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1 Introduction

Phase transitions are key phenomena of our daily life, from the simple process of water boiling
or condensation on windows to the formation of ice in a freezer. The corresponding release
and absorption of heat associated with these 1st order transitions is fundamental for today’s
technology such as heat pumps, air conditioners or fridges which are a kind of heat engine.
Under specific conditions of temperature and pressure the clear distinction between liquid
and vapor phases of a substance can disappear. This phenomenon is also observed in water
at its critical point, which marks the end of the 1st order transition line, where the release
of latent heat vanishes. Beyond this critical point, only smooth transitions - the so-called
crossovers - occur whose corresponding thermodynamic quantities are free of divergences and
discontinuities. Crossover transitions can even be observed in everyday scenarios, such as the
melting of butter at room temperature. Due to its complex composition of various fatty acids,
butter does not have a single transition temperature but rather a range within it softens. Su-
percritical carbon dioxide, which exists above its critical temperature and pressure, provides
a practical demonstration of these concepts in industrial applications. It shares properties of
a gas and a liquid such as high density and low viscosity, qualifying it for chemical extraction
processes as for example the decaffeination of coffee. Apart from these everyday and indus-
trial scenarios, magnetic systems described by the Ising model feature critical phenomena
driven by the spontaneous breaking of the underlying Z2 symmetry. As the system is cooled
from temperatures above the critical Curie temperature Tc to temperatures below Tc, the
system undergoes a transition from a disordered to an ordered ferromagnetic state in which
the spins spontaneously align along one direction.
Phase transitions are not limited to these daily and industrial settings but also occur under
extreme conditions as were present in the early universe. Up to ∼ 10−12 s [1] after the Big
Bang the electroweak interaction was a unified fundamental force [2–4] undergoing sponta-
neous symmetry breaking (SSB) as the universe expanded. Unlike real phase transitions
with sharp transition temperatures, the change between the symmetric high temperature to
the broken low temperature phase was an analytic crossover as confirmed by lattice simu-
lations [5, 6]. During this process, the gauge bosons W± and Z as well as the quarks and
leptons (except neutrinos according to the Standard Model) acquired their masses through
the Higgs mechanism [7–9]. The density and temperatures were still too high for the existence
of ordinary matter in form of hadrons such as protons and neutrons. Instead, the following
epoch up to ∼ 10−5 s was dominated by the highly self-interacting quark gluon plasma
(QGP), in which the fundamental constituents of matter - the quarks - can be delocalized
and freely move. Their interactions are described by quantum chromodynamics (QCD) - the
quantum field theory of the strong force. This theory features asymptotic freedom [10, 11],
which leads to a decreasing strength of the interactions at high energies. This implies another
cosmological transition from the QGP to the confinement of quarks into hadrons as the uni-
verse further expanded and cooled. Similarly to the electroweak transition, this shift was an
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Chapter 1. Introduction

analytic crossover as confirmed by non-perturbative ab-initio lattice QCD simulations [12].
Such simulations at vanishing chemical potential reflect the conditions of the early universe,
marked by a negligible asymmetry between matter and anti-matter [13]. In contrast to these
high temperature environments, "cold" QGP phases might exist at low temperatures and high
densities in astronomical dense objects such as the inner cores of neutron stars [14]. Gravita-
tional wave astronomy offers a new possibility to study neutron stars and their mergers [15],
providing a natural laboratory for exploring QCD at high densities. On Earth, measurements
of the QGP have been performed for more than 20 years at LHC [16] and RHIC [17], probing
the features of strongly interacting matter. Together with experiments at FAIR and NICA in
the near future, they map out regions of the QCD phase diagram at high temperatures and
moderate densities and potentially disclose the secret of the existence of a critical endpoint.
I refer the reader to Section 2.6 for a detailed discussion of the phase diagram for QCD at
finite density and temperature.
Phase transitions observed in various systems close to their critical points exhibit a universal
behavior which is independent of the microscopic details of the system. Wilson’s work on
the renormalization group (RG) approach [18–20] explains the remarkable scale invariance of
2nd order phase transitions by integrating out (thermal) fluctuations in sequence from small
to larger scales. If the corresponding flow of the coupling constants reaches a (non-trivial)
fixed point, the system became universal and can share the same critical exponents among
its universality class [21]. The concept of renormalization is deeply embedded in quantum
field theories as the Standard Model - the theory which covers all fundamental forces ex-
cept gravity - is renormalizable [22]. Within this framework, the coupling constants, masses
or charges show a strong dependence on the energy scale. As QCD is strongly coupled at
low temperatures due to confinement, perturbative approaches cannot be applied. Lattice
QCD provides a non-perturbative systematic improvable technique to solve QCD numerically.

In this thesis, we explore the parameter space of QCD in temperature, chemical potential
and quark masses using lattice simulations. In Chapter 2 we discuss some thermal features
of QCD and the contributions of the chiral and center symmetry to the structures of the
phase diagram. Chapter 3 includes the concepts of finite temperature field theory and state-
of-the-art lattice techniques for numerical simulations. In Chapter 4, we apply the parallel
tempering algorithm to improve on (super-)critical slowing down associated with 1st and 2nd

order phase transitions in the context of the Columbia plot. In Section 4.1, we calculate the
transition temperature and latent heat with unreached high-precision in the continuum and
infinite volume limit for quenched QCD and study its topological features in Section 4.2.
In Section 4.3 we attempt to pin down the critical quark masses at which the latent heat
vanishes and the transition is of 2nd order.
In Chapter 5 we calculate the phenomenologically highly relevant equation of state (EoS) for
physical quark masses at finite density with a novel expansion scheme. We introduce this
method in Section 5.1 using a vanishing chemical potential for the strangeness and extend it
to strangeness neutrality and beyond in Section 5.2.
In Chapter 6 we study finite volume effects of the chiral and deconfinement observables at
vanishing and finite density.

Lattice QCD has been an established scientific field for almost 50 years and has lead to
astonishing discoveries. Therefore, it is important to note that achieving such results as
presented in this thesis is only possible within a smoothly running working group. Hence I
briefly list my contributions to the projects of the Wuppertal-Budapest collaboration:
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Deconfinement transition in quenched QCD
I implemented the multiple histogram method and extended it to the correlated case. More-
over, I performed the reweighting and fitting analysis in β (and θ) to calculate the critical
coupling βc at which the third Binder cumulant b3 vanishes with the secant method. Fur-
thermore, I calculated the latent heat by separating the configurations in hot and cold phases
for which the trace anomaly is evaluated. For this purpose, I determined the minimum of
the Polyakov loop potential by reweighting the histograms to βc, which servers as a cut. I
performed the multi dimensional global analysis of the curvature parameter Rθ to extract
its continuum and infinite volume limit and to investigate the systematics. Additionally, I
calculated the discontinuity of the topological susceptibility ∆χ by assigning configurations
to the confined and deconfined phase by the histogram method described above.

Determination of the critical mass
I generated configurations on JUWELS Booster at FZ Jülich using the parallel tempering
version of the simulation code Janko. I performed the analysis of the Polyakov loop P and
its susceptibility χ, determined the peak with high precision fits by expressing χ (〈|P |〉) via
splines and studied its volume and mass dependence. This enabled me to calculate the critical
quark mass in the three flavor theory for temporal extension Nt = 6, 8 in the infinite volume
limit. Furthermore I checked the latent heat as function of the quark masses and determined
the critical exponents, which turned out to be less clean observables compared to the peak
of the susceptibility given the current statistics.

Equation of state at finite density from an alternative expansion scheme
I performed the mock analysis which benchmarks various orders of the Taylor method for the
EoS. Furthermore, I wrote programs for the 2d continuum extrapolation using basis splines
in the low temperature region and high temperature region with polynomials in 1/T . Based
on these analyses, I calculated the thermodynamic quantities at finite density such as the
pressure, entropy and energy density in the continuum for which numerical integration and
derivatives were mandatory. I also wrote a program for the hadron resonance gas model for all
needed thermodynamic quantities. All programs were adjusted for the finite strangeness part.

Finite volume effects
I performed the renormalization of the chiral and deconfinement observables and studied the
volume dependence of the chiral transition temperature and its width defined by the peak
of the susceptibility. Furthermore, I calculated the transition line of the chiral transition
temperature at finite density using simulations at imaginary chemical potentials for various
box sizes.
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2 Quantum chromodynamics

In this Chapter I give a brief overview of QCD, the theory of strong interactions. The
focus is set on the underlying symmetries and their features to highlight the motivation of
our thermal studies. Hence, we discuss in detail the chiral and center symmetries, their
corresponding explicit, spontaneous and anomalous breaking, some topological aspects and
a historical outline of the Columbia plot.

2.1 Strong force

At the end of the 19th and beginning of the 20th century, physicists and chemists discovered
the fundamental properties of matter. The gold foil experiment by Rutherford, Geiger and
Marsden confirmed that atoms contain a positively charged nucleus carrying most of their
masses. Together with the discovery of the neutron by Chadwick, it was clear that an atomic
nucleus is not fundamental, but made of protons and neutrons, bound together by a "strong
force". A successful attempt to describe the binding of protons and neutrons was made by
Yukawa [23], who proposed a force carrier particle - the meson - which is exchanged in a
nucleus. Further experimental progress led to the discovery of more and more particles,
the particle zoo era, whose relation with each other was unclear. The quark model [24]
organized these particles by suggesting fundamental constituents within these hadrons - the
quarks. High energy experiments such as those performed at the Stanford Linear Accelerator
Center or CERN confirmed this assumption by discovering the non-fundamental properties
of protons and neutrons in deep inelastic scattering processes. Together with the indications
of three color charges by measurements of e.g. ∆−, ∆++, Ω− or the hadronic cross section
of e+e− → hadrons, this paved the way for the modern formulation of the strong force:
Quantum Chromodynamics.

2.2 Thermal features of QCD

In this Section I give a brief introduction to QCD and discuss its key features with the focus
on its thermal properties. For further details I refer the reader to standard textbooks such
as [25–28] from which I chose a small selection of topics.
QCD is a quantum field theory based on a non-abelian gauge symmetry SU(3)c. The corre-
sponding Lagrange density (Lagrangian) reads

L =
∑
f

ψ̄f
(
iγµ∂

µ + gγµTaA
a
µ −mf

)
ψf −

1
4F

a
µνF

µν
a (2.1a)

:=
∑
f

ψ̄f
(
i /D −mf

)
ψf −

1
4tr FµνFµν (2.1b)
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Chapter 2. Quantum chromodynamics

with the gluonic field strength tensor

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν . (2.2)

The Ta are the eight Gell-Mann matrices representing the generators of SU(3) and fabc

are the corresponding structure constants. The sum over the Dirac spinors ψf stands for
the summation over the quark flavors, which are color triplets equally treated in strong
interactions with coupling strength g. It is worth to note that tr FµνFµν results in a gluon
self-interaction, caused by the non-abelian feature of SU(3)c.

Confinement and asymptotic freedom

Similar to quantum electrodynamics (QED), QCD is a theory which has to be renormalized
to obtain physical results. This leads to parameters such as the coupling constant which
depend on the energy scale. In contrast to QED, QCD does not feature a Landau pole in the
high energy regime at which the coupling constant diverges. Instead it vanishes for diverging
momenta Q → ∞. This phenomenon is called asymptotic freedom and was discovered by
Gross, Wilczek [10] and Politzer [11]. The running of the coupling constant αs is shown in
the following equation

αs(Q2) = 4π
b0 log

(
Q2/λ2

QCD

) b0 = 11− 2
3Nf > 0, (2.3)

with Nf the total number of flavors and λQCD ≈ 200 MeV confirmed by measurements [25]
and. It can be understood as a scale at which perturbative QCD breaks down [29], implying
that αs takes on large values. Hence for high momenta or equivalent energy or temperature,
the coupling decreases, in contrast to QED. This is a direct consequence of the gluon self-
interaction which does not exist for the photons. In Fig. 2.1 the remarkable agreement
between experimental (data points) and theoretical results (lines) is shown. Experimentally,

Figure 2.1: Strong coupling constant αs as a function of the momenta transfer Q measured
at different processes including its values at the Z boson mass [30].

it is well known that quarks are bound together and do not appear separately in the low
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2.3. Center symmetry

energy region in which they form color neutral states. This phenomenon is called confinement,
whose strict analytic proof is still missing. Wilson gave an explanation of this mechanism by
formulating (non-)abelian gauge theories on a discretised space time, laying the foundation
of lattice field theory. By investigating the separation of a static quark anti-quark pair,
he showed in the strong coupling limit (low energies) that large Wilson loops (phase factor
appearing due to the interactions with gluon fields) are heavily suppressed [31]. In Chapter 4,
we come back to this point and discuss the thermal properties of the Wilson loop in the form
of the Polyakov loop in the heavy quark mass region.

Quark gluon plasma

The asymptotic freedom shows that for high temperatures quarks can liberate from their
hadronic bound states due to the decrease of the coupling αs. This is a hint for a new state
of matter - the QGP in which the quarks can almost freely move. A first indication for such
a state was found by Hagedorn in 1965 using the statistical bootstrap model [32], predicting
an exponential increase of the number of resonances with the hadron mass. This leads to
a maximum temperature TH ≈ 150 MeV at which the partition function diverges, clearly
showing the limitations of the hadronic picture. This value agrees remarkably well with
the pseudo-critical temperature Tc = 158.0(6) MeV [33] calculated via lattice QCD based
on chiral observables. Experimental studies of the QGP phase have been performed since
approximately the beginning of the current century at LHC [16] and RHIC [17]. It turned out
that the QGP is a highly interacting plasma whose chemical freeze-out temperature agrees
with Tc provided by lattice QCD within errors [34]. Chemical freeze-out refers to the stage
in which the composition of the system becomes fixed because inelastic scattering processes
stop. Beyond this point, only particle decays and elastic scattering can take place. To clarify
whether there is a real phase transition from the hadronic phase to the QGP, the underlying
symmetry breaking or restoration pattern of QCD has to be studied.

2.3 Center symmetry

Dropping the fermionic part of QCD, we are left with a pure non-abelian SU(3) Yang-Mills
theory. We call mq → ∞ the quenched limit, in which the creation of virtual quark anti-
quarks is suppressed due to their infinite mass. In this case, the theory is symmetric under
center transformations Z3 whose elements Z read

Z = z 1 with z ∈ {1, e±2πi/3}. (2.4)

To observe this, we start with a gauge transformation of Aµ

Aµ(τ, ~x)→ Ãµ(τ, ~x) = g(τ, ~x) (Aµ(τ, ~x) + i∂µ) g†(τ, ~x) (2.5)

with g ∈ SU(3). Both obey periodic boundary conditions in time with periodicity 1/T

Aµ(τ, ~x) = Aµ(τ + 1/T, ~x), (2.6)
g(τ, ~x) = g(τ + 1/T, ~x). (2.7)

As shown by t’Hooft [35, 36], there are also gauge transformations which are periodic up to
a constant h ∈ SU(3) (twisted gauge transformations) [37]

g(τ + 1/T, ~x) = hg(τ, ~x). (2.8)
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Chapter 2. Quantum chromodynamics

Performing such a gauge transformation on Aµ(τ + 1/T, ~x)→ Ãµ(τ + 1/T, ~x) leads to

Ãµ(τ + 1/T, ~x) = g(τ + 1/T, ~x) [Aµ(τ + 1/T, ~x) + i∂µ] g†(τ + 1/T, ~x) (2.9a)
= hg(τ, ~x) [Aµ(τ, ~x) + i∂µ] g†(τ, ~x)h† (2.9b)
= hÃµ(τ, ~x)h†. (2.9c)

Obeying the periodic boundary conditions of Eq. (2.6), Ãµ(τ + 1/T, ~x) = Ãµ(τ, ~x) implies

Ãµ(τ, ~x) = hÃµ(τ, ~x)h† =⇒ [h, Ãµ(τ, ~x)] = 0, (2.10)

restricting h ∈ Z3, the center of SU(3). From now on we call the center elements Z. Due to
the anti-periodicity of fermionic fields, they transform under twisted gauge transformations
according to

ψ(τ + 1/T, ~x)→ ψ̃(τ + 1/T, ~x) = g(τ + 1/T, ~x)ψ(τ + 1/T, ~x) (2.11)
= −zg(τ, ~x)ψ(τ, ~x). (2.12)

Since z = 1 to obey anti-periodic boundary conditions, Z3 is explicitly broken in the presence
of fermionic fields.

Order parameter

The Polyakov loop

P (τ, ~x) = tr Pei
∫ 1/T

0 dx0A0(~x,x0), (2.13)

contains a path-ordered exponential, similar to the gauge transporter sharing the same trans-
formation properties [38]:

P̃ (τ, ~x) = tr g(1/T, ~x)Pei
∫ 1/T

0 dx0A0(~x,x0)g†(0, ~x) (2.14a)

= tr Z g(0, ~x)Pei
∫ 1/T

0 dx0A0(~x,x0)g†(0, ~x) (2.14b)
= zP (τ, ~x). (2.14c)

Hence the Polyakov loop remains invariant if z = 1, implying that Z3 is spontaneously broken.
McLerran and Svetitsky [39] related its expectation value to the free energy of a single quark
Fq [37]

〈P 〉 ∼ e−Fq/T , (2.15)

and showing its sensitivity to deconfinement. If 〈P 〉 = 0 then Fq → ∞, implying a confined
phase in which an infinite amount of energy is needed to separate a quark from the system.
In the presence of quarks, Z3 is explicitly broken and the Polyakov loop is no true order
parameter anymore. However, it is still suitable to investigate the QCD crossover by its
relation to Fq and hence to an entropy. We discuss this in Chapter 6. The spontaneous
breaking of Z3 is associated with a non-vanishing expectation value of the Polyakov loop.
In Fig. 2.2 the real and imaginary part of the Polyakov loop in the confined and deconfined
phases are shown. Measurements of the Polyakov loop are populated around the center
sectors in the deconfined phase.
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Figure 2.2: Real and imaginary part of the Polyakov loop in quenched QCD on 483 × 12
lattice. Lef: Confined phase. Middle: At the transition temperature. Right: Deconfined
phase. Data from our study [40].

2.4 Chiral symmetry

Processes described by Newton’s laws or electromagnetism are invariant under parity trans-
formations since the underlying equations have mirror symmetry. Is this a true symmetry in
Nature implying that a mirror-inverted world just shows mirrored processes? The answer is
a clear no. The famous Wu-experiment [41] demonstrates that in weak interactions the W
bosons prefer to couple to left handed particles or right handed anti-particles indicating par-
ity is not conserved. The handedness of a particle should be distinguished in the concepts of
helicity or chirality. They coincide for massless particles but only chirality is Lorentz invari-
ant. In the following we set the focus on the latter which plays a key role for the generation
of the hadron masses. Eigenstates of γ5 with eigenvalue +1 are called right-handed and those
with −1 left handed eigenstates. Defining the operators

PR := 1 + γ5
2 = P †R, PL := 1− γ5

2 = P †L, (2.16)

it is possible to project a quark field ψ onto its right and left handed components

ψL = PLψ ψR = PRψ (2.17)
ψ̄L = ψ̄PR ψ̄R = ψ̄PL. (2.18)

Parity transformations P can change the chirality of a quark field as exemplarily demonstrated
for a right handed state. It transforms according to

ψR(t, ~x) P−−→ γ0ψR(t,−~x). (2.19)

We can check its chirality by

γ5γ0ψR(t,−~x) = −γ0γ5ψR(t,−~x) = −γ0ψR(t,−~x), (2.20)

9



Chapter 2. Quantum chromodynamics

showing that it remains an eigenstate of γ5 but with eigenvalue −1 indicating a left handed
state. In the chiral limit the fermionic part of the QCD Lagrangian reads

LF,mf→0 = ūLi /DuL + ūRi /DuR + d̄Li /DdL + d̄Ri /DdR + s̄Li /DsL + s̄Ri /DsR (2.21a)
=
∑
f

ψ̄f,Li /Dψf,L (2.21b)

:= q̄Li /DqL + q̄Ri /DqR (2.21c)

with

q =

 u
d

(s)

 . (2.22)

In the following we will take a closer look at a two flavor theory consisting of up and down
quarks and a three flavor theory with an additional strange quark s.
Obviously Eq. (2.21c) is invariant under unitary transformations acting on the left and right
handed parts separately U(Nf )L× U(Nf )R

qL → ULqL q̄L → q̄LU†L (2.23)
qR → URqR q̄R → q̄RU†R. (2.24)

The symmetry can be split as U(Nf )L× U(Nf )R = SU(Nf )L× SU(NF )R× U(1)A× U(1)V
and is called chiral or flavor symmetry [38]. It is explicitly broken by finite quark masses:

Lmass = q̄

mu 0 0
0 md 0
0 0 ms

 q (2.25a)

= q̄RmqL + q̄LmqR + q̄LmqL︸ ︷︷ ︸
=0

+ q̄RmqR︸ ︷︷ ︸
=0

. (2.25b)

The last two terms vanish according to Eqs. (2.17) and (2.18) since the product of the left
and right handed projectors is zero PR · PL = 0 = PL · PR. The first two terms indicate
that left and right handed parts are mixed which obviously breaks chiral symmetry. But
what happens in the chiral limit, which should be close to the physical point since the light
quark masses are small compared to the QCD scale? Is QCD actually invariant under these
transformations or is there a spontaneous breaking or any anomalies present?

U(1)V transformations

The U(1)V is a global symmetry whose transformations are

q → eiαq, q̄ → q̄e−iα, (2.26)

with the rotation angle α ∈ R and the corresponding Noether current

Jµ = q̄γµq. (2.27)

This is a true symmetry in QCD leading to a conservation of the baryon number

B = 1
3

∫
d3xJ0(x) = 1

3

∫
d3xq̄(x)γ0q(x) = 1

3

∫
d3x

(
q†L(x)qL(x) + q†R(x)qR(x)

)
. (2.28)

It is important to note that U(1)V is not necessarily a symmetry of Nature, due to the
significant imbalance of matter and anti-matter in the observable universe.
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2.4. Chiral symmetry

SU(Nf)L×SU(Nf)R transformations

Transforming the left and right handed parts of the quark field q separately, the transforma-
tions read

qR/L → ei~αR/L~τqR/L, q̄R/L → q̄R/Le
−i~αR/L~τ , (2.29)

leading to the Noether current

Jaµ,R/L = q̄R/Lγµτ
aqR/L. (2.30)

Depending on the number of flavors, ~τ corresponds to the Pauli matrices ~σ or the Gell-Mann
matrices ~λ

~τ =
{
~σ/2 Nf = 2,
~λ/2 Nf = 3.

(2.31)

With Eq. (2.30) we can define a vector and an axial current [42]

V a
µ = Jaµ,R + Jaµ,L = q̄γµτ

aq, Aaµ = Jaµ,R − Jaµ,L = q̄γµγ5τ
aq, (2.32)

and rewrite the transformation as SU(Nf )V×SU(Nf )A.

SU(Nf)V transformations

The SU(Nf )V vector transformations rotate the left and right handed parts of the quark
fields with the same angle ~α

q → ei~α~τq, q̄ → q̄e−i~α~τ , (2.33)

leading to the vector current V a
µ of Eq. (2.32). For physical quark masses it is an approximate

symmetry arranging for instance the mesons in an octet representation (eightfold way) [43,
44]. In the chiral limit Vafa and Witten [45] showed that the vacuum is invariant under
SU(Nf )V rotations implying the absence of a spontaneous breaking. In the case of Nf = 2
the transformation mentioned in Eq. (2.33) can be understood as an isospin rotation:

πa : iq̄σaγ5q, ~π → ~π + ~α× ~π. (2.34)

The transformation of a π-like state corresponds to a rotation of the underlying isospin which
explains the approximate mass degeneracy of the isopsin triplet of the π [46].

SU(Nf)A transformations

The quark fields transform under SU(Nf )A as

q → ei~α~τγ5q, q̄ → q̄ei~α~τγ5 , (2.35)

since {γµ, γ5} = 0, leading to the axial current Aaµ of Eq. (2.32). The vector mesons

~a1µ : q̄ ~σγµγ5 q, ~ρµ : q̄ ~σγµ q, (2.36)

can be related to each other by axial transformations Eq. (2.35)

~ρµ → ~ρµ + ~α× ~a1µ, (2.37)
~a1µ → ~a1µ + ~α× ~ρµ, (2.38)

11



Chapter 2. Quantum chromodynamics

implying that their mass should be nearly identical [46]. However, the measurements of the
masses yield mρ = 770 MeV and ma1 = 1260 MeV. The following questions arise: Where does
the mass difference of these mesons come from? Is the main driver the explicit symmetry
breaking due to finite quark masses in Nature? It can be shown that this symmetry is just
slightly broken by physical quark masses implying that the axial current is almost conserved,
also known as Partially Conserved Axial Current (PCAC) [47]

〈0| ∂µAaµ |πb〉 = −fπm2
πδ
a,be−iqx. (2.39)

So the divergence of the axial current depends on the pion decay constant fπ and the pion
mass mπ. According to the Gell-Mann-Oakes-Renner relation, the latter can be related to
the light quark mass [25,48]

m2
π ∼

mu +md

f2
π

. (2.40)

Hence, pions are massless in the chiral limit and can be identified as the Goldstone bosons
due to the spontaneous breaking of chiral symmetry. Their small masses compared to other
hadrons arise from the explicit breaking caused by the finite light quark masses.
To summarize: The significant mass difference of the ~ρ and ~a1 cannot be understood by the
explicit symmetry breaking. Instead it must come from the spontaneous symmetry breaking
[46,49].

U(1)A transformations

If U(1)A were actually realized in Nature, we should expect a parity doubling of the baryons
[26]. This is not the case and hence one could assume that this symmetry is also spontaneously
broken, leading to another Goldstone boson similar to the case described in the previous
paragraph. Restricting this short discussion to Nf = 2, the associated Goldstone boson
should have a similar mass as the π. The possible candidate η is too heavy and its mass can
be well understood by the explicit breaking of SU(3)A. It turns out that U(1)A is broken by a
so-called anomaly, which is another type of symmetry breaking. This gave rise to important
discoveries regarding instantons, insights on the structure of the QCD vacuum and the η′
mass. The following discussion is based on [42,50,51] to illustrate what Callan, Dashen and
Gross could mean by suggesting instantons as a driver of chiral symmetry breaking [52].
Under U(1)A the quark fields transform according to

q → e−iγ5αq, q̄ → q̄e−iγ5α, (2.41)

with the Noether current
Jµ5 = q̄γµγ5q. (2.42)

This current is conserved classically, but not on a quantum level. In the context of QED, Adler
[53], Bell and Jackiw [54] calculated the corrections to Jµ5 perturbatively to understand the
neutral pion decay into two photons π0 → 2γ. This process should be suppressed as proposed
by Veltman [55] and Sutherland [56] using current algebra methods. As demonstrated by
Fujikawa [57] the measure of the path integral changes under Eq. (2.41), leading to a non
vanishing divergence of the axial current which can be written in the chiral limit as [50]

∂µJ
µ
5 = −Nf

g2

16π2 trFµνF̃µν . (2.43)

Integrating this equation gives a non zero value since surface terms are relevant in QCD
through its topological distinct vacua which are specified by instantons. In other words, the

12



2.4. Chiral symmetry

QCD vacuum state is not unique, instead it is a superposition of vacua due to the periodicity
of the gluonic potential. This has to be taken into account in our analysis of the ground state
since tunnel processes between these states could lower its energy. How can we distinguish
vacuum states for a given gluonic configuration? They are specified by the axial charge,
whose change can be calculated by integrating Eq. (2.43) over the full spacetime:

Q5(t→ +∞)−Q5(t→ −∞) = ∆Q5 = −
∫

dx4Nf
g2

16π2 trFµνF̃µν := 2NfQt. (2.44)

Qt is called topological charge and has a direct connection to the zero modes of the Dirac
operator, a special case of the Atiyah-Singer index theorem. To illustrate this, we start with
the following eigenstates of the Dirac operator

i /Dψλ = λψλ, i /Dγ5ψλ = −λγ5ψλ, (2.45)

implying that these states are orthogonal if λ 6= 0. With Eq. (2.42) they can be used to
rewrite the change of the axial charge to [51,58]

∆Q5 =
∫

dx4∂µ 〈Jµ5 〉 (2.46a)

= Nf

∫
dx4∂µtr [S(x, x)γµγ5] (2.46b)

= Nf

∫
dx4∂µtr

[∑
λ

ψλψ
†
λ

λ
γµγ5

]
(2.46c)

= Nf

∫
dx4tr

[∑
λ

ψλψ
†
λ

λ
2λγ5

]
(2.46d)

= Nf

∫
dx4 2 tr

[
ψ0ψ

†
0γ5
]
. (2.46e)

First, the expectation value of the axial current for a given gauge configuration can be related
to the Dirac propagator S(x, x). Then it is expressed in the spectral representation in terms
of its eigenfunctions. Due to the orthogonality shown in Eq. (2.45), only zero modes have a
non zero contribution leading to

∆Q5 = 2Nf (nL − nR) =⇒ Qt = nL − nR, (2.47)

with nL as the number of left handed and nR of right handed zero modes. Zero modes play
a crucial role since they are related to the chiral condensate according to the Banks-Casher
relation [59]

〈q̄q〉 ∼ ρ(λ→ 0). (2.48)
Here ρ(λ) is the spectral density of the Dirac operator. To summarize: Since U(1)A is broken
(anomalously), there is a non vanishing expectation value of the chiral condensate which
breaks chiral symmetry [58]. It is worth to note that the anomalous breaking of U(1)A
clarifies why the η′ meson does not belong to the octet representation of mesons in Nf = 3.
It consists of u, d, s quarks, but is roughly 60% heavier than its isosinglet partner η. The
Witten-Veneziano equation [60,61]

χqt := 〈Q
2〉
V

= f2
π

2Nf

(
m2
η +m2

η′ − 2m2
K

)
, (2.49)

χqt
mq→0= f2

π

2Nf
m2
η′ , (2.50)
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Chapter 2. Quantum chromodynamics

with V indicating the space-time volume, relates the topological susceptibility of quenched
QCD χqt to the masses of the η, η′ and the K. Eq. (2.50) results from the chiral limit which
makes the η and K massless. Both equations highlight that the η′ is not related to the meson
octet and hence SU(3)A is spontaneously broken and not a unitary symmetry which should
lead to nine Goldstone bosons instead.
It is important to note that the topological charge contains trFµνF̃µν , which is a pseudoscalar
not invariant under CP transformations. Since there is no reason why (massive) QCD should
obey CP symmetry, a term of the form

Lθ ∼ θ trFµνF̃µν , (2.51)

can be added to the Lagrangian. The present experimental status of the measurement of the
neutron electric dipole moment sets an upper limit for θ < 10−9 [62]. Since θ ∈ [0, 2π), the
question arises why θ is so small. This is known as the strong CP problem. In Section 4.2 we
study the topological features of quenched QCD and investigate the impact of a CP breaking
θ term on the deconfinement transition.

