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1 Introduction

Recently, ridepooling services have emerged in many big cities and rural areas all around
the globe, with a majority of ridepooling services launched in Europe (Foljanty, 2020).
Ridepooling services are taxi-like services which are usually booked via a smartphone app.
In contrast to taxi services, users may be pooled, i.e., they may have to share parts of
their rides in the same vehicle if they head in a similar direction during the same period
of time. Ridepooling bridges a gap between rather inflexible line-based public transport
(e.g., buses and trains) and relatively expensive taxi services. It provides an alternative to
motorized private transport and thus has the potential to reduce the number of vehicles
in the cities (ITF, 2015). From an environmental perspective, the benefits of ridepooling
services still have to be investigated. As stated in Anair et al. (2020), a ridepooling trip
shared between two passengers is similar in emissions to a private vehicle trip, but about
33 percent better than a taxi trip.

To pool rides, service operators need to solve two interrelated tasks: the assignment of
customers to vehicles and the computation of vehicle schedules. These tasks have to be
solved under consideration of operating costs and customer satisfaction. In mathematical
optimization, this combinatorial optimization problem is called the dial-a-ride problem
(DARP). For a small number of requests the DARP could be solved by enumerating all
feasible assignments of customers to vehicles and the corresponding vehicle routes, and
by determining the lowest-cost solution subsequently. However, this is not very efficient
and becomes impractical with a growing number of requests. Thus, efficient optimization
algorithms are required to simultaneously plan routes and pool users in shared rides.

In this thesis, we consider exact and heuristic solution methods for the DARP inspired
by the on-demand ridepooling service Hol mich! App1 which was established in the city of
Wuppertal (Germany) in 2019 in collaboration with the project bergisch.smart mobility2.
This ridepooling service is run by the local public transport provider and is designed to
complement the bus service. The most important application of the DARP is proba-
bly on-demand ridepooling (Ho et al., 2018), but it has various applications in modern
transportation systems, such as the transportation of patients, or in a related branch of
research, the transportation of goods.

We consider two variants of the DARP. While in on-demand ridepooling services trans-
port requests arrive throughout the day, we also consider the static case where all transport
requests are known in advance. This results in the dynamic DARP and the static DARP,
respectively.

The static DARP is expressed as an optimization problem min{f(x) : x ∈ X}, i.e., given
a set of feasible solutions X ⊆ Rn and an objective function f : X → R, find the optimal
solution x? ∈ X minimizing f , or state that no such solution exists. An optimization
problem is called a mixed-integer linear program (MILP), if the objective function is linear,

1https://www.holmich-app.de/
2https://www.bergischsmartmobility.de/en/the-project/
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Chapter 1 Introduction

and if the feasible set X is a subset of Rp × Zn−p that can be described using linear
inequalities. To solve an MILP, one option is to pass it to a mathematical solver, which in
its core uses an algorithm that iteratively partitions the feasible set into subsets. It avoids
a complete enumeration of all feasible solutions by ruling out the existence of an optimal
solution in certain subsets using upper and lower bounds on the objective function value.
We discuss so-called branch-and-bound algorithms and other standard solution techniques
for MILPs in Section 2.2. Nevertheless, in general, MILPs (and also the DARP) are
complex problems, and the performance of the solver strongly depends on the formulation
of the problem, i.e., on the linear inequalities describing the set X. The MILP formulations
of the DARP known from the literature have in common that binary variables represent
the decision whether two locations (i.e., the vehicle depot, pick-up or delivery locations)
are visited directly after one another. We refer to these formulations as location-based.

In this thesis, we present a new perspective on modeling dial-a-ride problems. We intro-
duce an event-based (EB) MILP formulation of the static DARP, where binary variables
are based on tuples representing feasible allocations of users to a vehicle, additionally stor-
ing the location of the last picked up or dropped off user in the first component. These
tuples are referred to as events. The EB MILP constitutes the basis for the contribu-
tions of this thesis. We show that it outperforms state-of-the-art location-based formu-
lations of the DARP. By using the best of both worlds, the EB model is combined with
a location-based formulation into a new location-augmented-event-based MILP, whose
superiority compared to state-of-the-art location-based formulations is demonstrated the-
oretically and computationally. The concept of event-based modeling is transferred to the
dynamic DARP by introducing a dynamic event-based MILP which is solved in a rolling-
horizon algorithm every time new requests arrive. The rolling-horizon algorithm stands
out from existing solution methods for the dynamic DARP in that it finds optimal inser-
tion positions for new requests in 99.5% of all iterations given a time limit of 30 seconds.
Hence, there is hardly any need for re-optimization in the idle time between new requests.
The rolling-horizon algorithm is then used in a case-study investigating the replacement
of buses by ridepooling services during the late evening hours and w.r.t. service criteria.

We now shortly summarize the contents of each chapter of this thesis.

1.1 Structure of this work

The contributions described above are divided into four main chapters. Furthermore,
this thesis includes two additional chapters, reviewing basic mathematical concepts and
providing an overview of the DARP, respectively.

In Chapter 2, we review concepts from graph theory, mixed-integer optimization and
multi-objective optimization.

The existing literature on the DARP, distinguishing between static and dynamic DARP
as well as exact and heuristic solution methods, is described in Chapter 3. Each solu-
tion method is briefly explained and the relevant literature is summarized. Furthermore,
two paragraphs focus on multi-objective optimization, and simulations and case studies,
respectively. After that, real-life applications of the DARP are described, followed by a
formal definition of the DARP. We present two standard MILP formulations from the
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1.1 Structure of this work

literature. In the next section, we briefly discuss different objectives by which the DARP
is characterized. We conclude this chapter by a section on related problems such as vehicle
routing problems and the minimum cost flow problem.

In Chapter 4, two event-based MILP formulations are presented, which can be distin-
guished by their representation of time window and ride time constraints. The event-based
formulations have the advantage that capacity, pairing and precedence constraints, needed
in location-based formulations to ensure the feasibility of the solution, are implicitly en-
coded. This comes at the cost of significantly more variables and constraints compared
to compact location-based models. In computational tests, we show that the event-based
MILP formulations outperform the state-of-the-art location-based formulations. The su-
perior of the two proposed models lays a foundation for the following chapters of this thesis
and is referred to as the event-based (EB) MILP. In a second part of our computational
study, we consider weighted-sums of optimization criteria and investigate the respective
trade-offs between different optimization goals.

In Chapter 5, we combine advantages from location-based and event-based models into
a location-augmented-event-based (LAEB) and an aggregated location-augmented-event-
based (ALAEB) formulation, which can be distinguished by the type of binary variables
(i.e., location- or event-based). We show that the location-augmented-event-based mod-
els are tighter than state-of-the-art location-based formulations. Moreover, they yield an
integral polyhedron if the time windows fulfill the condition that they induce a unique pair-
wise ordering of locations. The new models are strengthened even further by novel valid
inequalities tailored to the event-based approach, and by preprocessing techniques which
detect infeasible events. By using the preprocessing techniques before passing the LAEB
formulation to a solver, computational times are reduced by more than half compared to
the EB MILP.

The (location-augmented-)event-based formulations are easy to implement and can be
solved by standard MILP solvers. Instances with up to 100 requests can be solved within
a few seconds. Other exact approaches for the static DARP (e.g., Gschwind and Irnich,
2015; Rist and Forbes, 2021) are usually based on more complex solution methods such
as branch-and-cut or column generation. Hence, the (location-augmented-)event-based
formulations are an efficient and low-maintenance tool for service providers since they
generate high-quality solutions in a short amount of time.

In the second part of this thesis, we turn our attention to the dynamic DARP. Solution
methods for the dynamic DARP are mainly heuristic approaches combining two steps (e.g.,
Berbeglia et al., 2012; Häll and Peterson, 2013): First, an incoming request is inserted
into the current solution by using a simple and fast insertion heuristic. Then, in the idle
time between two incoming requests, the solution is re-optimized using a more complex
heuristic or meta-heuristic. In Chapter 6, a rolling-horizon algorithm for the dynamic
DARP is presented, which is based on a dynamic event-based model and iteratively solves
a reduced event-based MILP formulation every time new requests arrive. In numerical
tests, the rolling-horizon algorithm computes optimal insertion positions w.r.t. the current
schedule in 99.5% of all iterations, which cannot be guaranteed in general by two-phase
heuristics.

In Chapter 7 we investigate the effects of replacing line-based public transport services
during the late evening hours by ridepooling services with regard to service quality. To-
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Chapter 1 Introduction

wards this end, artificial ridepooling requests are generated based on real-life data from
bus passengers and Hol mich! App passengers by using a predictive simulation. We use
the rolling-horizon algorithm to model the routing decisions of the ridepooling service,
enhancing it by a feasible-path heuristic which compensates for request peaks and reduces
computation time.

The thesis ends with Chapter 8, where we summarize and conclude the main contribu-
tions and make some remarks on future research.

A list of parameters and variables can be found in the nomenclature after Chapter 8.

1.2 Publications

The content of this thesis has been published or submitted to scientific journals:

• H. Asatryan et al. (2023). “Ridepooling and public bus services: A comparative
case-study”. Submitted to EURO Journal on Transportation and Logistics. doi:
10.48550/ARXIV.2302.01709

• D. Gaul et al. (2021). “Solving the dynamic dial-a-ride problem using a rolling-
horizon event-based graph”. In: 21st Symposium on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems (ATMOS 2021). Ed. by M.
Müller-Hannemann and F. Perea. Vol. 96. Open Access Series in Informatics (OA-
SIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 8:1–
8:16. doi: 10.4230/OASIcs.ATMOS.2021.8

• D. Gaul et al. (2022). “Event-based MILP models for ridepooling applications”. In:
European Journal of Operational Research 301.3, pp. 1048–1063. doi: 10.1016/j.

ejor.2021.11.053

• D. Gaul et al. (2023). “A tight formulation for the dial-a-ride problem”. Submitted
to European Journal of Operational Research. doi: 10.48550/ARXIV.2308.11285

Chapter 4 is published in Gaul et al. (2022). The content of Chapter 5 is based on Gaul
et al. (2023). Chapter 6 is published in Gaul et al. (2021), while Chapter 7 is aligned to
Asatryan et al. (2023). Contents of all of the above articles appear in Chapter 3.

Furthermore, the C++ implementation of the presented MILPs and algorithms is pub-
lished in the following git repositories:

• D. Gaul (2022b). “Rolling-horizon algorithm for the dynamic DARP”. Git repos-
itory. url: https : / / git . uni - wuppertal . de / dgaul / rolling - horizon -

algorithm-for-dynamic-darp

• D. Gaul (2022a). “Event-based MILP for the DARP”. Git repository. url: https:
//git.uni-wuppertal.de/dgaul/event-based-milp-for-darp

• D. Gaul (2023). “A tight formulation for the DARP”. Git repository. url: https:
//git.uni-wuppertal.de/dgaul/a-tight-formulation-for-the-darp
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2 Basic Concepts

This chapter introduces basic mathematical concepts and notation and is divided into
three sections: graph theory, which is discussed in Section 2.1, followed by mixed-integer
linear optimization in Section 2.2 and multi-objective optimization in Section 2.3. With
these three sections, we provide the main prerequisites required to formulate the dial-a-
ride problem as a mixed-integer linear program based on a directed graph, and to consider
it from a multi-objective perspective.

2.1 Graph Theory

The graph theoretical concepts reviewed in this section are mainly based on Ahuja et al.
(1993). Basic concepts such as directed graphs, paths and cycles are defined. Moreover,
we present the all-pairs shortest path problem and the Floyd-Warshall algorithm for its
solution. We begin with several elementary definitions.

Definition 2.1. A directed graph G = (V,A) consists of a finite set V 6= ∅ of nodes and
a set A ⊆ V × V of arcs whose elements are ordered pairs of distinct nodes. A directed
graph whose nodes and arcs have associated numerical values (e.g., demands or costs) is
also referred to as directed network.

Definition 2.2. Let (v, w) ∈ A be a directed arc. We refer to node v as the tail of arc
(v, w) and to node w as its head. Then, the arc (v, w) is incident to nodes v and w. The
arc (v, w) is an outgoing arc of node v and an ingoing arc of node w. We denote the set
of outgoing arcs of node v as δout(v) := {(v, w) ∈ A} and the set of ingoing arcs of node
v as δin(v) := {(w, v) ∈ A}. Whenever an arc (v, w) ∈ A, we say that node v is adjacent
to node w. Multiarcs are two or more arcs with the same tail and head nodes.

Definition 2.3. A directed graph G′ = (V ′, A′) is a subgraph of G = (V,A) if V ′ ⊆ V
and A′ ⊆ A. We say that G′ = (V ′, A′) is the subgraph of G induced by V ′ if A′ contains
each arc of A with both endpoints in V ′, i.e., A′ = {(v, w) ∈ A : v, w ∈ V ′}.

With the definition of a subgraph at hand, we define further structures in a graph.

Definition 2.4. A directed path in a directed graph G = (V,A) is a subgraph of G consist-
ing of a sequence of nodes and arcs (v1, a1, v2, a2, . . . , at−1, vt) such that ai = (vi, vi+1) ∈ A
for all i ∈ {1, . . . , t − 1} and vi 6= vj for all i, j ∈ {1, . . . , t} with i 6= j, {i, j} 6= {1, t}. If
the considered graph does not contain multiarcs, we sometimes write v1 → v2 → . . .→ vt

without explicitly mentioning the arcs.

Definition 2.5. A dicycle is a directed path v1 → . . . → vt in a directed graph together
with the arc (vt, v1) ∈ A.
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Chapter 2 Basic Concepts

Definition 2.6. A dicycle in a directed graph G = (V,A) which visits each node v ∈ V
exactly once is called a Hamiltonian cycle or Hamiltonian tour.

In derogation of this definition, in this thesis we often use the term (vehicle) tour to refer
to a dicycle which starts and ends at a distinguished node, the vehicle depot. In the case
of one node being associated with the start, and another node being associated with the
end depot, we also use the term “vehicle tour” to describe a directed path starting at the
start depot and ending at the end depot.

Definition 2.7. A directed graph is called simple if it does not contain multiarcs. A
complete directed graph is a simple directed graph in which all nodes v 6= w ∈ V are
adjacent, i.e., (v, w), (w, v) ∈ A for all v 6= w ∈ V . We say that a directed graph is
connected, if it contains a directed path between every pair of nodes.

Remark 2.8. In this thesis, we usually refer to a simple and connected directed graph, or
to a simple and connected directed network, as graph. We usually refer to a directed path
as path and to a directed cycle as cycle or dicycle.

In the following, we take a look at the computation of shortest paths in a graph and define
the shortest path problem and the all-pairs shortest path problem.

Definition 2.9. Let G = (V,A) be a graph with an arc length (or arc cost) ca associated
with each arc a = (v, w) ∈ A. We define the length of a directed path as the sum of the
lengths of the arcs in the path. Let s ∈ V be a distinguished node, called the source. The
shortest path problem is to determine for every non-source node v ∈ V a shortest path
from s to v. The all-pairs shortest path problem is to determine for every pair of nodes
(v, w) ∈ V × V a shortest path from v to w.

The literature classifies solution approaches for shortest path problems in two groups:
label-setting and label-correcting algorithms. They assign distance labels, which are upper
bounds on the shortest path lengths, to nodes at each step. Label-setting algorithms no-
minate one label as permanent in every iteration, while in label-correcting algorithms
all labels are temporary until the final step of the algorithm. The main difference is
that label-setting algorithms are only applicable to cycle-free graphs or graphs with non-
negative arc lengths. Label-correcting algorithms either identify a negative cycle when
one exists, or solve the shortest path problem if not. The shortest path problem with
non-negative arc lengths can be solved using Dijkstra’s algorithm, see, e.g., Ahuja et al.
(1993), which is a label-setting algorithm. Since in this thesis we consider real-world street
networks it is not restrictive to assume non-negative arc lengths representing the physical
length of the street segment or the corresponding travel time. For the same reason, we
may assume that a graph does not contain a negative cycle, i.e., a dicycle of negative
length, which is a requirement for the label-correcting Floyd-Warshall algorithm to solve
the all-pairs shortest path problem: The Floyd-Warshall algorithm uses distance labels
dist(v, w), v, w ∈ V , which represent, if finite, the length of a path between nodes v and w.
During the run of the algorithm dist(v, w) is an upper bound on the shortest path length
from node v to node w. Furthermore, let pred(v, w) denote the predecessor index of the
last node prior to node w in the tentative shortest path from v to w. Then, Algorithm 1
describes the pseudo-code for the Floyd-Warshall algorithm.

12



2.2 Mixed-Integer Optimization

Algorithm 1: Floyd-Warshall

input : graph G = (V,A) with arc lengths c(v,w) for (v, w) ∈ A and no negative
cycle

output: shortest path for every pair of nodes (v, w) ∈ V × V , defined by
predecessor labels pred(v, w)

1 for all node pairs (v, w) ∈ V × V do
2 dist(v, w) :=∞ and pred(v, w) := NULL

3 for all nodes v ∈ V do
4 dist(v, v) := 0

5 for each arc (v, w) ∈ A do
6 dist(v, w) := c(v,w) and pred(v, w) := v

7 for each u ∈ V do
8 for each v ∈ V do
9 for each w ∈ V do

10 if dist(v, w) > dist(v, u) + dist(u,w) then
11 dist(v, w) := dist(v, u) + dist(u,w)
12 pred(v, w) := pred(u,w)

Using the predecessor indices, a shortest path from v to w can be reconstructed as
follows: Starting at node w, the node u = pred(v, w) is the node prior to w in the path.
The node prior to u is given by pred(v, u), and so on, until we reach node v. Algorithm 1
performs O(|V |3) computations.

To the end of this section, we present a type of shortest path problem that arises
frequently in practice.

Definition 2.10. Consider a graph G = (V,A) with two attributes ca and ta associated
with each arc a ∈ A, representing arc lengths and a second resource which is consumed by
traveling on arc a ∈ A, for example travel time. The constrained shortest path problem
is to find the shortest path from a given source node s to a given sink node t, under the
restriction that not more than T units of the second resource are used for the path.

Hence, we need to solve the shortest path problem with the additional side constraint,
that not more than T units of, e.g., time are consumed along the path. Constrained
shortest path problems arise frequently in column generation approaches for vehicle routing
problems (see Section 3.6). An overview of constrained shortest path problems and solution
methods is given, for example, in Irnich and Desaulniers (2005).

2.2 Mixed-Integer Optimization

In this section, we introduce the main concepts of mixed-integer linear programming used
in this thesis. Most parts of this section are based on the books Papadimitriou and Stei-
glitz (1998), Schrijver (1998) and Wolsey (1998). After defining a general optimization
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problem and in particular mixed-integer linear programs, we discuss the basics of complex-
ity theory in Section 2.2.1. An introduction to polyhedral theory follows in Section 2.2.2,
where we present the important result, that under certain conditions the optimization of
a linear function over a mixed-integer set described by a rational polyhedron equals the
optimization over the convex hull of this set, i.e., the solution of a mixed-integer linear
program becomes equivalent to the solution of a linear program. Next, we discuss exact
solution techniques: Section 2.2.3 covers branch-and-bound algorithms, Section 2.2.4 deals
with preprocessing techniques and Section 2.2.5 reviews branch-and-cut algorithms.

Throughout this chapter and this thesis, we use the following notation: To number
vectors sequentially, we use upper indices, while we use lower indices to refer to different
components of a vector. Given two vectors x, y ∈ Rn, the symbols ≤,≥, < and > are used
to compare the vectors componentwise, i.e., x ≤ y if and only if xi ≤ yi for all i = 1, . . . , n
and likewise for the other symbols. Moreover, given two sets A and B, we write A ⊂ B if
A is a proper subset of B, and A ⊆ B if A is a subset of B.

Definition 2.11. Let X ⊆ Rn and let f : X → R be a function. Then,

min f(x)

s. t. x ∈ X (2.1)

is called an optimization problem. The function f is called objective function and the set
X is called feasible set.

In the following, we often assume that an optimization problem is feasible (i.e., X 6= ∅),
bounded (i.e., there is a λ ∈ R such that for all x ∈ X it holds that f(x) ≥ λ) and that it
has at least one optimal solution (i.e., a feasible solution x ∈ X in which the minimum is
attained). The optimization problems examined in this thesis belong to a specific class of
optimization problems:

Definition 2.12. Let c ∈ Rn, b ∈ Rm be vectors, let A ∈ Rm×n be a matrix and let
p ∈ {0, 1, . . . , n}. A mixed-integer linear program (MILP) is an optimization problem of
the form

min c>x

s. t. Ax ≤ b
x ≥ 0

x ∈ Rp × Zn−p.

(2.2)

The objective function f(x) = c>x is a linear function and the feasible set X is equal to
{x ∈ Rp × Zn−p : Ax ≤ b, x ≥ 0}. If p = n, (2.2) is called a linear program (LP), and if
p = 0, (2.2) is called an integer linear program.

2.2.1 Basic Notations of Complexity Theory

In this section, we introduce the concept of a decision problem and different complexity
classes. This section is based on Papadimitriou and Steiglitz (1998) and Wolsey (1998).
A detailed introduction to the subject is also given in Garey and Johnson (1979).
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2.2 Mixed-Integer Optimization

A decision problem is a question that can be answered by yes or no. In this section,
instead of the optimization problem (2.1) we consider its corresponding decision problem.

To start with, we begin with the definition of the length of an input to an algorithm.
The input I, e.g., a problem instance, is represented as a sequence (or string) of symbols
(say binaries) on a computer. Then the length of the input is the number of binaries in
the sequence:

Definition 2.13. Given an input I to an algorithm, the length of the input L = L(I) is
the length of the binary representation of a “standard” representation of I.

Definition 2.14. Given a problem P , an algorithm A for the problem, and an input I, let
fA(I) be the number of elementary calculations required to run algorithm A on the input.
Then, f?A(`) = supI{fA(I) : L(I) = `} is the worst-case running time of the algorithm A
for a given input length `. An algorithm A is polynomial for a problem P if f?A(`) = O(`k)
for some positive integer k.

Now, we define the decision problem corresponding to an optimization problem.

Definition 2.15. Given an optimization problem min{f(x) : x ∈ X} and a constant k ∈ Z
the corresponding decision problem is:

Is there a feasible solution x ∈ X with value f(x) ≤ k?

An instance of the above decision problem consists of f , a “standard” representation of X
and an integer k. A solution to a decision problem is the correct answer “yes” or “no”.

In the following, we classify decision problems according to their complexity.

Definition 2.16. The class P is the class of decision problems that can be solved by a
polynomial-time algorithm.

Next we define the class NP. For a problem to be in NP we do not require that the
decision problem can be answered in polynomial time. Rather than that, we require that
given an instance I for which the decision problem is answered by yes, there exists a
concise (i.e., bounded in length by a polynomial in L(I)) certificate for I, which can be
checked in polynomial time for validity.

Definition 2.17. We say that a decision problem P is in the class NP if there exists a
polynomial q and an algorithm A (the certificate-checking algorithm) such that the fol-
lowing is true: The string I is a yes instance of P if and only if there exists a string of
symbols, the certificate c(I), with L(c(I)) ≤ q(L(I)) and the property that A, if supplied
with input I and c(I), reaches the answer yes after at most q(L(I)) steps.

Notice that P is a subset of NP. To see this, suppose that A is a polynomial time
algorithm for problem P . Given any instance I of P for which the decision problem is
answered by yes, algorithm A will operate on I in polynomial time and answer yes. The
record of this operation is a certificate c(I), which can be checked in polynomial time by
checking that it is a valid execution of A. So P ⊆ NP. We consider a second subclass
of NP in the remainder of this subsection. First, we need the concept of polynomial
reductions.
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Chapter 2 Basic Concepts

Definition 2.18. Let P1 and P2 be two decision problems. We say that P1 reduces in
polynomial time to P2 if and only if there exists a polynomial-time algorithm A1 for P1

that uses several times, as a subroutine at unit cost, a (hypothetical) algorithm A2 for P2.
We call A1 a polynomial-time reduction of P1 to P2.

By at unit cost we mean that algorithm A2 is considered as a single instruction, taking
unit time to execute.

Proposition 2.19. If P1 polynomially reduces to P2 and if there is a polynomial-time
algorithm for P2, then there is a polynomial-time algorithm for P1.

Proof. See Papadimitriou and Steiglitz (1998).

The following reduction will be of particular interest in the following.

Definition 2.20. We say that a decision problem P1 polynomially transforms to another
decision problem P2, if, given any string I1, we can construct a string I2 within polynomial
time in L(I1) such that I1 is a yes instance of P1 if and only if I2 is a yes instance of P2.

Hence, a polynomial-time transformation is equivalent to a polynomial-time reduction
with just one call of the subroutine for P2.

Definition 2.21. A decision problem P ∈ NP is said to be NP-complete or in the class
NPC if all other problems in NP polynomially transform to P .

By Proposition 2.19, if a problem P is NP-complete then the following holds: if there is
an efficient algorithm for P then there is an efficient algorithm for every problem in NP.
A proof that NPC 6= ∅ is given in Cook (1971) by showing that the satisfiability problem
is in NPC. Further NP-complete problems based on that proof are listed in Garey and
Johnson (1979). An important corollary is as follows:

Corollary 2.22. If P ∩NPC 6= ∅, then P = NP.

Proof. See Wolsey (1998).

Unfortunately, the question whether P = NP or P 6= NP is still open. Optimization
problems, for which the associated decision problem is in NPC are also called NP-hard.
We now turn the page from decision to optimization problems again.

2.2.2 Polyhedral Theory

In this section we take a closer look at the feasible set of an MILP, which (without in-
tegrality conditions) defines a polyhedron. We present the decomposition theorem for
polyhedra, and show that for a rational polyhedron P , the convex hull of its mixed-integer
points, i.e., the set conv(P ∩ (Rp × Zn−p)), is again a polyhedron. This result is then
used together with the fundamental theorem of linear programming to show that if an
optimal solution of the MILP exists, solving the MILP is equivalent to solving an LP over
the convex hull of the feasible set of the MILP. This section is mainly based on Wolsey
(1998) and Schrijver (1998). The results presented in this chapter are analogous to the
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2.2 Mixed-Integer Optimization

well-known results for integer linear programs (see e.g. Schrijver (1998)) where instead of
conv(P ∩ (Rp×Zn−p)), the set conv(P ∩Zn) is shown to be a polyhedron if P is rational.
For the sake of completeness, we state them for the mixed-integer case here.

Definition 2.23. A set P of vectors in Rn is called a (convex) polyhedron, if P =
{x ∈ Rn : Ax ≤ b} for some matrix A ∈ Rm×n and vector b ∈ Rm.

Thus, a polyhedron is the intersection of finitely many affine half-spaces, i.e., of sets of
the form {x : w>x ≤ δ} for non-zero vectors w ∈ Rn and numbers δ ∈ R.

Definition 2.24. The convex hull of a set X ⊆ Rn is the smallest convex set containing
X and is denoted by conv(X). Then:

conv(X) =

{
t∑

i=1

λix
i : t ≥ 1, x1, . . . , xt ∈ X, λ1, . . . , λt ≥ 0,

t∑

i=1

λi = 1

}
.

The constraint set of an MILP without integrality restrictions defines a polyhedron. This
polyhedron is also called a formulation of the MILP:

Definition 2.25. A polyhedron P ⊆ Rn is a formulation of a set X ⊆ Rp × Zn−p if and
only if X = P ∩ (Rp × Zn−p).

Note that, a formulation of the feasible set of the MILP (2.2) is given by the polyhedron
P = {x ∈ Rn : Ax ≤ b, x ≥ 0}.

Definition 2.26. A formulation P for the set X ⊆ Rp × Zn−p is said to be compact, if
P is described by a number of linear inequalities which is polynomial in n.

The next definition helps us to distinguish the quality of a formulation.

Definition 2.27. Given a set X ⊆ Rp × Zn−p and two formulations P1 and P2 of X, we
say that P1 is a tighter formulation than P2 if P1 ⊂ P2.

Next, we introduce the concept of valid inequalities.

Definition 2.28. An inequality π>x ≤ π0 is a valid inequality for a set X ⊆ Rp × Zn−p
if π>x ≤ π0 for all x ∈ X.

Definition 2.29. If π>x ≤ π0 and µ>x ≤ µ0 are two valid inequalities for X ⊆ (Rp ×
Zn−p)≥0, then the inequality π>x ≤ π0 dominates µ>x ≤ µ0 if there exists λ > 0 such that
π ≥ λµ and π0 ≤ λµ0, and (π, π0) 6= (λµ, λµ0).

Definition 2.30. Let X ⊆ (Rp × Zn−p)≥0 and let P be a formulation of X. A valid
inequality π>x ≤ π0 is redundant in the description of P , if there exist k ≥ 1 valid
inequalities (πi)>x ≤ πi0, i ∈ {1, . . . , k} for X and weights λi > 0, i ∈ {1, . . . , k} such that∑k

i=1 λi(π
i)>x ≤∑k

i=1 λiπ
i
0 dominates π>x ≤ π0.

The following principle is used to lift a valid inequality into a higher dimension, see, e.g.,
Conforti et al. (2014):
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Chapter 2 Basic Concepts

Definition 2.31. Consider the feasible set X = {x ∈ Rp × Zn−p : Ax ≤ b, x ≥ 0} of an
MILP. Let N := {1, . . . , n} and C ⊂ N , and let

∑
j∈C αjxj ≤ β be a valid inequality on

a subset of variables, namely conv(X) ∩ {x ∈ Rn : xj = 0, j ∈ N \ C}. An inequality∑n
j=1 αjxj ≤ β is called a lifting of

∑
j∈C αjxj ≤ β if it is valid for conv(X).

In the following, we introduce further convex sets such as polytopes and cones, and show
that a polyhedron can be written as the Minkowski sum of a polytope and a cone.

Definition 2.32. A set of vectors is a (convex) polytope, if it can be written as the convex
hull of finitely many vectors.

Definition 2.33. A set C 6= ∅ in Rn is called a convex cone if λx + µy ∈ C for all
x, y ∈ C and λ, µ ≥ 0. A convex cone C is polyhedral if C = {x ∈ Rn : Ax ≤ 0} for some
matrix A ∈ Rm×n. The convex cone generated by a set X of vectors is denoted as conic
hull of X :

cone(X ) =

{
t∑

i=1

λix
i : λ1, . . . , λt ≥ 0, x1, . . . , xt ∈ X

}
.

A convex cone generated by a finite set of vectors X = {x1, . . . , xt} is called finitely
generated.

Remark 2.34. The conic hull cone(X ) generated by the set X = {x1, . . . , xt} of vectors
is the smallest convex cone containing X .

In this thesis, we usually refer to a convex cone simply as cone.

Theorem 2.35 (Farkas-Minkowski-Weyl). A cone is polyhedral if and only if it is finitely
generated.

Proof. See Schrijver (1998).

Theorem 2.36 (Decomposition theorem for polyhedra). A set P ⊆ Rn is a polyhedron,
if and only if P = Q+ C for some polytope Q and some polyhedral cone C.

Proof. See Schrijver (1998).

The next corollary follows immediately from Theorem 2.36.

Corollary 2.37. A set P is a polytope if and only if P is a bounded polyhedron.

Definition 2.38. Let P = {x ∈ Rn : Ax ≤ b} be a polyhedron, P 6= ∅. The characteristic
cone of P is the polyhedral cone

char.coneP := {y ∈ Rn : x+ y ∈ P ∀x ∈ P} = {y : Ay ≤ 0}.

It is straightforward, that if P 6= ∅ and P = Q+C with Q a polytope and C a polyhedral
cone, then C = char.coneP .
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2.2 Mixed-Integer Optimization

Definition 2.39. Let P ⊆ Rn be a polyhedron. Then, PI := conv(P∩(Rp×Zn−p)) denotes
the convex hull of the mixed-integer points in P .

We will be specifically interested in the following polyhedra for the remaining part of this
subsection:

Definition 2.40. A polyhedron P ⊆ Rn is called rational if there exist A ∈ Qm×n and
b ∈ Qm such that P = {x ∈ Rn : Ax ≤ b}.
Rational polyhedra have the nice property, that the convex hull of the mixed-integer points
is again a polyhedron. This well-known result is first formulated below for the special case
of a rational polytope and a rational polyhedral cone, see, e.g., Schrijver (1998). Before
we extend it to the mixed-integer case, we need the following auxiliary result.

Lemma 2.41 (cf. Rockafellar (1997)). Let xi,1, . . . , xi,ti ∈ Rn for all i ∈ {1, . . . , k}. Then

conv

(
k⋃

i=1

conv(xi,1, . . . , xi,ti)

)
= conv

(
k⋃

i=1

{xi,1, . . . , xi,ti}
)
.

Proof. Let x ∈ conv
(⋃k

i=1 conv(xi,1, . . . , xi,ti)
)

. Hence, x =
∑t

j=1 λjy
j with

∑t
j=1 λj = 1,

λj ≥ 0 and yj ∈ conv(xi,1, . . . , xi,ti) for some i ∈ {1, . . . , k}. We denote this i by ij . Then

x =
t∑

j=1

λj

tij∑

`=1

µij ,`x
ij ,`

with
∑tij

`=1 µij ,` = 1 and µij ,` ≥ 0 for all i ∈ {1, . . . , k}, j ∈ {1, . . . , t}. It follows, that

x ∈ conv
(⋃k

i=1{xi,1, . . . , xi,ti}
)

, since

x =
t∑

j=1

tij∑

`=1

λjµij ,`x
ij ,`

with
t∑

j=1

tij∑

`=1

λjµij ,` =
t∑

j=1

λj

tij∑

`=1

µij ,` =
t∑

j=1

λj = 1

and λjµij ,` ≥ 0 for all i ∈ {1, . . . , k}, j ∈ {1, . . . , t}.
For the reverse inclusion, let x ∈ conv

(⋃k
i=1{xi,1, . . . , xi,ti}

)
. Hence, x =

∑t
j=1 λjy

j

with
∑t

j=1 λj = 1, λj ≥ 0 and yj ∈ {xi,1, . . . , xi,ti} for some i ∈ {1, . . . , k} for all j ∈
{1, . . . , t}. Thus, yj ∈ conv(xi,1, . . . , xi,ti) for some i ∈ {1, . . . , k}. It follows that x ∈
conv

(⋃k
i=1 conv(xi,1, . . . , xi,ti)

)
.

The following three results are usually formulated explicitly for the integer case, i.e.,
instead of the set PI = conv(P ∩ (Rp × Zn−p)) the set conv(P ∩ Zn) is considered. We
refer to Schrijver (1998) for the integer case and consider them for the mixed-integer case
here.
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Chapter 2 Basic Concepts

Theorem 2.42. If P is a rational polytope, then PI is a polytope.

Proof. Let π denote the projection on the last n−p components (the integer components),
i.e., π(x1, . . . , xn) = (xp+1, . . . , xn). Since P is bounded, π(P ) contains only finitely many
integer points. Let π(P ) = {z1, . . . , zk}, with zi ∈ Zn−p for i ∈ {1, . . . , k} be this set of
integer points. Then

P ∩ (Rp × Zn−p) =
k⋃

i=1

P ∩ (Rp × {zi}).

Since P is a bounded polyhedron, for each i ∈ {1, . . . , k} the set P ∩ (Rp × {zi}) is also
a bounded polyhedron, i.e., a polytope. Thus, there exist xi,1, . . . , xi,ti ∈ Rp × {zi} such
that P ∩ (Rp × {zi}) = conv(xi,1, . . . , xi,ti). Thus,

conv(P ∩ (Rp × Zn−p)) = conv

(
k⋃

i=1

conv(xi,1, . . . , xi,ti)

)
= conv

(
k⋃

i=1

{xi,1, . . . , xi,ti}
)
,

where we use Lemma 2.41 in the last equality, so PI is the convex hull of finitely many
points.

Lemma 2.43. If C is a rational polyhedral cone, then C = CI .

Proof. Since C is a convex cone, CI = conv(C ∩ (Rp × Zn−p)) ⊆ conv(C) = C. For
the reverse inclusion, note that since C is a rational polyhedral cone, it can be written
as C = cone(x1, . . . , xt) with x1, . . . , xt ∈ Qn. By scaling, we can assume x1, . . . , xt ∈
Zn. Let c ∈ C. Then, there exist vectors x̃1, . . . , x̃t̃ ∈ C ∩ (Rp × Zn−p), such that
c ∈ conv(x̃1, . . . , x̃t̃). Hence, c ∈ CI .

In fact, it even holds that for rational polyhedral cones C = conv(C ∩Zn) using a similar
argumentation. Next, we prove the statement for general rational polyhedra.

Theorem 2.44. For any rational polyhedron P , the set PI is again a polyhedron.

Proof. The proof for this result is based on the proof for the convex hull of integer points
in P given in Schrijver (1998).

If P = ∅, then PI = ∅, and hence the statement holds. We assume P 6= ∅ for the
remaining part of the proof. Let P = Q + C, where Q is a polytope and C is the
characteristic cone of P (see Theorem 2.36 and the remark after Definition 2.38). Since
C is a rational polyhedral cone, C = CI = conv(C ∩ Zn). Using Theorem 2.35, let C be
generated by the vectors x1, . . . , xt ∈ Zn and let B be

B :=

{
t∑

i=1

λix
i : 0 ≤ λi ≤ 1 for i ∈ {1, . . . , t}

}
.

Hence, B is a polytope generated by the vectors {∑i∈N x
i : N ⊆ {1, . . . , t}} and the vector

(0, . . . , 0)>. We show that PI = (Q+B)I + C, which implies the theorem, as Q+B is a
rational polytope, and hence it follows from Lemma 2.42, that (Q+B)I is a polytope.
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To show that PI ⊆ (Q + B)I + C, let ρ ∈ P ∩ (Rp × Zn−p). Then, ρ = q + c, with
q ∈ Q and c ∈ C. Let c =

∑t
i=1 µix

i with µ1, . . . , µt ≥ 0. Define c′ =
∑t

i=1bµicxi and
b =

∑t
i=1(µi − bµic)xi, then, c = b + c′ with b ∈ B and c′ ∈ C. Hence, ρ = (q + b) + c′

and (q + b) ∈ (Q + B)I , as q + b = ρ − c′ and ρ ∈ Rp × Zn−p and c′ is integral. So
ρ ∈ (Q+B)I +C. Since (Q+B)I +C is a polyhedron (using Theorem 2.36), (Q+B)I +C
is convex, hence PI = conv(P ∩ (Rp × Zn−p)) ⊆ (Q+B)I + C.

The reverse inclusion follows from

(Q+B)I + C ⊆ PI + C

= PI + CI

= conv(P ∩ (Rp × Zn−p)) + conv(C ∩ (Rp × Zn−p))
?
= conv(p+ c : p ∈ P ∩ (Rp × Zn−p), c ∈ C ∩ (Rp × Zn−p))
⊆ conv(p+ c : p ∈ P, c ∈ C, p+ c ∈ Rp × Zn−p)
= (P + C)I = PI ,

where for the equality marked with “?” we use the fact that for V,W ⊆ Rn it holds that
conv(V +W ) = conv(V ) + conv(W ).

Note, that in general it is not a restriction to assume rational data, since irrational numbers
can not be represented on a computer such that they have to be converted into rational
numbers. We are going to combine the previous result with another important theorem,
the fundamental theorem of linear programming. First, we need the following definition
given, e.g., in Narici and Beckenstein (1985).

Definition 2.45. A point x of a convex set K ⊆ Rn is an extreme point of K if there do
not exist ỹ, ȳ ∈ K, ỹ 6= ȳ and 0 < λ < 1, such that x = λỹ + (1− λ)ȳ.

Theorem 2.46 (Fundamental theorem of linear programming). If P = {x ∈ Rn : Ax ≤
b, x ≥ 0} 6= ∅, and min{c>x : x ∈ P} is finite, then there is an optimal solution that is an
extreme point.

Proof. Cf. Nemhauser and Wolsey (1988).

The following well-known result is given for example in Wolsey (1998). We give a proof
for the sake of completeness.

Proposition 2.47. Let X ⊆ Rn. The extreme points of conv(X) all lie in X.

Proof. Let x ∈ conv(X) be an extreme point of conv(X). Since x ∈ conv(X), there exist
xi ∈ X, λi ≥ 0 for i ∈ {1, . . . , t} with

∑t
i=1 λi = 1 such that x =

∑t
i=1 λix

i. If t = 1, then
x ∈ X. So we assume the contrary t ≥ 2. Moreover, we assume that λi > 0, otherwise we
can choose t smaller. Then,

x = λ1x
1 + (1− λ1)

t∑

i=2

λi
1− λ1

xi.

Since
∑t

i=2 λi = 1 − λ1, it holds that x′ :=
∑t

i=2
λi

1−λ1
xi ∈ conv(X). Hence, x = λ1x

1 +

(1 − λ1)x′ with 0 < λ1 < 1 and x1, x′ ∈ conv(X). If x1 6= x′, this is a contradiction to x
being an extreme point. If x1 = x′, x = x1 ∈ X.
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With the previous results of this section, we have worked towards the following theorem.

Theorem 2.48. Let P = {x ∈ Rn : Ax ≤ b, x ≥ 0} be a rational polyhedron, such that
X = P ∩ (Rp × Zn−p) 6= ∅ and min{c>x : x ∈ X} is finite. Then,

min{c>x : x ∈ X} = min{c>x : x ∈ conv(X)}.

Proof. Since X ⊆ conv(X), min{c>x : x ∈ X} ≥ min{c>x : x ∈ conv(X)}. From Theo-
rem 2.44, we know that conv(X) = PI is a polyhedron. By Theorem 2.46 there exists an ex-
treme point x′ of conv(X), such that min{c>x : x ∈ conv(X)} = c>x′ ≥ min{c>x : x ∈ X},
where the last inequality follows from Proposition 2.47.

Hence, assuming rationality of the data, solving the MILP min{c>x : x ∈ X} with X =
{x ∈ Rp × Zn−p : Ax ≤ b, x ≥ 0} is equivalent to solving the LP min{c>x : x ∈ conv(X)}.
Unfortunately, in general, it is not easy to find a description of conv(X) as there might
be an (exponential) number of linear inequalities needed (see, e.g., Rothvoß, 2012). The
advantage of LPs is that they are solvable in polynomial time, while this is in general not
true for MILPs. In most practical applications the simplex method (based on Dantzig,
1963) is used to solve LPs efficiently, although there exist examples for which it has
exponential running time in the worst case.

