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Abstract

This dissertation presents the measurement of the t-channel production of single
top quarks and antiquarks using the complete Run 2 dataset recorded by the
ATLAS detector. The cross-section of the process is measured separately for
top quark and top antiquark production. Additionally, the ratio of these cross-
sections, denoted as Rt, is also determined. The methodology involves a cut-
based selection, a neural network for signal separation, and a binned maximum
likelihood fit. The full Run 2 dataset from the ATLAS detector encompasses
an integrated luminosity of Lint = 140 fb−1 from proton-proton collisions at a
center-of-mass energy of

√
s = 13 TeV. The total cross-sections are measured

to be σ(tq) = 137+8
−8 pb for top-quark production and σ(t̄q) = 84+6

−5 pb for top-
antiquark production. The combined cross-section is determined to be σ(tq +
t̄q) = 221+13

−13 pb, and the cross-section ratio is Rt = σ(tq)/σ(t̄q) = 1.636+0.036
−0.034. The

measured cross-sections align well with the predictions made at the next-to-next-
to-leading order in quantum chromodynamics. The measured total cross-section
is further used to derive a constraint on the CKM matrix element |Vtb| > 0.95 at
the 95% confidence level.
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Introduction

The essence of the scientific method lies in conducting experiments to test various
hypotheses. In the realm of particle physics, the Standard Model (SM) stands as a
robustly established theory, describing the interactions of elementary particles up
to high energies. This model facilitates a plethora of predictions, rigorously tested
through sophisticated experiments. A prime example of such an experimental
setup is the ATLAS detector, situated at the Large Hadron Collider (LHC) at
CERN. Here, protons are brought to collision at extraordinarily high energies,
allowing for the exploration of intricate particle processes.

This thesis describes an analysis of data amassed during the LHC’s 2015–2018
operation period, known as Run 2, comprised of proton-proton collisions, cor-
responding to an integrated luminosity of 140 fb−1, at a center-of-mass energy
of 13 TeV. The SM forecasts an array of phenomena, including specific pro-
cess cross-sections occurring in these high-energy proton-proton collisions. To
scrutinize these SM predictions, the data recorded by the ATLAS detector un-
dergoes extensive analysis, each segment concentrating on different predictive
aspects.

The research presented here, while examining just a fragment of these expansive
predictions, is one component in constructing a comprehensive understanding of
particle physics. Central to this analysis is the investigation of single top-quark
production via weak charged-current interactions in the t-channel, which is the
predominant single top-quark production mechanism at the LHC. This thesis
details the measurements of t-channel top-quark and top-antiquark production
cross-sections, and importantly, their ratio, denoted as Rt. The measurement
of Rt is especially significant, as it benefits from enhanced precision owing to the
cancellation of uncertainties in the ratio.

This study represents a significant advancement over previous ATLAS mea-
surements of t-channel single top quark production, benefiting from a larger
dataset that reduces statistical uncertainties, improved detector calibration, and
more sophisticated theoretical predictions. The statistical analysis of the data
employs a maximum likelihood fit, which effectively minimizes the impact
of systematic uncertainties by refining auxiliary measurements within the se-
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lected dataset. The measurement is interpreted in terms of the strength of
the Wtq vertex, placing a constraint on the absolute value of the CKM matrix
element Vtb.

The event selection in this analysis is specifically tailored to target tq and
t̄q events where W Bosons decay leptonically. The selection criteria include
the presence of one isolated electron or muon, significant missing transverse
momentum, and exactly two hadronic jets with high transverse momentum, one
of which is identified as b-quark-originated. Key efforts are made to minimize
the main backgrounds, namely tt̄ and W+jets production, through cut based
event selection. Special attention is given to mitigating the multijet background,
which poses challenges in simulation. The single top background processes are
the s-channel and tW channel production channels.

A neural network, utilizing kinematic variables as inputs, is deployed to
enhance the separation of signal from background events. The output distribution
of this neural network is then integrated into a binned maximum likelihood fit
to ascertain the cross-sections. This analysis encompasses a comprehensive
range of systematic uncertainties, including those arising from detector sources
and Monte Carlo modeling, thereby ensuring a thorough and robust statistical
analysis.

The first chapter provides a theoretical foundation for the dissertation, offering
an overview of the SM, the simulation of proton-proton collisions, and the particle
processes pertinent to this measurement. Chapter 2 details the LHC and the
ATLAS detector. The production of Monte Carlo samples is outlined in Chapter 3,
while Chapter 4 specifically addresses the estimation of the multijet background.
Chapter 5 discusses the event reconstruction and overlap removal. Following this,
Chapter 6 describes the cut-based event selection and region definition. Chapter 7
explores the further separation of events using a neural network. The uncertainties
impacting the measurement are discussed in Chapter 8. Chapter 9 delves into the
statistical analysis using the maximum likelihood fit and presents the results of
the measurement, analyzing the influence of systematic uncertainties, correlations,
and fit stability. It also examines the dependency of the results on the assumed
top quark mass and interprets the total cross-section as a direct measurement of
the CKM matrix element Vtb.
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1. Theory

The Standard Model (SM) is a quantum field theory that describes the interac-
tions of elementary particles. In the SM, these particles are characterized by
quantized fields. It stands as the most successful framework in particle physics,
encompassing three of the four fundamental forces: electromagnetism, weak
nuclear force, and strong nuclear force, but notably, it does not include gravity.
The fundamental particles of the SM are divided into fermions, which are matter
particles like quarks and leptons, and gauge bosons, which are force-carrying
particles like photons and gluons.

The SM was developed during the 20th century, with significant contribu-
tions [1–4] from several notable physicists such as Sheldon Glashow, Abdus
Salam, and Steven Weinberg, who formulated the electroweak theory in the 1970s.
The theory also integrates the strong nuclear force, as described by Quantum
Chromodynamics (QCD), a framework established through the work of Mur-
ray Gell-Mann [5], George Zweig, and others in the 1960s. The integration of
the electroweak and strong interactions in the 1970s and 1980s completed the
SM as a comprehensive theory of particle interactions. Since then, it has been
extensively tested and validated through numerous experiments and observa-
tions.

This chapter introduces the fundamental concepts of the SM. A more compre-
hensive account, can be found in text books such as [6–8].

1.1. Quantum field theory

Quantum field theory is the result of merging quantum mechanics and special
relativity, providing a framework to describe elementary particles at high energies
where relativistic effects are significant. It addresses the creation and annihilation
of particles, integral to a relativistic understanding of quantum mechanics. In
quantum field theory, fundamental particles are described using fields, and forces
are characterized by the quantum interactions of these particles. The theory
plays a crucial role in modern physics, offering a comprehensive approach to
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1. Theory

describing the behavior and interactions of the most basic constituents of the
universe.

There are several approaches to formulating quantum field theory. One is the
canonical quantization approach, where classical fields are promoted to operators
obeying certain commutation or anti-commutation relations. Another approach
is the path integral formulation, where the theory is defined in terms of path
integrals of classical fields.

In the path integral formulation of quantum field theory the vacuum expecta-
tion value of time ordered products of field operators Φ(x) is given by

〈0|TΦ(x1) . . . Φ(xn)|0〉 =
∫
Dφ φ(x1) . . . φ(xn)eiS[φ]/h̄

where T indicates the time-ordering of the operators before multiplication, Dφ

represents the integration measure over all possible field configuration histories,
and

S[φ] =
∫

d4xL[φ]

is the action. To formulate the path integral for the SM it is necessary to extend
this formalism for multiple fields and introduce Grassmann variables to describe
the fermion fields.

The Lagrangian L plays a fundamental role in the theory by encapsulat-
ing the dynamics of the fields and serving as the mathematical backbone for
describing the interactions and behaviors of elementary particles within the
SM.

Local and global symmetries imposed on the Lagrangian play pivotal roles
in the construction of a consistent physical theory. Global symmetries ensure
that the theory is invariant under transformations applied uniformly across the
entire field, while local symmetries describe invariance under transformations
that change with space-time. Importantly, the predictions of the theory should
be Poincaré invariant. In quantum field theories this can be imposed by con-
structing a Lagrangian that is Poincaré invariant. This also means that the fields
within it should belong to representations of the Lorentz group and transform
accordingly.

The fundamental components of the SM Lagrangian are the scalar two com-
ponent Higgs field, left- and right-handed Weyl spinor fields describing the
fermions, and vector fields describing the gauge bosons. Fermions are classified
into quarks and leptons, organized into three generations ordered by increasing
mass. Each quark generation consists of an up-type and a down-type quark,
while each lepton generation includes a charged lepton and a neutrino. With the
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1.2. Fields and Local Gauge Symmetries

exception of neutrinos, all fermions are present as left-handed and right-handed
fields. The gauge bosons are responsible for the description of the forces of
the theory. The elementary particles described by the SM are summarized in
Figure 1.1.

1.2. Fields and Local Gauge Symmetries

Noether’s theorem [10] establishes that each continuous symmetry in a physical
system corresponds to a conserved quantity. In the Standard Model, the theorem
explains the conservation of charges through its gauge symmetries. The SM
Lagrangian possesses the combined local gauge symmetry

SU(3)× SU(2)×U(1)

where SU(2) and SU(3) are the special unitary groups of degree 2 and 3 and
U(1) is the unitary group of degree 1. The fields in the Lagrangian belong to
representations of these three groups and transform under the gauge symmetries
accordingly.

The quark fields are triplets belonging to the fundamental 3 representation of
the SU(3) group, transforming with

ψ(x)→ eiλa(x)ta
ψ(x)

where ta are the eight generators of the SU(3) group in the fundamental represen-
tation. Here, λa(x) are space-time dependent parameters that define the specific
local transformation at point x, reflecting the local symmetry of the theory. The
conserved charges of the symmetry are called color charges and the theory only
including SU(3) gauge symmetry describes the strong nuclear force and is called
Quantum Chromodynamics (QCD).

For each quark generation the left handed up type and down type quark form
an SU(2) doublet

QL =

(
u
d

)
L

belonging to the fundamental 2 representation while the right handed fields are
SU(2) singlets. Similarly, the left handed leptons of each generation form SU(2)
doublets

EL =

(
νe
e−

)
L
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1. Theory

Standard Model of Elementary Particles
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Figure 1.1.: Summary of elementary particles described by the SM [9]. The
particles are divided into quarks, leptons, gauge bosons and scalar
bosons by color and colored areas in the background indicate which
fermions interact with which bosons.
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1.2. Fields and Local Gauge Symmetries

and the right handed leptons are SU(2) singlets. The Higgs field is a dou-
blet belonging to the 2 representation of SU(2). The SU(2) doublets transform
with

ψ(x)→ eiβa(x)τa
ψ(x)

where τa are the three generators of the SU(2) group in the fundamental rep-
resentation, and βa(x) are space-time dependent parameters that define the
specific local transformation at point x. The conserved charge of the SU(2)
symmetry is the three component weak isospin T. The transformation of the
fermion fields under the U(1) group is determined by their weak hypercharge
Y:

ψ(x)→ eiα(x)Yψ(x)

Here, α(x) is the space-time dependent parameter that defines the local trans-
formation at point x. The left handed leptons have Y = −1 and the right
handed charged leptons have Y = −2. Left handed quarks have Y = 1/3, right
handed up-type quarks have Y = 4/3 and right handed down-type quarks have
Y = −2/3.

The imposed symmetries significantly restrict the allowed terms in the La-
grangian and cause all other approximate and exact global symmetries of the
theory. Furthermore, the local gauge symmetry necessitates the existence of
massless bosonic gauge fields, as they are needed to add derivatives of the spinor
fields to the Lagrangian. The kinetic term ψ̄γµ∂µψ as expected from the Dirac
equation [11] to describe the free relativistic electron field is not invariant under
the local gauge transformation and can therefore not be added directly to the
Lagrangian. Instead, the covariant derivative Dµψ is defined which transforms in
the same way as the field ψ, e.g. for U(1):

Dµψ→ eiα(x)YDµψ(x)

To define the covariant derivatives with this transformation property a new
vector field for each generator of SU(3)× SU(2)×U(1) is needed to counteract
the transformation of the fields. For example for a left-handed quark field the
covariant derivative is

Dµψ = (∂µ − iYBµ − igAa
µτa − igGb

µtb)ψ

where Bµ, Aa
µ and Gb

µ are called gauge fields transforming as

Bµ → Bµ +
1

gY
∂µα

7



1. Theory

Aa
µ → Aa

µ +
1
gL

∂µβa + f abc Aa
µβc

Gb
µ → Gb

µ +
1

gC
∂µλa + tabcGa

µλc

where f abc are the structure constants of the SU(2) group and tabc are the structure
constants of the SU(2) group. The definition of the covariant derivative depends
on the weak hyper charge Y of the field and if the field transforms under SU(2)
and SU(3).

There is one gauge vector boson field Bµ for the U(1) group, three vector fields
Wa

µ with a = 1 . . . 3 for SU(2) and eight vector fields Ga
µ with b = 1 . . . 8 for SU(3).

The kinetic terms for the fermions are then:

Lkin = ĒL(i /D)EL + ēR(i /D)eR + Q̄L(i /D)QL + ūR(i /D)uR + d̄R(i /D)dR

where /D is short for γµDµ.

Kinetic terms for the gauge boson fields are constructed using the locally
invariant field tensors of the gauge fields.

Lbos = −
1
4
(Bµν)

2 − 1
4
(Aa

µν)
2 − 1

4
(Gb

µν)
2

with
Bµν = ∂µBν − ∂νBµ

Aa
µν = ∂µ Aa

ν − ∂ν Aa
µ − gL f abc Ab

µ Ac
ν

Gb
µν = ∂µGb

ν − ∂νGb
µ − gCtabcGb

µGc
ν

An important aspect of the theory is the Higgs mechanism, responsible for the
masses of the gauge bosons and the fermions. The Higgs field, a scalar SU(2)
doublet, is introduced and a symmetric potential with a non zero minimum
is added to the Lagrangian such that the Higgs field has a non zero vacuum
expectation value.

LH = |Dµφ|2 + 1
4

λ(|φ|2 − v2)2

where λ and v are parameters determining the strength and minimum of the
Higgs field potential. As a consequence, the ground state of the theory is not
symmetric under the SU(2)×U(1) symmetry and the symmetry is said to be
spontaneously broken. It makes sense to express the Higgs field in the Lagrangian
in terms of its vacuum expectation value and its fluctuations around that value.
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1.2. Fields and Local Gauge Symmetries

From now on, the unitarity gauge is used, where the vacuum expectation value
is

〈φ〉 = 1√
2

(
0
v

)
The Higgs field can then be expressed as

φ(x) =
1√
2

(
0

v + h(x)

)
where h(x) is a real valued field. Any other vacuum expectation value is phys-
ically equivalent as it can be reached by a SU(2) × U(1) gauge transforma-
tion of the theory. The term |Dµφ|2 can now be written in terms of the Higgs
vacuum expectation value and of fluctuations of the Higgs field around this
value:

LK =
1
2
(
∂µh
)2

+

[
m2

WWµ+W−µ +
1
2

m2
ZZµZµ

]
·
(

1 +
h
v

)2

where mass terms for combinations of the gauge fields arise with the W±

bosons
W± =

1√
2
(A1

µ ∓ A2
µ)

with mass g v
2 and the Z boson

Z =
1√

g2 + g′2
(gA3

µ − g′Bµ)

with mass
√

g2 + g′2 v
2 . The remaining combination

Aµ =
1√

g2 + g′2
(gA3

µ + g′Bµ)

is the electromagnetic vector potential and does not aquire a mass.

The Higgs ground state has a remaining local U(1) symmetry with the gen-
erator Q = 1/2Y + τ3 which is identified as the local gauge symmetry of the
electromagnetic interaction. The corresponding conserved charge of the sym-
metry Q = 1/2Y + T3 is the electric charge. The gauge theory only including
the U(1) symmetry describes electromagnetic interactions and is called quan-
tum electrodynamics (QED). The most general renormalizable gauge-invariant
coupling terms between the fermion fields and the Higgs field are added to the
Lagrangian.

Lm = −λ
ij
d Q̄i

L · φdj
R − λ

ij
uεabQ̄i

Laφ†
b uj

R − λ
ij
` Ēi

L · φej
R + h.c.

9



1. Theory

Table 1.1.: Fermions in the SM with their corresponding weak isospin Tz, weak
hypercharge Y and resulting electric charge Q. Left handed particles
are given as SU(2) doublets using the mixed mass states d′i for down
type quarks. All quarks are SU(3) triplets with each component having
a different color charge.

Fermions Tz Y Q(
νe
e

)
L

(
νµ

µ

)
L

(
ντ

τ

)
L

+1/2
−1/2

−1
−1

0
−1

eR µR τR 0 −2 −1(
u
d′

)
L

(
c
s′

)
L

(
t
b′

)
L

+1/2
−1/2

1/3
1/3

+2/3
−1/3

uR cR tR 0 +4/3 +2/3
dR sR bR 0 −2/3 −1/3

where λ
ij
d , λ

ij
u and λ

ij
` are free parameters and εab is the Levi-Civita symbol.

It is worth noting that this adds an interaction between the left handed and
right handed fermion fields to the Lagrangian, explicitly breaking the global
chiral symmetry. A coordinate transformation of the fermion fields brings these
interaction terms in the form of mass terms:

Lm = −mi
dd̄i

Ldi
R

(
1 +

h
v

)
−mi

uūi
Lui

R

(
1 +

h
v

)
−mi

`
¯̀ i

L`
i
R

(
1 +

h
v

)
+ h.c.

The only other part of the Lagrangian that is not invariant under this transfor-
mation is the interaction term of the W± boson and the quarks, where the quarks
interact within their SU(2) doublets. When applying the transformation to the
quark mass states here, a unitary matrix V called the Cabibbo–Kobayashi–Maskawa
(CKM) [12, 13] matrix appears describing the mixing of the mass states in the
interaction.

L =
1√
2

ūi
LγµVijdj

L =
1√
2

ūi
Lγµd′iL

Defining d′i := Vijdj here, allows for writing down the quark SU(2) doublets in a
convenient way.

An overview of all fermions and their charges is given in Table 1.1. The
only constraint by the theory on the CKM matrix is its unitarity allowing to
parameterize the matrix in terms of three angles and one complex phase. It
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1.3. Beyond the Standard Model

is therefore necessary to measure the CKM matrix elements experimentally to
determine the parameters.

Global SM fits are used to determine the most precise values of the CKM matrix
by imposing SM constraints [14]:

|VCKM| =

 0.97435± 0.00016 0.22500± 0.00067 0.00369± 0.00011
0.22486± 0.00067 0.97349± 0.00016 0.04182+0.00085

−0.00074
0.00857+0.00020

−0.00018 0.04110+0.00083
−0.00072 0.999118+0.000031

−0.000036


The larger diagonal elements of the CKM matrix suggest that quarks interact-
ing with W bosons tend to transition to the mass state of the same genera-
tion.

1.3. Beyond the Standard Model

Despite its remarkable success, there are several observations in various fields of
physics that appear to conflict with the predictions of the SM. These discrepancies
strongly motivate the exploration of theories Beyond the Standard Model (BSM).
One of the most significant challenges facing the SM is the enigma of dark
matter and dark energy. Experimental observations, when interpreted through
the lens of general relativity [15], indicate that these phenomena account for a
substantial portion of the universe’s mass and energy content. However, they
remain unexplained within the framework of the SM. Additionally, the observed
imbalance between matter and antimatter in the universe is not adequately
explained by the SM.

The phenomenon of neutrino oscillations suggests that neutrinos possess mass,
a feature not included in the SM, though it can be incorporated into the theory in
a consistent way. Gravity is described by the theory of general relativity which is
incompatible with quantum theory [16], and cannot be directly integrated into
the standard model. The hierarchy problem, highlighting the vast disparity in
strength between gravitational force and other fundamental forces, along with
the fine-tuning issues related to the Higgs boson’s mass, suggest that the SM may
be part of a broader framework.

The existence of these gaps in the SM has spurred the development of various
BSM theories, such as Supersymmetry, Extra Dimensions, and Grand Unified
Theories, each aiming to resolve these unresolved issues. Experimental initia-
tives, like those conducted at the Large Hadron Collider, are crucial in testing
these theories and may potentially reveal new physics that extends our current
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1. Theory

understanding as provided by the SM. These explorations could eventually lead
to a theory that overcomes the SM’s limitations. Consequently, making precision
measurements of the SM’s predictions is critical, as even minor deviations could
hint at new physics.

1.4. Predictions with the Standard Model

Predicting experimental results using the SM is often not trivial. A key approach
is the use of perturbation theory to make approximate predictions. For the
prediction of proton-proton collisions, an important quantity is the transition
amplitude of some initial state of particles to a final state of particles with
definite momentum. In the asymptotic limit of infinite time for the interaction
the transition of the states is described by the so called S matrix. To make
predictions with the theory one wants to calculate the transition amplitude of
an initial state of particles with definite momenta |k1k2〉in to a final state of
particles with definite momenta out〈p1p2 . . . | related by an asymptotically large
time translation

out〈p1p2 . . . |k1k2〉in = 〈p1p2 . . . |S|k1k2〉

were the S matrix operator is defined, describing the transformation of the state
over time, and |k1k2〉 and 〈p1p2 . . . | are the states defined at the same time. The
S matrix is further split up as S = 1 + iT separating the interaction part of the
transition. Finally the matrix elementM is defined as

〈p1p2 . . . |iT|k1k2〉 = (2π)4δ(4)
(
∑ pi −∑ p f

)
· iM

externalizing the term describing the 4-momentum conservation. The matrix
element encodes all the information about the interaction of the particles and
as such is crucial for predicting the outcomes of particle collisions in the the-
ory.

The matrix element can be expressed in terms of path integrals, which allows
for the use of perturbative techniques, breaking down the calculation into orders
of the coupling constants. These orders are composed of similar terms connected
by common integration variables, making it highly convenient to represent them
visually through diagrams. Initially introduced by Feynman, these graphical
representations are now known as Feynman diagrams.

Higher-order diagrams involving loops suffer from divergences, which necessi-
tate regularization through procedures like dimensional regularization, wherein
the number of integration dimensions is reduced by a small amount. Once
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1.4. Predictions with the Standard Model

regularized, the diagrams are not divergent anymore. Subsequently, the theory
must be renormalized, by redefining all free parameters of the theory, such as
the coupling constants and particle masses, in a way that the predicted values
of physical observables, accounting for the quantum effects of the divergent
diagrams, match the observed experimental data.

After renormalization the regularization is removed while retaining the correct
values of physical observables of the theory. The renormalization procedure
depends on a chosen energy scale µR called renormalization scale, at which
the parameters are renormalized. While the predictions of the theory do not
inherently depend on µR, they exhibit a dependence when limiting calculations
to a certain order in perturbation theory. Often, setting the renormalization
scale equal to a characteristic energy scale of the physical process under con-
sideration can simplify the theoretical calculations and lead to more accurate
predictions, reducing the dependence of physical observables on the renormaliza-
tion scale.

