Section 8.1, the decision variables are the parameters
(sP,tP, £, iP) of each ADA pair p, p € [N].
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The test fan speed tP can be considered as given and fixed, because the decision makers
specify the set of feasible test fan speeds T = {t!,..., tN} in advance according to (Sc3).
Therefore, the three parameters sP, if and if are left as decision variables for each ADA
pair p, p € [N]. This gives us a total of 3N decision variables.

However, it is possible to optimize each ADA pair individually. In a certain sense, the ADA
pairs can be considered as decoupled, which results in N optimization problems each with
a three-dimensional decision space.

Why is it possible to consider the ADA pairs individually? Regarding ADA pair p, p € [N],
each constraint (C-R1) to (C-R3) as well as (C-S1) to (C-S6) depends only on the ADA
parameters of ADA pair p, i.e., these constraints depend only on sP, /£, i’ and tP. In
particular, they do not depend on s9, i, i[" for all g, r, m € [N]\ {p}.

Constraint (C-S7) is a little different, because in addition to sP and tP this constraint
depends also on tP~1 if p > 2, which is the only coupling of the ADA pairs. However, tP
and tP~1 are specified in advance, which cancels out the coupling of the ADA pairs in this
case.

The same holds for the objective functions corresponding to the goals (G1) and (G2),
because the Lipschitz constant LP as well as the start point increment of ADA pair p,
p € [N], depend only on sP, if, i and tP. The objective functions is defined and detailed
in Section 8.6.2 below after the feasible set is defined.

Remark 8.50 The ADA pairs can be considered individually for two reasons. First, the
test fan speeds are specified by the decision makers in advance, as already delineated.
Secondly, we only consider situations where fix(A?,) = rp for all p € [N] according to
(R1). With this, the drift resistance super fixed point vector is r** = (ri*, ..., rx") with
ry* = rp forall p € [N] (Theorem 7.73). l.e., the super fixed point vector is already known
and it is not required to determine it with the recursion according to Lemma 7.42 in this
case. Therefore, the coupling of the ADA pairs related to the super fixed point vector is
not relevant in this case.

Remark 8.51 As stated in the preceding Remark 8.50, the requirement (R1) is essential
for the decoupling of the ADA pairs. The corresponding constraints is (C-R1). It is equiv-
alent to 1M (if) = 1M (if), which is the nominal condition according to Definition 6.39.
Therefore, the optimization problem proposed in this section is called the nominal opti-
mization problem.

However, as delineated in Section 7.4.1 and as demonstrated in Example 7.74, because
of tolerances with respect to the position of the ioni electrode the nominal condition is
not always fulfilled. In such a case it is not possible to satisfy (R1) and the ADA pairs
cannot be optimized individually anymore, because the super fixed point vector r** has to
be determined with the recursion according to Lemma 7.42. This is discussed in detail in
Section 8.7, where a corresponding optimization model to optimize the ADA parameters
in the case with tolerances is proposed.

In the following, a set of feasible ADA parameters for the ADA pair p, p € [N], with
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respect to T and rp > 0 is defined. Thereafter, the objective functions are discussed and
finally the corresponding optimization model is presented.

8.6.1. Set of Feasible Solutions with Respect to ADA Pair p

As already mentioned, for a fixed p € [N] the decision space under the conditions specified
at the beginning of Section 8.6 is three-dimensional. Its dimensions are the three ADA
parameters sP, if and /. The fourth ADA parameter t” is already specified in the set T.
The definition of the feasible set is straightforward. A solution is defined as feasible, if the
ADA parameters (sP, tP, 8, if) fulfill all constraints (C-R1) to (C-R3) as well as (C-S1)
to (C-S7).

Definition 8.52 Let 7 = (FS, (Gss)tsers, (tfs)tscrs. (Ass)rsers, ($rs)fsers) be a given HE
model. Let T = {tl ..... t’V} be a set of feasible test fan speeds, let rp > 0 and let Amin,
Amax, COmax as well as Admin be the combustion limits specified by the decision makers.
Furthermore, let € > 0 be small and fixed. For p € [N], the set of the feasible ADA
parameters of ADA pair p with respect to T and rp, denoted by X%rD, contains exactly
all vectors x = (sP, i€, iP) € R3 that fulfill all of the following constraints:

(C-R1) ¢ (12) = ¢ (if) = 0,
(C-R2) LT, (s, 0, if) <1-—e¢,
(C-R3) mine¢ (Gp)—/bpiu<0 ié}iu—mam (GP)Y <0
sPA st —iﬁrD+U_ ' —Ifl’D—FU sPA st =
U 1, U
(C-S1) (sro pspl(E) < COmax. (s o pspl(g — o) < COmax.
U 1, U
(o o pspl(l.—p) < COmax, (oo pspl(l.fp — D) < COmax.
S S
LU LU
(C-S2)  —Aspopy (E — ) < —Amin. — Ar 0 pgp (E — ) < —Amin,
(C_S?’) Nsp © Psp (IT)) < Amax. Aep 0 Psp (IT)) < Amax.
S S
(C-S4)  minwe(Ger) — iP <0, —maxts(Ger) +iP <0,
min ¢p(Gee) — i <0, —max o (Gee) + iF <0,
(C—SS) Ié) — iset(Sp) <0, iset(tp) _ If <0,
(C-S6)  Aw oLt (i) — Asp 0 t 2 (iP) < —Admin,
fSmax ifp=1,
(C-S7T)  —sP < —(tP+€)V pe[N], sp< doma P
tPl—¢e ifpef{2,..., N}

Remark 8.53 According to Definition 8.52, the set X%rD of feasible ADA parameters of
ADA pair p implicitly depends on the HE model H, on € as well as on the limits Apin,
Amax, COmax and AXmin specified by the decision makers. For better readability, these are
not shown in the notation of this set. Rather, they are implicitly assumed to be given.
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Remark 8.54 Definition 8.52 of X%rD contains redundancies. Constraint (C-R1) implies
that o3t (if) and u,* (i) are well-defined. This in turn implies that if € 1o (Gsr) and
iP € 1o (Gyo), which is equivalent to the constraint (C-S4). Thus, (C-S4) in Definition 8.52
can be omitted. But aiming at a better overview, it is still listed in Definition 8.52.

Remark 8.55 The set X%,D is bounded. According to (C-S7), the start fan speed sP is
bounded from below by tP +¢ and from above by tP~Y —¢ (if p > 2) or by fsmax (if p = 1).
Furthermore, we have if € 1s0(Ggsp) and i € 110(Geo) according to (C-S4), where s (Gsp)
and 10 (Gyer) are closed intervals according to Lemma 2.21.

Whether the set X%,D IS compact or not is not easy to answer and remains an open
question in this work. If it is not compact, then the set of Pareto optimal points and the
Pareto front might be empty, see also Section 4.1.1. However, from a practical point of
view, a good approximation of the nondominated set in the closure of the image of X%rD
under the objective functions is sufficient.

Remark 8.56 Note that X7~ C R3,. This follows from Definition 2.18 of the HE model,
because sP € [fsmin. fsmax] C Rso, & € tsp(Gep) = lsp C Rsg and if € 11o(Gyo) = Ip C
R>o.

Remark 8.57 That the feasible set X-‘;,rD is continuous is a relaxation. In practice, the
ADA parameters, i.e., the start and the test fan speed as well as the start and the test
ioni current, have to be integers. Therefore, the components of an optimized x € X-’;,rD
must be rounded to their nearest integer. However, the resulting difference in the objective
function values usually has the order of magnitude of measurement errors and the decision
makers are satisfied with the rounded relaxed solutions [PHE, Items 3124 and 7082].

The following theorem summarizes some properties if the N ADA pairs p, p € [N], are
all obtained from the feasible sets X%rD, p € [N].

Theorem 8.58 Let T = {t!, .. | tNY be a set of feasible test fan speeds and let rp > 0.
Furthermore, let (sP, tP,if,iP) be the ADA parameters of ADA pair p, p € [N].
If (sP,is,if) € X7, forall p € [N] and irin = (i}, ..., iP), then the following holds:

o i =(it, ..., if',)), where if,is the drifted test ioni current according to Defini-
tion 3.27 for all p € [N],

e ifu is a sufficiently well distributed ADA update sequence, then Ii_)m i”(7t,in, uy =i,
n—oo

e the equivalence AFRs are in the interval [Amin, Amax] and the CO emissions do not
exceed Comax during all iterations with the ADA Algorithm 5.2 given the inputs ?t,in
and u, where u is an arbitrary ADA update sequence, and

e all start and test fan speeds are in the interval FS = [fSmin, fSmax] and the ADA pairs
are not overlapping.

Proof. The statement follows from the construction of the sets X%rD forall pe [N]. O

Next, we consider the objective functions.
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8.6.2. Objective Functions

When optimizing ADA pair p, p € [N], we have the two optimization goals (G1) and
(G2), which are a small Lipschitz constant L” and a small start point increment A7 .
respectively.

A function that maps the ADA parameters (s, t?, i£, if), where tP is taken from T, to
the corresponding Lipschitz constant LP (if it exists) has already been defined in Defini-
tion 8.17. This function is denoted by L"%ID. Therefore, to satisfy (G1) the first objective
is to minimize L% (x) with x € X§ .

Regarding (G2), we define a corresponding objective function in the following. The
start point increment Aspmcr(sp, tP, i€, i) has already been defined in Definition 8.33. Be-
cause tP can be considered as given and fixed, we define a function that maps the re-
maining three ADA parameters sP, i and i to the corresponding start point increment
Aglncr(sp' tp IS It)

Definition 8.59 Let H = (FS, (Gfs)ssers. (ts)rsers. (Ars)sers. (Crs)fsers) be an HE model
and let iset be a corresponding control curve. lLet T = {tl ..... t’V} be a set of feasible
test fan speeds and let rp > 0. The start point increment function of ADA pair p with
respect to T and rp is the function S%rD ; X?ID — R defined by

STrp(SP 8 if) = AL i (P P8 if) = Ao 0 Lt (IP) = Asp 0 L5 0 iger(sP).
Lemma 8.60 The start point increment function is well-defined and nonnegative, i.e.,
S (x) >0 for all x € X%
D D

Proof. Let x = (sP,if,if) € X% . Then, we have L (i) = 151 (i) according to (C-R1)
and thus S-’;’rD(x) is well- deflned (Deflnltlon 8.33 and Lemma 8.35).

To show that S (x) > 0, we use that i < iset(sP) according to (C-S5), that Lt is
strictly increasing (Definition 2.18), that Ag» is strictly decreasing (Definition 2.18) and
that " (i) = ¢, (if), which gives us

/5 < iset(sp) = L;}(isp) < 1'531 (iset(sp)) = Agp (L;}(’.sp)) > Nep <L;91 (/set(sp))>

= STo(sP 12, 10) = Ao (151()) = Aor (13 (ier(5)) ) = 0.

Therefore, to satisfy (G2) the second objective is to minimize S7. (x) with x € X7
This completes the specification of the objective functions and we can combine everything
to the proposed nominal optimization model.
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8.6.3. The Optimization Model

We want to optimize the ADA parameters of ADA pair p, p € [N]. For this, we assume
that a set of feasible test fan speeds T = -{tl ..... tN} and a drift resistance rp > 0 are
given. l.e., we want to find optimal parameters sP, if and if given the test fan speed
tP € T and the drift resistance rp. As stated in Remark 8.51, the set of feasible solutions
X%, contains the constraint ;' (if) = ¢, (if), which is the nominal condition according
to Definition 6.39, and thus the corresponding optimization problem is called the nominal

optimization problem.

Definition 8.61 Let H = (FS, (Gfs)tscrs. (trs)fsers. (Ass)rsers. (s)rsers) be an HE model
and let iset be a corresponding control curve. Let N € IN be the number of ADA pairs
to be parameterized. Let T = {t1, ... tV} be a set of feasible test fan speeds and let
rp > 0. The nominal optimization problem for ADA pair p, p € [N], is defined by

min "M P(x) = (7 P(x) = E‘%’rD (x), £, P(x) = S-’;'rD (x)) (nom—PTp’rD)

XEX%,D

Remark 8.62 The nondominated set with respect to (nom—PTp,rD) Is not convex in general.
An example is illustrated in Figure 9.2 below. The purple curve segments in the right part
of Figure 9.2 correspond to the nondominated set of a problem of the type (nom—PT”‘rD),
which is not convex in this case.

If we want to optimize all N ADA pairs, which is usually the case, we have to solve the
problem (nom—PTp’rD) for each p € [N], i.e., we have to solve N biobjective optimization
problems. A huge advantage of this approach is that the ADA pairs can be optimized
individually (once the set T is fixed). A method how to approximate the Pareto front of
the problem (nom—PTp’rD) is proposed in Section 9.1 below.

As already mentioned, all ADA pairs optimized with (nom—PT”yrD) fulfill the nominal
condition according to Definition 6.39. However, as delineated in Section 7.4.1 and as
demonstrated in Example 7.74, because of tolerances with respect to the position of the
ioni electrode the nominal condition is not always fulfilled. In such a case, the ADA pairs
cannot be optimized individually anymore, because the super fixed point vector i** has
to be determined with the recursion according to Definition 7.14 (or equivalently r** has
to be determined with the recursion according to Lemma 7.42) and thus (nom—P{i’rD)
cannot be applied. Therefore, an optimization model to optimize the ADA parameters
with tolerances is proposed in the following section.

8.7. Optimization Model for the Case with Tolerances

According to the objective criterion (O1), the optimized ADA parameters shall approximate
the drifted test ioni currents exactly, i.e., the super fixed point vector i** = (if*,... iy
shall satisfy is* = if _ for all p € [N]. This is the case if and only if t;;' (if) = ¢j;(t7) for
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all p € [N] according to Theorem 7.73. Therefore, the constraint (C-R1) is included in
the definition of the feasible set X2 of (nom-P7 ) (Definition 8.52).

If an HE model # and an ADA pair (sP, t?, i, if) are such that ;' (if) = t3"(t?) holds,
this situation is called nominal. But as demonstrated in Example 7.74, tolerances with
respect to the ioni electrode’s position might cause that this condition is not fulfilled
anymore. Then, such a situation is called non-standard according to Definition 6.39.
Therefore, in the non-standard situation, i.e., in the case with tolerances, we have to relax
the objective criterion (O1). A corresponding optimization model that deals with non-
standard situations is proposed in this section. It is closely related to the approach taken
by Vaillant how to deal with tolerances with respect to the ioni electrode’s position, which
is detailed in the following.

8.7.1. Approach by Vaillant to Deal with Tolerances of the loni Electrode’s
Position

For confidentiality reasons, the following explanations are kept at a general level and with-
out explicitly specifying parameters. Vaillant defines the position of the ioni electrode by
two dimensions. The first dimension is the distance between the tip of the ioni electrode
and a reference point in the burning chamber, denoted by d in the following. The second
dimension is an angle between the axis of the ioni electrode and a reference axis, denoted
by a in the following.

With this, Vaillant defines an ideal or nominal position (dhom, &nom) Of the ioni electrode.
Furthermore, they specify a maximal allowable deviation from the nominal distance and
from the nominal angle that may be caused by tolerances. They are denoted by Admax
and Aamay, respectively. The maximal allowable deviations are used to define four extreme
cases with respect to the ioni electrode’s position, which are (dhom —Admax, Xnom —AQmax).
(dnom + Admax, Onom — Aolmax)v (dnom - Admax, Qnom t AO5max) and (dnom + AdmaXv Qnom +
Aamax). These extreme cases can be considered as worst case scenarios in the sense that
Vaillant makes the assumption that if a set of N ADA pairs "works" for all four extreme
ioni electrode positions, then these ADA pairs also work for an arbitrary intermediate po-
sition.

In order to deal with the tolerances with respect to the ioni electrode’s position, HE mea-
surement data for each of the four extreme positions is determined in the lab. This gives
us four corresponding HE models, which form a scenario set for the ADA optimization with
tolerances. In the field of robust optimization, the scenario set is also called uncertainty
set and is usually denoted by U [DZG18, p. 147]. Since the considerations made in this
section are closely related to robust optimization, the term uncertainty set is used in this
work.

The following definition of an uncertainty set with respect to tolerances considers the more
general case with k sets of measurement data with respect to tolerances, where k € INg.

Definition 8.63 Let there be k, k € Ny, sets of measurement data related to k scenarios
with respect to tolerances. The corresponding HE models are called tolerance HE models
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and are denoted by Hl., = (FS', (Gl )sers. (th)rsers. (N )sers. (Ch)msers). J € [K].
The corresponding uncertainty set with respect to tolerances is the collection of the tol-
erance HE models. It is defined by

Urol = U {H{O|}-

JE[K]

In addition to the uncertainty set U, that contains the tolerance HE models we also
require an HE model that corresponds to the nominal case.

Notation 8.64 The HE model that is based on nominal measurement data is called nominal
HE model and is denoted by Hnom = (FS. (Gs)ssers. (t6s)fseFs. (As)tsers. (Cos)seFs)-

Remark 8.65 Usually, in addition to a nominal HE model there are four tolerance HE
models that correspond to the four extreme positions of the ioni electrode, i.e., the case
k = 4 is common in practice. However, k can be arbitrary and depends on the use case.
Even the case k = 0 is allowed, which corresponds to the situation that there is only a
nominal HE model and no tolerance HE model. This is done to avoid corresponding case
distinctions in the course of this section.

How are the tolerance HE models and the uncertainty set U related to the ADA opti-
mization? According to (O1), the decision makers want that the super fixed point vector
= (i, i) satisfies i7" = iﬁ,D for all p € [N]. However, the super fixed point vec-
tor depends on the HE model and on the ADA parameters according to Definition 7.14. If
the same N ADA pairs (sP, tP, i€, i), p € [N], are considered with different HE models, we
obtain in general different fixed point vectors and (O1) cannot be simultaneously satisfied
for different HE models. Therefore, we have to adapt the ADA optimization model if we
consider tolerances with respect to the ioni electrode’s position.

