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Abstract

In this thesis we are concerned with the improvement of existing numerical schemes
using deep learning. In the first part we propose a new idea to enhance standard
numerical methods for solving partial differential equations (PDEs) with a deep
learning approach. The idea is based on an approximation of the local truncation
error of the numerical methods used to approximate the spatial derivatives of a
given PDE. We present our idea as a proof of concept for improving the standard
and compact finite difference methods (FDMs), but it can be easily generalized
to other standard numerical methods as well. Without losing the consistency and
convergence of the FDM numerical scheme, we achieve a higher numerical accu-
racy in the presented one- and two-dimensional examples. We also perform a time
complexity analysis and show the efficiency of our method.

In the second part we improve the fifth-order Weighted Essentially Non-Oscillatory
(WENO) shock capturing scheme for solving hyperbolic conservation laws by inte-
grating deep learning techniques. We improve the established WENO algorithm by
training a compact neural network to dynamically adjust the smoothness indicators
within the WENO scheme. This modification increases the accuracy of the numer-
ical results, especially in the vicinity of abrupt shocks. In particular, our approach
eliminates the need for additional post-processing steps. We call our new method
by WENO-DS (Deep Smoothness). We demonstrate the superiority of WENO-DS
by examining several examples from the literature on the one- and two-dimensional
Buckley-Leverett and Burgers’ equations, as well as the Euler equations of gas dy-
namics. Through a thorough study of these test problems, which include various
shocks and rarefaction waves, our novel technique consistently outperforms the tra-
ditional fifth-order WENO scheme.

We also extend our approach and apply it to the sixth-order WENO scheme for solv-
ing nonlinear degenerate parabolic equations. Our results are presented on bench-
mark examples of nonlinear degenerate parabolic equations, such as the equation of
a porous medium with the Barenblatt solution, the Buckley-Leverett equation and
their extensions in two-dimensional space. It is shown that in our experiments the
new method outperforms the standard WENO method, reliably handles the sharp
interfaces, and provides good resolution of discontinuities.

For both WENO-DS methods we present the corresponding theoretical proofs of
fifth- and sixth-order of accuracy. Finally, we demonstrate the applicability and
effectiveness of WENO-DS in computational finance problems.
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II Abstract
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1 Chapter 1

Introduction

1.1 Introduction to numerical mathematics

Many practical problems, e.g. in quantitative finance, stochastic control and quan-
tum physics, can be modelled by partial differential equations (PDEs) which in most
cases do not admit analytical solutions. It is therefore inevitable to approximate
the solutions of the PDEs by numerical methods, such as finite differences, finite
elements, finite volumes, radial basis functions, etc. Besides stability issues, the
user is also concerned with the efficiency of the numerical method, i.e. the ratio of
the accuracy achieved to the computational time required.

According to the main classification of PDEs, there are elliptic, hyperbolic and
parabolic PDEs. For each of these main types there are different solution strategies.
It is very important to choose the most appropriate numerical method for a particu-
lar type of PDE. The basic idea of many numerical methods is to first approximate
the spatial derivatives of the underlying PDE. Then, for time-dependent PDEs, the
system of ordinary differential equations (ODEs) is obtained. This system can be
solved using, for example, the explicit or implicit Euler scheme or Runge-Kutta
method.

One of the most straightforward methods to approximate the spatial derivatives of
PDEs is the finite difference method (FDM). The entire spatial domain must be
discretized and the value of the solution is then approximated at each of these dis-
crete points. The difference formulas are constructed by Taylor expansion, assuming
smooth solutions. Depending on the number of spatial points involved, we can ob-
tain finite difference approximations of different orders. Convergence, consistency
and stability analysis have to be investigated.

In this thesis we consider two main classes of classical numerical methods, finite
difference and weighted essentially non-oscillatory (WENO) methods, for solving
PDEs. Our main focus is to improve the standard numerical schemes so that their
original accuracy and stability properties are preserved. We focus on the impor-
tant parameters of these methods and aim to improve these parameters using deep
learning techniques. In the following section, we provide a brief overview of the
core concept of deep learning and outline its potential application in improving
conventional numerical techniques.

1



2 1 Introduction

1.2 Introduction to deep learning

In this thesis, we aim to improve standard numerical methods using deep learning.
To better understand our approach, we will briefly introduce deep learning in this
section. Deep learning is a part of machine learning based on the ability to learn
from data. Unlike other machine learning techniques, such as linear regression or
decision trees, deep learning uses artificial neural networks (NNs) with multiple
layers. In the learning process, the data is fed to the NN and in each layer it is
being processed in increasingly abstract ways.

The NN consisting of only one layer can be seen as a classical linear regression.
Application of an activation function to the linear regression output would form the
NN architecture called Perceptron. It was invented in 1957 by Frank Rosenblatt
[91] and mathematically can be described by:

y = Ω
( n∑

i=1

wi × xi + b
)
, (1.1)

where y is a NN output, xi represent inputs, wi correspond to the weights associated
with each input, b is a bias term, n is the number of inputs and × denotes the
element-wise multiplication. The activation function Ω adds the non-linearity to the
output. Other NN structures can be understood as a composition and organization
of Perceptrons into layers, creating more complicated architectures. NN structure
consisting of one input layer, one or more hidden layers and one output layer is
called Multi-Layer Perceptron (MLP).

1.2.1 Neural network architectures

The most common NN architecture is a fully connected neural network, also known
as a dense neural network. It is actually a MLP and the terms are often used
interchangeably. This NN consists of several layers of neurons, where each neuron
in one layer is connected to each neuron in the next layer. The first layer is the
input layer, the last layer is the output layer, and all the layers in between are called
hidden layers. This NN structure is illustrated in Figure 1.1.

Second widely used NN architecture is a convolutional neural network (CNN). They
are very commonly used e.g. in image processing or object classification, as they
can capture local patterns and features efficiently. CNNs have fewer parameters
compared to fully connected networks of equivalent size, thanks to weight sharing
across different spatial locations of the input data, making them more computa-
tionally efficient and easier to train, especially on large datasets.

Let us now describe the main properties of CNNs. In CNNs, channels play a crucial
role in processing and representing data. Considering the input data, channels refer
to its different features or aspects. For example, in numerical examples, with more
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Input layer:
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Figure 1.1: Multi-Layer Perceptron.

channels on the input, each could represent a different variable and/or derivative of
a particular variable. CNN then allows the extracted information to be combined
across different features of the data. Each of the output channels of a last hidden
layer represents a different data feature that the network is learning. We can increase
the complexity of the CNN by increasing the number of channels in hidden layers,
which would capture different combinations of features learned from lower layers.

Next, CNN uses a kernel, a small window of parameters that slides across the input
data, to extract local patterns or features. The kernel size for each CNN layer
then affects the size of receptive field of the CNN. The receptive field represents the
region of the input that affects a particular single element of an output of the CNN
[5]. Further, stride and padding parameters need to be specified. Stride refers to
the step size at which the kernel moves over the input data. Padding refers to the
number of artificial data values added to the boundary of the input data. Padding
can be constant or data-dependent and essentially plays role of numerical boundary
conditions. An schematic, which explains the role of padding, kernel and stride can
be found in Figure 1.2. We illustrate a kernel with size 5, which is moved always
by 3 input units, so the stride is 3. We used padding 2, so that the output is of
size 3. To obtain the output of the same size as the input (7) we would have to use
padding of size 4.

Although we will mainly use one-dimensional CNNs, in practice, two-dimensional
CNNs are also widely used, especially for image processing. In this case, input data
is typically represented as a two-dimensional grid. We will apply two-dimensional
CNNs in Section 3.4.3.
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x3 x4 x5 x6x2x1 x7 0 000

Figure 1.2: CNN with kernel size 5, stride 3 and padding 2.

1.2.2 Activation functions

The activation function is one of the most important hyperparameters in NN archi-
tectures. The purpose of this hyperparameter is to introduce nonlinearity into the
prediction. There are many activation functions proposed in the literature; see the
comprehensive survey [46] for more details. However, there is no basic rule for the
appropriate choice of the activation function.

The most commonly used activation functions are: Rectified linear unit (RELU),
Exponential linear unit (ELU), Sigmoid, Hyperbolic tangent (Tanh) or Softplus.
With the RELU activation function, negative inputs are set to zero and positive
inputs remain the same. It is widely used because of its simplicity. However, it can
cause a dying RELU problem, which is a situation where certain neurons become
inactive during training and never recover. This is caused by the zero gradient for
all negative input values. ELU is a differentiable activation function that can avoid
the problem of RELU. For negative values, non-zero output is obtained. Sigmoid
ensures that the output of the NN is between 0 and 1. Similarly, Tanh maps the
output of the NN to a range [−1, 1]. However, both of these functions can cause a
vanishing gradient problem. Their derivative becomes very small for large positive
or negative inputs, resulting in vanishing gradients during the backpropagation.
This is because these functions saturate, flatten out and lead to gradients close to
zero. The Softplus activation function ensures that the output is always positive.
Unlike RELU, it is smooth and continuous.
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1.2.3 Loss function

The loss function is critical in training deep learning models because it quantifies
the difference between predicted and target values, guiding the optimization process
towards better performance. Commonly used is the loss function based on the L2

norm, which offers the benefit of stronger gradients, leading to faster training.

1.2.4 Optimizer and the optimal learning rate

Let us first introduce the Gradient descent algorithm. Gradient descent is an op-
timization algorithm used to find a minimum of a given function by iteratively
moving in the direction of its steepest descent. In each iteration, the gradient of
a function with respect to the parameters is computed and scaled by a weighting
factor (learning rate). After that, the parameters of a function are updated. This
process continues until convergence or a stopping criterion is met, effectively finding
the minimum of a function.

In machine learning, a very common algorithm is Stochastic gradient descent (SGD).
In SGD, instead of computing gradients on the entire dataset, gradients are com-
puted on small random subsets or individual data points in each iteration. This
introduces randomness and noise into the gradient estimation process, but makes
SGD faster and more scalable. In addition, SGD with momentum uses the gradients
from the previous update steps to speed up the gradient descent [92].

Even more popular is the Adam optimizer [55], which is a variant of previously
developed optimizers AdaGrad [22] and RMSProp [44]. It dynamically tunes the
learning rate, ensuring it neither grows excessively large nor diminishes too quickly.
It combines the benefits of previously developed algorithms, helping the model
converge faster and more reliably.

The learning rate is another important hyperparameter to choose. A larger learning
rate may miss the local minima, and a smaller learning rate may require a large
number of iterations to reach convergence. Therefore, it is important to find a near-
optimal learning rate. Finding the near-optimal learning rate typically requires
experimentation.

1.2.5 Backpropagation algorithm

Having described the different NN structures, the role of the loss function, the
activation functions and the optimizer, this section explains how the weights of the
NN are actually updated.

After the forward pass of the training algorithm (the process of calculating the
output of an NN), the error (loss function) is calculated. Then, going backward
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through each layer, the error contribution of each connection must be measured.
This is done by backpropagation algorithm. Starting from the output layer, the
gradient of the loss function is calculated with respect to the parameters (weights
and biases) of each neuron. Then the successive application of the chain rule is used
to compute the gradients, which are used to update the weights and biases using
optimization algorithms to minimize the loss function.

1.2.6 Possible improvements and modifications

There are many ways to modify the developed NN. In this thesis we experiment with
the residual connection framework [41] to improve the gradient propagation to the
lower layers of the NN. The idea is to introduce a so-called identity mapping, which
simply adds the output of the previous layer to the output of the next layer. It is
important that no additional parameters or computational complexity are added.
This framework will be used in Chapter 7.

Another possible modification is the use of adaptive activation functions. We use
them in Chapters 6 and 8. They can dynamically adjust their parameters or shape
based on the input data. More details can be found in Section 6.1.1.

1.2.7 Combination of numerical methods with deep learning

In this thesis we combine the classical numerical methods with deep learning by
inserting NN parts to them. The whole numerical method can be then seen as a
large NN. Although we optimize only the parameters of the small embedded NN,
we need to backpropagate the gradients also through the numerical method until we
reach them. This can be done, as the backpropagation is based on the successive use
of the chain rule to compute derivatives of arbitrarily complicated functions, which
can be represented by a directed acyclic graph (DAG), where each node represents
a primitive operation such as +, −, min or max with defined derivatives. Note
that we do not need to implement the backpropagation algorithm by ourselves. It
is enough to implement a numerical method in an established framework such as
Pytorch [79] (https://pytorch.org/) and make sure that all operations we are
using are differentiable.

1.3 Outline of the thesis

Let us now present the structure of the Thesis:

Chapter 1: In this chapter we introduce numerical mathematics and deep learning.
We introduce basic NN structures, activation functions, explain the role of a loss
function, optimizer and learning rate. Finally, we describe the backpropagation al-

https://pytorch.org/
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gorithm and how it can be used in combination with various numerical methods. We
also propose two modifications that can be used to improve the training procedure.

Chapter 2: In Chapter 2 we provide the detailed literature overview of useful
literature, where machine learning has been successfully applied to various numerical
algorithms. Two main approaches are mentioned. First, where machine learning
techniques are used to directly approximate the solution of a given PDE. Second,
where machine learning is used to improve standard numerical methods. In the
second case, the output of the learning procedure is the entire numerical scheme.

Chapter 3: This chapter is based on the papers [60] and [61]. We introduce the
standard FDM and the compact FDM. We then describe the algorithm based on
the approximation of the discretization error by deep learning. We present the
training procedure and demonstrate the performance of the developed method on
several examples. We also provide the reader with a time complexity analysis to
demonstrate the efficiency of the method. We present this approach as a proof of
concept that deep learning can be effectively combined with the standard numerical
schemes to achieve better results.

Chapter 4: In Chapter 4 we provide the mathematical background for hyperbolic
conservation laws. We introduce the numerical methods for solving these problems,
in particular the construction of conservative numerical schemes. Later in this
chapter, we explain the motivation for using the WENO scheme to solve hyperbolic
conservation laws and nonlinear degenerate parabolic equations. We describe the
development of the WENO method and provide the reader with a detailed literature
overview for various WENO schemes and related methods.

Chapter 5: In this chapter, based on the paper [57], we first describe the WENO al-
gorithm developed for solving hyperbolic conservation laws [50]. We explain the role
of the smoothness indicators and introduce the modification of the standard WENO
scheme, namely the WENO-Z scheme [13]. Next, we present our deep learning ap-
proach using CNNs to further improve the WENO methods, called WENO-DS,
without any post-processing. Later in the chapter, we provide the corresponding
proofs of the formal order of accuracy for two WENO schemes. After describing the
two-dimensional implementation, we present our numerical results, which illustrate
the improvements of our proposed method.

Chapter 6: This chapter is based on the papers [57] and [62] and we introduce
the one- and two-dimensional Euler system of gas dynamics. We describe the ap-
plication of the proposed deep learning based WENO-DS method for solving this
system and introduce a novel training procedure. We then present in detail the
numerical results with a wide range of test configurations. We consider different
types of CNNs and discuss their advantages and disadvantages.

Chapter 7: In this chapter, based on the paper [59], we present the general frame-
work of the WENO methods for solving nonlinear degenerate parabolic equations
[35, 74]. We then explain how the smoothness indicators are modified using the deep
learning algorithm. We provide a detailed proof of the formal sixth-order accuracy
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of the novel WENO-DS scheme, describe the structure of the CNN considered in this
application, and explain the training procedure. We also explain how we proceed for
two-dimensional problems. Finally, we present the results on numerous numerical
examples, where we demonstrate our improvements with figures and tables.

Chapter 8: This chapter is based on paper [58]. We present the novel WENO-
DS method and its application in finance. First, we introduce the Black-Scholes
equation and we consider a European digital option as an illustrating example.
Here we avoid the undesirable oscillations, especially in the first time steps of the
numerical solution.

Chapter 9: In the last chapter we conclude our work and offer insights into po-
tential directions of the future research.



Part I

Enhanced finite difference
methods by deep learning
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2 Chapter 2

Introduction to deep learning
based numerical algorithms
and literature overview

In recent years, there has been an increased interest in solving PDEs using deep
learning, see e.g. [10, 12, 25, 53, 84, 85, 106]. This interest was mainly due to the
availability of new generations of computers and a major challenge that applies
to all grid-based solution methods: the curse of dimensionality, which very often
occurs e.g in portfolio optimization, where the spatial dimension corresponds to the
number of assets. We refer the reader to [10] for further information on deep neural
networks (DNNs) methods for solving PDEs in high-dimensions. On the other hand,
DNN-based PDE solvers generally can not compete with classical numerical solution
techniques in lower dimensions - since solving the highly nonlinear optimization
problems in the training phase is too costly.

Consequently, in this direction, current research has focused on the hybridization
of methods, i.e. the combination of traditional numerical methods and DNNs-based
approaches in order to further enhance the classical schemes with respect to their
efficiency. Let us briefly review some recent developments in the field of numerical
solution of linear and nonlinear PDEs using machine learning techniques.

Sirignano and Spiliopoulos [103] proposed a combination of Galerkin methods and
DNNs, which they call Deep Galerkin Method (DGM), to solve high-dimensional
PDEs. The DGM algorithm is meshfree to cope with the curse of dimensionality
and is somewhat similar to Galerkin methods, with the solution approximated by a
neural network instead of a linear combination of basis functions. In this direction,
E and Yu [23] presented the Deep Ritz Method (DRM) for the numerical solution
of variational problems in high dimensions. Also, He et al. [40] theoretically ana-
lyzed the relationship between DNN with RELU function as the activation function
and the finite element method (FEM). For the proper treatment of the boundary
conditions, see [76].

Recently, machine learning was widely used to compute the solution of PDEs. We
refer to [11, 65, 103], where the NN algorithm is used to approximate a solution of
a particular PDE problem. Following that approach, the solution of a particular
PDE is a result of a NN training procedure. Another idea is to improve a specific
numerical scheme using NNs. The training of a NN is made offline and results in
a new numerical scheme applicable to a wider class of problems. This idea was
recently used by Beck et al. [9] for discontinuous Galerkin methods or in [45] for

11



12 2 Introduction to deep learning based numerical algorithms and literature
overview

learning iterative PDE solvers. Bar-Sinai et al. [7] use NNs and learn from high
resolution solutions to approximate a spatial derivative on a coarse grid. We refer
the reader also to [20, 26, 89] for other work in this direction.

In 2019, Raissi, Perdikaris, and Karniadakis [85] introduced Physics-informed Neu-
ral Networks (PINNs), a deep-learning framework for synergistically combining
mathematical models and data that has found a variety of applications to date.
PINNs compute approximate solutions to PDEs by training a NN to minimize a
loss function consisting of terms representing the mismatch of initial and boundary
conditions and the PDE residual at chosen points in the interior domain. Later in
2021, Ramabathiran and Ramachandran [86] proposed the Sparse, Physics-based,
and partially Interpretable Neural Network (SPINN) model for solving PDEs, which
is a new class of hybrid algorithms between PINNs and traditional mesh-free nu-
merical methods. The authors also proposed a hybrid finite difference and SPINN
method called FD-SPINN, where the (explicit or implicit) temporal discretization
is done using conventional FDMs and the spatial discretization is implemented at
each time step using the SPINN approach, i.e. the spatial derivatives are handled
exactly by automatic differentiation [33].

In [80], a graph neural networks based framework called MeshGraphNets was used.
This efficient approach is intended for learning mesh-based high-dimensional sci-
entific simulations and includes adaptive mesh discretization. Trask et al. [108]
generalized CNNs for data on unstructured stencils based on Generalized Moving
Least Squares (GMLS). In [93], a so-called Deep Learning Discrete Calculus (DLDC)
was proposed, which uses the knowledge from discrete numerical methods, such as
FDMs and FEMs, to interpret the deep learning algorithms.

In recent years, deep learning has been used not only to solve certain PDEs directly,
but also to improve existing numerical methods. This motivates us to propose new
FDMs in combination with DNNs. We refer to the new method as the deep finite
difference method (DFDM). The idea is based on an approximation of the local
truncation error of the numerical method used to approximate the spatial derivatives
of a given PDE. Let us emphasize that we explicitly capture information about the
local truncation error of the FDM instead of directly approaching the solution of
the PDE. To the best of our knowledge, this is the first work in which deep learning
is used to approximate the discretization error in solving PDEs.

In [96] Shen, Cheng and Liang propose a deep learning-based algorithm for solv-
ing ordinary differential equations (ODEs) based on an approximation of the local
truncation error of the Euler scheme, see also [52, 118] for related hypersolver ap-
proaches. The basic idea of this method is to augment an ODE solver with a NN
in order to achieve higher accuracy with respect to the time discretization.

While the approximation of the local truncation error is also the core of our method,
our approach has several significant differences to [96], which we briefly summarize
in the sequel. First, unlike [96], we use the idea of approximating the local trun-
cation error for solving PDEs rather than ODEs. Moreover, we use a different NN
structure, namely a very small CNN, to ensure time efficiency. In [96], a multi-layer
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fully connected NN with 8 layers and 80 neurons is used. In our approach, the
NN is trained for a class of PDE problems. The trained method is then applicable
to a range of different initial conditions and PDE parameterizations. In [96], the
NN is trained only for a particular ODE problem with a fixed initial condition and
for different discretizations. We show that our method generalizes well to different
discretizations without the need for retraining. Finally, in [96], the input to the NN
is formed by solving the standard Euler method from the previous time step and
using the points that define the time discretization. While we also use the solution
from the previous time step as input, we always compute it during the training
step, taking into account the influence of the NN itself. By using CNN, the spatial
neighborhood from the previous time step is also part of the input.

The main advantages of our proposed scheme are that the scheme remains conver-
gent and consistent. Although we improve the standard FDM and compact FDM,
this approach can be easily extended to any traditional numerical scheme, for which
a truncation error is available. The method is straightforward and easy to imple-
ment. Finally, as a proof of concept, we present some examples and show that the
method remains time efficient in most cases despite the addition of the rather small
NN.





3 Chapter 3

Deep finite difference method

In this chapter we propose a new idea to improve numerical methods for solving
PDEs through a deep learning approach. The idea is based on an approximation of
the local truncation error of the numerical method used to approximate the spatial
derivatives of a given PDE. We present our idea as a proof of concept to improve the
standard and compact FDMs, but it can be easily generalized to other numerical
methods, for which a truncation error is available.

Without losing the consistency and convergence of the FDM, we achieve a higher
numerical accuracy in the presented one- and two-dimensional examples, even for
parameter ranges outside the trained region. We also perform a time complexity
analysis and show the efficiency of our method.

3.1 Standard finite difference method

Let us consider a (parabolic) PDE of the form

∂u

∂t
=

d∑
p,r=1

αpr(x)
∂2u

∂xp∂xr

+
d∑

p=1

βp(x)
∂u

∂xp

+ γ(x)u, (x, t) ∈ Ωd × [0, T ],

u(x, 0) = u0(x),

(3.1)

with the coefficients αpr, βp, γ : Ωd ⊆ Rd → R, p, r = 1, . . . , d, where d denotes
the space dimension and x = (x1, . . . , xd) ∈ Ωd. We start with the simple one-
dimensional case where the PDE (3.1) reduces to

∂u

∂t
= α(x)

∂2u

∂x2
+ β(x)

∂u

∂x
+ γ(x)u, (x, t) ∈ Ω1 × [0, T ],

u(x, 0) = u0(x).
(3.2)

We select the one-dimensional spatial domain Ω1 = [a, b] and introduce a uniform
grid defined by the points xi = x0 + i∆x, i = 0, 1, . . . , I. The time domain [0, T ] is
discretized uniformly by the points tn = t0+n∆t, n = 0, 1, . . . , N . Let us emphasize
that uniform grids are considered for simplicity only, our approach can also be
applied to nonuniform grids. Let un

i = u(xi, tn) be the value of the exact solution
at the grid point (xi, tn) and ûn

i be the corresponding numerical approximation.

The simplest numerical approximation of un
i can be performed by the finite differ-

15
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ence method. The well-known second order central approximation to the second
derivative is given by

∂2u

∂x2

∣∣∣
xi

=
u(xi+1, t)− 2u(xi, t) + u(xi−1, t)

∆x2
− ∆x2

12

∂4u

∂x4

∣∣∣
xi

+O(∆x3), (3.3)

for u ∈ C4(Ω1) and the central approximation to the first derivative reads

∂u

∂x

∣∣∣
xi

=
u(xi+1, t)− u(xi−1, t)

2∆x
− ∆x2

6

∂3u

∂x3

∣∣∣
xi

+O(∆x3), (3.4)

for u ∈ C3(Ω1). Let us use the short notation

u(2)(xi) =
∂2u

∂x2

∣∣∣
xi

, u(1)(xi) =
∂u

∂x

∣∣∣
xi

(3.5)

and define the local discretization error of the finite difference scheme.

Definition 1. Let us denote the exact solution at grid point xi as ui and the exact
value of the derivative at the same point as u(l)(xi), where l denotes the order of
the derivative. Let L(ui, xi,∆x) represent the discretized version of the derivative
at grid point xi using a specific finite difference scheme with grid spacing ∆x. The
local discretization error ϵ

(l)
i at grid point xi is then given by

ϵ
(l)
i = L(ui, xi,∆x)− u(l)(xi). (3.6)

It can be seen, that the local discretization error ϵ
(2)
i = O(∆x2) and ϵ

(1)
i = O(∆x2)

is of the second order for both schemes (3.3) and (3.4), respectively.

In our work, we propose a deep learning algorithm to improve the accuracy of the
above finite difference approximations. To this end, we introduce a NN trained to
approximate the local discretization error ϵ(1)i and ϵ

(2)
i such that the final numerical

approximation ûn
i is improved. Let us remind the reader that we abbreviate our

resulting new deep learning finite difference method as DFDM. The further details
of this method will be discussed in Section 3.1.1.

3.1.1 Deep learning used to approximate the FDM
discretization error

To ensure the spatial invariance of the proposed scheme and because of its compu-
tational efficiency, we use in our application the CNN. Let F (·), G(·) : R2k+1 → R
be the functions of the CNN, where 2k + 1 is the size of the receptive field of the
CNN.

For the temporal discretization, we consider for simplicity the forward Euler scheme,
but any other method for solving ODEs could also be used. Now, we discretize the
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PDE (3.2) using (3.3), (3.4) and adding the NN function terms F (ûn)i, G(ûn)i. This
leads to the following deep FDM ansatz

ûn+1
i = ûn

i +∆t
[
α(xi)

( ûn
i+1 − 2ûn

i + ûn
i−1

∆x2
+∆x2F (ûn)i

)
+ β(xi)

( ûn
i+1 − ûn

i−1

2∆x
+∆x2G(ûn)i

)
+ γ(xi) û

n
i

]
,

(3.7)

where for NN functions holds F (ûn)i = F (ūn
i ) and G(ûn)i = G(ūn

i ) with ūn
i =

ūn(x̄i) = (ûn(xi−k), . . . , û
n(xi+k)) = (ûn

i−k, . . . , û
n
i+k) being the input to the NN.

This means, that we feed the CNN with the previously computed numerical ap-
proximations. When applying a CNN kernel to compute F (ūn

i ) and G(ūn
i ), under

the receptive field we understand the local neighborhood of ûn(xi) representing in-
put for this computation. For example, if the kernel size of the input CNN layer is
3, the receptive field of the output of that layer is 3 and k = 1 in this case.

Let us note that the functions F (ūn
i ) and G(ūn

i ) can share some layers or be repre-
sented by the same CNN with two outputs. We train the CNN to fulfill the following
approximations:

F (ūn
i ) ≈

1

∆x2
ϵ
(2)
i , G(ūn

i ) ≈
1

∆x2
ϵ
(1)
i ,

and
F (ūn

i ) = G(ūn
i ) = O(1), for ∆x→ 0.

The convergence and consistency properties of the standard FDM are preserved.
This is ensured due to multiplication of the NN functions with the step size ∆x2

as in (3.7). Moreover, the values of the NN functions have to be bounded, which
we will ensure using bounded activation function (such as Tanh) in the last CNN
layer.

The lowest order terms of discretization errors of (3.3), (3.4) can be eliminated by
using appropriate difference quotients for these error terms without enlarging the
underlying stencil of the scheme. The resulting FDMs of this approach are called
’compact’ and will be the topic of the Section 3.2.

3.2 Compact finite difference method

Let us consider as benchmark a heat equation of the form

∂u

∂t
= α

∂2u

∂x2
(x, t) ∈ Ω1 × [0, T ],

u(x, 0) = u0(x),
(3.8)

with α > 0. We select again the spatial domain Ω1 = [a, b] with a uniform grid
defined by the points xi = x0 + i∆x, i = 0, 1, . . . , I. The time domain [0, T ] is
discretized uniformly by the points tn = t0 + n∆t, n = 0, 1, . . . , N . To approximate
the solution un

i we consider now compact finite difference methods (CFDMs). The
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basic idea of these schemes is to further improve the accuracy of traditional FDMs
by approximating the lowest order error term by an appropriate difference quotient,
without enlarging the stencil dimensions, cf. [68]. For example, the second derivative
can be implicitly computed using the fourth-order compact scheme

1

10
u

′′

i+1 + u
′′

i +
1

10
u

′′

i−1 =
1

∆x2

(6
5
ui+1 −

12

5
ui +

6

5
ui−1

)
+O(∆x4). (3.9)

Here, the discretization error fulfills ϵ
(2)
i = O(∆x4) for u ∈ C6(Ω1).

3.2.1 Deep learning used to approximate the CFDM
discretization error

We describe in this section how our proposed algorithm can be easily generalized to
any other standard numerical scheme with an available truncation error. We again
consider the CNN and add properly the NN function term to the discretization of
the PDE (3.8). Here, we use for the time discretization the trapezoidal rule, which
is second order in time:

ûn+1 − ûn

∆t
=

1

2
α
(
û

′′n+1 + û
′′n
)
+∆x4F (ûn), (3.10)

where F (ûn) is a vector with elements F (ûn)i = F (ūn
i ) with ūn

i = ūn(x̄i) =
(ûn(xi−k), . . . , û

n(xi+k)) = (ûn
i−k, . . . , û

n
i+k) being the input to the CNN with the

size of a receptive field 2k + 1. The factor ∆x4 will be explained at the end of this
section. Then, using the discretization scheme (3.9) and defining the matrices A,
B as

A =



1 1
10

0 · · · · · · · · · · · · 0
1
10

1 1
10

. . . ...

0 1
10

1 1
10

. . . ...
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... . . . . . . . . . . . . . . . ...
... . . . 1

10
1 1

10
0

... . . . 1
10

1 1
10

0 · · · · · · · · · · · · 0 1
10

1


, B = 1

∆x2
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5

6
5
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6
5
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5
6
5

. . . ...

0 6
5
−12
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6
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5
−12

5
6
5

0
... . . . 6

5
−12

5
6
5

0 · · · · · · · · · · · · 0 6
5
−12

5


we obtain

2ûn+1 − α∆tA−1(Bûn+1 + c) = 2ûn + α∆tA−1(Bûn + d) + 2∆x4∆tF (ûn), (3.11)

where the vectors c and d represent the boundary conditions for the time steps n+1
and n respectively. Using basic matrix operations we obtain

(2A− α∆tB)ûn+1 = (2A+ α∆tB)ûn + α∆t(c+ d) + 2A∆x4∆tF (ûn). (3.12)
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In this case the NN function is trained to approximate the discretization error of
the method such that it holds

F (ūn
i ) ≈

1

∆x4
ϵ
(2)
i and F (ūn

i ) = O(1), for ∆x→ 0.

