
Bergische Universität Wuppertal

Multiobjective Optimization of

Shapes Using Scalarization

Techniques

Dissertation

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

an der

Fakultät für Mathematik und Naturwissenschaften

Fachgruppe Mathematik und Informatik

vorgelegt von

Johanna Schultes

betreut durch

Prof. Dr. Kathrin Klamroth

Wuppertal, Juli 2024

ii

Gutachter: Prof. Dr. Kathrin Klamroth

Prof. Dr. Hanno Gottschalk

Acknowledgements

The work has received funding from the BMBF collaborative research project GivEn

under the grant no. 05M18PXA and it was also supported by the Centre for Graduate

Studies (ZGS) of the University of Wuppertal with a final scholarship.

First of all, I want to thank my supervisor Prof. Dr. Kathrin Klamroth. Thank

you so much for your support and guidance on my academic journey. Your help has

been invaluable to me. I am truly grateful for everything you have done to guide me

along the way, both as a mentor and as a role model.

I also want to thank the whole team from the given project. I very much appreciate

Prof. Dr. Matthias Bolten and Dr. Camilla Hahn who played a decisive role in providing

my with the necessary code framework. Especially helpful to me during this time

were Dr. Jan Backhaus and Dr. Daniel Luft, with whom I spent a lot of time in code

sessions. Thanks also to thank Prof. Dr. Hanno Gottschalk and Marco Reese. Without

you and the support of the whole team this work would not has been possible. I really

enjoyed working with you.

Furthermore, I want to thank my working group for the pleasant atmosphere, the

scientific exchange, the coffee breaks and team events. Many thanks to Britta, Michael,

Claudia, Onur, Julius, Fabian, David, Lara, Julia, Tobias, Marco, Konstantin and

Daniela.

I also wish to thank my friends who have accompanied me through my studies.

Special thanks to Linda, Robin, Pascal, Daniel, Lisa, Nathanael and Henrik.

Last but not least, I’m extremely grateful to my family who have always supported

and encouraged me. Special thanks to Dennis how never let me down and always

brought me coffee and food.

Of course, I would also like to thank all the others who have accompanied me along

the way but have not been specifically mentioned here.

iii

iv

Contents

1 Introduction 1

2 Multiobjective Optimization 7

2.1 General Definitions . 7

2.2 Solution Approaches and Related Literature 13

2.2.1 Weighted Sum Method . 14

2.2.2 Single-Objective Steepest Descent Algorithm 17

2.2.3 Multiobjective Descent Algorithm 18

3 Hypervolume Scalarization 21

3.1 Related Literature . 25

3.2 Contour Lines of the Hypervolume Indicator 26

3.3 Interrelation Between Contour Lines and Reference Points 34

3.4 Comparison . 38

3.4.1 Hypervolume Scalarization vs Weighted Sum Scalarization . . . 38

3.4.2 Hypervolume Scalarization vs Multiobjective Descent Algorithms 43

4 PDE Constrained Shape Optimization 45

4.1 Calculating Shape Sensitivities using Adjoint Equations 46

4.2 Multiobjective Formulation . 48

5 Ceramic Components under Tensile Load 51

5.1 Setting . 52

5.1.1 Admissible Shapes . 52

5.1.2 Linear Elasticity PDE . 53

5.2 Objective Functions . 54

5.2.1 Probability of Failure . 54

v

vi Contents

5.2.2 Material Consumption . 57

5.3 Biobjective Shape Optimization Problem Formulation 58

5.3.1 Existence of Pareto Optimal Shapes 58

5.4 Implementation with B-Splines . 59

5.4.1 Geometry Definition and Finite Element Mesh 60

5.4.2 Pareto Critical Shapes . 62

5.4.3 Weighted Sum Method . 63

5.4.4 Biobjective Descent Algorithm 64

5.4.5 Scalar Products and Gradients in Shape Optimization 66

5.4.6 Control of Step Sizes . 68

5.4.7 Case Studies . 69

5.5 Implementation with Structured Meshes 77

5.5.1 Finite Element Discretization 79

5.5.2 Iterative Ascent Algorithm for the Hypervolume Scalarization . 80

5.5.3 Choice and Variation of the Reference Point 84

5.5.4 Hypervolume solutions with structured meshes 89

6 Efficiency and Reliability of Turbomachinery Components 93

6.1 Model . 93

6.2 Aerodynamic Efficiency . 94

6.2.1 Aerodynamic State . 95

6.2.2 Efficiency Objective . 97

6.3 Low-Cycle Fatigue . 97

6.3.1 Linear Elasticity PDE . 99

6.3.2 Deterministic Approach for LCF 100

6.3.3 Probabilistic Model for LCF . 101

6.4 Biobjective Formulation . 105

6.5 Implementation . 106

6.5.1 Efficiency and Exterior Discretization 106

6.5.2 Reliability and Interior Discretization 108

6.5.3 Steklov-Poincaré Gradients . 109

6.5.4 Coupling . 110

6.6 Results . 118

7 Conclusion 127

Bibliography 131

Chapter 1

Introduction

Optimization problems arise in almost all areas of life and span disciplines such

as science, economics, industry and technology. Among these, shape optimization

problems are widespread in numerous areas, including but not limited to engineering,

manufacturing or architecture.

In challenges involving shape optimization, the ideal design of a shape is sought in

order to optimize the objective function under consideration.1 Improving the exterior

design of vehicles, aircraft wings, or rocket nozzles to boost performance, cut weight,

or lower cost are just a few example for problems that can be considered. In order

to evaluate the specific objective the shape is often subject to constraints posed by

partial differential equations (PDEs). For instance, the heat equation can be used to

describe heat diffusion inside the shape, or the Navier-Stokes equations describe a fluid

motion surrounding the shape. This usually requires the use of finite element analysis.

Those PDEs as well as geometrical constraints frequently place restrictions on the

optimization problems in shape optimization. The versatility of shape optimization

makes it a valuable tool for improving performance and functionality across a wide

range of applications.

Since the decision-making process often involves multiple competing objectives,

multiobjective optimization becomes essential.2 For instance, while designing and

building a bridge, considerations such as the total cost and mechanical integrity

must be addressed. A well-known concept for multiobjective optimization problems

is Pareto optimality named after Vilfredo Pareto3, where we call a solution of a

1See Haslinger and Mäkinen, 2003; Sokolowski and Zolesio, 1992, for example.
2A general introduction can be found in Ehrgott, 2005; Miettinen and Mäkelä, 1996.
3Vilfredo Pareto, b1848, d1923.

1

2

multiobjective optimization problem Pareto optimal or efficient if no objective can be

improved without compromising at least one of the other objectives. Thus, the aim of

multiobjective optimization is often to provide the decision maker with a set of Pareto

optimal solutions, enabling informed choices.

One approach to solve multiobjective optimization problems is the use of scalariza-

tion methods.4 The idea of scalarization-based methods is to combine the individual

objective functions into one objective function plus possibly adding additional con-

straints. In this thesis we focus on scalarization methods that do not add further

constraints to the optimization problem. With the weighted sum method, for example,

the individual functions are weighted and added together. Since the weighted sum

method is limited to only calculate non-dominated points that lie on the convex

hull of the Pareto front, we also consider another approach with the hypervolume

scalarization.5 The hypervolume indicator function is defined by the volume spanned

by the computed outcome vectors (of feasible solutions) and an appropriately chosen

reference point, and is aimed to be maximized.

The goal of this thesis is to develop scalarization-based optimization methods to

PDE constrained shape optimization problems in order to approximate the Pareto front.

We address two distinct biobjective shape optimization problems. Firstly, we consider

ceramic components under tensile load. We want to maximize the mechanical stability

while minimizing the volume. The mechanical stability is modeled by a Weibull

type formulation of the probability of failure. Secondly, we consider turbomachinery

components in order to maximize aerodynamic efficiency and mechanical reliability.

Thereby, we use the state-of-the-art adjoint fluid dynamics solver TRACE of the

German Aerospace Center to evaluate the aerodynamic efficiency.6 The mechanical

reliability is modeled by a low cycle fatigue objective. With this choice of models

we benefit from having gradient information available for all objectives, enabling the

utilization of gradient based optimization methods.

GIVEN research project Energy supply is a challenging task nowadays. In the

conventional way energy production is based on fossil resources. However, since fossil

fuels, like coal or natural gas, are limited, the expansion of renewable energies, such

as solar energy or wind power, is necessary. In the German government’s plans for the

energy turnaround, the share of renewable energy in the power grid is expected to rise

4See Miettinen and Mäkelä, 2002, for example.
5See Zitzler and Thiele, 1999.
6TRACE User Guide 2019.

Chapter 1. Introduction 3

to over 60% in 2050.7 However, the main disadvantage of these environmentally friendly

energies is that they are subject to volatility. With increasing share of renewable

energies, the amount of volatile energy supply increases. Thus, energy networks

need back up solutions to cover the energy demand in case of insufficient electricity

production from renewable energies. Gas turbines or the combination with steam

turbines are an appropriate solution for flexible reserve power plants, mainly because

of short start-up times. They can also be important as a bridge technology for CO2

reduction.8 Among fossil fuels, gas has the highest efficiency with over 63%.9 In the

future a 100% renewable energy supply may be targeted after the year 2050. Also in

this scenario high efficient gas turbines are considerable if hydrogen and methane are

used as storage media from renewable energies and can be converted into electricity

with gas turbines if required.10

In the design process of gas turbines certain design requirements must be taken

into account. On the one hand the efficiency of energy conversion is aimed to be

optimized and on the other hand, it is also important to ensure reliability and flexibility,

especially with regard to low-cycle fatigue. Low-cycle fatigue (LCF) is the gradual

structural deterioration of a material subjected to cyclic loading, usually requiring only

a relatively small number of load cycles to failure.11 This phenomenon is particularly

relevant in the design of gas turbines due to the frequent and large variations in

operating conditions such as start-up, shutdown and load cycling. By considering

aspects of low-cycle fatigue in addition to energy conversion efficiency, gas turbine

designers can ensure not only optimum performance but also long-term reliability and

operational flexibility, improving the overall efficiency of the turbine system.

The project “Shape Optimization of Gas Turbines in Volatile Energy Networks”,

abbreviated by GivEn, is a research project, where the extensive design process of gas

turbines is considered. The aim is to develop mathematical methods and implement a

multiobjective optimization process to evaluate different designs taking into account

the objectives fluid-dynamic efficiency as well as mechanical reliability.12

7The Energy of the Future. 8th Monitoring Report on the Energy Transition –Reporting Years
2018 and 2019 2021.

8The Energy of the Future. 8th Monitoring Report on the Energy Transition –Reporting Years
2018 and 2019 2021.

9GE’s HA Gas Turbine Delivers Second World Record for Efficiency 2018.
10Sachverständigenrat für Umweltfragen, 2011.
11Gottschalk, Saadi, et al., 2018.
12https://www.given-project.de/

4

fluid-dynamic

efficiency
mechanical reliability

multiobjective

shape optimization

This project was funded by the Federal Ministry of Education and Research

(BMBF), grant-no: 05M18PXA. This support is gratefully acknowledged.

Outline of this thesis The thesis is structured into two main parts.

In the first part, outlined in Chapters 2 to 3, we consider general multiobjective

optimization problems and concentrate on two scalarization techniques. In Chapter 2

the concept of multiobjective optimization and the well-known weighted sum method

are explained, while Chapter 3 introduces a novel hypervolume scalarization technique.

The second part commences in Chapter 4 and focuses on the application of these

methods to two specific PDE constrained shape optimization problems.

In Chapter 5 we consider ceramic components under tensile load, where we want to

minimize cost and the probability of failure. For this biobjective shape optimization

problem we start by implementing the weighted sum method and utilize B-spline

parameterization for the shape representation. Subsequently, we explore the same

problem using free form deformation and implement the hypervolume scalarization

technique.

In Chapter 6 we focus on gas turbine blades and consider the two optimization

goals aerodynamic efficiency and mechanical reliability. We set up a coupling routine

using several elements: the TRACE software package to asses the efficiency, an LCF

solver to evaluate the reliability and the TRASOR software package for calculating

Steklov-Poincaré gradients. Subsequently, the combination of these elements with the

integration of the weighted sum method is described and applied to the gas turbine

profile of the T106A configuration.

This research is based on the research project GivEn and parts of this thesis

are already published. We refer to the respective publications in the corresponding

chapters of this thesis.

Related literature Before delving into our own research findings, we briefly review

some related literature in the context of (multiobjective) shape optimization.

Historically, shape optimization problems focus on single objective optimization

problems. For a general introduction to shape optimization, we recommend Allaire,

2002; Bucur and Buttazzo, 2005; Haslinger and Mäkinen, 2003; Sokolowski and Zolesio,

Chapter 1. Introduction 5

1992. Often, mechanical integrity is considered as objective function to assess a shape

subjected to loads, see, for example, Allaire and Jouve, 2008; Duysinx and Bendsøe,

1998; Haslinger and Mäkinen, 2003; Picelli et al., 2018. For material science we refer to

Rösler, Harders, and Bäker, 2019. However, most models for the mechanical integrity

are based on min-max formulations and are hence not differentiable at the points of

highest vulnerability. This can be overcome by assessing the probability of failure

using Poisson point processes as in Brückner-Foit et al., 1997; Munz and Fett, 2001;

Roudi, Riesch-Oppermann, and Kraft, 2005, an approach based on a probabilistic

description for the ultimate strength of ceramic material, see Weibull, 1939, who laid

the foundation to the reliability objective that is also used here, see Bolten, Gottschalk,

Hahn, et al., 2019; Bolten, Gottschalk, and S. Schmitz, 2015; Gottschalk and Saadi,

2019; Gottschalk, Saadi, et al., 2018; Gottschalk and S. Schmitz, 2014; S. Schmitz,

2014; S. Schmitz, Rollmann, et al., 2013; S. Schmitz, Seibel, et al., 2013.

Multiobjective formulations of shape optimization problems are not so widely

spread. They are partly mentioned in Haslinger and Mäkinen, 2003. The existence of

Pareto optimal shapes are, for example, considered in Allaire, 2002; Chirkov et al.,

2018; Fujii, 1988; Haslinger and Mäkinen, 2003. Further research contributions that

suggest meta heuristic approaches are given, among others, in Chirkov et al., 2018;

Deb, 2001; K. Deb, 2011; K. Deb and Goel, 2002; Zavala et al., 2013. Evolutionary

algorithms and gradient based approaches are compared in Pulliam et al., 2003.

Overall, the field of multiobjective shape optimization is a dynamic area in which

ongoing research is addressing various challenges. Further literature is mentioned in

the corresponding chapters.

6

Chapter 2

Multiobjective Optimization

In this chapter we provide a brief introduction to multiobjective optimization based

on Ehrgott, 2005 and set fundamentals for the following chapters. For a thorough

introduction to multiobjective optimization we refer to Ehrgott, 2005; Miettinen, 1998.

We start in Section 2.1 with a general formulation of multiobjective optimization

problems. In Section 2.2 we give an insight in selected solution approaches for

multiobjective optimization problems and refer to related literature. We explain the

weighted sum method in Section 2.2.1 as an example for scalarization techniques and

also address some drawbacks of the method, which were already analyzed in Das and

Dennis, 1997. In Section 2.2.2 we explain the steepest descent algorithm, see also, for

example, Geiger and Kanzow, 1999, for solving single-objective optimization problems

such as the mentioned weighted sum scalarizations. In Section 2.2.3 we conclude this

chapter with a short review of the multiobjective descent algorithm by Fliege and

Svaiter, 2000, since we will compare this algorithm to the scalarization methods used

in this thesis.

2.1 General Definitions

A multiobjective optimization problem (MOP) is given by

min f(x) = (f1(x), . . . , fp(x))
⊤

s. t. x ∈ X .
(MOP)

7

8 2.1. General Definitions

Here, X is the set of feasible solutions and f = (f1, . . . , fp) : X → Rp is the vector-

valued objective function comprising p individual objective functions fk : X → R with

k = 1, . . . , p. We assume that X is nonempty and hence also f(X) ⊂ Rp is nonempty.

We call the objective vector f(x) of a feasible solution x ∈ X feasible point or feasible

outcome vector. In the cases p = 2 and p = 3 we call the (MOP) a biobjective and

triobjective optimization problem, respectively.

For an exemplary biobjective optimization problem in Figure 2.2b the ideal point,

which is given by the minimal objective value of f1 and f2, is shown. In general, the

ideal point yI =
(
yI1, . . . , y

I
p

)⊤
of (MOP) is defined by

yIk = min
x∈X

fk(x), k = 1, . . . , p. (2.1)

Since the ideal point is usually not included in the set of feasible outcome vectors,

i.e., yI /∈ f(X), as we have seen in Figure 2.2b, we need another concept of “optimality”.

According to the Pareto concept of optimality we say that a feasible solution is Pareto

optimal if no individual objective can be improved without deteriorating one of the

others. This concept is based on the component-wise order, see Ehrgott, 2005, which

we define in the following. For y, y′ ∈ Rp, we have:

y < y′ ⇐⇒ yk < y′k for k = 1, . . . , p (strict component-wise order)

y ≦ y′ ⇐⇒ yk ≤ y′k for k = 1, . . . , p (weak component-wise order)

y ⩽ y′ ⇐⇒ y ≦ y′ and y ̸= y′ (component-wise order)

We say y dominates y′ if it holds that y ⩽ y′ for y, y′ ∈ Rp. Additionally, we can also

say y dominates y′ w.r.t. the weak component-wise order and strict component-wise

order if y ≦ y′ and y < y′ for y, y′ ∈ Rp, respectively. The converse relations ≥,⩾
and ≧ are defined analogously. Accordingly, the sets Rp

>,R
p
⩾ and Rp

≧ are defined as

follows:

Rp
> := {y ∈ Rp | yk > 0, k = 1, . . . , p} (2.2)

Rp
⩾ := {y ∈ Rp | yk ≥ 0, k = 1, . . . , p, y ̸= 0} (2.3)

Rp
≧
:= {y ∈ Rp | yk ≥ 0, k = 1, . . . , p} (2.4)

Figure 2.1 illustrates the component-wise order for p = 2 by showing, for a given

outcome vector y′ ∈ R2, the sets y′ − R2
>, y

′ − R2
⩾ and y′ − R2

≧, that contain all

points that would potentially dominate y′ w.r.t. the strict component-wise, the weak

Chapter 2. Multiobjective Optimization 9

y′ − R2
>

y′

y1

y2

(a) y < y′

y′ − R2
⩾

y′

y1

y2

(b) y ⩽ y′

y′ − R2
≧

y′

y1

y2

(c) y ≦ y′

Figure 2.1: Component-wise order for p = 2.

component-wise and the component-wise order, respectively.

Now we can formally define a Pareto optimal solution.

Definition 1 (Pareto optimality). A feasible solution x ∈ X of (MOP) is called

Pareto optimal or efficient if there is no x̂ ∈ X such that f(x̂) ⩽ f(x), i.e., ∄ x̂ ∈ X
s. t. fk(x̂) ≤ fk(x)∀k ∈ {1, . . . , p} and f(x̂) ̸= f(x).

Moreover, a feasible solution x is called weakly Pareto optimal or weakly efficient

if there is no x̂ ∈ X such that f(x̂) < f(x), and a feasible solution x is called strictly

efficient, is there is no x̂ ∈ X , x̂ ̸= x such that f(x̂) ≦ f(x).

The corresponding outcome vector f(x) of a (weakly) Pareto optimal solution is

called (weakly) non-dominated point or (weakly) non-dominated outcome vector.

We denote the set of efficient solutions by XE and call it efficient set. The set

of non-dominated outcome vectors YN := {f(x) |x ∈ XE} is called Pareto front or

non-dominated set. For the corresponding sets of weakly and strictly efficient solutions

we write XwE and XsE, respectively. In addition, let YwN := {f(x) |x ∈ XwE} denote
the set of weakly non-dominated outcome vectors.

Apparently, adding the negative orthant −Rp
⩾ to a non-dominated point y ∈ YN

results by definition in an empty intersection with f(X), i.e., f(X) ∩
(
y − Rp

≥

)
= ∅.

Otherwise, the point y would not be non-dominated in the first place. Thus, a point

y ∈ Rp is non-dominated if and only if f (X) ∩
(
y − Rp

≧

)
= {y}.

Figure 2.2a shows an example of an objective space with two objectives. The

Pareto front YN is highlighted in blue and two points f(x′), f(x′′) ∈ YN are marked

with the negative orthant, which is represented by a dotted pattern.

In Figure 2.2b we consider the same objective space. As already mentioned, the

ideal point is drawn there. In addition, the Nadir point yN is marked, which is

composed of the worst individual objective values over the efficient set. Furthermore,

10 2.1. General Definitions

the point ȳ is simply given by the worst individual objective values over the entire

feasible set and can be considered as a global upper bound.

Thus, the Nadir point yN =
(
yN1 , . . . , y

N
p

)⊤
is given by

yNk = max
x∈XE

fk(x), k = 1, . . . , p (2.5)

and a global upper bound yUB =
(
yUB
1 , . . . , yUB

p

)⊤
is given by

yUB
k = max

x∈X
fk(x), k = 1, . . . , p. (2.6)

Note that the ideal point, Nadir point and the global upper bound defined in (2.1),

(2.5) and (2.6), respectively, do not necessarily exists if, for example, f(X) is an open

set or unbounded. Although we have assumed that X and f(X) are nonempty, it may

also be the case that XE is empty. Unless otherwise stated, we assume from now that

XE is nonempty.

Furthermore, we provide the definitions of properly efficient solutions and supported

efficient solutions.

Definition 2 (Proper efficiency (Geoffrion, 1968)). An efficient solution x̂ is called

properly efficient in Geoffrion’s sense if there exists as scalar M > 0 such that for all

x ∈ X and for all k ∈ {1, . . . , p} with fk(x) < fk(x̂), it holds that

fk(x̂)− fk(x)

fi(x)− fi(x̂)
≤M (2.7)

for some i ∈ {1, . . . , p} with fi(x) > fi(x̂). The corresponding outcome vector f(x̂) is

called properly non-dominated.

We denote the set of all properly efficient solutions by XpE and the set of all

properly non-dominated outcome vectors by YpN. In other words, YpN is the set

of all non-dominated points with bounded trade-offs. Figure 2.3 shows an example

where YpN ⫋ YN, because the points y1 and y2 are non-dominated but not properly

non-dominated, see also Ehrgott, 2005 for a similar example.

A further definition is given for supported efficient solution. This definition is

important for the weighted sum method in Section 2.2.1 since the weighted sum

method can only find supported efficient solution.

Definition 3 (Supported efficiency). An efficient solution x̂ ∈ XE is called supported

efficient solution if there is no point y ∈ conv {f(x) |x ∈ X} dominating f(x̂).

Chapter 2. Multiobjective Optimization 11

YN

f(x′)

f(x′′)

f(X)

f1

f2

(a) Pareto front.

yI

yN

yUB

f(X)

f1

f2

(b) Ideal point yI, Nadir point yN and upper bound yUB.

Figure 2.2: Example for a feasible set of outcome vectors for a biobjective optimization
problem.

12 2.1. General Definitions

f(X)

YN

f1

f2

(a) Non-dominated points.

f(X)

YpN

y1

y2

f1

f2

(b) Properly non-dominated points.

Figure 2.3: Example for properly non-dominated points.

Chapter 2. Multiobjective Optimization 13

In Figure 2.2a it can be seen that the solution x′′ is a supported efficient solution

because f(x′′) lies on the boundary of conv{f(X)}. However, the solution x′ is not a

supported efficient solution because
(
f(x′)− Rp

⩾

)
∩ conv {f(X)} ≠ ∅.

2.2 Solution Approaches and Related Literature

In general, there is more than one Pareto optimal solution of (MOP) and it is usually

difficult to obtain a complete representation of the Pareto front. Therefore, often only

a set of Pareto optimal solutions is computed to represent the Pareto front. When

searching for solutions to problem (MOP), we distinguish between (potentially) exact

methods and heuristic methods. We first have a look at (potentially) exact methods.

A common approach to finding solutions of a multiobjective optimization problems

(MOP) are scalarization techniques where the original problem (MOP) is replaced by

a series of related single-objective optimization problems and then solved by using

appropriate single-objective methods. If associated single-objective problems are solved

to global optimality, then exact Pareto optimal solutions are obtained. The weighted

sum method, as an example for a scalarization technique, is a simple approach where

the multidimensional objective function is replaced by a weighted sum of the individual

objective functions without changing the feasible set. Thus, by solving the weighted

sum problem for various selection of different non-negative weights, a set of solutions

for (MOP) may be computed. The weighted sum method is explained in Section 2.2.1.

Other examples for scalarization techniques are the ε-constrained method, the hybrid

method and many more. There is a whole range of different scalarization methods, see,

e.g., Ehrgott, 2005; Miettinen and Mäkelä, 2002. The hypervolume method, which we

present in Chapter 3, is also a scalarization technique.

In contrast to scalarization techniques, there also exist multiobjective versions of

gradient descent methods or Newton methods. These methods also belong to the

(potentially) exact methods. Especially worth mentioning here is the multiobjective

descent algorithm by Désidéri, 2009; Fliege and Svaiter, 2000 which we briefly explain

in Section 2.2.3.

Furthermore, there are also evolutionary multiobjective optimization (EMO) al-

gorithms, see Deb, 2001. These are heuristic methods that aim at an efficient and

high quality approximation of points in YN. These methods are population based

metaheuristic algorithms inspired by the biological evolution. Starting with an initial

population of solutions, the “fitness” of the individuals will be evaluated and then

14 2.2. Solution Approaches and Related Literature

candidates for creating new solutions will be selected. For related literature, see, e.g.,

K. Deb, 2011; K. Deb and Goel, 2002.

In this thesis we will on focus two different scalarization techniques, the weighted

sum method introduced in Section 2.2.1 and the hypervolume method introduced in

Chapter 3. We do this because we consider from Chapter 4 PDE constrained shape

optimization problems with more than one objective where the function evaluations are

expensive and additional constraints are not easy to handle. Therefore, we want to use

methods, that do not change the feasible set or where the change in the feasible set can

be ignored in the numerical implementation, under certain circumstances. In many

other methods often further restrictions are introduced, such as in the ε-constrained

method, for example, or the solutions of additional sub-problems are required.

2.2.1 Weighted Sum Method

The weighted sum scalarization of a multiobjective optimization problem (MOP) is

given by

min ω⊤f(x) =

p∑
k=1

ωkfk(x)

s. t. x ∈ X

(WS-SP)

with the weighting vector ω = (ω1, . . . , ωp)
⊤ such that ω ⩾ 0, i.e., ω ̸= 0 and ωk ≥ 0

for all k ∈ {1, . . . , p}.
Since we aim at minimizing all individual objective functions fk, we also aim at

minimizing the weighted sum of them. By varying the weights, we want to calculate an

approximation of the Pareto front. The weights can be interpreted as preferences, i.e.,

the larger the weight ωk is chosen in relation to the other weights, the more important

is it to minimize the individual function fk.

Furthermore, in the case of having an individual objective function fk′ , that has

to be maximized, we also can use a negative weight ωk′ ≤ 0 instead of replacing fk′

by −fk′ . Nevertheless, if not stated otherwise, we always assume that all individual

objective functions are given in minimization form as in (MOP). Without loss of

generality ω can be re-scaled such that ωk ∈ [0, 1] and
∑p

k=1 ωk = 1.

In the following we discuss some characteristics of the weighted sum method and

also name some drawbacks of this method. Figure 2.4 illustrates the concept of the

weighted sum method. For a level c ∈ R the level set of the weighted sum scalarization

Chapter 2. Multiobjective Optimization 15

is given by

LW
= (c;ω) :=

{
y ∈ Rp

⏐⏐ω⊤y = c
}
. (2.8)

Obviously, the level sets are lines in the objective space, where the slope is defined

by the weighting vector ω. Thus, in order to minimize the weighted sum objective

value, the line corresponding to the level c = c1 in Figure 2.4 will be shifted as far as

possible to the lower left, i.e., the value c will be minimized as far as possible, while

the line intersects the feasible set f(X). At level c = c2, for example, we already have

intersection with YN, i.e., the intersection points with YN are a non-dominated, but

they are not optimal for the chosen weighted sum scalarization, because the level c can

be further minimized. The minimal value for c is obtained at c∗. This value is then

the objective value of an optimal solution of (WS-SP) and the resulting intersection

point f(x′′) is a non-dominated point of (MOP).

YN

f(X)

f(x′)

f(x′′)

LW
= (c1;ω)

LW
= (c2;ω)

LW
= (c∗;ω)

f1

f2

Figure 2.4: Concept of the weighted sum method.

It can be shown that if we have an optimal solution of the weighted sum scalarization

with positive weights, we have an efficient solution of the multiobjective counterpart.

More formally, we have the following theorem:

Theorem 4. If x∗ is an optimal solution of the weighted sum scalarization (WS-SP)

16 2.2. Solution Approaches and Related Literature

of (MOP) with weighting vector ω ≥ 0, then the following statements holds:

(i) If ω ≥ 0, then x∗ is a weakly efficient solution of (MOP).

(ii) If ω > 0, then x∗ is an efficient solution of (MOP).

(iii) If ω ≥ 0 and x∗ the unique solution of (WS-SP), then x∗ is a strictly efficient

solution of (MOP).

The proof can be found, e.g., in Ehrgott, 2005. Conversely, we do not have in

general that for every efficient solution x∗ there exists a corresponding weighting vector,

such that x∗ is an optimal solution of the corresponding weighted sum scalarization.

The reason for this is that non-convex parts of the Pareto front cannot be recovered

by weighted sum scalarizations. An example for this can be seen in Figure 2.4, where

no weighting vector exits such that the point f(x′) can be obtained by the weighted

sum method.

ω = (0, 1)⊤
ω = (0.25, 0.75)⊤

ω = (0.5, 0.5)⊤

ω = (0.75, 0.25)⊤

ω = (1, 0)⊤ f(X)

f1

f2

Figure 2.5: Even distribution of weighting vectors.

Furthermore, we have to be careful when choosing the weighting vectors when

aiming at an approximation of the Pareto front. In Figure 2.5 the objective space of a

biobjective optimization problem is shown. Here, the set of feasible outcome vectors is

convex. The solutions of the weighted sum method are highlighted for ω = (λ, 1− λ)

with λ = 0, 0.25, 0.5, 0.75, 1. Obviously, an even distribution of weights does not

necessarily lead to an even distribution of solutions. We refer to Das and Dennis, 1997

for a detailed analysis of this problem. Especially, if the individual objectives differ in

the scale of objective values, the weights have to be chosen with case.

Chapter 2. Multiobjective Optimization 17

2.2.2 Single-Objective Steepest Descent Algorithm

In Chapter 5 and 6 we will apply scalarization techniques to two different shape

optimization problems. Since gradient information is available in our applications,

we can use the steepest descent algorithm for the solution of the scalarized problems

such as the weighted sum scalarization. In the following, we briefly discuss the idea of

descent methods based on Geiger and Kanzow, 1999.

The steepest descent algorithm is a method to find stationary points of a single-

objective function. A stationary point of a differentiable function fs : Rn → R is

a point where the gradient is equal to zero, i.e., x ∈ Rn is stationary point of fs if

∇fs(x) = 0. We consider unconstrained single-objective optimization problems:

min fs(x)

s. t. x ∈ Rn
(SP)

where fs : Rn → R is a continuously differentiable function. Thus, the objective

function fs here is a scalar-valued function.

An iterative line search scheme can generally be described as in Algorithm 1.

Data: Choose starting solution x(0) ∈ Rn, set i := 0.
Output: Solution x(i).
while no stopping condition for x(i) is fulfilled do

Determine a search direction d(i);
Calculate a step length ti > 0;
Update x(i) = x(i) + tid

(i), set i = i+ 1;
end

Algorithm 1: Iterative Line Search Scheme

Since we want to minimize, a descent direction must be chosen as the search

direction. We call d ∈ Rn a descent direction at the point x ∈ Rn if there exits a

step length t̄ > 0 such that fs(x+ td) < fs(x) for all t ∈ (0, t̄]. A sufficient condition

for a descent direction is given by the following lemma (for the proof see Geiger and

Kanzow, 1999).

Lemma 5. Let fs : Rn → R be a continuously differentiable function, x ∈ Rn and

d ∈ Rn. If ∇fs(x)⊤d < 0, then d is a descent direction of fs at the point x.

Using the negative gradient at a non-stationary point as a search direction, i.e.,

18 2.2. Solution Approaches and Related Literature

d = −∇fs(x), we have with

∇fs(x)⊤d = −∥∇fs(x)∥ < 0 (2.9)

a descent direction. The method is then called gradient descent algorithm or steepest

descent algorithm.

Later in this thesis we implement the steepest descent algorithm. For calculating a

step length we use the Armijo rule: First we choose σ ∈ (0, 1) and β ∈ (0, 1). Then

we determine ti := max
{
βℓ
⏐⏐ ℓ = 0, 1, 2, . . .

}
for the current iterate x(i) and search

direction d(i) such that

f(x(i) + tid
(i)) ≤ fs(x) + σti∇fs(x(i))⊤d(i). (2.10)

The stopping condition for x(i) is often chosen as ∥∇fs(x(i))∥ < ε with ε > 0

sufficiently small. Moreover, we additionally limit the number of iterations, i.e.,

i ≤ imax for a previously chosen imax ∈ N.
For a detailed introduction to solutions approach for unconstrained optimization

problem see, e.g., Geiger and Kanzow, 1999.

2.2.3 Multiobjective Descent Algorithm

In this section we briefly explain the multiobjective descent algorithm. Later in this

thesis, we want compare the multiobjective descent algorithm to the hypervolume

method presented in Chapter 3. Additionally, part of this thesis is the implementation

of weighted sum method for a shape optimization problem introduced in Chapter 5.

