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Chapter 1

Introduction

We can find stochastic differential equations (SDEs) on manifolds in many problems in

different areas ranging from physics to finance. In physics, the examples range from the

modelling of rigid bodies such as vehicles and satellites to the modelling of the precessional

motion of magnetisation, see [1], [44], [63]. Problems in computer vision, where the

motions of objects are estimated from a sequence of projections, are also modelled by

stochastic processes on manifolds [68]. Examples in finance include the interest rate

models found in [21], [41], [61], [77].

What all of these examples have in common is that they are subjected to some kind

of uncertainty and geometric constraints, which are expressed by a stochastic process and

a manifold, respectively. We can think of manifolds as curved spaces, e.g. a sphere, such

that we know that applying a linear operator on this curved space will give us results that

leave the curved space. This phenomenon is called a drift-off and an example is visualized

in Figure 1.1, where a linear solver was used to approximate a stochastic process on a

sphere. The approximations start on the left-hand side of the sphere but dissociate from it

Figure 1.1: Approximation of a stochastic process drifting off a sphere
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2 CHAPTER 1. INTRODUCTION

more and more with every time step taken, which we can see on the right-hand side of the

sphere. Since leaving the manifold is equivalent to violating some geometric constraints,

our objective is to generate approximations that stay on the manifold.

In this thesis, we extend the linear solvers that are designed for SDEs in linear spaces

like stochastic Runge-Kutta methods such that they can be used for SDEs on manifolds

by taking up the idea of Munthe-Kaas for solving ordinary differential equations (ODEs)

on manifolds. The resulting methods are called stochastic Runge-Kutta–Munthe-Kaas

(SRKMK) schemes.

1.1 Literature review

SDEs on manifolds have been investigated for more than seven decades now. It started

with Itô’s paper [31] in 1950 and multiple papers and books followed throughout the years,

for example [4], [17], [18], [23], [29], [69] to name a few, which gave us a good foundation

on the theory of stochastic analysis on manifolds.

The first essential components for the numerical approximation of the solution of SDEs

on manifolds were established around three decades later when stochastic versions of the

Magnus expansion were analysed, see [3], [12], [37], [79], which were put into practice

in [11], [50]. However, it was not until 2008 when SRKMK schemes were first proposed

and computed by Malham and Wiese in [44] based on the methods developed by Munthe-

Kaas in the course of [56]–[58].

After that, a specific example of SRKMK schemes based on the Euler-Maruyama

scheme has been studied in [46], [47], [64], where the method was applied to a special

kind of manifolds, namely the matrix Lie groups SO(n) and SE(n) for the modelling of

rigid body motions. As the considered method was able to preserve the geometry of the

Lie groups, the authors called it the geometric Euler-Maruyama scheme.

Another particular application of SRKMK schemes can be found in [1], where the

authors used Munthe-Kaas methods for a finite-dimensional version of the stochastic

Landau–Lifshitz equation.

The results presented in this thesis get in line with the works mentioned above and

complete them with an analysis of strong convergence of SRKMK methods. Despite all

the applications of SRKMK schemes that can be read about in the cited papers, a proof

of strong convergence of Munthe-Kaas methods for SDEs on manifolds was still missing.

Researchers interested in convergence proofs will only find the first order convergence

in mean-squared error of the geometric Euler-Maruyama scheme applied to linear SDEs
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on matrix Lie groups in [46] and the proof of weak convergence of SRKMK schemes

on the unit sphere in [1]. For that reason we consider our proof of strong convergence

of SRKMK schemes for nonlinear SDEs on manifolds as the main contribution to this

stream of research.

Furthermore, we regard our application of SRKMK schemes to SDEs on manifolds con-

sidered in financial mathematics as great contributions to geometric modelling in compu-

tational finance since we have elaborated novel methodologies to approximate correlation

matrices and transition matrices. We present these methodologies at the end of the thesis,

where the approximation of correlation matrices is based on the following publications:

• M. M., M. Ehrhardt, M. Günther, Approximating correlation matrices using stochas-

tic Lie group methods, Mathematics 9(1) (2021), 94,

• M. M., M. Ehrhardt, M. Günther, Correlation Matrices driven by Stochastic Isospec-

tral Flows, in: M. Ehrhardt, M. Günther, Progress in Industrial Mathematics at

ECMI 2021, The European Consortium for Mathematics in Industry, Springer, 2022,

455–461.

A full-length coverage of our method for the approximation of rating transition matrices

can be found in

• K. Kamm and M. M., A novel approach to rating transition modeling via Machine

Learning and SDEs on Lie Groups, arXiv:2205.15699, May 2022,

• K. Kamm and M. M., Rating Triggers for Collateral-Inclusive XVA via Machine

Learning and SDEs on Lie Groups, arXiv:2211.00326, November 2022.

This thesis will only cover a small introduction to the approach described in more details

in the listed manuscripts.

The proof of strong convergence of SRKMK methods was developed in the course of

the three manuscripts

• M. M., M. Ehrhardt, M. Günther, R. Winkler, Higher Strong Order Methods for

linear Itô SDEs on matrix Lie Groups, BIT Numer. Math. 62 (4) (2022), 1095–1119,

• M. M., M. Ehrhardt, M. Günther, R. Winkler, Stochastic Runge-Kutta–Munthe-

Kaas Methods in the Modelling of Perturbed Rigid Bodies, Adv. Appl. Math. Mech. 14

(2) (2022), 528–538,



4 CHAPTER 1. INTRODUCTION

• M. M., M. Ehrhardt, M. Günther, R. Winkler, Strong stochastic Runge-Kutta-

Munthe-Kaas methods for nonlinear Itô SDEs on manifolds, IMACM-Preprint Wup-

pertal 22/14, June 2022,

where the first paper only considers linear SDEs on matrix Lie groups, the second deals

with a nonlinear SDE on a sphere and the third examines the generalisations to nonlinear

SDEs on more abstract manifolds. Here we will present the convergence proof on the

basis of these three manuscripts, where the focus is on the latest version of the proof since

in hindsight the former two approaches can be considered as special cases of that version.

1.2 Outline

Our goal in this thesis is to present the proof of strong convergence in a comprehensible

way for readers that are familiar with the basics of solving ODEs and SDEs in vector

spaces. For this purpose, we approach the main result step by step and begin each

chapter with a motivational example from the modelling of rigid bodies.

In Chapter 2 we introduce all the vocabulary from differential geometry needed to

understand and to approximate the dynamics equation of the rotation of a rigid body,

which is an ODE on a sphere. Therefore, we consider manifolds and their tangent spaces

to formulate ODEs on manifolds. Then, we regard Lie groups and Lie algebras, which

are special manifolds and tangent spaces that allow us to express transport across a

manifold. Next, we use these notions of transport across a manifold to set up Runge-

Kutta–Munthe-Kaas schemes, which can be used to solve the rigid body equation. Since

the formulation of Itô SDEs on manifolds requires a greater concept than tangent spaces

and their corresponding tangent bundle, we will also discuss fiber bundles, which will be

needed in the third chapter.

The third chapter starts with the set up of a stochastic expansion of the rotation

motion of a rigid body, i.e. an SDE on a sphere. In order to fully comprehend this

equation we first give an introduction to SDEs in linear spaces and the different definitions

of stochastic integrals according to Itô and to Stratonovich. As a next step, we concentrate

on how these SDEs in linear spaces can be numerically approximated by stochastic Taylor

expansions and stochastic Runge-Kutta methods. Finally, we will be able to connect the

notions learned from the second chapter with SDEs to establish the formulation of SDEs

on manifolds and their numerical approximation via SRKMK schemes. This is where we

will also present our main result of the strong convergence of SRKMK schemes before

naming some more methods that could be used to approximate the rigid body problem.
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In the fourth chapter we will see the results of applying SRKMK schemes to SDEs

considered in rigid body modelling. We visualize the result of our convergence theorem

and the preservation of the manifold structure and of other given intrinsic quantities.

Moreover, we show how SRKMK methods can be used to model correlations and rating

transitions in computational finance.

Lastly, a summary of this work and an outlook to future topics connected to this work

will conclude the thesis.





Chapter 2

Numerical Approximation of

Ordinary Differential Equations on

Manifolds

Motivation: The dynamics of a rigid body

Consider a rigid body such as a satellite rotating around its center of mass. Let y =

(y1, y2, y3)
⊤ be the angular momentum in the body frame and let I1, I2, I3 represent

the principal moments of inertia, see [49]. Then, the dynamics of the rotation can be

described by the Euler equations, which can be expressed byẏ1

ẏ2

ẏ3

 =

 0 y3/I3 −y2/I2

−y3/I3 0 y1/I1

y2/I2 −y1/I1 0


y1

y2

y3

 . (2.1)

This is an ordinary differential equation (ODE) on the sphere

S = {(y1, y2, y3) : y21 + y22 + y23 = const.}. (2.2)

Our goal in this chapter is to formulate a method to approximate the solution of

the ODE (2.1) such that the structure of the sphere is preserved while at the same

time we are introducing vocabulary needed for solving the stochastic counterpart of this

problem, which we will consider later on. For this purpose we first introduce some basics of

differential geometry in Section 2.1 before establishing the geometry-preserving algorithm

by Munthe-Kaas in Section 2.2.

7
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2.1 Manifolds and tangent bundles

Our main scene of action in this thesis are manifolds, which is why we dedicate this entire

section to manifolds. Roughly speaking, manifolds are geometrical spaces that locally

resemble Euclidean spaces and examples include curves and surfaces like the one given

in (2.2). The following more formal definitions of manifolds and attached notions from

differential geometry can for example be found in [5], [8], [39], [40], where we used the

notations from [24, Chapter 1].

So more formally, we consider a manifold M to be a topological space such that any

point in M has a neighbourhood homeomorphic to an open ball of the vector space Rn,

where n ∈ N is the dimension of the manifold. In the following, we will not distinguish

between the neighbourhood on M and the open ball in Rn and we will both call charts

denoted by Uα. Let m ∈ M be in the intersection of two charts Uα and Uβ, i.e. m ∈
Uαβ = Uα∩Uβ ̸= ∅, then m can be described by the local coordinates in Uα and in Uβ. We

denote the map that transforms Uα-coordinates to Uβ-coordinates by φβα. A manifold M
is called smooth if the changes of coordinates are C∞-smooth. From here on we consider

all manifolds to be smooth and finite dimensional if not stated otherwise.

2.1.1 Tangent spaces and vector fields

Consider a smooth curve m(t) on a manifold M. Visualizing the manifold as a surface, a

tangent vector can be thought of as a velocity vector to this smooth curve on the surface.

So we denote by

Xm =
dm(t)

dt

∣∣∣∣
t=0

a tangent vector at m = m(0). If we assume that the tangent vector is represented by

Xα = dmα(t)
dt

∣∣∣
t=0

in the coordinates of a chart Uα, then we have in another chart Uβ the

curve mβ(t) = φβα(mα(t)) and the tangent vector

Xβ =
dmβ(t)

dt

∣∣∣∣
t=0

= φ′
βα

dmα(t)

dt

∣∣∣∣
t=0

= φ′
βαXα, (2.3)

where φ′
βα is the Jacobi matrix of φβα. The tangent vectors at a point m ∈ M form a

vector space TmM which is called the tangent space at m.

Let (x1, . . . , xn) be coordinates in a chart Uα at m. Then every tangent space TmM
has a basis denoted by ∂

∂x1 , . . . ,
∂

∂xn , where the vector ∂
∂xi is the derivative of the i-th

coordinate axis passing throughm with respect to the corresponding parameter xi. Hence,

every Xm ∈ TmM is represented with coordinates as X i ∂
∂xi using Einstein convention.
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The tangent bundle TM in turn is the disjoint union of the tangent spaces TmM of

M. By assigning a tangent vector to each point m ∈ M we get a map, X : M → TM,

which is called a vector field. We denote by X(M) the set of all smooth vector fields

on M. Hence, an integral curve m(t) of X ∈ X(M) or rather an ordinary differential

equation (ODE) on the manifold M is described by

ṁ(t) = X
(
m(t)

)
. (2.4)

Locally, we can consider the integral curve m(t) as an ODE in a vector space and use

classical theorems for showing the existence and uniqueness of a solution m(t) given an

initial condition m(0) = m0, see e.g. [24, p. 7] for further details.

Let f : M → N be a smooth map between two manifolds M and N . The tangent

map (or pushforward) Tf : TM → TN sends the tangent vector Xm = dm(t)/dt, t = 0,

to a tangent vector in TN via

Tf(Xm) =
df(m(t))

dt

∣∣∣∣
t=0

. (2.5)

Setting N = R and assuming m(t) to be the integral curve of X with m(0) = m, the

tangent vector Tf(Xm) is also called the derivative of f in the direction of X at m. The

derivative of f along X is obtained by computing Tf(Xm) at all points of M and denoted

by Xf . In local coordinates we have the formula

Xf = X i ∂f

∂xi
.

The Lie bracket [X, Y ] of two smooth vector fields X and Y is again a vector field on

M such that for any smooth real-valued function f on M its derivative along [X, Y ] is

given by [X, Y ]f = X(Y f)− Y (Xf), where

[X, Y ] = X ◦ Y − Y ◦X (2.6)

is the definition in operator form. Besides skew-symmetry, i.e. [X, Y ] = −[Y,X], the Lie

bracket also satisfies the so-called Jacobi identity :

[
X, [Y, Z]

]
+
[
Y, [Z,X]

]
+
[
Z, [X, Y ]

]
= 0 (2.7)

for X, Y, Z ∈ X(M). A vector space on which the Lie bracket fulfills the Jacobi identity

is called a Lie algebra.
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2.1.2 Lie groups and Lie algebras

Manifolds with a group structure prove to be an important tool for describing dynamics

on manifolds. Therefore, we explore these special manifolds and their tangent spaces

based on [27].

Definition 2.1. A Lie group G is a differentiable manifold equipped with a continuous

group product · : G×G → G.

Hereafter, we will focus on matrix Lie groups, i.e. Lie groups that are also subgroups of

the general linear group GL(n) = {A ∈ Rn×n : det(A) ̸= 0} such that the group product

in the definition above is the matrix multiplication. A typical example for a matrix Lie

group that we will encounter frequently throughout this thesis is the group of rotation

matrices also called the special orthogonal group,

SO(n) = {Q ∈ GL(n) : Q⊤Q = I, det(Q) = 1},

where I denotes the n-dimensional identity matrix.

Definition 2.2. A (left) Lie group action is a map Λ: G×M → M which satisfies

1. Λ(I,m) = m,

2. Λ
(
g1,Λ(g2,m)

)
= Λ(g1 · g2,m) for g1, g2 ∈ G.

In the case where M is the Lie group G itself, a left Lie group action is given by right

multiplication Rm : G → G, Λ(g,m) = g · m =: Rm(g). The tangent map of the right

multiplication TRm can be used to transport a basis in the tangent space at the identity

TIG to a tangent space TgG at each point g ∈ G. The so-obtained vector field on G is

called the right-invariant vector field.

The vector space TIG is called the Lie algebra of the Lie group G and is denoted by

g. It is equipped with the Lie bracket (2.6), which in the case of matrix Lie groups and

matrix Lie algebras reduces to the matrix commutator [·, ·] : g× g → g. The commutator

is bilinear, skew-symmetric and satisfies the Jacobi identity (2.7).

An iterated application of the commutator can be expressed by the adjoint operator,

adΩ : g → g, adΩ(H) = [Ω, H] = ΩH −HΩ with

ad0
Ω(H) = H, adk

Ω(H) = adΩ

(
adk−1

Ω (H)
)
= [Ω, adk−1

Ω (H)]

for k ≥ 1.
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Going back to the matrix Lie group SO(n) one can easily verify that its corresponding

Lie algebra is the space of skew-symmetric matrices,

so(n) = {A ∈ Rn×n : A+ A⊤ = 0},

where 0 denotes the n-dimensional zero matrix. Note that there is an isomorphism be-

tween R3 and so(3), which we call the hat map. It is given by ·̂ : R3 → so(3),

θ =

θ1

θ2

θ3

 7→ θ̂ =

 0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0

 , (2.8)

such that θ̂z = θ × z for θ, z ∈ R3.

The exponential map

The matrix exponential gives us a map from a Lie algebra to its corresponding Lie group,

i.e. exp: g → G with

exp(Ω) =
∞∑
k=0

Ωk

k!
.

Moreover, it is a local diffeomorphism in a neighbourhood of Ω = 0, see [25, p. 83ff] for

the proof and the formulas regarding the derivative below. The directional derivative of

the matrix exponential along an arbitrary matrix H is given by( d

dΩ
exp(Ω)

)
H =

d

dt
exp(Ω + tH)

∣∣∣∣
t=0

= dexpΩ(H) exp(Ω) with

dexpΩ(H) =
∞∑
k=0

1

(k + 1)!
adk

Ω(H), (2.9)

where the series converges for all Ω.

Lemma 2.3 (Baker, 1905). If the eigenvalues of adΩ are different from 2ℓπi with ℓ ∈
{±1,±2, . . . }, then dexpΩ is invertible. Let Bk denote the Bernoulli numbers defined

implicitly by the Taylor series
∑∞

k=0(Bk/k!)x
k = x/(ex − 1), then we have

dexp−1
Ω (H) =

∞∑
k=0

Bk

k!
adk

Ω(H), (2.10)

which converges for ∥Ω∥ < π in a submultiplicative norm ∥ · ∥.
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We recall that the first three Bernoulli numbers are B0 = 1, B1 = −1
2
, B2 = 1

6
and

that B2k+1 = 0 holds for k ∈ N such that

dexp−1
Ω (H) = H − 1

2
[Ω, H] +

1

12

[
Ω, [Ω, H]

]
+ . . . .

