
Visual Recognition Using Deep
Neural Networks on Abstract and

Decomposed Data

Dissertation

University of Wuppertal
School of Mathematics and Natural Science

submitted by Annika Mütze, M. Sc.
for the degree of Doctor of Natural Sciences (Dr. rer. nat.)

Supervisor Prof. Dr. Hanno Gottschalk
Co-Supervisor PD Dr. Matthias Rottmann

Wuppertal, 29.02.2024

Acknowledgments

First, I would like to express my deepest gratitude to my supervisors Hanno Gottschalk
and Matthias Rottmann since I could not have undertaken this journey without them.
They gave me the opportunity to work on the projects which form the basis of this
thesis. Furthermore, they supported me constantly throughout my time as doctoral
candidate and guided me in the broad research field. I benefitted greatly from their
knowledge and experience and enjoyed our frequent discussions.

Furthermore, this thesis would not have been possible without financial support. This
work was funded by the German Federal Ministry for Economic Affairs and Climate
Action within the project “KI Delta Learning”, grant no. 19A19013Q and within the
project “KI Data Tooling”, grant no. 19A20001E. I thank the consortium for the success-
ful cooperation and interesting discussions which broaden my research horizon. More-
over, I gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-
centre.eu) for funding this project by providing computing time through the John von
Neumann Institute for Computing (NIC) on the GCS Supercomputer JUWELS [123] at
Jülich Supercomputing Centre (JSC). Furthermore, I thank Hannah L. and Hannah B.
for assisting in setting up the classification experiments in Chapter 4 as well as Natalie
for her efforts contributing to the results in Chapter 5.

I thank my colleagues of the Applied Computational Mathematics AI Lab and former
BUW-KI team for the pleasant time we had together. Sharing knowledge, data, ideas,
tool tips and code snippets as well as our discussions in our reading club and in the
hallway led to an active and enjoyable research exchange. Especially, I would like to
thank Antonia and Svenja for the great time we had together, not only by sharing an
office. I am also grateful to all who improved this thesis by proofreading and giving
constructive comments and support for the design.

Lastly, I would like to thank my family, my close friends and faithful companions.
I would like to express my gratitude to everyone who supported me throughout this
chapter of my life. Your unwavering belief in my abilities has been a great source of
encouragement. I also would like to thank my faithful companion who I lost during that
time. He gave me faith whenever I was struggling. In addition, my family enabled me
to take the path to science and supported my decisions that led me to where I am today.

I

Foreword

The writing style chosen for this thesis is the first person plural. Thereby, we adopt the
reader including writing style which is commonly used for writing in Mathematics and
Computer Science research articles.

The work presented in Chapter 4 was widely taken word-by-word from the publications

• A. Mütze, M. Rottmann, and H. Gottschalk, Semi-Supervised Domain
Adaptation with CycleGAN Guided by Downstream Task Awareness, in Proceed-
ings of the 18th International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 5:
VISAPP, SciTePress, 2023, pp. 80–90

• , Semi-supervised Task Aware Image-to-Image Translation, in International
Joint Conference on Computer Vision, Imaging and Computer Graphics, vol. 2103
of Communications in Computer and Information Science (CCIS), Springer Nature
Switzerland, Cham, to appear

The latter is not published at the time of printing this thesis but will appear as a chapter
in a book in the CCIS Series published by Springer. All contribtuions made in the listed
publications were done by myself under supervision of Hanno Gottschalk and Matthias
Rottmann. Both publications are merged and adapted to the notation of the thesis in
Chapter 4.

Remarks. As we outline in the introduction, deep learning is a rapidly emerging re-
search area and technology which surpass human performance in specific tasks. Despite
its potential to improve and facilitate daily life, it is important not to overlook the po-
tential risks associated with technology that is involved in far-reaching decisions such
as job positions and crime accusation, as it can have a significant impact on our daily
lives [54, 120]. In addition, the deep learning technology in general can be misused.
There is a potential risk that authoritarian regimes or profit-driven companies make use
of the technology to conduct surveillance and discriminate against individuals, whether
intentionally or unintentionally. The necessity of an informed use of large deep learning
models is recently formulated in an open letter signed by over 30,000 people: “Powerful

III

Foreword

AI systems should be developed only once we are confident that their effects will be
positive and their risks will be manageable.” [3]. The solution to this is most probable
multifaceted, but careful data management and sophisticated data collection strategies,
rather than collecting everything, should most likely be part of it [23]. This includes
awareness of potentially biases either harming or discriminating marginalized groups
and minorities or more general biases based on naturally arising cues in images like
shape or texture. Deep neural networks are statistical models which learn from data.
That means, even with the best model architecture and training algorithms a model is
only as good as the data it was trained on.

All developed methods in the context of this thesis aim to give more insight into the
behavior of neural networks and to overcome limitations like annotation cost or offer op-
portunities for a potentially life-saving testing environment due to the use of simulations.
Furthermore, this thesis contributes to a better understanding of the influence of image
cues on the behavior of deep neural networks for visual recognition tasks. With our re-
search we provide a bit more insight into neural networks and thereby provide methods
to investigate semantic segmentation models on abstract and decomposed data.

IV

Contents

Acknowledgments I

Foreword III

1 Introduction 1

2 Fundamentals 9
2.1 Deep Neural Networks . 9

2.1.1 Feedforward Networks . 10
2.1.2 Convolutional Neural Networks 16

2.2 Learning from Data . 25
2.2.1 Statistical Learning . 26
2.2.2 Error Decomposition . 29
2.2.3 Universal Approximation . 32
2.2.4 Training Process . 34
2.2.5 Training Stabilization by Normalization and Regularization Layers 41

2.3 Deep Learning for Images . 45
2.3.1 Classification . 46
2.3.2 Semantic Segmentation . 55

2.4 Overcoming Data Limitation . 63
2.4.1 Data Augmentation . 64
2.4.2 Weak and Semi-supervised Learning 65
2.4.3 Transfer Learning . 66
2.4.4 Domain Adaptation . 68

VII

Contents

3 Generative Learning 73
3.1 Generative Adversarial Networks . 75

3.1.1 Vanilla GAN . 75
3.1.2 GAN Variants . 82
3.1.3 Evaluation Metrics . 83

3.2 Image-to-Image Translation . 84
3.2.1 Pix-to-Pix . 85
3.2.2 CycleGAN . 86

4 Semi-supervised Task Aware Image-to-Image Domain Adaptation 91
4.1 Introduction . 91
4.2 Related Work . 94
4.3 Semi-supervised Task Aware I2I Translation 96

4.3.1 Stage a) – Training the Task Expert 96
4.3.2 Stage b) – Unsupervised Image-to-Image Translation 97
4.3.3 Stage c) – Downstream Task Awareness 98
4.3.4 Complete SSDA Method . 99
4.3.5 Sampling Strategies for the Labeled Subset TR 99

4.4 Evaluation . 101
4.4.1 Semantic Segmentation of Real and Simulated Street Scenes . . . 101
4.4.2 Active SSDA on Real to Abstract Data 109

4.5 Conclusion and Outlook . 114

5 Cooperation Is All You Need? 117
5.1 Introduction . 117
5.2 Related Work . 119
5.3 Cue Decomposition . 122

5.3.1 Color . 123
5.3.2 Texture . 123
5.3.3 Shape . 126
5.3.4 Cue Experts . 130

5.4 Late Fusion . 132
5.5 Cue Influence Analysis . 132

5.5.1 Base Datasets . 133
5.5.2 Implementation . 133
5.5.3 Experimental Setup and Evaluation Metrics 135
5.5.4 Cityscapes Experiments . 136
5.5.5 CARLA Experiments . 139
5.5.6 Domain Shift Due to Cue Reduction 140
5.5.7 Influence on Class Level . 142
5.5.8 Influence on the per Pixel Level 146
5.5.9 Influence of the Architecture: Transformer Experiments 148
5.5.10 Likelihood Based Evaluation . 152

VIII

Contents

5.6 Conclusion, Discussion and Outlook . 154

6 Discussion and Outlook 159

List of Notations 166

IX

Chapter 1
Introduction

Deep Learning is a branch of machine learning and a subfield of artificial intelligence
(AI) that deals with specific parametric models which learn from data, so-called (ar-
tificial) neural networks, inspired by the functionality of the human brain. The first
models mimicking the human brain’s structure of interconnecting neurons were not yet
considered deep. They date back to the mid of the last century when, among other
works [170], Frank Rosenblatt introduced the concept of a perceptron [226]. Later, per-
ceptrons with multiple layers [227], known as deep feedforward neural networks, and
perceptrons trained by stochastic gradient descent to optimize the model’s parameters
were proposed [8]. They were able to classify non-linearly separable patterns. Nearly
a decade later, the publication and application of backpropagation for training neural
networks was a key driver for the development of neural networks [145, 160, 229]. The
foundation of the success of deep learning models for image processing was laid in the
late 1990s by introducing deep convolutional neural networks trained with backprop-
agation [146]. Nevertheless, deep learning was and is computationally expensive and
depends on the amount and quality of available data which all was limited at that time.
More recently, deep learning has been boosted by the accessibility of more powerful
hardware. Training neural networks in parallel on graphics processing units (GPUs)
allows for larger models and research on a larger scale. Coincidently, due to the dig-
italization of the daily life more and more data is collected and aggregated to large
datasets.

Deep learning in general has a wide range of applications [236] including but not
limited to autonomous driving [108], medicine [112, 176], natural language process-
ing [2, 15], speech recognition [85], cybersecurity [188], agriculture [6], recommendation
systems [19], process or quality monitoring [199] and surveillance [304]. If the task can
be solved by learning (complex) patterns from data, neural networks are most likely a
good model choice. Particularly, deep learning has shown remarkable results in various
computer vision tasks [92,134,142,161,218] including perception and visual recognition

1

1 Introduction

tasks. The aim of computer vision is to algorithmically extract (high level) information
from images, videos (sequences of images) or other visual sensors like LIDAR point
clouds to make decisions about real world objects or scenes [248]. Previously, classi-
cal approaches like the Roberts cross operator (1963) [221] or Hough transformations
(1962) [104] for identifying edges or patterns in images were common practice. Re-
search on computer vision inspiring deep learning dates back to at least 1983 when
the international conference on computer vision and pattern recognition (CVPR) was
held in Washington DC [1] for the first time and Ballard et al. claimed that vision task
which can easily be solved by humans should be solvable by parallel algorithms inspired
by the human visual cortex [17]. The actual breakthrough happened 2012 when Alex
Krizhevsky et al. demonstrated the dominating performance of convolutional neural net-
works trained on multiple GPUs for image classification [142]. Since then, a large variety
of model architectures were proposed. After the VGG-Net family [255] demonstrated
that convolutional neural networks can be trained with a depth of 16 to 19 layers, dif-
ferent model architectures were proposed to further increase the depth while preserving
learnability [92, 263]. Besides the trend of going deeper, lean models for limited hard-
ware were also investigated [105, 234, 265]. Recently, it has been demonstrated that
transformer models which have shown outstanding results in natural language process-
ing tasks may be adapted for vision tasks as well [161]. Besides classification, common
tasks in computer vision are object detection (object classification including the local-
ization of the object enclosing bounding box) [326] and semantic, instance or panoptic
segmentation [175] which requires classification on pixel-level.

A typical pipeline to solve recognition tasks with neural networks include the following
five steps: data acquisition → labeling → data pre-processing → model training or
inference → prediction. The first three aspects are data related, whereas the model
training incorporates most of the code, the model (architecture) and algorithmic aspects
of solving the problem. Thus, the success of deep neural networks bases on two pillars,
the model aspects and the data (assuming sufficient computational power). In the last
decades, AI evolution in computer vision was mainly driven by architecture design and
improving on benchmarks rather than data quality [55]. This is often referred to model-
centric AI in contrast to a data-centric view. In the study “Everyone wants to do the
model work, not the data work” Sambasivan et al. demonstrated that “data is the most
under-valued and de-glamorised aspect of AI” [233] even though negative downstream
effects arise from poor, biased or insufficient data [192,233].

Deep generative models are another branch of deep learning research that focuses more
on data. These models learn a mapping from a stochastic input to a data point drawn
from a certain distribution. Thus learning the joint distribution over a dataset. This
allows to generate or sample new data from the learned distribution. Work on classical
probabilistic models, the predecessors of deep generative models, has been studied since
the mid 1980s [98]. However, the advent of efficiently learning joint distributions using
deep neural networks dates back to 2014 when variational autoencoders showed suc-
cess in generating images [133,219]. Data generation and particularly image generation

2

gained more attention due to the pioneering work of Goodfellow et al. about generative
adversarial networks (GANs) [79]. The evolution of deep generative models thereby
benefited from the development of deep learning models for discriminative tasks and
improvements in the training procedures [184]. Several other methods like flow-based,
autoregressive, energy-based and diffusion models have been proposed in diverse vari-
ations [273]. Each method has its own application and limitations. As a consequence,
the choice of model should depend on the task at hand. Particularly GANs have gained
popularity due to their simplicity and the neat idea of implicitly learning the data dis-
tribution by a generator. This led to a wide range of publications about stabilizing the
training process and improving the image quality from 32× 32 pixel to high resolution
images [11, 79,127,148,177,193,209,232,238,288].

Despite the success of deep neural networks which even surpass human performance in
specific tasks, e.g., in fine-grained class discrimination [91], or in fooling humans with
generated images [127, 190], deep learning models are still an active field of research
and leave improvement potential for both laboratory conditions and real world applica-
tions [173,254].

Label Shortage. The availability of high-quality, annotated data remains a challenge
as well as the selection of a suitable dataset for a specific task or problem. When a
sensor setup is given, recording data is often simple whereas the data selection as well
as the labeling of the data is difficult [121], time-consuming [47], costly [217] and error-
prone [192,203,228]. In general, for recognition tasks labeling or annotating is required
to define the ground truth (GT) of the task. Particularly, there is a need of a large, rep-
resentative and correctly labeled dataset when applying deep learning to safety-critical
applications like autonomous driving, diagnostics or medical imaging. Both domains
come with their own difficulties ending in a shortage of labeled data. Annotation in
a medical context requires expert knowledge which is extremely expensive. Clinical
datasets are often small. As a result, the neural network does not generalize well to un-
seen data [154]. In autonomous driving, a detailed and encompassing understanding of
the environment is necessary to use machine perception to maneuver a car safely. To this
end, semantic segmentation is often used to classify each pixel in the image leading to an
annotation time of about 90 min per image for an experienced annotator [47]. However,
to make deep learning models accessible to a broader user group and more applications,
new methods need to be developed to enable training models with limited amount of
or no labeled data. To reduce the cost or amount of labeling, respectively, weakly and
semi-supervised learning approaches are proposed. Weak labels serve as a coarse approx-
imation of fine-grained annotations. For example, object enclosing bounding boxes can
serve as ‘noisy’ labels for semantic segmentation [53,128]. Bounding box annotations are
assumed to be faster than segment annotations on pixel-level. Semi-supervised learning
deals with datasets which contain a large fraction of unlabeled data and only a small
fraction of annotated data [280]. Nowadays, typical semi-supervised learning strategies

3

1 Introduction

are variants of self-training methods with pseudo labels. These pseudo labels are gener-
ated by the neural network and iteratively included into the training process, oftentimes
weighted by the uncertainty of their prediction. Thereby, the model performance and
also the pseudo labels are improved step-by-step [118,150,306]. Another learning tech-
nique encompasses a two stage training process. An unsupervised pre-training is used to
initialize suitable network parameters. The parameters are then fine-tuned on a small
labeled dataset [280]. However, these methods come with some limitations. The suc-
cess of semi-supervised learning presumes a certain smoothness of the data distribution
which is not necessarily given in real world settings [41]. Even though weak labels seem
to reduce annotation cost, they can still be intractable [277].

In parallel to research on learning strategies that address the label shortage, computer
simulations have made progress towards creating photorealistic scenes, especially in the
automotive context [59, 220, 224, 296]. An advantage of computer simulations is that
semantic labels can often be recorded simultaneously for free. Furthermore, simulations
enable the construction of various scenarios1 which are rare or life-threatening in the
real world. In addition, theoretically, it provides the opportunity to reproduce scenarios
under different conditions such as different weather and lighting conditions, allowing for
a diverse and curated train and test setup. Particularly, testing and retraining on safety-
critical corner cases can help to improve the robustness of the neural network [138]. For
that reason, the availability of simulations reduces the severity of label or data shortage.
As a consequence, well-performing segmentation models can be trained which will likely
generalize well to unseen scenarios within the same domain.

Besides, generative models can serve as data generators. This is particularly useful
when only limited data is available. By learning the data generating distribution by
a GAN for example, the generator can be used to sample new data points within the
distribution. However, this data comes without labels. Conditional GANs [177] offer
the opportunity to generate class-specific data but also need labels during training. In
summary, the source of data is not limited to only real-world sensor data since computer
simulations or generative models can serve as data sources as well. However, deep neural
networks suffer under domain shifts, i.e., the performance of the neural network drops
when evaluated on a different domain than it was trained on.

Domain Shift. Neural networks for recognition tasks learn the conditional class prob-
ability based on a labeled dataset where each sample pair is assumed to be drawn inde-
pendently from the joint data generating distribution. When this distribution changes
at test time the performance of the neural network drops [185] due to a domain shift.
Domain adaptation methods aim to mitigate this performance gap [48]. The adap-
tation can be applied on different (non-exclusive) levels: input [100], feature [277] or

1Nevertheless, creating complex scenarios or rare assets requires some expertise in computer graphics
and might need a non-negligible amount of time.

4

output [317,325] level. To shift the visual appearance of a scene, image-to-image trans-
lation methods can be used. These methods learn a pixel-to-pixel mapping between
two image domains which transfers one scene representation into another, e.g., from
summer to winter [114]. Recently, GAN-based methods have shown promising trans-
lation results [114, 320]. Changing the appearance of the scene, while preserving the
overall content makes image-to-image translation a strong candidate for domain adap-
tation approaches at the input level. However, these models lack task awareness for the
downstream task under domain shift.

Benefitting From Abstract Data. In this thesis, we address the challenge of limited
availability of labeled data by taking advantage of a synthetic domain in which it is
easier to obtain labels, thereby improving label efficiency [185]. Transferring the prob-
lem to a more abstract domain, such as a simulation or sketches instead of real-world
images, simplifies the image representation and makes it easier to collect labels. As a
consequence, this approach allows for the development of high-performing neural net-
works with potentially leaner architecture [192]. Furthermore, in the case of simulations
our approach can benefit from the earlier noted advantages, such as training and test-
ing on life-threatening (corner) cases. While drawing advantages of labeled data in an
abstract domain, we put up with a domain shift. We propose a new semi-supervised
task aware image-to-image translation method for semantic segmentation tasks which
aims to mitigate the gap. Domain adaptation in general is an active research area and
has received increasing attention as evidenced by the increasing number of publications
in the last five years [242]. Most research is done for unsupervised domain adaptation
when no labels are available in the target domain, i.e., the domain at test time. If a few
labels from the target domain are available, one speaks of semi-supervised domain adap-
tation. Apart from our method, there has been little research in this area [242]. Most
state-of-the-art methods in unsupervised domain adaptation focus on hybrid methods
adapting the downstream task network on multiple levels and combining several learn-
ing objectives. This, however, makes it more difficult to understand the influences of
different features. In contrast, our method is a modular approach which not only aims
to mitigate the domain shift but also allows for tuning the individual components of
the method. Moreover, the developed method in Chapter 4 addresses the domain shift
challenge from a more restricted data-centric perspective, asking how the training data
can be improved under a fixed model. Additionally, this method offers the possibility
for a visual inspection of which image features are relevant to the semantic segmenta-
tion model on abstract representations for accurate predictions. To balance the lack of
information due to missing labels and the cost of labeling, an extended version of our
method for classification tasks was developed in the context of this thesis [186]. The
basic method has access to a random subset of images which are provided with labels
to come up with task awareness. In contrast, we show that our method benefits when
informative data points are actively queried in the real domain which are then labeled
and help to attain task awareness.

5

1 Introduction

Model Insight by Image Decomposition. Using deep learning models in safety-
critical applications requires an understanding of any shortcomings in a dataset and
of the trained model. As a consequence, an additional challenge of neural networks is
that their decision-making process needs to be transparent for humans in uncertain situ-
ations. In general, deep neural networks are considered as ‘black boxes’. Both users and
developers lack insight into the model’s behavior and decision process for certain (po-
tentially devastating) predictions. Different research fields have focused on improving
the traceability of decisions. For example, explainable AI aims to obtain transparency
of parts of the neural network, to learn which meaning a certain network part has in the
decision-making process and to generate human-readable and understandable explana-
tions for a prediction [303]. On the other hand, the credibility of the neural network’s
prediction is examined by uncertainty quantification measures [107]. By incorporat-
ing components for estimating prediction uncertainty, an (un)certainty measure can
be applied to the model’s output. This allows for the identification of potential false
predictions and the implementation of corrective actions. Among other applications,
uncertainty-based methods are often used for active sample selection. Therefore, we
took advantage of these approaches in [186].

The dataset has a non-negligible impact on the performance of the trained neural net-
work. A major concern are biases in datasets since they lead to biases in the decision-
making process. The term bias has different meanings in the machine learning litera-
ture [64,178]. In the following, we refer to a bias in a dataset when it causes the model
to prefer one aspect over another. For example, we encounter a biased dataset and
model when the pedestrian prediction accuracy differs based on the skin color of the
people [295]. Equally, we encounter a bias if certain image features like a watermark,
the background or texture is more relevant to the prediction than the actual object or
scene [20, 72, 315]. Biases in dataset are often not obvious but deep neural networks
learn to exploit unwanted features leading to shortcut learnings which hamper gener-
alization [60, 70]. Among others, understanding the influence of cues, image features,
which naturally arise in images like shape, texture and color are crucial for an informed
use of neural networks. A large debate started since the pioneering work of Geirhos
et al. stating that ImageNet pre-trained models are texture biased as their prediction
relies more on texture than on shape [44,52,72,111]. Furthermore, it was found, that the
source of bias is diverse [95] but the dataset including its label strategy has significant
influence on the neural network decision process [156]. Most of the research done so
far is concerned with neural networks trained on classification tasks and often refer to
ImageNet as pre-training dataset. Thereby, the approaches often lack the transferability
to more complex tasks like semantic segmentation. Furthermore, the analysis bases on
conflicting cues which disregards a study on what can be learned from a standalone
cue. To this end, we introduce a new method in Chapter 5 which enables the analysis
of the decomposed cue influence in a semantic segmentation network. The work strives
to achieve an in-depth analysis of what neural networks can learn from certain cues
naturally arising in images. Therefore, we propose a method to decompose the image

6

into its main cues: color, texture and shape. While we could take advantage of existing
methods for the shape extraction, we developed a new method which allows to extract
the texture from a semantic segmentation dataset and to create a new segmentation
task for training only on this particular cue. Based on this, an in-depth analysis on the
influence of different cues was conducted, revealing insight into the behavior of semantic
segmentation networks.

In summary, this thesis addresses two major questions:

How can a deep neural network for visual recognition tasks benefit from data in an
abstract domain when facing label shortage in a complex domain?

and

Which cues in an image encode the most accessible information for a neural network
to solve a semantic segmentation task?

To this end, we developed a semi-supervised task aware image-to-image (active) domain
adaptation method as well as a strategy to decompose images into their basic cues
followed by an in-depth study of the cue influences.

Structure. In the following two chapters (Chapters 2 and 3), we give an overview
on deep learning and deep generative learning to provide the theoretical basis for the
Chapters 4 and 5. Furthermore, Chapters 2 and 3 define the notation which is used
throughout this thesis. We start in Section 2.1 by introducing the concept of deep
(convolutional) neural networks and define mathematically the different components of
neural networks which are used in later chapters. We introduce the general learning
process and give a short overview on statistical learning theory which provides the the-
oretical foundations. In Section 2.3, we describe two applications of deep learning in
the context of visual perception: classification and semantic segmentation. For both, we
provide an overview over relevant neural network architectures used in this thesis and de-
fine commonly used evaluation methods. As deep learning models are statistical models,
they need sufficient data to generalize well. Methods which address the challenge when
only a limited amount of data is available are presented in Section 2.4. While Chapter 2
focuses on discriminative models applied to computer vision tasks, Chapter 3 deals with
deep generative models. After giving a general introduction into the topic, we focus on
generative adversarial networks in Section 3.1. These networks are a special form of deep
generative models. We conclude the chapter with an application of generative models,
the so-called image-to-image translation, which plays a central role in the context of
this thesis. In Chapter 4 our semi-supervised task aware image-to-image translation
approach is presented. We start by giving a short introduction before reviewing related
works. A detailed description of the developed method is then given in Section 4.3.

7

1 Introduction

This includes the description of our extension to an active domain adaptation method
in Section 4.3.5. Detailed experiments on different datasets are given in Section 4.4
for the basic method and in Section 4.4.2 for the extended version. We conclude the
chapter by summarizing our contributions and ideas for further research directions. One
of these directions is addressed by our work described in Chapter 5 in which we study
the influence of different image cues in depth. This chapter is structured in the same
way. After an introduction to the latest insights into biases in deep convolutional neural
networks and the actual state of the art, we describe our method to decompose an image
into its basic cues: color, texture and shape in Section 5.3. In Section 5.4 we propose
a late fusion approach which enables us to analyze the cue influence on pixel-level for
complementary cues. Section 5.5 discusses our study on the influence of different cues.
Finally, we summarize our findings in Section 5.6. We conclude this thesis in Chapter 6
by summarizing our main contributions and insights as well as discussing the topic in a
broader context along with future research directions.

8

Chapter 2
Fundamentals

This chapter introduces the key terms, methods, and concepts in deep learning that serve
as the foundation for the work in subsequent chapters. We start with describing neural
networks and how to train them - the core part of deep learning. Afterwards, we focus
on the application of neural networks to computer vision tasks and give an overview
of methods which address the challenge of how to adequately train neural networks
with limited amount of data. Besides laying the theoretical foundations, we define the
notation used throughout this thesis. To easily follow the notation, we additionally
provide a list of notations at the end of this thesis (page 166).

2.1 Deep Neural Networks

Neural networks are parametric models which can be represented as a graph. This
structure consists of (a variety of) compute nodes which are connected via weighted
edges. A neural network architecture is referred to a graph realization with a fixed
number of nodes per dedicated node type and their interactions by edges. Most of the
edges have adjustable weights which are learned during a data-based training procedure.
Processing data that the model has not necessarily seen before after training completion
is referred to as model inference. In this thesis, we focus on the application of neural
networks to computer vision and image synthesis tasks. In the following, we introduce
the most common neural network types and components of feedforward neural networks
used in computer vision and image generation. Particularly, we focus on fully connected
layers in Section 2.1.1 and convolutional layers in Section 2.1.2. In Section 2.2 we explain
how neural networks can adapt to a non-explicit data generating distribution based on
training data drawn from that distribution. This includes an overview on theoretical
foundations of statistical learning, a decomposition of the errors made by a statistical
model (Section 2.2.2) and an outline about the universal approximation property of deep

9

2 Fundamentals

neural networks in Section 2.2.3. Finally, we give a detailed description of the iterative
training process in Section 2.2.4 and introduce some methods to stabilize training in
Section 2.2.5.

2.1.1 Feedforward Networks

(Artificial) neural networks (NNs) are loosely motivated by the neuron structure of
the human brain where plenty of neurons are connected in a complex network. These
neurons are activated if they get an electrical signal above their activation threshold.
Formerly inspired by neuroscience, an artificial neuron with m ∈ N inputs given by
the vector x = (x1, . . . , xm) ∈ X = Rm and one output y ∈ {0, 1} can be modelled
by a perceptron fθ which maps the input to the output by an affine transformation
(pre-activation) followed by an activation function [113]

z = fθ(x) =
m∑

i=1

wixi − b = wTx− b C affine transformation (pre-activation)

y = astep(z) = astep(fθ(x)), C perceptron (2.1)

with astep(z) =

{
1 if z ≥ 0

0 otherwise
. C activation function

Thereby, the perceptron is understood as a parametric statistical model fθ with an
adaptable weight vector w ∈ Rm and bias parameter b ∈ R grouped to θ = (w, b).
The activation function astep : R → R is used to threshold the pre-activation. The
perceptron gives only the positive feedback 1 if wTx is larger than the bias term b. A
schematic representation of a perceptron with m inputs is shown in Figure 2.1. Rosen-
blatt showed that this simple model can be used to solve binary classification of linearly
separable problems [226]. The aim of the perceptron thereby is to learn an approx-
imation of a function f ∗ : Rm → {0, 1} based on a set of N ∈ N input-output pairs
D = {xn, f ∗(xn) = yn}Nn=1, the so-called training dataset. To this end, the learnable pa-
rameters θ are iteratively adapted in a training process to approximate the function f ∗.
We provide a description of the training concept as well as the corresponding learning
theory in Section 2.2.

In order to solve more complex tasks, multiple perceptrons can be combined in a graph
structure. Combining multiple perceptrons lead to a fully connected (FC) layer, where
each input neuron2 has a weighted connection to all output neurons. Let wi be the
weight vector of the i-th neuron, with i ∈ {1, . . . ,ml}, ml ∈ N, then we define a weight
matrix Wl = (w1

T, . . . ,wml
T) where the rows of the matrix are given by the weighted

connections of the ml neurons. Given an input vector x = (x1, . . . , xml−1
) ∈ Rml−1 ,

2For simplicity, we adapt the wording ‘neuron’ from the literature when not referring to a stand-alone
perceptron.

10

2.1 Deep Neural Networks

1

x1

x2

x3

x4

xm

z =
∑m

i=1 wixi − b

−b−b
w1w1

w2w2

w3w3

w4w4

wmwm

y = a(z)a()a()

...

Figure 2.1: Schematic visualization of a perceptron.

ml−1 ∈ N, a weight matrix Wl ∈ Rml×ml−1 and a bias vector b ∈ Rml , a fully connected
layer maps x to the pre-activation vector

z = Wlx+ b =

ml∑

i=1

ml−1∑

j=1

wli,jxj + bi ∈ Rml (2.2)

where wli,j defines the weight between xj and zi. The number of output neurons ml is
denoted as the width of a fully connected layer.

The multilayer perceptron (MLP) is a composition of L ∈ N fully connected lay-
ers with possibly different widths ml, l = 1, . . . , L, forming a weighted directed acyclic
graph. This structure implies that data flows from the input to the output without
loops or backward connections. For this reason, MLPs are a special case of so-called
feedforward neural network. Connecting perceptrons in this way leads to a compo-
sitional statistical model fθ where all learnable parameters Wl, bl for l = 1, . . . , L are
summarized in the parameters θ. Since the composition of affine linear maps is still
an affine linear map, the expressiveness of such a model is limited. To this end, an
activation function al : Rml → Rml , l = 1, . . . , L is applied to the pre-activation vector
zl. In addition to the step function astep in Equation (2.1), other activation functions
can be utilized to obtain the activated layer output based on the pre-activation vector.
We introduce common activation functions, including non-linear ones, in Section 2.1.1.1.
To also solve non-linear separable problems the non-linearity of the activation functions
applied to the pre-activation vector is essential as we see in Section 2.2.3. With this,
we can mathematically define an MLP as the following mapping from an input vector

11

2 Fundamentals

x ∈ Rm0 to an activated output.

fθ : Rm0 → RmL ,x 7→ fθ(x) = fLθL ◦ . . . ◦ f 2
θ2
◦ f 1

θ1
(x) (2.3)

where each f lθl , l ∈ {1, . . . , L} is defined by

Rml−1 3 x 7→ f lθl(x) = al(Wlx+ bl)
(2.2)
= al(zl) =: hl ∈ Rml (2.4)

Assuming that the activation functions al are measurable for l = 1, . . . , L − 1, a feed-
forward neural network fθ can be understood as a composition of measurable functions
and an output activation function aL in the last layer. The output activation can be
seen as a task defining head. It can for example rescale the values of the last measurable
function in the composition to fit within the range of (0, 1) and sum up to 1 such that
they represent probabilities. A probabilistic view on task defining data is common in
deep learning as data is often noisy and therefore understood as realizations of random
variables. The layers can be structured into three types. Thereby, f 1

θ1
is called input

layer, fLθL is the output layer and all layers in between are hidden layers with hid-
den states hl. The output layer needs to solve a dedicated task based on the data,
e.g., estimating the (conditional) probability distribution of the data. In contrast, the
hidden layers have no prespecified input-output relation. Their task is to transform the
input x to facilitate the output generation of the last layer, e.g., by finding patterns or
discriminative features in the data. For that reason, the hidden state vectors are also
called feature vectors. We define the depth of a feedforward neural network by the
number of layers with hidden states3. An MLP with depth 2 and arbitrary width ml

per layer l is depicted in Figure 2.2.

2.1.1.1 Activation Functions

To enlarge the expressiveness of MLPs, an activation function a : Rm → Rm is applied to
the pre-activation zl = Wlx+ bl for l = 1, . . . , L. Most commonly, a is associated with
a scalar-function a : R → R which is applied componentwise. For serving as suitable
activation function, a should be easy to compute, differentiable and non-linear. The
differentiability is needed to use gradient-based optimization algorithms in the training
process to learn the parameters of the neural network. A detailed description of this
process is presented in Section 2.2.4. Representative examples for activation functions
are

• Heaviside step function: The Heaviside step function has already been introduced
in Equation (2.1) and is a quite old and simple activation function, which is in-
spired by neurons in the human brain. It only fires when a certain threshold is

3The number of layers is not consistently defined in the literature. In this thesis, we count each
function f lθ as one layer. Thus, a feedforward neural network with L layers has one input state
(input vector), L− 1 layers with hidden states and 1 output state and therefore a depth of L− 1.

12

2.1 Deep Neural Networks

x1

xm0

1

f1
m1

f1
4

f1
3

f1
2

f1
1

w1
1,1w1
1,1

w1
1,m0

w1
1,m0

b11b
1
1

1

f2
m2

f2
4

f2
3

f2
2

f2
1w2

1,1w2
1,1

w2
1,2w2
1,2

w2
1,3w2
1,3

w2
1,4w2
1,4

w2
1,m1

w2
1,m1

b21b
2
1

1

fL
mL

fL
1

wL
1,1wL
1,1

wL
1,2wL
1,2

wL
1,3wL
1,3

wL
1,4wL
1,4

wL
1,m2

wL
1,m2

bL1b
L
1

...

...
...

...

input layer hidden layers output layer

Figure 2.2: Schematic visualization of an MLP with depth of 2 and varying width ml per layer.
The computation of the first node in each layer is highlighted.

surpassed. This function is 0 for negative inputs and fires, i.e., is equal to 1, for
values greater or equal to zero

astep : R→ R, z 7→
{

1 if z ≥ 0

0 if z < 0
. (2.5)

MLPs with this activation function could firstly solve the so-called XOR problem,
i.e., learning the exclusive OR of two binary inputs, which was not possible with
perceptrons as the data of this problem is not linearly separable [183]. However,
due to the zero gradients and the jump discontinuity this activation function is
not well suited for gradient-based optimization.

• Sigmoid-like function: A sigmoid function can be seen as smooth approximation
of the Heaviside step function. Its property of being differentiable everywhere was
the reason for its wide use as non-linear activation function for neural networks.
The most prevalent functions are the logistic function

alogistic : R→ R, z 7→ 1

1 + e−z
(2.6)

and its rescaled and shifted equivalent, the hyperbolic tangent function

atanh : R→ R, z 7→ 2 · alogistic(2z)− 1 =
ez − e−z
ez + e−z

. (2.7)

Despite their differentiability, which makes them useful for gradient-based opti-

13

2 Fundamentals

mization, the derivatives of sigmoid-like functions saturate and gradients start to
diminish when moving away from z = 0. Small gradients can lead to difficulties
in the training process such as slowing down the learning progress. Activation
functions with gradients in (0, 1) suffer from ever smaller gradients due to the
compositional structure of the layers. We refer to Section 2.2.4 for the details
on calculating the gradients. As a consequence, the feedback how to update the
parameters get lost through the layers when these activations are used in the hid-
den layers of deeper neural networks. Especially the logistic function yields small
gradients as its derivative is bounded by 1

4
. Furthermore, due to the need to eval-

uate exponential functions, the computational cost of this activation function is
higher than that of e.g., the ReLU function which we introduce next. However,
the logistic function is a suitable activation for the output layer when predicting
a probability over a binary output since it maps to (0, 1).

• Rectified Linear Unit (ReLU) [75]: Due to the mentioned training instabilities the
sigmoid functions were widely replaced by the ReLU activation function which is
defined as the piecewise linear function

aReLU : R→ R, z 7→ max{z, 0}. (2.8)

This activation function is non-linear but preserves most of the positive proper-
ties of a linear function, e.g., non-saturating and consistent gradients with a value
of 1 for all positive input values. In addition, the function value as well as the
derivative can be computed at low cost compared to sigmoid functions. Therefore,
it is nowadays the commonly used activation function in MLPs and convolutional
neural networks which we introduce in Section 2.1.2. Nevertheless, due to the
piecewise definition, it is not differentiable in zero and has a gradient of 0 for neg-
ative input values. This may appear questionable in the context of gradient-based
optimization at first glance. However, evaluating the gradient at zero is extremely
unlikely, and thus, this case can be neglected. In practice, due to computer preci-
sion, evaluation of exactly zero is handled by the one-sided derivative.

• Leaky ReLU (LReLU): A leaky version of ReLU was introduced by Maas et al. [167]
as an easily computable function that, unlike the ReLU function, has no zero
gradients.

aLReLUα : R→ R, (z) 7→
{
z if z ≥ 0

α · z if z < 0
(2.9)

Later on it was proposed to not fix but parametrize and learn the slope for the
negative piece. This activation function is called parametric ReLU (PReLU) [91].

• Rectified Power Unit (RePU): As both Leaky ReLU’s and ReLU’s second deriva-
tives are zero, RePU activation functions with positive integer β ≥ 2 are used

14

2.1 Deep Neural Networks

when information about the curvature is needed [249].

aRePU : R→ R, z 7→ max{z, 0}β =

{
zβ if z ≥ 0

0 if z < 0
. (2.10)

For the special case when β = 2 the activation function is called ReQU and
is the function with the smallest integer β with a continuous second derivative.
For smaller β already, introduced functions can be recovered. For β = 1, this
corresponds to ReLU and for β = 0 the step function is restored.

• Gaussian Error Linear Unit (GELU): The GELU activation functions introduced
by Hendrycks and Gimpel in 2016 [94] became established later but is nowadays
the preferred choice in transformer architectures (see Section 2.3.1.2). GELU is
defined as follows:

aGELU : R→ R, z 7→ z · 1

2

[
1 + erf

(
z√
2

)]
, (2.11)

where erf denotes the (Gauss) error function defined by erf(z) = 2/√π
∫ z

0
e−t

2
dt.

In practice the error function is approximated and the approximated GELU is
given by

aGELU(z) ≈ z · 1

2

(
1 + tanh

[√
2

π

(
z + 0.044715z3

)
])

(2.12)

In contrast to activations in hidden units there are often output specific activations used
in the output layer. As introduced before, the logistic function can be used to achieve
a binary probability distribution over two output neurons. The softmax activation
function can be used to model the distribution of a discrete random variable with C
possible realizations. Given unnormalized log probabilities z = (z1, . . . , zC) from the
last layer, a proper (categorical) probability distribution where all elements sum up to
1 and each element is greater or equal to zero can be computed by the function

asoftmax : RC → RC , asoftmax(z)i =
ezi∑C
c=1 e

zc
for i = 1, . . . , C. (2.13)

MLPs can theoretically approximate a wide range of function classes as we see in Sec-
tion 2.2.3. However, they suffer from a large number of trainable parameters when e.g.,
high resolution images are used as inputs, as each input pixel has a weighted connec-
tion to the neurons in the first hidden layer [146]. Furthermore, the local correlations
between pixels, inherent to an image topology, are discarded by MLPs and need to be
learned [146].

15

2 Fundamentals

−3 −2 −1 0 1 2 3

−1

0

1

z

alogistic
atanh
astep

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1

0

1

2

z

aReLU
aLeakyReLU
aReQU
aGELU

Figure 2.3: Overview of different activation functions.

2.1.2 Convolutional Neural Networks

In order to exploit the topology of grid structures, e.g., 2D-pixel arrangement for im-
ages or 1D arrays for time series data, a special kind of feedforward neural network,
the convolutional neural network (CNN), was proposed [146]. By restricting the
receptive field of a neural network to local features and by sharing weights, the infor-
mation of the image topology is preserved while using distinctly fewer parameters [146].
Furthermore, a convolutional neural network makes use of the fact that the exact pixel
positions might be irrelevant for a certain feature since the features like contours or color
of an object do not change regardless of the object’s position in an image. A CNN is
a composition of different layer types. Each CNN consists of at least one convolutional
layer (Section 2.1.2.1) and usually one pooling layer (Section 2.1.2.2). The convolutional
layer is motivated by a discrete convolution operation, whereas the second condenses
information by downsampling. To allow non-linear transformations of the features, an
activation (cf. Section 2.1.1.1) follows each convolutional layer. In general, blocks with
convolutional layers with activation are followed by pooling layers at certain depths.
Depending on the task of the network a fully connected layer can be used at the end to
map the spatially arranged features to a prediction of C classes. The following sections
are based on [78,88,113] and [153].

2.1.2.1 Convolutional Layer

Convolutional layers are motivated by the mathematical convolution operation and aim
for sparse connectivity and parameter sharing. Furthermore, they lead to equivariance
with respect to translations of the input. Both, the fully connected layer and the con-
volutional layer have learnable weights and biases and calculate a dot product between
the weights and the input. In contrast to the fully connected layer where each neuron is
connected to all input neurons, in a convolutional layer a kernel with a support covering
only a small region of the input reduces the number of learnable elements (weights).
Furthermore, due to convolving a kernel with small support the parameter amount does
not depend on the input size [122]. Kernels have been widely used in computer vision

16

2.1 Deep Neural Networks

before deep learning has shown superior results on vision tasks. In the past, kernels
were handcrafted and convolved with an image to extract particular features, for ex-
ample edges. See Figure 2.4 for an example of a kernel detecting vertical edges. The
idea of using learnable convolutions was firstly presented by LeCun [145]. Visualizing
the learned kernels in the first layer of a CNN shows that some of those handcrafted
filters seem to be useful for feature extraction although learned from data by the neural
network [142, Figure 3].

In the context of neural networks, we focus on the discrete convolution. For signal
processing, functions are given by a finite amount of scalar data points and can be
represented as m-dimensional vectors ψ = (ψ1, . . . , ψm) ∈ Rm and κ = (κ1, . . . , κkx) ∈
Rkx , m, kx ∈ N. In theory, the discrete convolution is calculated over sequences in RZ

and ψ and κ can be represented by a function with finite support in Z. Let κ have finite
support on the index set {1, . . . , kx} (Z and ψ on {1, . . . ,m} (Z then the following
finite sum is calculated in practice leading to non-zero vector elements for the 2-nd to
(m+ kx)-th entries:

(κ ∗ψ)t =
kx∑

i=1

κi · ψt−i. (2.14)

In machine learning libraries, the mathematical convolution is rarely used, and the more
efficiently implementable ([122]) cross-correlation

(κ ∗ψ)t =
kx∑

i=1

κi · ψi+t, for t ∈ {0, . . . ,m− kx} (2.15)

is more common. The cross-correlation differs in such a way that the kernel is not flipped
with respect to the input function. Therefore, the operation is not commutative anymore
in contrast to mathematical convolutions. As the kernel is learned, a flipped cross-
correlation, i.e., a convolution, could be learned instead. Furthermore, the combination
of convolutional layers with other operations does not necessarily commute in general.
As a consequence, omitting this property does not interfere with the learning problem.
Therefore, ‘convolution’ and ‘cross-correlation’ are used interchangeably in the machine
learning context4.

The main results in this thesis are concerned with applications to vision problems and
therefore the focus in this section as of now is on images. We represent an image by a
3D-tensor Φ ∈ Rm×h×w where w and h define the spatial width and height of the image
and m is the number of channels, e.g., 3 for a color image (red, green and blue channel)
and 1 for grayscale images. For the sake of clarity, we confine ourselves to m = 1 and
consider Φ ∈ Rh×w for now. Referring to the integral kernel, a discrete kernel tensor
K ∈ Rky×kx , kx, ky ∈ N is convolved with the image Φ. The 2D-convolution of a kernel

4We follow this convention and call both operations ‘convolution’ if the kernel flip is not relevant.

17

2 Fundamentals

K and an image Φ is defined by

(K ∗ Φ)y,x =
∑

i∈Z

∑

j∈Z

Ky−i,x−j · Φi, j (2.16)

and its corresponding cross-correlation is given by

(K ∗ Φ)y,x =
∑

i∈Z

∑

j∈Z

Ki,j · Φy+i, x+j, (2.17)

where Φy,x = 0 if y /∈ {1, . . . , h} or x /∈ {1, . . . , w} as well as Ki,j = 0 if i /∈ {1, . . . , ky} or
j /∈ {1, . . . , kx}. For notational simplicity and as it is common implementation practice,
we assume that the kernel K is quadratic and k := kx = ky ∈ 2N+ 1 is odd. Commonly
kernels are used with k ∈ {1, 3, 5, 7, 11}. With this, the calculation of a single cross-
correlation element5

(K ∗ Φ)y,x =
k∑

i=1

k∑

j=1

Ki,j · Φy+i−1, x+j−1 (2.18)

reduces to O(k2) operations for y ∈ {1, . . . , h− k + 1} and x ∈ {1, . . . , w− k + 1}. The
convolution can be thought of as a kernel sliding across the image. For the sliding window
approach, the kernel is slid over the spatial axes of the image with a stride (sy, sx) ∈ N2

which indicates the number of pixels the kernel is moved along the horizontal and vertical
spatial dimension of the image before the next convolution is computed. In general the
stride is set to s := sx = sy = 1, i.e., for each pixel the discrete convolution is calculated
based on Equation (2.18). A convolution with stride larger than 1 is named strided
convolution and leads to the coarser evaluation

(K ∗s Φ)y,x =
k∑

i=1

k∑

j=1

Ki,j · Φsy(y−1)+i−1,sx(x−1)+j−1, (2.19)

for x = 1, . . . , w − sx(k − 1) and y = 1, . . . , h− sy(k − 1) of the input and therefore to
an output of reduced spatial dimension. For a 6× 6 grayscale image the 2D-convolution
with a kernel of size (3, 3) is shown in Figure 2.4. It visualizes that the convolution
preserves the spatial arrangement of the pixels and extracts local features.

With this we define a convolutional layer with a single kernel K ∈ Rk×k as the linear
mapping

Conv : Rh×w → Rh′×w′ , (2.20)

such that
Conv(Φ) = K ∗ Φ + b1h′×w′ , (2.21)

where b ∈ R is a bias term and 1 ∈ Rh′×w′ a matrix where all elements are equal to one.

5The shift of 1 in the formula derives from starting counting from 1 for the first element in the matrices.

18

2.1 Deep Neural Networks

1

2

0

0

4

1

4

3

255
255

2

5

2

255

0

0

255

7

4

255
255

255
255

4

5

255

0

0

255

6

1

255

0

0

255

3
0

1

0

0

1

0

0

1

0

∗ =

26
0

51
3

76
5

76
5

25
5

51
0

25
5

25
5

25
5

51
0

25
5

25
5

26
1

51
2

76
5

76
5

image Φ kernel K K ∗ Φ

Figure 2.4: Illustration of a 2D-convolution of a 6 × 6 image Φ and a kernel K of size (3, 3).
The kernel slides over the image with a stride of 1. The first element of K ∗ Φ is given by
1 · 0 + 2 · 1 + 0 · 0 + 4 · 0 + 3 · 1 + 255 · 0 + 2 · 0 + 255 · 1 + 0 · 0 = 2 + 3 + 255 = 260. As
no padding is applied the kernel activation map K ∗ Φ has a slightly reduced resolution. The
filter value structure aims to find vertical edges. Therefore, the kernel activation is high at the
pixels colored in purple, gray, cyan and pink.

The operation of the kernel on each spatial input position (cf. Equation (2.18)) leads to
a 2-dimensional activation map, showing the response of the kernel operation. Addition-
ally, one bias value is added to the activation map forming the so-called feature-map6.

In contrast to strided convolutions, for dilated (or atrous) convolutions, the kernel is
split at a certain rate leading to a holey (french: à trous) kernel. This can be understood
as upsampling the kernel by a factor of r and inserting zeros between kernel elements.
Thereby, r resembles the sampling rate of the input feature map. Given an input image
Φ the resulting feature map of a two-dimensional dilated convolution with rate r and a
kernel K of size (k, k) is given by

(K ∗r Φ)y,x =
k∑

i=1

k∑

j=1

Ki,j · Φy+r(i−1),x+r·(j−1), (2.22)

for x = 1, . . . , w− kdil + 1 and y = 1, . . . , h− kdil + 1. Thereby, kdil = k+ (k− 1)(r− 1)
defines the size of the holey kernel Kdil if the holes had been realized with zero entries.
Convolutions introduced so far are dilated convolutions with rate r = 1 as they do
not contain holes. Enlarging the rate r does neither enlarge the number of parameters

6Feature-map and kernel activation map are sometimes used interchangeably in the literature. We
follow this convenience when a distinction is not necessary for the understanding.

19

2 Fundamentals

(a) Dilated convolution with rate r = 2. The
kernel still has 3 ·3 learnable parameters but non-
neighboring pixel can interact due to the holey
structure.

(b) Strided convolution with stride s = 2. The
spatial dimension reduction is moderated by a
padding with ρ = 1, visualized by the gray border
pixels surrounding the green input pixels.

Figure 2.5: Schematic illustration of convolution types. The operation of the different 3 × 3
kernels on the input is visualized in purple and light green exemplary.

nor the computational cost as the number of learnable parameters of the dilated kernel
K ∈ Rk×k are equal to the enlarged kernel Kdil with size (kdil, kdil). A visualization of
this concept is shown in Figure 2.5a.

Independently of the choice of stride or dilation, the output resolution would be reduced
compared to an unmodified input, as we consider operations on tensors with a fixed size
in Equation (2.18) rather than considering the convolution over Z with finite support.
As a consequence, the operation is not defined for pixels at the border of the input. To
keep the original input resolution the input tensor can be enlarged by ρy and ρx pixels
at the borders of the input, such that (K ∗ Φ)y,x can be calculated for each position
(y, x) in the original input. For a kernel of size (ky, kx), this is achieved for ρx = bkx

2
c

and ρy = bky
2
c. This method is called padding. The most intuitive padding method is

zero padding (enlarging the input tensor with zeros) which is motivated by the theory
where we associate the vector with a discrete function with finite support. Additional
padding methods include [88]

• constant padding : padding the input with a constant value (includes zero padding),

• replication padding : repeating the border values,

• cyclic or periodic padding : the input is repeated periodically, i.e., values are given
by the input modulo its shape,

• reflection padding : starting at the original image border the values of the tensor
are mirrored.

20

2.1 Deep Neural Networks

The general shape of a resulting feature map can be expressed by

w′ =

⌊
w − kx + 2ρx + sx

sx

⌋
,

h′ =

⌊
h− ky + 2ρy + sy

sy

⌋
,

(2.23)

depending on the spatial dimension (ky, kx) of K, the stride s of the kernel evaluation
and possible padding ρy, ρx in the y and x direction. A strided convolution with padding
is depicted in Figure 2.5b.

Layers introduced so far reduce the spatial dimension of the input or keep the dimension
constant if padding is applied. In contrast, a transposed convolution or fractionally-
strided convolution7 allows to learn an increased output [62]. A transposed convolu-
tion of an input Φ ∈ Rh×w and a kernel K ∈ Rk×k yields a (h + k − 1) × (w + k − 1)
feature-map

K ∗T Φ. (2.24)

The name is inspired by the representation of convolutions by a matrix multiplication.
Convolutions can be written in terms of K̃Φ̄ with a sparse matrix K̃ defined by the
kernel and a flattened input vector Φ̄ by concatenating the input row by row. For a
2× 2 kernel

K =

(
K1,1 K1,2

K2,1 K2,2

)
(2.25)

and a 3× 3 input, the weight matrix is given by

K̃ =




K1,1 K1,2 0 K2,1 K2,2 0 0 0 0
0 K1,1 K1,2 0 K2,1 K2,2 0 0 0
0 0 0 K1,1 K1,2 0 K2,1 K2,2 0
0 0 0 0 K1,1 K1,2 0 K2,1 K2,2.


 (2.26)

Reshaping K̃Φ̄ = ((K̃Φ̄)1, (K̃Φ̄)2, (K̃Φ̄)3, (K̃Φ̄)4)T into

(
(K̃Φ̄)1 (K̃Φ̄)2

(K̃Φ̄)3 (K̃Φ̄)4

)
(2.27)

lead to the same result as K ∗Φ. The transposed convolution is obtained by multiplying
with the transposed matrix K̃T. Reshaping the result K̃TΦ̄ leads to K ∗T Φ. The
transposed convolution can be calculated as easy as a standard convolution. Its forward
pass (multiplying the input by K̃T) resembles the backward pass of a convolution since
the gradient of K̃Φ̄ with respect to Φ̄ is K̃T. Transposed convolution or more often
fractionally-strided convolution in this context can also be defined with stride. Thereby,

7Even though this operation is sometimes called deconvolution in literature, it is worth noting that
this operation does not implement the inverse of a convolution. Therefore, the name is misleading.

21

2 Fundamentals

an upsampling of factor s resembles a strided convolution with stride 1
s

which can be
understood as the backward pass of a convolution of stride s.

Convolutional layers are not restricted to single-channel inputs as introduced so far.
Let Φ = (Φ1, . . . ,Φm) ∈ Rm×h×w be a multichannel input with m ∈ N, e.g., m = 3 for
an image with RGB channels. To enable convolving multichannel inputs, the kernel is
expanded by m channels, such thatK ∈ Rm×k×k. We get a multichannel convolution
by summing over all single-channel convolutions

Conv(Φ,K) =
m∑

u=1

Ku ∗ Φu + b1h′×w′ ∈ Rh′×w′ . (2.28)

Thereby, the operation reduces the channel dimension m while preserving the spatial in-
put resolution (according to resolution calculation given in Equation (2.23)). In addition,
multiple features can be extracted from the same input by stacking m′(∈ N) different
kernels to form a kernel tensor K ∈ Rm′×m×k×k leading to Conv(Φ,K) ∈ Rm′×h′×w′

such that

[Conv(Φ)]t =
m∑

u=1

Ku,t ∗ Φu + bt1h′×w′ , t = 1, . . . ,m′ (2.29)

This leads to a feature map with m′ channels each representing one specific kernel
activation map of a multichannel convolution.

In practical applications, CNNs consist of several composed multichannel convolutions
with varying but small kernel sizes, including (1× 1)-convolutions [157], i.e., con-
volutions with kernel K ∈ Rm′×m×1×1. These allow to calculate a weighted feature
accumulation per pixel and by composing these layers allows for learning across chan-
nels. Thereby, the channel dimension is changed from m to m′. As a consequence, it
is often used for channel dimension reduction. It is sometimes called channel pooling
layer since it modifies the channel dimension but preserves the spatial dimensions. A
(1×1)-convolution can be understood as an MLP with one hidden layer operating on the
features (channels) of a single pixel. It is applied in the ResNet model which is a widely
used component in classification and semantic segmentation models (see Section 2.3.1.1).

