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Abstract

Data-based approaches, particularly deep learning algorithms, have attracted con-
siderable attention for their performance in various scientific disciplines and prac-
tical applications. This dissertation focuses on evaluating these methods in their
application to the study of pedestrian dynamics. Through three consecutive jour-
nal articles, the research objectives are systematically elaborated based on four
research questions, addressing the paradigm shift in this research field, the effec-
tiveness and relevance of various methodologies for trajectory prediction, and the
influence of scene density on performance.

Publication I lays the foundation by providing a comprehensive overview of
physics-based models and deep learning algorithms, highlighting the technical
and applicational divergences between the two approaches.
Publication II further advances this topic by employing datasets characterized by
differing densities to conduct pedestrian trajectory prediction experiments. Here,
the effectiveness of different approaches is tested, revealing that while the algo-
rithms can achieve high accuracy in terms of distance metrics, they are weak in
collision avoidance, a critical aspect of pedestrian dynamics. By integrating the
concept of ’time-to-collision’ into the deep learning algorithms, a hybrid approach
is proposed.
Publication III builds on these findings with a novel dataset generated during the
Lyon Festival of Lights. A two-stage prediction approach is presented that first
classifies scenes based on density before making predictions. It is shown how this
can significantly improve the accuracy of predictions.

In essence, this dissertation bridges the gap between traditional physics-based
models and contemporary deep learning algorithms, advocating a hybrid approach
for pedestrian trajectory prediction. Through a careful examination of differ-
ent methods under varying conditions, it finds that data-based approaches offer
promising advances, but the integration of concepts from physics-based models
can further improve their effectiveness.
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Zusammenfassung

Datenbasierte Ansätze, insbesondere Deep Learning Algorithmen, haben aufgrund
ihrer Leistung in verschiedenen wissenschaftlichen Disziplinen und praktischen
Anwendungen erhebliche Aufmerksamkeit erregt. Diese Dissertation befasst sich
mit der Bewertung dieser Methoden in der Anwendung für die Untersuchung von
Fußgängerdynamiken. Durch drei aufeinanderfolgende Fachartikel werden die
Forschungsziele systematisch anhand von vier Forschungsfragen ausgearbeitet,
die sich mit dem Paradigmenwechsel in diesem Forschungsgebiet, der Wirksamkeit
und Relevanz verschiedener Methoden zur Prognose von Trajektorien und dem
Einfluss der Szenendichte auf die Performance befassen.

Publikation I legt den Grundstein, indem sie einen umfassenden Überblick
über physikbasierte Modelle und Deep Learning Algorithmn bietet und die tech-
nischen und anwendungsbezogenen Unterschiede zwischen den beiden Ansätzen
aufzeigt.
Publikation II vertieft diese Thematik weiter, indem Datensätze verwendet wer-
den, die sich durch unterschiedliche Dichten auszeichnen, um Experimente zur
Prognose von Fußgängertrajektorien durchzuführen. Hier wird die Wirksamkeit
der verschiedenen Ansätze überprüft, wobei sich zeigt, dass die Algorithmen zwar
in Bezug auf Distanzmetriken eine hohe Genauigkeit erzielen können, jedoch bei
der Vermeidung von Kollisionen – einem kritischen Aspekt der Fußgängerdy-
namik – Schwächen aufweisen. Durch die Integration des Konzepts der ’Zeit-
zur-Kollision’ in die Algorithmen wird ein hybrider Ansatz vorgeschlagen.
Publikation III baut auf diesen Erkenntnissen auf mit einem neuartigen Daten-
satz, der während des Lichterfestes in Lyon generiert wurde. Ein zweistufiger
Prognoseansatz wird präsentiert, der zuerst Szenen auf Basis der Dichte klas-
sifiziert, bevor Prognosen getroffen werden. Es wird aufgezeigt, wie die Prog-
nosegenauigkeit dadurch erheblich verbessert werden kann.

Im Wesentlichen überbrückt diese Dissertation die Lücke zwischen traditionellen
physik-basierten Modellen und neuartigen Deep Learning Algorithmen und befür-
wortet einen hybriden Ansatz zur Prognose von Trajektorien. Durch eine sorgfältige
Untersuchung verschiedener Methoden unter variierenden Bedingungen wird fest-
gestellt, dass datenbasierte Ansätze vielversprechende Fortschritte bieten, die In-
tegration von Konzepten aus der Modellierung jedoch ihre Wirksamkeit noch
weiter verbessern kann.
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1. Introduction
Within the framework of the Franco-German project MADRAS (Multi-agent mod-
elling of dense crowd dynamics: Predict & Understand), this cumulative doctoral
thesis investigates the application of deep learning algorithms for the analysis of
high-density pedestrian dynamics. This thesis consists of three consecutive jour-
nal publications, which can be found in subsequent chapters. These publications
collectively examine the methodologies behind pedestrian trajectory predictions,
offering a comprehensive analysis of how deep learning can be leveraged to pre-
dict the complex and multifaceted behaviors of pedestrians.

1.1 Motivation

The number of people living in urban areas has been rapidly increasing for decades.
Particularly in developing countries, the urban population is increasing so rapidly
that local infrastructures are overloaded. This leads to more situations where there
are so many people in one place that they can be considered as crowds or high-
density situations (2-8 ped/m2). These scenarios, ranging from everyday urban
congestion to large-scale events and emergency evacuations, necessitate a meticu-
lous study of pedestrian behavior to ensure public safety and effective infrastruc-
ture planning. Traditionally, scientists have leaned on physics-based (PB) models
to simulate and study these behaviors, providing a framework to predict and man-
age crowd dynamics safely. However, the advent of autonomous technologies,
such as vehicles and service robots, has cast pedestrian behavior analysis in a
new light. The seamless integration of these technologies into urban life requires
predictions of pedestrian movements, necessitating methods that can adapt to the
fluidity and unpredictability of human behavior. Herein lies the pivot to data-
based algorithms, particularly those grounded in deep learning (DL). Unlike PB
models, these algorithms thrive on vast datasets, learning and predicting pedes-
trian dynamics without explicit theoretical underpinnings. This dissertation seeks
to explore this dichotomy. By evaluating the application of DL algorithms in pre-
dicting trajectories in high-density situations, this work aims to not only bench-
mark their performance against PB models but also to investigate how a synergy
between DL algorithms and PB models might unlock new potentials in pedestrian
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Chapter 1: Introduction

trajectory prediction.

1.2 Objectives and Scope
The topic of this dissertation is the evaluation of DL approaches within the realm
of pedestrian dynamics. Given the inherent complexity of this subject, it necessi-
tates a multifaceted approach, integrating various perspectives and innovative con-
cepts. A common strategy for dissecting complex issues involves breaking them
down into more manageable questions, thereby facilitating a deeper understand-
ing of the individual components. This thesis is structured around four principal
research questions (RQ), which are explored through three distinct publications:

• RQ1: Is there a paradigm shift occurring in the field of pedestrian dynam-
ics?

• RQ2: Among the available methodologies, which is most effective for pre-
dicting pedestrian trajectories?

• RQ3: To what extent does the density of a scene influence performance?
Furthermore, which approach excels in scenarios of high density?

• RQ4: In the field of pedestrian trajectory prediction, will PB models remain
relevant, or will DL emerge as the universal answer?

Table 1.1 Scope of Publications I-III.

RQ1 RQ2 RQ3 RQ4
Publication I X X
Publication II X X X
Publication III X X

Publication I offers a comprehensive literature review of PB models and DL
algorithms, highlighting technical and application differences. This comparative
analysis provides insights into RQ1 and RQ4. Publication II employs datasets
with varied characteristics to conduct experiments on pedestrian trajectory pre-
diction using both PB models and DL algorithms. This allows making statements
about the effectiveness of the methods for pedestrian trajectory prediction, which
is the content of RQ2. A significant focus of this publication is on the impact of
scene density on prediction accuracy. By assessing performance across a spec-
trum of densities, we provide insights into RQ3. A key finding is that while DL
algorithms excel in minimizing distance-based error metrics, they underperform in
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1.3. Organization of the Dissertation

collision avoidance, especially at high densities, compared to PB models. There-
fore, we integrate the ’time-to-collision’ (TTC) concept from the PB models [8]
into the loss function of DL algorithms. This innovative hybrid model serves as a
preliminary affirmation that PB models could maintain their relevance, offering a
nuanced perspective on RQ4. In publication III replicates the methodology from
Publication II but leverages a novel dataset collected during the Festival of Lights
in Lyon. This dataset is characterized by its rapidly fluctuating densities, making
it particularly suitable for exploring RQ3. We introduce a two-stage prediction
method, initially classifying scenes before proceeding with trajectory predictions.
This approach is further enhanced by incorporating the TTC-based algorithm from
Publication II, demonstrating once again how integrating PB concepts can aug-
ment DL algorithms. This methodology not only bolsters the prediction accuracy,
but also provides additional evidence in response to RQ4, showcasing the poten-
tial symbiosis between PB and DL models in the field of pedestrian dynamics.

1.3 Organization of the Dissertation
In the following chapter 2 the necessary theoretical framework is provided. We
introduce preliminary concepts and explain the main ideas of the PB models and
DL algorithms. In chapter 3 the contributions of the publications are summarised.
Furthermore, we illustrating how they collectively help to address RQ1-4. In the
last chapter 4 we discuss the RQs and provide a outlook for future works. Follow-
ing this, the full texts of the three publications are provided.
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2. Theoretical Framework
In this chapter, we present a detailed overview of the theoretical framework cru-
cial for comprehending the methodologies and objectives of this dissertation. The
three publications included within this work are united by their focus on pedestrian
trajectory predictions. Consequently, the theoretical foundation is specifically tai-
lored to address this challenge, providing a comprehensive understanding of the
key concepts and methodologies involved in this challenge.

2.1 Preliminary Concepts

Trajectory A trajectory reefers to the time-profile of the pedestrian’s position.
Mathematically, it is represented by the image coordinates (xi

t, y
i
t) for each time

instant t = k · dt, where k ∈ N. Typically, we predict trajectories over 12 time
steps k, equating to 4 seconds in duration at a frame rate of three observations per
second.

Scene The trajectories of pedestrians are significantly influenced by the sur-
rounding pedestrians as well as objects in the environment. In prediction tasks, it
is essential to anticipate the movements of all ith pedestrians within our area of
interest at time t, which we call a scene.

Primary pedestrian In any given scene with n pedestrians, one pedestrian is
designated as the primary pedestrian i for analysis. We predict the trajectories
for the entire scene and then calculate the prediction error specifically for the pri-
mary pedestrian. Subsequently, the process is repeated by selecting a new primary
pedestrian, i+ 1, within the same scene to assess their trajectory prediction error.
This iterative method is continued until the trajectory predictions for all pedestri-
ans, up to i = n, have been comprehensively evaluated.

ADE/FDE In the realm of supervised deep learning, the evaluation process is
crucial. Evaluating pedestrian trajectory prediction is primarily conducted using
two Euclidean distance metrics.

5



Chapter 2: Theoretical Framework

The first, Average Displacement Error (ADE) [12], captures the deviation be-
tween the predicted and actual trajectories at each time step t

ADE =
1

NT

N∑
i=1

T∑
t=1

∥x̂i(t)− xi(t)∥. (2.1)

Where xi(t) denotes the true position of the ith pedestrian at time t, while x̂i(t)
represents the predicted position. The notation | · | signifies the Euclidean dis-
tance. The second metric, the Final Displacement Error (FDE) [11], measures the
discrepancy between the final points t = Tpred of the predicted and ground truth
trajectories:

FDE =
1

N

N∑
i=1

∥x̂i(T )− xi(T )∥. (2.2)

Both distance-based metrics are widely used in pedestrian trajectory predictions
for their effectiveness in quantifying the goodness-of-fit.

Collision metric While the aforementioned metrics effectively quantify fit qual-
ity, they overlook the repulsive forces critical in pedestrian interactions, poten-
tially missing overlaps or collisions. To address this, the collision metric is em-
ployed, enhancing the evaluation process

COL =
1

|S|
∑
X̂∈S

COL(X̂), (2.3)

with

COL(X̂) = min

(
1,

T∑
t=1

N∑
i=1

N∑
j>i

[
||x̂i(t)− x̂j(t)|| ≤ 2R

])
. (2.4)

In these Equation, S represents all scenes in the test set, and X̂ denotes a scene’s
prediction containing N agents. The Iverson bracket [·] indicates that the expres-
sion within it evaluates to 1 if true, and 0 otherwise

[
P
]
=

{
1 if P is true,
0 otherwise. (2.5)

This metric considers a prediction to collide when two predicted pedestrian trajec-
tories intersect, thereby reflecting the proportion of predictions where collisions
are predicted. The pedestrian radius R = 0.2 m is a critical parameter in this
calculation, influencing the detected collision count.
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2.2. Physics-based Approach

2.2 Physics-based Approach
The physics-based approach comprises a large number of models ranging from
macroscopic, mesoscopic, and microscopic model [4]. Due to the fact, that we
predict individual trajectory of one primary pedestrians, the microscopic approach
is relevant for our task. In the class of microscopic models we differentiate be-
tween force-based, velocity-based, and decision-based models. In the following
the concepts of force-based and velocity-based models are introduced.

Force-based models The fundamental premise of a force-based models is that
the pedestrian behavior is governed by forced attaching him from his surround-
ings [9]

d

dt
xi = vi, i = 1, . . . , N, xi(0) = x0,i, (2.6a)

d

dt
vi = Di(t, xi, vi) + Ii(t, x, v) +B(t, xi, vi), vi(0) = v0,i. (2.6b)

In Eq. 2.6b, three types of forces impact the pedestrian’s behavior. The force
B describes environmental interactions, like with walls or obstacles. The drift
term Di generally models relaxation of the velocity vi towards a desired velocity
ui [7, 3]

Di(t, xi, vi) = τ(ui(xi)− vi). (2.7)

The main modelling component of force-based models is the interaction term
Ii which defines social forces derived from proximity concepts and behaviors
aimed at avoiding collisions

Ii(t, x, v) = −
N∑
j=1

∇U(xj − xi)ω(ϕij) (2.8)

where U represents the repulsive potential, and ω the anisotropic factor depending
for example on the relative bearing angle with the neighbors ϕij . A famous force-
based model, which we use in the later follwoing experiments is the social-force
model from Helbing and Molnár [7]. In it the functions reads

U(x) = AB exp(−|x− ℓ|/B) and ω(x) =

{
1 if |ϕij| < κ
c otherwise

where κ is the vision cone angle, and 0 < 1 < c is a reduced perception factor.
The parameters A and B are the repulsion rate and distance, respectively.

7



Chapter 2: Theoretical Framework

Velocity-based models Velocity-based models are systems of first-order differ-
ential equations. They are given by

vi = Vi(t, x, v), vi(0) = v0,i (2.9)

with the velocity function Vi ∈ Rd, or by

vi = ωi(t, x, v) ei(t, x, v), vI(0) = v0,i (2.10)

where the scalar speed model ωi(t, x, v) ∈ R is distinguished from the pedestrian
direction model ei(t, x, v) ∈ Rd. Pioneer works in the field of velocity-based
models date back to the end of the 1990s and the work of Fiorini et al. with ve-
locity obstacle and velocity avoidance sets [5]. The approach consists of linearly
extrapolating the trajectories of the pedestrians to determine collision sets. These
sets describe the so-called collision cones. The pedestrian model is obtained by
minimizing the deviation from the desired velocity outside the collision cones

vi = arg min
v ̸∈ ∪j ̸=iVOij

∥v − ui∥2 (2.11)

with ui the desired velocity and VOij the collision cone of the i-th pedestrian
with the j-th neighboring pedestrian. In the following work we especially use
the so called optimal reciprocal collision avoidance model (ORCA) from Van den
Berg et al. [13] that extends the collision-free dynamics to a general framework of
agents acting independently without communicating with each other.

2.3 Data-based Approach
The foregoing approach heavily relies on a theoretical modeling framework. Pre-
identified key mechanisms were formulated in mathematical equations with a few
meaningful parameters that have to be calibrated and validated. After that, the
model can be used to simulate the scene and predict future trajectories based on
current position and velocity of the pedestrians [10].

The DL algorithms do not need any assumptions regarding behavioral mecha-
nisms, obviating the need for prior knowledge and depending solely on data. Due
to the fact that the temporal sequence of positions plays a decisive role in trajec-
tories, algorithms are required that can process time series data. Long Short-Term
Memory Networks (LSTM) and Generative Adversarial Networks (GAN) stand
out for their ability to process time series data and have shown to be capable of
predicting realistic pedestrian movement patterns [2, 6].

In the scholarly discourse, a prevalent framework is employed for training al-
gorithms to learn pedestrian behaviors. During the training and evaluation phases,
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2.3. Data-based Approach

individual trajectories are segmented into input and output sequences. Specifi-
cally, the algorithm is provided with k = 9 time steps of the input trajectory,
encompassing both the primary pedestrian and their immediate neighbors, and is
tasked with predicting the subsequent k = 12 time steps. Subsequently, this pre-
dicted output is compared to the ground truth data to assess the model’s accuracy,
utilizing error metrics predominantly in the form of ADE and FDE, as detailed
in Section 2.1. The primary objective during the training phase is to refine the
algorithms such that the Euclidean distance between the predicted trajectory and
the ground truth is minimized, thereby enhancing the precision of the predictions.

Long short-term memory networks A recurrent neural network (RNN) is an
important class of machine learning methods, that uses feedback connections to
store representations of recent input events in form of activations [14]. These
feedback connections can exist between different time steps providing a tempo-
ral memory to the network [139]. Because of this capability, they are especially
suited for sequence modelling tasks such as time series prediction and sequence
labelling tasks [9]. Most successful are the LSTM architectures of RNNs, that use
purpose-built memory cells to store information. LSTM networks can be trained
for sequence generation by processing real data sequences one step at a time and
predicting what comes next so that temporal coherence can be ensured. The train-
ing of a LSTM network can be lengthy and difficult, but the forward-propagation
of new data (testing) can happen quite fast. The Most famous LSTM for pedes-
trian trajectory prediction is the Social-LSTM (S-LSTM) proposed by Alahi et
al. [5]. It is the first major DL application that takes the interactions between
pedestrians into account. The main contribution of the S-LSTM is a novel pool-
ing layer called social pooling that gathers the hidden states of nearby pedestrians
(see Fig. 2.1). With that technique, the influence of neighboring pedestrians on
the movement of the ego pedestrian can be included as an input for the following
prediction step.

In Fg. 2.1 the core idea of the S-LSTM is displayed. For each pedestrian in a
scene a separate LSTM network with separated input is used. Through the social
pooling layer (S-pooling) the LSTM are connected with each other allowing to
share information.

Generative adversarial networks GANs are DL algorithms that are charac-
terised by an architecture containing a discriminator and a generator. The genera-
tor takes the training data as input and creates different output samples. In turn, the
discriminator takes the generated samples and the training data and tries to distin-
guish whether a given sample belongs to the true data distribution or is generated
by the generator. Both components are engaged in a competition similar to a two-
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Chapter 2: Theoretical Framework

Figure 2.1 Incorpatation of neighbour trajectories by using a social pooling layer in
the S-LSTM from Alahi et al. [2].

player min-max game where each one tries to outsmart the other one [76, 136].
From this process, the generator learns to generate data that resemble the true data
distribution, which allows GANs to generate multimodal prediction samples.
The most famous GAN for pedestrian trajectory prediction is the Social-GAN (S-
GAN) from Gupta et al. [6]. In this algorithm the generator is composed of an
LSTM-based encoder, a context pooling module, and an LSTM-based decoder.
The discriminator uses LSTMs as well as shown in Fg. 2.2. The pooling module
adopted in the S-GAN uses a uniform weight for all surrounding pedestrians.

Figure 2.2 Architecture of the S-GAN with its three key components Generator,
Pooling Module, and Discriminator [6].
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3. Contributions of the Publications
In this section, we will outline the contributions made by the publications that
constitute this cumulative dissertation. The sequence of these publications is de-
liberately structured to build upon each other, creating a coherent thread through-
out the dissertation. The initial publication provides a thorough literature review
on the DL algorithms and the PB models, exploring both technical and applica-
tion differences between the two approaches. In the publication II, we extend
beyond a qualitative comparison of these methodologies to a quantitative analy-
sis, utilizing both low-density field data and high-density experimental data. This
comparison is facilitated by the introduction of three distinct error metrics. Con-
cluding this paper, we introduce an innovative algorithm that surpasses existing
DL algorithms in performance. This algorithm is a hybrid model, incorporating
the architectural strengths of DL algorithms while integrating TTC a concept de-
rived from PB models as discussed by Karamouzas [8]—to simulate pedestrian
behavior more accurately. The last publication continues the exploration begun
in the second, albeit with a shift in methodology: instead of relying on experi-
mental data for high-density situations, we utilize field data. Given the scarcity of
high-density field data, the research team undertook field experiments during the
Festival of Lights in Lyon, generating valuable high-density pedestrian trajectory
data. In this publication III, we leverage this unique dataset to validate our exper-
iments, which demonstrate that a prior density-based classification significantly
enhances prediction accuracy. We introduce a two-stage TTC-SLSTM algorithm
that exhibits exceptional performance by both Euclidean and collision-based error
metrics, marking a significant advancement in pedestrian behavior prediction.

