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1 Introduction

Forecasts are an indispensable component of everyday life for individuals, society, eco-

nomics, and businesses alike. Early humans had to observe and predict the weather to

decide if conditions are suitable for hunting. On a larger scale, today's forecasts encom-

pass tra�c on both the road and regional levels to design and manage infrastructure,

the energy consumption or energy generation by renewable sources to supply demand,

or expected arrivals at emergency departments (Jiang & Luo, 2022; Petropoulos et al.,

2022). On an economic level, forecasts for in�uential key �gures such as the gross do-

mestic product, the in�ation rate, and the unemployment rate help to assess the current

state of the economy and to inform decision-making. In �nancial applications forecasts

for the volatility of returns are employed to assess risk and uncertainty. In food retail,

companies forecast the daily demand of thousands of products for thousands of stores

over multiple countries each day to ensure food supply (Petropoulos et al., 2022). There

are numerous additional areas and applications where forecasts are utilized, including

the introduction of new products, reverse logistics, interest and exchanges rates, stock

returns, electricity prices, climate change, epidemics and pandemics, risk of violence,

elections, or sports. For an extensive overview of examples, see Petropoulos et al. (2022).

In 1906 at the West of England Fat Stock and Poultry Exhibition a forecast of a

di�erent kind was required: the weight of a presented ox (after slaughtering and pro-

cessing). It was a competition visitors could attend by paying a fee and that o�ered

prices for the most accurate forecast. Among the 878 participants were butchers and

farmers, i.e., people with experience and expert knowledge. Galton (1907) analyzed the

forecasts of the participants and, after some initial errors in the analysis, they found

that the average, i.e., a combination, of all forecasts is exactly equal to the weight of

the ox, see also Wallis (2014); Wang, Hyndman, Li, and Kang (2023).

Although, this early observation hinted in the direction, the �eld of forecast combi-

nation was only formally de�ned and popularized many decades later by J. M. Bates

and Granger (1969). They assess forecast combination as an optimization problem that

minimizes the forecast error variance of the combined forecasts. Forecast combination

is bene�cial, because it mitigates sources of uncertainty that a single forecasting model

(or expert) has: uncertainty of data, parameter, and model (expert). A forecast from a

single model or expert is based on certain data or experience. However, other datasets or

experiences can have additional valuable, independent information. This information is

not ignored when combining forecast but leveraged. The estimated parameters of fore-

1
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cast models have estimation uncertainty and one selected model can be less appropriate

than others. Forecast combination mitigates those uncertainties and risks by diversi�-

cation. A combined forecast is more robust and improves forecast accuracy (see e.g.,

J. M. Bates and Granger 1969; Clemen 1989; Newbold and Harvey 2008, pp. 268-269;

Wang et al. 2023).

After the initial work by J. M. Bates and Granger (1969) many other methods have

been developed ranging from simple combination schemes to more complicated and

sophisticated approaches (Clemen, 1989; Wang et al., 2023). Additionally, multiple

comparisons and competitions for time series forecasts have been conducted throughout

the years. The most famous are the M competitions (see Makridakis et al., 1982, 1993;

Makridakis & Hibon, 2000; Makridakis, Spiliotis, & Assimakopoulos, 2018, 2020, 2022;

Makridakis et al., 2023). For a set of time series, participants provide forecasts that are

then evaluated. These larger empirical comparisons have the intention to gain insights

into the current state and future development of forecasting. Forecast combination has

proved to be a competitive and viable approach that improves forecast accuracy (see

also Bojer & Meldgaard, 2021). For example, in the M4 competition twelve of the 17

best performing method where combinations rather than single models (Makridakis et

al., 2018, 2020).

However, throughout the last decade there was an early controversy and a puzzling

observation or phenomenon around forecast combination. An early study by Newbold

and Granger (1974) found that forecast combination improves forecast accuracy. How-

ever, there is a point of view that there is the one true model that describes a data

generating process. The concept of forecast combination itself and the evidence that it

can outperform traditional time series methods contradicts this view which led to some

early controversy and heated discussion. Until today, it is �a view commonly held [...]

that there is some single model that describes the data generating process, and that the

job of a forecaster is to �nd it. This seems patently absurd to me � real data comes

from much more complicated, non-linear, non-stationary processes than any model we

might dream up � and George Box himself famously dismissed it saying, 'All models

are wrong but some are useful'.� (Hyndman, 2020), see also Box, Luceño, and Del

Paniagua-Quinones (2009).1

This highlights and important premise for this thesis. Forecasting and forecast com-

bination intends to provide the best possible forecast for given data. We do not seek

to �nd one true model, method, or parameter setup that is superior to everything else

always.

Beside the early controversy, there is a phenomenon surrounding forecast combination

commonly referred to as the �forecast combination puzzle� (Stock & Watson, 2004). Of-

1In Hyndman (2020) the author (Editor-in-Chief of the Journal of International Forecasting from
2005-2018) reviews and discusses the history of forecast competitions.
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tentimes, simple combination method, like the equally weighted forecasts that predicted

the weight of the ox in 1906 England, outperform more sophisticated and theoretically

superior methods. There is evidence that the forecast combination puzzle is caused

by the estimation error of the weights assigned to each forecast that determine the

combined forecast (Smith & Wallis, 2009).

In light of the aforementioned forecast combination puzzle and evidence indicating

that it is caused by the estimation error of weights, the overarching research question for

this thesis is: how to further improve the forecast accuracy of a combined forecast using

constrained weights? Previously, we mentioned various application where forecasting

and, thus, forecast combination is important. Each forecast application can have di�er-

ent requirements or characteristics of forecasts that are important, e.g., in food retail

we can be interested in forecasts that are particularly well-suited for forecasting de-

mand during a promotional period. This leads to our second research question: how

to incorporate additional, external information in forecast combination with constrained

weights?

In this thesis, we consider forecast combination with constrained weights, in particular

shrinkage methods. To this end, we use the variance-minimization approach of the orig-

inal forecast combination problem or approach by J. M. Bates and Granger (1969) and

implement additional constraints. The constraints restrict weights and, thereby, shrink

them towards a prede�ned direction depending on a shrinkage intensity or shrinkage

parameter.

We analyze existing methods and propose extension to methods that shrink all weights

simultaneously using an L1 constraint in Chapter 4. To this end, we de�ne a uni�ed

framework in form of an optimization problem. It is used to implement and compare

the considered L1 constraint approaches on the same basis and in the same form as the

original forecast combination problem by J. M. Bates and Granger (1969) (see Diebold

& Shin, 2019; Radchenko, Vasnev, & Wang, 2023; Roccazzella, Gambetti, & Vrins,

2022).

In forecast combination there are methods that impose a lower bound for weights.

In Chapter 5 we propose to extend this idea by also implementing an upper bound.

The proposed approach of Forecast Combination with Bounded Weights (BW) nests

competitive benchmark methods for forecast combination, including the well-known

and oftentimes superior equal weights forecast.

In Chapter 6 we propose a new direction: Forecast Combination with Individual Fea-

ture Bounds (IFB). It does neither constraint all weights simultaneously (L1 methods)

nor commonly (Bounded Weights). While some combination methods use features or

characteristics of the forecasts to estimate weights (see e.g., Kolassa, 2011), we use fea-

tures or characteristics of the forecasts to de�ne individual bounds for each weight. The

more favorable the feature values of a forecast are, the less its weight will be constrained.
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The IFB method allows incorporating additional, external information into the forecast

combination. For some application the external feature can be the accuracy or diversity

of the input forecasts, i.e., the forecasts that are combined. For other application it can

be more speci�cally tailored to the application, e.g., �nancial key performance indica-

tors or the accuracy and diversity of forecasts but for speci�c events like promotions in

food retail.

In order to assess and compare the forecast combination methods, we will use both

an extensive simulation study and a large scale empirical application. We adopt and

extend a simulation study from Roccazzella et al. (2022). We use the simulation study

to analyze the accuracy or performance of forecast combination methods for multiple

di�erent scenarios in a controlled environment. The empirical analysis provides a real-

world comparison of the capabilities of the forecast combination methods. To this end,

we use about 1000 monthly time series from the M4 competition to ensure meaningful

and valuable analysis (Makridakis et al., 2018, 2020).

The main contributions of this thesis are:

(I) We provide an extended framework for simulation studies for forecast combination

based on Roccazzella et al. (2022). To this end, we took inspiration from the well-

known the Europeans Centrals Banks Survey of Professional Forecasters (Bowles

et al., 2007; Garcia, 2003).

(II) We present a uni�ed framework in form of an optimization problem. It incorpo-

rates the all L1 constraint forecast combination methods and di�erent shrinkage

directions considered in this thesis.

(III) We propose to use what we call Conditional Group Equal Weights (CGEW) as a

shrinkage direction for forecast combination with additional constraints.

(IV) We propose Forecast Combination with Bounded Weights (BW): An extended

approach for forecast combination that nests existing benchmarks, including equal

weights. Thereby, Bounded Weights utilizes the advantages of the benchmark

methods while mitigating their �aws.

(V) We propose a new direction for forecast combination: Forecast Combination with

Individual Feature Bounds (IFB). We implement individual bounds for each weight.

The bounds are determined based on feature values or characteristics of the input

forecasts.

(VI) We assess the forecast accuracy of the considered methods in an extensive simu-

lation study and more importantly in a comprehensive empirical analysis.

The remainder of this thesis is organized as follows. In Chapter 2 we introduce the

basic concepts of forecasting, forecast combination, discuss the forecast combination
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puzzle and give a brief literature overview. In Chapter 3 we analyze forecasts from the

Europeans Centrals Banks Survey of Professional Forecasters. Additionally, we present

the framework for the simulation study that we use to assess the forecast accuracy of the

considered forecast combination methods in the following three chapters. In Chapter 4,

we present the idea and concept behind shrinkage, provide an overview of how the L1

constraint is used for forecast combination so far and develop a uni�ed framework for

the L1 constraint in form of an optimization problem. In Chapter 5 we incorporate

an upper bound into the forecast combination optimization problem and analyze its

e�ects. In Chapter 6 we present our new approach that introduces individual bounds

that are determined based on feature values of the forecasts. In Chapter 7 we analyze

the forecast performance of the considered forecast combination methods for about 1000

monthly time series. Chapter 8 brie�y summarizes and discusses the content and result

of this thesis.



2 Introduction to Forecast Combination

In this section we provide a brief introduction into the �eld of forecast combination.

It is an integral part of forecasting literature and in 2021 roughly 13 − 14% among

published forecasting paper within the Web of Science concerned forecast combination

(Wang et al., 2023). Throughout more than half a century, forecast combination proved

itself to be a competitive approach that improves forecast accuracy. Both compared

to the input forecast that are combined as well as other forecasting methods (see e.g.,

Bojer & Meldgaard, 2021; Hyndman, 2020; Makridakis et al., 2018, 2020). By combining

multiple forecast to one, we use information from di�erent data sets or expert knowledge

and create are more accurate and robust forecast by diversi�cation (see e.g., J. M. Bates

and Granger 1969; Clemen 1989; Newbold and Harvey 2008, pp. 268-269; Wang et al.

2023).

In Section 2.1 we will discuss some basic concepts of forecasting that are important

throughout this thesis. Thereafter, in Section 2.2, we introduce the forecast combination

problem itself and analyze its solution. In Section 2.3 we will discuss the phenomenon

that challenges the forecast combination community: sophisticated forecast combination

method oftentimes have an inferior forecast accuracy compared to simple combination

schemes. Lastly, we will provide a brief overview of a curated set forecast combination

areas in Section 2.4.

2.1 The Basic Concepts of Forecasting

Given a time series yt ∀ t = 1, . . . , τ the objective of forecasting is to predict or forecast

future values of yt ∀ t = τ + 1, . . . , T as accurate and precisely as possible. We denote

forecasts for h-steps into the future by ŷt+h. However, note that in the literature forecast

can also be written as ŷt+h|t to indicate that it is based on the information up to time

t. Within this thesis we will focus on one-step ahead forecasts, i.e., h = 1. The theory

of time series forecasting is build around the premise that knowledge from historical

patterns of yt can be extended into the future. Additionally, exogenous variables can

be used to explain yt. In the �eld of forecasting there are multiple potential targets of a

forecast. It can be the expected value, i.e., a point forecast, a prediction interval or the

whole future distribution for the variable of interest (Petropoulos et al., 2022; Wang et

al., 2023). Within this thesis we will focus on point forecasts.

6
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Let there be multiple forecasts that can originate from di�erent methods, algorithms,

experts or are the result of forecast combination. Naturally, one needs to assess the value

they provide and compare them with each other. To this end, we need a measurement

to evaluate and compare forecasts and second we need to de�ne a procedure on what

basis we do so. There are multiple measurements that can be used which have di�erent

advantageous and disadvantageous. We will discuss those in more detail within the

context of Chapter 6 in Section 6.1.3.1. For now, we will consider the mean squared

error (MSE) because it is a prominent and oftentimes used measurement. It is based

around the forecast error:

εt = yt − ŷt. (2.1)

The mean squared forecast error is then given by

MSE =
1

T − τ

T∑
t=τ+1

ε2t , (2.2)

(see e.g., Hyndman & Koehler, 2006; Petropoulos et al., 2022; Thomson, Pollock, Önkal,

& Gönül, 2019). Beside the choice of measurement, one needs future data to evaluate

the forecasts on in order to assess the forecast accuracy. To this end, one can a procedure

called pseudo out-of-sample forecasting. The available observations of the time series yt
∀ t = 1, . . . , T are split into a training set t = 1 . . . , τ (in-sample) and a test set t = τ +

1, . . . , T (out-of-sample). The training set is used to determine or train the forecasting

method or algorithm and then forecasts are computed for the test set. Importantly,

the test set has to be unknown to the method, i.e., no information from the test set

can be used for training the method. As a result of pseudo out-of-sample forecasting

one has T − τ forecasts and the true values of yt to assess the forecast accuracy of

the method. There are, however, several variants for pseudo out-of-sample forecasting.

We want to emphasize two of them, the expanding and rolling window pseudo out-of-

sample forecasting. Both expanding and rolling window have in common that they can

be used to evaluate one-step ahead forecasts and that the method or algorithm can be

re-estimated or re-trained multiple times.

Figure 2.1 illustrates the two variants. Each circle represents a time series observation.

Green circles indicate that an observation is in the training set and a yellow circle is

the currently considered observations in the test set. Observations depicted by a white

circle are not taken into consideration at that point. The �rst four observations from

left to right in both Figures 2.1(a) and 2.1(b) are the initial training set and the last

four observations are the test set. The basic idea is that based on the training set yt
t = 1, . . . , τ (green) one trains a method and produces a forecasts ŷt+1 for the �rst

observation in the test set (yellow), see the �rst row in both Figures 2.1(a) and 2.1(b).
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(a) Expanding window (b) Rolling window

Figure 2.1. Illustration of pseudo out-of-sample forecasting based on Hyndman and
Athanasopoulos (2021).

After that the training set is updated or expanded by τ + 1 and then based on the

new training set one again trains a method, produces forecasts et cetera (second row).

In case of the expanding window in Figure 2.1(a), the new training set contains all

available observations for t = 1, . . . , τ+1. In case of a rolling or �xed window depicted in

Figure 2.1(b) the �rst observations is omitted, i.e., the training set contains observations

for t = 2, . . . , τ+1. To put it di�erently, the size of the training set constantly increases

for the expanding window approach and is �xed in case of the rolling window approach.

The former approach utilizes all available information. The latter captures more recent

structures of the time series by omitting outdated observations and thus the method

or algorithm are tailored towards those structures (see e.g., Inoue, Jin, & Rossi, 2017;

Petropoulos et al., 2022; Tashman, 2000).

If a forecasting method or algorithm has additional parameters that de�ne it, called

hyperparameters, one can use time series cross-validation to determine them. Basically

one applies pseudo out-of-sample forecasting, but only for the current training set.

Regardless of whether one uses an expanding or rolling window approach. The following

�gure illustrates how cross-validation is used.

Training Set Test Set

Training Subset Validation Set Test Set

Figure 2.2. Illustration of pseudo out-of-sample forecasting with a validation set.

To this end, one still divides the data into a training set with observations t = 1, . . . , τ

depicted by the green rectangle in the �rst row in Figure 2.2. Te test set depicted by the

yellow rectangle. Assume that we want to forecast the �rst observation in the test set

τ+1. To determine the hyperparameter we again divided the training set into a training

subset and a validation set depicted in the second row as the green rectangle (less

opacity) and the orange rectangle respectively. For each observation in the validation

set we compute forecasts for candidate values of the hyperparameters using a rolling or

expanding window. Then we choose the hyperparameters that minimize the measure

of forecast accuracy for the validation set. Those hyperparameters are then used to
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forecast the observation in the test set τ +1. The process is then repeated either by an

expanding or rolling window (Hyndman and Athanasopoulos 2021; Inoue et al. 2017;

G. James, Witten, Hastie, Tibshirani, and Taylor 2023, pp. 201-208; Petropoulos et al.

2022; Tashman 2000).

2.2 The Basic Concepts of Forecast Combination

In this section we will introduce the work of J. M. Bates and Granger (1969) in Sec-

tion 2.2.1. They popularized forecast combination and de�ned the forecast combination

problem for two forecasts. Thereafter, in Section 2.2.2 we present the generalization of

the forecast combination problem that can be used for an arbitrary number of forecasts.

Lastly, in Section 2.2.3 we take a closer look at the solution or weights of the forecast

combination problem, especially negative weights.

2.2.1 Forecast Combination with Two Forecasts

The research area of forecast combination follows from the initial work by J. M. Bates

and Granger (1969). The main objective of forecast combination is to combine a set or

pool of forecasts such that the combined forecasts has a superior out-of-sample forecast

accuracy (MSE) compared to the forecasts that are combined. To this end, J. M. Bates

and Granger (1969) proposed to combine two forecasts such that the in-sample error

variance (≈MSE if the forecast error is unbiased) is minimized.

Assume a time series yt with an expected value of µ and two unbiased one-step ahead

forecasts for yt, i.e., ŷ1,t and ŷ2,t with E[ŷ1,t] = µ and E[ŷ2,t] = µ. J. M. Bates and

Granger (1969) de�ne the combined forecast for t+ 1, i.e., ŷc,t+1, by

ŷc,t+1 = ω1ŷ1,t+1 + ω2ŷ2,t+1. (2.3)

with ω2 = (1−ω1). For the sake of simplicity we follow Radchenko et al. (2023) and will,

henceforth, denote any forecast i, that can originate from di�erent methods, algorithms

or experts, by ŷi as an abbreviation of ŷi,t+1. The combined forecast is given by ŷc
instead of ŷc,t+1 (J. M. Bates & Granger, 1969; Radchenko et al., 2023; Wang, Kang,

& Li, 2022).

The combined forecast in Equation (2.3), ŷc, is a linear combination or weighted

average of the two original forecast. The weights for the forecasts are denoted by ω1

and ω2. The expected value of the combined forecasts is

E[ŷc] = E[ω1ŷ1 + ω2ŷ2], (2.4)

= ω1E[ŷ1] + ω2E[ŷ2]. (2.5)
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If the assumption of unbiased forecasts holds, it follows that ω2 = 1 − ω1 in order to

ensure that the combined forecasts is also unbiased. Accordingly,

E[ŷc] = ω1µ+ (1− ω1)µ, (2.6)

= µ = E[y]. (2.7)

The constraint that weights have to sum up to unity is the unity constraint (J. M. Bates

& Granger, 1969; Granger & Ramanathan, 1984; Radchenko et al., 2023). In this thesis

we will focus on forecast combination methods that ful�ll the unity constraint.

In order to calculate the combined forecasts in Equation (2.3), weights have to

be determined. Recall that the objective of the forecast combination problem from

J. M. Bates and Granger (1969) is to minimize the in-sample error variance. It is based

on the forecast error �rst introduced in Equation (2.1). The forecast error, εc, of the

combined forecast of Equation (2.3) is given by

εc = y − ŷc, (2.8)

= y −
(
ω1ŷ1 + (1− ω1)ŷ2

)
, (2.9)

= y − ω1ŷ1 − ŷ2 + ω1ŷ2, (2.10)

= y − ω1ŷ1 − ŷ2 + ω1ŷ2 + ω1y − ω1y, (2.11)

= ω1(y − ŷ1) + (1− ω1)(y − ŷ2), (2.12)

= ω1ε1 + (1− ω1)ε2. (2.13)

Thus, the forecast error of the combined forecast is a linear combination of the forecast

errors ε1 and ε2 of the two original forecast ŷ1 and ŷ2. Before we derive the error variance

of the combined forecast, note that the error variance of any forecast ŷi is de�ned as

V ar(εi) = σ2i and its standard deviation is σi. Furthermore, σi,j and ρi,j = σi,j/σiσj are

the covariance and correlation respectively between the forecast errors εi and εj ∀ i, j =
1 . . . , N (see e.g., Fahrmeir, Heumann, Künstler, Pigeot, & Tutz, 2016, pp. 323-330).

It is important to notice that those measures are based on the forecast error, i.e., we

consider the error variance, error covariances and error correlations. Therefore, the

error variance of the combined forecast σ2c is given by

σ2c = E[ε2c ] (2.14)

= E[
(
ω1ε1 + (1− ω1)ε2

)2
], (2.15)

= ω2
1E[ε21] + (1− ω1)

2E[ε22] + 2ω1(1− ω1)E[ε1ε2], (2.16)

= ω2
1σ

2
1 + (1− ω1)

2σ22 + 2ω1(1− ω1)σ1,2, (2.17)

= ω2
1σ

2
1 + (1− ω1)

2σ22 + 2ρ1,2ω1σ1(1− ω1)σ2. (2.18)
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The error variance from Equations (2.17) and (2.18) is the objective function of the fore-

cast combination problem. Note that the more common representation of the combined

error variance is given in Equation (2.17), however, Equation (2.18) is more intuitive.

Therefore, for now we will focus on Equation (2.18). The error variance of the combined

forecast is determined by the forecast error variances of the two considered forecasts

σ21 and σ22 and by their corresponding standard deviations σ1 and σ2. Lastly, the error

correlation ρ1,2 between the two forecast errors ε1 and ε2 is part of σ2c . The error corre-

lation indicates the relationship between the forecasts errors. Note that Equation (2.17)

this relationship is considered by the error covariance, i.e., the not standardized error

correlation. A positive error correlation implies that the forecasts tend to make simi-

lar errors. The degree of similarity is indicated by the error correlation coe�cient. In

summary, the error variance of the combined forecasts is in�uenced by the forecasts

accuracies as well as the relationship between the forecasts errors (see e.g., J. M. Bates

and Granger 1969; Elliott and Timmermann 2016, pp. 313-315; Newbold and Harvey

2008, pp. 270-271). We will revisit the components of the combined error variances

throughout this thesis in form of Equation (2.17).

Based on the objective function, i.e., the error variance of the combined forecast, from

Equation (2.17), one can derive the optimal weights that minimize it. Those weights,

i.e., the optimal weight (OW), are given by

ωOW1 =
σ22 − ρ1,2σ1σ2

σ21 + σ22 − 2ρ1,2σ1σ2
., (2.19)

(J. M. Bates & Granger, 1969; Smith & Wallis, 2009). If the optimal weights are used

to combine the forecast, it holds that

σ2c ≤ min
{
σ21, σ

2
2

}
. (2.20)

The result shown in Equation (2.20) is major cornerstone of forecast combination. It

means, that the in-sample error variance of the combined forecast is at most equal to or

lower than the smallest of the forecasts error variances. To put it di�erently, combining

forecasts is never inferior compared to the forecast that are combined. (J. M. Bates &

Granger, 1969; Dickinson, 1975).

Before we move on we have to clarify a potential ambiguity regarding the forecast

error, error variance, and MSE. We want to emphasize that the in-sample data for

forecast combination are forecasts. Although forecast errors refer to out-of-sample fore-

cast, within forecast combination, they are the in-sample di�erence between the actual

series and the candidate, input forecasts for combination. Based on the in-sample

forecast errors one calculates the error variance and covariances which are used to de-

termine weights. These weights minimize the in-sample error variance. The MSE of

the in-sample forecast errors is in theory identical to the error variance depicted in
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Equations (2.2) and (2.8) if forecast errors are unbiased. In practice, because the mean

of forecast errors in not exactly zero, the MSE is an approximation of the error vari-

ance (Granger & Ramanathan, 1984; Wang et al., 2023) or, in other words, it is the

empirical error variance of the input forecasts. The relationship of error variance and

MSE is crucial to keep in mind throughout this thesis. Particularly in the context of

the simulation study we use the term error variance which, again, is a measure for the

forecast accuracy of the input forecasts.

2.2.2 Forecast Combination with N forecasts

J. M. Bates and Granger (1969) introduced forecast combination for N = 2 forecasts.

To adapt it for an arbitrary number of forecasts N ∈ N≥2, the combined forecast is

de�ned as

ŷc = ŷ′ω (2.21)

with the N × 1 vector ŷ that contains all forecasts ŷi ∀i = 1, . . . , N and the N × 1

vector ω = (ω1, . . . , ωN )
′ contains the weight for each forecast. The forecast combination

problem is given by
minimize

w
ω′Σω

subject to ω′1 = 1
(2.22)

(see e.g., Elliott & Timmermann, 2016, pp. 313-315). Note that the forecast combination

problem present in Equation (2.22) is the basis of the combination approaches considered

in this series and will be referenced repeatedly throughout it. The objective function

consists of the weight vector ω and the N × N matrix Σ. The latter is the variance-

covariance matrix of the forecast errors, i.e.,

Σ =


σ21 σ1,2 . . . σ1,N

σ1,2 σ22 . . . σ2,N
...

...
. . .

...

σ1,N σ2,N . . . σ2N

 . (2.23)

Accordingly, the objective function can be written as

ω′Σω =
N∑
i=1

N∑
j=1

wiwjσi,j (2.24)

where σi,i = σ2i . For N = 2, this is identical to the in-sample error variance of the

combined forecast σ2c given in Equation (2.17). Accordingly, the objective function is

to minimize the error variance of the combined forecast. The single constraint within
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the optimization problem of Equation (2.22) is the already described unity constraint,

i.e., all weights sum up to one. To impose it, we multiply the transpose of ω by a

N × 1 vector 1 that contains only ones. The optimal weights, i.e., solution ωOW to the

optimization problem, are

ωOW =
Σ−1ı

ı′Σ−1ı
. (2.25)

In the same sense as for N = 2, recall Equation (2.20), with ωOW for the combined

forecast it holds that

σ2c ≤ min{σ21, σ22, . . . , σ2N}, (2.26)

i.e., it can result in a better error variance than all forecasts and in the worst case

its error variance is identical to that of the best forecast (Elliott and Timmermann

2016, pp. 313-315; Newbold and Harvey 2008, pp. 270-271, Dickinson 1975). The

optimal weights ωOW minimize the in-sample error variance σ2c of the combined forecast.

Therefore, we will refer to this approach introduced by J. M. Bates and Granger (1969)

as the optimal weights (OW) approach. However, it is important to emphasize that

the input in the forecast combination problem of Equation (2.22) is the true error

variance-covariance matrix Σ. In reality, it is unknown and the empirical error variance-

covariance matrix Σ̂ needs to be estimated and then used to determine weights by

Equation (2.25) (Radchenko et al., 2023).2 We will further discuss this in Section 2.3.

Based on the MSE loss, Granger and Ramanathan (1984) showed that regression

models can also be used to combine N forecasts. Each forecast is a regressor and the

actual value y is the dependent variable, i.e.,

yt = ω0 +
N∑
i=1

ωiŷi,t + ϵi, (2.27)

where ϵi is the regression error term. Weights are then estimated based on the ordi-

nary least squares (OLS) estimator which minimizes the squared residuals. They used

regression models both with and without the intercept ω0. They also include a model

without an intercept but with the additional constraint that weights have to sum up to

one, i.e., a unity constraint. The solution of this regression model is an approximation

of the optimal weights (OW) approach (Granger & Ramanathan, 1984; Wang et al.,

2023).

2Note that within this thesis we use the simple sample error variance covariance estimator. See for
example the sample variance as a special case of the covariance in Fahrmeir et al. (2016, pp. 64-65).
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2.2.3 Positive and Negative Weights

In this section we take a closer look at the forecast combination weights. For the

sake of simplicity we will consider two forecasts ŷ1 and ŷ2. Recall that the weight

ω1 for the �rst forecast is determined by Equation (2.19). The weight for the second

forecast is ω2 = (1−ω1). For now assume that the forecast errors are uncorrelated, i.e.,

σ1,2 = ρ1,2 = 0. As a result ω1 is de�ned by

ω1 =
σ22

σ21 + σ22
. (2.28)

If both forecasts have the same error variance, the optimal weights are equal. This

solution is called equal weights (EW) and it will be important throughout this the-

sis. Again, it is given if the forecast errors have the identical error variance and are

uncorrelated. Now assume without loss of generality that σ21 < σ22, i.e., the �rst fore-

cast has a smaller error variance. From Equation (2.28) it follows that its weights will

be larger, i.e., ω1 > ω2. The larger the di�erence between the error variance is, the

closer the weight of the �rst forecast is to one. It holds that ω1 is only equal to one,

if its error variance is zero, i.e., it perfectly forecasts future values of y. Accordingly, if

forecast errors are uncorrelated, for both weights it holds ωi ∈ [0, 1] ∀ i = 1, 2. Note

that J. M. Bates and Granger (1969) even presented Equation (2.28) as a more simple

method to combine forecasts, although forecast error are correlated (Radchenko et al.,

2023; Smith & Wallis, 2009; Winkler & Clemen, 1992).

If the forecast error correlation is taken into consideration, it holds that ωi ∈ R. To
put it di�erently, weights outside the interval of [0, 1] can occur, i.e., both negative

weights and weights greater one. In case of two forecasts, negative weights and weights

greater one only occur simultaneously. Otherwise, the unity constraint is violated.

In general (N > 2), there can be negative weights without weights greater one, e.g.,

ω1 = −0.2, ω2 = ω3 = 0.6. The opposite is not true, because weights greater one

require negative weights to ful�ll the unity constraint. Overall a situation where weights

are outside the [0, 1] interval is usually discussed in terms of negative weights in the

literature (see e.g., Radchenko et al., 2023). To put it di�erently, if the forecast error

correlation is taken into consideration, the absolute sum of weights can be greater one.

In conjunction with the unity constraint this is only feasible if negative weights occur.

J. M. Bates and Granger (1969) observed the occurrence of negative weights and provide

an example to get an intuition for it. Assume that there are two forecasts ŷ1 = 80 and

ŷ2 = 100. If the true value y = 120, the only way that the combined forecasts is yc = 120

is to use ω1 = −1 and ω2 = 2, i.e., negative weights.

Negative weights are possible if the error correlations are taken into consideration.

Radchenko et al. (2023); Winkler and Clemen (1992) analyzed the solution of the fore-

cast combination problem and found that the larger the di�erence or ratio between the
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error variances as well the higher the correlation, the more likely negative weights occur.

In fact, negative weights can only occur for positive correlations as one can see by con-

sidering Equation (2.19). The weight of the �rst forecast ω1 is negative if σ22 < ρ1,2σ1σ2.

Because σ1, σ2 > 0 by de�nition, it only occurs for positively correlated forecast errors.

Against the background of the example of J. M. Bates and Granger (1969) discussed

previously this is sensible. Only if the forecast errors are positively correlated there are

likely to both over- or underestimated the true value simultaneously.

Without loss of generality assume that σ2i < σ2j . Winkler and Clemen (1992) showed

that negative weights occur if

σ2
i/σ2

j > ρi,j . (2.29)

Accordingly, more dissimilar error variance lead to negative weights for smaller error

correlations. Moreover, note that the higher the correlation, the more sensitive the

weights are to small changes in the error variances, i.e., σ2
i/σ2

j (Radchenko et al., 2023;

Winkler & Clemen, 1992).

Consider now the forecast combination problem of Equation (2.22) with N > 2 as

analyzed by Radchenko et al. (2023). They derived conditions under which negative

weights occur. Overall, they show that negative weights occur for N > 2 if forecasts

errors are highly positively correlated (for more details see Radchenko et al., 2023).

Although negative weights can occur in the optimal solution, i.e., minimize the error

variance of the combined forecast, there are many methods that suggest to only con-

sider positive weighs. Even J. M. Bates and Granger (1969) suggested omitting the

information of the error correlation and use Equation (2.28) to determine weights for

forecast combination. Further research supported this strategy (see e.g Clemen, 1989;

Smith & Wallis, 2009). For example, Aksu and Gunter (1992) and Gunter (1992) added

a non-negativity constraint to the regression model of Equation (2.27), i.e., a feasible

solution has to consist of only positive weights including zero. Con�itti, de Mol, and

Giannone (2015) included the non-negativity constraint into the optimization problem

of Equation (2.22). The corresponding problem is given by

minimize
ω

ω′Σ̂ω

subject to w′1 = 1

ωi ≥ 0 ∀ i = 1, . . . , N.

(2.30)

We follow Nowotarski, Raviv, Trück, and Weron (2014) who used this approach within

an empirical study and refer to it as positive weights (PW). Henceforth, we will use

the PW approach in form of Equation (2.30) as a benchmark throughout this thesis,

due to its promising results in previous studies (Con�itti et al., 2015; Nowotarski et

al., 2014; Wang et al., 2023). Nevertheless, an advantage of negative weights is that
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they can correct the combined forecast if the input forecasts simultaneously over- or

underestimate the true value (Roccazzella et al., 2022) Therefore, we will not rule out

negative weights but look at a way to constrain them in Chapters 4 to 6. However,

before we move on we have to discuss why such constraints are necessary. Throughout

the last half century forecast combination has in fact proven itself to be a very powerful

tool, however, not when using the OW approach from J. M. Bates and Granger (1969).

2.3 The Forecast Combination Puzzle

The optimal weights from the forecast combination problem by J. M. Bates and Granger

(1969) presented in Equation (2.22) is the dominant strategy to combine forecasts,

however, only if the true error variance covariance matrix is known. Then, the error

variance of the combined forecast is at least as good as the smallest error variance

among all forecasts that are used as input. However, over the last half century a curious

observation puzzles the �eld of forecasting combination: simple combination methods

outperform more sophisticated approaches, including the OW approach. Especially, the

simple average of forecasts, or equal weights forecast as it is more commonly referred

to, is a tough benchmark to beat (see e.g., Genre, Kenny, Meyler, & Timmermann,

2013; Wang et al., 2023). This phenomenon was addressed early on in Clemen (1989)

who provided an annotated bibliography on di�erent forecast combination approaches.

They suggested that further research is needed to analyze why the simple average is

oftentimes the best or close to the best performing method. Stock and Watson (2004)

analyzed forecasting output growth. Their results are in line with empirical evidence

that showed the equal weights forecast to have a superior forecast accuracy compared

sophisticated methods. They referred to this phenomenon as the �forecast combination

puzzle� (Stock & Watson, 2004).

Early on, a potential explanation for the forecast combination puzzle was discussed

in Clemen (1986). As shown by Granger and Ramanathan (1984) the forecast combi-

nation problem can be expressed as a regression model where the forecasts are used as

variables. Forecast are oftentimes highly correlated and, by that, the regression model

or forecast combination problem su�ers from imperfect multicollinearity if the ordinary

least squares estimator is used. As a result the estimated weights will have a large

variance, i.e., a larger estimation error. For example, let there be N = 2 forecasts i, j

that are combined by a linear regression model. The variance of the estimated weight

of forecast i is given by

V ar(ω̂i) =
1

N

(
1

1− ρ2i,j

)
V ar(εc)

V ar(ŷ1)
, (2.31)
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(Radchenko et al., 2023). The variance of the estimated weights becomes larger, the

higher the correlation of the individual forecasts is. Recall, that the input of the forecast

combination problem is the estimated variance-covariance matrix Σ̂ which inhibits a cer-

tain estimation error. This in conjunction with the sensitivity of weights due to a large

variance of them is a potential reason for the forecast combination puzzle (Claeskens,

Magnus, Vasnev, & Wang, 2016; Clemen, 1986; Radchenko et al., 2023; Smith & Wallis,

2009).

Smith and Wallis (2009) provide evidence that the forecast combination puzzle is

caused by the �nite-sample estimation error of weights. Accordingly, the bene�t of esti-

mating weights in, for example, the optimal weights approach is exceeded or surpassed

by the estimation error. Claeskens et al. (2016) show that the combined forecast is

biased and has a larger variance if the weights are estimated. The result from Chan

and Pauwels (2018) provides further evidence for the estimation error to be the cause

of the forecast combination problem. Accordingly, the superiority of equal weights is

based on the fact that weights do not need to be estimated (see also Wang et al., 2023).

In summary, the forecast combination puzzle seems to be due to several reasons: the

estimation error of the weights in �nite samples, the estimation error in the estimated

variance-covariance matrix and the sensitivity of weights due to highly correlated fore-

cast errors (Chan & Pauwels, 2018; Claeskens et al., 2016; Clemen, 1986; Smith &Wallis,

2009; Wang et al., 2023). The fact that the optimal weights approach does not have

a superior performance empirically but succumbs simple combination methods like the

equal weights forecast has sparked interest into developing further methods to combine

forecasts or determine weights.

2.4 Brief Overview of Forecast Combination Methods

This section provides a brief overview of forecast combination methods that have been

developed. Our literature review is based on Wang et al. (2023) who provided a review

on the occasion that forecast combination was introduced more than half a century ago.

For an extensive overview as well as reference to further readings, we therefore refer the

reader to Wang et al. (2023).

After the initial work of J. M. Bates and Granger (1969) many more forecast combina-

tion methods have been developed. They mostly concern point forecasts, however, more

recently the combination of probabilistic forecasts receives more attention (see e.g., Hall

& Mitchell, 2007; Martin, Loaiza-Maya, Maneesoonthorn, Frazier, & Ramírez-Hassan,

2022; Wang et al., 2023). Recall, that within this thesis we focus on point forecasts.

Although the forecast combination puzzle is based on the surprisingly robust and su-

perior forecast accuracy of the equal weights forecast, there are additional simple combi-

nation schemes that have been used. For example, the median, a trimmed, winsorized or
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bias adjusted mean (Capistrán & Timmermann, 2009; Jose & Winkler, 2008). In com-

parison to the equal weights forecast, the median forecast is more robust to outliers.

Two combination schemes that used the median (Petropoulos & Svetunkov, 2020) and

mean (Shaub, 2020) of a pool of (simple) forecasts have recently proved their competi-

tiveness to more sophisticated forecasting models in the M4 competition (Makridakis et

al., 2020). However, there is no conclusive evidence against or for a general superiority

of the mean or median (Kolassa, 2011; Wang et al., 2023).

The objective function of the OW approach by J. M. Bates and Granger (1969)

presented in Equation (2.22) is to minimize the error variance, i.e., it is based on a

symmetric (MSE) loss. Di�erent, asymmetric and skewed loss function for the forecast

combination problem are also taken into consideration in the literature. For example,

Elliott and Timmermann (2004) showed that the optimal weights under the MSE loss are

optimal for a variety of loss functions. However, it depends on how skewed the forecast

errors are and on how asymmetrical the loss function is (Elliott and Timmermann 2016,

pp. 313-315; Elliott and Timmermann 2004; Wang et al. 2023).

Other methods shrink weights towards reference values to improve the out-of-sample

forecast accuracy of the combined forecast. Note that these methods are the focus

of this thesis and will be discussed in detail in Chapters 4 to 6. Nevertheless, we

continue with a brief overview. Diebold and Shin (2019) used variants of the �lest

absolute shrinkage and selection operator� (Lasso) introduced in Tibshirani (1996) for

forecast combination. For the Lasso, the sum of absolute weights is incorporated into the

objective function and, thus, weights are shrunken and selected towards zero. Diebold

and Shin (2019) introduced the egalitarian Lasso (eLasso) that, in contrast, shrinks

weights towards equal weights. They also presented a two-step procedure, the partially

egalitarian Lasso (peLasso), that �rst selects weights using the standard Lasso and then

applies the eLasso. Radchenko et al. (2023) and Roccazzella et al. (2022) also work

with Lasso-based approaches that additionally include the unity constraint.

Beside the optimal weights approach, J. M. Bates and Granger (1969) also discussed

performance based weighting schemes. To this end, weights are determined by their

inverse performance relative to all others. They suggested �ve such weighting schemes

which partly omitted the error correlation or put more emphasize on more recent forecast

errors. In a similar fashion information criterion, like the Akaike, corrected Akaike or

the Bayesian information criterion can be used to determine weights (Kolassa, 2011;

Wang et al., 2023).

In contrast to the frequentist approach of combining weights, research is also directed

towards a Bayesian alternative. It allows to incorporate prior information into the

estimation of combination weights (see e.g., Clemen, 1986; Diebold & Pauly, 1990;

Wang et al., 2023)
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In this thesis we consider linear combination approaches for a single time series.

Nevertheless, we brie�y introduce non-linear combination schemes and cross-learning

approaches. Beside linear combination approaches, there is limited research in the area

of non-linear combination schemes. To this end, input forecasts are combined by non-

linear functions instead of linear ones. For example, Babikir and Mwambi (2016) and

Krasnopolsky and Lin (2012) used arti�cial neural networks to combine forecasts. The

results provide evidence for an improvement in forecast accuracy when using non-linear

combination methods. However, more research is needed in this area (for more de-

tails see Wang et al., 2023). Another promising �eld of forecast combination is based

on meta-learning or cross-learning approaches. To this end, combination weights are

learned across di�erent time series using machine learning algorithms. For example

Montero-Manso, Athanasopoulos, Hyndman, and Talagala (2020) proposed an auto-

mated method FFORMA (Feature-based Forecast Model Averaging) that uses time

series characteristics to determine weights to combine forecasts. FFORMA was the sec-

ond most accurate contribution to the M4 Competition (Makridakis et al., 2018, 2020)

both for the point forecasts and prediction intervals (Montero-Manso et al., 2020; Wang

et al., 2023). We will discuss FFORMA in more detail within Chapter 6 (for more detail

see also Wang et al., 2023).

Lastly we want to brie�y discuss research that is directed towards selecting a subset

of a pool of forecast instead of using all of them. To improve the forecast accuracy of

a combined forecast. The simplest variable or subset selection technique is to only use

the forecast with the best forecast accuracy(see e.g., Mannes, Soll, & Larrick, 2014).

Alternatively, one can also look at other measures or features of forecast like their

diversity to determine subsets (see e.g., Thomson et al., 2019). The lasso based methods

used in Diebold and Shin (2019); Radchenko et al. (2023) and Roccazzella et al. (2022)

that focus on shrinkage of weights can also incorporate a variable selection as we will

discuss in Chapter 4. Prior to that, we �rst introduce a simulation study in the following

chapter. We will use it both for illustrating the upcoming forecast combination methods

and evaluate them.



3 Survey of Professional Forecasters and Simulation

Study

In this chapter we design our simulation study and present the scenarios that we consider

throughout this thesis. To this end, we �rst gather information from a real world exam-

ple, the European Central Banks (ECB) Survey of Professional Forecasters (SPF).3 For

the analysis of the SPF we are in particular interested in two aspects. First, the forecast

accuracy, i.e., error variance, of the individual forecasts. Second, the correlation of the

forecast errors. These components de�ne the error variance covariance matrix, which

is the core part of the objective function of the forecast combination problem. The

SPF is a well-known data set for forecast combination, and it provides numerous expert

forecasts (see e.g., Capistrán & Timmermann, 2009; Genre et al., 2013; Radchenko et

al., 2023; Roccazzella et al., 2022). Our main focus with respect to the SPF is to gain

insights from real-world data in order to create scenarios for our simulation study. To

this end, in Section 3.1 we introduce the SPF, prepare the data and analyze the result-

ing set of forecasts. Based on that, in Section 3.2 we present a framework that can be

used to design simulation studies for forecast combination. Additionally, we discuss the

scenarios that we use throughout this thesis.

3.1 ECB’s Survey of Professional Forecasters

The SPF and similar surveys are suited to be used for forecast combination, because

external forecasts are provided from experts that can result from di�erent data sets,

knowledge and / or models (see e.g., Capistrán & Timmermann, 2009; Genre et al.,

2013; Radchenko et al., 2023). In this thesis we will use the Survey of Professional

Forecasters (SPF) from the European Central Bank (ECB) as an empirical, real world

reference point upon which we build and expand our simulation study. For that purpose,

this section provides a short overview of the operating principle, data preparation as

well as a descriptive analysis of the ECB's Survey of Professional Forecasters. For a

more detailed explanation of the SPF see Bowles et al. (2007); Garcia (2003).

The ECB's Survey of Professional Forecasters collects forecasts of experts regarding

macroeconomic key �gures since 1999. Experts are chosen based on their macroeco-

nomic and forecasting expertise with special attention to the euro area. They are a�li-

3The data for the SPF was downloaded from the website of the ECB https://www.ecb.europa.eu

on the 16th November 2021.

20
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ated to di�erent institutions within the European Union from both the �nancial sector,

e.g., banks, and non-�nancial sector, e.g., research institutions. To ensure independent

forecasts, each expert or institution should not be closely connected to another expert

or institution. The survey started with 95 experts and over the year more experts joined

the survey leading to a number of 130.4

The ECB's Survey of Professional Forecasters is conducted on a quarterly base by

sending questionnaires to the experts. The questionnaires are sent when the latest

data of the macroeconomic key �gures is available. This does not include data from

the quarter itself at which the questionnaire send but only from previous quarters. In

each questionnaire the experts are asked for point and density forecasts for certain

macroeconomic key �gures of the euro area.

The �rst key �gure of interest is the Harmonised Index of Consumer Prices (HICP)

in�ation rate. It has a monthly frequency and is measured as the annual percentage

change. Second, the monthly unemployment rate as a percentage of the labor force is

considered. The third and last key �gure is the growth rate of the real Gross Domestic

Product (GDP). Its frequency is quarterly, and it is measured as an annual percentage

change. The overarching goal of the analysis of the SPF is to gain some insights into

how forecast errors are correlated and how the forecast accuracy is distributed. It is

not to fully analyze the SPF. Therefore, henceforth, we will focus solely on the HICP.

Although, for each macroeconomic key �gure, �ve forecast horizons are requested from

each expert, we will again focus on one speci�c horizon: the one-year ahead forecast.

This was, inter alia, also considered in the related literature, see e.g., Genre et al. (2013);

Matsypura, Thompson, and Vasnev (2018); Radchenko et al. (2023). For the HICP

In�ation rate forecasts are for a speci�c month. The target month is the last month of

the corresponding one-year ahead quarter. For example, for the SPF conducted in the

�rst quarter of a year t, i.e., Q1, the latest monthly data is from December of year t−1.

The forecasts are required for the target month of December in year t.

The �rst SPF was published in 1999Q1 and, at the time the data was downloaded,

the latest available SPF is from 2021Q3. The �rst one-year-ahead forecast of the SPF

is for December 1999 and, thus, our data set for the one-year-ahead forecast consists of

88 observations (points in time) (Bowles et al., 2007; Garcia, 2003).

3.1.1 Missing Observations in the Data Set

Missing values are a problem for forecast combination. First, we need a su�ciently large

data set either to be able to estimate weights and furthermore to ensure that the weights

can be estimated su�ciently precise. Second, for forecast methods like the approach by

J. M. Bates and Granger (1969) we need to estimate the covariance matrix. However, in

order to estimate the common sample covariance matrix, the data can not have missing

4The latest data within our data set is from the third quarter of 2021.
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Figure 3.1. Visualization of expert responses to the SPF. A green rectangle depicts
a response of the expert. The illustration is inspired by Capistrán and Timmermann
(2009); Genre et al. (2013).

values.5 However, within the SPF there are missing values, i.e., it is an unbalanced

panel. The experts responses for the one-year-ahead forecast of the HICP in�ation are

depicted in Figure 3.1. The abscissa shows the date or, to be more precise, the target

month for which the forecast was determined. The Forecaster ID is on the ordinate.

A green rectangle indicates that the corresponding expert has provided a forecast for

this target month. A white area indicates missing values. A brief contemplation of

Figure 3.1 reveals immediately that missing values are prevalent in the survey.

Taking a more speci�c look, �rst and foremost, reveals that there are 22 out of 130

Forecaster that never provide in�ation forecasts. Second, there are some experts that

began responding rather frequently but stopped at some point. For example F76 did not

contribute any forecasts after June 2009. Similarly, some experts joined the SPF later

on and, of course, only submitted forecasts thereafter, for example F105. Third, even

experts that respond frequently can have missing values, see for example F4. Overall,

5This hold similarly for the forecast combination regression framework presented Granger and
Ramanathan (1984) in order to determine the OLS estimator.
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the average response rate of the expert is roughly 56%. Noteworthy, for the whole data

set there is not a single expert that is always responding.6

In our analysis, we use the rolling window approach, described in Section 2.1, with 44

observations, i.e., eleven years. Although, this increases the chance that we have experts

that always respond within the currently considered subset of observations, ten of the

subsets have not one consistently responding expert and another �ve only have one

expert. The remaining subsets have between two and �ve always responding experts.

Even under this rolling window approach we face the problem of missing values which

we address in the following.

3.1.2 Filtering and Balancing the Data Set

In order to process the data such that it can be used for forecast combination we need

to consider how to �lter and balance the panel. It means we both select a subset

from all available experts (�lter) and then consider how to treat missing values, for

example by balancing the panel. Note that, although we only use SPF to analyze the

structure of forecast errors and accuracy, it is necessary to prepare it as it would be

used for forecasting. Otherwise, the conclusions drawn from the analysis would be of

little value.

To �lter the data we follow and adapt the procedure by Genre et al. (2013). To this

end, we split forecasts into frequent and infrequent respondents. The latter are than

omitted from the panel. We label Forecasters infrequent respondents if they have more

than four consecutive missing values, i.e., a year of non-responding. Because we use a

rolling window, we have to process the data for every subset of observations separately.

By that, experts that are labeled infrequent once can redeem themselves from past

infrequent responding periods and will then contribute. Moreover, experts who have

entered the SPF later in time have a chance to be considered and in�uence the combined

forecast.

After �ltering the panel, we now take a look at how to treat missing values. We

previously ruled out the option to disregard all forecasts that have missing values. Al-

ternatively, one can impute the missing values. This is a technique that tries to mimic

forecasts behavior for the time period where no data is available and determine an

appropriate value for it (see e.g., Efron, 1994). An intuitive requirement for data impu-

tation is that there are su�ciently many actual observations. For example, if there is

only one actual forecast out of a hundred required forecasts, it is not sensible to impute

the 99 missing values. The data imputation procedure used in Genre et al. (2013) esti-

mates the missing values by �tting an autoregressive model for each expert within the

SPF and then forecast the next missing value. This, however, arti�cially changes both

6Note that we calculated this average response rates based on the number of missing submission
after the �rst contribution of an expert.
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the error variance of the experts and the forecast error covariances. However, the error

covariance matrix is the crucial input for the forecast combination optimization prob-

lems and, as discussed in Section 2.3, estimation errors in the error variance covariance

matrix contribute to the forecast combination puzzle. More importantly, our objective

when analyzing the SPF is to gain insights into actual, real world error variances and

covariances structures. If we impute forecast, this structure changes.

Therefore, we follow Matsypura et al. (2018) and Radchenko et al. (2023) and only

use the actually observed data for the estimation of the error variance covariance matrix,

i.e., estimate each element of the covariance matrix separately.7 As a consequence, for

the estimation of covariances we can only use points in time when responses of experts

overlap. To ensure a minimal number of common observations, we additionally �lter

the panel once more disregarding all experts who responded less than 75% of the time

for a given rolling window. By that, the number of common observations of two experts

is in the worst case 50% of the window size, i.e., 22 observations which is six and a half

years. We estimate the error variances based on at least 75% of the observations, i.e.,

33 observations or eight and a quarter year.

Accordingly, we do not explicitly impute missing values or balance the panel. Instead,

we only �lter it and then use a di�erent technique to estimate the error variance covari-

ance matrix. The bene�t of this approach is an error variance-covariance matrix that is

only estimated based on actually observed data. The approach is also simply applicable

to a real-world forecasting environment. For that, we extend the panel �ltering and

omit experts that have not contributed a forecast for the target period. Otherwise, we

can determine a weight for these experts, but do not have an actual forecast for the

target period that we can use to calculate the combined forecast.

3.1.3 Analysis of the Error Variance and Covariance of the SPF

The purpose of this analysis it to gather evidence and inspiration for the design of a

simulation study. To this end, we analyze the error variances and error covariances /

correlations of the SPF as those drive the solution to forecast combination problems.

Figures 3.2 to 3.4 show both a heatmap and boxplots that are based on a subset of the

rolling window approach of size 44. Within Figure 3.2 we use the �rst 44 observations

of the data, i.e., from December 1999 to September 2010 which includes the �nancial

crisis of 2007.

The heatmap in Figure 3.2 depicts the correlation matrix of the forecast errors.8 Both

the rows and columns correspond to experts with their forecaster ID, e.g., �F11�. Each

7Note that this can result in covariance matrices that are not positive (semi) de�nite. Following
Radchenko et al. (2023) we compute the nearest positive de�nite matrix using the R function nearPD

from the Matrix package (D. Bates, Maechler, & Jagan, 2022; R Core Team, 2022).
8In order to calculate the forecast errors we downloaded the true in�ation values from EuroStat

https://ec.europa.eu/eurostat/ on the 17th November 2021.
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intersection is illustrated as a rectangle, and it represents the error correlation between

the two experts. It is color-coded based on how high (or low) the error correlation is.

Red colors correspond to higher error correlations while yellow indicate, in comparison,

lower and green the lowest considered error correlations. The corresponding legend is

on the rights side of the heatmap. The smallest error correlation (green) is about 0.69.

The intermediate color yellows center is around a value of 0.82. More red color codes

depict error correlations close to one. Due to the fact that the diagonal of an error

correlation matrix is always one, it is grayed out such that it does not obstruct the

analysis. Note that we �xed the color coding for all heatmaps within Figures 3.2 to 3.4.

The ordering of the experts in the heatmap is based on their forecast error variance

for the given subset of observations. The experts with the best forecast accuracy is at

the top of the ordinate and the left side of the abscissa. Accordingly, the forecast with

the largest MSE is on the bottom and right side respectively. Furthermore, we divide

experts into four groups by the quartiles of the forecast accuracy. This is visualized by

the four by four grids in Figure 3.2. For the sake of simplicity, we will name the experts

with the smallest 25% of MSE values group one, the next group two and so on. The 25%

with the largest MSE will be referred to as group four. On the top and right-hand-side

of the heatmap there is an indicator to identify which visually di�erentiable rectangle

belongs to which group. For example, the rectangle on the top left shows the error

correlation between the 25% best forecast, i.e., group one, with experts from the same

group. The rectangle on the bottom left (and top right) depicts the error correlation

between group one and group four. In addition to the heatmap Figures 3.2 to 3.4 also

include boxplots on the right side. They depict the MSE values (ordinate) for each

group (abscissa). The rectangle of a boxplot depicts the middle 50% of observations,

i.e., the values between the 75% and 25% quantiles. The black line within the rectangle

is the median. The lines outside the rectangle are whiskers and either have the length

of 1.5 times the length of the rectangle or up to the largest and smallest observation

respectively. We will use these boxplots to analyze the error variance of the groups.

Note that the boxplots are only based on six or seven observations.

Let us now take a closer look at Figure 3.2. Based on the heatmap one can see

that for this set of observations the best experts are less correlated within their own

group.9 To an extent they are also less correlated with group two. In comparison,

the error correlations between forecasts from group one and forecasts from group three

as well as four are higher, i.e., more yellow- and red-dish. However, considering the

second, third, and fourth groups reveals that the error correlations are higher within

9From heron forward we will use two linguistic simpli�cations. First, we will use the terms the best
experts or worst forecaster. The best experts are those that belong to group one, i.e., the expert with
the best forecast accuracy. Accordingly, for the worst forecaster or experts, i.e., those that have the
largest error variance, are within group four. Second, note that unless indicated otherwise correlation
refers to the error correlation and not the correlation between forecasts.
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Figure 3.2. SPF forecast error variance and error correlation analysis from December
1999 to September 2010.

each group than between the corresponding group and the others. This is less prevalent

for groups two to four, but clearly visible for group one. In general, one can observe

that the error correlations without any di�erentiation between groups are high. The

median error correlation is about 0.92 and only 7% of error correlations are below or

equal to 0.80. As one can see due to the large amount of more green rectangles, a

large proportion of the relatively smaller error correlations belong to forecasts from

group one, particularly the error correlations between forecasts of group one. From the

boxplot within Figure 3.2 we can see that group three and four have a similar median

error variances (0.79 and 0.83). In comparison, the di�erence between groups one and

two is 0.16 which is noticeably higher (median error variance 0.52 and 0.68). This hold

similarly but to a lesser extent for group two and three with a di�erence of 0.11. Due

to the fact that the boxplots are only based on a few values, we consider the whiskers

to analyze the overall range of MSE values. One can see that the range of group one

(0.38) is quite large in comparison to all other groups (0.06, 0.07 and 0.11).

In summary, group one is noticeably di�erent from the other groups. First, forecasts

from group one are less correlated with themselves as well as with other groups. Whereas

for the other groups the correlations are higher both within and between groups. Second,

the median error variance of group one is noticeably smaller compared to the other
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Figure 3.3. SPF forecast error variance and error correlation analysis from December
2005 to September 2016.

groups which median error variances are closer together. Lastly, the error variances

within group one are more spread than all other groups.

Figure 3.3 depicts heatmap and boxplot for December 2005 to September 2016. For

this subset of observations, all forecast errors are highly correlated. The median error

correlation over all forecasts is 0.95 and over 92% of error correlations are greater 0.9.

Based on the heatmap there are no signi�cant di�erences between the error correlations

among the four groups. There is, however, an anomaly clearly visible in group four.

Forecaster �F94� is prominent as it is in comparison less correlated with any other

expert. Interestingly, this behavior is observable throughout most subsets and even in

Figure 3.2, although it is far less clearly noticeable. This expert showcases that there

can be varying forecast accuracies throughout time. The expert starts in the �rst group

and then transfers over group two and three into group four (Figure 3.3) as time goes

by. Moreover, expert can vanish entirely from the subset of observation, see for example

F1. Let us now consider the error variances of forecasts within Figure 3.3. Group one,

two, and three are similar with regard to the size of their middle 50% and, to an extent,

also with regard to their overall range. In contrast, group four di�ers from the �rst

three as its range, middle 50% and overall error variance is noticeably larger. Similar to

the observations of Figure 3.2, the di�erence in median error variance between groups

is larger for group one (0.18) but this time also for group four (0.21). In comparison to
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Figure 3.4. SPF forecast error variance and error correlation analysis from September
2010 to June 2021.

the �rst subset depicted in Figure 3.2, the overall error variance of the groups is higher,

i.e., they have a worse forecast accuracy. In summary, we observe that the correlations

are again all very high but this time also very similar across groups. Both the median

error variances of group one and four show a larger di�erence two their neighboring

groups median than groups two and three. Lastly, the range of error variances in the

last group is noticeably larger.

For the last subset of observations we consider the time span from September 2010 to

June 2021. Both a heatmap of error correlations and boxplots of forecast accuracy are

depicted in Figure 3.4. The error correlations are in-between those shown in Figures 3.2

and 3.3. They are high overall, but there are also smaller error correlations present in

comparison. However, those are still higher than what can be observed in Figure 3.2 for

group one. Within the considered subset of observations the smaller error correlations

are related to group four, both for experts within group four as well as between experts

of group four and other experts from other groups. Taken the boxplot into consideration

reveals that the overall forecast accuracy improved again, however, it is not at the same

level as for the �rst considered subset. Interestingly, groups one and four both have

a noticeably smaller and higher MSE respectively. Groups two and three have even

closer median MSE values than before. However, groups two and three have very little

variation in forecast accuracy as indicated by the thin rectangles, i.e., middle 50%.
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Due to that, the whiskers are not long enough to cover all observations which are then

depicted as dots, see group three. Group one also has such an outlier but, in this case,

it is a noticeably better forecast.

In summary, throughout this analysis we found various structures for the error cor-

relation and error variance. Overall, the forecast errors of di�erent forecasts are highly

correlated. The error correlations between groups can be very similar overall as in Fig-

ure 3.2. Alternatively, based on the presented data, the �rst or last group show some

di�erences in form of smaller error correlations as depicted in Figures 3.2 and 3.3. With

respect to the error variance or forecast accuracy of the forecast, there is evidence for

varying di�erences between the median MSE of two neighboring groups, i.e., smaller

and larger di�erences in the median MSE (Figure 3.4 versus Figures 3.2 and 3.3). More-

over, both the �rst and last group can noticeably di�er, i.e., the di�erence in MSE is

larger than between other groups. We use these results, among other things, to build

a simulation study in Section 3.2. To this end, we will consider di�erent groups of

forecasts with varying forecast error variances and di�erent error correlation structures.

3.2 Simulation Study

In order to analyze the forecast accuracy of di�erent forecast combination methods

we conduct a simulation study. To this end, we could either simulate the actual time

series and simulate (or estimate) the corresponding forecasts (see e.g., Capistrán &

Timmermann, 2009), or we could directly specify the variance-covariance matrix of the

forecast errors, see Roccazzella et al. (2022). The former is preferable, if the impact

of forecast model speci�cation and estimation if of additional interest. The latter has

the advantage, that it does neither rely on the assumption of particular forecasting

models nor uncontrolled estimation error of the parameter values of the forecast models.

Instead, it focuses directly on the speci�cation of the most important input of the

optimization problem: the variance-covariance matrix of forecast errors. Therefore, we

use the second approach and extend the simulation setup of Roccazzella et al. (2022)

to account for more sophisticated structures.

In Roccazzella et al. (2022) the variable of interest is given by

y ∼ N(0, σ2y), (3.1)

and the N unbiased forecasts of y are simply given by

ŷi = y + εi ∀ i = 1, . . . , N, (3.2)

with ε ∼ N (0,Σ). (3.3)
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The N × 1 vector 0 contains only zeros and ε is a N × 1 vector of forecast error terms

εi. The error terms are drawn from a multivariate normal distribution with zero means

and an error variance-covariance matrix Σ. Thereby, the most important part within

this simulation study is the error variance covariance matrix Σ. It de�nes both the

error variance (or forecast accuracy) for each forecast and the error correlation between

them. In Roccazzella et al. (2022) forecasts are divided into two groups: G1 and G2.

Within each group the error variance of the forecasts are identical. Forecasts in G1 have

an error standard deviation that is 50% smaller compared to forecasts in G2.10 For the

error correlation Roccazzella et al. (2022) chose speci�c value between 0.01 up to 0.9.

The error variances and covariances are computed as follows:

σ2i =

α
2 i ∈ G1

(2α)2 i ∈ G2

(3.4)

σi,j ̸=i = ρi,j

√
σ2i σ

2
j (3.5)

We adopt and extend this framework for our simulation study. Firstly, we extend the

design of Roccazzella et al. (2022) by introducing S di�erent groups of forecasts with

S ≥ 1. Each group is denoted by Gs with s = 1, . . . , S. The number of total forecasts

is given by N , and it has to hold that N ≥ S. For now, we assume that the number of
forecasts within each group N/S is identical and an integer.

Beside the number of groups S and the number of forecasts N , there are basically

two aspects that shape each of our scenario. First, the speci�cation of the variance and,

second, the speci�cation correlation of the forecast errors. The error covariances are then

calculated by Equation (3.5). In contrast to Roccazzella et al. (2022) we determine

the error variance and correlation di�erently. We will discuss this in Section 3.2.1

and present a general, more comprehensive framework to create simulation studies to

analyze forecast combination methods. We will present various ways in which the

framework can be changed to allow for the design of extensive and diverse simulation

studies. For example, it allows for more diversi�ed groups, i.e., not all forecasts of

the same group share the same error variance and correlation. Thereafter, we will

present the speci�c scenarios that we will consider throughout this thesis in Section 3.2.2.

Lastly, Section 3.2.3 summarizes the simulation framework and the scenarios that will

be considered.

