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Abstract

Vacuum components play a critical role in many fields. Their design can be a
tedious progress, as they are usually evaluated throughout many iterations with
simulation software such as Molflow. Molflow uses the Test Particle Monte Carlo
(TPMC) method to approximate physical quantities such as the pressure or particle
density in arbitrary complex geometries. The TPMC traces independent particles
inside a geometry using a ray tracing based algorithm to gather the corresponding
statistics. The performance of these Monte Carlo simulations largely depends on the
efficiency of the underlying data structure and algorithms used for the ray tracing
query. As ray tracing kernels reached new heights leading to real-time rendering with
recent advancements in both algorithm research and specialised GPU hardware, the
utility of these state-of-the-art methods has been investigated and is evaluated for
their suitablity for physical simulations such as Molflow. We provide enhanced and
newly developed algorithms and data structure for Molflow’s Monte Carlo model,
in particular the time-dependent simulations. A specialised ray tracing kernel is
developed based on our findings for both CPU-driven simulations leading to an
application suitable for HPC environments, as well as GPU simulations where the
design of a CUDA kernel is backed by NVIDIA’s OptiX API for ray tracing to
leverage hardware-acceleration utilising ray tracing units (RTUs) found on modern
NVIDIA RTX GPUs. Further, we developed two splitting criteria to construct
performant acceleration data structure, the adapted Ray Distribution Heuristic and
the Hit Rate Heuristic. Both methods are designed to leverage Molflow’s statistical
nature. The developed solution for the GPU utilizes a newly developed offset to
mitigate negative effects that arise from 32-bit floating point operations that are
inherently used for hardware-accelerated ray tracing. Our GPU kernel utilizes RTUs
as much as possible. The Neighbor Aware Offset handles some of the effects on the
software side. Our research represents the initial step towards enabling Molflow
simulations on GPUs.
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Kurzfassung

Vakuumkomponenten spielen in vielen Bereichen eine entscheidende Rolle. Ihr
Entwurf kann ein mühsamer Prozess sein, da sie üblicherweise durch viele Itera-
tionen mit Simulationssoftware wie Molflow entwickelt werden. Molflow verwen-
det die Test-Partikel-Monte-Carlo (TPMC) Methode, um physikalische Größen wie
Druck oder Partikeldichte in beliebig komplexen Geometrien zu approximieren.
Die TPMC verfolgt unabhängige Partikel innerhalb einer Geometrie unter Ver-
wendung eines auf Ray-Tracing basierenden Algorithmus, um die entsprechenden
Statistiken zu sammeln. Die Performance dieser Monte-Carlo-Simulationen hängt
in großem Maße von der Effizienz der zugrundeliegenden Datenstrukturen und Al-
gorithmen ab, die für die Ray-Tracing Routinen verwendet werden. Dedizierte
Ray-Tracing Einheiten lassen das Echtzeitrendering wieder relevanter werden. Die
jüngsten Fortschritte sowohl in der Algorithmenforschung als auch in spezialisierter
GPU-Hardware haben uns dazu veranlasst, den Nutzen dieser Methoden zu un-
terschen und deren Eignung für physikalische Simulationen wie Molflow zu bew-
erten. Wir haben verbesserte und neu entwickelte Algorithmen und Datenstrukturen
für Molflows Monte-Carlo-Modell implementiert, insbesondere für die Simulationen
mit Zeitparameter. Spezialisierte Ray-Tracing Algorithmen wurden basierend auf
diesen Erkenntnissen sowohl für CPU-gesteuerte Simulationen entwickelt, was die
Anwendung in HPC-Umgebungen ermöglicht, als auch für GPU-Simulationen, bei
denen das Design eines CUDA-Programms durch NVIDIAs OptiX-API für Ray-
Tracing unterstützt wird, um hardwarebeschleunigte Ray-Tracing-Einheiten (RTUs)
auf modernen NVIDIA RTX GPUs zu nutzen. Darüber hinaus haben wir zwei
Splitting-Kritierien entwickelt, um leistungsfähige Beschleunigungsdatenstrukturen
zu konstruieren, die angepasste Ray Distribution Heuristic (RDH) und die Hit Rate
Heuristic (HRH). Beide Methoden wurden entwickelt, um das statistische Funda-
ment von Molflow zu nutzen. Die für die GPU entwickelte Lösung verwendet einen
neu entwickelten Offset, um negative Effekte von 32-Bit-Gleitkommaoperationen zu
reduzieren, die mit hardwarebeschleunigtem Ray-Tracing einhergehen. Unser GPU-
Code maximiert die Nutzung von RTUs. Der Neighbor Aware Offset behandelt
einige dieser Effekte auf der Softwareseite. Unsere Forschung markiert den ersten
Schritt hin zur Ausführung von Molflow-Simulationen auf GPUs.
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1 Introduction

Many scientific experiments such as the Large Hadron Collider (LHC) at CERN
or the SPHEREx mission at NASA deploy critical vacuum components, where va-
cuum simulations are a key aspect in bringing these experiments to life. Molflow+
is a simulation software for ultra-high vacuum that deploys the Test Particle Monte
Carlo (TPMC) method. The TPMC method is especially useful for modelling ar-
bitrary complex vacuum components, as it converges sufficiently fast with accurate
results. Each particle’s trajectory and interactions within the vacuum system are
simulated individually, providing a statistical approach to understanding the dy-
namics of ultra-high vacuum conditions. However, with the introduction of time-
dependent simulations in Molflow+ (refer to Marton Ady, 2016), the demand for
high-performing simulations has been rising. The demand for enhanced simulations
is driven by the need to handle greater number of Monte Carlo events needed for de-
tailed analysis and to make accurate assumptions about a given model. In addition,
the ability to explore a wide range of simulation parameters, combined with the
dependence on regular computing resources with lesser capabilities than high-end
systems, underscores the need for stronger simulation solutions.

Developed originally by Roberto Kersevan in the 1990s, Molflow+’s development
is now driven by CERN’s VSC (Vacuum, Surfaces, and Coatings) group of the
technology department, which is responsible for the design, construction, operation,
maintenance, and upgrade of various vacuum components deployed at CERN, e.g.
for the present and future accelerators and detectors. Alongside Molflow+, Synrad+
operates on a modification of the TPMC method (Roberto Kersevan and Marton
Ady, 2019). It focuses on tracing photons instead of molecules for simulating Syn-
chrotron Radiation (SR) effects, a phenomenon where accelerated charged particles
emit electromagnetic radiation. This radiation is a critical factor in the design of
particle accelerators and other high-energy physics environments, as it can cause
significant heat load and gas desorption from exposed surfaces, which leads to in-
strumental damage in the worst case. Synrad+ allows to define magnetic regions
where the trajectory of the beam is calculated, enabling the precise emission and
interaction modelling of photons with surfaces.

Beyond the technical sphere, Molflow+ and Synrad+ significantly contribute to
projects ranging from high-energy experiments such as particle accelerators (Kamiya
et al., 2021; Roberto Kersevan, 2022) to space exploration (Alred et al., 2021; Ric-
chiuti, Fugett, and Soares, 2022) and laser technology (Song and Hernandez-Garcia,
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2012; Aasman, 2020). Their extensive features make them already invaluable tools
for physicists and engineers due for quickly analysing potential designs. However,
the demand to design and investigate more variations of geometries with complex
parameters calls for improvements in responsiveness and computational speed. It
is not only on the side of the Monte Carlo simulation, but improvements on the
pre-processing side will also lead to better usability and thus an improvement in
productivity for the users.

A vacuum is a condition or space where the pressure is significantly lower than
atmospheric pressure of 1013mbar, achieved by removing air and other gases to cre-
ate an environment with few or no particles. Such conditions are vital for the func-
tionality and integrity of numerous applications. Take, for instance, CERN’s LHC
experiment which features a network of vacuum pipes spanning 104 km. Within
this system, approximately 54 km of the pipes maintain a pressure in the order
of 10−10mbar to 10−11mbar1. These vacuum levels are essential to minimize in-
terferences that could compromise the precision and outcomes of the experiments
conducted.

Designing vacuum components is often a trial-and-error process. In earlier de-
sign phases, where continuous feedback is desirable and queue times for HPC re-
sources are often too long, physicists and engineers often utilize everyday computer
hardware in the form of laptops or office computers, so running simulations on high-
performance computers is not always an option. In later stages, the simulations shift
to more powerful hardware, as improved convergence accuracy is necessary. Thus,
making use of the available – also often affordable – hardware is desirable, where
GPUs are always good candidates for computationally demanding tasks. Further,
we will refer to Molflow+, when the C++ implementation for the CPU simulation
engine is explicitly mentioned and to Molflow (without the suffix) when talking
about general aspects of the algorithm.

1.1 Description of the problem

Molflow models are commonly imported from other CAD software, where surfaces
are approximated with triangles and saved in STL format. The complexity of these
models can vary greatly, where the amounts of surfaces and vertices have a direct
impact on the simulation performance. In Molflow, the heart of these simulations
lies in the ray tracing engine. It is a critical component responsible for accurately
simulating particle trajectories and interactions within the modelled vacuum sys-
tem. The performance of this engine is a key component for Molflow, as it directly
influences the efficiency and effectiveness of the entire simulation and therefore the

1Accessed on 23/11/2023:
https://home.cern/science/engineering/vacuum-empty-interstellar-space

https://home.cern/science/engineering/vacuum-empty-interstellar-space
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design process. Engineers involved in vacuum simulations value efficiency at all
stages. This includes the pre-processing, where imported models are modified and
adjusted, the core simulation phase, driven by the ray tracing engine, and the post-
processing phase, where simulation results are evaluated in real-time and after a
simulation concludes.

Our initial analysis, detailed in chapter 3.6, involved benchmarking the perfor-
mance of various routines across all these stages, identifying potential bottlenecks,
particularly in the ray tracing algorithm, that could be optimized. We found that for
most models the ray tracing routines contribute to around 80% of the computation
time. In addition, we identified a potential bottleneck attributed to time-dependent
simulations. Further, with an investigation on the whole workflow, discrepancies on
the performance of some pre-processing steps were found. In particular, the analy-
sis of the angular relations of neighboring surfaces in a mesh could potentially take
several minutes and in more extreme cases even hours.

1.2 Motivation of this thesis

This thesis examines a new approach in the simulation processes of Molflow and
Synrad. The primary objective is to explore and implement advanced computational
techniques, with a specific focus on refining data structures and investigating the
potential of GPU simulations. This is aimed at significantly improving the efficiency
and accuracy of the simulation engine. The algorithmic backend for pre- and post-
processing routines is mainly driven by algorithms dealing with the analysis and
modification of 3D geometry. We aim to improve the simulation engine performance
by optimizing and developing specialized data structures and routines for the ray
tracing algorithm. By exploring the parallel computing capabilities, our aim is to
enable the simulation environment to operate effectively in a High Performance
Computing (HPC) environment, leveraging both modern CPU architectures and
GPUs. With a focus on the proven CPU simulations, this involves developing new
ray-tracing techniques specifically tailored for Molflow’s use case and comparing
their performance against state-of-the-art techniques commonly employed in other
applications, especially in graphical rendering. With the advent of dedicated ray
tracing units in modern GPUs, the promise for major performance improvements is
encouraging the reevaluation of a GPU kernel for Molflow. Within two generations,
NVIDIA promises ray tracing performance increases of ∼ 10×.

A significant part of this work involves evaluating the suitability of Molflow’s
algorithm for GPU processing, particularly with the use of novel ray-tracing cores
found in NVIDIA’s RTX GPU series. A crucial step in achieving this incorporates a
major revision of the software development process and the underlying architecture
that lead to starting with the development of a Command Line Interface (CLI). Not
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only, does the CLI enable users with swift simulation launches, but it also paves the
way into a new testing infrastructure. By enhancing the capabilities of Molflow+ and
Synrad+, this thesis directly contributes to the efficiency and accuracy of simulations
in groundbreaking projects in various fields beyond CERN’s particle accelerators.

1.3 Outline of this thesis

This thesis is structured as follows to comprehensively cover the various aspects of
improving Molflow’s simulation engine and its application in vacuum simulations:
We begin this thesis in chapter 2, by elaborating the foundational concepts of vac-
uum physics, the principles of the TPMC method, and the specifics of Molflow and
Synrad. This chapter also explores the fundamentals of ray tracing, and various
case studies showcasing real-world applications for the simulations. This is followed
in chapter 3 with a discussion about the methodologies employed in refining the
software, including code refactoring, the development of a command line interface,
continuous integration and deployment with GitLab with an automatic testing en-
vironment, and compatibility across different operating systems and compilers. An
initial profiling to identify and address performance bottlenecks is also covered. In
chapter 4, the focus is on the characteristics of different geometries used in simu-
lations and the impact they have on the performance and accuracy of Molflow and
Synrad. Chapter 5 delves into the software architecture, representation of geome-
try within the software, and the advancements in time-dependent simulations. In
addition, it details the challenges and solutions in improving the mesh analysis of
neighbourhood relationships. The motivation of iterative algorithms for simulations
is explored in chapter 6. This includes an implementation and analysis of conver-
gence criteria. Chapter 7 gives an in-depth look at the development and application
of advanced ray tracing techniques. This includes splitting heuristics tailored toward
Molflow’s use case for the construction of bounding volume hierarchies and KD-trees.
Benchmarks and evaluations of these techniques against state-of-the-art techniques
are presented. In chapter 8, we revisit the suitability of Molflow’s algorithm for
GPU processing by evaluating the use of novel ray-tracing cores for NVIDIA RTX
GPUs. After exploring the basics of GPU computing, the challenges in GPU ray
tracing, and the development of the GPU kernel with NVIDIA’s OptiX API are
discussed. A performance and precision study of the GPU implementation is also
included. Lastly, the final chapter 9 summarizes the key findings and contributions
of the thesis. It also outlines potential future research directions and the long-term
implications of this work for vacuum simulation studies.
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2 Background

In this chapter the general concept of the Molflow and Synrad simulation software
will be elaborated. First, a general explanation for vacuum simulations and an
overview of common vacuum simulation methods and tools is given. Next, the
algorithm and statistical model for Molflow’s simulation engine is explained. Fur-
thermore a brief explanation about Ray Tracing and various acceleration techniques
will be given and discussed in more detail in the context of Molflow.

2.1 Vacuum

In this chapter, we will give a brief explanation on fundamental concepts in vacuum
physics necessary for a better understanding of key concepts in vacuum simulations.

Vacuum refers to a space devoid of matter, a concept that, in practice can only
be approximated. In more realistic terms, we describe a partial vacuum as a space
where the pressure is much lower than that of the Earth’s atmosphere. Pressure,
defined as the force exerted on an object per unit area, is typically expressed as:

p =
F

A
, (2.1)

with the pressure p, the force F and the area A. The standard unit of measurement
for pressure is Pascal (Pa), defined as 1Pa = 1N/m2. Alternatively, pressure can
also be measured in millibars (mbar), where 1mbar = 100Pa. Furthermore, there
are other units such as 1Torr ≈ 133.32Pa. Depending on the pressure within a
space, we classify vacuums into different types1:

• Low vacuum: Pressure ranging from 1 to 1013.25 mbar.

• Medium vacuum: Pressure between 10−3 and 1 mbar.

• High vacuum (HV): Pressure within the range of 10−7 to 10−3 mbar.

• Ultra high vacuum (UHV): Pressure ranging from 10−11 to 10−7 mbar.

• Extreme ultra high vacuum (XHV): Pressure below 10−11 mbar.

1Accessed on 05/09/2023: https://www.pfeiffer-vacuum.com/en/know-how/introductio
n-to-vacuum-technology/fundamentals/definition-of-vacuum/

https://www.pfeiffer-vacuum.com/en/know-how/introduction-to-vacuum-technology/fundamentals/definition-of-vacuum/
https://www.pfeiffer-vacuum.com/en/know-how/introduction-to-vacuum-technology/fundamentals/definition-of-vacuum/
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Here are some practical examples to illustrate these vacuum levels:

• Light Bulb: The pressure inside a standard incandescent light bulb is typi-
cally around 700 mbar. This partial vacuum prevents the filament from oxi-
dizing and burning out.

• Vacuum Cleaner: Household vacuum cleaners generate a suction power of
approximately 100 mbar to effectively pick up dust and debris from floors.

• Semiconductor Manufacturing: Vacuum is crucial in semiconductor fab-
rication to ensure precise material deposition without contamination, where
some processes operate at 0.1 mbar.

• Large Hadron Collider (LHC): The vacuum level within the LHC vacuum
pipes is maintained at an extraordinary range of 10−10 to 10−11 mbar to reduce
unwanted particle interactions during high-energy collisions.

• Quantum Computing: Experiments in quantum computing often require
vacuum states approaching 10−12 mbar to isolate qubits from external inter-
ference.

• Space Pressure: In outer space, the pressure is extremely low, close to a
hard vacuum with pressures below 10−12 mbar. This vacuum environment is
a critical consideration for spacecraft design and space exploration.

In order to create and maintain certain pressure levels in experimental conditions,
different types of vacuum pumps are used depending on the requirements. To achieve
the vacuum levels found in the beam pipes and detectors of the Large Hadron
Collider (LHC) at CERN different pumps are used. To give some examples:

• Turbomolecular Pumps: Turbomolecular pumps are essential in the LHC
for achieving and maintaining high vacuum levels. These pumps use a series
of high-speed rotating blades to propel gas molecules out of the vacuum cham-
ber. Turbomolecular pumps are known for their efficiency and are crucial for
creating the extreme vacuum conditions required in the LHC.

• Ion Pumps: Ion pumps, also known as Penning traps, are used to maintain
ultra-high vacuum conditions in specific sections of the LHC. They work by
creating and trapping ions within the vacuum chamber, effectively removing
gas molecules. Ion pumps are capable of achieving extremely low pressures
and are suitable for UHV and XHV applications.

• Getter Pumps: Getter pumps are used in some sections of the LHC to main-
tain low pressures. They work by adsorbing and chemically binding residual
gas molecules, helping to achieve and maintain vacuum conditions.



2.1 Vacuum 7

These and other types of vacuum pumps, often used in combination, play a critical
role in creating and maintaining the ultra-high vacuum conditions necessary for the
LHC’s particle collision experiments. Each pump type is strategically employed in
different sections of the accelerator to meet the specific vacuum requirements of that
area.

Depending on the pressure level, the behaviour of a gas is different. This behaviour
can be classified based on the Knudsen number:

Kn =
λ

L
, (2.2)

where λ is the mean free path and L is the characteristic length of the geometry. The
characteristic length describes the length of the dimension that alone can describe
the molecular dynamics best. The mean free path can be described as the average
distance a particle travels in a system that changes neither its direction nor its energy
significantly. This may happen due to collisions with other particles or boundary
walls. It can be calculated by

λ =
kBT√
2πd2p

, (2.3)

with the Boltzmann constant kB[J/K], the absolute temperature T [K], the gas
pressure p[Pa] and the gas particle diameter d[m]. Given the Knudsen number, we
categorise the molecular behaviour with the following three regimes:

• Continuous flow Kn < 0.001: Frequent intermolecular collisions, less frequent
wall collisions. Gas behaviour can be described as a whole with a set of
governing equations, often approximately solved in the field of Computational
Fluid Dynamics (CFD).

• Knudsen flow 0.001 < Kn < 1: Transitional regime, where intermolecular
collisions still contribute to the gas behaviour.

• Free molecular flow 1 < Kn: Molecules move quasi-independently from each
other with little to no intermolecular collisions.

For free molecular flow, the condition that is typically achieved in particle accel-
erators as it is favourable in reducing disturbances, there exists no set of governing
equations, which we can integrate and solve to get the state in space and time dimen-
sions. The gas behaviour has to be modelled statistically, where a large number of
particles are treated independently. For less complex ultra high vacuum problems,
analytical solutions exist to calculate some characteristics of a vacuum chamber.
The fundamental equations to calculate the equilibrium pressure p [mbar] and the
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conductance C [l/s] for a vacuum component are:

p =
Q

S
, (2.4)

C =
Q

dp
, (2.5)

where Q [mbar · l/s] is the gas inflow rate, S [l/s] is the pumping speed, and dp is
the pressure difference. Conductance C is the gas flow rate divided by the pressure
drop between two points under steady conditions, it is relevant to understand the
gas transmission between different regions of a system. The pressure p for a vacuum
component is given by the gas flow rate divided by the pumping speed S, which is
defined by how much volume is pumped per unit time. In figure 2.1 this is shown for
a system in steady-state. From the left side, a gas inflow Q leads to a first chamber
with measured pressure p1. The pressure in the second chamber is measured with
p2, where p1 > p2. Between the two chambers, the conductance is calculated by
C = Q

p1−p2
. On the right of the schematic, the gas is pumped with the pumping

speed S = Q
p2

.

Figure 2.1: Schematic of a simple vacuum problem with an inlet an outlet and two
connected chambers with different pressures. The system is in steady-
state.

Analytical solutions can be practically applied for structures that can expressed
as a linear series of vacuum components for which the conductance is known for all
elements. Such methods are used widely in several codes at CERN, such as VASCO
(Rossi, 2004). Unfortunately, finding analytical solutions of the conductance for all
kinds of geometries is nearly impossible. For that reason, the characteristics of vac-
uum components are usually calculated approximately with Monte Carlo methods.

2.2 Monte Carlo simulations with Molflow

This chapter first elaborates on the physical model and algorithm behind Molflow
and Synrad, based on the work of Roberto Kersevan and Pons (2009) and Marton
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Ady (2016). In addition, general use cases of both applications are introduced, and
alternative software solutions and algorithms are discussed. Our focus is to outline
the individual components of Molflow’s Monte Carlo model, laying the groundwork
for subsequent in-depth analyses aimed at identifying and implementing algorithmic
optimizations and improved data structures.

2.2.1 Motivation

Higher energy in modern accelerators increases the amount of radiation, which leads
to the desorption of photoelectrons and molecules from the accelerator walls. This
promotes electron cloud buildup and an increase in residual pressure, which are the
limiting factor to the beam lifetime.

Various methods and tools exist to help with the calculation of synchrotron ra-
diation. Molflow and Synrad are a set of such tools, where one is designed for the
calculation of pressure profiles and the other for the calculation of synchrotron radi-
ation. The tools are based on the Monte Carlo method, where the path of uniformly
distributed molecules, respectively, photons is traced and their interactions with the
geometries’ surfaces are used to calculate the physical quantities.

In accelerators, one is typically dealing with a high vacuum or ultra-high vacuum,
where the gas dynamics are described by the free molecular flow regime (1 < Kn).
Analytical models exist, but they have the fundamental drawback that it’s not easy
to apply them to complex geometrical structures as they are mostly dependent on
analytic expressions for the conductance, which in general is the unknown one is
interested in (see chapter 2.1). Molecules have to be treated individually in this
regime, and thus one cannot simply describe them by a set of differential equations
like in fluid dynamics. Various methods exist to approximate characteristic values.
Most prominently the Direct Simulation Monte Carlo (DSMC) method, the view
factor method and Test Particle Monte Carlo method, which is applied in Molflow
and Synrad.

The angular coefficient method (Saksaganskii, 1980), also known as view factor
method, allows the computation of various characteristic values by approximating
how well one surface can see another surface. View factors Fi,j ∈ [0, 1] are calculated
based on the area, distance and angle between the surface normals of two elements
i, j from the discretized surfaces of the input geometry. Further, based on the view
factors Fi,j the flux of incoming particles on a surface i from the outgoing particles
of a surface j can be calculated. When discretizing a geometry into N elements, a
view factor matrix of N ×N is created, hence, one has to often sacrifice accuracy to
compute a timely solution by approximating the geometry only by a minimal amount
of surface elements. The view-factor method can further be extended for time-
dependent simulations by calculating the corresponding view factors with discrete
time steps (Drake, 1990). Only the flux contribution during a time step will be used
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to compute the time-dependent state of an element. The method is derived from
the radiosity method, which has been originally used for applications such as heat-
transfer simulations, and has been further refined for the use in computer graphics,
vacuum simulations and other disciplines. Due to the large demands on memory,
the method is mainly suitable for calculations on computing clusters.

The DSMC method (Bird, 1976; Hasan, 2020) divides a given geometry into
computational cells. For every iteration, inserted particles are then advanced in
time. First, particles are advanced directly in space along their trajectory. Next,
particles are randomly chosen to calculate intermolecular collisions to gather further
statistics to model effects in the viscous regime (Kn < 1). Depending on the space
and time discretization, the DSMC method is both expensive on the memory and
the computational demand, when compared to other methods, in particular, the
TPMC method applied in Molflow.

2.2.2 The Test Particle Monte Carlo method

Molflow is a simulation software for ultra-high vacuum, which is built around a
Monte Carlo algorithm developed by Kersevan (1991), the so-called Test Particle
Monte Carlo (TPMC) algorithm. Test particles are generated from facets, which
are used to describe the geometry, where an influx of gas molecules into the system is
defined. Possible starting points are uniformly distributed across all of these source
facets and one is chosen randomly. In the simulation, each particle is assigned a
direction and speed through random selection. The direction is determined using
Knudsen’s cosine law, a principle that predicts how particles scatter, with random-
ness introduced for variability. The speed is derived from the Maxwell-Boltzmann
distribution, a fundamental concept in physics that describes how the speed of par-
ticles in a gas varies. Afterwards, a ray tracing algorithm is used to calculate the
next collision point with a facet from the geometry. Collision events and the corre-
sponding hit locations are then used to gather statistics, which can then be used to
calculate characteristic values of the geometry.

The algorithms behind Molflow and Synrad (see Marton Ady, 2016, and Roberto
Kersevan and Marton Ady, 2019) follow the same principles, but for simplicity, the
explanation is done with Molflow as the main code in mind. The algorithm’s steps
are depicted in figure 2.2 and are elaborated in more detail in the following chapter.

2.2.3 The Monte Carlo model

Molflow follows the idea of a Monte Carlo simulation, where the desired values are
expressed as the mean of a random variable µ̂. By repeating the same experiment
multiple times we get a sample size n, from which we can approximate the mean of
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Figure 2.2: Sketch of the pipeline for Molflow’s Monte Carlo algorithm. Three-step
approach starting with Particle generation, a ray tracing routine and
lastly trace processing that takes care of statistic gathering and setting
up the particle state for the next iteration.

the specific values. A larger sample size leads to sufficiently low errors from the real
mean µ, where for n → ∞ the approximated mean approaches the real mean with
lim
n→∞

µ̂ = µ. T. Booth (2015) elaborates on the foundations and problems to avoid
for the design of MC simulations in the context of particle transport.

Various traits of free-molecular flow can be described as random processes. Given
a probability function for such a process, a sample can be selected by using a random
number to simulate an event. Following, the individual parts of the Monte Carlo
simulation are elaborated including their probability distributions.

With the TPMC method, a large number of particles is represented by a smaller
number of test particles Ntest. Here the ratio

K real
test

=

∑
f dNf,real/dt

Ntest

(2.6)

represents the total number of real particles Nf,real per second entering from a facet
f represented by a virtual test particle. Hence, a virtual particle represents a flux
of real particles entering the system.

Starting parameters

We describe a particle’s state in Cartesian coordinates by the tuple {o, r, v}, the
origin in three-dimensional space, the particle direction as a three-dimensional vector
and the particle velocity respectively.

Particle Origin: Molecules enter the system via injection or thermal desorption
from the surfaces of vacuum components. This is modelled with the outgassing rate
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Qf (in mbar · l/s), which represents the gas inflow from a given facet f . This out-
gassing rate can be expressed as the rate of change of the pressure-volume product:

Qf =
d(pV )

dt
, (2.7)

where p is the pressure (in mbar), V is the volume (in l), and t is time. We can
then connect this outgassing rate to the ideal gas law, which describes the behavior
of an ideal gas:

pV = NrealkBT , (2.8)

where Nreal is the number of particles in the gas, kB is the Boltzmann constant
(kB ≈ 8.3145 in J

mol·K ), and T is the absolute temperature of the gas (in K). Hence,
by applying (2.8) to (2.7), we can derive the influx of physical particles ṅf for a
facet f :

ṅf =
dNf,real

dt
=

d(pV )

dt

1

kBTf

=
Qf

kBTf

, (2.9)

where Tf is the average temperature corresponding to the facet f . A facet can then
be sampled by randomly picking a facet fo ∈ Q from a list of all desorbing facets
Q = {∀f ∈ F : Qf > 0}, where each facet has a probability of pQf

= ṅf/ṅΣ to get
selected. The probability is simply the ratio of the local influx rate of the facet and
the total influx rate of the entire system

ṅΣ =

Nf∑
i=1

ṅi , (2.10)

which is the sum of the influx rates of all Nf facets. This approach ensures that
facets with a higher local influx rate have a proportionately higher probability of
being selected, reflecting their relative contribution to the total influx rate of the
system. Using the cumulative distribution function of the artificial influx proba-
bilities, one can then pick a random outgassing facet fo with a random number
x ∈ [0, 1]. A simplified pseudocode iterative algorithm is given with algorithm 1.
In the algorithm, we initialize a cumulative probability C to zero to keep track of
the cumulative probability as we iterate through the facets2. For each facet fi in
the set of all desorbing facets Q, we calculate the probability of selecting facet fi
as pQi

= ṅi/ṅΣ, where ṅi is the influx rate for facet fi and ṅΣ is the total influx
rate for all facets. After updating the cumulative probability: C = C + pQi

, we can
check if C has reached or exceeded x. If that is the case, we select facet fi as fo and
terminate the loop, otherwise we continue to the next facet.

2If cumulative probabilities are precalculated, we can use binary search to reduce the complexity
to O(logN) for N facets. A sequential lookup O(N) is given for simplicity. This is the deployed
strategy for the newly developed GPU kernel, elaborated in chapter 8.
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Algorithm 1 Select Random Outgassing Facet
Require: Random number x, Set of desorbing facets Q, Total influx rate ṅΣ

1: Initialize cumulative probability C ← 0
2: for each facet fi in Q do
3: Calculate facet’s probability pQi

← ṅi

ṅΣ

4: Update cumulative probability C ← C + pQi

5: if C ≥ x then
6: Select facet fi as fo
7: break
8: end if
9: end for

Picking a random position o on the selected facet fo is not as straightforward,
because Molflow is using n-polygons to describe a geometry. Using local 2D coordi-
nates to describe the position on the facet’s plane, one can easily find a position u, v
with two random numbers. Given the position u, v, one still has to check whether
the point is lying inside the n-polygon or not. A point-in-polygon algorithm is pro-
posed in chapter 2.3.5, which works with both convex and concave polygons and is
independent with respect to orientation. The downside of such a method is that
points can be generated that lie outside of the actual polygon. In such a case, new
random numbers have to be generated to check for a new sample point. In practice,
consecutive discards of sample points are relatively rare and don’t have a big impact
on performance. A more elegant solution is proposed as part of the GPU kernel
(see chapters 8.3.2.7) to guarantee the generation of a sample point solely with two
random numbers.

Particle Trajectory: We calculate the particle direction according to Knudsen’s
cosine law (Knudsen, 1967), which assumes that a particle’s inbound and outbound
direction are independent. It states that a particle leaving a surface in solid angle
dω is proportional to cos θ, with θ forming the angle between the surface normal
and a particle’s trajectory. The cosine law can be written as

1

Nr

dnr

dω
=

cos θ

π
, (2.11)

dω = sin θdθdϕ , (2.12)

with the total number of reflected particles Nr and dnr, the number of particles emit-
ted in solid angle dω. One can derive the azimuth and polar angles (ϕ respectively
θ) as follows:

ϕ = x2π ,x ∈ [0, 1] , (2.13)
θ = sin−1

√
y ,y ∈ [0, 1] , (2.14)
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where x and y are uniformly distributed random numbers (Suetsugu, 1996). For
use in a 3-dimensional Cartesian system, one has to transform the derived spherical
coordinates further into Cartesian coordinates (1, θ, ϕ) → (x, y, z). First we derive
the local Cartesian coordinates (u, v, n):

u = sin(θ) · cos(ϕ) , (2.15)
v = sin(θ) · sin(ϕ) , (2.16)
n = cos(θ) , (2.17)

and translate them with the corresponding facet’s orthonormal basis {U,V,N} into
global Cartesian coordinates (x, y, z) for the particle direction:

x = u · Ux + v · Vx + n ·Nx , (2.18)
y = u · Uy + v · Vy + n ·Ny , (2.19)
z = u · Uz + v · Vz + n ·Nz . (2.20)

The orthonormal basis in R3 consists of three vectors of length 1, which are all
perpendicular to each other. In Molflow it is formed by N, which is the facet
normal, and the vectors U and V, which form the local 2d coordinate system.

Particle Velocity: There are different methods to obtain a reasonable particle
velocity for vacuum simulations. Assuming that an ideal gas is at equilibrium in
a defined environment, we can describe the speed of molecules with the Maxwell-
Boltzmann distribution. For simplicity, we can assume that the average velocity
is sufficient to describe most effects inside a vacuum component. In case of the
Maxwell-Boltzmann distribution it is given by:

< v >=

√
8RT

πm
, (2.21)

where R is the ideal gas constant, T the gas temperature and m the molar mass (in
kg). Given an isothermal system, one can further assume a constant velocity that
is not affected by collisions.

The preferred method in Molflow, in more detail discussed by Marton Ady (2016),
accounts for the effect of faster molecules hitting surfaces more often. Particles
obtain a new speed after every collision with a wall, due to thermalisation effects,
based on a facet’s temperature T , that are happening while particles spend a sojourn
time on the wall. We retrieve the new speed from the Probability Density Function
(PDF) of molecules colliding with a wall during a period of time f(v)coll

3:

f(v)coll = v3 exp(− v2

2a2
)
1

2a4
, (2.23)

3This function can be derived from the PDF of molecular speeds, following the Maxwell-
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with the scale parameter:

a =

√
kBT

m
.

Given the PDF, we can then calculate the cumulative distribution function (CDF),
which for every speed value v assigns a probability that a particle’s velocity is lower
than v:

F (v)coll =

∫ v

0

f(v′)colldv
′ = 1− exp

(
− v2

2a2

)[
1 +

v2

2a2

]
. (2.24)

By generating CDFs for each temperature value T in the system, we can easily
find a random speed value given a random number by numerical inversion. Marton
Ady (2016) optimized this by using precalculated bins for equidistant speed values
v ∈

[
0 , 4 ·

√
2RT

M[kg/mole]

]
for every temperature value T in the system, where√

2RT
M[kg/mole]

represents the most probable speed value.
We generate a CDF corresponding to a particular temperature T for N = 100

bins. Each bin i ∈ [0, N − 1] corresponds to a tuple {vi, pi}. Here, vi is the value

vi =
i

N
· 4 ·

√
2RT

M[kg/mole]

, (2.25)

and pi ∈ [0, 1] is the probability value

pi = F (v)coll = 1− exp

(
− v2

2a2

)[
1 +

v2

2a2

]
. (2.26)

We can then find a random velocity value vr using linear interpolation. First,
given a random value r ∈ [0, 1] we identify the corresponding bin j via binary
search on the probability values pi:

∀i < j , r > pi and r ≤ pj . (2.27)

Here, j is the smallest index such that r ≤ pj. Further, we require that j lies in the
interval [0, N − 2]. We can then calculate a velocity value via linear interpolation
for the bins j and j + 1:

∆p = pj+1 − pj , (2.28)
ϵ = r− pj , (2.29)

vr = vj + (vj+1 − vj)
ϵ

∆p
. (2.30)

Boltzmann distribution, in a volume f(v)gas:

f(v)gas = v2 exp(− v2

2a2
)
1

a3

√
2

π
. (2.22)

See Marton Ady (2016) for proof.
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Here, ∆p defines the difference between the two probability values and ϵ represents
how much the random value r exceeds the probability value of the lower bound bin
j.

Next location

Molflow is using a ray tracing algorithm (see chapter 2.3.3) to find the collision
location given a particle and its trajectory. First, given the ray tuple {o, r, v} the
algorithm will return the closest hit location as a pair of facet ID and the intersection
location in 3d space coordinates. Next, depending on the type of facet with which
the particle is colliding, different cases have to be considered. Most importantly,
these are solid and transparent surfaces, and linked or teleport facets, which have
been sketched in figure 2.3.

Figure 2.3: Sketch of facet types in Molflow. Rays pass through transparent facets
without changing their direction. Rays colliding with solid facets have a
direction change. Linked facets are two separate facets (here, green and
blue) that are linked together, creating an entry and an exit for different
structures. Two teleport facets are linked together. On collision, a ray
is transported to the opposite one without changing the direction.

Solid facet: When a particle collides with a solid facet, it will always be reflected.
The reflection occurs according to Knudsen’s law (2.11). A solid facet can be modi-
fied with desorbing properties, with an outgassing rate (2.7), or absorbing properties,
which are elaborated next.

Absorbing facet: A hit with an absorbing facet can lead to a particle either
bouncing off or getting absorbed. This can be described by a facet’s sticking factor
s ∈ [0, 1], from which the pumping speed S [m3/s] can be derived:

S = s · 1
4
< v > ·A , (2.31)
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where A is the surface area of the corresponding facet (in m2) and < v > the average
speed of a particle (in m/s), which in case of the Maxwell-Boltzmann distribution is
given by (2.21). A sticking factor s = 0 means that a particle will definitely bounce
off (a perfect solid facet) and a value of s = 1 implies that a particle will be removed
from the system. Given a randomly generated number r ∈ [0, 1], we can determine
directly from the sticking factor, whether a particle rebounds or gets pumped. A
particle is absorbed, if r ≤ s.

Transparent facet: Transparent facets have an opacity value o ∈ [0, 1] that de-
notes the probability that a particle is passing through. This is useful e.g. for
modelling holes on a facet without an explicit geometric description, or to create
facets to visualise physical values in the middle of a volume. Therefore, the ray tracer
has to determine, given a random value and the facet’s opacity value, whether the
particle will pass through or bounce off a transparent facet. Practically, in Molflow,
transparent facets are handled during the ray tracing procedure (see chapter 2.3.1).
A collection of passed transparent facets is evaluated in the trace processing step,
by incrementing the appropriate counters.

Link facet: Further, a geometry can be divided into multiple structures, which
are then connected by two quasi-identical link facets: one for each structure. The
ray tracer will only consider potential collisions for facets within the residing struc-
ture. Only if a link facet is crossed, the corresponding facets will be taken into
consideration during a second ray tracing iteration.

Teleport facet: Similar behaviour to link facets is achieved by teleport facets. A
collision with such a facet teleports the particle to another facet with the same shape,
but at a different location. This enables designers to easily construct repeating
geometries. In case of a collision, the particle is properly translated and rotated,
and further handled in a second iteration step. For more details, we redirect the
readers to the work of Marton Ady (2016).

Trace processing: Hit counter

When the new particle position and state has been decided, statistics are gathered
on the intersected facet. Molflow has different methods to gather these statistics
depending on the necessary granularity. In general there are three different counters
that are incremented with every collision.

Number of hits Nhit is a simple counter that accumulates the number of Monte
Carlo hits. Each time a particle collides with the facet, this counter is incremented.
From the Nhit, we can derive the impingement rate (2.38).
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Total orthogonal momentum change ΣI⊥ is a counter that increases with the
orthogonal momentum change of the incoming and outgoing particles: mv⊥ =
mv cos θ. Here, θ is the incident angle at which the particle collides with the wall, m
is its mass, and v is the velocity of the particle. ΣI⊥ is used to compute the pressure
(2.39) exerted by particles on the facet. It accounts for the momentum transfer in
the direction perpendicular to the facet, reflecting the force exerted by the particles.

Sum of reciprocals of orthogonal speed components v−1
⊥ is a counter that

increments the reciprocal of the orthogonal speed components: v−1
⊥ = 1/v cos θ,

where v cos θ represents the orthogonal component of the particle’s velocity. v−1
⊥

provides insight into the time particles spend in close proximity to the facet. It can
be used to retrieve the particle density (2.40).

Additional counters: Additional counters exist, which we give for the sake of
completeness. The number of absorptions Nabs and the number of desorptions Ndes

are incremental counters. The sum of reciprocals of velocity components v−1 is a
counter that accumulates the reciprocals of the velocity of each particle. For each
particle interaction, it increments by the value 1

v
, where v is the particle’s velocity.

This accumulation is particularly useful for calculating the average molecule speed
in the simulation based on the harmonic mean.

Trace processing: Textures and profiles

A more precise way to collect statistics in Molflow is the deployment of the so-
called profiles and textures. They are essential for use cases where detailed spatial
distribution of particle interactions is crucial for analysis and design.

Profiles Profiles are used to divide a facet in one direction. Along one of the axes
of the local 2d coordinates u, v with u, v ∈ [0, 1], a profile creates P equidistant
slices, typically P = 100. Given a particle hit location p = (pu, pv) on facet f ,
where pu and pv are the coordinates along the local u, v coordinates of f , then for a
profile along the u direction we can calculate the index of the slice with:

posU = ⌊pu · P ⌋ . (2.32)

For a profile along the v direction we can calculate the index of the slice with:

posV = ⌊pv · P ⌋ . (2.33)

Here, posU , posV ∈ [0, P − 1], where posU , posV ∈ N+. Profiles allow to collect
the number of hits, the momentum changes (ΣI⊥), and the sum of reciprocals of
orthogonal speed components of particles (Σv−1

⊥ ). In addition, there is a special type
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of profile to analyze the distribution related a particle’s incident angle on a facet f .
An angular profile creates P slices along the angular range [π/2, π], where each size
of each angular slice is given by ∆θ = π

2
/P . Given a particle’s direction vector d

and the normal vector Nf of the facet f , we can calculate the incident angle θ with:

θ = arccos(|Nf · d|) , (2.34)

and the corresponding bin index on the angular facet with:

posθ =
⌊

θ

∆θ

⌋
=

⌊
2θ

π
· P
⌋
. (2.35)

An example showing a pressure profile on an arbitrary Molflow geometry is shown
in sketch 2.4a. Here, a profile is deployed along the u direction of the facet (here, it
is the long side). It is deployed to count the sum of reciprocals of orthogonal speed
components v−1

⊥ , from which the pressure values can be derived.

(a) Profile (b) Texture

Figure 2.4: A profile along u coordinate and a 25 × 5 texture for an arbitrary ge-
ometry. Texture and profile values show the derived pressure value from
the sum of reciprocals of orthogonal speed components. Pressure values
are dropping from the left (inlet) to the right (outlet). The x-axis in
the pressure profile shows the relative position along the u-coordinate in
percent and the y-axis shows the pressure value.

Textures Textures divide a facet in two directions. Orientated along a facet’s local
2d coordinates u, v with u, v ∈ [0, 1], a grid is created with N ×M uniform cells.
When a particle collides with a textured facet, its collision point is mapped to the
texture coordinates tu ∈ [0, N − 1], tv ∈ [0,M − 1], where tu, tv ∈ N+. Given a
particle hit location p = (pu, pv) on facet f , where pu and pv are the coordinates
along the local u, v coordinates of f , we can calculate the position

tu = ⌊pu ×N⌋ , tv = ⌊pv ×M⌋ , (2.36)



20 2 Background

where we require tu ∈ [0, N ] and tv ∈ [0,M ].
Each cell in the texture grid collects data about the particle hits it receives.

