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Abstract

In this work, the variational Monte Carlo (VMC) method using the restricted Boltzmann machine
(RBM), a feed-forward neural network, is investigated to allow for the computation of finite-
temperature results of quantum spin models in one and two dimensions. To accomplish this task,
there are, at least, three different approaches possible that are discussed and compared for the
Heisenberg model in one dimension before they are deployed to the Heisenberg and the J1-J2 model
in two dimensions. In the latter case, the correct detection of the presumed finite-temperature
phase transition is studied. The three different types of methods studied in a variational setting
are comprised by the purification method, the sampling method, and the use of variational thermal
pure quantum states and thus the notion of quantum typicality. In the proceeding of this study, the
reason for choosing the RBM as the predestined variational ansatz is motivated by general (artificial)
neural network theory and investigations and findings related to the ground state optimization
method. In the purification and the sampling method, finite temperature correlation functions
for the one-dimensional Heisenberg model are computed successfully and even the free energy is
attainable. Unfortunately, the idea of using quantum typicality in a combined variational ansatz,
using the RBM and a pair-product ansatz, is shown to lead to inaccurate results at low temperatures
due to the high entanglement entropy of those variational states. The issue seems to be persistent
for any variational ansatz wave function and renders the applicability of quantum typicality in
a variational setting highly problematic. To complete this investigation, the real-time evolution
at infinite temperature is studied and the unfavourable scaling of the number of hidden units
documented. Finally, the purification and the sampling method are applied to the J1-J2 model on
the square lattice. Unfortunately, the computation of accurate results for very low temperatures is
difficult due to an increase in the rejection probability, an issue related to the Monte Carlo sampling
and known as critical slowing down.
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Zusammenfassung

In dieser Arbeit wird die variationelle Monte-Carlo-Methode unter Verwendung der restricted
Boltzmann Machine (RBM), einem neuronalen Feedforward-Netz, untersucht, um die Berechnung
von thermodynamischen Variablen bei endlicher Temperatur in Quantenspin-Modellen in einer und
zwei Dimensionen zu ermöglichen. Dazu sind mindestens drei verschiedene Ansätze anwendbar, die
zunächst für das eindimensionale Heisenberg-Modell diskutiert werden, bevor sie auf das
zweidimensionale Heisenberg- und das J1-J2-Modell angewendet werden. Im letzten Fall wird dann
der vermutete Phasenübergang bei endlicher Temperatur untersucht. Die drei verwendeten
Methoden umfassen die Purification-Methode, die Sampling-Methode und die Verwendung von
variationellen, typischen Quantenzuständen. Der Grund für die Wahl des RBM als Variationsansatz
wird in dieser Studie durch die allgemeine Theorie der künstlichen neuronalen Netze und die
Untersuchungen und Erkenntnisse im Zusammenhang mit der Grundzustandsoptimierungsmethode
motiviert. Mit der Purification- und der Sampling-Methode können endliche Temperatur-
korrelationsfunktionen im eindimensionalen Heisenberg-Modell erfolgreich berechnet werden. Sogar
die Bestimmung der freien Energie ist möglich. Leider zeigt sich, dass die Idee, die typischen
Zustände in einem kombinierten variationellen Ansatz, bestehend aus dem RBM und einem
pair-product Ansatz, zu verwenden, aufgrund der hohen Verschränkungsentropie dieser Zustände zu
ungenauen Ergebnissen bei niedrigen Temperaturen führt. Das Problem scheint allgemein für jeden
Variationsansatz zu bestehen und stellt die Anwendbarkeit typischer Zustände in einem
variationellen Zugang grundsätzlich in Frage. Um diese Untersuchung abzurunden, wird die
Echtzeitentwicklung bei unendlicher Temperatur durchgeführt und die Skalierung der Anzahl der
hidden units dokumentiert. Zuletzt werden die Purification- und die Sampling-Methode mit Erfolg
auch auf das J1-J2 Modell auf dem Quadratgitter angewendet. Leider verhindert ein Anstieg der
Ablehnungswahrscheinlichkeit im Monte-Carlo-Algorithmus, dass genaue Ergebnisse für niedrige
Temperaturen berechnet werden können. Dieses Problem hängt mit der Art des
Monte-Carlo-Samplings zusammen und ist bekannt als kritische Verlangsamung.
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Chapter 1

Introduction

Simulating physical quantum many-body problems for finite system sizes larger than just a few
particles is in general a very difficult task. Since the Hilbert space grows exponentially in system
size, the computation of the real- and imaginary-time evolution is a complex task. Therefore, a
number of numerical methods for different applications have been established. While the quantum
Monte Carlo (QMC) method is well-established and provides accurate results for a number of
models, it suffers from the sign problem, which is especially prevalent in frustrated spin models and
fermionic models [7]. Thus, the density-matrix renormalization group (DMRG), which optimizes
matrix-product states (MPS) efficiently, is the most accurate method in this field of research [8].
Unfortunately, it is not straightforward to generalize this approach to two dimensional models.
However, there are various propositions for this generalization [9].
The Variational Monte Carlo (VMC) method was first proposed in the field of ground state
optimization making use of the variational principle. A variational ansatz for the wave function is
proposed and depends on a set of variational parameters. The idea is generalized by using a
variational ansatz to approximate any state and any evolution of interest. While the reasoning for
these ansatz wave functions has often been physically motivated, for example by peculiarities of the
model at hand, the huge practical success of (artificial) neural networks ((A)NNs) in other fields has
paved the way for a universal ansatz of the wave function. It is solely motivated by the universal
approximation theorem. Hence, the ansatz is proven to be an approximator independent of the
concrete nature of the wave function to be approximated. Furthermore, this ansatz is readily
generalized to two-dimensional models.
In this work, the variational Monte Carlo (VMC) method using feed-forward neural networks
(FFNNs) is investigated to allow for the computation of finite-temperature results of quantum spin
models in one and two dimensions. To do so, there are, at least, three different approaches possible
that are discussed for the Heisenberg model in one dimension before they are deployed to the J1-J2
model in two dimensions. Additionally, the scaling of the number of variational parameters in the
real-time evolution is studied.

Before diving into this topic, the interest in the covered spin models, namely the Heisenberg model
and the J1-J2 model, is motivated in Ch. 2. Furthermore, some of their peculiarities for the

1



computations at hand are explained. In Ch. 3, a geometric view on quantum physics, known as
quantum geometry is presented. Therein, the embedding of variational wave functions is discussed.
They can be viewed as elements of the variational submanifold of the (projective) Hilbert space.
The peculiarities of this quantum space, especially its metric tensor known as the quantum
geometric tensor, is used to define the (quantum) natural gradient upon this manifold. Therewith,
an arbitrary state is optimized with respect to the expectation value of a physical operator, for
example the energy, or evolved in real or imaginary time. The respective algorithm making use of
the Monte Carlo sampling for larger system sizes is explained in detail in Ch. 4.
The first ideas for such an ansatz in the ground state optimization were inspired by physical
considerations and expectations for the ground states of the models under consideration. These are
discussed in Ch. 6. A well-known example is the so-called Jastrow-Gutzwiller factor and the
pair-product (PP) wave function [10]. However, these are always restricted to the expected form of
the wave function and therefore biased by what is the assumed outcome. The crucial difference in
this approach comes with the use of a specific form of neural networks (NNs), namely feed-forward
neural networks (FFNNs), for the ansatz wave function. Those are not tailored to a specific model
and do not prescribe certain features but are universal approximators, a decisive feature that is
explained in detail in Ch. 5. Furthermore, the effect of using multiple layers in deep neural networks
is discussed and compared to the single layer case. The quantum states based on neural networks
are named neural network quantum states (NNQS). The optimization of those states with respect
to a specific loss function, for example the energy, is in neural network theory considered a recurrent
learning algorithm and was first proposed in Ref. [11]. Due to the universal feature of FFNNs, there
is a number of network architectures varying in depth and width available. They have been
deployed in the ground state optimization method of spin models and are compared and elaborated
on in chapter 7. This way, especially the potential benefit of using multi-layer FFNNs compared to
single-layer FFNNs is explored and the restricted Boltzmann machine (RBM) identified as a
suitable choice for the variational wave function in the finite-temperature computations carried out
in this work. Thus, it is from there on referred to simply as the NN ansatz.
In Ch. 8, the NN ansatz is used to compute finite-temperature results for the one-dimensional
Heisenberg model. In the purification algorithm, the NN ansatz is modified to allow for an accurate
approximation of the infinite-temperature state. This modified ansatz is referred to as the modified
NN (mNN) ansatz. The fine-tuning of this state is checked for small system sizes and the effect of
the Monte Carlo sampling is studied. Subsequently, the method is applied to larger system sizes
yielding results for the energy, the free energy and local correlation functions. Secondly, the
sampling method is investigated for which the minimally entangled thermal states (METS) are
expressed easily in the NN ansatz by selecting a particular choice of parameters. The results for the
inner energy, the free energy and spin-spin correlation functions are comparable to the ones
obtained in the purification method and also limited by the sampling error. In the final section of
this chapter, the criteria for the representation of typical pure quantum states (TPQSs) by a
variational ansatz are investigated and understood. Unfortunately, the unavoidable increase in the
entanglement entropy is spotted as the decisive feature inhibiting the numerical computation of any
correlation function for low temperatures in an accuracy that is competitive with the other two
methods discussed, although, the quantum typicality approach of course provides more accurate
results than the sampling method at high temperatures.
To conclude this discussion, the real-time evolution is considered in Ch. 9 using the purification
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method at infinite temperature. Unfortunately, the number of hidden units, that is needed to
provide accurate results for larger system sizes, grows much faster than linear, at least like ∝ N4.
However, it is more likely to grow even exponentially.
In the last Ch. 10, the most promising two methods, the purification method and the sampling
method, are applied to the two-dimensional Heisenberg and the two-dimensional J1-J2 model to
obtain finite-temperature results. Especially for the J1-J2 model, the purification algorithm needs to
be adjusted by a Hadamard transform to allow for an efficient sampling at high temperatures. The
reason for a more substantial deviation of the finite-temperature results are discussed. The
breakdown of the algorithm at low temperatures due to a failure of the Monte Carlo sampling is
observed earlier than in the one-dimensional case. This renders the investigation of the presumed
finite-temperature phase transition difficult. Furthermore, the results deviate even for temperatures
larger than the critical temperature substantially from the numerical results in Ref. [6], which are
obtained by the corner transfer renormalization group (CTMRG) method. This issue can, in
principle, be overcome by a model-dependent cluster algorithm which hinders the increase of the
rejection probability observed.
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Chapter 2

Physical Framework

Before diving into the topics investigated in this study, a broader but short general introduction
to this field of research is presented. It encompasses the categorization of magnetic materials and
provides the rationale for focusing on the models pertinent to this study. A strict theoretical
derivation starting from the most basic condensed matter Hamiltonian considering the ions, electrons
and their interaction and adding to it the ideas of second quantization, is found in Ref. [12].

2.1 Magnetism - The Exchange Interaction

Magnetism is a pure quantum mechanical effect and therefore can not be explained by classical
physics. This is proven by the Bohr-van Leeuwen theorem [13]. The magnetic behavior of solid
states can be categorized into three main classes. The quantity these classes are distinguished by is
known as the magnetic susceptibility χαβ(T,H) = ∂Mα

∂Hβ
(α, β = x, y, z). It is a response function that

describes how much a material will become magnetized (magnetization M) in an applied external
magnetic field H and depends in general on the temperature T . Since the magnetism of solids is a
many-body theory and thus can not be solved directly or analytically, the formation of models is
unavoidable. A self-contained and very detailed treatment of the theory of magnetism is found in
Ref. [13] while the most interesting models are reviewed in Ref. [14].

• Diamagnetism: Although all solid states show diamagnetic behavior, it is only observable for
materials not dominated by the other two effects explained below. This is the case for models
in which there exist no permanent magnetic moments. The diamagnetic behavior was first
explained by an induction effect described by Lenz’s law. However, this derivation contains
inconsistencies and contradicts the Bohr-van Leeuwen theorem. A detailed discussion using
purely quantum mechanical arguments is found in Ref. [13].

χdia < 0 and χdia = const. (2.1)

• Paramagnetism: The opposite behavior is observed for paramagnetic materials. In this case,

4



permanent magnetic dipoles are prevalent and aligned by the magnetic field. This effect can
be impeded by the temperature.

χpara > 0 and χpara = χpara(T ) (2.2)

The permanent magnetic dipoles can stem from unpaired electrons which means that the
magnetic dipoles are localized. This is known as the temperature dependent Langevin
paramagnetism. The other case, where the magnetic dipoles are due to quasi-free conducting
electrons carrying a magnetic moment of µB, is called Pauli paramagnetism and is in first
order approximation not dependent on temperature due to the Pauli principle.

χP auli << χLangevin (2.3)

• Collective Magnetism: The magnetic susceptibility is in this case a complicated function of
the temperature T , the magnetic field H, and the material and how it was treated before.

χC = χC(T,H, treatment) (2.4)

As in the paramagnetic case, magnetic dipoles need to be prevalent, however, in the case of
collective magnetism, those dipoles interact with each other through the so-called exchange
interaction, that leads to a magnetization underneath the critical temperature T ∗. Since this
is not caused by an external magnetic field, it is called a spontaneous magnetization. The
exchange interaction can only be explained by quantum mechanics. As for paramagnetism,
those magnetic dipoles can be local or itinerant. For temperatures T > T ∗, the materials show
paramagnetic behavior. Collective magnetism can be further divided into 3 subclasses:

– In ferromagnets, permanent magnetic dipoles align for 0 < T < T ∗ = TC into the same
direction and are fully aligned for T = 0. The critical temperature is in this case known
by the name of Curie temperature TC .

– The lattice of ferrimagnets is made of two ferromagnetic lattices A and B with different
magnetizations MA ̸= MB that do not add to zero magnetization.

M = MA + MB ̸= 0 for T < TC (2.5)

– Antiferromagnets can be interpreted as a special case of ferrimagnets, where the critical
temperature is here also known as the Néel temperature TN .

|MA| = |MB| ≠ 0 and MA = −MB for T < TN (2.6)

This leads to an overall magnetization of M = 0.
– Recently, a fourth subclass of magnetic materials, known as altermagnets, was discovered.

These exhibit characteristic features of both ferromagnets and antiferromagnets [15]. In
this case, the opposite-spin sublattices are rotated and not connected by inversion.

The collective magnetism is the most complex category and therefore also the one that is of interest
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in this work. It does not result from a direct dipole-dipole interaction between atomic magnetic
moments but is a direct consequence of the Coulomb interaction between electrons and the Pauli
principle. In general, this effect prevents electrons, whose spins are aligned, to get too close [13].
This can lead to a favoured magnetic arrangement of the prevalent magnetic dipoles of the presented
kind and is called a spontaneous magnetization. A simple way to get a grasp of it is to look
at the treatment of the H2-molecule by the Heitler-London theory [13]. This way, the original
Hamiltonian, that contains the kinetic part and the Coulomb interaction, can be replaced by an
effective Hamiltonian that only contains spin-spin interactions.

2.2 Heisenberg Model

This effective Hamiltonian can be generalized to a quantum many-body model, known as the
quantum Heisenberg model [16]

H = J
N∑

⟨ij⟩
SiSj = J

N∑
⟨ij⟩

[1
2
(
S+

i S−
j + S−

i S+
j

)
+ Sz

i Sz
j

]
, (2.7)

where the sum goes over all nearest neighbors ⟨ij⟩, N denotes the number of sites in the model
and d the local dimension of the spin operator. In the following, the local dimension of the spin
operators is set to d = 2. These operators are denoted as S = (Sx, Sy, Sz) and related to the Pauli
matrices σ = (σx, σy, σz)

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(2.8)

by S = ℏ
2σ [17]. For ease of notation, ℏ is set to 1. For the one-dimensional spin chain and open

boundary conditions, the sum is easily expressed as

H = J
N−1∑
i=1

[1
2
(
S+

i S−
i+1 + S−

i S+
i+1

)
+ Sz

i Sz
i+1

]
. (2.9)

Certainly, the spins also respond to an external magnetic field H. The resulting additional factor
H
∑

i Si (µB = 1) is added if the behaviour in a magnetic field is of interest. In the case of the
H2-molecule, the parameter J can be calculated exactly by the Heitler-London theory [13]. It is
dependent on the Coulomb-, the exchange- and the overlap-integral. In the general Heisenberg
model, ferromagnetic materials are characterized by negative coupling constants, denoted as J < 0,
while antiferromagnets/ferrimagnets are indicated by J > 0. The Heisenberg model mainly describes
insulators, in which the localized magnetic moments are caused by incompletely filled electron
shells. Thereby, it is essential that the shells of neighbouring atoms overlap [13]. However, in
metals, there is also an indirect exchange interaction where the electric current and magnetism
are governed by different groups of electrons. This interaction effect is referred to as the RKKY
interaction honouring the works of M.A. Ruderman and C. Kittel [18], T. Kasuya [19] and K.Yosida
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[20]. The one-dimensional Heisenberg model is realized along a specific axis in some special chemical
compounds like Sr2CuO3 [21], copper benzoate Cu(C6H5COO)2 · 3H2O [1] or copper pyrazine
dinitrate CuPzN , i.e. Cu(C4−H4N2)(NO3)2 [22, 23]. To grasp how this is implemented in actual
materials, the crystal structure of the copper benzoate is depicted in Fig. 2.1.
From the theoretical perspective, Heisenberg model is of additional importance since it is the first
interacting model that was exactly solved in one dimension [24]. This has been achieved by H.
Bethe using his famous (coordinate) Bethe ansatz [25] and led to the evolution of the term quantum
integrability, which is an extension of the classical integrability definition to quantum physical models
[26]. In a nutshell, it refers to the scattering matrix to be reducible to a product of two-body
problems. This condition was formalized to the Yang-Baxter equation dating back to the works by
C.N. Yang [27] and R.J. Baxter [28]. However, there are a number of slightly different formulations
used and thus there is a certain disunity about the exact definition. These are compared and
discussed in Ref. [29]. Later, the Heisenberg model was solved additionally to the coordinate Bethe
ansatz by the famous algebraic Bethe ansatz in Refs. [26, 30, 31] and subsequently generalized to
open boundary conditions in Ref. [32]. Moreover, there were non-linear integral equations found to
allow for the efficient computation of thermodynamic quantities in the thermodynamic limit [33].
All in all, the Heisenberg model is in addition to its practical relevance, due to the results obtained
via numerous methods and the availability of exact results, a meaningful toy model to probe quantum
mechanical and quantum statistical effects. A more profound comprehension of spin chain models in
a general context paves the way for numerous applications in quantum technology [34], especially in
the field of quantum information and quantum computation [35, 36, 37].

Figure 2.1: Crystal structure of copper benzoate [1]. In this arrangement, the Cu2+ ions possess a spin
1/2 and organize into chains aligned along the c-axis. Each spin site occupies the center of a distorted
octahedron formed by oxygen ions. Notably, the intrachain coupling strength, denoted as J in Eq. (2.7),
is approximately 18 K. Additionally, there is an exceedingly weak interchain coupling, with a transition
temperature (TN) of around 0.8 mK. These characteristics designate copper benzoate as a prototype for
the spin-1/2 antiferromagnetic Heisenberg chain. Reprinted with permission from Ref. [1].
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2.3 J1-J2 Model

The J1-J2 model adds a next-nearest neighbour interaction denoted by ⟨⟨ij⟩⟩ and governed by the
parameter J2 to the nearest neighbour interaction of the Heisenberg model governed by J1 [38]

H = J1

N∑
⟨ij⟩

SiSj + J2

N∑
⟨⟨ij⟩⟩

SiSj . (2.10)

For J1, J2 > 0, it is categorized within a class known as frustrated models [39]. These exhibit a
more complex behavior, that is illustrated with the help of the simplest model of this kind, the Ising
model

H = J
N∑

⟨ij⟩
sisi+1 (2.11)

on a triangular lattice, where si is a classical spin meaning si ∈ {−1, +1}. The unit cell of the
triangular lattice is depicted in Fig. 2.2. To minimize the energy, two neighbouring spins are placed
in opposite direction. The third spin, however, can not be orientated opposite to the two present
ones leaving it frustrated [40]. Thus, the two states with the third spin up or down both have the
same energy, which results in the ground state being degenerate. Since the frustration is caused
by the geometry of the lattice, it is also called geometrical frustration [41]. To summarize, the
interesting feature of frustrated models is that a unique configuration at low temperatures is impeded
by the geometry. This leads to exciting effects like spin liquids, in which the system is in a fluid-like,
highly-correlated state with no magnetic order at all [40]. For the two-dimensional J1-J2 model, the
consequences of frustration peak at the point J1 = 2J2 and J1, J2 > 0 [38, 42]. It was first discovered
to be realized in Li2V OSiO4, which forms a two-dimensional square lattice with J2

J1
= 1.1 ± 0.1 [43].

↑ ↓

?

Figure 2.2: Unit cell of the Ising model on a triangular lattice depicting the frustration with respect to the
upper spin.

2.4 Hubbard Model

The Hubbard model is closely related to the Heisenberg model and the latter is obtained from the
former as will be discussed below. Moreover, the Hubbard model essentially emerges as the primary
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model when examining electrons in a quantum many-body system with unrestricted motion, followed
by the inclusion of Coulomb repulsion [12]. Hence, the Hamiltonian

H = −t
N∑

<ij>,σ

c†
iσcjσ + U

N∑
i=1

n̂i↑n̂i↓ (2.12)

of the Hubbard model is composed of the kinetic term with the hopping parameter t ∈ R and the
Coulomb interaction with the parameter U ∈ R [12]. The operator c†

iσ (ciσ) creates (annihilates)
an electron with spin σ = {↑, ↓} at position i and the occupation number operator n̂iσ yields the
occupation number niσ ∈ {0, 1}. In contrast to the Heisenberg model, where the spins are localized,
the electrons in the Hubbard model can hop from one site to the other. Thus, the Hubbard model
can additionally describe a certain band of a conducting material [17]. Hence, it characterizes band
magnets, in which the magnetic effects and the conduction are mediated by the same group of
electrons in one dimension [13]. It is the simplest model to describe these metals and is exactly
solvable in one dimension by the nested Bethe ansatz. This is thoroughly examined in Ref. [44].
The Heisenberg model is obtained from the Hubbard model in the low energy limit for U → ∞ at
half-filling Ne = N . This is shown in Ref. [12], as well as the derivation of those two models from
second quantization and the tight-binding approach. The Heisenberg model is therein also obtained
up to an additive constant to describe the low energy spectrum in the strong coupling limit U

t
≫ 1.

2.5 Marshall-Peierls Sign Rule and Stoquastic Hamiltonians

The Marshall-Peierls sign rule for the Heisenberg Hamiltonian with periodic boundary conditions
was found in a collaborative work by R.E. Peierls and W. Marshall [45] and was later extended to
be applicable to a specific class of bipartite lattices in Ref. [46]. It states, that the state with the
lowest eigenvalue in every sector sz = ∑

n sz
n of a bipartite lattice, like the unfrustrated Heisenberg

model in Eq. (2.7), is given by
|Ψsz⟩ =

∑
n

cn(sz)|n⟩ (2.13)

with cn(sz) > 0, where
|n⟩ = (−1)sA−sz

A|sz
1⟩ ⊗ |sz

2⟩ ⊗ ... ⊗ |sz
N⟩ (2.14)

the sz-basis states and |sz
i ⟩ the eigenstate of the Sz

i operator on site i, sA = ∑
n∈A |sz

n| and sz
A =∑

n∈A sz
n [47]. A bipartite lattice is one which can be divided into two sublattices A and B and in

which the spins on one sublattice only interact with spins on the other sublattice. This leads to
the result that especially the ground state wave function is non-degenerate and the wave function
components are real. However, the sign structure is rather complicated. This issue can be cured by
a canonical transformation
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Sx
i(A) → −Sx

i(A)

Sy
i(A) → −Sy

i(A)

Sz
i(A) → Sz

i(A)

(2.15)

on the x- and y- components of the spin operators on one of the two sublattices [48, 49]. This
corresponds to a rotation around the z-axis by π and changes the Heisenberg Hamiltonian in one
dimension to be

H = J
N−1∑
i=1

[
−1

2
(
S+

i S−
i+1 + S−

i S+
i+1

)
+ Sz

i Sz
i+1

]
. (2.16)

The crucial point is that in this case the wave function components of the ground state in the
sz-basis are all real and positive implying the most simple sign structure possible [50]. This results
in a great simplification of the ground state optimization in the variational Monte Carlo (VMC)
method discussed in Ch. 4. The Hamiltonian is this way transformed into a so-called stoquastic one
(a composition of the word stochastic and quantum), meaning that the off-diagonal elements in the
standard product basis (sz-basis for spin models) are real and non-positive. Hence, this Hamiltonian
is also amenable to the quantum Monte Carlo (QMC) method since the matrix elements for e−βH

are always positive and the sign problem is avoided for any inverse temperature β ≥ 0 [51].

2.6 Phase Transitions and Critical Exponents

Phase transitions can be classified by the so-called Ehrenfest classification by observing the n-th
derivatives of the free enthalpy

G(T, P, N) = E + PV − TS (2.17)

with respect to its natural variables (T and P for fluid systems and T and B = µ0H for magnets),
where T the temperature, P the pressure, N the number of particles, E the energy, V the volume
and S the entropy [52]. They are noted to be of n-th order if at least one of its n-th derivatives is
not continuous while all lower order derivatives are. While only phase transitions of first and second
order are of practical interest, the strict classification by Ehrenfest does not uphold for second order
phase transitions due to real divergences in the second derivatives. This is why first order phase
transitions are nowadays also called discontinuous, while second order phase transitions are rather
called continuous referring to the continuity of the first derivative. Continuous phase transitions are
also known as critical phenomena. They are observed by so-called response functions which are the
compressibility, the specific heat capacity and the susceptibility, where the latter ones, namely

CV = T∂T S = ⟨∆H⟩
T 2 and χT = 1

V

(
∂m

∂H

)
T

= 1
V

(
∂2G

∂H2

)
T

(2.18)
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are of special relevance in this work, where ⟨∆H⟩2 = ⟨H2⟩ − ⟨H⟩2. The magnetic field strength
is therein denoted by H, whereas B denotes the magnetic flux density. For clarity, the principal
features of critical exponents are discussed here. For a more detailed derivation of the results,
Ref. [52] is recommended. For second order phase transitions, the behaviour close to the critical
point can be described by

f(ϵ) = aϵϕ(1 + bϵk1 + ...) with k1 > 0, (2.19)

where ϵ is the control parameter and ϕ the critical exponent [52]. The control parameter can be for
example the temperature, with TC being the critical temperature

ϵ = T − TC

TC

, (2.20)

but also other macroscopic variables like the pressure or the magnetic field. Close to the critical
value ϵ → 0, the only surviving term is ϵϕ with ϕ being defined as

ϕ = lim
ϵ>0,ϵ→0

ln |f(ϵ)|
ln(ϵ) and ϕ′ = lim

ϵ<0,ϵ→0

ln |f(ϵ)|
ln(−ϵ) . (2.21)

By using ϕ and ϕ′, it is distinguished from which direction the critical point is approached. The
common critical exponents (for magnets) are listed for clarity:

• α,α′: Specific heat capacity:

C ∼

ϵ−α if ϵ > 0
(−ϵ)−α′ if ϵ < 0

• β: Magnetization: M ∼ (−ϵ)β

• γ,γ′: Susceptibility:

χ ∼

ϵ−γ if ϵ > 0
(−ϵ)−γ′ if ϵ < 0

• ν,ν ′: Correlation length:

ξ ∼

ϵ−ν if ϵ > 0
(−ϵ)−ν′ if ϵ < 0

• η,η′: Correlation function: Oαβ
ij = ⟨Sα

i Sβ
j ⟩ − ⟨Sα

i ⟩⟨Sβ
j ⟩ ∼ 1

|i−j|d−2+η (d: dimension of the lattice)

These are so important due to the feature of universality of physical systems close to critical points.
They are only dependent on three outer parameters of the system [52]:

1. Dimension d of the system

2. Range of the interaction
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3. Number of relevant spin components

The critical exponents are found for a variety of models in Ref. [52]. The values for the critical
exponents of the Ising model in two dimensions without external field H = 0 are cited here:

α, α′ = 0(log), β = 0.125, γ, γ′ = 1.75, ν, ν ′ = 1 (2.22)

Any phase transition with these critical exponents is referred to as a two-dimensional Ising phase
transition.
The renormalization group (RG) theory allows a deeper understanding of critical phenomena [54].
It manages to explain why diverse systems exhibit similar behavior at critical points, resulting in
the agreement of their critical exponents. This universality property allows to classify models into
universality classes. The critical behavior of a system can be attributed to only the dimension
of the system, the range of interactions and the symmetry of its order parameter [53]. For the
two-dimensional Ising model, the order parameter is given by the magnetization and the Hamiltonian
is invariant under Z2 transformations corresponding to a flip of all spins [12, 55]. The tendency of
the system to favour rather spin-up states over spin-down states (or vice versa) for temperatures
lower than the critical temperature is known as a spontaneous symmetry breaking [56]. The realized
equilibrium state violates the Z2 symmetry. A similar situation of competing ground states, which
differ by a flip of all spins, is prevalent for the two-dimensional J1-J2 model in the stripe phase
depicted in the phase diagram of the ground state in Fig. 2.3. The order parameter is in this case
not the overall magnetization but the one measuring the difference between the magnetization in
vertical and horizontal direction (see Eq. (10.5)). It is stressed that the results in between the Néel
and the stripe phase remain a matter of debate. The finite-temperature phase transition in the
two-dimensional J1-J2 model was first predicted in Ref. [57] and later numerically investigated in
Ref. [6]. This is in more detail explained in Ch. 10, where the finite-temperature phase transition is
studied using a variational ansatz comprised by a NN.