10In another scenario forecasts from G2 are random noise.
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3.2.1 General Simulation Framework for Analyzing Forecast Combination

Methods

First, we want to create the forecast error variance. To this end, we sort forecasts based

on the error variance increasingly not only between groups but also within groups. Thus,

group one (s = 1) consists of forecasts with the lowest error variances whereas group S

contains the forecasts with the highest error variances. We de�ne N/S × 1 dimensional

vectors σ2
s for all s = 1, . . . , S. Each vector σ2

s contains the error variance σ2i of each

forecast i ∈ Gs. It holds that

diag(Σ) = (σ2
1
′
,σ2

2
′
, . . . ,σ2

S
′
). (3.6)

To determine the error variance σ2
s of each group, we �rst de�ne the median error

variance of a group and then, based on this, calculate the forecasts error variances in

a group. By that, there are two adjustments that can be made. First, one can specify

how groups from a global perspective perform in comparison to each other. Second, to

consider the performance of forecasts from a local perspective, we can alter the distri-

bution of error variances within groups without changing the global perspective with

regard to their median error variances.

Median Error Variance First, consider the global perspective. The median error vari-

ances of each group, ηs ∀ s = 1 . . . , S, are contained in the S × 1 vector η which is

determined by

η = η1α. (3.7)

In general, the base median error variance η1 can be used to de�ne di�erent magnitudes

of error variances. However, without loss of generality we set η1 = 1 in our simulation

study, i.e., the median error variance of group one is identical to the base median error

variance. Thereby (3.7) simpli�es to η = α. Thus, the S × 1 vector α represents not

only the relative di�erence between the median error variance of any group to the �rst

group but also the median error variances themselves. It is given by

α′ = (1, 1 + z2, 1 + z3, . . . , 1 + zS), (3.8)

with zs < zs+1 ∀ s = 2, . . . , S−1 and zs > 0 ∀ s = 2, . . . , S.11 Because η1 = 1, it follows

that zs · 100% is the relative distance of the median error variance of group s compared

to group one. In what follows we will refer to zs as the error variance similarity. By

de�ning di�erent values for zs∀ s = 2, . . . , S one can introduce a variety of scenarios.

11We chose to start indexing at two for the sake of clarity regarding which z-value belongs to which
group and because z1 is always zero. The median error variance of group one is de�ned by ηmed

1 in
equation (3.7).
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For example, if z2 is signi�cantly larger than z3 − z2 one creates a scenario where the

best group (group one) provides noticeably better forecasts while the groups two and

three have a more similar forecasting performance.

Group Error Variances Second, we consider the local perspective. Henceforth, we will

refer to the error variances within the groups by Group Error Variances. Based on the

median error variances, η, we determine the error variances of forecasts within a group

according to

σ2
s = ηs + βs s = 1, . . . , S, (3.9)

with ηs being the s-th vector element of η and βs ∈ R|Gs|. The vector βs determines

the error variances of each forecast in group s relative to the median error variance ηs.

If the k − th element of βs, i.e., βs,k, is smaller than zero, this implies the forecast k

from group s has a smaller error variance than the median error variance ηs. For values

greater zero the error variance is higher compared to ηs.

The vector βs is constraint to some extent. First, because we assumed that forecasts

are sorted based on the error variance within each group non-decreasing, the elements

in βs have to be non-decreasing. Second, we de�ne that all forecasts within group s

have a smaller error variance than forecast within group s + 1. Accordingly, it has to

hold that

max(βs) + ηs < min(βs+1) + ηs+1 ∀ s = 1, . . . , S − 1. (3.10)

Third, if the number of forecasts in a group, |Gs|, is odd the median error variance ηs
itself is by de�nition the middle element σ2

s . To be more precise, it will be the k∗-th

entry of σ2
s with k∗ = ⌈|Gs|/2⌉. Therefore, the k∗ − th element of βs has to be set to

zero. If, instead, the number of forecasts in a group is even, the median is the average

of the k∗-th and (k∗ + 1)-th element of σ2
s . To ensure that the median error variance

ηs is unchanged the k∗-th and (k∗ + 1)-th element of βs can not be chosen separately.

In summary, it has to hold that

βs,⌈k∗⌉ =

0 if k∗ = |Gs|/2 is odd

−
(
βs,(k∗+1)

)
if k∗ = |Gs|/2 is even

∀ s = 1, . . . , S. (3.11)

Subject to the above constraints, βs, can be determined both by hand or more auto-

matically.
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In order to determine βs automatically, we need to impose (temporary) conditions.12

First, let the elements of σ2
s ∀s = 1, . . . , S be equidistant. Second, let there be a

constant increase in the median error variance from any two neighboring groups, i.e.,

zs = (s− 1)z ∀ s = 2, . . . , S with z = z2. As a result, the vector α is given by

α′ = (1, 1 + z, 1 + 2z, . . . , 1 + (S − 1)z). (3.12)

For the second condition, the di�erence between max(σ2
s ) and min(σ2

s+1) has to be

the same as the di�erence between any two neighboring elements within σ2
s for any

s = 1, . . . , S. As a consequence βs is identical for all s = 1, . . . , S and the k-th element

of βs is given by

βs,k =

zS

(
k −

⌈
N
2S

⌉
− 0.5

(
1− N

S mod 2
))

N
. (3.13)

The vector βs can be altered further to create speci�c scenarios. For example, ex-

traordinary good or particularly bad forecasts can be introduced, i.e., outliers in the

�rst and / or last group.

With the median error variances contained in η and the vectors βs, we can deter-

mine all error variances, i.e., the diagonal of the error variance covariance matrix, by

Equation (3.9).

Correlation In order to determine the error covariances, i.e., the o�-diagonal elements

of the error covariance matrix, we use Equation (3.5). To this end, we consider the error

correlation matrix. The error correlation between any two forecasts i, j = 1, . . . , N of

any two groups s, r = 1, . . . , S is denoted by ρs,ri,j . Again, one can set the N(N+1)
2 −N

error correlations to speci�c values of interest. Alternatively, one can de�ne an error

correlation of group r with each other group s as ρ̄r,s ∀ r, s = 1, . . . , S. Either one can

and use it for the whole group, i.e.,

ρs,ri,j = ρ̄r,s ∀ r, s = 1, . . . , S, ∀ i ∈ Gs, j ∈ Gr, (3.14)

or an interval around ρ̄r,s can be de�ned. Then the speci�c values of ρs,ri,j can be randomly

drawn from the interval, or they can be assigned a value from an equidistant grid ranges

within the bounds of the interval. Furthermore, the correlations can be hand-picked or

drawn randomly from a given distribution or interval.

12Note that those conditions are needed to create βs but afterwards they may not hold if, for
example, βs is further changed by hand or if the median error variance of the �rst or last group is
changed.
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3.2.2 Designing Scenarios for the Simulation Study

In this section we will further discuss what scenarios will be designed using the simu-

lation study presented. Although, we provide a framework for a simulation study that

can create a variety of di�erent scenarios for forecast combination, we have to narrow

down the scenarios we can consider. Based on this general framework of the simulation

study, we will now present the speci�c scenarios that we consider in this thesis.

For the design of the simulation study we, henceforth, use η1 = 1, i.e., (3.7) simpli�es

to η = α. Additionally, we consider N = 24 forecasts, S = 4 groups and the variance

of the true series is σy = 1. By that we have a large pool of potential forecasts for the

forecast combination methods. The larger number of forecasts has multiple reasons.

First, in conjunction with a short time series, it increases the estimation uncertainty.

Recall, that in Section 2.3 we discussed that the estimation uncertainty / error is a

potential reason why sophisticated forecast combination method are outperformed by

simple combination methods. Thus, we can examine how forecast combination methods

perform in environments of larger uncertainty. Second, a larger number of forecasts is

also used in other studies regarding forecast combination (see e.g., Capistrán & Timmer-

mann, 2009; Roccazzella et al., 2022). Third, the SPF has a larger number of forecasts,

and we took inspiration from that. Finally, this provides a pool of forecasts to chose

from for methods that also perform a variable selection.

In Section 3.2.2.1 we will de�ne which scenarios for the error variance, σ2i , we will take

into consideration. Thereafter, we will consider the correlations between the forecast

errors in Section 3.2.2.2.

3.2.2.1 Error Variance

In order to specify the error variance of forecasts, we need to determine the group error

variances βs ∀ s = 1, . . . , S and the median error variance α and η1, see Equations (3.7)

and (3.9).

Group Error Variance For the group error variance de�ned by βs we will use the auto-

mated approach described in Section 3.2.1, i.e., βs is identical for all s = 1, . . . , S and

each element βsk is determined by Equation (3.13).

Median Error Variance Recall, that for the automated approach to de�ne βs, we im-

posed conditions. As a result, we have to use zs = (s− 1)z ∀ s = 2, . . . , S with z = z2.

It means that there is a constant increase in error variance compared to group one.

Each group s has a (s − 1)z · 100% larger median error variance ηs compared to η1
∀ s = 1, . . . , S − 1. Accordingly, for S = 4, the vector η = α is given by

α = (1, 1 + z, 1 + 2z, 1 + 3z)′. (3.15)
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Figure 3.5. Illustration of median error variances and group error variances with
respect to the error variance similarity (z) and no special groups.

For the error variance similarity we use z ∈ {0.05, 0.2, 0.5}. Similar values have, for

example, been used in Blanc and Setzer (2020) for individual forecast error variances.

Furthermore, we observed more similar as well as more dissimilar forecast accuracies

when analyzing the SPF within Section 3.1.3. However, we have to point out that,

although we build upon those insights, we simplify the simulation study by not using

individual values zs ∀ s = 2, . . . , S but constant ones. Figure 3.5 illustrates the error

variances of both the groups and forecasts depending on the choices we made for the

group and median error variance. The abscissa shows the error variances and the

ordinate represents the three error variance similarities, z-values, that are used. The

coloring is used as an additional aid for the di�erent values of z and will become more

relevant later on. The four di�erent groups of forecasts are depicted by the rectangles.

Within each groups middle there is a dashed line that represents the corresponding

median ηs. Since we chose η = 1, the dashed line of the �rst group is always at σ2 = 1.

The dots within each rectangle represent the individual error variances of the forecasts.

For this example we used N = 12 forecasts, i.e., three forecasts per group. By choosing

z ∈ {0.05, 0.2, 0.5} we create a variety of scenarios. With z = 0.05 (orange) we create

a scenario where both the groups are close in terms of their median error variance, but

also the forecasts error variances are very similar. Note that for z = 0.05 the individual

forecast error variances are not shown because of the narrowness of the rectangles. As

we increase z to 0.2 (blue) and 0.5 (green) we create groups that are less similar or

more dissimilar with regard to their median error variances (the dashed lines). By that,

the di�erence between two forecasts error variances (dots within the rectangles) also

increases. Overall, the median error variances for z = 0.05 are between 1 and 1.15, i.e

a 15% di�erence between the median error variance of the best and worst group. For

z = 0.2 the relative di�erence is 60%, i.e., the median of group four is 2.5 times larger

than that from group one. For z = 0.5 we have a 150% di�erence or η4 is 2.5 times

larger than η1 or respectively.

Figure 3.5 also illustrates how the forecasts are distributed within each group. This

distribution is the result from the automated approach to determine βs. We see that
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Figure 3.6. Illustration of median error variances and group error variances with
respect to special groups (SG) and z = 0.5.

they are equidistant within each group. Additionally, two neighboring forecasts from

two di�erent groups have the same distance. Recall that the di�erence between the

forecast error variances also increases when z increases. By that, the groups are more

diverse or dissimilar as z increases.

We presented how we de�ne the error variances σ2i for each forecast i = 1, . . . , N

based on the median error variance, Equation (3.15), and group error variance, Equa-

tion (3.13). By that, we created three di�erent scenarios: similar (z = 0.05), less similar

(z = 0.2) and dissimilar (z = 0.5) groups and forecast error variances. On top of that

we want to introduce special groups (SG). The idea of special groups is based upon

the insights gained in section 3.1.3, more precisely based on Figures 3.2 to 3.4. We

consider scenarios in which whole groups perform signi�cantly di�erently compared to

other neighboring groups. To this end, we consider three di�erent variations of the

median error variance, i.e., variations of η = α, see Equation (3.12). For the sake of

simplicity, we will di�erentiate the scenarios by the considered �special groups�. Fig-

ure 3.6 illustrates the four di�erent scenarios for special groups. Similar to Figure 3.5

the abscissa still represent the error variances. The ordinate shows the four scenarios

of special groups: none, �rst, last, both. For the sake of better visibility, we use z = 0.5,

i.e., we showcase the special groups for the green colored error variances or rectangles

of Figure 3.5. The �rst case of SG none is the base scenario we already considered. No

group has a signi�cantly better or worse forecast accuracy. To put it di�erently, the

median error variances of neighboring groups are within the same distance from each

other. If SG �rst, the best group of forecasts, is noticeably set o� from all other groups,

i.e., has an even better forecast accuracy. By that, there is a gap between the error

variances of group one and two as illustrated in Figure 3.6. If SG is �rst, we reduce

the base median error variance η1 by z. Accordingly, the di�erence in the median error
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variance between group one and two, is 2z. The corresponding vector α to determine

the median error variances η is given by

α′ =
(
1− z, 1 + z, 1 + 2z, 1 + 3z

)
. (3.16)

Note that the distribution of forecasts within the groups remains unchanged, see

Figure 3.6.13 The MSE values of forecasts within groups are still equidistant, but the

di�erence between the forecasts with the largest error variance of group one and the

forecast with the smallest error variance of group two di�ers.

Next we consider the scenario, SG last where the last group of forecasts with the

largest median error variance gets even worse. By that, we create a gap between the

last and all other groups, see Figure 3.6. To this end, we de�ne

α′ =
(
1 + z, 1 + z, 1 + 2z, 1 + 3z + z

)
. (3.17)

Lastly, the scenario SG both combines SG �rst and SG last. The best forecasts are

even better and the worst forecasts are even worse. We de�ne

α′ =
(
1− z, 1 + z, 1 + 2z, 1 + 3z + z

)
. (3.18)

In summary, with z ∈ {0.05, 0.2, 0.5} we de�ne scenarios of similar, less similar and
dissimilar forecasts. With SG none, �rst, last, both we further introduce scenarios

within groups of forecasts that are signi�cantly better or worse in comparison to the

other groups. We believe that those scenarios are relevant and interesting, and it is

worth analyzing how the forecast combination methods perform within them. However,

if we use SG �rst, there is a group that is noticeably better and more importantly, we

introduce forecasts with a lower error variance, see again Figure 3.6. Therefore, for a

comparison between scenarios with SG none and SG �rst, we expect that, overall, the

MSE of all methods is reduced. This has to be taken into consideration when comparing

scenarios.

Within this section we created multiple scenarios for the error variances of forecasts.

Next we need to specify which error correlations we want to use.

3.2.2.2 Correlation Matrix

The scenarios for the error variances of forecasts that we de�ned in Section 3.2.2.1, are

the diagonal elements of the error variance covariance matrix Σ. In order to determine

the o�-diagonal elements, i.e., error covariances, we �rst de�ne the error correlations.

Then the error covariances can be calculated by Equation (3.5).

13Further, note that the third condition for the automated approach for βs is needed to create beta.
This, however, does not imply that these assumptions have to hold after further manipulation of α.
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Within Section 3.2.1 we presented di�erent possibilities to determine correlation ma-

trices. In terms of our simulation study we chose to use �xed correlation matrices,

i.e., we neither draw the common error correlation randomly nor do we determine the

individual error correlations randomly based on ρ̄r,s. We have decided against this for

reasons of reproducibility of our results. Furthermore, hand-picking all correlations sep-

arately creates very speci�c error correlation matrices. When considering the heatmaps

of the SPF within Section 3.1.3, we discussed that the error covariances of a group are

oftentimes similar, however not identical. We build upon these insights but simplify

it for our simulation study. Henceforth, we will use a �xed correlation for all error

correlations. Note that this is already an extension to Roccazzella et al. (2022) where

the same correlation was used for all forecast errors. Accordingly, the error correlation

of forecast i from group r with forecast j from group s with r, s ∈ 1, . . . , 4 is given by

ρi,j = ρ̄r,s ∀i, j ∈ {1, . . . , N : i ̸= j}. (3.19)

Because we de�ne the individual error correlation based on ρ̄r,s, we only need to de�ne

a 4× 4 (error) correlation matrix (CM). Each entry represents the error correlation for

the whole group, i.e., ρ̄r,s ∀ r, s ∈ 1, . . . , 4.

Our analysis based on the SPF as well as similar �ndings in the literature suggest

that highly correlated forecast errors are common. It can be a result of forecast being

based on similar methods and data sets (see e.g Wang et al., 2023; Winkler & Clemen,

1992). Nevertheless, we want to create a diverse set of scenarios. Therefore, the �rst

three correlation matrices represent scenarios of high, medium, and low (positive) error

correlations. To this end, we de�ne an error correlation coe�cient of 0.9 as high, 0.5 as

medium and 0.2 as low. Accordingly, the �rst three correlation matrices are

CM1 =


0.90 0.90 0.90 0.90

0.90 0.90 0.90

0.90 0.90

0.90

 CM2 =


0.50 0.50 0.50 0.50

0.50 0.50 0.50

0.50 0.50

0.50



CM3 =


0.20 0.20 0.20 0.20

0.20 0.20 0.20

0.20 0.20

0.20



(3.20)
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In addition to that we will use three more correlation matrices that are, partly, inspired

by our analysis of the SPF. They are given by

CM4 =


0.90 0.50 0.50 0.50

0.90 0.50 0.50

0.90 0.50

0.90

 CM5 =


0.90 0.50 0.50 0.20

0.50 0.50 0.20

0.50 0.20

0.20



CM6 =


0.50 0.50 0.50 0.50

0.90 0.90 0.90

0.90 0.90

0.90



(3.21)

The fourth correlation matrix CM4 is not based upon observations form the SPF. In-

stead, we wanted to design a scenario where forecasts from the same group are highly

correlated, i.e., more similar, but are less related to forecasts from other groups. For

CM5 we took inspiration from the error correlations presented in Figure 3.4 but exag-

gerated it. Forecast errors from within the last, worst group are less correlated with

themselves and forecast errors from other groups (low correlation). To put it di�er-

ently, they, in contrast to the other groups, either use di�erent information or extract

the information di�erently. The second and third group are more similar both within

the groups and between them (medium correlation), i.e., they use more important and

similar information and extract the information similarly e�cient. The best group has

very similar forecast errors, i.e., high correlation. We interpret this as if all of them use

a large portion of the same important information and extract it similarly to accurate

forecast. In contrast, CM6 considers a contrary scenario. It is inspired by the error

correlations of forecasts of the SPF shown in Figure 3.2. Groups two, three, and four

have a similar high correlation. They use similar information but their e�ectiveness in

extracting it di�ers which drives the di�erent forecast accuracies. Group one has the

best forecasts. However, the error correlation among forecasts within group one as well

as with forecasts from other groups is medium. It is a scenario where each forecast in

group one found a di�erent aspect that elevates their forecast accuracy or extracted

important parts of the common information more e�ectively.

3.2.3 Brief Summary of the Designed Scenarios

In this chapter, we extend the simulation study of Roccazzella et al. (2022) and, thereby,

present a framework for simulations studies to analyze the performance of forecast

combination methods which is the �rst main contribution of this thesis. It allows

multiple groups of forecasts which can have di�erent magnitudes of error variances and
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distributions of error variances. Furthermore, it allows to de�ne di�erent correlations

between the forecast errors of di�erent groups. To this end, one needs to de�ne the

error covariance matrix directly which is the input into a forecast combination problem.

Section 3.2.1 presented the framework that can be used as well as several con�gurations

or approaches to determine the median error variance, group error variance and error

correlations.

Inspired by, inter alia, the analysis the ECB's Survey of Professional Forecasters we

speci�ed di�erent concrete scenarios for our simulation study. All of them use N = 24

forecast and S = 4 groups. The median error variances as well as error variances within

a group range from similar over less similar to dissimilar (z ∈ {0.05, 0.2, 0.5}). We can

introduce special groups, i.e., the best forecast has an even better forecast accuracy,

the last, fourth groups forecast accuracy is even worse or both (SG none, �rst, last,

both). Lastly, we use high, medium, and low error correlations as well as some more

speci�c design that are build around the idea of using di�erent information or varying

e�ectiveness in processing information.



4 L1 Norm Constraints

To showcase that additional constraints are bene�cial for forecast combination, we con-

sider an analysis by Clemen (1986). In Chapter 2, we showed that forecast combination

can also be represented as a regression model which was suggested by Granger and

Ramanathan (1984). It is an approximation of the forecast combination problem by

J. M. Bates and Granger (1969). Recall that an unconstrained regression model, as

depicted in Equation (2.27), minimizes the in-sample mean squared error (MSE). In

other words, there are no other weights that result in a smaller MSE. Clemen (1986)

demonstrated that if we assume unbiased forecasts, we can improve the out-of-sample

MSE if we use constraints. To this end, they used the regression model considered

by Granger and Ramanathan (1984) which constrains the intercept to be zero and the

weights to sum to unity.14 Although, the unconstrained regression model minimizes

the in-sample MSE, if forecasts are unbiased the out-of-sample MSE of the constrained

regression model is smaller than that of the unconstrained regression model. However,

if the forecasts have a small bias, the combined forecast based on the constrained re-

gression is itself biased. Nevertheless, even in such cases, the constrained regression

can still have a superior out-of-sample MSE if the increase in bias is su�ciently small

(Clemen, 1986).

In this chapter, we introduce L1 norm constraints and analyze its potential to improve

forecast accuracy. To this end, we use it as an additional constraint that we impose

onto the forecast combination problem introduced by J. M. Bates and Granger (1969)

depicted in Equation (2.22). Recall, that the objective function of the forecast com-

bination problem is to minimize the error variance of the combined forecast under the

unity constraint, i.e., all weights sum to one.15 In this chapter we analyze how an addi-

tional L1 norm constraint can be imposed in various forms to reduce the out-of-sample

MSE of the combined forecast. Note that the L1 methods for forecast combination

are closely related to the well-known Least Absolute Shrinkage and Selection Operator

(Lasso) introduced in Tibshirani (1996). Therefore, we will also refer to these methods

as lasso-based forecast combination methods.

14It should be noted, that in this case the MSE is approximately equal to the error variance if
forecasts are unbiased.

15Note while in a regression framework like analyzed in Clemen (1986) one can consider forecast
combination without any constraint this is not sensible for the combined forecast error variance min-
imization approach from J. M. Bates and Granger (1969). In the absence of the unity constraint, the
objective function (error variance of the combined forecast) is minimized when zero weight is assigned
to all forecasts.

41
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The objectives for this chapter are the following:

(I) We introduce shrinkage and demonstrate how it can improve the out-of-sample

forecast accuracy.

(II) We present various implementations and variations of the L1 constraint that are

used in the literature and analyze their impact on the weight vector.

(III) We develop a forecast combination problem that encompasses all the considered

L1 constraints.

(IV) We propose to use Conditional Group Equal Weights (CGEW) as a shrinkage

direction for forecast combination with L1 constraints.

(V) We develop a forecast combination problem that encompasses all the considered

L1 constraints.

(VI) We analyze the performance of the methods within an extensive simulation study

for various scenarios, both with and without hyperparameter estimation.

With respect to the overall structure of this thesis, this chapter includes the second

and third major contributions stated in Chapter 1: a uni�ed framework for the L1

constraint methods and Conditional Group Equal Weights as a shrinkage direction.

The remainder of this chapter is organized as follows. First, in Section 4.1 we intro-

duce the concept of shrinkage, motivate its general idea and show how it can reduce

the forecast accuracy of the combined forecast. We also introduce a related shrinkage

method called Linear Hybrid Shrinkage (LHS) to compare its forecast accuracy to the

L1 constraint or lasso-based methods. However, the L1 methods are our main focus.

Furthermore, this section presents di�erent variants and implementations of the L1

constraint as they are considered in the literature.

In Section 4.2 we translate all variants and implementations of the L1 constraint into

a uni�ed framework that is based on the original forecast combination problem proposed

by J. M. Bates and Granger (1969). This framework minimizes a quadratic function,

the error variance of the combined forecast, subject to linear constraints. As a result

the variants of the L1 constraint can be compared on the same basis. Furthermore,

we analyze how each L1 method a�ects the weight vector and present an optimization

problem that nests all considered variants of the L1 constraint. This includes shrinkage

towards a prior weight vector.

In Section 4.3 we analyze the forecast combination methods within an extensive sim-

ulation study. Within this simulation study we analyze the performance both with and

without the uncertainty of estimating a hyperparameter which is required for the L1

methods.

Lastly, in Section 4.4 we discuss our results and directions for future research.



4 L1 Norm Constraints 43

4.1 Background and Related Literature

In this section we motivate the idea of shrinkage and show its bene�ts in Section 4.1.1.

In Section 4.1.2 we present L1 variants and their implementation that are used for

forecast combination in the related literature.

4.1.1 The Idea and Benefits behind Shrinkage

This thesis is centered around the concept of shrinkage (or regularization). Shrinkage

is a technique that alters estimates towards a certain reference and by that can reduce

the estimation error or variance (G. James et al., 2023; W. James & Stein, 1992). It has

been used to reduce the squared error of the mean vector estimation for multivariate

normal distributions (W. James & Stein, 1992; Stein, 1956; Tsukuma & Kubokawa,

2020, particularly pp. 2-5). Furthermore, it is used in the context of covariance estima-

tion, for example in portfolio selection where the number of variables or assets can be

very large (see e.g., Ledoit & Wolf, 2017). It is also used for machine learning or deep

learning to avoid over�tting the training set (Aggarwal, 2023, pp.178-182). We consider

it in the context of forecast combination with constrained weights.

Consider a commonly known multivariate regression problem in the form of Equa-

tion (2.27). The ordinary least squares estimator minimizes the sum of in-sample

squared errors for a given data set. In fact, the ordinary least squares (OLS) estimator

has the smallest in-sample error variance (or MSE) of all unbiased linear estimators.

This is known as the Gauss-Markov theorem (see e.g., Hastie, Tibshirani, & Friedman,

2009, pp.51-52). However, the OLS estimator does not necessarily produce the best

forecast ŷ. The out-of-sample error variance or MSE can be decomposed as follows:

E[(y − ŷ)2] = E[ŷ − y]2︸ ︷︷ ︸
Bias(ŷ)2

+ E[(ŷ − E[ŷ])2]︸ ︷︷ ︸
Var(ŷ)

+ σ2ε︸︷︷︸
Irreducible error

(4.1)

Accordingly, the out-of-sample MSE consists of a bias and variance term of the forecast

and an irreducible error term, σ2ε . For the OLS estimator the bias term is zero. However,

the OLS estimator does not necessarily minimize the out-of-sample error variance. By

altering the estimated parameter values via shrinkage one introduces a bias into the

forecast. However, if the reduction in the variance term exceeds the increase in (squared)

bias, the out-of-sample error variance can be smaller. This is commonly referred to as

the bias-variance trade-o�. It is the foundation on why shrinkage can improve forecast

accuracy (Hastie et al., 2009, pp. 223-228; G. James et al., 2023, pp. 31-34).

Linear Hybrid Shrinkage Let us now consider shrinkage within a speci�c method for

forecast combination to further showcase how shrinkage can improve forecast accuracy.

To this end, we introduce the linear shrinkage (LS) approach of Blanc and Setzer (2020)
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(b) LHS, i.e., v = (1, 0, 1, 1, 0, 0)′

Figure 4.1. Illustration of forecast weight paths for the LS and LHS approach. The
data was created on the basis of the simulation study of Section 3.2 for N = 24 with
CM1, an error variance similarity z = 0.5 and no special group. Six forecasts are chosen
randomly out of 24 once and are used throughout this thesis.

and its extension the linear hybrid shrinkage (LHS) approach of Schulz, Setzer, and Balla

(2022). We chose these two methods for the illustration of shrinkage, because these

are very accessible. They shrink the optimal weights towards equal weights linearly

as a shrinkage parameter or intensity, λ, changes. However, within the linear hybrid

shrinkage from Schulz et al. (2022) some weights are instead shrunken towards zero

while the remaining subset of weights is shrunken towards the equal weights of the

subset. The linear hybrid shrinkage weights are given by

ωLHS = λ
v

1′v
+ (1− λ)ωOW , (4.2)

with 1 being a N × 1 vector of ones and the N × 1 selection vector v. The latter is

used to select which forecasts are shrunk towards their corresponding equal weights and

which are shrunk towards zero. For all vector elements that are one, the corresponding

weights are shrunken linearly towards the respective equal weights, i.e., 1/1′v. For all

other vector elements that are zero, the weights are shrunken linearly towards zero. If

v only consists of ones the LHS simpli�es to LS used in Blanc and Setzer (2020). In

order to have the transition between optimal and equal/zero weights, for the shrinkage

parameter or intensity it holds that λ ∈ [0, 1]. If it is zero, the solution is identical

to optimal weights. If it is one, some weights are identical to their corresponding

equal weights while others are equal to zero. In general, the selection vector v can be

determined by choice or, for example, based on the in-sample forecast accuracy (Blanc

& Setzer, 2020; Schulz et al., 2022).

Figures 4.1(a) and 4.1(b) depict the weights (ordinate) of LS and LHS respectively

for di�erent values of λ (abscissa). Each colored line corresponds to the weight of a

forecast for di�erent values of λ. To put it di�erently, the colored lines are the path
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each weight takes for all values of λ.16 The underlying data is taken from the simulation

study introduced in Section 3.2. Henceforth, we use the same data and the same six

forecasts for all illustrations of the shrinkage methods within Chapter 4 unless indicated

otherwise. The colors for all forecasts are the same for all illustrations.

Figure 4.1(a) illustrates how the linear shrinkage method operates. For λ = 0 weights

are identical to the optimal weight of the forecast combination problem by J. M. Bates

and Granger (1969). As the shrinkage parameter λ increases, all weights are shrunken si-

multaneously and linearly towards equal weights. For the LHS depicted in Figure 4.1(b)

we selected forecasts based on their in-sample MSE values. The best three forecasts are

shrunken towards equal weights (red, teal, and green) and the remaining three forecasts

towards zero (pink, blue, and yellow).

Actual and Empirical Error Variance LS and LHS are straightforward shrinkage meth-

ods that showcase the general idea of shrinkage. Based on this, we can now further

illustrate how shrinkage is bene�cial. Consider the actual error variance of a combined

forecast ŷc for a given weight vector w, i.e.,

σ2c (ω) = ω′Σω. (4.3)

As discussed earlier, the true error covariance matrix Σ is, of course, unknown and has

to be estimated. The corresponding empirical error variance is given by

σ̂2c (ω) = ω′Σ̂ω. (4.4)

If we use simulated data for which we know the true error covariance matrix, we can

analyze the actual and empirical error variance for di�erent weight vectors ω. The

most interesting weight vectors are of course the estimated weight vectors, ω̂LHS(λ),

determined by Equation (4.2) with v = (1, 1, 1, 1, 1, 1)′ (LS approach) for di�erent values

of λ. Figure 4.2 depicts the actual and empirical error variance, i.e., σ2c (ω̂
LHS(λ)) and

σ̂2c (ω̂
LHS(λ)) respectively, for the LS method.17 The shrinkage parameter λ is on the

abscissa. The ordinate shows the error variance, both the actual and empirical. The

former is depicted by the blue colored line and the latter by the orange colored line.

The smallest empirical error variance is, of course, given for λ = 0. Because then the

weights from LS are identical to the (empirically) optimal weights of Equation (2.22),

i.e., the weights that minimize the empirical error variance. The equal weights solution

16The �gures we use that depict the weight paths are for example used in Hastie et al., 2009, pp.
57-73; Tibshirani, 1996

17Note that Blanc and Setzer (2020) derived an explicit decomposition of the expected squared error
for the LS method. However, we introduce the concept of empirical and actual error variance, because it
showcases the bias-variance trade-o�, and it can be applied to any method that uses a hyperparameter
(in the context of a simulation study), without the need of an explicit squared error decomposition for
each individual method.
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Figure 4.2. Illustration of the actual and empirical error variance for the LS method
based on Fan et al. (2012). We use a di�erent data set with N = 24 compared to
Figure 4.1 for illustration purposes. The data was created on the basis of the simulation
study of Section 3.2 for CM1, an error variance similarity z = 0.5 and no special group.

is given for λ = 1. The more weights are shrunken towards equal weights, the higher the

empirical error variance gets. While the minimum of the empirical error variance is given

for λ = 0, the actual error variance is minimized for about 0.56. While the empirical

error variance of the combined forecast is non-decreasing for increasing values of λ, this

is not true for the actual error variance. To put it di�erently, the weight vector that

minimizes the actual error variance, which is based on the true but unknown covariance

matrix of forecast errors, is in-between equal and optimal weights. In addition to that,

Figure 4.2 also illustrates the forecast combination puzzle as although OW has the

smallest empirical error variance, the actual error variance of the EW method is smaller

in comparison.

The actual error variance in Figure 4.2 showcases the bias-variance trade-o� of Equa-

tion (4.1). The solution of the forecast combination problem of Equation (2.22), i.e.,

OW, �ts the in-sample data most accurately. In contrast, equal weights does not in-

volve any estimation based on the in-sample data, i.e., the observed data is completely

ignored. The OW method is unbiased, the EW is biased.18. For OW the higher vari-

ance term of the out-of-sample MSE decomposition in Equation (4.1) is a result of

(over)�tting the in-sample data. Accordingly, it is smaller for EW than OW (Blanc

& Setzer, 2020). For λ = 0 the LS method starts with an unbiased solution that has

as larger variance term. It ends at λ = 1 with a biased solution that has a smaller

variance term. On the way from λ = 0 to λ = 1, the bias term increases and the

variance decreases. From the perspective of OW, if the increase in (squared) bias is

more than compensated for by the reduction in variance, the resulting out-of-sample

18Note that OW is unbiased if the forecasts themselves are unbiased, recall Section 2.2.1
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error variance or MSE is smaller than that of the OW method. Similarly, for EW, if

the reduction in (squared) bias compensates the increase in the variance term, the error

variance decreases. Between OW and EW there is (or can be) a λ value at which the

bias increases is no longer compensated for by the reduction in the variance term or

vice-versa, i.e., the minimum of the actual error variance. This value of λ minimizes

the out-of-sample error variance of the LS method, i.e., has a superior out-of-sample

forecast accuracy.

Shrinkage or regularization is build around this idea of the bias-variance trade-o�.

The weights are altered or shrunken into a certain direction or reference to reduce the

out-of-sample error variance in terms of Equation (4.1) or similarly to reduce the actual

error variance in terms of Equation (4.3) and Figure 4.2. As a result, there is an ongoing

search for the best methods and shrinkage directions. In this thesis we will discuss and

develop various methods to shrink forecast combination weights in order to trade bias

and variance to reduce the out-of-sample error variance, MSE or forecast accuracy of

the combined forecast. We start by taking a look at how Lasso-based shrinkage methods

have already been used for forecast combination before we represent all those methods

within a generalized framework and propose new shrinkage directions.

4.1.2 Lasso-based Shrinkage in the Forecast Combination Literature

The Least Absolute Shrinkage and Selection Operator (Lasso), was introduced by Tib-

shirani (1996). It imposes a L1 constraint on the parameter vector in a regression

problem. Because the Lasso-based method and other related shrinkage methods are

based on vector norm, we brie�y introduce these norms �rst. The Lq norm of a vector

ω for q ≥ 1 is given by

∥ω∥q =

(
N∑
i=1

|ωi|q
) 1

q

. (4.5)

Accordingly, the L1-norm (q = 1) is the sum of absolute weights, i.e.,

∥ω∥1 =
N∑
i=1

|ωi|. (4.6)

The L2 norm (q = 2) is equivalent to the square root of the sum of squared vector

elements, i.e.,

∥ω∥2 =

(
N∑
i=1

ω2
i

) 1
2

. (4.7)
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Accordingly, ∥ω∥22 is the sum of squared vector elements (see e.g., Gentle, 2017, pp.

25-28). There is another (pseudo) norm L0 that measures the sparsity of a vector, i.e.,

the number of non-zero elements. It is given as

∥ω∥0 =
N∑
i=1

I(ωi ̸= 0). (4.8)

The function I() is an indicator function that is equal to one if the condition is true, i.e.,

if the vector element is non-zero, and zero otherwise (see e.g., Lanza, Morigi, Selesnick,

& Sgallari, 2023, pp. 13-14) Because we mostly use the L1-norm, henceforth, we denote

it by ∥ω∥, i.e., we omit the subscript. For the L0 and L2 we will explicitly use ∥ω∥0
and ∥ω∥2.

Lasso The standard Lasso introduced by Tibshirani (1996) was already brie�y men-

tioned in Section 2.4. It is de�ned within a regression framework by

minimize
ω

T∑
t=1

∥∥yt − ω′ŷt
∥∥2
2

subject to ∥ω∥ ≤ γ

(4.9)

with γ ≥ 0. The objective function is the sum of squared residuals, i.e., it is equivalent

to the MSE (without the constant term, see again Equation (2.2)). The constraint

restricts how far the weights (or regression coe�cients) as a whole can deviate from

zero. It does that by constraining the sum of absolute weights to be smaller or equal

to a shrinkage parameter γ. To put it di�erently, the weight vector ω has a certain

budget of deviation from zero. This budget can be distributed among all weights or

only spend one weight depending on the objective function. If γ = 0 no deviation from

zero is allowed, i.e., the only feasible solution is that all weights are zero. As γ increases,

weights can become non-zero. For s su�ciently large value of γ which we denote as γ∗

the constraint will no longer restrict the solution space. Accordingly, for γ ≥ γ∗ the

determined weights are identical to the OLS regression weights, i.e., the constraint itself

becomes unnecessary in the sense that it does not a�ect the solution any more (Hastie

et al., 2009, pp. 57-73; Tibshirani, 1996).

The Lasso can also be written as an unconstrained optimization problem. To this

end, the inequality constraint is incorporated as a penalty into the objective function.

This is called Lagrangian(-multiplier) form (Hastie et al., 2009, pp. 57-73; Tibshirani,

1996). The corresponding problem is given by

minimize
ω

T∑
t=1

∥∥yt − ω′ŷt
∥∥2
2
+ λ∥ω∥ (4.10)
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Figure 4.3. Illustration of forecast weight paths for the standard Lasso. The data
was created on the basis of the simulation study of Section 3.2 for N = 24 with CM1,
an error variance similarity z = 0.5 and no special group. Six forecasts where chosen
randomly out of 24 once and are used throughout this thesis.

The penalty term λ penalizes deviations from zero.19 Similar to γ of Equation (4.9),

for the penalty term λ it has to hold that λ ≥ 0. However, while for γ = 0 all weights

are zero, it is di�erent for the Lagrangian form. Because λ is part of a penalty term

instead of a constraint if λ = 0, i.e., no penalty, the determined weights are identical

to the OLS weights. In contrast, for γ = 0 no deviation from zero is allowed. As the

penalty term λ increases, i.e., as λ → ∞, weights are shrunken towards zero. For a

su�ciently large penalty term λ, i.e., λ∗ all weights are zero (Hastie et al., 2009, pp.

57-73; Tibshirani, 1996).

The outstanding feature of the lasso both in form of Equations (4.9) and (4.10) is,

that it shrinks weights towards zero and selects individual weights to exactly zero.20

Figure 4.3 depicts the weights of six forecasts calculated for various values of λ/γ on

the ordinate as colored paths. The abscissa shows the sum of the absolute values of

the weights, i.e., ∥ω∥ for the currently used γ or λ. By that, regardless of whether

the constrained or unconstrained, Lagrangian form, is used, the �gure has the same

structure. We will henceforth use γ, but everything holds accordingly for λ. If γ = 0,

i.e., ∥ω∥ = 0 all weights in Figure 4.3 are zero. As γ increases, i.e., more deviation from

zero is allowed, two weights increase. The weights are depicted by the green and pink

line. While the green weights increases further, the pink goes back to zero and the teal

weight increases. For larger values of γ more and more weights deviated from zero and

strive towards the unconstrained, OLS solution (blue, red, yellow, and pink). One can

19Note that we use λ if the Lagrangian form is used and γ if a constrained optimization problem is
considered to distinguish between the two.

20The selection to exactly zero is because the constraint region de�ned by the L1 constraint is, in
two-dimensional terms, a diamond which corners occur where a variable is zero. See Hastie et al. (2009,
pp. 68-73) and Tibshirani (1996) for more details.
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also interpret Figure 4.3 from right to left. Starting from the OLS solution, the weights

are shrunken and individually selected to zero as γ decreases.

If instead the L2 norm is used within Equations (4.9) and (4.10), the problem is

called Ridge Regression. It shrinks weights towards zero (and during that towards each

other) but does not select individual weights to exactly zero (Diebold & Shin, 2019;

Hastie et al., 2009, pp. 61-73; Tibshirani, 1996). In this thesis, however, we focus on

the Lasso because it is well-established and widely used in the literature (Diebold &

Shin, 2019; Radchenko et al., 2023; Roccazzella et al., 2022) on the one hand and the

advantageous property of variable selection it provides on the other (recall Section 2.4

and see Wang, Kang, and Li (2022)). The latter can be particularly useful when only a

few observations T but many forecasts N are available. In what follows we discuss how

the Lasso has been used for forecast combination (Diebold & Shin, 2019; Hastie et al.,

2009, pp. 57-73; G. James et al., 2023, pp. 229-253; Tibshirani, 1996).

eLasso and peLasso Diebold and Shin (2019) discuss multiple Lasso-based methods

for forecast combination. Because they de�ne their optimization problem both with the

L1-norm (Lasso) and L2-norm (Ridge) we will at �rst present it in form of the Lq norm.

However, later we will focus on the Lasso methods. For forecast combination Diebold

and Shin (2019) minimize the squared residuals with a penalty term, i.e.,

minimize
ω

T∑
t=1

∥∥yt − ω′ŷt
∥∥2
2
+ λ∥ω∥q (4.11)

If q = 0 the number of non-zero elements is penalized based on λ, i.e., the best subset

of forecasts is selected and weights are estimated without any regularization. For q = 2

this optimization problem corresponds to the Ridge regression which, again, shrinks

coe�cients to zero but does not select a subset of forecasts to exactly zero. Both

shrinkage and selection towards zero can be achieved by using q = 1 which is the Lasso

regression (Diebold & Shin, 2019; Hastie et al., 2009, pp. 57-73; G. James et al., 2023,

pp. 229-253; Tibshirani, 1996).

Based upon the fact that the equal weights forecasts oftentimes outperforms the

theoretically optimal weights for forecast combination (see Section 2.3), the authors

introduce shrinkage towards equal weights instead of zero. This can be achieved by

using the following optimization problem

minimize
ω

T∑
t=1

∥∥yt − ω′ŷt
∥∥2
2
+ λ

∥∥ω − 1/N
∥∥
q

(4.12)

For q = 2 the N forecasts are shrunk towards the equal weights forecast. If the Lasso

is used with q = 1, some forecasts are selected to have equal weights of 1/N while the

weights of the remaining forecasts are shrunken towards it. They call those methods the
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�egalitarian Ridge� (eRidge) and �egalitarian Lasso� (eLasso) (Diebold & Shin, 2019)

respectively. To get a better intuition for the eLasso consider again Figure 4.3 but

assume that the ordinate depicts ωi − 1/N instead of ωi. Then, a weight path for

the eLasso can look similar to the weight path of the Lasso depicted in Figure 4.3.

Accordingly, all forecasts have a weight of 1/N on the left-hand side of the �gure and

(oftentimes separately) start deviating from it for larger values of the L1 norm on the

abscissa.

Neither the eRidge nor the eLasso selects a subset of forecasts to zero (variable selec-

tion). The eLasso only selects forecasts to equal weights. Therefore, Diebold and Shin

(2019) introduce the �partially-egalitarian Lasso� (peLasso) which corresponds to the

following optimization problem:

minimize
ω

T∑
t=1

∥∥yt − ω′ŷt
∥∥2
2
+ λ1∥ω∥+ λ2

∥∥ω − 1/∥ω∥0
∥∥ (4.13)

The peLasso is designed to select towards zero and shrink towards equal weights, but

not the original equal weights (1/N). Instead, it shrinks the weights towards the equal

weights of the currently non-zero forecasts, i.e., 1/∥ω∥0. A problem with the peLasso is,

however, that the optimization problem is di�cult to solve, �due to the discontinuity

of the objective function at� (Diebold & Shin, 2019) ωi = 0. Therefore, the authors

propose a two-step procedure. First, a subset of forecasts is selected. This can be done

by the standard Lasso method of Equation (4.11) with q = 1. Second, the forecasts

with non-zero weights of step one are used within the eLasso of Equation (4.12) with

q = 1.21 As a consequence, the chosen forecasts are both shrunken and selected towards

equal weights.

Henceforth, we will not consider the peLasso or an adapted version of it that includes

the unity constraint within this thesis. In its current form as a two-step procedure, it

is beyond the scope of this thesis. Our newly proposed forecast combination methods

will be computed within one-step. Therefore, to fairly evaluate our methods to existing

ones, we restrict ourselves exclusively on one-step procedures. Otherwise, if we apply

the variable selection via a form of Lasso �rst and then apply the eLasso, we would also

have to additionally evaluate all other methods after step one. To put it di�erently,

we can also think about the pool of available forecast as a result of a variable selection

strategy, i.e., a step one. However, that does not mean that we do not consider methods

that perform a variable selection simultaneously in one step beside estimating weights,

like for example the Lasso.

21Diebold and Shin (2019) also propose to use eRidge at this step.
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Lasso towards Reference Weights and with Unity Constraint In Roccazzella et al. (2022)

various approaches for constrained optimization with penalty terms are used. They de-

�ne the optimization problem as a quadratic optimization problem:

minimize
ω

ω′Σω + λ∥d(ω, ω̇)∥

subject to ω′1 = 1
(4.14)

The �rst di�erence to the standard Lasso (as well as eLasso and peLasso) is, that

they use the covariance matrix of forecast errors instead of the approximate objective

function, i.e., the sum of squared residuals or MSE. By that, they follow the OW forecast

combination problem by J. M. Bates and Granger (1969). Second, Roccazzella et al.

(2022) also incorporate the unity constraint. The term d(ω, ω̇) is a measure of diversion

between the weight vector ω and a reference or prior weight vector ω̇. As a diversion

measure Roccazzella et al. (2022) use, inter alia, an elastic net. It is a hybrid between

the Lasso, L1-norm, and Ridge, L2-norm, and is given by

a∥ω − ω̇∥+ (1− a)∥ω − ω̇∥2 (4.15)

with a ∈ [0, 1]. If a = 0 the optimization problem is solved under a Ridge penalty. If

a = 1 instead, the problem has a Lasso penalty. As a reference weight ω̇ they use both

the equal weights forecasts and the inverse-loss (IL) weighted average. The latter is

given by

ωILi =

(
σ2i

N∑
j=1

1

σ2j

)−1

∀ i = 1, . . . , N. (4.16)

For the inverse-loss weighted average, the smaller the error variance or forecast accuracy

of a forecast is, the larger the corresponding weight.

Double Shrinkage via Weighted Least Squares Lasso Recently, Liu, Hao, and Wang

(2023) proposed a weighted least squares Lasso approach (WLS-Lasso) that also shrinks

towards equal weights and zero. Shrinkage towards equal weights is achieved by includ-

ing a weighting factor into the regression-based objective function, i.e., the sum of

squared residuals. This weighting factor is determined by the sum of squared residuals

of the equal weights forecasts as well as a penalty term λ1. For λ1 = 0 the approach

corresponds to the regression-based implementation of the forecast combination prob-

lem by J. M. Bates and Granger (1969). The larger λ1 gets the closer the solution is

forced towards equal weights.

In addition to that Liu et al. (2023) included a penalty term into the objective func-

tion that shrinks towards zero. To this end one can use a Lasso (q = 1) as well as Ridge

(q = 2) penalty, i.e., λ2∥ω∥q as in Equation (4.11), or an elastic net penalty, see Equa-
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tion (4.15), into the objective function to additionally shrink the forecast combination

weights towards zero. Although their approach is interesting and would �t into this

thesis, due to its very recent publication it can not be taken into consideration in this

thesis. Nevertheless, an evaluation of it in comparison to the proposed methods and

the inclusion of it into the later proposed uni�ed framework has to be considered in the

future.

Lasso-based Methods in Forecast Combination Lastly, in independent and concurrent

work we and Radchenko et al. (2023) considered the forecast combination problem with

a L1 constraint as a quadratic optimization problem without using a Lagrangian relax-

ation. At its core, this approach is the adaptation of the standard Lasso as a quadratic

optimization problem within the context of forecast combination. First, the approach is

based on the error variance-covariance matrix like the OW forecast combination problem

by J. M. Bates and Granger (1969). In contrast, the standard Lasso, Equation (4.10),

as well as the forecast combination adaptations in form of the eLasso or peLasso, Equa-

tions (4.12) and (4.13), use the approximated objective function in form of the squared

residuals instead. Second, the approach incorporates the unity constraint, again in con-

trast to the standard Lasso, eLasso and peLasso, which ensures the unbiasedness of

the combined forecast. Moreover, as we discussed previously constraining the solution

space by the inclusion of the unity constraint can improve forecast accuracy. Third,

the approach imposes a L1 constraint directly and not a relaxation within the objective

function in contrast to Roccazzella et al. (2022), see Equation (4.14).

Henceforth, we will reformulate a selection of the approaches by Diebold and Shin

(2019) and Roccazzella et al. (2022) into a general framework. To this end and in accor-

dance to Radchenko et al. (2023) we use a quadratic optimization problem instead of the

regression framework because we base our analysis on the original forecast combination

problem by J. M. Bates and Granger (1969). Additionally, the squared residuals are

only an approximation of the error variance of the combined forecast. We follow the

original idea of J. M. Bates and Granger (1969) and assume unbiased forecasts. There-

fore, we will reformulate the approaches to include the unity constraint. Additionally,

we formulate and implement the optimization problems with actual constraints instead

of a Lagrangian relaxation.

In what follows, we will incorporate the L1 constraint and extension, like for example

the eLasso, into a uni�ed forecast combination framework. Moreover, we will propose

new shrinkage directions inspired by the eLasso and LHS.
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4.2 A Unified Framework for Lasso-based Forecast Combination

Methods

In this section we provide a general, uni�ed framework for the incorporation of the L1

constraints into forecast combination. To this end, we will transform the previously

discussed approaches of Section 4.1 into a quadratic optimization problem as it was

proposed by J. M. Bates and Granger (1969). First, we present them in terms of the

L1-norm constraint. Second, we transform the constraints into linear constraints. If

the L1 constraints are included into the optimization problem directly, it is a non-linear

optimization problem with non-di�erentiable constraints (see e.g., Luenberger & Ye,

2016, Chapter 1, 2, 11 particularly pp. 321-323; Schmidt, 2005).

The forecast combination methods as a quadratic optimization problem with linear

inequality constraints is given by

minimize
x

1

2
x′Dx

subject to A′x ≥ b
(4.17)

The elements in the vector x are N variables, i.e., weights in the context of forecast

combination. D is a N ×N symmetric matrix. Additionally, A is a N ×M matrix that

de�nes M di�erent constraints. The corresponding right-hand side of the constraint is

de�ned by the N × 1 vector b. We solve the optimization problems in the statistical

software R (R Core Team, 2022) with the R package quadprog (Turlach, Weingessel, &

Moler, 2019). As a result we use the method of Goldfarb and Idnani (1982, 1983) to

solve the problem. For this method it is required that D is positive de�nite. However,

upon the implementation of the Lasso-based methods introduced in Section 4.1, the

matrix is not guaranteed to be positive de�nite. Therefore, we follow Radchenko et al.

(2023) and use the function nearPD from the R package Matrix (D. Bates et al., 2022).

The function computes the nearest positive de�nite matrix based on the algorithm in

Higham (2002) (for more details see D. Bates et al., 2022).

The fact that Equation (4.17) only has linear inequality constraint (greater or equal

to) is not a problem as it is easy to incorporate both inequality constraints (smaller

or equal to) and equality constraints. For example, consider the OW forecast combi-

nation problem of J. M. Bates and Granger (1969) of Equation (2.22). To reformulate

the unity constraint, i.e.,
∑N

i=1 ωi = 1, into the form of the optimization problem of

Equation (4.17), we introduce the following two constraints:

N∑
i=1

ωi ≥ 1 (4.18)
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N∑
i=1

ωi ≤ 1 (4.19)

We then multiply the second constraint with negative one, i.e.,

N∑
i=1

−ωi ≥ −1. (4.20)

By that, we reformulated the forecast combination problem with the unity constraint

such that it has the same form as Equation (4.17) (see e.g., Hurlbert, 2010, pp. 7-9).

The remainder of this section is organized as follows. In Section 4.2.1 we introduce

how shrinkage towards zero with an L1 constraint can be implemented with linear

constraints and analyze how it e�ects the weights. Thereafter, in Section 4.2.2 we

generalize this approach. First for shrinkage towards any �xed value κ and then towards

any prior weights vector ω̇ which nests all previously considered shrinkage directions.

By that, we gradually construct the uni�ed framework that incorporates all considered

L1 constraints. Lastly, in Section 4.2.3 we propose to use a new shrinkage direction for

the L1 constraint that is inspired by the LHS, eLasso and peLasso.

4.2.1 The L1 Constraint for Shrinkage and Selection towards Zero

Another way to look at forecast combination is from the perspective of portfolio se-

lection or optimization introduced by Markowitz (1952). The underlying optimization

problem from portfolio selection is identical to the forecast combination problem of

Equation (2.22). Instead of combining forecasts, in portfolio selection assets are com-

bined into a portfolio. Instead of the covariance matrix of forecasts errors, portfolio

selection uses the covariance matrix of assets within the objective function. In the

portfolio context, weights correspond to a proportion of the budget an investor invests

in one asset. The weights assigned to the assets also have to sum up to unity, which

corresponds to a budget constraint that, however, implies that all the budget has to

be spent. Weights greater one or smaller zero correspond to long and short positions

respectively. They are �nancial instruments or tools that allow investors to bet on

increasing or decreasing asset prices in the future (Arratia, 2014, pp. 19-20, 239-243;

Fan et al., 2012; Markowitz, 1952). If both short and long positions are forbidden, a

no-short-sale constraint is imposed, i.e., ωi ≥ 0 for all assets i = 1, . . . , N . Then the

problem is identical to the PW approach of Equation (2.30). Fan et al. (2012) im-

plemented the L1 constraint to bridge the gap between the no-short-sale portfolio and

the unconstrained portfolio optimization problem which allows for arbitrary large short

(and long) positions.

Inspired by Fan et al. (2012), Radchenko et al. (2023) published an article that

adopted the approach to forecast combination. For that, they used the framework of a
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constrained quadratic optimization problem, as proposed by J. M. Bates and Granger

(1969), that we want to use for all L1 constrained methods. The problem is de�ned by

minimize
ω

ω′Σ̂ω

subject to ω′1 = 1,

∥w∥ ≤ γ

(4.21)

Because of the L1 constraint this problem shrinks and selects towards zero. In com-

parison to the standard Lasso of Equation (4.9), the weights can not all be zero. This

would lead to a violation of the unity constraint. At least one weight has to be non-

zero to ful�ll the unity constraint. Accordingly, in contrast to the standard Lasso, the

smallest feasible γ value for the optimization problem of Equation (4.21) can not be

zero. Moreover, all values γ < 1 result in an infeasible optimization problem. It has to

hold that

γ ∈ [1,∞]. (4.22)

If γ = 1 the sum of absolute weights has to be smaller or equal to one. In conjunction

with the unity constraint, this implies that only non-negative weights can provide a

feasible solution. Thus, if γ = 1 the problem is identical to the PW approach. As γ

increases a certain amount of negative weights and, consequently, weights greater one

are allowed. As γ →∞ there is, again, a certain value γ∗. For any value of γ > γ∗ the

L1 norm does not constrain the solution space anymore, i.e., the solution is identical to

the OW approach. It holds that γ∗ = ∥ωOW ∥, i.e., γ∗ is the sum of absolute weights

of the OW solution. By that, the L1 constraint bridges the gap between the positive

and optimal weights approach (PW and OW). It allows for solutions in-between these

two optimization problems, i.e., forecast combination approaches. Instead of either only

allowing positive (and zero) weights or not constraining negative weights at all, it allows

for a certain amount of negativity within a solution. For a given solution ω, the amount

of positive and negative weights is

wpos =
(∥w∥1 + 1)

2
and wneg =

(∥w∥1 − 1)

2
. (4.23)

It holds that wpos + wneg = ∥w∥1 as well as wpos − wneg = 1 (Fan et al., 2012).

Figure 4.4 depicts the weight paths for the same data used to depict the weight path

of the standard Lasso in Figure 4.3. The ordinate shows the weights of the di�erent

forecasts, di�erentiated by colors. The forecasts have the same colors as in Figure 4.4.

However, the abscissa in Figure 4.4 shows the γ value and not the L1 norm of the weight

vector. There are two reasons for that. First, by using the generalized constrained

quadratic optimization framework, i.e., not the Lagrangian form with the penalty term
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Figure 4.4. Illustration of forecast weight paths for the forecast combination problem
with a L1 constraint of Equation (4.21) for di�erent γ-values. The data was created on
the basis of the simulation study of Section 3.2 for N = 24 with CM1, an error variance
similarity z = 0.5 and no special group. Six forecasts where chosen randomly out of 24
once and are used throughout this thesis.

λ, there is no need to use the L1 norm instead of γ as we only use γ and do not have to

�nd a common abscissa that is identical regardless of which parameter (γ or λ) is used.

Second, by using γ, we can illustrate that the solution does not change for γ > γ∗.

This is not possible if we instead use the L1 constraint on the abscissa, because it is

identical for all solutions calculated with γ ≥ γ∗. Figure 4.4 depicts the smallest feasible
value of the shrinkage parameter γ = 1 on the left side. At that point, two weights are

non-zero (red and teal). Again, this solution corresponds to the PW approach. As γ

increases the two non-zero weights increase further. To o�set this increase and ful�ll the

unity constraint, another weight (yellow) deviates from zero and becomes negative. The

larger γ gets the more negativity is introduced into the solution overall. Furthermore,

more weights deviate from zero (blue, green, and pink). For all γ values that are greater

γ∗ ≈ 2.8 the solution is identical to the OW solution.

The weight paths give an example of how the method shrinks and selects weights.

However, note that this is only exemplary and general conclusion of the weights paths

can not be drawn from this. For example, based on Figure 4.4 one may conclude that

after a weight deviates from zero, it is non-decreasing if it is positive and non-increasing

if it is negative. However, this is not the case in general. To showcase this, we present

in Figure A.1 Appendix A weight paths for, among others, the optimization problem

Equation (4.21). Note that for those �gures a di�erent data set is used. It is based on

the same simulation study scenario, i.e., N = 24 with CM1, an error variance similarity

z = 0.5 and no special group. We include all 24 forecasts in Figure A.1.
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Linear Constraints for the L1-norm In order to solve the problem of Equation (4.21) we

need to transform the L1 norm into linear constraints in the form of the optimization

problem of Equation (4.17). To this end, one can use two non-negative variables ω+
i = ωi

if ωi ≥ 0 and ω−
i = ωi if ωi < 0 for each forecast or weight ωi ∀ i = 1, . . . , N (see e.g.,

Schmidt, 2005). It holds that

ωi = ω+
i − ω

−
i ∀ i = 1, . . . , N. (4.24)

If ω+
i > 0 and, accordingly, ω−

i = 0, the weight ωi is positive. If instead, ω
−
i > 0 and

ω+
i = 0, the weight ωi is negative. As a consequence, we have to de�ne a new error

covariance matrix

Σ̃ =

 Σ −Σ
−Σ Σ

 , (4.25)

and weight vector

w̃ = (ω+
1 , ω

+
2 , . . . , ω

+
N , ω

−
1 , ω

−
2 , . . . , ω

−
N )

′. (4.26)

Then we can represent the problem of Equation (4.21) by the optimization problem

minimize
ω

ω̃′Σ̃ω̃

subject to ω̃′1̃ = 1,

ω̃′1 = 1,

ω̃+
i ≥ 0 ∀ i = 1, . . . , N,

ω̃−
i ≥ 0 ∀ i = 1, . . . , N

(4.27)

with 1̃ being a 2N × 1 vector where the �rst N elements are 1 and the last N are −1.
ω̃′1̃ computes the sum over all weights, recall Equations (4.24) and (4.26), and restricts

it to be equal to one (unity constraint). In contrast, 1 is a 2N × 1 vector of positive

ones. By that, the constraint ω̃′1 sums up both ω+
i and ω−

i ∀ i = 1, . . . , N and thus

ω̃′1 ≤ γ corresponds to the constraint that the sum of absolute weights is not greater γ

(Schmidt, 2005). Accordingly, we can adapt and solve the Lasso with a unity constraint

for forecast combination. However, we can further generalize the optimization problem

to derive a uni�ed framework that can incorporate di�erent L1 constraints or rather

shrinkage directions.



4 L1 Norm Constraints 59

4.2.2 A Generalized Approach for Shrinkage and Selection based on the L1

Constraint

To adapt the eLasso from Diebold and Shin (2019) depicted in Equation (4.12) into the

general optimization framework (including the unity constraint), we can derive more

general linear constraints that introduce the L1 norm into the optimization problem.

For now, we assume a �xed value to which we shrink towards in Section 4.2.2.1. In

Roccazzella et al. (2022) weights are also shrunken and selected towards a prior weights

vector, ω̇. Our uni�ed framework of the forecast combination problem with the L1

constraint also includes shrinkage towards prior weights which we will show in Sec-

tion 4.2.2.2.

4.2.2.1 Shrinkage Towards a Fixed Value

The Lasso with a unity constraint presented in Section 4.2.1 and the eLasso brie�y

introduced in Section 4.1 both shrink towards a �xed value, zero and equal weights

respectively. We can generalize by using any �xed values κ ∈ R. The corresponding

optimization problem is given by

minimize
ω

ω′Σ̂ω

subject to ω′1 = 1,

∥w − κ∥ ≤ γκ

(4.28)

If κ = 0, this problem corresponds to the forecast combination problem with an L1

constraint of Equation (4.21), i.e., weights are shrunken and selected towards zero. If

instead κ = 1/N weights are both shrunken and selected to equal weights, as intended

by the eLasso. Henceforth, we will refer to these problems as L1(κ). Note that we also

introduced a subscript κ for the shrinkage parameter γ, i.e., γκ, to clarify the a�liation

to the respective constraint.

In general, L1(κ) can be used with any value of κ ∈ R. Values of κ beside zero and
1/N, however, are less intuitive, for example κ = 2/N or if it has negative values. In the

latter case, weights are shrunken and selected towards a negative weight. Depending

on the value of κ, the feasible values for γκ are di�erent. For example, if κ = 0, the

smallest feasible value of γ is one. For the eLasso with a unity constraint, i.e., κ = 1/N,

a value of zero for γ1/N ful�lls the unity constraint as the resulting solution is equal

weights. Instead, if for example N ̸= 10, κ = 0.1 and γ0.1 = 0, the sum of absolute

weights can not deviate from 0.1 and the unity constraint is violated. Accordingly, we

have to derive an interval for the feasible values of γκ based on κ.

Accordingly, the smallest feasible value for γκ is given by

γκ ∈
[
|1−Nκ|,∞

)
(4.29)
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Note that we use the absolute value to cover both cases of Nκ greater and smaller

one as a result of κ ∈ R. The basic idea behind the smallest feasible value shown in

Equation (4.29) is that we assume that all weights are equal κ, i.e., ωi = κ ∀ i =

1, . . . , N . In that case, we determine how much at least one weight has to deviate from

this solution such that the unity constraint is ful�lled, i.e., weights sum up to unity.

