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1. Introduction

1.1 Motivation

Due to their flexibility, gas turbines play an important role for the transition
in energy generation to renewable energy source. They are used to offsetting
load peaks in consumption and dips in production with renewable energies.
Due to cold starts this application causes high thermal and mechanical
loads in the turbine components. Special materials are used to manufacture
the machine parts for use under these extreme conditions. Commonly used
for such applications are Nickel-based super alloys.
To optimize maintenance cycles, ensure safe operation and design parts of a
turbine, it is important to have knowledge of the probability of failure of
large engineering components.
Standardized fatigue tests are used to determine material-specific key figures
for estimating the fatigue life of components [71]. The failure times of the
samples in these low cycle fatigue (LCF) tests scatter widely and failure
occurs before the deterministic failure time is reached. Hence, safety factors
are often used to account for these uncertainties in LCF lifetime and ensure
the safe operation of components [15, 5].
An empirical local model for low-cycle fatigue based on a Poisson process
model as presented in [61, 63] is a possible approach to model the statistical
scatter in LCF lifetime. To address inhomogeneous load conditions, the
model has been further developed with a notch support extension, as
outlined in [49, 46]. Furthermore, related modeling was applied to other
failure mechanisms such as high cycle fatigue (HCF) [48]. This branch of
research has found practical applications, e.g. for the design of gas turbines
[62, 63], manufacturing tolerance [48] and shape optimization [6, 26, 31, 29,
28].
While these models have proven effective in practical applications and have
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1 Introduction

been validated through experiments, their empirical nature raises questions
about the mechanical insights they provide into the complex micro-scale
processes governing low cycle fatigue.

Nickel-based super alloys typically exhibit a relatively coarse grain structure.
This specific grain configuration hinders homogenization effects on a size
scale that is relevant for LCF crack formation. Moreover, when combined
with the high anisotropic characteristic of the elasticity constants of nickel,
the local grain structure has an important impact on the LCF lifetime of
the material [72].

In recent research on LCF failure in macroscopic components, a diverse range
of modeling approaches has emerged, particularly considering microstruc-
tural factors. One prominent category is multiscale models [40], which
intricately integrate information spanning different length and time scales.
These models capture the complex interplay between macroscopic load-
ing conditions and microscopic material reactions, addressing mechanical
processes on separate length scales and combining them through homoge-
nization methods.

Multiscale modeling has demonstrated effectiveness in incorporating mi-
crostructural influences, such as directional grain solidification [64, 51] or
non-metallic inclusions [16], into LCF lifetime predictions. This approach
involves separate modeling on distinct scales, resulting in a model rooted
in physical processes. However, a challenge arises in the intricate homoge-
nization modeling required during scale transitions. Additionally, solutions
for individual-scale models heavily rely on numerical approximations, often
implemented through finite element methods (FEM). The use of nested
finite element simulations significantly increases computational demands
due to the inherent complexities in capturing multiscale interactions.

On the other hand, there are approaches explicitly considering the random
nature of microstructures, one notable method being the stochastic finite
element method (SFEM). Unlike traditional FEM, which assumes deter-
ministic boundary conditions and material properties, SFEM incorporates
random fields to specify these parameters [3, 57]. In a study [74], this
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1.1 Motivation

approach was employed to investigate the influence of material variability
and load fluctuations on the fatigue life of notched specimens. In another
study [75], SFEM was utilized for a probabilistic fatigue analysis of a turbine
blade under realistic loading conditions, and in [56], the authors applied
the SFEM framework to explore the influence of material variability, load
variation, and geometrical uncertainty on the fatigue reliability of a turbine
blade. While SFEM has proven successful in application, its downside lies
in the high computational cost associated with Monte Carlo simulations in
combination with FEM simulations of complex geometries.

In this work, we present a different approach that shifts most of the compu-
tational costs to offline costs by developing a stochastic FEM-postprocessor,
which is based on the Poisson process model and the microstructural prop-
erties of nickel-based alloys.

The microstructure of conventionally cast metals is characterized by micro-
scopic grains, where atoms arrange themselves in crystallographic lattices.
In this lattice structure, one-dimensional lattice defects, known as disloca-
tions, can propagate under cyclic loads. The activation energy required for
these dislocations is minimized along specific slip systems—planes of densest
packing and particular directions on these planes within the crystal’s lattice
structure [33]. This emphasizes the crucial influence of the local orienta-
tion of grain structures. As grain structures assume a random orientation
during the solidification process in conventional casting, fatigue processes
dependent on grain orientation become inherently stochastic [20, 22, 23,
32].

In [27], some authors proposed a model based on Schmid factors, which
represent the maximum shear stress on any crystallographic slip system
depending on its relative orientation to the stress tensor. This model
has been subsequently extended to consider the local anisotropy of the
metal’s elastic constants [23, 20, 22, 21]. A model solely based on the
probability of failure (PoF) of individual grains—defining a metallic structure
as failing when the first grain cracks—tends to significantly underestimate
the statistically observed scatter. The mathematical explanation for this
discrepancy lies in the narrowing effect of extremal value distributions [17],
while the physical rationale can be linked to the experimental definition of
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1 Introduction

a technically relevant mesoscopic crack, extending over several microscopic
grains.

Crack percolation modeling, as outlined in [7], is an integral part of any
successful physics-based model accounting for the variability in the number
of cycles until mesoscopic crack initiation. The model presented in [52]
incorporates multi-grain crack percolation, and subsequent work in [50]
refines and extensively tests this model against experimental data. However,
these models do not account for interactions between an already formed
crack in one grain and the subsequent influence on crack formation in
neighboring grains as local loads are redistributed from the cracked grain
to adjacent ones. In this work, there is an effort to model such interaction
effects in a physics-based probabilistic model of LCF. For this purpose,
FEM simulations model the influence of an intragranular crack in a crystal
with a random orientation on the shear stress on randomly oriented slip
systems on the other side of the grain boundary. In this way, data on the
relative increase or decrease of these stresses are extracted. Using this data,
a gradient boosting machine [38] is trained to predict these stress deviations
concerning the stress state in the same grain with a non-cracked neighbor
grain, based on the total of six Euler angles of both grains.

The probabilistic grain-microstructure model utilized in this work involves
employing random Voronoi tessellations [69], where each Voronoi cell is
assigned a crystal orientation. Our model starts with the single grain crack
initiation model until the point where the first grain is cracked. Subsequently,
the stresses of neighboring grains undergo correction based on the machine
learning model, almost always resulting in an accelerated consumption of
the remaining life. This introduces an epidemiological aspect to the model,
where clusters of cracked grains propagate more rapidly compared to the
percolation model, eventually reaching the size of a technically relevant
crack. The concept of technically relevant cracks, as defined in [35], is based
on multiaxial critical stress concentration factors.

To calibrate and validate the epidemiologic crack percolation model, we
utilize experimental data obtained from LCF tests. The experimental re-
sults, provided by the RPTU Kaiserslautern-Landau, encompass a range of
loading conditions, including both uniaxial and multiaxial scenarios.
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1.2 Outline

For the transfer of the microstructural crack model to macroscopic compo-
nents we use the Poisson point process modeling of LCF failure. Utilizing
the epidemiological crack percolation model, cumulative hazard rates are
computed based on loading conditions, loading cycles, and surface size. The
independence of crack initiation probability in distant regions results in a
linear dependence of these cumulative hazard rates on surface size. This
linearity is utilized to define the local cumulative hazard rate as the slope of
these hazards. Since performing Monte Carlo simulations of the percolation
model for each quadrature point of the FE model is impractical in the
application, a surrogate model based on a neural network [38] is employed,
utilizing Latin hypercube sampling.

1.2 Outline

In Section 2, we provide a brief introduction to the microstructure of Nickel-
base alloys. Additionally, we introduce essential continuum mechanical
terms and outline the basics of LCF failure.

Within Section 3, we introduce the basic concepts of finite element simula-
tions and the representation of orientations using elements of the special
orthogonal group 𝑆𝑂(3). This section also includes a discussion on repre-
senting microscopic crack initiation as a Poisson point process.

The epidemiologic crack percolation model for uniaxial stress states based
on random grain orientations is presented in Section 4. Here, we also intro-
duce gradient boosting. The section concludes with the calibration on LCF
tests and a comparison of the model with and without the infection function.

In Section 5, we present an approach for modeling grain orientations in
the case of directed solidification. Using the epidemiological percolation
model, we investigate the influence of directional solidification on LCF
lifetime in Section 6.5. Furthermore, in Section 5, we explore the influence
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1 Introduction

of transcrystalline crack initiation on the percolation model.

In Section 6, we extend the infection model beyond uniaxial stress states.
The model is calibrated on uniaxial tests and validated with multiaxial test
data.

In Section 7, we present the modeling of the FEM postprocessor. The FEM
postprocessor is tested using the example of a blisk blade.

We end with some concluding remarks in Section 8,
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2. Basics on Mechanics and Fatigue of Metals

The atomic arrangement of Materials determine their mechanical behavior.
The focus of this section is to describe the microstructure of Nickel-base
alloys and to introduce some basic concepts of continuum mechanics.

This section closely follows [33, 35] and [60].

2.1 Polycrystalline Structure of Metals

Due to their elastic and thermodynamic properties, metals are often used
for the construction of mechanical components. In the solid state, the metal
atoms tend to arrange as densely and regularly as possible, so the electrons
can spread widely over the atoms. This leads to a highly ordered crystalline
lattice structure. A crystal lattice is a three-dimensional arrangement of
points that looks the same from every point considered. Each lattice can
be defined by the atomic arrangements in a so-called unit cell. There are 14

Figure 2.1: Unit cell of a face centered cubic crystal
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2 Basics on Mechanics and Fatigue of Metals

(a) Polycrystalline structure of a
nickel-based alloy. The section is from
a microscope image of a flat specimen.

(b) Grain structure in
the cross-section of a
round specimen

Figure 2.2: Grain structure of nickel base alloys. Reprinted with
permission of the RPTU Kaiserslautern-Landau.

different ways to form such regular crystal lattices, these crystal types are
also called Bravais lattices. These different lattices are distinguishable by
their structure and symmetric properties. Since we are interested in nickel
base alloys used in high temperature applications like gas turbine design,
we focus on face-centered cubic (FCC) crystals. The unit cell of an FCC
crystal has a quarter atom on each corner of the cube and in addition a half
atom in each center of the six faces, see Figure 2.1.

The quarter atom means, that the unit cell shares the atom with the four
adjacent unit cells, the half atom is shared with the adjacent cell respectively.
The symmetry properties of the unit cell have an impact on the mechanical
behavior of the material. When cast metal solidifies, this process starts in
many places simultaneously. Therefore, atoms form a grain structure rather
than a single crystal. The size of the grains is dependent on the parameters
of the casting process, for example introducing additional materials into
the metal or the temperature in the cooling phase. The grains differ in the
orientation of the crystal lattice. In a coarse grain microstructure, which is
shown in the microscopic pictures 2.2, the orientations of the grains have a
significant impact on the elasticity and the fatigue properties of the metal.

Special alloys are used for applications under extreme conditions, such as
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2.2 Strain and Stress

Element Ni Al B C Co Cr Mo Ti W Zr
Ma. - % 64.285 2.93 0.0151 0.17 9.48 14.04 4.03 5.08 4.02 0.011

(a) Material components of RENE80
Element Ni Al C Co Cr Hf Mo Nb Si Ta Ti W Zr
Ma. - % 51.54 5.52 0.112 9.48 9.05 1.18 0.78 0.12 0.08 3.78 1.12 11.2 0.04

(b) Material components of Alloy247

Figure 2.3: Material proportions in the super alloys used in the exper-
iments.

those found in gas turbines. In the experiments that we utilize to validate
and fit the models developed here, two such super alloys are used. In
addition to nickel, further elements are added to these alloys (table 2.3).
These additional elements allow the components manufactured with these
materials to withstand high stresses even at high temperatures.
Microscope images (Figure 2.4) show that the various elements are dis-
tributed inhomogeneously in the material. The modeling approach we use in
this work considers the material composition only indirectly via the material
parameters.

2.2 Strain and Stress

As an outer force is applied to a metallic material, the force leads to a
deformation. The deformation takes places because inner atoms of the
material shift. There are two types of strain which we have to distinguish.
At first we have a reversible deformation. When no more force is applied,
the material returns to its original shape. The second type of deformation
is irreversible, so-called plastic deformation. After the relief of the force,
the material does not return to its original shape.

Metallic components used in gas turbines vary in size and usually have
complex geometries, so that the stress varies over the geometry. To obtain
material constants that describe the behavior of the material independently
of its size and shape, we specify strain and stress locally in small volume
units. The size scale we consider is larger than the spacing of individual

9



2 Basics on Mechanics and Fatigue of Metals

(a) Section with two grains.
The bright line is a grain
boundary.

(b) Close up of the microstruc-
ture.

Figure 2.4: Microstructure of Alloy247.

atoms, so that we can work within the framework of continuum mechanics.

Considering a Force 𝐹 applied to an area 𝐴, the resulting stress is given by
the Force divided by the area (Figure 2.5). There are two principal types of
stress depending on whether the force is perpendicular or parallel to the
surface. In the perpendicular case we have the so-called normal stress 𝜎

and in the parallel case the shear stress 𝜏 .

𝜎 = 𝐹⊥

𝐴
, 𝜏 = 𝐹‖

𝐴
(2.1)

In other cases, where the force is neither totally perpendicular nor totally
parallel, we can decompose the force in normal and shear stress. To describe
the stress vector at a point, we intersect the volume in that point with a
plane and take the lower limit of the average surface load

lim
𝐴→0

Δ𝐹

Δ𝐴
. (2.2)

For the three-dimensional case we can build three differently orientated
cross sections (Figure 2.6) and determine the resulting stress vectors.
A simple way is to use the three planes 𝐴𝑖 perpendicular to the coordinate
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2.2 Strain and Stress

(a) Normal
stress (b) Shear stress (c) Mixed stress

Figure 2.5: Different types of stress

axes 𝑥𝑖. The corresponding forces 𝐹 (𝑖)can be decomposed into the individual
components 𝐹

(𝑖)
𝑗 . Therefor we can calculate the nine components 𝜎𝑖𝑗 = 𝐹

(𝑖)
𝑗

𝐴𝑖

and gain the stress tensor of second order:

𝜎 =

⎛⎜⎜⎜⎝
𝜎11 𝜎12 𝜎13

𝜎21 𝜎22 𝜎23

𝜎31 𝜎32 𝜎33

⎞⎟⎟⎟⎠ . (2.3)

Each row of the stress tensor describes the stress state acting on the cross-
section plane were 𝑖 stands for the normal of the plane. The entries with
𝑖 = 𝑗 are the normal stresses acting in the direction of the normal of the
plane. Those entries with 𝑖 ̸= 𝑗 are the shear stresses acting perpendicular
to the normal. Since we assume a classical continuum, no momenta can be
transferred in infinitesimally small elements. Therefore the strain tensor is
symmetric

𝜎𝑖𝑗 = 𝜎𝑗𝑖, for 𝑖, 𝑗 = 1, 2, 3, (2.4)

and we have only 6 independent components. The stress tensor 𝜎 depends
on the orientation of the plans. If we change the coordinate system, the
stress state is the same but the stress tensor changes. For every stress state,
there is a coordinate system, such that the stress tensor only has the three
entries on the diagonal 𝜎1, 𝜎2, 𝜎3, the so-called principal stresses. The three
planes that lead to the principal stresses are called principal planes. If the
three components of the principal stress are sorted |𝜎𝐼 | ≥ |𝜎𝐼𝐼 | ≥ |𝜎𝐼𝐼𝐼 |
we index them with roman numbers. The transformed stress Tensor in
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2 Basics on Mechanics and Fatigue of Metals

𝜎13

𝜎12𝜎11

𝜎23

𝜎22𝜎21

𝜎33

𝜎32𝜎31

Figure 2.6: 3-dimensional stress tensor

principal axis form contains only normal stresses

𝜎 =

⎛⎜⎜⎜⎝
𝜎𝐼 0 0
0 𝜎𝐼𝐼 0
0 0 𝜎𝐼𝐼𝐼

⎞⎟⎟⎟⎠ . (2.5)

The principal stress values are the eigenvalues of the stress tensor 𝜎

det(𝜎𝑖𝑗 − 𝛿𝑖𝑗𝜎𝑒) = det

⎛⎜⎜⎜⎝
𝜎11 − 𝜎𝑒 𝜎12 𝜎13

𝜎12 𝜎22 − 𝜎𝑒 𝜎23

𝜎13 𝜎23 𝜎33 − 𝜎𝑒

⎞⎟⎟⎟⎠ = 0, 𝑒 ∈ {1, 2, 3}

(2.6)
Therefore we gain the characteristic equation

𝜎3
𝑒 − 𝐼1𝜎

2
𝑒 − 𝐼2𝜎𝑒 − 𝐼3 = 0. (2.7)

with

𝐼1 = 𝜎11 + 𝜎22 + 𝜎33

𝐼2 = 𝜎2
12 + 𝜎2

13 + 𝜎2
23 − 𝜎11𝜎22 − 𝜎11𝜎33 − 𝜎22𝜎33

𝐼3 = 𝜎11𝜎22𝜎33 + 2𝜎12𝜎13𝜎23 − 𝜎2
12𝜎33 − 𝜎2

13𝜎22 − 𝜎2
23𝜎11 = det(𝜎). (2.8)

The coefficients in (2.8) are independent of the chosen coordinate system
and are called the invariants of the stress state. In principal axis form the
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2.2 Strain and Stress

stress invariants simplify to

𝐼1 = 𝜎𝐼 + 𝜎𝐼𝐼 + 𝜎𝐼𝐼𝐼

𝐼2 = −𝜎𝐼𝜎𝐼𝐼 − 𝜎𝐼𝜎𝐼𝐼𝐼 − 𝜎𝐼𝐼𝜎𝐼𝐼𝐼

𝐼3 = 𝜎𝐼𝜎𝐼𝐼𝜎𝐼𝐼𝐼 . (2.9)

When deformation occurs, the points in the material shift. But as we move or
rotate the whole material, the points in the material also move. Accordingly,
we must distinguish between rigid body displacement or rigid body rotation
and deformation. Under a deformation, the angles and distances between
two points in the material change. Assume we have a mechanical component
in form of a bounded region Ω ⊆ R3 and its boundary 𝜕Ω and closure Ω̄.
A force that acts on the component results in a deformation described by
𝑢 : Ω̄ → R3, i.e. under the deformation the point 𝑥 is moved to the new
location 𝑥 + 𝑢(𝑥). We assume that the component is fixed in some points,
𝑢(𝑥) = 0 for 𝑥 ∈ 𝜕Ω𝐷 ⊆ 𝜕Ω. The strain tensor 𝜀 : Ω → R3×3 is given by

𝜀𝑖𝑗 = 1
2

(︃
𝜕𝑢𝑖

𝜕𝑥𝑗

+ 𝜕𝑢𝑗

𝜕𝑥𝑖

)︃
, (2.10)

it therefore holds that 𝜀𝑖𝑗 = 𝜀𝑗𝑖, 𝑖, 𝑗 ∈ {1, 2, 3}. The strain tensor thus has
the same symmetry property as the stress tensor. We consider linear elastic
material and small displacement, so it holds that the relation between strain
and stress is given by Hooke’s law:

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 =
3∑︁

𝑘=1

3∑︁
𝑙=1

𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙, (2.11)

where 𝐶 ∈ R3×3×3×3 is the so-called stiffness tensor. Due to the symmetry
properties of the stress and strain tensor, this relationship can be expressed
in a simplified matrix notation (Voigt notation). It holds that 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙

and 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘 so the 81 entries of 𝐶 reduce to 36 independent entries, and
we can express the tensor 𝐶 of rank for 4 as a quadratic matrix. Therefore,
we change the indices (𝜎𝑖𝑗) → (𝜎𝛼), (𝜀𝑖𝑗) → (𝜀𝛼) and (𝐶𝑖𝑗𝑘𝑙) → (𝐶𝛼𝛽) where
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2 Basics on Mechanics and Fatigue of Metals

𝛼, 𝛽 ∈ {1, . . . , 6}, as follows

(𝜎𝛼) =
(︁

𝜎11 𝜎22 𝜎33 𝜎23 𝜎13 𝜎12

)︁
(2.12)

(𝜀𝛼) =
(︁

𝜀11 𝜀22 𝜀33 𝛾23 𝛾13 𝛾12

)︁
, with 𝛾𝑖𝑗 = 2𝜀𝑖𝑗. (2.13)

The stiffness tensor 𝐶 has further symmetric properties, so it holds that
𝐶𝛼𝛽 = 𝐶𝛽𝛼, and we get

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜎11

𝜎22

𝜎33

𝜎23

𝜎13

𝜎12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16

𝐶12 𝐶22 𝐶23 𝐶24 𝐶25 𝐶26

𝐶13 𝐶23 𝐶33 𝐶34 𝐶35 𝐶36

𝐶14 𝐶24 𝐶34 𝐶44 𝐶45 𝐶46

𝐶15 𝐶25 𝐶35 𝐶45 𝐶55 𝐶56

𝐶16 𝐶26 𝐶36 𝐶46 𝐶56 𝐶66

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜀11

𝜀22

𝜀33

𝛾23

𝛾13

𝛾12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.14)

The Voigt notation is easy to handle but if we want to apply geometric
transformations, such as rotations, we have to use the stiffness tensor of
rank 4. The inverse of the stiffness tensor is called the compliance tensor 𝑆,
and we have in Voigt notation:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜀11

𝜀22

𝜀33

𝛾23

𝛾13

𝛾12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑆11 𝑆12 𝑆13 𝑆14 𝑆15 𝑆16

𝑆12 𝑆22 𝑆23 𝑆24 𝑆25 𝑆26

𝑆13 𝑆23 𝑆33 𝑆34 𝑆35 𝑆36

𝑆14 𝑆24 𝑆34 𝑆44 𝑆45 𝑆46

𝑆15 𝑆25 𝑆35 𝑆45 𝑆55 𝑆56

𝑆16 𝑆26 𝑆36 𝑆46 𝑆56 𝑆66

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜎11

𝜎22

𝜎33

𝜎23

𝜎13

𝜎12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.15)

2.2.1 Isotropic and Anisotropic material

Due to the arrangement of the atoms in crystal lattices, metals show further
symmetric properties. If the relationship between strain and stress is
independent of the orientation of the material, the stiffness tensor must
also be invariant under rotations. Such a material is called isotropic. The
requirement of invariance under rotations reduce the stiffness tensor to the
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2.2 Strain and Stress

simplified form

𝐶 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶11 𝐶12 𝐶12 0 0 0
𝐶12 𝐶11 𝐶12 0 0 0
𝐶12 𝐶12 𝐶11 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶44 0
0 0 0 0 0 𝐶44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, with 𝐶44 = 𝐶11 − 𝐶12

2 .

(2.16)

Often the material dependent parameters are expressed via Young’s modulus
𝐸, the Poisson’s ratio 𝜈 and the shear modulus 𝐺:

𝐶11 = 𝐸(1 − 𝜈)
(1 + 𝜈)(1 − 2𝜈)

𝐶22 = 𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)

𝐶44 = 𝐺 = 𝐸

2(1 + 𝜈) . (2.17)

Due to the lattice structure, the mechanical properties of nickel crystal
depends on the direction a force is applied. But if the scale of the material
is large in respect to the size of a single grain and considering that the
orientations of the grains are uniformly distributed, these anisotropic effects
are averaged out by homogenization.
However, when considering volumes containing only a few grains or even a
single crystal, the anisotropic material behavior must be taken into account.
Since the crystal structure is responsible for the anisotropic behavior and
nickel forms FCC crystals, the stiffness and compliance tensor have the
same symmetries as a cubic unit cell.

For the description of the rotation axes we use Miller indices. Miller indices
are frequently used to characterize directions and planes in crystallographic
lattices. Here, we give just a brief overview how directions are denoted.
For the notation with Miller indices we choose a coordinate system with
a lattices point as the origin and the lattice edges as the coordinate axes.
The axes are scaled such that the next lattice point from the origin has the
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2 Basics on Mechanics and Fatigue of Metals

Figure 2.7: Example for a direction in an FCC crystal lattice notated
with Miller indices.

value 1. In a cubic lattice this leads to a Cartesian coordinate system.
A direction in the crystallographic lattice is given by the origin and an
additional lattice point. The direction in Miller indices [ℎ𝑘𝑙] is then given
by the coordinates of the second point multiplied by a 𝑞 ∈ Q, such that
𝑗, 𝑘, 𝑙 ∈ Z with the greatest comment divisor 1, as illustrated in Figure 2.7.
Negative values are represented with a bar on top.
The notation of a direction with angled brackets ⟨ℎ𝑘𝑙⟩ instead of square
brackets stands for all crystallographic equivalent directions rather. Two
directions are crystallographic equivalent if they are mapped onto one
another under the action of the symmetry group of the crystallographic
lattice.
With this notation, the edges of a cubic unit cell are given by ⟨100⟩, the
surface diagonals by ⟨110⟩ and the volume diagonals by ⟨111⟩.

The rotational symmetries of a cubic crystal are

𝑛 · 𝜋

2 around ⟨100⟩,

𝑛 · 2𝜋

3 around ⟨111⟩ and

𝑛 · 𝜋 around ⟨110⟩.

(2.18)

With these symmetries, the compliance matrix for an FCC material with
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2.2 Strain and Stress

unit cell edges parallel to the coordinate axis has to be of the form:

𝑆 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑆11 𝑆12 𝑆12 0 0 0
𝑆12 𝑆11 𝑆12 0 0 0
𝑆12 𝑆12 𝑆11 0 0 0
0 0 0 𝑆44 0 0
0 0 0 0 𝑆44 0
0 0 0 0 0 𝑆44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.19)

If the edges of the crystal cell are not parallel to the coordinate axis the
compliance tensor can be calculated with

𝑆𝑖𝑗𝑘𝑙(𝑈) =
∑︁

𝑝,𝑞,𝑟,𝑠

𝑈𝑖𝑝𝑈𝑗𝑞𝑈𝑘𝑟𝑈𝑙𝑠𝑆𝑝𝑞𝑟𝑠, (2.20)

where 𝑈 is the corresponding rotation matrix. As the material behavior
is direction-dependent, the young’s modulus is given with respect to a
direction 𝐸𝑖. Accordingly, two directions must be specified for poisson’s
ratio 𝜈𝑖𝑗 and shear modulus 𝐺𝑖𝑗. For the entries in the compliance matrix
in equation (2.19) we have the following relations:

𝑆11 = 1
𝐸⟨100⟩

,

𝑆22 = −
𝜈⟨010⟩⟨001⟩

𝐸⟨100⟩
= −

𝜈⟨001⟩⟨100⟩

𝐸⟨100⟩
,

𝑆44 = 1
𝐺⟨010⟩⟨100⟩

= 1
𝐺⟨001⟩⟨100⟩

. (2.21)

The stiffness tensor is of the same form as the compliance tensor in
equation (2.19). In comparison to the isotropic case, it does not apply that
𝐶44 depends on 𝐶11 and 𝐶12. For the conversion from compliance to stiffness
matrix the following relations apply

𝐶11 = 𝑆11 + 𝑆12

(𝑆11 − 𝑆12)(𝑆11 + 2𝑆12)
, 𝑆11 = 𝐶11 + 𝐶12

(𝐶11 − 𝐶12)(𝐶11 + 2𝐶12)
,

𝐶12 = − 𝑆12

(𝑆11 − 𝑆12)(𝑆11 + 2𝑆12)
, 𝑆12 = − 𝐶12

(𝐶11 − 𝐶12)(𝐶11 + 2𝐶12)
,

𝐶44 = 1
𝑆44

, 𝑆44 = 1
𝐶44

.

(2.22)
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2 Basics on Mechanics and Fatigue of Metals

(a) Wolfram: 𝐶11 = 501GPa,
𝐶12 = 198GPa, 𝐶44 =
151GPa, Isotropic with 𝑎𝑟 = 1

(b) Aluminium: 𝐶11 =
108GPa, 𝐶12 = 61GPa, 𝐶44 =
29GPa, Anisotropic with 𝑎𝑟 =
1.23

Figure 2.8: Direction dependent Young modulus for different materials

This also holds for the isotropic case. The anisotropy of cubic material can
be measured with Zener ratio [73] 𝑎𝑟 which is defined by

𝑎𝑟 := 2𝐶44

𝐶11 − 𝐶12
. (2.23)

Isotropic material has a Zener ratio of 1, if 𝑎𝑟 < 1 or 𝑎𝑟 > 1 the material is
anisotropic. The direction dependent young modulus 𝐸[ℎ𝑘𝑙] can be calculated
with

1
𝐸[ℎ𝑘𝑙]

= 𝑆11 − [2(𝑆11 − 𝑆12) − 𝑆44] 𝑟[ℎ𝑘𝑙] (2.24)

were 𝑟[ℎ𝑘𝑙] is a direction dependent factor, which is given by

𝑟[ℎ𝑘𝑙] = 𝛼2𝛽2 + 𝛼2𝛾2 + 𝛽2𝛾2. (2.25)

In Figure 2.8 the direction dependent young modulus is shown for two
different materials. On the left (Figure 2.8a) for wolfram, which is isotropic,
so the E-modulus forms a sphere. The right figure in comparison shows
aluminum, which is anisotropic. Here the direction dependence is easy to
see.