3.1 Publication I: Review of Pedestrian Trajectory
Prediction Methods

Publication I serves as a comprehensive review paper, primarily aimed at present-
ing a detailed overview of pedestrian trajectory prediction methods. A pivotal
element of this study is the systematic differentiation between DL algorithms and
PB models as prediction tools. Beyond a thorough literature review encompass-
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Chapter 3: Contributions of the Publications

ing both approaches, the paper delves into the technical nuances and application-
specific distinctions that set these approaches apart. In its concluding sections,
the paper addresses unresolved questions and outlines potential avenues for future
research, signalling the evolving nature of this field. A notable observation is the
divergent perspectives, terminologies, and objectives prevalent among machine
learning researchers who employ DL algorithms and the traditional pedestrian
dynamics field. This disparity underscores the necessity for a unified framework
and lexicon that can bridge the gap between these communities. Consequently,
this paper endeavors to serve as a foundational resource, offering standardized
terminologies and frameworks to foster mutual understanding and collaboration
across the disciplines. Publication I help to answer research question RQ1 and
RQ4. RQ1 examining whether a paradigm shift is occurring within pedestrian
dynamics studies. Figure 3.1 from publication I indicates that DL algorithms are
indeed a hot topic in the last decade.
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Figure 3.1 Number of annual citations estimated by performing an online search with
the engine Google Scholar [1]. Panel (a): Results of the tags «neural network» and
«social force» in combination with either «pedestrian/human trajectory» or «pedestrian
dynamics». Panel (b): Yearly citations for the articles by Helbing and Molnár [7] (SFM),
Van den Berg et al. [13] (ORCA), Alahi et al. [2] (S-LSTM), and Gupta et al. [6]
(S-GAN). SFM and ORCA are PB models, whereas S-LSTM and S-GAN are DL
approaches.

Notably, the S-LSTM introduced by Alahi et al. [2] and the S-GAN by Gupta
et al. [6] stand out as particularly influential contributions. Despite their relatively
recent publication, these works have garnered a considerable number of citations
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3.2. Publication II: Predicting Pedestrian Trajectories at Different Densities

annually, underscoring their impact and the keen interest they have sparked in the
research community.

Regarding RQ4, our findings in publication I indicate that the current appli-
cations of the two approaches are different. While DL algorithms demonstrate
superior performance over PB models in predicting individual trajectories at low
densities, their efficacy in simulating large-scale events and capturing collective
dynamics is yet to be established.

3.2 Publication II: Predicting Pedestrian Trajecto-
ries at Different Densities

After finishing the comprehensive literature review on both approaches we wanted
to dive into empirical experiments. We employed both low-density field datasets
and high-density experimental datasets to assess the performances. At the ini-
tial step of our evaluation, we selected an appropriate error metrics. Commonly,
ADE and FDE, which are based on Euclidean distance, are utilized for this pur-
pose. Our comparative analysis revealed that, in terms of ADE/FDE accuracy, DL
algorithms consistently outperformed PB models across all datasets. To deepen
our investigation, we incorporated an additional metric designed to quantify the
frequency of collisions or overlaps in the predicted trajectories. Interestingly, de-
spite the superior ADE/FDE performance of DL algorithms, a significant increase
in collision instances was observed, particularly in scenarios characterized by high
density. To address this issue we developed a novel continuous collision metric
based on pedestrians’ time-to-collision and added it to the loss function of the
DL algorithms. By doing so the algorithms are not just trained on minimizing
euclidean distance, but also on reducing the likelihood of collisions with neig-
bours. This method, which is refer to as the hybrid approach, synthesizes insights
from PB models with DL algorithm frameworks to enhance performance. The
enhanced loss function is articulated as follows:

Li =
T∑
t=1

∥xi(t)− x̂i(t)∥2 + λ

T∑
t=1

f(min
j ̸=i

{τij}), (3.1)

where the first term represents the ADE and the second term encapsulates our
collision-based metric. The collision metric employs a sigmoid penalty function
f , defined as:

f(τ) =
1

1 + es(τ−δ)
, (3.2)
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with s and δ denoting the slope and threshold parameters, respectively. The
TTC between entities i and j is calculated using:

τij =
−xij · vij −

√
(xij · vij)2 − ||vij||2(||xij||2 − 4R2)

||vij||2
, (3.3)

A collision between i-th and j-th pedestrians occurs if there exists a time τ > 0
such that xij + vijτ lies within a circle centred at (0, 0) with radius 2R. This
criterion is mathematically represented as ∥xij + vijt∥ < 2R where ∥ · ∥ denotes
Euclidean norm.

In Publication II, we delve into RQ2, RQ3, and RQ4, offering substantial in-
sights into each. Our analysis demonstrates that, regarding prediction accuracy
measured by distance-based metrics ADE/FDE, DL algorithms consistently sur-
pass PB models (RQ2). However, in high-density situations, the performance gap
between DL algorithms and PB models narrows, and DL algorithms exhibit a sig-
nificant increase in collision occurrences, indicating a potential area of weakness
(RQ3). To address that, we integrated the TTC concept from PB models in the
loss function of the DL algorithms (RQ4).

3.3 Publication III: Toward Better Pedestrian Tra-
jectory Predictions

In publication III, we aim to build upon the concepts introduced in publication II,
further refining these ideas and applying them to our novel dataset. Our dataset,
originating from a field study conducted by our team during the Festival of Lights
in Lyon, stands out as, to our knowledge, the only high-density pedestrian trajec-
tory field dataset capturing long trajectories in a non-artificial setting. This dataset
is distinguished by its dynamic density fluctuations: during the light shows, the
tracking area experiences relatively low density, featuring multidirectional flow
with long interaction ranges. However, once a show concludes, the density surges
dramatically as pedestrians move en masse to the next viewing spot, with densi-
ties reaching beyond 2.2 ped/m2 in a mainly unidirectional flow (see appendix of
publication III). Preliminary data analysis revealed that cluster algorithms such as
K-Means and Agglomerative Hierarchical Clustering (AHC) effectively identify
distinct clusters within the data, as illustrated in Figure 3.2.

Figure 3.2 demonstrates that the density is a characteristic, that explains the
behaviour patterns to a certain degree. This knowledge will be used to enhance-
ment of our DL algorithms. We introduce a novel 2-stage approach, where ini-
tially, the density of the scene is calculate before proceeding with trajectory pre-
dictions. This methodology is depicted in Figure 3.3, illustrating our predictive
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Figure 3.2 Results of the K-Means and the agglomerative hierarchical clustering.
Trajectory scenes are clustered as shown by the different colours of the points.

schema.

Figure 3.3 Schemata of our two-stage prediction approach

By implementing this schema, we have improved the accuracy of predictions
for both S-LSTM and the S-GAN. Moreover, integrating this hybrid approach
with the TTC loss function concept from publication II has resulted in an algo-
rithm that exhibits superior performance in terms of ADE/FDE and the collision
metric.

This publication contributes significantly to addressing RQ3. Figure 3.2 vali-
dates the premise that scene density is a pivotal characteristic, underscoring that
differentiating between densities enhances the algorithm’s adaptability and pre-
diction accuracy. Additionally, our results reaffirm that integrating insights from
PB models with DL algorithms yields improvements. Specifically, in publication
III, the incorporation of TTC and density differentiation has proven advantageous,
leading to the conclusion that a purely DL approach may not be as effective.
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4. Discussion
This dissertation embarked on an explorative journey through the evolving land-
scape of pedestrian trajectory prediction, with a particular focus on the appli-
cability and efficacy of DL algorithms in comparison to traditional PB models.
Through a meticulous examination spread across three journal publications, this
work has sought to address four pivotal research questions (RQs), weaving a nar-
rative that not only delves into the potential paradigm shift in pedestrian dynamics
but also scrutinizes the capabilities of DL and PB models in predicting pedestrian
trajectories across varying densities.

4.1 Contributions to Research Questions

4.1.1 RQ1: The Paradigm Shift
The year 2022 marked a pivotal moment on pedestrian dynamics researchers, as
the S-LSTM surpassed the SF Model, the historically most cited work in the field,
in annual citations. This shift underscores a growing interest for DL algorithms,
signalling a paradigmatic transition. In our publication I we discussed this phe-
nomena and emphasised, that it is caused by a shift in the application of the ap-
proaches from simulation of crowds to prediction of single trajectories.

4.1.2 RQ2: Predicting Pedestrian Trajectories
PB models heavily rely on a theoretical modelling framework with pre-identified
key mechanisms that were formulated in equations with a few meaningful param-
eters. DL algorithms do not have interpretable parameters, but extensive arrays of
coefficients, enabling them to fit a wide spectrum of data. Given this difference, it
is unsurprising that DL algorithm generally outperform PB models in predicting
trajectories on a specific dataset they have been trained on. However, choosing
the right evaluation system is crucial question for assess predicted pedestrian be-
haviour. In publication II, we show that reliance on distance metrics alone may
result in unrealistic behaviour, such as overlapping, especially in high-density sit-
uations. To address that, we introduced a novel TTC based evaluation metric and
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enhanced the realism and accuracy of the DL algorithm by incorporating this met-
ric into the loss function of the algorithm.

4.1.3 RQ3: Influence of Density on Performance
Our findings in publication II clearly indicate that the density of the scene signifi-
cantly impacts the effectiveness of both DL and PB approaches. At high densities,
the superiority of DL algorithms over PB models is marginal in terms of distance
metrics and substantially inferior concerning collision metrics. In publication III
we conducted a cluster analysis of our data, that showed that the observed be-
haviour differences can be mainly explained by the density of the scene. For that
reason, we proposed a two-stage framework that initially classifies scenes by den-
sity before making predictions, thereby improving the adaptability of our models
across various density scenarios.

4.1.4 RQ4: The Future of Pedestrian Dynamics Models
The future of pedestrian dynamics does not envisage the obsolescence of PB mod-
els in favour of DL algorithms. Particularly in high-density scenarios and crowd
simulations, PB models remain invaluable tools. Our research demonstrates that
integrating the strengths of both models can yield superior results for pedestrian
trajectory prediction. The synthesis of PB principles with DL innovations, as ev-
idenced in our hybrid models, underscores a synergistic approach that capitalizes
on the unique advantages of each, suggesting a balanced and multifaceted future
for pedestrian dynamics modelling.

4.2 Outlook

Looking ahead, several avenues for future research emerge from this work. Firstly,
the development of more sophisticated hybrid models that seamlessly integrate
the predictive strengths of DL algorithms with the nuanced collision avoidance
capabilities of PB models could further refine pedestrian trajectory prediction.
We used TTC concept in the loss function, but future research should also ex-
plore alternative loss functions, particularly for high-density scenarios, where the
traditional ADE based approaches may not suffice. Another promising research
avenue involves the creation and deployment of specialized algorithms designed
for specific scene characteristics. Although this we emphasized density as a crit-
ical factor, other scene attributes could also significantly influence model perfor-
mance. Identifying and incorporating these attributes could lead to more nuanced
and effective predictive algorithms. Lastly, our framework focused on short-term
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4.2. Outlook

predictions at the operational level. Future works needs to overcome this narrow
focus and move to the tactical level, where new challenges such as intricate envi-
ronments, multiple potential pathways, and the intricacies of group dynamics are
prevalent. If the DL algorithms are capable to tackle those challenges remains to
be demonstrated.
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Review of pedestrian trajectory prediction methods:
Comparing deep learning and knowledge-based

approaches.

Raphael Korbmacher1, and Antoine Tordeux1
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Gaußstr. 20, Germany

Abstract
In crowd scenarios, predicting trajectories of pedestrians is a complex and chal-
lenging task depending on many external factors. The topology of the scene and
the interactions between the pedestrians are just some of them. Due to advance-
ments in data-science and data collection technologies deep learning methods
have recently become a research hotspot in numerous domains. Therefore, it is
not surprising that more and more researchers apply these methods to predict tra-
jectories of pedestrians. This paper compares these relatively new deep learning
algorithms with classical knowledge-based models that are widely used to sim-
ulate pedestrian dynamics. It provides a comprehensive literature review of both
approaches, explores technical and application oriented differences, and addresses
open questions as well as future development directions. Our investigations point
out that the pertinence of knowledge-based models to predict local trajectories is
nowadays questionable because of the high accuracy of the deep learning algo-
rithms. Nevertheless, the ability of deep-learning algorithms for large-scale sim-
ulation and the description of collective dynamics remains to be demonstrated.
Furthermore, the comparison shows that the combination of both approaches (the
hybrid approach) seems to be promising to overcome disadvantages like the miss-
ing explainability of the deep learning approach.

Keywords: Pedestrian trajectory prediction, deep learning, high-density, col-
lision, time-to-collision
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I.1 Introduction

The prediction of future trajectories of pedestrians is a valuable but challenging
task. Traditionally, researchers try to model and understand human behavior with
simple rules and mechanisms that can be used to simulate realistic behavior and
predict future trajectories [91, 25]. In the last decade, deep learning methods, that
have the interesting property of being able to learn complex features from data
alone, have caught a lot of attention in a variety of domains [170, 192]. They have
led to a large number of practical applications, especially in machine perception,
and have shown to outperform the prediction accuracy of the traditional models
in many scientific disciplines. Prominent examples occur in theoretical biology
and active matter [202, 40], medicine [53, 74], or materials and chemical science
[200, 66, 26, 181].

In the discipline of pedestrian dynamics, there is a high interest in making
accurate predictions of pedestrian trajectories due to numerous real-world appli-
cations like facility, infrastructure, and building design [20], notably in the case
of evacuation [23, 87, 249], autonomous driving cars [176], human-robot interac-
tions [197], assistive technologies in industrial scenarios [135], and entertainment
(e.g., augmented and virtual reality) [186].

(a) (b)

Figure I.1 For the prediction of pedestrian trajectories, it is useful to distinguish
between scenes with few pedestrians (see (a)) and crowds of pedestrians (see (b)). Deep
learning algorithms turn out to be accurate prediction tools for the scene (a), whereas
knowledge-based approaches allow to describe collective phenomena at higher scales
such as those described in the scene (b).

A trajectory is defined as the time-profile of the pedestrian’s position. Changes
of the position in a given time step can be interpreted as the velocity. Predicting
trajectories means to assess the future motion of pedestrians in a given scene.
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Besides the prediction of the simple physical motion of a single human, based
on current or past observations, an important issue is to take into account their
possible interactions as well as arising collective dynamics. Collective dynamics
can be considered by predicting trajectories of many pedestrians in a scene si-
multaneously. In Fig. I.1(a) few pedestrians are present. The challenge consists
in predicting individual trajectories in local interactions with the neighbors over
relatively small horizon times. In Fig. I.1(b) a pedestrian crowd is shown. Predict-
ing multiple trajectories and resulting collective crowd behavior at higher scale is
necessary.

One approach to tackle the challenge of predicting trajectories is to use the
knowledge-based (KB) approach, sometimes referred to by other names, such as
physics-based [216], reasoning-based [129], expert-based [33] or traditional ap-
proach [19]. The KB approach contains models that are defined by basic rules or
generic functions and considers physical as well as social or psychological factors
of the pedestrians. They can be specified by a few parameters which generally
have physical interpretations and allow to adjust the model. Prominent micro-
scopic KB models are the social force model (SFM) [91] or the optimal reciprocal
collision avoidance (ORCA) [222]. In general, the goal of these models is to
improve the understanding of pedestrian dynamics and to identify microscopic
mechanisms and parameters for the emerge of patterns and organisation in given
scenes [178, 86, 36, 15, 157, 204, 23]. These models can be successfully applied
for trajectory predictions in both scenes shown in Fig. I.1.

The other promising possibility to predict pedestrian trajectory consists of the
use of supervised deep learning (DL) methods, especially long short-term mem-
ory networks (LSTM), convolutional neural networks (CNN), and generative ad-
versarial networks (GAN). In the literature, this approach is often referred to as
learning-based [129], pattern-based [188], or data-based approach. Deep learning
refers to methods for training neural networks with more than two hidden layers
(deep neural networks) [62] and supervised to methods that learn from data. Im-
proving trajectory predictions for autonomous vehicles, service robots, and urban
video surveillance are main goals [188]. In opposite to the KB approach, there
are no interpretable parameters and rules necessary, but large amounts of data and
flexible algorithms.

The KB approach is scientifically relevant since several decades, see for il-
lustration in Fig. I.2 the citation numbers of one of the most famous KB models,
the social force model by Helbing and Molnár [91]. On the other hand, the DL
approach is a youthful methodology that started to become highly relevant for
the prediction of pedestrian trajectories after the publication of the social-LSTM
from Alahi et al. [5]. After this date, the social force model started to get as-
sociated with pedestrian trajectory as well, see the publication number with the
keywords combining social force and pedestrian trajectory in Fig. I.2. Yet, the
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applications of KB and DL approaches are not identical. KB models are mainly
designed to describe and understand collective phenomena implying high num-
bers of agents in high density scenarios like in Fig. I.1(b). They are based on few
parameters that can be interpreted and calibrated. This results in high flexibility of
the prediction scenarios, and notably the possibility to change pedestrian motion
preferences (e.g., higher desired time-gap during pandemics). DL methods are
designed to predict pedestrian trajectories at very local scales in space (few me-
ters) and time (few seconds). If their predictions are accurate, they do not allow
to control the motion and to reproduce different kinds of behaviors. In general,
they are used for low density scenarios at local scale like in scene (a) presented
Fig. I.1. The question of whether DL approaches could also be suitable for large-
scale simulation or successfully used to initiate collective dynamics is still open.
On the other hand, the pertinence of KB models to predict local trajectories is,
regarding the high accuracy of DL algorithms, questionable.

The combination of both KB and DL approaches seems to be especially promis-
ing. Recently, some authors try to implement components of the KB models in
the DL algorithms to overcome crucial limitations of the DL approach, like the
lack of interpretability or generality [7, 100, 125]. Furthermore, another possibil-
ity is to use DL methods to improve the accuracy of the KB models. This can be
done by estimating the parameters based on the results of an DL algorithm or to
implement a neural network in the KB simulations [247, 111]. These combina-
tions are called the hybrid approach and they benefit from the strengths of both
approaches and avoid their shortcomings. Other promising algorithms close to
hybrid approaches rely on reinforcement learning (RL) and inverse reinforcement
learning (IRL). The agents learn from their own experiences in RL methods while
IRL partly rely on data.

In this article, we address a comprehensive bibliographical review of KB and
DL approaches for the modeling and prediction of pedestrian trajectories. We crit-
ically compare the two modelling approaches from their technical aspects as well
as their application fields. We highlight similarities and differences between the
two methodologies and draw future development perspectives. The manuscript is
organised as follows. A thorough literature review of microscopic KB pedestrian
models is presented in the next section. In Sec. I.3, we give a literature overview
about the DL approach distinguishing between long short-term memory networks,
convolutional neural networks, and generative adversarial neural networks. In
Sec. I.4 we show a comprehensive comparison of both approaches focusing on
their methodologies, phenomena of interest, and application scales. In the last
section, we discuss future directions and perspectives of common developments
of the KB and DL modelling approaches.
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Figure I.2 Number of annual citations estimated by performing an online search with
the engine Google Scholar [2]. Panel (a): Results of the tags «neural network» and
«social force» in combination with either «pedestrian/human trajectory» or «pedestrian
dynamics». Panel (b): Yearly citations for the articles by Helbing and Molnár [91]
(SFM), Van den Berg et al. [222] (ORCA), Alahi et al. [5] (S-LSTM), and Gupta et al.
[76] (S-GAN). SFM and ORCA are knowledge-based, whereas S-LSTM and S-GAN are
deep learning approaches.