Seeing all these infinite sums that are involved with the matrix exponential one may

wonder whether closed-form expressions exist. In the special case, where we are interested

in computations with rotations in three dimensions, we can rely on the Rodrigues formula

(see [49, p. 291]), expm: so(3) → SO(3),

expm(Ω) = I +
sin θ

θ
Ω +

1

2

sin2 ϑ

ϑ2
Ω2 (2.11)

with θ = ∥ω∥2 and ϑ = θ/2, where ω̂ = Ω ∈ so(3). Based on these notations we can also

find closed-form expressions for (2.9) and (2.10) for matrices in so(3), namely

dexpΩ = I +
sin2 ϑ

2ϑ2
Ω +

θ − sin θ

θ3
Ω2,

where the inverse is given by

dexp−1
Ω = I − 1

2
Ω− θ cotϑ− 2

2θ2
Ω2, (2.12)

see [30, p. 147].

The Cayley map

Besides the exponential map there are more local diffeomorphisms from a Lie algebra g

to a corresponding Lie group G near Ω = 0. Here, we will only have a closer look on the

Cayley transform,

cay : g → G, cay(Ω) = (I − Ω)−1(I + Ω), (2.13)

which can be used in case of quadratic Lie groups. A quadratic Lie group is of the form

G = {Q : Q⊤PQ = P}

for a given constant matrix P . Note that the Lie group SO(n) is quadratic by setting

P = I.
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For the derivative of cay(Ω) we have( d

dΩ
cay(Ω)

)
H = dcayΩ(H) cay(Ω)

with

dcayΩ(H) = 2(I − Ω)−1H(I + Ω)−1

and its inverse given by

dcay−1
Ω (H) =

1

2
(I − Ω)H(I + Ω), (2.14)

see [25, p. 128].

Examining the Cayley map we notice that compared to the matrix exponential, one

is not required to evaluate any infinite series.

2.1.3 Fiber bundles

In the following, we would like to piece together the objects evolving around manifolds

that we have learned so far in order to understand a greater concept, namely fiber bun-

dles. Fiber bundles are spaces that can locally be identified by a Cartesian product of

topological spaces. We use the notations from [24, Section 1.3] to give a more formal

definition.

Definition 2.4 (Fiber bundle). A fiber bundle is determined if the following five objects

are given

• a manifold M, the base,

• a manifold E, the total space,

• a manifold F , the standard fiber,

• a Lie group G, the structure group,

• a smooth projection πM : E → M

and if the following interrelations hold

• a certain left action of G on F is given,

• for any m ∈ M the set Em = π−1
Mm (the fiber at m) is homeomorphic to F ,
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• for any chart Uα in M the set π−1
MUα is homeomorphic to Uα × F ,

• for Uαβ = Uα ∩ Uβ ̸= ∅ the ’change of coordinates’ from Uα × F to Uβ × F is

given by the pair (φβα, gβα(m)) where φβα : Uαβ → Uαβ and gβα(m) : F → F is a

diffeomorphism of F according to the left action of G.

A fiber bundle is often denoted by its total space E over its base manifold M. The

reader might recognize that we have already encountered a special kind of fiber bundle,

namely the tangent bundle TM.

The tangent bundle TM of a manifold M is a fiber bundle over M, where fibers

at m ∈ M are the tangent spaces TmM which are homeomorphic to the standard fiber

F = Rn. An element of the tangent bundle TM is a tangent vector which we may denote

by

• (m,X) if we want to highlight that we are considering a point in TM (locally

homeomorphic to Uα × Rn) or

• Xm if we want to highlight that we are considering it as a tangent vector to M at

m (as done above).

Moreover, we see that for E = TM we have the structure groupG = GL(n) and gβα = φ′
βα

according to (2.3).

Definition 2.5 (Section). A section X of the fiber bundle E is a map X : M → E such

that πM ◦X = id: M → M, i.e. X(m) ∈ Em for any m ∈ M.

Given this definition we can now specify a vector field X : M → TM as a section of

the tangent bundle TM.

More examples of fiber bundles include

• the cotangent bundle T ∗M, which is the set of all cotangent spaces T ∗
mM and by

definition the dual space of the tangent bundle TM,

• the second order tangent bundle τM, which consists of second order tangent vec-

tors, i.e. second order differential operators on M with zero constant term and a

symmetric matrix of coefficients at second order derivatives in local coordinates,

and

• the second tangent bundle of M denoted by TTM, which is the tangent bundle of

the manifold TM.

For more information on these fiber bundles we refer to [24].
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2.2 Runge-Kutta–Munthe-Kaas schemes

For the demonstration of a numerical approximation scheme for ODEs on manifolds we

first take a closer look on manifolds that are homogeneous spaces in Section 2.2.1, where

the main references are [58], [59]. A homogeneous manifold is a manifold M with a

transitive Lie group action Λ: G×M → M (see Definition 2.2), which means that there

is an element g in the Lie group G such that starting from one point on the manifold we

can reach any other point on the manifold,

Λ(g,m1) = m2

for all m1,m2 ∈ M. Examples for such kind of manifolds will be given below in Sec-

tion 2.2.2.

2.2.1 ODEs on homogeneous manifolds

We already know that ODEs on manifolds M can be described by (2.4) and that the right

hand side of this ODE is a right-invariant vector field in the case where M is a Lie group

G. Considering homogeneous manifolds M this representation of an ODE can again be

specified by using Lie algebra actions on M.

The Lie algebra action

Given a (left) Lie group action Λ: G×M → M a (left) Lie algebra action λ : g×M → M
can be defined by

λ(Ω, y) = Λ(exp(Ω), y),

see [58]. We will call Lie algebra actions, that originate from transitive Lie group actions,

transitive as well.

Note that a Lie algebra action λ is not uniquely defined by a Lie group action Λ. Other

local diffeomorphisms of the Lie group can also be used instead of the matrix exponential,

e.g. the Cayley map in the case of quadratic Lie groups.

Now we can use Lie algebra actions λ : g ×M → M to map the Lie algebra g onto

tangent spaces of M or rather to use elements of the Lie algebra to generate vector fields

on the homogeneous manifold M. We define λ∗ : g → X(M) by

(λ∗v)(y) =
d

dt
λ(tv, y)

∣∣∣∣
t=0

(2.15)
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where v ∈ g and y ∈ M. We remark that at a fixed point y0 ∈ M this locally corresponds

to the definition of the pushforward (2.5) of λy0 : g → M with λy0(v) = λ(v, y0) since

Tg ∼= g and (λy0)∗v ∈ Ty0M.

The generic representation of ODEs on manifolds

Then, assuming there is a smooth function f : M → g, an ODE on a homogeneous

manifold can be represented by

ẏ = (λ∗f(y)) (y). (2.16)

Such a representation can always be found on homogeneous manifolds and at least locally

on other manifolds as the linear span of the vector fields ∂
∂x1 , . . . ,

∂
∂xn creates a transitive

algebra action on M, see [58].

Theorem 2.6. On a given manifold M assume that there is a (left) Lie algebra action

λ : g×M → M and a function f : M → g such that an ODE for y(t) ∈ M is represented

by (2.16) with the initial value y(0) = y0. For sufficiently small t, the solution is y(t) =

λ (Ω(t), y0), where Ω(t) ∈ g satisfies the ODE

Ω̇ = dexp−1
Ω

(
f
(
λ(Ω, y0)

))
, Ω(0) = 0. (2.17)

For a fixed y0 ∈ M, let λy0(Ω) = λ(Ω, y0) and similarly Λy0

(
exp(Ω)

)
= Λ

(
exp(Ω), y0

)
.

This theorem can be proven by showing that the vector fields in (2.16) and (2.17) are λy0-

related (see [58, Lemma 8]).

We would like to give an intuition on how a proof would look like based on the notions

discussed in the previous sections. The solution curve y(t) = λy0

(
Ω(t)

)
= Λy0

(
exp(Ω(t))

)
is a smooth curve on M. On the one hand, we are locally mapping the Lie algebra

g onto tangent spaces of M via the Lie algebra action λy0 . Therefore, we can use the

formula (2.3) to transform a tangent vector described in g to a tangent vector described

in Ty0M. Let vΩ := dexp−1
Ω

(
f
(
λ(Ω, y0)

))
denote the right hand side of (2.17), then we

compute the directional derivative of λy0 along vΩ to change the coordinates and get

d

dt
Λy0

(
exp(Ω + tvΩ)

)∣∣∣∣
t=0

= Λ′
y0

(
exp(Ω)

) d

dt
exp(Ω + tvΩ)

∣∣∣∣
t=0

= Λ′
y0

(
exp(Ω)

)
dexpΩ(v

Ω) exp(Ω)

= Λ′
y0

(
exp(Ω)

)
f
(
λ(Ω, y0)

)
exp(Ω). (2.18)

On the other hand, we can compute the right hand side of (2.16) using the properties of
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the Lie group action to obtain(
λ∗f
(
λy0(Ω)

))(
λy0(Ω)

)
=

d

dt
Λ
(
exp

(
tf
(
λy0(Ω)

))
,Λ
(
exp(Ω), y0

))∣∣∣∣
t=0

=
d

dt
Λ
(
exp

(
tf
(
λy0(Ω)

))
exp(Ω), y0

)∣∣∣∣
t=0

= Λ′
y0

(
exp(Ω)

)
f
(
λy0(Ω)

)
exp(Ω).

We conclude that both approaches give the same result.

To sum up, we can transform a vector field on the manifold M into a vector field in

the Lie algebra g and solve the ODE (2.16) on M by locally solving the ODE (2.17) in g.

The ODE (2.17) might look more complicated but has the benefit that it is an ODE in a

vector space such that well-known ODE solvers like Runge-Kutta methods can be used.

Runge-Kutta schemes

We remind the reader that for the numerical approximation of the initial value problem

ẏ = F (t, y), y(t0) = y0,

with y : R → Rn and F : R× Rn → Rn an s-stage Runge-Kutta method is given by

ki = F
(
t0 + cih, y0 + h

s∑
j=1

aijkj
)
, i = 1, . . . , s,

y1 = y0 + h
s∑

i=1

biki,

where h is an uniform step size between two successive discrete time points tℓ and tℓ+1,

ℓ = 0, 1, . . . . The coefficients bi, aij are real numbers with ci =
∑s

j=1 aij, which can be

arranged in a Butcher tableau:

c1 a11 . . . a1s
...

...
. . .

...
cs as1 . . . ass

b1 . . . bs

Table 2.1: Butcher Tableau
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A Runge-Kutta method is said to have convergence order p if

y1 − y(t0 + h) = O(hp+1) for h → 0,

i.e. if the Taylor series for y1 and for the exact solution y(t0 + h) coincide up to the term

hp, see e.g. [26, p. 134]. The most simple Runge-Kutta method with s = 1 is the explicit

Euler scheme of convergence order p = 1 with coefficients:

0 0
1

Table 2.2: Butcher Tableau of the explicit Euler scheme

We notice that we introduced Runge-Kutta methods for a nonautonomous initial value

problem although we have regarded autonomous ODEs on manifolds for simplicity be-

fore. However, it is straightforward to extend the results for ODEs on manifolds to the

nonautonomous case by considering f : R × M → g, (t, y) 7→ f(t, y) in (2.16) as done

in [58].

Runge-Kutta–Munthe-Kaas schemes

Now, we apply a Runge-Kutta method to (2.17) and denote a truncated approximation

of (2.9) by

dexpinv(Ω, H, q) =

q∑
k=0

Bk

k!
adk

Ω(H) (2.19)

to get the following Runge-Kutta–Munthe-Kaas (RKMK) scheme for solving the ODE

(2.16) on a manifold M.

Algorithm 1 RKMK

1: for ℓ = 0, 1, . . . , L− 1 do
2: for i = 1, 2, . . . , s do
3: Ω̄i = h

∑s
j=1 aijkj

4: ki = dexpinv
(
Ω̄i, f

(
λ(Ω̄i, yℓ)

)
, q
)

5: end for
6: Ω1 = h

∑s
j=1 bjkj

7: yℓ+1 = λ(Ω1, yℓ)
8: end for

A statement on the convergence of this algorithm is given in the following theorem

from [25, p. 126].
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Theorem 2.7. If the Runge-Kutta method is of order p and if the truncation index

in (2.19) satisfies q ≥ p− 2, then the method of Algorithm 1 is of order p.

In other words, RKMK schemes inherit the convergence order p of the underlying

Runge-Kutta method, where we do not have to consider the infinite sum in (2.10). The

number of summands in (2.19) that have to be evaluated can be chosen correspondingly

to the desired convergence order p.

2.2.2 Examples

Now, let us consider some exemplary manifolds with corresponding Lie algebra actions

and finally solve our motivating example of the dynamics of a rigid body problem. The

following and more examples can be found in [30], [58], [59].

Example 1

Setting M = Rn and λ(v, y) = v + y we see that Algorithm 1 reduces to the classical

Runge-Kutta method since (λ∗v)(y) = v.

Example 2

Assume that there is a set of vector fields E1, . . . , En ∈ X(M), which span the tangent

space TmM at each point m ∈ M. Such vector fields are called frames on M and are

assumed to be ’easily’ integrated such that an ODE on M can be written as

ẏ =
n∑

i=1

fi(y)Ei,

where fi : M → R are smooth. We set g as the Lie subalgebra of X(M) spanned by Ei,

i = 1, . . . , n and set the Lie algebra action λ : g×M → M as the flow operator such that

y(t) = λ(tF, y0) is the solution of

ẏ = F
(
y(t)

)
, y(0) = y0,

for F ∈ g. Since the pushforward of the Lie algebra action is

(λ∗F )(y0) =
d

dt
λ(tF, y0)

∣∣∣∣
t=0

= F
(
y(t)

)∣∣
t=0

= F (y0)
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we see that the above ODE written in terms of rigid frames is of the form (2.16) by setting

f : M → g as f(y) =
∑n

i=1 fi(y)Ei. For solving this ODE with the RKMK algorithm one

has to follow a fixed flow in the Lie subalgebra generated by {Ei}, i = 1, . . . , n. This is

the same setting as considered for the Crouch-Grossman schemes [16].

Example 3

Let M be the (n− 1)-dimensional sphere,

Sn−1 = {y ∈ Rn : y⊤y = 1}.

Then we can use rotation matrices R ∈ SO(n) to move around the sphere, such that we

have the transitive Lie group action Λ: SO(n) × Sn−1 → Sn−1 with Λ(R, y) = Ry. For

the corresponding Lie algebra action λ : so(n)× Sn−1 → Sn−1, λ(v, y) = exp(v)y we have

(λ∗v)(y) = vy such that an ODE on Sn−1 can be described by

ẏ = f(y)y, y(0) = y0,

where f : Sn−1 → so(n). Note that in this case the Lie algebra action could also be defined

via the Cayley map (2.13).

We see that the rigid body equation (2.1) is of this form with n = 3, where f : S2 →
so(3) reads

y =

y1

y2

y3

 7→

 0 y3/I3 −y2/I2

−y3/I3 0 y1/I1

y2/I2 −y1/I1 0


for given constants I1, I2 and I3. The dynamics evolve on M = S = S2 if the initial value

is normalized such that ∥y0∥ = 1. Applying the explicit Euler scheme we can truncate the

series (2.19) at q = 0 (according to Theorem 2.7) and get the following RKMK scheme,

Ω1 = hf(yℓ),

yℓ+1 = exp(Ω1)yℓ,

for ℓ = 0, 1, . . . , which is also called the Lie-Euler scheme. Higher order RKMK schemes

can be constructed in the same way and are given explicitly for example in [30, Appendix

A].

A more thorough investigation of Lie group methods applied to rigid body dynamics

can be found in [14].



Chapter 3

Numerical Approximation of

Stochastic Differential Equations on

Manifolds

Motivation: The dynamics of a perturbed rigid body

Consider again a rotating rigid body such as a satellite with dynamics as given in (2.1).

Now, assume that there is some perturbance caused by e.g. measurement uncertainties.

We suppose that the perturbation is of Gaussian nature and can be added to the right

hand side of (2.1) such that the dynamics of the rigid body is described by

d

y1

y2

y3

 =

 0 y3/I3 −y2/I2

−y3/I3 0 y1/I1

y2/I2 −y1/I1 0


y1

y2

y3

 dt+

 0 y3/J3 −y2/J2

−y3/J3 0 y1/J1

y2/J2 −y1/J1 0


y1

y2

y3

 ◦ dWt (3.1)

with some more moments of inertia J1, J2, J3 and a scalar Wiener process Wt with

dWt ∼ N (0, dt). This is a (Stratonovich) stochastic differential equation (SDE) on the

sphere S defined in (2.2).

In this chapter we aim at understanding this SDE on S by building upon the theoretical

results of the previous chapter. We expand the theory of the deterministic case to set

up an algorithm for solving SDEs on manifolds. Therefore, we first deal with important

21
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properties of Itô and Stratonovich SDEs in vector spaces in Section 3.1 and their strong

approximation in Section 3.2. After that we focus on the formulation of SDEs on manifolds

in Section 3.3 and analyse the stochastic Runge-Kutta–Munthe-Kaas (SRKMK) scheme

in Section 3.4.