For this, we introduce a notation that reflects the dependency of the super fixed point vec-
tor on the considered ADA parameters and on the considered HE model. The underlying

definition of the super fixed point vector is not changed.

Notation 8.66 Let A = {(sP, tP,if,i’) : p € [N]} be a set of N ADA pairs and let H be
an HE model. The corresponding super fixed point vector according to Definition 7.14 is
denoted by i**(A, H).

A common approach to optimize the ADA pairs with respect to tolerances would be
to find a set of ADA parameters A such that the corresponding super fixed point vectors
come as close as possible to the vector of drifted test ioni currents. For instance, this
could be modeled by

1 FHk 01 N
Lomin - ma || (A H) = (i) |

which corresponds to the concept of strict robustness in the field of robust optimization
[DZG18, p. 149].
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However, the decision makers argue that the nominal situation is the common case and
that convergence characteristics should be designed for this. They do not want that
the convergence characteristics of nominal HEs are worsened in order to improve the
convergence characteristics of HEs with tolerances. Rather, it is sufficient to check that
in the worst case scenarios the ADA Algorithm 5.2 has a certain minimum approximation
quality and a certain minimum rate of convergence as well as that certain combustion
limits are not exceeded. From the perspective of robust optimization, one may argue that
the optimization goals are related to the mean position of the ioni electrode, i.e., to the
nominal position, while the constraints are related to the worst-case scenarios. This is the
approach that the decision-makers ultimately opted for [PHE, Item 3280].

In the following, an optimization model is proposed that corresponds to this approach. We
begin with the corresponding specifications provided by the decision makers.

8.7.2. Specifications with Respect to Tolerances

Regarding the nominal HE model, the objective criteria (O1) to (O3) as well as the spec-
ifications (S1) to (S7) remain valid according to the approach presented in the preceding
Subsection 8.7.1. Also, again only the case where the scenarios (Scl) to (Sc3) hold is
considered.

Regarding the tolerance HE models contained in U, we introduce additional scenarios
and specifications. The following consideration motivates the introduction of the addi-
tional scenario (Sc-T1) below. In contrast to the nominal case, we cannot guarantee that
the components of all resistance based ADA iterates related to the tolerance HE models
stay in the interval [0, rp]. It might be computationally expensive (or even impossible) to
check that the incumbent solutions of Algorithm 5.2 given the inputs ipi, = (il ..., iM)
and an arbitrary sufficiently well distributed ADA update sequence u stay within certain
bounds.Therefore, the approach taken is that the decision makers specify a single suffi-
ciently well distributed ADA update sequence i, which they consider very likely, and that
the optimization specifications are related only to & and not to all sufficiently well dis-
tributed ADA update sequences u.

If the ADA parameters are designed manually, only the specific ADA update sequence
(1,..., N, 1,..., N, ...) is considered for technical reasons [PHE, Item 15936]. In addi-
tion, the decision makers consider this sequence likely. Therefore, the decision makers
decided to use it for the optimization model with respect to tolerances. In this thesis, it is
called the periodic ADA update sequence and it is denoted as follows.

Notation 8.67 The periodic ADA update sequence with N ADA pairs is denoted by

The corresponding scenario is:

(Sc-T1) Regarding the tolerance HE models H € Uy, Algorithm 5.2 is only considered
with the sequence @i (and the input vector i in = (il, ..., i) according to (Sc2)).
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In addition to the scenario (Sc-T1), the decision makers want that the optimized set of
ADA pairs A satisfies the following tolerance related counterparts to the objective criteria
(O1) to (O3) as well as to the specifications (S1) to (S4).

(S-T1) For all H € Uy the super fixed point vector i**(A, H) is feasible and the ADA
Algorithm 5.2 given the inputs irin = (il, ..., iN) and & converges to i**(A, H) at
a certain minimum rate of convergence [PHE, Item 15936]. This can be considered
as the tolerance related counterpart to (02) and (O3).

(S-T2) A drift compensation with the super fixed point vector i**(A, H) guarantees a
minimum combustion quality for all H € Ui [PHE, Items 3280 and 15500]. This
can be considered as the relaxed counterpart to (O1).

(S-T3) For all H € U, the following must hold. During all iterations with ADA Algo-
rithm 5.2 given the inputs irin = (if, ..., i) and @i the CO values must not exceed
COmax. the equivalence AFR must never fall below Ay, and the equivalence AFR
must never exceed Amax [PHE, Item 3280]. This is analogous to the specifications
(S1), (S2) and (S3) for the nominal case. In particular, the bounds cOmax, Amin and
Amax are the same as for (S1), (52) and (S3).

(S-T4) The start and the test ioni currents must be feasible in the sense that they must
be contained in the corresponding sets of the tolerance HE models, i.e., if € 1t (Ggp)

and if € 1o(Gpo) for all H = (FS, (Gs)fsers. (Lfs)tsers. (Ass)rsers. (Crs)isers) € Usor.
This is analogous to the specification (S4) for the nominal case.

Remark 8.68 So far, we have specified tolerance related counterparts to (O1) to (O3) as
well as to (S1) to (S4). The specifications (S5) and (S7) are independent of tolerances in
the sense that they are satisfied for the nominal HE model if and only if they are satisfied
for the tolerance HE models. Therefore, corresponding specifications with respect to
tolerances are not required.

The specification (S6) is not applicable in the case with tolerances, because in the case
with tolerances the start and the test point do not have a common gas valve position
in general. Thus, it is not possible to compare the equivalence AFR at the start and at
the test point in a meaningful way in this case. Therefore, a specification with respect to
tolerances corresponding to (S6) is not given.

Before we derive constraints corresponding to the specifications (S-T1) to (S-T4), we
need to specify the decision space.

8.7.3. Decision Space in the Case with Tolerances

In the nominal case, i.e., with the problem (nom—PﬁyrD), we consider the ADA pairs in-
dividually and the corresponding decision space is three-dimensional. In the case with
tolerances this is not possible in general, because the super fixed point vector has to be
determined with the recursion according to Definition 7.14, i.e., all N ADA pairs must be
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simultaneously considered. Therefore, the decision space is 3N-dimensional in this case
and its elements are vectors of the form

Lt ., sNiN Ny e 3V,

As a consequence, we need a transformation from the 3/N-dimensional decision space and
a given vector of feasible test fan speeds T to the N ADA pairs, which is defined as follows.

Definition 8.69 Let x = (s, i}, i}, ..., NN Ny e R3Y and let T = {tt, ..., tNY be a
set of feasible test fan speeds. The set of corresponding ADA pairs is defined by

Ar(x) = {(st 1 i D). .., (M NN i

Based on this, we can formulate the specifications (S5-T1) to (S-T4) as inequalities that
depend on the decision variables x.

8.7.4. Constraints with Respect to Tolerances

As a preliminary step, we introduce a notation that reflects the dependency of the ioni
current based ADA iterates and of the resistance based ADA iterates on the set of ADA
pairs A and on the considered HE model H, see also Definitions 7.22 and 7.28. This is
done analogously to Notation 8.66 of i**(A, H). The underlying Definitions 7.22 and 7.28
of the ADA iterates are not changed.

Notation 8.70 Let A = {(s”, t?,i£, i) : p € [N]} be a set of N ADA pairs and let H be
an HE model. Furthermore, let 7t,in be an input vector and let u be an infinite ADA update
sequence such that ?t,m and u are a feasible input combination with respect to A and H,
see also Remark 7.25.

The n-th ioni current based and resistance based ADA iterate with respect to 7“D, u, A
and H are denoted by i"(iyin. u, A, 1) and r"(iyn, u, A, H), respectively, for all n € IN.

Analogously, we introduce a notation for the iteration functions A7, p € [N], according
to Definition 6.21.

Notation 8.71 Let rp > 0, let A = {(sP, tP, i€, i) : p € [N]} be a set of N ADA pairs
and let H be an HE model. The corresponding drift resistance ADA iteration functions
are denoted by A}, for all p € [N].

With this, we derive constraints such that the specifications (S-T1) to (S-T4) are
satisfied.

Specification (S-T1) Let A be a set of N ADA pairs. We want that i**(A4, H#) € RN and
that Algorithm 5.2 given the inputs i, = (il, ..., iN) and @i converges to i**(A, H) with
a certain minimum rate of convergence for all H € U,. The convergence characteristics
of Algorithm 5.2 are thoroughly analyzed in Chapter 7 above. One major result of this
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analysis is Theorem 7.68, which states conditions for the convergence of Algorithm 5.2
to i**(A,H), i.e., conditions such that nIi_)mOO i"(igin, u, A, H) = (A, H). However, in
practice it is difficult to check some of the requirements of Theorem 7.68. For instance,
Theorem 7.68 requires that i**(A, H) is known in advance, which is in general not appli-
cable in the case with tolerances.

The idea to overcome this problem is to approximate i**(A, H) by simply applying Algo-
rithm 5.2 with the inputs 7t,in = (/',_EL ..... it’\’) and @ as well as the considered set of ADA
pairs A and the considered tolerance HE model #. As a by-product, we also receive the
information whether 7t,in and & are a feasible input combination with respect to A and #.
If they are not, Algorithm 5.2 will abort at some point and eventually return the vector
whose components are all NaN.

Because i is an infinite sequence, we have to manually terminate Algorithm 5.2 at a
suitable point. For this, we specify a maximum number of iterations nma.x. Furthermore,
we specify a small threshold value i, > 0 to check if Algorithm 5.2 can be considered
as sufficiently well converged after nnax iterations. Recall from Corollary 7.23 that the
intermediate result after the n-th iteration of Algorithm 5.2 given the inputs 7t,in and i
corresponds to the n-th ADA iterate i”(?t,in, i, A, H). With this, the approach is as fol-
lows:

If || (i i, T, A, H) — 0N (G, 6, A, H)|| ) < e and AP 4 4, is contractive for all
p € [N], then we assume that

im " (igin, 0, A H) = (A H) and (A H) & 0N (g, 8, AL H).

The condition [[i™(iy iq, &, A, H) — i™>FN (G io, i, A, H)|| < ene is an indicator for the
convergence of Algorithm 5.2 given the inputs 7tvm and . The condition that AfD,A,?{ is
contractive for all p € [N] ensures the uniqueness of the super fixed point vector, see also
Lemma 6.35, Lemma 7.48 and Corollary 7.47. In particular, we assume that 7t,in and @
are a feasible input combination in this case, because Algorithm 5.2 did not abort early.

Remark 8.72 It is not sufficient to compare j™ax (7t,in, i, A, H) with i”maﬁl(?t,in, i, A, H).
Indeed, according to Lemma 7.27, in the (nmax + 1)st iteration only the p-th component
of the ADA iterate i"(iy in. i, A, H) is updated, where p = {i . 1 iS the (nmax+ 1)st entry
of the update sequence (.

But we want to make sure that each of the N components of j"max (7t,in, i, A, H) is changed
by at most iy In its next update. By construction of the ADA update sequence (i, after
N iterations with {i each component of the ADA iterate was updated exactly once (Nota-
tion 8.67). Therefore, we have to compare i"™ (i, ii, A, 1) with i"™> N, i, A, H).

Of course this is only a heuristic. It is neither guaranteed that i”max+’V(7t,in, i, A H)is
close to the real super fixed point vector (if it even exists), nor that Algorithm 5.2 given the
inputs 7“,1 and i converges at all. However, this approach worked well in the considered
use cases.

In order to formalize this approach and to formulate corresponding constraints, we need a
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Chapter 8 Optimization Models

function that maps an element x of the decision space and a set of feasible test fan speeds
T to the Lipschitz constants of the function A’r’D'A’H, p € [N].

Definition 8.73 Let rp > 0, let T be a set of feasible test fan speeds and let H be an HE
model. For p € [N] and x € R3N, we define the function L% 4, R*" = R U {c0} by

. . p £ AP
Lipschitz constant ofArD’AT(X)’,H /fArD,AT(X)’,H

o0 else.

is Lipschitzian,

E_’%rD,H(X) = {

Remark 8.74 The function E_’%’m’% is well-defined by construction. The overline notation
is used to distinguish it from the function E’%,rD according to Definition 8.17 used in the
nominal case.

With this, we can finally specify constraints such that (S-T1) is "approximately" satis-
fied.

(C-T1.1) |[i"™ (ipin, &, A7 (x), H) — i"=FN (i, 6, A7 (x), H)|| o, < iene for all H € Ugor.
(C-T1.2) Z‘%mﬂ(x) <1—-eVpe€[N]VHE Uy (with a certain € > 0 small but fixed).

Remark 8.75 With the parameters nmax and kne @ minimum rate of convergence as well
as the accuracy of the super fixed point vector approximation are controlled. In the use
cases, Nmax = BON, i.e., 50 iterations with each ADA pair, and i = 10~% were a good
compromise between required computation time and accuracy.

The components of the super fixed point vector usually have values in the range from 6000
to 8000. Therefore, a difference of iy, = 10™% usually corresponds to a relative difference
of approximately 1.25- 1078 to 1.67 - 1078,

Specification (S-T2) We need an indicator for the "quality" of i**(A, H). For this, the
control curve and the A-target curve are used. Recall from Section 2.3.3 that the control
curve maps every feasible fan speed fs € FS to an ioni current setpoint iget(fs) and that
the corresponding desired equivalence AFR is called A-target and is denoted by Atarget(fs).
An exemplary A-target curve and control curve are shown in Figure 2.7. The control curve
is formally defined in Definition 8.30 above.

Furthermore, recall from Sections 3.2.2 and 3.4.2 that the incumbent vector of drifted test
ioni current approximations 7”,) is used to correct the control curve for the influence of the
drift resistance. For this, let fs € FS. First, 7t,ro is used to approximate the drift resistance
at the fan speed fs according to Definition 3.38, i.e., 7p = a;t_rD(fs) is determined. The
ioni current setpoint iet(fs) is then corrected by plugging iet(fs) and 7p into (3.10), see
also Definition 3.40.

The idea to indicate whether the approximation quality of i**( A, H) is sufficient is as fol-
lows: If the control curve is corrected with i, ,, = i**(A, H), then the resulting equivalence
AFRs are allowed to differ only by a certain fixed tolerance Awp tol from Acarget(fs) for all
fs € FS and for all H € Uy, [PHE, Item 3280]. A common value used by Vaillant is
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8.7 Optimization Model for the Case with Tolerances

Awp.tol = 0.1 [PHE, Item 15500].

For this, we define the A-working-point function Awp(fs, 7t,rD,’H), whose image corresponds
to the equivalence AFR that results from correcting the ioni current setpoint at the fan
speed fs with the incumbent vector 7“D while the HE model H is considered.

Definition 8.76 Let rp > 0. Let H = (FS, (Gss)tscrs. (Ls)fscFs. (/\fs)fseFSv(Cfs)fSEES)r
H € U, be a tolerance HE model and let iset(fs) be a given control curve. Let i,
be an incumbent vector of drifted test ioni current approximations and let o, (fs) be the
corresponding drift resistance approximation function according to Definition 3.38.

Let fs € FS. The working point equivalence AFR at the fan speed fs related to rp, 7t,rD
and H is defined by

Uiset (fs)
FDiset(fS) + U
Remark 8.77 The working point equivalence AFR is closely related to the operating point
equivalence AFR Aop(fs) = Asso 1,;51 o iset(fs) defined in Definition 8.30. In deed, if 7p = rp
(and the same H. is considered), then Awp(fs, ity 1) = Mop(fs). By applying Lemmas 6.17
and 6.20, we have

Ap (S, Ty, 1) = Nrs ot ( ) with Pp = o, (fs). (8.10)

1 . 1 U U
I’fs,er(l) = pfs,er (7) = 'Ofsl(T - rD)

and thus (with fp = rp)

Ulset (s) 1 Pplset(fs) + U o, U .
1 set _ 1 . — 1 _
Lfs'rD ( FDiset(fS) + U) fs ( iset(fs) rD) pfs (iset(fs) o rD)

U .
= Pél(m) = " (iset(fs))

Remark 8.78 A statement about Ay, (fs, ?t,,D,’H) being well-defined is not provided. This
is not necessary, because ADA parameters such that evaluating (8.10) is not well-defined
are considered to be infeasible in the optimization model with tolerances.

With this, the corresponding condition to satisfy (S-T2) is
A (FS, Te.rp H) — Atarget (S)| < Awpitol ¥ fs € FS V H € Uso. (8.11)

However, in practice it is usually not possible to check whether (8.11) holds for all fs € FS,
because the function Awp(fs, iz r,. H) is not available in an explicit form in general, nor
does it have a certain monotonic behavior in general. Therefore, we have to fall back on a
sample set of FS, i.e., we only check for certain fan speed samples whether (8.11) holds.
This sample set is denoted by FSgample in the following. In the use cases, a sample set
with 100 equidistantly distributed points between fspi, and fsmax worked well.

With this, we have all the parts together to specify a constraint such that (S-T2) is
"approximately" satisfied. For this, recall that the super fixed point vector i** (.AT(X), H)
is approximated by i™=*N (i i, A7 (x), H).

(C-T2) ‘Awp (fs, jmactN (G 0,AT(X),H),’H> —Atarget(fs)‘ < Awp.tol for all fs € FSeample
and for all H € Usq.
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Specification (S5-T3) This specification is related to combustion limits with respect to
the CO emission and to the equivalence AFR. The corresponding constraints for the case
with tolerances are derived analogously to the nominal case by considering the CO iterates
and the X iterates, see also Section 8.5.2. For this, we adapt the notation of the CO
iterates (Definition 8.44) and of the X iterates (Definition 8.47) such that the dependency
on the set of ADA pairs A and on the HE model H is reflected. As with all adapted
notations in this section, the underlying definitions are not changed. In particular, the
statements of Corollaries 8.45 and 8.48 remain valid.