2.1.2.2 Pooling Layer

Besides convolution operations, a CNN often incorporates pooling operations. Pooling is
a deterministic, parameter-free operation which condenses information of a px×py pixel
grid M ∈ Rpx×py j Rh×w to a single value. It is used to reduce the input resolution
and increases the robustness against noise and small object translations. The most
commonly used pooling methods are max-pooling (maximum-pooling)

poolmax : Rpx×py → R,M 7→ poolmax = max
i,j

Mi,j (2.30)

22

2.1 Deep Neural Networks

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15 2.5

10.5

4.5

12.5

5

13

7

15

1
2·2
∑

i,jMi,j
1

2·2
∑

i,jMi,j
max
i,j

Mi,jmax
i,j

Mi,j

input average poolingmax-pooling

Figure 2.6: Schematic illustration of a 2×2 max (left) and average (right) pooling with a stride
of 2. This halves the spatial input resolution in both dimensions from 4× 4 to 2× 2.

and average pooling

poolavg : Rpx×py → R,M 7→ poolavg(M) =

px∑

i=1

py∑

j=1

1

pxpy
Mi,j. (2.31)

Max-pooling emphasizes high values and therefore selects the maximal feature within
one grid cell. In contrast, average pooling smooths regions leading to a reduced noise
sensitivity of the neural network but, on the other side, might also blur edges. The
general practice is to split the image in regular 2 × 2 grid cells, thus px = py = 2, and
apply the pooling operation on each of the 2× 2 sub-grids. Referring to the association
of a sliding window across the image, pooling can be understood as a local operation
on a py × px grid which is slid across the image with a stride of (py, px) (pooling size)
so that the image resolution is quartered. A visualization of the operation is depicted
in Figure 2.6. A special case is global average pooling where the average is taken
over each element in the spatial dimension of the feature map leading to a map from
Rm×h×w to Rm×1×1. If m is set to C, the amount of categories in a classification task, it
can be interpreted as a feature map resembling the confidence per category (when fed
into a softmax layer). According to Lin et al. average pooling “is easier to interpret and
less prone to overfitting than traditional fully connected layers” [157] as the final feature
maps need to correlate to the C classes and the layer has no learnable parameter. In
addition, global average pooling leads to an increased translation invariance of features
as the feature map is averaged along the spatial dimension.

2.1.2.3 Characteristics of CNN

In fully connected layers each neuron in layer l has access to the activation of all neurons
in the previous layer l − 1. In contrast, convolutional layers, where a kernel with size
(ky, kx), kx � w and ky � h is used to extract feature information, enforce a sparse

23

2 Fundamentals

Figure 2.7: A CNN with two convolutional layers each with a 3 × 3 kernel. The kernel size
is visualized in purple. The effective receptive field of a neuron in the last feature map (one
example is highlighted in purple in the orange grid) expands with the depth of the CNN. In
the previous layer (blue) the receptive field is as wide as the kernel. Due to the compositional
structure of the layers, the effective receptive field in the input (green map on the left) is
enlarged to 5× 5.

interaction between neurons from one layer to the next. The number of neurons in the
input image which have an impact on a single neuron in a subsequent layer or feature map
is called receptive field or field of view. In the first layer the receptive field coincides
with the size of the kernel. Composing multiple convolutional layers effectively increases
the receptive field. This is due to the fact that in each layer features are extracted and
aggregated by the convolution such that kly×klx of the previously calculated features are

convolved in layer l. Given a neuron in layer l, the effective receptive field (rf 1
x (zl), rf

1
y (zl))

can iteratively be calculated for the horizontal spatial dimension by

rf lx(zl) = klx

rf l−1
x (zl) = rf lx(zl)k

l−1
x − (rf lx(zl)− sl)(kl−1

x − sl−1).
(2.32)

The vertical spatial dimension of the effective receptive field can be calculated analo-
gously by replacing x by y. A scheme of the receptive field for two chained convolutional
layers is visualized in Figure 2.7. In addition to chaining convolutional layers, the pool-
ing operation (cf. Equation (2.30) or Equation (2.31)) is introduced to further enlarge
the receptive field by reducing the resolution of the feature map. In addition, dilated
convolutions (cf. Equation (2.22)) enable to enlarge the receptive field without reduced
spatial resolution in the feature map. They are therefore valuable for dense feature maps
which are needed for semantic segmentation (see Section 2.3.2).

As the same kernel is used on the entire image with kx � w and ky � h, convolutional

24

2.2 Learning from Data

layers have distinctly fewer learnable parameters (kx ·ky ·m·m′ + m′ biases) compared to
fully connected layers where the learnable weight tensor W would be in Rw·h·m×w·h·m′ as
each input neuron is connected to each output neuron plus w ·h·m′ biases. Furthermore,
the learnable weights are shared across the image due to the sliding window approach,
in which the same kernel weights are used at each location of the image. In contrast,
each neuron pair in a fully connected layer has a separate weight. Therefore, in CNNs
a typical feature like vertical edges can be extracted with one and the same kernel at
each image position leading to a distinct reduction of parameters.

Another useful characteristic is translation equivariance. That means, for a convo-
lutional layer f with input Φ ∈ Rh×w and a translation mapping Tv : Rh×w → Rh×w

with (Tv(Φ))y,x = Φy−v1,x−v2 for v = (v1, v2) ∈ Z2 applies8

Tv(f(Φ)) = f(T−1
v (Φ)). (2.33)

This is a desired property as it justifies that the use of the same kernel at different
image positions leads to the same features. Furthermore, it was shown in [116, 4.4.1] that
linear shift equivariant operators in two dimensions can be parameterized by convolution
operators.

2.2 Learning from Data

In the last section, we gave an overview of neural network types including several build-
ing blocks. Due to the adjustable parameters θ, e.g., θ = (W, b) or θ = (K, b), neural
networks fall into the category of parametric models. In deep learning, it is a common
assumption that the data generating distribution is given by a parametric distribution
which we aim to estimate with the help of neural networks. The parameters θ can be
learned such that the model best approximates the (unknown) distribution based on
concepts from the statistical learning theory which we introduce in this section follow-
ing [81, 82, 183]. The notation is mostly inspired by [82]. In Section 2.2.3, we then give
an overview of which function spaces can be universally approximated with neural net-
works and review the sources of errors of a statistical model in Section 2.2.2. After the
excursion into statistical learning theory, we explain how the parameters of the neural
network are adapted in a so-called training process with the backpropagation algorithm
as its core component in Section 2.2.4 and Section 2.2.4.2.

8This equivalently applies for multichannel input by keeping the channel fixed and applying the
translation only in the spatial dimensions.

25

2 Fundamentals

2.2.1 Statistical Learning

In contrast to optimization problems where an explicit function is minimized or maxi-
mized, there are several tasks in computer vision where the task solving function, e.g.,
a labeling function is unknown. When solving real world problems in computer vision,
often the task is defining by data rather than by an explicit function. Furthermore, the
given data is usually noisy. As a consequence, it is more common to assume that the
task is defined by a data generating distribution rather than a deterministic function.
Statistical learning deals with estimating the unknown distribution µ from experience,
often given in terms of data DN by fitting a model µ̂ with respect to some divergence
measure9 d

d(µ‖µ̂ ◦ DN)
N→∞−→ 0 in probability (2.34)

for an increasing amount of data samples. In the following, we assume that the model
is a parametric model µ̂ = µθ defined by a neural network. As an example, there is no
explicit function mapping known, which maps any structured pixel grid showing real
world animals to their species. However, we can collect data in form of photographs of
specific animals, like horses or cats, such that we have data tuples with an image and
its category which we call label or annotation. Statistical learning theory provides us
with the theoretical fundamentals that under adequate conditions we have stochastic
guarantees that we can approximate the underlying data generating distribution if we
sample often enough.

In the context of computer vision tasks considered in this thesis, we focus on supervised
learning. In the supervised setting we observe data pairs z = (x, y) ∈ X × Y of
images x and their corresponding label or value y. Let Y = {1, . . . , C} denote the
label space10 and X = Rd (d := m× h× w) the image space. To understand the setup
from a probabilistic perspective, we model the data by random variables Z = (X, Y) :
(Ω,A,P)→ X×Y which are distributed according to PX,Y , the joint probability measure
on X ×Y with the Borel-σ-algebra BX,Y . The input of the statistical model follows the
marginal distribution PX of PX,Y and the corresponding label follows the conditional
distribution PY |X with conditional probability density function pY |X . The observed data
is then modelled as11

D := DN := (Z1, . . . , ZN) ∼ P⊗NX,Y . (2.35)

Thereby we assume that our data can be modeled by independent identically distributed
(i.i.d.) random variables. Supervised learning then describes the task to estimate the
conditional data generating distribution of Y given X by a statistical model based on

9A divergence is a mapping d :M1(Rd)×M1(Rd)→ [0,∞] with d(µ‖ν) = 0 iff µ = ν, whereM1(Rd)
denotes the set of non-negative probability measures over (Rd,B(Rd)) as the measurable space.

10The setup can equally be shown for a continuous label space Y = Rm′
,m′ ∈ N by replacing discrete

measures or densities by their continuous counterparts.
11For the sake of readability, we use the symbol D for a dataset both when considering the vector of

random variables (Xi, Yi) and their realization (xi, yi). The difference gets clear by the notation of
the data points.

26

2.2 Learning from Data

the data D. Throughout this thesis, neural networks serve as a basis for this statistical
model. We refer to a neural network where the output activation aL is the identity
mapping as ϕθ : X → RC . We can recover a neural network with non-trivial output
activation function by fθ = φ◦ϕ, where φ : RC → Ξ ⊆ RC denotes a suitable activation
function or any other suitable function such that Ξ 3 ξ = (φ ◦ϕ)(x) 7→ p(·|ξ) ∈M+

1 (Y)
is continuous with respect to an adequate divergence measure in M+

1 (Y), the set of
positive probability measures. In the following we set φ = asoftmax to model a parametric
conditional probability density function defined by

pθ(y|x) = (asoftmax ◦ ϕθ(x))y. (2.36)

Based on this definition, we define a set of feasible candidate models with respect to a
dataset DN

H := {pθ : pθ(y|x) = (asoftmax ◦ ϕθ(x))y : θ ∈ Θ ⊆ Rτ}, τ ∈ N (2.37)

which we refer to as hypothesis space. With a certain knowledge about the task we could
also restrict the hypothesis space to specific types of architectures, e.g.,HCNN ⊆ H where
we restrict the hypothesis space to the specific network type of CNNs. In contrast to
unsupervised learning where explicitly or implicitly the data generating distribution is
estimated, the aim of supervised learning in the context of deep learning is to learn the
network parameters θ with pθ ∈ H, such that

pθ ≈ pY |X . (2.38)

The unsupervised case can be modeled with the same theory since supervised learning
can be understood as unsupervised learning with a fixed factorization of the data-space
X × Y . When we have learned the joint distribution we can model the conditional
distribution by marginalizing with respect toX. Since the dimension of the label space Y
is usually smaller than the image space X , learning the conditional distribution directly
in a supervised manner is often easier than learning PX,Y .

To determine the parameters of the neural network, it is necessary to define the quality
of the approximation and develop a strategy for identifying optimal parameters based
on that measure. To evaluate the approximation quality, we build upon the Kullback-
Leibler divergence dKL. Given two probability distributions µ, ν ∈ M+

1 (Y) which are
both absolute continuous with respect to the same measure %, i.e., there exist pµ, pν such
that dµ(y) = pµ(y) d%(y) and dν(y) = pν(y) d%(y), the Kullback-Leibler divergence
is defined by

dKL(pµ||pν) =E%
[
pµ(y) log

(
pµ(y)

pν(y)

)]

=E% [pµ(y) log(pµ(y))]︸ ︷︷ ︸
neg. (differential) entropy

−E% [pµ(y) log(pν(y))]︸ ︷︷ ︸
(differential) cross entropy

.
(2.39)

27

2 Fundamentals

Based on this definition, we can define the distance between the two conditional prob-
ability density functions pY |X , pθ with respect to dKL by taking the expectation with
respect to the marginal distribution PX of X to compare probability densities on Y

D1,KL

(
pY |X

∥∥pθ
)

= EX∼PX
[
dKL

(
pY |X

(
· |X

)∥∥pθ
(
· |X

))]

= E(X,Y)∼PX,Y

[
log

(
pY |X(Y |X)

pθ(Y |X)

)]
(2.40)

= E(X,Y)∼PX,Y
[
log
(
pY |X(Y |X)

)]
− E(X,Y)∼PX,Y [log (pθ(Y |X))] .

The function
L : H → R≥0, pθ 7→ D1,KL

(
pY |X

∥∥pθ
)
, (2.41)

which maps a candidate from the hypothesis space to its quality of approximation is
called loss or risk function. Assuming that the realizability assumption pY |X ∈ H is
met in combination with the fact12 that

dKL

(
pY |X(·|X)

∥∥pθ(·|X)
)

= 0⇔ pY |X(·|X) = pθ(·|X), (2.42)

minimizing the loss function would result in an optimal approximation if pY |X was
known13. However, the true distribution is unknown in practice. The only information
we have about the conditional distribution pY |X is given by the training samples which
are drawn according to PX,Y . As a consequence, the best approximation we can think
of is to reduce the error made on the training samples. To this end, the loss function
is replaced by an empirical risk function, i.e., a sequence of functions, measurable in
(X × Y)N and differentiable in H

L̂ = {L̂N : H× (X × Y)N → R≥0}N∈N (2.43)

which converges under adequate conditions to the true loss function in probability when
enlarging the dataset. We define

L̂N(pθ,DN) =
1

N

N∑

n=1

L(θ; fθ(Xn), Yn)

=
1

N

N∑

n=1

log

(
pY |X(Yn|Xn)

pθ(Yn|Xn)

)

=
1

N

N∑

n=1

log
(
pY |X(Yn|Xn)

)
− 1

N

N∑

n=1

log (pθ(Yn|Xn))

(2.44)

12The proof of Equation (2.42) bases on the properties of the log function and Jensen’s inequality. It
can be found in e.g., [183, Theorem 6.2.1.].

13If pY |X was known, we could simply use it rather than approximating it.

28

2.2 Learning from Data

for which holds
L̂N(pθ,DN)→ D1,KL

(
pY |X

∥∥pθ
)

for N →∞ (2.45)

by the law of large numbers. As a consequence, the optimal parameters for a model
with respect to the so-called empirical risk minimization principle are defined by

θ̂ ∈ argmin
θ∈Θ:pθ∈H

L̂N(pθ,DN). (2.46)

As the first summand is not dependent on θ, it is enough to minimize

L̂NLL
N (pθ,DN) = − 1

N

N∑

n=1

log
(
pθ
(
Yn|Xn

))
, (2.47)

which is the averaged conditional negative log-likelihood and a standard loss in super-
vised learning (see Sections 2.3.1 and 2.3.2). The conditional negative log-likelihood
can be derived from the principle of maximum likelihood estimation. It is an often
applied principle in deep learning where the parameters of the parametric model are
estimated in such a way that the training data gets assigned the highest probability.
The maximum likelihood estimator, i.e., the parameters which maximize the likelihood
of a dataset D = {(x1, y1), . . . , (xN , yN)} under a model pθ, satisfies

θ̂MLE = argmax
θ∈ΘN :pθ∈H

N∏

n=1

pθ(yn|xn). (2.48)

This is equivalent to maximizing the logarithm of the product since the logarithm is
a monotone function. As a consequence, the optimization problem reduces to the sum
over each data point

θ̂MLE = argmax
θ∈ΘN :pθ∈H

N∑

n=1

log(pθ(yn|xn)), (2.49)

which is numerically more stable to compute. By negation, the problem can equivalently
be considered as a minimizing problem, leading to the noted conditional negative
log-likelihood (NLL(D|θ)) in Equation (2.47)

θ̂MLE = argmin
θ∈ΘN :pθ∈H

(
−

N∑

n=1

log(pθ(yn|xn))

)

︸ ︷︷ ︸
NLL(D|θ)

. (2.50)

2.2.2 Error Decomposition

Even though we have seen strategies to statistically estimate the true conditional density
function from data, the practice involves multiple sources of errors. The error in ERM

29

2 Fundamentals

learning decomposes into a model error (εmodel), an estimation or learning error (εlearn)
and a sampling error (εsampl). The error made by the estimator pθ̂ with respect to the
true distribution pX|Y and D1,KL can be upper bounded by

0 ≤ D1,KL

(
pY |X

∥∥pθ̂
)
≤ εmodel + εlearn + 2εsampl . (2.51)

The model error
εmodel = inf

pθ∈H
D1,KL

(
pY |X

∥∥pθ
)

(2.52)

describes the minimal error achievable with a fixed hypothesis space H. This error is
independent of the training sample amount [246]. The error is also known as approxima-
tion error since it links to the universal approximation property of a hypothesis space.
In Section 2.2.3 we show that neural networks in theory have the capacity to express
or approximate to any degree of accuracy a wide range of function classes. This gives
insights on how the model error can be controlled. If the realizability assumption is
satisfied, the error equals to zero. Mis-specification of the hypothesis space by restrict-
ing, e.g., the architecture of the neural network class and therefore ending up in a poor
model design choice, leads to εmodel > 0. Depending on the distribution to approximate,
enlarging the hypothesis space can diminish the error at the cost of the complexity of
the model.

Additional sources of errors are estimation errors or learning errors during the training
procedure denoted by

εlearn = LDN (pθ̂,DN)− min
pθ∈H
LDN (pθ,DN). (2.53)

In theory this error vanishes for learning algorithms which exactly minimize the em-
pirical risk. However, in practice these errors can for example arise from gradient esti-
mation in stochastic gradient decent (see Section 2.2.4.1) and optimizer-specific errors
like convergence to a local minimum. Lastly, statistical errors, referred to as sampling
error(εsampl), occur due to the limited representativity of the true data generating func-
tion by training samples and violation of theoretical assumptions like the independence
of the training samples. The error is given by

εsampl = sup
pθ∈H
|L(pθ)− LDN (pθ,DN)| . (2.54)

The error depends on the model complexity and the size of the training dataset. Since
we approximate the true loss L with a surrogate loss defined by training samples (the
empirical risk function), the sampling error εsampling is linked to the conditions on the
convergence of the empirical risk function to the true loss function for an increasing
amount of data samples. However, a uniform convergence is needed to control the error.
If the hypothesis space satisfies the so-called uniform convergence property [246, Def.4.3],
an arbitrary small sampling error can be obtained when increasing the amount of data.

30

2.2 Learning from Data

function space

F

pY |X
pθ∗ pθ∗D

p
θ̂

hypothesis space

H ⊆ F

εmodel εsampl ε le
ar
n

Figure 2.8: The error made compared to the true distribution pY |X can be split into the model
error (εmodel), the sampling error (εsampling) and the estimation error (εlearn). The first arises
when the model does not lie within the hypothesis space H. We refer to pθ∗ ∈ H to the
optimal model within the hypothesis space. As we optimize the parameters with respect to
the minimal error on the training samples D the best model is pθ∗D . Additionally, we face an
error due to the learning algorithm, leading to the best estimator pθ̂ achievable with a learning
algorithm.

Inspired by the visualization in [107] the different error sources are depicted in Figure 2.8.

Given a fixed model the sampling error diminishes with the increase of the amount of
independently drawn training samples from the data generating distribution. However,
when increasing the model complexity to reduce the model error, the sampling error
most likely increases due to overfitting, i.e., the model adapts strongly to the data
rather than learning the true conditional density function. This roots in the statistical
approximation of the loss function. Since the loss function is only defined on samples, it
fosters potential overfitting to the training samples disregarding performance on unseen
data. Therefore, a trade-off between model complexity, which defines the expressiveness,
and the amount of training samples is needed for a well generalizing model. [78, 246].
This is sometimes referred to bias-variance trade-off [208] or bias-complexity trade-
off [246]. The bias in both cases denotes the inductive bias which is included by defining
a hypothesis space. By restricting the model to a specific function class or, e.g., network
architecture, certain assumptions on the true distribution are made. The variance term
refers to the diversity of models when trained on different datasets drawn from the
same distribution. A huge variance is observed when the models over adapt to data
since training a neural network on different dataset would lead to different optimal
parameters if the model over-adapted to the data, although both aim to approximate the

31

2 Fundamentals

same distribution. To monitor the phenomenon of overfitting, data is usually split into
two or three disjoint and equally distributed subsets – a training set, a validation set and
an optional test set. The first one is used to estimate θ̂. The second is used to validate
the generalization capability of the trained model. It is used to observe overfitting
and builds the decision basis which model performs best during the training process
(details on the training process are described in the next section). Furthermore, the
validation split allows to choose between models generalizability potential when changing
hyperparameters of the architecture or the training process itself. The test set is used
to evaluate the performance of the finally selected model to have an independent set
which was not used for training or used for model selection (otherwise an adaptation to
the validation set is possible). The latter can be discarded if no hyperparameter tuning
is done. We introduce regularization methods to mitigate overfitting in Section 2.2.5.

2.2.3 Universal Approximation

This section examines the capability of neural networks to approximate certain function
classes. Neural networks are parametric models which have proven to approximate
diverse real-world functions very well [37,142]. In the following we give a short overview
over the theoretical foundations of this phenomenon. We define a sequence of increasing
hypothesis spaces {Hq}q∈N where Hq ⊆ Hq+1 with

Hq = {pθ : pθ(y|x) = (asoftmax ◦ ϕθ(x))y : θ ∈ Θq ⊆ Rτq}. (2.55)

The different hypothesis spaces can be understood as variations of the network archi-
tecture, e.g., variation of width or depth. Additionally, we assume that ϕθ : K → RC ,
denoting a neural network with linear output layer, is defined on a compact set K ⊆ Rd.
We further define the function space defined by those neural networks by

FH = {ϕθ : K → RC : θ ∈ Θq ⊆ Rτq}. (2.56)

In the following we assume that the true conditional density function pY |X is parame-
terized by a function ϕ ∈ F such that pY |X is given by

pY |X(y|(φ ◦ ϕ)(x)) (2.57)

for all x ∈ K. Thereby F denotes a function space, e.g., F could be the space of
continuous function on K. This composite view on the parametric models allows to
reduce the complex approximation problem of conditional probability densities to an
approximation problem on function spaces of functions from Rd to RC . We say, FH
possesses the universal approximation property with respect to F and the norm
‖ · ‖∞ if for all ϕ ∈ F

inf
θ∈Θq
‖ϕ− ϕθ‖∞ q→∞−→ 0. (2.58)

32

2.2 Learning from Data

Under adequate continuity assumption with respect to D1,KL it holds

εmodel
q→∞−→ 0 (2.59)

if FH possesses the universal approximation property with respect to C(K,RC), the
function space of continuous functions from K to RC . We refer to [82, Prop. 16.2] for
the proof. In universal approximation theory the focus is on the existence of such an
approximation rather than the question if a training procedure is capable to find such
an approximation.

It has been shown that fully connected neural networks with a single hidden layer
are universal approximators14 for continuous functions on the unit cube under certain
assumptions [50,102]. In detail, let K = [0, 1]d ⊆ Rd be the compact unit cube. Let FH
be the set of fully connected neural networks with one hidden layer with width wN ∈ N
and a linear output layer without a bias term such that wN → ∞ as N → ∞ and
let θ ∈ ΘN = R(wN+1)×d+wN . The activation function a : R → R is assumed to be
continuous and sigmoidal15. Cybenko proved in [50] that then

FH possesses the universal approximation property with respect to C(K,R).

This result can be generalized to C(K,Rm′), m′ ∈ N, by stacking multiple multilayer
perceptrons of the denoted form to approximate the function per component. Further-
more, it has been shown by Cybenko that FH defined as above but with a bounded
measurable sigmoidal activation function a : R → R possesses the universal approxi-
mation property with respect to F = L1(K) and ‖ · ‖L1 . With other words, any Borel
measurable function in Rd can be approximated almost everywhere by a single hidden
layer neural network with increasing width and bounded measurable sigmoidal activa-
tion function [50]. Replacing the activation function in FH by a ReLU (more generally
for non-polynomial locally bounded piecewise continuous) activation function, it was
shown by Leshno et al. in the early 1990s that this network class holds the universal
approximation property with respect to F = C(K,R) [151].

The choice of the activation function for a neural network thereby is crucial for its
expressiveness. If we consider an MLP where all activation functions are set to the
identity mapping, a linear model based on matrix vector multiplication is left over. As
a consequence, only (affine) linear functions can be represented. Thus, the non-linearity
of the activation functions is essential for the capability to represent non-linear functions.

These results assert that single hidden layer MLPs have enough expressiveness for a wide
range of function classes but the width of the neural networks might be impracticable
or infeasibly large. Furthermore, the statements lack a relation between a maximal
acceptable model error εmodel and the number of neurons, the width and the depth of a

14i.e., FH, where ϕθ is the mentioned neural network class, possesses the universal approximation
property

15We call a function σ : R→ R sigmoidal iff limx→−∞ σ(x) = 0 and limx→∞ σ(x) = 1.

33

2 Fundamentals

neural network architecture. Yarotsky showed in a constructive manner that MLPs with
ReLU activations can approximate ‘relatively smooth’ functions to any desired degree
of accuracy [307]. Particularly, upper bounds on the depth and amount of neurons and
therefore the width in a neural network with respect to a given error ε were established.
This is mathematically formulated in the following theorem by Yarotsky [307]. Let
Fβ,d = {ϕ ∈ W β,∞([0, 1]d) : ‖ϕ‖β,∞W ≤ 1} denote the functions in the unit ball of the
W β,∞([0, 1]d)-Sobolev space [4]. For any d, β and ε ∈ (0, 1) there is a ReLU network
architecture {ϕθ}θ∈Θd,β,ε that

1. is capable of expressing any function from Fβ,d with error ε, i.e.

∀ϕ ∈ Fβ,d ∃θ̂ ∈ Θd,β,ε : ‖ϕ− ϕθ̂‖∞ < ε (2.60)

2. has depth of at most c · (log(1/ε) + 1) and at most cε−d/β(log(1/ε) + 1) weights or
neurons, respectively, with some constant c = c(d, β).

Note, that Θd,β,ε is fixed for all ϕ, i.e., the number of neurons does not vary. This theorem
demonstrates that the model complexity (number of neurons) depends on the inverse of
the approximation error. In addition, it was shown that for a given ε a ReLU network ϕθ
with fixed depth L and parameters in ΘL,ε needs at least cε−1/(2(L−2)) neurons with some
constant c = c(ϕ,L) > 0 to approximate a non-linear two-times differentiable function
ϕ ∈ C2([0, 1]d) with continuous extension of the second derivatives on the boundary, i.e.,

∀ϕ ∈ C2([0, 1]d) ∃θ̂ ∈ ΘL,ε : ‖ϕ− ϕθ̂‖∞ < ε. (2.61)

From these two theorems it follows that ReLU neural networks with unbounded depth
need fewer neurons than neural networks with a fixed depth to express the same smooth
function class.

Beside the investigations on MLPs also universal approximation statements can be made
for convolutional neural networks on finite pixel grids with periodic boundary conditions.
Yarotsky proved in [308] that translation equivariant maps from Rm1×h×w to Rm2×h×w

can be approximated by a convolutional neural network with a single layer (without
pooling) with respect to ‖ · ‖∞. To mitigate constraints on the functions which can
be approximated, the setup provides that the kernel can have the same size as the
input to not restrict the field of view. For approximation statements with respect to
deep convolutional neural networks with pooling on infinite dimensional spaces we refer
to [308, Sec. 3.3.].

2.2.4 Training Process

In Section 2.2.1 we introduced the concept of empirical risk functions. These functions
provide the basis for learning the parameters of a neural network in a training process.

34

2.2 Learning from Data

The details of the training process are discussed based on [78] in the following section.
As above, we consider a supervised learning problem. In the following we consider neural
networks of the form fθ : X → (0, 1)C , x 7→ (asoftmax ◦ ϕ)(x) with learnable parameters
θ ∈ Θ ⊆ Rτ constraint by the architecture of the neural network. To be able to train
a neural network, data D from a data model {(Xi, Yi)}Ni=1 ∼ PX,Y is observed. We call
D = {(x1, y1), . . . , (xN , yN)} with (xi, yi) ∈ X × Y the training dataset where X ⊆ Rd

and Y = {1, . . . , C}, C ∈ N. An (empirical) loss function

LD : Θ→ R≥0,θ 7→
1

N

N∑

i=1

L(fθ(xi), yi) (2.62)

with respect to the dataset D is a member of the empirical risk function {L̂N}∞N=1. Since
the parametric model pθ as defined in Equation (2.36) is completely described by the
parameters of the neural network fθ and a fixed dataset D is considered, it is sufficient to
define the loss on Θ rather than on the hypothesis and sample space (cf. Equations (2.43)
and (2.44)). To visualize the dependence on the dataset we replace N with D in the
notation. The negative log-likelihood

LNLL
D (θ) =

1

N

N∑

i=1

(
− log

(
fθ(xi)yi

))
︸ ︷︷ ︸

=L(fθ(xi),yi)

, (2.63)

serves as an example of a standard loss function. The training objective is to solve the
non-linear optimization problem

min
θ∈Θ
LD(θ), (2.64)

leading to the optimal parameters with respect to the empirical loss

θ̂ ∈ argmin
θ∈Θ

LD(θ). (2.65)

This is done in an iterative process by a gradient-based optimization.

2.2.4.1 Stochastic Gradient Descent

To find a (local) minimum of the loss function, different forms of gradient decent algo-
rithms [69] are usually used in deep learning contexts. It is an iterative method where in
each iteration the direction of the steepest descent is used to update the current itera-
tion value. For a real valued function l : Rτ → R,θ 7→ l(θ) and randomly chosen initial
parameters θ(0) ∈ Θ, the parameter update rule for the gradient descent algorithm is
defined by

θ(i+1) = θ(i) − η(i)[∇θ(i)l(θ(i))]
∣∣
θ=θ(i) . (2.66)

35

2 Fundamentals

The parameter ηi is the so-called learning rate and controls the step length in each
iteration.

As we consider an empirical loss with respect to the dataset D as minimization objective
(Equation (2.64)), the gradient with respect to all training data points needs to be
calculated. Computing the exact gradient would require to load the whole dataset. In
most of the use cases, this is impossible due to hardware memory limitations and leads
most likely to overfitting to the training samples [78]. Alternatively, the gradient can
be computed with respect to a single data point. For a single data point (x, y) and a
randomly initialized parameter θ = θ(0) the update rule of stochastic gradient descent
based on the loss L(fθ(x), y) of a model fθ is given by

θ(i+1) = θ(i) − η(i)[∇θL(fθ(x), y)]
∣∣
θ=θ(i) . (2.67)

Stochastic gradient descent is likely to be unstable when the gradient is calculated with
respect to a single data point as the descent direction can change drastically in each
iteration. As a consequence, the gradient is replaced by an estimate ∇̂θLD based on a
subset of data points, so-called batches. In practice this is realized by randomly splitting
the training data into multiple disjoint (mini-)batches of size NB with N ≡ 0 mod NB

Bi ⊆ D such that
⋃̇

i
Bi = D and |Bi| = NB. (2.68)

An unbiased estimator of the gradient can be obtained by averaging the point-wise
gradient with respect to the randomly sampled subset B ⊆ D [78]

∇̂θLD = ∇θLB :=
1

NB

NB∑

n=1

∇θL(fθ(xn),yn). (2.69)

If N mod NB 6= 0, often the last batch which contains less than NB data points is
dropped during training. Alternatively, the gradient estimate based on the last batch is
computed on a smaller amount of data points. The advantage of minibatch stochastic
gradient descent (SGD) is that the compute-time is only dependent on the batch size
and does not scale with the size of the training dataset. After iterating once over all
batches and therefore over the whole dataset which we call epoch, a new batch partition
is sampled for the next epoch. In practice the neural network performance benefits from
training multiple epochs on resampled data.

The overall training stops based on time or performance conditions. A time-based
stopping criterion means that the training stops when the neural network was trained
for a predefined amount of iterations (number of batches) or epochs (number of times the
complete dataset was processed). Training can also be terminated, if a certain target
performance on a validation dataset has been reached or the loss function saturates
on either the training or validation data for multiple consecutive iterations or epochs.
The stopping criteria can also be combined such that the training stops when one of the

36

2.2 Learning from Data

criteria is met. If the performance-based criterion is met before the amount of predefined
iterations or epochs is reached, it is referred to as early stopping, often used in active
learning experiments (see Section 2.4.4.1) to moderate the training time.

In contrast to optimization in general, in the context of statistical learning and especially
deep learning the learning rate needs to be reduced over time to ensure a stable training.
This is due to the fact that the gradient is estimated with the help of a batch of size
NB � N . As a consequence, the gradient value is noisy and in contrast to general
optimization does not necessarily vanish in consecutive steps near a minimum. Multiple
learning rate schedules can be defined mostly depending on the total amount of epochs
ep. Some examples are [201]:

• linear decay: ηi+1 = 1− max(0,i+1−N ·ep)
(decay+1)

• polylinear decay, e.g., ηi+1 =
(

1−ηi
N ·ep

)0.9

• exponential decay: ηi+1 = α · ηi, α ∈ R

• reduce on plateau (reduce the learning rate when a validation metric stagnates for
a number of iterations).

The first one we use for CycleGAN training (Chapter 3) whereas we use the polylinear
decay for training semantic segmentation networks (Section 2.3.2).

The loss landscape {(θ,LD(θ)) ∈ Θ×R : θ ∈ Θ} of neural networks is often non-convex
and ragged which leads to frequently changing descent directions. An approach which
increases the training speed is to smooth the update by incorporation of the previously
calculated gradients. A momentum term v is introduced to keep following the past
gradient directions and thereby stabilize the training (direction). It accumulates the
past gradients by an exponentially decaying moving average

v(i+1) = αv(i) − η(i)[∇θLB(θ)]
∣∣
θ=θ(i)

θ(i+1) = θ(i) + v(i+1)

= θ(i) + αv(i) − η(i)[∇θLB(θ)]
∣∣
θ=θ(i)

= θ(i) − η(i)[∇θLB(θ)]
∣∣
θ=θ(i) −

i∑

j=1

αjη(i−j)[∇θLB(θ)]
∣∣
θ=θ(i−k) .

(2.70)

Thereby α ∈ [0, 1] models the decay rate of the previously calculated gradients. SGD
with momentum was firstly introduced by [206]. Multiple variants of SGD where pub-
lished since its extensive usage for deep learning problems. Especially algorithms with
adaptive learning rates for each individual parameter θj such as RMSProp [270] with
and without momentum, AdaGrad [61] and Adam [132] improved the training progress.
The latter, named after “adaptive moments”, as it uses the first and second moments of
the gradients to estimate the best descent direction, is used in this thesis. Even though

37

2 Fundamentals

the learning rate is adapted individually for each parameter, Loshchilov and Hutter sug-
gest combining it with a global learning rate scheduler [164]. We follow this suggestion
and apply learning rate schedulers for all our trainings throughout the thesis.

2.2.4.2 Backpropagation

All previously mentioned optimization algorithms make use of the loss function’s gradi-
ent. Calculating the gradient is not straight forward as there is no closed form of the loss
function due to the structure of the neural network it depends on. Therefore, calculating
the gradient is realized by the so-called reverse mode of algorithmic or automatic differ-
entiation [83] which dates back to the 1970s [160]. The core idea behind this method is
to exploit the chain rule of differentiation for compositional functions. Algorithmically
formulated calculations can often be expressed by a composition of multiple elementary
subfunctions like addition, multiplication, exponential or trigonometric functions each
having simple derivatives. The derivative of the original compositional function can then
be expressed by the composition of the partial derivatives of the elementary functions.
Given two differentiable functions g : Rm → R,y 7→ g(y) and f : Rt → Rm,x 7→ f(x)
the chain rule for derivates states that for

z = g(f(x)) = g(y) (2.71)

the derivative is given by

∂x(g ◦ f)(x̃) = ∂yg
∣∣
y=f(x̃)

· ∂xf
∣∣
x=x̃

. (2.72)

The vector elements are defined by

∂x(g ◦ f)i =
∂(g ◦ f)

∂xi
=

∂z

∂xi
=

m∑

j=1

∂z

∂yj

∂yj
∂xi

for i = 1, . . . , t. (2.73)

Thereby, ∂xf denotes the Jacobian matrix in the variable x to clarify according to which
variable the differentiation is done. For scalar or tensor-valued functions, we use the
same notation to describe the vector or tensor whose entries are defined by the partial
derivatives.

In the context of deep learning an algorithm called backpropagation algorithm grew
in popularity, which was independently published by Rumelhart et al. in 1986 [229].
The algorithm calculates algorithmically derivatives for layered models and exploits the
chain rule to propagates derivatives from the output layer back to the input layer. The
aim is to calculate the partial derivative of the loss function with respect to the learnable
parameters θ

∂θL(fθ(x),y). (2.74)

38

2.2 Learning from Data

For a fixed point θ̃ in the parameter space Θ the gradient breaks down into two main
components

∂θL(fθ(x),y)
∣∣
θ=θ̃

= ∂fθL(fθ,y)
∣∣
fθ=fθ̃(x)

· ∂θfθ(x)
∣∣
θ=θ̃

, (2.75)

the derivative of L with respect to the output of the neural network and the derivative of
the neural network with respect to the learnable parameters θ. The first component can
be easily computed as long as the loss function has an explicit derivative with respect
to the neural network output and a forward pass through the neural network has been
done to evaluate the derivative at this point. In most cases we even know a closed-
form expression of the first component. Due to the structure of a neural network, the
underlying function of the second component breaks down into further subfunctions. As
a consequence, the chain rule can be applied consecutively from the output layer to the
input layer.

In the following, we have a closer look into that derivative calculation of the sec-
ond component for a fully connected neural network fθ with learnable parameters
θ = (W1, . . .WL, b1, . . . , bL). The general idea also applies to all other layers such
as convolutional layers. The calculation can be realized by general algorithmic differen-
tiation or see [78] for, e.g., the identification of convolutional layers with fully connected
layers. As shown in Equations (2.3) and (2.4) fθ(x) is of the form

fθ(x) = fLθL ◦ . . . ◦ f 2
θ2
◦ f 1

θ1
(x), (2.76)

and the output of layer l is given by

f lθl(hl−1) = al(Wlhl−1 + bl) = al(zl) = hl for l = 1, . . . , L. (2.77)

Backpropagating gradients starts at the output, layer L. We can iteratively calculate
the derivative with respect to the previous layer. The derivative of a layer l with respect
to the output hl−1 of the previous layer is given by:

∂hl−1
f lθl(hl−1)

∣∣
hl−1=h̃l−1

= diag (a′l(zl)) · ∂hl−1
zl

= diag (a′l(zl)) · ∂hl−1
(Wlhl−1 + bl)

= diag (a′l(zl)) ·Wl (2.78)

=: ζl

The derivative a′ of the componentwise applied activation function a : R → R can be
computed easily. As the activation function is applied element-wise in the forward pass,
also the derivative can be applied element-wise. This is realized by a diagonal matrix
diag (a′l(zl)) where the diagonal is given by a′l(zl).

Due to the composition and the feedforward structure of the neural network the gradients
with respect to θl depend only on the gradients of later layers (layers j with j > l).
The derivative of the neural network with respect to θl at some fixed point θ̃l can be

39

2 Fundamentals

expressed by

∂θlfθ(x)
∣∣
θl=θ̃l

= ∂hL−1
fL
θ̃L

(hL−1)
∣∣
hL=fL

θ̃L
(hL−1)

· · · ∂hlf l+1

θ̃l+1
(hl)

∣∣
hl+1=f l+1

θ̃l+1
(hl)
· ∂θlf lθl(hl−1)

∣∣
θl=θ̃l

= ζL · · · ζl+1 · ∂θlf lθl(hl−1)
∣∣
θl=θ̃l

. (2.79)

With this, it remains to derive a formula for the calculation of ∂θlf
l
θl

∣∣
θl=θ̃l

which differs
for Wl and bl. We get the derivative with respect to the bias term bl by

∂blf
l
θ̃l

(hl−1)
∣∣
bl=b̃l

= ∂bl (a(Wlhl−1 + bl))
∣∣
bl=b̃l

= diag
(
a′(Wlhl−1 + b̃l)

)
(2.80)

The derivatives with respect to Wl are given by16

∂Wl
f l(Wl,bl)

(hl−1)
∣∣
Wl=W̃l

= ∂Wl
(al(Wlhl−1 + bl))

∣∣
Wl=W̃l

(2.81)

= ∂zlal(zl)
∣∣
zl=z̃l

· ∂Wl
(Wlhl−1 + bl)

∣∣
Wl=W̃l

.

The component k, i, j of the derivate with respect to Wl can be written down by using
the notation [·]k to denote the k-th entry in a vector or likewise [·]i,j for the i, j-th entry
in a matrix.

∂[f l(Wl,bl)
(hl−1)]k

∂[Wl]i,j
=
∂[a (

∑ml−1

m=1 [Wl]km[hl−1]m + [bl]k)]k
∂[Wl]i,j

= a′([zl]k) ·
∂

∂[Wl]i,j

(
ml−1∑

m=1

[Wl]km[hl−1]m + [hl−1]m

)

= a′([zl]k) ·
ml−1∑

m=1

∂[Wl]km
∂[Wl]i,j

[hl−1]m (2.82)

= a′([zl]k) ·
ml−1∑

m=1

δkiδmj[hl−1]m

= a′([zl]k) · δki[hl−1]j

for k, i = 1, . . . ,ml and j = 1, . . . ,ml−1 where δmj denotes the Kronecker delta with
δmj = 1 if m = j and dmj = 0 if m 6= j. These expressions can likewise be computed for
tensor-valued input.

The advantage of backpropagation is that parts of the computation can be saved to
memory and reused during the derivative calculation. This holds for the internal states

16We denote with ∂zlal(zl) the derivative of the vector valued activation function cf. Section 2.1.1.1.

40

2.2 Learning from Data

from the forward pass like hl, as well as redundant computations for the derivatives.
As the loss maps to R and due to the associativity of matrix multiplication starting
from the last layer, the storage and computational effort can be reduced by storing and
calculating the resulting vector of the gradient-Jacobian-product instead of the matrix-
matrix products of the Jacobian matrices between ζl, as those get extremely huge in
neural networks with millions of parameters. With this, all derivatives can be computed
with minimal recalculation effort and with one forward and one single backward pass
through the network. Backpropagation can be seen as a special type of reverse accumu-
lation mode of algorithmic differentiation [78]. As a consequence, deep learning libraries
like PyTorch [201] use automatic differentiation engines (torch.autograd) to calculate
derivatives of diverse neural network architectures.

2.2.5 Training Stabilization by Normalization and Regularization
Layers

Despite the undeniable performance of neural networks in practice, the success is not
guaranteed. Deep neural networks suffer from training instabilities [74, 92, 99, 110].
For convex-Lipschitz-bounded loss functions it can be shown that stochastic gradient
descent converges to the minimum of the loss function [246, Cor. 14.12]. However,
stochastic gradient descent suffers from training instabilities when the loss landscape is
non-convex and ragged, which is likely to be observed in real world applications. If the
loss is non-convex stochastic gradient descent is prone to iterate towards local minima
which potentially are far from the optimum. As a consequence, the estimation error
increases. The layered structure of neural networks allows to compute the gradients by
calculating the chain rule (cf. Section 2.2.4.2). However, gradients may vanish for ear-
lier layers if deeper layers have small gradients since the small gradients are multiplied
and therefore the error signal decays exponentially. This results in limited feedback for
earlier layers and a slow or stagnating training behavior [99]. Besides vanishing gradi-
ents, exploding gradients can be encountered if the propagated gradients are large. This
leads to an unstable training since the weights of earlier layers change distinctly in each
iteration. Several activation functions (cf. Section 2.1.1.1) were proposed to mitigate
these problems [74]. Furthermore, it has been shown in [74] that the initialization of the
parameters θ is crucial for a stable training. A normalized initialization is suggested to
hamper vanishing gradients. In Section 2.3.1.1, we introduce a neural network archi-
tecture which addresses the problem by incorporating so-called skip connections which
allow bypassing gradient information to earlier layers [282]. In addition, deep neural
networks especially with several fully connected layers are sensitive to changes in the
input distribution. This holds for the input layer as well as for the hidden layers. The
training progress is slow if the averaged input over the complete training set is shifted
away from zero [147]. This limits the optimization process to straightly approach a
minimum and leads to ‘zigzag’ behavior [147]. On input level this shift is mitigated

41

2 Fundamentals

by (input) normalization, i.e., the empirical mean and standard deviation of the en-
tire training dataset is used to linearly transform the data leading to a standardized
input [110]. Training on standardized inputs lead to faster convergence and practice has
demonstrated that it is crucial for the network performance in training and at inference
time as well. The sensitivity to the shift in the distribution expands to the hidden layers
in such a way that the input to a layer l changes due to the iteratively updated param-
eters of the previous layers l − 1, . . . , 1 (see Section 2.2.4.1 for details on the training
process). To stabilize the training, batch normalization layers [110] which aim to
standardize the pre-activation states of the feature maps in each training iteration, can
be included into the neural network architecture. Similar to the input normalization
the mean and variance is calculated to reparametrize the layer outputs such that their
distribution has mean zero and a variance of one. However, the standardization is cal-
culated with respect to the minibatch and since it is a neural network layer, it is taken
into account during gradient calculation. As a consequence, the input distribution of the
next layer does not change between the update steps, leading to a faster training which
is less sensitive to the parameter initialization. In addition, it leads to much smoother
loss landscapes which facilitates training [109]. As standardization constrains the layer
capacity, two learnable parameters ς,$ ∈ Rm are introduced to enable to revert the
standardization if needed. Let z ∈ RNB×m denote the batched pre-activation outputs of
a layer and let17

µB =
1

NB

NB∑

i=1

xi (2.83)

and

σ2
B =

1

NB

NB∑

i=1

(xi − µB)2 (2.84)

be the empirical mean and a biased empirical variance of the batch B, respectively. By
scaling and shifting we obtain the normalized input value

ẑi =
zi − µB√
σ2
B + ε

, (2.85)

where ε is a regularization value to prevent numerical instabilities of the fraction. With
this we define the batch normalization

BNBς,$: RNB×m → RNB×m, zi 7→ ς � ẑi +$, (2.86)

where ς � ẑi denotes element-wise multiplication (Hadamard product). In order not
to face a shift in distributions when switching from training to inference (evaluating or
using the model after training with fixed weights) the moving average of the mean and

17The following operations are understood element-wise.

42

2.2 Learning from Data

the standard deviation during training is calculated based on an update rate α ∈ R [109]

µavg = µavg + α(µB − µavg)

σavg = σavg + α



√√√√ 1

NB

NB∑

i=1

(xi − µB)2 + ε− σavg


 (2.87)

and used to renormalize [109] the samples at inference time

y = ς
z − µavg

σavg

+$. (2.88)

Batch normalization can be applied to any affine transformation which is followed by
a non-linear activation function [110]. For examples for convolutional neural networks
batch normalization is done per channel, calculating the mean and the variance with
respect to the spatial and batch dimension. This preserves the translation equivariance
of features which is a key element of CNNs. However, batch normalization is less suited
for small batches and batches containing dependent data. To this end, normalization
techniques which do not depend on the batch dimension are proposed like [109] or layer
normalization. In the context of transformer architectures, introduced in Section 2.3.1.2,
layer normalization [14] is much more common. It estimates the normalization statistics
with respect to the channel and spatial dimensions for each batch element independently.

Another challenge is that training on a limited dataset bears an increased risk of over-
fitting to the data if the model has oversized capacity. This phenomenon can be miti-
gated by incorporating specific regularization techniques into the training process. To
balance the bias-complexity trade-off either the dataset can be enlarged or the model
complexity reduced. The first is addressed by methods in Section 2.4 via e.g., data
augmentation. Penalizing the complexity of the model can be achieved by adding a reg-
ularization term C(θ) to the loss which, e.g., constrains the neural network parameters
θ ∈ Θ ⊆ Rτ , τ ∈ N [24].

LD(θ; γ) = LD(θ) + γC(θ) (2.89)

γ ∈ R≥0 weights the importance of the penalty term. The most common regularization
is L2 regularization also known as weight decay

C(θ) =
1

2
‖θ‖2

2 =
1

2

τ∑

i=1

|θi|2. (2.90)

The L1 regularization defined by

C(θ) = ‖θ‖1 =
τ∑

i=1

|θi| (2.91)

43

2 Fundamentals

is another often applied parameter regularization. Weight decay leads to a more smooth
loss landscape which reduces overfitting by restricting the model to smoother functions
and therefore stabilizes training [208, Sec. 9.1.2]. In contrast, L1 regularization enforces
sparsity on the parameters and thereby reduces the model complexity. Both regulariza-
tion methods include a model bias to leverage the bias-variance trade-off introduced in
Section 2.2.2.

Regularization can also be introduced on neural network layer basis. Removing (‘drop-
ping’) randomly with a chance of p ∈ (0, 1) a unit and its weighted connections to other
units in the neural network during training is a stochastic regularization technique called
dropout [259]. This leads to slimmed networks whose architecture changes randomly.
Similar to the batch norm layer, dropout is only applied during training. By weight-
ing the outputs by 1

1−p at training time, the layer resembles an identity mapping at
inference time. This implementation differs slightly from the initial paper where the
authors proposed to weight the weights of the neural network with p during inference.
Dropout has proven to support model performance as well as regularization by reducing
overfitting [259].

44

2.3 Deep Learning for Images

horse

(a) classification (b) object detection (c) semantic segmentation

Figure 2.9: The image shows different kinds of object recognition tasks by showing the ground
truth label, box or mask respectively. Classification (a) aims to assign a class label to the entire
image whereas object detection also adds a localization component by an enclosing bounding
box (b). Semantic segmentation refines the localization on pixel-level leading to a semantic
segmentation mask for annotation (c).

2.3 Deep Learning for Images

Deep learning is applied to a wide range of application areas. Particularly, in computer
vision neural networks are the state-of-the-art method to extract high level information
from images. A typical task solved by neural networks is object recognition. Recog-
nition can be further split into multiple subtasks each with its own peculiarities. An
example for three tasks with different granularity of object localization is shown in Fig-
ure 2.9. These tasks range from classifying an object or a scene (see Section 2.3.1),
detecting (multiple) objects and their localization by an object-enclosing bounding box
to classifying pixel-wise the content of the scene leading to semantic segmentation (see
Section 2.3.2). Further information which can be extracted from images concerns the
distance (in form of depth maps), pose or, e.g., sentiment, of an object of interest. A
second branch of applications related to images is image synthesis which is formally not
part of computer vision as its goal is to create images rather than extracting informa-
tion from a sensor-based image. Nonetheless, deep neural networks are state-of-the-art
in this category as well. Mostly those tasks are solved by deep generative models (see
Chapter 3). Tasks include for example image generation, image enhancement like super
resolution, image denoising, image-to-image translation and content aware image ma-
nipulation. In the next sections, we introduce the tasks addressed in this thesis in detail
and present typical neural network architectures as well as evaluation metrics.

We start by fixing some notation. The input space X is set to the domain of images
X = [0, 1]m×h×w represented by a pixel grid with m ∈ {1, 3} channels (1 for gray scale
images and 3 for the red, green and blue channel of colored images), width w ∈ N and
height h ∈ N. For this reason, each pixel in the spatial dimension can be indexed by a
tuple (i, j). We denote the pixel index set by

I := {(i, j)|i = {1, . . . , h}, j = {1, . . . , w}} . (2.92)

45

2 Fundamentals

2.3.1 Classification

The most basic of the tasks mentioned is image classification as it neglects the position
of the object in an image. The aim is to categorize an image by assigning one of C ∈ N
previously defined classes. Therefore, we define Y = {1, . . . , C} as the label space where
each number is associated with a class, e.g., ‘1 = horse’, ‘2 = zebra’, ‘3 = apple’. A
dataset D for a classification tasks consists of N ∈ N tuples (xn, yn) ∈ X × Y , n =
1, . . . , N drawn from a data generating distribution PX,Y . The task is to approximate
the conditional probability pY |X over the classes. The approximation is done by learning
a neural network fθ. By using a fully connected layer with softmax activation as output
layer and setting the number of output neurons to the number of classes, a categorical
probability distribution

pθ(yn|xn) = fθ(xn)yn ∈ (0, 1) with
C∑

c=1

fθ(x)c = 1 (2.93)

is obtained. With this, the neural network

fθ : X → (0, 1)C ,x 7→ (fθ(x)1, . . . , fθ(x)C) (2.94)

yields a so-called (softmax) confidence score per class. The prediction

ĉ(x|θ) = argmax
c∈{1,...,C}

fθ(x)c (2.95)

is set to the class with the highest probability for the given input. This assigns the
discrete class label ĉ(x|θ) to the input image x.

To train the model, the empirical cross entropy loss with respect to our neural network
fθ and the dataset D

LCE
D (θ) = − 1

N

∑

(x,y)∈D

log(fθ(x)y)︸ ︷︷ ︸
=:LCE(fθ(x),y)

, (2.96)

serves as training objective. This function is just the same as the negative log-likelihood
introduced in Equation (2.47). For the practical implementation the label y = c′,
c′ ∈ {1, . . . , C}, is converted to a one-hot-encoded vector y ∈ {0, 1}C with yc′ = 1 for
the true class and yc = 0 for c 6= c′. Hence, we can formulate

LCE(fθ(x),y) = yT log(fθ(x)). (2.97)

With this method, images which display one (or multiple) object(s) from the same class
dominating the presented scene can be classified if the class is given in the predefined la-
bel list Y . Popular datasets for image classification tasks range from handwritten digits

46

2.3 Deep Learning for Images

(MNIST), where 10 classes (0, . . . , 9) need to be distinguished, to fine granular hierarchi-
cally categorized objects which aim to cover most of the nouns in the English languages
(ImageNet [56]). Tiny images like the 32 × 32 grayscale images in the MNIST dataset
can be classified with the help of MLPs [45]. Nevertheless, for more complex tasks more
sophisticated architectures mostly consisting of at least some convolutional layers were
needed. Nowadays, vision transformers (Section 2.3.1.2) dominate CNNs [311, 312] but
CNNs catch up with accuracy if their capacity is enlarged (see e.g., ConvNeXt [162] and
large scale foundation models like ImageIntern [286]).

The general setup of convolutional classification networks consists of a backbone, which
extracts general features, and a classification head on top which uses this latent feature
representation to estimate the categorical probability distribution over the classes. Dur-
ing feature extraction the backbone reduces the spatial dimension of the feature maps,
e.g., through pooling operations, while traversing the depth of the neural network. With
this, the information gets more and more compressed during the forward pass through
the network. The importance of well suited features was highlighted by Girshick et
al. [73]. Besides of convolutional layers, transformer layers in the backbone have shown
success in solving classification tasks [161]. The classification head consists typically
of one or very few fully connected layers where the last layer consists of C neurons.
For CNNs the output needs to be flattened to yield a one dimensional vector as input
for the classifier head. Alternatively, the backbone can return C feature maps and the
classifier head solely performs a global average pooling (Section 2.1.2.2) on each of them
to reduce the spatial dimension and compressing the image features. Additionally, the
two concepts can be combined such that the global average pooling is used to vectorize
the output of the backbone (which does not necessarily have C feature maps) and fully
connected layer(s) are used for classification (see e.g., ResNet in Section 2.3.1.1).