3.1 Stochastic Differential Equations in vector spaces

In this section we intend to introduce SDEs as ODEs subjected to random perturbation

as done in the motivational example above but in a more formal and general way. For

the depiction of SDEs we focus on the Itô calculus in Section 3.1.1 but also give a brief

insight on the formulation according to Stratonovich in Section 3.1.2.

As we assume the reader to be familiar with stochastic processes and the theory of

measure and integration we only summarize theoretical results gathered from [60] in order

to introduce properties of SDEs which we will need later on for the formulation of SDEs

on manifolds and for the proof of strong convergence of SRKMK schemes.

3.1.1 Itô Stochastic Differential Equations

Let (Ω,F ,P) be a complete probability space. In equation (3.1) we introduced a random

perturbation to the ODE (2.1) by using a Wiener process Wt, which we would like to

characterize now. A Wiener process (or Brownian motion) Wt is a stochastic process

with the following properties:

1. W0 = 0 P-almost surely (a.s.).

2. Wt has Gaussian increments: Wt − Ws is normally distributed with mean 0 and

variance t− s, i.e. Wt −Ws ∼ N (0, t− s) for all 0 ≤ s ≤ t.

3. Wt has independent increments: Wt − Ws and Wu − Wr are independent for all

0 ≤ r < u < s < t.

Now, let us define a stochastic integral corresponding to the Wiener process for func-

tions b(t, ω) : [0,∞)× Ω → R with the following properties:

(i) (t, ω) 7→ b(t, ω) is B × F -measurable, where B denotes the σ-algebra on [0,∞),

(ii) b(t, ω) is Ft-adapted,

(iii) E
[ ∫ t

0
b(s, ω)2ds

]
< ∞.
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For the sake of a simple notation we drop the dependence on ω and keep the dependence

on the time t as an index whenever it is more convenient or drop it as well when the

dependence on time is clear.

Definition 3.1 (Itô integral). The Itô integral of a stochastic process bt (that fulfills the

conditions (i)–(iii) above) with respect to the Brownian motion Wt is given by

∫ t

0

bs dWs = lim
L→∞

L−1∑
ℓ=0

btℓ(Wtℓ+1
−Wtℓ)

for partitions {0 = t0 < t1 < · · · < tL = t} of the time interval [0, t] with max0≤ℓ≤L−1{|tℓ+1−
tℓ|} → 0 for L → ∞.

An important feature of this stochastic integral is that it satisfies the Itô isometry,

E

[(∫ t

0

bs dWs

)2
]
= E

[∫ t

0

b2s ds

]
. (3.2)

see [60, p. 29]. To motivate the formulation of an SDE we consider it as an expansion of

an ODE. Let us look at the ODE ẋ(t) = a
(
t, x(t)

)
with the initial value x(t0) = x0 in

integral form

x(t) = x0 +

∫ t

t0

a
(
s, x(s)

)
ds,

where we assume a(·, ·) : [0,∞) × R → R to be a continuous function fulfilling a local

Lipschitz condition. Adding a random perturbation to the right hand side in form of an

Itô integral gives us an interpretation of the Itô process.

Definition 3.2 (Itô process). An Itô process is a stochastic process Xt of the form

Xt = Xt0 +

∫ t

t0

a(s,Xs) ds+

∫ t

t0

b(s,Xs) dWs,

where we assume the stochastic process b(·, ·) to have the same properties as above and

the function a(·, ·) to be Ft-adapted with
∫ t

t0
|a(s, x)| ds < ∞ for all t ≥ 0 P-almost surely.

A shorter notation is given in differential form as

dXt = a(t,Xt) dt+ b(t,Xt) dWt, (3.3)

which is called an Itô stochastic differential equation with drift a(t,Xt) dt and diffusion

part b(t,Xt) dWt.
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For a twice continuously differentiable function f , i.e. f(t, x) ∈ C2([0,∞)×R,R) and
an Itô process given by (3.3) it holds that Yt = f(t,Xt) is again an Itô process with

dYt =
∂f

∂t
dt+

∂f

∂x
dXt +

1

2

∂2f

∂x2
(dXt)

2,

where the coefficients are evaluated at (t,Xt) and (dXt)
2 = (dXt) · (dXt) is computed

according to the rules

dt · dt = 0, dt · dWt = dWt · dt = 0 and dWt · dWt = dt,

such that we have

dYt =

(
∂f

∂t
+

∂f

∂x
a+

1

2

∂2f

∂x2
b2
)
dt+

∂f

∂x
b dWt, (3.4)

which is called the (one-dimensional) Itô formula [60, p. 44].

Next, we want to extend the results regarding the Itô process and the Itô formula to

the multidimensional case. Assume that Wt = (W 1
t , . . . ,W

d
t ) is a d-dimensional standard

Brownian motion with respect to a filtration (Ft)t≥0 satisfying the usual conditions. We

set the time interval I = [t0, T ] for some 0 ≤ t0 < T < ∞. Consider the n-dimensional

Itô process

Xt = Xt0 +

∫ t

t0

a(s,Xs) ds+
d∑

j=1

∫ t

t0

bj(s,Xs) dW
j
s (3.5)

for t ∈ I, where we now assume the components ai and bi,j of the drift a : I × Rn → Rn

and the diffusion coefficient b : I ×Rn → Rn×d, respectively, to fulfill the conditions from

Definition 3.2 correspondingly. By bj we denote the j-th column of the n × d-matrix

function b = bi,j for j = 1, . . . , d.

Let g(t, x) =
(
g1(t, x), . . . , gp(t, x)

)
be a C2 map from [0,∞) × Rn into Rp. Then

the process Yt = g(t,Xt) with Xt given as in (3.5) is again an Itô process, whose k-th

component reads

dY k
t =

∂gk

∂t
dt+

n∑
i=1

∂gk

∂xi
dX i

t +
1

2

n∑
i,j=1

∂2gk

∂xi∂xj
dX i

tdX
j
t , (3.6)

where the coefficients are again evaluated at (t,Xt), see [60, p. 49]. One can use similar

Itô rules as above, i.e. dW i
t dW

j
t = δijdt and dW i

t dt = dtdW i
t = 0, where δij denotes the

Kronecker delta, to simplify the formula.
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The following theorem from [60, p. 66] tells us under which conditions there exists an

unique solution for (3.5).

Theorem 3.3. Let T > 0 and a(·, ·) : [0, T ] × Rn → Rn, b(·, ·) : [0, T ] × Rn → Rn×d be

measurable functions satisfying

∥a(t, x)− a(t, y)∥+ ∥b(t, x)− b(t, y)∥ ≤ D∥x− y∥, x, y ∈ Rn, t ∈ [0, T ] (3.7)

for some constant D, and such that

∥a(t, x)∥+ ∥b(t, x)∥ ≤ C(1 + ∥x∥), x ∈ Rn, t ∈ [0, T ] (3.8)

for some constant C. Let Z be a random variable with E [∥Z∥2] < ∞. Then the SDE (3.5)

with t0 = 0 and X0 = Z has an unique solution Xt with E
[ ∫ T

0
∥Xt∥2dt

]
< ∞.

The norm considered above is the Euclidean norm for processes in Rn and the Frobe-

nius norm for processes in Rn×d, i.e. ∥A∥F =
√∑n

i=1

∑d
j=1 |aij|2 for an arbitrary matrix

A ∈ Rn×d. We note that additional to a global Lipschitz condition (3.7), a linear growth

bound (3.8), which in this context is also called Itô condition [24, p. 131], is a sufficient

condition to show the existence and uniqueness of the solution.

3.1.2 Stratonovich Stochastic Differential Equations

The Itô stochastic integral in Definition 3.1 is constructed by evaluating the function b

at the left-end point of the time interval [tℓ, tℓ+1]. Evaluating the time interval at the

midpoint will give us the Stratonovich integral of b,

∫ t

0

bs ◦ dWs = lim
L→∞

L−1∑
ℓ=0

b 1
2
(tℓ+tℓ+1)

(Wtℓ+1
−Wtℓ)

for partitions of the time interval [0, t].

Similar to Itô processes we can define a stochastic process as an expansion of an ODE

by assuming an additive perturbation in terms of a Stratonovich integral [69]. Let the

functions a and b fulfill some regularity assumptions as above. A corresponding stochastic

differential equation is given by

Xt = Xt0 +

∫ t

t0

a(s,Xs) ds+

∫ t

t0

b(s,Xs) ◦ dWs
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with the differential notation as

dXt = a(t,Xt) dt+ b(t,Xt) ◦ dWt. (3.9)

An advantage of SDEs based on the Stratonovich integral is that they transform using

the change of variables as in the deterministic case. There is no Itô formula with second

order derivatives needed as we can use the ordinary chain rule for the stochastic process

Yt = f(t,Xt), i.e. dYt =
∂f
∂t
dt+ ∂f

∂x
dXt, with dXt given by (3.9) to obtain

dYt =

(
∂f

∂t
+

∂f

∂x
a

)
dt+

∂f

∂x
b ◦ dWt, (3.10)

where the coefficients are again evaluated at (t,Xt).

This makes Stratonovich SDEs the more natural choice to extend ODEs on manifolds

such that they account for random perturbation since constructions based on the change

of variables formula (2.3) can be applied in a straightforward manner. For this reason,

we set up the SDE on the sphere S in our motivational example (3.1) as a Stratonovich

SDE.

Nevertheless, Stratonovich integrals have the disadvantage that they are not martin-

gales as Itô integrals are, see [60, p. 37] for more details. As a consequence, it is more

difficult to use the Stratonovich integral for proofs, for example for the proof of The-

orem 3.3. Additionally, the evaluation of the time interval at the midpoint gives the

Stratonovich integral the character of “looking into the future” [60, p. 24]. This is an

undesirable feature for the application in financial mathematics since stock prices for ex-

ample are only known at the beginning of a given time interval. Therefore, literature

concerning finance use solely the Itô integral.

However, it is always possible to switch from one notation to the other one to take

advantage of the corresponding stochastic integral. In order to transform the Stratonovich

SDE (3.9) to the Itô notation (3.3) one can modify the drift as follows

a(t, x) = a(t, x) +
1

2

∂b

∂x
(t, x)b(t, x), (3.11)

see [36, p. 157], where we call the second summand the Itô correction term. For the trans-

formation of Itô to Stratonovich SDEs the equation can be rearranged correspondingly.

Below, we will focus on the Itô notation since it appears to be a better fit for our

purposes but we will also give corresponding remarks regarding the Stratonovich notation.
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3.2 Strong Approximation of SDEs

As we have seen in the previous chapter numerical approximation schemes for ODEs in

vector spaces can be used to solve ODEs on manifolds by applying them in a corresponding

Lie algebra. For this reason, we consider the strong approximation of SDEs in vector

spaces by means of Itô-Taylor expansions in Section 3.2.1 and Stochastic Runge-Kutta

(SRK) methods in Section 3.2.2 to use them to approximate SDEs on manifolds later on.

But first let us concretise the definition of convergence in a strong sense according

to [36], [67]. For the numerical approximation we discretize the time interval I = [t0, T ]

by Ih = {t0, t1, . . . , tL} with t0 < t1 < · · · < tL = T with step sizes hℓ = tℓ+1 − tℓ for

ℓ = 0, 1, . . . , L− 1. Further, let h = max0≤ℓ<L hℓ denote the maximum step size.

An approximating process Xh is said to converge in a strong sense with order γ > 0

to the Itô process Xt if there exists a finite constant C and a δ0 > 0 such that

E
[
∥XT −Xh(T )∥

]
≤ Chγ

for any time discretization with maximum step size h ∈ (0, δ0). For further investiga-

tions we will use the mean-square convergence, which implies strong convergence since

the absolute error can be estimated by the root mean-square error via the Lyapunov

inequality:

E
[
∥XT −Xh(T )∥

]
≤
(
E
[
∥XT −Xh(T )∥2

] )1/2
.

Definition 3.4 (Mean-square Convergence). A sequence of approximation processes Xh =(
X(t)

)
t∈Ih

converges in the mean-square sense with order γ to the solution X of SDE (3.5)

at time T if there exists a constant C > 0 and some δ0 > 0 such that for each h ∈ (0, δ0)(
E
[
∥XT −Xh(T )∥2

] )1/2
≤ Chγ. (3.12)

To give a complete overview of notions regarding the convergence, we mention that

there also exists the concept of weak convergence. An approximating process Xh converges

in the weak sense with order β > 0 if there exists a finite constant C and a δ0 > 0 such

that ∣∣E(g(XT )
)
− E

(
g(Xh(T ))

)∣∣ ≤ Chβ (3.13)

for any polynomial g and time discretization with maximum step size h ∈ (0, δ0).

Below, we will limit our analysis of approximating processes to their convergence in a

strong sense as it implies weak convergence. Nevertheless, an analysis of weak convergence

is still meaningful since higher orders can usually be achieved, to name only one benefit.
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3.2.1 Itô-Taylor expansions

Stochastic Taylor expansions can be viewed as an extension of Taylor expansions in the

deterministic case. There are stochastic Taylor expansions according to the Itô and to

the Stratonovich integral. For our purpose we limit the presentation here on Itô-Taylor

expansions, where we use the notations from [36, Chapter 5]. The reader can learn about

Stratonovich-Taylor expansions in [36, Section 5.6].

Let the row vector α = (j1, j2, . . . , jl) with ji ∈ {0, 1, . . . , d} for i = 1, 2, . . . , l be a

multi-index of length l := l(α) and let M be the set of all multi-indices α including a

multi-index v of length zero, i.e. l(v) = 0. We denote by −α and α− the multi-index

obtained by deleting the first and last component of α, respectively.

Multiple Itô integrals

Let ρ and τ be two stopping times with t0 ≤ ρ(ω) ≤ τ(ω) ≤ T almost surely. Then, a

multiple Itô integral is defined recursively by

Iα[f(·)]ρ,τ :=


f(τ), l = 0,∫ τ

ρ
Iα−[f(·)]ρ,s ds, l ≥ 1 and jl = 0,∫ τ

ρ
Iα−[f(·)]ρ,s dW jl

s , l ≥ 1 and jl ≥ 1,

for adapted right continuous with left limits (càdlàg) stochastic processes f = {f(t), t ≥ 0}
inHα, which is defined as follows. The setHv contains all the càdlàg processes that satisfy

|f(t, ω)| < ∞ almost surely. The next set H(0) is the totality of all càdlàg processes with∫ t

0

|f(s, ω)| ds < ∞

almost surely and H(1) is defined as the set of all such processes with∫ t

0

|f(s, ω)|2 ds < ∞

almost surely. For further multi-indices α with l(α) = 1 we write H(j) = H(1) for each

j ∈ {2, . . . , d} if d ≥ 2. If l(α) > 1 then Hα is defined as the set of all càdlàg processes

that satisfy

Iα−[f(·)]ρ,· ∈ H(jl).
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Some examples for multiple Itô integrals are the following:

I(0)[f(·)]0,t =
∫ t

0

f(s) ds,

I(1)[f(·)]0,t =
∫ t

0

f(s) dW 1
s ,

I(1,1)[f(·)]0,t =
∫ t

0

∫ s2

0

f(s1) dW
1
s1
dW 1

s2
,

I(0,1)[f(·)]0,t =
∫ t

0

∫ s2

0

f(s1) ds1dW
1
s2
.

For simpler notation we write Iα = Iα[1]0,t and W 0
t = t for α ∈ M and t ≥ 0.

Itô coefficient functions

Consider the differential operators

L0 =
∂

∂t
+

n∑
k=1

ak
∂

∂xk
+

1

2

n∑
k,l=1

d∑
j=1

bk,jbl,j
∂2

∂xk∂xl
,

Lj =
n∑

k=1

bk,j
∂

∂xk
for j ∈ {1, . . . , d}.

The Itô coefficient function is defined recursively by

fα =

f, l = 0,

Lj1f−α, l ≥ 1,

for α = (j1, . . . , jl) and f ∈ Cp(R+ × Rn,R) where p = l(α) + n(α) with n(α) being the

number of components of α which are equal to zero.

Setting f(t, x) ≡ x in the one-dimensional case n = d = 1 we get for example

f(0) = a, f(1) = b, f(1,1) = bb′, f(1,0) = ba′, f(0,1) = ab′ +
1

2
b2b′′.

Itô-Taylor expansions

A subset A ⊂ M is called a hierarchical set if A is nonempty, the multi-indices in A are

uniformly bounded in length and if

−α ∈ A for each α ∈ A \ {v}.
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The remainder set B(A) of A is defined by

B(A) = {α ∈ M \ A : −α ∈ A}.

Theorem 3.5. Let A ⊂ M be a hierarchical set, f : R+×Rn → R and let ρ and τ be two

stopping times with t0 ≤ ρ(ω) ≤ τ(ω) ≤ T almost surely. Then the Itô-Taylor expansion

f(τ,Xτ ) =
∑
α∈A

Iα [fα(ρ,Xρ)]ρ,τ +
∑

α∈B(A)

Iα [fα(·, X·)]ρ,τ

holds, provided all of the derivatives of f , a and b and all of the multiple Itô integrals

exist.

Strong Convergence of truncated Itô-Taylor expansions

We consider the truncated Itô-Taylor expansion

Xk(t) =
∑
α∈Λk

Iα [fα(t0, Xt0)]t0,t (3.14)

for t ∈ [t0, T ], k = 0, 1, . . . and f(t, x) ≡ x and assume that the necessary derivatives and

multiple integrals exist for all α ∈ Λk ∪ B(Λk) with Λk = {α ∈ M : l(α) + n(α) ≤ k} and

B(Λk) = {α ∈ M \ Λk : −α ∈ Λk}.