This data can include the number of hits, further distinguished in the number of
desorptions, absorptions or reflections, as well as the sum of orthogonal momentum
change ΣI⊥ and the sum of reciprocals of orthogonal speed components v−1

⊥ . An
example showing a texture on an arbitrary Molflow geometry is shown in sketch 2.4b.
Here, a 25×5 texture is deployed to count the sum of reciprocals of orthogonal speed
components v−1

⊥ . Each texture cell represents a derived pressure value.

Trace processing: Next iteration

Depending on the type of facet with which the particle collided, it will advance
differently. In case a particle bounces off a facet, the particle state tuple will be
set as follows. The reflection point is the new origin, the direction is calculated
according to Knudsen’s cosine law (see equation (2.11)) or from specular reflection.
The velocity of a particle depends on the energy and momentum exchange with a
wall, which we can describe with the thermal accommodation coefficient Aacc. Total
thermalisation is given by Aacc = 1, resulting in a new velocity value vwall that
depends only on the modified speed distribution (see equation (2.24)), where the
facet temperature is taken into account. The new particle velocity is then given by:

v2new = v2old + Aacc(v
2
wall − v2old) , (2.37)

with the incident velocity vold. Given the new particle speed and direction, the
counters ΣI⊥ and v−1

⊥ have to be incremented again in consideration of the outgoing
particle’s momentum and reciprocal speed.

Post processing: Physical quantities

Based on the statistical quantities, the following physical quantities are derived,
which are of interest for vacuum systems.

Impingement rate z is the rate of number of particle collisions Nhit,real with a
facet per second and unit area:

z =
dNhit,real

dt · A
=

Nhit ·K real
test

A
. (2.38)

Here K real
test

is the number of molecules per second that is represented by a test
particle, given by equation (2.6), and A is the area of the corresponding facet. Nhit

represents the number of test particles hits.
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Pressure p can be calculated by

p =
F

A
=

∑
dI

dt · A
=

∑
I⊥ ·K real

test

A
. (2.39)

Where the rate of momentum change of the inbound and outbound particles
∑

dI/dt
is approximated by the product of the statistical counter

∑
I⊥ and the factor K real

test
.

Density < n >volume defines the average particle density in a given volume adjacent
to a facet. The particle density is derived from the relationship between the rate of
particle impingement on a surface and their velocities upon collision (see details in
Marton Ady (2016)). It is calculated with:

< n >volume= zsurface· < v⊥ >coll=
Σ 1

v⊥
·K real

test

A
, (2.40)

where zsurface is the impingement rate on a surface, measuring how frequently par-
ticles collide with the surface per unit area per second, and ⟨v⊥⟩coll is the average
perpendicular velocity at collision.

Summary

In this section, we summarize the key steps in the Molflow’s Monte Carlo simulation
process as implemented. These steps describe a single iteration for one particle,
which was sketched in figure 2.2.

1. Calculation of Random Origin: Selecting a starting point for particles in
the simulation by randomly choosing a facet and position.

2. Calculation of Random Direction: Assigning a random trajectory to each
particle, simulating natural variability in their angles.

3. Calculation of Random Speed Value: Determining the speed of particles
using a method that ensures realistic distribution based on physical principles.

4. Ray Tracing to Find Collision Point: Using ray tracing algorithms to
track the path of each particle until it collides with a surface.

5. Incrementation of Hit Counters: Updating statistical counters (local facet
counters and global simulation counters) to record the interactions of particles
with different facets.

6. Setup of the Next Iteration: Preparing for the next iteration of the simu-
lation, accounting for different possible outcomes of particle interactions. For
example, on reflection a new particle direction and velocity is calculated. Hit
counters are updated to reflect momentum change with the outgoing direction.
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2.2.4 Time-dependent simulation

Molflow offers two distinct types of simulations: steady-state and time-dependent.
While steady-state simulations are defined to be in equilibrium, providing a sin-
gle static result, time-dependent simulations are dynamic. They allow analysis of
vacuum systems at multiple time points, accommodating changes in the vacuum
system’s parameters over time. This adds a layer of complexity, as statistics need
to be gathered not only spatially for each facet, but also temporally. System pa-
rameters, such as outgassing rates or sticking factors may vary over time. In such
systems it is of interest to track particle events at the specific time at which the hit
occurs.

Following the original implementation by Marton Ady (2016), time-dependent pa-
rameters like a facet’s outgassing rate or sticking factor can be set to vary over time.
This is achieved by specifying a series of time-value points, where the parameter
value at a given time is determined by linear interpolation between these points or
by constant extrapolation outside this range. Time moments are central to time-
dependent simulations in Molflow. They are defined as intervals corresponding to
specific points in time, allowing for the accumulation of statistical data over these
periods. Each time point ti in a series of time moments is associated with a time bin
covering the range [ti − tw/2, ti + tw/2), where tw is the time window size. This ap-
proach ensures that statistics are gathered over a sufficiently large sample size to be
meaningful. While the calculation of the steady-state quantities is straightforward,
time-dependent quantities have to be calculated for every i-th moment. This allows
for a detailed analysis of the system’s behavior over time, accommodating dynamic
changes in parameters and providing deeper insights into the system’s performance.

For steady-state simulations in Molflow, we can derive the physical quantities as
elaborated in chapter 2.2.3. Using the hit counters for the i-th moment, we can
derive the corresponding time-dependent quantities for the impingement rate, the
pressure and the density. They are noted noted with an index corresponding to the
i-th moment. The impingement rate for the i-th moment, zi, can be calculated as
follows:

zi =
Nhit,i ·K real

test

twindow · A
, (2.41)

where Nhit,i represents the number of test particle hits during the i-th moment. By
dividing by the time window twindow to obtain an average rate over this interval.
The pressure at a specific time moment, pi, can be calculated using the following
equation:

pi =
ΣI⊥,i ·K real

test

twindow · A
. (2.42)

Here, ΣI⊥,i represents the sum of the perpendicular components of the momentum
change of particles impacting the surface at the i-th moment. Similarly, the particle
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density at the i-th moment, ⟨n⟩i, is given by:

⟨n⟩i =
Σ 1

v⊥,i
K real

test

twindow · A
, (2.43)

where Σ 1
v⊥,i

sums the inverse of the perpendicular velocities of particles impacting
the surface during the i-th moment.

Time-dependent simulations and enhancements to the underlying algorithms and
data structures are elaborated in more detail in chapter 5.3.

2.2.5 Pseudo Random Number Generator

Since many parameters in Molflow’s simulation algorithm are dependent on uni-
formly distributed variables, it is important to use a Pseudo Random Number Gen-
erator (PRNG) with good statistical properties. In Molflow, random numbers are
repetitively used for particle tracing. They are used to calculate the particle origin,
the particle trajectory and the particle velocity (see chapter 2.2.3). Further, they
are used to model probabilities e.g. for transparent facets (see chapter 2.2.3). A
PRNG is an algorithm that generates sequences of random numbers that reflect the
properties of real random numbers as accurately as possible. Typically, the algo-
rithm starts from an initial value, the seed, and calculates a pseudo-random number
based on its advanced state. As PRNGs are deterministic algorithms, they return
the same sequence of random numbers given the same initial value. The qualities
of a PRNG are related e.g. to the way the generated numbers in a sequence are
distributed or to its period, which is the length of a sequence, after which the same
sequence will be generated again. Consider the Monte Carlo simulation to estimate
π. The simulation randomly places points within a square bounding the unit circle
and counts how many points fall inside the circle versus outside. The ratio of the
points inside the circle to the total number of points approximates the ratio of the
circle’s area to the square’s area. The area of the circle is πr2 and the area of the
square is 4r2, where r is the radius of the circle. The ratio of both is π/4. Now, if the
PRNG used in this simulation has a short period or exhibits patterns, certain areas
of the square may be sampled more frequently than others. Such a non-uniform
sampling leads to an inaccurate estimation of the circle’s area. For instance, if the
PRNG repeatedly generates numbers clustering towards one corner of the square,
the simulation will overestimate the area of that quadrant of the circle, skewing the
overall result. A well-known example for a bad PRNG is RANDU, a LCG (Linear
congruential generator) algorithm. LCG algorithms repetitively apply linear trans-
formations to generate a series of pseudo random numbers. RANDU is defined by
the recurrence using the linear congruential formula:

ri+1 = (65539 · ri) mod 231 , (2.44)
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where ri+1 is the (i+1)-th generated random number, and ri is the previous random
number, where i = 0 would be the seed. George Marsaglia (1968) proved, that by
generating n-dimensional points using RANDU, these points would fall in a small
amount of parallel hyperplanes. Hyperplanes represent flat, n− 1-dimensional sur-
faces in an n-dimensional space, which they separate in two distinct regions. For
n = 3 it is easy to show, that only 15 hyperplanes are sampled, as seen in figure
2.5. Here, every three consecutive random numbers form a point p = ri+2,ri+1,ri.
This proves bad statistical qualities of the generator and easily leads into bias. In

Figure 2.5: 3D visualization of N = 10000 points, each represented by three con-
secutive random numbers generated with the RANDU generator. All
points clearly fall into 15 hyperplanes.

many Monte Carlo applications, such as Molflow, the Mersenne Twister algorithm is
deployed, due to its long period, but nowadays it is viewed as lacking in several as-
pects as it fails some of the common statistical quality tests and is comparably slow
(see O’Neill, 2014). While the statistical quality seems to be sufficient for Monte
Carlo simulations, the feasibility of a faster algorithm should be considered. An ini-
tial profiling of Molflow’s simulation code suggests that random number generation
may account for around 2% of simulation time (see chapter 3.6) in simple scenarios.
Leaving only room for marginal improvements. In hindsight of the development of
a new simulation kernel for GPUs, other generators are taken into account.

Various PRNGs have been compared by O’Neill (2014) and a new algorithm, the
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Permuted Congruential Generator (PCG) family, has been proposed. XorShift* and
generators based on the PCG family are some of the more interesting choices due
to their attributed performance and good statistical properties. PCG algorithms
are combinations of LCG with permutation functions. Xorwow (see G. Marsaglia
(2003)) is the default PRNG for NVIDIA’s RNG library cuRAND4. Xorshift* and
Xorwow are LCG algorithms. L’Ecuyer (2012) gives some general insight into PRNG
and into applying PRNG in parallel computing environments. For the implementa-
tion of Molflow’s GPU kernel, we decided to use cuRAND’s Xorwow implementation
due to its ease of use and proven reliability in many applications. Our GPU imple-
mentation is discussed in chapter 8.

2.2.6 State of the art

There are various commercial and non-commercial solutions for simulating ultra-
high vacuum problems. The Molecular Flow Module of the COMSOL Multiphysics®

Software5 utilises an algorithm based on the Angular Coefficient (AC) method (see
chapter 2.2.1) to simulate steady-state free molecular flows in UHV conditions. The
AC method divides a geometry into N surface elements and calculates a visibility
factor for each element with the others, leading to a N × N linear system that
needs to be solved. Compared to Molflow’s ray tracing simulations, COMSOL’s
angular coefficient is usually slower and further does not support time-dependent
simulations. In ANSYS6, one can not directly simulate vacuum problems. Using
analogies between thermal and vacuum calculations, a heat flow simulation can be
used to acquire solutions for a vacuum model.

2.2.7 Case studies

Molflow has become a quasi-standard application for ultra high vacuum simulations
and is not only used by engineers and physicists in the accelerator community, but
also in other domains. At CERN it has been used for many components related to
the LHC. Veness et al. (2019) developed a beam gas curtain monitor for the high
luminosity upgrade of the LHC. Molflow simulations were used to suggest several
optimizations to the whole system. A test setup has been installed in the LHC to
verify the results.

Molflow has been used in the domain of space exploration by Alred et al. (2021)
as part of a contamination study for NASA’s SPHEREx mission. SPHEREx is a
low-orbit space observatory. Here, water outgassing scenarios have been simulated

4Accessed on 29/11/2023: https://developer.nvidia.com/curand
5Accessed on17/12/2022: https://www.comsol.com/molecular-flow-module
6Accessed on17/12/2022: https://www.ansys.com

https://www.comsol.com/molecular-flow-module
https://www.ansys.com
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as part of a model to predict water contamination risks and to design decontam-
ination solutions. At certain temperatures H2O is outgassed from the walls and
then potentially accumulated on top of the telescope’s optics, leading to disturbed
results. In figure 2.6 we show the Molflow model of the SPHEREx telescope.

Figure 2.6: Molflow model of the SPHEREx telescope. Green lines represent the
water molecule transport and red patches represent optical surfaces of
the system (Alred et al., 2021).

2.2.8 Synrad

While the work of this thesis was mainly focussed on Molflow, most contributions
are directly related to both simulation tools. Molflow and Synrad are sharing the
same computational back-end and large parts of the graphical front-end allowing
for preprocessing and postprocessing steps. The fundamental difference lies in the
Monte Carlo model, which we want to briefly elaborate on. For a deeper under-
standing, we direct users to the work of Marton Ady (2016) and Roberto Kersevan
and Marton Ady (2019).

Synrad is a tool for approximating flux and power distributions with a Monte
Carlo model for Synchrotron Radiation (SR). Synchrotron radiation is emitted by
charged particles, such as electrons, when they are accelerated radially. This is in
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particular the case for circular accelerators, such as the LHC at CERN. In particle
accelerators, this occurs when the particles move at near-light speeds and are forced
into a curved path by magnetic fields. The rapid change in direction causes the
particles to emit energy in the form of synchrotron radiation. The synchrotron
radiation itself is composed of photons. These photons carry the energy emitted by
the accelerating electrons.

In Synrad’s Monte Carlo model, photons originate from a user-defined beam cal-
culated by a set of magnetic regions and beam parameters. This allows to calculate
their origin based on a random distribution and a photon’s trajectory. Photons are
then emitted from this beam, their path is traced until a hit with a surface, leading
to a reflection and absorption, where backscattering and transmission probabilities
can be calculated, optionally (Roberto Kersevan and Marton Ady, 2019).

When this photon-rich synchrotron radiation interacts with surfaces and different
materials, estimated in Synrad with the absorbed photon flux, it can result in various
phenomena such as photon stimulated desorption.

2.2.9 Ultra high vacuum and Synchrotron radiation problems

Photon stimulated desorption (PSD) is a common phenomenon that has to be con-
sidered for vacuum components that are exposed to synchrotron radiation. In a par-
ticle accelerator, incident SR photons may lead to the desorption of gas molecules
from the material of the accelerator surface. As this phenomenon may contribute sig-
nificantly to the gas load in such systems, degrading the efficiency and performance
of particle accelerators, it is important to consider and minimise this effect when
designing vacuum components for this problem domain. In Synrad and Molflow,
this effect can be simulated by first generating a flux absorption with a Synrad sim-
ulation, which is then imported as an outgassing distribution in Molflow. Marton
Ady (2016) researched in great detail how these effects can be simulated with both
Synrad and Molflow.

For the remainder of the thesis, our attention is primarily on Molflow. It’s impor-
tant to note that many of the insights and contributions presented here are equally
applicable to both Molflow and Synrad, thanks to their shared software foundation.
This is discussed in greater detail in chapter 3. Additionally, a summary of the spe-
cific contributions made to Synrad as part of this work is provided in the concluding
chapter 9.

2.3 Ray tracing

Ray tracing (RT) is a computational technique for simulating the path of light
through a scene. It is a fundamental concept in both computer graphics and for many
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Figure 2.7: Ray tracing problem sketched in Molflow. Here a particles enter from the
facet at the left side (a desorption facet), following the particle trajectory
(green line) the algorithm tries to identify the facet which the particle
collides first with. Particles can exit this geometry either at facet on
the left or the right side (absorption facets). The dots connecting the
trajectory lines represent desorptions (blue dot), reflections (black dot)
or absorptions (red dot).

scientific simulations. In computer graphics, ray tracing is employed to create highly
realistic images by accurately rendering effects such as shadows, reflections, and
refractions. This realism is achieved by tracing the path of light rays as they interact
with various surfaces in a virtual environment. Beyond its typical applications in
creating visual content, ray tracing can be applied for physical simulations such as
Molflow. Molflow utilises ray tracing methodologies to simulate molecular flows in
vacuum environments. Instead of tracing the paths of light rays, in Molflow tracing
the trajectories of particles is of interest. In Molflow a ray is depicted as a particle,
where the collision point along the particle’s trajectory with a facet is of interest.
A facet is an arbitrary, non-self-intersecting polygon described by its vertices. An
example for simple a model in Molflow is sketched in figure 2.7.

This chapter aims to provide a comprehensive overview of ray tracing, covering its
principles and its implementation. We will begin by examining the basic concepts
underlying ray tracing as explained in great detail by Akenine-Möller, Haines, and
Hoffman (2008) and Pharr, Jakob, and Humphreys (2017). This is followed by a brief
discussion about optimizing techniques leading to the introduction of acceleration
structures to optimize the ray tracing computations.
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2.3.1 Basics

Ray tracing can be best understood by examining its typical pipeline, which consists
of three main stages: ray generation, ray tracing, and post-processing (see figure 2.2).
In this thesis we use some terms interchangeably. For simplicity, we use the term
ray, where in the case of Molflow a particle’s geometric representation is meant.
Polygons refer to the geometric descriptions of facets.

Given a geometry G that defines a polygon scene represented by the set of polygons
Ω, containing N ∈ N polygons, and a ray r, an orientated line, we can define a ray
tracing query rt(Ω, r). The result of a ray tracing query is typically the spatially
first intersected polygon Pi ∈ Ω, i ∈ [1, N ] or no polygon. The ray generation to
retrieve the origin and the direction, as well as the post-processing steps have been
discussed for Molflow’s Monte Carlo model in chapter 2.2.3. Here, we focus on the
algorithm that returns an intersection for the query rt(Ω, r).

Query types

Ray tracing describes a line-object intersection problem, where most commonly the
polygon that is intersected by the line first is of interest. For example, in a scene
with multiple polygons, the Closest Hit kernel determines which polygon a ray
intersects first for the query rt(Ω, r). In addition to the Closest Hit kernel, a ray
tracer can deploy different traversal algorithms depending on the geometric query
(see Gribble, Naveros, and Kerzner, 2014). The Any Hit kernel simply returns
whether a ray intersects any of the polygons inside the geometry and returns the
first polygon that has been identified to be intersected. When a query is made
following the Multi Hit traversal, information is returned about the Nk closest
intersected primitives. Closest Hit and All Hit traversal kernels are speciali-
sations of Multi Hit traversal, where Nk = 1 respectively Nk = ∞. When a ray
intersects a polygon, we calculate the distance from the ray’s starting point to the
intersection point. This distance, along with the polygon’s ID and the intersection’s
coordinates on the polygon, is recorded as a tuple, providing detailed information
about the intersection. This information is formed by the tuple (PID, thit, uhit, vhit).
Here, PID is the ID of the polygon, thit is the calculated distance, and uhit and vhit
defined the local 2D coordinates of the intersected polygon. The closest hit can be
labelled as hit, where the ray is colliding with the closest polygon and an interaction
event occurs, e.g. a reflection (see chapter 2.2.3). In case no interaction is identified,
this is tracked as a miss. Here, the ray is leaving the system and, in Molflow, has
to be terminated.

Transparent facets: Molflow deploys a special type of Closest Hit kernel, where
the closest primitive is of main interest, but intersected transparent facets are gath-
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Figure 2.8: A ray is following trajectory r from origin o on the red facet. Using the
Closest Hit kernel, the ray tracing query only returns the intersected
triangle that is the closest (blue facet). The other intersected triangles,
following the red trajectory line, are not returned (white facets).

Figure 2.9: A ray is following trajectory r from origin o on the red facet. Using the
Any Hit kernel, all intersections are evaluated. Here, the ray tracing
query returns the transparent triangles (yellow facets) and the closest
solid intersection (blue facet). The other intersected triangle, following
the red trajectory line, is not returned (white facet).

ered along the path. Transparent facets (as described in chapter 2.2.3) do not
influence the particle directly, but they serve the purpose of gathering statistics.
The opacity of a transparent is given by the opacity value τ ∈ [0, 1]. An opacity
value of τ = 0 denotes a solid facet, while an opacity value of τ = 1 denotes a
perfectly transparent facet. Values in between have to be evaluated ad hoc with a
random number. Given a randomly generated number r ∈ [0, 1], when a geometric
intersection is found with a transparent facet, we can determine directly from the
opacity value, whether a particle rebounds or is passed through. A facet acts as a
transparent facet, where a particle passes through if r ≤ τ . A passed transparent
facet and its hit location are collected in an array, only if ttrans < tclosest. Here, ttrans
is the intersection distance between the ray origin and the transparent facet. tclosest
is the intersection distance with the facet, that the ray collides with, the closest hit
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with a solid facet. A collection of passed transparent facets is then evaluated in the
trace processing step.

2.3.2 Coordinate system

Efficient ray tracing algorithms may require certain coordinate systems or transfor-
mations. In ray tracing, transforming coordinates from a 3D global space to a local
2D space is a common technique, typically referred to as UV mapping. Particularly,
it can be used for texture mapping and simplified geometrical operations. Geome-
tries are commonly expressed as global coordinates in 3D space. Global coordinates
relate all objects to each other. They are represented by the tuple (x, y, z) ∈ R3.
Local coordinates refer to normalized coordinates in 2D space on a surface. They
are represented by (u, v) ∈ [0, 1]2 coordinates.

For the transformation we utilize three vectors. The surface normal N ∈ R3,
which is perpendicular to the surface, defines the orientation of the surface. Next,
defining a tangent T ∈ R3 and a bitangent B ∈ R3, where both are orthogonal
to N, we can form a basis for the surface’s local coordinate system. These vectors
should be normalized so that |N| = 1, |T| = 1, |B| = 1. In our case, the tangent
T is typically chosen to align with an arbitrary edge of the surface. Then, we can
compute the bitangent B with:

B = N×T , (2.45)

so that T, B, and N are orthogonal to each other. After computing B, it should
also be normalized to ensure numerically that it is a unit vector. Together, T, B,
and N form an orthonormal basis for the surface’s local coordinate system.

We construct a transformation matrix to map global coordinates to the local
coordinate system. Using T, B, and N as columns we get:

M =

Tx Bx Nx

Ty By Ny

Tz Bz Nz

 , (2.46)

where the indices represent the corresponding global coordinate axis. We can then
transform a point p to local coordinates:

plocal = M−1 × p . (2.47)

The resulting plocal will have its u and v components corresponding to the coordi-
nates in the surface’s 2D space. After obtaining the local coordinates plocal for a
point p, it is essential to ensure that these coordinates fall within the range [0, 1]2

to maintain consistency and compatibility with common practices in UV mapping.
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This can be achieved by calculating the minimum and maximum values of the u and
v coordinates across all vertices of the surface, forming a 2D bounding box. Then,
the u and v coordinates of each point can be normalized using the minimum and
maximum values of the bounding box.

In practice, it’s often more practical to shift each point towards a reference point,
like an arbitrary polygon vertex p0, and directly compute u and v coordinates:

u = T · (p− p0) ,

v = B · (p− p0) .
(2.48)

By normalizing these coordinates using the bounding box’s minimum and maxi-
mum values:

ū =
u− umin

umax − umin
,

v̄ =
v − vmin

vmax − vmin
,

(2.49)

where umin and umax represent the minimum and maximum u coordinates across all
vertices, and vmin and vmax denote the minimum and maximum v coordinates. This
guarantees numerically that each 2d coordinate (ū, v̄) falls within the range [0, 1]2.

Figure 2.10 illustrates the mapping of 3D coordinates to 2D coordinates. In ray
tracing, these transformations are essential for texture mapping and the calcula-
tion of effects following intersections with surfaces. Further, they can be used for
simplifying ray-surface intersection calculations.

2.3.3 Ray tracing algorithm

Ray tracing fundamentally revolves around the concept of intersections - determining
where and how rays interact with objects in a scene. These intersections are crucial
for simulating realistic behaviors of light or particles. To build a solid understanding,
we begin by explaining the simple intersection algorithms and elaborate further
details for a more optimized solution.

Naively, to find the closest point of collision for a ray and a given geometry G
with all of its polygons, intersections with all N polygons of the geometry have to
be evaluated. We give a naive implementation for the intersection algorithm in al-
gorithm 2. For simplification, it uses the inverse of the ray direction ri = { 1

rx
, 1
ry
, 1
rz
}

(see line 2). The intersection tests involve divisions with the direction vector com-
ponents. Using the inverse simplifies the calculations. Divisions by zero can be
avoided early on. Furthermore, it is computationally cheaper to use multiplications
instead of divisions. The algorithm is naive, because it has to test against all facets
for intersection (see line 4). Hence, it is O(N), where N is the amount of facets. We
present optimized solutions O(logN) in chapter 2.4.
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Figure 2.10: The 3D world coordinates (x, y, z) for the front face (green) of a prism
are transformed to local 2D coordinates (u, v) ∈ [0, 1]2 using the facet
normal N and the tangent along (V0,V1). Here, coordinates V0,V1

are mapped to v0,v1, respectively.

Algorithm 2 Naive Ray-polygon intersection algorithm
1: function Intersect(Particle p, Direction r, Geometry G)
2: r ← InverseRayDirection(r)
3: t←∞ ▷ Used to store the shortest distance
4: for facet in FacetList of G do ▷ Naive check for all facets
5: IntersectPolygon(p,r,facet)
6: tf ← intersectionDistance
7: if Intersection found ∧tf < t then
8: closest_facet← facet
9: t← tf

10: end if
11: end for
12: end function
13:
14: function IntersectPolygon(Particle p, Direction r, Polygon f)
15: if Line-plane intersection ∧ Point-in-polygon check then
16: return true
17: end if
18: return false
19: end function
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A ray-polygon intersection in 3D coordinates can be computationally expensive.
In many cases, it is possible to reject an intersection test with a much simpler test.
In our implementation IntersectPolygon (see line 14 of algorithm 2), first, we test
whether the ray intersects the 3D-plane of the polygon. In case of an intersection,
a conclusive test can be conducted with a point-in-polygon tests in 2D coordinates.

In the following sections, we elaborate the details of the ray-polygon-intersection
algorithm then we explain how the O(N) algorithm can be optimised using so-called
acceleration data structures.

2.3.4 Line-plane intersection

The ray tracing problem in Molflow is described in parametric form. A ray is
represented with:

I = oray + rdirt, t ∈ R , (2.50)

where I are all valid points on the ray, oray is its origin and rdir is the ray’s normal-
ized direction and t is some scalar for the direction that depicts the distance from the
origin. Because intersection tests with arbitrary polygons in 3 dimensions are com-
putationally expensive, the algorithm starts by utilising some simplifications. For
each polygon, we can define the plane spanned by the u and v coordinate vectors:

p = ofac + uu+ vv, u, v ∈ R , (2.51)

where p are all valid points on the plane, ofac is its origin and u, v are some scalars.
The ray collides with the plane when there is an equal point of the ray and the
plane; thus, equating (2.50) and (2.51) we get the equation:

oray + rdirt = ofac + uu+ vv , (2.52)

which we can rewrite as

oray − ofac = uu+ vv − rdirt , (2.53)

and in matrix form as

[
oray − ofac

]
=
[
u v −rdir

] uv
t

 . (2.54)

We can solve the corresponding system of linear equations for u, v and t, which is
commonly achieved via Cramer’s rule (see Shirley and Marschner, 2009). Given the
system of linear equations in multiplication form

b = Ax , (2.55)



2.3 Ray tracing 35

where x = (u, v, t)T is our vector of variables. Then we can express the individual
solutions xi with

xi =
det(Ai)

det(A)
=
|Ai|
|A|

, (2.56)

but only if the determinant of A is not zero. Ai denotes the matrix, where we use
the vector b as the i-th column. That means for

A =

x1 y1 z1
x2 y2 z2
x3 y3 z3

 (2.57)

the solutions can be calculated as:

u =
1

|A|

∣∣∣∣∣∣
b1 y1 z1
b2 y2 z2
b3 y3 z3

∣∣∣∣∣∣ , (2.58)

v =
1

|A|

∣∣∣∣∣∣
x1 b1 z1
x2 b2 z2
x3 b3 z3

∣∣∣∣∣∣ , (2.59)

t =
1

|A|

∣∣∣∣∣∣
x1 y1 b1
x2 y2 b2
x3 y3 b3

∣∣∣∣∣∣ . (2.60)

For system (2.54), where we use the scalar triple product to describe each deter-
minant, we get the following results:

u =
(v ×−rdir) · (oray − ofac)

−rdir · (u× v)
, (2.61)

v =
(−rdir × u) · (oray − ofac)

−rdir · (u× v)
, (2.62)

t =
(u× v) · (oray − ofac)

−rdir · (u× v)
. (2.63)

To optimise the algorithm, it makes sense to precalculate w = u × v as it is just
another constant for the facet. Explicitly precalculating certain constants removes
redundancy, which guarantees computational efficiency. For every intersection we
can reuse values for the determinant det(A) = −rdir ·(w) and the difference between
the ray’s and the facet’s origin ofr = oray − ofac.

Given our ray tracing problem, a prerequisite for an intersection is:

det(A) ̸= 0 , (2.64)
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which ensures that ray and the facet’s plane are not coplanar, otherwise there could
not be an intersection. For 1-sided facets, a check for

det(A) > 0 (2.65)

guarantees only intersections with the front side of the facet. Additionally the
following constraints need to be satisfied:

u, v ∈ [0, 1] , (so that it is inside the bounding rectangle) (2.66)
t > 0 . (so that it is in the right direction) (2.67)

The point (u, v) is then used to check if the ray really hit the facet and not only
its rectangular bounding box. A bounding box surrounds a given facet completely.
Here, a bounding box is the minimum axis aligned rectangle that bounds the facet’s
coordinates. Only when the bounding box is intersected, a computationally more
expensive point-in-polygon algorithm is called, which is explained in the following
chapter 2.3.5. Additionally, transparent facets have to be handled in more detail.
An implementation for HandleTransparentHit (see line 12) has to consider the fol-
lowing. For a partially transparent facet f with the opacity value τf ∈ [0, 1], the hit
has to be registered only as a real hit if r > τf , where r is a pseudo random number.7
A slightly simplified version of the algorithm for Line-plane intersection using
Cramer’s rule is shown in algorithm 3.

2.3.5 Point in polygon

For Molflow, we use a modified version of the Winding number algorithm (Sunday,
2021) that works with both convex and concave polygons and is independent in
regards to the orientation of the polygon’s normal. A good analysis of common point-
in-polygon algorithms has been carried out by Schirra (2008). The Winding number
algorithm is computationally efficient and has shown good results for Molflow. The
algorithms works by counting the number of times the polygon winds around a
given point p = (u, v). An efficient version gives the winding number by utilizing
a positive ray in v-direction starting from p. An edge crossing the ray above adds
and otherwise subtracts from the winding number.

Using local 2D coordinates pi = (ui, vi) to describe the polygon, for every edge of
the polygon e = (p1,p2) we check the following conditions:

• Check if u-value of p is within [up1 , up2 ].

• Check if v-value of p is above or below the line connecting the points vp1 and
vp2 .

7So, for τf = 1 a hit always reflects. For τf = 0, a hit is always considered transparent and is
only of statistical nature.
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Algorithm 3 Line-Plane intersection via Cramer’s rule
1: function LinePlaneIntersection(Ray R, Facet f, Distance tmin)
2: w← u× v
3: det(A)← −rdir ·w
4: if det(A) ̸= 0 then ▷ Backface culling skipped for simplicity
5: ofr ← oray − ofac

6: dA ← 1/ det(A)
7: u← ((v ×−rdir) · ofr) · dA
8: v ← ((−rdir × u) · ofr) · dA
9: t← ((u× v) · ofr) · dA

10: if u ∈ [0, 1] ∧ v ∈ [0, 1] ∧ t > 0 then
11: if PointInPolygon(u,v) then
12: HandleTransparentHit
13: if t < tmin? then
14: tmin ← t
15: return true
16: end if
17: end if
18: end if
19: end if
20: return false
21: end function
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Whenever both conditions are met, we can keep track of a crossing. First, the ray in
v-direction related to point p can only cross an edge when it is between the u-values
of p1 and p2:

(u < up1) ̸= (u < up2) . (2.68)
This condition ensures that p is strictly between the u-values of p1 and p2. Further,
to find out whether p is above an edge or not, we calculate the edge’s slope mE =
(vp2 − vp1)/(up2 − up1) and compare the v-intercept for the linear equations for p
and p1 with the same slope mE:

point_above =

{
1 if mE · up − vp < mE · up1 − vp1 ,

−1 else .
(2.69)

The sum of these crossing values gives the winding number. When it is zero, a point
lies outside the polygon, otherwise it lies inside. However, to account complex poly-
gons e.g. polygons containing holes, the interpretation has to be slightly different.
Here, only odd winding numbers account for points lying inside.

An alternative can be found with the Crossing number inclusion algorithm de-
scribed by W. Randolph Franklin (1994). The reliability and numerical stability of
many widespread point-in-polygon algorithms have been analysed by Schirra (2008).
There exist a few edge cases that are not properly handled and could introduce nu-
merical problems or ambiguities. This includes the proper classification of a hit on
an edge, which are handled gracefully by some algorithms by balancing the distinc-
tion strictly e.g. labelling hits at the left-bottom to one and hits to the right-top
parts to another facet. We found, that for Molflow these scenarios are rare enough
to be negligible, hence we prioritise the performance-optimised algorithm described
above.

2.3.6 Line-box intersection

Instead of using expensive polygon intersection tests in all cases, intersection tests
can be simplified by testing for an intersection between a ray and a bounding box.
We deploy a simple yet efficient line-box intersection algorithm called the Slabs
method, introduced by Kay and Kajiya (1986).

Given the ray described in vector form by I = oray + rdirt as in (2.50), we are
looking for an intersection with an Axis Aligned Bounding Box (AABB), which can
be defined by its minimal and maximal points a and b respectively. By looking
at an AABB as a set of slabs, two lines parallel to the coordinate axis for every
dimension, we can simplify this problem. With I = a and I = b we get the vector
equations

o+ tA · r = a , (2.70)
o+ tB · r = b , (2.71)
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where t represents intersection distances as a vector. Opposed to (2.50), here, we
are interested in intersection distances for each dimension (x, y, z). We simplify the
ray origin oray and the direction rdir to o and r, respectively. Next, we can find the
intersection distance for each dimension by solving for t in each coordinate:

tAx =
ax − ox

rx
, tBx =

bx − ox
rx

,

tAy =
ay − oy

ry
, tBy =

by − oy
ry

,

tAz =
az − oz

rz
, tBz =

bz − oz
rz

,

(2.72)

where tAx, tAy, tAz are the intersection distances with the minimal points a and
tBx, tBy, tBz are the intersection distances with the maximal points b in each di-
mension x, y, z, respectively. As noted previously, the calculation of (2.72) can be
optimized by precomputing the inverse ray direction. In the case that any of the
ray direction components rx,y,z is zero, the inverse can be assumed to be 0 to handle
the special case.8

Then, to determine whether the ray intersects the AABB, you check for overlap
in the intervals Ii = [tAi, tBi] in each dimension i = {x, y, z}. We require the greater
value corresponds to the intersection with the minimum plane A and the smaller
value to the intersection with the maximum plane B, as follows:

tmin,i =

{
tA,i if tA,i > tB,i ,

tB,i else ,
(2.73)

tmax,i =

{
tA,i if tA,i < tB,i ,

tB,i else .
(2.74)

These become our tmin,i and tmax,i. Then we check for all three dimensions to find
the largest tnear value and the smallest tfar value. Doing so sequentially, we first
compute tmin,x and tmax,x. Then we compute tnear,xy and tfar,xy only concerning
components from the x-dimension and y-dimension:

tnear,xy =

{
tmin,x if tmin,x > tmin,y ,

tmin,y else ,
(2.75)

tfar,xy =

{
tmax,x if tmax,x < tmax,y ,

tmax,y else .
(2.76)

8Ideally the compiler can handle the division by 0 scenario gracefully.
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(a) w/ intersection (b) w/o intersection

Figure 2.11: Ray-box intersections with different near and far values for tA and tB.
Min coordinate is labeled as A. Max coordinate is labelled as B. In
2.11a the ray intersects the box. In 2.11b no intersection occurs.

And lastly we compute:

tnear =

{
tnear,xy if tnear,xy > tmin,z ,

tmin,z else ,
(2.77)

tfar =

{
tfar,xy if tfar,xy < tmax,z ,

tmax,z else .
(2.78)

There is an overlap – and therefore an intersection with the xy-plane of the box – if
tfar,xy ≥ tnear,xy, else the ray is not passing through the plane. Lastly, if tfar ≥ tnear,
the ray intersects the bounding box. Further, we require tfar > 0 (and inherently
tfar,xy > 0), to ignore facets at the back of the ray with respect to its origin.

In figure 2.11a we can see a ray hitting the plane, because tfar,xy > tnear,xy is
true with tfar,xy = tB,x and tnear,xy = tB,x. For figure 2.11b there is no hit, where
the values are tfar,xy = tB,y, tnear,xy = tA,x for the one case and tfar,xy = tB,x,
tnear,xy = tA,y for the other.

Ray-box intersections are fundamental to accelerate ray tracing routines. AABBs
are used as building blocks for bounding volume hierarchies, which are elaborated
in great detail in chapter 2.4.1.
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2.3.7 Acceleration Techniques

Ray tracing describes a line-object intersection problem, where a naive algorithm
would check for intersections with every single object to find the one with which it
will intersect first. Most applications that deploy ray tracing algorithms work with
geometries containing thousands to millions of polygons. Ray-tracing-based Monte
Carlo simulations such as those conducted with Molflow, run enormous amounts of
intersection tests to achieve accurate estimations. Hence, it is of great interest to
optimise the algorithm with application specific techniques.

There are three main strategies to accelerate ray tracing algorithms, as outlined
in Arvo and Kirk (1989): faster intersections, ray reductions, and ray generaliza-
tions. The most common approach is to speed up intersections. This is achieved
by using acceleration data structures that group geometric primitives, allowing for
more efficient initial intersection tests. The concept of ray reduction does not align
well with Monte Carlo algorithms. Reducing the number of Monte Carlo events
typically leads to less accurate or overly smoothed results. Techniques like sampling
of results or terminating rays early can distort the physical accuracy of simulations,
such as those in Molflow. These methods might provide smoother preliminary re-
sults but do not accurately reflect the underlying physics. Finally, generalizing or
accumulating rays by replacing them with different shapes, such as beams or cones,
is not effective for Molflow. This is because in Molflow, particles follow completely
random trajectories, as described by equation (2.11).

Most of the state-of-the-art techniques are in particular made for ray tracing
as a rendering technique in graphical environments. The ray tracing problem in
Molflow has different properties, which have to be taken into account to find and
develop a suitable approach to accelerate the algorithm. For example, simulations
in Molflow compute results for a static geometry for a long period, in contrast to
typical rendering scenarios.

2.4 Acceleration Data Structures

This chapter aims to elaborate Acceleration Data Structure (ADS), according to the
ideas elaborated by Pharr, Jakob, and Humphreys (2017). Good ray tracers deploy
an ADS to reduce the computational complexity logarithmically, where expensive
intersection tests against 3d primitives are reduced as much as possible.

A naive approach for ray tracing would consist of testing all polygons to find out
the nearest intersection with the ray, which is obviously not feasible in most use
cases for ray tracers like computer graphics or Monte Carlo simulations. Hence,
ADS are maybe the most important technique for a good ray tracing engine as they
can also be considered as the frame for utilising further acceleration techniques.
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With a particular focus on graphical problems most ray tracing APIs (see NVIDIA
OptiX9 and Intel Embree10) are using so called Bounding Volume Hierarchies (BVH)
as the default acceleration data structure. BVHs belong to the class of object
partitioning structures. Meister et al. (2021) attribute this to a “predictable memory
footprint”, a “robust and efficient query” and a “scalable construction”. A different
type of ADS are KD-trees, which belong to the class of spatial subdivision structures.
Unlike BVHs, KD-trees will subdivide the geometry not into individual objects,
but it will subdivide the space, which makes it possible for individual objects to
reside in multiple leaves. KD-trees have the advantage that they are usually said
to be advantageous for static geometries where longer pre-processing times can be
tolerated. Figure 2.12 shows how a scene containing geometric primitives is divided
by a BVH and a KD-tree. We show how the same primitive scene is divided by a
BVH (figure 2.12a) and by a KD-tree (figure 2.12b). For the BVH, here, the sub
nodes created by the splits create spatial overlaps between the nodes. The KD-tree
split leads to both nodes containing the same primitive.

(a) BVH (b) KD-tree

Figure 2.12: Sketch of different acceleration data structures for the same scene of
primitives. Left, the scene is represented by a BVH. One volume con-
tains the blue primitives, the other contains the green primitives. The
bounding volumes for the sub nodes overlap. Right, the scene is rep-
resented by a KD-tree. The spatial split divides the scene in two par-
titions: blue and green. It leads to a single primitive spanning both
partitions.

9Accessed on 05/12/2023: https://developer.nvidia.com/rtx/ray-tracing/optix
10Accessed on 05/12/2023: https://www.embree.org

https://developer.nvidia.com/rtx/ray-tracing/optix
https://www.embree.org
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2.4.1 Boundary Volume Hierarchy

The concept of a bounding volume hierarchy is as follows. Given a set of geomet-
ric primitives, we construct a hierarchical tree structure. The leaves of this tree
store references to individual primitives, and the internal nodes contain pointers
to their child nodes. Each node in the tree is associated with a bounding volume
that encompasses all of its child elements. Bounding volumes eliminate the need
for individual ray-primitive intersection tests at the internal node level, replaced by
a single more simplified intersection routine that depends on the type of bounding
volume. At leaf level, a final intersection test with a bounding volume has to pass,
before all primitives are tested for individually. There are different types of bound-
ing volumes, where axis-aligned bounding boxes (AABBs) are most commonly used.
AABBs are cuboids, whose axes are parallel to those of the global coordinate sys-
tem. This is opposed to oriented bounding boxes (see Shirley, Wald, and Marrs,
2021), whose edges axes do not have to be axis-parallel. Further techniques exist,
such as bounding spheres or axis-aligned bounding tetrahedra or octahedra11 ,12.
Their effectiveness is largely dependent on the utilised geometry and has not been
confirmed for arbitrary geometries yet. Hence, for further investigation we focus
only on AABBs. Extensive research into BVH techniques has been conducted and
summarized by Meister et al. (2021) in their survey.

Efficient ray-box intersection

When using AABBs as bounding volumes for the inner nodes of a BVH, we can use
the so called slabs algorithm (Kay and Kajiya, 1986) for a ray-box intersection
test, which has been deployed for Molflow’s ray tracer. A visualisation of the algo-
rithm is sketched in figure 2.13. The complete description of the algorithm is given
in chapter 2.3.6. Majercik et al. (2018) give a modified version – tuned for vector
instructions – of the algorithm as sketched in listing 2.1. The algorithm works by
first determining the intersection distance t between the ray and the lower (min)
and the upper bounds (max) of the AABB on each of the 3 axes. With the corre-
sponding t values, we can define a set of cases where a ray does not intersect with
a given bounding box. These cases are sketched in figure 2.11.