The results were already published in Doganay et al., 2020 including a comparison

between the numerical solutions obtained by the weighted sum method and the

numerical solutions obtained by the multiobjective descent algorithm. This will be

discussed in Section 5.4. The explanation is based on Doganay et al., 2020.

The multiobjective descent algorithm can be understood as a natural generalization

of single-objective gradient descent algorithms and was proposed in Fliege and Svaiter,

2000, see also Fliege, Vaz, and Vicente, 2019. Similar approaches have been suggested

in Désidéri, 2009, 2012; Giacomini, Désidéri, and Duvigneau, 2014

First we have to state the definition of Pareto critical solutions. If derivative

information is available, necessary optimality conditions can be formulated that

generalize the concept of critical points from single-objective optimization. In the

following, we assume that the (MOP) is unrestricted, thus the feasible set is given

Chapter 2. Multiobjective Optimization 19

by X = Rn. Assuming that all individual objective functions are continuously

differentiable, a necessary condition for a solution x ∈ Rn to be locally Pareto optimal

is that {
d ∈ Rn : ∇fk(x)⊤ d < 0, k = 1, . . . , p

}
= ∅, (2.11)

i.e., there does not exist a direction d ∈ Rn that is a descent direction for all individual

objectives. If x∗ ∈ Rn satisfies this condition we call it a Pareto critical solution.

Now, the multiobjective descent algorithm is an iterative process starting with a

solution x(0), where in every iteration all individual objective functions will improved

simultaneously, i. e., f
(
x(i+1)

)
< f

(
x(i)
)
. This is based on the observation that if a

solution x ∈ Rn is not Pareto critical according to (2.11), then there exists a direction

d ∈ Rn which is a descent direction all single objectives. Thus, if in an iterative

solution method the current iterate x(i) ∈ Rn is not Pareto critical, a direction of

steepest biobjective descent d(i) ∈ Rn can be defined according to Fliege and Svaiter,

2000 as a direction solving the auxiliary optimization problem

min
ρ∈R,d∈Rn

ρ+
1

2
∥d∥2

s.t. ∇fk
(
x(i)
)⊤

d ≤ ρ, k = 1, . . . , p.

(2.12)

Problem (2.12) is a convex quadratic optimization problem with linear inequality

constraints. Note that the term 1
2∥d∥

2 in the objective function ensures that the

problem is bounded and that the solution ρ = 0, d = 0 is always feasible. Note also

that the optimal value ρ∗ is negative if and only if d∗ ̸= 0, i. e., if a direction of steepest

multiobjective descent exists.

When a direction of steepest multiobjective descent d(i) ≠ 0 is found, then we

move from x(i) into the direction d(i) to a new point x(i+1) := x(i) + tid
(i). The step

length ti > 0 is computed using an Armijo-like rule. A step length t is accepted if it

guarantees a sufficient multiobjective descent in the sense that

fk

(
x(i) + t d(i)

)
≤ fk

(
x(i)
)
+ β t∇fk

(
x(i)
)⊤

d(i), k = 1, . . . , p (2.13)

with β ∈ (0, 1) be a predefined constant. A proof for the finiteness of this procedure is

given in Fliege and Svaiter, 2000.

The overall method is summarized in Algorithm 4.

20 2.2. Solution Approaches and Related Literature

Data: Choose starting solution x(0) ∈ Rn and β ∈ (0, 1), set i := 1.
Result: Solution x(i).
while no stopping condition for x(i) is fulfilled do

Compute d(i) as a solution of (2.12);
Compute a step length ti > 0 according to (2.13);
Update x(i+1) := x(i) + ti d

(i) and i = i+ 1;

end

Algorithm 2: Multiobjective descent algorithm according to Fliege and Svaiter,
2000.

Chapter 3

Hypervolume Scalarization

In the following section we will introduce the hypervolume scalarization. The results

in this section have been published in Schultes et al., 2021 for the biobjective case.

Here, we present a generalization to multiobjective problems with an arbitrary number

of objectives, i.e., for arbitrary p ≥ 2. The hypervolume scalarization is based on the

hypervolume indicator that was introduced by Zitzler and Thiele, 1999 as a measure to

compare the performance of evolutionary multiobjective algorithms. For more related

literature see Section 3.1.

For a multiobjective optimization problem (MOP) the hypervolume indicator

measures the hypervolume spanned by an outcome vector f(x) (or a set of outcome

vectors f(S) := {f(x) | x ∈ S ⊂ X}) and a predefined reference point r ∈ Rp, i.e., for

a set of solutions S ⊂ X and a reference point r ∈ Rp the hypervolume indicator is

given by

H(f(S)) = Vol

(⋃
x∈S

(
f(x) + Rp

≧

)
∩
(
r − Rp

≧

))
, (3.1)

with Rp
≧ defining the positive orthant, see (2.4). For a single solution x ∈ X , i.e.,

|S| = 1, the hypervolume indicator simplifies to

H(f(x)) =

p∏
k=1

(rk − fk (x)) . (3.2)

While in EMO algorithms the hypervolume indicator is mainly used to evaluate

the quality of already computed solutions (or solution sets, respectively), it can

also be used as a scalarization method for (MOP). For a given reference point

21

22

r1f1(x)

r2

f2(x)

YN

r

f(x)

H(f(x))

f1

f2

Figure 3.1: Hypervolume contribution H(f(x)) of a solution x with respect to the
reference point r (cf. Schultes et al., 2021).

r := (r1, . . . , rp)
⊤ ∈ Rp the hypervolume scalarization of (MOP) is formulated by

max H(f(x)) =

p∏
k=1

(rk − fk (x))

s. t. f(x) ≦ r,

x ∈ X .

(HV-SP)

We thus want to find a solution x ∈ X such that the dominated hypervolume

w.r.t. f(x) is maximized, i.e., we aim at maximizing the volume spanned by the

predefined reference point and the possible outcome vectors in order to find an efficient

solution of (MOP).

In the following, we assume that the reference point r is chosen such that the set

{x ∈ X | f(x) ≦ r} ≠ ∅. Additionally, we assume that an optimal solution of (HV-SP)

exists.

The constraint f(x) ≦ r is essential since also points that are dominated by the

reference point in an even number of objectives have positive hypervolume values

and are thus potential candidates for maximizing H(f(x)). Thus, with the constraint

f(x) ≦ r we ensure that H(f(x)) is non-negative and that feasible points of (HV-SP)

are not dominated by the reference point r.

However, the hypervolume scalarization only guarantees efficiency if H(f(x)∗) ̸= 0

for the optimal x∗. Otherwise, if H(f(x)∗) = 0, we cannot ensure that x∗ minimizes all

individual objective functions. In this case we can only guarantee weak efficiency, see

Chapter 3. Hypervolume Scalarization 23

Theorem 6. Consequently, we know that the individual objective functions are aimed

at being minimized with the constraint f(x) ≦ r and H(f(x∗)) ̸= 0 for the optimal

value x∗. Note that from H(f(x)) > 0 and f(x) ≦ r it follows that f(x) < r. Thus, if

H(f(x)) is positive, the constraint f(x) ≦ r cannot be active in any component.

In general the constraint cannot become active when all feasible outcome vectors

lie below the reference point, i.e., when r is chosen such that f(x) < r for all x ∈ X .
In this case the constraint f(x) ≦ r can be omitted. Furthermore, if H(f(x∗)) ̸= 0 for

the optimal x∗, it would be possible to exclude exactly one arbitrary but fixed index

of the constraint (i.e., fl(x) ≤ rl for one l ∈ {1, . . . , p} can be omitted) since then it

will be automatically satisfied at optimality due to the maximization of the product

H(f(x)) =
∏p

k=1 (rk − fk (x)).

The following result shows that under the above assumptions the hypervolume

scalarization (HV-SP) always generates a (weakly) efficient solution. This result is

not new, however, we include a proof for the sake of completeness.

Theorem 6. Let x∗ be an optimal solution of the hypervolume scalarization problem

(HV-SP).

i) If H(f(x∗)) ̸= 0, then x∗ is efficient for the corresponding multiobjective opti-

mization problem (MOP).

ii) If H(f(x∗)) = 0, then x∗ is weakly efficient for the corresponding multiobjective

optimization problem (MOP).

Proof. i) Suppose that the optimal solution x∗ of (HV-SP) is not efficient for

(MOP). Then there exists a solution x′ ∈ X such that fk (x
′) ≤ fk(x

∗) for

all k ∈ {1, . . . , p} with at least one strict inequality. Since H(f(x∗)) ̸= 0

and f(x∗) ≦ r we have rk − fk(x
∗) > 0 for all k = 1, . . . , p. Thus, we have

rk − fk (x
′) ≥ rk − fk(x

∗) > 0 for all k ∈ {1, . . . , p} with at least one strict

inequality. It follows that

H (f (x′)) =

p∏
k=1

(rk − fk (x
′)) >

p∏
k=1

(rk − fk (x
∗)) = H(f(x∗)),

contradicting the assumption that x∗ is optimal for (HV-SP).

ii) Suppose that the optimal solution x∗ of (HV-SP) is not weakly efficient for

(MOP). Then there exists a solution x′ ∈ X such that fk (x
′) < fk(x

∗) for all

k ∈ {1, . . . , p}. Since f(x∗) ≦ r we have rk − fk(x
∗) ≥ 0 for all k = 1, . . . , p.

24

With fk (x
′) < fk(x

∗) for all k ∈ {1, . . . , p} it follows that rk − fk (x
′) > 0 for

all k ∈ {1, . . . , p}. All in all, we have

0 ̸= H (f (x′)) =

p∏
k=1

(rk − fk (x
′)) >

p∏
k=1

(rk − fk (x
∗)) = H (f (x∗)) = 0,

contradicting the assumption that x∗ is optimal for (HV-SP).

Conversely, we have the following:

Corollary 7. If x∗ ∈ X is an efficient solution of (MOP), then it is optimal for

(HV-SP) with reference point r := f(x∗).

Note that this is of rather theoretical interest since this choice of the reference point

assumes that the corresponding efficient solution is already known. Practical choices

for reference points in the context of biobjective shape optimization are discussed in

Section 5.5.3.

Efficient numerical optimization procedures benefit from gradient information to

obtain fast convergence. In this situation, we can take advantage of the fact that the

gradient of the hypervolume indicator can be determined from the gradients of the

individual objective functions using the product-rule of differentiation:

∇H(f(x)) = −
p∑

k=1

p∏
l=1
l ̸=k

(rl − fl(x)) · ∇fk(x) (3.3)

In Emmerich and Deutz, 2014 the properties and computational costs of the gradient

of the hypervolume indicator H(f(S)) for a set of solutions S ⊂ X were analyzed.

However, in this work we will only consider the hypervolume indicator H(f(x)) for one

solution x ∈ X . Thus, we observe that the gradient vector of the hypervolume indicator

for one solution can be interpreted as a negatively weighted sum of the gradients of the

individual objective functions. The weights depend on the component-wise distances

from the current objective value vector to the reference point. We will analyze that in

Section 3.4.1.

In the biobjective case (p = 2, i.e., f = (f1, f2)
⊤) we have the hypervolume

indicator

H(f(x)) = (r1 − f1(x)) · (r2 − f2(x)) (3.4)

Chapter 3. Hypervolume Scalarization 25

and the gradient

∇H (f(x)) = −

(
r2 − f2(x)

r1 − f1(x)

)⊤
∇f(x) (3.5)

= −(r2 − f2(x)) · ∇f1(x)− (r1 − f1(x)) · ∇f2(x). (3.6)

3.1 Related Literature

This literature review on the hypervolume indicator is taken from Schultes et al., 2021.

We refer exemplarily to Auger et al., 2009 and Yang et al., 2019 as two examples

from this active research field. The hypervolume indicator also plays a prominent role

as a quality indicator in the subset selection problem (see, for example, Guerreiro

and Fonseca, 2020), i.e., when a subset of usually bounded cardinality is sought to

represent the Pareto front. Theoretical properties as well as heuristic and exact

solution approaches for subset selection problems were discussed, among many others,

in Auger et al., 2009, 2012; Bringmann, Cabello, and Emmerich, 2017; Bringmann,

Friedrich, and Klitzke, 2014; Guerreiro, Fonseca, and Paquete, 2016; Kuhn et al., 2016.

We particularly mention Emmerich and Deutz, 2014 for a detailed analysis of

hypervolume gradients in the context of subset selection problems, a special case of

which is considered in this work.

When restricting the search to individual solutions rather than solution sets, then

the hypervolume indicator can be interpreted as a nonlinear scalarizing function, see,

for example, Hernandez et al., 2020; Schulze et al., 2020; Touré et al., 2019. In the

biobjective case, the hypervolume scalarization yields a quadratic objective function

that has an intuitive geometrical interpretation. We note that quadratic scalarizations

are also considered in Fliege, 2004 and in the context of reference point methods

in Dandurand and Wiecek, 2016, and that in the biobjective case the hypervolume

scalarization can be interpreted as a special case of these approaches. Furthermore,

hypervolume scalarizations can be easily integrated into interactive approaches that

are based on the iterative selection of reference points (like, for example, the Nimbus

method, see Miettinen and Mäkelä, 1996). See Miettinen and Mäkelä, 2002 for a

comparison of reference point methods illustrating how different methods elicitate the

decision makers preferences.

The hypervolume scalarization shows some similarities with other reference point

based methods like, e.g., compromise programming techniques which were introduced

26 3.2. Contour Lines of the Hypervolume Indicator

by Bowman, 1976 and Freimer and Yu, 1976; Yu, 1973 in the context of group

decisions. While compromise programming models typically aim at the minimization

of the distance of an outcome vector from a given (utopian) reference point, e.g., based

on ℓp-norms, the hypervolume scalarization aims at maximizing the volume dominated

by an outcome vector w.r.t. a given reference point. Both approaches use nonlinear

objective functions (except for compromise programming with ℓ1-distances) and do

not require additional constraints. See also Büsing et al., 2017 for recent research on

reference point methods in the context of approximations of discrete multiobjective

optimization problems.

3.2 Contour Lines of the Hypervolume Indicator

In the following we have a closer look at the contour lines of the hypervolume indicator.

We want to motivate why the hypervolume method is not limited to the calculation of

solutions in convex parts of the Pareto front. Corollary 7 already shown that in theory

all efficient solutions can be computed by the hypervolume scalarization. However,

r := f(x∗), with x∗ an efficient solution, is not a practicable choice for the reference

point since we do not know the efficient set in advance.

This section is partly taken from Schultes et al., 2021 and extended from the

biobjective case to the multiobjective case. We note an imprecise formulation in

Schultes et al., 2021, p. 1212, stating that the (biobjective) hypervolume indicator

H is a concave function, which is not true. The hypervolume indicator is neither

convex nor concave. However, we will show here that the primary argument is that

the contour lines of the hypervolume indicator are concave and thus, the hypervolume

scalarization is not limited to calculate only supported efficient solutions.

The regions of the Pareto front which can be attained using a scalarization method

are determined by the level sets and contour lines of the scalarizing function. Consider,

for example, the contour lines of the weighted sum scalarization (hyperplanes) and

of the weighted Chebyshev scalarization (hyperboxes with weight-dependent aspect

ratio), respectively. While the former is restricted to supported non-dominated points,

the latter has the potential to determine all non-dominated points, including the

non-supported ones, see, for example, Ehrgott, 2005.

The hypervolume indicator H can be interpreted as a measure for the volume of an

axis parallel box spanned by a point y = f(x) ∈ Rp and the reference point r ∈ Rp. In

the biobjective case (p = 2) we have an axis parallel rectangle and in the triobjective

Chapter 3. Hypervolume Scalarization 27

case (p = 3) we have an axis parallel rectangular cuboid.

In the following, we rewrite the function H depending on y ∈ Rp instead of

f(x) ∈ Rp. The level set of H for the level c ∈ R+, with R+ is the set of positive real

numbers, is given by

LH
= (c) := {y ∈ Rp |H(y) = c, y < r} . (3.7)

We assume that y < r since we are interested in points that are not dominated by the

reference point r. Note that it follows from y < r that c > 0. Thus, the level set is

restricted to the domain C = {y ∈ Rp | y < r}.

We define the index sets I := {1, . . . , p} and I−q := I\{q} for q ∈ {1, . . . , p}
arbitrary but fixed. Solving the equation H(y) = c for yq with q ∈ {1, . . . , p} arbitrary
but fixed, y < r and c > 0 yields:

H(y) = c

⇐⇒
p∏

k=1

(rk − yk) = c

⇐⇒ (rq − yq) ·
∏

k∈I−q

(rk − yk) = c

⇐⇒ rq − yq =
c∏

k∈I−q
(rk − yk)

⇐⇒ −yq = −rq +
c∏

k∈I−q
(rk − yk)

⇐⇒ yq = rq −
c∏

k∈I−q
(rk − yk)

Note that from y < r it follows that (rk − yk) ̸= 0 for all k = 1, . . . , p.

Let the domain C−q given by

C−q :=
{
y−q ∈ Rp−1 ⏐⏐ yk < rk, k ∈ I−q

}
. (3.8)

Thus, the domain C−q defines a subspace with the strict inequality yk < rk for all

k ∈ I−q and the vector y−q ∈ Rp−1 is defined by the vector y ∈ Rp such that

y−q = (y1, . . . , yq−1, yq+1, . . . , yp)
⊤
, (3.9)

i.e., we consider vector y without index q. For a fixed level c ∈ R+ we can define a

28 3.2. Contour Lines of the Hypervolume Indicator

function scq : C−q → R with q ∈ {1, . . . , p} as

scq (y−q) := rq −
c∏

k∈I−q
(rk − yk)

(3.10)

Subsequently, the contour lines for c ∈ R+ can be described as

LH
= (c) =

{(
y1, . . . , yq−1, s

c
q (y−q) , yq+1, . . . , yp

)⊤ ∈ Rp
⏐⏐⏐ yk < rk ∀k ∈ I−q

}
. (3.11)

Lemma 8. The function scq (y−q) given by

scq (y−q) := rq −
c∏

k∈I−q
(rk − yk)

(3.10)

with q ∈ {1, . . . , p} arbitrary but fixed and c ∈ R+ is concave on the domain C−q ={
y−q ∈ Rp−1

⏐⏐ yk < rk, k ∈ I−q
}
.

Proof. Let q ∈ {1, . . . , p} be an arbitrary but fixed index. The partial derivatives and

the second-order partial derivatives of scq w.r.t. the components of y−q ∈ C−q are given

by

∂scq (y−q)

∂ym
=

−c
(rm − ym) ·

∏
k∈I−q

(rk − yk)
≤ 0, m ∈ I−q;

(3.12)

∂2scq (y−q)

∂ym∂yn
=

−c
(rm − ym) · (rn − yn) ·

∏
k∈I−q

(rk − yk)
≤ 0, m, n ∈ I−q,m ̸= n;

(3.13)

∂2scq (y−q)

∂ym∂ym
=

−2c
((rm − ym))2 ·

∏
k∈I−q

(rk − yk)
≤ 0, m ∈ I−q.

(3.14)

The Hessian of scq (y−q) can be written as

Hscq
(y−q) = (θm,n · zm,n(y))m,n∈I−q

∈ R(p−1) × R(p−1) (3.15)

with θm,n :=

⎧⎨⎩−2, if m = n

−1, if m ̸= n
(3.16)

Chapter 3. Hypervolume Scalarization 29

and zm,n(y) =
c∏

k∈I−q
(rk − yk)

· 1

(rm − ym) · (rn − yn)
, y ∈ C. (3.17)

Note that θm,n and zm,n(y) are defined for all m,n ∈ I including m,n = q since we

need this for technical reasons to simplify the following computations. Furthermore, it

holds that zm,n(y) ̸= 0 for all y ∈ C since c ∈ R+ and y < r.

We will show that the Hessian Hscq
(y−q) is negative semi-definite on the domain

C−q by calculating the determinate of Hscq
(y−q) as well as the determinants of

submatrices of Hscq
(y−q).

Towards this end, define the matrix A(y) ∈ Rp × Rp as follows:

A(y) = (θm,n · zm,n(y))m,n∈I (3.18)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2z1,1(y) −z1,2(y) · · · −z1,p−1(y) −z1,p(y)

−z2,1(y) −2z2,2(y) · · · −z2,p−1(y) −z2,p(y)
...

...
. . .

...
...

−zp−1,1(y) −zp−1,2(y) · · · −2zp−1,p−1(y) −zp−1,p(y)

−zp,1(y) −zp,2(y) · · · −zp,p−1(y) −2zp,p(y)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.19)

If we delete row and column q from A(y), we get the Hessian matrix Hscq
(y−q), i.e.,

Hscq
(y−q) is a submatrix of A(y). We will first show how to calculate the determinant

of A(y) and then explain how to calculate the determinants of submatrices of A(y).

We use Gaussian elimination to transform the matrix A(y) in a upper triangular
matrix by performing a sequence of elementary row operations. Note that adding a
scalar multiple of one row to another row does not change the determinant, see, for
example, Liesen and Mehrmann, 2021, p. 103.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2z1,1(y) −z1,2(y) −z1,3(y) ··· −z1,p(y)

−z2,1(y) −2z2,2(y) −z2,3(y) ··· −z2,p(y)

−z3,1(y) −z3,2(y) −2z3,3(y) ··· −z3,p(y)

.

.

.
.
.
.

.

.

.
. . .

.

.

.

−zp,1(y) −zp,2(y) −zp,3(y) ··· −2zp,p(y)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

←−

−1
2

·
z2,1(y)

z1,1(y)

+

←−−−−−−−−−−−−

−1
2

·
z3,1(y)

z1,1(y)

+

←−−−−−−−−−−−−−−−−−−−−−−−

−1
2

·
zi,1(y)

z1,1(y)

i=4,...,p−1

+

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−1
2

·
zp,1(y)

z1,1(y)

+

(3.20)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2z1,1(y) −z1,2(y) −z1,3(y) ··· −z1,p(y)

0 −3
2 z2,2(y)

−1
2 z2,3(y) ··· −1

2 z2,p(y)

0 −1
2 z3,2(y)

−3
2 z3,3(y) ··· −1

2 z3,p(y)

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 −1
2 zp,2(y)

−1
2 zp,3(y) ··· −3

2 zp,p(y)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
←−

−1
3

·
z3,2(y)

z2,2(y)

+

←−−−−−−−−−−−−

−1
3

·
zi,2(y)

z2,2(y)

i=4,...,p−1

+

←−−−−−−−−−−−−−−−−−−−−−−−

−1
3

·
zp,2(y)

z2,2(y)

+

(3.21)

30 3.2. Contour Lines of the Hypervolume Indicator

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2z1,1(y) −z1,2(y) −z1,3(y) ··· −z1,p(y)

0 −3
2 z2,2(y)

−1
2 z2,3(y) ··· −1

2 z2,p(y)

0 0 −4
3 z3,3(y) ··· −1

3 z3,p(y)

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 −1
3 zp,3(y) ··· −4

3 zp,p(y)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ←−

−1
4

·
zi,3(y)

z3,3(y)

i=4,...,p−1

+

←−−−−−−−−−−−−

−1
4

·
zp,3(y)

z3,3(y)

+

(3.22)

The next rows will be transformed in the same way, i.e., row i ∈ {j + 1, . . . , p} will
be transformed by adding

−zi,j(y)
(j+1)zj,j(y)

times row j for j = 4, . . . , p− 1, following to the

last step:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2z1,1(y) −z1,2(y) −z1,3(y) · · · −z1,p(y)

0 −3
2 z2,2(y)

−1
2 z2,3(y) · · · −1

2 z2,p(y)

0 0 −4
3 z3,3(y) · · · −1

3 z3,4(y)

...
...

...
. . .

...

0 0 0 · · · −p
(p−1)zp,p(y)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
←−

−1
p ·

zp,p−1(y)

zp−1,p−1(y)

+

(3.23)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2z1,1(y) −z1,2(y) −z1,3(y) · · · −z1,p(y)

0 −3
2 z2,2(y)

−1
2 z2,3(y) · · · −1

2 z2,p(y)

0 0 −4
3 z3,3(y) · · · −1

3 z3,4(y)

...
...

...
. . .

...

0 0 0 · · · −(p+1)
p zp,p(y)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.24)

Since we only added scalar multiples of one row to another row, the determinants of

the original matrix and of the transformed matrix are equal. Now we have an upper

triangular matrix. Thus, the determinant can be calculated by its diagonal entries

(Liesen and Mehrmann, 2021, p. 99). It follows that the determinant is given by

det(A(y)) =

p∏
k=1

(−1) · k + 1

k
· zk,k(y) = (−1)p · (p+ 1) ·

p∏
k=1

zk,k(y). (3.25)

Now we define the submatrix A−q(y) by deleting row q and column q from A(y).

If we delete row q and column q from A(y), we get the Hessian matrix of scq, i.e.,

A−q(y) = Hscq
(y−q). Additionally, we define the submatrix A−Q(y) for Q ⫋ I by

deleting all columns and rows with indices q′ ∈ Q ⫋ I. The determinants of the

submatrices A−Q(y) and A−q(y), respectively, can be calculated in the same way as

Chapter 3. Hypervolume Scalarization 31

above, see (3.20)–(3.24). It follows that the determinant of A−Q(y) is given by

det (A−Q(y)) =

|I−Q|∏
k=1

(
(−1) · k + 1

k

)
·
∏

k∈I−Q

zk,k(y)

= (−1)|I−Q| · (|I−Q|+ 1) ·
∏

k∈I−Q

zk,k(y)

(3.26)

with I−Q = I\Q. Thus, the determinant of the Hessian matrix Hscq
(y−q) is given by

det
(
Hscq

(y−q)
)
= det (A−q(y)) = (−1)p−1 · p ·

∏
k∈I−q

zk,k(y). (3.27)

Following Sylvester’s minorant criterion, a real symmetric matrix is negative definite

if and only if all even principal minors of this matrix are positive and all odd principal

minors of this matrix are negative (see, for example, (Bhimasankaram and Rao, 2000,

p. 342)).

The principal minors of Hscq
(y−q) are given by the determinants of the submatrices

A−Q(y) with Q ⫋ I and q ∈ Q. We have zm,n(y) > 0 for all y ∈ C = {y ∈ Rp | y < r}
and m,n ∈ I. Thus, all even principal minors of Hscq

(y−q) are positive and all odd

principal minors of Hscq
(y−q) are negative, see (3.26). Consequently, the Hessian

matrix Hscq
(y−q) is negative definite on the domain C−q and thus, scq is strictly

concave for every q ∈ I with c ∈ R+.

The reader may ask if there is a simpler way to show concavity of the level sets

of H on the domain C = {y ∈ Rp | y < r} since their representation yq = sq(y−q)

considered on the domain Cq is a function composed of a linear function and the

product of concave functions.

However we emphasize that the product of strictly convex (concave) functions is

not strictly convex (concave) in general. This is even not the case if the functions

have only positive (negative) values on the considered domain. Consider, for example,

the one-dimensional functions f(x) = x
3
2 with x > 0 and h(x) = x−1 with x > 0.

These functions are strictly convex and have positive values on the considered domain

{x ∈ R |x > 0}, but the product f(x) · h(x) =
√
x is strictly concave. This example is

taken from Dietz, 2019.

We also note that there are special cases, e.g., in the one-dimensional case, where

convexity (concavity) follows from appropriate conditions. Under the assumptions

that two twice differentiable functions f : R→ R and h : R→ R are convex, have only

32 3.2. Contour Lines of the Hypervolume Indicator

positive values and their first derivatives have the same sign, it can be shown that the

product f · h is convex. For this consider the second derivative

(f · h)′′ = f ′′ · h+ 2f ′ · h′ + f · h′′. (3.28)

We have assumed that f(x) > 0 and h(x) > 0 for all x ∈ R. Since f and g are convex,

it holds that f ′′(x) ≥ 0 and h′′(x) ≥ 0 for all x ∈ R, respectively. With this we have

f ′′(x) · h(x) ≥ 0 and f(x) · h′′(x) ≥ 0 for all x ∈ R. We have also assumed that the

first derivatives have the same sign, i.e., f ′(x) · h′(x) ≥ 0 for all x ∈ R. It follows that
2f ′(x) · h′(x) ≥ 0 for all x ∈ R. Thus, the sum of these parts is also non-negative and

therefore the product f · h is convex.

If we consider more than two objectives, i.e., p ≥ 3, we have a multidimensional

function for s−q in Lemma 8. In this case the situation is more complicated. Consider

the product f · h of two multidimensional functions f : Rn → R and h : Rn → R with

n ≥ 2 that are twice differentiable. Now we investigate whether there is a similar

sufficient condition as the one discussed above for the one-dimensional case. Towards

this end, assume that f and h are convex and that f(x) > 0 and h(x) > 0 for all

x ∈ Rn. We know that if the Hessian of a multidimensional function is positive

semi-definite, then this function is convex. We consider Hessian Hf ·h of f · h and

obtain

Hf ·h = Hf · h+∇f · (∇h)⊤ +∇h · (∇f)⊤ + f ·Hh. (3.29)

For a matrix A = A1+· · ·+Aℓ with Ai ∈ Rn×n positive semi-definite for all i = 1, . . . , ℓ

we have by definition

Ai is positive semi-definite ⇐⇒ x⊤Aix ≥ 0 ∀x ∈ Rn, i = 1, . . . , ℓ. (3.30)

Therefore, A also has to be positive semi-definite, because

x⊤Ax = x⊤(A1 + · · ·+Aℓ)x = x⊤A1x+ · · ·+ x⊤Aℓx ≥ 0 ∀x ∈ Rn. (3.31)

Thus, we know that the sum of positive semi-definite matrices is also semi-positive

definite (i.e., if A1, . . . , Aℓ positive semi-definite, then A = A1 + · · ·+Aℓ is positive

semi-definite). Note that the converse does not hold in general.

Since f and h are convex, the matrices Hf and Hh are positive semi-definite. We

also assumed that f(x) > 0 and h(x) > 0 for all x ∈ Rn. Thus, Hf · h + f ·Hh is

positive semi-definite. It remains to show that the symmetric matrix ∇f · (∇h)⊤ +

Chapter 3. Hypervolume Scalarization 33

∇h · (∇f)⊤ ∈ Rn×n is positive semi-definite. However, this matrix can be indefinite.

Consider, for example, the case that n = 2 with the gradients of f and h given by

∇f(x) = (a(x), b(x))⊤ and ∇h = (c(x), d(x))⊤ with x ∈ Rn and a, b, c, d : Rn → R.
Then we have

∇f · (∇h)⊤ +∇h · (∇f)⊤ =

(
ac ad

bc bd

)
+

(
ca cb

da db

)
(3.32)

=

(
ac+ ca cb+ ad

da+ bc db+ bd

)
(3.33)

=

(
2ac cb+ ad

cb+ ad 2bd

)
. (3.34)

Thus, the determinant can be calculated as

det
(
∇f · (∇h)⊤ +∇h · (∇f)⊤

)
= 2ac · 2bd− (cb+ ad)(cb+ ad) (3.35)

= 4abcd−
(
(cb)2 + 2abcd+ (ad)2

)
(3.36)

= 2abcd− (cb)2 − (ad)2 (3.37)

= (−1) · ((ad)− (bc))
2

(3.38)

≤ 0. (3.39)

If (ad)− (bc) ̸= 0, i.e, if (ad) ̸= (bc) the matrix is indefinite. In summary, this does not

lead to a sufficient condition for convexity. Therefore, the path chosen in the proof of

Lemma 8 seems to be appropriate, although a large matrix has to be considered.

Corollary 7 already shows that every efficient solution x∗ can be obtained by

the hypervolume scalarization problem by choosing the reference point r = f(x∗).

With the concavity of the level sets in the objective space we have an additional

argument that the hypervolume scalarization method is not limited to only calculating

supported efficient solutions, even if the reference point is not chosen as r = f(x∗). By

interpreting the reference point as a scalarization parameter, in theory every efficient

solution can be obtained as an optimal solution of a hypervolume scalarization with an

appropriately chosen reference point. Note that Beume et al., 2009 showed a similar

result for the biobjective case, namely that the level sets of the hypervolume indicator

w.r.t. points y following the Pareto front YN are concave. Nevertheless, we showed

concavity of the level sets for points with y < r, not only for points y ∈ YN.

34 3.3. Interrelation Between Contour Lines and Reference Points

3.3 Interrelation Between Contour Lines and Refer-

ence Points

In the following section we use an observation taken from Schultes et al., 2021 and

extend it to the multiobjective case. First, we consider the biobjective case.

The contour lines of the hypervolume indicator for a given reference point r ∈ R2 of

a biobjective optimization problem are illustrated in the cone r−R2
+ in Figure 3.2a. It

can be seen that their shape strongly depends on the level c > 0 of the corresponding

level set. The lower the level c, the more the corresponding contour line resembles

the contour line of a weighted l∞ function, i.e., a weighted Chebyshev scalarization.

The higher the level c, the more the contour line resembles that of a reference method

with l1 distances, that is a weighted sum scalarization with equal weights. In other

words, the closer the reference point r is to a non-dominated outcome vector ȳ in at

least one component, the more the corresponding contour line resembles a weighted

Chebyshev scalarization. On the other hand, the further the reference point is from

a non-dominated outcome vector (in all components), the more the contour line

approaches a weighted sum scalarization with equal weights.

More formally, consider the parameterization (3.10) of the contour line of the

hypervolume indicator for the biobjective case w.r.t. y1, i.e., y2 = sc2(y1) with y1 < r1.