The simplest Itô-Taylor approximation for (3.5) is the Euler-Maruyama scheme with

strong order γ = 0.5, which reads

Xℓ+1 = Xℓ + a h+
d∑

j=1

bj∆W j (3.15)

with ∆W j = W j
tℓ+1

−W j
tℓ
= I(j). Note that contrary to above the index indicates the time

step.

An approximation scheme converging with strong order γ = 1.0 is theMilstein scheme,

Xℓ+1 = Xℓ + a h+
d∑

j=1

bj∆W j +
d∑

j1,j2=1

Lj1bj2I(j1,j2). (3.16)
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For n = d = 1 an Itô-Taylor scheme with γ = 1.5 is given by

Xℓ+1 = Xℓ + a h+ b∆W +
1

2
bb′
(
(∆W )2 − h

)
+ a′b∆Z +

1

2

(
aa′ +

1

2
b2a′′

)
h2

+

(
ab′ +

1

2
b2b′′

)
(h∆W −∆Z)

+
1

2
b
(
bb′′ + (b′)2

)(1

3
(∆W )2 − h

)
∆W

(3.17)

where ∆Z = I(1,0). The coefficients a and b and their derivatives in the three methods

above are all evaluated at t = tℓ.

The strong convergence order of other truncated Itô-Taylor expansions can be deter-

mined via the following theorem from [36, p. 206].

Theorem 3.6. Suppose that fα(t0, Xt0) ∈ Hα for all α ∈ Λk and that fα(·, X·) ∈ Hα with

sup
t0≤t≤T

E
[
|fα(t,Xt)|2

]
≤ C1C

l(α)+n(α)
2

⌊
1

2
(l(α) + n(α))

⌋
!

for all α ∈ B(Λk). Then

E
[
∥Xt −Xk(t)∥2

]
≤ C3

(C4(t− t0))
k+1⌊

1
2
(k + 1)

⌋
!

for all t ∈ [t0, T ], so the truncated Itô-Taylor expansion (3.14) converges to the Itô process

Xt in the mean-square sense.

3.2.2 Stochastic Runge-Kutta methods

Numerical schemes for SDEs that are derived from Itô-Taylor expansions but do not

require the computations of derivatives can be constructed by expanding deterministic

Runge-Kutta methods to the stochastic case. However, coming up with a general for-

mula for the stochastic counterpart of Runge-Kutta methods is challenging since different

strategies were developed to obtain order conditions. While Burrage & Burrage general-

ized B-series to the stochastic case [9], Rößler used a coloured rooted tree analysis [66] to

come up with order conditions for stochastic Runge-Kutta (SRK) methods. We present

the explicit SRK schemes created by Rößler in [65], [67] but we would also like to point

out that one could use different SRK methods for example the one developed in [10], [73],
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[74].

For the strong numerical approximation of SDEs it is necessary to simulate multiple

stochastic integrals. The Itô stochastic integrals

I(j),ℓ =

∫ tℓ+1

tℓ

dW j
s , I(j1,j2),ℓ =

∫ tℓ+1

tℓ

∫ s2

tℓ

dW j1
s1
dW j2

s2

for tℓ, tℓ+1 ∈ Ih and 1 ≤ j1, j2 ≤ d are simulated as follows:

• I(j) = I(j),ℓ ∼ N (0, hℓ),

• I(j,j) =
1
2
(I2(j) − hℓ),

• I(j,0) =
1
2
hℓ(I(j) +

1√
3
ζj) with ζj ∼ N (0, hℓ) independent from I(j) for all 1 ≤ j ≤ d,

• I(0,j) = hℓI(j) − I(j,0).

Further, let I(1,1,1) =
1
6
(I3(1) − 3I(0)I(1)) be the approximation of

I(1,1,1),ℓ =

∫ tℓ+1

tℓ

∫ s3

tℓ

∫ s2

tℓ

dW 1
s1
dW 1

s2
dW 1

s3
.

We are interested in methods with higher strong order than the Euler-Maruyama

scheme (3.15), which can be considered as a SRK method of strong order γ = 0.5. A

strong order γ = 1 SRK method for the numerical approximation of (3.5) is given by

Xℓ+1 = Xℓ +
s∑

i=1

αia
(
tℓ + c

(0)
i hℓ, H

(0)
i

)
hℓ

+
d∑

k=1

s∑
i=1

(
β
(1)
i I(k) + β

(2)
i

√
hℓ

)
bk
(
tℓ + c

(1)
i hℓ, H

(k)
i

)
(3.18)

for ℓ = 0, 1, . . . , L− 1 with stages

H
(0)
i = Xℓ +

s∑
j=1

A
(0)
ij a
(
tℓ + c

(0)
j hℓ, H

(0)
j

)
hℓ +

d∑
l=1

s∑
j=1

B
(0)
ij bl

(
tℓ + c

(1)
j hℓ, H

(l)
j

)
I(l),

H
(k)
i = Xℓ +

s∑
j=1

A
(1)
ij a
(
tℓ + c

(0)
j hℓ, H

(0)
j

)
hℓ +

d∑
l=1

s∑
j=1

B
(1)
ij bl

(
tℓ + c

(1)
j hℓ, H

(l)
j

)I(l,k)√
hℓ

for i = 1, . . . , s and k = 1, . . . , d.
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For SDEs with scalar noise, i.e. (3.5) with d = 1, an efficient SRK with strong order

γ = 1.5 can be formulated as

Xℓ+1 = Xℓ +
s∑

i=1

αia
(
tℓ + c

(0)
i hℓ, H

(0)
i

)
hℓ

+
s∑

i=1

(
β
(1)
i I(1) + β

(2)
i

I(1,1)√
hℓ

+ β
(3)
i

I(1,0)
hℓ

+ β
(4)
i

I(1,1,1)
hℓ

)
b
(
tℓ + c

(1)
i hℓ, H

(1)
i

)
(3.19)

for ℓ = 0, 1, . . . , L− 1 with stages

H
(0)
i = Xℓ +

s∑
j=1

A
(0)
ij a
(
tℓ + c

(0)
j hℓ, H

(0)
j

)
hℓ +

s∑
j=1

B
(0)
ij b
(
tℓ + c

(1)
j hℓ, H

(1)
j

)I(1,0)
hℓ

,

H
(1)
i = Xℓ +

s∑
j=1

A
(1)
ij a
(
tℓ + c

(0)
j hℓ, H

(0)
j

)
hℓ +

s∑
j=1

B
(1)
ij b
(
tℓ + c

(1)
j hℓ, H

(1)
j

)√
hℓ

for i = 1, . . . , s.

The coefficients of the SRK methods can be arranged in an extended version of the

Butcher tableau from Table 2.1:

c(0) A(0) B(0)

c(1) A(1) B(1)

α β(1) β(2)

β(3) β(4)

Table 3.1: Extended Butcher tableau

Coefficients of SRK methods with strong order γ = 1.0 and order γ = 1.5 can be

found in the Butcher tableaus presented in Table 3.2 and Table 3.3, respectively. The

construction of higher strong order SRK schemes is computationally complex and are

known to be inefficient since the evaluation of multiple stochastic integrals is costly.

As already mentioned a way-out may be offered by weak SRK methods if one is

interested in the approximation of distributional characteristics of the solution of (3.5).

Weak approximations do not require information on the driving Wiener process, such

that random variables with distributions that are easy to simulate can be used. We refer

to [66], [74] for the analysis of weak SRK schemes.
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0
0 0 0
0 0 0 0 0
0
0 0 1
0 0 0 −1 0

1 0 0 1 0 0 0 1
2

−1
2

Table 3.2: Coefficients of SRK method with strong order γ = 1.0 [67]

0
3
4

3
4

3
2

0 0 0 0 0
0 0 0 0 0 0 0
0
1
9

1
9

1
3

−2
9

−5
9

1
3

−1
3

1

1
3

−1 1
3

1 1 −1 1

1
3

2
3

0 0 13
4

−9
4

−9
4

9
4

−15
4

15
4

3
4

−3
4

−9
4

9
4

9
4

−9
4

6 −9 0 3

Table 3.3: Coefficients of SRK method with strong order γ = 1.5 [65]

3.3 Stochastic Differential Equations on manifolds

Having acquired the basics of SDEs in linear spaces we now bring this knowledge together

with the notions of fiber bundles. We execute this by combining the contents reviewed

in the second chapter about ODEs on manifolds with the contents of Section 3.1 in order

to formulate SDEs on manifolds. Classical references on this topic include [17], [18], [29],

which we identify as references for readers with a strong background in stochastic analysis.

We choose to introduce SDEs on manifolds based on [22], [24] since these references build

upon basics in differential geometry and add theoretical results of stochastic processes

based on this background. This approach reflects our level of knowledge and the one we

assume the reader to have. Therefore, we first formulate Itô SDEs on manifolds in terms

of sections of the Itô bundle in Section 3.3.1, which is followed by a representation of

SDEs on homogeneous manifolds in Section 3.3.2 based on the depiction in [44].
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3.3.1 The Itô bundle

Let M be a smooth manifold of dimension n. The benefit of considering SDEs on man-

ifolds based on the definition of Stratonovich is that they can be described as sections

of the tangent bundle TM like ODEs on manifolds, see (2.4). Under the change of the

coordinates φβα a Stratonovich process (3.9) on M transforms into

dφβα(Xt) = φ′
βα

(
a(t,Xt) dt+ b(t,Xt) ◦ dWt

)
according to the transformation rule (3.10). This formula coincides with the transforma-

tion of a tangent vector (2.3), which makes working with Stratonovich SDEs more similar

to the deterministic case.

For the definition of Itô SDEs on manifolds some more consideration has to be taken

into account in order to present the Itô formula (3.4) correctly. An Itô SDE on M is

a section of a different fiber bundle. We introduce this fiber bundle according to the

Definition 2.4 by first presenting its structure group, where we use the notations from [24,

Chapter 7].

Let L(Rd,Rn) be the space of linear operators from Rd to Rn and L2(Rn) be the set

of bilinear mappings α : Rn × Rn → Rn.

Definition 3.7. The Itô group GI is the set of pairs (B, β) where B ∈ GL(n) and β ∈
L2(Rn) with the operation defined by

(B, β) · (C, γ) =
(
B ◦ C,B ◦ γ(·, ·) + β

(
C(·), C(·)

))
.

Note thatGI is indeed a group with the unit element (I, 0), where I is the unit operator

and 0 the zero bilinear mapping, and inverse (B, β)−1 =
(
B−1,−B−1◦β

(
B−1(·), B−1(·)

))
,

which can be verified by direct calculations.

We recall that the trace operator “tr” of a bilinear mapping Ψ(·, ·) is defined by

trΨ =
n∑

i=1

Ψ(ei, ei),

where e1, . . . , en denotes an arbitrary orthonormal frame.

Definition 3.8. The Itô bundle I(M) over a manifold M is a fiber bundle with the

standard fiber F = Rn×L(Rd,Rn) and structure group GI that acts on F from the left by

(B, β) · (X,A) =

(
BX +

1

2
tr β
(
A(·), A(·)

)
, B ◦ A

)
. (3.20)
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It follows that an element (mα, (aα, bα)) of the Itô bundle in the chart Uα is transformed

to another chart Uβ by

(mβ, (aβ, bβ)) =

(
φβαmα,

(
φ′
βαaα +

1

2
trφ′′

βα(bα, bα), φ
′
βαbα

))
. (3.21)

Definition 3.9. An Itô equation is a section of the Itô bundle I(M).

So assuming an Itô process (3.5) on the manifold M as a section of I(M) it transforms

under a coordinate change φβα into

dφβα(Xt) = φ′
βα

(
a(t,Xt) dt+ b(t,Xt) dWt

)
+

1

2
trφ′′

βα

(
b(t,Xt), b(t,Xt)

)
dt,

which obeys the Itô formula (3.6). We refer to [24, Theorem 7.20] for the existence of an

unique solution of an Itô equation on M.

There is a correspondence of the Itô equations defined as sections of I(M) and Itô

equations derived from the second order tangent bundle τM via a local connector Γm(·, ·)
in the second tangent bundle TTM of M, where τM and TTM are fiber bundles as

mentioned in Section 2.1.3. These constructions seem to be beneficial when dealing with

Riemannian manifolds. More details can be found in [24, Section 7.3].

Although some terminologies differ from that used here, the idea of defining Itô SDEs

on manifolds as sections of a new fiber bundle can be dated back to Itô himself [31]. Based

on this idea the Itô bundle was first constructed by Belopolskaya and Dalecky in [4].

Another definition of Itô SDEs on manifolds as 2-jets of smooth functions was devel-

oped by Armstrong and Brigo in [2], where an informal description of this approach is

given by writing down a system of difference equations using a coordinate-free notation.

3.3.2 Stochastic Differential Equations on homogeneous mani-

folds

Let us now specify the description of an SDE on a homogeneous manifold. We recall that

a homogeneous space is a manifold M with a transitive Lie group action Λ: G ×M →
M. Let λ : g × M → M be the corresponding Lie algebra action and fj : M → g for

j = 0, 1, . . . , d. Based on the representation of an ODE on a homogeneous manifold (2.16)

we assume a Stratonovich SDE on a homogeneous manifold M to be given by

dy = V0(y) dt+
d∑

j=1

Vj(y) ◦ dW j
t , y(0) = y0,
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where we assume Vj : M → TM to be vector fields that can be described by the transitive

Lie algebra action,

Vj(y) =
(
λ∗fj(y)

)
(y) =

d

dt
λ
(
tfj(y), y

)∣∣∣∣
t=0

=
d

dt
Λ
(
exp

(
tfj(y)

)
, y
)∣∣∣∣

t=0

for j = 0, 1, . . . , d, see the definition in (2.15). This description of an SDE on M cor-

responds to the one given in [44]. Note that we return to the autonomous notation

of differential equations for simplicity. The extension to the nonautonomous case can

be constructed straightforwardly by considering fj : R+ × M → g, (t, y) 7→ fj(t, y) for

j = 0, 1, . . . , d above.

The corresponding Itô notation of this SDE looks as follows,

dy =

(
V0(y) +

1

2

d∑
j=1

∇Vj
Vj(y)

)
dt+

d∑
j=1

Vj(y) dW
j
t , y(0) = y0, (3.22)

which is evident by applying the Itô/Stratonovich conversion formula (3.11). By ∇YX

for two vector fields X, Y ∈ X(M) we denote the derivative of X along the vector field

Y to express the Itô correction term. In some cases it might be possible to formulate the

Itô version (3.22) without the Itô correction term, but this will lead to some unnatural

geometric restrictions on the drift coefficient of the SDE. An example for this will be given

below.

As done in the previous chapter we formulate a differential equation in the Lie algebra

g that corresponds to the representation (3.22) on the manifold M.

Theorem 3.10. Let λ : g × M → M be a Lie algebra action and fj : M → g for j =

0, 1, . . . , d. Assume that an Itô SDE for y(t) ∈ M is given by (3.22). For t small enough

and up to a stopping time T∗ the solution of this SDE is given by y(t) = λ
(
Ω(t), y0

)
where

Ω(t) ∈ g satisfies

dΩ = dexp−1
Ω

(
f0
(
λ(Ω, y0)

))
dt+

d∑
j=1

dexp−1
Ω

(
fj
(
λ(Ω, y0)

))
dW j

t , Ω(0) = 0, (3.23)

on the time interval [0, T∗).

The theorem can be proved by applying Itô’s formula to y(t) = λy0

(
Ω(t)

)
, where

λy0

(
Ω(t)

)
= λ(Ω(t), y0) for y0 ∈ M fixed, and identifying the result with (3.22). Here

we will only report the first and second order directional derivative of the Lie algebra

action, which are needed for the transformation according to (3.21), and carry out the
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computations for a specific manifold M = Sym(n) below. For a more general proof we

refer to [44].

Let vΩj denote the coefficients of (3.23), i.e. vΩj = dexp−1
Ω

(
fj
(
λy0(Ω)

))
for j =

0, 1, . . . , d. For the directional derivatives we have

λ′
y0
(Ω)vΩj =

(
d

dΩ
λy0(Ω)

)
vΩj = Λ′

y0

(
exp(Ω)

)
fj
(
λy0(Ω)

)
exp(Ω),

λ′′
y0
(Ω)(vΩj , v

Ω
j ) = Λ′′

y0

(
exp(Ω)

) (
fj
(
λy0(Ω)

)
exp(Ω), fj

(
λy0(Ω)

)
exp(Ω)

)
+ Λ′

y0

(
exp(Ω)

)
f ′
j

(
λy0(Ω)

)
Λ′

y0

(
exp(Ω)

)
fj
(
λy0(Ω)

)
exp(Ω) exp(Ω)

+ Λ′
y0

(
exp(Ω)

)
fj
(
λy0(Ω)

)
fj
(
λy0(Ω)

)
exp(Ω),

(3.24)

where the second directional derivative only needs to be considered for j = 1, . . . , d.

See (2.18) for the computation of the first directional derivative and the Appendix for the

derivation of the second.

Examples

Before advancing to the numerical approximation we provide examples of the representa-

tion of the SDE (3.22) for some specific manifolds. One can also reconsider the exemplary

manifolds discussed before in Section 2.2.2 and extend the given ODEs accordingly to the

stochastic case as done in our motivational example for the rigid body problem. Here we

examine different manifolds which we will also reencounter in the next chapter. The first

two examples are extensions of examples found in [58], [59] and the third example can

also be found in [44].