Again, the multiplication of the NN function F (·) with ∆x4 ensures the fourth
order of the enhanced compact scheme, assuming that the NN output is bounded.
This will be again ensured using bounded activation function in the last CNN layer.
Accordingly, we abbreviate our deep learning compact finite difference method as
DCFDM.

3.3 Training procedure

In this section, we describe how the training of the CNN is performed. In our
experiments, we use the CNN with only two layers, the input layer and the output
layer. The kernel size and the number of channels can be found in Figure 3.1.
This small NN with a small number of channels ensures numerical efficiency of the
resulting hybrid scheme. In a case where the equation contains both a diffusion
and a convection term, we use the same NN to compute the functions F (ûn) and
G(ûn) from (3.7). These are then represented as two output channels of the NN,
where the first output channel represents the correction of a diffusion term and
the second output channel represents the correction of a convection term. In the
two-dimensional example, a two-dimensional CNN is used.

At the beginning of the training procedure, the weights of the CNN are initialized
randomly. Then, a problem is randomly selected from the dataset. The discrete
computational domain is divided into I ×N steps (I × J ×N for two-dimensional
problems), where I, J are the number of space steps in x, y direction and N is
the number of time steps. We compute the solution up to a fixed final time T .
After each time step n, we predict the discretization error, compute the loss and its
gradient with respect to the weights of the CNN, update the weights, and proceed to
the next time level n+1. At this new time step, a new updated solution according
to (3.7) is the input to the CNN. For the optimization of the loss function we use the
Adam optimizer [55], where the learning rate is set separately for each PDE class.
For the training procedure, we use the mean squared error loss function, defined as

LOSSMSE(u) =
1

I

I∑
i=0

(ûn
i − un,ref

i )2, (3.13)

where ûn
i is a numerical approximation of u(xi, tn) obtained by DFDM and DCFDM,

respectively, and un,ref
i denotes the reference solution. If the exact solution is avail-

able, this is used as the reference solution. Otherwise, the reference solution is
calculated on a very fine grid. For the implementation we use Python with the
library PyTorch [79]. We summarize the training procedure and the implementa-
tion of DFDM in Algorithm 1. The training procedure results in a new numerical
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(a) One-dimensional case, PDE without convection term.
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(b) One-dimensional case, PDE with convection term.
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(c) Two-dimensional case, PDE without convection term.

Figure 3.1: Structure of the CNN for different examples.

scheme, which is then generally applicable for a wide class of PDEs.

Algorithm 1 DFDM training procedure
for l← 0 to L do ▷ L: the total number of training cycles
⋄ choose a new problem from a data set with randomly generated initial

condition parameters and/or randomly generated PDE coefficients
⋄ use fixed final time T , spatial and temporal discretization
for n← 0 to N do ▷ N: the total number of time steps
⋄ Input: Solution ûn at time tn
⋄ evaluation of CNN: Output: discretization error approximation F (ûn)

or approximations F (ûn), G(ûn)
⋄ use the equations (3.7), resp. (3.12) and compute the solution approxi-

mation ûn+1 at time tn+1

⋄ compute loss using equation (3.13)
⋄ compute loss gradient with respects to the weights of CNN
⋄ update weights using chosen optimizer

end for
⋄ testing on validation problems

end for
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3.4 Numerical examples

In this section we present our results on a few numerical examples. We provide a
detailed comparison of our method with the standard FDM in tables and figures.
In all provided tables, we denote as “ratio” the error of the FDM divided by the
error of DFDM (rounded to 2 decimal points).

3.4.1 One-dimensional heat equation

As an introductory example, we use the one-dimensional heat equation

ut = uxx, u(x, 0) = c+ a sin(bπx), −π ≤ x ≤ π, 0 ≤ t ≤ T. (3.14)

The exact solution for this example is

u(x, t) = c+ a e(−b2π2t) sin(bπx) (3.15)

and we take the Dirichlet boundary conditions from the exact solution for this case.

We proceed during the training as described in Section 3.3 and specify the learning
rate for the Adam optimizer as lr = 0.00001. In a point, where a new problem from
a data set should be chosen, we generate the parameters a, b and c randomly such
that

a ∈ U [1, 2], b ∈ U [0.3, 0.5], c ∈ U [0, 0.25]. (3.16)

We fix the final time T = 0.25 for each training cycle. As training cycle we denote
a sequence of training steps performed on a solution for an unique problem with
randomly chosen parameters a, b and c until the final time T . Then we test the
trained model on a validation set, which contains the problems with the parameters
not included in the training set. During the training we fix the spatial discretization
and divide the spatial domain into I = 100 steps. For the temporal discretization
we use the relation ∆t = 0.5∆x2, i.e. the parabolic mesh ration λ = ∆t/∆x2 is set
to 0.5.

We show the evolution of the loss function on the validation set in Figure 3.2. We
run the training for 800 training cycles. Experimentally we found out that the addi-
tional training would not improve results anymore. We performed 10 independent
trainings and present the results of the training showing the best performance on
the validation set. However, let us note, that all trainings have led to a very similar
loss evolution. We rescale the loss values (3.13) for each validation problem to be
in the interval [0, 1] using the relation

LOSS∗
MSE(u) =

LOSSl
MSE(u)

max
l=0,...,L

(LOSSl
MSE(u))

, l = 0, . . . , L, (3.17)

where L denotes the total number of training cycles.
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Figure 3.2: Training evolution corresponding to one-dimensional heat equation: The
values (3.17) for different validation problems evaluated after each train-
ing cycle.

parameters L∞ L2

a b c FDM DFDM ratio FDM DFDM ratio
1.88 0.32 0.12 0.000245 0.000353 0.69 0.000433 0.000577 0.75
1.31 0.4 0.12 0.000362 0.000033 11.01 0.000579 0.000049 11.73
1.15 0.43 0.15 0.000398 0.000075 5.31 0.000616 0.000104 5.92
1.95 0.42 0.16 0.000628 0.000179 3.51 0.000981 0.000208 4.71
1.74 0.38 0.02 0.000406 0.000090 4.52 0.000669 0.000151 4.44
1.32 0.41 0.17 0.000394 0.000034 11.74 0.000623 0.000035 17.73
1.43 0.35 0.21 0.000254 0.000239 1.06 0.000435 0.000357 1.22
1.83 0.48 0.078 0.000880 0.000467 1.88 0.001330 0.000688 1.93
1.56 0.39 0.14 0.000396 0.000073 5.47 0.000644 0.000096 6.71
1.53 0.43 0.018 0.000530 0.000151 3.50 0.000820 0.000216 3.79

(a) T = 0.25

parameters L∞ L2

a b c FDM DFDM ratio FDM DFDM ratio
1.88 0.32 0.12 0.000380 0.000577 0.66 0.000673 0.000956 0.70
1.31 0.4 0.12 0.000496 0.000072 6.89 0.000817 0.000107 7.65
1.15 0.43 0.15 0.000515 0.000082 6.28 0.000816 0.000121 6.76
1.95 0.42 0.16 0.000828 0.000175 4.74 0.001330 0.000219 6.07
1.74 0.38 0.02 0.000578 0.000190 3.04 0.000975 0.000294 3.32
1.32 0.41 0.17 0.000530 0.000025 21.15 0.000863 0.000034 25.05
1.43 0.35 0.21 0.000379 0.000385 0.98 0.000658 0.000579 1.14
1.83 0.48 0.078 0.001015 0.000535 1.90 0.001518 0.000751 2.02
1.56 0.39 0.14 0.000555 0.000114 4.86 0.000925 0.000173 5.36
1.53 0.43 0.018 0.000685 0.000230 2.98 0.001085 0.000316 3.44

(b) T = 0.5

Table 3.1: Comparison of L∞ and L2 errors of FDM and DFDM for the solution of
the heat equation (3.14) with various parameters a, b, c and T , I = 100.

We see that for some initial-value problems the method performs significantly better
than for another ones. We choose our model based on validation set of problem.
For each of these problems we compute after each training cycle a standard FDM
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solution and the improvement ratio, defined as the error of the FDM divided by the
error of the DFDM. Finally, we choose the model from the training cycle in which
the 30% quantile across the improvement ratios of validation problems reaches its
maximum. In our case, we took a model obtained after the 685th training cycle
and by getting rid of a few problems with a poor improvement we ensure that 70%
validation problems have the improvement ratio 3.27 or bigger. Let us note, that in
all presented examples, the same decision rule based on 30% quantile will be used.

We present the numerical results on problems from the test set for various final
times T . These were neither in the training set, nor in the validation set. The
Figure 3.3 illustrates the solution for two different initial value parameters choices.
We observe, that the method performs well also on the set of parameters a, b, c
outside of the training interval. In Table 3.1 we can see the significant improvement
on the errors. Although we used fixed final time T = 0.25 during training, we see,
that the method performs very well also with the final time T = 0.5, where the
improvement ratio reaches high values in many cases.
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Figure 3.3: Comparison of the FDM and DFDM for the solution of the heat equation
(3.14), I = 100, T = 0.25.

Furthermore, we analyze the computational cost of our method and compare it in
Figure 3.4. We see, that on 7 of 10 examples the DFDM outperforms the standard
method. Let us emphasize, that we did not retrain the method for different spatial
discretizations.

Next, we retrain the NN for the following diffusion-convection equation

ut = αuxx − βux, u(x, 0) = c+ a sin(bπx), 0 ≤ x ≤ 2π, 0 ≤ t ≤ T, (3.18)

where in addition to parameters from (3.16) also the parameters α ∈ U [1, 2] and
β ∈ U [1, 2] are chosen randomly during the training and testing. The training is
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Figure 3.4: Comparison of computational cost against L2 error on the solution of
the heat equation (3.14) with various parameters a, b and c according
to Table 3.1. T = 0.25.

performed as described before and we choose the learning rate lr = 0.0001. The
CNN structure can be found in Figure 3.1b and we run the training for 4000 training
cycles. We present in Table 3.2 the results for different parametrizations of the PDE
and the initial condition (3.18). We see, that we obtain in all cases smaller errors
using DFDM.

parameters L∞ L2

α β a b c FDM DFDM ratio FDM DFDM ratio
1.05 1.12 1.08 0.36 0.15 0.000297 0.000123 2.41 0.000465 0.000168 2.76
1.17 1.51 1.12 0.48 0.04 0.000692 0.000200 3.47 0.001043 0.000292 3.57
1.24 1.46 1.51 0.35 0.05 0.000507 0.000160 3.18 0.000774 0.000197 3.92
1.32 1.17 1.69 0.48 0.18 0.000789 0.000324 2.44 0.001243 0.000523 2.38
1.48 1.81 1.78 0.34 0.04 0.000673 0.000203 3.31 0.000991 0.000264 3.75
1.51 1.68 1.21 0.47 0.1 0.000667 0.000188 3.55 0.001033 0.000308 3.35
1.6 1.72 1.75 0.39 0.08 0.000709 0.000047 15.01 0.001112 0.000061 18.16
1.72 1.24 1.9 0.45 0.16 0.000751 0.000210 3.58 0.001222 0.000342 3.58
1.84 1.36 1.32 0.38 0.21 0.000378 0.000108 3.51 0.000560 0.000166 3.37
1.96 1.91 1.41 0.43 0.17 0.000633 0.000107 5.93 0.001009 0.000159 6.33

Table 3.2: Comparison of L∞ and L2 errors of FDM and DFDM for the solution of
the diffusion-convection equation (3.18) with various parameters α, β, a,
b, c, I = 100, T = 0.25.
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3.4.2 European call option

We apply our method also to a problem from computational finance, namely to the
option pricing problem. Let us consider the Black-Scholes equation

Vt +
1

2
σ2S2VSS + rSVS − rV = 0, S ∈ [0,∞), t ∈ [0, T ], (3.19)

where S is the price of an underlying asset at time t, r > 0 is the riskless interest
rate and σ2 is the volatility. In this thesis, we solve the European call option pricing
problem with the following terminal and boundary conditions:

V (S, T ) = max{0, S −K} =: (S −K)+,

V (S, t)→ 0, for S → 0, V (S, t)→ S −Ke−r(T−t), for S →∞,
(3.20)

with K being the strike price. We use the following transformation of variables that
exploits the Euler structure of the spatial operator in (3.19) and also reverses the
time direction:

S = Kex, τ = T − t, V (S, t) = Ku(x, τ) (3.21)

and substitute this into (3.19) and (3.20). Then we obtain the (forward-in-time)
PDE:

uτ =
σ2

2
uxx +

(
r − σ2

2

)
ux − ru, x ∈ R, 0 ≤ τ ≤ T. (3.22)

For the training, we generate randomly the parameters

σ ∈ U [0.4, 0.6], r ∈ U [0.1, 0.3]. (3.23)

Further, we set K = 80, T = 1 and divide the computational domain [xL, xR] =
[−2, 1.5] into 50 space steps and use the temporal step size ∆τ = 0.8∆x2/σ2.
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Figure 3.5: Training evolution corresponding to European call option example: The
values (3.17) for different validation problems evaluated after each train-
ing cycle.

During the training we use the NN structure as in Figure 3.1b. We use the learning
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rate lr = 0.0001 and run the training for 4000 training cycles with fixed final time
T = 1. Figure 3.5 shows the evolution of the rescaled values (3.17). Using the
same decision rule for the best model as in example from Section 3.4.1 we choose
the model obtained after the 1532nd training cycle. Numerical results on problems
from the test set can be found in Table 3.3. Similarly to previous examples, also in
this test case performs DFDM significantly better.

parameters L∞ L2

σ r FDM DFDM ratio FDM DFDM ratio
0.48 0.17 0.000682 0.000138 4.95 0.000655 0.000128 5.13
0.59 0.21 0.000629 0.000590 1.07 0.000664 0.000291 2.28
0.49 0.19 0.000707 0.000157 4.50 0.000705 0.000141 5.00
0.55 0.18 0.000611 0.000324 1.89 0.000607 0.000179 3.39
0.41 0.10 0.000632 0.000280 2.26 0.000503 0.000202 2.49
0.43 0.26 0.000977 0.000318 3.08 0.001089 0.000260 4.20
0.45 0.15 0.000680 0.000136 4.99 0.000622 0.000136 4.56
0.52 0.22 0.000740 0.000200 3.70 0.000767 0.000185 4.14
0.54 0.14 0.000544 0.000346 1.57 0.000510 0.000165 3.10
0.46 0.24 0.000880 0.000251 3.51 0.000944 0.000207 4.55

Table 3.3: Comparison of L∞ and L2 errors of FDM and DFDM for the solution
of the Black-Scholes equation (3.19) with various parameters σ and r,
I = 50, T = 1.

3.4.3 Two-dimensional heat equation

Here we extend the example from Section 3.4.1 to two space dimensions. We solve
the following two-dimensional heat equation

ut = uxx + uyy,

u(x, 0) = c+ a sin(bπx) + d sin(eπy), −π ≤ x, y ≤ π, 0 ≤ t ≤ T.
(3.24)

For the training we again generate randomly the following parameters

a ∈ U [1, 2], b ∈ U [0.3, 0.5], c ∈ U [0, 0.25] d ∈ U [1, 2], e ∈ U [0.3, 0.5]

and fix the final time T = 0.25 and the uniform spatial discretization I × J =
50× 50 for each training cycle. In this case we use two-dimensional CNN with the
parameters which can be found in Figure 3.1c. As one can see, we only use very small
CNNs with only one input layer and output layer and with only one channel in each
layer. We set the learning rate for the Adam optimizer lr = 0.00005. Training is
performed as described in the one-dimensional example in Section 3.4.1 and we run
it for 3000 training cycles. We again choose the model with the best performance on
the validation set as described in Section 3.4.1 and present the numerical results on
problems from the test set in Table 3.4 and in Figure 3.6. We see, that the results
with fixed final time T = 0.25 as well as with T = 0.5 are significantly better in all
cases.
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parameters L∞ L2

a b c d e FDM DFDM ratio FDM DFDM ratio
1 0.41 0 1.2 0.4 0.000611 0.000159 3.85 0.000250 0.000059 4.26

1.7 0.42 0.05 1.2 0.45 0.000994 0.000430 2.31 0.000395 0.000166 2.38
1.02 0.35 0 1.51 0.4 0.000580 0.000148 3.93 0.000259 0.000060 4.34
1.98 0.45 0.1 1.02 0.38 0.000996 0.000408 2.44 0.000444 0.000217 2.05
1.63 0.4 0.1 1.1 0.5 0.001014 0.000493 2.06 0.000407 0.000221 1.85
1.42 0.37 0.06 1.01 0.43 0.000634 0.000169 3.74 0.000261 0.000077 3.39
1.52 0.36 0.15 1.6 0.48 0.001034 0.000553 1.87 0.000446 0.000256 1.75
1.12 0.4 0.24 1.83 0.31 0.000505 0.000388 1.30 0.000220 0.000174 1.26
1.21 0.32 0.18 1.8 0.38 0.000559 0.000194 2.87 0.000263 0.000095 2.76
1.91 0.44 0.03 1.79 0.44 0.001337 0.000655 2.04 0.000525 0.000244 2.15

(a) T = 0.25

parameters L∞ L2

a b c d e FDM DFDM ratio FDM DFDM ratio
1 0.41 0 1.2 0.4 0.000818 0.000209 3.92 0.000333 0.000078 4.30

1.7 0.42 0.05 1.2 0.45 0.001258 0.000525 2.40 0.000495 0.000203 2.44
1.02 0.35 0 1.51 0.4 0.000800 0.000213 3.76 0.000353 0.000083 4.24
1.98 0.45 0.1 1.02 0.38 0.001256 0.000520 2.41 0.000540 0.000258 2.09
1.63 0.4 0.1 1.1 0.5 0.001217 0.000575 2.12 0.000470 0.000229 2.05
1.42 0.37 0.06 1.01 0.43 0.000850 0.000225 3.77 0.000348 0.000098 3.56
1.52 0.36 0.15 1.6 0.48 0.001259 0.000676 1.86 0.000512 0.000282 1.81
1.12 0.4 0.24 1.83 0.31 0.000717 0.000611 1.17 0.000308 0.000269 1.15
1.21 0.32 0.18 1.8 0.38 0.000796 0.000317 2.51 0.000369 0.000150 2.46
1.91 0.44 0.03 1.79 0.44 0.001670 0.000787 2.12 0.000646 0.000296 2.18

(b) T = 0.5

Table 3.4: Comparison of L∞ and L2 errors of FDM and DFDM for the solution of
two-dimensional heat equation (3.24) with various parameters a, b, c, d,
e and T . I × J = 50× 50.
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3.4.4 One-dimensional heat equation with Deep CFDM

In the next example we apply the DCFDM to the one-dimensional heat equation

ut = αuxx, u(x, 0) = c+ a sin(bπx), −π ≤ x ≤ π, 0 ≤ t ≤ T. (3.25)

During training and testing the parameters α, a, b and c are chosen randomly such
that

α ∈ U [1, 2], a ∈ U [1, 2], b ∈ U [0.3, 0.5], c ∈ U [0, 0.25]. (3.26)

Further, for the training we set T = 0.25, divide the computational domain into
25 space steps and for the temporal step size use ∆t = ∆x2, i.e. λ = 1. The NN
structure is used as in Figure 3.1a. We select the learning rate lr = 0.0001 and run
the training for 2000 training cycles. We choose the final model according to the
rule in the example from Section 3.4.1 and present the results in Table 3.5. We
see, that the NN can improve the CFDM very well. The improvement ratios are
slightly smaller when we compare the results with Table 3.1. However, due to the
implicitness of the method, the time complexity which is added through CNN is
not that big compared to the time complexity of the original CFDM. As illustrated
in Figure 3.7, the DCFDM remains time effective in most of the cases. We note,
that we did not retrain the method for different spatial discretizations.

parameters L∞ L2

α a b c CFDM DCFDM ratio CFDM DCFDM ratio
1.59 1.88 0.32 0.12 0.000026 0.000021 1.26 0.000046 0.000035 1.30
1.17 1.31 0.4 0.12 0.000026 0.000010 2.56 0.000041 0.000016 2.51
1.71 1.15 0.43 0.15 0.000081 0.000058 1.39 0.000127 0.000088 1.44
1.09 1.95 0.42 0.16 0.000040 0.000004 9.40 0.000063 0.000007 9.03
1.33 1.74 0.38 0.02 0.000037 0.000009 4.28 0.000061 0.000012 4.99
1.41 1.32 0.41 0.17 0.000047 0.000017 2.82 0.000075 0.000024 3.06
1.63 1.43 0.35 0.21 0.000034 0.000006 5.65 0.000058 0.000009 6.55
1.91 1.83 0.48 0.078 0.000257 0.000232 1.11 0.000386 0.000345 1.12
1.80 1.56 0.39 0.14 0.000079 0.000046 1.72 0.000132 0.000076 1.74
1.21 1.53 0.43 0.018 0.000047 0.000014 3.34 0.000072 0.000017 4.28

Table 3.5: Comparison of L∞ and L2 errors of CFDM and DCFDM for the solution
of the heat equation (3.25) with various parameters α, a, b, c, T = 0.25,
I = 50.

3.5 Asian option pricing problem and modification
of Deep FDM

The next example from computational finance is the problem of pricing Asian op-
tions. Asian options belong to the class of so-called path-dependent options. These
options have a characteristic payoff that depends on the average price of an under-
lying asset, e.g. the asset S. There are many types of Asian options. The average
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Figure 3.7: Comparison of computational cost against L2 error on the solution of
the heat equation (3.25) with various parameters α, a, b and c according
to Table 3.5, T = 0.25.

can be arithmetic or geometric, and it can be determined by the discrete or contin-
uous prices of an asset. In this case too, there are Asian options of the European
or American type.

In this thesis we consider Asian options of the European type depending on the
arithmetic mean of the asset price and we take the continuous case. In addition,
there are four different types of arithmetic Asian option with respect to the payoff
function, and we consider the fixed-strike call option. In this case, we obtain the
equation for the price of the Asian option, which is given by the two-dimensional
PDE. More details can be found e.g. in [56].

To avoid solving the two-dimensional PDE, Rogers and Shi [90] introduced a reduced
PDE of the form

∂u

∂t
+

1

2
σ2x2∂

2u

∂x2
−

( 1

T
+ rx

)∂u
∂x

= 0, 0 ≤ t ≤ T, x ∈ R, (3.27)

which can be solved equivalently for European style of Asian options. Here, r
denotes an interest rate, σ the volatility, x is defined by

x =
1

St

(
K −

t∫
0

Sυ µ(dυ)
)
, (3.28)
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where µ is the probability measure with the density ρ(t) = 1/T in our case. Further,
S is the price of an underlying asset at time t and K the strike price. The price of
an option V is then given by V = S0u(K/S0, 0) for some initial stock price S0.

After transforming (3.27) to the forward-in-time PDE using τ = T − t, we obtain

∂u

∂τ
=

1

2
σ2x2∂

2u

∂x2
−

(
1

T
+ rx

)
∂u

∂x
, 0 ≤ τ ≤ T, x ∈ R, (3.29)

which has a form of the PDE (3.2). We use the initial condition [90]

u(x, 0) = max(0,−x), (3.30)

and the boundary conditions [90]

u0 =
1− e−rτ

rT
− x0e

−rτ , uN = 0. (3.31)

We select the computational domain [xl, xr] = [−0.4, 4] and final time T = 1.

3.5.1 Modification of the scheme and training procedure

The coefficient in front of a convection term ( 1
T
+ rx) is always positive in our case

and can become dominant. This means that to overcome the oscillations, which
could appear in the solution, the left-biased stencil should be used to approximate
the first derivative. This reads

∂u

∂x

∣∣∣
xi

=
u(xi, t)− u(xi−1, t)

∆x
+O(∆x). (3.32)

As we can see, the approximation is only of the first order, so for the enhanced
DFDM we can use the formula

û
′n
i =

ûn
i − ûn

i−1

∆x
+∆xG(ūn

i ), (3.33)

to get the deep learning improved approximation of the first derivative. Now we
insert the equation (3.33) into (3.7), replacing the central approximation of the first
derivative, and use it as our final scheme.

Remark 1. Also one-sided second order finite difference approximation for the
first derivative could be used. However, for this we would need to define one more
boundary point on the left side of the computational domain. Moreover, wider
stencil can again lead to numerical oscillations. In Section 3.5.2 we will compare
the numerical results using (3.33) as well as using second-order finite difference
approximations for the first derivative.
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We also introduce a multiplication factor for the deep learning terms

F (ūn
i ) = 103min

(
|ûn

i+1 − 2ûn
i + ûn

i−1|, 102
)
F(ūn

i ),

G(ūn
i ) = 102min

(
|ûn

i+1 − 2ûn
i + ûn

i−1|, 102
)
G(ūn

i ).
(3.34)

By adding these factors, we ensure that the bounded learned coefficients have sig-
nificant effects only in the non-smooth (kinked) part of the solution. By ensuring
that these factors are bounded, we do not destroy the convergence properties.

For computational efficiency, we use a small CNN structure described in Figure 3.1b.
Two output channels in the last hidden layer represent the correction F(ūn

i ) of a
diffusion term and the correction G(ūn

i ) of a convection term of (3.29).

We aim to obtain a numerical scheme, which can reliably solve the Asian option
pricing problem for all possible combinations of σ, r and T . For this purpose,
we first create a data set consisting of 100 reference solutions. We generate the
parameters σ and r randomly

σ ∈ U [0.1, 0.4], r ∈ U [0.1, 0.3]. (3.35)

For training, we fix T = 1, K = 100 and use the computational domain [xl, xr] =
[−0.4, 4]. The reference solutions are computed using standard central finite differ-
ence schemes on a grid divided into 400 space points and the temporal step size is
chosen such that N = max

i=0,...,I

(
(τσ2x2

i )/(0.8∆x2)
)
.

For the training, we use the training procedure described in Section 3.3 We divide
the spatial computational domain into 50 space steps. Then, we randomly select a
problem from a data set. Afterwards, we compute successively the solution up to
the fixed final time T . After each time step n we compute the loss with respect to
the weights of CNN, update the weights and continue to the next time step n+ 1.
This means, in each subsequent time step, a new updated solution according to
(3.7) is input to the CNN. For the optimization we use the Adam optimizer with
the learning rate 0.0001. For the training procedure, we use the mean squared error
loss function (3.13).

After the training, we choose the model from a training step, in which the best per-
formance on problems from the validation set is obtained. These are the problems
with randomly generated initial parameters, which were not in the training data.
This is our final DFDM and we present the numerical results using this method in
the following section.

3.5.2 Numerical results

Let us present the numerical results on a test set containing the problems with the
randomly generated initial data.
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We compare the L2 errors in Table 3.6. We computed the solution with the given r
and σ parameters as given in the table. For the computation, we used the central
finite difference formula for the diffusion term, and for the convection term, we
distinguish among the following possibilities: second-order central finite difference
scheme (FDMc), second-order one-sided finite difference scheme (FDMs2), first-
order one-sided finite difference scheme (FDMs1), and deep learning improved first-
order one-sided finite difference scheme (DFDM). As can be seen, DFDM has the
smallest L2 errors in all cases. Compared to the FDMs1, we obtain the largest
improvement. The ratio denotes the error of the listed standard FDMs divided by
the error of DFDM.

We illustrate the solution for two selected cases in Figure 3.8. As can be seen,
FDMc and FDMs2 lead to spurious oscillations in the solution. FDMs1 does not
cause any oscillations, but has a large error near the kink. DFDM produces the
best solution among the methods.

We also computed the solution for the different final computation times T . The
results are shown in Table 3.7. Let us note, that we only trained the method with
the fixed T = 1, but we observe improving results also for different computation
times. Based on the results presented, it can be stated that longer computational
time leads to even better numerical results using DFDM.

parameters L2 improvement ratios

σ r FDMs1 FDMs2 FDMc DFDM ratio
(FDMs1)

ratio
(FDMs2)

ratio
(FDMc)

0.22 0.12 0.050304 0.016930 0.017986 0.008781 5.73 1.93 2.05
0.18 0.13 0.050193 0.021800 0.021481 0.011393 4.41 1.91 1.89
0.32 0.24 0.047173 0.010243 0.010361 0.003628 13.00 2.82 2.86
0.2 0.21 0.049032 0.018337 0.017864 0.008794 5.58 2.09 2.03
0.32 0.15 0.046425 0.010367 0.010167 0.003600 12.89 2.88 2.82
0.23 0.16 0.049239 0.015483 0.015921 0.007031 7.00 2.20 2.26
0.35 0.24 0.046521 0.009166 0.009298 0.003086 15.08 2.97 3.01
0.16 0.23 0.047185 0.025895 0.022651 0.015085 3.13 1.72 1.50
0.27 0.18 0.047725 0.012656 0.012479 0.004896 9.75 2.58 2.55
0.15 0.28 0.047074 0.029096 0.025772 0.017967 2.62 1.62 1.43

Table 3.6: Comparison of L2 errors for the solution of the equation (3.29) with
various parameters σ and r using different FDMs, I = 50, T = 1.
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Figure 3.8: Comparison of the solution of the equation (3.29) using different FDMs,
I = 50, T = 1.

parameters L2 improvement ratios

σ r T FDMs1 FDMs2 FDMc DFDM ratio
(FDMs1)

ratio
(FDMs2)

ratio
(FDMc)

0.22 0.12 0.8 0.051032 0.019911 0.020737 0.010952 4.66 1.82 1.89
0.18 0.13 0.9 0.047113 0.023283 0.019891 0.012144 3.88 1.92 1.64
0.32 0.24 1.1 0.047800 0.009610 0.010600 0.003927 12.17 2.45 2.70
0.2 0.21 2 0.049840 0.011665 0.012847 0.004838 10.30 2.41 2.66
0.32 0.15 0.5 0.046685 0.016061 0.013966 0.006675 6.99 2.41 2.09
0.23 0.16 3 0.048125 0.007549 0.008789 0.002720 17.69 2.78 3.23
0.35 0.24 1.5 0.045988 0.006936 0.007465 0.002200 20.91 3.15 3.39
0.16 0.23 1.8 0.048583 0.017193 0.016256 0.009683 5.02 1.78 1.68
0.27 0.18 0.6 0.050456 0.018115 0.018972 0.009517 5.30 1.90 1.99
0.15 0.28 2.5 0.052187 0.014689 0.016639 0.008149 6.40 1.80 2.04

Table 3.7: Comparison of L2 errors for the solution of the equation (3.29) with
various parameters σ, r and T using different FDMs, I = 50.
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4 Chapter 4

Introduction to hyperbolic
conservation laws and
literature overview

4.1 Mathematical background for hyperbolic
conservation laws

Typically, numerical fluid mechanics deals with nonlinear hyperbolic PDEs. In one
space dimension, these equations can be represented as

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0, t > 0, (4.1)

where x represents space, t denotes time, u(x, t) : R×R→ Rm is an m-dimensional
vector of conserved quantities and f(u(x, t)) : Rm → Rm is its flux. We refer to
(4.1) as hyperbolic conservation law (HCL). That means, we assume that the m×m
Jacobian matrix f ′(u) satisifies: For each value of u the eigenvalues of f ′(u) are real,
and the matrix is diagonalizable [69].