Notation 8.79 Let A = {(sP, tP,i£, i) : p € [N]} be a set of N ADA pairs and let H be
an HE model. Furthermore, let 7”,1 be an input vector and let u be an infinite ADA update
sequence.

The corresponding n-th start and test CO iterates according to Definition 8.44 are denoted
by co’;(?t,in, u, A H) and co’g(ﬂ,in, u, A, H), respectively.

The corresponding n-th start and test A iterates according to Definition 8.47 are denoted
by X2(iyin, u, A, () and N2 (i in, u, A, H), respectively.

In contrast to the nominal case, in the case with tolerances it is in general not sufficient
to check the combustion limits for certain inputs only. Rather, for each tolerance HE
model H, H € Uio, we have to check that comax and Amax are never exceeded and that
the equivalence AFR never falls below A, in each ADA iteration. Recall from Remark 8.72
that we are only interested in the first nnax + N ADA iterations. Therefore, it is sufficient
to check that the CO and X iterates are within the specified limits for the first nmax + N
iterations. The corresponding constraints are as follows.

(C-T3) For all H € Uy and for all n € [Mmax + N]:
COZ (7t,inx U, .AT(X), H) S COmax: COZ (?t,inv L7, AT(X), H) S COmax-
= A2 (igjn, G, AT(X),H) < =Amine A2 (it 0, AT(X), H) < Amax,
- >\It7 (/it,inr [j, AT(X)r H) S _>\minv A? (/it,inr gv AT(X)v H) S >\max-

Specification (S-T4) This specification is related to the set of feasible gas valve positions
Ggs and to the ioni current functions i, fs € FS, of the tolerance HE models H, H € Uq.
The corresponding constraints are analogous to (C-S4).

(C'T4) For all H = (FSv(Gfs)fseFSv(Lfs)fsEFSv(/\fs)fseFSv(Cfs)fseFS) € Uy and for all
ADA pairs (sP, tP,i£,if) € Ar(x), p € [N]:

mintsp(Gsp) —if <0,  —maxier(Gsr) + P <0 and
min Ltp(th) — I'f < 0, — max Ltp(th) + ftp < 0.
8.7.5. Feasible Set

As stated at the beginning of Section 8.7.2, the objective criteria (O1) to (O3) as well as
the specifications (S1) to (S7) from the nominal case must still be satisfied with respect
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8.7 Optimization Model for the Case with Tolerances

to the nominal HE model. Therefore, regarding the nominal HE model H,om the feasible
sets X7, p € [N], from (nom-P7 ) are reused. To make clear that the sets X7,
p € [N] refer to a certain HE model the following notation is introduced.

Notation 8.80 Let H = (FS, (Gfs)tsers. (ts)mers. (Ass)fsers. (Crs)rsers) be an HE model
and let p € [N]. We denote by X%,D (H) the situation where the functions N¢s, tfs and (ss
of H specify the considered feasible set X %rg according to Definition 8.52.

With this, we have all the parts together to define the set of feasible solutions for the
optimization model with tolerances.

Definition 8.81 Let N € IN be fixed. Let T = {t!,..., tN} be a set of feasible test fan
speeds and let rp > 0. Let Amin, Amax, COmax, DAAmin, Awp.tol, Mmax, fthr @nd FSsample
be the combustion limits and approximation parameters specified by the decision makers.
Let Hoom be a nominal HE model and let U;o be a collection of k tolerance HE models,
k € No. Furthermore, let iy, = (il, ..., iNY and let i = (1, ..., N,1...,N,...) be the
periodic ADA update sequence as defined in Notation 8.67.

The corresponding set of feasible solutions with respect to tolerances, which is denoted
by XtT‘f',D (Hnom, Usor), is defined as the set of all vectors

x= (st it ik, .., sN il Ny e R3N
such that all of the following constraints are satisfied:
(C-R1) — (C-R3) and (C-S1) — (C-S7) (sP,i8,iP) e X%,D(”Hnom) YV pe[N]
and for all H € Uy :

(CTLL) ™= (i, G AT (x), H) — iV G, 8, AT (), H)|| < et
(C-T12) LT, 4(x)<1—eVpe[N] (e>0smallbut fixed),
(C'TQ) ‘Atol (fS, inmaX+N(7t,in, i, AT(X)r H),?‘[) - Atarget(fs)‘ < >\wp,tol V fs € FSsampIe,

(C-T3) cof (igin, T, AT(x), H) < COmax ¥ 1 € [Mmax + NI, k € {s, t},
= Mg (itin, 0, AT(X), 1) < =Amin ¥ 1 € [Amax + N], k € {s, t},
AR (it ins 0, AT(X), 1) < Amax ¥ 1 € [nmax + N1, k € {s, t},
(C-T4) min txp(Gee) — if <0V p € [N], k € {s, t},
—max ke (Gie) +if <OV pe[N] k e{s, t}.

With the set of feasible solutions defined, we detail the objective functions next.

8.7.6. Objective Functions

As delineated at the end of Section 8.7.1, the decision makers argue that optimal con-
vergence characteristics of the ADA pairs with the nominal HE model is most important.
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They do not want to improve convergence characteristics with tolerance HE models at the
prize of worsened convergence characteristics for the nominal HE model. Therefore, the
objective functions remain unchanged, i.e., we minimize the Lipschitz constant of A’,’D and
the start point increment Aspmcr of each ADA pair p, p € [N], with respect to the nominal
HE model Hnom.

However, because we cannot consider the ADA pairs individually anymore, we have to mini-
mize both objective functions for all N ADA pairs simultaneously, i.e., we have 2N objective
functions and not two as in (nom—PTper). Furthermore, we have to slightly modify the def-
initions of the objective functions £7 | _ (Definition 8.17) and Sp _ (Definition 8.59) to
make them compatible with the fea5|ble set with respect to tolerances Xto' (Hnom Uro)).

Definition 8.82 For x = (s, i}, i}, .. ., sV i i) € X, (Hoom, Usar) and p € [N], we
define
L7, (x) = L5 (P8 iY)  and ST (x) = S, (Pl i),

where L’%’rD and S?-,,D are related to the nominal HE model Hnom.

Lemma 8.83 The functions L, and ST, are well-defined for all p € [N].

Proof. Let x = (s*, i}, i}, ..., sN N iy e XtT‘?'rD(Hnom,Utd). By construction, we have
(sPig.if) € XT, (Hnom) for all p € [N] (Definition 8.81). Because X7 _ (Hnom) is
the domain of S7  (Definition 8.59) and R? is the domain of £} (Definition 8.17),

L7, (x) and ST, (x) are well-defined for all p € [N]. O

With this, we can finally formulate the ADA optimization model with respect to toler-
ances.

8.7.7. The Optimization Model with Respect to Tolerances

The proposed optimization model to optimize the ADA parameters with respect to toler-
ances is as follows.

Definition 8.84 Let N € IN be fixed. Let T = {t', ..., tNY be a set of feasible test fan
speeds and let rp > 0. Let Amin, Amax, COmax, AAmin, Awp.tol, NMmax, lehr @and FSsample
be the combustion limits and approximation parameters specified by the decision makers.
Let Hnom be a nominal HE model and let Uio be a collection of k tolerance HE models,
k € INp.

The corresponding ADA optimization problem with respect to tolerances is defined by

xextO'mm frl(x) = (F°'(x), ..., £9(x)) (tol-Pr,.)

T 1) (,Hnom yl/{tol)
with

SN

oo TR0 ifkE{L . N
f0(x) = .
TrD (x) ifke{N+1,. .., 2N}
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Remark 8.85 Note that the order of the objective functions is irrelevant with respect to
Pareto optimality.

A method how to approximate the Pareto front of (tol-Pr ,,) is proposed in the following
Chapter 9. But before that, the differences and similarities between the two optimization
models (nom—PﬁyrD) and (tol-Pr ) are briefly discussed.

8.8. Comparison of the Two Optimization Models

Let us suppose that we want to optimize N ADA pairs. Because the super fixed point
vector has to be determined with the recursion according to Definition 7.14 in the case
of tolerances, we cannot decouple the ADA pairs in the optimization model with tol-
erances (tol-Pr,,). Accordingly, the problem (tol-Pr,,) is much more complex than
(nom—P{i’rD). In (tol-Pr ), the decision space is 3N-dimensional and the objective space
is 2N-dimensional. In contrast, the decision space and the objective space of the problems
(nom—PﬁyrD) are three-dimensional and two-dimensional, respectively, for p € [N]. How-
ever, we have to solve the problem (nom—P{i’rD) for all p € [N], i.e., we have to solve N
biobjective optimization problems in the nominal case.

The totality of all N problems (nom—PﬁyrD), p € [N], can be interpreted as a special case
of the more complex problem (tol-Pr,,). If the uncertainty set Ui is empty, i.e., if we
only have a nominal HE model but no tolerance HE models, then every combination of
exactly one Pareto optimal solution from each (nom—PT”'rD), p € [N], can be combined to
a Pareto optimal solution of (tol-Pr,,,) and vice versa.

For this, we first show that the Pareto optimal solutions of (nom—PTp,rD) and (tol-Pr )
correspond to each other in a certain sense if Ui = 0.

Lemma 8.86 Let a nominal HE model Hnom be given and let Uy = 0. Furthermore, let
T={¢ .. tNY be a set of feasible test fan speeds and let rp > 0. Let XtT‘?'rD (Hnom, Usol)
be the corresponding feasible set with respect to tolerances. Then,

(P02 if) € XB . (Hnom) ¥ P € [N] & (s s i¢, ..., sMl i) € XL (Hnom. Ural).

Proof. The statement follows from the constraint (s, i, i) € X7, (Hnom) for all p € [N]
in Definition 8.81 and from the fact that the remaining constraints (C-T1.1) to (C-T4)
in Definition 8.81 do not apply in the case Uio = 0. O

With this, we can show that the totality of Pareto optimal solutions of (nom—PT”'rD),
p € [N], and the Pareto optimal solutions of (tol-Pr ,,) correspond to each other in the
case Upol = 0.

Theorem 8.87 Let a nominal HE model H,om be given and let Uy = 0. Furthermore, let
T ={t', ... tN} be a set of feasible test fan speeds and let rp > 0.

If (nom—PﬁyrD) is related to Hnom for all p € [N] and (tol-Pr ) is related to Hnom as well
as to Uyo, then the following two statements are equivalent:
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1. xP* = (sP*, /0% iP™) is Pareto optimal with respect to (nom- P7’2 )V pe[N].
2. x* = (st ibx itx, . s NN s Pareto optimal with respect to (tol-Pr.).

Proof. "1. = 2." For all p € [N] let xP* = (sP*, /2", ™) be Pareto optimal with respect
to (nom-P7 ). Let x* == (sb*, il*,il*, ... ,s’V*, S’V* iN*). According to Lemma 8.86,
x* € X% (Hnom, Usal), i.e., x* is feasible with respect to (tol-Pr,,).

Let us suppose that x* is not Pareto optimal with respect to (tol-Pr,,). Then, there
exists X = (X1, i, i}, ..., SNYiY) € X80, (Hnom. Utor) such that £OI(x) < F©I(x*), ie.,

frol(x) < fl(x*) for all j € [2N] and there exists j € [2N] such that £°'(x) < £f°!(x*).
Without loss of generality, let j = 1. Then, ff°(X) < ff°!(x*) and fi,(x) < fto'l(x*)
According to Definitions 8.84 and 8.82, we have

1 =1 71 ~1 1 1, -1, -1, 1 =1 =71 71 1 1, -1 1
Ly, (LT < £h, (87 0k) and S, (8NN < SE (s ib).

Because X' = (51,1}, i}) € X7, (Lemma 8.86), this implies "™ 1(x1) < from.1(x1*)
(Definition 8.61). This is a contradiction to x!'* being Pareto optimal with respect to
(nom—P#yrD) with p = 1. Thus, x* has to be Pareto optimal with respect to (tol-Pr ).
"2, = 1. Let x* == (sb¥, ib* ib*, . sNx N+ iN*Y be Pareto optimal with respect to
(tol-Pr ). Then, xP* = (sP*, i, i”") € X7, forall p € [N] (Lemma 8.86).
Let us suppose that there exists p € [N] such that xP* is not Pareto optimal with respect
to (nom—PT”,rD). Without loss of generality, let p = 1. Then, there exists x* = (5%, 1}, 7}) €
X7, such that from-1(g) < From1(x1*) We set

X = (5L, 0L, 0}, s%%, 2k j2x, o gl Nk iy
Then, X € Xto' o (Hnom, Uror) (Lemma 8.86) and ftol(%) is well-defined. By construction,
and because f“om L(x1) < fromI(x1*) we have (%) < ftl(x*) for all i € [2N].
Furthermore, by considering Definitions 8.61, 8.82 and 8.84 as well as f"o™-1(x1) <
from-1(x1*), we have ffol(x) < ff(x*) or fi (X) < fi%,(x*). In total, X dominates
x*. This is a contradiction to x* being Pareto optimal with respect to (tol-Pr,,) and
thus xP* = (sP*, 2", iP™) has to be Pareto optimal with respect to (nom—P7’3er) for all
p € [N]. O

This concludes the chapter on modeling the optimization of the ADA parameters. In the
following chapter, two methods to approximate the Pareto fronts of the ADA optimization
problems are proposed, one for (nom—PT”,rD) and one for (tol-Pr,,).
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In this chapter, algorithms to solve the problems (nom—P7’3'rD) and (tol-Pr,,,) are proposed.
Recall that both problems are multiobjective optimization problems. In the book Multiob-
Jective Optimization [Bra+08], several desirable properties of multiobjective optimization
methods are listed. Among others, "the method should generate Pareto optimal solutions
reliably, it should help the DM to get an overview of the set of Pareto optimal solutions, it
should not require too much time from the DM . . . and the method should support the DM
in finding the most preferred solution as the final one so that the DM could be convinced
of its relative goodness." [Bra+08, p. 2]. These requirements were kept in mind when
developing and selecting the algorithms presented in this chapter.

Two common approaches in multiobjective optimization are a priori methods and a pos-
teriori methods [Bra+08, p. 3]: "In a priori methods, the DM first articulates preference
information and one’s aspirations and then the solution process tries to find a Pareto op-
timal solution satisfying them as well as possible. This is a straightforward approach but
the difficulty is that the DM does not necessarily know the possibilities and limitations
of the problem beforehand and may have too optimistic or pessimistic expectations." In
contrast, in a posteriori methods "a representation of the set of Pareto optimal solutions
is first generated and then the DM is supposed to select the most preferred one among
them" [Bra+08, p. 3]. The a posteriori approach has the advantage that the DMs have
the information about the trade-offs between different solutions available and can select
the best compromise according to their preferences. However, "if there are more than two
objectives in the problem, it may be difficult for the DM to analyze the large amount of
information ... and, on the other hand, generating the set of Pareto optimal solutions may
be computationally expensive." [Bra+08, p. 3].

Because the DMs are interested in the trade-off information and they cannot specify aspi-
ration levels in advance, only the a posteriori approach is considered here. Therefore, we
are interested in finding good representations of the sets of Pareto optimal solutions of
(nom-P7 ) and (tol-Pr ) [Bra+08, p. 15].

9.1. Solving the Nominal ADA Optimization Problem

The problem (nom-P2 ,,) 1S @ constrained, continuous, nonlinear, biobjective optimization
problem. Furthermore, we have to consider the following aspects.

e In general, the Pareto front of (nom-P7? rp) 1S NOt convex, which is demonstrated in
Subsection 9.1.4 below.
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e Multimodality cannot be excluded.

e Depending on the regression/interpolation method used for the HE model, the objec-
tive functions and the constraints of (nom—PT”,rD) are not differentiable everywhere in
general. For instance, this is the case if an interpolation method is used that is based
on a piecewise linear interpolation. Even if the HE model consists of differentiable
functions, the objective functions and the constraints will usually be not available
as an analytical expressions. Rather, they can be considered as black box functions.
Therefore, a symbolic differentiation or automatic differentiation of the functions is
not possible in general. However, numerical differentiation by finite differences can
usually be applied.

Taking all these aspects into account, only derivative-free methods are investigated, i.e.,
gradient-based methods are not considered in this work.

Two common derivative-free approaches in multiobjective optimization are direct search
methods and evolutionary multiobjective optimization algorithms [CEM12, p. 3]. Another
common approach to solve multiobjective optimization problems, which can be combined
with derivative-free methods, is based on scalarization [Eic21, p. 3]. As delineated in Sec-
tion 4.1, a scalarization combines all objective functions of a multiobjective problem into
a single ohjective function.

Two of the most popular scalarization methods are the weighted-sum scalarization and
the e-constraint scalarization [Eic21, p. 4]. Both methods are introduced and discussed
in Sections 4.1.2 and 4.1.3, respectively. As stated in Remark 4.23, the weighted-sum
scalarization generally does not find all Pareto optimal solutions if the multiobjective op-
timization problem is nonconvex. Because the Pareto front of (nom—PﬁyrD) IS not convex
in general, the weighted-sum scalarization is not used in this work. In contrast, the e-
constraint scalarization can find Pareto optimal solutions in the nonconvex part of the
Pareto front. However, a difficulty with the e-constraint scalarization is to chose suit-
able e-vectors [Deb01, p. 58], [Eic21, p. 13]. The e-vectors must be selected such that
their components are within the corresponding objective functions’ minimum and maxi-
mum value. In particular, with an increased number of objectives it might become more
difficult to specify suitable e-vectors [Deb01, p. 58].

In the course of this section, we show that the biobjective problem (nom—PT”'rD) has a
certain structure, which allows to specify tight bounds for its second objective function.
With this, a combination of a simple direct search method and a modified e-constraint
scalarization is proposed to solve (nom—Pﬁer), which is presented in the following.