An upper bound on the objective function value of an MILP is given by any feasible
solution x ∈ X. Usually heuristics are used to quickly find feasible solutions. Upper
bounds (of a minimization problem) are also referred to as primal bounds. To compute
lower or dual bounds, the most important strategy is to use a relaxation, see, e.g., Wolsey
(1998).

Definition 2.49. Let f : T → R and g : X → R be two functions. An optimization problem
(RP) zrel = min{f(x) : x ∈ T ⊆ Rn} is a relaxation of (P) z = min{g(x) : x ∈ X ⊆ Rn}
if:

• X ⊆ T , and

• f(x) ≤ g(x) for all x ∈ X.

Proposition 2.50. If (RP) is a relaxation of (P), zrel ≤ z.

Proof. If x? is an optimal solution of (P), then x? ∈ X ⊆ T and z = g(x?) ≥ f(x?). As
x? ∈ T , f(x?) is an upper bound on zrel, and so z ≥ f(x?) ≥ zrel.

A common relaxation for MILPs is the following:

Definition 2.51. The linear programming relaxation of the MILP (2.2) is given by the
LP

min c>x

s. t. Ax ≤ b
x ≥ 0

x ∈ Rn.
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In the next section, we present the concept of branch-and-bound algorithms, which involve
the computation of lower and upper bounds to identify subsets of X, in which an optimal
solution may exist, and which constitute a foundation for exact solution methods for
MILPs.

2.2.3 Branch-and-Bound

A branch-and-bound (B&B) algorithm is an exact solution method for MILPs, which relies
on two main principles: First, the iterative decomposition of the feasible set into smaller
subsets, representing subproblems of the original optimization problem. The division of
the original problem into smaller subproblems is typically represented by an enumeration
tree. Second, the application of pruning rules to eliminate parts of the tree in which a
better solution can not be found. This section is based on Wolsey (1998).

We consider the optimization problem

z = min{c>x : x ∈ X}

with c ∈ Rn and X ⊆ Rp × Zn−p.

Proposition 2.52. Let X = X1 ∪ . . . ∪ XH be a decomposition of X into smaller sets,
and let zh = min{c>x : x ∈ Xh} for h ∈ {1, . . . ,H}. Then z = min{zh : h ∈ {1, . . . ,H}}.

The decomposition of a problem into smaller subproblems, which are easier to solve, is
also referred to as divide and conquer. Typically, an enumeration tree is used to represent
a divide and conquer approach. An example of an enumeration tree for X ⊆ {0, 1}3
is shown in Figure 2.1. Since a complete enumeration is impractical for most integer
programs, pruning rules are used to cut parts of the tree. One of these rules is based on
the computation of upper and lower bounds.

Proposition 2.53. Let X = X1 ∪ . . . ∪ XH be a decomposition of X into smaller sets,
and let zh = min{c>x : x ∈ Xh} for h ∈ {1, . . . ,H}. Let

¯
zh denote a lower bound, and z̄h

denote an upper bound on zh. Then z̄h = c>x̄h with x̄h ∈ Xh the current best solution in
subproblem Xh. Moreover, z̄ = minh z̄

h is an upper bound on z.

We give an example for pruning by bounds. In Figure 2.2 a decomposition of a feasible set
X with lower and upper bounds on the subproblems is shown. Here, z̄ = min{20, 26} = 20
and

¯
z = min{18, 21} = 18. Hence, the optimal value is at most 20. Since

¯
z2 = 21, an

optimal solution can not lie in X2 and the branch X2 of the tree can be pruned.
In total, there are three cases where a node of the enumeration tree can be pruned:

• Pruning by bounds:
¯
zh ≥ z̄ .

• Pruning by optimality: z̄h =
¯
zh, i.e., zh = min{c>x : x ∈ Xh} has been solved.

• Pruning by infeasibility: Xh = ∅.

In practice, upper bounds are usually obtained by feasible solutions and lower bounds
are obtained by relaxations. A flowchart outlining the steps of a branch-and-bound algo-
rithm using the LP relaxation to compute lower bounds and binary variable branching is
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Figure 2.1: Binary enumeration tree.

X

X1 X2

27

13

26

21

20

18

‖

Xh

z̄h

¯
zh

Figure 2.2: Pruning by bounds.
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Figure 2.3: Example of a branch-and-bound flow chart.
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presented in Figure 2.3. In an implementation of a branch-and-bound algorithm further
details have to be specified, e.g., the order in which the branch-and-bound nodes are ex-
amined (e.g., best-first, depth-first, or breadth-first search), which relaxations to choose
(e.g., linear programming relaxation, Lagrangian relaxation) or the branching, i.e., the
division of the problem into subproblems. For example, if the solution x? of the current
subproblem is fractional in x?j with p < j ≤ n, a common technique is to create two new
subproblems with feasible sets X ∩ {x : xj ≤ bx?jc} and X ∩ {x : xj ≥ dx?je}. Note that
B&B is in general not finite if the formulation P is not bounded. For a recent discussion
of branch-and-bound algorithms we refer to Morrison et al. (2016).

Solvers for MILPs are often based on branch-and-bound algorithms. These are en-
riched by other methods some of which we will describe below: Preprocessing (see Sec-
tion 2.2.4) is an important step to reduce the size of the MILP in order to strengthen the
initial relaxation. A branch-and-cut algorithm (see Section 2.2.5) is an algorithm based
on branch-and-bound in which cuts, i.e., valid inequalities, are used to cut-off a solution of
a relaxation of the problem which is not feasible due to integrality violations. Typically,
a range of cuts tailored to different problem types are implemented in the solver. Fur-
thermore, heuristics are invoked to quickly find feasible solutions and can speed the proof
of optimality of a given incumbent by providing upper bounds on the optimal objective
value. For example the feasibility pump is a heuristic that is able to find an initial solution
even in certain very hard MILPs, see Fischetti et al. (2005). Popular solvers are the com-
mercial solvers CPLEX1, Gurobi2 and LocalSolver3, or the non-commercial solvers SCIP4,
GLPK5 and OR-Tools6. For more details, we refer to the respective solvers’ manuals.

2.2.4 Preprocessing

Before solving an MILP using, e.g., a branch-and-bound algorithm within a solver, different
strategies may be applied to make the optimization process easier. These methods are
generally summarized under the term preprocessing. Several common strategies, described
e.g. in Wolsey (1998), are discussed below.

First, heuristics may be used to construct an initial feasible solution. Passing a feasible
solution as a starting solution to a solver may be advantageous to guide the remaining
search process. An initial solution often provides a good upper bound on the objective
function value: the better the initial solution, the more likely pruning is possible. More-
over, the time the solver needs to find an initial feasible solution can be saved.

Another important step in speeding up the solution process may be the addition of valid
inequalities to the problem formulation to tighten it. The idea of the a-priori addition
of valid inequalities Qx ≤ q for some Q ∈ Rm′×n, q ∈ Rm′ to the initial formulation
P = {x : Ax ≤ b, x ≥ 0} with X = P ∩ (Rp × Zn−p) is to obtain a tighter formulation
P ′ = {x : Ax ≤ b, Qx ≤ q, x ≥ 0} with conv(P ′) ⊂ conv(P ). If the valid inequalities

1https://www.ibm.com/docs/en/icos
2https://www.gurobi.com/solutions/gurobi-optimizer/
3https://www.localsolver.com/
4https://scipopt.org/
5https://www.gnu.org/software/glpk/
6https://developers.google.com/optimization
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are well chosen, this can significantly improve the performance of the branch-and-bound
algorithm. However, the addition of a large number of valid inequalities to the MILP
can also have undesired effects, and lead to a slow-down, because either the solver is not
capable of processing as many constraints, or the MILP becomes too big to be solved in a
reasonable amount of time. Hence, one has to consider the trade-off between the savings
in computational time due to a tighter formulation and the increase in computational time
due to the addition of a large number of constraints.

Furthermore, solvers usually check the MILP for redundant constraints and variables,
and tighten bounds on variables if possible. This is formalized in the next proposition.

Proposition 2.54. Consider the set

X =



x ∈ Rn+1 : a0x0 +

n∑

j=1

ajxj ≤ b, `j ≤ xj ≤ uj , for j ∈ {0, 1, . . . , n}



 .

• Bounds on variables. If a0 > 0, then

x0 ≤
1

a0


b−

n∑

j=1
j : aj>0

aj`j −
n∑

j=1
j : aj<0

ajuj


 ,

and if a0 < 0, then

x0 ≥
1

a0


b−

n∑

j=1
j : aj>0

aj`j −
n∑

j=1
j : aj<0

ajuj


 .

• Redundancy. The constraint a0x0 +
∑n

j=1 ajxj ≤ b is redundant if

n∑

j=0
j : aj>0

ajuj +

n∑

j=0
j : aj<0

aj`j ≤ b.

• Infeasibility. S = ∅ if
n∑

j=0
j : aj>0

ajlj +

n∑

j=0
j : aj<0

ajuj > b.

• Variable fixing. For a minimization problem min{c>x : x ∈ Rn, Ax ≤ b, l ≤ x ≤ u},
if aij ≥ 0 for all i ∈ {1, . . . ,m} and cj > 0, then xj = `j. Conversely, if aij ≤ 0 for
all i ∈ {1, . . . ,m} and cj < 0, then xj = uj.

Considering an MILP, the bounds on integer variables xj can further be tightened as
d`je ≤ xj ≤ bujc. In the next subsection, we consider a branch-and-bound-based algo-
rithm to solve MILP, which involves the addition of valid inequalities in the course of the
algorithm.
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2.2.5 Branch-and-Cut

A branch-and-cut (B&C) algorithm is a combination of a B&B and a cutting plane al-
gorithm. In a B&C algorithm, whenever the solution xh of the current subproblem is
not feasible for the original problem, a so called cutting plane algorithm looks for valid
inequalities, which are violated by xh. These are then added to the subproblem and it is
solved again, so that a new solution is hopefully “less fractional”. In this section, we first
describe a general cutting plane algorithm. After that, we present a flowchart of a B&C
algorithm. This section is based on Wolsey (1998).

Cutting plane algorithm Suppose we know a family F of valid inequalities π>x ≤ π0,
(π, π0) ∈ F for X, but there are too many inequalities to add them all to a problem
formulation, for example during preprocessing or in a node of a branch-and-cut tree. A
cutting plane algorithm selects a subset of inequalities from F . In every iteration of a
cutting plane algorithm, the following problem is solved to select an inequality.

Definition 2.55. The separation problem associated with (2.2) is the problem: Given
x? ∈ Rn, is x? ∈ conv(X)? If not, find an inequality π>x ≤ π0 satisfied by all points in
X, but violated by x?.

Algorithm 2 describes a basic cutting plane algorithm for an MILP (2.2) with formulation
P = {x : Ax ≤ b, x ≥ 0}.

Algorithm 2: Basic Cutting Plane Algorithm

input : An MILP (2.2) with formulation P , bound on the number of iterations
I, family of valid inequalities F

output: An optimal solution for (2.2) or a tighter formulation P i

1 init
2 i = 1 and P 1 = P

3 while i ≤ I do
4 Solve the linear program min{c>x : x ∈ P i}
5 Let xi be an optimal solution
6 if xi ∈ Rp × Zn−p then
7 STOP, xi is an optimal solution for (2.2)

8 else
9 Solve the separation problem for xi and the family F

10 if there is an inequality (πi, πi0) ∈ F with (πi)>xi > πi0 then
11 P i+1 = P i ∩ {x : (πi)>x ≤ πi0}
12 i = i+ 1

13 else
14 STOP

If the algorithm terminates without finding an optimal solution for (2.2), the formulation
P i = P ∩ {x : (πk)>x ≤ πk0 , k ∈ {1, . . . , i}} is an improved formulation. Note that, in
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practice, it is often better to add more than one cut in every iteration.

Branch-and-cut algorithm The integration of a cutting plane algorithm into a B&B
framework yields a B&C algorithm. Figure 2.4 illustrates the procedure of a B&C algo-
rithm.

In contrast to a B&B algorithm, where the focus lies on solving many nodes fast to
quickly narrow down the search region, in a B&C algorithm the focus is on finding good
(i.e., close to the true optimal solution) solutions in a smaller number of nodes of the
tree by tightening the formulations of the examined nodes. To assess the quality of an
incumbent found during the execution of a B&B or B&C algorithm, the following measure
is commonly used.

Definition 2.56. The relative gap is defined as the relative difference between the lower
and upper bound of the optimal objective function value:

relative gap =
z̄ −

¯
z

z̄
.

We usually refer to the relative gap as gap.
The MILPs in this thesis are solved using a state-of-the-art commercial optimization

software like CPLEX that implements a branch-and-cut algorithm.

2.3 Multi-Objective Optimization

This section gives a brief summary of the concepts of multi-objective optimization used in
this thesis and is based on Ehrgott (2005). First we define different notions of optimality.
In the second part of this section, we mainly focus on two scalarizations: the weighted-sum
method and the ε-constraint method.

In the following, we use the symbol 6 which is often used in the field of multi-objective
optimization: Let x, y ∈ Rq be two vectors, then x 6 y if and only if x ≤ y and x 6= y.

Definition 2.57. Let X ⊆ Rn and f = (f1, . . . , fq) : X → Rq a function. Then,

min f(x) = (f1(x), . . . , fq(x))>

s. t. x ∈ X
(2.3)

is called a multi-objective optimization problem (MOP). Here, f is an objective function
vector comprised of q optimization criteria fi : X → R, i ∈ {1, . . . , q}. The set X is
called the feasible set. The image of the feasible set under the mapping f is denoted as
Y := f(X).

If q = 2, we refer to (2.3) as a bi-objective optimization problem. The following definitions
provide us with notions of optimality in multi-objective optimization.

Definition 2.58. A feasible solution x? ∈ X is called efficient or Pareto optimal if there
is no other x ∈ X such that f(x) 6 f(x?). If x? is efficient, then f(x?) is called non-
dominated. If f(x1) 6 f(x2) with x1, x2 ∈ X we say that x1 dominates x2 and f(x1)
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Figure 2.4: Example of a branch-and-cut flow chart.
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dominates f(x2). The set of all efficient solutions x? ∈ X is denoted by XE and called
the efficient set. The set of all non-dominated points y? = f(x?) ∈ Y , where x? ∈ XE, is
denoted by YN and called the non-dominated set.

Definition 2.59. A feasible solution x? ∈ X is called weakly efficient if there is no
x ∈ X such that f(x) < f(x?). The corresponding point y? = f(x?) is called weakly
non-dominated. The weakly efficient set and the weakly non-dominated set are denoted by
XwE and YwN , respectively.

Another concept of optimality arises from applications of multi-objective optimization,
where an ordering of the optimization criteria in terms of their importance is given. For
example, in the context of ridepooling, a service provider might decide that the reduction
of routing costs or driven kilometers is the most important optimization goal, and only for
the respective optimal solution the time users wait to be picked up should be minimized
as a secondary goal. This so called lexicographic optimization problem is written as

lexmin f(x) = (f1(x), . . . , fq(x))>

s. t. x ∈ X.

We now formally define the notion of lexicographic optimality.

Definition 2.60. A feasible solution x? ∈ X is lexicographically optimal or a lexico-
graphic solution if there is no x ∈ X such that f(x) <lex f(x?), where y1 <lex y

2 for
y1, y2 ∈ Rq, if y1 6= y2 and y1

k < y2
k with k = min{i ∈ {1, . . . , q} : y1

i 6= y2
i }.

In other words, x? ∈ X is lexicographically optimal, if f(x?) ≤lex f(x) for all x ∈ X, i.e.,
f(x?) = f(x) or fk(x

?) < fk(x) with k = min{i ∈ {1, . . . , q} : fi(x
?) 6= fi(x)}. While the

concept of Pareto optimality stresses the independent and equitable optimization of all
objectives, the concept of lexicographic optimality explicitly ranks the objective functions
in the sense that criterion fi is only considered when f1, . . . , fi−1 have been optimized.
We have the following relation between efficient and lexicographically optimal solutions:

Lemma 2.61. Let x? ∈ X such that f(x?) ≤lex f(x) for all x ∈ X. Then x? ∈ XE.

Proof. A proof is given in Ehrgott (2005).

2.3.1 Scalarizations

A common approach to solve multi-objective optimization problems is by scalarization,
which is the formulation of one or a series of single-objective optimization problems re-
lated to the multi-objective optimization problem. In a scalarized problem, the objective
function is a real-valued function, typically depending on the optimization criteria and/or
the constraints of (2.3) and/or additional variables and parameters. The feasible set may
be restricted by additional constraints corresponding to the optimization criteria of the
MOP. A well-known scalarization technique is the following:
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Definition 2.62. The weighted-sum scalarization of the MOP (2.3) is given by

min

q∑

i=1

ωifi(x)

s. t. x ∈ X,
(2.4)

where ω > 0 is a non-negative weighting vector.

Definition 2.63. Let Y ⊆ Rq and ω > 0. We denote by

S(ω, Y ) := {y? ∈ Y : ω>y? = min
y∈Y

ω>y}

the set of optimal points of Y with respect to ω, and define:

S(Y ) :=
⋃

ω>0

S(ω, Y ) =
⋃

{ω>0:‖ω‖1=1}
S(ω, Y )

and

S0(Y ) :=
⋃

ω>0

S(ω, Y ) =
⋃

{ω>0: ‖ω‖1=1}
S(ω, Y ).

Note that, the assumption ‖ω‖1 = 1 is not restrictive, since it normalizes the weight, but
does not affect the set of optimal outcome vectors. Using the previous definition, we get
the following important results:

Theorem 2.64. For any set Y ⊆ Rq we have S0(Y ) ⊆ YwN .

Proof. See Ehrgott (2005).

Theorem 2.65. Let Y ⊆ Rq. Then S(Y ) ⊆ YN .

Proof. A proof is given in Ehrgott (2005).

Hence, the optimal points of a weighted-sum scalarization with strictly positive weights
are non-dominated for (2.3), while they are weakly non-dominated if they are generated
by non-negative weights ω > 0. Under additional convexity assumptions, also the reverse
inclusion can be shown:

Definition 2.66. A set Y ⊆ Rq is called Rq≥-convex if Y + Rq≥ is convex.

Theorem 2.67. If Y is Rq≥-convex, then YwN = S0(Y ).

Proof. See Ehrgott (2005).

Theorem 2.68. If Y is an Rq≥-convex set, then YN ⊆ S0(Y ).

Proof. For a proof we refer to Ehrgott (2005).
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Hence, if Y is Rq≥-convex, then the set of non-dominated points can be generated by
weighted-sum scalarizations . Here, an appropriate selection of weighting vectors is needed.
A problem that occurs within this context is that an even distribution of weights does not
necessarily lead to an even distribution of non-dominated outcome vectors, see for example
Das and Dennis (1997). In general, if Y is not Rq≥-convex, weighted-sum scalarizations
with non-negative weights ω > 0 can generate only supported non-dominated points, that
is, non-dominated points on the convex hull of Y +Rq≥. We now introduce a scalarization
technique that can generate the entire non-dominated set even if Y is not Rq≥-convex.

For the ε-constraint scalarization, one of the optimization criteria is kept as an objective
function of the new single-objective problem and the remaining criteria are added to the
feasible set as additional constraints:

Definition 2.69. Let j ∈ {1, . . . , q} and ε ∈ Rq. The ε-constraint scalarization w.r.t. j
and ε of the MOP (2.3) is given by

min fj(x)

s. t. fi(x) ≤ εi,
x ∈ X.

(2.5)

For optimal solutions of ε-constraint scalarizations, we can only guarantee that they are
weakly efficient:

Proposition 2.70. Let x? be an optimal solution of (2.5) for some j ∈ {1, . . . , q} and
ε ∈ Rq. Then x? is weakly efficient.

Proof. See Ehrgott (2005).

Under appropriate assumptions, the optimal solutions of ε-constraint scalarizations can
be shown to be efficient:

Theorem 2.71. The feasible solution x? ∈ X is efficient if and only if there exists ε ∈ Rq
such that x? is an optimal solution of (2.5) for all j ∈ {1, . . . , q}.
Proof. See Ehrgott (2005).

However, the difficulty here is to find an appropriate choice of ε, as the proof in Ehrgott
(2005) relies on the εj values that equal to the actual objective function values of the
efficient solution one would like to find, so that the construction from the proof of this
theorem can be used more as a check of efficiency.

The following result provides us with a relation between weighted-sum and ε-constraint
scalarizations.

Theorem 2.72 (Chankong and Haimes, 1983).

1. Let j ∈ {1, . . . , q} and suppose that x? is an optimal solution of (2.4). If ωj > 0
then there exists an ε? ∈ Rq such that x? is an optimal solution of (2.5) too.

2. Suppose that X is a convex set and fi : Rn → R are convex functions for all i ∈
{1, . . . , q}. If x? is an optimal solution of (2.5) for some j ∈ {1, . . . , q}, there exists
ω? > 0, such that x? is optimal for min{(ω?)>f(x) : x ∈ X}.

Proof. See Ehrgott (2005).
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3 The Dial-a-Ride Problem

The dial-a-ride problem (DARP) is an optimization problem where a finite set of trans-
portation requests either have to be assigned to vehicle routes, or rejected. The trans-
portation requests are submitted by users and are defined by origin, destination, load
(i.e., number of passengers), time windows and ride time (i.e., the total time on board
of a vehicle). The rides may be shared, meaning that multiple users may be in the same
vehicle at the same time.

This chapter introduces the DARP and is structured as follows: First, we review the
existing literature on the DARP in Section 3.1. In doing so, we also describe different
problem variants and solution approaches. Then, since the DARP is motivated by real-life
applications, a variety of these are described in Section 3.2. A formal problem descrip-
tion of the DARP is given in Section 3.3. Moreover, we present two standard MILP
formulations from the literature in Section 3.4. We cover common objective functions and
approaches towards the multi-objective aspect of this problem in Section 3.5. Finally,
related optimization problems are reviewed in Section 3.6. Large parts of this section are
taken from the papers Asatryan et al. (2023) and Gaul et al. (2023, 2021, 2022).

3.1 Related Work on DARP Models and Algorithms

In the first part of this section, we consider the static DARP, where all user requests are
known in advance, i.e., before the vehicles routes and schedule is computed. This is in
contrast to the dynamic DARP where requests are received during the day and vehicle
routes are updated whenever a new request arrives. The dynamic DARP will be the
topic of the second part of this section. While for the static DARP the section is divided
into exact, heuristic and hybrid solution methods, the dynamic DARP is only solved by
heuristic approaches. Within the categories of exact, heuristic and hybrid solution meth-
ods, each solution method is described briefly and the relevant literature is summarized.
Furthermore, for the static DARP, multi-objective solution approaches, and, for the dy-
namic DARP, simulation studies are covered specifically. For a broad review of the DARP
the reader is referred to Cordeau and Laporte (2007) which covers research on the DARP
up to 2007, and to Molenbruch et al. (2017a) or Ho et al. (2018) for more recent in-depth
surveys.

Before we proceed with the literature review, we need some further definitions: Besides
the distinction between static and dynamic DARP we distinguish between the following
main variants: The heterogeneous DARP refers to both heterogeneous user requests (e.g.,
w.r.t. load or special needs like the usage of a wheelchair) and/or vehicles (e.g., w.r.t
vehicle capacity or equipment). In the homogeneous DARP all transportation requests and
vehicles have the same characteristics. While in the deterministic DARP, all information,
when received, is known with certainty, in the stochastic DARP, information may be
uncertain at the time decisions are made, e.g., the show-up of users at their designated

35



Chapter 3 The Dial-a-Ride Problem

pickup location, or travel times between locations are taken as uncertain into account. In
the DARP with multiple depots, there are, as the name suggests, multiple vehicle depots
instead of a single depot from which the vehicles start and end their tour. Often, the
considered DARP is a combination of the above variants. Besides that, various additional
features related to certain practical applications may be studied. The following review, in
its respective subsections, is sorted by solution methods rather than DARP variants, and
for each solution method we summarize different DARP variants solved with the respective
method.

This review also contains some references dealing with the closely related pickup and
delivery problem with time windows (PDPTW), see also Section 3.6, which is a special
case of the DARP where ride time is neither bounded by constraints nor reflected in the
objective function.

3.1.1 The Static DARP

We distinguish exact and heuristic solution approaches for the static DARP. Furthermore,
we provide a separate short overview on multi-objective solution methods.

Exact Solution Methods Exact solution methods for the DARP are frequently based on
B&C frameworks. In Cordeau (2006) a B&C algorithm is first applied to the DARP. In
addition to valid inequalities derived from the related pickup and delivery problem, the
vehicle routing problem, and the traveling salesman problem (compare Section 3.6), new
valid inequalities are added as cuts to an MILP formulation of the DARP. The MILP
model proposed in Cordeau (2006) is based on binary three-index variables, indicating
wether a certain vehicle k drives from location i to location j. It has become a standard
formulation of the DARP that is also used for problem extensions (see Ho et al., 2018). In
Ropke et al. (2007) the model is reformulated (for the homogeneous DARP) by omitting
the index for the vehicles. Now, a binary variable indicates whether any vehicle drives
directly from location i to location j. We refer to model formulations where binary vari-
ables indicate whether two locations are visited directly after each other as location-based
formulations. Moreover, further valid inequalities are introduced in Ropke et al. (2007):
The so-called fork constraints and reachability constraints adapted from Lysgaard (2006),
which both turn out to be very effective in their B&C algorithm. We discuss the three-
index formulation according to Cordeau (2006) and the two-index formulation proposed
in Ropke et al. (2007) in more detail in Section 3.4.

There exist several other exact solution approaches that are based on branch-and-cut
frameworks. In a majority of these approaches, B&C is applied to a location-based formu-
lation of the DARP. For example, in Cortés et al. (2010) a pickup and delivery problem
that allows users to swap vehicles at specific locations during a trip is solved by combining
B&C and Benders decomposition. The latter is based on the idea that if the discrete
variables of an MILP are fixed the remainder is just an LP subproblem. It remains to
determine the optimal values of the discrete variables. Benders decomposition involves the
decomposition of the problem into a first-stage master problem with the original discrete
variables and only one continuous variable and a second-stage subproblem which is an
LP, see, e.g., Schrijver (1998). If the solution of the subproblem indicates that the solu-
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tion of the first-stage problem is infeasible, Benders cuts are generated and added to the
master problem. Benders decomposition is also applied in two papers (Riedler and Raidl,
2018; Rist and Forbes, 2022), where instead of the minimization of costs, as common
in single-objective DARPs, the maximization of accepted requests is considered as opti-
mization goal. In Liu et al. (2015) a B&C algorithm is devised and two different models
for a DARP with multiple trips, heterogeneous vehicles and configurable vehicle capacity
are formulated. The authors introduce eight families of valid inequalities to strengthen
the models. In Bongiovanni et al. (2019), a problem variant of the DARP with electric
vehicles, E-DARP, is examined. The problem includes special features such as battery
management and detours to charging stations. It is solved using a B&C-algorithm with
valid inequalities tailored to the new features. Due to the increased environmental sustain-
ability, the introduction of features of electric vehicles is a very relevant research direction,
and is also considered in Masmoudi et al. (2018) and Su et al. (2023). A B&C algorithm,
as well as new valid inequalities aiming at the detection of infeasible vehicle routes based
on time windows, precedence constraints and the capacity of the vehicles are proposed in
Morapitiye and Kis (2022). In Schulz and Pfeiffer (2024) a branch-and-cut algorithm im-
plementing a fixed-path procedure for the PDPTW (see Section 3.6) is developed. These
fixed paths are extended every time another arc variable is fixed in the branch-and-cut
tree. They can be used to improve the lower bounds of the linear programming relaxation
based on a location-based model.

A different exact solution approach is branch-and-price, see, e.g., Wolsey (1998), where
the DARP is split up into two problems: The master problem where vehicle routes are
selected (typically modeled as a set partitioning problem) and the pricing problem where
routes are generated (typically modeled as a constrained shortest path problem). The
master problem typically contains a larger number of variables as compared to the original
MILP modeling the DARP, so that its solution is first restricted to a subset of variables,
i.e., only a subset of columns of the constraint matrix is used. To validate the solution
found in the so-called restricted master problem, the pricing subproblem is solved. If
its optimal value is negative, a corresponding column is added to the restricted master
problem and it is solved again, else the solution of the restricted master problem is checked
for integrality and a branch is created if applicable.

In the following, we discuss branch-cut-and-price (BC&P) algorithms, which are combi-
nations of B&C and B&P algorithms. The majority of the following papers use location-
based formulations. In Ropke and Cordeau (2009) a BC&P approach is used for the
PDPTW where two different formulations of a constrained shortest path problem are
compared for the pricing problem. Additionally, the authors introduce valid inequalities
for the set partitioning problem. Also in Gschwind and Irnich (2015) a BC&P algorithm is
applied. However, the considered pricing problem explicitly includes ride time constraints,
making it more difficult to solve. For this reason, the authors add new dominance criteria
to a labeling algorithm used to solve the pricing problem, making it more tractable. A
heterogeneous vehicle fleet is considered in Qu and Bard (2015), where a BC&P algo-
rithm for a PDPTW is presented. The authors introduce additional dominance criteria
and valid inequalities to increase the performance of their algorithm. In Luo et al. (2019)
a branch-and-cut-and-price approach is used in the slightly different context of patient
transportation. Unlike standard DARP formulations, the considered problem includes
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heterogeneous vehicles, manpower constraints, and an objective involving the profit per
customer request. Motivated by new challenges brought up by the Covid-19 pandemic,
an extension of the DARP with minimum disease transmission risk is considered in Guo
et al. (2022): The authors introduce a maximum cumulative risk exposure constraint and
minimize a weighted-sum objective of travel cost and disease-transmission risk exposure.
The problem is solved using a BC&P-algorithm, where the pricing problem is a resource
constrained elementary shortest path problem with minimized maximum risk.

Comparing both approaches, branch-and-cut and branch-and-price, w.r.t. to the number
of variables and constraints, the location-based formulation used in the B&C approach
requires only a quadratic number of binary variables in the number of locations while in
the worst case all feasible tours need to be constructed for the set partitioning formulation
in the B&P approach. However, the location-based formulation requires a potentially
exponential number of constraints to ensure that corresponding pickup and delivery nodes
are visited in the same tour. This is not the case in the pricing problem, as it can
be formulated as a resource constrained shortest path problem. In conclusion, different
formulations trade-off between the number of binary variables and the number of required
constraints. In recent years, new approaches correspond to different compromises between
the location-based formulation and the set partitioning formulation. In Rist and Forbes
(2021) route fragments which are segments of a vehicle tour such that the vehicle is
empty at the beginning and at the end of a fragment are introduced. Thus, vehicle
tours can be compounded by fragments. The authors use the fact that time windows
typically strongly reduce the number of possible fragments. In their approach, binary
decision variables indicate whether a fragment is used in the solution or not and whether
fragments are scheduled in direct succession within a tour. Rist and Forbes use a branch-
and-cut framework to solve their model. In Gaul et al. (2022) an event-based formulation
is introduced, where an event represents the current occupancy of the vehicle, together
with the location of the last picked up or dropped off user. In this formulation, binary
variables indicate whether two events occur in direct succession in a vehicle’s tour. The
authors rely on the fact that the vehicle capacity is typically rather small in practice, as the
number of events strongly depends on the vehicle capacity. This formulation is introduced
and discussed in Chapter 4 of this thesis. Both aforementioned formulations from Rist
and Forbes (2021) and Gaul et al. (2022) have the advantage that the vehicle capacity
constraints are enforced by the choice of fragments and events, respectively. Moreover,
precedence constraints are either ensured by the choice of fragments or can be implemented
implicitly by the selection of arcs connecting events. This considerably reduces the number
of constraints. In Figure 3.1 a classification of the discussed formulations for the DARP
with regard to the amount of information encoded in a binary variable is shown. Note
that, a survey on formulations for the related capacitated vehicle routing problem (see
Section 3.6) and a systematic study of how these formulations relate to each other is given
in Letchford and Salazar-González (2005).

The DARP is an NP-hard problem, as it is a generalization of the vehicle routing
problem, see Section 3.6. Since the computational time to solve an instance of the DARP
strongly depends on the instance size and parameter values, heuristic methods are a useful
complementary approach to exact algorithms.
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Figure 3.1: Classification of formulations according to the amount of information encoded
in a binary variable with value 1

Heuristic Solution Methods Early work is carried out in Jaw et al. (1986), who develop
one of the first heuristics for the DARP. Depending on the users’ earliest possible pickup
times, the heuristic determines the cheapest insertion position in an existing route in terms
of user satisfaction and operator costs. In Desrosiers et al. (1991), Dumas et al. (1989) and
Ioachim et al. (1995) groups of users to be served within the same area and time are first
identified. In a second step, the clusters are combined to obtain feasible vehicle routes.
The authors present different techniques to build these clusters. This frequently-applied
decomposition approach, however, leads in general to suboptimal solutions.

In Cordeau and Laporte (2003) tabu search is first applied to the DARP. Tabu search
is introduced by Glover, see Glover and McMillan (1986), and is a meta-heuristic solution
method, where the algorithm moves to the best solution in a neighborhood of the incum-
bent in every iteration. To avoid cycling, certain solutions are declared tabu for a given
number of iterations. Furthermore, a diversification mechanism allows the algorithm to
move to solutions that are worse than the best known solution to avoid being trapped in
local optima. A simple neighborhood generation technique is used in Cordeau and Laporte
(2003) by shifting requests from one route to another. The reported computational results
on real-life data as well as on randomly generated instances validate the efficiency of the
heuristic. For more recent work on the static DARP using variants of tabu search based
on Cordeau and Laporte (2003), see, for example, Detti et al. (2017), Guerriero et al.
(2013), Kirchler and Wolfler Calvo (2013), and Paquette et al. (2013).

Variable neighborhood search (VNS) is a heuristic, which uses different types of local
destroy-and-repair operators to create neighborhoods, and is introduced in Mladenović and
Hansen (1997). Local search operators may include, for example, the shift of a request
from one route to another, the swap of two requests between routes, or the reinsertion of
a request in a route. Hence, local search operators make relatively small changes to the
solution. First, a random solution is created in the current neighborhood of the incumbent.
After applying local search to this solution, it is compared to the incumbent, and replaces
it, if it improves the objective function or other acceptance criteria are met. In this case,
the search restarts in the first neighborhood. If the solution does not improve the objective
function or fulfills other acceptance criteria, the search moves on to the next neighborhood.
Variable neighborhood search is first applied to the DARP in Parragh et al. (2009) which
lays the foundation for the following publications: In Parragh et al. (2010b) VNS is used
to solve a static single-depot DARP with homogeneous users and vehicles, in Detti et al.
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(2017), Parragh (2011), and Parragh et al. (2010a) a VNS for a DARP with heterogeneous
vehicles and users arising from the context of healthcare transportation is proposed, in
Muelas et al. (2013, 2015) a large-scale DARP in a big city is considered, in Parragh et al.
(2015) a DARP where transportation requests involving several persons may be split is
solved, and in Souza et al. (2020) VNS is combined with a set-covering strategy to solve
a DARP with heterogeneous vehicles.

In contrast to small changes made by the destroy-and-repair operators in the previously
described meta-heuristics, in a large neighborhood search (LNS) the destroy-and-repair op-
erators modify a substantial part of the solution. Large neighborhood search is proposed in
Shaw (1998) for vehicle routing problems. For example, a number of k requests is removed
from one route and reinserted into different other routes afterwards. In comparison to local
search operators, which intensify the search in the neighborhood of a given solution, large
neighborhood operators diversify the search. Adaptive large neighborhood search (ALNS)
is introduced in Ropke and Pisinger (2006) and applied to the PDPTW, which is extended
to DARP applications (e.g., Gschwind and Drexl, 2019; Masmoudi et al., 2019; Pfeiffer
and Schulz, 2021). In an ALNS algorithm, the removal and insertion heuristics used in
the destroy-and-repair operator are chosen based on their success in finding new best so-
lutions in previous iterations. Thereby, the search algorithm adapts its performance to
different instance types and achieves good results for diverse sets of instances. In adopting
the ALNS algorithm proposed in Ropke and Pisinger (2006), a meta-heuristic solution
method for the DARP is developed in Gschwind and Drexl (2019): It uses a constant-time
feasibility check in the repair step of the ALNS, a local-search-based intraroute improve-
ment of routes of promising solutions using the Balas–Simonetti neighborhood (see Balas
and Simonetti, 2001) and the solution of a set covering model over a subset of all routes
generated during the search. According to Ho et al. (2018), it is at the moment the most
efficient heuristic method to solve the standard DARP. An (adaptive) LNS is applied to
the pickup and delivery problem or the DARP with transfers in Masson et al. (2013,
2014) and Molenbruch et al. (2021). The DARP with transfers models the highly rele-
vant problem of integrating on-demand services and other modes of transportation such as
public transport, as on-demand systems are often considered as highly-efficient last-mile
transportation services. An adaptive variable neighborhood search algorithm is proposed
in Johnsen and Meisel (2022) to solve a DARP with interrelated trips. The latter refer
to scenarios where several transport requests need to be synchronized, e.g., if two users
would like to arrive at a certain location at the same time. The authors combine a VNS
with the adaptive insertion and removal heuristic selection strategy introduced in Ropke
and Pisinger (2006).

Another frequently applied class of meta-heuristics are genetic algorithms, which mimic
the evolution of a finite population, representing a set of solutions, see, e.g., Wolsey (1998).
The population is modified by operators inspired by biological evolution, such as selection,
crossover or mutation. In Jorgensen et al. (2007) a genetic algorithm is used to assign
passengers to vehicles. In a second step, routes are constructed sequentially by means of
a nearest neighbor procedure. A genetic algorithm is also used in Cubillos et al. (2009)
showing slightly better results than Jorgensen et al. (2007). A multi-objective genetic
algorithm is devised in Atahran et al. (2014). In Belhaiza (2017) and Belhaiza (2019)
genetic crossover operators are combined with variable neighborhood search and adaptive
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large neighborhood search, respectively. A hybrid genetic algorithm for the heterogeneous
DARP is developed in Masmoudi et al. (2017) by combining a genetic algorithm with local
search operators. According to Ho et al. (2018) the best results on benchmark instances
of the heterogeneous DARP are reported in Masmoudi et al. (2017).

In simulated annealing, a randomly chosen solution from the neighborhood of the in-
cumbent is accepted immediately if it improves the objective value, and accepted with
probability 0 < p < 1 if it does not, see, e.g., Wolsey (1998). The latter helps to avoid
getting stuck in local optima. The probability of acceptance is physically motivated and
depends on an initial “temperature”, a “cooling ratio”, and the difference in objective
values between the chosen solution and the incumbent. As the probability of acceptance
depends on the difference in objective function values, slightly worse solutions have a
higher probability of acceptance, while a significant deterioration will be accepted only
rarely. The temperature decreases over time, so that with an increasing number of it-
erations, the probability of accepting worse solutions decreases. Simulated annealing is
applied to the DARP in Reinhardt et al. (2013), Mauri et al. (2009) and Zidi et al. (2012).
Moreover, in Braekers et al. (2014) a variant of simulated annealing, deterministic an-
nealing, is applied, where worse solutions are only accepted as long as the difference in
objective values does not fall below a given threshold. Additionally, more complicated
destroy-and-repair operators than in the previous publications on simulated annealing are
employed, and a restart strategy is used.

A recently proposed meta-heuristic is iterative local search (see Lourenço et al., 2018),
which is a state-of-the-art algorithm for many computationally challenging problems. In
iterative local search, a sequence of solutions is generated by an embedded heuristic, often
local search, which in general leads to better solutions than random sampling. In Malheiros
et al. (2021) iterative local search is applied to a DARP with single and multiple depots
and heterogeneous users and vehicles. After each iteration of local search, the generated
solutions are the input for a set partitioning procedure, where the best set of routes from
a pool is chosen by solving a set partitioning formulation.

Hybrid Solution Methods There is a growing trend towards hybridizing exact and meta-
heuristic methods to solve the DARP and other vehicle routing problems (see Dumez et
al., 2021). For example, in Hu and Chang (2014) a branch-and-price (B&P) algorithm is
applied to a DARP with time-dependent travel times, in which the pricing subproblem
is solved by large neighborhood search. As a side result, the authors observe that the
length of time windows can have a significant impact on the size of the fleet, the objective
function value, the CPU time, the average ride time or the average pickup time delay. In
Parragh et al. (2010a) and Parragh and Schmid (2013) a column-generation approach is
presented, where the pricing problem is solved by a VNS, and in Tellez et al. (2018) a
set-partitioning problem in an LNS for a dial-a-ride problem with heterogeneous requests
and vehicles, which may be reconfigured en-route, is solved.

Multi-Objective Approaches While most of the literature on the DARP focuses on the
single-objective DARP, many real-life applications are characterized by multiple conflicting
objectives (see Section 3.5), which motivates the examination of the DARP from a multi-
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objective optimization perspective. As stated in Ho et al. (2018), this line of research
can be divided into three main categories: weighted-sum based approaches, lexicographic
approaches, and the determination of (an approximation of) the set of all non-dominated
outcome vectors.

Weighted-sum objectives are used, e.g., in Bongiovanni et al. (2019), Jorgensen et al.
(2007), Kirchler and Wolfler Calvo (2013), Mauri et al. (2009), Melachrinoudis et al. (2007),
and Su et al. (2023). In addition to the customers’ total transportation time, which is a
common objective in single-objective DARPs, the weighted-sum objective introduced in
Jorgensen et al. (2007) is composed of the total regret (the difference in time compared
to a user’s earliest possible arrival time at his or her destination), the customers’ waiting
time, the drivers’ work time as well as several penalty functions for the violation of con-
straints. The weights on these criteria are chosen with respect to the relative importance
of the criteria from a user-perspective. While the methods to solve the DARP with a
weighted-sum objective range from a genetic algorithm (Jorgensen et al., 2007), to tabu
search (Kirchler and Wolfler Calvo, 2013; Melachrinoudis et al., 2007), simulated anneal-
ing (Mauri et al., 2009), deterministic annealing (Su et al., 2023) or B&C (Bongiovanni
et al., 2019), most of the authors either adapt the weights introduced in Jorgensen et al.
(2007) or choose them with respect to individual assessments of their relative importance.