Linearization for the Generalized L1 Constraint Recall that the optimization problem

introduced in Equation (4.27) of Section 4.2.1 incorporates the L1 constraint directly

with the introduction of two non-negative variables that correspond to the positive part

and negative part of ωi. However, to the best of our knowledge one can not implement

shrinkage towards other values for κ than zero using this reformulation. Therefore, we

use a di�erent approach to reformulate the generalized optimization problem L1(κ) in

terms of linear constraints.22 To this end, we de�ne

Σ̃ =

Σ 0

0 0

 , (4.30)

where 0N×N is a matrix that contains only zeros. By that, we introduce N additional

variables ui ∈ R ∀ i = 1, . . . , N that have no e�ect on the objective function.23 The

adjusted weight vector is given by

ω̃ = (ω1, ω2, . . . , ωN , u1, u2, . . . , uN )
′. (4.31)

Finally, we de�ne the optimization problem as

minimize
ω

ω̃′Σ̃ω̃ (4.32a)

subject to

N∑
i=1

ωi = 1, (4.32b)

N∑
i=1

ui ≤ γκ, (4.32c)

ωi − κ ≤ ui ∀ i = 1, . . . , N, (4.32d)

κ− ωi ≤ ui ∀ i = 1, . . . , N (4.32e)

22For the sake of clarity, we do not imply that the following core optimization problem has not been
used in other circumstances. It is a straightforward formulation of the optimization problem that we
create to solve our problem.

23For the sake of completeness note that although we do not de�ne ui to be non-negative, it will
always be in a given solution of the optimization problem. Otherwise, the optimization problem is
infeasible, see Equations (4.33) and (4.34).
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For now, assume that the additional variables ui are given. For any weight ωi ∀ i =
1, . . . , N we can rewrite Equations (4.32d) and (4.32e) as

ωi ≤ ui + κ, (4.33)

ωi ≥ −ui + κ. (4.34)

By that, it becomes clear that the constraints depicted in Equations (4.32d) and (4.32e)

are bounds for each weight. To illustrate the bounds the following �gure depicts the

interval of feasible values around κ = 0 for N = 2 exemplary. Assume that it holds that

u1 = 1.5, u2 = 0.5 and γ0 = 2.

ω1
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

κ−u1 u1 ω2
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

κ−u2 u2

Figure 4.5. Illustration of the bounds imposed by ui around each weight ωi for κ = 0
with u1 = 1.5, u2 = 0.5 and γ0 = 2.

The left number line in Figure 4.5 shows the feasible values for ω1 while the right

number line depicts them for ω2. If κ = 0, it has to hold that ωi ∈ [−ui, ui] ∀ i =
1, . . . , N , see Figure 4.5. The feasible interval for ω1 depicted as the blue rectangle or

line is larger than the interval for ω2 (green rectangle). As one can see ui de�nes how

much each weight can deviate from zero. Accordingly, if κ ̸= 0, ui de�nes how much

each weight can deviate from κ. To put it di�erently, for κ ̸= 0 the feasible interval

for each weight ωi is given by [−ui + κ, ui + κ]. Because the interval is symmetrical, it

corresponds to constraining the absolute value of the di�erence between ωi and κ, i.e.,

|ωi − κ| ≤ ui.
In summary, the constraints in of Equations (4.32d) and (4.32e) restrict the absolute

di�erence between each weight ωi and κ individually. However, the original L1 con-

straint restricts the weight vector ω as a whole. In order to achieve that we use the

constraint in Equation (4.32c). It restricts the sum of all ui to be smaller or equal to

γκ. By that, it connects all individual constraints of Equations (4.32d) and (4.32e) that

restrict the amount of deviation from κ by introducing a global budget for them.

Lastly, we have to again consider the variables ui. They can be set to any value

by the algorithm that solves the optimization problem, because they do not a�ect the

objective function, see again Equations (4.30) and (4.31). If the algorithm sets ωi
to a speci�c value, it also has to change ui to ful�ll the corresponding constraints of

Equations (4.32d) and (4.32e). If γ < γ∗, i.e., the γ still constraints the solution space,

it holds that ui = |wi − κ|.



4 L1 Norm Constraints 62

−0.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
γ

W
ei

gh
t

Figure 4.6. Illustration of forecast weight paths for the egalitarian Lasso with unity
constraint for di�erent γ-values. The data was created on the basis of the simulation
study of Section 3.2 for N = 24 with CM1, an error variance similarity z = 0.5 and
no special group. Six forecasts where chosen randomly out of 24 once and are used
throughout this thesis.

Weight Paths for the Generalized L1 Constraint Let us now consider the solutions of the

more general optimization problem of Equation (4.32). For κ = 0, the solution path is

identical to the optimization problem de�ned in Equation (4.21), see again Figure 4.4.

Figure 4.6 depicts the weights for L1(1/N), i.e., the equivalent to the eLasso with a

unity constraint. The weight of each forecast is on the ordinate and the parameter γ1/N

is depicted on the abscissa. For γ1/N = 0, the only feasible solution is equal weights,

i.e., ωi = 1/N ∀ i = 1, . . . , N . As γ1/N increases, weights deviate from equal weights.

However, if one weight increases (red line), another has to decrease (yellow) to ensure

that the unity constraint is ful�lled. As γ1/N is increased further, more weights deviate

from equal weights (teal, blue, purple, green). Additionally, the deviation of weights

that are already unequal to equal weights increases further (see e.g., red and yellow).

To put it di�erently, if we look at Figure 4.6 from right to left, weights are shrunken

and selected towards equal weights.

Figure 4.7 depicts the weight paths for both κ = 0.05 in Figure 4.7(a) and κ = −0.1
in Figure 4.7(b). The smallest feasible γ values are given on the left-hand side of

both �gures. If κ = 0.05 not all weights can be exactly equal to it, due to the unity

constraint. Thus, as one can see in Figure 4.7(a), two weights (red and teal) deviate

from κ by overall |1− 6 · 0.05| = 0.7, i.e., the smallest feasible γ0.05 value determined by

Equation (4.29). Thereafter, the weight path is in general similar to κ = 0 (Figure 4.4)

and κ = 1/N (Figure 4.6). The larger γ gets, weights that were previously equal to

κ deviate (e.g., yellow and blue) and weights that are already di�erent from κ change

further (e.g., red and teal). To put it di�erently, from right to left, weights are shrunk

and selected towards 0.05 under the obligation that the unity constraint is ful�lled. If
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(a) κ = 0.05
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(b) κ = −0.1

Figure 4.7. Illustration of forecast weight paths for the egalitarian Lasso with unity
constraint and for di�erent γκ and κ-values. The data was created on the basis of the
simulation study of Section 3.2 for N = 24 with CM1, an error variance similarity
z = 0.5 and no special group. Six forecasts where chosen randomly out of 24 once and
are used throughout this thesis.

κ = −0.1, as depicted in Figure 4.7(b), the weights path is, in general, similar. However,
to ensure a feasible solution, the smallest feasible γ−0.1 value has to be much larger with

1.6. Furthermore, at this point, three weights (red, teal, and green) are already di�erent

from κ. Thereafter, again, weights deviate from κ (yellow, blue, purple) and change

further (red, teal, green) as γ−0.1 increases. For both Figures 4.7(a) and 4.7(b), at a

certain value γ∗, the weights are identical to the optimal weights solution.

Although, at �rst glance, choosing a di�erent value for κ than zero or equal weights

seems more arbitrary, it basically, shrinks weights towards a solution where a subset of

weights is identical. The remaining weights are then individual to o�set the identical

weights such that the unity constraint is ful�lled. Considering again Figure 4.7(a) where

κ = 0.05, for γ0.05 = 0.7 it has a resemblance to the positive weights solution depicted in

Figure 4.6 where κ = 0 for γ0 = 1. In both �gures, all but two weights (red and teal) are

identical. If κ = 0, they are identical with a weight of zero. In contrast, if κ = 0.05, they

are identical at 0.05. To put it di�erently, by choosing κ ̸= 0 one introduces a certain

degree and type of contribution that each forecast has for the combined forecasts.24 The

weights are shrunk and selected towards that minimum contribution as γ decreases, i.e.,

from right to left in Figure 4.7.

A Note on the peLasso Before we move on to shrinkage towards prior weights in Sec-

tion 4.2.2.2 we brie�y want to provide a note on the peLasso. As discussed earlier in

Section 4.1.2, as far as we are aware there is no one-step procedure for the peLasso.

However, based on our uni�ed framework for the L1 constraint, we can provide a one-

24Note that degree refers to the overall magnitude of the weights and type to whether the contribution
is positive or negative.
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step procedure. The resulting problem is a mixed integer quadratic problem which is

di�erent from the quadratic optimization problem with linear constraint and real vari-

ables that we consider in this thesis. Therefore, it is beyond the scope of this thesis and

we leave it for future research to implement our provided one-step procedure for the

peLasso. To this end, we brie�y introduce it in Appendix A. In Section 4.2.3 we will

introduce a shrinkage direction that is inspired by the one-step peLasso (and LHS).

4.2.2.2 Shrinkage towards Prior Weights

In the previous Section 4.2.2.1 we used a �xed value κ to which weights are shrunk and

selected. However, Roccazzella et al. (2022) also shrink and select weights towards some

prior weights, e.g., the inverse-loss weighted average see again Equation (4.16). The

generalization for the introduction of the L1 constraint into the forecast combination

problem presented in Section 4.2.2.1 can be easily adapted to this scenario and, thereby,

we can provide a uni�ed framework for the use of L1 constraints for forecast combination.

The optimization problem is given by

minimize
ω

ω′Σ̂ω

subject to ω′1 = 1,

∥w − ω̇∥ ≤ γω̇

(4.35)

We will refer to this problem as L1(ω̇). As we will show throughout the remaining

part of Section 4.2 this is the uni�ed framework or optimization problem that nests the

considered L1 methods and more. This is the second main contribution of this thesis.

In order to solve Equation (4.35), we can, similar to Equation (4.32), rewrite the

optimization problem with linear constraints:

minimize
ω

ω̃′Σ̃ω̃ (4.36a)

subject to
N∑
i=1

ωi = 1, (4.36b)

N∑
i=1

ui ≤ γω̇, (4.36c)

ωi − ω̇i ≤ ui ∀ i = 1, . . . , N, (4.36d)

ω̇i − ωi ≤ ui ∀ i = 1, . . . , N (4.36e)

The only di�erence, to Equation (4.32) is that the �xed value κ is replaced by the

prior weight ω̇i within Equations (4.36d) and (4.36e). Similar to Figure 4.5 where

κ was �xed, the feasible values of weights when prior weights are used are depicted

exemplary for N = 2 in Figure 4.8. The prior weights are assumed to be ω̇1 = 0.25
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Figure 4.8. Illustration of the bounds imposed by ui around each weight ωi depending
on the prior weight ω̇i.
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Figure 4.9. Illustration of forecast weight paths for the Lasso with unity constraint and
prior weights for di�erent γω̇. The prior weights are the inverse-loss weighed average,
ωIL. The data was created on the basis of the simulation study of Section 3.2 for
N = 24 with CM1, an error variance similarity z = 0.5 and no special group. Six
forecasts where chosen randomly out of 24 once and are used throughout this thesis.

and ω̇2 = 0.75. The blue and green rectangles depict the feasible intervals for each

weight, i.e., [−ui+ ω̇i, ui+ ω̇i]. Within this example γω̇ = 1.5. Both the �rst and second

weight can deviate from their corresponding prior weights in both directions by about

u1 = u2 = 1.

Figure 4.9 depicts weight paths for L1(ω̇) of Equation (4.35). For the prior weights

we use ωIL of Equation (4.16). Recall, that for a �xed value of κ, a set of weights has

identical values for the smallest feasible γκ value. For κ = 1/N all weights are identical

but for κ = 0 at least one weight is di�erent from κ, but it also can be multiple weights.

This is di�erent if prior weights are used that are a feasible solution to the forecast

combination problem. ωIL is a feasible solution, all weights ωi are identical to the prior

weight ω̇i for γωIL = 0, as depicted in Figure 4.9. Then, as γωIL increases, single weights

deviate from their prior weight (for example red and yellow), while others remain at

theirs (teal, green, purple, and blue). As γωIL increases further, those also deviate from

their prior solution. For a su�ciently larger value of γ, i.e., γ∗
ωIL , the solution is, again,

identical to the optimal weights solution.

Note that the optimization problem of Equations (4.35) and (4.36) is a more general

version of the problem of Equations (4.28) and (4.32), which used a �xed value of κ.

Accordingly, we can derive the feasible interval of γ values similarly. The idea to derive
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the smallest feasible value γω̇ is similar as for γκ from Section 4.2.2.1. We assume that

ωi = ω̇i, determine the sum of weights and calculate the di�erence to one. We need

to allow for at least that much deviation from ω̇ to ensure that weights can sum to

unity. The feasible interval for γω̇ can be straightforward adapted from the smallest

feasible value for a �xed value κ, see again Equation (4.29). To this end, we need to

calculate the deviation of the sum of prior weights to one and take its absolute value. It

corresponds to the smallest deviation that has to be allowed in order to ful�ll the unity

constraint, i.e.,

γω̇ ∈
[∣∣∣∣1− N∑

i=1

ω̇i

∣∣∣∣,∞). (4.37)

If the prior weights vector ω̇ is a feasible solution to the forecast combination problem,

i.e., weights sum up to unity, the smallest feasible value for γω̇ is zero. Otherwise,

it is greater zero to allow for the deviation of weights to the closest feasible solution.

Equation (4.38) can be applied to any L1 constraint forecast combination problem of

our uni�ed framework. To this end one has to de�ne ω̇ = (κ, κ, . . . , κ)′.

Similarly to the smallest feasible value, with prior weights we can provide a general

formula to calculate γ∗ for any of the considered L1 methods, i.e., the largest value of

γ that still constraints the solution space. The general formula is given as

γ∗ = ∥ωOW − ω̇∥, (4.38)

i.e., the sum of absolute deviations of the OW solution and prior weights. If this amount

of deviation is allowed, each weight will be equal to the optimal weight. In contrast,

if we constrain the weights vector γ < γ∗, there is not enough possible deviation from

prior weights such that the resulting weights can be equal to the optimal weights.

Beside the fact that shrinkage towards prior weights is more �exible and nests shrink-

age towards �xed values, using prior weights enables even more possibilities for shrinkage

directions. We will explore some additional shrinkage directions in the following section.

4.2.3 Conditional Group Equal Weights

Inspired by the LHS of Equation (4.2) and the peLasso of Equation (4.13) with q = 1,

we de�ne a new general approach to design prior weight vectors. It is build around the

idea of the peLasso and how to simplify it into a one-step procedure while still using a

quadratic optimization problem with linear constraints, see again Section 4.1.2. To this

end, we developed two variants. Recall that the peLasso selects and shrinks towards
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both towards zero and equal weights of the non-zero weight forecasts, i.e., 1/∥ω∥0. Within

the forecast combination framework it is given by

minimize
ω

ω′Σ̂ω (4.39a)

subject to ω′1 = 1, (4.39b)

∥w∥ ≤ γ0, (4.39c)

∥w − 1/∥ω∥0∥ ≤ γ1/∥ω∥0 (4.39d)

For the �rst simpli�cation, we remove the fraction that includes the L0 norm in

Equation (4.13) and replace it by κ, i.e.,

minimize
ω

ω′Σ̂ω (4.40a)

subject to ω′1 = 1, (4.40b)

∥w∥ ≤ γ0, (4.40c)

∥w − 1/κ∥ ≤ γκ (4.40d)

The di�erence to the peLasso is in Equations (4.39d) and (4.40d). The optimization

problem of Equation (4.40) simultaneously selects and shrinks a subset of weights to

zero and κ. Accordingly, this method can select the subsets, however only for a given,

arbitrary shrinkage direction. For example, shrinking a subset of weights of unknown

size towards the equal weights of all forecast (1/N) is less intuitive compared to the equal

weights of the number of non-zero weights for a given solution (1/∥ω∥0).

The �rst variant we introduced can select which weights to shrink and select towards

zero and which towards a �xed value κ. The second variant we propose uses a �xed

subset of weights that it shrinks and selects towards zero while it shrinks and selects

the other weights towards the equal weights of the latter subset. The prior selection of

forecasts based on a given criterion, e.g., the forecast accuracy, is similar to the approach

of LHS. Recall that LHS of Equation (4.2) also shrinks a prede�ned subset of weights

towards zero and all other weights to their corresponding equal weights linearly starting

from the optimal weight solution. By using the L1 constraint, however, weights are also

shrunken and selected towards either zero or the corresponding equal weights but not

linearly as for the LHS.

Considering both variants we assess the second to be more sensible, because it can

shrink towards the equal weights of a given subset instead of an arbitrary value κ

without knowing the subset size. Moreover, as will show that we can extend the idea of

the second variant which leads to a whole new approach to de�ne a shrinkage direction

using prior weights, i.e., we use the optimization problem of Equation (4.35).

To incorporate the simpli�ed variant of the peLasso assume that we split forecasts

into groups a priori. Now, we de�ne the prior weights to be one of two possible values
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(a) G = 2 with g1 = 1 and g2 = 0
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(b) G = 3 with g1 = 2/3, g2 = 1/3 and g3 = 0

Figure 4.10. Illustration of forecast weight paths new shrinkage directions with prior
weights. Prior weights are determined by Equation (4.41) with two and three groups.
The data was created on the basis of the simulation study of Section 3.2 for N = 24
with CM1, an error variance similarity z = 0.5 and no special group. Six forecasts
where chosen randomly out of 24 once and are used throughout this thesis.

depending on which group a forecast belongs to: either zero or the equal weights of all

forecast within the corresponding group. Again, note that this is basically the shrinkage

direction of the LHS proposed in Schulz et al. (2022). However, we shrink towards it

not linearly but using a L1 constraint and also select weights to be exactly equal to the

shrinkage direction. By that we combined the ideas from the peLasso, in a simpli�ed

way, and the LHS.

Moreover, we adapt the approach and propose a new generalized shrinkage direction.

We refer to it as shrinkage towards Conditional Group Equal Weights (CGEW). To this

end, we divide the N forecasts into G groups or subsets, i.e., Gj ∀j = 1, . . . , G. Each

group Gj is assigned a proportion or budget gj ∈ [0, 1]. To put it di�erently, it de�nes

how much of the solution for the smallest feasible γ value each group gets. Accordingly,

it has to hold that
∑G

j=1 gj = 1. The budget is then distributed equally among all

forecasts within a group.25 By that, we de�ne the prior weight of forecast i where

i ∈ Gj to be the conditional equal weights of the corresponding group based on the

assigned budget, i.e.,

ω̇i =
gj
|Gj |

∀i ∈ {1, . . . , N : i ∈ Gj , j = 1, . . . , G}. (4.41)

As a result, all weights or forecasts i within the same group Gj are shrunken and

selected towards this conditional equal weights of the group that is de�ned by the

assigned budget.

25If N/G is odd, we assign ⌊N/G⌋ forecasts to each group j = 1, . . . , G−1 and N−
∑G−1

j=1 |Gj | forecasts
to group G. To put it di�erently, the last group gets an additional forecast.
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Figure 4.10 depicts the weight paths of two variants of the new shrinkage direction

that we will use within this thesis. First, we use two groups (G = 2) where the 50%

of forecasts with the best forecast accuracy are within group one and all others are

within group two. The �rst group gets the whole available budget, i.e., g1 = 1. As a

consequence, forecasts within group one are shrunken towards their equal weights and

forecasts from group two towards zero, see again Equation (4.41). We will refer to these

prior weights by ωE2 and it is basically the shrinkage direction of the LHS method.

The weight path of it is depicted in Figure 4.10(a). The best three forecasts (red,

teal, and green) are shrunken and selected from the optimal weights solution for about

γωE2 ≥ 2.5 towards their equal weights, i.e., 1/3, as γωE2 approaches zero. In contrast,

the three forecasts with the highest MSE (yellow, blue, and pink) are shrunken and

selected towards zero.

The second variant that we consider uses three groups (G = 3) and is denoted by ωE3.

The �rst group gets g1 = 2/3 of the budget and the second group g2 = 1/3 leaving no

budget for group three (g3 = 0). The weight paths are depicted in Figure 4.10(b). The

best two forecasts (red and teal) from group j = 1 are shrunk towards their conditional

equal weights based on the given budget of
2/3
2 = 1/3, see Equation (4.41). The next two

forecasts (green and pink) of group j = 2 with budget g2 = 1/3 are shrunken towards

their prior weights of 1/6. The two forecast from group j = 3 with the largest MSE

in the training set (blue and yellow) are shrunken towards their prior weights of zero.

The corresponding weight paths are depicted in Figure 4.10(b). Each group is shrunken

towards their prior weights as γ → 0. For example, given γωE3 = 0.5, only the red and

yellow forecast deviate from their conditional equal weights.

Within this thesis, we consider shrinkage direction for CGEW, were forecasts with

higher accuracy are shrunk and selected to higher weights.

In summary, inspired by mainly LHS and peLasso we propose to use CGEW as

a shrinkage directions with the L1 norm. To this end, we sort forecast into groups

based on their forecast accuracy and then shrink each group of forecasts towards the

conditional equal weights based on a prede�ned budget. We can also interpret this as a

sophisticated and comprehensive hybrid between L1(0) and L1(1/N). The introduction

of this shrinkage direction to be used with a L1 constraint is the third main contribution

of this thesis.

4.2.4 Summary

In summary, we presented a uni�ed framework that incorporates the L1 constraint into

the forecast combination problem as originally de�ned in J. M. Bates and Granger

(1969). To this end, we use prior weights as a shrinkage direction, see Equations (4.35)

and (4.36). Our uni�ed framework nests a Lasso with a unity constraint as considered by

Radchenko et al. (2023), i.e., shrinkage towards zero. Furthermore, it incorporates the
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egalitarian Lasso (shrinkage towards equal weights) with a unity constraint proposed by

Diebold and Shin (2019) and enables shrinkage towards a prior weights vector as done

in Roccazzella et al. (2022). Moreover, our optimization problem of Equation (4.36)

is not limited to these cases. It can be used to shrink and select weights towards

any �xed value κ or any prior weights vector ω̇. It provides a uni�ed framework that is

based on the OW forecast combination problem with a unity constraint and an objective

function to minimizes the combined error variance proposed by J. M. Bates and Granger

(1969). Additionally, it can be used to de�ne the partially egalitarian Lasso in a one-step

procedure, which was previously left for future research by Diebold and Shin (2019).

However, the resulting optimization problem is a quadratic mixed integer problem, see

Appendix A. Lastly, we proposed a to use a shrinkage direction based on prior weights.

We refer to it as shrinkage towards conditional group equal weights (CGEW). To this

end, forecasts are sorted into groups based on their forecast accuracy and those groups

are shrunken towards a conditional equal weights of the group de�ned by the groups

budget.

As the uni�ed framework in the form of the quadratic optimization problem with

prior weights allows for a direct comparison on the same basis between the di�erent

L1 norm approaches, we will analyze those approaches and additional benchmarks with

respect to their forecast accuracy.

4.3 Application: Simulation Study

In this section we analyze and compare forecast accuracy of the forecast combination

methods from Section 4.2. We use the simulation study introduced in Section 3.2. For

a brief summary of the designed scenarios see Section 3.2.3 and the used forecast error

correlation matrices are depicted in Section 3.2.2.2.

Both the L1 and LHS methods, have at least one hyperparameter (γ and λ). In

real world applications, those hyperparameters have to be estimated if the method is

used to forecast future values. However, we follow related literature (see e.g., Diebold

& Shin, 2019; Radchenko et al., 2023; Roccazzella et al., 2022) and split the analysis

into two parts. In the �rst part, Section 4.3.1, we analyze the forecast accuracy without

hyperparameter estimation. By that, we can compare the combination methods without

the uncertainty introduced by hyperparameter estimation. Accordingly, we ex post

choose the best hyperparameter values for each method. For the second part of the

analysis, Section 4.3.2, we analyze the capabilities of the forecast combination methods

to be used in an actual forecast setting. To this end, we use cross-validation to estimate

the hyperparameters, compute out-of-sample forecasts and assess the performance of

the forecast combination methods. Lastly, we summarize our �ndings for both the ex

post and pseudo out-of-sample analysis in Section 4.3.3. Although, the ex post analysis
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we also compute out-of-sample forecasts, we decided to di�erentiate the two analysis

by the terms: ex post and out-of-sample analysis. The terms basically refer to how the

hyperparameters are determined. Either retrospectively, i.e., ex post, or they have to

be estimated based only on past information and thus the true out-of-sample forecast

accuracy is evaluated.

Regardless of which analysis is performed, �rst, we need to choose a grid of candidate

values for the hyperparameters.

Grid of Candidate Values The grid of candidate values for LHS is straightforward by

its design. The method shrinks weights from the optimal weight solution (λ = 0) to

either equal weights and/or zero (λ = 1). Thus, we use a grid from zero to one with

0.1 increments. For the L1 methods, the grid needs to be chosen more carefully. First,

for a given set of observations, recall that we can determine the largest value of the

hyperparameter, i.e., γ∗. It is the sum of the absolute di�erence between the optimal

weights and prior weights ω̇, see Equation (4.38). Accordingly, we can determine which

γ-values we need to consider. However, even for another ever so slightly di�erent set of

observations, γ∗ can be di�erent. However, for our analysis for each observation in the

test set we need forecasts for the same hyperparameter values. If forecasts are missing

for some hyperparameter values, we can not properly evaluate the forecast accuracy. To

this end, we choose a very large value as the end of the search grid. Then for each set

of observations we only calculate forecasts up to the current γ∗ and assign the forecast

for γ∗ to all candidate values γ > γ∗.

This is particularly well applicable if only a few or short time series are given. How-

ever, within a simulation study, an extensive empirical analysis or in a business context

where one needs forecasts for a multitude of time series regularly, it becomes more

challenging due to limited computational resources. For example, the evaluation of all

potential values takes too long or statistical software can get slow because the resulting

objects with weights and forecasts become too large. In this case one can either limit

the candidate values due to preference or prior information, or increase the increment

between candidate values.

In this thesis, we use a grid that starts at the smallest feasible value of γ of each

forecast combination method and ends at 50 with 0.1 increments. Note that we de�ned

this grid prior to the analysis. An inspection of the ex post results afterwards revealed

that, for example, for both L1(0) and L1(1/N) the largest ever observed γ∗ over all test

sets and scenarios was below 36.
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4.3.1 Ex Post Analysis: L1 and LHS

In the simulation study we use 200 time series with 90 observations each. The last 50

observations of each time series are used as a test set. Accordingly, we have a total

of 10, 000 observations that are used to evaluate the forecast accuracy of the forecast

combination methods. For each time series we perform pseudo out-of-sample forecasting

with a rolling window of size 40, see again Section 2.1. If a forecast combination method

does not have any hyperparameters like EW, PW, OW or IL we can simply calculate

forecasts for each observation of the test set. In contrast, for each method that has

hyperparameters, i.e., LHS, L1(κ), and L1(ω̇), we use a grid of candidate values for

each hyperparameter. For all candidate values we then estimate weights and compute

forecasts. Afterwards (ex post) we choose from the hyperparameter values that result in

the smallest MSE over the whole test set. To put it di�erently, if we use this �xed value

for every observation within this test set, it results in the smallest MSE compared to all

other candidate values. We repeat this process for all 200 time series and average the

individual 200MSE values. For the sake of clarity, we chose the best hyperparameter for

each test set individually. By that, hyperparameters can be chosen speci�cally tailored

towards the current development of the times series.

In what follows we, �rst, analyze the results for all scenarios in Section 4.3.1.1 to-

gether. Second, in Section 4.3.1.2 we analyze the results with respect to the error cor-

relation matrices, error variance similarities and special groups, i.e., groups of scenarios

de�ned within our simulation study.

4.3.1.1 Ex Post Analysis: Overall Results

To analyze the results of the simulation study, we will use a combination of tables,

�gures and summary statistics. Tables 4.1 and 4.2 present the MSE values of the

di�erent methods for all considered scenarios. Each row represents a scenario that is

de�ned by the �rst three columns that consist of the correlation matrix, CM, the error

variance similarity, z, and special groups, SG. Table 4.1 presents the results for CM1 to

CM3 and Table 4.2 for CM4 to CM6. The forecast combination methods are depicted

in the remaining columns. The results of the benchmark methods EW, PW, OW and

IW are reported in the columns four to seven. Columns eight and nine show the results

for the LHS methods if either all forecasts are used (LS) or if a subset (LHS) is used.26

The L1 constraint methods that shrink towards a �xed value of zero or 1/N are shown in

columns ten and eleven. The last three columns show the results for the L1 constraint

with shrinkage towards a prior weights vector. Columns twelve and thirteen depict the

results of the prior weights vectors we proposed to use in Section 4.2.3, i.e., shrinkage

towards conditional group equal weights (CGEW). The last column presents the results

26Note that, for the sake of simplicity, if we refer to both LS and LHS we will denote it by LHS
methods, because LS is a special case of LHS.
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for weights shrunken towards the inverse-loss weights of Equation (4.16). Henceforth,

we will refer to scenarios by CM/z/SG. For example, consider scenario 1/0.05/none,

i.e., the �rst row in Table 4.1. The EW, IL and PW methods have similar MSE values

with 0.98, 0.98 and 0.97. The OW approach has a MSE about twice as high with 2.11.

The LHS methods can reduce the MSE by 0.01 and 0.02 in comparison to the best

benchmark method, PW. If an L1 constraint is used the MSE is even smaller except

L1(0). The smallest MSE of 0.92 is given for the shrinkage towards prior weights ωEW2

and ωEW3 (CGEW).

In our analysis, we have eleven di�erent methods and 72 scenarios. This renders an

analysis with the level of detail shown exemplary above to be impractical or impossible.

Especially, if we not only consider single scenarios but draw conclusion for overarching

properties between partially common scenarios, e.g., compare method with respect to

error correlation matrices. For comparison, recall that Roccazzella et al. (2022) also

considers the Lasso based method with a Lagrangian relaxation, and we use their sim-

ulation study as a baseline from we build our simulation study. In their analysis they

use four scenarios while we are using 72. Furthermore, we both consider an ex post and

pseudo out-of-sample analysis.27 Therefore, we analyze and summarize the results of

Tables 4.1 and 4.2 to draw conclusions.

Table 4.3 depicts three di�erent metrics for all methods (columns). The �rst row

presents the percentages of how often each method has the smallest MSE over all sce-

narios. Note that the percentages add up to a value greater one, because the average

MSE over all test sets is rounded to the second decimal place and, as a result, there

can be multiple methods with the same smallest MSE. Henceforth, we will use smallest

MSE as a more lose description, i.e., there can be multiple method that have the same

value. If we want to emphasize that a method has the smallest method overall, we use

strictly smallest MSE.

The second row shows the average rank over all scenarios. For the average rank, we

rank the methods for each scenario. The method with the strictly smallest MSE gets

rank 1, the method with the second smallest MSE rank 2 and so on. If multiple methods

have the same MSE, they are temporarily ranked in an arbitrary order and then the

average rank is computed and used for each method.28

The third row depicts the average distance or di�erence in MSE to the scenario-wise

best method. For the average distance we �rst calculate the di�erence between the

MSE of each method and the smallest MSE within each scenario. Then the distance is

averaged across scenarios. The average rank and distance provide additional information

besides the percentages of how often one method has the smallest MSE. With the rank

27Note that neither Radchenko et al. (2023) nor Diebold and Shin (2019) analyze the out-of-sample
forecast accuracy of the lasso-based methods in terms of a simulation study.

28With respect to the average ranks we follow the approach of the Spearman correlation coe�cient,
see Fahrmeir et al. (2016, pp. 133-135).
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CM z SG EW PW OW IL
LHS L1(κ) L1(ω̇)

LS LHS 0 1/N ωE2 ωE3 ωIL

1 0.05

none 0.98 0.97 2.11 0.98 0.96 0.95 0.95 0.93 0.92 0.92 0.93
�rst 0.97 0.93 1.89 0.96 0.93 0.92 0.89 0.89 0.88 0.88 0.89
last 1.01 0.99 2.04 1.00 0.98 0.96 0.95 0.94 0.93 0.93 0.94
both 0.97 0.93 1.75 0.96 0.91 0.89 0.87 0.87 0.85 0.85 0.86

1 0.20

none 1.16 0.92 1.03 1.12 0.76 0.73 0.60 0.60 0.59 0.59 0.60
�rst 1.12 0.73 0.52 1.04 0.44 0.42 0.30 0.31 0.31 0.31 0.31
last 1.24 0.95 0.84 1.18 0.66 0.63 0.48 0.48 0.47 0.47 0.48
both 1.15 0.72 0.45 1.05 0.39 0.38 0.26 0.27 0.26 0.26 0.27

1 0.50

none 1.53 0.80 0.42 1.33 0.39 0.37 0.24 0.25 0.24 0.24 0.25
�rst 1.38 0.30 0.09 0.85 0.09 0.09 0.05 0.06 0.05 0.05 0.05

last 1.64 0.82 0.35 1.38 0.33 0.32 0.20 0.21 0.20 0.20 0.20

both 1.46 0.30 0.08 0.85 0.08 0.08 0.05 0.05 0.05 0.05 0.05

2 0.05

none 0.56 0.62 1.37 0.56 0.56 0.57 0.62 0.55 0.57 0.56 0.55

�rst 0.56 0.62 1.34 0.56 0.56 0.57 0.62 0.55 0.57 0.56 0.55

last 0.57 0.64 1.37 0.57 0.57 0.58 0.63 0.56 0.58 0.57 0.56

both 0.57 0.63 1.35 0.57 0.57 0.58 0.63 0.56 0.57 0.57 0.56

2 0.20

none 0.68 0.68 1.42 0.66 0.66 0.64 0.67 0.64 0.62 0.62 0.63
�rst 0.64 0.56 1.11 0.60 0.60 0.55 0.54 0.56 0.53 0.53 0.54
last 0.68 0.66 1.31 0.65 0.66 0.61 0.65 0.62 0.58 0.59 0.61
both 0.66 0.54 1.00 0.60 0.57 0.52 0.51 0.53 0.50 0.50 0.51

2 0.50

none 0.87 0.64 1.10 0.76 0.69 0.62 0.58 0.61 0.56 0.57 0.59
�rst 0.80 0.26 0.35 0.49 0.30 0.28 0.20 0.23 0.22 0.22 0.21
last 0.96 0.66 1.05 0.81 0.71 0.62 0.57 0.60 0.56 0.56 0.58
both 0.83 0.26 0.33 0.49 0.29 0.27 0.19 0.22 0.21 0.21 0.20

3 0.05

none 0.25 0.32 0.63 0.26 0.25 0.29 0.32 0.25 0.28 0.27 0.25

�rst 0.25 0.31 0.63 0.25 0.25 0.28 0.31 0.24 0.27 0.26 0.24

last 0.25 0.32 0.63 0.25 0.25 0.28 0.32 0.25 0.28 0.27 0.25

both 0.25 0.32 0.64 0.25 0.25 0.28 0.32 0.24 0.27 0.26 0.25

3 0.20

none 0.30 0.36 0.71 0.30 0.30 0.31 0.36 0.29 0.31 0.30 0.29

�rst 0.29 0.32 0.63 0.27 0.29 0.28 0.32 0.28 0.28 0.27 0.27

last 0.30 0.36 0.71 0.29 0.30 0.31 0.36 0.29 0.30 0.29 0.29

both 0.30 0.32 0.61 0.27 0.29 0.28 0.32 0.28 0.27 0.26 0.27

3 0.50

none 0.40 0.39 0.75 0.35 0.38 0.35 0.39 0.37 0.34 0.33 0.34
�rst 0.35 0.19 0.35 0.22 0.24 0.22 0.19 0.22 0.21 0.21 0.19

last 0.43 0.40 0.76 0.36 0.40 0.35 0.40 0.38 0.34 0.33 0.35
both 0.37 0.20 0.36 0.22 0.25 0.22 0.19 0.23 0.21 0.21 0.19

Table 4.1. Simulation study results of benchmark, LHS and L1 methods for correlation
matrices CM1, CM2 and CM3 (ex post analysis). The table depicts the MSE of the
forecast combination method of Section 4.2 and other benchmarks. The methods with
the smallest MSE are depicted in bold numbers.

we can determine how consistent the forecasting performance a method is compared

to others. For example, assume that there are ten methods with unique MSE values

within each scenario. Among them there is method A which has the best forecast

accuracy for half of the scenarios (rank 1) and the worst forecast accuracy for the

other half (rank 10). Let there be another method B that never has the best forecast

accuracy but has the second best (rank 2) consistently throughout all scenarios. As a

consequence, the average rank of method A (5.5) is higher than that of method B (2). To

make an informed decision which method to apply to a real-world applications, a more

consistent method can be preferable. Especially, if there are no further information as,
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CM z SG EW PW OW IL
LHS L1(κ) L1(ω̇)

LS LHS 0 1/N ωE2 ωE3 ωIL

4 0.05

none 0.63 0.69 1.57 0.63 0.63 0.69 0.68 0.63 0.67 0.66 0.63

�rst 0.65 0.70 1.61 0.65 0.65 0.70 0.70 0.64 0.68 0.67 0.64

last 0.66 0.72 1.64 0.66 0.66 0.72 0.72 0.65 0.70 0.69 0.65

both 0.64 0.68 1.59 0.63 0.64 0.68 0.68 0.62 0.66 0.65 0.63

4 0.20

none 0.79 0.78 1.78 0.76 0.78 0.77 0.78 0.74 0.76 0.75 0.74

�rst 0.73 0.67 1.48 0.68 0.71 0.67 0.66 0.65 0.65 0.64 0.64

last 0.80 0.78 1.74 0.77 0.79 0.76 0.77 0.74 0.75 0.74 0.74

both 0.77 0.68 1.51 0.70 0.74 0.68 0.67 0.66 0.66 0.65 0.66

4 0.50

none 1.03 0.79 1.50 0.91 0.88 0.81 0.75 0.77 0.77 0.76 0.77
�rst 0.90 0.30 0.45 0.56 0.37 0.35 0.24 0.26 0.26 0.26 0.25
last 1.10 0.79 1.47 0.93 0.91 0.81 0.75 0.77 0.77 0.77 0.77
both 1.02 0.31 0.46 0.60 0.39 0.36 0.25 0.26 0.26 0.26 0.26

5 0.05

none 0.44 0.40 0.84 0.45 0.42 0.48 0.40 0.38 0.41 0.41 0.39
�rst 0.44 0.40 0.85 0.45 0.42 0.49 0.40 0.38 0.41 0.41 0.39
last 0.44 0.41 0.88 0.46 0.43 0.50 0.40 0.38 0.41 0.41 0.39
both 0.43 0.41 0.87 0.45 0.42 0.49 0.41 0.38 0.41 0.41 0.39

5 0.20

none 0.51 0.51 1.06 0.54 0.50 0.59 0.51 0.46 0.51 0.50 0.47
�rst 0.48 0.49 0.98 0.50 0.47 0.54 0.48 0.44 0.49 0.48 0.45
last 0.52 0.54 1.13 0.56 0.51 0.62 0.54 0.49 0.54 0.54 0.51
both 0.49 0.53 1.06 0.51 0.48 0.56 0.52 0.47 0.51 0.50 0.48

5 0.50

none 0.67 0.66 1.21 0.69 0.63 0.70 0.65 0.61 0.65 0.64 0.62
�rst 0.56 0.31 0.42 0.45 0.32 0.32 0.27 0.29 0.30 0.30 0.29
last 0.66 0.67 1.22 0.68 0.62 0.68 0.66 0.62 0.65 0.65 0.62

both 0.59 0.33 0.44 0.46 0.34 0.34 0.29 0.31 0.32 0.31 0.31

6 0.05

none 0.79 0.63 1.39 0.77 0.73 0.72 0.62 0.60 0.61 0.61 0.61
�rst 0.78 0.60 1.32 0.75 0.72 0.69 0.59 0.58 0.58 0.58 0.58

last 0.80 0.63 1.37 0.78 0.74 0.72 0.62 0.61 0.61 0.61 0.61

both 0.80 0.61 1.30 0.77 0.72 0.69 0.60 0.58 0.58 0.58 0.59

6 0.20

none 0.97 0.64 1.16 0.89 0.75 0.67 0.59 0.58 0.56 0.56 0.58
�rst 0.94 0.52 0.95 0.81 0.66 0.57 0.48 0.48 0.45 0.45 0.47
last 1.02 0.64 0.96 0.91 0.68 0.61 0.53 0.52 0.50 0.50 0.52
both 0.97 0.51 0.80 0.81 0.59 0.52 0.44 0.43 0.40 0.41 0.42

6 0.50

none 1.28 0.61 0.85 1.02 0.67 0.58 0.48 0.47 0.44 0.45 0.47
�rst 1.22 0.26 0.42 0.62 0.37 0.33 0.21 0.22 0.20 0.21 0.21
last 1.39 0.62 0.69 1.05 0.57 0.51 0.40 0.39 0.37 0.37 0.38
both 1.31 0.26 0.38 0.62 0.34 0.31 0.20 0.20 0.19 0.19 0.20

Table 4.2. Simulation study results of benchmark, LHS and L1 methods for correlation
matrices CM4, CM5 and CM6 (ex post analysis). The table depicts the MSE of the
forecast combination method of Section 4.2 and other benchmarks. The methods with
the smallest MSE are depicted in bold numbers.

for example, method A is always good for highly correlated forecast errors. The average

distance is useful to be able to further assess the consistency and overall performance

of a method. Methods with a similar average rank nevertheless can have very di�erent

average distances. In such a case the method that has, on average, a smaller di�erence

in MSE to the best method is preferable.

We use the information of Table 4.3 in addition to Figure 4.11. The latter �gure

provides an overview of the ranks for each methods over all scenarios. The box depicts

the middle 50%, i.e., it ranges from the 75% quantile to the 25% quantile. This range

is called interquartile range (IQR). The line within the box is the median. The lines
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EW PW OW IL
LHS L1(κ) L1(ω̇)

LS LHS 0 1/N ωE2 ωE3 ωIL

Smallest MSE (%) 4.17 1.39 0.00 5.56 5.56 0.00 22.22 43.06 38.89 43.06 33.33
Avg Rank 8.60 7.42 10.31 7.69 6.59 7.10 5.24 3.26 3.83 3.20 2.74

Avg Distance 0.31 0.10 0.54 0.21 0.08 0.07 0.03 0.01 0.02 0.01 0.01

Table 4.3. Key �gures for the MSE values of benchmark, LHS and L1 methods over
all simulation study scenarios (ex post analysis). Smallest MSE (%) - Percentage of
scenarios for which the method has the smallest MSE, potentially among others. Avg
Rank - Average rank of a method where a smaller rank is favorable. Avg Distance -
Average distance or di�erence in MSE the method and best method scenario-wise. The
method with the most favorable value are depicted in bold numbers.
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Figure 4.11. Boxplot of ranks across benchmarks, LHS and L1 methods for the ex
post analysis.

outside the boxes are called whiskers and are 1.5 times the length of the IQR or up to

the largest or smallest observation respectively. The colors in Figure 4.11 distinguish

between the benchmark and LHS / L1 methods.

First, let us consider the benchmark methods using Figure 4.11. The middle 50% of

OW range from about nine to eleven, i.e., for 75% of scenarios, OW has a rank of nine

or higher. Table 4.3 shows that OW method is never the best method, and it has both

the largest average rank and distance.

Note that a larger range of ranks can be both advantageous and disadvantageous. If

the overall magnitude of ranks is small, a small range of ranks is better. However, if the

overall magnitude of ranks is large, a wider range indicates that a method can be good

in certain scenarios. For example, OW has overall large average ranks and a small range

of ranks, i.e., usually it is among the worst method and there less or no scenarios where

it is actually good. In comparison, PW has a smaller average rank but a slightly larger

range of ranks. Nevertheless, as Figure 4.11 clearly shows, it is preferable as it achieves

smaller ranks frequently. Both PW and IL have similar average ranks, see Table 4.3.

However, the range of ranks is larger for IL. If we compare both the 25% and 75% of PW

and IL, we can see that although IL has better ranks for some scenarios, the opposite
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holds true for others. An example where a larger range of ranks is advantageous is LS

and LHS. They have about the same 75% quantile, i.e., for 75% of the scenarios their

rank is about eight. However, the 25% quantile of LS is roughly �ve, while for LHS it

is about six. Accordingly, LS achieves smaller ranks more regularly compared to LHS.

We will use this kind of comparison throughout this thesis.

The four benchmarks, LS and LHS have the smallest MSE for the least amount of

scenarios, their average ranks and distances are the highest. With respect to the bench-

mark methods, PW is preferable because it has the smallest average rank, preferable

rank distribution and smallest average distance to the best method. However, the same

argumentation holds true if one compares PW to LS and LHS as one can immedi-

ately see in Figure 4.11. If we compare the two LHS methods, LS, i.e., shrinking all

weights towards equal weights instead of shrinking some towards zero is slightly better

(Best (%), average rank and rank distribution). Table 4.3 shows that there are scenarios

where EW, PW, IL and, LS have the smallest MSE. However, the result from Tables 4.1

and 4.2 show that they never have the strictly smallest MSE. There are other method

beside the benchmark methods that have the same MSE.

Let us now consider the methods that use a L1 constraint to shrink weights towards

either a �xed value L1(κ) or prior weights L1(ω̇). Both Table 4.3 and Figure 4.11

provide clear evidence that the L1 methods generally improve the forecast accuracy

within our simulation study. All of them have the smallest MSE more often, smaller

average ranks and distance than the benchmarks and LHS methods. Moreover, the rank

distribution is also bene�cial, i.e., the middle 50% have smaller ranks in comparison.

L1(0) stands out noticeably from the L1 methods as it has a smaller percentage

of having the smallest MSE (22.22%). Additionally, its average rank and IQR is the

largest among all L1 methods and the middle 50% include the largest ranks. The other

L1 methods are the best method more often, particularly L1(1/N) and L1(ω
E3) with

43.06% of scenarios. L1(ω
E3) overall have the

Shrinkage towards prior weights ωE2 or ωE3 as well as L1(1/N) have a 25% quantile

of about 1.5. i.e., for 18 out of 72 scenarios they have the smallest MSE.29 Both L1(1/N)

and L1(ω
E3) have a similar average (3.26 and 3.20) and range of ranks. However, the

smallest average rank (2.74) is achieved by L1(ω
IL). L1(1/N) and L1(ω

E3) reach smaller

ranks for some scenarios, but also larger ranks for others. Accordingly, the smaller IQR

of L1(ω
IL) can be considered advantageous as it has small ranks more consistently over

many scenarios.

In summary, L1 methods enhance the forecast accuracy compared to both the bench-

mark and LHS methods. Shrinkage towards equal weights as well as other, prior weights

is favorable compared to shrinking all weights towards zero.

29Recall that two methods can have the same MSE and are then the average rank is used.
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In what follows we analyze the forecasting performances of the methods with respect

to groups of scenarios, i.e., the correlation matrices CM, error variance similarities z

and special groups SG.

4.3.1.2 Ex Post Analysis: Groups of Scenarios

Let us now take a closer look at the forecast accuracy with respect to the design of the

di�erent scenarios. To this end, we group the scenarios with respect to the correlation

matrix CM, error variance similarities z or special groups SG and aggregate the results.

Note that due to the large extend of the simulation study we focus our analysis on the

more advanced, shrinkage based forecast combination methods. We will compare them

between each other and benchmark methods. However, we will less focus on comparing

di�erent benchmark methods with each other.

The analysis is still based on the results presented within Tables 4.1 and 4.2. More-

over, we will also consider Smallest MSE (%), rank and distance similar to Table 4.3.

While the percentage of how often a method has the smallest MSE is still presented in

a table we use a di�erent illustration for average ranks and di�erences. This is due to

the fact that we have to di�erentiate between six correlation matrices, three z values

and four special groups. Due to the large extent of this analysis, also consider the

distribution of ranks for each group in addition to the average rank and distances is

beyond the scope of this thesis.

Before we analyze the results, we brie�y introduce the illustration of average rank and

distance within Figures 4.12 and 4.13. The abscissa depicts the di�erent methods in the

same order as Tables 4.1 and 4.2.30 In case of Figure 4.12 the ordinate shows the error

correlation matrices. As a reference point, all presents the average ranks and di�erences

of each method over all scenarios, i.e., the result of Section 4.3.1.1. In Figure 4.13 the

ordinate shows, beside all, the di�erent values for z and SG.

For illustration purposes, let us focus on Figure 4.12. For each method and error

correlation matrix pair there is a colored circle. The size of the circle depicts the

average rank. A larger circle indicates a better, i.e., smaller, average rank. The average

distance between the MSE of a method and the best method within each scenario is

depicted by color. It starts at yellow for a distance of zero, goes over green to blue

and ends at purple (roughly 0.5). A legend for both the size of the circle and color is

provided on the right side of the �gure. Accordingly, a method with a large yellow circle

indicates a small average rank and distance, i.e., it is preferable. Note that we trimmed

the distances arti�cially. All distances that are more than two standard deviations

away from the overall mean distance, get a black color. Otherwise, those larger values

30Note that we use a slightly di�erent notation here due to the fact that there is no adequate
depiction for the abbreviation of the methods in R (R Core Team, 2022).
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distort the color gradient and di�erences in MSE distances between methods can not

be identi�ed anymore.

Table 4.4 and Figure 4.12 present the results of the forecast combination methods

with respect to the error correlation matrices. The table shows the percentages of how

often a method (columns) has, potentially among others, the smallest MSE with respect

to the error correlation matrices (rows).

EW PW OW IL
LHS L1(κ) L1(ω̇)

LS LHS 0 1/N ωE2 ωE3 ωIL

CM1 0.00 0.00 0.00 0.00 0.00 0.00 50.00 8.33 91.67 91.67 25.00

CM2 0.00 0.00 0.00 0.00 0.00 0.00 16.67 33.33 50.00 33.33 33.33

CM3 16.67 8.33 0.00 25.00 16.67 0.00 16.67 50.00 0.00 41.67 66.67

CM4 8.33 0.00 0.00 8.33 8.33 0.00 33.33 50.00 0.00 25.00 50.00

CM5 0.00 0.00 0.00 0.00 8.33 0.00 16.67 83.33 0.00 0.00 8.33

CM6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 33.33 91.67 66.67 16.67

Table 4.4. Percentage of scenarios for which benchmarks, LHS and L1 methods have
the smallest MSE with respect to the error correlation matrix (ex post analysis). The
total number of scenarios for each correlation matrix is twelve. The methods with the
highest percentages for each correlation matrix are depicted in bold numbers.

The benchmarks methods have the smallest MSE for only a few scenarios for CM3

and CM4. The benchmark methods have the smallest MSE for some scenarios in CM3

and one in CM4. For the EW this is most likely due to the fact that CM3 (low error

correlation of 0.2) is closer to the situation for which equal weights is optimal, i.e.,

uncorrelated forecasts errors and identical error variances recall Section 2.2.3. LS also

has the smallest MSE in CM3 and CM4 for some scenarios but for one scenario of CM5.

In contrast, LHS has never the smallest MSE. In comparison, the L1 methods as a whole

have the smallest MSE noticeably more often for all error correlation matrices.

The superiority of the L1 methods is supported by Figure 4.12. Overall they have

smaller average ranks (larger circle) and distances (yellow color). The original forecast

combination methods without any constraints (OW) has the worst forecast accuracy of

all (large average ranks and distances). The closest any benchmark and LHS method

gets to the L1 methods is for CM3. However, it is not EW as one may expect for a low

error correlation but IL.

For highly correlated forecast errors within CM1 (0.9 error correlation), the shrinkage

directions we propose in the context of the L1 constraint, L1(ω̇) with ωE2 and ωE3

have the smallest MSE for all scenarios but one (1/0.2/�rst), see Table 4.4. This

hold accordingly in case of ωE2 and CM6. This error correlation matrix has overall

high correlations (0.9) except for the group with the best forecast accuracy (medium

correlation 0.5). The best average ranks for both CM1 and CM6 are achieved by ωE2
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Figure 4.12. Illustration of average ranks and distances of the benchmark, LHS and
L1 methods for di�erent correlations matrices (ex post analysis).

and ωE3, see Figure 4.12. Accordingly, for highly correlated forecast errors shrinking

some weights to zero while others to a conditional equal weights using an L1 constraint

is superior to its related methods. Those are LHS which also has can have the group

structure but shrinks weights linearly, or L1(κ) which shrinks all weights to either zero

or EW.

As the error correlation becomes smaller, i.e., as we move from CM1 to CM3 L1(ω̇)

with ωIL becomes the best method more often and has a better average rank. This

is somewhat surprising, because smaller error correlations tend towards equal weights

being optimal (no error correlation between forecasts). However, the di�erent considered

error variance similarities (0.05, 0.2 and 0.5) lead to a decrease in performance of, e.g.,

L1(1/N). That in conjunction with the small deviation from no error correlation between

forecasts appears to be su�cient that shrinkage towards ωIL is favorable over all EW,

shrinkage towards EW with LHS or L1 as well as shrinkage towards zero and conditional

equal weight (ωE2 and ωE3) with an L1 constraint.

For CM4 groups of forecast are highly correlated while the error correlation between

groups is medium. Both, L1(1/N) and L1(ω
IL) have the smallest MSE for about the

same six out of twelve scenarios. This is re�ected by the average rank and distance

which are close to each other, see Figure 4.12. Although, the average rank of L1 is

noticeably smaller, it has the strictly smallest MSE for all other scenarios with the

highest error variance similarity (CM4/0.5/·).
For CM5 the better a group of forecasts is, the higher the error correlation is. Inter-

estingly, L1(1/N) has the (strictly) smallest MSE for (eight) ten of the twelve scenar-
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ios. Although,L1(ω
IL) has the smallest MSE only for one scenario (the same MSE as

L1(1/N)), its is always close to it.

Now we consider the scenarios with respect to their error variance similarity, i.e.,

basically how diversity of forecasting performances of the input forecasts. There are

three variants, very similar (z = 0.05), less similar (z = 0.20) and dissimilar (z = 0.50)

error variances of forecasts. Table 4.5 presents the percentages of how often each method

has the best forecast accuracy and Table 4.6 depicts the average ranks and distances

with respect to the error variances (and special groups).

EW PW OW IL
LHS L1(κ) L1(ω̇)

LS LHS 0 1/N ωE2 ωE3 ωIL

z = 0.05 12.50 0.00 0.00 8.33 12.50 0.00 0.00 83.33 29.17 29.17 50.00

z = 0.20 0.00 0.00 0.00 8.33 0.00 0.00 8.33 33.33 45.83 62.50 25.00

z = 0.50 0.00 4.17 0.00 0.00 4.17 0.00 58.33 12.50 41.67 37.50 25.00

Table 4.5. Percentage of scenarios for which benchmarks, LHS and L1 methods have
the smallest MSE with respect to the error variance similarity (ex post analysis). The
total number of scenarios for each error variance similarity is 24. The methods with the
highest percentages for each error variance similarity are depicted in bold numbers.

Overall, the L1 methods as a whole usually have the smallest MSE, smallest rank

and distances for all error variance similarities.

The two L1 methods that shrink towards a �xed value κ have opposing trends both

with respect to the smallest MSE, average rank and distance. The more dissimilar

forecasts are, the more often L1(0) has the smallest MSE (58.33% for z = 0.50). This

can be due to the fact that in case of high error variance dissimilarity the method

can more easily select a well suited set of forecasts. In contrast, for L1(1/N) the more

similar forecasts are, the more often the method has the best forecast accuracy. Recall,

the more similar forecasts are, the closer the true optimal solution is to equal weights,

ceteris paribus.

Overall shrinkage towards prior weights, i.e., L1(ω
E2) and L1(ω

E3), oftentimes has

the smallest MSE for z = 0.20 and z = 0.50, i.e., less similar error variances. For all

z-values, the average rank of L1(ω
E3) is slightly higher than for L1(ω

E2) and L1(ω
IL),

except for z = 0.05. However, L1(ω
IL) is the most consistent method over all error

variance similarities again.

In addition to the average ranks and distance in Figure 4.13, the percentages of how

often each method has the smallest MSE with respect to the special groups is shown in

Table 4.6.

As a whole the L1 methods are better than the benchmarks and LHS in terms of all

percentage of being the best method, average rank and distance. However, Figure 4.13

shows that overall all L1 methods, beside L1(0), have rather similar rank and distance
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Figure 4.13. Illustration of average ranks and distances of the benchmark, LHS and
L1 methods for error variance similarities and special groups (ex post analysis).

EW PW OW IL
LHS L1(κ) L1(ω̇)

LS LHS 0 1/N ωE2 ωE3 ωIL

none 11.11 0.00 0.00 5.56 11.11 0.00 11.11 50.00 38.89 33.33 27.78
�rst 0.00 5.56 0.00 5.56 0.00 0.00 33.33 33.33 33.33 38.89 44.44

last 5.56 0.00 0.00 11.11 11.11 0.00 11.11 50.00 44.44 55.56 44.44
both 0.00 0.00 0.00 0.00 0.00 0.00 33.33 38.89 38.89 44.44 16.67

Table 4.6. Percentage of scenarios for which benchmarks, LHS and L1 methods have
the smallest MSE with respect to special groups (ex post analysis). The total number
of scenarios for each special group is 18. The methods with the highest percentages for
each special group are depicted in bold numbers.

method-wise. The most noticeable exception is L1(ω
IL) which has a smaller average

rank and distance for SG �rst. Moreover, L1(0) and L1(1/N) have opposing trends, i.e.,

the former is better more often for SG �rst and both while the latter is better more

often for SG none and last, see Table 4.6. For L1(0) this may be due the fact that it can

more easily distinguish between which forecasts to chose if a particularly good group of

forecast is present.

In general, the special groups have less of an e�ect on the forecasting performance

than the structure of the error correlations (CM) and diversity of forecasts (z).
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4.3.2 Out-Of-Sample: L1 and LHS with Hyperparameter Estimation

In this section we consider the out-of-sample forecast accuracy of the LHS and L1

methods with hyperparameter estimation. To this end, we use the exact same time

series as in Section 4.3.1.31 Recall, that for each time series we compute forecasts for

the 50 observations in the test set based on a rolling window. However, previously

in Section 4.3.1, we chose the best hyperparameter for each test set ex post. This is

used similar in other research related to forecasting (see e.g., Radchenko et al., 2023).

It provides value in the sense that we can analyze a potential forecast accuracy of

the method if we would choose the best single parameter for the whole test set. By

that, we remove the uncertainty hyperparameter estimation to focus on the potential

performance. This approach di�ers in two ways from a real-world application.

First, the hyperparameter have to be determined a priori and not ex post. Second,

oftentimes one estimates the hyperparameter for each observation of the test set indi-

vidually. By that, the method can respond to current developments in the time series

and adapt the model or method to produce the best possible forecast. Based on this,

we are now considering a situation in which we have to forecast only based upon past

or historic information but we re-estimate the hyperparameters for each observation in

the test set.

To this end, we use cross-validation in its simplest form as discussed in Section 2.1.

Recall, that we at its core it uses the ex post analysis approach of choosing the best

hyperparameter, but only for the observations in the training set. To put it di�erently,

we divide the training set into a training subset (75%, i.e., 30 observations) and a

validation set (25%, i.e., 10 observations). Then we compute forecasts for candidate

values of the hyperparameter for the validation set. Note that we use the same candidate

value as in Section 4.3.1, i.e., from the smallest feasible value to 50 in 0.1 increments.

The hyperparameter that minimizes the forecast accuracy in the validation set is used

to forecast the next observation in the test set. This process is repeated for every

observation in the test set. As a result we have 200 MSE values for each method and

scenarios.

Tables 4.7 and 4.8 present the average MSE across the 200 test sets for each scenario.

Both Tables 4.7 and 4.8 follow the same structure as Tables 4.1 and 4.2, which present

the MSE result of the ex post analysis. The MSE values of the benchmark methods

(EW, OW, PW and IL) in Tables 4.7 and 4.8 are identical to those from the ex post

analysis follow Tables 4.1 and 4.2, because they do not have hyperparameters.

This is not the case for the LHS and L1 methods. At �rst glance one can see that in

contrast to the ex post analysis the MSE values of the LHS and L1 methods for pseudo

out-of-sample forecasting are not always superior to the benchmarks, see for example

31We want to emphasize that there is no usage of future information or insights based upon the ex
post analysis to compute forecasts for the pseudo out-of-sample forecasting.
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CM z SG EW PW OW IL
LHS L1(κ) L1(ω̇)

LS LHS 0 1/N ωE2 ωE3 ωIL

1 0.05

none 0.98 0.97 2.11 0.98 2.10 0.97 1.05 1.05 1.03 1.03 1.04
�rst 0.97 0.93 1.89 0.96 1.88 0.94 0.99 1.01 0.99 1.00 1.01
last 1.01 0.99 2.04 1.00 2.03 0.99 1.06 1.06 1.04 1.04 1.05
both 0.97 0.93 1.75 0.96 1.74 0.92 0.97 0.98 0.96 0.96 0.98

1 0.20

none 1.16 0.92 1.03 1.12 1.03 0.83 0.70 0.72 0.69 0.70 0.71
�rst 1.12 0.73 0.52 1.04 0.52 0.53 0.36 0.37 0.36 0.36 0.37
last 1.24 0.95 0.84 1.18 0.84 0.76 0.57 0.58 0.56 0.56 0.57
both 1.15 0.72 0.45 1.05 0.45 0.48 0.31 0.32 0.31 0.31 0.31

1 0.50

none 1.53 0.80 0.42 1.33 0.42 0.49 0.29 0.30 0.28 0.29 0.29
�rst 1.38 0.30 0.09 0.85 0.09 0.11 0.06 0.07 0.06 0.06 0.06

last 1.64 0.82 0.35 1.38 0.35 0.43 0.24 0.24 0.23 0.23 0.24
both 1.46 0.30 0.08 0.85 0.08 0.10 0.05 0.06 0.06 0.06 0.06

2 0.05

none 0.56 0.62 1.37 0.56 1.37 0.59 0.67 0.62 0.63 0.62 0.62
�rst 0.56 0.62 1.34 0.56 1.34 0.59 0.68 0.62 0.63 0.62 0.62
last 0.57 0.64 1.37 0.57 1.37 0.60 0.69 0.62 0.64 0.63 0.62
both 0.57 0.63 1.35 0.57 1.35 0.59 0.67 0.62 0.63 0.62 0.62

2 0.20

none 0.68 0.68 1.42 0.66 1.41 0.65 0.74 0.71 0.69 0.69 0.70
�rst 0.64 0.56 1.11 0.60 1.10 0.56 0.60 0.64 0.60 0.59 0.62
last 0.68 0.66 1.31 0.65 1.31 0.62 0.72 0.70 0.66 0.66 0.68
both 0.66 0.54 1.00 0.60 1.00 0.55 0.58 0.62 0.57 0.57 0.60

2 0.50

none 0.87 0.64 1.10 0.76 1.10 0.66 0.65 0.71 0.64 0.65 0.68
�rst 0.80 0.26 0.35 0.49 0.35 0.34 0.23 0.28 0.27 0.27 0.25
last 0.96 0.66 1.05 0.81 1.04 0.67 0.66 0.70 0.64 0.64 0.67
both 0.83 0.26 0.33 0.49 0.33 0.33 0.22 0.26 0.25 0.25 0.24

3 0.05

none 0.25 0.32 0.63 0.26 0.62 0.29 0.34 0.28 0.31 0.30 0.28
�rst 0.25 0.31 0.63 0.25 0.62 0.28 0.33 0.27 0.30 0.29 0.27
last 0.25 0.32 0.63 0.25 0.62 0.29 0.34 0.28 0.31 0.30 0.28
both 0.25 0.32 0.64 0.25 0.63 0.28 0.34 0.27 0.30 0.29 0.27

3 0.20

none 0.30 0.36 0.71 0.30 0.70 0.32 0.39 0.33 0.35 0.34 0.32
�rst 0.29 0.32 0.63 0.27 0.63 0.29 0.35 0.31 0.31 0.30 0.30
last 0.30 0.36 0.71 0.29 0.70 0.31 0.38 0.33 0.33 0.32 0.32
both 0.30 0.32 0.61 0.27 0.60 0.28 0.34 0.31 0.30 0.29 0.29

3 0.50

none 0.40 0.39 0.75 0.35 0.75 0.35 0.42 0.41 0.38 0.37 0.38
�rst 0.35 0.19 0.35 0.22 0.35 0.24 0.21 0.26 0.24 0.24 0.22
last 0.43 0.40 0.76 0.36 0.75 0.36 0.44 0.43 0.38 0.38 0.39
both 0.37 0.20 0.36 0.22 0.36 0.24 0.21 0.27 0.25 0.24 0.22

Table 4.7. Simulation study results of benchmark, LHS and L1 methods for correlation
matrices CM1, CM2 and CM3 (out-of-sample analysis). The table depicts the MSE of
the forecast combination method of Section 4.2 and other benchmarks. The methods
with the smallest MSE are depicted in bold numbers.