BVH in Molflow 2.7

Historically, Molflow deployed a BVH with AABBs for performant ray tracing-based
simulations. Most importantly, a complete revamp of the memory layout of the
data structure and the splitting criterion achieved major performance improvements,
11Accessed on 20/12/2022: https://medium.com/@bromanz/axis-aligned-bounding-tetrahe

dra-and-octahedra-for-ray-tracing-bounding-volume-hierarchies-683751d84bca
12Accessed on 20/12/2022: https://github.com/bryanmcnett/aabo

https://medium.com/@bromanz/axis-aligned-bounding-tetrahedra-and-octahedra-for-ray-tracing-bounding-volume-hierarchies-683751d84bca
https://medium.com/@bromanz/axis-aligned-bounding-tetrahedra-and-octahedra-for-ray-tracing-bounding-volume-hierarchies-683751d84bca
https://github.com/bryanmcnett/aabo
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Figure 2.13: Visualisation of the ray-box intersection algorithm. tmin denotes the
minimal intersection distance for the box with the minimum and max-
imum bounds min and max respectively.

bool slabs(vec3 p0, vec3 p1, vec3 rayOrigin , vec3
invRaydir) {

vec3 t0 = (p0 - rayOrigin) * invRaydir;
vec3 t1 = (p1 - rayOrigin) * invRaydir;
vec3 tmin = min(t0,t1), tmax = max(t0 ,t1);

return max_component(tmin) <= min_component(
tmax);

}

Listing 2.1: Efficient slab test algorithm given by Majercik et al. (2018). To neglect
conditional statements, the algorithm makes use of possible vector
instructions.
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which will be discussed in more detail in chapter 7.3.2. At node level primitives are
contained in minimal AABBs. Following a top-down approach, AABBs are split
depending on a specified splitting criterion (see 7.2), where a parent node contains
all its descendants and is essentially a union of their AABBs. Each inner node of
such a BVH has M children, where usually binary trees are deployed (M = 2).
The leaf nodes contain up to P primitives. Primitives are usually tested first by
attempting a simplified intersection test against their individual bounding box and
only then against the strict primitive description (e.g. polygon or triangle). With
this, the number of intersection checks can be minimised for N facets from O(N) to
O(logM N) in practical cases, due to the early rejection of subsets13.

At the beginning of this study, for Molflow the optimised BVH implementation
allowed for a minimum of 8 facets per box (MINBB= 8) and a maximal tree depth
of MAXDEPTH= 50, which proved to be a good choice using a simple tree splitting
approach that has been deployed in Molflow 2.7. For the construction of a BVH, a
simple top-down approach has been used using median-based splitting. It starts by
computing a single Bounding Box (BB) containing all facets of a structure, which
represents the starting node at root level. That node is then cut by the following
criterion:

1. Calculate the center coordinates (3d-coordinates) of the Bounding Box.

2. Calculate difference between the number of elements in one or the other side
of the center, for each axis (x, y, z):

a) Split a box in the center of each axis.

b) A facet is in one side if the corresponding coordinate of its centroid is
lower than the center of the box, and on the other side if it is greater.

3. Make a cut at the center of that axis, where the difference is the lowest (striving
for an equal distribution).

Primitives are then distributed in two new nodes rightNode and leftNode, depend-
ing on whether the center lies on one side or the other of the cut-axis. The newly
created nodes are then further divided recursively by the same scheme until either:

• a maximal tree depth MAXDEPTH has been reached.

• the amount of children in a single node after a cut would be lower than MINBB.

As part of this thesis, we implemented state-of-the-art techniques and developed
new methods that are more efficient for partitioning BVHs. These algorithms are
elaborated in great detail in chapter 7.2.
13Accessed on 20/12/2022: https://www.scratchapixel.com/lessons/3d-basic-rendering

/minimal-ray-tracer-rendering-simple-shapes/ray-box-intersection

https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-box-intersection
https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-box-intersection
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2.4.2 KD-tree

In contrary to BVHs that use object partitioning to divide nodes, the KD-tree creates
partitions by dividing the space using split planes and storing these planes in the
inner nodes. Unlike the general binary space partitioning tree (BSP) that allows
split planes that are arbitrarily oriented, the KD-tree only allows splits parallel
to the three axes. Figure 2.14 visualises the splits of a KD-tree for an exemplary
geometry in Molflow. Opposed to BVHs, primitives can belong to both partitions,

Figure 2.14: Visualisation of a KD-tree for an example Molflow geometry. Spatial
splits are coloured hierarchically (blue, green, red). First, the geometry
is split by the blue plane in two nodes. Next, these nodes are further
split by the corresponding green splitting planes. These nodes are fur-
ther divided by the splitting planes colored in red.

when they straddle the split plane. This gives a bigger memory overhead, even
when the primitives are just stored giving a reference. KD-trees have the interesting
property that the ray-tracing algorithm can be terminated early, when the first hit
location has been identified14. This is because intersecting a KD-tree can be done
14This is not entirely true for Molflow, when transparent facets are used.
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in front-to-back order, so initially we start with the potentially closest hit location.
Since a KD-tree is thus spatially aware, this property can further be used e.g. to
quickly navigate between neighbouring sub-volumes and to restart the search from
a given node that contains the starting point.

Traversal techniques

There are many possible traversal techniques for a KD-tree used for ray-tracing
applications. They mainly differ in their approach to restart when an intersection
test in a lower level node leads to no intersection. Lira dos Santos, Teichrieb, and
Lindoso (2014) describes different methods and discusses their advantages. Here,
we focus on the following techniques, both sketched in figure 2.15.

Figure 2.15: Naive and stacked KD-tree traversal (Lira dos Santos, Teichrieb, and
Lindoso, 2014).

Sequential KD-Restart A naive implementation for a traversal algorithm for KD
trees is the kd-restart traversal. In this method, at each node visited during traversal,
the algorithm performs intersection tests to determine whether the current node’s
bounding volume intersects with the ray or query being processed. When no inter-
section is detected for an inner or leaf node during traversal, the traversal algorithm
always resets and restarts from the root node. This iterative process continues until
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a potential hit location is identified, often resulting in repeated traversal of previ-
ously visited nodes. A downside of this technique is encountered for KD trees that
are deep or contain many empty regions, which may lead to repetitive traversal of
the same branches.

Stacked The de facto standard traversal algorithm for navigating KD trees effi-
ciently. It involves maintaining a stack to track nodes encountered during traversal.
This allows the algorithm to backtrack effectively, especially when two inner child
nodes are intersected. The stacked nodes are revisited once all child nodes have been
processed. The stacked traversal method follows a front-to-back approach, prioritiz-
ing nodes closer to the ray origin for processing. It can be implemented using either
recursive or iterative techniques. The stacked approach enhances performance by
minimizing redundant traversal and efficiently managing node exploration.

Another technique that uses links between bottom-level nodes or quick traversal
is presented in section 7. This algorithm has an interesting property for Molflow’s
use case making use of static geometries and spatially close reflection points.

2.4.3 Grid-based partitioning

Uniform grids as an acceleration data structure for ray-tracing introduce some in-
teresting properties. The space is subdivided in equidistant intervals for each di-
mension, resulting in equally shaped boxes or so called voxels (volumetric elements).
Primitives are then distributed to belong in one or more voxels, in case of an overlap.
To find intersections with a primitive, following the ray origin the grid can be tra-
versed in front-to-back order. For each voxel, intersection tests with the individual
primitives are carried out until an intersection can be determined.

The performance of ray-tracing with a uniform grid obviously depends on the
chosen resolution, where the optimal amount of voxels is roughly proportional to
the amount of primitives n. This can be achieved in most cases by using a uniform
grid resolution in relation to the amount of primitives r ∈ N with r ≈ c 3

√
n (Ize,

Shirley, and S. Parker, 2007). Best case, an intersection can be found in a few steps
giving a traversal complexity of O(1). If no intersection can be found at all, Ize,
Shirley, and S. Parker (2007) give a worst case complexity of O(r = 3

√
n) with the

proposed optimal resolution, when a ray is traced parallel to one of the coordinate
axes. The efficiency for a uniform grid can mainly be scaled with the resolution.
A high resolution also results in an increased memory consumption. For Molflow,
uniform grids have the interesting property, that they could potentially be used to
introduce the feature to simulate intermolecular collisions in the viscous regime (Kn
< 1). As other data structures promise better performance, grid-partitioning has
not been investigated further in this work.
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2.5 State of the art - Ray tracing

There exist various ray tracing libraries that encompass high-performance kernels
for both CPUs and GPUs. Embree from the Intel Corporation (Wald, Woop, et al.,
2014) might be the most established choice for CPU-based simulations in particular
for rendering applications, such as V-Ray, Autodesk RapidRT and blender. The
open-source framework delivers "hand optimised, low-level kernels" – in particular
via directly implemented vectorisation – and is suitable for a variety of different
workloads. Shriwise (2018) utilised Embree for the Direct Accelerated Ge-
ometry Monte Carlo (DAGMC) toolkit, a simulation software for Monte Carlo
Radiation Transport. Hence, DAGMC shares similar constraints for a ray tracing
engine with Molflow. A downside of Embree for physical simulations is the inherent
use of single precision ray tracing calculations15, which the author of the paper has
targeted to fix with his double precision interface double-down16. The inherent idea
was to create a mixed precision BVH, where the original single precision calculations
are used for intersection tests with bounding boxes and double precision is used for
potential intersections with primitives.

Another ray tracing library targeting both CPU and GPU17 is the code pbrt
(Pharr, Jakob, and Humphreys, 2017). pbrt is a ray tracing rendering code with
implementations of BVHs and KD-trees keeping state-of-the-art techniques in mind,
also on the cache-optimisation level. It is straightforward to modify and extend the
pbrt implementation with custom routines. This is why we decided to use pbrt’s
ADS implementation as the foundation for Molflow’s revamped ray-tracing engine
compared to other ray tracing libraries. The open source code, using a BSD-2
license, is ideal to use for extensive research for Molflow’s ray tracing backend. The
code enables us to focus on implementing new techniques, while serving as a great
foundation with performant implementations for standard rendering techniques.

The study by Roberto Kersevan and Pons (2009) found that the use of graphic
computing units (GPUs) to improve Molflow’s Monte Carlo algorithm is constrained,
primarily due to limitations in the foundational ray-tracing algorithm. With the
advance in technology, namely the increase in performance of GPUs in general and
especially the introduction of NVIDIA’s RTX graphic cards, one might expect that
porting the Molflow algorithm to run on GPUs will allow for the necessary per-
formance of more demanding and long term simulations need. For that matter, I
reevaluate the GPU acceleration study conducted for Molflow (Roberto Kersevan
and Pons, 2009), with today’s hardware and software solutions. Furthermore, I
study the possibility of making use of the RT cores from NVIDIA’s Turing GPUs.
They are said, as stated by NVIDIA (2018, p.30), to accelerate “Bounding Volume
15detailed explanations in chapter 8
16Accessed on 04/06/2022: https://github.com/pshriwise/double-down
17GPU support officially part of the source code in version 4.

https://github.com/pshriwise/double-down
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Hierarchy (BVH) traversal and ray/triangle intersection testing (ray casting) func-
tions”, which is not how the ray-tracing algorithm in Molflow works right now. We
have to see if the AABB tree with the Line-plane intersections will benefit at all
from NVIDIA’s new raytracing pipeline.

We conduct an initial study to investigate first, if the major improvements in gen-
eral performance from common consumer-class GPUs are enough to justify porting
the Molflow algorithm to GPUs. Afterwards, we take a proper look at the current
and future generation of NVIDIA’s RT core GPUs and see if using consumer-class
Turing graphic cards allow for a proper boost in performance and if the usage or
investment in dedicated HPC hardware, in specific Tesla T4 or newer, would be
worth it.

2.6 Contributions

As part of the thesis, the following scientific contributions have been made. In the
context of ray tracing simulations for physical models, with Molflow as the leading
example, an in-depth analysis of state-of-the-art acceleration data structures and
corresponding splitting techniques has been carried out. This led to the development
of a highly specialised ray tracing engine based on KD-trees that is constructed with
a new splitting heuristic called Hit Rate Heuristic (HRH), which is introduced in
section 7.2.4.

The suitability of a GPU kernel that is fully leveraging the potential of hardware-
accelerated ray tracing units, exemplary on NVIDIA RTX GPUs, has been analysed.
We developed and demonstrate a technique called Neighbour Aware Offset (NAO),
that counters the negative effects of the single-precision calculations, while using the
full RT pipeline of the before-mentioned hardware.

We investigated several stopping criteria for Monte Carlo simulations and evalu-
ated the usage of various parameters most suitable to determine the general conver-
gence of a solution.

A rework of the data structures and algorithms supporting the time-dependent
simulations has been conducted, leading to large speedups with a minimal addition
to the constraints.

Further, with a focus on the User Experience (UX), several algorithms that are
used during the pre-processing steps or the design phase have been reevaluated and
improved based on the specific data structures that are employed in Molflow and
Synrad.
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3 Software Development Process

Up to the point of starting this PhD thesis, the main Molflow development process
has been performed by only a single person, where the primary focus is on func-
tionality and stability. Therefore, the aspects of software engineering need to be
reviewed so that vital components are in focus and can be easily changed without
affecting too many parts of existing software. Initially, the codebase was shared
with the Synrad project, prioritisation of Molflow’s development, and a major over-
haul of the underlying software architecture led to diverged code, and thus increased
software development costs.

In the initial phase of this thesis, Molflow has been analysed with appropriate
profiling tools to determine relevant components of the simulation engine that have
a big computational impact and give the potential for an increase in overall perfor-
mance (see chapter 3.6). Further, the necessity to bring Molflow and Synrad back
to a converged codebase, as they share large parts of the code, is elaborated with
a structured plan that led to an upgraded simulation kernel for both tools, further
enabling the usage in HPC environments. The base version achieved with this thesis
is Molflow 2.9.5 , which introduced a strong separation between the user interface
and the simulation kernel. A dedicated CLI-based version MolflowCLI has been
released, that enables users to run Molflow simulations in headless environments,
such as MPI clusters, or to utilise it for more advanced simulations within scripts.
Due to some noticeable problems in the early releases, the incremental versions for
Molflow 2.9+ have been flagged as beta up to the submission of this thesis. This
state has been kept mainly due to the lack in resources to validate and verify all
components that have undergone larger rewrites. Further modifications have been
made as part of an independent release1, solely to drive and finalize some of the fea-
tures or their corresponding tools for empirical evaluation. Most noteworthy is the
availability of convergence-based stopping criteria – that have been implemented,
but not been enabled in the official source code – and further adjustments to the
developed GPU kernel.

1Accessed on 05/12/2023: https://github.com/iBaer/molflow-phd-fork

https://github.com/iBaer/molflow-phd-fork
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3.1 Code Refactoring

Molflow 2.7 , the previous baseline, included a major revamp building on top of
Molflow 2.6 , moving the simulation engine from a master-worker-based approach
using subprocesses to a thread-based approach. While this helped in reducing the
memory requirements due to shared resources among all simulation threads, it was
observed that the newly developed data structures were deeply entangled with the
graphical user interface. Furthermore, due to the complex nature of these changes
and limited human resources, they were not implemented in Synrad, resulting in di-
verging codebases. After considering the clearly defined goals of this thesis, in partic-
ular, the development of a CLI application for HPC environments and a GPU-based
simulation kernel, a rollback to Molflow 2.6 has been favoured and conducted in the
initial phase of this work. This process included a merge of all changes excluding
the architectural revamp of the simulation engine, leading to a new base version on
which the work on this thesis builds upon, Molflow 2.8 . Refactoring is an important
step for the Molflow code base. In order to achieve code unification for Molflow and
Synrad, a CLI-based application and a GPU kernel, the separability and indepen-
dence of the user interface and the simulation code are a necessity. This led to a
general separation of the simulation modules, which have been sketched in figure 3.1.
The SimulationManager creates a common interface for operating the simulation
kernel. This enables both the GUI and CLI applications to initialize data structures
for the input geometry, and to launch and monitor simulations. SimulationCore
is a concept that easily integrates different simulation kernels, where the GUI and
CLI only need minimal information about the actual simulation, which could use
the CPU or GPU kernel.

Initially, to ensure that as part of the refactoring process no functionality-breaking
changes are made, a proper test suite had to be set up. Due to the strong coupling
to the GUI and low cohesion of the available classes writing manageable unit tests
was not possible. As a workaround, the following approach has been used to au-
tomatically validate the correctness of the simulation kernel. To achieve this, the
general idea was to first create a gold standard for the results from a set of input
geometries. Simulation results from newer development versions of Molflow could
then be generated and validated against this gold standard. An automatic test suite
was set up in Python with the GUI automation library PyAutoGUI2 to automati-
cally run new simulations and save the results. The first versions of the script run
simulations with a fixed amount of particles, where the simulation kernel worked
only with one thread and with a fixed random seed to enable reproducibility. This
was later changed to an approach to validate simulations only against a set error
threshold. A full description of the algorithmic changes and adapted data structures

2Accessed on 02/12/2022: https://pyautogui.readthedocs.io/en/latest/index.html

https://pyautogui.readthedocs.io/en/latest/index.html


3.1 Code Refactoring 53

Figure 3.1: Sketch of the proposed design of the dependencies for Molflow’s dis-
tinguished components, where the so-called SimulationManager is the
common interface for both GUI and CLI applications to launch simu-
lations, based on a pre-specified simulation kernel implemented via the
SimulationCore.
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for the code base of Molflow and Synrad is described in chapter 5. The revamped
software architecture was a cornerstone for the study of the thesis, starting with the
implementation of the CLI.

3.2 Molflow CLI

A critical component for the development process was the design of a Command
Line Interface (CLI) version of Molflow, which offers new possibilities in efficiently
running and testing simulations. The CLI gives Molflow users the flexibility to run
simulations without the graphical user interface. With the CLI, simulations can be
run even on dedicated compute resources, which are often headless servers, such as
those in HPC environments. For us, this is a necessary condition to integrate MPI
for parallel and distributed computations, which is further elaborated in chapter
3.4. A set of input arguments gives users the flexibility to launch simulations with
varying parameters intuitively. It is possible to run simulations with various end
conditions, such as a time limit or a desorption limit. Global simulation parameters
or facet parameters can be changed regardless of the given input file. The possibility
to couple a set of simulations gives users a powerful tool in rapidly analyzing multiple
runs.

Following Molflow 2.7 , the development of the CLI demanded major changes
to the software architecture as elaborated before. Simulation data structures were
deeply connected to the graphical user interfaces. This created a lot of dependencies
and resulted in a large overhead for simulations. By decoupling the simulation
engine, as sketched in figure 3.1, and with the revamped design and the removal of
dependencies, we were able to create an automatic testing infrastructure for Molflow.
This infrastructure helped us quickly identify and fix bugs, ensuring a more reliable
software.

Overall, the CLI has been an important addition to Molflow’s tool set. It in-
creases the audience to classical HPC environments and further leverages scalable
compute resources. Simulations and following analysis has become more flexible and
customizable for specific needs. Molflow’s CLI has already been proven in scenarios
such as the development of iterative simulation using a script approach conducted
by Henriksen, M. Ady, and R. Kersevan (2023).

3.3 Automated testing and GitLab CI/CD

Molflow’s source code environment has been using an internal GitLab server for
version control. In the early development stages of this thesis, this environment
has been extended by GitLab’s CI/CD (Continuous integration and continuous de-
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livery) functionality. CI/CD enables development teams to focus on deliverables,
while leading to better software quality. The idea of CI is that code changes are
saved more frequently to the version control repository and validated. Molflow’s CD
extends the environment with an automatic multi-OS build system to release new
software versions. Officially, the following operating systems are directly supported
and provided:

• Windows 10 ,

• macOS Monterey (x86_64) ,

• macOS Monterey (ARM) ,

• Ubuntu 20.04 LTS (Debian binary) ,

• CentOS 8 (Fedora binary) .

3.3.1 Test suite

With the release of Molflow’s CLI controls, a test suite had been developed and inte-
grated into the GitLab CI/CD pipeline, testing various features for functionality and
simulations for integrity and performance. Function tests have been progressively
added to the test suite for new or refactored functions. This guarantees function-
ality also against edge cases. Further, the application is validated by performing
simulations on a set of more than 10 different test cases, that include most of the
possible geometrical properties and simulation parameters. Initially, a gold standard
has been generated with one of the earlier versions that has been verified manually.
Simulations are carried out for all test cases for the new build for a fixed time. The
results are then validated against the gold standard by applying a different thresh-
old depending on the counter type (global, per facet, per texture, etc.). The test is
run multiple times for each test case and has to return a positive result in multiple
attempts in a row. We found that this validates the stochastic nature of the Monte
Carlo simulation more accurately without returning potential false negative reports.

Another part of the test suite runs performance tests in order to observe potential
performance degradations. Simulations are run for a longer period to account for
potential outliers. Our implementation keeps track of the best results from 20 com-
mits, used to manually identify significant changes related to a particular commit.
For each build we run 5 simulations and check performance values (MC events per
second) against the set of best results. As we are expecting a wider spread for perfor-
mance results in the testing environment, we evaluate multiple quantities. For each
build, we track the best performance υmax and the median performance υmed across
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all 5 runs. For the performance values of the best run in the tracked set υmax,best and
υmed,best, the performance test is passed if any of the following conditions is true:

υmax > 0.95 · υmax,best , (3.1)
υmed > 0.95 · υmed,best , (3.2)
υmax > υmed,best . (3.3)

Throughout the development, we found that this approach was effective in identify-
ing performance degradations.

3.3.2 Gitlab pipeline

Public releases passing all sufficient stages of the pipeline could then be published
with the incremental in-source changelog. The pipeline of the Gitlab CI/CD is
sketched in figure 3.2. The main code base – either Molflow or Synrad – together
with the shared code base are used for the CI stages. First, some parameters are
fetched and parsed such as the rolling changelog. Next, the code is built and on
success tested in two phases: When functionality tests have passed, the code is
benchmarked and checked against performance degradation compared to previous
builds. On success and in case of a public release, the multi-OS builds will be packed
with all necessary files, uploaded and published as part of a GitLab release entry
with an automatic changelog.

Figure 3.2: Sketch of the GitLab CI/CD pipeline. A commit to the main code
triggers the CI pipeline, where a tagged release will further trigger the
CD functionality for a successfully tested build.

3.4 Parallel and distributed computing

As Molflow’s TPMC method is embarrassingly parallel, we expect the application to
scale quasi-linearly using MPI. The new implementation, that was achieved as part
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of this thesis, uses an OpenMP/MPI hybrid approach for parallelisation. OpenMP is
used for local parallelilization and MPI is used to parallelize on multi-node machines:
e.g. computing clusters. OpenMP was deployed to replace the old simulation en-
gine using phtreads. It is highly portable and is supported on all targeted operating
systems for Molflow: Windows, Linux and macOS. Furthermore, ease of use and its
scalability proved to be good arguments to adopt OpenMP. It was straightforward
to make good use of shared memory utilization and thread synchronization. Unfor-
tunately, due to the many architectural changes, that came along e.g. an updated
ray tracing algorithm, we can not make a direct statement to any improvements
that are solely related to changing from pthreads to OpenMP.

We validated our simple MPI implementation, that enables Molflow to run on
large MPI clusters such as CERN’s HPC infrastructure (see appendix A), with
some simple experiments using the MPI pipeline which is roughly sketched in figure
3.3. Transfers happen only when the input from the master node is shared with the
other nodes (M → S) or when the results are collected back to the master node
(S →M). Sharing and gathering of the data is done with serialized data structures

Figure 3.3: Pipeline showing the MPI transfers. After loading an initial input file, it
is shared from the master node to the worker nodes. When the simulation
on all worker nodes is done, the end results are gathered back on the
master node.

via MPI_Bcast and MPI_send/recv, respectively.
For a 128 nodes system we were measuring a speed up of 123.5× for a simulation

run of half an hour. This exemplifies that the speedup scales quasi-linearly as no
communication is necessary during the actual simulation. Communication overhead
is only added in the pre-processing and the post-processing steps. The capability
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to run Molflow on large computing clusters will allow users to run simulations with
more complex geometries and simulation parameters.

3.5 OS x Compiler

Molflow’s sources can be built officially on all major operating systems: Windows,
Linux and MacOS. Windows and MacOS are mainly used in the community for
their easy to deploy systems and are common among many CAD engineers and
physicists at CERN. An initial study running the same simulation on the same
hardware concluded that Windows with the MSVC compiler performed worse on
average, than a Linux build with either a CLang-7 or GCC-8 build. Both were
around 50-60% faster with compiler optimizations enabled, where the GCC build
proved to be more stable in performance. The numbers are shown in figure 3.4.
Hence, this was utilized as the main system for building new features such as the
GPU accelerator and the MPI runtime.

Figure 3.4: Performance is measured for a simulation with an arbitrary test case
for 450 seconds. The benchmark is conducted for Windows, and Linux
with GCC and CLang as compiler on the same machine configuration.
The simulation on Windows is the slowest on average. The CLang build
performs well, but has some sudden performance drops. Best average
performance was achieved using the GCC build on Linux.
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MacOS performance was excluded for this benchmark, as a direct hardware com-
parison was not feasible. Though, good performance with the newer architectures
was found without any major adjustments3.

3.6 Profiling

Profiling is essential in assessing the performance of Molflow’s algorithms across
various test environments, which helps with the identification and optimization of
any potential inefficiencies within the software. Based on the main release, before
the start of this thesis, Molflow 2.7.7 , the simulation kernel has been profiled with
Intel Vtune Profiler4. The profiling includes all steps starting from pre-processing,
that is the construction of the corresponding data structures, to the ray tracing
algorithm and the following post-processing procedures including the accumulation
of statistics and the initialization of new particle states.

In table 3.1 the profiling analysis for two geometries, which are further elaborated
in chapter 4, is presented. Each simulation has been run for 6 minutes. Without
getting into too many details about the test geometries and geometry properties
for Molflow simulations, we give a brief overview as follows. The first test case
(see figure 4.1) is a typical geometry for Molflow. It consists of just a moderate
amount of facets with desorption or sticking properties. It mainly consists of re-
flective facets. On the other hand, there is the second test case (see figure 4.3),
which consists mostly of absorbing, desorbing or teleport facets. For the first ge-
ometry, the ray tracing routines Ray-BB-Intersection, Ray-Plane-Intersection
and Point-in-Polygon (elaborated in chapter 2.3.1) play a dominant role, accu-
mulating to > 75% of the total runtime. While these routines still have a major
impact on the overall performance for the second case (> 40%), it mainly has to
deal with the creation of new particles and thus with the selection of a source facet
and location, the particles’ direction, and the velocity. The main contribution for
the overhead comes likely from the use of an outgassing map. The dot product plays
a dominant role for a standard linear algebra routine, which mainly results from its
frequent use in various functions. Not all relate to the ray tracing algorithm itself but
the post-processing of its result. According to the profiling data about 78% of calls
of the dot product from the first test case and about 82% from the second test case
resulted from the Ray-Plane-Intersection routine. Thus, trying to enhance the
performance of these parts of the simulation kernel, e.g. by processing the data via

3Fetched 28/05/2023:
https://molflow.web.cern.ch/node/378

4Fetched 29/11/2023:
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.
html

https://molflow.web.cern.ch/node/378
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
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BLAS (Basic Linear Algebra Subprograms) or in a SIMD (Single Instruction Mul-
tiple Data) pipeline, in general, is certainly of interest and could lead to significant
speed-ups. The preprocessing step to create the Acceleration Data Structure did not
play a dominant role at all, especially when considering the one-time construction
for long duration simulations.

Function Time #1 Calls #1 Time #2 Calls #2
Ray Tracing
Ray-BB-Intersection 33.68% 7,079,123,496 18.95% 3,651,648,053
Ray-Plane-Intersection 28.13% 74,506,703 11.42% 31,659,495
Point-in-Polygon 14.04% 271,751,382 5.52% 131,471,346
Dot/Scalar product 4.34% 1,163,136,136 4.83% 713,553,272
Other MC steps
Increase Counters 2.57% 192,672,446 4.92% 78,786,606
Time lookup 1.91% 74,509,070 0.78% 31,651,480
[Random] MT generate 1.34% 607,606,714 0.80% 587,957,246
[Random] MT double 0.44% 303,797,972 0.26% 293,914,726
Perform Bounce 1.10% 74,318,913 0.08% 6,478,337
Source selection 0.04% 189,603 38.98% 25,182,060
Binary search No Outgassing Map 3.12% 25,182,754
Preprocessing
Build AABB Tree 1.99% 3 0.52% 3
Construct BB 1.81% 3,791 0.65% 18,331

Table 3.1: Benchmark of multiple geometries for 6-minute simulations. Geometry 1:
1023 facets & Geometry 2: 4678 facets w/ teleport

Overall, the profiling gives plenty of insights for potential improvements, which
largely steered the direction of this thesis. In particular, we put an emphasis on the
enhancement of ray tracing routines in chapter 7 as well as the development of a
GPU kernel for a different perspective in chapter 8. Complementary benchmarks
further led to the investigation for improvements for the time dependent simulations
in chapter 5.3.
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4 Test cases

In this chapter we introduce the test cases that have been used for the benchmarks
and validation tests. First, we describe some characteristics for polygon meshes
that are used to provide context for the experiments. Further, some geometries are
highlighted and described in more detail. Lastly, the computed characteristics for
all tested cases used are given.

4.1 Geometry characteristics

In order to comprehensively describe the geometries utilized in our experiments,
our aim is to represent the significant characteristics of each geometry. To achieve
this, we draw from concepts introduced by Pharr, Jakob, and Humphreys (2017)
and Akenine-Möller, Haines, and Hoffman (2008). We initially consider common
characteristics associated with typical polygon properties. Additionally, we derive
more intricate values to correspond with prevalent rendering or ray tracing proper-
ties. It is important to note that there is no single characteristic that can describe
all aspects of a geometry and how it ultimately affects the ray-tracing performance
in relation to different ADS and traversal techniques. In our analysis, we use the
following key values:

• Number of polygons Nfac: Indicates the complexity of the geometry. Higher
numbers may lead to lower hit rates as a result of more ray-primitive intersec-
tion tests. Lower numbers may lead to lower accuracy.

• Number of triangles Ntri: Lists the number of triangle (n = 3-polygons).
Higher number, means less optimized for CPU.

• Number of rectangles Nrect: Lists the number of rectangles (n = 4-polygons).
Our GPU ray tracer typically works with triangles, so all n-polygons with
N ≥ 4 need to be triangulated, which can increase the number of primitives
in the scene.

• Number of n > 4-polygons Nn.poly: Lists the number of polygons (n > 4-
polygons) that are neither triangles nor rectangles. Similar to Nrect, this metric
highlights additional computational demand for properties that are otherwise
native to n = 4-polygons but not n > 4-polygons, such as texture mapping.
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• Number of vertices Nvert: Indicates the complexity of the geometry similar to
the number of facets.

• Average polygon vertex count N̄vert: Higher values imply more complex poly-
gons.

• Median polygon vertex count Nmedvert: Indicates based on the median what is
the average polygon type in the geometry.

• Median polygon area Ãpolygon: Provides a measure of the average polygon size.
Smaller polygons may increase the chance of ray misses, requiring more traver-
sal in acceleration structures like BVHs or KD-trees, particularly in larger
scenes where the density of polygons might be higher.

• Bounding sphere radius rbound: Gives an idea of the size of the geometry.
Larger geometries may require more traversal steps in acceleration structures
and may lead to longer rendering times. The radius is computed by

rbound = max
i

(∥C − Pi∥) ,

for the centroid C of the geometry and all vertices Pi.

• Number of triangles Ntrimesh: Indicates how many triangles are part of the
geometry, when the mesh is triangulated.

• Average edge length of triangles L̄edge: Measure of the average triangle size.
Smaller triangles can lead to increased traversal costs in acceleration struc-
tures.

• Maximum edge length of triangles Ledgemax : Indicates the largest triangle in the
scene. Larger triangles can create large AABBs or KD-tree nodes, potentially
increasing intersection tests.

• Scene volume Vscene: Indicates the overall size of the geometry. Larger volumes
may require more traversal steps in acceleration structures.

• Average distance between polygon centroids d̄centroids: Gives a sense of the
scene’s spatial distribution. Larger distances might imply that the scene is
more sparse, which can affect the efficiency of acceleration structures. For
simplicity, the value is sampled using a subset of all centroids.

• Scene depth complexity Dcomplexity: Provides an estimate of the number of
overlapping primitives in the scene (the depth). Higher depth complexity can
lead to slower rendering times due to more ray-primitive intersection tests.
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• Aspect ratio Lmax

Lmin
, where Lmax is the longest dimension of the AABB, and

Lmin is the shortest dimension of the AABB: Indicates the shape of the geom-
etry’s bounding box. High aspect ratios may lead to less efficient traversal in
acceleration structures due to larger empty spaces.

While we can obtain most characteristics intuitively, the scene depth complexity
has to be measured empirically:

Dcomplexity =

∑m
j=1

∑n
i=1(rayj ∩ primitivei)

m
. (4.1)

For m sample rays we iterate over all n primitives and accumulate the number
of intersections. For our case, we generate 1000 sample rays to ensure a reliable
approximation of scene depth complexity. This empirical approach allows us to
precisely quantify the complexity of ray interactions within the scene.

4.2 Geometries

In this chapter we introduce all geometries in more detail, that have been used for
the experimental parts of this thesis. The geometries are part of an internal test
set for Molflow development and consists of vacuum chambers from a wide range of
studies. We have selected geometries with different properties that describe typical
cases sufficiently well. Further, the different properties could reduce potential bias
when comparing the results. Here, only non-artificial geometries are mentioned.
This is followed by a cylindrical tube which is generated by the application with a
set of variable parameters.

ELENA electron gun The electron gun of the ELENA ring, which has already
been shown in figure 4.1, served as the prime candidate when investigating the
algorithms used in this research study. Although the actual number of facets is
considerably low, it has a rather complex interior geometry due to the mesh that
represents the NEG (Non-evaporable getter) coating nested inside the outer pump.
NEG coatings serve as a pump (as discussed in chapter 2.1) and can be accurately
modelled with a sticking coefficient.

FCC concept A section of the FCC (Future Circular Collider) concept design
(see figure 4.2) consisting mostly of absorbing and desorbing facets, where repeating
parts are connected via teleport facets. This geometry consists of many (n ≥ 4)
polygons and has a comparably large scene depth complexity, where the median for
the polygon area for all facets is relatively small.
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Figure 4.1: Molflow geometry of the electron gun for ELENA ring.

Teleport geometry The accelerator component shown in figure 4.3, also served
for the initial study. It also has a low facet count, but a large scene volume and a
small primitive density in relation to the average primitive distance.

HEL light cathode Further, we consider the Hollow Electron Lens (HEL) light
cathode for the upgrade of the LHC (see figure 4.4). It has a large amount of facets,
but is mainly consisting of triangles, which have for the most part small edges. The
scene has a large aspect ratio but does not have a very large primitive density or
scene depth complexity.

RF cavity The final geometry is shown in figure 4.5. The model represents a super
conducting radiofrequency (RF) cavity from an internal design study. It has a large
number of facets, mainly triangles, with relatively small areas and short edges. The
scene has a large depth complexity but a small primitive density.

Tables 4.1, 4.2, 4.4 and 4.4 show the values for the before mentioned characteristics
from chapter 4.1 for the chosen test cases. The test cases differ significantly in most
of their properties, which creates an coherent test set for our study.
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Figure 4.2: Section of a vacuum chamber from CERN’s FCC concept (Roberto Ker-
sevan, 2022).

Figure 4.3: Molflow geometry of a vacuum chamber sectioned into four different
repeating parts, that are connected via teleport facets.

Table 4.1: Geometry Properties (Part 1)
Filename Nfac Ntri Nrect Nn.poly

ELENA E-Gun 1023 0 955 68
FCCHH Section 140431 0 96379 44052
Teleport section 4678 0 4670 8
HEL light cathode 79159 79159 0 0
RF cavity 90661 76874 13599 188
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Figure 4.4: Vacuum chamber relying on cold cathode gauges for the valves (Jens,
2021).

Figure 4.5: Super conducting RF cavity for an internal design study.
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Table 4.2: Geometry Properties (Part 2)
Filename Nvert N̄vert Nmed vert Ãpoly

ELENA E-Gun 3894 7.12708 4 0.671745
FCCHH Section 292478 6.12469 4 0.00224509
Teleport section 17688 4.2018 4 6
HEL light cathode 39575 3 3 0.0282172
RF cavity 55018 3.15834 3 0.00195503

Table 4.3: Geometry Properties (Part 3)
Filename rbound Ntri mesh L̄edge Ledge max

ELENA E-Gun 56.9891 5245 3.86231 113.442
FCCHH Section 715.004 579234 32.4358 1430
Teleport section 505.805 10300 158.892 1000.02
HEL light cathode 381.509 79159 2.10945 715.025
RF cavity 65.5495 105016 0.264433 109.336

Table 4.4: Geometry Properties (Part 4)
Filename Vscene d̄centroids Dcomplexity Lmax/Lmin

ELENA E-Gun 25087.1 0.209071 1652000 3.02909
FCCHH Section 27684.9 20.9224 266795000 0.565751
Teleport section 402991 0.0255589 1346000 13.596
HEL light cathode 1.10471 0.00716559 37686000 0.594794
RF cavity 6813.11 15.4138 49142000 0.0285556
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4.3 Cylindrical vacuum tube

For our study we utilize a cylindrical tube that serves as a vacuum component,
for which an analytical solution can be used for the benchmarks (see Gómez-Goñi
and Lobo, 2003). A good simulation should lead to a good approximation of this
reference solution, making it a perfect candidate for initial validation of an algorithm.
The cylindrical inlet (desorption facet) defines a steady influx of particles with an
outgassing rate of 10mbar· l · s−1. In addition, both end facets serve as perfect
absorbers (sticking coefficient s = 1), removing all particles from the system. For the
side facets, they are defined as perfectly diffusive – reflecting all particles. The tube
can be defined with various length/radius ratios (L/R). In Molflow the circular form
is approximated with a finite amount of side facets. In our numerical experiments,
the L/R ratios and the levels of approximation were varied, as indicated in the
respective sections. Further, utilizing cylindrical tubes with varying parameters is
ideal as they reduce a vacuum problem to a geometrically simple test case.

Figure 4.6 shows the geometry in Molflow with an L/R ratio of 10. In this example,
the circular inlet (left) and outlet (right) are each approximated with 100 vertices,
which results in 100 rectangular facets for the side walls, thus 102 polygons in total.

Figure 4.6: Cylindrical tube in Molflow. The left side serves as an inlet, the right
side serves as an outlet. Approximation level is given the amount of side
facets. More facets lead to a better approximation of the circular shape.
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5 Design and Development

Various components of Molflow and Synrad that have been developed or optimised
as part of this work are elaborated on in this chapter by explaining the methodology
that has been used as well as their final design.

5.1 Software architecture

For the general structure, some components must be accessible independently from
the GUI application Molflow and the CLI application MolflowCLI, which is
particularly interesting for the Simulation components. The applications are there-
fore sharing a common SimulationManager that is handling the coordination
with one of the selected SimulationCores. The proposed modules are visualised
in more detail in figure 3.1.

5.2 Geometry representation

From a design perspective, we consider Molflow to serve two main purposes: The
CAD-like graphical interface, where vacuum components can be modelled, and the
vacuum simulations. There are various methods for representing geometries. Com-
monly polygon or triangle meshes are used for efficient representation. Polygon
meshes are the preferred representation for geometries in Molflow’s CPU implemen-
tation. Triangle meshes are used for the developed GPU kernel (see chapter 8). For
completeness, we discuss another alternative method for representation with CSG.

5.2.1 Meshes

Meshes, serving as tessellated surfaces, are widely utilized for geometric represen-
tation, especially in Computer-Aided Design (CAD) applications. They decompose
geometries by creating a network of interconnected, simpler polygonal elements.
This makes them highly adaptive and usable to model very complex geometries.
With a finer approximation, the memory requirements also increase. In Molflow we
utilize polygon meshes to represent all models. Furthermore, in the context of GPU
simulations (elaborated in chapter 8), we implemented the representation with a
triangle mesh.
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Polygon mesh

General polygons have the advantage that they create a common interface for all
types of primitives. CAD geometries, which are typically given as a triangle mesh,
can be explicitly used as a polygon mesh. Further, Molflow allows to merge triangles
into polygons when they lie more or less on the same plane. Using this approach, a
polygon mesh could significantly reduce the number of vertices and facets in a model.
While these simplifications might impact the accuracy minimally, this reduces the
memory requirements as less information has to be saved, e.g hit counters per facet
(see chapter 2.2.3).

Polygon meshes can be described in many ways, in Molflow’s C++ interface they
are represented as follows. A mesh contains an array of polygons and an array of 3d
vertex coordinates. An individual polygon contains an array with vertex indices.
With the indices the corresponding vertices forming the polygon can be fetched.

The data structures describing a polygon mesh and an individual polygon object
are sketched in figure 5.1. A polygon mesh is defined by two vectors. A polygon
vector contains all N polygons P of the geometry and a vector containing all NV

vertices Vj with 3D world coordinates, denoted (xj, yj, zj). Each polygon is defined
by a vector containing the precomputed local 2D coordinates of the polygon (see
section 2.3.2). The local 2d coordinates are used for simplified ray tracing calcula-
tions or texture lookups. Also, each polygon maintains a vector of indices Ii used to
directly access the corresponding 3D vertex. Like this, vertices that are contained
in multiple polygons have to be stored only once. The data structure can be used
for polygons with varying amounts of indices. For each polygon, the order of the
vertices describes the orientation of the facet normal according to the left-hand rule.

Triangle mesh

In GPU applications, such as the developed GPU kernel for Molflow (see chapter 8),
triangle meshes offer significant advantages, primarily due to their uniform structure
and compatibility with the SIMD (Single Instruction Multiple Data) architecture of
GPUs. By exclusively using triangles, the simplest and most consistent polygon
type, we can create a highly optimized data structure that aligns well with GPU
processing capabilities. This uniformity benefits both the intersection algorithms
used in ray tracing, and for the efficient data representation, greatly enhancing
computational efficiency and performance in GPU-based simulations. Typically, an
efficient triangle mesh is implemented in a Structure of Arrays (SoA) data model. In
this model, the representation of a triangle is implicit. The data structure consists
of three arrays:

1. Index array: This array contiguously stores index triplets corresponding to
each triangle’s vertices in ascending order, based on the triangle ID.
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Figure 5.1: Sketch of Molflow’s data structure to store a polygon mesh and polygon
primitives. A polygon mesh stores instances of Polygons P and 3d vector
coordinates V. A polygon consists of local 2d coordinates v and indices
Ii = k referencing the real vector coordinates Vk. In the example, the
polygon P2 is accessed. Its first vertex pointer I1 = 2 is pointing to the
global vertex V2. In this case, P2 is a N = 4-polygon, so it consists of
four 2d vertices and four pointers to vertex indices.
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2. Vertex coordinates array: Another array holds the 3D world coordinates V =
(x, y, z) of the vertices.