We remind the reader that Itô SDEs on manifolds that are not globally homogeneous

spaces can always at least locally be expressed by (3.22) since a transitive Lie algebra

action can be constructed by means of the vector fields ∂
∂x1 , . . . ,

∂
∂xn corresponding to

some local coordinates (x1, . . . , xn) and using the transformation (3.21) from one chart to

another.

Example 1 If the considered manifold M is a matrix Lie group G we can choose a

right Lie group action Λ: M× G → M, which is defined analogously to Definition 2.2,

and set it as Λ(m, g) = mg. A corresponding right Lie algebra action λ : M × g → g

may be given by λ(y0,Ω) = y0 exp(Ω) such that we obtain the left-invariant vector field(
λ∗fj(y)

)
(y) = yfj(y) for j = 0, 1, . . . , d. An SDE with a solution evolving on M = G
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can then be formulated as

dy =

(
yf0(y) +

1

2

d∑
j=1

(
yf 2

j (y)y + yf ′(y)yf(y)
))

dt+
d∑

j=1

yfj(y) dW
j
t . (3.25)

We will consider this representation for an Itô SDE on the Lie group of stochastic matrices

in Section 4.2.2, where we simulate rating transition matrices. Left-invariant vector fields

are chosen in order to preserve the Chapman-Kolmogorov equation for Markov chains.

Assuming that Itô SDEs on manifolds M are instead formulated without the Itô

correction term, which in the case of (3.25) is given by

dy = yf0(y) dt+
d∑

j=1

yfj(y) dW
j
t ,

leads to restrictions on the choice of f0 : M → g, y 7→ f0(y). Let us visualize this by

setting M = G = SO(n) which means that the solution should satisfy y⊤y = I and

d(y⊤y) = dI = 0. Applying Itô’s formula we get

d(y⊤y) =
(
f0(y)

⊤ + f0(y) +
d∑

j=1

fj(y)
⊤fj(y)

)
dt+

d∑
j=1

(
fj(y)

⊤ + fj(y)
)
dW j

t .

The identification of this result with 0 gives us the conditions that fj(y) must be skew-

symmetric, fj(y)
⊤ + fj(y) = 0, for j = 1, . . . , d and that

f0(y)
⊤ + f0(y) =

d∑
j=1

f 2
j (y), (3.26)

whereas considering the SDE representation (3.25) on SO(n) leads to the assumption

that fj(y) ∈ so(n) for all indices j = 0, 1, . . . , d. The condition (3.26) can be used

to one’s advantage as done e.g. in [51] for the approximation of correlation matrices.

Nevertheless, we consider this small example as a motivation to formulate Itô SDEs on

manifolds including the Itô correction term from here on.

Example 2 On the manifold of symmetric matrices M = Sym(n) we can choose a Lie

group action based on G = SO(n) with the corresponding Lie algebra g = so(n). The

corresponding Lie algebra action can be set as λy0(Ω) = exp(Ω)y0 exp(−Ω). Computing
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the directional derivatives, we get

λ′
y0
(Ω)vΩj = [fj(y), y] ,

λ′′
y0
(Ω)(vΩj , v

Ω
j ) =

[
f ′
j(y) [fj(y), y] , y

]
+
[
fj(y), [fj(y), y]

]
,

which coincides with the result obtained by directly using (3.24) and the representation

in (3.22) since we have the vector field

Vj(y) =
(
λ∗fj(y)

)
(y) =

d

dt
λ
(
tfj(y), y

)∣∣∣∣
t=0

=
d

dt
exp

(
tfj(y)

)
y exp

(
− tfj(y)

)∣∣∣∣
t=0

= fj(y)y − yfj(y) = [fj(y), y]

and for the differentiation of the vector field along itself

∇Vj
Vj(y) =

(
d

dy
[fj(y), y]

)
[fj(y), y]

=

[( d

dy
fj(y)

)
[fj(y), y] , y

]
+

[
fj(y),

( d

dy
y
)
[fj(y), y]

]
=
[
f ′
j(y) [fj(y), y] , y

]
+
[
fj(y), [fj(y), y]

]
for j = 0, 1 . . . , d. The SDE (3.22) deployed with these coefficients preserves the eigen-

values of y0, i.e. we have an isospectral flow. More specifically, if the eigenvalues of y0

are nonnegative, then the solution of this SDE produces symmetric and positive semi-

definite matrices. This is a property that comes in handy if one is interested in modelling

covariance and correlation matrices, see Section 4.2.1.

Example 3 Consider the Lie group of rigid body motions, the special Euclidean group

SE(3) ∼= SO(3)×R3, that consists of the rotation motions R ∈ SO(3) and the translations

r ∈ R3 of a rigid body stacked into a 4 × 4-matrix. An exemplary representative of this

Lie group is given by

g =

(
R r

O⊤ 1

)
with O = (0, 0, 0)⊤. The corresponding Lie algebra se(3) ∼= so(3)×R3 consists of matrices

that look like

v =

(
ŵ u

O⊤ 0

)
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where we use the hat map (2.8). Due to this isomorphism between so(3) and R3 we can

use the shorthand notation v = (w, u) with w, u ∈ R3 to represent an element of se(3).

Now, we want to formulate an SDE on the manifold M = se(3)∗, the dual space of the

Lie algebra se(3). A Lie group action with G = SE(3) is specified by

Λ: SE(3)× se(3)∗ → se(3)∗, Λ(g, y) =
(
Rπ + r × (Rρ), Rρ

)
for y = (π, ρ) ∈ se(3)∗ and g = (R, r) ∈ SE(3) using a similar shorthand notation as above.

To compute the vector fields in (3.22) with fj : se(3)
∗ → se(3), fj(y) =

(
wj(y), uj(y)

)
, we

have

Vj(y) =
(
λ∗fj(y)

)
(y) =

(
π × wj(y) + ρ× uj(y), ρ× wj(y)

)
for j = 0, 1, . . . , d. This will be used to compute the dynamics of an autonomous under-

water vehicle in Section 4.1.2.

3.4 Stochastic Runge-Kutta–Munthe-Kaas schemes

Being familiar with different versions of the SDE (3.22) on a homogeneous manifold M,

let us devise a procedure for solving it numerically such that the approximations stay on

M. Such kind of procedure, where a numerical approximation scheme is applied to (3.23),

was first formulated in [44] based on the Algorithm 1 by Munthe-Kaas.

Algorithm 3.11. Let λ : g ×M → M be a transitive Lie algebra action on M. Divide

the time interval [0, T ] uniformly into L subintervals [tℓ, tℓ+1], ℓ = 0, 1, . . . , L − 1 and

define an uniform step size h = tℓ+1 − tℓ. Starting from y0 ∈ M at t0 = 0 repeat the

following steps until tℓ+1 = T .

1. Initialization step: Let yℓ be the approximation of yt at time t = tℓ.

2. Numerical method step: Compute an approximation of the solution of (3.23)

after one time step, Ωt1 = Ωt1−t0 = Ωh, by applying an Itô-Taylor scheme or a

stochastic Runge-Kutta method to the SDE in the Lie algebra g and denote the

obtained approximation of Ωh by Ω1.

3. Action step: Advance on the manifold M using the Lie algebra action as yℓ+1 =

λ(Ω1, yℓ) to get a numerical solution of (3.22).

Denote by vj : g → g the coefficients of (3.23), vj(Ω) = dexp−1
Ω

(
fj
(
λy0(Ω)

))
for

j = 0, 1, . . . , d. The first numerical method that comes into one’s mind is probably the
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Euler-Maruyama scheme (3.15) for the second step of this algorithm such that

Ω1 = Ω0 + v0(Ω0)h+
d∑

j=1

vj(Ω0)∆W j = f0
(
λ(0, yℓ)

)
h+

d∑
j=1

fj
(
λ(0, yℓ)

)
∆W j,

where the evaluation at Ω0 = 0 simplifies the computations immensely. The application

of this method to manifolds M that are matrix Lie groups with yℓ+1 = λ(Ω1, yℓ) =

yℓ exp(Ω1) was intensively analysed in [46], [47], [64], where it was called the geometric

Euler-Maruyama scheme.

Applying the Milstein scheme (3.16) with strong order γ = 1 or the Itô-Taylor

scheme (3.17) with strong order γ = 1.5 as numerical methods in the second step of this

algorithm requires the computation of the directional derivatives of vj, j = 0, 1, . . . , d.

See the Appendix for the derivations of these derivatives.

This motivates the implementation of stochastic Runge-Kutta (SRK) methods in the

second step of the algorithm since the computation of derivatives is avoided.

We adapt the notations of Rößler’s explicit s-stage SRK scheme (3.19) with coeffi-

cients given in Table 3.1 such that we get a representation as for the RKMK schemes in

Algorithm 1 for ODEs on manifolds. A stochastic RKMK (SRKMK) method for d = 1

as a specification of the procedure above is given in Algorithm 2.

Algorithm 2 SRKMK

1: for ℓ = 0, 1, . . . , L− 1 do
2: for i = 1, 2, . . . , s do

3: Ω̄i =
∑i−1

j=1 A
(0)
ij v0(Ω̄j)h+

∑i−1
j=1 B

(0)
ij v1(Ω̃j)

I(1,0)
h

4: Ω̃i =
∑i−1

j=1 A
(1)
ij v0(Ω̄j)h+

∑i−1
j=1 B

(1)
ij v1(Ω̃j)

√
h

5: v0(Ω̄i) = dexpinv
(
Ω̄i, f0

(
λ(Ω̄i, yℓ)

)
, q
)

6: v1(Ω̃i) = dexpinv
(
Ω̃i, f1

(
λ(Ω̃i, yℓ)

)
, q
)

7: end for
8: Ω1 =

∑s
i=1 αiv0(Ω̄i)h +

∑s
i=1 β

(1)
i v1(Ω̃i)I(1) +

∑s
i=1 β

(2)
i v1(Ω̃i)

I(1,1)
h

+∑s
i=1 β

(3)
i v1(Ω̃i)

I(1,0)
h

+
∑s

i=1 β
(4)
i v1(Ω̃i)

I(1,1,1)
h

9: yℓ+1 = λ(Ω1, yℓ)

10: end for

The linear operator dexpinv : g → g gives us truncated versions of the coefficients

in (3.23) and is defined as in (2.19).
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3.4.1 Strong Convergence of SRKMK schemes

Since the SRKMK scheme in Algorithm 2 uses the map dexpinv : g → g, this raises

again the question (as in the deterministic case, see Theorem 2.7) of how to choose the

truncation index q such that the SRKMK scheme inherits the strong convergence order γ

of the underlying SRK method. The following theorem is based on results from [53]–[55]

and gives us an answer to this question.

Theorem 3.12 (Strong convergence of SRKMK schemes). Let q denote the truncation

index in (2.19), and let the stochastic Runge-Kutta scheme applied to the SDE (3.23) in

the Lie algebra g be of strong order γ. Furthermore, assume that (fj ◦ λy0) : g → g fulfills

a linear growth condition, i.e.

∥(fj ◦ λy0)(Ω)∥F ≤ aj + bj∥Ω∥F for aj, bj < ∞, (3.27)

where we use the notation λy0 : g → M, λy0(Ω) = λ(Ω, y0) = Λ(exp(Ω), y0) for the Lie

algebra action, ∥ · ∥F denotes the Frobenius norm and j = 0, 1, . . . , d. If the truncation

index q satisfies q ≥ 2γ − 2, then the SRKMK scheme for solving the SDE (3.22) on the

manifold M is also of strong order γ.

Proof. Since we assume the Lie algebra action λy0 : g → M, λy0(Ω) = Λ(exp(Ω), y0) to be

a smooth mapping, the order of convergence on M is as high as the order of the scheme

used for the corresponding equation in g. Therefore, we analyse the strong convergence

order of a SRK scheme applied to (3.23). Let us denote by Ωh the exact solution of (3.23)

at time t = t1 = h, and by Ωq
h the exact solution of the truncated version of (3.23) after

one time step, namely

dΩ =

q∑
k=0

Bk

k!
adk

Ω

(
(f0 ◦ λy0)(Ω)

)
dt+

d∑
j=1

q∑
k=0

Bk

k!
adk

Ω

(
(fj ◦ λy0)(Ω)

)
dW j

t , Ω(0) = 0.

We prove the statement of the theorem in the following seven steps.

Step 1: Numerical error

We inspect the mean-squared error as given in the Definition 3.4 and apply the Minkowski

inequality:

(
E
[
∥Ωh − Ω1∥2F

])1/2 ≤ (E [∥Ωh − Ωq
h∥

2
F

])1/2
+
(
E
[
∥Ωq

h − Ω1∥2F
])1/2

.
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The result can be interpreted as a split of the mean-squared error into a modelling error

(the first summand) and a numerical error (the second summand). Since we are assuming

that we are using a SRK scheme of strong order γ, the numerical error satisfies

(
E
[
∥Ωq

h − Ω1∥2F
])1/2 ≤ C1h

γ

for some C1 < ∞ by construction and it remains to prove that the modelling error satisfies

(
E
[
∥Ωh − Ωq

h∥
2
F

])1/2 ≤ C2h
(q+2)/2

for some C2 < ∞.

Step 2: Itô isometry

Let us analyse the modelling more thoroughly by again using the Minkowski inequality,

the Itô isometry (3.2) and properties of the matrix norm, such that(
E
[
∥Ωh − Ωq

h∥
2
F

])1/2
≤
(
E
[∥∥∥ ∫ h

0

∞∑
k=q+1

Bk

k!
adk

Ωs

(
(f0 ◦ λy0)(Ωs)

)
ds +

d∑
j=1

∫ h

0

∞∑
k=q+1

Bk

k!
adk

Ωs

(
(fj ◦ λy0)(Ωs)

)
dW j

s

∥∥∥2
F

])1/2

≤

E

∥∥∥∥∥
∫ h

0

∞∑
k=q+1

Bk

k!
adk

Ωs

(
(f0 ◦ λy0)(Ωs)

)
ds

∥∥∥∥∥
2

F

1/2

+

d∑
j=1

E

∥∥∥∥∥
∫ h

0

∞∑
k=q+1

Bk

k!
adk

Ωs

(
(fj ◦ λy0)(Ωs)

)
dW j

s

∥∥∥∥∥
2

F

1/2

≤

∫ h

0

E

∥∥∥∥∥
∞∑

k=q+1

Bk

k!
adk

Ωs

(
(f0 ◦ λy0)(Ωs)

)∥∥∥∥∥
2

F

 ds

1/2

+

d∑
j=1

∫ h

0

E

∥∥∥∥∥
∞∑

k=q+1

Bk

k!
adk

Ωs

(
(fj ◦ λy0)(Ωs)

)∥∥∥∥∥
2

F

 ds

1/2

≤
d∑

j=0

∫ h

0

E

( ∞∑
k=q+1

|Bk|
k!

∥∥adk
Ωs

(
(fj ◦ λy0)(Ωs)

)∥∥
F

)2
 ds

1/2

. (3.28)
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Step 3: Adjoint operator

The Frobenius norm is submultiplicative such that we get the following estimate for the

adjoint operator of an arbitrary matrix H,

∥adΩ (H)∥F = ∥[Ω, H]∥F = ∥ΩH −HΩ∥F ≤ 2 ∥Ω∥F ∥H∥F .

By induction it follows for the k-th iterate of the adjoint operator that

∥∥adk
Ω (H)

∥∥
F
=
∥∥[Ω, adk−1

Ω (H)
]∥∥

F
≤ 2k ∥Ω∥kF ∥H∥F

such that the input of the expected value in (3.28) can be estimated by(
∥(fj ◦ λy0)(Ωs)∥F

∞∑
k=q+1

|Bk|
k!

2k∥Ωs∥kF

)2

(3.29)

for j = 0, 1, . . . , d, which is evident by setting H = (fj ◦ λy0)(Ωs) above.

Step 4: Estimate for the remainder

We know from Lemma 2.3 that the Bernoulli numbers are implicitly defined by

∞∑
k=0

Bk

k!
xk =

x

ex − 1
.

Taking the absolute values of the Bernoulli numbers on the left-hand side leads to

∞∑
k=0

|Bk|
k!

xk =
x

2

(
1 + cot

(x
2

))
+ 2, (3.30)

which is an identity that has also been used for example in [30, p. 48]. The right-hand

side of this identity is defined on I = {x ∈ R : x
2π

̸∈ Z} such that we can set

g : I → R, x 7→ x

2

(
1 + cot

(x
2

))
+ 2.

Let us apply Taylor’s theorem to the function g at the point 0 to obtain

g(x) =

q∑
k=0

g(k)(0)

k!
xk +Rq(x), Rq(x) =

g(q+1)(ξ)

(q + 1)!
xq+1,



46 CHAPTER 3. NUMERICAL APPROXIMATION OF SDES ON MANIFOLDS

where we consider the Lagrange form of the remainder Rq(x) for some real number ξ

between 0 and x.

Comparing this representation of the function g to (3.30) and to (3.29), we see that

the remainder Rq(x) corresponds to the summation in (3.29) if we set x = 2∥Ωs∥F . Let

us recall that the expression (2.10) only converges for ∥Ω∥ < π.

Therefore, we limit the domain of the function g to

Ĩ = {x ∈ R : |x| < 2π}.