The values 𝛼, 𝛽, 𝛾 are the cosines of the angles between the direction [ℎ𝑘𝑙]
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2.3 Plastic deformation

(a) INC738 at 25∘𝐶: 𝐶11 =
225GPa, 𝐶12 = 191GPa,
𝐶44 = 127GPa, Isotropic with
𝑎𝑟 = 2.8

(b) INC738 at 850∘𝐶: 𝐶11 =
226GPa, 𝐶12 = 161GPa,
𝐶44 = 99 GPa, Isotropic with
𝑎𝑟 = 3.1

Figure 2.9: Temperature dependent Young modulus for INC738

and the coordinate axis:

𝛼 = cos([ℎ𝑘𝑙], [100])
𝛽 = cos([ℎ𝑘𝑙], [010])
𝛾 = cos([ℎ𝑘𝑙], [001])

(2.26)

The material parameters depend on temperature, which can be seen in
Figure 2.9 for the material INC738, which is a typical material for gas
turbine components.

2.3 Plastic deformation

Plastic deformation is irreversible, so after the stress applied to the material
is relieved, the arrangement of the atoms have changed permanently. In
a perfect single crystal under a high enough shear load, i.e. if plastic
deformation occurs, whole atomic layers slide off against each other.
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2 Basics on Mechanics and Fatigue of Metals

(a) Edge dislocation with
Burgers vector and line vec-
tor. The additional half
plane of atoms is marked
green.

(b) Screw dislocation with
Burgers vector and line vec-
tor. The additional half
plane of atoms is marked
green.

Figure 2.10: Basic types of dislocations

2.3.1 Dislocations

In cast metal the crystal lattice is not perfect. There are often defects in the
lattice structures. The defects in the crystal lattice can be categorized into
different types distinguished by their dimensionality. 0-dimensional errors,
so-called point defects, occur if there is an additional atom in the lattice
(interstitial defect) or if an atom of the lattice is missing (vacancy defect).
Grain boundaries and phase boundaries are 2-dimensional planar defects.
The defects we focus one are 1-dimensional line defects, called dislocations.
Dislocations are an additional half plane of atoms in the crystal lattice.
They can be described by two vectors, the line vector 𝑡 in the direction of
the dislocation line and the Burgers vector 𝑏. The Burgers vector can be
determined by drawing a path along the grid edges around the dislocation
line. In a perfect lattice, the same number of steps are required in all
crystallographic directions to close the circuit. Due to the effect of a
dislocation the path around such a lattice defect does not end at the
starting point. The additional steps along the lattice edges form the Burgers
vector.
The two basic types of dislocations can be distinguished by the direction of
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2.3 Plastic deformation

(a) Edge dislocations under
shear stress

(b) The atomic binding at the
dislocation line has flipped.

Figure 2.11: Movemt of a dislocation

the Burgers vector. If the Burgers vector is perpendicular to the dislocation
line, it is called an edge dislocation, and if the Burgers vector is oriented
parallel to the dislocation line, it is a screw dislocation. Normally, dislocation
lines do not follow straight lines. They follow a complex path through the
crystal, therefore the direction of the line vector depends on the location
in the crystal. The Burgers vector of a dislocation, on the other hand, is
independent of the location. As the angle between Burgers vector and line
vector is dependent on the location, the characteristic of the dislocation
changes along the dislocation line. Therefore, there are parts were the same
dislocation line has a screw or an edge characteristic, or a mixture of both.
Around the dislocation line, the crystal lattice is distored and consequently
there are atomic bonds that are shorter or longer than in a perfect lattice
structure. Under a sufficient strong shear stress, the bonds at the disloca-
tion line can flip and the dislocation moves through the crystal. Within
the process the atomic structure changes permanently, as illustrated in
Figure 2.11. This mechanism repeats itself until the dislocation reaches the
surface of the crystal. The move of a dislocation requires less energy than a
movement of a whole atomic layer. Therefore, plasticity sets on way before
force are reached that could dissolve the atomic bonds spontaneously.
The critical shear stress, which is required to start this process, is denoted
by 𝜏crit, see also Section 2.3.3 below.
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(a) Slipping in loosely packed direction

(b) Slipping in densely packed direction

Figure 2.12: Slipping of an atomic layer

2.3.2 Slip Systems

Mathematically, the motion of the dislocations can be described by a plane
in which the atomic layers move against each other and the direction. The
more densely packed the atoms are in the sliding direction, the less force
is necessary to cause the sliding. This can be illustrated by simplifying
the atoms to spheres and letting two atomic layers slide against each other.
When the spheres are densely packed, they need to be lifted less than
when they are loosely packed (Figure 2.12). Therefore there are preferred
directions in a crystal lattice in which the dislocations move. The directions
depend on the lattice structure and can be determined from the unit cell of
the crystal. An FCC crystal has the densest possible sphere packing. One
of the planes that contains the densest packing is shown in Figure 2.13a, the
corresponding direction of the plane are the edges of the triangle. There are
four independent planes with the densest packing, see Figure 2.13b. The
4 planes, each with 3 directions along the edges of the tetrahedron, give a
total of 12 independent slip systems.
Crystals with different lattice structures have different slip systems, e.g., a
body-centered cubic crystal (BCC) does not have a plane with the densest
possible sphere packing. Instead, there are 6 planes that are most densely
packed, each having 2 slip directions. Furthermore, there are 36 more planes
that are almost similarly densely packed, each with one direction. So in a
BCC crystal there are 48 possible slip systems in which dislocations can
move.

As the material that we are interested in is a nickel-base alloy, we focus on
FCC crystal structures at this point.
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2.3 Plastic deformation

(a) One of the four slip planes,
the three edges of the trian-
gle are the corresponding di-
rections.

(b) The slip systems of an
FCC crystal, the four planes
are colored, the edges of the
triangles are the correspond-
ing direction.

Figure 2.13: Slipsystems in a face centered cubic crystal

2.3.3 Yield criterion

Standardized tensile tests are performed to investigate the transition from
elastic deformation to plastic deformation. In these tests, a specimen is
clamped in a fixture and uni-axially strained at a constant rate. The force
𝐹 and the length change Δ𝑙 of the specimen is measured all the time. With
the initial cross-section 𝐴init, the stress is given by 𝜎 = 𝐹/𝐴init and the
strain can be determined by the ratio of the change in length and the initial
length of the specimen 𝜀 = Δ𝑙/𝑙.
The relation between strain and stress from the tensile tests can be visualized
with a so-called strain-stress diagram (Figure 2.14). In general, strain-stress
diagrams have the following form. For small strain, the stress increases
linearly, the material shows linear elastic behavior. Therefore, Hooke’s
law (equation 2.11) can be applied to describe the relation between strain
and stress. As the yield point 𝑅𝑝 is reached, plastic deformation starts.
Stress increases further with strain until the maximum stress is reached
at the so-called tensile strength 𝑅𝑚. If strain increases even more, the
measured stress reduces until fracture. This reduction in stress is due to an
effect called necking, where the cross-section of the speciem reduces locally.
Therefore, the stress in the necking zone is higher than measured.
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σ

ε

Rm

R0.2

Figure 2.14: Strain-stress diagram.

The strain level, where the transition from elastic to plastic deformation
starts, is not clearly defined. A common way to fix it, is the yield point
𝑅𝑝0.2. This is the stress which leads to a plastic deformation of 0.2% after
the force is relieved. We can determine 𝑅𝑝0.2 from the strain-stress diagram
by drawing a parallel line to the elastic part of the curve which intersects
the 𝑥−axis at 0.2%, as illustrated in Figure 2.14. The intersection with the
strain-stress curve is at the stress level 𝑅𝑝0.2.
As Hooke’s law only hold for small strains an approximation for the strain-
stress diagrams needs a further term. A common way for the approximation
is the Ramberg-Osgood equation.

Definition 2.1 (Ramberg-Osgood Equation). Let 𝐸 be the young modulus,
𝐾 the strength coefficient and 𝑛 the strain hardening exponent. The rela-
tion between strain- and stress amplitude in the elastic-plastic case can be
approximated by the Ramberg-Osgood (𝑅𝑂) equation:

𝜀𝑎 = 𝑅𝑂(𝜎𝑎) = 𝜎𝑎

𝐸
+
(︂

𝜎𝑎

𝐾

)︂1/𝑛

. (2.27)

The three coefficients are material dependent.

The first term of the 𝑅𝑂 equation is just Hooke’s law in one dimension
and describes the linear elastic part of the deformation. The second part is
gained from Hollomon’s equation: 𝜎 = 𝐾𝜀𝑛

𝑝 which gives the stress from a
plastic deformation.
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2.3 Plastic deformation

2.3.4 Multiaxial yield criteria

As under Multiaxial loading states the stress tensor contains more than one
entry that is not zero, the yield criterion becomes more complex. Generally
yield criteria can be expressed with an equivalent stress 𝜎𝑣. If 𝜎𝑣 reaches a
critical value 𝜎crit, plastic deformation occurs:

𝜎𝑣(𝜎𝑖𝑗) := 𝜎𝑣(𝜎11, 𝜎22, 𝜎33, 𝜎12, 𝜎13, 𝜎23) = 𝜎crit. (2.28)

We use here a yield criterion formulated slightly differently:

𝑓(𝜎𝑖𝑗) = 𝜎𝑣(𝜎𝑖𝑗) − 𝜎crit = 0. (2.29)

The yield criterion for the uni-axial case, just with stress 𝜎11 = 𝜎𝐼 , from
Section 2.3.3 then becomes:

𝑓(𝜎11) = 𝜎11 − 𝑅𝑝 = 0. (2.30)

Experiments show that hydrostatic stress, i.e. stress that only contains
normal stresses 𝜎11 = 𝜎22 = 𝜎33, has no influence on the plasticization of
metals. In Section 2.4 below, we show that this effect is due to fact that the
normal and the direction of a slip system are perpendicular to each other.

The hydrostatic part of an arbitrary stress state can be calculated by

𝜎ℎ = 1
3 (𝜎11 + 𝜎22 + 𝜎33) . (2.31)

For yield criteria, we can use the so-called stress deviator 𝜎′, which is the
stress tensor without the hydrostatic stress:

𝜎′ =

⎛⎜⎜⎜⎝
𝜎′

11 𝜎′
12 𝜎′

13

𝜎′
21 𝜎′

22 𝜎′
23

𝜎′
31 𝜎′

32 𝜎′
33

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝜎11 𝜎12 𝜎13

𝜎21 𝜎22 𝜎23

𝜎31 𝜎32 𝜎33

⎞⎟⎟⎟⎠−

⎛⎜⎜⎜⎝
𝜎ℎ 0 0
0 𝜎ℎ 0
0 0 𝜎ℎ

⎞⎟⎟⎟⎠ . (2.32)

The three invariants of a stress state 𝐼1, 𝐼2, 𝐼3 (see equations 2.8 and 2.9) can
be calculated from the stress deviator as well. In order to avoid confusion,
they are called 𝐼 ′

1, 𝐼 ′
2, 𝐼 ′

3. So by plugging in 𝜎′ in equation 2.8 the first
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invariant becomes:

𝐼 ′
1 = (𝜎11 − 𝜎ℎ) + (𝜎22 − 𝜎ℎ) + (𝜎33 − 𝜎ℎ) = 0. (2.33)

Notice, that

(𝜎11 − 𝜎ℎ)(𝜎22 − 𝜎ℎ) + (𝜎11 − 𝜎ℎ)(𝜎33 − 𝜎ℎ) + (𝜎22 − 𝜎ℎ)(𝜎33 − 𝜎ℎ)
=𝜎11𝜎22 + 𝜎11𝜎33 + 𝜎22𝜎33 − 2𝜎ℎ(𝜎11 + 𝜎22 + 𝜎33) + 3𝜎2

ℎ

=𝜎11𝜎22 + 𝜎11𝜎33 + 𝜎22𝜎33 − 3𝜎2
ℎ

=𝜎11𝜎22 + 𝜎11𝜎33 + 𝜎22𝜎33−
1
3(𝜎2

11 + 𝜎2
22 + 𝜎2

33 + 2𝜎11𝜎22 + 2𝜎11𝜎33 + 2𝜎22𝜎33)

=1
3
(︁
𝜎11𝜎22 + 𝜎11𝜎33 + 𝜎22𝜎33 − 𝜎2

11 − 𝜎2
22 − 𝜎2

33

)︁
.

(2.34)

With equation 2.34, we obtain for 𝐼 ′
2, as we plug in the stress deviator,

𝐼 ′
2 = 𝜎2

12 + 𝜎2
13 + 𝜎2

23 − (𝜎11 − 𝜎ℎ)(𝜎22 − 𝜎ℎ)−
(𝜎11 − 𝜎ℎ)(𝜎33 − 𝜎ℎ) − (𝜎22 − 𝜎ℎ)(𝜎33 − 𝜎ℎ)

= 1
3
(︁
𝜎2

11 + 𝜎2
22 + 𝜎2

33 − 𝜎11𝜎22 − 𝜎11𝜎33 − 𝜎22𝜎33
)︁

+

𝜎2
12 + 𝜎2

13 + 𝜎2
23

(2.35)

Under the use of the principal axis form, 𝐼 ′
2 reduces with equation 2.34 to

𝐼 ′
2 = 1

3 (𝜎𝐼𝜎𝐼𝐼 + 𝜎𝐼𝜎𝐼𝐼𝐼 + 𝜎𝐼𝐼𝜎𝐼𝐼𝐼 − 𝜎2
𝐼 − 𝜎2

𝐼𝐼 − 𝜎2
𝐼𝐼𝐼)

= 1
6 [(𝜎𝐼 − 𝜎𝐼𝐼)2 + (𝜎𝐼 − 𝜎𝐼𝐼𝐼)2 + (𝜎𝐼𝐼 − 𝜎𝐼𝐼𝐼)2] (2.36)

A commonly used yield criterion is the von Mises shape modification hy-
pothesis. This criterion uses the second stress invariant 𝐼 ′

2 as the equivalent
stress

𝑓(𝐼 ′
2) = 𝐼 ′

2 − 𝑘2
𝑓 = 0, (2.37)

where 𝑘𝑓 is a material dependent constant. Therefore the von Mises equiva-
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2.3 Plastic deformation

(a) Von Mises yield criterion,
the yield surface is a cylinder
around the hydrostatic stress

(b) Tresca’s yield crite-
rion, hexagonal yield surface
around the hydrostatic stress

Figure 2.15: Yield surface for different yield criteria

lent stress is given by

𝜎𝑣𝑀 =
√︃

1
3 (𝜎2

11 + 𝜎2
22 + 𝜎2

33 − 𝜎11𝜎22 − 𝜎11𝜎33 − 𝜎22𝜎33) + 𝜎2
12 + 𝜎2

13 + 𝜎2
23.

(2.38)
If we use stress in principal axis form (2.38) becomes

𝜎𝑣𝑀 =
√︃

1
6 [(𝜎𝐼 − 𝜎𝐼𝐼)2 + (𝜎𝐼 − 𝜎𝐼𝐼𝐼)2 + (𝜎𝐼𝐼 − 𝜎𝐼𝐼𝐼)2]. (2.39)

Utilizing the yield point 𝑅𝑝 and a uniaxial stress, i.e. 𝜎𝐼 = 𝑅𝑝, 𝜎𝐼𝐼 = 0,
𝜎𝐼𝐼𝐼 = 0 we can express 𝑘𝑓 in the von Mises yield criterion

𝑘2
𝑓 =

√︃
1
6 [(𝜎𝐼 − 𝜎𝐼𝐼)2 + (𝜎𝐼 − 𝜎𝐼𝐼𝐼)2 + (𝜎𝐼𝐼 − 𝜎𝐼𝐼𝐼)2], (2.40)

in terms of 𝑅𝑝, with

𝑘𝑓 =
√︃

2
3𝑅𝑝. (2.41)

If we consider the von Mises yield criterion in the principal axis space, it is
the mantle surface of a cylinder around the hydrostatic stress with radius√︃

2
3𝑅𝑝 as shown in Figure 2.15a.

The other criterion frequently used in material science is the Tresca yield
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𝜎

𝜏

𝜏𝑚𝑎𝑥

−𝜏𝑚𝑎𝑥

𝜎𝐼𝐼𝐼 𝜎𝐼𝐼 𝜎𝐼

(a) Mohr’s circle (b) Von Mises yield
criterion (black) and
Tresca yield criterion
(red) with 𝜎3 = 0.

Figure 2.16: Mohr’s circel and comparison of both yield criteria.

criterion. It is based on the assumption that the maximum shear stress 𝜏max

is responsible for the sliding of the atomic layer against each other.

One way to determine the maximum shear stress that can occur in a
material is to use a Mohr’s circle. For this purpose, we draw three circles in
a coordinate system with the normal stress on the abscissa and the shear
stress on the ordinate. Each of the circles is bounded by two of the principal
stresses. The gray area in Figure 2.16a represents the possible stress states
in the considered point. It is easy to see that 𝜏max is the radius of the
circle bounded by 𝜎𝐼 and 𝜎𝐼𝐼𝐼 . Therefore, the maximum shear stress is
independent of 𝜎𝐼𝐼 and can be determined by

𝜏max = 𝜎𝐼 − 𝜎𝐼𝐼𝐼

2 . (2.42)

Plastic deformation in the material starts if the maximum shear stress
reaches a critical value 𝜏𝑡𝑟. The Tresca yield criterion can be expressed as

𝑓(𝜎𝐼 , 𝜎𝐼𝐼) = 𝜎𝐼 − 𝜎𝐼𝐼𝐼

2 − 𝜏crit = 0. (2.43)

With the tensile experiments from Section 2.3.3 we have 𝜎𝐼 = 𝑅𝑝 and
𝜎𝐼𝐼 = 𝜎𝐼𝐼𝐼 , thus 𝜏𝑡𝑟 = 𝑅𝑝/2 and the criterion becomes

𝜎𝐼 − 𝜎𝐼𝐼𝐼 = 𝑅𝑝. (2.44)

28



2.4 Schmid factors

In principal axis space, the Tresca yield criterion is a six-sided prism around
the hydrostatic stress (Figure 2.15b).

In Figure 2.16b, both yield criteria are displayed for 𝜎3 = 0. The maximum
difference between both criteria is 15.5%.

2.4 Schmid factors

As mentioned in Section 2.3.2, in anisotropic materials plastic deformation
move through the crystal along the slip systems. This process starts when
the shear stress in a slip system reaches a critical value 𝜏crit. The shear
stress in a slipsystem usually differs from the global shear stress. Under
uniaxial stress (𝜎2 = 𝜎3 = 0) the shear stress in a slipsystem of FCC crystal
can be determined by the following approach.
For 𝑖 ∈ {1, . . . , 4}, 𝑗 ∈ {1, 2, 3} 𝑛𝑖 be the normal vector of the slipplane
and 𝑠𝑖𝑗 the slipdirection (see Figure 2.17). The cross-sectional area of the
specimen is donated with 𝐴0 and the Force with 𝐹 . In order to gain the
force 𝐹𝑖𝑗 in the direction of the slip system, we need to project 𝐹 on 𝑠𝑖𝑗 by

𝐹𝑖𝑗 = 𝐹 cos (𝜅𝑖𝑗), (2.45)

where 𝜅𝑖𝑗 is the angle between the 𝐹 and 𝑠𝑖𝑗. Let 𝛾𝑖 be the angle between
the 𝑛𝑖 and 𝐹 , then the area of the slip plane inside the specimen 𝐴𝑖 is given
by

𝐴𝑖 = 𝐴0

cos (𝛾𝑖)
. (2.46)

Thus, with 𝜏𝑖𝑗 = 𝐹𝑖𝑗/𝐴𝑖,𝜎1 = 𝐹/𝐴0 and both equations (2.45),(2.46) it
follows that:

𝜏𝑖𝑗 = 𝜎1 cos (𝜅𝑖𝑗) cos (𝛾𝑖). (2.47)

The relation between shear stress and the applied stress is the so-called
Schmid factor:

𝑚𝑖𝑗 := 𝜏𝑖𝑗

𝜎1
= cos (𝜅𝑖𝑗) cos (𝛾𝑖). (2.48)

The vectors 𝑠𝑖𝑗 and 𝑛𝑖 are perpendicular to each other, so the Schmid factor
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Figure 2.17: Schematic illustration of the orientation of a slip plane
in a cylindrical specimen.

can be at most 0.5. This also becomes clear if we consider a Mohr’s circle
with 𝜎𝐼 = 𝜎1 and 𝜎𝐼𝐼 = 𝜎𝐼𝐼𝐼 = 0. It is just one circle with radius 𝜎1/2 and
therefore is 𝜏max = 𝜎1/2. An alternative way to gain the shear stress acting
in a slip system is to use the normalized direction and normal vector. We
can project

𝜎 =

⎛⎜⎜⎜⎝
𝜎1 0 0
0 0 0
0 0 0

⎞⎟⎟⎟⎠ (2.49)

directly via
𝜏𝑖𝑗 = 𝑛𝑖 · 𝜎 · 𝑠𝑖𝑗. (2.50)

The slip system which reaches the critical shear stress 𝜏crit first gets activated,
and the dislocations start to move through the crystal. Therefore, we can
take the maximum over all slip systems in the crystal

𝜏 = max
𝑖𝑗

|𝜏𝑖𝑗|, (2.51)

to compare it with the critical value 𝜏crit.
If we consider a multiaxial stress state, we can use a slightly different
definition of the Schmid factor introduced in [27, 52]. Equation (2.50) holds
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2.5 Fatigue

for a multiaxial stress

𝜎 =

⎛⎜⎜⎜⎝
𝜎11 𝜎12 𝜎13

𝜎12 𝜎22 𝜎23

𝜎13 𝜎23 𝜎33

⎞⎟⎟⎟⎠ (2.52)

as well. We define the alternative Schmid factor as the ratio of shear stress
and the applied stress

𝑚𝑖𝑗 := 𝜏𝑖𝑗√︁
3/2 · 𝜎𝑣𝑀

. (2.53)

With equation (2.50), it is straight forward that the hydrostatic part of the
stress tensor 𝜎 is negligible.

𝜏𝑖𝑗 = 𝑛𝑖 · 𝜎 · 𝑠𝑖𝑗 = 𝑛𝑖 ·

⎛⎜⎜⎜⎝𝜎′ + 𝜎ℎ

⎛⎜⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ · 𝑠𝑖𝑗

= 𝑛𝑖 · 𝜎′ · 𝑠𝑖𝑗 + 𝜎ℎ𝑛𝑖 ·

⎛⎜⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎠ · 𝑠𝑖𝑗

= 𝑛𝑖 · 𝜎′ · 𝑠𝑖𝑗 + 𝜎ℎ𝑛𝑖 · 𝑠𝑖𝑗 = 𝑛𝑖 · 𝜎′ · 𝑠𝑖𝑗

(2.54)

The last step follows, as 𝑛𝑖 is perpendicular to 𝑠𝑖𝑗.

2.5 Fatigue

The previous subchapters only have dealt with static or monotonic loading.
In real components, like gas turbine parts, the loads are often cyclic due
to vibrations or activation or deactivation processes. Cyclic loading means
that several load states alternate in time. In the case of such recurring
loads, much lower stresses are sufficient to cause the failure of the material
than in the case of a static load.
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Figure 2.18: Stress-time diagram

2.5.1 Load During Fatigue Testing

The load history of a real component is often very complex. This complexity
is reduced in standardized fatigue tests. For example, sine-shaped load-time
curves are used. A stress-time diagram for such a stress controlled test is
shown in Figure 2.18.

Important variables of such a test are the maximum stress 𝜎max and the
minimum stress 𝜎min between which is alternated. Then there is the oscil-
lation bandwidth Δ𝜎 = 𝜎max − 𝜎min. The stress amplitude is half of the
oscillation bandwidth

𝜎𝑎 = Δ𝜎

2 , (2.55)

and the mean stress is given by

𝜎𝑚 = 𝜎max + 𝜎min

2 . (2.56)

In such tests, the number of load cycles 𝑁𝑖 to failure is measured. Here, a
load cycle is the single run through the load change and the number of cycles
is given by the time 𝑡 and oscillation time 𝑇 via 𝑁𝑖 = 𝑡/𝑇 . Material failure
in this context is not necessarily a total fracture of the specimen. It rather
means that the resistance to load is reduced due to a crack in the material.
The failure criteria in such test differ, i.e. in strain controlled fatigue tests a
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2.5 Fatigue

Figure 2.19: Strain-stress Hysteresis under cycle load

reduction of the stress by a certain percentage is often used. This criterion
results from the consideration that a crack reduces the cross-sectional area
of the specimen. As the stress is proportional to the cross-sectional area, a
total crack length can be derived from this stress decrease.
The development of a crack under cyclic loading can be divided into three
stages. The first stage (stage I) is the initiation of cracks, which changes
into cyclic crack growth (stage II). The last stage (stage III) is the so-called
residual fracture.

2.5.2 Stage I: Crack Initiation

Under recurrent loading conditions, cracking often begins where there is
a stress concentration in the material. For example, this can be the case
at notches built in the geometry. Casting defects and inclusions can also
lead to crack initiation under cyclic loading. Also in a defect free material
cracks can initiate. Even if the yield point 𝑅𝑝0.2 is not reached, dislocations
start to move under cyclic load, this effect is negligible under static load.
We can see that if we plot the strain over the stress for one cycle in a
so-called hysteresis loop (Figure 2.19), there is an elastic part of the strain
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Figure 2.20: Slip bands in a specimen. The direction of the bands
varying in distinct grains.

Δ𝜀(𝑝𝑙). The dislocations accumulate at the surface and form slip bands in
the direction of the slip system which has the highest shear stress. These
slip bands can be seen in microscopic images of the speciemen, an example
is shown in Figure 2.20.
Further cyclic loading results in the formation of extrusions and intrusions,
this process is shown schematically in Figure 2.21. The surface of the metal
becomes rougher. Small cracks can form on the notches formed on the
surface and grow into the material in the direction of the slip system.
Due to the higher shear stress in the slip system, grains with an angle close
to 𝜋/4 between slip system direction and the main direction of the stress
are more likely to start this process.
Under small loads and a speciem without notches, the crack initiation stage
is the main part of the fatigue life. The dislocations move slowly through
the crystals. Defects and notches have a greater impact as under higher
loads, where the dislocations are moving faster.
As the length of such a microcrack increases, so does the stress concentration
at the tip of the crack. If this concentration becomes large enough, the
growth changes to stage II as shown in Figure 2.22.
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Figure 2.21: Process of building extrusions and intrusions.

2.5.3 Stage II: Crack Propagation

In stage II, the crack no longer grows along the direction of the slip system
but perpendicular to the main direction of the stress. This is a consequence
of a different mechanism dominating the propagation stage. The loading
mode changes from mode II and mode III to mode I, that basically means
stresses act rather perpendicular to the crack surface and not parallel to it.
For more details see Section 2.6.
The application of stress causes the crack flanks to open, resulting in
stress concentration at the crack tip. This stress concentration leads to
plasticization of the material in the area of the tip and the crack grows.
As the stress is relieved, the crack is closing. A reapplication of tensile
load leads again to a crack opening and further growth of the crack. Under
constant static load the crack growth would stop, therefore this is so-called
stable crack growth.
This process repeats until the crack reaches a critical length.

2.5.4 Stage III: Fracture

The stress intensity in the tip of the crack increases with the length of the
crack during the propagation stage. As the intensity becomes lager than
fracture toughness 𝐾𝑐 of the material, the growth of the crack becomes
instable. The crack grows through the reaming cross-section, and the
material finally fails.
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Figure 2.22: Different phases of crack growth

2.5.5 Wöhler Curves

Simple load-time curves are used in laboratory tests to determine the fatigue
life of metals. The number of load cycles 𝑁𝑖 until a failure criterion is reached
is measured. The period time of the load cycles is constant. If for stress
controlled tests, the stress amplitude 𝜎𝑎 is plotted against the number of
cycles until failure, a stress Wöhler curve or S-N (Figure 2.23a) curve is
obtained. Usually, a double logarithmic representation is chosen. In these
tests, the ratio 𝑅 = 𝜎max/𝜎𝑚𝑖𝑛 remains constant.
As the microstructure of metals is random and due to the fact that small
defects on the surface of the speciem have a high impact on the fatigue
life, the results from these tests scatter widely. Therefore, several tests
are performed for each stress amplitude. The failure cycles can be roughly
divided into two ranges. Short lifetimes are called low cycle fatigue (LCF)
and the longer ones high cycle fatigue (HCF). There is no exact definition
for these two ranges but usually about 104 cycles are taken as a threshold.
The straight line in the log-log plot of the cycle stress relation can be
described with the following equation.