The first neural network, showing that neural networks containing convolutional lay-
ers can achieve good results in image classification tasks, was LeNet, introduced by
LeCun [146]. A depiction of LeNet as prototypical CNN structure for classification
is shown in Figure 2.10. With the help of multi-GPU training and ReLU activations
Krizhevsky et al. [142] demonstrated with AlexNet that much wider and a few layers
deeper CNNs can be trained. AlexNet won the ImageNet Large Scale Visual Recognition
Challenge in 2012 with great margin to the second-best submission18. Thereby depth
was a key component of their success, and they speculated that more performant GPUs
and bigger datasets further increase the performance [142]. Thereafter, CNN-based
backbones became wider and deeper, e.g., VGG16/VGG19 [255] and GoogLeNet [263]
but just stacking more layers does not necessarily improve but even degrade the network
performance [92]. As introduced in Section 2.2.5 neural networks suffer from training
instabilities which often get worse with deeper layers.

18https://image-net.org

47

https://image-net.org

2 Fundamentals

Conv
k = 5

Pool
s = 2

FC softmaxConv

k = 5

Pool
s = 2

Conv

k = 1

Figure 2.10: Prototypical illustration of a CNN for classification. Boxes denoted with ‘Conv’
represent the feature map of a convolution operation of a k × k kernel. Red boxes depict the
feature map of pooling operations with a stride s. Convolution and pooling operations are
followed by an either 1×1 convolution or a flattening to serve as an input for a fully connected
layer and lastly a linear output layer predicting a probability distribution over the class IDs
via a softmax activation.

2.3.1.1 Residual Neural Networks

Residual neural networks aim to overcome this phenomenon by learning residual con-
nections rather than approximating a direct mapping in a hidden layer. The description
of the method follows the original paper [92]. The idea behind residual neural networks
is that if a shallow network can learn a task with a certain accuracy, a deeper network
with the same performance can be constructed by stacking multiple identity mappings
for all layers deeper than the shallow network. However, these neural networks show
worse performance than their shallow counterparts. Assuming the function to approxi-
mate with the neural network fθ is of the form f = H1 ◦ · · ·◦HL, He et al. [92] proposed
to better learn a residual mapping

F i(x) := H l(x)− x, l ∈ {1, . . . , L} (2.98)

which makes it easier to learn an identity mapping. This is due to the fact that the
weights of F only need to be pushed to zero. F is realized by a small neural network.
With Equation (2.98) the mapping H l can be replaced by

H l(x) = F l(x) + x (2.99)

The implementation of H l is done by a residual layer19 which consists of the neural
network for F l and a shortcut bypass, often called skip connection, in form of an

19In the original paper the subnetwork is denoted as residual block since it consists of multiple layers.
To distinguish between blocks of multiple of those subnetworks and the subnetwork itself we refer
to the subnetwork approximating F l(x) + x as residual layer.

48

2.3 Deep Learning for Images

x Fθ(x)

+

Fθ(x) + x

Figure 2.11: Schematic representation of a residual layer consisting of chained convolutional
layers forming Fθ(x) which are bypassed by an identity mapping x. Addition of the input and
the residual forms the layer output Fθ(x) + x.

identity mapping which is added to the output F l(x). A depiction of the basic residual
layer is shown in Figure 2.11.

Based on this concept, a family of network architectures was proposed. The overall archi-
tecture of ResNets draws inspiration from previous neural network architectures, such
as VGG nets. There exist multiple versions (ResNet18, ResNet34, ResNet50, ResNet101
and ResNet152) of ResNets differing mostly in the number of layers and therefore in
parameter size and depth. All versions have in common that the information of the
ResNet input is primarily extracted and downsampled by a 7 × 7 strided convolution
with stride s = 2 and 64 output channels. The spatial dimension of the input is fur-
ther halved by a 3 × 3 pooling again with a stride of 2. The pooling is followed by 4
ResNet blocks with different amount of residual layers depending on the version. In the
following we introduce the structure of ResNet18 which is depicted in Figure 2.12. We
further investigate the differences with respect to ResNet50 as those two are used in this
thesis. The layer constellation of the other versions can be found in [92, table 1]. In
ResNet18 all four blocks are identically constructed. Each block consists of two residual
layers, each built of two consecutive convolutional layers with 3 × 3 kernels bypassed
by an identity mapping as shown in Figure 2.11. Starting with the second block, a
downsampling is realized by using a convolution with stride s = 2 for the first convo-
lution of each of the four blocks. Downsampling in the first block is already realized
by the pooling. This leads to an overall spatial dimension reduction by a factor of 32.
To realize skip connections between layers with reduced spatial dimension either zero
padding or a linear projection can be used. The latter is given by a learnable projection
matrix W such that the residual layer output turns into

y = Fθ(x) +Wx. (2.100)

Furthermore, starting with the second block, the number of channels stays constant
within a block but is increased by a factor of 2 at the beginning of the next block. After

49

2 Fundamentals

x
k = 7,
s = 2

p = 3,
s = 2

+ +

Block 1 (k = 3, size = 64× h/4× w/4)

s = 2

+ +

Block 2 (k = 3, size = 128× h/8× w/8)

s = 2

+ +

Block 3 (k = 3, size = 256× h/16× w/16)

s = 2

+ +

Block 4 (k = 3, size = 512× h/32× w/32)

512

avg.
pool

1000

FC

Figure 2.12: ResNet18, consists of 4 ResNet blocks each containing 2 residual layers with a 2-
layer convolutional neural network Fθ(x) to approximate the residual. Dashed skip connections
connect feature maps with different spatial dimensions. This is realized by either zero padding
or by a linear projection matrix W such that Fθ(x) + Wx is calculated. The size of the
intermediate feature maps is constant within a block for ResNet18 and noted by ‘size’ in the
figure. Red colored layers are pooling layers. Spatial dimension reduction is additionally
achieved by strided convolutions, denoted by s = 2. Classification is conducted by a fully
connected layer with exemplary 1,000 classes.

the four blocks in all ResNet versions, a global average pooling is used to compress
and flatten the features. Lastly, it is followed by a fully connected layer of size C with
softmax activation to yield a categorical probability distribution over the label space.

For deeper versions, e.g., ResNet50, a bottleneck structure is used to approximate the
residual. Therefore, the channel dimension at first is reduced by a (1× 1)-convolution,
then features are calculated by a (3× 3)-convolutional layer and at the end the channel
size is upsampled again by a (1× 1)-convolution. Starting in the first block the residual
layer consists of a (64× 1× 1)-convolution, followed by a (64× 3× 3)-convolution and
ending with a (256× 1× 1)-convolution. The residual layers are concatenated a varying
number of times per block. Thereby, the channel amount is increased by a factor of 2
at the beginning of each of the four blocks but kept constant within the repetitions of
the residual layers. For ResNet50 these building blocks are concatenated 3 times for
the first block, 4 times for the second, 6 times for the third and 3 times for the forth.
Together with the input and output layers, 50 layers are composed to form ResNet50.

The advantage of ResNet and its skip connections is that the parameter amount remains
identical to a simple stacked CNN, but the training error does not suffer from deeper
neural networks. Due to the skip connections ResNet there exists multiple paths of
varying length between a neuron in the output layer and the input layer. Thus, ResNets

50

2.3 Deep Learning for Images

can be understood as an ensemble of multiple moderate deep neural networks instead
of one extreme deep neural network [282]. To this end, the effective path length of the
gradients is much shorter than the actual depth of the ResNet [282]. In addition, the
complexity in terms of multiply-add operations is significantly reduced compared to,
e.g., VGG which has even fewer layers. Nevertheless, ResNet architectures achieve a
higher accuracy on ImageNet than VGG models [92]. With the help of skip connections
it was possible for the first time to easily train deep neural networks with over 100
layers. Thereby the results of the authors confirm the hypothesis of ‘the deeper, the
better’, as long as enough data is available and the problem has a certain complexity,
cf. Section 2.2.2. Beyond classification, the ResNet architecture has proven to serve as
a universal backbone in multiple vision tasks such as object detection [158] or semantic
segmentation [37].

2.3.1.2 Transformers

The second model type which has shown superior performance in image classification in
the recent years bases on transformer blocks. The use of transformer models for image
classification is motivated by their success in natural language processing, e.g., Bert [57],
GPT series [29, 196, 210, 211], initially introduced by Vaswani et al. in 2017 [281]. To
allow for inputs of variable length, e.g., a text in natural language processing, a sequence
of so-called tokens is used instead. Tokens are the smallest considered unit of a text
or an input in general. The granularity of the tokenization is defined by a tokenization
function. As an example, a sentence can be decomposed on word or character level
leading to an input sequence of words and punctuations in the first case [316].

In an encoding step the information from the input sequence x1, . . . , xN is compressed
into a continuous lower dimensional so-called embedding or latent space Rt and en-
riched by a positional encoding to encode the position of the token within the input
sequence. A learned convex combination of the input token embedding vectors is cal-
culated based on the similarity between the individual token embedding pairs. This
concept is called attention mechanism and is explained in detail in the next paragraph
as it is a key component of transformer models. The encoder consists of multiple of these
attention-based blocks. The output of a transformer is generated sequentially by a so-
called decoder which also consists of transformer blocks operating on the t-dimensional
embedding space. In more detail, the encoded representation as well as previously gen-
erated outputs serve as input and the attention-weighted convex combination thereof is
calculated. This is fed to a fully connected layer with softmax activation to generate
output probabilities over, e.g., a dictionary Y , to predict the next token, e.g., a word
in a sentence. This aims to consecutively generate an output sequence y1, . . . , y

′
m with

variable length m′ and yi ∈ Y .

The idea of attention can be made more tangible by the following association. Think of
a database which stores (key, value)-pairs, e.g., an online telephone book with entries

51

2 Fundamentals

(name, number). With the help of a query, e.g., ‘Peter’, we can ask for the number
of a specific person by its name. That means, that if the query meets a key we get
the value, the number, returned [316]. In the example the key and values are fixed,
and the attention is drawn with respect to whether a key exists or not. In the case of
transformers the attention and thereby the interaction between input tokens is captured
by learned self-attentions. The following detailed description is based on [281], but
we follow the notation of [313]. Given N token embedding vectors zi ∈ Rt which are
stacked column-wise to a matrix Z = (z1, . . . ,zN) ∈ Rt×N the key, value and query can
be defined by learnable weight matrices WK ∈ Rd×t, WV ∈ RdV ×t and WQ ∈ Rd×t such
that

WKZ = (WKz1, . . . ,WKzN) ∈ Rd×N C key

WVZ = (WV z1, . . . ,WV zN) ∈ RdV ×N C value (2.101)

WQZ = (WQz1, . . . ,WQzN) ∈ Rd×N C query.

The projection dimension d ∈ N thereby can be chosen arbitrarily and is part of the
architecture design choice. The attention mechanism is based on three steps. First the
similarity between WQZ and WKZ is calculated. This can be done additively [15] or
multiplicatively via a (scaled) dot-product [165,281] between the affine translated query
and key vectors. The latter is defined by

sim(WQZ,WKZ) =
(WQZ)TWKZ√

d
∈ RN×N . (2.102)

It is followed by a column-wise softmax activation to yield a predictive distribution

αWQ,WK
(Z) = asoftmax

(
(WQZ)TWKZ√

d

)
. (2.103)

The scaling 1/
√
d is used to control the size of the dot-product to yield meaningful gra-

dients and therefore stabilizes the training process. Furthermore, the dot-product can
be implemented much more efficient compared to additive attention [281].

As WK 6= WQ in general, the attention weights of two embedding vectors given by
αWQ,WK

(Z)i,j and αWQ,WK
(Z)j,i for i 6= j are not necessarily symmetric such that the

impact of a token can be unidirectional. This weighting is then used to calculate a
convex combination of the embedded value vectors V = WVZ:

AttnWQ,WK ,WV
(Z) = V · αWQ,WK

(Z) = WVZ · asoftmax
(

(WQZ)TWKZ√
d

)
∈ RdV ×N .

This form of attention is called self-attention as the key, query and value all base on the
same input and its embedding Z.

To increase the capacity of the transformer, multi-head self attention modules are

52

2.3 Deep Learning for Images

used. Multiple different projection matrix triples {(W i
K , W i

Q,W
i
V)}mhi=1 are learned in

parallel and fused as a convex combination to yield the final result. Often the projec-
tion dimension are chosen to be equal, i.e., dv = d, to compute all heads in parallel [183].
To not increase the computational complexity, the projection dimension d is divided by
mh ∈ N, the number of parallel computed so-called attention heads. Thus, mh projec-
tions in the dh-dimensional space with dh = d

mh
are learned. This permits the neural

network to learn from different representations and different positions of the input to-
kens. Accompanied by a skip connection as known from ResNet (cf. Section 2.3.1.1) and
corresponding weight matrices {W i

O}mhi=1 with W i
O ∈ Rt×dh for weighting each attention

head and mapping back to the embedding dimension t, the multi-head self attention
module is formally defined by

MHSAθ(Z) = Z +

mh∑

i=1

W i
O · AttnW i

Q,W
i
K ,W

i
V

(Z) ∈ Rt×N . (2.104)

Thereby all learnable weight matrices are grouped in θ for the sake of readability.

With this the complete transformer block which is a mapping Tθ : Rt×N → Rt×N can
be formulated. It consists of two sub-layers each bypassed with a skip connection, known
from the ResNet architecture, and followed by a layer normalization (cf. Section 2.2.5).
The first submodule is the above introduced multi-head self attention module. The
second is a 2-layer MLP with m1 hidden nodes and a ReLU activation. Let W1 ∈ Rm1×t,
W2 ∈ Rt×m1 be the learnable weight matrices of the MLP and b1 ∈ Rm1 , b2 ∈ Rt

the biases stacked N times to form a matrix B1 = (b1, . . . , b1) ∈ Rm1×N and B2 =
(b2, . . . , b2) ∈ Rt×N . With this, we define the general transformer block

T mh,dh,m1

θ (Z) := MHSAθ(Z) +W2 · aReLU (W1 ·MHSAθ(Z) +B1) +B2 ∈ Rt×N . (2.105)

2.3.1.3 Vision Transformers

When applying transformers to vision tasks, the tokenization is crucial. Pixel-wise
attention, which seems the straight forward transfer, does not scale well for images with
a reasonable resolution as the compute complexity is quadratic in the amount of pixels.
This problem is mitigated by using image patches as tokens [58]. An image x ∈ Rm×h×w

is divided in quadratic patches of m × p × p pixels with p < w, h. Those patches
are flattened to one-dimensional vectors. With a linear projection to a t-dimensional
embedding space and equipped with a positional encoding to encode the position of
the patch in the original image, the flattened vectors serve as input sequence of length
N = h · w/p2 for the transformer block. To solve a classification problem the sequence
is enlarged by an additional token, the class-token, whose embedding is learned as well
and its aim is to encode all information such that the image label can be predicted. In
contrast to the transformer block introduced in the last paragraph, vision transformers
(ViT [58]) use a GeLU activation function (cf. Equation (2.11)) in the MLP submodule.

53

2 Fundamentals

Furthermore, only the encoder part of the transformer is used. The classification is
realized by a classifier head in form of an MLP on top of the class-token output.

Vision transformers need plenty of data to perform comparable to CNNs. Dosovitskiy
et al. demonstrated in [58] that transformers surpass CNN performance for training
datasets with 14 to 300 million images. On ImageNet (1.2 million training images)
ResNet-based CNNs still were better in 2020 [136]. This was changed with data-
efficient image transformers (DeiT) [275] and tokens-to-token vision transformers (T2T-
ViT) [311]. One reason for the need of data is the lack of inductive bias which CNNs
have due to their ability of preserving spatial relations. Vision transformers need to
completely learn spatial relations as the positional encoding does only encode the posi-
tion of the patches but not a two-dimensional pixel arrangement [58]. Another difficulty
of transformers is its sensitivity to hyperparameters including initialization [275]. This
problem is for example addressed by adding regularization techniques (cf. Section 2.2.5)
and data augmentation methods (cf. Section 2.4.1). In [187], Naseer et al. study the
intriguing properties of vision transformers and compare them against CNNs. One key
difference between CNNs and vision transformers is the receptive field. Since the kernel
tensors applied to an input share the weights across all positions in the image, CNNs are
said to be content-independent [187]. In contrast, vision transformers have a content-
dependent dynamic receptive field due to the global patch-wise self-attention [187].

2.3.1.4 Evaluation Metrics

The loss allows to optimize the parameters, but it lacks interpretability with respect
to the test samples. To measure the performance of a classifier (independent of its
architecture) most commonly the accuracy is evaluated. It follows the most native way
to measure the performance of a classification task by counting the amount of correctly
classified data samples and setting it in relation to the total amount of evaluated data
points. Formally, the accuracy of a neural network fθ over a dataset D = {xi, yi}Ni=1

with predictions ĉ(x|θ) is given by

acc =
1

N

N∑

i=1

δĉ(xi|θ),yi . (2.106)

A confusion matrix gives insight into the mis-classifications. In a confusion matrix the
rows refer to the true class labels and the columns refer to the prediction. Using a C×C
matrix, we can monitor which class the classifier predicted relative to the true class. A
perfectly separating classifier would result in a diagonal matrix. Misclassifications are
noted on off-diagonal elements. When the dataset is unbalanced the accuracy might
be a misleading measure for the classifier performance. The classifier might learn to
always predict the dominating class. This results in a reasonably good accuracy, but the
performance of the underrepresented classes is catastrophic. When considering a binary

54

2.3 Deep Learning for Images

classification task alternative evaluation methods exist. In binary classification the
dataset consists of data points which have either label 1 (positive / Pos) or 0 (negative
/ Neg)

Pos = |{(x, y) ∈ D : y = 1}|
Neg = |{(x, y) ∈ D : y = 0}|. (2.107)

There are four potential outcomes for the prediction of the classifier. The classifier
can predict a data point correctly as positive (TP), falsely as positive (FP), falsely as
negative (FN) or correctly as negative (TN). The resulting sets for a neural network fθ
with prediction ĉ(x|θ) are given by

TP = |{(x, 1) ∈ D : ĉ(x|θ) = 1}|
FN = |{(x, 1) ∈ D : ĉ(x|θ) = 0}|
FP = |{(x, 0) ∈ D : ĉ(x|θ) = 1}|
TN = |{(x, 0) ∈ D : ĉ(x|θ) = 0}|.

(2.108)

The accuracy is then equivalently defined by

acc =
TP + TN

Pos + Neg
=

TP + TN

TP + FN + TN + FP
. (2.109)

Task specific metrics like

specificity

(
TN

Neg

)
, precision

(
TP

TP + FP

)
, sensitivity/recall

(
TP

Pos

)
(2.110)

and/or a look at the confusion matrix can be evaluated when the dataset is imbalanced.

2.3.2 Semantic Segmentation

Assigning only one category to an entire image is insufficient if multiple objects of
different classes are visible or a broader understanding of the entire scene is important
including the location of the objects. As mentioned earlier, this is particularly important
in the context of perception in autonomous driving. Semantic segmentation aims to
segment the image into regions which share the same semantics. Specifically, each
pixel in an image is assigned the category of the object or class it belongs to. As for
classification, the label categories are predefined as {1, . . . , C}. Given an input image
x ∈ X ⊆ Rc×h×w, a semantic segmentation mask

y ∈ Y := {1, . . . , C}h×w with yi,j ∈ {1, . . . , C} (2.111)

55

2 Fundamentals

serves as label for x. The problem can be understood as a pixel-wise classification
problem. As a consequence, we obtain a function usually represented by a neural network

fθ : X → [0, 1]C×h×w with f i,jθ (x) ∈ [0, 1]C (2.112)

describing the pixel-wise conditional probability distribution. Per pixel (i, j) ∈ I the
most probable class can be determined by applying the argmax-function to f i,jθ , yielding
the prediction

ĉi,j(x|θ) = argmax
c∈{1,...,C}

(f i,jθ (x)c). (2.113)

With the help of the pixel-wise class predictions, segments with the same semantics,
e.g., object type, are formed. To properly define a segment in an image, we associate
the image with a pixel adjacency graph G = (I, E) where each node represents a pixel
(i, j) ∈ I. The edges are defined by the neighboring relation of pixels and their class
label. If neighboring pixels are assigned the same class, they are connected with an
edge. The set of neighbors for non-border pixels is defined by

N8(i, j) := {(i, j ± 1)} ∪ {(i± 1, j)} ∪ {(i± 1, j ± 1)}. (2.114)

For the border pixels, all index combinations which lead to indices not in I are excluded
from the set. We say, two vertices (i, j) and (k, l) are connected by an edge e(i,j),(k,l) if

(k, l) ∈ N8((i, j)) and ĉi,j(x|θ) = ĉk,l(x|θ). (2.115)

This graph can be split into connected components, i.e., non-connected simple subgraphs
where each pixel has the same class label. A segment in an image can then be defined
as a connected component in the graph.

As loss function serves the empirical pixel-wise cross entropy

LCE-pix
D (θ) = − 1

N
· 1

h · w
∑

(x,y)∈D

∑

(i,j)∈I

LCE(f i,jθ (x), yi,j) (2.116)

which is the cross entropy, known from the classification setup (cf. Equation (2.96)),
averaged over each pixel. Even though it seems to be a straight forward extension of the
classification task, semantic segmentation is much more complex and comes with its own
peculiarities like computational complexity and fine-grained information extraction. In a
classification dataset, it is quite easy to ensure that each class is equally often represented
in the dataset by construction. For semantic segmentation this is harder to achieve as
not all classes need to occur equally often (in terms of pixel count). For example, in
urban traffic scenes, the roads, buildings and the sky are typically the most prominent
elements, while e.g., pedestrians and bicycles occupy a relatively small portion of the
scene in terms of pixels. An imbalance in the pixel amount per class results in a loss
biased towards the dominating classes as the average over the pixels is calculated. To

56

2.3 Deep Learning for Images

CNN backbone
dense
prediction

fractional

strided
conv

k = 1

Figure 2.13: The schematic illustration shows a FCN consisting of a CNN backbone with
convolution and pooling layers. The output is mapped to a tensor of C channels via a (1× 1)-
convolution and upsampled with a strided convolution with learnable weights to recover the
spatial input resolution. By applying a softmax activation in the output layer and calculating
the maximal argument, we achieve a dense prediction map.

foster the network to also learn the underrepresented classes, a class weighting based on
the pixel-wise class distribution of the training data label masks is often included into
the loss.

Similar to the classification architecture, neural networks for semantic segmentation
follow the concept of a feature extracting backbone followed by a task specific head
which estimates a pixel-wise class probability in this case. Both convolutional and
transformer-based architectures have been found to be effective at tackling semantic
segmentation [37,300]. We introduce both architecture types in the following. CNNs as
introduced in Section 2.3.1 have proven to be useful for classification tasks. But due to
the fully connected layers in the classification heads of the presented architectures, they
cannot cope with varying input resolutions and yield a vector-valued output whereas a
mask of input size is demanded for semantic segmentation.

2.3.2.1 Fully Convolutional Networks (FCNs)

Fully convolutional networks [163] aim to overcome these limitations. Features are ex-
tracted as it was done for classification with a CNN backbone. To achieve a dense feature
map with an estimated probability distribution over C classes, all fully connected layers
in the classification head are replaced by convolutions and for the last layer the number
of feature map channels is transformed to the number of classes. This can be realized
by (1× 1)-convolutions (cf. Section 2.1.2.1). At the end, upsampling is done to recover
the input resolution. In Figure 2.13 a schematic illustration of a FCN is depicted. An
important factor of success of convolutional architectures is the information compression
due to resolution reduction while moving to deeper layers. Using backbones which in-
corporate resolution reduction layers like pooling or strided convolutions lead to a final

57

2 Fundamentals

output feature map with subsampled resolution compared to the input image. As a
dense feature map is required for a pixel-wise classification, upsampling is performed to
restore the original input resolution leading to a per-pixel class distribution. Upsampling
can be non-parametric for example by nearest neighbor or bilinear upsampling. This
is used in the output layer to allow for faster training [36]. Alternatively, upsampling
can be learned via fractionally-strided convolutions (cf. Equation (2.24)) which is often
done in earlier layers. With this, an end-to-end training is possible and an input of any
spatial size can be fed into the FCN. Furthermore, pre-trained classifier backbones can
be used to limit the training effort to fine-tuning the segmentation head. We explain
the concept of pre-training in more depth in Section 2.4.3.1. A variety of backbones (in
varying sizes depending on the complexity of the task) often pre-trained on ImageNet
can be used for FCNs [163].

Despite fractionally-strided convolutions, FCNs with subsampling operations lead to
fuzzy object boundaries when upsampling to the input resolution. On the other hand
pooling is a key component to compress information and enlarges the effective field of
view. Adding skip connections (cf. Section 2.3.1.1) from earlier layers with higher res-
olution to the upsampled output layers allows fusing information on a fine and coarse
level [163]. The idea of using skip connections between different feature-map resolution
was extended by the U-Net architecture [223]. Each resolution step in the downsampling
path has a skip connection to the corresponding feature-map in the upsampling path. A
subsequent convolutional layer learns to combine the information from the earlier layer
and the upsampled layer. Firstly, information is compressed step-by-step using convo-
lutional layers and pooling operations in a downsampling path. It follows a symmetric
upsampling path where the pooling operations are replaced with fractionally-strided
convolutions. The convolution layers in the upsampling path help to learn context in-
formation relevant for later layers. This path expands the feature-maps symmetrically
to the downsampling, leading to an architecture which resembles a U-shape.

2.3.2.2 Deeplab

A computationally effective alternative to achieve a dense and accurate feature map pre-
diction is proposed by the deeplab architecture family. Deeplab is a special type of FCN,
following the concept of using a classifier backbone, where all fully connected layers are
replaced by equivalent convolutions, followed by a modified semantic segmentation head.
It evolved from version 1 [35] over 2 [36], and 3 [37] to version 3+ [39]. In the following
we refer to the version by deeplabv1 to deeplabv3+. The architecture design aims at a
dense feature prediction, taking into account that objects occur on multiple scales and
adds a method to improve on the localization of objects which is neglected in classi-
fication. The dense feature prediction is achieved by replacing the downsampling and
convolutions in later layers by atrous convolutions with different rates (Equation (2.22)).
As introduced in Section 2.1.2, atrous convolutions can enlarge the effective field of view
without increasing the number of parameters to learn. In addition, the different rates

58

2.3 Deep Learning for Images

can be used to explicitly select the resolution at which features are computed. The
atrous convolutions are supplemented by bilinear upsampling to achieve the resolution
of the final feature activation map. To further refine the prediction boundaries and
the localization of the objects, deeplabv1 and v2 include a post-processing with a fully
connected conditional random field (CRF) [140]. Conditional random fields model a
conditional prediction by a graphical model of random variables. This graphical model
enables to take context of neighbors defined by the graph structure into account. As
the prediction of a pixel is correlated to its neighbors, CRFs based on the output of
the neural network can learn to refine the predicted segmentation mask. However, it
has been shown that conditional random fields as post-processing is obsolete from ver-
sion 3 on. One reason for that might be that in contrast to version 1 and 2 in version
3 the ground truth is not subsampled during training and therefore finer feedback is
given by the gradients. To capture features of objects or image information at different
scales, feature maps can be sub- or upsampled at different scales and processed in par-
allel, which is known as spatial pyramid pooling [90]. Starting with deeplabv2 atrous
spatial pyramid pooling (ASPP), which calculates multiple atrous convolutions with
different rates in parallel to probe the image with different effective field of views, was
introduced. This approach was improved in deeplabv3 by adding batch normalization
(cf. Section 2.2.5) and by incorporating a global view on the image (features) by a global
average pooling (cf. Section 2.1.2.2) alongside atrous (3 × 3)-convolutions at three dif-
ferent rates and a (1× 1)-convolution (cf. Section 2.1.2.1) for a cumulative view on the
different feature maps per pixel. The authors suggest different rate combinations de-
pending on the backbone and size of the feature map. We use the rate r = 12, r = 24,
and r = 36 for the three stages as implemented in torchvision. These 5 feature maps are
computed in parallel on the same feature map, concatenated afterwards and followed
by an additional (1× 1)-convolution and a dropout layer (Section 2.2.5) with a dropout
probability of 0.5. To achieve a dense feature map with class activations, the ASPP
module is fed to a (3×3)-convolution to learn feature combinations from different scales
followed by a (1 × 1)-convolution with the width of the number of classes. Except for
the very last (1 × 1)-convolution all layers are augmented with a batch normalization
layer (Section 2.2.5) between the convolution and the ReLU activation layer. Together
that defines the deeplabv3 head20. The full architecture of deeplabv3 with a ResNet
backbone is sketched in Figure 2.14.

Deeplabv3+ extended the segmentation head of deeplabv3 by a decoder which uses low-
level features from the backbone and the output of the deeplabv3 upsampled with a
factor of 4 instead of 8. This leads to a typical encoder-decoder structure. The decoder
refines the compressed features of the encoder by a few convolutional layers and lastly
upsamples bilinearly the refined feature map to the full image resolution. In this thesis
the latter two versions of deeplab are extensively used with a ResNet backbone in various
sizes and with atrous convolutions in the last two blocks.

20The description follows the implementation [38] of the authors which deviates slightly from their
description in the paper, e.g., the dropout layer is omitted in the paper.

59

2 Fundamentals

k = 7,
s = 2

p = 3,
s = 2

Block 1 Block 2
Block 3,
r = 2

Block 4,
r = 4

ASPP
& avg
Pool

concat
k = 1,
dropout

k = 1k = 3

Figure 2.14: Deeplabv3 architecture with ResNet backbone. In the last two ResNet blocks, the
downsampling is replaced by atrous convolution (yellow) with rate r = 2 and r = 4 respectively.
The deeplabv3 head consists of an atrous spatial pyramid pooling (ASPP) module with global
average pooling to capture the image features (in braces). All 5 operations are calculated
in parallel. The results are concatenated and feature combinations are learned by a (1 × 1)-
convolution with dropout (violet) and a regular 3× 3-convolution. The last layer projects the
extracted features to a probability distribution over the C classes per pixel. Via upsampling
a dense feature map is achieved.

2.3.2.3 Vision Transformers for Semantic Segmentation

Besides convolutional semantic segmentation models, also transformer models exist for
semantic segmentation. Even though vision transformers like ViTs [58] have proven
success for image classification, they are not directly suitable as general purpose back-
bone for other computer vision tasks. This is partly due to their low resolution feature
map conditioned by the patch size (16 × 16 for ViT). Dividing the image into a regu-
lar grid of patches enables vision transformers to reduce the computational complexity
compared to the number of pixels (cf. Section 2.3.1.3). However, their computational
complexity is quadratic in the number of patches and due to a fixed patch size depen-
dent on the image size. To overcome these limitations, Swin transformers [161] follow
a hierarchical setup combined with a shifted window approach. For the shifted window
approach the image is divided into a fixed number of windows. A window contains
M ×M patches. In contrast to ViTs where the self-attention is calculated with respect
to all patches, self attention is computed locally, meaning only within one window. This
leads to linear compute time in the input image size. To also allow for cross window
information flow, the windows are shifted from transformer block to transformer block

60

2.3 Deep Learning for Images

by half of the window size in all spatial dimensions. For self-attention, shifting the win-
dows is computationally more efficient than a sliding window approach as known from
CNNs. This is due to the fact that memory access cannot be handled in a similarly
efficient way [161]. Furthermore, the self attention is extended with a relative position
bias [212] replacing the deterministic positional encoding formerly added to the token
embeddings. In addition, Swin transformers profit from hierarchically merging neigh-
boring patch tokens and projecting them to a lower dimension when going deeper in the
neural network. With this they can mimic the different resolution level of typical CNN
backbones like ResNet. As a consequence, Swin transformers are the first transformers
which can replace ResNet backbones while being computationally efficient. This makes
swin transformers suitable as general purpose backbone for different computer vision
tasks. A fully transformer-based model, meaning that backbone and decoder consist of
transformer blocks, for semantic segmentation was introduced with Segmenter [260]. In
contrast to CNN-based models, transformers have the capability to learn global context
in the first layers but lack the inductive bias of the local arrangement of image pixels.
To overcome the immense need of labeled data, which is rare in semantic segmentation
as annotation on pixel level is needed, classification tasks are used to pre-train the trans-
former model such that fine-tuning to the semantic segmentation task can be achieved
with a “moderate sized dataset” [260]. Additionally, transformers with a small number
of parameters can be used. For example, SegFormer [300] was proposed as a simple
and efficient transformer architecture for semantic segmentation. SegFormer is a hierar-
chical transformer with multiscale feature output which is aggregated by a lightweight
multilayer perceptron decoder allowing to combine global and local attention. The de-
sign of the transformer encoder was inspired by ResNet. It consists of four blocks each
containing a number of transformer blocks with an increasing channel dimension and
reduced spatial dimension in each of the four blocks while moving deeper in the neu-
ral network. By merging overlapping patches a hierarchical structure of feature maps
is achieved and enables the extraction of fine and coarse features on different scales.
One key contribution is that SegFormer avoids a positional encoding by introducing a
3 × 3-convolution (Conv3×3) in the linear layer of in the transformer block such that
Equation (2.105) transforms to

T mh,dh,m1

θ (Z) := MHSAθ(Z) +W2 · aGELU (Conv3×3 (W1 ·MHSAθ(Z) +B1) +B2) .

Positional-encoding-free transformers allow for input resolution change at test time
which is important as the resolution during training and test often differs for semantic
segmentation. The claimed efficiency is achieved by adopting the efficient self-attention
introduced by [287]. Furthermore, the architecture benefits from its small fully con-
nected decoder which has been shown to be enough to fuse the multiscale feature maps
and predicting the class map. Similar to ResNet, SegFormer comes with differently sized
encoder models ranging from B0 to B5. With this SegFormer represents a family of lean
transformer-based segmentation models with reasonable parameter-performance trade-
offs and adequate inference speed. Besides single task transformers, Mask2Former [43]

61

2 Fundamentals

IoU
14

34
41.18%

Figure 2.15: The IoU of the blue and red pixel sets is calculated by counting the pixels of their
intersection and divide it by the number of pixels in the unified set.

is a transformer architecture which aims to solve multiple vision tasks at once: instance
segmentation (pixel-wise segmentation of objects where each object is distinguished by
a different object ID), semantic segmentation and panoptic segmentation (pixel-wise
classification for background or static classes combined with instance segmentation for
objects). Despite being a universal architecture, Mask2Former outperforms specialized
architectures on all tasks [43].

2.3.2.4 Evaluation Metrics

Semantic segmentation is evaluated in terms of pixel accuracy or mean intersection
over union (mIoU) [115]. The first is a direct transfer of the accuracy calculated for
classification tasks (Equation (2.109)) to the pixel-wise classification task. Therefore,
the percentage of correctly classified pixels per image is computed. As for classification,
this metric is sensitive to class imbalance. Considering a binary segmentation problem
where 95% of the pixels correspond to class 0 and 5% correspond to class 1, a model
predicting always class 0 yields an accuracy of 95% even though it has not generalized
well to class 1. The intersection over union also known as Jaccard index [115] tries
to mitigate this bias. As the name suggests, the ratio between the intersection and the
union of two countable sets S1, S2 is calculated

IoU(S1, S2) :=
|S1 ∩ S2|
|S1 ∪ S2|

. (2.117)

To make it easy to count the elements in a set, e.g., pixels, the visualization of the
metric is shown in Figure 2.15 for two pixel art images in red and blue, respectively.

For semantic segmentation the IoU can be represented using the number of correctly

62

2.4 Overcoming Data Limitation

and wrongly predicted pixels per class. We define the sets

TPθ(c
′,x,y) := |{(i, j) ⊆ I : ĉi,j(x|θ) = c′ = yi,j}| C correctly classified as class c′

FPθ(c
′,x,y) := |{(i, j) ⊆ I : ĉi,j(x|θ) = c′ 6= yi,j}| C falsely classified as class c′

FNθ(c
′,x,y) := |{(i, j) ⊆ I : ĉi,j(x|θ) 6= c′ = yi,j}| C omitted to classify as class c′

for a pair (x,y) of input and ground truth and a class c′ ∈ {1, . . . , C}. With this we can
define the IoU per class over the entire dataset D which contains N ∈ N pairs (xn,yn)
of input and ground truth

IoUD,θ(c) =
1

N

N∑

n=1

TPθ(c,xn,yn)

TPθ(c,xn,yn) + FPθ(c,xn,yn) + FNθ(c,xn,yn)
. (2.118)

Thus, the IoU is the ratio of pixels where the prediction and ground truth coincide and
all pixels such that ĉi,j(x|θ) = c′ or21 yi,j = c′. The IoU is often denoted in percent. To
achieve a metric equally incorporating all classes, the mean intersection over union
(mIoU)22

mIoU(D) =
1

C

C∑

c=1

IoUD,θ(c) (2.119)

is calculated by taking the mean with respect to the classes. As a consequence, disre-
garding a class leads to a distinct reduction of the metric value. Considering the binary
segmentation problem from above where 95% of the pixel correspond to class 0 and 5%
correspond to class 1, a model predicting always class 0 achieves an mIoU of 47.5% in
contrast to the pixel accuracy of 95%.

2.4 Overcoming Data Limitation

The success of deep neural networks for vision tasks heavily depends on the amount and
the quality of the (labeled) data. In many real life applications data is rare and/or ex-
pensive to annotate. Especially annotating images on pixel-level detail as needed for se-
mantic segmentation is time-consuming, costly and likely to incorporate errors [47,228].
Nevertheless, for understanding complex scenes like street scenes with multiple vulnera-
ble road users, perception on a detailed level is crucial. Several concepts were proposed
ranging from label coarsening over exploiting unlabeled data to extracting advantages
from additional domains and datasets. In the next sections we cover the basics of the
approaches to compensate the limited data amount relevant for the understanding of
this thesis.

21Here we mean the logical ‘or’ which is non-exclusive.
22For notation simplicity we omit the dependency on the neural network.

63

2 Fundamentals

(a) original (b) rotation (c) crop (d) horizontal flip

(e) median blur (f) contrast-brightness (g) sun flare artifacts (h) artificial rain

Figure 2.16: Image augmentations. First row shows geometric augmentations whereas the
second row depicts augmentations on pixel-level. Sun flare and artificial rain are automotive
specific augmentations which aim to cover a wide range of weather scenarios. Augmentations
were done with the albumentation library [30].

2.4.1 Data Augmentation

To enlarge the dataset without additional annotation cost, data augmentation is
a common practice [30]. Therefore, the input and where necessary its annotation is
modified randomly in each epoch. Augmentations can be categorized into geometric
and pixel-level augmentations. Typical geometric augmentation methods are random
cropping, scaling, rotating, flipping and non-linear geometric distortions [146]. Pixel-
level augmentations refer to color- or texture-based augmentations ranging from color
space transformations, color jittering [142] and contrast normalization to adding noise
or blur to the input [253]. A prior knowledge about the task and its invariance to
augmentations is needed to choose appropriate modifications to the input. In street
scenes mostly horizontal flipping is used since vertical flipping – flip the upper with
the lower part of the image – leads to unrealistic scenes. For example the sky is most
likely in the upper half of an image and the street on the lower part and not vice
versa. Similarly, in digit recognition a rotation of 180 degree changes the semantic of
a 6 and a 9. This technique additionally leads to more diversity in the dataset as it
differs from epoch to epoch which makes it an implicit regularization method to mitigate
overfitting [30,142]. Furthermore, neural networks trained with input augmentation are
more robust to unseen data [241]. Examples of augmentation methods are visualized
in Figure 2.16. In practice, several of the presented augmentation methods are combined
followed by the input normalization as described in Section 2.2.5. The realization of the
transformation takes place at the time of data loading.

64

2.4 Overcoming Data Limitation

2.4.2 Weak and Semi-supervised Learning

If unlabeled data is available, weakly labeling the data can be an alternative to limit the
labeling cost. Thereby, weak labels serve as a rough approximation of the true labels. By
e.g., using bounding box annotations for semantic segmentation tasks, the labeling cost
is reduced from pixel accurate segments to rectangular boxes. With the help of region
proposal methods multiple candidate segmentation masks are generated. By choosing
the one which overlaps the most with the bounding box annotation a segmentation mask
with estimated label is achieved and can be used for training the semantic segmentation
network. In an iterative learning process the segmentation is refined by updating the
label estimates for the proposals and updating the network parameters [53].

In practice, labeling a small subset of data in a fine manner is feasible. However, the
amount of labeled data is not enough to train a well generalizing model in a supervised
manner (cf. Section 2.2.2). If we can assume that the marginal distribution PX contains
information about the conditional distribution PY |X , semi-supervised learning methods
can be applied to take advantage from the unlabeled data [280]. The loss with respect
to a labeled dataset D and an unlabeled dataset U can be defined by

LD∪U = γDLD + γULU , (2.120)

where γD , γU are scalar weighting factors which may depend on the training iteration
and LD and LU are a supervised and unsupervised loss function, respectively [41]. The
success of semi-supervised learning presumes a certain smoothness and manifold struc-
ture of the data distribution. That means, data points which are close in the data
space should share the same label with a high probability. Furthermore, it is assumed
that the data within a manifold shares the same label and the manifolds or clusters
are separable by low-density regions [41]. Modern semi-supervised learning techniques
involve self-training methods that use (learned) pseudo labels generated by the neural
network. These labels are iteratively included in the training process, often weighted
by the prediction’s uncertainty, to enhance the model’s performance and, consequently,
the pseudo labels [118, 150, 306]. Often these methods need a warm-up phase to assure
an adequate quality of the pseudo-labels. This can be modeled with the help of the
weighting factors γD , γU . Besides self-training, a two-stage training is a common strat-
egy when limited labeled data is available. Starting with an unsupervised pre-training
good initial network parameters can be achieved to then fine-tune to a specific task
on a small amount of labeled data. Albeit the literature lacks uniform categorization
of this method, we understand it as a semi-supervised method. It can be modeled by
setting γD = 0 and γU = 1 for the pre-training and switching their values for the fine-
tuning phase. We discuss this method in more detail in the context of transfer learning
(see Section 2.4.3.1).

65

2 Fundamentals

2.4.3 Transfer Learning

When considering specific problems, often only a small dataset DT ⊆ XT ×YT is avail-
able. Nevertheless, a larger dataset DS ⊆ XS×YS stemming from a potentially different
distribution might exist which can help to learn general features. The idea of transfer
learning is to transfer ‘knowledge’ from the source domain and the task solved therein to
help estimate the predictive function in a target domain [197]. According to the taxon-
omy in [137] a learning problem has three components in which it can differ: the feature
space X , the label space Y and the distribution pS given by the marginal distribution
pX according to which each x in the training dataset was drawn and the conditional
probability distribution pY |X for each tuple (x, y) in the training dataset DS . We define
a domain S as the triple

S = (XS,YS, pS) (2.121)

where pS is the joint probability defined by pS(x, y) = pY |X(y|x)pX(x). As introduced in
Section 2.2.1 the predictive distribution (conditional probability distribution) is learned
by a neural network fSθ on the source dataset DS and fTϑ on the target dataset DT . In
later chapters we omit the parameter dependency in the notation and write fS or fT for
the sake of readability.

Transfer learning is used when the learning problems in the source and target domain
differ in at least one of the components. If the learning problems differ only in the
distribution, i.e., pS 6= pT but XS = XT and YS = YT are identical, the method to achieve
this transfer is named domain adaptation which we introduce in Section 2.4.4. A new
domain adaptation method developed as part of this thesis is described in Chapter 4.

2.4.3.1 Pre-Training

An intuitive example how knowledge can be transferred is when only the label space
differs, i.e, YS 6= YT . General features to identify specific patterns can be learned on a
much broader task. In a subsequent step, only the fine peculiarities of the target label
space need to be learned. In other words, when the input data for two tasks, a source
task and a target task, is similar, e.g., naturalistic RGB images, neural networks solving
a target task can draw advantage from neural networks trained for the source task.

To this end, firstly, a neural network fSθ is trained on the source dataset DS to solve the
source task, e.g., classification of a broad range of objects. This is called pre-training
and leads to a model fS

θ̂
. Assuming that (part of) the features learned by fS

θ̂
are general

enough for the target distribution, the parameters of fS
θ̂

can support learning the target
task. To solve the target task, e.g., a fine-grained classification, a second neural network
fTϑ with the same base architecture is used to solve

argmin
ϑ
LDT (ϑ) + γd(fTϑ − fSθ̂) (2.122)

66

2.4 Overcoming Data Limitation

in a so-called fine-tuning step [184, 20.5.1.1]. With d(fTϑ − fSθ̂) we denote any appro-
priate distance measure between the functions represented by the neural networks. A
possible measure could be the difference in the parameters θ̂ and ϑ. The regulariza-
tion is weighted with a scalar γ ∈ R≥0. In practice the regularization is often done by
sharing all but the head weights with fS

θ̂
. Pre-training therefore can be understood as a

good initialization for the network parameters of fTϑ to simplify the training [208]. Sev-
eral approaches are known for fine-tuning. Starting from the weights of the pre-trained
model, one common approach is to ‘freeze’ the weights of all but the head layers and
only train the task specific head on top of that model. Freezing the weights means
that these weights are treated as fixed values rather than variables whose gradients are
calculated during backpropagation. Fixing the weights ensures that the general features
are not discarded due to the task but task specific combinations of the features and their
hierarchical dependency are learned with the help of the remaining learnable weights.
Nevertheless, this might be a too strict assumption on the similarity of the two fea-
ture spaces. As a consequence, a different approach is to fine-tune all weights but with
a distinct smaller learning rate for the backbone parameters than for the head which
is trained from scratch, i.e., starting from randomly initialized weights. However, the
parameter subset to fine-tune depends on the task to solve. In the context of domain
adaptation, it was shown in [124] that fine-tuning of earlier layers have more influence
when faced with non-semantic shifts, e.g., lighting conditions. In contrast, parameters
of later layers have more influence on semantic related features. To this end, fine-tuning
earlier layers can be more reasonable in certain applications.

As described in Section 2.3.2, neural networks for semantic segmentation follow the
concept of a feature extracting backbone combined with a task specific head. Many
backbones for classification are also suitable for semantic segmentation tasks and there-
fore act as general purpose backbones, e.g., ResNet. A common practice is to first train
the backbone on an easier task like classification where a huge amount of labeled data is
available to learn basic features. The primary dataset for acquiring fundamental features
of naturalistic objects and therefore serving as a source dataset DS is ImageNet23 [183].
After pre-training, the model is fine-tuned on the specific dataset (e.g., a semantic seg-
mentation dataset of urban street scenes) to solve the actual task.

Even though pre-training (in particular ImageNet pre-training) is a widely used strategy,
it may not be as effective for certain applications. This is especially true if the similarity
requirement of the input domains does not hold, as for example for medical images
[7,213]. Furthermore, the experiments of He et al. suggest that ImageNet pre-training for
object detection leads to a convergence speed up in early training stages but does neither
necessarily have a positive influence on the target accuracy nor on overfitting prevention
compared to training neural networks from scratch sufficiently long. Therefore, the
authors question the extensive use of ImageNet pre-training [89].

23More precisely, a curated subset of 1,000 classes and approximately 1.2 million training images which
was created for the ImageNet Large Scale Visual Recognition Challenge [230]. It is a challenging
benchmark in image classification and the data is widely used for training or to compare methods.

67

2 Fundamentals

2.4.3.2 Self-supervised Learning

Besides the supervised pre-training discussed so far, neural networks can be pre-trained
in an unsupervised manner. One method to learn general features from unlabeled data,
is to define a pretext task, e.g., colorizing grayscale images or playing image jigsaw
puzzles. The labels of this task, so-called pseudo labels, can be automatically generated
based on the data. By solving the pretext task a descriptive representation and general
features of the data are learned. This technique is better known as self-supervised
learning and has proven successful for several vision tasks [322]. A detailed review
on this topic can be found in [119]. In contrast to self-training (see Section 2.4.2),
self-supervised learning is task agnostic and therefore does not need any task-specific
labels [41].

2.4.4 Domain Adaptation

When the marginal distributions of the source and target domain differ distinctly, neural
networks often fail to generalize to the new domain even though they achieve excellent
performance on the source domain. When the learning problem only differs on distribu-
tion level (marginal and/or conditional), this phenomenon is called domain gap or do-
main shift and roots in the shift in distribution between the two domains [137]. A distinct
shift in the input distribution is for example given when considering real versus computer
generated data while both stem from the same feature space XS = XT = [0, 1]m×h×w

– the space of images. Given a labeled source domain S = (XS,YS, pS) and a target
domain T = (XT ,YT , pT) domain adaptation (DA) methods aim to mitigate the perfor-
mance gap of neural networks trained on a subset DS ⊆ S and evaluated on a subset
DT ⊆ T .

To understand the root causes of the domain shift, we recap that (x, y) can be associated
by a random variable (X, Y) distributed according to PX,Y with density pX,Y . The
relation between the joint, marginal and conditional distribution is given by

pX,Y (x, y) = pY |X(y|x)pX(x) (2.123)

or likewise
pX,Y (x, y) = pX|Y (x|y)pY (y). (2.124)

The latter representation reveals a prior shift if the class-conditional distribution is
identical in both domains, i.e., pS(x|y) = pT (x|y), but the class distribution differs, i.e.,
pS(y) 6= pT (y). This shift occurs if for example a class appears much more often in
one domain as in the other. Modeling the joint distribution via the first representation,
a covariate shift can be the cause of the neural network’s performance drop. That is,
the posterior distribution is identical (pS(y|x) = pT (y|x)) but the data distribution
differs (pS(x) 6= pT (x)). Covariate shifts are often associated with texture, brightness

68

2.4 Overcoming Data Limitation

or contrast variation between the domains. Lastly there can be a shift in concepts.
Thus, the data distribution is unchanged but the posterior distribution differs between
the domains. This is the case if objects of class c in one domain have label c′ with c′ 6= c
in the other domain. The taxonomy in transfer learning including domain adaptation
is not consistent in literature and has changed over time. We follow the categorization
in [137]. In practice the domain shift is generally not caused by a single shift but by a
combination of two or more.

The question of learnability of domain adaptation has been addressed by Ben-David
et al. [22]. They examine the necessary assumptions for successfully learning domain
adaptation regarding the correlation between the two distributions. The key finding is
that the dissimilarity of the data distribution needs to be small as well as there must exist
a hypothesis which has low error on both domains. Furthermore, they investigated “a
uniform convergence learning bound for algorithms which minimize convex combinations
of empirical source and target errors” [22]. Kouw and Loog list a few additional relations
which can be exploited to achieve generalizability to the target domain [137].

Domain adaptation is mostly done when there are little or even no labels available
for the target domain. In this thesis, we focus on domain adaptation for semantic
segmentation where labels are much more expensive to obtain than for classification.
We distinguish between three major types of domain adaptation depending on the label
amount available in the target domain: unsupervised (UDA; no labels available), semi-
supervised (SSDA; a few labels available) or supervised (SDA; labels exist for all training
samples) [271]. Domain adaptation is a very active and developing research area where
most publications in context of domain adaptation focus on UDA as no additional
labeling effort is needed in the target domain. For an overview over the variety of
publication see for example [49,242,271].

Adaptation can be done in different stages of the neural network. Ranging from input-
level adaptation [26, 63, 100, 182, 272], over feature-level adaptation [101, 126, 129, 305]
to output-level adaptation via, e.g., self-training [129,171,277,278,283,305,317,325]. A
visualization of the three levels is depicted in Figure 2.17. Input level adaption can also
be done offline, meaning that the input transformation is not part of the model training
but has been done in advance. The adaptation is not limited to a single stage, and
often it is difficult to map the approaches to only one of the categories like [129, 305].
Approaches which act on multiple levels are sometimes called ‘hybrid models’. A study
on hybrid models was done in [242].

UDA has been shown to still have a distinct gap to target performance. Many ap-
proaches aim to align the features in the source and target domain. Since no labels
are available the alignment is done regardless of the class ID. Nevertheless, a few labels
in the target domain might lead to more performance gain with only little annotation
cost [250]. In a semi-supervised domain adaptation setup, methods have the po-
tential to draw advantage from a random but mostly very small subset of the target data
which is provided with labels. A direct transfer of unsupervised approaches reveals that

69

2 Fundamentals

Input-level

adaptation

Feature-level

adaptation
Output-level

adaptation

Encoder Decoder

Figure 2.17: The different adaptation levels in domain adaptation are depicted in the style of
the visualization of [271]. Adaptation can be done in each single stage or in multiple subsequent
stages and is realized by the yellow drawn adaptation modules. If adaptation is done only in
one stage the other modules would act as identity mappings. The input-level adaptation in
the figure was achieved by a CycleGAN [324]. Prediction results are yield by a deeplabv3 with
ResNet101 backbone trained on ADE20k with the help of the MMSegmentation library [179].

they might fail to learn discriminative features [256]. In the context of classification sev-
eral approaches are proposed. This problem is for example addressed by inter-domain
contrastive alignment [256] or optimizing a minimax loss on the conditional entropy
of unlabeled data and the task loss [231]. However, publications addressing SSDA for
semantic segmentation [40,42,185,291] are still limited. The method in [185] was devel-
oped in the context of this thesis and is explained in detail in Chapter 4. We also give
a short overview over the other mentioned methods in Section 4.2.

2.4.4.1 Active Learning Under Domain Shift

Instead of using a small randomly sampled but fixed labeled set in the target domain
as it is the case in SSDA, in active domain adaptation (ADA) investigations are made
on strategies asking for the annotation of likely informative data points, image regions
or pixels in the target domain. In an iterative manner, the additional annotation is
included into the training dataset and the model under domain shift is retrained. The
aim is to achieve a sample-efficient domain alignment [207]. These methods are often
transferred from classical active learning (AL) strategies [207].

Active learning aims to reduce the labeling cost by asking only for the labels of infor-
mative samples. This describes a cycle of training, querying unlabeled data, annotating
them by an oracle and retraining on an enlarged dataset. The general concept is visual-
ized in Figure 2.18. The unlabeled data for which labels can be queried, can be loosely
grouped into three categories [244]. The data might be stream-based, i.e., data is shown
sequentially and the active learner can decide to query the data for annotation or discard
it. The data can be synthesized by the active learner, e.g., by a generative model (see
Section 3.1) or most commonly the data is given as a large pool. In this thesis we focus
on the latter since in real world applications it is often easy to collect a large amount of

70

2.4 Overcoming Data Limitation

classifier

query strategy

class label
estimate

annotation by oracle

7
29

labeled data set

LD

pool of unlabeled data

Figure 2.18: The active learning cycle consists of four steps. Training a neural network on a
(small) labeled dataset, querying data from the unlabeled pool based on, e.g., model uncer-
tainty, annotating it by an oracle, enlarging the labeled dataset and restarting the cycle by
newly training the neural network.

data by, e.g., recording scenes but annotating is expensive. In the following we describe
the cycle for pool-based AL in more detail on the basis of [244]. Therefore, we assume
having a large unlabeled dataset U0 ⊆ X . The cycle starts by training a neural network
f

(0)
θ on a small labeled dataset D0 = {(x1,y1), . . . , (xN0 ,yN0)} ⊆ X × Y .