Order parameter

The order parameter to investigate chiral symmetry breaking is the chiral condensate

〈q̄q〉 = 〈q̄RqL + q̄LqR〉 . (2.52)

In the chiral broken phase it takes on a non-vanishing expectation value induced by the
spontaneous and explicit chiral symmetry breaking and by the anomalous U(1)A breaking.
Recent lattice studies such as [63, 64] try to quantify the contribution of the latter to the
chiral observables. A key challenge is the proper implementation of chiral symemtry on the
lattice for which staggered fermions seem to be less appropriate causing large cut-off effects
compared to Möbius domain-wall fermions (see Appendix of [63]). The effect of the possible
U(1)A restauration could give insights to the Columbia plot, which is discussed in the next
chapter.

2.5 Phase diagram in the mass plane

In the last Sections we discussed the explicit, spontaneous and anomalous breaking of chiral
symmetry and the features of center symmetry breaking related to deconfinement. Both
are explicitly broken by finite quark masses, which work as symmetry breaking variables
in analogy to an external magnetic field in the case of spin models. Depending on their
exact values, the order of the thermal transition can change. First attempts to classify the
corresponding phase diagram as a function of the quark masses were performed on coarse
lattices by the Columbia group [65]. Hence this phase diagram is often referred as Columbia
plot in the literature and is still under investigation due to the enormous computational
challenges it provides.

2.5.1 Upper right corner of the Columbia plot

For infinite quark masses, QCD is reduced to a pure gauge theory. In the strong coupling
limit, early studies showed the equivalence of the pure SU(3) gauge theory to 3d spin systems
which are also invariant under Z(3) transformations [66–68]. Mean-field analysis and the
absence of renormalization group fixed points indicate that such systems feature 1st order
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2.5. Phase diagram in the mass plane

phase transitions [68, 69]. These are strong arguments for a 1st order phase transition in
SU(3) gauge theories, but no strict proofs. Early lattice studies such as [70, 71] supported
these assumptions by observing hysteresis of the order parameter. Interestingly, Ref. [72]
showed an increasing correlation length with the volume which is a typical sign of 2nd order
phase transition. However, finer lattices and larger volumes confirm a weak 1st order nature
accompanied by a high correlation length [73,74]. A key feature of a 1st order phase transition
is a non-vanishing latent heat. Similar to the work of the WHOT collaboration [75, 76] we
could calculate the latent heat in the continuum and thermodynamic limit, and found small
values highlighting the weak 1st order nature in the context of SU(N) theories [77].
Finite quark masses explicitly break the global Z(3) symmetry and weaken the transition
until the latent heat vanishes at the critical quark masses. These are endpoints of the 1st

order phase transition and should be in the same universality class as the 3d Ising model
or Z(2) spin systems sharing the same critical exponents [78]. This assumption is supported
by [79], in which the authors demonstrate that the Z(3) symmetric 3d three state Potts
model with an external ordering field and the 3d Ising model are in the same universality
class. Various techniques based on matrix models [80], Dyson-Schwinger methods [81], lattice
results by reweighting from quenched QCD [82], hopping parameter expansion [83,84] or using
the parallel tempering algorithm [85] have been used to study criticality in the heavy mass
region. Severe cut-off effects [84] and critical slowing down pose a numerical challenge, making
these investigations computationally expensive. So far a continuum limit of the critical quark
masses is missing, but there is a good agreement between the aforementioned studies.

Figure 2.3: Possible phase diagrams of QCD at µB = 0 depending on the degenerate light
quark mass mu,d and the strange quark mass ms. Plots from [86].

2.5.2 Left side of the Columbia plot

The linear σ-model is an effective scalar field theory for QCD at low energy describing inter-
actions of pions and scalar mesons. Depending on the exact definition it includes complex
scalar fields coupled by quartic interactions and resulting massless π and massive σ fields due
to the spontaneous chiral symmetry breaking. Originally proposed by Schwinger [87] and
used by Gell-Mann and Levy [88] for nucleon-π interactions, Pisarski and Wilczek applied
the most general renormalizable formulation of the linear σ-model to investigate the order
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Chapter 2. Quantum chromodynamics

of the thermal phase transition by fixed point analyses [89]. Therefore, the β functions in
4− ε dimensions which specify the coupling parameters on an energy scale, are expanded in
leading order in ε. For Nf = 3 in the chiral limit the transition should be of 1st order due to
the absence of an infrared stable fixed point. It is important to note that this statement is
true for ε� 1 which is clearly not the case since ε = 1 to match a 3d theory. Nevertheless this
strategy led to successful predictions of the type of antiferromagnetic phase transition for e.g.
Cr and Eu [90]. On the other hand, a recent study [91] based on functional renormalization
group (FRG) flow analysis favors a 2nd order phase transition.
The possible restoration of U(1)A could have a crucial impact on the phase transition, espe-
cially in the case of Nf = 2. Here we distinguish the two cases: 1) U(1)A is broken (right
panel of Fig. 2.3) and 2) U(1)A is restored at the chiral restoration temperature T ≈ Tχ (left
panel). The order parameter of the chiral symmetry breaking is the chiral condensate which
is symmetric under U(2)L×U(2)R transformations. In the 1) case, U(1)A can be removed by
restricting the transformations to SU(2)L×SU(2)R, which are locally isomorphic to O(4) [92].
Therefore a 2nd order phase transition with O(4) critical exponents is expected or at least
possible [92–94].
In the 2) case, U(1)A is "effectively" restored. Since it is always broken by the anomaly, it
can be only "effectively" restored implying that instantons are suppressed making the η′ light.
A restoration of U(1)A extends the chiral symmetry which could lead to a 1st order phase
transition [89]. Similar to the heavy quark case mentioned in the previous section, the 1st

order region should be surrounded by Z(2) critical lines [78]. On the other hand, a high-order
field-theoretical perturbative study [95] indicates a 2nd order phase transition but not in the
O(4) universality class, whereas a FRG study [96] suggests O(4) critical exponents [97]. To
summarize, the order of the phase transition for Nf = 2, 3 in the chiral limit is still unclear
and first principle methods such as lattice QCD are needed to explore its nature.
Direct lattice QCD simulations for vanishing quark masses are hindered due to the appear-
ance of zero eigenvalues which make the inversion of the fermion matrix impossible. Hence
a suitable strategy is to simulate at small quark masses and then extrapolating to the chi-
ral limit. Early studies on Nt = 4 such as [98, 99] using unimproved staggered and Wilson
fermions predict a 1st phase transition for Nf = 3. These findings are supported by [100]
where improved Wilson fermions and Nt = 6, 8 are used and the critical endpoint is deter-
mined. A more recent study by the hotQCD collaboration using the HISQ action on Nt = 6
lattices does not detect a 1st order region and estimates an upper bound for the pseudoscalar
critical mass mPS . 50 MeV [101].
Similar statements can be drawn for Nf = 2, where unimproved staggered such as [102] or
Wilson studies [103] see hints for a 1st phase transition and differ for mc

PS by a factor of 10.
It is obvious that for Nf = 2, 3 cut-off effects are large and distort the picture of the possible
phase transitions.
Another approach is to simulate a 2+1 flavor theory as done by hotQCD [104] with a physical
strange quark mass and then extrapolate to ml → 0 using the scaling relations for e.g. the
temperature [97]

Tc(ml,ms) = Tc(0,ms) +A(ms)m1/βδ
l Tc(0,mphys

s ) = 132+3
−6 MeV. (2.53)

As mentioned above, the possible critical scaling is unclear and the corresponding exponents
in the case of O(4), O(2) or Z2 are very close to each other. Hence the authors of [104] in-
vestigated the systematics by swapping continuum or chiral limits and using different critical
exponents and linear extrapolations for the infinite volume limit.
Let us assume that U(1)A remains broken and we face the scenario shown on the right panel
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2.5. Phase diagram in the mass plane

of Fig. 2.3. If the order of the phase transition changes from 2nd for Nf = 2 to 1st order for
Nf = 3 (surrounded by Z2 critical lines), then there must exist a tricritical strange quark
mass mtric

s at which the 1st order and the 2nd order curves intersect. If ms < mtric
s then we

face 1st order phase transition in the chiral limit. This scenario can be translated in the same
manner to 2 < N tric

f < 3. Furthermore there is a three state coexistence at Tc, with 〈ψ̄ψ〉 = 0
and ±〈ψ̄ψ〉 6= 0. The latter arises from the possible transformation ml → −ml due to the
symmetry of the Columbia plot which causes a sign flip of the condensate [86].
The situation is similar for the left panel of Fig. 2.3 for which U(1)A is restored. Due to
the absence of a chiral transition for Nf = 1 and a 1st order phase transition for Nf = 2, a
tricritical number of flavors has to exist 1 < N tric

f < 2 [86].
Looking for tricritical scaling windows is a promising strategy because the tricritical ex-
ponents are known and do not need to be determined. So far the accuracy is not suffi-
cient to distinguish the possible scenarios of Fig. 2.3 [97]. There is no need to restrict the
search for tricritical scaling on the quark masses. Instead on the lattice the parameter space
{β, am,Nf , Nt} (implying that the infinite volume limit is taken) can be explored. Due to
the rooting of the determinant, simulating a non-integer number of flavors to find N tric

f can
be easily done using staggered fermions [105] by keeping Nt fixed. The Frankfurt group
provides an extensive study exploring the critical surfaces in this large parameter space for
which they find N tric

f (Nt = 4) = 1.719(24) and N tric
f (Nt = 6) = 2.23(8) indicating an in-

crease with Nt [86]. This means that on coarse lattices with Nt = 4 a 1st order scenario is
favored in the two flavor theory Nf = 2, whereby finer lattices suggest a 2nd order transition
in the continuum. By projecting the critical surfaces on the (am,Nt) plane, they determine
N tric
t (Nf ) by investigating possible tricritical scaling. On Nt = 4, 6, 8 and Nf = 5, 6, 7 using

unimproved staggered fermions they find N tric
t (Nf ) < ∞ for Nf ∈ [2, 6] which implies that

fine lattices with Nt > N tric
t show crossover leading to 2nd order phase transitions in the chiral

and continuum limit. These findings have a crucial impact on the Columbia plot updating it
to Fig. 2.4.

Figure 2.4: Columbia plot as predicted by the Frankfurt group [86]. Figure is also taken
from this paper.
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So far we can conclude that recent lattice studies favor the scenario with a 2nd order phase
transition for Nf = 2 and finer lattices indicate a shrinking 1st order region in the case of
Nf = 3 [86,101,106]. These scenarios are compatible with a 2nd order phase transition along
the ms axis of Fig. 2.4 whose universality class might change.

We realize that first principle methods such as lattice QCD are indispensable to obtain
correct and model independent results. For this purpose full control over the systematics
such as a reliable continuum limit are mandatory. Nevertheless, effective theories or low
energy models remain an important tool, especially for regions which are not yet accessible
by lattice QCD.

2.6 Phase diagram in T -µB plane

In the last Section we discussed the current status of the QCD phase diagram in the mass
plane. Especially the order of the phase transition in the chiral limit remains an open question.
However, Nature presents us small but finite quark masses representing a single point in the
Columbia plot. Hence neither chiral nor center symmetry breaking or rather restoration are
completely realized due to their explicit breaking by finite quark masses. Nevertheless, chiral
symmetry is suitable to investigate the thermal properties of QCD due to its approximate
Nature as discussed in detail in Section 2.4.
The possible different phases of strongly interacting matter are usually presented as functions
of temperature and baryonic chemical potential µB as shown in Fig. 2.5. The latter indicates
a grand canonical ensemble, which allows a finite net-baryon number. QCD is symmetric
under µB → −µB, whereby negative values of the chemical potential correspond to a finite
net amount of anti-baryons.

Figure 2.5: Schematic QCD phase diagram as a function of baryon chemical potential µB
and temperature T . The collision energies of various experiments such as the BES-II scan
program at RHIC are pointed out. Figure from [42].

What do we know for certain about the phase diagram? For low temperatures and chemical
potential we are in the confined or hadronic phase. The system can be well described by the
hadron resonance gas model (HRG) which takes possible inelastic interactions as resonances
of the hadrons into account. Under extreme conditions of high temperature, chemical po-
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tential or magnetic field, the system is too energetic as it can be described by the hadronic
picture. The constituents are no longer locked in the confined phase, instead they start to
liberate, freely move and form a highly interacting state of matter - the QGP (recall Sec-
tion 2.2). This transition at µB = 0 can be investigated via lattice QCD. It turned out
that there is no sharp transition temperature, instead we face a transition region in which
the chiral observables rapidly change [12]. The discovery of a so-called crossover has had
crucial consequences for our understanding of the early universe, since the small asymmetry
of baryons and anti-baryons implies a negligible µB [13]. So far, direct lattice simulations at
finite density are hindered due to the sign problem. By performing simulations at vanishing
(recent results e.g. [107]) or purely imaginary µB, the sign problem can be circumvented
and results at finite and real chemical potential can be obtained by Taylor expansions. The
imaginary µB method allowed us to calculate the transition line Tc(µB) of the crossover with
unreached high precision. These computations up to µB ' 300 MeV showed no sign of crit-
ical behavior [33]. Notably, these results are close to the chemical freeze-out temperatures
Tch calculated via a comparison of HRG model predictions to experimental results [108] (red
points of Fig. 2.5), which agrees with the expectation that Tch < Tc [109,110].
The vacuum state at zero temperature and chemical potential is free of baryons. Increasing
µB corresponds to adding energy to the system until the baryon number jumps discontin-
uously to finite values. The transition from the vacuum to the macroscopic nuclear matter
density n0 ≈ 0.16 fm−3 is of 1st order at µB ' mN − 16 MeV ' 922 MeV and T = 0, the
nucleon mass mN minus the nucleon binding energy [111]. The so-called nuclear liquid gas
transition has been extensively studied theoretically using e.g. Hartree-Fock methods [112]
or more recently with the quantum van der Waals HRG model [113] or an effective lattice
field theory [114]. Increasing the temperature weakens the 1st order phase transition (exper-
imental evidence at e.g. [115]) until the latent heat vanishes at a critical endpoint Tc ' 20
MeV and µcB ' 900 MeV which is confirmed experimentally [116,117].
The detection of gravitational waves of neutron star mergers as first measured by LIGO [15]
opens a new possibility to study very dense astronomical objects which correspond to high
µB. The high densities present in the inner core of such objects could lead to a QGP phase
at low temperature and high chemical potential. Such a "cold" QGP phase is expected due
to the assumed chiral symmetry restoration at high µB caused by screened color interac-
tions [111]. Recent studies such as [118, 119] simulate neutron star mergers, suggest signals
in the spectrum of gravitational waves to identify the transition from hadrons to quark
matter and propose a 1st order phase transition. At high µB, exotic phases such as color-
superconductivity could appear, in which a color neutral 〈q̄q〉 quark condensate could form
which breaks color symmetry [120]. So far, no experimental evidence is found yet, which
could change in the future due to the observation of gravitational waves of e.g. neutron star
mergers. For a review of color superconductivity see [121].
Following both axes separately: 1) There is evidence for a smooth crossover transition at
µB = 0 in the high temperature region [12]. 2) On the other hand, there is a real phase
transition expected for low temperatures beyond the value of the chemical potential for the
nuclear liquid gas transition due to the expected restoration of chiral symmetry. Calculations
based on Nambu–Jona-Lasinio or linear sigma models such as [122] or random matrix mod-
els [111] predict a 1st order phase transition. It is important to note that these are strong
arguments but no strict proofs since first principle lattice QCD simulations at high density
are still hindered by the sign problem. It follows from these arguments that the 1st order
transition line starting at some high µB and T = 0 has to end in a critical endpoint, since
the transition turns into a crossover at vanishing chemical potential.
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To summarize: There are good reasons to assume the existence of a critical endpoint in the
T -µB plane separating the hadronic from the QGP phase, but clear proofs are still missing
- both theoretically and experimentally. Heavy ion collision experiments at RHIC or in the
future at FAIR and NICA, or the observation of neutron star mergers together with the
theoretical development of lattice QCD methods at finite density could disclose the secret of
the existence and location of the critical endpoint in the near future.
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3 Methods

A remarkable feature of QCD is the strong coupling in the low energy region which hinders the
application of perturbative approaches. By investigating confinement on a discretized space
time, Wilson laid the foundation of lattice QCD [31] which soon turned out to be suitable
to study non-abelian gauge theories numerically as shown by Creutz for SU(2) [123,124]. In
this chapter I want to briefly discuss some key concepts of (thermal) lattice QCD with the
focus on staggered fermions, the introduction of a chemical potential and its consequences as
well as the basics of (rational) hybrid monte carlo methods. For this purpose I chose some
selected topics of textbooks such as [25–28,38,125] and my Master thesis [126].

3.1 Finite temperature field theory

The concepts of statistical physics pave the way for calculations of many-body systems at
finite temperature. We start with a short introduction to (fermionic) thermal field theory,
sketch the derivation of a path integral representation of the partition function for fermionic
oscillators and extend it to Dirac fields. The following discussion is based on [125,126].

Starting from the definition of the partition function of a canonical ensemble with Hamilto-
nian Ĥ

Z = tr
(
e−βĤ

)
:= tr

(
e−τĤ

)
= lim

N→∞
tr
(

N∏
k=1

e
−τĤ
N

)
:= lim

N→∞
tr
(

N∏
k=1

e−∆τĤ
)
, (3.1)

the path integral can be derived by slicing the exponent in N pieces. The limit is necessary
to use the Trotter decomposition and evaluating the separated kinetic and potential part of
Ĥ on corresponding (conjugate) position and momentum eigenstates.
To derive an expression of the partition function for fermions, we begin with a fermionic
oscillator whose Hamiltonian reads Ĥ = ω(â†â − 1/2). Then the partition function can be
obtained according to

Z = tr
(
e−βĤ

)
= 〈0| e−τĤ |0〉+ 〈1| e−τĤ |1〉 , (3.2)

which can be written in the path integral representation by using anti-commuting Grassmann
numbers ψ† and ψ. The creation and annihilation operators obey the anti-commutation
relations

{â, â} = 0 = {â†, â†}, {â, â†} = 1, (3.3)

with the following eigenstates

|ψ〉 = e−ψâ
† |0〉 =⇒ â |ψ〉 = ψ |ψ〉 , (3.4)

〈ψ| = 〈0| e−âψ† =⇒ 〈ψ| â† = 〈ψ|ψ†, (3.5)
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and a vacuum state defined as â |0〉 = 0. Exploiting some features of Grassmann numbers
such as [125] ∫

dψ†dψe−ψ†ψ |ψ〉 〈ψ| = 1, (3.6)∫
dψ†dψe−ψ†ψ 〈−ψ| e−τĤ |ψ〉 = 〈0| e−τĤ |0〉+ 〈1| e−τĤ |1〉 = tr e−τĤ , (3.7)

the path integral representation of the partition function for the fermionic oscillator reads

Z = lim
N→∞

∫
dψ†NdψN ...

∫
dψ†1dψ1 e

−S (3.8a)

:=
∫
Dψ†(τ)Dψ(τ) exp

(
−
∫ β

0
dτ
(
ψ†(τ)dψ(τ)

dτ +H
(
ψ†(τ), ψ(τ)

)))
, (3.8b)

with the action

S = ∆τ
N∑
i=1

(
ψ†i+1

ψi+1 − ψi
∆τ +H

(
ψ†i+1, ψi

))
. (3.9)

It is important to note that the Grassmann variables fulfill antiperiodic boundary conditions
ψ(β) = −ψ(0) and ψ†(β) = −ψ†(0).
Now we generalize these results by identifying the Grassmann numbers as Dirac field operators
ψ(τ)→ ψ(τ, ~x) and ψ†(τ)→ ψ†(τ, ~x) which obey the anti-commuting relations in analogy to
â and â† of Eq. (3.3)

{ψ(τ, ~x), ψ(τ, ~y)} = 0 = {ψ†(τ, ~x), ψ†(τ, ~y)}, (3.10)
{ψ(τ, ~x), iψ†(τ, ~y)} = iδ(~x− ~y), (3.11)

where Dirac indices are suppressed. First we note that the Hamiltonian density can be
calculated by a Legendre transformation of the (free) Lagrangian

H = π∂0ψ − L (3.12a)

= ∂L
∂(∂0ψ)∂0ψ − ψ̄(iγµ∂µ −m)ψ (3.12b)

= ψ̄(−iγk∂k +m)ψ, (3.12c)

and rewritten to the Hamiltonian in the field operator language

Ĥ =
∫

dx3ψ̄(τ, ~x)(−iγk∂k +m)ψ(τ, ~x). (3.13)

Ignoring the temporal and spatial integrals, the exponent of Eq. (3.8b) at the operator level
with ψ := ψ(τ, ~x) and ψ† := ψ†(τ, ~x) reads

ψ†∂τψ + ψ̄(−iγk∂k +m)ψ = ψ̄(γ0∂τ − iγk∂k +m)ψ (3.14a)
:= LE (3.14b)
= −L(τ → iτ), (3.14c)

leading to the partition function of the free Dirac theory at finite temperature

Z =
∫
Dψ̄(τ, ~x)Dψ(τ, ~x) exp

(
−
∫ β

0
dτ
∫

dx3LE

)
. (3.15)
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It is convenient to rewrite LE using the Euclidean version of the Dirac matrices

γE0 = γ0, γEk = −iγk, with k = 1, 2, 3, (3.16)

obeying

{γEµ , γEν } = 2δµ,ν , γ†,Eµ = γEµ , (3.17)

leading to
LE = ψ̄(γµ∂µ +m)ψ, (3.18)

with γµ := γEµ . As before, the fields obey the antiperiodic boundary conditions ψ(β, ~x) =
−ψ(0, ~x) and ψ̄(β, ~x) = −ψ̄(0, ~x).
As stated in Eq. (3.14c), by extending the temporal dimension to the imaginary axis τ → iτ
the Euclidean Lagrangian LE can be obtained by its Minkowski version L - a procedure which
is called Wick rotation.

3.2 Lattice QCD

In the last Section we derived the path integral representation of the free Dirac theory at
finite temperature. But QCD is a non-abelian gauge theory based on SU(3)c which makes
the replacement of ∂µ with its covariant version Dµ necessary. Hence interactions between
fermionic and gauge fields (recall Eq. (2.1b)) are inevitable. The full path integral of QCD
with quarks and gluons cannot be solved analytically (yet). Discretizing space time on a
3d+1 hypercubic lattice Λ, we are left with a finite number of integrals giving access to the
powerful tool of Monte Carlo methods to solve them numerically. This Section is mainly
based on [38,127,128].

3.2.1 Gauge action

It is convenient to place the fermionic fields on the sites of the 4d lattice which are connected
by the so-called gauge links Uµ(n), where n is a point of the space time lattice. They are
needed to enforce gauge invariance to relate quark fields at neighboring lattice sites n and
n± µ̂. This is important for the discretization of the (covariant) derivative in the fermionic
action. The following expressions which appear in the symmetric difference quotient with
g(n) ∈ SU(3)

ψ̄(n)ψ(n+ µ̂)→ ψ̄(n)g†(n)g(n+ µ̂)ψ(n+ µ̂), (3.19)
ψ̄(n)ψ(n− µ̂)→ ψ̄(n)g†(n)g(n− µ̂)ψ(n− µ̂), (3.20)

are obviously not gauge invariant. By introducing Uµ(n), we end up with gauge invariant
expressions

ψ̄(n)Uµ(n)ψ(n+ µ̂)→ ψ̄(n)g†(n)Ũµ(n)g(n+ µ̂)ψ(n+ µ̂), (3.21)
ψ̄(n)U †µ(n− µ̂)ψ(n− µ̂)→ ψ̄(n)g†(n)Ũ †µ(n− µ̂)g(n− µ̂)ψ(n), (3.22)

if the gauge link transforms according to

Uµ(n)→ Ũµ(n) = g(n)Uµ(n)g†(n+ µ̂). (3.23)
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In continuum QCD the generalization of such an object is known as parallel or gauge trans-
porter or Wilson line [25], whose lattice version between neighboring points takes on the
form

Uµ(n) = eiagAµ(n). (3.24)
a corresponds to the lattice spacing and Aµ are the gauge fields appearing in Eq. (2.2). These
gauge links enable us to construct the smallest non-trivial closed loop, the so-called plaquette

Pµν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂)
= Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν (n), (3.25)

with which a possible discretization of the continuum gauge action

SG =
∫

d4xLG =
∫

d4x
1
4tr FµνFµν , (3.26)

can be written as
SG[U ] = β

∑
n∈Λ

∑
µ<ν

(1− Re tr Pµν/3) . (3.27)

The discretization effects are of O(a2). By Taylor expanding the plaquettes, gauge links and
fields and the usage of the Baker-Campbell-Hausdorff formula, it is possible to show that the
continuum version of Eq. (3.27) is Eq. (3.26) in the limit a→ 0 and β = 6/g2 [127]. Obviously
the discretization of the gauge action is not unique which allows us to add and change terms
of the discretized gauge action as long as the correct continuum version is matched for a→ 0.
Lattice artifacts are caused by terms that only vanish in the continuum limit and hence
are present at finite spacing. A suitable strategy to reduce these artifacts is the so-called
Symanzik improvement [129, 130]. In this approach, further terms are added to the action
including "extended" plaquettes of length 6a Rµν

SSym. = β
∑
n∈Λ

∑
µ<ν

(c0 Re tr (1− Pµν) + c1 Re tr (1−Rµν)) . (3.28)

The coefficients can be calculated at leading order in lattice perturbation theory. At tree-level,
one obtains the coefficients c0 = 5

3 and c1 = − 1
12 [127].

3.2.2 Staggered fermions

So far we discussed the implementation of an improved gauge action on the lattice. Adding
quarks is not such a straightforward task. For our thermal studies in the physical point
a proper realization of chiral symmetry is important. According to the Nielsen–Ninomiya
theorem [131–133], there is always a price to pay when fermions are discretized on a lattice.
The most important statement of this theorem for our thermal studies is the impossibility to
implement a doubler-free discretized version of fermions obeying chiral symmetry. Staggered
fermions provide a computationally "cheap" possibility to significantly reduce the number
of doublers by keeping a remnant of chiral symmetry. The following discussion is based
on [38,126,128,134].