Figure 2.3: Phase diagram of the ground state of the J1-J2 Heisenberg model. Reprint available under
Creative Commons Attribution 4.0 International license from Ref. [5].
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Chapter 3

Quantum Geometry

Quantum Geometry serves as a fundamental component for comprehending the computational
processes undertaken in this study. It is essentially a reformulation of standard quantum mechanics
from a geometrical perspective and is extensively covered in Refs. [58, 59, 60]. Only those parts
relevant to the topic of this work are discussed in this section. There are many analogies to
the description of classical mechanics in which the phase space consists of all possible states and
observables are characterized by the space of real-valued functions on this symplectic manifold. Pure
quantum physical states on the other hand are defined as vectors |Ψ⟩ in a high-dimensional, complex
Hilbert space H of dimension CK with the Bloch sphere in Fig. 3.1 being the illustration of the
simplest quantum physical object, the qubit or single spin-1/2-particle in the two-dimensional Hilbert
space. It will serve in the following as the guiding example to depict the advanced geometrical
considerations.

Figure 3.1: The Bloch sphere with a specific point identified by Eq. (3.13). Reprinted with permission from
Ref. [2].
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3.1 Projective Hilbert Space and Tangent Space

For finite dimensions, the vector space of quantum physical objects is given by CK . The dimension
K will be specified later. Any vector is described in a certain basis |k⟩ with k = 1, ..., K by

|Ψ⟩ =
K∑

k=1
ck|k⟩ . (3.1)

An initial characteristic is that rescaling a quantum state |Ψ⟩ does not have any measurable effect,
since physical quantities are computed by the expectation value

AΨ = ⟨Ψ|A|Ψ⟩
⟨Ψ|Ψ⟩

(3.2)

for arbitrary hermitian operators A. Thus, the projective Hilbert space P(H) is defined by the
following equivalence relation [59]:

|Ψ⟩ ∼ |Ψ̃⟩ ⇔ ∃α ∈ C : |Ψ⟩ = α|Ψ̃⟩ (3.3)

It is a complex projective Hilbert space that is in more mathematical terms referred to as CPK−1(H)
and studied in detail in Ref. [58]. The reduction in dimensionality comes from the equivalence
relation in Eq. (3.3) and will become clear later on by considering the example of the Bloch sphere.
However, in the following, the projective Hilbert space will consistently be denoted by P(H). It is
made up of all the vectors that are related by the multiplication with a non-zero complex number.
These are also known as rays and can be interpreted as the quantum phase space in equivalence
to the classical phase space [60]. The projective Hilbert space is a real Kähler manifold, meaning
it is at the same time a Riemannian, a symplectic and a complex manifold [59]. The Riemannian
property allows to define a metric tensor, while a real and complex parametrization is allowed. The
representative vector for the equivalence class is usually chosen to be the normalized one ⟨Ψ|Ψ⟩ = 1.
It is clear that the tangent space is reasonably defined only at an actual state |Ψ⟩, which is why it is
included in the notation for the tangent space states |δΨ⟩. To disregard changes in the direction of
|Ψ⟩, the following equivalence relation is used to define the tangent space [59]:

|δΨ⟩ ∼ |δ̃Ψ⟩ ⇔ ∃α ∈ C : |δΨ⟩ − |δ̃Ψ⟩ = α|Ψ⟩ (3.4)

It is noted that the tangent space contains, in contrast to the projective Hilbert space, vectors of any
length. This is why the tangent space is a regular vector space. As unique representatives, states
with ⟨δΨ|Ψ⟩ = 0 are chosen. These can be defined for arbitrary P(H) as

H⊥
Ψ = {|δΨ⟩ ∈ H | ⟨δΨ|Ψ⟩ = 0} . (3.5)
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They are acquired readily if the projector

QΨ =
(
1 − |Ψ⟩⟨Ψ|

⟨Ψ|Ψ⟩

)
(3.6)

is applied to an arbitrary element of the tangent space [59]. The distance between two states or
vectors |Ψ⟩ and |Φ⟩ on the projective Hilbert space P(H) is given by the Fubini-Study distance

DF S(|Ψ⟩, |Φ⟩) = arccos

√√√√ |⟨Ψ|Φ⟩|2
⟨Φ|Φ⟩⟨Ψ|Ψ⟩

(3.7)

and is used in Refs.[58, 61] to define infinitesimal distances DF S(|Ψ⟩, |Ψ⟩+δ|Ψ⟩) and thus, effectively,
the Fubini-Study metric

Fµν = ⟨δΨ|δΨ⟩⟨Ψ|Ψ⟩ − ⟨δΨ|Ψ⟩⟨Ψ|δΨ⟩
(⟨Ψ|Ψ⟩)2 . (3.8)

The name was coined to honour the first contributions to this topic made by G. Fubini [62] and E.
Study [63]. The argument of the square root in Eq. (3.7) is also known as the quantum fidelity

f [|Ψ⟩, |Φ⟩] = |⟨Ψ|Φ⟩|2

⟨Φ|Φ⟩⟨Ψ|Ψ⟩
. (3.9)

The Fubini-Study metric is closely related to the quantum Fisher information matrix (QFIM) for
pure states and its generalization to mixed states, the Bures metric. This is extensively covered in
Ref. [64, 65]. Hence, the quantity in Eq. (3.8) is referred to interchangeably as the Fubini-Study
metric or the QFIM [66].

3.2 Variational Manifold

A variational submanifold of the Hilbert space H or the projective Hilbert space P(H) is distinguished
in the following by denoting the former by V(H) whereas the latter is denoted by V(P(H)). Although
it seems irrelevant from the discussion around Eq. (3.2) to address the variational submanifold of the
Hilbert space as well, in the finite-temperature computations, it will be worthwhile due to the fact
that the norm of the wave function holds relevant physical information in that specific treatment.
However, for now, we limit ourselves to the discussion of the variational submanifold of the projective
Hilbert space.

3.2.1 Variational Manifold of the Projective Hilbert Space

The tiny difference to the submanifold of the Hilbert space is investigated in the imaginary-time
evolution in Sec. 4.2.1. It is also specified if the manifold is defined with respect to the field of real
parameters V(P(H),R) or complex parameters V(P(H),C). For large dimensions K, it is aimed to
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approximate the general vectors of P(H) in Eq. (3.1) by a variational state

|ΨP⟩ =
K∑

k=1
ΨP(k)|k⟩ or |ΨW⟩ =

K∑
k=1

ΨW(k)|k⟩ , (3.10)

that is parameterized by an ansatz ΨP(k) or ΨW(k) using a set of real parameters P or complex
parameters W of size P . The input can be comprised by a single input value or a vector of input
values (see Sec. 4.1). Furthermore, the expectation value with respect to an operator in Eq. (3.2)
can thus also be viewed as a functional

⟨A⟩ΨP = ⟨ΨP|A|ΨP⟩
⟨ΨP|ΨP⟩

or ⟨A⟩ΨW = ⟨ΨW|A|ΨW⟩
⟨ΨW|ΨW⟩

, (3.11)

which is parametrized by the set of parameters P or W. It is stressed that this notation will be used
throughout this work to denote the difference between the actual expectation value with respect to
a certain state |Ψ⟩, as in Eq. (3.2), and the functional in Eq. (3.11). An example for such an ansatz
and its parametrization is given for a two-dimensional Hilbert space by the Bloch sphere S2, which
is in the more mathematical notation, mentioned underneath Eq. (3.3), denoted as the complex
projective line CP1(H,R) [58]. It is parameterized in spherical coordinates P = {Θ, φ} as

|ΨP⟩ = cos
(

Θ
2

)
|0⟩ + eiφ sin

(
Θ
2

)
|1⟩ , (3.12)

where Θ is the polar angle, φ the azimuthal angle and |0⟩, |1⟩ the two basis vectors or states [2].
The angles define a point on the three-dimensional unit spherex

y
z

 =

sin(Θ) cos(φ)
sin(Θ) sin(φ)

cos(Θ)

 , (3.13)

which is depicted in Fig. 3.1. In this case, the variational manifold is just a parametrization of the
projective Hilbert space P(H).
For the upcoming discussion, it is important if the underlying field is given by the real or complex
numbers. The quantum phase space is in both cases considered a differentiable manifold with respect
to its underlying field [67]. Additionally, they are also Kähler manifolds, which means they have a
Riemannian, symplectic and a complex structure. This is an interesting topic of Riemannian geometry
that goes far beyond the topic of this work but can be extensively studied using Refs.[59, 67, 68].
For the purpose of this work, it is sufficient to know that a proper metric tensor can be defined
in both cases and that they are related, as will be shown below. The following derivation of the
tangent space and the metric tensor focuses on a more illustrative derivation. Before proceeding, it
is imperative to provide additional clarification on the significance of both constructs V(P(H),R)
and V(P(H),C). While the latter seems more natural, there exist two primary rationales for why
the former also holds significance. Firstly, the authors in Ref. [60] use the variational projective
Hilbert space over the field of real numbers V(P(H),R) to derive quantum mechanical theorems in
a geometric fashion, obtain some results that are analogous to their classical counterparts (e.g. both
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are Kähler manifolds) and work out the differences (e.g. probabilistic aspects related to the metric
tensor). Secondly, the real-valued ansatz is of practical importance for quantum computational
applications, in which only real parameters can be used as classical input to quantum operators in a
hybrid algorithm [69]. Thus, it is used in the following to introduce the most important features of
the projective Hilbert space using the most illustrative example, the Bloch sphere. Additionally,
the differences to the projective Hilbert space over the field of complex numbers V(P(H),C) are
pointed out and the respective quantities derived in that case as well. Throughout this work, the
computations are performed using complex parametrizations.
For the variational manifolds, there is also a tangent space TΨV(P(H),R) and TΨV(P(H),C) defined.
It describes the space of changes at the actual state |Ψ⟩. For the space of unique representatives of
the tangent space, a local basis is defined with ∂µ = ∂

∂µ
and µ ∈ {1, ..., P} by

|Vµ,P⟩ = QΨP |∂µΨP⟩ and |Vµ,W⟩ = QΨW|∂µΨW⟩ , (3.14)

where the derivatives are defined as

|∂µΨP⟩ :=
K∑

k=1

∂ΨP(k)
∂Pµ

|k⟩ and |∂µΨW⟩ :=
K∑

k=1

∂ΨW(k)
∂Wµ

|k⟩ , (3.15)

making use of the projector defined in Eq. (3.6). The local basis induces a metric tensor that is, as
usually, deduced from the inner product[58]. It simplifies in the case of normalized states to the
quantum geometric tensor (QGT) for complex parameters

Gµν(W) = ⟨Vµ,W|Vν,W⟩
⟨ΨW|ΨW⟩

= ⟨∂µΨW|∂νΨW⟩
⟨ΨW|ΨW⟩

− ⟨∂µΨW|ΨW⟩⟨ΨW|∂νΨW⟩
(⟨ΨW|ΨW⟩)2 , (3.16)

and the QGT for real parameters

gµν(P) = Re[⟨Vµ,P|Vν,P⟩]
⟨ΨP|ΨP⟩

= Re[⟨∂µΨP|∂νΨP⟩]
⟨ΨP|ΨP⟩

− ⟨∂µΨP|ΨP⟩⟨ΨP|∂νΨP⟩
(⟨ΨP|ΨP⟩)2 , (3.17)

since Q2
Ψ = QΨ [59, 70]. This is basically the variational formulation of the Fubini-Study metric

in Eq. (3.8). For the real-valued parametrization, the metric in Eq. (3.17) has to be restricted to
be real-valued. The second term itself is already inherently real and has a special meaning that
is discussed below. However, the QGT can be computed in both cases and is investigated for the
specific parametrization of the Bloch sphere in the following. First, it is divided into its real and
imaginary part

⟨Vµ,P|Vν,P⟩
⟨ΨP|ΨP⟩

= gµν + iwµν , (3.18)

where
gµν = Re [⟨Vµ,P|Vν,P⟩]

⟨ΨP|ΨP⟩
and wµν = Im [⟨Vµ,P|Vν,P⟩]

⟨ΨP|ΨP⟩
. (3.19)
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These quantities define the Kähler space, which means they are related in a specific way as is
explained for the real-valued case in Refs. [59, 71]. The respective equations for the mentioned
parametrization of the Bloch sphere in Eq. (3.12) are noted

|V1⟩ = −1
2 sin

(
Θ
2

)
|0⟩ + eiφ

2 cos
(

Θ
2

)
|1⟩ (3.20)

|V2⟩ = − i

2 sin
(

Θ
2

)
sin (Θ) |0⟩ + ieiφ

2 cos
(

Θ
2

)
sin (Θ) |1⟩ (3.21)

and the components of the metric tensor computed to be [59]

gµν = 1
4

(
1 0
0 sin2(Θ)

)
and wµν = 1

4

(
0 − sin(Θ)

sin(Θ) 0

)
. (3.22)

The real part of the inner product in equation (3.18) is identified as the standard metric tensor of
the unit sphere ds2 = gµνdxµdxν with radius r = 1

2 using the Einstein sum convention. The QGTs
in Eqs. (3.16) and (3.17) can be used to define the projectors

PΨP = (g−1)νµ

⟨ΨP|ΨP⟩
|VP,ν⟩ Re⟨VP,µ| and PΨW = (G−1)νµ

⟨ΨW|ΨW⟩
|VW,ν⟩⟨VW,µ| (3.23)

onto the tangent spaces of the variational manifolds TΨV(P(H),R) and TΨV(P(H),C), where the
states |VP,µ⟩ and |VW,µ⟩ are defined in Eq. (3.14) and the Einstein sum convention applies. This
is a crucial quantity for the time evolution described in Sec. 4.2. Furthermore, it is stressed that
the metric tensor of V(P(H),R) can be also obtained by a computation considering the distance
between two states that differ by a small shift [72]. The quantities

βµ(P) = i⟨ΨP|∂µ,PΨP⟩ and βµ(W) = i⟨ΨW|∂µ,WΨW⟩ , (3.24)

which are part of the QGTs in Eqs.(3.16) and (3.17), are known as the Berry connections, respectively.
These quantities are of physical relevance. When integrated around a closed curve C, the respective
Berry phases

γµ =
∫

C
βµ(P)dP and γµ =

∫
C

βµ(W)dW. (3.25)

are obtained [73]. They are gauge invariant and thus define an observable that can be measured in
experiments. Its most prominent manifestation is the Aharanov-Bohm phase [74]. The Berry phases
are manifestly real, which is already true for the Berry connections in Eq. (3.24). This is proven by
taking the derivative of the norm of a state |Ψ⟩

∂µ⟨Ψ|Ψ⟩ = ⟨Ψ|∂µΨ⟩ + ⟨∂µΨ|Ψ⟩ = 0 . (3.26)

Thus, ⟨ΨP|∂µ,PΨP⟩ and ⟨ΨW|∂µ,WΨW⟩ are purely imaginary rendering the Berry connection purely
real. The link to the classical Fisher information, which is the metric tensor for classical probabilities,
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is attained by parametrizing the wave function components by

|ΨP⟩
K∑

k=1

√
pP(k)|k⟩ , (3.27)

where ∑K
k=1 pP(k) = 1 is a classical probability distribution [70]. Completing the discussion in Sec. 3.1

about the mentioned metric tensors and their respective names, the classical Fisher information
matrix F can be related to the QGT by using the parametrization in Eq. (3.27) (see Ref. [70]).

gµν(P) = 1
4Fµν(P) = 1

4

K∑
k=1

pP(k)(∂µ log ΨP(k))(∂ν log ΨP(k)) (3.28)

It is stressed that the mixed QGT for real and complex parameters has to be computed with caution
and is derived step by step in Ref. [75].

3.2.2 Variational Manifold of the Hilbert Space

The variational manifold of the Hilbert space V(H,C) only differs from the one of the projective
Hilbert space V(P(H),C) such that the equivalence relation in Eq. (3.3) does not hold. The states
of the variational manifold of the Hilbert space V(H,C) are thus not normalized and allowed to
change their length. The local basis of the tangent space thus changes from Eq. (3.14) to

|V̂µ,W⟩ = |∂µΨW⟩ , (3.29)

where the derivatives are defined as in Eq. (3.15). The local basis induces a metric tensor that is
again deduced from the inner product [58]. The quantum geometric tensor (QGT) for complex
parameters

Ĝµν(W) = ⟨V̂µ,W|V̂ν,W⟩
⟨ΨW|ΨW⟩

= ⟨∂µΨW|∂νΨW⟩
⟨ΨW|ΨW⟩

(3.30)

differs from the one for the variational manifold of the projective Hilbert space V(P(H),C) in
Eq. (3.16) only by the second term. The projector onto the tangent space defined in Eq. (3.23)
changes according to the updated basis of the tangent space in Eq. (3.29), but keeps its form

P̂ΨW = (Ĝ−1)νµ

⟨ΨW|ΨW⟩
|V̂W,ν⟩⟨V̂W,µ| . (3.31)

3.3 Quantum Natural Gradient (QNG)

The expectation values of quantum physical operators (see Eq. (3.2)) can be interpreted as real-valued
functionals ⟨A⟩ΨP or ⟨A⟩ΨW (see Eq. (3.11)) over the field of real or complex numbers parametrized
by the set of parameters P or W. Thus, the gradient with respect to these parameters can be
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computed in its basis representation (Eq. (3.1)) using Eq. (3.15). An important practical implication
is that according to the general theory of manifolds, the steepest descent direction is modified by
the metric tensor in the following way

∇̃⟨A⟩ΨP = g−1 · (∇P⟨A⟩ΨP) , ∇̃⟨A⟩ΨW = G−1 · (∇W∗⟨A⟩ΨW) , (3.32)

where ∇ = (∂1, ..., ∂P ) is the gradient [76]. Thus, it is also referred to as the natural gradient in
general and the quantum natural gradient in the specific case of quantum physics [70]. For complex
parameters, it is stressed that the Euclidean gradient is given by the derivative with respect to the
complex conjugate of the parameters [77]. The quantities resulting in the application of the gradient
are also referred to as the respective forces

F (P) = ∇P⟨A⟩ΨP and F (W) = ∇W∗⟨A⟩ΨW . (3.33)

3.4 Quantum Velocity

In the following, the distance between a quantum state |Ψ⟩ at time t and its time evolved version at
time t+dt is computed to derive the quantum velocity. The evolution is described by the Schrödinger
equation with ℏ = 1 and dt = d

dt
.

i dt|Ψ(t)⟩ = H(t)|Ψ(t)⟩ (3.34)

The Taylor expansion for small dt can thus be obtained

|Ψ(t + dt)⟩ = |Ψ(t)⟩ − i H(t)|Ψ(t)⟩dt − 1
2
[
i(dtH(t))|Ψ(t)⟩ + H2(t)|Ψ(t)⟩

]
dt2 + O(dt3) (3.35)

and used to compute the overlap between those mentioned states

|⟨Ψ(t)|Ψ(t + dt)⟩|2 = 1 − ∆H2
Ψ(t)dt2 + O(dt3) , (3.36)

where ∆H2
Ψ(t) = (H2)Ψ(t) − (HΨ(t))2 the variance of the Hamiltonian [78]. For pure states, the

Fubini-Study distance in Eq. (3.7) is used to expand the overlap for small dt

f [|Ψ(t)⟩, |Ψ(t+dt)⟩] = cos2(DF S[|Ψ(t)⟩, |Ψ(t+dt)⟩]) = 1−(dtDF S[|Ψ(t)⟩, |Ψ(t+dt)⟩])2 ·dt2+O(dt3) ,
(3.37)

where f [|Ψ(t)⟩, |Ψ(t + dt)⟩] is the fidelity defined in Eq. (3.9). By comparing Eq.(3.36) and (3.37)
and setting the infinitesimal distance to s = DF S[|Ψ(t)⟩, |Ψ(t + dt)⟩], the quantum or Hilbert space
velocity

ds

dt
= ∆HΨ(t) (3.38)

is determined [79, 58]. The speed of quantum evolution is thus governed by the energy fluctuation.
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The relation is sometimes also called Anandan-Aharonov theorem since it was first discovered by J.
Anandan and Y. Aharonov in Ref. [78]. It will be of great importance in Sec. 4.4 to quantify the
error arising from the approximate time evolution on the variational manifold.
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Chapter 4

Variational Monte Carlo Method

The variational Monte Carlo (VMC) method builds upon the variational principle and a Monte
Carlo sampling of the basis states of the Hilbert space H, that is in quantum many-body physics
generally exponentially growing with system size. Additionally, the wave function components of
physical states are approximated in a certain basis by a variational ansatz ΨP or ΨW that is specified
by a set of real variational parameters P or complex variational parameters W. In this section, the
focus will be on complex parameters, however, the difference to real parameters is noted whenever it
is crucial. The equations for real parameters are slightly different and are given in Sec. 3. While the
concrete nature of the variational ansatz is the topic of Sec. 5 and 6, the main goal of this section
is to explain the principal algorithm and to derive the basic equations that are used with only
small modifications throughout this work. To do so, first, the most evident application of the VMC
method, the ground state optimization is discussed step by step. Thereafter, the imaginary- and
real-time evolution are explained. The explanations of the adaptive Heun method in Sec. 4.3 and
the β modification in Sec. 4.4 have been published in Ref. [80] (Wagner, Klümper, Sirker) already.

4.1 Ground State Optimization

The variational Monte Carlo (VMC) method to find an approximation of the ground state and thus
also the ground state energy of quantum physical models is based on the variational principle, which
generally states that ∀ states |Ψ⟩ ∈ H, the expectation value with respect to the Hamiltionian H of
a quantum model is bounded from below by the ground state energy [81]

E0 ≤ EΨ = ⟨Ψ| H |Ψ⟩
⟨Ψ|Ψ⟩

. (4.1)

It is mentioned that the expectation value of the Hamiltonian HΨ is most commonly denoted by EΨ.
This notation is adapted from here on. A general quantum state |Ψ⟩ can be expressed in any basis
of the Hilbert space H. For the spin-1/2 chains of interest, that were discussed in Sec. 2, the sz-basis
|s⟩ with configuration s = {sz

1, ..., sz
N}, where sz

i = ±1
2 defines the direction of the sz-component of
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the spin at site i, is the most evident one and used throughout this work [82]. Any quantum state is
expanded in this basis as

|Ψ⟩ =
∑

s
Fs |s⟩ , (4.2)

where Fs ∈ C2N are called the wave function components of the spin configuration s. The wave
function components are in general complex-valued. The number of configurations is given by 2N

and therefore grows exponentially in system size. Hence, it is in principle not possible to diagonalize
the Hamiltonian and work with the eigenstates for system sizes larger than a few spins. This is why
the many-body state is approximated by a variational ansatz

|ΨW⟩ =
∑

s
ΨW(s) |s⟩ (4.3)

with ΨW(s) the variational wave function that is parameterized by a set of complex-valued parameters
W. The quality of the ansatz is judged by how accurate the ground state can be approximated for
the appropriate choice of parameters. The number of parameters should clearly grow considerably
slower with system size than the dimension of the Hilbert space does. The concrete design is usually
a compromise between the computational time and the accuracy of the approximation. The exact
nature of the ansatz wave functions that are used in this work are discussed later in Sec. 5 and 6.
By inserting the variational wave function in Eq. (4.1), a compact expression for the energy of the
state is obtained

⟨H⟩ΨW =
∑

s

|ΨW(s)|2∑
s′′ |ΨW(s′′)|2︸ ︷︷ ︸

p(s)

∑
s′

⟨s| H |s′⟩ ΨW(s′)
ΨW(s)︸ ︷︷ ︸

Eloc(s)

, (4.4)

where p(s) is the probability distribution and Eloc(s) the so-called local energy. Since the number of
basis states of a quantum system grows exponentially in system size, it is essential to approximate
the probability distribution p(s) as well. This is achieved by the Metropolis-Hastings algorithm, in
which one starts by choosing the initial configuration s randomly from a uniform distribution and
adding it as the initial entry to the list of sampled configurations of size NMet [83]. Additionally, the
initial parameters are also chosen in a specific manner, usually randomly from a normal distribution.
For the probability distribution π(s), given by the occurrence of the sampled configurations, to
converge to the correct probability distribution p(s), two conditions need to be fulfilled. One is the
stationary requirement

ps′ =
∑

s
Ts→s′ps , (4.5)

where Ts→s′ the transition probability for the configuration s to change to the configuration s′ [3]. A
sufficient condition for the stationary requirement is the detailed balance condition

Ts→s′π(s) = Ts′→sπ(s′) . (4.6)

Since it can be directly used to define various possible transitions T , the detailed balance condition
is sometimes used interchangeably with the stationary requirement in Eq. (4.5), however, it is
stressed that it is actually only a sufficient condition for the stationary requirement [84]. The second
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condition is known by the name of ergodicity, requiring any state to be visited by a finite number of
steps when starting from any other state. The configuration sl is changed in a Monte Carlo chain
algorithm, known as the Metropolis-Hastings algorithm, according to a proposed transition T and
accepted with an acceptance probability of

Acc(sl → sl+1) = min
{

1,
|ΨW(sl+1)|2
|ΨW(sl)|2

}
, (4.7)

where l denotes the number of the Monte Carlo steps and min simply takes the minimum of its two
arguments [11]. This is implemented into an algorithm by choosing NMet random numbers rl from
a uniform distribution in the range (0, 1]. For every sampling step l, the acceptance probability
is compared to the respective random number rl. If the acceptance probability is larger than rl,
the new configuration is accepted and written into the sampling list at position l, otherwise it is
rejected and the former configuration is once again written into the sampling list at position l.
This is repeated NMet times leading to a sampling list of configurations of the same length. The
probabilities of the configurations that can not be neglected is thus approximated by the number of
occurrences in the sampling list

p(sl) ≈ occ(sl)
NMet

. (4.8)

In the case of spin-1/2-chains, the local change corresponds, for example, to a simple spin flip at
a random position. In the ground state optimization, one is in certain models interested to stay
in a specific sz-sector, which can be achieved by proposing an exchange of two spins at random
positions as the transition T . By this algorithm, the energy of a certain state parameterized by a set
of variational parameters can be approximated by considering only the most probable configurations.
The Monte Carlo step of the algorithm is illustrated in blue in the flowchart in Fig. 4.1.

4.1.1 Stochastic Gradient Descent (SGD)

In order to minimize the energy of the variational state to approximate the ground state and its
energy, the simple derivative with respect to the energy functional (see Eq. (3.11)) of every single
parameter Wµ is taken. Combined with the stochastic approximation of the probability distribution,
this is known as the stochastic gradient descent (SGD) approach [3]. The gradient with respect to
the complex parameters

Fµ(W) = ∂W∗
µ
⟨H⟩ΨW = ⟨O∗

µH⟩ΨW − ⟨O∗
µ⟩ΨWEΨW , (4.9)

also known as the energy forces (see Eq. (3.33)), differs from the one for real parameters

Fµ(P) = ∂Pµ⟨H⟩ΨP = 2 Re
[
⟨O∗

µH⟩ΨP − ⟨O∗
µ⟩EΨP

]
. (4.10)
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Initialize network
parameters W randomly ⇒ ΨW

Create NMet random numbers rl ∈ (0, 1]

Flip spin on random position

Check if
∣∣∣ΨW(sl+1)

ΨW(sl)

∣∣∣2 > rl

Store respective configuration
at position l + 1

Calculate new network
parameters W using SGD and p(s)

Ground state with energy EW

Metropolis
Loop

Optimization
Loop

Figure 4.1: Flowchart of the VMC algorithm. The iteration comprises two nested loops, the Metropolis
loop in blue and the optimization loop in red.

The respective second term originates from the derivative of the norm in Eq. (4.4). The notation ⟨·⟩
denotes the average with respect to the probability distribution p(s).

⟨A⟩ΨW =
∑

s
p(s)⟨s|A|s⟩ (4.11)

The logarithmic derivatives are defined by

Oµ(s) = ∂WµΨW(s)
ΨW(s) . (4.12)

The parameters are optimized step by step with the simplest approach being the Euler method

Wµ[l + 1] = Wµ[l] − ϵ Fµ(W[l]), (4.13)

where ϵ is the step size and l denotes the l-th step. The Taylor expansion of the energy for a variation
of the parameters δWµ = ϵFµ(W) is given by

EΨW+δW = EΨW +
∑

µ

∂W∗
µ
⟨H⟩ΨWδWµ + O(ϵ2) = EΨW − ϵ

∑
µ

F 2
µ(W) + O(ϵ2) (4.14)
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with ∂W∗
µ
⟨H⟩ΨW = −Fµ(W) and thus shows that the energy is always minimized for small enough

values of the parameter ϵ [3].