The restriction of g to Ĩ gives us the benefit that we can find upper bounds for g and

its derivatives. In particular, there exists an upper bound dependent on the truncation

index, Mq > 0, such that ∣∣ g|(q+1)

Ĩ
(ξ)
∣∣ ≤ Mq

for all ξ between 0 and x. Hence, we can find the following estimate for the remainder,

|Rq(x)| =

∣∣∣∣∣ g|
(q+1)

Ĩ
(ξ)

(q + 1)!
xq+1

∣∣∣∣∣ ≤ Mq

(q + 1)!
|x|q+1,

and the following estimate for (3.29) by identifying x with 2∥Ωs∥F ,(
2q+1Mq

(q + 1)!
∥(fj ◦ λy0)(Ωs)∥F ∥Ωs∥q+1

F

)2

.

Our next task is to find an estimate for the expected value of this expression.

Step 5: Linear growth

Assuming that the linear growth condition (3.27) holds and applying a simple Binomial

formula, we have

E
[∥∥fj(λy0(Ωs)

)∥∥2
F

∥∥Ωs

∥∥2(q+1)

F

]
≤ E

[(
aj + bj∥Ωs∥F

)2∥∥Ωs

∥∥2(q+1)

F

]
≤ a2jE

[∥∥Ωs

∥∥2(q+1)

F

]
+ 2ajbjE

[∥∥Ωs

∥∥2(q+3/2)

F

]
+ b2jE

[∥∥Ωs

∥∥2(q+2)

F

]
, (3.31)

where aj, bj < ∞ for j = 0, 1, . . . , d. We recognize that we are left with three similar

terms, where the first summand is the one of lowest order.
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Step 6: Itô-Taylor expansion

The only thing left to do is inserting an estimate for the Itô-Taylor expansion according

to Theorem 3.6 (see also Proposition 5.9.1 in [36]) to get

Ωs = Ω0 +Rs = Rs, E
[
∥Rs∥2F

]
≤ C1s

for some C1 < ∞ such that

E
[
∥Ωs∥2(q+1)

F

]
= E

[
∥Rs∥2(q+1)

F

]
≤ C1s

q+1.

Similar estimates but of higher order hold for the other summands in (3.31).

Step 7: Overall estimate

This last step serves as a summary of the previous steps:(
E
[
∥Ωh − Ωq

h∥
2
F

])1/2
≤

d∑
j=0

(∫ h

0

E
[( ∞∑

k=q+1

|Bk|
k!

∥∥ adk
Ωs

(
fj
(
λy0(Ωs)

))∥∥
F

)2]
ds

)1/2

≤
d∑

j=0

(∫ h

0

E
[∥∥∥fj(λy0(Ωs)

)∥∥∥2
F

( ∞∑
k=q+1

|Bk|
k!

2k∥Ωs∥kF
)2]

ds

)1/2

≤ 2q+1Mq

(q + 1)!

d∑
j=0

(∫ h

0

E
[∥∥fj(λy0(Ωs)

)∥∥2
F

∥∥Ωs

∥∥2(q+1)

F

]
ds

)1/2

≤ 2q+1Mq

(q + 1)!

d∑
j=0

(∫ h

0

(
a2iE
[∥∥Ωs

∥∥2(q+1)

F

]
+ 2aibiE

[∥∥Ωs

∥∥2(q+3/2)

F

]
+ b2iE

[∥∥Ωs

∥∥2(q+2)

F

])
ds

)1/2

≤ 2q+1Mq

(q + 1)!

d∑
j=0

(∫ h

0

O(sq+1)ds

)1/2

= O
(
h(q+2)/2

)
.

We achieved our objective from the first step, which concludes our proof.

After proving the main result of this thesis we would like to make the following remarks:

1. The linear growth condition (3.27) is a sufficient condition for the existence and

uniqueness of the solution of (3.23), which can be confirmed by the comparison

with (3.8) in Theorem 3.3. In the case where the considered manifold M is the unit
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sphere S2 and the corresponding Lie algebra is g = so(3), which is for example the

case when rotation motions of rigid bodies are regarded, the linear growth condition

can be omitted since properties of skew-symmetric matrices and estimates on the

unit sphere can be used instead. We refer to [54] for more details.

2. As mentioned in Section 3.2.2 the construction of SRK schemes of higher strong

order than γ = 1.5 is computationally costly. However, assuming that there will be

efficient higher order SRK methods in the future, Theorem 3.12 gives an instruction

on how to construct higher order SRKMK methods. Given a strong convergence

order γ one has to evaluate the coefficients of the SDE in the Lie algebra g only up

to the index 2γ − 2. We refer the reader to [45] and the references therein for more

details on the approximation of iterated stochastic integrals.

3. If the considered Lie algebra action λ : g×M → M is based on a quadratic Lie group

G, then there is no formulation of a restrictive summation needed since one can

apply the Cayley map instead of the matrix exponential which does not introduce

any modelling error.

4. In the first step of the proof we have split the mean-squared error into a numerical

and a modelling error, where we assumed the numerical error to have the convergence

order of the applied SRK method. We have shown that the modelling error is of

the same order if the truncation index q is chosen to fulfill q ≥ 2γ − 2. A violation

of this inequality will thus lead to an order reduction, e.g. if the truncation index

is set as q = 0 when a SRK method of order γ = 1.5 is applied. A visualization of

this order reduction will be provided in Chapter 4.

3.4.2 Comparison to other numerical schemes

SRKMKmethods are certainly not the only possibility to approximate SDEs on manifolds.

Therefore, we present some other ideas.

Stochastic Runge-Kutta schemes

We already know that applying a SRK method directly to (3.22) will result in a drift-off,

which means that the numerical approximations do not stay on the manifold M since the

linear operations of SRK schemes do not comply with curved spaces. As a redemption of

the violation of the manifold structure one can think of a projection step in the following



3.4. STOCHASTIC RKMK SCHEMES 49

way

∥y1 − ỹ1∥ → min

such that coming from the approximation y1 obtained by the SRK method one computes

the closest approximation ỹ1 ∈ M. One can set up ỹ1 using a Lie algebra action λy0 : g →
M for a fixed y0 ∈ M, i.e. ỹ1 = λy0(Ω̃), and define Ω̃ as a linear combination of the basis

matrices Ei of the Lie algebra g, i.e. Ω̃ =
∑n

i=1 αiEi assuming n to be the dimension of

the Lie algebra g. Then the coefficients αi ∈ R are the parameters to be optimized in

the minimization problem defined above. However, we can already presume this method

to be much more computationally intense than SRKMK schemes since an optimization

problem has to be solved in every discretization step for every path.

Stochastic Magnus expansion

The original idea of Magnus [43] was to solve the linear matrix ODE

ẏ = f(t)y(t), y(0) = y0,

by assuming that the solution can be written as y(t) = exp
(
Ω(t)

)
y0 and applying the

Picard iteration to the logarithm, i.e. to (2.17) such that we have

Ω(t) =

∫ t

0

f(t1) dt1 −
1

2

∫ t

0

[ ∫ t1

0

f(t2) dt2, f(t1)
]
dt1 + . . . .

This approach has been expanded to nonlinear ODEs (see [6] and the references therein)

and to Stratonovich SDEs on manifolds (see [11], [77]). A derivation of the stochastic

Magnus expansion for linear Itô SDEs can be found in [34]. An extension of this approach

to nonlinear Itô SDEs is not straightforward. Since the linear Itô SDE in [34] is set up

without the Itô correction term, one has to deal with a corresponding correction in (3.23):

v0(Ω) = dexp−1
Ω

(
f0(t)−

1

2

d∑
j=1

∞∑
k=0

∞∑
l=0

(
adk

Ω(vj)

(k + 1)!

adl
Ω(vj)

(l + 1)!
+

[
adk

Ω(vj), ad
l
Ω(vj)

]
(k + l + 2)(k + 1)! l!

))
.

As the main idea of the Magnus expansion is to solve (3.23) via a Picard iteration, we

expect a high computational effort for the evaluation of the coefficients with this drift in a

nonlinear case. Moreover, we have seen that this approach will lead to unnatural geometric

restrictions if applied to manifolds that are not linear spaces. Nevertheless, a comparison

of SRKMK schemes and stochastic Magnus integrators for nonlinear Stratonovich SDEs

is still outstanding.
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Geometric Castell-Gaines methods

Let Ω̂t denote a truncated Magnus expansion. Then an approximation of the solution

of (3.22) is given by yt = exp(Ω̂t)y0. On a time interval [tℓ, tℓ+1] we get the Magnus

integrator

yℓ+1 = exp(Ω̂ℓ,ℓ+1)yℓ,

where Ω̂ℓ,ℓ+1 is the truncated Magnus series across the interval [tℓ, tℓ+1]. Thus, the solution

of the SDE (3.22) can be approximated by a solution of the ODE

u̇(τ) = Ω̂ℓ,ℓ+1u(τ)

for τ ∈ [0, 1], see the approach of Castell & Gaines in [13] and [44] for this geometric

expansion of that approach. Computing a solution of this ODE will give us u(1) ≈ yℓ+1

if u(0) = yℓ.

Numerical experiments where classical Runge-Kutta methods were applied to solve the

ODE and therefore approximate the solution of (3.22) can be found in [44]. The results

have shown that these schemes perform better than the direct application of stochastic

Taylor schemes but worse than SRKMK methods in terms of preserving the manifold

structure.

Applying a RKMKmethod (see Algorithm 1) to the ODE would ensure that yℓ+1 ∈ M.

However, a practical procedure for determining f : M → g such that Ω̂ℓ,ℓ+1 = λ∗f(y) is

still missing.



Chapter 4

Applications

In this chapter we finally solve the SDE on the sphere S that describes the dynamics

of a randomly perturbed rigid body, e.g. the dynamics of a satellite taking measurement

uncertainties into account. We consider (3.1) again or rather its counterpart in Itô form,

namely

dy =

(
f0(y)y +

1

2

(
d

dy
f1(y)y

)
f1(y)y

)
dt+ f1(y)y dWt, y(0) = y0, (4.1)

with f0, f1 : S → so(3) given as

f0(y) =

 0 y3/I3 −y2/I2

−y3/I3 0 y1/I1

y2/I2 −y1/I1 0

 , f1(y) =

 0 y3/J3 −y2/J2

−y3/J3 0 y1/J1

y2/J2 −y1/J1 0


for y = (y1, y2, y3)

⊤ ∈ S = S2 and constants I1, I2, I3 and J1, J2, J3 that represent the

principal moments of inertia. We approximate the solution by applying SRKMK methods

which we have derived and analysed in the previous chapters. The results of the simulation

will be presented first in the forthcoming Section 4.1, where we will also have a look on

the dynamics of an autonomous underwater vehicle subjected to random perturbations.

Moreover, we will present applications of SRKMK schemes to SDEs on manifolds

found in financial mathematics in Section 4.2. In these examples we will only look at

linear Itô SDEs on manifolds to make the calibration of the models to historical data as

easy as possible.

All examples shown below have been implemented in the software package MATLAB.

51
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4.1 Examples in rigid body modelling

The dynamics of a rigid body are usually described by an ODE on a manifold that de-

scribes rotations and translations of the rigid body, see e.g. [14] and the references therein.

We consider these dynamics and assume them to be affected by random perturbations

such that we are dealing with SDEs on the corresponding manifolds as done for example

in [44], [77].

As these equations for physical interrelations were established as extensions of ODEs

on manifolds, one will find them usually denoted in Stratonovich form. However, we

choose to continue using the Itô representation since we conducted the analysis in the pre-

vious chapter in Itô notation but we keep in mind that we are also solving the Stratonovich

counterpart of the SDEs like the one given in (3.1).

4.1.1 A perturbed rigid body

We approximate the solution of (4.1) by using Algorithm 3.11, where we have set y0 =

(cos(0.9), 0, sin(0.9))⊤ as the initial value in M = S = S2 and (I1, I2, I3) = (3, 1, 2) and

(J1, J2, J3) = (1, 0.5, 1.5) as the moments of inertia. Note that by this choice of constants

we are dealing with noncommutative vector fields in (4.1). We remind the reader that

we set G = SO(3) for the Lie group action Λ: SO(3) × S2 → S2, Λ(R, y) = Ry for an

arbitrary rotation matrix R, and g = so(3) for the Lie algebra action λ : so(3) × S2 →
S2, λ(Ω, y) = exp(Ω)y for a skew-symmetric matrix Ω (as described in Example 3 in

Section 2.2.2).

For the Numerical method step of Algorithm 3.11 we used the Euler-Maruyama

scheme (3.15), the SRK method (3.18) of strong order γ = 1 with the coefficients from

Table 3.2 and the SRK method (3.19) of strong order γ = 1.5 with the coefficients from

Table 3.3, where we chose the truncation index q in (2.19) according to Theorem 3.12,

i.e. q = 0 for the schemes of strong order γ = 0.5 and γ = 1 and we chose q = 1 for

Rößler’s scheme of order γ = 1.5. Appending one step with the corresponding Lie al-

gebra action λ(Ω1, yℓ) = exp(Ω1)yℓ to the one step taken with the SRK method applied

to (3.23) in the Lie algebra g = so(3) to obtain Ω1 extends the SRK to a SRKMK method

and preserves the geometry of the manifold M = S2. For this reason the name geometric

Euler-Maruyama (gEM) scheme was established in [47] for the simplest SRKMK method.

We take up this way of naming the geometry-preserving numerical schemes and call the

schemes elaborated above geometric SRK methods and use the abbreviations gSRK1 and

gSRK1.5 correspondingly to indicate the higher order geometric schemes.
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Figure 4.1: Simulation of the mean-square convergence order for M = 1000 paths in the
rigid body problem.

Convergence

The result of our simulation of the mean-square error,

(
E
(
∥yT − yhT∥22

))1/2
≈

(
1

M

M∑
j=1

∥∥yrefT,j − yhT,j
∥∥2
2

)1/2

,

for M = 1000 paths is depicted in a log-log-plot in Figure 4.1. The approximations yhT
were computed by following the steps of Algorithm 3.11 with the step sizes h = 2−i for

i = 7, 8, . . . , 14.

For the reference solution yrefT we applied the SRKMKmethod gSRK1.5 using a smaller

step size, h = 2−16, and the Lie algebra action λ(Ω, y) = cay(Ω)y to get a more accurate

solution since applying (2.14) does not introduce any modelling error. We remark that we

could also have used the closed-form expression (2.12) for the matrix exponential based

on the Rodrigues formula (2.11). Figure 4.1 shows that the chosen truncation indices are

sufficient for the SRKMK schemes to inherit the convergence order γ of the SRK method

chosen in the second step of Algorithm 3.11.

We can assume that the weak convergence order of the respective schemes is at least as

high as the strong convergence order as this is usually the case for numerical schemes for

SDEs in vector spaces. However, checking this assumption numerically includes finding
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a suitable class of functions g in the definition of weak convergence (3.13) that maps

elements from the manifold M to R. Setting g simply as the identity function would lead

to the problem of finding a suitable approximation of the expected value of elements on a

manifold since the arithmetic mean would give results drifting off the manifold. We view

the analysis and simulation of the weak convergence of SRKMK methods as future work

and give an idea of how this investigation can be approached in the Conclusion.

Geometric properties

The geometry-preserving property of SRKMK schemes can be viewed in Figure 4.2. We

computed L = 450 steps with a step size of h = 0.1 applying the SRK method (3.18)

of order γ = 1, which we abbreviate by SRK1, directly to (4.1) and its extension to a

SRKMK method gSRK1. The sample path of SRK1 clearly drifts off the unit sphere S2

and would give us incorrect dynamics of the rigid body since keeping

C(y) = y21 + y22 + y23

constant represents the preservation of the angular momentum. In contrast to SRK1,

the sample path of gSRK1 remains on S2 and preserves the manifold structure. Another

visualization of the drift-off of the SRK scheme opposed to the SRKMK scheme is given

in Figure 4.3, which shows that gSRK1 preserves the manifold within machine precision.

Sample paths for the case where the two vector fields in (4.1) commute, i.e. where

(J1, J2, J3) = 2(̇I1, I2, I3), are shown in Figure 4.4. We point out that the red sample path

in Figure 4.4 corresponds to the sample path from our motivating example in Figure 1.1

in the Introduction of this thesis and that we achieved our goal from this example with

the simulation of the blue sample path (gSRK1 in Figure 4.4).

4.1.2 Autonomous underwater vehicle

Let us consider an ellipsoidal rigid body immersed in an ideal fluid, i.e. in an infinitely

large volume of incompressible, irrotational and inviscid fluid that is at rest at infinity, and

assume that its center of gravity and its center of buoyancy coincide. One is interested in

such kind of rigid bodies when control laws for unmanned underwater vehicles that must

manage their own motions are examined.
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Figure 4.2: Sample path of the SRK method (3.18) of strong order γ = 1 and its geometry-
preserving counterpart gSRK1 on S2.

ODE on se(3)∗

The dynamics of such autonomous underwater vehicles (AUV) can be derived using Kirch-

hoff’s equations. We denote by w and u the angular and linear velocity vectors, respec-

tively, and by π and ρ the angular and linear momentum vectors, respectively. Then the

equations of motion can be described by

π̇ = π × w + ρ× u, ρ̇ = ρ× w, (4.2)

which can be viewed as Lie-Poisson (non-canonical Hamiltonian) dynamics on se(3)∗, the

dual space of the Lie algebra se(3), resulting from a reduction of the full dynamics on

the phase space T ∗SE(3), the cotangent bundle of the special Euclidean group SE(3).

Conserved quantities along these equations of motion, that reflect the preservation of the

angular and linear momentum, are given by the Casimir functions Ci : se(3)
∗ → R,

C1 = π⊤ρ, C2 = |ρ|2.