Naive discretization of the fermionic action and doublers

Let us first start with the continuum Euclidean fermionic action

SF =
∫

dx4ψ̄(γµDµ +m)ψ, (3.29)
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which can be straightforwardly discretized as

SF [ψ̄, ψ, U ] = a4 ∑
n∈Λ

ψ̄(n)

 4∑
µ=1

γµ
Uµ(n)ψ(n+ µ̂)− U †µ(n− µ̂)ψ(n− µ̂)

2a +mψ(n)

 , (3.30)

with the the symmetric difference quotient leading to O(a2) (cmp. to Eqs. (3.21) and (3.22)).
The 4d integration on the lattice is introduced as a4∑

n∈Λ with at = a. The quark propagator
can now be calculated by a discrete Fourier transformation and reads in the free case (Uµ = 1)
[38]

S(p) =
m1− i

∑
µ γµ

sin(pµa)
a

m2 +
∑

µ
sin2(pµa)
a2

. (3.31)

The sin2(pµa) leads to 15 additional and unphysical poles, although only one single fermion
should be described. These so-called doublers are present at any finite spacing and hence
cause an incorrect continuum limit. In the chiral limit these poles are all located in the first
Brillouin zone (momentum pµ ∈ [−π/a, π/a]) and are a natural consequence of the lattice
formulation and discrete Fourier transformation. There are several methods to handle the
inevitable appearance of doublers on the lattice, e.g. Wilson or staggered fermions - all with
their own advantages and disadvantages. We focus here on the latter which are suitable to
study finite temperature QCD in the physical point due to their low computational costs and
remnant of chiral symmetry.

Staggered transformations

The main idea of staggered or Kogut-Susskind fermions [135] is to transform ψ and ψ̄ in
such a way that the action Eq. (3.30) is identical for all four Dirac components [38]. Keeping
only one of them leads to an action without Dirac structure and thus to a reduction from 16
degrees of freedom to 4. This is achieved by the transformation

ψ(n) = γn1
1 γn2

2 γn3
3 γn4

4 ψ(n)′, (3.32a)
ψ̄(n) = ψ̄(n)′γn4

4 γn3
3 γn2

2 γn1
1 , (3.32b)

where the γ-matrices are in their Euclidean representation (recall Eqs. (3.16) and (3.17))
and n1, ..., n4 are the components of n. This obviously mixes the space-time and Dirac
indices and leaves the mass term invariant. The kinetic part contains terms of the form
ψ̄(n)γµUµψ(n± µ̂), whereby the γµ can be interchanged with the remaining γ-matrices which
are present after staggered transformations Eqs. (3.32a) and (3.32b). The resulting sign
depends on the direction µ̂ and is taken into account by ηµ, which replaces the γµ of Eq. (3.30).
The resulting action reads

SF [ψ̄′, ψ′, U ] = a4 ∑
n∈Λ

ψ̄(n)′
 4∑
µ=1

ηµ(n)
Uµ(n)ψ(n+ µ̂)′ − U †µ(n− µ̂)ψ(n− µ̂)′

2a +mψ(n)′


(3.33)
and ηµ takes on the values

η1(n) = 1 (3.34a)
η2(n) = (−1)n1 (3.34b)
η3(n) = (−1)n1+n2 (3.34c)
η4(n) = (−1)n1+n2+n3 . (3.34d)
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Due to the fact that Eq. (3.33) does not include γµ, it has the same form for all Dirac
components. Keeping one of them makes it possible to avoid the Dirac structure and to
express the action in terms of the remaining Grassmann fields χ̄ and χ whose color indices
remain suppressed:

SF [χ̄, χ, U ] = a4 ∑
n∈Λ

χ̄(n)

 4∑
µ=1

ηµ(n)
Uµ(n)χ(n+ µ̂)− U †µ(n− µ̂)χ(n− µ̂)

2a +mχ(n)


(3.35a)

= a4 ∑
n,k∈Λ

χ̄(n)

 4∑
µ=1

ηµ(n)
Uµ(n)δk,n+µ̂ − U †µ(n− µ̂)δk,n−µ̂ +mδk,n

2a

χ(k)

(3.35b)
:= a4 ∑

n,k∈Λ
χ̄(n)MF (n|k)χ(k). (3.35c)

Which symmetries are encoded in the staggered action Eq. (3.35a) and how many quarks are
actually taken into account? Let us restrict the following discussion to the free case Uµ = 1
for simplicity. Mixing Dirac and space-time indices indicates that the Dirac structure can
be restored in Eq. (3.35a), such that the staggered action is a Nf = 4 flavor theory. This
can be achieved by a reduction of the Brillouin zone by dividing the primary lattice into 4d
hypercubes of unit-length. Then the sum over all lattice points is replaced by a sum over the
hypercubes and their corners [136]. However, under the assumption that the lattice has an
even number of points in all directions, the new quark fields are given as [38]

q(z)αt = 1
8
∑
s

(γs1
1 γ

s2
2 γ

s3
3 γ

s4
4 )αt χ(2z + s), (3.36)

with
nµ = 2zµ + sµ, zµ = 0, 1, ..., Nµ/2− 1, sµ = 0, 1. (3.37)

Here zµ denotes the corresponding hypercubes with corners sµ whose origins have a distance
of 2a. The index α in Eq. (3.36) is the Dirac and t is the so-called taste index t = 1, 2, 3, 4.
Now the action can be rewritten with the quark fields as [38] (Uµ(n) = 1)

SF [q, q̄] = (2a)4∑
z

(
mtr(q̄(z)q(z)) +

∑
µ

tr(q̄(z)γµ∇µq(z))− a
∑
µ

tr(q̄(z)γ5∆µq(z)γµγ5)
)
.

(3.38)
Since the sites of the lattice are now separated by 2a, the derivatives in the above equation
read

∇µq(z) = q(z + µ̂)− q(z − µ̂)
4a , ∆µq(z) = q(z + µ̂)− 2q(z) + q(z − µ̂)

4a2 . (3.39)

The last term in Eq. (3.38) mixes the tastes of q̄ and q whereby the first two terms are diag-
onal in taste space. The so-called taste breaking term vanishes only in the continuum limit
and hence represents another (unwanted) lattice artifact. In the case of a "mild" or almost
absent taste breaking, a staggered fermion flavor describes 4 nearly degenerate continuum
fermions. This leads to the rooting practice in which one takes the fourth root of the fermion
determinant to eliminate the contribution of the doublers (see below Eq. (3.40b)). To illus-
trate this we integrate out the fermionic part of the partition function with the staggered
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action SF of Eq. (3.35c) and restrict the discussion to a (continuum) one flavor theory

Z =
∫
DUDχ̄Dχe−SF [χ̄,χ,U ]−SG (3.40a)

=
∫
DUdetMF (U)e−SG →

∫
DU (detMF (U))1/4 e−SG , (3.40b)

with

Dχ =
∏
n∈Λ

dχ(n), DU =
∏
n∈Λ

4∏
µ=1

dUµ(n). (3.41)

The rooting procedure is a controversial topic (see e.g. [137]), since taking the fourth root is
only reasonable in the continuum, in which the tastes are degenerate. It remains unclear if the
universality class of the underlying theory might change and if locality is actually guaranteed
in the continuum. This is questionable due to the interaction of the tastes. It is important
to note that crosschecks between the Wilson and staggered quarks at finite temperature were
performed. The studies [138,139] demonstrate a great agreement of important quantities such
as the chiral observables, Polyakov loop and strange quark susceptibility in the continuum
limit. Unphysical pion masses of mπ = 545, 440, 285 MeV were used to reduce the enormous
computational costs of Wilson compared to staggered fermions. The expected dependence of
the mentioned observables as functions of mπ was monitored for both fermion formulations.

Chiral symmetry for staggered quarks

The following paragraph is based on [128,134], in which the authors discuss chiral and taste
symmetry breaking for staggered quarks in detail.
An important feature of staggered fermions is that they preserve a remnant of chiral symme-
try. In the chiral limit Eq. (3.35a) is invariant under U(1)e× U(1)o rotations, implying that
χ-fields transform independently on even or odd lattice sites [134]. This symmetry exhibits a
spontaneous and explicit breaking induced by the mass term, analogous to chiral symmetry
in the continuum (recall Section 2.4). It can be split into a vector and axial part U(1)V×
U(1)A, where the transformation for the latter reads

χ(n)→ eiαη5(n)χ(n), (3.42)
χ̄(n)→ χ̄(n)eiαη5(n), (3.43)

with η5(n) = (−1)
∑

i
ni . Analogous to γ5, it can be used to project χ on the even and

odd lattice site states χe,o [38]. In the case of Eq. (3.38) with the quark fields q, U(1)e×
U(1)o is enlarged to U(4)L× U(4)R corresponding to the taste structure, which is (again)
explicitly broken by the mass term to SU(4)V - a symmetry breaking pattern which we
discussed in detail in Section 2.4 for chiral symmetry. Taking the taste breaking term into
account, the symmetry breaks to U(1)e× U(1)o, further motivating to suppress it as much as
possible. Taste breaking has crucial consequences such as an unphysical pion mass spectrum
which distorts e.g. the equation of state. Therefore a proper continuum extrapolation is
mandatory, for which a suitable (improved) action is needed. Stout smearing turned out to
be a suitable method to efficiently suppress the taste splitting as demonstrated in [140,141].

3.2.3 4stout smearing

A direct consequence of formulating QCD on a lattice is the introduction of an ultraviolet cut-
off determined by the spacing a. Therefore, observables which are sensitive to short distance
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physics near the cut-off are naturally disturbed by the resulting short range fluctuations of
the gauge fields. For our thermal studies, we apply four iterative steps of stout smearing [142]
- called 4stout - to reduce these lattice artifacts and to lower the taste splitting as mentioned
above. The key idea of stout-smearing is the replacement of Uµ(n) with U ′µ(n) - an appropriate
gauge-invariant average of its neighboring links

U ′µ(n) = eiQµ(n)Uµ(n), (3.44)

with

Qµ(n) = i

2

(
Ω†µ(n)− Ωµ(n)− 1

3 tr
(
Ω†µ(n)− Ωµ(n)

))
, (3.45)

Ωµ(n) =

∑
µ6=ν

ρµνCµν(n)

U †µ(n), (3.46)

Cµν(n) = Uν(n)Uµ(n+ ν̂)U †(n+ µ̂) + U †ν (n− ν̂)Uµ(n− ν̂)Uν(n− ν̂ + µ̂). (3.47)

For our thermal studies [33, 143, 144] we used ρ = ρµν = 0.125 as smearing parameter. A

Figure 3.1: Illustration of the first stout-smearing step, whereby the exponential of U ′µ(n)
is expanded in leading order and closed loops imply a trace. Figure from [142].

key feature of stout-smearing compared to other methods such as APE [145] or HYP [146]
is the differentiability even after iterative applications. Hence the derivative of the action
with respect to the gauge fields in the (R)HMC algorithm can be calculated analytically. A
more computationally expensive alternative is (4)HEX smearing [147], which suppresses taste
splitting even stronger, potentially enabling the usage of Nt = 8 for a controlled continuum
limit. Such coarse lattices are usually discarded in continuum extrapolations for 4stout actions
nowadays (see [148] for a recent study). In Fig. 3.2 the effect of different actions on the lattice
pion sector is shown. 4HEX provides the strongest suppression of the taste splitting at all
spacings a.

3.2.4 Scale setting

Simulating QCD on a lattice provides results in terms of lattice units. To relate these to
their continuum and hence physical values, setting a scale is mandatory. Common strategies
rely on precise calculations of fπ, mΩ or w0. In contrast to the first two, w0 originates from
a pure gluonic observable and does not involve computationally demanding calculations of
fermion propagators. It is based on the Wilson flow, defined by

W (t = w2
0) := t

d
dt
[
t2〈E(t)〉

]
t=w2

0
= 0.3. (3.48)
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Figure 3.2: Taste breaking of the lattice pion multiplet. Quadratic mass difference between
taste structure ΓII = γ0γ5 and corresponding ΓVII = γ0 or ΓVIII = 1 for various actions as
function of the quadratic spacing a2: 4stout action with Symanzik improved gauge sector
(red), HotQCD’s HISQ [149] action (black) and 4HEX action with DBW2 [150] gauge sector
(blue). Plot from [148].

Here 〈E(t)〉 is the expectation value of the gauge action of lattice configurations evolved via
the Wilson flow [151,152]. Calculating the Wilson flow implies integrating infinitesimal (e.g.
stout) smearing steps of the gauge fields up to the fictitious flowtime t. Hence W (t) is a pure
gauge observable, not depending on fermion contributions. The measurement of w0/a (fπa
or mΩa) in simulations enables the calculation of the spacing a via

a = w0
(w0/a)lattice

, (3.49)

whereby w0 has to be known in physical units. In [152] w0 was determined with high precision
providing an agreement in the continuum limit using staggered or Wilson fermions in the
physical point. Ref. [153] even takes QED effects into account, relevant for the determination
of the magnetic moment of the muon. An important application of the Wilson flow is the
renormalization of the measured topological charge at a chosen flow time. It preserves gauge
invariance, suppresses ultraviolet fluctuations due to the smearing process of the gauge fields
and enabled us to precisely study the topological features of quenched QCD. More details
can be found in Sections 4.1.3 and 4.2.1.

3.3 Chemical potential

In strong interactions the baryon number as well as the corresponding quark flavor numbers
are conserved quantities due to the global U(1)V symmetry. Without the introduction of a
chemical potential the expectation value of the corresponding net-number densities is zero.
In heavy-ion collisions such a canonical system is realized but from the experimental point of
view it is not possible to observe the whole phase space. In the current experimental setups
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at RHIC or LHC gold or lead ions are used fulfilling the following conditions

〈nS〉 = 0, (3.50)
〈nQ〉
〈nB〉

= 0.4. (3.51)

The first constraint is called strangeness neutrality and comes from the absence of valence
strange quarks in the nuclei. The second corresponds to the relation between the net-charge
density 〈nQ〉 and the net-baryon number density 〈nB〉, which is determined by the ratio of
the number of protons and nucleons Z/A:

Lead : 〈nQ〉
〈nB〉

= 82
207 ≈ 0.4, (3.52)

Gold : 〈nQ〉
〈nB〉

= 79
197 ≈ 0.4. (3.53)

To match these experimental conditions, a grand canonical system with non-vanishing net-
chemical potentials is mandatory. As shown in Eq. (2.28) for the baryon number, we can
define the particle number operator according to

N̂ =
∫

dx3ψ̄(x)γ0ψ(x) =
∫

dx3ψ†(x)ψ(x). (3.54)

The extension from canonical to grand canonical systems naturally occurs by adding a term
of the form µN̂ to the Hamiltonian Ĥ

Z = tr
(
e−(Ĥ−µN̂)/T

)
. (3.55)

Then the number density can be calculated as

〈ni〉 = T

V

∂ ln(Z)
∂µi

i = B,Q, S (3.56)

for the baryon number B, electric charge Q and strangeness S. For our thermal studies
at the physical point the three light quarks u, d, s play the dominant role to monitor chiral
symmetry breaking or restoration.

Chemical potential on the lattice

As indicated by Eq. (3.55), we can straightforwardly extend the Euclidean action Eq. (3.29)
to a grandcanonical system by defining

SF =
∫

dx4ψ̄ (γµDµ + µγ0 +m)ψ (3.57a)

=
∫

dx4ψ̄ (γk(∂k + iAk) + γ0(∂0 + iA0 + µ) +m)ψ (3.57b)

:=
∫

dx4ψ̄MF (µ)ψ. (3.57c)

Applying the same strategy of adding a term of the form ψ̄µγ0ψ to the discretized action
in Eq. (3.30) leads to a divergent energy density in the continuum extrapolation a → 0
[154]. However, the authors proposed an elegant solution by understanding the µ term as
an imaginary part of the temporal component of A0, leading to the definition of weighted
temporal links (compare with Eq. (3.24))

U0(µ) = eaµU0, U †0(µ) = e−aµU †0 . (3.58)
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3.3.1 Higher order cumulants

In Chapter 5 we reconstruct the equation of state at finite density at strangeness neutrality
and beyond. For this purpose the calculation of dimensionless higher order (baryon) cumu-
lants such as χB1 ,χB2 ,χBS11 and χS2 is necessary. Let us start with the dimensionless pressure
p̂

p̂ = p

T 4 = 1
V T 3 logZ, (3.59)

from which we can define dimensionless cumuluants according to

χBSQijk = ∂i+j+kp̂

∂iµ̂B∂jµ̂S∂kµ̂B
. (3.60)

Table 3.1: Table of the three lightest quarks and their corresponding flavor properties.

quark type B Q S

u 1/3 2/3 0
d 1/3 −1/3 0
s 1/3 −1/3 -1

The following transformations give access to study fluctuations of B, Q or S by taking their
quantum numbers listed in Table 3.1 into account:

µu = 1
3µB + 2

3µQ, (3.61)

µd = 1
3µB −

1
3µQ, (3.62)

µs = 1
3µB −

1
3µQ − µS . (3.63)

Hence, we can express higher order baryon fluctuations in terms of the quark cumulants

χB1 = 1
3
[
χu1 + χd1 + χs1

]
, (3.64)

χB2 = 1
9
[
2χud11 + 2χus11 + 2χds11 + χs2 + χd2 + χu2

]
, (3.65)

χBS11 = −1
3
[
χs2 + χu1 + χd1

]
, (3.66)

χS2 = χs2. (3.67)

Calculating these expectation values on the lattice in the staggered formalism involves taking
derivatives of Z (recall Eq. (3.40b)) with respect to the chemical potentials µi including terms
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of the form

∂µi [detM(µi)]1/4 = 1
4

1
[detM(µi)]3/4

∂µi detM(µi) (3.68a)

= 1
4 [detM(µi)]1/4

1
detM(µi)

∂µi detM(µi) (3.68b)

= 1
4 [detM(µi)]1/4 ∂µi log detM(µi) (3.68c)

= 1
4 [detM(µi)]1/4 ∂µitr logM(µi) (3.68d)

= 1
4 [detM(µi)]1/4 tr ∂µi logM(µi) (3.68e)

= 1
4 [detM(µi)]1/4 tr

[
M−1(µi)∂µiM(µi)

]
. (3.68f)

Let us denote ∂µiM(µi) = M ′ and ∂µi = ∂
∂µi

. For the second derivative we additionally need
to calculate the terms

∂µi

[
M−1M ′

]
=
(
M−1

)′
M ′ +M−1M ′′. (3.69)

The derivative of the inverse matrix can be obtained by

∂µiMM−1 = M ′M−1 +M
(
M−1

)′
= 0 (3.70)

=⇒
(
M−1

)′
= −M−1M ′M−1. (3.71)

We can calculate the derivatives of the staggered fermion matrix with Eq. (3.35b):

M ′ψ(x) = 1
2η4(x)

[
U4(x)ψ(x+ 4̂) + U †4(x− 4̂)ψ(x− 4̂)

]
, (3.72)

M ′′ψ(x) = 1
2η4(x)

[
U4(x)ψ(x+ 4̂)− U †4(x− 4̂)ψ(x− 4̂)

]
. (3.73)

It is straightforward to generalize the calculations up to higher order derivatives with respect
to µi. Further information can be found in [155].

3.3.2 Isospin symmetry and strangeness neutrality

In the case of isopsin symmetry (mu = md and µu = µd), Eqs. (3.61) to (3.63) are reduced
to

µu = µd = µl = 1
3µB, (3.74)

µs = 1
3µB − µS , (3.75)

implying
〈nQ〉
〈nB〉

= 0.5. (3.76)

The grand canonical formulation with (imaginary) µB can lead to a non-vanishing net-
strangeness. The task is to tune µS (or µs) in such a way, that eq. Eq. (3.50) is fulfilled for
each µB. These chemical potentials can be related by the following differential equation

d
dµB

∂ logZ
∂µS

= d
dµB

〈nS〉 = 0. (3.77)
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3.3. Chemical potential

By using
d

dµB
= ∂

∂µB
+ dµS

dµB
∂

∂µS
, (3.78)

Eq. (3.77) can be written as

0 = d
dµB

〈nS〉 = χ11
BS + dµS

dµB
χ2
S ⇐⇒

dµS
dµB

= −χ
11
BS

χ2
S

, (3.79)

and solved by e.g. Runge-Kutta methods. First calculations of the BMW group for the
transition line Tc(µB) including strangeness neutrality were performed in 2015 [156].
However, a perfect strangeness neutrality along all observables can never be guaranteed.
Hence, we extrapolate the fluctuations, which are essential for the equation of state, to their
strangeness neutral point at leading order. In practice, each Jackknife bin is extrapolated to
〈nS〉 = 0 = χS1 . Let us call µ̃S = µS + ∆µS the value for which 〈nS〉 = 0 and illustrate this
approach for the baryon number density χB1 . Expanding 〈nS〉 at leading order yields

〈nS〉 = ∂ logZ
∂µS

+ ∂2 logZ
∂µ2

S

∆µS = 0, (3.80)

=⇒ ∆µS = −χ
S
1
χS2
. (3.81)

Then χB1 reads in the strangeness neutral point

χB1 (µ̃S) = χB1 (µS) + χBS11 (µS)∆µS . (3.82)

We generalized this procedure to obtain results for the equation of state at vanishing and
varying strangeness and for the case of isospin breaking, which is discussed in Section 5.2.

3.3.3 Complex action problem

Let us recall that the fermion determinant can be calculated from (compare to Eq. (3.40a))

detMF (µ) =
∫
Dψ̄Dψe−SF [U,ψ̄,ψ,µ]. (3.83)

In the case of a vanishing chemical potential, MF obeys the so-called γ5 hermiticity

(γ5MF )† = (Dµγµ +m)† γ5

= (−Dµγ0γµγ0 +m) γ5

= γ5 (Dµγµ +m) = γ5MF (3.84)
=⇒M †F = γ5MFγ5 (3.85)

leading to a real determinant

det M †F = det MF = det (γ5MFγ5) = det MF . (3.86)

This statement is not true for finite real µ

(γ5MF (µ))† = (Dνγν + µγ0 +m)† γ5

= (−Dνγ0γνγ0 + µγ0 +m) γ5

= γ5 (Dνγν − µγ0 +m) = γ5MF (−µ) (3.87)
=⇒M †F (µ) = γ5MF (−µ)γ5 (3.88)
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providing a complex determinant

det M †F (µ) = det MF (µ) = det (γ5MF (−µ)γ5) = det MF (−µ). (3.89)

If µ is purely imaginary (denoted as µI), then we obtain again a real determinant

detM †F (µI) = detMF (µI). (3.90)

As a part of the partition function and hence of the probability distribution, the fermion
determinant has to be real and positive. Nevertheless, there are several existing methods to
obtain results at finite density. In the case of our thermal studies, we used the imaginary
chemical potential method for which the complex determinant problem can be circumvented.
In contrast to Taylor expanding observables from vanishing chemical potential (e.g. [157,158]),
this approach provides a lever arm enabling us to obtain the crossover transition line Tc(µB)

Tc(µB)
Tc(µB = 0) = 1− κ2

(
µB

Tc(µB)

)2
− κ4

(
µB

Tc(µB)

)4
, (3.91)

with high precision and lower computational costs [33]. Other methods to get results at
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Figure 3.3: Taylor coefficients κ2 and κ4 of Eq. (3.91) calculated by different groups relying
on extrapolation from µ = 0 (blue points) and imaginary µI (green) obeying strangeness
neutrality. Plot from our [33].

finite real µ are the density of states method (e.g. [159]), Lefschetz thimbles [160] or complex
Langevin [161,162]. I refer the reader to [163,164] for a recent overview.

3.4 Monte Carlo methods

In the last Sections we discussed possible discretization schemes of gauge fields and fermions
on a space time lattice. Now we want to use this machinery to actually calculate expectation
values of observables O of interest

〈O〉 = 1
Z

∫
DU O detM(U)e−SG(U), (3.92)

Z =
∫
DUdetM(U)e−SG(U). (3.93)
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3.4. Monte Carlo methods

Depending on the target theory, several fermionic determinants with appropriate chosen
roots can be added to these equations which will not change the following discussion (recall
Eq. (3.40b)). The equations look "inconspicuous", but we should appreciate the huge number
of parameters encoded in them. Let us perform a rough estimation for a standard finite
temperature lattice with Nx = 48 and Nt = 12: Each gauge link is a SU(3) matrix, implying
4 ·8 = 32 degrees of freedom leading to 4 ·N3

x ·Nt ·32 ≈ 170 million parameters. The staggered
fermion determinant has approximately (Nc · N3

x · Nt)2 ≈ 15 trillion entries. It is obvious
that standard numerical integration is just infeasible due to the huge number of parameters.
With Monte Carlo methods we are able to handle such integrals by generating samples
distributed according to the underlying probability density (importance sampling). For our
thermal studies, the heat bath + tempering algorithm in the case of quenched simulations
and the RHMC algorithm with staggered fermions were used. The basis for these algorithms
is the Metropolis-Hastings algorithm with importance sampling. Using this approach, we can
approximate the expectation value of O in Eq. (3.92) with

〈O〉 = 1
N

N∑
n=1

O(U (n)), (3.94)

where the gauge fields are distributed according to [38]

dP (U) = DUdetM(U)e−SG(U)∫
DUdetM(U)e−SG(U) . (3.95)

The statistical error of 〈O〉 is ∼ 1/
√
N . The key idea is to obtain a "chain" of field configura-

tions, whereby each new proposed set of Uµ - called U ′ - is generated only from the previous
one, ideally following P of Eq. (3.95). Let us call T (U ′|U) the transition probability to obtain
U ′ from U . The key features of the necessary algorithms are [165]

1. Positive probability: T (U ′|U) ≥ 0 ∀ U,U ′

2. Normalized probability: ∑U ′ T (U ′|U) = 1 ∀ U

3. Detailed balance
T (U ′|U)P (U) = T (U |U ′)P (U ′) (3.96)

The probability to obtain U ′ from U weighted by the probability to be in configuration
U , is equal to the probability to obtain U from U ′ weighted by the probability to be in
configuration U ′. This guarantees reversibility of the Markov process - a key feature of
systems in (thermal) equilibrium.

4. Ergodicity: After a finite number n of steps

Tn(U |U ′) > 0. (3.97)

It implies that the entire configuration space can be explored within a finite number
of steps. I remind the reader of a similar case in classical mechanics and the Poincaré
recurrence theorem, which roughly says that a mechanical system returns arbitrarily
close to its initial state in a finite (but very long) time. Both concepts highlight long
term behavior of the underlying systems which explore the phase/configuration space
by returning to the initial state for a deterministic system (recurrence theorem) or by
sampling all possible configurations (ergodicity).

A rather simple algorithm which fulfills these conditions is the Metropolis algorithm.
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Metropolis algorithm

Let us start with a naive single variable update procedure:

1. Propose a new candidate U ′ which is a modification of U . For example

U ′µ(n) = XUµ(n) X ∈ SU(3), (3.98)

with X ∈ SU(3) close to 1 and a chosen site n and direction µ. How X is selected has
a strong impact on the acceptance rate and hence on the suitability of the algorithm.
The main goal is to balance or rather fine tune the acceptance rate such that the system
evolves in configuration space without being stuck.

2. According to the detailed balance condition, we construct a so-called accept/reject step
for U ′

r ≤ exp
(
−S(U ′) + S(U)

)
= exp

(
−SG(U ′) + SG(U)

)detM(U ′)
detM(U) , (3.99)

where r is a random number uniformly distributed in [0, 1]. The action S is the full ac-
tion with the fermion and gauge action. This is equivalent to an acceptance probability
of the form

P = min
(

1, exp
(
−SG(U ′) + SG(U)

)detM(U ′)
detM(U)

)
. (3.100)

This means that U ′ is always accepted if it decreases the action but an increase is also
possible, which takes fluctuations into account.

This procedure is highly inefficient in the case of dynamical fermions since the determinant
as a non-local quantity has to be computed every time. Let us first restrict the discussion to
pure gauge SU(3) theories for which the heat bath algorithm is suitable.

Heat bath

The heat bath algorithm takes advantage of the fact that the action in a pure SU(3) gauge
theory is a local quantity. Hence an update of one selected gauge link Uµ(n)→ U ′µ(n) leads
to a local change of the action (following the notation of Eq. (3.27))

∆S = S[U ′µ(n)]loc − S[Uµ(n)]loc, (3.101)

S[Uµ(n)]loc = β

3 Re tr (1− Uµ(n)Σµ(n)) . (3.102)

The so-called staple

Σµ(n) =
∑
ν 6=µ

(
Uν(n+ µ̂)U †µ(n+ ν̂)U †ν (n) + U †ν (n+ µ̂− ν̂)U †µ(n− ν̂)Uν(n− ν̂)

)
, (3.103)

does not depend on the specific Uµ(n). Instead it contains the links that share a plaquette
with Uµ(n). The key feature of the heat bath algorithm is to exploit locality in a way that for
a chosen link, the new value U ′µ(n) is randomly selected with a local probability distribution
determined by the surrounding links

dP (U) = dU exp
(
β

3 Re tr Uµ(n)Σµ(n)
)
. (3.104)
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In the case of the SU(3) gauge theory (or even SU(N)), the update procedure is done in the
subgroup SU(2) [166] - called pseudo-heat bath method. Originally developed by Creutz [124],
an efficient way was provided by Kennedy and Pendleton [167]. Detailed instructions can be
found in [38].
In our thermal quenched studies [40,168], one heat bath step is combined with three sweeps
of overrelaxation. The latter provides a microcanonical change (similar to Hybrid Monte
Carlo) such that the action is conserved. Let us illustrate overrelaxation for SU(2) which can
be used for SU(3) just like in the pseudo-heat bath method:

U ′µ(n) = V †µ (n)U †µ(n)V †µ (n), Σµ(n) = r · Vµ(n) r ∈ R. (3.105)

The action remains unchanged as can be seen by setting the focus on its relevant part

Re tr
[
U ′µ(n)Σµ(n)

]
= Re tr

[
V †µ (n)U †µ(n)V †µ (n)r · Vµ(n)

]
= rRe tr

[
V †µ (n)U †µ(n)

]
= Re tr [Uµ(n)Σµ(n)] . (3.106)

This procedure is obviously not compatible with ergodicity since we want to simulate canon-
ical systems which take fluctuations of the energy into account. Hence the combination with
the heat bath step is mandatory.