For the level c̄ = H(ȳ) with ȳ < r we have c̄ > 0 and rk ̸= yk for k = 1, 2. We assume

for now that y1 < ȳ1 < r1. Then we can see that

lim
r→ȳ

sc̄2(y1) = lim
r→ȳ

r2 −
c̄

r1 − y1

= lim
r→ȳ

r2
→ȳ2

−

→0  
(r1 − ȳ1)(r2 − ȳ2)

r1 − y1  
→ȳ1−y1 ̸=0

= ȳ2.

This implies that for r → ȳ the function sc̄2(y1) converges point-wise to a horizontal

line passing through ȳ with y1 < ȳ1. By using a parameterization y1 = sc1(y2) it can

be shown analogously that r → ȳ the function sc̄1(y2) converges point-wise to a vertical

line passing through ȳ with y2 < ȳ2 < r2.

This analysis can be generalized to the multiobjective case. Consider the param-

eterization yq = scq (y−q) with q ∈ I. For the level c̄ = H(ȳ) with ȳ < r and with

Chapter 3. Hypervolume Scalarization 35

yk < ȳk for all k ∈ I−q we have

lim
r→ȳ

sc̄q (y−q) = lim
r→ȳ

rq
→ȳq

−
∏p

k=1

→0  
(rk − ȳk)∏

k∈I−q
(rk − yk)  
→ ȳk − yk  

constant ̸=0

= ȳq.

Thus, for r → ȳ the function sc̄q(y−q), with yk < ȳk for all k ∈ I−q, converges point-
wise to a hyperplane defined by the normal eq (the q-unit vector) and passing through

ȳ.

Next, we consider the limit of moving the reference point infinitely far away from

an arbitrary but fixed point ȳ < r. We first consider again the biobjective case: Let

the reference point be given by r = (α1, α2)
⊤r̂ with r̂ ∈ R. For c̄ = H(ȳ) and y1 < r1

we obtain that

lim
r̂→∞

sc̄2(y1) = lim
r̂→∞

α2r̂ −
(α1r̂ − ȳ1)(α2r̂ − ȳ2)

α1r̂ − y1

= lim
r̂→∞

α2r̂(α1r̂ − y1)− (α1r̂ − ȳ1)(α2r̂ − ȳ2)

α1r̂ − y1

= lim
r̂→∞

α1α2r̂
2 − α2r̂y1 − (α1α2r̂

2 − r̂(α2ȳ1 + α1ȳ2) + ȳ1ȳ2)

α1r̂ − y1

= lim
r̂→∞

r̂(α2ȳ1 + α1ȳ2 − α2y1)− ȳ1ȳ2
α1r̂ − y1

= lim
r̂→∞

r̂
r̂ (α2ȳ1 + α1ȳ2 − α2y1)− 1

r̂ ȳ1ȳ2

α1
r̂
r̂ −

1
r̂y1

=
α2ȳ1 + α1ȳ2 − α2y1

α1

= −α2

α1

(
y1 − ȳ1

)
+ ȳ2.

The function sc̄2(y1) converges point-wise to a line with slope −α2

α1
and passing through

ȳ.

Generalized to the multiobjective case we obtain the following result:

Lemma 9. Let ȳ ∈ Rp with ȳ < r and let sc̄q (y−q) be the contour line representation

for level c̄ = H(ȳ) ∈ R+ with q ∈ I arbitrary but fixed. For r = (α1, . . . , αp)
⊤r̂ ∈ Rp,

and r̂ →∞ we obtain

lim
r→∞

sc̄q (y−q) = lim
r̂→∞

αq r̂ −
∏

k∈I (αkr̂ − ȳk)∏
k∈I−q

(αkr̂ − yk)
=
∑

k∈I−q

−αq

αk
(yk − ȳk) + ȳq.

36 3.3. Interrelation Between Contour Lines and Reference Points

Proof. We have

scq (y−q) = αq r̂ −
∏

k∈I(αkr̂ − ȳk)∏
k∈I−q

(αkr̂ − yk)
=

αq r̂
∏

k∈I−q
(αkr̂ − yk)−

∏
k∈I(αkr̂ − ȳk)∏

k∈I−q
(αkr̂ − yk)

.

These products can be expanded, see (3.40), (3.41) and (3.42) below. We denote the
power set of the index sets I = {1, . . . , p} and I−q = I\{q} by P (I) and P (I−q),
respectively. The cardinality of an index set J is denoted by |J |.

∏
k∈I−q

(αk r̂ − yk) =

⎛⎝ ∏
k∈I−q

αk

⎞⎠ · r̂p−1 +

⎛⎝ ∏
k∈I−q

αk

⎞⎠ ·
p−1∑
ℓ=1

(
(−1)ℓ · r̂p−1−ℓ ·

∑
J∈P (I−q)

|J |=ℓ

∏
j∈J

yj

αj

  
=(S1)ℓ

)

(3.40)

αq r̂ ·
∏

k∈I−q

(αk r̂ − yk) =

⎛⎝∏
k∈I

αk

⎞⎠ · r̂p +

⎛⎝∏
k∈I

αk

⎞⎠ ·
p−1∑
ℓ=1

(
(−1)ℓ · r̂p−ℓ ·

∑
J∈P (I−q)

|J |=ℓ

∏
j∈J

yj

αj

  
=(S1)ℓ

)

(3.41)

∏
k∈I

(αk r̂ − ȳk) =

⎛⎝∏
k∈I

αk

⎞⎠ · r̂p +

⎛⎝∏
k∈I

αk

⎞⎠ ·
p∑

ℓ=1

(
(−1)ℓ · r̂p−ℓ ·

∑
J∈P (I)
|J |=ℓ

∏
j∈J

ȳj

αj

  
=(S2)ℓ

)

(3.42)

The factors (S1)ℓ and (S2)ℓ are independent of r̂. All in all, we have:

lim
r̂→∞

scq (y−q)= lim
r̂→∞

αq r̂
∏

k∈I−q
(αkr̂−yk)−

∏
k∈I(αkr̂− ȳk)∏

k∈I−q
(αkr̂−yk)

(3.43)

= lim
r̂→∞

(∏
k∈Iαk

)
·
(∑p−1

ℓ=1

(
(−1)ℓr̂p−ℓ ·(S1)ℓ

)
−
∑p

ℓ=1

(
(−1)ℓr̂p−ℓ ·(S2)ℓ

))(∏
k∈I−q

αk

)
· r̂p−1+

(∏
k∈I−q

αk

)
·
∑p−1

ℓ=1 (−1)ℓr̂p−1−ℓ ·(S1)ℓ
(3.44)

=αq lim
r̂→∞

(∑p−1
ℓ=1

(
(−1)ℓr̂p−ℓ ·(S1)ℓ

)
−
∑p

ℓ=1

(
(−1)ℓr̂p−ℓ ·(S2)ℓ

))
r̂p−1+

∑p−1
ℓ=1 (−1)ℓr̂p−1−ℓ ·(S1)ℓ

(3.45)

=αq lim
r̂→∞

∑p−1
ℓ=1 (−1)ℓ

=1 if ℓ=1
→0 if ℓ>1  
r̂p−ℓ

r̂p−1
·(S1)ℓ−

∑p
ℓ=1(−1)ℓ

=1 if ℓ=1
→0 if ℓ>1  
r̂p−ℓ

r̂p−1
·(S2)ℓ

r̂p−1

r̂p−1  
=1

+
∑p−1

ℓ=1 (−1)ℓ
r̂p−1−ℓ

r̂p−1  
→0

·(S1)ℓ
(3.46)

Chapter 3. Hypervolume Scalarization 37

=αq ((S2)ℓ=1−(S1)ℓ=1) (3.47)

=αq

⎛⎝∑
k∈I

ȳk
αk
−
∑

k∈I−q

yk
αk

⎞⎠ (3.48)

As a result, the level set LH
= (c̄) converges for r = (α1, . . . , αp)

⊤
r̂, r̂ →∞ point-wise

to a hyperplane with normal vector (1
α1

, . . . , 1
αp

)⊤ ∈ Rp and position vector ȳ ∈ Rp:

LH
= (c)

r̂→∞−→

{
y ∈ Rp

⏐⏐⏐⏐⏐ y1α1
+ · · ·+ yp

αp
=

p∑
k=1

ȳk
αk

}

=

{
y ∈ Rp

⏐⏐⏐⏐⏐
⟨(

1

α1
, . . . ,

1

αp

)⊤
, y − ȳ

⟩
= 0

}

The contour lines in the biobjective case passing through a given point ȳ ∈ R2,

that are generated by different reference points r > ȳ, are illustrated in Figure 3.2b.

r

y1

y2

(a) Contour lines for a fixed reference point
r ∈ R2 in r − R2

>.

r3

r2

r1

ȳ

y1

y2

(b) Contour lines passing through ȳ w.r.t. dif-
ferent reference points r > ȳ.

Figure 3.2: Contour lines of the hypervolume indicator for the biobjective case, see
Schultes et al., 2021.

38 3.4. Comparison

3.4 Comparison

3.4.1 Hypervolume Scalarization vs Weighted Sum Scalariza-

tion

As in Schultes et al., 2021 we compare the hypervolume scalarization to the weighted

sum scalarization. To interrelate hypervolume indicator for one solution with weighted

sum scalarizations, we will analyze the level sets as well as the gradients since we will

later use the steepest descent method for these scalarizations.

YN

a1(ȳ)

a2(ȳ)

H(ȳ)

Dȳ

LW
= (ω⊤ȳ) with slope − a2(ȳ)

a1(ȳ)

LH
= (c̄)s

H(ȳ)
2

r

f(x̄) = ȳ

f(x̄)− R2
+

f1

f2

Figure 3.3: A non-dominated point which is suboptimal w.r.t. the hypervolume
indicator.

In the following, let r = (r1, . . . , rp)
⊤ be a fixed reference point and let x̄ ∈ X be

a strictly feasible solution of the hypervolume scalarization problem (HV-SP), i.e.,

ȳ = f(x̄) < r.

To simplify the notation in the multiobjective case, we denote the side lengths of

the hypervolume orthotope spanned by a point y = (y1, . . . , yp)
⊤ and the reference

point r with ak(y) := rk − yk for all k = 1, . . . , p. Now the hypervolume induced by y

Chapter 3. Hypervolume Scalarization 39

can be rewritten as

H(y) =

p∏
k=1

ak(y). (3.49)

Remember that this corresponds to the volume of the orthotope spanned by the point

y and the reference point r. Thus the side length of this orthotope are given by

a(y) = (a1(y), . . . , ap(y))
⊤ ∈ R.

We first have a look at the level sets. On the one hand we know that the level sets of

the weighted sum scalarization are linear functions. The level sets of the hypervolume

indicator on the other hand are concave functions. We now have a look at the tangent

space of the hypervolume indicator level sets for at a specific level c̄ = H(ȳ) at point

ȳ.

In Section 3.2 we have shown that the level set for the hypervolume indicator for a

level c ∈ R can be described by

LH
= (c) =

{(
y1, . . . , yq−1, s

c
q (y−q) , yq+1, . . . , yp

)⊤ ∈ Rp
}
. (3.11)

with the parameterization sc : H(y) = c

scq (y−q) = rq −
c∏

k∈I−q
(rk − yk)

(3.10)

scq (y−q) = rq −
c∏

k∈I−q
ak(y)

. (3.50)

The gradient of scq (y−q) was calculated in (3.12). Thus the gradient of the contour

line is given by

∇scq (y−q) =

(
−c

ak(y) ·
∏

m∈I−q
am(y)

)
k∈I−q

(3.51)

For level c̄ = H(ȳ) =
∏p

k=1 ak(ȳ), we get

∇sc̄q
(
(ȳk)k∈I−q

)
=

(
−
∏p

m=1 am(ȳ)

ak(ȳ) ·
∏

m∈I−q
am(ȳ)

)
k∈I−q

(3.52)

=

(
−aq(ȳ)

ak(ȳ)

)
k∈I−q

(3.53)

Thus we have the tangent space of LH
= (c̄) in point ȳ given by

40 3.4. Comparison

TH
q (y−q) = ȳq +

∑
k∈I−q

−aq(ȳ)

ak(ȳ)
(yk − ȳk) (3.54)

= ȳq − aq(ȳ)
∑

k∈I−q

(yk − ȳk)

ak(ȳ)
(3.55)

The tangent space can also be written in point-normal form, with the normal vector

given by the gradient of H(y), i.e. nT =
∑

k∈I
∏

l∈I−k
al(ȳ).

TH : 0 =
∑
k∈I

∏
l∈I−k

al(ȳ)(yk − ȳk) (3.56)

It can also be shown, that the diagonal Dȳ, given by the points vi = ȳ + ai(ȳ)ei

with ei the standard unit vector, i.e., vi =
(
vi1, . . . , v

i
p

)⊤ ∈ Rp with vik = ȳk for all

i ≠ k and vik = rk, is parallel to the tangent space (3.56). The diagonal space is the

hyperplane spanned by the vectors di, i = 1, . . . , p− 1 with di = vp− vi. In Figure 3.4

are the diagonals for a objective space with two (Figure 3.4a) and three (Figure 3.4b)

objectives are visualized.

The normal vector nD can be calculated by a generalization of the cross product:

nD=d1×···×dp−1=

⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
ȳ1
...

ȳp−1

rp

⎞⎟⎟⎟⎟⎟⎠−
⎛⎜⎜⎜⎜⎜⎝

r1

ȳ2
...

ȳp

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠×···×
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
ȳ1
...

ȳp−1

rp

⎞⎟⎟⎟⎟⎟⎠−
⎛⎜⎜⎜⎜⎜⎜⎜⎝

ȳ1
...

ȳp−2

rp−1

ȳp

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.57)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−a1(ȳ)
0
...

0

ap(ȳ)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
×···×

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0

−ap−1(ȳ)
ap(ȳ)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.58)

Chapter 3. Hypervolume Scalarization 41

Dȳ

LW
= (ω⊤ȳ)

LH
= (c̄)

r

ȳ

v2

v1

a1(ȳ)

a2(ȳ)

y1

y2

(a) p = 2

y1

y2

y3

a1(ȳ)

a2(ȳ)

a3(ȳ)

r

ȳ

Dȳ
v3

v1

v2

(b) p = 3

Figure 3.4: Visualization of the diagonals for in the biobjective and triobjective case.

=det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1 −a1(ȳ) 0 ... 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0

ep−1 0 ... 0 −ap−1(ȳ)
ep ap(ȳ) ap(ȳ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.59)

=
∑
q∈I

(−1)p−1 ·eq ·
∏

l∈I−q

al(ȳ) (3.60)

=(−1)p−1 ·
∑
q∈I

eq ·
∏

l∈I−q

al(ȳ) (3.61)

=(−1)p−1 ·

⎛⎝ ∏
l∈I−1

al(ȳ),...,
∏

l∈I−p

al(ȳ)

⎞⎠⊤ (3.62)

As a result, we have nD = α · nT with a scalar α ∈ R, i.e. the diagonal space

spanned by di with i ∈ I−p and the the tangent space (3.56) are parallel. All in all,

the slope of the tangent space is defined by the ratio of the side lengths ak(ȳ) with

k = 1, . . . , p, and is the same as the slope of the diagonal space Dȳ.

The level sets of the weighted sum scalarization are given by

LW
= (c) =

{
(y1, . . . , yp)

⊤ ∈ Rp
⏐⏐ω⊤y = c

}
. (3.63)

Therefore the normal vector of these level sets are given by nW = ω ∈ Rp. If we

42 3.4. Comparison

choose wk = 1
ak(ȳ)

,or wk =
∏

l∈I−k
al(ȳ), see (3.56), for the weights, we can see, that

the level set of the weighted sum LW
= (c) with c ∈ R is parallel to the diagonal Dȳ

and the tangent space TH of LH
= (c̄) in point ȳ, because there have the same normal

direction nD and nT . For level c =
∑

k∈I
1

ak(ȳ)
· ȳk the weighted sum scalarization is

equal to this tangent space. Note that the weights of the weighted sum scalarization

are often normalized to
∑p

k=1 ωk = 1 for simplification, but this can be omitted

without affecting the properties of the weighted sum scalarization method.

All in all, that tangent space of hypervolume level sets at a point ȳ are equal or

parallel to the level sets of the weighted sum scalarization with appropriate chosen

weights that depend on the distance of ȳ to the reference point r.

Furthermore, choosing the weights wk =
∏

l∈I−k
al(ȳ) the weighted sum scalariza-

tion and the hypervolume scalarization shares the same direction of largest improvement

in point ȳ = f(x̄), i.e., −∇W (x̄) = ∇H(f(x̄), because

−∇W (x̄) = −
p∑

k=1

∏
l∈I−k

al(ȳ)∇fk(x̄) = ∇H (f(x̄)) (3.64)

Thus, the negative gradient of the hypervolume indicator for a fixed solution x̄ is a

weighted sum of the gradients of the single-objective gradients, with weights depending

on the current side length defined by reference point r and ȳ = f(x̄).

In the same way as in Schultes et al., 2021 we can derive, that if an iterative ascent

algorithm for the hypervolume scalarization (HV-SP) is initialized with a strictly

feasible starting solution x(0) ∈ X , i.e., f(x(0)) < r, then moving in the direction

of steepest ascent with an appropriate step length control ensures that the next

iterate x(1) is also strictly feasible, i.e., fk(x
(1)) < rk for k = 1, . . . , p. Note that

only local descent is guaranteed. Hence, the constraints fk(x) ≤ rk, k = 1, . . . , p,

can be omitted in (HV-SP) when starting with a strictly feasible starting solution.

Note that for any strictly feasible solution x ∈ X the side lengths of the hypervolume

rectangle ak(f(x)) correspond to the slackness of the constraints fk(Ω̄) ≤ rk for all

k = 1, . . . , p. This is reflected in the gradient direction ∇H(f(x̄)) at f(x̄) that is

composed of a weighted sum of the gradients of the individual objective functions

∇fk(x̄), k = 1, . . . , p. The ratio of the side lengths of the hypervolume rectangle

defines the relative contribution of ∇fk(x̄) to the ascent direction ∇H(f(x̄)). If

this ratio is very large (very small, respectively), which is the case when one side of

the hypervolume rectangle is considerably larger than the other, then the opposite

objective function is emphasized in the computation of ∇H(f(x̄)).

Chapter 3. Hypervolume Scalarization 43

3.4.2 Hypervolume Scalarization vs Multiobjective Descent

Algorithms

A comparison of the hypervolume scalarization method to the biobjective descent

algorithm was also done in Schultes et al., 2021, pp. 1215-1216, these results can be

one to one adapted to the multiobjective case.

Multiobjective gradient descent algorithms were proposed in Désidéri, 2012; Fliege,

Vaz, and Vicente, 2019; Fliege and Svaiter, 2000. In the minimization case, they can

be interpreted as iterative optimization processes with search direction

d(i) := −ω(i)⊤∇f
(
x(i)
)
= −

p∑
k=1

ω
(i)
k ∇fk

(
x(i)
)

in iteration i with weights ω
(i)
k ≥ 0 for all k = 1, . . . , p. The search direction d(i)

is thus induced by a positive linear combination of the gradients of the individual

objective functions with weights ω
(i)
k .

These weights are chosen adaptively to achieve the steepest descent w.r.t. all

objectives in each iteration. This is in contrast to applying a single-objective gra-

dient descent algorithm to the weighted sum scalarization (WS-SP), in which the

weights are predefined and thus fixed throughout all iterations of the optimization

procedure. We argue that performing gradient ascent steps w.r.t. the hypervolume

indicator is somewhat similar to applying a multiobjective gradient descent algorithm:

The weights ω
(i)
k =

∏
l=1
l ̸=k

al
(
f
(
x(i)
))

=
∏

l=1
l ̸=k

(
rl − fl

(
x(i)
))

of the gradients of the

individual objective functions are chosen adaptively, depending on the side lengths of

the hypervolume orthotope induced by the current iterate, c.f. (3.3).

While each iterate x(i) in a multiobjective gradient descent algorithm dominates

all previous iterates x(i−ℓ) for all ℓ = 1, . . . , k, i.e., f
(
x(i)
)
⩽ f

(
x(i−ℓ)), this is

in general not the case when applying a single-objective ascent algorithm to the

hypervolume scalarization or a single-objective descent algorithm to the weighted

sum scalarization, respectively. Indeed, only single-objective improvements can be

guaranteed with respect to the hypervolume indicator and the weighted sum objective,

i.e., H
(
x(i)
)
≥ H

(
x(i−ℓ)) and ω⊤f

(
x(i)
)
≤ ω⊤f

(
x(i−ℓ)), respectively. This can be

seen in Figure 3.3 when comparing the dominance cone f(x̄)− R2
⩾ (which contains

the image of the next iterate in a multiobjective descent algorithm), the set of

improving points for the hypervolume indicator given by LH
≤ (c̄) = LH

= (c̄)−R2
≧ = {y ∈

R2 : (r1 − y1) · (r2 − y2) ≥ H(f(x̄))}, and the set of improving points for the weighted

44 3.4. Comparison

sum objective given by LW
≤ (ω⊤f(x̄)) = LW

= (ω⊤f(x̄))−R2
≧ = {y ∈ R2 : ω⊤y ≤ ω⊤f(x̄)}

(with ω⊤ = (a2(ȳ), a1(ȳ))). Since the dominance cone f(x̄)−R2
⩾ is a proper subset of

the respective sets of improving points, multiobjective gradient descent algorithms

are more restrictive regarding the choice of the next iterate. The weighted sum

scalarization is in this regard the most flexible approach, allowing for the deterioration

of individual objective functions as long as the weighted sum value improves. In this

respect, we can say that the hypervolume indicator function compromises between the

other two approaches.

Chapter 4

PDE Constrained Shape

Optimization

The aim of this chapter is to give a brief introduction to PDE constrained shape

optimization. This chapter is based on Haslinger and Mäkinen, 2003. For an extensive

introduction to shape optimization, we refer, among others, to Allaire, 2002; Bucur

and Buttazzo, 2005; Haslinger and Mäkinen, 2003; Sokolowski and Zolesio, 1992.

Shape optimization is a topic in the field of structural optimization, an important

branch in computational mechanics. Structural optimization can be seen as a generic

term for the optimization of basic structural properties such as the shape, size, topology

or material properties of a considered mechanical component. It deals with the task

of setting up a mathematical model to describe the behavior of the component. The

goal is to find a structure that meets the desired properties.

In structural optimization the task of finding an optimal shape, in addition to

adjusting the material properties, can be divided into three different categories: sizing

optimization, shape optimization and topology optimization. In sizing optimization the

shape of the component is predefined and only its size is subject to the optimization.

In shape optimization, which we will focus on, the shape (and size) of the component

is subject to optimization without changing the topology of the shape. In topology

optimization, however, the topology of the shape can also be changed and is part of

the optimization process, e.g., holes could be added to the shape.

In this thesis we will consider shape optimization problems. We want to find an

optimal shape Ω that minimizes a given objective function with respect to certain

45

46 4.1. Calculating Shape Sensitivities using Adjoint Equations

constraints. Thereby, we will consider objectives that depend on the solution of a

partial differential equation (PDE). If not otherwise stated, we call this PDE the state

equation P and its solution is denoted by u(Ω). We assume that the PDE and its

solution are uniquely defined by Ω. Thus, a PDE constrained objective function J

not only depends on the shape Ω, but also on the solution u(Ω) of the given state

equation. In general, a shape optimization problem is given by

min J(Ω, u(Ω))

s. t. Ω ∈ Oad,

u(Ω) solves the state equation P,

(4.1)

where Oad is the set of feasible shapes. The existence of optimal shapes is considered

in Allaire, 2002; Chirkov et al., 2018; Fujii, 1988; Haslinger and Mäkinen, 2003 among

others.

For the numerical solution of the state equation P and evaluation the objective

function we will use finite element analysis. Therefore, the shape Ω will be discretized

by finite elements, see, for example, Braess, 2013. We denote the discretized shape

by X and will write J(X,U(X)) for the discretized objective function with U(X) the

solution of the discretized state equation.

4.1 Calculating Shape Sensitivities using Adjoint

Equations

In the following chapters we consider shape optimization problems and want to

numerically solve them using gradient based methods and finite element analysis.

Therefore, we need to calculate the shape gradients of the objective functions. This

will be done by a “first discretize then adjoin” approach. Many optimization methods

use shape gradients and calculate them by the adjoint approach, see, for example,

Conti et al., 2009; Delfour and Zolésio, 2011; Eppler, 2017; Eppler, Harbrecht, and

Schneider, 2007; Laurain and Sturm, 2016; Schulz, 2014; Schulz, Siebenborn, and

Welker, 2016. We shortly explain the adjoint approach used in this thesis based on

Gottschalk and Saadi, 2019. See also Giles and Pierce, 2000 for an introduction to

this topic.

Consider the discretized objective function J(X,U(X)) of the discretized shape X

with U(X) being the solution of the discretized state equation. We want to calculate

Chapter 4. PDE Constrained Shape Optimization 47

the total derivative of J with respect to X:

dJ(X,U(X))

dX
=

∂J(X,U(X))

∂X
+

∂J(X,U(X))

∂U

∂U(X)

∂X
. (4.2)

The calculation of the partial derivative ∂U(X)
∂X is generally very time-consuming since

X has the dimension equal to the degrees of freedom resulting from the discretization,

which can be huge. Therefore, it is in general not practical. Instead, we will use the

adjoint equation to calculate dJ(X,U(X))
dX .

First we have a look at the discretized state equation in weak form. For simplicity,

we assume that it is given by

B(X)U(X) = F (X) (4.3)

with B(X) the corresponding stiffness matrix and F (X) the corresponding right hand

side. After differentiating (4.3), we can solve for ∂U(X)
∂X :

∂ (B(X)U(X))

∂X
=

∂F (X)

∂X

⇐⇒ ∂B(X)

∂X
U(X) +B(X)

∂U(X)

∂X
=

∂F (X)

∂X

⇐⇒ ∂U(X)

∂X
= B(X)−1

(
∂F (X)

∂X
− ∂B(X)

∂X
U(X)

)
. (4.4)

Consider now the Lagrangian formulation for the discretized shape optimization

problem, see, for example, Tröltzsch, 2009,

L (X,U,Λ) = J(X,U)− Λ⊤(B(X)U − F (X)) (4.5)

with Λ the Lagrange multiplicator, also called adjoint state. Note that only the PDE

constraint of (4.1) is eliminated by the Lagrange formulation. The condition that the

shape is feasible will be explicitly considered. We have

∂L (X,U,Λ)

∂Λ
= B(X)U − F (X) = 0

⇐⇒ B(X)U = F (X),

which is again the state equation.

48 4.2. Multiobjective Formulation

The adjoint equation is given by (4.6)

∂L (X,U,Λ)

∂U
=

∂J(X,U)

∂U
− Λ⊤B(X) = 0

⇐⇒ B(X)Λ =
∂J(X,U)

∂U
(4.6)

since the stiffness matrix B(X) is symmetric, see Gottschalk and Saadi, 2019. Last

we have

∂L (X,U,Λ)

∂X
=

∂J(X,U(X))

∂X
+ Λ⊤

(
∂B(X)

∂X
U − ∂F (X)

∂X

)
. (4.7)

Inserting (4.4) and (4.6) in (4.2) and comparing to (4.7) we have

∂L (X,U,Λ)

∂X
=

dJ(X,U(X))

dX
. (4.8)

For more numerical details we refer, for example, to Gottschalk and Saadi, 2019;

Hahn, 2021; Saadi, 2021. Later in this thesis we will use shape gradients that are

efficiently calculated with adjoint equations. For the probability of failure objectives

used in Chapters 5 and 6 we use an implementation of Camilla Hahn, see Hahn,

2021. For the aerodynamic objectives used in Chapter 6 we use the turbo machinery

simulation suite, see TRACE User Guide 2019.

4.2 Multiobjective Formulation

Shape optimization problems in mechanical engineering often have more than one

objective that can be considered. After choosing the material of the component

and defining the use cases, a design of the component is searched, that optimizes

the desired objectives like functionality, mechanical integrity or cost. In the case

of conflicting goals, we then have more than one objective function, which leads us

to multiobjective shape optimization. In Chapter 2 we give a short introduction to

general multiobjective optimization problems.

In the next chapters we will consider two different biobjective shape optimization

problems in engineering applications. In the first application we consider a ceramic

rod under tensile load with the two conflicting objectives volume and probability of

failure (PoF), see Chapter 5. The second application deals with a multi-physical

implementation of a gas turbine blade, more specifically, the profile of a blade with

Chapter 4. PDE Constrained Shape Optimization 49

respect to the two objectives efficiency and low-cycle fatigue (LCF), see Chapter 6.

A common notation for objective functions in shape optimization problems is the

letter J . Therefore, we will adapt this notation and, unlike in Chapter 2, denote

the vector-valued objective function by J : Oad → Rp with the individual objective

functions J1, . . . , Jp.

In the following we will also consider individual objectives that does not depend

on a PDE (see Chapter 5) and individuals objectives that depend on different PDEs

(see Chapter 6). For simplicity, we shortly write Jk(Ω) for Jk(Ω, u(Ω)) in the case

that an objective Jk is constrained by a PDE since the PDE solution u(Ω) is uniquely

defined by Ω.

For the multiobjective shape optimization problem we then have

min J(Ω) := (J1(Ω), . . . , Jp(Ω))
⊤

s. t. Ω ∈ Oad,

state equation(s) are fulfilled.

(4.9)

Here, the feasible solutions are shapes that we denote by Ω ⊂ Rd with dimension

d ∈ {2, 3} fixed. The set of admissible shapes will by denoted by Oad(= X). For

example, technical limitations can be taken into account when defining Oad.

Existence results for Pareto optimal shapes under certain assumptions are consid-

ered, for example, in Doganay et al., 2020; Gottschalk and Reese, 2021; Haslinger and

Mäkinen, 2003, but leave space for further research.

50 4.2. Multiobjective Formulation

Chapter 5

Ceramic Components under

Tensile Load

This chapter is already published in Doganay et al., 2020; Schultes et al., 2021. We

consider a shape optimization problem concerning reliability and cost of ceramic

components under a one-time application of tensile load. The objective concerning

reliability of ceramic components under external loads is modeled as a Weibull-type

formulation of the probability of failure. These external loads are described by a

linear elasticity PDE. Since this reliability objective is introduced in detail in Bolten,

Gottschalk, and S. Schmitz, 2015, the most important points will be summarized

here. For the objective cost we consider the volume of the component. The numerical

implementation of the optimization problem is done by finite element methods and

gradient based optimization algorithms. The shape gradients will be calculated by

adjoint equations. To solve the discretized shape optimization problem and analyze

the trade-off between the two objectives we implemented two different scalarization

methods, the weighted sum method and the hypervolume method.

We start with the problem formulation. In Section 5.1 we define the feasible

shapes and describe the linear elasticity PDE. Then we introduce the two objectives

in Section 5.2. The formulation of the biobjective shape optimization problem is

written down in Section 5.3. Afterwards, we turn to the two different numerical

implementations. In Section 5.4 we present the first implementation. We implemented

the weighted sum method using the programming language R where shapes are fitted

by B-splines. In Section 5.5 the we consider another implementation using Python.

51

52 5.1. Setting

There we use a finite element discretization based on structured meshes. This allows

us to use a parameter-free representation of the shapes. Based on this discretization

we implemented the weighted sum method as well as the hypervolume method.

As previously mentioned, the optimization problem and the numerical results

considered in this chapter have already been published in Doganay et al., 2020 and

Schultes et al., 2021. The following Sections 5.1, 5.2 and 5.4 are taken from Doganay

et al., 2020. Section 5.5 is published in Schultes et al., 2021. We have adapted the

notation to the other chapters.

5.1 Setting

In this section we have look at the shape of the component that we want to optimize

and define the set of admissible shapes, see Section 5.1.1. In addition, we consider the

partial differential equation describing the behavior of the component under tensile

load in Section 5.1.2. Based on this setting we will formulate the objective functions

in Section 5.2.

5.1.1 Admissible Shapes

We follow the description from Bolten, Gottschalk, Hahn, et al., 2019; Bolten,

Gottschalk, and S. Schmitz, 2015 and consider a compact body (also referred to

as component or shape) Ω ⊂ Rd, d = 2, 3, with Lipschitz boundary that is filled with

ceramic material. Furthermore, we assume that the boundary ∂Ω of Ω is subdivided

into three parts with nonempty relative interior,

∂Ω = cl(∂ΩD) ∪ cl(∂ΩNfixed
) ∪ cl(∂ΩNfree

).

The part ∂ΩD describes the part of the boundary where the Dirichlet boundary

condition holds, ∂ΩNfixed
the part where surface forces may act on and ∂ΩNfree

the

part of the boundary that can be modified in an optimization approach. It is assumed

to be force free for technical reasons Bolten, Gottschalk, and S. Schmitz, 2015.

Since all feasible shapes have to coincide in ΩD and in ΩNfixed
, it is natural to

restrict the analysis to subsets of a sufficiently large bounded open set Ω̂ ⊂ Rd that

satisfies ∂ΩD ⊆ ∂Ω̂ and ∂ΩNfixed
⊆ ∂Ω̂ (see Figure 5.1). We additionally assume that

Ω̂ satisfies the cone property for a given angle θ ∈ (0, π/2) and radii r, l > 0, r ≤ l/2,

Chapter 5. Ceramic Components under Tensile Load 53

Ω̂

Ω

∂ΩNfixed

∂ΩNfree
∂ΩD

n̂

gsurf

Figure 5.1: Illustration of Ω and its boundary components.

i.e.,

∀x ∈ ∂Ω̂ ∃ζx ∈ Rd, ∥ζx∥ = 1 s.t. y + C(ζx, θ, l) ⊂ Ω̂ ∀y ∈ B(x, r) ∩ Ω̂,

where C(ζx, θ, l) :=
{
c ∈ Rd

⏐⏐ ∥c∥ < l, c⊤ζx > ∥c∥ cos(θ)
}
is a truncated circular cone

oriented along ζx with height l and opening angle 2θ, and B(x, r) ⊂ Rd is an open

ball of radius r centered at x. Now the set of admissible shapes Oad ⊂ P(Rd) can be

defined as

Oad :=
{
Ω ⊆ Ω̂

⏐⏐⏐ ∂ΩD ⊆ ∂Ω, ∂ΩNfixed
⊆ ∂Ω, Ω̂ and Ω satisfy the cone property

}
.