We refer to [28] for the derivation and more details.
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Figure 4.3: Logarithmic distance of the numerical solutions from the unit sphere S2.

Elements of the Lie group of rigid body motions, (R, r) ∈ SE(3) with R ∈ SO(3) and

r ∈ R3 (see Example 3 in Section 3.3.2 for this notation), represent the orientation and

position of the AUV in the inertial frame and can be reconstructed by solving

Ṙ = Rŵ, ṙ = Ru,

given the angular and linear velocity, w and u, and using the hat map ·̂ : R3 → so(3)

defined by (2.8).

SDE on se(3)∗

Now, let us assume that the dynamics (4.2) are perturbed by a Wiener process such that a

model of the AUV for y = (π, ρ) ∈ se(3)∗ is given by (3.22) with d = 1 and the coefficients

given by

Vj(y) =
(
λ∗fj(y)

)
(y) =

(
π × wj(y) + ρ× uj(y), ρ× wj(y)

)
(as stated in Example 3 in Section 3.3.2) for j = 0, 1. The Lie group and Lie algebra

acting on M = se(3)∗ are set as G = SE(3) and g = se(3), respectively, and the functions

fj : M → g, fj(y) = (wj(y), uj(y)) are defined by the angular velocity wj(y) = I−1
j π and

the linear velocity uj(y) = M−1
j ρ, where Ij and Mj are diagonal matrices for j = 0, 1

representing the moments of inertia and mass matrices, respectively. An expansion of the

dynamics of the AUV according to Kirchhoff’s equations to the stochastic case has been

first considered in [44].
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Figure 4.4: Sample paths of SRK1 and gSRK1 on S2 for commuting vector fields.

The approximation of the solution of this SDE on the manifold M = se(3)∗ via

SRKMK methods requires the computation of the exponential map, expse(3) : se(3) →
SE(3). A closed-form expression can be found in [62] and reads as

expse(3)(Ω) =

(
Θ 1

∥θ∥22

(
(I −Θ)(θ × ζ) + θθ⊤ζ

)
O⊤ 1

)

with O = (0, 0, 0)⊤ for an arbitrary Ω = (θ, ζ) ∈ se(3) using a similar shorthand notation

as described earlier. The submatrix Θ = expso(3)(θ̂) ∈ SO(3) can be computed via the

Rodrigues formula (2.11).

Simulation

We applied Algorithm 3.11 to solve (3.22) with the initial value y0 = (π0, ρ0) with the

initial angular momentum π0 = (
√
2,
√
2, 0)⊤ and linear momentum ρ0 = (0,

√
2,
√
2)⊤,

the moments of inertia I0 = diag(3, 1, 2) and I1 = diag(1, 0.5, 1.5) and the mass matrices

M0 = diag(20, 55, 101) and M1 = diag(55, 78, 120).

In the Numerical method step of the Algorithm 3.11 we used the Euler-Maruyama

scheme (3.15) of strong order γ = 0.5, the SRK scheme (3.18) of strong order γ = 1 and
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Figure 4.5: Simulation of the mean-square convergence for M = 1000 paths in the AUV
problem.

the SRK scheme (3.19) of strong order γ = 1.5 with truncation indices chosen according

to Theorem 3.12 to obtain approximations yhT for the step sizes h = 2−i for i = 7, 8, . . . , 14.

Similar to the rigid body problem in the previous example we simulated the mean-

square convergence again using the highest-order scheme as a reference solution with the

step size h = 2−16. The result can be viewed in the log-log-plot in Figure 4.5. It shows a

similar outcome as obtained previously, which verifies our Theorem 3.12 and leads us to

the conclusion that the convergence behaviour of SRKMK methods does not depend on

the underlying problem they are applied to.

The SRKMK methods preserve the Casimir functions C1 = π⊤ρ and C2 = |ρ|2 whereas
the underlying SRK methods applied directly to (3.22) fail at this task, which has already

been shown in [44]. An example for this can be found in Figure 4.6, where we have

plotted the logarithmic distance of sample paths using the SRK scheme (3.18) of strong

order γ = 1 and its geometric extension denoted by gSRK1.

As the second Casimir function C2 = |ρ|2 can be depicted as a sphere, we visualized

the preservation or rather the violation of the manifold by the sample paths in Figure 4.7.
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Figure 4.6: Distance of a sample path of Rößler’s order 1 scheme (SRK1, solid lines)
applied directly to (3.22) and its geometry-preserving counterpart (gSRK1, dashed lines).
Blue lines correspond to the error in C1 while red lines indicate the error in C2.

Figure 4.7: Sample paths of approximations obtained by using gSRK1 and SRK1 on the
sphere of the second Casimir function.



60 CHAPTER 4. APPLICATIONS

4.2 Examples in computational finance

Practitioners of financial mathematics usually do not work on manifolds that are not also

linear spaces. At least there is not much literature documenting this. The few examples

that we could find include [21], [41], [61], which consider interest rate models on manifolds.

It is a pity that there are only this little applications of manifolds in a financial

mathematical context so far since some considered quantities in finance can be analysed

more efficiently by acknowledging their properties on a curved space.

Here we will only examine stochastic processes that evolve on the manifold of sym-

metric matrices in the first example and on the manifold of transition matrices in the

second example. We hope that this will motivate the development of more models in

computational finance taking advantage of the manifold structure in the future.

Modelling in financial mathematics often involves a calibration to some historical data,

e.g. past stock prices, if we assume that future stock prices depend on past stock prices.

In order to make the calibration to the historical data as easy as possible we suppose that

the functions fj : M → g, j = 1, . . . , d, are independent of the solution of the SDE on the

manifold (3.22). These functions are needed for the definition of the vector fields on the

right-hand side of (3.22).

This assumption allows us to construct the elements in the Lie algebra g as constant

or time-dependent linear combinations of the basis matrices of the vector space g. The

coefficients of this linear combination will then give us the degrees of freedom needed for

the calibration to the given data.

We will see in our first example that solving the resulting SDE (3.22) with the geo-

metric Euler-Maruyama scheme is equivalent to approximating the following SDE in the

Lie algebra,

dΩt = At dt+
d∑

j=1

Bj,t dW
j
t , Ω0 = 0, (4.3)

where the coefficients At and Bj,t, j = 1, . . . , d, are the constructed linear combinations

of the basis matrices of the Lie algebra g.

Taking advantage of this simplified version of the SDE (3.23) we reverse the construc-

tion of the SDE on the manifold M in our second example such that it is set up based

on (4.3).
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4.2.1 Covariance matrices as an isospectral flow

We assume a scenario in which a risk manager is given a density function of historical cor-

relations between two or more entities for a specific time range and the initial correlation

matrix of these entities at the beginning of the considered time interval retrieved from the

middle office’s reporting system. Based on these information the risk manager is given the

task to generate valid time-dependent correlation matrices that take the stochastic nature

of correlations into account while trying to match the density function of the historical

data.

Stochastic correlation models for these kind of scenarios can for example be found

in [71] and [19] and a comparison of these and more stochastic correlation models is

given in [48]. Using the techniques acquired in the previous chapters we would advise the

risk manager to model the underlying covariance matrices as a stochastic process on the

manifold of symmetric matrices and to solve the resulting SDE with a SRKMK scheme.

This methodology was developed in the course of [51] and [52] and is an extension of the

deterministic model considered in [72]. We substantiate this approach below and show its

effectiveness with the aid of a simple low-dimensional example.

SDE on the manifold of covariance matrices

Correlation matrices Rt, t ≥ 0, are symmetric and positive semi-definite matrices with

diagonal elements equal to one and absolute values of non-diagonal elements less than or

equal to one. They can be recovered from their underlying covariance matrices Pt via the

relation

Rt = Σ−1
t PtΣ

−1
t , Σt =

(
diag(Pt)

)1/2
,

where diag(Pt) are diagonal matrices with entries from the diagonal of Pt. The geometric

property of symmetry allows us to consider covariance matrices as elements of the manifold

Sym(n) = {P ∈ GL(n) : P = P⊤}.

Note that the product of two symmetric matrices is not necessarily symmetric, which is

why this manifold is not a Lie group. However, we can use the Lie group of rotation

matrices SO(n) to define transport across the manifold M = Sym(n) via the Lie group

action

Λ: SO(n)× Sym(n) → Sym(n), Λ(Q,P ) = QPQ⊤,
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where Q is an arbitrary orthogonal matrix. Let P0 be a fixed initial covariance matrix,

then ΛP0(Q) = Λ(Q,P0) is similar to P0, in particular ΛP0(Q) and P0 have the same

eigenvalues. It follows that if P0 is positive semi-definite, then ΛP0(Q) is positive semi-

definite as well. The corresponding Lie algebra action reads as

λ : so(n)× Sym(n) → Sym(n), λ(Ω, P ) = exp(Ω)P exp(−Ω)

for a skew-symmetric Ω.

An SDE on M = Sym(n) for Pt = λP0(Ωt) = exp(Ωt)P0 exp(−Ωt) can be formulated

as

dPt =

(
[Y0,t, Pt] +

1

2

d∑
j=1

[
Yj,t, [Yj,t, Pt]

])
dt+

d∑
j=1

[Yj,t, Pt] dWj,t. (4.4)

This is an isospectral flow in Sym(n), where Yj,t ∈ so(n) for j = 0, 1, . . . , d (see Example

2 in Section 3.3.2).

Creating a correlation flow

Based on this SDE for covariance matrices and assuming that an initial correlation matrix

Rhist
0 and that a density function fhist of the historical data are given we propose the risk

manager to follow the subsequent steps in order to create valid, time-dependent correlation

matrices that reflect the stochastic nature of correlations:

1. Compute from Rhist
0 an initial covariance matrix P0 and set the skew-symmetric

matrices Y0,t, . . . , Yd,t in the covariance flow (4.4) such that parameters as degrees

of freedom can be incorporated.

2. Solve the covariance flow (4.4) with a SRKMK method and transform the obtained

covariance matrices to correlation matrices.

3. Estimate the density function from the so-obtained correlation flow and calibrate

the involved parameters such that the density function of the correlation flow fflow

matches the density function of the historical correlation fhist.

Let us concretise these steps for n = 2 and d = 2. Assume that the risk manager

retrieved from the middle office’s reporting system the initial correlation matrix

Rhist
0 =

(
1 −0.0159

−0.0159 1

)
(4.5)



4.2. EXAMPLES IN COMPUTATIONAL FINANCE 63

of the moving correlations between the S&P 500 index and the Euro/US-Dollar exchange

rate on a daily basis computed with a window size of 30 days from January 3, 2005 to

January 6, 2006 seen in Figure 4.8. Since the correlation shown in this Figure is only
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Figure 4.8: The 30-day historical correlations between S&P 500 and Euro/US-Dollar
exchange rate, source of data: www.yahoo.com.

one of many possible realizations we assume the risk manager to be aware of the density

function fhist of the considered correlation shown in Figure 4.9, which was computed using

kernel smoothing functions [7].
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Figure 4.9: Empirical density function of the historical correlation between S&P 500 and
Euro/US-Dollar exchange rate, computed with the MATLAB function ksdensity.
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1. Setting P0 and Y0,t, Y1,t, Y2,t: For the derivation of an initial covariance matrix

from the given correlation matrix Rhist
0 we set P0 = HDH⊤, where D is a diagonal

matrix, which entries are the eigenvalues of the estimated covariance matrix of the whole

historical data, and H is an orthogonal matrix such that ∥R0 − Rhist
0 ∥F is minimized,

where R0 = Σ−1
0 P0Σ

−1
0 with Σ0 =

(
diag(P0)

)1/2
(see [51], [72]). This procedure gives us

the initial covariance matrix

P0 =

(
0.0233 −0.0005

−0.0005 0.0427

)
. (4.6)

For the construction of time-dependent, skew-symmetric matrices Yj,t we multiply time-

dependent functions gj(t), j = 0, 1, 2, with the basis matrix of so(2), namely

C =

(
0 −1

1 0

)
.

By experimenting with different functions in Yj,t = gj(t)C we found that

g0(t) = x1t sin(x2t), g1(t) = x3 + x4t, g2(t) = x5 + x6t, (4.7)

worked best with respect to the regarded historical data, where the parameters x1, . . . , x6 ∈
R can be associated with the degrees of freedom of this stochastic correlation model. Dif-

ferent approaches for the construction of the matrices P0 and Yj,t are of course possible

and can be adapted according to the given data.

2. SRKMK scheme: Given this initial covariance matrix and the coefficient matrices

we can now solve (4.4) by the following variation of Algorithm 3.11.

Algorithm 4.1. Divide the time interval [0, T ] uniformly into L subintervals [tℓ, tℓ+1],

ℓ = 0, 1, . . . , L− 1 and define h = tℓ+1 − tℓ as the uniform step size. Starting with t0 = 0

and Ω0 = 0 the following steps are repeated until tℓ+1 = T .

(i) Let Pℓ be the approximation of Pt at time t = tℓ.

(ii) Compute Ω1 by applying a SRK or an Itô-Taylor scheme to the SDE (4.3).

(iii) Define a numerical solution of (4.4) as Pℓ+1 = exp(Ω1)Pℓ exp(−Ω1).

We can append the computation of the correlation flow as an additional step:

(iv) Set Rℓ+1 = Σ−1
ℓ+1Pℓ+1Σ

−1
ℓ+1 with Σℓ+1 =

(
diag(Pℓ+1)

)1/2
.
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3. Calibration and Results: From the resulting correlation flow we estimate the den-

sity function fflow again by using the MATLAB function ksdensity. Then we can cali-

brate the parameters x1, . . . , x6 in (4.7) such that the mean-squared error of the density

functions is minimized, i.e.

1

N

N∑
i=1

(
fhist(zi)− fflow(zi)

)2 → min,

where fhist(z) and fflow(z) are evaluated at N = 100 equally spaced points.

Following these three steps of creating a correlation flow, where we used the Euler-

Maruyama scheme (3.15) in the second step of Algorithm 4.1, we found a mean-squared

error of 9.57 · 10−4 for the parameters

(x1, x2, x3, x4, x5, x6) = (6.22,−5.22, 9.88,−5.19,−0.62,−16.63).

Figure 4.10 shows that the so-found density function fflow approximates the historical

data quite well.
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Figure 4.10: Empirical density function of the historical correlation and the correlation
flow between S&P 500 and Euro/US-Dollar exchange rate, computed with the MATLAB
function ksdensity.
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Convergence

Applying the Euler-Maruyama scheme in Algorithm 4.1 (ii) gives us a higher strong

convergence order than in the previous examples in rigid body modelling due to the

diffusion coefficients depending only on time in (4.3). According to Theorem 3.12 we

choose the truncation index q = 0 in (2.19) which leads to

Bj,t ≈ dexpinv(Ω, Yj,t, 0) =
0∑

k=0

Bk

k!
adk

Ω(Yj,t) = Yj,t

for j = 1, 2. In this case we are dealing with additive noise since the coefficients are

independent of Ω and Yj,t are constructed by multiplying a time-dependent function with

the generator of the Lie algebra g = so(2). This leads to a strong convergence order of

γ = 1 for the geometric Euler-Maruyama scheme (see Figure 4.11).

Moreover, a strong order of γ = 1 is also obtained if the condition on the truncation

index q ≥ 2γ−2 from Theorem 3.12 is violated in such a way that the truncation index is

chosen as q = 0 for a SRK method that is supposed to have the strong order γ = 1.5. This

order reduction is also depicted in Figure 4.11, where we applied Rößler’s scheme (3.19)

with q = 0 instead of q = 1.
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Figure 4.11: Simulation of the mean-square convergence of schemes with γ = 1 for M =
1000 paths.

The fact that setting q = 1 in the same scheme leads to the correct convergence order

of γ = 1.5 can be viewed in Figure 4.12. This Figure also shows the strong convergence
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order of the SRKMK method that uses the truncated Itô-Taylor scheme (3.17) as the

numerical integrator for (4.3) in the second step of Algorithm 4.1, where the needed

derivatives for the truncated Itô-Taylor expansion are derived in the Appendix.
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Figure 4.12: Simulation of the mean-square convergence of schemes with γ = 1.5 for
M = 1000 paths.

Our reference solution in all plots was obtained by using the SRKMK method of

strong order γ = 1.5 with q = 1 and the Lie algebra action λ(Ω, P ) = cay(Ω)P cay(−Ω)

for h = 2−16.

4.2.2 Rating transition modelling

A rating is an indicator of creditworthiness and agencies like S&P, Moody’s and Fitch are

required to publish the history of rating changes of some entities of different sectors. After

applying the Aalen-Johansen estimator (see [38]) or a stochastic reconstruction for the

cohort method (see [33]) to the historical rating data, one obtains a valid rating transition

matrix.

The publication of rating changes happens on a discrete time scale and can be down-

loaded from the websites of these agencies. However, for many applications, e.g. credit

and debit valuation adjustments (CVA and DVA, respectively), it is important to know

rating changes on a continuous time scale. For this reason, we model rating transition

matrices with a stochastic process to take the uncertainty of the ratings into account and

calibrate our model to the historical data published by rating agencies.
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Let us focus on the data set from S&P for the corporate sector and group the different

ratings to A, B, C and D, where A is the best and D the worst rating. An example

of an one year rating transition matrix is given in Table 4.1. It shows for example that

From
To

A B C D

A 0.9395 0.0566 0.0037 2.7804e-04
B 0.0092 0.9680 0.0211 0.0017
C 6.2064e-04 0.0440 0.8154 0.1400
D 0 0 0 1

Table 4.1: Example of an one year rating transition matrix.

the probability of transitioning from rating A today to rating B in one year is 5.66%.