∆EΨW = EΨW+δW − EΨW = −ϵ
∑

µ

F 2
µ(W) ≤ 0 (4.15)

The SGD method adds another separate loop to the flowchart, as is depicted in red in Fig. 4.1.
Finally, all ingredients to understand the entire algorithm, which might be slightly changed according
to the model at hand and the accuracy desired, are available. It is thus summed up for clearance:
Starting with random initial parameters, the Metropolis loop computes a list of NMet configurations,
which allows to define the probability of each configuration. It is given by the number of times it
occurs in the sampling list. This enables the computation of the energy according to Eq. (4.4) and,
subsequently, to compute the gradients with respect to every parameter Wµ. The parameters are
altered accordingly and the next iteration step starts with the Monte Carlo sampling again. After
all the iterations are completed, the final variational state approximates the actual ground state to
an accuracy that is predefined by the ability of the variational ansatz to represent this state and the
sampling accuracy.
If one is only interested in the ground state energy, the only demand the variational ansatz needs to
fulfill is to represent the ground state accurately. Thus, if there are any features of the ground state
known, for example its symmetry of some kind or the magnetization, the ansatz can be adjusted
accordingly. For instance, in the case of the antiferromagnetic Heisenberg chain, it is advisable
to confine the proposed configurations to the regime where sz = ∑N

i sz
i = 0, since the ground

state is, according to the Marshall-Lieb-Mattis theorem, part of this regime [85]. Furthermore,
it is emphasized that the energy is only one example of an operator that can be optimized. The
VMC method and the presented notation stem from quantum physics. However, the Monte Carlo
algorithm is used in various fields to approximate probability distributions in a high-dimensional
space.

4.1.2 Quantum Natural Gradient (QNG)

The SGD approach is improved by using the quantum natural gradient (QNG) explained in Sec. 3.3.
The variational parameters not necessarily form a Euclidean but a curved space and thus the metric
tensor known as the QGT is used to define the steepest descent. The QGT for complex parameters
in Eq. (3.16) is expressed using the notation in Eq. (4.12) as

Gµν(W) = ⟨O∗
µOν⟩ΨW − ⟨O∗

µ⟩ΨW⟨Oν⟩ΨW , (4.16)

whereas the one for real-valued parameters in Eq. (3.17) is expressed as

Gµν(P) = Re[⟨O∗
µOν⟩ΨP − ⟨O∗

µ⟩ΨP⟨Oν⟩ΨP ] . (4.17)
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Since all quantities are subjected to the sampling error, it is ensured that the second term on the
right hand side is also real-valued. According to Eq. (3.32), to obtain the QNG

F̃(W) = −G−1(W) · F(W) , (4.18)

the inverse of the QGT needs to be computed. This is, in principle, an ill-posed problem also known
as the inverse problem. In Sec. 4.5, it is discussed how this issue can be dealt with. The minus
sign is added since the energy is of course supposed to be minimized. It is stressed that Eq. (4.16)
and Eq. (4.17) have been first proposed by S. Sorella in Ref. [86] introducing the name stochastic
reconfiguration method in this field of physics. This is discussed in detail in Ref. [3], where Eq. (4.18)
is derived for real parameters using Lagrange multiplier. Additionally, it is noted that the QNG
can be viewed as a type of 2nd-order method, contrary to the SGD being a 1st-order method [87].
The Fisher information metric in the classical case or the QGT in the quantum case is considered a
substitute for the Hessian. However, in a strict mathematical sense, this can not be correct since
second derivatives of the objective function do not show up, but only second derivatives of the
variational wave function. The most accurate way to put this is, that second order effects are taken
into account by the respective metric tensor [61]. The approach is of course applicable on any
Riemannian manifold [67]. For the quantum physical computations, we adopt to the more general
designation of (Q)NG.

4.2 Time Evolution

The approach for the ground state optimization can be generalized to arbitrary evolution operators.
The ones of distinguished physical interest are those of the real- and imaginary-time evolution. The
Schrödinger equation describes the time evolution of a certain state of a quantum mechanical system.

d|Ψ(t)⟩
dt

= −ωH|Ψ(t)⟩, (4.19)

where ω = i for the real-time evolution and ω = 1 for the imaginary-time evolution. For notational
clarity, the variable τ will be used in the following for the imaginary time, while the real time is
denoted by t.

dτ |Ψ(τ)⟩ = −H|Ψ(τ)⟩ dt|Ψ(t)⟩ = −iH|Ψ(t)⟩ (4.20)

The Schrödinger equation for a time-independent Hamiltonian and an explicitly normalized state

|Ψ(τ)⟩ = 1√
⟨Ψ(0)|e−2τH |Ψ(0)⟩

e−τH |Ψ(0)⟩ (4.21)
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on the projective Hilbert space P(H) at all times τ is altered in the following way [69]:

dτ |Ψ(τ)⟩ = −(H − EΨ(τ))|Ψ(τ)⟩ . (4.22)

The additional term on the right hand side comes from the derivative of the denominator in Eq. (4.21).

4.2.1 Imaginary-Time Evolution

The imaginary time evolution is first derived for quantum states on the variational manifold of the
projective Hilbert space V(P(H),C) before it is allowed to extend to the variational manifold of
the Hilbert space V(H,C). It is emphasized that by the first case it is essentially meant that the
norm of the variational state is not allowed to change its length during the evolution. Hence, the
projected Schrödinger equation is for this purpose restricted to be

QΨW(τ)
d

dτ
|ΨW(τ))⟩ = QΨW(τ)

∑
α

∂Wα

∂τ
|∂WαΨW(τ)⟩

=
∑

α

∂Wα

∂τ
|VW,α(τ)⟩ = −PΨW(τ)H|ΨW(τ)⟩ , (4.23)

where the two projectors QΨW(τ) and PΨW(τ) were defined in Eq. (3.6) and Eq. (3.23), respectively.
By multiplying the last line in Eq. (4.23) with the vector ⟨VW,γ(τ)| from the left, the following
matrix equation describing the time evolution of the state |ΨW(τ)⟩ via a change of the variational
parameters W[τ ] is obtained

∂W
∂τ

= −G−1(W)F(W) ⇒ W[τ + ∆τ ] ≈ W[τ ] − ∆τ G−1(W)F(W), (4.24)

where G(W) is the metric tensor from Eq. (4.16) and F(W) the energy force from Eq. (4.9). The
computation is step by step explained in appendix A. The respective equation for the variational
manifold of the Hilbert space V(H,C) is readily adjusted by considering the distinction with respect
to the local basis defined in Eq. (3.14). This was derived in Sec. 3.2.2. The QGT in Eq. (4.16) and
the energy forces in Eq. (4.9) are altered by leaving out the respective second term

Ĝµν(W) = ⟨O∗
µOν⟩ , F̂µ(W, V) = ⟨O∗

µH⟩ . (4.25)

The calculation is in detail performed in appendix B. This way, the imaginary-time evolution on the
Hilbert space and the projective Hilbert space are very similar and the respective second term of the
QGT and the energy forces controls the change of the norm of the state. All in all, it is stressed that
Eq. (4.18), originally derived as the QNG of the ground state optimization, is recovered to be equal
to the one for the imaginary-time evolution on the variational manifold of the projective Hilbert
space V(P(H),C). Due to its significance, it is stated once again at this point.

F̃(W) = −G−1(W) · F(W) (4.26)
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The similarity of those equations becomes clear by viewing the imaginary-time evolution as a
projection technique onto the ground state [3].

4.2.2 Real-Time Evolution

The equations for the real-time evolution naturally differ from the ones for the imaginary-time
evolution only by a factor of i. However, due to their significance, they should be noted here at least
once [11]:

F̃(W) = −i G−1(W) · F(W) (4.27)

This is also known as the time-dependent variational principle [88]. It is emphasized that the
real-time evolution alters neither the energy nor the norm of a quantum state [3].

4.3 Adaptive Heun Method

While for the energy optimization, the Euler method is usually already sufficient, for the real- or
imaginary-time evolution, the trajectory needs to be approximated accurately and thus it is of
interest to reduce the error of the time evolution. Typically, one would start with a Runge-Kutta
method of an order that seems sufficient for the simulation at hand. However, the propagation
step of the Runge-Kutta method is constant, no matter what the landscape of the manifold at
hand looks like at a specific point in time. Loosely speaking, the Runge-Kutta method traverses
landscapes in which the parameters change drastically at the same speed as it traverses landscapes
in which the parameters are barely changing. This issue is overcome by an adaptive algorithm, like
the adaptive Heun method. This is an iterative method, where in every time step the error of the
integration is estimated and the length of the time step ∆τ or ∆t adjusted such that the error stays
constant. It can be used for the real- and imaginary-time evolution and is explained in the following
for imaginary time. We describe this predictor-corrector method in the following for a second order
integration, for which the standard notation for the derivative Ẇ = f(W) and the exact solution
W(τ + ∆τ) at time τ + ∆τ , where W is a P -component vector and P the number of parameters, is
used [89]. We define

k1 = f(W[l]) ,

k2 = f(W[l] + ∆τ · k1) ,

W[l + 1] = W[l] + ∆τ

2 (k1 + k2) , (4.28)

where l denotes the l-th step evolution. This leads to a cubic error in the integration step

W[l + 1] = W(τ + ∆τ) + α(∆τ)3, (4.29)
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where α is a constant vector. This is now compared to the error for two time steps of length ∆τ
2

W′[l + 1] = W(τ + ∆τ) + 2α

(
∆τ

2

)3

︸ ︷︷ ︸
δ1

, (4.30)

where δ is the integration error and 1 the unity vector. The difference of these two results

||W[l + 1] − W′[l + 1]|| = 3
4 ||α||(∆τ)3 ≡ 3δ (4.31)

allows the computation of the integration error δ and thus to adjust the time step

∆τ ′ = ∆τ
(

ε

δ

) 1
3

(4.32)

to provide an accuracy of ε for the time evolution. The norm in Eq. (4.31) is calculated for any
metric space by ||x|| = 1

P

√
x†Gx, where G the metric tensor, which is in the variational manifold

given by the QGT in Eq. (3.16). Note that the tolerance ε and the initial step size ∆τ are in
principle parameters which need to be specified at the beginning of the algorithm. The adjusted step
size ∆τ ′ is always used as the proposed step size ∆τ in the next step. By applying a pretempering
at τ = 0 of a few steps in which parameters are not changed, ∆τ ′ converges to a value that is used
as the initial step size. Thus, the only remaining parameter to be fixed is the desired accuracy ε,
which defines the accuracy of the method. In this work, the number of iterative steps in the Heun
algorithm is denoted by R.

4.4 Imaginary-Time Evolution on the Manifold and β

Modification

The variational time evolution in Eqs. (4.26) and (4.27) needs a more thorough consideration that
takes into account the projection onto the variational manifold V(P(H),C) of the projective Hilbert
space. In the following, the imaginary-time evolution is focused upon, where the imaginary time τ is
modified to β(τ). The notation will make sense for the finite-temperature calculations implemented
in Sec. 8, but is applicable for any evolution operator. First, from the action of the projector PΨW(τ)
(Eq. (3.23)), the computation in Eq. (4.23) is extended by

PΨW(τ)H|ΨW(τ)⟩ = PΨW(τ)(H − EΨW(τ))|ΨW(τ)⟩ , (4.33)

since PΨW(τ)|ΨW(τ)⟩ = 0 [59]. The energy at imaginary time τ is denoted by E(τ). Due to the
projection, the time traveled in the manifold and the actual imaginary time in the algorithm are not
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equal. This is quantified by the following ratio

γ1 = ||PΨW(τ)(H − EΨW(τ))|ΨW(τ)⟩||2
||(H − EΨW(τ))|ΨW(τ)⟩||2

= − 2
(∆H)2

ΨW(τ)

(
dEΨW(τ)

dτ

)
,

(4.34)

where the two quantities of interest on the right hand side

EΨW(τ) =⟨ΨW(τ)|H|ΨW(τ)⟩
⟨ΨW(τ)|ΨW(τ)⟩ (4.35)

(∆H)2
ΨW(τ) =⟨ΨW(τ)|(H − EΨW(τ))2|ΨW(τ)⟩

⟨ΨW(τ)|ΨW(τ)⟩ (4.36)

are directly calculated at every time step [90]. For greater clarity, the action of the projector in
Eq. (4.34) is calculated step by step

dEΨW(τ)

dτ
=

⟨ΨW(τ)|H
(

d
dτ

|ΨW(τ)⟩
)

⟨ΨW(τ)|ΨW(τ)⟩ + h.c.

= −
⟨ΨW(τ)|H

(
PΨW(τ)(H − EΨW(τ))|ΨW(τ)⟩

)
⟨ΨW(τ)|ΨW(τ)⟩ − h.c.

= − 2
⟨ΨW(τ)|(H − EΨW(τ))P2

ΨW(τ)(H − EΨW(τ))|ΨW(τ)⟩
⟨ΨW(τ)|ΨW(τ)⟩ .

(4.37)

In the final line, we employed Eq. (4.33) and leveraged a property of projection operators, namely,
P2

ΨW(τ) = PΨW(τ). The quantities in Eq.(4.36) can be computed at every time step in the algorithm.
The derivative of the energy is afterwards computed numerically in a second order method from
the energy results EΨW(τ). The imaginary time τ is therefore adjusted and the modified inverse
temperature β(τ) computed by integrating Eq. (4.34).

γ1 = dβ(τ)
dτ

⇒ β(τ) = −
∫ τ

0

1
(∆H)2

ΨW(τ ′)

dEΨW(τ ′)

dτ ′

∣∣∣∣
W(τ ′)

dτ ′ (4.38)

We emphasize that the temperature adjustment does not fully correct the errors due to the restriction
of the time evolution to the variational manifold V(P(H),C). The proper state in the full Hilbert
space is not accessible and, in general, different from the variational state. However, this modification
clearly signifies whenever the length of the tangent vector of the imaginary-time evolution compared
to the quantum velocity defined in Eq. (3.38) decreases drastically and takes that into account by
modifying the imaginary time. Similarly, a β modification can be computed for the imaginary-time
evolution on the variational manifold of the Hilbert space V(H,C) as well. It is emphasized that the
variational state is now also allowed to change its length at every iteration step. The modification

31



factor is similarly to Eq. (4.34) computed to be

γ2 = ||P̂ΨW(τ)H|ΨW(τ)⟩||2
||H|ΨW(τ)⟩||2 = −

EΨW(τ)

(H2)ΨW(τ)

(
dEΨW(τ)

dτ

)
. (4.39)

4.5 Regularization

The matrix inversion in Eqs. (4.18), (4.26) and (4.27) is a crucial part of the QNG approach. It
needs to be treated carefully, since it is a well-known discrete ill-posed problem also known as the
inverse problem [91]. Therefore, it requires some sort of regularization. The matrix dimensions are
given by the number of parameters W, which are denoted as before by P . In this section, there is a
more mathematical notation used to underline the universality of the statements. Let b ∈ CP and
G ∈ CP ×P be given and x ∈ CP the quantity of interest. Then the following system of equations

Gx = b (4.40)

has to be solved. This can be formulated as a minimization problem known as the least-squares
problem

min
x∈Cn

||Gx − b||2, (4.41)

where ||·|| is the Euclidean norm. If Monte Carlo sampling is used, it has to be taken into account that
the quantities G̃ and b̃ contain statistical errors that are limited by ||G̃ − G|| ≤ δG, ||b̃ − b|| ≤ δb
[92]. The Singular Value Decomposition (SVD) of G̃ ∈ CP ×P

G̃ = UΣV†, (4.42)

where U = [u1, u2, ..., uP ] ∈ CP ×P and V = [v1, v2, ..., vP ] ∈ CP ×P are unitary matrices and the
diagonal matrix Σ = diag[σ1, σ2, ..., σP ] ∈ RP ×P with σj ≥ 0 ∀j the singular values σj of G̃ ordered
in ascending order, is used to write G̃ in the following way [93, 91]:

G̃ =
P∑

j=1
σjujv†

j (4.43)

To solve the inverse problem in Eq. (4.40), the inverse of the matrix G̃

G̃−1 =
P∑

j=1
vjσ

−1
j u†

j (4.44)

needs to be computed. This is unstable if the singular values are very small or even zero and
leads to rounding errors [91]. Additionally, the errors δG and δb are pronounced. Thus, there is
a regularization introduced that is of course more subtle in the case of real- or imaginary-time
evolution. For the ground state optimization, the regularization is in principle allowed to alter the
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trajectory of the minimization, as long as the correct ground state is reached and the number of
steps does not grow substantially.

4.5.1 Ground State Optimization

The most straightforward approach is to eliminate singular values by truncating those that are
smaller than a cutoff parameter ϵpinv. This is achieved by redefining the inverse of the singular
values as

σ+
j =


0, if

∣∣∣ σj

σmax

∣∣∣ < ϵpinv

σ−1
j , if

∣∣∣ σj

σmax

∣∣∣ ≥ ϵpinv

. (4.45)

Essentially, this corresponds to the Moore-Penrose pseudo-inverse with a finite cutoff parameter,
specified by

G̃+ =
P∑

j=1
vjσ

+
j u∗

j . (4.46)

The Moore-Penrose pseudo-inverse is for singular matrices the solution of the least-squares problem
of Eq. (4.41) with respect to the Euclidean norm [94, 93]. This regularization method is used
in the ground state optimization and also in case of time evolution [11]. In the ground state
optimization methods, in which the correct explicit path to the ground state is not of interest,
additional regularization is often applied to further mitigate potential issues. It consists of adding a
constant factor to the diagonal of the matrix G̃

min
x∈Cn

{||G̃x − b̃||2 + ||ϵT1x||2}, (4.47)

which amounts to a shift of all singular values [95]. The parameter ϵT is the Tikhonov regularization
parameter and can be chosen to be step dependent [11]. This approach is a specific version of the
more general Tikhonov regularization, where a penalizing term is added to control the size of the
solution vector

min
x∈Cn

{||G̃x − b̃||2 + ||LϵT
x||2}, (4.48)

where the matrix LϵT
is called the regularization matrix [91]. However, to make a reasonable choice

for LϵT
, some knowledge about the nature of the solution is required. Thus, the most popular choice

for LϵT
is given by the identity matrix LϵT

= ϵT1 in Eq. (4.47). The most common way to derive the
regularization parameter is by the generalized discrepancy principle [92]. To obtain ϵT the following
function has to be minimized:

f(ϵT ) = ||G̃x − b̃||2 − (δb + δG · ϵT ||LϵT
x||)2 = 0 (4.49)

Since the function f(ϵT ) is convex for small ϵT but concave for large ones, global and monotone
convergence of Newton’s method can not be guaranteed [96, 93]. There are ideas to transform
this equation in a way that two free parameters are obtained [97, 92]. Under some smoothness
assumptions for G̃ and LϵT

, these parameters can be chosen in a way that convergence is guaranteed.
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Those parameters are computed by an iterative algorithm [97]. Given its advanced nature, this
algorithm is not typically constrained by a specific number of iterations, and its assumptions
may not always be fulfilled in variational problems. As a result, it is not commonly employed in
such applications. However, it proves to be a valuable method when one seeks to examine the
parameter update at a particular step in the algorithm. Nevertheless, in the majority of practical
scenarios, regularization utilizing the unity matrix (Eq. (4.47)) is applied, where ϵT is chosen to be
step-dependent [11], or it may be contingent on the appearance of parameters in the ansatz [95].

4.5.2 Time Evolution

If one is also interested in the time evolution and not only in the final result the algorithm converges
to, a more cautious regularization becomes necessary. First, it is noted that the formulation of the
adjusted Moore-Penrose pseudo inverse in Eq. (4.46) can be formulated for hermitian matrices in a
similar way using the eigenvalue decomposition

G̃ = VDV+, (4.50)

instead of the singular value decomposition in Eq. (4.42), where V = [v1, ..., vP ] ∈ CP ×P and vk

the eigenvectors of G̃, D = diag(λ1, ..., λN) ∈ RP ×P and λ1, ..., λN the eigenvalues of G̃. These are
real because hermitian matrices are unitarily similar to a real diagonal matrix [93, 98]. Thus, the
pseudo-inverse can also be defined as

G̃+ =
w∑

j=1
vjλ

+
j v†

j , (4.51)

where

λ+
j =


0, if

∣∣∣ λj

λmax

∣∣∣ < ϵpinv

λ−1
j , if

∣∣∣ λj

λmax

∣∣∣ ≥ ϵpinv

, (4.52)

and |λmax| is the maximum eigenvalue in terms of the modulus. This enables the establishment of a
so-called soft cutoff

λ+
j =

λj

1 +
 ϵpinv∣∣∣ λj

λmax

∣∣∣
6



−1

(4.53)

to allow parameters to slowly cross the line to being taken into account and vice versa [98]. It is
stressed that the form of Eq. (4.53) is proposed in Ref. [98] as one possibility. It is aimed to prohibit
discontinuities. These appear, if parameters, that have fallen into the first class in Eq. (4.52), change
at a certain time step to fulfill the conditions of the second class. Therefore they contribute suddenly
while being neglected before. Additionally, small inaccuracies due to the sampling error might be
enhanced by taking the inverse. Hence, there is another cutoff introduced that is controlled by the
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signal-to-noise ratio (SNR) of the transformed force vector F (V) = V†b [89].

λ+
j =

λj

1 +
(

ϵSNR

SNR(ρj)

)6
−1

(4.54)

This leaves the method with two cutoff parameters ϵpinv and ϵSNR, which need to be tuned for the
model, respectively. The SNRs for the relevant quantities are derived in Ref. [89]. The SNRs of the
eigenvalues of the matrix G̃ do not dependent on their magnitude

SNR(λj) =
√

NMet

2 ∀j , (4.55)

while the SNR of the forces Fj do.

SNR(Fj(V)) =
√√√√ NMet

1 + λj

|Fj(V)|2 ∆H
(4.56)
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Chapter 5

Neural Network (NN)

While in the previous section the general VMC algorithm was explained, the most important
ingredient for this method, namely the ansatz wave function, has been set aside for this section.
Historically, the first ideas for a variational ansatz were based on physical observations regarding
small systems. This is thoroughly explained in Sec. 6. However, in a seminal paper by G. Carleo and
M. Troyer in 2017, the idea of using (artificial) neural networks (NNs) to approximate wave functions
in quantum many-body models was proposed [11]. We want to derive why NNs are essentially, in
general, a promising tool to approximate functions in a high-dimensional space. To do so, there
are in principle two main roads to go along. One is to focus on the practical aspects and the link
to biological neural circuits using examples of models in low-dimensional space to illustrate the
expressive capabilities of NNs. The other one is to keep on the theoretical side and to elaborate on
the theorems that motivate why NNs are the perfect candidate to approximate functions accurately
without the need of specific knowledge about the nature of this function at hand. We decided for
obvious reasons to go with the latter approach and complement every now and then some illustrative
examples of the former one. This will lead to a combined ansatz of using mathematical theorems and
the depictions of NNs. But first, we want to introduce this topic by a short historical reminiscence
whose connection to NNs becomes clear in the proceeding of this section.

5.1 Hilbert's 13-th Problem

D. Hilbert published his famous 23 mathematical problems at the conference of the international
congress of mathematicians in Paris in 1900 [99]. While the general motivation for the 13-th problem
comes from the field of nomography and leads too far into a mathematical field which is not treated
in this work, Hilbert summarized the problem in the headline he used: “Impossibility of the Solution
of the General Equation of the 7-th Degree by Means of Functions of only Two Arguments” [99].
Although referring originally to algebraic functions, he assumes in a later publication that the 7-th
degree equation can not be solved by arbitrary continuous functions of two arguments [100]. The
reason why Hilbert referred to the 7-th degree equation in specific, will be clear by studying his
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calculations. The general n-th degree equation

xn + a1x
n−1 + ... + an = 0 , (5.1)

with x ∈ R and a1, ..., an ∈ R the respective coefficients, can be transformed by a Tschirnhaus
transformation [101, 102]. In general, this is achieved by using the ansatz

y = xn−1 + b1x
n−2 + ... + bn−1 (5.2)

for the variable transformation, where b1, ..., bn−1 are coefficients that need to be fixed [100]. The
n-th degree equation for y is then obtained as

yn + c1y
n−1 + ... + cn = 0 , (5.3)

where ci = ci(a1, ..., an, b1, ..., bn−1). Comparing Eq. (5.1) and Eq. (5.3), it seems like the
transformation did not have any effect. However, the crucial point is that the coefficients bj in
Eq. (5.2) can be chosen in a way that some of the coefficients cj in Eq. (5.3) are actually 0 [100].

yn + c4x
n−4 + c3x

n−3 + ... + cn = 0 (5.4)

The simplest example of a Tschirnhaus transformation is considered for the 3rd degree equation, for
which the quadratic term can be chosen to vanish [101, 102]. This yields the following equations for
degree 5 to 7

y5 + c1y + 1 = 0
y6 + c2y

2 + c1y + 1 = 0
y7 + c3

4 + c2
3 + c2y + 1 = 0 ,

(5.5)

where it becomes apparent that in the 7-th degree equation, three coefficients occur for the first time.
D. Hilbert stated the problem in his famous list of 23 mathematical problems by wondering if the
7-th degree equation is solvable with the help of any continuous functions of only two arguments [99].
However, the true meaning of Hilbert’s 13-th problem is to this day the topic of a heated debate,
basically evolving around the question if these functions have to be algebraic or only continuous
[103]. Although the outline of the problem is clear, there is evidence to suggest that D. Hilbert
simply forgot the term analytic or algebraic [104]. Fortunately, in this work, only the application
of continuous functions matters, allowing for the enjoyment of the historical controversy without
delving further into it.

5.2 Kolmogorov-Arnold Representation Theorem

While Hilbert’s 13-th problem for algebraic functions is still not answered, V.I. Arnold solved it
in 1957 for continuous functions by using a theorem of his supervisor A. Kolmogorov in Ref. [105].
The original paper was published in Ref. [106] and translated in Ref. [107]. The theorem has been
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refined and is often referred to as the Kolmogorov-Arnold representation theorem to honour the two
founders.

Theorem 1. Kolmogorov-Arnold Representation Theorem [108, 109]
Let f : IN → R be a continuous function on the unit cube IN = [0, 1]N . Then f can be
represented in the following form

f(x1, x2, .., xN) =
2N+1∑
m=1

Θm

[
N∑

n=1
Φmn(xn)

]
, (5.6)

where Θm and Φmn are continuous functions. The functions Φmn do not depend on the nature
of f .

The last sentence already hints to a possible formidable applicability of this theorem and the
intriguing idea to use it to approximate wave functions in the VMC algorithm (see Sec. 4). It
basically gives rise to the idea of a universal ansatz wave function.
A nice survey describing the aftermath of this theorem and the upcoming refinements is found in
Ref. [104]. The sole property attributed to the functions Φmn, as mentioned in Ref. [105], was that
they are not smooth. Hence, and due to the lack of knowledge about the nature of the functions
Θm, the direct practical applicability of this theorem was doubted. The theorem was even judged
to be irrelevant for NNs [110, 111]. However, later works revealed that the operations of addition,
multiplication by a number, superposition and a continuous nonlinear function are sufficient for the
approximation of an arbitrary function f(x) [112]. Thus, it proved successful to take a step back
and investigate to what extent continuous functions can be approximated by a superposition of a
similar form as in Eq. (5.6). This led to theorems that are directly connected to what is known as a
special type of NN, namely the feed-forward neural network (FFNN).

5.3 Single-Layer Feed-Forward Neural Network (SLFFNN)

Instead of aiming to represent a continuous function f of interest, we are for the moment content
with approximating this particular function. In this sense, there were similar theorems obtained that
are all considered to be a form of the universal approximation theorem (see Refs. [113, 114, 115]).
This universal behavior, already shining through in Th. 1, was first proven in Ref. [114], where the
name was coined as well. However, since they focus on Borel measurable functions, which leads deep
into a mathematical field that is not that relevant here, we will cite a theorem by G. Cybenko that
considers, as before, continuous functions on the unit cube.
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Theorem 2. Universal Approximation Theorem [115]
Let σ be any continuous sigmoidal function defined as

σ(x) =
{

1 , for x → ∞
0 , for x → −∞

. (5.7)

Then, finite sums of the form

G(x) =
M∑

m=1
amσ

(
N∑

n=1
Wmnxn + bm

)
(5.8)

are dense in the space of continuous functions C(IN ) on the N -dimensional unit cube IN = [0, 1]N .
In other words, given any f ∈ C(IN) and ϵ > 0, there is a sum, G(x), of the above form, for
which

|G(x) − f(x)| < ϵ ∀x ∈ IN .