(5.1)

5.1.2 Linear Elasticity PDE

Ceramic components behave according to the linear elasticity theory (Munz and Fett,

2001). The state equation can be described as an elliptic partial differential equation,

see, e.g., Braess, 2013. More precisely, we get the state equation which describes the

reaction of the ceramic component to external forces as a partial differential equation:

−div(σ(u(x))) = fvol(x) for x ∈ Ω

u(x) = 0 for x ∈ ∂ΩD

σ(u(x))n̂(x) = gsurf(x) for x ∈ ∂ΩNfixed

σ(u(x))n̂(x) = 0 for x ∈ ∂ΩNfree

(5.2)

Here, n̂(x) is the outward pointing normal at x ∈ ∂Ω, which is defined almost

everywhere on ∂Ω given that ∂Ω is piecewise differentiable. Furthermore, let fvol ∈
L2(Ω,Rd) be the volume forces and gsurf ∈ L2(∂ΩNfixed

,Rd) the forces acting on the

surface ∂ΩNfixed
, e.g., the tensile load. The displacement caused by the acting forces is

given by u ∈ H1(Ω,Rd), where H1(Ω,Rd) is the Sobolov space of L2(Ω,Rd)-functions

54 5.2. Objective Functions

with weak derivatives in L2(Ω,Rd×d). The linear strain tensor ε ∈ L2(Ω,Rd×d) is given

by ε(u(x)) := 1
2 (Du(x)+(Du(x))⊤), where Du is the Jacobi matrix of u. It follows for

the stress tensor σ ∈ L2(Ω,Rd×d) that σ(u(x)) = λ tr(ε(u(x)))I + 2µε(u(x)), where

λ, µ > 0 are the Lamé constants derived from Young’s modulus E and Poisson’s ratio

ν as λ = νE
(1+ν)(1−2ν) and µ = E

2(1+ν) .

From a numerical perspective, a variational formulation of the state equation

(5.2) is usually preferred, see, e.g., Bolten, Gottschalk, Hahn, et al., 2019; Bolten,

Gottschalk, and S. Schmitz, 2015. This still guarantees a unique weak solution u, see

Duran and Muschietti, 2004. Thus, u is uniquely defined by the shape Ω (Duran and

Muschietti, 2004), and we will equivalently write σ(Du(x)) := σ(u(x)) for x ∈ Ω to

highlight that σ depends on the Jacobi matrix of u.

5.2 Objective Functions

5.2.1 Probability of Failure

The primary objective function, the mechanical integrity of the ceramic component, is

modeled based on the probability of failure analogous to Bolten, Gottschalk, Hahn,

et al., 2019; Bolten, Gottschalk, and S. Schmitz, 2015; Brückner-Foit et al., 1997;

Weibull, 1939. For the sake of completeness this is briefly summarized in the following.

We want to optimize the reliability of a ceramic body Ω, i.e., its survival probability,

by minimizing its probability of failure under tensile load. In that sense failure means

that the ceramic body breaks under the tensile load due to cracks. Such cracks occur as

a result of small faults in the material caused by the sintering process. To understand

the mechanics of cracks, three types of crack opening are considered, see Gross and

Seeling, 2006 and Figure 5.2a for an illustration. They are referred to as Modes I, II

and III, respectively, and relate to different loads. Note that in the two-dimensional

case, only Modes I and II can occur. We refer to Gross and Seeling, 2006 for a detailed

introduction into this topic.

The stresses and strains close to a crack are represented by the crack-tip field

which depends on the respective crack opening modes. It is described locally by a

two-dimensional model, see Figure 5.2b for an illustration. With KI,KII and KIII

being the stress-intensity factors (also called K-factors) corresponding to Modes I, II,

and III, respectively, one can describe the crack-tip field σ locally according to linear

Chapter 5. Ceramic Components under Tensile Load 55

x1

x2

x3

(a) Modes I, II and III (from left to right).

x1 = x

x2 = y
r

φ

(b) r-φ coordinate system at
the tip of the crack.

Figure 5.2: Crack opening modes and two-dimensional model for the crack-tip field
according to Bolten, Gottschalk, Hahn, et al., 2019; Bolten, Gottschalk, and S. Schmitz,
2015; Gross and Seeling, 2006.

fracture mechanics as

σ(x) = σ(r, ϕ) =
1√
2πr

{
KIσ̃

I(ϕ) +KIIσ̃
II(ϕ) +KIIIσ̃

III(ϕ)
}
+R(r, ϕ). (5.3)

Here, r is the distance to the crack tip, and ϕ the angle w.r.t. the x1-axis (aligned

with the crack plane), see Figure 5.2b. The functions σ̃I,II,III(ϕ) are known functions

of the angle ϕ, see again Gross and Seeling, 2006, and R(r, ϕ) is a regular function of

the considered position in x ∈ Ω that is independent of the crack. Note that in the

two-dimensional case, Mode III is omitted from (5.3) since it does not exist. Moreover,

experimental evidence has shown that Mode I, which relates to tensile and compressive

load, is the most relevant for the failure of ceramic structures Brückner-Foit et al.,

1997, see Gross and Seeling, 2006 for approaches for multi-mode failure. We will thus

focus on KI in the following as the driving parameter for crack development under

tensile load.

In order to evaluate KI analogous to Bolten, Gottschalk, and S. Schmitz, 2015, we

adopt the concept of equivalent circular discs to represent different crack shapes and

crack sizes, and hence assume that the cracks are penny shaped. Then a particular

crack can be identified by its configuration

(x, a, n) ∈ C := Ω× (0,∞)× Sd−1,

where x ∈ Ω is its location, a ∈ (0,∞) its radius, and n ∈ Sd−1 its orientation (Sd−1

denotes the unit sphere in Rd). C is called the crack configuration space. Given a crack

(x, a, n) ∈ C, KI can be computed as a function of the radius a and of the tensile load

56 5.2. Objective Functions

σn(Du(x)) in the normal direction n of the stress plane at the crack location x as

KI = KI(a, σn(Du(x))) =
2

π
σn(Du(x))

√
πa, (5.4)

see, e.g., Table 4.1 in Gross and Seeling, 2006. Following Bolten, Gottschalk, and

S. Schmitz, 2015 we set

σn(Du(x)) := max{n⊤ σ(Du(x))n , 0}.

Note that negative values of σn(x) correspond to compressive loads which can be

ignored in the analysis of crack development, see Figure 5.2a above.

A crack (x, a, n) ∈ C becomes critical, i.e., a fracture occurs and the material fails,

if KI exceeds a material-specific critical value KIc (the ultimate tensile strength of the

material). Note that (5.4) implies that all cracks with radius

a > ac :=
π

4

(
KIc

σn(Du(x))

)2

(5.5)

are critical. We denote the set of critical configurations by

Ac := Ac(Ω, Du) = {(x, a, n) ∈ C |KI(a, σn(Du(x))) > KIc}

and want to minimize the probability of finding a crack with configuration in Ac.

Following Bolten, Gottschalk, Hahn, et al., 2019; Bolten, Gottschalk, and S.

Schmitz, 2015, we assume that the parameters (x, a, n) are random (i.e., they are

not deterministically given by the sintering process), that the cracks are statistically

homogeneously distributed in Ω, and that their orientations are isotropic. Let A ⊆ C be
a measurable subset of the configuration space. Then under quite general assumptions

the random number N(A) of cracks in A is Poisson distributed (see Kallenberg,

1983; Watanabe, 1964), and hence N(A) is a Poisson point process. It follows that

P (N(A) = k) = e−υ(A) υ(A)k

k! ∼ Po(υ(A)), where υ is the (Radon) intensity measure

of the process. Recall that a component fails if N(Ac) > 0. Given a displacement field

u ∈ H1(Ω,Rd), we can now write the survival probability of the component Ω as

ps(Ω|Du) = P (N(Ac(Ω, Du)) = 0) = exp{−υ(Ac(Ω, Du))}.

Hence, to maximize the survival probability of a component Ω we need to minimize

the intensity measure υ. Since only cracks (x, a, n) with radius a > ac need to be

Chapter 5. Ceramic Components under Tensile Load 57

considered (c.f. (5.5) above), Bolten, Gottschalk, Hahn, et al., 2019; Bolten, Gottschalk,

and S. Schmitz, 2015 determine the intensity measure as

υ(Ac(Ω, Du)) =
Γ(d2)

2π
d
2

∫
Ω

∫
Sd−1

∞∫
ac

dυa(a) dn dx

with dx the Lebesgue measure on Rd, dn the surface measure on Sd−1, and dυa(a) =

c · a−m̃da being a positive Radon measure modeling the occurrence of cracks of radius

a in Ω (c > 0 and m̃ ≥ 3
2 are positive constants). Note that for d = 3 the Γ-function

takes the value Γ(32) =
√
π
2 and for d = 2 we obtain Γ(1) = 1. With m := 2(m̃− 1) ≥ 1

and using again (5.5) the inner integral can be evaluated, yielding

υ(Ac(Ω, Du)) =
Γ(d2)

2π
d
2

∫
Ω

∫
Sd−1

(
σn(Du(x))

σ0

)m

dndx,

where σ0 is an appropriately chosen positive constant. As highlighted in Bolten,

Gottschalk, Hahn, et al., 2019; Bolten, Gottschalk, and S. Schmitz, 2015, this is in

accordance with the statistical model introduced by Weibull Weibull, 1939. In this

context, the parameter m is referred to as Weibull module and typically assumes

values between 5 and 25.

Summarizing the discussion above, we define our primary objective function

J1 : Oad → R as

J1(Ω) := υ(Ac(Ω, Du)) (5.6)

and refer to it as intensity measure, modeling the probability of failure (PoF) of the

component Ω. Recall that u(Ω) is uniquely defined by Ω and thus J1(Ω) is completely

defined by the shape Ω (given fixed boundary conditions f, g).

5.2.2 Material Consumption

Improving the intensity measure J1 of a ceramic component (and hence its PoF)

usually comes at the price of an increased material consumption, which is directly

correlated with the cost of the component. In order to avoid excessively expensive

solutions, classical approaches thus set a predetermined bound on the allowable volume

of the shape Ω (see, e.g., Bolten, Gottschalk, Hahn, et al., 2019; Bolten, Gottschalk,

and S. Schmitz, 2015). We follow a more general approach in this manuscript and

58 5.3. Biobjective Shape Optimization Problem Formulation

interpret the volume (and hence the cost) of the component as an equitable second

objective function. This facilitates, in particular, the analysis of the trade-off between

these two criteria and supports the engineer in finding a preferable design. We thus

define J2 : Oad → R as the volume of a shape Ω ∈ Oad given by

V(Ω) = J2(Ω) :=

∫
Ω

dx. (5.7)

5.3 Biobjective Shape Optimization Problem For-

mulation

The biobjective PDE constrained shape optimization problem w.r.t. reliability and cost

of a ceramic component, is given by

min J1(Ω) = υ(Ac(Ω, Du)) (5.6)

min J2(Ω) = V(Ω) (5.7)

s. t. u ∈ H1(Ω,Rd) solves the state equation (5.2),

Ω ∈ Oad.

(5.8)

As described in Section 5.1.1, Oad is the set of admissible shapes. The objective

function υ(Ac(Ω, Du)) is an intensity measure modeling the probability of failure as

described in Subsection 5.2.1 and the objective function V(Ω) is the volume of the

component representing its cost, see Subsection 5.2.2.

5.3.1 Existence of Pareto Optimal Shapes

In order to prove the existence of Pareto optimal shapes, we consider the weighted sum

scalarization of problem (5.8) in which, given a weight ω ∈ (0, 1), the two objective

functions are combined into one single weighted sum objective:

min
Ω∈Oad

Jω(Ω) := ωJ1(Ω) + (1− ω)J2(Ω)

s. t. u ∈ H1(Ω,Rd) solves the state equation (5.2),

Ω ∈ Oad.

(5.9)

It is a well-known fact that every optimal solution of problem (5.9) is Pareto optimal

for problem (5.8), see, e.g., Ehrgott, 2005 and Section 2.2.1. We denote set of all

Pareto optimal shapes with Oad
E .

Chapter 5. Ceramic Components under Tensile Load 59

Theorem 10. If the crack size measure has the non decreasing stress hazard property

(see Bolten, Gottschalk, and S. Schmitz, 2015 for a formal definition), then the set

Oad
E is non-empty.

Proof. Suppose that ω ∈ (0, 1) is chosen arbitrarily, but fixed. Then the weighted sum

objective can be evaluated as

Jω(Ω) = ω

⎛⎝Γ(d2)

2π
d
2

∫
Ω

∫
Sd−1

(
σn(Du(x))

σ0

)m

dndx

⎞⎠+ (1−ω)
∫
Ω

dx

= ω
Γ(d2)

2π
d
2

∫
Ω

∫
Sd−1

(
σn(Du(x))

σ0

)m

dn +
2π

d
2 (1−ω)
Γ(d2)ω  
constant

dx.

Thus, the incorporation of J2 into the scalarized objective function corresponds to

the addition of a constant term in the shape integral of J1. This does not affect the

convergence analysis of Bolten, Gottschalk, and S. Schmitz, 2015, which is based on

convexity of the integrand in Du, see Chenais, 1975; Fujii, 1988. We can conclude

that the weighted sum scalarization has an optimal solution for every ω ∈ (0, 1). Since

every such solution is Pareto optimal for (5.8), the result follows.

5.4 Implementation with B-Splines

The first implementation considered in this thesis is the implementation of the weighted

sum method, see Section 2.2.1, in the programming language R. Here we chose a

parameter based representation for the shapes. The shapes are described by the

meanline and thickness and are fitted with B-splines. This section is taken from

Doganay et al., 2020.

To actually compute locally Pareto optimal shapes, we adopt the finite element dis-

cretization implemented in Bolten, Gottschalk, Hahn, et al., 2019 for two-dimensional

instances (i. e., p = 2). In this implementation, the shapes Ω ∈ Oad, the state equation

(5.2), the objective functions J1 and J2 and their gradients are discretized. Standard

Lagrangian finite elements are used for the discretization of the state equation (5.2),

and all integrals are calculated using numerical quadrature. The discretized shape

gradients are obtained by an adjoint approach to reduce computational costs. We

refer to Bolten, Gottschalk, Hahn, et al., 2019 for a detailed description.

60 5.4. Implementation with B-Splines

5.4.1 Geometry Definition and Finite Element Mesh

The two-dimensional shapes Ω ∈ Oad ⊂ P(R2) are discretized by an nx × ny mesh

X := XΩ = (XΩ
ij)nx×ny (we write Xij := XΩ

ij ∈ R2 for short) using triangles, with

nx, ny ∈ N being the number of grid points in x and y direction, respectively. Given a

shape Ω ∈ Oad and its discretization X, the objective function values J1(X) and J2(X)

as well as their gradients ∇J1(X) and ∇J2(X) are computed using the implementation

of Bolten, Gottschalk, Hahn, et al., 2019.

For the optimization process, we fix the x-component of all grid points to equidistant

values x1, . . . , xnx
, and we only consider the y-components of those grid points that

define the boundary of the shape to avoid deformation of the inner mesh structure.

Note that this reformulation reduces the number of optimization variables from 2nxny

to 2nx. As a consequence, feasible shapes can alternatively be represented by a

shape parameter ϱ containing, for every relevant x-coordinate, the y-coordinate of the

meanline ϱml
i ∈ R of the shape, and the thickness ϱthi ∈ R> of the shape, i = 1, . . . , nx.

Given a feasible shape represented by ϱ :=
(
ϱml, ϱth

)
∈ R2nx with ϱth ∈ Rnx

> , an

associated mesh representation X can be obtained using

Xi,j :=

(
xi , ϱ

ml
i +

ϱthi
ny − 1

(
j − ny + 1

2

))
∈ R2, i = 1, . . . , nx, j = 1, . . . , ny.

(5.10)

To further reduce the computational burden and to obtain smoother shapes, the shape

parameters ϱml ∈ Rnx and ϱth ∈ Rnx
> are modeled using B-splines. Let nB ∈ N, with

nB < nx, be the number of B-spline basis functions, and let {ϑj : R → R≥, j =

1, . . . , nB} be a B-spline basis (see, e.g., Les Piegl, 2000). Feasible shapes are then

represented by B-spline coefficients γ :=
(
γml, γth

)
∈ R2nB . The corresponding

meanline and thickness values can be computed using the auxiliary functions

ϱ̂ml(x) :=

nB∑
j=1

γml
j ϑj(x) and ϱ̂th(x) :=

nB∑
j=1

γth
j ϑj(x), x ∈ R.

These auxiliary meanline and thickness functions are then evaluated at the fixed

x-coordinates of the grid points which yields

ϱml
i := ϱ̂ml(xi) and ϱthi := ϱ̂th(xi), i = 1, . . . , nx. (5.11)

Using the B-spline coefficients γ =
(
γml, γth

)
∈ R2nB as optimization variables

yields a further reduction of the number of variables to 2nB . Moreover, the B-spline

Chapter 5. Ceramic Components under Tensile Load 61

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

FE

mesh

meanline

thickness

B-splines

fit

Figure 5.3: Transformation: mesh X → meanline/thickness ϱ → B-spline fit γ.

representation leads to an implicit regularization and smoothing of the represented

shapes. In the following, we denote the set of feasible shape parametrizations by

Γ ⊆ {
(
γml, γth

)
∈ R2nB}. The transformation from the mesh to the B-spline fit is

visualized in Figure 5.3.

To evaluate the objective functions Jj(γ) and their gradients ∇Jj(γ) = ∂Jj/∂γ,

j = 1, 2, w.r.t. the new parametrization of shapes based on B-spline parameters γ,

while still using the implementation of Bolten, Gottschalk, Hahn, et al., 2019, we

compute an associated grid X using a two step transformation. First, the fixed B-spline

basis is utilized to construct the auxiliary functions of meanline and thickness, the

evaluation of which (via (5.11)) then generates the shape parameters for the next step

of the grid computation (5.10). While the resulting objective function values can be

used immediately in the optimization process, the gradients computed w.r.t. the grid

X need to be translated to the space of B-spline coefficients, i. e.,

∂Jj
∂γml

=
∂Jj
∂X

∂X

∂ϱml

∂ϱml

∂γml
and

∂Jj
∂γth

=
∂Jj
∂X

∂X

∂ϱth
∂ϱth

∂γth
, j = 1, 2. (5.12)

The numerical computation of gradients of Jj , j = 1, 2, w.r.t. a B-spline repre-

sentation γ of a feasible shape Ω is thus based on a two-step projection of γ onto

the original grid X. The thus computed gradients of J1 (the intensity measure) were

validated, using finite differences, at the sample shape shown in Figure 5.5a. The

validation is based on a grid (Xij)41×7, i. e., nx = 41 and ny = 7. Consequently, for

the corresponding meanline and thickness representation we have ϱ =
(
ϱml, ϱth

)
∈ R82,

where ϱth ∈ R41
> . Moreover, we used a B-spline basis with five basis functions, i. e.,

nB = 5 and γ =
(
γml, γth

)
∈ R10. We computed all ten partial derivatives w.r.t.

γ via the respective transformations to the grid representation and compared them

with finite differences. The results of this comparison, i. e., the absolute values of

the differences between computed derivatives and finite differences, are shown in

Figure 5.4a and 5.4b for the meanline and thickness parameters, respectively. The

figures indicate in all cases that when the finite differences are evaluated for decreasing

62 5.4. Implementation with B-Splines

1e−10 1e−08 1e−06 1e−04 1e−02

1e
−

13
1e

−
10

1e
−

07
1e

−
04

1e
−

01

Epsilon

L2
−

no
rm

(a) Validation of ∂J1/∂γml
i

1e−10 1e−08 1e−06 1e−04 1e−02

1e
−

13
1e

−
10

1e
−

07
1e

−
04

1e
−

01

Epsilon
L2

−
no

rm

(b) Validation of ∂J1/∂γth
i

Figure 5.4: Validation of gradients computed according to (5.12) using finite differ-
ences. On the x-axis: increment ε used for the finite difference evaluation; on the
y-axis: absolute deviation between ∂J1/∂γ

ml,th
i computed according to (5.12) and the

corresponding finite difference, i = 1, . . . , 5, for meanline (left) and thickness (right).

values of the increment ε, then they correspond well to the computed gradients.

5.4.2 Pareto Critical Shapes

Given the parametrization of admissible shapes described in Section 5.4.1, the biobjec-

tive optimization problem (5.8) can now be restated as

min
γ∈Γ

(J1(γ), J2(γ))

s.t. u(X(γ)) solves the discretized state equation (5.2).
(5.13)

Recall that only J1 depends on the displacement field u(X).

In this work, we aim at the efficient computation of Pareto critical shapes (see

(2.11)) that, ideally, approximate the Pareto front. Since derivative information can

be obtained for both objective functions, we select solution methods that efficiently

utilize this information and that can be adopted such that a meaningful representation

of a Pareto critical front is obtained. As two fundamental approaches in this category,

a parametrized weighted sum method and a biobjective descent algorithm are chosen

Chapter 5. Ceramic Components under Tensile Load 63

and explained in Sections 5.4.3 and 5.4.4, respectively. Their performance in the

context of 2D shape optimization problems is compared in Section 5.4.7.

5.4.3 Weighted Sum Method

Maybe the easiest way to compute a representation of the Pareto front is to iteratively

solve weighted sum scalarizations (5.9) with varying weights, see Section 2.2.1. The

weighted sum scalarization of problem (5.13) can be restated as

min
γ∈Γ

Jw(γ) := ωJ1(γ) + (1− ω)J2(γ)

s.t. u(X(γ)) solves the discretized state equation (5.2),
(5.14)

where ω ∈ (0, 1) is the weight specifying the relative importance of J1 and J2,

respectively. Recall that every solution of the weighted sum scalarization (5.14) is

Pareto optimal for (5.13) Ehrgott, 2005. A disadvantage of the weighted sum method

is, however, that only solutions that map to the convex hull conv(Z) of the image set

Z = f(Γ) in the objective space can be found, and thus relevant compromise solutions

in non-convex areas of the non-dominated front may be missed. Moreover, Das and

Dennis, 1997 showed at simple biobjective test instances that evenly distributed

weights do in general not lead to well distributed outcome vectors in the objective

space. This is particularly problematic if the considered objective function values are

of largely different magnitude, which is the case here. In order to obtain solutions that

are consistent with the preferences expressed by ω, we thus normalize the objective

functions by using appropriate scaling factors c1, c2 > 0, and replace J1 and J2 in

(5.14) by c1J1 and c2J2, respectively.

Despite the difficulties mentioned above, the weighted sum method is usually

well-suited to efficiently compute at least a rough approximation of the Pareto front.

For this purpose, problem (5.14) is solved iteratively for varying weights (in our case,

we choose ω ∈ {0.2, 0.25, 0.3, . . . , 0.9} since numerical experiments showed that this

yields meaningful trade-offs). Each single-objective optimization problem (5.14) is

then individually solved using a classical gradient descent algorithm with stepsizes

determined according to the Armijo rule, see, for example, Bazaraa, 2006.

Under appropriate assumptions, the gradient descent algorithm in the inner loop

of Algorithm 3 converges to a critical point of (5.14), see, e.g., Bazaraa, 2006. In

our implementation, the inner loop is also terminated when a prespecified maximum

number of iterations is reached. However, in this case there is no guarantee that the

64 5.4. Implementation with B-Splines

Data: Choose β ∈ (0, 1), γ(1) ∈ Γ , weights ω1, . . . , ωJ ∈ (0, 1), and ε > 0.
Result: Set of approximations of Pareto critical solutions γ̃1, . . . , γ̃J .
for j = 1 to J do

Set ω = ωj , set k := 1, and set d(0) := −∇Jω(γ(1)) and t0 := 1;
while ∥tk−1 d(k−1)∥ > ε do

Compute a search direction d(k) = −∇Jω(γ(k)) ;
Compute a step length tk ∈ (0, 1] as

max

{
t=

1

2ℓ
: ℓ∈N0,

Jω(γ
(k)+ td(k))≤Jω(γ

(k))+βt∇Jω(γ(k))⊤d(k)
}
;

γ(k+1) := γ(k) + tk d
(k) and k := k + 1;

end

γ̃j := γ(k)

end

Algorithm 3: Parametric weighted sum algorithm using gradient descent

final iterate is close to a Pareto critical solution.

Note that a critical point of the weighted sum scalarization (5.14) is necessarily

Pareto critical for the biobjective shape optimization problem (5.13), while the converse

is not true in general. This has some correspondence to the fact that global optimal

solutions of a weighted sum scalarization (5.14) are always Pareto optimal, while

non-convex problems may have Pareto optimal solutions that are not optimal for any

weighted sum scalarization (5.14), see, e.g., Ehrgott, 2005.

Note also that the search direction d(k) = −∇Jω(γ(k)) does not necessarily satisfy

∇Jj(γ(k))⊤d(k) < 0, j = 1, 2, in all iterations. In other words, one objective function

may deteriorate during the optimization process if only the other objective function

compensates for this.

5.4.4 Biobjective Descent Algorithm

The biobjective descent algorithm is described in Section 2.2.3 and the implementation

of the method for the shape optimization problem considered in this chapter is

summarized in Algorithm 4. Towards this end, we omit the constraints implied by

the parametric representation of admissible shapes to keep the exposition simple. All

constraints will be handled implicitly in the numerical tests described in Section 5.4.7

below.

Chapter 5. Ceramic Components under Tensile Load 65

Data: Choose β ∈ (0, 1), γ(1) ∈ Γ and ε > 0, set k := 1.
Result: Approximation of a Pareto critical solution γ̃ := γ(k).
Compute d(0) := d(1) as a solution of (2.12) and set t0 := 1;
while ∥tk−1 d(k−1)∥ > ε do

Compute d(k) as a solution of (2.12);
Compute a step length tk ∈ (0, 1] as

max

{
t =

1

2ℓ
: ℓ ∈ N0,

Jj(γ
(k) + td(k)) ≤ Jj(γ

(k)) + βt∇Jj(γ(k))⊤d(k),

j = 1, 2

}
;

γ(k+1) := γ(k) + tk d
(k) and k := k + 1;

end

Algorithm 4: Biobjective descent algorithm according to Fliege and Svaiter,
2000

If J1 and J2 are continuously differentiable and ε = 0, then Algorithm 4 converges

to a Pareto critical solution Fliege and Svaiter, 2000. A natural stopping condition

for practical implementations, motivated by (2.11), is that ∥tkd(k)∥ ≤ ε, with ε > 0 a

prespecified small constant.

In practice, we also terminate the algorithm when a prespecified maximum number

of iterations is reached. In this case, the final solution has to be used with caution

since the optimization procedure has generally not yet converged.

The choice of the search direction using problem (2.12) together with condition

(2.13) implies that the iterates of Algorithm 4 satisfy f(γ(k+1)) < f(γ(k)) for all

k = 1, 2, In other words, the objective vector f(γ(k+1)) in iteration k + 1 is

bounded above by the objective vector f(γ(k)) of the previous iteration k, i. e.,

f(γ(k+1)) ∈ f(γ(k))− R2
>.

Several alternative Pareto critical solutions (and hence trade-off information be-

tween them) can be obtained, for example, by varying the starting solution. We follow

a different approach in our implementation that is somewhat similar to the weighted

sum method, and that is based on the observation that the optimal solution of problem

(2.12) (i. e., the direction of steepest biobjective descent) depends on the scaling of

the objective functions J1 and J2. Thus, Algorithm 4 is executed repeatedly, using

different scalings of the objective functions. In our implementation, we use a scaling

parameter s := ω̄rmax > 0 and replace J2 by sJ2 in the optimization process, where

66 5.4. Implementation with B-Splines

the parameter rmax > 0 is chosen as the largest ratio between partial derivatives of

J1 and J2, evaluated at the starting solution γ(1). Note that the latter aims at the

constraints in problem (2.12) in the sense that they should be comparable, i. e., both

objective functions should equally contribute to active constraints and thus influence

the choice of the search direction. By varying the parameter ω̄ ∈ {0.5, 0.6, . . . , 2}, we

implicitly control the run of the gradient descent algorithm and thus obtain different

solutions starting from the same initial shape. Note that the volume of the solutions

can be expected to increase with larger values of ω̄.

Note also that the resulting parametric version of Algorithm 4 is fundamentally

different from the weighted sum method in Algorithm 3 in the way the search directions

are chosen and in the way the iterates converge to a Pareto critical solution.

5.4.5 Scalar Products and Gradients in Shape Optimization

The performance of Algorithms 3 and 4 depends largely on the choice of the search

direction, which is computed based on the discretized gradients ∇Jj(γ), j = 1, 2. In

Michor and Mumford, 2006 it is shown that (continuous) shape gradients calculated

with respect to the ordinary L2-scalar product lead to an ill defined notion of the

distance of two shapes, as the infimum over all deformation path lengths is zero. There

is a modified scalar product suggested given by

⟨h, k⟩ξ =

∫
∂Ω

⟨h, k⟩R2

(
1 + ξκ2

)
dA (5.15)

and it is shown that this indeed leads to a well defined Riemannian metric on the

shape space. Here, h, k are two vector fields in normal direction to the boundary of

∂Ω, dA is the induced surface measure, κ is the scalar curvature of the surface, and

ξ > 0 is a regularization parameter. In practice, this corresponds to a transformation

of function values on ∂Ω that, given some function g : ∂Ω→ R2, can be described by

gξ(x) =
g(x)

1+ξκ2(x) for x ∈ ∂Ω.

Despite discretizing the space of shapes, we also discretize this definition of the

gradient in order to obtain stability in the limit of small finite element mesh size

and a high number of spline basis elements. We adopt a discretized version of this

concept in the numerical implementation of shape gradients for both objectives Jj ,

j = 1, 2. More precisely, a discretized scalar curvature κ is computed at grid points on

the boundary ∂Ω, which is represented by a polygonal approximation induced by the

shape parameters
(
ϱml, ϱth

)
∈ R2nx , ϱth ∈ Rnx

> . Since the upper and lower boundary

Chapter 5. Ceramic Components under Tensile Load 67

of the shape Ω may have a different curvature at the same x-coordinate value xi

(i ∈ {1, . . . , nx}), we have to compute the curvature for upper and lower boundary

points separately. For the upper boundary, this is realized by comparing the normals

nu
i and nu

i+1 on two consecutive facets of length lui and lui+1, respectively. Similarly,

for the lower boundary we use nl
i, n

l
i+1 and lli, l

l
i+1, and obtain

κu
i := κu (xi) =

2
nu

i − nu
i+1


2

lui + lui+1

,

κl
i := κl (xi) =

2
nl

i − nl
i+1


2

lli + lli+1

,

i = 1, . . . , nx − 1. (5.16)

The upper and lower boundaries of the shape Ω are reconstructed from the meanline and

thickness representation using the linear transformation ϱui = ϱml
i + 1

2ϱ
th
i and ϱli = ϱml

i −
1
2ϱ

th
i , i = 1, . . . , nx. In other words,

(
ϱu, ϱl

)
∈ R2nx is obtained from

(
ϱml, ϱth

)
∈ R2nx ,

ϱth ∈ Rnx
> , as

(
ϱu, ϱl

)
= M

(
ϱml, ϱth

)
, using an appropriate transformation matrix

M ∈ R2nx×2nx . This leads to a discretized representation of the respective boundaries

by points (xi, ϱ
u
i) (upper boundary) and

(
xi, ϱ

l
i

)
(lower boundary), from which the κ

values can be computed according to (5.16).

Now (5.15) can be applied to the gradients of Jj w.r.t.
(
ϱu, ϱl

)
, j = 1, 2, by

multiplying the respective partial derivatives by

duξ,i :=
1

1 + ξ (κu
i)

2 and dlξ,i :=
1

1 + ξ
(
κl
i

)2 , i = 1, . . . , nx.

Since we actually need the gradients of Jj w.r.t. ϱ =
(
ϱml, ϱth

)
, j = 1, 2, we additionally

have to consider the linear transformation M . Let Dξ = (dξ,ij)2nx×2nx
∈ R2nx×2nx

be a diagonal matrix with diagonal elements given by

dξ,ii := duξ,i, i = 1, . . . , nx and dξ,ii := dlξ,i−nx
, i = nx + 1, . . . , 2nx,

and set D̄ξ := M−1 Dξ M . Then we obtain the curvature adapted B-spline gradients

as (
∂Jj
∂γ

)
ξ

= D̄ξ

(
∂Jj
∂X

∂X

∂ϱ

)
∂ϱ

∂γ
, j = 1, 2. (5.17)

Note that for ξ = 0 the matrix D̄0 is the identity matrix, and hence the L2-gradient

of Jj w.r.t. γ, j = 1, 2, is recovered in this case, c.f. (5.12).

68 5.4. Implementation with B-Splines

5.4.6 Control of Step Sizes

Large mesh deformations may cause numerical difficulties and thus have to be avoided.

We thus limit the step size during the optimization procedure. Recall that the

representation of feasible shapes, using meanline and thickness values
(
ϱml
i , ϱthi

)
at

fixed xi coordinates, i = 1, . . . , nx, implies that grid points can only move vertically.