In Luo et al. (2019) a lexicographic ordering of the objective functions w.r.t. their
relative importance is considered. In this context, the authors propose a two-phase BC&P-
algorithm. In the first phase a set of non-dominated trips is enumerated by a label-setting
algorithm. Based on the set of non-dominated trips, a formulation of the DARP called
“trip-based model” is introduced. In the second phase the model is solved using BC&P.

The non-dominated set is examined, e.g., in Atahran et al. (2014), Chevrier et al. (2012),
Hu et al. (2019), Molenbruch et al. (2017b), Paquette et al. (2013), Parragh et al. (2009),
Viana et al. (2019), and Zidi et al. (2012). A comparison of six multi-objective evolution-
ary algorithms to solve the multi-objective DARP is provided in Guerreiro et al. (2020).

While the static DARP is (practically) relevant on its own right and much research
focuses on the static DARP, see, e.g., Ho et al. (2018), we note that static DARP models
can also be extended to the dynamic scenario by using a rolling-horizon strategy, see, e.g.,
Gaul et al. (2021). This is discussed in more detail in Chapter 6.

3.1.2 The Dynamic DARP

In the first part of our literature review on the dynamic DARP we deal with solution
methods. After that, we particularly review simulation studies concerned with the dynamic
DARP.

Despite being a highly relevant topic of research, the dynamic DARP is less studied
than its static counterpart (see Ho et al., 2018). Here, we focus on the dynamic while
still deterministic DARP, i.e., we assume that all information, when received, is known
with certainty. A broad review on the dynamic DARP is given in Ho et al. (2018), while
a survey on the related dynamic pickup and delivery problem can be found in Berbeglia
et al. (2010).

Solution strategies to the dynamic DARP are often motivated by the requirement to
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immediately determine a feasible routing that includes the new requests. A frequently
applied solution strategy to dynamic DARPs combines two approaches (see, e.g., Attanasio
et al., 2004; Beaudry et al., 2008; Berbeglia et al., 2012; Carotenuto and Martis, 2017;
Coslovich et al., 2006; Häll and Peterson, 2013; Lois and Ziliaskopoulos, 2017; Marković
et al., 2015; Santos and Xavier, 2015; Vallee et al., 2020): On the one hand, a new request
is inserted using fast and simple insertion heuristics. In the idle time between a pair of
new requests, on the other hand, a more complex heuristic or meta-heuristic may be used
to continually re-optimize the current solution. We give a brief overview on the variants
of insertion and re-optimization heuristics used in the literature.

The first and most simple insertion heuristic tries to insert the new request in the
current vehicle routes without relocating already assigned users. If a feasible insertion
position is found, then the new request is inserted in the best insertion position in terms
of incremental cost. Variants of this strategy are employed, for example, in Beaudry et al.
(2008), Carotenuto and Martis (2017), Hanne et al. (2009), Häll and Peterson (2013), Lois
and Ziliaskopoulos (2017), Madsen et al. (1995), Marković et al. (2015), Psaraftis (1980)
and Santos and Xavier (2015). Especially in applications with a very large number of new
requests per time unit (e.g., a ridepooling service in the city of New York), as considered
in Pouls (2023), a fast insertion heuristic as described above is crucial. In addition to
an algorithm for a large-scale dynamic DARP, a repositioning strategy for idle vehicles
as well as a simulation-based framework to evaluate real-world scenarios are proposed in
Pouls (2023).

The second variant of an insertion heuristic allows the relocation of already assigned
users, thus leading two a higher number of possible insertion positions for the new request.
For instance, in Attanasio et al. (2004) parallel heuristics are used to solve the dynamic
DARP combining random insertion and tabu search. In Berbeglia et al. (2012) a tabu
search heuristic is run in parallel with a constraint programming algorithm to determine
whether a new request can be inserted feasibly in a given solution or not. In Luo and
Schonfeld (2011) requests which are similar w.r.t. time windows and geographic locations
are relocated whenever a simple insertion heuristic declares a new request to be infeasible.
In Vallee et al. (2020) three different heuristics are proposed aiming at resorting already
accepted requests if a new request’s insertion is declared infeasible by a service provider’s
online system. In Coslovich et al. (2006) new unexpected requests may show up at a vehicle
stop. In the idle time between two vehicle stops, a neighborhood of the current vehicle
route is created. The insertion of the unexpected request is evaluated for all routes in the
neighborhood of the current route. A maximum cluster algorithm, developed in Häme and
Hakula (2015), that finds, for each set of users, a maximal subset of users that can be served
by one vehicle can be used to quickly decide if new requests should be accepted or rejected.
In Souza et al. (2021) a DARP with no rejects within the context of patient transportation
is considered. Requests may be reallocated if emergency requests appear. Furthermore,
the authors investigate the effects of dynamic requests on the solution and conclude that
dynamism generally increases the number of vehicles needed and the violations of time
windows (if allowed).

The second phase of a solution approach to the dynamic DARP often consists of a re-
optimization phase. To improve the current solution in the idle time between a pair of new
requests, different variants of local search are applied. For example, a reinsertion heuristic
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is used to remove a request from its current route and evaluate the reinsertion of the request
into all other routes, and/or a swap heuristic exchanges two requests with different routes,
see, e.g., Lois and Ziliaskopoulos (2017), Luo and Schonfeld (2011), Marković et al. (2015),
and Santos and Xavier (2015). In Carotenuto and Martis (2017) the quality of the solution
is sought to be improved by reinserting the entire set of accepted and not yet picked up
requests. In Häll and Peterson (2013) several destroy-and-repair heuristics are combined
and compared; in particular ruin methods based on the removal of sequences of requests
are proven to improve the quality of solutions. In Attanasio et al. (2004), Beaudry et
al. (2008) and Berbeglia et al. (2012) (different variants) of tabu search are used in the
improvement phase.

Case Studies and Simulations A review of simulation studies dealing with individual and
agent-based demand-responsive transport systems can be found in Ronald et al. (2015).
As the authors state, a majority of simulations are concerned with the optimization of
trips, usually from an operator’s perspective. In agent-based modeling, the interactions
between operators and customers are studied by replicating the decision making process
of individual travelers concerning the choice of destination, mode and route.

The first part of this paragraph deals with the former: studies which simulate changes in
features of ridepooling services from an operator’s perspective, i.e., changes in parameter
settings or modes of operation such as the length of the time windows. In the second part
of this paragraph, studies concerned with the impact of ridepooling on other modes of
transport such as cars or public transport, and their interdependencies, are discussed. A
majority of these studies is conducted using agent-based modeling.

Two case studies are conducted in Colorni and Righini (2001): On the one hand, the
authors investigate a particular problem occurring in the city of Crema in Nothern Italy:
At days with a farmers’ market, every customer accepted by a dial-a-ride service has to be
served twice, from home to the market and back, and all trips share a common origin or
destination: the market. On the other hand, they study the feasibility of a mixed static-
dynamic dial-a-ride system. The authors give insights on the dependency of the level of
service on the number of customers (and the number of overlapping time windows), the
planning horizon and the number of vehicles and their capacity. In Quadrifoglio et al.
(2008) the effect of a zoning vs. no-zoning strategy and the length of time windows in dial-
a-ride services are analyzed using data from a Los Angeles ridepooling service. According
to the study, larger time windows and a centralized dispatching system reduce the number
of vehicles and miles driven but also reduce the service quality for the users of ridepooling
services. The effects of a partially dynamic environment are investigated in Wong et al.
(2012): The authors introduce the degree of dynamism and investigate the influence of the
ratio of dynamic requests on the system performance. Higher transportation costs and
fewer accepted requests are the result of partially dynamic requests as compared to fully
static or dynamic requests. In Häll et al. (2012) a graphical user interface is established
to simulate dynamic dial-a-ride services with multiple fleets, different vehicle capacities,
schedules and depots. As an illustration, the authors include costs for waiting time and
users’ regret in the service, and calculate the price of efficiency improvements in exchange
for less user convenience. Another simulation study is conducted in Häll et al. (2015):
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The authors analyze which changes in parameter settings in dynamic DARPs have a large
impact on performance criteria such as customer satisfaction and operational costs and
establish guidelines to service providers as a result of their study. In Lois and Ziliaskopou-
los (2017) the trade-off between long-term highly optimized versus myopic optimization
procedures is investigated and it is suggested that both optimization techniques should be
used dependent on the load scenario. In Hungerländer et al. (2021) the pooling rates of an
Austrian mobility provider in a rural area are aimed to be improved. In the study a large
neighborhood search is implemented to solve the respective dynamic DARP and identify
the most promising parameter settings to improve pooling and user convenience. We now
summarize the literature on simulation studies which analyze the interdependencies of
ridepooling with other modes of transport such as cars or public transport.

The integration of fixed public transport and dial-a-ride services is examined in Posada
and Häll (2020). The purpose is to reduce costs of the often highly subsidized on-demand
service, by allowing certain parts of the user’s trips to be replaced by public transport.
The authors compare the integrated with the non-integrated on-demand service and con-
clude that the driven distance can be reduced by 16% using the integrated service. The
proposed meta-heuristic framework can help policy makers to gain insights into the effects
of an integrated service. The substitution of all trips made by private cars and buses
by autonomous shared vehicles in an urban setting is investigated in ITF (2015). The
findings are that 9 out of 10 cars could become obsolete, resulting in a huge amount of
freed space. As a negative effect, the total travel volume increases. Moreover, mixing a
fleet of shared vehicles with private cars will not result in the same benefits as a pure
system of autonomous shared vehicles and autonomous taxis. The simulation uses an
agent-based model and synthetic trips are based on real trips generalized to a grid. The
two following publications use MATSim (Horni et al. (2016)) as the simulation software.
Its basic concept is the simulation of agents that make one or more trips a day using
various transport modes (e.g., car, taxi, ridepooling or public transport). In Bischoff et al.
(2017) the integration of shared rides into a simulation framework for non-shared taxi
services is described. The simulation suggests that 15–20% of vehicle kilometers can be
saved while travel time increases at most by 3% on average. The authors further remark
that pooling works best in areas with a high taxi demand. The overall demand for pooled
rides could increase even more with the introduction of autonomous vehicles since then
lower fares could be offered. The complete replacement of public transport services in
a mid-sized city of 100,000 inhabitants by ridepooling services is simulated in Bischoff
et al. (2019). The authors distinguish between a stop-based transportation, where the
remaining distance to the customer’s location is walked on foot, and door-to-door trans-
portation. Results suggest that the current public transport system could be replaced by
300 to 400 vehicles. In Wilkes et al. (2021) the travel demand model mobiTopp is used as
an agent-based simulation system. The authors describe the integration of ridesourcing,
i.e., services connecting drivers of shared and non-shared taxi services with users, into the
travel demand model. They analyze the impact on service providers in terms of occupation
rate or number of vehicles and the interdependencies with other modes of transport. The
integration of autonomous taxi services into a microsimulation is described in Dandl et al.
(2017). Travel times are modeled taking into account delays due to left turns or traffic
lights. Moreover, taxi movements influence the flow in the street network and have the
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potential to change travel times. The authors analyze the impact of these more realistic
traffic conditions. A second focus is the impact of empty trips (i.e., movement of taxis
without passengers on board). The simulation is conducted in the greater area of Mu-
nich, Germany. In Richter et al. (2019) characteristics of transportation with autonomous
vehicles are integrated into a macroscopic four-stage model (trip generation, trip distri-
bution, modal split, and route assignment). A framework for modeling the impacts of
autonomous vehicles on the network performance and capacity and on travel demand is
presented. Moreover, the framework is used to evaluate the impact of autonomous vehicles
on empty trips and ridepooling services.

3.2 Applications

Dial-a-ride systems originated as door-to-door transportation services, primarily to com-
plement or to replace public transport in areas or times with low customer requests, e.g.,
in rural areas or during night time, where public transport is rarely available with buses
running only a couple of times a day. User requests were usually phoned in before the
start of service, which corresponds to the static variant of the DARP.

In health care transport, dial-a-ride services are an appropriate alternative to expensive
taxi services, as elderly, injured or disabled persons are often not able to drive on their own
or use public transport. This application is modeled by a heterogeneous DARP, because
usually specialized equipment is needed in the vehicles, e.g., extra space for a wheelchair,
and users have individual needs.

A convenient alternative to public transport, but more affordable than a taxi, is the
concept of ridepooling: a taxi-like service, typically operated by mini-buses, where users
submit pickup and delivery locations and a desired pickup or delivery time via their
smartphones. In contrast to taxi-services, where pooling is not allowed, customers with
similar origin or destination are assigned to the same ride whenever economically and/or
ecologically useful. Thus, ridepooling services are comparable to taxi-services but at a
lower cost. They can also be used to substitute private car rides with the potential to
reduce congestion and fine dust pollution in big cities. Since rides may be shared, users
may have to accept longer ride times. In exchange, they can be offered lower fares. In
the past couple of years, several so-called ‘on-demand ridepooling services’ have emerged.
Prominent examples are Uber1, DiDi2 or moia3.

This thesis is motivated by the ridepooling service Hol mich! App4 which was launched
in 2019 in the mid-sized city of Wuppertal in Germany. On-demand ridepooling services
complement public transport and are usually established in urban areas. However, since
they can be easily adapted to varying passenger demands, they provide an acceptable
service quality also in suburban areas. On-demand ridepooling services are an application
of the dynamic DARP.

While different variants of the deterministic DARP are interesting on their own right,

1https://www.uber.com/de/en/ride/uberpool/
2https://web.didiglobal.com/
3https://www.moia.io
4https://www.holmich-app.de
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note, that all real-life applications of the DARP are uncertain because of external circum-
stances like traffic or unpredictable user behavior.

3.3 Problem Description and Notation

In this subsection, we consider the DARP in its basic variant, i.e., the deterministic and
static DARP, where it is assumed that all requests have to be accepted and the objective
is to minimize the routing costs, see Ho et al. (2018). Additionally, we assume that the
vehicle fleet is homogeneous. Note, that this is a common setting for the static DARP,
see, e.g., Gschwind and Drexl (2019) and Ropke et al. (2007). It is defined as follows:

Let n be the number of users submitting a transport request. Each request i ∈ R :=
{1, . . . , n} specifies a pickup location i+ and a delivery location i−. The sets of pickup and
delivery locations are denoted by P := {1+, . . . , n+} and D := {1−, . . . , n−}, respectively.
At the beginning of service a homogeneous fleet of K vehicles with capacity Q each is
situated at the vehicle depot, which is denoted by 0. A number of requested seats qi ≥ 1
and a service duration of si ≥ 0, which is interpreted as the time for entering or leaving
the vehicle, are associated with each request i ∈ R. We set qi+ = qi− := qi, si+ = si− := si
and q0 := 0 as well as s0 := 0. The maximum ride time corresponding to request i ∈ R is
denoted by Li. For the travel time t̄ij and corresponding routing costs c̄ij between each
pair of locations i, j ∈ J := P ∪D ∪ {0} we assume that c̄ij and t̄ij are non-negative and
fulfill the triangle inequality. Let t̄i denote the travel time for a direct ride from pickup to
delivery location of request i, i.e., t̄i = t̄i+i− . W.l.o.g. we assume t̄i + si > 0. With each
location j ∈ J a time window [ej , `j ] is associated. The beginning of service is given by the
lower bound e0 of the time window at the depot, and there is a fixed duration of service
T , so that the end of service is given by `0 := e0 + T . We assume that ei+ ≥ t̄0i+ , i.e.,
each pickup location can be reached at the beginning of the time window when starting
at time zero in the depot.

A feasible solution to the DARP consists of at most K vehicle routes which start and
end at the depot. If a user is served by a vehicle the user’s pickup and delivery location
both have to be contained in this order in vehicle’s route. The vehicle capacity of Q may
not be exceeded at any time. The start of service at every location has to be within the
time windows. It is possible to reach a location earlier than the start of service and wait.
At each location j, a service duration of sj minutes is needed for users to enter or leave
the vehicle. In addition, the acceptable ride time of each user i is bounded from above by
Li. Vehicles have to return to the depot at least T minutes after the time of the overall
start of service e0. All users have to be served. The objective is to minimize the routing
costs.

In this thesis, we consider the above problem variant of the DARP in Chapters 4 and
5. In Chapter 4, we additionally consider the option that users may be rejected and
use a weighted-sum objective, where one optimization goal is to maximize the number
of accepted requests. This setting is continued in Chapters 6 and 7, that both consider
the dynamic DARP. For the purpose of this introductory chapter, we next present two
standard MILP formulations from the literature for the above problem variant.
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3.4 Location-based MILP Models

In this section, we present two standard MILP formulations for the DARP from the
literature: the three-index formulation proposed in Cordeau (2006) and the two-index
formulation according to Ropke et al. (2007). Both models are location-based formulations,
i.e., binary variables indicate whether two locations are visited directly after each other.

The models are based on a complete graph, where the node set corresponds to the set
of all locations J̄ := P ∪D∪{0+, 0−}. Note that, in this model the location of the vehicle
depot is represented by two distinct nodes 0+ and 0−, providing the option to include a
different start and end depot location in the model. However, in this thesis, 0+ and 0−

always represent the same vehicle depot and are only used to stick to the notation from
the original papers Cordeau (2006) and Ropke et al. (2007). We set s0+ := s0− := s0,
q0+ := q0− := q0, e0+ := e0− := e0, `0+ := `0− := `0 as well as c̄0+j := c̄0−j := c̄0j ,
c̄i0+ := c̄i0− := c̄i0, t̄0+j := t̄0−j := t̄0j and t̄i0+ := t̄i0− := t̄i0 for i, j ∈ P ∪D. Moreover, to
distinguish between pickup and delivery locations when computing the vehicle load, let

Ij :=

{
1 j ∈ P,
−1 else

for j ∈ J̄

be an indicator parameter for pickup nodes.

3.4.1 Three-Index Formulation

We present the MILP model introduced in Cordeau (2006) for the standard DARP de-
scribed in the prior Subsection 3.3. Thus, we assume that the vehicle fleet is homogeneous
and adapt the MILP model from Cordeau (2006) in this aspect, i.e., we set the vehicle
capacity for each vehicle k ∈ K̄ := {1, . . . ,K} to Q, the duration of service of each ve-
hicle to T , and assume that the routing costs for all vehicles are equal. Furthermore, in
this standard model the only objective is to minimize the routing costs. This model is a
standard compact three-index formulation of the DARP.

With each arc (i, j) and each vehicle k a binary variable x̄kij is associated, where x̄kij = 1
if vehicle k drives directly from location i to location j, i.e., if the arc (i, j) is used, and
x̄kij = 0 otherwise. Moreover, the variable Qkj represents the number of users in the vehicle

after leaving location j, L̄ki denotes the ride time of user i on vehicle k, and B̄k
j is the time

when service of vehicle k at location j begins.
Then the DARP can be formulated as the following non-linear mixed-integer program:

min
∑

k∈K̄

∑

i∈J̄

∑

j∈J̄
c̄ij x̄

k
ij (3.1a)

s. t.
∑

k∈K̄

∑

j∈J̄
x̄ki+j = 1 ∀i ∈ P, (3.1b)

∑

j∈J̄
x̄ki+j −

∑

j∈J̄
x̄ki−j = 0 ∀i ∈ P, k ∈ K̄, (3.1c)

∑

j∈J̄
x̄k0+j = 1 ∀k ∈ K̄, (3.1d)
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∑

j∈J̄
x̄kji −

∑

j∈J̄
x̄kij = 0 ∀i ∈ P ∪D, k ∈ K̄, (3.1e)

∑

i∈J̄
x̄ki0− = 1 ∀k ∈ K̄ (3.1f)

B̄k
j ≥ (B̄k

i + si + t̄ij)x̄
k
ij ∀i, j ∈ J̄, k ∈ K̄, (3.1g)

Qkj ≥ (Qki + Ijqj)x̄kij ∀i, j ∈ J̄, k ∈ K̄, (3.1h)

L̄ki = B̄k
i− − (B̄k

i+ + si) ∀i ∈ P, k ∈ K̄, (3.1i)

ej ≤ B̄k
j ≤ `j ∀j ∈ J̄, k ∈ K̄, (3.1j)

t̄i ≤ L̄ki ≤ Li, ∀i ∈ P, k ∈ K̄, (3.1k)

max (0, Ijqj) ≤ Qkj ≤ min (Q,Q+ Ijqj) ∀j ∈ J̄, k ∈ K̄, (3.1l)

B̄k
j ≥ 0 ∀j ∈ J̄, k ∈ K̄, (3.1m)

Qkj ≥ 0 ∀j ∈ J̄, k ∈ K̄, (3.1n)

L̄ki ≥ 0 ∀i ∈ P, k ∈ K̄, (3.1o)

x̄kij ∈ {0, 1}, ∀i, j ∈ J̄, k ∈ K̄. (3.1p)

The objective function (3.1a) minimizes the routing costs. It is ensured by constraints
(3.1b) and (3.1c), that each request is served once by exactly one vehicle and that the
pickup and delivery node are contained in the same vehicle tour. Constraints (3.1d) and
(3.1f) guarantee that each vehicle leaves the start depot and arrives at the end depot.
Constraints (3.1e) are flow conservation constraints. The consistency of time and load
variables is modeled by constraints (3.1g) and (3.1h). Note that indicator parameters are
needed here to correctly calculate the change in vehicle load after entering or leaving a
vehicle. The ride time of users is measured by constraints (3.1i) and it is ensured that the
maximum ride time is not violated by constraints (3.1k). Moreover, the latter constraints
make sure, that every user’s pickup location is visited prior to its delivery location. The
compliance with time windows and vehicle capacity is modeled in constraints (3.1j) and
(3.1l).

As stated in Cordeau (2006), constraints (3.1g) and (3.1h) are non-linear, since they
invoke products of the variables x̄kij and B̄k

i , and x̄kij and Qki , respectively, but can be
linearized in terms of the following big-M constraints:

B̄k
j ≥ B̄k

i + si + t̄ij − M̄ij(1− x̄kij) ∀i, j ∈ J̄, k ∈ K̄, (3.2)

Qkj ≥ Qki + Ijqj −Wij(1− x̄kij) ∀i, j ∈ J̄, k ∈ K̄, (3.3)

where M̄ij ≥ max(0, `i + si + t̄ij − ej) and Wij ≥ min(Q,Q + Ijqj) are constants. Fur-
thermore, the authors reduce the number of variables and constraints in this model by
introducing aggregated variables B̄j , Qj and L̄i (at every location except the start and
end depot). In this way, constraints (3.2) can be replaced by

B̄j ≥ B̄k
0+ + s0 + t̄0+j − M̄0+j(1− x̄k0+j) ∀j ∈ P ∪D, k ∈ K̄, (3.4)

B̄j ≥ B̄i + si + t̄ij − M̄ij(1−
∑

k∈K̄
x̄kij) ∀i, j ∈ P ∪D, (3.5)
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B̄k
0− ≥ B̄i + si + t̄i0− − M̄i0−(1− x̄ki0−) ∀i ∈ P ∪D, k ∈ K̄, (3.6)

constraints (3.1i) can be replaced by

L̄i = B̄i− − (B̄i+ + si) ∀i ∈ P (3.7)

and constraints (3.3) can be replaced by

Qj ≥ Qk0+ + Ijqj −W0+j(1− x̄k0+j) ∀j ∈ P ∪D, k ∈ K̄, (3.8)

Qj ≥ Qi + Ijqj −Wij(1−
∑

k∈K̄
x̄kij) ∀i, j ∈ P ∪D, (3.9)

Qk0− ≥ Qi + q0 −Wi0−(1− x̄ki0−) ∀i ∈ P ∪D, k ∈ K̄. (3.10)

Note that, we can omit the remaining constraints ensuring consistencies of time and load
variables for traveling on arcs (0−, 0+), (j, 0+) and (0−, j) because these arcs are not part
of a feasible solution. We can omit these constraints for arc (0+, 0−) as well because
they would not impose any further restrictions on the variables B̄k

0+ , B̄k
0− , Qk0+ and Qk0− .

Ultimately, the authors state that as described in Desrochers and Laporte (1991), the
constraints (3.9) can be lifted as follows:

Qj ≥ Qi + Ijqj −Wij(1−
∑

k∈K̄
x̄kij) + (Wij − Iiqi − Ijqj)

∑

k∈K̄
x̄kji ∀i, j ∈ P ∪D. (3.11)

The model (3.1a)–(3.1p) with aggregated variables B̄j , L̄i and Qj instead of variables
B̄k
j , L̄ki and Qkj (at every location except the start and end depot) and the substitutions

of constraints (3.1g)-(3.1i) by constraints (3.4)-(3.8), (3.10) and (3.11) will be used as a
benchmark in Chapter 4.

3.4.2 Two-Index Formulation

In this section, we discuss the two-index formulation proposed in Ropke et al. (2007)
(additionally, we assume the number of vehicles to be restricted). The model is a standard
two-index formulation of the DARP described in Section 3.3.

A binary variable x̄ij is associated with each arc and attains a value of 1 if a vehicle drives
directly from location i to location j, i.e., the arc (i, j) is used, and 0 otherwise. Moreover,
Qj represents the number of customers in the vehicle after leaving location j and B̄j is the
time when service at location j begins. In the model, S is the set of all sets S with 0+ ∈ S,
0− /∈ S, and there is at least one request i for which the delivery node is in S but not the
pickup node. This means S = {S : 0+ ∈ S ∧ 0− /∈ S ∧ ∃i : (i+ /∈ S ∧ i− ∈ S)}. Moreover,
M̄ij with i, j ∈ J̄ is a sufficiently large constant and can be chosen as in constraints (3.2).
Then, the model is formulated as:

ZLB = min
∑

i,j∈J̄
c̄ij · x̄ij (3.12a)

s. t.
∑

i∈J̄
x̄ij = 1 ∀j ∈ P ∪D, (3.12b)
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∑

j∈J̄
x̄ij = 1 ∀i ∈ P ∪D, (3.12c)

∑

j∈P
x̄0+j ≤ K, (3.12d)

∑

i,j∈S
x̄ij ≤ |S| − 2 ∀S ∈ S, (3.12e)

B̄j ≥ B̄i + si + t̄ij − M̄ij (1− x̄ij) ∀i, j ∈ J̄, (3.12f)

Qj ≥ Qi + Ijqj −Q (1− x̄ij) ∀i, j ∈ J̄, (3.12g)

ej ≤ B̄j ≤ `j ∀j ∈ J̄, (3.12h)

max{0, Ijqj} ≤ Qj ≤ min{Q,Q+ Ijqj} ∀j ∈ J̄, (3.12i)

B̄i− − B̄i+ − si ≤ Li ∀i ∈ P, (3.12j)

B̄j ≥ 0 ∀j ∈ J̄, (3.12k)

Qj ≥ 0 ∀j ∈ J̄, (3.12l)

x̄ij ∈ {0, 1} ∀i, j ∈ J̄. (3.12m)

Objective function (3.12a) minimizes the total routing costs. Constraints (3.12b) and
(3.12c) ensure that each customer location is visited and left exactly once. Due to con-
straint (3.12d) the depot is left at mostK times, i.e., up toK vehicles are used. Constraints
(3.12e) ensure that the pickup and the delivery location of each customer are visited in
the same tour and in the correct order. Constraints (3.12f) and (3.12h) take care that
each location is visited within its time window. Constraints (3.12g) model the vehicle load
which is not allowed to exceed the vehicle’s capacity because of constraints (3.12i). No
customer is allowed to be longer in the vehicle than their maximum ride time Li, which is
ensured by constraints (3.12j). Finally, constraints (3.12m) are the binary constraints for
the sequence variables.

As can be seen the size of the set S grows exponentially in the number of customers n.
Unlike the three-index formulation described previously, the two-index formulations has
an exponential number of constraints, but contains fewer variables and provides tighter
bounds (see Ropke et al., 2007). In Chapter 5, this model will be used as a reference
model for location-based formulations. Hence, we call it the location-based (LB) model.

3.5 Multiple Objectives

In most of the research on the DARP only one objective is used, which is often the mini-
mization of total routing costs. An excellent overview is given in Ho et al. (2018). Other
popular objectives are, for example, the minimization of total route duration, number of
vehicles used, users’ waiting time, drivers’ working hours, or deviation from the desired
pickup and delivery times. Motivated by real-life applications, dial-a-ride problems are in
fact characterized by multiple (and in general conflicting) objectives. In this thesis, we
focus on

• economic efficiency, e.g., minimization of routing costs, and
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• user experience, e.g., minimization of unfulfilled user requests, waiting time, ride
time and transportation time (e.g., the time from booking the trip until the arrival
at the destination),

and combine these objectives into an overall weighted-sum objective. Note that, this
weighted-sum objective can be interpreted as a scalarization of a multi-objective model.
Consequently, by variation of the weights every supported efficient solution can be de-
termined as a solution of the weighted-sum scalarization, see Section 2.3. Other options
would be to consider a lexicographic multi-objective model or to treat one objective func-
tion, e.g., economic efficiency, as primary objective and to impose constraints on the other
objectives to ensure a satisfactory user experience (in particular, the acceptance of all or
a certain number of requests) which corresponds to the ε-constraint scalarization.

3.6 Related Problems

This section reviews several related problems which are of great interest throughout the
literature—due to their practical relevance, but also due to the fact that they are universal
in the sense that many other problems are a generalization or specialization of these. One
big class of problems are routing problems, which are concerned with the determination
of minimum cost routes to visit a set of locations according to defined constraints. The
first part of this section describes the similarities and differences of the DARP and several
(generalizations of) the traveling salesperson problem and the vehicle routing problem.
In the second part, we describe the minimum cost flow problem, in which we would like
to determine a least cost shipment of commodity through a network, while satisfying
demands at certain nodes with available supplies from other nodes.

Routing Problems The traveling salesperson problem (TSP) (Dantzig et al., 1954) and
the vehicle routing problem (VRP) (Dantzig and Ramser, 1959) are among the most stud-
ied combinatorial optimization problems.

The TSP is easy to state (see Ahuja et al., 1993): Starting from his or her home base,
node 1, the salesperson wishes to visit each of several cities, represented by nodes 2, . . . , n,
exactly once and return home at lowest possible travel cost. This problem is part of many
other routing problems, such as the VRP.

The following definition of the (asymmetric) VRP is based on Cordeau et al. (2007).
Let G = (V,A) be a complete and connected graph with node set V = {0, 1, . . . , n} and
arc set A = {(i, j) : i, j ∈ V, i 6= j}. Each node i ∈ V \ {0} represents a customer with
demand qi ≥ 0, while the node 0 represents the vehicle depot. With each arc (i, j) ∈ A a
cost c̄ij and travel time t̄ij is associated. We assume that c̄ij and t̄ij are non-negative and
fulfill the triangle-inequality. A fleet of K identical vehicles with capacity Q is situated
at the vehicle depot. A solution to the VRP consists of K vehicle routes such that travel
costs are minimized, the vehicle routes start and end at the depot, each customer is visited
exactly once by one vehicle, and the vehicle capacity and a preset limit T on the length
of the routes is not violated. Hence, after assigning a set of customers to each vehicle, the
problem of finding an optimal route visiting all customer locations is a TSP. The VRP is
an NP-hard problem, as is shown in Lenstra and Kan (1981). There is a vast number of
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contributions over the past decades. Recent reviews are given in Toth and Vigo (2014) or
Braekers et al. (2016).

Frequently, real-life applications ask for the incorporation of additional features, such
as time-related constraints: In the vehicle routing problem with time windows (VRPTW),
additionally, a time window is associated with each customer location. Another vehicle
routing problem where each customer request is associated with a pickup and a delivery
location is the pickup and delivery problem with time windows (PDPTW). These locations
have to be visited in the correct order by the same vehicle. By setting each customer’s pick-
up location as the vehicle depot and using a suitable pickup time window, the PDPTW is
a generalization of the VRPTW. Surveys on the static and dynamic pickup and delivery
problem are given in Berbeglia et al. (2007) and Berbeglia et al. (2010), respectively.
A special case of the PDPTW is the taxi routing problem considered in Bertsimas et
al. (2019), where vehicles can only transport one customer at a time and delivery time
windows are omitted. The fact that rides are not shared, and pickup time windows for
taxi routing are typically much smaller than in applications of the PDPTW or the DARP,
allows the authors to assume a cycle-free graph structure. This assumption reduces the
number of possible vehicle routes, and thus facilitates the fast computation of solutions, as
we will also see in Section 5.2 by making similar assumptions for the DARP leading to a
cycle-free graph structure. Generalizing even further, the DARP is a generalization of the
PDPTW and includes additional ride time constraints. While vehicle routing and pickup
and delivery problems are often motivated by the transportation of goods, the dial-a-ride
problem is motivated by the (simultaneous) transportation of persons, which explains the
need for additional ride time constraints.

The Minimum Cost Flow Problem The minimum cost flow problem (MCFP) has a
variety of applications, such as the distribution of products from manufacturers to ware-
houses, or the flow of raw materials through stages of a production line. The MCFP is
a well-studied problem of fundamental interest because other relevant combinatorial and
network optimization problems such as the shortest path problem, the maximum flow
problem or the assignment problem can be reduced to an MCFP. In the following, we
describe the problem as given in Ahuja et al. (1993), where an in-depth summary of the
MCFP and its variants can be found.

Let G = (V,A) be a connected graph. Each arc (v, w) ∈ A has an associated cost c(v,w)

that denotes the cost per unit flow on that arc. We also associate with each arc (v, w) ∈ A
a capacity u(v,w) that denotes the maximum amount that can flow on the arc and a lower
bound l(v,w) that denotes the minimum amount that must flow on the arc. We assume
l(v,w) ≤ u(v,w) for all (v, w) ∈ A. With each node v ∈ V we associate an integer number
b(v) representing its supply or demand. If b(v) > 0, node v is a supply node, if b(v) < 0,
node v is a demand node with a demand of −b(v) and if b(v) = 0, node v is a transshipment
node. We assume

∑
v∈V b(v) = 0. A solution to the MCFP is a least cost flow through

the network which satisfies all demands and supplies.

The minimum cost flow problem can be formulated as the following linear program,
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where the variables x(v,w) for (v, w) ∈ A represent arc flows.

min
∑

(v,w)∈A
c(v,w)x(v,w)

s. t.
∑

w : (v,w)∈A
x(v,w) −

∑

w : (w,v)∈A
x(w,v) = b(v) ∀v ∈ V,

l(v,w) ≤ x(v,w) ≤ u(v,w) ∀(v, w) ∈ A,

where
∑

v∈V b(v) = 0.
In this optimization problem, the objective function minimizes the total cost of the flow.

The first set of constraints ensures that the difference in inflow and outflow at a node v ∈ V
equals its demand or supply (flow conservation). The second set of constraints ensures
that the flow satisfies the lower bound and capacity restrictions.

In many applications, there is only one supply node, the source, and one demand node,
the sink, and all other nodes are transshipment nodes. If all nodes are transshipment
nodes, i.e., if there is no external inflow or outflow, all flow circulates in the network, so
that the problem is called minimum cost circulation problem.

For integral input data, we have the following important result:

Theorem 3.1. If all arc capacities and supplies or demands of nodes are integer, the
minimum cost flow problem always has an integer minimum cost flow.

Proof. See Ahuja et al. (1993).

As we will see in Section 4.1, the dial-a-ride problem can be modeled as a minimum
cost circulation problem with additional constraints, such as time window and ride time
constraints. Furthermore, we show in Section 5.2 that if the time windows fulfill certain
conditions, the LP relaxation of an MILP modeling the DARP (presented in the same
section) has only integral solutions. For the proof, we show that under the said conditions,
the DARP can be modeled as an MCFP and use the previous theorem to prove the
integrality of the LP relaxation.
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4 Event-Based MILP Models for the Static
Dial-a-Ride Problem

In this chapter we suggest an event-based formulation of the static DARP which is based
on an abstract graph model and, in contrast to other approaches, has the advantage of
implicitly encoding vehicle capacities as well as pairing and precedence constraints. The
event-based graph model is the basis for two alternative mixed-integer linear programming
formulations that can be distinguished by the approach towards handling ride time and
time window constraints. The MILP formulations are compact, that is, the number of
linear inequalities in the formulations is polynomial w.r.t. the number of variables. The
presented models can be used to solve small- to medium-sized benchmark instances in a
short amount of time. In particular, we show that both suggested MILP formulations
outperform the standard compact three-index formulation proposed in Cordeau (2006)
presented in Section 3.4 and the compact two-index formulation of the closely related
PDPTW from Furtado et al. (2017), which can be extended to an MILP formulation
of the DARP by introducing additional constraints. Furthermore, conflicting optimiza-
tion goals reflecting, e.g., economic efficiency and customer satisfaction are combined into
weighted-sum objectives. In addition, we distinguish between average case and worst case
formulations. The impact of these objective functions is tested using artificial request data
for the city of Wuppertal, Germany.

This chapter deals with the deterministic, homogeneous and static DARP (see Sec-
tion 3.3). We assume that all requests have to be accepted and that the objective is
to minimize the total routing costs, but we describe the option of rejecting unfavorable
requests as well.

The chapter is organized as follows. Based on the concept of the event-based graph,
which is introduced in Section 4.1, two variants of an MILP formulation of the DARP are
presented in Section 4.2. Different objective functions, based on user- and service-provider-
related criteria are discussed in Section 4.3. The models are compared and tested using
CPLEX, in Section 4.4. The chapter is concluded with a summary in Section 4.5. The
contents of this chapter are published in the paper Gaul et al. (2022).

4.1 Event-Based Graph

Classical models for the DARP are based on a directed graph that can be constructed in
a straight-forward way by identifying all pickup and delivery locations and the depot by
nodes in a complete graph, see, e.g., the location-based models described in Section 3.4.
In contrast to this, we suggest an event-based graph G = (V,A) in which the node set
V consists of Q-tuples representing feasible user allocations together with information on
the most recent pickup or delivery. As will be explained later, this modeling approach has
the advantage that many of the complicating constraints can be encoded directly in the
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network structure: vehicle capacity, pairing (i.e., users’ pickup and delivery locations need
to be served by the same vehicle) and precedence constraints (i.e., users’ pickup locations
need to be reached before their delivery locations are reached) are implicitly incorporated
in the event-based graph. Moreover, a directed arc a ∈ A is only introduced between a
pair of nodes if the corresponding sequence of events is feasible w.r.t. the corresponding
user allocation. Thus, a tour in G is feasible if it does not violate constraints regarding
time windows or ride times. By identifying the depot with the source and sink of a circu-
lation flow, the DARP can be modeled as a variant of a minimum cost flow problem with
additional constraints.

The allocation of transport requests to a vehicle with capacity Q can be written as a
Q-tuple. If less than Q requests are allocated to the vehicle, the remaining places are
marked by zeros. Hence, a zero either indicates an empty seat, or that a single request
contains more than one passenger. If, for example, Q = 3 and two requests, request 1
and request 2 with q1 = q2 = 1, are assigned to the same vehicle, the user allocation
may be, for instance, represented by the tuple (2, 1, 0). Accordingly, an empty vehicle is
represented by (0, 0, 0). To additionally incorporate information about the most recent
pickup or delivery location visited, we write

(2+, 1, 0) or (2−, 1, 0),

if user 1 is seated and user 2 has just been picked up or dropped off, respectively. Note that
this encoding implicitly specifies the location of the vehicle, since, in this example, user 2
is picked up at his or her pickup location 2+, i.e., the 3-tuple (2+, 1, 0) can be associated
with the location 2+, and user 2 is dropped off at his or her delivery location 2−, i.e., the
3-tuple (2−, 1, 0) can be associated with the location 2−. Since all permutations of such
a Q-tuple specify the same user allocation, we order the components of the Q-tuple such
that the first component contains the information regarding the last pickup or delivery
stop and the remaining Q− 1 components are sorted in descending order. Users can only
be placed together in a vehicle if the total number of requested seats does not exceed the
vehicle capacity. This constraint limits the possible combinations of users in the vehicle
and hence the set of possible Q-tuples representing user allocations. As stated by Cordeau,
2006, time window and ride time constraints can be used to identify incompatible user
pairs. For example, given users i, j ∈ R, the following reductions are possible:

• If it is infeasible to visit locations i+, i−, j+, j− both in the order j+ → i+ → j− → i−

and j+ → i+ → i− → j−, the set {(v1, v2, . . . , vQ) ∈ V : v1 = i+, j ∈ {v2, . . . , vQ}}
can be removed from the node set.

• If it is infeasible to visit locations i+, i−, j+, j− both in the order j+ → i+ → i− → j−

and i+ → j+ → i− → j−, the set {(v1, v2, . . . , vQ) ∈ V : v1 = i−, j ∈ {v2, . . . , vQ}}
can be removed from the node set.

The number of possible Q-tuples can be reduced significantly by adapting this strategy to
identify incompatible user allocations. For this purpose, given requests i, j ∈ R, let f1

i,j

and f2
i,j encode the feasibility of the paths j+ → i+ → j− → i− and j+ → i+ → i− → j−,
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respectively, w.r.t. ride time and time window constraints. To simplify the notation, let
f1
i,0 = f1

0,i = f2
i,0 = f2

0,i = 1.
Now the DARP can be represented by a directed graph G = (V,A), where the node set

V represents events rather than geographical locations. The set of event nodes corresponds
to the set of all feasible user allocations. The set of all nodes that represent an event in
which a request (or user) i ∈ R is picked up is called the set of pickup nodes and is given
by

Vi+ :=

{
(v1, v2, . . . , vQ) : v1 =i+, vj ∈ R ∪ {0} \ {i}, f1

i,vj + f2
i,vj ≥ 1 ∀j ∈ {2, . . . , Q},

(
vj > vj+1 ∨ vj+1 = 0

)
∀j ∈ {2, . . . , Q− 1},

Q∑

j=1

qvj ≤ Q
}
.

Similarly, the set of delivery nodes corresponds to events where a request (or user) i ∈ R
is dropped off and is given by

Vi− :=

{
(v1, v2, . . . , vQ) : v1 =i−, vj ∈ R ∪ {0} \ {i}, f1

vj ,i + f2
i,vj ≥ 1 ∀j ∈ {2, . . . , Q},

(
vj > vj+1 ∨ vj+1 = 0

)
∀j ∈ {2, . . . , Q− 1},

Q∑

j=1

qvj ≤ Q
}
.