9.1.1. Idea Behind the Proposed Method to Solve (nom-FP7 )

The idea behind the proposed algorithm to solve (nom—Pﬁer) is based on two observations.
For this, let p € [N]. Recall that for a given set of feasible test fan speeds T and a drift
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resistance rp > 0 the feasible set to optimize ADA pair p is X%rD according to Defini-
tion 8.52. l.e., the decision space is three-dimensional with the three decision variables s”,
£ and iP.

The first observation is that as soon as the start fan speed s” and one of the two ioni
currents are selected, the remaining ioni current follows from the feasibility condition
Lot (i) = 13,1 (i) according to (C-R1) in Definition 8.52. We have

sP and iP given = i’ = 1o (iP) aswellas sP and if given = iP =01t (iF).
(9.1)

It is therefore possible to consider a two-dimensional search space, even though the decision

space is three-dimensional.

The second observation is related to the second objective function of (nom—PT”,rD). Recall

from Definitions 8.59 and 8.61 that for x = (s, i£,i’) € Xt.,,, we have

FOMP(x) = 8P, (57 12,18) = oo (121 (1)) = Ao (15 (5ex(57)) )

= A (5(12) = Ao (132 (ea(s7) ). (9.2)

where the second line follows from the feasibility condition ¢2,*(if) = 5" (if). According
to (9.2), the second objective function depends on sP and if only, i.e., it is independent
of tP and if. Furthermore, because Ag is a homeomorphism, the corresponding start ioni
current x, = if can be calculated from x; = sP and from the function value £,°""?(x).
This allows us to define a two-dimensional set whose components are the start fan speed
and the start point increment that is equivalent to X%rD in the sense that there exists a
bijection between the two-dimensional set and X%rD. This is formalized in the following
definition. Because the second objective function corresponds to the start point increment,

its function value is denoted by >‘§,incr in the following, see also Definition 8.33 above.

Definition 9.1 Let p € [N] and let a set of feasible test fan speeds T as well as a drift
resistance rp > 0 be given. The corresponding set of feasible start points is defined by

ps . P 2. _ p P P nom,p .y _ 3P
XT,rD '_ {(Sp' >\5,incr) ceR:3dx= (Sp’ Ié)’ It) € XT,rD s.t. f2 (X) - As,incr}'
The corresponding transformation function is defined by

TP - X%rD — X%iD, x=(sP P, i) — (sp, 7‘2"°m’p(x)).

Lemma 9.2 The set X?’jD and the function TP are well-defined. Furthermore, TP is
bijective. If x = (TP)71(sP, A\ ), then

s,incr
x1 =5, xo=twoAy (A‘S”mcr + Ao (L_;l (iset(sp)))> and x3 =t oty (x) (9.3)

for all (sP, As.incr) € X%fD.
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Proof. According to Definitions 8.59 and 8.61, the set X%rD is the domain of the second
objective function £,°™ " In particular, £,°""" is well-defined (Lemma 8.60). Therefore,
X%iD and TP are well-defined. Next, we show that 7° is bijective.

Surjective: TP is surjective by construction of the set X?’jD.

Injective: Let x = (sP1,if%, i) and x2 = (sP2,i£?,iP"?) such that x*, x? € X% and
TP(x') = 7P(x2). Then, we have sP! = sP2 and £,°P(x) = £°"P(x2). By applying
(9.2), we have

Aaot (15 (121)) = Ao (1555 (et (7)) ) = Asnz (155(122)) = Ao (151 (et (572)) ).
With additional consideration of sP! = sP2, we obtain

sPl=sP2 = Ao (l’;?.ll (iset(sp'l))) = Agp2 (";).12 (iset(sp'2))>

= /\Sp,l ((’;):.ll (/5’1)) — /\SP‘Q (L;,:_I-Q (/5’2))

0,1 _ p2
= Is'm =15,

where the last implication follows from the fact that Ag.1 and g1 are bijections.
Finally, by applying (9.1), we have

0,1 _ . — . -p,2
P =t o Lsp_ll(/f’l) =i O Lsp_lg(lsp’2) =i
In total, xI = x2 holds and 77 is injective.
It remains to show that (9.3) is correct. Let (s”,X?; ) € X7} . Because 77 is bijective,
there exists a unique x = (s, i, if) € X7 such that £, *(x) = X7 Note that

x1 = sP by construction. By applying (9.2), we have e
FOMP(x) = TP (58,12, 1)) = Ao (152 (i2)) = Ao (155 (et(5°)) ) = A2 ey
S xo=1P =10, <>\§vmcr + Agp (Lspl(/set(sp))))
Finally, x3 = if = 1pp 0 1," (i) follows from (9.1). O

With this, we can reformulate (nom—PTper) to an optimization problem that is in a certain
sense equivalent but less complex, which is thus called the simplified nominal model. For
this, we define two objective functions that correspond to the nominal objective functions
fi°" " and £;°7? but that have the domain X7} instead of X7 .

Definition 9.3 Let T = {t!, ..., tNY be a set of feasible test fan speeds and let rp > 0.
For p € [N], we define

. , ) , 1 , - ’ _1
el X%iD - R, FMP(sP, Ag,incr) =P o (TP)TH(sP, A?,incr)’

sim,p . vp.S sim.pr.p P )
f2 : XT,rD - R' f2 (5 '>‘s,incr) '_ >‘s,incr

and
fsim,p : Xfl)",iD N Rz, fsim,p — (flsim,p, fzsim,p)_
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Lemma 9.4 [et T = {t!, .., tN1 be a set of feasible test fan speeds, let rp > 0 and let
p € [N]. Then,

fnom,p — fsim,p oT? and fsim,p — fnom,p o (’Tp)_l.
In particular, the functions fo™ ", 5™ and fS™ P are well-defined.

Proof. That 5™ is well-defined follows from the facts that (7°) ! : Xg = XT,. s
well-defined and that X7 is the domain of ™. The function £5M? is the second
projection map, which is well-defined even on ]RQ. With this, S™? is also well-defined.
Next, we show component-wise that fSm-? = £1oM.P o (7P)~1 We have o™ = M P o
(7P)~! by construction (Definition 9.3). To show that £5™* = f"om P o (T”) 1 et
(8P, N2 iner) € X523 According to Lemma 9.2, we have (’Tp) L(sP A2 i) = (P i€ i)
with

s,incr

iP =10 NG (A‘S’mcr + Aep (L;l(iset(s”)))> and i =t oL (iP).

By plugging (s”, i, if) into £7°™" and by considering that ¢,," (i) = 5, (if), we obtain
with Definitions 8.59 and 8.61

f2nom ,p(spy g, ’f) = Asp (Lt_nl(if)) — Ngp (Lsp (’set(sp))> /\SP( 5/31(’ )) — Ngp (L;Jl (/set(sp)))
=Agp 0Lt oL 0 A ()JS’ iner F Asp (Ls_pl (iset(s”))>> — Agp (Ls_pl (iset(sp)))

= Agmcr + /\Sp ([’S_pl (iset(sp))) - /\Sp (1’5_"1 (iset(sp))> - Agmcr

- fSIm p(sp >‘s |ncr)
Therefore, £5™ P = £1°™P o (77)~1 holds and thus f5™-? = f"°™.P o (7°)~1 holds as well.
With this, we finally have f10M-P = f1om.p o (7P)~Lo 7P = fSM.P o 7P H
Definition 9.5 Let T = {t!, ..., tN} be a set of feasible test fan speeds and let rp > 0.

The simplified nominal optimization problem for ADA pair p, p € [N], is defined by

min (fs'm P(sP AP
(sP. AP yexPs

s,Incr

s, |ncr) fSIm p(sp >\S |ncr) = >\S |ncr) (Slmple_P_,lz,rD)

T.rp

Remark 9.6 The problem (simple—Pﬁer) may be expected to be less complex than the
problem (nom—Pﬁer), because its feasible set is two-dimensional and its second objective
function is simply the projection of a feasible solution to its second component.

However, eva/uat/ng the first objective function fo™ (s, AL iner) (and also evaluating
f°MP(sP,iP,i0)) is expected to be computationally expensive. Recall that these objec-
tive functions correspond to the determination of the Lipschitz constant LP of the ADA
iteration function AP. Since AP is usually not available as an analytical expression, we have
to approximate LP by finite differences, i.e., we have to evaluate AP several times. The
computational costs to evaluate AP in turn depend on the selected HE model, because AP
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is composed of the two HE model functions Lo rp AN Ltp . Therefore, the computational
costs of evaluating the HE model are crucial for the computational costs of the proposed
ADA optimization methods.

With this, (simple—Pﬁer) is a so-called heterogeneous problem [Eic21, p. 4]. Its first ob-
jective function is computationally expensive to evaluate, while an evaluation of its second
objective function as a projection is computationally cheap (almost for free).

The following lemma and corollary state how the Pareto optimal solutions and the Pareto
fronts of (nom-P7 ) and (simple-P7 ) are related.

Lemma 9.7 Let T = {t', ..., t"} be a set of feasible test fan speeds, let rp > 0 and let
p € [N].

Then, x* € X?ID is Pareto optimal with respect to (nom—P7’3'rD) if and only if TP(x*) is
Pareto optimal with respect to (simple—Pﬁer).

Proof. By considering that f"°M-P = fSM.-P o 7P (Lemma 9.4), we have

x" Pareto optimal wrt. (nom-P7 )
S PxeXP o fOMP(x) < FIOMP(x")
S PxeXl, P oTP(x) < FIMPorP(x*)
= :}ﬂ X € X%iD = Tp(Xé)',rD) : fsim,p()—() < fFsim.p O,rp(X*)

& TP(x*) Pareto optimal wrt. (Simple"DTp,fD)'
]

Corollary 9.8 Let Y{{(X7 ) be the Pareto front of (nom-P7 ) and let Y,\’;(X%iD) be the
Pareto front of (simple-P7 ). Then, Yy(X7 ) =Y{(XP) ).

Proof. This follows directly from Lemma 9.7. "C" Let y € Yy (X7, ). Then, there exists
Pareto optimal x € X%rD such that f"°™P(x) = y. By applying Lemma 9.7, we know
that 7P(x) is Pareto optimal with respect to (simple—Pﬁ,D). Therefore, £5™P o 7P(x) =
from:P(x) = y must be in the Pareto front of (simple-Py ).

"D Lety € (X573 ). Then, there exists Pareto optimal x € X7:3 such that £5™-?(x) =
y. By applying Lemma 9.7, we know that (7°)~1(x) is Pareto optimal with respect to
(nom—P#yrD). Therefore, f™°™P o (7P)~1(x) = 5™ P(x) = y must be in the Pareto front
of (nom—PTp’rD). ]

Lemma 9.7 and Corollary 9.8 justify the approach to focus on (simple—P7’3'rD) in order
to solve (nom—P7’3'rD). The approach taken in this work is to approximate the Pareto

front of (simple—Pﬁer) with a variant of the g-constraint scalarization. We keep the first
objective function ffim’p and move the second objective function as an equality constraint
for certain start point increment samples A’S)’mcr to the constraint set. This method differs
from the classical e-constraint scalarization, which is presented in Section 4.1.3, in that the

restriction of f;im’p is formulated as an equation and not as an inequality. The advantage
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of adding f;im’p as an equality constraint is that the corresponding scalarized problem
has a one-dimensional search space, see also Remark 9.12 below. In contrast, if £5™”
is added as an inequality constraint, then the scalarized problem's search space is two-
dimensional. However, this comes at the price that an optimal solution of a scalarized
problem with f;im’p as an equality constraint is in general not Pareto optimal with respect
to (simple—PﬁyrD). In Lemma 9.18 below, it is shown that an optimal solution of such a

scalarized problem is Pareto optimal with respect to (simple—PT” rD) if the Pareto front of
(simple-P? ,,) is connected and the equality constraint with respect to f;im’p is selected

such that the value of f;im"’ is between the ideal point and the nadir point.
The corresponding algorithm is presented first. It is then demonstrated in a use case.
Thereafter, its advantages and disadvantages are discussed.

9.1.2. Proposed Algorithm to Solve (nom-P7 )

First, we define the scalarized problem.

Definition 9.9 For a given ex € R, we define the corresponding scalarized variant of
(simple-P7 ) by
min 2™ P(sP g5). simple-P2 (&
(SP,EQ)GX_FI)':iD ' ( 2) ( p T’rD( 2))

Remark 9.10 An equivalent but less concise variant of (simple—P}”rD (e2)) is

; SIM.prep \P p
(sP >\Pm|)neXP,s fl (s '>‘s,incr) s.t. >\s,incr
s, incr T.rp

= £&7.

Remark 9.11 Depending on the selection of g5, the problem (simple—P7"i’,D (€2)) might not
be feasible. A mitigation of this issue is discussed in Remark 9.14 below.

Remark 9.12 The problem (simple—PﬁyrD (g2)) has a one-dimensional search space in the
sense that the only free decision variable is sP.

Because we want to solve (simple-P? r,(€2)) for several values of €5, we need a corre-
sponding sample set.

Notation 9.13 The start point increment sample set is denoted by Sy» . It is implicitly
assumed that the sample set is finite and that its elements are in strictwcirncreas/ng order,
ie., Sy = ANDL NDE Y with AP < DAY for all i € [n — 1], where n is the
cardinality of Sy

s.incr

Remark 9.14 It is possible to state "good" bounds for the sample set Sy»  such that the

risk of infeasibilty of (simple—Pﬁer (g2)) Is reduced without being too restrictive. According
to Lemma 8.60, we have Ny . = S%rD (x) >0 forallx € X%rD. Therefore, it is suggested
to select Syp  such that minSyr = 0.

s,Incr s,Incr

Regarding the maximal element of Syr , recall from Lemma 8.35 that a start point

s,Incr
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increment of zero corresponds to the equivalence AFR that results from the control curve
and the start fan speed sP. For all fan speeds, the AFR corresponding to the control
curve is usually greater or equal to A = 1.3, see also Sections 2.2 and 2.3.3. On the
other hand, the equivalence AFR must not be greater than Amax according to (C-S3) in
Definition 8.52. Usually, we have Amax = 1.6 according to (S3). Therefore, it is suggested
to select Sy such that maxSye = Amax —1.3=10.3.

Note that these suggestions do not guarantee feasibility of (simple—P{?rD (g2)) fores €
SA?W. Rather, feasibility is more likely for such €, compared to the general cases €5 € R

orex € Rxo. Of course, if a different Amax IS considered or if the control curve is changed,
it may make sense to revise the upper bound of the sample set.

Remark 9.15 The exploration of the Pareto front of (simple—PT”'rD) (and thus also of
(nom—P{f’rD) ) with respect to the second objective can be controlled with the selection
of the set Syp . This is possible, because the elements of Syr  are used as additional
equality constraints for the second objective. For instance, if a Uniform exploration of the
Pareto front with respect to the second objective is desired, a uniform spacing in Sx_,..
is suggested. Or if one is particularly interested in a solution with a small start point
increment, the spacing of Sy_, . could be selected such that it is dense for small start
point increments and sparse for larger start point increments.

In all cases, the selected spacing is a compromise between accuracy and computation time.

A good compromise for a uniform spacing 1S AXs incr = 0.001 to Al jner = 0.005.

With this, Algorithm 9.1 to find an approximation of the set of Pareto optimal solutions
of (simple—PﬁrD) is proposed. The framework of Algorithm 9.1 is straightforward. For
each A, € Sxe . the scalarized problem (simple-P7 (g2)) is solved with &2 =AY, .
Because we are in the biobjective case and the elements in Sy»  follow an increasing

s,Incr

order, we can simultaneously filter the results for Pareto nondominance.

Remark 9.16 /f the problem (simple—PﬁrD (e2)) has an optimal solution that is not unique,
then one arbitrary solution of the set of optimal solutions may be selected and added to
the set of approximated efficient solutions in Line 9 of Algorithm 9.1. However, the case
that the optimal solution of (simple—PTp’rD (e2)) is not unique is considered very unlikely in
practice for numerical reasons alone.

Algorithm 9.1 is rather a heuristic and only approximates the set of efficient solutions of
(simple—PﬁyrD). Nevertheless, some theoretical statements about its output with respect
to Pareto nondominance as well as Pareto optimality are possible.

Lemma 9.17 Let X% be the output of Algorithm 9.1. If XZ. is nonempty, then all
elements in fSim'p()N(gfr) are (within this set) nondominated.

Proof. Let X% be nonempty. Let us suppose there exists x = (8P N0 iner) € XP: such

that £$MP(x) is dominated in f5M?(X5.). Then there exists x* = (sP* Noier) € XP

such that FSIMP(x*) < F5MP(x), ie., £™P(x*) < 7™ P(x) and £ P(x*) < £ (x)
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Algorithm 9.1 Algorithm to Approximate the Set of Efficient Solutions of (simple—PﬁyrD)

Input:
1 Sye = {AY SO ADne} ]/ start point increment sample set in increasing order
Calculaflli?lcéms:
2 X e 0 // set of approximated efficient solutions
3. P8+ o0 // incumbent best value of first objective function
4: forall i =1to ndo
5: Ep <— )\? |lncr
6: solve (simple-P7, (€2))
7: if (simple—PgrD(sz)) has an optimal solution s”* with the function value f;* then
8: if £ < £7°' then
o Xegr < Xeg U{(s”7, 22 )
10: fpest « ¥
11 end if
12: end if
13: end for
Output:
14: )?gff // approximated efficient solutions of (simple—PﬁrD)

Sirn,p _ P
s,incr and f (X) >‘s incrr we have

must be contained in the sample set Sy

S, incr

and £SM-P(x*) = £SM.P(x). Because fs'm Px*) = A
APE < A\P Note that A\  and Ap

S, incr — S, incr- S, incr S, incr
because otherwise they cannot be a part of the output of Algorithm 9.1.