Of particular significance are the renormalized coupling constants and their de-
pendence on the chosen renormalization scale. The change in

α(µr) :=
g2(µr)

4π

depending on the chosen renormalization scale is described by the renormaliza-
tion group equation

µ2
R

dα

dµ2
R
= β (α) = −

(
b0α2 + b1α3 + b2α4 + · · ·

)
where the right hand side represents an expansion in orders of α. At leading
order the running of α(µR) is then given by

α
(

µ2
R

)
=

α
(
Q2)

1 + α (Q2) b0 log µ2
R

Q2

where

b0 = −
2n f

12π

for QED and

b0 = −
33− 2n f

12π

for QCD. Here, n f is the number of active quarks with masses below the energy
scale. α(Q) acts as a reference point at which the coupling constant is determined
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1. Theory

at a certain scale Q. For the strong coupling constant the leading order formula
can be written as

αs(µr) =
1

b0 ln( µ2
r

Λ2 )

where Λ is the scale at which the leading order coupling diverges. Setting the
renormalization scale to the momentum transfer of the process the coupling
constants can be understood as a measure of the strength of the corresponding
force at this scale. The electroweak coupling constant αEM remains unaltered
by the renormalization process at very low energies but increases as the energy
scale rises, indicating the strength of the electromagnetic interaction intensifies at
higher energies due to vacuum polarization effects. Measurements of the strong
coupling constant at different scales can be compared with the predicted running
of the constant. Figure 1.2 shows measured values of αs(Q) at different scales
and compares to the theory prediction.

The renormalized strong coupling constant decreases at higher scales, lead-
ing to increasingly weaker interactions between quarks and gluons, which is
described as asymptotic freedom. As a result, perturbative calculations in QCD
become more reliable at higher energy scales. However, at lower energies, the
strong force intensifies, resulting in confinement, a phenomenon in which quarks
are bound together within color-neutral hadrons, preventing their observation as
isolated free particles. Hadrons can exist in two fundamental forms: three-quark
states known as baryons and quark-antiquark states referred to as mesons. In
addition to the valence quarks that define the quantum numbers of the hadrons,
quark-antiquark pairs, known as sea quarks, and gluons, which emerge through
the interaction of the valence quarks, also play an important role in the description
of hadrons.

Protons and neutrons are the hadrons which form the foundational elements
of atomic nuclei. Structurally, a proton is composed of two up quarks and one
down quark, while a neutron consists of two down quarks and one up quark.
Notably, the size of a proton is about 1 fm, which is significantly smaller than the
overall scale of a hydrogen atom.

1.5. Chiral Symmetry Breaking

Due to the small mass of the u, d and s quarks the SM has an approximate chiral
symmetry SU(3)L × SU(3)R of the left handed and right handed fields of these
quarks [8]. This symmetry is spontaneously broken since the ground state of
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1.5. Chiral Symmetry Breaking

Figure 1.2.: Measured values of αs(Q) at different scales compared to the theory
prediction of the running of the constant [17].
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QCD at low energy scales is a quark gluon condensate with

〈0|Q̄Q|0〉 6= 0

The ground state is only invariant for identical transformations of left and right
handed fields breaking the chiral symmetry, leaving an approximate SU(3) sym-
metry. This causes the light quarks to obtain big effective masses at low energies
and is the main source of the mass of the hadrons. According to the Goldstone
theorem, the eight spontaneously broken continuous symmetries generate eight
massless particles which are certain meson types called the pions and kaons.
Since the initial symmetry was only approximate due to the non zero light quark
masses, the pions and kaons are not massless but have smaller masses then the
other hadrons, where the kaons are heavier as they contain the heavier strange
quark.

1.6. Measurements of the Standard Model

After the formulation of the SM, many of its key predictions remained untested
experimentally. The theory predicted the existence of W and Z gauge bosons [18],
mediating the weak force. These were subsequently searched for in the UA1 and
UA2 experiments at CERN and were eventually discovered in 1983 [19, 20]. The
top quark, predicted as the SU(2) doublet partner of the bottom quark discovered
in 1977 at Fermilab [21], was found in 1994 at the Tevatron [22, 23]. Perhaps the
most extraordinary prediction was that of the Higgs boson [24–26]. The theory’s
reliance on gauge symmetries meant that the only conceivable method to generate
masses for the elementary particles was via the Higgs mechanism. The anticipated
existence of the Higgs lead to the design of experiments capable of searching for
the Higgs particle across higher mass ranges. The discovery of the Higgs particle
in 2012 by ATLAS and CMS [27, 28] marked the identification of all the particles
in the SM. However, the theory has made many more predictions, which have
been measured in a variety of experiments since then.

The SM depends on several parameters that are not inherently predicted
by the theory but must be determined through experimental measurements.
These include the four parameters of the CKM matrix, the coupling constants
of the theory, the parameters v and mH of the Higgs field, the masses of the
charged leptons and quarks, and the CP-violating phase θCP in QCD. Precise
measurement of these parameters is accomplished through various analyses
conducted at different experiments, with ongoing efforts focused on enhancing
the accuracy of these measurements.
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Figure 1.3.: Summary of ATLAS and CMS measurements of the single top-quark
production cross-sections in various channels as a function of the cen-
ter of mass energy and compared to theory prediction. A preliminary
result of this analysis is included in the plot [29].

In the context of the measurement discussed in this thesis, the parameters that
describe the CKM matrix are particularly significant. This is because one of the
elements of the CKM matrix, |Vtb|, can be directly measured by interpretation of
the t-channel cross-section measurement. Another class of analyses focuses on
the measurement of cross-sections of different SM processes. The cross-section of
a process depends on the collision energy and as such the cross-section predicted
by the SM can be probed at different energies. The highest energy reached at
the LHC are first analyses completed at 13.6 TeV. Analyses measuring single top-
quark production cross-sections at different center of mass energies are shown in
Figure 1.3.

Single top quark production via the t-channel was first observed at the Teva-
tron [30, 31] at 1.96 TeV. The t-channel single top-quark production cross-
section was measured in various analyses at 5, 7, 8 and 13 TeV at ATLAS and
CMS.
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At 5 TeV ATLAS measures the cross-sections

σ(tq) = 19.8+3.9
−3.1(stat.)+2.9

−2.2(syst.)pb, σ(t̄q) = 7.3+3.2
−2.1(stat.)+2.8

−1.5(syst.)pb,

and

σ(tq + t̄q) = 27.1+4.4
−4.1(stat.)+4.4

−3.7(syst.)pb, Rt = 2.73+1.43
−0.82(stat.)+1.01

−0.29(syst.)

using an integrated luminosity of 255 pb−1[32].

At 7 TeV ATLAS measured the cross-sections

σ(tq) = 46± 6 pb, σ(t̄q) = 23± 4 pb,

and
σ(tq + t̄q) = 68± 8 pb, Rt = 2.04± 0.18

using 4.59 fb−1 [33] and CMS measured the cross-section

σ(tq + t̄q) = 67.2± 6.1 pb

combining data with muon and electron final states with integrated luminosity
of 1.17 fb−1 and 1.56 fb−1 respectively[34].

At 8 TeV ATLAS measured the cross-sections

σ(tq) = 56.7+4.3
−3.8 pb, σ(t̄q) = 32.9+3.0

−2.7 pb

and
Rt = 1.72± 0.09

using an integrated luminosity of 4.59 fb−1 [35] and CMS measures the cross-
sections

σ(tq) = 53.8± 1.5(stat.)± 4.4(syst.) pb, σ(t̄q) = 27.6± 1.3(stat.)± 3.7(syst.)pb,

and

σ(tq+ t̄q) = 83.6± 2.3(stat.)± 7.4(syst.)pb, Rt = 1.95± 0.10(stat.)± 0.19(syst.)

using an integrated luminosity of 19.7 fb−1 [36].

Additionally, analyses at 13 TeV using partial Run 2 datasets have been carried
out by ATLAS measuring

σ(tq) = 156± 5(stat.)± 27(syst.)± 3(lumi.) pb,

σ(t̄q) = 91± 4(stat.)± 18(syst.)± 2(lumi.) pb
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and
Rt = 1.72± 0.09(stat.)± 0.18(syst.)

using an integrated luminosity of 3.2 fb−1 [37] and by CMS measuring

σ(tq) = 130± 1(stat.)± 19(syst.) pb, σ(t̄q) = 77± 1(stat.)± 12(syst.)pb

and
Rt = 1.68± 0.02(stat.)± 0.05(syst.),

using 35.9 fb−1 [38].

Previous measurements of Rt are summarized in Figure 1.4. All previous
measurements of the t-channel single top-quark production found agreement
with the SM predictions.

1.7. Factorization of Hadronic Cross-Sections

In proton-proton collisions, the previously described perturbation theory of QCD
alone is insufficient to make predictions due to the phenomenon of confinement,
preventing the direct use of the perturbation theory to describe the proton state
itself.

To address this, the first-order parton model, initially proposed by Feynman,
factorizes the calculation of cross-sections into two components: the proton’s
description through parton distribution functions (PDFs) and the calculation of
the matrix element describing the interaction from an initial parton state to a
final state of partons called the hard scattering.

σ = ∑
ij

∫
dx1dx2 fi(x1) f j(x2) σ̂ij(x1p, x2p)

where fi(x1) and f j(x2) are the leading order PDFs giving the probability of
finding a parton i with momentum fraction x1 in one proton and a parton j with
momentum fraction x2 in the other proton, respectively, and σ̂ij(x1p, x2p) is the
short-distance cross-section, describing only the transition from the initial state
of partons i and j to the final state.

This simple picture needs to be modified when going to higher orders. At
higher orders the short distance cross-section would naturally include terms
with quark or gluon splittings in the initial state. These terms however have
singularities when the splittings are collinear. It is possible to redefine the cross-
sections and PDFs such that these collinear singularities are included in the PDF.
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In this case the definition of the PDFs is determined by a chosen factorization
scheme. Most commonly chosen is the modified minimal subtraction or MS
scheme.

Additionally, a factorization scale µF is introduced which in some way de-
pending of the chosen factorization scheme determines at what scale the PDF is
probed. Since part of the partonic cross-sections is refactored into the PDF, also
the partonic cross-section now depends on this factorization scheme and scale.
Similarly to the factorization of long distance interactions in the initial state, also
the hadronic final states can feature long distance interactions which need to
be removed from the partonic cross-section. In this case, they are factored into
fragmentation functions. Both PDFs and fragmentation functions are not directly
calculable from QCD but need to be measured in data. However, the dependence
on the factorization scale can be determined.

The PDFs of the proton are determined through a combination of experimen-
tal data, theoretical calculations, and global fits, where various measurements
from high-energy scattering experiments are analyzed. Different sets of PDFs
are available, created by different collaborations and groups, each with their
specific methodology for analyzing the experimental data and incorporating
theoretical calculations. These PDF sets come with uncertainties to account for
the limitations in the knowledge of the proton’s internal structure. In Figure 1.5
the NNPDF3.1 NNLO PDF [39] of different partons evaluated at µ2=10 GeV2

and µ2=104 GeV2 are shown. The figure illustrates that valence quarks are more
commonly found at higher momentum fractions, and at higher center-of-mass
energies, sea quarks and gluons are increasingly likely to participate in interac-
tions.

1.8. Event Generation

The Monte Carlo (MC) method is fundamental for predictions in proton-proton
collisions at the LHC. Instead of determining the analytical form of the probability
distribution of events in phase space, which is typically not possible, simulated
events are generated which follow the probability distribution. This approach
enables the use of probabilistic models for the event generation and the simulation
of the detector response on an per-event basis.

Processes relevant to the analysis can be defined by their hard scattering final
state X + k, where X stands for the final state particles identifying the process and
k for a number of additional final state particles. The processes relevant to this
analysis are described in detail in Sections 1.15 to 1.17. Processes with different
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Figure 1.5.: The NNPDF3.1 NNLO PDF evaluated at µ2=10 GeV2(left) and
µ2=104 GeV2(right) [39].

final states do not interfere with each other and as such their cross-section can
be calculated separately and added at a later stage of the analysis to get the
combined theory prediction.

The order of perturbation of the calculation determines the inclusion of higher
order Feynman diagrams and additional radiations in a process’s computation.
At next-to-leading order (NLO) for the strong coupling constant, the process for
the final state X involves the matrix elementMX, which includes diagrams with
at most one loop, and the matrix elementMX+1, which includes one additional
final state particle but no loops. At the next-to-next-to-leading order (NNLO), the
total sum of loops and additional radiations is limited to two.

The differential hard scattering cross-section of a process with the final state
X + k can be related to the corresponding matrix element by

dσ̂

dΦX+k
≈ |MX+k|2

2ŝ

where ŝ = (p1 + p2)
2 is the square of the invariant mass of the initial state

particles and assuming small masses of the initial state particles compared
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to ŝ. The total cross-section of the process with final state X can be written
as

σ̂X =
N

∑
k=0

∫
dΦX+k

|MX+k|2
2ŝ

where N is the perturbation order. Due to the high dimensionality of the phase
space it is usually most practical to evaluate the integral using MC integration
techniques.

To simulate events for a process, random points within the allowed phase space
are selected, and a weight is calculated for each. This weight is proportional
to the product of the PDFs, the infinitesimal phase space volume dΦX+k, the
factor 1

2ŝ , and the squared matrix element |MX+k|2. Importantly, the phase space
variables are often transformed to a set that more effectively probes peaks in the
differential cross-section. This transformation introduces a Jacobian determinant
as an additional factor in the weight calculation. Each phase space point is
accepted as an event with a probability that equals the ratio of its weight to the
maximum possible weight. The events generated by this method are distributed
according to the differential cross-section in phase space.

Several programs are available for automating the calculation of the matrix
element in next-to-leading order (NLO), the simulation of hard scattering events
and further steps in the simulation. Figure 1.6 shows an overview of the com-
plete event generation as done in Pythia [40]. The following sections give
an overview of the event generation beyond the hard scattering cross-section.

1.9. Parton Shower Simulation

Due to the limitations in perturbation order, the matrix element describes the
collision process only well at the high energy scale of the hard scattering. To
generate a simulated detector response the matrix element calculation has to
be evolved down to an energy scale of around 1 GeV where hadronization, the
formation of color neutral hadrons takes place.

This energy scale evolution is approximated at leading logarithmic order
by shower algorithms implemented in programs such as Pythia, Herwig or
Sherpa not by first principle but using phenomenological models. Such parton
shower algorithms take the initial and final state particles generated by the
matrix element event generator as input and, in a first step, add radiations to the
process.
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Figure 1.6.: Illustration of the entire simulated event in Pythia [40].

Shower algorithms work by considering different branching processes such as
q → qg or g → qq̄ and calculating branching rates for each process depending
on the energy distribution between the two particles produced in the branching.
The algorithm evolves the event in an ordering variable defined in terms of
the properties of the partons. Different definitions of the ordering variable are
possible. While in Pythia the pT of the partons is used in Herwig the opening
angle between produced particles in the branching is used to reduce interference
effects. The final state partons are evolved down in this ordering variable from
the hard scattering scale to the hadronization scale until a branching takes place.
Then, the produced particles in the branching are evolved further down in scale
and so on.

A different parton shower is applied to simulate radiation in the initial state.
The effects of initial state radiation on the initial state particles is already described
by the evolved PDFs. The initial state parton shower is used to simulate the boost
and rotation of the hard scattering system coming from the initial state radiation
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as well as the production of additional final state particles through radiation. The
shower is evolved starting from the initial state partons of the hard scattering and
evolved down in an ordering variable, but going backwards: When a branching
occurs the considered parton is one of the two branching products and what is
added is the parent particle with increased momentum fraction and the other
produced particle of the branching process. This other particle usually does not
further radiate. While gluon emissions play the biggest role in the parton shower
also photon emissions and other relevant processes are included as branching
processes.

At NLO, the matrix element encompasses Feynman diagrams with an addi-
tional final state particle, causing an overlap with parton shower simulations
of leading-order diagrams, leading to double-counting. This overlap can be
rectified using a matching procedure, for which multiple methodologies exist,
each offering distinct advantages and challenges [41].

1.10. Hadronization Models

After the parton momenta drop below an energy of around 1 GeV the strong
interaction starts to get non-pertubative and the production of color neutral
hadrons takes place. As for the parton shower, this process is described using
phenomenological models. The model implemented in Pythia is a type of Lund
string fragmentation model. The model is based on the physical idea that color
charged partons are connected by a string of self interacting gluons causing a
linear increase in energy with increasing distance between the partons. Quarks
are the endpoints of strings while gluons are intermediate points in the strings.
At sufficient energy, the string breaks producing a quark pair and thus splitting
the string into two strings. In the model, breaks in the strings are considered
by iterating over the strings in steps. Finally, the hadrons are build combining
quarks with antiquarks from adjacent breaks. The production of baryons can
be simulated by allowing quark antiquark production in the strings via vacuum
fluctuations.

An alternative approach is the cluster model [42] as implemented in Herwig

and Sherpa. This approach is based on the fact that the particles produced by
the shower algorithm can be grouped into clusters of color singlets. As a first
step glouns are forced to decay into quark-antiquark pairs. This enables the
grouping of the partons into color neutral clusters consisting of two quarks each.
These clusters are then decayed randomly in one of the allowed two-body decay
channels, assuming a probability proportional to the available phase space of the
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channel.

1.11. The Underlying Event and Pileup

In each colliding proton, one parton acts as the initial parton of the initial-state
parton shower leading to the hard scattering. This leaves behind remnants
of the protons. When the shower initiator carries a color charge, the proton
remnants are also color-charged, and need to be considered in the simulation
of the hadronization. The interaction of the remnants from colliding protons
in a hard scattering event is often termed the underlying event. To simulate
the underlying event, algorithms model the remnants of the proton, and the
parameters of these algorithms are tuned to match experimental data. The
interactions of these remnants can significantly impact the final state observables
in the detectors.

Since each bunch contains many protons, multiple interactions, known as
pileup, often occur among other protons in the detector during the same or
neighboring bunch crossings. Pileup is estimated using minimum bias events,
which are a very loose selection of inelastic events. The vast majority of minimum
bias events are strong interaction processes that produce particles with low
transverse momentum.

1.12. Decays and Detector Simulation

The hadrons produced in the event are usually unstable and decay into more
stable hadrons before they reach the detector. The decays can be simulated
directly by the main general purpose generators Herwig, Sherpa and Pythia.
In ATLAS, Herwig and Pythia are commonly interfaced with EvtGen [43] to
handle bottom and charm hadron decays.

The response of the particles in the ATLAS detector is simulated using Geant4 [44,
45]. A detailed model of the detector geometry is used to simulate both the in-
teraction of the particles with the detector material and the response measured
with the detector to the event. Alternatively, a much faster simulation, Atlfast-
II [44], can be used, where the inner detector and the muon system are simulated
with Geant4 while the calorimeter response is determined by a parameterized
simulation.
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1.13. Top Quark

The top quark, the heaviest of all quarks in the SM, has an extremely short
lifespan that prevents it from forming bound states with other quarks before
decaying. This characteristic allows for more direct and precise measurements
of the top quark’s properties. In the SM, the primary production mechanism
for top quarks is the pair production of top quarks, mediated by strong in-
teractions. In contrast, single top quark production is a process of the weak
interaction.

The top quark was first predicted in the 1970s by Kobayashi and Maskawa [13]
as the weak isospin partner of the bottom quark. Its discovery in 1995 at the
Tevatron colliders CDF and D0 at Fermilab [22, 23] based on the strong top quark-
antiquark pair production, was a significant confirmation of the SM’s validity.
Since then, extensive studies of the top quark’s properties have been conducted at
various particle colliders, including the LHC at CERN, contributing to the precise
determination of its mass, couplings, and production cross-sections, which further
validate the predictions of the Standard Model. These measurements also provide
constraints on new physics beyond the Standard Model giving the top quark an
important role in exploring new frontiers of particle physics. The mass of the top
quark is measured to be 172.69± 0.30 GeV [14]. The top quark pair production
cross-section is not particularly sensitive to |Vtb| due to the production being
mediated by the strong force where |Vtb| plays no role. In single top production
however, the top quark is produced directly via the Wtb vertex enabling a direct
measurement of |Vtb|.

The initial state in top quark pair production can involve either two gluons or
a quark-antiquark pair. Figure 1.7 presents the leading order Feynman diagrams
for these processes. At a center of mass energy of 13 TeV, the cross-section for top
quark pair production is predominantly governed by gluon fusion, depicted in
Figures 1.7a and 1.7b.

1.14. Top Quark Decay

In relation to the other quarks, the top quark has not only an extraordinar-
ily high mass but, consequently, also an exceptionally short lifetime of roughly
5× 10−25 s [46]. Since hadronization takes place at time scales around 3× 10−24 s [46]
the top quark decays before it can form bound states with other quarks. This
prevents the spin of the top quark to be influenced by hadronization. Moreover,
a change of spin state through gluon emission takes place on much larger time
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Figure 1.7.: Leading order Feynman diagrams of top-quark-antiquark pair pro-
duction via gluon fusion in 1.7a and 1.7b and via quark antiquark
annihilation in 1.7c.

scales than the top quark decay [46]. Because of this, if the top quark is produced
in a polarized state it will stay in its spin state until it decays and convey its spin
to its decay products.

Predominantly, the top quark decays into a bottom quark and a W boson,
possible because the top quark mass is bigger than the combined mass of the
W boson and bottom quark. While decays into a down or strange quark and a
W boson are theoretically possible, these are exceedingly rare events due to the
much smaller associated CKM matrix elements.

In the decay of the top quark, the resulting W boson can decay through two
channels: the hadronic channel, leading to quark production, and the leptonic
channel, resulting in the production of leptons. For this analysis, focus is placed
exclusively on the leptonic decay channel, as the hadronic channel is obscured by
a large background of hadronic strong interaction processes.

The Feynman diagrams depicting the top quark decay at leading order are
shown in Figure 1.8.

The branching ratios of the W boson’s decay modes, as predicted by the SM,
are unequal: including final-state QED and QCD corrections the hadronic decay
is expected to occur 67.5 % of the time, whereas the leptonic decay is predicted
to happen at a rate of 32.5 % [14]. In the leptonic decay channel, the direction
of the emitted lepton shows a strong correlation with the spin of the top quark.
This correlation is not only instrumental in studying the polarization of the top
quark but also beneficial in distinguishing its decays from various background
processes.

The decay width Γ of a particle describes its probability of decay and is inversely
proportional to its lifetime τ = 1/Γ. This parameter is crucial in determining the
range of energies over which the particle can decay.
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Figure 1.8.: Leading order Feynman diagrams of top quark decay. The left dia-
gram shows the decay into a bottom quark and leptons and the right
diagram the decay into a bottom quark and two additional quarks.

In the context of top quark decay, the Narrow Width Approximation (NWA) is
particularly relevant, as the top quark’s decay width Γ is considerably smaller than
its mass [47]. The NWA simplifies calculations by considering only amplitude
contributions where the top quark is in its intermediate resonant state, due to
their greater contribution to the overall cross-section. This allows for a focus
on the dominant amplitude parts where the top quark is in its ’on-shell’ state,
satisfying the relation:

pµ pµ = m2
t .

In practical terms, the NWA facilitates the separate calculation of top quark
production and decay and allows for the factorization of the total cross sec-
tion:

σ = σprod · B,

where σprod is the production cross-section and B is the branching ratio for a
particular decay.