Note, that for each request i ∈ R there is only one pickup and one delivery location, but in
general more than one potential pickup node and delivery node. Hence, there is a unique
mapping of nodes to locations, while a location may be associated with many different
nodes. The depot-node (0, . . . , 0) is associated with the location of the depot, and we
write V0 := {(0, . . . , 0)}. The overall set of nodes V is then given by

V = V0 ∪
n⋃

i=1

Vi+ ∪
n⋃

i=1

Vi− .

The arc set A of G is defined by the set of possible transits between pairs of event nodes
in V . It is composed of six subsets, i.e.,

A =

6⋃

i=1

Ai,

where the subsets Ai, i = 1, . . . , 6 are defined as follows:

• Arcs that describe the transit from a pickup node in a set Vi+ , i.e., from a user i’s
pickup location, to a delivery node in Vj− , i.e., to the delivery location of a user
j, where j = i is possible, but where j may also be another user from the current
passengers in the vehicle:

A1 :=
{((

i+, v2, . . . , vQ
)
,
(
j−, w2, . . . , wQ

))
∈ V × V :

{j, w2, . . . , wQ} = {i, v2, . . . , vQ}
}
.
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• Arcs that describe the transit from a pickup node in a set Vi+ , i.e., from a user i’s
pickup location, to another pickup node from a set Vj+ with j 6= i, i.e., to another
user j’s pickup location:

A2 :=
{((

i+, v2, . . . , vQ−1, 0
)
,
(
j+, w2, . . . , wQ

))
∈V × V :

{i, v2, . . . , vQ−1} = {w2, . . . , wQ}
}
.

• Arcs that describe the transit from a delivery node in a set Vi− , i.e., from a user i’s
delivery location, to a pickup node in a set Vj+ , j 6= i, i.e., to another user j’s pickup
location:

A3 :=
{((

i−, v2, . . . , vQ
)
,
(
j+, v2, . . . , vQ

))
∈ V × V : i 6= j

}
.

• Arcs that describe the transit from a delivery node in a set Vi− , i.e., from a user i’s
delivery location, to a node in Vj− , j 6= i, i.e., to another user j’s delivery location:

A4 :=
{((

i−, v2, . . . , vQ
)
,
(
j−, w2, . . . , wQ−1, 0

))
∈V × V :

{v2, . . . , vQ} = {j, w2, . . . , wQ−1}
}
.

• Arcs that describe the transit from a delivery node in a set Vi− , i.e., from a user i’s
delivery location, to the depot:

A5 :=
{((

i−, 0, . . . , 0
)
, (0, . . . , 0)

)
∈ V × V

}
.

• Arcs that describe the transit from the depot to a pickup node in a set Vi+ , i.e., to
a user i’s pickup location:

A6 :=
{(

(0, . . . , 0),
(
i+, 0, . . . , 0

))
∈ V × V

}
.

Example 4.1. We give an example of the event-based graph G = (V,A) with three users
and vehicle capacity Q = 3. Let R = {1, 2, 3}, q1 = q2 = 1 and q3 = 3. We omit time
windows, travel and ride times in this example. By the above definitions we obtain the
graph illustrated in Figure 4.1. Note that there are no nodes v ∈ V that simultaneously
contain users 1 (i.e., 1+, 1− or 1) and 3 (i.e., 3+, 3− or 3) as the total number of requested
seats specified by these users exceeds the vehicle capacity. Similarly, the seats requested by
users 2 and 3 together exceed the vehicle capacity of three. Two feasible tours for a vehicle
in G are given, for example, by the dicycles

(
0, 0, 0

)
→
(
1+, 0, 0

)
→
(
2+, 1, 0

)
→
(
2−, 1, 0

)
→
(
1−, 0, 0

)
→
(
0, 0, 0

)

and (
0, 0, 0

)
→
(
3+, 0, 0

)
→
(
3−, 0, 0

)
→
(
0, 0, 0

)
.
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(0, 0, 0)

(1+, 0, 0) (2+, 0, 0) (3+, 0, 0)(1−, 0, 0) (2−, 0, 0) (3−, 0, 0)

(2+, 1, 0)(1+, 2, 0)

(1−, 2, 0) (2−, 1, 0)

Figure 4.1: Graph representation of an example with three users.

In order to evaluate the worst case complexity of this event-based graph representation of
the DARP, we first evaluate the respective cardinalities of the node set V and of the arc
set A. Note that, the number of nodes and arcs in the event-based graph model depends
on the vehicle capacity, the number of users and the number of requested seats per user
and can potentially be reduced based on, e.g., precedence or time window constraints.
Given Q and n, the number of nodes and arcs is maximal if all users request only one seat,
i.e., if qi = 1 for all i ∈ R. Thus, we obtain the worst case bound

|V | ≤ 1 + 2n

Q−1∑

j=0

(
n− 1

j

)
,

where

• “1” corresponds to the depot node,

• the factor 2n corresponds to the first component of the nodes being equal to i+ or
i− with i ∈ R = {1, . . . , n},

• and the sum corresponds to the allocation of users to the remaining seats v2, . . . , vQ,
of which j ∈ {0, . . . , Q− 1} are occupied.

For the arc set, we obtain the worst case bound

|A| ≤ 2n+ n

Q−1∑

j=0

(
n− 1

j

)
(j + 1) + 3n (n− 1)

Q−2∑

j=0

(
n− 2

j

)
+
n(n− 1) · . . . · (n−Q)

(Q− 1)!
.

This can be seen by counting the number of outgoing arcs for each node with Q−j+1 zero
entries and adding them up for j ∈ {0, . . . , Q− 1}, together with 2n arcs corresponding to
the depot node. We use the convention that

(
m
k

)
:= 0 when k > m. From the above formu-

las, we deduce that the number of nodes is bounded by O(nQ) for n ≥ Q and the number
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of arcs is bounded by O(nQ+1) for n ≥ Q+ 1. This is in general considerably more than
what is obtained when a location-based DARP model on a complete graph is used, which
has only O(n) nodes and O(n2) arcs, see Section 3.4. However, in practice, ridepooling
services are usually operated by taxis or mini-buses, so that Q ∈ {3, 6}. Moreover, the
number of nodes and thereby the number of arcs, reduce substantially if we do not con-
sider the “worst-case-scenario” qi = 1 for all i ∈ R, in which all combinations of requests
are possible user allocations to vehicles, and if we consider time windows, travel and ride
times to determine infeasible user pairs. Besides that, the event-based formulation has
the clear advantage that important constraints like vehicle capacity constraints, pairing
constraints and precedence constraints that have to be formulated in classical models are
implicitly handled using the event-based graph model, as will be seen in the next section.

4.2 Event-Based MILP Models

With the above definitions, the DARP can be modeled as a variant of a minimum cost
flow problem with unit flows and with additional constraints. In particular, we consider
circulation flows in G and identify the depot with the source and the sink of a minimum
cost flow problem. Each dicycle flow in G then represents one vehicle’s tour. We formulate
corresponding MILP models in the subsequent subsections: The first event-based MILP is
presented in Subsection 4.2.1. A reformulation of time window and ride time constraints
described in Subsection 4.2.2 yields the second event-based MILP formulation, defined in
Subsection 4.2.3.

The event-based MILP formulations are motivated by the work of Bertsimas et al.
(2019) who propose an optimization framework for taxi routing, where only one passenger
is transported at a time. Their algorithm can handle more than 25, 000 users per hour.
Bertsimas et al. (2019) propose a graph-based formulation in which an arc (i, j) represents
the decision to serve passenger j directly after dropping off passenger i.

Before we describe the first MILP formulation, we introduce some additional parameters
and variables.

Since each node in V can be associated with a unique request location j ∈ J , we can
associate a routing cost ca and a travel time ta with each arc a = (v, w) ∈ A. More
precisely, both values ca and ta are calculated by evaluating the actual routing cost and
travel time from the location associated with v to the location associated with w. We
assume that all routing costs and all travel times are non-negative and satisfy the triangle
inequality. Finally, let δin(v) := {(w, v) ∈ A} and δout(v) := {(v, w) ∈ A} denote the set
of ingoing arcs of v and the set of outgoing arcs of v, respectively. Moreover, for a ∈ A let
the variable value xa = 1 indicate that arc a is used by a vehicle, and let xa = 0 otherwise.
Thus, a vehicle tour is represented by a sequence of events in a dicycle C in G where xa = 1
for all a ∈ A(C), where A(C) denotes the arc set of C. A request is matched with a vehicle
if the vehicle’s tour, i.e., the sequence of events in the corresponding dicycle, contains the
event of picking-up and dropping-off of the corresponding user. Let the variable Bv store
the information on the beginning of service time at node v ∈ V . Recall that the beginning
of service time has to be within the associated time window of the respective location of
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node v. Since we also consider the case that allows users’ requests to be denied, let the
variable value pi = 1 indicate that request i ∈ R is accepted, and let pi = 0 otherwise.

Based on the event-based graph model, we are now ready to formulate our first MILP
model for the DARP.

4.2.1 Basic Event-Based MILP for the DARP

In this subsection, we propose an event-based mixed integer linear program for the DARP.
First, we present a non-linear mixed-integer programming formulation, which is based on
the event-based graph model presented in Section 4.1. In a second step, this model is
transformed into an MILP by a reformulation of time window and ride time constraints,
i.e., constraints involving the variables Bv, v ∈ V .

The DARP can be formulated as the following non-linear mixed integer program:

min
∑

a∈A
ca xa (4.1a)

s. t.
∑

a∈δin(v)

xa −
∑

a∈δout(v)

xa = 0 ∀v ∈ V, (4.1b)

∑

a∈δin(v)
v∈Vi+

xa = 1 ∀i ∈ R, (4.1c)

∑

a∈δout((0,...,0))

xa ≤ K, (4.1d)

Bw ≥ (Bv + sv1 + t(v,w))x(v,w) ∀(v, w) ∈ A, v 6= (0, . . . , 0) (4.1e)

Bw ≥ e0 + t(v,w) x(v,w) ∀((0, . . . , 0), w) ∈ A, (4.1f)

ej ≤ Bv ≤ `j ∀j ∈ J, v ∈ Vj (4.1g)

(Bw −Bv − si+)
∑

a∈δin(v)

xa
∑

a∈δin(w)

xa ≤ Li ∀i ∈ R, v ∈ Vi+ , w ∈ Vi− , (4.1h)

xa ∈ {0, 1} ∀a ∈ A. (4.1i)

The objective function (4.1a) minimizes the total routing cost. While constraints (4.1b) are
flow conservation constraints, it is ensured by constraints (4.1c) that each request i ∈ R
is accepted and that exactly one node of all nodes which contain the request’s pickup
location is reached by exactly one vehicle. Together with constraints (4.1b) and (4.1c),
the number of feasible dicycles in G is bounded from above by the number of vehicles in
constraints (4.1d). Constraints (4.1e) and (4.1f) define the difference in time needed to
travel from one node to another. For all nodes in V the start of service has to take place
within the time window corresponding to the associated location of the node, which is
handled by constraints (4.1g). An upper bound on the ride time is ensured by constraints
(4.1h). Note that, we only impose a bound on the variables Bw, Bv, if both v ∈ Vi+
and w ∈ Vi− are in fact the pickup and delivery nodes that are used to serve request i.
Vehicle capacity, pairing and precedence constraints are ensured by the structure of the
underlying network.
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This formulation is non-linear due to constraints (4.1e) and (4.1h). In the following
MILP these constraints are substituted by a linearized reformulation.

Model I.

min
∑

a∈A
ca xa (4.2a)

s. t. constraints (4.1b)− (4.1d)

Bw ≥ Bv + sv1 + t(v,w) − M̃v,w (1− x(v,w)) ∀(v, w) ∈ A, v 6= (0, . . . , 0), (4.2b)

Bw ≥ e0 + t(v,w) x(v,w) ∀((0, . . . , 0), w) ∈ A, (4.2c)

ej ≤ Bv ≤ `j ∀j ∈ J, v ∈ Vj (4.2d)

Bw −Bv − si+ ≤ Li +Mi

(
1−

∑

a∈δin(v)

xa+ 1−
∑

a∈δin(w)

xa

)
∀i ∈ R, v ∈ Vi+ , w ∈ Vi− ,

(4.2e)

xa ∈ {0, 1} ∀a ∈ A. (4.2f)

where Mi = `i− − ei+ − Li − si+ and M̃v,w = `v1 − ew1 + sv1 + t(v,w) are sufficiently large
constants.

To include the option to deny requests, variables pi ∈ {0, 1}, i ∈ R have to be added to
Model I and constraints (4.1c) have to be changed to

∑

a∈δin(v)
v∈Vi+

xa = pi ∀i ∈ R. (4.3)

Hence, if a user is not picked up (i.e., if pi = 0), then none of the nodes which contain his
or her pickup location are traversed by any vehicle. Note that, in this case a reasonable
objective function (see Section 4.3) has to penalize the denial of user requests since oth-
erwise an optimal solution is given by p = 0, x = 0 and Bv = ev1 for all v ∈ V . In the
computational experiments in Section 4.4 we consider both cases, i.e., the scenario that
all users have to be served and the scenario that some requests may be denied.

Assuming qi = 1 for all requests i ∈ R and n ≥ Q + 1 the total number of variables
in Model I can be bounded by O(nQ+1) with O(n2Q−1) constraints, of which O(n2Q−1)
constraints are ride time constraints (4.2e). If qi ∈ {2, . . . , Q} for some requests, the
number of variables and constraints decreases.

In each of the ride time constraints in Model I, the sums
∑

a∈δin(v) xa and
∑

a∈δin(w) xa
are evaluated. This is computationally expensive, as will be demonstrated in the compu-
tational tests carried out in Section 4.3. By taking advantage of the relationship between
the pickup and delivery time windows associated with request i, we show in the following
how constraints (4.2e) can be reformulated without using big-M constraints, resulting in
a second MILP formulation referred to as Model II.
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4.2.2 Reformulation of Time-Related Constraints

In Model I, the ride time constraints are modeled as big-M constraints that are used to
deactivate the respective constraints for pickup and delivery nodes that are not contained
in a vehicle’s tour. As shown in this subsection, by reformulating the time window con-
straints and using the relationship between earliest pickup and latest delivery times, the
numerically unfavorable big-M constraints can be replaced by simpler constraints in the
following model (Model II), see Subsection 4.2.3. This model is faster to solve which is
verified by the numerical experiments presented in Section 4.4.

In Model II, the ride time constraints, which ensure that a user does not spend more
than Li minutes in the vehicle, are given by

Bw −Bv − si+ ≤ Li ∀i ∈ R, ∀v ∈ Vi+ , ∀w ∈ Vi− . (4.4)

To show that these constraints, together with a reformulation of constraints (4.2d),
reflect the modeling assumptions, we first observe that in general applications of the
DARP, as described for example in Cordeau (2006), users often formulate inbound requests
and outbound requests. In the first case, users specify a desired departure time from the
origin, while in the case of an outbound request, users specify a desired arrival time at the
destination. In both cases a time window of a fixed length TW is constructed from the
desired time, so that we end up with a pickup time window of length TW = `i+ − ei+ for
an inbound request and a delivery time window of length TW = `i−−ei− for an outbound
request. Now the remaining time window is constructed as follows (based on Cordeau,
2006): For an inbound request the delivery time window is given by the bounds

ei− = ei+ + si+ + t̄i and `i− = `i+ + si+ + Li. (4.5)

Similarly, for an outbound request the pickup time window is defined by

ei+ = ei− − Li − si+ and `i+ = `i− − t̄i − si+ . (4.6)

Secondly, we define the notion of an active node v ∈ V : We say that a node v ∈ V is
active if at least one of its ingoing arcs is part of a dicycle flow, i.e., if

∑

a∈δin(v)

xa = 1.

Otherwise, we call v inactive. Note that, due to constraints (4.1b)–(4.1c) and the structure
of the event-based graph, for each request i ∈ R we have exactly one associated active
pickup node and one associated active delivery node. In case we include the option of
denying user requests, i.e., we use constraints (4.3) instead of constraints (4.1c) and add
variables pi ∈ {0, 1}, i ∈ R to the MILP, each request either has exactly one active pickup
and delivery node (in this case we have pi = 1), or no associated active node at all (this
is the case when pi = 0).

Now, if both v and w in constraints (4.4) are active nodes, inequalities (4.4) and (4.2e)
coincide. In case both v and w are inactive, the values Bv, Bw can be ignored in an
interpretation of an optimal solution, as v and w are not contained in any of the vehicle
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tours. Hence, the critical two cases are the cases where one of the nodes is active and the
other node is inactive. Let voff and von denote the inactive and the active node from the
set {v, w}, respectively. Then, we do not want that Bvoff influences the value of Bvon in
constraints (4.4):

Case 1: v is active, w is inactive. Resolving (4.4) for Bv we obtain Bv ≥ Bw −Li − si+ .
Now, we do not want to impose any additional constraints on Bv. Thus, we demand
Bw − Li − si+ ≤ ei+ . Accordingly, it has to hold that

Bw ≤ ei+ + Li + si+ .

Recall that here we assume w to be inactive. If w is active, the weaker constraint
Bw ≤ `i− needs to hold. Putting these restrictions together for an inbound request,
we get

Bw ≤ ei+ + Li + si+ + (`i− − (ei+ + Li + si+))
∑

a∈δin(w)

xa

= ei+ + Li + si+ + (`i+ + Li + si+ − (ei+ + Li + si+))
∑

a∈δin(w)

xa

= ei+ + Li + si+ + (`i+ − ei+)
∑

a∈δin(w)

xa

= ei+ + Li + si+ + TW
∑

a∈δin(w)

xa, (4.7)

using the reformulation of `i− from equations (4.5). In the same manner, we use
equations (4.6) to substitute ei+ = ei− − Li − si+ and obtain that

Bw ≤ ei+ +Li + si+ + (`i− − ei−)
∑

a∈δin(w)

xa = ei+ +Li + si+ + TW
∑

a∈δin(w)

xa (4.8)

has to hold for an outbound request. Hence the two formulations (4.7) and (4.8)
coincide.

Case 2: v is inactive, w is active. Resolving (4.4) for w we obtain Bw ≤ Li+Bv+si+ . In
order for the latter inequality to be redundant for Bw, we demand that Li+Bv+si+ ≥
`i− . It follows that Bv ≥ `i− − Li − si+ has to hold. For an inbound request, using
the equivalence from (4.5), this can be resolved to

Bv ≥ (`i+ + Li + si+)− Li − si+ = `i+ .

Recall that we assumed that v is inactive. In case v is active, the less tighter
constraint Bv ≥ ei+ has to hold, so that we arrive at

Bv ≥ ei+ + (`i+ − ei+)

(
1−

∑

a∈δin(v)

xa

)
= ei+ + TW

(
1−

∑

a∈δin(v)

xa

)
.
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In a similar fashion, we obtain

Bv ≥ ei+ + (`i− − ei−)

(
1−

∑

a∈δin(v)

xa

)
= ei+ + TW

(
1−

∑

a∈δin(v)

xa

)

for an outbound request. We conclude that the two lower bounds on Bv coincide.

4.2.3 Event-Based MILP for DARP

As desired, by reformulating the constraints (4.2d) on the variables Bv, v ∈ V , we obtain
a simpler version of the ride time constraints (4.2e). We put these results together in a
second MILP formulation of the DARP.

Model II.

min
∑

a∈A
ca xa (4.9a)

s. t. constraints (4.1b)− (4.1d)

Bw ≥ Bv + sv1 + t(v,w) − M̃v,w (1− x(v, w)) ∀(v, w) ∈ A, v 6= (0, . . . , 0) (4.9b)

Bw ≥ e0 + t(v,w) x(v,w) ∀((0, . . . , 0), w) ∈ A, (4.9c)

e0 ≤ B(0,...,0) ≤ `0, (4.9d)

ei+ + TW

(
1−

∑

a∈δin(v)

xa

)
≤ Bv ≤ `i+ ∀i ∈ R, v ∈ Vi+ , (4.9e)

ei− ≤ Bv ≤ ei+ + Li + si+ + TW
∑

a∈δin(v)

xa ∀i ∈ R, v ∈ Vi− , (4.9f)

Bw −Bv − si+ ≤ Li ∀i ∈ R, v ∈ Vi+ , w ∈ Vi− , (4.9g)

xa ∈ {0, 1} ∀a ∈ A. (4.9h)

We substitute ride time constraints (4.2e) for a simpler version (4.9g). In return we use a
more complex version of the time window constraints (4.9d) – (4.9f) instead of the short
form (4.2d). Similar to Model I, variables pi ∈ {0, 1}, i ∈ R may be added to Model II
and constraints (4.1c) may be substituted by constraints (4.3) to include the option of
denying user requests. In this case, the objective function should be modified to contain
a term penalizing the denial of requests.

As there are O(n2Q−1) ride time constraints, for each of which two sums
∑

a∈δin(v) xa

have to be evaluated in the longer version (4.2e), but only O(nQ) time window constraints,
for each of which one sum of the above form has to be evaluated in the longer version
(4.9d)-(4.9f), we obtain a more efficient new MILP formulation. Similar to Model I, for
n ≥ Q + 1 there are at most O(nQ+1) variables and at most O(n2Q−1) constraints, of
which O(n2Q−1) constraints are ride time constraints (4.9g).
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4.3 Objective Functions

As stated in Section 3.5, DARPs are characterized by multiple (and often conflicting)
objectives. In the following, we focus on three prevalent criteria, namely the total routing
cost, the total number of unanswered requests and the total users’ regret or the maximum
regret, and combine these three criteria into weighted-sum objective functions. The first
and probably most important criterion is the total routing cost, which can be computed
as

fc(x) :=
∑

a∈A
ca xa. (4.10)

We refer to fc as cost-objective. The second optimization criterion relates to customer
satisfaction: We measure the response time to a service request by assessing a user’s
regret, which aims at penalizing overly long travel times as well as possibly delayed pick-
up times. Let the variable di ≥ 0, i ∈ R measure the difference in time compared to a
user’s earliest possible arrival time. We refer to di as a user’s regret. Moreover, let the
variable dmax ≥ 0 measure the maximum regret. By introducing constraints

di ≥ Bv − ei− ∀i ∈ R, ∀v ∈ Vi− , (4.11)

dmax ≥ di ∀i ∈ R, (4.12)

we can now minimize the total or average regret, or the maximum regret, respectively.
The total regret is thus given by the regret-objective

fr(d) :=
∑

i∈R
di, (4.13)

while the maximum-regret-objective is given by

frmax(dmax) := dmax. (4.14)

The discussion above highlights the fact that we have to consider different and generally
conflicting objective functions that are relevant when solving the DARP. While the cost
objective fc aims at minimizing total travel cost and thus takes the perspective of the
service provider, the quality of service which rather takes a user’s perspective is better
captured by objective functions like fr and frmax . We approach this technically bi-objective
problem by using a weighted-sum approach with fixed weights, i.e., by combining the
relevant objective functions into one weighted-sum objective. When using the total regret
as quality criterion, we obtain

fcr(x, d) :=
∑

a∈A
ca xa + α

∑

i∈R
di (4.15)

which will be referred to as cost-regret-objective, and when using the maximum regret as
quality criterion, we get

fcrmax(x, dmax) :=
∑

a∈A
ca xa + βdmax (4.16)
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which will be referred to as cost-max-regret-objective. The parameters α > 0 and β > 0 are
weighting parameters that can be selected according to the decision maker’s preferences.

Last but not least, we consider a variant of the DARP in which it is allowed to deny
certain user requests. This is accomplished by substituting constraints (4.1c) in Model I
or Model II , respectively, by constraints (4.3) and adding variables pi ∈ {0, 1}, i ∈ R
to Model I or II. In this case, the number of accepted requests has to be maximized
or, equivalently, the number of unanswered requests has to be minimized. The objective
function

fn(p) := n−
∑

i∈R
pi,

measures the total number of declined requests. At the same time, routing costs and regret
should be as small as possible. The optimization of these opposing criteria is reflected by
the request-cost-regret-objective given by

frcr(x, d, p) :=
∑

a∈A
ca xa + α

∑

i∈R
di + γ

(
n−

∑

i∈R
pi

)
, (4.17)

where γ > 0 is an additional weighting parameter. While the third part of the objective
refers to the number of unanswered requests and is equal to γ n at maximum (i.e., if no
requests are accepted), the values of the total routing costs and of the total regret strongly
depend on the underlying network and request data. Note that, meaningful choices of the
weighting parameters have to reflect this in order to avoid situations where one part of
the objective overrides the others. This will be discussed in Section 4.4.

4.4 Numerical Results

This section is divided into two parts. In the first subsection, we compare the MILP for-
mulations Model I and II to the MILP model from Cordeau (2006) presented in Section 3.4
and to a compact two-index formulation of the PDPTW by Furtado et al. (2017), which
can be adapted to an MILP formulation of the DARP by using additional constraints.
The computational performance is evaluated on a set of benchmark test instances. In the
second part, we substitute the cost objective function in Model II with different objective
functions as introduced in Section 4.3 and analyze the effect with respect to economic effi-
ciency and customer satisfaction. For this purpose, a set of 60 artificial instances from the
city of Wuppertal is generated. The computations are carried out on an Intel Core i7-8700
CPU, 3.20 GHz, 32 GB memory using CPLEX 12.10. The MILPs are programmed using
C++ and the code can be found in the git repository Gaul (2022a). The time limit for
the solution in all tests is set to 7200 seconds. In the following, the computational results
are discussed in detail. We use the abbreviations listed in Table 4.1. When computing
the average CPU times over several runs, and an instance was not solved to optimality
within the time limit, then a CPU time of 7200 seconds is assumed.

4.4.1 Benchmark Data

We compare our MILP models to the model from Cordeau (2006), referred to as C-DARP
for the remaining part of this section. Note that, the two-index formulation given by Ropke
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Abbreviation Explanation/ Reference

Inst. Name of instance
Obj. Objective value
CPU Computational time in seconds
N/A Not applicable, no integer solution found within the time

limit
Gap Gap obtained by CPLEX solution (in percent)
fc Total routing costs
fr Total regret
frmax Maximum regret
AR Answered requests (in percent)
∆fc Change in total routing costs (in percent)
∆fr Change in total regret (in percent)
∆frmax Change in maximum regret (in percent)
∆ AR Change in answered requests (in percent)

Table 4.1: List of abbreviations.

et al. (2007) is tighter (compare Section 3.4 for both models). However, this comes at the
price of an exponentially growing number of constraints. It is thus better suited for a
solution within a B&C framework and we did not include it in our comparison. Moreover,
we compare our model to a compact two-index formulation of the PDPTW, introduced
by Furtado et al. (2017), which can be adapted to an MILP formulation of the DARP
by adding constraints on the passengers’ maximum ride time, the maximum duration of
service and the maximum number of vehicle tours. We refer to this model as F-DARP
in the following. Both models, C-DARP and F-DARP, are based on a complete directed
graph. The node set comprises all pickup and delivery locations and two additional nodes
0+ and 0− for the depot. Thus, the node set is equal to the set J̄ . The objective is
to minimize the total routing costs. We do not add any additional valid inequalities
described in Cordeau (2006) to any of the MILP formulations in this comparison. We use
the following trivial variable fixings: x̄j,j = 0, x̄j,0+ = 0 and x̄0−,j = 0 for all j ∈ P ∪D,
x̄0+,i− = 0, x̄i+,0− = 0 and x̄i−,i+ = 0 for all i ∈ P . Besides that, we use time window,
capacity, and ride time constraints to fix the following variables: Let i, j ∈ P , then
x̄i+,j+ = 0 if f1

j,i = f2
j,i = 0, xi−,j− = 0 if f1

j,i = f2
i,j = 0, and x̄i+,j− = 0 if f1

i,j = 0.

The test instances are the two sets of benchmark instances1, set a and set b, created
in Cordeau (2006). The instances are denoted as aK-n and bK-n, where K indicates
the number of vehicles and n denotes the number of requests. The characteristics of the
instances are summarized in Table 4.2. In all test instances we tighten the remaining time
windows, i.e., the time windows not given by the pickup time of inbound requests or by
the delivery time of outbound requests, respectively, as described in Cordeau (2006): The
bounds of the missing time windows can be calculated according to equations (4.5) and
(4.6) stated earlier in Section 4.2.

A summary of the computational results can be found in Tables 4.3 and 4.4. For each
of the considered models C-DARP, F-DARP, Model I and II, the objective value (Obj.)

1The instances are available at http://neumann.hec.ca/chairedistributique/data/darp/branch-an

d-cut/.
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Inst. Q n K Li T Inst. Q n K Li T

a2-16 3 16 2 30 480 b2-16 6 16 2 45 480
a2-20 3 20 2 30 600 b2-20 6 20 2 45 600
a2-24 3 24 2 30 720 b2-24 6 24 2 45 720
a3-18 3 18 3 30 360 b3-18 6 18 3 45 360
a3-24 3 24 3 30 480 b3-24 6 24 3 45 480
a3-30 3 30 3 30 600 b3-30 6 30 3 45 600
a3-36 3 36 3 30 720 b3-36 6 36 3 45 720
a4-16 3 16 4 30 240 b4-16 6 16 4 45 240
a4-24 3 24 4 30 360 b4-24 6 24 4 45 360
a4-32 3 32 4 30 480 b4-32 6 32 4 45 480
a4-40 3 40 4 30 600 b4-40 6 40 4 45 600
a4-48 3 48 4 30 720 b4-48 6 48 4 45 720
a5-40 3 40 5 30 480 b5-40 6 40 5 45 480
a5-50 3 50 5 30 600 b5-50 6 50 5 45 600
a5-60 3 60 5 30 720 b5-60 6 60 5 45 720
a6-48 3 48 6 30 480 b6-48 6 48 6 45 480
a6-60 3 60 6 30 600 b6-60 6 60 6 45 600
a6-72 3 72 6 30 720 b6-72 6 72 6 45 720
a7-56 3 56 7 30 480 b7-56 6 56 7 45 480
a7-70 3 70 7 30 600 b7-70 6 70 7 45 600
a7-84 3 84 7 30 720 b7-84 6 84 7 45 720
a8-64 3 64 8 30 480 b8-64 6 64 8 45 480
a8-80 3 80 8 30 600 b8-80 6 80 8 45 600
a8-96 3 96 8 30 720 b8-96 6 96 8 45 720

Table 4.2: Characteristics of the benchmark test instances.
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C-DARP F-DARP Model I Model II

Inst. Obj. Gap CPU Obj. Gap CPU Obj. CPU Obj. CPU

a2-16 294.3 0.08 294.3 0.04 294.3 0.04 294.3 0.10
a2-20 344.9 0.23 344.9 0.12 344.9 0.02 344.9 0.02
a2-24 431.1 0.68 431.1 0.28 431.1 0.06 431.1 0.05
a3-18 300.5 0.68 300.5 0.24 300.5 0.05 300.5 0.04
a3-24 344.9 5.53 344.9 1.93 344.9 0.10 344.9 0.10
a3-30 494.8 20.14 494.8 297 494.8 0.07 494.8 0.04
a3-36 583.2 28.70 583.2 6.65 583.2 0.09 583.2 0.11
a4-16 282.7 5.61 282.7 2.85 282.7 0.05 282.7 0.06
a4-24 375.0 11.13 375.0 24.95 375.0 0.07 375.0 0.04
a4-32 485.5 591 485.5 8 2h 485.5 0.12 485.5 0.15
a4-40 557.7 1903 557.7 4 2h 557.7 0.48 557.7 0.28
a4-48 669.4 6 2h 680.0 10 2h 668.8 0.67 668.8 0.50
a5-40 498.4 2 2h 498.4 11 2h 498.4 0.23 498.4 0.23
a5-50 696.3 17 2h N/A N/A 2h 686.6 4.02 686.6 2.47
a5-60 828.3 14 2h N/A N/A 2h 808.4 1.41 808.4 1.03
a6-48 604.1 18 2h N/A N/A 2h 604.1 1.33 604.1 0.89
a6-60 874.8 16 2h N/A N/A 2h 819.3 6.17 819.3 8.83
a6-72 N/A N/A 2h N/A N/A 2h 916.1 17.88 916.1 13.87
a7-56 764.5 19 2h N/A N/A 2h 724.0 1.92 724.0 1.24
a7-70 N/A N/A 2h N/A N/A 2h 875.7 4.77 875.7 6.93
a7-84 N/A N/A 2h N/A N/A 2h 1033.3 35.70 1033.3 5.89
a8-64 N/A N/A 2h N/A N/A 2h 747.5 15.31 747.5 7.19
a8-80 N/A N/A 2h N/A N/A 2h 945.8 51.19 945.8 25.11
a8-96 N/A N/A 2h N/A N/A 2h 1229.7 3593 1229.7 461

Table 4.3: Solution values and computing times for the benchmark test instances ’a’.
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C-DARP F-DARP Model I Model II

Inst. Obj. Gap CPU Obj. Gap CPU Obj. CPU Obj. CPU

b2-16 309.4 0.13 309.4 0.13 309.4 0.03 309.4 0.03
b2-20 332.7 0.06 332.7 0.02 332.7 0.02 332.7 0.01
b2-24 444.7 0.91 444.7 0.81 444.7 0.06 444.7 0.05
b3-18 301.6 0.83 301.6 0.73 301.6 0.05 301.6 0.04
b3-24 394.5 5.28 394.5 0.74 394.5 0.11 394.5 0.11
b3-30 531.4 1.68 531.4 0.22 531.4 0.07 531.4 0.06
b3-36 603.8 6.41 603.8 2.17 603.8 0.07 603.8 0.09
b4-16 297.0 0.23 297.0 0.03 297.0 0.04 297.0 0.02
b4-24 371.4 1.86 371.4 0.66 371.4 0.06 371.4 0.06
b4-32 494.9 3.01 494.9 0.57 494.9 0.04 494.9 0.04
b4-40 656.6 51.15 656.6 20.04 656.6 0.13 656.6 0.14
b4-48 673.8 2 2h 680.7 6 2h 673.8 1.14 673.8 0.94
b5-40 613.7 10 2h 619.1 6 2h 613.7 0.20 613.7 0.21
b5-50 763.0 7 2h 768.2 8 2h 761.4 0.54 761.4 0.45
b5-60 917.6 14 2h N/A N/A 2h 902.0 4.01 902.0 0.92
b6-48 714.8 2700 715.9 2 2h 714.8 0.27 714.8 0.26
b6-60 893.4 11 2h N/A N/A 2h 860.0 0.50 860.0 0.43
b6-72 1083.9 22 2h N/A N/A 2h 978.5 3.48 978.5 5.11
b7-56 850.7 14 2h 867.9 14 2h 824.0 6.99 824.0 3.62
b7-70 919.7 10 2h N/A N/A 2h 912.6 2.54 912.6 2.42
b7-84 N/A N/A 2h N/A N/A 2h 1203.4 2.93 1203.4 2.72
b8-64 N/A N/A 2h N/A N/A 2h 839.9 2.03 839.9 2.16
b8-80 1433.0 37 2h N/A N/A 2h 1036.4 1.34 1036.4 1.54
b8-96 N/A N/A 2h N/A N/A 2h 1185.6 27.42 1185.6 24.26

Table 4.4: Solution values and computing times for the benchmark test instances ’b’.
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of the cost objective and the computational time in seconds (CPU) are reported. For
C-DARP and F-DARP we also report the relative gap (Gap) as some of the instances are
not solved to optimality within the time limit of 7200 seconds. By taking a closer look at
Tables 4.3 and 4.4, it becomes evident that Model II outperforms Model I in a majority of
the instances, especially in the larger a-instances (in terms of number of users and vehicles
used). Moreover, one can see clearly from the results that Models I and II yield a more
efficient formulation than C-DARP and F-DARP: Starting from instance a4-48 (C-DARP)
and instance a4-32 (F-DARP), the a-instances could not be solved to optimality within
two hours (or even no integer solution was found). The computational time needed to
solve these instances with Model II range from less than one second to 461 seconds and
from less than one second to about 1 hour for Model I. In general, with Models I and II the
b-instances are easier to solve than the a-instances, as a large majority of the instances are
solved in less than one second. This reflects the fact that the size of the MILPs decreases
tremendously when users request more than one seat, which can be traced back to the
fact that the size of the event-based graph decreases in this case. With C-DARP and
F-DARP, CPLEX was not able to solve instances b4-48 to b8-96 to optimality within the
time limit of two hours, sometimes no integer solution was found. This clearly emphasizes
the computational efficiency of the event-based graph as the underlying structure of an
MILP formulation of the DARP.

4.4.2 Artificial Data – City of Wuppertal

Ridepooling services are usually operated by taxis or mini-buses, whose passenger capacity
is often equal to three or six. Thus, in the artificially created instances we consider the
case that Q ∈ {3, 6}. In the case that Q = 3, we assume that each user requests one seat
each, while for Q = 6 the number of requested seats per user is chosen randomly from
{1, . . . , 6}. Moreover, the service time sj associated with location j is set to be equal to the
number of requested seats qj . This is in accordance with the benchmark test instances for
the DARP created in Cordeau (2006). The instance size is determined by the number of
users. For both Q = 3 and Q = 6 and for each number of users n ∈ {20, 30, 40, 60, 80, 100}
we generate a set of 5 instances with n users each. We denote the instances by Q3.n.m and
Q6.n.m, indicating the m-th instance with n users, m ∈ {1, . . . , 5}. Pickup and delivery
locations are chosen randomly from a list of streets in Wuppertal, Germany. The taxi
depot is chosen to be located next to the main train station in Wuppertal. The cost ca for
an arc a in the event-based graph is computed as the length of a shortest path from its tail
to its head in an OpenStreetMap network corresponding to the city of Wuppertal using
the Python API OSMnx2. The shortest path is calculated based on OpenStreetMap data
using the shortest path method of the Python package NetworkX3. Due to slowly moving
traffic within the city center, the average travel speed is set to 15 km/h, so that the travel
time in minutes is equal to ta = 4 ca. The maximum duration of service T is set to 240
minutes. Earliest pickup times are chosen randomly from five-minute intervals within the
next 5–205 minutes (we consider inbound requests only) and the time window length is
chosen to be equal to 15 minutes, as we assume that users of ridepooling services in a city,

2https://github.com/gboeing/osmnx
3https://networkx.org/
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Instances Q n K Instances Q n K

Q3.20.1-5 3 20 4-5 Q6.20.1-5 6 20 5-6
Q3.30.1-5 3 30 5-6 Q6.30.1-5 6 30 6-7
Q3.40.1-5 3 40 6-7 Q6.40.1-5 6 40 8-9
Q3.60.1-5 3 60 9-10 Q6.60.1-5 6 60 11-12
Q3.80.1-5 3 80 10-11 Q6.80.1-5 6 80 13-14
Q3.100.1-5 3 100 13-14 Q6.100.1-5 6 100 16-17

Table 4.5: Characteristics of the Wuppertal artificial test in-
stances.

where public transport operates at high frequencies, want to be picked up without long
waiting times. A user i’s maximum ride time Li is set to 1.5 times the ride time for a
direct ride from the pickup to the delivery location. A summary of the artificial instances’
remaining characteristics can be found in Table 4.5.

In general, the artificial instances are more complex than the benchmark instances:
there is a smaller planning horizon (240–720 minutes for the benchmark instances and
240 minutes for the artificial instances) during which the same number of user requests
have to be served, i.e., the ratio of user requests per time is higher. This is also reflected
by the number of required vehicles. While there are only two to eight vehicles in the
benchmark test instances to serve between 16 and 96 user requests, there are four to 17
vehicles required in the artificial instances.

It is shown in the previous subsection that Model II performs better than Model I.
Therefore, we restrict the following tests to Model II. We compare the impact of employing
different objective functions from Section 4.3 on the economic efficiency and the customer
satisfaction of the final routing solution. The respective objective functions are used in
Model II in the place of (4.9a). Moreover, for the objective function frcr we add variables
pi, i ∈ R to Model II and replace constraints (4.1c) by constraints (4.3). In case of the
objective functions fr, fcr and frcr, we add variables di ≥ 0, i ∈ R and constraints (4.11)
to Model II. In case of the objective functions involving the users’ maximum regret, i.e.,
frmax and fcrmax , we additionally add the variable dmax ≥ 0 and constraints (4.12) to
Model II.

The weights in the objective functions involving more than one criterion are chosen
from a user perspective and based on preliminary numerical tests. In the first part of
the computational experiments we consider the single-objective functions fc, fr and frmax .
The weights in fcr and fcrmax are then chosen so that the values of total and maximum
regret, respectively, in fcr and fcrmax deviate not more than 15% from the optimal objective
values for fr and frmax (in instances solved to optimality). After some preliminary testing
the weights are set to α = 1 and β = n

5 , which yields

fcr =
∑

a∈A
ca xa +

∑

i∈R
di and

fcrmax =
∑

a∈A
ca xa +

n

5
dmax.

Note that, choosing the weighting parameter β as a function of n ensures that not only
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fc fr

n fc fr CPU fc fr Gap CPU

Q3

20 113.3 136.8 0.06 142.5 12.2 0 0.05
30 170.7 250.3 0.06 209.1 23.5 0 0.07
40 205.8 346.6 0.15 259.3 46.4 0 0.55
60 309.6 631.0 1.09 385.7 128.8 0 44.33
80 383.5 798.0 7.00 480.24 193.64 134 47214

100 445.5 1070.4 218 603.73 193.03 313 60603

Q6

20 117.6 144.2 0.02 135.7 14.3 0 0.02
30 193.5 202.3 0.04 223.7 39.8 0 0.05
40 246.8 273.0 0.06 294.8 48.16 0 0.06
60 343.9 467.3 0.26 393.3 99.7 0 2.13
80 448.9 640.4 0.73 520.3 148.8 0 106
100 543.4 791.6 6.07 627.1 200.7 5 3236

3 The average is built only over three instances, as two instances
are not solved within 7200s.

4 The average is built only over four instances, as one instance is
not solved within 7200s.

Table 4.6: Average values on the Q3 and Q6 test instances
solved with the objective functions fc and fr.

the first term in fcrmax grows with the number of users.

By using the objective function frcr we can measure the impact of denying certain
requests on the served users’ regret and the total routing costs. The weighting parameter γ
in frcr defines the trade-off between the general requirement of answering as many requests
as possible on one hand, and the goal of cost and time efficient transport solutions on the
other hand. After testing several weights, it turns out that γ = 20 is a reasonable choice,
yielding

frcr =
∑

a∈A
ca xa +

∑

i∈R
di + 20

(
n−

∑

i∈R
pi

)
.