I.2 The knowledge-based approach

In the beginnings of the discipline, pedestrian dynamics researchers mostly used
direct observations, photographs and time-lapse films to improve knowledge about
the behavior of pedestrians [167]. This knowledge was applied to develop level-
of-service concepts, design elements of pedestrian facilities and planning guide-
lines [63, 177, 86, 97]. These concepts and guidelines are useful to understand
and control pedestrian dynamics, but are not suited for predictions of pedestrian
flows or trajectories. Therefore, in the next step researchers started to create sim-
ulation models like force-based microscopic models [95], queuing models [141],
the transition matrix model [65] or the models of Henderson [92, 93] which con-
jectured that the behavior of pedestrian crowds is similar to that of gases or fluids.
These last models describe aggregated quantities and not individual pedestrian
performances. They are called macroscopic models. Currently, KB pedestrian
models range from macroscopic, mesoscopic, and microscopic models among
others modeling scale characteristics. Macroscopic and mesosopic approaches
are borrowed from continuous fluid dynamics or gas-kinetic models describing
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the dynamics at an aggregated level, while microscopic approaches model indi-
vidual pedestrian motions. In the literature, many reviews focus on the modelling
scales of pedestrian dynamics and the passages from a modelling scale to an-
other [36, 85, 27, 14, 150, 38]. Some other reviews highlight pedestrian collective
dynamics [195, 49, 23, 194] or applications in layout design [48]. In the fol-
lowing, we propose a review of KB pedestrian models focusing on microscopic
approaches and their applications for prediction of pedestrian trajectories.

I.2.1 Microscopic pedestrian models

In the three last decades, many researchers focused on individual motion of pedes-
trians using different microscopic models. One of the advantages of microscopic
approaches compared to macroscopic ones is their natural ability to reproduce
heterogeneous behaviors. Indeed, the pedestrian being individually considered,
it is straightforward to attribute specific characteristics to each agent and to take
into account behavioral heterogeneity, among other heterogeneous aspects. On
the other hand, microscopic models can be computationally expensive and their
use is limited in case of large-scale simulation.

Microscopic pedestrian models consider the individual behaviors and interac-
tions between individuals. The crowd dynamic phenomena result from mutual
influences at a macroscopic level [48]. Microscopic models are mainly designed
to reproduce characteristics macroscopic features such as fundamental diagrams
or collective organisations like band formation [43, 98]. These kinds of models,
describing individually pedestrian dynamics, can be used to predict trajectories of
pedestrians at any scale. The individual pedestrian behavior is described accord-
ing to certain KB rules ground on physical, social or psychological factors [38].
These rules are formulated in hand-crafted dynamic equations based on Newton’s
laws of motion. Given the input information about the initial status of the pedes-
trians like position, velocity, and acceleration a forward simulation of these rules
can be used to predict the future trajectories.

Depending on the inputs and outputs of the model, the motion of the pedes-
trians to a new position can be determined in different ways. If the output of the
model is the new velocity or acceleration, which then allows calculating the new
position, the model is classified as a velocity- or acceleration-based model, re-
spectively. If the position is directly determined by certain rules and is not based
on differential equations, the class of models is called decision-based.

Acceleration-based models Acceleration-based models, typically force-based
models, describe a class of microscopic models where the movement of pedestri-
ans is defined by a superposition of exterior forces. One of the first force-based
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models dates backs to the 1975s and the work by Hirai and Tairu [95]. Nowa-
days, most of the acceleration-based models are force-based consisting of a relax-
ation (or anisotropic) term to the desired direction and an interaction term. This
last term is generally the sum of repulsion (social force) with the neighbours and
obstacles [39, 217]. The interaction force is the gradient of a potential on the
distances and eventually the speed differences with the neighbors. This gradient
may be exponential as in the social force model [91], algebraic as for the centrifu-
gal and generalised centrifugal force models [244, 37], or partly linear as in the
two-dimensional optimal velocity model [161]. The interaction force is weighted
by a vision field concept, attributing more importance to the obstacles in front.
Acceleration-based models, being of the second order, require relatively fine dis-
cretization scheme and may be subjected to numerical pitfalls [123]. Many cur-
rently developed acceleration-based pedestrian models are extensions of the social
force model (see the review [31] and references therein). Yet, not all acceleration-
based models rely on force concepts. See for instance the model by Moussaid et
al. [158] based on the concept of desired time gap, the model by Karamouzas
et al. [106] relying on time-to-collision variables, or a recent model by Lu et al.
[143] based on anticipation mechanisms.

Velocity-based models Acceleration and force-based models allow describing
inertial effects, as well as delays in the dynamics. Such mechanisms are ques-
tionable for pedestrian dynamics. Indeed, in contrast to a driver in a vehicle,
inertial effects are minor for a pedestrian and almost no latency takes place in
the motion process. These assertions, upon other, carry the current of velocity-
based modeling approaches. Velocity-based models have been developed since
the 2000s in the literature, later than the acceleration-based models [38]. They
are partly inspired by robotic. Technically, velocity-based models rely on first
order-differential equations, whereas acceleration-based models are based on sec-
ond order equations. Velocity-based models are speed functions depending on
the position differences with neighbors and obstacles. As for acceleration-based
models, the speed of the neighbors (or speed difference) may be taken into ac-
count as well (making the system of speed equations implicit). A large class
of velocity-based models are based on collision cones and collision avoidance
techniques [171, 223, 222, 174, 77, 78, 113, 75]. The models are formulated as
optimisation problems on the ensemble of feasible trajectories devoid of colli-
sions [153, 152]. The presence of collisions is generally determined by assuming
that the velocity of the neighbors is constant. The velocity ensemble leading to
collisions describes then cones in space [171]. To avoid unrealistic oscillation ef-
fect (ping-pong effects), the models are extended to reciprocal velocity obstacle
model (RVO) [223] or optimal reciprocal collision avoidance (ORCA) [222] for
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which avoidance techniques are determined in coordination between the pedestri-
ans. ORCA models and their extensions are frequently used in computer graphics
to reproduce crowd behaviors (see, e.g., [242, 28]). Other velocity-based models
derive from concepts of bearing angle [169], gradient navigation [47], or, inspired
from vehicular dynamics, time gap variable [213, 237].

Decision-based models and cellular automata In decision-based or rule-based
models the pedestrian behavior is not modeled based on differential equations, but
on rules or decisions determining the new agent positions, velocities, etc. [38].
The time is considered to be discrete for this class of models. In synchronous
approaches, the pedestrians make decisions at time t + ∆t knowing the state of
the system at time t. The time step ∆t, playing the role of reaction time, has a
direct physical meaning and can be used for the calibration of the model. Cellular
automata (CA) are typical decision-based models. Not only the time is discrete
in CA models, the space and state (i.e., velocity) of the pedestrians are discrete
as well. The pedestrians evolve on a lattice, that is generally squared or hexago-
nal. A cell can be occupied by a single pedestrian only (exclusion rule). The size
of a cell corresponds to the size of a pedestrian, generally 40 cm × 40 cm on a
squared lattice, i.e., a maximal density of 6.25 ped/m2 [232]. The first pedestrian
CA models date back to the end of the 1990s [64, 160, 21, 119]. In floor field
CA [25, 24, 115, 193], the rules and transition probabilities to the neighboring
cells result from static and dynamic floor fields. The static floor field describe the
desired velocity of the pedestrian. The dynamic floor field models the interactions
with the neighbors. These interactions are inspired from the process of chemo-
taxis [16] used by some insects, typically pheromones with ants. An important
modeling part of the CA approaches consists in solving conflict cases when two
pedestrians covet the same cell at the same time. A priority rule may be defined,
which can be random [115]. In [116], friction probabilities are introduced for
which no pedestrian reaches the desired cell in case of conflict. Such a mechanism
allows notably to explain clogging effects at bottlenecks. Recent decision-based
models are based on cognitive effect [228, 229] or learning process [247].

I.2.2 Trends during the past decades
The modeling and experimentation of pedestrian dynamics is a quite young re-
search field. First investigations and models date back to the 1960s and the 1970s
[167, 95, 65, 92]. However, the topic has mainly been the subject of significant
research over the past three decades. Experimental studies on pedestrian dynam-
ics in laboratory conditions have been intensively carried out during the 2010s.
Pedestrian experiments rely on uni-directional flow, counter-flow, bottleneck, in-
tersecting flow, etc. An open access data archive can be found in Germany; see [1]
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and references therein. At the same time, authors developed different types of KB
pedestrian models, ranging from microscopic to macroscopic modeling scales;
see, e.g., the reviews [36, 85, 27, 195, 38]. Most important in the literature of
the KB models is undoubtedly the microscopic social force model by Helbing and
Molnár, and more generally the force-based microscopic modeling approach (see
Table I.1). Traditional KB approaches by cellular automata, queuing processes,
or in analogy to fluid or gas dynamics seen currently to reach a plateau, even if
the trends are still light increasing (see Fig. I.3). The microscopic force-based
models and approaches based on collision avoidance techniques remain relevant
with an expanding number of citations. This is because they commonly serve as
benchmark references to evaluate the quality of the predictions with deep learning
methods (see, e.g., [5, 82]).
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Figure I.3 Number of annual citations estimated by performing an online search with
the engine Google Scholar [2]. Panel (a): Results for the tags «pedestrian dynamics» and
keywords related to different model classes. Panel (b): Yearly citations for the articles by
Burstedde et al. [24], Van den Berg et al. [223], Treuille et al. [221], Henderson [92],
and Hughes [103].

I.2.3 Knowledge-based models for understanding and predict-
ing

The aim of knowledge-based models is mainly to identify mechanisms and fun-
damental parameters operating collectively in the pedestrian dynamics. First of
all, body exclusion effects are responsible for jamming and clogging effects, and
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Table I.1 Important articles in knowledge-based pedestrian models focusing on
microscopic approaches. (Citations as of 31/12/2021)

Author, Yr Title and Reference Family Cites
Burstedde,
2001

Simulation of pedestrian dynamics using a two-
dimensional cellular automaton [25]

Cellular au-
tomata

1931

Kirchner, 2002 Simulation of evacuation processes using a
bionics-inspired cellular automaton model for
pedestrian dynamics [115]

— 1119

Van den Berg,
2008

Reciprocal velocity obstacles for real-time
multi-agent navigation [223]

Collision
avoidance

1363

Pellegrini,
2009

You’ll never walk alone: Modeling social be-
havior for multi-target tracking [174]

— 1206

Van den Berg,
2011

Reciprocal n-Body Collision Avoidance [222] — 1440

Helbing, 1995 Social force model for pedestrian dynamics
[91]

Force-based 6245

Helbing, 2000 Simulating dynamical features of escape panic
[88]

— 5382

Chraibi, 2010 Generalized centrifugal-force model for pedes-
trian dynamics [37]

— 335

Moussaid,
2011

How simple rules determine pedestrian behav-
ior and crowd disasters [158]

— 1009

Karamouzas,
2014

A universal power law governing pedestrian in-
teractions [106]

— 247

Treuille, 2006 Continuum crowds [221] Queuing 1176
Henderson,
1971

The statistics of crowd fluids [92] Gas-kinetic 778

Hughes, 2002 A continuum theory for the flow of pedestrians
[103]

Fluid dynamics 1174

Chowdhury,
2000

Statistical physics of vehicular traffic and some
related systems [36]

Review 2862

Helbing, 2001 Traffic and related self-driven many-particle
systems [85]

— 3979

Castellano,
2009

Statistical physics of social dynamics [27] — 3963

Schadschneider,
2009

Evacuation dynamics: Empirical results, mod-
eling and applications [195]

— 766

Bellomo, 2011 On the modeling of traffic and crowds: A sur-
vey of models, speculations, and perspectives
[14]

— 464

Bechinger,
2016

Active particles in complex and crowded envi-
ronments [13]

— 1507
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notions of maximal density. The parameters of KB models rely on the concept
of fundamental diagram, a phenomenological uni-modal relationship between the
flow and the density. The fundamental diagram relationship has been pointed out
as early as the 1960s. Yet, investigations on its shape and scattering are still ac-
tively ongoing [81, 168, 162, 203, 29, 246, 209]. Identified parameters are, upon
others, the desired speed, the agent size, or the reaction time at microscopic scales.
They are the maximal density or the capacity at the macroscopic level. The quan-
titative estimations of the parameters, as well as their numbers and nature, are con-
troversial and subject to diverse influences, type of the flows (e.g., uni-directional,
bi-directional), context and motivation, ages, or cultural effects (see [23] and ref-
erences therein). Simple microscopic rules allows explaining macroscopic shapes
of the fundamental diagram [196, 158, 69]. Here, as for traffic flow, temporal pa-
rameters such as the reaction time or the time gap with the next pedestrian ahead
turn out to be highly relevant [158, 213].

One of the main highlights of KB models is the identification of self-organisation
phenomena and the emergence of coordinated dynamics, patterns, structures, and
orders at macroscopic scales. Multi-scale approaches allow understanding how
microscopic individual behaviors initiate the emergence of macroscopic collective
dynamics [43, 98]. Prominent examples of collective dynamics are lane forma-
tion [44, 68], stop-and-go waves [11, 61], freezing-by-heating effect [89, 208],
herding effect [89, 115] or oscillations, intermittent flow, and pattern formation
at bottlenecks and in intersections [86, 90, 41, 164]; see the review [36, 15, 23]
and references therein. Comparable self-organisation phenomena arise in social
systems and social networks, notably for opinion formation [94, 159, 218]. This
includes a large class of non-equilibrium systems of self-driven or active parti-
cles often called active matter in the literature of statistical physics [201, 27, 179,
226, 147, 51, 13]. Understanding complex non-linear dynamics operating at dif-
ferent modeling scales remains challenging and currently attracts much attention,
notably through data-based approaches [204, 163, 40, 170, 50].

The aims of microscopic KB models are mainly to provide a better under-
standing of large-scale dynamics from individual walking behaviors. Predictions
of trajectories for a given dataset is no direct goal of KB models, but an indi-
rect one. In the literature of pedestrian dynamics, some KB models have been
proven to be useful for predicting pedestrian trajectories. They are implemented
in multi-agent simulation tools [121, 45, 211, 118] to analyse pedestrian dynam-
ics in different types of infrastructures or for specific outdoor events. The KB
model, typically the social force model, is the technical kernel of the dynamics
in complement to furthers mechanisms and controls describing different types of
behaviors or motivation levels, agent characteristics, and further context effects.
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I.3 The deep learning approach

The foregoing approach heavily relies on a theoretical modeling framework. Pre-
identified key mechanisms were formulated in equations with a few meaningful
parameters that have to be calibrated and validated. After that, the model can be
used to simulate the scene, which can generate useful information for many ap-
plications. The predictive capacity for pedestrian trajectories almost comes as a
by-product in the KB approach. In the DL approach the prediction of trajectories
is not a by-product, but the main focus. As in many other domains, the DL ap-
proach captured a lot of attention over the last decade due to an increase of real and
experimental databases, improvements in the computational capacity of comput-
ers [38], and the requirement of accurate pedestrian predictions for applications
like autonomous vehicles or service robots [187].

There exist different possibilities in the literature to classify the DL methods.
Rudenko et al. [187] classify the DL approach into sequential methods and non-
sequential methods, based on the type of function approximation they are used
for. Bighashdel and Dubbelman [19] classify the methods according to their main
focus: The interaction-based approach, where the interactions between the pedes-
trians are addressed, the path-planning approach, where the trajectories are highly
affected by the destinations, and the intention-based approach, where the intention
is estimated. In this article, we differentiate between three classes of supervised
DL algorithms: LSTM, CNN, and GAN. Currently, these three classes of methods
seem to be most relevant in research, although there are also promising publica-
tions on transformer networks [67, 4] or variational autoencoder [104].
Before researchers start to use these DL algorithms, statistical models were ap-
plied to make predictions based on data. These statistical models learn pedes-
trian behavior by fitting different function estimates to data. One possibility is to
use linear models with Kalman filters or extended Kalman filters [198, 154, 5].
Kalman filters can be used for predictions by propagating the current state with a
dynamical model without the inclusion of new measurements. These simple mod-
els are not able to account for interactions between humans and thus do not fit for
predictions of crowded scenes. The first statistical models that could learn interac-
tions are those based on Gaussian process (GP) like the IGP from Trautman et al.
[219]. They proposed an interacting GP where the trajectory of a pedestrian is rep-
resented as a Gaussian process. The interaction potential combines multiple tra-
jectories, so that multi-modal distributions can be represented with relatively few
parameters. It has been demonstrated, that they perform well with noisy observa-
tions and have closed-form predictive uncertainty. Also in [18, 220, 109, 52, 112]
GP based models where proposed to model future pedestrian behavior. Other
common statistical approaches that are not based on deep learning are approaches
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based on Markov property [58]. These approaches include hidden Markov mod-
els, in which the hidden state is the pedestrians intent [18, 112]. Whereas the GP
uses the entire observed trajectory for the prediction of future trajectories, the pre-
dictions with Markov models only depend on the current state [58].
Besides these statistical models, reinforcement learning (RL) is an important method
for modelling crowd behavior. Most of all, RL techniques are relevant for robotics
to anticipate surrounding pedestrian behavior and to plan a collision-free paths
[32, 231]. RL is an unsupervised machine learning method, where an objective is
learned via trial and error associated to a reward function that rewards or penal-
izes agent behaviors. Therefore, no data is required. It is assumed that the reward
function contains the necessary information [151]. An exception to this is inverse
RL (IRL) where the design of the reward function is based on data. Kretzschmar
et al. [127] introduce an IRL algorithm that uses a maximum entropy probability
distribution for a joint set of continuous state-space for mobile robot navigation in
crowds. Kitani et al. [117] propose an well-established IRL algorithm for plausi-
ble path predictions. To extend the flexibility of the IRL algorithms recent works
use deep IRL algorithms that can estimate non-linear, continuous reward func-
tions. These deep IRL show promising results especially in robot path planning
and vehicle driving behavior [235]. If it is the aim to predict pedestrian trajecto-
ries, these deep IRL algorithms are often combined with LSTM networks, which
are supervised learning algorithms that will be discussed in the following. For
more literature about RL in pedestrian dynamics refer to, e.g., [131, 149, 148].
For IRL methods used for trajectory predictions see [117, 182], for deep IRL
methods see [134, 132, 54], or to get a wider perspective, refer to the surveys
[224, 150].

I.3.1 Long short-term memory networks
A recurrent neural network (RNN) is an important class of machine learning meth-
ods, that uses feedback connections to store representations of recent input events
in form of activations [96]. These feedback connections can exist between dif-
ferent time steps providing a temporal memory to the network [139]. Because of
this capability, they are especially suited for sequence modeling tasks such as time
series prediction and sequence labeling tasks [9]. Most successful are the LSTM
architectures of RNNs, that use purpose-built memory cells to store information.
They have achieved impressive results in many sequential prediction tasks like
speech recognition [73], machine translation [210], handwriting recognition and
generation [72], and image captioning [227]. LSTM networks can be trained for
sequence generation by processing real data sequences one step at a time and pre-
dicting what comes next so that temporal coherence can be ensured. The training
of a LSTM network can be lengthy and difficult, but the forward-propagation of
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Table I.2 Selection of important articles of deep learning algorithms predicting
pedestrian trajectories.(Number of citation based on search from 31/12/2021)

First au-
thor, year

Article’s title and reference Family Citations

Trautman,
2010

Unfreezing the robot: Navigation in dense, inter-
acting crowds [220]

Gaussian 459

Kitani,
2012

Activity forecasting [117] IRL 727

Alahi, 2016 Social-LSTM: Human trajectory prediction in
crowded spaces [5]

LSTM 1770

Kretzschmar,
2016

Socially compliant mobile robot navigation via
IRL[127] [117]

IRL 326

Yi, 2016 Pedestrian behavior understanding and prediction
with deep neural networks [241]

CNN 124

Lee, 2017 DESIRE: Distant future prediction in dynamic
scenes with interacting agents [134]

LSTM 604

Fernando,
2018

Soft+ hardwired attention: A LSTM framework
for human trajectory prediction and abnormal
event detection [59]

LSTM 219

Gupta, 2018 Social GAN: Socially acceptable trajectories with
generative adversarial networks [76]

GAN 910

Nikhil,
2018

Convolutional neural network for trajectory pre-
diction [166]

CNN 83

Vemula,
2018

Social attention: Modeling attention in human
crowds [225]

LSTM 357

Xue, 2018 SS-LSTM: A hierarchical LSTM model for
pedestrian trajectory prediction [239]

LSTM 217

Sadeghian,
2019

SoPhie: An attentive GAN for predicting paths
compliant to social and physical constraints [189]

GAN 457

Rudenko,
2020

Human motion trajectory prediction: A survey
[187]

Review 282

new data (testing) can happen quite fast. That is why they are a popular choice for
real-time tracking and predicting.