1/0.05/·. The estimation of the hyperparameters introduces estimation error into the

methods. The fact that the LHS and L1 methods have larger MSE values is even more

prevalent because the MSE in the pseudo out-of-sample context can be smaller than the

MSE of the ex post analysis. This is due to the fact that in the former we use di�erent

hyperparameters for all observations in the test set while for the latter we use a �xed

hyperparameter value for all observations of the test set.

In what follows we will �rst analyze the results overall and then with respect to the

correlation matrices, error variance similarities and special groups.
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CM z SG EW PW OW IL
LHS L1(κ) L1(ω̇)

LS LHS 0 1/N ωE2 ωE3 ωIL

4 0.05

none 0.63 0.69 1.57 0.63 1.57 0.71 0.76 0.71 0.76 0.74 0.71
�rst 0.65 0.70 1.61 0.65 1.61 0.71 0.76 0.71 0.75 0.73 0.71
last 0.66 0.72 1.64 0.66 1.63 0.73 0.79 0.73 0.77 0.75 0.73
both 0.64 0.68 1.59 0.63 1.59 0.70 0.74 0.70 0.73 0.72 0.69

4 0.20

none 0.79 0.78 1.78 0.76 1.78 0.79 0.86 0.84 0.85 0.83 0.83
�rst 0.73 0.67 1.48 0.68 1.48 0.68 0.73 0.74 0.72 0.72 0.72
last 0.80 0.78 1.74 0.77 1.74 0.78 0.87 0.85 0.85 0.84 0.84
both 0.77 0.68 1.51 0.70 1.50 0.70 0.74 0.76 0.75 0.73 0.74

4 0.50

none 1.03 0.79 1.50 0.91 1.50 0.84 0.84 0.89 0.87 0.86 0.88
�rst 0.90 0.30 0.45 0.56 0.45 0.43 0.29 0.31 0.31 0.31 0.31
last 1.10 0.79 1.47 0.93 1.47 0.85 0.85 0.90 0.88 0.87 0.89
both 1.02 0.31 0.46 0.60 0.45 0.44 0.29 0.33 0.32 0.32 0.32

5 0.05

none 0.44 0.40 0.84 0.45 0.84 0.50 0.44 0.43 0.47 0.46 0.44
�rst 0.44 0.40 0.85 0.45 0.85 0.51 0.44 0.43 0.47 0.47 0.44
last 0.44 0.41 0.88 0.46 0.87 0.52 0.44 0.43 0.48 0.47 0.44
both 0.43 0.41 0.87 0.45 0.86 0.52 0.44 0.43 0.48 0.47 0.44

5 0.20

none 0.51 0.51 1.06 0.54 1.05 0.62 0.56 0.53 0.59 0.58 0.54
�rst 0.48 0.49 0.98 0.50 0.97 0.57 0.53 0.50 0.56 0.55 0.51
last 0.52 0.54 1.13 0.56 1.12 0.65 0.59 0.54 0.62 0.61 0.57
both 0.49 0.53 1.06 0.51 1.05 0.58 0.57 0.52 0.58 0.57 0.54

5 0.50

none 0.67 0.66 1.21 0.69 1.20 0.74 0.72 0.70 0.75 0.74 0.71
�rst 0.56 0.31 0.42 0.45 0.42 0.39 0.31 0.36 0.38 0.37 0.36
last 0.66 0.67 1.22 0.68 1.22 0.72 0.73 0.71 0.74 0.74 0.71
both 0.59 0.33 0.44 0.46 0.44 0.40 0.33 0.38 0.40 0.40 0.38

6 0.05

none 0.79 0.63 1.39 0.77 1.39 0.75 0.69 0.70 0.69 0.69 0.69
�rst 0.78 0.60 1.32 0.75 1.32 0.72 0.65 0.67 0.66 0.66 0.66
last 0.80 0.63 1.37 0.78 1.37 0.75 0.69 0.70 0.70 0.69 0.70
both 0.80 0.61 1.30 0.77 1.30 0.71 0.66 0.68 0.67 0.67 0.68

6 0.20

none 0.97 0.64 1.16 0.89 1.16 0.72 0.65 0.68 0.64 0.65 0.67
�rst 0.94 0.52 0.95 0.81 0.94 0.62 0.54 0.56 0.52 0.53 0.55
last 1.02 0.64 0.96 0.91 0.96 0.67 0.62 0.62 0.59 0.59 0.62
both 0.97 0.51 0.80 0.81 0.79 0.58 0.50 0.50 0.47 0.48 0.50

6 0.50

none 1.28 0.61 0.85 1.02 0.85 0.66 0.55 0.56 0.52 0.53 0.55
�rst 1.22 0.26 0.42 0.62 0.42 0.41 0.24 0.25 0.24 0.24 0.25
last 1.39 0.62 0.69 1.05 0.69 0.61 0.47 0.48 0.44 0.45 0.47
both 1.31 0.26 0.38 0.62 0.38 0.39 0.23 0.24 0.22 0.23 0.23

Table 4.8. Simulation study results of benchmark, LHS and L1 methods for correlation
matrices CM4, CM4 and CM6 (out-of-sample analysis). The table depicts the MSE of
the forecast combination method of Section 4.2 and other benchmarks. The methods
with the smallest MSE are depicted in bold numbers.

4.3.2.1 Out-Of-Sample: Overall Results

Table 4.9 provides how often each method has the smallest MSE, the average rank and

distance to the scenario-wise best method over all 72 scenarios. It is built in the same

way as Table 4.3 in which we analyzed the ex post results. Furthermore, Figure 4.14

shows boxplots of the methods ranks over all scenarios. It is build in the same way as

Figure 4.11. Figure 4.14 and the �rst row Table 4.9 show that the L1 methods do not

have a clear superiority over the benchmarks anymore.
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EW PW OW IL
LHS L1(κ) L1(ω̇)

LS LHS 0 1/N ωE2 ωE3 ωIL

Smallest MSE (%) 23.61 36.11 0.00 26.39 0.00 11.11 15.28 0.00 23.61 11.11 2.78
Avg Rank 6.49 4.06 9.92 5.42 9.54 5.39 5.35 5.48 5.12 4.62 4.61
Avg Distance 0.27 0.07 0.50 0.17 0.50 0.07 0.05 0.05 0.05 0.04 0.04

Table 4.9. Key �gures for the MSE values of benchmark, LHS and L1 methods over
all simulation study scenarios (out-of-sample analysis). Smallest MSE (%) - Percentage
of scenarios for which the method has the smallest MSE, potentially among others. Avg
Rank - Average rank of a method where a smaller rank is favorable. Avg Distance -
Average distance or di�erence in MSE the method and best method scenario-wise. The
method with the most favorable value are depicted in bold numbers.
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EW PW OW IL LS LHS L1(0) L1(EW) L1(E2) L1(E3) L1(IL)

Figure 4.14. Boxplot of ranks across benchmarks, LHS and L1 methods for the pseudo
out-of-sample analysis.

While EW, PW and IL more often have the smallest MSE (Table 4.9) and, in case of

PW, the smallest average rank. However, Figure 4.14 shows that the IQR, i.e., range

of ranks, of both EW and IL is very large. Accordingly, for some scenarios they are

competitive forecast combination methods while for others they are inferior to the other

methods. Although PW also has a larger range or distribution of ranks than almost all

L1 methods, this also includes smaller ranks in comparison.

With respect to the LHS methods, interestingly, LHS is now favorable as one can

clearly see by considering the generally larger ranks in Figure 4.14. This may be due

to the fact that for LS we used the estimator provided by the authors Blanc and Setzer

(2020) for the pseudo out-of-sample forecasting. For LHS there is no such estimator, i.e.,

we used the validation set approach. Note that for LS we also used the validation set

approach for the ex post analysis. In the latter case we wanted to compare the methods

based on the same future information. For the out-of-sample forecasting where only

past information can be used, we decided to go with the way the authors intended.

For shrinkage towards a �xed value L1(κ), L1(0) has scenarios where it provided

better ranks than other methods, however, this hold similar for other scenarios where

it has noticeably higher ranks. The middle 50% of ranks for L1(1/N) is overall lower,
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however, it does not reach the small average ranks L1(0) has. Nevertheless, it is more

compact, i.e., it has a consistent forecast accuracy. For both L1(0) and L1(1/N) the

average ranks (5.35 and 5.48) and distance to the best method (both 0.05) are similar.

The L1 methods with shrinkage towards prior weights, L1(ω̇), have the smallest

average ranks after PW. Additionally, all L1 methods have smaller average distances,

i.e., they are on average closer to the best method scenario-wise. L1(ω
E2) also has the

smallest MSE for about a quarter of scenarios. However, if we consider the middle 50%

of ranks in Figure 4.14, we can see that they are larger compared to both L1(ω
E3)

and L1(ω
IL). Basically, L1(ω

E2) can provide better results for some scenarios, while

L1(ω
E3) and particularly L1(ω

IL) provide competitive results more consistently.

In terms of consistency, shrinkage towards prior weights is superior to all other shrink-

age methods. Evidence for this is both the average rank, distance, and the distribution

of ranks depicted in Table 4.9 and Figure 4.14. Overall the positive weights approach

both is the best method most often and has the smallest average rank. From the ex

post analysis of Section 4.3.1 we know, that the L1 methods can do better even if we

use a �xed value. Therefore, we again analyze the forecast accuracy with respect to the

underlying correlation matrix, error variance similarity and special groups to identify

scenarios in which certain method are advisable to use.

4.3.2.2 Out-Of-Sample: Groups of Scenarios

In this section we analyze the forecast accuracy of the forecast combination methods

with respect to the error correlation matrix, error variance similarity and special groups.

Table 4.10 and Figure 4.15 present how often each method has the smallest MSE,

i.e., is the best method, and the average ranks and distances. The benchmark methods

EW PW OW IL
LHS L1(κ) L1(ω̇)

LS LHS 0 1/N ωE2 ωE3 ωIL

CM1 0.00 25.00 0.00 0.00 0.00 25.00 33.33 0.00 58.33 41.67 16.67
CM2 33.33 25.00 0.00 33.33 0.00 25.00 16.67 0.00 16.67 8.33 0.00
CM3 41.67 16.67 0.00 75.00 0.00 16.67 0.00 0.00 0.00 0.00 0.00
CM4 25.00 33.33 0.00 50.00 0.00 0.00 16.67 0.00 0.00 0.00 0.00
CM5 41.67 66.67 0.00 0.00 0.00 0.00 16.67 0.00 0.00 0.00 0.00
CM6 0.00 50.00 0.00 0.00 0.00 0.00 8.33 0.00 66.67 16.67 0.00

Table 4.10. Percentage of scenarios for which benchmarks, LHS and L1 methods have
the smallest MSE with respect to the error correlation matrix (out-of-sample analysis).
The total number of scenarios for each correlation matrix is twelve. The methods with
the highest percentages for each correlation matrix are depicted in bold numbers.

are superior more often for the correlation matrices that have less highly or mixed

correlated forecast errors (CM 2, 3, 4, and 5). Shrinkage towards prior weights, ωE2

and ωE3, we proposed to use with an L1 constraint in Section 4.2.3 have the superior
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Figure 4.15. Illustration of average ranks and distances of the benchmark, LHS and
L1 methods for di�erent correlations matrices (out-of-sample analysis).

forecast accuracy most often if highly correlated forecasts errors are common as in CM1

and CM6. Especially L1(ω
E2), i.e., if the best 50% are shrunken and selected towards

their equal weights while the rest is shrunken and selected towards zero with an L1

constraint. Additionally, L1(ω
E2) but also L1(ω

E3) have the smallest average ranks for

these correlation matrices (CM 1 and 6) as one can see in Figure 4.15.

Although L1(0) is the best method for some scenarios for almost all error correlation

matrices, its average rank is always higher (smaller circle), i.e., for the scenarios where

it is not, among others, the best method, it

With respect to CM2, although EW and IL have a smaller MSE more often, both

PW and LHS have better average ranks (circle size) and distances (circle color), see

Figure 4.15. For the correlation matrices CM3,4 and 5, the di�erences between the L1

constraint methods are negligible in comparison to IL for CM3 (small error correlations

0.2) and i comparison to PW for CM4 (0.9 error correlation within and 0.5 between

groups) and CM5 (better forecasts have higher error correlations). Although it is worth

mentioning that for CM5 shrinkage towards a �xed value L1(κ) has better noticeably

better ranks than shrinkage towards prior weights.

The following table depicts the percentage of how often a method has the smallest

MSE for both the error variance similarities in the �rst three rows and special groups in

the last four rows. Additionally, Figure 4.16 shows the average ranks and distances. The

benchmarks methods are the best methods most often for z = 0.05, i.e., similar error

variances. If one also takes Figure 4.16 into consideration, they are also very consistent

(small average rank) and close to the best method (small average distance), the smaller
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EW PW OW IL
LHS L1(κ) L1(ω̇)

LS LHS 0 1/N ωE2 ωE3 ωIL

z = 0.05 45.83 45.83 0.00 45.83 0.00 12.50 0.00 0.00 0.00 0.00 0.00
z = 0.20 20.83 29.17 0.00 25.00 0.00 12.50 8.33 0.00 33.33 16.67 4.17
z = 0.50 4.17 33.33 0.00 8.33 0.00 8.33 37.50 0.00 37.50 16.67 4.17

none 27.78 44.44 0.00 27.78 0.00 16.67 0.00 0.00 27.78 0.00 0.00
�rst 22.22 44.44 0.00 22.22 0.00 5.56 33.33 0.00 22.22 16.67 5.56
last 27.78 22.22 0.00 33.33 0.00 16.67 0.00 0.00 27.78 22.22 0.00
both 16.67 33.33 0.00 22.22 0.00 5.56 27.78 0.00 16.67 5.56 5.56

Table 4.11. Percentage of scenarios for which benchmarks, LHS and L1 methods have
the smallest MSE with respect to the error variance similarity and special groups (out-
of-sample analysis). The total number of scenarios for each error variance similarity is
24 and for special groups it is 18. The methods with the highest percentages for each
error variance similarity are depicted in bold numbers.

the error variance similarity is. To a lesser extent this holds for LHS and L1(1/N).

For all other L1 methods the opposite is true. The more dissimilar the forecasts error

variances are, the more often L1 methods have the best MSE, smaller average ranks and

distances. As a result, the shrinkage methods towards prior weights are particularly well

suited for highly correlated forecast errors and more dissimilar, i.e., diverse forecasts.

This is most noticeable for shrinkage towards zero with L1(0). For very dissimilar

forecasts it has the smallest rank, i.e., most consistent performance, over all methods

by far. Taking look at special groups rows four to seven in Table 4.11 shows that

the benchmark methods are most often the best methods for all special groups. This is

most noticeable for the PW approach if we also consider Figure 4.16. The only shrinkage

method that has a similar pattern is L1(ω
E2) but to a lesser extent.

L1(0) method is useful if at least the �rst group is noticeably better, see both Ta-

ble 4.11 and the average ranks in Figure 4.16. Again, this is probably due to the fact

that if forecast are very dissimilar or groups are more distinguishable due to special

groups , the method can select a favorable group of forecasts more easily. Going back to

the results from Table 4.10 in conjunction with Tables 4.7 and 4.8 shows that the sce-

narios for which L1(0) has the smallest MSE is less dependent on the error correlation

matrix but rather on the error variance similarity and special groups.

Other than that, no shrinkage method proves to be tailored towards a speci�c struc-

ture of special groups. However, overall the average ranks slightly decrease, i.e., methods

are less consistent, if either no special group is present or if the last special group has

a noticeably worse forecasting performance.

Overall the average ranks are similar to All at the top of Figure 4.16, i.e., if we do

not di�erentiate between the special groups at all.
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Figure 4.16. Illustration of average ranks and distances of the benchmark, LHS and
L1 methods for error variance similarities and special groups (out-of-sample analysis).

4.3.3 Summary of Results

In this section we brie�y summarize the results of the simulation study.

For the ex post analysis, L1 methods enhance the forecast accuracy compared to both

the benchmark and LHS methods. Shrinkage towards equal weights as well as other,

prior weights is favorable compared to shrinking all weights towards zero. L1(ω
IL)

is the most consistent method in the sense that it usually has small ranks over all

scenarios. However, methods like L1(1/N) and L1(ω
E3) can achieve smaller ranks for

some scenarios but also larger for others, i.e., they have to be applied more situational

than L1(ω
IL). Overall, all L1-methods beside L1(0) and to an extent L1(ω

E2)have

similar small average ranks distance. Accordingly, they have consistently small MSE

over all scenarios and if they are not the best method themselves they have a MSE close

to it.

With regard to di�erent correlations matrices, the L1 methods as a whole have the

smallest MSE more often, smaller average ranks and distance than the benchmark

methods. For highly correlation correlated forecast errors L1(ω
E2) and L1(ω

E3) are

superior. If inverse weights are used as a shrinkage direction, a consistently good forecast

accuracy can be achieved over all correlation matrices. L1(1/N) is noticeably the best

method if the error correlation increase with forecast accuracy (CM5).

For the di�erent error variance similarities, again all L1 constraint usually improve the

forecast accuracy compared to the benchmark methods and LHS methods. If forecast

are very similar, shrinkage towards equal weights is superior while for less similar and
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dissimilar forecast shrinkage towards zero provides better results. Although, the more

diverse forecasts are with respect to the forecast error variances, the more superior

shrinkage towards prior weights particularly, L1(ω
E3), is. It has higher percentage of

being best and a better average rank. This holds similarly for L1(0), but the opposite

is true for L1(1/N). It is superior if forecasts are less diverse, i.e., have similar error

variances. This pattern is similar to that of EW to which L1(1/N) shrinks. This result is

due to the fact that the more similar forecast are, the better EW is in general. If more

dissimilar forecasts are present, i.e., also forecasts with higher error variances, those

forecast are considered equally and, by that, the forecasting performance decreases.

The special groups do overall not a�ect the forecast combination methods. The only

noticeably exception is L1(0). Its performance is better if a group of particularly good

forecasts is present.

If we estimate hyperparameters within the out-of-sample analysis, the clear superi-

ority of the L1 (and LHS methods) over the benchmarks is not unambiguous anymore.

With respect to the L1 methods shrinkage towards prior weights either has the smallest

MSE most often or is more consistent in its forecasting accuracy compared to other L1

methods. For highly correlated forecast errors, shrinkage towards prior weights in form

of L1(ω
E3) is superior because it has the smallest MSE most often and the smallest

average rank and distance.

For smaller error correlations (CM3) or mixed correlation matrices (CM4 and CM5),

IL and PW are favorable, respectively. If forecast error variances are similar, the bench-

marks methods (EW, PW and IL) are well suited for pseudo out-of-sample forecasting.

The more dissimilar the error variances are, the better the L1 methods except L1(1/N).

For very dissimilar error variance the L1(0) method has the smallest average rank and

distance.

With regard to special groups the result do not indicate that any methods is speci�-

cally tailored for any structure of special groups. The only exception is L1(0) which is

better suited for scenarios where a group of particularly good forecasts is present.

4.4 Discussion and Future Work

In this chapter, we presented how shrinkage methods improve the forecast accuracy and

how the L1 constraint can be used for forecast combination. With respect to the overall

structure of this thesis, this chapter includes the �rst three major contributions stated

in Chapter 1: an extended framework for simulation studies, a uni�ed framework for the

L1 constraint methods, and Conditional Group Equal Weights as a shrinkage direction.

It demonstrates how forecast combination with constrained weights can improve forecast

accuracy and, by that, contributes to answer the overarching research question: how to

further improve the forecast accuracy of a combined forecast using constrained weights?
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To this end, this chapter was centered around six objectives.

(I) In Section 4.1.1, we showed that the idea behind shrinkage is to alter the weight

vector, i.e., shrink it, towards certain directions. We motivated this based on the LHS

method that starts from the optimal weights solution and shrinks all or a subset of

weights linearly towards equal weights and the complementary set of weights towards

zero. In its simplest form it shrinks all weights from OW (no bias, larger forecast

variance) to EW (bias, smaller forecast variance). Shrinkage is based around the idea of

the bias-variance trade o� depicted in Equation (4.1). The out-of-sample error variance

can be decomposed into a squared bias term, a variance term of the forecast and an

irreducible error. If the increase in (squared) bias introduced by constraint or shrinkage

is more than o�set by the reduction in variance, the resulting shrunken solution has a

superior out-of-sample forecast accuracy. In other words, the solution that minimizes

the empirical error variance is not identical to the solution which minimizes the actual

error variance based on the true error variance covariance matrix, see again Figure 4.2.

(II) In Section 4.1.2 we showed how variants of the L1 constraint are considered and

implemented in various ways in the literature.

(II) / (III) After that in Section 4.2, we translated the discussed methods into a uni-

�ed framework that minimizes a quadratic function, the error variance of the combined

forecast, subject to linear constraints. Importantly, we incorporated the unity con-

straint for all methods. We showed how to transform optimization problems with L1

constraints such that we can represent them with linear constraints. This is necessary

to solve the optimization problems with the algorithm we use. In Section 4.2.1 we pre-

sented the optimization problem of Equation (4.28) which can be used to shrink weights

towards any �xed value κ. This includes shrinkage towards zero (L1(0)), i.e., weights

are shrunken and selected towards zero, as used in Radchenko et al. (2023). Moreover,

it can also represent the so-called egalitarian Lasso from Diebold and Shin (2019) which

shrinks and selects weights towards equal weights (L1(1/N)). In Section 4.2.2.2 we ex-

tended the optimization problem such that it allows shrinkage towards a prior weights

vector (L1(ω̇)), e.g., the inverse-loss average weight as used in Roccazzella et al. (2022).

We showed that shrinkage towards prior weights nests shrinkage towards a �xed value

as a special case.

Consequently, we presented a uni�ed framework as a quadratic optimization problem

with linear constraints in the sense of J. M. Bates and Granger (1969) by which one

can implement and compare all considered L1 methods (V).

(IV) In Section 4.2.3 we proposed to use shrinkage directions with the L1 constraint we

called Conditional Group Equal Weights. It is inspired by the LHS method (Schulz et al.,

2022), the peLasso (Diebold & Shin, 2019), L1(0) and L1(1/N). It creates a sophisticated

and more comprehensive hybrid between L1(0) and L1(1/N). For a prede�ned number

of groups we assign a budget to each group that corresponds to the proportion of
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the weight the group has for the smallest possible γ value, i.e., shrinkage parameter.

A�liation to a group is determined by a feature, for example the forecast accuracy.

For the smallest possible value of the shrinkage parameter, each group members weight

is the equal weight conditional to their budget. In other words, the conditional equal

weight is the budget of a given group divided by the number of group members. First,

we use two groups (ωEW2), with a budget of one for group one (top 50% forecast

accuracy) and zero for group two (bottom 50% forecast accuracy). This corresponds to

LHS, i.e., we shrink a subset of weights from OW to their corresponding, conditional

EW and the remaining weights from OW to zero. However, we use a L1 constraint to

shrink weights instead of linear shrinkage. By that, weights are not only shrunken but

also selected to either the conditional equal weights or zero as the shrinkage intensity

increases. Additionally, we propose to divide the forecasts in three groups based on

their forecast accuracy. The �rst group has a budget of 2/3, the second 1/3 and the third
0/3, i.e., we shrink and select weights towards two di�erent conditional equal weights

and zero. At its core our proposed shrinkage direction L1(ω
EW2) and also to an extent

LHS is a simpli�cation of the partially egalitarian Lasso introduced by Diebold and Shin

(2019). For a given shrinkage intensity the peLasso shrinks and selects weights to the

conditional equal weights of non-zero weights within a solution and towards zero. Both

L1(ω
EW2),L1(ω

EW3) and LHS simplify this idea by de�ning the number of weights to

be shrunken towards zero and the conditional equal weights a priori.

As a byproduct of our analysis, we showed that peLasso can be implemented as a

one-step procedure which was left for future research by Diebold and Shin (2019). To

this end, we de�ne a quadratic mixed integer optimization problem, see Appendix A.

Because it is beyond the scope of this thesis, we leave it for future research to implement

and evaluate this one-step procedure of the peLasso.

(VI) In Section 4.3 we conducted an extensive simulation study. It is based on the

simulation study in Roccazzella et al. (2022). However, while they consider four scenar-

ios we consider 72 di�erent scenarios that are built around error correlation matrices,

error variances and special groups. We analyzed the forecast combination methods both

if hyperparameter are determined ex post (see e.g., Diebold & Shin, 2019; Radchenko et

al., 2023) and if they are estimated repeatedly by cross-validation (see e.g., Radchenko

et al., 2023; Roccazzella et al., 2022). The ex post analysis removes the uncertainty of

hyperparameter estimation to assess a potential forecast accuracy. In the out-of-sample

analysis we consider a more real-world procedure where hyperparameters are repeatedly

estimate for each observation in the test set.

As a �rst �nding, we observed that for the ex post analysis the LS method was slightly

better than LHS. However, the opposite is true to a greater extent when it comes to

out-of-sample forecasting. This may be due to the fact that for LS in the pseudo out-

of-sample analysis we used the estimate of the shrinkage parameter provided by the
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authors Blanc and Setzer (2020). In contrast, we used the validation set approach for

the ex post analysis. For the ex post analysis, we wanted to compare the methods based

on the same future information but for the out-of-sample forecasting where only past

information can be used, we decided to go with the way the authors intended. However,

there is no such estimate for LHS. Accordingly, future research should evaluate whether

or not the LS method as a whole is less suited for out-of-sample forecasting compared

to LHS or if it is due to the di�erent ways of hyperparameter estimation.

The ex post analysis shows that L1 methods are oftentimes superior compared to both

benchmark and LHS methods in terms of forecast accuracy. Shrinkage towards prior

weights, in particular the shrinkage directions we proposed to use ωEW2 and ωEW3, are

advantageous if forecast error are highly correlated. Shrinkage towards zero (L1(0)) is

better suited for very dissimilar forecasts and if there is a group of particularly good

forecasts present. In contrast, shrinkage towards equal weights (L1(1/N)) has better

result if there is less diversity in the forecasts error variances.

If hyperparameters are estimated rather than chosen ex post, the introduced uncer-

tainty is large enough such that the clear superiority of the L1 methods is no longer

given. This is reinforced by the fact that due to the repeated re-estimation of the

hyperparameter the smallest achievable MSE is smaller in the out-of-sample analysis

compared to the ex post analysis where a �xed value is chosen for the whole test set.

Without any further information, the PW method has the smallest MSE most often.

L1 methods that shrink towards prior weights (L1(ω̇)) have the smallest MSE less often

compared to PW. However, their average rank is closest to PW and, except for ωEW2,

they have a more consistent forecasting performance across di�erent scenarios. For

highly correlated forecast errors shrinkage towards prior weights L1(ω̇) with ωEW2 and

ωEW3 (CGEW) is the best method most often and has a consistently good forecasting

performance.

We suggest using the prior weights shrinkage directions (CGEW) if forecast error are

highly correlated which, according to Winkler and Clemen (1992), is common in forecast

combination problems. In contrast, for less correlated forecasts errors the benchmarks

methods are a better choice, when it comes to out-of-sample forecasting. For very

dissimilar forecast error variances, particularly in conjunction with a group of very

good forecast, L1(0) provides promising results.

As an extension of our analysis, we encourage future research to compare all consid-

ered methods to double shrinkage via weighted least squares Lasso proposed by Liu et

al. (2023). We brie�y introduced the method in Section 4.1.2, however it was published

so recently that we could not consider it in our analysis.

Due to the fact that the L1 methods fall short of their potential forecast accuracy

if hyperparameter are estimated, a closer examination of hyperparameter estimation is
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needed. To this end, we one could use arti�cial neural networks that learn the structure

of the error variances and covariances to estimate the best hyperparameter.

In this chapter, we presented various L1 based methods within the same uni�ed

framework that can incorporates prior weights. Previously, the lasso-based methods

used various L1 constraints and implemented them di�erently with and without the

unity constraint. In this chapter, we compared the discussed methods based on the same

quadratic optimization problem with linear constraint, including a unity constraint,

which has not been done previously. Moreover, we proposed to use a shrinkage direction,

conditional group equal weights, for the L1 constraint which turned out be one of the

most favorable methods.

Lastly, we conducted a simulation study in which we analyzed the forecasting per-

formance and how it changes for various designed scenarios, ceteris paribus. However,

to asses the potential of any forecast combination methods a evaluation with real-world

data is necessary. We will provide such an analysis in Chapter 7 where we compare all

forecast combination methods considered in this thesis.

In conclusion, it is important to acknowledge the potential of simple benchmark meth-

ods. They can be highly e�ective to combine forecasts in certain scenarios, in particular

in comparison to other methods that need to estimate hyperparameters. However, the

incorporation of L1 constraints that shrink weights towards prior weights is a valuable

tool for improving forecast accuracy, and it is advisable to utilize this approach. To this

end, it is essential to consider the structure of forecast errors, including error variances

and error correlations, in order to identify the most appropriate methods for a given

context.



5 Bounded Weights

In the previous chapter, we demonstrated how shrinkage or forecast combination with

constrained weights can improve the out-of-sample forecast accuracy. To this end, we

presented various methods that utilize an L1 constraint to shrink and select towards a

prede�ned shrinkage direction or prior weights. This includes shrinkage towards a �xed

value as a special case. The L1 constraints impose a restriction on the entire weight

vector, ω, by introducing a budget. This budget de�nes the extent to which the weights

can deviate from the prior weights. Consequently, some forecasts may have very large

(small) positive (negative) weights, while others have weights closer to or exactly zero.

Due to the high absolute weights, those input forecasts exert a greater in�uence on the

combined forecast (in sense of a marginal e�ect). As a result, the combined forecast is

more sensitive to changes in the input forecasts. Given the close relationship between

forecast combination and regression models (Granger & Ramanathan, 1984), we will

use the term marginal e�ect to emphasize the e�ect a forecast has on the combined

forecast. If a forecast with a larger absolute marginal e�ect has a temporary inferior

performance, it can a�ect the forecast accuracy of the combined forecasts to a greater

extent. Recall, that part of the motivation for forecast combination is to diversify risk by

using multiple forecasts. Although the L1 constraint is generally bene�cial in terms of

forecast accuracy (see Chapter 4), it is not capable of mitigating large absolute weights

for individual forecasts due to its constraints on the weight vector as a whole.

An alternative approach to reduce weights and diversify risk is to introduce bounds,

i.e., feasible intervals, for weights. The positive weights (PW) approach provided in

Equation (2.30) uses a lower bound of zero for each forecast's weight. Both lower

and upper bounds are also used in the mathematically analogous problem of portfolio

selection (Arratia, 2014, pp. 256-258). For forecast combination, Radchenko et al.

(2023) extended the idea of the PW approach by imposing a lower bound other than

zero to reduce the amount of negativity in the solution, while generally allowing it.

They refer to this approach by �TR4� and describe it as a �one-step trimming approach�

(Radchenko et al., 2023). Henceforth, we will refer to it as LB for lower bound. Note

that by imposing a lower bound we implicitly also imposes an upper bound of 1−(N−1)
times the lower bound, because the unity constraint has to be ful�lled. To illustrate,

consider a scenario with N = 4 forecasts and a lower bound of −0.1. If three of

four weights are equal to the lower bound, the largest weight that can be assigned to

any forecast is 1.3. Otherwise, the solution is infeasible due to the unity constraint.

96
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Consequently, this approach like the L1 methods also allows for large absolute weights,

i.e., forecasts with a larger absolute marginal e�ect.

We extend the approach of Radchenko et al. (2023) and propose to consider not only

lower bounds, but also upper bounds. To illustrate, consider the previous example. If

we impose an upper bound of 0.8 in addition to the lower bound of −0.1, at most two
weights can be equal to the lower bound. The remaining two weights must sum to

1.2, which allows one weight to be equal to the upper bound and the other to be 0.4.

Consequently, the weights have been shrunken and, by that, the marginal e�ect of each

weight has been reduced. This leads to a more robust and diversi�ed combined forecast.

Although the concept of limiting positive weights may appear less intuitive than con-

straining negative weights at �rst glance, it is precisely the upper bound that introduces

new aspects to the problem. It nests existing forecast combination methods. One of

these methods is the hardest benchmarks to beat when attempting forecast combi-

nation problems for decades resulting in the forecast combination puzzle discussed in

Section 2.3: the equal weights forecast. Moreover, it also nests both the PW and OW

approach as well as solutions in-between EW, PW and OW.

Let us brie�y recapitulate and emphasize again the advantages and disadvantages

of OW, PW and EW. The original forecast combination problem (OW), theoretically

provides the error-variance minimizing, i.e., the best possible, weights (J. M. Bates &

Granger, 1969). The combined forecast is unbiased if all input forecasts are unbiased.

However, due the potential estimation error in the variance-covariance matrix combined

with the sensitivity of weights with respect to those estimation errors, OW often has

an inferior out-of-sample forecast accuracy. Constraining the solution space by limiting

the amount of negativity either completely (PW) or partially by introducing a negative

lower bound helps to improve the forecast accuracy. These lower bound constraints

introduce bias into the solution. If the reduction in variance more than o�sets the

increase in (squared) bias, the out-of-sample forecasting performance of the combined

forecast can improve, see again Equation (4.1). The equal weights (EW) forecast is

characterized by a lack of estimation error as weights are predetermined rather than

estimated. Accordingly, the equal weights forecast is biased. On the one hand, it

diversi�es risk by including all forecasts and weighting them equally and, thereby making

it is more robust to outlier forecasts. On the other hand it is incapable of utilizing

information from the training set to improve forecast accuracy (Aksu & Gunter, 1992;

Blanc & Setzer, 2020; Chan & Pauwels, 2018; Graefe, Armstrong, Jones, & Cuzán, 2014;

Radchenko et al., 2023; Smith & Wallis, 2009; Winkler & Clemen, 1992).

Our proposed approach of using both a lower and upper bound nests all three methods

(EW, PW and OW) and solutions in-between them. By that, it can combine the

advantages of the three methods while mitigating their �aws. Furthermore, the proposed

bounded weights approach will be extended to incorporate prior information in form
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of prior weights. This extension, Forecast Combination with Bounded Prior Weights

(BW(ω̇)), enables solutions between prior weights and OW.

The objectives for this chapter are the following:

(I) Introduce forecast combination with bounded weights

(II) Analyze the solutions, i.e., weights, that result from the introduction of lower and

upper bound.

(III) Extend the approach of bounded weights by imposing bounds around prior weights,

i.e., forecast combination with bounded prior weights

(IV) Analyze the performance of the methods within a larger scale simulation study

for di�erent scenarios both with and without hyperparameter estimation.

With respect to the overall structure of this thesis, the introduction of Forecast Com-

bination with Bounded Weights is the fourth main contribution that we stated in Chap-

ter 1. By that, we contribute to the overarching research question or objective of this

thesis to improve the combined forecast by using additional constraints which, in this

chapter, are bounds.

The remainder of this chapter is organized as follows. Section 5.1 introduces our new

approach of Forecast Combination with Bounded Weights. Section 5.2 extends this

idea by incorporating prior weights into the optimization problem. Lastly, Section 5.3

evaluates the forecasting performance of both the bounded weights and bounded prior

weights approaches within our simulation study.

5.1 Between Identical and Individual Weights

In this section, �rst the bounded weights approach is introduced, and it is shown how

the nested methods are part of the solution space. To this end, we consider the feasible

values of the lower and upper bound in Section 5.1.1. Second, Section 5.1.2 analyzes

the solutions in-between the nested method which have interesting properties. Lastly,

Section 5.1.3 considers how to determine the lower and upper bound based on cross-

validation. To this end, we derive an algorithm to reduce the computational burden

that comes with the introduction of two hyperparameters (lower and upper bound).

5.1.1 Optimization Problem and Feasible Bounds

We extend the unconstrained optimization problem given in Equation (2.22) by adding

both a universal or common lower and upper bound for the weights. To this end, in

addition to the unity constraint we introduce N constraints that ensure that each weight

of the N forecasts is smaller than a speci�ed common upper bound ω. Similarly, we
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de�ne N additional constraints that ensure that each weight of the N forecasts is larger

than a universal lower bound ω. The corresponding optimization problem is

minimize
ω

ω′Σ̂ω

subject to ω′1 = 1,

ωi ≥ ω ∀ i = 1, . . . , N,

ωi ≤ ω ∀ i = 1, . . . , N

(5.1)

By that, we de�ne one common interval of feasible values for all weights, i.e., ωi ∈ [ω, ω]

∀ i = 1, . . . , N . The following �gures depict two examples for the feasible interval based

on di�erent bounds.

ωi
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

ω ω

(a) ωi ∈ [−1.5, 1.5]

ωi
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

ω ω

(b) ωi ∈ [−0.5, 1.5]

Figure 5.1. Illustration of the lower and upper bound or interval of feasible values for
the weights ωi ∀ i = 1, . . . , N .

Figure 5.1(a) showcases a symmetrical interval around zero for the feasible interval,

i.e., the lower and upper bound have the same absolute value 1.5.32 However, lower and

upper bound do not have to have the same absolute value. Thus, we can have other

intervals like for example the one depicted in Figure 5.1(b).

Based on the choice of lower bound ω and upper bound ω our approach nests the

PW, OW and, most importantly, the EW approach. Within bounded weights we can

introduce the EW in two di�erent ways. First, as a consequence of using an upper

bound. Second, EW is also introduced into the solution space if one uses a di�erent

range of feasible values for the lower bound than Radchenko et al. (2023).

Feasible Values of Lower and Upper Bound Table 5.1 presents the ranges of feasible

values for both the lower bound (rows) and upper bound (columns) and illustrates for

which combination of the lower and upper bound the solution of the BW approach is

identical to other commonly used forecast combination approaches.

Due to the unity constraint, the smallest feasible upper bound is ω = 1/N. Any smaller

upper bound results in an empty solution space as the unity constraint in Equation (5.1)

is violated. Accordingly, for the upper bound it has to hold that

ω ∈ [1/N,∞). (5.2)

This range is depicted by the columns in Table 5.1.

32For a formal description of the �gure recall Figure 4.5.
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ω
ω

1/N . . . ∞

1/N EW . . . EW
...

...
. . .

...
0 EW . . . PW
...

...
. . .

...
-∞ EW . . . OW

Table 5.1. Feasible values for the lower and upper bound and nested methods.

For the feasible value of the lower bound Radchenko et al. (2023) use ω ∈ (−∞, 0]. By
that, they restrict negative weights to not become too small.33 However, they dismiss

positive values of the lower bound which are not only feasible but also sensible. A

strictly positive lower bound forces a solution in which every forecast is considered with

a positive weight, like for example in the equal weight solution. Again due to the unity

constraint, the largest feasible value of the lower bound ω is 1/N, i.e.,

ω ∈ (−∞, 1/N]. (5.3)

The Solution Space To analyze the solution space of our method, we further consider

Table 5.1.

First, if we use 1/N either for the lower or upper bound or both, the solution will

always be the equal weights solution regardless of the other bound. Any deviation of

weights from this solution towards either negative in�nity or positive in�nity requires

at least one weight to increase or decrease respectively to o�set the deviating weights

and ful�ll the unity constraint. However, this o�set is impossible due to the proposed

lower or upper bound being 1/N. The �rst column of Table 5.1 shows this for the upper

bound, and the �rst row for the lower bound respectively.

Second, we focus only on the lower bound as proposed by Radchenko et al. (2023), i.e.,

only non-positive values for the lower bound, and assume that there is no upper bound,

i.e., ω →∞ or the corresponding constraint is simply omitted from Equation (5.1). The

approach by Radchenko et al. (2023) is depicted in the last column for ω ∈ (−∞, 0] in
the orange-shaded area. If the lower bound is set to zero, the proposed optimization

problem is identical to the PW approach. As the lower bound decreases towards negative

in�nity, i.e., ω → −∞, for a su�ciently small value of ω, we denote as ω∗, the lower

bound no longer constrains the solution space. At this point, the optimization problem

becomes the original forecast combination problem, OW, of Equation (2.22).34 If only

33Recall that in the context of negative weights, smaller weights correspond to larger absolute
weights, i.e., weights with a larger absolute marginal e�ect.

34Recall that we already used this concept in Chapter 4 with γ∗.
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a lower bound is used with values between ω ∈ (−∞, 0], it bridges the gap between

the PW and OW approach. It creates a transition between or path
←→
PO that connects

the PW and OW approach. Henceforth, we de�ne those transition or paths by the �rst

letters of the corresponding approaches. Solutions in-between PW and OW can have

aspects or properties of both approaches. However, depending on the value of the lower

bound, the solution can gravitate more towards either the PW or OW solution. A lower

bound closer to zero forces a solution with less negative weights, i.e., it is closer to the

PW approach. In contrast, a smaller lower bound puts fewer limitations on negative

weights which leads to a solution closer to OW.

Third, consider again the lower bound but where ω is positive, i.e., ω ∈ [0, 1/N]. Note

that there is still no upper bound. This case is depicted in the last column of Table 5.1

by the blue-shaded area and the cell of Table 5.1 that holds PW. Recall that if ω = 1/N

the only feasible solution is the equal weights and if ω = 0 we have the PW solution.

Accordingly, as the lower bound is decreasing from 1/N towards zero, the solution shifts

away from the EW solution towards the PW solution. By that, we create a path from

EW to PW, i.e.,
←→
EP lb. Note that the subscript is used to distinguish between two

transitions that exist from EW to PW. In the presented case the path
←→
EP lb is caused

by extending the interval of feasible value from Radchenko et al. (2023) and allowing

for positive weights for the lower bound (lb). The whole path from EW over PW to

OW will be referred to as
←−−→
EPO. It includes both

←→
EP lb and

←→
PO.

Fourth, let us consider our proposition to extend the optimization problem through

the incorporation of the upper bound. By that, the EW solution is again introduced into

the solution space. However, more importantly, the upper bound creates an additional,

di�erent path between the EW and PW solution (
←→
EP ub) and also a new transition from

EW to OW (
←→
EO). Based on the value of the upper bound, the in-between solution

can either gravitate more towards EW or the PW or OW solutions respectively. Both

transitions
←→
EP ub and

←→
EO are depicted in Table 5.1 within the green-shaded area. The

transition between the EW and PW is given for ω = 0. With an increasing upper

bound the solution moves away from the equal weights solution and converges towards

the positive weights solution. How this path,
←→
EP ub, is di�erent from the one between

PW and EW,
←→
EP lb, will be discussed in Section 5.1.2. The path between EW and OW,

←→
EO, is a result of the lower bound ω → −∞, i.e., if the lower bound is omitted or

su�ciently small and only an upper bound is used. For an increasing upper bound the

solution transitions from the equal weights to the optimal weights solution.

Lastly, our proposed approach also allows transitions or paths between intermediate

solutions. For that we chose a value of the lower or upper bound from the de�ned ranges

in Equations (5.2) and (5.3) and vary the corresponding other bound. For example, we

can choose a lower bound between zero and negative in�nity such that the lower bound is

still constraining the solution space, i.e., we do not allow for the transition
←→
EO described
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earlier. By that, we create a transition starting at EW on the left-hand-side of Table 5.1

and then transitioning towards an intermediate solution somewhere between PW and

OW as the upper bound is increased. Likewise, let us consider a value for the upper

bound larger than 1
N but su�ciently small such that the upper bound still constrains

the solution space. As the lower bound is decreased from ω = 1/N towards −∞, the

solution starts in the �rst row of Table 5.1 with the EW solution as ω = 1/N. Then it

transitions through a solution between equal and positive weights as ω = 0 and lastly

moves towards an intermediate solution of EW and OW when ω → −∞.

In this section we presented the forecast combination problem with bounded weights

as well as the feasible values of the lower and upper bound and showed how bounded

weights nests EW, PW and OW. In what follows we will visualize and further discuss

the solutions of the bounded weights approach along the paths between the nested

methods.

5.1.2 Solutions with Bounded Weights

In order to obtain a better understanding of solutions using bounded weights, we analyze

the transitions discussed in the previous Section 5.1.1 in more detail based on simulated

data. This concerns both the transitions between the well-known EW, PW and OW

approaches as well as between intermediate solutions. To this end, we use the same

data set as in Chapter 4. Recall that it was generated using the simulation study

proposed in Section 3.2 for the �rst correlation matrix CM1, i.e., highly correlated

forecast errors, a relative group distance of z = 0.5 and no special group. Although,

we simulated N = 24 forecasts, for the sake of simplicity six forecasts where chosen

randomly. Then weights are calculated for feasible values of the lower and upper bound

as de�ned in Equations (5.2) and (5.3). Figure 5.2 depicts the weights of individual

forecasts (ordinate) depending on the lower or upper bound (abscissa), respectively.

Each color represents the weight of a forecast. Recall that throughout this thesis,

including both Figures 5.2 and 5.3, we use the same color for the same forecast.

Between the nested Methods Let us �rst consider the transition
←→
EO which is the

result of having an upper bound ω but no lower bound, i.e., ω → ∞. With respect to

Table 5.1 the �gure presents the last row, i.e., from the equal weights solution to the

optimal weights solution. Figure 5.2(a) shows the weight on the ordinate for each of

the six forecasts for di�erent values of the upper bound ω depicted on the abscissa.

Starting on the left side of Figure 5.2(a) at the smallest feasible lower bound ω = 1/N,

the optimal and only solution are equal weights. With increasing ω the majority of

weights is increasing by the same amount, i.e., they have identical weights. In turn this

increase must be o�set by at least one decreasing weight (yellow). To put it di�erently,

at least one forecast is assigned a di�erent individual weight. As ω increases further
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(a) Equal weights to optimal weights (no

lower bound), i.e.,
←→
EO.
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(b) Equal weights over positive weights to

optimal weights (no upper bound), i.e.,
←−−→
EPO.
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(c) Equal weights to positive weights (ω = 0),

i.e.,
←→
EP .

Figure 5.2. Illustration of forecast weight paths for Bounded Weights between bench-
mark methods. The data was created on the basis of the simulation study of Section 3.2
for N = 24 with CM1, an error variance similarity z = 0.5 and no special group. Six
forecasts where chosen randomly out of 24 once and are used throughout this thesis.

this pattern continues. However, the number of forecasts having identical weights is

gradually decreasing, i.e., more forecasts get individual weights, until all forecasts have

individual weights. In Figure 5.2(a) after the yellow weight, �rst the pink, then the

blue et cetera leave the identical weight group and get an individual weight. At about

ω = 0.75 all weights have individual weights. For roughly ω ≥ 1.1 the solution is

identical to the OW solution.

This is of course only one example of the potential transition
←→
EO, but it showcases an

appearance of it. There are, however, other paths. For example, weights start positive,

then become negative for certain values of the upper bound and, then, again have a

positive value as the upper bound increases further. Moreover, it is possible that two

weights have the same, unconstrained weight in the OW solution and, thus, technically

not all weights are individual. However, the identical weights of the transition
←→
EO

are caused by the upper bound which can be veri�ed by considering the OW solution.
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For the sake of transparency we included eight more such transitions in Figure B.1

which is located in Appendix B. It shows the transition
←→
EO for di�erent scenarios of

our simulation study as well as two real world time series taken from a well-known

collection of time series, the M4 data set, which will be introduced in Chapter 7.

To better understand how our method works and why weights are chosen in this way,

it is important to keep in mind what happens when we are imposing an upper (or lower)

bound to our optimization problem: the solution space is constraint. Weights are forced

to deviate from the optimal weights, OW, solution. Accordingly, as the upper bound

is increased weights deviate more from equal weights strive towards their OW values

as much as they are allowed to. As a result there is a group of forecasts with identical

weights. For a larger upper bound, weights leave this identical group and get individual

weights. The individual weights leave the identical group at some point and then strive

towards the OW, because it minimizes the in-sample error variance of the combined

forecast under the given constraints.

Lastly, within the solution of
←→
EO, weights are usually non-zero, i.e., they contribute

to the combined forecasts and, by that, we diversify risk. This is further supported by

the fact that for smaller upper bounds the weights have similar marginal e�ect, i.e.,

they contribute similarly to the combined forecast. Additionally, in accordance to the

linear shrinkage (LS) method discussed in Chapter 4 we have a solution between equal

weights (high bias, low variance) and optimal weights (unbiased, high variance). By

imposing constraint we trade bias for variance which can improve the out-of-sample

forecast accuracy, recall the bias-variance trade-o� of Equation (4.1).

If only a lower bound is used the solution paths have overall a certain similarity

to the case where only an upper bound is used. Figure 5.2(b) shows the path
←−−→
EPO

represented in last column of Table 5.1. It starts at the EW, transitions towards the

PW (black dashed line at ω = 0) and ends at the OW solution. The abscissa in

Figure 5.2(b) presents values of the lower bound ω. Note that the abscissa is reversed,

i.e., it starts on the left-hand side at 1/N and then decreases. Similarly to the
←→
EO

transition of Figure 5.2(a) the solution starts at equal weights on the left-hand side.

However, as the lower bound decreases, one individual weight (red) increases while all

others decrease by the same amount again resulting in an identically weighted set of

forecasts. For a smaller value of the lower bound another weight (blue) deviates from

this identical weighted set and gets an individual weight. This further proceeds until all

forecasts have an individual weight and the solution reaches the OW solution for roughly

ω ≥ 0.52. Similar to the
←→
EO path two sets or groups of forecast weights are present

within
←−−→
EPO: the identical and individual weights. However, the identical weights are

now decreasing identical weights compared to the increasing identical weight from
←→
EO.

In summary, while the upper bound diversi�es risk by constraining weights with larger

absolute weights, i.e., larger absolute marginal e�ect, the lower bound does the same by
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constraining weights with very small weights, i.e., larger absolute marginal e�ect, upon

the combined forecast.

Considering the right-hand side of both Figures 5.2(a) and 5.2(b) one can see that,

by de�nition, they transition to the same OW solution. However, the weights for the

same forecast take di�erent routes to this OW solution. This is well evident by the

weight of the forecast depicted in green. Where in Figure 5.2(a) the weight starts and

stays positive and then transitions to the OW solution from above, in Figure 5.2(b) the

weight for the same forecast while starting positive, becomes negative shortly and then

strives towards the OW solution from below.

In summary, we see a similar but mirrored behavior of the
←→
EO and

←−−→
EPO paths

in terms of forecasts weighted identically while others get individual weights. Again,

for the sake of transparency, we include eight more transition
←−−→
EPO in Appendix B

Figure B.3.

Lastly, Figure 5.2(c) shows the path of weights (ordinate) for di�erent values of the

upper bound (abscissa) given that the lower bound is ω = 0, i.e., the path between equal

and positive weights (
←→
EP ub). The upper half of the �gure looks similar but not identical

to the weight paths shown in Figure 5.2(a). Starting from equal weights, weights again

increase by the same amount, while some (yellow, purple, blue et cetera) get individual

weights that are not constraint. In contrast, for
←→
EP ub most of the individual weights

�rst get smaller and eventually become zero instead of negative. The non-zero weights

(teal and red) transition towards the PW solution.35 Again, eight more examples for

(
←→
EP ub) are given in Appendix B Figure B.2.

Beside
←→
EP ub using the lower bound there is also a path between EW and PW which

is part of
←−−→
EPO depicted in Figure 5.2(b), however, it is di�erent. We referred to the

latter one by
←→
EP lb. The transition

←→
EP lb is part of Figure 5.2(b), starting from the left-

hand side at equal weights up to the vertical, dashed black line at ω = 0. At this point,

both
←→
EP ub (Figure 5.2(c) with ω →∞) and

←→
EP lb (Figure 5.2(b) with ω = 0) have the

same solution, two non-zero weights (red and teal) while all others are zero. However,

the
←→
EP ub depicted in Figure 5.2(c) transitions between the equal weights solution and

the positive weights solution by having a group of increasing identical weights from

which individual weight deviate and become zero. In contrast, the
←→
EP lb depicted in

Figure 5.2(b) has a group of decreasing identical weight which, collectively, becomes

zero at ω = 0, while the two forecasts that are part of the PW solution have individual

weights.

35Note that this is the only set up where one can argue that a variable selection is performed. This
is the case if less than N weights are non-zero in the PW solution, since for ω = 1/N all N weights are
non-zero.
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(a) Weight path for varying upper bound
given that ω = −0.2.
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(b) Weight path for varying upper bound
given that ω = 0.35.

Figure 5.3. Illustration of forecast weight paths for Bounded Weights for ω = −0.2
and ω = 0.35. The data was created on the basis of the simulation study of Section 3.2
for N = 24 with CM1, an error variance similarity z = 0.5 and no special group. Six
forecasts where chosen randomly out of 24 once and are used throughout this thesis.

Intermediate Solutions In the previous paragraph bounded weights were discussed with

special attention to the nested benchmark methods to gain insights into how the bounds

a�ect the weights. We either omitted one bound or, in case of
←→
EP ub �xed the value

of the lower bound at ω = 0. However, one can of course �x one of the bounds at

any other value and conduct a similar analysis of the resulting weight path. Basically,

comparing Figures 5.2(a) and 5.2(c) provides a good indication on how this may look

like. Nevertheless, for the sake of completeness we depict such weight paths in Figure 5.3.

In Figure 5.3(a) the abscissa represents the values of the upper bound. The lower bound

is �xed at ω = −0.2. For an increasing upper bound, the paths exhibit a behavior similar
to
←→
EP (Figure 5.2(c)). In particular, there is a group with increasing identical weights

while gradually some weights (yellow, purple, blue et cetera) deviate from this group

as the upper bound increases, i.e., they get individual weights. At some points some

weights are equal to the lower bound (blue and yellow) which was also true for
←→
EP

with a lower bound of zero, however there are more weights at the lower bound (yellow,

purple, blue, and green). The solutions depicted in both Figures 5.2(c) and 5.3(a) can

consist of three groups. The �rst two are the identical weights and the last group are the

individual weights. For example, looking at the solution in Figure 5.3(a) for ω ≈ 0.6,

there is the identical weight set (teal and red), the individual group (green and pink)

and a third group which also has identical weights (yellow and blue). Basically, we

have a set of identical weights caused by the upper bound (ub identical) and a set of

identically weighted forecasts caused by the lower bound (lb identical). The latter group

is also present within the
←→
EP path depicted in Figure 5.2(c) with a constant equality

weight of zero.
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Lastly, let's focus on the weight path in Figure 5.3(b) which shows the lower bound on

the abscissa, again decreasing from left to right. The upper bound is set to ω = 0.35. To

an extent it is similar to Figure 5.2(b) which shows the path
←−−→
EPO. Starting from equal

weights, there is a lb identical weights group, that becomes negative for ω < 0. Other

weights deviate from this set prior to this point and get an individual weights, e.g., red

at ω > 1/6, teal at about ω = 0.15 or the green weight at roughly ω = 0.08. Those three

weights deviate from the set of lb identical weights, to become individual temporarily

before being constrained by the de�ned upper bound. The remaining weights (blue,

purple, and yellow) all get an individual weight at some point.

In summary, based upon the insights from both Figures 5.2 and 5.3, for a given pair

of lower and upper bound, the solution of our proposed bounded weights approach can

consist of up to three groups of forecasts or weights. Two sets of identically weighted

forecasts and a set of individually weighted forecasts. We can di�erentiate between

them by the constraining bound, i.e., ub identical if caused by the upper bound and

lb identical if the lower bound is responsible. If there is one or two sets of identically

weighted forecasts we can trivially recognize by which bound they are caused. The

bounds are known for a given solution and the ub identical weights are equal to ω while

weight from the lb identical set are equal to the lower bound. Note that there is the

case where there can be three sets of identically weighted forecasts, if two weights that

we characterize as individual cross, as it is the case for the purple and blue line in

Figure 5.3(a). However, ub identical is simply the set with the largest identical weights

while lb identical has the smallest identical weights.

Possible Group Constellations In the previous examples in Figures 5.2 and 5.3 all

possible weight allocations of the BW approach were already present. However, those

�gures and the analysis focused on the transitions or paths of weights. An actual

solution for speci�c values of the lower and upper bounds are given at the abscissa. It

can be visualized as a vertical (black dashed) line like in Figure 5.2(b). To conclude

this section, we brie�y summarize the possible combinations of identical and individual

weight sets. To this end, Table 5.2, depicts all possible six scenarios or combinations

that can occur for any given time series. A check mark indicates that the set, shown by

the columns, is part of the solution. The following list describes each row in the same

order as Table 5.2 and refers to the �gure where this constellation is present within our

examples:

� The solution includes both an ub and lb identical set as well as individual weights.

An example is given in Figure 5.3(a) for ω = 0.625.

� There is a lb identically and individually weighted set of forecasts, e.g., Fig-

ure 5.2(b) for ω = −0.25.
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ub Identical Individual lb Identical

−

−

− −

− −

− −

−

Table 5.2. Possible weight allocations or combinations of the two identical and one
individual set for Bounded Weights.

� Similarly, there is an ub identically and individually weighted set of forecasts, e.g.,

Figure 5.2(a) for ω = 0.5.

� There are only individual weights, i.e., no two weights are either equal to the lower

or upper bound, e.g., Figure 5.2(a) for ω = 1.

� Rows �ve and six depict the case where the BW solution is equal weights, i.e.,

either ω = 1/N or ω = 1/N. Examples are trivially Figure 5.2(a) and Figure 5.2(b)

respectively.

� The last row shows the last, theoretically possible constellation of two groups of

identically weighted forecast. This constellation has not been observed within the

considered examples.

5.1.3 Hyperparameter Determination

Our proposed approach of forecast combination with bounded weights involves two

hyperparameters. Therefore, we need to determine both a value for the lower bound ω

and upper bound ω, if it is used to forecast unknown future values. The hyperparameters

could be determined based on prior beliefs and information or in accordance to one's

preference. Let us consider two examples for this. First, negative weights are allowed

but limited using ω = −0.1, while positive weight are less constrained with ω = 1.

Second, we want to ensure that only positive weight are used, but they should not be

too large. Furthermore, all forecasts participate in the combined forecast to a minimum

degree, i.e., ω = 0.1 and ω = 0.5. Alternatively, one can use a data driven approach, i.e.,

cross-validation. Recall that, we use a proportion of the training set as the validation

set. We then forecast the observation of this validation set for a de�ned search grid of

lower and upper bounds. Then we choose the hyperparameters that have the smallest

MSE in the validation set.
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To this end, we need to de�ne the search grid, i.e., candidate values for the lower and

upper bound. Recall that for the L1 constraint methods in Section 4.2 there is only

one hyperparameter γ. For the BW approach we need to de�ne two search grids, one

for each bound. As a result, we get a matrix with candidate pairs of lower and upper

bounds that we have to consider. This matrix is illustrated by Table 5.1. Assume

that we use the same number of candidate values P both for the search grid of the L1

approaches and for the two search grids (lower and upper bound) of the BW approach.

Then the number of candidate pairs of BW is P 2 compared to P candidate values for L1

methods. However, at least for our current implementation in R (R Core Team, 2022),

solving BW for a single candidate pair is faster than solving L1 methods. Nevertheless,

the number of candidate pairs for BW is, ceteris paribus, larger. Thus, it is important

to reduce the number of candidate lower and upper bounds as far as possible without

omitting meaningful candidate pairs.

In order to de�ne the search grids for the lower and upper bound we need to de�ne

the smallest and largest value. For methods with an L1 constraint we can determine

the smallest and largest γ values by Equations (4.37) and (4.38). For L1 methods we

can determine the largest possible value γ∗ for a given data set. However, it is not

straightforward for bounded weights as the largest/smallest possible value of one bound

depends on the current value of the other bound. In what follows, we will show how to

determine the end point of a search grid for a given data set in Section 5.1.3.1. There-

after, we will present an algorithm such that the computational burden is independent

of the size of the search grid.

5.1.3.1 Minimum Lower and Maximum Upper Bounds

For the BW approach, the starting point of the search grid for both the lower and

upper bound is 1/N, i.e., equal weights, see again Equations (5.2) and (5.3). For the

end point, recall from Section 5.1.1, that as the lower (upper) bound goes towards

negative (positive) in�nity at some point it is su�ciently small (large) that it does not

constrain the solution space anymore. Accordingly, there is a lower bound ω∗ at which

the solution will not change if the lower bound is further decreased, i.e., ω < ω∗. This

holds equivalently for the upper bound for ω > ω∗. We will refer to those values as

the minimum lower bound ω∗ and maximum upper bound ω∗.36 To evaluate candidate

values for the lower and upper bound e�ciently we do not want to include any lower

bounds smaller (larger) than the minimum lower (maximum upper) bound.

At �rst glance the smallest and largest weights of the optimal weights solution (OW)

could be the minimum lower and maximum upper. However, this is only true in speci�c

scenarios. Recall that Table 5.1 presented the feasible values for the lower and upper
36To be clear, we neither try to estimate the minimum lower and maximum upper bound nor derive

a general formula for them. We consider them solely for the purpose of de�ning the search grid for a
given data set.
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bound as well as the benchmark methods that are part of the solution space. Although

looking at Table 5.1 might give the impression that the minimum lower and maximum

upper bound, ω∗ and ω∗, are constant. i.e., independent of the corresponding other

bound, this is not the case. There is not one minimum lower and maximum upper

bound. On the contrary, the minimum lower bound ω∗ depends on the corresponding

current value of the upper bound ω. Respectively, the maximum upper bound ω∗ is

connected to the currently considered lower bound ω. Henceforth, both are functions

of the corresponding other bound, i.e.,

Minimum lower bound: ω∗(ω), (5.4)

Maximum upper bound: ω∗(ω). (5.5)

The fact that the maximum upper bound ω∗ depends on the current value of the

lower bound ω becomes intuitively clear when examining potential solutions of the PW

and OW approaches. Both are located on the right side of Table 5.1, which represents

solutions without an upper bound, i.e., ω → ∞. The largest possible weight the PW

approach can assign to any forecast is one, i.e., the maximum upper bound ω∗(ω =

0) ≤ 1. Any weight larger than one would violate the non-negativity constraint (ω =

0) in conjunction with the unity constraint of the BW approach in Equation (5.1).

In contrast, the OW solution (ω → ∞ and ω → ∞) can have weights larger one.

Consequently, the maximum upper bound of the OW approach can be larger than one,

i.e., ω∗(ω → −∞) ≥ 1. Hence, the maximum upper bound of the PW and OW can

be di�erent. Similarly, an example that the minimum lower bound ω∗ depends on the

currently considered upper bound ω are the EW and OW solution. For the �rst, the

upper bound is 1/N and, due to the unity constraint, the minimum lower bound 1/N.

Any lower bound smaller that, does not change the solution. For the OW approach

(ω → ∞) weights can be smaller 1/N. Accordingly, the minimum lower bound of the

OW can be smaller than the minimum lower bound of the EW approach. Based on

those examples it becomes clear that the maximum upper and minimum lower bound

can vary depending on the currently considered other bound.37

Beside the fact that the minimum lower and maximum upper bound are not constant,

they also are not non-increasing or non-decreasing respectively. Figure 5.4 depicts the

maximum upper and minimum lower bound for a simulated data set. It was generated

by the simulation study presented in Section 3.2. We used a high correlation between

forecast errors, i.e., CM1, a relative group distance z = 0.5 and the �rst group is signif-

icantly better than all others. The number of forecasts is N = 24. Figure 5.4(a) depicts

the maximum upper bound on the ordinate and the abscissa shows the corresponding

37There are of course exceptions to it. If the OW solution does not contain weights greater one, i.e.,
no negative weights are present, the maximum upper and minimum lower bound of the PW and OW
approach can be identical.
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bound: ω∗(ω).