Definition 2.2 (Basquin Equation). The relation between stress amplitude
and load cycles till failure for metals can be approximated by

𝜎𝑎 = 𝜎′ · (2𝑁𝑖)𝑏, (2.57)
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(a) S-N curve (b) strain-cycle Wöhler dia-
gram

Figure 2.23: Stress-cycle and strain-cycle diagram

where 𝜎′ > 0 is the material dependent fatigue strength coefficient and 𝑏 < 0
is the fatigue strength exponent.

If we consider a strain Wöhler diagram instead of the stress Wöhler diagram
(Figure 2.23b), the strain cycle relation can be approximated with two
functions. The blue straight line for higher cycles describes the elastic part
of the strain and mainly the HCF behavior. Therefore, if Hooke’s law is
applied to the Basquin Equation we obtain

𝜀𝑒𝑙
𝑎 = 𝜎′

𝐸
(2𝑁𝑖)𝑏. (2.58)

The other part, for lower cycles, is mostly driven by plastic deformation.

Definition 2.3 (Coffin-Manson Equation). Let 𝜀′
𝑓 > 0 be the material

dependent ductility coefficient. Furthermore, let 𝑐 < 0 be the ductility
exponent, which depends on the solidification of the material. The relation
between load cycles and plastic strain can be approximated by the so-called
Coffin-Manson Equation:

𝜀𝑝𝑙
𝑎 = 𝜀′ · (2𝑁𝑖)𝑐 (2.59)

To approximate the strain-load-cycle relationship over both ranges, both
equations are used in combination.

Definition 2.4 (Coffin-Manson Basquin Equation). With the same material
dependent parameters from definitions 2.2 and 2.3, the relation between total
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strain and load cycles can be approximated by

CMB(𝑁𝑖) := 𝜀𝑒𝑙
𝑎 + 𝜀𝑝𝑙

𝑎 = 𝜎′

𝐸
(2𝑁𝑖)𝑏 + 𝜀′ · (2𝑁𝑖)𝑐 (2.60)

To calculate the deterministic number of loading cycles from an applied
strain amplitude, the Coffin-Manson Basquin equation (CMB) has to be
inverted

𝑁𝑖 = CMB−1(𝜀𝑎). (2.61)

2.5.6 Damage Accumulation

As soon as the cyclic load changes over time, neither the Wöhler curves nor
the CMB relation can predict the load cycles till failure. A common way to
approximate the fatigue lifetime under different loads is Miner’s rule. Let
there be 𝑘 ∈ N load parts given by 𝜀𝑗

𝑎 ∈ {1, . . . , 𝑘}. Each of the loads was
applied for 𝑛𝑗 cycles. The portion to the damage 𝐷 for each load is then
given by the ratio 𝑛𝑗/CMB−1(𝜀𝑗

𝑎). Therefore, the total damage is the sum
over all partial damages:

𝐷 =
𝑘∑︁

𝑗=1

𝑛𝑗

CMB−1(𝜀𝑗
𝑎)

(2.62)

If the total damage becomes equal or greater than one, the components fail.

2.6 Stress Intensity Factor

As mentioned before, a crack in the component changes the local stress field.
On a macroscopic scale, a crack is a cut in the material, both surfaces of
the crack are called crack faces. The tip of the crack is called the crack
front (Figure 2.24a). Our aim is to describe the stress increases which is
induced due to the crack right in a small area at the crack front. The stress
field is influenced on the one hand by the geometry of the component and
the cracks and on the other hand by the applied stress.
In linear fracture mechanics there is a whole field dealing with the deter-
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2.6 Stress Intensity Factor

(a) Crack geometry
(b) Local coordinate system
at the crack front.

Figure 2.24: Cracked geometry and polar coordinate system for the
crack-tip

mination of geometry factors and the crack tip field. This section follows
the introduction of K-factors in [35], for a mathematically more rigorous
introduction see [54].

As we are interested in the stress at the tip of the crack, it is useful to
consider a polar coordinate system with its origin at the tip of the crack
(Figure 2.24b). Note that this approach is locally 2-dimensional.

If we consider a crack under load, there are three different types of crack
opening that has to be distinguished, which are shown in Figure 2.25. If
both crack surfaces open symmetrically and perpendicular to the crack faces,
the crack opening is donated with mode I (Figure 2.25a). Under mode II
crack opening, both the crack faces open antisymmetrically in the plane
of the crack surface but perpendicular to the crack front(Figure 2.25b).
In the case that the crack is opening in the direction of the crack front
(Figure 2.25c), the crack opening is called mode III. Usually these crack
opening modes are just locally defined, i.e. at the tip of the crack.

The crack-tip field can be described with the stress intensity factors (also
known as 𝐾-factors) 𝐾𝐼 , 𝐾𝐼𝐼 and 𝐾𝐼𝐼𝐼 . Each of these factors corresponds
to one of the crack opening modes. Locally the stress field at the tip of the
crack is given, according to [35], due to linear fracture mechanics via
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(a) Mode I (b) Mode II (c) Mode III

Figure 2.25: Different types of crack opening.

𝜎𝑖𝑗 = 1√
2𝜋𝑟

[︁
𝐾𝐼 𝜎̃𝐼

𝑖𝑗(𝜙) + 𝐾𝐼𝐼 𝜎̃𝐼𝐼
𝑖𝑗 (𝜙) + 𝐾𝐼𝐼𝐼 𝜎̃𝐼𝐼𝐼

𝑖𝑗 (𝜙)
]︁

. (2.63)

In the equation 𝜎̃𝐼
𝑖𝑗(𝜙), . . . , 𝜎̃𝐼𝐼𝐼

𝑖𝑗 (𝜙) are known functions of the angle 𝜙, so
the stress field at the tip of the crack is fully described by the 𝐾-factors.
For the 2-dimensional case, there is no mode III crack opening and therefore
the term 𝐾𝐼𝐼𝐼 𝜎̃𝐼𝐼𝐼

𝑖𝑗 (𝜙) is omitted from the equation.
As mentioned before, the 𝐾-factors depend on the geometry, including the
geometry of the cracks, and the applied stress. In [35] and related literature
there are tables for different geometries and load states.
For a straight semi-circular crack in a plane surface with lengths 𝑙 the
𝐾-factors are ⎛⎝ 𝐾𝐼

𝐾𝐼𝐼

⎞⎠ =
⎛⎝ 𝜎

𝜏

⎞⎠ ·
√︃

𝜋 · 𝑙

2 , (2.64)

where 𝜎 is the normal stress and 𝜏 the shear stress acting in the plane.

2.6.1 Fracture Criteria

Since the stress intensity factors are sufficient to describe the stress field in
the region directly at the crack tip, we can use them to specify a fracture
criterion in the form of

𝑓(𝐾𝐼 , 𝐾𝐼𝐼 , 𝐾𝐼𝐼𝐼) = 𝐾eq − 𝐾𝑐 = 0. (2.65)

Here 𝐾𝑐 is the material dependent fracture toughness. For the 2-dimensional
case 𝐾𝐼𝐼𝐼 is again omitted.
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In the literature, see e.g. [67] and [12], many calculations for the equivalent
stress intensity factor 𝐾eq can be found. We here use the approach mentioned
in [36] which is as follows

𝐾eq =
√︁

𝐾2
𝐼 + 𝐾2

𝐼𝐼 . (2.66)

2.7 LCF Experiments

For the fitting and validation of the models we develop in the following, we
use LCF failure data from experiments. These experiments were designed
at the TU Kaiserslautern. All LCF tests were carried out at an operating
temperature of 850°C.
Two different specimen geometries were used for the experiments. For the
uniaxial loading case, strain-controlled tests were performed with cylindrical
solid specimens. The gauge area of the specimens has a length of 18 mm
and a diameter of 7 mm, a schematic representation of these specimens is
shown in Figure 2.26.
Two distinct series of test are performed with this geometry. One of which
with high strain amplitudes in the range of 0.55 % to 0.65 %. During
these tests, the strain is measured by an extensometer. The extensometer
measures the distances of two points in the gauge area of the specimen.
These experiments were performed with specimens cast with the super
alloy RENE80. Within this gauge region, an average of 198 grains are
present, leading to an average grain diameter of approximately 1.6 mm. For
the experiments, the cycle to fatigue is determined at a stress amplitude
reduction of 5%.
The results from this series of experiments are shown in Section 4.5.

The second series of test with this geometry is carried out with lower strain
amplitudes, ranging from 0.25% to 0.4%. For these experiments specimens
cast with Alloy247 were used. Here, a different failure criteria is employed.
Instead of using the drop in load we use the direct current potential drop
(DCPD) method. For the DCPD-method, direct current is applied to the
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Figure 2.26: Technical drawing of the solid specimens. Reprinted with
permission of the RPTU Kaiserslautern-Landau.

specimen and the change in electrical resistance is measured. A crack in the
specimen reduces the cross-sectional area during the application of tensile
load and therefore increases the electrical resistance of the specimen.
The cycle of failure is the first load cycle in which the change in resistance
exceeds a pre-defined threshold. If a specimen is cracked, the measurement of
the strain can depend on the position of the extensomenter. The advantage
of the DCPD method is that it does not rely on the measurement of the
strain.
We use the results of these experiments in Section 6.3 to fit our model.

In a third series of experiments, the impact of multiaxial loading conditions
on the LCF life onto the material is investigated. Here, a different specimen
geometry is employed. Instead of a solid geometry hollow specimen are used
(Figure 2.27). The specimens have an inner diameter of 6 mm. The gauge
area has a diameter of 10 mm and a length of 20 mm. These stress controlled
experiments are performed with 4 different stress levels 𝜎𝑣𝑀 ranging from
450 MPa to 600 MPa. Instead of a pure uniaxial tensile stress, a mixture of
tensile and torsional stress is applied. On each stress level several distinct
portions of tensile and torsional stress are used. The failure criterion for
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Figure 2.27: Technical drawing of the hollow specimens. Reprinted
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this series of experiments is a change in electrical resistance with the DCPD
method.
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3. Mathematic Foundation

3.1 Boundary Value Problem

For the linear elastic case, the relationship between deformation 𝑢, strain 𝜀,
and stress 𝜎 introduced in Section 2 can be expressed mathematically as a
variational problem, which is as follows. Let 𝑓 : Ω → R3 be the body force
and 𝑔 : Ω × 𝑆2 → R3 the surface force, where 𝑆2 is the unit sphere of R3.
The variational problem is to minimize the energy

Π(𝑢) :=
∫︁

Ω

[︂1
2𝜀(𝑥) : 𝜎(𝑥) − 𝑓(𝑥)𝑢(𝑥)

]︂
𝑑𝑥 −

∫︁
𝜕Ω

𝑔(𝑥) · 𝑢(𝑥) 𝑑𝑥, (3.1)

where 𝜀(𝑥) : 𝜎(𝑥) := ∑︀
𝑖𝑗 𝜀𝑖𝑗𝜎𝑖𝑗.

The solution of the associated boundary value problem can be approximated
using the finite element method (FEM). This section closely follows [10, 14,
24].

3.1.1 Weak Solutions

Before we introduce the finite element method, we have to define the
boundary value problem (BVP) and give a short summary about important
results that state the existence of unique weak solutions for the BVPs.
For the definition we need a smoothness property of the boundary of the
domain. Therefore, we assume that the boundary of the domain is a
Lipschitz boundary [45].

Definition 3.1. Let Ω ⊆ R3, be a domain with piecewise Lipschitz boundary
𝜕Ω. Furthermore, let 𝜕Ω𝐷 ⊆ Ω be the Dirichlet boundary and 𝜕Ω𝑁 =
𝜕Ω ∖ Ω𝐷 the Neumann boundary. Assume, that

𝐿𝑢(𝑥) :=
∑︁
𝑖,𝑘

𝜕𝑖(𝑎𝑖𝑘(𝑥)𝜕𝑘𝑢(𝑥)) + 𝑎0(𝑥)𝑢(𝑥), (3.2)
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where the matrices 𝐴(𝑥) := (𝑎𝑖𝑘(𝑥))𝑖,𝑗 are positive definite and 𝑎0(𝑥) ≥ 0 for
𝑥 ∈ Ω, be a second order elliptic partial differential operator. The elliptic
boundary value problem with mixed boundary conditions is given by

𝐿𝑢(𝑥) = 𝑓(𝑥) 𝑥 ∈ Ω,

𝑢(𝑥) = 𝑔(𝑥) 𝑥 ∈ 𝜕Ω𝐷, (3.3)∑︁
𝑖,𝑘

𝑛𝑖(𝑥)𝑎𝑖𝑘(𝑥)𝜕𝑘𝑢(𝑥) = ℎ̂(𝑥) 𝑥 ∈ 𝜕Ω𝑁 .

In (3.3), 𝑛𝑖(𝑥) is the on 𝜕Ω almost everywhere defined outward pointing
normal and 𝑓, 𝑔 and ℎ̂ are arbitrary functions on Ω.

If 𝜕Ω𝑁 = ∅ then we have an elliptic boundary value problem with Dirichlet
boundary conditions and if 𝜕Ω𝐷 = ∅ it is called an elliptic boundary value
problem with Neumann boundary conditions.
Boundary value problems with pure Dirichlet boundary conditions can be
transformed to problems with homogeneous boundary conditions. Therefore,
it is assumed that there is a known function 𝑢0 with 𝑢0(𝑥) = 𝑔(𝑥), for 𝑥 ∈ 𝜕Ω.
Then the BVP

𝐿𝑢(𝑥) = 𝑓(𝑥) 𝑥 ∈ Ω,

𝑢(𝑥) = 𝑔(𝑥) 𝑥 ∈ 𝜕Ω, (3.4)

can be rewritten as

𝐿𝑢(𝑥) = 𝑓1(𝑥) 𝑥 ∈ Ω,

𝑢(𝑥) = 0 𝑥 ∈ 𝜕Ω, (3.5)

where 𝑓1 := 𝑓 − 𝐿𝑢0.
The existence of weak solutions for the boundary value problem can be
shown, with the variational formulation of the problem. Therefore, we need
the following theorem.

Theorem 3.2 (Characterization Theorem). Assume that 𝑉 is a linear space
and

𝑎 : 𝑉 × 𝑉 → R (3.6)

is a symmetric, positive bilinear form, that means 𝑎(𝑢, 𝑢) > 0, ∀𝑢 ∈ 𝑉, 𝑢 ̸= 0.
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Further, suppose that
𝑙 : 𝑉 → R (3.7)

is a linear functional. Then

𝐽(𝑣) := 1
2𝑎(𝑣, 𝑣) − ⟨𝑙, 𝑣⟩ (3.8)

is minimal in 𝑢 ∈ 𝑉 , if and only if

𝑎(𝑢, 𝑣) = ⟨𝑙, 𝑢⟩ ∀𝑣 ∈ 𝑉. (3.9)

Furthermore, this solution is unique.

Proof. See [10].

With this theorem it can be shown, that every solution of the BVP (3.5) is
also a solution for the variational problem with

min 𝐽(𝑣(𝑥)) :=
∫︁

Ω

⎡⎣1
2
∑︁
𝑖,𝑘

𝑎𝑖𝑘(𝑥)𝜕𝑖𝑣(𝑥)𝜕𝑘𝑣(𝑥) + 1
2𝑎0(𝑥)𝑣(𝑥)2 − 𝑓(𝑥)𝑣(𝑥)

⎤⎦ 𝑑𝑥,

(3.10)
over all functions in 𝐶2(Ω) ∩ 𝐶0(Ω̄). Therefore, we set

𝑎(𝑢, 𝑣) :=
∫︁

Ω

⎡⎣∑︁
𝑖,𝑗

𝑎𝑖𝑘(𝑥)𝜕𝑖𝑢(𝑥)𝜕𝑘𝑣(𝑥) + 𝑎0(𝑥)𝑢(𝑥)𝑣(𝑥)
⎤⎦ 𝑑𝑥 (3.11)

⟨𝑙, 𝑣⟩ :=
∫︁

Ω
𝑓(𝑥) · 𝑣(𝑥) 𝑑𝑥. (3.12)

In the proof of this property, which is given in [10], it is also shown, that
every solution in 𝐶2(Ω) ∩ 𝐶0(Ω̄) for the variational problem (3.10) is a
classical solution for the BVP.
What remains is the existence of such solutions. This can be achieved by
solving the variational problem in a suitable Hilbert space.

Definition 3.3. Assume that 𝐻 is a Hilbert space. A bilinear form 𝑎 :
𝐻 × 𝐻 → R is called continuous, if 𝐶 > 0 exist such that

|𝑎(𝑢, 𝑣)| ≤ 𝐶‖𝑢‖ · ‖𝑣‖ ∀𝑢, 𝑣 ∈ 𝐻 (3.13)
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holds. A symmetric, continuous bilinear form 𝑎 is called 𝐻-elliptic, if

𝑎(𝑣, 𝑣) ≥ 𝛼‖𝑣‖2 ∀𝑣 ∈ 𝐻 (3.14)

and some 𝛼 > 0.
An 𝐻-elliptic bilinear form 𝑎 induces a norm which is given by

‖𝑣‖𝑎 :=
√︁

𝑎(𝑣, 𝑣). (3.15)

This norm is equivalent to the norm of the Hilbert space and is called
energy-norm.

With this definition we can formulate the following important theorem.
Note that 𝑉 ′ denote the space of continuous linear functionals on a normed
space 𝑉 .

Theorem 3.4. (Lax-Milgram) Let 𝑉 ⊂ 𝐻 be a closed convex set in a Hilbert
space 𝐻. Assume that, 𝑎 : 𝐻 × 𝐻 → R is an elliptic bilinear form. Then
the variational problem

min 𝐽(𝑣) := 1
2𝑎(𝑣, 𝑣) − ⟨𝑙, 𝑣⟩ (3.16)

has a unique solution for every 𝑙 ∈ 𝐻 ′ in 𝑉 .

Proof. see [10]

We now introduce a different solution concept for BVP, the so-called weak
solutions.

Definition 3.5 (Weak Solution). A function 𝑢 ∈ 𝐻1
0 (Ω) is called a weak

solution of the elliptic boundary value problem with Dirichlet boundary
conditions from definition 3.1, if for the associated bilinear form 𝑎(𝑢, 𝑣) the
equation

𝑎(𝑢, 𝑣) = (𝑓, 𝑣)0 (3.17)

holds for all 𝑣 ∈ 𝐻1
0 (Ω).

With the Lax-Milgram theorem the existence of weak solutions for the
homogeneous boundary value problem can be shown.
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Theorem 3.6 (Existence for Dirichlet BVP). Let 𝐿 be a second order
uniformly elliptic partial differential operator. Then the elliptic boundary
value problem with Dirichlet boundary conditions (see definition 3.1) has
a weak solution in 𝐻1

0 (Ω). The solution is the minima of the variational
problem

min
𝑣∈𝐻1

0 (Ω)

1
2𝑎(𝑣, 𝑣) − (𝑓, 𝑣)0. (3.18)

Proof. see [10]

For the boundary value problem with Neumann boundary conditions, the
differential is again assigned with the bilinear form 𝑎 as in equation (3.11).
Additionally, it is assumed, that 𝑎0(𝑥) is positive and bounded from below.
With the additional assumption the quadratic form 𝑎(𝑣, 𝑣) is elliptic on
𝐻1(Ω). With 𝑓 ∈ 𝐿2(Ω) and ℎ̂ ∈ 𝐿2(𝜕Ω) we set the linear functional from
equation (3.12) as

⟨𝑙, 𝑣⟩ :=
∫︁

Ω
𝑓(𝑥)𝑣(𝑥) 𝑑𝑥 +

∫︁
𝜕Ω

ℎ̂(𝑥)𝑣(𝑥) 𝑑𝑥. (3.19)

For the following theorem, we need a further property of the set Ω, the cone
property. For a cone with direction 𝜁, opening angle 𝜃 and height 𝑙, we use
the notation

𝐶(𝜁, 𝜃, 𝑙) = {𝑥 ∈ R3 : |𝑥| < 𝑙, 𝑥 · 𝜁 > |𝑥| cos(𝜃)}. (3.20)

Now we give the definition of the cone property [8, 13].

Definition 3.7. Let Ω ⊂ R3 be a bounded open set. For 𝜃 ∈]0, 𝜋/2[, 𝑙 > 0
and 0 < 2𝑟 < 𝑙 the subset Ω̂ ⊂ Ω fulfills the cone property, if for every
𝑥 ∈ 𝜕Ω̂ there exists a cone 𝐶𝑥 = 𝐶𝑥(𝜁𝑥, 𝜃, 𝑙), where 𝜁𝑥 is a unit vector in
R3, such that

𝑦 + 𝐶𝑥 ⊂ Ω̂, 𝑦 ∈ 𝐵(𝑥, 𝑟) ∩ Ω̂, (3.21)

here 𝐵(𝑥, 𝑟) ⊂ R3 is the open Ball with center 𝑥 and radius 𝑟.

Theorem 3.8 (Trace Theorem). Let Ω ⊂ R3 be bounded with a piecewise
Lipschitz boundary. Furthermore, let Ω fulfill the cone property. Then there
exists a linear bounded mapping,

𝛾 : 𝐻1(Ω) → 𝐿2(𝜕Ω), ||𝛾(𝑣)||𝑜,𝜕Ω ≤ 𝑐||𝑣||1,Ω, (3.22)
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with 𝛾𝑣 = 𝑣|𝜕Ω for all 𝑣 ∈ 𝐶1(Ω).

Proof. see [10]

For the proof of the next theorem we need Green’s formula.

Lemma 3.9. Green’s formula Let Ω ⊆ R3. For 𝑢, 𝑣 ∈ 𝐶1(Ω̄) it holds, that
∫︁

Ω
𝑢(𝑥)𝜕𝑖𝑣(𝑥) 𝑑𝑥 = −

∫︁
Ω

𝑣(𝑥)𝜕𝑖𝑢(𝑥) 𝑑𝑥 +
∫︁

𝜕Ω
𝑢(𝑥)𝑣(𝑥)𝑛𝑖(𝑥) 𝑑𝑥, (3.23)

with 𝑛𝑖(𝑥) is normal 𝑥 ∈ 𝜕Ω.

Proof. For the proof, we refer to [68].

Now we can prove the existence of solutions for the boundary value problem
with Neumann boundary conditions.

Theorem 3.10. Let Ω fulfill the same properties as in the trace theorem
(3.8). There exists a unique solution 𝑢 ∈ 𝐻1(Ω) for the variational problem

min 𝐽(𝑣) := 1
2𝑎(𝑣, 𝑣) − (𝑓, 𝑣)0,Ω − (𝑔, 𝑣)0,𝜕Ω. (3.24)

Furthermore, it holds that the solution 𝑢 ∈ 𝐶2(Ω) ∩ 𝐶1(Ω̄), if and only if 𝑢

is the classical solution for the boundary value problem

𝐿𝑢(𝑥) = 𝑓(𝑥) 𝑥 ∈ Ω,∑︁
𝑖,𝑘

𝑛𝑖(𝑥)𝑎𝑖𝑘(𝑥)𝜕𝑘𝑢(𝑥) = 𝑔(𝑥) 𝑥 ∈ 𝜕Ω. (3.25)

Proof. The bilinear form 𝑎 is 𝐻1-elliptic, therefore it follows, with the
Lax-Milgram theorem, that there exists a unique solution 𝑢 ∈ 𝐻1(Ω).
Furthermore, with

𝑎(𝑢, 𝑣) = (𝑓, 𝑣)0,Ω + (𝑔, 𝑣)0,𝜕Ω ∀𝑣 ∈ 𝐻1(Ω) (3.26)

𝑢 is characterized. Now, suppose that 𝑢 ∈ 𝐶2(Ω) ∩ 𝐶1(Ω̄). For 𝑣 ∈ 𝐻1
0 (Ω)

it holds that 𝛾𝑣 = 0, therefore with (3.26) it follows

𝑎(𝑢, 𝑣) = (𝑓, 𝑣)0 ∀𝑣 ∈ 𝐻1
0 (Ω). (3.27)
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From this it can be shown that 𝑢 solves the Dirichlet problem. It is

𝐿𝑢(𝑥) = 𝑓(𝑥) 𝑥 ∈ Ω. (3.28)

With Green’s formula, we obtain for 𝑣 ∈ 𝐻1(Ω)
∫︁

Ω
𝑣(𝑥)𝜕𝑖(𝑎𝑖𝑘(𝑥)𝜕𝑘𝑢(𝑥)) 𝑑𝑥 = −

∫︁
Ω

𝜕𝑖𝑣(𝑥)𝑎𝑖𝑘(𝑥)𝜕𝑘𝑢(𝑥) 𝑑𝑥 (3.29)

+
∫︁

𝜕Ω
𝑣(𝑥)𝑎𝑖𝑘(𝑥)𝜕𝑘𝑢(𝑥)𝑛𝑖(𝑥) 𝑑𝑥.

Therefore, we have

𝑎(𝑢, 𝑣) − (𝑓, 𝑣)0 − (𝑔, 𝑣)0,𝜕Ω =
∫︁

Ω
𝑣(𝑥) [𝐿𝑢(𝑥) − 𝑓(𝑥)] 𝑑𝑥 (3.30)

+
∫︁

𝜕Ω

⎡⎣∑︁
𝑖,𝑘

𝑛𝑖(𝑥)𝑎𝑖𝑘𝜕𝑘𝑢(𝑥) − 𝑔(𝑥)
⎤⎦ 𝑣(𝑥) 𝑑𝑥.

It is easy to see, that with equation (3.26) and (3.28) the second inte-
gral on the right in equation (3.30) vanishes. Suppose that 𝑣0(𝑥) :=
𝑛𝑖(𝑥)𝑎𝑖𝑘(𝑥)𝜕𝑘𝑢(𝑥) − 𝑔(𝑥) does not vanish. It follows that

∫︀
𝜕Ω 𝑣0(𝑥)2 𝑑𝑥 > 0.

Now, 𝐶1(Ω̄) is dense in 𝐶0(Ω̄), and therefore there exists a 𝑣 ∈ 𝐶1(Ω̄),
such that

∫︀
𝜕Ω 𝑣0(𝑥)𝑣(𝑥) 𝑑𝑥 > 0. This is a contradiction to the assumptions.

Hence, the boundary conditions are satisfied. From (3.30) on the other
hand, it follows that every solution of (3.26) satisfies (3.25).

3.1.2 Linear Elasticity as a Boundary Value Problem

In this section the variational problem (3.1) is formulated as an BVP. To
the contrary to Section 2, here we use a slightly different notation for the
material laws. The relation between the displacement 𝑢 and the strain 𝜀 is
given by:

𝜀𝑖𝑗(𝑥) = 1
2

(︃
𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑗

+ 𝜕𝑢𝑗(𝑥)
𝜕𝑥𝑖

)︃
for 𝑥 ∈ Ω, (3.31)
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so 𝜀 (𝑢(𝑥)) := ∇𝑢(𝑥). The relation between strain and stress, introduced in
Section 2 as Hook’s Law can be rewritten

𝜀(𝑢(𝑥)) = 1 + 𝜈

𝐸
𝜎(𝑥) − 𝜈

𝐸
tr(𝜎(𝑥)) · 𝐼, (3.32)

𝜎(𝑥) = 𝐸

1 + 𝜈

(︂
𝜀(𝑥) + 𝜈

1 − 2𝜈
tr(𝜀(𝑢(𝑥))) · 𝐼

)︂
. (3.33)

Here, we use instead of the Poisson ratio and Young modulus the Lame
coefficients:

𝜆 = 𝐸𝜈

(1 + 𝜈)(1 − 2𝜈) , 𝜇 = 𝐸

2(1 + 𝜈) (3.34)

Therefore, equation (3.33) becomes:

𝜎(𝑥) = 𝜆tr(𝜀(𝑢(𝑥)))𝐼 + 2𝜇 𝜀(𝑢(𝑥)). (3.35)

Hence, for the energy density in (3.1) it follows

1
2𝜎(𝑥) : 𝜀(𝑢(𝑥)) = 1

2 (𝜆tr(𝜀(𝑢(𝑥))) · 𝐼 + 2𝜇 𝜀(𝑢(𝑥)) : 𝜀(𝑢(𝑥))) (3.36)

= 𝜆

2 (tr(𝜀(𝑢(𝑥))))2 + 𝜇 𝜀(𝑢(𝑥)) : 𝜀(𝑢(𝑥)). (3.37)

With this we can express Π in the variational problem (3.1) as

Π(𝑢) :=
∫︁

Ω

[︃
𝜇𝜀(𝑢(𝑥)) : 𝜀(𝑢(𝑥)) + 𝜆

2 (div 𝑣)2 − 𝑓(𝑥)𝑢(𝑥)
]︃

𝑑𝑥

−
∫︁

𝜕Ω𝑁

𝑔(𝑥) · 𝑢(𝑥) 𝑑𝑥. (3.38)

The boundary 𝜕Ω is divided into the part where the zero Boundary condition
holds 𝜕Ω𝐷 and the part 𝜕Ω𝑁 , where forces may act on. Following [10], we
obtain the differential equation

−div 𝜎(𝑥) = 𝑓(𝑥) 𝑥 ∈ Ω,

𝑢(𝑥) = 0 𝑥 ∈ Ω𝐷,

𝜎(𝑥) · 𝑛(𝑥) = 𝑔(𝑥) 𝑥 ∈ Ω𝑁 ,

(3.39)

where div 𝜎(𝑥) is the trace of the Jacobian of 𝜎 at 𝑥 and 𝜎 as in equation
(3.35).