A natural choice for a maximum admissible step in one iteration of the optimization

process is thus determined by the thickness of the shape, divided by the number ny of

grid points in y-direction. Since in our case studies the shapes are fixed at the left

boundary (i. e., at x = x1) and hence their thickness is constant at x1, we set

δmax := 0.8
ϱ
th,(1)
1

ny

i. e., to 80% of the vertical distance between grid points on the left boundary of the

initial shape. For a given search direction d(k) =
(
dml,(k), dth,(k)

)
∈ R2nB in iteration

k of the optimization algorithms, we check whether

max
i=1,...,2nB

⏐⏐⏐d(k)i

⏐⏐⏐ ≤ δmax.

Otherwise, d(k) is scaled by a factor δmax/maxi=1,...,2nB

⏐⏐⏐d(k)i

⏐⏐⏐. Then the step length

t ≤ 1 is computed according to the Armijo rule as indicated in Algorithms 3 and 4.

While δmax is derived from the mesh X(1), it still is a meaningful upper bound for

a step d(k) in the B-spline representation. Indeed, if {ϑj , j = 1, . . . , nB} is a B-spline

basis and γ(k) =
(
γml,(k), γth,(k)

)
∈ Γ is the current iterate, then the B-spline basis

properties
∑nB

j=1 ϑj(x) = 1 and ϑj(x) ≥ 0, j = 1, . . . , nB (see, e.g., Les Piegl, 2000)

imply that, for all i = 1, . . . , nx,

⏐⏐⏐ϱml,(k+1)
i − ϱ

ml,(k)
i

⏐⏐⏐ =
⏐⏐⏐⏐⏐⏐
nB∑
j=1

(γ
ml,(k)
j +d

ml,(k)
j)ϑj(xi)−

nB∑
j=1

γ
ml,(k)
j ϑj(xi)

⏐⏐⏐⏐⏐⏐
≤

nB∑
j=1

⏐⏐⏐dml,(k)
j

⏐⏐⏐ |ϑj(xi)| ≤ max
j=1,...,nB

⏐⏐⏐dml,(k)
j

⏐⏐⏐ nB∑
j=1

|ϑj(xi)| = max
j=1,...,nB

⏐⏐⏐dml,(k)
j

⏐⏐⏐ .
An analogous bound holds for the corresponding thickness parameters. Note that the

above inequalities do in general not guarantee that all grid points of the corresponding

mesh X(k) move by at most 80%, since this also depends on the current shape and the

mutual movement of meanline and thickness values. In some situations it may thus be

Chapter 5. Ceramic Components under Tensile Load 69

necessary to adapt this bound to a smaller value. However, this never occurred in our

numerical tests.

5.4.7 Case Studies

We consider 2D ceramic shapes made out of beryllium oxide (BeO) under tensile

load. Therefore, we set Young’s modulus to E = 320GPa (see, e.g., Munz and Fett,

2001), Poisson’s ratio to ν = 0.25, and the ultimate tensile strength to 140MPa,

according to Shackelford et al., 2015. Weibull’s modulus is set to m = 5, which is on

the lower bound of industrial ceramics having m between 5 and 30 as depending on the

production process (Morell, 2004). All considered shapes have a fixed length of 1.0m

and a fixed height of 0.2m on the left and right boundaries. The shapes are fixed on

the left boundary, where Dirichlet boundary conditions hold (∂ΩD), and on the right

boundary, where surface forces may act on and Neumann boundary conditions hold

(∂ΩNfixed
). The upper and lower boundaries are assumed to be force free (∂ΩNfree

).

They can be modified within the optimization process. We set fvol = 0 neglecting the

gravity forces and gsurf = 107 Pa, representing tensile load. Note that, in order to be

consistent with 3D models, we define the force density w.r.t. Pa = N/m2 (and not

w.r.t. N/m). This is motivated by assuming a constant width of the 2D component of

1 unit (i. e., 1m). Then plane stresses and plane strains are obtained by neglecting

Poisson effects in the third dimension.

Here, both starting solution are chosen without involving a decision maker. In the

first case, we choose an obviously not efficient solution for a horizontal load transfer to

see how the algorithms works. The second test case simulates a shifted load transfer.

We thus take an a posteriori approach on decision making with regard to design or cost

preferences. We are aware that using only one starting design for each test case may

bias the solutions of both optimization methods. Nevertheless, numerical experiments

with moderately modified initial designs yielded comparable solutions, indicating that

in these special cases there is not much to gain by varying the starting designs.

The shapes are discretized by a 41 × 7 grid (i. e., nx = 41 and ny = 7) using

triangles as detailed in Section 5.4.1. The B-spline representation is based on nB = 5

basis functions. Thus, we have in total ten B-spline coefficients. Since the left

and right boundary are fixed and we only modify the upper and lower boundary of

the components, we have to fix the first and last B-spline coefficients for both, the

auxiliary meanline and thickness functions. All in all, we have now six control variables.

Moreover, the curvature regularization parameter is set to ξ = 10−4, see Section 5.4.5.

70 5.4. Implementation with B-Splines

During the optimization process, we monitor the Euclidean norm of the update

of the design variables in every iteration and stop when it is lower than 10−4. The

implementation is realized in R version 3.5.0 and uses the adjoint finite element code

of Bolten, Gottschalk, Hahn, et al., 2019 as a subroutine.

A Straight Joint

In the first test case, a straight joint is sought that is fixed at the left side, while the

tensile load acts on the right side. This is a particularly simple situation where the

straight rod connecting from the left to the right can be expected to be optimal, with

varying thickness depending on the trade-off between the intensity measure (J1) and

the volume (J2). The optimization algorithms are challenged by providing a bended

beam as a starting shape, which is clearly far from being optimal.

The starting shape is shown in Figure 5.5a, together with the 41× 7 tetrahedral

discretization X. Its objective values are J1(X
(1)) = 0.769624 (intensity measure)

and J2(X
(1)) = 0.2 (volume), respectively. The relatively high value for the intensity

measure J1 can be explained by the relatively high stresses that are illustrated in

Figure 5.5b. Figure 5.5c shows that the B-spline representation based on only five

basis functions leads to a rather inaccurate representation, particularly at the left

and right boundary. This could be improved by fixing the slopes at the left and right

boundary, however, at the price of a significantly reduced design space. Indeed, a

majority of the Pareto critical shapes computed during our numerical tests do not

have zero slopes at the left and right boundary, particularly in the case of the S-shaped

joint considered in the end of Section 5.4.7 below. Note that the smoothing induced by

the B-spline representation in this case already leads to dominating objective values

of J1(γ
(1)) = 0.453867 and J2(γ

(1)) = 0.2.

Results Among all shapes with a fixed volume of J2(X) = 0.2, the straight rod

shown in Figure 5.5d can be expected to have the minimum possible intensity mea-

sure J1. Indeed, the straight rod shown in Figure 5.5d achieves an objective value

of J1(X) = 0.00058. Figures 5.5e and 5.5f show the results of the weighted sum

method (Algorithm 3) with weight ω = 0.8 and of the biobjective descent algorithm

(Algorithm 4) with scaling parameter ω̄ = 1.8. Both methods show a rather quick

convergence (with the expected advantage for the biobjective descent algorithm) to

solutions that are close to optimal. However, the solution of the biobjective descent

algorithm seems to be a local solution with slightly higher stresses (and thus slightly

Chapter 5. Ceramic Components under Tensile Load 71

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

(a) Starting shape: Tetrahe-
dral mesh X

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6 Intensity Measure = 0.769624
Volume = 0.2

(b) Starting shape: Objective
values and stresses

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6 Intensity Measure = 0.453867
Volume = 0.2
Iteration = 0

(c) Starting shape: Approxima-
tion with B-splines

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6 Intensity Measure = 0.00058
Volume = 0.2

(d) Expected result: Straight
rod

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6 Intensity Measure = 0.000615
Volume = 0.197096
Iteration = 92

(e) Weighted sum, ω = 0.8

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6 Intensity Measure = 0.001017
Volume = 0.191394
Iteration = 45

(f) MO descent, ω̄ = 1.8

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6 Intensity Measure = 0.001325
Volume = 0.169007
Iteration = 45

(g) MO descent, ω̄ = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6 Intensity Measure = 0.00124
Volume = 0.166992
Iteration = 87

(h) Weighted sum, ω = 0.6

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6 Intensity Measure = 0.003232
Volume = 0.135516
Iteration = 96

(i) Weighted sum, ω = 0.3

Figure 5.5: Straight joint: Starting solution (row 1), straight rod solutions (row 2),
and low volume solutions (row 3).

72 5.4. Implementation with B-Splines

0.5 1 1.5 2 2.5 3

·10−3

0.15

0.2

0.25

0.3

0.35

intensity measure J1

volume J2 weighted sum method

history with ω = 0.65

biobjective descent algorithm

history with ω̄ = 0.6

Figure 5.6: Iteration histories of an exemplary run of the weighted sum method
(Algorithm 3) and of the biobjective descent algorithm (Algorithm 4). Note that both
algorithms use the same starting solution.

higher objective value for J1).

Figure 5.6 shows iteration histories of exemplary runs of the weighted sum method

(Algorithm 3) and of the biobjective descent algorithm (Algorithm 4), respectively. It

nicely illustrates that, in contrast to the biobjective descent algorithm, the weighted

sum method permits iterations where one objective function deteriorates while the

weighted sum objective is still decreasing. This may, in certain situations, help to

overcome local Pareto critical solutions. On the other hand, the weighted sum method

may get stuck in local minima as well. Indeed, independent of the chosen weight,

the histories of the weighted sum method have a similar structure: First mainly the

intensity measure (representing the PoF) is improved (since in early stages of the

algorithm the gradient of J1 is considerably larger than the gradient of J2). Only at

later stages of the algorithm, the volume is varied to a larger extent, depending on

the given weight.

Note also that the final solution obtained with the biobjective descent algorithm

Chapter 5. Ceramic Components under Tensile Load 73

largely depends on the starting solution, since the objective values can never deteriorate

during the optimization process. Thus, when the starting solution has a volume of

J2(X) = 0.2, then all Pareto critical shapes that can be computed with the biobjective

descent algorithm have a volume of at most 0.2, irrespective of the scaling.

Three shapes with progressively reduced volume (and hence lower cost) are shown

in Figures 5.5g to 5.5i. As was to be expected, a lower cost comes at the price of a

higher intensity measure (and hence higher PoF). A comparison between Figures 5.5h

and 5.5g suggests that also for the low volume solutions, the weighted sum solutions

slightly outperform the biobjective descent solutions.

Figure 5.7 summarizes the results of several optimization runs with varying weights

(Algorithm 3) and varying scalings (Algorithm 4), respectively. The same starting

solution was used in all cases, see Figure 5.5c. While the solution quality of the

weighted sum method and of the biobjective descent algorithm is comparable, a clear

advantage of the weighted sum method seems to be that it is not so much constrained

by the (performance of the) starting solution. Indeed, the weighted sum solutions

shown in Figure 5.7 span a large range of alternative objective values in the objective

space and thus provide the decision maker with meaningful trade-off information and

a variety of solution alternatives.

Both algorithms need in general one gradient computation and kstep function

evaluations per iteration, where kstep is the number of iterations in the Armijo rule

to calculate a step length. Additionally, the biobjective descent needs one gradient

evaluation, whereas the weighted sum requires one objective function evaluation to

determine an initial scaling of the objectives. In this test case the mean number of

iterations for the weighted sum method was 94 with around 3.8 Armijo iterations on

average. The biobjective descent needed 46 iterations with 1.7 Armijo iterations on

average. On this rather coarse grid (41 × 7) a function evaluation takes about 1.2

seconds and a gradient evaluation around 15.48 seconds, a finer grid would extend

the run time significantly. Note that the underlying simulation code for the function

evaluation and gradient computation is not optimized w.r.t. runtime. Summing up,

an optimization run with the weighted sum method for this test case on a 41× 7 grid

took about 31.4 minutes on average. The biobjective descent algorithm took about

14.9 minutes on average. All algorithms are implemented in R version 3.5.0, and the

numerical tests run on a PC with Intel Core i7-8700 CPU @ 3.20GHz, 31.2GB RAM.

74 5.4. Implementation with B-Splines

0.5 1 1.5 2 2.5 3 3.5

·10−3

0.14

0.16

0.18

0.2

0.22

0.24

ω
=

0.
35

ω = 0.6

ω
=

0.7

ω
=

0.
9

ω̄
=

0.
5

ω̄
=

1

intensity measure J1

volume J2 weighted sum method

biobjective descent algorithm

Figure 5.7: Approximated non-dominated front for the straight joint. The associated
Pareto critical shapes are shown for selected weightings/scalings.

Chapter 5. Ceramic Components under Tensile Load 75

An S-Shaped Joint

A more complex situation is obtained when the left and right boundaries are not fixed

at the same height, i. e., when an S-shaped joint is to be designed. In our tests, we fix

the right boundary about 0.27m lower than the left boundary. The starting shape

and its 41× 7 tetrahedral discretization X, that is used for all optimization runs, is

shown in Figure 5.8a. Figure 5.8b highlights the stresses that are particularly strong

towards the left boundary. The respective objective values are J1(X
(1)) = 1.520058

(intensity measure) and J2(X
(1)) = 0.2 (volume), respectively. As can be expected,

the intensity measure (and hence also the PoF) is considerably higher than in the case

of the straight joint discussed above. Despite the significant smoothing induced by

the B-spline representation of the initial shape shown in Figure 5.8c, it has an even

higher value of the intensity measure of J1(γ
(1)) = 1.910532 (and hence a higher PoF

value), while J2(γ
(1)) = 0.2 remains constant.

Results We observe that the resulting shapes resemble the profile of a whale. If we

consider 1st principal stress of the stress tensor on the grid points of the initial shape

resulting from tensile load, see Figure 5.8c, we observe an anti clockwise eddy in the

left part of the joint. The hunch close to the left boundary of the optimized shapes

gives room for the occurring stresses and therefore improves the intensity measure

and, likewise, the PoF.

Note that different from the case of the straight rod, we have no prior knowledge

on the Pareto optimal shapes. For the solutions shown in Figures 5.8d and 5.8e, we

can only guarantee that they are (approximately) Pareto critical, i. e., the respective

optimization runs terminated due to the criticality test. Figure 5.8f shows a shape with

a significantly higher volume of J2(X) = 0.225906, and with a largely improved intensity

measure of J1(X) = 0.196791. This shape was obtained with the weighted sum method

with weight ω = 0.85 after 150 iterations. In this case, the algorithm terminated

since it reached the maximum number of iterations and not due to convergence. We

observed that all optimization runs of the weighted sum method with ω ≥ 0.85 were

not converging in this setting. Thus in these cases it is not guaranteed, that the

resulting solutions are Pareto critical. Note that, given a starting solution with a

volume of 0.2, this shape is not attainable with the biobjective descent algorithm.

However, there is no guarantee that the computed shapes are Pareto optimal. For

example, the shape shown in Figure 5.8e obtained with the weighted sum method with

weight ω = 0.8 achieves objective values of J1(X) = 0.293853 and J2(X) = 0.188445,

76 5.4. Implementation with B-Splines

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

(a) Starting shape: Tetrahe-
dral mesh X

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6 Intensity Measure = 1.520058
Volume = 0.2

(b) Starting shape: Objective
values and stresses

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6 Intensity Measure = 1.910532
Volume = 0.2
Iteration = 0

(c) Starting shape: Approxima-
tion with B-splines

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6 Intensity Measure = 0.300996
Volume = 0.188774
Iteration = 58

(d) MO descent, ω̄ = 1.1

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6 Intensity Measure = 0.293853
Volume = 0.188445
Iteration = 145

(e) Weighted sum, ω = 0.8

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6 Intensity Measure = 0.196791
Volume = 0.225906
Iteration = 150

(f) Weighted sum, ω = 0.85,
not converged

Figure 5.8: S-shaped joint: Starting solution (row 1), two exemplary Pareto critical
solutions (5.8d and 5.8e) and a not converged solution of the weighted sum method
(5.8f).

Chapter 5. Ceramic Components under Tensile Load 77

and hence slightly dominates the shape shown in Figure 5.8d obtained with the

biobjective descent algorithm with scaling parameter ω̄ = 1.1 that has objective values

J1(X) = 0.300996 and J2(X) = 0.188774.

Figure 5.9 summarizes the results of several optimization runs of both Algorithms 3

and 4 in the objective space. Note that not all solutions of the weighted sum method

lie on the convex hull of the computed points (and are thus not globally optimal for

a weighted sum scalarization). In some cases, the biobjective descent algorithm also

computes dominated points, while in other cases it found solutions that lie even below

the convex hull of the weighted sum solutions (see, e.g., the result for ω̄ = 0.5 in

Figure 5.9).

A larger range of alternative objective vectors is, as in the case of the straight

rod, obtained with the weighted sum method. A cross-test between the two methods,

where the final solution of Algorithm 3 was used as starting solution for Algorithm 4,

confirms that local Pareto critical solutions were found for ω ≤ 0.8.

Compared to test case 1, the optimization runs for test case 2 needed in general

more iterations. The mean number of iterations for the weighted sum method in test

case 2 was 107 with around 5.3 Armijo iterations on average. The biobjective descent

needed 74 iterations with 3.9 Armijo iterations on average. Thus, the weighted sum

method needed about 39.06 minutes on average and the biobjective descent algorithm

took about 26.96 minutes on average.

In the meantime, Bolten, Doganay, et al., 2024 have shown that better shapes can

be calculated for this test case using momentum methods.

5.5 Implementation with Structured Meshes

The second implementation of scalarization techniques for the biobjective shape

optimization problem (5.8) is based on another type of finite element discretization.

Here we use structured finite element grids for evaluation of the state equation (5.2)

and the objective functions given in (5.6) and (5.7). This implementation allows us

a parameter-free representation of the shapes. We implemented the weighted sum

method and the hypervolume method based on this discretization approach in the

programming language Python 3.

We start in Section 5.5.1 with a description of the finite element discretization

which was implemented by Camilla Hahn, see Hahn, 2021. Afterwards we consider

the hypervolume scalarization (HV-SP) of the biobjective shape optimization problem

78 5.5. Implementation with Structured Meshes

0.2 0.3 0.4 0.5 0.6 0.7

0.12

0.14

0.16

0.18

0.2

0.22

0.24

ω̄ = 0.5

ω̄
=

1.
1ω

=
0
.8

ω
=

0.
75

ω
=

0.5

ω
=

0.
85

intensity measure J1

volume J2 biobjective descent algorithm

weighted sum method

Figure 5.9: Outcome vectors for the S-shaped joint. The associated Pareto critical
shapes are shown for selected weightings/scalings.

Chapter 5. Ceramic Components under Tensile Load 79

(5.8) which we solve using an iterative ascent algorithm in the framework of a ‘first

discretize, then optimize’ approach. Details of the numerical implementation are

presented including the discretization approach the determination of ascent directions

for the hypervolume scalarization and the update scheme for the current shape.

Furthermore, the choice of the reference point is discussed. The parts mentioned above

are already published in Schultes et al., 2021.

5.5.1 Finite Element Discretization

The component to be optimized (i. e., the current shape) is discretized via finite

elements on a structured grid in the following way. Consider a rectangular domain Ω̂

with width Ω̂l and height Ω̂h that entirely covers the initial shape Ω(0) (see Figure 5.1

for an illustration). The domain is discretized by a regular triangular grid denoted by

T̂ with nx and ny grid points in x- and y-direction, respectively. The corresponding

mesh sizes are given by mx = Ω̂l/(nx − 1) and my = Ω̂h/(ny − 1). The mesh sizes

should be chosen such that mx ≈ my in order to avoid distorted finite elements. In

a next step, as visualized in Figure 5.10, the boundary ∂Ω(0) of the initial shape is

superimposed onto the grid and the closest grid points are moved onto the boundary

in a controlled way, such that degenerate elements do not occur. More precisely, it is

guaranteed that the maximum angle condition (Babuška and Aziz, 1976) is satisfied.

The adapted grid is denoted by T∞0 . The computations are performed only on that

part of the grid that represents Ω(0) which is called the active grid and denoted by T0,

see Figure 5.10.

In the iterative optimization process (see Section 5.5.2 for more details) the active

grid Tk+1 of the next iteration, k = 0, 1, 2, . . . , representing the updated shape Ω(k+1),

is generated by starting again from T̂ . Consequently, the connectivity is maintained

throughout all iterations. Rather than going through all elements (as required in the

first iteration) we now incorporate the information from the previous mesh T∞k . In

the ‘updating procedure’ it is only necessary to iterate over elements in a certain

neighborhood of previous boundary elements, and adapt them if necessary. Note that

a complete re-meshing is necessary only when the next iterate Ω(k+1) differs too much

from Ω(k), which is usually only the case when the update step exceeds the mesh

size in at least one grid point. This property and the persistent connectivity lead

to a significant speed up compared to standard re-meshing techniques. As stated

above, in most iterations the majority of the elements inside the component remain

unchanged. This leads to an additional advantage over both standard re-meshing and

80 5.5. Implementation with Structured Meshes

Figure 5.10: Exemplary adaption of the finite element grid to a shape Ω(0) in iteration
k = 0.

mesh morphing approaches. In regions where elements are not changed, the entries of

the governing PDE are also not changed. Therefore, a full re-assembly of the system

matrix and the right hand side is avoided and only entries corresponding to modified

elements have to be updated.

In the following, we distinguish between the continuous shape Ω(k) and its (ap-

proximative) representation on the finite element grid. The discretized shape, induced

by the active grid Tk, is denoted by Ω
(k)
nx×ny

. This implicates that the gradient of the

hypervolume indicator ∇H is evaluated w.r.t. the discretized shape, i. e., ∇H(Ω
(k)
nx×ny

)

is defined on the grid points given by Tk.

5.5.2 Iterative Ascent Algorithm for the Hypervolume Scalar-

ization

The hypervolume scalarization problem of the biobejctive optimization problem (5.8)

is given by

max (r1 − J1 (Ω)) · (r2 − J2 (Ω))

s. t. J1(Ω) ≦ r1,

J2(Ω) ≦ r2,

Ω ∈ Oad

(5.18)

with reference point r = (r1, r2)
⊤ ∈ R.

Ascent direction and update scheme In the following we develop an iterative

update scheme for the hypervolume scalarization of the biobjective shape optimization

problem (5.8). As stated above, the finite element discretization of the component

Chapter 5. Ceramic Components under Tensile Load 81

is based on a regular grid, where only the grid points that are close to the boundary

of the current shape Ω(k) are adapted to the boundary of the component. All finite

elements that are not adjacent to the boundary of the current shape Ω(k) remain

unchanged and form a subset of the regular grid. Whenever the component is updated,

we thus want to modify the boundary points of the component without moving inner or

outer grid points. For this purpose we consider the grid points lying on the boundary

of the shape Ω(k), or rather of its finite element representation Ω
(k)
nx×ny

. Since these

grid points are induced by the active grid Tk, we call them boundary points and denote

them by ∂Tk.

The discretized shape Ω
(k)
nx×ny

in iteration k is updated by determining a search

direction and calculating a step length. For a given search direction d(k) and step

length tk, we define the update of the component by the expression

Ω
(k+1)
nx×ny

= Ω
(k)
nx×ny

⊕ tk · d(k). (5.19)

The operation ⊕ is defined as follows: First, the boundary points are moved by tk ·d(k)

resulting in

∂T ′k := ∂Tk + tk · d(k).

Then ∂T ′k is fitted by cubic splines, resulting in the updated shape Ω(k+1). Finally, the

new active grid Tk+1 is generated based on ∂Ω(k+1) as detailed in Section 5.5.1. This

defines Ω
(k+1)
nx×ny

in (5.19). Note that the boundary points ∂Tk+1 of iteration (k + 1)

do not have to coincide with ∂T ′k since Tk+1 is generated based on ∂Ω(k+1), which is

defined by cubic splines.

The search direction d(k) is computed based on the gradient of the hypervolume

indicator function ∇H(Ω
(k)
nx×ny

). However, due to the discretization ∇H(Ω
(k)
nx×ny

) is

usually largely irregular and needs to be smoothed to avoid zigzagging boundaries and

overfitted spline representations of the next iterate. To obtain a smooth deformation

field for the boundary points, we follow the approach suggested in Schmidt and Schulz,

2009 and use a Dirichlet-to-Neumann map to compute a smoothed gradient. Let

∇̃H(Ω
(k)
nx×ny

) denote the smoothed gradient. Then

d(k) := ∇̃H(Ω
(k)
nx×ny

)
⏐⏐⏐
∂Tk

(5.20)

denotes its values on the boundary points. See Figure 5.11 for a visual comparison of

82 5.5. Implementation with Structured Meshes

(a) ∇H(Ω
(k)
nx×ny

). (b) ∇̃H(Ω
(k)
nx×ny

).

Figure 5.11: Unsmoothed (left) and smoothed (right) gradient of the hypervolume
indicator.

the gradient ∇H(Ω
(k)
nx×ny

) and the smoothed gradient ∇̃H(Ω
(k)
nx×ny

) of an exemplary

shape.

The step length tk in direction d(k) is determined according on the Armijo-rule

(see, e.g., Bazaraa, 2006; Geiger and Kanzow, 1999). For given parameters σ, β ∈ (0, 1)

we set

tk := max
ℓ∈N0

{
βℓ : H

(
Ω

(k)
nx×ny

⊕ βℓ d(k)
)
≥ H(Ω

(k)
nx×ny

)+σ βℓ∇H(Ω
(k)
nx×ny

)⊤d(k)
}
.

(5.21)

The complete iterative ascent algorithm using smoothed gradients is summarized in

Algorithm 5. As stopping conditions, an upper bound K on the number of iterations,

an upper bound on the number of iterations ℓ in the evaluation of the Armijo rule

(5.21), and a lower bound ε on the Frobenius norm of the search direction are used.

Re-scaling the search direction. In order to avoid re-meshing operations when-

ever possible, it is often advantageous to re-scale the search direction such that the

gird T∞k+1 can be computed by performing a simple grid adaption (c.f. Section 5.5.1).

Indeed, when for example for a large gradient (e.g., resulting from large given loads)

the step tk = 1 is not feasible, this leads to numerical problems when implementing

Algorithm 5. To avoid such situations, the search direction d(k) is re-scaled in the fol-

lowing way: First, the norm ∥d(k)ij ∥2 is calculated for all grid points (i, j), i = 1, . . . , nx

and j = 1, . . . , ny, where d
(k)
ij is the entry of d(k) for grid point (i, j). Since d(k) is

Chapter 5. Ceramic Components under Tensile Load 83

Data: Starting solution Ω
(0)
nx×ny

, reference point r; Armijo parameters
σ, β ∈ (0, 1), accuracy ε > 0, maximal number of iterations K ∈ N;

Result: Approximate solution of the hypervolume problem Ω∗nx×ny
;

Set k := 0, calculate ∇̃H(Ω
(0)
nx×ny

)|∂Tk
;

while ∥∇̃H(Ω
(k)
nx×ny

)|∂Tk
∥ < ε and k ≤ K do

Compute a search direction d(k) := ∇̃H(Ω
(k)
nx×ny

)
⏐⏐
∂Tk

;

Compute a step length tk ∈ (0, 1] according to the Armijo-rule (5.21);

Ω
(k+1)
nx×ny

:= Ω
(k)
nx×ny

⊕ tk · d(k);
k := k + 1;

end

Ω∗nx×ny
:= Ω

(k)
nx×ny

;

Algorithm 5: Iterative optimization scheme for hypervolume maximization.

only defined at the boundary points, d
(k)
ij is set to zero for grid points (i, j) that are

not related to the boundary points. When maxi,j ∥dij∥2 is larger than a predefined

percentage pmax of the minimum mesh size min{mx,my}, with pmax < 1, then the

search direction is re-scaled by the factor s(pmax) given by

s(p) =
p

maxi,j∥dij∥2
min{mx,my}. (5.22)

By computing a step length tk ∈ (0, 1] it is then guaranteed that the boundary points

do not move more than the mesh size, and a grid apdation can be performed.

Furthermore, numerical tests have shown that near an efficient solution the search

direction d(k) becomes very small, thus slowing down the potential improvement while

the unsmoothed gradient ∇H(Ω
(k)
nx×ny

) may still be large. Then the search direction is

re-scaled when maxi,j∥dij∥2 is less than a given percentage pmin ∈ (0, 1) of the mesh

size. In this case, the search direction is multiplied by s(pmin).

Grid refinement In order to accelerate the convergence to the Pareto front, it may

be useful to start the optimization on a coarse grid and later continue on a finer grid.

Since for numerical reasons each update step is restricted to the mesh size, we expect

that a coarse grid allows for larger steps in early stages of the optimization procedure.

Moreover, the evaluation of objective function values and gradients on the coarse grid

is generally faster. On the other hand, with a finer resolution of the grid the accuracy

of the approximation of objective function values and gradients is improved. Thus,

84 5.5. Implementation with Structured Meshes

near an efficient solution large steps are not necessary and a finer grid may result in a

better approximation of the shape.

5.5.3 Choice and Variation of the Reference Point

For the iterative ascent algorithm (Algorithm 5) a feasible starting solution Ω
(0)
nx×ny

and a reference point r ∈ R2 with r > J(Ω
(0)
nx×ny

) are needed as input. Since in general

neither the Pareto front nor efficient shapes are known beforehand, the reference point

can only be chosen based on a known feasible shape Ω
(0)
nx×ny

that may actually be far

from the Pareto front. To ensure that the hypervolume scalarization (5.18) is well

defined and that the constraints J1(Ω) ≤ r1 and J2(Ω) ≤ r2 are redundant throughout

the execution of Algorithm 5 (c.f. Chapter 3 for a discussion of this issue,) we select

the reference point r such that

r =
(
J1(Ω

(0)
nx×ny

) + δ1, J2(Ω
(0)
nx×ny

) + δ2

)⊤
(5.23)

with positive parameters δ1, δ2 > 0.

The impact of the reference point on the hypervolume indicator was already

discussed in Auger et al., 2009. They derive properties of optimal µ distributions

depending on the choice of the reference point, i. e., of representative subsets of the

Pareto front of cardinality µ maximizing the joint hypervolume. Moreover, they derive

an explicit lower bound for the reference point guaranteeing that, under appropriate

conditions, the extreme solutions are contained in the representation.

In order to take advantage of the fact that, at least theoretically, the complete

Pareto front can be generated by varying the reference point in the hypervolume

scalarization (5.18) (see Corollary 7), we suggest a systematic approach to approximate

the Pareto front of problem (5.8) by repeatedly solving problem (5.18) with different

reference points. The ultimate goal is the determination of a Pareto front generating

reference set (PFG reference set for short). Let YH(r) denote the optimal outcome

vector obtained from solving problem (5.18), and let YH(R) :=
⋃

r∈R YH(r) denote

the set of all optimal outcome vectors obtained over all reference points in the set

R ⊆ R2, called reference set.

Definition 11. A set R ⊆ R2 is called Pareto front generating (PFG) reference set

if and only if YN = YH(R). Moreover, we denote a reference set R ⊆ R2 as pPFG

reference set, if and only if it is generating the set of properly non-dominated outcome

vectors, i. e., YPND = YH(R).

Chapter 5. Ceramic Components under Tensile Load 85

Note that a PFG reference set always exists since, for example, R = YN is a valid

selection, c.f. Corollary 7. Note also that a PFG reference set may contain redundant

reference points that can be omitted without loosing the PFG property.

From a practical point of view, we can not expect to solve the hypervolume

scalarization (5.18) to global optimality and thus only aim at an approximation of the

Pareto front YN. Towards this end, we suggest to choose the reference set R based

on varying values of δ = (δ1, δ2) > (0, 0) in (5.23). More precisely, we suggest to set

(δ1, δ2) = (ξ, 1
ξ) with ξ > 0 in (5.23), i. e.,

r(ξ) :=

(
J1(Ω

(0)
nx×ny

) + ξ, J2(Ω
(0)
nx×ny

) +
1

ξ

)⊤
(5.24)

and set RH := {r(ξ) ∈ R2 : ξ > 0}. This ensures that the starting solution Ω
(0)
nx×ny

is

strictly feasible for the hypervolume scalarization (5.18) for all choices of r(ξ) ∈ RH,

i. e., J(Ω
(0)
nx×ny

) < r(ξ) for all ξ > 0. This implies that RH ⊂ J(Ω
(0)
nx×ny

) + R2
> with

R2
> = {y ∈ R2 : yi > 0, i = 1, 2}. Hence, YN ∩ RH = ∅, i. e., the Pareto front lies

completely ‘below’ the reference set.

For reference points from the reference set RH the result of Theorem 6 can be

strengthened for the biojective case.

Lemma 12. An optimal solution of the hypervolume scalarization (5.18) w.r.t. a

reference point from the set RH is a properly efficient solution of the corresponding

biobjective optimization problem (5.8).

Proof. Consider an optimal solution of the hypervolume scalarization (5.18) y =

J(Ω̄) ∈ YH(r̄) for an arbitrary reference point r̄ ∈ RH. Since J(Ω
(0)
nx×ny

) < r̄ we know

that for this reference point H(Ω
(0)
nx×ny

) > 0, and hence also H(Ω̄) > 0. Therefore, the

hypervolume rectangle induced by y and r̄ must have positive side lengths a(Ω̄) > 0

and b(Ω̄) > 0. This implies that y is locally optimal for a weighted sum scalarization

with weights λ1 = b(Ω̄) > 0 and λ2 = a(Ω̄) > 0 since this has the same cone of

improving directions as the hypervolume indicator in this point (see Section 3.4.1 for

a detailed derivation). It follows that y ∈ YPND.