We assume that once an entity has defaulted and has the worst rating D that it cannot

recover from it and stays in that rating.

Most importantly, we see that the rows of these rating transition matrices sum up to

one. Hence, we are dealing with stochastic matrices which form the Lie group G = {R ∈
GL(n) : R1 = 1} with the corresponding Lie algebra g = {L ∈ Rn×n : L1 = 0}, where
1 = (1, . . . , 1)⊤ and 0 = (0, . . . , 0)⊤ are vectors in Rn. We refer to [15] for the proof of

these geometric properties of transition matrices.

SDE on the Lie group of stochastic matrices

Since we are only interested in stochastic matrices that resemble the transition matrix in

Table 4.1, i.e. elements of

G≥0 := {R ∈ G : Rij ∈ [0, 1], Rnj = (0, . . . , 0, 1) for i, j = 1, . . . , n},

we look at the following subset of the Lie algebra,

g≥0 := {L ∈ g : Lii ≤ 0, Lij ≥ 0, i ̸= j, Lnj = 0⊤},

as applying the matrix exponential to matrices in this subset will give us matrices in G≥0,

see [70, p. 86]. We notice that for a scale of n = 4 different ratings, an arbitrary matrix
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L ∈ g≥0 can be represented as a linear combination of (n− 1)2 = 9 matrices, namely

E1 =


−1 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , E2 =


−1 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

 , E3 =


−1 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 ,

E4 =


0 0 0 0

1 −1 0 0

0 0 0 0

0 0 0 0

 , E5 =


0 0 0 0

0 −1 1 0

0 0 0 0

0 0 0 0

 , E6 =


0 0 0 0

0 −1 0 1

0 0 0 0

0 0 0 0

 ,

E7 =


0 0 0 0

0 0 0 0

1 0 −1 0

0 0 0 0

 , E8 =


0 0 0 0

0 0 0 0

0 1 −1 0

0 0 0 0

 , E9 =


0 0 0 0

0 0 0 0

0 0 −1 1

0 0 0 0

 ,

where the coefficients of the linear combination must be nonnegative. Thus, a stochastic

process described by (4.3) with At and Bt set as linear combinations of E1, . . . , E9 must

have positive and pathwise-increasing coefficients for At and Bt to evolve in g≥0. These

properties can be fulfilled for example by using jump processes with positive jumps only

or processes with stochastic coefficients. We choose the latter and set

dL
(k)
t =

∣∣∣Y (k)
t

∣∣∣ak dt,
dY

(k)
t = bkdt+ σkdWt, Y

(k)
0 = 0,

(4.8)

such that Lt =
∑(n−1)2

k=1 L
(k)
t Ek are continuous stochastic processes in g≥0, where we assume

a constant drift bk, power ak and volatility σk to be positive parameters. Note that if

one is interested in the calibration in the risk-neutral measure instead of the historical

measure one can apply Girsanov’s theorem to (4.8) in a well-known linear setting rather

than having to apply it in the Lie group of stochastic matrices. More information on the

change of measure in this setting of rating matrices can be found in [33].

Now, applying Itô’s formula to λR0 : g≥0 → G≥0, λR0(Lt) = R0 exp(Lt) =: Rt for a fix

R0 ∈ G≥0 gives us a stochastic process evolving on the Lie group of stochastic matrices,

i.e. valid rating transition matrices Rt. We use the most simple SRKMK scheme, the

geometric Euler-Maruyama, to solve the resulting SDE and denote the approximations

by RgEM
tk+1

= Rtk exp(Ltk+1
). Note that our approximations fulfill the Chapman-Kolmogorov

equation by construction.
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Calibration and Results

Due to the scarcity of rating data we let a Deep Neural Network, called TimeGAN [78],

learn rating distributions from historical data from 2011 until the end of 2019 and denote

the output by RGAN
t . For the calibration of the parameters in (4.8) we match the first

four moments of RGAN
t and RgEM

t . For more details on the method, calibration and an

application to pricing CVA and DVA dependent on rating triggers we refer to [32], [33].

Here, we only take a brief look at some results generated by RgEM
t . Figure 4.13 shows

some trajectories of each entry of the calibrated RgEM
t in the course of one year, where the

first graph in the first row corresponds to the change of rating from A to A, the second

graph corresponds to the change from A to B and so on. We omitted the last row since

it is always a unit row vector. The cloud of grey lines represents 1000 trajectories with

Figure 4.13: Trajectories of calibrated Rt

an exemplary trajectory given as a yellow line. Furthermore, we see a good fit of the

mean trajectory (in blue) to the values of the rating transition matrix obtained by the

stochastic reconstruction of the cohort method at t = 1 year (red dots).

Let us list some reasonable properties of rating transitions with a time span up to one

year:

1. It is more likely to stay in the initial rating than changing to another one.

2. It is more likely to be downgraded than upgraded.
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3. Lower rated entities are more likely to default.

4. The rating spreads more over time.

We claim that our generated rating transition matrices RgEM
t fulfill these properties per-

fectly since we were able to make the following observations on the basis of Figure 4.13

and 4.14:

1. The rating transition matrices are strongly diagonally dominant:

[Rt (ω)]ii ≥
∑
j ̸=i

[Rt (ω)]ij.

2. The sum of the upper triangular matrix is bigger than the sum of the lower triangular

matrix: ∑
i<j

[Rt (ω)]ij ≥
∑
i>j

[Rt (ω)]ij.

3. The last column is increasing from the best starting rating to the lowest:

[Rt (ω)]1n ≤ [Rt (ω)]2n ≤ · · · ≤ [Rt (ω)]nn .

4. The diagonal elements are decreasing over time:

[Rs (ω)]ii ≥ [Rt (ω)]ii

for all s < t.

The preference of downgrading compared to upgrading can especially be confirmed by

viewing Figure 4.14. It shows the histograms of transition probabilities after one year in

the calibrated RgEM
t model with a beta distribution fitted to the histograms indicated by

the dashed blue line. As expected we see skewed rating distributions with one tail being

fatter than the other one.

Overall, we are satisfied with the outcome of our model for rating transitions. Of

course one can think of different properties that rating transition matrices should fulfill.

However, our model can still be modified and expanded in order to fulfill more properties,

e.g. by using time-dependent parameters or adding more diffusion parts in (4.8).



72 CHAPTER 4. APPLICATIONS

Figure 4.14: Histograms of ratings transition probabilities at 12 months.



Chapter 5

Conclusion

In this thesis we gave an introduction to ODEs on manifolds and how they can be solved

numerically via Munthe-Kaas schemes in order to ease the set up of their stochastic coun-

terpart, namely SDEs on manifolds and their approximation by a stochastic expansion

of Munthe-Kaas schemes. We illustrated our approach by connecting theoretic results to

the application to rigid body motions in each chapter.

Our main result is the analysis of strong convergence of these stochastic Runge-

Kutta–Munthe-Kaas (SRKMK) schemes, which we conducted in a seven-steps proof. By

analysing an SDE in a corresponding Lie algebra we were able to set up a condition of

how many summands of the drift and diffusion part have to be evaluated to obtain a

desired strong convergence order.

To demonstrate these theoretic results we applied the stochastic RKMK schemes to

SDEs on four exemplary manifolds, namely a sphere, the dual space of the Lie algebra of

rigid body motions, the space of symmetric and positive definite matrices and the matrix

Lie group of transitions, where the former two manifolds were considered in the modelling

of rigid bodies and the latter two in a context of financial mathematics.

In the examples of rigid body modelling we extended the ODEs on manifolds, that

are usually considered for the dynamics, such that they account for uncertainties (e.g.

in measurements). We visualized that the application of SRKMK schemes compared

to conventional SRK schemes has the great benefit of preserving the structure of the

manifold. Additional to the manifold structure we have shown that SRKMK schemes

can conserve other intrinsic quantities of the underlying system like the Casimir functions

whereas the corresponding SRK methods fail at this task.

Regarding the applications in computational finance our contribution is focused on the

formulation of stochastic processes such that they intrinsically preserve desired geometric

73
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attributes, for example the symmetry and positive definiteness of correlation matrices or

the unit row sums of rating transition matrices. The SDEs on these described manifolds

could then be solved by the SRKMK schemes which preserve these geometric properties

by construction.

In these examples we have shown the importance of SRKMK schemes and their su-

periority to the underlying SRK method when it comes to the preservation of geometric

characteristics. In a next step one could conduct a comparison to different numerical

approximation schemes that are known to preserve geometric properties as well like the

stochastic Magnus expansion [34], [77].

Moreover, one could analyse the SRKMK schemes with regard to the preservation of

other geometric characteristics like symplecticity or time-reversibility, where we have a

stochastic expansion of the work done in [75] based on approaches similar to [42], [76],

[80] in mind.

So far, we have only examined manifolds with a matrix Lie group action. We see

the expansion to manifolds with Lie group actions that are not necessarily based on

subgroups of GL(n) as future work. This would generalize the application of Munthe-

Kaas schemes to a broader class of manifolds, like the one considered in the second

example of Section 2.2.2. In this example one could also think of a stochastic expansion

of Crouch-Grossman schemes [16].

Another aspect that needs more investigation in the future is the stability and weak

convergence of SRKMK schemes. For the analysis of weak convergence one could start

from the setting considered in [1], where a proof of weak convergence of Munthe-Kaas

methods for the stochastic Landau-Lifshitz equation on a sphere can be found. Based on

this proof a generalization to other manifolds can be established.

Thinking of further applications of SRKMKmethods in computational finance it might

be worth it to look deeper into backward stochastic differential equations (BSDEs) on

manifolds since the authors of [35] express a necessity of preserving the positivity of the

approximated solution of some pricing problems in finance. As a starting point for con-

structing SRKMK methods for BSDEs on manifolds one may consider SRKMK methods

for BSDEs on Lie groups, which are analysed in [20].

We conclude that despite all these open questions and the related open problems

SRKMK methods perform well applied to SDEs on manifolds and are worth to be inves-

tigated more in the future.



References

[1] M. Ableidinger and E. Buckwar, “Weak stochastic Runge–Kutta Munthe-Kaas

methods for finite spin ensembles,”Applied Numerical Mathematics, vol. 118, pp. 50–

63, 2017.

[2] J. Armstrong and D. Brigo, “Intrinsic stochastic differential equations as jets,” Pro-

ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,

vol. 474, no. 2210, p. 20 170 559, 2018.
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Appendix A

Derivatives

Let y0 be fixed in M. Then using the chain rule and the derivative of the matrix expo-

nential exp: g → G found in Section 2.1.2 the first derivative of the Lie algebra action

λy0 : g → M, λy0(Ω) = Λy0

(
exp(Ω)

)
in the direction of an arbitrary matrix H ∈ g is(

d

dΩ
λy0(Ω)

)
H = Λ′

y0

(
exp(Ω)

)( d

dΩ
exp(Ω)

)
H

= Λ′
y0

(
exp(Ω)

)
dexpΩ(H) exp(Ω).

(A.1)

For the second derivative we have(
d2

dΩ2
λy0(Ω)

)
(H, H̃) =

(
d

dΩ
Λ′

y0

(
exp(Ω)

)
dexpΩ(H) exp(Ω)

)
H̃

=

(
d

dΩ
Λ′

y0

(
exp(Ω)

))
H̃ dexpΩ(H) exp(Ω)

+ Λ′
y0

(
exp(Ω)

)( d

dΩ
dexpΩ(H)

)
H̃ exp(Ω)

+ Λ′
y0

(
exp(Ω)

)
dexpΩ(H)

(
d

dΩ
exp(Ω)

)
H̃

= Λ′′
y0

(
exp(Ω)

)
dexpΩ(H̃) exp(Ω) dexpΩ(H) exp(Ω)

+ Λ′
y0

(
exp(Ω)

)( d

dΩ
dexpΩ(H)

)
H̃ exp(Ω)

+ Λ′
y0

(
exp(Ω)

)
dexpΩ(H) dexpΩ(H̃) exp(Ω).

(A.2)

Evaluating the derivatives (A.1) and (A.2) in the direction of vΩ1 = dexp−1
Ω

(
f1
(
λy0(Ω)

))
,
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i.e. inserting H = H̃ = vΩ1 , we get(
d

dΩ
λy0(Ω)

)
vΩ1 = Λ′

y0

(
exp(Ω)

)
f1
(
λy0(Ω)

)
exp(Ω),(

d2

dΩ2
λy0(Ω)

)
(vΩ1 , v

Ω
1 ) = Λ′′

y0

(
exp(Ω)

)
f1
(
λy0(Ω)

)
exp(Ω)f1

(
λy0(Ω)

)
exp(Ω)

+ Λ′
y0

(
exp(Ω)

)
f ′
1

(
λy0(Ω)

)
Λ′

y0

(
exp(Ω)

)
f1
(
λy0(Ω)

)
exp(Ω) exp(Ω)

+ Λ′
y0

(
exp(Ω)

)
f1
(
λy0(Ω)

)
f1
(
λy0(Ω)

)
exp(Ω).

As mentioned in Algorithm 3.11 we can also use an Itô-Taylor scheme to approximate

the SDE (3.23) in the Lie algebra g. We provide the derivation of the derivatives needed

in the Itô-Taylor scheme of strong order γ = 1.5 in (3.17). Therefore, we compute the

derivatives for the case where the functions fj : M → g, j = 0, 1, . . . , d are independent

of the solution of (3.22). In this case we need the derivatives of the drift and diffusion

coefficient in (3.23) in the direction of an arbitrary matrix H ∈ g. Let V be an arbitrary

matrix in the Lie algebra g as well, then we obtain for a manifold M with a quadratic

Lie group acting on it the following first and second derivatives of the Cayley map:(
d

dΩ
dcay−1

Ω (V )

)
H =

(
1

2

d

dΩ
(V + V Ω− ΩV − ΩV Ω)

)
H

=
1

2

d

dt

(
V + V (Ω + tH)− (Ω + tH)V

−(Ω + tH)V (Ω + tH)
)∣∣

t=0

=
1

2
(V H −HV − ΩV H −HV Ω),(

d2

dΩ2
dcay−1

Ω (V )

)
(H,H) = −HVH.

If we evaluate the first derivative in the direction of H = dcay−1
Ω (V ), we obtain(

d

dΩ
dcay−1

Ω (V )

)
dcay−1

Ω (V ) =
1

2
(−V ΩV − V ΩV Ω + ΩV ΩV + ΩV ΩV Ω).

For non-quadratic Lie groups, we require the derivatives of the drift and diffusion

coefficient of (3.23) according to the matrix exponential. Thus, we compute the derivative
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of the first five summands of (2.10), namely

4∑
k=0

Bk

k!
adk

Ω(H) =H − 1

2
[Ω, H] +

1

12

[
Ω, [Ω, H]

]
− 1

720

[
Ω,
[
Ω
[
Ω, [Ω, H]

]]]
=H − 1

2
(ΩH −HΩ) +

1

12
(Ω2H +HΩ2 − 2ΩHΩ)

− 1

720
(Ω4H − 4Ω3HΩ + 6Ω2HΩ2 − 4ΩHΩ3 +HΩ4)

and we will see later why this is enough.

Computing the first derivative we get(
d

dΩ

4∑
k=0

Bk

k!
adk

Ω(H)

)
H̃ = − 1

2
(H̃H −HH̃)

+
1

12
(ΩH̃H + H̃ΩH +HΩH̃ +HH̃Ω− 2H̃HΩ− 2ΩHH̃)

− 1

720

(
H̃Ω3H + ΩH̃Ω2H + Ω2H̃ΩH + Ω3H̃H

− 4(ΩH̃ΩHΩ + H̃Ω2HΩ + Ω2H̃HΩ + Ω3H̃H)

+ 6(Ω2HΩH̃ + Ω2HH̃Ω + ΩH̃HΩ2 + H̃ΩHΩ2)

− 4(ΩHΩH̃Ω + ΩHH̃Ω2 + ΩHΩ2H̃ + H̃HΩ3)

+HH̃Ω3 +HΩH̃Ω2 +HΩ2H̃Ω +HΩ3H̃
)
.

Whereas the second directional derivative is given by

(
d2

dΩ2

4∑
k=0

Bk

k!
adk

Ω(H)

)
H̃2

=
1

6
(H̃2H +HH̃2 − 2H̃HH̃)

− 1

360

(
(ΩH̃ΩH̃H + ΩH̃2ΩH + H̃2Ω2H + Ω2H̃2H + H̃ΩH̃ΩH + H̃Ω2H̃H)

− 4(ΩH̃ΩHH̃ + ΩH̃2HΩ + H̃2ΩHΩ + H̃Ω2HH̃ + H̃ΩHΩ + Ω2H̃HH̃)

+ 6(Ω2HH̃2 + ΩH̃HΩH̃ + H̃ΩHΩH̃ + ΩH̃HH̃Ω + H̃ΩHH̃Ω + H̃2HΩ2)

− 4(ΩHΩH̃2 + ΩHH̃2Ω + H̃HΩH̃Ω + ΩHH̃ΩH̃ + H̃HH̃Ω2 + H̃HΩ2H̃)

+ (HH̃ΩH̃Ω +HH̃2Ω2 +HH̃Ω2H̃ +HΩH̃ΩH̃ +HΩH̃2Ω +HΩ2H̃2)
)
.

The evaluation of the derivatives at Ω0 = 0 causes many summands to become zero,

which makes computing higher summands (k > 4) unnecessary.