This theorem shows that sums of sigmoidal functions can approximate high-dimensional real
and continuous functions to any desired degree of accuracy. The meaning of being a universal
approximator becomes immediately clear since the principle ansatz of the sigmoidal functions is
not dependent on the specific function f , but universal. The most prominent specific choice for a
sigmoidal function is the sigmoid function, also known as logistic function, which is defined as

σ(x) = 1
2

(
1 + tanh

(
x

2

))
. (5.9)

However, it is in principle not clear how large M and thus the number of overall parameters
a, b ∈ RM and W ∈ RM×N needs to be, where W is known as the weight matrix and b as the bias.
It is stressed that the actual size of M is crucial for the practical relevance of this theorem and is
thus discussed in a separate section, namely Sec 5.9. The restriction on f to be continuous on the
unit cube can be loosened to be continuous on a compact subset M ⊂ RN if the activation function
is only continuous, bounded and non-constant [116]. The distance is in that case measured by the
Lp-norm.
To understand the term activation function, the connection between the mathematical considerations
discussed above and the more illustrative depictions of NNs is discussed in the following. Detailed
explanations can be found in Ref. [113]. Firstly, the NNs studied in this work are so-called feed-
forward neural networks (FFNN) meaning that there is one direction of information flow producing
an output for every input. The right hand side of Eq. (5.8) is directly expressed in a graphical
notation in Fig. 5.1 defining the input, the hidden and the output layer. Its elements are often
referred to as nodes or units. The term hidden layer was coined because the state or value of a
hidden node is not considered explicitly, leaving its actual state or value hidden. The number of
input nodes is denoted throughout this work by the letter N , while the number of hidden nodes is
denoted by M . The sigmoid function used in Eq. (5.8) is in general referred to as the activation
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function governing the activation of the proceeding nodes. This stems from the notion of an NN
being a model for the functioning of a human brain, in which the neurons are modelled as binary
nodes and fire or are activated if the value of the activation function exceeds a certain value. The
idea of using sigmoidal functions is motivated by this idea too, with output values ranging from 0
to 1 in a smooth way. To gain a practical understanding, it is recommended to study the visual
proof of Th. 2, in Ref. [117] in which the effect of the weight matrix W and the bias b is outlined
for a minimal FFNN of one input node and two hidden nodes. Additionally, it is very helpful to go
through the example of learning the XOR function in Ref. [113] to understand why linear activation
functions are not sufficient in some cases, especially when the domain of the function to approximate
consists of a certain number of discrete values.

x1

x2

x3

x4

h1

h2

G(x)

Hidden
layer

Input
layer

Output
layer

amσ
(∑N

n=1 Wmnxn + bm

)

Figure 5.1: Depiction of the SLFFNN described by Eq. (5.8). The state of the hidden nodes is depicted
in the box. The number of hidden nodes is in principle arbitrary and determines the accuracy of the
approximation.

5.4 Multi-Layer Feed-Forward Neural Network (MLFFNN)

Naturally, one can think of adding another hidden layer to the SLFFNN depicted in Fig. 5.1 to
improve the accuracy of the approximation or, to speak in terms of the respective Eq. (5.8), one
can add another function and compose it with the existing activation function in Eq. (5.8). The
question is, if this can in principle, as is indicated by Th. 1, not only lead to an approximation but
a representation of the desired function f . Unfortunately, the Kolmogorov-Arnold representation
theorem provides limited insights into the precise characteristics of the inner functions Φmn while the
outer functions Θm are even dependent on the desired function f. The latter inhibits a universality
feature of the representation contrary to the one that is achieved with one hidden layer by Th. 2. This
property would be of course highly desirable. Unfortunately, the Kolmogorov-Arnold representation
theorem in general has lacked the ability to be the direct building block of other mathematical
theorems as well as the ability of being of direct practical relevance due to the dependence of the
functions Θm on f [118, 119]. However, over the years, the Kolmogorov-Arnold representation
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theorem has been refined in numerous ways, see for example Refs.[120, 121, 122]. A nice and
extensive review on this topic can be found in Ref. [110]. However, a refined version of the theorem
leads us to the definition of multi-layer feed-forward neural networks (MLFFNN).

Theorem 3. Theorem by J.Braun [122]
Let f : IN → R be a continuous function on the unit cube IN = [0, 1]N . Then f can be
represented in the following form

f(x) =
2N+1∑
m=1

Θ
[

N∑
n=1

anΦ(xn + mb) + cm

]
, (5.10)

where Θ : R → R and Φ : R → R are continuous functions and a ∈ RN , b ∈ RN and c ∈ R2N+1.
The function Φ does not depend on the nature of f , while there is an algorithm described in
Ref. [122] to compute the function Θ.

The right hand side of Eq. (5.10) is conveniently depicted as a MLFFNN with two hidden layers
and N = 2 as was done originally already by the author in Ref. [122]. It is transferred to our
presentation format and depicted in Fig. 5.2 for the example of two input nodes. A NN with more
than one hidden layer is also referred to as a deep neural network (DNN). Furthermore, it is stressed
that every hidden layer is linked to a specific non-linear activation function. To achieve complete
universality in both activation functions, one needs to be content with approximating the desired
function rather than representing it. This way, a universal approximation theorem as in Th. 2 can
be naturally formulated for a MLFFNN as well. This can be achieved by using sigmoidal activations
functions

M∑
m=1

amσ

(
N∑

n=1
Wmnxn + bm

)
(5.11)

for the activation functions of the first hidden layer Φ and the second hidden layer Θ [123]. Moreover,
an upper bound is derived for the number of hidden nodes as a function of f . All in all, there is
a universal approximation theorem for the SLFFNN and the MLFFNN and a certain variety of
activation functions is available. This leaves a lot of room in practical applications to try different
architectures of FFNNs. A huge number of examples with architectures varying in depth (number of
hidden layers) and width (number of hidden nodes in a certain layer) can be found in Refs. [124, 113].
It is emphasized that this derivation of FFNNs in general coming from the Kolmogorov-Arnold
representation theorem is not the historically correct one meaning that there have been proposals
of FFNNs in specific and NNs in general before this theorem. One can argue that the starting
point of this field of research was with the suggestion of the McCulloch-Pitts neuron to simulate the
behavior of a biological neuron [125, 126, 113]. This general approach of explaining the functioning
of FFNNs by their similarity to biological neurons is a very prominent and illustrative one. It was
especially in the early stages the most essential one. However, it is for research in mathematics
and physics also a vague one relying on vivid examples rather than theorems. Thus, and since the
general aim in this work is to approximate wave functions, the derivation presented so far with a
focus on the theorems starting with the Kolmogorov-Arnold theorem was preferred. Nevertheless,
it is important to emphasize that, based on the derivation and illustration of FFNNs, there are
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Figure 5.2: Depiction of the MLFFNN described by Eq. (5.10) for two input nodes N = 2 [122].
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essentially no constraints on imagination when contemplating the width and depth of hidden layers,
as well as the nature of their activation functions. The general NH-Layer FFNN can accordingly be
written as

fW(x) = gNH
(WNH

... (g1(W1, x))) , (5.12)

where gj(Wj) is the activation function of the j-th hidden layer with the respective parameter set Wj

[127]. The huge success of several FFNN architectures has lead to a very practical approach of testing
new architectures and measuring their success in certain fields of applications ranging from speech
recognition, image classification and modification to medical diagnosis and finance [113, 128, 129].
Thus, in closing, there is a very general MLFFNN depicted in Fig. 5.3 using sigmoidal functions as
the activation function for both hidden layers. It is described by the following equation

f(x) ≈ G(x) =
M2∑

m2=1
cm2σ


M1∑

m1=1
Vm2m1

am1σ

[
N∑

n=1
Wm1nxn + bm1

]
︸ ︷︷ ︸

h1
m1

+ dm2


︸ ︷︷ ︸

h2
m2

, (5.13)

where the values of the hidden nodes are explicitly marked and the parameters of the first hidden layer
are a, b ∈ RM1 , W ∈ RM1×N and the ones of the second hidden layer are c, d ∈ RM2 , V ∈ RM2×M1 .
This provides a picture of how much the number of parameters increases with an additional hidden
layer. This can in some applications be circumvented by using parameter sharing, which is directly
established by the operation of convolution. Accordingly, these FFNNs are called convolutional
neural networks (CNN) and are explained in detail in Refs. [113, 130]. To get an idea of how
parameter sharing works, the operation to compute the hidden nodes of the first hidden layer is
replaced by a convolution

h1
m1 = am1σ [(W ∗ x)m1 + bm1 ] (5.14)

that is defined as
(W ∗ x)m1 =

N∑
n=1

Wnxmod[n−m1,N ]+1 , (5.15)

where mod the modulo operator ensuring that the argument is always a correct index of the vector
W ∈ CN . This way, the weights are not exclusive for every connection between input and first
hidden layer in Fig. 5.3, but one column of the former weight matrix W is shared, reducing the
weight matrix effectively to a weight vector.
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Figure 5.3: Depiction of the MLFFNN described by Eq. (5.13) with two hidden layers. The values of the
hidden nodes are depicted in the boxes.
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5.5 Feed-Forward Neural Network (FFNN) over the
Complex Field

While the discussion so far was limited to real-valued continuous functions f , a FFNN can only be a
good approximator for quantum physical wave functions, if it is extended to the field of complex
numbers. Contrary to the field of real-valued FFNNs, which have a wide variety of real world
applications and are thus well studied, the field of complex-valued FFNNs (or NNs in general) is
rather new and the literature thus limited. Another real-world application is besides quantum
physical computations given by electromagnetic waves in signal transmission [124]. In the complex
case, it is more subtle to find a reasonable activation function. This is due to the fact that according
to Liouville’s theorem, every analytic (or entire) and bounded function f(z) with z ∈ C must be
constant f(z) = c with c ∈ C. An analytic function is one that is holomorphic and thus differentiable
in the neighbourhood of every point in the complex plane. Therefore, one has to pick for the
activation function to be either bounded and thus not holomorphic on a certain domain, that
might be irrelevant, or analytic but unbounded. The property of being holomorphic at a certain
point z = x + iy restricts the derivatives of the function f(z) = u(x, y) + iv(x, y) to follow the
Cauchy-Riemann equations [131]

∂xu = ∂yv and ∂yu = −∂xv , (5.16)

which is equivalently written as
∂zf = 0 , (5.17)

where z = x − iy and

∂zf = 1
2 (∂xf − i∂yf) , ∂zf = 1

2 (∂xf + i∂yf) . (5.18)

Thus, there is a wide range of activation functions proposed, ranging from real-valued split functions
for either both the real and imaginary part or the absolute value and the phase of f(z), respectively,
to so-called fully complex activations functions that try to avoid singular points or deal with the
issue of the parameters potentially increasing to magnitudes that can not be handled anymore
[131, 132]. However, since this is a wide field of research by itself, it is not the aim of this work
to investigate the expressive power of different architectures of complex-valued FFNNs in general.
Conversely, the mathematical motivation presented so far is used to indicate why the following
ideas for a complex-valued FFNN ansatz for the variational wave function in the VMC algorithm
described in Sec. 4 is reasonable.

5.6 Neural Network Quantum State (NNQS)

The respective ansatz for the wave function ΨW(s) for complex parameters W is the quantity of
interest in the following. Whenever it is given by a FFNN, it is naturally called a neural network
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quantum state (NNQS). It is stressed again that, unlike the wave functions discussed in Sec. 6, the
following are motivated by the expressive power of FFNNs and not tailored explicitly towards a
certain quantum many-body model. The following ansatz wave functions are in principle valid for
any spin models, however, in this work, it is focused upon the models introduced in Ch. 2.

5.6.1 Sigmoidal Ansatz (SA)

The results discussed so far in this chapter are used in the following to motivate a variational ansatz
wave function in the sz-basis, as introduced in Ch. 4. The most evident and simple ansatz derived
from the analysis in this chapter would be a SLFFNN as in Th. 2 for the absolute value and the
phase of the wave function separately

ΨW(s) =
 1

M1

M1∑
m=1

amσ

(
N∑

n=1
Wmnsz

n + bm

) · exp
 iπ

M2

M2∑
m=1

ãm tanh
(

N∑
n=1

W̃mnsz
n + b̃m

) , (5.19)

where the parameter arrays of the first SLFFNN are a, b ∈ RM1 , W ∈ RM1×N and the ones for the
second one are ã, b̃ ∈ RM2 , W̃ ∈ RM2×N . One could leave out the parameters a and ã to allow the
absolute value to be only in the range of [0, 1] and the phase to be only in the range [−iπ, iπ]. The
number of hidden units is often phrased as a multiple of the input units, which is denoted by α = M

N
.

It is stressed that, contrary to the theorems provided in this section, the function to approximate is
not defined on the unit cube but only has a binary input rendering the approximation even easier. A
similar ansatz as in Eq. (5.19) was proposed in Ref. [133]. However, the first ansatz based on FFNNs
was proposed by the authors in Ref. [11] and is based on the classical Boltzmann machine (CBM).

5.6.2 Boltzmann Machine (BM)

In the following, the motivation behind the ansatz wave function known by the name restricted
Boltzmann machine (RBM) is shortly discussed. It has originated from its classical counterpart with
real-valued parameters. Therefore, we take a step back to the classical Boltzmann machine (CBM)
with binary input and real-valued parameters before it is extended to the complex space and used
as a variational ansatz wave function.

Classical Boltzmann Machine (CBM)

The classical Boltzmann machine (CBM) is categorized within the realm of energy-based models,
which, in turn, falls under the broader category of graphical or structured probabilistic models
[113]. These are probabilistic models that describe a probability distribution using a graph, thereby
connecting to the mathematical field of graph theory. The probability p(v, h) ∈ [0, 1] and the
partition function Z

p(v, h) = 1
Z

e−H(v,h) Z =
∑
v,h

e−H(v,h) (5.20)
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of an energy-based model are solely given by the energy

E(v, h) =
N∑
n

anvn +
M∑
m

bmhm +
∑
n,m

hmWmnvn +
∑

n1<n2

vn1Cn1n2vn2 +
∑

m1<m2

hm1Dm1,m2hm2 (5.21)

of its state defined by its binary input or visual nodes v ∈ {0, 1}N , its binary hidden nodes
h ∈ {0, 1}M and respective parameter vectors a, b ∈ RN and weight matrices W ∈ RM×N ,
C ∈ RN×N , D ∈ RM×M [113]. These are called classical Boltzmann machines (BMs), which stems
from the fact that the probability distribution in Eq. (5.20) is given by the Boltzmann distribution.
Without the hidden nodes, the interaction between the input nodes is solely given by the matrix C
and is thus linearly dependent on the other input nodes. Therefore, the benefit of introducing hidden
nodes, whose state is not known and not of interest, becomes immediately clear. They allow for
interaction terms of higher order and can even be complemented by more than one hidden layer [113].
The CBM is not a FFNN as the ones used so far but classified as a Hopfield network, which is an
undirected network that is extensively discussed in Ref. [134]. For the restricted classical Boltzmann
machine (RCBM), the intra-layer interactions are not allowed leading to the energy function being

E(v, h) =
N∑
n

anvn +
M∑
m

bmhm +
∑
n,m

hmWmnvn . (5.22)

This allows for the computation of the probability distribution of a realization of the visual nodes

p(v) =
∑

h={−1,1}
p(v, h) ∝ e

∑N

n=1 anvn

M∏
m=1

cosh
(

N∑
n=1

Wmnvn + bm

)
(5.23)

by summing over the hidden nodes. A notable difference of the ansatz, compared to the ones
discussed in this section so far, is the usage of the product in the output node rather than the sum.
A FFNN of this kind is labelled as a product of experts [135]. The RCBM was successfully used to
reduce the dimensionality of data [136]. Its expressive power is for boolean functions comparable
to the ones of SLFFNN with sigmoid functions as their activation functions and can be classified
again as a FFNN for the input v [137]. It is additionally proven to be a universal approximator for
probability distributions on the discrete set of binary numbers {0, 1}N with k +1 hidden units, where
k is the number of input vectors with non-zero probability [138]. A similar theorem is obtained for
deep Boltzmann machines (DBM) in Ref. [139].

Translationally-Invariant Classical Restricted Boltzmann Machine (TICRBM)

The CRBM can be forced to adhere to certain symmetries generated by general transformation
matrices Tl : RN → RN (l = 1, ..., L). In the following, the translational invariance is considered
with Tl being the translation operator shifting the spins by l sites. The energy-function for the
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translationally-invariant CRBM (TICRBM) is then given by

E(v, h) = a
N∑

l=1
vl +

M∑
m=1

N∑
l=1

blmhlm +
M∑

m=1

N∑
l=1

N∑
n=1

hlmWmn(Tlv)n , (5.24)

where a ∈ R, b ∈ RN×M and W ∈ RM×N [140]. Since the action of the translation operator basically
defines a convolution as explained in Eq. (5.15), the TICRBM is classified as a CNN [141]. The
probability for a visual configuration is obtained by summing up all configurations of the hidden
nodes [11]:

p(v) ∝ ea
∑N

l=1 vl

M∏
m=1

N∏
l=1

cosh
(

N∑
n=1

Wmn(Tlv)n + bm,l

)
(5.25)

Restricted Boltzmann Machine (RBM)

Building on the idea of the CRBM, the first ansatz that was proposed by the authors in Ref. [11] for
spin models is the so-called restricted Boltzmann machine (RBM)

ΨW(s) = e
∑N

n=1 ansz
n

M∏
m=1

cosh
(

N∑
n=1

Wmnsz
n + bm

)
︸ ︷︷ ︸

Θm

, (5.26)

where the parameters a ∈ CN , b ∈ CM , W ∈ CM×N are now complex-valued. The input is given by
the sz

n-values of the actual configuration s = {sz
1, ..., sz

N}. Thus, the input is also binary and the
square of the wave function components also follow a probability distribution. The RBM is due to
its significance depicted in Fig. 5.4. The connections between the input layer and the hidden layer
can also be restricted to be local up to a certain range. A RBM of this kind is called a short-range
RBM, in which the second dimension of the weight matrix W is effectively limited. The factors of
the product in Eq. (5.26) are thus altered to

Θm|n = cosh
∑

n∈n

Wmnsz
n + bm

 , (5.27)

where
n = {l : |l − n| < R} (5.28)

with R > 0 a local subregion [142]. For clarity of notation, the standard RBM is thus sometimes
also referred to as the fully-connected RBM. In order for the expectation value of any operator to
be correct, the wave function components of the state of interest itself need to be approximated
correctly. The theoretical foundation of this ansatz is not strictly proven in the complex domain,
however, motivated by the theorems in this chapter. Similar to other FFNN applications, it has been
used and tested in several fields in the recent past. In Section 7, the state-of-the-art methods for the
ground state optimization using FFNNs are discussed in detail and the reasoning for the RBM to be
the FFNN of choice is explained. Finally, it is used in Ch. 8 and 10 for the computation of finite
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temperature results in one and two dimensions, whereas the real-time evolution is investigated in
Ch. 9.
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Figure 5.4: Depiction of the RBM described by Eq. (5.26) with the input given by the sz-values of the
configurations and the parameters being complex-valued.

5.7 Effective Update Scheme

The Monte Carlo sampling is of course a time consuming part of the VMC algorithm presented in
Ch. 4, in which at every sampling step the wave function component of the proposed configuration
needs to be computed. Thus, it is crucial that this can be done efficiently when using the RBM
ansatz. This is achieved by storing the arguments of the wave function as

Θm =
N∑

n=1
Wmnsz

n + bm and ζ =
N∑

n=1
ansz

n . (5.29)

The new storage parameters after a spin flip in a configuration s at site l are then directly calculated
to be

Θ′
m = Θm − Wmls

z
l and ζ ′ = ζ − als

z
l . (5.30)

The new values of the hidden nodes are subsequently obtained by applying the activation function
in Eq. (5.26). By saving the arguments of the activation functions in Eq. (5.29), the logarithmic
derivatives

Oan = sn

Obm = tanh (Θm)
OWmn = snObm

(5.31)

defined in Eq. (4.12) are effectively computed as well.
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5.8 Details of the Learning Algorithm

The expressive power of SLFFNNs and MLFFNNs was established in this chapter. In the following,
the details of general so-called learning algorithms in NN theory are discussed and the various
fields of applications mentioned. Additionally, the specific learning algorithm, that is basically used
throughout this work, is explained. It is emphasized that this is essentially just a reformulation of
the VMC algorithm presented in Ch. 4, utilizing the classifications and terminologies commonly
employed in the NN community. Thus, it comes with a short summary of important parts of NN
theory. However, this does not claim to be to any extent complete and the reader is referred to
follow Ref. [113] for more details.
The importance of NNs in general originates from their ability to be applicable to a wide variety of
tasks T , for example classification, regression, translation or structuring an output. The accuracy is
measured by a performance measure P [113]. In principle, NN learning algorithms are divided into
supervised, unsupervised and reinforcement learning algorithms. The algorithms examined in this
work are all classified as reinforcement learning algorithms, because it is a Markov decision process
which can be viewed as an interplay between an agent and an environment [143, 11]. The agent is
in our case comprised by the FFNN and the update algorithm, while the environment is comprised
by the set of configurations obtained by the Monte Carlo sampling. The action taken by the agent
to minimize the reward or loss function, for example the energy, changes the environment, in our
case the configurations that are chosen by the Monte Carlo sampling. The reinforcement algorithm
can be further classified as a regression or optimization algorithm in a high-dimensional space. To
unite the notation in the NN framework with the one from the VMC framework presented in Sec. 4,
the ground state optimization algorithm is paraphrased in the NN language used in Ref. [113].
In an NN algorithm, the performance measure P is given by the so-called loss function, also known as
cost function or reward function. In our guiding example of the ground state optimization, this loss
function is given by the energy in Eq.(4.4). The energy is minimized according to Eq. (4.14), or, as
it is famously denoted in the NN community, the algorithm learns the representation of the ground
state. While it seems in this case awkwardly exaggerating to rename the optimization algorithm
into learning algorithm, the illusion of learning is in general applications hard to disassemble into
its algorithmic parts. Additionally, the difference between optimization and learning is discussed
in an own chapter in Ref. [113]. Therein, optimization is considered a direct optimization of the
performance measure P , whereas learning specifies a task in which P can be intractable and is only
optimized indirectly by actually optimizing the loss function.
To this point, the VMC algorithm was explained to be composed of the variational ansatz wave
function and the Monte Carlo sampling algorithm, which was illustrated in blue in the flowchart in
Fig. 4.1. While they are of course intertwined, as is immediately clear for example from Eq. (4.4), they
are viewed in NN theory in a more unified way being two different features of the NN itself. In the
previous sections of this chapter, the accuracy with which the target function can be approximated
by the FFNN of choice was discussed in detail. This is referred to as the expressive power of the
FFNN, or simply its expressibility [144]. On the other hand, the number of Monte Carlo samples
necessary to approximate the target probability distribution is also referred to as the generalization
property of this specific FFNN [145]. The generalization error, being the difference between the
training and the test error, is thereby the quantity of interest. In NN theory applications, the
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generalization property thus illustrates to what extent the optimized NN is applicable to data sets
outside the training data. In the VMC algorithm of quantum many-body physics, it is thus related
to the number of Monte Carlo samples and consequently, the number of configurations, or basis
vectors of the Hilbert space, that need to be traversed in the Monte Carlo sampling. The smaller the
generalization error, the smaller the number of samples needed to ensure that the target probability
distribution is accurately approximated, even for those configurations or basis states that may not
directly appear in the Monte Carlo sampling. These considerations will turn out to be of crucial
importance in Ch. 10. Therein it will be obvious, that the generalization feature is not a distinct
feature of the FFNN at hand, but also the data at hand, given in our study by the configurations
or basis states of the Hilbert space. Thus, the notion with respect to the generalization feature is
not adopted but the distinction between peculiarities of the variational ansatz and the Monte Carlo
sampling are distinguished whenever possible.
While the optimization with respect to a SLFFNN is evident and numerically effective, since it
consists only of derivatives of the one activation function with respect to the parameters, the
optimization of the MLFFNN is more advanced and numerically more elaborate. The respective
and effective algorithm is known as the backpropagation algorithm [146, 113].

5.9 Curse of Dimensionality

The relevance of the mathematical theorems provided in Sec. 5.3 and 5.4 for actual computations
depends heavily on how good the approximations are for a manageable number of parameters. In
numerical calculations, this coincides of course with the computational resources available. All in
all, there is unfortunately no clear theorem that can provide a decisive connection between the
approximation accuracy of a generic FFNN and its network architecture [147]. Still, there are some
theorems for various FFNN architectures limiting the width for arbitrary depth [148] and relating
depth and width for some concrete examples [149]. In Ref. [123], there is a limit for the number of
hidden nodes for a MLFFNN, as described by Eq. (5.13) and depicted in Fig. 5.3, computed. It
depends on the modulus of continuity of the desired function f .
Naturally, the problem becomes inherently difficult if the number of input data is large. This is
referred to as the curse of dimensionality [113]. However, in the application to quantum physics,
the sheer size of the Hilbert space growing exponentially with system size 2N is misleading, since
the actual physical space for local Hamiltonians, that is comprised by the states that are physically
relevant, is definitely smaller. This is quantified in Ref. [150] by computing all those states that can
be reached by the real-time evolution of a product state with a local Hamiltonian, leading to the
size of the physical space to be exponentially small compared to the volume of the Hilbert space.
Another result supporting this notion is the area-law for one-dimensional gapped Hamiltonians,
which states that the entanglement entropy of their ground states is bounded by a term that is
proportional to the boundary area [151, 152]. While the accuracy of the universal approximators
presented increases with the number of parameters, the number of dimensions in the parameter
space grows at the same time. This can lead in general to a more subtle optimization prone to issues
for example due to the regularization discussed in Sec. 4.5. However, one can certainly state that,
in principle, the number of hidden units necessary in a FFNN to approximate a variety of states
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increases with the entanglement entropy those states possess. This is numerically verified in Sec. 8.3
and Ch. 9.
All in all, in most applications, there is no clear indication that the number of hidden nodes in a
FFNN architecture and thus the number of parameters is numerically feasible. The huge success of
NN in general has lead to a very practical modus operandi.

5.10 Entanglement Entropy and Expressive Power of RBMs

The bipartite entanglement entropy

S(ρA) = − Tr[ρA log ρA] = − Tr[ρB log ρB] = S(ρB) (5.32)

of a pure state, given by its density matrix ρ, of a system divided into parts A and B, quantifies the
quantum entanglement between these two parts. Here, the reduced density matrices ρA = TrB[ρ]
and ρB = TrA[ρ] are computed by tracing out the respective complementary part of the system. For
tensor networks (TN) in general and matrix product states (MPS) in specific, the entanglement
entropy is inherently connected to the bond dimension D, which itself defines the accuracy of
the algorithm and thus also the computational effort [153, 154]. The method, which allows for
the optimization of MPS states, the density-matrix renormalization group (DMRG), can also be
interpreted as a variational method [8]. It has been very successful for the ground state optimization
of models which adhere to the area-law for ground states [151].
In principle, all variational wave functions are built up from local correlations. For the presented
NNQSs in Sec. 5.6, namely the SA in Eq. (5.19) and the RBM in Eq. (5.26), this is evident as well
as for the ones that will be presented later in Ch. 6. However, for the RBM, which is capable of
efficiently representing volume-law entangled states, the link between the number of variational
parameters and the entanglement entropy is not that simple [142]. From the discussion in this
chapter, one can already conclude that, in principle, fully-connected NNQS should even be able
to approximate states with a large entanglement entropy effectively. It is stressed, that this is the
more physical reasoning for the enhanced interest in using FFNNs for the approximation of wave
functions. The RBM ansatz, originally proposed in Ref. [11], was proven to efficiently allow to
describe volume-law entangled states contrary to the MPS ansatz [9]. While the word efficiently
often remains vague, it is concretized in Ref. [142] to denote a linear increase in the number of
non-zero parameters. A comprehensive examination of the entanglement entropy of RBMs, along
with an in-depth analysis of the entanglement entropy of short-range RBMs, is thoroughly explored
in Ref. [142]. The fully-connected RBM is compared to a variety of known TN states in Ref. [9]
and is classified as being a non-local string-bond state, meaning that in the RBM there are many
strings that overlap on the entire lattice. A detailed work on the expressive power of (deep) RBMs
is found in Ref. [155], while Ref. [156] provides an algorithm to transform the RBM to a TN and
states the conditions under which the inverse transformation can be achieved. In this manner, the
authors also introduce the idea of inversely being able to detect a limit for the number of variational
parameters of the RBM by the link to the bond dimension of the TN the RBM is transformed into.
It is recalled that a similar direct theorem is lacking in the NN theory as described in Sec. 5.9.
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It should be noted, that the second important advantage of the RBM over the DMRG method is its
simple generalization to more than one dimension. This does of course not mean that there are no
approaches to modify the DMRG method for two-dimensional systems [157]. Another interesting
feature about the entanglement entropy of random RBM states is illustrated in Ref. [142] and will
be of importance in the quantum typicality approach investigated in Sec. 8.3. It shows that the
entanglement entropy of a random RBM ansatz state still obeys volume-law entanglement, however,
it is noticeably lower than the one for random pure states, which is also known as the Page entropy.
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Chapter 6

Variational Wave Functions for Strongly
Correlated Systems

Historically, the first ideas for a variational ansatz wave function were based on physical observations
regarding small systems. Those that are, to some extent, used later in this work, are described in the
following. The variational wave function, expressed in the sz-basis in Eq. (4.2), can be formulated
in any chosen basis. In the following, it will be the one given by the fermionic occupation numbers
niσ = {0, 1}, σ ∈ {↑, ↓}. The wave function of a system of Ne fermions with Ne,↑ fermions with spin
up and Ne,↓ with spin down is given by

|Ψ⟩ =
∑

n↑,n↓

Fn↑,n↓|n↑⟩|n↓⟩ , (6.1)

where Fn↑n↓ ∈ C2N ×2N and nσ = (n1σ, ..., nNσ). If the overall particle number Ne is limited to be
equal to the system size N and double occupation is prohibited, the number of parameters in Fn↑,n↓

is reduced to 2N . The objective is here, as well as it was to this point for the sz-basis, to approximate
Fn↑,n↓ by a variational wave function. The ideas proposed in this regard can be divided into two
groups that go by the name of single-particle orbitals and paired orbitals. The general difference is
best introduced by looking at the treatment of the H2-molecule as described in Ref. [3].