3.4.1 Parallel tempering

Simulating real phase transitions makes us face the phenomenon of critical, in the case of 2nd

order transitions [85], and supercritical slowing down for 1st order phase transitions [40,168].
Both cause a high auto-correlation time for the order parameter. This can be significantly
reduced by employing parallel tempering. Originally used to simulate spin systems with
several coexisting phases [169], the key idea of tempering is to treat the control parameter,
e.g. the temperature as a dynamical variable. This can help to accelerate the decorrelation of
the order parameter. Parallel tempering extends this idea by including multiple simulations
(called sub-ensembles) at different parameters which can exchange configurations. Studies
of spin systems such as [170, 171] or with focus on lattice QCD [172–174] demonstrate the
potential of parallel tempering algorithms. Following the "quasi-recipe" of [172], parallel
tempering takes advantage of the fact that the equilibrium distributions of the sub-ensembles
overlap. The phase spaces Γi of these sub-ensembles are determined by:

1. A set of parameters pi which can include, depending of the simulated theory, quark
masses, gauge couplings, hopping parameters etc..

2. Their configurations labeled as ai which contain e.g. gauge links or pseudo-fermion
fields.

3. An action Si which depends on 1) and 2).

The parallel tempering algorithm relies on Markov chains whose equilibrium distribution P eq
PT

is the product of the N individual sub-ensemble distributions P eq
i

P eq
PT =

N∏
i=1

P eq
i =

N∏
i=1

e−Si(ai)

Zi
. (3.107)

Exactly as for the full phase space ΓPT = ∏N
i=1 Γi, the partition function ZPT of the whole

ensemble is ZPT = ∏N
i=1 Zi.
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Figure 3.4: Illustration of the configuration exchange in the parallel tempering algorithm
for a set of 6 sub-ensembles with individual gauge coupling β.

How does the parallel tempering algorithm work? Let us distinguish two types of Markov
transitions:

1. There are N individual sub-ensembles which are updated according to the standard
algorithms such as (R)HMC or heat-bath. They fulfill the detailed balance condition
and run independently.

2. Now the overlap of the equilibrium distributions of the sub-ensembles is exploited which
enables a transition/swap of configurations between sub-ensembles i (config. a) and j
(config. b). The detailed balance condition

Ps(i, j)e−Si(a)e−Sj(b) = Ps(j, i)e−Si(b)e−Sj(a), (3.108)

can be satisfied if the probability Ps(i, j) for an exchange of configurations between i
and j is chosen the be the Metropolis acceptance probability (compare to Eq. (3.100))

Ps(i, j) = min
(
1, e−∆S

)
, ∆S = Si(b)− Si(a) + Sj(a)− Sj(b). (3.109)

This implies that swapping configurations is more likely for neighboring ensembles which
share a large overlap between their equilibrium distributions.

As a result the auto-correlation time within the sub-ensembles is reduced, since they gather
contributions of the other ensembles at different parameters (Fig. 3.4). The price to pay is
a resulting correlation between the observables of different sub-ensembles which has to be
taken into account in the data analysis. A key feature of the parallel tempering algorithm is
that the sub-ensembles are kept in equilibrium which can be reached by 1). If there are no
transitions between the sub-ensembles, caused by far separated parameters for instance, then
we end up with the standard Metropolis procedure and the sub-ensembles run completely
independently.
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3.4.2 Reweighting

Simulations are usually performed for a fixed set of parameters such as temperature or quark
masses. Nevertheless it is possible to extract information about systems which are slightly
different from those directly simulated. A common procedure is reweighting, which can even
be used for regions in parameter space that are not accessible by direct Monte Carlo methods
such as lattice QCD at finite density [175]. The following paragraph is mainly based on [176].
Let us assume we simulated a thermal system at some inverse temperature β = 1/T . Then
the expectation value of an observable O reads

〈O〉β =
∑
µOµe

−βEµ∑
µ e
−βEµ . (3.110)

The sum∑
µ implies the summation over all possible states µ provided by the system. Since it

is just infeasible to cover the full configuration space, Monte Carlo methods estimate the ex-
pectation value by selecting randomly (distributed according to pµi) subsets of configurations
µi

〈O〉Eβ =
∑N
i=1Oµip

−1
µi e
−βEµi∑N

i=1 p
−1
µi e
−βEµi

. (3.111)

If the configurations are chosen according to pµ = e−βEµ/Z, we end up with the so-called
importance sampling Eq. (3.94). Let us now assume we simulated at β′ and now want
to obtain information at β. Then the Boltzmann weights have to be changed such that
pµi = e−β

′Eµi/Zβ′

〈O〉Eβ =
∑N
i=1Oµie

−(β−β′)Eµi∑N
i=1 e

−(β−β′)Eµi
. (3.112)

The denominator ∑N
i=1 e

−(β−β′)Eµi determines the extent of the overlap between the distri-
butions. If it is close to zero, the method obviously fails which is referred as overlap problem.
So far, this approach takes one single simulation into account which is used to reweight to
another parameter set. A popular way to incorporate multiple simulations is a version of the
Ferrenberg-Swendsen method [177,178], which is called multiple histogram method.

3.4.3 Correlated multiple histogram method

The main feature of this reweighting technique is to estimate the density of states W (E)

Z(β) =
∑
E

W (E)e−βE , (3.113)

and hence the partition function Z(β) over the full range of simulation points βi. This allows
a precise interpolation of the observables of interest. We extend the results of [177, 178] and
derive it for correlated data as those obtained by using parallel tempering. We published the
correlated multiple histogram method in [40]. Let us restrict the discussion to a discrete set
of energies. The case of a continuous energy spectrum demands the replacement W (E) →
W (E)dE, which does not change the final equations [176].
Let us first recall that the weighted average a of data sets xi, i = 1, 2, ...,m can be calculated
by minimizing

χ2 =
m∑
i,j

(xi − a)
(
C−1

)
i,j

(xj − a), (3.114)
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with C−1 being the inverse covariance matrix [179]. The minimum is found for

a =
∑m
i,j=1

(
C−1)

i,j xj∑m
i,j=1 (C−1)i,j

, (3.115)

which has minimal fluctuations in the case of correlated measurements compared to other
possible linear combinations. Since W (E) does not depend on any value of β it can be esti-
mated by the densities of states of the individual simulationsWi(E) according to Eq. (3.115).
Thus i labels the simulation at βi which is correlated with the other ones due to the β tem-
pering algorithm. The histograms of the energy Ni(E) are stored and can be related to the
density of states by

Wi(E)e
−βiE

Z(βi)
= Ni(E)

ni
= pi(E), (3.116)

where ni is the total amount of entries of the histogram and pi(E) denotes the probability
of simulation i to generate a state with energy E in the case of importance sampling [176].
In the same manner the exact density of states W (E) is estimated by multiple simulations
performed at the same coupling

W (E) = Ni(E)Z(βi)
nie−βiE

. (3.117)

It is important to note that Ni is the averaged histogram of these simulations, thus its error
is σi =

√
giNi. The factor gi takes the correlation time τi of the ensemble into account and

reads gi = 1 + 2τi. To construct

W (E) =
∑m
i,j=1

(
C−1)

i,jWj(E)∑m
i,j=1 (C−1)i,j

, (3.118)

we write with Eqs. (3.116) and (3.117) the covariance matrix according to

Ci,j = cov(Wi,Wj) (3.119a)
= 〈WiWj〉 − 〈Wi〉 〈Wj〉 (3.119b)

= W 2 cov(Ni, Nj)
Ni Nj

(3.119c)

= W 2 corr(Ni, Nj)gigj
σiσj

. (3.119d)

with the shorthand notation Wi = Wi(E), Ni = Ni(E). Here cov(Ni, Nj) and corr(Ni, Nj)
stand for components of the covariance and correlation matrix respectively which are esti-
mated according to the standard Jackknife resampling method. Now we can write Eq. (3.118)
as

W (E) =
∑m
i,j=1 σiσj(gigj)−1 corr−1(Ni, Nj) Wj∑m
i,j=1 σiσj(gigj)−1 corr−1(Ni, Nj)

=

∑m
i,j=1(gigj)−1/2

√
niZj
njZi

eE(βj−βi)/2 Nj(E) corr−1(Ni, Nj)∑m
i,j=1(gigj)−1/2

√
ninj
ZjZi

e−E(βi+βj)/2 corr−1(Ni, Nj)
. (3.120)
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3.4. Monte Carlo methods

In some cases the correlation matrix is singular, caused by bins which only contain a few
entries. Since these bins have a very small contribution to the end result ofW (E), we neglect
the correlation of them with other bins. In the case of uncorrelated simulations the correlation
matrix is the unity matrix and we get back to the standard Ferrenberg-Swendsen equation
for the density of states

W (E) =
∑m
i=1 g

−1
i Ni(E)∑m

i=1 g
−1
i

ni
Zi
e−βiE

. (3.121)

Assuming that the Zi reach a fix point, they are iteratively determined by

Zi =
∑
E

W (E)e−βiE , (3.122)

with W (E) of Eq. (3.120) until ∆2, defined as

∆2 =
m∑
i

(
Z

(n)
i − Z(n−1)

i

Z
(n)
i

)2

, (3.123)

reaches a desired value as for example ∆2 ≤ 10−19. Z
(n)
i denotes the value of Zi after

n iterations. Inserting Eq. (3.120) in Eq. (3.113), the partition function Z(β) over the full
simulation range can be evaluated. Assuming constant auto-correlation times τi, the gi factors
are the same for every simulation. According to Eq. (3.120) or Eq. (3.121) they represent a
constant factor for all Zi which can be dropped.
Let us discuss some crucial points for the iteration of the partition functions: They take on
huge values and cannot be represented correctly on a machine, resulting in serious rounding
errors. This problem can be reduced by introducing a normalization factor for all partition
functions. This factor always cancels in the calculation of expectation values and hence can
be freely chosen, for example Zi/Z1. Nevertheless, this procedure reduces the problem but
does not solve it. We deal with sums of huge exponents (see Eq. (3.120)) containing E, which
is proportional to the space-time volume. An appropriate solution is to work in the logarithm
representation. Let us illustrate this for e.g. the denominator D of Eq. (3.121)

lnD = ln
(

m∑
i=1

g−1
i

ni
Zi
e−βiE

)
(3.124a)

:= ln
(

m∑
i=1

eαi

)
(3.124b)

= ln

eαmax +
m∑

i 6=imax

eαmax+αi−αmax

 (3.124c)

= αmax + ln

1 +
m∑

i 6=imax

eαi−αmax

 . (3.124d)

Here αmax stands for the largest value of the exponents αi, whose summation index is in-
dicated by imax. The logarithm of Eq. (3.124d) can be calculated precisely with the intern
log1p function provided by math.h for the C-programming language.

Hybrid Monte Carlo

In the pure gauge theory, we can calculate the shift of the action in Eq. (3.99) locally. In the
case of dynamical fermions we introduce a non-local quantity with the fermion determinant
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which makes local update algorithms highly inefficient. The Hybrid-Monte-Carlo (HMC)
algorithm [180, 181] is able to update the complete set of gauge configurations at once by
providing simultaneously a high acceptance rate. This can be reached by the introduction of
artificial momenta P and the evolution of the system according to the dynamics defined by the
underlying Hamiltonian. Along these trajectories the energy of the system is (approximately)
conserved to enable a high acceptance rate. Since the development of algorithms such as HMC
is an own research field in the lattice community, I sketch the main aspects mainly based
on [38,165,182].
Let us first note that the introduction of artificial momenta P does not change the expectation
values of observables of interest:

〈O〉 =
∫
DUdetMe−S O∫
DUdetMe−S

(3.125a)

=
∫
DUDP detMe−S−P

2/2 O∫
DUDP detMe−S−P 2/2 . (3.125b)

We start with the main concepts of HMC algorithms for actions with an even number of
degenerative flavors

S[U ] = SG[U ]− ψ̄(M †M)ψ, (3.126)

which gives (detM)2 as a weight factor. At the end we extend this discussion to the case of
rooted determinants as needed for staggered fermions. With∫

Dψ̄Dψe−ψ̄Mψ = detM = π−N
∫
DφRDφIe−φ

†M−1φ, (3.127)

we can rewrite Eq. (3.126) as

S[U ] = SG[U ]− φ†(M †M)−1φ, (3.128)

which results in an irrelevant constant factor that cancels in the calculation of expectation
values. Using a set Nφ of the so-called pseudofermions φ = φR + iφI , which are conven-
tionally chosen to be Gaussian distributed p(φ) = e−φ

†φ, we can calculate the determinant
stochastically [165]

(detM)2 =
〈
e−φ

†(M†M)−1φ

p(φ)

〉
p(φ)

= 1
Nφ

Nφ∑
k=1

e−φ
†
k
(M†M)−1φk

p(φk)
+O(1/

√
Nφ). (3.129)

In the case of the SU(3) gauge group, we can express each link as

Uµ(n) = ei
∑8

k=1 ω
k
µ(n)Tk := eiQµ(n). (3.130)

To every "coordinate" Qµ corresponds the momentum

Pµ(n) =
8∑

k=1
P kµ (n)Tk, (3.131)

for which P 2 in the Hamiltonian is replaced by ∑n,µ trP 2
µ(n). In this representation P kµ and

ωkµ(n) are the conjugate variables. The generators Tk are the same as used in the QCD
Lagrangian.
The HMC steps are:
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3.4. Monte Carlo methods

1. Generate χ with normal distribution to obtain the pseudofermion fields φ = M †χ.

2. Generate Pµ(n) whereby the components P k are normally distributed.

3. Evolve the system according to Hamilton equations of motion [165]

ω̇k = ∂H

∂Pk
= Pk =⇒ U̇µ(n) = Pµ(n)Uµ(n) (3.132)

Ṗk = − ∂S

∂ωk
=⇒ Ṗµ(n) = − ∂S

∂Qµ(n) := −Fµ(n) (3.133)

where the dot stands for the fictitious time derivative. They can be solved via e.g. the
leap-frog method whose discretization errors are taken into account in the following
accept/reject step.

4. The new set of candidates P ′ and U ′ are accepted with a probability of

p = min(1, e−∆H) ∆H = H(P ′, U ′)−H(P,U). (3.134)

as already used in Eq. (3.99).

The crucial and time consuming part is the calculation of the force Fµ informally written as

Fµ(n) = ∂S(U)
∂Qµ(n) . (3.135)

We want to calculate the derivative of the scalar function S with respect to Q which is a sum
over the generators Ta and real numbers ωa and hence a Lie-algebra su(3). We can define a
possible Lie-derivative of a scalar function f(U) according to [38]

∂f(U)
∂ωa

= ∂

∂ω
f(eiωTa)

∣∣∣
ω=0

. (3.136)

The force as the result of a derivative with respect to Q is part of the Lie-algebra su(3) and
can be written as

F = ∂S

∂Q
=

8∑
a=1

Ta
∂S(U)
∂ωa

(3.137a)

=
8∑

a=1
Ta

∂

∂ωa

(
SG[U ] + φ†(M †M)−1φ

)
. (3.137b)

Restricting this short discussion to the fermionic part we face terms of the form

∂

∂ωa

(
φ†(M †M)−1φ

)
= −

(
(M †M)−1φ

)†(∂M †
∂ωa

M +M †
∂M

∂ωa

)(
(M †M)−1φ

)
. (3.138)

Computationally demanding is in particular the calculation of the inverse (M †M)−1. Again,
due to its enormous size, it is just impractical to calculate it directly. Using the conjugate
gradient method M †Mφ can be calculated efficiently by solving

(M †M)−1φ = x⇐⇒M †M x = φ, (3.139)
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for x. In the case of staggered fermions, we deal with determinants of the form (detM)n/4.
Let us approximate the hermitian matrix M †M by a sum of rational functions r(M †M) and
rewrite the (pseudo)fermionic action according to

SF = −φ†r(M †M)φ, (3.140)

with
r(M †M) = α0 +

m∑
k=1

αk
M †M + βk

. (3.141)

Using the Remez algorithm, the coefficients αk and βk can be calculated [183] which remain
fixed during the simulation (individually tuned for each quark mass). The accuracy of this
rational approximation is determined by m and can be tuned to machine precision. Multi-
shift solvers [184] provide an efficient way to invert M †M + βk for a set of βk. As a variant
of the hybrid monte carlo algorithm, it is referred as rational hybrid monte carlo (RHMC)
[183,185,186].
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4 Upper right corner of the Columbia plot

Exploring the heavy mass regions in the context of the Columbia plot gives us insights into
the deconfinement transition of QCD (recall Section 2.5.1). Although there is a clear evidence
for a 1st order phase transition in the quenched approximation and a smooth crossover at the
physical point, a non-perturbative determination of the critical quark masses is still missing.
A better understanding of the upper right corner of the Columbia plot is not only interesting
from the theoretical point of view. It opens the possibility to test models such as effective
lattice theories [187, 188] or models based on functional approaches [81] which can make
predictions at finite baryon density up to small quark masses. The only tool at hand to
study QCD from first principles is lattice QCD which can work as a benchmark for these
models. Furthermore, the precise knowledge and interplay of the critical parameters such as
temperature or quark masses in this region could guide the way towards conditions which are
relevant for heavy ion collisions by extrapolating critical surfaces. Moreover, computational
strategies employed in the heavy mass region could be helpful to study criticality in the
lower mass region, which features higher simulation costs. This motivated us to explore
the upper right corner of the Columbia plot by using new algorithmic approaches such as
parallel tempering. This method enabled us to study the thermal and topological features
of quenched QCD precisely [40, 168] and to pinpoint the critical quark masses on Nt = 6, 8
lattices [85].

4.1 Quenched QCD at finite temperature

Simulating the pure gluonic SU(3) gauge theory corresponds to neglecting the sea quark con-
tributions by setting the fermion determinant to one. Although this seems to be a rough
approximation to full QCD, it has yielded remarkable results, such as the light hadron spec-
trum with just 10% deviation of the kaon mass to its experimental value [189]. On the
thermodynamic side, pioneering works such as [74] calculated the pressure and energy den-
sity up to 5Tc and extrapolated them to the continuum. With a Symanzik-improved gauge
action, the string tension and equation of state could be calculated with higher precision [190].
In [191] the temperature range was extended up to 1000Tc. This is usually computationally
demanding since the spatial extension Nx has to increase with the temperature to keep the
physical volume constant. The challenge was accomplished by investigating finite volume
effects especially above Tc, which turned out to be smaller than the statistical errors. This
enabled them to connect the high temperature perturbative region with the low temperature
non-perturbative region [191].
In this Section we discuss the framework of parallel tempering applied to the deconfinement
transition of quenched QCD. In this context we calculated the transition temperature with
unreached high precision, classified the transition to be of 1st order and determined the la-
tent heat in the continuum and infinite volume limit. The following Sections are part of our
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Chapter 4. Upper right corner of the Columbia plot

publications [40, 192]. I refer to Sections 2.3 and 2.5.1 and references to avoid repetitions
of the historical outline regarding the deconfinement transition and the discussion of center
symmetry breaking.

4.1.1 Observables

QCD in the quenched approximation features a 1st order phase transition which is driven by
the spontaneous breaking of the Z3 center symmetry. In this case, the Polyakov loop P works
as a true order parameter to probe the center symmetry breaking. The discretized version of
the Polyakov loop defined in Eq. (2.13) reads

P = 1
N3
sNc

∑
~x

P~x = 1
N3
sNc

∑
~x

tr
[∏
τ

U4(~x, τ)
]
, (4.1)

where Ns stands for the spatial extension of the lattice, ~x and τ indicate the spatial and
temporal position respectively and Nc = 3 corresponds to the number of colors. In the
case of a 1st order phase transition the Polyakov loop should show a discontinuity at the
critical coupling βc in the thermodynamic limit, whereby its susceptibility χ diverges linearly
with the physical volume. For a 2nd order phase transition this behavior is accompanied
by critical exponents. Hence, analyzing the peak of the susceptibility determines the type
of phase transition and the corresponding transition temperature Tc (coupling βc). Another
way to extract βc is the zero-crossing of the third-order Binder cumulant b3 of the absolute
value of the Polyakov loop. The susceptibility and the Binder cumulant are defined as

χ = N3
s

(
〈|P |2〉 − 〈|P |〉2

)
, b3 = 〈(|P | − 〈|P |〉)3〉

〈(|P | − 〈|P |〉)2〉3/2
. (4.2)

The third Binder cumulant b3 works as a measure of the skewness of the distribution of |P |.
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Figure 4.1: Left: b3 as function of β exemplary shown for 323 × 8 reweighted via the
correlated multiple histogram method to b3 = 0 (red point) to obtain the critical coupling.
Right: Normalized histogram of 〈|P |〉 which is reweighted to βc defined by b3 = 0 for 323×8.
The error on the bins are jackknife errors.

Simulating far away from βc, i.e. where the system is deep in one phase, there is a single
(Gaussian-) peak in the distribution. As one comes closer and closer to the critical coupling,
a second peak evolves which corresponds to the 2nd phase of the system. As soon as βc is
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4.1. Quenched QCD at finite temperature

reached, both peaks have the same shape and the distribution is completely symmetric which
leads to a vanishing skewness. The left panel of Fig. 4.1 shows the Binder cumulant b3 which
is reweighted via the correlated multiple histogram method to b3 = 0 (red point) to obtain
βc. The corresponding normalized and reweighted Polyakov loop histogram is presented on
the right panel, which clearly shows a double peak structure, indicating the presence of both
phases. Strictly speaking, there are no phases in finite systems; here we loosely use the
word phase to describe the (de-)confined regimes. In the infinite volume limit, defining βc
by the peak of the susceptibility or vanishing b3 should be equivalent. Both results have to
agree in the thermodynamic limit since the peak of χ diverges linearly, the width vanishes
linearly and the slope of b3 (close to βc) increases linearly with the volume. To compare
results at different lattice spacings, the susceptibility should be renormalized to extract the
coupling βχ at which it peaks. This is obviously not necessary for the zero-crossing of b3,
whose corresponding coupling is labeled as βb. The renormalization procedure for χ works
as follows:

χR(β,Nx, Nt) = ZNt(β)χ(β,Nx, Nt), (4.3)
χR(βb, 4Nt, Nt) = ZNt(βb)χ(β, 4Nt, Nt) := 1. (4.4)

This implies that χR(βb) = 1 ∀ LT = 4. It is not strictly necessary to renormalize the
susceptibility in order to extract βc. As the width of the bare peak decreases linearly with
the inverse volume, Z(β) becomes approximately constant across that width, and so the
difference between βχ of χ(β) and βχ of χR(β) should go to zero in the infinite volume limit.
Thus, the value of βc extracted from χ(β) should agree with the value of βc extracted from
χR(β).

4.1.2 Parallel tempering to improve on supercritical slowing down

Supercritical slowing down is a phenomenon which appears in simulations of 1st order phase
transitions, associated with high auto-correlation times. We illustrate its appearance in
quenched QCD where the Polyakov loop populates three distinct degenerate deconfined and
one confined center sector. Right at βc, both phases are present in a finite volume as presented
in the left panel of Fig. 4.2. The configurations around the origin correspond to the confined
phase and those located around the three sectors belong to the deconfined phase. Let us
change the view and look at the effective potential defined as V = − log(〈|P |〉) which shows
two minima (right panel of Fig. 4.2). In contrast to the thermodynamic limit, the confined
and deconfined phase are not completely separated. In a finite volume a temperature range
around Tc exists, in which the system can be in both phases and tunnel between them. These
states are split by the energy ∆E, which scales with volume V . Since both phases have to
be sampled, this gets more severe as V is increased. One can see that the barrier between
the two phases increases with the volume. The consequence of this is a high auto-correlation
time if tunneling is not sampled, since the system tends to stick in one phase. Parallel
tempering is a suitable method to overcome these problems. It reduces the auto-correlation
time within the sub-ensembles, since they gather contributions of the other ensembles at
different couplings. Hence both phases of the system around βc can be sampled. For the
parallel tempering to be effective, the acceptance rate of swapping updates must be carefully
controlled, such that the action distributions of neighboring ensembles have a substantial
overlap. This can be achieved through the control of the distance of the parameter sets pi,
which, thus, have to move closer to each other as the physical volume increases. This is easily
satisfied if the number of streams in the transition region is kept constant as the width of the
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Figure 4.2: Left: Real and imaginary part of the Polyakov loop at βc for 323 × 8. Every
1000th configuration is shown. Right: Effective potential of the absolute value of the Polyakov
loop for various volumes in quenched QCD, after employing parallel tempering. The barrier
between the phases increases with the volume.

transition region scales with inverse volume. Typically, we have simulations at 16-256 β values
and introduce swapping updates at predefined points in the Markov chain (typically after 5
sweeps in each sub-ensemble). This algorithm can be especially efficiently parallelized in our
case where the β dependence of the action is simply given as an overall factor of some function
of the link variables. We set up a number of streams updating a configuration at certain β
values (typically we use equidistant points). After 5 sweeps on their configuration, all the
streams need to communicate one number (their action) to a master node which proposes
(and accepts or rejects) several swapping updates for each stream, and afterwards informs
each stream which β value they ended up at. This means that the network bandwidth and
computational requirements for the swapping updates are negligible, although some efficiency
is lost as synchronization between the streams is required.
In Fig. 4.3 we show the β history of two streams (out of 128) for a simulation on a 453 × 10
lattice. As one observes the streams follow a trajectory similar to a random walk on the
allowed β range and they visit all points for a long enough simulation. The value of the
Polyakov loop changes relatively slowly during the history of the stream. If we look at
the history of the Polyakov loop for a given β, the largest auto-correlation comes from the
instances when the same stream contributes (even if the stream visited other β values in
the meantime). We therefore reorder the Monte Carlo chain using the stream ID number of
the contributions (and keep the chronological order among contributions from each stream).
This ensures that the most correlated contributions will be close to each other (i.e. this
ordering results in the largest auto-correlation for the given Monte Carlo chain), which helps
to minimize the correlations between blocks in the jackknife analysis. For parallel tempering
simulations the distance between neighboring ensembles ∆β and their total number n play
a crucial role. Increasing ∆β suppresses the probability to swap configurations and the
ensembles collect more contributions from their neighbors until they "decouple" and run as
independent simulations. For a suitable acceptance rate of swapping updates, the action
distributions of neighboring ensembles should clearly overlap, which can be obtained by
tuning n and ∆β. In Fig. 4.4 the auto-correlation time of the Polyakov loop for different sets
of parallel tempering simulations is compared to standard methods. As one observes, the
auto-correlation is substantially smaller for the parallel tempering simulations, despite at the
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Figure 4.3: The β history (above) and Polyakov loop average (below) of 2 streams as a
function of the Monte Carlo sweeps in a simulation on a 483× 10 lattice with 128 streams on
the range 4.659 ≤ β ≤ 4.6844 divided equidistantly.
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Figure 4.4: Left panel: Auto-correlation time of the Polyakov loop as a function of the
coupling β on a 323×8 lattice using parallel tempering (filled points) and brute force simula-
tions (unfilled points) with the same amount of computer time. ∆β indicates the β−spacing
between the sub-ensembles and n stands for the total number of them. Right panel: Number
of computed updates divided by the auto-correlation time as a function of β.
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increased cost of being forced to simulate several β values. In the right panel of Fig. 4.4 we
show the number of configurations created in brute force and in parallel tempering simulations
at similar parameters, using the same amount of computer time. The auto-correlation time
improves tremendously as the number of β values increases and as ∆β decreases (increasing
the acceptance rate of swap updates). The red and black points indicate that the number
of independent configurations created by the tempering algorithm increases substantially by
simply decreasing ∆β. Increasing the density of β values, as between the red and blue points,
results in nearly the same efficiency, indicating that the decrease in the number of updates
(due to having twice as many streams for the same computer time) scales roughly with
the decrease in the auto-correlation time. In Fig. 4.5 the advantages of parallel tempering
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Figure 4.5: Polyakov loop susceptibility as a function of the coupling β in quenched QCD
on a 323 × 8 lattice. The red squares correspond to parallel tempering simulations and the
red band indicates the interpolation between them obtained with the correlated multiple
histogram method.

compared to standard brute force simulations are clearly visible. With the same amount of
computer time, the statistical errors of the tempering results are smaller and describe much
better a high statistic result, especially close to βc. The uncorrelated multiple histogram
method is used for the brute force simulations and the parallel tempering simulations are
interpolated with the correlated version of this method. In practice, the correlations between
ensembles are quite small. Neglecting these correlations in the multiple histogram procedure
causes a negligible change in the results (much smaller than the statistical errors).