3. Local 2D coordinates array: The third array contains triplets of local 2D
coordinates for each triangle, also ordered by the triangle ID.

The size of the arrays holding the indices and local 2D coordinates is 3N , where N is
the total number of triangles. The vertex coordinates array size is NV , representing
the total number of unique vertices in the geometry. This approach effectively
eliminates redundancy by avoiding the storage of duplicate vertex data.

For a given triangle with an index T in the range [0, N−1], its corresponding vertex
indices can be calculated using a stride (s = 3). For instance, for triangle T = 1, the
index triplet begins at Istart = T ·s = 3 and extends to Iend = (T+1)·s−1 = 5. Each
index I then maps to a corresponding vertex V. Similarly, the local 2D coordinates
are accessed using the same approach using the triplet spanning array positions
[Istart, Iend]. We sketch an example and the mesh representation for an arbitrary
geometry in figure 5.2.

5.2.2 Constructive solid geometry

In addition to meshes,Constructive solid geometry (CSG) is another method of rep-
resenting geometries that merits consideration, especially in the context of appli-
cations like Molflow. CSG uses a series of Boolean operations to combine basic
geometric shapes into more complex forms. This method is known for its precision
and efficient use of memory, making it an appealing choice for certain types of com-
putational geometry tasks. CSG operates on volumes rather than surfaces, allowing
for the construction of highly detailed and precise geometric models. This can be
particularly advantageous in simulations where accuracy is important. Since CSG
represents objects using a combination of simple shapes and Boolean operators, it
can be more memory-efficient than mesh representations, especially for geometries
that can be easily broken down into basic volumetric shapes.

However, despite these advantages, CSG is not the preferred method for Molflow.
This decision is rooted in the specific requirements of vacuum simulations and CAD
geometry handling in Molflow. The primary focus of Molflow is on efficient ray
tracing and handling complex CAD-generated geometries, which align better with
tessellated surface representations like polygon and triangle meshes. Additionally,
texture mapping and certain computational aspects, crucial for Molflow’s function-
ality, are more straightforward with mesh geometries compared to CSG. Thus, while
CSG offers significant benefits in precision and memory efficiency, its application in
Molflow is limited due to the software’s specific functional and performance require-
ments.
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Figure 5.2: Sketch of the SoA data structure for a triangle mesh. The example shows
triangle T = 1 being accessed through its vertex index triplet {I3, I4, I5}.
The location of the triplet is computed using the triangle ID. The first
index I3 in this example points to the global vertex V1 obtained from the
structure stored with the mesh. Additionally, the corresponding local 2D
coordinates are accessed using the same computed triplet location.
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There are a few simulation tools for physical problems that deploy CSG models
such as OpenMC (see Romano et al., 2015). OpenMC is a Monte Carlo particle
transport simulation code commonly used for modeling of nuclear reactors, which
is capable of simulating various nuclear reactions for neutrons and photons. They
also adapted their CSG ray tracer to make use of RTX hardware-acceleration via
OptiX using tree-traversal on top of a custom intersection test for CSG geometries.
Furthermore, they compared its performance to a triangle mesh making full use
of hardware-acceleration (see Salmon and McIntosh-Smith, 2019). In general they
achieved a better performance when using triangle meshes, where “On RT core
accelerated triangle meshes the speedups [are around] ∼ 33x [and] ∼ 10x on CSG
models.”

As CSG geometries are rather unknown among engineers creating models or run-
ning simulations for vacuum problems, the use of tessellated meshes is a natural
choice. Meshes, when compared to CSG geometries, benefit further from being
highly optimized in the context of ray tracing. The use of meshes aligns well with
the need for efficient computation and effective texture mapping, making them par-
ticularly suitable for Molflow.

5.3 Time-dependent simulations

Time-dependent simulations allows users to analyze and understand vacuum systems
that are not in a steady-state. They add an additional overhead to the simulations
as statistics need to be gathered not only spatially on facets, but also temporal.

This chapter gives a brief explanation of the difference between steady-state and
time-dependent simulations. Further, we elaborate the usage of so-called time mo-
ments that were initially implemented by Marton Ady (2016). We elaborate on our
modification for the original algorithm with additional constraints and an optimized
lookup method. The underlying difficulties in terms of developing a performant
and memory-efficient simulator are also discussed. To evaluate the efficiency of
time-dependent simulations in both time and space and to further validate the cor-
rectness of the simulations, a case study of the CLIC design study (Burrows et al.,
2018) is used.

5.3.1 Motivation

In Molflow it is possible to simulate in the time domain (see chapter 2.2.4) by track-
ing the particle speed. A successful query then returns the hit facet, the particular
hit location, and also the time of the hit. This can be interesting not only to
understand and visualise the distribution of when particles reach certain parts of
the system but also when time-dependent system parameters are applied. Certain
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system parameters such as a facet’s outgassing rate or sticking factor can vary in
time. They can be set as as time-dependent by giving a set of time-value points.
Corresponding to a specific time point, the time-dependent system parameter can
then be obtained by using linear interpolation between the user-defined values and
by constant extrapolation outside of these. As elaborated in chapter 2.2.4, physi-
cal quantities can be translated from steady-state to time-dependent. Marton Ady
(2016) implemented this using so-called time moments by utilizing counting bins,
that correspond to a specified time window size. During a simulation, a Monte
Carlo event is then accumulated in the bin that corresponds to the specific time.
In this work, we reevaluate the technique developed, as it has a major impact on
performance, as previously shown in the benchmark shown in table 3.1. Further,
we develop and implement a new version by defining a constraint allowing us to
leverage better lookup algorithms.

5.3.2 Time moments

In Molflow, users are interested in how a system behaves at particular points in
time. They can define one or several series of so-called time moments for points in
time t1, t2, ..., tN for which the simulation will evaluate the simulation results as a
function of time in addition to the steady-state results. A time moment spans an
interval, that refers to a specific point in time and a corresponding time window.
Numerically, it is necessary to gather statistics in an interval to increase the sample
size. Thus, for each point in time ti we create a time bin that covers the range
ti − tw/2 to ti + tw/2 for a time window tw. A series of time moments is given by a
starting time tstart and an end time tend, which is then divided based on a fixed time
step size dt. This will result in a series of N = 1+ ⌊(tend− tstart)/dt⌋ time moments,
where ti = (i− 1) · dt+ tstart, so t1 = tstart and tend = (N − 1) · dt+ tstart. To avoid
overlaps between individual bins, constraint tw ≤ dt is imposed. Thus, a user can
define this Specified Time Series (STS) in the form of a tuple T = {tstart, tend, tw, dt}.
In figure 5.3 two STS T1 and T2 are sketched with their individual parameters.

5.3.3 Redesign

The initial design for the time-dependent simulations introduced by Marton Ady
(2016) greatly increased the extent of possible use cases. Monte Carlo events, in the
sense of collisions, could only be tracked by a series of time points with a fixed global
time window tw,glob, giving the tuple {tstart, tend, dt}. The flexibility to individually
adjust the time window for each STS and a necessary improvement to the increased
computational demands of time-dependent simulations required a redesign of the
corresponding data structures and algorithms. As it has been found, the lookup
function to find the bin index of the result data structure for the corresponding
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Figure 5.3: The bins of two time series T1 and T2 are sketched. Here, we distinguish
the individual parameters of each time series Tm with a secondary index:
Tm = {tstart,m, tend,m, tw,m, dtm}

event at time t had the biggest impact on the simulation performance when using
time-dependent statistics.

With the approach previously used, for a given time point t all time moments
of the STS had to be checked. It was straightforward to see, that better lookup
algorithms could be defined by imposing the constraint that time bins are strictly
non-overlapping. It is then possible to sort the non-overlapping time intervals be-
forehand. This allows the use of algorithms such as binary search reducing the time
complexity for the search of a specific time point from O(T ) to O(log(T )), where T
is the number of moments. In the following section we investigate a set of algorithms
that can be used for the index lookup routine.

5.3.4 Lookup algorithms

Most simply, the series of moments and their time windows can be given as an
ordered array of pairs (ti−

tw
2
, ti+

tw
2
) for which conventional search algorithms can

be deployed. In addition, these algorithms can make use of the fact that for time-
dependent problems usually a series of monotonically increasing time moments is
queried. In Molflow, as a simulated particle will only be simulated forward in time,
a particle’s time tp will always increase with each event until it is removed from the
system (tp < tp+1 for each particle state p). This property can be accounted for to
reduce the search space e.g. with a starting index.

Where a binary search seems to be a natural first choice, we decided to investigate
the usability of other search algorithms that seem more suitable for the underlying
problem (time advancement), namely Interpolation Search and Jump Search. Fur-
ther, we also propose a different solution that is not based on finding the solution
for a search problem, here the bin indices are calculated directly.
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Interpolation Search Interpolation Search (Perl, Itai, and Avni, 1978) is an ideal
candidate for this problem due to its reduced average complexity for uniformly
distributed values which is O(log logN). Time-dependent simulations in Molflow
usually have a search space consisting of one or many individually uniformly dis-
tributed time moments. The algorithm works on the assumption, that for sorted
uniformly-distributed values a queried key will be close to an interpolated value that
serves as a starting point.

Given the query x, an array of sorted values A, a lower bound l and an upper
bound h a starting position p can be calculated as

p = l +
(x− Al) · (h− l)

Ah − Al

. (5.1)

Here, the indices to Ai denote the element at the corresponding position i. With
the initial bounds l = 0, h = N − 1, where N is the amount of values in A, each
search iteration will change either the lower bound in the case Ap < x to l = p + 1
or the upper bound in the case of Ap > x to h = p− 1.

Jump Search Jump Search (Shneiderman, 1978) does not have the best average
time complexity with O(

√
N), but has another property that makes it an interest-

ing choice for Molflow’s time-dependent simulations: it is progressing with a fixed
step size s. Similar to Interpolation Search, this can be favourable for uniformly
distributed values. The algorithm goes as follow:

1. Determine the step size s, typically set to
√
N .

2. Initialize a variable l to 0 to keep track of the previous step’s last index.

3. Start a loop until the target value is found or determined to be absent:

a) Calculate the start index of the current block h = min(l + s,N − 1).

b) Perform a linear search within the block defined by indices l to h.

c) If the target value x is found, return the index of the matching element.

d) If the current element is greater than x, return to the previous block.

e) If the end of the array is reached without finding x and l ≥ N , the target
value is not present.

In theory, jump search has favourable traits when values are uniformly distributed
and the number of jumps can be minimised. In Molflow, we can influence the latter
by using a starting index to initialize the lower bound l. In ideal scenarios, where
s ≈ dtavg, for the average time step size dtavg, this can reduce the search space
almost completely to the part applying linear search.
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Calculative binning

A more direct approach can be found by directly computing the bin index given
to all STS. Instead of keeping the individual time bins ti −

tw
2
, ti +

tw
2

in memory,
for every STS a starting index σi,off is saved. For the first time series, the offset is
i = 0 , σ0,off = 0 and for the ith it is σi,off = σi−1,off + Ni−1, where Ni−1 is the
amount of individual time moments in the (i− 1)th time series.

First, to find the bin index k for a simulation time point t, the STS must be
determined for which tstart ≤ t ≤ tend. For a match the local key kloc can then be
calculated with:

kloc = ⌊
t− tstart + 0.5 · tw

dt
⌋ . (5.2)

Only if

t > tstart + kloc · dt− 0.5 · tw ∧ t < tstart + kloc · dt+ 0.5 · tw (5.3)

then the time point t is matched into the bin. The index for the global structure
kglob is then simply kglob = kloc + σi,off .

All operations can be solved in O(1) to get the bin index, where only finding the
matching STS is O(logS), where S is the amount of STS. However, in practical
applications S is usually very low S ≤ 10, making the calculation of the bin index
potentially the ideal choice.

5.3.5 Benchmarks

This chapter discusses the benchmarks performed on the proposed algorithms for
time-dependent calculations. First, the old algorithm was improved by replacing it
with binary search. However, to account for all possible scenarios, other algorithms
have been implemented. Finally, a set of test cases with varying characteristics for
the partitioning in time was created to conclude the algorithmic benchmarking.

A basic implementation was achieved with a simple vector structure. The non-
overlapping intervals have to be sorted, which allows the use of search techniques
such as binary search. Coupled with a better binary search and a new constraint
to avoid non-overlapping intervals, the simulation for a simple pipe geometry with
5 side facets (see chapter 4.3) and 1000 time windows was already accelerated by a
speed-up factor of about 9× for the whole simulation. The benchmark values are
shown in table 5.1 for 3 independent test runs. This test geometry was chosen to
highlight the impact of the algorithms that are used in addition for time-dependent
simulations.

To put an emphasis on the lookup algorithm, we created a test suite TDBench
for which a set of the before mentioned algorithms have been implemented. The
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Run #1 [in s] Run #2 [in s] Run #3 [in s]

Old 26:42 26:11 26:09
New 3:00 3:04 3:01

Table 5.1: Simulations using the original algorithm in Molflow Old and a first imple-
mentation using binary search New. Input geometry is a pipe geometry
with 5 side facets and N = 1000 time windows. Time is given for the
full simulation in 3 independent simulation runs for the same number of
desorbed particles.

algorithms can work directly on a set of test cases without any overhead from the
actual Molflow routines. In TDBench the test cases are pre-computed or pre-
defined. Implemented are the following algorithms:

• BS ← Binary search

• IS ← Interpolation search

• JS ← Jump search

• CB ← Calculative binning

Furthermore, some of the algorithms are implemented with the capability of utilis-
ing a starting index to continue from the previous location, as elaborated previously
in the chapter 5.3.3. This supports the idea that an existing particle advances in
time until it is removed from the system, and thus time moments prior to the last
time point that is giving the starting index can be skipped. The capability has been
implemented for Binary search, Jump search and Interpolation search.

TDBench has the option to run on an artificial test case or on an extract from
a real Molflow simulation. Test cases consist of sequences pm = {tm,0, . . . , tm,last}
corresponding to individual particles m. Each sequence contains last − 1 time
points tm,k for the first event k = 0 up to the last event k = last, the particle
absorption, where last > 0. The sequence length last is individual for each
particle. A benchmark for a given algorithm and test case works by iterating over
all time sequences of the test case and incrementing the bin with the index that has
been looked up. For algorithms making use of a start index, this index is set to the
looked up index and reset to 0 when a new time sequence is looped over.

Artificial test cases

First, we compare the algorithms against a set of artificial test cases of differing
intervals. Here, the input is artificially generated and is not based on a real Molflow
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test case. To emulate some of the behaviour from a real Molflow simulation, the
input is generated by the following principle. The generator is given a tuple tp =
{n, tmin, tmax,∆tmin,∆tmax} describing the time points. Here, n is the number of
time moments to be generated, tmin and tmax are the smallest and largest points in
time that can be generated, respectively. ∆tmin and ∆tmax represent the smallest and
largest time steps, respectively. With this tuple, sequences in analogy to Molflow’s
particle tracking are generated. Given some random numbers r ∈ [∆tmin,∆tmax], a
test sequence will start at t0 = tmin + r and consecutive elements ti+1 = ti + r, i ≥ 0
are generated. The system generates a test sequence only when ti ≤ tmax. For
the test bench, we use the tuple tp = {107, 0.0, 100.0, 0.001, 10.0} to generate the
sequences.

The test bench contains a mixed set of artificial test cases, which should highlight
particular strengths and weaknesses of the proposed algorithms. E.g. interpolation
search and jump search are expected to perform well on uniformly distributed data
sets, but not so much for others. We define the following set of artificial test cases,
where each test case contains at least one STS:

1. T0 = {0.001, 100.0, 0.1, 0.1}
This test case has N ≈ 1, 000 equidistant time points. No gaps between time
points, as tw ≡ dt.

2. T0 = {0.001, 100.0, 0.01, 0.01}
This test case has N ≈ 10, 000 equidistant time points. No gaps between time
points, as tw ≡ dt.

3. T0 = {0.001, 100.0, 0.001, 0.001}
This test case has N ≈ 100, 000 equidistant time points. No gaps between
time points, as tw ≡ dt.

4. T0 = {0.001, 100.0, 10−7, 0.1}
This test case has N ≈ 1, 000 equidistant time points. And large gaps between
each data point. Bins cover ∼ 10−4% of the whole interval.

5. T0 = {0.001, 100.0, 10−7, 0.001}
This test case has N ≈ 100, 000 uniformly distributed time points. And gaps
between each data point. Bins cover ∼ 10−2% of the whole interval.

6. T0 = {0.001, 1.0, 0.001, 0.001} ,
T1 = {1.01, 10.0, 0.001, 0.001} ,
T2 = {10.01, 20.0, 0.001, 0.001} ,
T3 = {20.01, 30.0, 0.001, 0.001} ,
T4 = {30.01, 40.0, 0.001, 0.001} ,
T5 = {40.01, 50.0, 0.001, 0.001} ,
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T6 = {50.01, 60.0, 0.001, 0.001} ,
T7 = {60.01, 70.0, 0.001, 0.001} ,
T8 = {70.01, 80.0, 0.001, 0.001} ,
T9 = {80.01, 90.0, 0.001, 0.001} ,
T10 = {90.01, 100.0, 0.001, 0.001}
This test case has N ≈ 100, 000 uniformly distributed time points across
multiple STS. No gaps between data points of each series. Only gaps between
each time series.

7. T0 = {0.001, 1.0, 0.01, 0.01} ,
T1 = {1.01, 10.0, 0.01, 0.01} ,
T2 = {10.01, 20.0, 0.01, 0.01} ,
T3 = {20.01, 30.0, 0.01, 0.01} ,
T4 = {30.01, 40.0, 0.01, 0.01} ,
T5 = {40.01, 50.0, 0.01, 0.01} ,
T6 = {50.01, 60.0, 0.01, 0.01} ,
T7 = {60.01, 70.0, 0.01, 0.01} ,
T8 = {70.01, 80.0, 0.01, 0.01} ,
T9 = {80.01, 90.0, 0.01, 0.01} ,
T10 = {90.01, 100.0, 0.01, 0.01}
This test case has N ≈ 10, 000 uniformly distributed time points across multi-
ple STS. No gaps between data points of each series. Only gaps between each
time series.

8. T0 = {0.001, 1.0, 0.1, 0.01} ,
T1 = {1.01, 10.0, 0.1, 0.01} ,
T2 = {10.01, 20.0, 0.1, 0.01} ,
T3 = {20.01, 30.0, 0.1, 0.01} ,
T4 = {30.01, 40.0, 0.1, 0.01} ,
T5 = {40.01, 50.0, 0.1, 0.01} ,
T6 = {50.01, 60.0, 0.1, 0.01} ,
T7 = {60.01, 70.0, 0.1, 0.01} ,
T8 = {70.01, 80.0, 0.1, 0.01} ,
T9 = {80.01, 90.0, 0.1, 0.01} ,
T10 = {90.01, 100.0, 0.1, 0.01}
This test case has N ≈ 1, 000 uniformly distributed time points in multiple
STS. Gaps between data points of each series and between each time series.

9. T0 = {0.001, 1.0, 0.1, 0.01} ,
T1 = {1.1, 10.0, 0.001, 0.001} ,
T2 = {10.01, 20.0, 0.1, 0.00001} ,
T3 = {20.01, 30.0, 0.1, 0.0001} ,
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T4 = {30.01, 40.0, 0.1, 0.001} ,
T5 = {40.01, 50.0, 0.00001, 0.00001} ,
T6 = {50.01, 60.0, 0.05, 0.001} ,
T7 = {60.01, 70.0, 0.1, 0.01} ,
T8 = {70.01, 80.0, 0.7, 0.07} ,
T9 = {80.01, 90.0, 0.1, 0.01} ,
T10 = {90.01, 100.0, 0.09, 0.001}
This test case has N ≈ 1, 000, 000 time points that are mostly concentrated in
STS (T5). Irregularly distributed data points with varying gap sizes between
data points of each time series.

10. T0 = {0.001, 1.0, 0.2, 0.01} ,
T1 = {1.7, 10.0, 1.0, 0.01} ,
T2 = {10.7, 20.0, 1.0, 0.01}
This test case has N = 24 time points. Gaps exist between data points and
time series. Time series do not cover the entire test interval [0.001, 100.0].

Test cases #1, #2 and #3 will show the effect of varying amount of bins for
otherwise similar data sets. Test cases #4 and #5 also highlight varying amounts
of bins, where there are gaps between each bin. Test cases #6 and #7 also differ
in the amount of bins, highlighting the effect of multiple time series compared to
the first three test cases. Test case #8 is similar to #6 and #7 but between each
bin are gaps. Test case #9 highlights the effect of multiple time series with varying
amounts of bins, one time series is accounting for most time bins in total. Test case
#10 focuses on a small set of time series and a minimal amount of data points,
where around 70% of time events will happen outside of the time series range.

In table 5.2 we give the average time over 5 runs for each algorithm and each
test case. For each run, a new sequence of time events is generated using the same
generator tp as previously described, generating 107 time points for the input. The
same sequences are used for all test cases and algorithms in a single run. The post
fix wI (with index) means, the algorithm has been using a starting index to search
within a smaller subset of the whole interval. Each algorithm received the same
randomly generated input set for each test.

Interpolation search and Calculative binning work best on almost all
test cases. Surprisingly, direct calculation of the bin index is not always the best
option. In 6 of 10 cases, Interpolation search has the best runtime, where
Calculative binning has the best runtime for the remaining test cases. There
is an exception, though, for Interpolation search for the test case #9. This
test case is conflicting with the assumption that the algorithm works on a uniform
distribution of time moments. Only one STS is contributing to the biggest amount
of time moments, while it does not span a comparingly large time frame. This
leads to the problem, that the initial guess for the search location will be over- or
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Alg/TC BS IS JS CB BSwI JSwI ISwI
#1 497.04 110.97 517.30 95.03 388.86 341.60 134.22
#2 704.63 130.85 1136.69 97.08 621.10 561.31 165.41
#3 964.57 146.73 3649.91 96.18 1023.34 1270.02 233.79
#4 477.87 50.58 513.97 87.57 501.58 544.83 60.99
#5 948.87 65.65 3428.77 84.35 964.31 3639.04 85.76
#6 984.40 294.59 3685.42 337.87 1108.39 1522.05 502.29
#7 685.74 235.51 1127.76 339.71 623.14 552.22 351.36
#8 496.58 68.07 522.96 346.91 493.63 473.22 79.59
#9 854.53 20943.24 12515.32 402.48 1052.77 7715.05 20516.16
#10 78.43 48.50 138.70 127.66 92.88 155.42 67.02

Table 5.2: Benchmark of multiple algorithms (Alg) to determine appropriate bins
for time-dependent data structures and various artificial test cases. The
results of the benchmark are given in milliseconds. The best results are
highlighted in bold for each test case (TC ).

undershot by a lot. Essentially leading to the algorithms worst case performance
of O(n). Direct calculation is bound to the amount of STS in the set, which
will never be considerably large in real cases to have a bad impact. The algorithms
using a starting index do not always profit from this capability. Binary search and
Interpolation search work great as they can quickly search through the problem
space. Jump search on the other hand has larger speed-ups on average as it searches
with a static step size.

Real test cases

Further, we compare the algorithms on a real test case, a pump that is part of
the CLIC (Compact LInear Collider) design concept (Burrows et al., 2018). This
geometry is exclusive to this chapter due to its time dependent properties, which
we neglect for other studies focussing only on geometrical properties as elaborated
in chapter 4. Here, instead of using artificially generated time sequences, time
sequences for n = 107 time values are gathered from a real simulation. Similar to
the artificial sequence, the sampled sequence accounts for one particle at a time, so
that algorithms making use of a cached start index can still be used.

For the geometry of the pump, depicted in figure 5.4, we use the following sets of
STS as test cases:

1. T0 = {1.0× 10−6, 9.1× 10−6, 1.0× 10−6, 1.0× 10−6} ,
T1 = {1.0× 10−5, 9.1× 10−5, 1.0× 10−6, 1.0× 10−6} ,
T2 = {1.0× 10−4, 9.1× 10−4, 1.0× 10−5, 1.0× 10−6} ,
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Figure 5.4: A geometry loaded in Molflow for a pump from the CLIC design concept.

T3 = {1.0× 10−3, 9.1× 10−3, 1.0× 10−4, 1.0× 10−6}
The original set of STS with around N ≈ 300 time bins. Same time window
size for all STS.

2. T0 = {1.0× 10−6, 9.9× 10−6, 1.0× 10−11, 1.0× 10−11} ,
T1 = {1.0× 10−5, 9.9× 10−5, 1.0× 10−10, 1.0× 10−10} ,
T2 = {1.0× 10−4, 9.9× 10−4, 1.0× 10−9, 1.0× 10−9} ,
T3 = {1.0× 10−3, 9.9× 10−3, 1.0× 10−8, 1.0× 10−8}
The original set of STS with around N ≈ 2, 400, 000 time bins. Same time
window size for all STS.

3. T0 = {1.0× 10−6, 9.9× 10−6, 1.0× 10−11, 1.0× 10−11} ,
T1 = {1.0× 10−5, 9.9× 10−5, 1.0× 10−10, 1.0× 10−10} ,
T2 = {1.0× 10−4, 9.9× 10−4, 1.0× 10−9, 1.0× 10−9} ,
T3 = {1.0× 10−3, 9.9× 10−3, 1.0× 10−8, 1.0× 10−8}
The same intervals with a larger amount of time bins N ≈ 3, 200, 000. Different
time windows, no gaps in data points.

4. T0 = {1.0× 10−6, 9.9× 10−6, 1.0× 10−11, 1.0× 10−13} ,
T1 = {1.0× 10−5, 9.9× 10−5, 1.0× 10−10, 1.0× 10−12} ,
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T2 = {1.0× 10−4, 9.9× 10−4, 1.0× 10−9, 1.0× 10−11} ,
T3 = {1.0× 10−3, 9.9× 10−3, 1.0× 10−8, 1.0× 10−10}
Same as previous, but with different time windows and gaps in data points.

5. T0 = {1.0× 10−6, 9.9× 10−3, 1.0× 10−8, 1.0× 10−8}
The whole interval spanned by 1 STS only, with N ≈ 1, 000, 000 time bins.
No gaps in data points.

6. T0 = {1.0× 10−6, 9.9× 10−3, 1.0× 10−8, 1.0× 10−11}
The whole interval spanned by 1 STS only, with N ≈ 1, 000, 000 time bins.
Large gaps between data points.

The first test case contains the actual set of STS used in a simulation during the
design phase. The other test cases add different challenges on the algorithms, e.g.
increased time bins or varying gaps between time bins. In table 5.3 we can see that
the approach with the calculative binning works best for most test cases, especially
when larger amounts of time moments are used. Only for the first test case (#1), the
usage of binary search is superior, where the performance compared to calculative
binning is 1.15×. Here, only a considerably low number of time moments has been
deployed (36 time moments, 9 for each STS).

Alg/TC BS IS JS CB BSwI JSwI ISwI
#1 15.81 41.05 32.27 18.29 20.79 29.63 29.35
#2 70.13 85.85 310.57 19.52 42.28 30.48 27.70
#3 170.75 452.21 3641.59 45.31 184.01 382.68 205.03
#4 175.48 468.20 3661.34 57.65 191.20 394.67 210.18
#5 155.96 35.27 1313.64 19.33 183.31 315.00 73.17
#6 150.94 32.07 1218.38 17.72 163.45 276.97 60.69

Table 5.3: Benchmark of multiple algorithms (Alg) to determine appropriate bins
for time-dependent data structures and various test cases from real simu-
lations. The results of the benchmark are given in milliseconds. The best
results are highlighted in bold for each test case (TC ).

5.3.6 Conclusion

Overall, the calculative binning proved to be the most reliable method. The interpo-
lation search has shown positive characteristics in many, in particular the artificial
test cases. If test cases are not set up properly, it can lead to abysmal results,
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making it largely dependent on the user, where using binary search as a common
approach was the most reliable and was therefore used for the first update of the
official Molflow release for versions 2.9+ .

We provided a brief outlook, how various search algorithms perform as well as
an approach that makes use of the original description used to generate time bins.
The initial improvements that could be made by adding a slight constraint to the
definition of Specified Time Series in addition with binary search lead to speedups
of 9× for a full simulation run. By coupling these efforts with calculative binning,
which showed the best performance when individually benchmarking the lookup
algorithms, the simulation performance can be further improved. At the time of
finalizing this study, the algorithm was not yet part of the released Molflow code. As
calculative binning is essentially O(1)1, we wouldn’t expect major improvements to
follow, without changing the underlying architecture. Another improvement that is
left to be investigated for time-dependent simulations is the deployment of adaptive
or auto-calculated bins. Right now, the user has to define a set of STS by himself,
which requires some trial and error or apriori knowledge to find good values. In
many cases, when time events don’t happen uniformly and users require higher
resolution (more bins) in some time intervals, a bad setting can lead to unnecessary
large bin allocations. Further, with the current implementation it is not possible
to restrict time events to particular facets. Time-dependent statistics may not be
required for all, but only for a small subset of facets, which could further reduce the
space complexity and performance of the overall simulations, as bin lookups would
not need to happen for all Monte Carlo events.

5.4 Neighbouring Facets

The application uses the neighbourhood information of the facets inside a geometry
to apply a variety of functions, e. g. the Smart Selection2 or for the collapse of facets.
Intuitively the relationship of two facets can be determined by finding whether they
are sharing a common edge or not. We define a common edge as such that the two
edges are defined by the same two points.

5.4.1 Constraints

An important constraint for the definition of a common edge in Molflow is that
the orientation is taken into account. This attribute is important, when dealing
with the properties of physical simulations. In Molflow, the orientation of a facet
is embedded in the order of its vertices. The normal of a facet is given by the

1With S the number of STS, which is usually low, it would be O(logS).
2Smart Select allows users to select connected facets by their angular relationship.
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left-hand rule. So, in the example in figure 5.5, the same triangle can face either
direction. In the case of clockwise order, the triangle faces the reader, and with
counterclockwise order it faces in the opposite way. A special case are facets that
are two-sided. Such facets are independent from the vertex order and explicitly face
both directions. Two facets can only have a common edge, when the orientation of
the edge following the same points is the opposite. Consider three facets: facet F1

with edge e1 = (p1,p2), facet F2 with edge e2 = (p2,p1), and facet F3 with edge
e3 = (p1,p2). Here, e1 and e2 can be considered a common edge, as they follow
the same points with differing orientations. Therefore, e1 and e3 do not constitute a
common edge. In this situation, they have the same orientation, and the facets do
not enclose a volume when combined.

Figure 5.5: Mesh with a reference triangle A and its three neighbours B,C,D.
"Physical neighbours" depend on the orientation, which in Molflow is de-
fined by the order of vertices, either clockwise (blue) or counter-clockwise
(red).

5.4.2 Algorithm : List-based

The introduction of the Smart Select feature in Molflow 2.7 implemented a simple
algorithm to identify and label common edges by comparing each individual facet
and their edges. Given a list of facets F , where each facet is described by the
corresponding list of vertices. The algorithm links and labels two facets as sharing
a common edge when for two consecutive vertices vi,p,vi,p+1 of facet Fi ∈ F and for
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two consecutive vertices vj,q,vj,q+1 of facet Fj ∈ F the property:

vi,p = vj,q+1 ∧ vi,p+1 = vj,q (5.4)

holds true. This property is critical in determining the orientation of an edge. In
our notation, for vi,p subscripts i are used to denote the index of a facet, while p
indicates the position of a vertex within that facet. For a facet Fi with P vertices,
the indexing of vertices is cyclic. Therefore, for the last vertex vi,P−1, the next
vertex vi,P is actually the first vertex vi,0. However, for a large number of edges,
this proved to be quite inefficient, since the time complexity is O(E2), where E is
the number of all edges (technically all local vector pairs) describing a geometry.
This arises from the necessity to compare each edge with every other edge.

In this work, we developed a new algorithm that reduces the complexity of building
the data structure, that is keeping the neighbourhood information, to O(E), sorting
the input data in O(E logE), with a lookup performance of O(1) by storing all
neighbours directly. Based on the same lookup algorithm, we further developed and
investigated another approach that creates a feasible data structure in O(E) using
a hashmap.

An optimised algorithm will work with the following steps. First, we create a list
containing all edges e = {v1,v2}. For that, we go through all facets and create
an edge from their corresponding vertices, including the edge connecting the last
and the first vertices (in O(E)). In addition to saving the corresponding facet ID
to the edge, we add an additional property swapped to allow ordering of vertex
IDs without losing track of their original order. This is important to maintain
the constraint that was explained in chapter 5.4.1. Given two consecutive vertices
vi,p,vi,p+1, the property resolves to

swapped :=

{
1, if ID(vi,p) > ID(vi,p+1)

0, otherwise .
(5.5)

Here, ID(◦) denotes the ID of a vertex from the global list of vertices. For an edge
with the swapped property, the vertices of the edge are swapped: e = {vi,p+1,vi,p}.

Next, having obtained a list of all edges of the geometry, the list is sorted by lex-
icographical ordering with respect to the corresponding vertex IDs (in O(E logE)).
Given two edges e1, e2, the edge e1 will be the first if the following condition is met:

ID(v1,1) < ID(v2,1) ∨
(
ID(v1,1) ≡ ID(v2,1) ∧ ID(v1,2) < ID(v2,2)

)
. (5.6)

Having obtained a sorted list, we can simply iterate through the list and compare
one entry with the neighboring entries. We do this by using a pursuing and a
leading pointer. The former is the starting point of a search. All following entries,
using the leading pointer ce, that have the same vertex are compared to identify a
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potential common edge. The pursuing pointer ce2 will describe the first edge, the
leading pointer the second edge. Keeping in mind the swapped property and the
correct order of the vertices (5.4) a common edge can be marked e.g. by adding
the corresponding facet ID from the second edge to the first. When the pursuing
pointer encounters an edge with only one facet entry, this entry can be deleted.
If the pursuing pointer ce2 identifies a common edge and the original edge on the
main pointer ce is linked to more than one facet, a duplicate of this edge is created.
This duplicate is then modified to include only the first facet. The facets from the
subsequent edge (ce2) are merged into this duplicate. This newly formed edge is
added to a separate list, CCE, which is used for managing situations where an edge
is common to more than two facets. Once duplicates are eliminated from CCE, this
list is then combined with the existing list CE. The routine Combine_Edges to
find and return a list of common edges, based on a sorted input list is, is depicted
in algorithm 4. This routine is O(E) for the amount of edges E in the data set.
Leaving the whole algorithm at O(E logE) complexity, which is primarily due to
the sorting operation of the edges as an inherent requirement3.

A similar solution was proposed by Qi et al. (2020), where the neighbouring
elements were defined having a shared vertex v . An adjacent element could then
be found by first sorting a list of tuples {v, F} for the whole mesh, where a tuple
describes a vertex v that is part of facet F . This is followed by a segmented scan. Due
to the constraint imposed for the strict definition of a common edge, this approach
cannot be applied without any modifications.

For further post-processing, the angle between each pair of facets sharing a com-
mon edge can be calculated using the corresponding facet normals:

cosθ =
|N1 ·N2|
|N1||N2|

. (5.7)

This angle can then be used for features like Smart Selection, where adjacent facets
are selected on the basis of their angle.

5.4.3 Algorithm : Map-based

As the algorithm primarily relies on the performance of insert and delete operations
to directly modify the given input, we evaluated its performance on three different
C++ standard containers. A basic implementation based on vectors is limited by the
efficiency of deletions (O(N), for N data points), which is carried out frequently in
algorithm 4. Using a list for efficient delete operations (O(1)) is evidently beneficial.
We propose another solution based on a map or a hashmap. Here, an edge e =

3Note: As part of this work we did not experiment with other sorting algorithms such as radix
sort, which could potentially reduce the time complexity further to O(E).
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Algorithm 4 Common Edge finding algorithm Combine_Edges(CE).
1: function Combine_Edges(CE)

▷ Return list of common edges CE from a list of all edges in a geometry Ω
▷ Loop over all edges via edge iterator ce
▷ if multiple shared facets are found,
▷ create an external extra facet for later merging into main list

2: nnext ← 1 ▷ Count how far ahead trailing iterator is
3: while Edge iterator ce has not reached the end do
4: ce2 ← next(ce, nnext) ▷ Set trailing iterator to be nnext steps ahead
5: if ce2 is last edge in list then
6: if ce has no linked facet then
7: Delete ce from list
8: end if
9: ce← next(ce)

10: nnext ← 1
11: else if Vertices of ce and ce2 are identical then
12: if One of ce’s facets is identical to ce2’s facets AND ce’s and ce2’s

swapped is different then
▷ Common edge found

13: if ce has only 1 facet then
14: Add ce2’s facets to ce’s linked facets
15: else
16: Create copy of ce and only keep the first facet
17: Add ce2’s facets to ce’s linked facets
18: Keep copy in extra list CCE
19: end if
20: nnext ← nnext + 1
21: end if
22: else
23: Delete ce from list
24: nnext ← 1
25: end if
26: end while
27: Remove duplicates in CCE
28: Append CCE to CE
29: end function
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{p1,p2} is inserted with the key k and the hash function

k = (ID(p1)<<16) | ID(p2) . (5.8)

Assuming a 32 bit hashkey k and a IDs for each point using at most 16 bit, first,
we do a leftwise bit shift << by 16 bits for the ID of the point p1. Now, the ID
is represented by the 16 most significant bits of the 32 bit hashkey, the 16 least
significant bits are all zero. A bitwise OR operation | is then used to ensure that the
ID of p2 occupies the 16 least significant bits of the hashkey. This unique hashkey
k thus encodes the IDs of both points in the edge. In this case, it is not necessary
to swap the vertices. For each entry in the map, we save all facet IDs that contain
the corresponding edge. Later, to find the common edge, the hash can simply be
reverted. First, we can reverse k:

ID(p1) = (k>>16) , (5.9)
ID(p2) = (k%216) . (5.10)

Next, we build a reverse key kr

kr = (ID(p2)<<16) | ID(p1) (5.11)

and use it directly to lookup any potential facet sharing a common edge. The
proposed method works only when at most 216 vertices are used to describe the
geometry. The corresponding hash functions can be easily modified to account
for 232 vertices, when a 64-bit hashkey is used. For our tests, the proposed hash
functions are sufficient.

5.4.4 Benchmark

The correctness of our solution in terms of the added constraints has been evaluated
first with a test suite inside Molflow that is comparing the results of all proposed algo-
rithms against the original algorithm used in Molflow 2.7 . The original benchmark,
while a naive implementation, respected the required constraints for the definition
of a common edge.

In total, the following algorithms have been implemented:

• Common Edges - original (Molflow 2.7)

• Common Edges - Vector-based

• Common Edges - List-based

• Common Edges - Hashtable-based
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• Common Edges - Map-based

In addition, this test suite is used to benchmark all algorithms. Here, we consider
3 geometries of different levels of complexity in terms of the amount of vertices and
facets and their interconnectivity. The geometries are elaborated in chapter 4. One
is a part from CERN’s FCC concept (see figure 4.2) with 292478 vertices, the other
is part of the Hollow Electron Lens used for the LHC upgrade with 39575 vertices
(see figure 4.4) and the other is an RF cavity with 55018 vertices (see figure 4.5).

From the results provided in table 5.4, we can see that the implementation using a
doubly-linked list (default C++ implementation) yields the best results. Due to the
better access time, the implementation using a map container (access complexity
O(1)) was expected to be an improvement to the other implementations, which was
not the case using the three provided real life examples. The original algorithm was
expected to perform the worst due to its O(F 2) complexity. The vector implemen-
tation was only marginal enhancement, due to expensive operations to modify the
structure. Due to the performant results, in Molflow 2.9, the algorithm based on
lists as an efficient data structure has been used.

Alg/TC #1 #2 #3
Original 135.2876 1030.2534 4557.4306
Vec 21.2695 86.4227 1131.1273
List 0.1003 0.2173 0.6991
Hash table 0.1620 0.3368 0.8497
Map 0.1129 0.2516 0.5357

Table 5.4: Benchmarks provided for the different algorithms and three different ge-
ometries. The values show the duration in seconds for the entire algo-
rithm: construction and common edge lookup.

5.4.5 Conclusion

In this chapter, we discussed algorithms for identifying neighbouring facets in Molflow,
emphasizing the significance of facet orientation and shared edges in physical simula-
tions as a particular constraint. Through a detailed exploration of various algorithms
designed for efficient recognition of common edges, we have demonstrated how the
additional constraints play a role in defining their relationship.

Our comprehensive analysis concluded with the development of an optimized algo-
rithm, which significantly enhances the performance of this algorithm, which serves
several roles in Molflow. Tools such as the Smart Selection feature in Molflow,
which leverages the angular relationship between connected facets, are practical ex-
amples that directly benefit from the enhanced performance. Furthermore, using
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the proposed technique, we also improved other algorithms. Conversion from trian-
gle meshes to polygon meshes incorporates the routine to collapse facets that are
coplanar to each other for a certain threshold, which utilises the proposed routine for
faster execution. Determining neighbourhood relationships efficiently was a require-
ment for a newly developed techniques for our GPU kernel, elaborated in chapter
5.4, that utilizes these information.
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6 Iterative Simulations

Iterative simulations in Molflow enable the simulation of vacuum chamber aspects
not previously possible with existing tools. In this context, a simulation S is trans-
formed into a pipeline of sub-simulations si (with i ∈ [0, .., n − 1]). The output of
simulation si serves as input for simulation si+1, with s0 working on the initial input
and sn−1 providing the final output.

This chapter outlines the motivation for and theoretical foundation of iterative
simulations, developed as part of this project. A complete implementation of the
iterative algorithm was not possible for this thesis due to time constraints and other
priorities. However, individual components serving multiple purposes, which are
essential for efficient and accurate iterative simulations and also serve other pur-
poses, were implemented independently. These components will be discussed in this
chapter, particularly focusing on specialized convergence criteria.

It should be noted that in parallel to this thesis, different developers at CERN
initiated the development of iterative simulations using the features of Molflow’s
command line interface, which was developed as part of this work. This code was
released as a public software called VacuumCOST as a set of Python scripts by
CERN (Henriksen, M. Ady, and R. Kersevan, 2023). This code was validated against
a set of existing benchmarks1.

6.1 Motivation

Iterative simulations hold particular interest in the context of particle accelerators,
as vacuum properties are not always static or time-dependent. For some types of
pumps, properties change over their lifespan due to various factors. This can occur,
for example, due to constant bombardment of inner surfaces by electrons, photons,
and ions, leading to desorption of gas molecules. Both the pumping speed and the
sticking factor of NEG (Non-evaporable getter) coatings decrease as the surface cov-
erage of a gas increases, which Chiggiato and Costa Pinto (2006) elaborated. As an
example, figure 6.1 shows how the pumping speed of different gases changes with the
surface coverage of carbon monoxide (CO). This effect cannot be modelled directly
with the simulation tools within Molflow. Time-dependent simulations (which have

1Source: The whitepaper on Molflow+ iterative simulations was not publicly available at the time
of finalizing this thesis.
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Figure 6.1: Pumping speed dependent on CO surface coverage (Chiggiato and Costa
Pinto, 2006).
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been discussed in more detail in chapter 5.3) allow to model certain parameters as a
function of time. Here, we require that a parameter (pumping speed) changes in the
system as an effect of the physical events. A new type of simulation would require
results from previous simulations, in particular the amount of particles that have
already been pumped, to estimate the surface coverage on a facet.