Figure 5.4. Minimum lower and Maximum upper bound (black). The data was
created on the basis of the simulation study of Section 3.2 for N = 24 with CM1, an
error variance similarity z = 0.5 and no special group. We used a di�erent setup for
illustration purposes.

lower bound, again depicted in reverse. For Figure 5.4(b) the minimum lower bound is

depicted by the ordinate while the abscissa shows the upper bound. In Figure 5.4(a) the

horizontal black dashed line represents the largest weight of the OW approach, i.e., max-

imum upper bound if ω ≤ ω∗. Similarly, in Figure 5.4(b) it is the smallest OW weight

or minimum lower bound for ω ≥ ω∗. The maximum upper bounds in Figure 5.4(a)

starts at 1/N. As the lower bound gets smaller, the maximum upper bound increases

and becomes larger than the maximum upper bound of the OW approach (dashed line).

Thereafter, it decreases, becomes again smaller than the maximum upper bound of the

OW approach before transitioning to it. Similarly, the minimum lower bound in Fig-

ure 5.4(b) is even smaller than the minimum lower bound of the OW solutions for some

upper bounds (e.g., ω = 0.1) and larger for others (e.g., ω = 0.4).

In summary, for any given lower bound ω the maximum upper bound ω∗(ω) can be

larger, smaller, or equal to the maximum upper bound for ω∗(ω + ζ) with ζ ∈ R. This
holds similarly for the minimum lower bound. As a result, we cannot use the smallest

and largest weights of the optimal weights solution to determine the most extreme ω∗

and ω∗. Instead, we have to determine them individually for each lower and upper

bound respectively.

Lowermost and Uppermost Bound We can de�ne a lowermost bound and an upper-

most bound. Those are the most extreme values the minimum lower bound ω∗(ω) and

maximum upper bound ω∗(ω) can have for a given lower and upper bound respectively.

They are true in general for any pool of forecasts.

The maximum upper bound is identical to the largest weight of a solution given a

certain lower bound. To �nd the uppermost bound, we need to determine the largest
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possible weight a feasible solution can have given a lower bound. It is given if all

weights but one are equal to the lower bound. To ful�ll the unity constraint the last

remaining weight has to o�set all other weights. Accordingly, the uppermost bound is

given if we assume that wj > wi ∀ i ∈ {1, . . . , N} and wi = ω ∀ i ∈ {1, . . . , N} \ j with
ω ∈ (−∞, 1/N]. Then the sum of identical weights is

N∑
i=1
i ̸=j

wi = (N − 1)ω. (5.6)

Accordingly, due to the unity constraint, for the maximum upper bound of any given

pool of forecasts it holds that

ω∗(ω) ≤ 1− (N − 1)ω. (5.7)

If ω = 0 the uppermost bound is naturally one. If instead ω < 0, the second part of the

equation (N − 1)ω is strictly negative and, thus, 1 − (N − 1)ω is greater one.38 If the

lower bound ω is greater one, the uppermost bound is smaller one accordingly.

The lowermost bound can be derived similarly by assuming wj < wi∀ i ∈ {1, . . . , N}
while, wi = ω ∀ i ∈ {1, . . . , N} \ j with ω ∈ [1/N,∞). For the minimum lower bound it

holds that

ω∗(ω) ≥ 1− (N − 1)ω. (5.8)

The uppermost and lowermost bounds of Equations (5.7) and (5.8) give an indication

which values for the lower and upper bound have to be considered within a search

grid. The problem is that the lowermost and uppermost bound depend on a value for

the upper and lower bound, respectively. They only provide information for the most

extreme minimum lower and maximum upper bound conditional on the other bound.

For example, for N = 4 we can determine the lowermost bound for values for the lower

bound, ω = 1
N , 0.1, 0.2, .... However, we still do not have an end point for ω. This

holds accordingly for the uppermost / maximum upper bound which is conditional on

ω. Hence, we can not use the lowermost and uppermost bound to determine the end

point of the search grid.

The takeaway from the lowermost and uppermost bound is more computationally

relevant. For a given search grid, it gives us information up to which value we actually

have to calculate weights for pairs of candidate lower and upper bounds. For example,

assume that there is a prede�ned search grid. With N = 24 for ω = −0.1 or −0.5
the uppermost bound is 3.3 and 12.5 respectively. As a result, all candidate values of

ω > 3.3 where ω = −0.1 have the same weights and thus do not need to be estimated.

38The case of N = 1 is excluded as forecast combination with one forecast is trivial.
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However, for ω = −0.5 candidate values of the upper bound do not have the same

weights until ω > 12.5. As a result, we did not reduce the number of candidate pairs

to evaluate, but the number of candidate pairs estimate weights for.

Unfortunately, this still results in unnecessary consumption of computational re-

sources. Let us for example consider a lower bound ω = −1. Based on Equation (5.7),

the uppermost bound is identical to N . For N = 12 and 24 we have to consider all

upper bounds up to 12 and 24 respectively. If instead the lower bound is −4 or −8, the
corresponding uppermost bound for N = 12 is 45 and 93, while for N = 24 we need

to consider upper bounds up to 89 or 185, respectively. In comparison with some ac-

tual maximum upper (or minimum lower) bounds it becomes clear that the uppermost

bound can be quite lose. For example, considering again Figure 5.4(a), for ω = −0.2
with N = 24. The uppermost bound is 5.6 while the actual maximum upper bound

is roughly 0.65. Consequently, there is a lot more potential to reduce the number of

candidate pairs for which weights have to be estimated by using the actual maximum

upper and minimum lower bounds.

5.1.3.2 An Algorithm to Efficiently Evaluate Candidate Values of Bounds

Recall that the maximum upper (minimum lower) bounds for certain lower and upper

bounds can be larger, smaller, or equal than the maximum upper (minimum lower)

bound of the OW approach (see Figure 5.4). However, for a given pool of forecasts,

the maximum upper bound ω∗(ω) does not change anymore for any lower bound ω ≤
min(ωOW ). This is due to the fact that then neither the lower nor upper bound

constraint the solution space anymore, i.e., the BW approach is identical to the OW

approach. This holds accordingly for the minimum lower bound.

Based on this, we can create a simple and e�cient algorithm to evaluate all candidate

pairs of lower and upper bounds from a given search grid. Figure 5.5 illustrates which

candidate pairs have to be evaluated, and it will be used to explain the procedure of

the algorithm. It is designed similarly to Table 5.1 which illustrated the feasible bounds

and benchmark methods. The abscissa in Figure 5.5 is located on top and shows the

feasible values of the upper bound ω and simultaneously the maximum upper bound

ω∗(ω). The ordinate depicts the lower bound ω as well as the minimum lower bound

ω∗(ω).

The Algorithm

I. Calculate the smallest and largest weight of the optimal weights solution which we

denote by ωOW and ωOW . These weights are the minimum lower and maximum

upper bound given the corresponding other weight as a bound, i.e., ω∗(ωOW ) =

ωOW and vice versa. The dotted lines in Figure 5.5 show the position of both ωOW
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ω, ω∗(ω)

ω, ω∗(ω)

OW

1
N . . . ωOW . . . ∞

...

ωOW

...

−∞

ω′

Figure 5.5. Illustration of the candidate pairs of lower and upper bound that need to
be evaluated.

and ωOW . If both values are used as the lower and upper bound, the estimated

weights are identical to the OW approach, see the intersection of dotted lines.

II. In this step we calculate the maximum upper bounds depicted by the orange curve

in Figure 5.5. For all ω ≥ ωOW (likely negative values) calculate the weights from

the BW approach without an upper bound, i.e., ω → ∞. The largest weights of

each solution is the maximum upper bound given the corresponding lower bound,

i.e., ω∗(ω). Note that for ω < ω∗
OW the maximum upper bound ω∗(ω) (orange

curve) is identical to the maximum upper bound of OW, i.e., ω∗(ωOW ).

III. Similar to step II, we calculate the minimum lower bounds depicted by the green

curve in Figure 5.5. For all ω ≤ ωOW calculate the weights from the BW approach

without a lower bound, i.e., ω → −∞. The smallest weights of each solution is the

minimum lower bound given the corresponding upper bound, i.e., ω∗(ω). Note

that for ω > ω∗
OW the minimum lower bound ω∗(ω) (green curve) is identical to

the minimum lower bound of OW, i.e., ω∗(ωOW ).

IV. With steps II and III we calculated the values of the green and orange curve, i.e.,

the minimum lower bounds ω∗(ω) and maximum upper bounds ω∗(ω). For all

ω = 1/N, . . . , ωOW with ω ≥ min(ω∗(ω)) calculate the weights of candidate pair

of lower and upper bounds if and only if ω ≤ ω∗(ω) and ω ≥ ω∗(ω).

In other words, the procedure is repeated for every lower bound that is larger

than the smallest minimum lower bound and upper bound that is, simultaneously

smaller than its maximum upper bound. With respect to �gure Figure 5.5 we
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consider every lower bound above the minimum of the green curve. To illustrate

this step consider a speci�c value for the lower bound ω′ shown in Figure 5.5 with

a black dashed line. For ω′ we only want to evaluate the upper bounds ω that

are smaller than the corresponding maximum upper bound, i.e., values left of the

orange line. Every upper bound on the right of the orange line has the same

weights for ω′. Similarly, we only need to calculate weights for the upper bounds

for which the minimum lower bound is larger than ω′. Lower bounds below the

green line do not result in other weights for the corresponding upper bounds. In

Figure 5.5 the relevant candidate pairs are depicted by the blue area. For ω′ we

only need to consider upper bounds where the dashed line coincides with the blue

shaded area.

V. For all candidate pairs with both ω ≤ ω∗(ω) and ω ≤ ω∗
OW weights are identical

to ω∗(ω). In Figure 5.5 this concerns all candidate pairs that are both left of ω∗
OW

and below the green curve.

VI. For all candidate pairs with both ω ≥ ω∗(ω) and ω ≥ ω∗
OW weights are identical

to ω∗(ω). In Figure 5.5 this concerns all candidate pairs that are both above ω∗
OW

and right from the orange curve.

VII. For all candidate pairs with both ω ≥ ω∗
OW and ω ≤ ω∗

OW weights are identical

to the OW solution. In Figure 5.5 this concerns all candidate pairs that are both

right of ω∗
OW and below ω∗

OW .

Applying this algorithm reduces the number of candidate values to be evaluated to

its minimum. However, the search grid needs to be su�ciently large. This means that

the largest candidate upper bound is greater than the largest maximum upper bound.

This holds similarly for the smallest candidate lower bound. In terms of Figure 5.5, the

largest (smallest) candidate upper (lower) bound needs to be right (below) of the orange

(green) curve. However, one can simply use a very large (small) value for the candidate

upper (lower) bound. If the search grid includes the smallest minimum lower bound

and largest maximum upper bound, the algorithms computational time is independent

of the number of candidate values.

5.2 Bounded Prior Weights

In Chapter 4 we used L1 constraints to shrink weights towards either a �xed value κ

or a prior weight vector ω̇. Basically, the BW approach already includes solutions that

result from imposing bounds around a �xed value κ. For κ = 1/N, all lower and upper

bound basically can be interpreted as imposing bounds around this �xed value. This

holds similarly for κ = 0 with ω < 0 and any ω. Recall that shrinkage towards a �xed

value κ is a special case of shrinkage towards prior weights, if the prior weights are all
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identical. However, the way we implemented the bounded weights approach, it does

not incorporate shrinkage or bounds around prior weights. Therefore, we extend our

approach of bounded weights to incorporated prior weights. The optimization problem

is very similar to the bounded weights optimization problem of Equation (5.1). The only

thing that changes is how we de�ne the lower and upper bounds. The new optimization

problem for our approach of bounded prior weights (BW(ω̇)) is given by

minimize
ω

ω′Σ̂ω

subject to ω′1 = 1,

ωi ≥ ωi ∀ i = 1, . . . , N,

ωi ≤ ωi ∀ i = 1, . . . , N

(5.9)

In fact, there are no longer common lower and upper bound for all weights, but indi-

vidual lower and upper bounds for each weight. Accordingly, there are 2N di�erent

bounds that we have to de�ne which is a problem if we want to determine them by

cross-validation. If we have the same number of candidate values for each individual

lower and upper bound, the number candidate tuples or combination of hyperparameter

values can easily become too large to determine trough cross-validation. If we consider

P candidate values for each individual bound, the number of candidate tuples goes from

P 2 in the BW approach to P (2N). In case of N = 24 forecasts and P = 100 candi-

date values, we would have to check 1096 candidate tuples which is multiple orders of

magnitude larger than the current estimate for the number of atoms in the observable

universe: 1081 (Tyson, Strauss, & Gott, 2016, pp. 19-20). Accordingly, we determine

the individual lower and upper bounds by common deviations from the prior weights,

i.e.,

ωi = ω̇i − ℶ ∀i = 1, . . . , N, (5.10)

ωi = ω̇i + ℶ ∀i = 1, . . . , N. (5.11)

As a result, we again have two hyperparameters, the lower bound deviation ℶ and upper

bound deviation ℶ.39 For both its holds that ℶ,ℶ ≥ 0. By that they de�ne an interval

around the prior weights.

Beside the two deviations from the bounds, the prior weights we want to use have

to be determined. Within this thesis we assume that the prior weights are a feasible

solution to the forecast combination problem, i.e., it ful�lls the unity constraint. As a

consequence, for both the lower and upper bound deviation it holds that ℶ,ℶ ∈ [0,∞).

If either the lower or upper bound deviation is zero, the solution is always equal to the

prior weights. Even if the corresponding other bound deviation is larger, no weight can

39Bet ℶ is a letter in the Hebrew alphabet.
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(b) Lower bound deviation ℶ with ω̇ = ωIL.

−0.5

0.0

0.5

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Upper Bound Deviation

W
ei

gh
t

(c) Upper bound deviation ℶ with ω̇ = ωE2.
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(d) Lower bound deviation ℶ with ω̇ = ωE2.

Figure 5.6. Illustration of forecast weight paths for Bounded Prior Weights with
ωIL and ωE2. Either the lower bound, Figures 5.6(a) and 5.6(c), or upper bound,
Figures 5.6(b) and 5.6(d) is omitted. The data was created on the basis of the simulation
study of Section 3.2 for N = 24 with CM1, an error variance similarity z = 0.5 and
no special group. Six forecasts where chosen randomly out of 24 once and are used
throughout this thesis.

change because no other weight can o�set its change such that the solution remains

feasible. Furthermore, if both deviations ℶ,ℶ are su�ciently large such that they do

not constrain the solution space, the bounded prior weights solution is identical to the

OW solution.

Figure 5.6 depicts the weights path exemplary for bounded prior weights. In contrast

to previously considered weight paths for the bounded weights approach in Section 5.1.2,

for the bounded prior weights approach the abscissa has to depict the common deviation

from the prior weight instead of the bound itself. In Figures 5.6(a) and 5.6(b) the

inverse-loss weights of Equation (4.16) are used as prior weights. For Figures 5.6(c)

and 5.6(d) the new shrinkage direction conditional group equal weights (CGEW) with

two groups proposed in Section 4.2.3 is used. Considering both Figures 5.6(a) and 5.6(b)

one can see the resemblance in behavior of the weight paths to the
←→
EO and

←−−→
EPO weight

paths from the bounded weight approach depicted in Figures 5.2(a) and 5.2(b). As the
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value on the abscissa increases, a group of weights increases or decreases together. To

o�set this change, individual weights deviate from this group and get an individual

weights, see for example the yellow, purple, and blue line in Figure 5.6(a) or red and

teal in Figure 5.6(b). However, if prior weights are used, the forecast within this group

do not necessarily have the same weight, but they still increase by the same amount ℶ
or ℶ respectively.

Recall that the idea behind CGEW proposed in Section 4.2.3 was to shrink a pre-

de�ned set of forecasts towards their corresponding (conditional) equal weights and

another group towards zero. While we used an L1 constraint in Chapter 4, here we

use lower and upper bounds or common deviations from the prior weights to be more

precise. Figure 5.6(c) (Figure 5.6(d)) depicts the weights paths for using ωE2 as the

prior weights when the lower bound (upper bound) is omitted. By that, the resemblance

to the bounded weights approach is even lager, see again Figure 5.2(a) (Figure 5.2(b)).

There are two groups instead of one that have identical weights at ℶ = 0 (ℶ = 0 respec-

tively). For one group the weight is the conditional equal weights of that group and for

the other it is zero. As ℶ (ℶ) increases, the weights of both identical groups increase

(decrease) simultaneously. To o�set this change at least one weight, �rst yellow then

purple (�rst red then teal), from either group decreases (increases).

The �ndings of Section 5.1.3 regarding minimum lower bound and maximum upper

bound hold accordingly for the lower and upper bound deviation. However, note that

the minimum lower bound deviation is given by ℶ∗(ℶ) = |min(ωOW − ω̇)| and the

maximum upper bound deviation is ℶ∗
(ℶ) = max(ωOW − ω̇). Based on this, the

algorithm for e�ciently searching through pairs of candidate values of Section 5.1.3.2

can be easily adapted for bounded prior weights.

In this thesis we will use ωE2 and ωE3 from Section 4.2.3 as well as the inverse-

loss weights ωIL of Equation (4.16) as shrinkage directions. Henceforth, we will refer

to the general idea of the presented methods as Bounded Weights (BW). This includes

Bounded Prior Weights. If we use the Bounded Weights approach without prior weights

we refer to it as BW(·). If prior weights are used, we denote that by BW(ω̇) and if

we refer to speci�c prior weights we replace ω̇ with the corresponding prior weight,

e.g., BW(ωE2).
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5.3 Application: Simulation Study

In this section we analyze and compare the forecast accuracy of forecast combination

with bounded (prior) weights. To this end, we use the simulation study introduced in

Section 3.2. For a brief summary of the designed scenarios see Section 3.2.3 and the

used forecast error correlation matrices are depicted in Section 3.2.2.2. Note that the

following analysis is conducted in the same way as Section 4.3, i.e., oftentimes we use

the same tools and �gures to analyze the results. Therefore, the reader is refereed to

the simulation study in Chapter 4 for a more detailed overview as well as introduction

into tables and �gures. Similar to Section 4.3 we �rst consider an ex post analysis

in Section 5.3.1, i.e., we choose the single best lower and upper bound (or common

deviation in case of bounded prior weights) for each test set as a whole ex post. After

that in Section 5.3.2 we will analyze the out-of-sample forecasting performance of the

bounded weights methods. To this end, we estimate the hyperparameters for each

observation in the test set by cross-validation. Again, out-of-sample forecasts are based

on a rolling window of size 40, and we use the last ten of those observations for cross-

validation.

For both analysis we need to de�ne which candidate values are considered for the

hyperparameters. As we discussed before, the number of candidate pairs is much larger

for the bounded (prior) weights approaches then it is for the L1 methods. Recall that we

can simply choose a very larger (small) value for the highest (smallest) lower and upper

bound or deviation respectively. However, within a simulation study, an extensive em-

pirical analysis or in a business context where one needs daily forecasts for multitude of

time series it can get too computationally demanding. Additionally, statistical software

can get slow because the resulting objects with weights and forecasts become too large

if the largest grid value is too large. Only the former problem can be solved by the

algorithm for an e�cient hyperparameter search that we introduced in Section 5.1.3.2.

Accordingly, we have to choose a reasonable larger (small) value for the search grids.

Search Grid for the Bounded Weights Methods Within this simulation study we will

consider lower bounds (ω) down to −10, upper bound (ω) up to 10 (BW(·)) as well as
lower and upper bound deviations (ℶ,ℶ) of 10 (BW(ω̇)). Note that we chose a smaller

value compared to the L1 methods (50), because the bounds hold for each weight

separately. For the L1 method the hyperparameter determines the overall absolute

deviation of all weight from the shrinkage directions.

In Section 5.1 we extended feasible lower bound values for both LB and BW(·) to also
include positive values. This corresponds to a minimum contribution of each forecast.

Accordingly, the grid for BW(·) starts for both the lower and upper bound at equal

weights, i.e., 1/24 = 0.04167. We use 0.1 increments for the candidate values of the

bounds, as we did for the L1 methods in Section 4.3. However, if we round 1/24 down
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to the �rst decimal place, the result is zero. By that we would completely neglect the

transition from EW to PW that is imposed by the lower bound, i.e.,
←→
EP . Therefore,

we use increments of 0.01 for the lower bound between 1/24 and 0. The search grid for

the lower bound is

(1/24, 0.04, 0.03, . . . , 0,−0.1,−0.2, . . . ,−10), (5.12)

and for the upper bound it is

(1/24, 0.1, 0.2, . . . , 10). (5.13)

In case of the bounded prior weights approaches it is more straightforward. The grid of

candidate values for both the lower and upper deviation start at zero and increases to

10.40 Note that we de�ned the search grid prior to the analysis.

5.3.1 Ex Post Analysis: Bounded Weights

In this section present the overall result in Section 5.3.1.1 and with respect to the error

correlations, error variance similarity and special groups in Section 5.3.1.2.

5.3.1.1 Ex Post Analysis: Overall Results

Both Tables 5.3 and 5.4 show the average MSE values over all test sets for each scenario.

Both for the benchmarks and Bounded Weights methods. It is designed in the same way

as Tables 4.1 and 4.2. Note that we use Bounded Weights methods (BW) if we refer to

all BW(·), BW(ω̇) and LB together. At �rst glance, one can see that Bounded Weights

oftentimes have smaller MSE values than the benchmark methods, in particular BW(·).
To further analyze the Bounded Weights methods we again take a look at the per-

centages of how often each method has the smallest MSE (possibly among multiple

methods with the same MSE), the average rank and distances in the same way we did

in Table 4.3. Note that a comparison of average ranks between Chapter 4 and Chapter 5

is not sensible, because they are calculated only based on the methods discussed in the

respective chapter.41

The results from Table 5.5 show that the Bounded Weights methods are preferable

to the benchmarks with respect to percentage of being best, average rank and distance

as well as distribution of rank across the scenarios, see also Figure 5.7. Moreover, the

results clearly show that the BW(·) method is by far superior not only compared to

the benchmarks but also to BW(ω̇) as well as LB. It has the smallest MSE for almost

three-quarter of all scenarios, i.e., 53 in total. Moreover, it is the most consistent

40Recall that both the lower bound deviation and upper bound deviation are de�ned to be non-
negative, see Equations (5.10) and (5.11).

41We compare all methods in an empirical analysis in Chapter 7.
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CM z SG EW PW OW IL BW(·)
BW(ω̇)

LB
ωE2 ωE3 ωIL

1 0.05

none 0.98 0.97 2.11 0.98 0.89 0.90 0.90 0.89 0.93
�rst 0.97 0.93 1.89 0.96 0.84 0.84 0.84 0.84 0.90
last 1.01 0.99 2.04 1.00 0.89 0.89 0.89 0.89 0.95
both 0.97 0.93 1.75 0.96 0.80 0.80 0.80 0.80 0.87

1 0.20

none 1.16 0.92 1.03 1.12 0.52 0.51 0.51 0.52 0.59
�rst 1.12 0.73 0.52 1.04 0.25 0.25 0.25 0.25 0.28
last 1.24 0.95 0.84 1.18 0.42 0.42 0.41 0.42 0.49
both 1.15 0.72 0.45 1.05 0.23 0.23 0.22 0.23 0.25

1 0.50

none 1.53 0.80 0.42 1.33 0.21 0.21 0.21 0.22 0.24
�rst 1.38 0.30 0.09 0.85 0.05 0.05 0.05 0.04 0.05
last 1.64 0.82 0.35 1.38 0.18 0.18 0.18 0.19 0.21
both 1.46 0.30 0.08 0.85 0.05 0.04 0.04 0.04 0.05

2 0.05

none 0.56 0.62 1.37 0.56 0.54 0.57 0.57 0.56 0.55
�rst 0.56 0.62 1.34 0.56 0.54 0.57 0.56 0.55 0.55
last 0.57 0.64 1.37 0.57 0.55 0.58 0.57 0.57 0.56
both 0.57 0.63 1.35 0.57 0.55 0.58 0.57 0.57 0.56

2 0.20

none 0.68 0.68 1.42 0.66 0.61 0.62 0.62 0.63 0.64
�rst 0.64 0.56 1.11 0.60 0.52 0.53 0.53 0.53 0.54
last 0.68 0.66 1.31 0.65 0.59 0.59 0.59 0.61 0.63
both 0.66 0.54 1.00 0.60 0.49 0.50 0.50 0.50 0.53

2 0.50

none 0.87 0.64 1.10 0.76 0.57 0.57 0.57 0.56 0.61
�rst 0.80 0.26 0.35 0.49 0.22 0.21 0.21 0.20 0.23
last 0.96 0.66 1.05 0.81 0.56 0.55 0.55 0.54 0.61
both 0.83 0.26 0.33 0.49 0.21 0.20 0.20 0.20 0.23

3 0.05

none 0.25 0.32 0.63 0.26 0.25 0.28 0.27 0.26 0.25

�rst 0.25 0.31 0.63 0.25 0.24 0.28 0.26 0.25 0.24

last 0.25 0.32 0.63 0.25 0.25 0.28 0.27 0.25 0.25

both 0.25 0.32 0.64 0.25 0.24 0.28 0.27 0.25 0.24

3 0.20

none 0.30 0.36 0.71 0.30 0.29 0.31 0.30 0.29 0.30
�rst 0.29 0.32 0.63 0.27 0.27 0.28 0.27 0.27 0.28
last 0.30 0.36 0.71 0.29 0.29 0.30 0.29 0.29 0.30
both 0.30 0.32 0.61 0.27 0.27 0.27 0.27 0.27 0.28

3 0.50

none 0.40 0.39 0.75 0.35 0.35 0.35 0.34 0.35 0.36
�rst 0.35 0.19 0.35 0.22 0.18 0.23 0.22 0.21 0.19
last 0.43 0.40 0.76 0.36 0.36 0.35 0.34 0.36 0.38
both 0.37 0.20 0.36 0.22 0.19 0.23 0.23 0.21 0.19

Table 5.3. Simulation study results of benchmark and Bounded Weights methods
forecast combination methods for correlation matrices CM1, CM2 and CM3 (ex post
analysis). The table depicts the MSE of the forecast combination method. The methods
with the smallest MSE are depicted in bold numbers.

method. Its average rank is 2.01 and the next larger average rank is 2.97 for BW(ωIL).42

Figure 5.7 shows that its rank is smaller or equal to three in 75% of the cases. Overall

the interquartile range (IQR), i.e., the box of the boxplot, is noticeably smaller than

the IQR of other methods. To put it di�erently, it usually has a better rank than other

methods.

42Recall that if more than method have the same smallest MSE value, they are ranked in an arbitrary
order and then the average rank is used for all of them. As a result although BW has the smallest
MSE for about three-quarter of all scenarios, an average rank of two is plausible.
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CM z SG EW PW OW IL BW(·)
BW(ω̇)

LB
ωE2 ωE3 ωIL

4 0.05

none 0.63 0.69 1.57 0.63 0.62 0.67 0.66 0.63 0.62

�rst 0.65 0.70 1.61 0.65 0.63 0.68 0.67 0.64 0.64
last 0.66 0.72 1.64 0.66 0.64 0.70 0.69 0.65 0.65
both 0.64 0.68 1.59 0.63 0.62 0.66 0.65 0.63 0.62

4 0.20

none 0.79 0.78 1.78 0.76 0.72 0.75 0.74 0.74 0.74
�rst 0.73 0.67 1.48 0.68 0.62 0.65 0.64 0.64 0.64
last 0.80 0.78 1.74 0.77 0.72 0.74 0.74 0.74 0.75
both 0.77 0.68 1.51 0.70 0.64 0.66 0.65 0.66 0.66

4 0.50

none 1.03 0.79 1.50 0.91 0.73 0.76 0.75 0.75 0.75
�rst 0.90 0.30 0.45 0.56 0.28 0.30 0.30 0.30 0.28

last 1.10 0.79 1.47 0.93 0.74 0.77 0.76 0.76 0.77
both 1.02 0.31 0.46 0.60 0.28 0.30 0.30 0.30 0.28

5 0.05

none 0.44 0.40 0.84 0.45 0.35 0.42 0.42 0.40 0.38
�rst 0.44 0.40 0.85 0.45 0.35 0.43 0.42 0.40 0.37
last 0.44 0.41 0.88 0.46 0.36 0.44 0.43 0.41 0.38
both 0.43 0.41 0.87 0.45 0.35 0.43 0.43 0.41 0.37

5 0.20

none 0.51 0.51 1.06 0.54 0.44 0.53 0.52 0.49 0.46
�rst 0.48 0.49 0.98 0.50 0.42 0.50 0.49 0.47 0.44
last 0.52 0.54 1.13 0.56 0.47 0.56 0.56 0.53 0.49
both 0.49 0.53 1.06 0.51 0.45 0.52 0.52 0.49 0.47

5 0.50

none 0.67 0.66 1.21 0.69 0.59 0.66 0.65 0.63 0.62
�rst 0.56 0.31 0.42 0.45 0.29 0.32 0.32 0.31 0.30
last 0.66 0.67 1.22 0.68 0.60 0.66 0.66 0.64 0.62
both 0.59 0.33 0.44 0.46 0.31 0.34 0.34 0.34 0.31

6 0.05

none 0.79 0.63 1.39 0.77 0.57 0.60 0.60 0.59 0.61
�rst 0.78 0.60 1.32 0.75 0.55 0.57 0.57 0.56 0.58
last 0.80 0.63 1.37 0.78 0.57 0.60 0.60 0.59 0.61
both 0.80 0.61 1.30 0.77 0.55 0.57 0.57 0.56 0.60

6 0.20

none 0.97 0.64 1.16 0.89 0.53 0.53 0.53 0.52 0.61
�rst 0.94 0.52 0.95 0.81 0.44 0.43 0.43 0.43 0.50
last 1.02 0.64 0.96 0.91 0.47 0.46 0.46 0.46 0.56
both 0.97 0.51 0.80 0.81 0.39 0.38 0.38 0.38 0.47

6 0.50

none 1.28 0.61 0.85 1.02 0.42 0.41 0.41 0.41 0.49
�rst 1.22 0.26 0.42 0.62 0.21 0.20 0.20 0.20 0.23
last 1.39 0.62 0.69 1.05 0.35 0.34 0.34 0.35 0.42
both 1.31 0.26 0.38 0.62 0.19 0.19 0.18 0.19 0.22

Table 5.4. Simulation study results of benchmark and Bounded Weights methods
forecast combination methods for correlation matrices CM4, CM5 and CM6 (ex post
analysis). The table depicts the MSE of the forecast combination method. The methods
with the smallest MSE are depicted in bold numbers.

BW(ω̇) has best MSE between for a quarter to a third of scenarios. Using the inverse-

loss average weights as prior weights has the smallest average rank of all considered prior

weights and the smallest IQR. The LB approach has a noticeably smaller percentage

of being the best method, in particular compared to BW(·). If we directly compare

the BW(·) approach to LB, the former has on average a 5% smaller MSE. The largest

improvement for BW(·) compared to LB is about 17%. However, based on this ex post

analysis the BW(·) approach never has a larger MSE than the LB approach by design

as BW(·) nests LB.
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EW PW OW IL BW(·)
BW(ω̇)

LB
ωE2 ωE3 ωIL

Smallest MSE (%) 2.78 0.00 0.00 5.56 73.61 23.61 33.33 30.56 13.89
Avg Rank 7.16 6.30 8.34 6.47 2.01 4.37 3.65 2.97 3.74
Avg Distance 0.32 0.12 0.55 0.22 0.00 0.03 0.02 0.02 0.03

Table 5.5. Key �gures for the MSE values of benchmark and Bounded Weights meth-
ods over all simulation study scenarios (ex post analysis). Smallest MSE (%) � Percent-
age of scenarios for which the method has the smallest MSE, potentially among others.
Avg Rank � Average rank of a method where a smaller rank is favorable. Avg Distance
� Average distance or di�erence in MSE the method and best method scenario-wise.
The method with the most favorable value are depicted in bold numbers.
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Figure 5.7. Boxplot of ranks across benchmarks and Bounded Weights methods for
the ex post analysis.

Nevertheless, the presented results provide clear evidence that both using an up-

per bound and that using prior weights improves the out-of-sample forecast accuracy

compared to the benchmarks and only using a lower bound.

We want to emphasize that we compare all methods against each other, i.e., also

the di�erent Bounded Weights methods. Due to that one may underrate our proposed

Bounded Weights methods as a whole. Therefore, before we analyze the results note

that for all 72 scenarios there is always a Bounded Weights methods that either has a

smaller MSE than all benchmark methods or the same MSE. In fact for 67 scenarios

the MSE of at least one Bounded Weights methods has a strictly smaller MSE than

the benchmarks. Using the Bounded Weights methods is the superior strategy for the

considered ex post analysis.
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5.3.1.2 Ex Post Analysis: Groups of Scenarios

In what follows we analyze the performance of the forecast combination methods with

respect to correlation matrices, error variance similarities and special groups. Table 5.6

shows how often each method has the smallest MSE for each correlation matrix Shrink-

EW PW OW IL BW(·)
BW(ω̇)

LB
ωE2 ωE3 ωIL

CM1 0.00 0.00 0.00 0.00 58.33 66.67 83.33 58.33 0.00
CM2 0.00 0.00 0.00 0.00 66.67 16.67 16.67 33.33 0.00
CM3 16.67 0.00 0.00 33.33 83.33 8.33 41.67 41.67 41.67
CM4 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 33.33
CM5 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 8.33
CM6 0.00 0.00 0.00 0.00 33.33 50.00 58.33 50.00 0.00

Table 5.6. Percentage of scenarios for which benchmarks and Bounded Weights meth-
ods have the smallest MSE with respect to the error correlation matrix (ex post analy-
sis). The total number of scenarios for each correlation matrix is twelve. The methods
with the highest percentages for each correlation matrix are depicted in bold numbers.

age towards prior weights BW(ω̇) is oftentimes the best method for highly correlated

forecast errors (CM1 and CM6). Recall, that we have observed a similar result for the

L1 constraints from Section 4.3.1, see also Table 4.4. The BW(·) approach is more

often superior as the error correlations decrease (CM2 with medium and CM3 with low

correlations, 0.5 and 0.2 respectively) and for mixed correlation matrices (CM4 and

CM5). For both CM4 and CM5 the BW(·) approach is always the best or one of the

best methods. Using only a lower bound (LB) is the closest method to BW(·) for small
error correlations (CM3). Recall that we extended the interval of feasible lower bounds

compared to Radchenko et al. (2023) such that it also can have positive values. As a

result, the lower bound can have values close to EW. CM3 has the smallest error corre-

lations and thus is the closest to EW being optimal (no error correlation). The average

lower bound used by LB across all scenario in CM3 is roughly ω = 0.03. This shows

that the extension of the feasible lower bound interval we proposed improves forecast

accuracy. For LB with ω = 0.03 and N = 24 the largest ever possible weight within

a solution is 0.31. However, it is more likely that the largest weight is smaller as this

is the most extreme case for which there is only one possible weight constellation. For

the BW(·) approach the average lower and upper bound over all scenarios of CM3 are

about 0.01 and 0.13. This provides clear evidence that to allow for a small deviation

from equal weights and then estimating the weights within the forecast combination

optimization problem provides huge bene�ts as one can see when comparing the results

of EW and BW(·).
Figure 5.8 depicts the average ranks and distances sorted by the correlation matri-

ces. In general, the ranks provide similar �ndings to the percentages of being the best
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Figure 5.8. Illustration of average ranks and distances of the benchmarks and Bounded
Weights for di�erent correlations matrices (ex post analysis).

method. Overall the BW(·) approach has the smallest rank, i.e., it is the most consistent
method. BW(·) and LB have a similar behavior with respect to the correlation matri-

ces, i.e., they show a similar direction of improvement when comparing one to another

correlation matrix. The bounded weights around prior weights are more consistent for

highly correlated forecast errors, however, they only have a marginally smaller rank

than BW(·). For CM5 the average distance of BW(ω̇) to BW(·) (which has the smallest
MSE for each scenario) is larger than for all other correlation matrices.

Table 5.7 presents how often each method has the smallest MSE with respect to the

error variance similarities (rows one to three) and special groups (rows four to seven).

In addition to that Figure 5.9 shows the average ranks and distance to the best method

scenario-wise. BW(·) is always superior or as good as other methods if the error variance
of forecast are similar in terms of percentage being the best method, average rank and

distance. The more dissimilar the forecast error variances become, the less often it is

the best method (Table 5.7). Nevertheless, no other method has the smallest MSE more

often, higher rank or smaller distance (Figure 5.9). In general, the bounds around prior

weights become more viable the more dissimilar forecast are. In those cases they are

the best method more often and have better average ranks, in particular BW(ωE3), as

one can see by the size of the circle in Figure 5.9.

With respect to special groups it appears that no method is in particular tailored

to a speci�c special group of forecasts. Comparing the ranks and distances to All

scenarios in Figure 5.9 reveals that there is not much of di�erence, i.e., similar circle

size (rank) and color (distance). The only exception is BW(ω̇) with ωE2 which has a
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EW PW OW IL BW(·)
BW(ω̇)

LB
ωE2 ωE3 ωIL

z = 0.05 8.33 0.00 0.00 4.17 100.00 12.50 12.50 20.83 25.00
z = 0.20 0.00 0.00 0.00 12.50 70.83 29.17 45.83 37.50 0.00
z = 0.50 0.00 0.00 0.00 0.00 50.00 29.17 41.67 33.33 16.67

none 5.56 0.00 0.00 0.00 72.22 16.67 22.22 27.78 11.11
�rst 0.00 0.00 0.00 5.56 77.78 22.22 27.78 38.89 11.11
last 5.56 0.00 0.00 11.11 72.22 27.78 44.44 27.78 5.56
both 0.00 0.00 0.00 5.56 72.22 27.78 38.89 27.78 27.78

Table 5.7. Percentage of scenarios for which the benchmarks and Bounded Weights
methods have the smallest MSE with respect to the error variance similarity and special
groups (ex post analysis). The total number of scenarios for each error variance simi-
larity is 24 and for special groups it is 18. The methods with the highest percentages
for each error variance similarity are depicted in bold numbers.

noticeable increase in percentage of being the best if the last group has a worse forecast

performance (Table 5.7). Additionally, LB is more tailored towards the scenario where

both a noticeably good and bad group are present. However, both considered methods

are still inferior to BW(·).
In summary, the presented result provide evidence that for our simulation study

without hyperparameter estimation, imposing both a lower and an upper bound is the

dominant strategy among the BoundedWeights methods and benchmarks. Additionally,

using prior weights is preferable compared to the benchmarks and LB. With respect to

LB, allowing for positive lower bound can improve forecast accuracy.

5.3.2 Out-Of-Sample: Bounded Weights with Hyperparameter Estimation

In this section we analyze the out-of-sample forecast accuracy of the Bounded Weights

methods (BW(·)). Note that we use the same time series as in Section 5.3.1. However,

we look at the pseudo out-of-sample forecasting performance of the considered methods.

Recall, there are two di�erences to the ex post analysis from Section 5.3.1. First, we

determine the hyperparameter a priori based on only past information. Second, we re-

estimate or -determine the hyperparameters for each observation in the test individually

based on cross-validation, recall Section 2.1. Due to the latter change, the MSE of the

considered methods can be smaller than the MSE of the ex post analysis. To put it

di�erently, for the ex post analysis we chose one hyperparameter for the whole test set.

If we instead use the best hyperparameters for each observation in the test set, the

resulting MSE is at most equal to the MSE of a �xed hyperparameter over the whole

test set. Accordingly, if we re-estimate the hyperparameter for each observation in the

test set and this estimation is precise and accurate, we can achieve a smaller MSE.
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Figure 5.9. Illustration of average ranks and distances of the benchmarks and Bounded
Weights methods for error variance similarities and special groups (ex post analysis).

5.3.2.1 Out-Of-Sample: Overall Results

Tables 5.8 and 5.9 show the average MSE across all 200 test sets for each scenario. Both

Tables 5.8 and 5.9 follow the exact same structure as Tables 5.3 and 5.4 respectively. The

results reveal that BW(·) oftentimes has a larger MSE than other methods. Accordingly,

the unambiguous superiority of the BW(·) approach does not translate to pseudo out-

of-sample forecasting. At least if hyperparameters are estimated based on the used

cross-validation approach. Consider for example the scenarios 1/0.05/·. For all four

special groups the PW method has the smallest MSE with a noticeable di�erence to

the BW(·) MSE. This �rst result is similar to the one from Chapter 4 for the L1

methods which showed superior forecasting performance in the ex post analysis that is

not achieved if hyperparameters are estimated.

Table 5.10 shows how often each method has the smallest MSE, its average rank

and distance to the best method scenario-wise. In addition to that, Figure 5.10 shows

boxplots of the ranks over all 72 scenarios for each method. The PW approach has

the smallest MSE most often, followed by the inverse-loss weights and equal weights.

Based on Figure 5.10 one can see that for 70% of the scenarios PW has a rank smaller

or equal to 5.5. In comparison, EW and IL have a larger IQR than PW, i.e., they are

less consistent. Using both a lower and upper bound (BW) as well as only using a

lower bound (LB) only has the smallest MSE in the same three scenarios (1/0.20/�rst,

1/0.20/both and 1/0.50/last). The average ranks of BW (4.49) and LB (4.14) are

noticeably larger compared to PW (3.35) but they have a better rank than EW (5.42).
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CM z SG EW PW OW IL BW(·)
BW(ω̇)

LB
ωE2 ωE3 ωIL

1 0.05

none 0.98 0.97 2.11 0.98 1.06 1.07 1.06 1.07 1.05
�rst 0.97 0.93 1.89 0.96 1.00 1.00 1.00 1.01 1.01
last 1.01 0.99 2.04 1.00 1.06 1.06 1.06 1.07 1.08
both 0.97 0.93 1.75 0.96 0.97 0.96 0.96 0.97 0.99

1 0.20

none 1.16 0.92 1.03 1.12 0.66 0.64 0.64 0.65 0.70
�rst 1.12 0.73 0.52 1.04 0.33 0.33 0.33 0.33 0.33

last 1.24 0.95 0.84 1.18 0.54 0.53 0.53 0.54 0.59
both 1.15 0.72 0.45 1.05 0.29 0.29 0.29 0.29 0.29

1 0.50

none 1.53 0.80 0.42 1.33 0.27 0.26 0.27 0.27 0.27
�rst 1.38 0.30 0.09 0.85 0.06 0.06 0.05 0.05 0.06
last 1.64 0.82 0.35 1.38 0.23 0.23 0.23 0.24 0.23

both 1.46 0.30 0.08 0.85 0.06 0.05 0.05 0.05 0.06

2 0.05

none 0.56 0.62 1.37 0.56 0.62 0.65 0.64 0.64 0.61
�rst 0.56 0.62 1.34 0.56 0.63 0.66 0.65 0.64 0.61
last 0.57 0.64 1.37 0.57 0.65 0.67 0.66 0.66 0.62
both 0.57 0.63 1.35 0.57 0.64 0.66 0.65 0.65 0.63

2 0.20

none 0.68 0.68 1.42 0.66 0.73 0.73 0.73 0.74 0.71
�rst 0.64 0.56 1.11 0.60 0.63 0.62 0.62 0.63 0.63
last 0.68 0.66 1.31 0.65 0.71 0.70 0.69 0.72 0.71
both 0.66 0.54 1.00 0.60 0.60 0.59 0.59 0.60 0.61

2 0.50

none 0.87 0.64 1.10 0.76 0.71 0.68 0.68 0.67 0.71
�rst 0.80 0.26 0.35 0.49 0.27 0.26 0.25 0.25 0.26
last 0.96 0.66 1.05 0.81 0.69 0.66 0.66 0.67 0.73
both 0.83 0.26 0.33 0.49 0.27 0.25 0.25 0.25 0.26

3 0.05

none 0.25 0.32 0.63 0.26 0.29 0.32 0.31 0.29 0.28
�rst 0.25 0.31 0.63 0.25 0.28 0.31 0.30 0.28 0.27
last 0.25 0.32 0.63 0.25 0.29 0.32 0.31 0.29 0.28
both 0.25 0.32 0.64 0.25 0.28 0.31 0.30 0.28 0.27

3 0.20

none 0.30 0.36 0.71 0.30 0.34 0.36 0.35 0.34 0.33
�rst 0.29 0.32 0.63 0.27 0.32 0.32 0.31 0.31 0.31
last 0.30 0.36 0.71 0.29 0.33 0.34 0.33 0.33 0.33
both 0.30 0.32 0.61 0.27 0.32 0.31 0.30 0.31 0.31

3 0.50

none 0.40 0.39 0.75 0.35 0.41 0.40 0.39 0.40 0.41
�rst 0.35 0.19 0.35 0.22 0.23 0.27 0.26 0.24 0.22
last 0.43 0.40 0.76 0.36 0.43 0.40 0.39 0.41 0.43
both 0.37 0.20 0.36 0.22 0.24 0.27 0.26 0.24 0.23

Table 5.8. Simulation study results of benchmark and Bounded Weights methods
forecast combination methods for correlation matrices CM1, CM2 and CM3 (out-of-
sample analysis). The table depicts the MSE of the forecast combination method. The
methods with the smallest MSE are depicted in bold numbers.

Both BW(·) and LB are more consistent as one can see looking at the smaller IQR

in Figure 5.10, i.e., they have oftentimes a higher rank but less variation in ranks.

Nevertheless, as for BW(·) and LB the average rank is higher, this is not favorable.

For example for BW(·) only in about 25% of scenarios the rank is smaller or equal to

about 3.5 while PW has a rank of 1 for at least 25% of scenarios. However, the average

distance of BW(·) and LB to the best method presented in Table 5.10 are the smallest

among all other methods. Accordingly, they oftentimes are relatively close to the best

method, although there are not the best method themselves.
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CM z SG EW PW OW IL BW(·)
BW(ω̇)

LB
ωE2 ωE3 ωIL

4 0.05

none 0.63 0.69 1.57 0.63 0.73 0.78 0.77 0.74 0.70
�rst 0.65 0.70 1.61 0.65 0.74 0.78 0.78 0.75 0.71
last 0.66 0.72 1.64 0.66 0.75 0.81 0.79 0.76 0.72
both 0.64 0.68 1.59 0.63 0.72 0.77 0.76 0.74 0.69

4 0.20

none 0.79 0.78 1.78 0.76 0.86 0.88 0.87 0.86 0.84
�rst 0.73 0.67 1.48 0.68 0.74 0.75 0.74 0.75 0.73
last 0.80 0.78 1.74 0.77 0.87 0.88 0.87 0.87 0.86
both 0.77 0.68 1.51 0.70 0.77 0.77 0.76 0.77 0.75

4 0.50

none 1.03 0.79 1.50 0.91 0.90 0.91 0.90 0.92 0.88
�rst 0.90 0.30 0.45 0.56 0.36 0.39 0.39 0.38 0.33
last 1.10 0.79 1.47 0.93 0.91 0.91 0.91 0.92 0.88
both 1.02 0.31 0.46 0.60 0.36 0.39 0.39 0.39 0.33

5 0.05

none 0.44 0.40 0.84 0.45 0.43 0.50 0.50 0.47 0.43
�rst 0.44 0.40 0.85 0.45 0.42 0.51 0.50 0.47 0.42
last 0.44 0.41 0.88 0.46 0.43 0.52 0.51 0.48 0.43
both 0.43 0.41 0.87 0.45 0.43 0.51 0.51 0.48 0.42

5 0.20

none 0.51 0.51 1.06 0.54 0.53 0.63 0.62 0.58 0.53
�rst 0.48 0.49 0.98 0.50 0.50 0.58 0.57 0.54 0.50
last 0.52 0.54 1.13 0.56 0.56 0.66 0.66 0.62 0.55
both 0.49 0.53 1.06 0.51 0.53 0.61 0.60 0.57 0.53

5 0.50

none 0.67 0.66 1.21 0.69 0.71 0.79 0.78 0.75 0.71
�rst 0.56 0.31 0.42 0.45 0.37 0.42 0.42 0.40 0.35
last 0.66 0.67 1.22 0.68 0.72 0.80 0.79 0.76 0.71
both 0.59 0.33 0.44 0.46 0.39 0.44 0.44 0.43 0.37

6 0.05

none 0.79 0.63 1.39 0.77 0.69 0.71 0.71 0.70 0.71
�rst 0.78 0.60 1.32 0.75 0.67 0.69 0.68 0.68 0.67
last 0.80 0.63 1.37 0.78 0.69 0.72 0.71 0.70 0.71
both 0.80 0.61 1.30 0.77 0.67 0.70 0.69 0.69 0.69

6 0.20

none 0.97 0.64 1.16 0.89 0.66 0.64 0.64 0.64 0.72
�rst 0.94 0.52 0.95 0.81 0.55 0.53 0.53 0.53 0.59
last 1.02 0.64 0.96 0.91 0.58 0.56 0.56 0.56 0.68
both 0.97 0.51 0.80 0.81 0.49 0.46 0.46 0.46 0.55

6 0.50

none 1.28 0.61 0.85 1.02 0.53 0.50 0.50 0.51 0.59
�rst 1.22 0.26 0.42 0.62 0.27 0.25 0.25 0.25 0.27
last 1.39 0.62 0.69 1.05 0.45 0.42 0.42 0.43 0.53
both 1.31 0.26 0.38 0.62 0.25 0.22 0.22 0.22 0.26

Table 5.9. Simulation study results of benchmark and Bounded Weights methods
forecast combination methods for correlation matrices CM4, CM5 and CM6 (out-of-
sample analysis). The table depicts the MSE of the forecast combination method. The
methods with the smallest MSE are depicted in bold numbers.

Comparing BW(·) and LB, the latter is slightly more favorable with its smaller average
rank and, looking at Figure 5.10, it has wider variety of ranks that is favorable as it is

closer to rank one.

Bounded prior weights BW(ω̇), in particular towards the shrinkage directions ωE2

and ωE3, are the best method more often compared to BW and LB. Both ωE3 and

ωIL have similar ranks, 4.62 and 4.77 respectively, but they are larger than those of

BW(·) and LB. ωE2 has a noticeably larger rank with 5.41. Figure 5.10 reveals that

although ωIL is more consistent (smaller IQR), ωE3 can achieve smaller ranks. For the
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EW PW OW IL BW(·)
BW(ω̇)

LB
ωE2 ωE3 ωIL

Smallest MSE (%) 23.61 41.67 0.00 29.17 4.17 22.22 23.61 15.28 4.17
Avg Rank 5.42 3.35 8.31 4.48 4.49 5.41 4.62 4.77 4.14
Avg Distance 0.27 0.07 0.50 0.18 0.05 0.07 0.06 0.06 0.05

Table 5.10. Key �gures for the MSE values of benchmark and Bounded Weights
methods over all simulation study scenarios (out-of-sample analysis). Smallest MSE
(%) � Percentage of scenarios for which the method has the smallest MSE, potentially
among others. Avg Rank � Average rank of a method where a smaller rank is favorable.
Avg Distance � Average distance or di�erence in MSE the method and best method
scenario-wise. The method with the most favorable value are depicted in bold numbers.
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Figure 5.10. Boxplot of ranks across the benchmarks and Bounded Weights methods
for the pseudo out-of-sample analysis.

former, in at least 25% of scenarios the rank is 3.5 or smaller while for the latter the

corresponding value is about 2.5.

Comparing all BW(·), LB with the extended range of feasible values is preferable. It

is relatively consistent while still achieving low ranks for some scenarios. This is strong

evidence that the uncertainty introduced by hyperparameter estimation is a crucial

factor. This is due to the fact that BW(·) nests LB and, thus, the former is at least as

good as LB if one could estimate hyperparameters precisely and accurate.

If we consider all Bounded Weights methods as a whole they have a strictly smaller

MSE for 16 scenarios (about 20% of scenarios) and an equal MSE for another 2 sce-

narios. Accordingly, our proposed method improve forecast accuracy out-of-sample.

However, their potential is limited by the hyperparameter estimation. With no fur-

ther information the PW approach is the most promising. It has the smallest MSE

most often (about 30 scenarios) and has the smallest average rank and even though the

distribution of ranks is larger, it is still in line with the other methods.
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5.3.2.2 Out-Of-Sample: Groups of Scenarios

In this subsection we analyze the out-of-sample forecasting performance of the forecast

combination methods with respect to the correlation matrices, error variance similarities

and special groups.

Table 5.11 shows how often each method has the smallest MSE (potentially among

other methods) for each correlation matrix

EW PW OW IL BW(·)
BW(ω̇)

LB
ωE2 ωE3 ωIL

CM1 0.00 33.33 0.00 0.00 25.00 58.33 58.33 33.33 25.00

CM2 33.33 33.33 0.00 50.00 0.00 16.67 25.00 16.67 0.00

CM3 41.67 16.67 0.00 75.00 0.00 0.00 0.00 0.00 0.00

CM4 25.00 50.00 0.00 50.00 0.00 0.00 0.00 0.00 0.00

CM5 41.67 66.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CM6 0.00 50.00 0.00 0.00 0.00 58.33 58.33 41.67 0.00

Table 5.11. Percentage of scenarios for which benchmarks and Bounded Weights
methods have the smallest MSE with respect to the error correlation matrix (out-of-
sample analysis). The total number of scenarios for each correlation matrix is twelve.
The methods with the highest percentages for each correlation matrix are depicted in
bold numbers.

BW(ω̇) with ωE2 and ωE3 have the best out-of-sample MSE values for highly corre-

lated forecast errors (CM1 and CM6) most often. This is similar to what we observed

for the ex post analysis in Table 5.6. For the ex post analysis, BW(·) was always

superior for CM4 and CM5, i.e., with mixed error correlations. However, for pseudo

out-of-sample forecasting the only three scenarios for which BW, as well as LB, have

the smallest MSE are for CM1, i.e., highly correlated forecast errors. Figure 5.11 again

presents the average ranks and distances to the best method. BW(ω̇) has smaller ranks

and distances than BW(·) and LB for both CM1 and CM6.

With respect to the benchmark methods EW is never the superior method for CM1

and CM6. Based on Figure 5.11 we can see that for CM1 BW(ω̇) with ωE2 and ωE3

and for CM6 BW(ω̇) in general have the smallest rank, i.e., most consistently small

MSE. This is somehow surprising as PW is oftentimes the superior method for both

CM1 (33.33%) and CM6 (50%). However, both its average rank and distance is inferior

compared to the BW(ω̇) methods. If one has only information that forecasts are highly

correlated, the BW(ω̇)methods should be used. With respect to BW(·) and LB it reveals

that over all correlation matrices beside CM1 and CM6, LB has a smaller average rank.

From high forecast error correlations (0.9, CM1), to medium (0.5, CM2) and low

correlations (0.2, CM3) the inverse-loss weighted average is more suited as it has. While

for CM2 PW is preferable with regard to its average rank, IL has the smallest MSE
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Figure 5.11. Illustration of average ranks and distances of the benchmarks and
Bounded Weights for di�erent correlations matrices (out-of-sample analysis).

more often. For CM3 IL is the best method most often, has the smallest average rank

and distance, see Table 5.11 and Figure 5.11. While PW is more often the best method

for CM3, BW(ω̇) with ωE3 and ωIL as well as LB have on average smaller ranks, i.e.,

a better forecasting performance.

Recall, that for CM4 forecast are homogeneous within groups and for CM5 the bet-

ter the forecast accuracy the higher the amount of error correlation, see again Sec-

tion 3.2.2.2. Only with respect to all Bounded Weights methods (BW(·)), BW(·) and
LB are better suited for CM4 and CM5 as they have smaller ranks on average. However,

if we also consider the PW approach, it has a better forecasting performance overall.

Moreover, it has the smallest MSE more often and a smaller average rank and distance.

Table 5.12 presents how often each method has the smallest MSE with respect to the

error variance similarities and special groups. In addition to that Figure 5.12 depicts

the average ranks and distances. For the error variance similarities one can see that the

BW(ω̇) methods are better more often, the less similar the error variances of forecasts

are. In particular the shrinkage direction we proposed to use ωE3 has the smallest MSE

most often out of all Bounded Weight methods. Similarly, the average ranks of BW(ω̇)

get better, the more dissimilar the forecast error variances are, see Figure 5.12. The

contrary holds for the BW(·) and LB. According to the average ranks they are more

suited for similar forecast error variances.

EW, IL and in particular PW are, however, favorable for similar forecast error vari-

ances as they have the smallest MSE more often, better average ranks and distances,

see Table 5.12 and Figure 5.12. With increases error variance similarity a decreasing
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EW PW OW IL BW(·)
BW

LB
ωE2 ωE3 ωIL

z = 0.05 45.83 50.00 0.00 45.83 0.00 0.00 0.00 0.00 0.00
z = 0.20 20.83 29.17 0.00 33.33 8.33 29.17 29.17 20.83 8.33
z = 0.50 4.17 45.83 0.00 8.33 4.17 37.50 41.67 25.00 4.17

none 27.78 44.44 0.00 33.33 0.00 22.22 16.67 5.56 0.00
�rst 22.22 50.00 0.00 22.22 5.56 11.11 22.22 22.22 5.56
last 27.78 27.78 0.00 38.89 5.56 27.78 27.78 5.56 5.56
both 16.67 44.44 0.00 22.22 5.56 27.78 27.78 27.78 5.56

Table 5.12. Percentage of scenarios for which the benchmarks and Bounded Weights
methods have the smallest MSE with respect to the error variance similarity and special
groups (out-of-sample analysis). The total number of scenarios for each error variance
similarity is 24 and for special groups it is 18. The methods with the highest percentages
for each error variance similarity are depicted in bold numbers.

forecasting performance of EW is expected and can be observed. With the introduction

of larger error variance, see again Figure 3.5, the performance of an approach that uses

all forecasts and averages them has to decline. Overall, the average ranks of EW and IL

decrease as the forecast error variances become more dissimilar (z = 0.2 and z = 0.5).

For PW the ranks are better for z = 0.5 compared to z = 0.2 but for both it has better

average ranks than for z = 0.05. Although, IL has a similar rank to PW for 0.2 and

is the best method more often, it has a noticeably larger average distance to the best

method.

In conclusion, overall for all degrees of forecast error variances similarity, the PW

approach is favorable due to the proportion how often it is the best method and, in

particular, with regard to the average rank.

For the special groups, again, there is less structure in the percentages of being best,

average rank and distance. For SG none, �rst and both PW is the best method most

often and has the best ranks. However, the average distance is in fact smaller for BW(·):
Although PW is oftentimes the best method, if it is not, the deviation in MSE from

the corresponding best method is larger. This hold similar for IL. It has similar average

ranks than BW(·), but its average distance is noticeably larger, see Figure 5.12.

5.3.3 Summary of Results

Overall the Bounded Weights methods and in particular BW(·) have a noticeably supe-
rior forecasting performance within the ex post analysis in Section 5.3.1. While BW(ω̇)

are favorable if forecasts have a high error correlation, the BW(·) approach is more

suited for smaller and mixed error correlations. If forecast errors have similar vari-

ances, BW(·) is always the best choice. The more diverse forecasts are in terms of

their error variance, the better BW(ω̇). Nevertheless, BW(·) is still a competitive fore-
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Figure 5.12. Illustration of average ranks and distances of the benchmarks and
Bounded Weights methods for error variance similarities and special groups (out-of-
sample analysis).

cast combination method for these scenarios. With respect to special groups there is

no noticeable di�erence in forecast performance for any method. For all 72 scenarios

there is a Bounded Weights methods that either has a smaller MSE than all benchmark

methods or the same MSE. For 67 scenarios the MSE of at least one Bounded Weights

methods has a strictly smaller MSE than the benchmarks.

If hyperparameter have to be estimated, the clear superiority of Bounded Weights

methods is not given. For out-of-sample forecasting, if no further information is available

the PW approach is the most favorable, because it has the smallest MSE most often,

average rank and distance in general. In contrast to the ex post analysis Bounded prior

weights BW(ω̇) are in general favorable over BW(·) and LB. This holds in particular,

if we use Conditional Group Equal Weights, i.e., the shrinkage directions we suggest to

use within the optimization framework ωE2 and ωE3.

With respect to the di�erent error correlation matrices, the results suggest that for

highly correlated forecast errors (CM1 and CM6) BW(ω̇) is favorable. For medium

correlations, homogeneous forecasts within groups and if the amount of correlation de-

pends on the forecast accuracy (CM2, CM4 and CM5) PW is the best choice within this

analysis and hyperparameter estimation procedure. For small error correlations (CM3)

IL has the best performance overall. If we consider the di�erent forecast error variances,

the BW(ω̇) methods are favorable if the forecast error variance are more dissimilar while

the opposite is true for BW(·) and LB. The PW is most favorable for similar forecast

error variances but also the preferable method as the forecast error variances become
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more dissimilar. For special groups PW is most often the best method and, if not,

close to the best method in terms of its rank. However, BW(·) is oftentimes closer with
respect to the di�erence in MSE. Accordingly, sometimes PW has a noticeably larger

MSE than the best method, although it usually ranks close to it. If we consider all

Bounded Weights methods as a whole they have a strictly smaller MSE for about 20%

of scenarios and an equal MSE for another 2 scenarios.

5.4 Discussion and Future Work

The objective of this chapter was to introduce new methods for forecast combination

with constrained weights. These methods impose constraints on the weights in order

to shrink them and, by that, improve the out-of-sample forecasting performance. As

demonstrated in Chapter 4 forecast combination with L1 constraints shrinks weights

towards �xed values or prior weights. To this end, a single constraint is imposed that

restricts the weight vector as a whole. This approach does not explicitly prevent large

(small) weights from having a large e�ect or impact on the combined forecast, relative

to other weights. In other words, the combined forecast more strongly depends on a

few forecasts and, therefore, it is less robust and diversi�ed.

With respect to the overall structure of this thesis, this chapter present major contri-

bution (IV) stated in Chapter 1: Forecast Combination with Bounded (Prior) Weights.

We present a new forecast combination method with constrained weights that improves

the forecast accuracy compared to the benchmarks. This directly contributes to our

overarching research question: how to further improve the forecast accuracy of a com-

bined forecast using constrained weights?

(I) In Section 5.1.1 we proposed a new method: Forecast Combination with Bounded

Weights (BW). To this end, we utilize lower and upper bounds to shrink weights and

restrict the overall size of them, i.e., the e�ect one forecast has on the combined forecast.

By introducing both common lower and upper bounds into the forecast combination

method of J. M. Bates and Granger (1969) we developed a method that nests the PW,

OW and EW approach as well as solutions in-between them. A related approach from

Radchenko et al. (2023) used only a lower bound to limit the amount of negativity.

However, in the way it was implemented it only nests PW and OW but not EW. By

re-evaluating the feasible bounds for BW, we extended the interval of feasible values for

the lower bound to positive values smaller or equal to EW. This extension allows for

the incorporation of the EW solution even if only a lower bound is used.

(II) In Section 5.1.2 we showed analyzed solutions of BW(·). The solutions in-between
the nested methods EW, PW and OW can have groups of weights: individual and

identical weights. If either the lower or upper bound is set to equal weights, all weights

are identical. As the lower (upper) bound decreases (increases), some weights deviate
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from the identical solution while others are equal to the current lower (upper) bound.

Depending on the values of the bounds, there can be two groups of identically weighted

forecasts. The identical weights of the groups are then equal to the lower or upper bound

respectively. Accordingly, our approach allows for some weights to have individual

weights while others have identical weights. In this way, our approach is related to

the EW approach. It creates a diverse solution such that the combined forecast more

robust. Simultaneously, we capture potential for improvement by letting some weights

deviate from the identical weights.

In Section 5.2 we extended to the BW(·) approach to incorporate prior information in
the form of weights (objective III of this chapter): Forecast Combination with Bounded

Prior Weights (BW(ω̇)). We de�ned individual bounds for each weight, which were

determined by a common deviation from the prior weights. To this end, we used the

same prior weights or shrinkage directions as in Chapter 4, i.e., ωE2, ωE3 (Conditional

Group Equal Weights) and ωIL. For example, recall that for ωE2 we have two groups of

forecasts with equal weights conditional to their assigned budget. By de�ning bounds

based on a common lower and upper deviation from the prior weights, solutions have

similar behavior to BW(·), but for two groups. In other words, the bounds shrink

weights to the conditional equal weight of their corresponding group. Each group can

have identical and individual weights.