In our numerical experiments, on average at most 10% of the requests are rejected when
using these weights. Note that, several authors using weighted-sum objectives base their
choice of weights on Jorgensen et al. (2007) (see, e.g., Kirchler and Wolfler Calvo, 2013;
Mauri et al., 2009). However, the total routing costs, the total/maximum regret and
the number of unanswered requests depend strongly on the test instances and may vary
considerably. Since in this section we create a new class of test instances, we refrain from
using these predetermined weights.

In Tables 4.6, 4.7 and 4.8 the results are summarized. All figures reported are average
values over five instances Q3.n.m, m ∈ {1, . . . , 5} and Q6.n.m, m ∈ {1, . . . , 5}, respec-
tively. The tables contain information about the total routing costs, the total regret (and
where applicable the maximum regret and the percentage of answered requests) for each
number of user requests n ∈ {20, 30, 40, 60, 80, 100} of the instance sets Q3 and Q6. Fur-
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fcr frcr

n Obj. fc fr Gap CPU Obj. fc fr AR Gap CPU

Q3

20 141.5 128.3 13.2 0 0.04 140.4 121.2 7.2 97 0 0.04
30 219.0 192.5 26.4 0 0.08 215.9 186.5 17.3 98 0 0.08
40 284.0 234.3 49.7 0 0.47 275.3 220.1 19.2 96 0 0.47
60 495.6 361.6 134.0 0 37.04 459.3 326.7 56.6 93 0 6.77
80 663.34 454.34 208.94 34 36804 598.2 412.8 61.4 92 1.2 1705
100 762.7 533.8 228.9 12 6416 718.6 500.3 86.4 93 8.2 5796

Q6

20 139.8 124.5 15.4 0 0.03 138.1 122.5 11.6 99 0 0.03
30 253.6 209.2 44.4 0 0.07 241.5 189.8 11.7 93 0 0.05
40 316.3 267.4 48.9 0 0.08 304.1 249.0 19.1 96 0 0.07
60 476.9 373.7 103.2 0 1.52 438.1 340.7 33.4 95 0 0.64
80 655.4 503.3 152.1 0 20.24 589.5 450.1 27.4 93 0 1.75
100 804.9 595.0 209.9 0 853 719.5 530.7 44.8 93 0 5.28

4 The average is built only over four instances, as one instance is not solved within
7200s.

Table 4.7: Average values on the Q3 and Q6 test instances solved with the objec-
tive function fcr and frcr.

frmax fcrmax

n fc fr frmax Gap CPU Obj. fc fr frmax Gap CPU

Q3

20 142.0 48.6 8.9 0 0.03 159.0 119.9 91.9 9.8 0 0.04
30 211.7 64.6 7.9 0 0.05 239.1 191.8 114.3 7.9 0 0.14
40 255.9 132.5 9.5 0 0.16 305.8 228.4 218.4 9.7 0 0.65
60 388.8 301.4 13.0 0 0.84 484.6 325.6 442.9 13.3 0 3.11
80 495.0 427.5 12.6 0 1443 634.2 431.3 557.4 12.7 1 1749
100 599.9 499.2 11.0 1 1496 738.0 506.5 709.7 11.6 2 5884

Q6

20 137.4 42.2 5.9 0 0.02 149.8 125.9 50.6 6.0 0 0.04
30 223.8 118.6 11.2 0 0.11 274.3 206.8 149.9 11.2 0 0.05
40 293.5 114.0 12.3 0 0.06 355.9 255.0 232.5 12.6 0 0.11
60 406.8 246.7 11.5 0 0.28 502.4 363.8 332.1 11.6 0 0.84
80 531.2 365.9 11.0 0 1.52 663.0 485.7 431.9 11.1 0 7.15
100 646.3 478.8 12.0 0 15.93 815.3 573.2 588.3 12.1 0 71.12

Table 4.8: Average values on the Q3 and Q6 test instances solved with the ob-
jective functions frmax and fcrmax .
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fr vs. fc fcr vs. fc fcr vs. fr frmax vs. fc fcrmax vs. fc fcrmax vs. frmax

n ∆fc ∆fr ∆fc ∆CPU ∆fr ∆CPU ∆fc ∆fr ∆fc ∆ CPU ∆frmax ∆ CPU

Q3

20 26 -91 13 -36 8 -22 25 -64 6 -21 10 47
30 22 -91 13 32 12 24 24 -74 12 119 0 152
40 26 -87 14 216 7 -15 24 -62 11 336 2 309
60 25 -80 17 3286 4 -16 26 -52 5 184 2 269
80 25 -76 18 52539 8 -22 29 -46 12 24927 1 21
100 35 -82 20 2840 19 6 35 -53 14 2597 6 293
Avg. 27 -84 16 9813 10 -7 27 -59 10 4690 4 182

Q6

20 15 -90 6 75 7 75 17 -71 7 150 1 82
30 16 -80 8 57 12 43 16 -41 7 29 0 -51
40 19 -82 8 36 2 23 19 -58 3 96 3 77
60 14 -79 9 489 4 -29 18 -47 6 224 1 203
80 16 -77 12 2664 2 -81 18 -43 8 877 0 372
100 15 -75 9 13948 5 -74 19 -40 5 1071 1 346
Avg. 16 -80 9 2878 5 -7 18 -50 6 408 1 172

Table 4.9: Comparison of the change in total routing costs, total regret and CPU time
(all in percent) on the Q3 and Q6 test instances solved with the objective
functions fc, fr, fcr, frmax and fcrmax .

thermore, the relative gap and the CPU time returned by CPLEX are reported. If no
relative gap is shown, all instances are solved to optimality.

The computational times show that Model II combined with a cost-objective function
can be used to solve small to medium-sized artificial instances very efficiently. This is in
accordance with the results indicated by the benchmark instances. The computational
time increases when other objective functions are used, but most of the instances can still
be solved within a few seconds. However, for the larger Q3-instances (n ∈ {80, 100}) the
CPU time increases drastically. In general, the Q6-instances are easier to solve than the
Q3-instances, reflecting the smaller number of possible user allocations in the vehicle when
the number of requested seats per user is not limited to one. While the scenario that users
may request any number of seats between one and six reflects the conditions under which
ridepooling services operate in reality, a uniform distribution of qi in the set {1, . . . , 6} is
probably not realistic. In Section 7.2, the distribution of group sizes is discussed based on
Hol mich! App data.

A comparison of the effects of different objective functions in Model II can be found in
Tables 4.9 and 4.10. In the second and third column of Table 4.9 we illustrate the change
(in percent) in total routing costs and total regret when replacing fc by fr. While the
regret decreases by an average of 84% and 80% (Q3- and Q6-instances, respectively), the
routing costs only increase by 27% and 16% on average. This shows that by including the
criterion of the users’ regret in the objective function we can spare users a large amount of
unnecessary ride or waiting time. This comes at the cost of higher routing costs. However,
even from a service provider’s perspective it might be reasonable to accept a rather small
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fcrmax vs. fcr frcr vs. fcr

n ∆fc ∆fr ∆CPU ∆fc ∆fr ∆CPU ∆AR

Q3

20 -7 594 22 -6 -46 6 -3
30 0 333 66 -3 -34 0 -2
40 -3 340 38 -6 -61 1 -4
60 -10 231 -92 -10 -58 -82 -7
80 -5 167 -52 -9 -71 -54 -8
100 -5 210 -8 -6 -62 -10 -7
Avg -5 312 -4 -7 -55 -23 -5

Q6

20 1 230 43 -2 -24 21 -1
30 -1 237 -18 -9 -74 -21 -7
40 -5 375 45 -7 -61 -5 -4
60 -3 222 -45 -9 -68 -58 -5
80 -3 184 -65 -11 -82 -91 -7
100 -4 180 -92 -11 -79 -99 -7
Avg -2 238 -22 -8 -65 -42 -5

Table 4.10: Comparison of the change in total routing costs, total regret, CPU time and
number of answered requests (all in percent) on the Q3 and Q6 test instances
solved with the objective functions fcr, fcrmax and frcr.

loss in order to improve user convenience and to remain competitive. In column six of
the same table we demonstrate that the weights chosen in the cost-regret objective fcr
indeed reflect a user perspective: On average (over the instances solved to optimality
within the time limit) there is an increase of at most 15% in total regret compared to
solely optimizing w.r.t. fr. Moreover, there is an average increase in routing costs of 16%
(Q3-instances) and 9% (Q6-instances) compared to the costs when using routing costs as
the only optimization criterion, i.e., when using fc as the objective function. Comparing
fcr to fc, we observe an increase in CPU time for all instances but Q = 3 and n = 20, but
CPU times for Q = 3 and n ∈ {20, 30, 40, 60} and all Q6-instances are still reasonable as
shown in Table 4.7. Comparing fcr to fr we observe an average decrease in CPU time of
7% for the Q3- and Q6-instances. Similar results are obtained for the objective functions
fc, frmax and fcrmax , although the average decrease in regret when comparing frmax to fc is
only 59% (Q3-instances) and 50% (Q6-instances). The meaningful choice of the weighting
parameter in fcrmax is demonstrated by the second last column in Table 4.9, as the increase
in maximum regret is below 15% for all instances.

Since both of the weighted-sum objectives fcr and fcrmax improve user convenience and
increase routing costs compared to fc, we evaluate which of the objective functions is more
effective in this respect. Columns two to four in Table 4.10 illustrate that when using fcrmax

instead of fcr the average computational time decreases between 8% to 92% (Q3-instances)
and between 45% and 92% (Q6-instances) in the larger instances, i.e., n ∈ {60, 80, 100},
which are harder to solve in general. Despite its computational superiority and the fact
that the objective function fcrmax generally improves the user satisfaction of optimal tours,
it has some shortcomings. Indeed, if there is one user with a high regret di, for instance,
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Figure 4.2: Vehicle routes of instance Q3n20.5 solved using the objective function fcr.

because he or she is the last user in a tour to be dropped off, the time loss of all other
users j with dj < di has no impact on the objective function. Therefore, the other users
may not be driven to their delivery points as quickly as possible. This is reflected by
the increase in regret using the objective fcrmax as compared to fcr, shown in Table 4.10:
312% (Q3-instances) and 238% (Q6-instances). The routing costs remain roughly the
same; there is an average decrease of 5% (Q3-instances) and 2% (Q6-instances). Due to
these shortcomings, we do not consider a tri-criterion weighted-sum objective function
frcrmax , but restrict our attention to frcr in the remaining discussion.

The last four columns of Table 4.10, frcr vs. fcr, illustrate the decrease in the overall
routing costs and regret that is obtained when rejecting some of the requests. This is
illustrated at the instance Q3n20.5 in Figure 4.2, showing an optimal tour w.r.t. fcr, and
Figure 4.3 where an optimal tour w.r.t. frcr is shown. The depot in both figures is marked
in red, and a colored part of the route represents the part where a certain request is in the
vehicle. Dark gray parts mark parts of the route where the vehicle is empty. Note that
parts of the routes (and colors) overlap, as some vehicles might use the same roads on
parts of their routes. In Figure 4.2 the driver has to make a detour to transport requests 1
(yellow part of the route) and 19 (dark brown part of the route), while it becomes obvious
from Figure 4.3 that the service provider benefits from a large decrease in routing costs.
Table 4.11 contains the corresponding vehicle routes including pickup and delivery times
in minutes after the start of service. In the vehicle tours computed using frcr, users 8
and 10 who are transported with an associated regret of 5 and 3 minutes, respectively, are
transported without any time loss.
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Figure 4.3: Vehicle routes of instance Q3n20.5 solved using the objective function frcr.

fcr

Tour 1 Location 1+ 1− 15+ 15− 5+ 5− 8+ 10+ 8− 10−

Time[m] 24.4 43.2 60.0 76.9 120.0 136.6 156.5 160.0 168.0 175.6

Tour 2 Location 9+ 9− 6+ 6− 7+ 7−

Time[m] 60.0 71.7 95.0 120.6 150.0 173.2

Tour 3 Location 12+ 12− 14+ 14− 17+ 17−

Time[m] 60.0 79.4 105.0 128.0 180.0 200.6

Tour 4 Location 13+ 13− 3+ 3− 19+ 19−

Time[m] 30.0 31.0 85.0 108.9 140.0 170.7

Tour 5 Location 20+ 20− 4+ 4− 18+ 18− 11+ 11− 16+ 16− 2+ 2−

Time[m] 50.0 56.2 65.0 72.0 85.0 92.5 95.0 102.4 121.3 138.1 155.0 169.1

Table 4.11: Vehicle routes (without depot) of instance Q3n20.5 solved using the ob-
jective function fcr.
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frcr

Tour 1 Location 15+ 15− 5+ 5− 10+ 10−

Time[m] 60.0 76.9 120.0 135.6 160.0 172.5

Tour 2 Location 13+ 13− 9+ 9− 6+ 6− 7+ 7−

Time[m] 30.0 31.0 60.0 71.7 95.0 120.6 150.0 173.2

Tour 3 Location 12+ 12− 14+ 14− 17+ 17−

Time[m] 60.0 79.4 105.0 128.0 180.0 200.6

Tour 4 Location 3+ 3− 8+ 8−

Time[m] 85.
0

108.9 155.0 163.0

Tour 5 Location 20+ 20− 4+ 4− 18+ 18− 11+ 11− 16+ 16− 2+ 2−

Time[m] 50.0 56.2 65.0 72.0 85.0 92.5 95.0 102.4 121.3 138.1 155.0 169.1

Table 4.12: Vehicle routes (without depot) of instance Q3n20.5 solved using the ob-
jective function frcr.

For the Q3- and Q6-instances, on average 5% less of the requests are answered in
comparison to the results obtained with the objective function fcr. In turn, we observe an
average decrease of the total routing costs and the total regret for all instance sizes. While
the decrease in routing costs ranges from 2% to 11%, there are huge savings in regret: There
is an average decrease of 55% and 65% (Q3- and Q6-instances, respectively.) Furthermore,
computational time decreases by 23% (Q3-instances) and 42% (Q6-instances).

While it comes at cost of an increase in computational time and routing costs, the
tests show that it is worthwhile to use more than one optimization criterion. Objective
functions fcr and frcr provide satisfactory results w.r.t. an increase in the users’ total
regret as compared to the total regret when using it as the only optimization criterion.
Moreover, we show that the service quality can be improved for some users and costs can
be reduced by rejecting unfavorable requests. Average computation times using objective
function frcr for Q = 3, n ∈ {20, 30, 40, 60} and Q = 6 are less than 7 seconds. Hence, our
model can be used to solve small to medium-sized instances. It is applicable without the
need for extensive coding, as it only consists of an MILP solver and the generation of the
event-based graph.

4.5 Summary

In this chapter we suggest a new perspective on modeling ridepooling problems. By using
an event-based graph representation rather than a location-based model, we show that
capacity, pairing and precedence constraints can be handled implicitly. While the result-
ing MILP formulations are compact and generally have more variables as compared to
classical compact models, extensive numerical experiments show that the implicit con-
straint formulation leads to considerably improved computational times. Indeed, both for
benchmark instances from the literature as well as for artificial instances in the city of
Wuppertal, problems with up to 80 requests can be solved in less than 7 seconds.

Moreover, we analyse the effects of including additional optimization criteria in the
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model. In addition to the classical cost objective function, we consider the (total or max-
imum) regret as well as the number of rejected requests as measures for user satisfaction.
By combining these criteria into a weighted-sum objective function we demonstrate that
user satisfaction can be largely improved at only relatively small additional expenses, i.e.,
overall routing costs.

Model II proposed in this chapter constitutes a basis for the following chapters. Since
Model II outperforms Model I, in the following, if we mention the event-based formulation,
we refer to Model II and call it the event-based (EB) MILP.

While most real world instances of the DARP are much larger, the proposed approach
can be used as a subroutine also for the dynamic DARP. Indeed, often only very few new
requests arrive simultaneously and re-routing of already scheduled users is only acceptable
if it does not postpone their arrival time too much. Consequently, the number of simul-
taneous users in such a rolling-horizon version of a dial-a-ride problem is relatively small
and can be solved exactly using the EB model as shown in Chapter 6.

Since the number of variables and constraints in the event-based models strongly de-
pends on the size of the graph, in the following chapter our efforts aim at developing
techniques to detect infeasible nodes and arcs. Moreover, by combining the EB model
with a location-based formulation, a new formulation is proposed, which is proven to be
tighter than the location-based standard model proposed in Ropke et al. (2007), and in-
tegral under the assumption that every pair of locations induces a unique ordering (and
other details).
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5 Location-Augmented-Event-Based MILP
Models: A Tight Formulation for the
Static Dial-a-Ride Problem

In this chapter, we propose novel MILP formulations that combine the advantages of the
location-based formulation from Ropke et al. (2007) and the EB formulation presented
in the previous chapter (see Model II). We introduce a location-augmented-event-based
(LAEB) formulation and an aggregated location-augmented-event-based (ALAEB) formu-
lation. The ALAEB is a slightly adapted variant of the LAEB that has significantly fewer
binary variables and thus potentially reduces the size of the branch-and-bound tree. We
show that both formulations have a tighter LP relaxation than the location-based model
proposed in Ropke et al. (2007). Moreover, the new formulations are tight in the sense
that their LP relaxation has an integral solution if the time windows fulfill additional
conditions. This tightness is also reflected by an average root node gap of only 1.6% in
our computational study (for general time windows). To preprocess the models, lower and
upper bounds on the beginning of service times at all nodes are computed to reduce the
size of the event-based graph and hence of the MILP formulations (by 22% on average in
our tests). In a second step the new models are further improved by adapting problem
specific valid inequalities inspired by Schulz and Pfeiffer (2024). Numerical experiments
on benchmark instances show that computational times are on average reduced by 53.9%
compared to the state-of-the-art EB formulation.

This chapter deals with the deterministic, homogeneous and static DARP (see Sec-
tion 3.3). We assume that all requests have to be accepted and that the objective is to
minimize the total routing costs.

The chapter is structured as follows: First, we present the new location-augmented-
event-based formulations in Section 5.1. Our theoretical investigation of the new formu-
lations is presented in Section 5.2. In Section 5.3, we introduce methods to improve the
performance of branch-and-bound search. The new formulations as well as the introduced
methods are evaluated in the computational study in Section 5.4. Finally, the chapter
closes with a conclusion in Section 5.5. The results in this chapter have been published in
Gaul et al. (2023).

5.1 Location-Augmented-Event-Based MILP Models

The DARP can be represented by different graph-based formulations: location-based and
event-based representations. In this chapter, the LB formulation from Ropke et al. (2007)
(see Section 3.4) is used as a location-based reference model. Comparing the EB formu-
lation with the LB formulation we find advantages for both of them (implicit formulation
of precedence, pairing, and capacity constraints vs. fewer binary variables). We combine
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both formulations into two location-augmented-event-based formulations in Sections 5.1.1
and 5.1.2, respectively, by using the advantages of both the event- and the location-based
formulation.

5.1.1 Location-Augmented-Event-Based MILP Formulation

In this section, we integrate the implementation of time consistency in the LB formulation
into the EB formulation to obtain a more efficient formulation.

ZLAEB = min
∑

a∈A
ca · xa (5.1a)

s. t. (3.12j), (4.1b)− (4.1d), and (4.9h),

ej ≤ B̄j ≤ `j ∀j ∈ J, (5.1b)

B̄j ≥ B̄i + si + t̄ij − M̄ij

(
1−

∑

v:v1=i, w:w1=j

x(v,w)

)
∀i, j ∈ J. (5.1c)

Due to the construction of the event-based graph and constraints (4.1c) and (4.9h) there
is exactly one node w with w1 = j and

∑
a∈δin(w) xa = 1 while

∑
a∈δin(w′) xa = 0 for

all other nodes w′ with w′1 = j. Therefore, only for the first one M̃v,w(1 − x(v,w)) is 0
in constraints (4.9b). This constraint sets Bw = B̄j while the others only ensure that
feasible values are used for Bw′ . This leads to the simplification of time consistency
constraints (5.1c). By this, maximum ride time constraints (3.12j) and time windows
constraints (5.1b) can be ensured as in the LB formulation. As can be seen, the number of
constraints in (3.12j), and (5.1b)–(5.1c) is clearly smaller than in (4.9b)–(4.9g). Moreover,
the numerically unfavorable big-M-constraints are stronger in (5.1c) than in (4.9b), as

(
1−

∑

v:v1=v′1, w:w1=w′1

x(v,w)

)
≤ (1− x(v′,w′)) ∀(v′, w′) ∈ A

while M̄ij = M̃v,w with v1 = i and w1 = j with the classical choice

M̄ij = `i + si + t̄ij − ej ∀i, j ∈ J

and
M̃v,w = `v1 + sv1 + t(v,w) − ew1 ∀(v, w) ∈ A.

Thus, the model formulation (3.12j), (4.1b)–(4.1d), (4.9h), and (5.1a)–(5.1c) is an im-
proved version of (4.9a)–(4.9h). In the next section, we present another location-augmented-
event-based formulation with fewer binary variables.

5.1.2 Aggregated Location-Augmented-Event-Based MILP Formulation

The LB formulation has the advantage that only O(n2) binary variables are required while
the EB formulation has O(nQ+1) binary variables (for n ≥ Q+ 1). We use the equality

x̄ij =
∑

(v,w)∈A:v1=i, w1=j

x(v,w), (5.2)
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which is already used in (5.1c). Thereby, we get the following ALAEB formulation:

ZALAEB = min
∑

i,j∈J
c̄ij · x̄ij (5.3a)

s. t. (3.12j), (4.1b)− (4.1d), (5.1b) and (5.2),

B̄j ≥ B̄i + si + t̄ij − M̄ij (1− x̄ij) ∀i, j ∈ J, (5.3b)

x̄ij ∈ {0, 1} ∀i, j ∈ J, (5.3c)

0 ≤ xa ≤ 1 ∀a ∈ A. (5.3d)

While (5.3a) corresponds to (3.12a), constraints (5.3b) are equivalent to (5.1c) using (5.2).
Thus, the difference between both location-augmented-event-based models is the fact that
x̄ variables are added as binary variables while x variables are relaxed in constraints (5.3d).
For this reason, the model contains fewer binary variables than the LAEB formulation.
Note, that given an integer solution x̄ the tours are completely described. Thus, there
are at most K flows of size one from depot to depot through the event-based graph, i.e.,
xa variables are also integer. In total, the ALAEB formulation replaces an exponential
number of constraints (3.12e) by an additional number of O(nQ+1) continuous variables.

5.2 Theoretical Analysis

In this section, we investigate the properties of the LP relaxations of the LAEB and
the ALAEB formulation in comparison to the LP relaxation of the LB formulation. We
introduced the ALAEB formulation mainly to branch on a different set of variables. The
following theorem shows, however, that the LP relaxations of the LAEB and the ALAEB
formulation are equivalent.

Theorem 5.1. The LP relaxations of the LAEB formulation (3.12j), (4.1b)–(4.1d), (4.9h),
and (5.1a)–(5.1c) and of the ALAEB formulation (3.12j), (4.1b)–(4.1d), (5.1b), (5.2), and
(5.3a)–(5.3d) are equivalent.

Proof. Constraints (3.12j), (4.1b)–(4.1d) and (5.1b) are part of both model formulations.
As we consider the LP relaxation, constraints (4.9h) and (5.3d) are identical. Thus, we
have to show that (5.1a) and (5.1c) are equivalent to (5.2) and (5.3a)–(5.3c).

Starting with (5.2), and (5.3a)–(5.3c), we can replace x̄ij in objective (5.3a) and con-
straints (5.3b) by

∑
(v,w)∈A:v1=i, w1=j x(v,w) (equations (5.2)) and obtain objective (5.1a)

and constraints (5.1c), respectively. Moreover, equations (5.2) and constraints (4.1b) and
(4.1c) imply 0 ≤ x̄ij ≤ 1 for all i, j ∈ J . Thus, constraints (5.3c) are redundant in the LP
relaxation of ALAEB. However, then x̄ij is only set in (5.2) but not used in the model any
more such that (5.2) is also redundant and we obtain (5.1a) and (5.1c).

Analogously, we can start with (5.1a) and (5.1c), add the redundant equations (5.2) and
constraints (5.3c). Using equations (5.2), we can replace

∑
(v,w)∈A:v1=i, w1=j x(v,w) by x̄ij

in objective (5.1a) and constraints (5.1c) to obtain objective (5.3a) and constraints (5.3b),
respectively. By this, we obtain (5.2), and (5.3a)–(5.3c).

We formulate and prove the following theorems only for the LAEB formulation, but due
to Theorem 5.1 the results hold also for the ALAEB formulation. The next theorem
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considers the special case that the time windows induce a unique order in time for every
pair of locations. We note that in Bertsimas et al. (2019) a similar result for the large-scale
dynamic optimization of taxis is used.

Theorem 5.2. If the time windows [ej , `j ], j ∈ J , fulfill the following conditions

1. `i− − ei+ − si ≤ Li for all i ∈ P and

2. either `i + si + t̄ij ≤ ej or ei + si + t̄ij > `j holds for all i, j ∈ J ,

the LAEB formulation (3.12j), (4.1b)–(4.1d), (4.9h), and (5.1a)–(5.1c) is integral if all
arcs (v, w) with v1 = i and w1 = j are deleted if `j < ei + si + t̄ij.

Proof. Condition 1 ensures that maximum ride time constraints (3.12j) are fulfilled. Be-
cause of the first case in condition 2

B̄i + si + t̄ij ≤ `i + si + t̄ij ≤ ej ≤ B̄j ,

i.e., B̄i + si + tij ≤ B̄j holds for these pairs i, j. In the second case, ei + si + t̄ij > `j ,
location j is not reached within the time window even if the vehicle starts as early as
possible in location i. Thus, x(v,w) = 0 for all (v, w) with v1 = i and w1 = j. In this case,
we can simply omit arc (v, w) from the graph. Due to condition 2 all remaining arcs fulfill
`i+si+ t̄ij ≤ ej , i.e., location j is reached latest at the beginning of the time window if the
vehicle visits location i directly before. Thus, B̄i + si + tij ≤ B̄j with v1 = i and w1 = j
is always fulfilled. As a consequence constraints (5.1c) are always fulfilled. For the same
reason we always find a solution with B̄i ∈ [ei, `i] for all i ∈ J . Hence, we can always find
a solution fulfilling the time window constraints (5.1b). Together, we can omit constraints
(3.12j), and (5.1b)–(5.1c).

Constraints (4.1d) are equivalent to
∑

a∈δout(0,...,0) xa = K by c(0,...,0),(0,...,0) = 0, i.e.,
vehicles can drive from the depot to the depot without any costs. Without constraints
(4.1c), the remaining formulation (4.1b), (4.1d), and (4.9h) with objective (5.1a) is a
minimum cost flow problem with arc capacities xa ≤ 1. The left side of Figure 5.1

(wm, vm) ∈ δin(vm), vm1 = i+ ∀m ∈ {1, ..., m̄}

wm̄

...

w2
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Figure 5.1: Network transformation.

corresponds to (4.1b), (4.1d), and (4.9h) with objective (5.1a) for a fixed location i+,
where vm, m ∈ {1, . . . , m̄}, are all events with vm1 = i+ and wm the possible predecessor
events. Note that, vm = vm

′
for m′ 6= m might hold such that all relations between
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predecessors w and events v with v1 = i+ are included. We can add two further nodes
ini and outi in between and define outi as a source with an outflow of 1 and ini as a sink
with inflow 1 without destroying the network flow property. In fact, this is equivalent to
set the flow variable x(ini,outi) = 1 (middle part of the figure).

As x(wm,vm) = x(wm,ini) = x(outi,vm), there is a flow of x(wm,vm) from wm via ini and

outi to vm. First, this means that
∑m̄

m=1 x(wm,vm) = x(ini,outi) = 1. Second, we can shrink
x(wm,ini), x(outi,vm), and the corresponding flow between ini and outi to variable x(wm,vm)

and obtain the situation on the right side of Figure 5.1. By definition
∑m̄

m=1 x(wm,vm) sums
up all incoming flow to all events with v1 = i+. Thus, it is equivalent to (4.1c) for the
considered i ∈ R. By repeating this step for all i ∈ R, formulation (3.12j), (4.1b)–(4.1d),
(4.9h), and (5.1a)–(5.1c) is integral if conditions 1 and 2 are fulfilled and all arcs (v, w)
with v1 = i and w1 = j are deleted if `j < ei + si + t̄ij .

Note that, condition 2 holds in particular if each pickup and delivery has a fixed time,
that is, the time windows are limited to one unique point in time, i.e., ej = B̄j = `j for
all j ∈ P ∪D (and time windows at depots are set appropriately). The theorem allows for
several conclusions:

• The sequencing of requests makes the problem challenging. In fact, it is well-known
that exact solution approaches for the DARP typically perform better for instances
with tighter time windows which have a lower number of feasible sequences of re-
quests.

• Condition 2 ensures that B̄i + si + t̄ij ≤ B̄j holds for all arcs (v, w) with v1 = i
and w1 = j in the reduced graph. Besides the fact that constraints (5.1c) become
unnecessary, this leads to a cycle-free graph structure. That is, there are no events
any more which can be predecessors as well as successors of each other in different
solutions.

• Example 5.3 shows that Theorem 5.2 cannot be transferred to the LB formulation
(3.12a)–(3.12m). This fact suggests that the LAEB and the ALAEB formulation are
tighter than the LB formulation.

• Moreover, to the best of our knowledge, EB, LAEB, and ALAEB are the first com-
pact formulations (given the vehicle capacity) for the DARP for which Theorem 5.2
holds. This result is important for practice, as there are applications with fewer
cycles in the graph, e.g., if customers’ trips start or end at the same location (for
example at a public transport stop), as well as solution approaches for a dynamic
taxi routing problem which use similar results (Bertsimas et al., 2019).

Example 5.3. Consider the instance with three customers, q1 = q2 = 2, q3 = 3, Q = 6,
and the travel times given in the left part of Figure 5.2. We assume c̄ij = t̄ij for all i, j ∈ J
and that maximum ride time constraints are fulfilled. Moreover, let e1+ = `1+ = 10,
e2+ = `2+ = 11, e3+ = `3+ = 12, e1− = `1− = 13, e2− = `2− = 14, e3− = `3− = 15. Figure
5.2 presents an optimal solution for (3.12a)–(3.12j) and 0 ≤ x̄ij ≤ 1 for all i, j ∈ J in
the middle of the figure and an optimal solution for (3.12a)–(3.12m) on the right side of
the figure. As can be seen there is a positive flow of 0.917 from 1+ via 2+ to 3+, which
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Figure 5.2: Example for LB formulation.

means that all three customers are in the vehicle at the same time at least for a fractional
flow. As they require seven seats in total, but the vehicle has only six, all three customers
cannot share the vehicle at the same time.

The following theorem gives formal evidence for the last point.

Theorem 5.4. Let zrelLB be the objective value of an optimal solution of the LP relaxation
of the LB model (3.12a)–(3.12m), i.e., with 0 ≤ x̄ij ≤ 1 for all i, j ∈ J̄ instead of (3.12m).
Let further zrelLAEB be the objective value of an optimal solution of the LP relaxation of the
LAEB model (3.12j), (4.1b)–(4.1d), (4.9h), and (5.1a)–(5.1c), i.e., with 0 ≤ xa ≤ 1 for
all a ∈ A instead of (4.9h). Then, zrelLAEB ≥ zrelLB holds. Moreover, there are instances in
which zrelLAEB > zrelLB holds.

Proof. The proof consists of three steps. First, we prove that every feasible LP solution of
the LAEB formulation is also a feasible LP solution of the LB formulation, i.e., zrelLAEB ≥
zrelLB. Second, we give an example that there is a feasible LP solution for the LB formulation
which is not LP feasible for the LAEB formulation. Third, we give a concrete instance in
which zrelLAEB > zrelLB holds.

1. Set x̄ij =
∑

v:v1=i, w:w1=j x(v,w) for all i, j ∈ J , where x(v,w), (v, w) ∈ A are given by
a feasible LP solution of the LAEB formulation. Furthermore, define x̄0+j = x̄0−j = x̄0j

and x̄i0+ = x̄i0− = x̄i0. Due to (4.1c) the ingoing flow is 1 for each pickup location i+.
Because of (4.1b) this holds also for the outgoing flow. All outgoing arcs of a node v with
v1 = i+ end in a node w with wj = i for one j ∈ {2, . . . , Q} until a node w with w1 = i−

is reached. This holds also for all nodes connected by an arc with node w. With the same
argument this holds for their connected nodes and so on. On the other hand there is no
arc between a node w′ with w′1 6= i+ and w′l 6= i for all l ∈ {2, . . . , Q} and a node w with
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w1 = i−. Thus, constraints (4.1b) lead to

∑

(v,w):w1=i+

x(v,w) = 1 =
∑

(v,w):w1=i−
x(v,w). (5.4)

Together, (3.12b) and (3.12c) are fulfilled. With our choice of x̄ij , (4.1d) leads to

∑

j∈P
x̄0+j =

∑

(v,w):v1=0

x(v,w) ≤ K,

which means that (3.12d) is fulfilled.

There is one constraint in (3.12e) for each S ∈ S. Each S consists of a path starting
in the starting depot 0+ and visiting the delivery location of a request i without having
visited the respective pickup location before. In the EB formulation, a flow of 1 enters an
event-node associated with the pickup location of i due to (4.1c). Due to the construction
of the event-based graph and flow constraints (4.1b), this flow originates in the depot
(as we consider circulation flows, we may w.l.o.g. define the depot as source and sink of
the circulation). Thus, and due to our definition of x̄ij , a flow of 1 has to leave set S.
Moreover, due to construction of the event-based graph and our definition of x̄ij , all flow
leaving a pickup location of i has to go to a delivery location of i, i.e., enter set S again.
In total, the flow amongst nodes in S cannot exceed |S| − 2. Thus, constraints (3.12e) are
fulfilled.

Constraints (3.12h) are fulfilled by the values of the variables B̄j , j ∈ J \{0} of a feasible
solution of the LP relaxation of the LAEB model and by setting B̄0− := B̄0 and B̄0+ := e0.

Furthermore, constraints (3.12g) and (3.12i) are fulfilled by Q0+ = Q0− = 0 and

Qj = 11P (j) qj +
∑

a∈δin(v):v∈Vj
xa

Q∑

l=2

qvl ∀j ∈ P ∪D

whereat 11P is the indicator function of P , i.e.,

11P (j) =

{
1 if j ∈ P,
0 otherwise.

As all terms are non-negative, Qj ≥ 0 for all j ∈ J̄ . For pickup locations Qj ≥ qj ; thus,
Qj ≥ max{0, Ijqj} for all j ∈ J̄ . Due to construction of event nodes,

Q∑

l=1

qvl ≤ Q ∀v ∈ V

and
Q∑

l=2

qvl ≤ Q+ Ijqj ∀v ∈ V
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for delivery locations. Thus, Qj ≤ min{Q,Q+ Ijqj} for all j ∈ J̄ and constraints (3.12i)
are fulfilled.

Due to construction of the event-based graph, there are no arcs (v, w) with v1 = i and
w1 = j and

11P (i) qi +

Q∑

l=2

qvl + Ijqj > 11P (j) qj +

Q∑

l=2

qwl

for any pair i, j ∈ J . Thus

11P (i) qi +

Q∑

l=2

qvl + Ijqj ≤ 11P (j) qj +

Q∑

l=2

qwl

holds for every i, j ∈ J if x(v,w) > 0 with v1 = i and w1 = j and thereby

∑

(v,w)∈A:v1=i, w1=j

x(v,w)

(
11P (i) qi +

Q∑

l=2

qvl + Ijqj
)

≤
∑

(v,w)∈A:v1=i, w1=j

x(v,w)

(
11P (j) qj +

Q∑

l=2

qwl

)
(5.5)

for every i, j ∈ J . Moreover,

11P (i) qi +

Q∑

l=2

qvl + Ijqj −Q ≤ 11P (j) qj ∀i, j ∈ J, v ∈ V : v1 = i

holds because of construction of the events. Thus,

(
1−

∑

(v,w):v1=i, w1=j

x(v,w)

)(
11P (i) qi +

Q∑

l=2

qvl + Ijqj −Q
)

≤
(

1−
∑

(v,w):v1=i, w1=j

x(v,w)

)
11P (j) qj ∀i, j ∈ J. (5.6)
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Together, we get

Qi + Ijqj −Q
(

1−
∑

(v,w):v1=i, w1=j

x(v,w)

)

= 11P (i) qi +
∑

a∈δin(v):v∈Vi
xa

︸ ︷︷ ︸
≤1 (5.4)

Q∑

l=2

qvl + Ijqj −Q
(

1−
∑

(v,w):v1=i, w1=j

x(v,w)

)

≤ 11P (i) qi +

Q∑

l=2

qvl + Ijqj −Q
(

1−
∑

(v,w):v1=i, w1=j

x(v,w)

)

(5.5)−(5.6)

≤
(

1−
∑

(v,w):v1=i, w1=j

x(v,w)

)
11P (j) qj +

∑

(v,w):v1=i, w1=j

x(v,w)

(
11P (j) qj +

Q∑

l=2

qwl

)

≤ 11P (j) qj +
∑

a∈δin(w):w∈Vj
xa

Q∑

l=2

qwl

= Qj ∀i, j ∈ J.

With our choice of x̄ij , i, j ∈ J̄ constraints (3.12g) are fulfilled. Together, the first step
follows.

2. Figure 5.3 shows an instance with two requests, q1 = q2 = 3, and one vehicle. Fur-
thermore, we assume that time windows are not binding. The figure shows feasible LP
solutions for the EB formulation on the left side and for the LB formulation on the right
side. Note that, only arcs with positive value for x(v,w) and x̄ij , respectively, are included
in the figure. In the upper part of the figure, the vehicle capacity is 6, i.e., both customers
can be transported simultaneously. The graphs of both approaches show the solutions

0→ 1+ → 2+ → 2− → 1− → 0

0→ 1+ → 1− → 2+ → 2− → 0

both with a weight of 0.5. If we reduce the vehicle capacity to 5, the first solution is
not integer feasible any more. While the event-based graph pictures this fact (lower left
part of the figure), the solution in the LB formulation does not change. The reason is
that capacity constraints are still fulfilled if the first solution is weighted with 0.5 and
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Figure 5.3: Example for step two in the proof of Theorem 5.4.
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Q0 = 0, Q1+ = 3, Q1− = 0, Q2+ = 5, and Q2− = 2 as the following evaluation shows:

Qi + Ijqj −Q(1− xij) ≤ Qj
0→ 1+ 0 + 3− 5 · (1− 0.5− 0.5) = 3 ≤ 3

1+ → 1− 3− 3− 5 · 0.5 = −2.5 ≤ 0

1+ → 2+ 3 + 3− 5 · 0.5 = 3.5 ≤ 5

1− → 0 0 + 0− 5 · 0.5 = −2.5 ≤ 0

1− → 2+ 0 + 3− 5 · 0.5 = 0.5 ≤ 5

2+ → 2− 5− 3− 5 · (1− 0.5− 0.5) = 2 ≤ 2

2− → 0 2 + 0− 5 · 0.5 = −0.5 ≤ 0

2− → 1− 2− 3− 5 · 0.5 = −3.5 ≤ 0

In all other cases, x̄ij = 0. Since Qj ≥ max{0, Ijqj}, it holds that Qi−Q ≤ 0 ≤ Qj −Ijqj
and the inequality is fulfilled in these cases. Thus, there is an LP solution in the LB
formulation which is not feasible for the EB formulation.

3. It remains to show that these LP solutions can be optimal. With the travel costs in

0 1+ 2+ 1− 2−

0 0 1 1 10 10
1+ 1 0 2 9 9
2+ 1 2 0 9 9
1− 10 9 9 0 1
2− 10 9 9 1 0

Table 5.1: Example for step three in the proof of Theorem 5.4.

Table 5.1 the solution 0→ 1+ → 2+ → 2− → 1− → 0 has an objective value of 23 and the
solution 0→ 1+ → 1− → 2+ → 2− → 0 an objective value of 38. Moreover, swapping 1+

and 2+ or 2− and 1− in the first solution or swapping the indices of customers 1 and 2 leads
to the same objective values due to symmetry. Therefore, the LB model will use as much
as possible of the first solution and its symmetric ones (such that capacity constraints stay
fulfilled) while the EB model uses the second solution. Thus, zrelLAEB > zrelLB holds.

The proof highlights again that the LAEB and the ALAEB formulation implicitly ensure
that pairing, precedence, and capacity constraints are fulfilled. The implicit implemen-
tation of capacity constraints leads even to a tighter polyhedron of the LP relaxation.
Due to their exponential size, pairing and precedence constraints (3.12e) are typically not
added upfront but only if they are violated. Therefore, the LAEB and the ALAEB LP
relaxation are also tighter in this aspect. However, we still face a significant number of
nodes and arcs in the event-based graph, which we compactify in Section 5.3.
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5.3 Preprocessing and Branch-and-Cut Methods

We present methods to reduce the size of the event-based graph in preprocessing and in
branch-and-cut nodes as well as new types of additional valid inequalities in this section.
Figure 5.4 gives an overview of the developed methods.

Elimination of impossible events
and arcs (Section 5.3.1)

Addition of valid inequalities
(Section 5.3.2)

Fixing of variables due to fixed
paths (Section 5.3.3)

Elimination of impossible events
and arcs (Section 5.3.4)

Pruning because of variable fix-
ings (Section 5.3.5)

Preprocessing In Branch-and-Cut nodes

Figure 5.4: Overview of developed methods.

First, we introduce preprocessing methods to eliminate impossible events and arcs in
the event-based graph based on bounds for Bv variables (Section 5.3.1). Moreover, we
propose new valid inequalities to avoid subtours, incompatible events, and infeasible paths
(Section 5.3.2). Second, methods are presented to improve the search in branch-and-cut
nodes based on previous branching decisions, see Sections 5.3.3–5.3.5.