6.1 H2-Molecule

The first ansatz for a quantum mechanical wave function of the H2-molecule was proposed by W.
Heitler and F. London for strongly correlated electrons [158]. Later, R. Hartree and W.A. Fock
introduced an ansatz that is suited for independent electrons [159].
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6.1.1 Heitler-London Ansatz

In the Heitler-London ansatz, there is no contribution by electrons on the same atom and the original
version is written in second quantization as

|ΨHL⟩ = 1√
2

(c†
1↑c

†
2↓ + c†

2↑c
†
1↓) |0⟩ , (6.2)

where |0⟩ = |0↑⟩|0↓⟩ is the vacuum state and

c†
iσ =

∫
drϕ(r − Ri)Ψ†

σ(r) ciσ =
∫

drϕ†(r − Ri)Ψσ(r) (6.3)

the fermionic operator that creates (annihilates) an electron with spin σ in an orbital ϕ(r − Ri) that
is centered around the atom i = 1, 2 at position Ri and Ψ†

σ(r) (Ψσ(r)) the fermionic field operator.
The anti-commutation relations for the fermionic creation and annihilation operators follow from
the orthogonality condition for the orbitals of different atoms. The wave function becomes accurate
in the atomic limit |R1 − R2| → ∞.

6.1.2 Hartree-Fock Ansatz

Another ansatz proposed in the early days of quantum mechanics is the one by R. Hartree and W.A.
Fock [159]. It considers the electrons to be independent of each other and can also be written as a
Slater determinant [160]

|ΨHF ⟩ = Φ†
↑Φ

†
↓ |0⟩ . (6.4)

The operator Φ†
σ creates single particle orbitals. The simplest realization for a two-particle system

like the H2-molecule
Φ†

σ = 1√
2

(c†
1σ + c†

2σ) (6.5)

leads to the Hartree-Fock wave function

|ΨHF ⟩ = 1
2(c†

1↑c
†
1↓ + c†

1↑c
†
2↓ + c†

2↑c
†
1↓ + c†

2↑c
†
2↓) |0⟩ . (6.6)

In contrast to the Heitler-London wave function, the Hartree-Fock approximation becomes exact
whenever the electron-electron repulsion is neglected. Therefore, the correct solution lies in between
the Hartree-Fock and the Heitler-London ansatz [3].

6.2 Many-Body Ansatz Wave Function

Starting from these first considerations regarding the H2-molecule, there were a number of variational
fermionic wave functions proposed for a range of models. In the following, brief discussions will be
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provided for those variational wave functions that are, to some extent, related to this work or serve
as a comparison for the NNQS proposed in Ch. 5.

6.2.1 Hartree-Fock Ansatz

The Hartree-Fock ansatz is extended to many-body fermionic models by defining the wave function
ansatz

|ΨHF ⟩ =
Ne∏

α=1
Φ†

α |0⟩ (6.7)

with single-particle orbitals

Φ†
α =

N∑
i

Wαi↑c
†
i↑ +

N∑
i

Wαi↓c
†
i↓ , (6.8)

that are chosen to be some parametrization of the fermionic creation operators with Wαjσ ∈ C being
complex coefficients [3]. The orthogonality condition is in this case given by the following equation

N∑
i

(
Wαi↑W

∗
βi↑ + Wαi↓W

∗
βi↓

)
= δαβ . (6.9)

The wave function in equation (6.7) can be expressed as a Slater determinant that respects fermionic
commutation relations [160]. However, using the Hartree-Fock ansatz, only reasonable results are
obtained in the weak interaction regime [3].

6.2.2 Gutzwiller and Jastrow Factor

The Gutzwiller factor
PG(g) = e−g

∑N

j=1 n̂j↑n̂j↓ (6.10)

was introduced in Ref. [161] to attach a weight g ∈ R depending on the number of double occupied
sites. The weight g can be used as a variational parameter. On the other hand, for spin models, it
is used to prohibit double occupancy by choosing g = ∞ and thus also referred to as a projector
in this case. The notation is adjusted to distinguish the occupation number operator n̂i from its
expectation value ni. For the H2-molecule the Gutzwiller factor allows to interpolate between the
Heitler-London wave function in Eq. (6.2) with g = ∞ and the Hartree-Fock one in Eq. (6.6) with
g = 0 [3].
Furthermore, adding the Jastrow factor

PJ(v) = e− 1
2
∑N

i,j=1 vi,j(n̂i−n)(n̂j−n) (6.11)

which was introduced in Ref. [162], allows for density fluctuations the Gutzwiller factor can not
grasp [3, 163]. The density is given by ni = nj↑ + nj↓ and the density average by n, whereas vi,j ∈ R
are variational parameters. The Gutzwiller and Jastrow factor are the two most basic ingredients
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that are usually combined with other variational wave functions by multiplying them all together
[163].

6.3 Pair-Product (PP) Wave Function

A particularly important ansatz is known as the pair-product (PP) or Pfaffian wave function and is
closely related to the theory of superconductivity. This link is explained first before the difference to
the more general PP wave function is outlined. In the end, the overlap with a real space configuration
is computed and the Pfaffian obtained.

6.3.1 Bardeen-Cooper-Schrieffer (BCS) Wave Function

The Bardeen-Cooper-Schrieffer (BCS) wave function

|ΨBCS⟩ = exp
(∑

k

fkc†
k↑c

†
−k↓

)
|0⟩ , (6.12)

is the ground state of the respective translationally-invariant BCS Hamiltonian in mean-field
approximation

HBCS =
∑
k,σ

(ϵk − µ0)c†
k,σck,σ +

∑
k

∆kc†
k,↑c

†
−k,↓ + h.c. , (6.13)

where fk is the pairing function, ϵk the dispersion, which gives the band structure, µ0 the chemical
potential and ∆k = ∆−k a singlet pairing amplitude [3]. This is proven in detail in Ref. [164]. The
BCS theory was originally introduced in Ref. [165] to describe the effective attractive interaction
between electrons with opposite spin and momenta (k,−k) mediated by virtual phonons. These
bound states are known as Cooper pairs and explain the effect of low-temperature superconductivity
in several solids [17]. The real space BCS wave function is obtained by the Fourier transform of
Eq. (6.12) and expanding the exponential function

|ΨBCS⟩ = exp
 N∑

i,j=1
fijc

†
i↑c

†
j↓

 |0⟩ = 1(
Ne

2

)
!

 N∑
i,j=1

fijc
†
i↑c

†
j↓


Ne
2

|0⟩ , (6.14)

where fij = ∑
k

1√
N

fke−ik(i−j) [166]. The parameters fij are well-suited to be the starting point of
the variational method discussed in Ch. 4, especially in the following modified ansatz.
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6.3.2 Resonating Valence Bond (RVB) Wave Function

The deficiency of the BCS theory to describe high-temperature superconductivity was addressed by
P.W. Anderson in Ref. [167] by an alternative ansatz for the wave function

|ΨRV B⟩ = PG(∞) 1(
Ne

2

)
!

 N∑
i,j=1

fijc
†
i↑c

†
j↓


Ne
2

|0⟩ , (6.15)

known as the resonating valence bond (RVB) ansatz. The Gutzwiller projector PG(∞) removes all
states, in which doubly occupied sites are present. This is why it was first used to obtain the ground
state of spin chains like the Heisenberg model [167, 168, 3]. The name RVB originates from earlier
works by L. Pauling [169] and P.W. Anderson [170]. The RVB describes an overlap of all singlet
pairs possible and is depicted in Fig. 6.1.

Figure 6.1: Illustration of four singlet pair patterns of the RVB wave function ansatz in two dimensions.
Reprinted with permission from Ref. [3].

6.3.3 Pair-Product (PP) Wave Function

The BCS and the RVB wave function can be generalized even further by allowing any pair or bond,
also between fermions whose spin points into the same direction. This results in a wave function
that is known as pair-product (PP) wave function [163]. It is sometimes also referred to by Pfaffian
or simply pairing wave function [171, 10]. At the end of this section, it will become clear where the
term Pfaffian stems from. However, from now on, the shortcut PP for pair-product is used. We
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will adhere to the derivation of the overlap of this wave function with a real space state with Ne

particles |n↑⟩ |n↓⟩ = c†
r1σ1c†

r2σ2 · · · c†
rNe σNe

|0⟩ provided in Ref. [10]. The PP wave function is stated in
the general case

|ΨP P ⟩ =
 N∑

i,j=1

∑
σ,σ′=↑,↓

F σ,σ′

ij c†
iσc†

jσ′


Ne
2

|0⟩ (6.16)

and the anti parallel case

|ΨAP −P P ⟩ =
∑

i,j=1
fijc

†
i↑c

†
j↓


Ne
2

|0⟩ , (6.17)

in which sz = ∑
i sz

i = 0 holds [163]. First, we want to look at the general PP wave function and
rewrite the sum in terms of permutations P of the Ne indices

|ΨP P ⟩ =
∑
P

(
Ne

2

)
!

Ne/2∏
l=1

(
F

σP(2l−1)σP(2l)
rP(2l−1)rP(2l) − F

σP(2l)σP(2l−1)
rP(2l)rP(2l−1)

)Ne/2∏
l=1

(
c†

rP(2l−1)σP(2l−1)
c†

rP(2l)σP(2l)

)
|0⟩ , (6.18)

where the permutations fulfill the following two conditions for the creation operators to be in
ascending order with respect to the lattice sites [10]:

P(2l − 1) < P(2l) and P(2l − 1) < P(2l + 1) (6.19)

Since in numerical calculations the projection onto a real space state |n↑⟩ |n↓⟩ is of importance,
it is considered in the following. Due to the circumstance that only the creation operators act
non-trivially and the fermionic anti-commutation relations apply, the second part is heavily simplified

⟨n↑|⟨n↓|
Ne/2∏
l=1

(
c†

rP(2l−1)σP(2l−1)
c†

rP(2l)σP(2l)

)
|0⟩ = (−1)P , (6.20)

where (−1)P is the parity of P [10]. The remaining formula coincides with the definition of the PP
wave function and is recognized to be a Pfaffian [172]

⟨n↑|⟨n↓|ΨP P ⟩ =
(

Ne

2

)
!
∑
P

(−1)P
Ne/2∏
l=1

(
F

σP(2l−1)σP(2l)
rP(2l−1)rP(2l) − F

σP(2l)σP(2l−1)
rP(2l)rP(2l−1)

)
=
(

Ne

2

)
! Pf[X] (6.21)

of the skew-symmetric matrix
Xij = F σiσj

rirj
− F σjσi

rjri
(6.22)

of size Ne × Ne. The particles are labelled by i and j and the diagonal is thus zero. The Pfaffian
itself is defined as:

Pf[X] = 1
2Ne

2
(

Ne

2 !
) ∑

σ∈SNe

Ne/2∏
i=1

Xσ2i−1σ2i
(6.23)

The set of variational parameters of this specific ansatz is reduced to be comprised of four parameter
arrays X↑↑, X↑↓, X↓↑ and X↓↓ with each containing (N2

e − Ne)/2 complex parameters. These are
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combined to a large variational parameter array denoted as X. The two-particle PP wave function is
a direct generalization of the one-particle Hartree-Fock ansatz (see equations (6.7) and (6.8)), which
means that the latter is obtained by a specific choice of the variational parameters of the former
[163].

F σiσj
rirj

=
Ne/2∑

α

(
W(2α−1)iσi

W2αjσj
− W(2α−1)jσj

W2αiσi

)
(6.24)

fij =
Ne/2∑

α

Wαi↑Wαj↓ (6.25)

For the application onto the spin models considered in this work, the number of fermions equals the
number of sites Ne = N , which can also be denoted by adding the Gutzwiller projector PG(∞) to
the definition of the PP wave function in Eq. (6.16) or (6.17).

6.3.4 Efficient Computation of the Pfaffian and its Derivative

Employing the PP wave function in the VMC algorithm in Ch. 4 requires the computation of the
Pfaffian in every Monte Carlo step. Thus, it is crucial to compute it in an efficient way. In general,
the computational cost of the Pfaffian of a N × N matrix is of order O(N3) [10]. Luckily, one can
make use of the fact that in the Monte Carlo sampling, the updated matrix X̃ differs from the one
in the previous step (X) only by one row and one column. Therefore, Cayley’s identity [173]

det


0 X12 . . . X1N

b12 0 . . . X2N
... ... . . . ...

b1M −X2N . . . 0

 = Pf


0 X12 . . . X1N

−X12 0 . . . X2N
... ... . . . ...

−X1N −X2N . . . 0

 ·Pf


0 b12 . . . b1N

−b12 0 . . . X2N
... ... . . . ...

−b1N −X2N . . . 0


(6.26)

leads to the update equation

Pf[X̃] = det[X̃]
Pf[X] = Pf[X]

N∑
m=1

X−1
αmbm , (6.27)

where the general identity Pf[X]2 = det[X] was used. This allows to compute the Pfaffian of the
updated matrix X̃ by using the matrix X of the previous step. The two matrices differ only by
the column and row indexed by α. The new row α is given by b [10]. Through this approach, the
computational cost reduces to O(N) since the inverse of the matrix X needs to be computed for the
Pfaffian derivative anyhow and thus contributes no additional cost. The computation of the inverse
itself is executed efficiently (O(N2)) as well using the following update rule [10]:

X̃−1
ij = X−1

ij + 1∑
m X−1

αmbm

[
−
(∑

m

X−1
im bm

)
X−1

αj +
(∑

m

X−1
jmbm

)
X−1

αi + δiαX−1
αj − δjαX−1

αi

]
(6.28)
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To update the variational parameters, the logarithmic derivative is computed via

1
Pf [XX]∂Xk

Pf [XX] = Tr
[
X−1

X ∂Xk
XX

]
, (6.29)

where the parameter dependency of the matrix X in Eq. (6.22) on the set of complex parameters X
is explicitly denoted [163].

6.4 Transformation from Fermions to Spins

Since we are in this work interested in spin models and the NNQSs in Ch. 5 have been derived in
the sz-basis, it is of crucial importance to rewrite the fermionic wave functions in this section in the
sz-basis. The fermionic creation and annihilation operators c†

iσ and ciσ are transformed to the spin
operators by the following transformation rule

Si = 1
2c†

iασαβciβ , (6.30)

where the matrix of spin and Pauli operators was defined in Eq. (2.8). It is written in components
to enhance clarity [174, 44]:

Sx
i = 1

2
(
c†

i↑ci↓ + c†
i↓ci↑

)
Sy

i = i

2
(
−c†

i↑ci↓ + c†
i↓ci↑

)
Sz

i = 1
2
(
c†

i↑ci↑ − c†
i↓ci↓

)
= 1

2 (ni↑ − ni↓)

(6.31)

Thus, for every sz-basis state, there are several fermionic configurations possible. However, since
double occupancy is prohibited in spin models (PG(∞)), there is a one-to-one correspondence
between the spin and fermionic formulation that can be denoted by

|sz
1 . . . sz

N⟩ ↔ |n↑⟩ |n↓⟩ =
N∏

i=1
c†

iσi
|0↑⟩|0↓⟩ , (6.32)

where the left and right hand side are linked by sz
i = σi

2 [5]. Hence, the pairing between the electrons
can be understood as well by a pairing between the spins in the spin model.

6.5 PP-NN Ansatz

It is in general always possible to combine those in this section presented variational wave functions
among each other. However, this is of course limited by the number of variational parameters that
can be efficiently updated in the VMC method on the computational device available. In this work,
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it is for several reasons, debated in Ch. 7 and Sec. 8.3, of interest to combine the RBM ansatz in
Eq. (5.26) (or the SA ansatz in Eq. (5.19)) with the one in Eq. (6.21). The latter one is written in
the sz-basis using the identification in Eq. (6.32). Thus, the combined ansatz is implemented as

|ΨW,X⟩ =
∑

s
ΨW(s)ΦX(s)|s⟩ , (6.33)

where ΦX(s) = ⟨s|ΨP P ⟩ is given by the Pfaffian (see Eq. (6.21) and Eq. (6.32)) [95]. Since the RBM
adheres to the universal approximation theorem of FFNNs (Th. 2) and the RBM is viewed as just a
representative of this class (see discussion in Ch. 7), this combined ansatz is called PP-NN ansatz.
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Chapter 7

Ground State Optimization with
Feed-Forward Neural Networks (FFNNs)

The motivation to use a FFNN ansatz for the wave function in the VMC method has been outlined
in Ch. 5. The ground state optimization is the most straightforward application. The
finite-temperature computations, that are the topic of Ch. 8, can only be applied to models for
which the ground state and its energy are actually obtained accurately in the ground state
optimization. Otherwise, low temperatures can not be reached in finite-temperature computations.
Loosely speaking, the ground state optimization corresponds to a finite-temperature computation,
in which the initial state and the specific route taken are not important as long as the correct
ground state is reached. Hence, the requirements for the accuracy of the evolution of the algorithm
are notably reduced in the context of ground state optimization, a characteristic that is evident in
the regularization applied, as explained in Sec. 4.5, for instance. Nevertheless, since the VMC
approach is a high-dimensional optimization algorithm, in principle, there is always the possibility
that the algorithm traverses an unfavourable landscape and gets stuck. Another principal issue
possible is that the ground state might not be accurately approximated in the variational ansatz.
The latter issue can, however, simply be mitigated in any FFNN ansatz by increasing the number of
parameters which corresponds to enhancing the width or depth of the network.
In general, the RBM has successfully been applied to various quantum many-body models [175]
ranging from spin models, fermionic [176] and bosonic models [177] to specific applications like
learning topological states [178] and phases of matter [179]. The RBM is able to represent those
states efficiently. For the spin models of interest in this work, the state of the art, regarding the
ground state optimization, is outlined in this chapter. It is also intended to give a short review
about the progress in this field, the main obstacles and our findings. Moreover, this approach helps
elucidate the rationale behind opting for the RBM as the principal ansatz in conducting the
finite-temperature computations in this work.
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7.1 Barren Plateaus

In the seminal work introducing complex-valued RBMs [11], this ansatz was used to obtain the
ground state energy for the one- and two-dimensional Heisenberg model. The algorithm used
explicitly the translational invariance and thus the TIRBM ansatz, that was mentioned in
Eq. (5.25). Unfortunately, it became clear that this could only be achieved after making use of the
canonical transformation of the x- and y- components of the spin operators of one of the two
sublattices, that was introduced in Sec. 2.5. This leads to the wave function components of the
ground state being all real and positive. Hence, the TIRBM failed to learn the complicated sign
structure the ground state of the Hamiltonian possesses if this transformation is not applied. This is
not a failure due to the Monte Carlo sampling, but also occurs if the full basis of the subspace is
used [133]. For the Heisenberg model, it is always advisable to restrict the states in the ground
state optimization to the subspace with sz = ∑

i sz
i = 0, which is in the Monte Carlo algorithm

accomplished by starting with a random state in that subspace and suggesting new states by
exchanging two spins. Unfortunately, there could not be found a way out by altering the TIRBM
slightly or using the SA ansatz in Sec. 5.6.1. A similar result was obtained in Ref. [133] for the
J1-J2 model, where the expressivity of the TIRBM and other MLFFNNs could be ruled out as a
possible reason as well. It was instead attributed to what the authors termed the rugged variational
manifold landscape and is also known as a barren plateau [180], which the algorithm can not escape
easily. This issue is well-known and usually always a possible pitfall of any high-dimensional
optimization algorithm that is hard to circumvent. The term pitfall can thus be understood in a
literal way. Nevertheless, it is emphasized that deep architectures have been discovered capable of
discerning the correct sign structure without any prior implementation. Unfortunately, this comes
with the disadvantage that a huge number of 6 hidden layers only for the FFNN of the amplitude
must be considered [181, 182]. The concrete shape, as well as the different activation functions used,
look extremely arbitrary and do not follow from a transparent reasoning. Furthermore, the intended
computational advantage of saving variational parameters through symmetry utilization is
counteracted by the more intricate architecture and consequently a more time-consuming parameter
update algorithm.
Fortunately, overcoming this failure is at last also possible for SLFFNNs by either refraining from
applying translational symmetry altogether or by applying translational symmetry in an alternative
form using the sum instead of the product of the shifted configurations in Eq. (5.25) [183].
Incorporating additional features and symmetries of the ground state, such as momentum or spin
parity, can contribute to a further improvement of the accuracy of the ground state energy [184].
Restricting the variational wave function this way is known as the quantum-number projection
method [185].

7.2 Improvement by the PP-NN Ansatz

The ground state optimization making use of the RBM ansatz was applied to the two-dimensional
Heisenberg model with periodic boundary conditions in Ref. [95]. It is stressed that the authors
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make use of the translational invariance and take the variational parameters of the RBM to be real,
which is sufficient as long as the transformation in Sec. 2.5 is deployed. Thus, the results are not
directly comparable to the ones in Sec. 7.1. The results in this reference are of interest for a different
reason that will become clear in a moment. To obtain results on the 8 × 8 square lattice, the number
of hidden units has to be increased to α = M

N
= N

2 to reach an accuracy that is equivalent to the
one obtained in a comparable variational ansatz, which is itself known as the many-variable VMC
method (mVMC) [10]. This ansatz is supplemented by a spin (sz = ∑

i sz
i = 0) and momentum

(K = 0) projection. The full ansatz is thus written in its full glory as

|ΨmV MC⟩ = LSzLKPG(∞)|ΨP P ⟩ , (7.1)

where the respective projections are denoted by L and |ΨP P ⟩ is the projected-pair (PP) ansatz state
discussed in Sec. 6.3.3. Due to the substantial number of parameters necessary in the RBM ansatz,
surpassing the count of MN = N3

2 , the ansatz was alternatively combined with the PP ansatz itself,
as described in Sec. 6.5. Additionally, the momentum projection and the one onto the subspace
sz = 0 were used as well. This combined ansatz yields more accurate results for α = 2 already [95].
After that, the authors applied this ansatz to investigate the J1-J2 model on the square lattice [5]. In
that way, they managed to validate the ground state phase diagram for the J1-J2 model in Fig. 2.3.

7.3 Exact Representations with Deep Boltzmann Machines
(DBMs)

MLFFNNs like the deep Boltzmann machine (DBM) or deep CNNs, discussed in Sec. 5.4, can be
used as just another ansatz for a variational wave function in the sense of Th. 2. However, due to
the success of RBMs and similar FFNNs, their usage as universal approximators is, as discussed so
far especially in Sec. 7.1, not imperative for the spin models of interest in this work. A related, but
still very different approach including DBMs is left out and has not been investigated in this study,
since it is fundamentally different. Instead of optimizing a loss function, the idea of this method
is to exactly represent ground states by changing the architecture of the DBMs in every step of
the optimization [186]. This is to be understood in the sense of Th. 3. With this procedure, the
action of the imaginary-time evolution operator is directly translated into an adaption of the DBM
architecture itself. It is emphasized that this action needs to be calculated separately for each model.
This way, an alternative to the path-integral formulation is developed [186] . Correlation functions
like the energy are then also obtained by a sampling that is similar to the one performed in QMC.
The sampling error thus solely comprises the error of this approach. However, this method is also
reliant on the Hamiltonian to be stoquastic (see Sec. 2.5) and is thus not applicable for real-time
evolution nor the imaginary-time evolution of frustrated models.
The representational power of DBMs is investigated thoroughly in Ref. [155]. Therein, it is shown
that DBMs can efficiently represent most physical states including the ground states of k-local
Hamiltonians with k referring to the k-body interactions being, for example, k = 2 for the Heisenberg
or the J1-J2 model.
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7.4 Wave Function for Finite-Temperature Computations

All in all, the reasoning for using the RBM as the main ansatz for the finite-temperature computations
are explained from the findings of the ground state optimization. First of all, there is no clear
reasoning for MLFFNNs being a substantially more efficient approximator, neither in general NN
theory in Sec. 5.9 nor in the specific application of wave functions to find the ground state of spin
chains. Since the SLFFNNs are easier to handle, we choose them over the MLFFNNs. For the
question of making use of symmetries and especially translational invariance, there are two reasons
why we chose to not apply any of them at all. The first was due to the long-lasting uncertainty about
the issue of barren plateaus for models whose ground states possess a complicated sign structure. It
is stressed that this prevailed for a variety of SLFFNNs and MLFFNNs. The second reason was
that we were not only interested in translationally-invariant systems, but also intended to look at
open boundary conditions. Finally, we were left to choose between the fully-connected RBM and
the SA ansatz. Although we did not observe any evident difference between these two approaches in
the ground state optimization of the one-dimensional Heisenberg model, the decision was made to
adopt the RBM ansatz in Eq. (5.26). It is the more popular and well studied one and due to its
universality in the following simply referred to as the NN ansatz.

ΨW(s) = e
∑N

n=1 ansz
n

M∏
m=1

cosh
(

N∑
n=1

Wmnsz
n + bm

)
(7.2)

Since the PP ansatz is of interest from a quantum typicality perspective, the PP-NN ansatz is
investigated as an ansatz for a variational thermal pure quantum state in Sec. 8.3.
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Chapter 8

Finite-Temperature Results for the
One-Dimensional Heisenberg Model

Understanding the ground states of quantum lattice Hamiltonians with precision is crucial for
comprehending various states of matter and quantum phase transitions between them. As described
in Ch. 7, this has been investigated in detail for NNQS based on various FFNN ansatz wave functions.
Additionally, there is of course good reason to study the efficient computation of finite-temperature
results as well.
One is the existence of finite-temperature phase transitions in models with dimension d ≥ 2, which,
for example, has been suggested to occur for the J1-J2 model in Ref. [57]. This is the topic of
Ch. 10. Another one is to provide comparable results for physical experiments, for example with
cold atoms, which are always conducted at finite temperatures [187, 188, 189]. Since the QMC
method is in principle not available for non-stoquastic Hamiltonians, as mentioned in Sec. 2.5, the
Heisenberg Hamiltonian (see Eq. (2.16)) has been chosen to be the toy model of choice. It allows for
the comparison with the QMC results obtained by the stochastic series expansion code available at
[190] and described in Ref. [191]. It is emphasized, that the DMRG method is, besides the VMC
approach, the method of choice for models for which the QMC method is not applicable, at least for
one-dimensional models [192, 193].
In essence, the numerical objective is to approximate the partition function and the expectation
value of quantum physical operators A

Z = Tr
[
e−βH

]
, f = − T

N
ln Z, ⟨A⟩ =

Tr
[
Ae−βH

]
Z

. (8.1)

To the best of my knowledge, there are three approaches available in a variational setting: introducing
ancilla sites in the purification method, sampling the trace using, for example, minimally entangled
thermal states (METS), and employing quantum typicality. In this chapter, these three approaches
are studied and the numerical results for large spin chains are compared. We note that the first
approach was already considered for deep Boltzmann machines in Refs. [194, 195]. However, the
method to obtain the initial, infinite-temperature state is different from our approach. We will
discuss this point in more detail below. The second approach has also very recently been studied in
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the neural network context in Ref. [90]. One of the main goals of this work is to compare these three
different approaches instead of focusing on only one of them. It is emphasized that the numerical
results of this chapter have been published already in Ref. [80] (Wagner, Klümper, Sirker).

8.1 Purification Method

The first approach to compute thermodynamic quantities is the so called purification or ancilla
method. It allows to relate mixed states to pure states in an extended system. It is the inherently
most appealing procedure presented here, since the infinite-temperature state is easily represented
exactly in the variational approach and the results are valid for any system size N .