For both BW(·) and BW(ω̇) there are two hyperparameters that must be estimated,

e.g., by cross-validation with a grid search. It is important to note, that the possible

values of one bound or deviation depend on the value of the other bound or deviation

respectively. To ensure an e�cient hyperparameter estimation, we introduced an algo-

rithm that evaluates only the necessary pairs of potential lower and upper bounds or

deviations in Section 5.1.3.

(IV) In Section 5.3 we evaluated the forecast performance of BW(·), BW(ω̇) and

LB in terms of an ex post and out-of-sample analysis. We summarized the results in

Section 5.3.3. In the ex post analysis the Bounded Weights methods and in particular

BW(·) were by far superior to other forecast combination methods. Shrinkage towards

prior weights BW(ω̇) is more suited for highly correlated or forecasts with diverse error

variances, i.e., forecasting performances, whereas BW(·) is better suited for smaller and

mixed error correlations as well as more similar forecast error variances.

For 67 out of 72 scenarios of the simulation study the Bounded Weights methods

(BW(·) and BW(ω̇)) had a strictly smaller MSE than the benchmarks. For each of the

remaining �ve scenarios one of the benchmark methods had the same MSE as one of

the Bounded Weights methods.

For about 20% of scenarios in the out-of-sample analysis one of the Bounded Weights

methods has a MSE strictly smaller than the benchmarks. However, for many scenarios,

the PW approach was a strong benchmark. With respect to the LB method, there is
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evidence that the feasible values for the lower bound should include to positive values.

Then, the method is better suited for scenarios in which a solution closer to equal

weights is preferable.

The uncertainty introduced by the hyperparameter estimation leads to a lower fore-

casting performance of the Bounded Weights methods. In theory, compared to the ex

post analysis the performance of methods that have hyperparameters can improve if

we re-estimate the hyperparameters for each observation in the test set as we did for

the out-of-sample analysis. However, the observed results indicate that the hyperpa-

rameter estimation is not accurate enough. This is ampli�ed by the fact that we use

relatively short time series, i.e., there is only a small amount of data. Additionally, the

number of weights (24) that have to be estimated is considerable in comparison. Both

aspects increase estimation uncertainty. Similar to the �ndings from Chapter 4 for the

L1 method we see the necessity for future research that focuses on the hyperparameter

estimation. As a part of that, the analysis can be repeated for a larger number of

observations. Additionally, it would be bene�cial to analyze which bounds where used

in the di�erent scenarios. Based on these results one could perform a more informed

search for the hyperparameters or identify appropriate bounds that can be used for a

range of scenarios.

In conclusion, the utilization of prior weights BW(ω̇) allows for the incorporation of

prior information in the form of shrinkage directions. We impose bounds around them

that allow for some deviations of single weights, while retaining the idea or direction

of the prior weights. For instance, two groups of forecasts with di�erent conditional

equal weights (ωE2). Our proposed approach of using both a lower and upper bound

BW(·) allows for solutions in-between (EW, PW and OW). This approach combines the

advantages of the three methods while mitigating their �aws. By imposing constraints

on all weights individually, our solutions has groups of individual and identical weights

which leads to a more diversi�ed and, by that, robust combination of forecast that is

inspired by the historically tough benchmark: equal weights.
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The Bounded Weight method from the previous chapter directly contributed to the

overarching research question of this thesis: how to further improve the forecast ac-

curacy of a combined forecast using constrained weights? However, we stated another

research question in Chapter 1: how to incorporate additional, external information in

forecast combination with constrained weights? In this chapter, we extend the bounded

weights approach by incorporating additional information to constrain weights and,

thus, consider both research question of this thesis.

In theory the best possible weights to combine forecast are the weights of the original

forecast combination problem by J. M. Bates and Granger (1969) depicted in Equa-

tion (2.22). However, due to the forecast combination puzzle, see again Section 2.3,

other methods have been developed to determine weights and thereby combine forecasts.

This includes variants that are based on the OW approach. The PW approach uses only

positive weights, see Equation (2.30). In Chapter 4 we introduced several methods that

use shrinkage to constrain weights in order to improve the out-of-sample forecast ac-

curacy. This includes the linear (hybrid) shrinkage and L1 constrained method. The

former shrinks weights from the OW solution towards the equal weights solution. In

case of LHS, a subset is shrunken to zero. L1 constraint shrink weights towards zero,

equal weights or other prior weight vectors like the inverse-loss weighted average or the

shrinkage directions we proposed to use, i.e., groups of weights are shrunken towards

their conditional equal weight de�ned by an assigned budget. In Chapter 5 we intro-

duced forecast combination with bounded weights. It imposes bound constraints that

ensure that the in�uence or marginal e�ect of a forecast on the combined forecast is

restricted and, thereby, the solution is more diversi�ed while simultaneously allowing

for individual weights to improve the forecast accuracy. Based on this, we presented a

method that imposes bounds around any prior weights vector, i.e., we shrink towards

these weights. All approaches mentioned are based on the forecast combination prob-

lem de�ned by J. M. Bates and Granger (1969). The objective function is to minimize

the in-sample error variance or MSE under constraints, at least the unity constraint.

Constraints are imposed based on parameters like γk in case of the L1 constraint or

ω and ω in case of the Bounded Weights methods. However, there are other ways to

determine weights.

The most prominent example is the equal weights forecast. Another already consid-

ered way to determine weights is by the inverse-loss weighted average of Equation (4.16).
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Alternatively, weights can be determined by other features than the MSE. For example,

Kolassa (2011) combine forecasts weights based on information criterion like the Akaike

information criterion. Speci�c traits or features as the accuracy and diversity of fore-

casts can be used to determine weights and combine forecasts (Davis-Stober, Budescu,

Broomell, & Dana, 2015; Merkle, Saw, & Davis-Stober, 2020). Montero-Manso et al.

(2020) proposed an automated method FFORMA (Feature-based Forecast Model Av-

eraging) that estimates weights based on 42 characteristics of the time series itself. It

uses a meta-learning approach in form of a gradient tree boosting model from xgboost

(Chen & Guestrin, 2016). A meta-learning approach learns across multiple time series

instead of one. FFORMA was the second most accurate contribution to the M4 Com-

petition (Makridakis et al., 2018, 2020) both for point forecasts and prediction intervals

(Montero-Manso et al., 2020; Wang et al., 2023). There are even more combination

schemes, for example for interval forecasts (Wang, Kang, & Li, 2022), within Bayesian

forecast combination (Li, Kang, Petropoulos, & Li, 2023) or for intermittent demand

(Li, Kang, & Li, 2023).

We took inspiration from the forecast combination problem with L1 constraint, the

Bounded Weights methods and the feature-based combination schemes and introduce

a new �eld within forecast combination. While weights so far have been either con-

strained based on �xed values or determined based on di�erent features, we propose

to constrain weights based on feature values. In general, constraints improve forecast

accuracy, see again Chapters 4 and 5. However, the question is whether or not a con-

straint concerns either all forecast together (L1) or individually but with the same

bounds or deviation (BW). In other words, the main idea is that forecasts that have

a favorable feature value are less constraint than forecast with less favorable feature

values. Thereby, we utilize the positive e�ects of the considered shrinkage methods, i.e.,

more similar marginal e�ects and improved forecast accuracy. Importantly, while allow-

ing some favorable forecasts to be less constraint to improve the overall out-of-sample

forecast accuracy. Constraints that are determined by feature values of the forecasts in-

troduce exogenous, additional information into the forecast combination problem. This

exogenous information allows us to adapt our method for di�erent applications. For

example, if we consider forecasting in the possible presence of economic shocks, we can

de�ne a feature that measures how fast a forecast adapts to short-term changes such

that the combined forecast more quickly captures changes in the time series. Assume

we want to combine forecasts for food retail but are in particular interested in a good

forecast performance during promotional periods. We can evaluate each input forecast

only for promotional periods and incorporate the results as a feature based on which

we derive the individual feature bounds. Thereby, we constrain forecasts less that are

more suitable for promotional periods.
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Within this chapter we introduce Forecast Combination with Individual Feature Bounds.

At its core it is an extension of the Bounded Weights methods. However, it is a new �eld

of research that applies the concept of bounds but allows for exogenous information to

be used to de�ne the constraints for speci�c applications, situation, and structures of

the data and, ultimately, improve forecast accuracy.

The objective of this chapter are the following:

(I) Introduce our new approach of Forecast Combination with Individual Feature

Bounds

(II) Demonstration of the versatility of this methods by presenting various features

that can be used to de�ne bounds.

(III) Analyze the forecasting performance of our new method within our simulation

study both in an ex-post and out-of-sample analysis.

With respect to the overall structure of this thesis, the introduction of Forecast Com-

bination with Individual Feature Bounds is the �fth main contribution we stated in

Chapter 1. It not only contributes to the overarching research question of how to

further improve forecast accuracy of forecast combination with constrained weights.

Additionally, it provides a new method that allows to incorporate additional, external

information which was the second research question of this thesis.

The remainder of this chapter is organized as follows. Section 6.1 introduces the

concept of individual feature bounds, provides a formal de�nition of the optimization

problem and discusses its core components. Thereafter, Section 6.1.2 presents di�erent

transformation functions that are used to map the feature values to the individual

constraints. Section 6.1.3 presents di�erent features of forecasts that can be used.

Lastly, in Section 6.1.4 we discuss our results and directions for future research.

6.1 Individual Feature Bounds

In the previous chapters, we used prior weights for both the L1 methods and Bounded

Weights methods, see Chapters 4 and 5. Prior weights allow for a more general repre-

sentation of the methods. For example, we can de�ne all prior weights to be zero and,

as a result, if we consider the L1 constraint we have L1(0) while for BW(ω̇) we get

BW. Therefore, for forecast combination with individual feature bounds we use prior

weights to allow for the most �exible forecast combination method. For example, we

can use the conditional group equal weights shrinkage directions ωE2 or ωE3 shown in

Section 4.2.3.

The forecast combination problem with individual feature bounds (IFB) is to an

extent similar to BW(ω̇) of Equation (5.9). For BW(ω̇) we used common deviations
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from prior weights, ℶ and ℶ, to determine the individual lower and upper bounds, ωi
and ωi, see again Equations (5.10) and (5.11). We used common deviations because

individual lower and upper bounds for each prior weight are at least impractical or

even impossible if all 2N bounds have to be estimated by cross-validation, see again

Section 5.2.

For forecast combination with IFB, we use a similar looking formula as for BW(ω̇)

to determine the individual feature lower and upper bounds:

ωi = ω̇ − ℵi ∀ i = 1, . . . , N, (6.1)

ωi = ω̇ + ℵi ∀ i = 1, . . . , N. (6.2)

ℵi is the Individual Feature Deviation (IFD) from prior weights ω̇i.43 The lower IFDs

are denoted by ℵi and the upper IFDs by ℵi. Henceforth, the bounds in Equations (6.1)
and (6.2) are the method de�ning Individual Feature Bounds (IFB). In order to deter-

mine them, ℵi and ℵi are used as a deviation from prior weights and are denoted by

IFD.

In contrast to the common feature deviations (ℶi,ℶi) from BW(ω̇), ℵi and ℵi (IFD)
are individual for each prior weight or forecast i. The IFDs are determined based on

features or characteristics of the forecasts ŷi ∀i = 1, . . . , N . We will discuss the IFDs

in more detail later, but for now we assume that ℵi and ℵi are given for each weight or

forecast.

Based on Equations (6.1) and (6.2), we can replace both ωi and ωi from the forecast

combination problem with bounded prior weights BW(ω̇) depicted in Equation (5.9) by

the right-hand side of Equations (6.1) and (6.2). This leads to the forecast combination

problem with individual feature bounds (IFB):

minimize
ω

ω′Σ̂ω

subject to ω′1 = 1,

ωi − ω̇i ≥ −ℵi ∀ i = 1, . . . , N,

ωi − ω̇i ≤ ℵi ∀ i = 1, . . . , N

(6.3)

with ℵi,ℵi ∈ R≥0. For each forecast ŷi, we constrain its weight to be within an interval

around a prior weights ω̇i, i.e.,

ω̇ − ℵi ≤ ωi ≤ ω̇ + ℵi ∀ i = 1, . . . , N. (6.4)

In other words, we introduce both a lower and upper bound for each weight that depends

on an individual deviation from its prior weight de�ned by ℵi and ℵi.

43Alef ℵ is a letter in the Hebrew alphabet.
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For example, let there be two forecasts, i.e., ŷi ∀i ∈ {1, 2}. The IFDs are ℵ1,ℵ1 = 1

and ℵ2,ℵ2 = 0.5. Figures 6.1(a) and 6.1(b) illustrate the interval of feasible values of

weights for ω1 on top and ω2 on the bottom for two di�erent prior weights vectors.

ω1
−1.5 −1 −0.5 0 0.5 1 1.5

ω̇1−ℵ1 ℵ1

ω2
−1.5 −1 −0.5 0 0.5 1 1.5

ω̇2−ℵ2 ℵ2

(a) ω̇1 = ω̇2 = 0

ω1
−1.5 −1 −0.5 0 0.5 1 1.5

ω̇1ω̇1 − ℵ1 ω̇1 + ℵ1

ω2
−1.5 −1 −0.5 0 0.5 1 1.5

ω̇2 − ℵ2 ω̇2 + ℵ2

(b) ω̇1 = ω̇2 = 0.5

Figure 6.1. Illustration of individual feature bounds around ω̇i de�ned by the indi-
vidual feature deviations ℵi and ℵi. Note that ω̇2 in Figure 6.1(b) is not depicted for
the sake of better readability.

In Figure 6.1(a) the prior weights are ω̇1 = ω̇2 = 0, i.e., this corresponds to shrinkage

towards zero. Figure 6.1(a) depicts the interval of feasible values for ω1, i.e., [−ℵ1,ℵ1]
by the blue rectangle. ω1 has to be between −1 and 1. Because both individual feature

deviations ℵ1,ℵ1 are identical, ω1 can have values symmetrically around zero. For ω2,

the individual feature deviations are smaller with 0.5, i.e., the feasible interval depicted

by the green rectangle is tighter around zero. Thereby, ω2 is forced to be closer to zero.

For ω̇1 = ω̇2 = 0.5 (equal weights) in Figure 6.1(a) both intervals of feasible values shift

to the right, ceteris paribus. They are centered around equal weights, i.e., 0.5. While

ω1 can have a larger deviation from equal weights, ω2 has to be closer to it. Keep ind

mind that later we will determine the amount of deviation (ℵi and ℵi) based on feature

values of the forecasts.

If individual prior weights are used for both forecasts, the bounds are centered around

these prior weights. For example, let ω̇1 = 0 and ω̇2 = 0.5 the corresponding intervals

for ω1 is given by the blue rectangle of Figure 6.1(a) and for ω2 it would be the green

rectangle of Figure 6.1(b).

If the individual feature deviations ℵi,ℵi are not identical, an exemplary interval of

feasible values is depicted by the following �gure.

ω1
−1.5 −1 −0.5 0 0.5 1 1.5

ω̇1ω̇1 − ℵ1 ω̇1 + ℵ1 ω2
−1.5 −1 −0.5 0 0.5 1 1.5

ω̇2 − ℵ2 ω̇2 + ℵ2

Figure 6.2. Illustration of asymmetrical individualized feature bounds around ω̇1 =
ω̇2 = 0. Note that ω̇2 is not depicted for a sake of better readability.

In this case, the interval of feasible values is asymmetrical around ω̇1 = ω̇2 = 0.

Lastly, one can only use either the lower IFB or upper IFB. By that, one de�nes a half-

closed interval of feasible values for each weight, i.e., ωi ∈ [ω̇i−ℵi,∞) or (−∞, ω̇i+ℵi)
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respectively. The following �gure depicts the feasible interval if only the lower IFB is

used.

ω1
−1.5 −1 −0.5 0 0.5 1 1.5

ω̇1ω̇1 − ℵ1 ω2
−1.5 −1 −0.5 0 0.5 1 1.5

ω̇2ω̇2 − ℵ2

Figure 6.3. Illustration of the half closed feasible intervals for two weights if only lower
IFBs, i.e., IFDs ℵi, are used with ω̇i = 0 ∀ i = 1, . . . , N .

6.1.1 Idea and Components of Individual Feature Bounds

To introduce forecast combination with individual feature bounds we previously as-

sumed that the individual feature deviations (IFDs) ℵi and ℵi that de�ne the individual
lower and upper bound (IFBs) ω and ω are given. In what follows, we introduce the

framework how ℵi and ℵi are determined.
We de�ned both ℵi and ℵi to be non-negative, see again Equation (6.3). Although,

ℵi and ℵi are the lower and upper individual feature deviation, they are de�ned in the

same way. Therefore, for the sake of simplicity we only use ℵi, however, the following
concepts are valid for both ℵi and ℵi.
Let ℵi be the i-th element of the N × 1 of an individual feature deviation vector,

ℵℵℵ = (ℵ1, . . . ,ℵN )′. The IFD vector ℵℵℵ is determined by

ℵℵℵ = Ψ
(
ν, ψmin, ψmax, ...

)
. (6.5)

We call Ψ a transformation function as it transforms or maps an input to the IFD

ℵℵℵ. The input of the transformation function is, inter alia, the N × 1 feature vector

ν = (ν1, . . . , νN )
′ with

νi = ξ(ŷi) ∀ i = 1, . . . , N. (6.6)

The N × 1 vector ŷi = (ŷi,1, . . . , ŷi,τ )
′ includes forecasts i for all time periods within

the training set, i.e., t = 1, . . . , τ . The term ξ is a function that calculates the feature

values based on the in-sample data.

Before we take a closer look at the components of the transformation function of

Equation (6.5), we want to summarize the idea of our approach again. There is feature

vector ν that is determined based on the forecasts, and it re�ects a feature, characteristic

or key performance indicator of them. To put it di�erently, it re�ects how each forecast

is evaluated in context of a certain criterion. Each feature value νi for every forecast is

transformed or mapped by the transformation function Ψ to an IFD ℵi which is then

used together with the prior weights ω̇i to determine the lower or upper IFB for weight

ωi ∀ i = 1, . . . , N in Equation (6.3).
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Figure 6.4. Illustration of the relationship between the feature vector ν, a linear
transformation function Ψ and the Individual Feature Deviation ℵℵℵ. The values for ν
where randomly chosen between zero.

Figure 6.4 depicts how the transformation functions Ψ maps the feature vector ν to

the IFD vector ℵℵℵ. We use a simple linear transformation function Ψ depicted by the

black line exemplary. The feature values νi of an arbitrary feature vector ν are on the

abscissa and the IFDs ℵi are on the ordinate. Each value of ν is represented as a red

dot on the transformation function, i.e., the black line. The red, dashed lines function

as visual aid to connect the feature values νi and the corresponding IFD ℵi. For any

feature value νi one can determine ℵi using Figure 6.4. For example, the forecast (ŷj)

with a feature value of roughly 0.5 has an IFD of 0.6, i.e., it can deviate from its prior

weights by that amount. If we assume that ℵj = ℵj the corresponding weight ωj with

j ∈ {1, . . . , N} has the constraints

ωj ≤ ω̇j + 0.6, (6.7)

ωj ≥ ω̇j − 0.6. (6.8)

Note that within this example one could also simply scale the feature vector di�erently

and, by that, impose ν = ℵℵℵ. However, we want to provide a general framework for

forecast combination with individual feature bounds that can be used for various trans-

formation functions Ψ. We will discuss some transformation functions in Section 6.1.2.

The transformation function Ψ
(
ν, ψmin, ψmax, ...

)
of Equation (6.5) has three speci-

�ed arguments or components that all transformation function that we will use have in

common. Depending on the choice of Ψ additional arguments are needed to de�ne its

shape. Those additional arguments are indicated by the three dots in Equation (6.5).
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Feature values The �rst common argument of the transformation function is the fea-

ture vector ν, i.e., all feature values νi for each forecast. In Equation (6.6) it is de�ned

by a function, ξ, which is a placeholder for the feature or criteria that is used. In the �eld

of forecasting an obvious example for ξ is the forecast accuracy that can be measured

by the MSE, recall Equation (2.2). In Equation (6.6) we use the in-sample forecasts as

the input of ξ. However, one can easily adapt this and use di�erent functions ξ that are

based on other inputs than the forecasts. The function ξ can also be used to combine

multiple features to one as we will discuss in more detail in Section 6.1.3.

With regard to the transformation function Ψ we have to account for the scale of its

input, i.e., the scale of the feature vector. If the range or order of magnitude of the

feature values changes, they will be mapped di�erently to ℵℵℵ. The scale of the feature
values is �rst and foremost driven by the choice ξ. Accordingly, for di�erent ξ, we would

need to adapt the transformation functions to ensure that it has the desired properties

for the inputs scale. However, even for the same ξ the feature values will in general vary,

at least slightly, for two similar training sets during out-of-sample forecasting and cross-

validation. If we want to impose properties for the transformation function, e.g., de�ne

the smallest and largest IFD in ℵℵℵ, we need to scale the feature vector ν onto prede�ned

range. In other words, we control the input values in Ψ to be within that prede�ned

range and, thus, we can use the same transformation functions Ψ for di�erent ξ and

di�erent training sets without the need to adapt it. To this end, we scale or normalize

the feature vector ν such that the most favorable feature value with is always equal to

one and the least favorable feature value is always zero. Thereby, for all scaled feature

values it holds that ν̃i ∈ [0, 1].

By scaling the features, we also eliminate the problem that for some features the

most favorable value might be the largest value, while for others smaller feature value are

preferable. In that case we would need to adapt the transformation function accordingly

to ensure that forecasts with more favorable features values are less constraint. However,

when we scale the feature values, we can de�ne the scaled feature vector ν̃ such that a

larger value always indicates are more favorable feature value. To this end, if a larger

feature value is more favorable we use

ν̃ =
ν −min(ν)

max(ν)−min(ν)
. (6.9)

If instead the smallest feature value is most favorable we use

ν̃ =
max(ν)− ν

max(ν)−min(ν)
, (6.10)

(see e.g., Aggarwal, 2023, p.64). As a consequence, the forecast with least (most)

favorable feature value will always have a feature value of zero (one).
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As a consequence of scaling the feature vector, we can not compare the IFD vectors

ℵℵℵ from di�erent sets of forecasts. Assume that we use the same feature determined

by ξ and an identical transformation function Ψ for two sets of forecasts. Let one of

the sets of forecasts have twice as large feature values than the other. Nevertheless,

for both sets of forecasts the scaled feature vector ν̃ is zero for the least favorable and

one for the most favorable feature value respectively. Although, forecast from one set

have superior feature values, they will be constraint similarly to the inferior forecasts.

For our purpose this is not a problem. We develop forecast combination with IFBs to

combine forecast from a given set. We have no intention to compare the IFDs between

sets of forecasts to gain insights about those sets.

We want to emphasize another important aspect that comes with scaling the feature

vector: the unknown distribution of features values within it. The smallest and largest

feature values of ν are scaled to zero and one respectively. All other feature values are

somewhere in-between zero and one. They can be more evenly distributed or heavily

concentrated somewhere, including close to zero or one. By that, depending on the

transformation function a larger proportion of forecasts can get similar IFDs which can

lead to infeasible solutions, as we will discuss and solve later. As a consequence, it is

more di�cult to control the IFD by the design of the transformation function.44 In

other words, one can not guarantee that properties that follow from the design of Ψ

are passed on to the IFD. Therefore, we suggest that ranks of the feature values can be

used which solves this aspect. The most favorable feature value gets rank one and the

least favorable feature value gets the largest rank. Then the feature vector is scaled by

Equation (6.10). As a result, the scaled feature values are now uniformly distributed

between zero and one. A disadvantage of it is that we neglect the information provided

by the di�erences between feature values, because we only look at the order of them.

However, the advantage of it is that we know what the scaled feature values will be

and, by that, can design the transformation function such that the resulting IFDs have

certain properties. We will use both the original feature values and ranked feature

values in this thesis.

Smallest and Largest Individual Feature Deviation As we showed, two forecasts have a

scaled feature value of zero and one respectively. Those forecasts are connected to the

remaining common arguments of the transformation function of Equation (6.5). The

two arguments of Ψ are the smallest deviation, ψmin, and largest deviation, ψmax. As

their name suggests, they de�ne the smallest and largest deviation a weight can be

assigned, i.e., for example ωi − ω̇i ≤ ℵi ∈
[
ψmin, ψmax

]
∀ i = 1, . . . , N . The smallest

element of the IFD vector is always min(ℵℵℵ) = ψmin and the largest element is always

max(ℵℵℵ) = ψmax. For the sake of simplicity, we use the upper IFD ℵ in this example

44We will discuss how we can impose di�erent properties onto the IFD in Section 6.1.2.
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and will do so in the following examples. However, it holds accordingly for the lower

IFD ℵ.
Consequently, there are two forecasts or weights k, l ∈ {1, . . . , N} from the optimiza-

tion problem in Equation (6.3) that will always have the following two upper individual

feature bounds

ωk − ω̇i ≤ ℵk = ψmin, (6.11)

ωl − ω̇i ≤ ℵl = ψmax. (6.12)

The forecast k has the scaled feature value ν̃k = 0 and l has ν̃l = 1. To put it di�erently,

the forecast with the least favorable feature value is constrained by Equation (6.11).

It has the tightest bound around or smallest upper deviation from its prior weight.

In contrast, the forecast with the most favorable feature value has is constrained by

Equation (6.12), i.e., it hast the least tight bound around or largest upper deviation

from its prior weight.

For both the smallest and largest deviation (ψmin, ψmax), we need to de�ne conditions

to ensure the feasibility of optimization problem of Equation (6.3). Recall, that we

de�ned ℵi,ℵi ∈ R≥0. Hence, for the smallest deviation it has to hold that

ψmin ≥ 0. (6.13)

ℵi de�nes how much a weight ωi can deviate from its prior weight ω̇ upwards, i.e., how

much larger it can get. This holds accordingly for ℵi. A non-negative smallest deviation

is given by design. Otherwise, if both ψmin of ℵi and ψmin of ℵ are non-positive, it can
happen that ℵi < 0 and ℵi < 0. Thereby, ωi is forced to be larger and smaller than the

prior weights simultaneously, see Equation (6.4). This is infeasible.

Negative values of ℵi and, by that, negative values for ψmin are only sensible if either
the lower or the upper IFB (ωi or ωi) are used but not both. For only lower IFBs,

it implies that some forecasts (at least one) are constrained to have larger values than

their prior weights. Similarly, for only upper bounds some (at least one) forecasts with

more (the most) unfavorable feature values are forced to have smaller weights than their

prior weights. In this thesis we will only consider forecast combination with individual

feature bounds that have both lower and upper IFB simultaneously.

To de�ne feasible or sensible values of the largest deviation ψmax is more di�cult.

First, it depends on how the IFBs or rather the prior weights are designed. Assume

we use prior weights that are a feasible solution to the forecast combination problem

of Equation (2.22), i.e., they ful�ll the unity constraint. In this case, conditions for the

largest deviation are that it is non-negative and greater than the smallest deviation,

i.e., ψmax ∈ [0,∞) and ψmin ≤ ψmax. For the �rst condition, again, if ψmax = 0 the

only feasible solution is the prior weights. There is no limit how large ψmax gets, i.e.,
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how big the largest deviation is. The second condition ensures that the transformation

function that increases as the feature values increase, i.e., the more favorable a forecast

value is, the larger the corresponding forecast can deviate from the prior weights.

If the prior weights do not ful�ll the unity constraint it is not possible to determine

general values for ψmax, as it depends on the distribution of the scaled feature values

ν̃ in connection with the selected transformation function Ψ. For example, assume

that all prior weights are zero, i.e., ω̇ = 0. In this case, we can determine a minimal

value for ψmax that can result in a feasible solution. Let us start with an example

where all weights deviate from zero by 1/N. This can result in a feasible solution.

However, this is only the case if all scaled feature value are one, i.e., ν̃ = 1. This is

no possible due to the way we scale the feature values. Equations (6.9) and (6.10) are

unde�ned in that case (division by zero). However, if νi = νj ∀ i, j{1, . . . N} \ k with

νk < νj ∀j{1, . . . , N} \ k, we can de�ne ψmax = 1/N−1. In others words, if all forecasts

but one have the same favorable feature value, they all get a scaled feature value of

one while the remaining forecast has a scaled feature value of zero. For an arbitrary

transformation function it holds by de�nition that Ψ(ν̃i = 1, ψmin, ψmax, . . .) = ψmax.

Accordingly, if ψmax = 1/N−1, (N − 1) weights can deviate from zero by that amount

which is a feasible solution.

This example showcases, however, that it depends on the distribution within the

scaled feature vector ν̃ which values of the largest deviation ψmax result in a feasible

solution. Additionally, it depends on which transformation function together with its

arguments, that we will discuss in Section 6.1.2.

In general, the unity constraint will always be violated if

1′(ω̇ +ℵℵℵ) < 1, (6.14)

i.e., if the sum of prior weights and the upper IFDs is smaller one. 45 We can determine

an adjusted upper IFD vector ℵℵℵ∗ to ensure feasibility by

ℵℵℵ∗ = ω̇ +ℵℵℵ
1′(ω̇ +ℵℵℵ)

− ω̇. (6.15)

By that the upper IFDs are scaled such that the weights can deviate by a su�cient

amount from the prior weights such that the weights sum to exactly one. As a con-

sequence the solution to the optimization problem of Equation (6.3) is ω = ℵℵℵ∗ with

ωi ≥ 0 ∀i ∈ {1, . . . , N}, i.e., all weights are positive and identical to their individual

bounds. Note that the adjustment of Equation (6.15) ensure that the ratio between

the constraints remains the same, i.e., ℵi/ℵj = ℵ∗
i/ℵ∗

j ∀i, j ∈ {1, . . . , N}. Although, the

45Note the feasibility of the optimization problem, i.e., the ful�llment only depends on the upper
deviation ℵ we do not need to consider the lower IFDs (ℵ) because it does not a�ect feasibility if sum
of prior weights and upper bound deviations is smaller one.
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desired, prede�ned largest deviation ψmax is exceeded by this approach, Equation (6.15)

enables us to calculate a solution for every distribution of scaled feature vector ν̃. For

example, let N = 2 with ω̇1 = ω̇2 = 0 and ℵ1 = 0.2 and ℵ2 = 0.4. The adjusted values

are ℵ∗2 = 0.2/0.6 = 1/3 and ℵ∗2 = 0.4/0.6 = 2/3 which provides a feasible solution.

This holds accordingly if

1′(ω̇ −ℵℵℵ) > 1, (6.16)

with

ℵℵℵ∗ = ω̇ − ω̇ −ℵℵℵ
1′(ω̇ −ℵℵℵ)

. (6.17)

Summary We propose to use individual feature bounds of Equations (6.1) and (6.2).

The main idea is that we constrain weights of forecasts that have favorable features

values less than weights of forecast with unfavorable feature values. To this end, we

introduce individual feature deviations (IFD) ℵi and ℵi, for each weight ωi ∀ i =

1, . . . , N . In conjunction with prior weights ω̇i the IFDs determine the IFBs (ω, ω), i.e.,

the interval of feasible values for each weight. Thereby, weights are shrunken towards

their prior weights. The IFDs are the output of the transformation function Ψ. The

inputs to the transformation functions are the scaled feature values ν̃ as a result of a

function ξ of forecasts together with additional parameters like the smallest and largest

deviations ψmin and ψmax.

We believe that our newly proposed method or research area has the potential to

inspire future research due to its variability. First, one can use a variety of transfor-

mation function that can be de�ned in such a way that they enforce speci�c conditions

onto the IFD vectors ℵℵℵ and ℵℵℵ and by that onto the bounds. We will discuss various

transformation functions in Section 6.1.2. Second, one can use di�erent features for

di�erent applications that can incorporate new information into the optimization prob-

lem. This will be discussed in Section 6.1.3. Lastly, one can use di�erent prior weights,

i.e., shrinkage directions, that also inform the forecast combination problem.

6.1.2 Transformation Functions

In this section we discuss the design of a major part of the individualized feature bounds:

the transformation function Ψ of Equation (6.5). Again, the main idea behind IFBs is

to constrain weights or forecasts more or less depending on how favorable they are with

respect to a certain feature. The transformation function maps or transforms a vector

of (scaled) feature values into individual feature deviations ℵi and ℵi. In conjunction

with the prior weight ω̇i, this leads to both an individual lower and upper bound ωi, ωi
for each weight ωi, see again Equations (6.1) and (6.2).
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Figure 6.5. Examples of the linear transformation function.

In this thesis we present four transformations functions. We �rst introduce a linear

and second a step-wise transformation function in Sections 6.1.2.1 and 6.1.2.2 respec-

tively. Then we will present an adaptation of an activation function that is used within

neurons from arti�cial neural networks. It will be discussed in Section 6.1.2.3. Addi-

tionally, we provide a framework to use a generalized version of the logistic function as

a transformation function in Section 6.1.2.4.

6.1.2.1 Linear Function

The �rst transformation function originates from the well-known basic de�nition of a

linear function: f(x) = b + mx. Recall, that the scaled feature values are between

zero and one and that a larger scaled feature value is favorable. We de�ne the linear

transformation function as

Ψ
(
ν̃, ψmin, ψmax

)
= ψmin +

(
ψmax − ψmin

)
ν̃. (6.18)

Accordingly, Ψ takes the scaled feature values within ν̃ and transforms or maps them

linearly between the smallest deviation ψmin and the largest deviation ψmax. The

forecast with the most favorable feature value gets the largest deviation ψmax, i.e., it is

the least constraint compared to all other forecast. Similarly, the forecast with the most

unfavorable feature value gets the smallest deviation, i.e., it has the tightest constraint

in comparison.

Figure 6.5 depicts three possible linear transformation functions Ψ based on Equa-

tion (6.18). For both the red and blue line, the smallest deviation is ψmin = 0. As a

result, the forecast with the least favorable feature value will be constraint to its prior

weight. The di�erence in slope between red and blue is due to the largest possible
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bound ψmax = 0.8 and 1.0 respectively. When comparing the blue and red line it be-

comes apparent that, ceteris paribus, for smaller values of ψmax, the weights are more

constraint, i.e., deviate less from their prior weights, for all scaled feature values (except

for ν̃i = 0). By increasing the smallest deviation ψmin to be greater zero, no forecast or

weight is forced to be equal to its prior weight. This is depicted by the green line.

A linear transformation function is a simple function that can be used. It basically

just re-scales the scaled feature vector ν onto the interval [ψmin, ψmax]. As a result, the

ratio between two scaled feature values νi and νj is identical to the ratio between the

resulting IFDs ℵi and ℵj ∀i, j ∈ {1, . . . , N}.

6.1.2.2 Step Function

The second transition function that we will consider is a step function. For a prede�ned

number of steps Υ, the step size is

Υ̌ =

(
ψmax − ψmin

)
Υ

. (6.19)

For Υ ∈ N≥1 we de�ne the transformation function by

Ψ
(
ν̃, ψmin, ψmax,Υ

)
=



ψmin if ν̃i ≤ 1
Υ

ψmin + Υ̌ if 1
Υ < ν̃i ≤ 2

Υ

ψmin + 2Υ̌ if 2
Υ < ν̃i ≤ 3

Υ
...

...

ψmin + (Υ− 1)Υ̌ if (Υ−1)
Υ < ν̃i ≤ Υ

Υ

∀ i = 1, . . . , N.

(6.20)

This function divides the scaled feature vector ν̃ ∈ [0, 1] into Υ di�erent sections or

interval, e.g., 1
Υ < ν̃i ≤ 2

Υ . Each section has a value that is the output of the transfor-

mation function, if the scaled feature value of a forecast is within this section. The �rst

sections output is ψmin for the smallest values in ν̃. It increases step wise by Υ̌ until

the last section. For the largest values in ν̃ it becomes ψmax. The only exception is if

Υ = 1 is used for the step function. In this case the deviations are no longer individual

but identical for all forecast with ℵi = ψmin ∀ i = 1, . . . , N , i.e., it is identical to the

bounded prior weights approach of Section 5.2. Accordingly, forecast combination with

individual features bounds e�ectively nests forecast combination with bounded weights.

Figure 6.6 depicts examples of the step function de�ned in Equation (6.20). In both

Figures 6.6(a) and 6.6(b) the scaled feature vector ν̃ is shown on the abscissa. The

ordinate depicts the resulting IFDs within ℵℵℵ. Note that for both �gures the di�erent

line types are used for visualization purposes only because lines overlap. First, in
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Figure 6.6. Examples of the step transformation function Ψ. Di�erent line types are
for visualization purposes only.

Figure 6.6(a) di�erent values for the number of steps Υ are used. The red line depicts

the step function with two steps, i.e., Υ = 2. The two steps are the plateaus or sections

for ν̃ ≤ 1/2 and ν̃ > 1/2. If a forecast has a scaled feature value smaller or equal to 0.5 its

IFD is zero. In contrast, for all forecast with νi > 0.5 the IFD is one. If the number of

steps is increased to three (blue) or �ve (green), additional shorter sections are created.

By that, the IFD di�erentiates more between feature values. For example, for both

three and �ve steps a scaled feature value of 0.5 is transformed to 0.5. However, for

ν̃i = 0.65, the transformation function with Υ = 5 (green) results in ℵi = 0.75 while for

Υ = 3 (blue) it is still 0.5.

We can use Figure 6.6(a) to think about the step function in terms of quantiles.

However, it is important to notice that we use the quantiles of potential scaled feature

values ν̃ ∈ [0, 1] and not quantiles of the actual, realized feature values. This means

we use the quantiles of the interval [0, 1]. The scaled feature values ν̃ where the step

transformation function transitions from one section to the other are the 1/r−1% quan-

tiles ∀ r = 2, . . . ,Υ of all values between zero and one. For example, if we use Υ = 5

(green) in Equation (6.20), we have �ve sections. The transitions from one section to

another are at the 20%, 40%, 60% and 80% quantiles of potential scaled feature values.

To put it di�erently, forecasts that are at the bottom 20% of scaled feature values get

the corresponding IFD, i.e., zero in case of the green step function. Forecasts with

feature values that are within 40% to 60% of the di�erence between the largest and

smallest feature value ν get an IFD of 0.5.

The blue line of Figure 6.6(a) and the orange line of Figure 6.6(b) are identical with

Υ = 3, ψmin = 0 and ψmax = 1. In Figure 6.6(b) we compare di�erent values for ψmin
and ψmax while keeping Υ = 3 constant. Compared to the orange line, the yellow

line has the same smallest deviation ψmin but a smaller largest deviation ψmax = 0.8.
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If a forecast i has a scaled feature value less or equal to 1/3, both orange and yellow

transform its value to ℵi = 0. However, if ν̃i ∈ (2/3, 3/3] the step function depicted

in yellow transforms its value to ℵi = ψmax = 0.8 while the orange line transforms it

to ℵi = ψmax = 1. The purple line demonstrates an example at which the smallest

deviation is 0.2 and the largest deviation is 1.2. Comparing this step transformation

against all others demonstrates an opportunity that comes with using a step function.

For the purple line all forecasts have IFD ℵi of at least 0.2. All other transformation

functions in both Figures 6.6(a) and 6.6(b), however, have some forecasts with IFDs of

zero.

Accordingly, with the step function if we de�ne ψmin = 0, the approach selects

variables that are allowed to di�er from their prior weights based on their scaled feature

values. All forecasts that have a scaled feature value smaller or equal to 1/S will have

the IFD ℵi = 0, i.e., their weight will be equal to their prior weight. If all prior weights

are zero, this corresponds to a variables selection where some weights are constraint to

zero, i.e., the corresponding forecasts are omitted. If we use the unranked scaled feature

values, we can not de�ne in advance how many forecasts will be identical to their prior

weights. Instead, we de�ne to omit those forecasts that have feature values less or equal

to the 1/Υ quantile of potential, scaled feature values. Recall, that ν̃ is zero for the

forecast with the least favorable feature value and one for the most favorable feature

value. As a consequence, if ψmin = 0, at least one forecast is omitted and at most all

but one forecasts can be omitted.

For example, consider the step transformation function with Υ = 5, ψmin = 0 and

ψmax = 1 depicted in green in Figure 6.6(a). If ν̃ = (0, 0.3, 0.5, 0.8, 1) only one forecast

is omitted while if instead ν̃ = (0, 0.1, 0.15, 0.2, 1) all but one forecast are omitted.

The case that all but one forecast are omitted only happens if there is a forecast that

a signi�cantly more favorable feature values. In contrast, if we use the ranks feature

values, we know the number of forecasts within each section of the step function. For

example, for a step function with Υ = 2 and eleven forecasts, six forecasts get the IFD

from section one (ψmin), and �ve forecasts the IFD from section two (ψmax).

Using a step function opens up many possibilities. Depending on its setup it even

can be used a direct variable selection approach. For example, let Υ = 2 (red line in

Figure 6.6(a)) with ψmax = M and M → ∞ and prior weights of zero. By that we

create a scenario where all forecasts that are at the lower half of possible scaled feature

values are identical to their prior weights and all others are unconstrained. Similarly,

we can let ψmin = 0.2 so that all forecast with a feature value less than the median of

possible scaled feature values are constrained based on ℵi = 0.2. All other forecasts are

still unconstrained with ψmax =M .

There are many more possibilities to create a variety of step functions. In general,

the larger the number of steps, ceteris paribus, the more Ψ di�erentiates between fore-
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casts,i.e., their scaled feature values. Simultaneously, the di�erence between sections,

i.e., the step size of Equation (6.19), becomes smaller. If instead S is kept constant

and ψmax (ψmin) is increased (decreased), ceteris paribus, the step size Υ̌ increases

(decreases).

6.1.2.3 Generalized RelU

The third transformation function is inspired by the Recti�ed Linear Unit (RelU) func-

tion. The RelU function is used as an activation function for a neuron in arti�cial neural

networks, and it is de�ned as f(x) = max{0, x}. For negative values of x it is zero and

for positive values it increases linearly (for more details see Aggarwal, 2023, Chapter 1,

especially pp.10-12). We adapt this function and design the following transformation

function:

Ψ
(
ν̃, ψmin, ψmax, ν̌

)
=

ψmin if ν̃i ≤ ν̌

ψmin +
ψmax−ψmin

1−ν̌ · (ν̃i − ν̌) if ν̃i > ν̌
(6.21)

In contrast to the original RelU we additionally use ν̌ ∈ [0, 1]. If ν̌ = 0, the function

simpli�es to the linear function of Equation (6.18). For any value ν̌ ∈ (0, 1) the function

assigns the value of ψmin if νi ≤ ν̌ ∀ i ∈ {1, . . . , N}. For all νi > ν̌ the function linearly

interpolates between ψmin and ψmax. Accordingly, for a given threshold ν̌ ∈ [0, 1] all

forecasts that are in the bottom ν̌ · 100% of potential feature values have the same IFD

ℵi = ψmin. The top (1−ν̌)·100% of potential feature values get less constraint the higher

their scaled feature value is, i.e., for those forecasts it holds that ψmin < ℵi ≤ ψmax.
The main idea behind the Generalized RelU (GRelU) is that forecast with feature

values within a certain percentage of potential feature values, i.e., forecast with less

favorable feature values, have the same deviation ℵi = ψmin. At the same time forecast

with more favorable feature values are less constraint the larger their feature values are.

Similar to the step function, if we chose ψmin = 0, the Generalized RelU can perform a

variable selection. It selects weights to be equal to their prior weights. If prior weights

are zero, forecasts are not considered for forecast combination.

The GRelU is visualized in Figure 6.7. It shows three di�erent designs of the GRelU

transformation function, distinguished by color. The scaled feature values are on the

abscissa and the IFDs are on the ordinate. Di�erent line types are used for a better

visualization if the transformation functions overlap. Both the blue line and green line

have ψmin = 0 and, by that, forecasts for which νi ≤ ν̌ = 0.4 (blue) or ν̃i ≤ ν̌ = 0.6

(green) ∀ i = 1, . . . , N have IFDs of ℵi = 0, i.e., they are constrained to be identical

to their prior weights. All forecast right of the threshold ν̌ have bounds greater zero.

However, the IFDs di�er depending on the largest deviation ψmax and the threshold ν̌.

Both blue and green have ψmax = 1 but for blue ν̌ is smaller and, thus, the incline has
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Figure 6.7. Three examples of the GRelU transformation function Ψ. Di�erent line
types and colors are used for visualization purposes.

to be steeper to ensure that the larges scaled feature value get the constraint ℵi = ψmax.

The marginal e�ect of the linear, di�erentiable part of Equation (6.21) with respect to

νi is larger the closer ν̌ is to one, i.e., the transformation function di�erentiates more

between scaled feature values. While both blue and green perform a variable selection,

the transformation function depicted by the red line does not. For all forecast with

νi ≤ ν̌ = 0.3 it holds that ℵi = 0.2, i.e., with regard to the optimization problem from

(6.3) it has to hold that ω̇ − 0.2 ≤ ωi ≤ ω̇ + 0.2. Forecasts that have a feature value

greater the threshold increase linearly to ψmax.

In summary, the GRelU allows the same deviation for a certain percentage of potential

scaled feature values. For the remaining one it assigns di�erent deviations based on

their scaled feature values. If ranked feature values are used, the percentage values

corresponds to the number of forecasts.

6.1.2.4 Generalized Logistic Function

For the last transformation function we want to de�ne a function that is less sensitive

to di�erences in the scaled feature values that are close to the most unfavorable or

favorable values. However, it should be more sensitive to changes of the scaled feature

values for a certain range of values. To this end, we use a non-linear but di�erentiable

function introduced in Richards (1959). It is a growth function that is a generalization

of the logistics function. It is de�ned as

f(x) =
ψmax

(1 + ϕ1e−ϕ2x)
1/ϕ3

, (6.22)
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with the constants ϕ1 ∈ R≥0, ϕ2 ∈ R and ϕ3 ∈ R>0. For ϕ1, ϕ2, ϕ3, ψmax = 1 it

is the commonly known logistic function (Aggarwal, 2023, pp. 81-82). The limits

of the generalized logistic function of Equation (6.22) are limx→+∞ f(x) = ψmax and

limx→−∞ f(x) = 0 (Causton, 1969; Richards, 1959).

The generalized logistics function can look quite di�erent based on the values of

ϕ1,ϕ2 and ϕ3. Before we take a closer look at those parameters, we �rst adapt the

generalization of the logistics function for our transformation function. Previously, when

we considered functions for the transformation function Ψ
(
ν, ψmin, ψmax, ...

)
, we de�ned

the smallest and largest deviation ℵi by ψmin and ψmax. To make this possible with

the generalized logistics function, we can linearly scale the function of Equation (6.22)

onto the interval [ψmin, ψmax] by

f̃(x) = ψmin + (1− ψmin/ψmax)f(x). (6.23)

As a result, the lower limit of f̃(x) is ψmin, i.e.,

lim
x→−∞

f̃(x) = ψmin, (6.24)

but the upper limit is

lim
x→∞

f̃(x) = ψmax. (6.25)

We de�ne the transformation function Ψ to be

Ψ
(
ν̃i, ψmin, ψmax, ϕ1, ϕ2, ϕ3

)
= ψmin +

ψmax − ψmin
(1 + ϕ1e−ϕ2ν̃i)(

1/ϕ3)
. (6.26)

This transformation function constrains the deviation of weights from their prior weights

similarly if the corresponding forecasts have comparable, unfavorable scaled feature

values. This holds accordingly for forecasts with comparable, favorable scaled feature

values. This result from the fact that the function �attens both for smaller and larger

values of the scaled feature values. In the middle of input values into the generalized

logistics function it is a lot more steep, i.e., small di�erence in the scaled feature values

result in more noticeable di�erences in ℵi. All this depends on the parameter values of

ϕ1,ϕ2 and ϕ3.

Variations of the Transformation Function Figure 6.8 depicts di�erent variations of

Ψ
(
ν, ψmin, ψmax, ϕ1, ϕ2, ϕ3

)
de�ned in Equation (6.26). Note that the abscissa rep-

resents ν (not scaled) and also includes negative values. The IFD is given on the

ordinate. For now, we use the not scaled feature values for the sake of simplicity. As

a baseline throughout Figure 6.8 we use a smallest deviation of ψmin = 0, a largest
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Figure 6.8. Examples for the generalized logistic function of Equation (6.22) for
di�erent values for ϕ1,ϕ2 and ϕ3, ceteris paribus. For the basic set up we de�ne ϕ1 =
ϕ2 = ϕ3 = 1.

deviation of ψmin = 1 and de�ne ϕ1 = ϕ2 = ϕ3 = 1. In Figures 6.8(a) to 6.8(c) we vary

the parameters ϕ1,ϕ2 and ϕ3 ceteris paribus.

Figure 6.8(a) emphasizes the e�ect of the parameter ϕ1. With ϕ1 = 1 it holds that

Ψ(0, 0, 1, 0.5, 1, 1) = 0.5. If ϕ1 deviates from one, it shifts the whole function to the right

if ϕ1 > 1, and to the left if ϕ1 < 1. Then for ϕ1 > 1 it holds that Ψ(0, 0, 1, 0.5, 1, 1) < 0.5

and for ϕ1 < 1 Ψ(0, 0, 1, 0.5, 1, 1) > 0.5. The former case is depicted in Figure 6.8(a) by

the green line with ϕ1 = 7 and the latter case is shown by the red line with ϕ1 = 1/7. The

blue line is the baseline with ϕ1 = 1. Let us consider the implication for the IFD. We

can design a transformation function that constrains forecasts with feature values within

the bottom q% of potential feature values similarly close to ψmin. In the same sense, we

can constrain forecasts with feature values within the top p% of potential feature values

close to ψmax. By the choice of ϕ1, we either increase q or p. For example, if we want to

increase the range of feature values that have an IFD close to ψmax, we can decrease ϕ1
and by that increase p, ceteris paribus. See again the red line in Figure 6.8(a). In that

case, all forecast with a feature value less than roughly −6, i.e., about 1/8 · 100% have
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an IFD close to zero while forecasts with νi > 2, i.e., about 6/16 · 100%, have ℵi close to
ψmax. Similarly, if we want to increase the range of potential feature values that have

a constraint close to ψmin instead, we shift Ψ to the right by increasing ϕ1. As a result,

only about the top 1/8 · 100% of feature values map to IFDs close to ψmax. In contrast,

the bottom 6/16 · 100% of feature values are close to ψmin.

The second parameter, ϕ2, determines the growth rate, i.e., how steep or shallow the

function growth from ψmin to ψmax. This is depicted Figure 6.8(b) exemplary. The

blue line shows the function values for ϕ2 = 1. If ϕ2 increases, the growth becomes

much steeper as showcased by the green line with ϕ2 = 7. If, instead ϕ2 decreases,

the function �attens as depicted by the red line (ϕ2 = 0.5). In the context of the IFD

ℵi we can, again, increases the range of feature values that are either close to ψmin or

ψmax. At �rst, this is similar to the e�ect of parameter ϕ1. However, by changing ϕ2
we de- or increase p and q simultaneously. Basically, the larger ϕ2 is, the more feature

values both on the right and left side of the in�ection point are close to ψmin or ψmax,

ceteris paribus. Thereby, less feature values result in a bound in-between the smallest

and largest deviation. This can be seen easily when comparing the red, blue and green

line. To put it di�erently, the larger ϕ2 gets the closer this transformation function is

to a step function with Υ = 2, see Section 6.1.2.2.

Lastly, the parameter ϕ3 in�uences the position of the in�ection point. For ϕ3 = 1 the

in�ection point is at ν ′ = 0 and Ψ(ν ′, 0, 1, 1, 1, 1) = 0.5. If ϕ3 > 1, the in�ection point

ν ′ < 0 and Ψ(ν ′, 0, 1, 1, 1, > 1) > 0.5. Accordingly, if ϕ3 < 1, the in�ection point ν ′ > 0

and Ψ(ν ′, 0, 1, 1, 1, > 1) < 0.5. In Figure 6.8(c) the blue line depicts the baseline with

ϕ3 = 1. The green line shows the function for a higher value of ϕ3 = 1.5. The in�ection

point is higher on the ordinate and more left on the abscissa compared to the blue line.

Similarly, for a smaller value of ϕ3 = 0.1, the in�ection point is lower (Causton, 1969;

Richards, 1959). The e�ect of parameter ϕ3 in context of ℵi is similar to parameter

ϕ1, however only to an extent. If we choose ϕ3 < 1 the in�ection point is lower, see

for example the red line. By that, we increase the steepness at �rst. For forecasts with

smaller feature values νi, small changes in νi have a larger e�ect. However, the function

than �attens for larger values of νi. This means that the di�erence in the feature values

of two forecasts has to be larger to result in the same increase in ℵ. For example for

ϕ3 = 0.1, scalded feature values νi ∈ [0, 2] are mapped to roughly ℵi ∈ [0.001, 0.281]. In

contrast, for νi ∈ [2, 4] the deviations are about ℵi ∈ [0.281, 0.834], i.e., a much larger

di�erence. Increasing ϕ3 has a similar but inverted e�ect.

Of course, on can vary all parameters ϕ1,ϕ2 and ϕ3 at once. Accordingly, there are

many designs of the generalized logistics function that can be used as a transformation

function to determine how weights are constraint around their prior weights.
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Procedure for using Ψ Using the generalized logistics function as a transformation

function Ψ is not straightforward but comes with its di�culties. They are driven by

the asymptotic behavior and the amount of possible function de�ned by varying ϕ1, ϕ2
and ϕ3. In Figure 6.8 we did not scale the feature values due to this. Of course, all

functions are valid for all values of νi ∈ R. However, trying to design the transformation
function with ϕ1, ϕ2 and ϕ3 such that it behaves in a desired way for a speci�c range

of feature values, like ν̃, is quite di�cult and arbitrary. Although, we used the scaled

feature value to ensure comparability between di�erent transformation previously, we

will not do this for the generalized logistics function due to the mentioned di�culties.

However, it is also not straightforward onto which interval one has to scale ν for the

generalized logistics curve. For example, the IFDs that result from the transformation

functions depicted in Figure 6.8(b) di�er drastically depending on whether we have

νi ∈ [−1, 1] or if we instead have νi ∈ [−6, 6]. In the latter case, the majority of

potential feature values are close to zero or one for the green line, while for the blue line

this is true for a smaller portion. In contrast, for νi ∈ [−1, 1] most values of the blue
line are between about [0.25, 0.75] rendering our desired smallest and largest deviation

ψmin and ψmax pointless. Therefore, when using the generalized logistics function, we

do not scale the feature vector between zero and one as we did previously for the linear,

step and GRelU function.

Instead, for a given function Ψ, we scale the feature vector such that it has a desired

output for certain inputs. To this end, we set

Ψ
(
νi, ψmin, ψmax, ϕ1, ϕ2, ϕ3

)
= ℵ′, (6.27)

and solve for νi resulting in the inverse function of Ψ, i.e.,

Ψ−1
(
ℵ′, ψmin, ψmax, ϕ1, ϕ2, ϕ3

)
=

1

ϕ2
ln

(
ϕ1(

ψmin−ψmax

ψmin−ℵ′

)ϕ3
− 1

)
. (6.28)

While Ψ maps a certain feature value νi to a bound ℵi, the inverse function Ψ−1 maps a

given bound ℵ′ to the corresponding feature value ν ′. Due to the asymptotic nature of
the logistic function it has to hold that ℵ′ ∈ (ψmin, ψmax), i.e., ℵ′ has to be in-between
but not equal to the limits of the generalized logistics functions of Equations (6.24)

and (6.25). However, we want to ensure that the smallest and largest feature values are

mapped to the actual desired values of ψmin, ψmax. To this end, we de�ne

νmin = Ψ−1
(
ℵ′ = ψmin + ζ, . . .

)
, (6.29)

νmax = Ψ−1
(
ℵ′ = ψmax − ζ, . . .

)
, (6.30)
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with ζ being an arbitrary small number greater zero. Note that now the lower and

upper limit of this function are ψmax − ζ and ψmax + ζ. With regard to the scaling of

the feature vector, νmin is the smallest and the νmax is the largest value of the interval

onto we scale ν, i.e., it holds that ν̌i ∈ [νmin, νmax] ∀ i = 1 . . . , N . If a larger feature

value is more favorable we use

ν̌ =
ν − νmin

νmax − νmin
, (6.31)

and if the smallest feature value is most favorable we instead use

ν̌ =
νmax − ν

νmax − νmin
. (6.32)

As a result, for any given speci�cation of Ψ
(
νi, ψmin, ψmax, ϕ1, ϕ2, ϕ3

)
, we create a scaled

feature vector ν̌ such that the forecast with the least favorable feature value has an IFD

of ℵi = ψmin + ζ and the forecast which has the most favorable feature value has

ℵi = ψmax − ζ. Henceforth, we use ζ = 10−6.

With this design we can achieve the actually desired smallest and largest deviations

ψmin and ψmax by a slight modi�cation of Equation (6.26). We simply use the trans-

formation function Ψ
(
νi, ψ̌min, ψ̌max, ϕ1, ϕ2, ϕ3

)
with

ψ̌min = ψmin − ζ, (6.33)

ψ̌max = ψmax + ζ. (6.34)

In summary, to properly design and use the generalized logistic function as a trans-

formation function, we need to adjusted the values for the smallest and largest de-

viation, ψ̌min and ψ̌max and scale the feature vector accordingly to ν̌i ∈ [νmin, νmax]

∀ i = 1 . . . , N . As a result, the transformation function Ψ maps the smallest and largest

feature value to the actually desired IFDs, i.e., min(ℵ) = ψmin and max(ℵ) = ψmax

respectively.

Concluding Remarks Due to the many di�erent possible parameter combinations of

ϕ1, ϕ2 and ϕ3, using the generalized logistics functions opens up a variety of di�erent

transformation functions with di�erent properties. This, however, comes with a prob-

lem. First, �nding the right combination of ϕ1, ϕ2 and ϕ3 such that the transformation

function has the desired properties on the desired range of inputs. Second, it is not

straightforward to ensure that the smallest and largest deviation are actually part of

the IFB ℵℵℵ. We solved this by scaling the feature values di�erently and use adjusted

smallest and largest deviations (ψ̌min, ψ̌max).

There is, however, a disadvantage when using the generalized logistic function. The

number of parameters (ψ̌min, ψ̌max, ϕ1,ϕ2 and ϕ3) leads to a substantial increases in
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the number of scenarios to evaluate if cross-validation is used. For each additional

candidate value of any parameter that has be considered (for example ϕ1), the number

of additional scenarios increases by the product of all candidate values for all other

parameters. As a consequence, a large number candidate values for each parameter

value is impractical or even infeasible. Therefore, the choice of candidate values for

each parameter has to be well curated and, by that, it depends on prior believes.

The generalized logistics function as a transformation function enables us to create

a variety of functions. Generally speaking, they are less sensitive to di�erences in the

feature values of forecasts close to the most unfavorable or favorable feature value.

Simultaneously, they are more sensitive to small changes in the feature values for fore-

casts that are closer to the middle of potential feature values. As a result, forecasts

with comparable, unfavorable feature values get similar IFDs close to ψ̌min. This ap-

plies accordingly if the feature values of forecasts have comparable, favorable feature

values with similar IFDs close to ψ̌max. For forecasts that have feature values neither

close to the most unfavorable nor favorable possible feature values the IFDs are more

dissimilar.

6.1.3 Forecast Features

For our proposed approach of forecast combination with individualized feature bounds,

we assumed that there is a feature vector ν that contains feature values νi for all

forecasts i = 1, . . . , N . We de�ned νi = ξ(yi) in Equation (6.6), i.e., the feature value is

calculated based on the forecasts themselves. In general, one can use di�erent functions

ξ to create the feature vector. For example, one could also consider the in-sample

forecast as a time series and calculate time series characteristics for it. However, within

this thesis and section we focus on three functions of ξ. To this end, we �rst consider

forecast accuracy measures in Section 6.1.3.1. Then, we take a look at forecast diversity

in Section 6.1.3.2. Lastly, in Section 6.1.3.3 we combine both accuracy and diversity to

a new feature.

6.1.3.1 Forecast Accuracy

For the evaluation of forecast accuracy or performance a variety of measures can be

used, each with its advantageous and disadvantageous. They are based on the forecast

error �rst mentioned in Chapter 2. Recall that the forecast error for any forecast

i = 1 . . . , N is de�ned as εt,i = yt − ŷt,i for each point in time t = 1, . . . , τ . Hyndman
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and Koehler (2006) provide an extensive overview of popular forecast accuracy measures

that includes, inter alia, the46

Mean Absolute Error (MAE) = mean(|εt,i|), (6.35)

Mean Squared Error (MSE) = mean(ε2t,i), (6.36)

Mean Absolute Percentage Error (MAPE) = mean

(
100
|εt,i|
yt

)
. (6.37)

The MSE is a commonly used measure that squares the forecast errors and, by that, is

more sensitive to outliers. In contrast, the MAE weights each forecast error equally, no

matter the size of the deviation. Both the MAE and MSE are scale-dependent accuracy

measures, i.e., they have the same scale and, in case of the MAE, unit as the data.

Scale-dependent measures can be used for comparing the accuracy of di�erent models

based on the same data. However, as soon as times series or data with di�erent scales

are used, scale-dependent measures are not sensible for comparison.

In that case, accuracy measures based on percentage errors can be used, e.g., the

MAPE. However, if the time series consists of small values, i.e., the absolute error is

divided by a small number yt, its distribution becomes skewed. Even more problematic,

the MAPE can not be used if the time series or data includes zero values as it becomes

unde�ned. An example where this can become a problem is for intermittent demand

(Hyndman & Koehler, 2006; Kim & Kim, 2016).

Accuracy measures also can be based on relative errors. To this end, each forecast

error εt,i is divided by another forecast error from a benchmark method. Based on the

same idea one can use relative accuracy measures. In that case the forecast accuracy

measure, for example the MSE, of one method is divided by the same forecast accuracy

measure of another benchmark method. Both types of accuracy measures are scale-

independent.

Lastly, Hyndman and Koehler (2006) proposed themean absolute scaled error (MASE)

which scales the forecast error by the in-sample MAE from the naive forecast, i.e.,

ŷt = yt−1. It is a scale-independent accuracy measure, and it overcomes the problems of

relative errors and relative accuracy measures, like for example the necessity of multiple

out-of-sample forecast in order to be able to compute them. For more details on forecast

accuracy measures see Hyndman and Koehler (2006) as well as Kim and Kim (2016).

Although there multiple potential forecast accuracy measure that can be used, we

will, henceforth, focus on the MSE. It is an accuracy measure that is a commonly used

and well-known. Also, the disadvantage of incomparability between di�erent time series

is not a factor. We use the MSE to de�ne bounds for our forecast combination problem,

46First, note that instead of the mean, the median is also used. Second, we use the following di�erent
style of notation for the accuracy measures to be in line with the mentioned work by Hyndman and
Koehler (2006).
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i.e., we compare the MSE of a forecast only with other MSE values of forecasts of the

same time series. Moreover, the very objective of the original forecast combination

problem of Equation (2.22) is to minimize error variance of the combined forecast,

i.e., its in-sample MSE loss. Lastly, Elliott and Timmermann (2004) showed that the

optimal weights under the MSE loss are optimal for a variety of loss functions as long the

forecast errors follow an elliptically symmetric distribution (Elliott and Timmermann

2016, pp. 313-315; Elliott and Timmermann 2004).

6.1.3.2 Forecast Diversity

Beside the forecast accuracy, there is another measure that is considered with increasing

interest when it comes to forecast combination: diversity (see e.g., J. M. Bates &

Granger, 1969; Kang, Cao, Petropoulos, & Li, 2022; Thomson et al., 2019; Wang et

al., 2023). To emphasize the importance and usefulness of diversity, we make a short

excursion into the literature.