The key component in active learning is the so-called query strategy and the cor-
responding acquisition function applied to the unlabeled data. On its basis the
informativeness of data points is measured and samples to annotate are chosen. Often
the acquisition function depends on f

(j)
θ the actual trained neural network in the j-th,

j ∈ N, cycle iteration. Let Uj denote the pool of unlabeled data in iteration j. Query
strategies include concepts of query-by-committee [21,245], diversity sampling [243] and
uncertainty sampling [68,244]. We make the acquisition more tangible for a multi-class
classification setup with uncertainty-based sampling. One way to measure the uncer-
tainty of a neural network is to consider the softmax-confidence score as defined in
Equation (2.94). Possibilities to query with respect to the confidence are choosing the
data point with the least confidence

x∗LC = argmax
x∈Uj

(
1−max

i
(f

(j)
θ (x)i)

)
, (2.125)

the minimal margin between the prediction ĉ(x|θ) and the second most confident class

x∗MARGIN = argmin
x∈Uj

(
ĉ(x|θ)− argmax

i∈{1,...,C}\ĉ(x|θ)

f
(j)
θ (x)i

)
, (2.126)

71

2 Fundamentals

or with the highest entropy [247]

x∗ENT = argmax
x∈Uj

−
C∑

i=1

f
(j)
θ (x)i log f

(j)
θ (x)i. (2.127)

It is possible to query one data point x ∈ Uj or a batch B = {x1, . . . ,xNB} ⊆ Uj of
NB ∈ N data points. The selected samples are then annotated by an oracle which can,
e.g., be a human specialist, e.g., a doctor, or a superior neural network. For studies on
AL concepts, the oracle is often simulated by holding back the ground truth data until
samples are selected for annotation. The data points chosen for annotation are removed
from the unlabeled pool

U1 = U0 \ B and more generally Uj+1 = Uj \ B (2.128)

and instead the newly annotated data By = {(x1,y1), . . . , (xNB ,yNB)} is included into
the labeled dataset

D1 = D0 ∪ By and more generally Dj+1 = Dj ∪ By for j ≥ 0. (2.129)

The enlarged dataset is used to retrain the neural network from scratch, leading to a
model f

(j+1)
θ which is now used to calculate the updated acquisition function. This

cycle is repeated until a certain performance is reached or a predefined amount of label
budget is used up.

Even though active domain adaptation (ADA) is inspired by classical AL, ADA is
more complex since the model, which often serves as source of data point selection, is
exposed to a domain shift. As a consequence, it is potentially less reliable. Further-
more, the selection should help the network to adapt to the target domain rather than
to the source domain. That means, not only the predictive uncertainty but also the
targetness of the samples is important [301]. Thereby, the targetness describes how
representative or relevant the samples are to cover the target distribution. Several ap-
proaches were published with respect to ADA such as [66, 207, 214, 261, 299]. Thereby
the approaches investigate different query strategies and adaptation approaches ranging
from uncertainty-weighted clustering to active adversarial domain adaptation, where
adversarial domain alignment is combined with different query strategies to mitigate
the domain shift. An overview on ADA in semantic segmentation was published by
Csurka et al. [49]. The extension of our SSDA method [185] to an ADA method is
presented in Section 4.3.5. Our experiments in Section 4.4.2 demonstrate that actively
sampling informative data points for a semi-supervised image-to-image generator leads
to a notable performance gain.

72

Chapter 3
Generative Learning

In the previous chapter we focused on discriminative models. Thus, a function fθ : X →
[0, 1]|Y| was learned which approximates a conditional probability distribution over the
label space Y and is used to classify an input by assigning the ID of the class with the
highest probability. However, besides learning the conditional probability distribution
pY |X(y|x) or more generally a conditional probability measure ν|X on Y to classify inputs
x ∈ X ⊆ Rd given by a random variable X, one could also ask for the data generating
distribution µdata of X. That means, we are interested in a generative model which
models the probability distribution of a random variable with values in X describing
the data generating process. Let D be a dataset where each sample was independently
drawn with respect to µdata. Then, generative learning aims to train a generative model
on D which is capable of producing new data that is also approximately distributed
according to µdata and thus approximately distributed as the training data [113].

A distribution can be modelled in an explicit or implicit manner. For explicit models
or sometimes called prescribed probabilistic models, an explicit parametric specification
of the distribution is given which allows calculating the corresponding (log-)likelihood
function with parameters θ [180]. New data points can be sampled via, e.g., Monte-Carlo
methods [9]. Examples for explicit probabilistic models are (Gaussian-)Mixture Models
[184, chapter 29.2] in the generative setting but also classification models as introduced in
Section 2.3, where we used the maximum likelihood principle to optimize the parameters
of a discriminative model in a training process (cf. Equation (2.48)). In contrast, for
implicit models no explicit likelihood function is given, and a stochastic process is used
to generate samples following a certain distribution µ̂. The stochastic process is often
realized by feeding stochastic input to a deterministic parametric function

gθ : Z → X , gθ(z) = x̂, (3.1)

As gθ generates data by transforming stochastic input into the data space X , it is often

73

3 Generative Learning

called generator function, yielding samples distributed according to a distribution µ̂

gθ(Z) = X̂ ∼ µ̂, Z ∼ ν, (3.2)

where ν is a probability measure on a latent space Z. The training objective is to
learn parameters θ̂ such that d(µdata, µ̂) is minimal for some divergence measure d. How
well two distributions are aligned can for example be measured by the Kullback-Leibler
divergence introduced in Equation (2.39) or by the Jensen-Shannon divergence

dJS(µdata, µ̂) :=
1

2

[
dKL

(
µdata

∥∥∥∥
µdata + µ̂

2

)
+ dKL

(
µ̂

∥∥∥∥
µdata + µ̂

2

)]
. (3.3)

Without loss of generality, we assume that the probability measure µdata is absolutely
continuous with respect to the Lebesgue measure λ. Therefore, we aim to approximate
a density function pdata with dµdata = pdatadλ. Assuming that ν is absolutely continuous
with respect to the Lebesgue measure λ with density function q, the estimated density
pgθ on the data space X can be modeled as the derivative of the cumulative distribution
function over the set of transformed data under gθ : Rt → Rd [180,184] with

pgθ(x) =
∂

∂x1

· · · ∂

∂xd2

∫

{gθ(z)≤x}
q(z)dz. (3.4)

However, pgθ(x) is intractable and hard to compute for implicit models. To this end, a
new learning principle is used to learn the optimal parameters for gθ which avoids an
explicit density representation of µ̂ [82,180]. This is done by comparing the distributions
solely based on a set of generated data points and samples from the true data generating
distribution in form of samples in a training dataset. The parameters θ of the generator
function gθ are then optimized with respect to the feedback of the sample comparison.

Generative models are used in many vision-related applications, not limited to data gen-
eration, e.g., for enlarging training datasets, but also used for in-painting [310], image
translation [114,324] as well as generating counterfactuals for model explanations [176]
and out-of-distribution robustness [237]. Knowledge on the data distribution (explicitly
or implicitly) allows the generation or sampling of new data points from that distribu-
tion. Furthermore, knowing the data distribution µdata can also help in the discrim-
inative setting to access uncertainty about the data space when considering the joint
distribution from the perspective of a factorization in the marginal distribution and a
conditional probability measure [195,273].

In this thesis, we focus on generative adversarial networks which belong to the class
of implicit generative models. We introduce the concept of generative adversarial net-
works and show how to compare distributions solely based on sample sets from two
distributions in the next section. Those are an adequate choice as our primary aim is
to generate high quality images and select specific latent spaces Z but not having the
need of an explicit distribution specification.

74

3.1 Generative Adversarial Networks

3.1 Generative Adversarial Networks

Generative adversarial networks (GANs) belong to the class of implicit distribution ap-
proximators. This means that, GANs enable data synthesis without being restricted
to a family of parametric density functions. Instead, they implicitly implement a dis-
tribution by providing a generator that can be used to sample data. We consider two
probability spaces (ΩS,AS, ν) and (ΩT ,AT , µdata) with σ-algebras AS, AT and a prob-
ability measure ν : AS → [0, 1] on ΩS, which is simple to sample, and an unknown
probability measure µdata : AT → [0, 1] on ΩT . The generator is a measurable function

g : (ΩS,AS)→ (ΩT ,AT), (3.5)

i.e., for all AT ∈ AT

g−1(AT) = {ωS ∈ ΩS|g(ωS) ∈ AT} ∈ AS. (3.6)

With the help of the measurable function g the measurable space (ΩT ,AT) can be
endowed with the pushforward measure g∗ν, such that

g∗ν(AT) := ν(g−1(AT)) ∈ AS ∀AT ∈ AT . (3.7)

As a consequence, the generator can generate samples g(Z) ∼ g∗ν from a random vari-
able Z ∼ ν which can be sampled by a random number generator. To approximate the
unknown measure µdata on (ΩT ,AT) the generator in a GAN is learned in combination
with a so-called discriminator

D : ΩT → (0, 1) (3.8)

which estimates the probability of ωT stemming from µdata rather than from g∗ν. With
the help of the concatenated mapping D ◦ g, the generator can learn from the feedback
of the discriminator. As a consequence, the discriminator enables a comparison between
the two measures without the need of explicit likelihood functions. In the following, we
explain the concept in more detail.

3.1.1 Vanilla GAN

Generative adversarial networks were introduced by Goodfellow et al. [79] in 2014. The
two mappings g and D are realized by two neural networks Gθ and Dϑ with learnable
parameters θ and ϑ. The input space (ΩS,AS) of the generator is set to a latent space
Z, e.g., Z = Rt, t ∈ N with a probability measure ν from which it is easy to draw
samples. An example for such a probability distribution is the uniform distribution
over [0, 1]t. The generator maps into the space of images X = [0, 1]d, d = m × h × w.
The discriminator is defined on (X ,Adata, µdata), where µdata is the true data generating
distribution and therefore the learning target of Gθ∗ν.

75

3 Generative Learning

input noise generator

discriminator

real sample

fake sample

real
fake

real data pool

Figure 3.1: The schematic illustration shows a GAN consisting of a generator which generates
fake samples from noise and a discriminator. The aim of the discriminator is to distinguish
between the sources of its input. Therefore, images drawn from the true data generating
distribution and fake, i.e., generated, images are fed to the discriminator during training.
With the help of the feedback of the discriminator, the generator learns how to better fool the
discriminator to iteratively approximate the true distribution by the pushforward measure.

The neural networks are trained with adversarial aims. The task of the generator Gθ :
Z → X is to synthesize data from noise, which is indistinguishable from samples drawn
from the unknown data generating distribution µdata. The discriminator Dϑ : X → (0, 1)
learns to classify the source of the data samples in order to reveal synthesized (fake)
data. The source of data can be the training dataset D, where each sample is distributed
according to µdata, i.e.,

X ∼ µdata (3.9)

or based on the generator output, i.e.,

X̂ = Gθ(Z) ∼ Gθ∗ν, (3.10)

where Z ∼ ν is a random noise vector. A schematic description of a GAN is shown in
Figure 3.1.

Considering the discriminator as classifier, we can apply the training methods from
classification tasks. When keeping θ fixed, the negative binary cross entropy loss

V BCE(Dϑ) = EX∼µdata
[logDϑ(X)] + EZ∼ν [log(1−Dϑ(Gθ(Z)))] (3.11)

can be maximized by learning the parameters ϑ such that the discriminator assigns high
probability to data points coming from the data generation distribution (first summand)

76

3.1 Generative Adversarial Networks

and low probability to synthesized data (second summand) [273]. Note, that in this
formulation we aim to maximize the ‘loss’ as it is understood as the value of the objective
rather than a loss as introduced in Section 2.2.1 where the cross entropy is minimized
(cf. Equation (2.64)). At the same time the generator aims to fool the discriminator by
improving its output such that Dϑ assigns high probability to Gθ(z). Therefore, Gθ is
trained with respect to minimizing the loss

L(Gθ) = EX∼µdata
[logDϑ(X)] + EZ∼ν [log(1−Dϑ(Gθ(Z)))]. (3.12)

This leads to a minimax game

min
Gθ

max
Dϑ

EX∼µdata
[logDϑ(X)] + EZ∼ν [log(1−Dϑ(Gθ(Z)))]︸ ︷︷ ︸

LGAN(Dϑ,Gθ)

(3.13)

between the two players. In practice, we approximate the expected values empirically
with the arithmetic mean over a finite training dataset D = {xn}Nn=1 ⊆ X where each
data point is drawn with respect to µdata and a finite number of samples {zn}Nn=1 ⊆ Z
drawn independently from ν, N ∈ N. Under adequate conditions on the hypothesis
spaces for Gθ and Dϑ this is a decent approximation due to the uniform law of large
numbers. The two objectives are adversarial and depend on the parameters of both
players. Therefore, the loss in Equation (3.13) is also called adversarial loss. As a
consequence, the optimal solution is a point where none of the players could improve
if the adversary does not change its parameters [80]. This point is called local Nash
equilibrium in game theory [216].

To approximate the local Nash equilibrium in practice the two neural networks are
trained alternately in the known iterative manner based on training batches (cf. Sec-
tion 2.2.4). Therefore, the objective is reformulated with respect to a training dataset
of size N

L̂GAN(Dϑ, Gθ) =
1

N

N∑

n=1

[logDϑ(xn)] +
1

N

N∑

n=1

[log(1−Dϑ(Gθ(zn)))]. (3.14)

The discriminator is trained for j iterations with a fixed generator Gθ̂. This leads to
a discriminator Dϑ̂. Thereafter, the generator is trained for one iteration with the
updated but fixed discriminator Dϑ̂. Due to the concatenated mapping Dϑ ◦ Gθ the
parameters of the generator are updated during backpropagation with the feedback from
the discriminator. This procedure is repeated until a final amount of training steps is
reached. If the discriminator Dϑ̂ distinguishes the data source remarkably well early in
the training phase, this often leads to vanishing gradients. This results in little feedback
for the generator how to improve to fool its adversary. Consequently, it is often sufficient
to set j = 1 [79]. In Figure 3.2 we show 16 handwritten digits which are generated using
a GAN. The GAN learns to transform the noise into handwritten digits iteratively. After
a few epochs of training the generator learned to concentrate white pixels in the center

77

3 Generative Learning

(a) Input noise (b) insufficiently trained (c) fully trained

Figure 3.2: Training stages of a GAN trained on MNIST, a dataset of handwritten digits.

of the image but the pixel blobs barely resemble realistic digits as shown in Figure 3.2b.
After training for 198 epochs, this GAN generates diverse and clearly recognizable digits
(Figure 3.2c).

In the following, we assume that both probability measures are absolutely continuous
with respect to the same measure λ and have positive density functions. That means,
they both can be expressed with the help of a positive probability density function by

dGθ∗ν = pGθdλ (3.15)

and
dµdata = pdatadλ. (3.16)

Particularly, let λ be the Lebesgue measure for all the following investigations. Goodfel-
low et al. showed in [79], that theoretically, meaning generator Gθ = G and discriminator
Dϑ = D have infinite capacity and are not restricted to a limited parametric model class,
the Nash equilibrium of Equation (3.13) is given by pG = pdata. That means, that the
generator adequately mimics the true data distribution. The main reason for this is that
minimizing the generator loss equals minimizing the Jensen-Shannon distance between
pG and pdata. To see this, we first study the objective in the inner loop (the discrimi-
nator) with a fixed but arbitrary generator G. Rewriting the training objective (3.11)
with respect to pG as defined in Equation (3.15) leads to

sup
D

EX∼µdata
[logD(X)] + EZ∼ν [log(1−D(G(Z)))]

=

∫

X
[logD(x)]pdata(x)dλ(x) +

∫

X
[log(1−D(G(x)))]pG(x)dλ(x) (3.17)

=

∫

X
([logD(x)]pdata(x) + [log(1−D(G(x)))]pG(x)) dλ(x)

78

3.1 Generative Adversarial Networks

The integrand has the form

y 7→ a log(y) + b log(1− y), a, b ∈ R. (3.18)

As the objective in Equation (3.17) is maximal if its integrand is maximal, it is enough
to solve

0 =
∂(a log(y) + b log(1− y))

∂y
=
a

y
− b

1− y ⇒ y∗ =
a

a+ b
(3.19)

and to see that

∂2(a log(y) + b log(1− y))

∂y2
= − a

y2
− b

(1− y)2
≤ 0. (3.20)

Therefore, for all a, b > 0, y∗ = a
a+b

is the global maximum of Equation (3.18) for
y ∈ (0, 1). Given that pdata and pG are probability densities and D(X) ⊆ (0, 1) we can
conclude that

D∗G(x) =
pdata(x)

pdata(x) + pG(x)
(3.21)

is the optimal discriminator for G up to ν null sets [79]. Given the optimal discriminator
the second training objective reduces to

L(G) = max
D
LGAN(D,G) = EX∼µdata

[logD∗G(X)] + EX∼G∗ν [log(1−D∗G(X))]

= Ex∼λ(x)

[
log

(
pdata(x)

pdata(x) + pG(x)

)
pdata(x)

]

+ Ex∼λ(x)

[
log

(
1− pdata(x)

pdata(x) + pG(x)

)
pG(x)

]
(3.22)

∗
= Ex∼λ(x)

[
log

(
2pdata(x)

pdata(x) + pG(x)

)
pdata(x)

]

+ Ex∼λ(x)

[
log

(
2pG(x)

pdata(x) + pG(x)

)
pG(x)

]
− log(4),

= dKL

(
pdata(x)

∥∥pdata(x) + pG(x)

2

)
+ dKL

(
pG(x)

∥∥pdata(x) + pG(x)

2

)
− log(4)

which needs to be minimized with respect to G. In the second last equation (∗) we
utilize a zero addition with ± log(4) and exploit the fact that

log(4) = Ex∼λ(x)(log(2)) + Ex∼λ(x)(log(2)). (3.23)

With this the objective in Equation (3.22) can be rewritten as Jensen-Shannon distance:

L(G) = − log(4) + 2 · dJS(pdata||pG). (3.24)

79

3 Generative Learning

Since dJS is a divergence

dJS(pdata||pG) ≥ 0 and dJS(pdata||pG) = 0⇔ pdata = pG (3.25)

and thus L(G) is minimal for
pdata = pG (3.26)

up to ν null sets with a global minimum of − log(4). Plugging pdata = pG in Equa-
tion (3.21) leads to the optimal discriminator D∗G∗(x) = 1

2
, thus assigning each source

equal probability as it cannot distinguish between them.

Assuming µdata and G∗ν have positive density functions, the estimation error made by
this approach can be decomposed into a model error of the generator

εG,model := inf
G∈HG

dJS(µdata, G∗ν) (3.27)

a model error of the discriminator

εD,model := sup
G∈HG

inf
D∈HD

LGAN(D∗G, G)− LGAN(D,G) (3.28)

and a sampling error

εsample(N) := sup
D∈HD, G∈HG

∣∣∣LGAN(D,G)− L̂GAN(D,G)
∣∣∣ (3.29)

where HG or HD denotes a hypothesis space of candidate functions for the generator or
the discriminator, respectively. The error decomposes into

dJS(µdata, Ĝ∗ν) ≤ εG,model + εD,model + 2εsample(N) (3.30)

as proven in [82, Theo. 24.2]. Asatryan et al. further showed in [12] that the generator
model error vanishes if Hölder regularities are assumed for the density function pdata.
Let pdata = dµdata

dλ
be in Ck,α([0, 1]d) for some α ∈ (0, 1] and k ≥ 1. Here, Ck,α([0, 1]d)

denotes the space of k-times differentiable α-Hölder functions [4, 1.29]. Thus, these are
all functions f ∈ Ck((0, 1)d) with a uniformly continuous k-th derivative on (0, 1)d such
that

‖f‖Ck,α([0,1]d) := max
|β|≤k

sup
x∈[0,1]d

|Dβf(x)|+ max
|β|=k

sup
x,x̃∈(0,1)d

x6=x̃

|Dβf(x)−Dβf(x̃)|
|x− x̃|α <∞, (3.31)

where β ∈ Nd is a multi-index with |β| =
∑d

i=1 βi and Dβf(x) := ∂|β|f(x)

∂x
β1
1 ···∂x

βd
d

. Assume

additionally that pdata is strictly bounded away from zero, i.e.,

ε := min
x∈[0,1]d

pdata(x) > 0. (3.32)

80

3.1 Generative Adversarial Networks

Under these assumptions24, there exists a bijective generator

G ∈ Ck,α([0, 1]d) (3.33)

with
‖G‖Ck,α ≤ K and ‖G−1‖Ck,α ≤ K̂ (3.34)

for sufficiently large K, K̂ > 0, such that

µdata = G∗ν. (3.35)

This implies that εmodel = 0. We refer to [12] for the proof. In practice, the assumption
of Hölder generators and discriminators is not necessarily fulfilled by default, as both
are implemented by neural networks with a fixed network architecture. Nevertheless,
neural networks have been proven to be universal approximators (see Section 2.2.3).
This means that the Hölder functions can be approximated to any degree of precision
given neural networks with enough capacity in terms of width and depth. Despite the
theoretical realizability of an optimal generator as stated in Equation (3.35), numerical
issues arise when training GANs.

In contrast to the training of vision tasks presented in Section 2.3, GAN training is often
slow, unstable and convergence of the training is difficult to assess even after hundreds
of iterations [273]. The alternating learning strategy makes it difficult to interpret the
adversarial loss [273] as the objective function changes with each update of the genera-
tor or of the discriminator. Furthermore, GAN training is sensitive to hyperparameters
and a balanced neural network performance during the optimization process is needed
to have meaningful gradients to update the adversarial player [232]. Convergence to the
Nash equilibrium is not guaranteed in practice and often the performance of generator
and discriminator oscillates without reaching a fix point [174]. One source of conver-
gence difficulties is the highly non-convex optimization problem such that the learning
algorithms get stuck in local minima. A frequently encountered problem during GAN
training is mode collapse [77]. This means the generator learns images which are
indistinguishable for the discriminator, but the results of the generator do not cover the
entire data generating distribution but only one or limited modes of it. The extreme
case is that the generator learns one perfect standard image and has no variety although
receiving stochastic input. As a more general example when we consider handwritten
digits from 0 to 9 as training samples, a GAN is mode collapsed when its output va-
riety is limited to one or a few (potentially always differently looking) specific digit(s).
Concepts to encourage training stabilization include, e.g., noise injection to the discrim-
inator input [10, 65] and different kinds of minibatch discrimination. The latter can
be accomplished by tracking a running average over previous model parameters [232] or

24The assumptions can be fulfilled by regularizing the input data with noise N ∼ N (0, ε21). In detail
according to [12], a mapping X 7→ (X+N) mod 1 is applied to the data which resembles embedding
[0, 1]d in Rd, convolving it with noise drawn from the normal distributed with covariance ε21 and
re-projecting to [0, 1]d.

81

3 Generative Learning

buffering previously generated images to let the discriminator compare against a history
of generated images rather than constantly changing images [251].

3.1.2 GAN Variants

In the ‘vanilla’ version by Goodfellow et al., the neural networks for the generator
and discriminator are MLPs. Later those networks were replaced by, e.g., CNNs with
(fractionally-strided) convolutions (cf. Section 2.1.2 and Equation (2.24)) and normaliza-
tion layers (Section 2.2.5) as well as different activation functions Section 2.1.1.1. Firstly,
these adaptations were implemented by the DCGAN [209]. Later architectures proved
successful in other vision tasks had been adopted like the VGG architecture [169]. Be-
sides multiple architecture suggestions, also different loss functions were proposed. For
the Wasserstein GAN [11] and its variations [86] a critic instead of a discriminator
was proposed to tackle the problem of vanishing gradients by using the Wasserstein-1
distance as loss which opens a theoretical link to optimal transport theory. The advan-
tage of using the Wasserstein-1 distance as a loss is that it provides meaningful gradients
even when the two distributions have no common support. Apart from considering a
critic motivated from optimal transport, also other losses motivated by additional diver-
gence measures were proposed [193]. In the Least Square GAN (LSGAN) [169] for
example the cross entropy loss is replaced by a least square loss to mitigate the vanish-
ing gradient. In contrast to the cross entropy loss, the least square loss has pronounced
gradients nearly everywhere. Furthermore, the loss fosters the generation of data more
closely to the real data, as samples classified correctly but located far from the decision
boundary are penalized as well and therefore all samples are pulled towards the decision
boundary which should pass through the real images. Let a ∈ Z denote the label the
discriminator should assign to fake data and b ∈ Z the label for data stemming from
the true data generating distribution. The loss for the LSGAN is then defined by

min
D
LLSGAN(D) =

1

2
EX∼µdata

[(D(X)− b)2] +
1

2
EZ∼ν [(D(G(Z))− a)2] (3.36)

for the discriminator and

min
G
LLSGAN(G) =

1

2
EZ∼ν [(D(G(Z))− c)2] (3.37)

for the generator, where c ∈ Z represents the label the generator intends for the dis-
criminator when fed with generated data. The authors of [169] proved that the resulting
GAN objective relates to the Pearson χ2 divergence when b− c = 1 and b− a = 2. This
can be realized by a = −1, b = 1, c = 0 and leads to the relation

min
D,G
LLSGAN(D,G) = min

D,G
χ2

Pearson(pdata + pG‖2pG). (3.38)

82

3.1 Generative Adversarial Networks

Not motivated by the Pearson χ2 divergence but the 0-1 class encoding as introduced
in Section 3.1.1 by setting b = c = 1 and a = 0 yields comparable results and is often
used in practice (see Section 3.2.2). An overview over further GAN architecture and
loss variants applied in computer vision and computer graphics was published by Wang
et al. [290].

Besides approximating the data generating distribution µdata of the random variable
X describing the data generating process, the generator and discriminator can also
be conditioned on additional information. Let (Υ,AΥ, µΥ) be a probability measure
space which models the additional information. As a consequence, a conditional data
distribution µdata|Y=y for a realization y of the random variable Y ∼ µΥ on Υ can
be modelled by conditional GANs when data pairs (x, y) are available [177]. Data
generation can for example be conditioned on label information such that y ∈ Υ =
{1, . . . , C}. With this approach, class-specific data can be generated. As a consequence,
mode collapse is reduced as each class needs to be learned. Furthermore, when trained
to learn the conditional distribution, GANs (more precisely the discriminator) can also
serve as a classifier. The minimax game extends to

min
Gθ

max
Dϑ

EX∼µdata
Y∼µΥ

[logDϑ(X|Y)] + E Z∼ν
Y∼µΥ

[log(1−Dϑ(Gθ(Z|Y)))]. (3.39)

The conditioning is realized in the parametric setup where the generator and the dis-
criminator are given as neural networks by enlarging the input of the generator to (z, y)
as well as the input of the discriminator by the information (x, y). Conditioning could
also be done with respect to other information such as domain information, e.g., night,
day, winter, summer.

3.1.3 Evaluation Metrics

Evaluation metrics of generative models need to cover three main aspects [184]:

• sample quality (point-wise alignment with the distribution)

• sample diversity (coverage of all modes of the distribution)

• generalization (coverage of the distribution outside the training data)

In contrast to vision tasks like classification or semantic segmentation, the evaluation of
generative models has no standard metric. In addition, there exists no method which
covers all three aspects simultaneously. As the range of application of generative mod-
els varies greatly, the measure of the model performance depends on the context of the
application. Particularly models which perform well according to one metric can fail ac-
cording to another [268]. Even though one can think of using distance measures like the
KL-divergence or the Jensen-Shannon distance since the underlying task is to approxi-
mate a distribution, they can only serve as a metric for generative models with explicit

83

3 Generative Learning

density approximation. For GANs which implicitly model the distribution such a mea-
sure is impractical. Furthermore, the true data generating distribution is unknown. For
images, distance measures, e.g., the L1 or L2-norm on pixel-level are sometimes used to
score the performance of image reconstruction, image denoising and in-painting. This
has the drawback that pixel-level measures are sensitive to color, brightness and spatial
shifts and therefore do not correspond to the perception of humans. As a consequence,
another metric to measure the quality of generated data is to ask humans to distinguish
between generated images and images from the distribution to approximate, i.e., asking
humans to take the role of a discriminator [232]. A drawback of this method is that hu-
mans cannot restrict themselves from learning during the evaluation process. Thus, their
evaluation score differs over time. As a consequence, Salimans et al. propose the Incep-

tion Score IS(Gθ̂) := exp
(
EpG

θ̂
(z)dKL

(
p(y|Gθ̂(z)) ||

∫
p(y|Gθ(z))pGθ̂(z)

))
[232] based

on the conditional probability p(y|Gθ(z)) given by a ImageNet pre-trained inception
model [264] fed with generated images. This always leads to the same score when re-
peating the evaluation but due to the dependence on the pre-trained model this measure
is biased to the domain of real world and everyday objects and less suitable for syn-
thetic or abstract image domains [18]. Further metrics are the Structural Similarity
Index (SSIM) [289] the Learned Perceptual Image Patch Similarity (LPIPS) [318] and
Fréchet Inception Distance (FID) [97]. When GANs or their output are used for a
downstream task like classification, the performance of the GAN is measured by the
metrics of the specific downstream task introduced in Sections 2.3.1.4 and 2.3.2.4. Each
of the above-mentioned evaluation methods has its own advantages and disadvantages
and none of them cover all the three desired aspects. We refer to [184] for more details.
A detailed list of evaluation metrics is studied in [25].

3.2 Image-to-Image Translation

Besides generating images from an unknown distribution based on noise, where GANs
have proven successful, another relevant task is to translate images from one represen-
tation to another. Mapping one image to another on pixel-level is referred to image-
to-image (I2I) translation [114]. Applications of I2I translation approaches in computer
graphics and computer vision range from image synthesis, image or video restoration,
domain adaptation, image enhancement, to style transfer and aligning images with the
help of image registration. A review on these applications is given by Pang et al.
in [198]. In this thesis, we focus on its application to domain adaptation as it can be
seen as a special case of domain adaptation on input level (cf. Section 2.4.4) where no
downstream task network is considered, and the adaption is limited to the feature space
distribution25.

25To this end, we weaken the domain notation and omit the label space Y.

84

3.2 Image-to-Image Translation

Thereby, an image is transferred from a source domain S = (XS, µS) to a visually dif-
ferent target domain T = (XT , µT) by preserving the overall scene content but changing
the style according to the new domain. Formally, the aim is to find a mapping

G : XS → XT ,xS 7→ G(xS) (3.40)

such that
G(xS) ∈ XT and G(XS) ∼ µT for XS ∼ µS (3.41)

and the overall characteristics of the scene are preserved.

3.2.1 Pix-to-Pix

Data from the two domains can be available as paired images, where the same scene
is represented in each domain, denoted as supervised I2I, or in an unpaired manner,
denoted as unsupervised I2I. Examples for paired data which are easy to collect are
photos and their corresponding edge maps or grayscale images and their colored RGB
counterparts. More manual effort is needed to get pairs of label masks and their cor-
responding photos. When image pairs from the source and target domain are given,
variants of conditional GANs like pix2pix [114] or pix2pixHD [285] can be used to per-
form image-to-image translation [114,184]. The objective translates into

LcondGAN(Gθ, Dϑ) = E X∼µT
XS∼µS

[logDϑ(XT |XS)]+E Z∼ν
XS∼µS

[log(1−Dϑ(Gθ(Z|XS)))] (3.42)

where Z ∼ ν is a random noise vector, a realization of XS ∼ µS is an image to condition
on, e.g., a label mask, and a realization of XT ∼ µT is the desired target image. An
L1 loss between the output and the ground truth is additionally added to the generator
loss. This helps to preserve the input scene. The full training objective is given by

min
Gθ

max
Dϑ
LcondGAN(Gθ, Dϑ) + γEXT ,XS ,Z [‖XT −Gθ(Z|XS)‖1]. (3.43)

Nevertheless, paired data of real world scenes including movable objects or actors in
different seasons or lighting conditions are hard or impossible to collect or to generate.
As a consequence, so-called unsupervised methods were developed which, e.g., include
specific losses to enable a translation based on unpaired data (see for example DiscoGAN
[130] or DualGAN [309]). A prominent approach is CycleGAN where a cycle consistency
loss leads to a consistent mapping of an image from one domain to the other [324]. We
discuss this approach in more detail in the following section.

85

3 Generative Learning

3.2.2 CycleGAN

As seen in Section 3.1.1, GANs can realize mappings G : XS → XT such that G∗µS = µT .
Nevertheless, this mapping does not ensure to consistently map one image to another
by preserving the overall scene. On the contrary, infinitely many mappings exist, for
which G∗µS = µT holds but no meaningful correlation between individual image pairs
(xS, G(xS)) can be observed. Let XS and XT , denote random variables describing a
sample realization drawn from the data generating distribution µS and µT , respectively.
To model the context preservation, a cycle consistency between GANs was proposed in
the publication of CycleGAN [324] which serves as the basis for the following section.
For CycleGAN, additionally to the generator G = GS→T : (XS, µS) → (XT , µT), a
second generator GT →S : (XT , µT) → (XS, µS) is introduced. The two mappings are
coupled by the constraints

(GS→T ◦GT →S)(xT) = xT

(GT →S ◦GS→T)(xS) = xS

GS→T (xS) = xT

GT →S(xT) = xS,

(3.44)

for all xS ∈ XS and xT ∈ XT . Thus, the image-to-image translation by CycleGAN is
realized by approximating two data generating measures. In contrast to vanilla GANs,
where a noise measure is pushed forward, here the respective other domain with its data
generating distribution serves as input space. The constraints in Equation (3.44) enforce
the two mappings to be bijective and the inverse of each other. This is stimulated by
the cycle consistency loss

Lcyc(GT →S , GS→T) = EXT∼µT
[∥∥∥GS→T

(
GT →S(XT)

)
−XT

∥∥∥
1

]

+ EXS∼µS
[∥∥∥GT →S

(
GS→T (XS)

)
−XS

∥∥∥
1

]
.

(3.45)

The first summand fosters the so-called forward cycle consistency and the second sum-
mand enforces backward cycle consistency. The forward cycle consistency is illustrated
in Figure 3.3. Even though the L1-norm seems too strict for image comparisons, the
authors found no improvement by alternatively using an adversarial loss to encourage
(GS→T ◦GT →S)(xT) = xT . Nevertheless, the adversarial loss is used to learn the general
pushforward measure which approximates the target and source domain data distribu-
tion, respectively, i.e., GS→T ∗µS ≈ µT and GT →S∗µT ≈ µS. Let DS : XS → (0, 1) denote
the discriminator on the domain S and DT : XT → (0, 1) the discriminator distinguish-
ing between data sampled from GS→T ∗µS and the real data distribution µT on domain T .
In contrast to the cross entropy loss in the vanilla GAN setup (cf. Equation (3.13)), the
least square loss as proposed in LSGAN (cf. Equations (3.36) and (3.37)) with b = c = 1
and a = 0 is used in the CycleGAN implementation. With this we can formulate the

86

3.2 Image-to-Image Translation

generator zebra to horse

generator horse to zebra

Lcyc

Figure 3.3: Schematic visualization of the forward cycle consistency loss Lcyc. Zooming in is
encouraged to view details between the original image and its reconstruction.

generator objectives

LGS→T (GS→T) = EXS∼µS
[(
DT

(
GS→T (XS)

)
− 1
)2
]

(3.46)

and

LGT→S (GT →S) = EXT∼µT
[(
DS

(
GT →S(XT)

)
− 1
)2
]
. (3.47)

The adversarial loss for the discriminators is given by

LDS (DS) = EXS∼µS
[(
DS(XS)− 1

)2
]

+ EXT∼µT
[
DS

(
GT →S(XT)

)2
]

(3.48)

and

LDT (DT) = EXT∼µT
[(
DT (XT)− 1

)2
]

+ EXS∼µS
[
DT

(
GS→T (XS)

)2
]

(3.49)

Lastly, an identity preserving loss is considered to hamper transformations of images
which already belong to the target distribution. That means, it encourages the genera-
tors to act as identity mapping on samples that are already in the target domain, such
that GS→T (xT) = xT and GT→S(xS) = xS.

Lid(GT →S , GS→T) = EXS∼µS
[∥∥∥GT →S(XS)−XS

∥∥∥
1

]

+ EXT∼µT
[∥∥∥GS→T (XT)−XT

∥∥∥
1

]
.

(3.50)

87

3 Generative Learning

zebra

discriminator

real
fake

data pool of horses

data pool of zebras

generator

zebra to horse

horse

discriminator

real
fake

generator

horse to zebra

Figure 3.4: Schematic visualization of CycleGAN.

The overall training objective for the generative components in CycleGAN is a weighted
sum of the losses in Equations (3.45), (3.46) and (3.50). Let γcyc, γid ≥ 0 be scalars
weighting the cycle consistency or the identity preserving loss, respectively. With this
we define the objective

LGen = LGS→T + LGT→S + γcycLcyc + γcycγidLid, (3.51)

which is minimized with respect to GS→T , GT →S , DS and DT . Additionally, the dis-
criminator losses in the Equations (3.48) and (3.49) are minimized with respect to DS
and DT .

The implementation of the presented concept is realized with four neural networks,
two serving as generators and two as discriminators. Their interaction is depicted in
Figure 3.4. The generators are each realized by an FCN with 6 or 9 residual layers
depending on the input size. It has an encoder-decoder structure where down- and up-
sampling operations are implemented with the help of strided and fractionally-strided
convolutions. ReLUs are used as activation functions. For the discriminators a Patch-
GAN [114] is used. PatchGAN is a 5-layer CNN with LeakyReLU activation which
operates with a receptive field of size 70× 70 pixels. This leads to a feature map where
each pixel represents the estimated probability that the 70×70 pixel seen from the input
are generated or from the real dataset. The average over all patch predictions (i.e., the
feature map) is taken to predict the source of the entire image. The reduced receptive
field and the increased feedback due to a feature map prediction tend to reduce artifacts.
As a consequence of the ‘patch’ discrimination, it is not enough for the generator to just
specialize to a few image features, but it needs to produce valuable image features all
over the image [251]. This discriminator architecture has several additional advantages.
Firstly, it is independent of the input image size, making it applicable even if the input
size varies between training and testing. Secondly, it requires fewer parameters to train

88

3.2 Image-to-Image Translation

compared to a pixel-wise classification for the entire image.

As before, the loss is approximated by replacing the expected value with the help of the
empirically computable arithmetic mean over the training datasets. The overall training
concept is identical to that of GANs (see Section 3.1). That means the generators
and discriminators are trained in an alternating manner. Additionally, some training
stabilization techniques were applied. As proposed in [251], an image buffer, collecting
generated images from the last 50 iterations, is used. Moreover, the learning rate is kept
constant for the first half of the training and is linearly decreased thereafter. With this,
CycleGAN learns a deterministic one-to-one mapping.

One limitation of the concept is that since no source of randomness is involved in the
training process, except for the realization of the source and target dataset, CycleGAN
cannot learn multi-modal outputs. Thus, an image is always mapped to the same image
in the target domain without variation. This limitation was addressed by Almahairi
et al. who published an augmented version of CycleGAN. They augment each domain
with a latent representation of the missing information when translating between the two
domains [5]. In their experiments, a simple noise augmentation was insufficient as the
cycle consistency loss fosters the model to ignore the auxiliary variables [5,114]. Further-
more, image-to-image translation approaches relying on cycle consistency on pixel-level,
including CycleGAN, are limited in object shape transformation [320]. According to
Zhao et al., the constraint on pixel-level prevents the model to modify distinctly the
shape of objects or remove large segments in the image. They propose to extend the
input with a noise vector to achieve a multi-modal output and relax the constraints
by replacing the cycle-consistency loss with an adversarial-consistency loss. This loss
encourages generating similar but not identical images when images are transformed
cyclically. Switching to a discriminator with dilated convolutions inspired by semantic
segmentation is a different approach to improve shape deformation. Due to the dilated
convolutions the discriminator has a broader view. Furthermore, the approach enables
a per-pixel discrimination. Together with the enlarged field of view, this leads to a more
context aware generator according to [76]. The noted limitations are not restrictive
with respect to our research. On the contrary, the limited shape transformation enables
us to use the same semantic segmentation masks for translated images in the target
domain. Furthermore, a one-to-one mapping is sufficient for data generation for our
domain adaptation approach, described in detail in Chapter 4.

89

Chapter 4
Semi-supervised Task Aware
Image-to-Image Domain Adaptation

The content of the following chapter bases on the conference paper [185] and the accepted
Springer Book section in the CCIS Series [186] which is in the formatting phase but
unpublished at the time of publication of this thesis.

4.1 Introduction

For automatically understanding complex visual scenes from RGB images, semantic seg-
mentation (Section 2.3.2) is a common but challenging task. The state-of-the-art results
are achieved by deep neural networks [37,161,266]. These models need plenty of labeled
images to generalize and react sensitive to domain shifts, i.e., situations when data
during inference stems from a different source than the source of data during training.
However, a manual label process on pixel-level detail is time and cost consuming and
usually error-prone [47, 228]. To reduce the labeling cost, weakly- and semi-supervised
methods were proposed (cf. Section 2.4.2). These methods use weak labels like bounding
boxes for segmentation tasks or fewer labels as they can benefit from a pool of unlabeled
data. In addition to that, active learning (Section 2.4.4.1) is used to limit the annotation
cost [31, 46, 284]. Thereby only the most informative samples of an unlabeled pool are
selected for manual annotation based on specific query strategies. However, they are
often limited to scenarios captured in the real world and the annotation cost of weak
labels still might be intractable [277]. On the other hand, in recent years simulations,
especially of urban street scenes, were significantly improved [59, 296]. The advantage
of synthetic data is that images generated by a computer simulation often come with
labels for the semantic content for free. Training on synthetic data has the potential to
build a well-performing network as plenty of data is available and diverse scenarios can

91

4 Semi-supervised Task Aware Image-to-Image Domain Adaptation

be generated which are rare or life-threatening in the real world. Furthermore, the cre-
ation of safety critical corner cases is unproblematic in the synthetic domain [139,225].
However, neural networks do not generalize well to unseen domains [101]. Even if the
model learns to generalize well on one domain (e.g., real world) it can fail completely on
a different domain (e.g., synthetic) [296] or vice versa. The sensitivity of neural networks
to the domain shift, makes this strategy problematic, but measures have been taken to
favor the generalization throughout domains [101,242].

In Section 2.4.4 we introduced the concept of domain adaptation (DA) which is used to
mitigate the so-called domain shift [48] between one domain and another. In summary,
DA aims to improve the model’s performance on a target domain by transferring knowl-
edge learned from a labeled source domain. It has become an active area of research in
the context of deep learning [271] ranging from adaptation on feature level [277], adap-
tation on input level [26, 63, 100], self-training [171, 317], a combination thereof [129]
to semi-supervised approaches [42]. In the field of DA, one distinguishes between the
amount of labeled data available for the target domain. In unsupervised domain adapta-
tion (UDA), no labels of the target domain are available, while semi-supervised domain
adaptation (SSDA) grants access to a few labeled instances. These labels can either
be available, or an oracle can be actively asked to reveal labels of specific instances, in
which case we speak of active domain adaptation (cf. Section 2.4.4.1) [207]. Adapting
on input level to the style of the target domain disregarding the downstream task at
hand but preserving the overall scene is referred to image-to-image translation. For a
formal introduction to I2I translation, we refer to Section 3.2. I2I translation using
generative adversarial networks [79] is often used to change the graphical style of the
source domain to that of the target domain [198]. Usually, synthetic training data is
upgraded in this way and used for the training of networks that thereafter are deployed
to the real domain [100].

In this work, however, we propose to revert this procedure and train a strong network
in the synthetic domain serving as a more abstract representation. The hope is that
such abstract representations are less sensitive to small perturbations. Besides, syn-
thetic data is abundantly available and thus a classification or segmentation network
can be very well-trained and tested. We refer to such networks as (downstream) task
experts. Thereafter, we shift the out-of-domain input (real world) closer to the synthetic
domain via a semi-supervised I2I approach based on CycleGAN (see Section 3.2.2) for
mitigating the domain gap. In order to achieve that the image translation encodes the
relevant features for the task expert, we employ some labeled data from the real domain
(where we want to solve the downstream task) to train the CycleGAN (but not the
task expert in the abstract domain) with a cross entropy loss based on the task expert’s
softmax output. In this way, we achieve task awareness of the I2I translation. Keep-
ing the downstream task network fixed has multiple advantages: Firstly, the abstract
representation is often less complex and therefore easier to train and requires poten-
tially less network parameters to achieve outstanding performance compare to a real
world setup. Secondly, the network is handled in a controllable environment so that

92

4.1 Introduction

exhausted testing can be done to guarantee a certain in-domain model performance.
To avoid a bias by pre-trained neural networks on data close to the target domain all
our methods are based on training from scratch. We also extend the method to active
domain adaptation, designing an active learning pipeline to find informative samples
when selecting samples with ground truth for the semi-supervised component of our ap-
proach. Furthermore, we demonstrate experimentally that active learning can improve
the performance of our method for classification as downstream task. Additionally, we
compare our results to direct active learning on the real domain when only a limited
amount of data can be queried. In the first part of the paper we show that a generator
can be guided with task awareness to generate more meaningful inputs for semantic
segmentation networks. Thereafter, we show that the choice of training data for a task
aware generator can benefit from active learning queries. We thereby improve the data-
driven intermediate representation which we establish due to the composite structure
of our method without retraining the downstream task network. Thus, in contrast to
many ADA methods, we query useful data points for the generator (instead of the down-
stream task neural network) to learn to generate inputs suitable for a synthetic expert
even though the original image comes from e.g., the real domain.

Our main contributions are:

• we present a novel modular SSDA method for semantic segmentation guiding the
generator of an I2I domain adaptation approach to a semantic segmentation task
awareness. Thereby, our downstream task network does not need to be retrained.

• we demonstrate that our method is applicable to multiple complex domain adap-
tation tasks.

• we consider a pure domain separation in our analysis by using from-scratch-trained
neural networks leading to a less biased domain gap.

• we extend our method to an ADA approach querying samples to train the gener-
ator of our SSDA method and show that this improves results in the classification
setup.

Based on our knowledge this is the first time the generator of a GAN setup is guided
with the help of a semantic segmentation network to focus on the downstream task and
the input for a generator in a SSDA method is actively selected.

The remainder of this chapter is organized as follows: In Section 4.2 we review related
approaches, particularly in the context of semi-supervised and active domain adaptation.
It follows a detailed description of our new, modular SSDA method and its extension
to an ADA method in Section 4.3. We evaluate our method on two complex domain
adaptation tasks and three different datasets in Section 4.4, showing considerable im-
provements with only a few labeled data samples for the SSDA method and in the
classification setup how an informative selection of labeled samples can further improve
the results. Finally, we conclude and give an outlook to future work in Section 4.5.

93

4 Semi-supervised Task Aware Image-to-Image Domain Adaptation

4.2 Related Work

The following section, taken from [186], places our work in a broader context. In our
work we focus on three main topics: DA with I2I, semi-supervised learning using GANs
and active semi-supervised domain adaptation. Independently of DA, I2I has been used
widely in computer vision tasks since its introduction by Hertzmann et al. [96] and is
dominated by generative approaches like GANs [198]. Thereby the data generation dis-
tribution is modeled indirectly by a generator-discriminator interaction. When paired
data between source and target domain is available, pix-to-pix approaches yield convinc-
ing results [114,285]. To overcome the pair-problem, Zhu et al. proposed CycleGAN [324]
where scene alignment is achieved by the help of a cycle consistency loss and unpaired
data can be used. In the context of I2I the latter case is called ‘unsupervised I2I’ and
the former is categorized as ‘supervised I2I’. A combination of these two approaches in a
semi-supervised manner was proposed by Shukla et al. [252] using only a few paired data
points to tackle image-to-label transformation in the context of semantic segmentation.

In contrast to this, taxonomy changes slightly when using I2I in the context of DA.
Hereby the amount of available labels in the target domain is decisive as explained in
Section 2.4.4. Throughout this chapter we use I2I in DA taxonomy. In addition to solely
cover the data generation distribution of the target domain, a semantic consistency is
pursued with I2I in DA approaches as they are combined with and measured by the
performance of a downstream task. Therefore, CyCada [100], SUIT [155] and the work
of Brehm et al. [26] incorporate the downstream task loss in an unsupervised manner
to adapt the task network to the real domain. Taking advantage of the access to a few
arbitrary but fixed labeled data points in the target domain multiple SSDA approaches
for classification as downstream task were proposed [117,131,168,231,298].

Actively selecting data points to annotate is the purpose of AL. AL is an established
method for reducing the annotation cost based on informed data selection strategies.
A general overview over the concept and possible query strategies was given in Sec-
tion 2.4.4.1 and can be found in [244]. AL queries for classification follow mainly two
concepts: density or uncertainty quantification. While the first one aims at data diver-
sity in feature space in sense of sample distance, uncertainty-based methods rely on the
information that can be drawn from the prediction uncertainty of a probabilistic model
(e.g., the one to train) [152, 297]. Established uncertainty-based methods include the
probability margin [239], entropy and least confidence of a probabilistic model [284],
dropout [67] and committee-based approaches (committee disagreement [245] or ensem-
ble entropy [51]). Methods considering the data diversity as query indicator can be
linked to clustering methods [189, 243], batch diversity [135] or can be combined with
uncertainty methods [13]. An approach of combining GANs and active learning was
published by Zhu and Bento [323], where they use GANs to actively generate training
samples near to the models decision boundary which are then annotated and added to
the training set of the model.

94

4.2 Related Work

In recent years, first publications came up that describe the transfer of classical AL-
strategies to domain adaptation. In contrast to SSDA where a random subset of target
data is available with annotation, a limited amount of target data is actively selected
for annotation in ADA to mitigate the domain gap by including these samples into
the training dataset. Thus, the approaches take into account predictive uncertainty
and targetness [301]. The approaches range from adversarial setups, where a domain
adaptation network and a domain discriminator are combined to align the domains and
query the most important data points based on entropy [261], to energy-based sam-
pling [299]. Furthermore, calibration adaption to overcome potential overconfidence of
a source model [301] combinations of transferred committee, uncertainty and domain-
ness concepts [66] and uncertainty-weighted clustering to identify samples which are
diverse in feature space and have a high model uncertainty [207] have been suggested.

Less consideration is given to SSDA for semantic segmentation. Semantic consistency
is very important for pixel-wise classification. Therefore, Wang et al. [291] include a
semantic-level adaption module which adapts the feature distribution on class level,
additionally to feature alignment via adversarial training which adapts the domains on
a global level. In [40] a two-step domain mixing model is introduced to extract domain-
invariant representations. A dual-domain adaptation is proposed by Chen et al. [42]
consisting of a cross-domain adaptation network and an intra-domain adaptation on
the target domain realized by a student-teacher setup sharing weights between the two
adaptation approaches.

Our SSDA method consists of a stage-wise training, a common approach in semi-
supervised learning. The first stage serves as initialization for the model which is then
adjusted to a specific task. In general this approach is applied to downstream tasks
whereas we train the generator as well as the discriminator (as suggested by Grigoryev
et al. [84]) in our model in two stages.

Gathering paired data like a digital twin for complex scenarios is a challenging task and
an open research question [267]. Therefore, we restrict our I2I method to an unsuper-
vised approach in contrast to [114,252] and [285]. Furthermore, pure I2I methods tend to
neglect task specific information [271] which we tackle by incorporating task awareness
in the generative component. Information loss compared to supervised trained methods
is also encountered by UDA methods [42]. Thus, we developed an ADA approach and
select actively meaningful annotated target samples to balance the information lack and
the annotation cost.

Our SSDA method (method without AL) is closely related to the independently pub-
lished work from Mabu et al. [168] in a medical context. Contrary to their work we
consider domain gaps between real and abstract domains which vary not only in con-
trast and image intensity. In addition, our method handles more complex downstream
tasks, like semantic segmentation, which leads to a wider range of applications of the
method. Moreover, we include AL to select the labeled data in the target domain. Our
active learning setup is related to the work of Su et al. [261] as we also incorporate

95

4 Semi-supervised Task Aware Image-to-Image Domain Adaptation

the downstream task in the adversarial training loss. In contrast to the ADA methods
mentioned above we refrain from modifying the downstream task expert and analyze
the data generation of the abstract representation. Thereby we query samples suitable
for the generator and keep the downstream task network fixed what distinguishes our
approach from the others. Moreover, we consider a pure domain separation by training
from scratch. Furthermore, we consider the domain gap from real to synthetic/abstract.
Thereby we can exploit that abstract representations are often less complex and more
easy to collect with labels compared to real world scenarios and with that potentially
require smaller networks to achieve excellent results. Furthermore, we can benefit from
the advantages of a synthetic expert as training and testing of e.g., life-threatening
scenes are possible. In the following we introduce our SSDA method in more detail.

4.3 Semi-supervised Task Aware I2I Translation

The method we developed is subdivided intro three steps, each of them is introduced in
the following. Further, our method can be extended by actively sampling images with
ground truth. A detailed explanation on how we incorporated active image sampling
is given in Section 4.3.5. A summary of our method is depicted in Figure 4.1 and the
active learning process is visualized in Figure 4.2.

4.3.1 Stage a) – Training the Task Expert

The aim of stage a) is to train an expert on a domain where labeled data is available or
easy to get. Therefore, we take the assumption for our method that we have access to
plenty of data samples with corresponding labels in a synthetic domain S = (XS,Y , µS).
Given a training set DS ⊆ XS×Y in the synthetic domain, we train a neural network fθ
in a supervised manner. To enhance readability, we exclude the parameter dependency
from the notation in the following text. The considered computer vision task is flexible
and could be, e.g., image classification or semantic segmentation, which we refer to as
downstream task. When training f , it is common practice to start from an ImageNet [56]
pre-trained backbone (cf. [126]) and train f to perform the given downstream task. In
the present work, we refrain from this approach and train f from scratch, i.e., without
making use of any pre-trained backbone weights. This ensures that the network trained
on the synthetic domain has indeed never seen any data from any real world domain and
is thus not already biased towards real world data. This enables us to do a pure domain
gap analysis. In return, we have to accept lower overall performance in our experiments,
in particular when evaluating with real world data later on. We stop training when f
has reached a desired performance and then keep the network frozen in all subsequent
steps, i.e., the network weights remain constant and are not trained anymore. Thus, f ,

96

4.3 Semi-supervised Task Aware I2I Translation

(Cycle)
GAN

real

world

labels

(synthetic world)

semantic segmentation
network

predicted

semantic

segmentation
mask

subset of

real world

ground truth

stage a) – Supervised expert training

stage c) – Task aware I2I translation

synthetic
world

stage b) – Unsupervised I2I translation

Figure 4.1: Training stages of our SSDA method. Stage a) – Training of a task model (e.g.,
semantic segmentation network) on the synthetic domain serving as domain expert. Stage b) –
Training of a task agnostic CycleGAN based on unpaired data to bridge the domains between
real and synthetic. Stage c) – Including task awareness by backpropagating the downstream
task performance based on the task loss of the fixed weight, synthetic expert and a few (actively
selected) annotated real world samples.

denoted by fS if the training domain is not clear from context, can now be considered
as a synthetic domain expert model.