5.3.1 Elimination of Impossible Event Nodes and Arcs in Preprocessing

We already explained in Section 4.1 that the number of events can be reduced by consider-
ing pairwise incompatibilities with respect to time windows and ride time constraints. We
present a method to systematically compute earliest and latest starting times of service at
all events. The earliest starting time BLB

v at node v can be interpreted as the shortest path
between depot event (0, . . . , 0) and the considered event (v1, . . . , vQ), i.e., the fastest way
to pick up first customers v2, . . . , vQ (for all vj 6= 0) and v1 afterwards if v1 ∈ P or deliver
v1 afterwards if v1 ∈ D while respecting the corresponding time windows. Analogously,
the latest starting time of service BUB

v in (v1, . . . , vQ) is the latest time for start of service
such that customers v1, . . . , vQ, vj 6= 0, can all be delivered within the time windows.
Naturally, an event cannot be feasible if BUB

v < BLB
v . An event v is also infeasible if there

is a customer i in the vehicle who cannot be delivered within the maximum ride time, i.e.,
if B̄UB

i + si +Li− sv1 − tv1,i− < BLB
v , whereat B̄UB

i = maxv∈Vi+{BUB
v }. Moreover, an arc

(v, w) is infeasible if BLB
v + sv1 + t(v,w) > BUB

w . Then, we can eliminate (v, w) from the
graph.

Due to construction of the event-based graph,

BLB
v = max

{
ev1 , min

w:(w,v)∈δin(v), w∈⋃n
i=1 Vi+

{
BLB
w + sw1 + t(w,v)

}
}

(5.7)
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and

BUB
v = min

{
`v1 −

∑

i∈R
11⋃n

i=1 Vi−
(v) ·max{0, `v1 − (B̄UB

i + si + Li)},

max
w:(v,w)∈δout(v), w∈⋃n

i=1 Vi−

{
BUB
w − t(v,w) − sv1

}
,

min
i∈R|∃l≥2:vl=i

{B̄UB
i + si + Li − sv1 − tv1,i−}

}
. (5.8)

We can compute BLB
v and BUB

v in O(|V |) by evaluating the events v systematically in the
correct sequence to ensure that all predecessors (with (w, v) ∈ A) and successors (with
(v, w) ∈ A), respectively, are evaluated before. BLB

v is computed in the following sequence:

1. v1 is a pickup location and . . .

a) v2 = . . . = vQ = 0, i.e., all events where a customer is entering an empty
vehicle.

b) v2 6= 0, and v3 = . . . = vQ = 0.

c) v2, v3 6= 0, and v4 = . . . = vQ = 0.

d) . . .

e) v2, . . . , vQ 6= 0.

2. v1 is a delivery location.

Note that, the vehicle could also drive from a delivery location to a pickup location.
However, because of the triangle inequality this path cannot be shorter than not visiting
neither the pickup nor the delivery location of the corresponding customer. Therefore, it
is reasonable to require w ∈ ⋃n

i=1 Vi+ in (5.7). For the same reason we only need BLB
w of

events where w1 is a pickup location to compute BLB
v for events where v1 is a delivery

location.
Because of the triangle inequality the shortest path between an event v and the end

depot (0, . . . , 0) is to deliver customers v1, . . . , vQ without picking up a new customer.
When we first iterate over v ∈ V to compute BUB

v , maximum ride times cannot be
considered yet, because we need the upper bounds BUB

v of all pickup nodes to compute
B̄UB
i . However, for the computation of BUB

v , where v is a pickup node, we need the upper
bounds of all delivery nodes. Hence, in the first loop, we omit maximum ride times from
the computation of BUB

v . The following sequence is most efficient to determine BUB
v :

1. v1 is a delivery location and . . .

a) v2 = . . . = vQ = 0, i.e., all events where v1 is the last customer leaving the
vehicle.

b) v2 6= 0, and v3 = . . . = vQ = 0.

c) v2, v3 6= 0, and v4 = . . . = vQ = 0.

d) . . .
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e) v2, . . . , vQ 6= 0.

2. v1 is a pickup location.

In total, all events in V have to be considered once to determine BLB
v and once to determine

BUB
v without consideration of maximum ride times. After all upper bounds BUB

v are
computed, we are able to determine B̄UB

i , i ∈ R. We repeat the procedure to compute
BUB
v , this time including ride times. So, one iteration of the procedure requires an effort

of O(|V |).
After computing BUB

v for an event v, we can directly check whether BUB
v < BLB

v and
delete the event if so. Due to our sequence to compute BUB

v values, the event is not
considered in (5.8) any more to compute upper bounds for its predecessors.

However, if an event v with v1 ∈ P is deleted, lower bounds BLB
w of its successor events

with (v, w) ∈ A might also change. Therefore, we store all of these successors in a list and
update their lower bounds afterwards. When going through the list, deleting an event w
can also lead to updated upper bounds for predecessors if w1 ∈ D. Moreover, B̄UB

i can
change if BUB

v changes for a v ∈ Vi+ , i ∈ R. Thus, we need three lists, one for predecessors,
one for successors, and one to store all i for which B̄UB

i has to be updated. Then, we run
alternately through the lists in the sequence described above until the lists are empty. In
the worst case, only one bound changes in each iteration.

Whenever updating a lower or upper bound of event v, we also check feasibility of all
in- and outgoing arcs ((w, v) ∈ δin(v) and (v, w) ∈ δout(v), respectively). In our tests, the
computation of lower and upper bounds for all nodes and the detection of infeasible arcs
was < 0.1s for instances with n = 100 and Q = 6.

We can use the bounds to add the following valid inequalities to the EB formulation

BLB
v + (`i− − Li − si −BLB

v )

(
1−

∑

a∈δin(v)

xa

)
≤ Bv ≤ BUB

v ∀i ∈ R, v ∈ Vi+ (5.9)

BLB
v ≤ Bv ≤ ei+ + si + Li + (BUB

v − (ei+ + si + Li))
∑

a∈δin(v)

xa ∀i ∈ R, v ∈ Vi−

(5.10)

and the following valid inequalities to the location-augmented-event-based formulations:

∑

v:v1=j

BLB
v ·

∑

a∈δin(v)

xa ≤ B̄j ≤
∑

v:v1=j

BUB
v ·

∑

a∈δin(v)

xa ∀j ∈ P ∪D (5.11)

5.3.2 Addition of Valid Inequalities in Preprocessing

We can add several further valid inequalities to the model formulation identifying events
which cannot occur simultaneously.

Infeasible Paths In the literature, several authors introduced infeasible paths constraints,
see, e. g., Ascheuer et al. (2000), Cordeau (2006), and Ropke et al. (2007), based on
sequences of request locations which cannot occur due to time windows. Certainly, if a
path of locations i→ j → k would lead to a violated time window, this is also true for all
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event paths v → w → u with v1 = i, w1 = j, and u1 = k. However, it might be that the
event path v → w → u is infeasible although the location path i→ j → k is feasible (e.g.,
because in event v another customer is in the vehicle who leads to a later departure time
at i). Thus, it is possible to add a larger amount of infeasible path constraints based on
events.

Let v be an event. Compute for all events w with (w, v) ∈ A the earliest starting time
BLB
wv = BLB

w + sw1 + t(w,v) at v coming from w and for all events u with (v, u) ∈ A the

latest possible starting time of service BUB
vu = BUB

u − sv1 − t(v,u) in v to reach u on time.

If BUB
vu < BLB

wv , x(w,v) + x(v,u) ≤ 1 is a valid inequality which can be lifted to
∑

w′∈V :(w′,v)∈A,BLB
w′v≥BLB

wv

x(w′,v) +
∑

u′∈V :(v,u′)∈A,BUB
vu′≤BUB

vu

x(v,u′) ≤ 1 ∀v ∈ V \ V0 (5.12)

by including other predecessor (successor) events leading to a later earliest (earlier latest)
starting time of service in v.

In general, let S̄ = {(u1, u2), . . . , (um̄−1, um̄)} be a path u1 → u2 → · · · → um̄, which
is infeasible if BLB

u1 +
∑m̄−1

m=1 sum + t(um,um+1) > BUB
um̄ , i.e., if location um̄ is not reached

before its latest departure time. Then,
∑

a∈S̄ xa ≤ m̄− 2 is a valid inequality.
This valid inequality can be lifted in two ways as Figure 5.5 shows. In line with the

u1 u2 u3 · · · um̄−2 um̄−1 um̄

v u2
i+ u3

i− u3
i+ um̄−2

i+
um̄−2
i− um̄−1

i− w

S̄

Figure 5.5: Lifting for infeasible paths.

argumentation above,
∑

a∈S̄ xa ≤ m̄−2 can be lifted by adding x(v,u2) if BLB
vu2 ≥ BLB

u1u2 and

x(um̄−1,w) if BUB
um̄−1,w ≤ BUB

um̄−1um̄ on the left-hand side. Moreover, further paths between

u2 and um̄−1 can be added if (i−, 0, . . . , 0) /∈ {u2, . . . , um̄−1} for all i ∈ R, i.e., the vehicle is
not empty in between. In Figure 5.5, umi+ is the event where customer i enters the vehicle
and all customers who are in the vehicle after event um are still there. Analogously, umi−
is the event where customer i leaves the vehicle and all customers who are present in
the vehicle directly before event um are in the vehicle. After each of the path’s locations
the vehicle can leave it to visit the pickup location of a further customer i and come
back to the path when customer i is delivered. This might be directly, i.e., the path
um → umi+ → um+1

i− → um+1 replaces the path um → um+1, or indirectly, i.e., the vehicle
also visits further locations between pickup and delivery of customer i or drives from i’s
delivery location to a later location of the original path. In the direct case, arcs (um, umi+)

and (um+1
i− , um+1) replace arc (um, um+1) such that we have to weight both added arc

variables with a factor 1/2 to ensure feasibility of the lifted inequality. Note that, we only
“replace” the original arc conceptually in the solution, but we do not actually remove it
from the lifted inequality. With respect to feasibility of the lifting, there are three cases:
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• In generalization of the already discussed situation, um → umi+ → · · · → um+1
i− →

um+1 replaces um → um+1, which is a feasible lifting, as one arc with a factor of 1
is replaced by two arcs with a factor of 1/2. Note that, we do not need to consider
the path between customer i’s pickup and delivery. Due to the triangle inequality,
the arrival time at um+1 cannot be earlier than in the original path independent of
the path between customer i’s pickup and delivery.

• um → umi+ → · · · → um
′

i− → um
′

with m′ > m+ 1 replaces the path um → · · · → um
′
,

which is a feasible lifting, as at least two arcs with a factor of 1 ((um, um+1) and
(um

′−1, um
′
)) are replaced by two arcs with a factor of 1/2. Again, we do not need

to consider the path between customer i’s pickup and delivery here.

• If any path including arcs (umi− , u
m) and (um

′
, um

′
i+ ) with m′ ≥ m is part of the lifted

path, the path is already infeasible due to precedence relations.

Note that, the event umi+ (umi−) or arc (um, umi+) ((umi− , u
m)) might not exist for some i ∈ R

and m ∈ {2, . . . , m̄− 2}. Then, the corresponding arcs are simply not added to the valid
inequality. As all other corresponding arcs are added, the lifting includes also paths where
the delivery location visited right before the vehicle returns to the original path needs not
to belong to the same customer as the pickup location visited directly after leaving the
original path. Together,

∑

(v,u2)∈A,v 6=u1:BLB
vu2≥BLB

u1u2

x(v,u2) +
∑

a∈S̄
xa +

m̄−2∑

m=2

∑

(um,w)∈A:w1∈P

1

2
· x(um,w)

+
m̄−1∑

m=3

∑

(w,um)∈A:w1∈D

1

2
· x(w,um) +

∑

(um̄−1,w)∈A,w 6=um̄:BUB
um̄−1w

≤BUB
um̄−1um̄

x(um̄−1,w) ≤ m̄− 2

(5.13)

is a valid inequality. We implemented inequalities (5.13) for the case of m̄ = 4. In total,
for each arc (v, u) ∈ A we construct one inequality of type (5.12), hence there are O(|A|)
valid inequalities. In the case of inequalities (5.13), we construct each inequality from an
arc (u2, u3) ∈ A and u3’s successors, hence there are O

(
|A| · (|R|+ |Q|)

)
valid inequalities.

For the implementation of inequalities (5.12) and (5.13) we first compute BLB
vw and

BUB
vw for all (v, w) ∈ A. To implement inequalities (5.12), for all events v, we loop over

all successors u (in decreasing order of BUB
vu ), determine the first predecessor w of v with

BUB
vu < BLB

wv , and add all valid inequalities of type (5.12), i.e., for each v we add the
inequality with variables x(v,u′) such that BUB

vu′ ≤ BUB
vu and variables x(w′,v) such that

BLB
w′v ≥ BLB

wv . Note that there is a dominance if for two successors ū1 and ū2 of the
decreasing ordered list with BUB

vū1 ≥ BUB
vū2 the set of arcs (w, v) with BUB

vū1 < BLB
wv and

BUB
vū2 < BLB

wv , respectively, are identical. Then, the valid inequality (5.12) for ū2 is equal
or weaker to the one for ū1 and therefore not added. For the implementation of (5.13)
we consider the case m̄ = 4. For all arcs (u2, u3) ∈ A \

(
δin ((0, . . . , 0)) ∪ δout ((0, . . . , 0))

)
,

we loop over all successors u4 of u3 (in decreasing order of BUB
u3u4) and determine the first

predecessor u1 (in increasing order of BLB
u1u2) of u2 for which the path u1 → u2 → u3 → u4
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is infeasible. We can apply the same dominance criterion like in the implementation of
(5.12) here. Again, we add all variables x(u3,w) with BUB

u3w ≤ BUB
u3u4 , w 6= u4, and all

variables x(v,u2) with BLB
vu2 ≥ BLB

u1u2 , v 6= u1, to the left side of the inequality. We loop over
all requests i ∈ R and check whether events u2

i+ and u3
i− and arcs (u2, u2

i+) and (u3
i− , u

3)
exist. If so, we add 1

2 · x(u2,u2
i+

) and 1
2 · x(u3

i− ,u
3) to the inequality.

Vehicle Sharing Let i and j be two customers. If they use the same vehicle, only one
of them can enter the vehicle while the other is already sitting in it. Both of these events
are incompatible to an event where i or j leaves the vehicle before the other one entered
it. Thus,

∑

(v,w)∈A:w1=j+, ∃l:wl=i

x(v,w) +
∑

(v,w)∈A:w1=i+, ∃l:wl=j

x(v,w)

+
∑

(v,w)∈A:v1=i−, w1=j+

x(v,w) +
∑

(v,w)∈A:v1=j−, w1=i+

x(v,w) ≤ 1 ∀i, j ∈ R : i < j (5.14)

are valid inequalities. We have O(|R|2) valid inequalities of type (5.14) and add all of
them in the preprocessing.

Analogously, only one of them can leave the vehicle while the other is still sitting in it
or one of them can leave the vehicle before the other enters it. Hence,

∑

(v,w)∈A:w1=i−, ∃l:wl=j

x(v,w) +
∑

(v,w)∈A:w1=j−, ∃l:wl=i

x(v,w)

+
∑

(v,w)∈A:v1=i−, w1=j+

x(v,w) +
∑

(v,w)∈A:v1=j−, w1=i+

x(v,w) ≤ 1 ∀i, j ∈ R : i < j (5.15)

are valid inequalities. We have O(|R|2) valid inequalities of type (5.15) and add all of
them in the preprocessing.

Moreover, an event where i or j leaves the vehicle directly after the other one, is incom-
patible to an event where one of them left the vehicle directly before the other one entered
it. Thus,

∑

(v,w)∈A:v1=i−, w1=j−
x(v,w) +

∑

(v,w)∈A:v1=j−, w1=i−
x(v,w)

+
∑

(v,w)∈A:v1=i−, w1=j+

x(v,w) +
∑

(v,w)∈A:v1=j−, w1=i+

x(v,w) ≤ 1 ∀i, j ∈ R : i < j (5.16)

are valid inequalities. We have O(|R|2) valid inequalities of type (5.16) and add all of
them in the preprocessing.

Furthermore, if we select an arc (v, w) with v1 ∈ D and w1 ∈ P , customers v1 and w1

cannot share a vehicle simultaneously. Thus,

∑

(v,w)∈A:v1=j−, w1=i+

x(v,w)+
∑

(v,w)∈A:v1=i−, w1=j+

x(v,w)
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+
∑

(u′,u)∈A:u1=k,∃l1:ul1=i,∃l2:ul2=j

x(u′,u) ≤ 1 (5.17)

is a valid inequality for all pairs of customers i, j ∈ R, i < j, being pairwise compatible
and a further location k ∈ J\{0, i+, i−, j+, j−}. We have O(|J | · |R|2) valid inequalities of
type (5.17) and add all of them in the preprocessing.

Customer Incompatibility With the pairwise incompatibilities presented in Section 4.1
we can identify customer pairs i and j which cannot be served by the same vehicle due to
time windows or ride time in advance. Our procedure in Section 5.3.1 eliminates all events
where i and j are simultaneously in the vehicle. If the paths i+ → i− → j+ → j− and
j+ → j− → i+ → i− are infeasible due to time windows, we can conclude that at most
one of them can share the vehicle with another customer k. Otherwise customers i and j
would be served by the same vehicle (not necessarily at the same time) due to transitivity.
Thus,

∑

(u,v)∈A:v1=k+, ∃l:vl=i
x(u,v) +

∑

(u,v)∈A:v1=i+, ∃l:vl=k
x(u,v)

+
∑

(u,v)∈A:v1=k+, ∃l:vl=j
x(u,v) +

∑

(u,v)∈A:v1=j+, ∃l:vl=k
x(u,v) ≤ 1 (5.18)

is a valid inequality. We have O(|R|3) valid inequalities of type (5.18). However, the valid
inequality is only relevant if i and j are incompatible, but both of them are compatible
with k. We add all of them in the preprocessing.

5.3.3 Fixing of Variables Due to Fixed Paths

Knowing which customers are together in a fixed path, i.e., a sequence of events connected
by arcs whose variables are fixed to 1, also leads to further incompatible events if the depot
is part of the path (see Schulz and Pfeiffer (2024)). We update the set of fixed paths when
an upward branch, i.e., a branch where an x or x̄ variable is fixed to 1, is created. Let
two fixed paths be given which start in the depot. As both have to be served by different
vehicles, customers in one of the paths cannot share a vehicle with customers of the other
path. Let customer i be in the first and customer j be in the second path. Then, we can
eliminate all events v with vl1 ∈ {i, i+, i−} and vl2 ∈ {j, j+, j−} with l1, l2 ∈ {1, . . . , Q} and
their incident arcs. The same is true if we consider two fixed paths ending in the depot.
Thus, we check such incompatibilities whenever a fixed path is merged with another fixed
path containing the depot.

5.3.4 Elimination of Impossible Events and Arcs in Branch-and-Cut Nodes

Variable fixings in branch-and-cut nodes influence the lower and upper bounds computed
in the preprocessing, see Section 5.3.1. While for the EB formulation and the LAEB
formulation of the DARP we branch on variables xa, a ∈ A, using the ALAEB formulation
branching takes place on variables x̄ij , i, j ∈ J . If a variable x(v,w) is fixed to 0 or to 1,
either directly because a new branch for the EB or the LAEB model is created, or as
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an indirect result of another fixed variable x(v′,w′) or x̄ij , the effects on upper and lower
bounds are as follows: If x(v,w) is fixed to 0, w cannot be the successor of v any more.
Thus, w can be excluded in the maximum in (5.8). Analogously, w can be excluded in
the minimum in (5.7) if x(w,v) is fixed to 0. If we fix x(v,w) to 1, w is determined as the
successor of v such that we can replace (5.7) by

BLB
w = max

{
ew1 , B

LB
v + sv1 + t(v,w)

}
(5.19)

and (5.8) by

BUB
v = min

{
`v1 −

∑

i∈R
11⋃n

i=1 Vi−
(v) ·max

{
0, `v1 − (B̄UB

i + si + Li)
}
,

BUB
w − t(v,w) − sv1 , min

i∈R|∃l≥2:vl=i

{
B̄UB
i + si + Li − sv1 − tv1,i−

}}
.

(5.20)

In other words, the events v and w are merged to a single event if x(v,w) = 1 Schulz and
Pfeiffer (cf. 2024). Moreover, we eliminate events and arcs from the graph which have
become infeasible due to variable fixings in a branch-and-cut node. For example, if arc
x(v,w) is fixed to 1 and w is a pickup node, we know that all other events u ∈ V , u1 = w1,
u 6= w, are infeasible for the subtree rooted in the current branch-and-cut node.

After we ran the procedures described in this and the previous section, we store all
events v for which either BLB

v or BUB
v changed and update lower and upper bounds for

the beginning of service of all possible predecessor and successor events as described at
the end of Section 5.3.1. Moreover, we check feasibility of events v and arcs (v, w), i.e.,
check if BLB

v ≤ BUB
v and BLB

v + sv1 + t(v,w) ≤ BUB
w , respectively.

If fixing of variables x(v,w) or the update of lower and upper bound results in an infeasible
event, the event is removed from the graph together with its incident arcs. Finally, we
add new inequalities of types (5.9)–(5.11) if bounds changed, and inequalities xa ≤ 0 if
the arc a is declared infeasible.

5.3.5 Pruning Because of Variable Fixing in Branch-and-Cut Nodes

If one of the eliminated events v is already merged with other events, i.e., is incident to
an arc for which the corresponding arc variable is fixed to 1, the branch-and-cut node can
be pruned.

5.4 Numerical Results

In this section, we evaluate the efficiency of the presented MILP models, lower and upper
bounding strategies, and valid inequalities. Comparing the EB and the LAEB model,
the same branching decisions can be applied, as in both models branching takes place on
variables xa, a ∈ A. The LAEB model has fewer variables, as we replace variables Bv,
v ∈ V , by variables B̄j , j ∈ J . Hence, we expect the LAEB model to be more efficient.
Comparing our two location-augmented-event-based formulations, the LAEB model has
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fewer variables but more binary variables. Moreover, variable fixing in Section 5.3.5 can
more likely be applied, as we directly branch on the arcs of the event-based graph. There-
fore, a branch where an xa, a ∈ A, variable is fixed to 1 directly implies that both adjacent
events occur. This branching step contains significantly more information than just fixing
a single relation between two locations. On the other hand, a sequence of variables x̄ij has
to be fixed to 1 to ensure that an event occurs if we branch on x̄ij variables, but we have
significantly fewer x̄ij variables. Taking everything together, it is unclear which advantage
predominates. We compare all three formulations in a computational study.

Our computations are performed on an Intel Core i7-8700 CPU, 3.20 GHz, 32 GB mem-
ory and implemented in C++ using CPLEX 12.10. The code can be found in the git
repository Gaul (2023). The time limit for the solution in all tests was set to 7200 sec-
onds. Note, that the execution of CPLEX was limited to one thread only and the search
method was limited to traditional branch-and-cut. Throughout this section, we use some
abbreviations which are summarized in Table 5.2. We first analyze the performance of

Abbreviation Explanation/ Reference

General abbreviations
Inst. Name of instance
Obj. Objective Value
CPU Computational time in seconds
N/A Not applicable, no integer solution found within the time limit
Gap Gap obtained by CPLEX solution (in percent)
rGap Root node gap (in percent)
Avg. rGap Average root node gap (in percent)
# Impr. Number of instances with improved computational time
Avg. Dev. Average deviation of CPU time compared to the benchmark (first row of the

corresponding table)
Avg.* Dev. Avg. Dev. only on instances with improved computational time

Preprocessing
GP Graph preprocessing, see Section 5.3.1
VS1–VS4 Vehicle Sharing, see (5.14)–(5.17)
CI1 Customer Incompatibility, see (5.18)
IP1–IP2 Infeasible Paths, see (5.12)–(5.13)

Branch-and-Cut Algorithm
LBsUBs Add new inequalities of type (5.9)–(5.11) if bounds changed, see Section 5.3.4

FA Add inequalities xa ≤ 0 for infeasible arcs a, see Section 5.3.4

FP Update the set of fixed paths and eliminate events (and incident arcs) which
represent users of two different paths connected to the start or end depot
together in the vehicle, see Section 5.3.3

Table 5.2: Abbreviations used in Section 5.4.

the presented MILP formulations (Section 5.4.1). Then, our preprocessing components
are validated in Section 5.4.2. Afterwards, we test the components for the branch-and-
cut algorithm (Section 5.4.3). We present our final results on benchmark instances in
Section 5.4.4.
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5.4.1 Comparing the MILP formulations

The EB, LAEB, and ALAEB formulations are compared against each other using the a-
and b-benchmark instances (see Section 4.4.1 for a description of the benchmark instances).
Furthermore, we use an extended version of these instances denoted by a-X and b-X from
Gschwind and Irnich (2015), where the time window length is doubled by postponing
the upper bound of the pickup or delivery time window by 15 minutes, i.e., `i += 15.
Due to the larger time windows these instances are harder to solve. Note, that we do
not increase the vehicle capacity as done in Gschwind and Irnich (2015). Although this
would increase the complexity of the models, a vehicle capacity of Q = 12 is a rather
unrealistic assumption for ridepooling services (compare, e.g., the ridepooling cabs of
MOIA1 or Hol mich! App2, both based in Germany, which have a capacity of Q = 6).
Previous studies have shown that even six seats are rarely fully occupied in practical
relevant settings (Pfeiffer and Schulz, 2021). Thus, extended time windows are more
relevant for the practical application than larger vehicles. The extended instances are
denoted as aK-n-X and bK-n-X, where K indicates the number of vehicles and n denotes
the number of requests. In the a- and a-X-instances, Q = 3 and Li = 30 and qi = 1 for all
i ∈ R, whereas in the b- and b-X-instances Q = 6 and Li = 45 and qi ∈ {1, . . . , 6} for all
i ∈ R.

The results are presented in Tables 5.3 and 5.4. On the smaller as well as on the
larger benchmark instances, the LAEB model outperforms the other two formulations,
but its superiority becomes most evident when comparing its performance to the other
formulations on the harder a-X and b-X instances. The average root node gap for all
three formulations is very small and ranges from 1.1% to 5.4%, which demonstrates that,
although some instances still take a long time to solve, the MILP formulations are already
very tight.

To sum it up, it seems that the smaller number of integer variables in the ALAEB
formulation does not make up for the loss of information compared to the EB or LAEB
formulation when branching on x̄ij variables instead of x(v,w). Comparing the EB and the

LAEB model, the replacement of variables Bv, v ∈ V , (of which there may be O(nQ) (see
Section 4.1) by variables B̄j , j ∈ J , (of which there are 2n variables) as well as the tighter
big-M formulation explain the presented speedup. Since the LAEB formulation improves
on the EB formulation and turns out to be the best formulation, we restrict ourselves to
this formulation in the remaining parts of the numerical tests.

5.4.2 Validating Preprocessing Components

We have proposed a preprocessing procedure to eliminate infeasible nodes and arcs (Sec-
tion 5.3.1) and three types of new valid inequalities (Section 5.3.2). To evaluate the effect
of the aforementioned methods, we use the following test set:

• instances a6-72, a8-80, b6-72, and b8-96 introduced above

1https://www.moia.io
2https://www.holmich-app.de/
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EB LAEB ALAEB

Inst. Obj. Gap CPU rGap Gap CPU rGap Gap CPU rGap

a2-16 294.3 0.03 0.8 0.01 0.8 0.03 0.8
a2-20 344.9 0.03 0.0 0.01 0.0 0.02 0.0
a2-24 431.1 0.09 1.9 0.03 2.1 0.06 2.1
a3-18 300.5 0.04 1.8 0.06 1.8 0.04 1.8
a3-24 344.8 0.14 0.5 0.08 2.8 0.3 3.0
a3-30 494.8 0.05 0.0 0.02 0.0 0.08 0.6
a3-36 583.2 0.21 2.5 0.13 2.5 0.16 2.5
a4-16 282.7 0.35 0.7 0.04 0.7 0.05 0.7
a4-24 375.0 0.05 0.0 0.02 0.0 0.03 0.1
a4-32 485.5 0.43 1.8 0.12 2.0 0.24 2.1
a4-40 557.7 0.83 1.7 1.11 1.8 2.04 2.8
a4-48 668.8 0.39 2.0 0.47 2.2 2.66 4.1
a5-40 498.4 0.24 1.1 0.11 1.2 0.32 1.2
a5-50 686.6 1.85 2.6 1.8 2.6 77.42 4.0
a5-60 808.3 0.72 2.0 0.93 2.1 16.71 2.2
a6-48 604.1 0.68 0.7 0.42 0.6 3.85 2.2
a6-60 819.3 9.61 2.4 9.59 2.4 85.33 3.2
a6-72 916.1 16.75 2.5 28.49 2.6 656 3.5
a7-56 724.0 4.85 1.3 1.76 1.6 54.59 3.1
a7-70 875.7 14.99 1.2 4.47 1.3 199 2.2
a7-84 1033.3 20.72 1.9 16.59 2.1 153 4.6
a8-64 747.5 8.35 2.0 5.59 1.9 420 2.9
a8-80 945.8 23.06 2.7 15.84 2.8 1.0 2h 4.5
a8-96 1229.7 1.0 2h 4.1 1.1 2h 4.1 2.9 2h 5.2

Total/Avg. 7304 1.6 7287 1.8 17456 2.5

b2-16 309.4 0.03 0.6 0.07 0.6 0.04 0.6
b2-20 332.7 0.01 0.0 0.04 0.0 0.01 0.0
b2-24 444.7 0.05 1.7 0.05 1.8 0.05 1.8
b3-18 301.6 0.04 2.0 0.05 2.2 0.04 2.2
b3-24 394.5 0.26 2.2 0.19 2.2 0.16 2.2
b3-30 531.4 0.03 0.5 0.03 0.5 0.03 0.5
b3-36 603.8 0.05 0.3 0.04 0.3 0.04 0.3
b4-16 296.9 0.01 1.6 0.03 1.7 0.01 1.7
b4-24 371.4 0.04 0.7 0.04 0.8 0.05 0.8
b4-32 494.9 0.03 0.0 0.03 0.0 0.03 0.0
b4-40 656.6 0.09 0.3 0.07 0.3 0.13 0.3
b4-48 673.8 0.76 0.9 0.42 1.0 2.42 1.1
b5-40 613.7 0.17 0.4 0.09 0.5 0.1 0.4
b5-50 761.4 0.42 1.4 0.2 1.5 0.55 1.6
b5-60 902.0 0.99 1.8 2.16 1.9 7.74 1.9
b6-48 714.8 0.22 0.5 0.12 0.5 0.13 0.5
b6-60 860.0 0.28 0.6 0.17 0.6 0.25 0.6
b6-72 978.5 8.85 1.0 5.64 1.0 26.95 1.0
b7-56 824.0 6.79 0.9 4.01 0.9 22.72 0.9
b7-70 912.6 2.51 2.0 2.77 2.3 9.12 2.5
b7-84 1203.3 2.87 1.2 3.07 1.2 6.3 1.3
b8-64 839.9 2.27 2.3 1.1 2.3 5.56 2.3
b8-80 1036.4 3.49 1.3 1.46 1.9 16.89 1.9
b8-96 1185.6 78.05 1.4 34.43 1.4 287 1.7

Total/Avg. 108 1.1 56 1.1 386 1.2

Table 5.3: Comparing the plain MILP formulations using the a- and b- in-
stances.
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EB LAEB ALAEB

Inst. Obj. Gap CPU rGap Obj. Gap CPU rGap Obj. Gap CPU rGap

a2-16-X 278.2 0.14 1.3 278.2 0.08 1.7 278.2 0.09 1.7
a2-20-X 330.7 0.03 2.0 330.7 0.02 2.0 330.7 0.05 2.4
a2-24-X 389.1 0.26 2.6 389.1 0.20 2.6 389.1 0.62 2.8
a3-18-X 272.7 0.07 2.5 272.7 0.11 3.0 272.7 0.39 7.0
a3-24-X 289.6 0.73 2.2 289.6 0.75 3.5 289.6 1.99 3.5
a3-30-X 452.8 0.34 5.0 452.8 0.28 5.4 452.8 1.32 5.6
a3-36-X 501.0 0.37 1.7 501.0 0.29 1.9 501.0 1.08 1.9
a4-16-X 235.2 0.43 5.9 235.2 0.34 5.9 235.2 1.54 5.9
a4-24-X 359.4 0.37 2.3 359.4 0.12 2.5 359.4 0.71 4.2
a4-32-X 447.3 6.39 3.8 447.3 2.54 3.9 447.3 19.78 4.5
a4-40-X 509.0 38.56 2.9 509.0 21.93 3.0 509.0 85.36 3.2
a4-48-X 620.3 1194 6.4 620.3 660 7.8 622.5 2.5 2h 10.6
a5-40-X 464.0 16.77 3.1 464.0 8.79 3.3 464.0 33.64 4.5
a5-50-X 621.9 285 5.8 621.9 213 5.5 621.9 0.5 2h 6.6
a5-60-X 745.4 281 3.6 745.4 254 4.0 745.4 0.5 2h 6.2
a6-48-X 572.5 7082 5.5 572.5 2675 5.6 572.5 1.1 2h 6.4
a6-60-X 757.9 1993 3.7 757.9 855 4.6 757.9 1.8 2h 5.5
a6-72-X N/A N/A 2h N/A 868.4 3.4 2h 6.8 869.6 4.5 2h 8.5
a7-56-X 663.5 4411 5.0 663.5 5131 5.7 668.9 1.9 2h 6.7
a7-70-X 815.3 0.6 2h 6.2 815.3 1592 6.4 815.3 3.0 2h 8.0
a7-84-X N/A N/A 2h N/A N/A N/A 2h N/A N/A N/A 2h N/A
a8-64-X 702.6 1.9 2h 5.6 701.2 0.9 2h 5.5 701.4 2.8 2h 7.1
a8-80-X N/A N/A 2h N/A N/A N/A 2h N/A N/A N/A 2h N/A
a8-96-X N/A N/A 2h N/A N/A N/A 2h N/A N/A N/A 2h N/A

Total/Avg. 58514 3.9 47418 4.3 86546 5.4

b2-16-X 282.5 0.31 2.2 282.5 0.40 2.4 282.5 0.08 2.4
b2-20-X 323.6 0.02 3.0 323.6 0.02 3.0 323.6 0.04 3.0
b2-24-X 412.3 0.03 0.0 412.3 0.02 0.0 412.3 0.02 0.0
b3-18-X 290.4 0.06 3.0 290.4 0.04 3.0 290.4 0.07 3.0
b3-24-X 363.7 0.12 0.4 363.7 0.06 0.4 363.7 0.28 0.5
b3-30-X 504.3 0.17 2.3 504.3 0.20 2.3 504.3 0.26 2.3
b3-36-X 565.9 0.10 0.9 565.9 0.05 0.9 565.9 0.06 0.9
b4-16-X 289.9 0.03 2.2 289.9 0.02 2.3 289.9 0.02 2.3
b4-24-X 347.0 3.55 4.4 347.0 0.95 5.0 347.0 2.17 5.0
b4-32-X 491.0 0.07 1.0 491.0 0.05 1.0 491.0 0.06 1.0
b4-40-X 628.3 0.21 1.0 628.3 0.25 1.1 628.3 0.37 1.1
b4-48-X 627.4 4.89 1.4 627.4 1.61 1.4 627.4 6.68 2.0
b5-40-X 585.1 5.53 2.7 585.1 1.72 2.8 585.1 24.13 2.7
b5-50-X 708.8 2.31 0.8 708.8 1.12 0.8 708.8 5.33 0.8
b5-60-X 851.9 10.72 1.8 851.9 5.03 1.9 851.9 25.92 2.6
b6-48-X 691.6 2.58 1.7 691.6 0.79 1.7 691.6 1.94 2.2
b6-60-X 841.6 2.32 1.7 841.6 0.63 1.8 841.6 5.14 1.8
b6-72-X 930.3 52.73 1.7 930.3 49.56 1.5 930.3 31.17 1.9
b7-56-X 787.9 142 1.4 787.9 4.32 1.5 787.9 285 1.5
b7-70-X 865.3 19.34 2.6 865.3 14.68 2.5 865.3 132 2.8
b7-84-X 1141.2 3676 3.2 1141.2 2428 3.2 1141.9 1.0 2h 3.6
b8-64-X 818.3 12.07 1.9 818.3 9.16 2.0 818.3 24.68 2.4
b8-80-X 998.3 16.10 2.2 998.3 14.04 2.5 998.3 27.32 2.5
b8-96-X 1137.7 0.3 2h 2.0 1137.7 3425 2.1 1139.5 1.1 2h 2.7

Total/Avg. 11152 1.9 5958 2.0 14973 2.1

Table 5.4: Comparing the plain MILP formulations using the a-X and b-X in-
stances.
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• instances Q3n80 2, Q3n80 3, Q3n80 4, Q6n80 5, Q6n100 1, and Q6n100 5 from the
artificial instance test set used in Section 4.4

• five real data instances from Hol mich! App containing one full day of completed
trips each

The characteristics of the instances are summarized in Table 5.5. The instances are selected
to provide adequate diversity in terms of share of requests per vehicle, share of number of
requests per service duration, and length of time windows. First, we test the efficiency of

Inst. n K T TW Li Q

a6-72 72 6 720 15 30 3
a8-80 80 8 600 15 30 3
b6-72 72 6 720 15 45 6
b8-96 96 8 720 15 45 6

Q3n80 2 80 11 240 15 1.5 t̄i 3
Q3n80 3 80 11 240 15 1.5 t̄i 3
Q3n80 4 80 10 240 15 1.5 t̄i 3
Q6n80 5 80 12 240 15 1.5t̄i 6
Q6n100 1 100 17 240 15 1.5t̄i 6
Q6n100 5 100 14 240 15 1.5t̄i 6

2021-10-05 85 8 960 25 t̄i + max(10, 0.75t̄i) 6
2021-10-07 89 8 960 25 t̄i + max(10, 0.75t̄i) 6
2021-10-09 97 12 1080 25 t̄i + max(10, 0.75t̄i) 6
2021-10-16 120 12 1080 25 t̄i + max(10, 0.75t̄i) 6
2021-10-18 68 2 960 25 t̄i + max(10, 0.75t̄i) 6

Table 5.5: Characteristics of the test instances.

graph preprocessing (GP). On average, the number of nodes is reduced by 32%, and the
number of arcs by 12%. As the number of nodes and arcs translates directly to the number
of variables in the MILP, GP leads to a reduction of 22% of the variables in total. Table 5.6
shows the results for a combination of GP with different subsets of valid inequalities. The
first row shows the total solution time for all instances when no preprocessing components
are switched on. In the following rows, we test all components and all but one component
to be switched on and compare computation times to the first row, where no preprocessing
takes place. We achieve an average deviation in computation time ranging from -17 to
-52% over all test instances and an average deviation ranging from -64% to -82% over the
test instances where computation times are improved. The significant difference between
the average deviation over all instances and the average deviation only over the instances
with an improvement underlines the heterogeneity of the test set. In the next part of
the table, we compare the influence of only one of the valid inequalities switched on (and
GP switched on, since otherwise the comparison would be unfair, as IP1 and IP2 cannot
be switched on without GP). The improvements in the second part of the table are not
as strong as the improvement in the first part, indicating that a combination of multiple
valid inequalities and GP is most promising. Taking a look at the average root node gap,
we are able to reduce it from 2.9% to 1.9% with multiple combinations of preprocessing
steps. This again highlights the tightness of the LAEB formulation, but also underlines
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the efficiency of the preprocessing methods. It turns out that for this set of test instances,
the best combination is the one given in the bottom row of the table, leading to an average
reduction of 58% in CPU time. Although the test instances are very diverse, we cannot
exclude that for other sets of test instances another combination prevails, so that we
suggest to use a combination of all of the presented preprocessing methods.

After verifying the new presented MILP formulation and preprocessing methods, we
next examine the influence of the presented strategies in branch-and-cut nodes.

GP VS1 VS2 VS3 VS4 CI1 IP1 IP2 # Impr. Total CPU Avg. rGap Avg. Dev. Avg.* Dev.

0 0 0 0 0 0 0 0 - 407 2.9 - -

1 1 1 1 1 1 1 1 12 340 1.9 -17 % -64 %
1 0 1 1 1 1 1 1 12 195 1.9 -52 % -82 %
1 1 0 1 1 1 1 1 12 196 1.9 -52 % -79 %
1 1 1 0 1 1 1 1 13 278 1.8 -32 % -68 %
1 1 1 1 0 1 1 1 13 289 1.9 -29 % -75 %
1 1 1 1 1 0 1 1 12 306 1.9 -25 % -65 %
1 1 1 1 1 1 0 1 13 322 2.0 -21 % -70 %

1 1 0 0 0 0 0 0 11 299 2.6 -27 % -66 %
1 0 1 0 0 0 0 0 10 345 2.5 -15 % -46 %
1 0 0 1 0 0 0 0 9 425 2.6 4 % -59 %
1 0 0 0 1 0 0 0 10 390 2.7 -4 % -71 %
1 0 0 0 0 1 0 0 11 302 2.6 -26 % -60 %
1 0 0 0 0 0 1 0 12 168 2.4 -58 % -74 %
1 0 0 0 0 0 0 1 13 307 2.1 -25 % -69 %

1 0 0 0 1 1 1 1 14 171 1.9 -58 % -75 %

Table 5.6: Comparing individual and joint effect of preprocessing components on the
test instances. A zero represents a component to be switched off and a one
represents it to be switched on.

5.4.3 Testing Branch-and-Cut Algorithm

The lower part of Table 5.2 gives an overview of the methods introduced in Sections 5.3.3–
5.3.5 to reduce the size of the graph in branch-and-cut nodes. Following our strategy
to evaluate individual components, we solved the LAEB model together with all of the
presented preprocessing steps once for each subset of branch-and-cut components on the
set of test instances introduced in the previous section. The results are listed in Table 5.7.
The first row of Table 5.7 shows the total computational time for the LAEB model and
preprocessing steps. In the next rows, all three, two or only one of the presented branching
techniques are switched on. Note, that we did not include the case where neither LBsUBs
or FA are switched on, since in this case no valid inequalities would be added. We were
able to achieve further improvements of about 25% compared to the total computational
time after applying preprocessing techniques in about a third of the instances. However,
taking the whole set of test instances into account, there is an overall increase ranging from
54% to 66% in CPU. This may be explained by the fact that the overhead caused by the
implementation of our cuts in CPLEX is not balanced by the profit from using additional
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LBsUBs FA FP Avg. rGap # Impr. Total CPU Avg. Dev. Avg.* Dev.