Theorem 3.11. (Korn’s Inequality) Let Ω ⊂ R3 an open, bounded subset
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with piecewise Lipschitz boundary. Assume that 𝜕Ω𝐷 has a positive two-
dimensional measure. Then, there exists a 𝑐 = 𝑐(Ω, 𝜕Ω𝐷) ≥ 0, such that

∫︁
Ω

𝜀(𝑣(𝑥)) : 𝜀(𝑣(𝑥)) 𝑑𝑥 ≥ 𝑐||𝑣||21 for 𝑣 ∈ 𝐻1
𝜕Ω(Ω) (3.40)

holds. Here 𝐻1
𝜕Ω is the closure of {𝑣 ∈ 𝐶∞(Ω)3; 𝑣(𝑥) = 0 for 𝑥 ∈ 𝜕Ω𝐷} with

respect to the ‖ · ‖1-norm.

Proof. See [10].

With Korn’s Inequality, it holds that the variational problem (3.38) is elliptic,
so with the results from Section 3.1.1, we gain the following theorem.

Theorem 3.12. Suppose Ω ⊂ R3 is a domain with picewise Lipschitz
boundary and 𝜕Ω𝐷 has a positive two-dimensional measure. Then the
variational problem (3.38) has a unique solution.

Now we can state the variational formulation for the linear elastic PDE

𝑎(𝑢, 𝑣) =
∫︁

Ω
𝑓(𝑥) · 𝑣(𝑥) 𝑑𝑥 +

∫︁
𝜕Ω

𝑔(𝑥) · 𝑣(𝑥) 𝑑𝐴, ∀𝑣 ∈ 𝐻1
𝜕Ω(Ω), (3.41)

where the bilinear form 𝑎 is given by

𝑎(𝑢, 𝑣) =
∫︁

Ω
𝜀(𝑣(𝑥)) : 𝜎(𝑢(𝑥)) 𝑑𝑥 (3.42)

= 𝜆
∫︁

Ω
div(𝑢(𝑥)) div(𝑣(𝑥)) 𝑑𝑥 + 2𝜇

∫︁
Ω

𝜀(𝑢(𝑥)) : 𝜀(𝑣(𝑥)) 𝑑𝑥. (3.43)

3.1.3 Finite Element Method

A possible way to solve elliptic boundary value problems numerically is the
finite element method (FEM). For this purpose, the variational problem to
find the minima of the functional 𝐽 (equation 3.16) is not solved over the
Sobolev space 𝐻𝑚(Ω) but over a discretized, finite dimensional subspace
𝑆ℎ. Therefore, in the two-dimensional case, the domain Ω is partitioned for
example by triangles or quadrilaterals, and in the three-dimensional case by
tetrahedrons or cuboids. The next definition introduces some requirements
for such a partition of the domain Ω.

Definition 3.13. (i) Let 𝒯 = {𝐾1, . . . , 𝐾𝑁} be a partition of Ω into
triangles or quadrilaterals, and in the three-dimensional case into
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Figure 3.1: Tetrahedron and Cube 3-dimensional linear, quadratic and
cubic Lagrange finite elements.

tetrahedrons or rectangular parallelepipeds, respectively. 𝒯 is called
admissible if,

a) Ω̄ = ⋃︀𝑁
𝑖=1 𝐾̄

b) 𝐾𝑖 ∩ 𝐾𝑗 = ∅, 𝑖 ̸= 𝑗, , ∀𝑖, 𝑗 ∈ {1, . . . , 𝑁}
c) 𝐾𝑖 is open for all 𝑖 ∈ {1, . . . , 𝑁}

(ii) We use the notation 𝒯ℎ instead of 𝒯 , if the diameter of each element
of 𝒯 is at most 2ℎ

(iii) A family of partitions {𝒯ℎ} is called shape regular if there exist a 𝜅 > 0
such that every 𝐾 in 𝒯ℎ contains a ball of radius 𝜌𝐾 with

𝜌𝐾 ≥ ℎ𝐾/𝜅, (3.44)

where ℎ𝐾 is the half diameter of K.
(iv) A family of partitions {𝒯ℎ} is called uniform if there exist a 𝜅 > 0

such that every 𝐾 in 𝒯ℎ contains a ball of radius 𝜌𝐾 ≥ ℎ/𝜅

Next we give a formal definition of a finite element.

Definition 3.14. A finite element is a triplet {𝐾, 𝑃, Σ}, with:
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(i) K is a polyhedron in R𝑑, 𝑑 = 2, 3.
(ii) P is a vector space of functions 𝑝 : 𝐾 → R𝑚 for some integer m

(iii) Σ is a set of 𝑛𝑠ℎ linear forms {𝜙1, . . . , 𝜙𝑛𝑠ℎ
} acting on the elements

of P, and such that the linear mapping

𝑃 ∋ 𝑝 ↦−→ (𝜙1(𝑝), . . . , 𝜙𝑛𝑠ℎ
(𝑝)) ∈ R𝑛𝑠ℎ , (3.45)

is bijective, i.e., Σ is a basis ℒ(𝑃 ;R). The linear forms {𝜙1, . . . , 𝜙𝑛𝑠ℎ
}

are called the local degrees of freedom.

If the local degrees of freedom form a basis of 𝑃 , they are called local
shape functions and are denoted by {𝜃1, . . . , 𝜃𝑛𝑠ℎ

}. So with the local shape
functions every function 𝑢 ∈ 𝑃 (𝐾) can be rewritten as

𝑢 =
𝑛𝑠ℎ∑︁
𝑖=1

𝑢𝑖𝜃𝑖, 𝑢𝑖 ∈ R. (3.46)

The finite elements that we use here have an additional property.

Definition 3.15 (Lagrange finite element). A finite element {𝐾, 𝑃, Σ} is
called a Lagrange finite element if there exists a set of points {𝑎1, . . . , 𝑎𝑛𝑠ℎ

}
in 𝐾 for which it holds that for all 𝑝 ∈ 𝑃 :

𝜙𝑖(𝑝) = 𝑝(𝑎𝑖), 1 ≤ 𝑖 ≤ 𝑛𝑠ℎ. (3.47)

The points {𝑎1, . . . , 𝑎𝑛𝑠ℎ
} are the so-called nodes of the finite element. The

local shape functions {𝜃1, . . . , 𝜃𝑛𝑠ℎ
} are called the nodal basis of 𝑃 .

The tetrahedral (ted) and hexahedral (brick) Lagrange elements are shown
in Figure 3.1.

Definition 3.16 (Affine Family). A family of partitions {𝒯ℎ} of Ω ⊆ R𝑑, 𝑑 =
2, 3 is called an affine family, if there exists a finite element {𝐾̂, 𝑃 , Σ̂}, with
the following properties. For all 𝐾 ∈ 𝒯ℎ, there exist an affine mapping
𝑇𝐾 : 𝐾̂ → 𝐾 such that

(i) Π̂ = Π ∘ 𝑇𝐾,
(ii) 𝜃𝑗 := 𝜃𝑗 ∘ 𝑇𝐾,

(iii) 𝜙𝑗(𝑝 ∘ 𝑇𝐾) := 𝜙𝑗(𝑝).
{𝐾̂, 𝑃 , Σ̂} is called the reference element. 𝜃𝑗 are the local shape functions
and 𝜙𝑗 the local degrees of freedom on the reference element for each 𝐾.
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We now give a brief introduction to the Galerkin method, which is an
approach to transform the analytical variational problem (3.16) into an
algebraic form.

Theorem 3.2 ensures the existence of a solution for the variational problem

min
𝑆ℎ

𝐽(𝑣) := 1
2𝑎(𝑢, 𝑣) − ⟨𝑙, 𝑣⟩, (3.48)

where 𝑆ℎ is a subspace of 𝑉 . Furthermore, it follows that 𝑢ℎ ∈ 𝑆ℎ is a
solution if

𝑎(𝑢ℎ, 𝑣) = ⟨𝑙, 𝑣⟩, ∀𝑣 ∈ 𝑆ℎ (3.49)

holds. Let {𝜃1, . . . , 𝜃𝑛𝑠ℎ
} be a basis of 𝑆ℎ, then (3.49) is equivalent to

𝑎(𝑢ℎ, 𝜃𝑖) = ⟨𝑙, 𝜃𝑖⟩, 𝑖 = 1, . . . , 𝑛𝑠ℎ. (3.50)

With
𝑢ℎ =

𝑛𝑠ℎ∑︁
𝑘=1

𝑧𝑘𝜃𝑘, (3.51)

we obtain the following system of equations

𝑛𝑠ℎ∑︁
𝑘=1

𝑎(𝜃𝑘, 𝜃𝑖)𝑧𝑘 = ⟨𝑙, 𝜃𝑖⟩, 𝑖 = 1, . . . , 𝑛𝑠ℎ. (3.52)

We can rewrite the equation in matrix-vector form as

𝐵𝑧 = 𝑏, (3.53)

with 𝐵𝑖𝑘 = 𝑎(𝜃𝑘, 𝜃𝑖) and 𝑏𝑖 = ⟨𝑙, 𝜃𝑖⟩. If 𝑎 is an 𝐻𝑚-elliptic bilinear form, 𝐵

is positive definite. Therefore, this approach leads to a unique solution.

For the discretization of the linear elastic equation

𝑎(𝑢, 𝑣) =
∫︁

Ω
𝑓(𝑥) · 𝑣(𝑥) 𝑑𝑥+

∫︁
𝜕Ω

𝑔(𝑥) · 𝑣(𝑥) 𝑑𝐴, ∀𝑣 ∈ 𝐻1
𝜕Ω,ℎ(Ω,R3), (3.54)

by Lagrange fininte elements we follow the approach proposed in [29] and
[9]. The integrals are approximated via Gauss quadrature. We partitioned
the domain Ω ⊂ R𝑑, 𝑑 = 2, 3, with a finite mesh 𝒯ℎ with N grid points
𝑋 = {𝑋1, . . . , 𝑋𝑁}. With this mesh we obtain 𝑁𝑒𝑙 Lagrange finite elements
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{𝐾, 𝑃, Σ}. So, for each element 𝐾 we have 𝑛𝑠ℎ local shape functions which
are defined by the nodes 𝑋𝐾

1 , . . . , 𝑋𝐾
𝑛𝑠ℎ

∈ 𝑋. With the assumption that the
family of finite elements is affine, we obtain a reference element {𝐾̂, 𝑃 , Σ̂}
and the bijective transformation 𝑇𝐾 : 𝐾̂ → 𝐾 for each 𝐾 as introduced in
Definition 3.16. It is

𝑇𝐾 = 𝑇𝐾(𝑥̂, 𝑋) =
𝑛𝑠ℎ∑︁
𝑗=1

𝜃𝑗(𝑥̂)𝑋𝐾
𝑗 , 𝑥̂ ∈ 𝐾̂. (3.55)

For the numerical quadrature of the integral, we chose 𝑞𝐾 quadrature points
𝑥̂𝐾

𝑙 for each 𝐾 ∈ 𝒯ℎ with weights 𝜔̂𝐾
𝑙 . The discretized version of the bilinear

form (3.42) is given as follows

𝑎(𝑢, 𝑣) = 𝜆
∑︁

𝐾∈𝒯ℎ

∫︁
𝐾

div(𝑢(𝑥)) div(𝑣(𝑥)) 𝑑𝑥 + 2𝜇
∑︁

𝐾∈𝒯ℎ

∫︁
𝐾

𝜀(𝑢(𝑥)) : 𝜀(𝑣(𝑥)) 𝑑𝑥

= 𝜆
∑︁

𝐾∈𝒯ℎ

∫︁
𝐾

div(𝑢(𝑇𝐾(𝑥̂))) div(𝑣(𝑇𝐾(𝑥̂))) det(∇̂𝑇𝐾(𝑥̂)) 𝑑𝑥̂

+ 2𝜇
∑︁

𝐾∈𝒯ℎ

∫︁
𝐾

𝜀(𝑢(𝑇𝐾(𝑥̂))) : 𝜀(𝑣(𝑇𝐾(𝑥̂))) det(∇̂𝑇𝐾(𝑥̂)) 𝑑𝑥̂

≈ 𝜆
∑︁

𝐾∈𝒯ℎ

𝑞𝐾∑︁
𝑙=1

𝜔̂𝐾
𝑙 div(𝑢(𝑇𝐾(𝑥̂))) div(𝑣(𝑇𝐾(𝑥̂))) det(∇̂𝑇𝐾(𝑥̂))

+ 2𝜇
∑︁

𝐾∈𝒯ℎ

𝑞𝐾∑︁
𝑙=1

𝜔̂𝐾
𝑙 𝜀(𝑢(𝑇𝐾(𝑥̂))) : 𝜀(𝑣(𝑇𝐾(𝑥̂))) det(∇̂𝑇𝐾(𝑥̂)).

Now we can express 𝑢(𝑥) with the local shape functions on the reference
element with 𝑢(𝑥) = ∑︀𝑛𝑠ℎ

𝑚=1 𝑢𝑚𝜃 ∘ 𝑇 −1
𝐾 (𝑥) and therefore

∇𝑢(𝑥) =
𝑛𝑠ℎ∑︁

𝑚=1
𝑢𝑚 ⊗ (∇̂(𝑥̂)𝑇 )−1∇̂𝜃𝑚(𝑥̂). (3.56)

Hence,

div(𝑢(𝑥)) =
𝑛𝑠ℎ∑︁

𝑚=1
tr(𝑢𝑚 ⊗ (∇̂(𝑥̂)𝑇 )−1∇̂𝜃𝑚(𝑥̂)). (3.57)

The volume force can be discretized in a similar way to the bilinear form

∫︁
Ω

𝑓(𝑥) · 𝑣(𝑥) 𝑑𝑥 =
∑︁

𝐾∈𝒯ℎ

𝑞𝐾∑︁
𝑙=1

𝜔̂𝐾
𝑙 det

(︁
∇̂𝑇𝐾(𝑥̂𝑙)

)︁
𝑓(𝑇𝐾(𝑥̂𝑙)) · 𝑣(𝑇𝐾(𝑥̂𝑙)).

(3.58)
For the surface force only faces 𝐹 of the finite elements 𝐾 that lie on 𝜕Ω
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are taken into account. Therefore, let 𝒩ℎ be the set of all the Faces that
lie on 𝜕Ω and 𝐾 = 𝐾(𝐹 ) ∈ 𝒯ℎ be the respective elements. Assume that
𝐹 be the face of the reference element 𝐾̂ with 𝑇𝐾(𝐹 ) : 𝐹 → 𝐹 . For the
quadrature additional 𝑞𝐹 quadrature points 𝑥̂𝐹

𝑙 and weights 𝜔̂𝐹
𝑙 have to be

chosen. The determinant of the derivative of 𝑇𝐾 has to be replaced with
the square root of the Gram determinant

√︁
det 𝑔𝐹 (𝑥̂𝐹

𝑙 ), which is given by

𝑔𝐹 (𝑥̂) = ∇̂(𝑇𝐾 |𝐹 )(𝑥̂)
(︁
∇̂(𝑇𝐾 |𝐹 )

)︁𝑇
(𝑥̂). (3.59)

So for the surface force we finally obtain

∫︁
𝜕Ω

𝑔(𝑥̂) · 𝑣(𝑥̂) 𝑑𝐴 =
∑︁

𝐹 ∈𝒩ℎ

𝑞𝐹∑︁
𝑙=1

𝜔̂𝐹
𝑙

√︁
det 𝑔𝐹 (𝑥̂)𝑔(𝑇𝐾(𝐹 )(𝑥̂𝐹

𝑙 )) · 𝑣(𝑇𝐾(𝐹 )(𝑥̂𝐹
𝑙 )).

(3.60)
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3.2 Rotations

As mentioned in Section 2, within a given grain the material properties of
nickel base alloys are direction dependent. Therefore, the orientation of
the grains have to be taken into account. Orientations can be described
as rotations. For this purpose we use a reference orientation, e.g., a grain
where the axes of the unit cell are parallel to the coordinate axes. The
orientation is then given by the rotation that maps the reference grain onto
the grain that is considered (Figure 3.2). In this section, we follow [47, 19].
To describe rotations mathematically, we recap the definition of a group.

Definition 3.17 (Group). Let Γ be a set and · : Γ × Γ → Γ a binary
operation. The pair (Γ, · ) is called group if · satisfies the following
properties:

(i) 𝑎 · (𝑏 · 𝑐) = (𝑎 · 𝑏) · 𝑐 ∀𝑎, 𝑏, 𝑐 ∈ Γ (Associativity)
(ii) ∃𝑒 ∈ Γ such that 𝑒 · 𝑎 = 𝑎 · 𝑒 = 𝑎 ∀𝑎 ∈ Γ (Existence of identity)

(iii) ∀𝑎 ∈ Γ ∃𝑎−1 ∈ Γ such that 𝑎−1 · 𝑎 = 𝑎 · 𝑎−1 = 𝑒 (Existence of
inverse)

Definition 3.18 (Hausdorff space). A topological space (𝑋, 𝜏) is called
Hausdorff, if ∀𝑥, 𝑦 ∈ 𝑋 ∃𝑈, 𝑉 ∈ 𝜏 with 𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉 such that
𝑈 ∩ 𝑉 = ∅.

We now define a topological group.

Definition 3.19 (Topological Group). Let (Γ, · ) be a group and further let
Γ be a topological space. (Γ, · ) is called a topological group if the mappings,

Γ × Γ ∋ (𝑎, 𝑏) ↦→ 𝑎𝑏 ∈ Γ,

Γ ∋ 𝑎 ↦→ 𝑎−1 ∈ Γ (3.61)

are continuous. Here Γ × Γ is provided with the product topology.

If we have a Group with the Hausdorff topology, then it is called locally
compact if each point 𝑥 ∈ Γ has a compact neighborhood.
The three-dimensional rotations form the special orthogonal group over R3,
i.e., SO(3), which is defined as follows.
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Figure 3.2: Orientation of an FCC crystal represented by a three-
dimensional rotation.

Definition 3.20 (Group SO(3)). The group on 𝑅 ⊂ R3×3 with 𝑅 = {𝑈 |𝑈 ∈
R3×3 : 𝑈𝑈𝑇 = 𝑈𝑇 𝑈 = 1, det(𝑈) = 1} and the usual matrix multiplication
is called the special orthogonal group SO(3). It represents the rotations in
R3.

There are many ways to describe a three-dimensional rotation. One partic-
ular possibility is obviously directly with a matrix 𝑈 ∈ SO(3). In material
science, orientations are often specified by Miller indices, where orienta-
tions are specified using intersections between crystal planes and coordinate
axes (compare Section 2.2.1). This notation has the disadvantage that
transformations and calculations with it are impractical.
Therefore, we focus here on two different notations. The first method, that
is although often used are the Euler angles. Euler’s angles are a triplet
of angles each representing a rotation around a coordinate axis. There
are different ways how the rotations are executed. On the one hand, the
axes around which the rotations are executed differ and on the other hand
intrinsic or extrinsic rotations are executed. Performing extrinsic rotations
means that there is a fixed global coordinate system and the rotations are
executed around these fix axes. In the case of intrinsic rotations, each
rotation is performed around the axes defined by the previous rotations.
Here, we use the Euler angles with the Bunge convention.

Definition 3.21 (Euler angles Bunge). The triplet ℰ := (𝜙1, 𝜗, 𝜙2) ∈
[0, 2𝜋] × [0, 𝜋] × [0, 2𝜋] is called Euler angles in the Bunge convention. The
first intrinsic rotation 𝑔𝑍

𝜙1 is performed around the 𝑍-axis, the second angle
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(a) Rotation parametrized by
Euler angles in the Bungee
convention.

(b) Rotation given by axis 𝑑
and angle 𝜔.

Figure 3.3: Different notations for rotations. Initial coordinate system
in green, coordinate system after rotation in blue.

𝑔𝑋
𝜃 around the 𝑋-axis and the third 𝑔𝑍

𝜙2 again around the 𝑍-axis. Therefore
the full rotation is given by:

𝑈(ℰ) = 𝑈(𝜙1, 𝜃, 𝜙2) := 𝑔𝑍
𝜙2 · 𝑔𝑋

𝜃 · 𝑔𝑍
𝜙1 . (3.62)

The parametrization of a rotation with Euler angles is illustrated in Fig-
ure 3.3a. For the Euler rotations in definition 3.21 we obtain:

𝑔𝑍
𝜙1 =

⎛⎜⎜⎜⎝
cos(𝜙1) sin(𝜙1) 0

− sin(𝜙1) cos(𝜙1) 0
0 0 1

⎞⎟⎟⎟⎠ , (3.63)

𝑔𝑋
𝜃 =

⎛⎜⎜⎜⎝
1 0 0
0 cos(𝜃) sin(𝜃)
0 − sin(𝜃) cos(𝜃)

⎞⎟⎟⎟⎠ , (3.64)

𝑔𝑍
𝜙2 =

⎛⎜⎜⎜⎝
cos(𝜙2) sin(𝜙2) 0

− sin(𝜙2) cos(𝜙2) 0
0 0 1

⎞⎟⎟⎟⎠ . (3.65)
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With this elementary rotations we can calculate the rotation matrix via

𝑈(𝜙1, 𝜃, 𝜙2) =

⎛⎜⎝ 𝑐(𝜙1)𝑐(𝜙2) − 𝑠(𝜙1)𝑠(𝜙2)𝑐(𝜃) 𝑠(𝜙1)𝑐(𝜙2) + 𝑐(𝜙1)𝑠(𝜙2)𝑐(𝜃) 𝑠(𝜙2)𝑠(𝜃)
−𝑐(𝜙1)𝑠(𝜙2) − 𝑠(𝜙1)𝑐(𝜙2)𝑐(𝜃) −𝑠(𝜙1)𝑠(𝜙2) + 𝑐(𝜙1)𝑐(𝜙2)𝑐(𝜃) 𝑐(𝜙2)𝑠(𝜃)

𝑠(𝜙1)𝑠(𝜃) −𝑐(𝜙1)𝑠(𝜃) 𝑐(𝜃)

⎞⎟⎠ ,

(3.66)

where 𝑐 stands for cosin and 𝑠 for sin. It is easy to see, that the mapping
from angles to rotation matrices in the case 𝜃 = 0 is singular, then the
rotation is only determined by the sum 𝜙1 + 𝜙2.

The conversion ℰ(𝑈) from a rotation matrix 𝑈 to Euler angles is straight
forward, 𝜃 is directly given via

𝜃 = arccos (𝑢33). (3.67)

For 𝜃 > 0 we get

𝜙1 = − arctan
(︂

𝑢31

𝑢32

)︂
(3.68)

𝜙2 = arctan
(︂

𝑢13

𝑢23

)︂
. (3.69)

If 𝜃 = 0 we set 𝜙2 = 0 and obtain

𝜙1 = arccos(𝑢11). (3.70)

The second notation that we introduce for rotations is by a rotation axis
which is represented by a unit vector 𝑑 ∈ R3 and a rotation angle 𝜔 ∈ [0, 2𝜋],
see Figure 3.3b. This parametrization is especially useful for transforming
geometries. Let 𝜔̂𝑖 := 𝑑𝑖(1−cos(𝜔)), 𝑖 = 1, 2, 3, then for a rotation 𝜔 ∈ [0, 2𝜋]
around the axis 𝑑 ∈ R3 the associated rotation matrix is given by

𝑈({𝑑, 𝜔}) =

⎛⎜⎜⎜⎝
𝑑1𝜔̂1 + 𝑐(𝜔) 𝑑2𝜔̂1 − 𝑛3𝑠(𝜔) 𝑑3𝜔̂1 + 𝑑2𝑠(𝜔)

𝑑1𝜔̂2 + 𝑑3𝑐(𝜔) 𝑑2𝜔̂2 + 𝑐(𝜔) 𝑑3𝜔̂2 − 𝑑1𝑠(𝜔)
𝑑1𝜔̂3 − 𝑑2𝑐(𝜔) 𝑑2𝜔̂3 + 𝑑1𝑠(𝜔) 𝑑3𝜔̂3 + 𝑐(𝜔)

⎞⎟⎟⎟⎠ , (3.71)

where again 𝑐 stands for the cosin and 𝑠 for sin.
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3.2.1 Symmetries of the Compliance Tensor

The slip systems of an FCC crystal are symmetric with respect to the unit
cell of the FCC lattice. Therefore, the crystal lattice, which is aligned
with the coordinate axis, is invariant under rotations with an angle 𝜔 ∈
{2𝜋/3, 4𝜋/3} around the axis 𝑑 ∈ 𝐷2𝜋/3 := {1/

√
3(1, 1, 1), 1/

√
3(−1, 1, 1),

1/
√

3(1, −1, 1), 1/
√

3(1, 1, −1)} and 𝜔 = 𝜋 around 𝑑 ∈ 𝐷𝜋 := {(1, 0, 0),
(0, 1, 0), (0, 0, 1)}. The same rotational symmetries hold for the compliance
tensor 𝑆 = (𝑠𝑖𝑗𝑘𝑙)𝑖,𝑗,𝑘,𝑙 ∈ R3×3×3×3 of an FCC crystal. From Section 2 we
know that if the lattice of the crystal is aligned with the coordinate axis,
then for the entries of the compliance tensor it follows that

𝑠𝑖𝑗𝑘𝑙 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑆11 for 𝑖 = 𝑗 = 𝑘 = 𝑙,

𝑆12 for 𝑖 = 𝑗 ∧ 𝑘 = 𝑙 ∧ 𝑖 ̸= 𝑘,

𝑆44 for 𝑖 ̸= 𝑗 ∧ (𝑖 = 𝑘 ∧ 𝑗 = 𝑙 ∨ 𝑖 = 𝑙 ∧ 𝑗 = 𝑘),

0 else .