4.1.3 Transition temperature

To relate the action-dependent value of the coupling β at the transition to a more generic
transition temperature, it is necessary to set the scale. We use w0 based on the Wilson flow
(recall Section 3.2.4). We compute the w0 scale in lattice units (w0/a) for many values of
β for two different discretizations of the flow (WSC and SSC). See [193] for notation and
further information. This gives us another systematic choice as to which version of the scale
setting to use. We then interpolate these results to get w0/a(β) by fitting with polynomials
of order 6 and 7 in the β range [4.0, 4.95]. It is critical to ensure that finite volume effects on
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4.1. Quenched QCD at finite temperature

the w0 scale remain small, as these effects increase with the flow time. At zero temperature,
we performed a volume study for w0/a as a function of L/w0, where L denotes the spatial
extent of the box. Fluctuations in w0/a are comparable in size to the statistical error at each
volume; consequently, no significant volume dependence was found. Now we can convert
w0/a(β) into a transition temperature for βχ or βb via

w0
aNt

= w0T. (4.5)

To compute the continuum value of the transition temperature w0Tc in the infinite volume
limit, we first find the continuum value of w0Tc at finite volume and fixed lattice aspect ratio
LT = Ns/Nt and then extrapolate the results of the continuum theory at different LT to the
limit where (LT )3 →∞. In Fig. 4.6 an exemplary continuum extrapolation for w0Tc defined
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Figure 4.6: Exemplary continuum extrapolation of w0Tc defined by βb for various volumes
LT . Left: Using WSC w0 scale. Right: Using SSC w0 scale. Each data point is the median
value of w0Tc computed for that lattice from the systematic analysis, and the error bars give
the combined statistical and systematic error. Error bands are shown for the two kinds of
extrapolating fit that are used: a linear fit to lattices with 6 ≤ Nt, and a quadratic fit to
lattices with 5 ≤ Nt. The error bands give the combined statistical and systematic error from
all similar fits performed in the analysis.

by βb is shown for two different flow discretizations. We use large lattices with aspect ratios
LT = 4, 4.5, 5, 6, and 8 for four different temporal extensions: Nt = 5, 6, 8, and 10. To
check the consistency of the continuum extrapolation at other temporal extensions, we also
include two lattices with Nt = 7 and 12 in the LT = 4 extrapolation. In the left panel of
Fig. 4.6, one can see that w0Tc goes roughly linearly with N−2

t for each LT . We perform
two types of fits to extrapolate to the continuum: a linear fit to all lattices with Nt ≥ 6, and
a quadratic fit to all lattices with Nt ≥ 5. The fits are shown in Fig. 4.6; the error bands
give the combined statistical and systematic errors from all the similar fits performed in the
analysis.
The continuum results from χR and b3 are shown in Fig. 4.7 as functions of (LT )−3. A
quadratic fit to LT ≥ 4 is used to extrapolate to the infinite volume limit. This fit is shown
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Figure 4.7: Infinite volume extrapolation of the continuum w0Tc. Left: Using the zero-
crossing of b3. Right: Using the peak of χR. Each point is the median value of w0Tc
computed for each aspect ratio LT in the systematic analysis, and the error bars give the
combined statistical and systematic error. Error bands are shown for the quadratic fit to
LT ≥ 4. The error bands give the combined statistical and systematic errors from all similar
fits in the analysis. The extrapolations from b3 and χR are in agreement, as expected. The
final result, w0Tc = 0.25384(23), is shown in green.

in Fig. 4.7 for both χR and b3. The error bands give the combined statistical and systematic
errors from all the similar fits that were performed. We find that the infinite volume value of
the transition temperature w0Tc computed using χR agrees with the value computed using b3,
as expected. Following the analysis method introduced in [153] (and see detailed description
in [126]) to estimate the statistical and systematic uncertainties of the results, in total we have
performed 256 different analyses, characterized by the choice of the moment of the Polyakov
loop (χR or b3), the degree of the fit to the moment (3, 4, 5 or 6), whether and how the
fit is correlated (uncorrelated or correlated with an eigenvalue cutoff of 10%, 5%, 1%), the
choice of the w0 scale calculation (WSC, SSC), the degree of the fit to the w0 scale data (6
or 7), and the degree and range of the continuum extrapolation (linear or quadratic). The
statistical and systematic uncertainties are synthesized into a CDF defined by

F (w0Tc) = 1
2 + 1

2 · 256

256∑
i=1

wi erf
(
w0Tc − µi√

2σi

)
, (4.6)

where µi and σi are the central value and statistical uncertainty respectively of the ith
analysis, and wi is the weight of the CDF of the ith result. (This equation then assumes
that the statistical result of each analysis is well-described by a normal distribution with a
mean of µi and standard deviation of σi). We have no prior assumptions as to the relative
statistical significance of any of the analyses, and so we take an agnostic position by weighting
all analyses equally, i.e. by setting wi = 1. The final result is then the median value of the
CDF, implicitly defined by F (w0Tc) = 0.5, and the central 68% width is taken as twice the
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4.1. Quenched QCD at finite temperature

total error. This yields a final value of w0Tc = 0.25384(23) - the first per-mill accurate result

Table 4.1: Error budget of w0Tc.

median 0.25384
statistical error 0.00011 0.043 %
full systematic error 0.00021 0.082 %
Observable (b3 , χR) 1.1 · 10−5 0.0042 %
Fit order (3, 4, 5, 6) 2.1 · 10−5 0.0085 %
Fit type (corr, uncorr) 1.2 · 10−5 0.0047 %
Scale setting (WSC, SSC) 1.9 · 10−5 0.0075 %
Scale fit order (6, 7) 2.4 · 10−6 0.0010 %
Continuum limit range 1.2 · 10−4 0.0487 %

in QCD thermodynamics. The error budget is presented in Table 4.1.

4.1.4 Volume scaling and identifying the order of phase transition

Following the renormalization scheme described in Section 4.1.1 for χR, we can classify the
order of phase transition by investigating the volume scaling of continuum extrapolated re-
sults. We select fixed physical volumes (LT = 4.5, 5, 6, 8) and interpolate Z(β) to the actual
volume dependent βc of each simulation with Nt = 5, 6, 8 and 10. The renormalized re-
sult χR(L, T ) = ZNt(β)χ(β,Nx, Nt) is continuum extrapolated at fixed volume. Continuum
extrapolated results are shown in Fig. 4.8 for the χR(w0T ) curves at fixed volume, and in
Fig. 4.9 for the inverse peak height. In Fig. 4.8 (left), each curve is continuum extrapolated
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w0(T− Tc, χ(LT))

0

1

2

3

4

5

6

7

8

χ
R
(N

t
→
∞

)

LT= 4 LT= 4.5 LT= 5 LT= 6 LT= 8

0.75 0.50 0.25 0.00 0.25 0.50 0.75
w0(T− Tc, χ(LT))(LT)3

0.004

0.006

0.008

0.010

0.012

0.014

0.016

χ
R
(N

t
→
∞

)/
(L
T
)3

Figure 4.8: Left: Continuum extrapolated renormalized Polyakov loop susceptibility at
different volumes, centered around the volume-dependent peak position w0Tc,χ(LT ). The
bands include both statistic and systematic uncertainties. Right: Same curves as in the left
panel, but scaled with appropriate powers of the volume, in order to highlight the linear
volume dependence typical for a 1st order transition.

at the indicated fixed volume, and the bands include both statistic and systematic uncer-
tainties. Note that, had we subtracted the infinite volume limit value w0Tc instead of the
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Chapter 4. Upper right corner of the Columbia plot

volume-dependent values w0Tc,χ(LT ), the curves would not have have been exactly centered
around zero, but a trend would have appeared where larger volumes would peak closer to
zero. However, as can be seen in the right panel of Fig. 4.7, the difference would be negligible,
since the continuum extrapolated peak position shows a very mild volume dependence. The
right panel of Fig. 4.8 shows the same curves as in the left panel, but scaled with the volume
in order to highlight the volume dependence. We can see that the bands corresponding to
LT = 5, 6, 8 are almost indistinguishable, clearly showing that they fall in the linear volume
scaling regime typical of a 1st order transition.
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Figure 4.9: Infinite volume extrapolation of the inverse Polyakov loop susceptibility. The
results are renormalized and continuum extrapolated, systematic errors are included. We use
red symbols if we defined Tc by the zero of b3 and blue symbols by the peak of χR. The linear
scaling sets in for 5 ≤ LT .

In Fig. 4.9 we actually show two extrapolations, one for each definition of Tc, using the zero
of the third Binder cumulant or the susceptibility peak in red and blue, respectively. The
extrapolations do not differ at all depending on this ambiguity and the main systematic
uncertainty comes from the possibility to include a inverse quadratic volume term in the
infinite volume extrapolations. We find that the inverse susceptibility is extrapolated to be
vanishing, (or, actually, strongly constrained: χ−1

R (V = ∞) = 0.0023(58)stat(65)sys ) in the
infinite volume limit. In this context, let us discuss another observable, which can be used
to identify the order of phase transition. The fourth standardized moment b4 (compare to
Eq. (4.2))

b4 = 〈(|P | − 〈|P |〉)4〉
〈(|P | − 〈|P |〉)2〉2

, (4.7)

serves as a measure of the kurtosis of a distribution. Depending on the type of phase tran-
sition, it takes on b4 = 3 for a crossover (Gaussian distribution), b4 = 1 for a 1st order
and b4 = 1.604 for a 2nd order Z2 phase transition [84]. We could observe that b4 is nearly
constant for volumes up to LT = 5 and only mildly drops for the largest volumes LT = 6, 8
(see left panel of Fig. 4.10). This is in contrast to the volume scaling of the peak of the
susceptibility (right panel) for which the expected linear scaling sets in for LT ≥ 5.
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Figure 4.10: Volume scaling of b4 (left panel) and peak of the bare Polyakov susceptibility
(right panel) for Nt = 8.

4.1.5 Latent heat

A key feature of a 1st order phase transition is a non-vanishing latent heat. This quantity
can be understood as the discontinuity of the trace anomaly I/T 4

I

T 4 = ε− 3p
T 4 , (4.8)

and hence of the energy density ε, as the transition is crossed. The trace anomaly is a measure
of the deviation from an ideal/scale invariant system and can be calculated according to

ε− 3p = T 2

V
∂T logZ − 3p (4.9a)

= T 2

V
∂T

(
pV

T

)
− 3p (4.9b)

= T 2
(
− p

T 2 + 1
T
∂T p

)
− 3p (4.9c)

= T∂T p− 4p (4.9d)

= T 5∂T

(
p

T 4

)
(4.9e)

= T 5∂T

(
− f

T 4

)
. (4.9f)

In the first line we used the standard definitions of the thermodynamical quantities in sta-
tistical mechanics: ε = T 2/V ∂T logZ and assume large volumes such that p = T∂V logZ ≈
T logZ

V . Using the lattice extensions with 1
T 3V = N3

t
N3
x
, we can rewrite

f

T 4 = − 1
T 4V

T logZ = − 1
T 3V

∫
dβ′

[
Sper site

0 − Sper site
T

]
(4.10a)

= −N4
t

∫
dβ′ [S0 − ST ] , (4.10b)
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Chapter 4. Upper right corner of the Columbia plot

and get the final expression for the trace anomaly according to

I

T 4 = ε− 3p
T 4 = T∂T

(
− f

T 4

)
(4.11a)

= N4
t T

∂β

∂T
[S0 − ST ] (4.11b)

= −N4
t a
∂β

∂a
[S0 − ST ] . (4.11c)

Here the gauge action at finite temperature ST is renormalized with the action at zero tem-
perature S0 according to the scheme provided by [74]. Calculating the jump of the trace
anomaly is a challenging task. We face a pronounced temperature dependence just above
and just below Tc (see left panel of Fig. 4.11). The most successful method to define the
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Figure 4.11: Left: Trace anomaly for LT = 8 volumes and various spacings as function of
the temperature. Plot from [191]. Right: Exemplary presentation of the cut determination
for 323 × 8. The effective potential at βc is fit with a polynomial to determine the minimum
between both peaks which serves as a cut (red point).

latent heat, the one we also use here, is to simulate right at βc and classify the lattice config-
urations into the cold and hot phases [75, 76]. The procedure works as follows: We reweight
our closest ensemble to βc right to the critical coupling and calculate the minimum between
the two peaks of the |P | histogram (see right panel of Fig. 4.11). This minimum gives us a
cut between the hot and the cold phases of the system. Then the trace anomaly is calculated
for configurations whose |P | is above and below the cut yielding

∆E
T 4 := ∆ε− 3p

T 4 = N4
t T

∂β

∂T
[Scold − Shot] . (4.12)

To calculate T ∂β
∂T , we can use f(β) := w0/a(β) by

−T ∂β
∂T

= a
∂β

∂a
= f(β)

∂f(β)
∂β

. (4.13)

f(β) is a polynomial of deg=6,7 as described in the previous Section. In Fig. 4.12 the bare
Polyakov loop histograms are shown for three volumes of our Nt = 5 lattice set. Standard
jackknife errors are shown on the histograms. The trace anomaly shows no discontinuity
between the phases and its Polyakov loop dependence can be modeled by a polynomial. We
fit a 3rd order polynomial with finite volume corrections proportional to 1/L3 to obtain the
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Figure 4.12: Polyakov loop histograms for three volumes on Nt = 5 along with the trace
anomaly expectation values for each Polyakov loop bin. The double peak structure and
the sharpening of the peaks with increasing volume match our expectations for a 1st order
transition. The trace anomaly shows no discontinuity in this representation, hence the infinite
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Figure 4.13: Combined infinite volume and continuum limit of the latent heat according to
Eq. (4.12). The extrapolation is linear both in 1/N2

t and 1/L3, in this example we exclude
all ensembles with Nt < 6 or LT < 5. The continuum extrapolated but finite volume results
of [75] are shown for comparison.

infinite volume extrapolation (red curve). This picture connects the latent heat with the
hot-phase value of Polyakov loop. The cold phase peak moves to zero as 1/L3, hence, the
y−intercept of the red curve points to the trace anomaly at Tc − ε. Similarly, the non-
trivial position of the second histogram peak in the thermodynamic limit is translated by
the same curve to the trace anomaly at Tc + ε. We calculated the latent heat according to
Eq. (4.12) and found that a combined linear continuum and infinite volume fit is possible as
presented in Fig. 4.13. For the final result we consider the following sources of systematic

57



Chapter 4. Upper right corner of the Columbia plot

uncertainties. The continuum limit is calculated both using and not using Nt = 5, including
or not including the aspect ratio LT = 4.5 into the infinite volume extrapolation. We use
various number of Polyakov bins (100, 200 or 400) and two different log-polynomial models
for fitting the negative logarithm of the histogram so that the cut value separating the phases
can be calculated. We have performed two separate analyses: first using reweighting to βc
from the closest available β ensemble, second, using the multihistogram method to calculate
averages at βc. The final results is shown Table 4.2. The small but clearly non-vanishing

Table 4.2: Final result of the latent heat in the continuum and infinite volume limit.

median 1.0249
statistical error 0.021 2.1 %
full systematic error 0.027 2.7 %
Histogram fitting 0.0030 0.29 %
Histogram binning 0.0002 0.02 %
βc definition 0.0135 1.32 %
w0 interpolation 0.0007 0.07 %
LT range 0.0121 1.18%
Nt range 0.0157 1.53%
Analysis method 0.0019 0.18%

value of the latent heat highlights that the thermal transition in quenched QCD is a weak
1st order transition in the context of SU(N) theories [77]. The major driver of the systematic
error is the definition of βc and the selection of Nt ensembles to the continuum limit which
contribute 1.32% and 1.53% to the error.
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4.2. Topological features of the deconfinement transition

4.2 Topological features of the deconfinement transition

Let us briefly recall some aspects of Section 2.4 to highlight the motivation to study the
topological features of QCD, as they are not only interesting from a theoretical point of view.
The corresponding topological susceptibility is relevant in cosmology as part of a potential
solution to the strong CP problem: QCD suffers from a fine tuning problem. Its Lagrangian
could contain terms of the form

Lθ = −iθq(x), (4.14)

which break the CP symmetry unless θ = 0 (or precisely θ = n · 2π with n ∈ Z). Here q(x)
denotes the topological charge density. The Peccei-Quinn mechanism provides an attractive
solution to this problem by proposing an additional field, the dark matter candidate called
axion A(x), which couples to the gauge fields and obeys a U(1) symmetry. The dynamical
breaking of the latter leads to a non-vanishing expectation value of the axion field θ+〈A〉 /f =
0, and hence to a mass generation m2

A = χ/f2, which is determined by the topological
susceptibility χ [194, 195]. Moreover, the θ dependence of quenched QCD is also relevant in
phenomenology by predicting the mass of the η′. As shown by Witten [60] in the large N limit
(N is the number of colors), the corresponding free energy must be a multibranched function
of θ/N , which has a non-vanishing θ dependence at leading order in 1/N [196]. Hence in the
confined phase, there is a spontaneous breaking of the CP symmetry at θ = (2n+ 1)π due to
the system’s choice for one branch. At these points a 1st order phase transition is expected
since two branches with opposite derivatives intercept there. This leads to another possible
phase diagram of quenched QCD depending on θ. I refer to [196] for further information.
Because the free energy density is an even function of θ due to the θ → −θ symmetry, we
can expand it in θ as

f(θ) = f(0) + 1
2χθ

2 + 1
4!χ4θ

4 +O(θ6), (4.15)

with the topological susceptibility χ(T ) and the fourth moment χ4(T ) defined as

χ(T ) = 〈Q
2〉
V

, χ4(T ) = 1
V

[
〈Q4〉 − 3〈Q2〉2

]
, (4.16)

where V denotes the space time volume. The temperature dependence of the observables is
not explicitly written to facilitate readability such that χ := χ(T ). Let us note that in the
literature the deviation from the susceptibility is often considered [197–199]

∆f(θ) = 1
2χθ

2
[
1 + b2θ

2 + ...
]
, b2 = − χ4

12χ. (4.17)

The free energy (density) is a continuous function, hence we expect at the transition fc = fd,
with the index c denoting the confined and d the deconfined phase. Expanding them in θ
and reduced temperature t at leading order and dropping the constant terms leads to

fc(t, θ)/Tc = Act+ χc
2 θ

2, (4.18)

fd(t, θ)/Tc = Adt+ χd
2 θ2. (4.19)

The equality of fc and fd right at the transition can be rewritten as

TcAct+ χc
2 θ

2 = TcAdt+ χd
2 θ2, (4.20)
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and simplified to
Tc(θ)
Tc(0) = 1 + ∆χ

2∆εθ
2 := 1 +Rθθ

2. (4.21)

Here we used ∆χ = χd − χc and the latent heat ∆ε at θ = 0

∆ε = εd − εc = T 2 (−∂T (fd/T ) + ∂T (fc/T ))T=Tc
' Tc(Ac −Ad). (4.22)

Using our result for the latent heat ∆ε/T 4
c = 1.025(21)(27) as calculated in Section 4.1.5,

we find, with Rθ = 0.0178(5) from [196] (which is continuum extrapolated on LT = 4),
∆χ/T 4

c = −0.0365(18). Our goal is to quantify ∆χ and the curvature Rθ as a direct lattice
result in the continuum and infinite volume limit. Therefore we use the methods such as
identifying hot and cold phases via histograms and parallel tempering as used to investigate
the deconfinement transition in the last Sections. The following Sections are part of our
publications [168,200].

4.2.1 The topological charge on the lattice

We simulated the pure SU(3) Yang-Mills theory with the Symanzik-improved gauge action
in a narrow range of gauge couplings around βc using parallel tempering. The center of this
range was fine tuned to the critical coupling βc with a per mille precision in T/Tc. At this
coupling we stored the configurations for further analysis. The use of parallel tempering has
significantly reduced the auto-correlation time by allowing a frequent exchange of configura-
tions between T < Tc, T ≈ Tc and T > Tc sub-ensembles. On each lattice configuration we
measured the Symanzik-improved topological charge defined similarly as in [201–203]

Q =
∑

mn∈{11,12}
cnmQmn, (4.23)

where the coefficients cmn are

c11 = 10/3, c12 = −1/3, (4.24)

andQmn is the naive topological charge defined through the lattice version of the field strength
tensor (F̂µν)

Qmn = 1
32π2

1
m2n2

∑
x

∑
µ,ν,ρ,σ

εµνρσ · tr(F̂µν(x;m,n)F̂ρσ(x;m,n)). (4.25)

F̂µν(x;m,n) is built by averaging clover terms of m×n plaquettes at site x on the µν plane.
We introduced smearing on the gauge field via the Wilson flow, which allowed us to measure
a renormalized topological charge which we defined at a given flow time t. All moments of
Q are a constant function of the flow time t in the continuum. In practice one selects a
fixed flow time t in physical units, e.g. relative to the actual temperature T at which the
continuum extrapolation can be carried out using the lattices at hand. The choice of t is,
thus, a compromise, such that t should be small enough to avoid high computational costs
but also to avoid finite volume effects t � L2, yet large enough to maintain t � a2. To
choose an appropriate flow time, we study the t dependence of χ as presented on the left
panel of Fig. 4.14. We show the normalized susceptibility χ/T 4

c , so that the comparison of
lattices with different resolution is meaningful. Different curves with the same color represent
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4.2. Topological features of the deconfinement transition

Figure 4.14: Left: χ/T 4
c as function of tT 2

c on LT = 2 with different resolutions. Black
points indicate results from a Symanzik-improved topological charge and blue empty points
are obtained using no improvement. Right: Continuum extrapolations of χ/T 4

c on LT = 2
lattices for different flow times written as tT 2

c = 1/36 (left) and tT 2
c = 1/18 (right). The

colored bands show linear fits on the data. The shorter bands of color blue are linear fits on
the improved data using data only from finer lattices Nτ > 6. In the case of t/T 2

c =1/36 the
reduced chi square χ2

r = χ2/(degrees of freedom) of the fits for the unimproved, improved
and the short range improved data are respectively χ2

unimp = 1.06/3, χ2
imp = 3.25/3 and

χ2
imp,s = 0.14/2. In the case of tT 2

c =1/18 we got χ2
unimp = 0.85/3, χ2

imp = 1.57/3 and
χ2

imp,s = 0.17/2.

different lattice spacings, and with different colors we show data that were calculated from
the improved or unimproved topological charge. We defined Q at a flow time that fell into the
plateau region even in the case of the coarsest lattices. Our choice of the flow time tT 2 = 1/18
is highlighted with a black vertical line. Fixing t we could calculate χ and determine a
continuum limit for Symanzik-improved and unimproved data sets, which we compare on
the right panel of Fig. 4.14 together with results that we calculated at a smaller flow time
tT 2 = 1/36. If Q is renormalized correctly, the continuum limits obtained from improved and
unimproved data should agree. This is true in the case with our choice of t (right hand side),
whereas at a smaller t (left hand side) finite size effects are still significant and improved and
unimproved continuum extrapolations slightly differ. The blue bands show a shorter range
fit on the improved data, excluding the Nτ = 6 lattice. The continuum limit from the smaller
fit range extrapolation is compatible with results using the whole data set, therefore we will
use one or the other of the two cases in the following sections depending on the χ2 of the fit
on the actual data. In the next section we describe a broader temperature scan throughout
the transition 0.9 T/Tc-1.1 T/Tc. Calculating the Wilson flow at several temperatures would
have a large computational cost. Therefore in this case we calculated Q after using stout
smearing on the gauge field corresponding to the same physical smearing radius as in the
case of the Wilson flow. We performed a number of stout smearings (ρ = 0.125), such that
tT 2
c = 1/18 = Nsmear ρ/N

2
τ . This means Nsmear = 16 for the coarsest lattice (Nτ = 6) and

21.7̄ steps for Nτ = 7, 28.4̄ for Nτ = 8, and 44.4̄ steps for Nτ = 10. Non integers steps were
realized through an interpolation of Q in the step number. The difference between the two
methods turned out to be statistically insignificant. Hence we choose the cheaper smearing
procedure.
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4.2.2 The continuum extrapolated susceptibility in the transition region

In addition to the simulations we carried out by tuning precisely at the transition tempera-
ture, we measured Q for ensembles generated in the vicinity of the transition temperature.
Employing parallel tempering we were able to cover the temperature range 0.9Tc < T < 1.1Tc
in a fine mesh of 64 or more gauge couplings. In this Section we focus on the aspect ratio
LT = 4, for which we could carry out the continuum extrapolation. In Fig. 4.15 the nor-
malized topological susceptibility in the vicinity of Tc is presented for Nτ = 6, 7, 8, 10. For
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Figure 4.15: χ/T 4
c as function of the temperature around Tc for aspect ratio LT = 4. The

continuum extrapolation, which includes statistical and systematic uncertainties, is shown in
black. A result at T = 0 from [204] is added in yellow. It was given in r0 units, which can
be translated by combining w0Tc = 0.25384(23) from [40] with w0/r0 = 0.341(2) from [205]
to obtain χ/T 4

c = 0.1707(55).

the continuum extrapolation, we used a spline interpolation in β to extract data at equal
temperatures for all Nτ . The continuum limit is then performed at fixed temperatures in-
dependently, whereby we use two different scale setting functions. The first scale setting is
defined through w0: we used the w0/a(β) data set from 484 lattice simulations in the same β
range. These w0/a data were translated to Tca(β) scale by the factor w0Tc = 0.25265 valid
for the aspect ratio LT = 4 (and neglecting its per-mill level error). The second scale setting
was defined through the sequence of the transition gauge couplings (βc(Nτ )) for various Nτ

as determined in [40]. We, thus, set Tca(βc(Nτ )) = 1/Nτ and interpolate to the other gauge
couplings (using a polynomial fit). We can estimate the systematic error of the continuum
extrapolation by first fitting with the Nτ = 6 and omitting it in a second fit.

4.2.3 The discontinuity of the topological susceptibility

In this Section we want to quantify ∆χ(Tc) in the continuum and infinite volume limit. As
presented in Fig. 4.16 we can see no significant volume dependence in the deconfined phase,
but below Tc the slope rapidly grows with the volume. Multiplying the temperature axis
with the volume as indicated on the inset plot, there is an overlap of the χ/T 4

c curves, typical
for a 1st order phase transition. In Fig. 4.17 we show the same lattice configurations by
splitting the ensembles into confined (|P | < Pc) and deconfined (|P | > Pc) sub-ensembles.
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Figure 4.16: χ/T 4
c as function of the temperature around Tc for aspect ratios LT = 3, 4, 5, 6

on Nτ = 8. The increasing slope indicates a discontinuity. The inset plot normalizes the
temperature axis with the volume: there the curves overlap at and below Tc.

Similar as described in Section 4.1.5 and shown on the right panel of Fig. 4.11, Pc is the
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Figure 4.17: χ/T 4
c as function of the temperature around Tc for aspect ratios LT = 4, 5, 6

on Nτ = 8. The high and low temperature phases were separated into two sub-ensembles via
cutting the Polyakov loop histogram at the local minimum between both peaks.

position of the local minimum of the renormalized Polyakov loop histogram at Tc for all
temperatures. We see that, at Tc, χ takes very distinct values in the two phases, and this
extends to a small vicinity of the transition temperature, depending on the volume. Similar
to the renormalization scheme described in Section 4.1.1, we renormalize the absolute value
of the Polyakov loop according to

P (T ;Nx, Nτ ) = P0(β(TNτ );Nx, Nτ )Z(β(TNτ ))Nτ , (4.26)
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Chapter 4. Upper right corner of the Columbia plot

with P0(β(TNτ );Nx, Nτ ) denoting the ensemble average of the volume averaged bare Polyakov
loop. The renormalization factor Z(β) is determined by setting a renormalization condition
P (T ) ≡ 1 at T = Tc. We determined Z using LT = 4 lattices with Nτ = 5, 6, 7, 8, 10 and 12.
A polynomial fit to logZ(β) allows an interpolation in β. In the following systematic analysis
the error coming from the Polyakov loop renormalization refers to the ambiguity in the Z(β)
interpolation scheme. We performed simulations right at βc and took possible deviations into
account by reweighting to b3 = 0 (recall Section 4.1.1).