1.15. Single Top-Quark Production

Single top-quark production is classified into three types: t-channel, s-channel,
and tW channel production. In t-channel production, denoted by its LO final
states tq and t̄q, a light quark interacts weakly with a bottom quark, producing
the top quark and a light quark. In the s-channel, denoted by its final states tb̄
and t̄b, the top quark is produced together with a bottom quark. Finally, in the
tW channel, the top quark is produced alongside a W boson.

The signal process of this analysis is the t-channel production, which is the
single top-quark production process with the biggest cross-section at the LHC.
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Special care has to be taken when considering the t-channel Feynman diagrams
shown in Figure 1.9a and 1.9b. The diagram in Figure 1.9a includes a bottom
quark in the initial state. This is possible using the five flavor scheme where
the initial state bottom quark is described by the PDF. Adding the diagram in
Figure 1.9b to this is double counting when the bottom quark pair is nearly
collinear [48]. This necessitates the implementation of a matching procedure.
In this analysis, the t-channel production events are instead simulated using
the four flavor scheme where the PDF does not include bottom quarks. There-
fore, the diagram in Figure 1.9a is not included, avoiding the double counting
issue.

The leading order tq production diagrams in the four flavor scheme are shown
in Figure 1.9b and 1.9c. While the diagram in 1.9c only corresponds to a small
cross-section, there is a destructive interference between the two diagrams [49].
At higher orders the contribution of the diagram in Figure 1.9a is automatically
restored as the description of the bottom quark production in the matrix element
becomes more accurate [49].

The additional bottom quark not produced in the top quark decay tends to
have relatively high rapidity and low momentum making it difficult to identify
and reconstruct in the later analysis.

The cross-sections of the single top quark production processes are affected
differently by the center of mass energy. Higher center of mass energies increase
the chance of gluon splitting in the initial state which favors t-channel production.
Additionally, the t-channel phase space increases with higher energies further
increasing the cross-section. The s-channel phase space on the other hand is less
dependent on the center of mass energy, and the cross-section mostly increases
due to the probing of smaller proton momentum fractions at higher center of
mass energies [49]. At the center of mass energies at the LHC the s-channel
process becomes very small relative to the t-channel.

The tW production is very small at low energies but increases rapidly and
overtakes the s-channel process at high energies such as at the LHC. While the tq
process increases rapidly at higher energies the tt̄ background process increases
even faster making a measurement of tq at higher energies not intrinsically more
precise.

One characteristic property of the tq process is the kinematics of the light jet
produced in the W interaction. This jet is produced preferably in the forward
direction and tends to higher values of rapidity for increased center of mass
energy. At 13 TeV the peak in the |η| distribution is at around |η| = 2.5 [49].
While the reconstruction of such a forward jet can be more difficult, this feature
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Figure 1.9.: Feynman diagrams of t-channel top-quark production with a bottom
quark in the initial state in Figure 1.9a and a gluon in Figures 1.9b
and 1.9c
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Figure 1.10.: Leading order Feynman diagrams of top-quark production in the
s-channel (1.10a) and tW-channel (1.10b) production

can also be used to separate the signal from the background processes in the
analysis.

Single top quarks are produced with nearly 100 % polarization, due to the
weak interaction only coupling to left handed particles and right handed an-
tiparticles. The most polarization-sensitive angle is between the charged lepton
from top decay and the direction of the spectator jet, in the top quark rest
frame [48].

In s-channel top-quark production two quarks interact producing a top quark
and a bottom antiquark. At LO the process is therefore differentiated from the
t-channel process by its final state. Also at NLO there is no interference between
the t-channel and s-channel process due to different color states of the final state
quarks [48].

In the tW process, the top quark is produced together with an additional
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W-boson. There is no interference between the tW process and the other single
top-quark processes at NLO. However, there is an overlap of the tW process and
the tt̄ process at NLO, where identical Feynman diagrams are included for both
processes. One way to solve this problem is to combine both processes into one
process taking into account all interference. Another less precise solution, which
is employed here, is to implement a method attempting to remove the overlap of
the two processes from the tW process.

1.16. W+jets Background Process

An essential background process for the analysis is the W+jets process. Al-
though this process does not involve a top quark, it directly produces a W boson,
thereby potentially generating signal signatures similar to those of the signal
process.

Exemplary leading-order Feynman diagrams of the W+jets process are pre-
sented in Figure 1.11. The most substantial contribution from the W+jets back-
ground arises from events where a bottom quark pair appears in the final state,
as depicted in 1.11b. If one of the jets originating from the bottom quarks is
not identified as such, the reconstructed particles resemble the signal particle
content.

The subsequent largest contribution are processes with a charm quark in the
final state. This category includes both W + c and W + c̄ production, as shown
in 1.11a, and W + cc̄, depicted in 1.11b. The combined process is referred to
as W + c(c̄). While the W + cc̄ cross-section is symmetric in lepton charge, the
g + d→W− + c process has a larger cross-section than g + d̄→W+ + c̄ due to
the down quark’s role as a valence quark in the proton.

Since the |Vub| and |Vcb| CKM matrix elements are small, the W + b process is
significantly suppressed. Another contribution from the W+jets process stems
from W+light jet production. For this process to align with the signature of the
t-channel process, a light jet must be incorrectly identified as a jet originating
from a bottom quark.

1.17. Other Background Processes

Other background processes of smaller relevance include Z+jets production and
the generation of two bosons with accompanying jets. At leading order, Z bosons
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Figure 1.11.: Leading order Feynman diagrams of W+jets production

decay into a fermion and its corresponding antiparticle. Specifically, decays into
an e+e− or µ+µ− pair constitute 6.7 % of total decay events [14]. These events
can mirror the signal signature if one of the resultant leptons are undetected or
omitted. The Z+jets background is largely filtered out during the analysis through
event selection criteria. The production of multiple bosons also contributes as a
background, but it has a smaller overall cross-section.

Numerous strong interaction processes do not result in lepton production.
However, there are various mechanisms through which such events might infil-
trate the leptonic event selection in this analysis. One such instance involves a
jet being erroneously identified as an electron, referred to as a "fake" electron.
Another scenario includes the decay of B hadrons into muons or the generation of
electron pairs through the interaction of photons with detector material. Leptons
produced through these means are termed "non-prompt" leptons. The combi-
nation of these processes is denoted as the multijet background and is further
discussed in Chapter 4.
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The Large Hadron Collider (LHC) [50], the world’s largest and most powerful
particle accelerator, is located at the European Organization for Nuclear Re-
search (CERN) in Switzerland. It was built with the primary objective of studying
the fundamental nature of matter and the forces that govern it.

The LHC is designed to accelerate particles to energies of up to 14 TeV, col-
liding them at four interaction points. By studying the particles produced by
these collisions, one can gain insights into the properties of subatomic particles,
including the Higgs boson, which was famously discovered at the LHC in 2012
by the ATLAS [27] and CMS [28] experiments.

A schematic overview of the LHC and CERN’s accelerator complex is shown
in Figure 2.1. The LHC is a 26.7 km circumference synchrotron, a circular particle
accelerator with magnetic fields adapting to the particle energy to keep them
on their fixed paths. The LHC has two beam pipes accelerating particles in
opposite directions. A number of smaller accelerators are used before injecting
the particles into the LHC.

Firstly, H− ions are fed into the Linear accelerator 2 (Linac 2) bringing the ions
to an energy of 50 MeV. Protons are produced by passing the ions through an
electric field stripping away the electrons. The protons are accelerated in bunches
by passing through radio frequency cavities timed to produce electric fields
accelerating the particles. After the initial acceleration in the Linac 2 to 50 MeV,
the protons are further accelerated in the Proton Synchrotron Booster (PSB),
the Proton Synchrotron (PS) and the Super Proton Synchrotron (SPS) before
being injected into the LHC. The PSB increases the proton energy to 1.4 GeV,
the PS increases it to 25 GeV and the SPS further boosts it to 450 GeV, prepar-
ing the protons for injection into the LHC, where they reach their maximum
energy of 6.5 TeV per beam before colliding in the four interaction points of the
LHC.

The protons within the LHC are grouped into bunches, traveling in opposite
directions in the two beam pipes. The acceleration of these protons is achieved
using superconducting cavities that resonate at a frequency of 400 MHz and
reach a maximum voltage of 2 MV. The protons are longitudinally focused by
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Figure 2.1.: Schematic overview of CERN’s accelerator complex [51].

synchronizing their passage through the accelerating cavities to coincide with
the rising phase of the voltage oscillation. This synchronization ensures that a
proton ahead of the bunch receives greater acceleration in the cavity, leading
it to follow a longer path around the ring. Conversely, protons lagging behind
the bunch receive less acceleration and hence take a shorter path. This process,
known as phase focusing, creates approximately 35 570 potential ’buckets’ for
proton acceleration in each beam of the LHC. However, due to limitations in
injecting bunches into the LHC and to minimize heat load on the beam screens
from electron clouds generated by synchrotron radiation, typically only around
2,808 bunches are filled during a run. These bunches are arranged in trains of a
number bunches with a spacing of 25 ns.

The path of the particles is curved using 1232 helium cooled superconducting
dipole magnets providing magnetic fields of 8 T. The magnets are cooled to
temperatures below 2 K using superfluid Helium to remain superconducting.
The transverse focusing of the particles in the beam is achieved using alternating
vertically or horizontally focusing quadropule magnets. Additional setups are in
place actively monitoring and correcting the paths of the particles. The operation
of the accelerator complex is highly complex and requires permanent monitoring
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Figure 2.2.: Schematic view of the ATLAS detector [52].

for several systems during operation. At the interaction points of the LHC
large detectors are installed: The two general purpose detectors ATLAS [52] and
CMS [53], the LHCb [54] experiment focusing on B-physics and the heavy ion
experiment ALICE [55].

2.1. ATLAS

The ATLAS detector [52], one of the two general-purpose detectors at the LHC,
consists of a variety of subdetector systems, arranged in concentric layers around
the interaction point, each designed to measure specific properties of particles
produced in collision events. Its superconducting magnets generate strong mag-
netic fields that cause charged particles to follow curved trajectories through
the detector. The curvature of these paths is utilized to determine the particles’
momentum, while their energy is measured by their absorption in calorime-
ters.

Figure 2.2 provides a schematic view of the ATLAS detector. The protons
intersect or collide in a small localized area called the beamspot of intense particle
activity and interactions in the center of the detector. The various subdetector
systems are each engineered for specific measurements of particles produced
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in the collisions. The inner detector systems are used for the reconstruction of
particle tracks, collision vertices, and decay vertices of particles. These systems
also play a significant role in the detector’s trigger system, which is essential for
event recording.

Surrounding the inner detector is the solenoid magnet, which generates a 2 T
magnetic field [56], bending the paths of charged particles. The next layer is
the calorimeter system, divided into the electromagnetic calorimeter (ECAL) for
absorbing and measuring the energy of electrons and photons, and the hadronic
calorimeter (HCAL) for hadrons and jets.

The calorimeter system is encircled by toroid magnets, arranged around the
muon spectrometer, specifically designed to measure muon momentum by track-
ing the curvature of their paths.

Particles are differentiated based on their interactions with the detector. Pho-
tons, with no electric charge, bypass the inner tracking detector and are ab-
sorbed in the ECAL. Electrons leave a track in the inner detector before being
absorbed in the ECAL. Muons, also charged, create tracks but penetrate further,
reaching the muon spectrometer. Jets leave tracks in the inner detector and
deposit energy in both calorimeters, aiding in their identification and reconstruc-
tion.

2.1.1. Coordinate System

The description of positions relative to the interaction point in the ATLAS detector
employs various coordinate systems. A right-handed Cartesian coordinate system,
centered at the interaction point, is defined where the x-axis points towards the
center of the LHC, the y-axis points upwards, and the z-axis aligns with the
anti-clockwise direction of the beam pipe.

In addition, a spherical coordinate system is used, characterized by the po-
lar angle θ measured from the z-axis, the azimuthal angle φ measured from
the x-axis and the radial distance r from the beam pipe. Additionally, often
the linear distance rφ along the direction of the azimuthal basis vector eφ is
used.

Particle momenta in the z-direction are often quantified using rapidity, defined
as:

y =
1
2

ln
(

E + pz

E− pz

)
.

Rapidity is particularly useful because the difference in rapidity between two
particles remains invariant under Lorentz boosts along the z-axis. For high-energy
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particles, rapidity (y) can be approximated by pseudorapidity (η), calculated
as:

η = − ln
(

tan
θ

2

)
.

The angular distance ∆R between two particles is then determined using the dif-
ferences in their pseudorapidity (η) and azimuthal angle (φ):

∆R =
√
(∆η)2 + (∆φ)2.

2.1.2. Inner Tracking Detector

The inner tracking detector is responsible for measuring the tracks of charged
particles produced in the collisions. The tracks are used to reconstruct momenta,
primary vertices, and decay vertices of the particles in a range of |η| < 2.5. The
Pixel detector [52] is used to achieve high resolution near the interaction point,
followed by the Semiconductor Tracker (SCT). The outer part of the inner detector
is comprised of the Transition Radiation Tracker (TRT) able to identify electrons
along with measuring the tracks. Its design enables the inner detector to function
effectively even in the presence of the high number of particles produced in each
bunch crossing.

The pixel tracking detector consists of four cylindrical barrel layers around the
beam pipe and three end caps of high-precision pixel modules. The Insertable
B-Layer (IBL) [58], the innermost layer, was installed at a radius of 3.3 cm from
the beam axis in 2014 during the Long Shutdown 1 to enhance the tracking
performance. The about 12 million pixels of the IBL have a size of 50× 250 µm2

each and are designed to cope with the high density of tracks near the interaction
point. The outer three layers of the pixel detector have a combined 80 million
pixels, each with a size of 50× 400 µm2. The pixel detector has a very high spatial
resolution of 10 µm in rφ and 60 µm in z for the barrel region or 115 µm in r
for the end caps, which allows for the accurate reconstruction of the particle’s
path.

The SCT [59–61] is positioned around the Pixel detector and consists of silicon
strip modules. These modules are arranged in four barrel layers and two end
caps each consisting of nine discs of modules. Each module contains two pairs
of strip sensors, with each pair rotated by an angle of 40 mrad relative to one
another. The modules have a much better lateral resolution than longitudinal
resolution with respect to the strips. The arrangement of the modules within the
detector is designed to align the strips parallel to the beam axis for the barrel
modules and orthogonal to the beam axis for the end cap modules, allowing for
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Figure 2.3.: Schematic view of the layers of the inner detector [57].

an enhanced resolution in rφ of 17 µm while the resolution in z for the barrel
and r for the end caps is 580 µm.

The final subsystem of the inner detector is the TRT, which is located around
the SCT, covering the range |η| < 2.0. The TRT detector elements consist of 4 mm
diameter polyimide drift (straw) tubes, filled with a Xe-based gas mixture, inter-
leaved with transition radiation material. In the middle of the tubes, gold plated
tungsten wires act as an anode with a potential of −1530 V.

High energy particles passing through the drift tubes ionize the gas setting
free electrons. These electrons then drift towards the wire causing a cascade of
electrons which is detected as a current in the electric circuit. Electron drift time
is used to infer the location of passing particles yielding a spatial resolution of
130 µm.

The production of transition radiation depends on the Lorentz factor γ of
the particles. Due to the small mass of electrons they produce high amounts
of transition radiation compared to heavier charged particles. The transition
radiation produces a high amount of electrons in the drift tubes and can thereby
be distinguished from other ionizing particles such as pions.

Together, the three subsystems of the inner tracking detector provide a very
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Figure 2.4.: Schematic view of the calorimeters of the ATLAS detector [52].

precise measurement of the trajectories of charged particles, which can be
used to reconstruct particle momenta, interaction vertices and decay vertices.
Among else, this information is later used to identify the production of B-
hadrons

The exact geometry and alignment of the inner detector is measured over
time by minimizing track-hit residuals of reconstructed tracks in the detec-
tor [62].

The inner detector components achieve a transverse momentum resolution
of

σpT/pT = 0.05% · pT[GeV]⊕ 1%

where ⊕ denotes addition in quadrature.

2.1.3. Calorimeter System

The calorimeter system is designed to measure the energy and position of particles
that are absorbed in the calorimeter. The arrangement of the calorimeters is
schematically shown in Figure 2.4.

The ECAL consists of a barrel section arranged cylindrically around the inner
detector and two end-cap sections (EMEC). While the electromagnetic calorimeter
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covers a range of |η| < 3.2 the forward calorimeter (FCAL) can measure elec-
trons and photons up to |η| < 4.9. The ATLAS calorimeters use two alternating
materials, an absorber material and an active detector medium. Additionally,
electrode layers are inserted to detect the electrons produced in the active mate-
rial.

The ECAL uses lead as an absorber and liqiud argon as an active detector
medium. High energy electrons produce photons through bremsstrahlung in the
absorber material. Conversely, photons produce electron-positron pairs through
interaction with a nucleus in the absorber material, which can again produce
photons, as long as their energy is still high enough. This repeating process
produces a particle shower in the calorimeter. In the liquid argon, the particles
ionize the gas producing electrons which drift to an electrode layer placed between
two absorber layers. The electrode layer is made of three insulated copper layers,
where the outer ones are at the high-voltage potential and the middle one is used
to measure the currents via capacitive coupling.

The absorber and electrode layers are arranged in an accordion structure,
where they run in a zig zag pattern radially for the barrel section which covers
|η| < 1.475 and axially in end caps covering 1.375 < |η| < 3.2. This has
the advantage that electrode layers correspond to values in φ simplifying the
segmentation and readout of the electrode layers significantly. The electrodes are
further separated in η and three depth layers by etched patterns on the electrodes.
The segmentation in η is made finer for the inner most layer and less fine for the
outer layer. Overall the ECAL measures the energy of absorbed particles with a
relative resolution of

σ(E)/E =
10%√
E[GeV]

⊕ 0.7%.

The hadronic tile calorimeter (HCAL) is located in a cylindrical shape around
the electromagnetic and end cap calorimeters. It is split into a central barrel
section covering |η| < 1.0 and an extended barrel section covering 0.8 < |η| < 1.7.
Two hadronic end cap calorimeters cover the range 1.5 < |η| < 3.2. The hadronic
calorimeters are designed to measure the energy of hadrons, which interact
primarily through strong nuclear interactions. The HCAL is composed of layers
of steel plates, which are interspersed with layers of plastic scintillator material.
When a hadron enters the hadronic calorimeter, it interacts with the metal plates
and produces a shower of secondary particles. The shower of particles produces
a cascade of light, which is detected by photodetectors located at the back of the
HCAL. By measuring the amount of light produced by the particles, the energy
of the original particle can be determined. The hadronic end cap calorimeter uses
flat plates of copper as an absorber and liquid argon as active material. Its readout
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is segmented in η and φ to enable spatial resolution. The HCAL measures the
energy of absorbed particles with a relative resolution of

σ(E)/E =
50%√
E[GeV]

⊕ 3%.

The FCAL is used in addition to the electromagnetic and hadronic calorimeters
to measure the forward region of 3.1 < |η| < 4.9 and has three layers, one
electromagnetic layer and two hadronic layers. The electromagnetic layer uses
copper as an absorber and the hadronic layers use tungsten. Tubes and rods
made out of the absorber material are arranged parallel to the beam pipe. The
gap between the rods and the tubes is filled with liquid argon and just 0.27 mm to
0.50 mm thin, allowing for a fast readout necessary for the high particle density
in the forward region.

The FCAL reduces the number of particles escaping undetected in the forward
region, which is crucial for a precise determination of the missing transverse
momentum. The FCAL measures the energy of absorbed particles with a relative
resolution of

σ(E)/E =
100%√
E[GeV]

⊕ 10%.

Together, the ECAL, HCAL, and FCAL provide a complete measurement of the
energy of particles produced in the ATLAS collisions. The data collected by the
calorimeter system is used in conjunction with the other subsystems of the ATLAS
detector to identify particles and measure their properties.

2.1.4. Muon Spectrometer

The muon spectrometer (MS) is positioned around the calorimeters. Muons
typically have the ability to traverse the entire detector. As a result, the MS plays
a pivotal role in identifying muons and measuring their momenta. The paths of
the muons are measured using drift chambers. The magnetic field, generated by
the toroid magnets, enables the reconstruction of muon momenta by assessing the
curvature of their tracks. In the barrel region, a magnetic field reaching up to 2.5 T
is generated by a barrel toroid. Complementing this, two smaller end-cap toroids
produce a magnetic field of up to 3.5 T. Each toroid, comprising eight evenly
distributed superconducting coils encircling the beam pipe, creates magnetic
fields that effectively bend the trajectories of muons in the η direction. In the
barrel section, the drift chambers are situated between and on the magnet coils in
three layers each made of eight larger and eight smaller chambers. In the end-cap
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section, the chambers are arranged in three discs on each side of the detector, one
in front and two behind the end-cap toroid magnets.

Most drift chambers are Monitored Drift Tube (MDT) chambers constisting
of three to eight layers of cylindrical aluminum drift tubes with a diameter of
3 cm with a centered anode wire. When muons pass through the drift tubes
electrons and gas ions are produced which drift to the cathode tube wall and
anode wire, respectively. The drift time of the electrons is used to measure the
distance of the track to the wire. Information from the tubes are combined to
measure the muon track orthogonal to the magnetic field with a resolution of
around 35 µm. The support structure the tubes are placed on needs to be built
extremly precisly. To account for changes in the structure an active monitoring
system is built into the frame. In the forward region of the inner most end cap
layer, Cathode-Strip Chambers (CSCs) are employed due to the higher amount of
particles produced in the forward region. The CSCs are multi-wire proportional
chambers with segmented cathode walls. One cathode wall is finely segmented
in η allowing for a resolution of 60 µm in the bending direction of the muons, the
other is segmented broadly in rφ resulting in a resolution of 5 mm transverse to
the bending plane of the muons.

2.1.5. Trigger System

ATLAS is equipped with a sophisticated trigger system that filters out unwanted
data and selects interesting events for further analysis.

The ATLAS trigger system consists of three levels, the Level-1 (L1) trigger, the
Level-2 (L2) trigger and the event filter. The L2 and event filter form the high-level
trigger (HLT). The L1 trigger is a hardware-based system that performs a fast
selection of events based on simple criteria. It is composed of two main parts:
the calorimeter trigger and the muon trigger. The calorimeter trigger analyzes
the energy deposited in the detector’s calorimeter system to identify high-energy
particles and missing transverse momentum, while the muon trigger uses infor-
mation from the special muon trigger detectors, the Resistive Plate Chambers
(RPC) and Thin-Gap Chambers (TGC) located around the MDT chambers, to
identify high-energy muons. The information from these triggers is combined to
select the most interesting events for further analysis.

If an event passes the L1 trigger, it is sent to the L2 trigger along with in-
formation about Regions-of-Interest (RoIs) identified by the L1 trigger and
used by the L2 trigger to limit the data needed from the readout. The L2
trigger is a software-based system that performs a more detailed analysis of the
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data.

Events passing the L2 trigger are fully reconstructed using the complete de-
tector information, and in the event filter an offline analysis is run, selecting the
events which are permanently saved. The ATLAS trigger system is designed to
reduce the data rate from the collision rate of up to 40 MHz down to a rate of
approximately 1.2 kHz [63], which is compatible with the available storage and
processing capabilities.