(3.72)

Under a rotation 𝑈 , it holds for the tensor 𝑆 that

𝑠′
𝑖𝑗𝑘𝑙 =

3∑︁
𝑝=1

3∑︁
𝑞=1

3∑︁
𝑟=1

3∑︁
𝑡=1

𝑢𝑖𝑝𝑢𝑗𝑞𝑢𝑘𝑟𝑢𝑙𝑡𝑠𝑝𝑞𝑟𝑡 𝑖, 𝑗, 𝑘, 𝑙 ∈ {1, 2, 3}, (3.73)

see, e.g., [55]. If we plug in the values from (3.72), this simplifies to

𝑠′
𝑖𝑗𝑘𝑙 = 𝑎11𝑆11 + 𝑎12𝑆12 + 𝑎44𝑆44, (3.74)

where,

𝑎11 := 𝑢𝑖1𝑢𝑗1𝑢𝑘1𝑢𝑙1 + 𝑢𝑖2𝑢𝑗2𝑢𝑘2𝑢𝑙2 + 𝑢𝑖3𝑢𝑗3𝑢𝑘3𝑢𝑙3, (3.75)
𝑎12 := 𝑢𝑖1𝑢𝑗1𝑢𝑘2𝑢𝑙2 + 𝑢𝑖1𝑢𝑗1𝑢𝑘3𝑢𝑙3 + 𝑢𝑖2𝑢𝑗2𝑢𝑘1𝑢𝑙1 + 𝑢𝑖2𝑢𝑗2𝑢𝑘3𝑢𝑙3

+ 𝑢𝑖3𝑢𝑗3𝑢𝑘1𝑢𝑙1 + 𝑢𝑖3𝑢𝑗3𝑢𝑘2𝑢𝑙2, (3.76)
𝑎44 := 𝑢𝑖1𝑢𝑗2𝑢𝑘1𝑢𝑙2 + 𝑢𝑖1𝑢𝑗2𝑢𝑘2𝑢𝑙1 + 𝑢𝑖2𝑢𝑗1𝑢𝑘1𝑢𝑙2 + 𝑢𝑖2𝑢𝑗1𝑢𝑘2𝑢𝑙1

+ 𝑢𝑖1𝑢𝑗3𝑢𝑘1𝑢𝑙3 + 𝑢𝑖1𝑢𝑗3𝑢𝑘3𝑢𝑙1 + 𝑢𝑖3𝑢𝑗1𝑢𝑘1𝑢𝑙3

+ 𝑢𝑖3𝑢𝑗1𝑢𝑘3𝑢𝑙1 + 𝑢𝑖2𝑢𝑗3𝑢𝑘2𝑢𝑙3 + 𝑢𝑖2𝑢𝑗3𝑢𝑘3𝑢𝑙2

+ 𝑢𝑖3𝑢𝑗2𝑢𝑘2𝑢𝑙3 + 𝑢𝑖3𝑢𝑗2𝑢𝑘3𝑢𝑙2. (3.77)
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With the rotations around the axes 𝑑 = (𝑑𝑥, 𝑑𝑦, 𝑑𝑧) ∈ 𝐷2𝜋/3 the rotation
matrices are given by

𝑈({𝑑, 2𝜋/3}) = 1
2

⎛⎜⎜⎜⎝
0 3𝑑𝑥𝑑𝑦 −

√
3𝑑𝑧 3𝑑𝑥𝑑𝑧 +

√
3𝑑𝑦

3𝑑𝑥𝑑𝑦 +
√

3𝑑𝑧 0 3𝑑𝑦𝑑𝑧 −
√

3𝑑𝑥

3𝑑𝑥𝑑𝑧 −
√

3𝑑𝑦 3𝑑𝑦𝑑𝑧 +
√

3𝑑𝑥 0

⎞⎟⎟⎟⎠ ,

(3.78)

𝑈({𝑑, 4𝜋/3}) = 1
2

⎛⎜⎜⎜⎝
0 3𝑑𝑥𝑑𝑦 +

√
3𝑑𝑧 3𝑑𝑥𝑑𝑧 −

√
3𝑑𝑦

3𝑑𝑥𝑑𝑦 −
√

3𝑑𝑧 0 3𝑑𝑦𝑑𝑧 +
√

3𝑑𝑥

3𝑑𝑥𝑑𝑧 +
√

3𝑑𝑦 3𝑑𝑦𝑑𝑧 −
√

3𝑑𝑥 0

⎞⎟⎟⎟⎠ ,

(3.79)

and for the rotations around 𝑑 ∈ 𝐷𝜋

𝑈({𝑑, 𝜋}) =

⎛⎜⎜⎜⎝
(−1)𝑑𝑥+1 0 0

0 (−1)𝑑𝑦+1 0
0 0 (−1)𝑑𝑧+1

⎞⎟⎟⎟⎠ . (3.80)

For all of these matrices, it holds that in each row and each column there is
only one entry which is non-zero. The entries that are non-zero are either 1
or −1. Therefore, we get with equations (3.75), (3.76) and (3.77)

𝑎11 =

⎧⎪⎨⎪⎩1 for 𝑖 = 𝑗 = 𝑘 = 𝑙,

0 else ,
(3.81)

𝑎12 =

⎧⎪⎨⎪⎩1 for 𝑖 = 𝑗 ∧ 𝑘 = 𝑙 ∧ 𝑖 ̸= 𝑘,

0 else ,
(3.82)

𝑎44 =

⎧⎪⎨⎪⎩1 for 𝑖 ̸= 𝑗 ∧ (𝑖 = 𝑘 ∧ 𝑗 = 𝑙 ∨ 𝑖 = 𝑙 ∧ 𝑗 = 𝑘),

0 else .
(3.83)

Finally, we can conclude with equation (3.74) that

𝑠′
𝑖𝑗𝑘𝑙 = 𝑠𝑖𝑗𝑘𝑙. (3.84)
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The rotational symmetries of the unit cell hold for the compliance tensor
(and therefore the stiffness tensor as well) of an FCC crystal. The slip
systems of an FCC crystal depend directly on the structure of the unit cell.
Accordingly, the same symmetrical properties hold for the slip systems.

3.2.2 Haar measure

We assume that the orientation of the grains is randomly distributed. We
suppose that this distribution is translation invariant. So first, for 𝑎 ∈ Γ we
define a left translation 𝐿(𝑎) and a right translation 𝑅(𝑎) as follows

𝐿(𝑎) :Γ → Γ, 𝐿(𝑎)𝑥 := 𝑥𝑎, for 𝑥 ∈ Γ, (3.85)
𝑅(𝑎) :Γ → Γ, 𝑅(𝑎)𝑥 := 𝑥𝑎, for 𝑥 ∈ Γ. (3.86)

In the following, 𝐶(R𝑝) is used to denote the set of functions 𝑓 : R𝑝 → R
which are continuous and 𝐶𝐶(R𝑝) for the functions 𝑓 ∈ 𝐶(R𝑝) that have a
compact support.

Definition 3.22.

(i) A linear form 𝐼 : 𝐶𝐶(Γ) → R is called left invariant, if

𝐼(𝑓 ∘ 𝐿) = 𝐼(𝑓), 𝑓 ∈ 𝐶𝐶(Γ). (3.87)

(ii) A measure 𝜈 : ℬ(Γ) → [0, ∞] is called left invariant, if

𝜈(𝑦𝐵) = 𝜈(𝐵), 𝐵 ∈ ℬ(Γ), 𝑦 ∈ Γ, (3.88)

where 𝑦𝐵 := {𝑦 · 𝑏 : 𝑏 ∈ 𝐵}.
(iii) A linear form 𝐼 : 𝐶𝐶(Γ) → R is called positive, if for 𝑓 ∈ 𝐶𝐶(Γ), with

𝑓 ≥ 0 holds, that 𝐼(𝑓) ≥ 0.

Theorem 3.23. Let Γ be a locally compact Hausdorff topological group.
Further, let 𝐼 : 𝐶𝐶(Γ) → R a left invariant positive linear form, then there
exist one and only one Radon measure 𝜈 : ℬ(Γ) → [0, ∞] such that

𝐼(𝑓) =
∫︁

Γ
𝑓 𝑑𝜈, 𝑓 ∈ 𝐶𝐶(Γ), (3.89)
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the measure 𝜈 is left invariant. Reversely, to each left invariant Radon
measure 𝜈 : ℬ(Γ) → [0, ∞] corresponds to a left invariant positive linear
form 𝐼 : 𝐶𝐶(Γ) → R by equation (3.89).

Proof. For the proof we refer to [19].

Theorem 3.24 (Haar Integral). Let Γ be a locally compact Hausdorff
topological group, then there exists a left invariant positive linear form
𝐼 : 𝐶𝐶(Γ) → R, 𝐼 ≠ 0. 𝐼 is uniquely determined up to a constant factor. 𝐼

is called left Haar integral of 𝐶𝐶(Γ).

Proof. The proof can be found in [19].

Theorem 3.25 (Haar Measure). Let Γ be a locally compact Hausdorff
topological group. Then there exists a left invariant Radon-measure 𝜇 :
ℬ(Γ) → [0, ∞], 𝜇 ̸= 0. Furthermore, 𝜇 is uniquely determined up to a
constant factor. 𝜇 is called the left Haar measure.

Proof. The theorem follows immediately from (3.23) and (3.24).

A Radon measure is finite on compact sets, therefore it follows directly

Corollary 3.26. Let Γ be a compact Hausdorff topological group. Then there
exist a left invariant uniquely determined probability measure 𝜇 : ℬ(Γ) →
[0, 1].

This corollary ensures the existence and uniqueness of a translation invariant
probability measure on the group of rotations SO(3). We simply call this
measure the Haar measure on SO(3) in the following.
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3.3 Crack Initiation Process

In the following, we want to model the LCF crack initiation of mechanical
component as a stochastic process. The component can be described as a
bounded, open domain Ω ⊂ R3 with a Lipschitz boundary 𝜕Ω. The time
domain 𝒯 is either R+ if we use the natural time or N0 if load cycles are
considered. As we only consider surface cracks, we define the configuration
space of crack initiation as the product space of the time axis and surface
of the component 𝒞 := 𝒯 × 𝜕Ω. Note that we follow the crack initiation
process proposed in [63, 30].
We assume in the following that 𝒞 is assigned the standard metric topology.

Definition 3.27 (Counting Measurs). Let ℬ(𝒞) be the Borel 𝜎-algebra of 𝒞
and ℛ = ℛ(𝒞) be the set of all Radon measures on 𝒞. A Radon measure
𝛾 ∈ ℛ is called counting measure if 𝛾(𝐵) ∈ N0 for all 𝐵 ⊆ 𝒞 measures and
bounded. The set of all counting measures on 𝒞 is denoted with ℛ𝒞.

According to [44] it holds, that the restriction of a counting measure 𝛾 ∈ ℛ(𝒞)
to 𝐵 ∈ ℬ(𝒞) can be written as

𝛾|𝐵 =
𝑛∑︁

𝑖=1
𝑏𝑗𝛿𝑐𝑗

, 𝑐𝑗 ∈ 𝒞, 𝑐𝑖 ̸= 𝑐𝑗, 𝑖 ̸= 𝑗 and 𝑏𝑗 ∈ N0. (3.90)

This decomposition is unique up to order. The Radon counting measure 𝛾

is called simple, if 𝑏𝑗 = 1 for 𝑗 = 1, . . . , 𝑛 for al 𝐵 ∈ ℬ(𝒞).
Now let 𝑓 ∈ 𝐶𝐶(𝒞) we then denote the 𝜎-algebra on ℛ which is generated
by the mapping 𝛾 →

∫︀
𝒞 𝑓 𝑑𝛾 with 𝒩 (ℛ𝒞).

With this we can define a point process as follows.

Definition 3.28. Let (𝑋, 𝒜, 𝑃 ) be a probability space.
(i) A measurable mapping 𝛾 : (𝑋, 𝒜, 𝑃 ) → (ℛ𝒞, 𝒩 (ℛ𝒞)) is called a point

process.
(ii) If 𝛾( · , 𝜔) is simple for 𝑃 -almost all 𝜔 ∈ 𝑋, the point process is

called simple.
(iii) If 𝑃 (𝛾({𝑐}) > 0) = 0 for all 𝑐 ∈ 𝒞, the point process is non-atomic.
(iv) Let 𝐵1, . . . , 𝐵𝑛 ∈ ℬ(𝒞) mutually disjoint, if the random variables

𝛾({𝐵1}), . . . , 𝛾({𝐵𝑛}) are independent, the point process has indepen-
dent increments.
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Next, we introduce a special point process where the number of events are
Poisson distributed in bounded sets of 𝜎-algebra.

Definition 3.29 (Poisson Point Process). Let 𝛾 be a point process on
(𝑋, 𝒜, 𝑃 ), if there exists a unique Radon measure 𝜌 ∈ ℛ, such that

𝑃 (𝛾(𝐵) = 𝑛) = 𝑒𝜌(𝐵) 𝜌(𝐵)𝑛

𝑛! ∀𝐵 ∈ ℬ(𝒞) bounded, (3.91)

then 𝛾 is a Poisson point Process. 𝜌 is called the intensity measure of 𝛾.

Proposition 3.30. Let 𝛾 be non-atomic, simple point process with inde-
pendent increments, then 𝛾 is a Poisson point process.

Proof. Is proven in Corollary 7.4 of [43].

Now we can introduce the crack initiation process. For the process we
consider that the probability that a crack originates at an exact location on
the surface 𝑥 ∈ 𝜕Ω should be zero. Further we assume that two cracks that
initiate at the same location and time are considered as the same crack. In
addition, suppose that a surface crack has only a negligible influence on
the stress field on the component surface. This assumption is justified by
the fact that the LCF cracks that we consider are small compared to the
component surface. These properties are leading to the following definition

Definition 3.31 (Crack initiation Process). A crack initiation process 𝛾 is
a simple, non-atomic point process on 𝒞 with independent increments.

We suppose now that the first apparent of an LCF crack leads to failure.

Definition 3.32 (Failure Time). The failure time 𝑇 : 𝑋 → 𝒯 * for the
crack initiation process 𝛾 on 𝒞 is given by the random variable

𝑇 = t(𝛾) = min{𝑡 > 0 : 𝛾(𝒞𝑡) > 0}, (3.92)

where 𝒞𝑡 := {(𝑠, 𝑥) ∈ 𝒞 : 𝑠 ≤ 𝑡} and 𝒯 * = 𝒯 ∪ {∞}.

From the upper continuity of Radon measures and the right continuity of
𝑡 → 𝛾(𝒞𝑡) it follows that the minimum in (3.92) is attained.
Due to proposition 3.30 a crack initiation process is a Poisson point process.
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Theorem 3.33. Let 𝛾 be a crack initiation process on 𝒞. Then following
statements hold.

(i) The distribution function 𝐹𝑇 of the failure time 𝑇 associated with the
crack initiation process 𝛾 is given by 𝐹𝑇 (𝑡) = 1 − exp(−𝐻(𝑡)) with
cumulative hazard function 𝐻(𝑡) := 𝜌(𝒞𝑡).

(ii) If 𝜌(𝒞) = ∞, then 𝑃 (𝑇 = ∞) = 0 and thus T can be modified to
𝑇 : (𝑋, 𝒜) → (𝒯 , ℬ(𝒯 )).

Proof. (i) With proposition 3.30 it follows that,

𝐹𝑇 (𝑡) = 1−𝑃 (𝑇 > 𝑡) = 1−𝑃 (𝛾(𝒞𝑡) = 0) = 1− 𝑒−𝜌(𝒞𝑡) = 1− 𝑒−𝐻(𝑡). (3.93)

(ii) Let 𝜌(𝒞) = ∞, as Radon measures are lower continuous we obtain
𝐻(𝑡) → ∞ for 𝑡 → ∞. Therefore, 𝑆(𝑡) = exp(−𝐻(𝑡)) = 𝑃 (𝑇 > 𝑡) → 0 for
𝑡 → ∞. With the lower continuity of 𝑃 it holds that 𝑇 < ∞ 𝑃 almost-sure,
and therefore we can redefine 𝑇 = 0 on the null set {𝑇 = ∞} without
changing the probability law on 𝑇 .

In the following we suppose that the intensity measure 𝜌 of the crack
initiation process 𝛾 is absolutely continuous with respect to 𝑑𝑡𝑑𝐴, where
𝑑𝐴 is the Lebesgue measure on 𝜕Ω. We use this assumption because we
presuppose that in a finite region and time only finite cracks can initiate.
With these considerations we can gain for the cumulative hazard rate

𝐻(𝑡) =
∫︁ 𝑡

0
ℎ(𝑠) 𝑑𝑠, (3.94)

where ℎ(𝑡) is the hazard function. It further holds that

ℎ(𝑡) =
∫︁

𝜕Ω
𝜚(𝑡, 𝜎(𝑥)) 𝑑𝐴, for almost every 𝑡 ∈ 𝒯 , (3.95)

here the hazard density 𝜚(𝑡, 𝜎(𝑥)) is the Radon-Nikodyn derivative of 𝜌 with
respect to 𝑑𝑡𝑑𝐴. 𝜎(𝑥) is the stress at 𝑥 ∈ 𝜕Ω.
We now consider a decomposition of the surface area 𝜕Ω in 𝑚 mutually
disjoint subsets

𝜕Ω =
𝑚⋃︁

𝑖=1
𝐴𝑖. (3.96)

The crack initiation process has independent increments, therefore the
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3.3 Crack Initiation Process

hazard function can be written as

ℎ(𝑡) =
𝑚∑︁

𝑖=1
ℎ𝐴𝑖

(𝑡), (3.97)

with
ℎ𝐴𝑖

(𝑡) =
∫︁

𝐴𝑖

𝜚(𝑡, 𝜎(𝑥)) 𝑑𝐴. (3.98)

Let now 𝐴 ⊆ 𝜕Ω be a region on the surface where the load is almost constant,
𝜎(𝑥) ≈ 𝜎𝐴, 𝑥 ∈ 𝐴. We subdivide 𝐴 in 𝑚 subsets 𝐴𝑗 with equal surface size
|𝐴𝑗| = |𝐴|/𝑚. With the assumption that the stress is almost constant we
get that ℎ𝐴𝑗

≈ ℎ𝐴𝑘
for 𝑗, 𝑘 = 1, . . . , 𝑚. Consequently, we obtain

ℎ𝐴(𝑡) =
𝑚∑︁

𝑗=1
ℎ𝐴𝑗

(𝑡) ≈ 𝑚 · ℎ𝐴1 = |𝐴|
|𝐴1|

ℎ𝐴1 . (3.99)

For the hazard density we obtain with 𝑚 → ∞

𝜚(𝑡, 𝜎𝐴) = lim
𝑚→∞

ℎ𝐴1(𝑡)
|𝐴1|

, thus ℎ𝐴(𝑡) ≈ |𝐴| · 𝜚(𝑡, 𝜎𝐴). (3.100)

With equation (3.94) we can define the surface dependent cumulative hazard
on the region 𝐴 as

𝐻𝐴(𝑡) :=
∫︁ 𝑡

0
ℎ𝐴(𝑠) 𝑑𝑠 ≈ |𝐴|

∫︁ 𝑡

0
𝜌(𝑡, 𝜎) 𝑑𝑠 = |𝐴| · 𝐻(𝑡, 𝜎𝐴). (3.101)

In section 7 we apply the cumulative hazards to an actual turbine blade.
We use a FE-model of a blisk blade under realistic loading conditions as an
example. With a FE-mesh discretization of the component we calculate the
cumulative hazard on the surface as follows,

𝐻(𝑡) =
∑︁

𝐹 ∈𝒩ℎ

∫︁
𝐹

𝐻(𝜎(𝑥), 𝑡) 𝑑𝐴

=
∑︁

𝐹 ∈𝒩ℎ

𝐻
(︁
𝜎(𝑇𝐾(𝐹 ),𝑡(𝑥̂))

)︁√︁
det 𝑔𝐹 (𝑥̂) 𝑑𝐴

≈
∑︁

𝐹 ∈𝒩ℎ

𝑞𝐹∑︁
𝑙=1

𝜔̂𝐹
𝑙 𝐻

(︁
𝑠, 𝜎(𝑇𝐾(𝐹 )(𝑥̂𝐹𝑙))

)︁√︁
det 𝑔𝐹 (𝑥̂𝐹𝑙)

=: 𝐻̂(𝑡).

(3.102)

Therefore, we can approximate the probability of Failure of the whole
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component with

𝐹𝑇 (𝑡) = 1−exp
(︂

−
∫︁ 𝑡

0
ℎ(𝑠) 𝑑𝑠

)︂
= 1−exp (𝐻(𝑡)) ≈ 1−exp

(︁
𝐻̂(𝑡)

)︁
. (3.103)
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4. Epidemiological Percolation Model Uniaxial
Stress

In this section, we present a probabilistic LCF failure model for polycrys-
talline metals under uniaxial loading. For this purpose, we use a basic
percolation model as introduced, e.g., in [52, 50]. We extend this model
with an infection function. The infection function models the interaction
between a crack grain and the neighboring grains. Note that this model has
been already published in [37].

4.1 Single Grain Crack Initiation Times

We assume that the crack initiation in the single grains is driven by the
shear stress in the slip systems and therefore by the Schmid factors.

4.1.1 Random Schmid Factors

Let us consider a grain with an FCC crystal structure. This grain is
characterized by an orientation 𝑈 ∈ 𝑆𝑂(3). The rotation matrix 𝑈 maps
the lattice of a crystal with its unit cell aligned with the coordinate axis
onto the lattice of the given grain. By applying the rotation matrix 𝑈 , we
can obtain the slip directions and normals of the grain with orientation 𝑈

by transforming the slip systems of the grain with a standard lattice

𝑛𝑖(𝑈) = 𝑈𝑛𝑖

𝑠𝑖𝑗(𝑈) = 𝑈𝑠𝑖𝑗.
(4.1)

An example for a rotation acting on an FCC lattice cell is shown in Figure 4.1.
To describe the mechanical behavior of the grain, we need to consider its
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4 Epidemiological Percolation Model Uniaxial Stress

Figure 4.1: Rotation of a slip system.

stiffness tensor 𝐶. The components of this tensor, denoted as 𝐶𝑖𝑗𝑘𝑙(𝑈), can
be obtained by

𝐶𝑖𝑗𝑘𝑙(𝑈) =
3∑︁

𝑝,𝑞,𝑟,𝑠=1
𝑈𝑖𝑝𝑈𝑗𝑞𝑈𝑘𝑟𝑈𝑙𝑠𝐶𝑝𝑞𝑟𝑠. (4.2)

We now consider a given isotropic strain 𝜀𝑖𝑠𝑜 that acts uniformly over
the entire surface area. By applying the rotated stiffness tensor, we can
determine the anisotropic stress acting on the grain using Hook’s law

𝜎(𝑈)𝑎𝑛𝑖 = 𝐶(𝑈)𝜀𝑖𝑠𝑜. (4.3)

To calculate the shear stress on the grain with a specific orientation 𝑈 , we
project the anisotropic stress onto the slip systems using equation (2.50)

𝜏𝑖𝑗(𝑈) = 𝑛𝑖(𝑈) · 𝜎(𝑈)𝑎𝑛𝑖 · 𝑠𝑖𝑗(𝑈). (4.4)

Moreover, the Schmid factors for each slip system, denoted as 𝑚𝑖𝑗(𝑈), can
be obtained using equation (2.53)

𝑚𝑖𝑗(𝑈) = 𝜏𝑖𝑗(𝑈)√︁
3/2 · 𝜎𝑣𝑀

. (4.5)

Here, 𝜎𝑣𝑀 represents the von Mises equivalent stress of the isotropic stress
tensor 𝜎𝑖𝑠𝑜.
As mentioned in Section 2, we consider only the highest Schmid factor
for crack initiation. Therefore, we take the maximum over all twelve slip
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Figure 4.2: Histogram of 𝑚max(𝑈) with 105 random orientated grains
sampled from the Haar measure on 𝑆𝑂(3) for INC738 at 850∘𝐶: 𝐶11 =
226GPa, 𝐶12 = 161GPa, 𝐶44 = 99 GPa.

systems of the FCC crystal

𝑚max(𝑈) = max
𝑖,𝑗

(𝑚𝑖𝑗(𝑈)) . (4.6)

If we now assume that 𝑈 ∈ 𝑆𝑂(3) is randomly distributed, then both the
direction and normals of the slip systems, as well as the anisotropic stress,
become random variables. Considering this, the maximum Schmid factors
will also be randomly distributed.

The distribution of the maximum Schmid factors for randomly sampled
orientations from the Haar measure is shown in the histogram in Figure 4.2.
Notably, the observed Schmid factors surpass the previously stated max-
imum value of 0.5 mentioned in Section 2. This deviation is due to the
transformation from isotropic to anisotropic stress in equation (4.3). The
material parameters, which we use in the following, are for the nickel-base
super alloy INC738 at 850∘𝐶: 𝐶11 = 226GPa, 𝐶12 = 161GPa, 𝐶44 = 99
GPa. They can be found in [4]
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4 Epidemiological Percolation Model Uniaxial Stress

4.1.2 Random Crack Initiation Times

We now use the random Schmid factor to gain a random crack initiation
time 𝑁𝑖 under cyclic loading with a given strain amplitude 𝜀𝑎.
Therefore, we again consider a single grain with a random orientation
𝑈 ∈ 𝑆𝑂(3). We apply the inverse of the Ramberg Osgood equation to the
strain amplitude and weight it with the random maximal Schmid factor

RO−1(𝜀𝑎) · 𝑚max(𝑈)
𝜆

, (4.7)

this gives the elastic plastic stress that acts in the slip system with the
highest Schmid factor. Here, 𝜆 is the expected value E𝑈 [𝑚max(𝑈)], which
is used as a scaling factor.
This stress can be transformed back to a strain via the Ramberg Osgood
equation, then the inverse of Coffin Manson Basquin equation is applied

𝑁𝑖(𝑈) = CMB−1
(︃

RO
(︃

RO−1(𝜀𝑎) · 𝑚max(𝑈)
𝜆

)︃)︃
, (4.8)

which leads to a probabilistic crack initiation time for the grain.

4.2 Percolation Model

We later want to fit and validate our model with experimental LCF failure
data from Section 2.7. The experiments are performed with cylindrical
specimens. The surface area is therefore given by the height ℎ𝑠 and the
radius 𝑟𝑠 of the gauge area of the specimen.
For a given number 𝑛 of grains the polycrystalline surface is modeled with
a Voronoi tessellation. We assume that the seeds (𝑥𝑔, 𝑧𝑔) ∈ [0, 2𝜋𝑟𝑠] ×
[0, ℎ𝑠], 𝑔 ∈ 𝐺 = {1, . . . , 𝑛} are uniformly distributed. The Voronoi cells
represent the single grains. A Voronoi tessellation with 30 random seeds is
shown in Figure 4.3a.

Each grain 𝑔 has a random orientation, parametrized by the Euler angles
ℰ𝑔 := (𝜙𝑔

1, 𝜃𝑔, 𝜙𝑔
2). The orientations are sampled according to the Haar
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4.2 Percolation Model

(a) Voronoi tessellation with
30 seeds.

(b) Grain (red), neighborhood
(green).

Figure 4.3: Voronoi tessellation

measure on 𝑆𝑂(3). With equation (3.66) we can determine the rotation
matrix 𝑈 𝑔. Furthermore, with equation (4.8) the initial crack time 𝑁𝑖(𝑈 𝑔)
for each single grain is calculated.
With these initiation times we can determine the first grain that cracks and
the corresponding crack time by taking the minimum,

𝑔1 = arg min
𝑔∈𝐺

𝑁𝑖(𝑈 𝑔), 𝑁1
𝑖 = 𝑁𝑖(𝑈 𝑔1). (4.9)

A crack in a grain has an influence on the stress field around the grain.
We want to address this change in stress by an infection function. We
assume that only the grains which are directly adjacent to the cracked one
are effected. Such a neighborhood of a grain is shown in Figure 4.3b. Let
𝐺𝑘 ⊂ 𝐺 be the set of grains that have a common boundary with the grain
𝑔𝑘, we refer to them as the neighborhood of 𝑔𝑘. If a crack initiates in grain
𝑔𝑘 at load cycle 𝑁 𝑔𝑘

𝑖 , then we calculate the new shear stress in the slip
systems in the neighborhood of 𝑔𝑘 by an infection function

𝜏 𝑔𝑙
𝑖𝑗 = 𝑓(𝜏 𝑔𝑙

𝑖𝑗 , ℰ𝑔𝑙 , ℰ𝑔𝑘), 𝑔𝑙 ∈ 𝐺𝑘. (4.10)

The modelling of the infection function is described in detail in Section 4.3.
With the new shear stress the resulting Schmid factors 𝑚̄𝑔𝑙

𝑖𝑗 after infection
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4 Epidemiological Percolation Model Uniaxial Stress

(a) The neigh-
borhood just
contains grains
without cracks.

(b) The cracked
adjacent grain
changes the
Schmid factors.

(c) The new
crack initiation
is calculated via
a Miners rule.

Figure 4.4: Procedure of the infection.

are calculated with equation (2.53).

For the new crack times of the grain 𝑔𝑙 ∈ 𝐺𝑘 we use Miner’s rule see
Section 2.5.6

1 = 𝑁 𝑔𝑘
𝑖

𝑁 𝑔𝑙
𝑖

+ 𝑁̄ 𝑔𝑙
𝑖 − 𝑁 𝑔𝑘

𝑖

𝑁𝑖(max(𝑚̄𝑔𝑙
𝑖𝑗))

(4.11)

here the first summand is the fraction of the lifetime used up to the formation
of a crack in the neighboring grain. With equation (4.11), it follows that
the new crack initiation time for the infected grains is given by

𝑁̄ 𝑔𝑙
𝑖 =

(︃
1 − 𝑁 𝑔𝑘

𝑖

𝑁 𝑔𝑙
𝑖

)︃
𝑁𝑖(max(𝑚̄𝑔𝑙

𝑖𝑗)) + 𝑁 𝑔𝑘
𝑖 . (4.12)

4.3 Uniaxial Infection Function

To quantify the change in shear stress that a crack induces in an adjacent
grain, we apply FEM simulations. In these simulations we model two
adjacent grains with orientations ℰ𝑙, ℰ𝑟 parametrized by Euler angles. For
each pair of orientations we run two simulations one where both grains are
intact and another where the left grain is cracked.
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Figure 4.5: Geometry for the infection model with cracked left grain.