Let us suppose that A?* < AP In the for-loop in Line 4 of Algorithm 9.1 the elements

s,incr s,incr*

of Syr_are selected in increasing order, thus A7\  is selected before A7, in this case.
s,incr ’

But then (s?,A\?, ) can only be added to X% if 7™ (x) < £™P(x*) according to

s,incr

Line 8 of Algorithm 9.1. This is a contradiction to FEMP(x*) < FIMP(x).
Next, let us suppose that ;"™ P(x*) < 7™ P(x). Then, (sP* AP ) is added to X%

s,Incr

after the point (sP, AP ) according to Line 8 of Algorithm 9.1. Because in the for-loop

s,incr
in Line 4 of Algorithm 9.1 the elements of SAp are taken in a strictly increasing order,

p p.* p.* p
we have As iner < )\S incr- 1 hisis a contrad|ct|on to >\5 inar < >\S incr-

Since all cases lead to a contradiction, there cannot be a dominated point in 5™ P(X f)

If the samples in S5,r  are selected such that they are between the ideal and the nadir

point and if the Pareto front of (simple—P}’,rD) is connected, then all points in the output
of Algorithm 9.1 are efficient with respect to (simple—PT”'rD).

Lemma 9.18 Let (P!, X*| ) be the ideal point and let (sPN, AP ) pe the nadir point

S,Incr s,incr

of (simple-P7 ). Let Sy»  be such that AL < minSye  and max Sy < APN

s,Incr S,incr s,Incr 5 incr S, incr-

Let )?é’ff be the corresponding output of Algorithm 9.1.
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If the Pareto front of (simple—PﬁyrD) is connected, then X % is a subset of the efficient
solutions of (simple-P7 ).

Proof. Let the Pareto front of (simple—Pﬁy,D) be connected. Let us suppose that there

Ciner) € XP. that is not Pareto optimal with respect to (simple-P7 ).

* v P p.¥ p./ p.* p.N
Because x* € X, we have >‘s,incr € ngm and thus >‘s,incr < >‘s,incr < As'incr. Because the

exists x* = (sP*, A

Pareto front is connected, for all A iner € [Asp:i’ncr, Asp:i'r\]’cr] there exists a Pareto optimal so-

lution x € X%fD whose second component is A”** _according to Lemma 4.18. Therefore,

s,incr
. . . s _ (=P P . ip _ p,* —
there exists a Pareto optimal solution X = (5 ,As’incr) with >‘s,inc_r = A§'iner- Because X is

; * ip oy P* - Sim,pr=y _ £SIM,pr_x
Pareto optimal and x* is not and because A .. = Ay, e, i P (X) =1, P (x*), we

have £ () < f2™P(x*). This means that X is an optimal solution of (simple-P7, (€2))

for e == X2, .. = AZ7 . and x* is not (Definition 9.9). But then the solution X and not
the solution x* is added to Xé’ﬁ according to Line 7 of Algorithm 9.1, i.e., x* ¢ ngf. This
is a contradiction to x* € X%. O

In practice, the requirements of Lemma 9.18 are not always satisfied. On the one hand,
the ideal point and the nadir point are not known in advance in general and thus it may be
difficult to specify the sample set ngim accordingly. On the other hand, the Pareto front
of (simple—PﬁyrD) is not always connected. This is illustrated in Subsection 9.1.4, where
Algorithm 9.1 is demonstrated in a use case.

But first, another aspect of Algorithm 9.1 is considered. In Line 6 of Algorithm 9.1, the
scalarized problem (simple—Pﬁer(sz)) must be solved and we need a corresponding solver.
This is briefly discussed in the following subsection.

9.1.3. Solver for the Scalarized Problems

The problem (simple—PTp,rD(ag)) is constrained, nonlinear and multimodal (and thus non-
convex) in general. Two exemplary objective functions 2™""(sP €5) are shown in Fig-
ure 9.1. Their global minimum is each marked by a black dot. Both shown objective
functions are determined with the same HE model, which is based on a piecewise linear
interpolation. The HE model’'s underlying measurement data is provided by Vaillant and
corresponds to [PHE, Item 6371]. In the left part of Figure 9.1, the scalarized objective
function for the case with t? = 6000 and €3 = Aginer = 0.12 is shown. This function is
"nice" in the sense that it is convex (and unimodal) and a variety of solvers is suited to
find its minimum.

The right part of Figure 9.1 shows the scalarized objective function for the case with
tP = 2500 and €2 = Aginer = 0.12. In contrast to the objective function shown in the left
part, this function has multiple local minima, i.e., it is multimodal. In such a situation, it
might happen that an optimization method finds only a local minimum but not the global
minimum. Therefore, a global method to solve (simple—Pﬁer(EQ)) is required that does
not get stuck in a local minimum.
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tP = 6000 and €2 = 0.12 tP = 2500 and €2 = 0.12

0.57 |- 8 0.49 |- .

M P(sP, g2)
ffim P(sP. g5)

0.39 - R 0.33| A

| |
gP* sP-*

sP sP

Figure 9.1.: Two exemplary objective functions of the scalarized problem (simple—PTper (g2))
are shown. Both functions were determined with the same HE model based on a piecewise
linear interpolation of measurement data provided by Vaillant. The function in the right part
is multimodal and thus a global solver that does not get stuck in local minima is required.

Remark 9.19 The "roughness” of the function depicted in the right part of Figure 9.1
might be caused by the HE model, which is based on a piecewise linear interpolation. If a
smoother regression method, for instance a local weighted linear regression, is used, the
objective function might be smoother. Nevertheless, it can be expected that the function
Is also multimodal in this case.

In the following, we propose a direct search method to solve the scalarized problems

(simple—PﬁvrD (€2)). Direct search methods are a common class of derivative-free methods
to solve constrained single objective optimization problems [CSV09, p. 242] [CEM12, p. 5].
They are iterative procedures, whose iterations are composed of a search step, a poll step
and a parameter update. In the search step, the objective function is evaluated at a finite
set of sample points. The poll step is a subsequent local search at the sample point with
the best function value from the preceding search step. Depending on the results of the
search and/or the poll step, some parameters like the step size or the search directions
are updated at the end of each iteration [CEM12, p. 7]. The search step is optional and
usually introduced to improve efficiency [CSV09, p. 117]. Finally, when a stopping criterion
is reached, the procedure is terminated. There exists a variety of strategies for the search
step, the poll step, the parameter updates and the stopping criterion. These strategies
as well as a corresponding framework are covered in detail in the book Introduction to
Derivative-Free Optimization [CSV09].
In order to reduce the risk that only a local minimum and not the global minimum is
approximated, we propose an initial search step with an equidistant spacing in the sample
set to solve (simple—Pﬁ,D(sg)). This initial sample set of start fan speeds is denoted by
Ssp in the following.

Remark 9.20 From an empirical point of view, solutions with a small start fan speed
(sP = tP) or a large start fan speed (sP > 1.4tP) are usually infeasible due to some of
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the combustion limits according to Definition 8.52. Therefore, minSgp = 1.05tP and
max Sep = min{1.4tP, tP~1 — g} (max Sq = min{1.4t}, fsmax}) are proposed, which is in
accordance with (C-S7) in Definition 8.52.

The step size of the equidistant spacing depends on the desired accuracy and on the
allowed maximum computation time. In the considered use cases, AsP = 0.002t” was a
good compromise. For instance, if t» = 6000, then the step size As? = 12 is suggested.
The initial search step is straightforward. Let Sg have the cardinality n. For every
sP7 € Sep, i € [n], we check whether (sP/,&5) is feasible, i.e., if (sP,g2) € X5 . If
(sP' e5) ¢ X%fD for all i € [n], then the problem is considered to be infeasible. Of all
feasible solutions, the start fan speed sP' with the smallest function value fISim'p(s””,eg)
is used as the incumbent approximation of the optimal solution of (simple—P%rD(sg)). In
the subsequent poll step, a local search at the incumbent solution is performed.

In practice, it has been found that the incumbent solution after the initial search step ap-
proximates the optimal solution of (simple—PﬁrD (g2)) sufficiently well and that subsequent
poll steps are not necessarily required. Therefore, it is proposed to just perform the initial
search step with an appropriate sample set Sgr to approximate the optimal solution of

(simple-P7 ,_(£2)).

Remark 9.21 As a supplement or as an alternative to the sampling approach, a warm
start strategy could be used. For this, let Sy» = {Asp,’iﬁcr ..... ALt} be the sample set
of start point increments in increasing orders,'mlc/;/h/ch is the set from which the g>-values
are taken for the scalarization according to Algorithm 9.1. Let us suppose that we have

approximated the optimal solution of (simple—PﬁvrD (g2)) for the first element in Syr

1 s,incr
; — )P
ie., forey, = >‘s,incr'

p,2

the moment. Then, to solve (simple—PT”'rD (€2)) for the subsequent €2 = A ., we can
perform a warm start with sP1*. |.e., instead of performing the search step with a start
fan speed sample set Ss», we perform a local search around sP1*.

However, this warm start method has not been tested in practice and is left for future
research.

This approximation of the optimal solution is denoted by sPY* for

In the following subsection, Algorithm 9.1 together with the proposed sampling approach
to solve the scalarized problems is demonstrated in a use case.

9.1.4. Demonstration of Algorithm 9.1 in a Use Case

In this use case, we want to find optimal ADA parameters for the Vaillant HE with the
measurement data corresponding to [PHE, Item 6371]. For this, we consider an HE
model that is based on a piecewise linear interpolation. Let us suppose that the deci-
sion makers want to optimize two ADA pairs, i.e., we are in the case N = 2. Further-
more, we suppose that the decision makers specified the set of feasible test fan speeds
by T = {t!' = 10000, t?> = 6000}. The drift resistance is specified by rp = 140kQ.
The problem’s parameters are specified by the common values Apin = 1.05, Amax = 1.6,
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9.1 Solving the Nominal ADA Optimization Problem

COmax = 150 and AMX,in = 0.1. Our goal is to find the Pareto optimal solutions of
(nom-P7 ) for p=1and p = 2.

For this, we approximate a subset of the Pareto optimal solutions of (simple—PT”,rD) for
each p € [2] with Algorithm 9.1. These approximated sets are denoted by )?é’ff, p € [2].
in the following. Then, ('rp)*l()?é’ﬁ) is an approximation of the set of Pareto optimal
solutions of (nom—PTp’rD), p € [2], according to Lemma 9.7.

All results presented in the course of this subsection are determined with corresponding
implementations in Matlab evaluated on an AMD Ryzen 5800x system.

We begin with the smaller test fan speed, i.e., we consider the case p = 2 first. In order
to apply Algorithm 9.1, we need a start point increment sample set Sy2 . In addition, we

s,incr

need a start fan speed sample set S,> to solve the scalarized problems (simple—Pﬁer(gg)),
p=2.

Start point increment sample set: \We specify the sample set S, according to Re-

s,Incr

marks 9.14 and 9.15, i.e., we select Sy2  such that minS52. =0 and maxS,2 = 0.3.
Let us suppose that we are interested isrim(far uniform exploraticsjqucrof the Pareto froFil’E.chhere—
fore, we select a uniform spacing. In this use case, we select AX2; . = 0.01. This is a
rather large spacing, but it enables a clear visualization of the set of sample points and
of the approximation of the Pareto front in Figure 9.2 below. The resulting sample set is

Sy>. =1{0,0.01,0.02,..., 0.3} and contains 31 samples.

s.,incr

Start fan speed sample set: As suggested in Remark 9.20, we select S» such that
min S, = 1.05¢2 = 6300 and max S,> = 1.4t? = 8400. Analogous to the selected spac-
ing in the start point increment sample set, we consider a rather coarse start fan speed
sample set. For illustration purposes, we select the spacing such that S,» is composed of
30 equidistant points, which results in a spacing of As® ~ 72.4.

Note that we use the same start fan speed sample set S.» to solve every instance of
(simple—Pﬁer(sg)), p =2 ie., forall &5 = Ai’{ncr € ngm. Using the same sample
set Sgp to approximate the optimal solution of each scalarized problem (simple—P7’3’rD (2)),
€2 € Sy, isnot restricted to this use case. This is possible, because in practice a sample

; p
ers the feasible set for all >‘5,incr

€ Sy»  C [0,0.3] sufficiently without being too restrictive.
In total, this approach corresponds to considering a sample set of solutions for (simple—Pﬁ,D),
p = 2, that is the Cartesian product G := S;2 X S52 . The set G is a square grid in the

(s, Agm) plane and consists of |Se2| - [Sy2 | = 30 - 31 = 930 sample points. In other
words, Algorithm 9.1 in combination with the sampling approach to solve the scalarized
problems corresponds to determine the nondominated points in the set G N X%’S,D.

This situation is depicted in Figure 9.2. The left part of Figure 9.2 shows the deci-

sion space of (simple—PTp’rD), p = 2. The region within the green curve corresponds to
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Figure 9.2.: In the left part the decision space of the use case problem Am_BU_m-wﬂu,sv delineated
in Section 9.1.4 for the case p = 2 is shown. The region within the green curve corresponds
to the feasible set Xw_wo. The purple curve segments correspond to the efficient points in

X~ The small gray dots correspond to the sample points of the grid G := Se» X Sy

s,incr

and the green dots are the feasible points of G. The black dots correspond to the output

of Algorithm 9.1, which are the feasible and nondominated points in G.

In the right part the problem’s objective space is shown in the same color scheme. l.e., the
images of the aforementioned sets under the objective function £5™2 are shown.

Because the second component of the objective function is just the projection to the second
coordinate, the decision space and the objective space both have the same y-axis and thus
a point of the Pareto front can be directly identified with its efficient solution(s) in the

decision space.
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9.1 Solving the Nominal ADA Optimization Problem

the feasible set X%jD. The purple curve segments correspond to all efficient solutions in
X%ﬁD. The sample points, i.e., the set G, are represented by the gray dots. The feasible
sample points, i.e., the set G OX%SrD, are represented by the green dots. The black dots
correspond to the output of Algorithm 9.1, which is denoted by )?gff. Note that these
points are the nondominated solutions in G N X%ﬁD. The run time required to determine
X2 was approximately 0.79 seconds.

The right part of Figure 9.2 shows the corresponding objective space in the same color
scheme. The green dots correspond to f5™-2(G N X%SrD), the black dots correspond to
fsim.2(X2.) and the purple curve segments correspond to the Pareto front of the prob-
lem (simple-P7 ), p = 2. The approximated nondominated points foim.2(X2.) are not
a subset of the Pareto front of (simple—Pﬁ,D), p = 2, in this case. The approximation
quality should improve when refining the grid, but beyond that we generally have no infor-
mation about the approximation quality of the output of Algorithm 9.1. However, most
of the points in FSM2(X2.) are close to the Pareto front in this case. In addition, the
set £5M-2(X2.) provides a uniform representation of the Pareto front of (simple-P7 ),
p = 2, with respect to the second objective function.

Remark 9.22 The boundary of the feasible set and the Pareto front shown in the left and
in the right part of Figure 9.2, respectively, are only approximations. They were determined
with sample sets S;> and Sy2  that each contains 1000 equidistant elements, i.e., the

s,incr
2

corresponding grid was composed of one million (s?, AS iner
time was approximately 507.6 seconds.

) samples. The required run

Next, we approximate the Pareto optimal solutions of (simple—Pﬁer) for the case p = 1.
This is done analogously to the case p = 2. In particular, we select the same set of
start point increment samples, i.e., we select Sy1 = S52 . Regarding the start fan

s,Incr s,Incr

speed sample set, we select Sq such that min S, = 1.05t1 = 10500 and such that
maxSg = min{1.4t! fspat = fsmax = 12200. Analogously to S, the spacing is se-
lected such that we have 30 equidistant points in S.i, which corresponds to a spacing of
As! ~ 58.6.

This situation is depicted in Figure 9.3. It is analogous to Figure 9.2, i.e., it uses the
same color scheme and the same legend. The left part of Figure 9.3 shows the decision
space and the right part shows the objective space. The depicted boundary of the feasible
set as well as the depicted Pareto front are approximations that were again determined by
1000 by 1000 search grid, which required a run time of approximately 706.4 seconds.

As in the case p = 2, it is apparent that the approximated nondominated points are not a
subset of the Pareto front of (simple—PT”’rD), p = 1. However, they can be considered as
a good approximation of the Pareto front of (simple—PT”'rD), p = 1. The run time required
to determine )?gff was approximately 0.6 seconds.

In contrast to the case p = 2, a uniform exploration of the Pareto front with respect to the
second objective is not given in this case. This can be seen in the right part of Figure 9.3.
The vertical distance between the second and the third black dot (counted from left to
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Figure 9.3.: In the left part the decision space and in the right part the objective space of
(simple—Pﬁer) for the case p = 1 are shown. The color scheme and the legend are identical
to those of Figure 9.2

right) is 3A>\;incr = 0.03. In contrast, all remaining black dots have a vertical distance of
1 _ . .
1AX; iner = 0.01 to their neighbors.

Since we follow an a posteriori method, the next step in the optimization and decision
making process would be the selection of the final solutions by the decision makers. l.e,
for each p € [2] the decision makers select a solution from Xé’ff based on the approximated
Pareto front of (simple—Pﬁer) (and thus also of (nom—PTp'rD) according to Corollary 9.8)
that best fits their preferences. This concludes the use case and the demonstration of
Algorithm 9.1.

As a final remark, regarding the problem (simple—PT”’rD), the considered use case shows
that the efficient solutions can lie in the interior and on the boundary of the feasible set,
that the Pareto front is not convex and that the Pareto front is not connected in general.

Some advantages and disadvantages of Algorithm 9.1 and of the sampling approach

to solve (simple-P? ., (€2)) have already been mentioned in this subsection. These are

discussed in detail in the following.

9.1.5. Discussion of the Proposed Grid Search Method

The advantages and disadvantages of Algorithm 9.1 are discussed first. Thereafter, it is
assessed from a practical point of view.

Advantages The major advantage of Algorithm 9.1 is that the problem (nom—PﬁyrD) is
not required to have a special structure. In particular, the Pareto front is not required to
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9.1 Solving the Nominal ADA Optimization Problem

be convex and the problem may be multimodal. As a consequence, the proposed method
is robust in the sense that it works with a variety of HE types and HE models.