Recently, many researchers use these LSTM networks to predict trajectories
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Figure I.4 Number of annual citations estimated by performing an online search with
the engine Google Scholar [2]. Panel (a): Results for the tags «pedestrian trajectory» and
keywords related to the class of algorithm. Panel (b): Yearly citations for the articles by
Trautman et al. [219], Kitani et al. [117], Alahi et al. [5], Yi et al. [241], and Gupta et al.
[76].

of pedestrians. Most famous is the social-LSTM proposed by Alahi et al. [5]. It
is the first major DL application that takes the interactions between pedestrians in
crowded scenarios into account. The main contribution of the social-LSTM is a
novel pooling layer called social pooling that gathers the hidden states of nearby
pedestrians. With that technique, the influence of neighboring pedestrians on the
movement of the ego pedestrian can be included as an input for the following
prediction step. Inspired by the success of the social-LSTM many researchers
try to use LSTM networks with different settings. The scene-LSTM incorporates
additional scene information [146]. The social-scene LSTM [239] considers the
scene influence, the social information of the person, and scene scale information
in three different LSTM networks. Pfeiffer et al. [175] incorporate static obsta-
cles that have to be avoided. Other approaches that process scene information are
[134, 140]. Besides the capturing of scene information, some LSTM algorithms
integrate an attention mechanism in the interaction module to capture the relative
importance of each person in the scene. Other LSTM networks focus on attention
mechanisms in the interaction module to capture the relative importance of each
person in the scene. In some of these works, the attention weights are learned
by data or by added handcrafted based on domain knowledge [59, 80, 102, 212].
Another relevant work is STGAT by Huang et al. [102] that uses graph neural
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networks (GNN) instead of a pooling module. To share information across the
pedestrians, each agent is treated as a node of a graph. Derived from this work
DAG-Net [156] presents a double attentive GNN combined with a RNN and STR-
GGRNN [79] introduces an online framework that automatically infers the social
interactions by completing the graph edges. An overview of DL pedestrian tra-
jectory prediction algorithms relying on LSTM networks is provided in Table I.3.
The works are sorted by the publication year to give the reader an impression
about the overall progress in this field.

I.3.2 Convolutional neural network
Convolutional neural network (CNN) are machine learning methods mostly used
for computer vision tasks like image classification [128], object detection, ob-
ject tracking and image segmentation [17]. For studies of pedestrian dynamic
these methods are highly important because of their impressive performance in
classifying and tracking of objects like pedestrians or vehicles [55, 184, 243]. An-
other advantage is the reduced computational load outperforming regular neural
networks [155, 166]. However, CNN are not widely used to predict pedestrian
trajectories, because these are non-sequential methods, which makes it difficult to
design the network input and output [241]. They are mostly used for trajectory
predictions of road vehicles [136], the prediction of pedestrian behaviors for au-
tonomous vehicles [180, 3], or pose/action recognition [240, 35]. The first CNN
designed to model and predict pedestrian trajectories is the “Behavior-CNN” from
Yi et al. [241]. It is a 3-stage deep CNN that encodes the pedestrian behavior into
sparse displacement volumes which can be directly used as network input at the
first stage. The CNN from Nikhil et al. [166] utilizes a highly parallelizable
convolutional layer to handle temporal dependencies. Trajectory histories are em-
bedded by means of a fully connected layer. Stacked convolutional layers are used
to learn temporal dependencies in a consistent manner. The features from the final
convolutional layer are passed through a fully-connected layer which generates all
predicted positions simultaneously.

An extension of the CNNs are the graph CNNs which were first introduced
by [114]. Mohammed et al. [155] propose the Social-STGCNN that uses graph
CNN by modeling the interactions as a spatio-temporal graph, whose edges model
the social interactions between the pedestrians. Dan [46] proposed a graph CNN
combined with a LSTM network. The graph CNN extract the feature from the
pedestrians and the scene for which every pedestrian is regarded as a node and the
relationship between each node and its neighbors is obtained by graph embedding.
The LSTM encodes the relationship so that the model can predict nodes trajecto-
ries. Other approaches combing CNNs with LSTM networks are [238, 105, 183].
An overview of DL pedestrian trajectory prediction algorithms relying on convo-
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Table I.3 Overview of DL pedestrian trajectory prediction algorithms relying on
LSTM networks.

First author,
year

Name Main characteristics

Alahi, 2016 Social-LSTM Social pooling layer to handle interactions
Lee, 2017 DESIRE Ranks and refines the generated trajecto-

ries
Fernando,
2018

Soft + Hardwired Attention Utilises “soft attention” as well as “hard-
wired” attention

Xue, 2018 SS-LSTM Three different LSTMs to capture person,
social and scene scale information

Manh, 2018 Scene-LSTM Incorporates scene information
Hasan, 2018 MX-LSTM Takes head pose and vision range into ac-

count
Vemula, 2018 Social-Attention Based on social-LSTM, but captures the

relative importance of each person when
navigating in crowds

Bisagno,
2018

Group-LSTM Coherent filtering algorithm to segment
groups

Cheng, 2018 Social-Grid LSTM Combines social pooling and grid-LSTM
methods

Bartoli, 2018 Context-aware-Social-
LSTM

Interactions with static elements and dy-
namic agents

Pfeiffer, 2018 Static-LSTM Angular pedestrian grid combined with
CNN

Ivanovic,
2019

The Trajectron LSTMs combined with CVAEs and dy-
namic spatiotemporal graphical structures

Lisotto, 2019 SNS-LSTM Social, navigation, and semantic pooling
mechanism

Huang, 2019 STGAT Spatial-Temporal Graph neural network
combined with LSTM

Haddad, 2019 Situation-Aware-LSTM Spatio-temporal graph that operates on the
local and global contexts

Syed, 2019 SSeg-LSTM Semantic segmentation to incorporate
scene information

Zhao, 2019 MATF Encodes past trajectory and scene context
into a Multi-Agent Tensor

Monti, 2020 DAG-Net Double attentive GNN that deals with past
interactions and future goals
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lutional neural networks is given in Table I.4.

Table I.4 Overview of DL pedestrian trajectory prediction algorithms relying on
convolutional neural networks.

First author,
year

Name Main characteristics

Yi, 2016 Behavior CNN 3-stage deep CNN that creates sparse
displacement volumes

Varshneya, 2017 SSCN Static spatial context modeled with
CNN

Rehder, 2018 RMDN CNN for inferring destination from im-
ages and position. LSTM for prediction

Nikhil, 2018 CNN Highly parallelizable CNN to handle
temporal dependencies

Mohamed, 2020 Social-STGCNN Models the interactions as a graph using
social spatio-temporal graph CNN

Yu, 2020 TGConv Transformer-based graph convolution
mechanism

Dan, 2020 Spatial-Temporal Block Spatial Temporal Graph CNN com-
bined with LSTM

Ridel, 2020 COVLSTM 2-D grid combined with CNN and
LSTM

Jain, 2020 DRF-Net Discrete residual flow network

Zhang, 2021 Social-IWSTCNN CNN with spatial and temporal features

Zhao, 2021 STUGCN CNN with spatio-temporal graph archi-
tecture

Zamboni, 2021 Conv2D 2D Convolutional models with different
network architectures

I.3.3 Generative adversarial networks
A problem that is inherent with predictions of trajectories is the multimodal na-
ture of future pedestrian trajectories. GANs have a high potential to cope with
this problem, because of their capabilities to generate multimodal samples [101].
With the use of GANs, it is possible to predict a distribution of potential future
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trajectories and not just the best single trajectory [191]. The architecture of a
GAN consists of two part: a generator and a discriminator. In the DL approach,
a neural network is trained to match the desired data distribution and achieve a
low error rate. In a non-intuitive way, the generator of a GAN is trained so that
the error rate of the discriminator increases at first. The generator takes the train-
ing data as input and creates different output samples. In turn, the discriminator
takes the generated samples and the training data and tries to distinguish whether a
given sample belongs to the true data distribution or is generated by the generator.
Both components are engaged in a competition similar to a two-player min-max
game where each one tries to outsmart the other one [76, 136]. From this process,
the generator learns to generate data that resemble the true data distribution. Al-
though the results of the GAN-based methods are promising, there are two main
difficulties. First, GANs can be hard to train and second, GAN learning often suf-
fers from mode collapse [8, 190]. Applied for trajectory prediction, most GANs
are combined with LSTM networks. In the social GAN from Gupta et al. [76]
the generator is composed of an LSTM-based encoder, a context pooling module,
and an LSTM-based decoder. The discriminator uses LSTMs as well. The pool-
ing module adopted in the social GAN uses a uniform weight for all surrounding
pedestrians. Therefore, it can not distinguish the different effects exerted on a
target pedestrian by pedestrians at different distances and traveling at different
speeds. For that reason, many authors added attention mechanisms. Sadegehian
et al. [189] add an attention module to assign different soft attention distribution
weights to the surrounding pedestrians and the static environment. Using an atten-
tion module with a physical and social component and a feature extractor module
composed of a CNN and several LSTM network encoder, the model SoPhie learns
the interaction information of different agents and extracts the most important in-
formation from the neighbors. Social Ways [6] applies info-GAN [30], which
introduces latent code to enhance the multi-modality of prediction and computes
the attentive social features to generate a more convincing result. It uses discrimi-
nation loss for the discriminator, adversarial loss for the generator and information
loss for both. Social-BiGAT [122] relies on BiGAN architecture to help reduce
the variance of the predicted trajectory distributions and allow for better general-
ization. In Lv et al. [144] the authors propose a GAN combined with transformer
networks which generates trajectory distributions to capture the uncertainty of the
predictions. However, these methods focus on the trajectory prediction in ho-
mogeneous environment without considering the types of road users. Lai et al.
[130] use an attention module, containing two components, in order to alleviate
the issues given by the complexity of a scene with many heterogeneous interact-
ing agents [130]. An overview of DL pedestrian trajectory prediction algorithms
relying on generative adversarial neural networks is proposed in Table I.5.
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Table I.5 Overview of DL pedestrian trajectory prediction algorithms relying on
generative adversarial neural networks.

First author,
year

Name Main characteristics

Gupta, 2018 Social-GAN GAN composed of LSTM encoder, context-
pooling module and LSTM decoder

Fernando, 2018 GD-GAN GAN for pedestrian trajectory predicting and
group detection

Sadeghian, 2019 SoPhie GAN that uses path history and scene infor-
mation

Amirian, 2019 Social Ways Uses discrimination-, adversarial- and infor-
mation loss

Kosaraju, 2019 Social-BiGAT GAN for multimodal trajectory predictions

Lai, 2020 AEE-GAN Info-GAN architecture with recurrent feed-
back

Huang, 2021 STI-GAN Combination of graph attention network and
GAN
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I.4 Comparing the approaches

In this Section, we present a comparison of the KB and the supervised DL ap-
proaches. First, we focus on technical differences (Sec. I.4.1) and second, we
describe the differences regarding the applications for predicting pedestrian tra-
jectories (Sec. I.4.2).

I.4.1 Technically oriented comparison

There are considerable differences between the two approaches, which makes it
difficult to create a common framework that both can share for a fair comparison.
Kothari et al. [124] define trajectory predictions as "given the past trajectories of
all humans in a scene, forecast the future trajectories which conform to the social
norms". This definition fits for the DL approach, but not the KB approach where
the past trajectories are not used to predict (simulate) the future ones. In KB meth-
ods, inputs describe the current state of the system through, e.g., instantaneous
relative position [91], relative velocity [37], time gap [158], or collision-related
indicators such as bearing angle [169], collision cone [223] or time-to-collision
[106]. Moreover, the approaches have different criteria in terms of quality of the
fit. A "good" KB model has few interpretable parameters, can simulate realistic
pedestrian trajectories, and improves understanding of the phenomena. To evalu-
ate the performance of a KB method, the parameters have to be calibrated and the
model needs to be validated. The calibration phase is done using knowledge on
the values of the parameters (i.e., 1 or 1.5 m/s for the pedestrian desired speed, see
[232]) or is formulated using empirical data as an optimisation problem (by least
squares or by maximum likelihood, see, e.g., [42, 142, 214, 22]). The validation
of KB methods is generally done using three typical ways: by using fundamental
diagrams [196, 57], using data [138, 185, 120] and by comparing the resulting
phenomena with real-world self-organization phenomena. The goal of the DL ap-
proach is to predict trajectories that are as close as possible to the real trajectories.
Common key figures for the performance of the DL approaches are the average
displacement error (ADE) [174] and the final displacement error (FDE) [5]. The
first one averages the Euclidean distance between points of the predicted trajec-
tory and the ground truth that have the same temporal distance and the second one
measures the distance between the final predicted position and the ground-truth
position. When the two approaches are compared in the literature the ADE and
FDE are used as reference (see, e.g., [5, 82, 76]).

The algorithms of the DL approach have a large number of parameters that
have no direct physical meaning and therefore can be referred to as coefficients.
These coefficients have to be trained by one part of the data set (training phase). In
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general, this is done by using an training algorithm like the back-propagation al-
gorithm [165]. The aim of this training algorithm is to adjust the network settings
in a way, that minimizes the given cost function [71]. Common cost functions are
the mean square error or the cross entropy. After the training is complete, the algo-
rithms are feed with the rest of the data set to evaluate predictions (testing phase).
This cross-validation method allows detecting overfitting phenomena, when the
algorithm presents low training error but poor performance for the prediction of
new data. The training is usually computationally expensive and is made offline,
whereas the predictions of the trajectories (i.e., the computation), once the train-
ing is completed, are quite fast and can be made online (in real-time) [7]. We
summarize our findings regarding the technical differences of both approaches in
Table I.6.

I.4.2 Application oriented comparison
Besides the technical orientated differences, there are also great differences re-
garding the applications of both approaches. KB approaches are mostly used for
crowded situations. Collective dynamics are described at macroscopic scales. Ap-
plications mainly rely on large-scale simulations to analyze, e.g., infrastructure
design or evacuation situations. In contrast to that, the DL approach focuses more
on single pedestrians and their interactions with other pedestrians or the environ-
ment locally and in low density situations. Applications are mainly for automa-
tised mobile systems like autonomous vehicles or industrial robots that have to
anticipate the future behavior/trajectory of pedestrians to avoid collisions. The
DL approach surpasses the KB approach in complexity (i.e., number of inputs
as well as number of parameters/coefficients). This provides a high flexibility and
enables the DL algorithms to learn complex interactions and motion patterns when
the amount of data is sufficient. This is especially useful in situations where com-
plexity prohibits the explicit programming of a system´s exact physical nature.

The importance of data There are great differences in the role of data for the
two KB and DL approaches. The performance of the DL algorithms highly de-
pends on the quality of the data. The majority of researchers in this discipline
use datasets containing low density situations with few interacting pedestrians to
train the algorithms. A collection of datasets that are widely used to train and
evaluate the algorithms are TrajNet++ [124] or OpenTraj [2]. The KB models do
not need data to learn pedestrian behavior. Data is just needed for calibrating the
parameters. In practice, this is often done by using experimental data including
high density situations, see, e.g., [1]. The data used for the KB approach con-
tains the trajectories of each pedestrian as well as the structure of the environment
and locations of obstacles. For the DL algorithms, the data can be more varied
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Table I.6 Technically oriented comparison of the KB and the DL approach for
prediction of pedestrian dynamics.

Knowledge-based Deep learning
Semantics Model Algorithm

Parameter Coefficient
Calibration Training
Validation Testing

Methodology Differential equation systems or
cellular automata

Neural network, mostly RNN,
LSTM, CNN, GAN

Inputs System actual state (e.g., pedes-
trian relative positions, velocities,
etc. at time t)

Past trajectories discretised over
the time interval [t−T, t], T ≈ 2–
4 s

Outputs Future pedestrian positions at
time t+ δt, δt ranging from 0.01 s
(discretised differential system) to
0.5–1 s (cellular automata)

Future pedestrian positions dis-
cretised over time interval [t, t +
T ⋆], T ⋆ ≈ 3–5 s

Modeling con-
cepts

Fundamental diagram Learning human-interaction

Body exclusion, maximal density Social pooling
Desired velocity and social force Attention mechanisms
Static and dynamic floor field Group dynamics
Collision avoidance techniques,
spatial and temporal anticipation
mechanisms

Human-space interactions

Vision angle, bearing angle
Temporal interaction indicators
(time gap, time-to-collision, time-
to-interaction)

Performance
evaluation

Flow-density relationship Average displacement error
(ADE)

Comparison to experimental data Final displacement error (FDE)
Description of collective behav-
iors and self-organised phenom-
ena

Modified Hausdorff distance
(MHD)

because the algorithms are more flexible in terms of inputs. In the graph neu-
ral networks, the pedestrians and their interactions are described through a graph
[225]. Other authors use spatial information represented as points of interest [12]
or as occupancy maps [175]. By using CNNs it is even possible to use images
or videos as inputs for the predictions [189, 122].Without sufficient amounts of
data, the DL algorithms are not capable to learn pedestrian behavior and predict
future trajectories successfully. In addition to the amount of data, pre-processing
is an important step to archive good results and efficiently train the algorithm.
One pre-processing technique is data normalization where the coordinates of the
trajectories are normalized to coordinates with origin in the first observation, coor-
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dinates with origin in the last observation, or relative coordinates [245]. Another
important pre-processing technique is data augmentation. Using GANs [205] is
one form of data augmentation, but there are also more basic forms like rotating
the input trajectories, mirror the trajectories, or applying Gaussian filter [245].
Schöller et al. [199] show that data augmentation helps to prevent the DL algo-
rithm from learning environmental priors instead of pedestrian behavior.

Numerical comparison Many studies report on numerical comparisons of KB
and DL approaches for the prediction of trajectories. Authors generally used av-
erage and final displacement errors (ADE and FDE) to quantify the prediction
accuracy. Several articles include the social-LSTM [5] and the social force model
[91] as references for, respectively, DL and KB approach. In Table I.7, the ADE
and FDE metrics from selected studies using the social-LSTM as a benchmark are
shown. All these articles use the same algorithm, the same datasets, the same error
metrics, the same length of observed (3.2s) and predicted trajectories (4.8s), and
the same cross-validation methods. Nevertheless, the results vary significantly
from one analysis to another. This is not just a problem of the social-LSTM, but
of the evaluation of the DL approach in general. Reasons for this high variation
could be the randomness of the dataset splitting, the randomness of the starting
coefficients, differences in the implementation of the algorithms, or different hy-
perparameter settings for the training, among others. An attempt to solve this
problem is the trajectory forecasting challenge Trajnet++ [124]. The challenge
provides a uniform sampling and evaluation system allowing to compare rigor-
ously different algorithms in the same framework. Table I.8 reports on ADE and
FDE metrics for selected articles using the social force model and social-LSTM
algorithm. We can observe that the error estimates also vary significantly with the
social force model. Yet, in contrast to Table I.7, the studies do not systematically
use the same dataset and prediction length making direct comparisons potentially
biased. The objective is to compare the KB and DL approaches using relative er-
rors. Assuming that the setting for KB and DL approaches are identical for a given
study, the comparison of relative errors is fair. The variations from one study to
another are again very significant. However, except in the work of Cheng et al.
[34], the social-LSTM systematically outperforms the social force model in terms
of prediction accuracy. The mean ADE and FDE relative errors are, respectively,
105 and 80.4%. In the work from Hasan et al. [83] or from Song et al. [207] the
differences are especially huge, the social-LSTM being up to 341% more accu-
rate. Such results are statistically not surprising since the DL approach is based
on much more free parameters (coefficients) than the KB approach.
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Table I.7 Quantitative comparison of ADE and FDE metrics for articles using
social-LSTM as benchmark with different datasets.