Let us now introduce an integral form of the HCL (4.1) as

x2∫
x1

u(x, t2)dx =

x2∫
x1

u(x, t1)dx

−

[ t2∫
t1

f
(
u(x2, t)

)
dt−

t2∫
t1

f
(
u(x1, t)

)
dt

] (4.2)

for x1, x2, t1, t2 from intervals [x1, x2], [t1, t2].

Applications

One of the most important systems of conservation laws is the Euler system of
gas dynamics, which we also solve in this thesis (Chapter 6). As an introducing
example we consider the shock tube problem. In this scenario, a tube is filled with
gas, initially separated by a membrane into two sections. In one half of the tube,

37
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the gas exhibits higher density and pressure compared to the other half, while the
velocity remains zero throughout. At the initial time, the membrane is suddenly
removed, enabling the gas to flow. In this case the one-dimensional Euler equations
(Section 6.1) are applicable.

Let us now describe three important waves that separate regions where the state
variables are constant. A shock wave travels into the region of lower pressure, caus-
ing density and pressure to surge to higher levels, resulting in discontinuities in all
state variables. This is followed by a contact discontinuity, characterised by another
density discontinuity, while velocity and pressure remain constant. From the op-
posite direction comes the rarefaction wave, which causes all the state variables to
remain continuous and a smooth transition to occur. This wave causes the density
of the gas to decrease as it passes through.

Examples of HCLs include the further study of the propagation of these waves, as
well as the investigation of conservation principles in various physical systems such
as fluid dynamics, traffic flow and nonlinear acoustics.

Scalar conservation laws

Let us introduce the linear advection equation of a form

∂u

∂t
+ a

∂u

∂x
= 0, u(x, 0) = u0(x), t ≥ 0, (4.3)

with the solution u(x, t) = u0(x − at). This means, that the initial data is be-
ing transported unchanged to the left (if a < 0) or to the right (if a > 0) with
the velocity a. It can be demonstrated that if u0(x) is a smooth function, u0 ∈
Ck(−∞,∞), then the solution u(x, t) is also smooth both in space and time,
u ∈ Ck((−∞,∞)× (0,∞)).

Along each ray x − at = x0, which are known as the characteristics of the equa-
tion, the solution remains constant. Another important property of HCLs is that
they have finite propagation speed. This means, that the characteristics have a finite
slope. In other words, perturbations or changes in the system cannot spread instan-
taneously through space. This property is important for the design of numerical
methods for HCLs.

Note that in the case of non-differentiability of u0 at some point, u(x, t) is no longer
a classical solution. However, there exists a weak solution, provided that u0 is
integrable. For more details on weak solutions see [69].

Another important example of scalar conservation laws is the Burgers’ equation

∂u

∂t
+

∂f(u)

∂x
= 0, with f(u) =

u2

2
, i.e. f ′(u) = u. (4.4)
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The characteristics are given by

x′(t) = u(x(t), t). (4.5)

That is, they are straight lines, determined by the initial data. Assuming that the
initial data is smooth, then this can be used to determine the solution u(x, t) for
sufficiently small t so that characteristics do not cross. However, the characteristics
may intersect after some time, resulting in formation of a shock, where the discon-
tinuity occurs and the function u(x, t) has an infinite slope. Nevertheless, the weak
solution exhibiting discontinuities still exists.

4.2 Numerical methods for hyperbolic
conservation laws

It has been always been challenging to solve the HCLs numerically as it is well-known
that discontinuities may develop after a finite time regardless of the smoothness of
the initial or boundary data. Hence, suitable numerical methods must be designed
for these problems, especially to approximate discontinuous solutions.

As the localisation of the shock is often the main cause of difficulties, so-called shock-
tracking and shock-capturing schemes have been developed. The shock-tracking
approach combines a conventional FDM in smooth regions with a special procedure
designed to track the positions of discontinuities. However, this approach may
become very complicated, especially in higher dimensional cases.

Therefore, so-called shock-capturing schemes became more popular. The numeri-
cal scheme is designed to detect and resolve shock waves implicitly as part of the
solution process. Shock capturing methods aim to accurately capture the location,
strength, and propagation of shocks by modifying the numerical scheme to prevent
spurious oscillations and maintain stability near discontinuities.

To the beginning, let us consider the computational domain with a uniform grid
defined by the points xi = x0+ i∆x, i = 0, . . . , I. We also define the cell boundaries
by xi+ 1

2
= xi+

∆x
2

. The time domain will be discretized by the points tn = t0+n∆t,
n = 0, . . . , N .

We consider the advection equation (4.3) and we explain the construction of the
numerical methods to approximate the solution un

i = u(xi, tn). This approximation
will be denoted by ûn

i .

The most straightforward method to obtain the solution ûn+1
i would be to use

centered finite difference approximation and explicit Euler time stepping such that
it holds

ûn+1
i = ûn

i −
∆t

2∆x
a(ûn

i+1 − ûn
i−1). (4.6)

However, this approach suffers from significant stability issues and is unlikely to be
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suitable for solving HCLs.

More suitable is so-called upwinding approach. For the scalar advection equation
with a > 0, the one-sided method

ûn+1
i = ûn

i −
∆t

∆x
a(ûn

i − ûn
i−1), (4.7)

is suitable. Accordingly, for a < 0 the upwind method has the form

ûn+1
i = ûn

i −
∆t

∆x
a(ûn

i+1 − ûn
i ). (4.8)

Consistency, convergence and stability

Let us introduce a specific notation for the one-stage methods using

ûn+1
i = Hk(û

n; i), (4.9)

where we index Hk by a time step k = ∆t. For example, considering equation (4.7)
it holds

Hk(û
n; i) = ûn

i −
∆t

∆x
a(ûn

i − ûn
i−1). (4.10)

When this operator is applied to the piecewise constant function

ûk(x, t) = ûn
i , for (x, t) ∈ [xi− 1

2
, xi+ 1

2
)× [tn, tn+1), (4.11)

we obtain
ûk(x, t+ k) = Hk(ûk(·, t);x). (4.12)

Assuming that Hk is linear, we can write

ûn+1 = Hkû
n. (4.13)

Let us now introduce the important metrics necessary to define convergence, con-
sistency and stability. For classical solutions, the global error is defined by

En
i = ûn

i − un
i . (4.14)

Let us define the error function

Ek(x, t) = ûk(x, t)− u(x, t), (4.15)

using (4.11), which corresponds to the global error and

Lk(x, t) =
1

k

[
u(x, t+ k)−Hk(u(·, t);x)

]
(4.16)

corresponding to the local error. Let us now define the basic properties of the
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numerical schemes, cf. [69].

Definition 2. A method ûn+1 = Hk(û
n) with the global error (4.15) is convergent

with respect to a norm || · ||, if it holds

lim
k→0
||Ek(·, t)|| = 0 (4.17)

for any fixed t ≥ 0 and all initial data u0 in some class.

Definition 3. A method ûn+1 = Hk(û
n) with the local error (4.16) is called consis-

tent, if it holds
lim
k→0
||Lk(·, t)|| = 0 (4.18)

for any fixed t ≥ 0 and all initial data u0 in some class. The method is consistent of
order q, if for each initial values with compact support, each T > 0 some constants
CL > 0 and k0 > 0 exist such that

||Lk(·, t)|| ≤ CLk
q, for all k < k0, t ≤ T. (4.19)

Definition 4. A method ûn+1 = Hk(û
n) is called stable (according to Lax-Richtmyer),

if for each T ≥ 0 some constants CS > 0 and k0 > 0 exist such that

||Hn
k || ≤ CS for all k < k0, nk ≤ T. (4.20)

According to the fundamental convergence theorem for linear FDMs it holds, that
for a consistent, linear method, stability is necessary and sufficient for convergence.

4.2.1 Conservative methods

However, when we solve the nonlinear HCLs numerically (such as e.g. (4.4)), ad-
ditional difficulties can arise. As mentioned in Section 4.1, discontinuous solutions
and shocks are often present and the numerical method may converge to the wrong
solution. Therefore, the conservative methods are required, which are in the form
[69]

ûn+1
i = ûn

i −
∆t

∆x
[f̂(ûn

i−p, û
n
i−p+1, . . . û

n
i+s)− f̂(ûn

i−p−1, û
n
i−p, . . . û

n
i+s−1)]. (4.21)

where f̂ is the numerical flux function of p+s+1 arguments. To obtain a reasonable
approximation, a natural requirement is that a constant flux function is exactly
approximated, so that

f̂(u, u, . . . , u) = f(u). (4.22)
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In the simplest case, taking p = 0 and s = 1 we obtain

ûn+1
i = ûn

i −
∆t

∆x

[
f̂(ûn

i , û
n
i+1)− f̂(ûn

i−1, û
n
i )
]
. (4.23)

According to the equation (4.2), integral form of the HCL (4.1) yields the equation

xi+1/2∫
xi−1/2

u(x, tn+1)dx =

xi+1/2∫
xi−1/2

u(x, tn)dx

−

[ tn+1∫
tn

f
(
u(xi+1/2, t)

)
dt−

tn+1∫
tn

f
(
u(xi−1/2, t)

)
dt

]
.

(4.24)

Using shorter notation for (4.21) we can write

ûn+1
i = ûn

i −
∆t

∆x

[
f̂(ûn; i)− f̂(ûn; i− 1)

]
(4.25)

and we can see f̂(ûn; i) as approximation of the average flux

f̂(ûn; i) ≈ 1

∆t

tn+1∫
tn

f
(
u(xi+1/2, t)

)
dt. (4.26)

For example, considering the Burgers’ equation (4.4) and the upwind scheme (4.7),
we would obtain

ûn+1
i = ûn

i −
∆t

∆x

(1
2
(ûn

i )
2 − 1

2
(ûn

i−1)
2
)
, (4.27)

which has the conservative form (4.23) with

f̂(v, w) = f(v) =
1

2
v2. (4.28)

Definition 5. A conservative method (4.21) is called consistent, if the local Lips-
chitz condition

|f̂(ûi−p, . . . ûi+s)− f(u)| ≤ K max
−p≤j≤s

|ûi+j − u| (4.29)

holds for all ûi+j sufficiently close to u with a constant K.

Note, that (4.29) implies (4.22).

We note that according to the Lax-Wendroff theorem [66], if the solution of the
conservative scheme (4.25) converges, it will converge to a weak solution of (4.1).
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Total variation diminishing methods

We will further apply the total variation diminishing (TVD) time-stepping method
in this thesis, so let us briefly introduce the following terms, cf. [69].

Definition 6. Let T > 0 be a given constant. For a given function u = u(x, t) the
total variation over [0, T ] is defined by

TV (u) = sup
I∑

i=1

∣∣u(xi)− u(xi−1)
∣∣, (4.30)

where the supremum is taken over all subdivisions of the real line −∞ = x0 < x1 <
. . . < xI =∞.

Definition 7. The numerical method ûn+1
i = H(ûn; i) is called total variation di-

minishing if
TV (ûn+1) ≤ TV (ûn) (4.31)

for all grid functions ûn.

4.3 Related scientific work

Conservative numerical methods are constructed using relations listed in Section
4.2.1. The Lax-Wendroff method [66] and the Godunov method [32] were among the
earliest FDMs developed for solving hyperbolic conservation laws. Later, so-called
flux-limiter methods have been introduced, cf. [110]. The main idea of this flux
splitting approach is to decompose the flux by choosing a high order flux suitable
for smooth regions, and a low order flux that works well near discontinuities. Also
very important are the TVD methods [38], which were developed to maintain or
reduce the total variation of the solution over time, ensuring stability and accuracy
near shocks and discontinuities.

In 1980 Crandall and Majda [19] proposed the class of monotone schemes which
are nonlinearly stable in the L1 norm and satisfy certain entropy conditions. It can
be shown that the corresponding solutions converge to bounded variation entropy
solutions including error estimates. However, these schemes are only first-order
accurate, and it is known from the fundamental Godunov theorem [31] that one
must consider nonlinear non-oscillatory schemes to overcome this accuracy limit.

In this direction shock-capturing schemes have been developed which are able to
resolve a shock or a steep gradient region sharply without introducing too much
diffusion or overshoot behaviour [38]. The well-known representative of this class
of methods are the essentially non-oscillatory (ENO) schemes [39] with high order
accuracy in smooth regions and sharply resolving shocks in an essentially non-
oscillatory manner using a smoothness indicator function, see e.g. [98]. Later, Jiang
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and Shu [50] further improved these schemes and proposed a weighted essentially
non-oscillatory scheme (subsequently abbreviated as WENO-JS), which is still con-
sidered a state-of-the-art solution.

As we continue to develop the WENO schemes in this thesis, we present the devel-
opment of these methods in more detail. In order to achieve higher order accuracy
for WENO schemes, the stencil for the spatial reconstruction needs to be enlarged
and to keep it in a compact size Qiu and Shu [82, 83] developed the hermite WENO
(HWENO) schemes. To further increase the efficiency, Pirozzoli [81] developed a
hybrid compact-WENO scheme using upwind schemes in the smooth regions. Al-
ternatively, Hill and Pullin [43] designed another hybrid WENO scheme, combining
special centred difference schemes with WENO methods, cf. [119] for the most recent
approaches.

Subsequently, several new strategies were developed by modifying the WENO-JS
schemes, i.e. by modifying the nonlinear weights [13, 15, 34, 42, 54, 71, 88]. In addi-
tion, another goal in optimizing these schemes has been to minimize the dispersion
error (dispersion-relation-preserving (DRP) schemes) [73, 107], also combined with
the WENO approach leading to optimized WENO (OWENO) schemes [114]. Since
classical WENO methods are too dissipative for direct numerical simulations (DNS)
of turbulence, the aim has been to reduce the dissipation by incorporating an au-
tomatic dissipation adjustment [27].

In 2016 Fu et al. [29] proposed a family of high-order targeted ENO (TENO)
schemes that are particularly suitable for DNS. These methods reduce the numerical
dissipation by an ENO-like stencil selection and increase the numerical robustness
by assembling a set of low-order candidate stencils with increasing width, see also
the extensions in [28, 30]. For a detailed review of WENO schemes we refer the
interested reader to [99].

Besides HCLs, the WENO schemes for nonlinear degenerate parabolic equations
have also been developed. The behaviour of these equations is very similar to that
of HCLs. Therefore, the well-known WENO method, which is widely used for
solving HCLs, has also been generalized for these equations.

For this purpose, the authors Liu et al. developed the WENO scheme for nonlin-
ear degenerate parabolic equations [74]. Two formulations are described in [74].
In the first, the second derivative is directly approximated by a conservative flux
difference. In this case, the negative ideal weights appear, so a special treatment
of these weights is required [97]. The desired sixth-order accuracy is achieved and
numerically demonstrated. The second approach is based on introducing an auxil-
iary variable for the first derivative, then applying the WENO scheme to two first
derivatives instead of the second derivative. However, this case is not discussed fur-
ther because the magnitude of the error is greater than when the WENO method
is applied directly to the second derivative.

Subsequently, new modifications of the sixth-order WENO method for nonlinear
degenerate parabolic equations were introduced. Christlieb et al. [18] provided
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a high-order WENO method with a nonlinear filter to avoid unwanted spurious
oscillations. Hajipour and Malek [35] introduced a new type of nonlinear weights
and used a non-standard Runge-Kutta scheme instead of the TVD Runge-Kutta
scheme [100] previously used in combination with WENO methods. Abedian et
al. [1, 2] aimed to avoid the negative ideal weights and present a new modification
of the WENO method. Rathan et al. [87] developed a new smoothness indicator
based on the L1 norm. Jiang [51] developed another WENO method for nonlinear
degenerate parabolic equations.

Recently, machine learning has also been used to improve standard WENO schemes.
In [113], deep reinforcement learning is used to design a new numerical scheme for
solving HCLs. The authors apply their method to the solution of Burgers’ equation
and compare their results with the standard WENO scheme. The recent work of
Stevens and Colonius [105] introduces a new WENO-NN scheme based on a NN
algorithm. In their work, the finite volume coefficients of the WENO-JS scheme are
perturbed while retaining the original smoothness indicators and nonlinear weights.
However, the resulting scheme presented in their paper has only first order accuracy.
Another NN based WENO scheme was developed by Liu and Wen [72], where the
new smoothness indicators are an output of the NN algorithm. However, in this
case, the formal order of accuracy of the reconstruction of the resulting method
can neither be analytically proven nor guaranteed. For a detailed discussion of
the formal order of accuracy (as opposed to the term "convergence") for WENO
methods, see e.g. [4, 21].

In our work, we implement another WENO extension based on deep learning. This
approach is used to improve the classic WENO-JS [50] and WENO-Z [13] schemes
in this work, but could also be efficiently applied to other WENO methods. For this
purpose, we will train a rather small NN to perturb the smoothness indicator func-
tions of the WENO-JS scheme. Since we do not develop new smoothness indicators
as in [72], but only their multiplicative perturbations, we are able to prove the for-
mal order of accuracy of the resulting scheme. We call this new scheme WENO-DS
(Deep Smoothness) because we modify the smoothness indicators using deep NNs.
This scheme has less diffusion and less overshoot in shocks than the WENO-JS
and WENO-Z schemes, while maintaining high order accuracy in smooth regions.
Furthermore, we efficiently implement the WENO-DS scheme for solving one- and
two-dimensional Euler equations of gas dynamics.

We generalize this algorithm also for nonlinear degenerate parabolic equations. We
use a NN algorithm to modify the smoothness indicators of the original WENO
scheme [35, 74] and obtain sixth-order accuracy, which we prove theoretically. We
emphasize that no post-processing steps are required to maintain the consistency
and accuracy of the method.

Finally, we apply the WENO-DS method to a computational finance problem,
namely the European digital option pricing problem with discontinuous terminal
data. In this problem, the spurious oscillations are present in the solution when the
standard WENO scheme is used. We show that they can be successfully eliminated
using the WENO-DS method.





5 Chapter 5

Fifth-order WENO scheme for
hyperbolic conservation laws

In this chapter we enhance the well-known fifth-order WENO shock-capturing
scheme by using deep learning techniques. This fine-tuning of an existing algo-
rithm is implemented by training a rather small NN to modify the smoothness
indicators of the WENO scheme in order to improve the numerical results espe-
cially at discontinuities. In our approach no further post-processing is needed to
ensure the consistency of the method. Moreover, the formal order of accuracy of
the resulting scheme can be theoretically proven.

We demonstrate our findings with the Buckley-Leverett equation and inviscid Burg-
ers’ equation. We show that our novel method outperforms the classical fifth-order
WENO schemes in simulations where the numerical solution is too diffusive or tends
to overshoot at shocks. Finally, the straight-forward extension of the method to two-
dimensional problems is included and illustrated using the two-dimensional Burgers’
equation. Further in Chapter 6 we present the application to the one-dimensional
and two-dimensional Euler equations of gas dynamics.

5.1 The WENO scheme

Let us consider the one-dimensional HCL of a form

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0, t > 0. (5.1)

We introduce a uniform grid defined by the points xi = x0 + i∆x, i = 0, . . . , I,
which are the centers of the cells with cell boundaries defined by xi+ 1

2
= xi +

∆x
2

.

The spatial discretization of one-dimensional HCL (5.1) yields a system of ODEs
and the resulting semi-discrete scheme is

dui(t)

dt
= −

f̂i+ 1
2
− f̂i− 1

2

∆x
, (5.2)

where ui(t) approximates pointwise u(xi, t) and the numerical flux f̂i+ 1
2

is chosen

47
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such that for all sufficiently smooth u, we have

1

∆x

(
f̂i+ 1

2
− f̂i− 1

2

)
=

(
f(u)

)
x
|x=xi

+O(∆x5), (5.3)

with fifth-order of accuracy. Recalling the equation (4.21), we see, that the form
(5.2) corresponds to this conservative scheme with a numerical flux function

f̂i+ 1
2
= f̂(ui−p, . . . ui+s), (5.4)

which satisfies the following conditions: f̂ is a Lipschitz continuous function in all
the arguments and f̂ is consistent with the physical flux f , that means, f̂(u, . . . , u) =
f(u). By ui we denote the pointwise values ui = u(xi). To satisfy (5.3), p = 2 and
s = 2 are chosen [98].

Following [50], if we define a function h implicitly by

f
(
u(x)

)
=

1

∆x

x+∆x
2∫

x−∆x
2

h(ξ) dξ, (5.5)

then (5.2) is approximated by

(
f(u)

)
x
|x=xi

=
h
(
x+ ∆x

2

)
− h

(
x− ∆x

2

)
∆x

. (5.6)

Considering hi± 1
2
= h(xi± 1

2
) we obtain the following fifth-order approximation of a

numerical flux
f̂i± 1

2
= hi± 1

2
+O(∆x5). (5.7)

This results in a conservative numerical scheme.

Further, it is essential to use the flux splitting method, thus we write

f(u) = f+(u) + f−(u), where
df+(u)

du
≥ 0 and

df−(u)

du
≤ 0. (5.8)

The numerical flux f̂i± 1
2

is then represented by f̂i± 1
2
= f̂+

i± 1
2

+ f̂−
i± 1

2

and the final
scheme is formed as

dui(t)

dt
= − 1

∆x

[(
f̂+
i+ 1

2

− f̂+
i− 1

2

)
+
(
f̂−
i+ 1

2

− f̂−
i− 1

2

)]
. (5.9)

Next, we only consider the construction of f̂+
i± 1

2

(and drop the superscript +). The
negative part can be then obtained using symmetry (see e.g. [112]).
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5.1.1 Fifth-order WENO scheme

For a construction of f̂i+ 1
2
, the fifth-order WENO method uses a 5-point stencil

S(i) = {xi−2, . . . , xi+2} (5.10)

divided into three candidate substencils, which are given by

S(i)m = {xi+m−2, xi+m−1, xi+m}, m = 0, 1, 2. (5.11)

To form the numerical flux over the entire 5-point stencil, the numerical flux for
each of these substencils f̂m

i+ 1
2

= hi+ 1
2
+O(∆x3) is calculated. These fluxes are then

averaged in such a way, that fifth-order accuracy is ensured in the smooth regions.
In regions with discontinuities, the weights should partly remove the contribution
of these stencils so that the solution near the shock can be approximated in more
stable manner.

Let f̂m(x) be the polynomial approximation of h(x) on each of the substencils (5.11).
Then, evaluated at x = xi+ 1

2
we obtain

f̂m(xi+ 1
2
) = f̂m

i+ 1
2
=

2∑
j=0

cm,j f(ui+m−2+j), i = 0, . . . , I, (5.12)

where cm,j are the Lagrangian interpolation coefficients, dependent on m (see [50]).
They take an explicit form

f̂ 0
i+ 1

2
=

2f(ui−2)− 7f(ui−1) + 11f(ui)

6
,

f̂ 1
i+ 1

2
=
−f(ui−1) + 5f(ui) + 2f(ui+1)

6
,

f̂ 2
i+ 1

2
=

2f(ui) + 5f(ui+1)− f(ui+2)

6
,

(5.13)

and the numerical fluxes f̂m
i− 1

2

can be obtained by shifting each index by −1. By
f(ui) the value of a function f at u(xi) is indicated.

Using the Taylor series expansion it can be shown that:

f̂ 0
i± 1

2
= hi± 1

2
− 1

4

d3f

dx3

∣∣∣
x=xi

∆x3 +O(∆x4),

f̂ 1
i± 1

2
= hi± 1

2
+

1

12

d3f

dx3

∣∣∣
x=xi

∆x3 +O(∆x4),

f̂ 2
i± 1

2
= hi± 1

2
− 1

12

d3f

dx3

∣∣∣
x=xi

∆x3 +O(∆x4).

(5.14)
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Doing so, we obtain the general form of these expressions

f̂m
i± 1

2
= hi± 1

2
+ Am∆x3 +O(∆x4), (5.15)

with Am being independent of ∆x.

Then, the convex combination of the interpolated values f̂m
i± 1

2

given by

f̂i± 1
2
=

2∑
j=0

ωm f̂m
i± 1

2
(5.16)

yields the WENO approximation of the value hi± 1
2
, where ωm are the nonlinear

weights defined as, cf. [50]

ωJS
m =

αJS
m∑2

i=0 α
JS
i

, where αJS
m =

dm
(ϵ+ βm)2

. (5.17)

The scheme using these nonlinear weights is denoted as the WENO-JS scheme. The
parameter ϵ guarantees that the denominator does not become zero and should be
chosen carefully, as it can change the order of accuracy of the scheme [4, 42]. The
coefficients d0, d1 and d2 are called ideal weights, which would form the upstream
fifth-order central scheme for the 5-point stencil and satisfy (5.7). Their values are:

d0 =
1

10
, d1 =

6

10
, d2 =

3

10
. (5.18)

The parameter βm is called the smoothness indicator and is analyzed in Section
5.1.2.

5.1.2 Smoothness indicators

The role of smoothness indicators is to measure the regularity of the polynomial
approximation f̂m(x) in each of three substencils (5.11). As developed in [50], they
are defined as:

βm =
2∑

q=1

∆x2q−1

x
i+1

2∫
x
i− 1

2

(dqf̂m(x)

dxq

)2

dx. (5.19)

Corresponding to the flux approximation f̂i+ 1
2

they take an explicit form

β0 =
13

12

(
f(ui−2)− 2f(ui−1) + f(ui)

)2
+

1

4

(
f(ui−2)− 4f(ui−1) + 3f(ui)

)2
,

β1 =
13

12

(
f(ui−1)− 2f(ui) + f(ui+1)

)2
+

1

4

(
−f(ui−1) + f(ui+1)

)2
,

β2 =
13

12

(
f(ui)− 2f(ui+1) + f(ui+2)

)2
+

1

4

(
3f(ui)− 4f(ui+1) + f(ui+2)

)2
,

(5.20)
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and their Taylor expansions at xi are:

β0 = f 2
x∆x2 +

(13
12

f 2
xx −

2

3
fxfxxx

)
∆x4

+
(
−13

6
fxxfxxx +

1

2
fxfxxxx

)
∆x5 +O(∆x6),

β1 = f 2
x∆x2 +

(13
12

f 2
xx +

1

3
fxfxxx

)
∆x4 +O(∆x6),

β2 = f 2
x∆x2 +

(13
12

f 2
xx −

2

3
fxfxxx

)
∆x4

+
(13
6
fxxfxxx −

1

2
fxfxxxx

)
∆x5 +O(∆x6),

(5.21)

where we used the short notation for the derivatives fx = f(ui)x. These indicators
are designed to come closer to zero for smooth parts of the solution so that the
nonlinear weights ωm come closer to the ideal weights dm. In the case that the
stencil Sm contains a discontinuity, βm is O(1) and the corresponding weight ωm

becomes smaller, therefore the contribution of the substencil Sm is reduced.

Following the work of Henrick, Aslam and Powers [42], it can be shown that de-
manding (5.7) we obtain the sufficient conditions for the fifth-order accuracy:

2∑
m=0

(ω±
m − dm) = O(∆x6), (5.22)

ω±
m − dm = O(∆x3). (5.23)

Considering the overall finite difference formula

f̂j+ 1
2
− f̂j− 1

2
= f ′(x)∆x+O(∆x6),

it can be shown, that (5.23) may be relaxed and we obtain the following sufficient
and necessary conditions:

2∑
m=0

(ω±
m − dm) = O(∆x6), (5.24)

2∑
m=0

Am(ω
+
m − ω−

m) = O(∆x3), (5.25)

ω±
m − dm = O(∆x2). (5.26)

Note that due to the normalization (5.17), the first condition (5.24) (resp. (5.22))
is always fulfilled. The superscripts ± on ωm specify their use in f̂i+ 1

2
or f̂i− 1

2
.

The analysis of the formal order of accuracy was performed in [50] and it was shown
that if

βm = D
(
1 +O(∆x2)

)
, (5.27)

with D being a non-zero constant independent of m, the condition (5.26) is satisfied.
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However, it was shown in [42] that at the critical points where the first derivative
of f vanishes, the order of accuracy of the scheme from [50] decreases to the third
order. Moreover, if the second derivative also vanishes, the accuracy order is further
reduced to the second order. For a further explanation of this problem we refer the
interested reader to [42].

Remark 2. As mentioned before, we only considered the construction of the nu-
merical flux f̂+

i+ 1
2

. For the numerical approximation of the flux f̂+
i− 1

2

we can use
formulas (5.13), (5.16), (5.17) and (5.20) and shift each index by −1.

Remark 3. The negative part of the flux splitting can be obtained using symmetry
(see, e.g., [112]), and we briefly summarize the formulas for f̂−

i+ 1
2

and omit the
superscript −:

f̂ 0
i+ 1

2
=

11f(ui+1)− 7f(ui+2) + 2f(ui+3)

6
,

f̂ 1
i+ 1

2
=

2f(ui) + 5f(ui+1)− f(ui+2)

6
,

f̂ 2
i+ 1

2
=
−f(ui−1) + 5f(ui) + 2f(ui+1)

6
,

(5.28)

where the weights ωJS
m are computed as in (5.17) using the smoothness indicators

given by

β0 =
13

12

(
f(ui+1)− 2f(ui+2) + f(ui+3)

)2
+

1

4

(
3f(ui+1)− 4f(ui+2) + f(ui+3)

)2
,

β1 =
13

12

(
f(ui)− 2f(ui+1) + f(ui+2)

)2
+

1

4

(
f(ui)− f(ui+2)

)2
,

β2 =
13

12

(
f(ui−1)− 2f(ui) + f(ui+1)

)2
+

1

4

(
f(ui−1)− 4f(ui) + 3f(ui+1)

)2
.

(5.29)

In Section 5.2, where the deep learning algorithm will be introduced, this will help
to understand how the improved smoothness indicators will be constructed.

5.1.3 The WENO-Z scheme

As it was mentioned in [42] or [13], the original WENO-JS looses its fifth-order of
accuracy in the critical points, where the first derivative of f vanishes. Therefore, a
new modification of the scheme was developed by Borges et al. [13] and we introduce
it in this section. A new global smoothness indicator is characterized by

τ5 = |β0 − β2|. (5.30)
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It is easy to see from the equations (5.21) that

τ5 =
∣∣∣−13

3
fxxfxxx + fxfxxxx

∣∣∣∆x5 +O(∆x6). (5.31)

The new WENO-Z weights are then defined by

ωZ
m =

αZ
m∑2

i=0 α
Z
i

, where αZ
m = dm

[
1 +

( τ5
βm + ϵ

)2
]
. (5.32)

Borges et al. [13] have shown that when using these nonlinear weights, fifth-order
accuracy is preserved, even at the critical points where f ′(u) = 0. Besides the
improvement concerning accuracy, WENO-Z is also considered to be less dissipative
than WENO-JS scheme and producing sharp and more accurate numerical solutions.
For our implementation, we use WENO-Z with its weights as base method, which
we will improve by enhancing its smoothness indicators. Let us note, that our
approach could be generalized for another families of WENO schemes as well.