Note that Lemma 12 is in line with the results of Auger et al., 2009 who showed

that, irrespective of the choice of the reference point, non-dominated points with

unbounded trade-off are not part of what they call ‘optimal µ distributions’, that is,

of subsets of points on the Pareto front that maximize the joint hypervolume.

Note also that by varying ξ > 0 different reference points are obtained that lie along

86 5.5. Implementation with Structured Meshes

1 2 3 4 5 6 7

1

2

3

4

5

6

J(Ω
(0)
nx×ny

)

r(1)

r(0.4)

r(2)

RH = {r(ξ) ∈ R2 : ξ > 0}

J1

J2

Figure 5.12: Reference set RH defining a hyperbola in the objective space.

a hyperbola in the objective space, see Figure 5.12 for an illustration. Indeed, for two

parameter values 0 < ξ1 < ξ2 we have that r1(ξ1) < r1(ξ2) and r2(ξ1) > r2(ξ2). Hence,

the hypervolume rectangle spanned by J(Ω
(0)
nx×ny

) and r(ξ1) cannot be contained in

the hypervolume rectangle spanned by J(Ω
(0)
nx×ny

) and r(ξ2) and vice versa. However,

for all associated hypervolume rectangles it holds that a(Ω
(0)
nx×ny

) · b(Ω(0)
nx×ny

) = 1.

While we can not guarantee that the set RH is a PFG reference set in general,

we argue that the chances are high that the reference set RH induces solutions with

varying objective values. This is validated by the numerical experiments described

in Section 5.5.4 below. From a theoretical perspective, we argue that at least for

convex problems the reference set RH is pPFG, i. e., the properly efficient set can be

generated by varying the reference points in RH.

Theorem 13. Suppose that for p = 2 the biobjective optimization problem (MOP) is

convex, i. e., all efficient solutions of (MOP) are supported efficient solutions. Then

YPND = YH(RH), i. e., RH is a pPFG reference set.

Chapter 5. Ceramic Components under Tensile Load 87

Proof. First, recall that Lemma 12 implies that YH(RH) ⊆ YPND. Thus, it remains to

be shown that YPND ⊆ YH(RH).

Now let y = J(Ω̄) ∈ YPND be properly efficient. Then there exist weights λ1, λ2 > 0

such that Ω̄ is optimal for the associated weighted sum scalarization (5.14), see, e.g.,

Ehrgott, 2005; Geoffrion, 1968. Now define a rectangle with sides a := λ2 > 0 and

b := λ1 > 0 and let r′ := J(Ω̄) + (a, b)⊤. It is easy to see that the hypervolume

rectangle spanned by J(Ω̄) and r′ is precisely the rectangle with side lengths a and

b. From the discussion in Section 3.4.1 we can conclude that Ω̄ is optimal for the

hypervolume scalarization (HV-SP) with reference point r′ since in this situation the

set of improving points w.r.t. the hypervolume indicator is completely contained in that

of the weighted sum (which is empty in this case). See Figure 5.13 for an illustration

of the respective contour lines. Moreover, J(Ω̄) is the unique optimal outcome vector

of the hypervolume scalarization (HV-SP) in this case. Since this property only relies

on the ratio b
a of the side lengths of the hypervolume rectangle, the reference point

can be moved along the half-line starting at J(Ω̄) and passing through r′ until it

intersects the set RH. This intersection point exists and can be determined as the

positive solution ξ of the system

J1(Ω̄) + τ a = J1(Ω
(0)
nx×ny

) + ξ

J2(Ω̄) + τ b = J2(Ω
(0)
nx×ny

) +
1

ξ

which yields

ξ2 − ξ
(
(J1(Ω̄)− J1(Ω

(0)
nx×ny

))− a

b
(J2(Ω̄)− J2(Ω

(0)
nx×ny

)
)

  
=:c

−a

b
= 0.

We obtain two solutions for ξ, namely

ξ1,2 =
c

2
±
√

c2

4
+

a

b
.

Since a
b > 0 we have that (c

2

4 + a
b)

1
2 > | c2 | and hence exactly one of the two solutions

for ξ is positive, irrespective of the sign of c. This solution yields the sought reference

point r(ξ) ∈ RH, and we can conclude that YPND ⊆ YH(RH).

Note that even though Theorem 13 is restricted to convex problems, the set RH may

be pPFG also for non-convex problems. This depends on the degree of non-convexity

on one hand, and on the distance of the reference set RH from the Pareto front in the

88 5.5. Implementation with Structured Meshes

1 2 3 4 5 6 7 8 9

−1

1

2

3

4

5

6

7

YPND

a(Ω̄; r(ξ))

b(Ω̄; r(ξ))

wΩ̄

a

b

J(Ω
(0)
nx×ny

)

RH

r(ξ)

hΩ̄;r(ξ)hΩ̄;r′

J(Ω̄)

r′

J1

J2

Figure 5.13: Identification of a reference point r(ξ) ∈ RH that generates a given
outcome vector J(Ω̄).

Chapter 5. Ceramic Components under Tensile Load 89

objective space on the other hand, where the latter is defined by the image of the

starting solution J(Ω
(0)
nx×ny

).

5.5.4 Hypervolume solutions with structured meshes

We consider a 2D test case of a ceramic rod consisting of Beryllium oxide (BeO).

The rod is 0.6m long and has a height of 0.1m. It is fixed on one side while tensile

load is applied on the other side, modeling a horizontal load transfer. On the fixed

boundary ΩD of the rod the displacement field u(x) is zero, i. e., here Dirichlet

boundary conditions hold, c.f. (5.2). The part ΩNfixed
denotes the boundary on which

the surface loads g are applied, i. e., where Neumann boundary conditions hold. The

remaining parts of the boundary, denoted by ΩNfree
, can be modified according to the

optimization objectives whereas the boundaries ΩD and ΩNfixed
are fixed during the

optimization. In particular, the corner points cannot be moved. In Figure 5.1 the rod

and the decomposition of its boundary into ΩD, ΩNfixed
and ΩNfree

are illustrated.

As we consider the same ceramic material BeO as in Doganay et al., 2020, see

Section 5.4, we use the same material parameter setting in order to evaluate the state

equation (5.2) and the PoF objective (5.6) In particular, Young’s modulus is set to

E = 320GPa, Poisson’s ratio to ν = 0.25, the ultimate tensile strength to 140MPa

and the Weibull parameter to m = 5. The surface loads, acting on ΩNfixed
, are set to

g = (108, 0)⊤ Pa and the volume force density is set to f = (0, 1000)⊤ Pa. To speed up

the numerical evaluation of the state equation, an improved discretization approach

based on regular grids is employed, see Section 5.5.1 for more details and Figure 5.14

for an illustration of the considered shape. In contrast to Section 5.4, volume forces

that model, e.g., gravity, are included in the numerical evaluation.

We choose a bent rod as shown in Figure 5.1 as the initial shape (i. e., as the

starting solution) for the optimization that is implemented using Algorithm 5. Note

that this shape is clearly not efficient. Indeed, in this situation the efficient shapes are

straight rods of different width, trading off between small probabilities of failure and

high volumes on one hand, and high probabilities of failure and low volumes on the

other hand. This simple setting has the advantage that the optimization results can

be validated and compared with the ‘true’ Pareto front.

The rectangular domain Ω̂ that contains all admissible shapes Oad is given by a

rectangle of width Ω̂l = 0.7m and height Ω̂h = 0.35m. The initial shape is placed

in the interior of this rectangle. Moreover, the whole setting is slightly rotated so

that the boundaries of the initial shape can be represented by interpolating cubic

90 5.5. Implementation with Structured Meshes

Figure 5.14: Illustration of the discretized rod with 36× 18 grid points.

splines. The domain Ω̂ is discretized by a triangular grid with nx × ny grid points

as described in Section 5.5.1. Hereby, we determine the number of grid points such

that a prescribed mesh size of mx = my ≈ 0.02m is realized. In this setting, this

results in a discretization with 36 × 18 grid points, see Figure 5.14. Note that this

shape representation has more degrees of freedom than the B-spline representation in

Section 5.4. This significantly increases the flexibility of this approach.

In the numerical tests reported below, we use the Armijo-rule (5.21) with parameters

β = 0.5 and σ = 0.1. Moreover, the smoothed gradient d(k) is adaptively scaled such

that maxi,j ∥d(k)ij ∥2 is within 10% to 90% of the mesh size, i. e., pmin = 0.1 and

pmax = 0.9 as explained in Section 5.5.2. The optimization process is restricted to 500

iterations, i. e., K = 500. To avoid tiny step sizes, the Armijo-rule is restricted to 30

iterations, i. e., ℓ ∈ {0, . . . , 30}. Whenever the Armijo rule does not yield a sufficient

improvement for reasonable step sizes, the algorithm stops. Moreover, the algorithm

stops when the Frobenius norm of the unscaled search direction d(k) is lower than

ε = 10−10.

Twelve exemplary reference points r(ξ) are selected from the pPFG reference set

RH (see (5.24)), with ξ ∈ {0.0005, 0.001, 0.0015, . . . , 0.005, 0.006, 0.007}. Algorithm 5

is implemented in Python 3.6 and all tests are run under opensuse 15.0 on an IntelCore

i7-8700 with 32GB RAM.

Chapter 5. Ceramic Components under Tensile Load 91

Results

The twelve optimization runs with varying reference points yield 12 different mutually

non-dominated outcome vectors. The resulting approximation of the Pareto front

is shown in Figure 5.15. As was to be expected, the optimized shapes resemble a

straight rod with varying thickness. The objective vector of the initial shape Ω
(0)
36×18

is (18456.28, 0.06)⊤, which is actually far from the Pareto front.

Several exemplary shapes are shown in Figure 5.15. In addition to the illustration

of the respective shapes, the stresses in the direction of the tensile load acting on the

finite elements are depicted as arrows at the respective center points. Note that the

diagonal pattern of the arrows is due to the rotated (not axis-parallel) grid structure.

It turns out that the iterates evolve similarly for different optimization runs. For

about 50 iterations the hump of the rod decreases quickly, and the Armijo rule often

returns a sufficient improvement already for tk = 1. Thus, the shape converges quickly

to a nearly straight joint, however, usually with a wavy boundary, and its probability

of failure improves considerably. In later iterations the changes are less visible and

the shape converges slowly to a straight joint, the thickness of which depends on the

chosen reference point. During the optimization process, the volume decreases only

slowly as the wavy boundary gets smoother.

The optimization runs require between 292 and 486 iterations with one exception:

for the reference point r(0.0005) the optimization process stops at the maximum of

500 iterations. In all other cases the algorithm terminated in the Armijo rule.

The solutions from the coarse 36 × 18 grid were used as starting solutions on a

refined 71× 36 grid with mesh size m = 0.01m. Exemplary results for the reference

points r(0.001) and r(0.003) are shown by red crosses in Figure 5.15. The respective

starting solutions, which are now evaluated on a 71× 36 grid, are illustrated by red

circles in the same Figure. The results are smoother, see Figure 5.16, but require

significantly more computational time. Nevertheless, in this test case setting the

coarse grid approximation obtained already considerably good results, which are not

dominated by the corresponding results on the finer grid.

Moreover, numerical tests show that shapes representing very thin or thick straight

rods, respectively, induce numerical difficulties due to the fixed boundary parts and,

particularly, their corner points. Thick rods suffer from overfitted spline representations

of their boundaries. Thin rods, on the other hand, lead to distorted finite elements at

the spiky corner points.

92 5.5. Implementation with Structured Meshes

20 40 60 80 100 120

4

4.5

5

5.5

6

6.5

·10−2

r(0
.00

05)

r(0
.00

1)

r(0
.00

2)

r(0
.00

3)

r(0
.00

4)

r(0
.00

6)

r(0
.00

7)

J1

J2

Figure 5.15: Coarse approximation on a 36 × 18 grid (orange) and two exemplary
results from the grid refinement (red).

(a) Solution Ω∗
36×18 evaluated on a 71× 36 grid. (b) Solution Ω∗

71×36.

Figure 5.16: Comparison of the coarse and fine grid solution obtained for reference
point r(0.003).

Chapter 6

Efficiency and Reliability of

Turbomachinery Components

This chapter focuses on developing a gradient based shape optimization algorithm

for turbomachinery components with respect to efficiency and reliability as outlined

in the GivEn project described in Chapter 1. We start by introducing the chosen

test case for a simulation of a low pressure turbine cascade. Next, we present the

objectives and their corresponding state equations. Following this, we can formulate

the biobjective shape optimization problem, which we aim to solve using the weighted

sum method. Subsequently, our attention turns to the implementation details of the

optimization algorithm before presenting the results obtained for the chosen test case.

6.1 Model

The optimization aims at enhancing the reliability and efficiency of turbomachinery

components. We focus on the simulation of a single turbine stage of a gas turbine,

selecting the low-pressure turbine cascade test case T106A for this study, see Hoheisel

et al., 1986. For this purpose, our analysis centers on the profile design of the blades.

In this test case we consider a set of stationary blades which are designed to remain

fixed in position and do not rotate. Stationary blades play an important role in guiding

the airflow within the engine towards the rotating blades which are attached to the

turbine rotor and spin in order to extract the energy of the airflow. The design of

stationary blades significantly influences the efficiency and overall performance of a

93

94 6.2. Aerodynamic Efficiency

gas turbine. In our study, the number of blades is predetermined and not included

in the optimization process. Subject of optimization is the profile design, aiming

to improve both the efficiency of the surrounding aerodynamic flow and the overall

reliability of the component. The profile of one representative blade is given by a

cross section and is shown with the surrounding area divided into several sections

used for the implementation, see Figure 6.1. On the left side of the boundary the fluid

Figure 6.1: Geometry of the T106A profile with surrounding panels.

enters the area, whereas the right boundary indicates where the fluid exists. We call

the left and right section Inlet and Outlet, respectively. The geometry of the T106A

configuration is given in pseudo-3D (p3D) for the subsequent calculations, with the

profile superimposed twice. The upper and lower boundaries are periodic and the

shape is originally given in cylindrical coordinates. As a result, stacking this segment

leads to a representation of the turbine cascade. However, to simplify the calculation

and realization of shape changes in the optimization algorithm, the cylindrical shape

is replaced by a planar shape. Thus, the shape given in p3D is plane in the y-axis.

6.2 Aerodynamic Efficiency

The aerodynamic flow is a key factor in determining the efficiency of turbomachinery

components and is evaluated by computational fluid dynamics. For the simulation

and computational solution of the aerodynamic state equation and the evaluation

of the corresponding objectives we use the tool TRACE (Turbomachinery Research

Aerodynamic Computational Environment) developed by the German aerospace center

(DLR). In this section we briefly discuss the aerodynamic state problem characterizing

Chapter 6. Efficiency and Reliability of Turbomachinery Components 95

the flow around the component under examination. Based on this formulation several

objective functions can be taken into account that relate to efficiency. In Section 6.2.2,

we explain the objective to evaluate the aerodynamic efficiency here. This section is

based on Backhaus, 2020 and TRACE User Guide 2019.

6.2.1 Aerodynamic State

The density, velocity and internal energy of a fluid in a given domain D \ Ω are

characterized by its aerodynamic state q given by

q =

⎛⎜⎜⎝
ρ

ρV

ρE

⎞⎟⎟⎠ (6.1)

with density ρ, velocity vector V = (Vx, Vy, Vz) and the total energy E of the fluid.

Here, Ω ⊂ R3 is a connected and compact domain representing the component under

consideration and D ⊂ R3 is a larger, connected and compact that contains Ω. In

our setting the aerodynamic state is required to fulfill the compressible Navier-Stokes

equations in a rotating frame of reference

∂q

∂t
+ div(F (q)) + S(q) = 0 (6.2)

which include the mass, momentum and energy conservation equations. The vector F

describing the fluxes is given by

F =

⎛⎜⎜⎝
ρV

ρV⊗V+ p Id− τ

ρVHt − τV+Q

⎞⎟⎟⎠ . (6.3)

Here, ⊗ denotes the outer product, i.e., V⊗V = VV⊤ results in a (3, 3)-matrix. The

pressure is denoted by p and Id is the identity matrix. According to Stokes’ law for a

Newtonian fluid the viscous stresses are given by

τij = 2µ

(
sij −

1

3
tr (s) δij

)
(6.4)

with

sij =
1

2

(
∂Vj

∂xi
+

∂Vi

∂xj

)
(6.5)

96 6.2. Aerodynamic Efficiency

where µ denotes the dynamic viscosity and δij is the Kronecker delta.

The rothalpy is given by

Ht = e+
1

2

(
∥V∥2 − (|ωa|r)2

)
+

p

ρ
.

In case of an ideal gas we have internal energy of the gas given by

e =
1

1− γ
RsT and p = ρRsT

with Rs the specific gas constant, T the temperature and γ the heat capacity ratio.

The angular velocity is denoted by ωa. The heat flux density is calculated by Fourier’s

law Q = −κ∇T with κ the thermal conductivity.

The source term S(q) results from the rotation system containing the Coriolis and

centrifugal forces. In TRACE the rotation axis is aligned with the x-axis. Thus, we

have

S =

⎛⎜⎜⎝
0

2ρΩa ×V− ρ|ωa|2rer
0

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

0

−2ρωaVz − ρ|ωa|2y
2ρωaVy − ρ|ωa|2z

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(6.6)

with Ωa = (ωa, 0, 0)
⊤ given by the angular velocity. Here, the cross product is denoted

by × and the radial unit vector by er. Given that the rotation axis corresponds to

the x-axis, the local radius can be determined as r =
√
y2 + z2 where y and z denote

the Cartesian coordinates along the y- and z-directions, respectively.

Since there is no analytical solution of the Naiver Stokes equation in general, the

equations are discretized and solved numerically. Furthermore, given the available

computing power, technically relevant flows cannot be discretized finely enough to

solve them with the above equations. Following Backhaus, 2020, Favre and Reynolds

averages are therefore applied to the above equations. The resulting equations are

then called Reynolds-Averaged-Navier-Stokes (RANS) equations. In this process,

all variables depending on time are decomposed into a stationary and a fluctuating

part where only the stationary part, which corresponds to the averaged quantities, is

simulated. The fluctuating part is described with the use of turbulence models. There

are different types of turbulence models, see Morsbach, 2017 for a detailed description.

Here, we use the Wilcox k–ω model (see Wilcox, 1988) with modifications. Note that

here k is the kinetic energy of turbulent fluctuation per unit mass and ω is the specific

Chapter 6. Efficiency and Reliability of Turbomachinery Components 97

dissipation rate. For more details about the discretization and implementation, see

Backhaus, 2020 and TRACE User Guide 2019.

6.2.2 Efficiency Objective

Numerous evaluation criteria exist in the context of turbomachinery components.

For example, typical criteria are the mass flow, total pressure ratio, efficiencies

or loss characteristics. To assess the efficiency of the design often the balance of

certain parameters between inlet and outlet surfaces of a control volume is considered.

The TRACE tool includes a number of objective functions that have already been

implemented. We use as objective a criterion called CoefEntropyRise which considers

the change of the entropy between inlet and outlet given by

C∆s = log(pt,abs,out,is/pt,abs,in)− log(pt,abs,out/pt,abs,in) (6.7)

whereas pt is the total pressure. The subscript abs denotes a quantity in absolute

frame of reference, i.e., the non-rotating case. The subscripts is describes the isentropic

property. Moreover, the subscripts in and out refer to the inlet and outlet locations,

respectively. See TRACE User Guide 2019 for more details.

Since the aerodynamic objective function is based on a simulation procedure for the

solution of the state equation, each evaluation of the objective function is associated

with a significant usage of computer resources. Therefore, we call this objective

function expensive. Furthermore, not every design can be assessed since a geometrical,

mechanical or aerodynamic restriction may cause the simulation to fail. We also

note that aerodynamic objective functions in shape optimization may be multimodal,

i.e. they may have multiple local minima (or maxima), see Bons et al., 2019.

6.3 Low-Cycle Fatigue

Similar to Chapter 5, our goal is to decrease failure probabilities of mechanical

components. But now we consider components made of polycrystalline metal rather

than a ceramic material. Moreover, we take cyclic loads into account. The mechanical

integrity of a component is understood as the absence of failure. Under cyclic loads

mechanical components can fail even if the stresses are far below the ultimate tensile

strength of the material, see Radaj and Vormwald, 2007; Rösler, Harders, and Bäker,

2019. This process is called fatigue.

98 6.3. Low-Cycle Fatigue

Here, we will consider low-cycle fatigue (LCF) which is characterized by high stress

and low amplitude/frequency with plastic strains. LCF models, for example, the

switch-on and switch-off process of a gas turbine, or the takeoff and landing process

of an aircraft. High cycle fatigue (HCF), on the other hand, is characterized by low

stress and high frequency and is not considered here.

We consider a shape made from polycrystalline metal. The degradation process is

physically caused by the gliding of linear lattice defects along crystallographic planes

of the densest packing towards the so-called slip systems, see Gottstein, 2004. Due to

the repetitive load and shear stresses, the lattice defects can reach the surface and

form intrusions and extrusions, see Figure 6.2a, where a crack can start to initiate, see

Figure 6.2b. Low-cycle fatigue is thus a surface driven failure mechanism.

(a) Intrusions and extrusions caused
by cyclic loading F .

(b) Crack initiation at the lower left
boudary during a life cycle test for Ni-
based speralloy RENE80.

Figure 6.2: Low cycle fatigue is a stress and surface driven failure mechanism.

In a deterministic approach for mechanical integrity, see, e.g., Rösler, Harders, and

Bäker, 2019, here understood as the absence of LCF cracks, the numbers of cycles

for which the component may be used safely is calculated for every local point at the

surface. Then the minimum is taken and some safety margins are added. However,

considering the minimum results in a non-differentiable objective function.

We thus follow a different approach in this work. Taking the random nature of

LCF crack formation into account we will use a probabilistic approach instead of the

deterministic approach to model low-cycle fatigue. Thus, instead of considering the

local point with highest stress, we consider an integral over the surface of the component

and obtain a differentiable objective that reflects the probability of failure. As a

consequence, we can calculate shape sensitivities, see Bittner, 2018 for a throughout

analysis. With the shape sensitivities at hand, we can apply gradient based methods

Chapter 6. Efficiency and Reliability of Turbomachinery Components 99

for shape optimization.

We outline the key points of the probabilistic LCF objective below. We start with

recalling the mechanical state equation. Note that we consider this PDE already

in Section 5.1.2 for the ceramic PoF objective. Then, we describe the deterministic

approach for LCF which serves as the basis for the probabilistic model. For the

deterministic model for LCF we refer to Gottstein, 2004; Radaj and Vormwald, 2007;

Rösler, Harders, and Bäker, 2019. Afterwards, we describe the probabilistic model

and conclude with a comparison between the LCF objective and the PoF objective

for ceramic material from Chapter 5. Literature on the probabilistic model for LCF

that is presented here can be found in Bittner, 2018; Gottschalk and S. Schmitz,

2014; S. Schmitz, 2014; S. Schmitz, Gottschalk, et al., 2013; S. Schmitz, Rollmann,

et al., 2013; S. Schmitz, Seibel, et al., 2013, to name a few, and the calculation of

probabilistic LCF sensitivities via the adjoint approach is considered in Gottschalk

and Saadi, 2019; Hahn, 2021; Saadi, 2021.

6.3.1 Linear Elasticity PDE

We consider a bounded domain Ω ⊂ Rd (d ∈ {2, 3} fixed) with a piecewise Lipschitz

boundary. The shape Ω represents a mechanical component made of polycrystalline

metal in a force free equilibrium. The boundary ∂Ω is divided into two parts ∂Ω =

∂ΩD∪∂ΩN . The Dirichlet boundary ∂ΩD is an open portion of ∂Ω with non-vanishing

surface measure, where the component is fixed. The Neumann boundary ∂ΩN is the

part of the boundary where the surface load may act.

Now let f ∈ L2(Ω,Rd) be a volume force like gravity of centrifugal loads and let

g ∈ L2(∂ΩN ,Rd) be a surface load, e.g., caused by a static gas pressure p(x) ∈ R
where x ∈ ∂ΩN and g(x) = −p(x)n̂(x) with n̂ the outward pointing normal vector

field on ∂ΩN . The displacement field u ∈ H1(Ω,Rd) caused by these loads is the

solution of the following linear elasticity PDE:

−div(σ(u(x))) = f(x) for x ∈ Ω,

u(x) = 0 for x ∈ ∂ΩD,

σ(u(x))n̂(x) = g(x) for x ∈ ∂ΩN .

(6.8)

The linearized strain tensor ε ∈ L2(Ω,Rd×d) is defined by

ε(u(x)) =
1

2

(
Du(x) +Du(x)⊤

)
(6.9)

100 6.3. Low-Cycle Fatigue

with Du the Jacobi matrix of u. We equivalently write ε(x) := ε (u(x)) to describe

the strain state at some location x ∈ Ω. The stress tensor field σ ∈ L2(Ω,Rd×d) is

defined by

σ(u(x)) = λtr(ε(u(x)))I + 2µε(u(x)) (6.10)

= λdiv(u(x))I + µ
(
Du(x) +Du(x)⊤

)
(6.11)

where λ, µ > 0 are the Lamé constants.

Note that we have the same linear elasticity PDE as in Section 5.1.2, but omit the

subdivision of ∂ΩN with a force-free part ΩNfree
. We refer to the linear elasticity PDE

(6.8) as the mechanical state equation.

6.3.2 Deterministic Approach for LCF

To derive the probabilistic LCF objective we first have a look at the deterministic LCF

approach which is based on the Coffin-Mason-Basquin (CMB) equation. According to

Rösler, Harders, and Bäker, 2019, the CMB equation is defined by two parts. The

first part

εela =
σ′f
EY

(2Nidet)
b (6.12)

is the Basquin equation describing the elastic range εela , where σ
′
f is the fatigue strength

coefficient, b is the fatigue strength exponent and EY is Young’s modulus. The second

part

εpla = ε′f (2Nidet)
c (6.13)

is the Coffin-Manson equation describing the plastic range εpla . Here, ε′f is the fatigue

ductility coefficient and c is the fatigue ductility exponent. The CMB equation is then

given by

εel-pl = εela + εpla =
σ′f
EY

(2Nidet)
b + ε′f (2Nidet)

c (CMB)

and is used to describe the relationship between strain or stress and the expected

number of cycles until crack initiation. Here, εel-pl is called the elastic-plastic strain

amplitude. The parameters σ′f > 0, ε′f > 0 and b < c < 0 are material constants and

are estimated according to test data.

The solution Nidet
of the CMB equation is then called the deterministic number

of load cycles until crack initiation and can be calculated by the following steps, see,

for example, Bittner, 2018; Gottschalk and S. Schmitz, 2014: Given the solution

Chapter 6. Efficiency and Reliability of Turbomachinery Components 101

u of the mechanical state equation (6.8), we have the stress field σ(u) given by

σ(u) = λdiv(u)I+µ
(
Du+Du⊤

)
, λ, µ > 0 (see (6.10) and (6.11)). First, we calculate

the trace free part of σ given by

σ′ = TF(σ) = σ − 1

3
tr(σ)I. (TF)

We define the amplitude comparison stress as the van Mises stress given by

σv = VM(σ′) =

√
3

2
σ′ : σ′. (VM)

Here, A :B is the Frobenius scalar product defined by A :B = tr
(
A⊤B

)
. Now,

the Neuber shake-down (SD) rule (see Neuber, 1961) can be used to determine the

elastic-plastic stress amplitude σel-pl by

σv = SD
(
σel-pl

)
=

√
(σel-pl)

2
+ EY σel-pl

(
σel-pl

K

) 1
n′

(SD)

where EY is again Young’s modulus, K is the hardening coefficient and n′ the hardening

exponent. With the Ramberg-Osgood relation (RO) we obtain the elastic-plastic strain

amplitude εel-pl based on σel-pl

εel-pl = RO
(
σel-pl

)
=

σel-pl

EY
+

(
σel-pl

K

) 1
n′

, (RO)

see Ramberg and Osgood, 1943. This can then be used to solve the CMB equation:

εel-pl = CMB(Nidet
) =

σ′f
EY

(2Nidet)
b + ε′f (2Nidet)

c. (CMB)

Combining these steps, we have the following formula for the deterministic life predic-

tion Nidet
∈ R+ ∪ {∞}:

Nidet
(σ(u(x))) = CMB−1 ◦ RO ◦ SD−1 ◦VM ◦ TF(σ(u(x))), x ∈ ∂Ω. (6.14)

6.3.3 Probabilistic Model for LCF

The probabilistic model for LCF is based on a statistical model for crack initiation,

see S. Schmitz, Seibel, et al., 2013. This model is based on a Poisson point process,

similar to the derivation of the probability of failure objective in Section 5.2.1. We

102 6.3. Low-Cycle Fatigue

outline the most important points here and refer to S. Schmitz, Seibel, et al., 2013 for

a more detailed description.

An LCF crack initiation is modeled as a random event in space. Let the mechanical

component be given by Ω ⊂ Rd. We denote the cycle number by n ≥ 0. The number

n is strictly speaking an integer number, but we treat it as a continuous, time-like

number for technical reasons. We now assume that the initiation of an LCF crack is

defined by a surface location x ∈ ∂Ω and a cycle number n. With B ⊂ ∂Ω× (0,∞)

we denote collections of such pairs of location and time (for simplicity, we deliberately

suppress some mathematical details, e.g., measurability of B, see again S. Schmitz,

Seibel, et al., 2013 for more details). Then we count the number of cracks for a given

strain state ε(x) at some location and time in B and denote it by N(B, ε(x)). We

note that N(B, ε(x)) is a random quantity. Whenever we decompose B into a finite

collection of pairwise disjoint subsets B1, . . . , Bk we obtain

N(B, ε) =

k∑
j=1

N(Bj , ε). (6.15)

These random counts of crack initiations lead us to a point process. Furthermore, we

assume that at one location and point in time, at most one crack can initiate. We

have the following assumptions that imply that N(B, ε) is Poisson distributed, i.e.,

N(B, ε) ∼ Po(λ(B, ε)), see Kallenberg, 1983; Watanabe, 1964:

• Identification of single cracks: At one location and point in time, at most one

crack can occur.

• Local dependence of the load situation: If two surface regions have the same

surface area and the same strain state, they have the same statistical properties

that a crack will initiate in a given time interval.

• Independence: The initiation of a crack at some surface point at time will not

influence the initiation of a crack at another surface location and another time.

Under these assumptions, we have a Poisson point process and the probability for the

number of cracks in B is given by

P (N(B, ε) = k) = e−λ(B,ε)λ(B, ε)k

k!
, k = 0, 1, 2, . . . (6.16)

with λ(B, ε) being the intensity parameter of the Poisson distribution. A suitable

Chapter 6. Efficiency and Reliability of Turbomachinery Components 103

model for λ(B, ε) is given by

λ(B, ε) =

∫
B

ρ(n, ε) dAdn (6.17)

where ρ(n, ε) is the crack formation intensity function and dA the surface volume

measure. Since we are interested in the situation where the whole component is

crack free, we consider the survival probability up to time n. With Ni we denote the

(random) time of initiation of the first crack. The survival probability SNi(n) up to

time n is then given by

SNi(n) = P (N(∂Ω× (0, n], ε) = 0)

= exp

⎧⎨⎩−
n∫

0

∫
∂Ω

ρ(n, ε) dAdn

⎫⎬⎭ (6.18)

and the probability of failure is given by

FNi
(n) = 1− SNi

(n)

= 1− exp

⎧⎨⎩−
n∫

0

∫
∂Ω

ρ(n, ε) dAdn

⎫⎬⎭ . (6.19)

Furthermore, the hazard rate function is given by

hNi
(n) = lim

∆n↘0

1

∆n
P (Ni ∈ (n, n+∆n] |Ni > n)

= lim
∆n↘0

1

∆n

FNi
(n+∆n)− FNi

(n)

SNi(n)

=

∫
∂Ω

ρ(n, ε) dA (6.20)

which describes the probability of failure in the next moment given that the component

survived up to time n. This describes a measure of risk.

Now we need a model for the crack formation intensity measure ρ(n, ε). Based on

the solution of the (CMB) and the Weibull approach, see Weibull, 1939, in S. Schmitz,

Seibel, et al., 2013 the following model is proposed

ρ(n, ε(x)) =
m

Nidet
(σ(u(x))

(
n

Nidet(σ(u(x)))

)m−1

(6.21)

104 6.3. Low-Cycle Fatigue

with some shape parameter m and scale parameter Nidet(σ(x)), x ∈ ∂Ω as defined in

the (CMB) equation. Note that the stress field σ can be calculated by the strain field

ε, see (6.10). The value Nidet
(x) can be interpreted as the deterministic number of

life cycles for every point x ∈ ∂Ω. Inserting (6.21) in (6.19) we have the probability of

failure for LCF crack initiation in the time interval (0, n] given by

FNi(n) = 1− exp

⎧⎨⎩−
n∫

0

∫
∂Ω

m

Nidet

(
n

Nidet

)m−1

dAdn

⎫⎬⎭
= 1− exp

⎧⎨⎩−
∫
∂Ω

(
n

Nidet

)m

dAdn

⎫⎬⎭ . (6.22)

We call m ≥ 1 the Weibull shape parameter. We assume that m is independent of

the strain field ε. The shape parameter m determines the scatter of the distribution.

Small values correspond to large scatter and m→∞ is the deterministic limit. Note

that values 0 < m < 1 are not realistic for fatigue as this would imply that the hazards

decrease over time.

Now we can define our objective value for LCF as

JLCF(Ω, u(Ω)) =

∫
∂Ω

(
1

Nidet
(σ(u(x)))

)m

dA. (6.23)

The probability of failure PoF(n), i.e., the probability of an LCF crack after n load

cycles, is then given by

PoF(n) = FNi(n) = 1− e−n
mJLCF(Ω,u(Ω)). (6.24)

We note that minimizing JLCF is equivalent to minimizing PoF(n).