First author,
year

Average ETH HOTEL ZARA1 ZARA2 UCY

Syed, 2019 0.08 / 0.14 0.15 / 0.295 0.05 / 0.08 0.05 / 0.08 0.07 / 0.1 0.1 / 0.16

Xue, 2018 0.12 / 0.17 0.2 / 0.37 0.08 / 0.13 0.08 / 0.11 0.07 / 0.12 0.2 / 0.24

Manh, 2018 0.25 / 0.22 0.18 / 0.34 0.25 / 0.29 0.37 / 0.33 0.19 / 0.1 0.25 / 0.03

Alahi, 2016 0.27 / 0.61 0.5 / 1.07 0.11 / 0.23 0.22 / 0.48 0.25 / 0.5 0.27 / 0.77

Vemula,
2018

0.37 / 3.32 0.46 / 4.56 0.42 / 3.57 0.21 / 0.65 0.41 / 3.39 0.36 / 4.45

Hossain,
2022

0.44 / 0.98 0.60 / 1.31 0.15 / 0.33 0.43 / 0.93 0.51 / 1.09 0.52 / 1.25

Zhu, 2019 0.45 / 0.91 0.73 / 1.48 0.49 / 1.01 0.27 / 0.56 0.33 / 0.7 0.41 / 0.84

Hasan, 2018 0.64 / 1.45 — — 0.68 / 1.53 0.63 / 1.43 0.62 / 1.40

Gupta, 2018 0.72 / 1.54 1.09 / 2.35 0.79 / 1.76 0.47 / 1.00 0.56 / 1.17 0.67 / 1.40

Table I.8 Quantitative comparison of the social force model and the social-LSTM
(average ADE/average FDE).

First author,
Approach

Alahi Fernando Cheng Fernando Hasan Song

Social force
model

0.39 / 0.60 3.24 / 4.86 0.37 / 1.27 1.5 / 2.46 4.28 / 7.63 0.61 / 0.96

Social-LSTM 0.27 / 0.61 1.76 / 3.51 0.67 / 3.1 1.1 / 1.89 0.97 / 2.08 0.25 / 0.22

Relative error
[%]

44 / -1.6 84 / 38 -80 / -145 36 / 24 341 / 267 144 / 336

Advantages and disadvantages of KB and DL approaches The last paragraph
shows that the DL algorithms outperform the KB models in terms of prediction
accuracy of pedestrian trajectories in low density situations and that the results
of the error metrics have a high fluctuation. This fluctuation is mainly a prob-
lem of the DL algorithms because the evaluation of these algorithms is based on
these error metrics. In addition to this lack of reproducibility, there is also the
problem of missing explainability of the DL approach. This means that the co-
efficients can not be physically understood and interpreted. Therefore it is not
clear why the predicted trajectories have the given shapes. In applications where
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autonomous systems make decisions, it is important to understand and commu-
nicate why specific choices have been made [172]. But these in large numbers
existing coefficients are also an advantage of the DL approach because they make
it possible to learn complex behaviors by fitting a set of values such that the pre-
dicted behavior fits the observed behavior. These algorithms do not need a priori
knowledge about the system, just observations.

The comparison of the KB models with the DL algorithms is mostly done
numerically, disregarding the missing reproducibility and high fluctuation. Fur-
thermore, important advantages of the KB models are not taken to account in the
numerical comparison. First of all, the KB models have the advantage of simple
forms and interpretable parameters, which makes it easy to reproduce the results
and to understand the predictions. The interpretability of the parameters makes
the models flexible and easy to cope with environmental and behavioral changes.
For example, if the preferences of pedestrians change because of a pandemic,
which entails social distance and desired time-gap to rise, the KB methods can
change the parameters to model these new situations, without needing new data.
In the DL approach, new data is necessary to learn behavioral changes. But the
KB models also have disadvantages, like the need of domain knowledge. Further-
more, only average pedestrian behavior is simulated and it is difficult to capture
the complete crowd behavior range with a single model [158]. The advantages
and disadvantages, as well as other differences regarding the applications of both
KB and DL approaches, are summarized in Table I.9.

I.5 Future directions

In the last part of this work we want to look into the future and describe which
trends we can identify.

I.5.1 The hybrid approach
In Table I.8 it is shown that many points that can be criticized in the predictions
with the DL algorithms are strengths of the KB models. KB models have few pa-
rameters with physical interpretations requiring few data for calibration, while the
coefficients of the DL algorithms are generally not interpretable and much data is
needed in the training phase. For this reason, the combination of both approaches
seems to have potential as some pioneer studies point out [173, 100]. This combi-
nation is called the hybrid approach and even though the idea of combining both
approaches has picked up momentum just in the last few years, there is already
a vast amount of work in diverse disciplines. Examples of the hybrid approach
are given in applications like the discovering of novel climate patterns [108, 56],
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Table I.9 Application oriented comparison of the KB and the DL approach for
prediction of pedestrian dynamics.

Knowledge-based Deep learning
Applications Simulation tool Socially-aware mobile robots

Infrastructure design Design of intelligent tracking
systems

Evacuation situations Pedestrian trajectory predic-
tion for autonomous vehiclesIntelligent transport systems

Application
scales

Large-scale simulation Local prediction scale (in time
and space)

Large infrastructures (train
station, stadium, commercial
mall), urban centers, outdoor
events

Few interacting pedestrians

Crowd density Low density (long range in-
teraction, e.g., collision avoid-
ance models)

Low density situations

Long range pedestrian inter-
action

High density (short range in-
teraction, e.g., force-based
models)

Advantages Interpretable parameter Accurate predictions
Explainable predictions Learn complex interaction
Reproducible No domain knowledge neces-

sary
Few data needed No modelling-bias

Can process different types of
data

Disadvantages Low use of data Not interpretable
Averaged behavior only Not reproducible in praxis
Not suitable to complex inter-
action

Lack of generalisation

Complete crowd behavior
range with a single model
difficult to capture

Require large amount of data

Necessary complexity of the
network unknown

the finding of novel compounds in material science [84, 60], the designing density
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functionals in quantum chemistry [137], or the improving imaging technologies
in bio-medical science [234, 236]. Recently, the first applications for pedestrian
trajectory predictions can be found in [247, 7, 125].

In general, there are three ways of combining both KB and DL approaches.
First, KB models can be used to improve the DL algorithms. One possibility to do
so is data generation. Simulations based on KB models are carried out to obtain
a synthetic data set, that is used to train and test the neural network. A popular
application of data generation can be found in the training of autonomous vehicles
for the augmentation of data for scenarios that are not sufficiently represented in
the available data set [133, 230]. In [110, 247, 5], the authors apply the social
force model to generate a synthetic data-set for the training of neural networks
and setting of hyper-parameters. Knowledge-guided design of architecture is an-
other possibility to improve the DL algorithms with knowledge. The modular and
flexible nature of the networks enables the use of knowledge to specify node con-
nections that capture dependencies among variables. In this way, Antonucci et
al. [7] successfully embed the social force model in the architecture of a neural
network to generate predictions of human motion. A common technique to im-
prove the output of DL algorithms is knowledge-guided loss function. It makes
the output consistent with physical laws so that unrealistic prediction can be ruled
out [233, 206]. Because the training of DL algorithms is an iterative process, they
require an initial choice of coefficients as a first step to commence the learning
process. Knowledge-guided initialization of the network can be used to guide the
network at an early stage to archive generalizable and physically consistent results
[107].

The second way of combining the approaches is obtained by using DL algo-
rithms to improve the prediction accuracy of the KB models. One of the oldest
and most common way for addressing the imperfections of the KB approach is
residual modeling. A DL algorithm learns to correct the errors made by the KB
model by predicting the model residuals [233]. Bahari et al. [10] proposed a so-
called "realistic residual block" to improve vehicle trajectory predictions. Another
way to improve the KB predictions consists in calibrating the parameters of the
KB models by using DL algorithms. Göttlich et al. [70] use neural networks to
estimate the parameters of the social force model. Hossain et al. [99] extend the
social force model [91] using group forces, based on neural networks, to consider
interactions with static obstacles, other pedestrian, and pedestrian groups. Kreiss
[126] uses deep neural networks to estimate different interaction potentials for the
social force model.

Given enough data, DL algorithms are capable of predicting pedestrian tra-
jectories of a given scene with relative high accuracy. However, pedestrians ex-
perience different interactions in different situations. Whether they are able to
make accurate predictions for the whole range of possible scenes and interactions
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is an open question. The hybrid approach is useful for this problem because it can
compensate scarcity of data with available knowledge. The hybrid approaches
are promising to improve the predictions of pedestrian trajectories because they
benefit from the strengths of both approaches and reduce shortcomings like the
missing explainability of the DL approach.

I.5.2 Other directions
As it has been shown in Fig. I.2, the DL approach has gained attention just a few
years ago. At the current state-of-the-art, DL is mostly used for learning human
behavior and predicting single pedestrian trajectories. In the future, the DL ap-
proach could be used in more applications in the discipline of pedestrian dynamics
and notably for large scale simulation and the simulation of collective dynamics.
Nowadays, the behavior and interactions of agents in simulation platforms cur-
rently available rely on KB approaches [121, 45, 211]. Following the success of
the DL algorithms for predictions of pedestrians in low density situations, there is
a high potential to use these methods for accurate predictions of crowd dynamics
like in evacuation situations.

In addition to the KB models, RL algorithms are often used for simulating
crowd dynamics, but they have some disadvantages, like the need of a reward
function, a priori given goal/destination, or the difficulty to incorporate inter-
actions. Such difficulties are overcome by the supervised DL algorithms. The
combination of RL and DL algorithms seems to be promising to solve these dis-
advantages as Everett et al. [54] have recently shown. Other works have shown
successful applications of deep RL for crowd simulations [132] or even evacuation
dynamics [248].

There are still open questions to be tackled, before supervised DL algorithms
could be successfully used for large-scale crowd simulations, like:

• Which kind of neural networks, which complexity and which training data
should be used for large-scale simulation including different types of ge-
ometries?

• Should the type and complexity of appropriate networks as well as the data
used for the training depend on the scenarios of the simulation?

Besides these considerations, one may expect to develop deep networks trained
on large amounts of data that could predict accurate trajectories for any den-
sity levels and any type of facility. Such networks could be used in agent-based
simulation platforms whose objective is to simulate any type of scenario. Yet,
the question whether such universal networks, as supervised approaches, require
training on datasets representing the full diversity of pedestrian dynamics remains
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open.It may be possible, as in unsupervised approaches, that training on few data
is sufficient to obtain accurate predictions even for scenarios the networks are not
trained for. Such question raises more generally on the robustness of the predic-
tions against new data, i.e., new situations, scenarios, density levels, or types of
facilities. Some preliminary results obtained in a corridor and a bottleneck have
shown that neural networks are quite robust to new types of facilities and may
even overcome KB models in terms of prediction robustness [215, 216].

Another possible development direction of DL approaches for prediction pedes-
trian trajectory concerns the nature and type of the inputs. The inputs of the algo-
rithms are mostly the trajectories of the pedestrian over finite past horizon. Yet,
studies of pedestrian dynamics with KB models identified different relevant vari-
ables like, besides the relative position [91], the relative velocity [37], the time
gap [158], or indicators related to possibilities of collision such as bearing angle
[169], collision cone [223] or time-to-collision [106]. The use of these variables
as inputs, even if they can theoretically be deduced from the trajectories, could
allow obtaining prediction improvement, especially in the case of low amount of
data for the training phase. We can already observe a trend to use more inputs and
notably the speed difference [145, 216, 124] and other hidden variables estimated
by training [76, 6]. One may expect to include further variables as inputs. The
time-to-collision and the time gap, whose roles are fundamental in KB pedestrian
dynamic models [106, 158], are promising candidates. Such variables contain
information about the relevance of the interactions and may even substitute the
interaction or attention modules of DL approaches.
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Predicting pedestrian trajectories at different
densities: A multi-criteria empirical analysis.
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Abstract
Predicting human trajectories is a challenging task due to the complexity of pedes-
trian behavior, which is influenced by external factors such as the scene’s topology
and interactions with other pedestrians. A special challenge arises from the depen-
dence of the behaviour on the density of the scene. In the literature, deep learning
algorithms show the best performance in predicting pedestrian trajectories, but so
far just for situations with low densities. In this study, we aim to investigate the
suitability of these algorithms for high-density scenarios by evaluating them on
different error metrics and comparing their accuracy to that of knowledge-based
models that have been used since long time in the literature. The findings indicate
that deep learning algorithms provide improved trajectory prediction accuracy in
the distance metrics for all tested densities. Nevertheless, we observe a significant
number of collisions in the predictions, especially in high-density scenarios. This
issue arises partly due to the absence of a collision avoidance mechanism within
the algorithms and partly because the distance-based collision metric is inadequate
for dense situations. To address these limitations, we propose the introduction of
a novel continuous collision metric based on pedestrians’ time-to-collision. Sub-
sequently, we outline how this metric can be utilized to enhance the training of the
algorithms.

Keywords: Pedestrian trajectory prediction, deep learning, high-density, col-
lision, time-to-collision
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II.1 Introduction

The task of predicting pedestrian trajectories has emerged as a critical component
in a variety of real-world applications, ranging from autonomous vehicles [44] and
human-robot interactions [48] to the design of events, infrastructure, and buildings
[6], especially in the case of evacuation [8]. This topic has been addressed within
academia from the two distinct disciplinary perspectives of pedestrian dynamics
and data science [28].

On one hand, the discipline of pedestrian dynamics applies a knowledge-based
(KB) approach, developing mathematical models that encapsulate the inherent
rules governing pedestrian behavior [13]. These models are utilized to conduct
simulations in which pedestrian trajectories are computed. The difficulty lies in
identifying fundamental mechanisms and parameters that induce realistic pedes-
trian behavior. On the other hand, computer scientists employ a data-based (DB)
approach, collecting extensive data and training sophisticated algorithms intended
to predict pedestrian trajectories. Their focus predominantly lies in devising effi-
cient algorithm architectures and meticulously fine-tuning the hyperparameters of
DB algorithms.

While KB models cater to a broad array of applications and include macro-
scopic, mesoscopic, and microscopic models [47], DB algorithms are primarily
deployed for microscopic trajectory predictions in low-density scenes [28]. Low-
density scenes denote situations with a medium pedestrian presence, where in-
dividuals possess a high degree of freedom and exhibit long-range interactions.
This paper seeks to explore the efficacy of DB algorithms in high-density situ-
ations and compare the results with those derived from traditional KB models.
One significant challenge inherent in such a comparison lies in devising a fair and
comprehensive evaluation. While prior studies have demonstrated the superior
performance of DB algorithms in terms of prediction accuracy, these evaluations
have exclusively pertained to low-density data [1], focusing solely on distance
metrics such as Average Displacement Error (ADE) [43] and Final Displacement
Error (FDE) [34]. We propose to extend this evaluation by incorporating two ad-
ditional metrics: a binary distance-based collision metric as proposed by Kothari
et al. [30], and an original continuous time-to-collision-based metric.

Findings indicate that the DB algorithms surpass the KB models across all
tested densities in terms of distance metrics. However, the DB algorithm predic-
tions generate a significantly higher number of collisions when compared to the
real trajectories and the KB models, which are typically designed with collision
avoidance mechanisms.
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II.2 Related work

This chapter contains three sections. Initially, we delve into KB models, exploring
their intricacies and applications. Next, we examine DB algorithms, highlighting
their significance and diferences to the KB models. The final section covers vari-
ous other methods, selected for their relevance and contribution to this field. To-
gether, these sections provide a thorough groundwork for the research presented
in this study.

II.2.1 Knowledge-based models

KB models have a rich history in pedestrian dynamics that dates back to the
middle of the 20th century. These models apply principles from physics, such
as force fields and particles, to understand and predict the behavior of pedestri-
ans. Currently, KB pedestrian models range from macroscopic, mesoscopic, and
microscopic models among others modeling scale characteristics. Macroscopic
and mesoscopic approaches are borrowed from continuous fluid dynamics or gas-
kinetic models describing the dynamics at an aggregated level, while microscopic
approaches model individual pedestrian motions [22]. For pedestrian trajectory
predictions macroscopic and mesoscopic models are less relevant, which is why
in the following we focus on the microscopic models.

In these models the individual pedestrian behavior is described according to
certain rules and mechanisms ground on physical social, or psychological factors
[14]. These rules and mechanisms are formulated in hand-crafted dynamic equa-
tions based on Newton’s laws of motion. Given the input information about the
initial status of the pedestrians like position, velocity, and acceleration a forward
simulation of KB models can be used to predict the future trajectories. Depending
on the modelling order of the model, they can be classified into decision-based
(zeroth order), velocity-based (first order), and acceleration-based models (sec-
ond order) [28]. In acceleration-based models, typically force-based models, the
movement of pedestrians is defined by a superposition of exterior forces. Most
acceleration-based models are force-based consisting of a relaxation term to the
desired direction and an interaction term [28]. This last term is generally the sum
of repulsion with the neighbours and obstacles. This is also the case in the most
famous force-based model, the Social Force model (SF) from Helbing and Mol-
nar [20], where the interaction force is an exponential gradient of a distance-based
potential.

Velocity-based models are speed functions, depending on the position differ-
ences with neighbors and obstacles. In opposite to the acceleration-based models
that are based on second-order differential equations, the velocity-based models
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rely on first-order equations. Many of these models are based on collision avoid-
ance techniques and are formulated as optimisation problems on some ensemble
of feasible trajectories devoid of collisions. The most famous models are the Re-
ciprocal Velocity Obstacle model [52, 56] and the Optimal Reciprocal Collision
Avoidance (ORCA) [51].

In the last class of models, the decision-based or rule-based models, the pedes-
trian behavior is not modeled based on differential equations, but on rules or de-
cisions determining the new agent positions, velocities, etc [14]. The time is con-
sidered to be discrete for this class of decision-based models, which are typically
Cellular automata [9, 35, 7, 27].

KB models in pedestrian dynamics encompass various approaches, including
microscopic models, which can be used for trajectory predictions. Most of these
models focus on the interactions between pedestrians and the environment and, as
a result, are fundamentally based on collision avoidance mechanisms.

II.2.2 Data-based algorithms
The previously outlined approach is fundamentally grounded in a theoretical mod-
eling framework. Essential mechanisms are pre-identified and expressed in the
form of equations, equipped with a handful of significant parameters that require
calibration and validation. The operational functionality of these models extends
to the simulation of pedestrian scenes, enabling the prediction of future trajec-
tories as a consequential byproduct. In the DB approach, the prediction of tra-
jectories is not a secondary outcome, but the main objective. The parameters (or
coefficients) of the algorithm have no physical meaning and can not be interpreted.
These parameters are determined through a process of training the algorithm with
data, with the goal of minimizing a predefined cost function. The common cost
function for trajectory predictions is the displacement error metrics ADE or FDE.
The trained algorithms are then tested on new data, i.e. data which was previously
not used to train the algorithm (cross-validation).

Over the past decade, a multitude of studies employing various data-based
methodologies have been published with the aim of predicting pedestrian tra-
jectories. For a comprehensive overview, please refer to the following reviews
[28, 30, 46, 5]. The majority of these studies use supervised deep learning tech-
niques with either Long Short-Term Memory (LSTM) or Generative Adversarial
Networks (GAN) architectures. Among the most influential works in this field are
Social-LSTM by Alahi et al. [1] and Social-GAN by Gupta et al. [18]. These
groundbreaking papers have served as the inspiration for a number of subsequent
studies, which have extended these initial algorithms to incorporate elements such
as scene information [57], attention mechanisms [19], graph neural networks
[23, 38], and heterogeneity among pedestrians [33]. In addition, it’s noteworthy
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to mention the utilization of convolutional neural networks, which can be trained
on video data rather than trajectory data [58, 42, 11].

II.2.3 Other modelling approaches

There are further methods that diverge from the conventional KB models and DB
algorithms, yet play a pivotal role in advancing the field. Among these, Rein-
forcement Learning (RL) stands out as a prominent unsupervised machine learn-
ing technique. Unlike supervised methods, RL learns through a trial-and-error
approach, guided by a reward function that incentivizes or penalizes agent be-
haviors. This technique has proven effective in optimizing agent behaviors for
objectives such as selecting the fastest path, avoiding collisions, and generating
collective dynamics [53, 37, 12]. Expanding upon RL, Inverse Reinforcement
Learning (IRL) represents a nuanced approach where the reward function is de-
rived from observed data. IRL, and its more sophisticated counterpart, deep IRL,
are instrumental in estimating complex, continuous reward functions, offering en-
hanced modeling of social behaviors [32, 54].

Another noteworthy direction is the hybridization of KB models with DB al-
gorithms. Whereas the DB algorithms are always based on trajectories, studies
on pedestrian dynamics have identified the relevance of variables like the relative
velocity [13], the time gap [40], or indicators related to possibilities of collision
such as bearing angle, collision cone, or time-to-collision [51, 25]. The use of
these variables as inputs or in the loss function of the DB algorithms could allow
obtaining prediction improvement, especially in the case of small amount of data
for the training phase. Further hybrid approaches are using KB models to gener-
ate synthetic training data [1, 26], embedding KB models in the architecture of the
DB algorithm [3], or using KB concepts in the loss function to rule out unrealistic
predictions [50, 29, 16].