5.2 Application of deep learning to the fifth-order
WENO scheme

To better capture discontinuities and avoid oscillations, we propose to apply deep
learning to develop new smoothness indicators. We construct them as products of
the original smoothness indicators βm and multipliers δm which are outputs of a
neural network algorithm. We refer to these new smoothness indicators as βDS

m ,
where index DS corresponds to the new WENO-DS scheme:

βDS
m = βm(δm + C), (5.33)

where C is a constant, whose role is crucial for the proof of consistency and the
formal order of accuracy and we will explain how to choose it in Section 5.2.1. We
point out that this formulation as a multiplication is very advantageous in a sense
that the consistency and accuracy properties can be analytically shown. In the case
that the solution is smooth and the original smoothness indicator βm converges to
zero, the smoothness indicator βDS

m behaves in the same way. If the smoothness
indicator βm is O(1), the multiplier δm can change it so that the final scheme
performs better. We emphasize, that there was an attempt by Liu and Wen [72] to
learn the smoothness indicators directly. However, in this case the consistency and
accuracy analysis could not be performed.

According to equation (5.9) we have to consider the new smoothness indicators for
the positive part f̂+

i± 1
2

of a numerical flux, as well as for the negative part f̂−
i± 1

2

of a
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numerical flux. For the positive part f̂+
i± 1

2

we define the new smoothness indicators:

βDS
m,i+ 1

2
= βm,i+ 1

2
(δm,i+ 1

2
+ C),

βDS
m,i− 1

2
= βm,i− 1

2
(δm,i− 1

2
+ C),

(5.34)

with
δ0,i+ 3

2
= δ1,i+ 1

2
= δ2,i− 1

2
, i = 0, . . . , I. (5.35)

Here, βDS
m,i+ 1

2

, m = 0, 1, 2 represent the smoothness indicators corresponding to the

numerical fluxes f̂m
i+ 1

2

, m = 0, 1, 2. The smoothness indicators βDS
m,i− 1

2

, m = 0, 1, 2

correspond to the numerical fluxes f̂m
i− 1

2

, m = 0, 1, 2. Due to the definition, the
values βDS

m,i− 1
2

can be obtained from βDS
m,i+ 1

2

by simple index shift, which further

holds also for obtaining the values f̂m
i− 1

2

from f̂m
i+ 1

2

and the conservative property is
preserved.

For the negative part f̂−
i± 1

2

it holds analogously:

βDS
m,i+ 1

2
= βm,i+ 1

2
(δm,i+ 1

2
+ C),

βDS
m,i− 1

2
= βm,i− 1

2
(δm,i− 1

2
+ C),

(5.36)

with
δ0,i− 1

2
= δ1,i+ 1

2
= δ2,i+ 3

2
, i = 0, . . . , I. (5.37)

In Section 5.3 we will present whole algorithm of the method as well as an illustrative
image, which explains, from which values the multipliers will be constructed.

5.2.1 Accuracy analysis

In this section, we perform the accuracy analysis of the WENO-DS scheme. We
show, that using new smoothness indicators in the original WENO-JS scheme we
can not guarantee the formal fifth-order of accuracy. However, we prove the formal
fifth-order of accuracy when we use the smoothness indicators βDS

m,i± 1
2

, m = 0, 1, 2

for the nonlinear weights of the original WENO-Z scheme described in Section 5.1.3.

We perform the analysis for the positive part f̂+
i± 1

2

of the flux, as for the negative
part it can be done analogously.

Initially, we establish an assumption that will be subsequently required.

Assumption 5.2.1. Let us assume, that in each time step there exists a function
Φ ∈ R2k+1 → R, such that the multipliers δm,i± 1

2
from (5.34) in the node xi satisfying
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(5.35) can be expressed as:

δ0,i+ 1
2
= Φ(x̄i −∆x) = Φ(x̄i)−O(∆x),

δ1,i+ 1
2
= Φ(x̄i),

δ2,i+ 1
2
= Φ(x̄i +∆x) = Φ(x̄i) +O(∆x),

(5.38)

where

x̄i = (xi−k, xi−k+1, . . . , xi+k). (5.39)

Moreover, let us assume that there exists a constant C independent from time step
and discretization, such that it holds Φ(x̄i) + C > κ > 0 with κ fixed, i = 0, . . . , I.

Accuracy analysis of WENO-JS scheme with smoothness indicators βDS
m

Using (5.27) and with the Assumption 5.2.1, it holds

βDS
m,i± 1

2
= βm,i± 1

2
(δm,i± 1

2
+ C) = D

(
1 +O(∆x2)

)(
Φ(x̄i) +O(∆x) + C

)
, (5.40)

with D being some non-zero constant independent of m. We denote P (x̄i) = Φ(x̄i)+
C and we set C such that it satisfies the Assumption 5.2.1. Then we ensure that
P (x̄i) = O(1). Performing the multiplication in (5.40) we obtain

βDS
m,i± 1

2
= D

(
P (x̄i) + P (x̄i)O(∆x2) +O(∆x) +O(∆x3)

)
= DP (x̄i)

(
1 +O(∆x)

)
= D̃

(
1 +O(∆x)

)
.

(5.41)

Here we can proceed as in [42], but for the reader’s convenience we repeat the steps
of the proof: insert (5.41) into (5.17) and take ϵ = 0

αDS
m,i± 1

2
=

dm(
D̃(1 +O(∆x)

)2 =
dm

D̃2

(
1 +O(∆x)

)
. (5.42)

This implies that
2∑

m=0

αDS
m,i± 1

2
=

1

D̃2

(
1 +O(∆x)

)
, (5.43)

where we used the fact that
∑2

m=0 dm = 1. Finally, substituting into (5.17) we
obtain

ωDS
m,i± 1

2
= dm +O(∆x), (5.44)

where the superscript DS denotes the enhancement of the nonlinear weights (5.17)
using our novel method. We see, that neither the condition (5.23), nor (5.26) is
satisfied. However, as (5.44) holds, we can still guarantee that for the WENO-JS
scheme with the smoothness indicators (5.34) we have a formal order of accuracy
degraded to the third order, cf. Borges et al. [13].
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Accuracy analysis of WENO-Z scheme with smoothness indicators βDS
m

Here we show, that inserting the nonlinear weights ωDS
m , m = 0, 1, 2 into the original

WENO-Z scheme [13] we ensure the formal fifth-order of accuracy, which can be
theoretically proven.

Theorem 1. Let the numerical flux of the WENO-DS scheme be given by (5.13)
and (5.16) with the corresponding nonlinear weights given by

ωDS
m =

αDS
m∑2

i=0 α
DS
i

, αDS
m = dm

[
1 +

( τ5
βDS
m,i± 1

2

+ ϵ

)2
]
, (5.45)

m = 0, 1, 2, with βDS
m,i± 1

2

defined by (5.34) with (5.35) and τ5 defined by (5.30). Let
the multipliers δm,i± 1

2
in (5.34) satisfy the Assumption 5.2.1. Then, the resulting

WENO-DS method (5.2) for smooth solutions of the HCL (5.1) exhibits a fifth-order
accuracy.

Proof. From (5.21), we see that the smoothness indicators βm,i± 1
2

are of the form

βm,i± 1
2
= f 2

x∆x2 +O(∆x4), (5.46)

and the global smoothness indicator (5.30)

τ5 = O(∆x5) (5.47)

from (5.31). Then it holds

βDS
m,i± 1

2
= βm,i± 1

2
(δm,i± 1

2
+ C) =

(
f 2
x∆x2 +O(∆x4)

)(
Φ(x̄i) +O(∆x) + C

)
= f 2

xP (x̄i)∆x2 +O(∆x3).
(5.48)

We denote P (x̄i) = Φ(x̄i) + C, take ϵ = 0 and set C such that it satisfies the
Assumption 5.2.1. Then P (x̄i) = O(1) is ensured. Then we see that in the non-
critical points where fx ̸= 0

τ5
βDS
m,i± 1

2

= D̂∆x3 +O(∆x4), (5.49)

where D̂ =
|− 13

3
fxxfxxx+fxfxxxx|

f2
xP (x̄i)

. Substituting this into (5.45) we obtain

αDS
m,i± 1

2
= dm

(
1 +O(∆x6)

)
and

2∑
m=0

αDS
m,i± 1

2
=

(
1 +O(∆x6)

)
, (5.50)

where we used
∑2

m=0 dm = 1. It follows directly

ωDS
m,i± 1

2
= dm +O(∆x6) (5.51)
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and the condition (5.23) is satisfied. Since we ensure P (x̄i) > C > κ > 0, the
multipliers P (x̄i) do not introduce any further critical points. Therefore the analysis
of the critical points with fx = 0 remains the same as in [13]. Thus the fifth-
order accuracy of the WENO-DS scheme with the nonlinear weights (5.45) can be
guaranteed also in the critical points.

Theorem 2. Let us compute the multipliers δm,i± 1
2

from (5.34) in the node xi

satisfying (5.35) using a one-dimensional convolutional neural network with vector
f̄(ūi) defined by

f̄(ūi) = (f(u(xi−k)), f(u(xi−k+1)), . . . , f(u(xi+k))),

ūi = ū(x̄i) = (u(xi−k), u(xi−k+1), . . . , u(xi+k))
(5.52)

as input. Further, let all hidden layers of this neural network be differentiable func-
tions and let the activation function in the last layer of the CNN be bounded from
below. Then for these multipliers δm,i± 1

2
the Assumption 5.2.1 holds.

Proof. Let 2k+1 be the size of the receptive field of the CNN. Let F (·) ∈ R2k+1 → R
be the convolutional neural network function:

F
(
f̄(ūi)

)
= CNN

(
f̄(ūi)

)
. (5.53)

Then, we can define Φ = F ◦ f̄ ◦ ū and it holds

δ0,i+ 1
2
= (F ◦ f̄ ◦ ū)(x̄i −∆x) = Φ(x̄i −∆x),

δ1,i+ 1
2
= (F ◦ f̄ ◦ ū)(x̄i) = Φ(x̄i),

δ2,i+ 1
2
= (F ◦ f̄ ◦ ū)(x̄i +∆x) = Φ(x̄i +∆x).

(5.54)

Moreover, as F, f̄ , ū are all differentiable functions, also Φ is differentiable function
and (5.38) holds.

As the last activation function is bounded from below, there exists ξ such that
Φ(x̄i) > ξ, and any C > κ + max(−ξ, 0) satisfies the second part of Assumption
5.2.1 for arbitrary κ > 0.

5.3 Structure of neural network

In our application, the CNN is used. This is important to ensure spatial invariance
of the resulting numerical scheme in a sense that the multipliers δm are independent
of their position in the spatial grid and just dependent on the solution u itself. This
property is not fulfilled for e.g. dense neural network (DNN): the equation (5.53)
does not hold with "CNN" replaced by "DNN", as the output of a DNN is dependent
on the grid-position index.
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The Figure 5.1 shows the values from which the multipliers δm, m = 0, 1, 2 are
constructed, assuming 2k + 1 = 3 for the receptive field. In this case, the values
used to compute the original smoothness indicators are also used to compute the
multipliers δm, m = 0, 1, 2, (see equations (5.20) and (5.29)). If we enlarge the
receptive field of the CNN, we also enlarge the stencil for computing the multipliers
δm, m = 0, 1, 2. In this way, the smoothness indicators are basically computed from
a wider stencil, which can lead to better numerical approximations. In this case,
we just need to add more boundary points before feeding the values (5.52) to the
CNN.

We present the whole algorithm of the method in Figure 5.2. This graph corresponds
to the computation of the numerical fluxes f̂+

i± 1
2

. For the numerical fluxes f̂−
i± 1

2

, the
index shift in to obtain δ0,i+ 1

2
and δ2,i+ 1

2
have to be done reversed according to

Figure 5.1.

Figure 5.1: The substencils used for computation of multipliers δm, m = 0, 1, 2
corresponding to the flux approximations f̂±

i± 1
2

, assuming that for the
receptive field of the CNN holds 2k + 1 = 3.

We use the differentiable activation function ELU for all hidden layers. In the
output layer, we use a Softplus activation function, which is bounded from below.
The number of the hidden layers, kernel size, and number of channels are chosen
separately for each of the equation classes. We move the kernel by one space step
so the stride is set to 1. Our goal is to keep the CNN as small as possible, while
still achieving the best possible results. In all our experiments, we set C = 0.1 in
(5.34) and the value of ϵ in (5.45) to 10−13.

Let us note, that this value of C is sufficient. The Softplus activation function
generates the values > 0. Therefore the value C = 0.1 fulfills the Assumption
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Figure 5.2: The structure of the WENO method combined with the NN algorithm.
Original WENO method is represented by the white parts of the graph.
The grey parts are added to this method so that the whole graph corre-
sponds to the new method WENO-DS. 2k+1 is the size of the receptive
field of the whole CNN, × denotes the element-wise multiplication.

5.2.1. For this activation function, we could take any C > 0. However, large values
of C would decrease the effect of the trained multipliers and make the scheme
closer to standard WENO scheme. For small values of C, the experimental order
of convergence could be smaller on coarse grids (but still achieved for ∆x → 0).
If another activation function in the output layer would be used, the constant C
would have to be adapted so that the Assumption 5.2.1 would still hold.

The proposed NN algorithm can be generally applied to any type of conservation
laws. For the equations where discontinuities or shocks are present, we propose to
train a CNN separately for each equation class. Then we can better adjust the size
of a CNN and its structure as well as the loss function, which leads to better results.
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5.4 The training procedure

This section describes how to perform the training procedure. First, we create the
dataset for which we compute the reference solutions for the equation (5.1). For the
training, we proceed as follows. At the beginning, we randomly choose a problem
and its reference solution from our dataset. The weights of the CNN are randomly
initialized and we train our model on a solution where our computational domain is
divided into I×N steps, where I is the number of space steps and N is the number
of time steps. Then we successively compute the entire solution until the final time
T . Using the solution at the time step n, we compute the solution at the time step
n+1 and during this computation the CNN is used to predict the multipliers of the
smoothness indicators. After each of these time steps, we compute the loss and its
gradient with respect to the weights of the CNN using backpropagation algorithm.

Let us briefly explain this step. As the WENO method including our deep smooth-
ness modification is differentiable (with respect to the CNN coefficients), we can
view the whole WENO scheme, processing inputs in form of solution in time tn and
producing outputs in form of solutions in time tn+1, as a large NN and optimize the
parameters of the embedded CNN (used for computing multiplicative factors δm)
using backpropagation. Following Figure 5.2 representing the WENO-DS scheme,
gradients are computed from the bottom to top, until the weights of the CNN are
reached. These gradients are used to update the CNN weights. As parameters δm
depend on these CNN weights, their values also changes in forward path.

To train the network, as in Section 3.3, we use a gradient-based optimizer, namely
a variant of stochastic gradient descent, the Adam optimizer [55]. After the last
time step at time T , we test a model on a validation set and repeat the above steps.
Then we select the model with the best performance on the validation set as our
final model.

As the first choice of the loss function we use the mean square error

LOSSMSE(u) =
1

I

I∑
i=0

(ûn
i − un,ref

i )2, (5.55)

where ûn
i is a numerical approximation of u(xi, tn) obtained by WENO-DS and un,ref

i

is the corresponding reference solution. An advantage of this L2-norm based loss
function in contrast to the L1-norm based loss function is stronger gradients with
respect to ui resulting in faster training.

Let us note that we use for the implementation Python with the deep learning
library PyTorch [79].



5.5 Two-dimensional implementation 61

5.5 Two-dimensional implementation

For two-dimensional implementation of WENO scheme we consider the following
two-dimensional form of (5.1):

∂u

∂t
+

∂f1(u)

∂x
+

∂f2(u)

∂y
= 0, t > 0. (5.56)

The procedure described in Section 5.1, resp. 5.2 can be easily applied dimension-
by-dimension to obtain the approximations of numerical fluxes f̂i+ 1

2
,j and k̂i,j+ 1

2
,

such that it holds

1

∆x

(
f̂i+ 1

2
,j − f̂i− 1

2
,j

)
=

(
f1(u)

)
x
|(xi,yj) +O

(
∆x5

)
,

1

∆y

(
k̂ij+ 1

2
− k̂i,j− 1

2

)
=

(
f2(u)

)
y
|(xi,yj) +O

(
∆y5

)
,

(5.57)

using the uniform grid with nodes (xi, yj), ∆x = xi+1 − xi, ∆y = yj+1 − yj, i =
0, . . . , I, j = 0, . . . , J . The corresponding semi-discrete form of (5.56) takes the
form

dui,j(t)

dt
+

f̂i+ 1
2
,j − f̂i− 1

2
,j

∆x
+

k̂i,j+ 1
2
− k̂i,j− 1

2

∆y
= 0, (5.58)

where ui,j(t) is the numerical approximation to the point value u(xi, yj, t).

In the deep learning approach we could use two-dimensional CNN for training in this
case to see if the information from the second dimension can improve the smoothness
indicators in the first dimension. However, we only use the training on the one-
dimensional data and apply the same trained CNN for two dimensional example.
This approach is straightforward, as we use dimension-by-dimension principle and
the results using this approach can be found in Section 5.6.3.

5.6 Numerical results

For the system of ODEs resulting from (5.2) we use a third-order TVD Runge-Kutta
method [100] given by

u(1) = un +∆t L(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆t L(u(1)),

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆t L(u(2)),

(5.59)

where L = − 1
∆x

(f̂i+ 1
2
− f̂i− 1

2
) and un is the solution at the time step n. Note, that

the TVD methods have been discussed in Section 4.2.1.
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For (5.8) we consider in our examples the Lax-Friedrichs flux splitting

f±(u) =
1

2

(
f(u)± αu

)
, (5.60)

where α = max
u
|f ′(u)|.

In all provided tables we show L∞ and L2 errors and as ’ratio’ we denote the
minimum error of the methods WENO-JS and WENO-Z divided by the error of
WENO-DS (rounded to 2 decimal points).

5.6.1 The Buckley-Leverett equation

In the first example, we apply our NN algorithm to the Buckley-Leverett equation,
which was also considered, for example, in [50, 100, 101]. It is a typical example
with a non-convex flux function modeling a two-phase fluid flow in a porous medium
[70]. The flux in (5.1) is given by

f(u) =
u2

u2 + a(1− u)2
, −1 ≤ x ≤ 1, 0 ≤ t ≤ 0.4, (5.61)

where a < 1 is a constant that represents the ratio of the viscosities of the two
fluids. The initial condition is set as

u(x, 0) =

{
1, if − 0.5 ≤ x ≤ 0,

0, elsewhere
(5.62)

and we use periodic boundary conditions.

First, we create the dataset containing 300 reference solutions. To obtain them we
compute the solutions for the equation (5.1) with the flux (5.61) and the initial
condition (5.62) using WENO-Z method. We randomly generate the parameter a
from a uniformly distributed range [0.05, 0.95]. We divide the computational domain
[−1, 1] into 1024 spatial steps and the solution is computed up to time T = 0.4,
where the time domain is divided into 8960 time steps.

For both training and comparing the performance of the models, we use the loss
function defined as

LOSS(u) = LOSSMSE(u) + LOSSOF(u), (5.63)

where LOSSMSE(u) is defined in (5.55) and

LOSSOF(u) =
I∑

i=0

|min(ûn
i , umin)− umin|+ |max(ûn

i , umax)− umax| (5.64)

represents the sum of the overflows of the solution above the maximum and below
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the minimum value of u, in our case u max = 1 and umin = 0. By adding this term to
our loss function, we want to avoid the undesirable oscillations that occur especially
in the first time steps of the solution.

Size of a neural network and impact on a training procedure.

In our implementation, we experimentally find the best CNN for our implemen-
tation. Four different CNN structures can be found in Figure 5.3. We try four
different structures of a CNN and investigate the impact on a training procedure.
First, we use a CNN only with two hidden layers, the CNN shown in Figure 5.3a
with a receptive field of size 3. Second, we use 3 hidden layers and increase the size
of receptive field with the CNNs shown in Figures 5.3b and 5.3c. Last, we use the
CNN with four hidden layers and higher number of channels shown in Figure 5.3d.
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(a) Two hidden layers, lower number of channels, receptive field of size 3.
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(b) Three hidden layers, lower number of channels, receptive field of size 9.
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(c) Three hidden layers, higher number of channels, receptive field of size 9.
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Figure 5.3: Different structures of the CNN.

For training we fix I = 128 and use the Adam optimizer with learning rate 0.0001.
In Figures 5.4a-5.4d we show how the value of the loss function for the problems
from the validation set (which are not present in the training set) changes with
increasing number of training cycles. As training cycle we denote a sequence of
training steps performed on a solution for a single randomly chosen parameter a
until the final time T . The loss is then evaluated at this final time T . When we plot
the loss on validation problems, considering (5.63) we rescale the values for each



64 5 Fifth-order WENO scheme for hyperbolic conservation laws

validation problem to be in the interval [0, 1] using the relationship

LOSS∗(u) =
LOSSl(u)

max
l=0,...,L

(LOSSl(u))
, l = 0, . . . , L, (5.65)

where L denotes the total number of training cycles.
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(a) CNN structure described
in Figure 5.3a.
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(b) CNN structure described
in Figure 5.3b.
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(c) CNN structure described
in Figure 5.3c.
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(d) CNN structure described
in Figure 5.3d.

Figure 5.4: Training evolution corresponding to Buckley-Leverett equation: The
values (5.65) for different validation problems evaluated after each train-
ing cycle.

We run the training for the total number of 600 training cycles. As it can be seen,
using a smaller CNN structure we reach the minimal values (5.65) much slower.
When we decide, which model we should take as the final model, we compute after
each training cycle the sum of the loss values across all validation problems and take
the model with its minimal value as our final WENO-DS scheme. For example, using
the CNN described in Figure 5.3a we would take the model from one of the latest
training cycles. Using the biggest CNN structure from the Figure 5.3c, the optimal
model would be after the 223rd training cycle.

In the following tables, we show the results using model with the CNN structure
described in Figure 5.3c (that is from the training which loss evolution is illustrated
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in Figure 5.4c). The analysis of the actual computational costs will be done in the
next part of this section.

We compare the L∞ and L2 errors in Table 5.1 for the solution of the conservation
law (5.1) with (5.61), a ∈ {0.25, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. These problems create
our test set and the listed parameters were neither in the training, nor in the
validation set. We highlight the best performing WENO method in bold. We see
that WENO-DS outperforms the standard WENO methods in all cases.

L∞ L2

a WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio
0.25 0.429654 0.435090 0.412758 1.04 0.068405 0.067912 0.056616 1.20
0.4 0.408252 0.405047 0.301410 1.34 0.059344 0.058160 0.045776 1.27
0.5 0.317824 0.320094 0.288670 1.10 0.049913 0.049026 0.040007 1.23
0.6 0.459994 0.456687 0.349394 1.31 0.062155 0.061275 0.047238 1.30
0.7 0.476089 0.475015 0.372513 1.28 0.073021 0.072581 0.058633 1.24
0.8 0.207676 0.197021 0.106197 1.86 0.032560 0.030994 0.022597 1.37
0.9 0.375720 0.367802 0.278328 1.32 0.062257 0.061834 0.046312 1.34

Table 5.1: Comparison of L∞ and L2 errors of WENO-JS, WENO-Z and WENO-
DS methods for the solution of the Buckley-Leverett equation with the
initial condition (5.62), I = 128. CNN structure described in Figure 5.3c.

In Figure 5.5 we show the solution of the Buckley-Leverett equation for the test
problems with a = 0.25 and a = 0.5. It can be seen that the WENO-DS gives a
better solution quality than the WENO-JS or WENO-Z.
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(a) Solution for a = 0.25
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(b) Solution for a = 0.5

Figure 5.5: Comparison of the WENO-JS, WENO-Z and WENO-DS methods on
the solution of the Buckley-Leverett equation with the initial condition
(5.62), I = 128.

Computational cost

We also analyze the computational cost of our method. The additional compu-
tational cost of WENO-DS is caused only by the evaluation of the CNN in each
computation of the numerical flux approximation. As we still used a rather small
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CNN structure, the additional computational costs are not so big, as if we would
use big and very complex NN structures.

However, a further improvement in the speed of our method could be achieved if
the multipliers of the smoothness indicators were updated only once per time step.
More precisely, we can compute the multipliers only in the first Runge-Kutta stage
and then, assuming that the smoothness of the solution does not change significantly
within one time step, the same multipliers could be used in the following two Runge-
Kutta stages. This means that the evaluation of the CNN is performed only once
per time step instead of three times per time step, and the corresponding additional
time cost is reduced to only about 1/3. We used this approach to test our method
and examine how the error values change. Corresponding results can be found in
Table 5.2. We see that even lower error values are obtained using WENO-DS in
most cases, which justifies this approach. Using this approach, we compare the
computational costs of WENO-Z and WENO-DS in Figure 5.6 . Let us highlight,
that we did not retrain the CNN for different spatial discretizations, that is for
I = 64 and I = 256, which we used in the comparison of computational costs.
Furthermore, it should be noted that the speed could be further increased by GPU
acceleration.

L∞ L2

a WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio
0.25 0.429654 0.435090 0.413937 1.04 0.068405 0.067912 0.056420 1.20
0.4 0.408252 0.405047 0.280662 1.44 0.059344 0.058160 0.043520 1.34
0.5 0.317824 0.320094 0.288686 1.10 0.049913 0.049026 0.040145 1.22
0.6 0.459994 0.456687 0.333477 1.37 0.062155 0.061275 0.045293 1.35
0.7 0.476089 0.475015 0.358451 1.33 0.073021 0.072581 0.057281 1.27
0.8 0.207676 0.197021 0.106436 1.85 0.032560 0.030994 0.023057 1.34
0.9 0.375720 0.367802 0.281716 1.31 0.062257 0.061834 0.045140 1.37

Table 5.2: Comparison of L∞ and L2 errors of WENO-JS, WENO-Z and WENO-
DS methods for the solution of the Buckley-Leverett equation with the
initial condition (5.62), when the evaluation of the CNN was done only
in the first Runge-Kutta stage, I = 128. CNN structure described in
Figure 5.3c.

Let us comment on the additional computational cost caused by the evaluation of
the CNN and impact of the size of the CNN on it. Using moderate size of CNN
described in Figure 5.3c we obtain WENO-DS method, which remains time-effective
in all listed cases from the test set. We compare the compuational costs of WENO-Z
and WENO-DS in Figure 5.6. (For clarity we do not plot the compuational costs for
WENO-JS, as it is very similar to to WENO-Z and WENO-Z performs in all cases
better.) The moderate improvement ratio is obtained for a = 0.25 and a = 0.5, but
as can be seen in Figures 5.6a and 5.6b. the method still remains time efficient.

Using a larger CNN, as described in Figure 5.3d, and with the loss evolution shown in
Figure 5.4d, we would obtain a method that could lead to even better improvement
ratios, as shown in Table 5.3. As we can see, for example for a = 0.4 and a = 0.6
we achieve great improvements. On the other hand, for a = 0.25 and a = 0.5
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(b) a = 0.5.
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Figure 5.6: Comparison of computational cost against L2 error on the solution of
the Buckley–Leverett equation. CNN structure described in Figure 5.3c,
results corresponding to Table 5.2.

the improvement is moderate, and in this case the additional time cost caused
by evaluating the larger CNN could not compete with the error improvement. We
compare the computational costs in Figure 5.7 and see, that for a = 0.25 and for the
fine spatial discretization, WENO-Z outperforms WENO-DS. On the other hand,
for a = 0.6 and a = 0.8 WENO-DS performs much better, even when compared to
Figure 5.6.

Convergence of WENO-DS on smooth solution.

Finally, we verify the analytically proven fifth-order accuracy of the WENO-DS
scheme for a transport equation with a smooth solution given as

∂u

∂t
+

∂u

∂x
= 0, u(x, 0) = sin(πx), 0 ≤ x ≤ 2, 0 ≤ t ≤ 0.5, (5.66)

with periodic Dirichlet boundary conditions. Let us note, that we use the same
WENO-DS method, which is an output of the training procedure for the Buckley-
Leverett equation and we also do not retrain the CNN for different I. Here we
demonstrate numerically, that our method can be reliably used also for different class
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L∞ L2

a WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio
0.25 0.429654 0.435090 0.418713 1.03 0.068405 0.067912 0.056732 1.20
0.4 0.408252 0.405047 0.235125 1.72 0.059344 0.058160 0.038288 1.52
0.5 0.317824 0.320094 0.300211 1.06 0.049913 0.049026 0.041513 1.18
0.6 0.459994 0.456687 0.302412 1.51 0.062155 0.061275 0.041383 1.48
0.7 0.476089 0.475015 0.339466 1.40 0.073021 0.072581 0.056251 1.29
0.8 0.207676 0.197021 0.103856 1.90 0.032560 0.030994 0.021493 1.44
0.9 0.375720 0.367802 0.287810 1.28 0.062257 0.061834 0.044831 1.38

Table 5.3: Comparison of L∞ and L2 errors of WENO-JS, WENO-Z and WENO-
DS methods for the solution of the Buckley-Leverett equation with the
initial condition (5.62), when the evaluation of the CNN was done only
in the first Runge-Kutta stage, I = 128. CNN structure described in
Figure 5.3d.
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Figure 5.7: Comparison of computational cost against L2 error on the solution of
the Buckley–Leverett equation. CNN structure described in Figure 5.3d,
results corresponding to Table 5.3.

of equation with different initial condition and remains convergent. The results can
be found in Table 5.4. There is a great improvement when we compare our scheme
with the WENO-NN scheme of Stevens and Colonius [105], where the resulting
scheme exhibits only first-order accuracy.
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WENO-Z WENO-DS WENO-Z WENO-DS
I L∞ Order L∞ Order L2 Order L2 Order
20 9.369742e-03 - 1.021138e-02 - 9.401362e-03 - 9.470170e-03 -
40 2.558719e-04 5.194516 2.567739e-04 5.313535 2.560057e-04 5.198622 2.560359e-04 5.208972
80 9.466151e-06 4.756500 9.467514e-06 4.761369 9.472722e-06 4.756253 9.472750e-06 4.756419
160 3.177833e-07 4.896663 3.177833e-07 4.896871 3.178113e-07 4.897537 3.178113e-07 4.897541
320 9.957350e-09 4.996137 9.957350e-09 4.996137 9.957437e-09 4.996252 9.957437e-09 4.996252
640 3.117835e-10 4.997145 3.117830e-10 4.997147 3.117850e-10 4.997151 3.117851e-10 4.997150

Table 5.4: L∞ and L2 errors with convergence order of WENO-Z and WENO-DS
on equation (5.66).

Although our scheme remains convergent for any type of equation and for arbitrary
discretization, in examples with strong discontinuities we recommend to retrain the
NN for solving a new class of PDE. Doing so, we can improve the performance of the
NN and achieve the enhancement when compared to the existing methods. We refer
to [105], where authors aim to use the NN trained only once for any class of PDE.
However, no improvement e.g. in Burgers’ equation is achieved and as demonstrated
in the example with one-dimensional Euler equations, also no improvement can be
guaranteed when the discretization changes.