For the calculation of JLCF by (6.23) we calculate Nidet(σ(u(x)) by formula (6.14),

but have to adjust the material constants σ′f and ε′f and its units in the (CMB) equation.

Additionally, the constants σ′f and ε′f have to be calibrated to the probabilistic model

because the solution of the deterministic (CMB) equation usually belongs to the

50%-quantile curve. For the solution of the Weibull model we need the parameter

corresponding to the 1− 1
e ≈ 63%-quantile curve (see n = Nidet in (6.22)). Furthermore,

we have to take the statistical size effect into account. The size effect states that given

the same strain state larger components have the tendency to fail earlier than smaller

ones. We skip the details on the calibration and refer to Gottschalk and Saadi, 2019;

Chapter 6. Efficiency and Reliability of Turbomachinery Components 105

S. Schmitz, Seibel, et al., 2013.

Note that the LCF objective and the probability of failure (PoF) objective in-

troduced for ceramic materials in Chapter 5 both aim at a minimization of failure

probabilities as an objective, and both are modeled on the basis of a Poisson point

process. However, for the ceramic PoF we consider a one-time application of load

and have a volume driven failure mechanism, whereas for the LCF objective repeated

mechanical loading is applied and we have a surface driven failure mechanism. With

a suitable finite element analysis, derivative information can be computed for both

objectives. However, for the LCF objective we need stronger assumptions on the

regularity of the solutions u of the mechanical state equation (6.8) since, e.g., for the

calculation of the stress σ we consider first derivatives of u. If we only have solutions

u ∈ L2(Ω,Rd), the restriction to the boundary ∂Ω is not necessarily well defined, see,

for example, Gottschalk and S. Schmitz, 2014.

6.4 Biobjective Formulation

In the previous sections we have introduced the test case along with its objectives and

corresponding state equations. The goal is to improve both aerodynamic efficiency

and mechanical reliability of a turbine blade by optimizing its shape denoted as Ω. To

achieve this, we formulate a biobjective shape optimization problem which we aim to

solve by the implementation of a weighted sum algorithm, see Section 2.2.1. The first

objective, denoted as JEff, quantifies the change in entropy between the fluid’s inlet

and outlet surfaces serving as a measure for efficiency. The second objective JLCF is

correlated with the component’s failure probability under cyclic loading conditions

and thus, takes the reliability into account. Both objectives rely on an associated

state equation that needs to be solved by finite element methods. The surface load

of the mechanical state equation (6.8) is determined by the pressure values from the

aerodynamic state equation (6.2). Note that both objectives are formulated to be

minimized in order to increase efficiency and reliability. In summary, we have the

biobjective shape optimization problem given by

min JLCF(Ω) = LCF(Ω, umech(Ω)) (6.23)

min JEff(Ω) = CoefEntropyRise(Ω, uaero(Ω)) (6.7)

s. t. umech(Ω) solves the state equation (6.8) on Ω,

uaero(Ω) solves the state equation (6.2) on D \ Ω,
Ω ∈ Oad.

(6.25)

106 6.5. Implementation

The weighted sum scalarization is then given by

J (Ω) = ωLCF · JLCF(Ω) + ωEff · JEff(Ω) (6.26)

with fixed weights such that ωLCF, ωEff ∈ (0, 1) and ωLCF + ωEff = 1. We will discuss

the specific choice of weights in Section 6.6. The aim is to obtain different solutions

with different weightings and thus to achieve an approximation of the Pareto front.

6.5 Implementation

The gradient based optimization algorithm designed for solving problem (6.25) is

composed of several different elements, which we briefly delineate below and then

put together in a coupling routine. In a nutshell, the implementation comprises four

key elements: firstly, the utilization of the TRACE software package from DLR to

handle the efficiency objective; secondly, an in-house implementation by Dr.Camilla

Hahn to compute the LCF objective and sensitivities, see Hahn, 2021; thirdly, a

specialized software package crafted by Dr.Daniel Luft for computing Steklov Poincaré

gradients within the TRACE framework, see Luft, 2021, and lastly a coupling routine

putting everything together and adding an iterative solver to solve the weighted sum

scalarizations (6.26) of problem (6.25) implemented as part of this thesis. The code

was developed in close cooperation with Dr. Jan Backhaus, Dr.Daniel Luft, Dr. Camilla

Hahn and Prof. Dr.Matthias Bolten as part of the GivEn project, see Chapter 1.

6.5.1 Efficiency and Exterior Discretization

As stated in Section 6.2 we use the TRACE tool for the calculation of the efficiency

objective and sensitivities, see TRACE User Guide 2019. The TRACE software package

(Turbomachinery Research Aerodynamic Computational Environment) consists of a

CFD (Computational Fluid Dynamics) code developed at the DLR (German Aerospace

Center) in order to analyze turbomachinery flows. It is the primary method for

simulation of internal flows within the DLR. Outside DLR, universities, research

institutions, MTU Aero Engines, and Siemens Energy use TRACE for scientific

analysis and industrial design optimization of turbomachinery components.

Here, we use TRACE version 9.2 for the optimization purposes within the GivEn

project. In particular, we use adjointTRACE, the discrete adjoint solver of the

turbomachinery simulation suite TRACE. The idea of adjoint methods to calculate

Chapter 6. Efficiency and Reliability of Turbomachinery Components 107

gradients is shortly outlined in Section 4.1. In adjointTRACE the gradients are

computed using algorithmic differentiation in reverse mode. For the construction of

the discrete adjoint solver and further information, see Backhaus, A. Schmitz, et al.,

2017; Becker, Heitkamp, and Kügeler, 2010; Sagebaum et al., 2017.

In the following, we distinguish between the TRACE’s primal solver and its adjoint

solver. The initial stage involves solving the primal problem (RANS equations, as

outlined in Section 6.2). Subsequently, several objectives can be evaluated. Here, we

use a coefficient that quantifies the entropy rise ratio between surface inlet and outlet,

denoted as CoefEntropyRise, see Section 6.2.2. Afterwards, we can employ the adjoint

solver to calculate sensitivities of the associated objective.

TRACE can work with the CGNS file format (computational fluid dynamics general

notation system). CGNS is a universal, portable, and extensible standard for storing

and retrieving CFD analysis data. This means that it does not require one specific

software or platform. It can be used on various computing systems and architectures.

This data includes information about the computational grid, simulation parameters,

boundary conditions, and the results of the simulation such as velocity fields and

pressure distributions. Therefore, the results of TRACE are given in the CGNS file

format. We also use this file format to obtain the boundary grid points and pressure

values that enter the coupling in the optimization algorithm.

In contrast to the mechanical state equation, the aerodynamic state equation takes

the surrounding area of the component into account. To simulate the flow around

the component, the surrounding area is discretized using finite elements. Refer to

Figure 6.3 for a detailed view of the leading edge of the considered turbine blade

showing an structured grid consisting of multiple parts. The grid exhibits finer

resolutions towards the boundary of the blade.

Figure 6.3: TRACE mesh around the leading edge of the T106A profile.

Note that the computations are performed on a pseudo 3D version of the component,

i.e. the 2D profile is stacked twice on the top of each other.

108 6.5. Implementation

6.5.2 Reliability and Interior Discretization

The implementation of the LCF solver was done by Hahn, 2021 in Python 3 within

the framework of the GivEn project. The application to the optimization problem

considered here is described in the following.

Different to the aerodynamic state equation, here the interior of the component

has to be discretized. We use the same finite element discretization as stated in

Section 5.5.1. Since the p3D planar shape of the T106A component is flat in one

dimension, we simply omit this dimension an obtain a 2D version. For this purpose,

we again define a rectangle that completely encloses a 2D version of the component.

We choose [−0.02, 0.1]× [5.92, 6.04] that fits the starting shape of the T106A and offers

enough space for deformations, see Figure 6.4. This rectangle is discretized by a regular

triangular grid with 400 grid points in the x- and y-direction, respectively. We get

the boundary points of the current considered component from the CGNS-file. Given

these points, we define two splines, defining a function of the lower and the upper

part of the component boundary. Here, we chose monotonic cubic interpolation of the

given boundary points from the CGNS file by the scipy.interpolate.PchipInterpolator

class. The surface forces of the Neumann condition in the linear elasticity PDE (see

Figure 6.4: Boundary splines for the LCF solver.

Section 6.3.1) are given by the pressure values on the boundary of the component. These

values are computed by TRACE in the aerodynamic state equation (see Section 6.2.1)

and therefore saved for the current shape in the corresponding CGNS file. We also add

a small circle in the inner part of the boundary for the Dirichlet boundary condition,

see Figure 6.4, so that we have a unique solution for the mechanical state equation.

Chapter 6. Efficiency and Reliability of Turbomachinery Components 109

As described in Section 5.5.1 and Hahn, 2021 the grid points closest to the boundary

of the component are shifted such that they lie on the boundary. The adapted grid

representing the component, see Figure 6.5, is then used for the further computations.

Note that all calculations of the LCF solver are performed in 2D.

Figure 6.5: LCF mesh in blue at the leading edge of the T106A profile.

6.5.3 Steklov-Poincaré Gradients

A further important element for the optimization routine is the TRASOR (TRACE

Shape Optimization Routine) software package implemented by Luft, 2021 within

the framework of the GivEn project, see also Backhaus, Bolten, et al., 2021. It is

used to translate the TRACE grid to a FEniCS mesh, which can then be used to

calculate shape gradient representations using the Steklov-Poincaré metrics. FEniCS is

a Python based finite element computational software which is able to solve differential

equations based on weak formulations, see Alnæs et al., 2015. For this purpose, among

others, many sub-modules are used, such as, for example, Automated Finite Element

Computing (DOLFIN) (see Logg and Wells, 2010) or PETSc as a linear algebra back

end (see Balay et al., 2019).

Since the FEniCS 2017.2.0 version used here is not able to handle finite element

grids consisting of hexahedral and quadrilateral elements, we have to translate the

mesh given by TRACE to a mesh consisting of conforming tetrahedral and triangular

elements corresponding to the existing structure of the TRACE mesh. We call this

mesh FEniCS-aero mesh. The conversion process takes place in several steps. The

individual steps including the data formats for the conversion from the TRACE mesh

110 6.5. Implementation

to the FEniCS-aero mesh are illustrated in Figure 6.6. Here, POST is a command of

the TRACE tool used to extract data from the CGNS files and meshio (see Schlömer,

2019) is a Python package that can process and convert various mesh formats.

POST
by TRACE

TRACE.cgns TRASORTRACE.dat meshioFEniCS.msh DOLFINFEniCS.xdmf/.h5 FEniCS mesh

Figure 6.6: Conversion from TRACE mesh to FEniCS mesh.

Since the calculated raw sensitivities are generally not smooth enough, we would

quickly end up with infeasible shapes if we would use them in an iterative line search

algorithm (Algorithm 1). Therefore, we would not be able to achieve any improvements

in the objective functions with these sensitivities as search direction. Instead of using

the raw sensitivity, the Steklov-Poincaré gradients allow us to smooth the shape change,

making them more suitable for shape optimization, see Schulz and Siebenborn, 2016;

Schulz, Siebenborn, and Welker, 2016. The Steklov-Poincaré gradients are given by

the solution of a linear elasticity system∫
Ωext

σ
(
∇StPJ(Ωext)

)
: ε(U)dx = DJ(Ωext)[U] U ∈ H1

0 (Ωext,Rd)

∇StPJ(Ωext) = 0 on ΓInlet/Outlet

(6.27)

with λ = 0 and µ ≥ 0 where Ωext is the external computational domain given by

the FEniCS-aero mesh and σ(U) = λtrace (ε(U)) I + 2µε(U). Note that the Steklov-

Poincaré metric is not in direct relation to the state equation of the objective function

J currently under consideration. In Figure 6.7 the negative sensitivities and the

negative Steklov-Poincaré gradient on the boundary of the T106A profile for the LCF

objective are shown. The TRASOR package in the context of the GivEn project has

already been mentioned in Backhaus, Bolten, et al., 2021. For further details, we refer

to Luft, 2021.

6.5.4 Coupling

We want to implement a gradient based iterative solver for the biobjective optimization

problem stated in (6.25). For this purpose, the just mentioned building blocks will

be combined. We use the TRACE tool for the calculations of the aerodynamic part

and we use the LCF solver to assess the reliability. The TRASOR tool is used as

basis for the implementation and also used to calculate Streklov-Poincaré gradients.

Chapter 6. Efficiency and Reliability of Turbomachinery Components 111

(a) (b)

Figure 6.7: Negative LCF sensitivities and negative LCF Steklov-Poincaré gradient.

The main task of the coupling is to extend the algorithm already developed in the

TRASOR package to handle more than one objective function by integrating the LCF

objective functional. In addition, we implement the iterative line search algorithm,

see Algorithm 3, for the weighted sum scalarization of (6.25) in this context. Note

that since the TRASOR package requires Python 2.7 we use Python 2.7.12 for the

coupling code whereas the LCF code is run by Python 3.5.2.

The algorithm is composed of multiple parts. It is outlined in Figure 6.10 in a

flow chart to provide an initial overview of its fundamental components. The flow

chart is based on the Business Process Model and Notation (BPMN) in a slightly

modified form (OMG, 2011). In this flow chart three vertical lanes (called swim lanes),

labeled as efficiency, coupling and reliability, are used to represent relevant aspects of

the process. On the left side we have the efficiency swim lane with the elements of

the process given by the TRACE tool. The right swim lane represents the LCF code

for the mechanical reliability. In the middle, coupling relevant elements are shown.

The first blue block includes the computations performed for the computation of the

objective values. Here, it is illustrated that the pressure values required for the LCF

objective are calculated by TRACE. The second blue block comprises the gathering of

gradient information including the Steklov-Poincaré computation. Next, the stopping

conditions are checked. Besides the calculation of the objective values and gradients,

we have to determine a search direction and step length. The search direction is given

by the weighted sum of the Steklov-Poincaré gradients of the objectives JEff and JLCF,

whereas the step size will be calculated by the Armijo rule. Thus, if no stopping

condition is satisfied, a shape update follows. Since it is an iterative algorithm that

computes different evolving shapes, we have to iteratively calculate objective values

112 6.5. Implementation

and assemble gradient information. The gradients are calculated for the current shape

only if the shape is the initial shape or the current step size satisfies the Armijo rule.

Otherwise, the current shape candidate is discarded and the step size will be updated

to compute a new shape candidate. Since this illustration shows only a simplified

flow chart of the algorithm, we will now focus on some details that are of greater

importance for the implementation.

To determine a search direction for the line search as a weighted sum of the

gradients we have to define the gradients on the same domain. Since the aerodynamic

objective is evaluated on an external domain and the LCF objective is evaluated

on an internal domain, they do not share the same computational domain and only

intersect at the boundary of the component. Since the Steklov-Poincaré metric is

already implemented for the external domain by the TRASOR package, we want to

define the LCF sensitivities also on the external domain in order to calculate the LCF

Steklov-Poincaré gradient there. Note that it would also be possible to perform the

calculation of the Steklov-Poincaré gradients on the LCF mesh. However, since we

need the gradients in the same domain for the further computations anyways, this

would only require unnecessary additional implementations. To represent the LCF

sensitivities on the external domain, we again use FEniCS as an interface. Besides

the TRACE mesh from the TRACE tool, the FEniCS-aero mesh from the TRASOR

package and the LCF mesh of the LCF solver, we now define another mesh for the

boundary points of the LCF mesh. We call this mesh FEniCS-mech mesh, which

is a mesh in FEniCS format with the boundary points of the LCF mesh as nodes.

Since the LCF mesh is in 2D we extend it to pseudo-3D by matching the third

dimension of the TRACE/FEniCS-aero mesh by simply adding the same points as

a second level matching the two levels of the TRACE mesh. The relation between

the different meshes is depicted in Figure 6.8. With this additional mesh it is now

possible to interpolate the LCF sensitivities onto the FEniCS-aero mesh that represents

the external domain. Conversely, we can display the flow solution, especially the

pressure values, resulting from (6.2) on boundary points of the LCF mesh to set up

the mechanical state equation (6.8). Given the sensitivities both on the same mesh,

we can solve for the Steklov-Poincaré gradients and combine them in a weighted sum.

The individual steps required for this are summarized in Figure 6.9.

Given the search direction as a displacement vector, the next step is to determine

the step size. To find a suitable step size for the initial step in every iteration we scale

the displacement vector beforehand. In this way, we avoid unnecessary step sizes that

Chapter 6. Efficiency and Reliability of Turbomachinery Components 113

TRACE mesh

FEniCS-aero mesh

FEniCS-mech mesh

LCF mesh

external CFD mesh in pseudo3D (p3D)
given by CGNS data

transformed TRACE mesh
in FEniCS format

mesh in FEniCS format that represents the
boundary of the LCF mesh extended to p3D

internal mesh for the LCF solver in 2D

Figure 6.8: Relation between the different meshes.

are too large and lead to inadmissible shapes and simulation failures. In addition,

initial step sizes that are too small for a significant change in the shape are scaled up

so as not to preclude further improvement. For that purpose, we calculate the ℓ2-norm

of the displacement vector D at every discretized surface point Xsur of the shape X:

cmax = max
x∈Xsur

∥D(x)∥ℓ2 . (6.28)

Then we scale the displacement field in that way that the longest vector is scaled to

the length of one:

Dn⃗ =
1

cmax
·D. (6.29)

Thus, we have a normalized displacement field where every single vector has a length

of less or equal to one. Now, to avoid unsuitable steps we determine a value cinit > 0

depending on the shape optimization problem with which the normalized displacement

field is scaled again:

Dscaled = cinit ·Dn⃗. (6.30)

All in all, the process steps including the different meshes are outlined in Algo-

rithm 6. The objective is to minimize a weighted sum scalarization of JLCF and

JEff with respect to the design variable Ω. We start in Line 1 with selecting certain

parameters, such as the parameters for the Armijo rule β ∈ (0, 1) and σ ∈ (0, 1)

and the the weights for the weighted sum scalarization ω1 ∈ (0, 1) and ω2 = 1− ω1.

Additionally, we set the iteration counter k to zero. Next, in Lines 2 to 9 we calculate

114 6.5. Implementation

objective values of the initial shape Ω(k). We first run TRACE primal for Ω(k) in

Line 2 in order to solve the aerodynamic state equation (6.2). Lines 3 to 6 are for

constructing the necessary meshes. We are then able to interpolate the pressure

values to the LCF grid in Line 7. After that we can run the LCF solver in Line 8.

In the following lines the sensitivities are calculated, followed by the computation

of the Steklov-Poincaré gradients ∇StPJEff(Ω
(k)) and ∇StPJLCF(Ω

(k)). Based on the

Steklov-Poincaré gradients we construct the search direction given by the negative

Steklov-Poincaré gradient of the weighted sum scalarization

U (k) = −
(
ωLCF · ∇StPJLCF(Ω

(k)) + ωEff · ∇StPJEff(Ω
(k))
)
. (6.31)

In the while-loop in Line 10 we search for the next shape and increase the iteration

counter k by one. In Line 26 a candidate shape is computed by applying the deformation

on the current shape by using the TRACE tool. In order to calculate the objective

values for the new candidate shape, we have to run Line 2 to 9 again. Then we can

check the Armijo rule

J (Ω(k)) < J (Ω(k−1)) − σ · β(ℓ)
(
U (k−1)

)⊤
U

(k−1)
scaled . (6.32)

If the Armijo rule is satisfied, we have the new shape and calculate the gradients and

search direction for the next iteration. Otherwise, we try the next step length. The

algorithm terminates when a maximal number of iterations (kmax) is reached, see

Line 10, or when a maximal number of steps was tried (ℓmax), see Line 18. Moreover,

additional stopping conditions based on the gradient information can be examined in

Line 18. For example, it can be checked if the norm of the weighted sum gradient is

lower than a certain threshold. At the moment, we only stop if a maximal number of

iterations is reached or if no sufficiently large step can be calculated.

Chapter 6. Efficiency and Reliability of Turbomachinery Components 115

 sensitivities
on TRACE mesh

 sensitivities
on LCF mesh

 sensitivities
on FEniCS-mech mesh

 sensitivities
on FEniCS-areo mesh

 sensitivities
on FEniCS-aero mesh

Solve for Steklov-Poincaré gradients on FEniCS-aero mesh

Steklov-Poincaré gradient
on FEniCS-aero mesh

Steklov-Poincaré gradient
on FEniCS-aero mesh

search direction
on FEniCS-aero mesh

Combine in a weighted sum

Figure 6.9: Steps to determine the biobjective search direction.

116 6.5. Implementation

ob
je

ct
iv

e
va

lu
es

reliability

LCF solver

LCF
objective value

compute LCF grid

gr
ad

ie
nt

 in
fo

rm
at

io
n

calculate LCF
sensitivities

LCF
sensitivities

coupling

START

CGNS file of

weighted sum
objective value

pressure values

No

Yes

Steklov-Poincaré gradient
 and search direction

No

Yes Armijo rule ?

weighted sum
sensitives

update step size

shape update

No Yes

stop
condition

?

STOP

efficiency

run TRACE primal

objective value

sensitives

run TRACE adjoint

Figure 6.10: Illustration of the coupling structure.

Chapter 6. Efficiency and Reliability of Turbomachinery Components 117

1 Set initial parameters, k = 0;

2 Run TRACE primal on Ω(k) (solve aerodynamic state equation) ;
3 Extract boundary points from CGNS file;
4 Construct FEniCS-aero mesh based on TRACE mesh;
5 Construct LCF mesh;
6 Construct FEniCS-mech mesh based on LCF boundary points;
7 Interpolate pressure values p to LCF boundary points via FEniCS meshes;
8 Run LCF solver;

9 Calculate weighted sum objective value J (Ω(k));
10 while k ≤ kmax and ℓ ≤ ℓmax do
11 Calculate TRACE sensitivities using adjointTRACE ;
12 Assemble TRACE sensistivities as FEniCS vector function;
13 Calculate LCF sensitivities;
14 Interpolate LCF sensitivities to FEniCS mesh;
15 Solve for Steklov-Poincaré gradients;
16 Construct search direction on FEniCS mesh via (6.31);
17 Calculate norms;
18 if stopping condition satisfied then
19 STOP;
20 else
21 Transform search direction U (k) from FEniCS mesh to TRACE mesh;
22 Prescale search direction via (6.28) to (6.30);
23 Set k = k + 1 and ℓ = 0;
24 while ℓ ≤ ℓmax do
25 Calculate step length t(ℓ) = βℓ;

26 Update geometry Ω(k) ← Ω(k−1) + t(ℓ) · U (k−1)
scaled using TRACE;

27 Run Lines 2 to 9 for Ω(k);

28 if J (Ω(k)) < J (Ω(k−1)) + Armijo term then
29 BREAK (go to Line 10);
30 else
31 ℓ = ℓ+ 1
32 end

33 end

34 end

35 end

Algorithm 6: Coupling routine.

118 6.6. Results

6.6 Results

The initial shape is defined by the T106A configuration, with corresponding objective

values outlined in Table 6.1. Having a look at the initial objective values, it becomes

evident that there is a significant discrepancy in the order of magnitude of the objective

values for JEff and JLCF. While the value for JLCF is relatively small, the value for

JEff exhibits considerable magnitude. This must be taken into account when selecting

the weights for the weighted sum scalarization (6.26). Recall that the weights ωEff and

ωLCF are selected such that their sum equals 1. Thus, we will specify in the following

only the weight ωEff. The other weight is then calculated by ωLCF = 1− ωEff.

Iteration JEff JLCF

0 564354.511214 1.6318045436642406 · 10−8

Table 6.1: T106A objective values.

Since we have no explicit geometrical restrictions in the implementation, it is

possible that the algorithm may seek to assess infeasible shapes. This could occur, for

example, if boundaries of the component start to overlap or if the shape exceeds the

permissible domain. In the case of shapes that can not be evaluated, the algorithm

proceeds with the next Armijo iteration. The Armijo iterations are limited by ℓmax = 75

and the overall iteration loop is limited by kmax = 250, see Algorithm 6. The initial

step size scaling is set to cinit = 0.001, see (6.30). The values for the Armijo rule are

set to β = 0.9 and σ = 0, see (6.32). Normally, it is recommend to choose σ > 0

to achieve a sufficient improvement. However, for the beginning we search for any

improvement in the objective value of the weighted sum scalarization, i.e., we only

check if J (Ω(k)) < J (Ω(k−1)) is true.

Single-objective optimization First of all, we test what happens when we choose

the weights ωEff ∈ {0, 1} to get an idea of where the two individual objectives are

aiming at. With this choice of weights, it is unlikely that the algorithm converges

to a local minimum since the algorithm probably approaches infeasible shapes. In

addition, we only minimize one of the two individual objectives without taking the

other objective into account. In Table 6.2 we provide the objective values of the

iteration history for the weights ωEff = 0 and ωEff = 1. In both runs it can be seen

that while one objective improves, the other objective deteriorates. Furthermore, the

changes of JEff are relatively small compared to its initial value. In contrast, the

changes of JLCF objective are relatively strong compared to its initial value, as the

Chapter 6. Efficiency and Reliability of Turbomachinery Components 119

values more than double or halve. In Figure 6.11 the objective values of the iteration

history for both runs are displayed.

The run with ωEff = 0 terminated after 9 iterations due to failure by TRACE

performing further shape updates. The run with ωEff = 1 terminated after 4 itera-

tions which was caused by overlapping boundaries. The initial shape of the T106A

configuration and both final shapes are displayed in Figure 6.12.

Dichotomic search scheme To determine further weights, we follow a dichotomic

search scheme, see, for example, Aneja and Nair, 1979; Cohon, 1978; Przybylski,

Klamroth, and Lacour, 2019. Given two points in the objective space, x = (xEff, xLCF)

and y = (yEff, yLCF), a new weight can be calculated by(
ωEff

ωLCF

)
=

1

xLCF − yLCF − xEff + yEff

(
xLCF − yLCF

− (xEff − yEff)

)
(6.33)

Thus, ωEff is then calculated by

ωEff =
xLCF − yLCF

xLCF − yLCF − xEff + yEff
(6.34)

Note that this scheme is usually initialized with two non-dominated points which

minimize the first and the second individual objective, respectively. Ideally, optimizing

with respect to the new weight yields a new solution that can then be used to

successively determine further weights.

In our case, we use the objective values of the solutions for ωEff ∈ {0, 1}, see
Figure 6.13a. These solutions do not not necessarily correspond to non-dominated

points, but at the moment we do not have further information about relevant weight

values for the optimization since the objective values differ too much in the order of

magnitude. The first weight is then calculated by

ωEff ≈
2.80 · 10−7 − 2.51 · 10−9

2.80 · 10−7 − 2.51 · 10−9 − 557844.26 + 575523.92
(6.35)

and we obtain ωEff = 1.57185136 · 10−11.
The non-rounded values and results are shown in Table 6.3. The different runs

are numbered consecutively. In addition, we have defined levels for calculating the

new weighs based on the results already calculated. Given new points in the objective

space further weights can successively be calculated. The concept of the method is

illustrated in Figures 6.13a to 6.13d based on the calculated results. The connecting

120 6.6. Results

With weight ωEff = 0 and weight ωLCF = 1

Iter. JEff JEff/JEff(Ω
(0)) JLCF JLCF/JLCF(Ω

(0))
0 564354.5 1.000 1.6 · 10−8 1.0
1 567428.4 1.005 1.1 · 10−8 0.70
2 570077.5 1.010 8.6 · 10−9 0.52
3 572252.7 1.014 6.5 · 10−9 0.40
4 575195.0 1.019 5.1 · 10−9 0.31
5 572880.9 1.015 4.2 · 10−9 0.25
6 572569.2 1.015 3.3 · 10−9 0.20
7 575061.7 1.019 2.6 · 10−9 0.16
8 575520.3 1.020 2.5 · 10−9 0.15
9 575523.9 1.020 2.5 · 10−9 0.15

With weight ωEff = 1 and weight ωLCF = 0

Iter. JEff JEff/JEff(Ω
(0)) JLCF JLCF/JLCF(Ω

(0))
0 564354.511 1 1.632 · 10−8 1
1 561312.744 0.9946 2.413 · 10−8 1.47
2 559489.848 0.9914 4.101 · 10−8 2.51
3 558276.945 0.9892 9.273 · 10−8 5.68
4 557844.261 0.9885 2.804 · 10−7 17.18

Table 6.2: Single-objective optimization (rounded values).

5.58 5.6 5.62 5.64 5.66 5.68 5.7 5.72 5.74 5.76
·105

0

0.5

1

1.5

2

2.5

3

·10−7

4

6 79

0
1

2

3

4

1 2 3 45 8

JEff

JLCF

T106A
ωEff = 1
ωEff = 0

Figure 6.11: Objective values of iteration process for ωEff = 0 and ωEff = 1.

Chapter 6. Efficiency and Reliability of Turbomachinery Components 121

(a) Initial shape T106A. (b) Finial shape for ωEff = 0. (c) Finial shape for ωEff = 1.

Figure 6.12: Initial shape and final shapes for ωEff ∈ {0, 1}.

lines represents the new weights as in Section 2.2.1 explained, see in particular

Figure 2.4. We proceed in levels, where the algorithm is executed with the new weights

in each level before proceeding with the calculation of further weights. In Figures 6.13a

to 6.13d, the solid connecting lines represent the new relevant weights of the current

level, while the dashed lines represent weights that are not longer considered.

We can see that for the first weight the weighted sum optimization run number 3

terminates in iteration 0, see Table 6.3. Thus, no shape update was performed and the

new point is given be the initial objective values. This can be the case if the initial

shape is already efficient for the chosen weight, or if we terminate in a local minimum.

Since both run number 3 and 4 get stuck at iteration 0, we do not get a new point by

run number 4. Thus at level 3, only two new weights instead of four can be calculated.

At level 4, we see that a negative weight for run number 8 was calculated by the

results of run number 5 and 6. This is because the result of number 5 is dominated by

the result of number 6, see Table 6.3. Thus, the result of run number 6 would also

be a better solution for the weight of number 5. Since we do not want to evaluate

negative weights, dominated points should be excluded for further weight calculations.

All in all, we see that the dichotomic search scheme calculated some new shapes

improving the LCF objective while increasing the efficiency objective, see Figure 6.13e.

Furthermore, we note that the algorithm can also get stuck in local minima or due to

other numerical problems as outline above, since we have calculated two dominated

points (run number 5 and 10 denoted by the red crosses in Figure 6.13e) and we were

not able to calculate shapes that improve the efficiency objective with the chosen

starting points of run number 1 (ωEff = 1) and run number 2 (ωEff = 0).

122 6.6. Results

5.6 5.65 5.7 5.75
·105

0

1

2

3

·10−7

1

2

JEff

JLCF

(a) Level 1.

5.6 5.65 5.7 5.75
·105

0

1

2

3

·10−7

1

3 2

JEff

JLCF

(b) Level 2.

5.6 5.65 5.7 5.75
·105

0

1

2

3

·10−7

1

3, 4 5 2

JEff

JLCF

(c) Level 3.

5.6 5.65 5.7 5.75
·105

0

1

2

3

·10−7

1

3, 4 65 7 2

JEff

JLCF

(d) Level 4.

5.64 5.66 5.68 5.7 5.72 5.74 5.76
·105

0.5

1

1.5

·10−8

1

ωEff = 0

T106A

run 5

run 6

run 7

run 8

run 10

run 11

JEff

JLCF

(e) Results of run number 5 to 11 (zoomed in).

Figure 6.13: Dichotomic search scheme.

Chapter 6. Efficiency and Reliability of Turbomachinery Components 123

Level Run Calc. by ωEff JEff JLCF Iter.

initial 1 1.0 557844.260731 2.80411733306649 · 10−7 4
points 2 0.0 575523.917708 2.51380419155106 · 10−9 9

1 3 (1, 2) 1.57185136 · 10−11 564354.511214 1.63180454366424 · 10−8 0

2
4 (1, 3) 4.05658259 · 10−11 564354.511214 1.63180454366424 · 10−8 0
5 (3, 2) 1.23589747 · 10−12 570089.698148 5.94679594553834 · 10−9 5

3
6 (3, 5) 1.80835422 · 10−12 569312.7789 5.83455775579977 · 10−9 7
7 (5, 2) 6.31735931 · 10−13 572117.313454 3.69765979322555 · 10−9 7

4

8 (3, 6) 2.11434484 · 10−12 565670.068729 1.34575665413941 · 10−8 2
9 (6, 5) −1.44465709 · 10−13
10 (5, 7) 1.10925191 · 10−12 570218.898775 6.84845592043746 · 10−9 4
11 (7, 2) 3.47517796 · 10−13 572363.652626 3.28527498434504 · 10−9 7

Table 6.3: Dichotomic search results.

Choice of further weights Since we have not yet achieved any improvement in

the efficiency objective (except with ωEff = 1), we now focus on increasing the weight

ωEff. The highest weight calculated by the performed dichotomic search scheme was

approximately 1.57 · 10−11. Therefore, we test the algorithm with weight ωEff = 10−α

with α ∈ {10, 9, 8, . . . , 1}.

We note that for the weights ωEff ∈ {10−10, 10−9, 10−8, 10−7, 10−6} the algorithm

does not find a shape with the calculated search direction that improves the weighted

sum scalarization. For the other weights α ≤ 5, the algorithm is able to perform some

shape updates, see Figure 6.14. However, for the weights α = 1, 2, 3 we realize that

the algorithm quickly approaches infeasible shapes and terminates as the shapes get

too thin and further shape updates lead to overlapping boundaries. In addition, the

results obtained by α = 4, 5 dominate the results obtained by α = 1, 2, 3 and ωEff = 1.