0 0 0 1,9 - 340 - -

1 1 1 1.9 5 583 66 % -25 %
0 1 1 1.9 6 557 54 % -20 %
1 0 1 1.9 6 512 56 % -25 %
1 1 0 1.9 5 580 66 % -25 %
1 0 0 1.9 6 508 56 % -25 %
0 1 0 1.9 6 555 54 % -20 %

Table 5.7: Evaluating the performance of the branch-and-but al-
gorithm. A zero represents a component to be switched
off and a one represents it to be switched on.

cuts. Also the average root node gap was very small already such that we might not get
low enough in the branch-and-cut tree to fully use the benefit of the presented methods.
Nevertheless, the results underline again the heterogeneity of the instances and show that
the presented methods are very effective on certain instances.

5.4.4 Results On Benchmark Instances

In this section, we show results on the benchmark instances using the LAEB formulation
and the preprocessing methods. The results are shown in Table 5.8. On the a-instances,
the total computational time was reduced by 94% compared to using the plain LAEB or
the plain EB formulation. On the b-instances, the computational time was reduced by 59%
and 79%, respectively (compare Table 5.3). On the a-X instances, the computational time
was reduced by 27% compared to using the plain LAEB formulation and by 41% compared
to the EB formulation. On the b-X instances, the computational time was reduced by 92%
and 96%, respectively. These results prove the efficiency of the new LAEB formulation
and the high impact of the proposed preprocessing techniques.
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Inst. Obj. CPU rGap Inst. Obj. CPU rGap Inst. Obj. Gap CPU rGap Inst. Obj. CPU rGap

a2-16 294.3 0.10 0.0 b2-16 309.4 0.17 0.6 a2-16-X 278.2 0.07 0.0 b2-16-X 282.5 0.57 1.3
a2-20 344.9 0.02 0.0 b2-20 332.7 0.02 0.0 a2-20-X 330.7 0.03 0.0 b2-20-X 323.6 0.02 0.8
a2-24 431.1 0.05 0.8 b2-24 444.7 0.07 1.0 a2-24-X 389.1 0.13 1.4 b2-24-X 412.3 0.03 0.0
a3-18 300.5 0.02 0.3 b3-18 301.6 0.03 0.9 a3-18-X 272.7 0.11 2.8 b3-18-X 290.4 0.05 1.3
a3-24 344.8 0.07 1.6 b3-24 394.5 0.12 1.9 a3-24-X 289.6 0.74 3.3 b3-24-X 363.7 0.08 0.4
a3-30 494.8 0.06 0.0 b3-30 531.4 0.03 0.0 a3-30-X 452.8 0.27 2.2 b3-30-X 504.3 0.16 1.6
a3-36 583.2 0.17 2.5 b3-36 603.8 0.05 0.1 a3-36-X 501.0 0.48 0.6 b3-36-X 565.9 0.07 0.0
a4-16 282.7 0.04 0.7 b4-16 296.9 0.02 0.6 a4-16-X 235.2 0.50 5.4 b4-16-X 289.9 0.02 1.7
a4-24 375.0 0.04 0.0 b4-24 371.4 0.04 0.1 a4-24-X 359.4 0.15 1.5 b4-24-X 347.0 0.47 2.1
a4-32 485.5 0.12 1.1 b4-32 494.9 0.04 0.0 a4-32-X 447.3 1.78 3.4 b4-32-X 491.0 0.08 0.7
a4-40 557.7 0.28 1.2 b4-40 656.6 0.09 0.3 a4-40-X 509.0 0.95 2.1 b4-40-X 628.3 0.28 0.1
a4-48 668.8 0.27 1.7 b4-48 673.8 0.65 0.7 a4-48-X 620.3 56.36 5.5 b4-48-X 627.4 1.46 0.9
a5-40 498.4 0.16 0.6 b5-40 613.7 0.12 0.4 a5-40-X 464.0 6.12 2.9 b5-40-X 585.1 2.65 1.9
a5-50 686.6 1.51 2.0 b5-50 761.4 0.21 1.0 a5-50-X 621.9 73.02 4.0 b5-50-X 708.8 0.53 0.6
a5-60 808.3 0.45 1.4 b5-60 902.0 0.86 1.6 a5-60-X 745.4 39.78 3.3 b5-60-X 851.9 1.66 1.3
a6-48 604.1 0.38 0.4 b6-48 714.8 0.18 0.3 a6-48-X 572.5 935 4.7 b6-48-X 691.6 0.53 0.4
a6-60 819.3 2.14 1.6 b6-60 860.0 0.24 0.1 a6-60-X 757.9 332 3.2 b6-60-X 841.6 1.13 1.3
a6-72 916.1 11.34 2.2 b6-72 978.5 3.95 0.9 a6-72-X 869.6 2.1 2h 5.6 b6-72-X 930.3 7.16 1.4
a7-56 724.0 2.32 1.2 b7-56 824.0 1.46 0.8 a7-56-X 663.5 551 4.1 b7-56-X 787.9 5.06 0.8
a7-70 875.7 2.11 0.9 b7-70 912.6 0.65 1.5 a7-70-X 815.3 711 4.7 b7-70-X 865.3 6.11 1.6
a7-84 1033.3 11.13 1.6 b7-84 1203.3 1.50 0.8 a7-84-X 950.6 1.4 2h 6.2 b7-84-X 1141.2 89.10 2.1
a8-64 747.5 2.29 1.1 b8-64 839.9 0.70 1.6 a8-64-X 701.2 3042 4.1 b8-64-X 818.3 2.38 1.8
a8-80 945.8 7.58 1.9 b8-80 1036.4 0.64 0.8 a8-80-X 880.3 2.7 2h 6.4 b8-80-X 998.3 6.00 1.7
a8-96 1229.7 425 2.8 b8-96 1185.6 11.13 1.1 a8-96-X N/A N/A 2h N/A b8-96-X 1137.7 340 2.3

Total 467 1.2 22 0.7 34554 3.4 466 1.2

Table 5.8: Results for the benchmark instances solved using the LAEB formulation and preprocessing.
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Although computation times on different computers are only comparable to a limited
extent, our results are highly competitive with the branch-and-cut-and-price algorithm
proposed in Gschwind and Irnich (2015): While some of the a-instances were solved faster
by our approach and some of them were solved faster by their branch-and-cut algorithm,
the solution times on the b-instances are smaller by about 50 orders of magnitude.

Inst. Obj. Gap CPU Inst. Obj. CPU

a2-16-X 278.2 0.13 b2-16-X 282.5 0.12
a2-20-X 330.7 0.03 b2-20-X 323.6 0.06
a2-24-X 389.1 0.09 b2-24-X 412.3 0.03
a3-18-X 272.7 0.09 b3-18-X 290.4 0.08
a3-24-X 289.6 0.34 b3-24-X 363.7 0.12
a3-30-X 452.8 0.14 b3-30-X 504.3 0.14
a3-36-X 501.0 0.20 b3-36-X 565.9 0.07
a4-16-X 235.2 0.20 b4-16-X 289.9 0.03
a4-24-X 359.4 0.15 b4-24-X 347.0 0.27
a4-32-X 447.3 0.76 b4-32-X 491.0 0.10
a4-40-X 509.0 1.75 b4-40-X 628.3 0.21
a4-48-X 620.3 15.88 b4-48-X 627.4 1.18
a5-40-X 464.0 2.17 b5-40-X 585.1 1.39
a5-50-X 621.9 15.94 b5-50-X 708.8 0.48
a5-60-X 745.4 16.68 b5-60-X 851.9 1.72
a6-48-X 572.5 101 b6-48-X 691.6 0.54
a6-60-X 757.9 100 b6-60-X 841.6 1.04
a6-72-X 868.4 4368 b6-72-X 930.3 6.08
a7-56-X 663.5 102 b7-56-X 787.9 6.50
a7-70-X 815.3 100 b7-70-X 865.3 2.77
a7-84-X 950.6 6396 b7-84-X 1141.2 50.73
a8-64-X 701.2 191 b8-64-X 818.3 3.04
a8-80-X 880.3 4579 b8-80-X 998.3 2.73
a8-96-X 1118.5 2.3 2h b8-96-X 1137.7 147

Total 23196 226

Table 5.9: Results for the a-X and b-X bench-
mark instances on 12 threads.

However, our solution times cannot compete with the speed of the branch-and-cut al-
gorithm developed in Rist and Forbes (2021) but could still prove useful in practice, as
the implementation of an MILP formulation and preprocessing methods is very fast and
easy compared to the implementation of a branch-and-cut algorithm. Moreover, the re-
sults show that our methods are able to solve instances of substantial size within seconds.
Thus, they can be used in a practical dynamic setting of a ridepooling provider within a
rolling horizon approach like it is shown for the EB formulation in the next chapter. This
is especially true, as the LAEB formulation improves the EB formulation, and our results
show that the model performs even better for instances where groups are transported (b
and b-X instances) which is an important case for ridepooling providers. The results in
this section are still for one thread only. Since we do not use user-defined cuts if we omit
the methods presented in Sections 5.3.3–5.3.5, we do not need to limit the number of
threads used by CPLEX or to restrict the search method to traditional branch-and-cut.
Using 12 threads the whole set of a- and b-instances was solved in 62 seconds. The corre-
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sponding results for the a-X and b-X instances show that medium-sized and some of the
large instances of the harder benchmark set can be solved within a few seconds (compare
Table 5.9).

5.5 Summary

The new presented MILP formulations combine the existing state-of-the-art formulations,
the LB and the EB formulation of the DARP. As shown in Theorem 5.4, the LAEB for-
mulation is tighter than the LB formulation. Computational tests on large benchmark
instances show that, using the LAEB formulation, computational times can be reduced by
19% (a-X instances) and 47% (b-X instances), respectively, compared to the EB formu-
lation. Additionally, graph preprocessing and the introduction of new valid inequalities
which eliminate subtours, infeasible events, and infeasible paths strongly further improve
computational times by 27% (a-X) instances and 92% (b-X), respectively. An average root
node gap of 1.6% proves that our formulation and preprocessing methods generate a very
tight MILP model. Our methods are useful for application in practice, as the implemen-
tation is fast and easy and even medium-sized instances of the harder benchmark set can
be solved within a few seconds (compare Table 5.9).

While the literature mostly focuses on the static DARP, on-demand ridepooling ser-
vices need to include customer requests on time when they arise. In Chapter 6 we show
that the dynamic DARP can be solved using a rolling-horizon algorithm in which the EB
formulation is updated and solved whenever new requests arrive. Since the LAEB formu-
lation improves on the EB formulation, this strategy could be adapted using the LAEB
formulation as well.
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6 Rolling-Horizon Event-Based MILP for the
Dynamic Dial-a-Ride Problem

In many ridepooling applications transportation requests arrive throughout the day and
have to be answered and integrated into the existing (and operated) vehicle routing. To
solve this dynamic dial-a-ride problem we present a rolling-horizon algorithm that dynam-
ically updates the current solution by solving the EB formulation. As highlighted in the
literature review on solution approaches to the dynamic DARP in Section 3.1.2, the stan-
dard approach to solve the dynamic DARP is to apply a two-phase algorithm consisting
of an insertion heuristic and a re-optimization phase. In this chapter, we suggest a more
global perspective and aim at the iterative computation of exact optimal solutions that
satisfy all feasibility constraints and that respect previous routing decisions. Only when
this global optimization exceeds a prespecified time limit of 30 seconds without proving
global optimality, the computed schedule is re-optimized in the following iteration. We
present computational experiments for real-world data from a ridepooling service in the
city of Wuppertal in Germany with up to 500 requests. In all tested instances the av-
erage response time was never more than 2.9 seconds. Moreover, a re-optimization was
necessary in no more than 0.5% of the iterations. In all other iterations the algorithm
returned a globally optimal solution w.r.t. the current situation, which can generally not
be guaranteed by common two-phase heuristics.

The topic of this chapter is the deterministic, dynamic and homogeneous DARP. We
allow transport requests to be rejected. In addition to the minimization of routing costs
and regret, the maximization of the number of accepted requests is one optimization goal.
The remainder of the chapter is structured as follows. A description of the dynamic
characteristics and an outline of the solution strategy applied in this chapter is given in
Section 6.1. In Section 6.2 the concept of the event-based graph is transferred to the
dynamic DARP by associating a dynamic event-based graph with each subproblem of
the DARP. The corresponding MILP model is introduced in Section 6.3. Finally, the
procedure of updating the event-based graph and solving the MILP model, resulting in
a decision on the acceptance of new requests, is outlined in the framework of a rolling-
horizon algorithm in Section 6.4. To validate our approach, computational results on two
real-world instances are presented in Section 6.5. A short summary of our results is given
in Section 6.6. The contents of this chapter are based on Gaul et al. (2021).

Note that, the algorithm proposed in this chapter can be adapted to iteratively solve
the LAEB formulation instead of the EB formulation. Also, the preprocessing techniques
proposed in the previous chapter can be used before the MILPs are passed to the solver.
However, the MILPs solved in every iteration of the rolling-horizon algorithm are small-
to medium-sized as usually only a few new requests arrive in every iteration and part of
the routing decisions have been fixed already (i.e., have been realized) at the time new
requests arrive. For small- to medium-sized instances the performance of the EB and the
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LAEB formulation is similar. Also the effect of preprocessing techniques is more significant
for larger instances. Moreover, the overhead caused by the implementation of new valid
inequalities in every iteration of the algorithm is likely to outweigh the savings in compu-
tational time caused by the inequalities. For these reasons we use the EB formulation as
underlying MILP for the DARP in the rolling-horizon algorithm in the following.

6.1 Solution Strategy

In this chapter, we consider a dynamic DARP in which a finite set of transport requests
submitted by users have to be either accepted and scheduled or rejected. We assume that
the transport requests arrive throughout the day. We consider discrete points in time
τ1 ≤ · · · ≤ τn such that request i becomes known at time τi − ∆, where ∆ ≥ 0 is the
predefined time-limit for the update of the current solution (we set ∆ = 0.5 minutes in
our numerical experiments). Every user that is accepted is communicated a pickup time
Γi. This time may not be postponed by more than γ minutes.

Due to the dynamic nature of the problem, at any time τ only the requests that have
arrived up to time τ are known. In addition, some requests might have been rejected
and some of the accepted requests might already have been delivered to their delivery
location at time τ . Therefore, at any time τ , only a subproblem DARP(τ) related to the
active requests A(τ) at time τ needs to be considered which comprises all requests that are
known but neither rejected nor dropped off w.r.t. the current solution x(τ). To distinguish
between these different types of requests at a given time τ , let

• N (τ) denote the subset of new requests that were revealed at time τ −∆,

• S(τ) denote the subset of scheduled requests, i.e., requests that have been accepted
but have not been picked up up to time τ ,

• P(τ) denote the subset of picked up requests that have not been dropped off up to
time τ ,

• D(τ) denote the subset of dropped off requests up to time τ and

• R(τ) denote the subset of rejected requests up to time τ .

Then A(τ) = N (τ)∪S(τ)∪P(τ) while D(τ),R(τ) 6⊆ A(τ). Note that, the sets S(τ), P(τ),
D(τ), R(τ) do in fact not only depend on the time τ but also on the solutions determined
in previous time steps. Each feasible solution x(τ) to a subproblem DARP(τ) consists of
at most K vehicle routes which start and end at the depot. If a user is served by a vehicle,
the user has to be picked up and dropped off by the same vehicle. On the other hand, a
rejected user may not be picked up or dropped off by any of the vehicles.

A solution to the dynamic DARP is a strategy that, every time one or more new requests
are revealed, modifies the solution of the last subproblem so that each of the new requests
is either assigned to a vehicle route or rejected. In the course of assigning new requests
to already existing vehicle routes, old requests, if not yet picked up or dropped off, might
have to be reassigned. However, every request, once accepted, has to be served and every
request, once rejected, cannot be served by any vehicle in the following subproblems.
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The solution approach we propose in this chapter is based on the EB MILP formulation
for the static DARP presented in Section 4.2.3, for which we showed that it efficiently
generates exact solutions to small to medium sized static benchmark problems in a few
seconds. The idea of a solution strategy for the dynamic DARP is as follows: 1. An initial
solution is obtained by solving the EB MILP for the requests that are revealed at time
τ1 − ∆, which is interpreted as the time when the routes are initialized. 2. When new
requests arrive at time τi −∆, i ≥ 2, the respective users are notified within 30 seconds
whether they have been accepted or rejected. Therefore, the vehicle routes up to time τi
are frozen and the set of active requests A(τi) is updated. The underlying event-based
graph is modified by removing all nodes and arcs corresponding to rejected requests and
partially removing nodes and arcs corresponding to dropped off or picked up users. Nodes
and arcs for the new requests are added to the event-based graph. Then the MILP is
updated and solved again.

6.2 Event-Based Graph Model for a Rolling-Horizon

In order to extend the concept of the event-based graph to the dynamic DARP, we as-
sume that solutions are extended iteratively whenever new requests arrive and introduce
a dynamic event-based graph G(τ) = (V (τ), A(τ)) for the subproblem DARP(τ) at time
τ . When new requests are revealed at time τi −∆, i ∈ {1, . . . , n}, then the event-based
graph G(τi) is updated based on the event-based graph G(τi−1) and the associated solution
x(τi−1) of the last subproblem: Nodes and arcs corresponding to rejected, dropped off and
picked up users are (partially) removed from the graph while nodes and arcs corresponding
to new requests are added.

The node set V (τ) represents events which are feasible w.r.t. the vehicle capacity Q
and also reflect pairwise feasibilities w.r.t. time window and ride time constraints of the
requests that have been revealed up to time τ . The set of nodes representing an event in
which a user i ∈ A(τ) \ P(τ) is picked up is called the set of pickup nodes up to time τ
and is given by

Vi+(τ) :=

{
(v1, v2, . . . , vQ) : v1 = i+, vj ∈ A(τ) ∪ {0} \ {i}, f1

i,vj + f2
i,vj ≥ 1

∀j ∈ {2, . . . , Q},
(
vj > vj+1 ∨ vj+1 = 0

)
∀j ∈ {2, . . . , Q−1},

Q∑

j=1

qvj ≤ Q
}
.

(6.1)

Similarly, the set of delivery nodes up to time τ corresponds to events where a user i ∈ A(τ)
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is dropped off and is given by

Vi−(τ) :=

{
(v1, v2, . . . , vQ) : v1 = i−, vj ∈ A(τ) ∪ {0} \ {i}, f1

vj ,i + f2
i,vj ≥ 1

∀j ∈ {2, . . . , Q},
(
vj > vj+1 ∨ vj+1 = 0

)
∀j ∈ {2, . . . , Q−1},

Q∑

j=1

qvj ≤ Q
}
.

(6.2)

Note that, just like in the case of the event-based graph, from the set of all pickup and
delivery nodes associated with an accepted user, exactly one pickup and one delivery node
are contained in the dicycle flow representing the vehicle tour to which the user is assigned
in the current solution. The set of nodes VA(τ) corresponding to the set of active requests
A(τ) is then given by

VA(τ) = V0 ∪
⋃

i∈A(τ)\P(τ)

Vi+(τ) ∪
⋃

i∈A(τ)

Vi−(τ).

Simply put, VA(τ) represents the set of nodes that are available at time τ but have
not been reached by any vehicle (yet). This set does not include nodes (and hence
events) corresponding to users that have been rejected or dropped off up to time τ since
D(τ),R(τ) 6⊆ A(τ). Moreover, pickup nodes corresponding to users P(τ) are not consid-
ered since they have already been reached by a vehicle, where the user has been picked
up. Nodes where a pickup or delivery has already been realized up to time τ are referred
to as realized nodes. As a consequence, each request that is known at time τ −∆ falls in
one of the following three categories:

• If i ∈ N (τ) ∪ S(τ) ∪R(τ), then no associated node (event) is realized since request
i was either rejected or the scheduled pickup and delivery times are larger than τ .

• If i ∈ P(τ), then exactly one associated node (event) is a realized node, which is a
pickup node.

• If i ∈ D(τ), then exactly one associated pickup node (event) and one associated
delivery node (event) is realized.

Let V realized
D(τ) denote the set of all realized pickup and delivery nodes for each user i ∈ D(τ)

and let V realized
P(τ) denote the set of all realized pickup nodes associated with each user

i ∈ P(τ). Then the node set V (τ) is defined as

V (τ) := VA(τ) ∪ V realized
D(τ) ∪ V realized

P(τ) .

Hence, for a user i ∈ D(τ) that has been dropped off up to time τ only the unique realized
pickup and delivery nodes are contained in V (τ), i.e., Vi+(τ) := {v ∈ V realized

D(τ) : v1 = i+}
and Vi−(τ) := {v ∈ V realized

D(τ) : v1 = i−}. Analogously, for a picked up user i ∈ P(τ) only the

unique realized pickup node is contained in V (τ), i.e., Vi+(τ) := {v ∈ V realized
P(τ) : v1 = i+}.
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Similar to the node set V (τ), the arc set A(τ) of G(τ) has to reflect the fact that some
routing decisions have already been fixed up to time τ in the rolling-horizon framework.
This motivates the introduction of the concept of realized arcs: Each realized pickup and
delivery node v ∈ V realized

D(τ) ∪ V realized
P(τ) is contained in a dicycle flow representing a vehicle’s

tour. The ingoing arc of a realized node, which is part of this dicycle flow, is referred to as
realized arc. We denote the set of realized arcs by Arealized(τ). Let v ∈ V realized

D(τ) ∪V realized
P(τ) be

chosen such that there is no arc a = (v, w) ∈ Arealized(τ). Thus, v is the last realized node
in the corresponding dicycle flow at time τ . Such nodes indicate the last realized stop on
the current tour, from which on the solution may be modified if this is advantageous given
the newly revealed requests. We denote the set of “last realized nodes” as V l-realized(τ).
Then, the arc set A(τ) is composed of seven subsets that will be further specified below:

A(τ) =

6⋃

k=1

Ak(τ) ∪Arealized(τ).

As in the static case, c.f. Section 4.1, A(τ) represents the set of transits from one event
node to another. Let i and j be requests that have been revealed up to time τ −∆. Then
the six subsets Ak(τ), k = 1, . . . , 6 are defined as follows:

• The first set A1(τ) describes the transit from a pickup node from a set Vi+(τ) to a
delivery node from a set Vj−(τ):

A1(τ) :=
{((

i+, v2, . . . , vQ
)
,
(
j−, w2, . . . , wQ

))
∈
(
VA(τ) ∪ V l-realized(τ)

)
× VA(τ) :

{j, w2, . . . , wQ} = {i, v2, . . . , vQ}
}
.

• The transit from a pickup node from a set Vi+(τ) to another pickup node from a set
Vj+(τ) with j 6= i is represented by the following set:

A2(τ) :=
{((

i+, v2, . . . , vQ−1, 0
)
,
(
j+,w2, . . . , wQ

))
∈
(
VA(τ) ∪ V l-realized(τ)

)
×

VA(τ) : {i, v2, . . . , vQ−1} = {w2, . . . , wQ}
}
.

• A3(τ) is comprised of arcs which describe the transit from a delivery node in a set
Vi−(τ) to a pickup node in a set Vj+(τ), j 6= i:

A3(τ) :=
{((

i−, v2, . . . , vQ
)
,
(
j+, v2, . . . , vQ

))
∈
(
VA(τ) ∪ V l-realized(τ)

)
×VA(τ): i 6= j

}
.

• The transit from a delivery node from a set Vi−(τ) to another delivery node from a
set Vj−(τ), j 6= i, is represented by:

A4(τ) :=
{((

i−, v2, . . . , vQ
)
,
(
j−, w2, . . . ,wQ−1, 0

))
∈
(
VA(τ) ∪ V l-realized(τ)

)
×

VA(τ) : {v2, . . . , vQ} = {j, w2, . . . , wQ−1}
}
.
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• A dicycle in G(τ) representing a vehicle tour always contains an arc describing the
transit from the depot to a pickup node in a set Vi+(τ), as well as an arc describing
the transit from a delivery node from a set Vj−(τ) to the depot. The following two
sets describe these transitions:

A5(τ) :=
{(

(0, . . . , 0),
(
i+, 0, . . . , 0

))
∈ V0 × VA(τ)

}
,

A6(τ) :=
{((

j−, 0, . . . , 0
)
, (0, . . . , 0)

)
∈
(
VA(τ) ∪ V l-realized(τ)

)
× V0

}
.

Example 6.1. We give an example of the changes in the event-based graph for three
requests and one vehicle with capacity Q = 3. Let R = {1, 2, 3}. The request data is as
follows:

i qi τi [ei+ , `i+ ] [ei− , `i− ]

1 1 5 [10, 25] [15, 40]
2 2 15 [20, 35] [30, 50]
3 2 45 [50, 65] [55, 80]

For the sake of clarity, we assume that all requests are accepted. Furthermore, we assume
that the remaining parameters (e.g., travel times) allow all variants of routing described
in the following, but are omitted in this example.

When the first request is revealed, we have A(τ1) = N (τ1) = {1} and S(τ1) = P(τ1) =
D(τ1) = ∅. The initial graph G(τ1) is depicted in Figure 6.1(a). We assume that by the
time request 2 is revealed, user 1 has not been picked up yet, i.e., N (τ2) = {2}, S(τ2) = {1},
A(τ2) = {1, 2} and P(τ2) = D(τ2) = ∅. Therefore, we only have to add additional nodes
and arcs induced by request 2 as illustrated in G(τ2) in Figure 6.1(b). According to the
time windows, by the time request 3 is revealed user 1 must have been dropped off and user
2 must have been picked up. We assume that user 2 has not been dropped off yet and that
the vehicle tour induced by the current solution is given by the dicycle

(
0, 0, 0

)
→
(
1+, 0, 0

)
→
(
2+, 1, 0

)
→
(
1−, 2, 0

)
→
(
2−, 0, 0

)
→
(
0, 0, 0

)
.

Hence, N (τ3) = 3, A(τ3) = {2, 3}, P(τ3) = {2}, D(τ3) = {1} and S(τ3) = ∅. The cor-
responding realized nodes are V realized

P(τ3) = {(2+, 1, 0)} and V realized
D(τ3) = {(1+, 0, 0), (1−, 2, 0)}.

The set of realized arcs is

Arealized(τ3) = {((0, 0, 0), (1+, 0, 0)), ((1+, 0, 0), (2+, 1, 0)), ((2+, 1, 0), (1−, 2, 0))}

and V l-realized(τ3) = {(1−, 2, 0)}. The update of the event-based graph to obtain G(τ3) is
illustrated in Figure 6.1(c). Note that, there are no nodes v ∈ V (τ3) that simultaneously
contain users 1 (i.e., 1+ or 1−) and 3 (i.e., 3+ or 3−) as 1 /∈ A(τ3), which means that
according to equations (6.1) and (6.2) there are no shared nodes. Similarly, the seats
requested by users 2 and 3 combined exceed the vehicle capacity of three.
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(0, 0, 0)

(
1+, 0, 0

) (
1−, 0, 0

)

(a) Graph G(τ1).

(0, 0, 0)

(
1+, 0, 0

) (
2+, 0, 0

)(
1−, 0, 0

) (
2−, 0, 0

)

(
2+, 1, 0

) (
1+, 2, 0

)

(
1−, 2, 0

) (
2−, 1, 0

)

(b) Graph G(τ2).

(0, 0, 0)

(
1+, 0, 0

) (
3+, 0, 0

)(
2−, 0, 0

) (
3−, 0, 0

)

(
2+, 1, 0

)

(
1−, 2, 0

)

(c) Graph G(τ3) .

Figure 6.1: Evolution of the dynamic event-based graph for an instance with three re-
quests.
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6.3 Event-Based MILP Model for a Rolling-Horizon

Based on the event-based graph model we update and solve an MILP in a rolling-horizon
strategy whenever new requests arrive, that is, at times τ = τj for j = 1, . . . , n. Every
subproblem DARP(τ) can be modeled as a variant of a minimum cost flow problem with
additional constraints in the dynamic event-based graph G(τ) = (V (τ), A(τ)).

For the MILP formulation of DARP(τ) we use the following additional parameters and
variables:

Since every node in the dynamic event-based graph G(τ) = (V (τ), A(τ)) corresponds
to a uniquely determined geographical location, we can associate routing costs ca ≥ 0
and a travel times ta ≥ 0 with the respective arcs a ∈ A(τ) in G(τ). Let δin(v, τ) and
δout(v, τ) denote the set of ingoing and outgoing arcs of v at time τ , respectively. A
solution of DARP(τ) is denoted by x(τ) and is composed of the following variables: The
binary variables xa with a ∈ A(τ) are equal to one if and only if arc a ∈ A(τ) is used by
a vehicle. A feasible tour of a vehicle is then represented by a dicycle C in the dynamic
event-based graph G(τ) such that xa = 1 for all a ∈ A(C), where A(C) is the arc set of
C. If a vehicle has reached the last delivery location in the dicycle representing its route,
it will wait at its current location for new requests until it has to start its journey back to
the depot to arrive there before the end of service `0. Since requests might be rejected, we
introduce a binary variable pi for each i ∈ A(τ) \P(τ) with pi = 1 indicating that request
i is accepted. To model the beginning of service at a node v ∈ V (τ) , i.e., the time at
which a vehicle arrives at the location represented by v to pickup or delivery passengers,
we use continuous variables Bv. The continuous variables di, i ∈ A(τ) measure a user’s
regret compared to his or her earliest delivery time.

The parameters xold
a and Bold

v are used to store the values of the variables xa and Bv
from the previous iteration in the rolling-horizon framework. Once a vehicle has departed
from a location, we cannot divert it from its next destination (as this brings technical
difficulties related to the calculation of distances, see Berbeglia et al., 2010). Also, if an
arc has been realized up to time τ , it has to be included in a dicycle flow in all later
subproblems. Therefore, if τ > τ1 then all partial routes up to time τ and hence all
variables xa corresponding to the set

Afixed(τ) := {(v, w) ∈ A(τ) : xold
(v,w) = 1, τ ≥ Bold

w − t(v,w)}

are fixed in the MILP corresponding to the current subproblem DARP(τ). The set of
realized arcs Arealized(τ) is a subset of the set of fixed arcs Afixed(τ). We set Afixed(τ1) = ∅.
Furthermore, let Anew(τ) be the set of all arcs that have not been contained in the graph
corresponding to the previous subproblem. We have Anew(τ1) = A(τ1).

For the remainder of this section, let j ∈ {1, . . . , n} be arbitrary but fixed. To prepare
the MILP formulation of DARP(τj), we define a set of travel time constraints (Cv,w(τj))
for all (v, w) ∈ Anew(τj) \ δout((0, . . . , 0), τj):

Bw ≥ max{Bv, τj}+sv1 +t(v,w)−Mv,w(τj) · (1−x(v,w)), (Cv,w(τj))

where Mv,w(τj) =

{
`v1 − ew1 + sv1 + t(v,w) if Bv ≥ τj ,
τj − ew1 + sv1 + t(v,w) otherwise,
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is a sufficiently large constant. The constraints (Cv,w(τj)) guarantee that for all arcs
(v, w) ∈ Anew(τj) \ δout((0, . . . , 0), τj) the beginning of service at a node w is greater than
or equal to the earliest departure time at a preceding node v plus the time needed to travel
from node v to node w. If (v, w) ∈ Anew(τj) \ δout((0, . . . , 0), τj), then the arc (v, w) is
related to a new request that has been revealed at time τj −∆. This implies that travel
from v to w can start no earlier than max{Bv, τj}+ sv1 . Note that, in this case constraint
(Cv,w(τj)) can be linearized by rewriting it using two constraints where max{Bv, τj} is
once replaced by Bv and once by τj .

We are now ready to formulate the dynamic event-based MILP(τj) for each subproblem
DARP(τj).

Event-Based MILP(τj) for a Rolling-Horizon

min ω1

∑

a∈A(τj)

ca xa + ω2

∑

i∈A(τj)\P(τj)

(1− pi) + ω3

∑

i∈A(τj)

di, (6.3a)

s. t.
∑

a∈δin(v,τj)

xa −
∑

a∈δout(v,τj)

xa = 0 ∀v ∈ V (τj), (6.3b)

∑

a∈δin(v,τj)
v∈Vi+

xa = pi ∀i ∈ A(τj) \ P(τj), (6.3c)

∑

a∈δout((0,...,0),τj)

xa ≤ K, (6.3d)

e0 ≤ B(0,...,0) ≤ `0, (6.3e)

ei+ + (`i+−ei+)

(
1−

∑

a∈δin(v,τj)

xa

)
≤ Bv ≤ `i+ ∀i ∈ A(τj) \ P(τj), v ∈ Vi+(τj),

(6.3f)

ei− ≤ Bv ≤ ei+ + Li + si+ + (`i+ − ei+)
∑

a∈δin(v,τj)

xa ∀i ∈ A(τj), v ∈ Vi−(τj), (6.3g)

Bv ≤ `i+
(

1−
∑

a∈δin(v,τj)

xa

)
+ (Γi + γ)

∑

a∈δin(v,τj)

xa ∀i ∈ S(τj),∀v ∈ Vi+(τj), (6.3h)

Bw −Bv − si+ ≤ Li ∀i ∈ A(τj), v ∈ Vi+(τj), w ∈ Vi−(τj), (6.3i)

Bw ≥ τj + t(v,w)x(v,w) ∀(v, w) ∈ δout((0, . . . , 0), τj) \Afixed(τj), (6.3j)

(Cv,w(τk)) ∀(v, w) ∈ Anew(τk) \ δout((0, . . . , 0), τk), ∀k = 1, . . . , j, (6.3k)

di ≥ Bv − ei− ∀i ∈ A(τj), ∀v ∈ Vi−(τj), (6.3l)

pi = 1 ∀i ∈ S(τj), (6.3m)

x(v,w) = 1, Bw = Bold
w ∀(v, w) ∈ Afixed(τj), (6.3n)

pi ∈ {0, 1} ∀i ∈ A(τj) \ P(τj), di ≥ 0 ∀i ∈ A(τj), (6.3o)

xa ∈ {0, 1} ∀a ∈ A(τj), Bv ≥ 0 ∀v ∈ V (τj). (6.3p)
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The objective function (6.3a) minimizes the total routing cost, the total regret and the
number of unaccepted requests, where ω1, ω2, ω3 > 0 are weighting parameters that can
be adapted to represent the respective importance of these optimization criteria. The flow
conservation constraints (6.3b) ensure that only dicycle flows in G(τj) are feasible. Every
accepted user has to be picked up at one of its pickup nodes by exactly one vehicle (6.3c).
Constraint (6.3d) is a capacity constraint on the number of vehicles. The constraints
(6.3e)–(6.3g) are time-window constraints for the vehicles to arrive at events (nodes).
Constraints (6.3h) guarantee that the start of service at a pickup node of a user i ∈ S(τj)
which has not been picked up yet, is not later than the pickup time Γi communicated to
the user plus an additional constant γ. Furthermore, the maximum ride time of a user is
bounded by constraint (6.3i), while constraints (6.3j)–(6.3k) model the travel-time from
node to node. Constraints (6.3l) measure a user’s regret. The constraints (6.3m) ensure
that a request is contained in a vehicle’s route if and only if it is accepted (indicated
by pi = 1). Finally, constraints (6.3n) ensure that the next solution respects the partial
routes up to time τj , including the scheduled service times that are inherited from the
previous iteration. Vehicle capacity, pairing and precedence constraints are ensured by
the structure of the event-based graph. Furthermore, it guarantees that picked up users
will not be relocated to any other vehicle and that they will eventually be dropped off.
Note that, requests that have been accepted but have not been picked up or dropped off
yet may be assigned to other vehicles in the next iteration.

6.4 A Rolling-Horizon Algorithm

We now present the essential aspects of the rolling-horizon algorithm. The approach
is based on iteratively updating the dynamic event-based graph whenever new requests
arrive, given the information obtained from the previous solution. Then the corresponding
MILP is resolved. For each new request we have to determine whether it can be feasibly
integrated into the existing schedule. If this is possible, then a schedule including the
new request that minimizes routing costs and regret is computed. We impose a time limit
of 30 seconds to decide how to process new requests. If the solution returned by the
MILP solver is not yet known to be optimal due to this time limit, then the solution is re-
optimized in the next iteration. Note that, this re-optimization can only consider variables
that have not yet been fixed due to the advanced time. In the following, let δ be a timer
that ensures this time limit by measuring the time in minutes needed to execute lines 4–8
in Algorithm 3. An initial feasible solution containing the initial requests is obtained
by solving MILP(τ1). Every time one or more new requests are revealed at times τi, i ∈
{2, . . . , n}, the set of active requests is updated as A(τi) = A(τi−1)∪N (τi)\(D(τi)∪R(τi))
and the dynamic event-based graph corresponding to the current time τi is computed. Note
that, we do not have to recompute the whole graph in each iteration: All not realized
pickup and delivery nodes (up to time τi) corresponding to dropped off and denied users
and all not realized pickup nodes (up to time τi) corresponding to picked up users are
removed from the graph together with all incident arcs. On the other hand, new nodes
and arcs corresponding to new requests are added to the graph and the MILP is updated
accordingly. To assure that vehicle routes computed for the current subproblem DARP(τi)
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Algorithm 3: Rolling-horizon algorithm for the dynamic DARP.

1 (x,B, p, d) = solve(MILP(τ1))
2 for i = 2 . . . n do // new requests N (τi) are revealed

3 Start timer δ = 0
4 Determine D(τi), R(τi) and P(τi)
5 A(τi) = A(τi−1) ∪N (τi) \ (D(τi) ∪R(τi))
6 Compute dynamic event-based graph G(τi)

7 Determine set of fixed arcs Afixed(τi) // fix partial routes up to τi
8 (x,B, p, d) = solve(MILP(τi)) and stop prematurely when δ = ∆
9 foreach request i ∈ N (τi) do

10 if pi = 1 then
11 accept request i
12 else
13 reject request i

are consistent with the routes that have been executed up to time τi−∆, the corresponding
variables have to be fixed up to time τi before solving the next subproblem MILP(τi).

6.5 Numerical Results

In this section we assess the performance of Algorithm 3 based on real data from Hol mich!
App. We use two instances that differ w.r.t. the length of the planning horizon and the
number of requests. Su 8 22 is an instance with n = 254 transportation requests based
on accumulated data from nine consecutive Sundays in January and February 2021 with
service hours from 8 a.m. until 10 p.m., i.e., T = 840 minutes. Sa 6 3 consists of n = 519
requests and is based on accumulated data from nine consecutive Saturdays in January and
February 2021 with service hours from 6 a.m. until 3 a.m. the next morning, i.e., T = 1260
minutes. Note that, due to the Covid-19 pandemic the demand for ridepooling services was
rather low and hence we accumulated requests to obtain realistic instances. Moreover, the
ridepooling cabs which are equipped with six seats were not allowed to transport more than
three passengers at a time, i.e., Q = 3. We used linear regression to approximate unknown
travel times from distances and from the known travel times between the pickup and
delivery locations of the requests. More precisely, as for the artificial test instances used
in Section 4.4, the costs ca were computed in an OpenStreetMap network of Wuppertal
using the Python APIs OSMnx and NetworkX. Then travel times ta were computed from
the regression line ta = 1.8246 ca + 2.369. The length of the pickup time window for each
user is 25 minutes, and the lower bound of the pickup time window is equal to the time
when the transportation request was submitted plus the response time of the algorithm,
i.e., ei = τi. Moreover, the maximum ride time of request i is equal to ti+ max(10, 0.75 ti)
minutes. The service time for every request is set to 0.75 minutes and the number of
requested seats varies from one to three, i.e., qi ∈ {1, 2, 3}. The delivery time window is
computed based on the pickup time window, the direct travel time, the maximum ride
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time and the service time. The maximum delay of communicated pickup time is set to
γ = 5 minutes. After some preliminary testing, the parameters in the objective function
(6.3a) are set to ω1 = 1, ω2 = 60 and ω3 = 0.1. Due to the accumulation of request data,
we were not given a fixed number of vehicles by the service provider. An evolution of the
number of requests during service hours is depicted in Figure 6.2.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3
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20
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50 Sa 6 3

Su 8 22

Figure 6.2: Evolution of number of requests during service hours.

In the peak hour, there are 51 requests in instance Sa 6 3 and 32 requests in instance
Su 8 22. The average length of a direct trip, i.e., driving from pickup to delivery location
without any additional stops, in both instances is 8.4 minutes. In our tests we evaluate
different fleet sizes and solve instance Sa 6 3 with K ∈ {12, 14, 16} and instance Su 8 22
with K ∈ {6, 8, 10} vehicles.

Algorithm 3 was implemented in C++ and all computations were carried out on an Intel
Core i7-8700 CPU, 3.20 GHz, 32GB memory using CPLEX 12.10. The code is available
in the git repository Gaul (2022b). The computational results can be found in Table 6.1.
For all instances we report the following average values per accepted request: the routing
costs C, the regret in minutes E, the waiting time from the time of submitting the request
until the time of pickup in minutes W, the ride time in minutes RT, the average time to
answer a new request in seconds S, the percentage of requests that are rejected RR, and the
number of times CPLEX was terminated prematurely due to a timeout CT. Furthermore,
we listed the average detour factor DF, the mean occupancy MO, the percentage of empty
mileage EM and the system efficiency SE, which are measures to evaluate the operational
efficiency of ridepooling systems. The computation of these measures is based on Liebchen
et al. (2021):

average detour factor =
passenger kilometers driven

passenger kilometers booked
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6.5 Numerical Results

Inst. K C E W RT DF MO EM SE S RR CT

Sa 6 3 12 4.4 12.2 9.7 11.6 1.1 1.6 0.3 1.0 2.9 3.5 1
Sa 6 3 14 4.4 12.2 9.6 11.7 1.1 1.6 0.3 1.0 2.8 3.3 2
Sa 6 3 16 4.4 11.8 9.4 11.5 1.1 1.5 0.3 1.0 2.7 3.1 1

Su 8 22 6 4.7 15.9 13.0 12.0 1.2 1.5 0.3 0.9 0.5 3.5 0
Su 8 22 8 4.6 12.3 10.0 11.5 1.1 1.5 0.3 0.9 0.4 1.6 0
Su 8 22 10 4.6 11.8 9.7 11.4 1.1 1.5 0.3 0.9 0.3 1.6 0

Table 6.1: Computational results for instances from Hol mich!
App.

mean occupancy =
passenger kilometers driven

vehicle kilometers occupied

percentage of empty mileage =
empty mileage

total vehicle kilometers

system efficiency =
mean occupancy · (1− percentage of empty mileage)

average detour factor

The results confirm that Algorithm 3 can quickly answer and schedule new requests.
No CPLEX timeouts occurred in any run of a Su 8 22 instance. Thus, all 254 requests
are either inserted optimally in the given schedule, given the solution of the preceding
iteration, or they are rejected due to infeasibility or unacceptable costs. For the larger
Sa 6 3 instances very few timeouts occurred, and CPLEX terminated prematurely only
one or two times out of the 404 iterations1. This affected the insertion of five out of 519
requests. The relative gap in these iterations ranged from 0.4% to 0.5%. Moreover, a
re-optimization was necessary only in 0.5% of the iterations, which implies that only a
very low percentage of requests was rejected while there would have been a feasible and
profitable insertion position. From comparing the results for Su 8 22 and Sa 6 3 for the
different fleet sizes, it becomes evident that by the use of additional vehicles the average
routing costs, the average regret, the average waiting time and the average trip length
(except Sa 6 3 with K = 14) per accepted user decrease or remain constant. The average
detour factor, the mean occupancy, the percentage of empty mileage and the system
efficiency remain (nearly) constant for the different values of K, while the percentage
of rejected requests decreases with an increasing number of vehicles. The average time
to answer new requests ranges from 2.7 to 2.9 seconds (Sa 6 3 ) and 0.3 to 0.5 seconds
(Su 8 22 ) on average, demonstrating that Algorithm 3 is stable under different vehicle
configurations.