5.6.2 The inviscid Burgers’ equation

In the next example we consider the inviscid Burgers’ equation, where the flux
function in (5.1) is given by

f(u) =
u2

2
, 0 ≤ x ≤ 2, 0 ≤ t ≤ 0.3. (5.67)

We consider following initial conditions

u(x, 0) =

{
z1, if 1 ≤ x ≤ 2,

0, elsewhere,
(5.68)

u(x, 0) = exp
(
−z2(x− 1)2

)
, (5.69)

u(x, 0) = z3 sin(πx), (5.70)

where
z1 ∈ U [1, 2], z2 ∈ U [10, 30], z3 ∈ U [1, 2]. (5.71)

Using these initial conditions, we cover problems with both continuous and discon-
tinuous initial data, and we simulate the shocks and discontinuities very well. We
train a single CNN on all mentioned classes of initial conditions and use periodic
Dirichlet boundary conditions.

We first create the data set for training consisting of 300 reference solutions, in
which we compute these solutions of the Burgers’ equation with the initial conditions
(5.68)–(5.70). The computational domain is divided into 1024 space steps, the time
step is chosen such that 0.4/∆t = maxu|f ′(u)|/∆x and the solution is computed up
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to time T = 0.3 using the WENO-Z scheme.

Also in this example, we experimentally find the best CNN structure with the best
performance on the validation set. As we aim to cover more different problems with
various initial conditions, we use the bigger CNN structure illustrated in Figure
5.3d. For this case, we experimentally found out, that this CNN has better ability
to generalize for various initial value problems. Using smaller CNN, it could happen,
that we would achieve the significant improvement for one of the initial conditions
(5.68)-(5.70) and for another ones, only very small error improvement. For training
we use the Adam optimizer with learning rate 0.0001, fix I = 128 and proceed as
described in Section 5.4.

During training we observe the different magnitude of the loss values (5.55) for
different problems from the training set To match the training contribution from
very small loss problems to large loss problems, we use the following adapted loss
function:

LOSSAD(u) =
1

10
10|⌈log10(LOSSMSE(u))⌉| LOSSMSE(u), (5.72)

where LOSSMSE(u) is defined in (5.55). Let us note, that there is no gradient prop-
agation through the exponential part in the equation (5.72) as the ceiling operation
⌈v⌉, giving as output the least integer greater than or equal to v, is step-wise con-
stant. As on the previous example, we choose the model with the best performance
on validation set and present the results in following tables and figures.

Let us note, that during training we update the multipliers of the smoothness in-
dicators in each Runge-Kutta stage. According to results for the Buckley-Leverett
equation, when we test the method, we again update the multipliers only once per
time step, namely in the first Runge-Kutta stage. For another Runge-Kutta stages
we use the same multipliers.

We compare the errors on the problems from the test set in Tables 5.5 and 5.6.
These were not in the training or validation set and the parameters were randomly
generated. It should be noted that although our training set was created with the
parameters sampled from uniform distribution as specified in (5.71), the method
can also generalize for parameter values outside of these intervals, as can be seen
in Table 5.6. We observe great improvement for problems with initial condition
(5.70) for the parameters inside, as well as outside of training set intervals. For
problems with the initial condition (5.68) and (5.69) we observe rather moderate
error improvement, but as it is illustrated in Figure 5.8, WENO-DS is able to
capture shocks and discontinuities very well.

In Figure 5.8 we show the solution of the Burgers’ equation with the initial condition
(5.68) for z1 = 1.84, (5.69) for z2 = 29.08, (5.70) for z3 = 1.6 and (5.70) for z3 = 3.0.
We observe that WENO-DS captures shocks and discontinuities very well and gives
us a better quality of solution compared to WENO-JS and WENO-Z.

Next, we test our method on four examples, where the Burgers’ equation with the
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L∞ L2

initial
condition zj WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio

(5.68) 1.19 0.665675 0.667148 0.647964 1.03 0.086363 0.086253 0.082829 1.04
1.53 0.595493 0.587766 0.537820 1.09 0.080244 0.078715 0.070645 1.11
1.84 0.744080 0.736504 0.675833 1.09 0.099022 0.097493 0.087989 1.11

(5.69) 14.94 0.114671 0.105817 0.100248 1.06 0.017054 0.015293 0.015133 1.01
21.65 0.236526 0.229823 0.202748 1.13 0.032984 0.031699 0.027131 1.17
29.08 0.310989 0.309104 0.300668 1.03 0.040377 0.039908 0.037727 1.06

(5.70) 1.46 0.058185 0.055862 0.013055 4.28 0.010327 0.009918 0.002244 4.42
1.6 0.062979 0.060594 0.011377 5.33 0.013107 0.012751 0.007136 1.79
1.9 0.074034 0.071443 0.028508 2.51 0.013272 0.012820 0.004949 2.59

Table 5.5: Comparison of L∞ and L2 errors of WENO-JS, WENO-Z and WENO-
DS methods for the solution of the Burgers’ equation with the initial
condition parameters inside of training set intervals (5.71).

L∞ L2

initial
condition zj WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio

(5.68) 0.71 0.220244 0.215243 0.189543 1.14 0.033159 0.032157 0.027803 1.16
2.57 1.026243 1.014877 0.931102 1.09 0.135856 0.133667 0.120652 1.11
2.8 0.762665 0.743593 0.644627 1.15 0.113972 0.110324 0.095163 1.16

(5.69) 35.5 0.111681 0.111857 0.120455 0.93 0.017291 0.016854 0.015420 1.09
33.9 0.352996 0.347349 0.324168 1.07 0.045858 0.044906 0.041029 1.09
34.67 0.289670 0.287470 0.270236 1.06 0.037770 0.037282 0.034038 1.10

(5.70) 2.12 0.084515 0.081753 0.038086 2.15 0.016966 0.016537 0.009930 1.67
2.44 0.084270 0.081280 0.035242 2.31 0.014942 0.014415 0.005396 2.67
3.0 0.083943 0.080915 0.034467 2.35 0.014840 0.014305 0.005153 2.78

Table 5.6: Comparison of L∞ and L2 errors of WENO-JS, WENO-Z and WENO-
DS methods for the solution of the Burgers’ equation with the initial
condition parameters outside of training set intervals (5.71).

flux function (5.67) and following initial conditions will be solved:

u(x, 0) = 1 + sin(4πx), 0 ≤ x ≤ 2, (5.73)
u(x, 0) = 2 sin(4πx), 0 ≤ x ≤ 2, (5.74)
u(x, 0) = 1.5 cos(πx), 0 ≤ x ≤ 2, (5.75)
u(x, 0) = sin(2πx), 0 ≤ x ≤ 2. (5.76)

We compute the solution up to time T = 0.3. Let us note, that the method was
not retrained on these initial conditions and still performs well. We compare L∞
and L2 errors in Table 5.7 and observe great improvement achieved by WENO-
DS method. Figure 5.9 illustrates the solution. As reference solution, we use the
solution computed by WENO-Z method on a fine space domain divided into 1024
space steps.
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(a) Initial condition (5.68)
with z1 = 1.84.
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(b) Initial condition (5.69)
with z2 = 29.08.
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(c) Initial condition (5.70)
with z3 = 1.6.
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(d) Initial condition (5.70)
with z3 = 3.0.

Figure 5.8: Comparison of the WENO-JS, WENO-Z and WENO-DS methods for
the solution of the Burgers’ equation with various initial conditions,
I = 128.

L∞ L2

initial
condition WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio

(5.73) 0.49317 0.484954 0.450177 1.08 0.130203 0.127337 0.113196 1.12
(5.74) 0.021023 0.020494 0.002063 9.93 0.007973 0.007754 0.000705 11.00
(5.75) 0.060176 0.057868 0.011701 4.95 0.010638 0.01023 0.001955 5.23
(5.76) 0.035934 0.034601 0.006844 5.06 0.009009 0.00868 0.001736 5.00

Table 5.7: Comparison of L∞ and L2 errors of WENO-JS, WENO-Z and WENO-
DS methods for the solution of the Burgers’ equation with the initial
conditions (5.73)-(5.76).

5.6.3 The two-dimensional Burgers’ equation

To demonstrate the performance of WENO-DS in two-dimensional space we apply
the method trained on one-dimensional data for the Burgers’ equation with the flux
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(a) Initial condition (5.73).
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(b) Initial condition (5.74).
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(c) Initial condition (5.75).
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(d) Initial condition (5.76).

Figure 5.9: Comparison of the WENO-JS, WENO-Z and WENO-DS methods for
the solution of the Burgers’ equation with various initial conditions,
I = 128.

function (5.67) to the two-dimensional Burgers’ equation of the form

∂u

∂t
+

∂f(u)

∂x
+

∂f(u)

∂y
= 0, f(u) =

u2

2
(5.77)

on the spatial domain [−1, 1] × [−1, 1] divided into 128 × 128 uniform cells. As
considered by Cao, Xu and Zheng [14] we use the initial condition

u(x, y, 0) = (x2 − 1)2 (y2 − 1)2, −1 ≤ x ≤ 1, −1 ≤ y ≤ 1. (5.78)

We present the solution at time T = 0.8 in Figure 5.10. Corresponding L∞ and L2

errors for 64 × 64 spatial discretization can be found in Table 5.8. The reference
solution was computed on the spatial discretization with 256 × 256 cells. Let us
emphasize, that no additional retraining was needed, as we apply the method using
dimension-by-dimension principle.

This example demonstrates, that the WENO-DS method trained on one-dimensional
data can be effectively used also for two-dimensional problems, providing better
quality of solution.
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Figure 5.10: Numerical solution of the two-dimensional Burgers’ equation using
WENO-DS at T = 0.8, 128× 128 cells.

L∞ L2

I × J WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio
64× 64 0.409603 0.408364 0.350585 1.16 0.023479 0.022834 0.019379 1.18

Table 5.8: Comparison of L∞ and L2 errors of WENO-JS, WENO-Z and WENO-DS
methods for the solution of the two-dimensional Burgers equation with
the initial condition (5.78).



6 Chapter 6

Deep smoothness WENO
scheme for Euler system

It has long been a challenge to adequately simulate complex flow problems such
as the Euler equations using numerical methods. In this chapter we extend the
WENO-DS approach introduced in the previous chapter to solving a general one-
dimensional and two-dimensional Euler system of gas dynamics. Through inten-
sive study of numerous test problems, which involve various shocks and rarefaction
waves, the new technique is shown to outperform traditional fifth-order WENO
schemes, especially in cases where the numerical solutions exhibit excessive diffu-
sion or overshoot around shocks. Recall that the terms shock wave, rarefaction
wave and contact discontinuity were introduced in Section 4.1.

6.1 One-dimensional Euler system

Let us introduce the one-dimensional Euler system of the form

Ut + F (U)x = 0, (6.1)

with

U =

 ρ
ρu
E

 , F (U) =

 ρu
ρu2 + p
u(E + p)

 (6.2)

for polytropic gas. Here, the variable ρ is the density, u the velocity component, p
the pressure and E the total energy given by

E =
p

γ − 1
+

1

2
ρu2. (6.3)

We take γ = 1.4 in our implementation, which is the ratio of the specific heats.

To obtain the WENO approximations in the one-dimensional example, we apply
the procedure described in Section 5.1. Thus, we obtain the flux approximation for
(6.1) as

1

∆x

(
f̂i+ 1

2
− f̂i− 1

2

)
=

(
F (U)

)
x

∣∣
(xi)

+O
(
∆x5

)
, (6.4)

with the uniform grid defined by ∆x = xi+1 − xi, i = 0, . . . , I.

75



76 6 Deep smoothness WENO scheme for Euler system

Further, the deep learning approach described in Section 5.2 is applied. That means,
the new smoothness indicators

βDS
m,i+ 1

2
= βm,i+ 1

2
(δm,i+ 1

2
+ C),

βDS
m,i− 1

2
= βm,i− 1

2
(δm,i− 1

2
+ C),

(6.5)

are inserted to original WENO-Z scheme from Section 5.1.3 which is improved to the
WENO-DS scheme. For the construction of the WENO-DS scheme the nonlinear
weights (5.45) are used.

In our examples, we proceed with the implementation of the Euler system using
characteristic decomposition. This means that we first project the solution and the
flux onto the characteristic fields using left eigenvectors. Then we apply the Lax-
Friedrichs flux splitting (5.60) for each component of the characteristic variables.
These values are fed into the CNN and the enhanced smoothness indicators are
computed. After obtaining the final WENO approximation, the projection back to
physical space is done using the right eigenvectors, cf. [102] for more details.

Remark 4. The deep learning approach described in Section 5.2 remains the same.
However, one adjustment needs to be done as we use the characteristic-wise im-
plementation in this case and the matrix of eigenvectors is computed for a frozen
average state at the cell-face. That means, the equation (5.35) needs to be modified,
such that for the multipliers holds

δ0,i− 1
2
= Φ(x̄i − 2∆x),

δ0,i+ 1
2
= Φ(x̄i −∆x) = δ1,i− 1

2
,

δ1,i+ 1
2
= Φ(x̄i) = δ2,i− 1

2
,

δ2,i+ 1
2
= Φ(x̄i +∆x).

(6.6)

Analogously, for the negative part of the flux splitting, the equation (5.37) has to
be modified such that

δ0,i+ 1
2
= Φ(x̄i + 2∆x),

δ0,i− 1
2
= Φ(x̄i +∆x) = δ1,i+ 1

2
,

δ1,i− 1
2
= Φ(x̄i) = δ2,i+ 1

2
,

δ2,i− 1
2
= Φ(x̄i −∆x).

(6.7)

The NN function Φ(·) satisfies the Assumption 5.2.1 and is defined as in Theorem
2. This means, that the accuracy analysis described in Section 5.2.1 holds. The
Figure 5.1 explanatory illustrates the values from which the multipliers δm, m =
0, 1, 2 are constructed.
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6.1.1 Structure of neural network and the training procedure

For the training of the WENO-DS method we use a CNN. We have experimented
with different training procedures and introduce in this chapter a novel and most
effective one, which gives the best numerical results.

First, the data set must be created. At the beginning of training, the weights of the
CNN are randomly initialized and a problem is selected from the data set. Then we
perform one time step and use the CNN to predict the multipliers of the smoothness
indicators. Then we compute the loss and its gradient with respect to the weights
of the CNN using the backpropagation algorithm. For more details explaining the
backpropagation procedure we refer to Section 5.4.

After this step, we do not automatically proceed to the next time step (as it was
described in Section 5.4), but randomly decide whether to proceed to the next time
step of a current problem or select another problem from our data set and run
one time step of that problem. The probability of choosing the new problem is
determined at the beginning of the training session. We use the probability φ = 0.5
in our experiments. This means that we select a new problem from a data set with
probability φ = 0.5. We set the maximum number of opened problems to 200. We
remember all opened problems, and if no new problem is opened (with probability
1 − φ), we execute the next time step of a problem uniformly chosen from the set
of already opened problems. When the maximum number of opened problems is
reached, we successively compute the entire solution for these problems until the
final time T . After reaching T for some of these problems, this problem is closed
and another one can be opened.

After each of these time steps, the loss and its gradient are calculated with respect
to the weights of the CNN. The gradient is then used to update the weights. Keep-
ing the solution from the previous time step as initial data, we repeat the same
procedure until we reach the maximum number of training steps. This training
procedure gives us a great opportunity to mix the solutions with different initial
data and in different time points, which makes the training more effective.

To train the network, we use the Adam optimizer [55]. The learning rate is set
to 0.0001 to update the weights of the CNN. This near-optimal learning rate was
found through experiments.

Adaptive activation functions

We can make the training more effective and get better numerical results by using
adaptive activation functions [47, 48, 49]. They can adapt to the problem at hand.
In this work, we used global adaptive activation functions [47], where the additional
slope parameter is introduced in the activation function as follows.
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For the ELU activation function, we train the additional parameter α:

ELU =

{
x, if x > 0,

α(exp(x)− 1) if x ≤ 0,
(6.8)

and we denote the adaptive ELU as aELU. For the Softplus activation function, we
train the additional parameter β:

Softplus(x) =
1

β
log(1 + exp(βx)), (6.9)

and we denote the adaptive Softplus as aSoftplus.

Loss function

In this work, the loss function consists of the data mismatch term between the
solution predicted by the CNN and the reference solution. For the loss function, we
use the mean square error loss as follows:

LOSSMSE(u) =
1

I

I∑
i=0

(ûi − uref
i )2, (6.10)

where ûi is a numerical approximation of u(xi) and uref
i is the corresponding reference

solution. However, in our examples, we use the L1 norm as the main error measure,
which is more typical for hyperbolic problems. Thus, for validation during the
training, we use the metrics

L1(u) =
1

I

I∑
i=0

|ûi − uref
i |. (6.11)

The reference solution are computed according to [115].

For the Euler system (6.1) - (6.2) we have to adapt the loss function from (6.10)
and use it for training

LOSSMSE(ρ, u, p) = LOSSMSE(ρ) + LOSSMSE(u) + LOSSMSE(p), (6.12)

and for the validation during training from (6.11) we use

L1(ρ, u, p) = L1(ρ) + L1(u) + L1(p). (6.13)

The pseudo-code of the whole training procedure is described in Algorithm 2
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Algorithm 2 WENO-DS training procedure
for l← 0 to L do ▷ L: the total number of training steps
→ With probability φ choose a new problem from a data set and store this
problem and with probability 1 − φ choose a problem from the set of already
opened problems
Input:

(
F (U(x0)) F (U(x1)) . . . F (U(xI))

)
→ Evaluation of CNN

Output:
(
δ1,0+ 1

2
δ1,1+ 1

2
. . . δ1,I+ 1

2

)
▷ prediction of CNN

→ From these values, obtain the values δ0,i+ 1
2

and δ2,i+ 1
2
, i = 0, . . . , I using the

relations (6.6) and (6.7)
→ Compute loss function (6.10)
→ Compute loss gradient with respects to the weights of CNN using backpropa-
gation

▷ Following Figure 5.2 representing the WENO-DS scheme, gradients are
computed from the bottom to top, until the weights of the CNN are reached
→ Update weights of CNN using chosen optimizer
end for

Size of the neural network

Determining the best training procedure and the most suitable CNN structure often
requires experimentation. It is important to find the optimal balance between the
length of the training process, the size of the NN and the actual execution time
of the NN (during the computation of the PDE). Although the training process
is only done as offline training, i.e. it only needs to be done once, we aim to
do it in a reasonable amount of time. On the one hand, we could use a very
complex NN structure, which could potentially converge to the optimal WENO-DS
very quickly. This means that offline training would be very short. However, the
actual computational time of the method would be higher and the method would be
inefficient. On the other hand, we could use very small NNs. In this case, however,
offline training could take much longer. We focus on finding the smallest possible
NN that has a reasonable offline training time and still remains computationally
efficient compared to WENO-Z.

In Figure 6.1 we describe the CNN structure used for a training for the one-
dimensional Euler system. We have 3 input channels in the first hidden layer and
3 output channels in the last hidden layer. These represent the dimension of the
solution U from (6.1). In this way, the CNN also incorporates information from
other variables, which can be useful for improving the numerical solution. The in-
put F̄ (Ū) represents the numerical approximation after left eigenvector projection
and flux splitting.
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Figure 6.1: A structure of the CNN used for the one-dimensional Euler system.

Construction of the data set for the CNN training procedure

In presented examples the solution of the Euler system consists of the left rarefaction
wave, the right travelling contact wave and the right shock wave. We want to imitate
this behavior of the solution, so we construct our data set as described in Algorithm
3.

Algorithm 3 Generation of parameters for the data set for one-dimensional Euler
equations of gas dynamics

Choose randomly s ∈ {0, 2}
if s = 0 then

pl = a+ b, a ∈ U [0.5, 1.5], b ∈ U [−0.05, 0.05],
pr = 1/c, c ∈ U [5, 10],
ρl = pl,
ρr = pr + d, d ∈ U [−0.05, 0.05],
ul = e, e ∈ U [0.5, 1],
ur = 0,

else if s = 1 then
pl = 1,
pr = 0.1,
ρl = k, k ∈ U [1, 2],
ρr =

1
10
ρl + l, l ∈ U [−0.05, 0.05],

ul = m, m ∈ U [0.5, 1],
ur = 0,

else
pl = n, n ∈ U [3, 4],
pr =

1
7
pl + q, q ∈ U [−0.05, 0.05]

ρl = r, r ∈ U [0.3, 0.6],
ρr = ρl + s, s ∈ U [−0.05, 0.05],
ul = t, t ∈ U [0.5, 1],
ur = 0,

end if
where

(ρ, u, p) =

{
(ρl, ul, pl) 0 ≤ x < 0.5,

(ρr, ur, pr) 0.5 ≤ x ≤ 1.
(6.14)
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6.1.2 Numerical examples

To solve the following system of ODEs

dU(t)

dt
= L(U), (6.15)

we use a third-order TVD Runge-Kutta method according to (5.59). In our appli-
cation, to obtain the best possible results, we evaluate the CNN during training, as
well as during testing, in each Runge-Kutta stage.

For the temporal discretization we use an adaptive step size

∆t =
0.9∆x

max(ci + |ui|)
, c2 =

γp

ρ
, (6.16)

where ui is the local velocity and ci the local speed of sound.

The training procedure, as well as structure of the CNN was already discussed
in Section 6.1.1. During training and validation, the spatial domain is divided
uniformly into 100 space steps and the final time T is fixed to 0.1. We run the
training for the total number of 10000 training steps. Using the relationship

L∗
1(ρ, u, p) =

Ll
1(ρ, u, p)

max
l=0,...,L

(Ll
1(ρ, u, p))

, l = 0, . . . , L, (6.17)

we rescale validation metrics values and show their evolution for the validation
problems in Figure 6.2. We see that for most of the validation problems, the loss is
decreasing with increasing number of training steps. However, after some number
of training steps, it increases significantly for some of the problems. We select the
model from the training step 6300 as our final WENO-DS scheme. This is a training
step, in which the sum of the validation values (6.13) over all validation problems
obtains its lowest value.

The most common benchmark problems are the Lax problem [67] with an initial
condition

(ρ, u, p) =

{
(0.445, 0.698, 3.528) 0 ≤ x < 0.5,

(0.5, 0, 0.571) 0.5 ≤ x ≤ 1,
(6.18)

and the Sod problem [104], where the initial condition is specified as

(ρ, u, p) =

{
(1, 0.75, 1) 0 ≤ x < 0.5,

(0.125, 0, 0.1) 0.5 ≤ x ≤ 1.
(6.19)

In these and further examples, Dirichlet boundary conditions are used. We present
the solution of the Lax problem (6.18) for ρ, u and p with the final time T = 0.13 in
Figure 6.3 and the corresponding L1 error values can be found in Table 6.1. In this
table the error values for I = 100, 200 and 1000 can be found. As ’ratio’ we denote
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Figure 6.2: Training evolution corresponding to one-dimensional Euler system: The
values (6.17) for different validation problems evaluated each 100 train-
ing steps.

the minimum error of the methods WENO-JS and WENO-Z divided by the error of
WENO-DS (rounded to 2 decimal points). We see that for all listed discretizations
WENO-DS provides smaller errors, although it was trained only with the fixed
spatial discretization I = 100.
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Figure 6.3: Solution of the Lax problem (6.18), using the WENO-JS, WENO-Z and
WENO-DS methods, T = 0.13, I = 1000.

I 100 200 1000
WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio

ρ 0.020890 0.018790 0.018331 1.03 0.011144 0.009843 0.009602 1.03 0.002791 0.002455 0.002405 1.02
u 0.019382 0.018326 0.017152 1.04 0.009580 0.008954 0.008311 1.05 0.001940 0.001886 0.001758 1.04
p 0.026347 0.025225 0.024275 1.07 0.012327 0.011640 0.011098 1.08 0.002584 0.002531 0.002435 1.07

Table 6.1: Comparison of L1 errors of WENO-JS, WENO-Z and WENO-DS meth-
ods for the solution of the Euler equations of gas dynamics for the Lax
problem (6.18) for different spatial discretizations, T = 0.13.

Figure 6.4 shows the solution of the Sod problem (6.19). Here we computed the
solution up to a final time T = 0.2.

Moreover, let us present results for some randomly generated initial conditions
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Figure 6.4: Solution of the Sod problem (6.19), using the WENO-JS, WENO-Z and
WENO-DS methods, T = 0.2, I = 1000.

according to Algorithm 3. We consider the following two scenarios:

(ρ, u, p) =

{
(0.5526, 0.9375, 3.9076) 0 ≤ x < 0.5,

(0.5665, 0, 0.5430) 0.5 ≤ x ≤ 1,
(6.20)

and

(ρ, u, p) =

{
(1.6282, 0.5117, 1) 0 ≤ x < 0.5,

(0.1859, 0, 0.1) 0.5 ≤ x ≤ 1,
(6.21)

with T = 0.1. We present the corresponding solutions in Figures 6.5 and 6.6 and
the error values can be found in Table 6.2.
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Figure 6.5: Solution of the Euler system with the initial condition (6.20), using the
WENO-JS, WENO-Z and WENO-DS methods, T = 0.1, I = 100.
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Figure 6.6: Solution of the Euler system with the initial condition (6.21), using the
WENO-JS, WENO-Z and WENO-DS methods, T = 0.1, I = 100.

Finally, we also applied the trained method to the shock entropy wave interaction
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initial condition (6.20) initial condition (6.21)
WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio

ρ 0.013445 0.012674 0.012468 1.02 0.025157 0.022500 0.021369 1.05
u 0.011761 0.011190 0.009919 1.05 0.021461 0.020004 0.018047 1.09
p 0.006893 0.006547 0.006260 1.13 0.027735 0.025820 0.023582 1.11

Table 6.2: Comparison of L1 errors of WENO-JS, WENO-Z and WENO-DS meth-
ods for the solution of the Euler equations of gas dynamics for the initial
conditions (6.20) and (6.21), T = 0.1, I = 100.

problem [101] with an initial condition

(ρ, u, p) =

{
(3.857143, 2.629369, 10.33333) −5 ≤ x < −4,
(1 + 0.2 sin(5x), 0, 1) −4 ≤ x ≤ 5.

(6.22)

In Figure 6.7 we show the solution for ρ, u and p, when the computational domain
is divided into 512 uniform cells. We compute the solution for the final time T =
1.8. As a reference solution we use the solution computed with WENO-Z method
with 2048 space points. This is an example, which has a moving Mach = 3 shock
interacting with sine waves in density, so the numerical method needs to deal with
the physical oscillations contained in a flow. Finally, let us note, that although we
have not trained the presented WENO-DS scheme on the parameters that would
lead to such a solution, the method is robust enough and can detect the shocks
present in the solution very well.
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Figure 6.7: Solution of the shock entropy wave interaction problem (6.22), T = 1.8,
I = 512.

Although WENO-DS captures shocks very well and, according to Table 6.1, pro-
vides better numerical solutions, the improvements over the base method are rather
moderate. However, in the next part of this chapter we will demonstrate the signifi-
cant superiority of WENO-DS over the standard WENO scheme on the challenging
two-dimensional Euler equations of gas dynamics by examining several examples
from the literature involving different contact discontinuities, shocks and rarefac-
tion waves.
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6.2 Two-dimensional Euler system

In this section we extend the system (6.1) to two dimensions:

Ut + F (U)x +G(U)y = 0, (6.23)

with

U =


ρ
ρu
ρv
E

 , F (U) =


ρu

ρu2 + p
ρuv

u(E + p)

 , G(U) =


ρv
ρuv

ρv2 + p
v(E + p)

 (6.24)

for polytropic gas. Here, the variable ρ is the density, u the x-velocity component, v
the y-velocity component, E the total energy and p the pressure. Further, it holds

p = (γ − 1)
[
E − ρ

2
(u2 + v2)

]
, (6.25)

where γ denotes the ratio of the specific heats and we will use γ ∈ (1.1, 1.67) in our
application.

We consider the spatial domain [0, 1] × [0, 1] and solve the Riemann problem with
the following initial condition

(ρ, u, v, p) =


(ρ1, u1, v1, p1) x > 0.5 and y > 0.5,

(ρ2, u2, v2, p2) x < 0.5 and y > 0.5,

(ρ3, u3, v3, p3) x < 0.5 and y < 0.5,

(ρ4, u4, v4, p4) x > 0.5 and y < 0.5,

(6.26)

and Dirichlet boundary conditions.

The combination of four elementary planar waves is used to define the classification
of the Riemann problem. A detailed study of these configurations has been done
in [16, 17, 64, 94, 95, 117] and there are 19 different possible configurations for
polytropic gas. These are defined by three types of elementary waves, namely a
backward rarefaction wave

←−
R , a backward shock wave

←−
S , a forward rarefaction wave−→

R , a forward shock wave
−→
S and a contact discontinuity J±, where the superscript

± refers to negative and positive contacts.

To obtain the WENO approximations in the two-dimensional example, we apply
the procedure described in Section 5.5 using the dimension-by-dimension principle.
Thus, we obtain the flux approximations for (6.23) as

1

∆x

(
f̂i+ 1

2
,j − f̂i− 1

2
,j

)
=

(
F (U)

)
x

∣∣
(xi,yj)

+O
(
∆x5

)
,

1

∆y

(
k̂i,j+ 1

2
− k̂i,j− 1

2

)
=

(
G(U)

)
y

∣∣
(xi,yj)

+O
(
∆y5

)
,

(6.27)



86 6 Deep smoothness WENO scheme for Euler system

with the uniform grid defined by the nodes (xi, yj), ∆x = xi+1−xi, ∆y = yj+1−yj,
i = 0, . . . , I, j = 0, . . . , J .

For the deep learning part, the improved smoothness indicators (6.5) with (6.6) and
(6.7) are used.

6.2.1 Structure of neural network and the training procedure

In our two-dimensional implementation we proceed with the training as described
in Section 6.1.1. In our experiments we use the probability φ = 0.5 and set the
maximum number of opened problems to 150. We use again the Adam optimizer,
but we change the learning rate to 0.001.

During the training, one more adjustment has to be made as compared to the
one-dimensional implementation. As we do not know the exact solutions for imple-
mented two-dimensional examples, we have to create a data set. For this purpose
we compute the reference solutions using the WENO-Z method on a fine grid of
I × J = 400 × 400 space points up to the given final time T , where tn represents
the time points, n = 0, . . . , N . More details on the construction of the reference
solutions will be given further in this section. During training, we compute the
numerical solutions on a grid of I×J = 100×100 space points. At the beginning of
a training we randomly select a problem from a data set and perform a single time
step to get to the time tn+1, using CNN to predict the multipliers δm. However, by
performing a single time step on a coarse grid, we do not match the time step size of
the fine precomputed solutions, as the adaptive time step size is used. So we simply
take the closest reference solution from the data set, use it as an initial condition,
and do another small time step to get a reference solution at the time instance tn+1.
Then we compute the loss and its gradient with respect to the weights of the CNN.
The rest of the training procedure remains the same as described in Section 6.1.1.

Loss function

Loss function and validation metrics are used as defined in (6.10) and (6.11).