4.3.1 Geometry and Boundary Conditions

The geometry in the simulations is a cuboid with edge lengths of 𝑑𝑥 = 𝑑𝑧 =
10 𝑐𝑚 and 𝑑𝑦 = 5 𝑐𝑚. The grain boundary is perpendicular to the 𝑥-axis in
the middle of the cuboid. For the cracked geometry (Figure 4.5) we use a
spheroid crack. The direction of the crack depends on the orientation of the
grain. We assume that the slip system with the highest Schmid factor is
cracked. So the direction is the projection of the slip system direction in the
𝑥 − 𝑧-plane. A detailed illustration of the crack is shown in Figure 4.6. The
minimal distance from the crack to the grain boundary is 𝑑𝑐 = 0.15 𝑚𝑚.
We choose a crack height of 𝑐ℎ = 0.15 𝑚𝑚 and 𝑐𝑙 = 1.5 𝑚𝑚 for the length
of the crack.
As boundary condition we apply an uniaxial stress 𝜎𝑧 in 𝑧-direction

𝜎𝑧 =

⎛⎜⎜⎜⎝
0 0 0
0 0 0
0 0 1

⎞⎟⎟⎟⎠ . (4.13)

The geometry is discretized using quadratic tetrahedral elements. Shear
stress within the right grain is evaluated within a small volume 𝐵 ⊂ Ω.
To achieve this, we intersect the right grain with a spherical shape. The
sphere’s center corresponds to the point along the grain boundary nearest
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(a) Top view of the crack and
the grain boundary.

(b) Cross section of the crack.

Figure 4.6: Geometry of the spheroid crack

to the crack, as illustrated in Figure 4.7. We then take the average shear
stress in the resulting quarter sphere 𝐵

𝜏𝑖𝑗 = 1
|𝐵|

∫︁
𝐵

𝜏𝑖𝑗𝑑𝑥. (4.14)

With the finite element discretization, the average shear stress is approxi-
mated via

𝜏𝑖𝑗 ≈
∑︁

𝐾∈𝒯ℎ

𝑊𝐾

𝑞𝐾∑︁
𝑙=1

𝜔̂𝐾
𝑙 𝜏𝑖𝑗(𝑇𝐾(𝑥̂𝑙)) det 𝑇𝐾(𝑥̂), (4.15)

where 𝑊𝑘 is the fraction of the volume of element 𝐾 that lies within the
quarter sphere.

4.3.2 Numerical Results

The simulation toolchain follows this sequence: the programming language
R [58] is employed for both pre-processing and post-processing stages. During
pre-processing, the tasks involve rotating the stiffness sensors, constructing
the geometry, and evaluating the volume fractions denoted as 𝑊𝑘. For the
volume fractions the python package overlap [66] is used, embedded into R
with the R-library reticulate [70]. Then the FE mesh is generated with
Gmsh [25]. The solver for the FEM simulations is CalculiX.

The mesh of the fractured geometry is composed of around 210,000 nodes
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Figure 4.7: Evaluation volume.

and 130,000 elements. Conversely, the geometry without a crack utilizes
approximately 24,000 elements and 38,000 nodes. This leads computing time
of around 12 minutes with the CPUs we are using. We run these simulations
on up to 6 machines in parallel, with up to 50 CPUs on each machine.
CalculiX has here the advantage that it is published under GNU GPL al-
lowing us to run as many simulations in parallel as our hardware can support.

In Figure 4.8, the shear stress in the right grain for an angle pair ℰ𝑙, ℰ𝑟 in
one slip system (𝜏13) is shown. The red semicircle illustrates the evaluation
volume 𝐵. In both cases, the shear stress diminishes as the distance from
the grain boundary increases. But in the case of the cracked geometry
(Figure 4.8b) an overall higher shear stress is observed.

Now we want to investigate how the orientations of the two grains influence
the shear stress within the right grain. To achieve this, we keep one of the
grain orientations fixed while altering the orientation of the other grain.
In simulations involving a fixed left grain, we opt for ℰ𝑙 = (3.098, 1.686, 3.038)
and a range of orientations for the right grain, with 𝜙𝑟

1 ∈ [0.698, 1.744] and
𝜃𝑟 ∈ [0.702, 1.750], while keeping 𝜙𝑟

2 fixed at 4.196. For the scenario of
a fixed left grain, the orientation of the right grain is held constant as
ℰ𝑟 = (1.221, 1.226, 4.196), and the orientations of the left grain are in the
range of 𝜙𝑙

1 ∈ [2.575, 3.622] and 𝜃𝑙 ∈ [1.162, 2.021], with fixed 𝜙𝑙
2 = 3.038.
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(a) Left grain is intact. (b) Cracked left grain.

Figure 4.8: Shear stress in one slip system of the right grain. The
grain boundary is at the left edge.

In both cases we use a grid of 100 · 100 orientations.
For the simulations with fixed orientation of the left grain, the course of
the maximum shear stress is shown in Figure 4.9. The existence of a crack
within the left grain leads to an amplified maximum shear stress within the
slip systems of the right grain (Figure 4.9b). However, the variation of the
shear stresses changes only insignificantly due to the crack. It’s noteworthy
that the points where the graph’s slope changes abruptly correspond to
the regions where the slip system exhibiting the highest shear stress also
changes.
Accordingly, the ratio of shear stress with crack and without crack

𝑞𝜏 =
max(𝜏𝑊 𝐶

𝑖𝑗 )
max(𝜏𝑁𝐶

𝑖𝑗 ) (4.16)

is almost constant in large areas, as we can see in Figure 4.11a. Only at the
points where the maximum loaded slip system changes, the ratio changes
as well.
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(a) Left grain is intact. (b) Cracked left grain.

Figure 4.9: Maximum shear stress in right grain over orientation of
the right grain.

(a) Left grain is intact. (b) Cracked left grain.

Figure 4.10: Maximum shear stress in right grain over orientation of
the left grain.
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(a) Fix left grain. (b) Fix right grain.

Figure 4.11: Ratio between maximum shear stress in right grain with
a cracked left grain and with intact left grain.

The simulations with a fixed right grain (Figure 4.10) show a different
behavior. In cases where the left grain remains intact, modifying the
orientation of the left grain leads to a gradual change in stress within
the right grain. This change is smooth and results in a continuous shift
in the maximum shear stress within the right grain, as one can see in
Figure 4.10a. On the other hand, if the left grain is cracked, a rotation of
the left grain leads to a variation of the crack direction. The crack direction
has a significant impact on the stress field in the right grain. Especially
when the rotation induces a shift in the maximum loaded slip system within
the left grain, the direction of the crack undergoes an abrupt change. This
results in discontinuity of the maximum shear stress in the right grain
(Figure 4.10b). Consequently, these discontinuities can also be seen in the
ratio 𝑞𝜏 (Figure 4.11b). Furthermore, it is noticeable that for a change in
the orientation of the left grain in the quotient from the maximum shear
stresses, the constant areas are no longer present.

4.3.3 Gradient Boosting Trees

Given the substantial time and computational resources that FEM sim-
ulations demand, their direct integration into the percolation model is
impractical. Instead, we use a machine learning-based surrogate model as a
viable alternative.

The model that we choose for the regression is a so-called gradient boosting
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tree. Here we give a brief introduction to this method following [38, 41].
Gradient boosting builds upon decision trees. For simplicity, we consider
𝒳 = 𝑋1 × · · · × 𝑋𝑑 = [0, 1]𝑑 as the 𝑑-dimensional input pace and 𝑌 ∈ 𝒴 =
[0, 1] as the target value to predict. In tree-based regression, the input space
is partitioned into 𝐽 mutually disjoint sets 𝑅𝑗 ⊆ 𝒳 , 𝑗 = 1, . . . , 𝐽 . Each of
the sets is associated with a constant value 𝛾𝑚. The regression function is
then given by

𝑓(𝑥) =
𝐽∑︁

𝑗=1
𝛾𝑚𝐼𝑅𝑗

(𝑥), (4.17)

where 𝐼𝑅𝑗
is the indicator function on 𝑅𝑗. The model can be represented

by a tree tree as shown for 𝑑 = 2 in Figure 4.12a. 𝑓 is a 𝑑-dimensional step
function (Figure 4.12b). Let now Θ = {(𝑅𝑗, 𝛾𝑗) : 𝑗 ∈ 1, . . . , 𝐽} for a fix
𝐽 ∈ N, then we can write the regression function as

𝑇 (𝑥; Θ) =
𝐽∑︁

𝑗=1
𝛾𝑗𝐼𝑅𝑗

(𝑥). (4.18)

The aim is here to minimize the loss function 𝐿(𝑦𝑖, 𝑇 (𝑥𝑖; Θ)) which takes the
true value and the prediction as an input. A commonly used loss function
for a regression task is the quadratic error

𝐿(𝑦𝑖, 𝑓(𝑥𝑖)) = 1
2
(︁
𝑦𝑖 − 𝑓(𝑥1)

)︁2
. (4.19)

Therefore, the minimization is given by

Θ̂ = arg min
Θ

𝐽∑︁
𝑗=1

∑︁
𝑥𝑖∈𝑅𝑗

𝐿(𝑦𝑖, 𝛾𝑗). (4.20)

It is easy to see that, with the quadratic error as loss function and for given
partition 𝑅1, . . . , 𝑅𝐽 , finding the 𝛾𝑗 that minimize (4.20) is trivial. The
solutions are just the average values of 𝑦𝑖 in each set 𝑅𝑗:

𝛾𝑗 = 1
#({𝑥𝑖 : 𝑥𝑖 ∈ 𝑅𝑗})

∑︁
𝑥𝑖∈𝑅𝑗

𝑦𝑖, (4.21)

where #(𝐴) is the number of elements in A. The harder task is to find the
partition. The computational effort to find the optimal partition is infeasible.
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(a) Decision tree for a two-
dimensional input space 𝒳 =
[0, 1]2.

(b) Regression function for a
two-dimensional input space
𝒳 = [0, 1]2.

Figure 4.12: Tree based regression.

So we need a simple procedure that leads to an acceptable partition. A
possible approach is the following algorithm. We start with the whole input
space 𝒳 and find the hyperplane that splits the 𝒳 into two regions

𝑅1(𝑗, 𝑠) = {𝑋 : 𝑋𝑗 ≤ 𝑠} and 𝑅2(𝑗, 𝑠) = {𝑋 : 𝑋𝑗 > 𝑠}, (4.22)

such that it minimizes

min
𝑗,𝑠

⎡⎣min
𝑐1

∑︁
𝑥𝑖∈𝑅1(𝑗,𝑠)

(𝑦𝑖 − 𝑐1)2 + min
𝑐2

∑︁
𝑥𝑖∈𝑅2(𝑗,𝑠)

(𝑦𝑖 − 𝑐2)2

⎤⎦ . (4.23)

Both of the inner minimization problems are resolved using Equation (4.21).
The resultant regions are then subdivided using the same approach until we
reach a maximal tree size 𝐽 . The maximal tree size is a tuning parameter,
if 𝐽 is chosen to large the model tends to overfit but on the other hand a
too small value can result in a model that is not capable of capturing the
complexity in the data.

Boosting trees contain of 𝑀 regression trees, the output is the sum over all
trees

𝑓𝑀(𝑥) =
𝑀∑︁

𝑚=1
𝑇 (𝑥; Θ𝑚). (4.24)
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4.3 Uniaxial Infection Function

For a boosting tree for each stage the minimization task (4.20) has to be
solved, which leads to

Θ̂𝑚 = arg min
𝑁∑︁

𝑖=1
𝐿(𝑦𝑖, 𝑓𝑚−1(𝑥𝑖) + 𝑇 (𝑥𝑖; Θ𝑚)), (4.25)

where 𝑓𝑚−1(𝑥) is the output of the previous stage and Θ𝑚 = {(𝑅𝑗𝑚 , 𝛾𝑗𝑚) :
𝑗𝑚 ∈ 1, . . . , 𝐽𝑚}. Finding the 𝛾𝑗𝑚 is again straight forward

𝛾𝑗𝑚 = arg min
∑︁

𝑥𝑖∈𝑅𝑗𝑚

𝐿(𝑦𝑖, 𝑓𝑚−1(𝑥𝑖) + 𝛾𝑗𝑚), (4.26)

therefore 𝛾𝑗𝑚 is the mean of the residuals 𝑦𝑖 −𝑓𝑚−1(𝑥𝑖) in each corresponding
region 𝑅𝑗𝑚 .

We here use the Gradient Boosting for building the regression trees. For
this method, we use the gradient of the loss function g𝑚 with components

𝑔𝑖𝑚 =
[︃

𝜕𝐿(𝑦𝑖, 𝑓(𝑥𝑖))
𝜕𝑓(𝑥𝑖)

]︃
𝑓(𝑥𝑖)=𝑓𝑚−1(𝑥𝑖)

(4.27)

to generate the tree of stage 𝑚. In the case of the quadratic error (4.19),
the gradient is given by

𝑔𝑖𝑚 = 𝑦𝑖 − 𝑓𝑚−1(𝑥𝑖). (4.28)

Rather than optimizing (4.25), for gradient boosting the tree 𝑇 (𝑥; Θ𝑚) is
fitted to the negative gradient by least squares

Θ̃𝑚 = arg min
Θ

𝑁∑︁
𝑖=1

(−𝑔𝑖𝑚 − 𝑇 (𝑥𝑖; Θ))2 . (4.29)

For least square decision trees, fast algorithms exist to compute the 𝑅̃𝑗𝑚.
These regions approximate the regions 𝑅𝑗𝑚 that solve (4.25). The corre-
sponding constants for each region are then given by (4.26).
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R2 = 0.9862
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Figure 4.13: Prediction of the surrogate model over the results from
the FEM simulations.

4.3.4 The Surrogate Model

As a dataset for the Surrogate Model that predicts the shear stress in
the slip systems with a cracked adjacent grain 𝜏𝑊 𝐶

𝑖𝑗 , we use 25000 FEM
simulations. These simulations were performed with random orientations
for both grains, sampled according to the Haar measure on 𝑆𝑂(3). We use
a gradient boosting tree, which takes the orientations of both grains and
the shears stress in the slip system without the crack in the adjacent grain
as an input. For each slip system we train a separate model, so there are 12
models in total

𝜏𝑊 𝐶
𝑖𝑗 = 𝑓𝑖𝑗(𝜏𝑁𝐶

𝑖𝑗 , ℰ𝑙, ℰ𝑟) (4.30)

For the implementation we use the R library gbm [34]. We split the dataset
into a train and a test set.

The train set is used to build the model. In contrast, the test set exclusively
consists of data points that the model has never encountered before. This
setup enables us to assess both the performance and the generalization
capability of the gradient boosting regression. For the evaluation we use
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4.4 Failure Criteria

the 𝑅-squared value

𝑅2 = 1 −
∑︀𝑁𝑡

𝑖=1 (𝑦𝑖 − 𝑓𝑖)2∑︀𝑁𝑡
𝑖=1 (𝑦𝑖 − 𝑦)2 , (4.31)

here 𝑦𝑖 is the true value, 𝑓𝑖 the prediction of the model and 𝑦 the mean of
the true values in the test set.

The predictions of the model for one slip system are shown in Figure 4.13.
The x-axis of the plot represents the shear stress values obtained from the
FEM simulations, while the y-axis corresponds to the predictions made by
the surrogate model.

The model’s predictions closely match the results from the FEM simulations,
as evidenced by a high R-squared value, approaching 0.986. This strong fit
is consistent across all twelve models, with R-squared values consistently
falling between 0.98 and 0.99.

4.4 Failure Criteria

The percolation simulations are evaluated with a failure criterion, which
is based on the stress intensity factor introduced in Section 2.6.1. For this
purpose we need to define the resulting total cracks that can lead to failure
of the whole surface. These total cracks extend over multiple grains.

In this context, our initial focus is on crack clusters. A crack cluster
𝐶𝑖 includes all the grains that are cracked and connected to each other
through shared grain boundaries as shown in Figure 4.14a. Subsequently, we
evaluate each potential total crack within this cluster. A total crack, in this
context, is represented by the connecting vector formed by the Voronoi seeds
originating from the grains within the cluster, as shown in Figure 4.14b.

The crack direction 𝑡𝑐, the crack normal 𝑛𝑐 and the crack length 𝑙𝑐 for such
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(a) Crack cluster in the perco-
lation, the cracked grains are
colored red. The cluster is
marked with the doted line.

(b) All resulting total cracks
in the cluster.

Figure 4.14: Crack clusters for the failure criteria

a resulting crack between two grains 𝑔1, 𝑔2 ∈ 𝐶𝑖 are given by

𝑙𝑐 =
√︁

(𝑥𝑔1 − 𝑥𝑔2)2 + (𝑧𝑔1 − 𝑧𝑔2)2, (4.32)

𝑡𝑐 = 1
𝑙

⎛⎜⎜⎜⎝
𝑥𝑔1 − 𝑥𝑔2

0
𝑧𝑔1 − 𝑧𝑔2

⎞⎟⎟⎟⎠ , 𝑛𝑐 = 1
𝑙

⎛⎜⎜⎜⎝
𝑧𝑔1 − 𝑧𝑔2

0
𝑥𝑔2 − 𝑥𝑔1

⎞⎟⎟⎟⎠ . (4.33)

With the global isotropic stress 𝜎𝑖𝑠𝑜 and equation (2.64) the 𝐾-factors for
the crack are

𝐾𝐼 = 𝑛𝑇
𝑐 · 𝜎𝑖𝑠𝑜 · 𝑛𝑐

√︃
𝜋 · 𝑙𝑐

2 (4.34)

𝐾𝐼𝐼 = 𝑡𝑇
𝑐 · 𝜎𝑖𝑠𝑜 · 𝑛𝑐

√︃
𝜋 · 𝑙𝑐

2 . (4.35)

For the equivalent stress intensity factor, we use equation (2.66)

𝐾𝑒𝑞 =
√︁

𝐾2
𝐼 + 𝐾2

𝐼𝐼 . (4.36)

For a cluster we calculate the failure criteria as the maximum over all
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Figure 4.15: Experimental LCF failure times of RENE80 and fitted
Coffin Manson Basquin equation.

possible cracks in the cluster

𝐾𝑒𝑞(𝐶𝑖) = max
𝑔𝑗 ,𝑔𝑘∈𝐶𝑖

√︁
𝐾2

𝐼 + 𝐾2
𝐼𝐼 . (4.37)

This leads to an equivalent 𝐾-factor for the whole surface given by

𝐾̄𝑒𝑞 = max
𝑖

𝐾𝑒𝑞(𝐶𝑖). (4.38)

4.5 Results and Experimental Validation

The simulation process proceeds as follows: We begin by determining the
initial failure times for a given strain amplitude. Then we initiate the
cracking of the first grain. Next we calculate the updated Schmid factors
and new failure times in the neighboring grains with the infection function.
This iterative process is repeated, with the failure criterion being assessed
after each grain has cracked.

89



4 Epidemiological Percolation Model Uniaxial Stress

(a) Without infection, 32
grains are cracked.

(b) With infection function,
13 grains are cracked.

Figure 4.16: Comparison of the percolation model wit and without
infection function. Both surface with same grain orientations and same
𝐾crit.

For the validation of the percolation model we use experimental LCF data
with RENE80 described in Section 2.7.

For the simulations we use prefitted parameters for the Coffin Manson
Basquin equation as shown in Figure 4.15. For a comparison we run the
simulations with and without the infection function.

The impact of the infection on the final crack clusters in the percolation
model is significant. In Figure 4.16 the cracked grains in the simulation are
shown for both cases. Here the input parameters and the failure criterion are
the same. In the model without infection (Figure 4.16a) the crack initiation
times of the grains are independent. Hence, a large amount of grains needs
to crack to form big clusters. Here, in total 50 grains are cracked to meet
the failure criterion. On the other hand, in the simulation with infection
(Figure 4.16b), a cracked grain in almost all cases increases the Schmid
factors of the adjacent grains. Therefore, the cracked grains tend to form
clusters, which overall leads to a reduced amount of grains, that has to
crack, to form a large enough cluster that reaches 𝐾crit.
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4.5.1 Fitting the Models

We now use the parameters from the experimental test as an input for the
percolation model. The surface size is equal to the gauge area of the tests.
We assume that the number of grains is Poisson distributed with 𝜆 = 198.
For each strain amplitude we run 2500 Monte Carlo simulations. We use
two parameters to fit the simulational results to the experiments. The first
one is shift 𝑠CMB of the Coffin Manson Basquin equation

CMB′(𝜀) = CMB(𝜀) · 𝑠CMB. (4.39)

This parameter just shifts the position of the probability of failure (PoF).
The other parameter that is used for fitting is the failure criteria 𝐾crit.
Which is the stress intensity at the tip of the crack that needs to be reached
until we consider material failure. The value 𝐾crit significantly influences
the dispersion of the PoF, as illustrated in Figure 4.17. Higher values of
the critical 𝐾-factor result in a broader distribution of failure times.
One of the advantages of this fitting approach for the PoF is its offline
capability. Simulations are run once for all the strain inputs until all grains
have cracked. We store the number of cycles and the equivalent 𝐾-facors
every time 𝐾𝑒𝑞 increases. Subsequently, the parameters are fitted to the
obtained results.
For a specific simulation indexed as 𝑗 with a constant critical factor 𝐾crit,
the count of LCF cycles required until failure, denoted as 𝑁 𝑗

𝑖 (𝐾crit), is
determined by identifying the earliest cycle where for the equivalent stress
intensity factor 𝐾𝑒𝑞 ≥ 𝐾crit holds. The failure time for the set of parameters
𝜃 = {𝐾crit, 𝑠CMB} ∈ Θ is then given by

𝑁 𝑗
𝑖 (𝜃) = exp

(︁
log

(︁
𝑁 𝑗

𝑖 (𝐾crit)
)︁

+ 𝑠CMB
)︁

. (4.40)

For each strain level we use a kernel density estimation (KDE) to gain
smooth densities 𝑓(𝑁𝑖|𝜀𝑎, 𝜃) of the PoF. We use the KDE implementation
in the R base package.
Let 𝑛𝑖,𝑘 denote the number of LCF cycles observed in the 𝑘-th experiment
conducted at a strain amplitude of 𝜀𝑎,𝑘. Our objective is to maximize the
density values provided by 𝑓 for the data points. To achieve this, we opt
for the Maximum Likelihood Estimation (MLE) method. The Likelihood
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Figure 4.17: Density of the probability of Failure for 𝜀𝑎 = 0.6% with
different Failure criteria 𝐾crit.

function is given by

ℒ(𝜃) = ℒ(𝑛𝑖,1, . . . , 𝑛𝑖,𝑙|𝜃) = 𝑓(𝑛𝑖,1|𝜀𝑎,1, 𝜃) · · · · · 𝑓(𝑛𝑖,𝑙|𝜀𝑎,𝑙, 𝜃). (4.41)

Hence, we gain for the log-Likelihood

log ℒ(𝜃) =
𝑙∑︁

𝑖=1
log 𝑓(𝑛𝑖,𝑘|𝜀𝑖,𝑘, 𝜃). (4.42)

Therefore, we have as an optimization problem

𝜃 = arg min
𝜃∈Θ

− log ℒ(𝜃). (4.43)

We solve this problem numerically with the Nelder-Mead algorithm which
is implemented in the R-library nloptr [42].

4.5.2 Results

The fitted densities we gain from both models are shown in Figure 4.18.
We can see that both models, with and without infection, predict statistical
scatter bands that are within the expected order of magnitude. However, the
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Figure 4.18: Density of the probability of Failure for the different
strain amplitudes in a log-log plot. The model without the infection
function in green, the one with infection in yellow. The CMB equation
in black. The red points are the experimental data points.

infection-free model tends to produce predictions that are overly dispersed,
whereas this dispersion is appropriately captured by the model that includes
infection. Nevertheless, at a strain amplitude of 0.6%, there appears to be
a rightward shift in the average compared to the infection model, although
the dispersion is realistically modeled. This discrepancy may be attributed
to batch variations in specimen production or experimental fluctuations in
laboratory conditions, potentially serving as a secondary source of scatter.
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5. Microstructual Models

5.1 Grain Orientations

When casting metal, the surface temperature decreases faster than the
internal temperature during solidification of the material. This temperature
gradient leads to a directional grain growth, therefore the orientation of
the grains differ from the isotropic distribution. The grain orientations
on the surface can be measured with an electron backscatter diffraction
(EBSD)-based microscopy. As an example the longitudinal section of such
an EBSD measurement is shown in Figure 5.1. The measurements are time
and cost expensive, so the dataset of orientations is limited. In this section
we use machine learning methods to gain the probability density for the
distribution of the orientations.

But first we give a brief introduction to the basic concepts of neural net-
works [38].

5.1.1 Feed Forward Neural Networks

Neural networks are a commonly used method for regression or classification
tasks.

Assume we have data from the input space 𝒳 = 𝑋1 × · · · × 𝑋𝐷 and target
values from the output space 𝒴 = 𝑌1 × · · · × 𝑌𝐸. A neural network consists
of 𝑛 layers: an input layer 𝐿1, an output layer 𝐿𝑛, and 𝑛 − 2 hidden layers
in between. Each layer 𝐿𝑖 contains 𝑀𝑖 neurons, where 𝑀1 = 𝑑 for the
input layer and 𝑀𝑛 = 𝑒 for the output layer. The connections between two
consecutive layers 𝐿𝑖 and 𝐿𝑖−1 are given by a weight matrix 𝛼𝑖 ∈ R𝑀𝑖×𝑀𝑖−1 .

Now, suppose we have an input 𝑋 from the input space 𝒳 . This input is
processed by the neural network as follows:

94



5.1 Grain Orientations

(a) Raw EBSD measurements. (b) EBSD measurements after
postprocessing.

Figure 5.1: Longitudinal section of a cylindrical specimen with EBSD
measurement. The orientations are color coded with an inverse pole
figure. Reprinted with permission of the RPTU Kaiserslautern-Landau.

𝑍1 = 𝑋

𝑍𝑖
𝑚 = 𝜎𝑖(𝛼𝑖

0𝑚 + (𝛼𝑖
𝑚)𝑇 𝑍𝑖−1), 𝑚 = 1, . . . , 𝑀𝑖, 𝑖 = 2, . . . , 𝑛 − 1

𝑓𝑒(𝑋) = 𝑍𝑛
𝑒 , 𝑒 = 1, . . . , 𝐸

(5.1)

in this context, 𝜎𝑖 represents an activation function rather than a stress
tensor. We use this notation to maintain consistency with the established
literature. Common choices for the activation function include the sigmoid
function 𝜎𝑖(𝜈) = 1/(1 + exp(𝜈)) for hidden layers, except for the output
layer. For regression tasks, the identity function is often used in the output
layer, while for classification tasks, the softmax function is a common choice.
The structure of the neural network, i.e. the number of hidden layers, the
number of neurons and the choice of activation functions is referred to as
the architecture of the network.
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Figure 5.2: Neural network with one hidden layer. The circles are the
neurons and the connecting lines represent the weights.

During the training process of a neural network, weights that connect the
neurons are updated. The architecture remains the same. For the sake of
simplicity we use for the description of the training process an architecture
with just one hidden layer containing 𝑀2 hidden neurons as illustrated in
Figure 5.2.
In this case we have

𝜃 =(𝛼1
0𝑚, 𝛼1

𝑚, 𝛼2
0𝑒, 𝛼2

𝑒) (5.2)

as the 𝑀2 · (𝐷 + 1) + 𝐸 · (𝑀2 + 1) trainable weights connecting these
layers. These weights are usually initialized with random values. Let no
𝑥1, . . . , 𝑥𝑁 ∈ 𝒳 be the training inputs with associated targets 𝑦1, . . . 𝑦𝑁 ∈ 𝒴 .
With the output of the network and the targets we can evaluate a loss
function. For regression task the sum of squared errors given by

𝑅(𝜃) =
𝐸∑︁

𝑒=1

𝑁∑︁
𝑗=1

(𝑦𝑗𝑒 − 𝑓𝑒(𝑥𝑗))2 (5.3)

is a comment loss function. Whereas for classification the cross entropy

𝑅(𝜃) =
𝐸∑︁

𝑒=1

𝑁∑︁
𝑗=1

𝑦𝑗𝑒 log 𝑓𝑒(𝑥𝑗) (5.4)

is often used. For the loss functions the derivatives 𝜕𝑅/𝜕𝛼1
𝑚𝑙 and 𝜕𝑅/𝜕𝛼2

𝑙𝑒
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Figure 5.3: Grain orientations from the EBSD-measurements

with respect to weights can be calculated.

The training of the network is an iterative process. The weights are updated
in the train step (𝑟 + 1) as follows:

(𝛼2
𝑙𝑒)(𝑟+1) = (𝛼2

𝑙𝑒)(𝑟) − 𝛾𝑟

𝑁∑︁
𝑖=1

𝜕𝑅𝑖

𝜕(𝛼2
𝑙𝑒)(𝑟)

(𝛼1
𝑚𝑙)(𝑟+1) = (𝛼1

𝑚𝑙)(𝑟) − 𝛾𝑟

𝑁∑︁
𝑖=1

𝜕𝑅𝑖

𝜕(𝛼1
𝑚𝑙)(𝑟) ,

(5.5)

where 𝛾𝑟 is the learning rate.