Diversity in Combinations In Krogh and Vedelsby (1994) diversity appears for ensem-

bles of neural networks. This means, that di�erent neural networks are trained. Their

forecasts are then combined using, for example, the simple average in case of a re-

gression problem. Krogh and Vedelsby (1994) argue, that members of an ensemble or

forecasts should have as much disagreement or diversity as possible among them to pro-

vide better results. At about the same time in the context of more traditional forecast

combination, Batchelor and Dua (1995) found that combinations that consist of more

diverse forecasts improve the accuracy, especially if number of forecasts is small. The

usefulness of diverse forecast was also identi�ed by Lichtendahl and Winkler (2020) in

the context of the M4 Competition (Makridakis et al., 2018, 2020). Recently, Kang et

al. (2022) introduced an approach that is based upon FFORMA. Recall, that FFORMA

is a meta-learning approach that uses characteristics of historical time series data to

determine weights for a given pool of forecasts, and it placed second in the M4 com-

petition. In contrast, the approach by Kang et al. (2022) uses diversity measures and,

by that, achieves a comparable accuracy to FFORMA (Kang et al., 2022; Wang et al.,

2023; Wang, Kang, Petropoulos, & Li, 2022). Lastly, in Wang, Kang, Petropoulos, and

Li (2022) they propose a trimming algorithm that chooses a subset of forecasts based

on both accuracy and diversity.

One way to measure the diversity of a set of forecasts is the forecast error correlation.

A smaller correlation implies less similarity, i.e., more diversity (Lichtendahl & Winkler,

2020). Atiya (2020) analyzed the variance of the combined forecast, i.e., V (ŷc) =

E[(ŷc − E(ŷc))
2], in the presence of a non-negativity constraint for each weight, i.e.,
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PW presented in Equation (2.30). They showed theoretically that for the variance of

the combined forecast with non-negative weights it holds that

V (ŷc) ≤
N∑
i=1

ωiσ
2
i − 2

N∑
i=1

N∑
j=i+1

ωiωj(1− ρij)σiσj . (6.38)

The �st part of the right-hand-side is the weighted average of the individual forecasts

variances, i.e., their forecast accuracy. The second term is always non-negative. First,

a non-negativity constraint is imposed, i.e., weights are non-negative. Second, a cor-

relation is by de�nition between negative and positive one, i.e., (1 − ρij) is always

non-negative. Third, the individual standard deviations are, by de�nition, positive.

Accordingly, the smaller the correlation among forecasts, the larger the reduction in the

variance of the combined forecast ceteris paribus (Atiya, 2020; Wang, Kang, Petropou-

los, & Li, 2022).

Although, the correlation is a measurement for the diversity among forecasts, there

are potential problems depending on the use case. For example, if we want to use

the forecasts correlations within forecast combination approach with individual feature

bounds, we would have to average the correlations of forecast i with all other forecasts

j = 1, . . . , N with j ̸= i to come up with a single feature value. However, correlations

are not additive and, thus, this is not sensible (Wang, Kang, Petropoulos, & Li, 2022).

Another way to address the diversity of two forecasts was introduced by Thomson

et al. (2019) who de�ne a measure of coherence. It is a measurement that indicates

the diversity of two forecasts. The Mean Squared Error for Coherence (MSEC) of two

forecasts i, j ∈ {1 . . . , N} with i ̸= j over the in-sample training set t = 1, . . . , τ is

given by

MSECi,j =
1

τ

τ∑
t=1

(ŷi,t − ŷj,t)2. (6.39)

If two forecasts make the same predictions, the MSEC is zero. Otherwise, the larger

the MSEC, the more diverse two forecasts.

The same measurement is considered by Kang et al. (2022) who showed that the MSE

of a combined forecast can be written as the following MSE decomposition:47

MSEc =
1

τ

τ∑
t=1

[ N∑
i=1

ωiŷi,t − yt
]2
, (6.40)

=
1

τ

τ∑
t=1

[
N∑
i=1

ωi(ŷi,t − yt)2 −
N−1∑
i=1

N∑
j>i

ωiωj(ŷi,t − ŷj,t)2
]
, (6.41)

47Note that Thomson et al. (2019) have a similar formula under the assumption of equal weights.
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=
N∑
i=1

ωiMSEi −
N−1∑
i=1

N∑
j>i

ωiωjMSECi,j . (6.42)

Accordingly, it consists of an accuracy term and a diversity term. The former is the

weighted sum of the individual forecast accuracies. The latter term is also weighted by

the individual weights, but it is based on a diversity or coherence measure. If all forecasts

are perfectly correlated, i.e., there is no diversity because they have identical forecasts,

the MSE of the combined forecast is identical to the weighted sum of the individual MSE

values. If however, there is a certain diversity within the set of forecasts, the combined

MSE becomes smaller than the weighted average of the individual MSE values (Kang

et al., 2022; Wang, Kang, Petropoulos, & Li, 2022). Importantly, in comparison to the

theoretical results from Atiya (2020) shown in Equation (6.38), this is not limited to

the forecast combination problem with a non-negativity constraint.

The results from Kang et al. (2022) shows that a larger diversity within a set of fore-

cast, i.e., a larger MSEC, leads to a better forecast accuracy of the combined forecasts.

However, we want to emphasize that it holds ceteris paribus. Of course, one can not

simply include forecast with an extremely large di�erence in their predictions to increase

the MSEC. In that case the individual forecast accuracies decrease and, by that, the

overall accuracy can decrease. It is a trade-o� between the individual forecast accuracy

and the diversity of forecasts, i.e., the �rst and second part of Equation (6.42).

Diversity as a Feature Based on the previous insights, we include diversity as a feature.

To this end, we use the MSEC of Equation (6.39). One might argue that within

forecast combination we use the forecast errors to determine the weights and, therefore,

the diversity of forecast errors (ε) has to be used instead of the diversity of forecasts

(ŷ). However, it holds that

MSECi,j =
1

τ

τ∑
t=1

(ε̂i,t − ε̂j,t)2, (6.43)

=
1

τ

τ∑
t=1

(yt − ŷi,t − yt + ŷj,t)
2, (6.44)

=
1

τ

τ∑
t=1

(ŷi,t − ŷj,t)2. (6.45)

If forecasts errors are used, the actual values yt cancel out. Therefore, in case of the

MSEC forecasts or forecast error lead to the same result.
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To use the MSEC as feature values νi, we calculate it for each forecast i with each

other forecast j = 1, . . . , N with j ̸= i and then average it, i.e.,

AvgMSECi =
1

N − 1

N∑
j=1,j ̸=i

MSECi,j i = 1, . . . , N. (6.46)

With νi = AvgMSECi we have a measurement of how diverse forecast i is on average

in comparison to all other candidate forecasts. In the context of forecast combination

with IFBs: a more diverse forecast will be less constrained.

6.1.3.3 Accuracy and Diversity

From the MSE decomposition shown in Equation (6.42) it became clear that the fore-

cast accuracy of the combined forecast is in�uenced by both forecast accuracy of all

individual forecast and their diversity.

Weights within the forecast combination framework are determined by the same logic.

The objective is to minimize the error variance of the combined forecast. It is a function

of both the weighted individual error variances of the forecast, i.e., a measure of accu-

racy, and the weighted covariances, a measure of diversity. For an example, recall the

error variance of the two forecast scenario in Equations (2.17) and (2.18). Accordingly,

a problem is that neither the individuals MSE nor their AvgMSEC capture all factors

that in�uence the forecast accuracy of the combined forecast. We will nevertheless use

them and argue that imposing constraint based on either the MSE or AvgMSEC sets

more emphasis on either the forecast accuracy or diversity.

However, we also want to create a feature that incorporates both the MSE and AvgM-

SEC, i.e., accuracy and diversity. To this end, we simply calculate the scaled feature

values νi for all forecasts �rst based on the MSE, ν̃MSE
i , and second based on the AvgM-

SEC, ν̃AvgMSEC
i such that a feature value of one represent the most favorable feature

value. With respect to the MSE it is the smallest MSE of all forecasts, i.e., the most

accurate forecast. With respect to AvgMSEC it the largest value, i.e., the most diverse

forecast (on average).

For each forecast i = 1 . . . , N we de�ne

νAccDivi =
ν̃MSE
i + ν̃AvgMSEC

i

2
, (6.47)

which is the average of ν̃MSE
i and ν̃AvgMSEC

i . Lastly, we again scale νAccDivi . As a

result, we have the scaled feature values ν̃AccDivi that are de�ned between zero and one.

They are a measure of both accuracy and diversity. It works accordingly, if ranks of

feature values are used.
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Another possible measure for accuracy and diversity could be decomposed MSE of

Equation (6.42). However, it depends on the weighted MSE and MSEC of a whole

pool of forecast. In this thesis, we will use νAccDiv of Equation (6.47). Nevertheless,

we provide additional options within Appendix C to inspire future research to evaluate

other feature values that simultaneously consider accuracy and diversity.

6.1.4 Summary and Discussion

We propose a way to constraint and thereby combined forecasts: individual feature

bounds. Forecasts weights are constrained individually based on feature values or char-

acteristics of them.

The IFB restricts each weights to be within a certain interval. These intervals are

determined as deviations from prior weights. To this end, we use the individual fea-

ture deviation IFD ℵ. To determine the IFDs, we use a scaled feature value for each

forecast. It is then transformed by a transformation function Ψ (Section 6.1) into the

IFD. For the transformation function Ψ we can use multiple functions. We introduced

a linear function (Section 6.1.2.1), a step function (Section 6.1.2.2), a generalized ver-

sion of the RelU function (Section 6.1.2.3) and a generalized version of the logistic

function (Section 6.1.2.4). For all transformation functions we can de�ne the smallest

and largest deviation that they are supposed to have. Moreover, additional parameters

have to be de�ned that determine the appearance or shape of the transformation func-

tion. Thereby, we can impose certain behaviors like, for example, a form of variable

selection or control the sensitivity of Ψ for di�erent ranges of potential feature values

(Section 6.1.2). There are many transformation functions that can be designed that

way. Therefore, we need to pick which transformation function and candidate values

for their input parameters we want to consider. Otherwise, it becomes impractical

to calculate and evaluate result for each combination of transformation function and

candidate inputs parameters.

Therefore, in this thesis we only consider the step transformation function with Υ = 2

and GRelU with ν̌ = 0.5 for the transformation functions. To understand why we choose

the step function, recall that for the BW we used universal lower and upper bounds.

The step function with Υ = 2 basically, enables us to analyze a setup where we have

two di�erent lower and upper bounds for a subset of forecasts. Additionally, with the

step function we can perform a variable selection to the prior weights, including zero.

We decided to use the GRelU, because, it can also perform the same variable selection.

Additionally, by that we can impose a common bound for a set of forecasts and then

constrain the resulting forecasts based on their feature values linearly. In other words,

we extend the step function with Υ = 2 by replacing the second universal bound by a

linear increasing one. For GRelU we use the threshold ν̌ = 0.5, i.e., for ranked feature
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values half of the forecast have a common bound while the other forecasts with more

favorable feature values are constraint individually.

For both the step and GRelU transformation function, we use the actual feature values

and ranked feature values. For the feature values we use both the MSE and AvgMSEC,

i.e., measures for accuracy and diversity. Additionally, we consider the feature we

proposed Equation (6.47), that considers both accuracy and diversity together.

Henceforth, we will refer to the general idea of the presented methods as Individual

Feature Bounds (IFB). This includes both with and without prior weights. If we use

the Individual Feature Bounds without prior weights we refer to it as IFB(·). If prior
weights are used, we denote that by IFB(ω̇). If we consider a particular prior weights,

we replace ω̇ with the notation for that prior weight, e.g., IFB(ωE2).

6.2 Application: Simulation Study

In this section we analyze and compare the forecast accuracy of the forecast combi-

nation methods discussed in this chapter. To this end, we use the simulation study

presented in Section 3.2. For a brief summary of scenarios and, in particular, forecast

error correlation matrices see Sections 3.2.2.2 and 3.2.3. The analysis follows the same

structure as the analysis in both Sections 4.3 and 5.3, i.e., we use the same tools and

�gures. For a more detailed overview as well as introduction into tables and �gures, the

reader is referred to the simulation study in Chapter 4.

In this section we �rst consider an ex post analysis in Section 6.2.1. In the ex post

analysis, we choose the one best combination of hyperparameters for each test set ex

post. In Section 6.2.2 we consider the results of the out-of-sample analysis. In the out-of-

sample analysis, we estimate the best hyperparameter combination for each observation

in the test set by cross-validation. To this end, we use a rolling window of size 40 and

the last ten observations are used as a validation set.

Candidate Values for Hyperparameters For forecast combination with individual fea-

ture bounds there are many hyperparameters we need to de�ne or estimate. We can

choose the transformation function Ψ, the features (or rather their function) we eval-

uate forecasts on ν, and the smallest and largest feature deviation (ψmin, ψmax). We

can choose those separately for the individual lower and upper bounds. Additionally,

there are between zero and three additional arguments that are required depending on

the transformation function. As a result, the number of candidate tuples of hyperpa-

rameters can get very large fast and, thus, it is very computational demanding.
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Therefore, we limited the number of candidate hyperparameter values to evaluate as

follows:

� smallest deviation: ψmin ∈ {0, 0.1, 0.2, 0.3}, see Section 6.1.1.

� largest deviation: ψmax ∈ {ψmin + 0.1, ψmin + 0.2, ψmin + 0.3}, see Section 6.1.1.

� transformation function: Ψ ∈ {step,GRelU}, see Sections 6.1.2.2 and 6.1.2.3.

� feature: ξ() ∈ {MSE,AvgMSEC,AccDiv}, see Equations (2.2), (6.46) and (6.47).

� feature values: ν ∈ {ranked,not ranked}, see Section 6.1.1.

It is important to note that we have to limit the hyperparameter values that we consider.

For ψmin and ψmax, we believe that the added value of very large weights is limited

and concentrate on smaller weights that are closer to the prior weights. Evidence that

supports this, is the good forecasting performance of the PW method. By design, it

limits each weight to be at most equal to one. It has noticeably better forecasting

performance than OW, see for example the result in Tables 4.1 and 4.2. We decided to

de�ne the largest deviation ψmax relative to the lower deviation as it prevents infeasible

constellations where ψmax < ψmin most e�ectively.

For a more detailed discussion on why we chose the step and GRelU, see again the

concluding remarks in Section 6.1.2.4. With respect to the features, we use measures for

the accuracy, diversity as well as the combination of them that we proposed. Thereby,

we can analyze the value each feature provides. Lastly, we use both ranked and the

actual feature values. By that, we can have constraints that are driven by the raw

feature values which can be distributed far from equally. In contrast, for ranked feature

values the feature are distributed equally and, therefore, the individual feature bounds

are distributed along the range of result provided by the transformation function.

We evaluate the hyperparameter values listed above individually for both the lower

and upper individual feature bound. As a result, for both the ex post and out-of-sample

analysis we evaluate 1728 unique setups of hyperparameters.

6.2.1 Ex Post Analysis: Individual Feature Bounds

In this section we discuss the result of forecast combination with individual feature

bounds with respect to all scenarios in Section 6.2.1.1. Thereafter, we consider the

results with respect to the error correlations, error variance similarity, and special groups

in Section 6.2.1.2.

Forecast combination with individual feature constraint is related to bounded weights

as we discussed in Section 6.1. Both methods constraint weights by imposing lower and

upper bounds, however, in case of Individual Feature Bounds the bounds are individual

for each weight. Because they are related, we will also consider the following results of

Individual Feature Bounds in relation to Bounded Weights.
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6.2.1.1 Ex Post Analysis: Overall Results

Tables 6.1 and 6.2 present the results for each scenario of the simulation study. To

this end, we calculated the average MSE over all test sets scenario-wise. It is designed

similar to Tables 4.1, 4.2, 5.3 and 5.4.

CM z SG EW PW OW IL IFB(·)
IFB(ω̇)

ωE2 ωE3 ωIL

1 0.05

none 0.98 0.97 2.11 0.98 0.86 0.86 0.86 0.86

�rst 0.97 0.93 1.89 0.96 0.81 0.81 0.81 0.81

last 1.01 0.99 2.04 1.00 0.85 0.85 0.85 0.85

both 0.97 0.93 1.75 0.96 0.77 0.77 0.77 0.77

1 0.20

none 1.16 0.92 1.03 1.12 0.50 0.49 0.49 0.50

�rst 1.12 0.73 0.52 1.04 0.25 0.24 0.24 0.24

last 1.24 0.95 0.84 1.18 0.40 0.39 0.39 0.39

both 1.15 0.72 0.45 1.05 0.22 0.21 0.21 0.21

1 0.50

none 1.53 0.80 0.42 1.33 0.20 0.19 0.19 0.20

�rst 1.38 0.30 0.09 0.85 0.04 0.04 0.04 0.04

last 1.64 0.82 0.35 1.38 0.17 0.16 0.16 0.16

both 1.46 0.30 0.08 0.85 0.04 0.04 0.04 0.04

2 0.05

none 0.56 0.62 1.37 0.56 0.53 0.55 0.55 0.53

�rst 0.56 0.62 1.34 0.56 0.52 0.54 0.54 0.52

last 0.57 0.64 1.37 0.57 0.54 0.56 0.55 0.54

both 0.57 0.63 1.35 0.57 0.53 0.55 0.55 0.53

2 0.20

none 0.68 0.68 1.42 0.66 0.58 0.58 0.58 0.58

�rst 0.64 0.56 1.11 0.60 0.47 0.48 0.47 0.48

last 0.68 0.66 1.31 0.65 0.55 0.54 0.54 0.55

both 0.66 0.54 1.00 0.60 0.44 0.44 0.44 0.44

2 0.50

none 0.87 0.64 1.10 0.76 0.50 0.49 0.49 0.50

�rst 0.80 0.26 0.35 0.49 0.18 0.18 0.18 0.17

last 0.96 0.66 1.05 0.81 0.48 0.48 0.48 0.48

both 0.83 0.26 0.33 0.49 0.17 0.17 0.17 0.17

3 0.05

none 0.25 0.32 0.63 0.26 0.26 0.27 0.27 0.25

�rst 0.25 0.31 0.63 0.25 0.25 0.26 0.26 0.24

last 0.25 0.32 0.63 0.25 0.26 0.27 0.27 0.25

both 0.25 0.32 0.64 0.25 0.25 0.27 0.26 0.24

3 0.20

none 0.30 0.36 0.71 0.30 0.29 0.30 0.30 0.29

�rst 0.29 0.32 0.63 0.27 0.26 0.27 0.26 0.26

last 0.30 0.36 0.71 0.29 0.28 0.29 0.29 0.28

both 0.30 0.32 0.61 0.27 0.25 0.26 0.26 0.26

3 0.50

none 0.40 0.39 0.75 0.35 0.31 0.32 0.32 0.32

�rst 0.35 0.19 0.35 0.22 0.16 0.17 0.18 0.17

last 0.43 0.40 0.76 0.36 0.32 0.33 0.32 0.33

both 0.37 0.20 0.36 0.22 0.16 0.17 0.18 0.17

Table 6.1. Simulation study results of benchmark and Individual Feature Weights
methods forecast combination methods for correlation matrices CM1, CM2 and CM3
(ex post analysis). The table depicts the MSE of the forecast combination method. The
methods with the smallest MSE are depicted in bold numbers.
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CM z SG EW PW OW IL IFB(·)
IFB(ω̇)

ωE2 ωE3 ωIL

4 0.05

none 0.63 0.69 1.57 0.63 0.60 0.63 0.63 0.61

�rst 0.65 0.70 1.61 0.65 0.61 0.64 0.64 0.62

last 0.66 0.72 1.64 0.66 0.62 0.65 0.65 0.63

both 0.64 0.68 1.59 0.63 0.60 0.62 0.62 0.60

4 0.20

none 0.79 0.78 1.78 0.76 0.70 0.71 0.70 0.70

�rst 0.73 0.67 1.48 0.68 0.60 0.60 0.60 0.60

last 0.80 0.78 1.74 0.77 0.70 0.70 0.70 0.70

both 0.77 0.68 1.51 0.70 0.61 0.61 0.61 0.61

4 0.50

none 1.03 0.79 1.50 0.91 0.68 0.68 0.68 0.68

�rst 0.90 0.30 0.45 0.56 0.26 0.26 0.26 0.26

last 1.10 0.79 1.47 0.93 0.69 0.68 0.68 0.70

both 1.02 0.31 0.46 0.60 0.27 0.26 0.27 0.27

5 0.05

none 0.44 0.40 0.84 0.45 0.33 0.36 0.36 0.34

�rst 0.44 0.40 0.85 0.45 0.33 0.36 0.36 0.35

last 0.44 0.41 0.88 0.46 0.34 0.37 0.36 0.35

both 0.43 0.41 0.87 0.45 0.34 0.36 0.36 0.35

5 0.20

none 0.51 0.51 1.06 0.54 0.43 0.45 0.45 0.43

�rst 0.48 0.49 0.98 0.50 0.42 0.43 0.42 0.41

last 0.52 0.54 1.13 0.56 0.47 0.48 0.48 0.46

both 0.49 0.53 1.06 0.51 0.45 0.46 0.45 0.44

5 0.50

none 0.67 0.66 1.21 0.69 0.57 0.57 0.57 0.55

�rst 0.56 0.31 0.42 0.45 0.27 0.26 0.27 0.26

last 0.66 0.67 1.22 0.68 0.58 0.58 0.58 0.56

both 0.59 0.33 0.44 0.46 0.29 0.28 0.28 0.27

6 0.05

none 0.79 0.63 1.39 0.77 0.54 0.56 0.56 0.55

�rst 0.78 0.60 1.32 0.75 0.51 0.53 0.53 0.52

last 0.80 0.63 1.37 0.78 0.54 0.56 0.55 0.55

both 0.80 0.61 1.30 0.77 0.52 0.53 0.53 0.53

6 0.20

none 0.97 0.64 1.16 0.89 0.49 0.49 0.50 0.49

�rst 0.94 0.52 0.95 0.81 0.41 0.40 0.40 0.41

last 1.02 0.64 0.96 0.91 0.43 0.43 0.43 0.43

both 0.97 0.51 0.80 0.81 0.36 0.35 0.35 0.35

6 0.50

none 1.28 0.61 0.85 1.02 0.38 0.37 0.38 0.38

�rst 1.22 0.26 0.42 0.62 0.19 0.18 0.18 0.18

last 1.39 0.62 0.69 1.05 0.31 0.30 0.30 0.31

both 1.31 0.26 0.38 0.62 0.17 0.16 0.16 0.17

Table 6.2. Simulation study results of benchmark and Individual Feature Weights
methods forecast combination methods for correlation matrices CM4, CM5 and CM6
(ex post analysis). The table depicts the MSE of the forecast combination method. The
methods with the smallest MSE are depicted in bold numbers.

The result immediately show that forecast combination with individual feature con-

straints improves the forecast accuracy in comparison to the benchmark methods.

The percentages of how often each method has, potentially among others, the smallest

MSE, the average rank and distances are shown in Table 6.3 similar to Tables 4.3
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EW PW OW IL IFB(·)
IFB(ω̇)

ωE2 ωE3 ωIL

Smallest MSE (%) 2.78 0.00 0.00 1.39 61.11 47.22 47.22 62.50

Avg Rank 6.58 5.71 7.34 5.98 2.37 2.94 2.87 2.22

Avg Distance 0.35 0.14 0.58 0.25 0.00 0.01 0.01 0.00

Table 6.3. Key �gures for the MSE values of benchmark and Individual Feature
Bounds methods over all simulation study scenarios (ex post analysis). Smallest MSE
(%) - Percentage of scenarios for which the method has the smallest MSE, potentially
among others. Avg Rank - Average rank of a method where a smaller rank is favorable.
Avg Distance - Average distance or di�erence in MSE the method and best method
scenario-wise. The method with the most favorable value are depicted in bold numbers.
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EW PW OW IL IFB(.) IFB(E2) IFB(E3) IFB(IL)

Figure 6.9. Boxplot of ranks across benchmarks and Individual Feature Bounds meth-
ods for the ex post analysis.

and 5.5.48 Overall, both IFB(·) and IFB(ω̇IL) have the smallest MSE for a majority of

scenarios (61.11% and 62.50% respectively). Using the other shrinkage directions ω̇EW2

and ω̇EW3 has the smallest MSE for 47.22% of scenarios. They are oftentimes but not

always the best method for the same scenarios.

With respect to the ranks of the methods, IFB(·) and IFB(ω̇IL) have the smallest

average ranks. Their general superiority becomes evident when considering Figure 6.9.

It shows a boxplot of ranks across all scenarios.

Although, the methods have similar average and also median ranks (black horizontal

bar in the boxplot), the middle 50% of IFB(ω̇IL) have a noticeably smaller range of

values. Accordingly, it has lower ranks more regularly. For 75% of scenarios, its rank is

at most 2.5. Beside the small average rank of IFB and IFB(ω̇IL) they have an average

distance of zero to the best method of zero. Although, this is somewhat expected as they

48A comparison of average ranks with the results in Chapters 4 and 5 is not sensible as they depend
on the number of methods considered.
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are the best method oftentimes, it nevertheless shows their consistently good forecast

performance.49

Overall all Individual Feature Bounds methods have a superior forecast accuracy

compared to the benchmarks. IFB(·) and in particular IFB(ω̇IL) are the favorable

approaches.

If we consider the Individual Feature Bounds methods as a whole, i.e., both IFB(·)
and IFB(ω̇), for all but two scenarios (CM3/0.05/none and CM3/0.05/last) at least

one IFB method has the strictly smallest MSE value.

6.2.1.2 Ex Post Analysis: Groups of Scenarios

After evaluating the overall results of the forecast combination methods in the previous

section, we now analyze the results with respect to error correlation matrices, error

variance similarities and special groups. Table 6.4 shows how often each method has,

potentially among others, the smallest MSE for each correlation matrix.

EW PW OW IL IFB(·)
IFB(ω̇)

ωE2 ωE3 ωIL

CM1 0.00 0.00 0.00 0.00 50.00 100.00 100.00 83.33
CM2 0.00 0.00 0.00 0.00 75.00 50.00 58.33 75.00

CM3 16.67 0.00 0.00 8.33 66.67 0.00 16.67 58.33
CM4 0.00 0.00 0.00 0.00 83.33 58.33 58.33 58.33
CM5 0.00 0.00 0.00 0.00 41.67 8.33 0.00 66.67

CM6 0.00 0.00 0.00 0.00 50.00 66.67 50.00 33.33

Table 6.4. Percentage of scenarios for which benchmarks and Individual Feature
Bounds methods have the smallest MSE with respect to the error correlation matrix
(ex post). The total number of scenarios for each correlation matrix is twelve. The
methods with the highest percentages for each correlation matrix are depicted in bold
numbers.

Overall, only EW and IL have the smallest MSE for some scenarios (CM3 - small

error correlations 0.2). The results show that the two best methods overall (IFB(·) and
IFB(ω̇IL)) do not have a particular error correlation for which they are not suited for.

However, they are the best methods least often for CM5 and CM6 respectively. Recall

that in CM5 the better a group of forecast is, the higher its error correlation is and

for CM6 the best forecasts have a medium error correlation (0.5) while all others have

highly correlated forecast errors (0.9). With respect to their average ranks, they are

quite consistent across all error correlation matrices. The only exception is IFB(ω̇IL).

It has a signi�cantly smaller rank for CM5, see Figure 6.10.

49For comparison, in the out-of-sample analysis in Section 5.3.2, the PW approach was similarly
often the best method as IFB(ω̇EW2) from the ex post analysis of this chapter. However, the average
distance of PW was 0.07 while here IFB(ω̇EW2) has an average distance of 0.01, see Tables 5.10 and 6.3.
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Figure 6.10. Illustration of average ranks and distances of the benchmarks and Indi-
vidual Feature Bounds methods for di�erent correlations matrices (ex post analysis).

Interestingly, the shrinkage directions we proposed to use ω̇EW2 and ω̇EW3 (Condi-

tional Group Equal Weights) have quite di�erent results compared to ω̇IL. For com-

parison, for Bounded Weights (BW) the result of the prior weights are more similar,

see Table 5.6 and Figure 5.8. The di�erence is most noticeably both in Figure 6.10.

IFB(ω̇EW2) and IFB(ω̇EW3) have the smallest MSE for none, one or two scenarios for

CM3 and CM5. In contrast, IFB(ω̇IL) is the best method for more than half of these

scenarios and has noticeably better ranks. However, similar to the result from Bounded

Weights, IFB(ω̇EW2) and IFB(ω̇EW3) are noticeably the best method for highly corre-

lated forecasts errors (CM1) and even mostly favorable for CM6.

Table 6.5 shows how often each method has the smallest MSE with respect to the error

variance similarities and special groups (rows). To complement the analysis Figure 5.9

depicts the average ranks and distance to the best method scenario-wise. For IFB(·)
we see similar results as for BW(·) when considering the error variance similarity. For

both IFB(·) and BW(·) we see that they have less often the smallest MSE as forecasts

have more diverse or dissimilar error variance, i.e., forecasting performances. Shrinkage

towards prior weights again is more often superior as forecasts become more diverse

with respect to their error variance, see Tables 5.7 and 6.5. However, again IFB(ω̇IL)

does not follow the same pattern. For both z = 0.05 and z = 0.50 it has, among other

methods, the smallest MSE for about half of scenarios. However, for z = 0.20 is has

the smallest MSE for 19 out of 24 scenarios.

Comparing again IFB(·) and BW(·), BW(·) is more often the best method with

respect to the error variance similarity compared to IFB(·), the opposite is true if prior
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EW PW OW IL IFB(·)
IFB(ω̇)

ωE2 ωE3 ωIL

z = 0.05 8.33 0.00 0.00 4.17 83.33 16.67 16.67 54.17
z = 0.20 0.00 0.00 0.00 0.00 58.33 58.33 66.67 79.17

z = 0.50 0.00 0.00 0.00 0.00 41.67 66.67 58.33 54.17
none 5.56 0.00 0.00 0.00 66.67 44.44 38.89 55.56
�rst 0.00 0.00 0.00 0.00 61.11 44.44 50.00 66.67

last 5.56 0.00 0.00 5.56 55.56 50.00 55.56 61.11

both 0.00 0.00 0.00 0.00 61.11 50.00 44.44 66.67

Table 6.5. Percentage of scenarios for which the benchmarks and Individual Feature
Bounds methods have the smallest MSE with respect to the error variance similarity
and special groups (ex post analysis). The total number of scenarios for each error
variance similarity is 24 and for special groups it is 18. The methods with the highest
percentages for each error variance similarity are depicted in bold numbers.

weights are used. They are the best method more often if individual feature bounds

around prior weights are used instead of common bounds.

With respect to the average ranks depicted in Figure 6.11, a similar pattern is visible,

i.e., IFB(·) has noticeably better ranks if the error variances are more similar while the

opposite holds if prior weights are used. Except for IFB(ω̇IL) which is noticeably more

consistent than other methods (better rank) for all error variances similarities. With

respect to special groups there is again no particular pattern visible. This becomes

apparent if Figure 6.11 is considered. The average ranks do not change noticeably with

respect to special groups and in comparison to the average ranks over all scenarios that

are depicted on the top of the �gure.

6.2.2 Out-Of-Sample: Individual Feature Bounds with Hyperparameter

Estimation

In this section we analyze the out-of-sample forecast accuracy of the forecast combi-

nation methods proposed in this chapter, i.e., individual feature bounds. To this end,

we determine the hyperparameter a priori based on past information. Additionally, we

apply cross-validation for each observation in the test, i.e., we re-estimate which com-

bination of hyperparameters is best repeatedly, see again Section 2.1. Recall that this

can lead to a smaller MSE compared to the ex post analysis where we chose a single

combination of hyperparameters for all observations in the test set.

In what follows we �rst analyze the MSE result overall scenarios in Section 6.2.2.1. In

Section 6.2.2.2 we analyze the forecast accuracy with respect to the error correlations,

error variance similarity and special groups.
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Figure 6.11. Illustration of average ranks and distances of the benchmarks and In-
dividual Feature Bounds methods for error variance similarities and special groups (ex
post analysis).

6.2.2.1 Out-Of-Sample: Overall Results

The MSE result for each scenario are in Tables 6.7 and 6.8. At �rst glance, similarly to

the result from BW, the superiority of the sophisticated forecast combination methods

in comparison to the benchmarks is not apparent anymore.

This observation is supported by the methods percentage of having the smallest MSE,

average and range of ranks as well as distance present in both Table 6.6 and Figure 6.12.

EW PW OW IL IFB(·)
IFB(ω̇)

ωE2 ωE3 ωIL

Smallest MSE (%) 23.61 38.89 0.00 29.17 8.33 25.00 22.22 12.50
Avg Rank 4.89 2.68 7.34 4.03 5.10 4.10 4.07 3.79

Avg Distance 0.27 0.07 0.50 0.18 0.07 0.06 0.06 0.05

Table 6.6. Key �gures for the MSE values of benchmark and Individual Feature
Bounds methods over all simulation study scenarios (out-of-sample analysis). Smallest
MSE (%) - Percentage of scenarios for which the method has the smallest MSE, po-
tentially among others. Avg Rank - Average rank of a method where a smaller rank is
favorable. Avg Distance - Average distance or di�erence in MSE the method and best
method scenario-wise. The method with the most favorable value are depicted in bold
numbers.
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CM z SG EW PW OW IL IFB(·)
IFB(ω̇)

ωE2 ωE3 ωIL

1 0.05

none 0.98 0.97 2.11 0.98 1.02 1.01 1.01 1.01

�rst 0.97 0.93 1.89 0.96 0.95 0.94 0.94 0.95

last 1.01 0.99 2.04 1.00 1.00 1.00 1.00 1.00

both 0.97 0.93 1.75 0.96 0.92 0.92 0.92 0.92

1 0.20

none 1.16 0.92 1.03 1.12 0.64 0.63 0.63 0.63

�rst 1.12 0.73 0.52 1.04 0.33 0.32 0.32 0.33

last 1.24 0.95 0.84 1.18 0.52 0.51 0.51 0.52

both 1.15 0.72 0.45 1.05 0.30 0.29 0.29 0.29

1 0.50

none 1.53 0.80 0.42 1.33 0.28 0.27 0.27 0.28

�rst 1.38 0.30 0.09 0.85 0.07 0.07 0.07 0.06

last 1.64 0.82 0.35 1.38 0.24 0.23 0.23 0.23

both 1.46 0.30 0.08 0.85 0.06 0.06 0.06 0.06

2 0.05

none 0.56 0.62 1.37 0.56 0.67 0.69 0.68 0.67

�rst 0.56 0.62 1.34 0.56 0.68 0.69 0.68 0.67

last 0.57 0.64 1.37 0.57 0.71 0.71 0.70 0.69

both 0.57 0.63 1.35 0.57 0.69 0.69 0.69 0.68

2 0.20

none 0.68 0.68 1.42 0.66 0.78 0.75 0.75 0.76

�rst 0.64 0.56 1.11 0.60 0.66 0.63 0.63 0.64

last 0.68 0.66 1.31 0.65 0.74 0.71 0.71 0.72

both 0.66 0.54 1.00 0.60 0.62 0.58 0.59 0.60

2 0.50

none 0.87 0.64 1.10 0.76 0.70 0.67 0.67 0.69

�rst 0.80 0.26 0.35 0.49 0.25 0.26 0.27 0.26

last 0.96 0.66 1.05 0.81 0.69 0.65 0.65 0.67

both 0.83 0.26 0.33 0.49 0.25 0.25 0.26 0.25

3 0.05

none 0.25 0.32 0.63 0.26 0.35 0.35 0.34 0.32

�rst 0.25 0.31 0.63 0.25 0.35 0.34 0.33 0.32

last 0.25 0.32 0.63 0.25 0.35 0.35 0.34 0.33

both 0.25 0.32 0.64 0.25 0.35 0.34 0.33 0.32

3 0.20

none 0.30 0.36 0.71 0.30 0.41 0.40 0.38 0.38

�rst 0.29 0.32 0.63 0.27 0.38 0.35 0.35 0.35

last 0.30 0.36 0.71 0.29 0.40 0.38 0.37 0.37

both 0.30 0.32 0.61 0.27 0.37 0.34 0.33 0.34

3 0.50

none 0.40 0.39 0.75 0.35 0.46 0.43 0.42 0.43

�rst 0.35 0.19 0.35 0.22 0.24 0.24 0.24 0.23

last 0.43 0.40 0.76 0.36 0.47 0.44 0.43 0.44

both 0.37 0.20 0.36 0.22 0.24 0.24 0.25 0.23

Table 6.7. Simulation study results of benchmark and Individual Feature Bounds
method forecast combination methods for correlation matrices CM1, CM2 and CM3
(out-of-sample analysis). The table depicts the MSE of the forecast combination
method. The methods with the smallest MSE are depicted in bold numbers.
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CM z SG EW PW OW IL IFB(·)
IFB(ω̇)

ωE2 ωE3 ωIL

4 0.05

none 0.63 0.69 1.57 0.63 0.75 0.75 0.74 0.73

�rst 0.65 0.70 1.61 0.65 0.76 0.75 0.75 0.74

last 0.66 0.72 1.64 0.66 0.78 0.78 0.78 0.76

both 0.64 0.68 1.59 0.63 0.75 0.74 0.73 0.72

4 0.20

none 0.79 0.78 1.78 0.76 0.89 0.85 0.85 0.84

�rst 0.73 0.67 1.48 0.68 0.77 0.72 0.72 0.73

last 0.80 0.78 1.74 0.77 0.88 0.84 0.84 0.84

both 0.77 0.68 1.51 0.70 0.80 0.74 0.74 0.75

4 0.50

none 1.03 0.79 1.50 0.91 0.90 0.85 0.85 0.86

�rst 0.90 0.30 0.45 0.56 0.35 0.34 0.35 0.35

last 1.10 0.79 1.47 0.93 0.91 0.86 0.86 0.88

both 1.02 0.31 0.46 0.60 0.37 0.36 0.37 0.37

5 0.05

none 0.44 0.40 0.84 0.45 0.47 0.48 0.48 0.46

�rst 0.44 0.40 0.85 0.45 0.46 0.48 0.48 0.46

last 0.44 0.41 0.88 0.46 0.47 0.49 0.49 0.46

both 0.43 0.41 0.87 0.45 0.47 0.49 0.49 0.46

5 0.20

none 0.51 0.51 1.06 0.54 0.60 0.60 0.60 0.58

�rst 0.48 0.49 0.98 0.50 0.59 0.57 0.56 0.55

last 0.52 0.54 1.13 0.56 0.64 0.64 0.64 0.61

both 0.49 0.53 1.06 0.51 0.61 0.60 0.60 0.57

5 0.50

none 0.67 0.66 1.21 0.69 0.81 0.76 0.76 0.73

�rst 0.56 0.31 0.42 0.45 0.39 0.36 0.37 0.35

last 0.66 0.67 1.22 0.68 0.79 0.76 0.75 0.73

both 0.59 0.33 0.44 0.46 0.42 0.38 0.39 0.37

6 0.05

none 0.79 0.63 1.39 0.77 0.68 0.70 0.70 0.69

�rst 0.78 0.60 1.32 0.75 0.66 0.67 0.67 0.66

last 0.80 0.63 1.37 0.78 0.69 0.69 0.70 0.69

both 0.80 0.61 1.30 0.77 0.67 0.67 0.68 0.67

6 0.20

none 0.97 0.64 1.16 0.89 0.64 0.63 0.64 0.64

�rst 0.94 0.52 0.95 0.81 0.53 0.52 0.52 0.53

last 1.02 0.64 0.96 0.91 0.57 0.55 0.55 0.56

both 0.97 0.51 0.80 0.81 0.48 0.47 0.47 0.48

6 0.50

none 1.28 0.61 0.85 1.02 0.51 0.50 0.50 0.51

�rst 1.22 0.26 0.42 0.62 0.26 0.26 0.26 0.26

last 1.39 0.62 0.69 1.05 0.44 0.43 0.43 0.44

both 1.31 0.26 0.38 0.62 0.24 0.24 0.24 0.24

Table 6.8. Simulation study results of benchmark and Individual Feature Bounds
method forecast combination methods for correlation matrices CM4, CM5 and CM6
(out-of-sample analysis). The table depicts the MSE of the forecast combination
method. The methods with the smallest MSE are depicted in bold numbers.

Using the weights determined by PW for forecast combination result in the smallest

MSE most often (38.89%). Both EW (23.61%) and IL (29.17%) also have a better

forecast accuracy more often than any of the Individual Feature Bounds methods except

for IFB(ω̇EW2) (25%). Although using the IFB(ω̇ with shrinkage directions ω̇EW2 and
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Figure 6.12. Boxplot of ranks across the benchmarks and Individual Feature Bounds
methods for the pseudo out-of-sample analysis.

ω̇EW3 achieve lower ranks for some scenarios, see Figure 6.12, ω̇IL is more consistent,

i.e., the range of its middle 50% of ranks is smaller. However, PW has both the smallest

rank and most favorable range of ranks as one can see by the middle 50% of ranks. With

respect to the distance to the best methods scenario-wise, the Individual Feature Bounds

methods are however closer to it than PW, except for IFB(·), i.e., without prior weights.
Overall, the result are again similar to what we observed for BW, see Table 5.10. Note

that we compare the percentages of being the best methods and the distance and not the

average ranks. The latter is incomparable by de�nition, because the ranks are relative

to the methods MSE and their overall number.

6.2.2.2 Out-Of-Sample: Groups of Scenarios

With respect to the error correlation matrices using Conditional Group Equal Weights,

i.e., IFB(ω̇), is more often superior for error correlations matrices that include highly

correlated forecasts, see Table 6.9. They have the smallest MSE for about two thirds

of scenarios. IFB(ω̇IL) is favorable for half of scenarios for CM1 and only a sixth of

scenarios for CM6. Shrinkage towards prior weights is particularly useful for highly

correlated error matrices. This �nding is similar to what we observed for bounded

weights. However, IFB(ω̇) methods have the smallest MSE values more often compared

to BW(ω̇), see Table 5.11.

The average ranks in Figure 6.13 provide further evidence that the shrinkage direc-

tions ω̇EW2 and ω̇EW3 are well-suited for highly correlated forecast errors. For all other

correlations matrices, i.e., medium (0.5 CM2), small (0.2 CM3) and mixed error cor-

relations, benchmark methods provide better MSE values more often and have better

average ranks (larger circle) and distances (yellow color), see Figure 6.13.

With respect to the error variances similarity, IFB(·) has the smallest MSE for z =

0.05 only for one scenario. Similar to BW(·) the more diverse or dissimilar forecasts

are in terms of their error variances, the more often IFB(·) is the better method. The
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EW PW OW IL IFB(·)
IFB(ω̇)

ωE2 ωE3 ωIL

CM1 0.00 25.00 0.00 0.00 16.67 66.67 66.67 50.00
CM2 33.33 25.00 0.00 50.00 16.67 16.67 8.33 8.33
CM3 41.67 16.67 0.00 75.00 0.00 0.00 0.00 0.00
CM4 25.00 50.00 0.00 50.00 0.00 0.00 0.00 0.00
CM5 41.67 66.67 0.00 0.00 0.00 0.00 0.00 0.00
CM6 0.00 50.00 0.00 0.00 16.67 66.67 58.33 16.67

Table 6.9. Percentage of scenarios for which benchmarks and Individual Feature
Bounds methods have the smallest MSE with respect to the error correlation matrix
(out-of-sample analysis). The total number of scenarios for each correlation matrix
is twelve. The methods with the highest percentages for each correlation matrix are
depicted in bold numbers.

EW PW OW IL IFB(·)
IFB(ω̇)

ωE2 ωE3 ωIL

z = 0.05 45.83 45.83 0.00 45.83 4.17 4.17 4.17 4.17
z = 0.20 20.83 25.00 0.00 33.33 0.00 33.33 29.17 8.33
z = 0.50 4.17 45.83 0.00 8.33 20.83 37.50 33.33 25.00

none 27.78 38.89 0.00 33.33 0.00 22.22 16.67 5.56
�rst 22.22 55.56 0.00 22.22 11.11 16.67 16.67 11.11
last 27.78 22.22 0.00 38.89 0.00 27.78 27.78 5.56
both 16.67 38.89 0.00 22.22 22.22 33.33 27.78 27.78

Table 6.10. Percentage of scenarios for which the benchmarks and Individual Feature
Bounds methods have the smallest MSE with respect to the error variance similarity
and special groups (out-of-sample analysis). The total number of scenarios for each
error variance similarity is 24 and for special groups it is 18. The methods with the
highest percentages for each error variance similarity are depicted in bold numbers.

average ranks depicted in Figure 6.14 lead to a similar conclusion. However, using

individual feature bounds around prior weights overall has a better average rank and

distance compared to using the IFB(·).
The comparison with the results from BW(ω̇) shows that the uncertainty introduced

by hyperparameter estimation is more sever for IFB(ω̇). BW(ω̇) is the best method

more often than IFB(ω̇) if both are compared with the benchmarks, see Table 5.11.

For example, for z = 0.5 the best BW(ω̇) methods has the smallest MSE for 41.67% of

scenarios. In comparison, for the best IFB(ω̇) method the proportion is 37.50. If we

compare IFB(·) and BW(·), however, using individual feature constraint is better more
often (z = 0.5). With respect to special groups, we do not see a clear pattern.
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Figure 6.13. Illustration of average ranks and distances of the benchmarks and Indi-
vidual Feature Bounds for di�erent correlations matrices (out-of-sample analysis).

6.3 Discussion and Future Work

In this thesis, we analyzed forecast combination methods with constrained weights, i.e.,

we shrink weights towards a particular direction, including prior weights. We considered

L1 methods that shrinks weights by imposing one constraint for all weights in Chapter 4.

Due to the fact that the L1 constraint generally allows for single forecasts or weights

to have a larger e�ect on the combined forecast than others, we introduced Bounded

Weights in Chapter 5 that diversi�es the combined forecast but allows for individual

weights to improve the forecast accuracy. To this end, we use both a common lower

and common upper bounds in general or around prior weights.

In this chapter, we consider both research questions stated in Chapter 1: how to fur-

ther improve the forecast accuracy of a combined forecast using constrained weights and

how to incorporate additional, external information in forecast combination with con-

strained weights? To this end, introduced forecast combination with Individual Feature

Bounds which is the �fth main contribution of this thesis. Individual Feature Bounds

are related to Bounded Weights as we also impose lower and upper bounds. However,

each forecast or weight gets individual lower and upper bounds that are determined by

a feature value or characteristic of themselves. The more favorable the feature value of

a forecast is, the more lose its constraint is. In other words, forecast with unfavorable

feature values get constraint to be closer to the shrinkage direction or prior weights.

In Section 6.1 we introduced the idea of Individual Feature Bounds and de�ned the

optimization problem. This includes, �rst and foremost, the Individual Feature De-
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Figure 6.14. Illustration of average ranks and distances of the benchmarks and Indi-
vidual Feature Bounds methods for error variance similarities and special groups (out-
of-sample analysis).

viation that, together with the prior weights, de�nes the Individual Feature Bounds

(Objective I of this chapter).

In Section 6.1.1 we discuss the components that are needed to de�ne the Individual

Feature Deviation: the transformation function and the feature values. Among other

parameters, for the transformation function we can de�ne the smallest and largest

deviation that they have as an output. The feature values are scaled to ensure a

standardized input into the transformation function. To this end, we either use ranks

or the raw feature values. As a result of the former Individual Feature Deviations are

distributed equally across the possible outcomes of the transformation function. If the

raw feature values are used, it depends on the actual distribution of the feature values

how weights are constraint.

Section 6.1.2 present four transformation function: linear, step, GRelU and the gen-

eralized logistics function. These transformation functions have properties that result

in di�erent Individual Feature Deviations and, by that, Bounds. For example, the step

function can be used to select certain weights to be equal to their shrinkage direction or

prior weight which also allows for a variable selection. The GRelU imposes a common

bound for a certain amount of weights that have less favorable feature values. All other

forecasts are linearly less constraint the more favorable their feature value is.

In Section 6.1.3 we introduce feature values that are based on two concepts: forecast

accuracy and diversity. The former, measure the performance of a forecast. The latter,

how unique or diverse it is compared to the other forecasts. For forecast accuracy we
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used the MSE and for diversity the MSEC. We also proposed use the AvgMSEC between

forecasts in order make it possible to consider the MSEC as a measure of diversity

for Individual Feature Bounds. Additionally, we proposed the measure AccDiv that

combines both accuracy and diversity into one feature.

With respect to both the ex post analysis in Section 6.2.1 and the out-of-sample

analysis in Section 6.2.2 we found in general similar result to Bounded Weights. How-

ever, the use of Individual Feature Bounds improves the forecast accuracy compared

to Bounded Weights for both the ex post and out-of-sample analysis. In particular the

result from the out-of-sample analysis are interesting. Individual Feature Bounds have

more hyperparameters, and we used a curated set of values for them. Nevertheless, al-

though due to the larger number of hyperparameters Individual Feature Bounds could

be more strongly in�uenced by the estimation uncertainty of hyperparameters, our new

method improves the forecast accuracy.

Although, we compare the benchmarks, LHS, L1, Bounded Weights and Individual

Feature Bounds methods in Chapter 7 based on real-world data, we want to very brie�y

compare their forecast accuracies in the simulation study. Table 6.11 shows how often

each method as a group has, among other methods, the smallest MSE across all scenar-

ios. The �rst rows show the result of the ex post and the second row the result of the

out-of-sample analysis. For the ex post analysis, the Individual Feature Bounds is with-

Bench. LHS L1 BW IFB

Ex-post 2.78 2.78 9.72 9.72 97.22

Out-of-sample 68.06 11.11 18.06 12.50 13.89

Table 6.11. Percentage of scenarios for which the benchmark, LHS, L1, Bounded
Weights and Individual Feature Bounds methods have the smallest MSE over all sce-
narios.

out questions the best approach. It has the smallest MSE in almost all scenarios. Both

L1 and Bounded Weights are better than the benchmarks. For the out-of-sample anal-

ysis, as expected, the benchmarks are oftentimes the best methods. Bounded Weights

and Individual Feature Bounds less often have the smallest MSE compared to L1.

This again shows a major problem of the forecast combination methods with hy-

perparameter estimation. Although, they can have a superior forecast accuracy, the

uncertainty introduced by the estimation of hyperparameters prohibits the methods to

use their full potential. Nevertheless, overall the shrinkage methods or forecast combina-

tion with constrained weights are better than the benchmark even with hyperparameter

estimation for about a third of scenarios. For future research we suggest again to an-

alyze hyperparameter estimation to utilizes the potential of the considered methods,

in particular the Individual Feature Bounds. Additionally, we suggest that another

extensive simulation study should be conduced that compares the benchmarks, LHS,
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L1, Bounded Weights and Individual Feature Bounds together. Due to the already

extensive analysis of the simulation studies this is beyond the scope of this thesis.

Instead, we will focus on an extensive empirical analysis comparing the out-of-sample

forecasting performance o� all considered methods based on real-world data in Chap-

ter 7.

With respect to the second research question of this thesis: how to incorporate ad-

ditional, external information in forecast combination with constrained weights we used

Individual Feature Bounds. However, one can argue that prior weights themselves also

introduce external information into the forecast combination problem. For example, we

could use a similar formula as the inverse-loss weighted average of Equation (4.16) but

with di�erent features to derive prior weights. Additionally, instead of using Individual

Feature Bounds another way could be to deviate from the original objective function and

create new objective functions that incorporates the additional information directly into

the objective function. For example, consider again the example that we want to create

a combined forecast for food retail that is particularly tailored towards promotional

periods. We could design an optimization problem where the objective function is ex-

tended by a term that measure the forecast accuracy particularly for those periods. We

do believe that our proposed method of Forecast Combination with Individual Feature

Bounds can incorporate various external information more conveniently. Moreover, the

transformation function allow us to enforce properties such as variable selection. Ad-

ditionally, the focus of this thesis is forecast combination with constrained weights in

form of the original forecast combination problem, i.e., quadratic objective function

with linear constraints. However, for future research, we strongly suggest analyzing the

usefulness of prior weights based on feature values and customized objective functions

to incorporate additional information.

In summary, Individual Feature Bounds is a new direction for forecast combination.

While existing approaches estimate weights based on feature values, we de�ne con-

straints based on them. This follows the concept of the original forecast combination

method intended by J. M. Bates and Granger (1969). The weights are estimated such

that they minimize the error variance of the combined forecast, however, subject to ad-

ditional constraint. The method we propose has great potential. It can be used in any

forecast context or application and, most importantly, incorporate application-speci�c,

external information. We strongly suggest that future research about Individual Fea-

ture Bounds should analyze its forecasting performance for multiple forecast application

with and without application-speci�c features.
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In this chapter we analyze the forecasting performance of the so far presented forecast

combination methods on real world data. Our goal is to ensure a fair and objective

assessment of the methods. Therefore, we do not select only a few time series, but

evaluate the methods for numerous time series. For comparison, in the related literature

around the L1 constraint Diebold and Shin (2019) and Radchenko et al. (2023) use one

and Roccazzella et al. (2022) use two time series or datasets to evaluate the forecast

combination methods.

With respect to the overall structure of this thesis, this chapter completes the last

main contribution stated in Chapter 1: extensive simulation studies and a comprehen-

sive empirical analysis. In particular the empirical analysis enables us to evaluate and

assess the usefulness our considered and newly proposed forecast combination methods

in real-word scenarios. Because we are using numerous time series, we ensure that our

results are meaningful and more robust.

In our empirical analysis we use the �rst 1000 monthly time series of the M4 dataset

(Makridakis et al., 2018, 2020).50 The M4 Competition featured times series of di�erent

frequencies (yearly, quarterly, monthly et cetera) and areas (economics, industry, �nance

et cetera). The objective of the competition was to evaluate how forecasting methods

and algorithms perform on real-world data in a competitive scenario and learn from the

results. To this end, for each time series participants had to provide forecasts for the

whole test set at once. The test set was unknown to them.

We chose the M4 dataset because it is well-known, recognized and publicly available

for anyone. However, we do not intend to follow the same procedure as the M4 compe-

tition which required participants to provide forecast based on the training data for a

certain forecast horizon at once (18 for monthly series). Within this thesis we focused

on one-step ahead forecasts and, therefore, we will also use this forecast horizon for the

observations of the test set. Accordingly, we do not intend to compare our the result of

our analysis to the M4 competition results.

In Section 3.2 we analyzed the considered and proposed forecast combination methods

separately using our simulation study. In this chapter, we consider the forecast accuracy

of all methods at once. Thereby, we analyze if one is generally superior or if all methods

provide value but for certain time series.

50Downloaded from https://github.com/Mcompetitions/M4-methods (06.03.2023).

185
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Figure 7.1. Exemplary time series from the �rst 1000 monthly M4 dataset.

The remainder of this chapter is organized as follows. In Section 7.1 we brie�y present

the data and the necessary forecasting process. This includes the creation of input

forecasts and how we combine those forecasts. In Section 7.2, we analyze the result of

the forecast combination methods. This includes, the forecast accuracy over all time

series in Section 7.2.1, a brief analysis of the hyperparameter values in Section 7.2.2 and

the forecast accuracy with respect to certain characteristics in Section 7.2.3. Lastly, we

summarize and discuss our results in Section 7.3.

7.1 Data and Procedure

For our analysis we chose to use the �rst 1000 monthly time series of the M4 dataset.

The time series are of di�erent length and scale. For each time series there is a test set

that consists of 18 month of observations, i.e., 1.5 years. In the following descriptive

analysis we exclude the test set observations.

On average the �rst 1000 monthly times series of the M4 data set have 324 observa-

tions. The shortest time series consists of 61 months (about 5 years), while the longest

spans over 1230 month, i.e., 102.5 years. The middle 50% of time series have a length

between 209 and 330, i.e., about roughly 17 to 28 years of monthly observations.

Figure 7.1 depicts �ve of the time series exemplary. Because the time series are of

di�erent length, the abscissa shows a time index that is one for the �rst observation of

a time series. Accordingly, the time index of the last observation corresponds to the

length of the time series. The ordinate shows the values of the time series. Time series

M893 depicted by the pink-colored line has a clearly visible seasonal pattern as well

as a trend. In contrast, M679 (green) has no clear trend but a seasonality. However,
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the seasonality is less regular compared to M893 and the oscillations or �uctuations get

larger over time, i.e., the variance of the time series increases over time. M679 also

appears to have some periodic behavior, see time index one to roughly 120 then until

240.51 A more clear periodic behavior is present for M201 (olive). The periods are

roughly 5 − 6 years long. However, M201 time series has a less regular course or path

in comparison to M893 and M679. Moreover, for one of the periods (time index 120

to 180) it has a noticeable increase. M120 (red) is a longer time series with about 69

years of monthly observations. Note that it has a long term trend and a structure break

or signi�cant drop at roughly 730. This could for example be a major event like the

�nancial crisis. Lastly, M843 (blue) is, in contrast, one of the shorter time series that

spans about 67 months, i.e., about 5.5 years. Due to the di�erent scales of the time

series it may appear that it is relatively constant, however it �uctuates and has a clear

trend.

These examples show that the monthly M4 dataset consists of a variety of time series

with di�erent properties. This is very valuable for the evaluation of forecast combination

methods. We can measure and compare the performance of the methods to each other

for a diverse set of time series instead of special cases. Moreover, this has the potential

to identify which method is well-suited for which kind of time series.

Forecasting Methods In order to use the �rst 1000 monthly time series of the M4

data set for forecast combination, we �rst need forecasts that then can be combined.

To this end, we follow Montero-Manso et al. (2020) who proposed FFORMA. Recall,

that FFORMA is a meta-learning approach that uses characteristics of time series to

determine weights of forecasts. It placed second in the M4 competition (Makridakis et

al., 2018, 2020). In this thesis we use the same forecasting methods and functions to

generate the input forecasts for our forecast combination methods:52

1. Naive � The forecast is equal to the last observation, i.e., ŷt+1 = yt (Petropoulos

et al., 2022).

2. Random Walk with Drift � The forecast is equal to the last observation and a

drift term, i.e., ŷt+1 = yt + µ (Petropoulos et al., 2022).

3. Seasonal Naive � The forecast is equal to the last observation of the same sea-

son as the target period, i.e., ŷt+1 = yt−o+1 where o is the length of a season

(Petropoulos et al., 2022).
51Note that we use the term seasonal pattern here in context of the monthly series, i.e., a season

corresponds to a year. If a time series has a longer systematic course of rising / falling values, we use
the terms period or periodic.

52It has to be noted that these forecasting methods are well-known and commonly used methods.
The reason for the placement of the FFORMA approach is not likely to be just because of the used
input methods but due to the sophisticated algorithm for creating weights that combine the forecasts.
Accordingly, we think that using these forecasts with the knowledge that they can be combined well
for multiple forecast horizons does not distort our analysis.
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4. Theta Method � A method that decomposes the time series in di�erent parts,

modi�es them separately using a theta coe�cient, extrapolates and then combines

them (Assimakopoulos & Nikolopoulos, 2000).

5. ARIMA � A model that consists of an autoregressive and moving average part.

It can use di�erences of the time series to ensure stationarity. In can be extended

to a SARIMA model which additionally includes seasonal components (Hyndman

& Khandakar, 2008; Petropoulos et al., 2022).

6. Exponential Smoothing �At its core (simple) exponential smoothing is a weighted

average of past observations where the weight decreases exponential the older the

observation is. In its more complex form it includes a trend and a (additive or

multiplicative) seasonal component (Petropoulos et al., 2022).

7. TBATS model � An advanced forecasting method based on exponential smooth-

ing that uses i.a. Box-Cox transformations, Fourier representations as well as

ARMA error corrections. It is designed to forecast time series that have complex

seasonal patterns (de Livera, Hyndman, & Snyder, 2011).

8. STLM-AR � A procedure that applies a time series decomposition (STL) to de-

seasonalize the data, models, and forecasts it via an autoregressive model, i.e.,

only the autoregressive part of an ARMA, and then re-seasonalizes the forecast

(Cleveland, Cleveland, McRae, & Terpenning, 1990; Hyndman et al., 2023).

9. Neural Network � A feed forward neural network with a single hidden layer

that uses lagged values of the time series as input variables. A neural network

is a system of weighted sums and biases that are transformed by an activation

function (Petropoulos et al., 2022).

We generate all forecasts using functions from the R package �forecast� (Hyndman et

al., 2023) with the default settings, see also Hyndman and Khandakar (2008); Montero-

Manso et al. (2020).

Forecast and Forecast Combination Process The objective of this chapter is to gen-

erate out-of-sample (combined) forecasts for the M4 time series and evaluate the fore-

casting performance. To this end, we need to develop a process that covers how to

1. train forecast models and generate forecasts,

2. train the forecast combination methods based on the generated forecasts,

3. estimate hyperparameter based on a validation set and

4. compute forecasts for the test set.
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In the following process, we apply pseudo out-of-sample forecasting, estimate hyperpa-

rameters via cross-validation, i.e., a validation set, and use both the expanding window

and rolling window approach as described in Section 2.1.

The process we designed is illustrated in Figure 7.2. The illustration shows how we

Time Series

Forecast Training Forecast Combination Data

Forecast Training FC Training I FC Test

Forecast Training FC Training II FC Validation FC Test

75% 25%

≥ 16 Obs. = 18 Obs.

75% 25%

Figure 7.2. Illustration of the process to create forecasts and perform forecast combi-
nation (FC) and partitioning of each of the 1000 monthly time series from the M4 data
set used. The size of the rectangles do not represent proportions and are for illustration
purposes only.

segment time series into di�erent parts. The uppermost rectangle depicts the whole

time series, including the observations from the test set.

First, we need to train forecasting models and create forecasts. To this end, we

split the data into Forecast Training (blue) and Forecast Combination Data (green),

see Figure 7.2. The former consists of the �rst 75% of observations, and is used to

train the nine forecast methods presented above.53 Then, we use those methods to

generate forecasts for the remaining 25% of observations from the time series with an

expanding window, recall Section 2.1 and Figure 2.1. The resulting forecasts from

this are the data that can be used for the forecast combination. It is depicted by the

green rectangle in the second row of Figure 7.2. Again, the objective of the analysis is to

evaluate and compare the performance of the forecast combination methods. Therefore,

we decided to use a 75/25 split because we want to ensure that the input forecasts have

higher quality, i.e., a better forecast accuracy. To this end, there needs to be enough

training data to train the forecast methods. For the same reason we decided to use

an expanding window for generating the input forecasts. Thereby, we always use as

much data as available to train forecast models and generate forecasts. Additionally,

as a result of the 75/25 split, we can analyze something that we assess to be of greater

value. Within the simulation study we did not vary the amount of training data for the

forecast combination method. However, as we discussed, the hyperparameter estimation

of the proposed forecast combination methods prevents the methods from reaching

their best potential forecast accuracy. Accordingly, now we can also analyze how an

53If the number of observations is not an integer, we round down to the nearest integer.
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increasing training set for the forecast combination methods e�ects their out-of-sample

performance, however, across di�erent time series.

As a result of the �rst step of our process, we have forecasts for about the last 25%

of the time series. This is depicted by the green rectangle called Forecast Combination

Data in Figure 7.2. It includes the test set which consists of 18 observations. Accord-

ingly, we have to split Forecast Combination Data, into a training and test set. The

former is depicted by the green rectangle in the third row of Figure 7.2 called FC Train-

ing I. The latter is depicted by the yellow rectangle called FC Test and includes the

last 18 observation of each time series. Although, we intended a 75/25 split between

Forecast Training and Forecast Combination Data it is, however, not always feasible

because some time series are too short. The shortest monthly time series has 79 month

of observations, which includes the test set observations. 25% of that correspond to

about 20 observation from which 18 are the test set. Based on that, weights can not be

estimated. To ensure that weights for nine input forecasts can be estimated and there

are spare observation to estimate hyperparameter using cross-validation, we reduce the

amount of training data for the forecasting method, if necessary, such that Forecast

Combination Data includes at least 34 observations. 16 observations for weight estima-

tion and the hyperparameter search (FC Training I ) plus the original 18 observations

of the test set (FC Test), see again Figure 7.2.

To estimate the hyperparameters for the forecast combination methods we use cross-

validation and a rolling window, see again Chapter 2. To this end, we split FC Training

I into FC Training II (green) and FC Validation (orange) also using a 75/25 split

(Figure 7.2). Accordingly, for our analysis we have time series where hyperparameters

estimation is based on as few as 4 observations while for other time series we use about

73 observations, i.e., over six years of monthly observations. Because this discrepancy

in available data is one focus of our analysis, we use a rolling window to forecast the

observations of the test set with the forecast combination methods. Thereby, the number

of available observation for weight and hyperparameter estimation is constant for the

test set of a given time series.