A further advantage is that by the selection of the sample points in Sws)m the exploration
of the Pareto front with respect to the second objective of (nom—Pﬁer)’ can be controlled
to a certain degree. For instance, in the use case presented in Section 9.1.4 a uniform
spacing in S52  was selected, which resulted in a uniform spacing of the approximated
Pareto front as shown in the right part of Figure 9.2. This provides a good overview of
the set of Pareto optimal solutions to the decision makers. However, this does not hold in
general as demonstrated in the use case with the case p = 1, see also Figure 9.3.
Furthermore, Algorithm 9.1 has a simple structure and is rather easy to implement. This is
also reflected by the fact that Algorithm 9.1 requires only a few parameters to be specified,
which are the specifications of the sample set(s). In addition, with the selected size of the
sample set(s) the computational effort of Algorithm 9.1 can be directly controlled.
Finally, Algorithm 9.1 is easy to parallelize, because the scalarized problems that must be

solved in each iteration of the for-loop in Algorithm 9.1 are independent of each other.

Disadvantages If the Pareto front of (nom—PﬁyrD) is connected and the start point
increment sample set Sy» is selected such that its bounds are between the second
components of the ideal and of the nadir point, then Algorithm 9.1 returns a subset of the
Pareto optimal solutions according to Corollary 9.8 (if the scalarized optimization problems
(simple—Pﬁer(sg)) are solved exactly in Line 6 of Algorithm 9.1). But as demonstrated in
the use case in Section 9.1.4, the Pareto front of (nom—P7’3'rD) is not connected in general.
Furthermore, in general the scalarized problem (simple—Pﬁer(eg)) is multimodal and its
objective function and constraints are not differentiable and thus one usually has to fall
back on approximation methods to solve (simple—PT”'rD(sg)).

The major disadvantage of Algorithm 9.1 is that its approximation quality is unknown in
general. The objective functions and the constraint functions depend on the structure of
the measurement data, which in turn depends on the considered HE type and the measuring
instruments used. Furthermore, they depend on the considered regression/interpolation
method of the HE model as well as on HE parameters like the control curve. This results
in an unmanageable number of cases that need to be considered in order to determine the
approximation quality.

Because the approximation quality is unclear, the optimal size and spacing of the sample
set(s) are unclear as well. In particular, it is not clear by how much the approximation quality
improves when the number of sample points is increased or the sample set's boundaries
are adjusted. In the worst case, the computational effort increases without increasing the
approximation quality.

Assessment from a practical point of view [n the introduction to this Chapter 9, some
desired properties of a multiobjective optimization method are listed. The method should
provide reliable results, should give the decision makers a good overview of the Pareto
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optimal set, should not require too much time and should support the decision makers in
finally selecting the preferred solution [Bra+08, p. 2]. In the use case in Section 9.1.4, the
outputs of Algorithm 9.1 provide a good approximation and representation of the Pareto
fronts even with a rather small sample grid. Furthermore, the calculations were not very
time consuming. For instance, an approximation of the Pareto optimal set with a 30 by
31 sample grid in the presented use case took approximately 0.6 to 0.8 seconds on an
AMD Ryzen 5800x system. A similar characteristic was observed in all other use cases
by Vaillant. Therefore, in the opinion of the author of this thesis, the above mentioned
desired properties of a multiobjective optimization method are fulfilled by Algorithm 9.1 in
combination with the sampling approach to solve (simple—PT”,rD (¢2)). But the approach’s
blind spot in terms of approximation quality remains a disadvantage and must be kept in
mind.

Because the decision-makers are satisfied with the optimization process based on Algo-
rithm 9.1, no further methods to solve (nom—PT”'rD) were investigated. However, if the
approximation quality is considered to be not sufficient, subsequent poll steps, i.e., a local
search, could be used to obtain better approximations, see also Section 9.1.3. Further-
more, a warm start in combination with a local search could improve the efficiency as well
as the approximation quality as delineated in Remark 9.21. Finally, if one is interested in
a completely different approach, evolutionary multiobjective optimization algorithms could
be a good alternative to solve (nom—P{f’rD).

This concludes the optimization of the ADA parameters in the nominal case. An ap-
proach based on evolutionary multiobjective optimization to solve the ADA optimization
problem with tolerances is presented and discussed in the following section.

9.2. Solving the ADA Optimization Problem with Tolerances

The ADA optimization problem with tolerances (tol-Pr ,,) has a 2N-dimensional objective
space according to Definition 8.84. Usually, up to seven ADA pairs are optimized, i.e.,
we usually have N = 7. In this case the objective space is 14-dimensional. Such a
high-dimensional objective space makes the decision making more difficult, because it is
difficult to visualize the trade-offs between the individual objectives. Furthermore, higher-
dimensional optimization problems are usually harder to solve [Bra+08, p. 3].

Because the decision makers are mostly interested in minimizing the largest Lipschitz
constant and minimizing the largest start point increment, it is proposed to aggregate all
Lipschitz constants to a single objective function and to aggregate all start point increments
to a single objective function where the largest values are weighted over proportionally.
Then, the resulting problem is always biobjective, regardless of N.

This biobjective problem is detailed in the following subsection. A method how to solve
the biobjective problem is then proposed, which is demonstrated in a subsequent use case.
Finally, the results of this section are briefly discussed.
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9.2.1. Aggregate Objectives to Reduce Dimension of Objective Space

The aggregated objective functions and the corresponding optimization model are defined
as follows.

Definition 9.23 Let oy € (0,1) and let ay_,, € (0,1). The aggregated Lipschitz con-
stant function is defined for all x € X%, (Hnom, Utol) by

> LF (),

PE[NI\{/}

L () = T () +

where j € [N] such that Ly, (x) > ET, (x) for all p € [N].
The aggregated start pomt mcrement function is defined for all x € XtTo'r (Hnom, Uror) by

?QED(X) - a>\5|nchT rD(X) + 5|"Cf Z ST rD(X)

pe[NN\{k}

where k € [N] such that 8., (x) > 84, (x) for all p € [N].
The ADA optimization model with respect to tolerances with aggregated objective func-
tions is defined by
min Froha99(x) = (LT (%), STy, (X)). (tol-agg-P)
XEXtO (Hnom Z/{tol)

Remark 9.24 Note that the indices j and k in Deﬁn/tion 9.23 are not necessarily unique.
However, the aggregated functions ET rp, and 5P T ,D are also well-defined in such a case.

Remark 9.25 Definition 9.23 is rather general and also allows small factors a; and a .-
In order to weight the largest Lipsch/tz constant over proport/ona//y one has to select
o > ,{, which is equivalent to a;

1 1 1 1-— 1-—
a>— & N>— & N-1>——-1= aL@aL> aL.
N oy a ay N—-1

The same is true for the start point increment.
In the use case with N = 6 presented in Section 9.2.4 below, the factors a; = 0.8 and
ay... . = 0.8 are selected.

s,Incr

A solution that is Pareto optimal with respect to (tol-agg-P) is also Pareto optimal with
respect to (tol-Pr ;).

Lemma 9.26 /f x* is efficient with respect to (tol-agg-P), then x* is also efficient with
respect to (tol-Pr ).

Proof. Let x* be efficient with respect to (tol-agg-P) and let us suppose that x* is not
efficient with respect to (tol-Pr,,). Then, there exists X € Xto' (’Hnom Urol) such that
ftoI(X) < ftOI(X*), ie.

floN%) < FO'(x*) Vi€ [2N] and 3 L€ [2N] - (%) < 7(xY).
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In particular, we have Z’%,D(f() < Z’%’,D(x*) and g’%,ﬂ)()?) < g’%’,D(x*) for all p € [N].
Note that the indices j and k according to Definition 9.23 might be different for x = x*
and for x = X.

As an intermediate result we show that ET ,D(x) < £T ,D(x*) and ST ,D(x) < SaTg?D(x*).

For this, let j € [N] such that ET p(X) < ET rp(X) for all p € [N] and let j* € [N] such
that ET (X)) < ET rp(x*) forall p € [N]. Then,

L} 1 (80) < Tr o (8) < Ty (%) < Ty (67)

holds. For the following, recall that oy > 0 and 1,\7f‘1L >0.Ifj % j*, then

a - ~
B8, =, (0 + - 0+ % S ()
PN/}
* l-a *
() + e Y T, ()
PEININUS*}

. 1-

a99
T ' (X*)

If = j*, then

2 () = Ly () +

Z ﬁT rD(;()

pE[N]\{J}

pG[N]\{J}

<ol () +

In_particular, if there exists m € [N] such that L7, (%) < LT, (x*), then LT (%) <
agg rp (x*) (in both cases J —j and j # j*).

The mequahty 53 ,D( %) <8¢ T, D(x*) is shown analogously.

Next, we perform a case distinction with respect to £ (the index such that feto'(%) <

ol (x*)). If £ € [N], then

Because ST, (%) < ST, (x*), we have f%°1399(%) < £%01299(x*) in this case. But this is
a contradictlon to x* belng efficient with respect to (tol-agg-P).
fee {N+1,..., 2N}, then

=N, o\ ot—N, ¥

ST(%) < S7p(¢') = S5 (%) < SF0,(x).

Because L7, (%) < L7, (x*), f10399(%) < £to1299(x*) also applies in this case. Again,
this is a contrad|ct|on to x* being efficient with respect to (tol-agg-P). Therefore, x*
must also be efficient with respect to (tol-Pr ). O
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Remark 9.27 The converse is not true in general, i.e., x* efficient with respect to (tol-Pr ;)
does not imply x* efficient with respect to (tol-agg-P). For this, we consider the following
brief counterexample with N = 2. Let us suppose that we have two solutions x* and X
that are efficient with respect to (tol-Pr,,). Let us further suppose that

—1 N -2 X —1 - —2 -
ET,I’D(X ) — 06, ‘ET,I’D(X ) — 06 and ET,I‘D(X) — 08, ET,I’D(X) — 01

as well as ST, (x*) = 87, (%) = A, for p € [2]. Then, we have

s,incr

F(x*) = (0.6,0.6, A5 iner- Asjner)  and  FO(R) = (0.8,0.1, A jners A jncr)-

s,incrr

Note that f©l(x*) £ (%) and that f©I(%) £ F©(x*), which is consistent with x* and
X being efficient with respect to (tol-Pr,,).
However, regarding the aggregated objective functions with a; = 0.8, we have

LY (x)=08-06+02-06=0.6 and Ly, (%)=080.8+02-0.1=0.66

as well as 875 (x*) = STy, (%), ie., fioh299(x*) < fth299(%) and thus % cannot be
efficient with respect to (tol-agg-P).

According to Remark 9.27, by solving (tol-agg-P) we do not find all Pareto optimal
solutions of (tol-Pr,,) in general. However, because the decision makers are particularly
interested in solutions where the largest Lipschitz constant as well as the largest start point
increment are small and in order to make decision making easier, it is proposed to solve
the aggregated problem (tol-agg-P) instead of the problem (tol-Pr ,,), which provides a
subset of the Pareto optimal solutions of (tol-Pr ).

In the following subsection, a method based on evolutionary multiobjective optimization
algorithms is proposed to solve (tol-agg-P).

9.2.2. Proposed Method to Solve (tol-agg-P)

To solve the problem (tol-agg-P), we again focus on derivative-free methods, because
e non-convexity of the Pareto front of (tol-agg-P) cannot be excluded,
e multimodality cannot be excluded,
e in general, gradients are not available.

This is analogous to the nominal problem (nom—P}”rD), see also Section 9.1. To solve
(nom—P{i’rD), a grid search method is proposed. However, this method is not suited to
solve (tol-agg-P) for the following reason:

In the nominal case, the decision space has the dimension three. In contrast, the decision
space of (tol-agg-P) has the dimension 3N according to Definitions 9.23 and 8.81. For
instance, in the common case N = 7, the decision space has the dimension 21 and it is
practically impossible to build a dense search grid. This phenomenon is also called the

curse of dimensionality [HTF09, p. 22].
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Because it is a "major challenge" allowing direct search methods "to tackle higher
dimensional problems" [CEM12, p. 8], direct search methods to solve (tol-agg-P) are not
investigated in this work. Rather, we focus on evolutionary algorithms, which are "relatively
robust and flexible for solving nonlinear optimization problems" [CEM12, p. 14]. One of
the most popular evolutionary multiobjective optimization algorithms, in particular for two-
and three-dimensional problems, is the NSGA-II [Coe+20, p. 223]. Therefore, it is proposed
to use NSGA-II to solve (tol-agg-P).

NSGA-II and its working principle are presented in Section 4.2.2. Because NSGA-II assumes
that the underlying problem is unconstrained, we also need a constraint handling technique
(CHT). A CHT that was designed for NSGA-II is the constrained dominance principle
(CDP), which is detailed in Section 4.2.3. Therefore, it is proposed to combine NSGA-II
with CDP for solving (tol-agg-P).

In the following, some details and particularities of a corresponding implementation are
covered. Thereafter, solving (tol-agg-P) with NSGA-II and CDP is demonstrated in a use
case.

9.2.3. Details and Particularities of the Implementation

NSGA-II is a popular algorithm and there already exists a variety of implementations. To
solve (tol-agg-P), the Matlab implementation by Seshadri [Ses09] is used. The key points
of this implementation are as follows.

Box constraints: Because an evolutionary optimization algorithm needs a space from
which the considered solutions are drawn and generated, box constraints are "usually
trivially enforced" in an evolutionary algorithm [DD15, p. 3]. This also applies to the
implementation by Seshadri. Therefore, we have to specify suitable box constraints such
that the feasible set XtT?'rD(Hnom,Z/{td) is covered without being too relaxed.

Remark 9.28 A box constraint with respect to the i-th variable x; is of the form x,-L <

x; < xY [DD15, p. 3].
According to Definition 8.81 of the feasible set XtT?',D (Hnom, Uol), We have
(st,it,it, ..., sN i) € X, (Moom, Urat) = (5P, 12, i) € XB . (Haom) V p € [N].

Therefore, we can select the box constraints for each ADA pair individually. Further-
more, one may consider only the sets X%rD(’Hnom), p € [N], when selecting the box
constraints. The set X!IJ—’rD(%nom) is the feasible set of the nominal ADA optimization
problem (nom—PﬁyrD), p € [N], and thus it has already been analyzed in the preceding
Section 9.1.

Let p € [N]. As delineated in Section 9.1.1, there exists a two-dimensional set X7 and
a bijection 7P such that TP(X%rD) = X?’jD. Recall from Definition 9.1 that the two com-

ponents of the set X%fD are the start fan speed s” and the start point increment A’s"incr.
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Remark 9.20 states that 1.05t” and min{1.4tP, tP=! — ¢} (min{1.4t fsnax} if p=1) are
suitable lower and upper bounds, respectively, for sP. Remark 9.14 states that 0 and 0.3
are suitable lower and upper bounds, respectively, for >\S incr-

Therefore, we select the box constraints for the two-dimensional sets X%fD, p € [N], as
follows. For each p € [N], we select SPL = 1.05¢t” and s”Y = min{1.4t?, tP~1 — ¢}
(s¥Y = min{1.4t1, fsmax}) as well as AS inee = 0-and A2 Y =03,

The resulting approach is straightforward. The search space consists of all elements
(S >‘5 incre - N s, |ncr) € RzN such that s” t < sP < sP v and Ag |$1cr S >\5p|ncr S >\§ |(r{cr
forall p € [N]. By applylng (7P)~1 to (sP, >\S Incr) forallp € [N] and concatenating the im-
ages, we obtain the corresponding x = (s, i}, i}, ..., sN,iN, iN) at which the constraints

and the objective functions of (tol-agg-P) are evaluated.

Remark 9.29 According to Definition 9.1, the function (TP)~1 is only defined for elements
(8P N2 ) € X5 . Therefore, one has to pay attention that all transformations from
the box constra/ned search space to Xto' o (Hnom, Uror) via (TP)~ L are well-defined.

The same is true for evaluating the object/ve functions, because the obtained x is not
necessarily an element of Xto' (Hnom Uyro1) (otherwise we would not require a constraint
handling technique at all).

A major advantage of this approach is that the search space is 2N-dimensional. In
contrast, the original feasible set Xto' (%nom,uto|) is 3N-dimensional.

Used genetic operators: As delineated in Section 4.2, as a genetic algorithm NSGA-II
requires a reproduction, a crossover and a mutation operator. The implementation by
Seshadri uses tournament selection, simulated binary crossover and polynomial mutation,
respectively, which is a common choice [Deb+02, p. 178] [Bra+08, p. 76]. These operators
are detailed in Section 4.2.1.

Meaningful objective function values of infeasible solutions: Regarding infeasible so-
lutions, we have to consider two aspects. First, we have to make sure that infeasible
solutions can be evaluated, i.e., that the constraints and the objective functions are well-
defined for all infeasible solutions within the box constraints, see also Remark 9.29. For
instance, this can be done by artificially extending the domains of the constraints and the
objective functions. However, this must be done in a meaningful way.

This is the second aspect we have to consider. It is required because the selected CHT is
CDP. With CDP it may happen that two infeasible solutions are compared with each other
for "less infeasibility". Therefore, it is required that infeasible solutions get an indicator
for their degree of infeasibility. This has to be taken into account when the domains of
constraints and of objective functions are artificially extended.