In the training process, the objective is not to identify the parameters
that yield the absolute global minimum of the loss function on the training
dataset. Instead, we aim for a trade-off between a low loss on the training set
and the avoidance of overfitting the network, ensuring that it can generalize
effectively when confronted with unfamiliar data.
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5.1.2 Density Estimation as Supervised Function Approximation

Our objective is to estimate the grain orientation density using the data
obtained from EBSD measurements, but as previously mentioned, our
dataset is limited. The 38 measurements of the Euler angles are shown in
Figure 5.3. We assume that these measurements, denoted as 𝑥1, . . . , 𝑥𝑁 , are
independent and identically distributed random samples drawn from the
unknown probability density 𝑔(𝑥).

We address the limited amount of measurements with synthetic minority
oversampling technique (SMOTE) [11]. SMOTE is a simple algorithm that
generates additional synthetic data from a given dataset. For each data
point 𝑥𝑖 the 𝑘 nearest neighbors 𝑥𝑖1 , . . . , 𝑥𝑖𝑘

in the dataset are estimated.
Then 𝑛 of these nearest neighbors are chosen randomly. The new artificial
data points are then given by

𝑥̂𝑖𝑗
= 𝑥𝑖 + 𝑟 · (𝑥𝑖𝑗

− 𝑥𝑖), (5.6)

where 𝑟 is sampled from the uniform distribution on [0, 1]. We use the
implementation of SMOTE, that is provided in R-library smotefamily [65].
In addition, we use the symmetries of the FCC crystal lattice which leads
to 𝑁̄ = 38 · 12 · 𝑛 data points. The dataset with symmetries and the
synthetic points is show in Figure 5.4.

To tackle this density estimation challenge, we reframe it as a classification
problem [38]. To this end we sample the same amount of additional values
𝑥𝑁̄+1, . . . , 𝑥2𝑁̄ from the uniform distribution on [0, 2𝜋]× [0, 𝜋]× [0, 2𝜋] ⊂ R3.
Each data point is associated with a label 𝑌 ∈ {0, 1} such that,

𝑌𝑖 =
⎧⎨⎩1 if 𝑖 = 1, . . . , 𝑁̄

0 if 𝑖 = 𝑁 + 1, . . . , 2𝑁̄ .
(5.7)

With this dataset we train a neural network that predicts whether the input
𝑥 is from the extended set of the measurements with density 𝑔(𝑥) or from
the uniform distribution with density 𝑔0(𝑋). For the neural network we use
the R-library keras [1].
The neural network trained with the samples (𝑥1, 𝑦1), . . . , (𝑥𝑁̄ , 𝑦𝑁̄),
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5.1 Grain Orientations

Figure 5.4: Dataset with SMOTE and symmetries.

(𝑥𝑁̄+1, 𝑦𝑁̄+1), . . . , (𝑥2𝑁̄ , 𝑦2𝑁̄) approximates the probability of a sample be-
longing to the extended set of measurements

𝜇(𝑥) = E(𝑌 |𝑥) = 𝑔(𝑥)
𝑔(𝑥) + 𝑔0(𝑥) . (5.8)

Let now 𝜇̂ be the approximation for 𝜇, with equation (5.8) we obtain for
the estimated of 𝑔:

𝜇̂(𝑥) = 𝑔(𝑥)
𝑔(𝑥) + 𝑔0(𝑥) (5.9)

⇔𝜇(𝑥)(𝑔(𝑥) + 𝑔0(𝑥)) = 𝑔(𝑥) (5.10)
⇔𝑔(𝑥)(1 − 𝜇̂(𝑥)) = ^𝜇(𝑥)𝑔0(𝑥) (5.11)

⇔𝑔(𝑥) = 𝜇̂(𝑥) 𝑔0(𝑥)
1 − 𝜇̂(𝑥) . (5.12)

5.1.3 Sampling new Angles

We now want to sample angles from the distribution with the approximated
density 𝑔. To this end, we use the Metropolis Hastings algorithm [39, 59].
For this Markov chain based algorithm we use a conditional density 𝑞(𝑦|𝑥)
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5 Microstructual Models

Figure 5.5: Sampled angles from 𝑔 in yellow, the dataset with symme-
tries and SMOTE as a reference in green.

called the proposal kernel. For a given value 𝑋(𝑡) = 𝑥(𝑡) of the Markov chain
we then sample 𝑌𝑡 ∼ 𝑞(𝑦|𝑥(𝑡)). The next step of the Markov chain is given
by

𝑋(𝑡+1) =
⎧⎨⎩ 𝑌𝑡 with probability 𝜌(𝑥, 𝑦)

𝑥(𝑡) with probability 1 − 𝜌(𝑥, 𝑦),
(5.13)

where
𝜌(𝑥, 𝑦) = min

{︃
𝑔(𝑦)
𝑔(𝑥)

𝑞(𝑥|𝑦)
𝑞(𝑦|𝑥) , 1

}︃
. (5.14)

We select the proposal kernel 𝑞(𝑦|𝑥) for 𝑥 = (𝜙1, 𝜃, 𝜙2) to be a uniform
distribution within the ranges [𝜙1 − 0.5, 𝜙1 + 0.5] × [𝜃 − 0.5, 𝜃 + 0.5] ×
[𝜙2 − 0.5, 𝜙2 + 0.5]. Since the proposal kernel is symmetric, the acceptance
probability simplifies to:

𝜌(𝑥, 𝑦) = min
{︃

𝑔(𝑦)
𝑔(𝑥) , 1

}︃
. (5.15)

To initiate the process, we set 𝑥0 as a random orientation sampled from a
uniform distribution within the range [0, 2𝜋]×[0, 𝜋]×[0, 2𝜋]. During the burn-
in phase, we discard the first 𝑘 = 1000 samples. For testing the results, we
perform 105 iterations and obtain a sample of 1000 orientations 𝑥̂1, . . . , 𝑥̂1000
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5.2 Percolation with Grain Boundary

from the remaining 105 − 103 values. A subsample of 200 orientations is
displayed in Figure 5.5, alongside the dataset used for training. The sampled
orientations appear to align well with the training set.
We compare the average distance of the sampled orientations to the mea-
surements, with random orientation sampled according to the Haar measure.
The natural distance metric on 𝑆𝑂(3) is the Riemannian distance

𝑑𝑅(𝑈1, 𝑈2) = 1√
2

‖Log(𝑈𝑇
1 𝑈2)‖𝐹 = |𝑟|, (5.16)

where 𝑟 ∈ [−𝜋, 𝜋) is the misorientation angle and

Log(𝑈) =

⎧⎪⎨⎪⎩
0 if 𝜃 = 0

𝑟

2 sin 𝑎

(︁
𝑈 − 𝑈𝑇

)︁
else.

(5.17)

Here 𝑎 ∈ [−𝜋, 𝜋) satisfies tr(𝑈) = 1 + 2 cos 𝑎.
We utilize the 38 orientations from the EBSD measurements, incorporating
the 12 symmetries denoted as 𝑈1

1 , . . . , 𝑈1
38, . . . , 𝑈12

38 . For an orientation 𝑥𝑖

the minimal misorientation angle is then given by

𝑟𝑖 = min
𝑗=1,...38,𝑘=1,...,12

𝑑𝑅(𝑈(𝑥𝑖), 𝑈𝑘
𝑗 ). (5.18)

The orientations sampled from 𝑔 exhibit an average misorientation angle
of 0.26, in contrast to an average misorientation of 0.41 for orientations
sampled from the Haar measure.
We investigate the impact of this different distribution of orientations in
Section 6.5.

5.2 Percolation with Grain Boundary

In addition to intracrystalline crack initiation, which occurs due to intrusion
and extrusion caused by the slip systems of FCC crystals, we also observe
transcrystalline crack initiation and growth along the grain boundaries in
LCF, as discussed in [53].
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5 Microstructual Models

Our aim is to investigate the impact of these transcrystalline cracks on the
percolation model in this section. The implementation and results in this
section are a joint work with Emil Krieger and resulted in the bachelor
thesis “Percolation Models for Intergranular Crack Growth”.

5.2.1 Adjustments to the Percolation Model

For modeling crack initiation times at grain boundaries, we consider a
mixture of shear and normal stresses acting on these boundaries. Let 𝑑

denote the normalized direction and 𝑛 the normalized normal vector of the
grain boundary between adjacent grains 𝑔1 and 𝑔2. Utilizing the anisotropic
stress tensors 𝜎𝑔1 and 𝜎𝑔2 in both grains, as described in equation (4.3), we
calculate the mean normal stress 𝜎𝑏

𝑛 and the shear stress 𝜏 𝑏 at the grain
boundary as follows:

𝜎𝑏
𝑛 = 1

2
(︁
𝑛𝑇 𝜎𝑔1𝑛 + 𝑛𝑇 𝜎𝑔2𝑛

)︁
(5.19)

𝜏 𝑏 = 1
2
(︁
𝑛𝑇 𝜎𝑔1𝑑 + 𝑛𝑇 𝜎𝑔2𝑑

)︁
. (5.20)

In a first approach to model the failure times of the grain boundaries, we
simply utilize the shear stress at the grain boundary. Using the Ramberg-
Osgood equation and the Coffin-Manson-Basquin equation we obtain for
the failure times

𝑁 𝜏
𝑖 = CMB−1

(︁
RO(𝜏 𝑏)

)︁
. (5.21)

The shear stress at the grain boundary depends on the anisotropic stress in
the adjacent grains and the orientation of the boundary. For a high shear
stress both grains have to be orientated in such a way that the applied
strain leads to a high anisotropic stress. In addition, the angle between
boundary and the uniaxial load has to be around 45∘. Compared to the
Schmid factors, which only depend on the stiffness of a single grain and the
angle between load and one of the twelve slip systems, a high shear stress
at the boundary is rare.
Therefore, this modeling leads to the fact that the grain boundaries crack
late compared to the grains. The grain boundaries therefore have almost
no influence on the percolation model.
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5.2 Percolation with Grain Boundary

(a) Cracked grain boundary
extending a cluster of cracked
grains. One possible resulting
crack.

(b) Two cracked grains con-
nected by a cracked grain
boundary, forming a cluster.

Figure 5.6: Crack clusters with grain boundary.

In a second approach we combine the shear stress and the normal stress
into a single factor, we introduce this bound stress impact factor 𝜔𝑏 defined
as:

𝜔𝑏 =
√︁

(𝜎𝑏
𝑛)2 + (𝜏 𝑏)2. (5.22)

Next, using the Ramberg-Osgood and Coffin-Manson-Basquin equations,
we calculate the failure time for the grain boundary 𝑏 as:

𝑁𝜔
𝑖 = CMB−1

(︁
RO(𝜔𝑏)

)︁
. (5.23)

This combination of the stresses leads to early failure times of the grain
boundaries.
However, to incorporate these cracked grain boundaries into the percolation
model, we must also extend the failure criteria to determine how these
individual grain boundaries contribute to the overall failure of the material.

A crack cluster contains now all cracked grains, that are adjacent, and con-
nected grain boundaries which are cracked. We define two grain boundaries
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5 Microstructual Models

as connected if they share a common point. Similarly, a grain and a bound-
ary, denoted as 𝑏, are considered connected if any of the grain’s boundaries
and 𝑏 share a common point. Figure 5.6 illustrates the connection between
grain and grain boundary. For the calculation of the stress intensity factor
of crack that starts or ends on a grain boundary instead of the seed we
simply use the center of the grain boundary, as illustrated in Figure 5.6a.

5.2.2 Results

With the grain boundary crack initiation times and the failure criterion
that includes the boundaries, we can compare the percolation with grain
boundaries with the model that only accounts for the cracked grains. We
use the fitted model from Section 4.5 without the infection function for the
simulations with the three strain amplitudes 𝜀𝑎 ∈ {0.35%, 0.4%, 0.45%}.

As mentioned above, the crack initiation criterion for the grain boundaries
that only utilizes the shear stress (Equation (5.21)) results in a probabil-
ity density for the overall failure time that is indistinguishable from the
percolation model with pure intracrystalline crack initiation. Therefore, in
Figure 5.7 only the densities of the probability of failure for pure intracrys-
talline crack initiation and the densities obtained from the model which
additionally utilize 𝜔𝑏 are shown.

The left plot (Figure 5.7a) shows the probability densities with the fitted
𝐾crit from Section 4.5. Both models show a similar scatter band. Due to the
additional possible cracked boundaries the percolation with transcrystalline
crack initiation leads to an overall early failure.

If we reduce the critical stress intensity (Figure 5.7b), both models show
different behavior. As stated in the previous section, the scatter band of
the probability density of the model with pure intracrystalline crack growth
is reduced. The probability densities of the model which also accounts for
transcrystalline crack initiation shows a completely different behavior. For
the low strain amplitude (𝜀𝑎 = 0.35%) the probability density has a left tail
and a sharp peak at higher load cycles. The density for the middle strain
amplitude (𝜀𝑎 = 0.4%) is a bit higher for the low load cycles, therefore
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0.35%

0.4%

0.45%

Ni

ε a

Model
Cracked Bounds
No Cracked Bounds

(a) Simulations with 𝐾crit ≈
100.

0.35%

0.4%

0.45%

Ni

ε a

Model
Cracked Bounds
No Cracked Bounds

(b) Early stopped simulations,
𝐾crit = 50.

Figure 5.7: Density of the probability of failure for the model with
and without cracked grain boundaries. Logarithmic scaled axes.

the peak is not so sharp. Under the high strain amplitude (𝜀𝑎 = 0.45%),
the peak reduce further and the probability density for the low load cycles
increases.
The modeling approach for crack initiation times with 𝜔𝑏, leads to many
grain boundaries that crack way earlier than the grains. But for larger crack
clusters it is necessary that several grains are cracked, as the boundaries on
their own are not so likely to build clusters.
With the reduction of the critical stress intensity factor, the crack clusters
that lead to failure are smaller. Therefore, the possibility that just the
cracked grain boundaries form a cluster that is large enough to reach
the failure criterion increases. This explains the left tail of the densities.
Moreover, the peak in the densities align with the cycles at which the
probability density of the pure intracrystalline crack initiation becomes
larger than zero.
The stress intensity depends on the applied strain, therefore for the higher
strain amplitudes the clusters that reach the critical value are even smaller.
Hence, the left tail of the probability density is more noticeable and the
peak reduces.

Overall, both approaches for the transcrystalline crack initiation are not
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5 Microstructual Models

capable to model the crack initiation times for the boundaries correctly.
Investigations of the crack surface from test specimens show that under these
loading conditions transcrystalline and intracrystalline crack initiation occur.
With our modeling approaches, either transcrystalline or intracrystalline
crack initiation dominates.
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6. Multiaxial Percolation

In this section, we will broaden the scope of the epidemiological percolation
model introduced in Section 4 to accommodate multiaxial stress scenarios.
This extension is especially essential when applying the model to real-world
components, as these components experience a variety of stress states during
their operational use, not restricted to uniaxial stress alone. While the core
percolation model requires only minimal adjustments to accommodate this,
the development of a multiaxial infection function demands additional effort
and consideration.

6.1 Adjustments to the Percolation Model

The input for the percolation model is now the stress tensor 𝜎𝑖𝑠𝑜, rather
than the strain amplitude 𝜀𝑎. In the simulations we use the Hooks law to
calculate the strain amplitude from the von Mises equivalent stress

𝜀𝑎 = 𝜎𝑣𝑀

𝐸
. (6.1)

The stress range in the experiments is large compared to the experiments
that we used for the uniaxial model. This variation results in a considerable
spread in the stress intensity factor. Consequently, the failure criterion
would not be achieved for small strains, while for high strains, failure would
occur as soon as two adjacent grains crack. We overcome this problem by
normalizing the equivalent stress intensity factor with the von Mises stress

𝐾𝑒𝑞 = 1
𝜎𝑣𝑀

√︁
𝐾2

𝐼 + 𝐾2
𝐼𝐼 . (6.2)

This has the advantage that the failure criterion is purely geometric. Never-
theless, normalization has its drawback, since it removes the influence of
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6 Multiaxial Percolation

stress levels on the failure criterion. However, when compared to a simplistic
criterion that solely considers crack length, the 𝐾-factor based criterion
offers the advantage of considering both the orientation of the crack and
the multiaxiality of the stress state.

6.2 Multiaxial Infection Function

Using the simulations from Section 4.3 with random stress tensors as
boundary conditions for the multiaxial infection function is indeed feasible.
However, in addition to the 6 angles for the orientations, we now have 6
independent components of the stress tensor and an angle between the
surface and the grain boundary, this approach leads to a 13-dimensional
input space for the surrogate model. Consequently, a significantly larger
number of simulations has to be performed to achieve reasonably accurate
predictions of the shear stress within the infected grain. We overcome this
problem by using the linear nature of the elastic deformations.

6.2.1 Decomposition of the Stress

The objective here is to decompose the calculation of shear stress within the
slip systems into individual components that are dependent solely on single
parts of the stress tensor. As the stress tensor is symmetric, it consists only
of 6 independent entries. For the decomposition we introduce the following
notion for these parts:

1𝑥𝑥 :=

⎛⎜⎜⎜⎝
1 0 0
0 0 0
0 0 0

⎞⎟⎟⎟⎠ , 1𝑦𝑦 :=

⎛⎜⎜⎜⎝
0 0 0
0 1 0
0 0 0

⎞⎟⎟⎟⎠ , 1𝑧𝑧 :=

⎛⎜⎜⎜⎝
0 0 0
0 0 0
0 0 1

⎞⎟⎟⎟⎠ ,

1𝑥𝑦 :=

⎛⎜⎜⎜⎝
0 1 0
1 0 0
0 0 0

⎞⎟⎟⎟⎠ , 1𝑦𝑧 :=

⎛⎜⎜⎜⎝
0 0 0
0 0 1
0 1 0

⎞⎟⎟⎟⎠ , 1𝑧𝑥 :=

⎛⎜⎜⎜⎝
0 0 1
0 0 0
1 0 0

⎞⎟⎟⎟⎠ .

(6.3)

Let now be 𝐼𝜎 := {𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑥𝑦, 𝑦𝑧, 𝑧𝑥}, a given stress tensor can be
rewritten as
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6.2 Multiaxial Infection Function

(a) Misalignment of the grain
boundary and the 𝑦, 𝑧-plane.

(b) Cracked geometry for the
multiaxial infection with angle
between grain boundary and
𝑦-axis.

Figure 6.1: Misalignment of the grain boundary and actual geometry
for the FEM simulations (right).

𝜎 =

⎛⎜⎜⎜⎝
𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑧𝑥

𝜎𝑥𝑦 𝜎𝑦𝑦 𝜎𝑦𝑧

𝜎𝑧𝑦 𝜎𝑦𝑧 𝜎𝑧𝑧

⎞⎟⎟⎟⎠ =
∑︁

𝑘∈𝐼𝜎

𝜎𝑘1𝑘. (6.4)

We now use the decomposition to calculate the shear stress. So with
equation (2.50) we gain

𝜏𝑖𝑗 = 𝑛𝑖 · 𝜎 · 𝑡𝑖𝑗

= 𝑛𝑖 ·
⎛⎝∑︁

𝑘∈𝐼

𝜎𝑘1𝑘

⎞⎠ · 𝑡𝑖𝑗

=
∑︁
𝑘∈𝐼

(𝜎𝑘 𝑛𝑖 · 1𝑘 · 𝑡𝑖𝑗)

=
∑︁
𝑘∈𝐼

(︁
𝜎𝑘 𝜏 𝑘

𝑖𝑗

)︁
,

(6.5)

where 𝜏 𝑘
𝑖𝑗 = 𝑛𝑖 · 1𝑘 · 𝑡𝑖𝑗 is shear stress in the slip system induced by the

stress part 𝑘 ∈ 𝐼.

Rather than constructing a model that provides the complete shear stress
within the slip systems, we are now creating six distinct models, each
dedicated to one of the stress components.
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In addition to the linearity of the Schmid factors, the elasticity equation is
also linear, hence we can build the infection model from the decomposition.

6.2.2 Geometry

Due to the decomposition introduced in the previous section, the models
have become independent of the global stress state. However, since the
crack direction depends on the global stress, it is necessary to account for
all potential crack directions within the left grain. Instead of conducting
FEM simulations using just two geometries (one with a crack in the left
grain and one without), we are now employing seven distinct geometries for
each angle pair.

To simplify the process, we can reduce the initial 12 slip systems to six crack
directions. This simplification is possible because the crack is projected
onto the 𝑥, 𝑧-plane within the geometry, and in an FCC crystal, there are
six pairs of slip systems with distinct directions.

With the decomposition of the stress into these six components, we now
have a total of 42 FEM simulations for each angle pair.

It is noteworthy that in the simulations for the uniaxial model, the grain
boundary was consistently aligned with the 𝑦, 𝑧-plane. In real polycrystalline
materials, such alignment usually is not given. To account for this potential
misalignment, we introduce two angles, as illustrated in Figure 6.1a. The
angle between the 𝑦-axis and the grain boundary is denoted as 𝛼, while the
angle between the 𝑧-axis and the grain boundary is denoted as 𝛽.

We consider a random 𝛼 ∈ [−10∘, 10∘] in our simulations (see Figure 6.1b).
This range has been carefully chosen because higher values of 𝛼 could
potentially result in a grain boundary intersecting the crack.

We account for the potential misalignment between the boundary and the
𝑧-axis during the integration of the infection model into the percolation
simulation (in Section 6.2.5). Consequently, during the construction of the
geometries, we do not consider the angle 𝛽.
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Figure 6.2: Distribution of the surface Force (red) onto the nodes
(green) for a quadratic tetrahedral element.

6.2.3 Boundary Conditions

The input deck format employed by CalculiX is designed to directly handle
normal stresses, and it lacks built-in support for shear stresses. To address
this limitation, we devise a workaround by directly applying the resultant
force to the nodes rather than using surface stresses.
The stresses that we want to apply are the 6 stress tensors given in equa-
tion (6.3). We can determine the force required to be applied to a geometry’s
surface for a given stress tensor, by

𝐹𝑆 = |𝑆| · 𝜎 · 𝑛𝑆, (6.6)

here, 𝑛𝑆 represents the outward-pointing normal vector of the surface, and
|𝑆| denotes the surface area.
Now, let |𝐴𝐸| be the surface area of a surface element. The force to be
applied to this element can be determined as:

𝐹𝐴𝐸
= |𝐴𝐸|

|𝑆|
· 𝐹𝑆. (6.7)

This force is then distributed to the nodes, depending on the type of the
surface element [18]. For quadratic tetrahedral elements, as illustrated in
Figure 6.2, there is no force applied to the corner nodes. Instead, nodes
positioned in the middle of an edge receive 1

3 of 𝐹𝐴𝐸
.

Applying boundary conditions to the cracked surface is a challenging en-
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(a) Boundary conditions lead
to nonphysical behavior of the
stress.

(b) Physical correct simula-
tion.

Figure 6.3: Resulting von Mises stress for two different geometries,
applied stress is 1𝑦𝑧.

deavor. The forces applied to opposite surfaces have to be in an equilibrium.
Even the slightest deviations resulting from rounding or numerical approxi-
mations can lead to physical incorrect results of the simulation. The resulting
von Mises stress for a simulation with such a slight deviation in the boundary
conditions is shown in Figure 6.3a. The stress in the area around the crack
is unrealistically high and as we go further out, the stress diverges from node
to node. It is evident that these simulations are incorrect when compared to
simulations exhibiting physically plausible behavior, as demonstrated in Fig-
ure 6.3b. Both simulations utilize the stress tensor 1𝑦𝑧 and share the same
range of the von Mises stress displayed. In the simulation with correct be-
havior, the resulting von Mises stress exhibits a smooth and consistent slope.

The simulations that show the nonphysical behavior are easy to identify.
With a threshold level for the shear stress most of these simulations can
be identified. Furthermore, we check the deviation in stress components
between adjacent nodes, and if this deviation surpasses a certain threshold. If
either of these criteria are met, we choose to rerun the simulation, employing
an alternative random seed for the meshing process. With this remeshing
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(a) Shear stress induced by
1𝑧𝑥.

(b) Shear stress induced by
1𝑦𝑧.

Figure 6.4: FEM results for the shear stress in one slip system over
different orientations of the left grain. The orientation of the right grain
is fixed. With cracked left grain in opaque and with intact left grain
transparent. The cracked slip system is fixed.

process the structure of the mesh on the cracked surface changes. This can
lead to a smaller rounding error. In all calculations double precision is used,
but even the small rounding errors resulting from this precision have an
impact on the FEM simulations.
It is noteworthy that only a small fraction, approximately 0.5%, of the
simulations met the criteria for a rerun, and importantly, all the simulations
that underwent a rerun successfully passed the subsequent consistency check.

The evaluation of the FEM simulations in the same manner as in Section 4.3.2
shows that this rerun process reduces the noise in the results but only up
to a certain level. Here we choose a fixed orientation of the right grain with
𝜙𝑟

1 = 3.41, 𝜃𝑟 = 3.6 and 𝜙𝑟
2 = 0.94. For the left grain 𝜙𝑙

1 ∈ [4.27, 4.62], 𝜃𝑙 ∈
[0.86, 1.21] and 𝜙𝑙

2 = 6.05.
In Figure 6.4, the resulting shear stress in one slip system of the right grain
for two different stress tensors are shown. On the left (Figure 6.4a) 1𝑍𝑋 is
applied. Both shear stresses, the one with crack in the left grain (opaque)
and the one without (transparent) follow in a smooth graph. It shows
that the crack in the left grain not always results in an increase in shear
stress in the slip systems of the infected grain. The simulations, where the
boundary conditions are applied to the cracked surface, like in Figure 6.4b,
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6 Multiaxial Percolation

in comparison are slightly more noisy. Here the resulting shear stress for
1𝑌 𝑍 is shown. The simulations without cracked left grain result in a smooth
graph. But in the simulations with a crack, we can see that the rerun
process can not totally eliminate the noise. Nevertheless, the results overall
are accurate enough for building the infection model.

6.2.4 The Surrogate Models

With the stress decomposition we have to run six simulations per geometry,
and we now have seven geometries instead of two. So simulational effort for
one pair of angles increases compared to the uniaxial case with a factor of
36. Therefore, it is not feasible to run simulations for as many angle pairs
as for the uniaxial model.
To address this data limitation, we leverage the symmetric structure of the
FCC lattice. With the rotation matrices given in equations (3.78), (3.79) and
(3.80) the slips systems of a grain are mapped onto each other. Consequently,
for a given orientation ℰ and a given slip system 𝑛𝑖(𝑈(ℰ)), 𝑠𝑖𝑗(𝑈(ℰ)) rotation
matrices are denoted as 𝑈𝑖𝑗 such that,

𝑛1(𝑈(ℰ) · 𝑈𝑖𝑗) = 𝑛𝑖(𝑈(ℰ))
𝑠11(𝑈(ℰ) · 𝑈𝑖𝑗) = 𝑠𝑖𝑗(𝑈(ℰ)),

(6.8)

for 𝑖 ∈ {1, . . . , 4}, 𝑗 ∈ {1, 2, 3}. As we recall Section 3.2.1 is the compliance
tensor of the material invariant under these rotations.
From the finite element analysis we gain, for each set of angles (ℰ𝑙, ℰ𝑟, 𝛼)
and each stress component, 12 shear stresses 𝜏𝑁𝐶

𝑖𝑗 (ℰ𝑙, ℰ𝑟, 𝛼) left grain re-
mains intact. When the left grain is cracked, we acquire 144 shear stresses
𝑘𝑚𝜏𝑊 𝐶

𝑖𝑗 (ℰ𝑙, ℰ𝑟, 𝛼), where 𝑘 ∈ 1, . . . , 4 and 𝑚 ∈ 1, 2, 3 represent the cracked
slip system. Rather than training one model for each slip system we trans-
form the orientations such that we only have to consider one slip system

𝜏𝑁𝐶 (ℰ𝑙, ℰ(𝑈(ℰ𝑟) · 𝑈𝑖𝑗), 𝛼) = 𝜏𝑁𝐶
𝑖𝑗 (ℰ𝑙, ℰ𝑟, 𝛼) (6.9)

𝜏𝑊 𝐶 (ℰ(𝑈(ℰ𝑙) · 𝑈𝑘𝑚), ℰ(𝑈(ℰ𝑟) · 𝑈𝑖𝑗), 𝛼) = 𝑘𝑚𝜏𝑁𝐶
𝑖𝑗 (ℰ𝑙, ℰ𝑟, 𝛼). (6.10)

For the dataset we run simulations with 3000 random angles (ℰ𝑙, ℰ𝑟, 𝛼),
which is a total 216000 FEM simulations. By taking advantage of rotational
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6.2 Multiaxial Infection Function

(a) Results of the gradient
boosting tree for 1𝑥𝑦

(b) Results of the gradient
boosting tree for 1𝑥𝑥

Figure 6.5: Predictions of the surrogate models over shear stress from
the FEM simulations for different stress components.

symmetries, we expand the dataset to include a total of 432,000 data points
per stress component.
We use gradient boosting trees, introduced in Section 4.3.3, as surrogate
models for our infection function. The setup is almost the same as for the
uniaxial case. But instead of training a model for each slip system, here
we build a model for each of the 6 stress components. We use the 𝛼 as an
additional input

𝜏𝑊 𝐶
𝑘 = 𝑓𝑘(ℰ ′

𝑙 , ℰ ′
𝑟, 𝛼, 𝜏𝑁𝐶), 𝑘 ∈ 𝐼𝜎, (6.11)

here ℰ ′
𝑙 = ℰ(𝑈(ℰ𝑙) · 𝑈𝑘𝑚) and ℰ ′

𝑟 = ℰ(𝑈(ℰ𝑟) · 𝑈𝑖𝑗).
The predictions made by the surrogate models on the test data are highly ac-
curate for nearly all stress components. Figure 6.5a displays the predictions
alongside the results from the FEM simulations for the stress component
1𝑥𝑦. The other models exhibit nearly identical 𝑅2 values, ranging from
approximately 0.98 to 0.99, with one exception being the stress component
1𝑥𝑥. The outcomes for this particular stress component are depicted in
Figure 6.5b. Notably, this stress component represents the normal stress
that is nearly perpendicular to the grain boundary, and it appears that the
behavior of shear stress in this context is more complex.