8.1.1 Purification

Purification is a general feature of arbitrary mixed quantum states. Take an arbitrary mixed state
represented by the density matrix

ρ =
∑

k

pk|k⟩1⟨k|1 , (8.2)

where {|k⟩1}k=1,...,K is an orthonormal basis of H1 and ∑k pk = 1 [2]. Take H2 to be a copy of H1
and define the pure state |Ψ⟩ ∈ H1 ⊗ H2 as follows

|Ψ⟩ =
∑

k

√
pk|k⟩1 ⊗ |k⟩2 , (8.3)

where {|k⟩2}k=1,...,K is an orthonormal basis of H2. The original mixed state is recovered by tracing
out the second Hilbert space [196].

ρ = Tr2 |Ψ⟩⟨Ψ| (8.4)

Thus, for the spin models of interest (K = 2N), a purified state can always be obtained by adding
an ancilla spin for every spin of the system [197].

|{s}⟩ → |{s}⟩ ⊗ |{s′}⟩ ≡ |{s, s′}⟩ (8.5)

This results in an overall spin chain of length 2N . The size of the spin chain, that is actually
worked with in the algorithm, is thus double the size of the physical spin chain. To obtain the
correct infinite-temperature state of the system, a purified state has to be chosen that reduces to the
infinite-temperature density matrix after tracing out the Hilbert space of the ancillas (see equation
(8.4)). Due to the fundamental equation for the partition function

Z(β) = tr
[
e−βH

]
, (8.6)

the infinite-temperature state is in any basis given by the state with all wave function components
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having equal weight [198], or, to put it differently, by maximally entangling each spin with its
respective ancilla spin [193].

|Ψ(β = 0)⟩ =
∑

s=−s′
|s⟩
⊗

|s′⟩ (8.7)

However, it is stressed that the choice of this state is not unique but all states

|Ψ(β = 0)⟩ =
∑

s=−s′
|s⟩
⊗

U |s′⟩ (8.8)

with U a unitary matrix only acting on the ancilla spins, are a valid choice for the infinite-temperature
state in the combined system. We can think of the ancillas as an ‘index’ keeping track of the initial
state of the real sites before we have acted on this state with some operator. In the purification
method, it needs to be respected that the operators of interest only act on the real spins while
keeping the ancilla spins unchanged. The respective state at any temperature T = 1

β
is obtained by

evolving the infinite-temperature state in imaginary time τ by

|Ψ(τ)⟩ = (exp(−τH/2) ⊗ 1)|Ψ(0)⟩ . (8.9)

If the imaginary-time evolution can be performed error-free, the correct partition function in
Eq. (8.6) is obtained as the norm of the wave function for β = 2τ . However, it is emphasized that
the imaginary-time evolution is performed on the variational manifold of the Hilbert space V(H,C).
This was described in detail in Sec. 3.2.2. The approximation causes an error that depends on how
accurate the wave function components can be approximated by the variational wave function. The
actual temperature is obtained after the time evolution via the β modification using the ratio γ1
in Eq. (4.38). Unfortunately, this modification only holds for correlation functions. The norm of
the state is allowed to change here because it carries physical information that is used to compute
the partition function and the free energy (see Sec. 8.1.2). The expectation value of an arbitrary
operator A is computed by

⟨A⟩τ = ⟨Ψ(τ)|(A ⊗ 1)|Ψ(τ)⟩
⟨Ψ(τ)|Ψ(τ)⟩ (8.10)

where ⟨Ψ(0)|Ψ(0)⟩ = dN with d = 2 the local dimension for spin-1/2 models. It is noteworthy that
the two sheets, comprised of the real spins and the ancilla spins, respectively, become interconnected
upon performing a partial trace over the ancillas, thereby forming a cylindrical geometry. In the
numerical calculations, one might therefore find it advantageous to move half of the imaginary time
evolution to the ancilla spins and to apply exp(−τH/4) on both sheets, which makes the problem
more symmetric. Likewise, the expectation value of an arbitrary operator is then derived in a more
symmetric manner as

⟨A⟩τ = 1
2

⟨Ψ(τ)|(A ⊗ 1 + 1 ⊗ A)|Ψ(τ)⟩
⟨Ψ(τ)|Ψ(τ)⟩ . (8.11)

However, for large system sizes, this procedure doubles the computation time for the energy, which is
crucial whenever (H2)Ψ(τ) is computed in order to calculate the β modification described in Sec. 4.4.
Hence, it is not used in those computations. The description of the purification algorithm so far is
general and can be performed with any variational ansatz wave function, provided that the initial
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infinite-temperature state (8.5) can be represented accurately. The question remaining is how the
state in equation (8.7) can be represented by a variational ansatz in general and the NN ansatz in
Eq. (7.2) in specific. We note that the performance of the algorithm discussed below might possibly
be improved by using deep neural networks (DNN) as, for example, convolutional neural networks
(CNN), along similar lines as in the ground state optimization algorithms [89]. Here, the focus is
on demonstrating how thermodynamic calculations can be performed in principle and what the
fundamental limitations are. For convenience, we label both the real and the ancilla spins as si with
i = 1, · · · , N for the real spins and i = N + 1, · · · , 2N for the ancillas. For the components of the
wave function, we then choose to adjust the NN ansatz in Eq. (7.2) to be

ΨW(s) = exp
(

−
2N∑
n=1

ansz
n

)
M∏

m=1
cosh

( 2N∑
n=1

Wmnsz
n + bm

)
exp

(
−

2N∑
n=1

cn(sz
n + sz

(n+N)mod(2N))2
)

,(8.12)

where a, c ∈ C2N and b ∈ CM , while W ∈ C2N×M is the weight matrix. The modification entails
the inclusion of the last term governed by c, which couples every spin with its respective ancilla.
The ansatz in Eq. (8.12) is thus referred to as the modified neural network (mNN) ansatz. The
(not normalized) infinite-temperature state |Ψ(0)⟩ can now formally be obtained by ci → +∞,
i = 1, · · · , 2N , which exponentially suppresses all components where real site and ancilla site do
not have opposite signs and gives all components where the signs are opposite equal weight in the
wave function, if the other parameters are kept finite. In practice, however, this limit cannot be
performed exactly because numerical gradient methods—required to change the parameters of the
wave function during the imaginary-time evolution—will then not be able to find the proper descent
path. We therefore set ci = c = const > 0 and real. Furthermore, we choose the elements of a
and W from a random normal distribution centred around zero with a very small width w ∼ 10−2

and keep b = 0. In Refs.[194, 195], purification was employed without introducing the last term in
Eq.(8.12). Instead, the parameters W were adjusted to achieve the infinite-temperature state. It’s
worth noting that in our method, the suppression of unwanted contributions to the wave function
is exponential, whereas using the W parameters to realize the infinite-temperature state leads to
only quadratic suppression if some noise is introduced to these parameters. Our approach allows for
the addition of noise to the W parameters while maintaining exponentially suppressed unwanted
contributions.

8.1.2 Macroscopic Thermodynamic Variables

Besides expectation values of local quantum operators, it is also of interest in thermodynamics
to compute macroscopic thermodynamic variables. They are in the VMC method, for example,
attainable by indirect computations from the energy E(T ) [199]. To compute the free energy and
the entropy of the system, the specific heat capacity is obtained first in the following way

C(T ) = ∂T E(T ) = ∆H2

T 2 , (8.13)
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where ∆H2 = ⟨H2⟩ − ⟨H⟩2. There is no additional computation needed in the algorithm since the
quantity ⟨H2⟩ is computed for the β modification anyway (see Sec. 4.4). This can then be used to
obtain the entropy and the free energy as well by

S(T ) =
∫ T

0

C(T ′)
T ′ dT ′ F (T ) = E(T ) − TS(T ) . (8.14)

For this computation to be accurate, it is crucial that the numerical results for the specific heat
capacity and/or the energy are accurate. This can be circumvented by computing the free energy
directly in the algorithm. This sounds counter-intuitive in the beginning since these quantities are in
the ensemble formulation always related to the number of microstates. However, the normalization
constant of the single, unnormalized state |Ψ(β)⟩ contains the information necessary to calculate
these thermodynamic quantities, as is derived in Refs. [198, 196], since the partition function is
given by

Z(β) = ⟨Ψ(β)|Ψ(β)⟩ , (8.15)

and the norm of the state is itself adjusted to the correct value by setting 2N = ⟨Ψ(0)|Ψ(0)⟩. Thus,
the computation of any other thermodynamic quantity, as for example the free energy

f(β) = −1
Nβ

log⟨Ψ(β)|Ψ(β)⟩ , (8.16)

is feasible. Unfortunately, there is no direct β modification available. Thus, the imaginary time τ is
for the free energy equal to the inverse temperature β. It is stressed that the β modification for
correlation functions, on the other hand, is available and computed using the ratio γ1 in Eq. (4.38).

8.1.3 Numerical Results

To investigate the performance of the proposed algorithm, the spin-1/2 Heisenberg chain is
investigated, with the Hamiltonian introduced in Eq. (2.9), as a test case. We use open boundary
conditions and the canonical transformation from Eq. (2.15). To consider the peculiarities of this
method, the analysis is started with small system sizes in which the full Hilbert space can be taken
into account, and compared to exact diagonalization results. The effect of the Monte Carlo sampling
is subsequently investigated independently before the algorithm is applied to larger system sizes.
We note that the approach was already considered for deep Boltzmann machines in Refs. [194, 195].
However, the method to obtain the initial, infinite-temperature state is different from our approach.

Numerical Results for Small Systems

First, the results for the isotropic Heisenberg model with N = 7 sites using the purification algorithm
are shown in Fig. 8.1, where all basis states are kept. Note that due to the doubling of the number
of sites when adding the ancillas, this already corresponds to a Hilbert space dimension of 214. The
results show that for M = 28 hidden units in the mNN ansatz in Eq. (8.12), the exact results for
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Figure 8.1: Inner and free energy for an open
Heisenberg chain with N = 7 sites obtained
using the purification algorithm without the β
modification, a desired tolerance of ϵ = 10−9 and
R = 2 · 103 iterative steps [80]. In the mNN ansatz,
M = 28 hidden units are used. The insets show the
absolute errors for c = 0.3, 0.4, 0.5.
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Figure 8.2: Imaginary time τ in the Heun algorithm
versus number of iterative steps for an open
Heisenberg chain with N = 7 sites [80]. The
parameters are the same as in Fig. 8.1. The β
modification using γ1 in Eq. (4.38) is depicted in
the inset.

the energy e(T ) and the free energy f(T ) are reproduced with absolute errors ∼ 10−3 − 10−4. If the
parameter c in the mNN ansatz is chosen too small, the energy of the infinite-temperature state is
strongly deviating from zero—the infinite-temperature value of the energy for the chosen form of
the Hamiltonian in Eq. (2.9)—and thus a bad approximation of the infinite-temperature state. On
the other hand, if c is too large and potentially infinite, the gradients reduce to zero. The course of
the imaginary time in the Heun algorithm (see Sec. 4.3) is different depending on the respective
initial state and the topology of the area that is traversed in the time evolution (see Fig. 8.2). The
effect of the β modification using γ1 in Eq. (4.38) depicted in the lower right inset is negligible for
temperatures larger than the finite size gap and is smaller than the inherent error of the approach
and is thus not visible in Fig. 8.1.
For larger systems, it will no longer be possible to use the full Hilbert space. Instead, a Monte Carlo
sampling using the Metropolis algorithm, as explained in Fig. 4.1, is employed. To better understand
potential additional issues, which may arise due to the sampling, the results for the same system
size, N = 7, are shown in Fig. 8.3. Here, the results for the energy are as accurate as those for
the full Hilbert space simulations if sufficiently many Monte Carlo samples are used and provided
that the initial state is carefully chosen. The latter turns out to be more intricate here. First, a
certain amount of noise in the a and W parameters is required for the imaginary time evolution
to work properly. Both sets of parameters are drawn from independent normal distributions with
a width w = 0.02. Second, the initial parameters ci = c = const > 0 have to be chosen just large
enough to obtain ⟨Ψ(0)|H|Ψ(0)⟩ ∼ 10−3 − 10−4. If the initial c parameter is chosen too large, then
the algorithm remains stuck close to |Ψ(0)⟩ for a large number of steps and also shows instabilities.
This is due to the nature of the infinite-temperature state. Increasing the parameter c comes with
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an increase in the rejection probability in the Monte Carlo sampling and thus hinders the algorithm
to explore all configurations violating the ergodicity feature. It is stressed that to go from one
configuration that is fully correlated (s = −s′) to another one, two spins need to be flipped, namely
one real and one ancilla spin. Thus, the Monte Carlo sampling, proposing the next configuration by
only one spin flip, needs to traverse a configuration that is not fully correlated and thus has a small
probability. This issue is investigated more thoroughly in Ch. 10, in which the purification method
is modified in Sec. 10.2. It is stressed that the results for the energy EΨW(τ) and (H2)ΨW(τ) need to
be fitted to obtain reasonable results for the β modification. However, the computation of γ1 at
low temperatures is challenging, because both the numerator and denominator are small quantities,
which are calculated with an accuracy determined by the Monte Carlo sampling error.
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Figure 8.3: Inner and free energy for an open
Heisenberg chain with N = 7 sites obtained using
the purification algorithm and a Monte Carlo
sampling of the Hilbert space with M = 28, 4 · 104

samples, ϵ = 10−7 and R = 2 · 103 [80]. The results
with β modification are shown as solid lines, the ones
without as dashed lines. The error in the energy for
the case c = 0.2 is not shown in the upper inset.
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Figure 8.4: Imaginary time τ in the Heun algorithm
versus number of iterative steps for an open
Heisenberg chain with N = 7 sites [80]. The
parameters are the same as in Fig. 8.3. The β
modification using γ1 in Eq. (4.38) is depicted in
the inset.

Furthermore, the approximation of the infinite-temperature state is bounded by the sampling error.
Thus, it is not feasible in this case to use values c > 0.4. Making c too small, on the other hand,
leads to an initial error given by the non-zero initial energy which remains present down to low
temperatures. In practice, we proceed as follows: With w small and fixed, the results for a series
of calculations with increasing initial values for c and different values for the desired tolerance
ϵ are obtained. The results are in general comparable for a certain range of initial values for c.
Furthermore, it is noted that the error is dominated by the sampling error which is why an increase
in the number of hidden units M does not have a measurable effect. This can be deduced as well
from the β modification having no substantial effect up until low temperatures. Making M too
large, generally seems to lead to additional instabilities. For the considered model, M ∈ [N, 4N ]
seems to be optimal. While we find that this approach to find the right initial parameters and the
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right number of hidden units does work, it is noted that it requires to run multiple simulations with
different initial parameters c and ϵ. We also note, that without being able to compare with other
methods it might not always be easy to decide what the optimal initial parameters are. Furthermore,
we note that the free energy is more sensitive than the inner energy to the accuracy with which the
infinite-temperature state is approximated (see Fig. 8.3).

Numerical Results for System Sizes beyond Exact Diagonalizations

In this section, we want to briefly show that the purification algorithm can be scaled up and used
to access the thermodynamics of quantum lattice models for system sizes outside the reach of
exact diagonalization. We want to stress again that the purpose of this part is a proof of principle
demonstration of using neural networks to investigate thermodynamic properties and the discussion
of certain generic obstacles. There are a number of directions in which the algorithms presented
here could possibly be improved, including but not limited to the use of more complicated network
structures such as CNNs or modifications to the imaginary-time evolution by using, for example,
implicit iterative methods.
As an example, we present in Fig. 8.5 results obtained using the purification algorithm for a
Heisenberg chain with 30 sites and compare the results to QMC results for the energy and the
free energy, where the latter, in the QMC simulations, is obtained by the respective integration of
the former (see Eq. (8.14)). We used the stochastic series expansion code available at [190] which
is described in Ref. [191]. As for the smaller system sizes considered in the previous section, a
post-selection of data is still required and can be done in a systematic manner. We find again that the
parameter range c = 0.3...0.4 gives initial energies |e| ∼ 10−3 and allows for an accurate imaginary
time evolution. The algorithm is executed for different tolerances. For c = 0.34 and M = 60, the
results for the energy appear to be converged sufficiently for the β modified results to stay within
the mentioned accuracy for all temperatures. Increasing the number of hidden units results in a
small improvement for low temperatures, but instabilities that occur earlier in imaginary time τ .
However, as the number of hidden units increases, the algorithm is able to proceed faster in inverse
temperature β to reach lower temperatures. We want to emphasize that the β modification depicted
in Fig. 8.6 circumvents the need to increase the number of hidden units to an extent that might not
be numerically feasible anymore. The results for the energy without β modification shown as dashed
lines are about one order of magnitude less accurate than the modified data. The β modification
is thus a useful tool to achieve a good accuracy without having to increase the number of hidden
units to the point where numerical instabilities become more and more problematic. The lowest
temperatures reached are limited by the progress of the Heun method and the β modification, which
at some point result in a temperature which is not decreasing anymore. To overcome this, increasing
the number of hidden units and the number of sampled states is ultimately inevitable. To obtain a
better approximation of the ground state, the regularization has to be adjusted by adding a diagonal
matrix with entries being around 10−4 − 10−6 (see Ref. [11] and [95]) to the matrix G explained
in Sec. 4.5. This is however not possible for the computation of finite temperature results since it
distorts the evolution itself. We find that the free energy is computed to an accuracy of ∼ 10−3

down to low temperatures as well. Unfortunately, the results differ more at temperatures close to or
below the finite size gap (see free energy in Fig. 8.5). At even lower temperatures, the simulation
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has to be stopped in this case due to larger sampling errors. This issue is well-known in Monte
Carlo simulations. It is commonly referred to as critical slowing down and linked to an increase in
the rejection probability of the Monte Carlo algorithm violating the ergodicity condition [200, 88].
It results in a flawed approximation of the probability distribution assigning high probabilities to
configurations that are barely present. In NN theory, this is known as a spurious mode [201, 113]. It
is in detail studied for the two-dimensional J1-J2 model in Sec. 10.5.

Very recently, the authors of Ref. [194] proposed a Hadamard transformation of the infinite-
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Figure 8.5: Inner and free energy compared to
the QMC solution for an open Heisenberg chain
with N = 30 sites obtained using the purification
algorithm, 4 · 104 samples and R = 2 · 103 iteration
steps [80]. We choose c = 0.34 and ϵ = 10−6.
Results without the β modification are represented
by dashed lines. The results for M = 60 are omitted
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versus number of iterative steps for an open
Heisenberg chain with N = 30 sites [80]. The
parameters are the same as in Fig. 8.5. The β
modification using γ1 in Eq. (4.38) is depicted in
the inset.

temperature state to circumvent some of the issues related to small gradients at high temperatures.
While all purifications are unitarily equivalent, it is possible that some provide a better starting point
for numerical computations than others. It is stressed that there is no β modification applicable for
the free energy, since it is sensitive to the norm of the variational state in contrast to the energy.
The β modification is thus ineffective for the computation of other thermodynamic variables that
have to be obtained from the free energy. Furthermore, the energy results cannot be computed
accurately at temperatures low enough to allow for the computation of the free energy.

Numerical Results for Correlation Functions

To check how well the proper thermodynamics is approximated beyond the energy, we compute also
the correlation functions Cd

∥ = ⟨Sz
kSz

k+d⟩ and Cd
⊥ = −1

2⟨S+
k S−

k+d + S−
k S+

k+d⟩. In Fig. 8.7, the results
for k = 10 and d = 2 are compared to the QMC results and agree to an accuracy of order 10−3.
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The deviations observed in Fig. 8.7 are dominated by the Monte Carlo sampling error. We note
that the SU(2) symmetry is broken, in general, but that it is restored at low temperatures. The
implementation of the SU(2)-symmetry into the NN ansatz in Eq. (7.2) was proposed in Ref. [202].
However, this comes with an additional numerical cost for a basis transformation, which is why this
approach has not been able to establish itself.
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Figure 8.7: Correlation functions C2
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⊥| and the deviations of the two correlation functions from the
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8.2 Sampling Method

To compute the ensemble average of a quantum mechanical operator A (see Eq. (8.1)) at infinite
temperature, one needs to compute the expectation value with respect to every vector of an
orthonormal set {|k⟩}K

k=1

⟨A⟩β=0 = tr[A]
2N

= 1
2N

K∑
k=1

⟨k|A|k⟩ . (8.17)

The idea is now that instead of working with a full orthonormal set we can also sample the trace
using random states. These are constructed by choosing K random vector components ck from a
symmetric probability distribution ([203]) to form the infinite-temperature states

|Ψ(β = 0)⟩ =
K∑

k=1
ck|k⟩ . (8.18)

It is essential that the vector components are uncorrelated. The ensemble average is then
approximated by using S realizations of those states.

1
S

S∑
s=1

⟨Ψs(β = 0)|A|Ψs(β = 0)⟩ ≈ 1
S

S∑
s=1

K∑
j,k=1

c∗
j,sck,s ⟨j|A|k⟩ = E(|cj,s|2) tr(A) (8.19)

For normalized states, the expectation value of any |cj,s|2 is E(|cj,s|2) = 1
K

and thus the correct value
of the ensemble average at infinite temperature is obtained. The error goes in general like 1√

SK
.

An upper bound is computed in Ref. [203] in terms of the operator A. To include this idea into a
variational algorithm using the NN ansatz, the parameters of the NN have to be chosen properly.
States that fulfill the above criteria and are efficiently represented by the NN are, for example, the
so called minimally entangled typical thermal states (METTS) [197]. The term typical will later be
defined and used in Sec. 8.3 in the sense of quantum typicality. To avoid confusion, it is dropped in
this work for the notation of these states.

8.2.1 Minimally Entangled Thermal States (METS)

The minimally entangled thermal states (METS) were first discussed as a tool to perform the
imaginary-time evolution in a standard DMRG algorithm [197]. In Ref. [90], the approach was then
generalized for the NN ansatz in Eq. (7.2). A random METS is defined as

|Ψ0⟩ =
N⊗

j=1

ξj↑| ↑⟩j + ξj↓| ↓⟩j√
|ξj↑|2 + |ξj↓|2

 , (8.20)
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where the vector ξ is chosen according to a standard complex normal distribution CN(µ = 0, C = 1)
with µ the mean and C the covariance matrix of the distribution

P0(ξ) =
( 1

π

)2N

exp
−

N∑
j=1

∑
σ=↑,↓

|ξjσ|2
 . (8.21)

This is equivalent to choosing the real and imaginary part according to a real normal distribution
N(µ = 0, σ = 1/2) with σ being the variance. A METS state can be obtained in the NN ansatz in
Eq. (7.2) up to an irrelevant overall constant by setting

aj = −1
2 ln

(
ξj↑

ξj↓

)
, (8.22)

W = 0 and b = 0, see Ref. [90]. These states will be referred to as METS-NN from here on.
Numerically, one needs to add some noise to the NN parameters W and b as in the purification
method. The real and imaginary parts of both of them are chosen from a normal distribution centered
around zero with σNN = 1/N , maintaining a constant variance of the wave function components
across variable system sizes.

8.2.2 Numerical Results

The set of METS-NN states at infinite temperature is evolved by the adaptive Heun method as
explained in Sec. 4.3. The imaginary time of the algorithm τ is afterwards modified as explained in
Sec. 4.4.

Numerical Results for Inner and Free Energy

The results for the inner and the free energy of a Heisenberg chain of length N = 30 with S = 30 states
are depicted in Fig. 8.8. The accuracy for the energy is here also of order 10−3, which is expected
from the sampling error. We also note that the temperatures reached using the purification method
are lower than the ones reached here. This is depicted in Fig. 8.9 and due to the already mentioned
convergence issues at low temperatures (see Sec. 8.1.3). Compared to the purification method,
this problem is aggravated here because one needs to simulate ∼ 30 states to low temperatures
without any such instabilities occurring. Additionally, the state in which these instabilities occur first
defines the minimum temperature that can be reached. The accuracy of the free energy is as in the
purification method also of order 10−2. The algorithm also breaks down at lower temperatures for
the same reason mentioned in Sec. 8.1.3. In Sec. 10.5, it is investigated that this is related to a failure
of the Monte Carlo sampling and even calls for a conceptual change of the way the configurations
are sampled. To enable the computation of the free energy by integrating the energy results using
Eq. (8.14), as was done for the QMC results, the evolution must reach lower temperatures.
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Numerical Results for Correlation Functions

For the sampling method, it is checked as well how accurate thermodynamics is approximated
beyond the energy by computing spin-spin correlators like Cd

∥ and Cd
⊥ for k = 10 and d = 2 (see

Sec. 8.1.3). These are not obtained as an average over local operators such as the energy where
an average over N − 1 bond energies is taken. Thus, the METS-NN algorithm results in larger
errors for single spin-spin correlators. In Fig. 8.10, the results for C2

∥ and C2
⊥ are compared to the

QMC results. It is simply no longer sufficient to use ∼ 30 states only. Instead, to obtain a result
that is consistent within the Monte Carlo sampling error, ∼ 1000 states are required. Note that a
preselection of states would break the relation in Eq. (8.19). We emphasize that for any specific
single state Cd

∥ and Cd
⊥ vary, with neither of them being more accurate in general. The results

consequently also violate SU(2) invariance.
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8.3 Thermal Pure Quantum State (TPQS)

The definition of thermal pure quantum states (TPQSs) or quantum typical states comes without
the equal a priori probability postulate of statistical mechanics and replaces the ensemble average
by individual states. It was first formulated for the canonical situation of a small system S coupled
to an environment E [204] and later formulated in a way that is directly accessible to variational
algorithms in which only one pure state is considered [196]. While it seems surprising that general
quantum physical models at finite temperature, which are fully described by a density matrix, can for
large system sizes be described (approximated) by only one pure state, this feature can be deduced
from a general feature of normed spaces.

8.3.1 Measure Concentration on Normed Spaces

Normed spaces are vector spaces upon which a norm is defined. In the following, the example of
interest will be the (d − 1)-dimensional sphere Sd−1. The two-dimensional sphere was encountered
in Ch. 3 when discussing the Hilbert space of a spin-1/2 particle, known as the Bloch sphere, which
was illustrated in Fig. 3.1. The (d − 1)-dimensional sphere Sd−1 is defined as all those vectors x ∈ Rd

that fulfill the following normalization condition

∥x∥ =

√√√√ d∑
k

x2
j = 1 . (8.23)

An interesting feature of normed spaces, and thus also the (d − 1)-dimensional sphere, is the
concentration of measure theorem.

Theorem 4. Measure concentration on the sphere [4]
Let A ⊆ Sd−1, P [A] ≥ 1

2 the probability measure of A and also the probability that a randomly
chosen vector of Sd−1 falls into A, At = {x ∈ Sd−1 : dist(A, x) ≤ t} the t-neighbourhood of A,
then

1 − P [At] ≤ exp
(

−dt2

2

)
. (8.24)

This can be formulated in a more illustrative way by looking at how the vectors are spread around
the equators xj = 0. This is specified by looking at how wide the stripe is in which 90% of randomly
chosen vectors are concentrated [4].

P [{x ∈ Sd−1 : −w ≤ xj ≤ w}] = 0.9 ∀j (8.25)

The crucial point to note is that the width decreases for large dimensions as w ∝ 1√
d
, which is

illustrated in Fig. 8.11. Accordingly, if one chooses two random states of the high-dimensional sphere,
they are with a high probability practically orthogonal [205]. While this may seem counterintuitive,
it is an intrinsic feature of normed spaces that can be motivated by the fact that the expectation
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Figure 8.11: Illustration of the width within which 90% of randomly chosen states are located. In the
illustration, the additional dimensions are imagined to be added without being visualized. Reprinted with
permission from Ref. [4].

value of a single component is actually given by xj = 1√
d
. Furthermore, a random vector is created

by choosing the components from a normal distribution and subsequently normalizing them [206].
Expanding on these considerations, the second building block of this approach is represented (see
Refs. [204, 207, 206]). It describes the concentration of real-valued functions on the Sd−1-sphere.

Theorem 5. Levy’s Lemma [204, 207]
Let f : Sd−1 → R have a finite Lipschitz constant

L = sup
x2,x1

|f(x2) − f(x1)|
∥x2 − x1∥

. (8.26)

Then for a random normally distributed x ∈ Sd−1

P [|f(x) − f | ≥ ϵ] ≤ 2 exp
(

−Cdϵ2

L2

)
, (8.27)

where C = 1
(9π)3 and f the mean of f(x).