The loss function from (6.10) for training is adapted such that

LOSSMSE(ρ, u, v, p) = LOSSMSE(ρ) + LOSSMSE(u)

+ LOSSMSE(v) + LOSSMSE(p),
(6.28)

and for the validation during training we use the adaptation from (6.11)

L1(ρ, u, v, p) = L1(ρ) + L1(u) + L1(v) + L1(p). (6.29)

When we plot the error on validation problems, we rescale the values for each
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validation problem to be located in the interval [0, 1] using the relationship

L∗
1(ρ, u, v, p) =

Ll
1(ρ, u, v, p)

max
l=0,...,L

(Ll
1(ρ, u, v, p))

, l = 0, . . . , L, (6.30)

where L denotes the total number of training steps.

Size of the neural network

In our implementation, we considered different structures of CNNs and carried out
numerous experiments with them. First, we used a rather simple CNN with only
two layers and a receptive field of width 3. The structure is shown in Figure 6.8a.
The advantage of this setting is its computational efficiency. Second, we used a
CNN with the same number of layers, but we increased the number of channels and
made the receptive field wider. The structure is shown in Figure 6.8b. Finally, we
used only a receptive field of width 3, but added one more layer and used a more
complex CNN, as shown in Figure 6.8c. Each of these CNNs gave interesting results
and we summarize them in Section 6.2.2.
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Figure 6.8: Different structures of the CNN used for the training of WENO-DS.

As it can be seen, we have 4 input channels in the first hidden layer and 4 output
channels in the last hidden layer in each CNN. These represent the dimension of
the solution U from (6.24). In this way, the CNN also receives information from
other variables, which can be useful for improving the numerical solution. The
input F̄ (Ū), respectively Ḡ(Ū) represents the numerical approximation after the
projection using left eigenvectors and after applying the flux splitting method.
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Construction of the data set for the CNN training procedure

For each of the 19 configurations of the Riemann problem (6.26), the specific re-
lations must be satisfied by the initial data and the symmetry properties of the
solution. We present the formulas given in [95] and create the data sets for the
CNN training according to these formulas.

We define

Φlr :=
2
√
γ

γ − 1

(√pl
ρl
−

√
pr
ρr

)
, Ψ2

lr :=
(pl − pr)(ρl − ρr)

ρlρr
, (Ψlr > 0), (6.31)

and
Πlr :=

( pl
pr

+
(γ − 1)

(γ + 1)

)/(
1 +

(γ − 1)

(γ + 1)

pl
pr

)
. (6.32)

In the numerical examples presented in Section 6.2.2 we list more specific relations
for each of the given examples that are sufficient to uniquely define the solution.
Following these relations, we randomly generate the initial data and construct our
data sets.

6.2.2 Numerical examples

To demonstrate the efficiency of the proposed method, we present here the numeri-
cal results obtained with the WENO-DS method after the CNN training procedure.
Note that the CNN training procedure has to be performed only once as offline train-
ing for each of the three examples: configuration 2, configuration 3 and configuration
16. No additional training was performed for the next examples: configuration 11
and configuration 19, since we show the results using the same trained CNN from
the previous examples. Finally, in the last part of this chapter we perform two more
trainings with a larger CNN and illustrate the results. More details can be found in
the corresponding sections. For the implementation we use Python with the deep
learning library PyTorch.

For the system of ODEs (6.15) we use a third-order TVD Runge-Kutta method
(5.59), where we evaluate the CNN during training, as well as during testing, in
each Runge-Kutta stage.

Let us note, that for all trainings we used fixed spatial discretization I × J =
100× 100 space points. When we test the method and compare the computational
costs, we consider also the spatial discretization 50×50 and 200×200 space points.

For the temporal discretization we use an adaptive step size

∆t = 0.6min
(∆x

a
,
∆y

a

)
, (6.33)
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with

a = max
i=0,...,I
j=0,...,J

(|λ+
i,j|, |λ−

i,j|) λ± = V ± c, V =
√
u2 + v2 c2 = γ

p

ρ
, (6.34)

where u, v are the velocities and c is the local speed of sound.

In the sequel we enumerate the different configurations of initial conditions accord-
ing to [64].

Configuration 2

This is the configuration with four rarefaction waves:
−→
R 21,

←−
R 32,

←−
R 34,

−→
R 41. The

detailed analysis was done in [95, 117] and we have to satisfy the following relations
for this case:

u2 − u1 = Φ21, u4 − u3 = Φ34, u3 = u2, u4 = u1,

v4 − v1 = Φ41, v2 − v3 = Φ32, v2 = v1, v3 = v4,
(6.35)

with the compatibility conditions Φ21 = −Φ34 and Φ41 = −Φ32. Moreover, for a
polytropic gas the equations

ρl/ρr = (pl/pr)
1/γ for (l, r) ∈ {(2, 1), (3, 4), (3, 2), (4, 1)}, (6.36)

have to be included. Furthermore, we have ρ2 = ρ4, ρ1 = ρ3, p1 = p3, p2 = p4,
u2 − u1 = v4 − v1 and u4 − u3 = v2 − v3.

We use for creating of the data set the values

ρ1 ∈ U [0.7, 2], ρ2 ∈ U [0.5, ρ1], p1 ∈ U [0.2, 1.5],
u1 ∈ U [−1, 1], v1 = u1, γ ∈ (1.1, 1.67),

(6.37)

and for the other values we use the relations (6.35), (6.36) with (6.31). We also
compute the reference solutions using the WENO-Z method on a grid I × J =
400× 400 space points up to the final time T ∈ U [0.1, 0.2] and create the data set
consisting of 50 reference solutions.

For training, we use the training procedure described in Section 6.2.1. First, we use
the simplest CNN structure shown in Figure 5.3a and perform the training for the
total number of 4000 training steps. We plot the evolution of the L∗

1 error (6.30) for
the validation problems in Figure 6.9. Note that these problems were not included
in the training data, and the initial conditions of these problems were generated
analogously to the construction of the training data set. For these problems, we
measured the error every 100 training steps and at a randomly chosen final time
T . We select the final model based on the evolution of the error of the validation
set. We see that the error decreases up to a certain point for all problems and then
starts to increase for some problems. Longer training would lead to overfitting of
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the training data. Finally, we choose the final model from the training step 2800
and present the results using this model. This is a training step, in which the sum
of the validation values (6.29) over all validation problems obtains its lowest value.

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000
number of training steps
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, u
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, p
)

Figure 6.9: Training evolution corresponding to configuration 2: The values of the
rescaled validation metrics (6.30) for different validation problems eval-
uated each 100 training steps.

As a test problem we use the problem from [64] with γ = 1.4, T = 0.2 and the
initial condition

(ρ, u, v, p) =


(1, 0, 0, 1) x > 0.5 and y > 0.5,

(0.5197,−0.7259, 0, 0.4) x < 0.5 and y > 0.5,

(1,−0.7259,−0.7259, 1) x < 0.5 and y < 0.5,

(0.5197, 0,−0.7259, 0.4) x > 0.5 and y < 0.5.

(6.38)

The results are shown in Table 6.3. As can be seen, we achieve a significant error
improvement for all four variables and for different discretizations. It should be
noted that we trained only with the discretization of 100 × 100 space points and
did not retrain the CNN for different discretizations. We refer to the error of the
WENO-Z method divided by the error of WENO-DS (rounded to 2 decimal points)
as the ’ratio’. The density contour plots are shown in Figure 6.10 and the absolute
pointwise errors for the density are shown in Figure 6.11. Moreover, we show in
Figure 6.12 the density contour plots for the spatial resolution I × J = 400× 400,
i.e. the resolution of the reference data. As it can be seen, at the susceptibility area,
WENO-Z produces noticeable oscillations, which is not a case for WENO-DS.

Finally, we want to compare the computational cost of WENO-DS compared to
the WENO-Z scheme in solving the test problem shown in Figure 6.13. Using a
logarithmic scale, we plot the computation time against the L1 error averaged over
the four variables ρ, u, v, p. We conclude, that compared to WENO-Z method,
WENO-DS is computationally more effective. As can be seen, WENO-DS has a
slightly longer computation time. This is due to the evaluation of the CNN. It is
important to note that the structure of the CNN should be as small as possible.
Using a larger CNN would shift the red line more to the right and the WENO-DS
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I × J 50× 50 100× 100 200× 200
WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio

ρ 0.012488 0.010722 1.16 0.005465 0.004648 1.18 0.001862 0.001547 1.20
u 0.014363 0.011986 1.20 0.006153 0.005066 1.21 0.002053 0.001627 1.26
v 0.014363 0.011986 1.20 0.006153 0.005066 1.21 0.002053 0.001627 1.26
p 0.013113 0.011510 1.14 0.005619 0.004899 1.15 0.001879 0.001587 1.18

Table 6.3: Comparison of L1 errors of WENO-Z and WENO-DS methods for the
solution of the Euler system with the initial condition (6.38) for different
spatial discretizations, T = 0.2.
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Figure 6.10: Density contour plot for the solution of the Riemann problem with the
initial condition (6.38), I × J = 100× 100, T = 0.2.
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Figure 6.11: Absolute pointwise errors for the density solution of the Riemann prob-
lem with the initial condition (6.38), I × J = 100× 100, T = 0.2.

would be computationally inefficient. Efficiency would only be maintained if we
could get even smaller errors with a larger CNN.

It should be noted that if we were to test the method on another unseen test
problems using the initial data from the previously described range, we would obtain
very similar error improvements in those cases.
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Figure 6.12: Density contour plot for the solution of the Riemann problem with the
initial condition (6.38), I × J = 400× 400, T = 0.2.
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Figure 6.13: Comparison of computational cost against L1 error of the solution of
the Riemann problem with the initial condition (6.38).

Configuration 3

This is the configuration with four shock waves:
←−
S 21,

←−
S 32,

←−
S 34,

←−
S 41. According

to [95], in this case we have the following equations that must be satisfied:

u2 − u1 = Ψ21, u3 − u4 = Ψ34, u3 = u2, u4 = u1,

v4 − v1 = Ψ41, v3 − v2 = Ψ32, v2 = v1, v3 = v4,
(6.39)

and for polytropic gas the equations

ρl/ρr = Πlr for (l, r) ∈ {(2, 1), (3, 4), (3, 2), (4, 1)} (6.40)

are added. This gives the compatibility conditions Ψ21 = Ψ34 and Ψ41 = Ψ32.
Furthermore, we have ρ2 = ρ4, p2 = p4 and u2 − u1 = v4 − v1.
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In this case, we use for creating the dataset the values

ρ1 ∈ U [1, 2], ρ2 ∈U [0.5, 1], p1 ∈ U [1, 2],
u1 ∈ U [−0.25, 0.25], v1 = u1, γ ∈ (1.1, 1.67),

(6.41)

and for the other values we use the relations (6.39), (6.40) with (6.31) and (6.32).
Similar to the previous example, we compute the reference solutions using the
WENO-Z method on a grid with I × J = 400 × 400 space points up to the fi-
nal time T ∈ U [0.1, 0.3] and create the data set consisting of 50 reference solutions.

We proceed with training as described in the previous section, using the same
CNN structure as shown in Figure 5.3a. Again, we train only on the discretization
I × J = 100 × 100 space steps. We run the training for 4000 training steps and
plot the evolution of the validation metrics (6.30) for the validation problems in
Figure 6.14. We measured the error every 100 training steps and at the randomly
chosen final time T . We compute the sum of the validation values (6.29) over all
validation problems. Its lowest value is obtained in a training step 3200 so we choose
the final model from that training step and present the results for the test problem
with γ = 1.4, T = 0.3, and initial condition from [64]

(ρ, u, v, p) =


(1.5, 0, 0, 1.5) x > 0.5 and y > 0.5,

(0.5323.1.206, 0, 0.3) x < 0.5 and y > 0.5,

(0.138, 1.206, 1.206, 0.029) x < 0.5 and y < 0.5,

(0.5323, 0, 1.206, 0.3) x > 0.5 and y < 0.5.

(6.42)
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Figure 6.14: Training evolution corresponding to configuration 3: The values of
the rescaled validation metrics (6.30) for different validation problems
evaluated each 100 training steps.

We compare the results in Table 6.4. As can be seen, we achieve a large error
improvement for all discretizations listed. The density contour plots can be found
in Figure 6.15 and the absolute pointwise errors for the density in Figure 6.16. Here
it can be seen that the error of WENO-DS is significantly lower in the areas of the
shock contacts. Moreover, we compare the density contour plots on the resolution
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of the reference data in Figure 6.17.

I × J 50× 50 100× 100 200× 200
WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio

ρ 0.038682 0.027906 1.39 0.019232 0.012817 1.50 0.007454 0.004657 1.60
u 0.034692 0.027638 1.26 0.019588 0.015043 1.30 0.008249 0.005810 1.42
v 0.034692 0.027638 1.26 0.019588 0.015043 1.30 0.008249 0.005810 1.42
p 0.038920 0.030888 1.26 0.018666 0.014041 1.33 0.007275 0.005001 1.45

Table 6.4: Comparison of L1 errors of WENO-Z and WENO-DS methods for the
solution of the Euler system with the initial condition (6.42) for different
spatial discretizations, T = 0.3.
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Figure 6.15: Density contour plot for the solution of the Riemann problem with the
initial condition (6.42), I × J = 100× 100, T = 0.3.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.00

0.09

0.18

0.27

0.36

0.45

0.54

(a) WENO-DS

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

(b) WENO-Z

Figure 6.16: Absolute pointwise errors for the density solution of the Riemann prob-
lem with the initial condition (6.42), I × J = 100× 100, T = 0.3.

In Figure 6.18 we also compare the weights ωZ
m, m = 0, 1, 2 (5.32) and the updated

weights ωDS
m , m = 0, 1, 2 (5.45) with the improved smoothness indicators (6.5).

We plot these weights, corresponding to the positive part of a flux from the flux
splitting, using WENO-Z and WENO-DS for the previous test problem at the final
time T = 0.3. Since we apply the principle dimension-by-dimension, we present the
weights only for the approximation of the flux F (U). For the approximations of the
flux G(U), we could obtain these weights in this example using symmetry. As can
be seen, WENO-DS is much better at localizing the shock from the other direction
as well, which has a significant impact on error improvement.
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Figure 6.17: Density contour plot for the solution of the Riemann problem with the
initial condition (6.42), I × J = 400× 400, T = 0.3.
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Figure 6.18: Configuration 3: Comparison of the nonlinear weights ωDS
m and ωZ

m,
m = 0, 1, 2 corresponding to the flux F (U), I×J = 100×100, T = 0.3.

Finally, let us compare the computational cost of WENO-DS for the previously
discussed test problem shown in Figure 6.19. We see that WENO-DS is much more
computationally efficient compared to WENO-Z. Again, if we test the method on the
unseen problems, but with the same initial configuration, we would get analogous
significant error improvements.

Configuration 16

This is the configuration with the combination of rarefaction wave, shock wave and
contact discontinuities:

←−
R 21, J−

32, J
+
34,
−→
S 41. As shown in [95], the following relations
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Figure 6.19: Comparison of computational cost against L1 error of the solution of
the Riemann problem with the initial condition (6.42).

must hold for this case

u1 − u2 =Φ21, u3 = u4 = u1,

v4 − v1 = Ψ41, v3 = v2 = v1, p1 < p2 = p3 = p4,
(6.43)

and for polytropic gas we add the equation (6.36) for a rarefaction and (6.40) for a
shock wave between the lth and rth quadrants.

For our data set we use the values

ρ4 ∈ U [1, 2], ρ3 ∈ U [0.5, ρ4], p1 ∈ U [0.3, 1], p2 ∈ U [1, 1.5],
u1 ∈ U [−0.25, 0.25], v1 = u1, γ ∈ (1.1, 1.67).

(6.44)

To compute the data set consisting of 50 reference solutions, we use the WENO-
Z method on a grid with I × J = 400 × 400 space points up to the final time
T ∈ U [0.1, 0.2].

We train the CNN with the structure shown in Figure 5.3a as in the previous
examples on the discretization with I × J = 100 × 100 space steps for the total
number of 2000 training steps. We show the evolution of the validation metrics
(6.30) in Figure 6.20 and choose the model from training step 1900 as final WENO-
DS scheme.

We test the trained WENO-DS on a test problem [64] with γ = 1.4, T = 0.2 and
the initial condition

(ρ, u, v, p) =


(0.5313, 0.1, 0.1, 0.4) x > 0.5 and y > 0.5,

(1.0222,−0.6179, 0.1, 1) x < 0.5 and y > 0.5,

(0.8, 0.1, 0.1, 1) x < 0.5 and y < 0.5,

(1, 0.1, 0.8276, 1) x > 0.5 and y < 0.5.

(6.45)

We compare the results in Table 6.5 and the density contour plots can be found in
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Figure 6.20: Training evolution corresponding to configuration 16: The values of
the rescaled validation metrics (6.30) for different validation problems
evaluated each 100 training steps.

Figure 6.21. As can be seen, WENO-DS outperforms WENO-Z and has smaller L1

errors in all cases. In addition, we plot the absolute pointwise errors for the density
solution and show them in Figure 6.22. The density contour plots for the spatial
resolution I × J = 400× 400 can be found in Figure 6.23.

For another unseen test problems with the same initial configurations, we would
again obtain analogous significant error improvements.

I × J 50× 50 100× 100 200× 200
WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio

ρ 0.010980 0.009877 1.11 0.004834 0.004327 1.12 0.001827 0.001624 1.12
u 0.012464 0.011287 1.10 0.005989 0.005326 1.12 0.002223 0.001913 1.16
v 0.015020 0.013932 1.08 0.006609 0.006172 1.07 0.002527 0.002298 1.10
p 0.010594 0.009644 1.10 0.004236 0.003820 1.11 0.001576 0.001392 1.13

Table 6.5: Comparison of L1 errors of WENO-Z and WENO-DS methods for the
solution of the Euler system with the initial condition (6.45) for different
spatial discretizations, T = 0.2.
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Figure 6.21: Density contour plot for the solution of the Riemann problem with the
initial condition (6.45), I × J = 100× 100, T = 0.2.

We also compare the weights ωZ
m, m = 0, 1, 2 and the updated weights ωDS

m , m =
0, 1, 2. As the solution is not symmetric, we compare the weights corresponding
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Figure 6.22: Absolute pointwise errors for density solution of the Riemann problem
with the initial condition (6.45), I × J = 100× 100, T = 0.2.
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Figure 6.23: Density contour plot for the solution of the Riemann problem with the
initial condition (6.45), I × J = 400× 400, T = 0.2.

to the flux F (U) in Figure 6.24 and the weights corresponding to the flux G(U)
in Figure 6.25. In both cases, we plot these weights, corresponding to the positive
part of a flux from the flux splitting, for the previous test problem at the final time
T = 0.2.

Configuration 11 and configuration 19

In the previous sections, we trained three WENO-DS methods for three different
types of configurations. We denote by WENO-DS (C2), WENO-DS (C3), and
WENO-DS (C16) the methods according to the configurations, on which the meth-
ods were trained. In this section, we test these methods on the unseen problems
containing the combination of rarefaction waves, shock waves, and contact discon-
tinuities. First, we consider configuration 11 (

←−
S 21, J+

32, J+
34,
←−
S 41) with the test
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Figure 6.24: Configuration 16: Comparison of the nonlinear weights ωDS
m and ωZ

m,
m = 0, 1, 2 corresponding to the flux F (U), I×J = 100×100, T = 0.2.
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Figure 6.25: Configuration 16: Comparison of the nonlinear weights ωDS
m and ωZ

m,
m = 0, 1, 2 corresponding to the flux G(U), I×J = 100×100, T = 0.2.
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problem with γ = 1.4, T = 0.3, and the initial condition from [64] given by

(ρ, u, v, p) =


(1, 0.1, 0, 1) x > 0.5 and y > 0.5,

(0.5313, 0.8276, 0, 0.4) x < 0.5 and y > 0.5,

(0.8, 0.1, 0, 0.4) x < 0.5 and y < 0.5,

(0.5313, 0.1, 0.7276, 0.4) x > 0.5 and y < 0.5.

(6.46)

Second, we test the models on the configuration 19 (J+
21,
←−
S 32, J−

34,
−→
R 41) with the

test problem with γ = 1.4, T = 0.3 and the initial condition from [64] given by

(ρ, u, v, p) =


(1, 0, 0.3, 1) x > 0.5 and y > 0.5,

(2, 0,−0.3, 1) x < 0.5 and y > 0.5,

(1.0625, 0, 0.2145, 0.4) x < 0.5 and y < 0.5,

(0.5197, 0,−0.4259, 0.4) x > 0.5 and y < 0.5.

(6.47)

We summarize the results in Tables 6.6 and 6.7. We use boldface to indicate the best
performing WENO-DS scheme. As can be seen, the method trained on problems
containing only rarefaction waves has the worst ability to generalize to unseen prob-
lems. On the other hand, by using methods trained on problems containing shock
waves or a combination of contact discontinuities, rarefaction, and shock waves, we
obtain the error improvements even on unseen problems with different initial con-
figurations. We would like to emphasize that the test problems in this section are
far from the problems included in the training and validation sets. This is not only
due to the choice of initial data, but also to the combination of rarefaction, shock
waves and their direction, and positive and negative contact discontinuities.

Configuration 11
WENO-Z WENO-DS (C2) ratio WENO-DS (C3) ratio WENO-DS (C16) ratio

ρ 0.007792 0.008000 0.97 0.006783 1.15 0.007538 1.03
u 0.008003 0.008701 0.92 0.007846 1.02 0.007840 1.02
v 0.007692 0.008300 0.93 0.007161 1.07 0.007370 1.04
p 0.005883 0.006467 0.91 0.005115 1.15 0.005776 1.02

Table 6.6: Comparison of L1 errors of WENO-Z and WENO-DS methods trained
on different configurations (C2, C3 and C16) for the solution of the Euler
system with the initial condition (6.46), I × J = 100× 100, T = 0.3.

Configuration 19
WENO-Z WENO-DS (C2) ratio WENO-DS (C3) ratio WENO-DS (C16) ratio

ρ 0.014844 0.014463 1.03 0.013702 1.08 0.013841 1.07
u 0.003749 0.003562 1.05 0.003689 1.02 0.003574 1.05
v 0.009891 0.009502 1.04 0.009791 1.01 0.009245 1.07
p 0.006123 0.005922 1.03 0.005595 1.09 0.005844 1.05

Table 6.7: Comparison of L1 errors of WENO-Z and WENO-DS methods trained
on different configurations (C2, C3 and C16) for the solution of the Euler
system with the initial condition (6.47), I × J = 100× 100, T = 0.3.
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Bigger CNN and ability to generalize on unseen configurations

As can be seen from the previous section, the WENO-DS methods trained using
the data according to configuration 3 and configuration 16 are able to generalize
very well to unseen problems. The WENO-DS method is able to properly localize
the shocks and discontinuities, leading to a better numerical solution. Let us now
increase the size of the CNN and use the structures shown in Figures 5.3b, increas-
ing the size of the receptive field and the number of channels, and Figure 5.3c,
increasing the number of channels and adding another CNN layer. Experimentally,
we found out that only increasing the size of the receptive field and the number of
channels leads to similar results as described in the previous sections. In addition,
increasing the receptive field makes the WENO-DS computationally more expen-
sive. This is because we need to prepare wider inputs for the CNN, which also need
to be projected onto the characteristic fields using left eigenvectors, and the matrix
multiplications are more expensive here. On the other hand, if we use the CNN
structure described in Figure 5.3c, we obtain a trained WENO-DS method that pro-
vides a much better numerical solution even for unseen problems with significantly
different initial configurations.

Let us now train the method on two data sets. First, we use the dataset correspond-
ing to configuration 3, train the CNN, and denote the final method as WENO-DS
(C3c). Second, we train the CNN on the data set corresponding to configuration 16
and denote the final method as WENO-DS (C16c). We test the methods on even
more different configurations and compare the results in Tables 6.8 and 6.9. We use
boldface to indicate the configuration on which the method was actually trained.

With the number of configurations listed in the tables, we cover a wide range of pos-
sible combinations of contact discontinuities, rarefaction and shock waves. For all of
them we use the test examples from the literature, see, e.g. [64]. We treat the pos-
sibility with four contact discontinuities with configuration 6: J−

21, J
−
32, J

−
34, J

−
41, two

contact discontinuities and two rarefaction waves with configuration 8:
←−
R 21, J−

32,
J−
34,
←−
R 41, two shock waves and two contact discontinuities using configuration 14:

J+
21,
←−
S 32, J−

34,
←−
S 41 and configuration 11:

←−
S 21, J+

32, J
+
34,
←−
S 41. Finally, the combina-

tion of contact discontinuities, rarefaction, and shock waves using configuration 18:
J+
21,
←−
S 32, J+

34,
−→
R 41, and configuration 19: J+

21,
←−
S 32, J−

34,
−→
R 41.

As one can see, we obtain significant error improvements with both methods. Com-
paring both methods, even better results are obtained when the CNN was trained
on a data on a configuration with four shock waves (configuration 3). Compared to
the Table 6.4, the improvement for configuration 3 is smaller but still significant.
However, the method is able to generalize much better to unknown configurations.
For example, for configuration 14, we obtain an average improvement rate of 1.30
for all four variables. In addition, we use WENO-DS (C3c) to illustrate the density
contour plots and absolute pointwise errors in Figures 6.26, 6.27, and 6.28. Again,
the difference from configuration 3, which was actually used to train the model, is
evident.
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The WENO-DS (C3c) method achieves large error improvements not only for prob-
lems from the same configuration, but also for problems from significantly different
configurations. Since we used a larger CNN, the question is what is the actual
numerical cost of these improvements? We illustrate the computational costs in
Figure 6.29. As can be seen from the shift of the red dots to the right, the method
involves larger computational costs. However, it is still more effective or not worse
than the original method in most cases. We would like to emphasize that here
we are comparing results with significantly different initial problems than those on
which the method was actually trained. Machine learning models are generally not
expected to give much better results on unseen problems.

Configuration 3 Configuration 6 Configuration 8 Configuration 11
WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio

ρ 0.019232 0.015033 1.28 0.038616 0.032696 1.18 0.005711 0.004975 1.15 0.007792 0.006316 1.23
u 0.019588 0.016359 1.20 0.019662 0.016144 1.22 0.008488 0.007396 1.15 0.008003 0.006487 1.23
v 0.019588 0.016359 1.20 0.022582 0.018951 1.19 0.008488 0.007396 1.15 0.007692 0.006282 1.22
p 0.018666 0.015214 1.23 0.010525 0.008821 1.19 0.005350 0.004844 1.10 0.005883 0.004813 1.22

Configuration 14 Configuration 18 Configuration 19
WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio

ρ 0.013169 0.010333 1.27 0.014918 0.012519 1.19 0.014844 0.012390 1.20
u 0.004835 0.003732 1.30 0.003534 0.003063 1.15 0.003749 0.003339 1.12
v 0.021299 0.016512 1.29 0.010315 0.009077 1.14 0.009891 0.008641 1.14
p 0.034996 0.026008 1.35 0.006795 0.005961 1.14 0.006123 0.005393 1.14

Table 6.8: Comparison of L1 errors of WENO-Z and WENO-DS (C3c) methods
for the solution of the Euler system with various initial configurations,
I × J = 100× 100.

Configuration 16 Configuration 6 Configuration 8 Configuration 11
WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio

ρ 0.004834 0.004127 1.17 0.038616 0.036329 1.06 0.005711 0.004777 1.20 0.007792 0.007695 1.01
u 0.005989 0.004981 1.20 0.019662 0.019575 1.00 0.008488 0.007056 1.20 0.008003 0.007824 1.02
v 0.006609 0.005776 1.14 0.022582 0.019974 1.13 0.008488 0.007056 1.20 0.007692 0.007482 1.03
p 0.004236 0.003663 1.16 0.010525 0.010216 1.03 0.005350 0.004624 1.16 0.005883 0.006295 0.93

Configuration 14 Configuration 18 Configuration 19
WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio

ρ 0.013169 0.011718 1.12 0.014918 0.013447 1.11 0.014844 0.013198 1.12
u 0.004835 0.004042 1.20 0.003534 0.002975 1.19 0.003749 0.003256 1.15
v 0.021299 0.020330 1.05 0.010315 0.009302 1.11 0.009891 0.008796 1.12
p 0.034996 0.036038 0.97 0.006795 0.006535 1.04 0.006123 0.005752 1.06

Table 6.9: Comparison of L1 errors of WENO-Z and WENO-DS (C16c) methods
for the solution of the Euler system with various initial configurations,
I × J = 100× 100.
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Figure 6.26: Density contour plots and absolute pointwise errors for the solution of
the Riemann problem with initial configuration 6, I × J = 100× 100,
T = 0.3.
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Figure 6.27: Density contour plots and absolute pointwise errors for the solution of
the Riemann problem with initial configuration 8, I × J = 100× 100,
T = 0.25.
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Figure 6.28: Density contour plots and absolute pointwise errors for the solution of
the Riemann problem with initial configuration 19, I × J = 100× 100,
T = 0.3.
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Figure 6.29: Comparison of computational cost against L1 error of the solution of
Riemann problem with various initial configurations using the WENO-
Z and WENO-DS (C3c) methods.
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Sixth-order WENO scheme for
nonlinear degenerate parabolic
equations

In this chapter we describe the development of a new modification of WENO method
for solving nonlinear degenerate parabolic equations using deep learning techniques.
To this end, we modify the smoothness indicators of an existing WENO algorithm
that are responsible for measuring the discontinuity of a numerical solution. We
do this in such a way that the consistency and convergence of our new WENO-DS
method is preserved and can be theoretically proven. Furthermore, we show that
the WENO-DS method can be easily applied in more dimensions without the need
to retrain the CNN.

We present our results on benchmark examples of nonlinear degenerate parabolic
equations, such as the porous medium equation with the Barenblatt solution, the
Buckley-Leverett equation and their extensions in two-dimensional space. Here we
show that our novel method outperforms the standard WENO method, reliably
handles the sharp interfaces and provides good resolution of discontinuities.

We consider nonlinear degenerate parabolic equations of the form

∂

∂t
u(x, t) =

d∑
i=1

∂2

∂x2
i

bi(u(x, t)), (x, t) ∈ Ω× (0,∞),

u(x, 0) = u0(x),

(7.1)

where x = (x1, . . . , xd), with d being the space dimension. The simplest form of
(7.1) with d = 1 can be represented by

ut = b(u)xx,

u(x, 0) = u0(x),
(7.2)

where b′(u) ≥ 0 and it is possible that b′(u) vanishes for some values of u. In this
case, the equation (7.2) degenerates on the u-plane and is not strictly parabolic.
We note that such equations occur frequently in applications. For b(u) = um, the
equation (7.2) is written as the porous medium equation (PME) [6, 111]:

ut = (um)xx = (mum−1ux)x, m > 1, (7.3)

105
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which models the flow of an isentropic gas through a homogeneous porous medium.
In this case, the density of the gas u is then a solution of the PME and the pressure
of the gas is p = um−1. Since the diffusivity D(u) = mum−1 approaches zero
when u → 0, the equation (7.3) degenerates at u = 0, leading to the well-known
phenomenon of finite speed of propagation and sharp fronts [6, 24, 111].

In general, a classical solution, i.e., a solution which is twice continuously differen-
tiable with respect to x, could not exist even in the case of a smooth initial condition.
Therefore, the so-called weak solution must be considered, which is investigated e.g.
in [3, 78, 109]. In this chapter, we use the WENO method for solving this type of
equation.