1There are less than 519 iterations since several requests are revealed at the same time.
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6.6 Summary

We present a rolling-horizon approach for the solution of the dynamic dial-a-ride-problem
that adaptively updates a dynamic event-based MILP formulation. The latter is based
on a dynamic event-based graph, which is updated every time new requests are revealed:
Nodes corresponding to picked up, dropped off or denied requests are (partially) removed
from the graph together with incident arcs, while nodes corresponding to the new requests
and the remaining active requests are added. This approach can be distinguished from
classic solution methods for the dynamic DARP in that it guarantees optimal insertion
positions for new requests w.r.t. the previous routing decisions and given that a prespec-
ified time limit of 30 seconds is not violated. Numerical experiments on medium-sized
instances from a recently established ridepooling service in the city of Wuppertal confirm
the efficiency and reliability of this approach. By adapting the weighting parameters in the
objective function, different preferences w.r.t. service cost and customer satisfaction can
be implemented. The approach can also be used to assess the quality gain when increas-
ing the fleet size or when changing other parameters in the model. In the next chapter,
we simulate the substitution of line-based public transport services by ridepooling during
periods of low demand, e.g., during night time. To model the routing decisions of the
ridepooling service, the proposed rolling-horizon algorithm is used.
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7 Ridepooling and Public Bus Services: A
Comparative Case-Study

In this chapter, we compare the service quality of time-tabled buses in the late evening
hours in the city of Wuppertal, Germany to that of on-demand ridepooling cabs. To evalu-
ate the service quality of ridepooling as compared to bus services, and to simulate bus rides
during the evening hours, transport requests are generated using a predictive simulation.
To this end, a framework in the programming language R is created, which automatically
combines generalized linear models for count regression to model the demand at each bus
stop. Furthermore, we use classification models for the prediction of trip destinations. To
solve the resulting dynamic dial-a-ride problem, the rolling-horizon algorithm is extended
by a feasible-path heuristic to further reduce its computation time in presence of request
peaks. The quality of the ridepooling service is evaluated using performance measures
such as transportation time, waiting time, ride time and regret. This allows an estimation
of the number of cabs needed depending on the weekday to realize the same or a better
general service quality as the bus system.

The optimization problem underlying the ridepooling service is a deterministic, dynamic
and homogeneous DARP. We allow transport requests to be rejected and the objective
function is a weighted-sum minimizing the routing costs, the regret and the number of
unaccepted requests.

The remainder of this chapter is structured as follows: After a short description of
the problem setting, we outline the concept of the case study in Section 7.1. Section 7.2
deals with the statistical modeling and simulation of transportation data. The feasible-
path heuristic introduced to enhance the performance of the rolling-horizon algorithm in
the face of request peaks is illustrated in Section 7.3. After all prerequisites are made,
a computational study evaluating the effects of the replacement of buses by ridepooling
cabs with respect to the service quality is conducted in Section 7.4. Finally, based on the
computational results, some conclusions are drawn in Section 7.5. This chapter is based
on the case-study conducted in Asatryan et al. (2023).

7.1 Case Study Outline

In the evening hours, it is necessary to offer a transport option, but buses are hardly
working to capacity. Figure 7.1 shows the number of bus rides per hour during the first
half of 2019. It is obvious that in between 10:00 PM and 3:59 AM the actual number
of passengers (marked in red) is lowest, because of equally low supply and demand. For
example, between 2:59 AM and 3:59 AM, there are approximately 600 requests, i.e., on
average 23 requests a day during the first half of 2019.

This study investigates the advantages and disadvantages of (partially) substituting bus
trips during periods of low demand by ridepooling services with respect to criteria related
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Figure 7.1: Hourly Distribution of W-LAN registered WSW bus rides in the city of Wup-
pertal during the first half of 2019.

to service quality. We exemplarily conduct the study in the city of Wuppertal (a mid-sized
city with about 350,000 inhabitants) and simulate the substitution of the bus trips in the
evening hours between 10 p.m. and 4 a.m. by the Hol mich! App ridepooling service. This
includes, for example, the transportation time, the waiting time, and the regret, i.e., the
excess ride time as compared to using a private car. Since this study does neither address
social criteria and constraints nor the acceptance of ridepooling services in the general
public, the results have to be assessed with care.

The Hol mich! App ridepooling operates electrical cabs with six seats and, in contrast
to bus services, is not tied to fixed line plans and schedules. The collaboration with the
local transport provider WSW within the project bergisch.smart mobility1 enabled us to
get access to ridepooling as well as bus service data. Using ride statistics recorded by
logging data of WSW Wi-Fi users, we model and simulate evening trip scenarios, taking
into account the influence of the weekday and the full hour of a trip, as well as information
on school holidays.

Transport requests and the destination of rides are modeled statistically in a three step
procedure. We first evaluate the number of requests on the basis of mobile logging data
for each bus stop in the ridepooling area with destination in the same area. This leads
to a Poisson count regression model for each bus stop with the hour, the weekday and
an indicator for school holidays as covariates that influence the number of requests. In
a second step, the number of persons traveling jointly on the trip is simulated using the
statistics of Hol mich! App transport requests. Ultimately, we model the probability of a
specific destination for the trip on the basis of logging out data from the mobile internet
data using a multicategorical logistic regression model with the aforementioned covariates

1https://www.bergischsmartmobility.de/en/the-project/
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per bus stop. On the basis of our statistical models, we simulate transport requests in the
area of the Hol mich! App ridepooling service by the Monte Carlo method. We thereby
generate stochastic scenarios of transport requests that approximately correspond to those
of the real world transportation by bus.

We evaluate the service quality of shared evening rides in comparison to line based
bus services by modeling the routing decisions of the ridepooling service as a dynamic
DARP and apply the rolling-horizon algorithm (Chapter 7), enhanced by a feasible-path
heuristic to reduce computation time, to a sufficiently large number of such simulations.
In the following, we describe the simulation of transport requests.

7.2 Statistical Modeling and Simulation of Transportation Data

In this section we describe the simulation environment we use to generate realistic trans-
port requests. In order to achieve this, we analyze and connect various public domain and
proprietary data sets. On these data sets we base a statistical modeling of rides which so
far have been conducted using the public bus system at Wuppertal. This is, among other
data sources, based on anonymized Wi-Fi logging data provided by the public transporta-
tion agency WSW for the time span from January 1st to June 30th 2019.

For an introduction into statistical analysis and the tools used in this chapter we refer
to Faraway (2016), Hastie et al. (2009), and Knight (1999).

In the following, we first describe the data sources and thereafter describe the statistical
modeling and simulation approach.

7.2.1 Description of the Data Sets

Our statistical analysis and modeling is based on the following data sets:

• WSW-LAN data consisting of information on the Wi-Fi usage by public transport
passengers within the first half of the year 2019. We utilize this data to model the
transport requests depending on the bus station of departure, the hour of the day, the
weekday and public school holidays. This data is collected from logging information
to the Wi-Fi in the WSW buses. The data is anonymized and not proprietary
and is provided by the WSW under the collaboration of the bergisch.smart mobility
consortium.

• To provide the information, whether a day is public school holiday or not, we link
the data of School holidays2 in the state of North Rhine-Westphalia with the dates
in the WSW-LAN data set.

• VRR public transport timetables3 in General Transit Feed Specification (GTFS) for-
mat. This data set is utilized to analyze regret times (waiting times) by finding the
predecessor bus connecting the same bus stops in the time table data.

2https://www.feiertagskalender.ch/export.php?geo=3069&jahr=2019&klasse=3&hl=en
3https://www.opendata-oepnv.de/ht/de/organisation/verkehrsverbuende/vrr/openvrr/datensaet

ze
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Figure 7.2: Service area of Hol mich! App

• Wuppertal districts4 as spatial data in the coordinate system EPSG:25832, see Fig-
ure 7.2. This geostatistical data is used to determine whether geocoordinates asso-
ciated with bus stops are in the ridepooling operation district of the Hol mich! App.
In this way, we filter out only those bus rides that are inside the region where
Hol mich! App is available.

• The proprietary data set consisting of all ridepooling requests in 2021 is provided by
Hol mich! App for the purpose of this study. We use this data to statistically model
the group size of a single transport request and assimilate it to the distribution of
sizes observed in the Hol mich! App data set.

The following variables of the WSW-LAN data set are the most relevant ones for our
purposes:

• Time of the trip start/stop (named StartTime/StopTime),

• Station of the trip start/stop (named StartStation/StopStation).

4https://www.offenedaten-wuppertal.de/dataset/quartiere-wuppertal
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From these variables we extract the date, the weekday and the full hour of the trip start,
and we add the school holiday information.

7.2.2 Statistical Modeling of Transport Requests

Generalized linear models (GLM) are the standard models of statistical analysis beyond
standard regression, see, e. g., Faraway (2016), Hastie et al. (2009), and Knight (1999).
As transportation events at bus stops, i.e., a person taking a bus at a specific time at a
given hour, are counted by integer values, the standard regression based on the continuous
normal distribution is inadequate. Here, we therefore choose a GLM-based Poisson count
regression approach, which we now shortly explain:

Let xi be the covariate (daytime, hour and an indicator of school holidays in our case)
and yi the actual number of rides observed at a particular bus stop using the Wi-Fi logging
information and geolocation of the bus that is matched to geolocations of the bus stops.
A common assumption in count regression is to model the corresponding random number
Yi from which yi is a sample, as Poisson distributed

P (Yi = y) = Po(λi)({y}) = e−λi
λyi
yi!

, y ∈ {0, 1, 2 . . .}

where λi is the intensity parameter or the expected value of requests for the instance i.
In GLM this intensity parameter is modeled using a link function that maps the expected
value to a link variable which is modeled as a linear combination of the covariates plus an
intercept. For Poisson count regression, it is common practice to use the canonical link
function log(·), hence

log(λi) = β>xi ⇐⇒ λi = exp(β>xi).

Inserting this to the Poisson distribution enables one to determine the parameters β ∈ Rq
via Fisher scoring maximizing the likelihood, see Knight (1999). Note that, xi is composed
of one intercept term, 6 dummy 0-1 variables indicating the weekdays Tuesday–Sunday
(with all those dummies equal zero indicating Monday) and 23 dummy variables for the
hours of daytime different from 12–1 PM. The set of covariates is complemented with a
further dummy variable for school holidays, so that we obtain q = 1+6+23+1 = 30 param-
eters that are estimated from the data for each of the 516 bus stops in the Hol mich! App
ridepooling area separately. This is automated by adequately filtering and accumulating
the requests and application of the glm function in the statistics programming language
R5.

In this way we estimate the distribution of raw transport requests on the basis of single
passengers. While this adequately models single bus passengers, it does not model the
group size of a ridepooling request. To obtain a request model with adequate group
sizes, we use the statistics of group sizes of the ridepooling requests of the Hol mich! App
as obtained from the corresponding data set and displayed in Table 7.1. To model the
boardings at each station during any full hour, we naturally assume that boardings in
disjoint time intervals are independent. Our approach considers group rides, too, and we

5https://r-project.org
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Group size 1 2 3 4 5 6

Probability 0.804 0.153 0.026 0.011 0.004 0.002

Table 7.1: Distribution of passenger group sizes

assume that the different groups have different boarding times (practically, the hour, the
minutes, the seconds and the milliseconds of the boarding times of two different groups
cannot be all identical). Moreover, we assume that the boarding rate within each full hour
does not change essentially. The latter assumption could seem even more reasonable for
shorter time intervals, but the disadvantage here would be the smaller set of observations,
not sufficient for stochastic simulations.

In order not to increase the average overall number of passengers, downscale the inten-
sities λi by the average passenger group size (i.e., by 1.264 in the case of Table 7.1). After
using the downscaled intensities for generation of a statistically realistic random number of
requests, for each request the size of groups are generated according to their distribution.

7.2.3 Statistical Modeling of Destinations

To simulate the destinations, we use the multinomial logit model, see Faraway (2016).
Based on the same set of 30 dummy covariates xi as described in the previous subsection,
we train a (s− 1)× q Θi matrix (with q− 1 the number of covariates), which generates an
s− 1 dimensional activation vector zi = z(xi | xi,Θi). Thereby, s denotes the number of
bus stations in the ridepooling operation area that have ever been reached from the starting
bus station under consideration. One frequent destination bus station from the given bus
station of departure is selected, put at the first index position in zi and associated with
intensity zi,1 = 0 to avoid overparametrization. We thereafter send the entire activation
scores zi through the softmax activation function

p(j | xi, i,Θi) = softmax(zi)k =
exp(z(xi,Θi)j)∑s
l=1 exp(z(xi,Θi)l)

) for j ∈ {1, . . . , s},

which gives us the vector of discrete probabilities of choosing a specific destination among
the s existing options.

For each of the 516 stations of departure, the above multicategorical logistic regression
(or equivalently a shallow neural net without hidden layer) is fitted using the R pack-
age nnet after an adequate filtering for the allowed destinations. Note that, due to the
shortcomings of anonymous Wi-Fi tracking data, no bus rides requiring a transfer can be
modeled with our approach.

7.2.4 Simulation of Virtual Data Sets

Based on the statistical models for transport requests, group sizes and destinations, we
are now able to sample from the corresponding distributions in order to create a virtual
request scenario. In detail, this is done for every station simulating an entire week, hour
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Figure 7.3: Visualization of a ridepooling scenario on the interactive map.

by hour, either for school holidays or not. Within the given hours, the exact time of the
transport requests is uniformly distributed.

We also provide an interactive tool for visualization of the request scenarios. The user
can select the outbound time (in full hours), the day of the week, and the school holiday
information. This results in a Leaflet-based HTML map where stations are displayed as
disc-shaped markers with radii proportional to the square root of the corresponding entry
number. Hovering over a marker displays the name of the station, and clicking on it
displays boarding information, i.e., number of boardings, start time (in full hours), day
of the week, school holiday information, and destination stops. For a better view, one
can select the outgoing station in the right panel, then the corresponding destinations will
be displayed by connecting rays. We use blue color for all the stations where there are
boarding passengers, whereas the stations where no passengers get on a bus are displayed
using the gray color, see Figure 7.3 for an example scenario.

7.2.5 Modeling of Waiting Times

To model waiting times for bus rides, we analyze the VRR public transport timetables by
searching a preceding trip in the time tables that directly connects the bus stops of origin
with the destination which gives us the maximum waiting time. If the maximum waiting
time exceeds a threshold of two hours, the value is set to the threshold. The waiting time is
now simulated uniformly in between the maximum waiting time and zero, as, potentially,
the passenger might have wanted to travel at any of these times and we have no reason to
assume a preference for any point of time in the given time interval.
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7.3 Feasible-Path Heuristic

To solve an instance of the dynamic DARP we use the rolling-horizon algorithm (Chap-
ter 6). To further reduce computation times in order to compensate for request peaks,
the algorithm is extended by a feasible-path heuristic. By means of the heuristic, the
complexity of the MILPs that are solved iteratively can be controlled. Thus, the solution
strategy we use is easily adjustable to different volumes of requests, giving way to obtain
near-optimal solutions when demand is low, and speeding up computation times when it
is high. A description of the newly added heuristic is given below.

The feasible-path heuristic ensures that every time a new request i arrives, only nodes
and arcs corresponding to the ρ most temporally and spatially proximate paths j+ →
i+ → j− → i− and j+ → i+ → i− → j− are added to the dynamic event-based graph.
Only paths of pairwise feasible requests i, j are considered. The spatial proximity of the
path j+ → i+ → j− → i− is measured in terms of the function

ω1

(
c̄j+i+ + c̄i+j− + c̄j−i−

)
,

whereas the temporal proximity is calculated as

ω2

(
2
(
max(ei+ , ej+ + sj + t̄j+i+) + si + t̄i+j−

)
− ej− + sj + t̄j−i− − ei−

)
.

Here, ω1 and ω2 denote the weighting parameters used in the objective function (6.3a). The
temporal and spatial proximity of the path j+ → i+ → i− → j− is calculated accordingly.
The temporal and spatial proximity of a path which is infeasible w.r.t. time window or
ride time constraints is set to infinity.

Let ρi denote the number of feasible paths associated with a new request i. The number
of feasible paths that are considered as a basis for the computation of new nodes and arcs
in the dynamic event-based graph is denoted by ρ = max(ρabs, ρrelρi), which is composed
of a fixed bound ρabs on the number of considered feasible paths and a relative bound ρrel

on the percentage of considered feasible paths. By the use of the heuristic, the size of the
graph and the number of modifications of constraints and new variables in the dynamic
event-based MILP at every iteration is kept small. Nevertheless, we lose an important
characteristic of the rolling-horizon algorithm: if MILP(τj) is solved to optimality within
the time limit, it is not guaranteed that the solution returned by the MILP solver is
the global optimal solution w.r.t. the current vehicle routes computed in prior iterations.
In preliminary tests, we observed that using the heuristic with ρabs = 10 and ρrel =
0.25, average routing costs increased by 2.8% while average regret decreased by 0.6% and
computational time decreased by 65%. Thus, the rolling-horizon-algorithm paired with the
feasible-path-heuristic is able to produce high-quality solutions in a significantly reduced
amount of time.

7.4 Numerical Results

In the first part of this section, 30 weeks of simulated ridepooling scenarios with service
hours from 22:00 to 03:59 are considered and optimized tours are computed using the
rolling-horizon algorithm enhanced by the feasible-path heuristic presented in the previous
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Figure 7.4: Distribution of travel and ride times (in minutes) among the artificial requests.

section. To evaluate the quality of the transportation via ridepooling as compared to the
bus service, we rely on the quality measures which are regularly used as parts of the
objective function in ridepooling applications, see Section 3.5. Secondly, to measure the
quality of the bus service, the WSW-LAN data set is extended by simulated waiting times
at the bus stop as described in Subsection 7.2.5, and the two modes of transportation are
compared.

In total, 210 simulated instances are solved, 30 instances for each day of the week.
We use the following parameter settings for the feasible-path-heuristic and the rolling-
horizon algorithm for the tour computations: ρabs = 10, ρrel = 0.25, and ∆ = 45. All
other parameters are given by the conditions of transport of the service provider, i.e., the
service time is considered to be constant and equals si = 45 seconds and the length of
the pickup time window is given by `i+ − ei+ = 25 minutes. The number of transport
requests, the number of requested seats, and pickup and delivery locations are taken from
the simulated transport data. The distances between the latter are computed with help
of the Python packages OSMnx and NetworkX, and the travel time between two locations
j1, j2 is computed based on a linear regression using distances and travel times from the
Hol mich! App data set: t̄j1j2 = 2.3634 · c̄j1j2 +0.2086. A visualization of the distribution of
travel and ride times among the the transport requests is given in Figure 7.4. It remains
to determine the size of the vehicle fleet.

For the purpose of this simulation we use a fixed number of vehicles depending on the
weekday; the size of the vehicle fleet should not vary from week to week or throughout the
evening. Hence, for each weekday, using our estimated transport requests, we calculate
the total number of requests per hour over 30 weeks and take the average among the 30
weeks. Then, the hour with the maximum average number of requests is used as a basis to
estimate the number of vehicles needed. Preliminary tests show that a ratio of 8 requests
per vehicle and hour on average is a good starting point. In the following we will refer
to this parameter setting as scenario A. Additionally, we simulated also with a fleet size
reduced by one (scenario B) and increased by one (scenario C). The corresponding sizes of
the vehicle fleet are given in Table 7.2. The code of the feasible path heuristic is written
in C++ and can be found in the same git repository as the rolling-horizon algorithm. The
MILPs are solved using IBM ILOG CPLEX 12.10. The computations are performed on
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max. avg.
# requests
per hour

A B C

Monday 37.2 5 4 6
Tuesday 34.6 5 4 6
Wednesday 26.7 4 3 5
Thursday 30.8 4 3 5
Friday 24.1 4 3 5
Saturday 17.9 3 2 4
Sunday 26.5 4 3 5

Table 7.2: Number of vehicles de-
pending on the week-
day and scenario.

an Intel Core i7-8700 CPU, 3.20 GHz, 32 GB memory.

To analyze the service quality of the bus service in comparison to the ridepooling service,
we report the following average values (in minutes) per realized trip using the bus or the
ridepooling service: the regret E, the waiting time W and the ride time RT. These values
are also used to compare the quality of the computed routes using different sizes of vehicle
fleets in Section 6.5. Furthermore, we report the average transportation time TT per trip
(i.e., the time in minutes from the time of submitting the request/ showing up at the bus
stop until the arrival at the request’s destination). In addition, we present the following
quantities for the simulated bus requests transported via ridepooling, as they are criteria
of our weighted-sum objective function: Total routing costs (fc) and number of rejected
requests (we report the percentage of rejected requests RR).

Table 7.3 illustrates the results of the simulation compared against the bus service,
where for each scenario and each weekday average values over 30 weeks are reported.
Additionally, in Table 7.4 we exemplarily list average hourly results for Monday evening
and each scenario. In both tables, we report average regret, waiting time, ride time and
transportation time for the bus service based on trip data from the WSW-LAN data
set. In order to compare the quality of both transportation modes, the trip data of each
passenger in the WSW-LAN data set is extended by a simulated time the passenger has
to wait at the stop for the bus to arrive, see Section 7.2.5. As for the ridepooling service,
we assume a service time of 0.75 minutes for passengers to enter or leave a bus. Due to the
reduced amount of passengers during the late evening hours this is a realistic assumption.
The number of buses simultaneously in service is estimated by WSW to be a minimum of
10 buses during the week. Hence we use this number for comparison in the following.

It becomes obvious from Table 7.3, that we can achieve a much higher service quality
by ridepooling than by the bus service. While the daily average regret ranges from 9–11
minutes in scenario A, 11–14 minutes in scenario B and 7–9 minutes in scenario C, using
the bus service the average regret is between 19 and 26 minutes. Similar tendencies hold
for average waiting time, average ride time and average transportation time. In scenario
A, where the number of vehicles is selected so that, on average, eight transport requests
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7.4 Numerical Results

K fc RR E W RT TT

Scenario A
Mon 5 251.7 0.8 9.6 8.1 6.9 15.8
Tue 5 268.9 0.0 9.5 8.0 7.0 15.7

Wed 4 238.5 0.9 10.3 8.8 6.8 16.4
Thu 4 231.1 1.2 10.3 8.8 6.9 16.5

Fri 4 217.2 0.3 9.6 8.2 6.7 15.7
Sa 3 148.7 0.4 9.2 8.0 6.3 15.1
Su 4 176.8 0.6 9.7 8.3 6.8 15.9

Scenario B
Mon 4 243.5 3.3 11.2 9.5 7.2 17.4
Tue 4 262.2 2.1 11.8 10.0 7.2 18.0

Wed 3 222.9 6.6 13.4 11.5 7.2 19.4
Thu 3 218.1 6.8 12.6 10.7 7.3 18.8

Fri 3 207.8 3.9 12.2 10.4 7.0 18.3
Sa 2 140.9 6.9 12.5 10.8 6.8 18.4
Su 3 167.7 5.1 11.6 9.9 7.1 17.8

Scenario C
Mon 6 251.8 0.1 8.5 7.1 6.8 14.7
Tue 6 267.6 0.0 8.4 7.0 6.8 14.6

Wed 5 237.1 0.0 8.4 7.2 6.5 14.5
Thu 5 234.2 0.0 8.9 7.5 6.8 15.1

Fri 5 216.5 0.0 8.1 6.9 6.5 14.1
Sa 4 148.6 0.0 7.7 6.7 6.1 13.6
Su 5 178.3 0.0 8.1 7.0 6.6 14.4

Bus service
Mon 10 24.1 17.7 11.2 29.7
Tue 10 24.7 19.0 10.7 30.4

Wed 10 25.1 19.0 11.0 30.7
Thu 10 22.6 16.1 11.3 28.1

Fri 10 22.4 16.8 10.5 28.0
Sa 10 19.5 13.7 10.5 25.0
Su 10 20.1 14.6 10.2 25.6

Table 7.3: Average computational results over 30 weeks of
simulated request data and average transporta-
tion data computed over bus trips during first
half of 2019.

during the peak hour of requests can be accepted, on average at most 1.2% of the transport
requests are denied. While this is an acceptable ratio for a ridepooling service, we note that
the replacement of bus service generally requires a full coverage of all transport requests.
Thus, also scenario B, where one vehicle less per weekday is used than in scenario A, is
not eligible for a fair comparison. In scenario C, where one vehicle more than in scenario
A is used, the average percentage of denied requests is 0.0% for all weekdays but Monday,
where it is 0.1%. Hence, the size of the vehicle fleet for Mondays should be increased
to seven vehicles, while for the remaining week the initial estimate is sufficient. Taking
a closer look at scenario C, it becomes evident, that using the bus service to transport
late evening requests, average regret and average waiting time are about 2.5 to 3 times
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K fc RR E W RT TT

Scenario A
Mon 5 251.7 0.8 9.6 8.1 6.9 15.8

Mon 22-23 5 0.0 8.2 6.7 6.3 13.8
Mon 23-00 5 0.0 6.7 6.3 5.6 12.6
Mon 00-01 5 0.0 6.0 5.6 5.5 11.9
Mon 01-02 5 0.0 5.7 5.3 7.0 13.0
Mon 02-03 5 0.0 8.1 7.1 7.5 15.4
Mon 03-04 5 1.9 12.1 10.0 7.4 18.2

Scenario B
Mon 4 243.5 3.3 11.2 9.5 7.2 17.4

Mon 22-23 4 0.0 9.3 7.6 6.4 14.8
Mon 23-00 4 0.0 7.2 6.7 5.6 13.1
Mon 00-01 4 0.0 6.0 5.5 5.6 11.9
Mon 01-02 4 0.0 6.2 5.8 6.8 13.4
Mon 02-03 4 0.0 8.8 7.5 7.8 16.1
Mon 03-04 4 7.8 14.0 11.6 7.3 19.7

Scenario C
Mon 6 251.8 0.1 8.5 7.1 6.8 14.7

Mon 22-23 6 0.0 7.9 6.4 6.2 13.5
Mon 23-00 6 0.0 6.4 5.9 5.7 12.3
Mon 00-01 6 0.0 5.6 5.3 5.5 11.5
Mon 01-02 6 0.0 5.4 5.0 6.7 12.5
Mon 02-03 6 0.0 7.5 6.6 7.4 14.7
Mon 03-04 6 0.4 10.1 8.4 7.2 16.4

Bus service
Mon 10 24.1 17.7 11.2 29.7

Mon 22-23 10 24.1 17.7 11.2 29.6
Mon 23-00 10 24.5 18.1 11.2 30.1
Mon 00-01 10 20.1 15.0 10.1 25.9
Mon 01-02 10 24.7 18.3 11.2 30.2
Mon 02-03 10 24.1 17.7 11.2 29.7
Mon 03-04 10 24.2 17.8 11.2 29.7

Table 7.4: Hourly average computational results over 30
Mondays of simulated request data and aver-
age transportation data from Monday bus trips
during first half of 2019.

as high, while average ride time and transportation time are about 1.5 to 2 times as high
as compared to using the ridepooling service. These ratios can be improved even further
when taking into account the missing vehicle on Monday in scenario C: we now take a
look at the hourly results for Monday evening. Note, that the average results reported in
Table 7.4 are computed individually for every hour, which explains for example the fact
that the percentage of denied requests from 3 a.m. to 4 a.m. is higher than the percentage
of denied requests for Mondays as a whole day. From Table 7.4 we deduce that the number
of vehicles we assumed for Monday is sufficient, only for the hours of 3 a.m. to 4 a.m., an
additional vehicle is needed. In this hour, also the average regret, waiting time, ride time

138



7.5 Summary

and transportation time is larger than in the rest of the evening, so that the total averages
for Monday are increased by this hour with too few vehicles. A summary of the difference
in service quality for the case of scenario C can be found in Figure 7.5. We can conclude
that there is a high potential in the replacement of bus services by ridepooling during late
evening hours if quantitative criteria are used to evaluate the service quality. As discussed
previously, a vehicle fleet of 4–7 vehicles would be needed, depending on the weekday, to
be able to serve all requests. We note that we do not compare the service costs in this
study. The strong improvement in the overall service quality opens the door to an even
better and potentially more profitable service, as people might become more willing to use
public transport instead of private cars. As ridepooling services generally benefit from a
high demand, so that rides can be shared, the results of this study are indeed promising.
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Figure 7.5: Comparison of dial-a-ride (red) and bus service (blue) for the case of scenario
C.

7.5 Summary

In this chapter we investigate the effects on the service quality when replacing buses
during late evening hours by a ridepooling service. This is motivated by the observation
that particularly late at night, the number of transport requests is usually rather small
so that ridepooling services could offer a good alternative to regular bus services. For the
purpose of this investigation 30 weeks of simulated transport requests are created from
bus trip and ridepooling data sets in the city of Wuppertal in Germany by means of a
predictive simulation. The transportation of the simulated requests using the ridepooling
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service is mimicked by a rolling-horizon algorithm based on the iterative solution of the
dynamic event-based MILP formulation. This algorithm is enhanced by a feasible-path
heuristic to cope with request peaks. The computational results show that there is a
large potential for improvement of the service quality when offering ridepooling services
as compared to bus services: Using the ridepooling service, the average transportation
time can be reduced by about 50%. Moreover, an estimation on the number of vehicles
needed to provide a comparable service quality is given.
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8 Conclusion

In this thesis, we propose a new perspective on modeling DARPs by introducing the con-
cept of the event-based graph. Based on this graph, new (location-augmented-)event-based
MILP formulations are presented: the EB, LAEB and ALAEB formulation. These formu-
lations have the advantage that capacity, pairing and precedence constraints which need
to be explicitly formulated in location-based models, are implicitly encoded in the event-
based graph. While the (location-augmented-)event-based formulations have significantly
more variables and constraints than compact location-based models, their superiority is
proven computationally and theoretically. In a numerical study we show that the EB for-
mulation strongly outperforms the three-index location-based formulation. Indeed, while
the EB model solves benchmark instances with up to 96 users within a couple of seconds,
no feasible solution is found within 2 hours using the three-index location-based formu-
lation. Secondly, we prove that both the LAEB and ALAEB formulation have a tighter
linear programming relaxation than the LB formulation. In addition, both formulations
are tight in the sense that, if time windows fulfill additional conditions (e.g., if they induce
a unique ordering of each pair of locations), then the linear programming relaxation yields
integer (and hence optimal) solutions. Since the number of variables and constraints in
(location-augmented-)event-based formulations strongly depends on the size of the graph,
lower and upper bounds on the beginning of service time are computed systematically to
remove infeasible nodes and arcs from the graph. In addition, valid inequalities are de-
rived for the EB, LAEB and ALAEB formulation to avoid infeasible paths, customers with
incompatibilities and subtours. By using these preprocessing techniques together with the
LAEB formulation, extensive numerical experiments on benchmark instances show that
computational times are on average reduced by 53.9% compared to the plain EB MILP.

The proposed formulations are compact. Moreover, they can be implemented and solved
using standard IP solvers. Although there are approaches for the static DARP which
generate solutions even faster (e.g., Gschwind and Irnich, 2015; Rist and Forbes, 2021),
these rely on more complex methods such as branch-and-cut and column generation, which
cannot be implemented as easily and are less versatile.

To solve the dynamic DARP, a rolling-horizon algorithm is suggested, that iteratively
solves a dynamic event-based MILP whenever new requests arrive. Incoming requests can
be assigned to optimal insertion positions in 99.5% of all iterations in our computational
tests based on Hol mich! App data, which is in general not guaranteed by classical two-
phase heuristics proposed for the dynamic DARP. The rolling-horizon algorithm is used
in a case study investigating the replacement of buses by ridepooling services during the
late evening hours. For this purpose artificial ridepooling requests are generated using a
predictive simulation calibrated to real-life bus travel data and Hol mich! App data. A
feasible-path heuristic is suggested to reduce computation times during request peaks.

We conclude that the concept of event-based modeling has advanced the research on
the DARP in many ways. The solution of the static DARP has been improved by showing
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that location-based formulations can be replaced by (location-augmented-)event-based
formulations, which are based on a graph that implicitly contains a lot of information about
the problem. Moreover, by solving a plain MILP formulation, results which are competitive
with complex algorithms such as branch-and-cut can be produced, thus facilitating the
implementation of a high-quality solution strategy for the DARP. The dynamic DARP,
which has previously been solved using two-phase heuristics, is solved by an iterative
algorithm for the first time, which, in the large majority of iterations, makes the re-
optimization of vehicle routes after a request’s insertion superfluous. Furthermore, we
have used our methods to investigate the potential of ridepooling compared to line-based
public transport during periods of low demand.

A limitation of the event-based approach is that it does not immediately transfer to
applications with heterogeneous vehicles. Although the use of, e.g., a mixed fleet with
vehicle capacities of three and six could be implemented by using a duplicate of the graph,
for Q = 3 and for Q = 6, which is connected through the vehicle depot, the integration
of further vehicle characteristics seems to be difficult, if we think of applications in, e.g.,
healthcare, where configurable vehicles are used.

In the future, the idea of the event-based graph could also be used for other vehicle
routing problems, where several users or goods are transported simultaneously. For exam-
ple, the on-demand transportation of requests on a bus line, i.e., a fixed sequence of bus
stations, where the request set is partitioned by the direction of travel, and vehicles may
only change the direction of travel when they are empty, could be modeled by using one of
the (location-augmented-)event-based formulations and additional constraints. Moreover,
applications which guarantee (partially) cycle-free graph structures could be investigated.
For example, there are practical settings like the case where all customers have the same
pickup or delivery location as in the transition to public transport. Together with our re-
sults on the integrality of the LAEB formulation in case of a unique ordering of locations,
this could be a promising area of application.
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Nomenclature

0 Vehicle depot, sometimes also 0+, 0−

A Arc set of the event-based graph

A(τ) Set of active requests for subproblem DARP(τ)

Afixed(τ) Set of fixed arcs corresponding to DARP(τ)

Anew(τ) Set of arcs that have not been contained in the arc set of
the last subproblem

Arealized(τ) Set of realized arcs corresponding to DARP(τ)

Bv Continuous variable indicating the beginning of service at
node v

Bold
v Value of variables Bv obtained from last subproblem solved

BLB
v Lower bound for Bv

BUB
v Upper bound for Bv

B̄UB
i := maxv∈Vi+{BUB

v }, i.e., upper bound on the beginning of
service at location i+

BLB
vw Lower bound on the beginning of service at node w when

x(v,w) = 1

BUB
vw Upper bound on the beginning of service at node v when

x(v,w) = 1

B̄j Continuous variable indicating the beginning of service at
location j

ca Routing costs associated with arc a

c̄ij Routing costs from location i to location j

D := {1−, . . . , n−}, set of delivery locations

di Continuous variable indicating regret of user i w.r.t. ei−

dmax Continuous variable indicating maximum regret

D(τ), P(τ), R(τ), S(τ) Subsets of R of dropped off, picked up, rejected and sched-
uled requests up to time τ
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Nomenclature

[ej , `j ] Time window associated with location j

f1
i,j , f

2
i,j Feasibility of the paths j+ → i+ → j− → i− and j+ →

i+ → i− → j−, respectively, w.r.t. ride time and time
window constraints

G(τ) = (V (τ), A(τ)) Event-based graph corresponding to subproblem DARP(τ)

Ij Indicator variable yielding 1 if j ∈ P and -1 else

i+, i− Pickup and delivery location of request i

J := P ∪D ∪ {0}, set of locations

J̄ := P ∪ D ∪ {0+, 0−}, set of locations with start and end
depot

K Number of vehicles

Li Maximum ride time associated with request i

N (τ) New requests revealed at τ −∆

n Number of transport requests

P := {1+, . . . , n+}, set of pickup locations

pi Binary variable indicating the acceptance of request i

Q Vehicle capacity

Qj Continuous variable indicating the vehicle load after visit-
ing location j

qi (or qi+ , qi−) Number of request seats associated with request i (or loca-
tion i+, i−)

R := {1, . . . , n}, set of transport requests

si (or si+ , si−) Service duration associated with request i (or location i+,
i−)

S̄ Sequence of events S̄ = {(u1, u2), . . . , (um−1, um)}, m ∈ N
arbitrary but fixed

T Duration of service

TW Fixed length of time window constructed from desired pickup
or desired delivery time

ta Travel time on arc a
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Nomenclature

t̄i Travel time for a direct ride from pickup to delivery location
of request i

t̄ij Travel time from location i to location j

umi+ Unique event s.t. (umi+)1 = i+ and all users sitting in the
vehicle directly after event um are in umi+ in the vehicle too

umi− Unique event s.t. (umi−)1 = i− and all users sitting in the
vehicle directly before event um are in umi− in the vehicle
too

V Node set of the event-based graph

V0 := {(0, . . . , 0)}, set consisting of depot-node

Vi+ Set of pickup nodes associated with request i

Vi− Set of delivery nodes associated with request i

Vi+(τ), Vi−(τ) Set of pickup nodes and set of delivery nodes corresponding
to request i and DARP(τ)

VA(τ) Set of nodes corresponding to active requests A(τ) and
DARP(τ)

V realized
D(τ) , V realized

P(τ) Set of realized delivery nodes and set of realized pickup

nodes corresponding to DARP(τ)

V l-realized(τ) Set of last realized nodes corresponding to DARP(τ)

xa Binary variable indicating the use of arc a

x̄ij Binary variable indicating the use of arc (i, j)

xold
a Value of variables xa obtained from last subproblem solved

Γi Pickup time communicated to user i

γ Maximum delay of communicated pickup time

∆ Time allowed to communicate an answer to new requestst

δ Timer in minutes to measure time while executing Algo-
rithm 3

δin(v) Set of incoming arcs of node v

δout(v) Set of outgoing arcs of node v

δin(v, τ) Ingoing arcs of node v corresponding to DARP(τ)
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Nomenclature

δout(v, τ) Outgoing arcs of node v corresponding to DARP(τ)

ρabs Minimum absolute number of feasible paths allowed

ρrel Mininum percentage of feasible paths allowed

ρi Number of feasible paths associated with request i

τ Current time

τi −∆ Time at which request i is revealed

ω1, ω2, ω3 Weighting parameters

146



Bibliography

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin (1993). Network Flows. Theory, Algorithms,
and Applications. Prentice Hall.

Anair, D., J. Martin, M. C. P. de Moura, and J. Goldman (2020). “Ride-hailing’s climate
risks: Steering a growing industry toward a clean transportation future”. Union of
Concerned Scientists. Accessed on December 4, 2023. url: https://www.ucsusa.
org/resources/ride-hailing-climate-risks.

Asatryan, H., D. Gaul, H. Gottschalk, K. Klamroth, and M. Stiglmayr (2023). “Ridepool-
ing and public bus services: A comparative case-study”. Submitted to EURO Journal
on Transportation and Logistics. doi: 10.48550/ARXIV.2302.01709.

Ascheuer, N., M. Fischetti, and M. Grötschel (2000). “A polyhedral study of the asymmet-
ric traveling salesman problem with time windows”. In: Networks 36.2, pp. 69–79. doi:
https://doi.org/10.1002/1097-0037(200009)36:2<69::AID-NET1>3.0.CO;2-Q.
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Cubillos, C., E. Urra, and N. Rodŕıguez (2009). “Application of genetic algorithms for
the DARPTW problem”. In: International Journal of Computers Communications &
Control 4.2, p. 127. doi: 10.15837/ijccc.2009.2.2420.

Dandl, F., B. Bracher, and K. Bogenberger (2017). “Microsimulation of an autonomous
taxi-system in Munich”. In: 2017 5th IEEE International Conference on Models and
Technologies for Intelligent Transportation Systems (MT-ITS), pp. 833–838. url:
https://api.semanticscholar.org/CorpusID:25700161.

Dantzig, G., R. Fulkerson, and S. Johnson (1954). “Solution of a large-scale traveling-
salesman problem”. In: Journal of the Operations Research Society of America 2.4,
pp. 393–410. doi: 10.1287/opre.2.4.393.

Dantzig, G. B. and J. H. Ramser (1959). “The truck dispatching problem”. In: Manage-
ment Science 6.1, pp. 80–91. doi: 10.1287/mnsc.6.1.80.

Dantzig, G. (1963). Linear Programming and Extensions. Princeton University Press. doi:
10.1515/9781400884179.

Das, I. and J. E. Dennis (1997). “A closer look at drawbacks of minimizing weighted sums
of objectives for Pareto set generation in multicriteria optimization problems”. In:
Structural Optimization 14.1, pp. 63–69. doi: 10.1007/bf01197559.

Desrochers, M. and G. Laporte (1991). “Improvements and extensions to the Miller-
Tucker-Zemlin subtour elimination constraints”. In: Operations Research Letters 10.1,
pp. 27–36. doi: 10.1016/0167-6377(91)90083-2.

Desrosiers, J., Y. Dumas, F. Soumis, S. Taillefer, and D. Villeneuve (1991). “An algorithm
for mini-clustering in handicapped transport”. In: Les Cahiers du GERAD, G-91-02,
HEC Montréal.
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