8.3.2 Infinite-Temperature Thermal Pure Quantum State (TPQS)

The obvious connection to quantum physics stems from the discussion of the projective (or normed)
Hilbert space in Sec. 3.1. All quantum physical pure states can be written as

|Ψ⟩ =
d∑
k

(ak + ibk)︸ ︷︷ ︸
ck

|k⟩ , (8.28)

where x2k(Ψ) = ak, x2k+1(Ψ) = bk and d = 2N for spin models. The vector x ∈ R2d is normalized
according to Eq. (8.23) and thus parametrized on the (2d − 1)-dimensional sphere S2d−1. However,
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a quantum mechanical system at finite temperature is, in general, in a mixed state. The vectors
{|l⟩}d

l=1 are assumed to be the eigenvectors of the density matrix ρ

ρ =
d∑
l

pl|l⟩⟨l| (8.29)

and pl are the respective probabilities with

d∑
l

pl = 1 and pl ≥ 0 . (8.30)

However, by averaging over the pure states in Eq. (8.28) chosen according to some probability
distribution p(k) with k = (k1, ...kd), the density matrix in Eq. (8.29) is recovered as

|Ψ⟩⟨Ψ| =
∑
j,k

c∗
jck|j⟩⟨k| !=

∑
k

pk|k⟩⟨k| = ρ , (8.31)

whenever the second moments are fixed by [205]

c∗
jck = δjkpk . (8.32)

The probability distribution is in general complicated. Fortunately, in the microcanoncial ensemble,
the probability assigned to every state, that fulfills a certain restriction, like the energy, is constant
and given by the number of states |S| (0 ≤ |S| ≤ d) of this subset S.

pl =


1

|S| if |l⟩ ∈ S
0 if |l⟩ /∈ S

(8.33)

For the spin models of interest in this work, we consider the whole Hilbert space of dimension
d = 2N , for which Tr[H] = 0 the energy at infinite temperature. This is the case in which Levy’s
Lemma in Th. 5 can be shown to directly apply. The vector space over the real field is of dimension
2N+1. It reduces by equipping it with the norm to a (2N+1 − 1)-dimensional sphere S2N+1−1 and a
random state therein is created easily by choosing its components ak and bk in Eq. (8.28) from a
normal distribution and normalizing them subsequently. A real-valued function f : S2N+1−1 → R
can be defined in this quantum physical notation as the expectation value of an operator A using
Eq. (8.28).

f(xΨ) = ⟨Ψ|A|Ψ⟩ = Tr[|Ψ⟩⟨Ψ|A] (8.34)

The Lipschitz constant for any operator with finite operator norm ∥A∥EV is given by L ≤ 2∥A∥EV

for any |Ψ⟩, where ∥A∥EV denotes the modulus of the maximum eigenvalue of the operator A.
Furthermore, the ensemble average is rewritten as

⟨Ψ|A|Ψ⟩ = Tr[|Ψ⟩⟨Ψ|A] = Tr
[
|Ψ⟩⟨Ψ|A

]
= Tr[ρA] . (8.35)
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Thus, Levy’s lemma for quantum expectation values can be formulated as [204, 207]

P [|⟨Ψ|A|Ψ⟩ − ⟨Ψ|A|Ψ⟩| ≥ ϵ] ≤ 2 exp
(

−C2N−1ϵ2

∥A∥2
EV

)
, (8.36)

where Eq. (8.31) was used to obtain the ensemble average [205]. The crucial finding is that the
difference between the expectation value of a randomly chosen pure state from the actual value in
the microcanonical ensemble decreases exponentially in system size.

8.3.3 Extension to Finite Temperatures

It is of course desirable to extend the infinite-temperature thermal pure quantum state (TPQS) to
the canonical setting at finite temperature. However, the geometrical situation is in principle not as
simple since the probability is more advanced. Luckily, the availability of the infinite-temperature
state (β = 0) can be used in combination with the imaginary-time evolution established in Sec. 4.2.1
to compute finite-temperature results. The principal idea is thus to use the infinite-temperature
TPQS, defined in Eq. (8.28), as the initial state of the evolution

|Ψ(β = 0)⟩ =
2N∑
k

ck|k⟩ , (8.37)

where the real and imaginary part of ck are chosen randomly from a normal distribution centered
around µ = 0 and a standard deviation of σ = 1, and time evolve it in imaginary time τ as

|Ψ(τ)⟩ = exp
(−τH

2

)
|Ψ(β = 0)⟩ . (8.38)

The temperature T = 1
β

is again computed via the β modification in Sec. 4.4. While the provided
explanations are valid, it is not inherently clear to what extent the approximation from Levy’s
Lemma in Eq. (8.36) transfers to the finite temperature states obtained in the evolution. Fortunately,
this was rigorously investigated in Ref. [196] and is sketched for completeness here.

8.3.4 Canonical Thermal Pure Quantum State (CTPQS)

The closeness of the finite-temperature TPQS, defined in Eq. (8.38), to the correct result from the
canonical ensemble is directly computed in Refs.[196, 208] and this way the notion of CTPQSs is
justified. The results are cited in the following and, this way, a concrete definition of CTPQSs for
spin-1/2 models is provided:
Let {|k⟩}2N

k=1 be an orthonormal basis of the Hilbert space H and |Ψ⟩ a pure state as before in
Eq. (8.37). Let

⟨A⟩CT P QS = ⟨Ψ|A|Ψ⟩ (8.39)
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be the expectation value of such a pure state with respect to a quantum physical operator A and

⟨A⟩ens =
Tr
[
Ae−βH

]
Z(β, H) (8.40)

its ensemble average. If ∀ϵ > 0 a function ηN (ϵ) exists with ηN (ϵ) N→∞−−−→ 0 such that the probability

P
(∣∣∣⟨A⟩CT P QS − ⟨A⟩ens

∣∣∣ ≥ ϵ
)

≤ ηN(ϵ) , (8.41)

then |Ψ⟩ is called a CTPQS [196]. The right hand side is bounded from above for a Hilbert space H
of dimension 2N by

ηN(ϵ) ≤ L2me−O(N)

ϵ2 , (8.42)

where the operator A is assumed to be a low-degree polynomial (degree ≤ m) of local operators
[196, 209]. This means ηV (ϵ) is decreasing exponentially in system size N . A similar result is
obtained in Ref. [79] and even extended to dynamical correlation functions [210]. Therefore, it is for
large system sizes sufficient to consider only one or at least just a few pure states.

8.3.5 Variational Canonical Thermal Pure Quantum State (VCTPQS)

The question remaining is how the aforementioned CTPQS can be accurately approximated in a
variational setting. While the imaginary-time evolution is of no concern, the construction of the
initial infinite-temperature TPQS is not as evident as it may look on first sight. In Ref. [211],
it was investigated thoroughly which minimum requirements the randomly chosen wave function
components of the state |Ψ(β = 0)⟩ need to fulfill for the state to be an infinite-temperature TPQS
resulting in the following two constraints:

• The components ck are uncorrelated.

c∗
jck = |cj|2δj,k (8.43)

• The mixed state density matrix ρ has low purity

tr ρ2 =
∑

k

ρ2
k ≪ 1 , (8.44)

where
ρk = |ck|2/

√∑
|ck|2 . (8.45)

This constraint guarantees that averages are not dominated by just a few large ρk.

Some probability distributions like the normal and the uniform distribution, which fulfill these two
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conditions, have been discussed in Refs. [196, 209]. Results for normally distributed wave-function
components were obtained within the finite-temperature Lanczos method in Refs. [212, 213, 214]
which include a detailed analysis of the accuracy of this method. In this work, we are, however,
interested in using a variational ansatz like the NN ansatz to compute expectation values of operators
at finite temperatures. Unfortunately, a FFNN ansatz in general and the NN ansatz in Eq. (7.2)
in particular are problematic starting points. The non-linear activation function leads, in general,
to a small number of amplitudes |ΨW(s)| dominating the wave function, thus violating the second
condition stated above for a typical state. Choosing small initial network parameters leads on
the other hand to a violation of the first condition. Additionally, it was proven in Ref. [215] and
discussed in Refs. [216, 217] that infinite-temperature CTPQS have volume-law entanglement ruling
out the METS-NN as possible candidates.

8.3.6 PP-NN Ansatz

Keeping in mind that the two conditions in Eq. (8.43) and Eq (8.44) are desired to be fulfilled,
the PP-NN ansatz in Eq. (6.33) seems tempting. If one chooses the initial parameters of the NN,
to be zero, or at least for numerical convenience so small that the variance of the NN part of the
wave function is small compared to the one of the PP part, the infinite-temperature state is solely
described by the PP part in Eq. (6.21). The correlation of the wave functions of two different spin
configurations in the PP part is computed to be ΦP P (σj)ΦP P (σk) = 0, since two configurations
differ in every term of the Pfaffian by at least one random variable X

σjσk

jk . As long as the number of
parameters is smaller than the Hilbert space dimension, non-zero higher order correlations will exist.
However, we anticipate that such correlations have no influence on the expectation values of local
observables. I.e., we expect that the difference in expectation values obtained by an actual CTPQS,
given, for example, by normally distributed ck and those obtained by the variational PP-NN ansatz
will be small if a sufficient number of parameters is kept. To allow to distinguish the influence of the
PP from the NN part, the PP-local ansatz is defined as the one for which the correlation parameters
Fij in Eq. (6.16) are only non-zero if |i − j| ≤ r with r = 1. In general, the effect of the PP part can
be adjusted by varying the parameter r.

8.3.7 The Infinite-Temperature VCTPQS

First, we check if the states chosen according to the PP-NN ansatz, see Eq. (6.33), are good
approximations of an infinite-temperature VCTPQS. As comparison, the normally distributed states
chosen according to Eq. (8.37) and the METS-NN states chosen according to the NN ansatz, see
Eqs. (8.20)-(8.22), are used. Second, the entanglement entropy is also computed as a measure for
how elaborate it is to approximate those states by a variational ansatz (see also Sec. 5.10).
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Independence of Components

It is not a priori clear to which extent the conditions for a infinite-temperature VCTPQS, discussed
in Sec. 8.3.5, are fulfilled by the PP-NN ansatz. Additionally, apart from the entanglement entropy,
it is not clear why the METS-NN states do not describe an infinite-temperature VCTPQS. We
investigate first to what extent Eq. (8.43) is fulfilled compared to a CTPQS with normally distributed
random numbers for the wave function components - from here on referred to as the Gaussian case.
It is emphasized that in the PP-NN case the real and imaginary parts of all the NN parameters
are not chosen as described in Sec. 8.2.1 but from a normal distribution centered around zero with
σNN = 1/N while those of the PP parameters are always chosen from a normal distribution centered
around zero with σP P = (N/2)! · 2N/2

(N !)2/N to keep the variance of both wave function components
constant for growing system size. This way, the NN parameters in the PP-NN ansatz do not
contribute to the properties of the infinite-temperature state but are only relevant for the numerics
of the imaginary-time evolution. Thus, those parameters can be neglected in the following discussion.
To check the validity of Eq. (8.43), the square root of the mean of the absolute value of the pairwise
Pearson correlation coefficients

ρjk = Cov[ΨW(sj), ΨW(sk)]
σΨW(sj)σΨW(sk)

(8.46)

are computed, where Cov[·] denotes the covariance, sj the j-th sz-configuration and σ the standard
deviation. In Fig. 8.12, the Pearson correlation coefficients are plotted for varying n denoting the
number of sets of parameters used. The full Hilbert space is considered for a spin chain of length
N = 12. The diagonal elements are of course excluded. The results for the Gaussian case show
as expected a n−1/2 behavior as is checked by a respective fit. While this also holds for the PP
ansatz up to an overall constant, the PP-local and the METS-NN ansatz differ significantly from
this behavior.

Distribution of Expectation Values

To check what this means for the distribution of expectation values, the standard deviation of ⟨Sz
0⟩

is computed for n = 103 sets of parameters W and varying length N in Fig. 8.13. The expectation
values are obtained for every set of parameters by using 104 Metropolis samples. Since the Gaussian
case reaches values affected by the sampling error, the full Hilbert space is used. While the Gaussian
case shows exponential decay to the infinite-temperature result, the data for the PP ansatz can be
fitted very well by a function that is proportional to e−λ

√
N , where λ is a fitting parameter. However,

the METS-NN and the PP-local ansatz show no decay with system size at all since they are product
states and thus only depend on the parameters connected to the 1st spin. This is as well as the
result for the Gaussian case analytically verified by computing the probability distribution of ⟨Sz

0⟩
which is in all those three cases given by

2⟨Sz
0⟩ = A

A + B
− B

A + B
, (8.47)
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Figure 8.12: Square root of the mean of the absolute
of the pairwise Pearson correlation coefficients of
the wave function components for n different sets of
parameters and a spin chain of length N = 12 [80].
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Figure 8.13: Standard deviation of the operator ⟨Sz
0⟩

computed using 104 Metropolis samples and n =
103 different sets of parameters chosen as discussed
above [80]. For the Gaussian case, the full Hilbert
space is considered.

where

A =
K/2∑

k

|z↑
k|2 B =

K/2∑
k

|z↓
k|2 (8.48)

and the real and imaginary part of z↑
k and z↓

k are chosen randomly from a normal distribution. The
actual variance of this normal distribution is irrelevant in this case because it cancels out and is
thus chosen to be one. Therefore, A and B follow a χ2

K distribution. Each term in Eq.(8.47) is
computed to follow a probability distribution p(y) with y ∈ [0, 1]. These, the respective value for
K and the resulting variances are noted in Tab. 8.1 and plotted as solid lines in Fig. 8.13. The

Ansatz K p(y) σ[⟨Sz
0⟩]

Gaussian 2N Γ(2N )
Γ2(2N−1)y

2N−1−1(1 − y)2N−1−1
√

2N−1+1
2N+1+2 − 1

4
PP-local 4 6y(1 − y) 1√

20
METS-NN 2 1 1√

12

Table 8.1: Probability distributions and variances for the different ansatz states [80].

promising relations for the Gaussian case in Eqs. (8.39) and (8.41) thus do not translate to the
discussed variational wave functions with a finite number of parameters. While the exponential decay
is weakened for the PP ansatz, there is no decay at all with the METS-NN and the PP-local ansatz.
For operators like the Hamiltonian in Eq. (2.16), there is still a decay of the standard deviation in
all cases for larger spin chains observed. This is due to the benefit of averaging over local spin-spin
operators along the chain. Naturally, the results for the mean of the expectation value converge in
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all cases to the infinite-temperature value with increasing number of parameter sets (see Ref. [203]
and the discussion in Sec. 8.2.1).

Entanglement Entropy

A significant difference between the ansatz wave functions becomes apparent when examining the
entanglement entropy in Eq. (5.32), where the system is divided equally in the middle into the
systems A and B. While the PP-NN ansatz shows a volume-law scaling due to the PP part of the
wave function, the METS-NN ansatz shows no entanglement because the wave function is a product
state. The different scaling with the length of the chain is illustrated for the full Hilbert space in
Fig. 8.14. This is very relevant since states with volume-law entanglement can in general not be
efficiently represented. The RBM is only capable of doing so for some specific states [142]. Thus, the
METS-NN ansatz defines an initial state that is much easier to approximate. To allow for a similar
state in the PP-NN ansatz, the PP-NN-local ansatz is used. This ansatz shows an entanglement
entropy that is only nonzero if there is a PP pair that crosses the cut in the middle of the spin
chain. This is only the case for chain lengths for which N/2 is odd. By increasing the support of the
PP ansatz, one can obtain states whose properties lie in between the blue and magenta curves in
Figs. 8.12, 8.13 and 8.14.
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Figure 8.14: Entanglement entropy of the PP, the PP-local and the METS-NN initial states compared to
the Gaussian case for different chain lengths of an open Heisenberg chain [80].
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8.3.8 Numerical Results

Due to the results obtained in the previous section, the states obtained via the PP-NN ansatz
are considered VCTPQSs. To compare the PP-NN and the PP-NN-local ansatz to the previous
methods, we average in each case over 30 initial states and time evolve these according to Eq. (8.38).
The averaging is still useful due to the fact that the error is dominated by the sampling error (see
Fig. 8.13). The finite-temperature results are again computed for a Heisenberg chain of length
N = 30. The results are shown in Fig. 8.15 and compared to the same QMC results as before. The
number of samples and the number of iteration steps R is adjusted due to the larger computational
cost for the updates of the PP parameters. For the computation of the Pfaffian after a spin flip, the
effective update rule based on Cayley’s identity, which was explained in Sec 6.3.4, is used [10].
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Figure 8.15: Inner energy of the PP-NN and the PP-
NN-local ansatz compared to the QMC solution for
an open Heisenberg chain of length N = 30 obtained
using the typicality algorithm with 104 Metropolis
samples, R = 103 and ϵ = 10−6 [80]. The average is
taken over 30 initial states. The dashed lines show
the data without β modification. The PP-NN-local
results with β modification are omitted in the main
plot because they are not distinguishable from the
QMC results on this scale.
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Figure 8.16: Imaginary time τ in the Heun algorithm
versus number of iterative steps for the PP-NN and
the PP-NN-local ansatz for an open Heisenberg
chain of length N = 30 using the typicality
algorithm and the parameters defined in Fig. 8.15
[80]. The β modification is shown in the inset.

The energy values for high temperatures are for the PP-NN ansatz more accurate, as is expected
from the discussion in Sec. 8.3.7. However, during the course of the evolution, the PP-NN ansatz
states tend to deviate further from the QMC results than in the METS-NN ansatz in the sampling
algorithm in Sec. 8.2.2. The maximum deviation is roughly at the point where the heat capacity is
maximal. The most elaborate ansatz with the largest number of parameters thus produces the most
inaccurate results. This is a consequence of the large entanglement of the initial states |Ψ(0)⟩ in
the PP-NN ansatz. Therefore, it is more difficult to approximate the typical states, although the
number of parameters in the PP-NN ansatz is much larger compared to the METS-NN ansatz. It is
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stressed that this is not due to the smaller number of Metropolis samples, as is evident from the
comparison to the PP-NN-local ansatz. Summarizing, there is not much of a numerical benefit of
using VCTPQSs in the PP-NN ansatz. The theoretical benefit is eaten up by the larger entanglement
entropy, leading to a trajectory in the variational manifold that includes states that are harder to
represent. It might be possible to find an ansatz that can represent the highly entangled states on
the trajectory in special cases, for example for a certain model. While it seems unlikely that this
can be done in general, deep NNs (DNNs) could possibly lead to a better representation of such
states and thus alleviate this issue to some degree [155].
The modification of the imaginary time shown in Fig. 8.16 illustrates the issue with the VCTPQS
in a different way. Especially for high temperatures, the imaginary time evolution in the PP-NN
ansatz shows a very large β modification, which means that the proper evolution and the evolution
projected onto the variational manifold deviate strongly. Although this feature turns somewhat
around for lower temperatures, the PP-NN ansatz states appear to be not a good starting point
due to their large initial entanglement. On the other hand, the error of the time evolution after
the β modification is applied to the PP-NN-local states is of the order 10−3 which is thus again
consistent with the Monte Carlo sampling error. It is stressed that within the PP-NN ansatz an
accurate approximation of the ground state of the one-dimensional Heisenberg model is possible.
Even the computation of the ground state phase diagram of the two-dimensional J1-J2 model, which
is depicted in Fig. 2.3, is achieved in Ref. [5]. The quantum number projection is additionally used,
as in any ground state optimization method, to allow for an accurate computation of the results.
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Chapter 9

Dynamical Correlation Functions for the
One-Dimensional Heisenberg Model at
Infinite Temperature

Besides the imaginary-time evolution, the question of how accurate the real-time evolution of a
certain quantum state at finite temperature can be simulated is of natural interest closely related
to experiments with ultracold atoms. Given the possible numerical methods available, it is even
of outstanding interest since the QMC is due to the sign problem not applicable at all, while the
time-dependent DMRG shows an exponential increase in the bond dimension with the entanglement
entropy [150, 192]. Hence, it is briefly investigated in this chapter.
The expressive power of NNs, on the other hand, has been discussed extensively in this work. It
started from principal, general theorems of real-valued NNs in Ch. 5 and resulted in the actual ability
of efficiently representing quantum states with volume-law entanglement in Sec. 5.10 and Ch. 7. We
remind the reader that special volume-law entangled states have been proven in Ref. [142] to be
represented in the RBM or NN ansatz in Eq. (7.2) using M ∼ N hidden units (see also Ref. [9]). In
their vicinity, one should thus be able to approximate similar states accurately. However, to be able
to describe the dynamics accurately, this needs to be true for a variety of states, not only for some
specific states and those in their vicinity. The algorithm for the results presented in this chapter
was developed by Jesko Sirker. It is noted that the results have been published already in Ref. [80]
(Wagner, Klümper, Sirker).

92



9.1 Spin-Spin Autocorrelation Function and Entanglement
Entropy

The aim in the following is to conduct a numerical investigation to determine the number of hidden
units necessary to achieve accurate results for the spin-spin autocorrelation function

⟨Sz
n(0)Sz

n(t)⟩ = 1
Z

Tr
{
Sz

neitHSz
ne−itH

}
(9.1)

at site n of an open Heisenberg chain at infinite temperature using the purification algorithm
explained in Sec. 8.1.1. In addition, the entanglement entropy

S = − Tr ρA ln ρA (9.2)

is computed, where ρA is the reduced density matrix for a subsystem A consisting of half of the
chain of real spins and ancilla spins.

9.2 Numerical Results

The full Hilbert space is considered in the following computations for small system sizes. The results
for N = 4, depicted in Fig. 9.1, show that at least M = 16 hidden nodes are required to accurately
approximate the exact result.

Looking at the entanglement entropy in the lower panel, one can conclude that while M = 8 is
sufficient to represent certain states with volume-law entanglement, it does not capture the full
entanglement structure of the time evolved state for times Jt ≳ 2.
The same computation for N = 6 in Fig. 9.2 proves that the number of hidden nodes required
increases with system size. At least M = 96 hidden units are necessary to obtain accurate results
for Jt ≳ 5. It is stressed, that already for M = 12, 24, 48 the entanglement entropy reaches values at
long times of the order of the maximum entanglement in the time evolved state. The variational
ansatz with M = 12, 24, 48 is thus capable of approximating states with large entanglement, but
apparently fails to do so for all states on the trajectory. Therefore, it is not sufficient to describe the
complete dynamics. Finally, in Fig. 9.3, results for N = 8 are presented, with the computation of
the entanglement entropy omitted due to the numerical complexity involved. It is stressed that the
combined system consists already of 16 sites. The number of hidden nodes required rises in this case
to more than M = 256.
In summary, the number of hidden units M required to accurately simulate the infinite-temperature
autocorrelation in Eq. (9.1) increases much faster than linear. Assuming that M = 512 hidden units
yield reasonably converged results for N = 8, the increase follows, in the best case scenario, a power
law M ∼ Nα with α ≳ 4. However, it is more consistent with an exponential scaling. While the
number of states kept in a time-dependent DMRG calculation is only limited by the available
memory and the compute time to perform a single-value decomposition or a diagonalization
allowing to reach truncated dimensions of order χ ∼ 105 − 106, time-dependent neural networks for
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Figure 9.1: Top: Autocorrelation function
⟨Sz
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n(t)⟩ for n = N/2 at infinite temperatures

for an open Heisenberg chain with N = 4 sites.
Bottom: Corresponding entanglement entropy for
cutting the chain of real and ancilla spins into two
equal halves. The RBM results for different M are
compared to the exact result [80].
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Figure 9.2: Same as Fig. 9.1 for a chain with N = 6
sites. The results for M = 24, 48 are only shown up
to Jt ∼ 13 [80].
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N ∼ 102 with M ∼ 108 hidden units might be difficult to optimize given that the Hilbert space
needs to be sampled. It is also noted that in the DMRG the dimension χ can be adaptively
increased with simulation time.
While a potential power-law increase in the hidden units with system size would make this approach
in theory more powerful than time-dependent DMRG, it might be very difficult in practice to
benefit from this scaling.
Furthermore, the NN results in Figs. 9.1, 9.2, 9.3 show, on the other hand, that the calculation
becomes inaccurate already at short times if an insufficient number of hidden units is used.
Additionally, there does not seem to be an easy way to adaptively increase the number of hidden
units during a calculation. Finally, it is noted that the strong, likely exponential increase of the
number of required hidden units is consistent with a recent publication where similar behavior was
observed for quench dynamics [218]. It is emphasized that the β modification in Sec. 4.4 is also
applicable for the real-time evolution. It can thus, in principle, improve the results obtained in this
chapter. However, the unfavourable scaling is expected to prevail.
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Chapter 10

Finite-Temperature Results for the
Two-Dimensional J1-J2 Model on the
Square Lattice

A thermal Ising phase transition in the J1-J2 model (see Sec. 2.3) in two dimensions, was first
predicted analytically in Ref. [57]. However, numerical results are rare. Its classical counterpart,
the J1-J2 Ising model has been investigated thoroughly [219]. Numerical results are in this case
also obtained by Monte Carlo methods and verify the existence of an Ising transition at finite
temperatures [220]. On the other hand, the ground state phase diagram of the J1-J2 model is well
studied with some major disagreements remaining in the midsection around J2 ≈ 0.5. Since the
finite-temperature phase transition is expected to occur at low temperatures, the ground state
phase diagram is discussed first. Secondly, the computation of finite-temperature results via the
purification and the sampling method is investigated for the two-dimensional Heisenberg model
(J2 = 0) in comparison to the results for the one-dimensional Heisenberg model in Ch. 8. Finally,
the finite-temperature results for the frustrated J1-J2 model (J1 = 1, J2 > 0) are compared to
results from exact diagonalization (ED) before the manifestation of the phase transition at finite-
temperatures is investigated. While J2 is varied, the parameter J1 = 1 is chosen to stay constant
throughout this chapter.

10.1 Ground State Phase Diagram

The nature of the ground state of the J1-J2 model for J1 = 1 and variable J2 has been studied
extensively [5]. For small J2, a Néel-type phase exists, while for large J2, a stripe-type
antiferromagnetic phase, also known as the collinear phase, is present. This is depicted in Fig. 2.3.
The phase around J2 ≈ 0.5 has been investigated by various numerical techniques leading to
different results ranging from a quantum spin liquid that is ungapped (variational method) [221] or
gapped (DMRG) [222] to a valence bond solid of collinear [223] or plaquette type [224]. The term
gap refers to the excitation spectrum. The most recent study in Ref. [5] makes use of the PP-NN

96



ansatz, which was discussed in Sec. 6.5. The authors therein managed to compute the result in
Fig. 2.3. In Ref. [225], a highly sophisticated CNN was constructed, yet it did not yield conclusive
results regarding the stability of the spin liquid phase. Summarizing, the nature of the phase
between J2 ≈ 0.5 and J2 ≈ 0.6 is still a matter of debate and has not been consistently established.

10.2 Modifications of the Purification and the Sampling
Algorithm

The primary generalization of the NN wave function in Eq. (7.2) to two-dimensional models is
straightforward, as the input and hidden nodes of the NN are fully connected. Thus, for the
NN ansatz wave function, the arrangement of the input sz in either a chain or a square lattice is
immaterial. Only the computation of correlation functions, as for example the energy, needs to be
adjusted. Hence, the sampling algorithm is adapted with minor modifications.
The ancilla spins in the purification method, on the other hand, are introduced by an additional
ancilla square lattice of the same size as the lattice of real spins. The infinite-temperature state in the
purification method in Eq. (8.12) is especially unfavourable for Monte Carlo sampling methods due to
its binary distribution assigning probabilities of either 0 or 1 to the sz-configurations [195, 88]. This
issue is amplified for the J1-J2 model in two dimensions inhibiting a functioning algorithm. The value
of the parameter c can not be increased to a value that allows for the correct infinite-temperature
state to be approximated accurately, while at the same time allowing for an accurate evolution of
the state in imaginary time τ . Luckily, due to the ambiguity of the purification with respect to a
rotation of the ancilla spins, governed by the unitary matrix U in Eq. (8.8), the binary distribution
is easily altered to a more favourable one for an efficient Monte Carlo sampling. One well-known
transformation in this field is known as the Hadamard transform

HHad = 1√
2

(
1 1
1 −1

)
, (10.1)

which is in this case only applied to the ancilla spins by defining the following operator

THad =
(

N⊗
i=1

1

)
⊗
(

N⊗
i=1

HHad

)
. (10.2)

It is noted that this corresponds to a change of basis of the ancilla spins from the sz-basis to the sx-
basis. The idea of using the Hadamard transform was first proposed in Ref. [194]. The probabilities
of the sz-configurations are after the application of THad onto the correct infinite-temperature state
all equal to 1, while the wave function components differ by their sign only. In the Monte Carlo
sampling, the rejection probability is then substantially decreased, since all states are now equally
probable and the failure of ergodicity, shining through for too large initial values of c in Sec. 8.1.3, is
cured. The direct application of the operator in Eq. (10.2) onto the infinite-temperature state in
Eq. (8.12), which was used for the one-dimensional Heisenberg model, comes with an additional cost
for the computation of the matrix elements of physical operators. The application of this operator
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onto the correct infinite-temperature state in Eq. (8.7), on the other hand, is simply expressed by
the Hadamard factor

FHad(s) = 1
2N

4
(−1)sR·sA . (10.3)

The NN ansatz is added to allow for an accurate evolution of the variational ansatz wave function

ΨW(s) = exp
(

−
2N∑
n=1

ansz
n

)
M∏

m=1
cosh

( 2N∑
n=1

Wmnsz
n + bm

)
FHad(s) , (10.4)

where sR and sA are the vectors of the sz-configurations of the real and the ancilla spins, respectively.
The correct infinite-temperature state is obtained by choosing a = b = W = 0. For the numerical
computations, small noise needs to be added to the parameters governed by the variance of the
normal distribution w ∼ 0.1 the parameters are chosen from. The results are similar for a wide range
of w ∈ [10−3, 0.1]. It is stressed that the ansatz in Eq. (10.4) is not the Hadamard transform of the
modified NN ansatz in Eq. (8.12), but the Hadamard transform of the exact infinite-temperature
state adjusted by a small noise component described by the NN ansatz with all variational parameters
chosen to be small. The correct infinite-temperature state can in both cases be approximated to an
arbitrary extent by choosing the variational parameters accordingly. In the imaginary-time evolution,
the parameters in the NN part of the variational ansatz in Eq. (10.4) change differently from the
ones in the NN part in Eq. (8.12).