4.3.2 Stage b) – Unsupervised Image-to-Image Translation

To mitigate the domain gap between the real domain R = (XR,Y , µR) and the synthetic
domain S = (XS,Y , µS), we build on the established unpaired I2I translation method
CycleGAN (see Section 3.2.2). When applying CycleGAN in our context, one of the
CycleGAN generators maps from the synthetic to the real domain, termed GS→R, and
the other one maps in the opposite direction, termed GR→S . These two generators are
complemented by discriminators DR and DS . The loss is composed of four additive
terms LGR→S ,LGS→R ,Lcyc and Lidentity, described in detail in Section 3.2.2. For our
application of CycleGAN to a real to synthetic I2I translation, we adopt the least-
squares formulation (cf. Equations (3.36) and (3.37)) of the losses as proposed in the
original paper by Zhu et al. [324] to stabilize training. We summarize the generator
loss here, as it is important to understand the differences between stage b) and stage

97

4 Semi-supervised Task Aware Image-to-Image Domain Adaptation

c) in our method. Let XR ∼ µRX denote the random variable describing the image
generation process of the domain of real data and let µR

X
be the corresponding marginal

distribution of µR, then the loss function of the generator for the synthetic data is given
by

LGR→S = EXR∼µR
X

[(
DS

(
GR→S(XR)

)
− 1
)2]

(4.1)

and analogously for LGS→R . The overall generator loss is then given by the weighted
sum

LGen = LGR→S + LGS→R + γcycLcyc + γcycγidLidentity, (4.2)

with real-valued parameters γcyc > 0 and γid > 0. Note that this I2I translation is task
agnostic, i.e., it does not take the downstream task into account.

4.3.3 Stage c) – Downstream Task Awareness

To incorporate task awareness into the model we use the unsupervised I2I model from
stage b) as initialization and extend the model training in a supervised manner with
a few labeled data points from the real domain. Thereby, we guide only the generator
GR→S , transferring real images (xR ∈ XR) to synthetic/abstract images (xS ∈ XS), to
the downstream task while keeping the downstream task network f from stage a) fixed.
For domain R = (XR,Y , µR), we define a labeled subset TR = {(xRi ,yRi) ∈ XR×Y | i =
1, . . . , N0} ⊆ XR × Y of size N0 ∈ N which stems from the same distribution. The
choice of labeled data points can be queried in different ways. Possible strategies are
discussed in Section 4.3.5. We extract the information about the downstream task
performance from the downstream task network loss. For semantic segmentation or
classification we consider the (pixel-wise) cross entropy as defined in Equations (2.96)
and (2.116) between the network prediction distribution f(GR→S(XR)) and the ground
truth distribution Y . Given f and the labeled data, the loss is calculated by inferring
the generator first and then feeding its output to f yielding

f(x̃i
S) with x̃i

S = (GR→S(xRi)) (4.3)

for xRi ∈ TR. We denoted the loss by Ltask. The task loss is added to the adversarial
loss in Equation (4.1). To weigh the task specific and the generative aspect of the loss,
we introduce a weighting factor α ∈ [0, 1]. We use α for a linear combination of the
two loss components to control the influence of one or the other loss during training.
Setting α = 0 recovers the original adversarial loss from Equation (4.1) and α = 1
omits the generative component. With values of α ∈ (0, 1) the influence of the two loss
components are controlled. Thereby, we define the extended generator loss L̃GR→S with
respect to the labeled dataset TR where each sample is a realization of (XR, Y) ∼ µR as

98

4.3 Semi-supervised Task Aware I2I Translation

follows:

L̃GR→S = (1− α) EXR∼µRX

[(
DS

(
GR→S(XR)

)
− 1
)2]

︸ ︷︷ ︸
adversarial loss as in Equation (4.1)

+ α
(
LCE
TR

(
fS(GR→S(XR)), Y

))

︸ ︷︷ ︸
task loss Ltask

.

(4.4)

Thus, the overall generator loss turns into:

L̃Gen = L̃GR→S + LGS→R + γcycLcyc + γcycγidLidentity. (4.5)

The discriminator losses remain unchanged. With the task loss of the fixed weight,
synthetic expert information about the task performance is backpropagated to the
CycleGAN, and we achieve task awareness.

4.3.4 Complete SSDA Method

Our final approach combines stage b) and c) subsequently leading to a modular semi-
supervised learning approach for task aware I2I translation. The generatorGaware

R→S trained
in that way is then used for the DA. Given an unlabeled real image xR, we estimate
its label via the prediction of the downstream task network f based on the GAN trans-
formed input:

argmax
c∈{1,...,C}

(
f
(
Gaware
R→S(xR)

)
c

)
. (4.6)

Due to the modularity of our approach, the architecture of networks and therefore
tasks can be modified as long as a task loss for the synthetic expert can be formulated.
Furthermore, as a consequence of our modular approach, the intermediate representation
obtained by GR→S could also serve for further analyses as well as different tasks, e.g.,
as described in [198].

4.3.5 Sampling Strategies for the Labeled Subset TR
As we have access to the complete unlabeled training dataset DR ⊆ XR from domain R,
active learning, introduced in Section 2.4.4.1, can help to draw informative samples from
this pool. Our AL cycle is depicted in Figure 4.2. Firstly, the complete real dataset is
inferred by our SSDA method established after stage b). Then, the data points expected
to be most suitable for training are selected according to a given query strategy. An
oracle (e.g., a human providing annotations or for analysis reasons revealing ground
truth which is hold back) is then asked to annotate the selected data points and thereby
a pool of annotated data arises. We use this labeled data for training the generator

99

4 Semi-supervised Task Aware Image-to-Image Domain Adaptation

Cycle GAN

classifier with

frozen weights

query strategy

class label

estimate

real world

pool of unlabeled data

annotation

by oracle

abstract data

7

2
9

labeled data set

L̂Gen

Figure 4.2: Concept of our active learning pipeline. The cyan arrows indicate the active
learning query process while the orange colored arrows depict the iterative model training.

in stage c) as described in Section 4.3.3. After the SSDA model is trained for a given
number of epochs or until convergence, the remaining unlabeled data pool is inferred
by our newly trained SSDA model. New samples are queried for annotation based on
the model’s prediction uncertainty and thus the pool of labeled data is extended. One
AL step, consisting of the data query and the training of the model on the new dataset,
is called episode. In each episode, we query a predefined amount of data. To not bias
the training towards early drawn samples, the model training in each episode starts
with the same checkpoint achieved after stage b). The active learning cycle is repeated
until a predefined budget of labeling is exhausted. The simplest query strategy we
apply is random selection. This strategy is useful, if no information about the data
can be extracted and serves as baseline. With the help of query strategies based on
uncertainty measures, as introduced in Section 2.4.4.1 data points can be drawn more
informatively. In the following we only consider query strategies for classification tasks.
For a given input xR, the uncertainty of the SSDA model is given by the uncertainty
of the downstream task network f fed with GAN transferred data. For simplification of
notation, we set x := xR in the following. The uncertainty is calculated based on the
prediction distribution (softmax activation)

f(GR→S(x)) =
(
f(GR→S(x))1, . . . , f(GR→S(x))C

)
∈ (0, 1)C (4.7)

or the predicted class
ĉ = argmax

c∈{1,...,C}
f(GR→S(x))c, (4.8)

where C is the number of different class labels. The simplest uncertainty-based sampling
strategy we consider is to sample the data point where the model is the least confident
in its prediction. For a multi classification problem we define the least confident sample

100

4.4 Evaluation

under our SSDA model as

x∗LC = argmax
x∈DR

(
1− max

c∈{1,...,C}

(
f(GR→S(x))c

))
. (4.9)

To include more information about the data distribution, one can compare the first and
the second most probable class label under the softmax distribution using their margin
as uncertainty measure. The sample with the minimal margin is given by:

x∗MARGIN = argmin
x∈DR

(
f(GR→S(x))ĉ − max

c∈{1,...,C}\{ĉ}
f(GR→S(x))c

)
. (4.10)

The third considered uncertainty sampling strategy bases on entropy [247]. We calculate
the sample with the maximal entropy as follows:

x∗ENT = argmax
x∈DR

(
−

C∑

c=1

f(GR→S(x))c log
(
f(GR→S(x))c

)
)
. (4.11)

There is no overall rating which strategy should be used in general, as this may depend
on the application, cf. [244].

4.4 Evaluation

Our general method is evaluated on two downstream tasks, semantic segmentation and
classification. For semantic segmentation, the domain shift between real world images
and synthetic images from Synthia [224] and the CARLA driving simulator [59] is con-
sidered. For classification, we employ the Sketchy dataset [235] that contains real world
photos along with sketchy drawings with the same semantic content. Note that in both
cases, the task is the segmentation or classification in the real (target) domain, which
however is achieved by a goal oriented translation to more abstract synthetic or sketch
representation. We therefore consider a ‘reverse’ domain adaptation from real to ab-
stract. As evaluation metrics we use the well established mean Intersection over Union
(mIoU) defined in Equation (2.119) for semantic segmentation and report accuracy as
defined in Equation (2.109) for classification experiments.

4.4.1 Semantic Segmentation of Real and Simulated Street Scenes

We start with showing that our method is applicable to complex real world scenarios by
considering DA with semantic segmentation as downstream task on real and simulated
street scenes.

101

4 Semi-supervised Task Aware Image-to-Image Domain Adaptation

Figure 4.3: Example images from the Cityscapes dataset (first row) and their corresponding
ground truth semantic segmentation masks (second row).

4.4.1.1 Datasets

For the semantic segmentation task we use the established dataset Cityscapes [47] for
the real domain. The dataset contains 5,000 manually selected and fine annotated RGB
images which were recorded in 27 different German and German neighboring cities and
have a resolution of 2,048×1,024 pixels. The images were captured during daytime with
good weather conditions ranging from dates during spring to fall. To ensure diversity
in the dataset, frames with many dynamic objects, varying scene layout, and varying
background were selected. The dataset is split in train, val and test data. For the latter,
annotations are not publicly available as they serve for an independent benchmark test.
The annotation is based on 19 class IDs covering a wide range of road users and typical
scenery of street scenes. An example from the dataset is shown in Figure 4.3. For our
experiments we use the 2,975 images of the train split as well as the 500 validation images
where the dense pixel-level annotations are publicly available. It is common practice to
consider the domain shift between Cityscapes (real domain) and the SYNTHIA-RAND-
CITYSCAPES dataset (Synthia) [224] for the synthetic domain [242]. Synthia consists
of 9,400 images with a resolution of 1,280 × 760, randomly recorded in a virtual town
from multiple viewing angles. The camera position stays approximately constant for
each chunk of 50 images but the scene, e.g., positions of pedestrians, cars etc., as well
as the weather and lighting conditions vary on each image. The semantic segmentation
includes 23 classes including most of the Cityscapes training classes. Examples for the
different view points are visualized in Figure 4.4. To have coincided classes in both
domains, we restrict the classes to the commonly used 16 for domain adaptation which
are the Cityscapes training IDs except for train, truck and terrain [26]. As no fixed
validation set is given, we leave out the last 1,400 images during training. Using the
first 700 thereof for validation.

As a second setup we generated a dataset with the help of the open-source simulator
CARLA [59] which allows for the extraction of a strongly controlled dataset to realize

102

4.4 Evaluation

Figure 4.4: Example images of the different point of views and weather conditions sampled
from the Synthia dataset (first row). The corresponding ground truth masks (second row) are
colored according to the 16 classes that are considered for the domain adaptation.

our hypothesis of unlimited data in the synthetic domain. To showcase this we restrict
our data to town 1 of CARLA with fixed environmental settings like weather, wind etc.
We generated 3,900 images for training and 1,200 images for validation with a resolution
of 1,920 × 1,080 by randomly spawning the ego vehicle on the map. Furthermore, we
spawned each time a random number of road users for a diverse scenery. Similar to
Synthia not all Cityscapes training classes exist in CARLA. In particular, there is no
distinction between different vehicle and pedestrian types. To this end, we fuse them
into a vehicle and a pedestrian metaclass. Therefore, we consider only 13 classes: road,
sidewalk, building, wall, fence, pole, traffic light, traffic sign, vegetation, terrain, sky,
pedestrian, vehicles. In contrast to manually labeling, the segmentation mask of CARLA
exactly match the rendering and thereby are much finer as the Cityscapes labels. To
adapt the more coarse labeling of a human annotator and to avoid an additional domain
shift due to different labeling strategies, we employ the labeling coarsening procedure
from [228] in a post-processing step to the semantic segmentation masks and the RGB
images.

4.4.1.2 Semantic Segmentation Expert in the Synthetic Domain

For the semantic segmentation network f , we use a deeplabv3 with ResNet101 back-
bone (cf. Section 2.3.2) ranging under the top third of semantic segmentation models
on Cityscapes with respect to the comparison of [175]. We train with Adam (cf. Sec-
tion 2.2.4) with class weighting, polynomial learning rate and from scratch without
pre-training to evaluate the domain gap accurately. To range the results, we trained
and evaluated f once on Cityscapes to state the oracle performance of the from-scratch-
trained network independently of our experiments. This led to a mIoU of 62.74% on the

103

4 Semi-supervised Task Aware Image-to-Image Domain Adaptation

validation set. This model is only used as reference, and therefore we refrained from hy-
perparameter tuning. For the experiments with Synthia as synthetic domain, we trained
the same neural network f for 3 days with a batch size of 2 due to GPU memory ca-
pacity which led to 107 epochs of training on the training dataset. During training, we
crop patches of size 1,024 × 512 and flip horizontally with a chance of 50%. On the
in-domain validation set we achieve a mIoU of 64.83%. On our CARLA dataset, the
neural network is trained over 200 epochs with random quadratic crops of size 512×512.
The best mIoU achieved on the validation set during training is 91.89%. Benefitting
from the simulation we constructed an extremely precise domain expert. As the image
resolution of Synthia and CARLA images, differ from the resolution of Cityscapes, a
resizing is necessary. Depending on the scaling and aspect ratio the network’s prediction
performance differs. We chose the scaling with the best performance, which we found
for 1,024× 512. For a fair comparison we let the GANs generate the same resolution.

4.4.1.3 Training Details for I2I Translation and Evaluation Methods

Our implementation bases on the code of CycleGAN [324], which we extended according
to our method presented in Section 4.3. We train CycleGAN with the fixed resolution
1,024 × 512 in both domains over 175 epochs for the training stage b) (task agnostic
training) and thereafter over 50 epochs of task aware training (stage c)) with a few
Cityscapes labels available for Synthia and 160 epochs for CARLA. During the stage c)
training, the pixel-wise cross entropy loss of the fixed weight domain expert is backprop-
agated to the CycleGAN. We scale the task loss Ltask if needed once with a factor γscale

in order to show similar ranges of variation during training compared to the adversarial
generator loss LGR→S . This allows a better interpretability of the weighting factor α
which defines the linear combination of the two losses. First experiments were done
on a mixture of labeled and unlabeled data, but we experienced an unstable training
when alternating between the corresponding loss functions L̃Gen and LGen. Splitting
the generator training into two stages as described in Section 4.3, led to a more stable
training and therefore better results.

As explained in Section 4.2, due to the pure domain separation we are considering, a
direct comparison to other DA methods is barely meaningful. Hence, for evaluation we
compare our approach with the same types of methods as done in [168]:

M1 The semantic segmentation expert on simulated data fS is fed with generated data
from pure CycleGAN training without task loss: fS(Gagnostic

R→S (R)).

M2 The semantic segmentation expert on simulated data fS is fed with images from
Cityscapes (real world domain) without DA: fS(R).

M3 The segmentation network fR is trained from scratch on Cityscapes (real world
domain) with the same amount of data as used in the SSDA approach in stage c)
for the direct comparison: fR(R)

104

4.4 Evaluation

Cityscapes ground truth

Cityscapes

prediction of Cityscapes

CycleGAN

prediction of transf. image

Task aware GAN (ours)

prediction of transf. image

Figure 4.5: Comparison of prediction results of an untranslated Cityscapes image (left), task
agnostic I2I (mid) and our approach (right) based on a semantic segmentation network trained
on Synthia.

Table 4.1: Domain gap comparison of networks trained from scratch vs. ImageNet pre-
trained [63] with Cityscapes as out-of-domain (ood) evaluation.

Synthia → Cityscapes (mIoU in %)

method ood oracle gap

ImageNet pre-trained 31.8 75.6 43.8
from scratch (ours) 9.9 62.7 52.8

When training the I2I module for DA, we report the best mIoU values obtained for fS
on the Cityscapes validation set. In the following we evaluate our SSDA approach with
respect to the domain gap mitigation, the task loss weighting and the amount of ground
truth samples for the Synthia setup. The results of the CARLA setups are summarized
in the last paragraph.

4.4.1.4 Domain Gap Analysis

Exemplary images from the methods M2, M1 and our SSDA approach for α = 0.8 as
well as their segmentation by the task expert fS are displayed in Figure 4.5. The col-
umn ‘Cityscapes’ in Figure 4.5 illustrates the low prediction performance of a synthetic
domain expert when never having seen real-world images (M2). The network’s perfor-
mance drops to roughly 10% when real world images are used as input for the domain
expert. Here we see a significant difference to results reported by other domain adap-
tation methods which use ImageNet pre-trained networks, e.g., [63]. The domain gap is
summarized in Table 4.1 where we compare ImageNet pre-trained network performance
to ours evaluated on Cityscapes. We state out-of-domain performance (i.e., trained on
Synthia; second column), oracle performance (i.e., trained on the full Cityscapes train-
ing dataset; third column), and the domain gap between them, measured as difference
in performance (last column). The results indicate that ImageNet pre-trained networks

105

4 Semi-supervised Task Aware Image-to-Image Domain Adaptation

0 0.2 0.4 0.6 0.8 1

0.21
0.23
0.25
0.27
0.29
0.31
0.33
0.35

loss weight α

m
Io

U

segmentation performance of our method

Figure 4.6: Influence of the task loss based on the Synthia experiment setup. The weight-
ing represents a linear interpolation between the adversarial generator loss and the task loss
(cf. Equation (4.4)) resulting in the original CycleGAN implementation for α = 0 and the
pixel-wise cross entropy loss for α = 1.

have a much better scene understanding by having seen plentiful real world objects. If
network and oracle are trained from scratch, the domain gap widens. Whether ImageNet
pre-training is legitimate or not, can be seen as a matter of taste. However, due to the
presented results, in this work we take the view that ImageNet pre-training introduces
a certain bias in favor of the real domain and thus distorts a pure domain separation.
We prefer to keep our experiment free from this effect.

4.4.1.5 Task Loss Influence

Based on our training-from-scratch setup, using task agnostic generated images (M1)
improves already significantly the performance (11.44 percentage points (pp)). This can
already be seen in the ‘CycleGAN’ column in Figure 4.5 and in Figure 4.6 for α = 0.
However, our approach (task aware GAN) can lead to a relative improvement of up
to 24.85 pp when 5% of the ground truth data is available. To analyze the impact of
the different loss components in the Synthia setup, we set the scaling parameter γscale

empirically to 0.25, we fix the ground truth amount to 5% (148 labeled training images)
and vary the weighting parameter α between 0 and 1. The corresponding results are
shown in Figure 4.6. We see the positive impact of the task awareness in the growing
mIoU values. Using a weighting of α = 0.9 for Ltask, we achieve 34.75% mIoU which is
a performance increase of 13.41 pp compared to M1 (task agnostic training).

4.4.1.6 Ground Truth Influence

Moreover, we analyze the capacity of the method based on the amount of ground truth
data available. Therefore, we fix α = 0.8 and vary the amount of ground truth data for
the stage c) training. We randomly sample images from the Cityscapes training dataset
for each percentage but fix the set of labeled data for the experiments with CARLA and

106

4.4 Evaluation

0 0.5 1 2 5 10

0.06
0.10
0.14
0.18
0.22
0.26
0.30
0.34

GT amount used for training (%)

m
Io

U

our method based on Synthia
Cityscapes (16 classes)
start point stage c)

Figure 4.7: Performance comparison of our method based on Synthia setup with different
amount of ground truth (blue) and a from scratch supervised training on Cityscapes with the
same amount of data (orange).

‘Cityscapes-only’ training (M3) for the sake of comparison. The results are shown in
Figure 4.7 (blue curve) where the x-axis denotes the amount of available ground truth
data (GT). The dotted horizontal line is the mIoU achieved by fS when exclusively
feeding images generated by the task agnostic GAN after finishing stage b) training.
For a fair comparison we trained the task agnostic GAN for another 125 epochs which
results in a better mIoU of 21.34% which we use as result for 0% available ground truth
data (also equaling α = 0.0). For our experiment we compare 0.5% (14 images), 1% (29
images), 2% (59 images), 5% (148 images) and 10% (297 images) of ground truth data
for the stage c) training. Triggering the task awareness with only 14 images already
improves the network accuracy by 6.75 pp. The results show that training GR→S with
the task loss on negligible few ground truth data, improves the network’s understanding
of the scene without retraining the network itself.

Additionally, we compare our method with results of fR (M3). Having no labeled data,
a supervised method can barely learn anything. Therefore, we set the value to the same
as for 0.5% available ground truth which most likely overestimates the performance.
The results are visualized by the orange curve in Figure 4.7. As we can see, our method
outperforms the supervised training up to an amount of roughly 10% of the Cityscapes
ground truth data. Thereafter, direct supervised training is more efficient. Nevertheless,
we saw that enhancing the I2I method with only 0.5% of ground truth data, or 14
frames respectively, already enhances the DA performance. The task expert network
thus already profits significantly in the semantic interpretation of scenes, if a negligible
amount of labeled ground truth data is available.

4.4.1.7 Evaluations Based on CARLA

Our findings for the CARLA experiments are in line with the observations of the Synthia
domain adaptation. The numerical settings, however, have been slightly adapted by
setting γscale = 1, as no pre-scaling of both loss contributions was needed as both varied
in a similar range. We repeat the three experiments on our CARLA dataset. The

107

4 Semi-supervised Task Aware Image-to-Image Domain Adaptation

0 0.2 0.4 0.6 0.8 1

0.175
0.200
0.225
0.250
0.275
0.300
0.325
0.350
0.375
0.400

loss weight α

m
Io

U

complete method with 175 epochs stage b)
complete method with 285 epochs stage b)
start point stage c) (175 epochs)
start point stage c) (285 epochs)

Figure 4.8: Influence of the task loss for the CARLA experiment setup. The weighting rep-
resents a linear interpolation between the adversarial generator loss and the task loss Equa-
tion (4.4). Results after stage c) based on a 175 epochs unsupervised GAN-training are shown
in blue. The green graph shows the method’s performance when stage b) is trained longer.

0 0.5 1 2 5 10

0.10
0.16
0.22
0.28
0.34
0.40
0.46

GT amount used for training (%)

m
Io

U

our method based on CARLA
Cityscapes (13 classes)
start point stage c)

Figure 4.9: Performance comparison of our method based on CARLA setup with different
amount of GT (blue) and of fR which is trained from scratch in a supervised manner on
Cityscapes with the same amount of data (orange).

results of varying α are visualized by the blue curve in Figure 4.8. Also, on the CARLA
dataset our method, with 5% of Cityscapes ground truth available, shows a notable
improvement over the CycleGAN baseline (M1) when choosing a balanced weighting
between the adversarial and the task loss. The CycleGAN baseline corresponds to the
value α = 0, whereas peak performance is roughly 10% improved and is reached for
α = 0.6. These experiments confirm that the task awareness improves the performance,
but the task loss should be used in addition and not as a stand-alone concept.

We also provide the ablation study on the amount of data available, in Figure 4.9 for
a fixed value α = 0.4 for the CARLA setup. The blue curve represents the best mIoU
results achieved with our method and the orange curve shows the results of fR given
different amount of ground truth data. As before our method outperforms M1 as well
as M3 when less than 5% ground truth data is available. Beyond 5% of ground truth
availability, direct training is more efficient. The distinct improved semantic segmenta-
tion of the street scene can also be seen in the qualitative results shown in Figure 4.10

108

4.4 Evaluation

Cityscapes ground truth

Cityscapes

prediction of Cityscapes

CycleGAN

prediction of transf. image

Task aware GAN (ours)

prediction of transf. image

Figure 4.10: Comparison of prediction results of an untranslated Cityscapes image (left), task
agnostic I2I transfer (mid) and our approach (right) based on a semantic segmentation network
trained on our CARLA dataset.

(bottom row). As in the previous experiment, visual differences recognizable by humans
of the generated images with CycleGAN (top row mid) and our method (top row right)
are limited. Furthermore, we see again the low performance caused by the domain gap
when feeding real images to our from-scratch-trained synthetic expert fS . On the un-
translated images (M3), fS yields an mIoU of 9%. Hence, the observed results achieved
by our method demonstrate a significant reduction of the domain gap via generating
more downstream task relevant visual features.

In a final experiment on semantic segmentation, we consider the effects of a prolonged
stage b) training to find out whether a longer training further improves the results. We
train in total 285 epochs in stage b) and show the results of the complete method based
on a fixed amount of 5% ground truth data. The comparison is given in Figure 4.8 by
the green curve. The experiments reveal that a moderate number of epochs for stage b)
is already enough for a good initialization of stage c). Although we start the stage c)
training with a higher mIoU (dotted lines) when trained with stage b) for more steps,
the experiments show that we achieve nearly the same absolute mIoU values. This
applies particularly to the range of α values where peak performance is attained.

After showing the potential of the method on a complex downstream task, we consider
a more complex domain adaptation setup with a classifier as downstream task in the
following. We thereby chose a setup where the domain differs significantly contrary to
the experiments of [168] where the domains differ mainly in contrast and image intensity.
Furthermore, we analyze the effectiveness of informative sampling for stage c) training.

4.4.2 Active SSDA on Real to Abstract Data

To evaluate a complex DA challenge, we chose a subset of the Sketchy dataset [235],
where human drawn sketches serve as abstract representation of real world objects.

109

4 Semi-supervised Task Aware Image-to-Image Domain Adaptation

Figure 4.11: Examples of the Sketchy dataset. Top row: real photos. Bottom row: one of the
corresponding sketches.

Exemplary data samples are shown in Figure 4.11. For each class exist photos (subset
of ImageNet) of the named object and several sketches drawn by different humans under
time pressure. Therefore, sketches can be “incorrect in some way” [235]. The complete
data generation process is described in detail in [235]. In order to obtain a clean dataset
for our experiments, sketches which could not be identified by their annotation were
removed. Furthermore, we reduced the classification problem from 125 classes in the
original dataset to the following 10 classes: alarm clock, apple, cat, chair, cup, elephant,
hedgehog, horse, shoe and teapot. For an independent test set we split off 20 images per
class of real images and 90 per class of sketch images remaining in a dataset with 700
real (photo) images and 4,633 sketch images for training. The imbalanced amount of
data supports our hypothesis that abstract data is often easier to get.

4.4.2.1 Domain Gap Between Photos and Sketches

Firstly, we train from scratch a ResNet18 [92] with the help of the categorical cross en-
tropy loss on sketch data, which serves as expert classifier f (stage a)). The comparably
simple image structure of the sketches results in an in-domain test accuracy of 97.11%
after 200 epochs of training. For evaluating stage b) and c) we split off randomly 70
photos (10%) of the training data uniformly over the classes. To incorporate active
learning for the data selection in stage c), we extended the deep active learning toolkit
for image classification [33], which bases on [181], with our task aware I2I model. We
compare the classifier performances in-domain and under domain shift in Figure 4.12
(left). We observe a notable accuracy drop to 10% when evaluating the sketch expert
on real images, revealing that the domain gap between gray scale sketches and RGB
photos is significantly complex. In addition, from the in-domain accuracy comparison
(≈ 73% vs ≈ 97%) we conclude that classifying real world images is more difficult (due
to problem complexity or availability of data) than classifying sketches.

The use of images generated by a task agnostic I2I generator as classifier input already

110

4.4 Evaluation

freal(R) fsketch(S) fsketch(R)
Domain evaluation

10

25

40

55

70

85

100

T
es

t
ac

cu
ra

cy

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Influence of task loss (α)

30

35

40

45

50

55

60

T
es

t
ac

cu
ra

cy

Figure 4.12: Left: Accuracy under domain shift: In-domain performance for real world data
(freal(R)), in-domain performance for sketch data (fsketch(S)) and performance under domain
shift (fsketch(R)). Right: Accuracy of the sketch expert with varying influence of the task loss
controlled by α showing the positive impact of our method. Setting α = 0 equals CycleGAN-
only-training and includes zero information about the downstream task. Setting α = 1 omits
the adversarial part of the loss and training is done with cross entropy loss only. Note the
different scaling of the y-axes.

yields improved classifier predictions. In our experiments we set α = 0 in Equation (4.4)
to achieve a reasonable task agnostic generator model Gagnostic

R→S in an unsupervised man-
ner. We observe that images generated that way facilitate distinctly the prediction by
the sketch classifier f , leading to 38.8% accuracy on average (5 runs) and thus an aver-
age increase of 28.8 pp compared to feeding real world images. Continuing training and
additionally incorporating task awareness with stage c) further improves the accuracy
by up to 29.0 pp.

For the stage c) training we fixed the overall annotation budget to 75 data points
(roughly 12% of the remaining real world training data). We selected a fixed subset of 75
labeled samples to perform the stage c) training. The set was created with the help of AL
and the entropy query strategy. The dataset accumulatively queried during 14 episodes
was then fixed and used for our ablation study of the task loss weighting. A detailed
study on the query strategies is described in the next section. Due to randomness in the
training, we report averaged results over 5 repeated trainings on the fixed dataset. We
show the task loss influence with respect to the test accuracy evaluated by scanning α in
steps of 0.1 in Figure 4.12 (right). Depending on the weighting α of the task loss, we see
the positive influence of the task awareness in the increased performance of f when fed
with the data generated from Gaware

R→S ranging from 43.4% accuracy for α = 0.1 to 57.8%
accuracy for α = 0.8. The performance saturates or drops when only considering the task
loss, i.e., omitting the adversarial part completely. The latter implies that the generator
is not penalized by the discriminator when generating images outside the target domain

111

4 Semi-supervised Task Aware Image-to-Image Domain Adaptation

RGB photo one GT sketch
CycleGAN only α = 0.2 α = 0.4 α = 0.6 α = 0.8 Ltask only

elephant elephant elephant cat cat cat

Figure 4.13: Images generated with our SSDA method with different weighting α of the task
loss during training. Top row: RGB photo (input of GR→S) and an exemplary sketch. Bottom
row: Generated sketches and their prediction by our synthetic expert.

as long as they are predicted correctly by f . Furthermore, the experiments reveal that
our method has a regularizing effect, as the variance of performance is much higher for
input images from generators trained with α = 0 (task agnostic). In Figure 4.13 we show
qualitative results of the generator outputs for different α-values during training and
the corresponding classification results of our synthetic expert. More and more details
seem to be added when the task loss influence rises. This supports the classification
accuracy but leading to noisy images if the adversarial component of the loss is omitted
(last image in the row).

4.4.2.2 Active Learning for Domain Adaptation

In the previous section, we have selected a specific split of the labeled data to perform
the stage c) training. We investigate in the following, whether actively choosing images
improves the generated data, in the sense of making it more suitable for the classifier
to predict correctly. To this end, we compare four query strategies with the help of our
extended deep active learning toolkit for image classification. Having a labeled dataset
at hand, the oracle is replaced by revealing the given ground truth when queried. This is
a common practice in AL to ensure comparable results and reduce label effort [261]. As
stated in the previous section, we allow a budget of 75 real world images to query in total.
They are queried in batches of 5 over 14 episodes. In each episode we initialize our model
with a checkpoint obtained by stage b) training. The initial classifier performance, given
generated images by this checkpoint, is 42.0% accuracy. Having a reasonable generator
trained in an unsupervised manner and a completely trained sketch expert, we can
query data points in the first run without the need of a random subset for a network
initialization training, which is needed for classical AL setups. In each episode we train
the so initialized model for 50 epochs as described in Section 4.3.5 stage c) on the growing

112

4.4 Evaluation

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Amount of annotated data

35.0

40.0

45.0

50.0

55.0

60.0

T
es

t
ac

cu
ra

cy

Random

LeastConfidence

MinMargin

MaxEntropy

Figure 4.14: Active learning for SSDA data selection. Data selection for stage c) based on
entropy leads to the best results. The lower dotted line depicts model performance at (un-
supervised) initialization. The ocher colored band shows model performance range after 14
episodes actively training our SSDA method.

labeled dataset. We use α = 0.8 for the weighting of the task loss in Equation (4.4),
which gave the best results with a fixed set of labeled data (cf. Figure 4.12 (right)). To
account for the randomness, we repeat our experiments 11 times and visualize mean
and variance of the results. In the experiments we compare the four query strategies
introduced in Section 4.3.5: random, least confidence, maximal entropy and minimal
margin sampling. After a short warm-up phase (5 episodes; 25 annotated images) all
query strategies exceed the performance of task agnostic generator training and show a
performance increase when more labeled data is available. In Figure 4.14 we compare the
results according to amount of annotated data and test accuracy of f when fed with the
output of the generator Gaware

R→S that was trained on the actively chosen annotated data
in stage c). We see that sampling based on entropy outperforms the random baseline
nearly everywhere, leading to an averaged performance gain of 2.13 pp after 14 episodes.

Furthermore, we compare our results to direct active supervised training, i.e., classical
AL. In contrast to our method, classical AL needs an initial training with some labeled
data before being able to query. To ensure, nevertheless, comparable results we initialize
the model with 10 data points which equals starting two episodes (1/7 episodes) later.
We keep the query amount of 5 images per episode but continue actively sampling until
the complete dataset is queried. Furthermore, in both setups (classifier training on real
world data vs our SSDA method) we allow the model under consideration to converge.
Hereby the classifier needs distinctly more epochs (200) compared to the generator
training (50) which might be due to the number of parameters that need to be trained.
Due to the increased computation cost, we repeat our experiments only with 6 (instead
of 11) different seeds. The averaged results with variance are visualized in Figure 4.15.

113

4 Semi-supervised Task Aware Image-to-Image Domain Adaptation

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

21
0

23
0

25
0

27
0

29
0

31
0

33
0

35
0

37
0

39
0

41
0

43
0

45
0

47
0

49
0

51
0

53
0

55
0

57
0

59
0

61
0

63
0

Amount of annotated data

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

T
es

t
ac

cu
ra

cy

280 300 320 340 360

50.0

60.0

Random

LeastConfidence

MinMargin

MaxEntropy

Figure 4.15: Active learning for from scratch training on real images. The lower dotted line and
the ocher colored band show results of our ADA method (cf. Figure 4.14). The experiments
show that our method requires distinctly fewer annotated data points to reach comparable
classifier performance on the test set.

The horizontal ocher colored band visualizes the range of our SSDA method after 14
episodes (75 annotated data samples). The horizontal dotted line depicts our model
performance at (unsupervised) stage c) initialization. The high fluctuation in the plot is
mostly due to data augmentation, which we used during training to enlarge the limited
training dataset. The results do not show a distinct performance gain for active learning
strategies on the real dataset. This might be due to the minimal initialization set and
the little heterogeneity of the data. The experiments reveal that our method needs
considerably fewer annotated data. While the direct active supervised training on the
real photos barely achieves 25.58% accuracy when 75 annotated data points are available,
our approach reaches more than twice the performance. With 290 data samples (3.86
times more than our method) the direct supervised learning firstly reaches the minimal
mean performance (achieved by random sampling) of our method and surpasses our
method firstly (but temporarily) when trained on 345 chosen and annotated data points.
Thus direct supervised training needs 4.6 times more data compared to our approach.
We thereby greatly benefit from the huge labeled data pool available in the abstract
(sketch) domain and the less complex vision task of sketch classification instead of real
world photos.

4.5 Conclusion and Outlook

In this chapter, we presented a modular semi-supervised domain adaptation method
based on CycleGAN where we guide the generator of the image-to-image approach
towards downstream task awareness without retraining the downstream task network

114

4.5 Conclusion and Outlook

itself. Additionally, we extended our method with an active learning pipeline for classi-
fication to sample the most informative data points for the downstream task guidance.
In our experiments we showed that our method can be applied to complex downstream
tasks like semantic segmentation yielding significant improvements compared to a pure
I2I approach and from scratch training when a limited amount of ground truth data
is available. Besides, we analyzed the impact of the task awareness and the amount
of ground truth data used during training. In particular, for small amounts of anno-
tated data, we significantly outperform supervised learning as well as the non-guided
CycleGAN. For a fair and clean comparison, all our downstream task networks have been
trained from scratch, i.e., without any real world data pre-training as, e.g., based on
ImageNet. Additionally, we showed that we can achieve very strong models when con-
sidering abstract representations (like sketches or modifiable simulations). Furthermore,
our experiments on a ‘real to sketch’ domain adaptation classification task demonstrates
that our method can cope with large domain gaps. Here we have additionally shown
that data selection in terms of active learning matters and further improves our method
for a given annotation budget.

The results achieved by our active learning strategy in the classification task suggest that
this extended method shows promise for improving results in semantic segmentation as
well. Therefore, it is worth transferring our active learning component to semantic seg-
mentation and elaborate additional query strategies. In addition, the method could be
combined with self-training as these models need a good initialization to generate rea-
sonable pseudo labels [171]. Nevertheless, when training the downstream task network
completely from scratch, we have shown that the network performance is questionably
low. Therefore, our method can be seen as complementary to the self-training ap-
proaches to ensure a reasonable prediction of the network in early stages. Furthermore,
we are interested in elaborating more on the (intermediate) abstract representation. A
follow-up question of our research addresses whether abstract intermediate representa-
tions can help to further improve our downstream task models, for example with respect
to robustness. Additionally, it has potential to help us better understand which visual
features are important for a downstream task network. Generating more informative
images for a downstream task network might give insights into the network behavior
and help generate datasets which are cut down to the most important aspects of the
scene for a neural network which is not necessarily what a human would describe as
meaningful. To this end, we introduce a method to disentangle image cues to get more
insight into the behavior of semantic segmentation neural networks in the next chapter.

115

Chapter 5
Cooperation Is All You Need? A Study on
the Ability of Neural Networks to Draw
Information From Color, Texture and Shape

The work described in this chapter was assisted by Natalie Grabowsky. Under my super-
vision, she worked on the proof-of-concept of the method which was further developed
by me. As a student research assistant, she supported the CARLA experiments of the
elaborated method and generated the textureless world in CARLA. The anisotropically
diffused dataset was created by Edgar Heinert.

5.1 Introduction

Convolutional neural networks take advantage of the fact that the majority of natural
signals are hierarchical compositions. This means that lower-level features combine to
create higher-level ones [144]. To recognize and distinguish objects, their shape and
texture give complementary cues. Following the convention from Geirhos et al. [72], we
call different concepts or stimuli in the data such as texture, shape or color ‘cues’ to
clearly distinguish them from features learned by a neural network. Several hypotheses
about biases of CNNs were formulated and supported by experimental results. In 1980,
Mitchell defines bias as “any basis for choosing one generalization over another, other
than strict consistency with the observed training instances.” This form of bias is the
so-called inductive bias, introduced in Section 2.2.2, which describes additional assump-
tions made to the model based on e.g., information about the domain or the task such
as choosing CNNs for image processing. Already at that time, the importance of under-
standing biases was pointed out by Mitchell: “Therefore, progress toward understanding
learning mechanisms depends upon understanding the sources of, and justification for,

117

5 Cooperation Is All You Need?

various biases” [178]. Nowadays, the term ‘bias’ is often associated with its definition
from an ethical perspective. According to the definition in [194], bias is the “inclination
or prejudice of a decision made by an AI system which is for or against one person or
group, especially in a way considered to be unfair.” This can also be framed as decisions
made by a machine learning model that exhibit prejudice against individuals or groups
of people based on protected attributes such as gender or race [64]. Investigations on the
ethically motivated term emerged the research field of trustworthy AI. In this thesis, we
use the term ‘bias’ in a more technical and general way. We refer to a bias in a dataset
or a model if a certain aspect dominates another in the decision-making process. Early
in the evolution of CNNs a shape bias was hypothesized stating that representations of
CNN outputs seem to relate to human perceptual shape judgement [143]. Furthermore,
it has been shown that kernels learned in early layers resemble edge detection kernels
which leads to the hypothesis that CNNs learn local edge relations [141]. These relations
are combined to more complex structures when the network gets deeper [141,144]. Even
though this suggests that CNNs tend to base their prediction on shape information, this
is only valid on a local perspective [16]. In general, they do not intrinsically display
shape bias [103]. On the contrary, multiple studies were made on ImageNet trained
CNNs, indicating that those have a bias towards texture [16, 27, 72]. In the pioneering
paper of Geirhos et al. [72], an analysis based on cue-conflicting images was proposed.
Therefore, a style transfer with a texture image showing e.g., an animal skin is applied
to an ImageNet image. This leads to a newly texturized image with preserved shape and
therefore conflicting cues. The method supports the texture bias hypothesis by revealing
a distinct texture dominated prediction when shape-texture cue-conflicting images were
given as input to CNNs trained on ImageNet [72]. However, a bias denotes that the
other cues are not necessarily absent but sometimes more and sometimes less important
to solving the task [44,52,111].

The mentioned investigations mainly focused on neural networks in the context of clas-
sification tasks and ImageNet pre-trained neural networks. This raises the questions of
how the bias changes when the task changes and which cues in the data are the most
relevant to solving the task. We investigate the different cue influences when changing
the task to a task in which not only the type of object is relevant (as per classification
which was introduced in Section 2.3.1) but also a localization within the image on pixel-
level in form of semantic segmentation (Section 2.3.2) is demanded. Hermann et al. [95]
showed in the classification context that the choice of data and the task has influence on
the features and the cue biases which are learned by a CNN. We take advantage of this
adaptive behavior to analyze how much information about the task can be extracted by
CNNs restricted to limited image cues.

We present a method to disentangle best the different cues naturally arising in an image:
shape, texture and color. As mentioned above network biases of classification neural
networks are often studied based on cue-conflicting inputs. This approach is only trans-
ferable to semantic segmentation to a limited extend and cannot reveal how well neural
networks can exploit when limited cues are present. Therefore, we propose a collection

118

5.2 Related Work

of methods each extracting a single or combination of specific cues in an image, pre-
serving the semantic segmentation task. This leads to datasets which contain only the
desired number of cues, allowing for an in-depth behavioral analysis of neural networks.
These datasets serve as the basis to train expert networks where each is biased towards
a specific cue or cue combination. Due to the fact that the training was performed from
scratch without the use of pre-trained models, we assure that the neural networks have
no previous knowledge of cues other than the ones they are specifically trained on. This
study aims to gain more insight into the cue awareness of neural networks. Particularly,
we address the question of what neural networks can and cannot learn from a single or
a limited number of cues. Our summarized contributions are:

• A method to generate a texture-only dataset for semantic segmentation tasks.

• A general setup to study disentangled cues (including color-only experiments) for
datasets with segmentation masks.

• An in depth analysis of the influence of different cues (learned by up to 15 different
experts) in the context of semantic segmentation.

• The first study on the differences of cue influence of transformers and convolutional
neural networks on a semantic segmentation task.

After setting our approach into the context of the actual state-of-the-art, we present
our setup and the cue extraction methods in Section 5.3 and Section 5.4. An in-depth
analysis of the question “which cues in the data are the most relevant for solving a
semantic segmentation task” is addressed in Section 5.5 for a real world and a simulated
dataset. We further investigate the differences between convolutional neural networks
and transformers in our study before we conclude and discuss our findings in the Sec-
tion 5.6.

5.2 Related Work

First investigations on what CNNs learn from images date back to 2014 when Zeiler and
Fergus used fractionally-strided convolutions (cf. Equation (2.24)) to visualize image
regions which lead to high feature map activations in the classification context. We first
give an overview of the different approaches to measure the bias, i.e., cue influence for
the prediction. Our focus thereby is on cue influences in semantic segmentation, which is
still an under-researched field and addressed by our method. Thereafter, we summarize
the state-of-the-art insights about biases in semantic segmentation neural networks.

To analyze cue influences, datasets are prepared to either combine cues artificially to
create cue conflicts or remove certain cues from the data. In contrast to classifica-
tion, data preparation is more complex for semantic segmentation as multiple classes
are present in the input which differ in their cues, such as shape, texture and color.

119

5 Cooperation Is All You Need?

The stylization approach from Geirhos et al. [72] to construct cue-conflicting images is
adapted by [111,156,269]. In [156], Li et al. propose to stylize images not with artificial
textures but with a second image from the same dataset. For semantic segmentation,
they extend their method to use a specific object rather than the full image as texture
source. Therefore, they crop an object of a specific class from the background based
on the ground truth segmentation mask. This serves as the source of the texture for
a second image in the dataset which is texturized with the help of the style transfer
algorithm AdaIn [106]. As the so generated image is entirely texturized, it is given
a single-value segmentation mask holding the class ID of the texture source object.
Theodoridis et al. propose a similar data preparation based on AdaIN for instance seg-
mentation, i.e., pixel-wise segmentation of objects where each object is distinguished by
a different object ID [269]. In contrast to Li et al., they additionally consider object-
centric stylization. This leads to three stylized versions of the COCO [159] dataset.
First, stylization of the entire image, second the stylization of just the object while
preserving the background and, third, the stylization of the background while leaving
the object untouched. Even though the objects and background are treated differently,
the approach does not distinguish between different object classes and uses artificial
textures from images taken from WikiArt.org [257]. Furthermore, Islam et al. exploit
the stylization to construct images with the same concept, e.g., texture or shape, to
evaluate the influence of texture and shape respectively on a per neuron level [111].
This is done by comparing the mutual information encoded by the neural network in
the latent representation of two images sharing the same concept. Two images share
the same concept, if they either share the same texture stylization (texture) or it is
the same image but is differently texturized (shape). In [276], Tripathi et al. construct
cue-conflicting images for classification tasks not by style transfer but by blending edge
maps with puzzled images. Therefore, one image is processed by a standard edge detec-
tion algorithm, e.g., Canny edge detection [32], and the other image is partitioned in a
regular 4×4 grid and shuffled like a sliding puzzle. These images are then blended. The
blending is realized by a weighted linear combination of the images with a weighting
scalar randomly drawn from a Beta distribution.

Besides preparing datasets with cue conflicts also datasets in which cues are removed
can also help to shed light on neural network behavior. An approach to colorize images
with respect to the class IDs is proposed by Kamann and Rother [125] to reduce the
influence of texture. To improve robustness against common image corruptions, they
randomly sample colors for each label ID and color the segments in the ground truth
mask accordingly. The colored map is blended by an adaptable weight with the original
image and used as data augmentation (cf. Section 2.4.1) during training. This method
deliberately uses colors that do not occur in the image that is textured and is termed
‘painting by numbers’. The approach in [276] to shuffle image patches to recreate images
with distorted shapes has already been introduced in [27], was picked up in [52] by Dai
et al. and used in the context of semantic segmentation for the first time in [319] by
Zhang and Mazurowski. A common approach to remove all but the shape cue is to use

120

5.2 Related Work

silhouettes, contour maps or edge maps [16]. In [52], Dai et al. propose to use mean
shift filtering to reduce the texture while preserving the shape in an image. Conversely,
they suggest edge blurring using a Gaussian filter for shape reduction. In addition, this
work is one of the few works considering color as relevant cue by suggesting gray scaling
to remove color. The influence of color, intensity and luminance for object boundary
detection was studied in [172].

Based on these datasets it has already been shown in the literature that the bias be-
tween texture and shape in neural networks should be balanced [156] for classification
settings. Experiments in [269] reveal that neural networks for instance segmentation do
not only rely on texture - even though there is a certain texture bias - but also exploit
shape information. Furthermore, it has been noted that neural networks with a reduced
texture bias are less sensitive to image corruptions [125]. Image stylization and thereby
a reduction of the texture reliability is also a common technique to facilitate domain
adaptation. By pre-training on stylized images, Zaech et al. aim to reduce the texture
bias in CNNs so that they adapt more easily to other domains [314]. Nevertheless, with-
out external intervention, shape is the least prioritized feature learned by convolutional
neural networks according to the experiments in [319] and requires a sufficiently large
receptive field (cf. Section 2.1.2.3) compared to the object to recognize.

In contrast to convolutional neural networks, transformers have different inductive bi-
ases. Primarily, they have no inductive bias towards local spatial structure [279]. Due
to their architecture based on self-attention (cf. Equation (2.104)), they have a global
view on the input image compared to the local receptive field of convolutional neural
networks (cf. Section 2.1.2.3). This allows them to learn relations between pixels that
are far apart whereas convolutional neural networks benefit or suffer from their transla-
tion equivariance because their kernel shares weights for the entire image. Experiments
in [71, 187,276, 279] show that in classification tasks transformers reveal a bias towards
shape. The content dependent receptive field of vision transformers (cf. Section 2.3.1.3)
is said to be the reason for this shape affinity [187].

Although a number of approaches exists, they all suffer from different limitations.
Firstly, all methods but particularly the edge or contour maps are subject to a quite
broad domain gap since the image representation by a gray scale edge map differs dis-
tinctly from the RGB image. Moreover, style transfer is said to enforce shape bias. De-
spite the fact that the dependency on the original texture is reduced, an explicit shape
recognition is not guaranteed when trained on this data [276]. It further introduces a
data distribution shift and incorporates image corruptions in terms of noise [125]. In
addition, most of the works are not trivially applicable to semantic segmentation. Albeit
Li et al. proposed an adaptation of their method for semantic segmentation in [156], this
adaption does not exceed a showcase. Similarly, the work of Theodoridis et al. is applied
to instance segmentation and therefore a clear definition of background is given which is
not necessarily the case for semantic segmentation. In addition, the approach of Islam et
al. is difficult to transfer to semantic segmentation tasks as the question of being of the

121

5 Cooperation Is All You Need?

‘same concept’ needs to be answered on a pixel level or at least a segment level. Despite
addressing a semantic segmentation task, Zhang and Mazurowski study real world tasks
with very few classes and objects [319]. Moreover, to the best of our knowledge, an
analysis of shape and texture bias of transformers for semantic segmentation tasks has
not yet been done.

In contrast to other methods, we study the influence of image native cues rather than
studying a shape or texture bias of pre-trained neural networks. Besides getting insight
into the cue influence of transformers and convolutional neural networks in semantic
segmentation tasks, we aim to answer the question of what (still) can be learned when
only a certain cue or a reduced number of cues are present in an image. Our method de-
composes images into different and mostly orthogonal cues to measure their importance
for semantic segmentation tasks. The work presented by Dai et al. is similar to our
approach but is limited to only classification. They analyze the influence of combined
or removed cues for ImageNet classification [52]. However, we use different extraction
methods to take the difficulties of semantic segmentation into account. Besides, we per-
form a more detailed decomposition. We investigate different shape extraction methods
and analyze additionally how much information can be drawn from the pure color, i.e.,
hue and saturation, or the grayscale value of one pixel. Instead, they investigate the
influence of the topology by rearranging image patches. Splitting up and shuffling an
image destroys its semantic content and cuts up segments. As a consequence, this ap-
proach does not preserve the semantic segmentation task which is why we refrain from
using it. Instead, we propose a new method to extract texture from the dataset. The
method is flexible enough to create arbitrary new segmentation tasks with texture from
the original dataset since our texture dataset only consists of in-domain texture. This
stands in contrast to most cue-conflicting approaches. Furthermore, we investigate the
cue influence on complex datasets with at least 15 classes what sets us apart from other
cue influence approaches in the field of semantic segmentation. Our study also allows
for investigations on a per class and per pixel level. Hence, we can see if certain classes
or pixels are more likely to be classified based on shape or texture.

5.3 Cue Decomposition

We investigate the question of which cues in an image encode the most accessible in-
formation for a neural network to solve a semantic segmentation task. To this end, we
decompose each image of a semantic segmentation dataset D ⊆ X ×Y in its main cues:
color (RGB = V + HS), texture (T) and shape (S). The resulting datasets contain only
a reduced number of cues or a single cue.

In the following we describe all datasets in detail.

122

5.3 Cue Decomposition

5.3.1 Color

For the color cue we can use the original dataset D but need to constrain the neural net-
work so that it has only access to a single pixel value. By restricting it to the color value
we prevent learning from pixel arrangements which form shapes or texture patterns. To
this end, we create a neural network consisting of nothing but (1×1)-convolutions. This
limits the receptive field of the neural network to single pixels (cf. Section 2.1.2.1). We
further decompose the color into two parts: Its gray value and its hue and saturation
amount. Besides the RGB (red, green, blue) channel representation, color can also be
encoded in the HSV (hue, saturation, value) format [258]. The HSV color space is a
non-linear transformation of the RGB space, often represented by a cone. Hue ranges
between 0 and 359 degree, representing the color on a color circle. Saturation denotes
how the color changes by tinting, i.e., by mixing the color with white. For example,
reducing the saturation of red leads to pink. The so-called value affects the darkness
of the color. We can extract the pure color26 amount by switching to the HSV color
space and discarding the value channel. The grayness of the image can be obtained by
either averaging or taking the maximum over the RGB color channels. The latter is
equal to taking the V channel of an image in HSV format. In the following we denote
the full three channel RGB color with color or RGB. A complete removal of all color
components is not feasible and therefore gray scaled images are said to be color free.
When we explicitly consider the split between grayness and the hue-saturation pair we
refer to the grayness as gray or V. The hue-saturation pair is termed HS.

5.3.2 Texture

The texture dataset is built in three main steps. In the first step, object patches are
extracted based on the semantic segmentation mask. In a second step, mosaic images
are generated with patches of only one class ID and in the last step voronoi diagrams
are generated [274]. For the voronoi diagrams a random ID is sampled for each cell and
filled with a cutout from a corresponding mosaic image for each cell. A scheme of the
process is shown in Figure 5.1. In the following, the steps are described in more detail.

5.3.2.1 Patch Extraction

We start by collecting textures of objects of a specific class ID c ∈ {1, . . . , C}. Thereby,
‘object’ is not limited to an instance or foreground object but denotes any segment of
class c. To this end, we mask every but class c segments in the segmentation mask.
This leads to a mask which masks out everything except pixels from an image with class
c label when applied to the image as shown in the step ‘class-wise segment masking’

26We refer to ‘pure color’ for hue and saturation for the sake of simplicity to distinguish from the gray
component. However, in literature often only saturated pixels are denoted as pure color.

123

5 Cooperation Is All You Need?

patch

transformations

texture patches
texture patch croppingclass-wise

segment masking
basis for class-wise
texture cropping

contour filled

texture images mosaic
pool of

mosaic images

pool of contour filled tex-

ture images of every class

texture datasettexture filled
voronoi diagrams

filling voronoi diagrams

with different classes

images

Figure 5.1: The diagram depicts our process of creating a texture dataset which only retains
the texture cues from a given segmentation dataset. Zooming in is encouraged to view details.

in Figure 5.1. Next, the remaining segments are isolated by retrieving each contour
with the help of the border following algorithm proposed by Suzuki et al. [262]. We
discard segments which are below a certain threshold, as they will not contribute to
meaningful texture patches. For all other isolated segments we cut out the corresponding
image part along its enclosing bounding box based on the calculated contours. We
denote the resulting image excerpts ‘texture patches’. To enlarge the pool of texture
patches, we upsample the patches according to a weighting factor with different image
transformations as introduced in Section 2.4.1. A promising weighting to overcome
class imbalance is to choose the weights according to the pixel counts per class over the
entire dataset. For example, we add multiple differently transformed patches for classes
which are underrepresented in terms of pixel count compared to classes that cover larger
parts of the images. For the transformations, an invariance of the texture under these
transformations should be assured.