In summary, we train forecasting models on about 75% of the time series (Forecast

Training) and generate forecasting for the remaining 25% using an expanding window.

We create combined forecasts for the 18 observations in the test set using a rolling

window. For each observation in the test set we estimate hyperparameters based on a

validation set which includes 25% of the forecast combination training set.
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7.2 Results

In this section we analyze the results of forecasting methods for the M4 time series.54

Prior to that, we want to emphasize that it is possible that some of the nine forecasting

methods have the same forecasts. If this happens for a whole training set, it can lead

to perfect multicollinearity and, as a result, the calculation of the inverse error variance

covariance matrix as it is implemented is not possible. The exact same forecast adds

no value to the forecast combination methods. Therefore, we remove one of them. It

was the case for 26 time series. Moreover, for about eleven time series one or multiple

forecast combination methods reported an error. For the sake of a fair comparison

between forecast combination methods, we removed those eleven time series from the

results, i.e., we analyze the result of 989 monthly time series.

To compare the forecast accuracy of the forecast combination methods across di�erent

time series, we can not use the MSE. The time series are of di�erent scale or magnitude

and the MSE is a scale-dependent measure, recall Section 6.1.3.1. Instead, we will use

the relative MSE (relMSE). To this end, for each time series we divide the MSE of

each forecast combination methods by the MSE of EW. Accordingly, a relMSE of less

(greater) than one indicates that the corresponding method has a smaller (larger) MSE

compared to equal weights.

In what follows, we consider the overall performance of the methods for all time series

in Section 7.2.1. Thereafter, Section 7.2.2 brie�y analyzes the estimated hyperparam-

eters. Lastly, in Section 7.2.3 we analyze the results with respect to forecast features.

Similar to the analysis of the simulation study, we consider the error correlation of fore-

casts and the similarity of the empirical error variance. Because these empirical time

series are more complex and of larger variety, we have to use alternative key �gures,

i.e., the mean error correlation of forecasts and the variation in in-sample forecast ac-

curacy (MSE). We do not consider special groups, because the impact on the forecast

combination methods have been limited in the simulation studies from Chapters 4 to 6.

In addition to the mean error correlation and variation in MSE, we also consider the

length of the time series as it in�uences both the estimation uncertainty of weights and

hyperparameters.

7.2.1 Overall Forecast Accuracy

Figure 7.3 illustrates the relMSE values (ordinate) over all 989 time series for each

method (abscissa) as a boxplot. Recall, the box represents the middle 50%, i.e., the

values between the 25%- and 75%-Quantile. The black horizontal bar depicts the me-

dian. The horizontal line throughout Figure 7.3 shows the relMSE of the EW, which

54Due to the large amount of time series and methods, we summarize the result and do not depict
the relMSE for each individual time series.
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Figure 7.3. Boxplot of the relMSE values of the M4 time series for all considered
forecast combination methods. Di�erence in relative MSE to the best method for each
M4 time series. The ordinate has been limited and OW and LS have been removed for
a better visibility.

is one by de�nition. The forecast combination methods are grouped and di�erentiated

by color. The benchmark methods are orange, the LHS and L1 methods green, blue for

the BW methods and yellow for the IFB methods. Note that we omitted both OW and

LS from Figure 7.3 because they have very large relMSE values and those distort the

�gure and the analysis, e.g., the 75%-Quantile is about 98.55 However, due to the fact

that there are very large relMSE values present in the results, we will henceforth use

the median instead of the mean if the relMSE is considered. The median is more robust

to outliers or very large values and, thus, the analysis is not distorted as it would be

using the mean.

Figure 7.3 shows that there is no method that achieves signi�cantly smaller relMSE

values regularly and over all time series in comparison to the other methods. Shrinkage

towards zero using an L1 constraint, i.e., L1(0), has a noticeably higher 75%-Quantile,

and it is greater one. Accordingly, the EW is better suited combining forecasts for

certain time series. For PW, L1(1/N), L1(ω
E2), L1(ω

E3), BW(·), BW(ωE2), LB and

IFB(·) the 75%-Quantile is slightly above one. All other approaches have a smaller

or equal relative MSE than the EW for roughly 75% of times series. IL is the only

method where the 75%-Quantile is clearly smaller one and its 25%-Quantile together

with IFB(ωE2) and IFB(ωE3) is the smallest among all methods.

55Recall, that LS nests OW, and we estimate the shrinkage parameter by the formula provided by
Blanc and Setzer (2020). This results in almost the same forecasts as OW.
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PW OW IL
LHS L1(κ) L1(ω̇)

LS LHS 0 1/N ωE2 ωE3 ωIL

Median relMSE 0.84 6.00 0.79 6.00 0.77 0.86 0.88 0.79 0.84 0.80

BW(·)
BW(ω̇)

LB IFB(·)
IFB(ω̇)

ωE2 ωE3 ωIL ωE2 ωE3 ωIL

Median relMSE 0.87 0.78 0.79 0.80 0.89 0.80 0.78 0.78 0.79

Table 7.1. Median relMSE of the considered monthly M4 time series for all forecast
combination methods.

In addition to Figure 7.3, Table 7.1 present the values of the median relMSE (rows)

for each method (columns). With respect to the median relMSE, the LHS method has

the smallest value (0.77) followed by IFB(ωE2), IFB(ωE3) and BW(ωE2) with 0.78.

In general, shrinkage towards prior weights (except L1(ω
E3)) and IFB(·) have small

median relMSE values between 0.78 and 0.8. Shrinkage towards a �xed value L1(κ)

as well as BW(·) and LB have noticeably larger median relMSE values (0.86 to 0.89).

In contrast to the out-of-sample analysis from Section 5.3.1, BW(·) is better than LB

although two hyperparameters estimated. The PW approach that was very competitive

in the out-of-sample analysis of L1, BW and IFB methods, is somewhere in-between

the methods with a median relMSE (0.84).

Table 7.2 presents how often each method has one of the smallest relMSE values,

the average rank and median distance to the best method for a given time series. We

still use the average ranks, because ranks are not e�ected by large relMSE value. In

addition to Table 7.2, Figures 7.4 and 7.5 show boxplots of the ranks and distance for

each method. Again, we removed OW and LS from Figure 7.5. The three methods

that have the smallest relMSE value most often are: LHS, IL and IFB(·) with 21.03%,

12.54% and 10.82% of the time series. As we have roughly 1000 time series, multiplying

these number with ten gives roughly the actual number of time series for which these

methods have, potentially among other, the smallest relMSE.

In particular LHS turns out to be a favorable method for a variety of time series.

It also has the second-smallest rank and among the smallest median distance to the

best method. Similar to the result from the simulation study, the inverse-loss weighted

average is a competitive forecast combination method. It is the preferable methods

more often than equal weights. This becomes even more apparent looking at Figures 7.4

and 7.5. The distribution of ranks and distances of EW is noticeably larger (higher box)

compared to the other methods. PW and IFB(ω̇) with ωE2 and ωE3 have the smallest

relMSE for roughly 10% of the time series. OW and LS have the smallest percentage

of being among the best methods with 2.33%.

For shrinkage towards prior weights the results show that the shrinkage direction we

proposed to use within a forecast combination optimization problem, i.e., ωE2 and ωE3,
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Method Best (%) Avg Rank Med Dist.

EW 8.09 13.76 0.31
PW 10.01 9.41 0.09
OW 2.33 18.48 5.30
IL 12.54 8.35 0.07

LHS
LS 2.33 17.67 5.30
LHS 21.03 8.12 0.06

L1(κ)
0 4.95 11.34 0.12
1/N 4.65 11.09 0.12

L1(ω̇)
ωE2 7.38 9.07 0.08
ωE3 6.07 9.77 0.09
ωIL 4.25 9.46 0.08

BW(·) 4.35 10.70 0.11

BW(ω̇)
ωE2 8.80 9.00 0.08
ωE3 7.99 8.98 0.08
ωIL 6.27 9.46 0.08

LB 3.94 11.46 0.12

IFB(·) 10.82 9.21 0.07

IFB(ω̇)
ωE2 9.50 8.25 0.07
ωE3 9.61 8.11 0.06

ωIL 7.68 8.30 0.07

Table 7.2. Key �gures of each forecast combination method for the 989 monthly M4
time series. Smallest MSE � Percentage of time series for which the method has the
smallest MSE, potentially among others. Avg Rank � Average rank of a method where
a smaller rank is favorable. Avg Distance � Average distance or di�erence in MSE the
method and best method scenario-wise. The method with the most favorable value are
depicted in bold numbers.

for all L1(ω̇), BW(ω̇) and IFB(ω̇) more often have a smaller relMSE than shrinking

weights towards ωIL, see Table 7.2. However, with respect to Figures 7.4 and 7.5 there

is less of a di�erence between shrinkage directions for IFB(ω̇) (similar distribution of

ranks and distance). Moreover, for L1(ω̇) shrinkage towards ωE3 has a larger IQR

compared to ωE2 and ωIL and a higher 75%-Quartile, i.e., it has higher ranks and is

further from the best method more often. BW(·), LB and shrinkage towards a �xed

value L1(κ) are noticeably less often the best method, have higher average ranks and

median distance than BW(ω̇), IFB(ω̇) and IFB(·), see Figures 7.4 and 7.5.

With respect to the forecast combination methods we proposed, IFB(ω̇) (and to an

extent IFB(·)) are the best. They are the best method, potentially among other, most

often, have (among) the smallest average ranks and median distances. IFB(ω̇) with ωE2

and ωE3 has the third and smallest average rank across all methods. In conjunction with

the fact that IFB(ω̇) also has the smallest values for the median distance (together with

LHS) provides evidence, that it is a more reliable and consistent method compared to

others. This is supported by Figures 7.4 and 7.5. The middle 50% include smaller ranks

and their 75%-Quantiles are smaller than other methods, except for the 75%-Quantile

of BW(ωE2) which is about identical. For the median distance it is less apparent that
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Figure 7.4. Ranks of the relative MSE values for each M4 time series and all considered
forecast combination methods. The ordinate has been limited for a better visibility.

the middle 50% are closer to zero. However, one can see that the 75%-Quantiles are

the smallest among the proposed method together with IL (about 0.125). Although,

LHS can have smaller ranks and distances, the distribution of the middle 50% is wider.

Accordingly, for some time series it also has noticeably larger ranks and distances.

We would like to emphasize that, again, we are comparing all methods against each

other. This leads to a distorted perception, as one underestimates the group of shrinkage

and the methods we proposed. If we compare the benchmark methods (EW, PW, OW,

and IL) with the shrinkage methods considered in this thesis, it turns out that the

shrinkage methods (all of LHS, L1, BW and IFB methods) as a group are superior

for 67% of the time series. Note that for each time series, we compare the smallest

relMSE of the benchmark with the smallest relMSE of the shrinkage methods. Let us

now consider only the approaches we proposed in this thesis, i.e.,L1(ω̇) with ωE2 and

ωE3, BW(·), BW(ω̇), IFB(·) and IFB(ω̇). They are superior to the benchmark methods
for 63% of the time series. For these time series, our methods median improvement in

relMSE is 7.3% (18% average).

We can also consider the methods benchmarks, LHS, L1, BW and IFB methods

as whole. Table 7.3 shows how often each method has the smallest relMSE (%) and

strictly smallest MSE (%).56 Both the benchmark methods and IFB have, among other

56Note that percentages for smallest MSE add up to values greater 100 as there can be multiple
methods with the same relMSE value since we rounded relMSE values to the second decimal place.
Furthermore, strictly smallest MSE adds up to less than 100, because we consider how often each
method has the strictly smallest relMSE. If two methods from di�erent groups have the same relMSE,
the corresponding time series counts for neither of them.
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Figure 7.5. Di�erence in relative MSE to the best method for each M4 time series.
We limited the ordinate and removed OW and LS for a better visibility.

Benchmark LHS L1 BW IFB

Smallest MSE (%) 31.65 23.15 22.55 24.67 32.05
Strictly smallest MSE (%) 20.02 13.04 9.61 10.41 22.24

Table 7.3. Percentage of time series for which the benchmarks, LHS, L1, Bounded
Weights and Individual Feature Bounds methods have the smallest and strictly smallest
MSE.

methods, the smallest MSE for roughly 32% of time series, i.e., about 317 out of 989.

For the other methods this holds for about 23% (L1) to 25% (BW) of time series.

Forecast combination with Individual Feature Bounds have the strictly smallest relMSE

most often (22.24%). L1 and BW have the strictly smallest MSE for about 10% of time

series, LHS is strictly the best for 13%, and he benchmarks for about 20% of time series.

This evidence demonstrates clearly that the newly proposed forecast combination

methods complement existing approaches, in particular our proposed new �eld of fore-

cast combination where we constrain forecast individually based on feature values (In-

dividual Feature Bounds).

This process can potentially be enhanced with both information about the estimated

hyperparameter values and characteristics of the corresponding datasets.

7.2.2 Hyperparameter Breakdown

In this section we take a look at the hyperparameters of the considered forecast combina-

tion methods. To this end, we consider all hyperparameters over all test set observations

for each method. Then we compute the median value over all hyperparameter values.
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Again, we use the median value as it robust to outliers or very large values. By using

the mean, a few very large observations can distort the analysis. The median enables

a more fair comparison. For example, for L1(0) the mean value over the test sets esti-

mated value for γ0 is 4.21. However, this corresponds roughly to the 83%-quantile of

estimated hyperparameter values. For 83% of test set observations the hyperparameter

value were smaller than the average. In contrast, the median value over all test sets

hyperparameters is 1.1, i.e., for half of the time series, the median hyperparameter was

smaller or equal to 1.1.57

LHS methods The hyperparameter of LS con�rm what we expect based on the relMSE

of this method, weights are not substantially shrunken towards EW. Instead, the hy-

perparameter is so small that it basically result in the same weights as OW. In contrast,

for LHS the median hyperparameter is one (0.95 average). Accordingly, the best 50%

of weights are close to their corresponding equal weights while the other are close to

zero. Nonetheless, small deviation from those weights are present for some time series,

if it turns out to improve forecasts accuracy.

L1 methods Table 7.4 shows the median shrinkage parameter and coe�cient of vari-

ation (CoefVar) over all test set observations. The coe�cient of variation is the scaled,

dimensionless standard deviation. Thereby, we can compare the variation in estimated

hyperparameters that are de�ned on di�erent scales or intervals, e.g., L1(0) and L1(1/N).

The closer the coe�cient of variation is to zero, the smaller the variation in estimated

hyperparameters. To this end, one divides the standard deviation by the mean value,

see Fahrmeir et al. (2016, p. 68).

L1(κ) L1(ω̇)

0 1/N ωE2 ωE3 ωIL

Median 1.10 0.60 0.20 0.20 0.20
CoefVar 2.10 2.52 2.99 3.01 2.93

Table 7.4. L1 methods: Median and coe�cient of variation (CoefVar) of the shrinkage
parameter γ for the considered M4 time series.

Recall, that the smallest feasible value for L1(0), i.e., γ0, is one, while for all other

methods it is zero. Overall, the shrinkage parameter is close to the smallest feasible

values. For example, with γ0 = 1.1 the largest possible weight is 1.05. Otherwise,

57It needs to be noted that we use estimated hyperparameters of test set observations for di�erent
time series. Accordingly, the magnitude can di�er and one may prefer to �rst calculate a key �gure
on test set level and then aggregate it. However, due to the large values of hyperparameter, it would
have to be the more robust median instead of the mean. Then, one calculates the median of median
hyperparameters values. This is less intuitive to interpret and, moreover, the results are fairly similar
nonetheless.
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the unity constraint can not be ful�lled, see again Equation (4.23). For comparison, we

consider the largest weight for every observation in the test set over all time series of the

original, unconstrained forecast combination method, i.e., OW. The mean and median

weights of the largest OW weights are 16 and 118, respectively. The distribution of

the largest OW weights for each test set is right-skewed (15.5 skewness) and for one

observation, the largest weight was about 23279. For 95% of the observations in all

test sets the maximum weight is greater two. Accordingly, γ0 = 1.1 constraints weights

substantially. This holds similar for L1(1/N) and L1(ω̇). Additional evidence that the

respective shrinkage parameters actually constrains the weights is the superior forecast

accuracy of the considered L1 methods in comparison to OW.

For the sake of completeness we also include the coe�cient of variation to give an

indication of the underlying distribution. With respect to the coe�cient of variation,

the shrinkage parameter of L1(0) has the least variation, i.e., is most consistent.

Bounded Weights methods Table 7.5 shows the median lower and upper bound of the

Bounded Weights methods. Note that for BW(·) and LB the lower bound has negative

values and, as a result, the coe�cient of variation is also negative. Nevertheless, it is

the absolute deviation from zero that is of interest. Recall, that for BW(ω̇) we de�ned

a lower bound deviation from the prior weights. It is a non-negative number that is

subtracted from prior weights.

BW(·) BW(ωE2) BW(ωE3) BW(ωIL) LB

ω ω ω ω ω ω ω ω ω

Median 0.00 0.40 0.10 0.10 0.10 0.10 0.10 0.10 0.01
CoefVar -2.69 1.82 2.58 2.52 2.58 2.53 2.57 2.47 -3.16

Table 7.5. Bounded Weights methods: Median and coe�cient of variation (CoefVar)
of the lower and upper bounds ω and ω for the considered M4 time series.

For the methods that shrink towards prior weights, BW(ω̇), both the median lower

bound and upper bound deviation is 0.1. Accordingly, for half of the test observations

across all time series, a small deviation from prior weights leads to a better forecast

accuracy. For about 40% of test set observations for BW(ω̇) a deviation of zero is

estimated to be the best hyperparameter value, i.e., the prior weights where used to

combine forecasts.

For LB the median lower bound is positive. This is evidence that the extension

of feasible values of the lower bound we proposed is substantial to improve forecast

accuracy, at least in the validation sets that were used for hyperparameter estimation.

For BW(·) the lower bound is zero or greater for half of the test set observations, i.e.,

only non-negative weights are considered. The median upper bound is roughly three to

four times the equal weights value (1/9), i.e., the solution most likely contains one or
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two sets of identically weighted forecasts and individual weights, recall Section 5.1.2.

With a lower bound of zero, one of the identically weighted sets can have zero weights,

which means that the methods performs a variable selection.

With respect to the coe�cient of variation, there is more variation for the estimated

values of the lower than the upper bound. The largest variation is given for LB. The

BW(ω̇) methods have a similar a variation of the estimated hyperparameters.

Individual Feature Bounds methods The Individual Feature Bounds methods have

many parameters that determine the individual feature lower and upper bounds. Recall,

that because we are also using prior weights, we determine not the bound themselves

but again the deviation from prior weights. Those deviations are within the individual

deviation (IFD) vectors for the lower and upper bounds (IFB). The lower and upper

IFD vectors are ℵℵℵ and ℵℵℵ, respectively.
As discussed in Section 6.2, we limited the number of candidate values of the hyper-

parameters as follows:

� smallest deviation: ψmin ∈ {0, 0.1, 0.2, 0.3}, see Section 6.1.1.

� largest deviation:ψmax ∈ {ψmin + 0.1, ψmin + 0.2, ψmin + 0.3}, see Section 6.1.1.

� transformation function: Ψ ∈ {step,GRelU}, see Sections 6.1.2.2 and 6.1.2.3.

� feature: ξ() ∈ {MSE,AvgMSEC,AccDiv}, see Equations (2.2), (6.46) and (6.47).

� feature values: ν ∈ {ranked,not ranked}, see Section 6.1.1.

For the lower and upper IFDs separately, we allow for di�erent smallest and largest

deviation (ψmin, ψmax). For GRelU we use a threshold ν̌ = 0.5 and for step we use

Υ = 2 steps, see again Section 6.1.4.

For each time series we compute the median value of ψmin, ψmax for both ℵℵℵ and ℵℵℵ
for all test set observations of the 989 time series. The result are in Table 7.6.

IFB(·)
IFB(ω̇)

ωE2 ωE3 ωIL

ℵℵℵ ψmin 0.00 0.00 0.00 0.00
ψmax 0.10 0.20 0.20 0.20

ℵℵℵ ψmin 0.00 0.00 0.00 0.00
ψmax 0.30 0.20 0.20 0.20

Table 7.6. Individual Feature Bounds methods: Median value for the smallest and
largest deviation for both ℵℵℵ and ℵℵℵ (IFD) for the considered M4 time series.

For all methods and both ℵℵℵ and ℵℵℵ the smallest deviation ψmin has a median value

of zero, i.e., it is zero for half of all observations in the test sets. In that case the step
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and GRelU select at least one forecast to have zero weight, if the feature values are not

ranked. Otherwise, about half of the forecasts have zero weights given the parameter

values we chose for the transformation functions (ν̌ = 0.5 and Υ = 2). Accordingly,

the variable selection property of the transformation function were bene�cial in the

validation sets and, thus, were chosen for forecasting.

ψmax has the same median value for both the lower and upper deviation for all IFB(ω̇).

For IFB(·) negative weights are overall more constrained than positive weights as ψmax
is smaller for ℵℵℵ than for ℵℵℵ.
With respect to the transformation functions, for about 60% of observations in the

test sets the step function is used for both IFB(·) and IFB(ω̇). Forecasts with a feature

value smaller or equal to 0.5 where constraint to have zero weights. This corresponds

to half of the forecasts, if ranked features values are used. Otherwise, the proportion

can vary, because the scaled feature values are not distributed equally in the feature

vector, recall Section 6.1.1. Correspondingly, for roughly 40% the GRelU provided the

best results in the validation set. Recall, that GRelU also constrains weights to zero

,as described above for step, for feature values smaller or equal to ν̌ = 0.5. However,

for those 40% of time series and observations in the test sets it was bene�cial to allow

for a linear increase in the IFD for forecast with a feature value greater 0.5, instead of

a step change as for step.

Table 7.7 shows the percentages of observations across all test sets for which a partic-

ular feature is used by the Individual Feature Bounds methods. The Individual Feature

IFB(·)
IFB(ω̇)

ωE2 ωE3 ωIL

MSE 0.61 0.51 0.51 0.50
AvgMSEC 0.14 0.20 0.20 0.21
AccDiv 0.25 0.29 0.29 0.30

Table 7.7. Individual Feature Bounds methods: Percentage of how often each method
uses the features MSE, AvgMSEC and AccDiv for each time series and the corresponding
test set observations.

Bounds methods that impose bounds around prior weights (IFB(ω̇)) use the MSE as

a feature for about half of the observations in the test sets. The amount of (average)

diversity between forecasts is in fact useful to determine bounds for about a �fth of

observations. Consequently, in 30% of the cases the average of the scaled MSE and

AvgMSEC is the most useful feature. In comparison, for IFB(·) the MSE is used more

often for about ten percentages points. Both AvgMSEC and AccDiv are used less for

about �ve percentage points of time series and observations.
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Overall, this provides strong evidence that the diversity of forecast is an important

and powerful feature for forecast combination with Individual Feature Bounds. Either

by itself (AvgMSEC) or together with the forecast accuracy (AccDiv).

With respect to the feature values for all IFB methods roughly 60% of observations

in the test sets used ranked feature values while, correspondingly, 40% used the calcu-

lated, scaled feature values. It shows that both of these approaches add value and are

preferable for certain situations or for speci�c time series.

In summary, there is no one true hyperparameter setup that works for every time

series. The complexity of time series and forecasts leads to structures that require

di�erent constraints to combine weights such that the best forecast accuracy can be

achieved. One should always evaluate various setups of hyperparameters to �nd the

method and hyperparameter pair that is best for a given situation.

7.2.3 Forecast Accuracy with Respect to Forecast Features and Characteristics

Table 7.8 shows the median relMSE of each method for a set of time series. We seg-

mented the time series into four groups with respect to the mean error correlation of

input forecasts. To this end, we used the 25, 50 and 75%-quantiles to sort time series

into the four groups. Accordingly, a time series where the mean error correlation of

forecasts is between the 25% and 50% quantile is part of the second group, i.e., column

two. The mean error correlation of each group is depicted in the �rst row. We use

the mean error correlation as an indicator of the overall magnitude of the error corre-

lation matrix, because, in contrast to the simulation study, real world error correlation

matrices are very di�erent to one another and follow a less organized structure.

Overall, one can see that the median relMSE increases for all methods the larger the

mean error correlation is, at least in comparison to the EW forecast. It has to be noted

that, because we use the relMSE, changes between groups is an interaction of changes

in EW and the corresponding method. Because the main goal of this chapter was

to evaluate the forecast combination methods overall, we used the easily interpretable

relMSE instead of something like the MASE, where forecasts are scaled relative to the

in-sample naive forecast, see again Section 6.1.3.1. Accordingly, if the relMSE increase,

it basically means that the di�erence between the forecast capability of EW and the

corresponding forecast combination method decreases. With respect to this, considering

the overall increase in relMSE for larger mean error correlation is curious. Overall, we

saw in the simulation studies and know theoretically, that the EW is best for smaller

or no error correlation. The given results, however, lead to the conclusion that the

forecast combination methods potentially have a worse forecast accuracy for larger error

correlations. We observed this already for the MSE values in the simulation study, see

for example CM1 to CM3 in Table 4.1. The higher the error correlation, the larger the

MSE values are. Although, if we calculate the relMSE for the corresponding scenarios
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Mean Error Cor 0.44 0.56 0.63 0.69

EW 1.00 1.00 1.00 1.00
PW 0.65 0.77 0.84 0.97
OW 2.49 3.35 12.58 28.61
IL 0.64 0.72 0.83 0.95

LHS
LS 2.49 3.35 12.58 28.61
LHS 0.63 0.68 0.79 0.93

L1(κ)
0 0.70 0.79 0.87 1.00
1/N 0.71 0.81 0.91 1.00

L1(ω̇)
ωE2 0.63 0.71 0.81 0.96
ωE3 0.64 0.77 0.89 0.99
ωIL 0.64 0.74 0.84 0.96

BW(·) 0.72 0.80 0.92 0.99

BW(ω̇)
ωE2 0.62 0.72 0.82 0.94
ωE3 0.64 0.72 0.84 0.96
ωIL 0.62 0.75 0.85 0.95

LB 0.73 0.82 0.92 1.00

IFB(·) 0.65 0.73 0.84 0.97

IFB(ω̇)
ωE2 0.62 0.69 0.82 0.93

ωE3
0.61 0.71 0.82 0.94

ωIL 0.62 0.71 0.83 0.95

Table 7.8. relMSE with respect to the
mean error correlation segmented in four
groups.

MSE CoefVar 0.45 0.95 1.52 2.23

EW 1.00 1.00 1.00 1.00
PW 1.00 0.79 0.77 0.67
OW 15.53 2.77 6.69 5.09
IL 0.98 0.79 0.68 0.55

LHS
LS 15.53 2.77 6.69 5.09
LHS 0.99 0.73 0.68 0.55

L1(κ)
0 1.03 0.81 0.79 0.72
1/N 1.01 0.85 0.81 0.70

L1(ω̇)
ωE2 1.01 0.76 0.69 0.57
ωE3 1.00 0.78 0.75 0.73
ωIL 1.01 0.77 0.71 0.58

BW(·) 1.01 0.84 0.79 0.65

BW(ω̇)
ωE2 1.01 0.76 0.70 0.56
ωE3 0.99 0.77 0.69 0.56
ωIL 1.00 0.79 0.71 0.57

LB 1.01 0.83 0.82 0.71

IFB(·) 1.03 0.77 0.72 0.57

IFB(ω̇)
ωE2 1.00 0.78 0.66 0.56
ωE3 1.00 0.77 0.68 0.55

ωIL 1.00 0.79 0.69 0.56

Table 7.9. relMSE with respect to the
MSE coe�cient of variation segmented in
four groups.

over CM1 to CM3, it gets smaller the higher the correlation is. This showcases how

complex and di�erent real-world time series are as there are many factors that in�uence

the forecast accuracy.

Let us now consider the relMSE values of speci�c forecast combination methods

(Table 7.8). For the benchmark methods only PW and IL have competitive median

relMSE values. EW and OW as well as LS have noticeably larger median relMSE values

than all other methods for all four segments. The IFB methods with prior weights

have the smallest median relMSE (0.61) for the group with the smallest mean error

correlation. With respect to the last group, IFB(ω̇) and LHS both have the smallest

values (0.93). For the groups in-between, LHS is better (0.68 and 0.79). Oftentimes,

however, the distance between IFB(ω̇) and LHS is small (except for group three), e.g.,

group two LHS has 0.68 and IFB(ω̇) have 0.69 to 0.71. This holds similarly for the

other methods, if they shrink towards prior weights, i.e., L1(ω̇) and BW(ω̇).

Table 7.9 presents the median relMSE grouped by the coe�cient of variation of the

MSE. This refers to the error variance similarity that we used for the simulation study,

see Chapter 3. The larger the coe�cient of variation, the large the standard deviation

relative to the mean, i.e., the more diverse the MSE values of input forecasts are.

For more similar MSE values of forecast, the equal weights is the though benchmark

that it has been throughout the years. Most of the forecast combination methods have
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Number of Obs. 34 61 77 125

EW 1.00 1.00 1.00 1.00
PW 0.97 0.79 0.79 0.82
OW 23.62 6.69 2.53 6.30
IL 0.84 0.73 0.74 0.83

LHS
LS 23.62 6.69 2.53 6.30
LHS 0.84 0.70 0.73 0.79

L1(κ)
0 1.02 0.79 0.81 0.82
1/N 1.00 0.82 0.80 0.84

L1(ω̇)
ωE2 0.87 0.71 0.76 0.78

ωE3 0.91 0.77 0.77 0.87
ωIL 0.89 0.74 0.76 0.81

BW(·) 1.00 0.82 0.79 0.83

BW(ω̇)
ωE2 0.90 0.71 0.75 0.80
ωE3 0.91 0.70 0.76 0.79
ωIL 0.91 0.72 0.75 0.81

LB 1.00 0.84 0.81 0.84

IFB(·) 0.89 0.76 0.76 0.81

IFB(ω̇)
ωE2 0.87 0.70 0.77 0.80
ωE3 0.86 0.69 0.76 0.79
ωIL 0.89 0.72 0.76 0.81

Table 7.10. relMSE with respect to the number of training observations segmented in
four groups.

relMSE values greater one, i.e., the MSE of EW is smaller. The only exceptions are

IL (0.98), LHS and BW(ωE2) (0.99). This result is to an extent similar to what one

expects theoretically and what we observed in the simulation study. EW is theoretically

optimal if all forecasts have the same error variance and no error correlation. In the

simulation study we also saw that, EW was better the more similar the forecast error

variance were, see for example Table 4.11 and Figure 4.16.

The more diverse the forecast are in terms of their forecast accuracy the smaller the

median relMSE of all methods gets, as we would expect. For example, IFB(ω̇) have

a relMSE of about one for the smallest coe�cient of variation, and then it decreases

down to 0.55 and 0.56 for the group with the most dissimilar forecasts in terms of their

accuracy.

For groups two, three and four, both the forecast combination methods that shrink

towards prior weights and LHS have competitive forecasts, i.e., they have similarly small

relMSE values. The only exception is L1(ω
E3) with a relMSE of 0.73 for group four

while all other methods that shrink towards prior weights have values between 0.55 and

0.58. With respect to the methods that do not shrink towards prior weights IFB(·) has
smaller, more competitive relMSE values than BW(·) and L1(κ) for all groups except

the �rst one with the smallest coe�cient of variation.
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Table 7.10 shows the median relMSE of the forecast combination methods segmented

by the number of observations. The average number of observations for each segment

is depicted in the �rst row.

As we expected, the relMSE of all forecast combination methods �rst decreases from

group one to group two (median number of observation 34 and 61) as more observations

are available both for weight and hyperparameter estimation. Thereby, the estimation

uncertainty decreases. However, the relMSE does not further decrease for group three

(77) and even increases again for group four (125). In particular the increase from

groups three to four may be evidence that an increasing number of training observation

is not always the best choice. At its core, this highlights the di�erence in the ideas of

an expanding and a rolling window forecast procedure. The expanding window reduces

estimation uncertainty as the estimation is based on more observations. In contrast,

the rolling window can react faster and more e�ectively to shot-term structures in the

data. With respect to Table 7.10, this bene�t of a rolling window may be mitigated

by a too large window, i.e., to many observations are considered in the training. The

increase in median relMSE from group three to four is smallest for L1(0).

Table 7.10 shows that for more observations, the shrinkage methods, in particular

the methods we proposed BW(ω̇) and IFB(ω̇) have similar median relMSE to the best

method. See for example, IFB(ω̇) for group two and four or BW(ω̇) for group two and

three. These �ndings hold similar for LHS. If the number of observations is limited,

L1(ω̇) and IFB(ω̇) are the most promising shrinkage methods, however, LHS has the

smallest median relMSE.

7.3 Summary

The overall result of the 989 monthly M4 time series highlight the value of the new

forecast combination methods we proposed. They are a valuable complement to existing

approaches.

Shrinkage methods in general and the methods we proposed in particular (BW and

IFB) strictly improve out-of-sample forecast accuracy compared to the four benchmarks

methods for the majority of time series (74% and 60% respectively). This holds par-

ticularly for our proposed new �eld of forecast combination where we constrain weights

individually based on feature values (IFB). Compared to all other methods, it is the

single best method most often (22.24%). Nonetheless, BW also is superior for about

103 (10.41%) time series.

With respect to the hyperparameters we observed that overall the shrinkage param-

eters and bounds are more tight in comparison to how large the unconstrained weights

of the OW solution are at times. However, there is variation between observations or

time series. This is particularly well demonstrated when considering the Individual
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Feature Bound methods as they have a lot of hyperparameters which all provided value

for speci�c observations or time series.

With respect to forecast features or characteristics we can conclude that real-world

data can be much more complex than simulation studies. Although, we would expect

that the forecast combination methods are better in comparison to EW the higher

the mean error correlation is, our results suggest the opposite. However, because we

have real-world data many aspects can in�uence the forecast accuracy of a method

simultaneously. In contrast, for the monthly M4 time series we observed that the more

dissimilar the nine forecasts are in terms of their MSE, the better sophisticated forecast

combination methods are compared to EW. This is in line with our observations within

the simulation study. With respect to the number of time series, the results indicate

that at �rst an increase in the number of observation in the training set has a positive

e�ect on the forecast accuracy. However, if there are too many observations in the

training set, the relMSE can again increase. This can be due to the fact that with such

a large training set, the forecast combination methods can not appropriately capture

short-term structures in the data.

Overall, the methods we proposed, in particular forecast combination with individual

feature bounds around prior weights, are a valuable addition to existing approaches.

They should be taken into consideration for forecast combination problems. Bounded

Weights and Individual Feature Bounds have the single best forecast accuracy for 39%

of the time series compared to all other methods, i.e., Benchmarks, LHS, and L1.

For real-world applications, it is strongly advisable to utilize all methods, benchmarks

and more sophisticated methods, and evaluate their performance in a validation set

to identify the superior method for a given dataset. This can lead to a far superior

forecasting performance compared to choosing one single method or hyperparameter

set up for di�erent or even the same time series at various times.
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The original forecast combination problem by J. M. Bates and Granger (1969) estimates

weights by minimizing the forecast error variance of the combined forecast subject to

the unity constraint. Forecast combination allows us to combine forecasts that are

based on di�erent information and models or experts, thereby creating a more accurate

and robust forecast through diversi�cation. Over the years many forecast combination

methods have been developed. However, for over half a century, simple combination

approaches have frequently outperformed more sophisticated or theoretically optimal

methods � a phenomenon commonly referred to as the forecast combination puzzle.

Evidence suggests that this is due to estimation error and the sensitivity of weights.

We introduced and discussed all the above, i.e., forecasting and forecast combination,

the forecast combination puzzle in Chapter 2 and presented a brief literature overview.

The overarching objective of this thesis is summarized in our �rst research question:

how to further improve the forecast accuracy of a combined forecast using constrained

weights? Accordingly, in this thesis we consider the forecast combination problem with

constrained weights. The constraint we impose shrinks weights towards a shrinkage

direction or prior weights. We can improve the forecast accuracy by allowing for a

small bias which leads to a reduction in the error variance of the combined forecast.

In order to analyze forecast combination methods within this thesis, in Chapter 3

we �rst analyzed forecasts from the Europeans Centrals Banks Survey of Professional

Forecasters to gain insights into the structure of real-world forecast combination data.

Based on these insights and the simulation study of Roccazzella et al. (2022), we de-

veloped an extended framework for simulation studies. This framework is intended

to be used for analyzing forecast combination methods. With this simulation study

framework we can analyze the methods with respect to the error correlation structure

of forecasts, the similarity of the forecast accuracy or error variance respectively, and

groups of forecast with noticeably smaller or larger error variances. Furthermore, we

designed the simulation study such that it can easily be extended, e.g., allowing for the

incorporation of di�erent distributions of error variances between forecasts or varying

error correlations within groups of forecasts (Contribution I). In this thesis we analyzed

all considered forecast combination methods using this simulation study.

In Chapter 4 we showed how shrinkage can improve forecast accuracy. Allowing for

a small bias can lead to a reduction in variance. We also introduced the concept of

using an L1 constraint for shrinkage in forecast combination. Based on this, we devel-

206
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oped a uni�ed framework that is based on the original forecast combination problem by

J. M. Bates and Granger (1969), namely a quadratic optimization problem that mini-

mizes the error variance subject to linear constraints including the unity constraint. The

uni�ed framework allows for a comprehensive comparison of all considered L1 methods

on the same basis (Contribution II). This includes shrinkage towards �xed values such

as zero or the equal weights forecast as well as shrinkage towards prior weights. In-

spired by other forecast combination methods like the egalitarian, partially egalitarian

Lasso, and the Linear Hybrid Shrinkage, we de�ned Conditional Group Equal Weights

as a shrinkage direction for forecast combination with constrained weights (Contribu-

tion III).

As a result of the L1 constraint, some forecasts are omitted from the combination.

Moreover, the L1 constraints restricts the weight vector as a whole and, allowing a sin-

gle forecast to contribute signi�cantly to the combined forecast in comparison to other

forecasts. Although, both a selection of forecasts and the large contribution of a single

forecast leads to an improved forecast accuracy, to an extent it is contrary direction

to an idea of forecast combination: diversi�cation. Forecast combination is intended

to create robust combined forecasts by incorporating multiple forecasts. In Chapter 5

we introduced a method that leads to a more diversi�ed forecast while also shrinking

weights: Forecast Combination with Bounded Weights (Contribution IV). Instead of ap-

plying a single constraint for the whole weight vector, we propose using both common

lower and upper bounds or constraints for each weight individually. With the addition

of the upper bounds, we create a method that nests competitive benchmark methods

(Positive Weights, Equal Weights) and the original forecast combination problem (Op-

timal Weights). Furthermore, we extend our approach to utilize bounds around prior

weights, which function as a shrinkage direction upon we improve.

Based on the Bounded Weights method, we propose a new forecast combination

method and thereby research direction: Forecast Combination with Individual Feature

Bounds in Chapter 6 (Contribution V). This method follows the concept of the original

forecast combination problem described by J. M. Bates and Granger (1969). It de�nes

individual lower and upper bounds that are based on feature values of the forecasts.

The incorporation of feature values allows for the utilization of additional external

information, which can be speci�cally chosen for the requisite forecast application. Ad-

ditionally, the use of di�erent transformation functions enables us to further in�uence

the shape of the constraints. We can incorporate various properties for the individual

feature bounds, such as a variable selection based on the feature values if many fore-

casts are given. Accordingly, we can design our method in many ways, e.g., with and

without a variable selection (L1 versus Bounded Weights) or with a design more similar

to common bounds for some forecasts, while others are less constrained due to their

favorable feature values. Moreover, the use of Individual Feature Bounds is adaptable
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to a multitude of applications and requirements. To illustrate, we can de�ne a feature

for underestimation, thereby constraining forecasts that are prone it. Alternatively, if

the combined forecast requires greater consistency, that is, only minor changes between

time periods, we can de�ne a feature for this and use it to derive Individual Feature

Bounds. We can de�ne a feature that measures how fast a forecast adapts to short-

term changes such that the combined forecast more quickly captures economic shocks.

In retail, we may prefer a forecast that is particularly well-suited to forecast demand

throughout promotional periods. Consequently, we can evaluate each input forecast

only for those periods and incorporate the results as a feature based on which we derive

the individual feature bounds. Both the incorporation of external information tailored

towards the application and the properties we can enforce by the choice and design

of the transformation function showcase that our method is �exible and holds great

potential to improve forecast accuracy across all applications.

We conducted a comprehensive simulation study for all considered forecast combina-

tion methods to evaluate their performance. We analyzed how the forecast combination

methods perform for scenarios designed with respect to di�erent error correlation ma-

trices, the degree of similarity between the input forecast accuracies and special groups.

First and foremost, in each ex post analysis of Chapters 4 to 6 we found that the cor-

responding forecast combination with constrained weights is in general superior to the

benchmark methods, also with respect to groups of scenarios. Another key �nding is

that using prior weights to shrink towards is a viable approach to combine forecasts

for all L1, Bounded Weights and Individual Feature Bounds. In particular, shrinkage

towards prior weights is useful for highly correlated forecast errors and, to a certain

extent, if the input forecasts are more dissimilar with respect to their error variance

(forecast accuracy, respectively).

A comparison of all forecast combination methods reveals that the Individual Feature

Bounds are clearly superior. They have the smallest MSE (among others) for all but

two scenarios, i.e., about 97% of scenarios. In comparison, the benchmark methods,

Linear Hybrid Shrinkage, L1 methods and Bounded Weights have the smallest MSE

for, respectively, roughly 3%, 3%, 10%, and 10% of scenarios.

However, throughout Chapters 4 to 6 we found that as soon as the hyperparame-

ters of the forecast combination methods have to be estimated a priori (out-of-sample

analysis) rather than chosen ex post, the benchmark methods (except the original fore-

cast combination problem: Optimal Weights) are much more competitive in terms of

their forecast accuracy. In other words, the estimation of hyperparameters introduces

uncertainty, which negates the clear superiority of forecast combination methods with

constrained weights. However, in scenarios with highly correlated forecast errors and

more dissimilar error variances, forecast combination methods which shrink towards

prior weights, in particular Conditional Group Equal Weights, are still competitive.
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Nevertheless, in particular Positive Weights (PW) and Inverse-Loss Weights (IL) pro-

vide a superior forecast performance more consistently.

The results of the simulation study indicate that the forecast combination methods we

considered and proposed in this thesis have great potential to improve the forecast accu-

racy. However, this potential cannot be fully realized due to the uncertainty associated

with the estimation of the hyperparameters. The �ndings suggest that further analysis

of hyperparameter estimation is necessary to fully utilize the potential for improvement

in forecast accuracy o�ered by the forecast combination methods.

In addition to the simulation studies, we conducted a comprehensive empirical anal-

ysis using nearly 1000 time series from the M4 competition. In contrast to the simula-

tion study, the considered forecast combination methods (L1, Linear Hybrid Shrinkage,

Bounded Weights and Individual Feature Bounds) provide good result even though

hyperparameters were estimated (except for Linear Shrinkage). The L1 methods and

Bounded Weights methods have the strictly best forecast accuracy for about 10% of time

series and Linear Hybrid Shrinkage for about 13%. With Individual Feature Bounds

we have the strictly best forecast accuracy for 22% of the time series which is more

often than the benchmark methods with 20%. If we consider how often each method

has the best forecast accuracy among others, both the benchmarks and Individual Fea-

ture Bounds are the best method most often for about a third of the time series. For

comparison, L1, Linear Hybrid Shrinkage and Bounded Weights have, among others,

the best forecast accuracy for about 23%, 23%, and 25%, respectively.

In general, shrinkage methods and the forecast combination methods with constrained

weights we proposed (BoundedWeights and Individual Feature Bounds) strictly improve

the forecast accuracy for 74% and 60% of these real-world time series compared to the

benchmark methods. If we compare Bounded Weights and Individual Feature Bounds

(BW(·), BW(ω̇), IFB(·), and IFB(ω̇)) against all other considered forecast combination

methods (benchmarks, Linear Hybrid Shrinkage and L1), our methods have strictly

improved the forecast accuracy for 39% of the real-world time series, i.e., 388 out of 989

time series.

In this thesis, we analyzed the forecast combination methods for both simulated

and real-world data. Our analysis o�ers valuable insights and demonstrates the great

potential of forecast combination with constrained weights, in particular Individual

Feature Bounds. In particular the empirical analysis allows us to assess the usefulness or

value of our newly proposed forecast combination methods for real-word time series. Due

to the fact that we use numerous time series, we ensure that our results are meaningful

and robust (Contribution VI).

In this thesis and our research, there are limitations or opportunities that need to be

considered and that provide the foundation for future research.
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First, the results from the simulation study suggest that we need to further investigate

the hyperparameter estimation of the forecast combination methods. Although the

result for the M4 time series demonstrated that the forecast accuracy was improved

relative to the benchmark methods for numerous time series, there is potential for

further improvement, which is driven by the hyperparameter estimation. To this end,

we can utilize, for instance, the error correlation matrix and error variances of the input

forecasts to train a neural network that predicts the hyperparameters.

Second, there are a lot of di�erent forecast combination methods and approaches

beyond forecast combination with constrained weights that are important to consider,

including double shrinkage via weighted least squares Lasso proposed by Liu et al.

(2023). This was, however, beyond the scope of this thesis. A future comprehensive

comparison on real-world data could prove invaluable in assessing the utility of both

Bounded Weights and Individual Feature Bounds.

Third, our out-of-sample analysis of the M4 time series and the simulation study

demonstrated that there is no single forecast combination method that is optimal for

all time series or scenarios. Consequently, future research should focus on developing

an a priori approach for determining which forecast combination methods to use for

a speci�c time series. To this end, we can use cross-validation, whereby, we choose

the forecast combination method with its hyperparameters that has the best forecast

accuracy within the validation set. Alternatively, we can develop an algorithm that

is based on the insights from our analysis of the forecast accuracies with respect to

the error correlation matrix, degree of similarity of forecast accuracy, the number of

observations in the training set, and so on.

Fourth, the second research question of this thesis was: how to incorporate additional,

external information in forecast combination with constrained weights? To this end, we

introduced Forecast Combination with Individual Feature Bounds, which achieve this.

However, as we discussed in Chapter 6, one can argue that we can use a di�erent objec-

tive function to tailor the combined forecast for a particular application. Nevertheless,

we do believe that Forecast Combination with Individual Feature Bounds is the best

approach. It allows for a more �exible and easily applicable incorporation various exter-

nal information and by the use of the transformation function, it can enforce properties

such as variable selection. However, for future research, we would like to investigate the

usefulness of prior weights based on feature values and customized objective to analyze

how well additional information is incorporated by those approaches in comparison to

Individual Feature Bounds.

Lastly, a key advantage of Individual Feature Bounds is its capability to incorpo-

rate additional, external information thereby enabling to be designed for a speci�c

application. Therefore, for future research we suggest analyzing Individual Feature

Bounds across various applications with application-speci�c features. For instance, in
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economics, tra�c, energy consumption, energy generation, reverse logistics, interest

and exchanges rates, stock returns, electricity prices, climate change, epidemics and

pandemics, risk of violence, elections, or sports and many more.

Accurate forecasts are of great importance as they are an indispensable component

of today's everyday life for individuals, society, economics, and businesses alike. The

overarching research question of this thesis was how to further improve the forecast ac-

curacy of a combined forecast using constrained weights? We showed that our proposed

methods for combined forecasts using additional constraints within the original forecast

combination problem can achieve this objective. While benchmark methods like the

equal weights forecast are competitive forecast combination methods not only for an

Ox weighting competition in 1906 England but also for more complex real-world time

series, we can con�dently state that Bounded Weights and Individual Feature Bounds

are a valuable addition to the existing forecast combination methods that improve the

forecast accuracy of the combined forecast.
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Additional Examples for Weight Paths
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Figure A.1. Additional weight paths for the L1 methods with a di�erent simulated
data set with N = 24 forecasts for L1(0),L1(1/N),L1(ω

IL),L1(ω
E2) and L1(ω

E3). The
data was generated using the simulation study presented in Section 3.2 with CM1, a
relative group distance z = 0.5 and no special group.
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One-Step Procedure for the Partially Egalitarian Lasso

The partially egalitarian Lasso was discussed in Section 4.1, and it is presented in

Equation (4.13) with q = 1. The idea of Diebold and Shin (2019) is that some weights

are shrunken and selected towards zero, while others are shrunken and selected towards

equal weights. The partially egalitarian Lasso with the unity constraint is de�ned by

minimize
ω

ω′Σ̂ω

subject to ω′1 = 1,

∥w∥ ≤ γ0,

∥w − 1/∥ω∥0∥ ≤ γ1/∥ω∥0

(A.1)

The second constraint restricts the deviation from zero, i.e., it shrinks towards zero.

The third constraint restricts the deviation from equal weights of the currently non-

zero weights by using the L0 norm �rst described in Equation (4.8). In Equation (A.1)

we adapted the peLasso for the forecast combination problem with a unity constraint.

However, the �rst constraint can be omitted if preferred.

Diebold and Shin (2019) only presented a two-step procedure due to di�culties to

solve Equation (4.13) directly. We can, however, incorporate both constraints simulta-

neously and present the one-step procedure that was left for future research. To this

end, we reformulate the optimization problem from Equation (A.1) similarly we refor-

mulated the optimization problem depicted in Equation (4.28) into the optimization

problem shown in Equation (4.32). We introduce two sets of N additional variables

ui and vi ∀i = 1 . . . , N for the two L1 norms. Additionally, for the L0 norm within

the second constraint we introduce N binary variables bi ∈ {0, 1}. We de�ne a new

covariance matrix as

Σ̃ =


Σ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 (A.2)

where, again, 0 is an N × N matrix that contains only zeros. The weights vector is

de�ned as

ω̃ = (ω1, ω2, . . . , ωN , u1, u2, . . . , uN , v1, v2, . . . , vN , b1, b2, . . . , bN )
′. (A.3)



A Appendix Chapter 4 215

As a result, the corresponding optimization problem is given by

minimize
ω

ω̃′Σ̃ω̃

subject to

N∑
i=1

ωi = 1,

N∑
i=1

ui ≤ γ(1/∑N
j=1 bj)

,

N∑
i=1

vi ≤ γ0,

ωi − 1/
∑N

j=1 bj ≤ ui ∀ i = 1, . . . , N,

1/
∑N

j=1 bj − ωi ≤ ui ∀ i = 1, . . . , N,

ωi ≤ vi ∀ i = 1, . . . , N,

−ωi ≤ vi ∀ i = 1, . . . , N,

ωi ≥ ζbi ∀ i = 1, . . . , N,

ωi ≤ −ζbi ∀ i = 1, . . . , N,

ωi, ui, vi ∈ R ∀ i = 1, . . . , N,

bi ∈ {0, 1} ∀ i = 1, . . . , N

(A.4)

The parameter γ0 as well as the variables vi corresponds to the L1 constraint that

shrinks parameters towards zero. The corresponding parameter to the L1 constraint that

restricts the deviations from the equal weights solution is γ(1/∑N
j=1 bj)

and the variables

are ui. These constraints were introduced within Section 4.2.2.1. In order to model

the L0 constraint linearly, the last two inequalities are used. Given an arbitrary small

positive number ζ, the two inequalities force bi to be one, if the weight is non-zero. To

be more precise, if the weights deviation from zero exceeds the threshold ζ (or −ζ).
Changing the variables bi alone has no impact on the objective function. However, if a

weight has to have a value smaller (or larger) ζ (or −ζ), bi has to be set to zero. Thereby,
the sum of bi ∀ i = 1, . . . , N corresponds the number of non-zero elements. Therefore,

using it in the constraints that correspond to γ(1/∑N
j=1 bj)

and ui results in a shrinkage

towards the equal weights of the currently non-zero elements of ωi ∀ i = 1, . . . , N .

The quadratic mixed integer problem of Equation (A.4) introduces a one-step proce-

dure that Diebold and Shin (2019) have left for future research.
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Figure B.1. Examples of forecast weight paths for the transitions
←→
EO. The data was created

on the basis of the simulation study of Section 3.2 for the scenario speci�ed in the caption of
each sub-�gure. Six forecasts where chosen randomly out of 24. The last two sub-�gures show
two randomly drawn time series from the M4 monthly data set. For the last 30 observations
forecasts where computed based on the methods in Chapter 7.
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Figure B.2. Examples of forecast weight paths for the transitions
←→
EPub. The data was

created on the basis of the simulation study of Section 3.2 for the scenario speci�ed in the
caption of each sub-�gure. Six forecasts where chosen randomly out of 24. The last two sub-
�gures show two randomly drawn time series from the M4 monthly data set. For the last 30
observations forecasts where computed based on the methods in Chapter 7.
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Figure B.3. Examples of forecast weight paths for the transitions
←−−→
EPO. The data was

created on the basis of the simulation study of Section 3.2 for the scenario speci�ed in the
caption of each sub-�gure. Six forecasts where chosen randomly out of 24. The last two sub-
�gures show two randomly drawn time series from the M4 monthly data set. For the last 30
observations forecasts where computed based on the methods in Chapter 7.
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Further Ideas for Unified Accuracy and Diversity Measures

For Individual Feature Bounds we want to use a feature that captures both the forecast

accuracy of the candidate forecasts and their diversity. With a similar objective Wang,

Kang, Petropoulos, and Li (2022) use a version of the MSE decomposition from Equa-

tion (6.42) as a measurement. To this end, they assume equally weighted forecasts. The

�Accuracy-Diversity Trade-o� (ADT)�(Wang, Kang, Petropoulos, & Li, 2022) is given

by

ADT = AvgMSE− ιAvgMSEC, (C.1)

=
1

N

N∑
i=1

MSEi − ι
1

N2

N−1∑
i=1

N∑
j>i

MSECi,j . (C.2)

The parameter ι ∈ [0, 1] controls to what extent diversity is taken into consideration

relative to the accuracy. If ι = 0 the ADT only takes the forecast accuracy into account

and, thus, is identical to the average MSE of all forecasts. With a parameter value of

ι = 1 the ADT takes diversity into consideration as much possible. Note that for ι > 1

the ADT can become negative. In Wang, Kang, Petropoulos, and Li (2022) the ADT

measure is used within their RAD algorithm to evaluate subsets of forecasts. In context

of the Individual Feature Bounds we are interested in a similar measure but for a single

forecast such that we can use it as a feature. This proves to be more di�cult.

Average ADT One potential approach is to arti�cially assume that the set of forecast

only consists of two forecasts. Then we calculate the ADT for each of the N(N − 1)

pairs of forecasts, i.e.,

ADTi,j(ι) =
MSEi +MSEj

2
− ιMSECi,j

4
∀ i, j ∈ {1, . . . , N} : i ̸= j. (C.3)

After that we determine the average ADT of forecast i by

AvgADTi(ι) =
1

N − 1

∑
j∈{1,...,N}:i ̸=j

ADTi,j(ι) ∀ i = 1, . . . , N. (C.4)

Accordingly, we use the average Accuracy-Diversity Trade-o� (AvgADT) as our feature

values, i.e., νi = AvgADTi. However, we need to emphasize and address that the feature
220



C Appendix Chapter 6 221

values are determined under assumptions and then used in a di�erent environment.

First, the ADTi,j values58 used in AvgADTi are calculated within a forecast combination

scenario with only two forecast and, second, equal weights are assumed. Thereafter,

however, the AvgADTi is used as a feature to derive constraints for aN forecast scenario.

Nevertheless, we argue that the AvgADTi can still be a bene�cial feature to use. It gives

an indication of how a certain forecast performs in combination with other forecasts

and how di�erent forecasts are based on the choice of ι. Moreover, the equal weights

approach has more than once proven itself and contradicted all expectations, see again

Section 2.3.

Average Weighted ADT We can build another measurement that considers both ac-

curacy and diversity that does not require the assumption of equal weights. To this

end, we simply use the combined MSE decomposition from Equation (6.42) but include

the parameter ι. Similar to ADT we create the Weighted Accuracy-Diversity Trade-O�

(WADT) and de�ne it as

WADTi,j(ι) =
N∑
i=1

ωiMSEi − ι
N−1∑
i=1

N∑
j>i

ωiωjMSECi,j . (C.5)

Based on this, we can follow the same procedure, assume that N = 2 and calculate the

WADT for all N(N − 1) pairs of forecasts, i.e.,

WADTi,j(ι) = ωiMSEi + ωjMSEj − ιωiωjMSECi,j . (C.6)

Again, in the next step we determine the average WADT (AvgWADT) of forecast i as

AvgWADTi(ι) =
1

N − 1

∑
j∈{1,...,N}:i ̸=j

WADTi,j(ι) ∀ i = 1, . . . , N. (C.7)

Of course, for the AvgWADTi we need to determine weights, see Equations (C.5)

and (C.6) respectively. If we use equal weights it simpli�es to AvgADTi. However,

we have a similar problem as before. We use a measurement for the accuracy and di-

versity that is derived within a two forecast scenario. Under the same conditions the

weights are determined. Then we use this measurement as features to derive individual

feature bounds for a di�erent scenario (N > 2). Of course, within this framework it

is not possible to use the same weights that we derive to impose the constraints and,

thus, we need to choose the weights for the AvgWADT.

It is not sensible to use the optimal weights from the original N forecasts scenario

problem instead. In that case the weights of two forecasts i and j in Equations (C.5)

and (C.6) respectively do not sum to one. As a result, the �rst part of Equation (C.5)

58Note that we omit ι when referring to ADTi,j(ι) or AvgADTi(ι) solely for a better readability.
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is no longer the average accuracy of the considered forecasts. Instead, the pairwise

optimal weights from Equation (C.6), i.e., the optimal weights calculated for each pair

of forecasts (i, j)∀ i, j ∈ {1, . . . , N} : i ̸= j can be used.



List of Symbols

0 N × 1 vector of zeros

1 N × 1 vector of ones

α S × 1 vector of relative di�erence between the median error variance

of any group

ℵℵℵ individual feature deviation vector - allowed deviation from prior

weights that de�ne the individual lower and upper bound.

ℵℵℵ,ℵℵℵ lower, upper individual feature deviation vector - allowed deviation

from prior weights that de�ne the individual lower and upper bound.

AvgMSECi average MSEC between forecast i and any other forecast

ℵ,ℵ lower, upper individual feature deviation - allowed deviation from

prior weights that de�ne the individual lower and upper bound.

ℵ∗,ℵ∗ adjusted lower, upper individual feature deviation to ensure the fea-

sibility of the optimization problem.

ℶ∗
(ℶ) maximum upper bound deviation - the solution will not change for

any ℶ > ℶ∗
(ℶ)

BW(·) bounded prior weights without prior weights (forecast combination

method)

BW(ω̇) bounded around prior weights weights / bounded prior weights (fore-

cast combination method)

ℶ,ℶ lower, upper bound deviation from prior weights

ℶ∗(ℶ) minimum lower bound deviation - the solution will not change for

any ℶ < ℶ∗(ℶ)

BW bounded weights (forecast combination method)

c index for the combined forecast

CGEW conditional group equal weights

CM correlation matrix

d(ω, ω̇) measure of diversion between the weight vector ω and a reference

prior weight vector ω̇

η S × 1 dimensional vectors or median error variances.
223
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ε N × 1 vector of forecast errors

ϵ regression error term

ηs median error variances
←−−→
EPO path or transition between EW, PW and OW
←→
EP lb path or transition between EW and PW by varying the lower bound
←→
EP ub path or transition between EW and PW by varying the upper bound

ε forecast error

ECB european central bank

eLasso egalitarian lest absolute shrinkage and selection operator

EW equal weights (forecast combination method)

FFORMA feature-based forecast model averaging

γ shrinkage parameter or intensity

γ∗ value of shrinkage parameter or intensity at which it does not con-

strain or e�ect the solution

γκ, γω̇ shrinkage parameter or intensity towards the shrinkage direction κ

or ω̇ respectively

Gi group i of forecasts

G number of groups for the CGEW

gj budget of group j of the solution for the smallest feasible γ.

GDP gross domestic product

GRelU generalized recti�ed linear unit

h forecast horizon

HICP harmonized Index of Consumer Prices in�ation rate

IFB(·) individual feature bounds without prior weights (forecast combina-

tion method)

IFB(ω̇) individual feature bounds around prior weights (forecast combination

method)

IFB individual feature bounds (forecast combination method)

IL inverse-loss weighted average (forecast combination method)

IQR interquartile range

κ shrinkage direction

λ shrinkage parameter or intensity
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λ∗ value of shrinkage parameter or intensity at which it does not con-

strain or e�ect the solution

L1(κ) shrinkage towards a �xed value κ via L1 constraints (forecast combi-

nation method)

IL inverse-loss weighted average (forecast combination method)

Lasso lest absolute shrinkage and selection operator

LB lower bound (forecast combination method)

LHS linear hybrid shrinkage

LS linear shrinkage

MAE mean absolute error

MAPE mean absolute percentage error

MASE mean absolute scaled error

MSE mean squared error

MSEC mean squared error for coherence

relMSE relative mean squared error - MSE of a method divided by a reference

MSE (EW) to scale it

ν feature vector of forecasts

ν̌ another scaled feature value for the generalized logistic function to

ensure the desired smallest and largest deviations from prior weights

ν̌ threshold for the feature value ν within the GRelU

∥ ∥q Lq-norm

νi feature value of forecasts i

ν̃ scaled feature vector of forecasts

ν̃i scaled feature value of forecasts i

N number of forecasts

ωLHS forecast combination weight of lhs

ω N × 1 vector of forecast combination weights

ωE2 prior weights vector and shrinkage direction with two groups of con-

ditional equal weight

ωE3 prior weights vector and shrinkage direction with two groups of con-

ditional equal weight

ωIL prior weights vector and shrinkage direction inverse-loss weighted av-

erage
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ω̇ prior weight vector

ω forecast combination weight

ωOW forecast combination weight for optimal weights

ω∗(ω) maximum upper bound - the solution will not change for any ω >

ω∗(ω)

ω, ω lower, upper bound for forecast combination weights

ω∗(ω) minimum lower bound - the solution will not change for any ω <

ω∗(ω)

ω̂LHS(λ) estimated forecast combination weight of lhs given λ

OLS ordinary least squares estimator

OW optimal weights (forecast combination method)

ψ̌min, ψ̌max adjusted smallest, largest individual feature deviation from prior weights

for the generalized logistic function to ensure the desired smallest and

largest deviations from prior weights
←→
PO path or transition between PW and OW

ϕ1, ϕ2, ϕ3 parameters that in�uence the generalized logistic function

Ψ transformation function that maps an input to the individual feature

bound

ψmin, ψmax smallest, largest individual feature deviation from prior weights

peLasso partially egalitarian lest absolute shrinkage and selection operator

PW positive weights (forecast combination method)

ρ̄r,s common error correlation between any two forecasts i, j = 1, . . . , N

of any two groups s, r = 1, . . . , S

ρs,ri,j error correlation between any two forecasts i, j = 1, . . . , N of any two

groups s, r = 1, . . . , S

ρi,j error correlation of forecasts i and j

Σ N ×N error variance covariance matrix

σ2
s

N/S × 1 dimensional vectors or error variances of group s.

σ̂2c (ω) empirical error variance

σ2c (ω) actual error variance

σ2i,j error covariance of forecasts i and j

σi, σ
2
i error standard deviation, error variance of forecast i

Σ̂ N ×N estimated error variance covariance matrix
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s, S index and number of forecast groups within the simulation study

SG special groups

SPF survey of Professional Forecasters

τ Total number of observations in a training set of a time series

T Total number of observations of a time series

t time index

Υ̌ step size of the step transformation function given Υ

Υ number of steps in the step transformation function

ui, vi auxiliary variables

v N × 1 vector to select forecasts to shrink towards zero or EW (LHS

method)

ξ( ) function that calculates the feature values

ŷ N × 1 vector of forecasts

ŷc,t combined forecast for time t

ŷi,t forecast i for time t

yt observation of a time series at time t

ζ arbitrary small positive number

zs error variance similarity - relative distance of the median error vari-

ance of group s compared to group one
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