This concludes the details of the implementation used to solve (tol-agg-P). Next, the
implementation is demonstrated in a use case.
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9.2.4. Use Case

We want to find optimal ADA parameters for a Vaillant HE. In contrast to the use case
presented in Section 9.1.4, we also consider tolerances with respect to the position of
the ioni electrode this time. As in Section 9.1.4, the nominal HE measurement data
corresponds to [PHE, Item 6371] and all HE models considered in this use case are based
on a piecewise linear interpolation. The HE's tolerance measurement data corresponds to
[PHE, Item 6168], [PHE, Item 6177], [PHE, Item 6200], [PHE, Item 6327] and [PHE,
Item 6344], i.e., the considered uncertainty set U consists of five tolerance HE models.
Let us suppose that the decision makers want to optimize six ADA pairs, i.e., we are in
the case N = 6. Furthermore, we suppose that the decision makers specified the set of
feasible test fan speeds by T = {t! = 10000, t> = 8500, t> = 7000, t* = 5500, t> =
4000, t% = 2500}. The drift resistance is specified by rp = 140k$2. Our goal is to find
the Pareto optimal solutions of (tol-agg-P). The problem's parameters are specified by
the common values Amin = 1.05, Amax = 1.6, COmax = 150, AXmin = 0.1, Ayptol = 0.1,
Nmax = 50 and i = 3-107%. The set FSsample consists of 100 equidistant points between
the HE's minimum and maximum fan speed fs,j, = 2200 and fsmax = 12000, respectively.
To solve this instance of (tol-agg-P), we use an implementation of NSGA-II as proposed
and described in Sections 9.2.2 and 9.2.3.

The used implementation of NSGA-II also requires some parameters, which are selected
as follows:

o Population size: The population size indicates how many individuals are considered
at the beginning of each generation. In this use case, a population size of 200 is
selected.

¢ Number of generations: The number of generations indicates how many iterations
with the NSGA-II are executed. In this use case, we consider 300 generations.

e Mating pool size: The mating pool size indicates how often the reproduction op-
erator is executed. A common value is half of the population size. In this use case
this corresponds to a mating pool size of 100.

e Simulated binary crossover parameter 7.: In this use case we use 1. = 20, which
is a common value. For details of 1. see Section 4.2.1.

o Mutation parameter 7,,: In this use case we use 1, = 20, which is a common
value. For details of n,, see Section 4.2.1.

We perform a single run of the NSGA-Il implementation with these parameters. In each
generation, the genetic operators are applied and the resulting population is sorted for
nondominance. Figure 9.4 shows the corresponding set of nondominated points in the
objective space of (tol-agg-P) after 20, 50, 100, 200, and 300 generations. It is apparent
that with increasing number of iterations the approximation quality of the Pareto front
improves. Note that the difference between the nondominated sets after 200 and after
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Figure 9.4.: The nondominated sets in the objective space of the aggregated problem
(tol-agg-P) after 20, 50, 100, 200 and 300 generations with the NSGA-II are displayed.
The point with the smallest aggregated Lipschitz constant is highlighted by the green tri-
angle. The point with the smallest aggregated start point increment is highlighted by the
green square.

300 generations is rather small, in particular in regions with a small second objective func-
tion value. It can therefore be assumed that beyond 300 generations the approximation
quality improves only slightly, if at all. However, the true Pareto front and therefore the
true approximation quality remain unknown.

The required computation time for 20, 50, 100, 200 and 300 generations on a system with
an AMD Ryzen 5800x was 81.7 seconds, 297.2 seconds, 652.4 seconds, 1344.9 seconds
and 1991.3 seconds, respectively.

Recall that a point in the objective space of (tol-agg-P) represents the aggregated ob-
jective functions L7, and 87’5, . Ultimately, however, we are interested in the Lipschitz
constant and in the start point increment of each ADA pair individually. We therefore
take a closer look at the two extreme solutions after 300 generations as examples. Let
x? € XtT‘f',D(Hnom,utm) be the solution such that £%©299(x3) corresponds to the non-
dominated point with the smallest aggregated Lipschitz constant after 300 generations.
Analogously, let x° € X%, (Hnom, Uro)) be the solution such that £%'299(xP) corresponds
to the nondominated point with the smallest aggregated start point increment after 300
generations. Their images are marked in Figure 9.4 by the green triangle and by the green
square, respectively. The corresponding aggregated objective function values as well as
the corresponding ADA pairs' individual Lipschitz constant and start point increment are
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— —1 —2 -3 —4 =5 —6

‘Ei—g,lg’[)(x) ET,I’D(X) ET,I’D(X) ET,I'D(X) ET,I’D(X) ET,I‘D(X) CT,I‘D(X)
x? || 0.2897 0.2914 0.2914 0.2586 0.2830 0.2859 0.2889
xP |l 0.6269 0.3622 0.3732 0.6513 0.6469 0.5279 0.6156

= =1 =2 =3 =4 =5 =6

S?SIQ’]D(X) ST,I’D(X) ST,I‘D(X) ST,I‘D(X) ST,I‘D (X) ST,I‘D (X) ST,I‘D (X)
x4 0.1425 0.0606 0.0815 0.1151 0.1384 0.1037 0.1511
xP 0.0638 0.0458 0.0636 0.0650 0.0625 0.0651 0.0505

Table 9.1.: This table compares the aggregated objective function values of two exemplary
solutions with the Lipschitz constant and the start point increment of each individual ADA
pair p, p € [6]. The considered solutions x? and x correspond to the two nondominated
extreme points in Figure 9.4. The largest Lipschitz constant and the largest start point
increment of the two solutions are highlighted in bold.

shown in Table 9.1. The largest Lipschitz constant and the largest start point increment
of x? and x? are highlighted in bold.

The aggregated function values are smaller than but close to the largest individual func-
tion values, which is to be expected since we weighted the largest values with a factor
of ay = 0.8 and a,_,., = 0.8. However, the individual function values can differ from
the aggregated value significantly. For instance, the aggregated Lipschitz constant of

xb is fz}?fD(xb) = 0.6269 while the corresponding Lipschitz constant of ADA pair one is

Lt (x?) = 0.3622.

This concludes the use case. The advantages and disadvantages of the approach with
aggregated function values and of the selected solution method based on NSGA-II are
discussed next.

9.2.5. Discussion of the Proposed Approach

We discuss the approach to solve the aggregated problem (tol-agg-P) in order to obtain
Pareto optimal solutions of the original problem (tol-Pr ) first. Using NSGA-II to solve
(tol-agg-P) is then discussed.

The aggregated Problem (tol-agg-P): Our goal is to solve the tolerance ADA opti-
mization problem (tol-Pr ,,), which has 2N objectives, where N is the number of ADA
pairs to be optimized. In order to make the decision making easier, the aggregated problem
(tol-agg-P) is introduced, which is always biobjective. It is true that the trade-off between
two solutions of the aggregated problem (tol-agg-P) can be presented clearly. But this
comes at a price.

The aggregated objective function values contain no information about the variance of
the individual objective function values. This is briefly mentioned at the end of the pre-
ceding subsection, where the function values listed in Table 9.1 represent a corresponding
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Figure 9.5.: The nondominated sets after 300 generations with NSGA-II for two different
random starting populations are displayed. The randomness in the evolutionary algorithm
causes the outputs to differ significantly.

example. Furthermore, because a nondominated point in the objective space represents
N ADA pairs at once, it is unclear how each ADA pair is affected if a different solution
is selected. For instance, two neighbored points in the objective space might have signifi-
cantly different ADA parameters, i.e., the ADA pairs and their Lipschitz constants as well
as their start point increments might differ significantly. Therefore, the decision maker has
less possibilities to fine-tune the solution in the selection process.

If the decision makers are not satisfied with the decision making process using the aggre-
gated problem (tol-agg-P), it may make sense to revise the aggregated problem (tol-agg-P)
or to even solve the original problem (tol-Pr ).

NSGA-II: As an evolutionary algorithm, NSGA-II has some randomness by intention.
However, from a user's perspective this might be disturbing, because it is (almost) im-
possible to reproduce solutions that were once obtained in a different run with NSGA-II.
In particular, two different runs with NSGA-Il might produce two significantly different
approximations of the Pareto front. This is illustrated in Figure 9.5. The yellow dots cor-
respond to the nondominated set after a single run of NSGA-1I with 300 generations. The
green dots also correspond to the nondominated set after a single run with 300 generations
but with a different (randomly generated) starting population. Both runs were performed
with the same parameters as selected in the use case presented in Section 9.2.4. In the
run corresponding to the yellow solutions smaller aggregated Lipschitz constants were ex-
plored. In contrast, in the run corresponding to the green solutions smaller aggregated
start point increments were explored.

However, having significantly different nondominated sets offers potential for obtaining a
better approximation of the true Pareto front. For this, the nondominated sets of several
runs with NSGA-I1l are combined into a single set. This combined set is filtered for Pareto
nondominance to obtain the corresponding set of nondominated points, which is usually
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larger than each of the original nondominated sets. In Figure 9.5, this nondominated set
corresponds to all nondominated points in the union of the yellow and the green points
(not explicitly illustrated). Therefore, instead of increasing the number of generations or
the population size in order to obtain a better approximation of the Pareto front, it might
be more effective to start several runs with different starting populations. However, for
the special case that (single-objective) additively separable functions are considered, an
analytical study suggests that "for difficult problems ...the best alternative is to use a
single run with the largest population possible" [CG03, p. 811].

Selecting a suitable population size and number of generations as well as selecting suitable
other parameters for NSGA-II (pool size, crossover factor and mutation factor) might be
challenging, because the true Pareto front is unknown in general. l.e., it is hard to assess
whether the selected parameters are appropriate. However, the results obtained with the
parameters selected in the use case in Section 9.2.4 are satisfactory for the practitioners.
The same is true for the selected constraint handling technique. The constrained dom-
inance principle performed well in the use case. After approximately 100 generations all
found solutions are feasible and stay feasible in the subsequent generations (because NSGA-
[l is an elitist algorithm). However, it cannot be excluded that other constraint handling
techniques perform even better, since we do not know how close we are to the true Pareto
front. In particular, it is not guaranteed that the selected methods find a feasible solution
at all. This may be further analyzed in future research.

Another aspect regarding the constraint handling is that the HE model must provide mean-
ingful outputs for certain infeasible solutions, as stated at the end of Section 9.2.3. In the
use case, this was achieved by artificially extending the domains of the HE model functions
such that their monotonicity properties are preserved.

Finally, depending on the population size and on the number of generations, the required
computation time is rather large. In the use case, the NSGA-II required 1991.3 seconds
for 300 generations with a population size of 200. Because the optimization is run only
once during the design process, the required computation time is acceptable.

To summarize this discussion, the selected combination of NSGA-II and constrained domi-
nance principle is suited to solve the aggregated tolerance problem (tol-agg-P). However,
its approximation quality remains hard to assess. Furthermore, the randomness of the
evolutionary algorithm on the one hand may be disturbing to the decision makers. On
the other hand, by combining the results of several runs it can be used to improve the
approximation quality in some cases.

For future research, it might be of interest to investigate how methods other than NSGA-II
perform when solving (tol-agg-P). An interesting alternative could be the so-called Multi-
Objective Evolutionary Algorithm based on Decomposition [Coe+20, p. 224].

By proposing, demonstrating and discussing methods for solving the ADA optimization
problems (nom—P#er) and (tol-Pr ), the remaining research question from the introduc-
tory Chapter 1 was addressed in this chapter. The following chapter concludes this thesis
by summarizing the most important results.
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Conclusion

This chapter concludes the thesis by summarizing the main findings in relation to the re-
search aims and research questions. The contributions of this work as well as its limitations
are then reviewed and further research is suggested.

This thesis analyzes the ADA procedure from a mathematical point of view and assists
in finding optimized ADA parameters by computer simulation. The analysis shows that the
convergence properties of the ADA Algorithm 5.2 depend strongly on the drift resistance
ADA iteration functions AP, p € [N], from Definition 6.21. Because A7 depends on
the ADA parameters (sP, t?,if,if), p € [N], the selection of suitable ADA parameters is
essential for the ADA procedure to function properly.

If the ADA parameters are selected such that A’r’D is a contractive selfmap and such
that ¢, (if) = v,,* (i) holds for all p € [N], then the ADA Algorithm 5.2 converges to
the sought vector of drifted test ioni currents, i.e., the drift resistance is perfectly approx-
imated by all ADA pairs. The rate of convergence depends on the Lipschitz constants of
the functions A7, p € [N]. Small Lipschitz constants of the iteration functions guarantee
a high rate of convergence. Therefore, one goal of the ADA optimization is to find ADA
parameters such that the iteration functions’ Lipschitz constants are small.

However, as delineated in Section 8.4, this goal usually conflicts with the requirement that
the duration of a single ADA iteration should be short. An indicator for the duration re-
quired for an ADA iteration is the so-called start point increment defined in Section 8.4.2.
A small start point increment corresponds to a short duration of an ADA iteration. As a
consequence, the proposed optimization models are multiobjective, where the objectives
are to minimize the iteration functions’ Lipschitz constants as well as the corresponding
start point increments simultaneously.

A further finding is that the condition ¢! (if) = ¢} (if) for all p € [N] is usually not
satisfied if tolerances with respect to the position of the ioni electrode are present. Then,
the limit of the ADA Algorithm 5.2 does not correspond to the sought drifted test ioni
currents (if the limit exits at all). In this case, it must be ensured that the algorithm'’s
limit does not result in combustion states that exceed permissible limits. This was taken
into account when developing the optimization models by considering the two cases "tol-
erances are not present" and "tolerances are present" separately. The resulting models
are (nom—P{i’rD) and (tol-Pr ), respectively. A particularity of (nom—P{i’rD) is that the
ADA pairs are considered individually. In contrast, in the case with tolerances this is not
possible and thus the problem (tol-Pr,,,) considers all ADA pairs simultaneously.

Finally, this thesis proposes to solve (nom—PTper) with a grid search combined with a vari-

239



Chapter 10  Conclusion

ant of the e-constraint scalarization and to solve (tol-Pr ) with NSGA-Il. Regarding the
constraint handling, it is proposed to combine NSGA-II with the constrained dominance
principle. Both methods are demonstrated in a use case.

This thesis provides a deeper insight into the properties of the ADA procedure. In the
literature, i.e., in the technical documentation of loniDetect, the ADA procedure is only
considered in the special case with a single ADA pair and without tolerances. In this
thesis, also the cases with a plurality of ADA pairs as well as with tolerances are ana-
lyzed, which fills this gap. Furthermore, understanding the multiobjective character of the
ADA parameterization might assist the decision makers to select ADA parameters that fit
their preferences best. Finally, the use cases provide examples of applying the e-constraint
scalarization and NSGA-II in practice.

The practical contribution of this work is that the developed models and proposed methods
support the engineers at Vaillant in the ADA parameterization. In particular, the ADA pa-
rameters can be selected by computer simulation, which reduces required lab capacities and
development time. Moreover, optimized ADA parameters yield better convergence charac-
teristics and are more robust with respect to tolerances of the position of the ioni electrode.

Although the decision makers are satisfied with the ADA parameters optimized according
to the results of this work and the methods presented, there is still a discrepancy between
simulation results and measured values when the optimized ADA parameters are verified
in the lab. The discrepancy might result from limitations of the HE model defined in Sec-
tion 2.4. The HE model does not take dynamic behavior into account. Furthermore, the
HE model assumes continuous gas valve positions, ioni currents and fan speeds. Assuming
a continuous gas valve position is particularly disputable, because the outputs of an HE
system corresponding to two neighboring discrete gas valve positions (with the same fan
speed) can differ significantly. This might be problematic, because the gas valve position
plays a central role in the ADA iteration function and in the ADA procedure. Although this
is a potential shortcoming, a continuous HE model facilitates the convergence analysis of
the ADA procedure, because the considered iteration functions have continuous domains
and images in this case.

That the HE model disregards dynamic HE behavior is a consequence of the measurement
data provided by Vaillant. However, practical experience indicates that dynamics might
influence the results of the ADA procedure. Furthermore, the influence of environmental
and atmospheric conditions such as the air pressure and humidity or the gas pressure and
temperature are not considered in the HE model.

A further limitation related to the modeling aspect is that the drift resistance is considered
to be constant. It cannot be excluded in practice that the drift resistance is a function of
the fan speed and/or the equivalence AFR.

Finally, regarding the proposed optimization models and methods, there are two major
limitations. First, the proposed optimization methods are heuristics and not exact meth-
ods, i.e., we have no information about the "degree of optimality" of a found solution.
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Secondly, the proposed optimization models are relaxations. But at least in the simulation,
a relaxed solution has barely better objective function values than its rounded to nearest
integer counterpart.

Further modeling work will have to be conducted in order to understand and reduce the
discrepancy between simulation results and measured values in the lab. This could include
considering discrete gas valve positions, dynamics of the HE systems and influence of en-
vironmental conditions. In addition, further research should be undertaken to analyze the
influence of a discrete gas valve position and a variable drift resistance on the convergence
characteristics of the ADA procedure. Furthermore, it might be of interest to investigate
the precise mechanism by which tolerances with respect to the position of the ioni electrode
influence the resulting ioni current. If this is better understood, it might be possible to
simulate the influence of tolerances which helps to further reduce required lab capacities.
A further study could assess whether discrete optimization models and methods obtain
(significantly) better ADA parameters than the relaxed continuous models and methods
proposed in this thesis. Finally, further research might explore how other deposits than the
oxide layer on the ioni electrode influence the ioni current. For example, at the time of
writing, Vaillant engineers are investigating the influence of silicates deposited on the ioni
electrode. The silicates come from detergents used in washing machines.

In summary, despite its limitations, this work significantly contributes to the understand-
ing of the ADA procedure and provides practical support for the ADA parameterization.
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Examples with Respect to the ADA
Iteration Functions

Example A.1 This example shows that there exists an ADA iteration function Af o that is
not contractive but that still has a unique fixed point i* and the Picard iteration associated
to Aﬁ /p CONverges to i* for every starting point | € fi’D. The example is based on artificial
data and uses only the properties of the HE model according to Definition 2.18.

The idea behind this example is as follows. We construct a drift resistance iteration func-
tion AP, according to Definition 6.21 such that A, is a contractive selfmap but its ioni
current based counterpart A? ., is not contractive. Then, AP has a unique fixed point r*
and the Picard iteration associated to A’,’D converges to r* for all starting points r € Ii’,pD
(Lemma 6.35). According to Theorems 6.31 and 6.32, the Picard iteration associated to
AﬁrD converges to i* == B~Y(r*) for all starting points i € fi’D and i* is the unique fixed
point of Af,D.