7.1 The WENO scheme

We first describe the general WENO discretization to solve (7.2) as developed in [74]
and later in [35]. We introduce the uniform grid defined by the points xi = x0+i∆x,
i = 0, . . . , I, with the cell boundaries xi+ 1

2
= xi+

∆x
2

. The semi-discrete formulation
of (7.2) can be written as

dui(t)

dt
=

f̂i+ 1
2
− f̂i− 1

2

∆x2
, (7.4)

where ui(t) approximates pointwise u(xi, t) and the numerical flux f̂i+ 1
2

is chosen
such that for all sufficiently smooth u

1

∆x2

(
f̂i+ 1

2
− f̂i− 1

2

)
=

(
b(u)

)
xx
|x=xi

+O(∆x6), (7.5)

with sixth-order of accuracy. Following [74] if we implicitly define a function h by

b
(
u(x)

)
=

1

∆x2

x+∆x
2∫

x−∆x
2

( η+∆x
2∫

η−∆x
2

h(ξ) dξ

)
dη, (7.6)

then (
b(u)

)
xx

=
1

∆x2

[
h(x+∆x)− 2h(x) + h(x−∆x)

]
, (7.7)

and with the function

g(x) = h
(
x+

∆x

2

)
− h

(
x− ∆x

2

)
, (7.8)

it holds that (
b(u)

)
xx
|x=xi

=
g(x+ ∆x

2
)− g(x− ∆x

2
)

∆x2
. (7.9)



7.1 The WENO scheme 107

7.1.1 Sixth-order WENO scheme

Let us now consider a 6-point stencil corresponding to sixth-order discretization:

S(i) = {xi−2, . . . , xi+3}. (7.10)

This will be divided into three candidate substencils given by

S(i)m = {xi−2+m, . . . , xi+1+m}, m = 0, 1, 2. (7.11)

On each of these substencils, the numerical flux f̂m
i± 1

2

needs to be calculated. Let

f̂m(x) be the polynomial approximation of g(x) on each of the substencils (7.11).
By an evaluation of these polynomials at x = xi+ 1

2
following formulas from [74] can

be obtained:

f̂ 0
i+ 1

2
=

b(ui−2)− 3b(ui−1)− 9b(ui) + 11b(ui+1)

12
,

f̂ 1
i+ 1

2
=

b(ui−1)− 15b(ui) + 15b(ui+1)− b(ui+2)

12
,

f̂ 2
i+ 1

2
=
−11b(ui) + 9b(ui+1) + 3b(ui+2)− b(ui+3)

12
,

(7.12)

and by shifting each index by −1 we obtain the numerical fluxes f̂m
i− 1

2

. The value
of a function b at u(xi) is indicated by b(ui) = b(u(xi)). The linear combination of
the fluxes (7.12) gives the final approximation on the big stencil (7.10) given by

f̂i+ 1
2
=

2∑
m=0

dmf̂
m
i+ 1

2
, (7.13)

where dm are the linear weights, which values are

d0 = −
2

15
, d1 =

19

15
, d2 = −

2

15
. (7.14)

They are also called ideal weights as they would yield the central sixth-order scheme.
As can be seen, the linear weights d0 and d2 are negative. Therefore, the final WENO
scheme may be unstable and a special technique treating the negative weights has
to be used [97]. The weights dm are then split into positive and negative parts, such
that it holds

dm = σ+γ+
m − σ−γ−

m. (7.15)

Following [74] we get the values

γ+
0 =

1

21
, γ+

1 =
19

21
, γ+

2 =
1

21
,

γ−
0 =

4

27
, γ−

1 =
19

27
, γ−

2 =
4

27
,

(7.16)
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and
σ+ =

42

15
, σ− =

27

15
. (7.17)

Finally, the numerical flux for the WENO scheme can be approximated by

f̂i+ 1
2
=

2∑
m=0

ωmf̂
m
i+ 1

2
, (7.18)

with
ωm = σ+α+

m − σ−α−
m, (7.19)

α±
m =

α̃±
m∑2

i=0 α̃
±
i

, α̃±
m =

γ±
m

(ϵ+ βm)2
, m = 0, 1, 2. (7.20)

βm is referred to as the smoothness indicator, which plays the crucial role in de-
ciding which substencils should be chosen for the final flux approximation and the
parameter ϵ is used to prevent the denominator from becoming zero. Moreover, it
should be chosen carefully, as it can reduce the order of accuracy of the underlying
scheme, which has been studied in [4] or [42].

7.1.2 Smoothness indicators

In this section we analyze the smoothness indicators βm as proposed in [50]. They
are defined as:

βm =
2∑

q=1

∆x2q−1

xi+1∫
xi

(dqf̂m(x)

dxq

)2

dx, (7.21)

with f̂m(x) being the polynomial approximation in each of three substencils. There
is only one difference from equation (5.19), namely that the integration must be over
the interval [xi, xi+1] to satisfy the symmetry property of the parabolic equation.
The right-hand side of (7.21) is the sum of the L2-norms of the first and second
derivatives of the interpolation polynomial f̂m(x) over the interval (xi, xi+1). This
is the total variation for the approximation and thus a good measure of smoothness
[50]. The explicit forms of these indicators corresponding to the flux approximation
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f̂i+ 1
2

can be obtained as

β0 =
13

12

(
b(ui−2)− 3b(ui−1) + 3b(ui)− b(ui+1)

)2
+

1

4

(
b(ui−2)− 5b(ui−1) + 7b(ui)− 3b(ui+1)

)2
,

β1 =
13

12

(
b(ui−1)− 3b(ui) + 3b(ui+1)− b(ui+2)

)2
+

1

4

(
b(ui−1)− b(ui)− b(ui+1) + b(ui+2)

)2
,

β2 =
13

12

(
b(ui)− 3b(ui+1) + 3b(ui+2)− b(ui+3)

)2
+

1

4

(
− 3b(ui) + 7b(ui+1)− 5b(ui+2) + b(ui+3)

)2
,

(7.22)

and the Taylor expansion at xi gives

β0 = b2xx∆x4 + b2xxfxxx∆x5 +
(4
3
b2xxx −

1

3
bxxbxxxx

)
∆x6

+
(1
4
bxxbxxxxx −

5

4
bxxxbxxxx

)
∆x7 +O

(
∆x8

)
,

β1 = b2xx∆x4 + b2xxbxxx∆x5 +
(4
3
b2xxx +

2

3
bxxbxxxx

)
∆x6

+
(1
4
bxxbxxxxx +

17

12
bxxxbxxxx

)
∆x7 +O

(
∆x8

)
,

β2 = b2xx∆x4 + b2xxbxxx∆x5 +
(4
3
b2xxx −

1

3
bxxbxxxx

)
∆x6

+
(
−3

4
bxxbxxxxx +

37

12
bxxxbxxxx

)
∆x7 +O

(
∆x8

)
.

(7.23)

Here (and further), the short notation bx = b(ui)x is used.

The smoothness indicators are designed to approach zero for smooth parts of the
solution, so that the nonlinear weights ωm approach the ideal weights dm. When
the substencil Sm contains a discontinuity, the corresponding smoothness indicator
βm is O(1) and the corresponding nonlinear weight ωm becomes smaller, reducing
the contribution of the substencil Sm. For more details and the accuracy analysis
we refer the reader to [74]. It has been shown, that for the sixth-order accuracy the
following necessary and sufficient conditions have to be satisfied:

ωm − dm = O(∆x3),

ω0 − ω2 = O(∆x4).
(7.24)

As it was shown in [74], the nonlinear weights (7.19)-(7.20) with smoothness indi-
cators (7.22) do not fulfill the conditions (7.24). Therefore, the mapped function as
introduced in [42] was used by Liu et al. [74].
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7.1.3 The MWENO scheme

Alternatively, Hajipour and Malek [35] defined new nonlinear weights using

α±
m =

α̃±
m

2∑
i=0

α̃±
i

, α̃±
m = γ±

m

[
1 +

( τ7
βm + ϵ

)2
]
, m = 0, 1, 2, (7.25)

and then inserting into (7.19) with

τ7 = |β0 − β2|. (7.26)

From (7.23) it can be seen that

τ7 =
∣∣∣−bxxbxxxxx + 13

3
bxxxbxxxx

∣∣∣∆x7 +O(∆x8). (7.27)

It has been shown [35], that using these nonlinear weights the conditions (7.24)
are satisfied and the sixth-order accuracy is ensured. Let us note, that this is an
analogous formulation to the one used in [13] and described in Section 5.1.3. Here,
the WENO-Z method was developed for solving hyperbolic conservation laws.

7.2 Application of deep learning to the sixth-order
WENO scheme

Solving nonlinear degenerate parabolic equations is a challenging task in most cases.
Not only because of the possible existence of non-smooth solutions or sharp fronts,
but also because of the finite propagation speed of the wave fronts. This gives us
enough room to improve the existing WENO method. In Chapter 5 new smoothness
indicators for the fifth-order WENO-DS scheme were developed using deep learning.
They were defined as the product of the original smoothness indicators βm and
perturbations δm, where δm are the outputs of a particular NN algorithm. We
apply this idea and modify the smoothness indicators (7.22) in the same way to
improve the sixth-order WENO scheme.

Analogously, we define the new smoothness indicators:

βDS
m,i+ 1

2
= βm,i+ 1

2
(δm,i+ 1

2
+ C),

βDS
m,i− 1

2
= βm,i− 1

2
(δm,i− 1

2
+ C),

(7.28)

with
δ0,i+ 3

2
= δ1,i+ 1

2
= δ2,i− 1

2
, i = 0, . . . , I. (7.29)

Here, βDS
m,i+ 1

2

, m = 0, 1, 2 are the smoothness indicators corresponding to the nu-

merical fluxes f̂m
i+ 1

2

, m = 0, 1, 2. For the numerical fluxes f̂m
i− 1

2

, m = 0, 1, 2, the
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smoothness indicators βDS
m,i− 1

2

, m = 0, 1, 2 are used. Defining the smoothness indi-
cators in this way we preserve the conservative property of a scheme, as the values
f̂m
i− 1

2

can be obtained from f̂m
i+ 1

2

by simple index shift.

7.2.1 Accuracy analysis

In this section we analyze the accuracy of the new WENO-DS method for a smooth
solutions u. For this purpose, the Assumption 5.2.1 formulated in Chapter 5 will
be used. As in this chapter new equations and formulas for nonlinear degenerate
parabolic equations were introduced, for the sake of convenience, we formulate an
analogous assumption in this chapter as well.

Assumption 7.2.1. Let us assume, that in each time step there exists a function
Φ ∈ R2k+1 → R, such that the multipliers δm,i± 1

2
from (7.28) in the node xi satisfying

(7.29) can be expressed as:

δ0,i+ 1
2
= Φ(x̄i −∆x) = Φ(x̄i)−O(∆x),

δ1,i+ 1
2
= Φ(x̄i),

δ2,i+ 1
2
= Φ(x̄i +∆x) = Φ(x̄i) +O(∆x),

(7.30)

where

x̄i = (xi−k, xi−k+1, . . . , xi+k). (7.31)

Moreover, let us assume that there exists a constant C independent from time step
and discretization, such that it holds Φ(x̄i) + C > κ > 0 with κ fixed, i = 0, . . . , I.

Theorem 3. Let the numerical flux of the WENO-DS scheme be given by (7.12)
and (7.18) with the corresponding nonlinear weights given by (7.19) and

α±
m =

α̃±
m

2∑
i=0

α̃±
i

, α̃±
m = γ±

m

[
1 +

( τ7
βDS
m,i± 1

2

+ ϵ

)2
]
, m = 0, 1, 2, (7.32)

with γ±
m given by (7.16), βDS

m,i± 1
2

defined in (7.28) and τ7 defined by (7.26). Let
the multipliers δm,i± 1

2
in (7.28) satisfy the Assumption 7.2.1. Then, the resulting

WENO-DS method (7.4) for smooth solutions of the nonlinear degenerate parabolic
equation (7.1) exhibits a sixth-order accuracy, assuming |bxx| ≥ η > 0.

Proof. From (7.23) we see that

βm,i± 1
2
= b2xx∆x4 +O(∆x5), (7.33)
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and from (7.27)
τ7 = O(∆x7). (7.34)

Then using Assumption 7.2.1 it holds

βDS
m,i± 1

2
= βm,i± 1

2
(δm,i± 1

2
+ C) =

(
b2xx∆x4 +O(∆x5)

)(
Φ(x̄i) +O(∆x) + C)

)
= b2xxP (x̄i)∆x4 +O(∆x5),

(7.35)

with P (x̄i) = Φ(x̄i)+C and C satisfying the Assumption 7.2.1. Then P (x̄i) = O(1)
is ensured. Assuming |bxx| ≥ η > 0, it holds

τ7
βDS
m,i± 1

2

= D̂∆x3 +O(∆x4), D̂ =
| − bxxbxxxxx +

13
3
bxxxbxxxx|

b2xxP (x̄i)
. (7.36)

We take ϵ = 0, substitute now this into (7.32) (for simplicity we drop the index
i± 1

2
) and obtain

α̃±
m = γ±

m

[
1 +

( τ7
βDS
m + ϵ

)2
]
= γ±

m

(
1 +O(∆x6)

)
, (7.37)

and

α±
m =

γ±
m

[
1 +

(
τ7

βDS
m +ϵ

)2
]

2∑
i=0

γ±
m

(
1 +O(∆x6)

) , (7.38)

which implies

γ±
m = α±

m

1

1 +
(

τ7
βDS
m +ϵ

)2

2∑
i=0

γ±
m

(
1 +O(∆x6)

)
= α±

m +O(∆x6), (7.39)

where we used
∑2

i=0 γ
±
m = 1.

We investigate now the conditions (7.24). Using (7.39), inserting into (7.15) and
using (7.19) we fulfill the first condition:

dm = σ+
(
α+
m +O(∆x6)

)
− σ−(α−

m +O(∆x6)
)
= ωm +O(∆x6). (7.40)

Finally, realizing that γ±
0 = γ±

2 , the second condition is also fulfilled:

ω0 − ω2 = σ+α+
0 − σ−α−

0 − σ+α+
2 + σ−α−

2 = σ+
(
γ+
0 +O(∆x6)

)
− σ−(γ−

0 +O(∆x6)
)
− σ+

(
γ+
2 +O(∆x6)

)
+ σ−(γ−

2 +O(∆x6)
)

= O(∆x6)

(7.41)

and the sixth-order accuracy of the WENO-DS method for smooth solutions of
nonlinear degenerate parabolic equation (7.1) is ensured.

Theorem 4. Let us compute the multipliers δm,i± 1
2

from (7.28) in the node xi
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satisfying (7.29) using a one-dimensional convolutional neural network with vector
b̄(ūi) defined by

b̄(ūi) = (b(u(xi−k)), b(u(xi−k+1)), . . . , b(u(xi+k))),

ūi = ū(x̄i) = (u(xi−k), u(xi−k+1), . . . , u(xi+k))
(7.42)

as input. Further, let all hidden layers of this neural network be differentiable func-
tions and let the activation function in the last layer of the CNN be bounded from
below. Then for these multipliers δm,i± 1

2
the Assumption 7.2.1 holds.

Proof. Let 2k+1 be the size of the receptive field of the CNN. Let F (·) ∈ R2k+1 → R
be the convolutional neural network function:

F
(
b̄(ūi)

)
= CNN

(
b̄(ūi)

)
. (7.43)

Then, we can define Φ = F ◦ b̄ ◦ ū and it holds

δ0,i+ 1
2
= (F ◦ b̄ ◦ ū)(x̄i −∆x) = Φ(x̄i −∆x),

δ1,i+ 1
2
= (F ◦ b̄ ◦ ū)(x̄i) = Φ(x̄i),

δ2,i+ 1
2
= (F ◦ b̄ ◦ ū)(x̄i +∆x) = Φ(x̄i +∆x).

(7.44)

Moreover, as F, b̄, ū are all differentiable functions, also Φ is a differentiable function
and (7.30) holds.

As the last activation function is bounded from below, there exists ξ such that
Φ(x̄i) > ξ, and any C > κ + max(−ξ, 0) satisfies the second part of Assumption
7.2.1 for arbitrary κ > 0.

7.3 Structure of neural network

Analogously to the case of hyperbolic conservation laws, we use CNN for the en-
hanced WENO-DS scheme. Detailed discussion about the advantages of this NN
has already been done in Section 5.3. Also in this case, we experimentally found out
that the usage of ELU and Softplus activation functions gives the best results. We
set C = 0.1 in (7.28) and the value of ϵ in (7.32) to 10−13. For detailed discussions
about the constant C we refer to Section 5.3.

7.4 The training procedure

In this chapter we use the training procedure as described in Section 6.1.1. In our
experiments we use the probability φ = 0.1 and set the maximum number of opened
problems to 200.
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To improve the gradient propagation to the lower layers, we use the residual learning
framework [41] as mentioned in Section 1.2.6. It may happen that when using a
deeper NN, its effectiveness is compromised, but this effect is not due to overfitting,
as reported in [41].

To update the weights of the CNN we use again the Adam optimizer [55]. The
optimizer parameters will be specified for each of the equation classes separately.
As the default loss function we use the mean square error

LOSSMSE(u) =
1

I

I∑
i=0

(ûn
i − un,ref

i )2, (7.45)

where ûn
i is a numerical approximation of u(xi, tn) obtained by WENO-DS and un,ref

i

denotes the corresponding reference solution. For the implementation we use again
Python with the library PyTorch [79].

7.5 Two-dimensional implementation

Here we consider the two-dimensional form of (7.1):

ut = b1(u)xx + b2(u)yy. (7.46)

The procedure described in Sections 7.1 and 7.2 can be easily applied dimension-by-
dimension to obtain the approximations of numerical fluxes f̂i+ 1

2
,j and k̂i,j+ 1

2
, such

that it holds

1

∆x2

(
f̂i+ 1

2
,j − f̂i− 1

2
,j

)
=

(
b1(u)

)
xx
|(xi,yj) +O

(
∆x6

)
,

1

∆y2
(
k̂ij+ 1

2
− k̂i,j− 1

2

)
=

(
b2(u)

)
yy
|(xi,yj) +O

(
∆y6

)
,

(7.47)

using the uniform grid with nodes (xi, yj), ∆x = xi+1 − xi, ∆y = yj+1 − yj, i =
0, . . . , I, j = 0, . . . , J . The corresponding semi-discrete form of (7.46) takes the
form

dui,j(t)

dt
=

f̂i+ 1
2
,j − f̂i− 1

2
,j

∆x2
+

k̂i,j+ 1
2
− k̂i,j− 1

2

∆y2
, (7.48)

where ui,j(t) is the numerical approximation to the point value u(xi, yj, t).

In our numerical examples we train the CNN on one-dimensional data, as well
as on two-dimensional data. We compare the results and we are interested if the
method trained on two-dimensional data would bring significantly better numerical
approximations, or if the training on one-dimensional data would be sufficient.
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7.6 Numerical results

In this section, we present the numerical results to show the efficiency of the pro-
posed numerical scheme WENO-DS based on the CNN algorithm. We use the
nonlinear weights (7.25), replacing βm with βDS

m (7.28). This is done to discretize
the diffusion term and for the discretization of the advection term, which later
appears in the examples, we use an analogous procedure as described in Chapter 5.

For the system of ODEs resulting from (7.4) we use a third-order TVD Runge-Kutta
method [100] given by

u(1) = un +∆tL(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1)),

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2)),

(7.49)

where un is the numerical solution at the time step n and L = 1
∆x2 (f̂i+ 1

2
− f̂i− 1

2
).

As it was already mentioned in Chapter 5, the multipliers update could be done
only once per time step, namely in the first Runge-Kutta stage, supposing that
the smoothness of the solution does not change significantly within one time step.
We performed a large number of numerical experiments and this approach exhib-
ited to be much more effective, as the costly evaluation of CNN needs to be done
only once per time step instead of three times per time step. This has only small
impact on error, but we can save more computational time, which leads to better
numerical performance. So in all our numerical examples we proceed as follows.
During the training, we update the multipliers in each Runge-Kutta stage, taking
use of all computed values. After the training, when the final WENO-DS scheme is
obtained and the concrete problem needs to be computed, we use the same vector
of multipliers in the second and third Runge-Kutta stage.

For the solving procedure, we use the time step of the one-dimensional problems

ut + f(u)x = b(u)xx, (7.50)

such that
0.4

∆t
=

maxu|f ′(u)|
∆x

+
maxu|b′(u)|

∆x2
. (7.51)

For two-dimensional problems

ut + f1(u)x + f2(u)y = b1(u)xx + b2(u)yy, (7.52)

the time step is set as

0.4

∆t
=

maxu|f ′
1(u)|

∆x
+

maxu|f ′
2(u)|

∆y
+

maxu|b′1(u)|
∆x2

+
maxu|b′2(u)|

∆y2
. (7.53)
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In the following examples we provide a detailed comparison of WENO-DS with stan-
dard schemes. We compare the WENO-DS method with the MWENO method in
the examples where only a parabolic term occurs in the PDEs. Where a hyperbolic
term also occurs, we use the MWENO method as the original method in combina-
tion with the WENO-Z method [13], which is used to approximate the hyperbolic
term.

In the presented tables we compare the L∞ and L2 errors. As ’ratio’ we denote the
error of the MWENO method, resp. MWENO method combined with WENO-Z,
divided by the error of WENO-DS (rounded to 2 decimal points).

7.6.1 The porous medium equation with the Barenblatt
solution

As the first example we apply the CNN algorithm to enhance the numerical solution
of the PME (7.2) with (7.3).

The Barenblatt solution [8, 116] is a weak solution of the PME with the explicit
form

Bm(x, t) = t−α

[(
1− k|x|2t−

2α
d

)+
] 1

m−1

, t > 0, x ∈ Ω ⊆ Rd, m > 1, (7.54)

where v+ = max(v, 0) and k = α(m−1)
2md

with α = d
(m−1)d+2

. For d = 1, the compact
support of this Barenblatt solution is the interval [−am(t), am(t)], where

am(t) =

√
2m

α(m− 1)
tα, (7.55)

with α = 1
m+1

. The solution is not differentiable at the interface points x = ±am(t)
[75].

In our numerical experiments, we take as initial condition the Barenblatt solution
(7.54) at time t = 1. We use zero Dirichlet boundary conditions u(±6, t) = 0 for
t > 1 and divide the computational domain into 64 uniform cells.

For the training, we proceed as described in Section 7.4. When a new problem
should be selected from a data set, an exponent m in PME (7.3) is chosen randomly
such that m ∈ U(2, 8). In this way, we cover a wide range of different problems
and the final numerical scheme can be reliably used for different values of m. For
training, we fix T = 1.4. We use a rather small CNN with only three hidden layers.
The structure is described in Figure 7.1, where also the number of channels and the
kernel size can be found. Let us note, that the arrow connecting two (+) blocks
represents the residual learning framework mentioned in Section 7.4.

Similarly to Example 5.6.2 we use the adapted loss function to match the training
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Conv1d
in_channels = 1
out_channels = 5
kernel_size = 3
padding = 1

ELU

Conv1d
in_channels = 5
out_channels = 5
kernel_size = 3
padding = 1

Conv1d
in_channels = 5
out_channels = 1
kernel_size = 1
padding = 0

identity

Softplus

identity

+ ELU +

Figure 7.1: A structure of the CNN used for the porous medium equation.

contribution from very small loss problems to large loss problems:

LOSSAD(u) =
1

10
10|⌈log10(LOSSMSE(u))⌉| LOSSMSE(u), (7.56)

where LOSSMSE(u) is defined in (7.45) and a reference solution is computed from
(7.54). This makes all loss values to be of the order 10−2. To update the weights
we use the Adam optimizer with learning rate 0.001.

For testing on a validation set, we use just simple LOSSMSE(u) defined by (7.45) as
corresponding validation metric. We present the history of the rescaled values

LOSS∗
MSE(u) =

LOSSl
MSE(u)

max
l=0,...,L

(LOSSl
MSE(u))

, l = 0, . . . , L, (7.57)

for the problems from the validation set in Figure 7.2, where L denotes the total
number of training steps. Here we rescaled the values for each validation problem
to be in the interval [0, 1]. We tested our model every 100 training steps and the
validation metric was evaluated at time T = 2. The validation set contains PME
problems with different exponents m generated randomly.

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 5200 5600 6000 6400 6800 7200 7600 8000

Number of training steps

0.2

0.4

0.6

0.8

1.0

LO
S
S
M
S
E
(u

)
*

Figure 7.2: Training evolution corresponding to PME: The values (7.57) for different
validation problems evaluated each 100 training steps.

In some cases, we see that the values increase slightly as the number of iterations
increases. This is because we want to optimize the method for a wide range of
parameters m and also over the entire time domain. However, we conclude that in
most cases, which we demonstrate later in the tables and figures, the improvement
outweighs a slight increase in the error that occurs in a rather small number of cases.
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We take the model obtained after the 6800th training step as our final WENO-DS
scheme. We see, that longer training leads to the further increase of the validation
metric values for some problems, so the suboptimal results would be obtained.

We show the results on problems from the test set. These were not in the training
or validation set. In Figure 7.3 we present the solution of the PME for m = 2, 4. We
observe that WENO-DS yields a better solution in the regions where discontinuity
occurs. This also affects the L∞ and L2 errors, whose values we compare in Table
7.1. We compare the errors for different parameters m and T and highlight the best
performing WENO method in bold. We realize that our new method outperforms
the MWENO method in most cases.
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Figure 7.3: Comparison of the MWENO and WENO-DS methods for the numerical
solution of the PME with various parameter values m, I = 64.

Finally, we demonstrate the theoretically proven sixth-order accuracy for a heat
equation with smooth initial condition given by

ut = uxx, u(x, 0) = sin(x), −π ≤ x ≤ π, 0 ≤ t ≤ 1. (7.58)

The exact solution for this example is

u(x, t) = e−t sinx, (7.59)

and we take the Dirichlet boundary conditions from the exact solution for this case.
The results can be found in Table 7.2 and we observe that with increasing number of
space steps, the sixth-order accuracy is ensured. Let us note, that we used for these
results the same WENO-DS scheme which was an output of the learning procedure
for the PME with the Barenblatt solution. We also did not retrain the CNN for
different values of I.
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L∞ L2

m MWENO WENO-DS ratio MWENO WENO-DS ratio
2 0.003257 0.001185 2.75 0.002689 0.001012 2.66
3 0.017395 0.014086 1.23 0.011163 0.008894 1.26
4 0.045135 0.040594 1.11 0.028080 0.025064 1.12
5 0.112800 0.103776 1.09 0.069098 0.063693 1.08
6 0.177022 0.169391 1.05 0.108670 0.104124 1.04
7 0.088695 0.089579 0.99 0.057645 0.058244 0.99
8 0.175060 0.179941 0.97 0.109320 0.111882 0.98

(a) T = 1.2

L∞ L2

m MWENO WENO-DS ratio MWENO WENO-DS ratio
2 0.004877 0.003597 1.36 0.003013 0.002379 1.27
3 0.010907 0.007652 1.43 0.008057 0.005233 1.54
4 0.032591 0.029520 1.10 0.020487 0.018448 1.11
5 0.104031 0.097498 1.07 0.063717 0.059737 1.07
6 0.219481 0.212963 1.03 0.134668 0.130745 1.03
7 0.028863 0.015848 1.82 0.018625 0.010251 1.82
8 0.013782 0.013900 0.99 0.010280 0.011442 0.90

(b) T = 1.5

L∞ L2

m MWENO WENO-DS ratio MWENO WENO-DS ratio
2 0.001235 0.001179 1.05 0.000952 0.000933 1.02
3 0.058471 0.056152 1.04 0.036008 0.034656 1.04
4 0.026741 0.017827 1.50 0.016951 0.011218 1.51
5 0.101398 0.092330 1.10 0.062115 0.056666 1.10
6 0.201053 0.193171 1.04 0.123476 0.118773 1.04
7 0.052631 0.040715 1.29 0.033208 0.025414 1.34
8 0.043306 0.037332 1.16 0.027796 0.023919 1.16

(c) T = 2

Table 7.1: Comparison of L∞ and L2 errors of MWENO and WENO-DS methods
for the solution of the PME with various parameter m and T , I = 64.

MWENO WENO-DS MWENO WENO-DS
I L∞ Order L∞ Order L2 Order L2 Order
10 2.627199e-05 - 7.095802e-06 - 3.844220e-05 - 1.036139e-05 -
20 3.054176e-07 6.426599 2.211357e-07 5.003962 4.936423e-07 6.283081 3.548918e-07 4.867694
40 4.419994e-09 6.110595 4.325358e-09 5.675969 7.496621e-09 6.041082 7.310297e-09 5.601305
80 7.274142e-11 5.925123 7.267770e-11 5.895163 1.260358e-10 5.894334 1.258981e-10 5.859601
160 1.198763e-12 5.923158 1.198652e-12 5.922028 2.100673e-12 5.906838 2.100448e-12 5.905416

Table 7.2: L∞ and L2 errors with convergence order of MWENO and WENO-DS
on equation (7.58).
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7.6.2 Interaction of two boxes for the porous medium
equation

In this example, we consider the collision of two boxes for the PME (7.3). This
is a test example presented e.g. in [51, 74]. Considering u as temperature, this
model describes how the temperature changes when two hot spots are placed in the
computational domain.

We apply the WENO-DS method from Section 7.6.1 in this example. To show its
generalizability we did not retrain the CNN for this type of initial data and apply
the method directly. First, we take the initial condition for the two-box solution
with the same height

u(x, 0) =

{
1, x ∈ (−3.7,−0.7) ∪ (0.7, 3.7),

0, otherwise,
(7.60)

and m = 5 in (7.3). We use the computational domain [−6, 6] and zero Dirichlet
boundary conditions u(±6, t) = 0 for t > 0. The computational domain is divided
into I = 128 uniform cells. We present the solution for multiple instances of T in
Figure 7.4. We present the solution of the WENO-DS method and the MWENO
method in comparison with the reference solution obtained by the MWENO method
with I = 1024.

6 4 2 0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

u

MWENO
WENO-DS
ref. sol.

(a) T = 0.3

6 4 2 0 2 4 6
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

u

MWENO
WENO-DS
ref. sol.

(b) T = 0.6
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Figure 7.4: Interaction of two boxes for the PME (same height), I = 128.
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Next, we consider the initial condition for the two-box solution with different height

u(x, 0) =


1, x ∈ (−4,−1),
2, x ∈ (0, 3),

0, otherwise,
(7.61)

and m = 6 in (7.3). We impose zero Dirichlet boundary conditions u(±6, t) = 0
for t > 0 and divide the computational domain into I = 128 uniform cells. We
again compare both methods with the reference solution for several instances of T
in Figure 7.5.

We find that the WENO-DS method is able to capture the sharp interface very well
and in most cases easily outperforms the MWENO method near discontinuities even
without additional retraining of the CNN.

6 4 2 0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

u

MWENO
WENO-DS
ref. sol.

(a) T = 0.02

6 4 2 0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

u

MWENO
WENO-DS
ref. sol.