5.3.2.2 Mosaic Images

After extracting all texture patches in the entire underlying dataset we randomly recom-
pose them into mosaic images. Beginning always with the row that has the least amount
of filled pixels and the first empty column. We then iteratively fill an image of the same
size as the images in the original dataset. The silhouette of the texture patch which was
filled in the mosaic is masked in a mask image to keep track of the empty and fill parts

124

5.3 Cue Decomposition

of the image. Iterating this process creates an overlapping mosaic or patchwork image.
We add noise to the insertion coordinates if the insertion position has not changed in
two consecutive steps. This can happen as texture patches which define the insertion
coordinates have varying contours but are cropped by their enclosing bounding box so
that the silhouette does not fill up the entire box and empty pixels remain. To obtain
differently sized patches in the mosaic, we randomly choose the biggest patch in the list
of texture patches with a probability of p = 0.1 to be added next. This fill procedure is
repeated until all texture patches are composed into mosaic images. When an image is
completely filled, i.e., no empty pixels remain unmasked, a new empty image is filled.
This leads to Nc ∈ N completely filled mosaic images which are paired with a constant
label mask of class c.

To further reduce potentially preserved shape cues, we generate for each class ID a
‘contour filled’ texture dataset based on the original dataset. Therefore, we fill all
original image segments with parts of different mosaic images of the same class c. This
is done by masking everything but the specific segment in a randomly chosen mosaic
image and combining these filled masks to a completely filled image. As a consequence,
the object shapes in the original image are preserved but useless for prediction, as the
texture and therefore also the class ID is identical inside and outside of any object.
Furthermore, as for each class ID the same procedure is applied to generate contour
filled texture mosaics, each object contour appears in any of these datasets. Applying
this procedure to all classes c ∈ {1, . . . , C} leads to a pool of contour filled texture
images where multiple images per class exist.

5.3.2.3 Voronoi Diagramms as Surrogate Task Data

In the last step, we build a semantic segmentation task based on the mosaic datasets.
To this end, we create voronoi diagrams [274] where each cell represents a segment. The
cells are filled with randomly chosen ‘contour filled’ texture image parts. We arrange
the cell filling such that the resulting class IDs are balanced. That means that images
from the pool are drawn randomly but uniformly with respect to the class ID. The
corresponding segmentation label mask is created according to the class IDs of the filled
texture per cell as seen in ‘texture filled voronoi diagrams’ in Figure 5.1. To generate
an entire dataset, N voronoi diagrams are created and filled with texture.

The dataset created in that way is reduced to the cues texture and color. We refer to
it as texture RGB or shortly TRGB. In Figure 5.2 we show two exemplary images
based on the Cityscapes validation dataset. However, this method has challenges with
long, thin objects, such as poles. Due to the thin structure of poles, it is difficult to
capture their texture with our method without potentially introducing a new texture.
The receptive field of standard neural networks is large enough to capture multiple poles
next to each other which holds the potential that the texture expert learns a misleading
pole texture. This is less of an issue for other classes as the segments vary more in size

125

5 Cooperation Is All You Need?

Figure 5.2: Two examples of our texture dataset.

and contour. To further remove the color cue, gray scaling is performed on the dataset,
leading to the cues V and T referred to as texture or short T. Furthermore, we create
a texture dataset with removed gray value but preserved hue and saturation values. We
denote the dataset by texture HS or short THS. An overview of all cues datasets
including the ones denoted here are listed in Table 5.1.

5.3.3 Shape

We consider three methods to extract the shape cue from images. This is anisotropic
diffusion [93], holistically-nested edge detection [302] and, if the dataset is given by a
modifiable simulation, texture removal. From a human visual perspective drawing the
shape or contour of real world objects in a scene is fraught with uncertainty leading e.g.,
to a different granularity level of annotations [321]. We cover this ambiguity of shape
perception with the three different shape cue extraction methods ranging from texture
smoothing (anisotropic diffusion), edge detection (holistically-nested edge detection)
and our approach to leave out the texture during the rendering process in a simulation.

5.3.3.1 Anisotropic Diffusion

In order to extract the shape cue, we need a method, which respects contour and shape
defining edges but smooths the texture. A common approach to produce smooth images
is applying a Gaussian blur filter. However, this smoothing is uniform with respect to
all orientations, i.e., all image components are blurred in the same way. As a conse-
quence, it fails to preserve the sharpness of edges. To preserve shape defining edges while
smoothing local texture, we apply edge enhancing diffusion with smoothed orientation
(EED) [93,293] which is a special form of anisotropic diffusion [202]. Based on a partial
differential equation (PDE), EED diffuses the image along edges but hampers the dif-
fusion across them. This leads to a non-linear and space-variant image transformation
where the image is blurred step-by-step in a diffusion process but the blurring filter is
applied non-uniformly depending on the local spatial gradients.

126

5.3 Cue Decomposition

We follow the notation of Schmaltz et al. [240] for formulating the underlying PDE. For
the sake of simplicity we restrict the description to gray scale images27. The PDE with
zero valued Neumann boundary conditions and the original image Φ0 as initial value is
given by

∂tΦ = div
(
ḡ(∇Φσ(∇Φσ)T)∇Φ

)
,

Φ(y, x, 0) = Φ0(y, x)
(5.1)

where Φσ := Kσ ∗Φ is a smoothed version of the image Φ achieved by convolving it with
a Gaussian kernel Kσ with standard deviation σ and size k, and the matrix function ḡ
is a so-called diffusivity function. It is chosen in such a way that the resulting diffusion
tensor ḡ(∇Φσ(∇Φσ)T) ∈ R2×2 has one eigenvector which is parallel and the other one
orthogonal to ∇Φσ. The corresponding eigenvalues are given by ḡ(|∇Φσ|2) and 1. As
proposed in [240] we use the Charbonnier diffusivity [34]

ḡ(s2) =
1√

1 + s2

γ2

(5.2)

with some contrast parameter γ > 0 regulating the diffusion across edges. Charbonnier
et al. studied conditions for edge preserving diffusivity functions in [34] and showed
that this function type leads to a well posed problem and is much simpler than other
candidates mentioned in the publication. The diffusion is implemented numerically by
discretizing the diffusion process in space and time [294]. For each time interval a
gradient descent step of the space-discretized quadratic energy model

E(Φ) =
1

2

∫
(∇Φ)Tḡ(∇Φσ(∇Φσ)T)∇Φ dx dy (5.3)

is computed. The space discretization is performed by the non-standard finite differ-
ences described by Weickert et al. [294]. To avoid circular singularities an additional
orientation smoothing, originally applied in the context of coherence enhancing diffu-
sion [292], is incorporated into the EED process as proposed in [93]. This procedure is
iteratively repeated for each discrete time step t until a total amount of T ∈ N time
steps is processed.

For multichannel images, e.g., color images, the edge enhancing diffusion is obtained by
considering a joint diffusivity tensor leading to the PDE

∂tΦ = div

(
ḡ

(
m∑

i=1

∇(Φσ)i(∇(Φσ)i)
T

)
∇Φi

)
(5.4)

as proposed in [293].

27For better readability we use Φ instead of x to represent the input to easily distinguish between the
spatial and temporal components.

127

5 Cooperation Is All You Need?

Figure 5.3: Image diffused by EED (left) and original image (right). The texture is smoothed
along the edges but only slightly across them.

The dataset generated by EED is referenced in the following as SRGB and has reduced
texture, but color and shape are widely preserved. An example of a diffused image is
shown in Figure 5.3. To further reduce the cues, we consider a gray scaled version of
the dataset (shapeEED) and a version where we only keep the pure color components
of the diffused image by removing the V-channel in HSV format (shapeEED HS). The
anisotropic diffusion allows us to create a color preserved shape dataset. Nevertheless,
we need to accept that edges are less marked and even though the overall object shape
is preserved, slight smoothing is observed across the edges. This leads to a minor pixel
offset compared to the semantic segmentation mask.

5.3.3.2 Holistically-Nested Edge Detection

Reducing everything but the object describing edges can be achieved by holistically-
nested edge detection (HED) [302]. The following description is based on the original
publication by Xie and Tu [302]. HED is an object contour detection method based on
fully convolutional networks to learn a dense edge map through an end-to-end training.
The fully convolutional approach is supplemented by a nested multiscale feature learn-
ing in which contours are predicted by side outputs of intermediate layers of different
scales. This concept is inspired by deeply supervised networks [149]. These two core
concepts framed the name components ‘holistic’ and ‘nested’. The first one describes
that an input image is translated entirely to an edge map and thought of as a whole by
the fully convolutional approach. The second component (‘nested’) denotes the progres-
sive refinement steps in which the edge map prediction is done, exploiting the natural
multiscale feature representation in FCNs (cf. Section 2.1.1). In natural images differ-
ent strength of shading and edges are present. Edges do not only define contours and
thereby the shape of objects but also, e.g., the texture by thinner or lighter edges like fur
of an animal. This ambiguity is tackled by learning a hierarchical representation of the
edge maps by side outputs leading to a cascade of nested edge map predictors. Based
on the down sampling structure in FCNs the receptive field enlarges in deeper layers
while simultaneously reducing the size of the feature map by, e.g., pooling operations.
Taking advantage of this multiscale feature representation, early layers side outputs

128

5.3 Cue Decomposition

Figure 5.4: HED (left) and original image (right). The shape defining edges are preserved by
HED whereas the finer texture defining edges are removed.

learn to predict edge maps with local information and therefore fine edges, whereas
later layers side outputs learn more high level edge compositions. HED is realized by
a single stream neural network, a trimmed VGG network [255], where after each of
the 5 remaining stages, i.e., a block of a pooling layer (in all but the first block) and
a couple of convolutional layers with ReLU activation, the layer activation is fed to a
(1× 1)-convolution and upsampled to the original image shape. This enables the com-
parison of the predictions per side output to the ground truth map. As a consequence,
all side output layers can be understood as stand alone (nested) pixel-wise predictors
at a certain scale sharing the same backbone parameters. This leads to a progressive
refinement from local to global in terms of edge information and from fine to coarse in
terms of predicted edge maps. These individual predictions are combined in a fusion
layer. As a consequence, HED allows for coherent contributions of all layers due to an
interpolation of the side outputs in the fusion layer. Training is done with the help of
the sum of weighted cross entropy losses for each side output layer including the final
fusion layer. The weight is set to mitigate the imbalance between edge and non-edge
pixels. For inference the average over all side outputs and the final fusion layer is taken.

HED is a fast contour detection algorithm which allows for more transparency due
to the intermediate representations enforced by deep supervision. The supervision of
the hidden layers motivated in deeply-supervised nets [149] improves optimization and
generalization as well as the transparency of the approach due to natural and intuitive
outputs from the intermediate layers. It is worth noting that no explicit constraints are
imposed on contextual information like neighbor pixel constraints to ensure connectivity
of edges. Furthermore, the authors found that multiscale prediction is crucial for edge
detection and a plain fully convolutional network is most likely not enough to solve the
task properly as the exact pixel location is essential for edge detection. For shape cue
extraction HED is a good choice as the object describing shapes are preserved while
texture is removed [87]. In contrast to the original method we invert the colors to get
black contours on white background. We postulate that the inverted colors might have
a slightly smaller domain gap to real world images. An example of the so generated
shapeHED dataset is visualized in Figure 5.4.

129

5 Cooperation Is All You Need?

(a) basis texture (b) texture removed CARLA city (c) post-processed frame

Figure 5.5: Generation aspects of the textureless dataset based on a texture free world in
CARLA.

5.3.3.3 Texture Removal

With the help of the open source simulator CARLA we are able to generate a world
which is texture free. CARLA claims that online switching between textures is possible
since version 0.9.14. However, this feature is limited to a few instances and therefore
does not fulfill our requirements of a complete texture free world. As a consequence, we
manipulate the property of each material instance by hand. By replacing all surfaces by
volume objects they lose their original texture and are equipped with a basis texture.
This texture is a gray checkerboard as visualized in Figure 5.5a. The sky is not a
meshed object with material and therefore not rendered in the same way as the other
objects. For that reason, we cannot manipulate its texture. By choosing clear noon
as weather and lighting conditions, a minimal amount of clouds is generated. This
leads to a nearly constant texture for the sky and is the best we could get from the
simulation. The manipulated almost texture free world is used for recordings by an
ego vehicle in autopilot mode equipped with a camera and a semantic segmentation
sensor. The recording details are identically to those of the RGB CARLA base dataset
which we introduce in Section 5.5.1. After recording frames in the texture free world,
we post-process the images by gray scaling them to remove the color of the sky. In
the following, we refer to this dataset as textureless respectively shapetextureless or in
short Srmv. An example of a textureless city and a recorded and post-processed frame is
shown in Figures 5.5b and 5.5c. As all objects are equipped with the same basis texture
no information can be drawn from the texture cue and therefore only the shape cue is
preserved in this dataset.

5.3.4 Cue Experts

Based on the cue decomposition, we train neural networks which we call ‘cue experts’
for each cue constellation of gray (V), pure color (HS), texture (T) and shape (S). We
train 14 experts for real world data by including or excluding specific cues such that
all cue combinations are covered. This includes an expert on the original dataset which
consists of all cues as well as a randomly initialized neural network to simulate the

130

5.3 Cue Decomposition

Table 5.1: Overview of cues. The included cues are V = gray component of the color, HS =
hue and saturation component of the color, S = shape and T = texture.

short long name included cues description

O original / all cues V + HS + S + T all cues
OHS original HS HS + S + T all but gray cues
OV original gray V + S + T all but color cues
TRGB texture RGB V + HS + T texture with color; shape removed
THS texture HS HS + T texture with hue and saturation only
T texture V + T texture only; shape and color re-

moved
SRGB shapeEED RGB V + HS + S shape with color via smoothing tex-

ture by edge enhancing diffusion
SHS shapeEED HS HS + S shape with hue and saturation by

edge enhancing diffusion
S shapeEED V + S shape only by gray scaled edge en-

hancing diffusion results
SHED shapeHED V + S shape only via contour map by

holistically-nested edge detection
Srmv shapetextureless V + S shape only via texture removal in the

simulation process
RGB color V + HS complete color component of an

RGB image, pixel-wise
HS HS HS hue and saturation of an RGB image,

pixel-wise
V gray V gray component of an RGB image,

pixel-wise
no info no information no cues/data present

absence of all cues. For data which is generated by a computer simulation where access
to the object materials is granted, we additionally train an expert on shapetextureless

data. In the following experiments, we analyze the cues and cue combinations listed in
Table 5.1. As explained in Section 5.3.1, texture and shape cannot exist without any
color component. Therefore, the texture and shape expert additionally contain the V
cue. Since we consider up to three shape extraction methods, all typify the same cue
combination S and V but are generated by three different methods. For more details
see Section 5.3.3. By training up to 15 different experts, we can analyze the influence of
the cues by comparing their capability of solving a segmentation task. The experts are
evaluated with respect to their performance measured in mIoU (cf. Equation (2.119)).
We further analyze the deviances between nested cue-experts in Section 5.5.10. A scheme
of the method is depicted in Figure 5.6. A visual overview of the different cue datasets
on Cityscapes is visualized in Figure 5.16.

131

5 Cooperation Is All You Need?

gray

pure color

texture

shape

cue expertscues influence analysis

Figure 5.6: A scheme of our analysis method. First, cues are extracted from the dataset. Then
neural networks are trained on each of the cue datasets. The resulting cue experts give insight
into what neural networks can learn from certain cues.

5.4 Late Fusion

For semantic segmentation tasks predictions are made on pixel-level. To analyze the
different cue influences on pixel-level we apply a late fusion approach to the cue experts.
To achieve this, we start by training the experts on the individual cue datasets. Then,
a slim semantic segmentation model is trained on top of the softmax outputs of the
trained cue experts which serves as late fusion model. The objective of the fusion model
is to predict, on a per-pixel basis, which expert is best suited to properly solve the
semantic segmentation task. In more detail, the number of classes Cexp for the fusion
model is set to the number of experts we would like to fuse. This ranges between two and
three experts in our case. Thereby we reduce the redundancy in the cues to a minimum
to be able to clearly distinguish between the source of influence and fit to memory
limitations. Given the concatenated softmax tensors of the experts of an input image
x, the fusion network predicts a probability distribution over the experts in terms of a
softmax output over Cexp classes. To achieve an end-to-end trainable neural network,
we calculate the convex combination of the expert softmaxes weighted by the softmax
output of the fusion network. Since a convex combination of a probability measure is
also a probability measure, we can use this tensor to calculate the loss with respect to
the segmentation mask corresponding to the input image x. The softmax output of the
fusion network can be understood as an attention on the different experts. It allows
us to measure on pixel-level the influence of the different cue experts on the overall
prediction.

5.5 Cue Influence Analysis

To analyze the influence of the different cues and their interplay in semantic segmen-
tation tasks we consider two base datasets. We introduce the datasets in Section 5.5.1
and give details on our implementation and experimental setup in Section 5.5.2 and

132

5.5 Cue Influence Analysis

Section 5.5.3. Thereafter, we report our analysis results on global, class and pixel level.
The influences are measured with the help of a performance-based measure with respect
to the mIoU of the different experts and the difference in deviance of nested experts.

5.5.1 Base Datasets

We evaluate the influences of the cues on two different automotive datasets. First we
consider Cityscapes (CS), a dataset of urban street scenes with 19 different classes. A
detailed description was given in Section 4.4.1.1. Additionally, we generated a dataset
with the help of the open source simulator CARLA version 0.9.14 [59]. CARLA contains
multiple enumerated maps of which we used the towns 1-5 and 7 for data generation.
We chose these maps since they have the same level of detail. An ego vehicle records
in total 5,000 RGB frames per city with corresponding semantic segmentation masks.
Therefore, in each town we randomly spawn vehicles and pedestrians multiple times
while recording every 50-th frame during the drive of the autopilot through the virtual
city. The environmental settings like weather are set to ‘clear noon’. The image res-
olution is set to the same as for Cityscapes, i.e., each frame consists of 2,048 × 1,024
pixels. We consider a reduced number of the CARLA classes to best coincide with the
Cityscapes classes. This results in the 15 classes: road, sidewalk, building, wall, pole,
traffic lights, traffic sign, vegetation, terrain, sky, person, car, truck, bus, guard rail. The
classes ‘bicycle’, ‘rider’ and ‘motorcycle’ are excluded for technical reasons. They could
not be included as these actors were problematic for the autopilot mode in CARLA. To
ensure an independent train and test split we use town 1 and 5 for testing only, whereas
2,3,4 and 7 are used for training. This results in 20,000 training images and 10,000 test
images.

5.5.2 Implementation

In addition to the input data, Hermann et al. studied different sources of cue influences
in [95]. These sources range from network architectures and data augmentation strate-
gies to the training objective. To reduce the influence of non-data sources we fix all
these components where possible during our study. Taking into account that we train
all neural networks on moderately small semantic segmentation datasets from scratch to
ensure only the desired cues are learned, we constrain ourselves to slim models. For all
cue experts, except the color experts, we use deeplabv3 with ResNet18 backbone as CNN
representative (cf. Sections 2.3.1.1 and 2.3.2.2) and a light weight SegFormer-B1 model
as transformer model (cf. Section 2.3.2.3). With 15.9 million parameters for deeplabv3
with ResNet18 backbone and 13.7 million parameters for the SegFormer-B1 model, both
models have a similar capacity with respect to the number of learnable parameters. For
the fusion network we use the deeplabv3 model with an even smaller backbone. We re-
duce the ResNet18 from 4 to 2 blocks. This is to prevent overfitting due to the relatively

133

5 Cooperation Is All You Need?

simple task. We adapt the deeplabv3 model provided by torchvision28 to our need for
reduced CNN backbones. For the transformer we make use of the implementation pro-
vided by the toolbox MMSegmentation [179]. As described in Section 5.3.1, we restrict
the receptive field of the color expert to one pixel which we implemented using an FCN
with composed (1 × 1)-convolutions. The backbone of the resulting color network for
the Cityscapes experiments consists of two (1× 1)-convolutions with 256 channels each
followed by batch normalization and ReLU activations. For the CARLA experiments we
use three (1×1)-convolutional layers. In both setups we add a customized FCN head in
which all convolutions are replaced by (1× 1)-convolutions. In detail, the head consists
of a (1×1)-convolution with 64 channels with batch normalization and ReLU activation
followed by a dropout layer with a probability of p = 0.1 for each weight to be dropped.
Lastly, a (1× 1)-convolution maps the features to the number of classes. We decided to
create a shallower network for Cityscapes as the training dataset is smaller compared to
the CARLA dataset. The objective for this is to prevent overfitting. To ensure that this
does not restrain the color expert, we also trained the version with three layers for the
RGB color expert over 5 runs. We observed a similar performance which only improves
by 0.5% mIoU on average. Since all trainings are fraught with variances, we conclude
that two layers are enough for the color expert on Cityscapes.

Except for the fusion network, all neural networks were trained from scratch on a single
Quadro RTX 8000. We provide details on the fusion training at the end of this para-
graph. We trained all but the transformers for 200 epochs with the Adam optimizer
and poly-linear learning rate decay with an initial learning rate of 0.0005. For the trans-
formers, we kept the default optimizer settings in MMSegmentation. As we trained the
transformer from scratch we enlarged the number of epochs to 400. This translates in
170,000 iterations with a batch size of 7. For Cityscapes, we randomly crop patches of
512 × 512 pixels during training for data augmentation. For the CARLA dataset we
use slightly smaller crop size of 256 × 256. We normalize the inputs using the mean
and standard deviation of the pixel distribution of each specific dataset rather than the
widely used ImageNet mean and standard deviation. The reason for this is the same
as for training from scratch to mitigate the inductive bias from pre-trained models or
normalization parameters. This ensures that training is free from external biases and
that the neural network only learns features of the cue dataset. For the inference of the
transformer, we follow the suggestion of the authors of SegFormer and apply a sliding
window of the same size as the training cropped patches during test time. By inferring
patches of size (512, 512) at a stride of 384, the entire input image is processed.

For splitting the color further into its gray component and its hue and saturation val-
ues, we base our implementation on the color conversion implementation of Ma [166]. It
translates Pytorch tensors to HSV. We extract the HS component by splitting the chan-
nels of the resulting tensor into a two-channel image (HS) and discard the V-channel.

28https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/

deeplabv3.py

134

https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/deeplabv3.py
https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/deeplabv3.py

5.5 Cue Influence Analysis

To remove the color we use the standard RGB to gray color conversion method from
the Image module of Pillow29.

For the anisotropic diffusion we used the empirically determined hyperparameters

• Contrast parameter γ = 1/15

• Gaussian kernel size k = 5 and standard deviation σ =
√
k

• number of steps n = 8,192.

These parameters lead to a significant texture smoothing for both the Cityscapes and
CARLA dataset.

To extract object contours in images, we use the HED implementation from [87]. This
implementation bases on [191], a reimplementation of the original HED using PyTorch.
As only a few contour map datasets are publically available and training or fine-tuning
low-level edge detection highly depends on hyperparameters according to [302], we use
the pre-trained network provided by [191] for generating shapeHED images.

The fusion network was trained from scratch on an A100 80GB to meet the large memory
requirements of the concatenated softmax tensors. In contrast to the experts, the fusion
converges much faster so that we trained it for only 75 epochs. The weights of the fusion
network are initialized randomly according to a uniform distribution on [−10−3, 10−3] to
allow for equal weighting of the influence of the experts’ softmax at training start. To
further improve training stability, we normalize the softmax and use cropping as data
augmentation for the fusion training.

5.5.3 Experimental Setup and Evaluation Metrics

We train 14 (15) experts each on one of the cue specific datasets listed in Table 5.1.
We use the notation from Table 5.1 to refer to the datasets as well as to the experts.
To analyze the influence of cues, we measure the performance of the experts in terms
of mIoU (see Equation (2.119)). Therefore, we evaluate the experts on the Cityscapes
validation dataset in the first experiment or on the CARLA test set in the second
experiment respectively. To ensure input compatibility we evaluate one channel experts,
i.e., all experts considering gray cues which equals (b), (e), (g), (h) in Figure 5.16, on
gray scaled images and two-channel experts, i.e., all HS experts, cf. Figure 5.16 (c),
(f), (i), (k), (l) on images transferred to HSV with a dropped V-channel. With this we
evaluate how accurate the semantic segmentation task can be solved with reduced cues.
Particularly, we study the gap between the oracle performance (mIoU(Dall)) and the
experts trained on datasets with reduced cues (mIoU(Dcue)) using

gapDall
(Dcue) = mIoU(Dall)−mIoU(Dcue). (5.5)

29https://pillow.readthedocs.io/en/stable/index.html

135

https://pillow.readthedocs.io/en/stable/index.html

5 Cooperation Is All You Need?

Comparing the reduced model with the full model reveals the importance or influence
of the removed cues for solving the original semantic segmentation task. The more the
performance drops when removing a cue, the more important is the cue for solving the
task. This is revealed by a large gap. For example, the importance of texture (T) can
be analyzed by looking at the gap of the expert trained on the cues HS and S

Importance(T) = Importance(all \ SHS) = gapDall
(DSHS)

= mIoU(Dall)−mIoU(DSHS).
(5.6)

The performance gap also reveals how important the remaining cues are to solve the
segmentation task. If the gap of a cue constellation is large, i.e., the gap between the
remaining cues of the reduced model and the oracle model, the remaining cues are less
important to solve the segmentation task. We can also analyze the importance of two
orthogonal experts by comparing their gaps to the expert which includes both cues. For
texture and shape we define

gapDOV
(DT,DS) = gapDOV

(DT)− gapDOV
(DS)

=
(
mIoU(DOV)−mIoU(DT)

)
−
(
mIoU(DOV)−mIoU(DS)

) (5.7)

We trained each expert for the Cityscapes experiments with 5 different seeds and report
the mean performance and its standard deviation by averaging over the 5 runs and cal-
culating the empirical standard deviation with Bessel’s correction. For CARLA due to
the larger dataset and thus longer training times we use 3 different seeds for mean and
standard deviation calculation to reduce computational effort. The resulting mIoU per-
formances and the performance gaps according to Equation (5.5) for the convolutional
neural network are shown in Table 5.2 for Cityscapes and in Table 5.3 for our exper-
iments on the CARLA dataset. The results for the transformer model on Cityscapes
are listed in Table 5.8. For a lower bound reference, we also compute for all network
architectures the performance of a freshly initialized network which has not seen any
cues or data for 5 seeds. We observe that a freshly initialized neural network does not
exceed a performance of 1% mIoU on average for deeplabv3 with ResNet18 backbone
and is below 1.5% mIoU for the FCN with (1 × 1)-convolutions. The SegFormer-B1
model for the Cityscapes setup achieves 0.328% mIoU on average when no information
is given.

5.5.4 Cityscapes Experiments

The expert performances of the different cue constellations are summarized in Table 5.2.
Firstly, our experiments confirm that the cue importance for a CNN follows the expected
ordering of the form:

color related cues only < texture or shape cues < all but color cues < all cues.

136

5.5 Cue Influence Analysis

Table 5.2: Cue influence in terms of mIoU performance drop on Cityscapes. Cue description
follows the listing in Table 5.1 except that original is denoted by the dataset, i.e., Cityscapes.

Color Texture Shape mIoU CS val gapDall

V HS (↑) (↓)
no information 0.25± 0.35 64.97

gray X 6.39± 0.04 58.83
HS X 9.33± 0.18 55.89

color X X 11.31± 0.52 53.91

shapeHED X X 13.38± 2.00 51.84
texture X X 17.85± 1.30 47.37

shapeEED HS X X 19.48± 3.19 45.74
texture RGB X X X 20.10± 0.98 45.12
texture HS X X 20.63± 1.41 44.59
shapeEED X X 27.86± 3.17 37.36

shapeEED RGB X X X 42.22± 2.13 23.00

Cityscapes HS X X X 59.89± 0.74 5.33
Cityscapes gray X X X 64.21± 0.60 1.01

all cues X X X X 65.22± 0.47 0.00

Furthermore, our experiments show that neural networks can draw the most information
from an image if all cues are present. This is hardly surprising, as the neural network
can extract features from all cues and learn cue correlations. On the other hand, the
pure color component (HS cue) does not have a significant influence if all other cues are
present (cf. gapDall

(DCityscapes gray)). More interestingly, we observe that color cues alone
enable a non-negligible gain in performance compared to an uninformed neural network.
Although the performance of 11.31% mIoU is barely enough for a clear understanding
of the scene, the classes road, vegetation and sky are well predicted and rarely confused
as shown in Figure 5.7.

In the following, we have a closer look at the texture and shape cues and review their
interference on the color cue and its components. The experiments reveal that when
adding the gray cue to ‘texture HS’, which equals the ‘texture RGB’-expert, the per-
formance is identical within the variance range of the training. We observe that the
gray shading is less important for texture than information encoded in the pure color
component. On the other hand, when adding the hue and saturation to ‘texture’, the
performance rises only by 2.25 pp. We conclude that color has no significant influence
on texture cues in a real world German street scene segmentation. In contrast, we
observe more differences in performance for the shape cue constellations. The results
reveal that pure color seems to be less relevant for the shape expert when solving the
Cityscapes segmentation task. Nevertheless, the combination of all color components

137

5 Cooperation Is All You Need?

ro
ad

si
d

ew
al

k

b
u

ild
in

g

w
al

l

fe
n

ce

p
ol

e

tr
affi

c
lig

ht

tr
affi

c
si

gn

ve
ge

ta
ti

on

te
rr

ai
n

sk
y

p
er

so
n

ri
d

er ca
r

tr
u

ck

b
u

s

tr
ai

n

m
ot

or
cy

cl
e

b
ic

yc
le

Predicted label

road

sidewalk

building

wall

fence

pole

traffic light

traffic sign

vegetation

terrain

sky

person

rider

car

truck

bus

train

motorcycle

bicycle

T
ru

e
la

b
el

0.77 0.0 0.09 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.01 0.0 0.0 0.11 0.0 0.0 0.0 0.0 0.0

0.66 0.0 0.18 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.01 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0

0.29 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.08 0.0 0.12 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0

0.34 0.0 0.26 0.0 0.0 0.0 0.0 0.0 0.12 0.0 0.01 0.0 0.0 0.27 0.0 0.0 0.0 0.0 0.0

0.35 0.0 0.27 0.0 0.0 0.0 0.0 0.0 0.14 0.0 0.06 0.0 0.0 0.18 0.0 0.0 0.0 0.0 0.0

0.42 0.0 0.19 0.0 0.0 0.0 0.0 0.0 0.08 0.0 0.05 0.0 0.0 0.26 0.0 0.0 0.0 0.0 0.0

0.18 0.0 0.14 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.03 0.0 0.0 0.45 0.0 0.0 0.0 0.0 0.0

0.24 0.0 0.22 0.0 0.0 0.0 0.0 0.07 0.08 0.0 0.09 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0

0.06 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.71 0.0 0.02 0.0 0.0 0.11 0.0 0.0 0.0 0.0 0.0

0.17 0.0 0.15 0.0 0.0 0.0 0.0 0.0 0.63 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.99 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0

0.19 0.0 0.32 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.04 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0

0.17 0.0 0.27 0.0 0.0 0.0 0.0 0.0 0.08 0.0 0.04 0.0 0.0 0.44 0.0 0.0 0.0 0.0 0.0

0.25 0.0 0.12 0.0 0.0 0.0 0.0 0.01 0.09 0.0 0.09 0.0 0.0 0.44 0.0 0.0 0.0 0.0 0.0

0.18 0.0 0.17 0.0 0.0 0.0 0.0 0.0 0.08 0.0 0.21 0.0 0.0 0.37 0.0 0.0 0.0 0.0 0.0

0.25 0.0 0.19 0.0 0.0 0.0 0.0 0.01 0.1 0.0 0.04 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0

0.19 0.0 0.21 0.0 0.0 0.0 0.0 0.0 0.08 0.0 0.06 0.0 0.0 0.46 0.0 0.0 0.0 0.0 0.0

0.18 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.18 0.0 0.02 0.0 0.0 0.41 0.0 0.0 0.0 0.0 0.0

0.33 0.0 0.18 0.0 0.0 0.0 0.0 0.0 0.19 0.0 0.01 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0

0.0

0.2

0.4

0.6

0.8

Figure 5.7: Confusion matrix of the RGB color expert. The true labels are displayed on the
y-axis whereas the predictions from the color expert are plotted on the x-axis. The diagonal
shows the percentage in [0, 1] of the correctly predicted pixels. The class sky is nearly always
correctly predicted. The vegetation class is mostly confused with the terrain class which are
similar in color. The same can be observed for the classes road and sidewalk.

and the shape cue shows a distinct improvement in performance. This can be seen by
looking at ‘shapeEED RGB’ and comparing the relative performance drops when remov-
ing the gray component in contrast to removing the pure color component HS

gapDSRGB
(DSHS,DS) =

(
mIoU(DSRGB)−mIoU(DSHS)

)
−
(
mIoU(DSRGB)−mIoU(DS)

)
.

We observe that the performance drops by 22.74 pp when the gray component is removed
whereas performance drops only by 14.36 pp when removing the HS component. That
the information encoded in the gray channel is more important than pure color for shape
might be explained by the shape properties. Shape can be defined by edge compositions
and those again are defined by large image gradients. Gradients occur when the intensity
or color in an image changes directionally. It seems that a change in color has less
influence than intensity changes in the Cityscapes setup. One reason for this observation
might be that segment boundaries are more important than other edges. Therefore,
color changes such as in traffic signs or colorful clothing might have been learned to be
ignored. However, the combination of gray shading and a change in saturation and/or
hue improves the shape experts’ ability to correctly predict segments in Cityscapes. The
finding that the composition of shape with all color components achieves a much higher
performance suggests that there are correlations which cannot be learned by one of the
standalone cue experts.

138

5.5 Cue Influence Analysis

Table 5.3: Cue influence in terms of mIoU performance (drop) on the CARLA test dataset.
The table is ordered ascending in terms of mIoU performance. The last column depicts if
experts dropped positions in the table (↘) or raised positions (↗) compared to the ordering
observed for the Cityscapes experts (cf. Table 5.2). Due to the ascending order, dropping in
the table equals a better mIoU performance compared to other experts.

Color T S mIoU test gapDall
table position

V HS (↑) (↓) change

no information 0.38± 0.44 75.27 →
gray X 6.01± 0.10 69.64 →

shapeHED X X 11.35± 0.65 64.30 ↗
HS X 14.70± 0.18 60.95 →

color X X 15.60± 0.56 60.05 →
shapetextureless X X 26.96± 2.00 48.69

shapeEED X X 37.10± 2.13 38.55 ↗
shapeEED HS X X 44.97± 0.93 30.68 →

texture X X 46.07± 3.34 29.58 ↘
texture HS X X 52.38± 1.65 23.27 →

texture RGB X X X 56.51± 1.75 19.14 ↘
shapeEED RGB X X X 61.47± 1.26 14.18 →

CARLA HS X X X 71.02± 0.93 4.63 →
all cues X X X X 75.65± 1.80 0.0 ↗

CARLA gray X X X 75.73± 1.07 −0.08 ↘

5.5.5 CARLA Experiments

In addition to the Cityscapes experiments, we also applied our analysis method to
the self-generated CARLA dataset introduced in Section 5.5.1. For CARLA, we see
a slightly different ordering of the experts’ performances and performance gaps which
are presented in Table 5.3. Performance changes leading to a rearrangement in the
expert’s order are noted with ↘ and ↗ in the right-most column. The table shows
that in contrast to the Cityscapes experiments the performances of the texture experts
improve whereas two shape experts can draw less information from CARLA data to
solve the segmentation task. One reason for this might be the limited variety of texture
and shape that occur in a simulation. Due to the finite number of assets rendered in
CARLA, the diversity of appearance of objects to be segmented is smaller compared
to naturally appearing objects and scenes. Except for the combination with the full
color cue, texture experts solve the segmentation task better in terms of mIoU than
their shape counterparts with the same color cue component present (compare, the
performance of e.g., shapeEED and texture). There are two possible reasons for this: On
the one hand we postulate that the shape of objects is somewhat more diverse as objects

139

5 Cooperation Is All You Need?

Trees in the textureless world Full rendered trees in CARLA

Figure 5.8: Comparison of textureless (left) and full (right) rendering in CARLA for tree
structures. Removing the texture reveals that the shape of the leaves is encoded by the
texture instead of shape of the objects itself.

are viewed at different distances and view angles, which could explain the gap between
texture and shape experts. On the other hand texture experts tend to specialize in a few
classes rather than being a general segmentation model. This hypothesis is discussed in
more detail in Section 5.5.7. In addition, we see that the texture as well as the shape
experts benefit from more and more color cue components. Particularly, shapeEED RGB
improves distinctly compared to shapeEED where the pure color is removed. However,
in line with the Cityscapes experiments the pure color components are less important
to solve the segmentation task, if shape and texture are present as demonstrated in the
last two rows in Table 5.3.

CARLA allows us to examine a completely ‘textureless’ world as we control the rendering
process (cf. Section 5.3.3.3). Removing the texture completely enables us to compare
the shape extraction methods for their suitability as generators for shape cue datasets.
The textureless expert cannot learn from the texture in simulated images as all texture
was replaced by a default layer. Even though it could be argued that there is a kind of
texture on the objects, it is the same for all visual parts and therefore not discriminative.
The textureless world demonstrates that texture can also have an influence on the shape
of objects. An example is the rendering of leaves on trees. Leaf structures are generated
with the help of transparent areas in the texture pattern. After removing the texture,
only rectangular plates remain as the crown of the tree, which can hardly be perceived
as realistic foliage. The examples in Figure 5.8 show that cues come with different
peculiarities and interfere with each other. The consequence is that we encounter a
more or less drastic domain shift when disentangling image cues.

5.5.6 Domain Shift Due to Cue Reduction

As experts are trained on a specific cue dataset but evaluated on the original dataset,
our evaluation is subject to domain shift. The domain shift is differently pronounced

140

5.5 Cue Influence Analysis

Table 5.4: Shape cue influence in terms of mIoU performance when evaluated in-domain, i.e.,
the validation dataset is transformed in the same way as the training dataset of the experts
during evaluation. The table is sorted according to the performances on the original Cityscapes
validation set (cf. Table 5.2). The best performance is highlighted in bold and the second best
is underlined.

mIoU Cityscapes val in-domain mIoU CARLA test in-domain
(↑) (↑)

shapeHED 55.80± 0.59 63.33± 1.11
shapeEED HS 45.89± 0.51 61.67± 1.90

shapeEED 45.02± 0.51 60.73± 2.70
shapeEED RGB 48.47± 0.45 65.93± 0.72
shapetextureless - 62.03± 1.51

for different experts. However, this domain shift cannot be mitigated for the texture
cue as we always need to at least relax the segment boundaries during training to avoid
shape learning. Nevertheless, all shape cue extraction approaches can be understood as
online methods. This means that we can apply them to a single input image without
disturbing the semantic segments and therefore the actual semantic segmentation task.
To allow for a fair comparison, the texture as well as the shape experts were evaluated
on the base dataset and therefore faced the domain shift in the evaluation in Table 5.2.
In the following, we review the shape cue for which we can surpass the domain gap.
Therefore, we use the Cityscapes validation set as input for the shape experts but apply
the corresponding shape cue extraction method to it before feeding the input to the
expert. To distinguish the two performances, we call the performance based on the
online evaluation process ‘in-domain performance’. We compare the performances of
shapeEED, shapeHED, shapeEED HS and shapeEED RGB in Table 5.4. The second col-
umn represents the in-domain performance results on the CARLA dataset where we
additionally examine shape by omitting texture creation (shapetextureless) with the help
of the renderer. The rows in Table 5.4 are sorted according to the Cityscapes valida-
tion set performances from Table 5.2 to show the change in performance. We highlight
the best in-domain performance in bold and the second-best performance is underlined.
Firstly, the table suggests that the experts are aligned with the textureless base model.
However, the results reveal that shapeHED outperforms shapeEED when not facing a do-
main gap. We speculate that this is due to the different approaches to extract the shape
cue from the image. HED and textureless are both used for texture removal whereas
anisotropic diffusion aims to reduce texture by blurring. Texture removal seems to lead
to more significant features for the semantic segmentation task. In order to achieve a
similar performance with anisotropic diffusion, color is required as an additional cue.
Particularly, shapeHED outperforms shapeEED RGB on Cityscapes and is nearly on par
on CARLA despite the fact that an additional cue is present for shapeEED RGB. This
suggests that less discriminative information is encoded in texture smoothed patterns

141

5 Cooperation Is All You Need?

than in edge maps. Another aspect could be that anisotropic diffusion even though it
aims to blur along edges and not across them, edges are still slightly smoothed such
that a pixel accurate prediction is more difficult. Nevertheless, as it suffers less from the
domain shift and allows for shape-color cue combinations, it is a valuable shape expert.

5.5.7 Influence on Class Level

In contrast to other approaches our method allows for a class-wise investigation on what
can be learned from a specific image cue on pixel-level. We already noted that color
is enough to learn to distinguish segments of road, vegetation and sky. The classes
building and car are also predicted by an expert only trained on the color cue but are
more confused with other classes (cf. Figure 5.7). Furthermore, we analyze whether
specific classes are learned better by shape or texture cues. Therefore, we compare
the performances of comparable texture and shape experts class-wise in Table 5.5 and
Table 5.6 for Cityscapes and in Table 5.7 for the CARLA dataset. Having the domain
gap in mind, we select training runs, with most similar mIoU performance in order to
avoid a general performance bias towards one of the experts. To further account for
the bias in terms of pixel count per class, we sorted the results in descending order
starting with the class road which on average covers most of the pixels in an image
in the base datasets. The results show that the class vegetation and terrain seem to
have texture discriminative features, whereas pole and person are discriminative for
both shape models (EED and HED). It is noticeable that the runs of the experts do
not perform equally well on the same classes which is explainable by the fact that the
optimizer might end in different local minima when starting with different seeds. This
can be seen for example when comparing the classes terrain and fence for the second
and third seed. The performance of these two classes are flipped so that the two runs
result in the same mean IoU performance. With this in mind we interpret our result
in the way that the noted classes are more likely to be exploitable by e.g., shape cues
and some by texture cues. For this study, shape is said to outperform the texture cues
if both shape cue experts show at least 7 pp performance gain. As already seen in the
in-domain performance comparison (cf. Table 5.4) the shape experts do not necessarily
perform equally well on the task. For example for the class vegetation, we see a distinct
gap between the two shape experts. The expert shapeEED yields improvable results on
this class whereas shapeHED is nearly on par with at least one of the texture experts.
This might rise from the fact that the latter ones specialize on a few classes. In general,
we see a more diverse class prediction capability for the shapeEED expert. All but
this model specialize on a few classes. Figure 5.9 provides insight into the resulting
false positive predictions or confused classes. We conclude that shape cues based on
texture smoothing are representative for all classes in semantic segmentation tasks but
not strong enough as a single cue. In contrast, models trained on texture cues focus on
a few specific, texture dominated, objects.

142

5.5 Cue Influence Analysis
ro

ad

si
d

ew
al

k

b
u

ild
in

g

w
al

l

fe
n

ce

p
ol

e

tr
affi

c
lig

ht

tr
affi

c
si

gn

ve
ge

ta
ti

on

te
rr

ai
n

sk
y

p
er

so
n

ri
d

er ca
r

tr
u

ck

b
u

s

tr
ai

n

m
ot

or
cy

cl
e

b
ic

yc
le

Predicted label

road

sidewalk

building

wall

fence

pole

traffic light

traffic sign

vegetation

terrain

sky

person

rider

car

truck

bus

train

motorcycle

bicycle

T
ru

e
la

b
el

0.91 0.02 0.0 0.01 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.33 0.39 0.0 0.03 0.23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01

0.0 0.0 0.52 0.09 0.34 0.01 0.0 0.01 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01

0.13 0.01 0.02 0.2 0.61 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01

0.01 0.0 0.02 0.06 0.88 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01

0.01 0.01 0.09 0.03 0.5 0.29 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03

0.0 0.0 0.15 0.02 0.47 0.04 0.19 0.02 0.11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.01 0.0 0.16 0.05 0.44 0.03 0.01 0.23 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01

0.01 0.0 0.02 0.04 0.71 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01

0.25 0.18 0.0 0.04 0.49 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02

0.01 0.0 0.12 0.05 0.15 0.0 0.0 0.0 0.02 0.0 0.65 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.04 0.01 0.05 0.02 0.39 0.01 0.0 0.01 0.02 0.0 0.0 0.19 0.04 0.01 0.0 0.0 0.0 0.0 0.21

0.02 0.0 0.03 0.02 0.34 0.0 0.0 0.0 0.01 0.0 0.0 0.05 0.14 0.01 0.0 0.0 0.0 0.0 0.36

0.05 0.0 0.01 0.03 0.49 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.33 0.01 0.0 0.0 0.0 0.06

0.03 0.0 0.14 0.08 0.46 0.01 0.0 0.02 0.03 0.0 0.04 0.0 0.0 0.05 0.11 0.02 0.0 0.0 0.01

0.01 0.0 0.06 0.07 0.61 0.01 0.0 0.03 0.02 0.0 0.0 0.0 0.0 0.05 0.03 0.1 0.01 0.0 0.0

0.0 0.0 0.14 0.04 0.66 0.01 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.01 0.02 0.02 0.07 0.0 0.0

0.02 0.0 0.07 0.0 0.29 0.0 0.0 0.0 0.01 0.0 0.0 0.01 0.01 0.02 0.0 0.0 0.0 0.04 0.51

0.04 0.01 0.01 0.0 0.24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.69

0.0

0.2

0.4

0.6

0.8

(a) shapeEED

ro
ad

si
d

ew
al

k

b
u

ild
in

g

w
al

l

fe
n

ce

p
ol

e

tr
affi

c
lig

ht

tr
affi

c
si

gn

ve
ge

ta
ti

on

te
rr

ai
n

sk
y

p
er

so
n

ri
d

er ca
r

tr
u

ck

b
u

s

tr
ai

n

m
ot

or
cy

cl
e

b
ic

yc
le

Predicted label

road

sidewalk

building

wall

fence

pole

traffic light

traffic sign

vegetation

terrain

sky

person

rider

car

truck

bus

train

motorcycle

bicycle

T
ru

e
la

b
el

0.89 0.02 0.04 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0

0.31 0.22 0.34 0.0 0.02 0.0 0.0 0.0 0.03 0.01 0.0 0.0 0.0 0.04 0.01 0.01 0.0 0.0 0.0

0.0 0.0 0.91 0.0 0.01 0.0 0.0 0.0 0.06 0.0 0.0 0.0 0.0 0.01 0.01 0.0 0.0 0.0 0.0

0.12 0.02 0.44 0.02 0.04 0.0 0.0 0.0 0.29 0.01 0.0 0.0 0.0 0.02 0.02 0.0 0.0 0.0 0.0

0.01 0.0 0.6 0.0 0.22 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.01 0.04 0.01 0.0 0.0 0.0

0.01 0.01 0.67 0.0 0.04 0.0 0.0 0.0 0.22 0.0 0.0 0.0 0.0 0.02 0.02 0.01 0.0 0.0 0.0

0.0 0.0 0.64 0.0 0.01 0.0 0.0 0.0 0.31 0.0 0.0 0.0 0.0 0.01 0.02 0.01 0.0 0.0 0.0

0.02 0.0 0.66 0.0 0.03 0.0 0.0 0.02 0.2 0.0 0.0 0.0 0.0 0.02 0.03 0.03 0.0 0.0 0.0

0.01 0.0 0.21 0.0 0.01 0.0 0.0 0.0 0.75 0.0 0.0 0.0 0.0 0.01 0.01 0.0 0.0 0.0 0.0

0.28 0.03 0.22 0.0 0.02 0.0 0.0 0.0 0.27 0.11 0.0 0.0 0.0 0.04 0.01 0.01 0.0 0.0 0.0

0.0 0.0 0.48 0.0 0.01 0.0 0.0 0.0 0.15 0.0 0.34 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.06 0.01 0.58 0.0 0.02 0.0 0.0 0.0 0.09 0.0 0.0 0.03 0.0 0.11 0.1 0.01 0.0 0.0 0.0

0.02 0.0 0.49 0.0 0.03 0.0 0.0 0.0 0.17 0.0 0.0 0.01 0.0 0.1 0.13 0.01 0.0 0.0 0.02

0.04 0.0 0.19 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.0 0.0 0.66 0.05 0.02 0.0 0.0 0.0

0.01 0.0 0.26 0.0 0.0 0.0 0.0 0.0 0.08 0.0 0.1 0.0 0.0 0.19 0.35 0.0 0.0 0.0 0.0

0.06 0.0 0.24 0.0 0.01 0.0 0.0 0.0 0.12 0.0 0.0 0.0 0.0 0.07 0.05 0.43 0.01 0.0 0.0

0.04 0.0 0.62 0.0 0.05 0.0 0.0 0.0 0.06 0.0 0.0 0.0 0.0 0.01 0.01 0.16 0.05 0.0 0.0

0.08 0.0 0.37 0.0 0.05 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.28 0.14 0.0 0.0 0.0 0.03

0.08 0.01 0.47 0.0 0.05 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.1 0.07 0.01 0.01 0.0 0.14

0.0

0.2

0.4

0.6

0.8

(b) texture 1st seed

ro
ad

si
d

ew
al

k

b
u

ild
in

g

w
al

l

fe
n

ce

p
ol

e

tr
affi

c
lig

ht

tr
affi

c
si

gn

ve
ge

ta
ti

on

te
rr

ai
n

sk
y

p
er

so
n

ri
d

er ca
r

tr
u

ck

b
u

s

tr
ai

n

m
ot

or
cy

cl
e

b
ic

yc
le

Predicted label

road

sidewalk

building

wall

fence

pole

traffic light

traffic sign

vegetation

terrain

sky

person

rider

car

truck

bus

train

motorcycle

bicycle

T
ru

e
la

b
el

0.91 0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.59 0.22 0.01 0.0 0.03 0.0 0.0 0.0 0.05 0.09 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0

0.08 0.01 0.63 0.01 0.1 0.01 0.0 0.0 0.1 0.02 0.02 0.01 0.0 0.01 0.0 0.0 0.0 0.0 0.0

0.35 0.05 0.07 0.01 0.11 0.0 0.0 0.0 0.3 0.07 0.0 0.01 0.0 0.02 0.0 0.0 0.0 0.0 0.0

0.11 0.04 0.21 0.01 0.41 0.01 0.0 0.0 0.1 0.03 0.0 0.03 0.0 0.03 0.0 0.0 0.0 0.0 0.0

0.12 0.02 0.2 0.01 0.14 0.22 0.0 0.0 0.2 0.02 0.01 0.03 0.0 0.02 0.0 0.0 0.0 0.0 0.0

0.07 0.01 0.37 0.0 0.09 0.05 0.02 0.02 0.27 0.01 0.04 0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.07 0.01 0.38 0.0 0.19 0.02 0.0 0.03 0.17 0.02 0.01 0.04 0.0 0.03 0.0 0.0 0.0 0.0 0.01

0.07 0.01 0.11 0.0 0.03 0.0 0.0 0.0 0.65 0.01 0.06 0.02 0.0 0.01 0.0 0.0 0.0 0.0 0.0

0.48 0.17 0.01 0.0 0.05 0.0 0.0 0.0 0.14 0.14 0.0 0.01 0.0 0.01 0.0 0.0 0.0 0.0 0.0

0.01 0.0 0.18 0.0 0.04 0.0 0.0 0.0 0.57 0.0 0.18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.2 0.01 0.09 0.0 0.13 0.0 0.0 0.0 0.19 0.02 0.0 0.26 0.0 0.05 0.0 0.0 0.0 0.0 0.02

0.19 0.01 0.06 0.0 0.08 0.0 0.0 0.0 0.19 0.02 0.0 0.28 0.02 0.08 0.0 0.0 0.0 0.0 0.08

0.29 0.02 0.02 0.0 0.08 0.0 0.0 0.0 0.07 0.02 0.0 0.03 0.0 0.45 0.0 0.0 0.0 0.0 0.01

0.17 0.02 0.26 0.01 0.1 0.01 0.0 0.0 0.17 0.02 0.03 0.04 0.0 0.15 0.0 0.01 0.0 0.0 0.0

0.16 0.03 0.23 0.02 0.13 0.01 0.0 0.0 0.14 0.02 0.0 0.05 0.0 0.21 0.0 0.01 0.0 0.0 0.0

0.08 0.04 0.43 0.01 0.2 0.02 0.0 0.0 0.08 0.03 0.01 0.03 0.0 0.06 0.0 0.0 0.0 0.0 0.0

0.3 0.02 0.03 0.0 0.13 0.0 0.0 0.0 0.11 0.02 0.0 0.22 0.0 0.06 0.0 0.0 0.0 0.01 0.1

0.2 0.02 0.02 0.0 0.12 0.0 0.0 0.0 0.1 0.03 0.0 0.18 0.0 0.03 0.0 0.0 0.0 0.0 0.29

0.0

0.2

0.4

0.6

0.8

(c) shapeHED

ro
ad

si
d

ew
al

k

b
u

ild
in

g

w
al

l

fe
n

ce

p
ol

e

tr
affi

c
lig

ht

tr
affi

c
si

gn

ve
ge

ta
ti

on

te
rr

ai
n

sk
y

p
er

so
n

ri
d

er ca
r

tr
u

ck

b
u

s

tr
ai

n

m
ot

or
cy

cl
e

b
ic

yc
le

Predicted label

road

sidewalk

building

wall

fence

pole

traffic light

traffic sign

vegetation

terrain

sky

person

rider

car

truck

bus

train

motorcycle

bicycle

T
ru

e
la

b
el

0.87 0.01 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.01 0.0 0.0 0.06 0.0 0.0 0.0 0.0 0.0

0.33 0.15 0.27 0.0 0.02 0.0 0.0 0.0 0.01 0.02 0.02 0.0 0.0 0.16 0.0 0.0 0.02 0.0 0.0

0.0 0.0 0.94 0.0 0.01 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.02 0.0 0.0

0.11 0.0 0.49 0.03 0.04 0.0 0.0 0.0 0.15 0.01 0.01 0.0 0.0 0.1 0.0 0.0 0.05 0.0 0.0

0.01 0.0 0.62 0.0 0.23 0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.04 0.0 0.0

0.01 0.0 0.74 0.0 0.06 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.02 0.0 0.0

0.0 0.0 0.78 0.0 0.05 0.0 0.0 0.0 0.16 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0

0.01 0.0 0.76 0.0 0.05 0.0 0.0 0.02 0.1 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.01 0.0 0.0

0.01 0.0 0.35 0.0 0.09 0.0 0.0 0.0 0.52 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0

0.18 0.01 0.25 0.0 0.07 0.0 0.0 0.0 0.13 0.2 0.0 0.0 0.0 0.14 0.0 0.0 0.01 0.0 0.0

0.0 0.0 0.7 0.0 0.04 0.0 0.0 0.0 0.07 0.0 0.18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.03 0.0 0.69 0.0 0.02 0.0 0.0 0.0 0.03 0.0 0.0 0.02 0.0 0.2 0.01 0.0 0.0 0.0 0.0

0.01 0.0 0.66 0.0 0.02 0.0 0.0 0.0 0.06 0.0 0.0 0.0 0.0 0.22 0.0 0.0 0.0 0.0 0.02

0.02 0.0 0.18 0.0 0.01 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.78 0.0 0.0 0.01 0.0 0.0

0.01 0.0 0.47 0.0 0.01 0.0 0.0 0.0 0.01 0.0 0.04 0.0 0.0 0.41 0.04 0.02 0.0 0.0 0.0

0.02 0.0 0.39 0.0 0.03 0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.39 0.0 0.11 0.02 0.0 0.0

0.01 0.0 0.59 0.0 0.13 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.13 0.0 0.0 0.13 0.0 0.0

0.02 0.0 0.43 0.0 0.03 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.45 0.0 0.0 0.0 0.0 0.05

0.02 0.0 0.49 0.0 0.03 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.27 0.0 0.0 0.01 0.0 0.16

0.0

0.2

0.4

0.6

0.8

(d) texture 2nd seed

Figure 5.9: Confusion matrices of shape and texture experts.