Aiming at a better readability, the superscript p is omitted throughout this example. Fur-
thermore, we consider rp = 0. First, we construct linear start and test resistance functions
ps(g) = msg + ds and p; = myg + dy such that A,,(r) = 0, © pt.r, © psr, © 0L (r) is
contractive. Note that rp = 0 implies that ps ., = ps and p¢,, = pr. We select

ms = —0.105, ds =3 and my=—-0.1, dr = 1.

With these selections, ps and p; are both strictly decreasing, which is in accordance with
Lemma 6.17. As linear functions, ps and ps are defined on R. The domains of ps and p;
are implicitly specified in the course of this example, when the set I?,D is specified below.
To obtain A,,, we are interested in the inverse of ps and consider

_ 1
ps(g) = msg +di & pg l(f) = m*(f — ds).
S
Therefore, the drift resistance iteration function is

Arp(r) =07, 0 Pt © P51, 0 0, (r) =0, 0 pr o pgt o0t (r)

_ 1 m
=0p Opt,ro(ﬁs(r —ds + rs)) = ;:(r —ds+rs)+dp—rt

_ m
=m(r—ds+rs)+ de —rr, withm = —t
ms

—-0.1 __ 100

e 100 : : : : .
Because m = [t = —5555 = 155 < 1, the drift resistance function A, (r) is contractive.

In particular, it is Lipschitz with the Lipschitz constant L := m < 1. Note that A,,(r) is
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strictly increasing, which is in accordance with Lemma 6.34. The fixed point of A, (r) is
determined by

Ap(r)=rt e m(ir*—ds+rs)+de—re=r" & m(rs—ds)+dr —re = (1 —m)r*

m(rs — ds) + dy — 1t
1-—m '

*

= =

In this example, we specify the parameters rs and ry by
rs = ps(gs) with gs = 2.6 and ry == p¢(gs) with gr = 2.4 = rg =2.727 and r; = 0.76,

which results in the fixed point r* = —0.42.

Although this particular iteration function A, is defined on R, we must make sure that
its domain I?rD satisfies I?,D C (—rt, 00) to be consistent with the assumptions made in
this thesis (Lemma 6.4). Let us suppose that the domains Gs and G; of the functions
0s and py, respectively, are selected such that RA’,D = [-r+ + 0.1, —rt + 5]. In particular,
R, C (—r,00) is satisfied in this case. Furthermore, we have r* € R, . In total, A, is
a contractive function on R, with the fixed point r* € R, and thus the Picard iteration
associated to A, starting at r converges to r* for all r € R, (Lemma 6.35).

Next, we consider the corresponding ioni current iteration function A;, . Recall from
Definition 5.9 that (i) = % —ry and thus B~1(r) = rfrt. By applying Lemma 6.25, we
obtain

. _ ; o U a U
Air’D(l):ﬁ 10Aro°5(/):ﬁ 1OArD(7_rt)=.6 1(m(7_l’t—ds+/’s)+dt_rt)
U U . ~
~ m(Y = U Viel,.
m(T_rt_ds+fs)+dt—ft+rt m(T_rt_ds+rs)+dt

(A1)

Let us suppose that U = 1 in this example. By plugging the values for U, m, rs, ry, ds and
de into (A.1), we have

: 1 105 105 PN
Airp (1) = 10571 = Viel,.

101 -076-3+2727)+1 100(X—1.033)+105 20417

Recall further, that I, = B~ *(R,,) (Definition 6.3), i.e., for all i € I, there exists (a
unique) r € R, such that i = .

With this, we can finally select to elements to show that the Lipschitz constant L of
Airp IS greater than one. Let us consider i = 5 —r; and ro = 4 — r;. Because
I?rD =[-r+0.1,—rr + 5], we have rp € I?,D and r» € R, and thus iy ‘= B~Y(rn) =

D

ﬁ — s =t € I, and analogously i» == B~ *(ro) = % € I,,. We have
) ) 1 ) . 105 105
|I]_ — IQ| = % as well as |Ai,l’D(Il) — A,‘er(IQ)| = 5()? — m > 0.052

and thus ] _
|Airp (1) = Airpy ()]

L > : -
li1 — b

> 0.052 - 20 = 1.04,
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i.e., the Lipschitz constant of A, ., is greater than one and A; ., cannot be contractive. In
particular, this example demonstrates that A,, being contractive does not imply that A
Is contractive.

i,rD

Example A.2 This example shows that AfrD being contractive does not imply that the
corresponding drift resistance based ADA iteration function A?_ is contractive. Aiming at
a better readability, the superscript p is omitted throughout this example. The approach
in this example Is very similar to that in the preceding Example A.1. We again consider the
case rp = 0 and construct linear resistance functions ps and py. But this time, these are
constructed such that A, is not contractive but Aﬁ o is. Furthermore, the construction
Is more complicated, because this time py is composed of two piecewise linear functions.
We specify the required gvp sets by Gs = Gy = [—4,2], which is in accordance with
Definition 2.18. With this, we define for all g € Gs = Gy

ps(9) = msg+ds and  pe(g) = {m”g A
me,g+de ifg>0
with
ms=—-0.1, ds =3 aswellas myy=—-0.05 m;, =—-0.103 and dr = 2.
Furthermore, we select

rs = ps(ga) and ry = pe(ga) with ga= -1 = rs=3.1 and ry = 2.05.

We are interested in the drift resistance ADA iteration function A, (r) = 0, ©p¢r,© p;}D o
ot (r) =05 0propstoa(r). We consider its domain first. Because R, = ps(GsNGt)—rs

(Definitions 5.19 and 6.14), we have RA’rD = [-0.3,0.3]. Because p; is a piecewise linear
function with two segments and the changepoint gy, the iteration function A,, consists of
two segments as well. For this, we define ry = ps(gx) — rs = ps(0) — rs = ds — rs = —0.1.

Note that r, € R, and by construction p3(rx+rs) = p5 t(ps(0)—rs+rs) = p51(ps(0)) =
0 = gx. Therefore, ry is the changepoint of the two segments of A,,. Because pst s
strictly decreasing (Lemma 6.17), we have for all r € I?,D

r<rne & r+rs<re+rs & p;l(r+r5)2p;1(rx+r5):0,

re., if r < ry, we have to consider the "right segment" of p; and vice versa. Thus,
analogously to Example A.1, the drift resistance ADA iteration function is

A (1) = "m;;;’(r—ds—krs)—i—dt—rt /:frgrx,
m—tf(r—ds—krs)—i-dt—rt ifr>ry

for all r € R,,. Because Tor — D498 — 188 > 1, the Lipschitz constant of A, is greater
than one and thus A, Is not contractive.

Next, we consider the corresponding ioni current based ADA iteration function A; . Our
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goal is to show that A, ., is contractive. We begin with its domain, which is f,D =
ﬁ]. Beacause A,, is composed of two

’1(RrD) - ﬁ = [imin = ﬁ,jmax =
segments and A, ;, (i) = B~ 1o A, 0B(i) (Lemma 6.25), A; ,, is composed of two segments
as well. The changeover point is iy = B~1(r,) = —L = ﬁ € frD. Note that for all

~ rx+rt
iel,

o ) U U :
1<y & ﬁ(/)ZT—ftZT—ftZ,B(’x):er

X
e., if i < Ix, we have to consider the "right segment" of A,, and vise versa. Thus,
analogously to Example A.1, we have

i<y,

() = my(Y —re—ds+rs)+d: =
I,rp - . .
u ifi> iy

mr(%_rt_ds‘i‘rs)‘i‘dt

with my = ’%‘ and m, ‘= %‘5’ for all i € frD. By considering ¢ :i= my(—ry — ds + rs) + dy

and ¢, = m,(—r; — ds + rs) + dr, we can bring A; ,, into a more concise form, which is

U

u
A (i) =24 Mt -
i1 U —uU(mYtc)t ifi>i

U
mrCr

—UmY+c)™t ifi<i,

for i € f . Since we are interested in the Lipschitz constant of A;,,, we consider the
der/vat/ves of the two segments. We apply the chain rule to the left segment of A;
obtain its derivative, which is

1,Irp

f, 1

d . ) 9 1
Aro(i) = U(=1)(me 2 + ) Zmel(~1)% = my oy ————
! ! (me7 + Cg)

=M™ viel n(-co.i).
(me+ §i)°
Analogously, we have
d . m S _
Ai,rD(l) = ﬁ Vie IrD N (/X,OO).
(mr + 1)

We determine the maximum of each derivative, which corresponds to the Lipschitz constant
of the corresponding segment of A; .. We consider the left part first, i.e., we consider
the case that i < iyx. For this, we require the value of c,, which is

0%
G = me(—re = ds +15) + dy = ——(~2.05 — 3+3n+2_4(19®+2_1W5

Because ¢; > 0, we have for all i € frD = [imin. imax]

/mln) < (mZ + ﬂ’>2

O<imin <i = 0<my+ U

U/mmgmﬁ—U/ = 0<(mg+ T
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m m,
= d < ¢ —

(me+ %) ™ (Mg + Simin)’

1 2209
1 1\2 o
(3 +1.0255%)" 3872

ZLg<1.

N | —

In other words, &A; . (i) < Ly <1 for all i € [imin, ix)-
We proceed analogously with the right side and consider

103 103
c=m(—=rr—ds+rs)+di=—(-205-3+31)+2=—(-1.95)+2 = —0.0085.
100 100
In particular, we have ¢, < 0. Furthermore, we have
i+ L = 1oy 00985 T
£ U™ T 100 1.75 875~

and thus for all i € I, = [imin, imax]

. i . . Cr . Cr .
i <lmax = Crl > Crimax = mr+Ur/2mr+Ur/max>O

= (mr+ %i)2 > (my + %/max)2 >0
my my 103 /875\2 3154375
~ (m, + &) = (m, + i) B 100(897> = 3reaze <L

In other words, %A,-,,D(i) <L, <1 forallie€ (i, imax]. Because A; ., is continuous in I,
the Lipschitz constant of A;,, is L = max{Lg, L,} = L, <1 and thus A, ., is contractive.
In total A; ,, is contractive while its counterpart Ay, is not.

To conclude this example, we consider the fixed points of the iteration functions. First,
we show that the fixed point of the drift resistance iteration function A,, is r* = 0. Recall
that rp =0, ga =0 and rs = ps(ga) as well as r: = p:(ga). Therefore, we have

i,I’D

Ap(0) =0, 0prop;too(0) =0, optop;’ops(ga) =0, 0pi(ga)=re—re=0.

According to Theorem 6.31, i* .= B~1(r*) is the fixed point of Aj .. Therefore, the Picard
iteration associated to A;,, Starting at i converges to i* for all i € f,D (Lemma 6.35).
Then, the Picard iteration associated to A, starting at r converges to r* for allr € R,
(Theorem 6.32). This is noteworthy, because A, ., is not contractive.
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Notation Cheat Sheet Dissertation Tobias Suszka

Constants
U € Rsp:={x € R:x>0}: DC voltage (is fixed and constant)
rp € R>o = {x € R: x > 0}: drift resistance (Assumption 3.10)

HE model (without drift and with drift)
Def. 2.18: H = (FS, (Gts)ssers. (tss)ssers. (As)sers, (Crs)sers)
FS = [fsmin, fSmax]: set of feasible fan speeds
Gss: set of feasible gas valve positions wrt. fs € FS; is closed and bounded interval
tts . Grs — Iss C Rq: ioni current function wrt. fs; is strictly increasing homeomorphism
Ms : Gis = Lis C Rsg: equivalence AFR function wrt. fs; is strictly decreasing homeomorphism
(s : Gts = Rsg: CO emission function wrt. fs; is convex and continuous
Its = t1s(Gss), Ls = Nis(Gss); both are closed and bounded intervals (Def. 2.22)
Yue - drifted ioni current function wrt. fs; is strictly increasing homeo. (Def. 3.12)

Usro = ToutU°
lts.rp = Lis.rp (Gts) C Risq: set of drifted ioni currents wrt. fs (Notation 3.17)

ADA Parameters / ADA pairs

[N]:={1,..., N} for fixed N € I

sP,tP € FS: start and test fan speed of the p-th ADA pair (Notation 5.1)

iP € ls and if € I4»: start and test ioni current, respectively, of pair p (Notation 5.1)
(sP, tP,iP,iP): ADA parameters of the p-th ADA pair, p € [N] (Def. 5.2)

rP = % rP = % start and test resistance, respectively, of the p-th ADA pair (Def. 5.7)

2, = jsp;i‘iu, i, = /fII‘tDl-JQ-U: drifted start and test ioni current, respectively (Def. 3.27)
Iy = (h, .., in) C RQO: vector of drifted test ioni current approximations (Alg. 5.1)
a: . FS — R: drift resistance approximation function given the vector ?UD, maps a fan speed to

Itrp

the corresponding drift resistance approximation (Def. 3.38)
wP: weight with 0 < wP < 1, s.t. sP = wPtP + (1 — wP)tP~ ! (Def. 5.12 and Lemma 5.13)

Formalism: sets and functions

/?'r’D = W — rP: set of feasible drift resistance approximations of pair p (Def. 5.19)
U

BP :Rsg — (—rf, 00), BP(i) == %— 7 transforms approximation of iﬁm to corresponding approx-
imation of rp at the test fan speed t”; is decreasing homeomorphism (Def. 5.9 and L. 5.11)

fﬁD = (ﬁp)*l(ﬁfD): set of feasible drifted test ioni current approximations of pair p (Def. 6.3)

¥P RP — Lso rp (Gsp N th), YP(r) = iP ).S,,.HJFU: maps approximation of rp to the corresponding
approximation of /£, ; is strictly decreasing (Def. 5.22)

wP(x,y) = wPx + (1 — wP)y: weighted sum of x and y with weight w” (Def. 5.17)

ADA procedure with a single ADA pair: ioni current based

AY /?D =R, A =tlwg0 L', 0P o BP: ioni current based ADA iteration function of the

p-th ADA pair (Def. 6.5)



ADA procedure with a single ADA pair: resistance based

Res = £ set of resistances wrt. fs, fs € FS (Def. 6.14)

Rts,rp = 71 set of drifted resistances at the fan speed fs (Def. 6.14)
S,fD

or 1R — R, o7 (x) := x + ¢: auxiliary function that adds the constant ¢ (Def. 6.18)
0t - Gis = Ry, prs = Q resistance function wrt. fs (Def. 6.14)

Lf

Ps.ro - Gts = Risro Prsrp = = = 0, o pgs: drifted resistance fct. wrt. fs (Def. 6.14 and L. 6.20)

Us,rp

AP l?',’D =R, AY '=0,0pt 0 p;frD o Ufp: drift resistance iteration function of the p-th ADA
pair (Def. 6.21)

ADA procedure with a plurality of pairs (following definitions are only valid for p > 2)
wP(r) == wPr+ (1 — wP)v: "one-dimensional" weighted sum function (Def. 7.1)

VP set of feasible upper neighbor drift resistance approximations of ADA pair p, i.e., v € V?
corresponds to the drift resistance approximation of pair p — 1 (Def. 7.4)

Re = (w@)_l(,‘?fD): set of feasible drift resistance approximations of pair p given v (Def. 7.4)
/Aﬁ)DYV = (ﬁp)_l(lﬁf&v): set of feasible drifted test ioni current approximations of pair p given v
(Def. 7.4)

Bf ., : /AﬁD'V =R, BE, ==t 0 L;plm oyPow? o BP: ioni current based iteration function of ADA
pair p given v with v = P"(ij,_1) € V> (Def. 7.8)

Ch, RE, = R Ch, = AL oWl =050 sy © oty 00
function of ADA pair p given v, v € V2 (Def. 7.36)

u(n): ADA subsequence that contains first n entries of u (Def. 7.20)

i"(igin, u) = (i, ..., i) = 7t,out(7t,in, u(n)): n-th (ioni current based) ADA iterate (Def. 7.22),
corresponds to output of Algorithm 5.2 after n-th iteration (Corollary 7.23)

r(igin, u) = (.., ry), with rl :== BP(i]): n-th resistance based ADA iterate (Def. 7.28)

+

8

o wP: resistance based iteration

= (i ix*): (ioni current based) super fixed point vector recursively defined by if* = fix(A})
and i** = fix(ng,l(i;il)) for p > 2 (Def. 7.14)
r* =0 ..., ry): drift resistance super fixed point vector defined by r;* = BP(i;*) (Def. 7.32)

and recursively calculated by r;* = fix(A') and r}* = fix(Cfgil) for p > 2 (Lemma 7.42)

feasible super fixed point vector: if i** € RN holds (Def. 7.14)

feasible scenario: we consider (s?, t?,iP,if), p € [N], H and rp > 0 s.t. i** € RY, (Def. 7.16)
feasible input combination: input vector 7“” and ADA update sequence u such that for all n € IN
(or n € [4]) i"(irjn, u) € RN, holds (Def. 7.24)

Optimization models

T =1t .., tNY st fsmin <tV < -+ < 11 < fsay: set of feasible test fan speeds (Def. 8.1)
L5, (sP,iP,if): Lipschitz constant of A? wrt. ADA pair (sP,t?, i, i) (Def. 8.17)

ST, (8P 12 iP) = Ngo 0 L5 (iP) — Nov 0 L3 0 iser (SP): start point increment of pair p (Def. 8.59)
X.‘,’-VrD: set of feasible ADA parameters of ADA pair p wrt. T and rp (Def. 8.52)

(nom-P7 ): nominal optimization problem for ADA pair p (Def. 8.61)

XtT‘f'rD (Hnom, Ure1): set of feasible solutions with respect to tolerances (Def. 8.81)

(tol-Pr ., ): ADA optimization problem with respect to tolerances (Def. 8.84)
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