II.3 Method

In this section, we provide a detailed description of the datasets used in this study
(Section II.3.1). We then define the models and algorithms employed in the fol-
lowing analysis (Section II.3.2) and introduce distance and collision-based evalu-
ation metrics that will be used to assess the performance of the different models
and algorithms (Section II.3.4).
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II.3.1 Pedestrian trajectory data

In recent years, a large number of datasets have been collected and made pub-
licly available from an extensive range of studies, which mainly include real-
world trajectories of scenarios with low pedestrian densities ranging from 0.1
to 0.4 ped/m2. For a comprehensive overview, one may refer to [2]. Interest-
ingly, datasets corresponding to higher-density situations are noticeably absent,
possibly due to the challenges associated with the data collection (i.e. trajectory
extraction).

Low-density dataset

Initially, we assess the performance of the models and algorithms using low-
density datasets, which typically feature long-range interactions and scenarios in-
volving less than 0.5 ped/m2 [28]. Pedestrians in these scenes have high degrees
of freedom, and their behaviour is primarily influenced by a few neighbouring
people.

Given their emergence as benchmark datasets in pedestrian studies over re-
cent years, we have selected the ETH [43] and UCY [34] datasets for the anal-
ysis. The ETH dataset comprises a total of 750 trajectories, divided into two
subsets: ETH and Hotel. Fig. II.1 (a) shows an example of a segment from the
hotel dataset. The UCY dataset, on the other hand, has been subdivided into three
subsets: ZARA01, ZARA02, and UNIV, collectively containing 786 trajectories.
An example of ZARA02 is shown in Fig. II.1 (b). Both datasets, collected in
outdoor environments, encapsulate a variety of pedestrian traffic patterns, includ-
ing unidirectional, bidirectional, and multidirectional. These datasets have been
recorded at a framerate of 2.5 frames per second.

(a) Example from ETH. (b) Example from ZARA02.

Figure II.1 Illustrative examples of trajectory samples from low-density datasets
(ETH and UCY sets).

88



II.3. Method

High-density datasets

High-density data refers to pedestrian situations characterized by more than 2
ped/m2, commonly known as crowds. The generation of accurate pedestrian tra-
jectory data in these situations is a challenging task due to the difficulties in the au-
tomatic pedestrian identification and tracking. The problems that usually occur are
that the pedestrians often gather together, occlude each other, and result in over-
lapping in pedestrian shapes [55]. These factors contribute to the scarcity of real-
world high-density pedestrian trajectory datasets. Nevertheless, there are some
rare examples available, which can be found in [24, 45, 39]. In addition to these
real-world datasets, Forschungszentrum Jülich has conducted various laboratory
experiments, including HERMES, BaSiGo, CroMa, and CrowdDNA, which pro-
vide high-density trajectory data [1, 10, 49]. Furthermore, other experimental
datasets can be found in [17, 59].

In this study, we primarily focus on the corridor experiments with bidirectional
flow from the Forschungszentrum Jülich, as they encompass a diverse array of in-
teractions. The experiment setup incorporates two starting points or entrances,
from where pedestrian start their walk. The size of the recording area is a = 10 m,
and bcorr = 4 m. We utilize data gleaned from six distinct bidirectional corridor
settings, as showcased in Table II.1. For illustrative purposes, we depict the trajec-
tories from the experiment exhibiting the third-highest density (bidi3), alongside
those from the fifth-highest density (bidi5) in Fig. II.2. In total, the dataset com-
prises 3096 trajectories, recorded at a framerate of 16 frames per second.

(a) Example from bidi3. (b) Example from bidi5.

Figure II.2 Illustrative examples of trajectory samples from high-density datasets
(Juelich experiments).

II.3.2 Models and Algorithms
In the subsequent trajectory predictions, we focus on two crucial elements: pre-
dictions across varying pedestrian densities and the utilization of diverse mod-
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Table II.1 Overview of pedestrian trajectory datasets.

Dataset Setting Number of Average Maximum
Pedestrians Density Density

ETH
ETH Outdoor 361 0.14 0.35

HOTEL Outdoor 389 0.13 0.32

UCY
ZARA01 Outdoor 148 0.21 0.51
ZARA02 Outdoor 204 0.27 0.48

UNIV Outdoor 434 0.38 0.52

JUELICH
bidi1 Lab 141 0.38 0.55
bidi2 Lab 259 0.58 0.75
bidi3 Lab 480 1.00 1.15
bidi4 Lab 743 2.32 3.03
bidi5 Lab 643 2.64 3.275
bidi6 Lab 830 3.0 3.775

els/algorithms. We systematically use the notation xi ∈ R2 and vi ∈ R2 to rep-
resent the position and velocity of the i-th pedestrian. The Euclidean distance is
denoted as | · |, while x and v refer to the vectors of pedestrian positions and ve-
locities. These vectors have a dimension of 2N for N pedestrians. All variables,
including x(t) and xi(t), depend on the time t.

We first select two contemporary knowledge-based models to facilitate this.
The first is the Social Force model (SF) by Helbing and Molnar [20], and the sec-
ond is the Optimal Reciprocal Collision Avoidance (ORCA) approach by van den
Berg et al. [4]. The SF model is a widely adopted method that simulates pedes-
trian movement, treating individuals as particles influenced by various forces. The
acceleration within this model is calculated from the summation of three forces as
demonstrated in Equation II.1

mi
dvi
dt

= mi
v0i − vi

τ
+
∑
j ̸=i

∇U(xj − xi) +
∑
W

∇V (xW − xi) (II.1)

where mi, vi and v0i are the mass, current velocity and preferred velocity of the i-th
pedestrian, respectively, while U and V are distance-based interaction potential,
e.g.,

U(d) = Ae−∥d∥/B, A,B > 0. (II.2)
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The first term of Equation II.1 denotes the driving force that the i-th pedestrian
experiences to achieve their desired speed and direction within the reaction time
τ > 0. The second term represents the summation of the social forces derived
from the repulsive effects of pedestrians maintaining distance from each other.
The third force denotes the cumulative interaction forces between pedestrian i and
obstacles.

In contrast, ORCA is centered on efficiently determining collision-free veloc-
ities for multiple agents within a shared environment [4]. It is based on a geomet-
ric approach to model agent interaction, identifying the range of velocities that
guarantees collision avoidance within a specified time horizon by extrapolating
linearly (i.e., assuming constant the velocity) the trajectories. These computations
result in collision cones between the pedestrians, that can be empty. Further mech-
anisms are taken into account to avoid unrealistic oscillation effects and makes the
agents acting independently without communicating with each other. Ultimately,
each agent subsequently selects the optimal velocity vi that is closest to its ideal
(preferred) velocity v0i within the feasible velocity region [41] excluding colli-
sions, as shown in Equation II.3

vi(t+ dt) = arg min
v ∈∩j ̸=iORCAij(t)

∥v − v0i ∥, (II.3)

with ORCAij the set of feasible (collision-free) velocities of the i-th pedestrian
with the j-th neighboring pedestrian, and dt a (small) time step (typically equal to
dt = 0.01 s).

For the DL approach, we adopt the LSTM network, which is widely used in
pedestrian trajectory prediction. In this architecture, we leverage two algorithms.
The first, referred to as the Vanilla LSTM, considers the historical trajectory over
[t−To, t], with To > 0 the observation time, to predict the trajectory over [t, t+Tp]
with Tp the prediction time

xi(t+ tp) = LSTM
(
t+ tp,

(
xi(t− to), to ∈ [0, To]

))
, ∀tp ∈ [0, Tp]. (II.4)

This algorithms is grid-based which means that the input is discretised in a
local grid constructed around the pedestrian. The second algorithm, known as the
Social-LSTM [1], incorporates a social pooling mechanism to aggregate informa-
tion about neighboring entities within the grid, as illustrated in Equation (II.5)

xi(t+tp) = SLSTM
(
i, t+tp,

(
x(t−to), to ∈ [0, To]

))
, ∀tp ∈ [0, Tp]. (II.5)

With this mechanism, the model can use the historical trajectories of surrounding
pedestrians x over [t − To, t], enabling the consideration of interactions in the
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predictions. Table II.2 lists the various types of information required by each
model or algorithm to make predictions. The first approach in the Table II.2 is
the constant velocity model. It is the most simple approach making prediction
assuming the pedestrian velocities remain constant

xi(t+ tp) = xi(t) + tpvi(t), ∀tp ∈ [0, Tp]. (II.6)

II.3.3 Implementation details
The DL algorithms are trained with a learning rate of 0.0015, and a RMS-prop
is used as the ADAM optimizer. The batch size is 8, and we train for 12 epochs.
As a loss function, the mean squared error is used. For the validation and testing,
we use a hold-out validation strategy. 15 % of the data is used for validation, 15
% for testing and the rest for training. The computations are performed using the
PyTorch library1. Two different observation and prediction times are employed in
the study. For 1.2-second predictions, a 1-second observation period is utilized.
For 4.8-second predictions, the observation length extends to 3.6 seconds. We
employ the Stochastic Gradient Descent (SGD) algorithm to fit the parameters of
the KB models to the training data by minimizing the ADE metric. For the SF,
we optimize the preferred velocity, the interaction potential, and the reaction time,
according to [31]. For the ORCA we optimize the distance to pedestrians that are
taken into account and the corresponding reaction time. It is worth noting that
the reaction time plays a significant role in the model’s behavior. A shorter reac-
tion time prompts a quicker response to the presence of other agents but reduces
the pedestrian’s freedom in choosing their velocities, as mentioned in [51]. On
the other hand, the CV model stands apart as it does not require any calibration
or training due to its parameter-free nature. An overview of the most strinking
differences between the approaches is presented in Table II.2. The displayed in-
formation includes the input of primary pedestrians and their neighbors, as well
as the optimization method and the parameters being optimized.

II.3.4 Evaluation

Distance-based metrics

A crucial question that emerges when employing pedestrian trajectory prediction
algorithms in high-density scenarios is the appropriate method of evaluation. This
query is applicable more broadly to the field of pedestrian dynamics. Without
an objective metric for evaluation, it is impossible to definitively determine the
best-fitting model or algorithm. In low-density trajectory predictions, two metrics

1http://pytorch.org
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Table II.2 Overview of important features.

Approach Primary Input Neighbor
Input

Optim. Parameters Optim.
Method

CV Current State None None None
SF Current State Yes Preferred Velocity,

Interaction Po-
tential, Reaction
Time

SGD

ORCA Current State Yes Neighbor Distance,
Reaction Time

SGD

Vanilla-
LSTM

Past Trajectory None Large number of co-
efficients

ADAM

Social-
LSTM

Past Trajectory Yes Large number of co-
efficients

ADAM

based on Euclidean distance are commonly utilized. The first is the Average Dis-
placement Error (ADE) [43], which measures the distance between the predicted
trajectory and the ground truth trajectory at a set number of points

ADE =
1

NT

N∑
i=1

T∑
t=1

∥x̂i(t)− xi(t)∥, (II.7)

xi(t) being the actual position of the i-th pedestrian at time t while x̂i(t) is the
predicted position. The second Euclidean distance based metric is Final Displace-
ment Error (FDE). Unlike the ADE, which compares the predicted trajectory with
the actual trajectory at every prediction step, FDE evaluates this comparison only
at the final step, xN(t). In the following discussion, we will primarily focus on
ADE.

Discrete distance-based collision metric

These two distance metrics are effective in guiding the algorithm to make pre-
dictions that match actual trajectories. However, a significant drawback is their
focus on distance, leading to an underestimation of the repulsive forces that arise
between pedestrians. Consequently, these metrics do not account for potential
overlaps or collisions between pedestrians.

To tackle this problem, the following distance-based collision metric has been
presented by Kothari et al. [30]
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Col =
1

|S|
∑
Ŷ ∈S

Col(Ŷ ), (II.8)

with

Col(Ŷ ) = min

(
1,

T∑
t=1

N∑
i=1

N∑
j>i

[
||x̂i(t)− x̂j(t)|| ≤ 2R

])
, (II.9)

where S includes all scenes in the test set, Ŷ represents a scene prediction con-
taining N agents, and ŷi is the prediction of agent i over the prediction time of T ,
while [·] is the Iverson bracket[

P
]
=

{
1 if P is true,
0 otherwise. (II.10)

This last metric counts a prediction as a collision when a predicted pedestrian tra-
jectory intersects with neighboring trajectories, thus indicating the proportion of
predictions where collisions occur. A vital factor in this calculation is the cho-
sen pedestrian size (radius), represented by the variable R in equation (II.9). An
increase in R will likewise increase the number of collisions.

New TTC-based error metric

The collision metric Col discussed so far has been designed to mitigate over-
lapping and collisions between pedestrians. This is based on the principle that
pedestrians inherently strive to avoid physical contact with others, an aspect not
sufficiently captured by ADE. Nevertheless, this collision metric isn’t without its
shortcomings, which we aim to address. One drawback is that the metric is based
on binary collision identifications. As such, it doesn’t distinguish between minor
instances of contact, such as a shoulder brush between two pedestrians walking
side-by-side, and significant collisions such as a head-on crash. Another limita-
tion is its inability to account for scenarios where a prediction results in multiple
collisions. Additionally, the metric models pedestrians as circles, represented by
radius R, although an elliptical representation would be more accurate. The pro-
posed solution is to introduce a collision metric based on the concept of Time-to-
Collision (TTC) between two pedestrians. In this system, a low TTC implies an
impending collision.

The TTC is estimated as the time remaining before two moving pedestrians,
donated as i and j, collide based on their current velocities. Suppose that Ri and
Rj are the radius of i-th and j-th pedestrians, respectively. Given the relative
distance and relative velocity between the two pedestrians

xij = xi − xj and vij = vi − vj, (II.11)
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a collision between i-th and j-th pedestrians occurs if there exists a time τ > 0
such that xij + vijτ lies within a circle centered at (0, 0) with radius 2R. Math-
ematically, this condition can be expressed as ∥xij + vijt∥ < 2R where ∥ · ∥
denotes Euclidean norm. It turns out to solve the quadratic inequality in t, and τ
is the smallest positive root:

τij =
−xij · vij −

√
(xij · vij)2 − ||vij||2(||xij||2 − 4R2)

||vij||2
. (II.12)

In this scheme, if no collision is imminent, then τij is not real-value or is
negative. We set in this case τij = ∞. Conversely, we assume by convention
that τij = 0 if the pedestrians are already in collision. To be able to compare
the performances of different prediction approaches, the inverse of average TTC
(ITTC) is calculation according to

ITTC =
NT

N∑
i=1

T∑
t=1

min
j ̸=i

{
τij(t), τmax

} , (II.13)

with τmax = 12 seconds a maximal TTC threshold value.

II.4 Results

In the upcoming chapter, the objective is to showcase the effectiveness of different
approaches in making predictions across diverse time intervals and densities. To
accomplish this, we will conduct comprehensive evaluations of the predictions us-
ing ADE (Section II.4.1), the distance-based collision metric Col (Section II.4.2),
and the ITTC (Section II.4.2). Additionally, in Section II.4.3, we will demonstrate
how the TTC metric can be leveraged to enhance trajectory predictions.

II.4.1 Distance metric
At first, we will focus on analyzing the distance-error metrics for the low-density
datasets. The outcomes of the predictions are presented in Fig. II.3. As previously
mentioned, we utilize five datasets for the low-density predictions, with densities
ranging between 0.13 and 0.38 ped/m2. In Fig. II.3, the x-axis displays the average
densities of each dataset, while the y-axis represents the ADE metric. On the left
side a prediction time Tp of 1.2 seconds is chosen and on the right side a prediction
time of 4.6 seconds.
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(a) Low-density data with Tp = 1.2 sec. (b) Low-density data with Tp = 4.8 sec.

Figure II.3 Distance error-metric (ADE) for low-density datasets.

The Fig. II.3 initially demonstrates that the algorithms consistently outperform
the models across nearly all low-density datasets, showcasing their superior pre-
dictive capabilities. The Social-LSTM exhibits slightly better performance com-
pared to the Vanilla-LSTM.
Furthermore, notable differences can be observed between the two prediction
horizons. While the CV approach performs reasonably well at shorter predic-
tion times, the error increases significantly, nearly doubling compared to the other
approaches, as the prediction time extends. The substantial error of the CV ap-
proach on the ETH dataset highlights its challenging nature, with the highest devi-
ation from keeping speed and direction constant. Interestingly, the most complex
approach, namely SLSTM, demonstrates the best performance on this dataset, in-
dicating its effectiveness in handling complexity. Moreover, it is worth noting
that an increase in density does not necessarily result in higher prediction errors
for the low-density dataset. For instance, Zara02, despite having a higher density
than ETH, exhibits a lower average ADE.

In the next step, the same analysis of the different approaches with different
prediction horizons is done for the high-density data. The results are presented in
Fig. II.4.

As in Fig. II.3, the algorithms consistently outperform the models, irrespective
of the dataset density. However, it is noteworthy that, surprisingly, the VLSTM
exhibits superior performance compared to the more complex SLSTM. Addition-
ally, it is notable that the error for SLSTM tends to increase with rising density,
whereas for the VLSTM, it is lower within the higher density range of 2-3 ped/m2.
This unexpected outcome suggests that higher complexity does not necessarily
lead to improved results when dealing with high densities. This assumption gains
further support from the observed progression of the ADE for the CV approach,
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(a) High-density data with Tp = 1.2 sec. (b) High-density data with Tp = 4.8 sec.

Figure II.4 Distance error-metric (ADE) for high-density datasets.

where the error appears to decrease with higher densities.
Similar to the results presented in Fig. II.3, we observed that the SF model per-

forms better for longer prediction horizons compared to other approaches. Con-
versely, the ORCA model struggles to make accurate predictions at densities ex-
ceeding 2 ped/m2. This limitation is attributed to the "freezing problem" high-
lighted in Luo et al. [36], which becomes prominent at higher densities. For the
longer prediction time, the performance of ORCA declines with higher density,
while the performance of the SF improves with increasing density.

II.4.2 Collision metrics
In this section, we will address an important challenge regarding collisions. In
certain instances, pedestrians fail to avoid one another, contrary to what one would
expect. This leads to overlapping or collision events, contravening one of the most
critical physical criteria that a realistic prediction should satisfy. To assess the
magnitude of this phenomenon, we will employ the two collision metrics Col and
ITTC described in Section 3.

Distance-based collision metric

An essential aspect of the collision metrics is accurately defining when unrealistic
behaviors, such as overlapping, occur. Hence, the shape of the pedestrians plays a
crucial role. In the following, we present predictions made for two distinct radii:
0.1 meters and 0.2 meters. The y-axis represents the percentage of predictions
demonstrating collisions, as determined by the distance-based collision metric.
The black line has not been presented in the figures before and it displays the
percentage of collisions in the real datasets.

In Fig. II.5, it is evident that, as anticipated, the percentage of collisions is
significantly higher for the larger radius. This observation holds true for all ap-
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(a) Low-density data, R = 0.1. (b) Low-density data, R = 0.2.

Figure II.5 Distance-based collision metric for different radius sizes.

proaches and the real data, with the exception of the ORCA model, which demon-
strates no collisions for either radius. Regarding the real data, collisions at a radius
of 0.1 meters only occur within the Zara2 dataset, whereas collisions occur in the
HOTEL, ETH, Zara2, and UCY datasets for a radius of 0.2 meters. This finding
is surprising because collisions should not occur in the real trajectories. Collision
between pedestrian occur very rarely in the real world. However, upon animat-
ing the real trajectories and plotting the colliding trajectories, it becomes apparent
that the distance-based collision metric has a drawback: it sometimes consid-
ers grouping behavior as collision behavior. When pedestrians walk in groups,
they occasionally come so close together that even at a radius of 0.1 meters, they
sometimes overlap. In the next Fig. II.6 the distance-based collision metric for the
high-density data is presented.

(a) Bidirectional data, R = 0.1. (b) Bidirectional data, R = 0.2.

Figure II.6 Distance-based collision metric for different radius sizes.

Substantial disparities are evident between the two diagrams representing col-
lision occurrences at varying radii. The predicted collision frequency is nearly
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double at a radius of 0.2 meters as compared to a smaller radius. The black line,
indicative of actual collision data, suggests a negligible number of collisions at
high-density datasets for a radius of 0.1 meters. However, when the radius is
increased to 0.2 meters, the predictions indicate almost 50 % more collisions
in higher densities. These observations suggest that a radius of 0.2 meters is
excessively large for such scenarios. Pedestrians at these densities are in such
close proximity that they often overlap when represented as circular objects. The
ORCA model predicts no collisions for either radius, but this results in extraordi-
narily high ADE values for large prediction horizons, as depicted in Fig.II.4, right
panel. The CV model underperforms and displays the highest collision rate in
its predictions. The SLSTM shows comparable performance at lower densities as
demonstrated in Fig. II.6, but its effectiveness diminishes at higher densities. The
VLSTM model exhibits superior performance to the SLSTM in terms of collision
metrics. The percentage of predicted collision of the SF model most closely aligns
with actual trajectories.