143

5 Cooperation Is All You Need?

Table 5.5: Class-wise comparison of shape and texture importance on the Cityscapes semantic
segmentation task. The table is sorted in descending order according to the average number
of pixel per class in an image. Expert runs with similar mIoU results are compared. Green
(purple) highlights classes which are distinctly better (> 10 pp) predicted by shape cue (texture
cue) experts. Lighter color highlights results of more than 7 pp performance difference.

class shapeEED

texture
1st seed

shapeHED

texture
2nd seed

texture
3rd seed

road 84.44 82.97 72.72 81.26 78.89
building 48.98 55.21 53.34 53.28 52.75

vegetation 19.34 61.81 47.05 48.76 63.03
car 32.62 50.02 39.58 43.93 36.85

sidewalk 32.14 18.46 14.68 13.3 8.08
sky 63.63 32.59 12.07 15.11 21.68

pole 22.78 0.11 16.96 0.06 0.13
person 18.32 2.63 13.53 1.50 0.99
terrain 0.20 8.91 3.92 13.41 5.78

fence 2.34 11.13 6.21 5.86 13.96
wall 3.22 2.27 0.81 2.94 1.73

traffic sign 17.60 1.81 3.28 2.01 4.15
bicycle 24.92 13.32 23.85 14.55 21.68

truck 8.58 7.11 0.0 3.28 2.7
bus 9.46 20.26 1.04 9.28 5.0

train 6.56 2.28 0.24 1.52 0.55
traffic light 16.16 0.24 1.9 0.0 1.13

rider 10.22 0.0 1.58 0.0 0.04
motorcycle 3.82 0.0 0.55 0.0 0.76

mIoU 22.39 19.53 16.49 16.32 16.84

If we consider texture or shape where the hue and saturation cue is present but the gray
component is missing, we get slightly different results as reported in Table 5.6. It is
striking that the class bicycle which was better classified by shape experts in the absence
of the pure color cue is notably better predicted by the texture expert when only the
pure color components for texture and shape are present. The opposite class switching
can be observed for the class bus which has more discriminative texture features for
grayscale texture experts but shape cues are more descriptive when only the pure color
components are present.

For the CARLA dataset it is more difficult to find pairs which differ in only one cue but
whose mIoU performances are in a similar range. Texture RGB and shapeEED RGB are
the closest pair only differing in shape and texture but not in an additional cue as both
have access to the complete color cue. We compare their performances in Table 5.7. Even

144

5.5 Cue Influence Analysis

Table 5.6: Class-wise comparison of shape and texture importance with hue and saturation
cue instead of gray component on the Cityscapes semantic segmentation task. Changes are
denoted in the last column. The table is sorted in descending order according to the average
number of pixel per class in an image. Rows highlighted in vibrant colors differ at least by
13.5 pp in IoU. Green corresponds to shape and purple to texture domination respectively.
Lighter colors show classes with performance gaps between 9 and 13.5 pp.

class IoU of shapeEED HS IoU of texture HS expert switch

road 85.05 81.03
building 47.92 61.66

vegetation 27.53 64.94 ==
car 42.57 52.33

sidewalk 37.22 02.35
sky 64.55 47.73

pole 15.34 0.00 ==
person 20.71 25.51
terrain 07.76 20.09

fence 03.58 15.69
wall 02.87 2.96

traffic sign 26.39 8.05
bicycle 5.27 26.06 yy

truck 10.69 4.88
bus 18.97 6.75 xx

train 01.68 3.80
traffic light 10.03 0.79

rider 00.11 0.20
motorcycle 00.18 0.33

mIoU 22.55 22.73

though the overall texture performance is slightly less, road and guardrail are remarkably
better predicted by the texture expert. As in the Cityscapes experiments, the classes
pole30 and person have more shape discriminative features. Against our expectations,
the classes terrain and vegetation are better classified by the shape expert. When looking
additionally at the confusion matrix which is shown in Figure 5.10 we notice that the
classes road and sidewalk can be easily distinguished by a texture expert but are confused
by the shape expert. On the contrary, the texture expert has difficulties distinguishing
terrain and vegetation. They seem to have a badly distinguishable texture but quite
discriminative shape. The visual inspection of the experts reveals that the shape expert
has an acceptable boundary segmentation but fails on the semantic for particular classes.
Examples are visualized in Figure 5.11. The texture expert fails at predicting accurate

30Keep in mind the problematic of generating the texture of the class pole (cf. Section 5.3.2).

145

5 Cooperation Is All You Need?

Table 5.7: Class-wise comparison of shape and texture importance with color cue on the
CARLA semantic segmentation task with 15 classes. The table is sorted in descending order
according to the average number of pixel per class in an image. Rows highlighted in vibrant
colors differ by at least 19.5 pp in IoU. We rose this threshold as the overall mIoU is higher for
CARLA due to the reduced number of classes. Rows in green show classes which are distinctly
better predicted by shape cue experts whereas purple rows depict classes where the texture
experts dominate the performance. Lighter colors show classes with performance gaps between
15.5 and 19.5 pp.

class IoU of shapeEED RGB IoU of texture RGB

road 70.02 89.80
sky 67.21 83.17

vegetation 90.19 71.50
building 65.82 75.38
sidewalk 61.66 71.84

car 75.00 65.40
pole 55.10 03.19
wall 27.21 44.13

terrain 81.09 38.36
guard rail 22.55 45.35

bus 77.60 84.64
truck 57.78 67.92

person 52.41 31.96
traffic lights 49.46 23.67

traffic sign 47.24 50.28

mIoU 60.02 56.44

segment boundaries (e.g., compare the predictions of the person in the last row or the
vegetation in the middle image in Figure 5.11) but shows very strong prediction results
on major classes like sky and road. In particular, the results show that the experts learn
complementary classes from different cues. Our finding supports the common findings
of pre-trained neural network analyses where a balanced or at least co-existence of shape
and texture affinity is suggested to achieve performant CNNs. Moreover, we postulate
that this CARLA experiment shows that a neural network distinctly biased to only one
of the cues cannot solve the segmentation task properly.

5.5.8 Influence on the per Pixel Level

The visual inspection of the texture RGB and shapeEED RGB on CARLA suggests that
complementary features are learned by the different cue experts. Particularly, it seems
that certain classes are easier to predict or less confused by the texture expert and some

146

5.5 Cue Influence Analysis
ro

ad

si
d

ew
al

k

b
u

ild
in

g

w
al

l

p
ol

e

tr
affi

c
lig

ht
s

tr
affi

c
si

gn

ve
ge

ta
ti

on

te
rr

ai
n

sk
y

p
er

so
n

ca
r

tr
u

ck

b
u

s

gu
ar

d
ra

il

Predicted label

road

sidewalk

building

wall

pole

traffic lights

traffic sign

vegetation

terrain

sky

person

car

truck

bus

guard rail

T
ru

e
la

b
el

0.91 0.01 0.04 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03

0.19 0.65 0.12 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01

0.01 0.0 0.93 0.01 0.02 0.0 0.0 0.03 0.0 0.0 0.0 0.01 0.0 0.0 0.0

0.02 0.02 0.47 0.43 0.01 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.01 0.01 0.14 0.0 0.7 0.0 0.0 0.11 0.0 0.02 0.0 0.01 0.0 0.0 0.0

0.0 0.0 0.23 0.0 0.12 0.51 0.0 0.09 0.0 0.01 0.01 0.03 0.0 0.0 0.0

0.01 0.0 0.07 0.01 0.04 0.0 0.61 0.1 0.0 0.0 0.01 0.13 0.0 0.0 0.0

0.0 0.0 0.02 0.0 0.01 0.0 0.0 0.96 0.0 0.01 0.0 0.0 0.0 0.0 0.0

0.0 0.01 0.01 0.0 0.0 0.0 0.0 0.05 0.92 0.0 0.0 0.0 0.0 0.0 0.0

0.28 0.0 0.03 0.0 0.0 0.0 0.0 0.01 0.0 0.68 0.0 0.0 0.0 0.0 0.0

0.01 0.02 0.12 0.01 0.03 0.0 0.0 0.11 0.0 0.0 0.67 0.03 0.0 0.0 0.0

0.02 0.0 0.14 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.8 0.0 0.01 0.0

0.02 0.01 0.21 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.08 0.61 0.01 0.0

0.03 0.01 0.05 0.0 0.01 0.0 0.0 0.01 0.0 0.01 0.0 0.04 0.02 0.83 0.0

0.11 0.03 0.04 0.03 0.01 0.0 0.0 0.05 0.0 0.0 0.0 0.03 0.0 0.0 0.7

0.0

0.2

0.4

0.6

0.8

ro
ad

si
d

ew
al

k

b
u

ild
in

g

w
al

l

p
ol

e

tr
affi

c
lig

ht
s

tr
affi

c
si

gn

ve
ge

ta
ti

on

te
rr

ai
n

sk
y

p
er

so
n

ca
r

tr
u

ck

b
u

s

gu
ar

d
ra

il

Predicted label

road

sidewalk

building

wall

pole

traffic lights

traffic sign

vegetation

terrain

sky

person

car

truck

bus

guard rail
T

ru
e

la
b

el

0.91 0.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0

0.04 0.87 0.03 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.01

0.0 0.0 0.91 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.0 0.03 0.0 0.0 0.0

0.01 0.1 0.26 0.5 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.05 0.01 0.0 0.01

0.0 0.05 0.36 0.01 0.03 0.01 0.0 0.27 0.01 0.12 0.0 0.07 0.02 0.03 0.02

0.0 0.0 0.41 0.0 0.01 0.25 0.0 0.18 0.0 0.06 0.0 0.06 0.01 0.01 0.01

0.0 0.0 0.1 0.02 0.0 0.0 0.59 0.17 0.02 0.0 0.0 0.08 0.01 0.0 0.01

0.0 0.0 0.04 0.0 0.0 0.0 0.0 0.93 0.0 0.0 0.0 0.01 0.0 0.0 0.0

0.02 0.03 0.04 0.01 0.0 0.0 0.0 0.3 0.45 0.0 0.0 0.13 0.01 0.0 0.01

0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.12 0.0 0.84 0.0 0.01 0.0 0.0 0.0

0.04 0.03 0.13 0.02 0.0 0.0 0.0 0.14 0.02 0.0 0.37 0.21 0.03 0.0 0.02

0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.97 0.0 0.0 0.0

0.01 0.0 0.01 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.11 0.85 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.97 0.0

0.07 0.03 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.08 0.01 0.0 0.75

0.0

0.2

0.4

0.6

0.8

Figure 5.10: Confusion matrix of the two CARLA experts shapeEED RGB (left) and texture
RGB (right). Road and sidewalk is well distinguishable by texture but not by shape. On the
contrary, less confusion is observed for terrain and vegetation by the shape expert compared
to the texture expert.

others are better predicted by the shape model. To investigate the influence of the
different cues on pixel level, we train a fusion model on these two experts as introduced
in Section 5.4. Our results show that the fusion of two experts with complementary
cues improves the overall scene understanding by a notable margin. The fusion model
achieves a performance of 78.10% mIoU on the CARLA test set which is about 19 pp
better than the test set performance of shapeEED RGB and more than 22 pp better
than relying only on the texture RGB cue (cf. Table 5.3). Thus, cooperation of com-
plementary cues improves the performance. For the examples in Figure 5.11 we show
the corresponding fusion prediction and the heatmap indicating the weighting of the
softmax output in Figure 5.12. In Figure 5.13, we compare for a representative example
side by side each expert prediction, the fusion heatmap, the fusion prediction as well as
the input image and its corresponding ground truth. Our fusion results reveal that the
cue importance may differ within a class. That means that classes are not inherently
better predictable by a single cue expert. Instead, the cue importance for the predic-
tion is dependent on the pixel position within the object as well as the distance of the
object seems to have an influence on the cue importance. These phenomenons become
obvious, e.g., at the borders of vegetation objects as it can be seen in Figure 5.13 when
inspecting the heatmap for the shape expert. Dark green regions are shape dominated
whereas light purple regions are dominated by the texture expert. The heatmap for
the texture expert looks identically but with inverse color encoding. Furthermore, we
see that the ‘blobby’ detection by the texture expert can be compensated by the shape
expert. On the other hand in Figure 5.13 the prediction of the near car in the lower

147

5 Cooperation Is All You Need?

shapeEED RGB expert texture RGB expert CARLA ground truth

Figure 5.11: Comparison of the prediction of the two CARLA experts shapeEED RGB (left)
and texture RGB (mid). For reference reasons we display the ground truth in the third column
(right). More clear predictions of the segment boundaries can be observed for the shape expert.
The texture expert however can distinguish between the sky and road class without difficulty.
It predicts more blob-like segments than the shape expert whose predictions are more granular.

left corner is improved by relying on the texture expert whereas the car further away
was only correctly predicted by the shape expert what coherently was learned by the
fusion model. On pixel-level we also get insight into the reliability of the predictions.
Even though the street and the sky is predicted correctly by both models (cf. first row
in Figure 5.13) the fusion (mid of second row) reveals that the texture expert seems
to be more reliable on this class. This is less clear for the vegetation class, as there is
a mixed weighting of the experts’ predictions which is shown by the blue pixels in the
heatmap.

5.5.9 Influence of the Architecture: Transformer Experiments

We additionally evaluate transformer models to study whether a different architecture
shows significantly different cue affinity. Transformers are said to rely their predictions
on shape cues due to the global view on the image [279]. In contrast to CNNs they
do not have an inductive bias to local spatial structure and need to learn neighbor
relations [279]. For our experiments we keep the neural network for the color compo-
nents identical. We argue that this model simulates a transformer whose attention is
limited to a single pixel and consequently the attention is suspended. To handle the
restrictions of having a small dataset and the requirement of an unbiased (and therefore
from scratch) training we use a Segformer model with B1 backbone (cf. Section 2.3.1.2

148

5.5 Cue Influence Analysis

1.0

0.8

0.4

0.2

0.0

0.6

Figure 5.12: Fusion of the two experts texture RGB and shapeEED RGB on CARLA (see
Figure 5.11 for the single expert prediction). The heatmap visualizes the weighting of the
convex combination of the experts’ softmax values. In the two extremes, dark green colored
pixels imply that the prediction of the fusion network is based solely on the shape expert
softmax and light purple colored pixels are predicted based on the texture expert’s softmax
output.

prediction of texture expert prediction of shape expert

1.0

0.8

0.4

0.2

0.0

0.6

heatmap for shape influence

input image prediction of fusion model ground truth

Figure 5.13: Comparison between the predictions of the fusion model and the two experts
texture RGB and shapeEED RGB on a representative CARLA test set image. The heatmap
visualizes the weighting of the convex combination of the experts’ softmax values. In the two
extremes, dark green colored pixels imply that the prediction of the fusion model is based
solely on the shape expert softmax and light purple colored pixels denotes the same for the
texture expert.

149

5 Cooperation Is All You Need?

Table 5.8: Cue influence on transformer models (Segformer with B1 backbone) solving a se-
mantic segmentation task on Cityscapes.

Color T S mIoU Segformer CS val gapDall
CNN mIoU

(↑) (↓)
no information 0.33± 0.47 66.02 0.25± 0.35

shapeHED X 11.31± 1.95 55.05 13.38± 2.00
texture X 29.02± 0.31 37.33 17.85± 1.30

texture RGB X X 31.88± 0.38 34.47 20.10± 0.98
shapeEED X 39.01± 0.75 27.34 27.86± 3.17

shapeEED RGB X X 50.48± 0.55 15.87 42.22± 2.13

Cityscapes gray X X 64.47± 0.21 1.88 64.21± 0.60
all cues X X X 66.35± 0.29 0.00 65.22± 0.47

and Section 5.5.2) which is of comparable size to the deeplabv3 with ResNet18 back-
bone in terms of parameters. Training this model on the dataset consisting of all cues
(original Cityscapes) yields a comparable mIoU performance to the CNN analyzed be-
fore (cf. right-most column in Table 5.8). As a consequence, we can directly compare
both architecture types. We observe in Table 5.8 that reducing the cues leads to the
same order of cue influence for transformers. Nevertheless, the performance drop is
not as pronounced as for the corresponding CNN models. This applies equally to the
shapeEED and texture versions. In comparison, the transformer is 8 to 10 pp better on
the cue datasets than their CNN counterparts except for shapeHED where they are on
par. Transformers evaluated in context of classification are known to be more shape
biased than convolutional neural networks [71, 279]. It seems that if the shape bias is
also present in the context of semantic segmentation, it does not mean that transformers
are worse at learning from texture. On the contrary, we observe that the performances
of the cue experts based on the light-weighted Segformer-B1 model are ordered in the
same way as for convolutional neural networks. This either means that the cues are
equally well exploitable by the two architecture types or at least both models suffer
similarly from the domain gaps which occur due to the cue reduction. The variance in
the training runs of the transformer model is smaller, so that it is more difficult to find
cue experts which are similar in the mean performance. In Table 5.9 we show the results
on the class-wise comparison between shapeEED and texture. On class level we observe
minor dissimilarities. Classes like terrain and bus are again dominated by the texture
expert. Additionally, the shape domination of the class person and pole seems indepen-
dent of the architecture choice. However, we see a slight difference for the class car for
which more discriminative information can be drawn from the shape cue when using
transformer models. In addition, the transformer can extract equally well discriminative
features from texture and shape for the class vegetation which was better predicted by
texture in the context of CNNs. The latter might be explained by the better overall

150

5.5 Cue Influence Analysis

Table 5.9: Class-wise comparison of shape and texture importance for transformers on the
Cityscapes semantic segmentation task. The table is sorted in descending order according to
the average number of pixel per class in an image. Classes which are distinctly better (> 10 pp)
predicted by the shape cue expert are colored in green and those by the texture cue expert in
purple respectively. Lighter color highlights results of more than 7 pp performance difference
but less or equal to 10 pp. Changes compared to CNN results are noted in the last column.

class IoU of shapeEED IoU of texture switch compared to CNN

road 92.32 85.42
building 76.35 65.84

vegetation 78.45 73.08 ←←
car 83.10 63.81 xx

sidewalk 50.01 29.66
sky 88.62 24.27

pole 27.59 0.10 ==
person 46.24 24.76 ==
terrain 8.39 23.11 ==

fence 17.77 14.57
wall 9.61 18.11

traffic sign 20.83 14.83
bicycle 43.13 38.03

truck 21.64 10.98
bus 13.44 22.39 ==

train 21.89 14.95
traffic light 10.92 6.81

rider 10.69 6.78
motorcycle 9.96 9.55

mIoU 38.38 28.79

performance of the shapeEED expert which catches up with the reduced diversity in class
prediction of CNNs. As the CNN is building and vegetation loving, evidenced by the
confusion matrix in Figure 5.9, it accepts performance limitations due to false positive
predictions for correctly predicting a wide range of true positives. The similar perfor-
mance we see when comparing transformers and convolutional neural networks might
root in the limited amount of data the transformers are trained on. As shown in [71]
transformer models seem to benefit from their architecture but also from the generally
large amount of data they are trained on. We speculate that the data amount trans-
formers are usually trained on are more likely the source of general performance boost
rather than the ability to exploit a specific cue better compared to CNNs.

151

5 Cooperation Is All You Need?

5.5.10 Likelihood Based Evaluation

In addition to mIoU based evaluations we also consider the likelihood ratios between
nested models. This is known as a measure of goodness of fit in statistic. Following the
definition in [81], let {pθ}θ∈Θ,Θ ⊆ Rτ and {pϑ}ϑ∈Θτ0

,Θτ0 (Θ be two statistical models.
If {pϑ}ϑ∈Θτ0

is defined on a subset of the parameter space of the other model it is said
to be nested. Furthermore, let D be a dataset of size N where each sample was drawn
identically and independently according to a model with parameter space Θ following
the conditions of the maximum likelihood theory. Let ϑ̂ denote the maximum likelihood
estimator (cf. Equation (2.48)) of the model {pϑ}ϑ∈Θτ0

with restricted parameter space

and analogous θ̂ the maximum likelihood estimator for {pθ}θ∈Θ. The deviance of the
nested model pϑ̂ is then defined by

dev(pϑ̂) = 2
(
NLL(D|θ̂)− NLL(D|ϑ̂)

)

= 2

(
N∑

n=1

log(pθ̂(yn|xn))−
N∑

n=1

(log (pϑ̂(yn|xn)))

)
.

(5.8)

In theory, the deviance is always greater or equal to zero, as the maximum of the likeli-
hood of a parameter space is always greater or equal to the maximum of the likelihood
taken with respect to a restricted model parameter space [81]. The deviance gives us
insight into how well the model fits to the data. If the deviance is high the restricted
parameter space is not enough to explain the data whereas when the deviance is zero
or at least small, the reduced model already fits well.

We use this idea of model comparison to get insight into the importance of the nested
image cues. In the following we explain how this idea transfers to our experiments and
which limitations we are facing compared to the theory. For our analysis we consider
models which are trained on datasets containing differently many cues. We can think of
them as datasets with nested encoded information. In other words a dataset containing
only the gray cue is nested in the texture dataset and texture data is nested in the dataset
with all cues. Apart from that, we know that when more information is present we need
a larger model to encode the information. Thus, we can also understand the nesting
in terms of parameter spaces by the bypass of information encoding. Nevertheless,
the property that the deviance is always non-negative is potentially violated in some
cases in our analysis as the mentioned transfer step is not applied numerically, and
therefore the nested models can be improper with respect to the parameter amount.
The maximum likelihood can be easily calculated when training neural networks. Given
two fully trained neural networks with learned parameters θ̂ and ϑ̂, we can calculate
their negative log-likelihoods on a test set by computing their losses. Based on the
statistical learning theory we can assume that the parameters are close to the maximum
likelihood estimator when the model has been trained long enough (cf. Section 2.2.1).

152

5.5 Cue Influence Analysis

None HS HS+V HS+V+S all total

cues

-2.00e+06

0.00e+00

2.00e+06

4.00e+06

6.00e+06

8.00e+06

1.00e+07

1.20e+07

d
ev

ia
n

ce

0.00e+00

5.30e+06 3.39e+04

3.62e+06

1.14e+06 1.01e+07

None V V+T V+T+S all total

cues

0.00e+00

4.74e+06
8.38e+05

4.46e+06 5.61e+04 1.01e+07

Figure 5.14: Waterfall chart of cue model deviances. Starting with one of the low-level color
cue components we iteratively add the cue that best supports the model.

Therefore, we yield the deviance of two nested models by comparing their losses

ˆdev(pϑ̂) = 2
(
LD(θ̂)− LD′(ϑ̂)

)
. (5.9)

The theoretical assumption that we consider the maximum likelihood estimator is not
guaranteed in practice due to the heuristic approach of solving the optimization problem.
That means, that during training the stochastic gradient descent may get stuck in a local
minimum and potentially faces numerical instabilities (cf. Section 2.2.2). Nevertheless,
having these inaccuracies in mind, this analysis gives us new insights into the influence
of different cues. We start with the totally uninformed model (freshly initialized) and
find the model or cue respectively which has the most significant deviance gain starting
with one of the low-level color cue components V or HS. This model comparison is not
free of ordering effects due to correlations between the cues. The results in the form of
a waterfall chart are visualized in Figure 5.14. Additionally, we consider a class-wise
averaged version of the deviance to take into account that classes appear differently often
in terms of pixel count. Therefore, we calculate the loss with respect to each single class
and average it over the number of classes. This leads to slightly different results for the
cue influence selection when starting with the HS cue as shown in Figure 5.15. In line
with [319], the results reveal that shape is a late prioritized cue. Nevertheless, shape
contributes significantly as an additional cue to the texture regardless of whether the
pure color component (HS), the gray component (V) or both (RGB) are present. The
low deviance of the shape models traces back to a relatively high loss. In combination
with our observations of the confusion matrix, we conclude that the shape expert has
a certain understanding of a wide range of classes but is uncertain in its prediction. In
contrast, the texture experts are certain in their limited classes leading to potentially
false positives but a relatively lower loss value. We provide in Table 5.10 an overview
of the different loss values of the cue experts along with their mIoU values. This table
reveals that influence analyzed on pixel-level (likelihood analysis) is not on par with the

153

5 Cooperation Is All You Need?

None V V+T V+T+S all total

cues

0.00e+00

3.45e+08

6.97e+07

1.23e+08 1.41e+06 5.39e+08

None HS HS+T HS+T+S all total

cues

-1.00e+08

0.00e+00

1.00e+08

2.00e+08

3.00e+08

4.00e+08

5.00e+08

6.00e+08

d
ev

ia
n

ce

0.00e+00

3.66e+08
4.29e+07

1.26e+08 4.06e+06 5.39e+08

Figure 5.15: Waterfall chart of class-wise averaged cue model deviances. Starting with one of
the low-level color cue components we iteratively add the cue that best supports the model.

mIoU observations. This might be explained by the deviations of theory and practice as
explained earlier and the imbalance of pixel amount per class which is averaged out in
the mIoU. However, this analysis allows for insights about, e.g., the uncertainty which
comes with predictions.

5.6 Conclusion, Discussion and Outlook

We presented a method to disentangle cues, sometimes understood as concepts, which
naturally exist in images of real-world scenes. Thereby, we introduced a new method
to extract texture from a semantic segmentation dataset which allows us to generate
new segmentation tasks based on this texture. Based on up to 15 cue experts ranging
from color over texture to shape we investigated the question of what can be learned
when only a reduced number of cues is present in an image. Among others, we analyzed
the influence of the color cue on the solution of a semantic segmentation task which is
rarely considered in the literature. We discovered that fundamental characteristics can
be learned solely based on color information. Furthermore, our methods reveals that
color is important for shape and texture experts to a different extent. Particularly for our
shape expert based on EED, we saw a distinct improvement in terms of mIoU when the
full color component is present whereas this was less or negligibly low for the texture
expert. In general, by comparing a real world dataset and a simulated dataset, we
found that datasets impact the cue influence on neural networks. Nevertheless, results
from both datasets suggest that shape cues can be seen as the all-rounder for semantic
segmentation tasks since they reveal information about most of the classes. In contrast,
texture cues are useful for specific objects, depending on the other additional, present
cues but do not lead to a satisfactory segmentation of the overall scene by themselves.
However, shape as an individual cue is not enough to solve the problem even though
contour maps are a promising representation to solve a semantic segmentation task

154

5.6 Conclusion, Discussion and Outlook

Table 5.10: Comparison of mIoU (a), loss in terms of negative log-likelihood (b) and class-wise
averaged negative log-likelihood (c). All subtables are listed in ascending order according to
the goodness of the metric value. Comparing the resulting order of the experts per table gives
an insight on the impact of the class imbalance (cf. (b) and (c)) and the uncertainty which
comes with the predictions of some experts (cf. (a) and (c)).

experts mIoU (↑)
no info 0.251
V 06.39
HS 06.40
RGB 09.33
SHED 11.31
T 13.38
SHS 17.85
TRGB 20.10
THS 20.63
S 27.86

SRGB 42.22
OHS 59.89
OV 64.21
all cues 65.22
(a) mIoU per expert

experts NLL (↓)
no info 5.39 · 106

S 3.53 · 106

V 3.02 · 106

SHS 3.51 · 106

TRGB 3.01 · 106

THS 2.75 · 106

HS 2.74 · 106

RGB 2.72 · 106

SHED 2.65 · 106

T 2.60 · 106

SRGB 9.11 · 105

OHS 4.00 · 105

OV 3.69 · 105

all cues 3.41 · 105

(b) negative log-likelihood

experts avg. NLL (↓)
no info 2.81 · 108

V 1.08 · 108

S 1.01 · 108

SHS 9.95 · 107

HS 9.73 · 107

RGB 9.35 · 107

TRGB 8.47 · 107

SHED 8.00 · 107

THS 7.58 · 107

T 7.29 · 107

SRGB 2.73 · 107

OHS 1.28 · 107

OV 1.15 · 107

all cues 1.08 · 107

(c) class-wise averaged NLL

on a lower dimensional domain. Our CARLA experiments showed most clearly that
shape and texture cues are beneficial to a different extent for some classes such that
only the fusion of the two cues leads to a comprehensive segmentation of the scene.
In addition, the importance of certain information changes depending on the position
of the pixels in the object or of the object in the image. The results allow us to
conclude that convolutional neural networks can draw more discriminative information
from shape than from texture for real world semantic segmentation tasks. This does
not contradict results from cue influence analyses for classification models. In drawing
this conclusion, it should not be neglected that segmentation tasks demand to not only
recognize objects but also their shapes and their location within an image. Unlike for
classification tasks where contours are less relevant, the diversity of classes is better
captured by a shape and color cue mixture than information encoded in texture. With
respect to the architecture type, surprisingly, we see no difference in the cue affinity for
transformer models compared to CNNs even though they are said to be more biased
towards shape. This seems to be a useful property to solve segmentation tasks. This
underlines the hypothesis that ‘shape is not all you need’. However, ‘cooperation is all
you need’ might be the more precise summary as it was shown that cues are largely
complementary. Hereby, an early fusion is more successful than late fusion in real world
scenarios such that the neural network can learn the correlations between the cues.

155

5 Cooperation Is All You Need?

Nevertheless, late fusion was beneficial in the context of simulated data where the cue
experts provided more complementary predictions.

The presented work gave insights into what can be learned by neural networks if certain
cues are missing. In the future, we would like to investigate two aspects not yet covered
with our study: Biases in already trained neural networks for semantic segmentation
and more insight into what information is encoded in a dataset. The first aspect raises
the question of whether neural networks trained on semantic segmentation tasks suffer
from a certain bias. This can be analyzed by evaluating trained models on our different
cue datasets. In addition, our cue extraction method allows for cue conflicts in semantic
segmentation tasks. Our texture cue extraction method presented in Figure 5.1 can be
used to fill arbitrary segments with a specific texture from mosaic images. By switching
classes a conflict between shape and texture cues can be created. It can be analyzed if
certain classes are more likely to be classified by shape or by texture.

The second aspect asks for the richness of information in a dataset. We would like
to better understand the influence of different cues from an information theory point
of view. With our experiments, we gave first insights into the model’s behavior when
certain cues are missing but, additionally, we would like to learn more about the different
amount of information encoded in the different cue datasets and if this correlates to the
ability of neural networks to extract this information.

Additionally, we see a connection between our approach and context-based explana-
tions [205]. The cues ‘color’, ‘texture’ and ‘shape’ can equally be seen as high-level
concepts perceived by humans. The expert fusion which was applied experimentally to
a few cue constellations in the CARLA dataset can be understood as a proof-of-concept
for a class-concept relation explanation [205] on a per pixel level. A more in-depth study
of the concept explanation view seems to be promising for future research.

156

5.6 Conclusion, Discussion and Outlook

(a) original (b) original gray (c) original HS

(d) texture RGB (e) texture (f) texture HS

(g) shapeEED RGB (h) shapeEED (i) shapeEED HS

(j) RGB (k) shapeHED (l) HS

(m) gray

Figure 5.16: Cue decomposition of a Cityscapes image (original) into texture, shape, hue and
saturation (HS) and gray components.

157

Chapter 6
Discussion and Outlook

In this dissertation, we investigated how deep convolutional neural networks for visual
recognition tasks can benefit from data in an abstract domain, and studied from which
data (cues) deep neural networks can draw the most information to accurately solve
visual recognition tasks. In the following we summarize our main contributions and draw
conclusions from our results. Thereafter, we close this thesis by outlining potential future
research directions which complement the specific outlooks presented in Chapters 4
and 5.

Contributions and Conclusions Deep convolutional neural networks, which achieve
outstanding performance on visual recognition tasks, need plenty of labeled data to
learn and generalize well to data not seen during training. However, the labeling pro-
cess is expensive and therefore labels are often scarce. Within the context of this thesis,
we developed a modular semi-supervised image-to-image domain adaptation approach
to take advantage from a simulation or an abstract domain where labels are easy to
collect or generate (Chapter 4). Thereby, we train the downstream task neural network
on the abstract domain and apply an unsupervised image-to-image translation method
to translate real world data into the abstract domain. As this lacks task awareness, we
guide the generator of the image-to-image translation from real to abstract with the
help of a few labeled real world images. Once trained on the abstract domain the down-
stream task network is kept fixed and only serves for giving feedback how the data needs
to be adapted to better suit for accurate predictions. By training on the abstract do-
main we benefit from a more controllable environment and less complex representation
which facilitates training well performing neural networks. Besides, when the abstract
domain is a simulation we can train and test for savety-critical scenarios. We evalu-
ated our method on a complex downstream task (semantic segmentation of urban street
scenes) and on a complex domain adaptation task (real to sketch for classification).

159

6 Discussion and Outlook

Both setups demonstrated that our method improves the network performance com-
pared to from scratch training in the real world when only a small amount of labeled
data is available. Furthermore, our method outperforms uninformed image-to-image
translation by a significant margin. Our results revealed that the features in the image
which improved the prediction of the neural network were not necessarily obvious to
human perception. We also proposed an extended method for the classification setup,
where we used active learning to sample those data points for labeling where the neural
network is uncertain in its prediction. By guiding the generator with these specific data
points, the performance was further improved. Although hybrid models with multiple
complex components currently achieve the best performance, our method enables visual
inspection of what a suitable input for the downstream task neural network looks like.

To understand more deeply the influence of the input data for a neural network, we
developed a setup to analyze the influence of image cues in Chapter 5. In our research,
we focused on the core image cues color, texture and shape. Therefore, we came up
with a technique to extract the texture from semantic segmentation datasets and use
it to create new segmentation tasks. This enables us to train semantic segmentation
networks only focusing on texture. With the help of different methods which, e.g., create
contour images or color reduction, we decompose the image in its core cues. By training
on these datasets we achieved cue experts. To examine the influence of different cues,
we measure the performance (drop) on the original image. We delved for indication
of certain cue biases in our in-depth study. Our main findings are that shape can be
seen as an all-rounder cue for semantic segmentation whereas texture is a specialist on a
subset of classes. We conclude from our analysis that convolutional neural networks can
draw more discriminative information with respect to all classes from shape than from
texture for real world semantic segmentation tasks. Against intuition, our experiments
reveal that fundamental characteristics can be learned solely through color information,
although scene understanding is barely possible. Furthermore, we see limited differences
between lean transformers and convolutional neural networks with respect to the cue
influence. However, we see differences in the cue influence for different datasets. On
data from a simulation we observe that shape and texture are more complementary
than in our experiments on real world examples. Thereby, our investigation on pixel-
level experimentally confirm the intuition that shape is more relevant at segment borders
and texture information is helpful within a segment.

Future Research Directions In this thesis, we focused on the performance of deep
neural networks on abstract and decomposed data. Therefore, our research can also be
understood as a robustness analysis with respect to abstract data or data where indi-
vidual cues were removed. The question that arises is how robust these neural networks
are against other confounding factors such as image corruptions, adversarial attacks
or out-of-distribution objects. Whether neural networks are more robust against these
factors if they are biased towards one of our cue datasets can be analyzed in two ways.
On the one hand, different cue experts can be evaluated on out-of-distribution datasets

160

and confronted with adversarial examples similar to the work in [269]. On the other
hand, the cue datasets can be used for data augmentation during training. An analysis
can show whether augmenting the original training data with all or certain cue datasets
improves robustness for semantic segmentation tasks and how this relates to classifica-
tion results for CNNs and transformers [276]. As the neural network can learn from all
individual cues, it might be less susceptible if certain cues are missing in, e.g., domain
shifted or adversarially disturbed images. A similar question can be addressed to ab-
stract representations which we considered in Chapter 4. Due to our modular approach
of transforming images from the real to the abstract domain, it is of particular inter-
est to investigate if the translation by the guided image-to-image translation module
mitigates a network’s vulnerability to image corruptions and adversarial attacks. How-
ever, we hypothesize that robustness of out-of-distribution objects might not improve
particularly if those objects are also outside the distribution of the generative model.
A current highly emerging research field studies text-to-image diffusion models [204].
These models show high quality results for image generation based on a textual descrip-
tion [215, 222]. Furthermore, methods for image editing based on textual instructions
have been proposed [28]. First publications address I2I translations based on text-to-
image diffusion models without manual prompts [200]. It is worth investigating whether
our methods can benefit from generating high-quality images for image translation in
our SSDA method and generating specific shape or texture transformations for our cue
influence study.

In addition, with respect to our method presented in Chapter 5, we aim to contribute
beyond our research question by enabling other researchers to evaluate their segmenta-
tion dataset on its cue composition. This is of broad interest as it can uncover possible
shortcut learnings or demonstrate potential task reductions if reduced cues are sufficient
to solve the entire task. This offers the opportunity to train potentially more robust
networks or to solve lighter tasks, making them feasible on leaner hardware.

161

List of Figures

2.1 Perceptron . 11
2.2 Multilayer perceptron . 13
2.3 Activation functions . 16
2.4 2D-Convolution . 19
2.5 Different convolution operations . 20
2.6 Pooling operation . 23
2.7 Receptive field . 24
2.8 Error decomposition . 31
2.9 Object recognition tasks . 45
2.10 Prototypical CNN . 48
2.11 Residual layer . 49
2.12 ResNet18 . 50
2.13 Fully convolutional network . 57
2.14 Deeplabv3 . 60
2.15 Intersection over union metric . 62
2.16 Data augmentation . 64
2.17 Adaptation level in domain adaptation 70
2.18 Active learning cycle . 71

3.1 Generative adversarial network . 76
3.2 Training stages of a GAN trained on handwritten digits 78
3.3 Cycle consistency loss . 87
3.4 CycleGAN . 88

4.1 Training stages of our SSDA method . 97
4.2 Concept of our active learning pipeline 100
4.3 Cityscapes . 102
4.4 Synthia . 103
4.5 Qualitative results (Synthia setup) . 105
4.6 Task loss influence (Synthia setup) . 106

163

List of Figures

4.7 Performance comparison w.r.t. the ground truth amount (Synthia setup) 107
4.8 Task loss influence (CARLA setup) . 108
4.9 Performance comparison w.r.t. the ground truth amount (CARLA setup) 108
4.10 Qualitative results (CARLA setup) . 109
4.11 Sketchy dataset . 110
4.12 Domain shift and task loss influence (Sketchy dataset setup) 111
4.13 Qualitative results (Sketchy dataset setup) 112
4.14 Comparison of active learning strategies for our SSDA method 113
4.15 Active learning for from scratch training on real images 114

5.1 Generation process of the texture dataset 124
5.2 Texture dataset . 126
5.3 Edge enhancing diffusion (anisotropic diffusion) 128
5.4 Holistically-nested edge detection . 129
5.5 Generation process of the textureless dataset 130
5.6 Cue influence analysis . 132
5.7 Confusion matrix of the RGB color expert 138
5.8 Textureless rendering of trees in CARLA 140
5.9 Confusion matrices of shape and texture experts 143
5.10 Confusion matrix of shapeEED RGB and texture RGB on CARLA 147
5.11 Qualitative results of shapeEED RGB and texture RGB on CARLA . . . 148
5.12 Fusion of texture RGB and shapeEED RGB on CARLA 149
5.13 Comparison between expert prediction and late fusion prediction 149
5.14 Waterfall chart of cue model deviances 153
5.15 Waterfall chart of class-wise averaged cue model deviances 154
5.16 Cue decomposition of an RGB image . 157

164

List of Tables

4.1 Domain gap comparison: with and without from-scratch training 105

5.1 Overview of cues . 131
5.2 Cue influence on Cityscapes . 137
5.3 Cue influence on CARLA . 139
5.4 In-domain performances of shape experts 141
5.5 Class-wise comparison of shape and texture importance on Cityscapes . . 144
5.6 Class-wise comparison of shape and texture importance with hue and

saturation cue on Cityscapes . 145
5.7 Class-wise comparison of shape and texture importance on CARLA . . . 146
5.8 Cue influence on transformer models . 150
5.9 Class-wise comparison of shape and texture importance for transformers

on Cityscapes . 151
5.10 Evaluation Comparison . 155

165

List of Notations

We denote matrices with capital letters. Bold notation is used for vector-valued vari-
ables. We also use this notation for images since they can be represented by a vector
when flattening the image. Estimators are denoted with ˆ e.g., µ̂. Optimal functions
or models are denoted with a superscript ∗. The following abbreviations and notations
listed alphabetically are used across all chapters:

Abbreviations

ADA Active domain adaptation
AI Artificial intelligence
AL Active learning
ASPP Atrous spatial pyramid pooling
CNN Convolutional neural networks
CRF Conditional random field
CS Cityscapes
DA Domain adaptation
EED Edge enhancing diffusion with smoothed orientation
FC Fully connected
FCN Fully convolutional network
FID Fréchet inception distance
GAN Generative adversarial network
GELU Gaussian error linear unit
GPU Graphics processing unit
GT Ground truth
HED Holistically-nested edge detection
HS Hue saturation cue
HSV Hue saturation value
i.i.d. Identically and independently distributed
IoU Intersection over union
I2I Image-to-Image
LPIPS Learned perceptual image patch similarity
LReLU Leaky ReLU
LSGAN Least square GAN

166

mIoU Mean intersection over union
MLP Multilayer perceptron
NN Neural network
PDE Partial differential equation
pp Percentage points
PReLU Parametric ReLU
ReLU Rectified linear unit
RePU Rectified power unit
RGB Red green blue
S Shape cue
SGD Stochastic gradient descent
SDA Superviced domain adaptation
SSDA Semi-supervised domain adaptation
SSIM Structural Similarity Index
T Texture cue
UDA Unsupervised domain adaptation
V (Gray) value cue
ViT Vision transformer

Notation

a : R→ R Activation function
b, B Bias
ĉ(x|θ), ĉ Predicted class given by argmaxc∈{1,...,C}(fθ(x)c)
d = m× h× w Input dimension
fθ Neural network with learnable parameters θ
h Spatial height (number of rows) of an image
hl Hidden state of layer l
kdil Kernel size of dilated kernel
k, (ky, kx) Spatial kernel dimension; for quadratic kernels k = kx = ky
m Channel dimension
m′ Output dimension
pGθ Pushforward density function under Gθ
pθ(·|·) Parametric conditional density function defined by a neural net-

work
pX,Y density function of PX,Y
pY |X density function of PY |X
pdata density function of µdata

r Dilatation rate
s, (sx, sy) Stride in x and y dimension; for equal stride s = sx = sy
w width (number of columns) of an image
x ∈ X Input, e.g., an image
y ∈ Y Label

167

List of Notations

zl Pre-activation vector of layer l
C Number of classes
Dϑ : X → (0, 1) Discriminator with learnable parameters ϑ
DS Discriminator of domain S
D∗G Optimal discriminator for s given generator G
GS→T Generator from domain S to domain T
Gθ : Z → X Generator with learnable parameters θ
Gθ∗ν Pushforward measure of ν under Gθ
H l True layer mapping in a parametric layered function
K Kernel
K ∗ Φ Convolution of kernel K and a feature map Φ
L Number of layers
L(fθ(x), y) Loss of the neural network fθ in a single sample (x, y)
M ∈ Rpx×py Subgrid of an image
N Number of data samples in a dataset
P⊗NX,Y Product measure of i.i.d. random variables
PX,Y Joint probability measure on X × Y
PY |X Conditional probability measure of Y given X
W , w Weight matrix, weight vector
W β,∞([0, 1]d) Sobolev space
X : (Ω,A,P)→ X X -valued random variable/vector
Y : (Ω′,A′,P′)→ Y Y-valued random variable/vector
A σ-algebra

B ⊆ D (Mini-)batch of NB samples, i.e., B = {(xn, yn)}NBn=1

C(K,RC) Function space of continuous functions from K to RC

D Dataset
DS Dataset of domain S
F Function space, e.g., F = C([0, 1]d)
H Hypothesis space
I Pixel index set {(i, j)|i = {1, . . . , h}, j = {1, . . . , w}}
K Compact set
L Loss

L̂N , LD Empirical loss function based on the training dataset D with N
samples

M1(Rd), M+
1 (Rd) Space of (positive) probability measures over Rd with Borel-σ-

algebra
R = (XR,Y , µR) Domain of real images
S = (XS, µS) Domain with image space XS and data generating distribution

µS or as a triple
S = (XS,YS, µS) Domain with image space XS, label space YS and joint distri-

bution µS on XS × YS
TR Labeled subset of the real domain

168

T mh,dh,m1

θ Transformer block
X ⊆ Rd Input space, mostly X ⊆ [0, 1]3×h×w

Y Label space
Z Latent space
δmj Kronecker delta where δmj = 1 if m = j else δmj = 0
ε Error, e.g., model error εmodel

η Learning rate
θ, ϑ Learnable parameters
λ Lebesgues measure
µ̂ Estimated data generating distribution of X
µ Probability measure
µdata True data generating distribution of X
ν Probability measure
ρ Padding
φ : R|Y | → Ξ ⊆ R|Y | (Statistical) head
ϕθ : X → R|Y | Neural network with linear output layer
Θ ⊆ Rτ , Θq ⊆ Rτq Parameter space
Φ Feature map (or image if it is the network input)
(Ω,A,P) Probability space with probability measure P
d(·|·),D(·|·) Divergence measures
p Probability
B Borel-σ-algebra
1 matrix where all entries equal to 1
diag(x) Diagonal matrix A with Ai,i = x and Ai,j = 0 for i 6= j. If x is

a vector, Ai,i = xi and Ai,j = 0 for i 6= j
AttnWQ,WK ,WV

(Z) Self-attention
MHSAθ(Z) Multi-head self-attention
NLL(D|θ) Negative log-likelihood
∂x Vector, matrix or tensor whose entries are defined by the partial

derivatives with respect to x. Corresponds to the gradient for
vectors and to the Jacobian matrix for matrices.

169

Bibliography

[1] IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
CVPR. 1983 Conf., Washington, D.C. Proceedings: Computer Vision and Pattern
Recognition, 1983.

[2] How does DeepL work? https://www.deepl.com/en/blog/how-does-deepl-work,
Nov. 2021. Accessed: 17.11.2023.

[3] Pause Giant AI Experiments: An Open Letter, Mar. 2023.

[4] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Elsevier, June 2003.

[5] A. Almahairi, S. Rajeshwar, A. Sordoni, P. Bachman, and
A. Courville, Augmented CycleGAN: Learning Many-to-Many Mappings from
Unpaired Data, in Proceedings of the 35th International Conference on Machine
Learning, PMLR, July 2018, pp. 195–204.

[6] M. Altalak, M. Ammad uddin, A. Alajmi, and A. Rizg, Smart Agriculture
Applications Using Deep Learning Technologies: A Survey, Applied Sciences, 12
(2022), p. 5919.

[7] L. Alzubaidi, M. A. Fadhel, O. Al-Shamma, J. Zhang, J. Santamaŕıa,
Y. Duan, and S. R. Oleiwi, Towards a Better Understanding of Transfer
Learning for Medical Imaging: A Case Study, Applied Sciences, 10 (2020), p. 4523.

[8] S. Amari, A Theory of Adaptive Pattern Classifiers, IEEE Transactions on Elec-
tronic Computers, EC-16 (1967), pp. 299–307.

[9] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan, An Introduction
to MCMC for Machine Learning, Machine Learning, 50 (2003), pp. 5–43.

[10] M. Arjovsky and L. Bottou, Towards Principled Methods for Training Gen-
erative Adversarial Networks, arXiv:1701.04862, (2017).

170

Bibliography

[11] M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein Generative Adver-
sarial Networks, in Proceedings of the 34th International Conference on Machine
Learning, PMLR, July 2017, pp. 214–223.

[12] H. Asatryan, H. Gottschalk, M. Lippert, and M. Rottmann, A con-
venient infinite dimensional framework for generative adversarial learning, Elec-
tronic Journal of Statistics, 17 (2023), pp. 391–428.

[13] J. T. Ash, C. Zhang, A. Krishnamurthy, J. Langford, and A. Agar-
wal, Deep Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds,
arXiv:1906.03671, (2020).

[14] J. L. Ba, J. R. Kiros, and G. E. Hinton, Layer Normalization,
arXiv:1607.06450, (2016).

[15] D. Bahdanau, K. Cho, and Y. Bengio, Neural machine translation by jointly
learning to align and translate, in 3rd International Conference on Learning Rep-
resentations ICLR, Y. Bengio and Y. LeCun, eds., San Diego, CA, USA, May
2015.

[16] N. Baker, H. Lu, G. Erlikhman, and P. J. Kellman, Deep convolutional
networks do not classify based on global object shape, PLOS Computational Biol-
ogy, 14 (2018), p. e1006613.

[17] D. H. Ballard, G. E. Hinton, and T. J. Sejnowski, Parallel visual com-
putation, Nature, 306 (1983), pp. 21–26.

[18] S. Barratt and R. Sharma, A Note on the Inception Score, in ICML 2018
Workshop on Theoretical Foundations and Applications of Deep Generative Mod-
els, June 2018.

[19] Z. Batmaz, A. Yurekli, A. Bilge, and C. Kaleli, A review on deep learning
for recommender systems: Challenges and remedies, Artificial Intelligence Review,
52 (2019), pp. 1–37.

[20] S. Beery, G. Van Horn, and P. Perona, Recognition in Terra Incognita,
in Proceedings of the European Conference on Computer Vision (ECCV), 2018,
pp. 456–473.

[21] W. H. Beluch, T. Genewein, A. Nurnberger, and J. M. Kohler,
The Power of Ensembles for Active Learning in Image Classification, in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2018,
pp. 9368–9377.

[22] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and
J. W. Vaughan, A theory of learning from different domains, Machine Learning,
79 (2010), pp. 151–175.

171

Bibliography

[23] A. Birhane and V. U. Prabhu, Large image datasets: A pyrrhic win for
computer vision?, in 2021 IEEE Winter Conference on Applications of Computer
Vision (WACV), Jan. 2021, pp. 1536–1546.

[24] C. M. Bishop, Pattern Recognition and Machine Learning, vol. 2 of Information
Science and Statistics, Springer, New York, NY, 2006.

[25] A. Borji, Pros and cons of GAN evaluation measures, Computer Vision and
Image Understanding, 179 (2019), pp. 41–65.

[26] S. Brehm, S. Scherer, and R. Lienhart, Semantically consistent image-
to-image translation for unsupervised domain adaptation, ICAART, 2 (2022),
pp. 131–141.

[27] W. Brendel and M. Bethge, Approximating CNNs with Bag-of-local-Features
models works surprisingly well on ImageNet, in International Conference on Learn-
ing Representations, Sept. 2018.

[28] T. Brooks, A. Holynski, and A. A. Efros, InstructPix2Pix: Learning To
Follow Image Editing Instructions, in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2023, pp. 18392–18402.

[29] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, and A. Askell, Language
models are few-shot learners, Advances in neural information processing systems,
33 (2020), pp. 1877–1901.

[30] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov,
M. Druzhinin, and A. A. Kalinin, Albumentations: Fast and Flexible Im-
age Augmentations, Information, 11 (2020), p. 125.

[31] L. Cai, X. Xu, J. H. Liew, and C. S. Foo, Revisiting Superpixels for Active
Learning in Semantic Segmentation With Realistic Annotation Costs, in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 10988–10997.

[32] J. Canny, A Computational Approach to Edge Detection, IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-8 (1986), pp. 679–698.

[33] A. L. Chandra and V. N. Balasubramanian, Deep Active Learning
Toolkit for Image Classification in PyTorch, https://github.com/acl21/deep-
active-learning-pytorch, (2021).

[34] P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud, Deter-
ministic edge-preserving regularization in computed imaging, IEEE Transactions
on Image Processing, 6 (1997), pp. 298–311.

172

Bibliography

[35] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille,
Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected
CRFs, in ICLR, Dec. 2015.

[36] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous
Convolution, and Fully Connected CRFs, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40 (2018), pp. 834–848.

[37] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, Rethinking Atrous
Convolution for Semantic Image Segmentation, arXiv:1706.05587, (2017).

[38] L.-C. Chen, Y. Zhu, G. Papandreou, H. Hui, M. D. Collins,
and T. Liu, DeepLab: Deep Labelling for Semantic Image Segmentation.
https://github.com/tensorflow/models/tree/master/research/deeplab. Accessed:
20.10.2023.

[39] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, Encoder-
Decoder with Atrous Separable Convolution for Semantic Image Segmentation, in
Computer Vision – ECCV 2018, V. Ferrari, M. Hebert, C. Sminchisescu, and
Y. Weiss, eds., Lecture Notes in Computer Science, Cham, 2018, Springer Inter-
national Publishing, pp. 801–818.

[40] S. Chen, X. Jia, J. He, Y. Shi, and J. Liu, Semi-supervised domain adapta-
tion based on dual-level domain mixing for semantic segmentation, in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021,
pp. 11018–11027.

[41] Y. Chen, M. Mancini, X. Zhu, and Z. Akata, Semi-supervised and unsuper-
vised deep visual learning: A survey, IEEE transactions on pattern analysis and
machine intelligence, (2022).

[42] Y. Chen, X. Ouyang, K. Zhu, and G. Agam, Semi-supervised Domain Adap-
tation for Semantic Segmentation, arXiv:2110.10639, (2021).

[43] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar,
Masked-Attention Mask Transformer for Universal Image Segmentation, in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2022, pp. 1290–1299.

[44] H. Chung and K. H. Park, Shape Prior is Not All You Need: Discovering
Balance Between Texture and Shape Bias in CNN, in Computer Vision – ACCV
2022, L. Wang, J. Gall, T.-J. Chin, I. Sato, and R. Chellappa, eds., Lecture Notes
in Computer Science, Cham, 2023, Springer Nature Switzerland, pp. 491–506.

[45] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber,
Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition, Neural
Computation, 22 (2010), pp. 3207–3220.

173

Bibliography

[46] P. Colling, L. Roese-Koerner, H. Gottschalk, and M. Rottmann,
Metabox+: A new region based active learning method for semantic segmentation
using priority maps, arXiv:2010.01884, (2020).

[47] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, The Cityscapes Dataset for
Semantic Urban Scene Understanding, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 3213–3223.

[48] G. Csurka, Domain Adaptation for Visual Applications: A Comprehensive Sur-
vey, arXiv:1702.05374 [cs], (2017).

[49] G. Csurka, R. Volpi, and B. Chidlovskii, Unsupervised Domain Adaptation
for Semantic Image Segmentation: A Comprehensive Survey, arXiv:2112.03241,
(2021).

[50] G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathe-
matics of Control, Signals and Systems, 2 (1989), pp. 303–314.

[51] I. Dagan and S. P. Engelson, Committee-Based Sampling For Training Proba-
bilistic Classifiers, in Machine Learning Proceedings 1995, A. Prieditis and S. Rus-
sell, eds., Morgan Kaufmann, San Francisco (CA), Jan. 1995, pp. 150–157.

[52] D. Dai, Y. Li, Y. Wang, H. Bao, and G. Wang, Rethinking the image feature
biases exhibited by deep convolutional neural network models in image recognition,
CAAI Transactions on Intelligence Technology, 7 (2022), pp. 721–731.