(b) T = 0.06
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Figure 7.5: Interaction of two boxes for the PME (different height), I = 128.

7.6.3 The convection-diffusion Buckley-Leverett equation

In the next example we solve the convection-diffusion Buckley–Leverett equation of
the form

ut + f(u)x = ϵ
(
ν(u)ux

)
x
, ϵ ν(u) ≥ 0. (7.62)

This is a prototype model for oil reservoir simulations (two-phase flow). In our test
we choose ϵ = 0.01 and the flux function

f(u) =
u2

u2 + a(1− u)2
(
1− g(1− u)2

)
, (7.63)
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where a < 1 is a constant representing the ratio of the viscosities of the two fluids
and g is a gravitational effect. Usually, ν(u) vanishes at some points so the equation
(7.62) is a degenerate parabolic equation. Moreover, the sign of f ′(u) changes its
sign, so the handling of the flux is more complicated. We choose

ν(u) =

{
4u(1− u), 0 ≤ u ≤ 1,

0, otherwise,
(7.64)

so we obtain the parabolic term in a form

b(u) =


0, u < 0,

ϵ (2u2 − 4
3
u3), 0 ≤ u ≤ 1,

2
3
ϵ, u > 1.

(7.65)

The initial condition reads

u(x, 0) =

{
0, 0 ≤ x ≤ 1− 1√

2
,

1, 1− 1√
2
< x ≤ 1,

(7.66)

and we divide the computational domain into 128 uniform cells.

In the training we proceed as described in Section 7.4. As there exists no analytical
solution in this case, we first create our data set, where we compute the reference
solutions on a fine grid for the equation (7.62). In this data set we consider the
constants a ∈ U [0.1, 0.95] and g ∈ U [0, 6], divide the computational domain [0, 1]
into 1024 uniform cells and compute the solution up to time T = 0.1. We use
the MWENO method (Section 7.1.3) combined with the WENO-Z method (Section
5.1.3) for the computation of these reference solutions.

We use in this example the same CNN structure as in the previous example, which
can be found in Figure 7.1. In the training we optimize not only the WENO-DS
method to approximate the parabolic term, but also the WENO-DS to approximate
the hyperbolic term. The structure of the CNN remains the same for both cases. We
run the training for the total number of 12000 training steps, use the loss function
(7.45) and the Adam optimizer with the learning rate 10−4.

We created a validation set with 12 different combinations of a and g generated
randomly. On this set, we tested our model every 200 training steps. As a validation
metric, we used the same loss function (7.45). The Figure 7.6 shows how the value
of the loss function changes as the number of training steps increases. We scaled
the loss values again according to equation (7.57) so that they are in [0, 1]. We see,
there is one problem, for which the best error value after around 6000th training
step is obtained. However, for most of the validation problems is the optimal value
obtained after around 10000th training step. We choose the model obtained after
10000th training step and present the results computed with this model.

We present the numerical solutions of the Buckley-Leverett equation in Figure 7.7.
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Figure 7.6: Training evolution corresponding to Buckley-Leverett equation: The
values (7.57) for different validation problems evaluated each 200 train-
ing steps.

We observe that our scheme provides a high quality of numerical solutions for both
of these problems. Further, we compare the L∞ and L2 errors of the problems from
the test set with various parameters a and g in Table 7.3. We see, that in all cases
our method provides significantly smaller errors.
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Figure 7.7: Comparison of the original WENO (WENO-Z combined with MWENO)
and WENO-DS methods for the numerical solution of the Buckley-
Leverett equation with various parameters a and g, T = 0.1, I = 128.

Further, in Table 7.4 we compare the method for different values of final time
T . We see, that in all presented examples, WENO-DS outperforms the standard
WENO scheme. Finally, we also present the results using WENO-DS for initial
value problems with parameters outside of training intervals. During training and
validation, we used g ∈ U [0, 6] and in Table 7.5 also different values of g can be
found. As it can be seen, WENO-DS exhibits in almost all cases smaller errors,
which justifies its ability to generalize also for parameters outside of the training
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L∞ L2

a g WENO WENO-DS ratio WENO WENO-DS ratio
1 5 0.102771 0.063320 1.62 0.009442 0.006067 1.56
1 0 0.037256 0.025136 1.48 0.003709 0.002678 1.39
1 3 0.081126 0.054823 1.48 0.007497 0.005241 1.43

0.75 5 0.065215 0.015867 4.11 0.006346 0.002875 2.21
0.75 4 0.077982 0.045051 1.73 0.007096 0.004780 1.48
0.5 5 0.086089 0.042398 2.03 0.008228 0.005991 1.37
0.5 2 0.045176 0.028982 1.56 0.004495 0.003139 1.43
0.5 1 0.030054 0.020181 1.49 0.003729 0.002869 1.30
0.3 3 0.035122 0.022353 1.57 0.004715 0.003156 1.49
0.25 4 0.083372 0.042914 1.94 0.007815 0.004863 1.61

Table 7.3: Comparison of L∞ and L2 errors of original WENO (WENO-Z combined
with MWENO) and WENO-DS methods for the solution of the Buckley-
Leverett equation with various parameters a and g, T = 0.1, I = 128.

intervals. Some corresponding solutions can be found in Figures 7.8 and 7.9.

L∞ L2

T a g WENO WENO-DS ratio WENO WENO-DS ratio
0.05 1 5 0.060583 0.017233 3.52 0.006100 0.003041 2.01

1 0 0.054741 0.043503 1.26 0.005102 0.004072 1.25
0.5 2 0.024727 0.018818 1.31 0.003381 0.002406 1.41
0.5 1 0.046306 0.034351 1.35 0.004535 0.003500 1.30

0.2 1 5 0.073220 0.027178 2.69 0.007083 0.003397 2.08
1 0 0.040422 0.027967 1.45 0.003958 0.002892 1.37

0.5 2 0.051640 0.035332 1.46 0.005300 0.003984 1.33
0.5 1 0.039442 0.030854 1.28 0.004894 0.004037 1.21

Table 7.4: Comparison of L∞ and L2 errors of original WENO (WENO-Z combined
with MWENO) and WENO-DS methods for the solution of the Buckley-
Leverett equation with various parameters a, g and T , I = 128.

L∞ L2

a g WENO WENO-DS ratio WENO WENO-DS ratio
0.5 9 0.060009 0.050158 1.20 0.007302 0.006641 1.10
0.75 6.5 0.087736 0.045176 1.94 0.008087 0.005339 1.51
0.25 7 0.146946 0.086604 1.70 0.013598 0.007966 1.71
0.6 8 0.075668 0.064403 1.17 0.007357 0.007401 0.99
0.25 9 0.168730 0.102940 1.64 0.016187 0.010527 1.54

Table 7.5: Comparison of L∞ and L2 errors of original WENO (WENO-Z combined
with MWENO) and WENO-DS methods for the solution of the Buckley-
Leverett equation with various parameters a and g, T = 0.05, I = 128.
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(a) a = 0.5, g = 2, T = 0.05
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Figure 7.8: Comparison of the original WENO (WENO-Z combined with MWENO)
and WENO-DS methods for the numerical solution of the Buckley-
Leverett equation with various parameters a, g and T , I = 128.
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(a) a = 0.75, g = 6.5
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(b) a = 0.25, g = 7

Figure 7.9: Comparison of the original WENO (WENO-Z combined with MWENO)
and WENO-DS methods for the numerical solution of the Buckley-
Leverett equation with various parameters a and g, T = 0.05, I = 128.

7.6.4 The strongly degenerate parabolic convection-diffusion
equation

In this example we test the method trained on the Buckley-Leverett data from
Section 7.6.3. We do not retrain the method and apply it to the strongly degenerate
parabolic convection-diffusion equation of the form specified by (7.62). Here we
want to show the ability of WENO-DS to generalize on completely different and
unseen problem. This is a benchmark example presented e.g. in [51, 63, 74]. We
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take ϵ = 0.1, f(u) = u2 and

ν(u) =

{
0, |u| ≤ 0.25,

1, |u| > 0.25.
(7.67)

This leads to a fact, that the equation is hyperbolic if u ∈ [−0.25, 0.25] and parabolic
elsewhere. The parabolic term takes a form

b(u) =


ϵ (u+ 0, 25), u < −0.25,
ϵ (u− 0, 25), u > 0.25,

0, u ≤ |0.25|.
(7.68)

The initial condition is taken as

u(x, 0) =


1, − 1√

2
− 0.4 < x ≤ − 1√

2
+ 0.4,

−1, 1√
2
− 0.4 < x ≤ 1√

2
+ 0.4,

0, otherwise.
(7.69)

We use the zero Dirichlet boundary conditions and compute the solution to the final
time T = 0.7 with I = 128, I = 256 and I = 512. We present the numerical results
in Figure 7.10 and see that our method is able to capture the discontinuities and
sharp interfaces very well. The reference solution is obtained using MWENO and
WENO-Z method with I = 1024.
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(a) I = 128
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Figure 7.10: Numerical solution of the strongly degenerate parabolic equation, T =
0.7.

Moreover, we compare the errors in Table 7.6. Even that the method was trained
on completely different training data and only with fixed discretization I = 128,
we observe also for this example for all listed discretizations significantly smaller
errors.
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L∞ L2

I WENO WENO-DS ratio WENO WENO-DS ratio
128 0.055785 0.044574 1.25 0.022787 0.017108 1.33
256 0.070881 0.061685 1.15 0.015399 0.012447 1.24
512 0.042206 0.019863 2.12 0.006297 0.004056 1.55

Table 7.6: Comparison of L∞ and L2 errors of original WENO (WENO-Z combined
with MWENO) and WENO-DS methods for the solution of the strongly
degenerate parabolic equation for various spatial discretizations, T = 0.7.

7.6.5 Two-dimensional porous medium equation with the
Barenblatt solution

In the next example we solve the two-dimensional PME of the form

ut = (um)xx + (um)yy, m > 1. (7.70)

As an initial condition we use a Barenblatt solution (7.54) at time t = 1 with
d = 2. In this case, the Barenblatt solution has no derivative at the points of the
circle x2 + y2 =

√
4m

α(m−1)
tα, with α = 1

m
. We choose the computational domain

Ω = [−10, 10] and zero Dirichlet boundary conditions u = 0 on the boundary ∂Ω.
We divide the computational domain into 64× 64 space grid points.

In our training we proceed analogously to the one-dimensional PME example and
again simulate the equation (7.70) for m ∈ U(2, 8) to make the final numerical
scheme more robust. We use the same CNN structure as described in Figure 7.1,
the same loss function (7.56) and Adam optimizer with the learning rate 0.01 to
update the weights. We show the progress of the validation metric function (7.57) in
Figure 7.11 and see that the low values are obtained after a few first training steps.
We choose the model obtained after the 500th training step, where we consider the
method to be most effective.

Alternatively, we can use the method which was an output of the training procedure
for the one-dimensional PME from the Section 7.6.1. We compare the errors of the
both methods in Table 7.7. We see that the results are very similar and also the
method trained on a one-dimensional example (and on one-dimensional data) can be
reliably used in more-dimensional space. This observation can be very useful when
the computation of a reference solution in more dimensions becomes too demanding.
Figure 7.12 illustrates the solution for m = 2.
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Figure 7.11: Training evolution corresponding to two-dimensional PME: The values
(7.57) for different validation problems evaluated each 100 training
steps.

L∞ L2

m MWENO WENO-
DS (2d
model)

ratio WENO-
DS (1d
model)

ratio MWENO WENO-
DS (2d
model)

ratio WENO-
DS (1d
model)

ratio

2 0.009582 0.008360 1.15 0.008085 1.19 0.000836 0.000666 1.26 0.000653 1.28
3 0.055924 0.052861 1.06 0.053215 1.05 0.004178 0.003820 1.09 0.003899 1.07
4 0.102970 0.104187 0.99 0.105067 0.98 0.009584 0.009167 1.05 0.009303 1.03
5 0.191146 0.185514 1.03 0.188885 1.01 0.015311 0.014862 1.03 0.015068 1.02
6 0.154870 0.141617 1.09 0.141799 1.09 0.012903 0.012299 1.05 0.012395 1.04
7 0.268363 0.269613 1.00 0.270895 0.99 0.019981 0.019323 1.03 0.019663 1.02
8 0.298711 0.299875 1.00 0.300904 0.99 0.021872 0.021466 1.02 0.021751 1.01

Table 7.7: Comparison of L∞ and L2 errors of MWENO and WENO-DS methods
for the solution of the PME with various parameters m, d = 2, T = 2,
64× 64 cells.

7.6.6 Interaction of two bumps for two-dimensional porous
medium equation

In this test case, taken from [51, 74], we solve the two-dimensional PME

ut = (u2)xx + (u2)yy, (7.71)

with the initial condition

u(x, y, 0) =


exp

( −1
6−(x−2)2−(y+2)2

)
, (x− 2)2 + (y + 2)2 < 6,

exp
( −1
6−(x+2)2−(y−2)2

)
, (x+ 2)2 + (y − 2)2 < 6,

0, otherwise.
(7.72)

We use the computational domain Ω = [−10, 10] and zero Dirichlet boundary con-
ditions u = 0 on the boundary ∂Ω.

We present the solution using the WENO-DS method from the Section 7.6.1. We
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Figure 7.12: Numerical solution of the PME with d = 2, m = 2, T = 2, 64 × 64
cells.

did not retrain the CNN and applied the method directly. The solution for T = 0,
0.5, 1, 4 can be found in Figure 7.13. This agrees very well with the solution
presented in [51, 74] and no noticeable oscillations are present.

Moreover, we compare the L∞ and L2 errors in Table 7.8. We compare the error
values of a numerical solution computed on three different grid discretizations with a
reference solution, which was computed on the spatial discretization with 512×512
cells using the MWENO method.

We used the method trained only on one-dimensional data with a Barenblatt solu-
tion and on fixed spatial discretization I = 64 and another ability of the WENO-DS
scheme to generalize can be observed. In all presented cases we obtain improving
results.

7.6.7 Two-dimensional Buckley-Leverett equation

As a last example we solve the two-dimensional Buckley-Leverett equation of the
form

ut + f1(u)x + f2(u)y = ϵ (uxx + uyy), (7.73)

with ϵ = 0.01 and the flux functions

f1(u) =
u2

u2 + (1− u)2
, f2(u) = f1(u)

(
1− 5(1− u)2

)
. (7.74)
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Figure 7.13: Numerical solution of the PME (7.71) with the initial condition (7.72),
64× 64 cells.

We solve equation (7.73) with the WENO-DS method trained on the one-dimensio-
nal Buckley-Leverett equation from Section 7.6.3. We divide the computational
domain [−1.5, 1.5]× [−1.5, 1.5] into 128× 128 uniform cells and solve the equation
with the initial condition

u(x, y, 0) =

{
1, x2 + y2 < 0.5,

0, otherwise.
(7.75)

The results at time T = 0.5 are presented in Figure 7.14 and agree with the results
shown in [63]. With this example we demonstrate that the method trained on one-
dimensional data can be easily applied also in more dimensions and provides a high
quality numerical solution to the equation with a nonlinear, degenerate diffusion.

Also in this example, we computed the reference solution using standard WENO
schemes on a grid with 512× 512 cells. We compare the corresponding L∞ and L2

errors for different discretizations in Table 7.9. As can be seen, we obtain significant
error improvements for all listed discretizations.
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L∞ L2

T MWENO WENO-DS ratio MWENO WENO-DS ratio
0.5 0.013753 0.010850 1.27 0.001600 0.001233 1.30
1 0.011237 0.009137 1.23 0.001218 0.000937 1.30
4 0.004572 0.003315 1.38 0.000529 0.000415 1.27

(a) 64× 64 cells.
L∞ L2

T MWENO WENO-DS ratio MWENO WENO-DS ratio
0.5 0.014062 0.011446 1.23 0.000435 0.000313 1.39
1 0.005134 0.004037 1.27 0.000311 0.000222 1.40
4 0.002036 0.001585 1.29 0.000135 0.000101 1.34

(b) 128× 128 cells.
L∞ L2

T MWENO WENO-DS ratio MWENO WENO-DS ratio
0.5 0.004720 0.003250 1.45 0.000115 0.000070 1.64
1 0.001594 0.001078 1.48 0.000077 0.000049 1.56
4 0.000780 0.000512 1.52 0.000037 0.000030 1.25

(c) 256× 256 cells.

Table 7.8: Comparison of L∞ and L2 errors of MWENO and WENO-DS methods
for the solution of the PME (7.71) with the initial condition (7.72) and
various parameters T .
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Figure 7.14: Numerical solution of the two-dimensional Buckley-Leverett equation
at T = 0.5. 256× 256 cells.
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L∞ L2

I × I MWENO WENO-DS ratio MWENO WENO-DS ratio
64× 64 0.349060 0.331053 1.05 0.026759 0.020641 1.30
128× 128 0.294226 0.255652 1.15 0.013842 0.010647 1.30
256× 256 0.117042 0.087451 1.34 0.004047 0.002192 1.85

Table 7.9: Comparison of L∞ and L2 errors of MWENO and WENO-DS methods
for the solution of the two dimensional Buckley-Leverett equation (7.73)
with the initial condition (7.75) and various spatial discretizations.



8 Chapter 8

Deep smoothness WENO
scheme with application in
computational finance

The WENO scheme has broad applications not only in the area of hyperbolic conser-
vation laws or nonlinear degenerate parabolic equations, but also in the area of the
computational finance. In computational finance problems, we often face the prob-
lems with discontinuous initial or terminal data. Therefore, in 2015 the authors
Hajipour and Malek applied the WENO scheme to the option pricing problems
[36, 37]. The method was shown to be effective and non-oscillatory when solving
the Black-Scholes equation. Further in [77], the application of the WENO method
for the Asian option pricing problem can be found. A detailed study of application
the WENO method in the area of computational finance was done in [56]. Here,
not only option pricing problems, but also portfolio optimization problems were
considered.

In this chapter we use the newly developed WENO-DS method for solving the
Black-Scholes equation:

Vt +
1

2
σ2S2VSS + rSVS − rV = 0, t ∈ [0, T ], (8.1)

where S is the price of an underlying asset at time t, r > 0 is the riskless interest
rate and σ2 is the volatility.

Although the WENO scheme should avoid the spurious oscillations in the solution,
they are still present in some cases, especially in the first time steps of the numerical
solution. This motivates us to use the enhanced WENO-DS scheme presented in
Chapters 5 and 7 for solving the European digital option pricing problem with the
following terminal and boundary conditions:

V (S, T ) =

{
1, if S ≥ K,

0, if S < K,

V (S, t)→ 0, for S → 0, V (S, t)→ e−r(T−t), for S →∞,

(8.2)

with K being a strike price.
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We first use the following variable transformation:

S = Kex, τ = T − t, V (S, t) = Ku(x, τ), (8.3)

and substitute this into (8.1) and (8.2). Then we obtain the (forward-in-time) PDE:

uτ =
σ2

2
uxx +

(
r − σ2

2

)
ux − ru, x ∈ R, 0 ≤ τ ≤ T, (8.4)

with the transformed boundary conditions

u(x, t) = 0, for x→ 0, u(x, t) = e−rτ/K, for x→∞. (8.5)

8.1 Problem formulation

Let us consider the equation (8.4). This is a diffusion-convection-reaction PDE of
the form

∂u(x, τ)

∂τ
= a0

∂2u(x, τ)

∂x2
+ a1

∂u(x, τ)

∂x
+ a2u(x, τ), (x, τ) ∈ Ω× (0,∞), (8.6)

where a0, a1 and a2 are constant coefficients. We introduce the uniform spatial grid
defined by the points xi = x0 + i∆x, i = 0, . . . , I.

We consider the WENO discretization for diffusion and convection terms and we
obtain the following semi-discrete formulation:

dui(τ)

dt
= a0

ûi+ 1
2
− ûi− 1

2

∆x2
+ a1

ũi+ 1
2
− ũi− 1

2

∆x
+ a2ui(τ), τ > 0, (8.7)

where ui(τ) approximates pointwise u(xi, τ) and ûi+1/2 = û(ui−2, . . . , ui+3), ũi+1/2 =
ũ(ui−2, . . . , ui+2) are the numerical flux functions. In order to obtain these values,
the WENO-DS discretization is used. This is done as described in Chapters 5 and
7.

8.2 Application of deep learning and training
procedure

To obtain the enhanced WENO-DS scheme for solving the European digital option
pricing problem, we train a CNN on a large set of data. We use the CNN structure
described in Figure 8.1. We emphasize that we use a very small CNN with the
adaptive activation functions, as described in Chapter 6 in Section 6.1.1. We use
the same CNN structure for training both WENO-DS for the hyperbolic term and
WENO-DS for the parabolic term of (8.6).
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Figure 8.1: A structure of the CNN used for the European option pricing problem.

For the training, we set K = 50, T = 1, and randomly generate the parameters

σ = 0.31 + max(0.07a,−0.3),
r = 0.11 + max(0.07b,−0.1),

(8.8)

where a and b are normally distributed. Here, the problems with different combina-
tions of σ and r are covered. We use the computational domain [xL, xR] = [−6, 1.5]
partitioned into 100 space steps and use the temporal step size ∆τ = 0.8∆x2/σ2.
As we mentioned earlier, the spurious oscillations mainly occur in the first time
steps of a numerical solution. Therefore, we proceed with a training as follows.

First, the parameters (8.8) are randomly generated. We initialize the weights of
the CNN randomly and perform a single time step of a solution. We compute the
values udiff1, udiff2, which represent an effective preprocessing of the solution from
the current time step, since they give us information about the smoothness of the
solution. They are given by

udiff1,i = ū(x̄i+1)− ū(x̄i−1), udiff2,i = ū(x̄i+1)− 2ū(x̄i) + ū(x̄i−1), (8.9)

with

x̄i = (xi−k, xi−k+1, . . . , xi+k),

ū(x̄i) =
(
u(xi−k), u(xi−k+1), . . . , u(xi+k)

)
,

(8.10)

where 2k+1 is the size of the receptive field of the whole CNN. They are then used
as input values for the first hidden layer. Next we calculate the loss defined by

LOSS(u) =
I−1∑
i=0

[
max(ûi − ûi+1, 0)

]
, (8.11)

where ûi is a numerical approximation of u(xi). This loss is positive, if the ap-
proximation of the solution is decreasing in x (in true solution it should be only
increasing), so we test the monotonicity of the solution. After that, the gradient
with respect to the weights of the CNN is calculated using the backpropagation
algorithm. Then, the Adam optimizer [55] with a learning rate of 0.001 is used to
update the weights. Next, we test the model on a validation set and repeat the
above steps with newly generated parameters (8.8). We emphasize, that we train
the CNN for randomly generated initial data but only on the first time step of a
numerical solution. This is the solution which is most likely to obtain spurious
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oscillations, which we want to avoid. After the training, we select the weights from
the training step, at which the model performed best on the validation problems.

It should be noted that for the temporal discretization, we use a third-order TVD
Runge-Kutta method [100], imposing intermediate boundary conditions as in [37].

8.3 Numerical results

Let us present the numerical results of the training procedure described before.
In Figure 8.2, we show the evolution of the loss values for the problems from the
validation set. We rescale the values (8.11) to be in interval [0, 1] using

LOSS∗(u) =
LOSSl(u)

max
l=0,...,L

(LOSSl(u))
, l = 0, . . . , L, (8.12)

where L denotes the total number of training steps. We see that the loss is decreasing
and select the model obtained after the last training step as our final WENO-DS
scheme.
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Figure 8.2: Training evolution corresponding to European digital option example:
The values (8.12) for different validation problems.

We compare the solution at the first time step in Figure 8.3 and see that the WENO-
DS reliably eliminates the oscillations that occur when using the original WENO
scheme (WENO-Z scheme [13] for the approximation of the hyperbolic term and
MWENO scheme [35] for the approximation of the parabolic term).

In most cases, the original WENO scheme is able to handle these oscillations with
increasing number of time steps. However, in some cases the oscillations are still
present. Figure 8.4 shows the solution at time T = 1 and we see that our method
produces a smooth solution in contrast to the original WENO method.
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Figure 8.3: Comparison of the classical WENO (WENO-Z combined with
MWENO) and WENO-DS methods, I = 100. Solution at the first
time step.
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(c) σ = 0.263 and r = 0.196
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Figure 8.4: Comparison of the classical WENO (WENO-Z combined with
MWENO) and WENO-DS methods, I = 100. Solution at the last
time step, T = 1.

We compare the L∞ and L2 errors in Table 8.1 and show that the WENO-DS method
exhibits smaller errors in most cases. Thus, we are not only able to eliminate the
spurious oscillations, but also improve the quality of the numerical solution.
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L∞ L2

σ r WENO WENO-DS WENO WENO-DS
0.28 0.13 0.000933 0.000934 0.000660 0.000660
0.1 0.05 0.002751 0.002753 0.001196 0.001193
0.3 0.2 0.001120 0.000811 0.000650 0.000594
0.2 0.1 0.001833 0.001335 0.000890 0.000803
0.15 0.05 0.002446 0.001823 0.001055 0.000971
0.4 0.1 0.000676 0.000676 0.000570 0.000569
0.3 0.05 0.000945 0.000945 0.000691 0.000691
0.4 0.15 0.000641 0.000641 0.000542 0.000542

0.263 0.196 0.001206 0.000926 0.000671 0.000637
0.292 0.181 0.001107 0.000853 0.000655 0.000614

Table 8.1: Comparison of the L∞ and L2 errors of original WENO (WENO-Z com-
bined with MWENO) and WENO-DS methods for the solution of the
transformed Black-Scholes equation (8.4) with various parameters σ and
r, I = 100.

As we demonstrated in this section, WENO-DS significantly improve the quality of
the numerical solutions, even in the cases, when the classical WENO scheme does
not handle the oscillations properly.



9 Chapter 9

Conclusion and outlook

This thesis has been dedicated to the improvement of standard numerical schemes
using deep learning. First, in Chapter 1, we have given the reader an overview of
deep learning in order to better understand the techniques used in the rest of this
thesis.

After providing detailed literature review of existing deep learning algorithms in
numerical mathematics in Chapter 2, we developed a new deep learning based finite
difference scheme for solving PDEs, which we call Deep FDM, in Chapter 3. This
numerical scheme is based on an approximation of the local discretization error and
remains consistent and convergent. We have shown that this approach can be easily
extended to other numerical schemes, such as compact FDMs. The scheme is easy
to use and provides improved numerical results, which are demonstrated on the
examples presented. We have shown that the method generalizes well, i.e. it gives
good results for parameters outside the training region, and remains time efficient
even when the small neural network part is added.

The second part of this thesis includes a comprehensive study on the improvement
of the WENO scheme using deep learning. In Chapter 4, we first introduced the
hyperbolic conservation laws and the basic mathematical background.

In Chapter 5, we presented the methodology for improving the standard WENO
schemes using deep learning. We first introduced the standard WENO schemes in
more detail and then presented our approach. This is based on a modification of the
smoothness indicators of the WENO method. To do this, we trained a relatively
small neural network, but the smoothness indicators alone were not the output of the
training procedure, but only the multiplicative perturbations of them. This ensures
consistency of the scheme, and no additional post-processing is required. We have
applied our improvement to the WENO-Z scheme, where the (formal) fifth-order
accuracy of the smooth solutions can be proved analytically. Our new method,
the WENO-DS scheme significantly improves the numerical results, especially in
the presence of discontinuities, even for cases that have not been trained. We have
demonstrated our results on the the Buckley-Leverett equation and inviscid Burgers
equation. We have shown that the method can efficiently solve problems in more
dimensional space without additional retraining.

Furthermore, in Chapter 6, we extended the previously discussed approach for solv-
ing one- and two-dimensional Euler systems of gas dynamics. We implemented nu-
merous benchmark examples and demonstrated the superiority of WENO-DS over
the standard WENO-Z scheme. In addition, a more effective training procedure is
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presented in this chapter.

In Chapter 7, we developed the WENO-DS scheme for the solution of nonlinear
degenerate parabolic equations. Using deep learning techniques, we improved the
smoothness indicators of the original WENO method and applied our improvement
to the MWENO scheme. We preserved the sixth-order accuracy and proved it
theoretically. On one- and two-dimensional benchmark examples from the litera-
ture, we showed that the WENO-DS method outperforms the MWENO scheme in
the challenging examples of nonlinear degenerate parabolic equations, and remains
sixth-order accurate in smooth regions of the domain.

Finally, in Chapter 8, we applied the WENO-DS method to computational finance
problems, namely the European digital option pricing problem with discontinuous
terminal data. In this problem, the spurious oscillations are present in the solution
when the standard WENO schemes are used. We have shown that they can be
successfully eliminated using the WENO-DS method.

9.1 Highlights of the thesis and outlook

To conclude this thesis, we would like to list its main highlights and present ideas
for future research.

The main advantages of the developed Deep FDM scheme include

• The approach can be seen as a proof of concept that deep learning can be easily
used to approximate the local discretization error of the numerical scheme for
solving PDEs.

• The scheme is simple to use and straightforward to implement, making it easy
to generalize to other standard numerical schemes.

In our future work, we will further investigate this approach by applying it to more
innovative numerical schemes and to more challenging examples.

Key highlights of the next proposed WENO-DS schemes include

• By seamlessly integrating deep learning techniques into the WENO algorithm,
we have successfully improved the accuracy of numerical solutions, especially
in regions close to abrupt shocks.

• Unlike previous attempts to incorporate deep learning into numerical meth-
ods, this approach is unique in that it eliminates the need for additional
post-processing steps and ensures consistency throughout. The correspond-
ing proofs of the formal order of accuracy can be found in this thesis.

• The deep learning-based smoothness indicator in WENO-DS schemes pre-
serves the conservative nature of the method, ensuring that WENO-DS pro-
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duces the correct numerical solution.

• We have also demonstrated that the trained neural networks from one test case
can be directly applied to another test case without any additional training.
This demonstrates the effectiveness of the trained neural networks in dealing
with unseen test cases. Such a strategy has the potential to increase the
efficiency of integrating deep learning methods, especially for tackling large-
scale computational problems.

• This study demonstrates the superiority of the WENO-DS approach by a
comprehensive investigation of various test problems, including scenarios in-
volving shocks and rarefaction waves. The results consistently show the en-
hanced capabilities of the approach, which surpass those of traditional fifth-
and sixth-order WENO schemes, particularly in addressing challenges such as
excessive diffusion or overshooting around shocks.

In summary, the WENO-DS approach represents a significant advance in the field
of numerical methods for hyperbolic conservation laws. The incorporation of deep
learning techniques has not only improved the accuracy, but also the qualitative
behavior of the solutions, both in smooth regions and near discontinuities. This
research paves the way for future developments at the intersection of traditional
numerical methods and machine learning, and offers a promising direction for fur-
ther progress in solving complex PDEs.

In future work, we will extend our investigation to a wider range of test cases,
including complex flow patterns and diverse boundary conditions. We intend to
include extended test cases that include the investigation of complex shock interac-
tions, turbulence and a variety of boundary conditions. In addition, we will perform
scalability studies to assess how the approach behaves as the problem size increases.
These investigations aim to deepen our understanding of the robustness and gen-
eralizability of the WENO-DS approach, thereby strengthening its position in the
field of numerical solution methods.
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