2.1.6. Luminosity

The SM provides theoretical predictions in terms of cross-sections, which are
independent of experimental conditions, such as the number of colliding particles
in a detector. To derive the predicted number of particles produced by a specific
process, the cross-section σ is multiplied by the instantaneous luminosity L. This
luminosity encompasses information about the experimental setup, including
the intensity and density of the particle beams. The relationship is given by the
formula:

dN
dt

= σL

where dN
dt represents the rate of a specific scattering process. Thus, the instanta-

neous luminosity directly influences the number of events detected for a given
process. A higher luminosity increases the probability of detecting rare events,
making it a crucial factor in the design and operation of particle colliders. Lumi-
nosity can be expressed in terms of the number of bunches nb, number of protons
per bunch np, revolution frequency fr, and the convoluted transverse beam sizes
σx and σy:

L =
nbn2

p fr

2πσxσy

The LHC has a revolution frequency of fr = 11.245 kHz. In the data used for
this analysis, the number of bunches ranges from nb = 2220 to nb = 2556,
and the protons per bunch vary between np = 1.1× 1011 and np = 1.25× 1011.
An accurate determination of the integrated luminosity is essential for many
analyses since all predicted event yields are proportional to it. The most precise
determination of the integrated luminosity for this analysis is Lint = 140.1 pb−1

with a relative uncertainty of 0.83 % [64]. The value is derived from van der Meer
scans during special annual runs and extrapolated to physics data-taking using
measurements from multiple luminosity-sensitive detectors.

The total integrated luminosity of the LHC during the Run 2 data-taking period
is shown in Figure 2.5.
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Figure 2.5.: Integrated luminosity during Run 2 using a previous calibration of
the luminosity [65].

2.2. LHC Run 2

The data sample used for the analysis is defined by further requirements based
on stable beam conditions, correct functionality of all ATLAS subdetectors and
a set of data-quality requirements [66]. In the years 2015 to 2018, the Run 2 of
the LHC took place. During this period, the LHC operated at a center-of-mass
energy of 13 TeV, significantly higher than in previous runs.

The dataset collected during Run 2 comprises a vast amount of collision data,
amounting to an integrated luminosity of 140.1 fb−1. This represents a substantial
increase in data volume compared to Run 1.

Upgrades and maintenance were performed on the ATLAS detector between
the LHC Runs to ensure optimal performance despite the increased demands
placed on the detector system by the higher collision energy and luminosity. The
distribution of the number of pileup events in Run 2 is shown in Figure 2.6 split
up into periods of one year.
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Figure 2.6.: Mean number of interactions per bunch crossing during Run 2 [65].

47





3. Monte Carlo Samples

To effectively analyze data recorded with the ATLAS detector, accurate theo-
retical predictions of the distributions of reconstructed quantities are essential.
As detailed in Chapter 1, individual hard scattering events are generated us-
ing generator programs specifically designed for this purpose. These programs
are interfaced with a showering algorithm to model the development of parton
showers, hadronization, and the underlying event. Subsequently, the response
of the detector is simulated. For these various steps, different programs are
employed, each selected for their specific advantages in modeling different
processes. In this Chapter, the setups used for the different processes are de-
scribed.

In all simulated processes, the effects of pileup have to be accounted for. To
describe pileup in the simulation, the number of bunch crossings per event,
denoted as µ, is defined. µ is determined in each event using the count of
reconstructed vertices. In the MC simulations, pileup is accounted for by adding
simulated minimum bias events to the hard scattering event. The µ measured
in MC is then compared to data, and adjustments are made by applying event
weights to account for any differences in the µ distribution.

3.1. Signal Sample

The t-channel process is simulated at NLO in QCD using the Powheg Box v2 [67–
73] matrix-element generator. The process is generated in the four-flavor scheme,
with the top-quark mass set to mt = 172.5 GeV. The PDF set NNPDF3.0nlo_nf4 [74]
is utilized for this simulation.

Powheg Box v2 has been optimized to match NLO matrix-element calcula-
tions with parton showers. It is interfaced with Pythia 8.230 [75] for parton
shower generation, using the A14 parameter set [76] and the NNPDF2.3lo PDF
set [77].

The simulated event samples for tq and t̄q production are normalized using
predicted cross-sections calculated by the MCFM 10.1 program at NNLO in
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QCD [78]. The cross-section for tq production is set at σ(tq) = 134.2± 2.2 pb, with
a relative uncertainty of 1.6%, while the cross-section for t̄q production is σ(t̄q) =
80.0± 1.6 pb, corresponding to a relative uncertainty of 2.0%.

The renormalization and factorization scales in this simulation are set according

to the guidelines in Ref. [73], specifically to
√

m2
b + p2

T,b. This setting ensures an
accurate representation of particle interactions at these scales.

The decay of the top quark is calculated separately, employing the NWA,
which confines the simulation to on-shell top quark states. To account for
finite-width effects in the top-quark decay, the top-quark mass is subsequently
modified to follow a Breit-Wigner distribution. To ensure the preservation of
spin correlations, the top quarks are decayed at LO using MadSpin [79, 80].
This method effectively retains the angular correlations between the initial and
final state particles. Additionally, the decays of bottom and charm hadrons are
simulated using the EvtGen 1.6.0 program [43].

To estimate the uncertainty in the choice of shower algorithm, an alternate
generator setup, interfacing Powheg Box v2 with Herwig v.7.2.1p3, is used to
produce a comparative sample.

Furthermore, to address the uncertainty in the matching procedure between
Powheg Box and Pythia, an additional sample is created by modifying the
POWHEG:pThard parameter to one, which determines how the hardness of the
Powheg event is determined in Pythia. While zero is the default setting for
pTHard, adjusting it to one provides a viable alternative for estimating the un-
certainty in the matching procedure. Employing a different matching algorithm
altogether could be another method for quantifying this uncertainty. However,
such alternative configurations have additional changes and are not as finely
tuned to data as the Powheg Box + Pythia setup which might result in an
overestimation of the uncertainty.

For the nominal sample, the detector simulation employs a full Geant4-based
model [81]. For alternative samples, which are used to define systematic un-
certainties, the faster Atlfast-II simulation is utilized. Additionally, to ensure
consistency and avoid attributing differences between the full Geant4 simula-
tion and Atlfast-II to uncertainties, the nominal sample is also produced using
Atlfast-II for comparative purposes.
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3.2. Single Top Background

The tW process is simulated using the Powheg Box v2 generator at NLO in QCD.
This simulation employs the five-flavor scheme along with the NNPDF3.0nlo

PDF set. To mitigate interference and overlap with tt̄ production, the diagram
removal scheme is utilized [82]. The uncertainty associated with this approach is
estimated by comparison with an alternative sample generated using the diagram
subtraction scheme [82, 83]. The events are interfaced with Pythia 8.230, applying
the A14 parameter set and the NNPDF2.3lo PDF set [77].

The sample is normalized to conform with a total cross-section of σ(tW +
t̄W) = 79.3 ± 2.9 pb, corresponding to a relative uncertainty of 3.7%. This
normalization is based on calculations at NLO in QCD [84].

Similarly, single-top s-channel production is simulated with Powheg Box v2 at
NLO in QCD. This process also uses the five-flavor scheme and the NNPDF3.0nlo

PDF set [85]. For the generation of the parton shower, Powheg Box v2 is in-
terfaced with Pythia 8.230, utilizing the A14 tune and the NNPDF2.3lo PDF
set.

The sample is normalized to match a total cross-section of σ(tb̄ + t̄b) = 10.32±
0.38 pb, which corresponds to a relative uncertainty of 3.7%. This value is calcu-
lated at NLO in QCD using the Hathor 2.1 program [86, 87].

Alternative samples using Powheg Box+Pythia are generated, with pTHard set
to one, to describe the uncertainty of the matching procedure.

For these samples, the nominal simulation uses the full Geant4 detector simu-
lation, while alternative samples for systematic uncertainties and comparative
analysis employ the quicker Atlfast-II [44] simulation.

3.3. tt̄ Background

The tt̄ process is simulated using Powheg Box v2, employing the NNPDF3.0nlo

PDF set in the five-flavor scheme.

Parton showering, hadronization, and the modeling of the underlying event are
accomplished using Pythia 8.230 with the A14 set of tuned parameters and the
NNPDF2.3lo PDF set. The Powheg Box + Pythia generator setup uses a match-
ing scheme for hard emissions in the two programs. This matching is governed by
the hdamp parameter, which controls the pT of the first additional gluon emission
beyond the LO Feynman diagram in the parton shower. Thus, it regulates the
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high-pT emission against which the tt̄ system recoils. Event generation was per-
formed with hdamp = 1.5×mt [83]. To evaluate the uncertainty of the procedure
a comparative sample is generated with hdamp = 3×mt.

The simulated tt̄ event sample is normalized to align with a total cross-section
of σ(tt̄) = 834± 33 pb, corresponding to a relative uncertainty of 4.0%. This
calculation uses the NNLO computations provided by the Top++ 2.0 program.
As outlined in Ref. [88], along with its associated references, Top++ 2.0 not only
does the NNLO calculations but also integrates the resummation of next-to-next-
to-leading logarithmic soft-gluon terms, enhancing the precision and reliability
of the calculation.

To estimate the uncertainty arising from the choice of the shower algorithm, an
alternative generator setup is employed to produce a comparative sample. In this
setup, Powheg Box v2 interfaces with Herwig v.7.2.1p3 [89, 90].

An alternative sample using Powheg Box+Pythia is generated, with pTHard
set to one.

The nominal simulation uses the full Geant4 detector simulation, while alter-
native samples for systematic uncertainties and comparative analysis employ the
quicker Atlfast-II simulation.

3.4. Boson processes

The production of Z+jets and W+jets events is simulated with the Sherpa 2.2.1 [91]
generator using NLO matrix elements for up to two partons, and LO matrix ele-
ments for up to four partons calculated with Comix [92] and OpenLoops [93–95].
They are matched with the Sherpa parton shower [96] using the MEPS@NLO
prescription [41, 97–99] and the set of tuned parameters developed by the Sherpa

authors. The NNPDF3.0nnlo set of PDFs [85] was used, and the samples were
normalized to a NNLO prediction [100].

QCD V+ jets production is simulated with the Sherpa v2.2[101] parton shower
Monte Carlo generator. Additional hard parton emissions [92] are matched to
a parton shower based on Catani-Seymour dipoles [96]. The NNPDF3.0nnlo

set [85] of PDFs as well as the dedicated set of tuned parton shower parameters
developed by the Sherpa authors for this version are used.

The ME+PS matching [41] is employed for different jet multiplicities which
are then merged into an inclusive sample using an improved CKKW matching
procedure [98, 99] which is extended to NLO accuracy using the MEPS@NLO
prescription [97]. These particluar simulations are NLO accurate for up to two
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additional partons and LO accurate for up to four additional partons. The
virtual QCD correction for matrix elements at NLO accuracy is provided by the
OpenLoops library [94, 95].

The V+ jets samples are normalized to a NNLO prediction [100].

For the nominal samples the full Geant4 detector simulation is used, while
alternative samples for systematic uncertainties and comparative analysis employ
the quicker Atlfast-II simulation.
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The multijet process encompasses all processes that do not incorporate a lepton
in their hard scattering final state. Multijet events may infiltrate the selection if a
jet is mistakenly identified as a lepton, or if hadrons within the jets decay, thereby
producing real non-prompt leptons. Furthermore, electrons can be produced
from photon conversion in the detector material.

Despite the multijet process possessing an exceptionally large cross-section,
events from this process are very infrequently selected in the presented analysis
due to the lepton requirements applied in the analysis. Simulating multijet events
using the MC methods used for the other processes proves to be unfeasible due
to the low efficiency of selected events. Consequently, two methods are utilized
in this analysis to generate event samples that emulate the multijet process.
The used methods, however, do not offer an estimate of the overall number of
events of the multijet process, leaving the normalization of the samples to be
determined from data. The normalization is first determined in a preliminary
multijet estimate described in Section 6.1 and later determined simultaneously
with the signal parameters in the statistical analysis, which accounts for all
uncertainties.

In this analysis, the multijet process is categorized into subprocesses depending
on the presence of a muon or an electron in the event. Furthermore, electron
subprocesses are classified based on the electron’s pseudorapidity, differentiating
between events with |η| < 1.37, labeled mj e, and those with |η| > 1.52, labeled
mj fe. The subprocess involving muons is labeled mj µ.

4.1. Jet-Electron Method

The jet-electron method [102] is implemented for multijet events where an elec-
tron is found in the final state. This method employs a dijet MC simulation
sample. This sample is produced using Pythia 8.186, employing LO matrix
elements, combined with a pT-ordered parton shower. The renormalization (µr)
and factorization (µf) scales in this simulation are set to the square root of the
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geometric mean of the product of the squared transverse masses of the two
outgoing particles from the matrix element. Specifically,

µr = µf =
4
√
(p2

T,1 + m2
1)(p2

T,2 + m2
2).

During the generation process, a filter is applied at the generator level to ensure
the presence of at least one jet with a transverse momentum pT exceeding 17 GeV.
The generation of this sample uses the NNPDF2.3lo PDF set and employs the
A14 tuning parameters set.

In the dijet MC sample, jets that deposit a high fraction of their energy in the
electromagnetic calorimeter are reclassified as ’jet electrons’. These jet electrons
are jets that have a higher probability of being mistakenly identified as electrons.
In the analysis that follows, these jet electrons are treated as identified electrons,
not as jets, to mimic the real-world scenario where jets are misidentified as
electrons.

For a jet to be classified as a jet electron, it must meet several conditions: it
should deposit more than 80 % of its energy in the electromagnetic calorimeter
( fEM > 0.8), possess a transverse energy ET > 25 GeV, and have a pseudorapidity
|η| < 2.4.

To assess the uncertainty of this method, an additional sample is created with
a modified criterion for the energy deposited in the electromagnetic calorimeter,
specifically fEM > 0.9. This variation can be compared to the nominal sam-
ple to estimate the robustness and reliability of the jet electron identification
process.

4.2. Anti-Muon Method

For multijet events where a muon is found in the final state, the data-driven
anti-muon method [102] is employed. This technique utilizes a data sample
that is enriched in muons originating from hadron decays, since the number
of multijet events with jets misididentified as muons is negligible. To obtain
events that are enriched in such non-prompt muons, the usual muon selection
and isolation criteria are replaced by a set of criteria that select non-isolated
muons with similar kinematic properties to isolated muons. Notably, an inverted
isolation requirement is used, requiring the transverse energy measured in the
calorimeters within a ∆R of 0.2 around the muon to be larger then 0.03 times the
muon pT.
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The resulting sample contains real data events highly enriched in the multijet
process with non-prompt muons that would be removed by isolation require-
ments in the actual data sample. At the same time the events in the sample
mimic events where non-prompt muons wrongfully pass the nominal isolation
requirements.
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For subsequent analysis, it is beneficial to translate the data measured by the
detector back to objects representing the final state particles from the hard
scattering process. This event reconstruction process involves combining data
from various detector systems to identify and characterize particles produced in
the collision. The process utilizes tracking information of charged particles, energy
deposits in the calorimeters, and data from the muon system. This approach
allows for identifying different particle types, such as electrons, muons, and jets,
and reconstructing their energy and direction. By combining this information, a
detailed representation of the event is constructed.

5.1. Particle tracks

Tracks of charged particles measured in the inner detector are used to reconstruct
the momentum of the particles. This is achieved by measuring the curvature of
the tracks in the strong magnetic field of the solenoid magnet. Each interaction
between a particle and an inner detector module yields a measured signal,
referred to as a hit. Subsequently, a tracking algorithm [103, 104] identifies hits
belonging to the same track.

The track reconstruction process begins with clusterization. This involves as-
sembling clusters from raw sensor measurements, where a connected component
analysis groups pixels and strips in each sensor into clusters. These are based
on deposited energy resulting in a charge above a certain threshold. From these
clusters, three-dimensional measurements, known as space-points, are created.
Notably, in pixel sensors, the charge is often dispersed across multiple adjacent
pixels. The precise intersection point with the sensor is calculated from the pixels
contributing to the cluster, using a linear approximation technique that is refined
with charge interpolation.

These clusters are then categorized: those formed from charge deposits by a
single particle are called single-particle clusters, whereas those from multiple
particles are termed merged clusters. The primary-track reconstruction algorithm
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takes over from here, forming track seeds from sets of three space-points. Uti-
lizing a combinatorial Kalman filter [105], these seeds are extended into track
candidates. This filter methodically incorporates additional space-points from the
pixel and SCT detectors’ remaining layers, provided they align with the initial
trajectory.

However, this stage can result in an ambiguity of track candidates, where
space-points overlap or are misassigned. To resolve this, an ambiguity-solving
stage is implemented. Tracks are processed individually, prioritized by a track
score that hinges on simple measures of track quality. A crucial part of this stage
involves scrutinizing shared clusters, which are clusters used in multiple track
candidates but not identified as merged. Since these shared clusters strongly
suggest incorrect assignments, a limit on the maximum number shared clusters
is enforced.

To aid in identifying merged clusters, an artificial neural network (NN), specifi-
cally trained for this purpose, is employed. This NN demonstrates remarkable
efficiency, correctly identifying clusters created by two particles about 90% of the
time, and those by three charged particles with an efficiency of 85%. Subsequently,
track candidates failing to meet a set of basic quality criteria are discarded by the
ambiguity solver.

Finally, the tracks are extended through the TRT and high-resolution track fits
are performed using additional neural networks to ascertain the position and
uncertainty of each cluster. An additional reverse sequence is used which starts
to search for tracks in the TRT to find additional tracks.

Each reconstructed track is defined by five parameters: the azimuthal angle φ,
the polar angle θ, the charge-to-momentum ratio q/p, and two impact parameters,
d0 and z0. The parameter d0 denotes the minimum transverse distance to the
nominal interaction point, while z0 represents the closest longitudinal distance.
The performance of the ATLAS track reconstruction algorithms in Run 2 is
analyzed in Ref. [106].

From the reconstructed tracks vertices corresponding to the collision points in
the detector are reconstructed [107]. The reconstruction of vertices unfolds in two
main stages: vertex finding and vertex fitting. The initial stage, vertex finding,
involves associating reconstructed tracks with potential vertex candidates. In the
vertex fitting process the precise position of the vertex and its covariance matrix
are reconstructed.

The process begins by selecting a seed position for the first vertex. Utilizing
both this seed and the associated tracks, an iterative fit is applied to estimate the
best vertex position. During each iteration of this fitting procedure, tracks that are
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less compatible with the current vertex estimate are progressively down-weighted,
and the vertex position is recalculated to refine its accuracy.

Once a stable vertex position has been determined, tracks that do not align well
with this vertex are removed. These removed tracks are not discarded but rather
made available for the determination of subsequent vertices. The entire procedure
is then repeated with the remaining tracks in the event.

Finally, the primary vertex is chosen from the set of vertices with at least two
associated tracks. This selection is based on identifying the vertex with the highest
sum of squared transverse momenta p2

T [108]. Events must have at least one vertex
associated with a minimum of two inner detector tracks, each having a transverse
momentum pT greater than 0.5 GeV. Secondary vertices, located outside the
beamspot, are later utilized for B-hadron identification.

Given that the expected size of the beamspot is considerably smaller than the
resolution of the primary vertex position in the transverse direction, calculating
the transverse impact parameter d0 of tracks relative to the primary vertex is
not necessary. However, the situation differs for the longitudinal position of the
primary vertex. In this case, it is beneficial to determine the longitudinal track
impact parameter z0 of the tracks relative to the primary vertex position. This
parameter is subsequently denoted as ∆z0.

5.2. Topological clusters

A topological cluster algorithm [109] is used to group energy deposits (hits)
recorded in the calorimeters into distinct clusters. The algorithm uses a cell
signal significance S, the ratio of the measured cell energy to its average noise
value, of |S| > 4 to determine seed cells for the clusters. Cells neighboring the
clusters are added to the cluster as long as the corresponding cell on the cluster
border has a signal significance of |S| > 2. If a seed cell neighbors another
cluster, or a cell with |S| > 2 neighbors another cluster, the two clusters are
merged. Topological clusters are not expected to only contain the shower of a
single particle in all cases, as often showers from different particles cannot be
distinguished. However, they do provide a comprehensive representation of the
collective energy signature of significant signals in the calorimeters removing
noise from different sources.
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5.3. Jet algorithm

Combined information from the inner detector and the calorimeters is used to
reconstruct jets. The particle flow algorithm [110] is used matching topological
clusters with a selection of well measured tracks and subtracting the energy of
the tracks from the matched topological clusters. If the energy of the track is
smaller then that of the matched clusters, the energy is subtracted by estimating
the energy density profile and subtracting the energy step wise in rings of cells
starting with high energy density and going to lower energy density until the
energy is completely subtracted. The algorithm further decides if the remaining
energy in the topological clusters matched to the track is consistent with a shower
fluctuation of a single particle and removes it accordingly.

The remaining topological clusters and the tracks are then combined in a list of
entities serving as the input of the algorithm building the jets. Here, the anti-kT
algorithm [111] is used because of several of its advantageous properties. The
anti-kT algorithm is an iterative procedure combining the entities based on the
distance measures

dij = min(p−2
Ti , p−2

Tj )
∆R2

ij

R2 ,

diB = p−2
Ti .

where R is a radius parameter determining the size of the jets. An illustration
of the anti-kT algorithm is given in Figure 5.1. The entities, starting from the
particles measured in the calorimeters, are merged depending on the smallest
dij and diB. If a dij is the smallest, the two respective entities are combined to
one, and if a diB is smallest, the entity is declared a jet and removed from the
list of entities. This way jets are conical around high pT particles and when
multiple high pT particles are close together higher pT jets have priority over
lower pT jets. This ensures the shapes of the jets from high pT particles are
unaffected by soft radiation. Additionally, the found set of jets is unaffected by
additional soft radiation and collinear splittings of particles making the algorithm
infra-red and collinear safe. The radius parameter R is set for this analysis to
R = 0.4.

To suppress jets from pile-up a multivariate combination of track-based vari-
ables, the jet-vertex-tagger (JVT) [112], is used. Jets with pT < 60 GeV and
|η| < 2.4 are required to have a JVT above 0.5. For jets with high pseudorapid-
ity the forward-jet-vertex-tagger (fJVT) [113] is used. Jets with pT < 120 GeV
and |η| > 2.5 are required to have a fJVT below 0.4 and pass an additional
jet timing condition. Differences in the efficiencies of the JVT and fJVT be-
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Figure 5.1.: Illustration of the clustering achieved with the anti-kT algorithm [111].

tween collision data and simulation are corrected by corresponding scale fac-
tors.

5.4. Jet Energy Scale

The calibration of jet energy starts with the calibration of the energy deposited
in the calorimeter by electrons using test beams, thus establishing the electro-
magnetic (EM) energy scale. Jets are reconstructed at this EM scale using the jet
algorithm. The Jet Energy Scale (JES) correction then adjusts the jet energy to align
with the energy of truth jets, defined using the anti-kT algorithm on stable, final-
state particles coming from the initial results of the event simulation before they
undergo further interactions or decay. The measurement of the JES correction for
jets using the particle flow algorithm is derived in Ref. [114].