[53] J. Dai, K. He, and J. Sun, Boxsup: Exploiting bounding boxes to supervise
convolutional networks for semantic segmentation, in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 1635–1643.

[54] J. Dastin, Insight - Amazon scraps secret AI recruiting tool that showed bias
against women, Reuters, (2018).

[55] DeepLearningAI, A Chat with Andrew on MLOps: From Model-centric to Data-
centric AI, Mar. 2021.

[56] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ImageNet:
A Large-Scale Hierarchical Image Database, in IEEE Conference on Computer
Vision and Pattern Recognition, June 2009, pp. 248–255.

[57] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding, in Proceedings
of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers),
J. Burstein, C. Doran, and T. Solorio, eds., Association for Computational Lin-
guistics, 2019, pp. 4171–4186.

174

Bibliography

[58] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale, in International Conference on Learning
Representations, Oct. 2020.

[59] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
CARLA: An Open Urban Driving Simulator, in Conference on Robot Learning,
PMLR, Oct. 2017, pp. 1–16.

[60] T. Duboudin, E. Dellandréa, C. Abgrall, G. Hénaff, and L. Chen,
Learning less generalizable patterns for better test-time adaptation, in Proceedings
of the 18th International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 5:
VISAPP, SciTePress / INSTICC, 2023, pp. 349–358.

[61] J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online
learning and stochastic optimization., Journal of machine learning research, 12
(2011).

[62] V. Dumoulin and F. Visin, A guide to convolution arithmetic for deep learning,
arXiv:1603.07285, (2018).

[63] A. Dundar, M.-Y. Liu, T.-C. Wang, J. Zedlewski, and J. Kautz, Do-
main stylization: A strong, simple baseline for synthetic to real image domain
adaptation, arXiv:1807.09384, (2018).

[64] S. Fabbrizzi, S. Papadopoulos, E. Ntoutsi, and I. Kompatsiaris, A
survey on bias in visual datasets, Computer Vision and Image Understanding, 223
(2022), p. 103552.

[65] R. Feng, D. Zhao, and Z.-J. Zha, Understanding Noise Injection in GANs,
in Proceedings of the 38th International Conference on Machine Learning, PMLR,
July 2021, pp. 3284–3293.

[66] B. Fu, Z. Cao, J. Wang, and M. Long, Transferable Query Selection for
Active Domain Adaptation, 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), (2021), pp. 7268–7277.

[67] Y. Gal and Z. Ghahramani, Dropout as a Bayesian Approximation: Repre-
senting Model Uncertainty in Deep Learning, in Proceedings of The 33rd Interna-
tional Conference on Machine Learning, PMLR, June 2016, pp. 1050–1059.

[68] Y. Gal, R. Islam, and Z. Ghahramani, Deep bayesian active learning with
image data, in International Conference on Machine Learning, PMLR, 2017,
pp. 1183–1192.

175

Bibliography

[69] C. Geiger and C. Kanzow, Gradientenverfahren, in Numerische Verfahren zur
Lösung unrestringierter Optimierungsaufgaben, C. Geiger and C. Kanzow, eds.,
Springer-Lehrbuch, Springer, Berlin, Heidelberg, 1999, pp. 67–81.

[70] R. Geirhos, J.-H. Jacobsen, C. Michaelis, R. Zemel, W. Brendel,
M. Bethge, and F. A. Wichmann, Shortcut learning in deep neural networks,
Nature Machine Intelligence, 2 (2020), pp. 665–673.

[71] R. Geirhos, K. Narayanappa, B. Mitzkus, T. Thieringer, M. Bethge,
F. A. Wichmann, and W. Brendel, Partial success in closing the gap be-
tween human and machine vision, in Advances in Neural Information Processing
Systems, vol. 34, Curran Associates, Inc., 2021, pp. 23885–23899.

[72] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann,
and W. Brendel, ImageNet-trained CNNs are biased towards texture; increas-
ing shape bias improves accuracy and robustness, in International Conference on
Learning Representations, Sept. 2018.

[73] R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hier-
archies for accurate object detection and semantic segmentation, in 2014 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos,
CA, USA, June 2014, IEEE Computer Society, pp. 580–587.

[74] X. Glorot and Y. Bengio, Understanding the difficulty of training deep feed-
forward neural networks, in Proceedings of the Thirteenth International Confer-
ence on Artificial Intelligence and Statistics, Y. W. Teh and M. Titterington, eds.,
vol. 9 of Proceedings of Machine Learning Research, Chia Laguna Resort, Sardinia,
Italy, Mar. 2010, PMLR, pp. 249–256.

[75] X. Glorot, A. Bordes, and Y. Bengio, Deep sparse rectifier neural networks,
in Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, G. Gordon, D. Dunson, and M. Dud́ık, eds., vol. 15 of Proceedings
of Machine Learning Research, Fort Lauderdale, FL, USA, Apr. 2011, PMLR,
pp. 315–323.

[76] A. Gokaslan, V. Ramanujan, D. Ritchie, K. I. Kim, and J. Tomp-
kin, Improving Shape Deformation in Unsupervised Image-to-Image Translation,
in Proceedings of the European Conference on Computer Vision (ECCV), 2018,
pp. 649–665.

[77] I. Goodfellow, NIPS 2016 Tutorial: Generative Adversarial Networks,
arXiv:1701.00160, (2017).

[78] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press,
2016.

176

Bibliography

[79] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, Generative Adversarial
Nets, in Advances in Neural Information Processing Systems, vol. 27, Cambridge,
MA, USA, 2014, Curran Associates, Inc.

[80] , Generative adversarial networks, Communications of the ACM, 63 (2020),
pp. 139–144.

[81] H. Gottschalk, Hochdimensionale Wahrscheinlichkeitstheorie und maschinelles
Lernen. 2020.

[82] , Mathematical Foundations of Machine Learning. 2023.

[83] A. Griewank and A. Walther, Evaluating Derivatives: Principles and Tech-
niques of Algorithmic Differentiation, Second Edition, Society for Industrial and
Applied Mathematics, Jan. 2008.

[84] T. Grigoryev, A. Voynov, and A. Babenko, When, Why, and Which Pre-
trained GANs Are Useful?, arXiv:2202.08937, (2022).

[85] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu, and R. Pang, Conformer: Convolution-
augmented Transformer for Speech Recognition, arXiv:2005.08100, (2020).

[86] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville, Improved Training of Wasserstein GANs, in Advances in Neural
Information Processing Systems, vol. 30, Curran Associates, Inc., Mar. 2017.

[87] S. Harary, E. Schwartz, A. Arbelle, P. Staar, S. Abu-Hussein, E. Am-
rani, R. Herzig, A. Alfassy, R. Giryes, and H. Kuehne, Unsupervised
Domain Generalization by Learning a Bridge Across Domains, in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, June
2022, pp. 5280–5290.

[88] J. He and J. Xu, MgNet: A unified framework of multigrid and convolutional
neural network, Science China Mathematics, 62 (2019), pp. 1331–1354.

[89] K. He, R. Girshick, and P. Dollar, Rethinking ImageNet Pre-Training,
in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Oct.
2019, pp. 4917–4926.

[90] K. He, X. Zhang, S. Ren, and J. Sun, Spatial Pyramid Pooling in Deep
Convolutional Networks for Visual Recognition, in Computer Vision – ECCV 2014,
D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, eds., Lecture Notes in Computer
Science, Cham, 2014, Springer International Publishing, pp. 346–361.

[91] , Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification, in Proceedings of the IEEE International Conference on
Computer Vision, 2015, pp. 1026–1034.

177

Bibliography

[92] , Deep Residual Learning for Image Recognition, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[93] E. Heinert, M. Rottmann, K. Maag, and K. Kahl, Reducing texture bias
of deep neural networks via edge enhancing diffusion, arXiv:2402.09530, (2024).

[94] D. Hendrycks and K. Gimpel, Gaussian Error Linear Units (GELUs),
arXiv:1606.08415, (2023).

[95] K. Hermann, T. Chen, and S. Kornblith, The Origins and Prevalence of
Texture Bias in Convolutional Neural Networks, in Advances in Neural Informa-
tion Processing Systems, vol. 33, Curran Associates, Inc., 2020, pp. 19000–19015.

[96] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin,
Image analogies, in Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques, 2001, pp. 327–340.

[97] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochre-
iter, GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash
Equilibrium, in Advances in Neural Information Processing Systems, vol. 30, Cur-
ran Associates, Inc., 2017.

[98] G. E. Hinton, T. J. Sejnowski, and D. H. Ackley, Boltzmann Machines:
Constraint Satisfaction Networks That Learn, Technical Report TR-CMU-CS-84-
119, Carnegie-Mellon University, Department of Computer Science, Pittsburgh,
PA, 1984.

[99] S. Hochreiter, Untersuchungen Zu Dynamischen Neuronalen Netzen, diplom
thesis, Institut for Computer Science, Technical University of Munich, Apr. 1991.

[100] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko,
A. Efros, and T. Darrell, CyCADA: Cycle-Consistent Adversarial Domain
Adaptation, in International Conference on Machine Learning, PMLR, July 2018,
pp. 1989–1998.

[101] J. Hoffman, D. Wang, F. Yu, and T. Darrell, FCNs in the Wild: Pixel-
level Adversarial and Constraint-based Adaptation, arXiv:1612.02649, (2016).

[102] K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward net-
works are universal approximators, Neural Networks, 2 (1989), pp. 359–366.

[103] H. Hosseini, B. Xiao, M. Jaiswal, and R. Poovendran, Assessing Shape
Bias Property of Convolutional Neural Networks, arXiv:1803.07739, (2018).

[104] P. V. C. Hough, Method and means for recognizing complex patterns, Dec. 1962.

[105] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications, arXiv:1704.04861, (2017).

178

Bibliography

[106] X. Huang and S. Belongie, Arbitrary Style Transfer in Real-Time With Adap-
tive Instance Normalization, in Proceedings of the IEEE International Conference
on Computer Vision, 2017, pp. 1501–1510.

[107] E. Hüllermeier and W. Waegeman, Aleatoric and epistemic uncertainty in
machine learning: An introduction to concepts and methods, Machine Learning,
110 (2021), pp. 457–506.

[108] R. Hussain and S. Zeadally, Autonomous Cars: Research Results, Issues,
and Future Challenges, IEEE Communications Surveys & Tutorials, 21 (2019),
pp. 1275–1313.

[109] S. Ioffe, Batch renormalization: Towards reducing minibatch dependence in
batch-normalized models, Advances in neural information processing systems, 30
(2017).

[110] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network
training by reducing internal covariate shift, in International Conference on Ma-
chine Learning, pmlr, 2015, pp. 448–456.

[111] M. A. Islam, M. Kowal, P. Esser, S. Jia, B. Ommer, K. G. Derpanis,
and N. Bruce, Shape or Texture: Understanding Discriminative Features in
CNNs, in International Conference on Learning Representations, Jan. 2021.

[112] M. Z. Islam, M. M. Islam, and A. Asraf, A combined deep CNN-LSTM
network for the detection of novel coronavirus (COVID-19) using X-ray images,
Informatics in Medicine Unlocked, 20 (2020), p. 100412.

[113] P. Isola, S. Jegelka, T. Wang, and A. Curtis, 6.S898 Deep Learning Fall
2022. 2022.

[114] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, Image-to-Image Translation
with Conditional Adversarial Networks, in 2017 IEEE Conference on Computer
Vision and Pattern Recognition, July 2017, pp. 5967–5976.

[115] P. Jaccard, The Distribution of the Flora in the Alpine Zone, New Phytologist,
11 (1912), pp. 37–50.

[116] B. Jähne, Digital Image Processing, Springer-Verlag, Berlin/Heidelberg, 6 ed.,
2005.

[117] P. Jiang, A. Wu, Y. Han, Y. Shao, M. Qi, and B. Li, Bidirectional Adver-
sarial Training for Semi-Supervised Domain Adaptation, in Twenty-Ninth Inter-
national Joint Conference on Artificial Intelligence, vol. 1, July 2020, pp. 934–940.

[118] R. Jiao, Y. Zhang, L. Ding, B. Xue, J. Zhang, R. Cai, and C. Jin,
Learning with limited annotations: A survey on deep semi-supervised learning for
medical image segmentation, Computers in Biology and Medicine, 169 (2024),
p. 107840.

179

Bibliography

[119] L. Jing and Y. Tian, Self-supervised visual feature learning with deep neural
networks: A survey, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 43 (2019), pp. 4037–4058.

[120] K. Johnson, How Wrongful Arrests Based on AI Derailed 3 Men’s Lives, Wired,
(2022).

[121] M. Joneidi, S. Vahidian, A. Esmaeili, W. Wang, N. Rahnavard, B. Lin,
and M. Shah, Select to Better Learn: Fast and Accurate Deep Learning Us-
ing Data Selection From Nonlinear Manifolds, in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp. 7819–7829.

[122] M. Jordà, P. Valero-Lara, and A. J. Peña, Performance Evaluation of
cuDNN Convolution Algorithms on NVIDIA Volta GPUs, IEEE Access, 7 (2019),
pp. 70461–70473.

[123] Jülich Supercomputing Centre, JUWELS: Modular Tier-0/1 Supercom-
puter at the Jülich Supercomputing Centre, Journal of large-scale research facilities,
5 (2019).

[124] T. Kalb, Principles of Catastrophic Forgetting for Continual Semantic Segmen-
tation in Automated Driving, PhD thesis, Karlsruhe Institut of Technology, 2024.

[125] C. Kamann and C. Rother, Increasing the Robustness of Semantic Segmen-
tation Models with Painting-by-Numbers, in Computer Vision – ECCV 2020,
A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, eds., Lecture Notes in Com-
puter Science, Cham, 2020, Springer International Publishing, pp. 369–387.

[126] G. Kang, Y. Wei, Y. Yang, Y. Zhuang, and A. Hauptmann, Pixel-Level
Cycle Association: A New Perspective for Domain Adaptive Semantic Segmen-
tation, in Advances in Neural Information Processing Systems, vol. 33, Curran
Associates, Inc., 2020, pp. 3569–3580.

[127] T. Karras, S. Laine, and T. Aila, A Style-Based Generator Architecture for
Generative Adversarial Networks, in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019, pp. 4401–4410.

[128] A. Khoreva, R. Benenson, J. Hosang, M. Hein, and B. Schiele, Simple
Does It: Weakly Supervised Instance and Semantic Segmentation, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 876–885.

[129] M. Kim and H. Byun, Learning Texture Invariant Representation for Domain
Adaptation of Semantic Segmentation, in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2020, pp. 12975–12984.

180

Bibliography

[130] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, Learning to Discover
Cross-Domain Relations with Generative Adversarial Networks, in Proceedings
of the 34th International Conference on Machine Learning, PMLR, July 2017,
pp. 1857–1865.

[131] T. Kim and C. Kim, Attract, Perturb, and Explore: Learning a Feature Align-
ment Network for Semi-supervised Domain Adaptation, in European Conference
on Computer Vision – ECCV 2020, Cham, 2020, Springer International Publish-
ing, pp. 591–607.

[132] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, in 3rd
International Conference on Learning Representations, Y. Bengio and Y. LeCun,
eds., San Diego, CA, USA, 2015.

[133] D. P. Kingma and M. Welling, Auto-Encoding Variational Bayes,
arXiv:1312.6114, (2022).

[134] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollar, and R. Gir-
shick, Segment anything, in Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), Oct. 2023, pp. 4015–4026.

[135] A. Kirsch, J. van Amersfoort, and Y. Gal, BatchBALD: Efficient and
Diverse Batch Acquisition for Deep Bayesian Active Learning, in Advances in
Neural Information Processing Systems, vol. 32, Curran Associates, Inc., 2019.

[136] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly,
and N. Houlsby, Big Transfer (BiT): General Visual Representation Learning,
in Computer Vision – ECCV 2020, A. Vedaldi, H. Bischof, T. Brox, and J.-M.
Frahm, eds., Lecture Notes in Computer Science, Cham, 2020, Springer Interna-
tional Publishing, pp. 491–507.

[137] W. M. Kouw and M. Loog, An introduction to domain adaptation and transfer
learning, arXiv:1812.11806, (2019).

[138] K. Kowol, S. Bracke, and H. Gottschalk, survAIval: Survival Analysis
with the Eyes of AI, in Computer-Human Interaction Research and Applications,
A. Holzinger, H. P. da Silva, J. Vanderdonckt, and L. Constantine, eds., Com-
munications in Computer and Information Science, Cham, 2023, Springer Nature
Switzerland, pp. 153–170.

[139] , A-Eye: Driving with the Eyes of AI for Corner Case Generation, in 6th
International Conference on Computer-Human Interaction Research and Applica-
tions, Jan. 2024, pp. 41–48.

[140] P. Krähenbühl and V. Koltun, Efficient inference in fully connected crfs
with gaussian edge potentials, Advances in neural information processing systems,
24 (2011).

181

Bibliography

[141] N. Kriegeskorte, Deep Neural Networks: A New Framework for Modeling Bio-
logical Vision and Brain Information Processing, Annual Review of Vision Science,
1 (2015), pp. 417–446.

[142] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet Classification
with Deep Convolutional Neural Networks, in Advances in Neural Information
Processing Systems, vol. 25, Curran Associates, Inc., 2012.

[143] J. Kubilius, S. Bracci, and H. P. O. de Beeck, Deep Neural Networks
as a Computational Model for Human Shape Sensitivity, PLOS Computational
Biology, 12 (2016), p. e1004896.

[144] Y. LeCun, Y. Bengio, and G. Hinton, Deep Learning, Nature, 521 (2015),
pp. 436–44.

[145] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, Backpropagation applied to handwritten zip
code recognition, Neural computation, 1 (1989), pp. 541–551.

[146] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning
applied to document recognition, Proceedings of the IEEE, 86 (1998), pp. 2278–
2324.

[147] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, Efficient Back-
Prop, in Neural Networks: Tricks of the Trade: Second Edition, G. Montavon,
G. B. Orr, and K.-R. Müller, eds., Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, 2012, pp. 9–48.

[148] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham,
A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, Photo-
Realistic Single Image Super-Resolution Using a Generative Adversarial Network,
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2017, pp. 4681–4690.

[149] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, Deeply-Supervised
Nets, in Proceedings of the Eighteenth International Conference on Artificial In-
telligence and Statistics, PMLR, Feb. 2015, pp. 562–570.

[150] D.-H. Lee, Pseudo-label: The simple and efficient semi-supervised learning
method for deep neural networks, in Workshop on Challenges in Representation
Learning, ICML, vol. 3, Atlanta, 2013, p. 896.

[151] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function,
Neural Networks, 6 (1993), pp. 861–867.

182

Bibliography

[152] D. D. Lewis and J. Catlett, Heterogeneous Uncertainty Sampling for Super-
vised Learning, in Machine Learning Proceedings 1994, W. W. Cohen and H. Hirsh,
eds., Morgan Kaufmann, San Francisco (CA), Jan. 1994, pp. 148–156.

[153] F.-F. Li, Y. Li, and R. Gao, CS231n Convolutional Neural Networks for Visual
Recognition. 2023.

[154] M. Li and Z.-H. Zhou, Improve Computer-Aided Diagnosis With Machine
Learning Techniques Using Undiagnosed Samples, IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans, 37 (2007), pp. 1088–1098.

[155] R. Li, W. Cao, Q. Jiao, S. Wu, and H.-S. Wong, Simplified Unsupervised
Image Translation for Semantic Segmentation Adaptation, Pattern Recognition,
105 (2020), p. 107343.

[156] Y. Li, Q. Yu, M. Tan, J. Mei, P. Tang, W. Shen, A. Yuille, and C. Xie,
Shape-Texture Debiased Neural Network Training, in International Conference on
Learning Representations, Oct. 2020.

[157] M. Lin, Q. Chen, and S. Yan, Network In Network, arXiv:1312.4400, (2014).

[158] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, Focal Loss for
Dense Object Detection, in Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 2980–2988.

[159] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, Microsoft COCO: Common Objects in Context,
in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuyte-
laars, eds., vol. 8693, Springer International Publishing, Cham, 2014, pp. 740–755.

[160] S. Linnainmaa, Taylor expansion of the accumulated rounding error, BIT Nu-
merical Mathematics, 16 (1976), pp. 146–160.

[161] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,
Swin transformer: Hierarchical vision transformer using shifted windows, in Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, 2021,
pp. 10012–10022.

[162] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, A
ConvNet for the 2020s, in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 11976–11986.

[163] J. Long, E. Shelhamer, and T. Darrell, Fully Convolutional Networks
for Semantic Segmentation, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 3431–3440.

[164] I. Loshchilov and F. Hutter, Decoupled Weight Decay Regularization, in
International Conference on Learning Representations, Sept. 2018.

183

Bibliography

[165] T. Luong, H. Pham, and C. D. Manning, Effective Approaches to Attention-
based Neural Machine Translation, in Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing, L. Màrquez, C. Callison-Burch,
and J. Su, eds., Lisbon, Portugal, Sept. 2015, Association for Computational Lin-
guistics, pp. 1412–1421.

[166] L. Ma, Pure Pytorch implementation of RGB to HSV/HSL conversion, Dec. 2023.

[167] A. L. Maas, A. Y. Hannun, and A. Y. Ng, Rectifier nonlinearities improve
neural network acoustic models, in ICM Workshop on Deep Learning for Audio,
Speech, and Language Processing., vol. 30, Atlanta, GA, 2013, p. 3.

[168] S. Mabu, M. Miyake, T. Kuremoto, and S. Kido, Semi-supervised
CycleGAN for domain transformation of chest CT images and its application to
opacity classification of diffuse lung diseases, International Journal of Computer
Assisted Radiology and Surgery, 16 (2021), pp. 1925–1935.

[169] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. Paul Smol-
ley, Least Squares Generative Adversarial Networks, in Proceedings of the IEEE
International Conference on Computer Vision, Oct. 2017, pp. 2794–2802.

[170] W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in
nervous activity, The bulletin of mathematical biophysics, 5 (1943), pp. 115–133.

[171] K. Mei, C. Zhu, J. Zou, and S. Zhang, Instance Adaptive Self-Training for
Unsupervised Domain Adaptation, arXiv:2008.12197, (2020).

[172] D. A. Mély, J. Kim, M. McGill, Y. Guo, and T. Serre, A systematic com-
parison between visual cues for boundary detection, Vision Research, 120 (2016),
pp. 93–107.

[173] J. B. Merrill and F. Siddiqui, 17 fatalities, 736 crashes: The shocking toll
of Tesla’s Autopilot, Washington Post, (2023).

[174] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, Unrolled Generative
Adversarial Networks, in International Conference on Learning Representations,
Nov. 2016.

[175] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz,
and D. Terzopoulos, Image Segmentation Using Deep Learning: A Survey,
IEEE Transactions on Pattern Analysis and Machine Intelligence, (2021).

[176] D. Mindlin, M. Schilling, and P. Cimiano, ABC-GAN: Spatially Con-
strained Counterfactual Generation for Image Classification Explanations, in Ex-
plainable Artificial Intelligence, L. Longo, ed., Communications in Computer and
Information Science, Cham, 2023, Springer Nature Switzerland, pp. 260–282.

[177] M. Mirza and S. Osindero, Conditional Generative Adversarial Nets,
arXiv:1411.1784, (2014).

184

Bibliography

[178] T. M. Mitchell, The Need for Biases in Learning Generalizations, Tech. Rep.
CBM-TR-117, Computer Science Department, New Brunswick, NJ 08904, May
1980.

[179] MMSegmentation Contributors, OpenMMLab semantic segmentation tool-
box and benchmark, July 2020.

[180] S. Mohamed and B. Lakshminarayanan, Learning in Implicit Generative
Models, arXiv:1610.03483, (2017).

[181] P. Munjal, N. Hayat, M. Hayat, J. Sourati, and S. Khan, Towards Ro-
bust and Reproducible Active Learning Using Neural Networks, arxiv:2002.09564,
(2020).

[182] Z. Murez, S. Kolouri, D. Kriegman, R. Ramamoorthi, and K. Kim,
Image to Image Translation for Domain Adaptation, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City,
UT, USA, June 2018, pp. 4500–4509.

[183] K. P. Murphy, Probabilistic Machine Learning: An Introduction, MIT Press,
2022.

[184] , Probabilistic Machine Learning: Advanced Topics, MIT Press, 2023.

[185] A. Mütze, M. Rottmann, and H. Gottschalk, Semi-Supervised Domain
Adaptation with CycleGAN Guided by Downstream Task Awareness, in Proceed-
ings of the 18th International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 5:
VISAPP, SciTePress, 2023, pp. 80–90.

[186] , Semi-supervised Task Aware Image-to-Image Translation, in International
Joint Conference on Computer Vision, Imaging and Computer Graphics, vol. 2103
of Communications in Computer and Information Science (CCIS), Springer Nature
Switzerland, Cham, to appear.

[187] M. M. Naseer, K. Ranasinghe, S. H. Khan, M. Hayat, F. Shah-
baz Khan, and M.-H. Yang, Intriguing properties of vision transformers, in
Advances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, eds., vol. 34, Curran Associates, Inc.,
2021, pp. 23296–23308.

[188] H. Navidan, P. F. Moshiri, M. Nabati, R. Shahbazian, S. A. Ghorashi,
V. Shah-Mansouri, and D. Windridge, Generative Adversarial Networks
(GANs) in networking: A comprehensive survey & evaluation, Computer Net-
works, 194 (2021), p. 108149.

185

Bibliography

[189] H. T. Nguyen and A. Smeulders, Active learning using pre-clustering, in
Proceedings of the Twenty-First International Conference on Machine Learning,
2004, p. 79.

[190] T. T. Nguyen, Q. V. H. Nguyen, D. T. Nguyen, D. T. Nguyen,
T. Huynh-The, S. Nahavandi, T. T. Nguyen, Q.-V. Pham, and C. M.
Nguyen, Deep learning for deepfakes creation and detection: A survey, Computer
Vision and Image Understanding, 223 (2022), p. 103525.

[191] S. Niklaus, A Reimplementation of {HED} Using {PyTorch}, 2018.

[192] C. G. Northcutt, A. Athalye, and J. Mueller, Pervasive Label Errors
in Test Sets Destabilize Machine Learning Benchmarks, in Thirty-Fifth Confer-
ence on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 1), June 2021.

[193] S. Nowozin, B. Cseke, and R. Tomioka, F-GAN: Training Generative Neu-
ral Samplers using Variational Divergence Minimization, in Advances in Neural
Information Processing Systems, vol. 29, Curran Associates, Inc., 2016.

[194] E. Ntoutsi, P. Fafalios, U. Gadiraju, V. Iosifidis, W. Nejdl, M.-E. Vi-
dal, S. Ruggieri, F. Turini, S. Papadopoulos, E. Krasanakis, I. Kom-
patsiaris, K. Kinder-Kurlanda, C. Wagner, F. Karimi, M. Fernandez,
H. Alani, B. Berendt, T. Kruegel, C. Heinze, K. Broelemann, G. Kas-
neci, T. Tiropanis, and S. Staab, Bias in data-driven artificial intelligence
systems—An introductory survey, WIREs Data Mining and Knowledge Discovery,
10 (2020), p. e1356.

[195] P. Oberdiek, G. Fink, and M. Rottmann, UQGAN: A unified model for
uncertainty quantification of deep classifiers trained via conditional GANs, in
Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, eds., vol. 35, Curran Associates,
Inc., 2022, pp. 21371–21385.

[196] OpenAI, GPT-4 Technical Report, arXiv:2303.08774, (2023).

[197] S. J. Pan and Q. Yang, A Survey on Transfer Learning, IEEE Transactions on
Knowledge and Data Engineering, 22 (2010), pp. 1345–1359.

[198] Y. Pang, J. Lin, T. Qin, and Z. Chen, Image-to-Image Translation: Methods
and Applications, IEEE Transactions on Multimedia, (2021).

[199] J.-H. Park, Y.-S. Kim, H. Seo, and Y.-J. Cho, Analysis of Training Deep
Learning Models for PCB Defect Detection, Sensors, 23 (2023), p. 2766.

186

Bibliography

[200] G. Parmar, K. Kumar Singh, R. Zhang, Y. Li, J. Lu, and J.-Y. Zhu,
Zero-shot Image-to-Image Translation, in ACM SIGGRAPH 2023 Conference Pro-
ceedings, SIGGRAPH ’23, New York, NY, USA, July 2023, Association for Com-
puting Machinery, pp. 1–11.

[201] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, PyTorch: An Impera-
tive Style, High-Performance Deep Learning Library, in Advances in Neural In-
formation Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d\textquotesingle Alché-Buc, E. Fox, and R. Garnett, eds., Curran Associates,
Inc., 2019, pp. 8024–8035.

[202] P. Perona and J. Malik, Scale-space and edge detection using anisotropic
diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12
(1990), pp. 629–639.

[203] J. C. Peterson, R. M. Battleday, T. L. Griffiths, and O. Rus-
sakovsky, Human uncertainty makes classification more robust, in 2019
IEEE/CVF International Conference on Computer Vision (ICCV), Los Alami-
tos, CA, USA, Nov. 2019, IEEE Computer Society, pp. 9617–9626.

[204] R. Po, W. Yifan, V. Golyanik, K. Aberman, J. T. Barron, A. H.
Bermano, E. R. Chan, T. Dekel, A. Holynski, A. Kanazawa, C. K.
Liu, L. Liu, B. Mildenhall, M. Nießner, B. Ommer, C. Theobalt,
P. Wonka, and G. Wetzstein, State of the Art on Diffusion Models for Vi-
sual Computing, arXiv:2310.07204, (2023).

[205] E. Poeta, G. Ciravegna, E. Pastor, T. Cerquitelli, and E. Baralis,
Concept-based Explainable Artificial Intelligence: A Survey, arXiv:2312.12936,
(2023).

[206] B. T. Polyak, Some methods of speeding up the convergence of iteration methods,
Ussr computational mathematics and mathematical physics, 4 (1964), pp. 1–17.

[207] V. Prabhu, A. Chandrasekaran, K. Saenko, and J. Hoffman, Ac-
tive Domain Adaptation via Clustering Uncertainty-Weighted Embeddings, in Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, 2021,
pp. 8505–8514.

[208] S. J. Prince, Understanding Deep Learning, MIT Press, 2023.

[209] A. Radford, L. Metz, and S. Chintala, Unsupervised Representation Learn-
ing with Deep Convolutional Generative Adversarial Networks, arXiv:1511.06434,
(2016).

187

Bibliography

[210] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, Improving
language understanding by generative pre-training, (2018).

[211] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
Language models are unsupervised multitask learners, OpenAI blog, 1 (2019), p. 9.

[212] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, Exploring the limits of transfer learning with
a unified text-to-text transformer, The Journal of Machine Learning Research, 21
(2020), pp. 140:5485–140:5551.

[213] M. Raghu, C. Zhang, J. Kleinberg, and S. Bengio, Transfusion: Under-
standing Transfer Learning for Medical Imaging, in Advances in Neural Informa-
tion Processing Systems, vol. 32, Curran Associates, Inc., 2019.

[214] P. Rai, A. Saha, H. Daumé, and S. Venkatasubramanian, Domain Adap-
tation meets Active Learning, in Proceedings of the NAACL HLT 2010 Workshop
on Active Learning for Natural Language Processing, B. Settles, K. Small, and
K. Tomanek, eds., Los Angeles, California, June 2010, Association for Computa-
tional Linguistics, pp. 27–32.

[215] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, Hierarchical
Text-Conditional Image Generation with CLIP Latents, arXiv:2204.06125, (2022).

[216] L. J. Ratliff, S. A. Burden, and S. S. Sastry, Characterization and compu-
tation of local Nash equilibria in continuous games, in 2013 51st Annual Allerton
Conference on Communication, Control, and Computing (Allerton), IEEE, Oct.
2013, pp. 917–924.

[217] A. J. Ratner, C. M. De Sa, S. Wu, D. Selsam, and C. Ré, Data Program-
ming: Creating Large Training Sets, Quickly, in Advances in Neural Information
Processing Systems, vol. 29, Curran Associates, Inc., 2016.

[218] S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towards real-time
object detection with region proposal networks, in Advances in Neural Information
Processing Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Gar-
nett, eds., vol. 28, Curran Associates, Inc., 2015.

[219] D. J. Rezende, S. Mohamed, and D. Wierstra, Stochastic Backpropagation
and Approximate Inference in Deep Generative Models, in Proceedings of the 31st
International Conference on Machine Learning, PMLR, June 2014, pp. 1278–1286.

[220] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, Playing for Data:
Ground Truth from Computer Games, in European Conference on Computer Vi-
sion (ECCV), B. Leibe, J. Matas, N. Sebe, and M. Welling, eds., vol. 9906 of
LNCS, Springer International Publishing, 2016, pp. 102–118.

188

Bibliography

[221] L. Roberts, Machine Perception of Three-Dimensional Solids, Garland Publish-
ing, New York, NY, USA, 1963.

[222] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
High-Resolution Image Synthesis With Latent Diffusion Models, in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022,
pp. 10684–10695.

[223] O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional Networks
for Biomedical Image Segmentation, in Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells,
and A. F. Frangi, eds., vol. 9351, Springer International Publishing, Cham, 2015,
pp. 234–241.

[224] G. Ros, L. Sellart, J. Materzynska, D. Vázquez, and A. M. López,
The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic
Segmentation of Urban Scenes, in The IEEE Conference on Computer Vision and
Pattern Recognition, June 2016, pp. 3234–3243.

[225] K. Rösch, F. Heidecker, J. Truetsch, K. Kowol, C. Schicktanz,
M. Bieshaare, B. Sick, and C. Stiller, Space, Time, and Interaction:
A Taxonomy of Corner Cases in Trajectory Datasets for Automated Driving, in
2022 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2022,
pp. 86–93.

[226] F. Rosenblatt, The perceptron: A probabilistic model for information storage
and organization in the brain., Psychological Review, 65 (1958), pp. 386–408.

[227] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms, vol. 55, Spartan books Washington, DC, 1962.

[228] M. Rottmann and M. Reese, Automated Detection of Label Errors in Se-
mantic Segmentation Datasets via Deep Learning and Uncertainty Quantifica-
tion, in 2023 IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), Jan. 2023, pp. 3213–3222.

[229] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning represen-
tations by back-propagating errors, Nature, 323 (1986), pp. 533–536.

[230] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, ImageNet Large Scale Visual Recognition Challenge, International
Journal of Computer Vision, 115 (2015), pp. 211–252.

[231] K. Saito, D. Kim, S. Sclaroff, T. Darrell, and K. Saenko, Semi-
supervised domain adaptation via minimax entropy, in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp. 8050–8058.

189

Bibliography

[232] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford,
X. Chen, and X. Chen, Improved techniques for training GANs, in Advances
in Neural Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, eds., vol. 29, Curran Associates, Inc., 2016.

[233] N. Sambasivan, S. Kapania, H. Highfill, D. Akrong, P. Paritosh, and
L. M. Aroyo, “Everyone wants to do the model work, not the data work”: Data
Cascades in High-Stakes AI, Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, (2021), pp. 1–15.

[234] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, Mo-
bileNetV2: Inverted Residuals and Linear Bottlenecks, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520.

[235] P. Sangkloy, N. Burnell, C. Ham, and J. Hays, The sketchy database:
Learning to retrieve badly drawn bunnies, ACM Transactions on Graphics, 35
(2016), pp. 119:1–119:12.

[236] I. H. Sarker, Deep Learning: A Comprehensive Overview on Techniques, Tax-
onomy, Applications and Research Directions, SN Computer Science, 2 (2021),
p. 420.

[237] A. Sauer and A. Geiger, Counterfactual generative networks, in International
Conference on Learning Representations, 2021.

[238] A. Sauer, K. Schwarz, and A. Geiger, StyleGAN-XL: Scaling StyleGAN
to Large Diverse Datasets, in ACM SIGGRAPH 2022 Conference Proceedings,
SIGGRAPH ’22, New York, NY, USA, July 2022, Association for Computing
Machinery, pp. 1–10.

[239] T. Scheffer, C. Decomain, and S. Wrobel, Active Hidden Markov Models
for Information Extraction, in Advances in Intelligent Data Analysis, F. Hoffmann,
D. J. Hand, N. Adams, D. Fisher, and G. Guimaraes, eds., Lecture Notes in
Computer Science, Berlin, Heidelberg, 2001, Springer, pp. 309–318.

[240] C. Schmaltz, J. Weickert, and A. Bruhn, Beating the Quality of JPEG
2000 with Anisotropic Diffusion, in Pattern Recognition, J. Denzler, G. Notni,
and H. Süße, eds., Lecture Notes in Computer Science, Berlin, Heidelberg, 2009,
Springer, pp. 452–461.

[241] M. Schwonberg, F. E. Bouazati, N. M. Schmidt, and H. Gottschalk,
Augmentation-based Domain Generalization for Semantic Segmentation, in 2023
IEEE Intelligent Vehicles Symposium (IV), June 2023, pp. 1–8.

[242] M. Schwonberg, J. Niemeijer, J.-A. Termöhlen, J. P. schäfer, N. M.
Schmidt, H. Gottschalk, and T. Fingscheidt, Survey on Unsupervised Do-
main Adaptation for Semantic Segmentation for Visual Perception in Automated
Driving, IEEE Access, 11 (2023), pp. 54296–54336.

190

Bibliography

[243] O. Sener and S. Savarese, Active Learning for Convolutional Neural Networks:
A Core-Set Approach, in International Conference on Learning Representations,
Feb. 2018.

[244] B. Settles, Active Learning Literature Survey, Computer Sciences Technical
Report 1648, University of Wisconsin–Madison, 2009.

[245] H. S. Seung, M. Opper, and H. Sompolinsky, Query by committee, in
Proceedings of the Fifth Annual Workshop on Computational Learning Theory,
COLT ’92, New York, NY, USA, July 1992, Association for Computing Machinery,
pp. 287–294.

[246] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning:
From Theory to Algorithms, Cambridge University Press, Cambridge, 2014.

[247] C. E. Shannon, A mathematical theory of communication, The Bell System
Technical Journal, 27 (1948), pp. 379–423.

[248] L. G. Shapiro and G. C. Stockman, Computer Vision, Prentice Hall, 2001.

[249] G. Shen, Y. Jiao, Y. Lin, and J. Huang, Differentiable Neural Networks with
RePU Activation: With Applications to Score Estimation and Isotonic Regression,
Apr. 2023.

[250] I. Shin, D.-J. Kim, J. W. Cho, S. Woo, K. Park, and I. S. Kweon,
LabOR: Labeling Only if Required for Domain Adaptive Semantic Segmentation,
in Proceedings of the IEEE/CVF International Conference on Computer Vision,
2021, pp. 8588–8598.

[251] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and
R. Webb, Learning From Simulated and Unsupervised Images Through Adver-
sarial Training, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 2107–2116.

[252] S. Shukla, L. Van Gool, and R. Timofte, Extremely Weak Supervised
Image-to-Image Translation for Semantic Segmentation, in 2019 IEEE/CVF In-
ternational Conference on Computer Vision Workshop (ICCVW), Oct. 2019,
pp. 3368–3377.

[253] J. Sietsma and R. J. F. Dow, Creating artificial neural networks that gener-
alize, Neural Networks, 4 (1991), pp. 67–79.

[254] T. Simonite, When It Comes to Gorillas, Google Photos Remains Blind, Wired,
(2018).

[255] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-
scale image recognition, in International Conference on Learning Representations,
2015.

191

Bibliography

[256] A. Singh, CLDA: Contrastive Learning for Semi-Supervised Domain Adaptation,
in Advances in Neural Information Processing Systems, Nov. 2021.

[257] W. K. small yellow duck, Painter by numbers, 2016.

[258] A. R. Smith, Color gamut transform pairs, ACM SIGGRAPH Computer Graph-
ics, 12 (1978), pp. 12–19.

[259] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, Dropout: A Simple Way to Prevent Neural Networks from
Overfitting, Journal of Machine Learning Research, 15 (2014), pp. 1929–1958.

[260] R. Strudel, R. Garcia, I. Laptev, and C. Schmid, Segmenter: Transformer
for Semantic Segmentation, in Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, 2021, pp. 7262–7272.

[261] J.-C. Su, Y.-H. Tsai, K. Sohn, B. Liu, S. Maji, and M. Chandraker,
Active Adversarial Domain Adaptation, in Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), 2020, pp. 739–748.

[262] S. Suzuki and K. be, Topological structural analysis of digitized binary images
by border following, Computer Vision, Graphics, and Image Processing, 30 (1985),
pp. 32–46.

[263] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, and A. Rabinovich, Going deeper with convolutions, in
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2015, pp. 1–9.

[264] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, Rethink-
ing the Inception Architecture for Computer Vision, in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016, pp. 2818–2826.

[265] M. Tan and Q. Le, EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks, in Proceedings of the 36th International Conference on Machine
Learning, PMLR, May 2019, pp. 6105–6114.

[266] A. Tao, K. Sapra, and B. Catanzaro, Hierarchical multi-scale attention for
semantic segmentation, arXiv:2005.10821, (2020).

[267] F. Tao, B. Xiao, Q. Qi, J. Cheng, and P. Ji, Digital twin modeling, Journal
of Manufacturing Systems, 64 (2022), pp. 372–389.

[268] L. Theis, A. van den Oord, and M. Bethge, A note on the evaluation of
generative models, arXiv:1511.01844, (2016).

192

Bibliography

[269] J. Theodoridis, J. Hofmann, J. Maucher, and A. Schilling, Trapped
in Texture Bias? A Large Scale Comparison of Deep Instance Segmentation, in
Computer Vision – ECCV 2022, S. Avidan, G. Brostow, M. Cissé, G. M. Farinella,
and T. Hassner, eds., Lecture Notes in Computer Science, Cham, 2022, Springer
Nature Switzerland, pp. 609–627.

[270] T. Tieleman, G. Hinton, et al., Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude, COURSERA: Neural networks for
machine learning, 4 (2012), pp. 26–31.

[271] M. Toldo, A. Maracani, U. Michieli, and P. Zanuttigh, Unsupervised
Domain Adaptation in Semantic Segmentation: A Review, Technologies, 8 (2020),
p. 35.

[272] M. Toldo, U. Michieli, G. Agresti, and P. Zanuttigh, Unsupervised
domain adaptation for mobile semantic segmentation based on cycle consistency
and feature alignment, Image and Vision Computing, 95 (2020), p. 103889.

[273] J. M. Tomczak, Deep Generative Modeling, Springer International Publishing,
Cham, 2022.

[274] S. Torquato, Cell and Random-Field Models, in Random Heterogeneous Mate-
rials: Microstructure and Macroscopic Properties, Interdisciplinary Applied Math-
ematics, Springer, New York, NY, 2002, pp. 188–209.

[275] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jegou, Training data-efficient image transformers & distillation through at-
tention, in Proceedings of the 38th International Conference on Machine Learning,
PMLR, July 2021, pp. 10347–10357.

[276] A. Tripathi, R. Singh, A. Chakraborty, and P. Shenoy, Edges to Shapes
to Concepts: Adversarial Augmentation for Robust Vision, in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023,
pp. 24470–24479.

[277] Y.-H. Tsai, W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang, and
M. Chandraker, Learning to Adapt Structured Output Space for Semantic
Segmentation, in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, June 2018, pp. 7472–7481.

[278] Y.-H. Tsai, K. Sohn, S. Schulter, and M. Chandraker, Domain adapta-
tion for structured output via discriminative patch representations, in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 1456–
1465.

[279] S. Tuli, I. Dasgupta, E. Grant, and T. L. Griffiths, Are Convolutional
Neural Networks or Transformers more like human vision?, arXiv:2105.07197,
(2021).

193

Bibliography

[280] J. E. van Engelen and H. H. Hoos, A survey on semi-supervised learning,
Machine Learning, 109 (2020), pp. 373–440.

[281] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, Attention is all you need, in Advances
in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds., vol. 30, Curran
Associates, Inc., 2017.

[282] A. Veit, M. J. Wilber, and S. Belongie, Residual Networks Behave Like
Ensembles of Relatively Shallow Networks, in Advances in Neural Information
Processing Systems, vol. 29, Curran Associates, Inc., 2016.

[283] T.-H. Vu, H. Jain, M. Bucher, M. Cord, and P. Perez, ADVENT: Adver-
sarial Entropy Minimization for Domain Adaptation in Semantic Segmentation,
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

[284] D. Wang and Y. Shang, A new active labeling method for deep learning, in
2014 International Joint Conference on Neural Networks (IJCNN), July 2014,
pp. 112–119.

[285] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catan-
zaro, High-Resolution Image Synthesis and Semantic Manipulation with Condi-
tional GANs, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 8798–8807.

[286] W. Wang, J. Dai, Z. Chen, Z. Huang, Z. Li, X. Zhu, X. Hu, T. Lu,
L. Lu, H. Li, X. Wang, and Y. Qiao, InternImage: Exploring Large-
Scale Vision Foundation Models With Deformable Convolutions, in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023,
pp. 14408–14419.

[287] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo,
and L. Shao, Pyramid Vision Transformer: A Versatile Backbone for Dense
Prediction Without Convolutions, in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 568–578.

[288] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and
C. Change Loy, ESRGAN: Enhanced Super-Resolution Generative Adversar-
ial Networks, in Proceedings of the European Conference on Computer Vision
(ECCV) Workshops, 2018, pp. 0–0.

[289] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, Image quality assess-
ment: From error visibility to structural similarity, IEEE Transactions on Image
Processing, 13 (2004), pp. 600–612.

194

Bibliography

[290] Z. Wang, Q. She, and T. E. Ward, Generative Adversarial Networks in
Computer Vision: A Survey and Taxonomy, ACM Computing Surveys, 54 (2021),
pp. 1–38.

[291] Z. Wang, Y. Wei, R. Feris, J. Xiong, W.-M. Hwu, T. S. Huang, and
H. Shi, Alleviating Semantic-Level Shift: A Semi-Supervised Domain Adaptation
Method for Semantic Segmentation, in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops, 2020, pp. 936–937.

[292] J. Weickert, Coherence-enhancing diffusion of colour images1Extended version
of a presentation at the Seventh National Symposium on Pattern Recognition and
Image Analysis (Barcelona, April 21–25, 1997).1, Image and Vision Computing,
17 (1999), pp. 201–212.

[293] J. Weickert and M. Welk, Tensor Field Interpolation with PDEs, in Visual-
ization and Processing of Tensor Fields, J. Weickert and H. Hagen, eds., Mathe-
matics and Visualization, Springer, Berlin, Heidelberg, 2006, pp. 315–325.

[294] J. Weickert, M. Welk, and M. Wickert, L2-Stable Nonstandard Finite
Differences for Anisotropic Diffusion, in Scale Space and Variational Methods in
Computer Vision, A. Kuijper, K. Bredies, T. Pock, and H. Bischof, eds., Lecture
Notes in Computer Science, Berlin, Heidelberg, 2013, Springer, pp. 380–391.

[295] B. Wilson, J. Hoffman, and J. Morgenstern, Predictive Inequity in Object
Detection, arXiv:1902.11097, (2019).

[296] M. Wrenninge and J. Unger, Synscapes: A Photorealistic Synthetic Dataset
for Street Scene Parsing, arXiv:1810.08705, (2018).

[297] T.-H. Wu, Y.-S. Liou, S.-J. Yuan, H.-Y. Lee, T.-I. Chen, K.-C. Huang,
and W. H. Hsu, $\mathrm {Dˆ2ADA}$: Dynamic Density-Aware Active Do-
main Adaptation for Semantic Segmentation, in Computer Vision – ECCV 2022,
S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner, eds., Lecture
Notes in Computer Science, Cham, 2022, Springer Nature Switzerland, pp. 449–
467.

[298] Z. Wu, X. Han, Y.-L. Lin, M. G. Uzunbas, T. Goldstein, S. N. Lim,
and L. S. Davis, Dcan: Dual channel-wise alignment networks for unsupervised
scene adaptation, in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 518–534.

[299] B. Xie, L. Yuan, S. Li, C. H. Liu, X. Cheng, and G. Wang, Active Learning
for Domain Adaptation: An Energy-Based Approach, in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 36, June 2022, pp. 8708–8716.

[300] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo,
SegFormer: Simple and Efficient Design for Semantic Segmentation with Trans-
formers, in Advances in Neural Information Processing Systems, Nov. 2021.

195

Bibliography

[301] M. Xie, S. Li, R. Zhang, and C. H. Liu, Dirichlet-based Uncertainty Cali-
bration for Active Domain Adaptation, in The Eleventh International Conference
on Learning Representations, 2023.

[302] S. Xie and Z. Tu, Holistically-nested edge detection, in Proceedings of IEEE
International Conference on Computer Vision, 2015.

[303] F. Xu, H. Uszkoreit, Y. Du, W. Fan, D. Zhao, and J. Zhu, Explainable AI:
A Brief Survey on History, Research Areas, Approaches and Challenges, in Natural
Language Processing and Chinese Computing, J. Tang, M.-Y. Kan, D. Zhao, S. Li,
and H. Zan, eds., Lecture Notes in Computer Science, Cham, 2019, Springer
International Publishing, pp. 563–574.

[304] J. Xu, A deep learning approach to building an intelligent video surveillance sys-
tem, Multimedia Tools and Applications, 80 (2021), pp. 5495–5515.

[305] Y. Yang and S. Soatto, Fda: Fourier domain adaptation for semantic seg-
mentation, in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 4085–4095.

[306] H. Yao, X. Hu, and X. Li, Enhancing pseudo label quality for semi-supervised
domain-generalized medical image segmentation, in Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 36, 2022, pp. 3099–3107.

[307] D. Yarotsky, Error bounds for approximations with deep ReLU networks, Neural
Networks, 94 (2017), pp. 103–114.

[308] , Universal Approximations of Invariant Maps by Neural Networks, Construc-
tive Approximation, 55 (2022), pp. 407–474.

[309] Z. Yi, H. Zhang, P. Tan, and M. Gong, DualGAN: Unsupervised Dual Learn-
ing for Image-to-Image Translation, in 2017 IEEE International Conference on
Computer Vision (ICCV), IEEE Computer Society, Oct. 2017, pp. 2868–2876.

[310] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, Generative
image inpainting with contextual attention, arXiv:1801.07892, (2018).

[311] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z.-H. Jiang, F. E. Tay,
J. Feng, and S. Yan, Tokens-to-token ViT: Training vision transformers from
scratch on ImageNet, in Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), Oct. 2021, pp. 558–567.

[312] L. Yuan, Q. Hou, Z. Jiang, J. Feng, and S. Yan, VOLO: Vision Outlooker
for Visual Recognition, IEEE Transactions on Pattern Analysis and Machine In-
telligence, 45 (2023), pp. 6575–6586.

[313] C. Yun, S. Bhojanapalli, A. S. Rawat, S. Reddi, and S. Kumar, Are
Transformers universal approximators of sequence-to-sequence functions?, in In-
ternational Conference on Learning Representations, Sept. 2019.

196

Bibliography

[314] J.-N. Zaech, D. Dai, M. Hahner, and L. V. Gool, Texture Underfitting for
Domain Adaptation, in 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), Oct. 2019, pp. 547–552.

[315] J. R. Zech, M. A. Badgeley, M. Liu, A. B. Costa, J. J. Titano, and
E. K. Oermann, Variable generalization performance of a deep learning model to
detect pneumonia in chest radiographs: A cross-sectional study, PLOS Medicine,
15 (2018), p. e1002683.

[316] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive into Deep Learning,
Cambridge University Press, 2023.

[317] P. Zhang, B. Zhang, T. Zhang, D. Chen, Y. Wang, and F. Wen, Pro-
totypical pseudo label denoising and target structure learning for domain adaptive
semantic segmentation, in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 12414–12424.

[318] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, The
unreasonable effectiveness of deep features as a perceptual metric, in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 586–
595.

[319] Y. Zhang and M. A. Mazurowski, Convolutional neural networks rarely learn
shape for semantic segmentation, Pattern Recognition, 146 (2024), p. 110018.

[320] Y. Zhao, R. Wu, and H. Dong, Unpaired Image-to-Image Translation Using
Adversarial Consistency Loss, in Computer Vision – ECCV 2020, A. Vedaldi,
H. Bischof, T. Brox, and J.-M. Frahm, eds., Lecture Notes in Computer Science,
Cham, 2020, Springer International Publishing, pp. 800–815.

[321] C. Zhou, Y. Huang, M. Pu, Q. Guan, L. Huang, and H. Ling, The
Treasure Beneath Multiple Annotations: An Uncertainty-Aware Edge Detector,
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023, pp. 15507–15517.

[322] J. Zhou, C. Wei, H. Wang, W. Shen, C. Xie, A. Yuille, and T. Kong,
Image BERT Pre-training with Online Tokenizer, in International Conference on
Learning Representations, Oct. 2021.

[323] J.-J. Zhu and J. Bento, Generative Adversarial Active Learning,
arXiv:1702.07956, (2017).

[324] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, Unpaired Image-to-Image
Translation using Cycle-Consistent Adversarial Networks, in IEEE International
Conference on Computer Vision (ICCV), 2017.

197

Bibliography

[325] Y. Zou, Z. Yu, B. V. K. V. Kumar, and J. Wang, Unsupervised Domain
Adaptation for Semantic Segmentation via Class-Balanced Self-Training, in Pro-
ceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 289–
305.

[326] Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, Object Detection in 20 Years:
A Survey, Proceedings of the IEEE, 111 (2023), pp. 257–276.

198

	Acknowledgments
	Foreword
	Introduction
	Fundamentals
	Deep Neural Networks
	Feedforward Networks
	Convolutional Neural Networks

	Learning from Data
	Statistical Learning
	Error Decomposition
	Universal Approximation
	Training Process
	Training Stabilization by Normalization and Regularization Layers

	Deep Learning for Images
	Classification
	Semantic Segmentation

	Overcoming Data Limitation
	Data Augmentation
	Weak and Semi-supervised Learning
	Transfer Learning
	Domain Adaptation

	Generative Learning
	Generative Adversarial Networks
	Vanilla GAN
	GAN Variants
	Evaluation Metrics

	Image-to-Image Translation
	Pix-to-Pix
	CycleGAN

	Semi-supervised Task Aware Image-to-Image Domain Adaptation
	Introduction
	Related Work
	Semi-supervised Task Aware I2I Translation
	Stage a) – Training the Task Expert
	Stage b) – Unsupervised Image-to-Image Translation
	Stage c) – Downstream Task Awareness
	Complete SSDA Method
	Sampling Strategies for the Labeled Subset TR

	Evaluation
	Semantic Segmentation of Real and Simulated Street Scenes
	Active SSDA on Real to Abstract Data

	Conclusion and Outlook

	Cooperation Is All You Need?
	Introduction
	Related Work
	Cue Decomposition
	Color
	Texture
	Shape
	Cue Experts

	Late Fusion
	Cue Influence Analysis
	Base Datasets
	Implementation
	Experimental Setup and Evaluation Metrics
	Cityscapes Experiments
	CARLA Experiments
	Domain Shift Due to Cue Reduction
	Influence on Class Level
	Influence on the per Pixel Level
	Influence of the Architecture: Transformer Experiments
	Likelihood Based Evaluation

	Conclusion, Discussion and Outlook

	Discussion and Outlook
	List of Notations