TTC-based collision metric

In this section, we will discuss the results of the predictions centered around the
ITTC. As observed in the preceding figures, the x-axis represents the density of
the data. On the other hand, the y-axis denotes ITTC of the predictions (see equa-
tion II.13). It is important to note that the maximum TTC value was arbitrarily set
to 12 seconds. A higher TTC can be interpreted as an indication of a prediction
that is not at risk of collision. Consequently, a lower ITTC value is preferable for
collision avoidance compared to a higher one.

(a) Low-density data, R = 0.1. (b) Low-density data, R = 0.2.

Figure II.7 TTC collision metric different radius sizes.

Upon initial observation of Fig. II.7, it is evident that the differences be-
tween Fig. II.7 (a) and (b) are considerably smaller compared to those seen in
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the distance-based collision metric. This observation suggests that the TTC-based
collision metric is less sensitive to changes in the radius.

Despite this difference, the overall trend of the lines bears a resemblance to
that seen in Fig. II.5. However, the information provided by the continuous col-
lision metric is richer and appears to be more accurate. The KB models exhibit
lower inverse ATTC values than the algorithms, with the CV model demonstrating
the least optimal performance. Notably, the inverse ATTC of ORCA’s prediction
most closely aligns with the actual trajectories. Proceeding further, we will present
the ITTC for high-density data in Fig. II.8.

(a) High-density data, R = 0.1. (b) High-density data, R = 0.2.

Figure II.8 TTC collision metric different radius sizes.

Again, it is noteworthy, that the variations between Fig. II.8 (a) and (b) are
not as substantial as those seen in Fig. II.6. In the latter virtually no collisions
are observable in the actual trajectories (black line) for a radius of 0.1 meters,
yet the collision rates for a radius of 0.2 meters are markedly high. In contrast,
in Fig. II.8, the difference between (a) and (b) for real trajectories is much less
pronounced. Despite this, the trends in Fig. II.6 and Fig. II.8 do not exhibit sig-
nificant discrepancies, with the KB models consistently surpassing the algorithms
and the SLSTM model underperforming in comparison to the VLSTM. In some
instances, SLSTM even demonstrates worse performance than the CV model.

II.4.3 TTC Metric for improving performance of the algorithm
The preceding section demonstrates the promising attributes of the ITTC collision
metric. It provides reasonable results that have the advantage of continuity and
exhibit less dependence on the pedestrians’ shape compared to the distance-based
collision metric Col. As such, we have incorporated the TTC into the cost function
to see if the prediction can be improved. The cost function quantifies the disparity
between the prediction and the real observation. It provides a single indicator Li

that will be minimized during the training. The idea is to penalize predictions with
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exceptionally low TTC values. Keeping all configurations the same (Tp = 4.8
seconds and R=0.2), we have integrated the TTC into the cost function of the
SLSTM, as illustrated in equation II.14

Li =
T∑
t=1

∥xi(t)− x̂i(t)∥2 + λ

T∑
t=1

f(min
j ̸=i

{τij}). (II.14)

The first part of the equation II.14 shows the distance-based metric ADE that
is used for training. It compares the actual position of the pedestrian xi to the
predicted one x̂i. The subsequent segment utilizes a sigmoid penalty function f
(see Equation II.15), which results in a high penalty for low TTC values

f(τ) =
1

1 + es(τ−δ)
, (II.15)

where s and δ are slope and threshold parameters, respectively.
The parameter λ ≥ 0 determines the weight to be given to the second part of the
cost function. In Fig. II.9 the results of the predictions in terms of ADE and Col
are shown for different settings of λ.

(a) Low-density data. (b) High-density data.

Figure II.9 Illustrating the improvements achieved by incorporating TTC into the
training function for both low-and high-density data.

The green line represents the Col metric, while the blue line shows ADE. In the
first observation, the value of λ is zero, which means that this model is identical to
the SLSTM without a TTC term in the cost function. It can be clearly shown, that
the TTC term in the cost function helps to improve avoidance behavior. There is
a strong relationship between the value of λ and the number of collisions in the
predictions. In the case of low-density data, it is possible to halve the number of
collisions without an accompanying increase in ADE. For the high-density data,
a reduction in the Col metric by 20 % is achievable, which also leads to a de-
crease in ADE. The enhancements afforded by the incorporation of TTC into our
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algorithm are discernible both quantitatively and qualitatively. When visualizing
the predicted trajectories, those produced by the TTC-incorporated model appear
more realistic, exhibiting superior collision avoidance characteristics. Fig. II.10
presents two scenes from the low density data. On the left side the predictions
made by the algorithm trained with TTC are shown and on the right side the pre-
dictions with the SLSTM.

(a) Prediction with TTC in cost function. (b) Prediction with SLSTM.

(c) Prediction with TTC in cost function. (d) Prediction with SLSTM.

Figure II.10 Example of trajectory predictions based on the algorithm that was trained
with TTC in the cost function and the SLSTM.

In both scenes, the SLSTM’s predictions result in collisions. In the upper im-
age, pedestrians do not navigate around the stationary individuals in the middle.
Meanwhile, in the lower image, the pedestrians form a group walking so close to
each other that it registers as a collision. In the predictions generated using TTC,
pedestrians within a group maintain a greater distance from each other. Addition-
ally, in the upper image, pedestrians navigate successfully around those stationary
in the center, further demonstrating the benefits of incorporating TTC into trajec-
tory predictions.
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II.5 Conclusion
In this study, we have conducted a detailed empirical analysis comparing vari-
ous pedestrian trajectory prediction approaches. The investigation underscores
that the task of predicting pedestrian trajectories is intrinsically complex, with
different densities posing additional challenges. While the SLSTM demonstrates
excellent performance in low-density scenarios, it struggles to maintain similar
accuracy in high-density situations. A particular limitation of the DB algorithms,
namely, a significant incidence of collisions in high-density predictions, is ad-
dressed by introducing an innovative continuous collision metric that calculates
the time-to-collision between pedestrians. This new metric presents a valuable
instrument to assess the performance of the approaches, enhancing the overall tra-
jectory prediction accuracy realism feature in terms of hardcore body exclusion.

Although this paper serves as a foundation for refining and expanding the
capabilities of DB algorithms for predicting and modelling pedestrian behavior
at high densities, it is important to recognize the inherent limitations of this ap-
proach. The predictions are predominantly short-term, lacking iterative capabili-
ties, and are confined primarily to the operational level. This narrow focus over-
looks the complexities involved in simulating entire pedestrian landscapes, where
challenges such as intricate environments, multiple potential pathways, and the in-
tricacies of group dynamics are prevalent. To address these gaps, future research
must integrate a tactical level into the modeling process, e.g. for route choice deci-
sion making [21, 15]. This addition would enable the simulation of more compre-
hensive pedestrian scenarios, accounting for the myriad of factors that influence
pedestrian behavior in real-world settings.
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Abstract
Predicting human trajectories poses a significant challenge due to the complex in-
terplay of pedestrian behavior, which is influenced by environmental layout and
interpersonal dynamics. This complexity is further compounded by variations in
scene density. To address this, we introduce a novel dataset from the Festival of
Lights in Lyon 2022, characterized by a wide range of densities (0.2-2.2 ped/m2).
Our analysis demonstrates that density-based classification of data can signifi-
cantly enhance the accuracy of predictive algorithms. We propose an innovative
two-stage processing approach, surpassing current state-of-the-art methods in per-
formance. Additionally, we utilize a collision-based error metric to better account
for collisions in trajectory predictions. Our findings indicate that the effectiveness
of this error metric is density-dependent, offering prediction insights. This study
not only advances our understanding of human trajectory prediction in dense en-
vironments but also presents a methodological framework for integrating density
considerations into predictive modeling, thereby improving algorithmic perfor-
mance and collision avoidance.

Keywords: Pedestrian trajectory prediction, deep learning, pedestrian trajec-
tory dataset, density-based classification, collision avoidance
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III.1 Introduction

The challenge of predicting pedestrian trajectories has emerged as a pivotal chal-
lenge in recent years. This surge in interest is largely attributed to the profound im-
plications it holds for autonomous vehicle navigation [29], service robot deploy-
ment [31], and the strategic planning of infrastructure and mass gatherings [4].
In addressing these intricate challenges, researchers have traditionally employed
physics-based (PB) models to simulate and understand pedestrian behavior. These
models have been instrumental in dissecting collective phenomena and enhancing
our understanding of pedestrian dynamics, particularly in high-density contexts
relevant to crowd management and evacuation strategies [4]. However, the land-
scape of pedestrian trajectory prediction has witnessed a paradigm shift over the
last decade with the advent and integration of deep learning (DL) algorithms [20].
Despite the opaqueness of these models in terms of interpretability, their superi-
ority in mirroring observed trajectories has been markedly pronounced, especially
when juxtaposed with their PB counterparts [1]. Nonetheless, it is important to
acknowledge that the domains of applicability for PB and DL models do not en-
tirely overlap. While PB models excel in the realm of high-density simulations,
providing insights into collective behavior, DL algorithms predominantly thrive
in low-density environments where individual pedestrian movements are charac-
terized by a greater degree of freedom and intricate long-range interactions [20].
This paper introduces a novel, real-world pedestrian trajectory dataset, gathered
during the Festival of Lights in Lyon. Field pedestrian trajectory datasets are
typically gathered from low-density situations. In contrast, this dataset captures
the nuanced dynamics of pedestrian movements across a large spectrum of den-
sity levels. It ranges from sparse crowds observed during show moments to the
densely packed throngs seen after the event. Utilizing this dataset, we train DL al-
gorithms, including Long Short-Term Memory (LSTM) networks and Generative
Adversarial Networks (GAN). Our methodology is underscored by a novel ap-
proach: we harness situational classification predicated on crowd density to refine
our models’ learning process. This two-stage process, which initially classifies
the scene based on density and then predicts the trajectories, not only bolsters
the efficiency of our models but also substantially elevates the precision of tra-
jectory predictions. This improvement is demonstrated by comparative analyses
with traditional DL algorithms and PB models.

Another challenge of trajectory prediction that we face in this paper is over-
lapping and colliding of predicted trajectories [8]. To tackle that problem, we
integrate a time-to-collision (TTC) [16] term into the loss function of the algo-
rithms. A parameter, λ, is utilized to modulate the TTC’s influence on the training.
Our empirical research uncovers a significant relationship between the optimal λ
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values and the density levels, highlighting the intricacies of pedestrian behavior
across different densities.

The remainder of this paper is organized as follows: first, we review related
studies in Section III.2. Then, our novel dataset is presented in Section III.3 and
the methodology for the empirical work is proposed in Section III.4. The results
are shown in Section III.5. The last Section III.6 includes a discussion of the
results and an outlook on future works.

III.2 Related work

The domain of pedestrian trajectory prediction is multifaceted, drawing insights
from various disciplines and methodologies. The two main stream are the physics-
based models and data-based algorithms [20]. PB models have been the corner-
stone of understanding pedestrian dynamics, especially in high-density scenarios.
The Social Force model (SF), introduced by Helbing and Molnar [13], exempli-
fies this approach, simulating pedestrian movement by balancing attractive and
repulsive forces. Other famous PB models are the Optimal Reciprocal Collision
Avoidance (ORCA) from Van den Berg et al. [34] or the cellular automata model
from Burstedde et al. [6]. However, these models are not without their challenges,
particularly when it comes to encapsulating the full range of crowd behavior [20].
For more PB models see reviews like [3, 7, 9].

In pursuit of addressing these limitations, the research frontier has gradually
shifted towards data-driven methodologies. Notably, the past decade has wit-
nessed a burgeoning interest in DL approaches. Pioneering works like the So-
cial LSTM from Alahi et al. [1] introduce the use of Recurrent Neural Networks
(RNN), specifically LSTM networks, in conjunction with a novel concept known
as Social Pooling. This innovative approach incorporates neighbouring informa-
tion, thereby enriching the model’s contextual understanding. This social concept
was further enhanced by Gupta et al. [12] through Social GAN, where the genera-
tive adversarial framework allowed for the generation of multiple plausible future
paths, addressing the inherent uncertainty in human movement. Alternative meth-
ods employed for social predictions include attention mechanisms [35], graph-
based approaches [26], and the utilization of relative coordinates [32]. Addition-
ally, deep learning architectures such as Convolutional Neural Networks [40, 24]
and Transformers [39] have been applied in trajectory prediction tasks.

A pivotal aspect of this paper is the innovative classification of trajectory
scenes based on crowd density prior to prediction. To the best of our knowl-
edge, this approach is a novel paradigm, potentially owing to the scarcity of
high-density, real-world pedestrian trajectory datasets. Xue et al. [37] predict
pedestrian destinations using bidirectional LSTM classification. This involves
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an additional classification stage to distinguish between possible destinations of
pedestrians. They classify the route manually into four distinct categories. In
another paper from the authors [38] the classification is done based on a cluster-
ing algorithm. Kothari et al. [22] categorize pedestrian trajectories based on the
nature of interactions observed, identifying behaviors such as collision avoidance,
leader-follower dynamics, and grouping behavior. An alternative methodology in-
volves classifying trajectories based on individual pedestrian characteristics. Pa-
pathanasopoulou et al. [27] concentrate on attributes such as age, gender, height,
and speed to inform their classification. A second cornerstone of this work is
the seamless integration of a PB concept, TTC, into the loss function of DL algo-
rithms. This synthesis of PB principles and DL models is not an isolated endeavor.
Alahi et al. [1] and Khadka et al. [17] utilized simulated data from PB models for
training DL algorithms. Antonucci et al. [2] embedded a PB model directly into
the DL architecture. Furthermore, the works of Silvestri et al. [33] and Kothari et
al. [21] stand out for their use of PB principles within the loss function to eliminate
unrealistic predictions.

III.3 The Dataset

With a growing interest in data-based methods the significance of pedestrian tra-
jectory data has been elevated in recent research. This area has seen a proliferation
of datasets published by researchers, which can be categorized into field data and
experimental data obtained in laboratory conditions. In the field studies, real-
world settings are employed where individuals, unaware of their participation in a
study, navigate through various scenarios. Famous field datasets are the ETH [28]
and UCY [23] datasets, which are widely used in the machine learning com-
munity. Originating from surveillance videos, these datasets capture pedestrians
scene of low density (0.1-0.5 ped/m2). The GLOW dataset from Eindhoven [10],
a dataset used for route choice analysis, contains trajectory scenes of higher den-
sities, but only for short length trajectories. Other field datasets are the Stanford
Drone Dataset [30], the Grand Central Station Dataset [41], and the Edinburgh
Informatics Forum Dataset [25]. None of these have densities above 0.2 ped/m2.
In the following we will present a field dataset with pedestrian densities between
0.2-2.2 ped/m2.

The data was collected at Lyon´s Festival of Lights. The event running for
four days from 7 pm to 11 pm attracts millions (2 million in 2022) of visitors
each year. Key attractions are light shows at Place des Terreaux and Place Saint-
Jean. We have installed cameras at the Place des Terreaux to film the area which
is represented by the red rectangle in Figure III.1.
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(a) View over Place des Terreaux (Lyon). (b) View over the tracking area (red box).

Figure III.1 For the prediction of pedestrian trajectories, it is useful to distinguish
between scenes with few pedestrians (see (a)) and crowds of pedestrians (see (b)). Deep
learning algorithms turn out to be accurate prediction tools for the scene (a), whereas
knowledge-based approaches allow to describe collective phenomena at higher scales
such as those described in the scene (b).

In Figure III.1(a), the entirety of Place des Terreaux is depicted. The red box
on the right-hand side delineates our designated tracking region. Figure III.1(b)
offers an aerial perspective of this same area. This designated zone measures 9
meters in length and 6.5 meters in width. On average, we concurrently tracked
55 pedestrians, resulting in a mean density of 0.95 ped/m2. The distribution of
pedestrian density exhibited significant variability. During the light show, the
majority of pedestrians congregated in the central area of the square, remaining
largely stationary. Consequently, the pedestrian density within our tracking zone
was relatively low. However, when the show concluded—which consistently lasts
approximately 9 minutes—the crowd dynamics shifted dramatically as most indi-
viduals sought to exit towards another event. In this transition phase, the density
within our tracking corridor surged, often exceeding 120 pedestrians moving si-
multaneously. For video calibration, we meticulously established nine calibration
points, ensuring the precise tracking of pedestrian trajectories using the PeTrack
software [5]. Throughout our study, we recorded 5195 individual trajectories,
which averaged a duration of 12.38 seconds and a mean velocity of 0.62 m/s. The
pedestrian flow changes between mostly unidirectional flow, after the light show
and bidirectional flow during the show. More informations about the data can be
found in the appendix. For the training and testing of the algorithms we need tra-
jectories of a minimal length of 7 seconds (see III.4.1). Because many trajectories
are more than 14 seconds long, they can be used more than once. All in all we get
7450 trajectories for training and testing.
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III.4 Methodology

III.4.1 Overview

For predicting pedestrian trajectories we have ith pedestrian in a scene represented
by image coordinates(xi

t, y
i
t) for each time instant t = k · dt, with k ∈ N und

dt = 1/3 s the time step. The observed positions from t = T1 to t = Tobs is
taken as input and the aim is to predict future trajectories from t = Tobs + dt to
t = Tpred. Every scene involves a primary pedestrian and his neigbours over the
timespan T1 to Tpred. A neigbours is a pedestrian whose position at T1 is closer to
the position of the primary pedestrian than a radius r = 5 m. Our dataset has a
framerate of three observation for each second. We choose input trajectories of 9
observations (3 sec.) and want to predict 12 timesteps (4 sec.).
The predicted trajectory of all primary pedestrians are evaluated on two commonly
utilized Euclidean distance metric and a collision metric. In the first distance-
based metrics, called average displacement error (ADE) [28], the distance be-
tween the predicted trajectory and the ground truth trajectory is measured at any
time step t

ADE =
1

NT

N∑
i=1

T∑
t=1

∥x̂i(t)− xi(t)∥. (III.1)

xi(t) is the actual position of the ith pedestrian at time t while x̂i(t) is the predicted
position. The Euclidean distance is denoted as ∥ · ∥. The second distance-based
metric, called final displacement error (FDE) [23] displays the distance between
the final point t = Tpred of the predicted trajectory and the ground truth trajectory

FDE =
1

N

N∑
i=1

∥x̂i(T )− xi(T )∥. (III.2)

These distance-based metrics are widely used in pedestrian trajectory predic-
tions for their effectiveness in quantifying the goodness-of-fit. However, repul-
sive forces, which are pivotal in shaping interactions between pedestrians, are not
taken into account [18]. Consequently, these metrics do not account for potential
overlaps or collisions between pedestrians. Therefore the collision metric is used
to enhance the evaluating process

COL =
1

|S|
∑
X̂∈S

COL(X̂), (III.3)

with
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COL(X̂) = min

(
1,

T∑
t=1

N∑
i=1

N∑
j>i

[
||x̂i(t)− x̂j(t)|| ≤ 2R

])
. (III.4)

S includes all scenes in the test set, X̂ represents a scene prediction containing
N agents, and x̂i is the prediction of the position of the agent i over the prediction
time of T , while [·] is the Iverson bracket

[
P
]
=

{
1 if P is true,
0 otherwise. (III.5)

This metric counts a prediction as a collision when a predicted pedestrian tra-
jectory intersects with neighboring trajectories, thus indicating the proportion of
predictions where collisions occur. A vital factor in this calculation is the chosen
pedestrian size R. An increase in R will likewise increase the number of colli-
sions. For calculating the collision metrics we use a radius R = 0.2 m.

III.4.2 Prediction approaches

In the subsequent trajectory predictions, various trajectory prediction approaches
ranging from traditional PB models to modern DL algorithms are chooses as
benchmarks for comparison with our two-stage approach. We present the results
of the Constant Velocity model (CV) and SF model [13] as well as the results of
a Vanilla LSTM, the Social LSTM (SLSTM) [1] and the Social GAN [12]. These
approaches, characterized by their diverse features, are commonly selected for
comparison and serve as benchmarks that must be surpassed. The position and
velocity of the ith pedestrian are denoted as xi ∈ R2 and vi ∈ R2, respectively.
For a system of N pedestrians, the position and velocity vectors, x = (x1, . . . , xN)
and v = (v1, . . . , vN), have dimensions of 2N . All variables, including x(t) and
xi(t), are functions of time t.