A simplified algorithm for an iterative simulation run would work like this:

1. Launch simulation for a time step tn.

2. Stop with arbitrary stopping criterion.

3. Use results from time step tn for tn+1.

The initial prototype should explore the idea by launching simulations with time
steps tn of a fixed, user-defined time step size dt. The potential to automatic cal-
culation of the time step size warrants further investigation, given that there is no
known method of mathematically predicting the rate change between surface cov-
erage and pumping speed. Stopping criteria can be initially set manually as well,
e.g. with a pre-defined amount of desorbed particles, more advanced stopping or
convergence criteria are discussed later in chapter 6.2.

To track the surface coverage a fine-grained counting structure is necessary to
reduce the numerical error. This is because facet saturation is unlikely to happen
homogeneously. Intuitively a texture mesh can be deployed for a single facet to
keep track of the incident and adsorbed particles. In Molflow this can be realized
with a new type of texture, following the principles of existing textures used as a
hit counter, which were discussed in chapter 2.2.3. Such a texture needs to exist
twice, one to keep track of the change of saturation and another that can be used
to retrieve local sticking factors. In figure 6.2 an example for a Molflow geometry
with a textured facet is shown.

A good balance will have to be achieved, without putting an impact on the sim-
ulation requirement for memory. Such textures should initially be simply manually
defined, where auto-tuning could be resolved e.g. by adjusting the mesh size de-
pending on the preceding simulation.

To recap the potential challenges for an iterative simulation, first, the time step
size dtj of each iteration step j has to be determined. Preferably, a dynamic step size
is used, as the pumping speed does not decrease linearly. Only for initial testing,
a fixed time step size dtj = dt ∀j for the whole simulation will be sufficient.
Next, as an iterative simulation is essentially a chain of consecutive time-dependent
simulations, the individual simulation steps have to be stopped at a reasonable
time. Intuitively, a convergence criterion that determines sufficiently converged facet
saturation levels to stop the simulation should be deployed. Fixed desorption limits
will likely overshoot or undershoot, leading to either underdeveloped solutions or
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Figure 6.2: A Molflow geometry with a textured surface. Here, it is representing
the amount of Monte Carlo events, decreasing from left (purple) to the
right (black). Gas inflow is coming from the left. The desorbing facet is
highlighted in green. An exemplary particle is sketched as a green arrow.
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wasteful use of computer resources. Lastly, mesh resolutions to track saturation
levels have to be carefully, ideally auto-, adjusted. To identify an ideal method
to design the mesh resolution with minimal impact on memory demand yet with
yielding good performance, a more in-depth study has to be conducted once the
functional aspects of the iterative simulations are fully implemented.

6.1.1 Iterative algorithm

This chapter will outline the general concept about the iterative algorithm that was
initially sketched as part of thesis.

The data structures for the simulation side have been worked out as follows.
A facet needs to contain a new type of persistent texture, where the individual
saturation levels of each element are converted into sticking coefficients, leading to
a Sticking Map. With a Sticking Map, the changed sticking coefficients could
be fetched with higher precision than for a single value per facet. In parallel, a
regular counting texture needs to keep track of particle hits, from which the surface
saturation (that is pumped molecules/cm2) can be derived. This counting texture
can then be used as input for the Sticking Map of the next iteration.

To setup an iterative simulation, a parameter distribution such as these found by
Chiggiato and Costa Pinto (2006) have to be imported and set as a material property
s(σ) for each concerned facet. An iterative simulation would then start for a time
interval [t0 = 0, dt0). The first iteration step would begin by automatically identi-
fying a suitable dt0 or manually setting the value by the user e.g. by a fixed time
dti = dtmax ∀i. This would then launch an iteration step with a time-dependent
simulation from [t0 = 0, dt0). On collision, for facets with the new texture type,
the sticking factor is chosen according to the distribution s(σ) given the value σ for
the surface saturation (pumped molecules / cm2) from the corresponding element
from the sticking map, to either pump or reflect the particle. In regular intervals,
the simulation will check against an end criterion and eventually stop the current
iteration. Trigger for this criterion could be a fixed amount of desorptions, a fixed
simulation time or the fulfilment of a convergence criterion (see chapter 6.2).

For the next i-th iteration step, the procedure is essentially the same. The sticking
map will be updated according to the results of the (i − 1)-th step. Next dti will
need to be automatically identified or again taken from manual user input. The
next iteration step then starts a time-dependent simulation with particle time from
[ti, ti + dt0). Note, that depending on the design, the behaviour of particles from
the previous simulation that went beyond ti should still be considered.

Following either a static or a dynamically found time-window, an iteration step
would correspond to a time-dependent simulation (see chapter 5.3) with a single time
moment for the time intervals mentioned. Only particles contributing to this time
moment should actually have an effect on the simulation results. An empirical trial
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has to find out, whether the simulation results will be strongly affected by neglecting
the cut-off particles – those who exit the active time-window –, or whether these
have to contribute to the counters of the (i+ 1)-th simulation step.

6.2 Convergence

With the convergence plotter2, a new set of statistical data is available to the user
to evaluate the results of a simulation. In figure 6.3 we show the pressure profile
for all side facets of a cylindrical vacuum tube (as mentioned in chapter 4.3), where
one can easily see that the value converges with an increasing amount of desorptions
N . Data on convergence is typically used to estimate the precision of simulation
results. It is up to the user to define a suitable term that may significantly represent
whether a system converges or not. Commonly, Molflow users are interested in the
pressure values or transmission probability. For a particular facet i, the transmission
probability is defined as the ratio of the number of particles absorbed by this facet
i to the total number of particles desorbed from all facets.

Expressing convergence is in particular of interest for problems, where multiple
dependent simulations are chained together and where a good understanding of
the convergence allows to characterise when the transition between the individual
simulation stages can be applied without carrying significant bias over. This is not
only the case for the before-mentioned iterative simulations, where the input of the
i-th simulation is used for the (i + 1)-th simulation, but also for simulations for
photon-stimulated desorptions utilising cross-software simulations, where a Synrad
simulation result is used as the input for a Molflow simulation (see chapter 2.2.9).

First, we give a brief overview of the statistical properties of Monte Carlo, based
on the deep introduction to the topic of statistics by DeGroot and Schervish (2012)
and Monte Carlo methods by Kroese, Taimre, and Botev (2011). This is followed by
a discussion of stopping criteria, which are useful markers upon which a simulation
can be stopped.

6.2.1 Basics

The main goal of a Monte Carlo simulation is to approximately compute a mean
value µ with the variance σ2, in Molflow depicting a physical parameter value (see
chapter 2.2.3 for a detailed discussion about hit counters), for which a direct cal-
culation or analytic solution is not computationally feasible. As we can only get
approximative results based on a set of sample data, we try to determine the esti-
mator for the mean x̄n and the estimator for the variance s2n for n samples.

2Released 11/2020 with Molflow 2.8.4 .
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Figure 6.3: Convergence profile for pressure values of multiple facets for a vacuum
pipe geometry. Each profile shows the computed pressure value (y-axis)
after N desorptions (x-axis). The profiles are converging towards the
same value with increasing desorptions. This is expected as the pipe
geometry has radial symmetry and its inflow parameters are constant
across all positions.

Given a random experiment of n i.i.d. (independent and identically distributed)
samples3 x1, . . . , xn, the sample mean can be computed as

x̄n =
1

n

n∑
i=1

xi . (6.1)

Here, each sample xi refers to an event of a particle history. For the i.i.d. variable
xi we have

var

(
n∑

i=1

xi

)
= nσ2 , (6.2)

with the standard deviation σ, and therefore a variance for the sample mean as

var(x̄n) = var

(
1

n

n∑
i=1

xi

)
=

(
1

n

)2

var

(
n∑

i=1

xi

)
=

1

n2
(nσ2) =

σ2

n
. (6.3)

Therefore, the standard deviation from the sample mean to the real mean should
be proportional to σ/

√
n, from which we can derive a convergence rate of 1/

√
n for

asymptotically increasing n.

3It is impossible to treat individual Monte Carlo events as i.i.d. . Each tracked particle leads to
a series of dependent hits, so only the full histories of each particle can be i.i.d. .
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The variance σ2, which represents the spread of the samples, can then be estimated
as

σ2 ≈ s2 =
1

n− 1

n∑
i=1

(xi − x̄n)
2 . (6.4)

The efficacy and precision of a Monte Carlo method in estimating a parameter
can be related to the rate of convergence. It can be described by the Central Limit
Theorem (CLT). It describes how the distribution of sample means approaches a
normal distribution for a rising amount of samples n. Given a model with a non-
fluctuating mean value µ for some characteristic parameter and the corresponding
standard variation σ, for a sample size n → ∞ a Monte Carlo estimator can be
given as x̄n → µ with the corresponding standard deviation s =

σ√
n

.

In the context of Monte Carlo estimation, the sample mean x̄n can be calculated
using equation (6.1), where xi represents independent and identically distributed
samples obtained through Monte Carlo simulations. The Central Limit Theorem
asserts that as the sample size n increases, the distribution of the sample means
approaches a normal distribution. This leads to the standardization of the sample
mean with the formula:

zn =
x̄n − µ

σ
√
n

, (6.5)

where zn is z-score for the n-th sample. The z-score indicates how many standard
deviations a data point differs from the mean of a distribution.

Understanding the accuracy and reliability of the results of Monte Carlo simula-
tions is crucial. By understanding how the sample means distribute and converge,
an optimal point can be determined to stop a simulation. Next, we will elaborate
on stopping criteria in general, before more suitable convergence criteria are studied
and evaluated to assist the users e. g. with an automatic stopping criterion.

6.2.2 Stopping criteria

Stopping criteria don’t automatically translate to convergence criteria, as they are
usually more simple in nature and they do not try to estimate convergence in a
particular sense. Stopping criteria typically fall into two categories: fixed criteria
and dynamic criteria. Fixed stopping criteria are often based on predetermined
knowledge, e.g. for the total sample size or the total simulation runtime. In contrast
to that, there are dynamic criteria, e.g. those that try to determine the sample size
by using knowledge gained from the simulation itself. This is particularly relevant in
iterative simulations, where the simulation results of a preceding simulation are used
as input for the next iteration. In such cases, ensuring that each simulation stage has
reached a reasonable level of convergence is crucial. This is a goal that fixed criteria
can only achieve by greatly overestimating the required simulation runtime or the
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necessary sample size. Therefore, the selection of appropriate stopping criteria must
balance the computational efficiency with the assurance of statistical accuracy.

6.2.3 Convergence criteria

It is very difficult to make absolute statements when a random experiment has suffi-
ciently converged. Intuitively, one would apply some of the more common statistical
tools. The Coefficient Of Variation (COV)

εCOV =
s

x̄
, (6.6)

is a measure to determine the extent of data fluctuation from the mean of all samples.
Here, s is the estimated standard deviation (derived from equation (6.4)) and x̄ is
the mean (from equation (6.1)). Compared to the direct usage of the standard
deviation, the COV is a unitless scalar showing the standard deviation in relation to
the mean. A high COV means that the data has a high degree of dispersion around
the mean, whereas a low COV means that the sample points are closer.

The Mean Squared Error (MSE) can be used to quantify the accuracy of an
estimator. MSE calculates the average of the squares of the errors, that is, the
average squared difference between the estimated values and the actual value. It
can be described by:

MSE =
1

n

n∑
i=1

(x̄i − µ)2 , (6.7)

where x̄i represents the estimated values from each sample, and µ is the true value
of a model. It is particularly useful in assessing the performance of an estimator: a
lower MSE indicates a higher accuracy, suggesting that estimator closely predicts the
true values. It is a useful concept that can be adapted for Monte Carlo simulations,
where the true value µ is usually unknown. Here, MSE is not used to compare
estimators against actual values, but rather to measure the stability and convergence
of the simulations over successive iterations. We can modify MSE (6.7) to compare
the results of consecutive iterations of a simulation:

εMSE =
1

n

n∑
i=1

(ϕk
i − ϕk−1

i )2 . (6.8)

Here, ϕn
i and ϕn−1

i represent the values or estimators at the k-th and (k − 1)-th
iterations, respectively. The modified MSE enables us to estimate the degree of
change between iterations. As the simulation progresses, a decreasing MSE suggests
that the results are converging, indicating that the simulation is stabilizing and
approaching a consistent outcome. While the MSE can give a good estimate for the
convergence of an MC simulation, there are other statistical tools to quantify the
reliability and accuracy of a result.
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6.2.4 Confidence intervals

Confidence Intervals (CIs) provide a clearer understanding of the quality of the
simulation results. With a specified degree of confidence, they allow us to quantify
the extent to which the simulation results are converged. The confidence interval
for n samples is given by:

I = (lα, uα) = (x̄n − zα/2
s√
n

, x̄n + zα/2
s√
n
) , (6.9)

with the sample mean x̄n, the sample standard deviation sn and zk representing the
z-score that corresponds to the k-th percentile of the standard normal distribution.
The z-score indicates how many standard deviations a data point is from the mean
of the distribution. α represents the probability that the true value is outside the
confidence interval.

To retrieve the standard deviation for a traditional confidence interval, the esti-
mator of the sample variance s2n given by equation (6.4) is required. Calculating the
estimator s2n from scratch for every new sample can be computationally expensive,
making it impractical for Molflow’s Monte Carlo simulations. This is because by
default Molflow does not generate a stream of individual histories xi, but instead
sequentially updates the data, keeping only the previous sample mean x̄n−1 and the
latest history xn. Because of this, we can not compute the variance (6.4) directly.

An efficient alternative is to use an online algorithm to iteratively calculate µ̄n

and s2n, thus reducing computational overhead. The algorithm updates these values
with each new data point:

µ̄n+1 = µ̄n +
Xn+1 − µ̄n

n+ 1
, (6.10)

s2n+1 =

(
1− 1

n

)
S2
n + (n+ 1) (µ̄n+1 − µ̄n)

2 . (6.11)

This algorithm by Welford (1962) allows for assessing the convergence and precision
of the simulation without the significant memory and computational costs associated
with the traditional method to iteratively update the variance (6.4).

A convergence criterion based on CIs can be defined by considering the width Wn

of the confidence interval for n samples

Wn = 2z · sn√
n
, (6.12)

and assuming convergence if:
Wn ≤ ε . (6.13)

Here, ε is an absolute error threshold, which has to be carefully chosen. It is more
convenient to define the equation based on a relative error threshold εrel:

Wn ≤ εrel · x̄n , (6.14)
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where the error is related to the sample mean.
In Monte Carlo simulations, CIs can lead to overly conservative estimates. In

particular for high confidence levels (e.g. 99%), this can lead to larger than necessary
sample sizes. Other problems, such as the numerical cancellation are discussed
by Chan, Golub, and LeVeque (1983). This lead to the investigation of utilizing
confidence bands, which are elaborated in the following chapter. Convergence bands
remove the necessity of global knowledge and only look at local values throughout
a specified band width.

6.2.5 Acceptable Shifting Convergence Band Rule criterion

The Acceptable Shifting Convergence Band Rule (ASCBR) criterion as proposed
by Ata (2007) is an efficient convergence criterion for Monte Carlo simulations.
Following his analysis, it combines the robustness of traditional confidence interval
approaches with a dynamic sampling technique. The approach follows the idea, that
measurements have converged, when the most recent samples are close to one of the
previous measurements.

A sequence of N sample points is considered acceptable or converged, if the last ζ
samples are within a sufficiently small window around the (N − ζ)-th sample. From
a starting point with the sample mean x̄j, for the j-th sample, an interval can be
built given the upper and lower limits:

U(x̄j) =

{
U(x̄j−1), δj = 0 ,

x̄j + ε, δj = 1 ,
(6.15)

L(x̄j) =

{
L(x̄j−1), δj = 0 ,

x̄j − ε, δj = 1 ,
(6.16)

where

δj =

{
0, L(x̄j−1) < x̄j < U(x̄j−1) ,

1, {x̄j ≤ L(x̄j−1)} ∨ {x̄j ≥ U(x̄j−1)} .
(6.17)

Here, δj is a decision variable that determines whether the current sample mean x̄j

is within the previously set limits. If it is within these limits (δj = 0), we keep the
limits unchanged. If it is outside (δj = 1), we adjust the limits following equations
(6.15) and (6.16) by applying a small margin ε to the new sample mean. When
evaluating a random variable Zj with the observed values Z0 = 0 and

Zj =

{
Zj−1 + 1, δj = 0 ,

0, δj = 1 ,
(6.18)
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a stopping rule can be defined with:

N(ε, ζ) = min{j : Zj = ζ} , j ∈ N, (6.19)

which represents the total amount of samples acquired before the rule is satisfied.
Zj counts how many consecutive samples fall within the set limits. It starts at 0
and increases by 1 for each sample within the limits. If a sample falls outside, Zj

resets to 0. The stopping rule (6.19) implies, that the simulation stops after finding
the j-the sample so that Zj reaches ζ. The parameter ζ represents the number of
consecutive sample points required to fall within the convergence band defined by
the parameter ε and equations (6.15) and (6.16). Once this condition is met, we
conclude that the sample has converged.

Figure 6.4: Visualisation of the ASCBR criterion. Here, we see three convergence
bands A,B,C, where the dots represent the newly defined lower and
upper limits. Here, only in the final convergence band C the samples
stay within an error window of size 2ε. The sample mean does not stay
within the first two sequences A and B (Ata, 2007).

In figure 6.4 the ASCBR is visualised with three convergence bands A,B and
C. The foregoing subsequences A and B did not result in a convergence band
of sufficient length to claim convergence confidentially. Here, (6.19) has not been
fulfilled due to Zj < ζ ,∀j ≤ n. Subsequence C, on the other hand, results in
a convergence band that fulfils the stopping criterion (6.19), with enough sample
points staying within the convergence band bounds Zn+ζ−1 = ζ.

With a well-chosen convergence band length ζ and half-width of the window ε∗ the
resulting stopping point N(ζ, ε∗) will be very close to that of a NCI stopping criterion
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following a set confidence interval. The authors describe an empirical approach to
determine ζ for a given ε to correspond to a confidence interval. According to
an empirical evaluation, the density function PR(ζ) represents the probability of
achieving a convergence band length ζ. The authors approximated this distribution
using the logarithmic series variate. For the density function:

PR(ζ) = cζ− ln(1− c) · ζ−1 , ζ = 1, 2, . . . ; 0 < c < 1 (6.20)

they estimated the shape parameter c with:

ĉ = 1− f1(ζ = 1)∑51
i=1 i · fi(ζ = i)

(6.21)

from their experiments by comparing the probability of achieving a convergence
band length of i = 1 with the average probability of achieving convergence band
lengths i = 1, 2, . . . , 51, where fi(ζ = i) denotes the corresponding probability for
each convergence band length. They deduced the value of c to be c = 0.9 for their
selected stochastic processes for three levels of precision by assuming ζ > 50 to be
a good value as a rule of thumb. In our own experiments, we couldn’t deduce a
general shape parameter. We created an implementation of the ASCBR criterion
in Molflow and validated how they compare with classic confidence intervals to find
whether the criterion is giving comparable results without the extra overhead as
described. We provide a rule of thumb on the parameters for achieving convergence
in Molflow with the ASCBR confidently. The results are presented in chapter 6.2.7.

6.2.6 Entropy

An alternative to considering local values for the sample mean, such as pressure or
transmission probability values, is the usage of Shannon entropy. The idea is to
observe how the entropy values change as the simulation progresses. Entropy, in
this context, quantifies the uncertainty or randomness within the simulation. It can
serve as a statistical measure to evaluate whether a set of sampled values converge
towards a stable mean.

In some Monte Carlo simulations, particularly those involving particle transport,
such as OpenMC or MCNP, Shannon entropy is employed as a metric (see Brown
(2006), Haghighat (2020), and Kumar, Forget, and Smith (2020)) to determine
whether a solution is sufficiently converged or not. In these applications, a spa-
tial mesh is employed to bin information about so-called neutron source sites, that
are those locations where nuclear fission events occur, leading to the emission of
additional neutrons. The entropy is then defined by

S(n) = −
∑
m

pm(n) log2(pm(n)) , (6.22)



108 6 Iterative Simulations

where n is the number for the current generation, where each generation relates
to a fixed amount of events, m is the index for the mesh bin, and pm(n) is the
ratio of neutron source sites in bin m to the total number of source sites. Using
Shannon entropy, a stopping criterion is reached when the entropy value stabilizes
over successive iterations.

In attempting to adapt this approach for Molflow, the direct information about the
relative amounts of events per facet has been used. To capture when then entropy
value stabilizes sufficiently, we deploy the ASCBR stopping criterion. This approach
did not prove to be feasible in real simulations though, as it lead to irregular spikes
in the curve. This irregularity makes it difficult to discern a clear trend towards
convergence. It was observed that the individual terms in the entropy calculation
often balanced each other, even in simulations with more complex geometries. This
issue, also stated by Haghighat (2020), suggests a potential limitation of the entropy-
based approach in capturing the nuances of particle transport simulations.

While entropy shows promise as a convergence criterion in certain Monte Carlo
simulations, its application in Molflow simulations presents unique challenges. Fluc-
tuations or irregularities in the entropy value can make it difficult to ascertain
whether true convergence has been achieved. These challenges highlight the need
for further research, such as more refined methods for quantifying events, e.g. using
different measures such as pressure values or transmission probabilities for a set of
facets.

6.2.7 Empirical validation

To validate both the correctness and efficiency of the ASCBR, we launch several
simulations on a set of input geometries for which an analytic analysis or an ex-
perimental validation exists. We utilise the cylindrical tube with L/R=10, whose
solution for the transmission probability was obtained by Gómez-Goñi and Lobo
(2003).

We evaluate how reliable the ASCBR works as a stopping criterion with conver-
gence windows for the relative errors εrel,1 = 10−4 and εrel,2 = 10−5. In table 6.1
we list how many desorbed particles had to be processed to stop and the difference
between the analytical solution and the simulation result for 3 runs per test case.
For a relative error of 10−4, the results were in the range of ±0.000031. For 10−5,
the results had a tolerance of ±0.000008. Overall, the ASCBR with the utilized pa-
rameters proved to be reliable. It would serve as a good tool for regular simulations
and a valuable asset for iterative simulations.
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Table 6.1: ASCBR reached after N steps for an L/R=10 pipe with 1000 side facets
and varying ASCBR parameters. Here |∆| denotes the absolute difference
between the analytical and the simulated mean. The batch size was
100000 desorbed particles per data point.

Rel. Error |∆| Analytic val. Sim. mean ASCBR stop at Nhit

1e-5 0.000006 0.190941 0.190935 326.1M
1e-5 0.000003 0.190941 0.190944 346.4M
1e-5 0.000008 0.190941 0.190949 451.9M
1e-4 0.000011 0.190941 0.190952 50.8M
1e-4 0.000031 0.190941 0.190910 69.8M
1e-4 0.000009 0.190941 0.190932 65.3M
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7 Advanced Ray Tracing
techniques

As we have explored in the preceding chapters, ray tracing is a critical component
for Molflow’s simulation engine. While chapter 2.3.1 laid the foundation by intro-
ducing general concepts of ray tracing, this chapter delves into advanced techniques
that address some of the method’s inherent complexities, particularly focusing on
optimization through Acceleration Data Structures (ADS).

One of the most effective methods to speed up ray tracing queries is the usage
of ADS. An ADS is used to partition the search space (here in 3D) in several sub-
partitions associated with the geometric primitives (polygons or triangles). This
significantly reduces the amount of intersection tests that need to be carried out.
This is because the algorithm no longer needs to individually test every primitive in
the geometry, but rather only those within the relevant partitions.

A unique challenge in optimizing ray tracing for Molflow arises from its specific
operational context: while the geometries within Molflow are static, the rays travers-
ing these geometries are not uniformly distributed, strictly adhering to Molflow’s
distinct Monte Carlo simulation model, which was elaborated in chapter 2.2.3.

Building upon these fundamentals, this chapter aims to introduce innovative
methods and algorithms that significantly guide the efficiency of ray tracing routines.
We aim to find the ideal ADS that makes use of Molflow’s unique requirements. Cen-
tral to our discussion are Bounding Volume Hierarchies (BVHs) and KD-trees, two
prominent classes of ADS. Each offers unique advantages and challenges in their
construction and application.

We will first examine the construction algorithms of BVHs and KD-trees. An un-
derstanding of these is key in modifying and tuning them to Molflow. The chapter
then transitions into an in-depth discussion of splitting techniques used during the
construction of these structures. These techniques directly influence the efficiency
of ray tracing queries. A significant part of this chapter is dedicated to introduc-
ing and evaluating state-of-the-art techniques in this domain. Here, we present our
adaptations and innovations, including an adapted version of the Ray Distribution
Heuristic and our newly developed Hit Rate Heuristic. The former leverages sam-
ple ray distributions to create optimized ADS, while the latter utilizes statistical
knowledge from previous simulations to enhance efficiency.
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7.1 Construction

The goal of the ADS construction algorithm is to maximise the quality of an ADS
within a reasonable construction time. The quality of an ADS depends on a particu-
lar application and can be related to the total runtime, including both construction
and ray tracing time. Software-bound factors are the build time and the efficiency
of the traversal algorithm. Construction schemes can put a focus on optimal cache
usage during traversal and memory usage. During construction, the quality largely
depends on the deployed splitting heuristic and is usually followed by techniques
to optimize cache-effects e.g. with coherent memory layouts. Here, we focus on
the splitting heuristics. The generally proposed solution is the Surface Area
Heuristic (SAH). It allows for high quality ADS with minimal construction time.
Although not tailored specifically for Molflow’s use cases, it still performs very well.
Aila, Karras, and Laine (2013) analyse and elaborate the relationship between the
SAH and high-quality acceleration data structures, which is why we use it as a
baseline for later comparisons.

7.1.1 Bounding Volume Hierarchy

Bounding Volume Hierarchies (BVHs), as we previously introduced in chapter 2.4.1,
are a preferred choice for Acceleration Data Structures in ray-tracing, particularly
for GPU optimizations. Their efficiency and compatibility with straightforward
splitting heuristics, like the Surface Area Heuristic (SAH), make them an industry
standard for high-performance ray tracing.

The construction of a BVH in our context is primarily achieved through a recur-
sive algorithm. This method, as outlined in algorithm 5, starts by encapsulating
all primitives within a parent node. This node is then recursively subdivided into
smaller nodes, a process that continues until certain criteria are met. Although
there are other construction schemes for BVHs, such as Linear BVH (Lauterbach
et al., 2009) and Treelet Restructuring BVH (Karras and Aila, 2013), our focus on
the recursive method is driven by Molflow’s specific requirements. The recursive
approach adapts well to the spatial distribution of primitives. By analyzing and
partitioning the space based on the distribution of these primitives, the recursive
algorithm ensures that each node in the hierarchy is optimally structured. In ad-
dition, it is flexible in changing the underlying splitting algorithm, making it ideal
studying their properties in an attempt to optimize Molflow’s ray-tracing engine.

The construction of a BVH using a recursive algorithm is sketched as pseudo
code in algorithm 5. The process begins with a parent node encompassing all prim-
itives. This parent node is then recursively subdivided into smaller nodes. The
subdivision continues until certain conditions are met, at which point leaf nodes are
created. These leaf nodes are fundamental to the structure as they directly contain
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Algorithm 5 BVH Construction using RecursiveBuild
1: function RecursiveBuild(Primitives)
2: NPrimitives← |Primitives|
3: if NPrimitives ≤MaxPrimitives then
4: return CreateLeafNode(Primitives)
5: end if
6: CentroidBounds← ComputeCentroidBounds(Primitives)
7: Dim← ChooseSplitDimension()
8: if CentroidBounds is degenerate in Dim then
9: return CreateLeafNode(Primitives)

10: else
11: Groups← Split(Dim,Primitives)
12: LeftChild← RecursiveBuild(Groups[0])
13: RightChild← RecursiveBuild(Groups[1])
14: return CreateInteriorNode(LeftChild, RightChild)
15: end if
16: end function

the primitives. There are two primary conditions under which a leaf node is created:

1. Primitive Count Threshold: A leaf node is formed when the number of prim-
itives in a node is below a predefined maximum threshold (MaxPrimitives).
This condition ensures that each leaf node manages a manageable number of
primitives, optimizing the efficiency of the hierarchy.

2. Degenerate Bounding Box: A secondary condition for leaf node creation is
identified when the bounding box surrounding the primitive centroids becomes
degenerate along the chosen split dimension. This occurs when the minimum
and maximum coordinates along this dimension are equal, indicating that
further subdivision of the node would not be beneficial.

Splitting algorithms differentiate in their selection of the splitting plane. Efficient
construction algorithms usually alternate between the x, y, z axes, where optimized
algorithms will find the best splitting plane among all three of them. Other ap-
proaches that have a lower construction time in mind, alternate the axes based on
a criterion, e.g. the axis with the largest extent. This is the approach used in this
implementation. The splitting of nodes into two subsets of primitives is guided by a
well chosen splitting method. Details on various splitting strategies are discussed in
chapter 7.2. These strategies vary based on specific optimization goals. Each split
results in two groups of primitives, where one group is used to recursively construct
the left child of the BVH, and the other group for the right child. The recursive
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nature of this algorithm allows for efficient and dynamic construction of the BVH.
It adapts to the spatial distribution of the primitives, ensuring that the resulting
hierarchy is optimized for subsequent operations like ray-primitive intersection tests.
Coupled with an effective splitting strategy, this leads to the creation of a balanced
and performant BVH.

In summary, the recursive construction of BVHs, as outlined in this section, offers
a flexible and efficient method for further optimizing the ray tracing routine in
Molflow effectively, by adapting and enhancing it for the specific requirements of
Molflow’s simulations.

7.1.2 KD-tree

With properties more relevant to Molflow, we put a particular focus on KD-trees,
another form of ADS. KD-trees, as briefly revisited in chapter 2.4.2, present distinct
properties compared to BVHs, making them particularly advantageous for static
geometries like those in Molflow. One key benefit is their ability to facilitate early
ray termination due to the traversal algorithm’s preference for nearest candidates, a
feature not inherent to BVHs due to potential node overlap following object instead
of space partitioning. As illustrated in figure 7.1, the spatial partitioning within the
KD-tree demonstrates how different levels of subdivision contribute to the final data
structure.

The construction of a KD-tree, similar to a BVH, typically follows a recursive
approach. Our algorithm, detailed in algorithm 6, spatially partitions primitives
into a hierarchical tree structure.

Starting with an initial set of primitives, the algorithm recursively splits them
into smaller groups. A leaf node is created under three conditions:

1. Primitive Count Threshold: When the number of primitives in the current
node is less than or equal to a predefined maximum (MaxPrims).

2. Maximum Depth: When the recursion depth reaches a threshold, this condi-
tion prevents the tree from becoming excessively deep, which could affect both
memory usage and query performance.

3. Infeasible split: If a split is deemed infeasible (see line 6, e.g. if it doesn’t
improve spatial partitioning or leads to unbalanced divisions, a leaf node is
favorable.

The splitting function decides how to split the current set of primitives into two
groups. Several splitting techniques are discussed in chapter 7.2. After a feasible
split is determined, the set of primitives is divided into two groups. Each group is
then passed to a new recursive call. This subdivision process continues until the
conditions for leaf node creation are met.
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Figure 7.1: Visualization of a KD-tree for an exemplary geometry, illustrating the
spatial partitioning and levels of subdivision, colored starting with red,
green, and blue.

The resulting KD-tree is particularly suited for ray tracing applications. It allows
for efficient traversal and querying, enabling rapid determination of which primitives
a ray intersects.

Li, Deng, and Gu (2017) proposed an algorithm for KD-trees that selects splitting
candidates with Morton Code and orders primitives on a Morton curve. A similar
approach has been proposed by Lauterbach et al. (2009) for BVHs. Although the
approach itself is less intuitive compared to conventional greedy-based algorithms,
such as splitting by SAH, the authors note that their acceleration data structure
achieved “dramatically [shortened] construction times” and high traversal efficiency.
Wald and Havran (2006) analyze KD-tree construction algorithms and propose an
algorithm using so-called perfect splits. The idea of perfect splits is to clip those
primitives that straddle the splitting plane. This solves the inherent properties
following KD-trees, that primitives may be referenced by multiple sub nodes. A
concept only vaguely following conventional KD-trees is described by Gribble and
Naveros (2013). Here, KD-trees are first constructed with a classic algorithm, where
only the leaf nodes are kept to create a graph, where each node is connected to their
six spatial neighbor relations.
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Algorithm 6 KD-Tree Construction for Ray Tracing
1: function BuildKdTree(Primitives)
2: if NPrimitives ≤MaxPrims or Depth ≥MaxDepth then
3: return CreateLeafNode(Primitives)
4: end if
5: Groups← DetermineSplit(Primitives)
6: if Split is not feasible then
7: return CreateLeafNode(NodeNum, PrimNums, NPrimitives)
8: end if
9: BuildKdTree(Group[0])

10: BuildKdTree(Group[1])
11: return Node(LeftChild, RightChild)
12: end function

In a first step, we base our work on the implementation of the recursive construc-
tion algorithm by Pharr, Jakob, and Humphreys (2017), which follows the concept
of algorithm 6. The recursive construction algorithm is easy to adapt for other
splitting heuristics.

7.1.3 KD-tree Traversal

In chapter 2.4.2 we briefly discussed the standard techniques to traverse KD-trees
for ray tracing. The kd-backtrace algorithm is implemented by Pharr, Jakob, and
Humphreys (2017), which serves as our standard implementation. Molflow is a use
case, where the spatial awareness of KD-trees is in particular useful. Upon reflection,
we recognized the ability to identify the nodes or leaf where the intersection point
lies. An idea is to use this position as a start to quickly restart the KD-tree traversal
from this position. Further, we believe this is useful for Molflow, as we are tracing
particles in an enclosed space. Subsequent reflection points are on average very close
to each other.

Popov et al. (2007) described a technique, where KD-trees are adjusted with
ropes. These ropes are links between bottom-level nodes, enabling space-conscious
traversal. The rope traversal algorithm is sketched in figure 7.2 and works as follows.
Nodes have direct links to their spatial neighbour nodes. Starting traversal from top
to bottom, when a leaf node is reached and no intersection is found, the algorithm
utilizes these "ropes" to move directly to an adjacent node at the same level instead
of traversing back up the tree. This way unnecessary nodes can be skipped to reduce
the traversal steps needed to explore adjacent regions. Other methods would require
retracing steps back to the root or higher-level nodes.

We implemented an adjusted traversal algorithm KD Rope Restart will that
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Figure 7.2: KD-tree Rope traversal (Lira dos Santos, Teichrieb, and Lindoso, 2014):
The traversal starts from the root node to the bottom. With step 4 we
reach a leaf node. Instead of moving back up the tree, we can use a
"rope" to move directly to the adjacent node (step 5).

keeps track of the node, containing the facet from the last hit location. In addition
to neighbouring links, nodes have direct links to their corresponding parent node.
When a terminating hit is identified, the corresponding node is cached with the
ray. When a new ray tracing query is started, the traversal will start from the
cached node. The algorithm will first move upwards the parent nodes following
the parent links until the ray origin is spatially inside a node.1,2 Starting from
there, the standard rope traversal algorithm is used. We sketch our algorithm in
7. In the beginning, we try to fetch the cached node with GetStartingNode.
Traversal continues from that node normally. In each node, we check whether the
ray intersects the left or right child (see line 5). We can do this by evaluating the
ray equation (2.50). In this case:

p = o+ t · r , (7.1)

where t is the minimal intersection distance with the current node, o is the ray
origin, r is the ray direction and p is the intersection point. Now for the split

1As big facets are spanned through multiple leaf nodes, a hit location can be found outside of a
node with the facets correct hit location.

2Techniques exist that split facets together with the tree subspace.
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dimension i, if pi < ti, then the ray intersects the left region, which is typically
according to the minimum coordinate in the respective dimension. A new node is
cached for a potential restart when we intersect a leaf node. After we computed
the intersection with a leaf node, we use rope traversal by fetching the neighbouring
node corresponding to the ray direction with getNeighboringNode.

A downside of our implementation lies in GetStartingNode. Because facets could
potentially lie in two nodes, because they are spatially split, this could give us a bad
starting node. The default KD-tree does not split primitives during tree construc-
tion. Consider two nodes A,B, both containing the primitive f that a ray will
intersect for the ClosestHit. Now, the actual hit location on f is located in B, but
we are checking intersections with A first. In this scenario, we find the intersection
while in node A: A is cached. With an updated intersection distance t, we are still
checking B, but terminate, since no primitive is closer than f . GetStartingNode
will try to restart from the wrong node. This is why we move upwards first until we
find a parent node that actually contains the ray. We found that this approach led
to best results. It could be improved by implementing KD-trees that split primitives
during construction.

Havran and Bittner (2007) proposed a similar approach, though for a bottom-up
traversal algorithm. The authors’ data structure does not allow direct links to the
parent nodes by default, instead they sparsely create augmented nodes, where the
following sub-nodes only link to the closest augmented node above in the hierarchy.
The authors describe that this leads to reduced memory overhead, with comparable
performance to stack-based approaches.

7.2 Splitting heuristics

As we progress from discussing the construction algorithms of Bounding Volume
Hierarchies and KD-trees in ray tracing, we connect it to splitting heuristics, which
play a crucial role in the quality of an Acceleration Data Structure.

Splitting heuristics in tree-based ADS determine how the 3D space and its encom-
passing primitives are partitioned. This partitioning is crucial because it directly
influences the number of intersection tests during ray tracing, a critical factor in
computational performance. For Molflow, where geometries are static but rays fol-
low a non-uniform distribution in line with the Monte Carlo model, selecting an
appropriate splitting heuristic is especially challenging and vital.

This chapter delves into the underlying principles and practical applications of
these heuristics, beginning with an introduction on the general cost function. The
general cost function in ADS serves as a framework for evaluating and guiding the
splitting process for different heuristics. It balances various factors, such as con-
struction time and traversal efficiency, to optimize the overall performance of the
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Algorithm 7 KD Rope Restart traversal algorithm
1: function IntersectRopeRestart(ray)
2: node← GetStartingNode(ray) ▷ Get initial node from ray cache
3: while node ̸= null do
4: while node is not a leaf do
5: if ray intersects with node’s splitting plane on left then
6: node← node.leftChild
7: else
8: node← node.rightChild
9: end if

10: end while
11: if node is a leaf and intersects with ray then
12: ray.restart← node ▷ Save restart position ray.restart
13: IntersectLeafNode(ray, node)
14: end if
15: node← node.getNeighboringNode(ray) ▷ Rope traversal
16: if node = null then
17: break ▷ Exit if no more neighboring nodes
18: end if
19: end while
20: return hit
21: end function

22: function GetStartingNode(ray)
23: if ray.restart is a cached node then
24: node← ray.pay.lastNode

▷ Verify that ray origin is physically inside node
25: while node ̸= null and ray not in node.bbox do
26: node← node.parent ▷ Move upwards
27: end while
28: if node = null then
29: node← root ▷ Fallback to root if no valid node is found
30: end if
31: else
32: node← root ▷ Start at root
33: end if
34: return node
35: end function
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ray tracing system. Following this, we will explore various metrics used in splitting
heuristics, starting with the Surface Area Heuristic (SAH). SAH is a common choice
in many ray tracing applications, due to its adaptability and efficiency. However,
in the specific context of Molflow, where ray trajectories are probabilistically deter-
mined, the application of SAH and other heuristics may need careful evaluations
or adaptation. We introduce two statistical heuristics: The test Ray Distribution
Heuristic (RDH) and the Hit Rate Heuristic (HRH). An adapted implementation
of the RDH, a heuristic that utilizes a sample ray distribution. The RDH makes
use of the fact, that Molflow’s ray distribution is non-uniform and dependent on
the outgassing ratio of the geometry’s facets. In addition, we propose the Hit Rate
Heuristic (HRH), specifically designed to capitalize on Molflow’s intrinsic statistical
data. We will examine how these heuristics operate and their impact on the simu-
lation performance. Further, we will discuss the use of binning strategies in detail
to simplify and streamline the splitting process, an important technique in reducing
the computational demands of constructing ADS.

7.2.1 General Cost Function for ADS Splitting Heuristics

To build high quality ADS, nodes are usually created recursively in a top-down
fashion using a greedy approach. For each iteration, a cost function is evaluated for
each splitting candidate to find the locally optimal choice to create new sub nodes.
It is typically represented as CA,B. This function serves as a tool in estimating
the computational efficiency of various ADS configurations, where the goal is to
minimize the attributed costs. The general form of the general cost function can be
expressed as:

CA,B = ctraversal + cintersection · (pA ·NA + pB ·NB), (7.2)

where (A) and (B) represent the left and right child nodes of a split, respectively.
Each component plays a specific role in the overall calculation:

• Traversal Cost ctraversal: The traversal cost represents the computational
effort required to traverse a node within the ADS. It is a predetermined con-
stant, reflecting the cost of the decision-making process at each node regarding
the subsequent path of traversal in the data structure.

• Intersection Cost cintersection: The intersection cost quantifies the computa-
tional load of conducting an intersection test between a ray and the primitives
contained within a node. This cost is a fixed constant, approximating the
resource intensity of calculating intersections with the geometric primitives in
the node.



7.2 Splitting heuristics 121

• Probability of Intersection pA, pB: The probabilities pA and pB represent
the likelihood of a ray intersecting with the primitives in the respective left
(A) and right (B) child nodes of a split. These probabilities are crucial as they
directly influence the frequency of intersection tests, which are central to the
efficiency of the ray tracing process.

• Number of Primitives NA, NB: NA and NB denote the number of primitives
contained in the left and right child nodes, respectively. These counts are used
to scale the intersection costs in proportion to the quantity of primitives in
each partitioned space.

The cost function connects the traversal cost with the intersection costs for both
child nodes. The intersection cost for each node is derived by multiplying the prob-
ability of a ray intersecting that node, the number of primitives in the node, and the
fixed cost per intersection test. The primary goal in employing this cost function is
to identify the spatial partitioning strategy that minimizes CA,B. Lower values of the
cost function are indicative of more efficient ray tracing configurations, suggesting
reduced computational demands for determining ray-primitive intersections.

The challenge in utilizing this cost function effectively lies in accurately estimat-
ing pA and pB, which is commonly achieved using splitting heuristics. Accurately
estimating the probabilities is not trivial, as it requires a nuanced understanding
of the ray behavior within the space. The heuristic must take into account various
factors such as the density and distribution of primitives, the nature of ray origins
and trajectories, and any specific characteristics of the simulation environment, such
as those found in Molflow.