The JES calibration comprises multiple stages to address various effects. Ini-
tially, the four-momentum of the jets is adjusted to point towards the primary
hard scatter vertex, keeping the energy constant, which is essential for accurate
jet positioning and energy distribution. Following this, pileup corrections are
applied, considering both the jet’s transverse momentum and its area. An addi-
tional, residual pileup correction considers the average number of interactions
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per crossing µ and the number of primary vertices NPV.

Subsequently, the jet four-momentum is corrected to the level of jets constructed
from final-state truth particles, based on matching in Monte Carlo (MC) sim-
ulations. This process is followed by a global sequential calibration using five
observable parameters to correct effects from different pT fractions in quark- and
gluon-initiated jets.

The final calibration stage, in situ calibration, addresses differences between
data and MC simulations due to the detector’s response. This multi-step pro-
cess starts with the η-intercalibration, aligning jets in the forward region with
those in the central region in dijet events. The calibration is further refined
using Z+jets and γ+jets events to balance the jet with the Z boson or photon.
For high pT jets, multijet events calibrate them against well-calibrated low pT
jets.

5.5. Electron Reconstruction

Electron candidates are reconstructed from energy clusters in the electromagnetic
calorimeter matched to an inner detector track [115–118]. Superclusters are
formed out of EM topo-clusters, considering initial seed cluster candidates based
on descending ET values. Seed clusters must have ET > 1 GeV and a matched
track featuring at least four hits. Adjacent topo-clusters fulfilling specific criteria
are identified as satellite candidates, possibly from bremsstrahlung or splitting,
and are merged with seed clusters to create superclusters.

Subsequently, superclusters are associated with inner detector tracks to form
electron candidates. Clusters are required to be in the range |ηcluster| < 2.47 and
are excluded if they are in the transition region 1.37 < |ηcluster| < 1.52 between
the central and the endcap electromagnetic calorimeters. The tracks are required
to have a transverse momentum of pT > 10 GeV and are required to point to
the primary vertex with a transverse impact parameter significance |d0/σd0 | < 5
and longitudinal impact parameter, ∆z0, to satisfy the requirement |∆z0 sin θ| <
0.5 mm. Here, the factor of sin θ is used to account for the larger uncertainty of
the impact parameter determination in the forward region.

Electron energy is derived from supercluster energy. A multivariate algorithm
is used to account for energy loss outside the supercluster, such as in material
in front of the calorimeter. The algorithm is calibrated using simulated single
electron event samples. Next, adjustments in data are made accounting for
the differences between the calorimeter layers and local non-uniformities in the
detector response.
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5.6. Muon reconstruction

The overall energy scale is corrected in data and the energy resolution is
decreased slightly in MC by smearing to agree with data using a sample of
Z boson decays into electron-positron pairs. To improve the purity of correctly
identified electrons a likelihood discriminant is constructed from quantities from
the calorimeters and the inner detector, such as shower shape, number of hits
in the inner detector and the likelihood of transition radiation from the TRT.
Likelihoods are built as the product of the probability density functions of the
input quantities both for prompt electrons and for a background of jets with
similar signatures to electrons, electrons from photon conversions and electrons
from heavy hadron decays. The signal likelihood and background likelihood
are combined to a single discriminant used to place a cut selecting identified
electrons.

Finally, to refine the selection of electrons, non-prompt electrons are further
excluded through the implementation of an isolation requirement. This involves
the use of a multivariate discriminant based on boosted decision trees, known as
the prompt lepton BDT [115, 119]. This discriminant integrates electromagnetic
shower shapes and track information from the inner detector, along with various
metrics describing the isolation of the leptons, to effectively identify and select
prompt electrons.

The efficiency of the applied electron trigger, reconstruction, identification
and isolation criteria for the used working points is measured in data and
simulation [115]. Simulated events are corrected using scale factors to account for
differences between data and simulation in these efficiencies.

5.6. Muon reconstruction

Muons are reconstructed by matching tracks in the muon detector with tracks
in the inner detector [120, 121]. Tracks in the muon detector are reconstructed
as follows. A Hough transformation is used to search for aligned hits in each
MDT chamber. A straight line fit is performed to aligned hits to build a track
segment using RPC or TGC hits for measuring the coordinate orthogonal to
the bending plane. The segments are used as seeds in a combinatorial search
algorithm fitting hits from different segments to form a muon track candidate.
To build a muon track at least two matching segments are required except for the
barrel-endcap region where the requirement is relaxed. Finally, a global χ2 fit is
performed to select the track candidates. Next, the tracks from the muon detector
are combined with the inner detector tracks by a matching algorithm. Tracks
are required to have a transverse momentum of pT > 10 GeV and are required
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to point to the primary vertex with a transverse impact parameter significance
|d0/σd0 | < 5 and longitudinal impact parameter, ∆z0, to satisfy the requirement
|∆z0 sin θ| < 0.5 mm.

Similarly to the electrons, additional identification criteria are applied to muon
candidates to select prompt muons. Non-prompt muons originate mainly from
decays of pion and kaon decays in the detector. As such non-prompt muons often
have a kink in their reconstructed track. Differences in the track properties in the
inner detector and the MS and the normalized χ2 of the combined track fit are
used to select tracks where the track from the inner detector and the track from
the muon detector are compatible, reducing the number of selected non-prompt
muons. Different identification selection categories are defined in Ref. [121]. The
medium identification selection category is used for the selected muons in this
analysis, while muons selected in the loose identification selection category are
to veto events as described in Chapter 6.

Subsequently, the muon selection process is similarly enhanced by excluding
non-prompt muons through an isolation criterion. This refinement utilizes a
multivariate discriminant, known as the prompt lepton BDT [119, 120], which
is developed using boosted decision trees. It incorporates information on muon
track characteristics from the inner detector and muon spectrometer, along with
data regarding the isolation of the muons.

The efficiency of the applied muon trigger, reconstruction, identification and
isolation criteria for the used working points is measured in data and simu-
lation [120]. Simulated events are corrected using scale factors to account for
differences between data and simulation in these efficiencies.

5.7. Flavor-tagging of Jets

For the further analysis it is important to identify jets originating from b-quarks
(b-tagging). Such jets have several properties that can be exploited to differentiate
them from jets coming from light quarks or gluons. One useful indicator is the
vertex the tracks of the jets converge on. Jets originating from a bottom quark
in the hard scattering final state are characterized by a B-hadron which travels
a short distance away from the interaction point until it decays further. The
properties of the secondary vertices and impact parameters of the tracks are used
to identify jets originating from b-quarks. For this purpose multiple algorithms
were developed and later combined.

The IP3D algorithm [122] utilizes track information for b-tagging, focusing on
the transverse impact parameter significance (d0/σd0) and longitudinal impact
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parameter significance (z0 sin θ/σz0 sin θ), which are employed in a log-likelihood
ratio.

Complementing this, the SV1 algorithm [123] reconstructs secondary vertices
using an iterative χ2 fitting procedure. Further, the JetFitter algorithm [124]
reconstructs the entire B-hadron decay chain and employs a BDT to combine
various reconstructed observables for jet classification.

These algorithms’ outputs are then integrated into the deep feed-forward neural
network DL1r. The DL1r network, a variation of the DL1 algorithm [125], incorpo-
rates an additional Recurrent Neural Network [126] as input. For the identification
of b-tagged jets, a threshold is set on the DL1r network output, corresponding to a
b-tagging efficiency of 60 % for b jets in a sample of tt̄ events.

Differences in the b-tagging efficiency between collision data and simulation
are corrected using simulation-to-data scale factors derived from tt̄ events and
consistent with unity. The scale factors depend on the pT of the jets and are
corrected for different parton-shower generators using additional MC-MC scale
factors.

5.8. Missing transverse momentum

Neutrinos produced in the interaction, travel through the detector without in-
teracting with it, making a direct detection impossible. However, by adhering
to the principle of momentum conservation, the sum of transverse momenta ~pT
of all particles originating from the hard scattering should be zero. Thus, by
examining the total measured momenta of all particles involved in the interaction,
the magnitude and direction of the missing transverse momentum ~pmiss

T can
be deduced. Specifically, for the t-channel process, this missing transverse mo-
mentum corresponds to the neutrino’s transverse momentum, enabling the full
reconstruction of the top quark as discussed in Section 6.3.

To determine the missing transverse momentum, all momenta of the recon-
structed leptons and jets, and well-measured inner detector tracks that point
to the primary vertex but are not associated with a reconstructed object are
summed [127]. However, signals from the calorimeters that are not part of recon-
structed particles are excluded due to their high contamination from pileup. To
accurately determine the missing transverse momentum, it is therefore necessary
to analyze data from all subdetectors.

By convention, the magnitude of the missing transverse momentum ~pmiss
T is

denoted as Emiss
T .
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5.9. Overlap Removal

In the object reconstruction process the same subdetector information is often
utilized multiple times to reconstruct various objects. To avoid the double-
counting of objects that are reconstructed from identical detector signals, an
overlap removal procedure is implemented. This procedure uses objects meeting
loose quality criteria and follows a systematic sequence:

Firstly, electrons that share an inner detector track with a muon are removed.
This ensures that there’s a clear distinction between the electron and muon
categories.

Next, jets positioned within a ∆R = 0.2 radius from an electron are eliminated.
This is important to avoid mistakenly counting electron energy deposits as
jets, which could distort the energy scale by double counting the energy of
objects.

Subsequently, electrons found within a ∆R = 0.4 radius from any remaining jet
are removed. This targets the reduction of non-prompt electrons that may arise
from photon conversions or semileptonic decays within jets.

For muons, any jets within a ∆R = 0.2 radius are discarded if they are associ-
ated with two or fewer tracks. This ensures that authentic muon signals are not
confused with proximate jet activity.

Finally, muons located within a ∆R = 0.4 radius of any remaining jet are also
removed. This step is designed to decrease the inclusion of non-prompt muons
that could be produced from hadron decays within the jet.

By adhering to this procedure, the analysis effectively guarantees that each
reconstructed object is distinctly classified, thereby minimizing ambiguities and
potential biases in the resulting data.
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6. Event Selection

In the event selection phase, properties of the reconstructed physical objects are
utilized to select events that match the expected signal signature. The primary
aim here is not solely to maximize the signal fraction but to establish a solid basis
for further analysis by efficiently filtering out easily distinguishable background
events. This selection hinges on the characteristic signature of the t-channel
signal process in the detector. At the tree level, the signal’s final state includes
the decay products of the top quark along with the light spectator quark. In the
leptonic channel, the top quark decays into a bottom quark, a neutrino, and a
lepton.

The criteria for event selection require exactly one lepton (`), representing
the lepton from the leptonic decay of the W boson. The analysis deliberately
excludes the hadronic decay channel due to its substantial multijet background,
which poses significant challenges in effectively distinguishing the signal process.
Furthermore, events must have exactly two jets: one corresponding to the light
spectator quark from the t-channel process, and the other associated with the jet
resulting from the top-quark decay. Exactly one of these jets is required to be b-
tagged, indicative of its origin from a bottom quark decay in the t-channel process.
The b-tagged jet is denoted as b, and the untagged jet as j.

The spectator bottom quark, not originating from the top quark decay, usually
has low transverse momentum (pT), resulting in its omission from the jet count.
This specific trait plays a crucial role in substantially minimizing the dominant tt̄
background via the jet counting selection criteria. In the case of the tt̄ background,
both b quarks are likely to produce a b-tagged jet. Therefore, the selection
criterion of having exactly one b-tagged jet effectively helps in excluding events
with tt̄ background. Additionally, events with forward jets within 2.3 < |η| <
4.5 and 30 GeV < pT < 35 GeV are removed, which improves the agreement
between the simulation and data in the pseudorapidity distribution of these
jets.

A cut on the missing transverse momentum of Emiss
T > 30 GeV is added,

consistent with the expectation of a neutrino coming from the leptonic W de-
cay. The transverse mass of the W boson is the invariant mass of its decay
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products assuming they have no momentum in beam direction. It is defined
as

mT (W) =
√

2pT(`)Emiss
T

(
1− cos ∆φ

(
~p miss

T , `
))

where ∆φ
(
~p miss

T , `
)

is the difference in the azimuthal angles of the lepton and
~p miss

T . The transverse mass is invariant under Lorentz boosts in the direction of
the beam pipe and peaks at the W-boson mass given the process involves an
on-shell W-boson and the decay products are correctly measured. A cut on the
transverse mass of mT(W) > 50 GeV is used to reduce multijet events, which lack
a W boson and tend to lower values in mT(W).

To further reduce the multijet background, a triangular cut is applied, removing
events with low lepton pT based on the difference in azimuthal angle between
the lepton and the jet with the highest pT, denoted by j1:

pT(`) > 40 · |∆Φ(j1, `)/π|

A cut on m(`b) is implemented to exclude regions of phase space where the top
quark is not produced in an on-shell state, aligning with the MC simulation’s
assumption that the top quark is produced on-shell. The kinematic limit of m(`b)
for on-shell top-quark production is given by the equation m(`b)2 = m2

t −m2
W [35].

Consequently, a requirement that m(`b) < 160 GeV is enforced.

Following these selection criteria, events are categorized into two signal regions,
SR plus and SR minus, based on the charge of the selected lepton, enabling
sensitivity to Rt. The number of selected events in the defined analysis regions is
given in Table 6.1 and the composition of the SRs is visualized in Figure 6.1. The
multijet process is normalized to values obtained from the preliminary multijet
estimate described in the following Section 6.1.

The applied selection criteria result in a signal fraction of 21 % in the SR plus
and 16 % in the SR minus. It is important to note that a higher signal fraction is not
necessarily more advantageous for subsequent analysis, especially considering
the additional use of a neural network to distinguish signal events from back-
ground events. The focus, instead, is on constraining the phase space to regions
where the majority of the signal is concentrated. This approach allows for a more
effective definition of the kinematic properties that will be used later to further dif-
ferentiate between signal and background events. The predominant background
contributions in the SRs are from tt̄ and W+jets events.
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Table 6.1.: The yields in the two SRs. All uncertainties applied in the analysis are
included.

Process SR plus SR minus

tq 167 000± 8000 150± 150
t̄q 90± 90 105 000± 5000

tW + t̄W, tb̄ + t̄b 52 000± 4000 51 000± 4000
tt̄ 281 000± 31 000 281 000± 31 000

W+bb̄, light 180 000± 70 000 130 000± 50 000
W+c(c̄) 59 000± 14 000 55 000± 13 000

Z+jets, diboson 19 000± 4000 18 000± 4000
Multijet 48 000± 10 000 47 000± 10 000

Total 800 000± 80 000 690 000± 60 000

Observed 814 185 698 845

6.1. Preliminary Multijet Estimation

Neither the jet-electron method nor the anti-muon method offers an estimate for
the quantity of multijet events. Consequently, the overall normalization of these
samples is determined concurrently with the signal parameters in the analysis. To
assess the agreement of distributions between MC and data prior to the main fit of
the analysis, a preliminary multijet fit is conducted to estimate the normalization

s =  13TeV, 140 fb 1

SR plus

tq

21%

tW+ tW, tb

6%
tt

32%

W+bb

25%
W+c(c)

7% VV,Z+jets
2% Multijet6%

(a) SR plus

s =  13TeV, 140 fb 1

SR minus

tq
16%

tW+ tW, tb

7%tt

38%

W+bb

23%
W+c(c)

7% VV,Z+jets
3% Multijet
7%

(b) SR minus

Figure 6.1.: Pie charts visualizing the composition of the SRs in terms of the
defined processes. SR plus is shown on the left and SR minus is
shown on the right.
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Table 6.2.: Multijet yields from the preliminary multijet fit. The given uncertainties
only include the statistical uncertainty.

barrel e+ end-cap e+ µ+ barrel e− end-cap e− µ−

Multijet 27 700± 1400 10 800± 500 1870± 110 27 900± 1400 10 900± 500 1900± 110
Total 319 900± 500 82 770± 260 12 020± 90 282 500± 500 67 600± 230 9710± 90

Multijet/Total 9% 13 % 16% 10 % 16% 20%

of the multijet background.

For this initial fit, regions are defined split in positive and negative lepton
channels, as well as electron and muon channels. Additionally, the electron
regions are further divided by pseudorapidity of the lepton into regions with
|η| < 1.37 (barrel) and with |η| > 1.52 (end-cap). In the fit the normalization for
each of the multijet subprocesses, mj e, mj fe and mj µ is determined by separate
normalization factors. For the electron channel the full Emiss

T distribution is used
removing the Emiss

T > 30 GeV cut and for the muon channel the ∆Φ(~pmiss
T , µ)

distribution is used in a region enriched in muon multijet events by inverting the
multijet veto cut:

pT(µ) < 40 · |∆Φ(j1, µ)/π|

The preliminary multijet fit is performed using only the statistical data un-
certainty and the statistical MC uncertainties. All other processes including the
signal processes are set to their SM expectation values. Figure 6.2 shows the
post-fit agreement between data and simulation in the included regions and
Table 6.2 shows the corresponding yields and multijet fractions determined in
the fit.

6.2. Multijet Background Control Regions

For the statistical analysis the normalization of the multijet background is deter-
mined in additional control regions (CRs) that are orthogonal to the SRs but are
kinematically close to the definition of the SRs. To get a good determination of
the multijet normalizations it is advantageous to have many events and a high
multijet fractions in the CRs. Therefore sensible choices for the definition of
the CRs are the inversion of cuts that aim to remove multijet in the SR. In the
statistical analysis all SRs and CRs are used in a simultaneous fit. This way the
uncertainty of the normalization of the multijet process is included in the fit by
construction.
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Figure 6.2.: Distributions used in the preliminary multijet estimate showing the
agreement between data and MC prediction after the fit.
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Figure 6.3.: Yields in the CRs comparing data and simulation. The uncertainty
band represents the combined MC uncertainty. The bottom plot
displays the ratio of observed events to the predicted count for each
region.

Like in the preliminary multijet fit the muon CRs for the further statistical analy-
sis are defined by the inversion of the triangular multijet veto cut

pT(`) < 40 · |∆Φ(j1, `)/π|.

Two multijet CRs are defined, CR µ-plus containing positively charged muon
events, and CR µ-minus containing negatively charged muon events. Electron
CRs are defined by inverting the requirement on Emiss

T . The electron CRs are
further divided by lepton charge and pseudorapidity of the lepton into regions
with η < 1.37 (barrel) denoted CR B-e-plus and CR B-e-minus and with η > 1.52
(end-cap) denoted CR EC-e-plus and CR EC-e-minus.

The yield of data compared to simulation with the multijet process scaled to the
values determined in the preliminary multijet fit is shown in Figure 6.3.
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6.3. Reconstruction of the Top Quark

Reconstructing the top quark is necessary for defining kinematic variables, such
as the invariant mass of the top quark. This reconstruction involves summing the
four-momenta of the decay products of the top quark:

p(W) := p(ν) + p(`)

p(t) := p(W) + p(b)

While the four-momenta of the lepton p(`) and the b-quark p(b) are already
determined, the neutrino’s four-momentum p(ν) presents a challenge, as only
its transverse component is directly measurable as the missing transverse mo-
mentum ~pmiss

T . The z-component of p(ν) can be reconstructed using the well-
established mass of the W boson as a constraint:

80.4 GeV = mW =
√

p(W)2

This constraint leads to a quadratic equation for the z-component of p(ν), typi-
cally resulting in two possible solutions. The smaller of these two solutions is
selected.

However, situations arise where the transverse mass of the reconstructed W
boson (mT(W)) is less than the mass of the W boson due to uncertainties in the
measurement of the ~pmiss

T . In such cases, where the quadratic equation yields no
real solutions, a correction procedure [128] is employed for the measured ~pmiss

T .
Initially, mT(W) is constrained to the mass of the W boson, yielding a single
solution for pz(ν). Subsequently, the x and y components of p(ν) are adjusted to
maintain the mass constraint of 80.4 GeV = mW . This adjustment results in two
new solutions, from which the one is selected that minimizes the difference be-
tween the measured and modified values of px(ν) and py(ν).
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7. Neural Network

A neural network is employed to further distinguish between signal and back-
ground events in the SRs by combining the information from several kinematic
variables. Its architecture is that of a feed-forward network, featuring one hid-
den layer and a single output node which categorizes events into signal or
background events. As a software implementation NeuroBayes [129, 130] is
used.

The feed-forward neural network employed in this analysis is a linear progres-
sion model, processing data linearly from input to output without cycles. The
architecture of the neural network is depicted in Figure 7.1. The process begins
combining input variables vi into weighted sums,

hj = f

(
∑

i
w1ivi

)
,

to form the nodes in the hidden layer. In these sums, each input variable is
multiplied by a unique weight w1i, which is optimized during the training.
The resultant weighted sums at each node are subsequently processed through
an activation function f , introducing non-linearity into the model. A sigmoid
function

f (x) =
2

1 + e−x − 1

is chosen as the activation function. This function is point symmetric around zero
treating negative and positive values equally. It is differentiable and maps input
values into a bound output range between -1 and 1.

Following the activation function, the hidden layer nodes are further combined
using another weighted sum

Dnn = f

(
∑

j
w2ihj

)
to produce a single output value for each event.

Neural networks and other methods available for signal separation, such as
boosted decision trees [131], typically yield better results than simple cut-based
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vi
hj

Dnn

Figure 7.1.: Schematic structure of the feed forward neural network.

analyses. Although boosted decision trees are often preferred for their simplicity
and robustness, the neural network implemented in NeuroBayes demonstrates
exceptional robustness in training, owing to the advanced, automated preprocess-
ing procedures it incorporates.

The training process for the feed-forward network involves refining the weights
to minimize a loss function characterizing the difference between the network’s
prediction oi and the target value Ti, which is defined as one for signal and
minus one for background events. For this analysis the entropy loss func-
tion

ED = ∑
i

ln
(

1
2
(1 + Ti · oi + ε)

)
is employed which is often preferred for classification problems. Here, ε is a
small value to avoid numerical issues in the beginning of the training process
and is reduced to zero as the training continues. The minimization is performed
by employing a backpropagation algorithm, which computes the gradient of the
loss function with respect to the weights. The weights are adjusted iteratively
by an algorithm reducing the loss function until a minimum is found. Here, the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, a quasi-Newton method, is
chosen for its efficiency in handling large datasets and its capability to converge
rapidly to a solution. The BFGS algorithm estimates the Hesse matrix in addition
to the gradient to make more efficient steps towards the minimum. Specifically, a
limited memory implementation [132] of the algorithm with bound constraints is
used.

The network architecture chosen for this analysis consists of a single hidden
layer containing 22 nodes. A bias node is included to allow for more flexible
function mapping, enhancing the network’s capability to fit the training data. The
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input layer consists of 17 distinct kinematic variables, each representing specific
physical quantities derived from the reconstructed events.

The kinematic variables chosen as input are not directly fed into the neural
network. Instead, the variables first undergo a transformation procedure within
NeuroBayes. This procedure aims to reformat the information of the variables in
a manner that’s more suitable for neural network processing.

Initially, the distribution of both signal and background events is ascertained
for each variable. The distributions are binned, ensuring that each bin contains
approximately an equal number of total events. Following this, for every bin, the
signal purity, which is the fraction of signal events, is computed. Subsequently, a
spline function is fitted to these signal purity values. The spline function’s value
at any given input variable directly corresponds to the estimated signal purity
for that specific variable value.