Constant Velocity Model

The CV model assumes pedestrian velocities remain unchanged over time. It
serves as a baseline for more complex models. The future position of a pedestrian
is predicted as:

xi(t+ tp) = xi(t) + tpvi(t), ∀tp ∈ [0, Tp]. (III.6)
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Social Force Model

Introduced by Helbing and Molnar [13], the SF model treats pedestrians as par-
ticles influenced by forces. Within this framework, the model calculates accel-
eration based on the cumulative effect of three distinct forces, as delineated in
Eq. III.7

mi
dvi
dt

= mi
v0i − vi

τ
+
∑
j ̸=i

∇U(xj − xi) +
∑
W

∇V (xW − xi) (III.7)

Here, mi, vi, and v0i signify the mass, current velocity, and desired velocity of
pedestrian i. The term ∇U(xj − xi) represents the repulsive force from other
pedestrians, while ∇V (xW −xi) indicates the repulsive force from obstacles. The
potential functions U(d) and V (d) are given by:

U(d) = ABe−|d|/B, A,B > 0 and V (d) = A′B′e−|d|/B′
, A′, B′ > 0

(III.8)
where A,A′, B,B′ > 0 are interaction parameters of the social force model.

The first term of Eq. III.7 signifies the driving force experienced by the ith

pedestrian. This force propels the individual towards their desired speed and direc-
tion within a relaxation time τ > 0. The second term encapsulates the summation
of social forces, originating from the repulsive effects as pedestrians endeavour to
maintain a comfortable distance from one another. The third term accounts for the
aggregate interaction forces between pedestrian i and various obstacles.
Whereas the CV model has no parameter, the SF model has three parameters, pre-
ferred velocity, interaction potential, and reaction time, that can be optimized to
get accurate predictions.

Vanilla LSTM

LSTM networks, a class of RNN designed to learn long-term dependencies, have
proven effective in handling sequential data, particularly for time series predic-
tion tasks. Introduced by Hochreiter and Schmidhuber [14], LSTMs address the
vanishing and exploding gradient problems common in traditional RNNs, making
them suitable for complex sequence modeling tasks such as trajectory prediction.
The vanilla LSTM model considers historical trajectories to predict future posi-
tions.

xi(t+ tp) = xi(t) + LSTM
(
tp,

(
xi(t− to), to ∈ [0, To]

))
, ∀tp ∈ [0, Tp].

(III.9)
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Here, xi(t+ tp) predicts the future trajectory of a pedestrian i at time t+ tp, based
on its past positions xi(t− to), over an observation window to ∈ [0, To].

Social LSTM

LSTM networks have demonstrated effective performance in sequence learning
tasks. One such task, the prediction of pedestrian trajectories, presents the chal-
lenges, that the trajectory of a pedestrian can be significantly influenced by the
trajectories of surrounding pedestrians. The number of these neighboring influ-
ences can fluctuate widely, especially in densely crowded environments [19].

Enhancing the LSTM framework, the SLSTM by Alahi et al. [1] incorporates
a social pooling layer, enabling the model to consider the influence of neighboring
pedestrians explicitly. This is a key distinction from the Vanilla LSTM, reflecting
the model’s capacity to capture social interactions:

xi(t+ tp) = xi(t) + SLSTM
(
i, tp,

(
x(t− to), to ∈ [0, To]

))
, ∀tp ∈ [0, Tp].

(III.10)
where x is the vector of positions of the neighboring pedestrians. In this formula-
tion, the inclusion of the index i and the collective pedestrian state x emphasizes
the model’s attention to the surrounding pedestrians’ trajectories, making it adept
at handling complex social behaviors in dense scenarios.

Social GAN

Another approach we take into account is the Social GAN (SGAN) introduced
by Gupta et al. [12]. This model extends traditional approaches by incorporat-
ing GANs to predict future trajectories. GANs, conceptualized by Goodfellow et
al. [11], consist of two competing networks: a Generator, which generates data
samples, and a Discriminator, which evaluates the authenticity of the samples
against real data. SGAN leverages this architecture to generate plausible future
trajectories of pedestrians, addressing the complex dynamics of pedestrian move-
ment in crowded spaces. A key feature of the SGAN model is its pooling mech-
anism, which processes the relative positions of pedestrians to each other. This
mechanism is crucial for understanding the social interactions and dependencies
among individuals in crowded environments

xi(t+ tp) = xi(t) + SGAN
(
i, tp,

(
x(t− to), to ∈ [0, To]

))
, ∀tp ∈ [0, Tp].

(III.11)
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III.4.3 Two-stage process

The foundation of our innovative classification framework lies in its capacity to
predict trajectories across varying density levels, marking a departure from tradi-
tional models that typically utilize a single algorithm to process a wide array of
scenarios within a dataset. Our strategy entails segmenting the dataset according
to the density of each scene, thereby generating distinct subsets. At the incep-
tion of our methodology, we establish well-defined criteria for classification. This
process is underpinned by two distinct methodologies: a statistical analysis and a
review of existing literature. The results of this clustering process are depicted in
Figures III.2. These figures visually represent each dataset item as a point mea-
surement each second, with the left side of Figures III.2 illustrating points based
on their average density

ρ(t) =
N(t)

A
, (III.12)

and average velocity

v̄(t) =
1

N(t)

∑
i∈S(t)

vi(t), (III.13)

for the K-Means clustering. On the right side the clustering is carried out by using
the Agglomerative Hierarchical Clustering algorithm (AHC).
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Figure III.2 Results of the K-Means and the agglomerative hierarchical clustering.
Trajectory scenes are clustered as shown by the different colors of the points.

We can see clear vertical colour switch’s of the points at densities around 0.7,
1.1, and 1.6 ped/m2 for both cluster algorithms. Remarkably, without presetting
the number of clusters or explicitly focusing on density levels, the K-Means and
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AHC algorithms autonomously reveal density-dependent clustering. The delin-
eation of clusters and their boundary values align closely with those identified in
the literature. Stefan Holl [15] delineates critical density thresholds for various in-
frastructures, signifying points at which pedestrian behavior undergoes significant
changes. According to Holl, densities below 0.7 ped/m2 indicate a free flow state,
densities below 1.3 ped/m2 represent a bound flow, and values above 1.3 ped/m2

are indicative of congested flow. In our model, we refine these categories by
slightly narrowing the bound flow range and subdividing the congested flow cate-
gory into two distinct segments.

Figure III.3 illustrates the procedural steps undertaken to evaluate our pro-
posed methodology and within the sizes of the clusters, which are taken from
Figure III.2.

Figure III.3 Schemata of our two-stage prediction approach

New trajectory scene are given to our framework, where the initial step in-
volves calculating the scene’s density using Equation III.12 in individuals per
square meter (ped/m2), N represents the total number of pedestrians observed
within the scene, and A is the scene’s total area in square meters.

The density categorization is as follows: scenes with a density below 0.7 ped/m2

are labelled as lowD; densities ranging from 0.7 to 1.2 ped/m2 are classified as
mediumD; densities between 1.2 and 1.6 ped/m2 are designated as highD; and
densities exceeding 1.6 ped/m2 are identified as veryHD. Following classification,
the scene is bifurcated into two segments: the initial segment spans 9 timesteps
and serves as input for one of the four specialized Sub-LSTMs, while the sub-
sequent segment, encompassing 12 timesteps, is utilized to appraise the LSTMs’
performance through the computation of error metrics ADE, FDE and COL. Fig-
ures III.4(a) to III.4(d) provide illustrative examples of each density level encoun-
tered in our dataset.

In Figure III.4(a), the scene exhibits very low density, with pedestrian move-
ment primarily from two directions, leading to numerous interactions and avoid-
ance behaviors. This is characteristic of our lowD data. Conversely, Figure
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(a) Example of lowD scene. (b) Example of mediumD scene.

(c) Example of highD scene. (d) Example of veryHD scene.

Figure III.4 Examples for each of the four density levels.

III.4(b) showcases a moderately higher density, yet still affords space for interac-
tions, avoidance, and bidirectional pedestrian flow. In Figure III.4(c), represent-
ing highD data, the dynamics of pedestrian movement markedly differ from those
observed in lowD and mediumD scenes, with movement predominantly unidirec-
tional from the top, indicating a tendency to follow the pedestrian ahead. This
pattern is even more pronounced in Figure III.4(d), where the flow from the top is
so dense that passage from the bottom becomes challenging, leading pedestrians
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to follow the leader with limited freedom of movement and space. These observed
behavioral differences underpin our classification rationale.

III.4.4 Collision weight
Predictions of pedestrian trajectories presents the challenge to predict trajectory
paths that do not collide with neighbours. Accurately measuring these collisions
is challenging due to the shapes of pedestrians, which can vary from person to
person. Traditionally, collisions are defined by the overlap of the radii of two
pedestrians, as delineated in Equations III.3 to III.5. However, this method proves
sub optimal for inclusion as a penalty function within the loss function of DL algo-
rithms. Analysis of pedestrian trajectory data frequently reveals instances where
collisions are not genuine but rather instances of grouping behavior, with individ-
uals walking closely, sometimes shoulder-to-shoulder. It is not these interactions
we aim to deter, but rather scenarios in which individuals move directly towards
one another without any attempt to avoid collision—behaviors that are unrealistic
and undesirable.
To address this, we adopt the TTC concept, a widely recognized principle in the
study of pedestrian dynamics [16]. Implementing this variable in the loss function
of an DL algorithm would reduce predicted situations, where pedestrians walk
straight towards each other without avoidance mechanism. Integrating TTC into
a DL algorithm’s loss function significantly mitigates predictions where pedes-
trians are on a direct collision course without any avoidance mechanisms. The
TTC term calculates the time until two pedestrians would collide if they continue
moving at their current velocities, a concept validated by Karamouzas et al. [16].
The relative position and velocity between the pedestrian i and j can be denoted
by xij = xi − xj ∈ R2 and vij = vi − vj ∈ R2, respectively. A collision between
pedestrian i and pedestrian j occurs if a ray, originating from (xi, yi) and extend-
ing in the direction of vij , intersects the circle centred at (xj, yj) with a radius
of Ri + Rj at some time τij in the future. This condition can be mathematically
represented as ||xij + vij.t||2 < (Ri + Rj)

2 where ||.|| denotes Euclidean norm.
Solving this quadratic inequality for t yields τij as the smallest positive root:

τij =
−xij · vij −

√
(xij · vij)2 − ||vij||2(||xij||2 − (Ri +Rj)2)

||vij||2
(III.14)

A collision is imminent when τij = 0, whereas a large positive value for τij
indicates no collision risk. To implement τij into the loss function we have to use
an sigmoid function f that has high values, if τij is low and vice versa:

f(τ) =
1

1 + es(τ−δ)
, (III.15)
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where s = 10 and δ = 0.4 are slope and threshold parameters, respectively.
This function is then integrated into the loss function, traditionally focused solely
on minimizing the ADE. The revised loss function combines ADE with TTC loss,
optimized through minimization:

Li =
T∑
t=1

∥xi(t)− x̂i(t)∥+ λ

T∑
t=1

f(min
j ̸=i

{τij}), (III.16)

where λ > 0 modulates the influence of the TTC component in their loss function.
The calculation of τij considers all nearby pedestrians to the primary pedestrian,
employing the minimum τij to identify and mitigate the most critical potential
collision scenario in the model.

III.4.5 Implementation details
The algorithms are implemented in the commonly accepted configurations of
related contributions [22]. All computations are performed using the PyTorch
framework. The learning rate is set to 0.001 and an ADAM optimizer is utilizied.
The batch size is set to 8 and training is carried out for 15 epochs, if not the early
stop mechanism interrupt. This is the case, when the validations error starts to
rise for three epochs. For validation and testing, a hold-out validation strategy is
adopted by allocating 15% of the dataset for each validation and testing, while the
remaining data serves as the training set. For capturing pedestrian interactions,
we choose a circles with a radius of r = 5 m surrounding the primary pedestrian.

III.5 Results

We will unveil the predictive outcomes of our dataset using two distinct yet syner-
gistic methods. Initially, we will showcase the performance of our two-stage pre-
diction framework, comparing it with contemporary state-of-the-art methodolo-
gies. Subsequently, we will demonstrate the seamless integration of our two-stage
process with the incorporation of the TTC term into the loss function, illustrating
its efficacy in mitigating collision instances.

III.5.1 Two-Stage Predictions
The results of our predictions will be presented in Table III.1. As described in
Sec. III.4.3 we evaluated the predictions on the different density levels lowD,
mediumD, highD, and veryHD. For every approach we measure ADE, FDE and
COL metrics.
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Table III.1 Quantitative comparison of ADE and FDE metrics for articles using Social
LSTM as benchmark with different datasets.

Model LowD MediumD HighD VeryHD

ADE/FDE COL ADE/FDE COL ADE/FDE COL ADE/FDE COL

CV 0.71/0.97 54.76 0.85/0.98 45.73 0.53/0.8 62.35 0.44/0.67 81.74
Social Force
[13]

0.78/1.33 24.4 0.55/0.89 31.16 0.5/0.82 36.43 0.36/0.63 54.78

Vanilla
LSTM

0.5/0.99 31.55 0.33/0.63 37.69 0.29/0.52 36.43 0.24/0.41 63.8

Social LSTM
[1]

0.53/1.02 57.74 0.37/0.73 59.3 0.41/0.78 64.26 0.35/0.66 75.37

Social GAN
[12]

0.53/0.99 31.36 0.39/0.72 32.16 0.36/0.61 32.33 0.25/0.41 55.94

Our 2stg.
SLSTM

0.48/0.93 30.95 0.3/0.63 36.18 0.26/0.4 42.02 0.24/0.41 52.23

Our 2stg.
SGAN

0.44/0.83 32.74 0.27/0.52 40.2 0.28/0.5 35.33 0.26/0.43 58.6

Our 2stg.
TTC-
SLSTM

0.39/0.73 29.17 0.3/0.62 22.61 0.23/0.36 36.29 0.24/0.41 52.23

The initial insight gleaned from Table III.1 reveals a clear trend: as density in-
creases, the COL metric rises while the ADE/FDE diminish. This pattern emerges
because higher densities naturally lead to reduced distances between individuals,
consequently resulting in increased overlaps among agents. Additionally, it’s ob-
served that velocities decrease as density intensifies, leading to trajectories that
are shorter in spatial extent. This reduction in travel distance directly contributes
to the observed decrease in both ADE and FDE metrics at higher densities. Fur-
thermore, it is clear that the DB algorithm outperform the traditional models CV
and SF in terms of ADE/FDE. In terms of COL metric SF performs very well.
In the last three rows of Table III.1, we present the effectiveness of our two-stage
approach and its combination with the TTC term. The results clearly show a
significant improvement in the algorithm’s precision, attributed to the strategy
of classification before prediction. Our enhanced two-stage SLSTM model con-
sistently outperforms the traditional SLSTM across all evaluated datasets, demon-
strating superior performance in terms of ADE, FDE, and COL metrics. Similarly,
our adapted SGAN model shows marked improvements over the standard SGAN
in three out of four datasets with respect to ADE. Integrating the TTC term fur-
ther enhances the SLSTM results, notably in reducing collisions. A more detailed
discussion on this enhancement is provided in the subsequent section III.5.2.
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III.5.2 Collision weight
In this study, we propose to integrate TTC in the loss function with the two-stage
approach outlined in Sec. III.4.3. As described in Eq. III.16 the collision part in the
loss function can be adjusted by a parameter λ [18]. If λ is high, the impact of the
TTC term is high compared to the impact of ADE and vice versa. In the following
diagram, the impact of different values of λ on the prediction accuracy of the
SLSTM algorithm is displayed. In Figure III.5(a) for lowD data in Figure III.5(b)
for mediumD data, in Figure III.5(c) for highD data, and in Figure III.5(d) for
veryHD data. The first observation in each Figures is for λ = 0, which means,
that it is equivalent to the value of our two-stage SLSTM in Table III.1.

(a) Low density (lowD) (b) Medium density (mediumD)

(c) High density (highD) (d) Very high density (veryHD)

Figure III.5 ADE and COL metrics for the two-stage SLSTM algorithm according to
the collision weight λ for the four density levels.

Across all figures, a consistent pattern emerges: increasing the collision weight
λ generally results in fewer collisions. Optimal predictions occur at a specific
λ value, where ADE and FDE are equivalent to or lower than those at λ = 0.
Each dataset exhibits a maximum effective λ value beyond which ADE sharply
increases. In the lowD dataset (Figure III.5(a)), the ideal λ is 0.08, reducing ADE
by 19% and collisions by 6%. Values slightly higher than 0.08 are still bene-
ficial, yielding fewer collisions and enhanced avoidance behavior, but λ values
exceeding 0.16 lead to a significant increase in ADE. In the mediumD dataset
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(Figure III.5(b)), the optimal λ is 0.04, reducing ADE and collisions by 3% and
40%, respectively. Here, a λ value above 0.06 results in increased ADE, although
a λ of 0.1 reduces the collision metric by 75%. In the highD dataset, improve-
ments in ADE are marginal too, only notable at a λ of 0.02. However, the collision
metric significantly decreases, by up to 48%, at a λ of 0.08. Conversely, in the
very high-density (veryHD) dataset, increasing collision weight initially results in
a rise in ADE, with no subsequent decrease. While the collision metric decreases
by 37% at λ = 0.08 values, there’s no improvements for ADE. These empirical
observations lead to the insight, that pedestrian behavior at different densities is
very different and need different parameter configurations. At lower densities our
TTC term can improve overall accuracy (ADE and COL) in higher densities we
can only reduce COL, by taking higher ADE into account.

III.6 Conclusions

Pedestrian behavior is inherently complex, exhibiting a wide variety of patterns
across different contexts. This paper introduced a novel pedestrian trajectory
dataset, characterized by its diversity in situational contexts, including varying
densities and motivations. Our analysis of the data reveals variations in pedes-
trian behaviors correlating with the density of the scene. To address these varia-
tions, we propose a novel two-stage classification and prediction process. This ap-
proach first classifies scenes based on density and then applies the suitable model
for predicting behavior within that specific density context. Implementing this
framework enhanced the prediction accuracy of two famous DL algorithms, So-
cial LSTM and Social GAN.
Further, we integrated a TTC based term into the loss function of the SLSTM
to improve avoidance behaviors, consequently reducing potential collisions. Our
empirical studies indicate that the effectiveness of the TTC-based term varies with
density; it significantly benefits scenarios of low density by correlating higher
TTC values with reduced collision incidents. However, the outcomes in high-
density situations were more ambiguous, suggesting a nuanced impact of density
on the efficacy of this approach. This observation could be attributed to the nu-
anced dynamics of pedestrian behavior across different densities. Specifically,
in environments with lower densities, pedestrians tend to navigate more through
avoidance and interactions, making TTC particularly relevant. Conversely, in
higher density settings, pedestrian movement is more characterized by forced
leader-follower dynamics, diminishing the prominence of TTC in explaining be-
havior. This study underscores the complexity of pedestrian behavior, which
varies significantly under different environmental conditions. It highlights the ne-
cessity of adopting a flexible modeling approach to accurately predict pedestrian
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trajectories in diverse settings.

This research opens several avenues for future investigation in the field of
pedestrian trajectory prediction, especially concerning heterogeneous datasets char-
acterized by variable densities. Current methodologies typically rely on a one-
size-fits-all model for behavior prediction across all conditions. We advocate for
the development and application of multiple specialized models, each tailored to
different scene characteristics, with scene density being a pivotal factor. While
focusing on density has proven to be a successful strategy, exploring additional
factors and individual pedestrian behavior characteristics could yield further im-
provements. For instance, our methodology utilized an estimate of overall scene
density. However, pedestrians do not take global densities for there decision-
making into account, but rather local densities. Wirth et al. [36] demonstrate that
pedestrian decisions are primarily influenced by their visual neighborhood. Future
studies should investigate the impact of assessing local density variations within
a scene, which could be particularly beneficial in environments exhibiting a wide
range of density levels. This direction could unlock new dimensions of accuracy
and reliability in trajectory prediction models.

Moreover, incorporating the TTC concept into the loss function has shown
promise in enhancing prediction accuracy at lower density levels. Future re-
search should explore alternative loss functions, particularly for high-density sce-
narios, where the traditional ADE based approaches may not suffice. Investigating
other metrics that could more effectively capture the complexities of high-density
pedestrian behavior is crucial for advancing the field.
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