Following the approach suggested in (Pharr, Jakob, and Humphreys, 2017), in our
implementation for Molflow, we have set cintersection to 1, as it is typically the more
computationally intensive operation, involving multiple virtual function calls. The
traversal cost ctraversal is set to 1/8, based on the assumption that traversing a node
in the ADS is relatively less expensive than performing an intersection test. This
ratio of costs reflects the relative computational demands of these two operations in
the ray tracing process. In our experiments, it proved to be a good estimation for
the costs, which we compared to an automatic evaluation.

In the following sections, we will explore specific splitting heuristics and how they
approach the task of determining pA and pB in the context of ADS optimization for
ray tracing applications.

7.2.2 Surface Area Heuristic (SAH)

The Surface Area Heuristic (MacDonald and K. S. Booth, 1990) is the quasi-
standard method for the construction of high quality ADS. It helps to predict the
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most efficient way to divide space by considering the surface areas of subvolumes.
Even though it makes several assumptions that usually don’t apply to every use
case, the heuristic still delivers very good results with minimal construction time,
making it a common choice for many applications.

Figure 7.3 shows two scenarios and different approaches for finding an good split-
ting position. Here, two scenarios are described, where the first can be solved
sufficiently with a split in the center. The second scene shows overlapping and large
bounding boxes for the created sub nodes, which is considered to be computationally
more expensive than for smaller, non-overlapping boxes. Based on this fact, SAH
will find the optimal splitting position for this scenario as show in subfigure (c).

The SAH uses the cost function (7.2) with the following definition of the proba-
bility function:

pi,SAH =
SA(i)

SA(Vi)
, (7.3)

where SA(◦) denotes the surface area of a volume, which we can simply obtain by
computing the sum of all its face areas. Further i denotes an arbitrary sub volume
i, where Vi relates to the parent node.

Naturally, the SAH is not the perfect splitting heuristic, even though it delivers on
average very good results. The SAH makes simplified assumptions that the rays are
uniformly distributed in both their origin and direction. Especially for Molflow’s use
cases this does not apply. Rays usually start from small surfaces inside a geometry,
where the trajectory always relates to a facet’s normal. A splitting heuristic that
considers this particular trait is the so called Ray Distribution Heuristic (RDH).

7.2.3 Ray Distribution Heuristic (RDH)

The Ray Distribution Heuristic (Bittner and Havran, 2009) is an intuitive technique
especially in those scenarios, where rays are not uniformly distributed. This is
the case in Molflow, where the origins and trajectories of rays largely depend on
the geometry. By utilizing a subset of real rays, the RDH aims to optimizes the
construction of Acceleration Data Structures by analyzing how rays are distributed
across the 3D space for a given model.

Given a sample distribution of N rays, the RDH is defined using the following
probability function:

pi,RDH =
|R(i)|
|R(Vi)|

, (7.4)

where R(◦) gives the amount of rays that intersect a node i or it’s parent node Vi.
Taking into account a fixed initial sample distribution, it is obvious that with each
split R(◦) will become smaller. This is an issue because when the local sample size
is too small, it can lead to a statistical bias.
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Figure 7.3: Finding the optimal splitting position isn’t always straightforward. In
(a) a split in the center is sufficient. For the scene in (b) the same
splitting position leads to overlapping boxes associated with more com-
putation steps involved. An optimal splitting position for the same scene
is shown in (c) (from Pharr, Jakob, and Humphreys, 2017).
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The RDH, compared to the SAH, is computationally demanding as for each split-
ting candidate, two nodes have to be traced with the sample set. Techniques for
efficient handling of the RDH during the build process have been proposed by Nabata
et al. (2013), such as ray filtering. Considering that for a node only a subset r ∈ R
of all rays R actually intersect the created subnode, it makes sense to filter only
those active rays and use them when evaluating the RDH for further splitting. This
is sketched in figure 7.4. Nabata et al. (2013) optimise the algorithm further by
minimising potential memory overhead by coupling ray filtering with a technique
called skip filtering. Here, rays are only filtered to create a smaller subset, when the
difference between the sample set and the rays that did not intersect with a node
is sufficiently large. They propose to skip creating a smaller subset when α > 0.5,
where α is the intersection rate of the current sample set with the new child node.

Figure 7.4: Sketch of the RDH. Only a subset of the ray sample intersects a parti-
tion.(Nabata et al., 2013)

Shadow Ray Distribution Heuristic (SRDH)

To make up for some of the practical disadvantages associated with the RDH, Felt-
man, Lee, and Fatahalian (2012) proposed a derived heuristic called Shadow Ray
Distribution Heuristic (SRDH). Here, a secondary BVH is constructed solely for the
use of shadow rays. In classical ray tracing, shadow rays are secondary rays that can
be created after a collision with a surface. The authors argue, that shadow rays for
graphical rendering applications are much more suitable for the RDH than primary
rays. In Molflow we can’t directly apply the concept of shadow rays, as such rays
have a limited life span unlike the particles traced until they exit a geometry, usually
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after several thousands of reflections. Essentially, we have to treat each reflected ray
as a primary ray.

RDH Sample Distribution

There are various ways to retrieve a sample distribution. The easiest method would
be the recording of Rtotal,k rays and later on to randomly pick a subset of R∂ ⊆
Rtotal(k) rays. Rtotal(k) gives the amount of rays that intersect node k. Considering
that R∂ is sufficiently large, the retrieved subset should give a good distribution,
while reducing the computational burden. Nabata et al. (2013) propose that from
a given sample distribution only a sample size R∂ of at most 100 to 1000 rays is
sufficient for their implementation of the RDH. In their experiments, they analysed
geometries with 75K and 7.9M triangles. They use a fixed sample size R∂ = 100
for Rtotal(k) > 1000, otherwise they use Rtotal(k) directly to avoid computational
overhead of sampling the rays.

One could argue how a good sample distribution can be retrieved. For simplicity,
N rays forming a sample distribution can be sampled randomly from a previous
simulation. This reduces the bias in the sampling process but might add bias dur-
ing the splitting process. Especially for smaller sample distributions, the chance
that some facets are overrepresented and others are underrepresented by the sample
distribution might be stronger pronounced.

A sample distribution that accounts for this effect giving good approximation for
the total distribution of rays can be achieved as follows. Given a previous simulation,
determine the probability fi that a ray originates from a facet i either via desorption
or reflection with

fi =
Hi +Di − Ai

Htotal +Dtotal − Atotal

. (7.5)

Here, H, D and A denote the number of hits, desorptions and absorptions respec-
tively. Indices i and total denote the respective numbers for facet i or the total
numbers of the simulation. Then, given a target sample size of Rtotal rays, for each
facet i we choose ri rays with

ri = ⌈fi ∗Rtotal⌉ . (7.6)

Using the ceiling function guarantees, that each statistically relevant facet is rep-
resented by at least one sample ray. This might give a sample set of size Rapprox

slightly larger than proposed, which can be corrected for by removing Rapprox−Rtotal

rays from the facets represented by the largest number of rays. While this approach
may potentially change the distribution, we found in some initial experiments that it
led to slightly better results than the pure random distribution. For an initial study,
we follow the guideline to compute splits with R∂ = [100, 1000] rays at a time,
where it is evident, that this recommendation might not work sufficiently well on



126 7 Advanced Ray Tracing techniques

all geometries. This is, because R∂ might quickly become biased and not represent
the current sub-section of the geometry well.

7.2.4 Hit Rate Heuristic

An alternative to the Ray Distribution Heuristic is the Hit Rate Heuristic (HRH),
which utilizes the empirically evaluated hit ratio of the individual facets contained
within a node. Instead of relying on a sampled ray distribution, the HRH uses the
results of a previous simulation run to derive the chances of each facet getting hit
by a ray.

Given the data from a previous simulation run, a splitting heuristic can be defined
with

pi,HRH =
|Hhit(i)|
|Hhit(Vi)|

, (7.7)

where Hhit(◦) gives the sum of MC hits on all facets inside a node i or it’s parent node
Vi. Thus, pi,HRH gives a probability that a facet that is part of node i is hit. The
advantage of HRH is that a priori information can easily be obtained independent of
the ADS that will be created using the heuristic. This makes it intuitive to deploy
in the context of batched simulations (e.g. iterative simulations in chapter 6) as the
necessary information for the construction is inherently given after an initial run.
The HRH is an intuitive approximation, especially for leaf nodes, as the hit ratio of
an internal node typically varies from the corresponding primitive ratios.

As HRH depends on simulation results from a previous run, the construction
undergoes two steps. First, we create a sample structure to generate the necessary a
priori information. This Progenitor Structure (PS) should be constructed fast with
good runtimes, making a BVH constructed with SAH an ideal choice. The goal is to
minimize the time it takes to collect Hhit(Ω) MC hits. When the generated Hhit(Ω)
is sufficiently large, the data can be used in order to rebuild the PS. We can neglect
the additional overhead that arises with the use of the PS, if the total simulation
time is significantly larger than the time used for constructing and sampling with the
progenitor structure. Our benchmarks still account for construction and simulation
time from both the PS and the HRH constructed BVH or kd-tree.

The HRH was designed with iterative simulations in mind (see Chapter 6). In-
tuitively, the first iteration would deploy a progenitor structure for the whole run.
The following iterations have access to the simulation results automatically and can
therefore build an adapted acceleration data structure with the HRH. Practically,
the relative hit counters of each facet change with each iteration due to the change in
simulation parameters. This behaviour emphasises the theoretical downside of the
HRH. The goal of a good splitting criterion that tries to optimise the cost function
(7.2), lies in giving a good estimate for pi, the probability of a ray intersecting a node
i. The HRH assumes, that a Monte Carlo hit relates to a ray tracing intersection.
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A real ray tracing query typically intersects with multiple facets, where the MC hit
is only the closest intersection. The average number of real intersections for each
ray is given by the scene depth complexity and was elaborate and given for various
geometries in chapter 4.

We derived another heuristic from the HRH, which makes use of the real inter-
section probability of each facet. This approach accounts for intersection tests, that
are rejected due to other facets being in closer proximit to the ray’s origin. It is
less intuitive, as the statistics are not automatically generated with a simulation.
Additional counters or an additional pre-processing step, where a sample ray distri-
bution is used to approximate this data, have to be used. In our experiments, we
found that HRH, as initially defined, and the modified version give similar results.
This is likely because the actual hit probabilities approximate the non-uniform ray
distributions following a Molflow simulation sufficiently.

7.2.5 Hybrid heuristics

Certain splitting heuristics may lead to locally biased results when statistical data
are limited or when the design of a heuristic inherently does not guarantee good
splits. In the case of the RDH (Bittner and Havran, 2009), a hybrid heuristic is
suggested to offset potential biases by weighting it against the Surface Area Heuristic
(SAH). The authors propose a weighted function that depends on the amount of
statistical data:

wr = α ·
(
1− 1

1 + β · |R|

)
. (7.8)

Here, two constant shape variables α and β are used, with the weight dynamically
adjusted solely by the amount of rays |R|. Lower |R| suggest a stronger bias for
certain facets, where a bias for SAH is only inherent, when it doesn’t describe the
ray distribution properly in general. A hybrid probability can then be calculated by
linearly interpolating the RDH and SAH:

pi,Hybrid = wr · pi,RDH + (1− wr) · pi,SAH . (7.9)

In figure 7.5 the weight function wr is shown for α = 0.9 and β = 0.1. Using these
parameters, the weight of the RDH decreases rapidly for |R| ≤ 100.

The hybrid heuristic serves as an effective strategy to mitigate potential biases in-
herent in heuristics like the RDH, especially when faced with a limited sample set of
rays impacting a specific node. A significant challenge in this approach lies in deter-
mining an adequately large initial sample set that accurately represents the spatial
distribution of rays within subpartitions, up to a certain depth. This is particularly
crucial given the substantial computational overhead of RDH in comparison to more
traditional heuristics such as the SAH.
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Figure 7.5: Proposed weight function wr for α = 0.9 and β = 0.1, scaling with the
amount of rays |R| intersecting a node (see Bittner and Havran, 2009).
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7.2.6 Binning

Fast construction algorithms typically adopt a greedy strategy, simplifying the com-
plex task of finding the optimal division for tree construction, which is acknowledged
as NP-hard (Havran, 2000). These strategies often involve reducing the pool of po-
tential splitting candidates. Intuitively, it makes sense to only consider the object
bounds as potential splitting candidates, leading to ∼ 2 · P candidates, where P is
the number of primitives. However, for larger scenes or when employing more com-
plex heuristics, it’s beneficial to further reduce this number to lessen computational
demands. Here, the binning strategies come into play.

For binning, instead of evaluating every possible location as a splitting candidate,
only N positions are evaluated. Usually, the chosen splitting axis is divided in N
equidistant bins for min-max binning (see Shevtsov, Soupikov, and Kapustin, 2007).
Here two separate bins are utilised as counters, the min-bin and the max-bin. The
min-bin accumulates the primitives whose min-coordinate of the AABB lies inside,
respectively for the max-bin. A more general approach simply keeps track of the
primitives whose centre coordinate lies inside of a bin interval. Alternatively to
spatial binning, one can use an object binning approach, where only the centre of a
primitive’s bounding box is used as a splitting candidate as opposed to utilising the
full bounding box. Instead of equally diving the bins spatially, we can distribute
the primitives equally. For N bins and P primitives, each bin keeps track of ∼ P/N
primitives. This is particularly useful, when considering geometries such as the
electron gun from the ELENA experiment, shown in figure 4.1. Here, considering
the z-axis, which defines the long side, the distribution of primitives is heavily
focused towards the first half. In such scenarios, it would result in ∼ N/2 bins (bins
diving the right half along the z-axis), which are underutilized.

7.2.7 Discussion

This chapter’s exploration of various splitting heuristics for KD-trees and BVHs
in ray tracing applications, particularly within the context of Molflow, underscores
the critical role these heuristics play in optimizing ADS. We want to briefly discuss
the expectations for each splitting heuristic when paired with BVHs or KD-trees to
minimize the general cost function (7.2) based on their properties.

While most ray tracers build KD-trees using the Surface Area Heuristic (SAH)
due to its adaptability and general efficiency, our discussion has highlighted that the
unique requirements of Molflow might benefit from deploying different approaches.
The non-uniform distribution of rays in Molflow, primarily influenced by the in-
dividual geometries, presents unique challenges that standard heuristics may not
fully address. The Ray Distribution Heuristic (RDH), initially proposed for BVHs,
shows promise in better aligning with KD-tree properties due to its spatial aware-
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ness. However, the heuristic’s effectiveness depends on the accurate representation
of ray paths, which can be challenging given the complexities inherent in Molflow’s
simulations. The Hit Rate Heuristic (HRH), on the other hand, leverages statisti-
cal data intrinsic to Molflow’s simulations, offering an innovative approach to tailor
the ADS to specific geometries. While it estimates the hit probabilities of individ-
ual facets directly, it neglects that ray tracing is steered first through the interior
nodes of an ADS. This is where it might create significant overlaps between interior
nodes in BVHs without further modifications. Furthermore, the discussion on hy-
brid heuristics, particularly the combination of RDH and SAH, illustrates a strategic
approach to balancing different heuristic strengths. This adaptability is crucial in
managing an unintended bias that might negatively impact construction.

Lastly, the binning strategy is key to simplifying and streamlining ADS construc-
tion. By reducing the computational load in selecting splitting candidates, these
strategies contribute significantly to the efficiency of ADS construction. In our ex-
periments, this was especially noteworthy for the RDH. Even with the limitation
to a smaller sample size during each step, the overhead to test all possible splitting
candidates was tremendous, making it largely infeasible without a binning approach.

7.3 Evaluation and Benchmarks

In this chapter, we provide examples that highlight the differences between the
proposed splitting heuristics used for construction algorithms. This will provide
a better understanding of the potential effects in particular between the hybrid
heuristic and non-hybrid heuristics. The effectiveness of the different techniques is
evaluated with benchmarks running on a set of test cases with varying properties.
Splitting criteria are evaluated for both BVH and KD-trees. For KD-trees we further
distinguish between different traversal techniques.

7.3.1 Hybrid heuristics

The hybrid heuristic implements a method to connect two splitting heuristics with
the idea to counteract the downsides of using one for the entire tree construction
process. Originally, the hybrid heuristic was proposed because the RDH would lead
to biased results for lower levels of the tree, because less rays from the sample ray
distribution are relevant for the sub nodes after each split. Here, the SAH acts as a
good balance due to its good performance on average.

To visualise how the splitting heuristic lead inherently to different results, we eval-
uate splitting candidates for SAH, RDH and the hybrid heuristic at different steps
during the splitting process. These examples are sketched in figures 7.6, 7.7, 7.8, and
7.9. In each example, the same state during a construction was used to evaluate the
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heuristic scores across the whole plane. The test cases further consider the impact
that a decreasing amount |R| has on the RDH and thus the hybrid heuristic. Figure
7.6 shows a completely different pattern for RDH and SAH, showing that they are
fundamentally different. The RDH would have selected a splitting candidate for the
minimum on the left border, where the SAH was more oriented towards the center.
Since the stage was only using a relatively low amount |R|, the hybrid heuristic is
weighted more towards the SAH, leading to a splitting candidate in the center that
is less ambiguous due to the reduced right shift. The example in figure 7.7 shows
similar patterns for SAH and RDH. The RDH has a distinct minimum, whereas the
cost function for the SAH is continuing to go slightly downwards all the way towards
the right side. The hybrid heuristic with an equal weight is balancing out this effect,
hence it selects a candidate similar to this found by the RDH. Figure 7.8 shows an
example with fewer split candidates. The curves for RDH and SAH are relatively
similar, but still result in different split locations. Here, RDH splits at 60% and
SAH at 40%. Another scenario with a lower |R| is given in figure 7.9. Here, the
SAH and RDH curves are completely different. RDH identifies better results on the
left edge, taking 20% as the minimum. The SAH curve is balanced and found a split
in the center at 50%.

Figure 7.6: X-axis shows the splitting position in %. The Y-axis shows the cost
associated with a split at a particular position. The cost function is ac-
cording to (7.2) for the corresponding splitting heuristic. RDH identifies
a minimal position on the at the left boundary. SAH finds a splitting
candidate on the right half of the node. The hybrid method finds a clear
candidate in the center.
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Figure 7.7: X-axis shows the splitting position in %. The Y-axis shows the cost
associated with a split at a particular position. The cost function is
according to (7.2) for the corresponding splitting heuristic. An example
with fewer spit candidates. RDH identifies a candidate close to the
center. SAH finds a splitting candidate on the right boundary.

Figure 7.8: X-axis shows the splitting position in %. The Y-axis shows the cost
associated with a split at a particular position. The cost function is ac-
cording to (7.2) for the corresponding splitting heuristic. RDH identifies
a candidate close to the 60% position. SAH finds a splitting candidate
on the 40% mark.
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Figure 7.9: Example #4 for splitting cost functions. Here, the RDH leads to a
significantly different pattern than the SAH, which resulted from a small
test ray sample size. This resulted in the same minimum for both the
SAH and the hybrid approach.

7.3.2 Benchmark

This chapter elaborates and discusses the benchmarks on the various implemented
techniques surrounding splitting techniques and traversal algorithms that have been
implemented for BVH and KD-trees. In figure 7.10 we show in a box and whisker
plot, how the different techniques perform compared to the BVH with SAH splitting
as the default technique. On average, the BVH with RDH performs well and has
slightly better performance on average than the default procedure. The KD trees
are worse on average. It is noteworthy though that most techniques perform well in
some particular test cases noted as outliers. The KD tree using SAH proves to be a
good default technique for the SAH, where the hybrid approach for the KD tree leads
to the most performant individual benchmarks of the whole set. The rope traversal
techniques did not excel. The newly developed rope restart technique is slightly
better than the original implementation. We would like to argue, that the technique
shows potential. In particular, when the traversal technique and the underlying
data structure are further optimised. We found, that one of the downsides for the
rope traversal, are cases, where facets belong to multiple nodes. This can happen,
because a KD tree is dividing primitives spatially, where primitives always belong
to one or another node at a split for a BVH. A technique that could reduce this
effect, is object splitting. Primitives that would belong two both nodes after a split,
will be cut at the splitting axis and divided into two new polygons, one belonging
to each node.
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7.4 Outlook

We discussed and evaluated various combinations of techniques for both the BVH
and KD-tree acceleration data structures for ray tracing queries. Research focus
recently shifted more towards BVHs, but for special cases, such as Molflow, KD
trees might still bring some advantages. In a first attempt to integrate KD trees
in Molflow, the average performance proved to be a step backwards compared to
the new baseline that was set with the BVH using SAH. In a few special cases
the KD tree, particularly with the hybrid applying RDH and SAH, was able to
outperform the BVHs. These positive outliers of the KD tree performance show,
that an appropriate acceleration data structure could be chosen dynamically, e.g.
depending on the geometry properties. Overall, our KD-tree implementation still
has potential in various forms for optimisations, e.g. in terms of better caching
effects. For BVHs, various such techniques such as the use of treelets instead of
linear nodes were already researched by Pantaleoni and Luebke (2010), but they do
not translate well to KD-trees.

We further presented an optimised adaption of the RDH for KD-trees, by iden-
tifying the pros and cons of similar techniques such as the SRDH, that creates a
separate ADS for primary and shadow rays in graphical rendering applications. The
splitting technique has promising traits for Molflow but ultimately led to a lower
quality ADS compared to the SAH in most cases. The KD-tree implementation
with rope traversal only showed decent results on average. An ambiguous restart
position leads to an additional computational overhead, as the cached starting po-
sition is counterproductive. This happens when a primitive is part of multiple leaf
nodes. A hit can then find the closest intersection point on a particular primitive,
but the actual collision location might be – spatially – inside another node, which
should be the actual restart node. We only gave a brief look into the potential that
an adaption of the KD-tree has. It shares several of the traits that are theoretically
fitting for Molflow’s ray tracing engine. It is left unclear though, whether perfor-
mance improvements can be expected, when the underlying base, the KD-tree, is
already subpar.
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8 GPGPU Kernel

General-Purpose Computing on Graphics Processing Units (GPGPU) harnesses the
computational power of Graphics Processing Units (GPUs), traditionally used for
rendering graphics, for a wide range of applications beyond their original scope.
GPU computing is widely used for scientific applications e.g. for data analysis or
data reduction in High Energy Physics (HEP), for example by Schouten, DeAbreu,
and Stelzer (2015) or Bruch (2020).

Molflow users typically use the software in various stages when they are designing
vacuum components or to run simulations for a case study. In the initial development
phases, consumer-grade hardware is commonly used. However, as the need for
high precision arises, more powerful remote resources are employed. GPUs are
widely used in scientific fields to accelerate all kinds of simulations in the HPC
domain. A GPGPU simulation kernel would enable Molflow users to rapidly evaluate
their designs using hardware that they likely already own, especially when complex
geometries or time-demanding simulations are involved. Based on NVIDIA’s OptiX
API for ray-tracing queries, a C++/CUDA kernel has been developed.

First, we introduce some of the basics concepts of GPU programming with CUDA.
Further, we elaborate on the topic of ray tracing on GPUs and the connection
of the OptiX API to Molflow. This leads to the discussion of the development
and evaluation of the implementation of a straightforward port of Molflow’s ray
tracing engine and compares how it performs on both GTX and RTX hardware,
where the latter introduced hardware-accelerated ray tracing on consumer-grade
GPUs. Lastly, we introduce the kernel that was optimised for the use of RTX
hardware and elaborate the design, where an in-development version has already
been discussed in detail by Bähr et al. (2022). Furthermore, we focused on accuracy-
related components.

8.1 GPU Basics

To understand the design choices and guidelines for the development of the proposed
GPU kernel, it is important to become familiar with some of the concepts and
terminology used in the context of GPUs and GPU programming. Specifically, we
focus on the CUDA toolkit (Cook, 2012) and the NVIDIA hardware architecture.
Following a brief introduction to the main concepts, we introduce some best known
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practices, that are key to developing performant GPU applications.
A critical difference to note between GPUs and CPUs is their preference for

data precision. GPUs are commonly optimized for single-precision floating-point
computations (FP32), whereas CPUs are typically more geared towards double-
precision computations (FP64). CPUs, with their capacity for FP64, are better
suited for tasks demanding higher numerical precision. Whereas GPUs excel with
their throughput on FP32 operations. In scientific simulations such as Molflow, it
is essential to strike a balance where numerical precision is sufficient to ensure the
accuracy of the computations without adversely affecting performance. This makes
it a key concern, which we validate in later chapters.

8.1.1 Threads

In CUDA, threads are the fundamental units of computation, distinguished by
their ability to execute parts of a parallel algorithm independently. Unlike CPU
threads, which are significantly less following the Multiple Instructions Multiple
Data (MIMD) paradigm, CUDA threads are designed for fine-grained data process-
ing, operating on individual elements of large data sets following the SIMD (Single
Instruction Multiple Data) model. Each thread has access to its local memory for
independent data manipulation. Furthermore, threads are logically grouped into
CUDA blocks and further into a grid, where both threads and groups indexing
happens with 3D variables for natural division into vectors, matrices and volumes.
Threads within the same block can share data efficiently using the shared memory
space provided by the block, facilitating intra-block communication and synchro-
nization.

8.1.2 Blocks

A block in CUDA is a collection of threads that are scheduled to run on the same
Streaming Multiprocessor (SM). The block structure allows threads to cooperate
on a given task and share resources effectively. All threads in a block have access
to a shared memory space, which is faster than global memory but limited in size.
This shared memory is vital for threads within the same block to communicate
and synchronize their operations, making it possible to perform complex tasks that
require inter-thread coordination.

8.1.3 Warps

Within a CUDA block, threads are organized into warps, which are the basic ex-
ecution units. A warp consists of a group of threads, typically 32, that execute
the same instruction simultaneously but on different data, adhering to the Single
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Instruction, Multiple Threads (SIMT) model. This architecture allows for efficient
parallel processing but can lead to inefficiencies in cases of thread divergence, where
threads of the same warp need to execute different instructions. Each block is di-
vided into multiple warps, and the efficient management of these warps is crucial
for maximizing the performance of a CUDA kernel.

8.1.4 Streaming Multiprocessors

The Streaming Multiprocessors (SM) are the core of NVIDIA’s GPU architecture,
responsible for executing CUDA blocks. Each SM can execute multiple blocks simul-
taneously, depending on the resource requirements of the blocks. SMs include warp
schedulers that manage the execution of warps within the blocks. These schedulers
are designed to optimize the concurrent execution of warps, ensuring high through-
put and efficient utilization of the GPU’s computational resources.

It is important to understand the differences between the SIMT architecture used
in CUDA and the traditional SIMD paradigm, as they fundamentally differ in how
they handle multiple data streams:

• SIMT: In CUDA’s SIMT architecture, each thread in a warp can execute the
same instruction on different data. This model allows individual threads to
follow different execution paths (branching), which comes at the cost of po-
tential efficiency loss due to thread divergence. SIMT is designed to maximize
the utilization of GPU cores by enabling more flexible and granular control
over parallel computations.

• SIMD: Traditional SIMD architectures, commonly found in vector proces-
sors and some CPUs, also execute the same instruction across multiple data
points simultaneously. However, SIMD lacks the flexibility of SIMT in han-
dling diverse execution paths. All elements in a SIMD operation must execute
the same instruction sequence without branching, making it less adaptable to
complex, conditional data processing scenarios.

While SIMT offers greater flexibility and is well-suited for complex, conditional
operations common in diverse computing tasks, SIMD excels in scenarios where
the same operation is uniformly applied across large data sets. SIMD remains an
important architecture better reflecting the diverse and dynamic nature of current
and emerging computational challenges.

This architectural design is visualized in Figure 8.1, which illustrates the relation-
ship between individual threads, thread blocks, warps, and their mapping onto the
physical architecture of a GPU, including CUDA cores and Streaming Multiproces-
sors, and the structure of a complete GPU.
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Figure 8.1: Hierarchical organization of threads, blocks, and grids in the CUDA
model and their correspondence to GPU hardware components (cf.
NVIDIA, 2023).

Following this overview of the computational architecture, we will now examine
how the individual elements interact with the GPU’s memory hierarchy to achieve
high-performance computing in GPGPU applications.

8.1.5 Memory Space

The efficient execution of CUDA kernels not only depends on the optimal orga-
nization of threads but also depends on how they interact with different types of
memory available on the GPU. In this section, we delve into the various memory
spaces within the CUDA environment, including host memory, device memory, and
global memory. We will discuss how each memory type is accessed and utilized by
threads, blocks, and warps, highlighting the significance of memory management in
achieving optimal performance in GPU-based computations.

Host memory: Offloading code to the GPU requires control by a host, usually a
CPU. The host memory is not directly linked to the GPU device. Accessing host
memory from the device and vice versa requires expensive memory transfers. Hence,
where possible, data should be saved in the GPU’s own device memory for frequent
accesses. Device memory might pose a limitation and needs to be considered when
designing an application enabled for GPU computing. This is especially true for
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consumer-grade GPUs: e.g. NVIDIA RTX 3060 has around 8GB memory1. On the
other hand, there are data center GPUs e.g. NVIDIA H100 with 80GB memory2.
Such powerful GPUs are not commonly available to all engineers though.

Device memory: Device memory can be addressed in multiple fashions, which
largely depends on the GPU architecture. Important to know to optimise for per-
formance is whether the memory is located on-chip or off-chip, where the former
offers faster access and is therefore more desirable. For NVIDIA GPUs with CUDA
the memory hierarchy usually resolves into the following for on-chip memory. We
refer to NVIDIA’s TU102 architecture, which is sketched in figure 8.2. Each thread
has its own local registers and memory. Furthermore, each streaming multiprocessor
contains shared memory that can be accessed by all of its threads of the SM and
is shared between thread blocks and used for interthread communication. Depend-
ing on the architecture, there may be L1 caches per multiprocessor and shared L2
caches between multiprocessors. The caches are used to keep frequently or recently
accessed data in available for fast reads.

Global memory: In CUDA, global memory refers to the device memory that is
accessible by all threads across all streaming processors, as well as the host CPU.
This memory is primarily used for memory allocation and memory copy operations
between the host and the device. It’s the largest memory space available on the GPU
and is suitable for storing data that needs to be accessed or modified by multiple
threads or cannot fit into faster, on-chip memory types. However, it is important to
note that global memory has relatively high latency and lower bandwidth compared
to on-chip memories like shared memory. Therefore, optimal use of global memory
is crucial for maximizing performance. Techniques like coalesced memory accesses,
where threads access contiguous memory locations, can significantly improve band-
width utilization.

Additionally, while global memory is generally off-chip and slower, certain spe-
cialized memories map to global memory but have unique characteristics:

• Texture Memory: This is a read-only memory optimized for texture fetch
operations. Texture memory uses a dedicated cache (L1 cache), which can be
beneficial for certain types of irregular memory access patterns.

• Constant Memory: Another form of read-only memory. It is used for vari-
ables that do not change over the course of a kernel execution and are shared
across all threads. This memory type has its own cache (constant cache) on

1Checked 17/11/2023: https://www.nvidia.com/en-us/geforce/graphics-cards/30-serie
s/rtx-3060-3060ti/

2Checked 17/11/2023: https://www.nvidia.com/en-us/data-center/h100/

https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3060-3060ti/
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3060-3060ti/
https://www.nvidia.com/en-us/data-center/h100/
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the chip, providing efficient access when the same constant data is used by
multiple threads.

While global memory is versatile and essential for large-scale data handling in
CUDA, its effective use requires careful consideration of access patterns.

8.1.6 Cooperation and Synchronisation

In CUDA, effective collaboration between threads within a block is central to op-
timizing performance. Threads can share data either through the slower global
memory or the much faster, on-chip shared memory. The choice between these two
types of memory impacts both the speed and efficiency of data exchange among
threads.

Especially when threads within a block are writing to and reading from shared
memory, thread synchronization instructions are critical. CUDA provides explicit
synchronization instructions (e.g. __syncthreads()) for this purpose, ensuring that
all threads within a block reach a certain point in the code before any of them
proceed. This synchronization is crucial for maintaining data integrity and avoiding
race conditions.

The size of a block influences how threads can cooperate. Larger block sizes allow
more threads to work together, potentially improving data sharing and throughput.
However, this also increases the time needed for block synchronization. Additionally,
larger blocks can affect the occupancy of a Streaming Multiprocessor (SM). The
occupancy is the ratio of active warps to the maximum number of warps supported
on a SM. As more warps within a block reach the synchronization barrier, the SM’s
occupancy temporarily decreases, potentially impacting its ability to hide latency.

As mentioned in NVIDIA’s CUDA programming model (Cook, 2012), threads
within a warp (a group of 32 threads) are implicitly synchronized after each instruc-
tion. This means that threads in a warp execute instructions in lockstep, mean-
ing that each thread performs the same instruction simultaneously. Developers can
leverage this feature to avoid the need for explicit synchronization in scenarios where
problems can be effectively divided among warps. However, implicit synchronization
in warps has its drawbacks as it strongly depends on a particular GPU architecture,
e.g. due to leveraging particular warp sizes.

8.1.7 Best Practices in CUDA Programming

Writing performant CUDA kernels requires careful consideration of the underlying
hardware and the software requirements. The goal is to design kernels that min-
imize thread divergence, that is an effect of conditional branching within warps.
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Thread divergence can lead to performance degradation as divergent paths are se-
rialized within a warp. Understanding and effectively utilizing the different types
of memory (shared, global, constant, and texture memory) is important to optimize
memory usage. Where possible, data access should be speeded up by minimising
data transfer between host and device and by using shared memory. However, it
is important to note that extensive use of synchronisation mechanisms, particularly
with shared memory, can significantly impact performance. Another goal is to opti-
mise the number of threads per block and the blocks per SM to maximize occupancy
and fully utilise the hardware. To calculate the occupancy, an occupancy calculator
can be used to find the best configuration. It offers a quick and theoretical way
to optimize kernel configurations for maximizing the use of CUDA cores. Higher
occupancy generally means better utilization of the GPU resources. However, it
does not always guarantee the best performance. A combination of using the oc-
cupancy calculator for a baseline and tuning via empirical testing usually leads to
good results. Warp-level primitives exist for efficient data sharing and computation
within a warp, reducing the need for synchronization and shared memory. Profiling
the application via NVIDIA Nsight3 is a crucial step in optimizing GPU kernels
further. By identifying bottlenecks and focusing on both computational efficiency
and memory access patterns, the application can be optimized accordingly.

8.2 Ray tracing on GPUs

It’s especially due to NVIDIA’s introduction of Turing-based GPUs in 2018 that ray
tracing has become feasible again for real-time rendering in graphically demanding
scenes. According to NVIDIA (2018), Turing GPUs allow for a major speedup in
Giga Rays per second compared to Pascal GPUs from the previous generation. For
a GTX 1080 Ti, about 1.1 GRays/s could be achieved, while RTX 2080 Ti achieved
about 10 GRays/s in various benchmarks. Today, dedicated ray tracing units are
integrated in most consumer-grade GPUs, e.g., NVIDIA RTX series, AMD RX
series, or Intel Arc series, as well as data center GPUs, e.g., NVIDIA H100 or Intel
Data Center GPU Max 1550. Exemplary for NVIDIA RTX, developers have access
to hardware-accelerated ray traversal and ray-primitive intersection algorithms.

Ray-tracing algorithms are often described as embarrassingly parallel, meaning
they can be easily divided into independent tasks with little need for inter-task
communication. Intuitively it makes sense to leverage the capabilities of graphical
processing units to maximise the simulation performance for Molflow and Synrad’s
simulation kernel.

As Molflow’s performance is heavily dependent on the Ray Tracing algorithm,
trying to benefit from the advances in hardware-accelerated ray tracing is a logical

3A profiling tool part of the CUDA toolkit.



8.2 Ray tracing on GPUs 145

step. One has to consider if the usage of modern GPUs, in general, can be beneficial
compared to CPUs, or if the benefits – if any – will only be feasible with new
generation GPUs, which come with hardware acceleration for Ray Tracing. Previous
comparisons between GPU and CPU performance conducted by Roberto Kersevan
and Pons (2009) showed negligible gains from using GPUs, because “the execution
diverges quickly depending on the successes or failures of the intersection tests (’if-
then-else’ branches in the code)”.

In this chapter, we give a brief introduction to general ray tracing algorithms for
the GPU, further introduce the commonly used ray tracing APIs and elaborate on
the potential problems for the design of a GPU kernel for vacuum simulations with
the usage of the introduced RTX GPUs.

8.2.1 Hardware accelerated RT

Optimizing for NVIDIA Turing’s architecture and using the RT cores to the utmost
capabilities requires adapting Molflow’s ray tracing algorithm to conform with their
hardware accelerating functions. Specifically, these RT cores “accelerate Bounding
Volume Hierarchy (BVH) traversal and ray/triangle intersection testing (ray casting)
functions” (NVIDIA, 2018, p.30).

Molflow traditionally employs BVHs (refer to chapter 2.4.1), which theoretically
aligns well with the structural capabilities of RT cores. However, the practical im-
plementation of adapting these BVHs to the RT cores requires careful consideration,
especially in terms of compatibility and performance optimization.

A critical aspect of this adaptation is the geometric representation of facets. While
currently described by polygons, an evaluation is necessary to determine if converting
these to triangles – a format native to RT cores – would indeed offer a performance
boost. This tessellation process should consider not only the potential speedup but
also the accuracy and integrity of the results.

The introduction of Turing-based GPUs has been a game-changer for ray trac-
ing, providing not only the raw computational power but also specialized hardware
designed to handle ray tracing tasks efficiently. For NVIDIA GPUs, the NVIDIA’s
OptiX API abstracts the complexities of directly managing GPU resources for ray
tracing.

8.2.2 GPU ray tracing with OptiX 7

With the advent of such powerful GPUs, APIs like NVIDIA’s OptiX 7 offer a stream-
lined approach to harnessing this power. OptiX provides a higher-level interface for
ray tracing, simplifying the process of implementing ray tracing algorithms by man-
aging the underlying CUDA calls and RT core utilization. This allows developers to
focus on the ray tracing logic itself, rather than the intricacies of GPU programming.
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OptiX is particularly well-suited for scientific applications, as it is designed to work
seamlessly with NVIDIA’s GPU architecture, from older Maxwell generations to the
latest Turing-based models. It enables the efficient generation and tracing of rays
using the GPU’s parallel processing capabilities, which is ideal for the independent
nature of particles in simulations like Molflow.

In principle, Molflow+’s ray tracing algorithm is well suited for the Single Instruc-
tion Multiple Data (SIMD) architecture on GPUs. Given the independent nature
of particles in molecular free flow, one can maximize the parallel workload by gen-
erating and tracing individual particles per thread. Our focus is on exploiting the
RT cores in NVIDIA’s recent RTX hardware, as detailed in the Turing architecture
white paper (NVIDIA, 2018, p. 30).

8.2.3 OptiX Basics

According to the OptiX Programming Guide (see NVIDIA, 2020) we describe sev-
eral technical terms connecting the API to previous discussions for ray tracing (see
chapter 2.3.1).

A full ray-tracing kernel in OptiX consists of a ray generation kernel, a ray-
primitive intersection test using the RTX pipeline and kernels for the trace process-
ing:

• Ray Generation: This is the first stage where rays are generated. Imple-
mented as a CUDA kernel, this stage sets up the initial parameters of rays
such as origin, direction, and energy. Afterwards, the ray follows the RTX
pipeline to find the intersection point.

• RTX Pipeline: The RTX pipeline refers to the set of operations that are
hardware-accelerated on RTX-capable GPUs. This pipeline includes:

– Scheduling: The scheduling blocks within the RTX pipeline manage the
distribution and execution of tasks on the GPU. This stage ensures that
the hardware-accelerated operations are efficiently queued and processed.

– Acceleration Structure Traversal: This process involves navigating
the geometry’s BVH to find potential hit points for the rays.

– Intersection: This step computes whether a ray intersects with any
geometry in the scene.

• Trace Processing: After a ray has potentially intersected with an object in
the scene, the trace processing stage determines the result of that intersection.
This stage is divided into:



8.2 Ray tracing on GPUs 147

– Closest Hit: If an intersection is confirmed, the closest hit program
– a CUDA kernel – computes the effects that apply to the interaction
between the ray and the intersected object.

– Miss: If no intersection is found, the miss program – a CUDA kernel –
is called. For Molflow this can be used to track particle leaks that occur
when a particle exits the bounds of a vacuum component without getting
physically pumped.

• Secondary Ray Launch: This optional step, allows for the generation of new
rays from the point of intersection, which is used for recursive computations,
skipping the ray generation step.

Figure 8.3 shows a sketch for the OptiX 7 pipeline. The green labels highlight the
parts, that can make use of proprietary algorithms, which are hardware-accelerated
on compatible GPUs. First a custom ray generation kernel is called. From here
ray tracing is launched using the RTX pipeline on hardware. ADS traversal always
utilizes the built-in method, which is hardware accelerated. A built-in intersection
test for triangles is provided for maximum leverage of the RTX hardware. Self-
implemented kernels for intersection tests for custom primitive are only software-
accelerated. If no intersection is found, a Miss kernel is called. Otherwise, the
Closest Hit kernel is called for processing the object intersection.

Figure 8.3: Ray tracing pipeline with RTX technology cf. Wald and S. G. Parker,
2019.

This chapter outlines the integration process and key considerations in adapting
Molflow’s ray tracing algorithm to leverage OptiX 7.

8.2.4 Integration Process

The development of Molflow’s GPU simulation kernel has been aligned with NVIDIA
OptiX 7.0 and CUDA 10.1, leveraging the hardware-accelerated ray tracing capabil-
ities of NVIDIA GPUs with RT Cores, like the Turing series. This chapter outlines
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the integration process and key considerations in adapting Molflow’s ray tracing
algorithm to leverage OptiX 7.

The migration of Molflow’s simulation code to OptiX 7 involved several important
steps:

1. Initialization: Calling optixInit() to initialize the OptiX API and ensuring
GPU compatibility.

2. Context Creation: Establishing a CUDA-to-OptiX device context for manag-
ing ray tracing operations.

3. Module and Program Group Creation: Compiling CUDA-based ray tracing
programs into OptiX modules and organizing them into program groups for
different ray types and polygon interactions.

4. Pipeline and SBT Configuration: Assembling a pipeline linking program groups
and setting up the Shader Binding Table to dictate shader execution based on
ray interactions.

5. Geometry Handling: Loading the geometric data onto the GPU and defining
facet properties (e.g., hardness, opacity).

6. Acceleration Structure: Computing the BVH to optimize ray traversal effi-
ciency.

7. Execution: Launching the ray tracing process with customized kernels and
handling memory management intricacies, such as managing facet counters
and avoiding race conditions.