Subsequent to this, a series of two transformations are administered to the input
variables. For each event, the variable’s value is transformed via its respective
spline function, replacing it with the corresponding signal purity value. Each
variable’s signal purity distribution is then analyzed determining its mean and
standard deviation, and for each variable a linear transformation is applied
changing its distribution to have a mean of zero and a standard deviation of
one.

In the final step, the set of variables undergoes transformation through a
linear map, resulting in a decorrelated set of variables. Initially, the covariance
matrix of the input variable vector is computed. Subsequently, the orthogonal
transformation that diagonalizes this matrix is determined and then applied as
a coordinate transformation to the input variable vector. The processed input
variables exhibit a mean of zero, a standard deviation of one, and are not linearly
correlated with each other. This approach prevents the neural network from
having to learn the linear correlations among the variables, thereby reducing the
complexity of the training process.

To avoid overfitting and to ensure a generalized model, Bayesian regularization
is applied to the weights. This technique introduces a penalty in the loss function
for large weights of the form

EW = α1 ∑
i

1
2

w2
1i + α2 ∑

i

1
2

w2
2i

where α1 and α2 are regularization parameters adjusted by NeuroBayes and w1i
are the weights in the first layer and w2i are the weights in the second layer of
the network. Such a regularization ensures the model remains robust and less
sensitive to individual data fluctuations.
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7.1. Input Variables

The neural network employs 17 distinct input variables, each representing physi-
cal quantities derived from the reconstructed events. These variables, summarized
in Table 7.1 serve as discriminants to separate signal from background events.
Here, an overview of these variables is provided, along with accompanying
figures illustrating their distribution in both MC simulations and observed data.
It is important to check the adequate modeling of all input variables to avoid
biases in the neural network’s predictions.

The 17 variables were chosen from a vast pool of potential quantities. For this
selection, a procedure within NeuroBayes was employed. This procedure ranks
the variables by assessing their correlation with the target variable. The method
incorporates an iterative algorithm. Initially, the cumulative correlation of all vari-
ables to the target is determined. Following this, the variable that, when removed,
causes the least reduction in total correlation is eliminated. This elimination
process is repeated until all variables have been removed.

The magnitude of total correlation reduction serves as a metric of the impor-
tance of the individual variables, with the last remaining variable deemed the
most crucial. The number of used input variables was determined based on
studies examining the signal uncertainty in the subsequent statistical analysis
for varied numbers of input variables in the neural network. It was found that
beyond approximately 15 variables, the improvements in reducing the uncertainty
plateaued. The Figures 7.2 to 7.4 showcase the shapes of the signal process and
the main background processes for each variable in MC compared to the data.

The highest ranked variable is the invariant mass of the two jets m(jb). Invariant
mass is defined as m(x) = xµxµ making it Lorentz invariant and insensitive
of the momentum fractions carried by the colliding partons. In the t-channel
process, this variable typically exhibits higher values compared to the background
processes. This can be attributed to the high overall momentum of the light jet
produced alongside the top quark in the t-channel process. The m(jb) captures
this high momentum by relating it to the usually centrally produced b jet. The
second highest ranked variable is the pseudorapidity of the light jet, |η(j)|. This
observable captures the forward direction in which the light jet is produced
within the t-channel process. For the main background processes the |η(j)|
peaks at lower values. The variables |∆η(`, j)|, |∆R(`, j)| and |∆η(b, j)| add
to the description of the light jet by relating it to the lepton and b tagged jet.
Collectively, these variables capture the distinctive properties of the light jet
produced alongside the top quark in the t-channel.
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Figure 7.2.: Shape of the simulated distributions of the signal process and the
main background processes the first six input variables.

The invariant mass of the reconstructed top quark, m(t), peaks at the top quark
mass for the signal process where the reconstructed top-quark corresponds to a
real top quark. For the tt̄ process, the distribution is broader since the b-tagged
jet can belong to the other top quark, not the one decaying to the selected lepton.
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Figure 7.3.: Shape of the simulated distributions of the signal process and the
main background processes for the seventh to twelfth input variable.

In the W+jets process, the distribution peaks at a lower value and is broader
because the reconstructed top quark there does not correspond to a real top
quark. The spin correlation of the initial state light quark and the final state
lepton is exemplified by the angle of the spectator light quark and the lepton
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Figure 7.4.: Shape of the simulated distributions of the signal process and the
main background processes for the last five input variables.

in the top rest frame cos θ∗(`, j) as explained in Section 1.15. Due to the spin
correlation, in the signal process a strong dependence on the angle is found. In the
main background processes the distribution is found to be flatter. The variables
|η(`)| and |∆η(b, `)| describing the pseudorapidity of the visible top-quark decay
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products and their relation are valuable in differentiating the W+jets background
process from both the signal and tt̄ processes, due to broader distributions of the
former.

Sphericity is determined by adding the second and third largest eigenvalues
of the sphericity tensor and multiplying the result by 3/2. The sphericity tensor
itself is defined as

Sαβ =
∑i pα

i pβ
i

∑i |~pi|2
,

where α and β denote the spatial components x, y, and z, and pi represents the
three-momenta of the reconstructed objects: the two jets, the charged lepton, and
the reconstructed neutrino. For the signal process, the sphericity distribution
peaks at zero, whereas the main backgrounds present significantly broader
distributions.

In tt̄ events selected in this analysis, usually one of the top quarks decays
leptonically while the other one decays hadronically. This allows for different
combinations of which top quark the selected jets belong to. This in turn leads
to broader distributions of the tt̄ process in |∆pT(W, jb)| and |∆φ(W, jb)| than
the other main backgrounds and the signal process. The distribution of mT (W),
as defined in Chapter 6, peaks at the mass of the W boson provided that the
process involves a W boson decay and the decay products are accurately iden-
tified. Consequently, the shape of mT (W) is similar for both tq and W + bb̄
processes. However, in the case of tt̄ events, where two W bosons are involved,
mT (W) exhibits a broader distribution due to the presence of decays from two W
bosons.

Figures 7.5 to 7.7 show the comparison between the total MC predictions and
the data for each input variable to the neural network in the positive signal region.
The analogous comparisons for the negative signal region are presented in Ap-
pendix A. For each distribution, a test statistic that conforms to a χ2 distribution is
calculated to evaluate the agreement between MC predictions and observed data.
This calculation includes all systematic uncertainties, as detailed in Chapter 8.
The test statistic is defined by the Mahalanobis distance:

χ2 = (npred −ndata)
TS−1(npred −ndata)

In this formula, npred denotes the vector of predicted event counts in the his-
togram bins, while ndata represents the vector of observed data event counts in
these bins. S−1 is the inverse of the covariance matrix for the bin values, incorpo-
rating all uncertainties and bin-to-bin correlations of the predicted event counts.
Finally, a p-value is calculated to quantify the probability that the observed differ-
ences between the MC predictions and the data could occur by chance, assuming
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the model accurately describes the underlying process. This statistical measure
helps in assessing the level of agreement between the theoretical predictions and
the data.

For this comparison the multijet normalization is set to the values determined in
the preliminary multijet fit. All other processes are scaled to their SM prediction.
Good agreement is found between data and MC prediction in all variables indicat-
ing adequate modeling of the distributions by the simulation.
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Rank Variable Description

1 m(jb) Invariant mass of the untagged jet and b-tagged jet

2 |η(j)| Pseudorapidity of the untagged jet

3 |∆pT(W, jb)| Transverse momentum difference of the W boson and
jet pair

4 |∆φ(W, jb)| Azimuthal angle difference of the W boson and jet pair

5 m(t) Invariant mass of the reconstructed top quark

6 |∆η(`, j)| Pseudorapidity difference of the charged lepton and untagged jet

7 ∆R(`, j) Angular distance of the charged lepton and untagged jet

8 |∆η(b, `)| Pseudorapidity difference of the b-tagged jet and charged lepton

9 mT(W) Transverse mass of the W boson

10 m(`b) Invariant mass of the charged lepton and b-tagged jet

11 HT
Scalar sum of the transverse momenta of the charged
lepton, jets and Emiss

T

12 |∆η(b, j)| Pseudorapidity difference of the two jets

13 |∆φ(j, t)| Azimuthal angle difference of the untagged jet and top quark

14 cos θ∗(`, j)
Cosine of the angle between the charged lepton and
untagged jet in the top quark rest frame

15 |η(`)| Pseudorapidity of the charged lepton

16 S
Sphericity defined as 3/2 times the sum of the 2nd
and 3rd largest sphericity tensor eigenvalues

17 |∆pT(`, j)| Transverse momentum difference of the charged lep-
ton and untagged jet

Table 7.1.: The 17 variables used as input to the neural network, ranked by their
discriminating power.
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Figure 7.5.: Distributions for the first six input variables comparing simulation to
data. The uncertainty band includes all systematic uncertainties.
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Figure 7.6.: Distributions of the seventh to twelfth input variable comparing
simulation to data. The uncertainty band includes all systematic
uncertainties.
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Figure 7.7.: Distributions of the last five input variables comparing simulation to
data. The uncertainty band includes all systematic uncertainties.

89



7. Neural Network

7.2. Training Quality

The training of the neural network converges after five iterations of the BFGS
algorithm. A low number of iterations is expected due to the high efficiency
of the algorithm. The shape of the distribution of the neural network output
variable Dnn for the signal process and the main background processes is given
in Figure 7.8.
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Figure 7.8.: Simulated shape of the signal and main background processes in the
neural network output distributions.

NeuroBayes provides additional plots to check the quality of the training. As
is the case in the training, for these plots the signal process is scaled to match
the background yield. In Figure 7.9 the signal purity, defined as the fraction of
signal events, of the network output distribution is shown. Due to the use of the
entropy loss function the signal purity is expected to approximately follow the
diagonal line once the network is trained [129].

It is possible to change multiple hyper parameters to configure the training
process in NeuroBayes. Various values for speed which is a factor on the training
speed, maxlearn which sets a maximum value of the training speed and momentum
which adds a fraction of the change in weights of the previous weight update to
the next one, are tried to improve the separation power of the neural network.
In all such tests no significant improvements could be achieved and therefore
NeuroBayes default values are used.

In Figure 7.10 the signal purity is plotted against the signal efficiency when
introducing a selection based on DNN to the simulated data. Specifically, a cut
of

DNN < x or DNN > x
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7.2. Training Quality

where x is the chosen cut-off value, selects a part of the simulated dataset with a
certain fraction of selected signal events from the total number of signal events,
called the signal efficiency. For different signal efficiencies reached by placing a
cut on DNN the signal purity is computed. The resulting curves can be used to
determine a good cut value on Dnn or to compare different neural networks with
each other.
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Figure 7.9.: Signal purity in the neural output distribution.
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Figure 7.10.: Signal purity of selected events based on a cut on the neural network
output value with a certain signal efficiency.
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8. Uncertainties

Precisely determining the uncertainties affecting a measurement is essential
for ensuring the reliability and validity of the results in any analysis. The
inherent statistical uncertainty from the dataset can be directly quantified. How-
ever, several sources of systematic uncertainty demand a more nuanced evalu-
ation. These sources of uncertainty can be broadly categorized into two main
groups:

• Uncertainties arising from detector calibration and precision: These un-
certainties stem from the calibration processes and the inherent precision
limits of the detector apparatus. They encompass various factors such as
detector alignment, energy scale calibration, and efficiency of the detector
components.

• Uncertainties related to MC simulation and modeling: These uncertainties
are associated with the assumptions and approximations used in the sim-
ulation and modeling of the data. They include uncertainties due to the
choice of parton distribution functions, modeling of the parton shower and
hadronization processes, and potential mismatches between the simulated
and real-world experimental conditions.

In the statistical analysis, all systematic uncertainties are quantified as ±1σ

deviations from the nominal MC samples. Notably, any source of systematic
uncertainty that exhibits multiple degrees of freedom is broken down into in-
dividual components. This approach allows for a comprehensive evaluation,
ensuring that each aspect of the systematic uncertainty is properly accounted for.
Such granularity is crucial in assessing the collective impact of these uncertainties
on the measurements, thereby enhancing the overall robustness and credibility of
the analysis.

8.1. Jet Uncertainties

Reconstructed jets are affected by systematic uncertainties of the JES calibration
and the determination of the JER. A comprehensive description of the JES and JER
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8. Uncertainties

uncertainties can be found in [114]. In this analysis, the category reduction set of
30 distinct variations is used to describe JES uncertainties, capturing the various
systematic influences on the jet energy calibration. There are different sources of
uncertainties included in the description of the JES which are reduced to a set of
orthogonal terms. Sources of considered uncertainties include the intercalibration
of forward and barrel jets, pile-up uncertainties, flavour dependence uncertainties
accounting for relative flavour fractions and differing responses to quark- and
gluon-initiated jets. Additional uncertainties are included to describe uncertain-
ties in the response to high pT particles, as well as uncertainties accounting for
the difference in jet response between Atlfast-II and the full detector simulation
with Geant4.

The JER uncertainties are described using the FullJER set of MC variations,
using 13 variations. This ensures that differences in the simulated JER and the true
JER in data are accounted for in the analysis with high precision. JER uncertainties
are generated by smearing the measured jet energy in MC and pseudodata, which
is obtained by treating the available MC as data. The smearing is determined
based on the observed difference between JER in data and MC depending on jet
η and jet pT. An additional jet uncertainty comes from the calibration of the JVT
and fJVT.

8.2. Flavor Tagging Uncertainties

Uncertainties associated with the b-tagging efficiency for true b-jets and the
mistagging rates for light-quark jets and c-jets are considered. The b-tagging effi-
ciency is measured in dileptonic tt̄ events, with discrepancies between observed
data and detector simulations corrected via pT-dependent scale factors. These
uncertainties are represented as variations in these factors and are divided into 45
orthogonal components, as detailed in Ref. [133]. For c-jets, the mistagging rate
is determined in semileptonic tt̄ events, utilizing the well-established W → cs
branching ratio. The uncertainties in this rate, which vary from 3% to 17%, are
categorized into 20 orthogonal components, as referenced in Ref. [134]. Further-
more, the misidentification rate of light-quark jets is assessed, with calibration
factors ranging from approximately 1.5 to 3 and uncertainties up to 50%. The
analysis of light-quark jet misidentification involves 20 independent eigenvectors,
as outlined in Ref. [135].
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8.3. Missing Transverse Momentum

8.3. Missing Transverse Momentum

The uncertainty in the ~pmiss
T includes the uncertainties of all reconstructed objects

used in the calculation of the ~pmiss
T . Additionally, the uncertainty of the soft com-

ponent of the ~pmiss
T coming from inner detector tracks that point to the primary

vertex but are not associated with a reconstructed object needs to be evaluated.
This uncertainty corresponds to the disagreement of the soft and hard terms in
events without true ~pmiss

T . It is split into three components:

• A parallel scale uncertainty, characterized by deviations along the pT (hard)
axis, representing shifts in the expected value of the soft track component
parallel to the hard component.

• Resolution along the pT (hard) axis.

• Resolution perpendicular to the pT (hard) axis.

The uncertainty is evaluated by comparing these components in a data sample to
predictions by different MC generators and taking the maximum difference as
uncertainty.

8.4. Lepton Uncertainties

For electrons measured at the average transverse energy in the Z-based calibra-
tion, systematic uncertainties related to the electron energy scale are effectively
negated. However, at other energy levels, these uncertainties are not completely
removed due to their potential energy-dependent nature. The electron energy
scale encompasses a wide array of uncertainty sources, as elaborated in Ref. [116].
For the purposes of this analysis, all systematic uncertainties linked to the electron
energy scale are aggregated into a single variation.

The energy resolution for electrons arises from fluctuations within the shower
in the calorimeter, variations in energy loss prior to reaching the calorimeter,
and noise introduced by pileup and readout electronics. The energy resolution
is ascertained via the Z-based calibration, meaning systematic uncertainties
predominantly influence the extrapolation of this resolution to different energies.
The uncertainty associated with the electron energy resolution is captured in a
single variation.

The uncertainty in the trigger efficiency measurement, as referenced in Ref. [136],
which is utilized to adjust the trigger efficiency in simulations to match the data,
is also consolidated into one variation.
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8. Uncertainties

Calibration uncertainties for the reconstruction, identification, and isolation of
electrons and muons are propagated as one variation each. These uncertainties
are gauged by comparing data to MC prediction in Z → ee and Z → µµ events,
as detailed in Ref. [118].

8.5. Normalization Uncertainties

The normalization of background processes is subject to various uncertainties.
Top-quark production processes are normalized to theoretical predictions, as
described in Chapter 3. The uncertainty of the inclusive cross-sections is estimated
by varying the renormalization and factorization scales used in the calculation
and by incorporating uncertainties from PDFs.

Previous analyses [137] have observed discrepancies between the expected
and measured W + bb̄ rate. To accommodate the inaccuracy of the predicted
W + bb̄ rate, a rate uncertainty of 40 % is applied to this process. This adjustment
allows the W + bb̄ rate to be largely determined during the fit, meaning that
the exact size of the rate uncertainty has minimal impact on the precision of
the signal measurement. The W + c(c̄) process includes contributions from the
charge asymmetric W + c and W + c̄ processes, as well as the charge symmetric
W + cc̄ process. Given the uncertainty in the composition of these processes, a
separate W + c(c̄) rate uncertainty of 20 % is applied in both the positive and
negative lepton channels. Additionally, a 20 % uncertainty is applied to the Z+jets
and diboson process rates.

8.6. Modeling Uncertainties

Modeling uncertainties arise from the choices made during the production of MC
samples. One such choice involves the method used to match matrix element
event generation with the parton-shower algorithm. To assess the uncertainty
associated with this choice, different settings of the matching procedure are
compared. Specifically, the setting POWHEG:pThard, which determines how the
hardness of the Powheg event is defined in Pythia, is varied from its default
value of 0 to 1.

Additionally, the choice of shower algorithm and hadronization model intro-
duces phenomenological uncertainties. These are estimated by comparing the
nominal sample with an alternative setup using Powheg +Herwig. For both
the matching and shower uncertainties, the impact on the overall acceptance
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of events in the selection and the differences in the predicted shapes of the
processes in the fitted distribution are treated as separate uncertainties. For the
tt̄ process, the nominal sample is compared to one where the hdamp parameter
is adjusted to three times the top-quark mass and the difference is used as an
uncertainty.

The uncertainty coming from the limited order of considered Feynman dia-
grams in the hard scattering simulation is estimated by varying the renormaliza-
tion scale µR to 0.5 and 2 times its nominal value. The uncertainty coming from
the factorization of the PDFs and the matrix-element calculation is evaluated by
varying the factorization scale µF to 0.5 and 2 times its nominal value. Uncertainty
of the modeling of the initial-state and final-state shower in Pythia is estimated
by variation of the parameter Var3c of the A14 parton-shower tune. Additionally,
the renormalization scale µR is varied to 0.5 and 2 times its nominal value in the
final-state parton-shower calculation to generate an uncertainty. The uncertainty
due overlap removal of the tt̄ and tW processes is estimated by comparing the
nominal sample employing the diagram removal scheme with an alternative
sample using the diagram subtraction scheme [82]. Uncertainties of the PDF set
are described employing the PDF4LHC15 PDF set with 30 variations [138], which
are compared to the central PDF4LHC15 value.

Variations in the multijet process samples, as described in Chapter 4, serve as
an uncertainty in the shape predicted by the methods. For the electron multijet
process, two variations in the templates are utilized, while a single variation is
employed for the muon multijet process. To compensate for discrepancies in
the multijet rate between the CRs and the SRs, an additional rate uncertainty
of 30 % is applied to each multijet template within the SRs. Furthermore, the
variance in the rate of muon multijet between the positive and negative lepton
channels is considered as an additional uncertainty. The overall rates of the
multijet subprocesses are determined by three free parameters during the fit.
One parameter governs the normalization of the muon multijet subprocess mj µ,
another controls the normalization of the barrel electron subprocess mj e, and a
third parameter is for the normalization of the end-cap electron subprocess mj fe.
The adoption of separate normalization factors for the barrel and end-cap electron
subprocesses is motivated by potential differences in the modeling of the detector
between the barrel and end-cap regions of the ECAL.
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9. Binned Maximum Likelihood Fit

In the subsequent stages of the statistical analysis, the measurement of the
t-channel cross-sections and Rt is conducted using a maximum likelihood fit
method, by comparing the collected data with simulation. The conventional
approach for estimating the parameters θ of a known probability density function
Pθ(x) from a given set of data xi is the maximum likelihood (ML) method. The
likelihood function is defined by

L(θ) = ∏
i

Pθ(xi)

where Pθ(x) represents the probability of observing the data xi given the parame-
ters θ. This formulation considers the data to be fixed while the unknown parame-
ters of the probability density function are treated as variables.

Maximizing the likelihood function then yields estimated values of the parame-
ters θ, called ML estimators, for a given set of data. If the number of events in the
set of data is itself Poisson distributed the extended likelihood

L(θ) =
e−N(θ)

n! ∏
i

N(θ)Pθ(xi)

can be used, where N(θ) is the predicted and n is the measured number of
events.

It can be shown that the ML procedure always yields efficient estimators of the
parameters in the large sample limit [139], meaning that the uncertainty of the
measured parameters is minimal.

In this analysis, the probability density function is not explicitly known in an
analytical form. Instead, theoretical predictions are represented through MC
simulations. To implement the ML method under these conditions, the data is
binned into a histogram. Subsequently, the number of events in each histogram
bin follows a Poisson distribution and can be used as input for the ML method.
This binned ML method offers an advantage over simpler approaches as it enables
the auxiliary measurements characterizing systematic uncertainties to be refined
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9. Binned Maximum Likelihood Fit

using the data, thus mitigating the influence of the systematic uncertainties on
the measurement.

Neglecting both systematic and statistical uncertainties of the MC samples, the
predicted number of events depends solely on the signal parameters µ, which
parameterize the signal cross-sections and Rt. The likelihood function can thus
be expressed as follows:

L(µ) = ∏
i

Pois(ni|Ni(µ))

Here, ni represents the count of data events in bin i, while Ni(µ) stands for the
predicted number of events in bin i, taking into account the signal parameters µ.
The predicted value Ni(µ) can be described in terms of the individual processes
as follows:

Ni(µ) = µtqStq
i + µt̄qSt̄q

i + ∑
j

Bij

Here, Stq
i and St̄q

i denote the expected numbers of tq and t̄q events, respectively,
as predicted by the SM for bin i. The signal parameters µtq and µt̄q are defined as
factors of the signal event counts. Additionally, Bij is the predicted event count
for the jth background process in bin i.

The MC prediction Ni is subject to the uncertainties described in Section 8.
Systematic uncertainties are described as auxiliary measurements of nuisance
parameters θ, which influence the predicted numbers of events Ni. The auxiliary
measurements are included in the likelihood as additional terms constraining the
nuisance parameters to their measured values:

L(µ,θ) = ∏
i

Pois(ni|Ni(µ,θ))∏
j

Gauss(0|µ = θj, σ = 1)

where Gauss(0|µ = θj, σ = 1) is the probability density for one auxiliary mea-
surement with the corresponding parameter θj.