10.3 Finite-Temperature Results

Following the discussion of the finite-temperature results for the one-dimensional Heisenberg model
in Ch. 8, there remain two methods available for the computation of finite-temperature results in
two dimensions: the purification and the sampling method. With the slight modification of the
infinite-temperature state described in Sec. 10.2, the purification and the sampling algorithm are
directly applicable to two-dimensional models. To check the validity of the adjusted purification
algorithm and the difference to the one-dimensional case in general, the finite-temperature results
are first computed for the two-dimensional Heisenberg model analogous to the computations in
the one-dimensional case in Ch. 8. After that, the algorithms are applied to the J1-J2 model with
J2 = 0.85 to allow for a comparison to the results obtained with the CTMRG method in Fig. 10.7.
New Monte Carlo samples are now proposed by either flipping a spin or exchanging the position of
two randomly chosen spins. The reason for this will become clear in Sec. 10.5.

10.3.1 Finite-Temperature Results for the Two-Dimensional Heisenberg
Model

To verify the validity of the algorithms at hand, the Heisenberg model (J1-J2 model with J2 = 0) is
considered. In Fig. 10.1, the inner and free energy results are depicted for a periodic Heisenberg
model on the square lattice with N = 4 × 4 sites using the purification and the sampling algorithm.
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They are compared to ED results computed with the QuSpin package explained in Ref. [226]. The
energy results are in both methods comparable to an accuracy of order ∼ 10−3 up to a small
deviation at low temperatures. The modified β in Fig. 10.2 tends to converge earlier compared to
the results for the one-dimensional Heisenberg model in Fig. 8.6 and 8.9. This is in accordance
with similar results for the sampling method for the Heisenberg model in Ref. [90]. The lowest
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Figure 10.1: Inner and free energy for the periodic
Heisenberg model on the square lattice with
N = 4 × 4 sites obtained using the purification
algorithm P (ϵ = 10−6) and the sampling algorithm
S (ϵ = 10−5) with 4 · 104 samples and α = M

N = 2.
The ED results are obtained using the QuSpin
package [226]. For the free energy, the dashed lines
denote the results without the β modification. The
difference between the results for the energy and
the free energy is depicted in the inset.
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Figure 10.2: Imaginary time τ in the Heun algorithm
versus number of iterative steps for the periodic
Heisenberg model on the square lattice with N =
4 × 4 sites obtained using the purification algorithm
P and the sampling algorithm S. The parameters
are the same as in Fig. 10.1. The β modification is
depicted in the inset.

temperature reached is similar for the considered methods at hand. In both cases, the algorithm
breaks down at those temperatures (see Fig. 10.8). Unfortunately, the minimal temperature reached
increases with system size and thus prevents meaningful results at low temperatures. This is in
accordance with more detailed studies of the critical slowing down, for example in Ref. [227]. It
is stressed that this issue can neither significantly be overcome by an increase in the number of
Monte Carlo samples nor an increase in the number of hidden units in the variational ansatz, since
the failure of the algorithm at low temperatures can be attributed to a failure of the Monte Carlo
sampling itself. This is in detail studied and explained in Sec. 10.5. It is less pronounced in the
sampling method due to the smaller Hilbert space. Furthermore, the results for the free energy
in the sampling method are of similar accuracy as in the one-dimensional case (see Fig. 8.8). It
seems unclear what causes the strong deviation of the free energy in the purification method, which
is thus not shown in Fig. 10.1. However, the consistency of the finite-temperature results for the
energy and the free energy in the sampling algorithm let us conclude that the sampling method is
also applicable in two dimensions. This only holds with respect to the energy and probably other
correlation functions in the purification algorithm.
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10.3.2 Finite-Temperature Results for the Two-Dimensional J1-J2 Model

The consideration of not only nearest but also next-nearest neighbors in the J1-J2 model comes with a
significant increase in the computation time for the energy and H2

ΨW
, leading to this part dominating

for smaller system sizes. Other than that, the purification and the sampling algorithm used for the
two-dimensional Heisenberg model are directly applied to the J1-J2 model with J2 = 0.85. The
results for the energy and the free energy are depicted in Fig. 10.3. Both algorithms show a greater
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Figure 10.3: Inner and free energy for the periodic
J1-J2 model on the square lattice with J2 = 0.85
and N = 4 × 4 sites obtained using the purification
algorithm P (ϵ = 10−6) and the sampling algorithm
S (ϵ = 10−5.4), 4 · 104 samples and α = 2. The ED
results are obtained using the QuSpin package [226].
The dashed lines denote the results without the
respective β modification. The difference between
the results for the energy and the free energy is
depicted in the inset.
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Figure 10.4: Specific heat capacity for the periodic
J1-J2 model on the square lattice with N = 4 × 4
sites and J2 = 0.85 obtained using the purification
algorithm P and the sampling algorithm S. The
parameters are the same as in Fig. 10.3.

deviation from the ED results compared to the results for the two-dimensional Heisenberg model. In
the sampling algorithm, the energy is less accurate compared to the results in Fig. 10.1. This is
already the case for larger temperatures. However, it is stressed that the infinite-temperature energy
is still approximated with an accuracy that is dominated by the Monte Carlo sampling error. The
imaginary-time evolution in the sampling algorithm at large temperatures is apparently inaccurate
and thus the reason for the deviation. In the purification algorithm, the energy is approximated
accurately at larger temperatures, but deviates more strongly at low temperatures resulting in a
large peak in the inset showing the difference to the ED results. The accuracy of the results should
be improved by increasing the number of hidden units, the number of Monte Carlo samples and
the desired accuracy of the imaginary-time evolution ε (see Sec. 4.3). Unfortunately, significant
improvement couldn’t be attained by adjusting any of these outer parameters individually. It seems
that one either needs to adjust all of these parameters collectively and substantially or even reduce
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the complexity of the approximation by using, for example, the translational symmetry.
Additionally, the specific heat capacity is considered and depicted in Fig. 10.4. While the sampling
algorithm basically only fails to accurately approximate the magnitude of the peak of the specific
heat capacity, the peak of the purification algorithm is shifted. Thus, the sampling algorithm is
the more reliable method to investigate the presumed phase transition in the following. However,
the reduced accuracy of the finite-temperature results compared to the ones in the two-dimensional
Heisenberg model need to be kept in mind when considering system sizes for which no other results
for comparison are available. It is noted that this difference between the two-dimensional Heisenberg
model and the J1-J2 model, especially for the results for the specific heat capacity, was found also in
Ref. [195] for a reduced Hilbert space (∑i Sz

i = 0).

10.4 Phase Transition at Finite Temperatures

Unfortunately, the early convergence of the modified temperature in the two-dimensional case (see
Fig. 10.2) renders the detection of the predicted finite-temperature phase transition of the J1-J2
model on the square lattice difficult, especially, since quite recently, a tensor network ansatz has
determined the critical temperature to be at TC

J1
= 0.093 for J2 = 0.85 [6]. Additionally, the algorithm

even breaks down at temperatures, where the modified β curve is not yet finally converged. This is
in detail discussed in Sec. 10.5.
Still, the behavior of the J1-J2 model with J2 = 0.85 is studied at low but finite temperatures. It is
aimed to workout whether possible indicators for a phase transition are observable in the numerical
results even for finite system sizes. Based on the finite-temperature results in Sec. 10.2, the sampling
algorithm is selected as the preferred method. Following the discussion in Sec. 2.6 there is a variety
of critical exponents to study. Fortunately, the constituents of the specific heat capacity ⟨∆H⟩ are
due to the β modification computed in every imaginary-time step anyway. An accurate computation
of the susceptibility (see Eq. (2.18)) demands a computation of the finite-temperature results for
zero and small magnetic field hi = ±h. The following correlation function

ovh = 1
N

 ∑
⟨i,j⟩,v

SiSj −
∑

⟨i,j⟩,h
SiSj

 (10.5)

allows for the detection of the stripe phase for J2 ≳ 0.61 being maximal when ordering occurs in
the vertical direction and minimal when ordering occurs in the horizontal direction. The sums in
Eq. (10.5) are taken in horizontal (h) and vertical (v) direction, respectively. The Néel phase for
J2 ≲ 0.49 is detected by computing all the next-neighbour spin interactions in the following way

oNéel = 1
N

∑
⟨i,j

(−1)i+j SiSj

N

 . (10.6)

This way, the stripe and the Néel phase are detected correctly in the respective J2 sectors depicted
in Fig. 2.3. To investigate the expected finite-temperature phase transition, the correlation function
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|ovh| and the specific heat capacity are computed for J2 = 0.85 and shown in Figs. 10.5 and 10.6.
They are compared to the already mentioned results obtained with the corner transfer matrix
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Figure 10.6: Specific heat capacity for a periodic
J1-J2 model on the square lattice with J2 = 0.85 for
various system sizes using the sampling algorithm.
The parameters are the same as in Fig. 10.5.
The coefficients for the high-temperature expansion
(HTE) up to 8-th order are obtained from Ref. [228].

renormalization group (CTMRG) method in Fig. 10.7. These results are obtained directly in the
thermodynamic limit. The formation of the phase transition for the system sizes considered is
hardly detectable. On one hand, the significant rise of the correlation function |ovh| exhibits a more
abrupt and rapid trend with expanding system size, potentially culminating in a similar abrupt
surge detected by the CTMRG method. On the other hand, the results for the specific heat capacity
already drastically deviate for lower temperatures, which is probably due to the finite size of the
system. However, the results for the high-temperature expansion (HTE) up to 8-th order from
Ref. [228] are consistent with the results obtained by the sampling algorithm for N = 6 × 6 in the
expected temperature range, while they deviate slightly from the CTMRG results. Since the authors
of Ref. [6] themselves compare their results to the HTE, it is most probable that the graphical
extraction comes, due to the small number of measurements for T > 1 and the rather large squares
used in Fig. 10.7, with an error that can explain the slight difference for T < 2 until the HTE
diverges. The critical temperature TC = 0.093, according to the results obtained by the CTMRG
method, is not reachable by the sampling algorithm due to the critical slowing down that seems to
get even worse with larger system sizes. All in all, the results obtained with the sampling method do
not show any sign of a phase transition because the system sizes investigated are too small and the
temperatures reached are not low enough. To allow for more conclusive results, the imaginary-time
evolution thus needs to reach lower temperatures. Additionally, an analysis of the correlation length
is desirable to judge which system sizes are required to allow for results at low temperatures, which
are not spoiled by finite-size effects. The results in Ref. [6] indicate that the correlation length is
of the magnitude N already for temperatures T ∼ 2. It is noted that an increase in the number
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of samples and the number of hidden units (variational parameters) barely allows to reach lower
temperatures. The reason for this is the critical slowing down of the Monte Carlo sampling, which is
studied in detail in Sec. 10.5.

Figure 10.7: Results for the energy, the specific heat capacity and the correlation function ovh computed
by the corner transfer matrix renormalization group (CTMRG) algorithm with corner dimension χ for
J2 = 0.85. Reprinted with permission from Ref. [6].

10.5 Critical Slowing Down

The breakdown of the Monte Carlo sampling is depicted for the energy in Fig. 10.8. The reason can
be attributed to what is known as the critical slowing down at low temperatures [229]. The Monte
Carlo sampling error is determined by the number of statistically independent configurations that
are used to estimate the expectation value of a physical operator. The number of configurations,
which need to be sampled in a Markov chain until another independent configuration appears, is
computed by the autocorrelation time [230]. The detection of the finite-temperature phase transition
is undermined by long autocorrelation times in critical regions. This issue is quantified in the
following. First, the estimator for the autocorrelation function of an operator O of interest

ΓO(t) = 1
NMet − t

NMet−t∑
k=1

fk
Ofk+t

O (10.7)

is computed, where fk
O = Ok − ⟨O⟩ and Ok the expectation value of the operator O with respect to

the configuration k in the sampling list. The autocorrelation function is obtained for NMet → ∞
[231]. The autocorrelation function thus serves to quantify the statistical error in the Monte Carlo
sampling or, to put it different, the autocorrelation function helps to quantify how many Monte
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Carlo samples are needed for an accurate computation of the quantity of interest. The expected
exponential decay of the estimator of the autocorrelation function

ΓO(t)
ΓO(0) ∝ e− t

τ (10.8)

allows to obtain the exponential autocorrelation time τ by a corresponding fit [231]. The integrated
autocorrelation time is summed up to be

τint = 1
2 +

W∑
t=1

ΓO(t)
ΓO(0) , (10.9)

where the factor 1
2 is a matter of convention. This is in detail discussed in Ref. [232]. The choice

of W is either computed therein in a more advanced way or by looking closely at the plot and
choosing a point where the curve is sufficiently converged to zero. This is extensively discussed
in Refs. [233, 234]. However, an accurate computation of the integrated autocorrelation time is
here not of interest, but just a qualitative description of the issue at low temperatures. For this
purpose, the parameter is chosen to be finite W = 2000. The critical slowing down of the Monte
Carlo algorithm can be detected by an increase in the autocorrelation time. Finally, the integrated
autocorrelation time can be used to compute an error estimate for the operator O

σO =
√

2τint
V ar[fk

O]
NMet

, (10.10)

where V ar[fk
O] the variance of fk

O [231]. To clarify the critical slowing down at low temperatures,
the numerical results for a periodic J1-J2 model on the square lattice with N = 4 × 4 sites and
J2 = 0, 0.85 using the purification algorithm are discussed in detail. It is stressed that the issue
is also present for the Heisenberg model, even in one dimension. However, it occurs already at
higher temperatures for two-dimensional models. The breakdown of the algorithm is observed for
the expectation values of physical operators, for example the energy, which is depicted in Fig. 10.8.
This is directly linked to an increase of the rejection probability of the Monte Carlo sampling shown
in Fig. 10.9. The integrated autocorrelation time is computed for the Hamiltonian and illustrated in
Fig. 10.10. It is stressed that 1/τ denotes the imaginary time in the purification algorithm, which can
be used to compute the temperature via the β modification. In any other case in this section, τ refers
to the (integrated) autocorrelation time. The integrated autocorrelation time is directly linked to the
rejection probability. The breakdown of the algorithm is observed if the rejection probability and thus
the autocorrelation time exceeds a critical value. In this event, the Monte Carlo sampling becomes
trapped in certain states because they have a significantly higher probability |ΨW(s)|2 compared to
those proposed in the subsequent sampling step. This prevents the Monte Carlo sampling algorithm
to explore the space of possible configurations to a sufficient extent. It is only slightly refined by
allowing the local updates to consist of either a spin flip or an exchange of positions of two randomly
chosen spins. This issue has been recently studied extensively for the Potts-model in Ref. [227], where
a exponential relation between the rejection probability and the integrated autocorrelation time
τint = ae−bprej was detected for large rejection probabilities. It has also been described for frustrated
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models [144]. The larger rejection probability at lower temperatures for J2 = 0.85 compared to
J2 = 0 in Fig. 10.9 and the earlier breakdown of the algorithm in Figs. 10.8 and 10.10, are consistent
with the presumed finite-temperature phase transition. However, this can only serve as an indication
for a critical behavior at low but finite temperatures, given the inconclusive results in Sec. 10.4. The
results are computed in the purification algorithm, however, it is stressed that the critical slowing
down also shows up in the sampling algorithm at low temperatures. Furthermore, it is stressed that
the shortcoming of the NN ansatz is in NN theory denoted as a lack of the generalization property
of this specific FFNN [144]. Still, in the setting at hand, it becomes clear that the failure of the
algorithm can not be assigned to the variational ansatz itself, but the nature of the Hilbert space, the
chosen sz-basis and the local spin changes proposed. For example, the implementation of some kind
of importance sampling, would obviously decrease the rejection probability without touching the
NN ansatz itself [3]. For this to work out, one could use the probability distribution in the previous
time step, for example. Other than that, it is quite elaborate to overcome this issue especially when
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using the VMC method. The task is to propose new configurations in the Monte Carlo sampling
in a way that the rejection probability does not grow larger than ∼ 80%. It is worth noting that
there exists a golden rule stating that the rejection probability should ideally be around 50% for the
Monte Carlo sampling to be efficient [229]. One way to overcome this issue is to make use of cluster
algorithms like the Swendsen-Wang algorithm [235] or the Wolff-algorithm [236]. However, these are
hardly efficiently applicable for models that go beyond simple exchange interaction models [229].
The efficient application of such a cluster algorithm is worth a separate study itself, especially, since
they are rarely used in a variational setting. Another way to overcome the issue of critical slowing
down is to change the variational NN ansatz to a so-called autoregressive NN ansatz [237]. These
are inspired by classical models, where the probability is decomposed into a product of conditional

105



probabilities

pP(v) =
N∏

i=1
pP,i(vi|v<i) (10.11)

with P the variational parameters and v the visible or input nodes [238]. This allows for every
factor in Eq. (10.11) to be parametrized by a separate FFNN [239]. The crucial point is that, due
to the product structure, the sampling of clusters of the model at hand is enabled, for example
by proposing a transition of the form s → s′ with s≤N−k = s′

≤N−k held fixed for any k = 1, ..., N
[240]. However, this way, there are only N specific and fixed clusters allowed. With the exception of
Ref. [237], they have been mostly deployed for classical models or the approximation of classical
probability distributions in general. In the quantum case, this would mean that the absolute value of
the variational wave function ansatz needs to be of the product structure in Eq. (10.11). Therefore, it
seems to be beneficial to divide the wave function in a part describing its absolute value and another
part describing its phase. A complex function of this kind is known as a real-valued split function
and was mentioned in Sec. 5.5. The sigmoidals ansatz (SA), discussed in Sec. 5.6.1, could for example
be used by replacing the NN describing the absolute value by an autoregressive NN. Since they
define a very different and complex architecture, the detailed investigation of the complex-valued
autoregressive NNs goes beyond the scope of this work.
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Figure 10.10: Integrated autocorrelation time τint for a periodic J1-J2 model on the square lattice with
N = 4 × 4 sites obtained using the purification algorithm. The parameters are the same as in Fig. 10.8.

It is stressed that this issue is not prevalent in the ground state optimization since quantum number
projections, for example for the total spin, are used in this case [5]. For the elaborate CNN used
in Ref. [225], a certain sign structure needs to be imposed additionally for the initial state in
order for the optimization to reach the ground state. All in all, it can be concluded that without
restricting the wave function to be in a certain subspace of the Hilbert space the ground state of the
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two-dimensional J1-J2 is difficult to approximate variationally. This is in accordance with similar
results for eigenstates of this model [241].
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Chapter 11

Conclusion

This thesis has contributed to classify to what extent the idea of using FFNNs in a VMC algorithm
is efficiently applicable to quantum spin models in order to obtain an accurate evolution in real and
imaginary time. The imaginary-time evolution for the one-dimensional Heisenberg model was studied
in the purification, the sampling and the typicality algorithm to obtain finite-temperature correlation
functions. In the purification and the sampling algorithm, results for local correlation functions in a
large temperature range have been obtained and compared to ED and QMC results. The accuracy
is dominated by the sampling error. Therefore, the NN ansatz used in this work can sufficiently
approximate the wave functions along the trajectory of the imaginary-time evolution. The number
of variational parameters necessary is quadratic in the length of the spin chain. Additionally, even
the free energy and thus other thermodynamic variables are feasible. However, the free energy is in
the purification algorithm more reliant on the accuracy with which the infinite-temperature state is
approximated and on an accurate Monte Carlo sampling. This leads to an error for low temperatures
that dominates over the sampling error. The results obtained in this work allow not only to be
compared to results derived by other methods, but also to be applied to models in which other
numerical results are lacking. Combined with the β modification, the reliability of these results can
be judged and the error of the method can be quantified. This way, a lasting critique of variational
algorithms in physics in specific and NN algorithms in general is managed.
Furthermore, the criteria that a variational ansatz needs to fulfill in order to be a variational
canonical thermal pure quantum state (VCTPQS), is investigated in detail. Building upon these,
the combined PP-NN ansatz is recognized and shown to be an intriguing candidate. Unfortunately,
it is, due to its high entanglement entropy, also cumbersome to evolve accurately. Since quantum
typical states are in general highly entangled, exploiting quantum typicality in a variational setting
for computing accurate results at low temperatures seems unlikely. However, it is stressed that
the VCTPQs provide more accurate results than the sampling algorithm at higher temperatures.
Furthermore, the confusing naming of minimally-entangled typical thermal states (METTS) is
discussed. It is shown that those states do not show any sign of quantum typicality, as defined in
this project, and thus a clarification in notation is proposed by dropping the term typical.
For the dynamical correlation functions of the infinite-temperature state of the purification algorithm,
the scaling of the number of hidden units, that is necessary to obtain accurate results, was shown
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to scale with the system size at least like M ∼ Nα with α ≳ 4, but is more likely to show an
exponential scaling. The RBM thus fails to efficiently approximate a finite number of states with a
large entanglement entropy, although it was proven to do so for some specific states. The reason for
this failure is thus the same as the one for the inaccurate imaginary-time evolution of VCTPQSs.
This finding is in accordance with similar results in DMRG and the scaling of the bond dimension
with the entanglement entropy. In this regard, the VMC method using FFNNs does not represent a
significant breakthrough, which aligns with the correspondence observed between MPSs and RBM
ansatz wave functions.
In the last part of this study, the purification and the sampling algorithm are applied to the
two-dimensional Heisenberg model and the two-dimensional J1-J2 model with J1 = 1 and J2 > 0.
Especially for the latter model, numerical results are rare. For the two-dimensional Heisenberg model
with N = 4 × 4 sites, the results obtained for the energy with the purification and the sampling
algorithm agree with the ED results to an accuracy of ∼ 10−3. For the two-dimensional J1-J2
model with J2 ̸= 0, the construction of the infinite-temperature state in the purification algorithm
needs to be altered using the Hadamard transform. The finite-temperature results are for this
model in the purification and the sampling algorithm less accurate. An increase in the number of
hidden units, the number of Monte Carlo samples and the desired accuracy of the imaginary-time
evolution is inevitable. Unfortunately, the critical slowing down of the Monte Carlo sampling is
more pronounced for the two-dimensional J1-J2 model and inhibits accurate results at the presumed
critical temperature, which is suggested by CTMRG results. However, the sampling algorithm is used
to investigate if there are signs of a finite-temperature phase transition detectable at temperatures
right above the critical temperature for finite system sizes N = 4 × 4 and N = 6 × 6. While there is
a sudden increase in the spin-spin correlator observable, the results for the specific heat capacity
can not confirm an emerging peak and thus differ significantly from the CTMRG results in the
thermodynamic limit. This can mainly be attributed to finite-size effects. All in all, one needs to
admit that the system sizes considered and the temperatures reached with the sampling algorithm
are not sufficient to conclusively support the notion of the phase transition, let alone provide a
conclusive approximation of the critical temperature.
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Chapter 12

Outlook

The finite-temperature properties of the one-dimensional Heisenberg model are extensively studied
in this project. While correlation functions are accurately obtained in the purification and the
sampling algorithm, the accuracy of the free energy could be further improved by choosing the
infinite-temperature state more accurately. Furthermore, it would be interesting to further investigate
how the β modification can be adjusted to include an improvement of the free energy results. The
developed algorithm for the purification as well as the sampling method can thus serve as a basis for
further investigations and computations of correlation functions of physical interest, for example for
even more complex spin models with larger interaction ranges. It is stressed, that the NN ansatz
used throughout this work has not been tailored to any specific properties of the model, which could
be done to improve the accuracy of the results. Furthermore, the results for the models considered
in this work could also help to better understand which class of highly-entangled states on the
trajectory of the time evolution can be efficiently represented by the NN ansatz used throughout
this work and similar FFNN ansatz wave functions, and what kind of states can not. While a similar
relation is available in DMRG, it is lacking for FFNN ansatz wave functions. It is stressed that
this is the reason for the inaccuracy of both the imaginary-time evolution of the VCTPQS and the
real-time evolution of the infinite-temperature state in the purification algorithm, whenever the
number of variational parameters is not adjusted drastically with system size.
For the investigation of the finite-temperature results in the two-dimensional J1-J2 model, it is
desirable to investigate how the hyperparameters need to be adjusted to obtain results that are
as accurate as in the one-dimensional case. Additionally, it would be interesting to see how the
application of the translational symmetry could potentially ease the necessity to increase these outer
parameters.
Fundamentally, it would also be of great interest to compare the results obtained in this work to
the ones that are attainable via the method using exact representations, which was mentioned in
Sec. 7.3. This could allow to tailor the universal ansatz wave functions to some extent to some
specific features of the J1-J2 model, for example, and this way improve the accuracy and the efficiency
of the algorithm.
To allow for accurate results for the order parameter and the specific heat capacity in the two-
dimensional J1-J2 model at small temperatures, the finite-size effects need to be studied in detail
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to identify what system sizes need to be considered to obtain results that are in accordance with
the CTMRG results in the thermodynamic limit. An accurate investigation of the presumed finite-
temperature phase transition is only achieved by altering the Monte Carlo sampling fundamentally.
In principle, there are three paths to go along. One is to try to translate the Swendsen-Wang or
Wolff algorithm directly to the VMC formalism and tailor it to the J1-J2 model. Another one is to
make use of the autoregressive NNs discussed in this work. This way, a certain form of clusters is
directly implied, whereas in the Swendsen-Wang or Wolff algorithm the clusters form in every step
specifically depending on the Hamiltonian at hand. The third one is to make use of the probability
distribution of the previous step in the setting of importance sampling. This specific probability
distribution could help to propose states that have a finite probability. This way, the rejection
probability should not grow to values that result in a critical slowing down.
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Appendix A

Schrödinger Equation on the Variational
Manifold of the Projective Hilbert Space

To clarify the validity of the calculation to get from Eq. (4.23) to Eq. (4.24), the steps are explained
here in detail. Multiplying with ⟨VW,γ(τ)| from the left of Eq. (4.23) and using the definition of the
projector PΨW(τ) in Eq. (3.23) leads to the following equation:

∂Wα

∂τ
⟨VW,γ|VW,α⟩ = − (G−1)αµ

⟨ΨW|ΨW⟩
⟨VW,γ|VW,α(τ)⟩⟨VW,µ|H|ΨW⟩ (A.1)

It is stressed that the Einstein sum convention is used. On both sides, the definition of the QGT in
Eq. (3.16) is applied and the definition of the projector QΨ in Eq. (3.6) is inserted:

Gγα
∂Wα

∂τ
⟨ΨW|ΨW⟩ = −Gγα(G−1)αµ⟨∂µΨW|(H − E)|ΨW⟩ (A.2)

Dividing by ⟨ΨW|ΨW⟩ allows to identify the forces, defined in Eq. (4.9), on the right hand side.
Additionally, the QGT Gγα appears on both sides of the equation and is thus cancelled.

∂Wα

∂τ
= −(G−1)αµFµ (A.3)
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Appendix B

Schrödinger Equation on the Variational
Manifold of the Hilbert Space

The computation in appendix A is analogously carried out for the variational manifold of the Hilbert
space V(H,C). The variational Schrödinger equation in Eq. (4.23) is adjusted to

d

dτ
|ΨW(τ))⟩ =

∑
α

∂Wα

∂τ
|V̂W,α(τ)⟩ = −P̂ΨW(τ)H|ΨW(τ)⟩ , (B.1)

where the local basis of the tangent space is now given as in Eq. (3.29) by

|V̂µ,W⟩ = |∂µΨW⟩ (B.2)

and thus differs from the one for the projective Hilbert space in Eq. (3.14) by the projector QΨ.
This thus changes also the definition of the projector onto the tangent space in Eq. (3.31), which is
denoted by P̂ΨW(τ). Multiplying with ⟨V̂W,γ(τ)| from the left of Eq. (B.1) and using the definition of
the projector P̂ΨW(τ) leads to the following equation:

∂Wα

∂τ
⟨V̂W,γ|V̂W,α⟩ = − (Ĝ−1)αµ

⟨ΨW|ΨW⟩
⟨V̂W,γ|V̂W,α(τ)⟩⟨V̂W,µ|H|ΨW⟩ (B.3)

It is stressed that the Einstein sum convention is used. On both sides, the definition of the QGT in
Eq. (3.30) is applied:

Ĝγα
∂Wα

∂τ
⟨ΨW|ΨW⟩ = −Ĝγα(Ĝ−1)αµ⟨∂µΨW|H|ΨW⟩ (B.4)

Dividing by ⟨ΨW|ΨW⟩ allows to identify the forces, defined in Eq. (4.25), on the right hand side.
Additionally, the QGT Ĝγα appears on both sides of the equation and is thus cancelled.

∂Wα

∂τ
= −(Ĝ−1)αµF̂µ (B.5)
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