The integration process begins with initializing the OptiX API to confirm the
compatibility of the GPU and the readiness of the API for use. Subsequently, a
device context connecting CUDA with OptiX is established, laying the groundwork
for all ray tracing operations. Modules, which are compilations of CUDA kernels
for the ray tracing tasks (see pipeline in figure 8.3), form the core of OptiX 7’s pro-
grammability. These tasks are then organized into program groups containing post
processing routines that define the interaction of rays with the scene. These inter-
actions span from the generation of rays, their behavior upon missing geometry, to
their effects when hitting an object. In classical ray tracing coming from computer
graphics, these routines are also called shaders. The Shader Binding Table (SBT)
is a critical component that binds these ray tracing shaders to specific geometries
and materials in the scene, determining the execution of shaders based on ray inter-
actions. This structure is essential in ensuring the correct routines are invoked for
each ray during the trace tracing process. With the input geometry, OptiX creates
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and manages a Bounding Volume Hierarchy to speed up the ray tracing. The launch
command then initiates the ray tracing, defining the number of rays to be processed
and setting the rays in motion across the scene’s acceleration structures.

8.2.5 Challenges in OptiX integration for Molflow

Integrating NVIDIA’s OptiX into Molflow presented several challenges, addressed
through advanced features and careful design considerations.

Thread divergence: A challenge, which has already posed problems in a previ-
ous attempt to port Molflow’s simulation engine to the GPU (Roberto Kersevan
and Pons, 2009), is to minimize the effects of thread divergence. This divergence,
where post-processing varies by facet type, affects particles’ reflection and absorp-
tion. Techniques such as teleportation or linked facets from the CPU kernel, as
cited by Marton Ady (2016), were not considered for the initial GPU kernel, making
it necessary to provide GPU-specific solutions. Modelling different facet behaviors,
such as transparent and reflective surfaces, required innovative approaches within
the OptiX framework. The Shader Binding Table (SBT), a feature highlighted
in the OptiX Programming Guide (NVIDIA, 2020), was instrumental in mapping
specific programs to facets, akin to function pointers, reducing the impact of diverg-
ing threads. We describe the implementation in more detail here in chapter 8.3.2.5.
The SBT, alongside NVIDIA’s GPU work creation feature, allowed for more efficient
workload handling and ray tracing invocation, a process described by V.V.Sanzharov
et al. (2019).

Memory management: Efficient memory management was crucial, especially con-
sidering the substantial data requirements for tracking collisions at each facet.
Shared memory for thread blocks and data type optimization were strategies em-
ployed to address GPU memory limitations (see chapter 8.1.5). Optimal perfor-
mance also considered different approaches for random number generation using
cuRAND (see chapter 8.3.2.10). The decision between iterative versus recursive ray
tracing approaches was explored to balance performance and memory requirements.
Early tests indicated potential benefits of a recursive approach, which warranted
further investigation and optimization (see chapter 8.3.3.3).

Precision: Dealing with precision limitations, especially in single-precision con-
texts, was essential to avoid computational inaccuracies. This involved implement-
ing strategies for managing potential leaks and miss-traces which we elaborate in
great detail in chapter 8.4. Wald (2021) discusses the issues related to numerical
precision in intersections programs. He explains where single-precision routines are
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sufficient and elaborates that in the field of scientific codes double-precision calcu-
lations are usually relied on. In figure 8.4 we visualise a problem in Molflow arising
from utilizing non-sufficient precision. It shows two scenarios, where in one case the
reflection point remains inside the simulation volume and in another it is numeri-
cally on the outside of the volume. Depending on the reflection angle this will cause
an unphysical leak. This is leading to a false negative report due to arithmetical
error, as particle is not able to exit the geometry physically in this scenario.

Figure 8.4: Left: A particle reflects at the left surface (blue line). The reflection
point is numerically on the inner side of the volume. The yellow half
circle depicts the possible reflection angles – oriented in relation to the
facet normal. Right: Same scenario, but the reflection point is numeri-
cally on the left side of the volume. A reflection angle perpendicular to
the facet normal (red arrow) will then lead to a leak, no further reflection
point can be found. Though, another angle (green arrow) will lead the
particle back into the volume – the reflector facet is "invisible" to the
ray tracer.

Primitive type: For maximum leverage of the RTX hardware, we have to use the
built-in intersect routine after identifying if it is feasible. For a complete study,
we also implement Molflow’s standard approach, where a ray-polygon intersection
algorithm is utilized, and compare it to the RTX-capable ray-triangle intersection
test (see chapter 8.3.2.3).

Ray tracing query: As emphasized in the OptiX Programming Guide (see NVIDIA,
2020) utilizing an Any Hit program negatively impacts the performance. In this
study, with the goal to maximize the performance benefits of the RTX technology
and with the assumption that it is a feasible strategy, we utilize only a Closest Hit
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and a Miss program. Utilizing the performant Closest Hit kernel while prevent-
ing self-intersections and efficiently computing transparent facets posed significant
design challenges.

Gribble, Naveros, and Kerzner (2014) explains certain problems that a ray tracer
can encounter when continuing from an identified closest hit position, such as when
surfaces are deployed that are essentially in contact with each other, depending on
the utilized traversal algorithm. Molflow’s ray tracing algorithm naturally deploys
a hybrid between closest-hit and any-hit traversal. This approach is crucial when
using transparent facets for gathering internal statistics, as the algorithm must track
facet crossings. Normally, a closest-hit kernel suffices to find reflection points, but
complexities arise in practice. For example, when a particle crosses a transparent
facet, it doesn’t reflect but still provides data. The CPU-based method lists all
intersected facets along a ray, using only those up to the reflection point. However,
dedicated ray tracing cores mainly support closest-hit kernels for efficiency. Adapt-
ing these kernels for transparent hits, by continuing with the same trajectory from
a new hit point, can cause issues like self-intersections, which are further discussed
in chapter 8.4.

The integration of OptiX 7 into Molflow represents a significant step towards
harnessing the power of modern GPU architectures for high-performance, hardware-
accelerated ray tracing. This chapter has outlined the critical steps and challenges
encountered in this integration, as evidenced by the RTX pipeline visualized in figure
8.3, setting the stage for further advancements and optimizations in Molflow’s GPU-
based simulation capabilities.

8.3 GPU Kernel development

Fundamentally, Molflow’s simulation algorithm is based on ray-tracing, which was
always thought to benefit a lot from SIMD processing via GPUs, due to its inde-
pendent work load. Surprisingly, a previous study about the GPU compatibility for
Molflow concluded, that the benefits of using a GPU kernel for the simulations are
marginal. Benchmarks only resulted in a 3.3× speedup on the GPU compared to
a single-core CPU. This was attributed mainly to the computationally demanding
and complex nature of the algorithm. In particular, the large amount of if/else
statements lead to thread divergence on the GPU (see Roberto Kersevan and Pons,
2009). Mainly driven by its purpose for 3D computer graphics, such as movie ren-
dering or computer games, there have been constant advancements in developing
more efficient algorithms or dedicated computing units, for example Deng et al.
(2017). Recent advancements in GPU hardware did not only result in an increase
of raw processing power, but also in specially designed ray-tracing units e.g. with
NVIDIA’s RTX GPUs. With the Turing architecture (see NVIDIA, 2018) – and also
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its recent successor Ampere – NVIDIA introduced so called RT cores. This hardware
unit implements the ray-tracing algorithm directly on the hardware, opposed to the
multi-purpose CUDA cores. Comparing an RTX 2080 against its predecessor GTX
1080 TI, based on the Pascal architecture, the new hardware has been claimed to
be ∼ 10 times faster in terms of processed rays per second for an official ray tracing
benchmark.

In this chapter, we revisit the suitability of Molflow’s algorithm for GPU pro-
cessing by investigating the possible performance increase with both a software-
and hardware-accelerated GPU ray tracing engine based on NVIDIA’s ray-tracing
API OptiX 7 (see S. G. Parker et al., 2010). Our approach leverages the capabil-
ities of dedicated ray tracing units as much as possible and tries to work around
the hardware-bound constraints. Considering a common vacuum component with
well-known properties, we investigate the potential performance gains, as well as
the question of whether the reduced precision for the ray tracing algorithm has a
negative impact on the precision of the results that would make it an unfeasible
choice for simulations with Molflow. For comprehensive details on the Monte Carlo
method and ray tracing in Molflow, refer to 2.2.3 and 2.3.1.

The remainder of the GPU related research is organized as follows. First, we
consider the contributions of other studies that researched the usability of RTX
hardware, with a focus on comparable physical MC simulation applications (see
section 8.3.1). In section 8.3.2, we discuss the design choices for Molflow’s GPU
simulation engine. At last, in section 8.3.3 we conduct a performance and precision
study to evaluate how the GPU code compares to Molflow’s CPU implementation
for different parameters and geometries, where we use a set of cylindrical vacuum
tubes with varying length-radius ratios.

8.3.1 Previous work

Studies have already been undertaken on the use of RTX hardware for applications
beyond typical rendering or even ray-tracing tasks. For example, Wald, Usher,
et al. (2019) applied a point-in-polyhedron picking algorithm to the common ray
tracing problem. They achieved speedups of up to ∼ 6.5× with an optimized RTX
kernel compared to a full CUDA implementation on a TITAN RTX, while on the
predecessor TITAN V without RT cores the CUDA implementation even prevailed.

Molflow is a Monte Carlo simulation software used for vacuum simulations. For
similar applications, which are used to study different physical phenomena and are
also based on a ray tracing-based engine, some initial studies for the usability of
RTX hardware have already been conducted. With an RTX compatible extension for
OpenMC (see Romano et al., 2015), speedups of about ∼ 33× could be observed for
triangle meshes compared to comparable CPUs (see Salmon and McIntosh-Smith,
2019). OpenMC is a Monte Carlo particle transport simulation code commonly



8.3 GPU Kernel development 153

used for modeling of nuclear reactors, which is capable of simulating various nuclear
reactions for neutrons and photons. For the open-source software Opticks, an OptiX
powered GPU engine is used for the simulation of optical photons as an interface
for Geant4. Referencing RTX hardware, the author observes speedups of ∼ 1660×
compared to single threaded CPU simulations and a speedup of ∼ 5× for simulations
with the RTX feature disabled (see Blyth, 2020). Discrepancies in the results were
mainly attributed to be geometry related, where remaining discrepancies were briefly
attributed to arithmetic precision. Opticks uses CSG to represent geometries instead
of polygon- or triangle-meshes, which are not further accelerated by RTX hardware.

Given that potential performance benefits using RTX acceleration have been stud-
ied in comparable Monte Carlo simulators, we give a further outlook for RTX usage
in addition to a performance study by including a comparison of the accuracy of
our algorithms and discussing the real-life suitability for such simulations with a
well-studied vacuum component. Further we elaborate a few design choices, such
as the handling of random number generation or the usage of thread local counters,
which are necessary for a fast and more robust kernel and which can be applied to
similar physical applications.

8.3.2 Molflow’s GPU implementation

In this section we present our design for the ray-tracing programs using the OptiX
API as well as choices related to the memory and random number generation. We
give a brief explanation of the parts that are straightforward ports from the CPU
algorithm, which is discussed in greater detail by Marton Ady (2016).

The OptiX API handles the traversal and intersection routines directly with built-
in algorithms and utilizes the hardware-acceleration features of NVIDIA RTX GPUs,
thus only the ray generation and trace processing procedures are the main concern
when trying to achieve a high performance ray tracing algorithm. For a complete
study we compare the performance of the built-in ray-triangle-intersection with a
port of Molflow’s ray-polygon intersection routine. One major restriction with the
API is, that the built-in algorithms work only on 32 bit representations of the geome-
try and the rays. This drawback will be discussed together with the performance and
precision study of the kernel (see section 8.3.3). Despite the drawbacks, we decided
to focus further on the usage of the hardware-accelerated ray-triangle algorithm,
due to its proven speedup compared to software-based solutions.

8.3.2.1 Barycentric coordinates

In ray tracing, when a ray intersects a triangle, the intersection point can be ex-
pressed in barycentric coordinates. These coordinates are derived as part of the
intersection test, which calculates the intersection point and its relative position



154 8 GPGPU Kernel

within the triangle. This is crucial property for accurately determining hit locations
and texture coordinates at the intersection point, as these can be interpolated based
on the barycentric coordinates to obtain Cartesian coordinates.

Barycentric coordinates originate from the concept of a centroid in geometry.
They can be defined for different types of polygons, where we focus only on their
use for triangles. They are a set of three numbers that represent the relative weights
of the vertices of a triangle towards a specific point within that triangle. In essence,
they indicate how much each vertex contributes to the position of a given point.
Given a triangle’s vertices A,B,C, then a point p inside this triangle can be ex-
pressed by:

p = α ·A+ β ·B+ γ ·C . (8.1)

Here, (α, β, γ) are the barycentric coordinates of p, following the condition:

α + β + γ = 1 , (8.2)

and α, β, γ ≥ 0. Figure 8.5 sketches equation (8.1) to visualise the transforma-
tion from barycentric coordinates to Cartesian coordinates for point p, here in 2d
coordinates p = (u, v).

Figure 8.5: Visualisation of how barycentric coordinates α, β, γ are used to interpo-
late a point (u, v) for a set of vertices A,B,C.

Each barycentric coordinate represents the proportion of the area of the triangle
opposite to the respective vertex, divided by the total area of the triangle. For
example, α is the ratio of the area of the triangle formed by p, B,C to the area
of the entire triangle A, B,C. Barycentric coordinates allow transformations in
both 2D and 3D coordinate systems, for A,B,C,p ⊆ R2 and A,B,C,p ⊆ R3,
respectively.
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8.3.2.2 Primitive Types

Acceleration Data Structures (ADS) can be built using various primitive types.
These primitive types are tested for intersection when a leaf is reached during the
traversal algorithm. Most ray-tracing applications primarily use triangles as their
primitive type. Triangles are versatile, as they can represent arbitrary polygons, and
their intersection tests are highly suitable for SIMD architectures. Additionally, ray-
triangle intersection tests have been a primary focus for research in the ray-tracing
domain, making them highly optimized (Wald, 2021).

Molflow supports the importation of STL files, which primarily use triangles to
describe CAD geometries. However, Molflow has historically been designed for poly-
gons. Arbitrary polygons are well-suited for depicting planar walls, and their inter-
nal handling allows for straightforward optimisations, such as reducing memory load
for counting structures. There are other noteworthy primitive types that are not
applicable to Molflow’s use cases. Notably, RTX GPUs support hardware-based
intersection tests for curve and sphere primitives.

8.3.2.3 Polygons vs. Triangles

In Molflow’s native implementation, there exists only a general N-polygon ray-
tracing kernel. For SIMD architectures, this is not ideal, because intersection tests
will always have to compare the incoming ray dynamically with N-points. This is
why GPU ray tracers usually convert polygon primitives into triangles. For the
initial implementation of Molflow’s GPU kernel, we ported the polygon ray-tracing
kernels to CUDA to work in place of the native triangle kernels from the OptiX
API. Initially, the polygon-based kernels were used to validate the code with the
original CPU version. In OptiX (see chapter 8.2.2) the BVH traversal and triangle
intersection routines are implemented as part of the proprietary API and can make
use of hardware-acceleration. For Molflow, using different primitives does not sim-
ply work by calling a different intersection routine. Also, their hit results have to
be interpreted differently. Triangle intersection results are returned as barycentric
coordinates (see chapter 8.3.2.1) by the API. As polygon’s stay as the base for the
GUI and more efficient handling of textures, these results have to be mapped back
on to a parent polygon.

For barycentrics returned for triangle-intersection tests, this can simply be achieved
on the kernel side by interpolation according to equation (8.1). We achieve this per-
formantly by precomputing the 2d texture coordinates, that are the vertices of a
textured triangle expressed in local coordinate space. This is analogous to tex-
ture mapping techniques used in rendering applications. For Polygons, on the
other side, no further modifications are necessary. Here, the intersection test re-
turns hit coordinates directly in local 2d coordinates.



156 8 GPGPU Kernel

Table 8.1: Benchmark on NVIDIA GTX 970 for the software-accelerated triangle
intersection algorithm from OptiX 7.0 and the ported kernel using poly-
gons. Total execution time is shown in seconds for various geometries.
Geometry #1 and #3 is the cylindrical tube (L/R=100, with 1000 side
facets). Geometry #2 and #4 is the ELENA e-gun geometry (see figure
4.1). In addition, tests #3 and #4 deploy several textured facets to put
additional stress on the trace-processing routines.

Primitive/Geometry #1 #2 #3 #4
Triangle 497.04 964.57 477.87 948.87
Polygon 618.78 1317.03 702.58 1370.69

We compared the feasibility of utilizing triangles instead of polygons in an initial
test, using an NVIDIA GTX 970 GPU and OptiX 7.0 4. This GPU has no dedicated
ray tracing units, so the OptiX API falls back to a software-accelerated implemen-
tation for triangle intersections. Comparing these triangle intersection tests against
a custom implementation for polygons, based on Molflow’s original algorithm (see
chapter 2.3.3), the triangle implementation proved to be faster in all scenarios. We
compared the performance running a simple tube geometry (L/R=100, with 1000
side facets) and the ELENA e-gun geometry (see figure 4.1) without and with ad-
ditional textures. Here, the triangle implementation was faster by a factor of 1.2×
– 1.4× as shown in table 8.1.

Potentially, a hand-coded intersection routine gives the advantage of running
application-specific instructions during the traversal steps at the expense of not
utilising hardware acceleration. During the initial design phase, we researched the
benefit of deploying intersection tests with double precision for polygons. Due to
the BVH traversal, which is still done with the OptiX API’s in-built algorithm using
single-precision, some issues could still not be completely solved. For the rest of the
study, we aimed to develop a more robust solution for triangles, as they are signifi-
cantly faster using hardware-acceleration, which is shown in great detail in chapter
8.3.3. Another benchmark comparing both implementations on the NVIDIA RTX
2060 GPU and the NVIDIA RTX 3090 GPU, provided in table 8.2, shows the native
triangle implementation to be faster by a factor of 1.7× – 3.1×.

8.3.2.4 Triangulation methods

Already part of Molflow to add compatibility with the STL (Standard Triangle Lan-
guage) file format used in most CAD software packages, a triangulation algorithm is

4At the beginning of the study, our lab machines did not have a RTX GPU. Hence, in the first
steps, we investigated the feasibility of a GPU kernel solely using the OptiX API.
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implemented to convert arbitrary polygons into triangles. Molflow uses fan triangu-
lation (see De Loera, Rambau, and Santos, 2010), which does not care about any of
the properties of the resulting triangle mesh. As polygon areas can have a large im-
pact on performance and triangles with acute angles can further result in bounding
boxes for an ADS that lead to worse performance than when a triangulation method
would be used that considers such properties. Various triangulation methods can
be employed to convert polygons into triangles. The choice of triangulation method
depends on factors such as the desired balance between computational complexity
and the quality of triangles. For Molflow, the method has to respect certain proper-
ties. The method has to handle both convex and concave polygons with or without
holes.

A triangulation method that is commonly preferred in many domains, where tri-
angle meshes are used for simulations, is the Delaunay triangulation. The triangu-
lation method is credited with creating high-quality meshes for several use cases. It
leads to uniformly sized triangles, and thus avoids triangles with comparably long
or short sides. Compared to fan triangulation, Delaunay triangulation is computa-
tionally more demanding. As geometries that are commonly used in Molflow tend
to have relatively low amounts of polygons and triangulation is usually applied as a
single pre-processing step, it is not expected to lead to a major loss of performance.

We implement Delaunay triangulation (Delaunay et al., 1934) in Molflow with the
assumption, that it will lead to better performance by effecting the created acceler-
ation data structures. The implementation uses CGAL (Computational Geometry
Algorithms Library)5 by utilising its data structures and algorithms as an interface
for this process. The iterative Delaunay triangulation algorithm creates a mesh by
applying the Delaunay property. For every triangle in the triangulation, the circum-
circle (the circle passing through its three vertices) contains no other input points
in its interior. Given a set of initial points (the vertices), a so-called super triangle
is created that contains all points. Then, for each point, the algorithm identifies
the triangle containing that point. This triangle is subsequently removed from the
triangulation, and the point is connected to the vertices of the removed triangle.
For each triangle, the Delaunay property is checked. If it is violated, the edges are
swapped with those of adjacent triangles to create new triangles. The process is then
repeated until each point has been processed. An example for the first two steps is
sketched in figure 8.6. Here, in a first step an arbitrarily large super triangle is cre-
ated that contains all vertices. Next, one of the points connected with the vertices
of the containing triangle: the super triangle. This happens first by removing the
triangle as a whole and creating three triangles by connecting the super triangle’s
vertices with the point.

In a small experimental study, we compare the performance for the electron gun

5Accessed on 20/08/2023: https://www.cgal.org/

https://www.cgal.org/
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Figure 8.6: Example for a delaunay triangulation. In the first step, all pictures are
surrounded by a super triangle. In the next step, the vertices of the
super triangle are connected with the first point. In practice, the super
triangle ABC is the triangle containing point 1, it is then deleted to
create three new triangles A1C, 1BC, AB1.

geometry from the ELENA experiment (see figure 4.1) for both triangulation meth-
ods: fan triangulation and Delaunay triangulation. Delaunay triangulation achieved
11.6% speedup using the hardware set with the NVIDIA RTX 3060 compared to
fan triangulation. Further, the generated mesh resulted in better accuracy, as less
"skinny" triangles had been created, causing problems for the adaptive offset along
the normal as previously mentioned. For less complex vacuum tubes such as the
cylindrical tubes (see figure 4.6), the improvements were negligible. Side facets are
responsible for the biggest chunk of the work. Because they are rectangular, they
are divided equally for both algorithms. As we couldn’t find any test case, where
the performance using Delaunay triangulation has been worse, we strongly recom-
mend this as the new standard method. Achieving better improvements with other
triangulation methods might be possible, but we like to argue that Delaunay trian-
gulation is a proven method in many domains and other methods are likely to lead
to improvements only in a subset of test cases. Hence, Delaunay serves as a solid
base. We like to note, that due to the chronological order in which the experiments
were conducted, fan triangulation has been used as the standard method for all
corresponding benchmarks. Delaunay triangulation has only been implemented and
validated at the end of this study.
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8.3.2.5 Triangle types

We want to highlight that the algorithms are deeply affected by the choice of using 1-
sided or 2-sided triangles. Rendering applications tend to use face-culling techniques
to only render a certain polygon, when it is facing the view point and currently
visible. Face-culling can dramatically increase performance, as intersection tests
can be quickly discarded. Intuitively, this technique can also be applied to Molflow.
Considering a cylindrical vacuum pipe, the only sides that are of interest are those
facing inward. Now, if a particle is located on the outer part, e.g. due to numerical
error, this could cause undesired effects. If we wouldn’t apply back-face culling, a
ray would intersect with the closest facet’s outward-facing side: they ray can not
re-enter, thus, propagating the numerical error. In figure 8.7 examples are sketched
for transparent passes and reflective hits.

Figure 8.7: How either 2-sided or 1-sided triangles affect the ray tracing algorithm
with back-face culling. A 2-sided transparent simply ignores a reflection
event, but may allow to gather statistics. A bounce on 2-sided facet can
happen on both front and back sides. To replicate the same effect for 1-
sided transparent facet, we need to deploy a clone (colored in green) with
opposite orientation, otherwise statistics from an intersection through
the back-side can not be gathered. For a 1-sided solid facet, a backwards-
oriented clone also helps in recreating the correct effects.

The choice between 1-sided and 2-sided triangles can influence the efficiency and
accuracy of ray tracing algorithms. One-sided triangles may result in faster inter-
section tests, as they have only one surface to check for intersection. However, they
may lead to artifacts or incorrect results when rays pass through the back face of
a triangle. However, 2-sided triangles allow for accurate intersection tests, as both
the front and back faces are considered, but they may increase the computational
complexity of the intersection tests.

It is crucial to consider the specific geometry requirements when choosing between
1-sided and 2-sided triangles. In Molflow, facets are always flagged as being 1-sided
or 2-sided. Though with NVIDIA OptiX, we have to define for the whole geometry,
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whether face-culling (1-sided) should be applied or not. In OptiX, back-face culling
is implemented as a ray property OPTIX_RAY_FLAG_CULL_BACK_FACING_TRIANGLES.
The ClosestHit kernel does not differentiate further between the types. An initial
prototype showed that treating each facet as 2-sided and to handle the appropriate
effects (facet ignore) is more complex than treating each facet as 1-sided, we focus
on the latter case. Here, 1-sided facets don’t demand any particular treatment. To
model a 2-sided facet, a clone of a facet can be created that has a flipped facet
normal. We tested this method by putting a plane in the middle of a cylindrical
tube, that is splitting the geometry in two. This approach didn’t show any negative
impact on the accuracy of the results compared to a CPU simulation and is thus
used as the standard for the GPU kernel.

8.3.2.6 Facet types

In our initial GPU implementation, we only differ between two types of facets: solid
and transparent. Transparent facets were briefly introduced in chapter 2.3.1. The
opacity of a transparent is given by the opacity value τ ∈ [0, 1]. A solid facet has a
value of τ = 0, while τ = 1 denotes a perfectly transparent facet. Semi transparent
facets with τ ∈ (0, 1) are special cases, where we have to use a randomly generated
number r ∈ [0, 1] to determine, whether it is treated as a solid or a transparent
facet.

In OptiX, we design this partially with the Shader Binding Table (SBT),
as introduced in chapter 8.2.2. We implement two kernels closest_hit and
closest_hit_trans. With the SBT, we can create something similar to a function
pointer. We map the closest_hit_trans kernel to all transparent facets (τ = 1)
and closest_hit to the others. When an intersection occurs, the SBT will call
the appropriate kernel for the corresponding facet type. Semi-transparent facets are
a special case, which we currently consider in closest_hit. This is because we
have to decide during runtime whether the facet is using post-processing routines
corresponding to a solid or a transparent facet. We considered developing a third
type closest_hit_semi_trans to handle these cases, but did not investigate any
further because most of our test cases either used solid or fully transparent facets.

8.3.2.7 Ray generation

Molflow’s original Monte Carlo model (see chapter 2.2.3) has been designed with
CPU architecture in mind. To leverage the strengths of the GPU and the RT cores,
some modifications to the original model have to be made. Here, we revise the
process in finding the starting parameters from chapter 2.2.3 by applying certain
modifications related to deploying a triangle mesh.
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When handling a new particle, the Ray generation program will initially gener-
ate the starting parameters according to Molflow’s physical model. The minimal set
of attributes for a ray tracing engine consists of the source location (ray origin)
and the particle trajectory (ray direction), where Molflow also accounts for the
particle velocity. Here, the velocity is only used for the post processing step. With
the starting parameters the actual ray-tracing can be initiated.

Compared to Molflow’s original implementation, the ray generation program for
the GPU also handles different particle states. This is due to the nature of OptiX’ ray
tracing pipeline (see figure 8.3). In our implementation we handle the particle states:
new_particle, active_particle, transparent_hit and self_intersection.
new_particle handles the default case, where a new particle is instantiated with
starting parameters according to the model. active_particle are particles that
reside inside the system e.g. after a collision. In case of a previous collision, the
particle remains inside the system and gets reflected. Here the set of attributes can
simply be fetched from memory to initiate the particle for the ray-tracing routine.
For OptiX, in such scenarios, the ray generation step can be potentially skipped via
recursion (see figure 8.3). After a reflection has been processed, a recursive launch
will directly launch the ray traversal. This is further elaborated in chapter 8.3.2.9.
transparent_hit and self_intersection are special cases, that behave sim-
ilarly as active_particle in the ray generation step. Here, the previous state is
simply initialized. The exact behaviour of these states will be elaborated later.

Ray origin: On a mesh, the source location has to be found in two steps (compare
section 2.2.3 for more details). First, given the local influx rate of particles dNf/dt
for each facet, we can determine the probability that a particular facet fi will be
chosen as the starting location. If ṅΣ =

∑Nf

i=1 ṅi is the total flux rate of the whole
system, we get the probability that a facet fi should be chosen for outgassing with
pQi

= ṅi/ṅΣ, where ṅi is the influx rate for facet fi and ṅΣ is the total influx
rate for all facets. Given these probabilities, we create a CDF. Using this CDF of
the artificial influx probabilities, we pick a random outgassing facet with a random
number x ∈ [0, 1].

Selecting the exact outgassing location from a chosen facet, differs slightly for
polygons and triangles. For a polygon this can be done by generating a random
point inside the bounding rectangle and by accepting or refusing the candidate
point with a point-in-polygon test. In certain cases, this could lead to multiple
point generations until a ray origin could be determined. For a triangle, we select
a random position with a different principle. A random point inside a triangle is
then selected according to a formula described by Osada et al. (2002). Given a
triangle with vertices A,B,C ∈ R3 and two uniformly distributed random numbers
r1, r2 ∈ [0, 1], a point p can be sampled from a uniform distribution with the following
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equation:
p = (1−

√
r1) ·A+

√
r1 · (1− r2) ·B+

√
r1 · r2 ·C . (8.3)

√
r1 gives the percentage from vertex A to the opposing edge connecting vertices

B,C and r2 denotes the percentage along that edge. The relation between the
random numbers and the vertices is sketched in figure 8.8.

Figure 8.8: A point p can be sampled with two random numbers from a uniform
distribution (cf. Osada et al., 2002). Here,

√
r1 represents the distance

in percent from vertex A to the opposing edge. r2 represents the distance
in percent from the edge (A,B) and the edge (A,C).

Ray direction: The calculation of the particle direction follows the same equations
based on Knudsen’s cosine law as elaborated in chapter 2.2.3. For completeness, we
describe the only steps used to compute a random direction based on two random
numbers. One can derive the azimuth and polar angles (ϕ respectively θ) with
equations (2.13) and (2.14):

ϕ = x2π ,x ∈ [0, 1] ,

θ = sin−1
√

y ,y ∈ [0, 1] ,

where x and y are uniformly distributed random numbers. For use in a 3-dimensional
Cartesian system, one has to transform the derived spherical coordinates further into
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Cartesian coordinates (1, θ, ϕ)→ (x, y, z). First we derive the local Cartesian coor-
dinates (u, v, n):

u = sin(θ) · cos(ϕ) , (8.4)
v = sin(θ) · sin(ϕ) , (8.5)
n = cos(θ) , (8.6)

and translate them with the corresponding facet’s orthonormal basis {U,V,N},
where N is the facet normal, into global Cartesian coordinates (x, y, z) for the par-
ticle direction:

x = u · Ux + v · Vx + n ·Nx , (8.7)
y = u · Uy + v · Vy + n ·Ny , (8.8)
z = u · Uz + v · Vz + n ·Nz . (8.9)

Particle Velocity: The calculation for the particle velocity works identically for
the GPU kernel as for the original CPU-based code described in chapter 2.2.3. For
simplicity, we use the average velocity for the Maxwell-Boltzmann distribution given
by equation (2.21) for an initial study for both CPU and GPU simulations to validate
the results.

Further, we implemented the generation of a random velocity from a CDF given
by equation (2.24). For the GPU, on device memory we create two arrays cdf_1 and
cdf_2. Here, cdf_1 contains all values vi and cdf_2 contains all values pi. Further,
we concatenate the values for all CDFs each corresponding to a specific temperature
value. So for K CDFs, cdf_1 and cdf_2 have N ·K values. To find the CDF values
for the i-th bin and the k-th CDF, we simply restrict the search to the interval of
indices [k ·N,N +k ·N). Given the CDF k and a random value r, we use algorithm
8 to calculate a random velocity.

Ray launch: The RTX unit works with single-precision floating point values, which
can have various negative effects on the ray-tracing results, most simply leading to
occasional misclassifications: Given that the RTX intersection algorithm is guaran-
teed to be watertight in the sense that a ray can never go between two adjacent
triangles which share the same edge, it will choose either one or the other for the
hit location. If the ray passes very close to this edge, then the intersection may be
attributed to the wrong triangle. For rendering problems, this is rarely noticeable
when the color of a single pixel is slightly darker or brighter than expected. In
Molflow this can lead to more severe problems, as the magnification of these errors
can easily influence the whole system, leading to wrong results. We elaborate more
on these problems and a potential solution in chapter 8.4.
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Algorithm 8 Calculate random velocity from CDF
1: procedure randomVelo(k, N , cdf_1, cdf_2, r)
2: v ← cdf_1 ▷ Velocity values
3: p← cdf_2 ▷ Probability values
4: l← k ·N
5: h← l +N
6: while l < h do ▷ Binary search
7: mid← ⌊0.5 · (l + h)⌋
8: if r ≤ pmid then
9: h← mid

10: else
11: l← mid+ 1
12: end if
13: end while
14: j ← l − 1
15: j ← max(0,min(j,N − 2)) ▷ Clamp j within valid range
16: ∆p← pj+1 − pj
17: ϵ← r− pj

18: return vj + (vj+1 − vj)
ϵ

∆p
19: end procedure
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Further problems arise when we compute the exact hit location and take this value
as the next ray origin to relaunch a ray from the corresponding surface: a secondary
ray. The new location could be classified on either side of the polygon due to arith-
metic error, as discussed in great detail by Wächter and Binder (2019). Potential
workarounds differ with the use of back-face culling. A polygon’s front is identified
by one of its surface normals, that is the perpendicular vector corresponding to the
surface. Without culling, both faces of a polygon serve for possible intersection
points. With back-face culling, an intersection is only valid if the surface normal is
facing the ray direction.

When we deploy back-face culling, there are few possibilities of what could happen
in case the ray origin is found to be outside. Ideally, it will simply get redirected
into the body of the mesh. Worst case, the hit location is on the edge between
two non-coplanar triangles and the ray direction is quasi-parallel to the neighboring
triangle plane. In this case the ray will not find a collision point with the neighboring
triangle: a miss.

In addition to back-face culling, we can reduce the amount of misses of arith-
metical origin by deploying an adaptive offset along the facet normal. We chose the
strategy presented by Wächter and Binder (2019) as it leads to minimal computa-
tional overhead and minimal impact on the accuracy compared to other options.
The authors empirically analysed the error of floating point calculations in ray-
triangle intersections. Their analysis concluded that both the distance between the
intersection point and the space origin (0, 0, 0) as well as the size of the surface have
an impact on the numerical point error. Given their results, they give a robust
offset based on the maximum distance between the actual intersection point and the
maximal numerical error. An offset along the orthogonal normal is chosen as it will
feature the smallest possible offset, having a limited effect on the results. Given a
point in 3d coordinates p and the facet normal N in 3d space, an offset po,ω can be
calculated with:

δ = ι ·Nω , (8.10)

pi,ω = pω +INT

{
+δ if pω ≥ 0

−δ if pω < 0
, (8.11)

po,ω =

{
pi,ω if pω ≥ ϵ

pω + ζ ·N if pω < ϵ
. (8.12)

Here, index ω ∈ x, y, z represents the component for the corresponding coordinate
axis. The authors give empirically found values for ι = 256.0, ζ = 1/65536, and
ϵ = 1/32. In equation (8.11) they make use of integer arithmetics (noted with +INT

as integer arithmetic on real numbers) so that the offset becomes scale-invariant
"preventing self-intersections at distances of different magnitudes". ϵ is used as
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threshold to determine if the point p is very close to the origin (0, 0, 0) in any of its
components x, y, or z. ι is used to create a small offset 2−16 for the point p when
it is very close to the origin. ζ is a scaling factor used to convert the normal vector
components to a larger scale, making them suitable for conversion to integer values.
Algorithm 1 shows the implementation proposed by the authors.

Listing 1 Ray offset calculation as proposed by Wächter and Binder (2019).

constexpr __device__ float origin () { return 1.0f / 32.0f; }
constexpr __device__ float float_scale () { return 1.0f / 65536.0f; }
constexpr __device__ float int_scale () { return 256.0f; }

// Normal points outward for rays exiting the surface , else is flipped.
static __forceinline__ __device__ float3 offset_ray(const float3 p, const

float3 n){
int3 of_i(make_int3(int_scale () * n.x, int_scale () * n.y, int_scale () * n.

z));
float3 p_i(make_float3(

int_as_float(float_as_int(p.x)+((p.x < 0) ? -of_i.x : of_i.x)),
int_as_float(float_as_int(p.y)+((p.y < 0) ? -of_i.y : of_i.y)),
int_as_float(float_as_int(p.z)+((p.z < 0) ? -of_i.z : of_i.z))));

return float3(make_float3(
fabsf(p.x) < origin () ? p.x+float_scale ()*n.x : p_i.x,
fabsf(p.y) < origin () ? p.y+float_scale ()*n.y : p_i.y,
fabsf(p.z) < origin () ? p.z+float_scale ()*n.z : p_i.z));

}

In an experiment with the introduced cylindrical tube approximated with 1000
vertices per end cap we found that back-face culling itself resulted in a miss-hit
ratio of 1.35 · 10−7 and the adaptive offset in a ratio of 1.44 · 10−6. Deploying both
solutions reduced the rate to only 5.32 · 10−11 for this geometry. With neither back-
face culling nor an offset almost half of the particles leak. This is because already
during initialization they could numerically spawn on the outside, leading to the
problem depicted in figure 8.4. This improvement was visible in experiments for
variations of the cylindrical tube. Therefore, this was used as the default strategy
for further simulations. We found later, that the remaining leaks are mainly related
to a problem, that is caused by the applied offset itself. This problem is further
investigated in chapter 8.4.

Possible consequences for the given geometry in case of a miss can be neglected.
Theoretically, if there is a surrounding shell, the ray would hit that surface instead,
leading to a series of unexpected hits. Depending on the complexity of a geometry,
this can lead to uninterpretable results.

The ray generation procedure is sketched in algorithm 9. A particle is either
initialized with the described model (new_particle) or with its state from a previous
launch6. After the offset has been applied, the particle is launched with a call to the

6Here, the other states are equal for the for ray generation and only differ in their post processing
step. They are listed individually for clarification.
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Algorithm 9 Ray generation algorithm
1: function rayGeneration(Particle p)
2: (p.terminate == true) → return
3: switch p.state do
4: case new_particle
5: init_state()
6: case active_particle
7: load_state()
8: case transparent_hit
9: load_state()

10: case self_intersection
11: load_state()
12: apply_offset(p.position, p.previous_facet.n)

▷ Launch ray with OptiX API; calls RTX pipeline to find intersection
13: optixTrace()
14: end function

OptiX API and to trace the ray and to identify a potential intersection. Initially
(see line 2) a check is conducted to see whether a thread can terminate early due to
a fulfilled end condition, which is set on the CPU.

8.3.2.8 Intersection test

RT cores accelerate bounding volume hierarchy (BVH) traversal as well as ray-
triangle intersection via hardware. For our study we investigate both triangle and
polygon meshes (see chapter 8.3.2.3). In the case of triangle meshes, the initial
polygon mesh in Molflow has to be triangulated and transfered to the device via the
OptiX API. For triangles we use the built-in intersection routine. Here, both BVH
traversal and intersection tests are hardware-accelerated.

On the other hand, polygon meshes need further consideration. To utilise hardware-
accelerated BVH traversal for polygons, a set of axis-aligned bounding boxes have
to be provided for each facet. Further, a custom implementation of the two-step
ray-polygon test routine has to be provided. We ported the original routine used
in Molflow (see chapter 2.3.5). First, a ray-rectangle intersection is used, where we
solve a system of linear equations using Cramer’s rule (see Shirley and Marschner,
2009). This is followed by a point-in-polygon test in 2D space, where the ray-casting
algorithm provided by W. R. Franklin (2018) provided the best single-precision re-
sults on the GPU in both performance and reliability in terms of the false negative
rate in our experiments.
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8.3.2.9 Trace-processing

Following the calculation of a potential hit location, the events are accumulated in
hit counters for statistical purposes. The gathered statistics correspond not only to
the plain amount of collisions or MC Hits Nhit, but also to the sum of orthogonal
momentum changes of particles ΣI⊥ and the sum of reciprocals of the orthogonal
speed components of particles Σv−1

⊥ . From these three counters the most important
values for vacuum components can be derived, e.g. the pressure or density as
explained in chapter 2.2.3.

The counters are increased according to the corresponding collision event related
to the facet type. Besides the per-facet hit counters, the users can also enable more
fine-grained counters in the form of textures (N×M) or profiles (1×N), which divide
a facet in two directions or one direction respectively. Here N,M ∈ N+ describe
the spatial resolution. If used, an extra step to calculate the index of the texture
element or profile bin has to be deployed. Texture and profile coordinates are given
in local coordinates (u, v) ∈ [0, 1]2 in 2D space, which simplifies the indexing of the
underlying data structure. The coordinates are already provided by the polygon
intersection test as they are part of the calculation. For a texture mapped onto a
triangle we provide local texture coordinates for each vertex A,B,C ∈ [0, 1]2 and
use the barycentric coordinates returned by the intersection test to interpolate the
exact local hit location using barycentric interpolation (8.1).

In our simplified model, we differentiate between two types of collision events
based on a target facet’s properties. If a particle gets absorbed, new particles will
be generated in the next ray generation step. In case of a collision with a solid
surface, the particle is reflected. The hit location can be reutilised as source location,
thus only a new ray direction needs to be generated according to the cosine law
(2.11). Instead of postponing this to the next ray-generation step, a new ray can
be recursively launched from the shading routine. In rendering applications this is
commonly done for so-called secondary rays, simulating light reflections on surfaces.
These secondary rays are launched recursively up to a pre-specified recursion depth.
Skipping the ray-generation step is cheaper, but comes with some restrictions. In
algorithm 10 we show a sketch of the trace processing algorithm. The corresponding
record_ routines account for both global and local statistics.

As the particles in Molflow tend to stay inside a given geometry for several hun-
dreds or thousands of collisions on average, the full recursion would easily reach the
maximum stack size of a thread. Given that some particles could terminate, while
others could be recursively retraced, some idle time is expected. A well chosen value
for a maximum recursion depth will likely have a positive impact on overall perfor-
mance either way, leading to a hybrid approach, where residual particles, that are
those that have not been absorbed after a ray-tracing step, are reinitialized inside
the ray generation program after the maximum recursion depth has been reached.
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Algorithm 10 Trace processing algorithm
1: function traceProcessing(Particle p)
2: if hit same polygon again? then
3: state← active ▷ Try again with new offset
4: return
5: end if
6: move_particle() ▷ oray + rdirt
7: if particle sticks? then
8: record_absorption() ▷ record statistics
9: state← new_particle

10: return
11: else if particle reflects? then
12: ▷ record statistics and update particle direction
13: record_reflection()
14: if do recursion? then
15: apply_offset(p.position)
16: optixTrace()
17: ▷ Recursive launch ray with OptiX API
18: else
19: recursion_depth← 0
20: end if
21: end if
22: end function

We benchmark this technique in the next section.

8.3.2.10 Random numbers and recursion

A crucial part of a good Monte Carlo simulator is the underlying PRNG algorithm
(see chapter 2.2.5) in both credibility and performance. For the best results, we
utilize the cuRAND library (see NVIDIA, 2019) from the CUDA toolkit and its
default PRNG Xorwow (see G. Marsaglia, 2003). To deploy the random numbers
there are two fundamental approaches. Most straightforward, each GPU thread
has its own random state curandState_t of 48 bytes for the Xorwow PRNG to
generate random numbers on an ad hoc basis. A different approach is to batch
generate multiple random numbers in advance every few cycles in a separate CUDA
kernel.