Figure 4.18: χ/T 4
c as function of absolute value of the renormalized Polyakov loop. In

the lower region we show Polyakov loop histograms belonging for different volumes. The
temporal extension of the lattices used for this figure is Nτ = 7.

In Fig. 4.18, for each Polyakov loop bin of the reweighted ensembles χ/T 4
c is shown. We

observe a smooth function for each volume, with a mild volume dependence. The infinite
volume limit is calculated with a 2D fit of a second degree polynomial. We determined ∆χ
at the transition ensemble-by-ensemble by subtracting the value of χ in cold phase from that
of the hot phase (similar to the latent heat calculation). Then we extrapolated the infinite
volume and the continuum limit via a two dimensional fit. The systematic error analysis is
performed in the following way: First we varied the fit range by including and excluding data
with the smallest aspect ratio LT = 4, then we used two different fit formulas for the infinite
volume and continuum extrapolations, one was a function with three parameters f(x, y) =
a+b ·x+c ·y and the other was a function with four parameters g(x, y) = a+b ·x+c ·y+d ·xy,
with x = 1/N2

τ and y = 1/(LT )3. Furthermore we varied the fit range of the function that was

Table 4.3: Error budget of ∆χ/T 4
c .

∆χ/T 4
c

median -0.034378
statistical error 0.0044 13 %
full systematic error 0.0032 9.3 %
Fit range 0.0026 7.43 %
Fit formula 0.0026 7.54 %
Fit range of histogram 0.0000 0.05 %
Renormalizing 0.0000 0.11 %
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4.2. Topological features of the deconfinement transition

used to determine the minima of Polyakov loop histograms, the smaller range being 0.15|P |-
1.85|P | and the larger range was 0.1|P |-1.9|P |. Finally we used two different schemes to
interpolate the renormalization factors of the Polyakov loop. In Table 4.3 the error budget is
shown. As expected, the systematics is dominated by the ambiguities in the infinite volume
extrapolation. Our directly calculated result ∆χ/T 4

c = −0.0344(44)(32) agrees with the
estimated discontinuity obtained from Eq. (4.21).

4.2.4 The θ-dependence of the transition temperature

Similar to the situation for QCD at finite density, simulations at real θ are infeasible due
to the resulting complex action. The method to determine Rθ in [206] uses simulations at
imaginary values of the θ parameter (θI denotes the imaginary part). Analogously to the
study of the T -µB phase diagram, we can also extract Rθ from θ = 0 ensembles. To achieve
this we start from the sub-ensemble of the tempered θ = 0 simulation corresponding to
β ≈ βc(0), that we already used to obtain ∆χ. In these sub-ensemble Q was determined using
the gradient flow. We perform a simultaneous reweighting in θ and β in order to maintain
b3 = 0 (in practice, we used a very small value of θ = 0.02i). This third order cumulant
could be obtained with high precision thanks to parallel tempering. The zero-crossing of b3
was found through reweighting in β from a single gauge coupling, since all streams in the
tempered simulation are roughly equally represented at each β. This eliminated the need
for fitting the curve b3(β). In addition to this, we performed simulations at imaginary θ.
Instead of the Hybrid Monte-Carlo technique we use the pseudo-heatbath algorithm (with
overrelaxation sweeps) to propose updates that undergo a Metropolis step to accept or reject
the update according to the action Stopo = QθI . This Q is defined using a sequence of
stout smearings and the improved clover definition, such that the renormalization step is no
longer necessary. For modest θI parameters (e.g. θI < 2) and volumes (LT ≤ 6) we find
reasonable acceptance (>10%). The range of accessible θI parameters diminishes with the
inverse volume. This, however, does not prohibit the use of larger lattices, since the slope
of b3(β) scales proportionally to the volume, increasing the achievable precision on βc(θI)
accordingly. Thus, in a larger volume we can extract Rθ with a smaller lever arm (a smaller
value of θI). With Eq. (4.21), we can construct a proxy quantity F for the curvature Rθ
which is defined for θ = 0 as well as for imaginary θ

Tc(θ)
Tc(0) − 1
θ2 := F

(
θ2, 1/N2

τ , 1/(LT )3
)
, (4.27)

with Tc(θ)/Tc(0) = w0(βc, θ)/w0(βc, 0). The value of F
(
θ2, 1/N2

τ , 1/(LT )3) at vanishing
arguments is Rθ in the thermodynamic and continuum limit. We perform a global fit to the
data F(x, y, z) = Rθ + Ax + By + Cz, where A, B and C are the leading slopes for the
residual θ2, lattice spacing and volume dependence of F , respectively. We take three sources
of systematic errors into account. First, the scale setting ambiguity, here using different
interpolations to the w0a(β) function. Second, we varied the fit formula, by enabling or
disabling the C/(LT )3 term. Most importantly, the third option controlled the continuum
limit range: whether we included or excluded the coarsest lattice Nτ = 6 in the continuum
extrapolation. The final result for Rθ is shown in Table 4.4.
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Chapter 4. Upper right corner of the Columbia plot

Table 4.4: Error budget of Rθ.

Rθ
median 0.0181
statistical error 0.00045 2.5 %
full systematic error 0.00064 3.5 %
w0 interpolation 5 · 10−6 0.03 %
choice of the fit function F 0.00003 0.14 %
continuum extrap. range 0.0006 3.5 %

This result is in remarkable agreement with the earlier continuum extrapolated (though not
infinite volume extrapolated) value given by the Pisa group Rθ = 0.0178(5) [196].

66



4.3. The critical quark mass in the heavy mass region

4.3 The critical quark mass in the heavy mass region

In the last Sections we studied the thermal and topological features of the deconfinement
transition in quenched QCD. Now we want to investigate the thermodynamics of QCD in the
heavy mass region including dynamical quarks. I refer to Section 2.5.1 to avoid repetitions of
the historical outline regarding the research of the critical mass, but let us recall some main
aspects of criticality in this regime.
Starting from the quenched approximation, decreasing the quark masses weakens the phase
transition until the corresponding latent heat vanishes at the critical mass. These endpoints
of the 1st order phase transition should be in the same universality class as the 3d Ising model
or Z(2) spin systems sharing the same critical exponents. Our goal is the determination of
the critical endpoint mc in the Nf = 3 flavor theory, i.e. we investigate the diagonal of the
Columbia plot with staggered fermions and 4stout smearing. This is a challenging task since
we face critical slowing down and much higher computational costs compared to quenched
simulations due to the inclusion of dynamical fermions. We use again parallel tempering to
improve on critical slowing down, which features high auto-correlations times, too. Although
the mechanisms of critical and supercritical slowing down are similar, they are not completely
identical. The key challenge for the latter was to sample both phases, which are present in
a finite volume near Tc. The barrier between both states significantly increases with the
volume, which is a serious problem in a volume scaling study (recall Section 4.1.2). However,
a key feature of a 2nd order phase transition is a diverging correlation length in the infinite
volume limit. This implies a slow response of the system near criticality - critical slowing
down - leading to a high auto-correlation time as well.

4.3.1 Mass scaling of the observables

We focus on the Polyakov loop and its susceptibility to study the spontaneous and explicit
breaking of the Z(3) center symmetry. The latter leads to a non-vanishing value of 〈|P |〉 in
the confined phase. Nevertheless, the Polyakov loop is still a steeply rising function in the
transition region and its inflection point could be associated with the transition temperature.
Another way to define a critical coupling is the determination of the peak position of the
susceptibility, a strategy we used in the previous Sections and from now on. For simplicity
we work with the bare quantities.
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Figure 4.19: Polyakov loop (left) and its susceptibility (right) as a function of the coupling
β at several masses (in lattice units) in the vicinity of the critical mass on a 483 × 8 lattice.
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Chapter 4. Upper right corner of the Columbia plot

The Polyakov loop and its susceptibility are presented in Fig. 4.19 for several quark masses
in lattice units. It is clearly visible that the the critical coupling is shifted to higher values
by increasing the quark masses. A similar statement can be made for the peak of the suscep-
tibility which increases with the quark masses. Analyzing the peak of the susceptibility is a
suitable method to determine the type of phase transition. A diverging peak in the infinite
volume limit is a clear sign of a real transition. The main task is then how to determine the
peak as precisely as possible. A suitable strategy is to express the susceptibility as a function
of the Polyakov loop, as shown in Fig. 4.20. The advantage is a simpler form of χ (〈|P |〉)
compared to χ(β) (right panel of Fig. 4.19), whereby the latter is compatible with a larger set
of possible fitting functions. For this purpose, all jackknife blocks (cubic splines) are solved
for the central sample: 〈|P |〉(β) = const.. The resulting β are substituted into the jackknife
splines χ(β). In this way, the statistical error on 〈|P |〉 is converted into an additional error
of χ. We used a similar strategy in [33] in which we expressed the chiral susceptibility as a
function of the chiral condensate.
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Figure 4.20: Susceptibility as a function of 〈|P |〉. Left: Illustration of the peak determina-
tion via a low order polynomial fit. Right: Impact of different quark masses on χ.

In the right panel of Fig. 4.20 the mass scaling of the susceptibility is presented for one lattice.
The peak height increases with the quark mass, but this tendency gets weaker for the higher
masses. In particular, a quark mass of m = 2.00 overlaps with the result from quenched
simulations.

4.3.2 Volume scaling of χmax

In the case of a 1st order phase transition, the peak height χmax diverges linearly with the
physical volume (LT )3 →∞. For a 2nd order phase transition, this behavior is accompanied
by critical exponents, probably given by Z(2) spin systems (recall Section 2.5.1). The last
statement relies on continuum QCD, however we expect to observe signs of criticality also at
finite spacing. In Fig. 4.21 the susceptibility as a function of β is presented for two different
quark masses and the three largest lattices. In both cases, the peak height increases with
the volume, but much milder for m = 0.90 compared to m = 1.30. The system seems to be
located more deeply in the crossover phase for the lighter mass, while it gets more critical for
the higher mass (later we will see that m = 1.30 is very close to the critical quark mass). In
Fig. 4.22 the volume scaling of the inverse peak height as a function of the inverse physical
volume is presented on Nt = 8 lattices for several quark masses. For m = 0.90, χ−1

max takes on
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Figure 4.21: χ(β) on three different volumes. Left: Results for m = 0.90, rather located in
the crossover phase. Right: Results for m = 1.30, close to the critical mass.

a finite and non-vanishing value in the infinite volume limit, which is a sign that the system
is still in the crossover region. By increasing the quark masses, the systems seems to get
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Figure 4.22: Inverse peak height as function of the inverse physical volume for three quark
masses. The infinite volume limit corresponds to 1/(LT )3 → 0.

more and more critical, since χ−1
max tends to vanish for 1/(LT )3 → 0, but not linearly. In

particular this is visible for the largest three lattices (403 × 8, 483 × 8, 643 × 8) for which the
linear scaling sets in in quenched QCD (see right panel of Fig. 4.10).

4.3.3 Determination of the critical quark mass

In the case of a 2nd order phase transition, χ−1
max vanishes in the infinite volume limit according

to a power law. We expect Z(2) critical exponents to apply, whereby the quark mass represents
the symmetry breaking field. Therefore we extract the critical quark mass mc via

χ−1
max(LTc →∞) = A · (mc −m)γ , (4.28)
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Figure 4.23: Inverse peak height in the infinite volume limit as a function of the quark
masses for Nt = 6 (left) and Nt = 8 (right).

with A and mc as fitting parameters and γ = 1.2373 [21]. In Fig. 4.23 the infinite volume
extrapolated results for χ−1

max as function of the quark mass are shown for Nt = 6 (left)
and Nt = 8 (right). The critical quark masses are given in lattice units. We can con-
struct dimensionless quantities such as the pseudoscalar mass or w0Tc and get for Nt = 8:
mps/Tc = 20.20(4) and w0Tc = 0.247(4) (errors are purely statistical). These results are close
to previous results from matrix models [80] which predict mps/Tc ≈ 18.7 and lattice simula-
tions with Wilson fermions mps/Tc ≈ 18.1 [84]. The latter was obtained for a Nf = 2 flavor
theory, indicating that Nf could have a mild impact on the critical mass. This assumption
is supported by [80] in which the authors declare that mc increases with Nf .
There are several approaches on how to determine the critical quark mass. For instance,
we focused on the peak of the susceptibility, [84] investigated the finite size scaling of the
fourth Binder cumulant b4 and [82] used a histogram method, for which the Polyakov loop
histogram is reweighted, until the double peak structure vanishes. It is worth to note that
the latter found a double peak structure in the crossover region for volumes 6 ≤ LT . 9,
which is "washed out" for LT = 10, 12. This observation highlights the need for large volumes
to classify the transition. So far continuum extrapolated results are still missing. This is a
challenging and computational expensive task due to the need for large statistics, mainly
caused by critical slowing down and the inclusion of dynamical quarks.
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5 Lattice QCD EoS at finite density

In the last Sections we explored the mass and θ parameter space of thermal QCD with
lattice simulations. Let us now turn to the physical point for which we set θ = 0 and deal
with physical quark masses. The corresponding phase diagram in the T -µB plane is currently
intensively studied, both theoretically and experimentally (recall Section 2.6). In this chapter,
we discuss recent results from lattice simulations, which are highly relevant for heavy ion
collision experiments. The calculation of the EoS of strongly interacting matter under extreme
conditions such as temperature, density or magnetic fields is of outstanding importance. It
gives access to thermodynamic quantities such as entropy or energy density and thus to the
understanding of interactions in heavy ion collisions or dense matter astrophysics. The EoS
is an input for relativistic hydrodynamical simulations [207, 208] which are essential for the
interpretation of experimental results. The capability to reliably detect gravitational waves
opens the possibility to study super dense objects such as neutron stars (and their mergers)
which could feature a "cold" QGP phase in their inner core. Signals of a possible 1st order
phase transition from the QGP to the hadronic phase should be visible in the thermodynamic
quantities and hence shed light on the T -µB phase diagram at low temperatures.
First continuum extrapolated results from the lattice in (2+1) QCD were presented by the
Wuppertal-Budapest collaboration [141] using 2stout staggered fermions on Nt = 6, 8, 10 and
refined withNt = 10, 12, 16 in [209]. HotQCD [210] could confirm these results with a different
discretization using the HISQ action. Furthermore, the EoS with charm quarks (2+1+1) was
calculated in [195] and in the background of magnetic fields in 2+1 QCD [211]. Direct
calculations at finite density are hindered by the sign problem. Using a Taylor expansion
of the EoS [212] with simulations at vanishing chemical potential, the results were extended
to higher µB by adding more terms to the Taylor series [213]. We performed simulations at
imaginary chemical potentials which enabled us to extrapolate the EoS to unreached high and
real µB over a broad temperature range with a new expansion scheme. The work was later
extended by matching conditions which are relevant for heavy ion collisions. The following
Sections are part of our works [143,214,215].

5.1 The EoS from an alternative expansion scheme

The knowledge of the EoS from lattice simulations commonly consists of the Taylor expansion
coefficients of the pressure around µB = 0

p(T, µB)
T 4 =

∑
n

1
(2n)!χ

B
2n(T, 0)

(
µB
T

)2n
, (5.1)

where χBj are the j-th derivatives of the normalized pressure:

χBj (T, µB) =
(

∂

∂µB/T

)j p(T, µB)
T 4 . (5.2)
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Chapter 5. Lattice QCD EoS at finite density

Besides diagonal coefficients, one can also define off-diagonal correlators between different
conserved charges in QCD. Correlators between baryon number and strangeness, which we
will need in our procedure, are defined as

χBSjk (T, µB) =
(

∂

∂µB/T

)j ( ∂

∂µS/T

)k p(T, µB)
T 4 . (5.3)

Such correlators have phenomenological relevance [216] and they can also be used to ex-
trapolate the equation of state of QCD in the full, four-dimensional phase diagram at finite
T, µB, µS , µQ [217]. High order derivatives of the pressure are notoriously difficult to
calculate, as they suffer from a low signal-to-noise ratio. This is because their direct deter-
mination involves large cancellations of different terms containing derivatives of the Dirac
operator [155]. Moreover, pathological behavior – namely non-monotonicity in the T - or µB-
dependence – appears in the extrapolated thermodynamic quantities at chemical potentials
beyond µB/T . 2− 2.5. This is due to the fact that, for large enough µB/T , the observables
at finite chemical potential are dictated by the µB = 0 temperature dependence of the last
coefficient included in the expansion. Hence, the structures appearing around the QCD tran-
sition temperature in higher order coefficients are "translated" into the finite-µB behavior of
e.g., the entropy, baryon density, etc. Another inherent problem with the Taylor expansion
is the fact that it is carried out at constant temperature. This means that the values of the
coefficients at µB = 0 and a certain temperature T determine the equation of state at the
same T at finite µB, while the pseudo-critical temperature Tpc might have varied considerably.
While a sufficiently large number of expansion coefficients would lead to smooth extrapolated
functions, even though the Taylor coefficients themselves present a complex structure around
the transition temperature, the problem here is rather practical. A scheme that could work
with fewer coefficients would be preferable from a cost point of view. In Fig. 5.1 we show
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Figure 5.1: Baryon density from a Taylor expansion with the coefficients of [218], at µB/T =
1, 2, 3, as a function of the temperature. Different colors correspond to the order to which
the expansion is carried out.

the baryon density nB(T ) obtained from a Taylor expansion with the coefficients in [218], at
µ̂B = 1, 2, 3. The extrapolation is shown including an increasing number of coefficients, to
show the effect of higher-order ones. The leading-order (LO) and higher truncations refer to
∼ µ̂B∂nB(T )/∂µ̂B, or ∼ 1

6 µ̂
3
B∂

3nB(T )/∂µ̂3
B, etc. being the last term in the expansion. The

derivatives are taken at µB = 0. At µ̂B = 1 apparent convergence is achieved at the NLO
level, for higher chemical potential this is not the case. Especially at µ̂B = 3, the inclusion
of all the coefficients in [218] causes unphysical non-monotonic behavior.
We start with an interesting obervation from imaginary µB simulations: In the left panel of
Fig. 5.2 we show temperature scans of the quantity nB(T )/µ̂B = χB1 (T, µ̂B)/µ̂B for several
fixed imaginary µB/T ratios. The 0/0 limit at µB = 0 can be easily resolved and equals
χB2 (T ).
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Figure 5.2: Left: The (imaginary) baryon density at simulated (imaginary) baryon chemical
potentials, divided by the chemical potential. The points at µB = 0 (black) show the second
baryon susceptibility χB2 (T ). Right: Same curves as in the left panel, with a temperature
rescaled in accordance to Eq. (5.5) with κ = 0.0205.

The T -dependence of the normalized baryon density at finite chemical potential appears to
be simply shifted/rescaled towards higher temperatures from the µB = 0 results for χB2 . This
behavior is more apparent in the vicinity of the transition, where the slope of these curves
is larger. At very high temperatures, as well as at very low temperatures a simple shift
cannot describe the physics, since the curves become extremely flat. A simple rescaling of
temperatures can be described as

χB1 (T, µ̂B)
µ̂B

= χB2 (T ′, 0), (5.4)

where the actual temperature difference can be expressed through a µB-dependent rescaling
factor that we write for simplicity as

T ′ = T
(
1 + κµ̂2

B

)
. (5.5)

In the right panel of Fig. 5.2 we show a version of the curves in the upper panel, where all
the finite-µ̂B curves are shifted in accordance to Eq. (5.5) with κ = 0.0205. Remarkably, we
note how well the curves are superimposed to each other, even with the simple assumption
of a single, T -independent parameter governing the transformation. A similar behavior is
observed for other quantities too. We show in Fig. 5.3 the first and second order fluctuations
of strangeness at imaginary baryon chemical potentials. In analogy with Eq. (5.4) one has:

χS1 (T, µ̂B)
µ̂B

= χBS11 (T ′, 0), (5.6)

χS2 (T, µ̂B) = χS2 (T ′, 0), (5.7)

where T ′ is defined analogously to Eq. (5.5), albeit with different κ parameters.
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Figure 5.3: Left: (Imaginary) strangeness density divided by the baryon chemical potential.
Right: Strangeness susceptibility at simulated (imaginary) baryon chemical potentials. The
points at µB = 0 (black) show the baryon- strangeness correlator χBS11 (T ) (left) and the
second strangeness susceptibility χS2 (T ) (right), respectively.

Motivation

To motivate our alternative summation scheme, let us first consider a crude approximation
that we will later refine. We take Eq. (5.5) at face value and use it together with Eq. (5.4)
to obtain a well defined χB1 (T, µ̂B) function. We need a χB2 (T, 0) function as well, which we
borrow from a deliberately simple fit f(T ) = a+ b arctan(c(T − d)) to our data on a 483×12
lattice. In principle, we could not only calculate χB1 (T, µ̂B) at arbitrary µ̂B but, blindly
believing Eq. (5.5), one could calculate the higher µB-derivatives as well. While this will not
describe Nature precisely, it can serve as a test for the Taylor expansion method. To this end,
we took several µ̂B-derivatives of our χB1 (T, µ̂B) function and calculated its truncated Taylor
series for the lowest four orders. Here LO means just plotting χB2 (T, 0). We compared our
mock curve (labelled as "full") against its Taylor expansion at three real values of the chemical
potential (see Fig. 5.4). For µ̂B = 1, 2, the summation up to LO and NLO is sufficient to

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 120  140  160  180  200  220  240

µB/T = 1

T
 χ

1
B
/µ

B
(T

)

T [MeV]

N
3
LO

N
2
LO

NLO
LO
full

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 120  140  160  180  200  220  240

µB/T = 2

T
 χ

1
B
/µ

B
(T

)

T [MeV]

N
3
LO

N
2
LO

NLO
LO
full

 0

 0.2

 0.4

 0.6

 0.8

 1

 120  140  160  180  200  220  240

µB/T = 3

T
 χ

1
B
/µ

B
(T

)

T [MeV]

N
3
LO

N
2
LO

NLO
LO
full

Figure 5.4: Benchmarking various orders of the Taylor method assuming an equation of
state, where the µB-dependence of χB1 /µ̂B consists of a simple shift in temperature. This
equation of state is a somewhat simplified form of the observed behaviour.

perfectly reproduce the function. However, as the chemical potential is increased, the Taylor
expansion carried as far as the NNNLO does not reproduce the original function. On the one
hand, convergence is achieved more slowly; on the other hand, spurious effects appear, which
generally manifest themselves in a non-monotonicity of the function. The picture emerging
from this simple analysis is rather suggestive, especially when compared to the results shown
in Fig. 5.1 (right panel) obtained from actual lattice data. We also note that this simple
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5.1. The EoS from an alternative expansion scheme

analysis does not suffer from the additional complications of signal extraction for higher
order expansion coefficients, which in turn play a relevant role in the real-data analysis.

5.1.1 Formalism

At vanishing chemical potential, we can express the normalized baryon density as a Taylor
expansion:

χB1
µ̂B

(T, µ̂B) = χB2 (T, 0) + µ̂2
B

6 χB4 (T, 0) + µ̂4
B

120χ
B
6 (T, 0) + · · · . (5.8)

As shown in Fig. 5.2, the behavior of χ
B
1
µ̂B

(T, µ̂B) at finite chemical potential clearly resembles
that of χB2 (T, µ̂B), although shifted/rescaled in temperature. As long as χB1 /µ̂B is a mono-
tonic function of T , the finite density physics can be encoded into the T ′(T, µ̂B) function. A
straightforward, but systematic generalization of Eq. (5.5) reads:

T ′(T, µ̂B) = T
(
1 + κBB2 (T )µ̂2

B + κBB4 (T )µ̂4
B +O(µ̂6

B)
)
. (5.9)

In the above equation, we introduced the new parameters κBB2 (T ) and κBB4 (T ), which describe
the shift/rescaling of the temperature of χB1 /µ̂B at finite µB. Analogous parameters will be
introduced below for the case of χS1 /µ̂B (κBS2 and κBS4 ) and of χS2 (κSS2 and κSS4 ) at finite µB.
In a way, this formalism replaces the fixed temperature µB expansion by a fixed-observable
temperature expansion. Having now the expressions Eqs. (5.4) and (5.8) for the same quantity
we require their equality at each order in the µ̂B expansion at µB = 0, having:

χB2 (T ′, 0) = χB2 (T, 0) + (T ′ − T )χB′2 (T, 0) + (T ′ − T )2

2 χB′′2 (T, 0) + · · · , (5.10)

with the temperature derivatives

χB′2 (T, 0) := d
dT χ

B
2 (T, 0), χB′′2 (T, 0) := d2

dT 2χ
B
2 (T, 0). (5.11)

To facilitate readability, we suppress for now the baryon B indices for the κ coefficients and
the explicit temperature dependence of χB2 or χB4 to illustrate the calculation:

(T ′ − T )χ′2 = T
(
κ2µ̂

2
B + κ4µ̂

4
B

)
χ′2, (5.12)

(T ′ − T )2χ′′2 = T 2
(
κ2

2µ̂
4
B + κ2

4µ̂
8
B + 2κ2κ4µ̂

6
B

)
χ′′2. (5.13)

Compare order by order Eqs. (5.8) and (5.10)

1. O(µ̂2
B):

χ′2κ2T µ̂
2
B = µ̂2

B

6 χ4 (5.14)

=⇒κBB2 (T ) = 1
6T

χB4 (T )
χB2
′(T )

(5.15)

2. O(µ̂4
B):

χ′2Tκ4µ̂
4
B + µ̂4

B

2 T 2κ2
2χ
′′
2 = µ̂4

B

120χ6 (5.16)

=⇒κBB4 = 1
360χB2

′(T )3

(
3χB2

′(T )
2
χB6 (T )− 5χB2

′′(T )χB4 (T )2
)

(5.17)
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Figure 5.5: Evaluation of Eq. (5.15) on a 243 × 8 lattice with high statistics. The resulting
κBB2 (T ) shows a very mild temperature dependence in the transition region.

Before we embark into the discussion of the lattice analysis, let us have an impression on the
discussed quantities. Eqs. (5.15) and (5.17) give a way to directly determine κBB2 (T ) and
κBB4 (T ) using only µB = 0 data. This approach might be subject to numerical problems,
especially in the case of κBB4 (T ), which is obtained as the difference of two competing terms.
Notice, too, that Eq. (5.15) contains temperature-derivatives of the χ(T ) coefficients, which
may pose a numerical challenge, unless the coefficients are known with sufficient statistics and
resolution in T . On lattices where high statistics data taking is feasible, we can investigate
Eq. (5.15), at least for κBB2 . In the top panel of Fig. 5.5 we compare the numerator and
(rescaled) denominator of Eq. (5.15), while their ratio κBB2 (T ) is shown in the bottom panel.
In the entire transition region the ratio is consistent with a constant, because the peak in
χB4 (T ) is replicated in the temperature dependence of χB2 (T ). As opposed to the Taylor
coefficients, κBB2 (T ) shows a very mild temperature dependence.
A similar treatment can be applied to the other observables. For the second order fluctuations
including baryon number and strangeness, one can consider

χS1
µ̂B

(T, µ̂B) = χBS11 (T, 0) + µ̂2
B

6 χBS31 (T, 0) + µ̂4
B

120χ
BS
51 (T, 0) + · · · , (5.18)

and

χS2 (T, µ̂B) = χS2 (T, 0) + µ̂2
B

2 χBS22 (T, 0) + µ̂4
B

24 χ
BS
42 (T, 0) + · · · . (5.19)

Similarly as before, one can show that

κBS2 (T ) = 1
6T

χBS31 (T )
χBS11

′(T )
, (5.20)

κBS4 (T ) = 1
360χBS11

′(T )3

(
3χBS11

′(T )
2
χBS51 (T )− 5χBS11

′′(T )χBS31 (T )2
)
, (5.21)
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and

κSS2 (T ) = 1
2T

χBS22 (T )
χS2
′(T )

, (5.22)

κSS4 (T ) = 1
24χS2

′(T )3

(
χS2
′(T )

2
χBS42 (T )− 3χS2

′′(T )χBS22 (T )2
)
. (5.23)

To summarize: We use Eq. (5.9) (and its generalization with κij2 and κij4 ) as the definition of a
truncation scheme rather than to investigate a Taylor expanded result. We use lattice data at
zero and imaginary µB to obtain the coefficients in Eq. (5.9), which then can be used to either
calculate the Taylor coefficients or, even better, to extrapolate the equation of state at finite
µB with no reference to the Taylor coefficients themselves. Also, we use imaginary chemical
potentials not only to calculate the coefficients, but also to study the single observable first,
on which the analysis is based. We base our description of the entire chemical potential-
dependence of the QCD free energy function on χB1 (T, µ̂B)/µ̂B. It is essential to rely on one
observable only, in order to guarantee thermodynamic consistency: entropy, pressure and
energy density will obey the known thermodynamic relations (see Section 5.1.5) only if they
come from the same truncation scheme.