The parameters θj are defined such that their nominal value is 0, and their
1σ uncertainty, inferred from auxiliary measurements, is 1. When θj assumes
a value of 0, the MC prediction Ni(µ,θ) remains unaltered and at θi = ±1, the
MC prediction adjusts correspondingly to the upper and lower 1σ bounds of
the relevant auxiliary measurement. The MC prediction is interpolated between
these values and extrapolated beyond them. For this purpose, each systematic
uncertainty’s variations are split into the overall normalization change of the
templates and the shape change of the template. This split allows the use of
different interpolation and extrapolation methods for the two components. For the
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normalization component Nnorm, an exponential interpolation and extrapolation
are used.

Nnorm =


(

I+
I0

)α
, α ≥ 0(

I−
I0

)α
, α < 0

where I+ and I− are the 1σ variations of the template’s normalization from the
given systematic uncertainty. For small uncertainties, this results in an almost
linear behavior, while for large uncertainties, negative yields are prevented
through the exponential extrapolation. For the shape, linear interpolation and
extrapolation are used.

Additional nuisance parameters γi are used to quantify the statistical uncer-
tainty inherent in the MC prediction. These parameters serve as scaling factors
applied to the MC prediction. In each bin, a singular parameter characterizes the
statistical uncertainty across all processes. To incorporate the magnitude of this
statistical uncertainty into the likelihood calculation, Poisson terms Pois(τi|γiτi)
are introduced, where

τi =

(
N0

i
∆N0

i

)2

is the effective number of MC events in bin i, calculated from the nominal
predicted number of events N0

i and its statistical uncertainty ∆N0
i . These addi-

tional terms function as auxiliary measurements for the γi factors, specifically
addressing the statistical component of the MC prediction.

Finally, the complete likelihood function can be written down:

L(µ,θ,γ) = ∏
i

Pois(ni|γiNi(µ,θ))∏
j

Gauss(0|µ=θj, σ=1)∏
k

Pois(τk|γkτj)

Substituting the respective terms the full Likelihood is given by:

L(µ,θ,γ) = ∏
i

(γiNi(µ,θ))ni e−γi Ni(µ,θ)

ni!
∏

j

1√
2π

e−θ2
j /4 ∏

k

(γkτk)
τk e−γkτk

Γ(τk + 1)

To avoid numerical problems from the likelihood becoming too small, instead
of maximizing the likelihood the negative logarithm of the likelihood function
− log(L(µ,θ,γ)) is minimized.

The uncertainty of the ML estimators is assessed using the graphical method:

log(L(θ̂+u
−d )) = log(Lmax)−

1
2
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9. Binned Maximum Likelihood Fit

Here, θ̂ represents the ML estimator for a parameter θ, and L(θ) denotes the
profile likelihood function, defined as the maximum of the likelihood function
for a given value of θ. The central 1σ confidence interval of the parameter θ is
then given by [θ̂ + u, θ̂ − d].

This approach yields approximations of the central 1σ confidence intervals
for the parameters, even in cases where deviations from a strictly Gaussian
distribution are present in the log-likelihood function [140].

In practice, the likelihood function is built using the HistFactory framework.
The minimization is carried out using the MINUIT software library and using the
MIGRAD algorithm. The MINOS algorithm is employed for determining uncertainties
using the profile likelihood based method described above.

9.1. Signal Parameter Parameterization

Two parameterizations of the signal normalizations are used, one to determine
the top-quark and top-antiquark t-channel cross-sections

σt = µtσ
SM
t σt̄ = µt̄σ

SM
t̄

and another parameterization to determine their ratio Rt and the total t-channel
cross-section:

σt = µtchµRt

RSM
t + 1

µRt R
SM
t + 1

σSM
t σt̄ = µtch

RSM
t + 1

µRt R
SM
t + 1

σSM
t̄

The second parameterization is derived by expressing the signal normalization
parameters µt and µt̄ in terms of µRt and µtch. As a first step the parameters µRt

and µtch are expressed in terms of µt and µt̄:

µtch =
σt + σt̄

σSM
t + σSM

t̄
=

µtσ
SM
t + µt̄σ

SM
t̄

σSM
t + σSM

t̄
=

µtRSM
t + µt̄

RSM
t + 1

µRt =
Rt

RSM
t

=

σt
σt̄

σSM
t

σSM
t̄

=

µtσ
SM
t

µt̄σ
SM
t̄

σSM
t

σSM
t̄

=
µt

µt̄

This set of equations can then be solved for µt and µt̄:

µtch =
µtRSM

t + µt̄

RSM
t + 1

=
µtRSM

t + µt
µRt

RSM
t + 1

=
µt

µRt

µRt R
SM
t + 1

RSM
t + 1
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=⇒ µt = µtchµRt

RSM
t + 1

µRt R
SM
t + 1

=⇒ µt̄ = µtch
RSM

t + 1
µRt R

SM
t + 1

These expressions are then incorporated into the likelihood function, resulting
in a likelihood function expressed in terms of µRt and µtch.

9.2. Fitted Distributions

It is possible, to combine several regions in a simultaneous fit by using all bins
of all input distributions in the considered regions in the likelihood function.
In that case, it is important to consider which nuisance parameters are shared
between all regions and which nuisance parameters need to be separated between
certain regions. In this analysis, the two SRs, SR plus and SR minus, and the six
CRs are fitted simultaneously. The SRs are fitted simultaneously to enable the
determination of Rt, while the CRs are used to constrain the multijet normaliza-
tion. The simultaneous determination of the multijet normalization enables the
correct propagation of the multijet normalization uncertainty. Additional CRs to
constrain the normalisation of other background processes are not used due to
the high constraining power of the SRs.

9.3. Template smoothing

The predicted number of events Ni in the analysis depends on the differences
between the nominal MC predictions and the variations associated with each
nuisance parameter. Both the nominal template and its variations are subject to
statistical uncertainties. These uncertainties are correlated to varying degrees,
depending on the methods used to generate the variations. The statistical uncer-
tainty in the difference between the nominal MC predictions and the variations is
usually unknown, although there are some exceptions. However, this statistical
uncertainty in the templates is not a direct uncertainty of the analysis, but instead
introduces deviations in the estimated uncertainties of the measured parameters.
It is therefore necessary to implement effective strategies to mitigate its impact
on the measurement.
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9. Binned Maximum Likelihood Fit

One method to address this is by broadening the bins in the neural network
distribution, though this can reduce the measurement’s accuracy. Thus, finding an
appropriate balance between reducing the template’s statistical uncertainty and
maintaining the precision of the measurement is crucial. Despite the challenges
in ascertaining the statistical uncertainty between templates, it is imperative to
lessen its influence. Furthermore, as most systematic uncertainties are expected
to display smooth variations in physical parameters and consequently in the
neural network output, applying a smoothing algorithm can significantly decrease
statistical fluctuations. Although the precision in recovering the shape of the
systematic template is limited, smoothing helps facilitate finer binning in the
neural network distribution. This, in turn, indirectly enhances the precision of
the overall measurement.

For this analysis, a custom smoothing algorithm is utilized, designed to prevent
the reduction of the overall size of systematic uncertainties during the smoothing
process. This is crucial to avoid underestimating the uncertainties of the measured
quantities.

The algorithm comprises two main steps: rebinning to reduce statistical fluctua-
tions, and smoothing to interpolate back to the original binning. In the rebinning
step, both the systematic uncertainty template s and the nominal template n are
temporarily rebinned by merging adjacent bins, reducing the total number of
bins from No to Nr. During this process, the rebinned versions of s and n are
denoted as s̃ and ñ, respectively. The bin-wise ratios ti = si/ni and t̃i = s̃j(i)/ñj(i)
are then calculated, where i = 1, . . . , No and j(i) identifies the bin in the rebinned
templates corresponding to bin i in the original template.

To ensure that the rebinning primarily targets the removal of statistical fluctua-
tions without eliminating shape effects, two rules are implemented:

• Two adjacent bins are only merged if one of them in t̃ has a higher or lower
value than both of its neighboring bins. This prevents the merging of bins
in cases where t is monotonically increasing or decreasing.

• Bins are not merged if the resulting t̃ would produce three consecutive bins,
all having either higher or lower values compared to t. This rule serves to
preserve the original shape characteristics of the data.

If, after applying the two aforementioned rules, multiple bin pairs are eligible for
merging, the pair chosen is the one where merging results in the smallest value
of D, defined as:

D = sup
j=1,...,No

(∣∣∣∣∣ j

∑
i=1

t̃i − ti

∣∣∣∣∣
)

. (9.1)
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Adjacent bin pairs are merged successively following these criteria until no further
eligible bins remain for merging.

Subsequently, the rebinned ratio template t̃ undergoes smoothing. This is
executed using a slightly adapted version of the TH1::smooth() algorithm, part
of the TH1 histogram class in the Root library. The Root smoothing algorithm is
applied three times consecutively to t̃. It involves successive running medians of
3, 5, and 3, quadratic interpolation, a running mean, and twicing. The specific
steps are detailed in Ref. [141]. A modification is made to the algorithm to keep
the first and last bin unaltered in the running medians during the first smoothing
pass. The final smoothed systematic uncertainty template is then computed by
multiplying, bin-wise, with the original nominal template.

9.4. Symmetrization

The next step in preparing the templates for this analysis is symmetrization. This
process essentially serves as another means of smoothing the templates. It is
based on the assumption that the impacts of a +1σ and −1σ variation due to
a systematic uncertainty are identical in magnitude but opposite in direction
relative to the nominal template. Depending on the nature of the systematic
uncertainty, different methods of symmetrization may be employed, or in some
cases, it may not be applied at all.

The most commonly used method is two-sided symmetrization. In this ap-
proach, the average of the +1σ and −1σ template deviations is calculated. This
averaged deviation is then both added to and subtracted from the nominal
template to create symmetrized variations. This technique is applied to all
systematic uncertainties that have two variations, with the exception of JER
uncertainties, where the asymmetric behavior is preserved due to its physical
relevance.

In situations where only a single variation is available for a systematic un-
certainty, an alternative method is employed. Here, the difference between the
systematic variation and the nominal template is subtracted from the nomi-
nal. This process effectively generates a second, mirrored variation, enabling a
symmetrized approach even with a single variation.

Symmetrizing one-sided uncertainties is key to creating a smooth likelihood
function for all nuisance parameters. This is important for the optimization
algorithm, which depends on accurate gradient calculations of the log-likelihood
function.
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9. Binned Maximum Likelihood Fit

9.5. Templates for Systematic Uncertainties

Systematic uncertainties have a bigger influence on the measurement’s accuracy
than statistical uncertainty, particularly due to the extensive amount of data
in the SRs. This measurement is more sensitive to the model of systematic
uncertainty than previous measurements which used less data. Therefore, a
precise and robust handling of systematic uncertainties is crucial for achiev-
ing an accurate measurement and reliable uncertainty estimation. This section
shows templates for several key systematic uncertainties, illustrating the vari-
ations before and after the implementation of symmetrization and smoothing
procedures.

The Figures from 9.1 to 9.3 depict the variations in the most impactful system-
atic uncertainties for µt and µt̄ in the neural network output distribution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
nnD

0

10000

20000

30000

40000

50000

N
um

be
r 

of
 e

ve
nt

s

tq Shower Model, qttq,

SR plus

 (-2.5 %)σ+ 1 
 (+2.5 %)σ - 1 

Original Modified

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nnD

10−
5−
0
5

10 [%
]

N
om

.
S

ys
t.-

N
om

.

(a) t-channel SR plus

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
nnD

0

5000

10000

15000

20000

25000

30000

N
um

be
r 

of
 e

ve
nt

s

qt Shower Model, qttq,

SR minus

 (-3.2 %)σ+ 1 
 (+3.2 %)σ - 1 

Original Modified

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nnD

10−
5−
0
5

10 [%
]

N
om

.
S

ys
t.-

N
om

.

(b) t-channel SR minus

Figure 9.1.: Templates describing the signal shower modeling uncertainty. In the
fit the shape and normalization are separated. The original variation
is shown with a dashed line and the symmetrized and smoothed up
and down variations are shown with continuous lines.

The up and down variations for the JER uncertainty are inherently asymmetric
around the nominal template, a characteristic stemming from their construction.
This asymmetry in the JER templates is not adjusted through symmetrization.
Consequently, the impact of JER uncertainty components on the parameters of
interest may also exhibit asymmetry. An example of the variations for the first
component of the JER uncertainty is illustrated in Figure 9.4.

Incorporating the asymmetry of uncertainties into the fit can enhance the
precision in describing uncertainties, but it may also lead to less predictable
behavior in the likelihood function. A potential risk of this approach is the
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Figure 9.2.: Templates describing the signal shower matching uncertainty. In the
fit the shape and normalization are separated. The original variation
is shown with a dashed line and the symmetrized and smoothed up
and down variations are shown with continuous lines.
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Figure 9.3.: Templates describing the signal FSR uncertainty. The original varia-
tion is shown with a dashed line and the symmetrized and smoothed
up and down variations are shown with continuous lines.
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Figure 9.4.: Templates describing the first component of the JER uncertainty for
the signal process. The original variation is shown with a dashed
line and the symmetrized and smoothed up and down variations are
shown with continuous lines.

emergence of additional local maxima in the likelihood, complicating the analysis
and interpretation of the results.

9.6. Binning

Selecting the appropriate binning for the neural network distribution in a max-
imum likelihood fit is a nuanced decision that can significantly impact the
analysis. The objective is to choose a binning that optimizes the precision of
the measurement, without allowing the statistical uncertainties of the systematic
variations and the nominal MC templates to become so large that they impede
the measurement.

Finer binning offers several advantages. It leads to improved resolution in the
neural network output distribution, providing a detailed and precise representa-
tion of the data. This finer granularity can be particularly useful in identifying
subtle features or structures. Additionally, finer bins can increase the sensitivity
of the analysis to the signal by increasing the shape information available to
the fit. This can reduce the correlation of the estimated values of the signal
normalization parameters to the estimated values of the nuisance parameters and
as such reduce the impact of systematic uncertainties.

However, finer binning is not without drawbacks. It can lead to increased
statistical fluctuations, as smaller bins will generally contain fewer events, poten-
tially resulting in less stable fits and a need for more sophisticated smoothing
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techniques. The complexity in handling systematic uncertainties also increases,
as each bin might exhibit unique behavior, complicating their interpretation and
treatment. Moreover, finer binning can be computationally intensive in terms of
processing time and memory requirements. This is however not a limiting factor
here due to the computational resources available.

On the other hand, broader binning reduces the relative impact of statistical
fluctuations by accumulating more events in each bin, leading to more stable
estimations. This approach simplifies the management of systematic uncer-
tainties, as each bin encompasses a wider range of the distribution, thereby
smoothing out localized systematic variations and often reducing the need to
rely on smoothing. Broader bins also ease computational demands, making the
analysis more manageable, especially when dealing with limited computational
resources.

The binning in this analysis was chosen by hand. Finer binning is used at high
Dnn values to gain sensitivity to the signal process. At lower Dnn values broader
bins are chosen. This is done to avoid unnecessary and too strong constraints on
systematic uncertainties in the fit. The chosen binning allows for the constraint
of the W + jets background in the SRs without the need for additional CRs. This
simplifies the analysis and avoids the question of how to correlate systematic
uncertainties to additional CRs. For the electron CRs all data is combined in one
bin for each region. This is done due to the low amount of data in these regions
and due to big effects of systematic uncertainties of the multijet background
on the shape of distributions in the CRs. Finally, for the muon CRs a simple
equidistant binning in φ(~pmiss

T , µ) is chosen except for a bigger first bin where a
low amount of the data lies.

9.7. Validation of the Fit Procedure using Asimov
Data

To ensure objectivity and prevent potential human bias in the analysis results, the
measured signal parameters remain blinded until the final stages of the analysis.
Moreover, the fitting process can be assessed without relying on any recorded
data. For this, Asimov data is generated, wherein the predicted data values
in each bin are used as a substitute for the actual data in the fit. By design,
Asimov data perfectly aligns with the nominal MC prediction. Consequently,
all nuisance parameters are expected to align with their nominal values, and
the signal parameters are anticipated to fit to their predefined nominal value of
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9. Binned Maximum Likelihood Fit

one. Confirming these outcomes serves as an initial test of the fit procedure’s
stability.

Additionally, the Asimov data is used to determine the expected values of the
uncertainties associated with the fit parameters and the individual impacts on
the signal parameters. This step allows for understanding the robustness of the
fitting method and for anticipating the potential behavior of the actual data in the
fit. The expected uncertainties as determined using the Asimov data are +5.8 %
and -5.4 % for σ(tq), +6.6 % and -6.2 % for σ(t̄q), +6.0 % and -5.2 % for σ(tq + t̄q),
and +2.3 % and -2.2 % for Rt.

9.8. Results

In this section, results of the maximum likelihood fit to data are presented.
Figure 9.5 shows the histogram of the neural network output for data and
MC prediction, where the nuisance parameters and signal parameters the MC
prediction depends on are set to their estimated values. The fit is carried out
simultaneously in the two SRs and the six CRs designed to constrain the multijet
normalization in the fit, yielding for the first parameterization

σ(tq) = 137+8
−8 pb

and

σ(t̄q) = 84+6
−5 pb,

and for the second parameterization

σ(tq + t̄q) = 221+13
−13 pb

and

Rt = 1.636+0.036
−0.034.

The uncertainties correspond to a relative uncertainty of +5.9% and −5.5% for
σ(tq), +6.6% and −6.2% for σ(t̄q), +6.1% and −5.7% for the combined cross-
section and +2.2% and −2.1% for Rt.

The total predicted number of events depends on the values of the nuisance and
signal parameters determined in the fit. In Table 9.1 the total predicted number
of events for the different processes is shown for the two SRs.
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Figure 9.5.: Histogram of the neural network output distribution comparing data
and the MC prediction, with all nuisance and signal parameters
set to their ML estimators. The uncertainty band represents the
aggregated MC uncertainty, taking into account correlations among
the ML estimators. The bottom plot displays the ratio of observed
events to the predicted count for each bin.

Table 9.1.: The yields in the two SRs when setting all fit parameters to their
estimated values. All uncertainties applied in the analysis are included
accounting for correlations and constraints.

Process SR plus SR minus

tq 169 000± 6000 150± 150
t̄q 90± 90 109 000± 4000

tW + t̄W, tb̄ + t̄b 51 000± 4000 49 000± 4000
tt̄ 265 000± 14 000 265 000± 14 000

W+bb̄ 198 000± 21 000 159 000± 17 000
W+c(c̄) 60 000± 13 000 49 000± 11 000

Z+jets, diboson 21 000± 4000 19 000± 4000
Multijet 50 000± 10 000 50 000± 10 000

Total 814 000± 2100 698 800± 2000

Observed 814 185 698 845
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Figure 9.6.: Histogram of the muon CR distribution comparing data and sim-
ulation, with all nuisance and signal parameters set to their ML
estimators. The uncertainty band represents the aggregated MC un-
certainty, taking into account correlations among the ML estimators.
The bottom plot displays the ratio of observed events to the predicted
count for each bin.

9.8.1. Nuisance Parameters

The ML estimators for the nuisance parameters, along with their uncertainties,
provide insights into the fit quality. When the values of nuisance parameters
determined in the fit exhibit uncertainties less than one, it suggests the data in the
analysis does not agree with the variability allowed by the auxiliary measurement.
Consequently, the parameters can be constrained in the fit. Such constraints
typically denote a reduction in uncertainty, which is favorable. However, there
are scenarios where constraints might not be desired. For instance, the constraint
of the shower uncertainty is one such scenario. Its uncertainty is determined
based on the difference between two fixed generator configurations. A significant
constraint in this context might not be meaningful, since the uncertainty is not
well-defined in the sense of it describing an auxiliary measurement to begin
with.

To mitigate the effects of constraining the shower uncertainty and possibly
underestimating its impact on the measurement, its normalization and shape
contributions are separated and assigned to distinct nuisance parameters. While
the shape component experiences a pull and constraint, the normalization com-
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Figure 9.7.: Yields in the electron CRs comparing data and simulation, with all fit
parameters set to their ML estimators. The uncertainty band repre-
sents the aggregated MC uncertainty, taking into account correlations
among the ML estimators. The bottom plot displays the ratio of
observed events to the predicted count for each bin.

ponent of the uncertainty remains largely unaffected. As will be discussed
later, the normalization component has a considerably larger impact on the
measured signal parameters. The uncertainty is further split into its SR and
CR components. The same procedure is applied to the shower matching uncer-
tainty.

The ML estimators of the nuisance parameters describing modeling of MC
processes are shown in Figure 9.8. Several uncertainties associated with the rates
of the W+jets processes exhibit notable pulls and constraints. The W + bb̄ process
has an assigned rate uncertainty of 40 %, which is expected to be constrained in the
measurement. The uncertainty is described by separate nuisance parameters in
the positive and negative lepton channel. This results in a post-fit rate uncertainty
of 12 %. The pulls indicate an increased rate of 15 % for the positive lepton
channel and 21 % for the negative lepton channel.

For the W + c(c̄) rate in the positive channel, there is a rate increase of 2 %
with no strong constraint observed. Conversely, in the negative channel, the
rate decreases by 10 %, again without a significant constraint. Considering the
scale uncertainties, the W + bb̄ process exhibits a pull of -0.32 for the µR scale
uncertainty, with a constraint to 62 %. For the µF scale uncertainty of the same
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Figure 9.8.: ML estimators and their uncertainties for the nuisance parameters
describing modeling uncertainties.

process, there’s a pull of +0.92 and a constraint to 88 %. For the W + c(c̄) process,
the µR scale uncertainty sees a pull of +1.08 and a constraint to 81 %, while
the µF scale uncertainty experiences a pull of -0.38 and a notable constraint of
95 %.

For the tt̄ process, the rate undergoes a slight decrease of 0.8 %, accompanied
by a minor constraint to 93 %. Focusing on the hdamp uncertainty, a pull of -0.34 is
observed with a constraint to 90 %. The FSR Model uncertainty presents a pull of
0.62 and a constraint to 92 %. For the shower model, the normalization uncertainty
shows a pull of 0.43 with a constraint to 94 %, while the shape uncertainty records
a pull of -0.16, and a constraint to 64 %. The tt̄ pthard uncertainty is characterized
by a pull of -0.26 and a constraint of 80 %.

The ML estimators of the nuisance parameters describing PDF, JES and JER
uncertainties are shown in Figure 9.9. Due to the asymmetric nature of the JER
uncertainties the templates of the +1σ and −1σ variations are not symmetric in
this case. Nuisance parameters that are pulled significantly and correspond to
an asymmetric systematic uncertainty can experience an under-constraint where
their uncertainty decreases relative to their uncertainty in the auxiliary measure-
ment. This effect is caused by the non-linear impact of the nuisance parameter
on the templates, in this case. Here, three of the JER nuisance parameters are
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Figure 9.9.: ML estimators and their uncertainties for the nuisance parameters
describing PDF uncertainties in the left plot and JES and JER uncer-
tainties in the right plot.

pulled and show a subsequent under-constraint. The profile likelihood function
of these parameters is evaluated at a range of points to verify the likelihood does
not exhibits jumps.

The ML estimators of the nuisance parameters describing the luminosity and
lepton uncertainties are shown in Figure 9.10. The luminosity nuisance parameter
is neither constrained nor pulled and the lepton scale factor uncertainties only
show minor pulls and no strong constraints.

The values and uncertainties of the γ factors, the nuisance parameters de-
scribing the statistical uncertainty of the MC samples are shown in Figure 9.11.