The first approach is memory friendly, as we only have to save a random state in-
stead of Nmax×TC random numbers per thread, where Nmax is the maximal amount
of random numbers needed for one ray tracing cycle and TC ∈ [1,∞] describes the
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number of cycles to generate numbers for in advance. All random numbers are
generated in a static fashion for all threads in a separate CUDA kernel on device
memory. An additional counter keeps track of the index for the next random num-
ber. Depending on how an interaction with the boundary affects the particle, not
all numbers have to be accessed. With batch-wise generation an additional mem-
ory amount of (Nmax −Nmin) random numbers per thread has to be accounted for,
which can remain unused. Here, Nmin is the minimal amount of random numbers.
For example, in case a particle remains inside the system the particle origin does
not have to be recalculated with two random numbers. When using recursion, more
random numbers have to be generated in advance. For a full cycle Molflow’s algo-
rithm utilizes up to 8 random numbers: 3 to find the particle origin, 2 to find the ray
direction and 1 to account for variable sticking coefficients. If we use recursion, the
ray direction needs to be calculated in the trace processing step adding another 2 to
find the ray direction. Skipping ray generation only 2 random numbers are needed
to compute a new ray direction, leading to Nmax = 8 + recursion_depth × 2
random numbers per cycle and ultimately to TC ×Nmax buffered random numbers.

In section 8.3.3.3 we analyze how the usage of both approaches for random number
generation affects the performance with varying recursion depth limits. We would
like to note, that this experiment was conducted as part of Bähr et al. (2022). The
experiment did not consider additional random numbers required for the particle
velocity (simply the average velocity has been used) and semi-transparent facets,
which are evaluated in the trace-processing step, potentially leading to Nmax =
10 + recursion_depth× 4 random numbers per cycle.

8.3.2.11 Device memory

Molflow geometries tend to be memory space efficient and are ultimately shared be-
tween all threads. We can divide the remaining memory among all particles, which
we want to launch in one go. For every thread the memory demand is usually not
fixed, and depends on the deployed design solutions. Accounting for about 64B
for the particle state (here, B=Bytes) and an additional 48B for a RNG state or
TC × 24B + 4B for using batch generation with 6 single-precision random num-
bers per cycle and an additional index for the next random number, the remaining
memory can be used for the hit buffers. To prevent race conditions or excessive
access synchronization every thread ideally has its own hit buffer, per facet that
amounts to 6 × 4B for 6 counting variables (see chapter 2.2.3). In addition, when
utilizing textures or profiles for data collection on a more fine grained scale, we
have to add 3× 4B per texture element or profile bin. Obviously, having individual
counters per thread increases performance, since we don’t have to utilize any sort
of synchronization, e.g. in the form of atomics.

For example, considering a simulation on an NVIDIA RTX 2060 as the reference
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GPU, we found deploying around 128×16384 threads (see section 8.3.3.1) to saturate
the GPU nicely. Now, given a simple pipe geometry with a total of only 102 total
facets7 as an example. We would need to allocate around 128×16384×(64+36)B =
210MB for the states of the rays and additionally around 5134MB8 if every thread
would have its own hit counters, thus easily reaching the full 6GB VRAM capacity,
without deploying any additional fine-grained counters. This is obviously not a
feasible strategy, as the memory limit would have already been reached with the
other memory requirements. Therefore, we consider to utilize one shared facet
buffer by default, which is modifiable with atomic operations. In section 8.3.3.2 we
analyze the option to use multiple buffers among a group of threads.

8.3.3 Performance and precision study

To account for all types of Molflow users, we decided to provide benchmarks for
two sets of hardware. The first set accounts for the average Molflow user, where we
consider consumer-grade hardware as found in laptops or office computers, on which
simulations in early phases are usually run. We utilize an entry-level Turing GPU
with RTX technology of the first generation. With a stronger emphasis on complex
and time-demanding simulations, the second set focuses on high-end hardware with
a second generation RTX GPU:

• Set 1: {CPU Intel i7-8557U, GPU NVIDIA RTX 2060} ,

• Set 2: {CPU AMD Epyc 7302P, GPU NVIDIA RTX 3090} .

The software was compiled with GCC 10.2 and level 3 optimizations on all ma-
chines, running an Ubuntu 20.04 based system. The GPU kernel was compiled with
OptiX 7.1 and CUDA 10.1 . As input geometry, all experiments utilize a cylindri-
cal tube, as it was previously introduced in section 4.3. Using the cylindrical tube
with varying parameters, the development of the GPU kernel can be validated and
benchmarked without being exposed to too many application specifics in a first step.
We would like to note, that the experiment was conducted as part of the work by
Bähr et al. (2022). The implementation was only able to handle simple geometries
as techniques required to simulate more complex test cases, were developed later.
They are introduced in chapter 8.4.

For simplicity, we will refer to these pipes with Glr,n, where index lr denotes
the length / radius ratio and index n denotes the number of side facets used to
approximate the circular shape. For most tests a pipe with a length/radius ratio

7Note, that for a triangle mesh we map triangles onto their corresponding parent polygons to
prevent allocating extra hit buffers per triangle.

8For 6 counting variables à 4 Byte, this is 24B per facet. Now 128× 16384 threads have 24B for
102 facets.
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of L/R = 100 and either 100 or 1000 side facets are used: G100,100 and G100,1000,
respectively. This configuration has an analytic solution, which can be used as a
benchmark. The inlet (desorption facet) defines a steady influx of particles. Fur-
thermore, both end facets serve as perfect absorbers, removing all particles from
the system. For the side facets, we define them as perfectly diffusive, reflecting all
particles. Algorithmically, we utilize both the built-in intersection routine provided
by the OptiX API and a custom polygon intersection routine. Using the former,
one can see hardware-acceleration effects on both BVH traversal and intersection
testing, whereas for the custom routine only BVH traversal can benefit from these
effects. For a fair comparison with the CPU algorithm of Molflow+, we utilize an
updated version of the code, with major improvements to the BVH structure and
intersection routine.

8.3.3.1 Amount of threads

First we run a simple experiment to find how different amounts of threads launched
simultaneously influence the performance. We use power-of-two multiples of 128
threads, which represents the amount of CUDA cores per streaming multiprocessor
for the RTX 3090, scaling up to 225 threads in total.

In figure 8.9 we can see, that the performance on the overall faster RTX 3090 is
unsteady for the simulation of the G100,100 geometry. It is an effect of the atomic
operations for the hit counters, which we investigate in the next experiment. Further
we can see that the performance increase stagnates between 128×8192 = 1, 048, 576
and 128× 16384 = 2, 097, 152 simultaneous threads for the NVIDIA RTX 3090 and
the RTX 2060 respectively, for both geometries. This seems to be the sweet spot,
when the GPU is saturated enough. We can choose these values for memory critical
simulations.

8.3.3.2 Extra buffers

As described in section 8.3.2.11, atomic operations can be used to effectively counter
race conditions. Considering that it is possible that certain facets are frequently hit,
using a single hit buffer for each facet can save memory, but negatively impact the
overall performance. We investigate the benefits of utilizing multiple buffers per
facet, where the buffers are split equally among all threads in a warp.

For the G100,100 geometry, figure 8.10 shows that increased performance can have
atomic operations as a bottleneck as the probability of simultaneous access increases.
The effect can be reduced by utilizing multiple counters instead of only a single one,
where 4 counters are sufficient in this case. On average, a triangle describing a side
facet has a hit chance of around 0.45% per step, decreasing the chance to 0.11% for
one of four counters. As the effect was hardly visible with a slower GPU (RTX 2060)
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Figure 8.9: Performance measured in Hits per second (1 MHit = 106 Hit) in rela-
tion to simultaneously launched threads, where the x-axis is log2-scaled.
Memory limits are reached for higher thread numbers on the RTX 2060,
resulting in 0 MHit/s.
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Figure 8.10: Effect of atomic operations in combination with a variable amount
of facet buffers N on the performance, given more simultaneously
launched threads, for the G100,100 geometry simulated on an NVIDIA
RTX 3090.
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or a geometry with more facets (G100,1000), because of the lower hit frequency per
facet, it is not necessary for most geometries to utilize multiple counters as memory
is likely more of a concern.

8.3.3.3 Recursion and RNG

To evaluate the effects of the different approaches for random number generation
– ad hoc and batched – and possible benefits coming from utilizing a recursive
kernel for the launch of secondary rays in the case of reflections, we compared the
results for different geometries (G100,100 and G100,1000) on both GPUs. The simulations
are run with the corresponding thread numbers, which were found in the previous
experiment: 128 × 8192 = 1, 048, 576 and 128 × 16384 = 2, 097, 152 for the RTX
3090 respectively the RTX 2060. For the geometry G100,100 we deploy 16 hit buffers
for the simulations on the RTX 3090.

In figures 8.11 and 8.12 we see that random number generation in batches does
yield better performance in all cases in conjunction with our ray tracing kernel.
Surprisingly, generating more random numbers in advance does not speed up, but
instead slightly slows down the simulations. We found that this is mostly cache
related, where generation for one cycle already leverages the positive effects and
multiple cycles slightly suffer from less hits in both L1 and L2 cache. For the RTX
3090 (figures 8.12a and 8.12a), the effect is less pronounced on a relative scale. The
ad hoc generation of random numbers was inferior in all cases compared to the single
cycle batch generation (TC = 1). On the RTX 2060 (figures 8.11a and 8.11a) the
relative difference between the ad hoc generation and the TC = 1 batch generation
is relatively close, which could be a reasonable choice when memory would be a
problem for other geometries.

For vacuum geometries, particles usually reside inside the system for a large
amount of collision events. This property makes them suitable for any level of
recursion that can be deployed within the applicable memory constraints. For ex-
ample, this is the case with the given test geometry, where on average each particle
yields around ∼ 100× events until it exits from the system. By contrast, a cylindri-
cal tube with a ratio of L/R = 1 instead of L/R = 100 does not benefit a lot from
recursion as particles yield for around ∼ 2× events on average.

8.3.3.4 Performance

We analyze the raw performance of the ray tracing engine in two experiments. First,
we run simulations on the specified geometry without any modifications to highlight
the impact of the actual ray tracing on the performance. Next, we include textures
on all facets to put a heavier load on the trace-processing kernel, which is closer to
the needs of real-life simulations. In Molflow, statistical counters such as profiles or
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(a) RTX 2060: G100,100

(b) RTX 2060: G100,1000

Figure 8.11: Performance for the Molflow GPU algorithm for a pipe with different
configurations on NVIDIA RTX 2060. Results are generated for ad hoc
and batched random number generation with varying cycles TC and
different levels of recursive depth.
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(a) RTX 3090: G100,100

(b) RTX 3090: G100,1000

Figure 8.12: Performance for the Molflow GPU algorithm for a pipe with different
configurations on NVIDIA RTX 3090. Results are generated for ad hoc
and batched random number generation with varying cycles TC and
different levels of recursive depth.
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Table 8.2: Performance measured in MRay/s (106) for the geometry with different
approximations (G100,100 and G100,1000) and with (w/ ) or without (w/o)
textures. The GPUs (RTX 2060 and RTX 3090) run on either a polygon
mesh (Poly) or a triangle mesh (Tri). The CPUs (Intel i7-8775U and
AMD Epyc 7302P) run on the original FP64 algorithm.

i7-8775U 2060+Poly 2060+Tri Epyc 7302P 3090+Poly 3090+Tri

G100,100 w/o tex 6.34 298.62 747.10 34.10 1308.18 2646.48
G100,100 w/ tex 5.74 274.10 575.10 32.27 1168.75 2003.73
G100,1000 w/o tex 4.56 172.48 538.55 10.07 602.03 1819.27
G100,1000 w/ tex 4.02 152.82 374.87 9.97 548.91 1347.90

textures are one of the standard techniques applied. For the simulations we utilize
the same parameters as before. We generate random numbers with the single cycle
batch generation method (TC = 1) and a recursive depth limit of 16, which proved
to be good parameters as previously shown in figures 8.11 and 8.12.

We can see in table 8.2 that we get good speed-ups for all test cases. The triangle-
based algorithm is in all cases the most performant. The speed-up is largest for the
consumer-grade hardware (set 1), for the G100,1000 geometry and no textures, show-
ing that geometries with a focus on ray-tracing profit more from GPU utilization.
Using textures has a bigger negative impact for the triangle-based GPU algorithm
compared to the polygon-based algorithms on both GPU and CPU. This is likely
related to the extra step in calculating the texture coordinates in 2D space. The
RT algorithm for polygons on the CPU calculates the exact location as part of the
intersection test. For the GPU algorithm the barycentric coordinates returned by
the intersection routine are translated with texture coordinates of the corresponding
vertices in an extra step (see section 8.3.2.9).

8.3.3.5 Precision

With some fundamental changes to the ray tracing algorithm, we also have to con-
sider the possible impact on the accuracy of the simulation. With prior testing, we
had analyzed the individual custom kernels (ray generation and trace processing)
with a set of isolated simulations to identify a single point of error. We had con-
cluded that only the intersection test, crucial for the calculation of the hit location,
could possibly have a big impact. This is likely due to its 32 bit floating point
limitation on the dedicated ray tracing units, which is a common problem for ray
tracers (see Wächter and Binder, 2019).

Thus, for further conclusions, we included a modified CPU algorithm into our test
set, which uses 32 bit precision for the geometry and ray description to correspond
to the RTX hardware limitations. As the CPU algorithm has been found as unstable
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when run completely with 32 bit floating precision, leading to largely uninterpretable
results, the remaining parts were kept with 64 bit precision.9 We evaluated the
transmission probability W after 109 desorptions10 for 50 runs11 for the CPU and
GPU algorithm and compared them to an analytical solution for the transmission
probability obtained from Gómez-Goñi and Lobo (2003) for a real cylindrical tube.
The transmission probability is the ratio of particles that got absorbed on one end
of the facet to the total amount of desorbed particles.

Figure 8.13: Transmission probability for a L/R=100 cylindrical tube for the GPU
and CPU algorithm (with 32 bit and 64 bit geometry) in relation to an
analytical solution Wref = 0.0252763636 (see Gómez-Goñi and Lobo,
2003). Error bars denote the maximal and minimal value of the set,
considering 50 simulations per set. The height of the blue and orange
bars denotes the corresponding average result. The green bar is the
relative tolerance region εabs = 10−4 surrounding the analytical value.

As can be seen in figure 8.13, we find that the converged results are sufficiently
9The CPU algorithm has not been optimized for 32 bit computation, hence, no visible performance

difference could be measured.
10Note, that one has to account for all particles to actually leave the system, as residual particles

– especially in a large number like on the GPU – still contribute to the overall results.
11We consider the mean, min and max value of the set. The mean equals the probability after

5× 1010 desorptions.
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close on all architectures. Considering the mean values, the results of all methods
converge towards the analytical solution staying at least within the εrel = 10−4

error margin. Increasing the level of approximation, G100,1000, the results converge
being close to the analytical solution Wref . Calculations with 32 bit floating point
precision does not seem to have a major impact on the precision, where the span
between the minimum and maximum for each set are also comparable between the
different architectures. Hence, if there is a demand for higher precision a better
approximation of the geometry has to be considered first.

Table 8.3: Transmission probabilities W{GPU,CPU} for cylindrical tubes Glr,100 ap-
proximated with 100 side facets and varying L/R ratio, as calculated for
a simulation with the GPU kernel respectively Molflow’s CPU algorithm
and 109 desorbed particles. The corresponding ∆ values denote the abso-
lute difference from the reference value Wref obtained from Gómez-Goñi
and Lobo (2003). The speedup for each set is given as S = TCPU/TGPU ,
where T denotes the corresponding execution time to simulate 109 parti-
cles. Set 1 represents low-budget hardware, and set 2 represents high-end
hardware.

L/R WGPU ∆GPU WCPU ∆CPU Wref SSet1 SSet2

1 0.67192400 5.99E-05 0.67201900 3.51E-05 0.67198390 63.20 31.09
2 0.51416070 6.98E-05 0.51406400 1.66E-04 0.51423050 66.04 30.75
5 0.31044060 1.88E-04 0.31041900 1.67E-04 0.31025230 68.32 30.47
8 0.22521630 4.68E-05 0.22526600 2.90E-06 0.22526310 126.56 36.68
10 0.19090100 4.14E-05 0.19087900 6.34E-05 0.19094240 121.59 40.08
20 0.10928520 3.55E-05 0.10932500 4.30E-06 0.10932070 114.16 49.34
50 0.04845371 2.27E-05 0.04847840 2.00E-06 0.04847640 76.77 49.69
80 0.03123623 1.11E-05 0.03123400 1.33E-05 0.03124730 174.41 49.54
100 0.02526948 6.92E-06 0.02527330 3.10E-06 0.02527640 164.04 49.67
200 0.01294084 5.40E-05 0.01293520 5.96E-05 0.01299480 118.35 48.78
500 0.00524651 1.65E-05 0.00524247 2.05E-05 0.00526300 133.14 49.65

Further, we show in table 8.3, that the behavior is similar for other geometries.
We compare the results for simulations on cylindrical tubes with various length-
radius ratios. The results differ for neither configuration by a significant amount
besides the expected MC fluctuations. Here, we compared 64 bit CPU calculations
against the GPU results.

8.3.3.6 Conclusion

We were able to show major speedups of for the developed GPU kernel, while prov-
ing minimal accuracy differences compared to the original CPU implementation for
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basic geometries such as cylindrical tubes. Our design achieved speedups of 63× –
175× on budget hardware and 30× – 50× on high-end hardware. While mitigating
negative effects resulting from numerical errors and proving to have a low impact on
overall performance, the adaptive offset showed not to be reliable as a stand-alone
solution for more complex geometries. For cylindrical tubes it was able to reduce
the amount of numerical leaks significantly. While this solved some effects caused
by displaced ray origins, the offset itself can displace rays outside of other facets
potentially leading to large statistical errors that can make simulations completely
uninterpretable. In the next chapter, we provide a potential solution that relies on
the adaptive offset, but attempts to fix the problems arising from that.

8.4 Neighbour Aware Offset (NAO)

In chapter 8.3.2.7 we advised utilising a strategy, that applies an offset along the
facet normal to counter problems related to self-intersections and single-precision
arithmetic. When the origin of a ray is placed behind the actual wall, it can lead
to misclassifications. This can often occur due to numerical errors arising from
single-precision calculations. In this case the ray might intersect with the same
facet again, which either needs to be filtered out or leads to missed interactions with
other facets. In OptiX, the performant closest hit kernel does now allow to filter
intersections for matching facet IDs, the default strategy deployed in Molflow’s CPU
engine. The any hit kernel allows to compute results for every intersected face,
which is computationally less efficient. There may still exist certain scenarios, where
a rejection based on a matching ID can still occur in errors, e.g. when an intersection
is located close to a shared edge of a two planar facets. This is elaborated in great
detail by Wächter and Binder (2019).

Other solutions can be deployed to solve such problems. A ray identifies the
closest intersection by requiring that the distance t hit location lies in the interval
t ∈ [tmin, tmax]. tmax is the current maximal distance, typically initialized with
an infinite value and updated by tracking the closest hit distance in the current
search. By setting a minimum threshold tmin = ε > 0, the rays are prevented from
intersecting with the surface they are originating from. This does not work well in
all scenarios. For rays leaving from a facet with grazing angles, this can still lead to
self-intersections. Further, often occurring in corners, a valid intersection might be
skipped, which is shown in the left part of figure 8.14. A more robust solution is the
proposed adaptive offset along the facet normal. However, this approach can place
the ray through a neighboring facet, especially in geometries with sharp angles or
crevices, which is shown in more detail in figure 8.14

We propose a workaround that attempts to solve the inherent problems by moving
the ray away from edges where an offset along the surface normal could result in the
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Figure 8.14: An offset along the facet normal can lead to other problems, in particu-
lar in crevices or in general where two facets are connected via a sharp
angle. In this example (figure as provided by Wächter and Binder,
2019), the initial intersection X̃ occurred below the surface of the ge-
ometry (grey region). Limiting the ray interval by tmin = ε > 0 works
for the upper ray, but not for the lower ray (left). For the adaptive
offset, the ray origin for the next ray X̃ ′ might be moved onto a neigh-
boring facet (right).

ray crossing into a neighboring facet.

8.4.1 Offset to center

In scenarios, where the adaptive offset along the normal might pose other difficul-
ties, we suggest an additional offset strategy, which we call Neighbour Aware Offset
(NAO). The adaptive offset primarily causes problems for ray locations that are
close to edges, where the angle between two adjacent polygons is acute: α < 90◦.
First, to identify such facets, we deploy an algorithm as proposed in section 5.4 to
determine neighbor relations within a geometry. The algorithm labels two facets as
neighbor, when they share a common edge.12 Further, we keep track of the an-
gle between two neighboring facets. For the GPU kernel we add the corresponding
labels only for acute angles in a neighbourhood to decide in runtime, whether an
additional offset should be applied to retrieve a corrected particle’s origin. After
applying the adaptive offset, the goal of our method is to move the ray away from
edges. This strategy utilizes the geometric center of a polygon as the offset point.

We design a prototype for this offset using a modified version of the vacuum pipe
geometry. The pipe is tilted by an angle α, so that the inlet and outlet remain
axis-parallel. The oblique prisma that is generated by tilting with an angle α = 15
is shown in figure 8.15. Utilising this variable test case, we develop the offset with
12This approach was initially chosen as it circumvents the need to label an edge. As our method

applies an offset using barycentric coordinates, we would have to create an additional relation
between edge and barycentric coordinates first.
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(a) Tilted prism: α = 15 (b) Highlighted acute angles

Figure 8.15: Left: An auto generated test case that shows the sample vacuum pipe
test geometry tilted by an angle of α = 15◦ highlighted in blue. Right:
The same example, where the neighbor facets are highlighted in red.

the following constraints. The offset should only be applied to rays that are located
close to an edge forming a sharp angle with a neighbouring facet. The magnitude
of the offset should be minimal. The computational overhead should be marginal.
By default, the design targets to fulfill the last constraint by utilizing more device
memory.

To fulfill the first constraint, we consider only facets with a label neighbor. To
verify the locality of a ray on a facet, it is straightforward to use barycentric coor-
dinates opposed to 3d world coordinates. For the latter, we would have to compute
a relative position first against all facet edges. Barycentric coordinates incorporate
this information by design. They are elaborated in great detail in chapter 8.3.2.1. If
one of the barycentric coordinates is close to zero {u ≈ 0∨ v ≈ 0∨w ≈ 0} then the
position of the point is close to one of the triangle’s edges. In a first attempt, we
apply an offset independent of the edge’s position. Ideally, not only facets but also
individual edges should be labelled. Theoretically, this will improve the precision of
the results.

We aim to empirically determine the most reasonable values for the offsets, thereby
keeping their magnitudes minimal. The adaptive offset along the facet normal is cru-
cial in this context. In our design, it serves as the first step to prevent leaks caused
by floating point errors. Our methodology involves evaluating the instances of misses
(miss) in relation to barycentric coordinates. Specifically, we examine tilted prisms
with varying angles and generate binned values by counting the number of misses.
These are then attributed to the smallest dimension of the barycentric coordinates
(either u, v, or w). The occurance of misses, in relation to the barycentric coordi-
nates, is illustrated in figure 8.16a. Each data point in this figure represents a binned
value across an equidistant range. We find that misses already occur at barycentric
coordinates ranging in magnitudes from 10−7 to 10−4. For large acute angles, more
misses occur for larger coordinates compared to tilted angles with smaller angles.
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Based on these insights, we derive a scaling factor σbary = [0, 1] that is chosen
based on the proximity of a barycentric coordinate to a triangle’s edge. Proximity is
indicated when a barycentric coordinate u, v, w is close to zero, suggesting that the
point is near one of the triangle’s edges. To apply a significant weight to barycentric
coordinates near the edge (b ≈ 0), where b is a barycentric coordinate u, v, w, we
use an exponential weighting function:

σbary(b) = e−n·b . (8.13)

Here, n is selected to be 1000, ensuring that values up to x ≤ 10−5 receive suffi-
cient weight, while values above x > 10−4 are less impacted. This scaling factor is
then applied on a facet-specific offset factor, whose values we derived empirically as
elaborated in the subsequent chapter.

The proposed approach allows for a targeted application of offsets, especially near
the edges of a triangle. By empirically determining the most effective offset values
and applying them based on barycentric coordinates, we aim to minimize misses
and enhance the precision of our ray tracing results. The empirical findings and the
concrete implemenation of this approach are further elaborated.

8.4.2 Classification

We aim to find an offset value, that corresponds well for the inherent angle of a facet
defining its neighbor relations. Using equation (8.13) to compute a adequate offset
towards the center:

σc(b) = σfacet · σbary(b) , (8.14)

we utilize an empirically derived offset factor, σfacet. For an empirical determination
such an offset for each angle, we have to find minimal offset factor for which no misses
occur.

Finding suitable parameters for the offsets that work for most scenarios involves a
large search space, and it is not practical to manually test all possible combinations
of parameters. Therefore, we need to translate this problem to an optimisation
problem and use an auto-tuning framework to solve it. To achieve this, we will
use the open-source software OpenTuner(Ansel et al., 2014). OpenTuner is a
general-purpose auto-tuning framework that uses machine learning techniques to
guide the search process. These techniques reduce the number of experiments that
need to be performed to find optimized parameters. This greatly enhances the
efficiency and accuracy of the tuning process by finding potential optima with a
finite number of trials.

The optimization process starts with generating a test bench that covers all angles
between α = [0, 90]. For each angle, we generate an oblique prism Pα, which is a
modified test problem of the standard cylindrical tube (see chapter 4.3) with a L/R
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(a) No offset

(b) Scaling factor σbary = 100000

Figure 8.16: Binned miss counts for the corresponding smallest barycentric values.
For all cases, we see similar patterns. Misses occur approximately in the
region from 10−7 to 10−4. Each plot shows misses for different scaling
factors. Stronger scaling factors for the offset reduce the number of
missed counts, making them appear less for larger coordinate values.
Figure 8.16a shows the counts without any scaling factor.
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(a) Scaling factor σbary = 200000

(b) Scaling factor σbary = 300000

Figure 8.17: Binned miss counts for the corresponding smallest barycentric values.
For all cases we see similar patterns. Misses occur approximately in
the region from 10−7 to 10−4. Each plot shows misses for different
scaling factors. Stronger scaling factors for the offset reduce the amount
of miss counts, making them appear less for larger coordinate values.
Figure 8.17b shows strong reductions of occured misses, reducing them
completely for some angles.
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ratio of 10 and 10 side facets. The lateral facets of the prism are not aligned to
the ground coordinates (in Molflow by the x- and z-coordinates), but instead tilt
by an angle α. For each Pα, we search for scaling factors for the adaptive offset
towards the normal σn and the offset towards the center σc that lead to ideally no
leaks and minimal offset scales to prevent amplifying arithmetic errors. The opti-
mization process returns the parameters for the offset that lead to no leaks for the
particular input geometry. It is important to note that the optimization process
is computationally expensive and may require significant computational resources,
due to the large search space. Therefore, it is essential to carefully choose the search
space and the optimisation technique to balance between the accuracy of the opti-
misation results and the computational cost of the process. We use OpenTuner’s
AUCBanditMetaTechniqueA technique, which deploys a set of different techniques
changing them randomly after several attempts to prevent getting stuck in local ex-
trema. In Molflow’s GPU kernel, leaks are accumulated individually per originated
facet. This gives us the possibility to only consider leaks during the auto-tuning
experiment, which are related to the angle of interest. With Molflow’s test case gen-
eration engine which utilizes 10 side facets, only the facets for the inlet and outlet
and two side facets have to be taken into account as they contain an acute angle,
which is highlighted in figure 8.15b. For each angle, we run 30 simulations with
150.000.000 desorptions each.

The corresponding offsets that were found using this approach using tilted vacuum
pipes Pα for varying angles α with a L/R ratio of 10 and 10 side facets are listed
in table 8.4. In the table we can see, that the scaling factors increase quickly to
α = 25. For greater values, they seem to find a plateau for an upper bound. We try
to determine an appropriate function in order to interpolate values also for angle
values in between the samples. In total, we create three independent data sets based
on the same approach. We fit a polynomial function

f(x) = a+ b · x+ c · x2 + d · x3 (8.15)

for all data sets to create a function from which we potentially can look up scaling
factors. Polynoms served as an initial choice to approximate the relationship between
the tilt angle α and the scaling factors due to their flexibility in modelling complex,
non-linear relationships. In figure 8.18 we show the results for the three data sets.
Data sets 1 and 2 show scaling factors for angles [5, 85] in increments of 5. Data
set 3 shows angles [5, 85] for increments of 1. For the polygons fitting all three data
sets we see a comparable trend. Which is why we use the polynom (8.15) fitting the
data shown in table 8.4 to find scaling factors σfacet for all acute angles.

The full algorithm using these values is depicted in algorithm 11. An offset is
applied only if at least one of the barycentric coordinates falls below a pre-established
upper limit, as identified empirically. This targeted application ensures the accuracy
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Figure 8.18: Scaling factors σfacet = s (Y -axis) found for tilted vacuum chambers
with varying angles α (X-axis). Data sets 1 and 2 show values for [5, 85]
in increments of 5. Data set 3 shows [5, 85] in increments of 1. Scaling
factors increase quickly, but seem to reach an upper limit at α = 25.

Table 8.4: Parameters for the offset to center σc as found via auto-tuning for tilted
cylindrical tubes with varying angles α approximated with 10 side facets,
where offsets were found to minimize the number of leaks and the offset
itself, where each evaluation run has been done with 2 × 108 desorbed
particles.
α 5 10 15 20 25 30
σfacet 115995 207282 270278 326098 371117 376498

α 35 40 45 50 55 60
σfacet 379097 326106 356732 393753 394292 381889

α 65 70 75 80 85
σfacet 364455 394851 381238 385572 396916

of our results. In our prototype algorithm, offsets are applied specifically for these
values.13 Moreover, in line 10 (ff.) the algorithm ensures that the value is clamped to

13To align with SIMD properties, the application of the offset can be strictly controlled by the
individual scaling factor (σbary) for each coordinate. Which we neglected in our experiments.
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a fixed constant, thereby also offsetting zero values effectively. We utilize the same
integer (line 11 transformation as for the adaptive offset along the normal, which
we utilize for precision reasons. We need to ensure, that the barycentric condition
(u + v + w = 1) remains true, which is why normalize the barycentric coordinates
at the end in line 22.

Algorithm 11 Offset to center using a calculation based on barycentric coordinates.
The offset is applied for points, which have been offset along the facet normal.
1: function offset_to_center_bary(b,A,B,C,p, poly)
2: c← 1.0/3.0 ▷ Barycentric center
3: lup ← 5× 10−4

4: scale← 256.0
5: t← make_float3(b.x, b.y, 1.0− b.x− b.y) ▷ Initialize barycentrics
6: σfacet ← poly.offset ▷ Load interpolated offset value
7: σbary ← exp(−1000 · t) ▷ Apply (8.13)
8: σc ← σfacet · σbary ▷ Apply (8.14)

▷ Adjust the barycentric coordinates if close to edge
9: if u < lup then

10: var← max(u, 10−6) + int(scale · σc · c)
11: t.x← int_as_float(float_as_int(var))
12: end if
13: if v < lup then
14: var← max(v, 10−6) + int(scale · σc · c)
15: t.y ← int_as_float(float_as_int(var))
16: end if
17: if w < lup then
18: var← max(w, 10−6) + int(scale · σc · c)
19: t.z ← int_as_float(float_as_int(var))
20: end if

▷ Normalize the transposed barycentric coordinate
21: S ← t.x+ t.y + t.z
22: t← t/S
23: return t
24: end function

8.4.3 Conclusion

Given the parameter values found using OpenTuner, we were able to provide an
algorithm that is capable of minimising the effects arising from the application of
an adaptive offset for critical parts of a geometry. The values have been integrated
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as a scaling offset σfacet and is evaluated by acquiring a value based on (8.15). The
parameters a, b, c, d have been determined by fitting the function with the empirically
found values that are listed in table 8.4. We define the parameters values as a =
40473, b = 20198.9, c = −381.51 and d = 2.29206. By running the simulations with
the defined offset scales, we could completely remove the occurrence of leaks. In table
8.5 we show the results for multiple runs for 109 desorbed particles. Comparing the
values for the computed transmission probabilities for the CPU kernel wCPU and
the GPU wGPU , we see that the relative error for all cases has magnitude 10−3. The
initial kernel, that was performant on cylindrical vacuum tubes (results summarized
in table 8.3) that didn’t show any sharp angles, was more accurate using only the
adaptive offset along the normal. In these scenarios, the offset towards the center
did not have to be applied, as no acute angles exist. The relative difference between
transmission probabilities wCPU and wGPU , calculated using the CPU and the GPU
kernel respectively, is in average in the magnitude of 10−4.

While the initial GPU kernel was usable on simple geometries such as cylindrical
tubes, a modification was necessary for more complex geometries. We provided a
possible solution to achieve better results on more complex geometries, by mitigating
the effects of particle leaks. Our method is capable of applying the offset only
for specific parts by flagging corresponding facets as a pre-computation step, by
evaluating facet relationships. Although the determined parameters are only quasi-
ideal due to the enormous search space, they were able to remove particle misses
completely when used for a more complex test case. For a more general approach,
the parameter space has to be extended, because the parameters are not scale-
invariant. Here, the oblique prism generator could be extended to further include
a scaling parameter. Another potential solution could be the use of a normalized
coordinate system for which one set of parameters could be used. A downside of
the utilisation of barycentric coordinates is, that the offsets achieved are not scale-
invariant. This is because barycentric coordinates are in the range [0, 1] and give
the location in the triangle in percent. Because of this trait, the scale information is
inherently lost. The same offset applied to barycentric coordinates of different facets
may result in different magnitudes of differences in absolute world coordinates. An
idea to find a truly portable solution, that can be applied on other geometries, is to
find a scaling factor that is scale invariant, e.g. one that can be applied directly on
real world coordinates. This, on the other hand, might impose other challenges for
a robust solution. Further, a more ideal solution would need to apply an offset such
as σfacet not per facet, but per edge. Due to this generalization, it is likely that the
offset is applied in many scenarios, where the actual location is not close to an acute
angle, further enhancing the error in the simulation. Lastly, we could see a stronger
negative impact on the precision of the results compared to the usage of only the
adaptive offset and axis-aligned vacuum chambers pipes. It has to be investigated in
another study whether the reduction in precision makes the GPU kernel impractical.
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Table 8.5: Simulations for the tilted prism geometry Pα for α = [5, 85] using the CPU
and the GPU kernel for 109 desorptions. The CPU algorithm is using 64
bit calculations. The GPU algorithm is using 32 bit calculations and
the offset towards the center. The transmission probability wCPU |GPU is
evaluated as the key value. The absolute and relative differences between
the two calculated values is given. Here, the CPU algorithm serves as
gold standard.

Angle wCPU wGPU ∆abs ∆rel

5 0.185266140 0.186547331 0.001281191 0.006891577
10 0.182628734 0.183906607 0.001277873 0.006972716
15 0.178254740 0.179590804 0.001336064 0.007467266
20 0.172230853 0.173549358 0.001318505 0.007626263
25 0.164628610 0.165896040 0.001267430 0.007669201
30 0.155327253 0.156652590 0.001325337 0.008496300
35 0.144678630 0.145915447 0.001236817 0.008512333
40 0.132541272 0.133848067 0.001306795 0.009811164
45 0.119372791 0.120476158 0.001103367 0.009200514
50 0.104987216 0.106007837 0.001020621 0.009674363
55 0.089908290 0.090696999 0.000788709 0.008734058
60 0.074243976 0.074917452 0.000673476 0.009030160
65 0.058371200 0.059028755 0.000657555 0.011201963
70 0.042846960 0.043376352 0.000529392 0.012279554
75 0.028118795 0.028290723 0.000171928 0.006095701
80 0.015039693 0.015020494 0.000019199 0.001277378
85 0.004848339 0.004763459 0.000084880 0.017661681
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Further, the offset could be optimized to work even more selectively in those cases
where a particle miss will occur and only with such a strong offset magnitude, that
the negative effects on the accuracy will be minimized.
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9 Conclusion and Future Work

This thesis presents a comprehensive exploration of multiple aspects of Molflow,
including algorithmic improvements for preprocessing, simulation enhancements on
CPU, advanced ray tracing techniques, and GPU/OptiX kernel development. This
thesis has explored various aspects of accelerating Molflow’s Test Particle Monte
Carlo algorithm, a vital tool for simulating the behavior of particles in vacuum
systems. We have made substantial strides in improving Molflow’s performance
and scalability, thanks to a revamped ray-tracing engine and enhanced support for
distributed computing using MPI. We have investigated and developed new accelera-
tion data structures tailored to Molflow’s specific traits. Additionally, improvements
have been made to the performance of preprocessing algorithms and in developing
tools to aid users in data analysis. We developed a GPU kernel, based on NVIDIA
OptiX, that leverages ray tracing cores. This kernel includes an offsetting algorithm
to reduce errors and mitigates various effects from single-precision calculations. En-
hancements to the ray tracing engine, as well as the new CLI are part of the public
releases for both Molflow and Synrad. With additional enhancements to the time-
dependent algorithm and the neighbour analysis, this work concluded with Molflow
2.9.5 and Synrad 1.5.0.

The Monte Carlo kernel has been updated with an OpenMP back-end and a
revamped ray tracing engine that is utilizing state of the art acceleration data struc-
tures and traversal algorithms. Based on PBRT’s open source code, , we investigated
the effectiveness of various BVHs and KD-trees, along with different splitting tech-
niques and traversal algorithms. We developed statistical techniques that leverage
data specific to Molflow simulations to create acceleration data structures excelling
the quality of other techniques. Based on the assumption, that KD-trees are more
suitable than BVHs due to their advantages for static geometries, we developed
an enhanced rope traversal algorithm making use of previous hit locations. While
the algorithm proved noteworthy in some scenarios, the results for the implemen-
tation of all KD-tree-based algorithms have been worse on average than those for
BVHs. In a targeted study featuring an optimized KD-tree implementation and
enhancements to the newly developed traversal algorithm, which is based on the
concept of rope-traversal, the strengths of these techniques should be revalidated.
Further a method to dynamically select the best acceleration data structure should
be developed, which could potentially work on pre-evaluating a set of geometry
characteristics such as those proposed.
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At the time of finalizing this thesis, the iterative simulation algorithm had been
further developed. Techniques such as the convergence-based stopping criteria and
the statistic-based construction algorithms were developed specifically for iterative
simulations. When fully integrated, their usefulness can be validated. The stopping
criterion promises better intermediate results, that will reduce the error propagation
for the next iteration. Employing acceleration data structures in combination with
splitting heuristics, like the RDH or HRH, based on existing statistics could enhance
the performance of ray tracing queries.

We developed a GPU kernel powered by NVIDIA’s OptiX 7 API to utilize the
novel ray tracing cores found in recent GPU architectures. We analyzed different
techniques to design the algorithm to achieve peak performance for the given geom-
etry, while also keeping memory into account. Our design achieved major speed-ups
for cylindrical vacuum tube geometries on budget hardware (63×–175×) as well as
on high end hardware (30×–50×) when comparing GPU against CPU simulations,
without heavy influence on the precision. In the GPU study of this thesis, we in-
vestigated issues that can arise for physical simulations as a trade-off for a highly
performant GPU kernel fully utilizing new RTX hardware. The adaptive offset mit-
igates effects such as the displaced ray origins, but it does not solve all issues by
itself. To counter these effects, we implement an adaptive offset to the center. Us-
ing the properties of barycentric coordinates, only rays that are close to a triangles
edge will be offset. The offset accounts for neighboring facets that join with a sharp
angle. An empirical study was conducted to find scaling values that are applied
depending on the corresponding angles. The proposed method extends the range
of geometries, the GPU kernel can be used for. The robustness of the method still
has to be validated for other facet properties and more complex geometries, that
are more prone to single precision errors. A detailed analysis and design study for
such problems and the implementation of Molflow’s full feature set are left for future
work.

With the work of this thesis, the open-source project has been improved in many
different ways. CI/CD integration with a rich testing infrastructure and the refac-
tored code base gives developers more reliable tools to enhance the individual aspects
of the code as well as to add new functionality. Major performance improvements
have been achieved not only on the simulation side. Users can leverage the major
simulation performance even on dedicated compute resources due to the newly devel-
oped command line interface MolflowCLI. The developed GPU kernel has proven
to be highly performant for a selected set of test cases. Running simulations on
dedicated ray tracing hardware is an anticipated future. But first, all functions of
Molflow’s Test Particle Monte Carlo code have to be implemented and a robust
solution for the underlying issues has be identified and deployed following a thor-
ough validation of the kernel. The lessons from the investigations and the strengths
and limitations of the developed techniques are valuable for many other physical
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simulation codes, as the traits of the Monte Carlo algorithms are similar among
them.
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A CERN hardware

CERN offers strict access only on demand to its HPC facilities as most applications
are focused on data processing. The general computer centre is a HTC facility (High
Throughput Computing). One is the batch service dedicated to parallel computing
on one node, the other is the HPC cluster. Both services allow MPI jobs to be run.

Batch Service

For applications running well on one node, but benefit from many cores the intended
computing service is the batch system HTCondor. Multi-core jobs with up to 32
cores (with special requirement also 48 cores) are able to run on a node.

HPC/MPI Cluster

Access to the MPI Cluster is only allowed to specific user groups (mainly accelerator
and technology sector). The HPC cluster is using SLURM as a workload manager
and is accesible via lxplus or ssh.1 Mvapich2 or OpenMPI are offered with SLURM.
The default comppiler is gcc 4 and at least gcc 6 is also supported. Access can be
granted via the e-group hpc-plasma-users.2

The homogeneous computing nodes for general access consist of the following
hardware:3

• CPU: 2x Intel(R) Xeon(R) CPU E5-2650 v2 (16 physical cores, 32 hyper-
threaded)

• Memory: 128GB DDR3 1600Mhz (8x16GiB M393B2G70QH0-YK0 DIMMs)

• Network: Chelsio T520-LL-CR (low-latency 10Gbit ethernet)

• Storage:

1https://cern.service-now.com/service-portal/article.do?n=KB0004541
2Accessed on 05/12/2022: https://cern.service-now.com/service-portal/article.do?n
=KB0004975

3Accessed on 05/12/2022: http://batchdocs.web.cern.ch/batchdocs/linuxhpc/resources
.html

https://cern.service-now.com/service-portal/article.do?n=KB0004541
https://cern.service-now.com/service-portal/article.do?n=KB0004975
https://cern.service-now.com/service-portal/article.do?n=KB0004975
http://batchdocs.web.cern.ch/batchdocs/linuxhpc/resources.html
http://batchdocs.web.cern.ch/batchdocs/linuxhpc/resources.html
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– CephFS for /hpscratch

– 2TB HGST HUS724020AL for local scratch.

• about 100 nodes4

4Accessed on 05/12/2022: https://indico.cern.ch/event/771821/contributions/3207080/
attachments/1754919/2844956/HPC-CERN-2018.pdf

https://indico.cern.ch/event/771821/contributions/3207080/attachments/1754919/2844956/HPC-CERN-2018.pdf
https://indico.cern.ch/event/771821/contributions/3207080/attachments/1754919/2844956/HPC-CERN-2018.pdf
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