5.1.2 Simulation details

We use the lattice action and the parameters described in [155]. The action benefits from
tree-level Symanzik improvement in the gauge sector and four levels of stout smearing for
the staggered flavors. The up and down quarks are degenerate. The resulting light pair of
quarks, as well as the strange and charm quarks assume their respective physical mass. We
performed simulations at µB = 0 on 323 × 8, 403 × 10, 483 × 12 and 643 × 16 lattices in a
temperature range of 130−300 MeV, and up to 500 MeV on larger volumes. These simulations
were complemented at imaginary values of the chemical potential in the temperature range
135 − 245 MeV for the lattice resolutions Nτ = 8, . . . , 12. The µB 6= 0 data were simulated
at µS = 0, some of these ensembles were already used in [218]. In addition, we performed a
high-statistics run on the cheap and coarse 243× 8 lattice, mainly to produce Fig. 5.5. These
data did not enter the continuum extrapolation.

5.1.3 The coefficients κij2 and κij4

For the determination of κij2 and κij4 , one can take advantage of simulations both at zero and
finite imaginary chemical potential. To extract κBB4 (T ) via Eq. (5.17), a precise result on
χ6
B(T ) would be necessary. Instead, we utilize imaginary chemical potential simulations as

follows: We perform simulations at imaginary values of the baryon chemical potential:

µ̂B = i
nπ

8 , n ∈ {3, 4, 5, 6}, (5.24)

with µ̂Q = µ̂S = 0. We simulate temperatures in the range T = 135 − 245 MeV. For
each temperature T and chemical potential µ̂B we determine the temperature T ′ for which
Eq. (5.4) (or Eqs. (5.6) and (5.7) for the other observables) holds, hence defining a function
T ′(T, µ̂B). We can rewrite Eq. (5.9) and define a proxy quantity according to

Π(T, µ̂B) = T ′(T, µ̂B)− T
T µ̂2

B

(5.25a)

= κBB2 (T ′) + κBB4 (T ′)µ̂2
B + κBB6 (T ′)µ̂4

B + . . . (5.25b)

77



Chapter 5. Lattice QCD EoS at finite density

and generalized it in a similar way for the other observables

Π(T, µ̂B) = κij2 (T ′) + κij4 (T ′)µ̂2
B + κij6 (T ′)µ̂4

B + . . . , (5.26)

which we calculate via lattice simulations. The relatively precisely known function χB2 (T, 0) is
first interpolated in temperature. Afterwards, we only need to measure χB1 (T, µB)/µ̂B on an
ensemble with imaginary µB. Equating this to χB2 (T ′, 0) gives us T ′(T, µB). In Section 5.2.5
this procedure is illustrated and generalized for other observables.

Having determined Π(T, µ̂B) for several imaginary chemical potentials and several lattice
spacings for each given temperature, one can perform a polynomial fit in µ̂2

B and obtain the
expansion coefficients. This can be done separately for each lattice. However, we prefer to
combine the µ̂B and continuum fits in one two-dimensional fitting procedure. This combined
fit is repeated for every temperature, in steps of 5 MeV. In order to estimate the systematic
uncertainties associated to our results, we perform a number of analyses at each temperature.
There are several ambiguous points that need to be considered. Most obviously, one could
choose to include the κij6 (T ) term in the fit or not, or consider the fit of 1/Π instead. Also
the range in imaginary µB is arbitrary: we consider Im µB ≤ 2.0 or Im µB ≤ 2.4. When
different lattice spacings are fitted together in a continuum extrapolation, one selects the
bare parameters such that the ensembles correspond to the same physical temperature. This
choice is, however, ambiguous too, as the scale setting may be based on various observables.
In our case, we consider fπ or w0 to this purpose. As we mentioned before, χB2 (T, 0) is
subject to an interpolation, performed through basis splines. The same is true for χB1 (T, µ̂B)
at finite chemical potentials. Since the location of the node points is also arbitrary, we include
three versions at µB = 0 and two at imaginary µB. Finally, in the continuum extrapolation
the coarsest lattice, 323 × 8, has either been used or dropped. The listed options can be
considered in arbitrary combinations. In total we carry out all 144 fits to perform a continuum
extrapolation of κij2 (T ) and κij4 (T ). After dropping the fits with a Q-value below a percent,
we use uniform weights to produce histogram out of these (somewhat less than) 144 results for
each temperature (see [33, 126] for the usage of Q-values in the Kolmogorov-Smirnov tests).
In the plots we show combined errors, where we assume that statistical and systematic errors
add up in quadrature. In the top panel of the left side of Fig. 5.6 we show the results of the
temperature-by-temperature fit procedure for the parameters κBB2 (T ) and κBB4 (T ), alongside
the corresponding expectations from the HRG model. We find that, within errors, κBB2 (T )
has hardly any dependence on the temperature, while κBB4 (T ) is everywhere consistent with
zero at our current level of precision. Nonetheless, a clear separation of almost one order of
magnitude appears between these two coefficients. We also note that good agreement with
the HRG results is found up to at least T = 160 MeV. In the central and bottom panels
of the left side of Fig. 5.6 we show our results for the parameters κBS2 , κBS4 and κSS2 , κSS4
respectively, together with their HRG determinations. While for χBS11 barely any temperature
dependence is observed, as in the case of χB2 , for χS2 a much stronger T -dependence is clearly
visible. As in the case of κBB4 , κBS4 is consistent with zero throughout the whole temperature
range we consider. On the other hand, κSS4 rises above zero for temperatures T & 220 MeV.

Correlated temperature fits to κij2 and κij4
Recall that the error bars in Fig. 5.6 are highly correlated. The correlation is mostly sys-
tematic. The apparent ‘waves’ are often statistically not as significant as it seems at a first
glance. For comparison we refer to the direct result on our coarsest lattice in Fig. 5.5, where
these ‘waves’ are absent. Before moving on to calculate thermodynamic observables at finite
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Figure 5.6: Left side: Continuum extrapolated result for the parameters κBB2 (T ) and
κBB4 (T ) (top panel), κBS2 (T ) and κBS4 (T ) (central panel), and κSS2 (T ) and κSS4 (T ) (bot-
tom panel). The parameters κij2 are shown in blue, and the κij4 in red. HRG results for all
quantities are shown up to T = 160 MeV (in green for κij2 and orange for κij4 , respectively).
Right side: Results of the polynomial fits to the parameters κij2 are shown in blue, and the
κij4 in red. The fitted quantities from the plots of the left side are shown by lighter blue and
red points. Due to the lack of points at low T , we continued the data set with HRG points,
show as green and orange dots. Though the polynomials do not always follow all “excursions”
of the T -by-T result, the reduced χ2 of the correlated temperature fit is always < 1. This
is possible, because the fitted data are highly correlated, coming from both statistical and
systematic effects.
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real chemical potential, we construct a smoother version of our final results for κij2 and κij4 ,
in order to limit the influence of numerical effects on the final observables, but also to obtain
the temperature derivatives needed to calculate the entropy density. Thanks to the very mild
dependence of the coefficients on the temperature, we perform a polynomial fit of order 5
for the κij2 , and of order 2 for the even less T -dependent κij4 . Using fourth or sixth order for
κij2 hardly changes the result. In order to stabilize the low-temperature behavior, we include
in the fit two points from the HRG model for T = 120, 130 MeV, to which we associate an
uncertainty of 5% for κij2 and of 300% for κij4 . The choice of these particular values for the
uncertainties is uniquely guided by the necessity of placing a constraint on the low-T behav-
ior, while avoiding to drive the fit too strongly. For this reason, these arbitrary errors are
chosen to be smaller, but comparable to the lattice ones. We note that the fits we perform
take fully into account the correlations between results at different temperatures, systematic
as well as statistical. Thus we encode all errors into the (correlated) errors of the coefficients
of a polynomial. On the right side of Fig. 5.6 we show the results of the fits in darker color,
with the fitted data in lighter shades. The HRG points included in the fit are shown as well.

5.1.4 Continuum result of χB2 (T ) and its temperature derivative

In order to determine the value of thermodynamic quantities at finite real chemical potential,
a continuum result for χB2 (T, 0) is required in addition to κBB2 (T ) and κBB4 (T ). For some
observables like the entropy, the temperature derivative of χB2 (T ) has to be calculated as well.
We have divided the temperature range into two parts: the transition region and the higher,
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Figure 5.7: Continuum extrapolated χB2 (T ) and TdχB2 (T )/dT functions from Nτ = 10, 12
and 16 lattices at µB = 0.

near-perturbative temperatures. For the lower temperature part, we interpolate using basis
splines the T ∈ [130 MeV, 300 MeV] data points. For the quantity TdχB2 (T )/dT we extended
the data range with the HRG curve, so that the numerical derivative has a level arm at the
lowest temperatures. The basis splines are cubic splines in the given temperature range. We
fit the splines in temperature and in 1/N2

τ in one step. The fitted function in this range is
thus:

χB2 (T, 0;Nτ ) =
n∑
i=1

αibi(T ) + 1
N2
τ

n∑
i=1

βibi(T ) , (5.27)
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where bi(tj) = δij and tj are the knots for the spline with j = 1 . . . n. Only the lattices with
Nτ = 10, 12 and 16 enter the continuum extrapolation. In the high temperature regime, the
smooth monotonic behavior is not well described with cubic splines. Instead we performed
a high order polynomial fit in the inverse temperature 1/T . The known analytical form of
the convergence to the Stefan-Boltzmann limit is, of course, not this polynomial. We do not
wish to enforce the perturbative behavior at the intermediate temperatures that we describe.
Thus, the constant in the 1/T description is not exactly the Stefan-Boltzmann limit, and
for this reason, we cannot regard this as a basis for an extrapolation. However, this simple
approach allows the interpolation and the calculation of the derivative. We used lattice data
in the range T = 180 − 450 MeV. High- and low-temperature regions overlap and the two
fitting methods give consistent results between T = 200−280 MeV for both quantities. Thus,
we simply concatenate the resulting functions at T = 260 MeV. We show the final version of
the TdχB2 (T, 0)/dT and χB2 (T, 0) functions in Fig. 5.7.

5.1.5 Thermodynamics at real chemical potential

Once χB1 = nB is determined, we have everything we need to extract the other thermody-
namic quantities. The integration constant for the pressure is obviously the pressure itself at
µB = 0. We note here that, on the lattice, we always deal with dimensionless thermodynamic
quantities, which correspond to the physical ones divided by suitable powers of the temper-
ature. For example the dimensionful baryon density is χB1 = nB = T 3n̂B (we will hereafter
use the hat to indicate dimensionless quantities). From the baryon density n̂B(µ̂B, T ), the
pressure is obtained through simple integration:

p(µB, T )
T 4 = logZ

T 3V
= p̂(µ̂B, T ) = p̂(0, T ) +

∫ µ̂B

0
dµ̂′B n̂B(µ̂′B, T ). (5.28)

The pressure at zero chemical potential is taken from [209]. Now let us derive the expression
for the dimensionless entropy density ŝ with the thermodynamic relations, which we used for
the calculation of the latent heat in Section 4.1.5:

ŝ(µ̂B, T ) = 1
V T 3 s (5.29a)

= − 1
V T 3

∂F

∂T
(5.29b)

= 1
V T 3

∂

∂T
(T logZ)

∣∣∣∣
µB

(5.29c)

= 1
V T 3

∂

∂T

(
V T 4p̂

)∣∣∣∣
µB

(5.29d)

= T
∂p̂

∂T

∣∣∣∣
µB

+ 4p̂ (5.29e)

= 4p̂+ T
∂p̂

∂T

∣∣∣∣
µ̂B

− µ̂BnB (5.29f)

where in the last step we converted the derivative at constant µB into a derivative at constant
µ̂B. Using Eqs. (5.4) and (5.28) and the substitution y = µ̂2

B, we can write the T -derivative
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Figure 5.8: Baryon density, pressure, entropy, energy density, strangeness density and χS2
at increasing values of µ̂B. With solid lines we show the results from the HRG model.
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of the pressure, which involves the chain rule according to:

T
∂p̂(µ̂B, T )

∂T

∣∣∣∣
µ̂

= T
∂p̂(0, T )
∂T

∣∣∣∣
µ̂

+ 1
2

∫ µ̂2
B

0
T
dχB2 (T ′)
dT ′

∣∣∣∣∣
T ′=T(1+κBB2 y+κBB4 y2)

×

×
[
1 + κBB2 y + κBB4 y2 + T

(
dκBB2
dT

y + dκBB4
dT

y2
)]

dy. (5.30)

The dimensionless energy density ε̂ can be written as

ε̂(µ̂B, T ) = ŝ(µ̂B, T )− p̂(µ̂B, T ) + µ̂Bn̂B(µ̂B, T ). (5.31)

The various panels of Fig. 5.8 show the baryon density, pressure, entropy, energy density,
strangeness density and χS2 for µ̂B = 0 − 3.5. Alongside our results, we show predictions
from the HRG model for T < 150 MeV, which we find in very good agreement with our
extrapolation for all observables, at all values of the chemical potential. We also note that
in all cases, the observables do not suffer from pathological behavior. The uncertainties
are under control for our range of chemical potentials, which highly improves on the results
currently achievable via Taylor expansion.
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Figure 5.9: Comparison of baryon density (left) and energy density (right) at different
values of µ̂B in the case where a κBB4 parameter is used (lighter shades) or omitted (darker
shades). The HRG results are shown with solid lines.

We devote the two panels of Fig. 5.9 to the comparison of our results for the baryon density
(left) and energy density (right) to the simplified case where κBB4 is neglected. We can
appreciate how the inclusion of the next-to-leading-order parameter came at the cost of an
increased uncertainty at larger chemical potential. This does not come unexpected, as we
saw from our results that κBB4 was compatible with zero at all temperatures. In the case
of the energy density, which is dominated by the µB = 0 contribution, hardly any effect is
visible.
We established a novel expansion scheme for the equation of state which is extrapolated to
finite and real baryonic chemical potential µB/T ≤ 3.5 by setting µQ = 0 = µS . In the
following chapter we extend this approach to the strangeness neutral (and beyond) case.

5.2 Strangeness neutrality and beyond

In the previous Sections we discussed a new expansion scheme for the equation of state ex-
trapolated up to µB/T ≤ 3.5. Now we extend this approach by taking strangeness neutrality
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Chapter 5. Lattice QCD EoS at finite density

and the small isospin asymmetry, which are relevant for heavy ion collision experiments, into
account. Additionally, the Stefan-Boltzmann limits of the cumulants are included in the ex-
pansion scheme to improve its convergence in the high temperature region. Furthermore, we
extrapolate the EoS to small non-zero values of the strangeness-to-baryon ratio R = 〈S〉/〈B〉.
While global strangeness neutrality is guaranteed in heavy ion collisions, local fluctuations
can be large in the fluid cells used in hydrodynamic simulations. The following Sections are
part of our works [144,219,220].

5.2.1 Strangeness neutrality

The conditions of heavy ion collisions are encoded in the following equations

〈nS〉 = 0, (5.32)
〈nQ〉
〈nB〉

= 0.4. (5.33)

The first one implies a global strangeness neutrality and the second encodes the slight isospin
imbalance of the colliding nuclei (recall Section 3.3). We investigate the cases: 1) µQ = 0:
Isospin symmetry for which 〈nQ〉〈nB〉 = 0.5 and 2) µQ 6= 0: Isospin asymmetry for which 〈nQ〉〈nB〉 =
0.4.
Let us start with

1. χS1 = 0, χQ1 = 0.5χB1 and hence µQ = 0. By taking the derivative of d
dµ̂B
〈nS〉 = 0 as

described in Section 3.3, we can write

dµ̂S
dµ̂B

= −χ
BS
11
χS2

. (5.34)

Hence, total derivatives with respect to the baryochemical potential read

d
dµ̂B

= ∂

∂µ̂B
+ dµ̂S

dµ̂B
∂

∂µ̂S
= ∂

∂µ̂B
− χBS11

χS2

∂

∂µ̂S
. (5.35)

We denote the total derivatives of the dimensionless pressure with respect to the bary-
ochemical potential along the line µQ = 0 and χS1 = 0 as:

cBn (T, µ̂B) := dnp̂(T, µ̂B)
dµ̂nB

∣∣∣∣∣µQ=0
χS1 =0

. (5.36)

In this scheme, the leading coefficient

cB1 (T, µ̂B) = χB1 −
χBS11
χS2

χS1 = χB1 , (5.37)

gives the net baryon density.

2. χS1 = 0, 0.4χB1 = χQ1 and hence µQ 6= 0. These conditions define a curve in the
µB-µS-µQ space. Along this curve the total derivatives are:

d
dµ̂B

= ∂

∂µ̂B
+ dµ̂S

dµ̂B
∂

∂µ̂S
+ dµ̂Q

dµ̂B
∂

∂µ̂Q
. (5.38)
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Applying this total derivative to the constraints χS1 = 0 and 0.4χB1 = χQ1 , we get

χBS11 + χSQ11
dµ̂Q
dµ̂B

+ χS2
dµ̂S
dµ̂B

= 0, (5.39)

χBQ11 + χSQ11
dµ̂S
dµ̂B

+ χQ2
dµ̂Q
dµ̂B

= 0.4
(
χB2 + χBS11

dµ̂S
dµ̂B

+ χBQ11
dµ̂Q
dµ̂B

)
(5.40)

Along this line, total derivatives will be denoted by:

dBn (T, µ̂B) ≡ dnp̂(T, µ̂B)
dµ̂nB

∣∣∣∣∣χQ1 =0.4χB1
χS1 =0

. (5.41)

For simplicity, we mostly use the first set of conditions with µQ = 0. In Section 5.2.4 we
consider the difference between the two schemes in the leading order of the Taylor expansion
- i.e. we will calculate cB2 (T, 0) and dB2 (T, 0) and their temperature derivatives.

5.2.2 Formalism

The ansatz of Eq. (5.4) can be generalized to

F (T, µ̂B) = F (T (1 + κF2 (T )µ̂2
B + κF4 (T )µ̂4

B + . . . ), 0), (5.42)

where F is some observable of interest, of sigmoid shape in the temperature, such as χB1 /µ̂B.
The superscripts on the κFn denote that the expansion coefficients are different for different
observables. Before describing our improved extrapolation ansatz, we note that the ansatz
given by Eq. (5.42), introduced for µS = 0, would also work at strangeness neutrality. The
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Figure 5.10: Left: The total derivative cB1 on the strangeness neutral line from our imagi-
nary chemical potential simulations. The data points at µB = 0 show the second derivative
d2p̂
dµ̂2

B
. Right: Same observables, with the temperature rescaled by a factor 1 + κµ̂2

B.

existence of the approximate scaling variable on the strangeness neutral line is shown in
Fig. 5.10 for the quantity cB1 /µB, where on the left panel we show the data points of our
simulations for a 483 × 12 lattice, while on the right panel we show the same data points
as a function of a rescaled temperature T (1 + κµ̂2). Notice that the collapse plot with a
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constant κ does not work quite as well at high temperatures. Indeed, one does not expect an
approximate scaling variable outside the crossover range. Our scheme can still incorporate
this behavior by the temperature dependence of the κn coefficients. In fact, with the ansatz
given by Eq. (5.42) the coefficient κ2 grows at high temperatures.

One shortcoming of this scheme is that the region of applicability is restricted by the
Stefan-Boltzmann limit of the right hand side of Eq. (5.42). When the quantity F (T, µ̂B)
gets larger than its infinite temperature limit at µB = 0, the ansatz in Eq. (5.42) must break
down. It is easy to address this shortcoming however, using the scheme only for observables
F that have an infinite temperature limit that is independent of µ̂B. Given an observable
that does not possess this property, one can easily construct another observable, by simply
dividing by its own Stefan-Boltzmann limit:

F (T, µ̂B)→ F (T, µ̂B)
F (µ̂B)

, (5.43)

where the Stefan-Boltzmann limits are denoted by (we always use the continuum limits)

F (µ̂B) = lim
T→∞

F (T, µ̂B). (5.44)

By using the ansatz from Eq. (5.42) on this Stefan-Boltzmann corrected observable, we arrive
at our new scheme, given by

F (T, µ̂B)
F (µ̂B)

= F (T ′F , 0)
F (0)

, (5.45)

where the temperature on the right hand side is expanded as

T ′F = T
(
1 + λF2 (T )µ̂2

B + λF4 (T )µ̂4
B + . . .

)
. (5.46)
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Figure 5.11: Left: The scaled total derivative cB1 /µ̂B on the strangeness neutral line from
our imaginary chemical potential simulations, divided by its chemical potential dependent
Stefan-Boltzmann limit. The data points at µB = 0 show the second derivative cB2 divided
by its Stefan-Boltzmann limit. Right: Same observables, with the temperature rescaled by a
factor 1 + λµ̂2

B.

As is shown in Fig. 5.11, this Stefan-Boltzmann correction does not spoil the collapse plot
in the approximate scaling variable, meaning that the fast convergence of the scheme in the
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crossover region is maintained, with a λ2(T ) coefficient that is approximately constant in the
crossover range. The limitation at high temperature is however removed. Furthermore, as can
be seen on the left panel of Fig. 5.11, the coefficients λn must go to zero at high temperatures,
as the data points for the different imaginary chemical potentials almost overlap. This is in
contrast to the scheme of Eq. (5.42), where κ2 grows at high temperatures.
In this work, we study three different observables F :

1. First, we study the normalized net baryon density F = cB1 /µ̂B. By noticing that
limµ̂B→0

cB1 (T,µ̂B)
µ̂B

= cB2 (T, 0), Eq. (5.45) can be written as

cB1 (T, µ̂B)
cB1 (µ̂B)

= cB2 (T ′BB, 0)
cB2 (0)

, (5.47)

where the infinite temperature limits of cB1 and cB2 are denoted cB1 and cB2 respectively,
and

T ′BB ≡ T (1 + λBB2 (T )µ̂2
B + λBB4 (T )µ̂4

B + . . . ). (5.48)

The Stefan-Boltzmann limits are :

cB1 (µ̂B) = µ̂BcB2 (0) + µ̂3
Bc

B
4 (0), (5.49)

cB2 (0) = 2
9 cB4 (0) = 4

27π2 . (5.50)

The Stefan-Boltzmann limit denotes the infinite temperature limit and reads in lowest
order in perturbation theory for the pressure [221]

pSB

T 4 = 19π2

36 +
∑

i=u,d,s

(
µ2
i

2T 2 + µ4
i

4π2T 4

)
. (5.51)

Using the transformations Eqs. (3.61) to (3.63) the Stefan-Boltzmann limits of the
corresponding observables can be calculated.

2. Second, we study the normalized strangeness chemical potential that is needed to realize
the χS1 ≡ 0 condition in a grand canonical ensemble: F = M(T, µ̂B) ≡ µ̂S

µ̂B
(T, µ̂B). Since

lim
µ̂B→0

M(T, µ̂B) = −χ
BS
11 (T, 0)
χS

2(T, 0)
≡ M(T, 0), (5.52)

Eq. (5.45) becomes:
M(T, µ̂B)
M(µ̂B)

= M(T′BS, 0)
M(0)

, (5.53)

with the Stefan Boltzmann limit M(µ̂B) = limT→∞M(T, µ̂B) and

T ′BS = T (1 + λBS2 (T )µ̂2
B + λBS4 (T )µ̂4

B + . . . ). (5.54)

3. Finally, we study F = χS2 , and denote its Stefan-Boltzmann limit by χS2 . For this
observable, Eq. (5.45) reads:

χS2 (T, µ̂B)
χS2 (µ̂B)

= χS2 (T ′SS , 0)
χS2 (0)

, (5.55)
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where
T ′SS = T (1 + λSS2 (T )µ̂2

B + λSS4 (T )µ̂4
B + . . . ). (5.56)

Note that, at strangeness neutrality, the Stefan-Boltzmann limits of M and χS2 are
independent of µ̂B,

M(µ̂B) = µ̂BM(0) , χS2 (µ̂B) = 1 , (5.57)

thus κBSn = λBSn and κSSn = λSSn .
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Figure 5.12: The strangeness to baryon chemical potential ratio (left panel) and the
strangeness susceptibility (right panel) at simulated imaginary baryochemical potentials on
our 483 × 12 ensembles.

We show the lattice data for M and χS2 on our 483 × 12 ensembles in Fig. 5.12.

5.2.3 Simulation details

The simulation setup is similar as the one described in Section 5.1.2, but not completely
identical. For the scale setting we use again either the pion decay constant fπ = 130.41 MeV
or the Wilson flow based w0 = 0.1725 fm scale [152]. We use lattices of temporal extent
Nτ = 8, 10, 12 and 16 to perform a continuum limit. The spatial volume is given by the
aspect ratio of LT = 4. We performed simulations for imaginary baryochemical potentials
given by Im µ̂B

8
π = 0, 3, 4, 5, 6, 6.5. In addition, for the Nτ = 12 lattices we also have data

at Im µ̂B
8
π = 5.5. Strangeness neutrality was enforced on our imaginary chemical potential

ensembles via the procedure discussed in [33,156].

5.2.4 Continuum result of cB2 , dB2 and their temperature derivatives

In contrast to the previous project, we take strangeness neutrality into account and hence deal
with cB2 or dB2 instead of χB2 . Similarly as described in Section 5.1.4, we need the continuum
extrapolation and their temperature derivative at µB = 0 for thermodynamic quantities such
as entropy or energy density. The analysis is similar as the one described in Section 5.1.4
with slight changes: We concatenate the resulting functions at T = 250 MeV this time and
the known Stefan-Boltzmann limit is not enforced in the constant term of the polynomial fit
in 1/T . Hence, the fitted value of the constant is not equal to the known infinite temperature
limit, and our fit only allows for interpolation in the range where we have lattice data. The
region where the two ansätze overlap give consistent results in the temperature range between
200 MeV and 280 MeV for both cB2 and its T derivative. Final results for cB2 (T, 0) and its
logarithmic temperature derivative are shown in Fig. 5.13.
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Figure 5.13: cB2 (T, µ̂B = 0), dB2 (T, µ̂B = 0) and their logarithmic temperature derivatives
in the continuum limit, as extrapolated from our Nτ = 10, 12 and 16 lattices.

We also performed the same analysis for dB2 (T, 0), corresponding to χQ = 0.4χB. The re-
sults for this quantity and its temperature derivative are also shown in Fig. 5.13. At high
temperatures, there is a small but statistically significant difference between dB2 and cB2 . The
difference of these Taylor coefficients leads to a small difference between the leading order
chemical potential dependence in these two cases for high temperatures. The next correc-
tions, corresponding to the λBBn coefficients of our resummation scheme, would probably also
slightly differ in the two cases, but our lattice results are not yet precise enough to detect
this difference. Therefore, we go on with the µQ = 0 setting for simplicity.

5.2.5 The coefficients λij2 and λij4

We follow a similar strategy as described in Section 5.1.3 to obtain the coefficients λij2 and
λij4 . Hence let us briefly discuss the main aspects of the analysis to avoid repetitions.
We can define the quantity

Π(T, µ̂B, Nt) = T ′(T, µ̂B, Nt)− T
T µ̂B

(5.58a)

= λij2 + λij4 µ̂
2
B + λij6 µ̂

4
B + . . . (5.58b)

which allows us to calculate the coefficients in the following way.

1. Denoting by A either one of the observables cB1 , M = µS
µB

or χS2 and calling B one of cB2 ,
−χBS11

χS2
or χS2 respectively, and denoting the corresponding Stefan-Boltzmann corrected

observables by Ã = A/A and B̃ = B/B respectively, our extrapolation ansatz is defined
as

Ã(T, µ̂B) = B̃(T ′, 0). (5.59)

2. Spline interpolations are performed for Ã at finite imaginary µB and for B̃ at µB =
0. Matching both observables for several temperatures T and imaginary µB defines
T ′(T, µB). This procedure is illustrated in Fig. 5.14.
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3. The T ′(T, µB) values are used for the proxy Π(T, µ̂B, Nt) which determines the coeffi-
cients λij2 and λij4 .

4. Continuum extrapolation of Π follows the ansatz

Π(T, µ̂B, Nt) = λA2 + λA4 µ̂
2
B + λA6 µ̂

4
B + 1

N2
t

(
αA + βAµ̂2

B + γAµ̂4
B

)
, (5.60)

where we either fix λA6 = γA = 0 or leave both as free parameters in the fit.
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Figure 5.14: Illustration of the rescaled temperatures T ′BB determination by spline fits
to the data at zero and imaginary baryochemical potential. In this case, the µB = 0 data
correspond to cB2 (T, 0).

The different choices in the analysis procedure include:

• 3 different sets of spline node points at µB=0

• 2 different sets of spline node points at finite imaginary µB

• w0 or fπ based scale setting

• 2 different chemical potential ranges in the global fit: µ̂B ≤ 5.5 or µ̂B ≤ 6.5

• 2 functions for the chemical potential dependence of the global fit: linear or parabola

• including the coarsest lattice, Nτ = 8, or not, in the continuum extrapolation.