Finally, the ML estimators of the nuisance parameters and signal parameters
can be applied to the MC prediction to compare the agreement of measured
data to MC data in the neural network input distributions. The uncertainty in
this case is calculated using the correlation between the fitted parameters. Since
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Figure 9.10.: ML estimators and their uncertainties for the nuisance parameters
describing luminosity uncertainty in the left plot and lepton uncer-
tainties in the right plot.
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Figure 9.11.: ML estimators and their uncertainties for the nuisance parameters γ

describing the statistical uncertainty of the simulation.
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the parameters are determined for the fit to the Dnn distributions, applying the
resulting parameters in other distributions does not guarantee a good agreement
between measured data and simulation. This discrepancy arises because the
correlations and constraints on the nuisance parameters might vary if the fit were
performed directly using the input variables.

Nevertheless, it can be insightful to check how the agreement in the input
variables of the neural network is affected by the values, constraints and correla-
tions of the parameters determined in the fit. The Figures 9.12 to 9.14 showcase
the total MC prediction compared to data for each input variable to the neural
network in the SR plus. The corresponding comparisons for the SR minus are
given in Appendix A.

The post-fit agreement for most neural network input variables is satisfactory,
as indicated by the χ2 test outlined in Section 7.1. However, the distributions for
|η(`)| and |∆pT(`, j)| exhibit p-values below 5 %. It is important to interpret these
results within the context of the assumed correlations among nuisance parameters,
which are derived from the fit to the Dnn distributions. Additionally, it should
be noted that the bin values of the MC prediction in the post-fit plots are often
highly correlated, a factor not visually represented in the plots but accounted for
in the χ2 test. This correlation can result in high p-values for distributions with
apparent simultaneous discrepancies between the simulation and data across
multiple adjacent bins, and low p-values where the agreement between data and
MC prediction is good in each individual bin.
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Figure 9.12.: Distributions of the first six input variables of the neural network
comparing data and simulation in the SR plus. All nuisance and
signal parameters are set to their ML estimators.
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Figure 9.13.: Distributions of the seventh to twelfth input variable of the neural
network comparing data and simulation in the SR plus. All nuisance
and signal parameters are set to their ML estimators.
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Figure 9.14.: Distributions of the last five input variables of the neural network
comparing data and simulation in the SR plus. All nuisance and
signal parameters are set to their ML estimators.
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9.8.2. Correlation of Fit Parameters

The fitting procedure estimates all parameters of the likelihood function. During
this minimization process, the covariance matrix, which describes the linear
correlation between the estimated values, is determined. Figure 9.15 displays
the correlations for the parameter set where at least one correlation coefficient
exceeds 0.3.
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Figure 9.15.: The correlation matrix for the fit to the inclusive cross-sections
expressed in percentages. The signal parameters are denoted as
posSigXsecOverSM for σ(tq) and negSigXsecOverSM for σ(t̄q).
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9. Binned Maximum Likelihood Fit

Many systematic uncertainties influence both the positive and negative signal
parameters, leading to a significant correlation between them. The correlation
coefficient, determined by the Hesse algorithm during the maximization process,
is found to be 95 %. This coefficient, along with the values and uncertainties
of the signal parameters, enables the calculation of values and uncertainties for
an alternative parametrization using µRt and µtch. However, as the correlation
coefficient represents only the linear correlation between the parameters, the
direct determination of uncertainties through the profile likelihood method is
more precise. Therefore, this calculation mainly serves as a cross-check to ensure
the consistency of results across both parametrizations in cases of high parameter
correlation. These two approaches – using the correlation coefficient and the
profile likelihood method – yield results that are in agreement, thus validating
the consistency of the parametrizations.

Furthermore, the correlation coefficient between µRt and µtch is determined
to be −28 %. This indicates that the correlation between signal parameters is
substantially reduced in the second parametrization. From this perspective,
the parametrization using µRt and µtch proves more advantageous than the
first one. It allows for the precise measurement of one parameter, while many
uncertainties predominantly affect the other, reducing the correlation of the two
signal parameters.

9.8.3. Stability of the Measurement

The measurement utilizes the comprehensive dataset from the full Run 2 period,
spanning 2015-2018. To ensure the robustness of the results, it is beneficial to
perform the analysis on subsets of the data, partitioned according to the periods
in which they were recorded. This method allows for the verification of the
consistency of the results across different time-frames. Such a temporal analysis
is particularly valuable in identifying and addressing any systematic uncertainties
that may have been present exclusively during certain periods. Therefore, this
comparison not only serves as a check for consistency but also as a diagnostic
tool for potential unaccounted systematic errors. The dataset is divided into three
subsets: mc16a, which includes data from 2015 and 2016; mc16d, which includes
data from 2017; and mc16e, which includes data from 2018.

The differences in the signal parameters relative to the nominal fit are illustrated
in Figure 9.16 for µtq and µt̄q and Figure 9.17 for µtq+t̄q and µRt . The fits are
executed for each subset, and the signal parameters are compared using both
parametrizations. This approach helps in assessing the temporal stability of the
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Figure 9.16.: Differences in fitted signal parameters µtq and µt̄q for different sub-
datasets across the time periods mc16a (2015+2016), mc16d (2017)
and mc16e (2018) of data collection. The nominal measurement is
labeled nom and the fit with only statistical uncertainty stat.

measurement and in identifying any deviations that might suggest the presence
of time-dependent systematic effects.

An additional method for testing stability is to divide the dataset based on the
type of selected lepton in the events, creating subsets of either muon or electron
events. This approach is beneficial, as the detection efficiencies and systematic un-
certainties often vary between muon and electron events. Consistent results from
these subsets further validate the measurement’s reliability.

Moreover, for comparative purposes, the signal parameters obtained from a fit
that includes only statistical uncertainties are also presented in the plots. This fit,
which excludes systematic uncertainties, shows agreement with the nominal fit,
providing further confirmation of the analysis’s robustness. These stability tests,
by dissecting the dataset into different temporal and physical subsets, provide a
comprehensive check on the measurement’s reliability.

9.8.4. Analysis of Systematic Uncertainties

To understand how the precision of the measurement result is impacted by uncer-
tainties different measures are compared. The impact of a group of uncertainties
is determined by repeating the fit fixing the nuisance parameters contained in
the group to their nominal value. This leads to a reduced uncertainty σred on
the signal parameter since the group of uncertainties is effectively removed.
The impact is determined by subtracting the squared uncertainties from each
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Figure 9.17.: Differences in fitted signal parameters µtq and µt̄q for different sub-
datasets across the time periods mc16a (2015+2016), mc16d (2017)
and mc16e (2018) of data collection. The nominal measurement is
labeled nom and the fit with only statistical uncertainty stat.

other:
∆σ =

√
σ2

nom − σ2
red

The impact of different groups of uncertainties on the uncertainty of the signal
parameter is summarized in Table 9.2.

Table 9.2.: The impact of different groups of systematic uncertainties on σ(tq),
σ(t̄q), σ(tq + t̄q) and Rt given in %.

Uncertainty group ∆σ(tq)
σ(tq)

∆σ(t̄q)
σ(t̄q)

∆σ(tq+t̄q)
σ(tq+t̄q)

∆Rt
Rt

Data statistical +0.4 / −0.4 +0.5 / −0.5 +0.3 / −0.3 +0.6 / −0.6
Signal modelling +4.9 / −4.5 +5.2 / −4.7 +5.0 / −4.6 +0.9 / −0.9
Background modelling +1.8 / −1.6 +2.1 / −1.9 +1.8 / −1.6 +1.5 / −1.4
MC statistical +1.1 / −1.0 +1.4 / −1.3 +1.2 / −1.1 +0.8 / −0.8
PDFs +0.4 / −0.4 +1.2 / −1.0 +0.7 / −0.6 +0.9 / −0.8
Jets +2.2 / −2.0 +3.0 / −2.7 +2.5 / −2.3 +1.0 / −0.9
b-tagging +1.6 / −1.5 +1.7 / −1.5 +1.6 / −1.5 +0.2 / −0.1
Leptons +1.1 / −1.0 +1.1 / −1.0 +1.1 / −1.0 +0.1 / −0.1
Luminosity +0.9 / −0.8 +0.9 / −0.9 +0.9 / −0.8 < 0.1

Total +5.9 / −5.5 +6.6 / −6.2 +6.1 / −5.7 +2.2 / −2.1

Systematic uncertainties are ranked based on their impact on the signal pa-
rameter, as illustrated in Figures 9.18 and 9.19. To determine the impact of
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9.8. Results

Table 9.3.: The impact of the eight most significant systematic uncertainties on
σ(tq), σ(t̄q), and σ(tq + t̄q) is presented in percentages. The sequence
of the uncertainties is determined by their impact on σ(tq + t̄q).

Systematic uncertainty ∆σ(tq)
σ(tq)

∆σ(t̄q)
σ(t̄q)

∆σ(tq+t̄q)
σ(tq+t̄q)

tq matching scale definition, rate -2.9 / +3.0 -2.6 / +2.7 -2.8 / +2.9
tq parton shower, rate +2.6 / -2.5 +3.3 / -3.1 +2.9 / -2.7
tq final-state radiation -2.0 / +2.1 -2.1 / +2.2 -2.0 / +2.1
tq matching scale definition, shape -1.5 / +1.6 -1.2 / +1.2 -1.4 / +1.4
JES η intercalibration modelling -1.1 / +1.2 -1.5 / +1.5 -1.3 / +1.3
b-tagging NP B1 +1.0 / -0.9 +1.0 / -1.0 +1.0 / -1.0
b-tagging NP B0 +1.0 / -0.9 +1.0 / -1.0 +1.0 / -1.0
barrel electron multijet, rate +0.9 / -1.1 +0.8 / -0.8 +0.8 / -0.9

each systematic uncertainty on the signal parameter, the corresponding nuisance
parameter is varied by 1σ. The likelihood function is then maximized with re-
spect to all other parameters, and the deviation of the signal parameter from its
nominal fit value is assessed. Both pre-fit impacts (where nuisance parameters
are adjusted by their pre-fit uncertainty) and post-fit impacts (adjusted by post-fit
uncertainty) are presented. The cross-section measurements are most impacted
by signal modeling uncertainties, the pthard1 uncertainty and the shower model
uncertainty. In both cases the normalization components of these uncertainties
are the ones that have a high impact on the signal. These nuisance parame-
ters obtain fitted values close to their nominal value in the fit, indicating a low

Table 9.4.: The impact of the eight most important systematic uncertainties on Rt
in %.

Systematic uncertainty ∆Rt/Rt

W− + c(c̄) cross-section +0.81 / -0.78
tq parton shower, rate -0.67 / +0.65
W+ + c(c̄) cross-section -0.46 / +0.46
PDF eigenvector 09 -0.45 / +0.46
MC statistical uncertainty SR minus bin 10 +0.41 / -0.40
JES η intercalibration modelling +0.37 / -0.38
tq matching scale definition, shape -0.36 / +0.38
PDF eigenvector 05 +0.37 / -0.35
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Figure 9.18.: Systematic uncertainties are ranked based on their impact on the
signal parameters. The left panel shows the impact on top-quark
production and the right on top-antiquark production. The upper
axis corresponds to the impact on the signal, with pre-fit values
represented by unfilled bars and post-fit values by filled bars. The
lower axis corresponds to the pulls and constraints of the nuisance
parameters, depicted by black points and error bars.

change in the signal parameter values. High impacting detector uncertainties are
the JES η intercalibration modeling uncertainty, b-tagging uncertainties and JER
components.

For Rt the W + c(c̄) rate uncertainty and signal shower model uncertainty
have the biggest impact. Also, PDF uncertainties and MC statistical uncertainties
have significant impacts on Rt. The difference in which systematic uncertain-
ties are most impacting for the cross-sections and Rt comes from a cancellation
in Rt. Many uncertainties have a similar and correlated impact on the posi-
tive and negative cross-section leading to a strongly reduced impact on their
ratio Rt.
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Figure 9.19.: Systematic uncertainties are ranked based on their impact on the
signal parameters. The left panel shows the impact on µRt and
the right on the total cross-section of the t-channel production. The
upper axis corresponds to the impact, with pre-fit values represented
by unfilled bars and post-fit values by filled bars. The lower axis
corresponds to the pulls and constraints of the nuisance parameters,
depicted by black points and error bars

9.8.5. Mass Dependence

The templates for single-top-quark processes are influenced by the assumed
top-quark mass, which affects the cross-section, acceptance, and the distribu-
tion shapes used in the fit. To assess the impact of top-quark mass variations
on the measured signal parameter, the fit is repeated with templates gener-
ated for different top-quark masses. Alternative samples for all top-quark
production processes are created, assuming top-quark masses of 171 GeV and
174 GeV.

In this mass-dependence study, all uncertainties are re-evaluated with the
varied top quark mass, except for modeling uncertainties defined by different
MC generators. Figure 9.20 compares the distributions of the reconstructed top
quark mass across different signal process samples. The peak of the reconstructed
top-quark mass distribution shifts to higher or lower values depending on the
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assumed mass. Additionally, many NN input variables are also affected by the
top-quark mass, thereby influencing the NN distribution.

The resulting measured cross-sections are presented in Table 9.5. The effect
of the top-quark mass is quantified by fitting a linear function to the mea-
sured cross-sections as a function of the top-quark mass and determining the
slope.
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Figure 9.20.: Comparison of m(t) for the nominal and the two mass variations for
the signal.

Table 9.5.: The measured cross-section of the t-channel top quark and top anti-
quark process for different top masses.

Top Mass/GeV σ(tq)/pb σ(t̄q)/pb
171.0 139.8 85.5
172.5 137.5 84.0
174.0 135.4 83.1

The resulting measured cross-sections are illustrated in Figure 9.21. To quantify
the effect of the top quark mass, a linear function f (∆mt) = a · ∆mt is fitted to
the measured cross-sections as a function of the top quark mass, and the slope a
is determined.

The fitted parameters, or the slopes, are found to be a = −1.50 pb GeV−1 for
σ(tq), a = −0.85 pb GeV−1 for σ(t̄q), and a = −2.35 pb GeV−1 for σ(tq + t̄q). For
Rt, the effect of the top quark mass is found to be negligible.
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Figure 9.21.: Measured cross-sections for different assumed top masses. Vertical
bars indicate the impact of the MC statistical uncertainty on the
cross-section.

9.8.6. Goodness of Fit

The high statistical precision of this analysis necessitates a comprehensive de-
scription and study of the systematic uncertainties affecting the measurement.
Beyond the studies already presented on the setup, behavior of the likelihood
function, and the optimization method, it’s also possible to directly evaluate the
fit quality using a goodness-of-fit test.

To achieve this, a test statistic is formulated utilizing the saturated model [142].
In this approach, an alternative likelihood function is designed with a free
parameter for each bin. These parameters adjust the predictions such that the
saturated model precisely matches the data after the fitting process. As a result,
this model acts as an optimal standard for comparing against the actual likelihood,
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providing a measure of its accuracy in fitting the data.

According to Neyman and Pearson [143], the most effective test statistic for
comparing two hypotheses is the likelihood ratio. When there is a high number of
events in each bin, this ratio is approximately χ2 distributed. Thus, the saturated
model is fitted to the data, and the likelihood ratio relative to the nominal
maximum likelihood is computed. This likelihood ratio is then interpreted as a
χ2 value to deduce a corresponding p-value.

χ2 = −2 ln
(
Lnom

Lsat

)
The derived χ2 value results in a p-value of 76 %, indicating that the used
likelihood model is compatible with the saturated model.

9.8.7. |Vtb| Measurement

The t-channel production of single top quarks is facilitated through the Wtb
vertex, a process that could be influenced by new physics. To accommodate
this possibility, a form factor fLV, representing a potential non-standard gauge
coupling at the Wtb vertex, is introduced, as detailed in Ref. [144]. In the SM, fLV
assumes a value of 1.

The cross-section of the t-channel process is proportional to | fLV ·Vtb|2, where
Vtb denotes the corresponding element of the CKM matrix. This analysis
does not consider right-handed form factors, thereby assuming that the Wtb
interaction is exclusively a left-handed weak coupling, as predicted by the
SM.

The methodology employed in this analysis closely mirrors that of the first
direct measurement of |Vtb|, as presented in [145]. An important aspect of
measuring | fLVVtb| in single top-quark production is its independence from the
assumed number of quark generations and the unitarity of the CKM matrix.
This investigation primarily operates under the assumption that |Vtb|2 greatly
exceeds |Vtd|2 + |Vts|2, implying that the top quark predominantly decays into a
b-quark and a W boson (B(t → bW) = 1). To determine the value of | fLV ·Vtb|,
the experimentally observed t-channel single top-quark production cross-section
is divided by the theory prediction of 214.2± 3.4(scale + PDF)± 1.8(∆mt) pb [78].
The calculated value is

| fLV ·Vtb| = 1.015± 0.031. (9.2)

Using this value a 95 % confidence interval can be calculated. For deriving this
limit, it is assumed that |Vtb|2’s likelihood curve is Gaussian, centered around the
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measured value, and a uniform prior for |Vtb|2 is utilized, set to one within [0, 1]
and zero elsewhere, as illustrated in Figure 9.22. The limit of |Vtb| can than be cal-
culated by numerically determining the limit l in the equation

pCL =
∫ 1

l
dxp(x)

where pCL = 95 % is the desired confidence level, p(x) is the probability density
of |Vtb|. The lower limit for |Vtb| is established:

|Vtb| > 0.95

at the 95 % confidence level. Theoretically, variations in | fLV ·Vtb| can also impact

0.7 0.75 0.8 0.85 0.9 0.95 1
2|

tb
|V

0

5

10

15

20

25

P
ro

b
a

b
ili

ty
 d

e
n

s
ity

| > 0.95
tb

|V

-1= 13 TeV, 140 fbs

Figure 9.22.: Limit plot illustrating the 95% CL limit on |Vtb|, when constrained to
the range [0,1] as stipulated by the SM and fLV = 1. The determined
limit is |Vtb| > 0.95.

Wt and s-channel production, although their effects are minimal and do not
significantly alter the t-channel fit result. Assuming | fLV ·Vtb| = 0.9 for Wt and
s-channel productions yields a total cross-section of 220+13

−12 pb, sustaining the
|Vtb| > 0.95 limit.

In comparison to the Run 1 combination of ATLAS and CMS, which measured
| fLV ·Vtb| = 1.02± 0.04(meas.)± 0.02(theo.) [146], the determination presented in
this analysis achieves a relative uncertainty that is significantly reduced. Further-
more, a combined analysis of all available measurements from the Tevatron and
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the LHC prior to this study found a value of 1.014± 0.029 [14]. The inclusion
of the measurement detailed in this study is expected to further reduce the
uncertainty in future combined analyses.
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In this thesis, the inclusive t-channel single top-quark production cross-sections
are measured, along with the ratio of the quark and antiquark cross-section,
denoted as Rt. The full Run 2 dataset of 140 fb−1 collected at 13 TeV with the
ATLAS detector at the LHC is used. The measurement represents a direct
measurement of the CKM matrix element |Vtb| and contributes to the study of
the electroweak Wtb vertex. It also relates to the composition of the proton, with
Rt being sensitive to the initial state composition.

The event selection focuses on events featuring one lepton, two jets of which
exactly one is b-tagged, and missing transverse momentum, which aligns with
the signal signature of the t-channel process. This approach effectively reduces
the main background contributions, such as the tt̄, W+jets, and multijet processes,
achieving a signal fraction post-selection of 30 %.

A neural network is utilized to distinguish the signal from the background by
combining various kinematic distributions. Systematic uncertainties, arising from
both detector and modeling sources, are accounted for throughout the analysis.
A binned maximum likelihood fit is utilized to measure the cross-sections and
Rt, employing profile likelihood techniques to determine the uncertainties of
the measurements. Several studies are conducted analyzing the robustness and
consistency of the fit.

The fit is carried out simultaneously in the two SRs and six CRs used to
constrain the multijet background normalization in the fit, yielding the following
results:

σ(tq) = 137+8
−8 pb, σ(t̄q) = 84+6

−5 pb

σ(tq + t̄q) = 221+13
−13 pb and Rt = 1.636+0.036

−0.034

The uncertainties correspond to a relative uncertainty of +5.9% and −5.5% for
σ(tq), +6.6% and −6.2% for σ(t̄q), +6.1% and −5.7% for the combined cross-
section and +2.2% and −2.1% for Rt.

These measurements constitute the first ATLAS measurement of the t-channel
cross-section using the full Run 2 dataset. The uncertainties are predominantly
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systematic, with the most significant impact arising from signal modeling un-
certainties for the cross-section measurements and both signal and background
modeling uncertainties for Rt.

The measurement is interpreted as a direct measurement of the CKM matrix
element |Vtb| yielding

| fLV ·Vtb| = 1.015± 0.031. (10.1)

From this a 95 % CL limit of |Vtb| is determined as

|Vtb| > 0.95.

This measurement provides a foundation for subsequent interpretations, such
as setting constraints on the CKM matrix by considering the effects of |Vtd| and
|Vts|, comparing the measured Rt with various theoretical predictions provided
by PDFs, and limiting parameters in effective field theory models that describe
phenomena beyond the SM.

Future studies are anticipated to extend this analysis to both differential and
fiducial cross-section measurements. Additionally, this measurement could be
replicated using the forthcoming Run 3 dataset, which is recorded at a center-
of-mass energy of 13.6 TeV. While the t-channel cross-section is expected to
increase at this higher energy, the tt̄ background process exhibits an even more
significant increase in cross-section. Given that the measurement is predom-
inantly influenced by systematic uncertainties, a substantial improvement in
precision through increased center-of-mass energy or larger data volume is not
anticipated. Nevertheless, advancements in the modeling of parton shower simu-
lations and overall MC event generation could enhance the precision of future
measurements.
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A. Neural network input variable
distributions

The Figures A.1 to A.3 show the shapes of the signal process and the main
background processes for each variable in MC compared to the data in the
negative signal region.

The Figures A.4 to A.6 showcase the total MC prediction compared to data
for each input variable to the neural network in the negative signal region.
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Figure A.1.: Shapes of the first six neural network input variable distributions
for the signal process and the main background processes in the SR
minus.
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Figure A.2.: Shapes of the seventh to twelfth neural network input variable distri-
bution for the signal process and the main background processes in
the SR minus.
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Figure A.3.: Shapes of the last five neural network input variable distributions
for the signal process and the main background processes in the SR
minus.
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Figure A.4.: Distributions of the first six input variables of the neural network,
comparing data and simulation in the SR minus.
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Figure A.5.: Distributions of the seventh to twelfth input variable of the neural
network, comparing data and simulation in the SR minus.
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Figure A.6.: Distributions of the last five input variable of the neural network,
comparing data and simulation in the SR minus.
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Figure A.7.: Distributions of the first six input variables of the neural network,
comparing data and simulation in the SR minus. All nuisance and
signal parameters are set to their ML estimators.
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Figure A.8.: Distributions of the seventh to twelfth input variable of the neu-
ral network, comparing data and simulation in the SR minus. All
nuisance and signal parameters are set to their ML estimators.
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Figure A.9.: Distributions of the last five input variable of the neural network,
comparing data and simulation in the SR minus. All nuisance and
signal parameters are set to their ML estimators.
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