From this we conclude that a relevant weight space could lie between ωEff = 10−5 and

ωEff = 10−4. Therefore, we test the weights ωEff = γ · 10−5 with γ = 2, . . . , 9

The results are shown in Figure 6.15 together with the results of the dichtomous

search scheme. For some outcome vectors, we have added the corresponding shape.

The test runs with 10−5 < ωEff < 10−4 were able to calculate some new solutions,

but there are also some dominated solutions among them. The number of required

iterations is 3 to 7. Previously non-dominated solutions are achieved by ωEff = 3 · 10−5

and ωEff = 4 · 10−5.

All in all, with this choice of weights we are able to calculate a few more solutions

that improve the efficiency objective. The trade-off between reliability and efficiency

is clearly recognizable. In addition, the LCF objective seems to have a regulating

effect on the efficiency objective, as it prevents the algorithm from quickly generating

124 6.6. Results

infeasible shapes where the profile becomes very thin at a certain point.

5.5 5.55 5.6 5.65 5.7 5.75 5.8
·105

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

·10−7

ωEff = 10−5

ωEff = 10−4

ωEff = 10−3

ωEff = 10−2

ωEff = 10−1

T106A

ωEff = 1

ωEff = 0

JEff

JLCF

Figure 6.14: Objective values with iteration history for ωEff = 10−α with
α ∈ {1, 2, 3, 4, 5} and ωEff ∈ {0, 1}.

Chapter 6. Efficiency and Reliability of Turbomachinery Components 125

5.5 5.55 5.6 5.65 5.7 5.75 5.8
·105

0

0.5

1

1.5

2

2.5

3

3.5

·10−7

ωEff = 10−5

ωEff = 10−4

ωEff = 10−1

T106A

ωEff = 1

ωEff = 0

2
34
5 6

7
8

9

JEff

JLCF

Outcome vectors obtained by 10−5 < ωEff < 10−4

Outcome vectors obtained by the dichotomic search scheme

Figure 6.15: Obtained results.

126 6.6. Results

Chapter 7

Conclusion

This thesis explores the integration of gradient based biobjective optimization methods

for shape optimization problems using the weighted sum method and a hypervolume

scalarization technique.

In Chapter 3 we present the theoretical framework of the hypervolume scalarization

technique. Extending prior findings from Schultes et al., 2021 we generalize these results

from the biobjective case to the multiobjective case. We study the behavior of the

contour lines of the hypervolume indicator and show that they are concave. We point

out that contour lines near the reference point resemble the contour lines of a weighted

Chebyshev scalarization whereas the contour lines further away gradually approach

the contour line of the weighted sum scalarization with equal weights. With these

properties the hypervolume scalarization technique is not limited to calculate solely

supported efficient solutions as the weighted sum method is. This applies also to the

case that the chosen reference point is not already non-dominated. The hypervolume

scalarization technique is well-suited for gradient based optimization as the gradient of

the hypervolume indicator can easily be computed using the gradients of the primary

objective functions, and does not add further constraints to the optimization problem

with an appropriately chosen reference point.

Beyond these theoretical investigations, a substantial part of this thesis is dedicated

to the implementation and application of scalarization methods to biobjective shape

optimization problems. For this purpose, we select two distinct PDE constrained

shape optimization problems as case studies.

In Chapter 5 we commence with the optimization of reliability and cost of ceramic

components subjected to tensile load. The reliability objective is modeled as probability

127

128

of failure, while for the second objective we consider the volume of the component

addressing its material cost. We develop two different implementations: one employing

the weighted sum scalarization utilizing a parameter-based representation of the

component via B-splines, and the other using the hypervolume scalarization with a

parameter-free representation through structured grids. Both implementations yield

successful approximations of the Pareto front.

Building upon these findings, we tackle a more complex optimization problem in

Chapter 6. We consider the reliability and efficiency of the turbomachinery components

selecting the low-pressure turbine cascade test case T106A. We use TRACE, a tool

developed by the DLR, to assess the efficiency and model the reliability objective by low

cycle fatigue. The challenge here is that both objectives depend on a different PDE, but

the PDEs are not solved on the same domain. While the efficiency objectives depends

on the Navier-Stokes equations calculated on the exterior domain of the component,

the reliability objective depends on the linear elasticity equation calculated in the

inside domain. We set up a coupling routine combing both objectives in an iterative

line search solver and connect the sensitivities over the edge of the component. In

addition, we use Steklov-Poincaré gradients in order to define a search direction such

that we have a smooth deformation of the shape iterates. With the weighted sum

scalarization method we successfully calculate a trade-off between both objectives.

Since the coupling of two finite element meshes is indeed a major challenge,

irregular shapes or infeasible shape updates may lead to a premature and unsuccessful

termination of the algorithm. Besides the reason that we may be in a local optimum

for the current weighting, it may be the case that we have, for example, some numerical

difficulties concerning the PDE calculations. Moreover, a possible cause can be that

the objective values differ numerically too much in the order of magnitude, leading to

catastrophic cancellation. However, it may also indicate that there is a scaling error

in the sensitivities of the objective values such that the weighted sum gradient is not

calculated correctly.

In addition to a further revision of the model, it would be worthwhile to perform

the algorithm with other initial shapes. The initial shape chosen here, the T106A

configuration, has already been thoroughly optimized, so that it may well be efficient

or a local minimum. We would avoid that the algorithm gets stuck directly in the first

iteration for some weights by choosing other stating shapes. It might also be possible

to get into other areas of the Pareto front in this way. Furthermore, it would be useful

to evaluate alternative methods, like the hypervolume scalarization, see Algorithm 5,

Chapter 7. Conclusion 129

or multiobjective descent algorithm, see Algorithm 2. In this way, we could examine

what other methods are able to calculate and determine if they encounter similar

problems. Last but not least, it would also be interesting to include other objectives

implemented in the TRACE tool in the optimization such as velocity angles, for

example.

It is particularly noteworthy that we have succeeded in combining both objectives

and thus creating a solid basis for further optimization using gradient based methods.

With this method, our considerations go beyond pure efficiency calculations and include

essential reliability criteria. This extension enriches the analysis and decision-making

process, especially in the area of shape optimization for gas turbines.

130

Bibliography

Allaire, G. (2002). Shape Optimization by the Homogenization Method. Ed. by S.

Antman, J. Marsden, and L. Sirovich. Vol. 146. Applied Mathematical Sciences.

Springer New York. doi: 10.1007/978-1-4684-9286-6.

Allaire, G. and F. Jouve (2008). “Minimum stress optimal design with the level set

method”. In: Engineering Analysis with Boundary Elements 32.11, pp. 909–918.

doi: 10.1016/j.enganabound.2007.05.007.

Alnæs, M. et al. (2015). “The FEniCS Project Version 1.5”. en. In: Archive of Numerical

Software 3.100. doi: 10.11588/ANS.2015.100.20553.

Aneja, Y. P. and K. P. K. Nair (1979). “Bicriteria Transportation Problem”. In:

Management Science 25.1, pp. 73–78. issn: 1526-5501. doi: 10.1287/mnsc.25.1.

73.

Auger, A. et al. (2009). “Theory of the hypervolume indicator: optimal µ-distributions

and the choice of the reference point”. In: Proceedings of the tenth ACM SIGEVO

workshop on Foundations of genetic algorithms - FOGA ’09. ACM Press. doi:

10.1145/1527125.1527138.

— (2012). “Hypervolume-based multiobjective optimization: Theoretical foundations

and practical implications”. In: Theoretical Computer Science 425, pp. 75–103.

doi: 10.1016/j.tcs.2011.03.012.

Babuška, I. and A. K. Aziz (1976). “On the Angle Condition in the Finite Element

Method”. In: SIAM Journal on Numerical Analysis 13.2, pp. 214–226. doi: 10.

1137/0713021.

Backhaus, J. (2020). “Adjungierte Strömungssimulation und gradientenbasierte Ersatz-

modelle in der Turbomaschinenauslegung”. de. PhD thesis. doi: 10.13154/294-

7557.

Backhaus, J., M. Bolten, et al. (2021). “GivEn—Shape Optimization for Gas Turbines

in Volatile Energy Networks”. In: Mathematical Modeling, Simulation and Opti-

131

132 Bibliography

mization for Power Engineering and Management. Ed. by S. Göttlich, M. Herty,

and A. Milde. Vol. 34. Mathematics in Industry. Cham: Springer, pp. 71–106. doi:

10.1007/978-3-030-62732-4_4.

Backhaus, J., A. Schmitz, et al. (2017). “Application of an Algorithmically Differenti-

ated Turbomachinery Flow Solver to the Optimization of a Fan Stage”. In: 18th

AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. American

Institute of Aeronautics and Astronautics. doi: 10.2514/6.2017-3997.

Balay, S. et al. (2019). PETSc Users Manual. Argonne National Laboratory.

Bazaraa, M. S. (2006). Nonlinear programming. theory and algorithms. J. Wiley &

Sons. isbn: 0471486000.

Becker, K., K. Heitkamp, and E. Kügeler (2010). “Recent Progress In A Hybrid-Grid

CFD Solver For Turbomachinery Flows”. In: Proceedings Fifth European Conference

on Computational Fluid Dynamics ECCOMAS CFD 2010. Ed. by J. C. F. Pereira,

A. Sequeira, and J. M. C. Pereira. url: https://elib.dlr.de/68938/.

Beume, N. et al. (2009). “Effects of 1-Greedy S-Metric-Selection on Innumerably Large

Pareto Fronts”. In: Lecture Notes in Computer Science. Springer Berlin Heidelberg,

pp. 21–35. doi: 10.1007/978-3-642-01020-0_7.

Bhimasankaram, P. and A. Rao (2000). Linear Algebra. Springer-Verlag GmbH. 428 pp.

isbn: 9789386279019. url: https://www.ebook.de/de/product/35119946/p_

bhimasankaram_a_ramachandra_rao_linear_algebra.html.

Bittner, L. (2018). “On Shape Calculus with Elliptic PDE Constraints in Classical

Function Spaces”. PhD thesis. doi: 10.25926/PKFR-KR55.

Bolten, M., O. T. Doganay, et al. (2024). “Non-convex shape optimization by dissipative

Hamiltonian flows”. In: Engineering Optimization, pp. 1–20. issn: 1029-0273. doi:

10.1080/0305215x.2024.2304135.

Bolten, M., H. Gottschalk, C. Hahn, et al. (2019). “Numerical shape optimization

to decrease failure probability of ceramic structures”. In: Comput. Visual Sci. 21,

pp. 1–10. doi: 10.1007/s00791-019-00315-z.

Bolten, M., H. Gottschalk, and S. Schmitz (2015). “Minimal Failure Probability for

Ceramic Design Via Shape Control”. In: J Optim Theory Appl 166.3, pp. 983–1001.

doi: 10.1007/s10957-014-0621-8.

Bons, N. P. et al. (2019). “Multimodality in Aerodynamic Wing Design Optimization”.

In: AIAA Journal 57.3, pp. 1004–1018. doi: 10.2514/1.j057294.

Bowman, V. J. (1976). “On the Relationship of the Tchebycheff Norm and the Efficient

Frontier of Multiple-Criteria Objectives”. In: Lecture Notes in Economics and

Bibliography 133

Mathematical Systems. Springer Berlin Heidelberg, pp. 76–86. doi: 10.1007/978-

3-642-87563-2_5.

Braess, D. (2013). Finite Elemente. Springer Berlin Heidelberg. doi: 10.1007/978-3-

642-34797-9.

Bringmann, K., S. Cabello, and M. Emmerich (2017). “Maximum Volume Subset

Selection for Anchored Boxes”. en. In: doi: 10.4230/LIPICS.SOCG.2017.22.

Bringmann, K., T. Friedrich, and P. Klitzke (2014). “Two-dimensional subset selection

for hypervolume and epsilon-indicator”. In: Proceedings of the 2014 Annual Con-

ference on Genetic and Evolutionary Computation. ACM. doi: 10.1145/2576768.

2598276.

Brückner-Foit, A. et al. (1997). “Discrimination of multiaxiality criteria with the

Brazilian disc test”. In: Journal of the European Ceramic Society 17.5, pp. 689–696.

doi: 10.1016/s0955-2219(96)00085-4.

Bucur, D. and G. Buttazzo (2005). Variational Methods in Shape Optimization Prob-

lems. Birkhäuser Boston. doi: 10.1007/b137163.

Büsing, C. et al. (2017). “Reference points and approximation algorithms in multicri-

teria discrete optimization”. In: European Journal of Operational Research 260.3,

pp. 829–840. doi: 10.1016/j.ejor.2016.05.027.

Chenais, D. (1975). “On the existence of a solution in a domain identification problem”.

In: Journal of Mathematical Analysis and Applications 52.2, pp. 189–219. doi:

10.1016/0022-247x(75)90091-8.

Chirkov, D. V. et al. (2018). “Multi-objective shape optimization of a hydraulic turbine

runner using efficiency, strength and weight criteria”. In: Struct Multidisc Optim

58.2, pp. 627–640. doi: 10.1007/s00158-018-1914-6.

Cohon, J. L. (1978). Multiobjective programming and planning. Academic Press, p. 333.

isbn: 0121783502.

Conti, S. et al. (2009). “Shape Optimization Under Uncertainty—A Stochastic Pro-

gramming Perspective”. In: SIAM J. Optim. 19.4, pp. 1610–1632. doi: 10.1137/

070702059.

Dandurand, B. and M. M. Wiecek (2016). “Quadratic scalarization for decomposed

multiobjective optimization”. In: OR Spectrum 38.4, pp. 1071–1096. doi: 10.1007/

s00291-016-0453-z.

Das, I. and J. E. Dennis (1997). “A closer look at drawbacks of minimizing weighted

sums of objectives for Pareto set generation in multicriteria optimization problems”.

In: Structural Optimization 14.1, pp. 63–69. doi: 10.1007/bf01197559.

134 Bibliography

Deb (2001).Multi-Objective Optimization. JohnWiley & Sons. 536 pp. isbn: 047187339X.

url: https://www.ebook.de/de/product/5833814/deb_multi_objective_

optimization.html.

Deb, K. (2011). “Multi-objective Optimisation Using Evolutionary Algorithms: An

Introduction”. In: Multi-objective Evolutionary Optimisation for Product Design

and Manufacturing. Ed. by L. Wang, A. H. C. Ng, and K. Deb. Springer London,

pp. 3–34. isbn: 978-0-85729-652-8. doi: 10.1007/978-0-85729-652-8_1.

Deb, K. and T. Goel (2002). “Multi-Objective Evolutionary Algorithms for Engineering

Shape Design”. In: Evolutionary Optimization. Vol. 48. International Series in

Operations Research & Management Science. Boston, MA: Springer US, pp. 147–

175. isbn: 978-0-306-48041-6. doi: 10.1007/0-306-48041-7_6.

Delfour, M. C. and J. .-.-P. Zolésio (2011). Shapes and Geometries. 2nd ed. Advances

in Design and Control. Society for Industrial and Applied Mathematics. isbn:

978-0-898719-36-9. doi: 10.1137/1.9780898719826.

Désidéri, J.-A. (2009). Multiple-Gradient Descent Algorithm (MGDA). Research rep.

RR-6953. INRIA. url: https://hal.inria.fr/inria-00389811.

— (2012). “Multiple-gradient descent algorithm (MGDA) for multiobjective optimiza-

tion”. In: Comptes Rendus Mathematique 350.5-6, pp. 313–318. doi: 10.1016/j.

crma.2012.03.014.

Dietz, H. M. (2019). Mathematik für Wirtschaftswissenschaftler. Springer Berlin

Heidelberg. doi: 10.1007/978-3-662-58149-0.

Doganay, O. T. et al. (2020). “Gradient based biobjective shape optimization to

improve reliability and cost of ceramic components”. In: Optim Eng 21.4, pp. 1359–

1387. doi: 10.1007/s11081-019-09478-7.

Duran, R. G. and M. A. Muschietti (2004). “The Korn inequality for Jones domains”.

English. In: Electron. J. Differ. Equ. 2004.127, p. 10. issn: 1072-6691. url: https:

//ejde.math.txstate.edu/Volumes/2004/127/duran.pdf.

Duysinx, P. and M. P. Bendsøe (1998). “Topology optimization of continuum structures

with local stress constraints”. In: Int. J. Numer. Meth. Engng. 43.8, pp. 1453–1478.

doi: 10.1002/(sici)1097-0207(19981230)43:8<1453::aid-nme480>3.0.co;

2-2.

Ehrgott, M. (2005). Multicriteria Optimization. 2nd ed. Springer Berlin Heidelberg.

340 pp. isbn: 978-3-540-21398-7. doi: 10.1007/3-540-27659-9.

Emmerich, M. and A. Deutz (2014). “Time Complexity and Zeros of the Hypervol-

ume Indicator Gradient Field”. In: EVOLVE - A Bridge between Probability, Set

Bibliography 135

Oriented Numerics, and Evolutionary Computation III. Springer International

Publishing, pp. 169–193. doi: 10.1007/978-3-319-01460-9_8.

Eppler, K. (2017). “On Hadamard shape gradient representations in linear elasticity”.

Unpublished manuscript.

Eppler, K., H. Harbrecht, and R. Schneider (2007). “On Convergence in Elliptic

Shape Optimization”. In: SIAM J. Control Optim. 46.1, pp. 61–83. doi: 10.1137/

05062679x.

Fliege, J., A. I. F. Vaz, and L. N. Vicente (2019). “Complexity of gradient descent

for multiobjective optimization”. In: Optimization Methods and Software 34.5,

pp. 949–959. doi: 10.1080/10556788.2018.1510928. eprint: https://doi.org/

10.1080/10556788.2018.1510928. url: https://doi.org/10.1080/10556788.

2018.1510928.

Fliege, J. (2004). “Gap-free computation of Pareto-points by quadratic scalarizations”.

In: Mathematical Methods of Operations Research (ZOR) 59.1, pp. 69–89. doi:

10.1007/s001860300316.

Fliege, J. and B. F. Svaiter (2000). “Steepest descent methods for multicriteria

optimization”. In: Mathematical Methods of OR 51.3, pp. 479–494. doi: 10.1007/

s001860000043.

Freimer, M. and P. L. Yu (1976). “Some New Results on Compromise Solutions

for Group Decision Problems”. In: Management Science 22.6, pp. 688–693. doi:

10.1287/mnsc.22.6.688.

Fujii, N. (1988). “Lower semicontinuity in domain optimization problems”. In: J Optim

Theory Appl 59.3, pp. 407–422. doi: 10.1007/bf00940307.

Geiger, C. and C. Kanzow (1999). Numerische Verfahren zur Lösung unrestringierter

Optimierungsaufgaben. Springer Berlin Heidelberg. doi: 10.1007/978-3-642-

58582-1.

Geoffrion, A. M. (1968). “Proper efficiency and the theory of vector maximization”. In:

Journal of Mathematical Analysis and Applications 22.3, pp. 618–630. issn: 0022-

247X. doi: 10.1016/0022-247x(68)90201-1. url: https://www.sciencedirect.

com/science/article/pii/0022247X68902011.

GE’s HA Gas Turbine Delivers Second World Record for Efficiency (2018). Press

Release. url: https://www.ge.com/news/press- releases/ges- ha- gas-

turbine-delivers-second-world-record-efficiency.

136 Bibliography

Giacomini, M., J.-A. Désidéri, and R. Duvigneau (2014). Comparison of multiobjective

gradient-based methods for structural shape optimization. Tech. rep. RR-8511.

INRIA. url: https://hal.inria.fr/hal-00967601/document.

Giles, M. B. and N. A. Pierce (2000). “An Introduction to the Adjoint Approach to

Design”. In: Flow, Turbulence and Combustion 65.3/4, pp. 393–415. doi: 10.1023/

a:1011430410075.

Gottschalk, H. and M. Reese (2021). “An Analytical Study in Multi-physics and Multi-

criteria Shape Optimization”. In: Journal of Optimization Theory and Applications

189.2, pp. 486–512. doi: 10.1007/s10957-021-01841-y.

Gottschalk, H. and M. Saadi (2019). “Shape gradients for the failure probability of a

mechanic component under cyclic loading: a discrete adjoint approach”. In: Comput

Mech 64.4, pp. 895–915. doi: 10.1007/s00466-019-01686-3.

Gottschalk, H., M. Saadi, et al. (2018). “Adjoint Method to Calculate the Shape

Gradients of Failure Probabilities for Turbomachinery Components”. In: Proceed-

ings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and

Exposition. Vol. 7A: Structures and Dynamics. V07AT32A003. Oslo, Norway. June

11-15: American Society of Mechanical Engineers. doi: 10.1115/gt2018-75759.

Gottschalk, H. and S. Schmitz (2014). “Optimal Reliability in Design for Fatigue Life”.

In: SIAM J. Control Optim. 52.5, pp. 2727–2752. doi: 10.1137/120897092.

Gottstein, G. (2004). Physical Foundations of Materials Science. Springer Berlin

Heidelberg. doi: 10.1007/978-3-662-09291-0.

Gross, D. and T. Seeling (2006). Fracture Mechanics. With an introduction to mi-

cromechanics. Mechanical Engineering Series. Berlin New York: Springer. isbn:

3540240349. doi: 10.1007/b22134.

Guerreiro, A. P. and C. M. Fonseca (2020). “An analysis of the Hypervolume Sharpe-

Ratio Indicator”. In: European Journal of Operational Research 283.2, pp. 614–629.

doi: 10.1016/j.ejor.2019.11.023.

Guerreiro, A. P., C. M. Fonseca, and L. Paquete (2016). “Greedy Hypervolume Subset

Selection in Low Dimensions”. In: Evolutionary Computation 24.3, pp. 521–544.

doi: 10.1162/evco_a_00188.

Hahn, C. (2021). “Auto-generated structured meshes for evolving domains”. PhD

thesis. doi: 10.25926/GMYP-7S53.

Haslinger, J. and R. A. E. Mäkinen (2003). Introduction to Shape Optimization.

Advances in Design and Control. Society for Industrial and Applied Mathematics.

isbn: 0-89871-536-9. doi: 10.1137/1.9780898718690.

Bibliography 137

Hernandez, V. A. S. et al. (2020). “The Set-Based Hypervolume Newton Method for

Bi-Objective Optimization”. In: IEEE Transactions on Cybernetics 50.5, pp. 2186–

2196. doi: 10.1109/tcyb.2018.2885974.

Hoheisel, H. et al. (1986). “Influence of Free Stream Turbulence and Blade Pressure

Gradient on Boundary Layer and Loss Behaviour of Turbine Cascades”. In: Volume

1: Turbomachinery. American Society of Mechanical Engineers. doi: 10.1115/86-

gt-234.

Kallenberg, O. (1983). Random measures. English. 3rd ed. Berlin: Akademie-Verlag.

Kuhn, T. et al. (2016). “Hypervolume Subset Selection in Two Dimensions: Formu-

lations and Algorithms”. In: Evolutionary Computation 24.3, pp. 411–425. doi:

10.1162/evco_a_00157.

Laurain, A. and K. Sturm (2016). “Distributed shape derivative via averaged adjoint

method and applications”. In: ESAIM: M2AN 50.4, pp. 1241–1267. doi: 10.1051/

m2an/2015075.

Les Piegl, W. T. (2000). The NURBS book. Monographs in visual communication.

Springer Berlin Heidelberg.

Liesen, J. and V. Mehrmann (2021). Lineare Algebra. Springer Berlin Heidelberg.

386 pp.

Logg, A. and G. N. Wells (2010). “DOLFIN”. In: ACM Transactions on Mathematical

Software 37.2, pp. 1–28. doi: 10.1145/1731022.1731030.

Luft, D. (2021). “Pre-Shape Calculus - a Unified Framework for Mesh Quality and

Shape Optimization”. en. PhD thesis. doi: 10.25353/UBTR-XXXX-63FE-D751.

Michor, P. and D. Mumford (2006). “Riemannian geometries on spaces of plane curves”.

In: Journal of the European Mathematical Society, pp. 1–48. doi: 10.4171/jems/37.

Miettinen, K. (1998). Nonlinear Multiobjective Optimization. International Series in

Operations Research & Management Science. Springer US. doi: 10.1007/978-1-

4615-5563-6.

Miettinen, K. and M. M. Mäkelä (1996). “NIMBUS — Interactive Method for Non-

differentiable Multiobjective Optimization Problems”. In: Multi-Objective Pro-

gramming and Goal Programming. Springer Berlin Heidelberg, pp. 50–57. doi:

10.1007/978-3-642-87561-8_5.

— (2002). “On scalarizing functions in multiobjective optimization”. In: OR Spectrum

24.2, pp. 193–213. doi: 10.1007/s00291-001-0092-9.

138 Bibliography

Morell, R. (2004). Brevier technical ceramics. Tech. rep. Verband der Keramischen

Industrie e.V., Informationszentrum Technical Ceramics. url: http : / / www .

keramverband.de/brevier_engl/brevier.htm.

Morsbach, C. (2017). “Reynolds Stress Modelling for Turbomachinery Flow Applica-

tions”. PhD thesis. DLR. url: https://elib.dlr.de/113258/.

Munz, D. and T. Fett (2001). Ceramics. Mechanical Properties, Failure Behaviour,

Materials Selection. Ed. by R. Hull et al. 2nd ed. Vol. 36. Springer Series in Materials

Science. Springer Berlin Heidelberg. doi: 10.1007/978-3-642-58407-7.

Neuber, H. (1961). “Theory of Stress Concentration for Shear-Strained Prismatical

Bodies With Arbitrary Nonlinear Stress-Strain Law”. In: Journal of Applied

Mechanics 28.4, pp. 544–550. issn: 1528-9036. doi: 10.1115/1.3641780.

OMG (2011). Business Process Model and Notation (BPMN), Version 2.0. Object

Management Group. url: http://www.omg.org/spec/BPMN/2.0.

Picelli, R. et al. (2018). “Stress-based shape and topology optimization with the

level set method”. In: Comput. Methods Appl. Mech. Engrg. 329, pp. 1–23. doi:

10.1016/j.cma.2017.09.001.

Przybylski, A., K. Klamroth, and R. Lacour (2019). A simple and efficient dichotomic

search algorithm for multi-objective mixed integer linear programs. doi: 10.48550/

ARXIV.1911.08937.

Pulliam, T. et al. (2003). “Comparison of Evolutionary (Genetic) Algorithm and

Adjoint Methods for Multi-Objective Viscous Airfoil Optimizations”. In: 41st

Aerospace Sciences Meeting and Exhibit. 6-9 January 2003, Reno, Nevada: American

Institute of Aeronautics and Astronautics. doi: 10.2514/6.2003-298.

Radaj, D. and M. Vormwald (2007). Ermüdungsfestigkeit. Springer Berlin Heidelberg.

doi: 10.1007/978-3-540-71459-0.

Ramberg, W. and W. Osgood (1943). Description of stress-strain curves by three

parameters. Tech. rep. Technical note 902, National Advisory Committee for

Aeronautics, Washington, DC.

Rösler, J., H. Harders, and M. Bäker (2019). Mechanisches Verhalten der Werkstoffe.

6th ed. Springer Fachmedien Wiesbaden. doi: 10.1007/978-3-658-26802-2.

Roudi, S., H. Riesch-Oppermann, and O. Kraft (2005). “Advanced probabilistic

tools for the uncertainty assessment in failure and lifetime prediction of ceramic

components”. In: Materialwissenschaft und Werkstofftechnik 36.3-4, pp. 171–176.

doi: 10.1002/mawe.200500861.

Bibliography 139

Saadi, M. (2021). “Shape Sensitivities for the Failure Probability of Mechanical

Components”. PhD thesis. doi: 10.25926/DP9R-HJ27.

Sachverständigenrat für Umweltfragen (2011). Wege zur 100% erneuerbaren Stromver-

sorgung. Sondergutachten, Januar 2011. Erich Schmidt Verlag. isbn: 9783503136063.

url: https://www.umweltrat.de/SharedDocs/Downloads/DE/02_Sondergutachten/

2008_2012/2011_07_SG_Wege_zur_100_Prozent_erneuerbaren_Stromversorgung.

pdf.

Sagebaum, M. et al. (2017). “Efficient Algorithmic Differentiation Techniques for

Turbo-machinery Design”. In: 18th AIAA/ISSMO Multidisciplinary Analysis and

Optimization Conference. American Institute of Aeronautics and Astronautics. doi:

10.2514/6.2017-3998.

Schlömer, N. (2019). meshio: Tools for mesh files. url: https://github.com/

nschloe/meshio.

Schmidt, S. and V. Schulz (2009). “Impulse Response Approximations of Discrete

Shape Hessians with Application in CFD”. In: SIAM Journal on Control and

Optimization 48.4, pp. 2562–2580. doi: 10.1137/080719844.

Schmitz, S. (2014). A local and probabilistic model for low-cycle fatigue new aspects of

structural analysis. Konstanz: Hartung-Gorre. isbn: 9783866285118.

Schmitz, S., H. Gottschalk, et al. (2013). “Risk Estimation for LCF Crack Initiation”. In:

Volume 7A: Structures and Dynamics. American Society of Mechanical Engineers.

doi: 10.1115/gt2013-94899.

Schmitz, S., G. Rollmann, et al. (2013). “Probabilistic Analysis of LCF Crack Initia-

tion Life of a Turbine Blade under Thermomechanical Loading”. In: Conference:

LCF7, Seventh International Conference on Low Cycle Fatigue. arXiv: 1310.0629

[math.NA].

Schmitz, S., T. Seibel, et al. (2013). “A probabilistic model for LCF”. In: Computational

Materials Science 79, pp. 584–590. doi: 10.1016/j.commatsci.2013.07.015.

Schultes, J. et al. (2021). “Hypervolume scalarization for shape optimization to improve

reliability and cost of ceramic components”. In: Optim Eng 22.2, pp. 1203–1231.

doi: 10.1007/s11081-020-09586-9.

Schulz, V. (2014). “A Riemannian View on Shape Optimization”. In: Found Comput

Math 14.3, pp. 483–501. doi: 10.1007/s10208-014-9200-5.

Schulz, V. and M. Siebenborn (2016). “Computational Comparison of Surface Metrics

for PDE Constrained Shape Optimization”. In: Computational Methods in Applied

Mathematics 16.3, pp. 485–496. doi: 10.1515/cmam-2016-0009.

140 Bibliography

Schulz, V., M. Siebenborn, and K. Welker (2016). “Efficient PDE Constrained Shape

Optimization Based on Steklov–Poincaré-Type Metrics”. In: SIAM J. Optim. 26.4,

pp. 2800–2819. doi: 10.1137/15m1029369.

Schulze, B. et al. (2020). “On the rectangular knapsack problem: approximation of

a specific quadratic knapsack problem”. In: Mathematical Methods of Operations

Research 92.1, pp. 107–132. doi: 10.1007/s00186-020-00702-0.

Shackelford, J. F. et al. (2015). CRC Materials Science and Engineering Handbook.

Taylor & Francis Group, p. 634. isbn: 9781482216530.

Sokolowski, J. and J.-P. Zolesio (1992). Introduction to Shape Optimization. Shape

Sensitivity Analysis. Springer Berlin Heidelberg. doi: 10.1007/978-3-642-58106-

9.

The Energy of the Future. 8th Monitoring Report on the Energy Transition –Reporting

Years 2018 and 2019 (2021). Federal Ministry for Economic Affairs and Energy

(BMWi). url: https://www.bmwk.de/Redaktion/EN/Publikationen/Energie/

the-energy-of-the-future-8th-monitoring-report.pdf.

Touré, C. et al. (2019). “Uncrowded hypervolume improvement”. In: Proceedings of the

Genetic and Evolutionary Computation Conference. ACM. doi: 10.1145/3321707.

3321852.

TRACE User Guide (2019). TRACE version 9.2.652. German Aerospace Center (DLR).

url: http://trace-portal.de/userguide/trace/index.html.

Tröltzsch, F. (2009). Optimale Steuerung partieller Differentialgleichungen. Vieweg+

Teubner. doi: 10.1007/978-3-8348-9357-4.

Watanabe, S. (1964). “On discontinuous additive functionals and Lévy measures of a

Markov process”. In: Japanese journal of mathematics :transactions and abstracts

34, pp. 53–70. doi: 10.4099/jjm1924.34.0_53.

Weibull, W. (1939). A Statistical Theory of the Strength of Materials. Handlingar /

Ingeniörsvetenskapsakademien. Generalstabens litografiska anstalts förlag. url:

https://books.google.de/books?id=otVRAQAAIAAJ.

Wilcox, D. C. (1988). “Reassessment of the scale-determining equation for advanced

turbulence models”. In: AIAA Journal 26.11, pp. 1299–1310. issn: 1533-385X. doi:

10.2514/3.10041.

Yang, K. et al. (2019). “Efficient computation of expected hypervolume improvement

using box decomposition algorithms”. In: Journal of Global Optimization 75.1,

pp. 3–34. doi: 10.1007/s10898-019-00798-7.

Bibliography 141

Yu, P. L. (1973). “A Class of Solutions for Group Decision Problems”. In: Management

Science 19.8, pp. 936–946. doi: 10.1287/mnsc.19.8.936.

Zavala, G. R. et al. (2013). “A survey of multi-objective metaheuristics applied

to structural optimization”. In: Struct Multidisc Optim 49.4, pp. 537–558. doi:

10.1007/s00158-013-0996-4.

Zitzler, E. and L. Thiele (1999). “Multiobjective evolutionary algorithms: a compar-

ative case study and the strength Pareto approach”. In: IEEE Transactions on

Evolutionary Computation 3.4, pp. 257–271. doi: 10.1109/4235.797969.

142 Bibliography