This amounts to a total of 96 = 3 × 25 fits entering the systematic error estimation. As
described in Section 5.1.3, we perform a correlated polynomial temperature fit for λij2 and
λij4 to obtain the temperature derivatives needed for the calculation of e.g. the entropy.
Results are shown in Fig. 5.15. In contrast to our previous approach (right side of Fig. 5.15)
which does not take the Stefan-Boltzmann correction into account (recall Section 5.1), the
coefficients λ2 (except λSS2 ) tend to zero within error bars at the higher end of our temperature
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Figure 5.15: Left side: λBBn (top panel), λBSn (middle panel) and λSSn (bottom panel) in
the continuum. They indicate our Stefan-Boltzmann corrected approach. Also shown are the
fits used to estimate the temperature derivative of these coefficients, as well as predictions of
the HRG model, which we use to constrain the fits at low temperatures. On the right side are
the plots of Fig. 5.6 (right side), κBBn (T ) (top panel), κBSn (T ) (central panel) and κSSn (T ) and
(bottom panel). They correspond to the approach which is not Stefan-Boltzmann corrected.

range, as expected. Furthermore, all of the λ2 and κ2 coefficients are approximately constant
in the crossover range, as is expected from the existence of the approximate scaling variable
(be aware of the different ranges of the y-axis). The λSS2 is still non-zero, as the strangeness
susceptibility χS2 tends to its Stefan-Boltzmann limit more slowly, due to the larger strange
quark mass.
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Chapter 5. Lattice QCD EoS at finite density

5.2.6 Thermodynamics at real chemical potential

We follow the calculations of Section 5.1.5 to obtain the pressure, energy density and entropy.
The major difference is the strangeness neutrality condition, so the equations have to be
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Figure 5.16: The dimensionless baryon density (top left panel), pressure (top right panel),
entropy (middle left panel), energy density (middle right panel), strangeness chemical po-
tential to baryochemical potential ratio (bottom left panel) and strangeness susceptibility
(bottom right panel) as functions of temperature at different values of the real chemical po-
tential. The solid lines always show the predictions of the hadron resonance gas model for
the corresponding temperature.

slightly changed. For the pressure, we calculate the following integral

p(T, µ̂B)
T 4 = p(T, 0)

T 4 +
∫ µ̂B

0
cB1 (T, µ̂′B)dµ̂′B, (5.61)
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5.2. Strangeness neutrality and beyond

with

cB1 (T, µ̂B) = cB2 (T ′, 0)c
B
1 (µ̂B)
cB2 (0)

, (5.62)

As before, the pressure at zero chemical potential is taken from [209]. For the entropy (recall
the derivation of Eq. (5.29f))

ŝ(µ̂B, T ) = 4p̂+ T
∂p̂

∂T

∣∣∣∣∣
µ̂B

− µ̂BχB1 , (5.63)

we need the temperature derivative of the pressure again - but this time along the strangeness
neutral line, leading to

T
∂p̂(T, µ̂B)

∂T

∣∣∣∣
µ̂

= T
∂p̂(T, 0)
∂T

+ 1
2

∫ µ̂2
B

0
T

dcB2 (T ′, 0)
dT ′

∣∣∣∣∣
T ′=T(1+λBB2 y+λBB4 y2)

×

×
[
1 + λBB2 y + λBB4 y2 + T

(
dλBB2
dT

y + dλBB4
dT

y2
)]

dy. (5.64)

The continuum estimates of the dimensionless baryon number, pressure, entropy density,
energy density, µS/µB ratio and strangeness susceptibility - as computed from the expansion
coefficients up to order λij4 - are shown in the various panels of Fig. 5.16. Even with the
inclusion of the λij4 coefficients, the statistical errors of our results stay well under control in
the chemical potential range we study. Similarly to our previous results for the µQ = µS = 0
case (see Fig. 5.8) none of the observables display the pathological oscillations typical of
truncated Taylor expansions.
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Chapter 5. Lattice QCD EoS at finite density

5.2.7 Beyond strangeness neutrality

So far we extrapolated the pressure and the corresponding thermodynamic quantities along
the strangeness neutral line. These results can be used to perform extrapolations to small
values of the strangeness density, slightly off the χS1 = 0 line. Let us denote the value of the
dimensionless strange quark chemical potential that solves χS1 = 0 at fixed T and µ̂B as µ̂∗S .
Still considering a fixed µ̂B and T , but changing µ̂S slightly from the strangeness neutral
choice by a small amount

∆µ̂S ≡ µ̂S − µ̂?S , (5.65)
the dimensionless strangeness and baryon densities read at leading order in ∆µ̂S

χS1 (µ̂S) ≈ χS2 (µ̂?S)∆µ̂S , (5.66)
χB1 (µ̂S) ≈ χB1 (µ̂?S) + χBS11 (µ̂?S)∆µ̂S , (5.67)

We perform the extrapolation beyond strangeness neutrality in terms of the strangeness-to-
baryon ratio

R = χS1
χB1

= χS2 (µ̂?S)∆µ̂S
χB1 (µ̂?S)∆µ̂S + χBS11 (µ̂?S)

, (5.68)

which can be inverted to obtain

∆µ̂S = Rχ̂B1 (µ̂?S)
χS2 (µ̂?S)−RχBS11 (µ̂?S)

. (5.69)
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Figure 5.17: Left: Shift of the strangeness chemical potential as a function of the temper-
ature at µ̂B = 2, at various values of the strangeness-to-baryon ratio R = χS1 /χ

B
1 . The solid

lines show the exact solution of R = χS1 /χ
B
1 HRG, while the dashed lines show the evaluation

of the approximation of Eq. (5.69) in the HRG model. Right: Dimensionless baryon density
as a function of the temperature at µ̂B = 2, for various values of the strangeness-to-baryon
R = χS1 /χ

B
1 .

Then, we simply note that

−χ
BS
11
χS2

= dµ̂S
dµ̂B

= d
dµ̂B

[
µ̂BfBS(T ′BS(T, µ̂B))

]
= µ̂B

[
fBS(T ′BS) + ∂fBS(T ′BS(T, µ̂B))

∂µ̂B

]
, (5.70)
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5.2. Strangeness neutrality and beyond

where we used the shorthand notation fBS(T ) ≡ M(T, 0) = −χBS
11
χS

2
(T, µ̂B = 0). The quantity

∆µ̂S is shown for µ̂B = 2 as a function of temperature for various value of R in the left panel
Fig. 5.17. Substituting Eq. (5.69) into Eq. (5.67) we obtain - to leading order in R

χB1 (T, µ̂B, R)
χB1 (T, µ̂B, R = 0)

≈ 1 +R
χBS11 (T, µ̂B, R = 0)
χS2 (T, µ̂B, R = 0)

, (5.71)

where all quantities on the right hand side are along the strangeness neutral line. Results for
the dimensionless baryon density at µ̂B = 2 for several values of R are presented on the right
panel of Fig. 5.17.
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6 Finite volume effects of the QCD crossover
at finite density

The thermal transition of QCD for physical quark masses and vanishing chemical potential
is an analytic crossover [12]. Finite size scaling using aspect ratios LT = 4, 5, 6 specified the
transition as analytic since the peak of the chiral susceptibility basically shows no or a mild
volume dependence. Further studies of the EoS demonstrated that the main driver of uncer-
tainties are not finite volume effects, but instead cut-off effects which lead to taste-violation
in the case of staggered quarks [141]. Especially the observation that there is basically no
volume dependence in the transition region contributed to the unspoken common standard
in the community to choose LT = 4 to study the thermal properties of QCD (as we did in the
last Chapter). Nevertheless finite volume effects play a crucial role phenomenologically and
theoretically. The fireball produced in heavy-ion collisions is of finite size and if the crossover
turns into a real transition, volume effects get more and more severe. Furthermore, the study
of finite volume effects is important for reweighting methods which are up to now restricted to
smaller physical volumes (see e.g. [175,222]). Recent studies employing phase [223] (LT = 2)
or sign reweighting [224] (LT ≈ 2.7) use small volumes to reduce the overlap problem. One
motivation of the following Section is to identify physical observables with milder finite vol-
ume effects, which can then later be calculated up to higher chemical potentials with such
reweighting methods. Moreover, the calculation of higher-order (baryon) fluctuations which
are essential to reconstruct the EoS, is challenging on large volumes. The central limit the-
orem dictates that for large volumes the high order baryon fluctuations (beyond 2nd order)
are suppressed due to the ideal underlying Gaussian distribution [225, 226]. In the following
Section we investigate finite volume effects of observables related to the chiral and deconfine-
ment analytic transition at finite density. Therefore, we use again simulations at imaginary
chemical potential and investigate the strength and width of the transition on Nt = 12. The
following Sections are part of our works [227,228].

6.1 Simulation details

The lattice setup is similar to the one used in Chapter 5: We use a tree-level Symanzik
improved gauge action and four steps of stout smearing in the staggered fermion action.
The quark masses are tuned such that the pion and kaon masses are equal to 135 MeV
and 495 MeV. The scale is set with the pion decay constant fπ = 130.41 MeV. We use
lattices with Nτ = 12 timeslices. We use several physical volumes, with the number of spatial
sites Ns = 20, 24, 28, 32, 40, 48 and 64 for the µB = 0 simulations. For three of the spatial
volumes (Ns = 32, 40 and 48) we also simulate at a purely imaginary chemical potential, with
µB
T

8
π = 3, 4, 5, 6, 6.5 and 7. Throughout this Section, we always use a strangeness chemical

potential µS tuned in such a way that the expectation value of strangeness is equal to zero.
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Chapter 6. Finite volume effects of the QCD crossover at finite density

6.2 Chiral observables

To investigate the chiral aspects of the QCD crossover we calculate the chiral condensate〈
ψ̄ψ
〉
and the chiral susceptibility χ defined respectively as:

〈ψ̄ψ〉 = T

V

∂ logZ
∂mud

, χ = T

V

∂2 logZ
∂m2

ud

. (6.1)

In the limit of zero quark masses 〈ψ̄ψ〉 is a true order parameter of the chiral phase transition.
In terms of the the discretized (massive) Dirac operator for the up and down quarks Mud,
the chiral condensate is written as

〈ψ̄ψ〉 = 1
2
T

V

〈
TrM−1

ud

〉
, (6.2)

where 〈. . . 〉 stands for the expectation value over the gauge fields and the factor 1
2 appears

due to staggered rooting. In lattice language, the order parameter is then proportional to the
trace TrM−1

ud . We will also study the disconnected part of the chiral susceptibility, defined
as

χdisc = 1
4
T

V

(〈(
TrM−1

ud

)2
〉
−
〈

TrM−1
ud

〉2
)
, (6.3)

where the factor of 1/4 is present - again - due to staggered rooting. This is essentially the
variance of TrM−1

ud in the lattice QCD language. The disconnected susceptibility can also be
defined as a cross-derivative:

χdisc = T

V

(
∂2

∂mu∂md
logZ

)
mu=md

, (6.4)

thus, it is a legitimate physical observable. We study both the full and disconnected suscepti-
bilities, because they may be sensitive in different ways to the distinct critical points present
in the 3 dimensional QCD phase diagram spanned by the variables T , µ2

B and mud. The
condensate and the susceptibilities contain both multiplicative and additive UV divergences.
One possible definition of UV finite condensate and susceptibility is given by the following
renormalization

〈ψ̄ψ〉R = mud

f4
π

[
〈ψ̄ψ〉T=0 − 〈ψ̄ψ〉T

]
, (6.5)

χR = m2
ud

f4
π

[χT=0 − χT ] , (6.6)

χRdisc = m2
ud

f4
π

[χdisc,T=0 − χdisc,T] , (6.7)

where the division by f4
π is there to ensure the quantities 〈ψ̄ψ〉R, χR and χRdisc are dimen-

sionless. The chiral condensate should vanish in the high temperature region due to the
(approximate) restoration of chiral symmetry. Defining the renormalized condensate accord-
ing to Eq. (6.5) leads to the opposite behavior.
The peak position of either the full or disconnected susceptibilities can be used to define the
chiral crossover temperature. Similarly, the maximal value of either of these susceptibilities
can be used to study the strength of the crossover transition, as they both diverge in the
presence of true critical behavior. In the left panel of Fig. 6.1 the renormalized chiral con-
densate as a function of the temperatures is presented. The right panel shows the full and
disconnected chiral susceptibility, where the latter takes on smaller values compared to the
full susceptibility in the transition region at fixed volume.
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Figure 6.1: Left panel: The renormalized chiral condensate as a function of temperature
for different spatial volumes. Right panel: The renormalized full and disconnected chiral
susceptibility as a function of temperature for different spatial volumes. The full susceptibility
is always higher compared to the disconnected one at fixed volume in the transition region.

6.3 Deconfinement observables

As discussed in Section 2.3 the Polyakov loop can be used to probe the spontaneous breaking
of the center symmetry. Its expectation value is related to the quark free energy FQ and
hence sensitive to deconfinement. We can define the free energy and the static quark entropy
SQ according to [39]

FQ = −T log
(

1
V

∑
~x

| 〈P (~x)〉T |
)

+ T0 log
(

1
V

∑
~x

| 〈P (~x)〉T0
|
)
, (6.8)

SQ = −∂FQ
∂T

. (6.9)

T0 is a reference temperature, and the second term in the definition of FQ is needed to remove
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Figure 6.2: Left panel: The static quark free energy as a function of temperature for
different spatial volumes. Right panel: The static quark entropy as a function of temperature
for different spatial volumes. In order for the curves not to overlap, they were shifted by
arbitrary amounts in the vertical direction. The horizontal datapoints located on the bottom
show the associated transition temperature. Both panels show results at µ = 0.
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Chapter 6. Finite volume effects of the QCD crossover at finite density

the additive divergence in the free energy. The value of the reference temperature T0, together
with Eq. (6.8) defines a renormalization scheme for the static quark free energy. In practice,
we interpolate FQ in β provided by 323×8, 403×10, 483×12, 643×16 and 803×20 at fixed T0.
The entropy SQ is estimated by interpolating the lattice results for FQ(T ) and differentiating
the interpolating function. For the interpolation we use a second order-by second order
rational function fit. For pure gauge theory, where a true first order deconfinement phase
transition is present, the static quark free energy is infinite in the confined phase (i.e. the
Polyakov loop is zero). For full QCD, this is no longer the case. Nevertheless, one can use the
peak of SQ(T ) (the inflection point of FQ(T )) to define a crossover temperature. In Fig. 6.2
we show results for FQ and SQ for several different volumes.

6.4 Vanishing chemical potential

The key feature of a crossover transition is basically no or a very mild volume dependence
of the observables and hence the absence of discontinuities or divergences up to the infinite
volume limit. In the opposite direction, i.e. decreasing the volume, the behavior is not so
clear.

6.4.1 Chiral condensate

Chiral perturbation theory (chiral PT) predicts an exponential dependence of the chiral
condensate as a function of the spatial extension Nx. The leading asymptotic behavior of the
condensate at T = 0 takes on the form [229]

〈ψ̄ψ〉 ∼
√
mπ

F 2
π

e−mπNx

(2πNx)3/2 . (6.10)

In Fig. 6.3 we fit this prediction to the chiral condensate values which are obtained via a
spline interpolation at fixed T = 140 MeV for all lattices. The blue curve is the fit function

20 30 40 50 60
Nx

0.15

0.20

0.25

0.30

0.35 f(Nx) = a + b c exp( c Nx)
N3/2

x

T = 140 MeV, Nt = 12

Figure 6.3: Chiral condensate at a fixed temperature T = 140 MeV for every lattice with
Nt = 12 as a function of the spatial extension Nx. The blue curve is a fit inspired by chiral
PT Eq. (6.10) in the range of Nx ∈ [28, 64].
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6.4. Vanishing chemical potential

f(Nx) as shown in the legend and provides χ2/ndof = 1.03. The coefficient c is mπ according
to Eq. (6.10) and reads c = 131 ± 10 MeV. This remarkable agreement with the pion mass
is only true for Nx ≥ 28. One reason for this lies in the fact that the transition temperature
for 183× 12 and 203× 12 is below T = 140 MeV as shown in Fig. 6.5 on the lower left panel.
Hence the system tends to be deconfined and cannot be described by chiral PT Eq. (6.10).

6.4.2 The transition temperature Tc defined by χfull

An analytic crossover transition does not provide a unique transition temperature. Instead,
different observables might lead to different results depending on their exact definition (see
[230] for a detailed discussion). To investigate the volume dependence of the transition
temperature, we restrict the following analysis on Tc defined by the peak of the full chiral
susceptibility. The full chiral susceptibility is expressed as a function of the chiral condensate.
The advantage is that χ(〈ψ̄ψ〉) has a simpler form compared to χ(T ) and can be fitted more
precisely with a low order polynomial. Together with the corresponding 〈ψ̄ψ〉c for which χ
takes on its maximum value, the transition temperature can be read off from 〈ψ̄ψ〉 (T ) via
spline interpolation. This procedure allows us to calculate precisely the proxy δT for the
width of the transition defined as

δT = 〈ψ̄ψ〉−1
(
〈ψ̄ψ〉c + ∆ 〈ψ̄ψ〉

2

)
− 〈ψ̄ψ〉−1

(
〈ψ̄ψ〉c −

∆ 〈ψ̄ψ〉
2

)
, (6.11)

∆ 〈ψ̄ψ〉 =

√√√√√−χmax

 d2χ

d 〈ψ̄ψ〉2

∣∣∣∣∣
〈ψ̄ψ〉c

−1

. (6.12)

More details can be found in [33] and my Master thesis [126]. For a broad range of aspect
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Figure 6.4: Left: Exemplary continuum extrapolation of Tc at aspect ratio LT = 4. Right:
Continuum extrapolated Tc as a function of the aspect ratio LT and additional infinite volume
extrapolation via an exponential fit.

ratios we can now perform a continuum extrapolation as exemplary demonstrated on the left
panel of Fig. 6.4. The continuum extrapolated results of the transition temperature for each
aspect ratio are shown on the right panel. Again, we observe an exponential dependence
which allows us to obtain the infinite volume limit of the continuum extrapolated transition
temperatures

Tc(Nt →∞, LT →∞) = 158.9± 0.6 MeV. (6.13)
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Chapter 6. Finite volume effects of the QCD crossover at finite density

The error is purely statistical whereby two different polynomial fits of order 3,4 for the peak
determination are used and combined. The exponential dependence on the volume is not
limited to Tc. As demonstrated in Fig. 6.5, the peak of the full susceptibility χmax and the
width of the transition δT Eq. (6.11) indicate a similar behavior. The lower left and lower
right panel show Tc as function of Nx and the box size L respectively. The box size can be
obtained by

L = Nx · a = Nx

Nt · Tc
, (6.14)

and multiplied with the appropriate factor to get a result in fm. The idea is to keep the box
size constant and to vary the lattice geometry at fixed temporal extension.
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Figure 6.5: Volume dependence of χmax (upper left), δT (upper right) and Tc (lower left)
as functions of Nx. The lattice geometry is converted in the box size L in fm (lower right).

The peak of the susceptibility (upper left panel) decreases and stays nearly constant if Nx '
40 (LT ' 3.3) which is a clear sign of a crossover. It confirms the common standard to use
LT = 4 in QCD thermodynamics to be close to the infinite volume limit. In the opposite
direction, the peak increases significantly as the volume is further decreased.

6.4.3 Crossover temperatures defined by different observables

We are now in a position to compare the deconfinement and chiral symmetry related defini-
tions of the crossover temperature. We show the different values of Tc defined as the peak of
χR(T ), the peak of χRdisc(T ) as well as the peak of SQ(T ) in Fig. 6.6. For comparison, we also
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6.4. Vanishing chemical potential

show curves where the chiral condensate or the static quark free energy are constant, with
the constant chosen to be the infinite volume value at the crossover temperature defined via
the full chiral susceptibility.
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Figure 6.6: Five different definitions of the transition temperature as functions of the
simulation volume, labeled by the aspect ratio LT = Nx/Nt. The purple and cyan points
refer to the peak position of the full and disconnected chiral susceptibility, respectively. In
addition, we show the temperature where the chiral condensate is constant (blue). In all
cases, the infinite volume value is approached from below. The two other measures of Tc
come from the Polyakov loop, either keeping a constant value for FQ (pink), or determining
the maximum of the static quark entropy SQ (purple). In these both cases, the infinite
volume limit is approached from above. The fixed values of the chiral condensate and FQ
have been set such that these match the infinite volume limit at the maximum of the full
chiral susceptibility.

Fig. 6.6 establishes an ordering of the different crossover temperatures in the infinite volume
limit:

T
(SQ)
c < T

(χRdisc)
c < Tχ

R

c . (6.15)

The differences between the definitions are small, amounting only to a few MeV. The identi-
fication of such an ordering had never been possible in existing literature, due to larger error
bars. Furthermore, we see a different volume dependence of the different crossover tempera-
tures. Namely, the two chiral definitions lead to a Tc that is monotonically increasing with
the physical volume, while the deconfinement definition leads to a Tc that is monotonically
decreasing with the volume. This means that at small enough volumes, the ordering changes,
and the definition of Tc based on the static quark entropy becomes the largest. We also note
that finite volume effects on the deconfinement based definition of Tc appear to be smaller.
Even on the smallest lattice, with aspect ratio LT = 2, the deconfinement based definition
gives a result of around 160 MeV, which is quite close to the infinite volume value, and is
much larger than the chiral symmetry based definitions.
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6.5 Imaginary chemical potential

Our extrapolation method to real µB is based on the observation of an approximate data
collapse [33]. The chiral susceptibility as a function of the chiral condensate is a curve
that is almost independent of the imaginary chemical potential. In [33] we demonstrated
this for the full susceptibility. Here, we show it both for χfull and χdisc in Fig. 6.7 where
both susceptibilities are shown as functions of the condensate for several imaginary chemical
potentials, for two different volumes.
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Figure 6.7: The full (filled symbols) and disconnected (crosses) chiral susceptibilities as
a function of the condensate for two different volumes and several values of the imaginary
chemical potential.

The collapse curves for both susceptibilities are approximately independent of the imaginary
chemical potential, they significantly depend on the volume. Similarly to the procedure
described in Section 6.4.2, the analysis steps are:

1. Determine the renormalized (full or disconnected) susceptibility as a function of the
condensate for several values of the imaginary baryochemical potential.

2. Find the peak position in the susceptibility as a function of the condensate for each
value of ImµB/T with a low order polynomial fit.

3. Use an interpolation of the condensate as a function of T to convert the peak position
from the condensate value to the temperature for each ImµB/T .

4. Perform a fit of Tc(ImµB/Tc), and use the fit to extrapolate the crossover temperature
from µ2

B ≤ 0 to µ2
B > 0.

If instead of the chiral condensate, one attempts to show the chiral suscpetibility as a function
of the static quark free energy FQ, the collapse is less accurate. This is shown in Fig. 6.8,
where the left panel shows χfull as a function of FQ for several imaginary chemical potentials
on our 483 × 12 lattices. For the calculation of the crossover temperature defined with SQ,
we simply use the same rational function fit of FQ(T ) that we used for the µB = 0 case. The
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6.6 Phase diagram at finite and real density

Now let us turn to the volume dependence of the phase diagram. We show the crossover
temperature, defined via the peak position of the full and disconnected chiral condensates,
as well as the static quark entropy as a function of µ2

B/T
2 in the left panel of Fig. 6.9 in

a fixed volume, on our 483 × 12 lattices. We see that not only Tc(µB = 0), but also the
chemical potential dependence is different for the different definitions. At larger imaginary
chemical potentials, the three definitions come closer to each other, which might be due to
the presence of the Roberge-Weiss critical endpoint. In the near vicinity of such a critical
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Figure 6.9: Left: Extrapolation of the crossover temperature as a function of µ2
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2 using
the three different definitions discussed in the main text on our 483 × 12 lattices. Right:
Crossover temperature defined via the peak of χfull for different lattice volumes, fixed in fm.

point, the crossover transition should get narrower, and we thus expect different definitions of
the crossover temperature to converge towards each other. This is exactly what we observe.
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Chapter 6. Finite volume effects of the QCD crossover at finite density

Here, we note that in the strangeness neutral setting employed in the present paper, the
Roberge-Weiss transition is not located at ImµB/T = π, but at a slightly larger value [231].

6.7 Strength of the crossover at finite density

A very interesting question, with more phenomenological implications, is whether the crossover
line turns into a line of first order transitions at a critical endpoint at some real value of the
baryochemical potential µB. If it does, it is expected that the crossover transition becomes
narrower and stronger at larger µB, at least in the vicinity of the critical endpoint. Here,
we discuss some measures of the width or strength of the transition as functions of µB for
small chemical potentials. In Fig. 6.10 we present the values of SQ, χR and χRdisc at the
crossover temperature as functions of µ2

B/T
2, for two different physical volumes, where the

bands show linear extrapolations in µ2
B/T

2. All three quantities should diverge at the crit-
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extrapolations in µ2

B for three different volumes.

ical endpoint in the infinite volume limit. Thus, with increasing volume, one expects these
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quantities to grow in the vicinity of the critical endpoint. The only one of these quantities
showing a rise at larger µ2

B is χRdisc, while χR remains approximately constant up to our
largest volume, and SQ decreases with increasing µ2

B. From the behavior of χRdisc alone, one
might be tempted to conclude that the crossover transition gets stronger at larger µB, which
would be a signal of the coveted critical endpoint. However, the lack of a similar behavior
in the other two quantities - SQ and χR makes the interpretation of the physical picture
uncertain. Furthermore, we once again see that the deconfinement related quantity (SQ)
has milder finite volume effects than the quantities related to chiral symmetry restoration
(χR and χRdisc). The disconnected susceptibility shows an interesting behavior: an increasing
trend with increasing µ2

B, especially for the two lower volumes. If the expected QCD critical
endpoint exists, such a behavior could be due to the critical region shrinking with increasing
physical volume (E.g. a smaller volume is more tolerant to the mistuning of the parameters
of a system, and criticality can be observable from farther away.). Due to the lack of such
a signal in χR and SQ, we would be cautious about making such an interpretation, but the
behavior of χRdisc certainly is suggestive and warrants further investigation.
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7 Outlook

Exploring QCD under extreme conditions is not just an academic pleasure for particle physi-
cists. It provides us key insights to the evolution and structure of the cosmos; from the
properties of deconfined matter to the potential emergence of exotic phases like color super-
conductivity in neutron stars. Therefore, mapping the phases of strongly interacting matter
is essential for enhancing our understanding of the universe and bridges the smallest scales
of quarks and gluons to cosmic phenomena.

One essential result presented in this thesis is the EoS from first principles up to µ̂B ≤ 3.5
covering the chemical potential range of the current colliders LHC and RHIC. It enables hy-
drodynamic simulations at small and vanishing strangeness for the temperatures 130 MeV ≤
T ≤ 280 MeV. The new-generation facilities like FAIR or NICA explore further regions of
the QCD phase diagram and demand theoretical predictions at higher chemical potentials.
Moreover, gravitational wave astronomy offers a new possibility to study the EoS through
the mergers of neutron stars at even higher densities. A serious challenge for lattice QCD
research lies in providing accurate results under such conditions, where direct simulations at
finite density are hindered by the sign problem resulting from the complex action. Recently,
the authors of [232] showed that the rooting procedure of the complex quark determinant at
finite µB in the staggered fermion formalism can cause unphysical lattice artifacts. Minimally
doubled fermions, such as Karsten-Wilczek quarks [233,234], provide a promising alternative.
These formulations include a rooting-free quark determinant for degenerate flavors and pre-
serve a remnant of chiral symmetry. Various improvement strategies, especially with focus
on renormalization, are still under investigation [235,236].

QCD under extreme conditions can exhibit critical behavior as demonstrated in lattice simu-
lations for high magnetic fields [237] or observed for nuclear matter in the case of the nuclear
liquid-gas transition (recall Section 2.6). Simulations in the vicinity of real phase transitions
face the problem of (super-)critical slowing down, causing high computational costs. We
could demonstrate the effective application of parallel tempering to mitigate supercritical
slowing down in a pure gauge theory, achieving the first per-mill accurate result in lattice
QCD thermodynamics for the transition temperature. Furthermore, we applied this tech-
nique to dynamic simulations to determine the critical quark masses in a three flavor theory.
Continuum extrapolated results are still missing but remain desirable, possibly requiring in-
novative algorithmic strategies beyond the traditional HMC algorithm.

Exploring QCD in the parameter space of temperature, mass, chemical potential or mag-
netic field can potentially enable the extrapolation of critical surfaces to conditions which
are relevant for heavy-ion collisions or neutron star mergers. Form the lattice perspective,
increasing the statistics with the extrapolation techniques at hand is probably not sufficient
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to disclose the secret of the existence of a critical endpoint in the T -µB plane. To summarize:
One of the primary goals for the lattice QCD community is and remains mitigating the sign
problem to obtain reliable results at finite density.
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