In Figure 6.6 the von Mises stress obtained from the FEM simulations is
shown. If the stress is applied parallelly to the grain boundary (Figure 6.6a
and 6.6c), the crack increases the von Mises stress in the right grain. The
crack direction has an impact on the von Mises stress. For a large angle
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6 Multiaxial Percolation

(a) Stress: 1𝑍𝑍 . (b) Stress: 1𝑋𝑋 .

(c) Stress 1𝑍𝑍 . (d) Stress 1𝑋𝑋 .

Figure 6.6: Von Mises stress in the region of the crack for different
crack orientations and load directions. The grain boundary is the thick
line.

between boundary and crack (Figure 6.6a), the resulting stress is higher
compared to a smaller angle (Figure 6.6c). For the simulations with an
applied normal load in 𝑥 direction, perpendicular to the grain boundary,
the influence of the crack direction is significantly higher. If the crack is
almost perpendicular to the grain boundary (Figure 6.6b), the simulation
shows that there are two areas at the tip of the crack in the right grain
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6.2 Multiaxial Infection Function

with different behavior. Slightly above the crack the stress increases, and
below the von Mises stress reduces due to the crack. This effect becomes
significantly larger if the angle between crack and grain boundary is small
(Figure 6.6d) and the force acts almost perpendicular to the crack. Stress
concentration at the crack tip leads to a reduction of stress in the area
behind the crack face in the right grain. It seems that this complex behavior
leads to the reduced accuracy for the normal load in 𝑥 direction.

Nonetheless, with an 𝑅2 value of nearly 0.8, the predictions for this stress
component are sufficiently accurate.

6.2.5 Integration into the Percolation Model

The infection model requires an additional input parameter, which is the
angle between the grain boundary and the surface normal. To obtain this
angle, we sample a random value 𝛼𝑔1,𝑔2 ∈ [−10∘, 10∘] at the initiation of the
surface for each grain boundary. Here, 𝑔1 and 𝑔2 denote the two adjacent
grains sharing this common boundary.

Before applying the surrogate models for the infection function, we perform
rotations on the stress tensor and grain orientations to align the grain
boundary with the 𝑧-axis. Let 𝑔𝑙 represent the cracked grain with orientation
ℰ𝑙, and 𝑔𝑟 and ℰ𝑟 represent the grain and orientations of the adjacent grain
on which the infection function is to be applied. Additionally, let 𝜎𝑖𝑠𝑜 denote
the isotropic stress acting on the entire surface and 𝜎𝑔𝑟

𝑎𝑛𝑖 be the anistropic
stress in grain 𝑔𝑟. Utilizing Voronoi tessellation, we can determine the angle
𝛽𝑔𝑙,𝑔𝑟 as illustrated in Figure 6.7.

Let now 𝑈𝛽𝑔𝑙,𝑔𝑟
be the rotation matrix that describes a rotation of 𝛽𝑔𝑙,𝑔𝑟

around the 𝑦-axis which is given by

𝑈𝛽𝑔𝑙,𝑔𝑟
=

⎛⎜⎜⎜⎝
cos(𝛽𝑔𝑙,𝑔𝑟) 0 sin(𝛽𝑔𝑙,𝑔𝑟)

0 1 0
− sin(𝛽𝑔𝑙,𝑔𝑟) 0 cos(𝛽𝑔𝑙,𝑔𝑟)

⎞⎟⎟⎟⎠ . (6.12)
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6 Multiaxial Percolation

Figure 6.7: Rotation of the whole system, such that the grain boundary
(green) between the cracked grain (red) and the infected grain (blue) is
aligned with the 𝑧-axis.

The grains and the stresses are transformed with this rotation,

𝜎̄𝑖𝑠𝑜 = 𝑈𝛽𝑔𝑙,𝑔𝑟
· 𝜎𝑖𝑠𝑜 · 𝑈𝑇

𝛽𝑔𝑙,𝑔𝑟
(6.13)

𝜎̄𝑔𝑟
𝑎𝑛𝑖 = 𝑈𝛽𝑔𝑙,𝑔𝑟

· 𝜎𝑔𝑟
𝑎𝑛𝑖 · 𝑈𝑇

𝛽𝑔𝑙,𝑔𝑟
(6.14)

ℰ̄𝑙 = ℰ(𝑈(ℰ𝑙) · 𝑈𝛽𝑔𝑙,𝑔𝑟
) (6.15)

ℰ̄𝑟 = ℰ(𝑈(ℰ𝑟) · 𝑈𝛽𝑔𝑙,𝑔𝑟
). (6.16)

Let now 𝑘, 𝑚 be the indices slip system of grain 𝑔𝑟 that the infection function
is applied to. We calculate the shear stress parts in the slip system that are
induced by the stress components 1𝑠, 𝑠 ∈ 𝐼𝜎

𝜏 𝑠
𝑘𝑚 = 𝑛𝑘 · 1𝑠 · 𝑡𝑘𝑚. (6.17)

Additionally, let 𝑖, 𝑗 be the indices slip system that is cracked in grain 𝑔𝑙.
We rotate both grains so that the slip systems align with the ones used for
building the surrogate model. Therefore, the final orientations of the grains
used in the infection function are given by:

ℰ̄ 𝑖𝑗
𝑙 = ℰ(𝑈(ℰ̄𝑙) · 𝑈𝑖𝑗)

ℰ̄𝑘𝑚
𝑟 = ℰ(𝑈(ℰ̄𝑟) · 𝑈𝑘𝑚)

. (6.18)

For each slip system with indices 𝑘, 𝑚 the shear stress after infection is now
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Figure 6.8: Fit of the Coffin Manson Basquin equation to the experi-
mental data.

given by,
𝜏𝑘𝑚 =

∑︁
𝑠∈𝐼𝜎

(𝜎̄𝑔𝑟
𝑎𝑛𝑖𝑠𝑜)𝑠 · 𝑓𝑠(ℰ̄ 𝑖𝑗

𝑙 , ℰ̄𝑘𝑚
𝑟 , 𝛼𝑔𝑙,𝑔𝑟 , 𝜏 𝑠

𝑘𝑚). (6.19)

6.3 Fitting the Model

For the calibration of the multiaxial model we utilize the data from the
experiments with Alloy427 under uniaxial load as described in Section 2.7.

We initially fit the Coffin-Manson-Basquin equation to the experimental
failure times, as illustrated in Figure 6.8.
The fitting process for the parameters 𝑠𝐶𝑀𝐵 and 𝐾𝑐𝑟𝑖𝑡 is the same as for
the uniaxial model, as described in Section 4.5.1.
Figure 6.9 displays the resulting probability density functions of failure
times for various strain levels. The model appears to be capable of describ-
ing the scatter in the experimental data for the lower strain levels quite
well. However, at the higher strain levels (0.35% and 0.4%), the predicted
probability density is slightly shifted to the left. In these cases, the scatter
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6 Multiaxial Percolation

Figure 6.9: Density of the probability of failure (yellow) for the different
strain levels under uniaxial load. Experimental data (red) and pre fitted
Coffin Manson Basquin equation (black).

band of the experiments is very small compared to the probability density.

6.4 Experimental Validation

For the validation of the model we use the experimental LCF data with
Alloy247 under multiaxial load (see Section 2.7).
The multiaxiality measure 𝜅𝜎, introduced in [52], is used to quantify the
degree of multiaxial stress. For a stress tensor 𝜎, this value is defined as:

𝜅𝜎 = |𝜎′
𝐼𝐼𝐼 − 𝜎′

𝐼𝐼 |
|𝜎′

𝐼 |
, (6.20)

here 𝜎′
𝐼 , 𝜎′

𝐼𝐼 , and 𝜎′
𝐼𝐼𝐼 represent the principal stress values of 𝜎 without the

hydrostatic stress component.
When the stress is purely uniaxial, 𝜎′

𝐼𝐼 = 𝜎′
𝐼𝐼𝐼 , resulting in 𝜅𝜎 = 0. On the

other hand, 𝜅𝜎 = 1 if the absolute stress difference between 𝜎′
𝐼𝐼 and 𝜎′

𝐼𝐼𝐼

is equal to |𝜎′
𝐼 |. In other words, 𝜅𝜎 quantifies how far the stress state is
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Figure 6.10: Experimental LCF data for different von Mises stress
and different levels of multiaxiality.

from being purely uniaxial, with higher values indicating a greater degree
of multiaxiality.
The experimental results are depicted in Figure 6.10. It is evident that
increasing values of 𝜅𝜎 correspond to longer LCF life of the specimens. This
effect is observed across various stress levels.
We use the geometry parameters from the specimen for the percolation
simulations. For the stress we use a mixture of normal stress 𝜎𝑧𝑧 and shear
stresses 𝜎𝑧𝑥 = −𝜎𝑦𝑧. As the final input we use the tensor without hydrostatic
stress, which leads to a stress tensor of the form

𝜎 =

⎛⎜⎜⎜⎝
−1/3𝜎𝑧𝑧 0 𝜎𝑧𝑥

0 −1/3𝜎𝑧𝑧 −𝜎𝑧𝑥

𝜎𝑧𝑥 −𝜎𝑧𝑥 2/3𝜎𝑧𝑧

⎞⎟⎟⎟⎠ . (6.21)

For each combination of 𝜎𝑣𝑀 and 𝜅𝜎 we run 1000 simulations. The resulting
density functions of the PoF are illustrated in Figure 6.11.
We can observe that for 𝜅𝜎 = 0 (yellow), even if we change the specimen
geometry, the model predicts failure times in the right order of magnitude.
It is not necessary to refit the model for different geometries.
However, when we compare the simulation results for different 𝜅𝜎 values
with the experimental results, the model fails to capture the shift in LCF
life accurately. Instead of an increase in failure times, the probabilities of
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6 Multiaxial Percolation

Figure 6.11: Density function of the probability of failure for different
𝜎𝑣𝑀 and different levels of multiaxiality.

failure shift to the left as the level of multiaxiality increases. Moreover, for
higher levels of 𝜅𝜎, the scatter in the simulation results also increases. Due
to the limited amount of data available, we are unable to determine whether
this effect is also present in the experiments.

If we compare the distribution of the maximum Schmid factors for the
different stresses (Figure 6.12a), we can see that an increase in 𝜅𝜎 leads to
over all higher Schmid factors. Due to this effect the single grains tend to
crack earlier. Additionally, the infection of the grains starts earlier as well.
This over all leads to the reduction of the LCF lifetime in the model.
The multiaxiality of the stress has an effect on the stress intensity factor,

which we use as a failure criterion. In Figure 6.12b 𝐾𝑒𝑞 for a crack with a
length 3𝑚𝑚 for the different stress inputs over the angle between 𝑥-axis
and the crack is shown. Here we can see two effects, on the one hand for
increasing multiaxiality the crack direction becomes less important until for
𝜅𝜎 = 1 the equivalent stress intensity is independent of the crack direction.
On the other hand, the maximum possible stress intensity at the tip of the
crack decreases. This effect on its own would lead to an increase in the LCF
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The direction of the crack be-
comes less import.

Figure 6.12: Schmid factors and equivalent stress intensity factor for
different values of multiaxiality.

lifetime and a broader scatter band of the results (compare Figure 4.17).
This both effects combined match with the results from the percolation
simulations. The increase of the Schmid factors shift the results to the
left and increase in the scatter is due to the reduced stress intensity. Both
effects are stronger for lower values of 𝜅𝜎, and for the values obove 0.5
the increase of the maximum Schmid factors is pretty low. The density
function of the PoF show the same behavior, for 𝜅𝜎 between 0 and 0.5
the probability distribution differ clearly, but for the higher values this
difference diminishes.

6.4.1 Empirical shift

To address the discrepancy between the predicted failure times and the
results from the experiments for the multiaxial loading states, we introduce
an empirical shift of the Coffin Manson Basquin equation. To account for
the longer LCF lifetime with increasing level of multiaxiality, we use the
linear function

𝑠(𝜅) = 1 + 𝑎 𝜅 (6.22)
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6 Multiaxial Percolation

Figure 6.13: Density function of the probability of failure for different
𝜎𝑣𝑀 and different levels of multiaxiality.

for the shift. We apply the shift to the single grain crack initiation times via

CMB−1
𝑠 (𝜀, 𝜅) = CMB−1(𝜀) · 𝑠(𝜅). (6.23)

We use the parameter 𝑎 to fit the percolation model to the experimental
results. Therefore, we employ the MLE method and solve the optimization
numerically.

The resulting densities of the probability of failure are shown in Figure 6.13.
Due to the empirical shift, the resulting failure probability show the same
behavior for increasing levels of multiaxiality 𝜅 as the experiments. It seems
that the range of scatter is in the right order of magnitude, but for an
accurate estimation there are not enough data points available.
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Figure 6.14: Distribution of the Schmid factors for orientations sampled
according to the Haar measure (green) and according to 𝑔 (yellow).

6.5 Comparison of the Different Orientation Distributions

In this section we investigate the impact of the different distributions for the
grain orientations on the percolation model. We compare the distribution
from Section 5.1 with the isotropic distributed orientations gained from the
Haar measure.

6.5.1 Schmid Factors

Grain orientation affects Schmid factors in two distinct ways. Firstly, it
determines the direction and orientation of the slip systems directly. Sec-
ondly, it influences the anisotropic stress due to its impact on the stiffness
tensor. To make a comparison, we utilize 30,000 orientations obtained from
the Metropolis-Hastings algorithm with the density function 𝑔, as well as
30,000 orientations distributed according to the Haar measure.

Initially, we focus solely on the slip systems. Thus, we calculate the maxi-
mum Schmid factors with equation 4.6 resulting from the shear stress using
an isotropic uniaxial stress:
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Figure 6.15: Von Mises equivalent stress over Schmid factor from the
isotropic stress. Color coding gives the Schmid factor resulting from
anisotropic stress.

𝜏𝑖𝑗(𝑈) = 𝑛𝑖(𝑈) · 𝜎𝑖𝑠𝑜 · 𝑠𝑖𝑗(𝑈). (6.24)

Figure 6.14a illustrates the distribution of Schmid factors for both cases. It
shows that grains with orientations sampled from 𝑔 tend to have slightly
higher Schmid factors compared to grains without a preferred orientation.

However, when we consider the anisotropy of the stiffness tensor, i.e., re-
placing the isotropic stress with the anisotropic stress (equation (4.4)), this
difference is reversed. Figure 6.14b demonstrates that the number of Schmid
factors with values above 0.475 is significantly reduced with preferred orien-
tation. Conversely, the number of Schmid factors falling between 0.35 and
0.475 increases with a preferred orientation.

In Figure 6.15 the Schmid factor resulting from the isotropic stress, the
von Mises equivalent stress and the Schmid factor from the isotropic stress
are illustrated. Here we can see that for a high anisotropic Schmid factor
the direction of the slip system and the stiffness in load direction both
play an important role for the Schmid factor resulting from the anistropic
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Figure 6.16: Comparison of the probability densities of the probabilities
of failure for the different orientational distributions with logarithmic
scaled axes.

stress. When comparing the results from isotropically distributed grains
(Figure 6.15a) with those from 𝑔 (Figure 6.15b), we notice that in both
cases, there is a higher density of values on the right edge of the distribution,
indicating a combination of a high isotropic Schmid factor and high stiffness
in the load direction. However, this effect is more distinct in the orientations
sampled from the Haar measure. This explains the different results for the
isotropic and anisotropic stress.

6.5.2 Percolation with different Orientational Distributions

This difference in the Schmid factors influences the results from the perco-
lation model. We compare the results that we use to fit the model with
the same amount of simulations where the orientations of the grains are
distributed according to 𝑔. The fitted parameters remain the same.
Figure 6.16 depicts a side-by-side comparison of the probability of failure
for both orientation distributions. The influence of grains with a preferred
orientation is significant. Simulations across all strain levels demonstrate a
longer LCF lifetime when compared to the isotropic distribution. Addition-
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ally, the scatter band of the density function of the probability of failure
widens as well.

Both effects can be well explained with the distribution of the Schmid factors
(Figure 6.15b). Surfaces with orientations sampled from the Haar measure
are more likely to contain many grains with high Schmid factors, leading to
earlier crack initiation. This, combined with the infection process, results
in a greater number of distinct grains from which a cluster can propagate,
ultimately leading to overall earlier failure.
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7. Application to a Turbine Blade

The aim of this section is to estimate the probability of failure to a complex
3D component. In contrast to the test specimens, a realistic mechanical
component in operation is subject to an inhomogeneous stress field that
can only be computed numerically. To achieve this, we utilize the crack
initiation process introduced in Section 3.3. The percolation simulations are
employed to determine stress- and cycle-dependent local cumulative hazard
rates.

7.1 Linear Hazards

Using the fitted multiaxial model introduced in Section 6, we examine the
impact of different surface sizes on the probability of failure. In this regard,
we maintain a fixed stress tensor as input while varying the surface size.
The average grain diameter remains constant throughout the analysis.

We choose quadratic surfaces with four different sizes 350 𝑚𝑚2, 450 𝑚𝑚2,
550 𝑚𝑚2 and 650 𝑚𝑚2. For each of these surfaces 12000 simulations are
performed. With the resulting failure times 𝑁̂𝑛

𝑖𝐴
, 𝑛 ∈ 1, . . . , 12000 for each

area 𝐴 we obtain an approximation for the survival probability by

𝑆𝐴(𝑁𝑖, 𝜎) =
#{𝑁̂𝑛

𝑖𝐴
|𝑁̂𝑛

𝑖𝐴
> 𝑁𝑖, 𝑛 = 1, . . . , 12000}

12000 . (7.1)

As 𝐹𝐴(𝑁𝑖, 𝜎) = 1 − 𝑆𝐴(𝑁𝑖, 𝜎) holds, with theorem 3.33 the cumulative
hazard function is given by

𝐻𝐴(𝑁𝑖, 𝜎) = − log 𝑆𝐴(𝑁𝑖, 𝜎). (7.2)

If the crack initiation processes in distant regions are independent, this
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7 Application to a Turbine Blade

(a) Cumulative hazard func-
tion for different load cycles.
The points show the simula-
tion results with dotted regres-
sion lines. The solid lines rep-
resent the cumulative hazards
that we use for the applica-
tion.

(b) Local cumulative hazard
rate over the load cycles, ob-
tained from the regression
lines in Figure 7.1a.

Figure 7.1: Results of the simulations for different surface sizes.

leads to an exponential decay of the survival probability with respect to the
area. Therefore, with equation (7.2) the cumulative hazard are linear.

The results from the simulations for the four different surface sizes are
illustrated in Figure 7.1a. The points in the figure represent the cumulative
hazards for the stress and load cycles.
Here we can see that the cumulative hazards are approximately linear with
respect to the surface area, as they closely align with the dotted regression
lines. We use the slopes from the regression lines as the local cumulative
hazard rate

𝐻(𝑁𝑖, 𝜎) = 𝐻𝐴(𝑁𝑖, 𝜎)
|𝐴|

(7.3)

which leads to the cumulative hazards plotted as the solid lines.
The shift in hazards resulting in a slight overestimation of the probabilities of
failure is not a significant issue in the context of safety-critical applications,
such as real gas turbines. In fact, it is generally preferable to err on the side
of caution and overestimate failure probabilities in such critical systems to
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7.1 Linear Hazards

Figure 7.2: Standard deviations of the hazard rates for different number
of simulations

ensure safety and reliability.
In Figure 7.1b the local cumulative hazard rate over the load cycles is
depicted. The first observed failure in the simulations occurring at load
cycle 1041. Prior to this cycle, the hazard density is zero. Notably, 𝐻(𝑁𝑖, 𝜎)
exhibits exponential growth until approximately load cycle 2500, from which
point onward its growth becomes nearly linear. This behavior suggests
that the hazard density evolves over time, transitioning from an initial
exponential growth phase to a more linear trend.

In the following we build a surrogate model for the local hazard rate.
Therefore, we have to gather a database for different stress states from the
percolation model. Due to computational limitations it is not feasible to
run as many simulations for each stress state and surface size as in this
section.
We have to make a trade of between the number of the simulations and accu-
racy of the obtained local hazard rates. With subsamples of the simulations
we investigate the scatter band of the hazard rates for different amounts
of simulations per surface area. In Figure 7.2 the standard deviations for
250, 500, 1000 and 2000 simulations per area are depicted.
Since the difference in results between 1000 and 2000 simulations is minimal
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7 Application to a Turbine Blade

(a) Front side of the turbine
blade.

(b) Back side of the tur-
bine blade.

Figure 7.3: Von Mieses stress on the turbine blade under centrifugal
loading.

compared to the difference between 500 and 1000 simulations, we have opted
to use 1000 simulations per surface area in the following.

7.2 Blisk-Geometry and Surfaces Stress

As an example for the transfer to a component, we use an FEM model
of a turbine blade. The geometry is discretized with 1838 quadratic brick
elements and contains 13682 nodes. For a meshing study we refer to [29].
We consider here a centrifugal load from a rotation with 55Hz resulting in
a volume force. Surface loads induced by air pressure are not taken into
account.
We need to define the range of the inputs from which we generate the
database for the surrogate model. To this end we calculate with equa-
tion (3.60) the surface force 𝜎𝐹𝑖 , for each surface element 𝐹𝑖 ∈ 𝒩ℎ. The

132



7.2 Blisk-Geometry and Surfaces Stress

Figure 7.4: Rotation of the surface such that the average normal is
aligned with the 𝑦-axis.

resulting von Mises stress of the component is illustrated in Figure 7.3.
For the use in the percolation model, it is necessary to rotate the surface
stresses such that the normal of the surface is aligned with the 𝑦-axis. The
four corner nodes of the face 𝐹𝑖 are usually not coplanar. Accordingly, we
calculate the four normals from the planes that contain just three of the
corner nodes. We use the average of the four normals as an approximation
for the normal 𝑛̄𝐹𝑖 of 𝐹𝑖, as illustrated in Figure 7.4. The rotation matrix
that maps the normal 𝑛̄𝐹𝑖 onto 𝑒𝑦 is given by

𝑈𝐹𝑖
= 𝑔𝑍

𝛽 · 𝑔𝑋
𝛼 , with 𝛼 = arctan

(︃
− 𝑛̄𝐹𝑖

𝑧

𝑛̄𝐹𝑖
𝑦

)︃
, 𝛽 = arctan

(︃
𝑛̄𝐹𝑖

𝑥

𝑛̄𝐹𝑖
𝑦

)︃
, (7.4)

for 𝑛̄𝑦
𝐹𝑖

̸= 0. For the rotated surface stress we obtain

𝜎̄𝐹𝑖 = 𝑈𝐹𝑖
· 𝜎𝐹𝑖 · 𝑈𝑇

𝐹𝑖
. (7.5)

We use grain orientations that are distributed according to the Haar measure.
With these orientations the percolation model is invariant under rotations
around the 𝑦-axis. Accordingly, we can simplify the stress tensor by an
additional rotation such that 𝜎̂𝐹𝑖

𝑥𝑦 = 0. The corresponding rotation matrix
is obtained by

𝑈𝜎𝐹𝑖 = 𝑔𝑌
𝛾 , with 𝛾 = arctan

(︃
𝜎̄𝐹𝑖

𝑥𝑦

𝜎̄𝐹𝑖
𝑦𝑧

)︃
, 𝜎̄𝐹𝑖

𝑦𝑧 ̸= 0,

𝜎̂𝐹𝑖 = 𝑈𝜎𝐹𝑖 · 𝜎̄𝐹𝑖 · 𝑈𝑇
𝜎𝐹𝑖 .

(7.6)

133



7 Application to a Turbine Blade

Finally, as the hydrostatic stress is negligible, the stress tensor only contains
four independent values 𝜎̂𝐹𝑖

′

𝜎̂𝐹𝑖
′ =

⎛⎜⎜⎜⎝
𝜎̂𝐹𝑖

′

𝑥𝑥 0 𝜎̂𝐹𝑖
′

𝑧𝑥

0 𝜎̂𝐹𝑖
′

𝑦𝑦 𝜎̂𝐹𝑖
′

𝑦𝑧

𝜎̂𝐹𝑖
′

𝑧𝑥 𝜎̂𝐹𝑖
′

𝑦𝑧 𝜎̂𝐹𝑖
′

𝑧𝑧

⎞⎟⎟⎟⎠ , with 𝜎̂𝐹𝑖
′

𝑥𝑥 + 𝜎̂𝐹𝑖
′

𝑦𝑦 = 𝜎̂𝐹𝑖
′

𝑧𝑧 . (7.7)

7.3 Surrogate Model for the local cumulative Hazard rate

With this setup we choose 4000 simulations per stress state to obtain the
Hazard density from the percolation model. One of these simulations runs
on average 10 minutes, depending on the surface size. It is not feasible
to perform these simulations for different geometries or loading conditions.
Even just the geometry that we use as an example with one load state would
require 7.3 · 106 simulations.
Therefore, it is necessary to build a surrogate model that predicts the hazard
density from the surface stress and the load cycles.

7.3.1 Generation of the Database

To generate stress inputs for the percolation model, we employ a Latin
hypercube sampling approach. The stress tensor’s allowable range for each
component is defined as:

𝜎𝑘𝑙 ∈ [0.95 · min
𝐹𝑖∈𝒩ℎ

(︁
𝜎̂𝐹𝑖

′

𝑘

)︁
, 1.05 · max

𝐹𝑖∈𝒩ℎ

(︁
𝜎̂𝐹𝑖

′

𝑘

)︁
], (7.8)

with 𝑘 ∈ {𝑥𝑥, 𝑦𝑦, 𝑦𝑧, 𝑧𝑥}. Additionally, we constrain the von Mises stress
to lie within the range [340, 600]. Lower von Mises stress values result in
minimal crack initiation cycles exceeding 20 000. A total of 300 stress inputs
are sampled from this hypercube.
These stress tensors serve as input to the percolation model. We follow the
same procedure for computing hazard densities as outlined in Section 7.1.
For each surface size, 1 000 simulations are performed, resulting in a total
of 1.2 million simulations. To expedite this extensive computation, we
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Figure 7.5: First load cycle such that the hazard density is greater
than 0.

employed up to 125 cores from Intel® Xeon® Gold 6138 Processor which
run with a single core frequency of 3.7 GHz. With this hardware we
can run 250 simulations simultaneously. The overall computation taking
approximately one month to complete.
Figure 7.5 depicts the minimal load cycle 𝑁 𝑓

𝑖 = min(𝑁𝑖(𝜎)) over the von
Mises stress. Figure 7.5b displays the same data with both axes on a
logarithmic scale, highlighting the strong correlation between von Mises
stress and the minimal load cycle for crack initiation.

7.3.2 The Model

To construct the surrogate model for hazard densities, we follow a two-step
approach. Initially, we exploit the linear correlation between the logarithmic
minimal load cycle and the von Mises stress to build a regression model.
The results from Section 6.4 show that additionally to the von Mises stress
also the multiaxial influences the failure times. We take that into account
by using the whole stress state for the regression. We obtain the best results
with a linear model that predicts the logarithm of the first load cycle for
which the hazard is greater than zero from the logarithm of the von Mises
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Figure 7.6: Predicted first load cycle with hazard greater than zero
over simulational result.

stress and the absolute values of the single stress components:

log(𝑁̄𝑖(𝜎)) = 𝑎0 + 𝑎𝑣𝑀 log(𝜎𝑣𝑀) +
∑︁

𝑘∈{𝑥𝑥,𝑦𝑦,𝑧𝑧,𝑦𝑧,𝑧𝑥}
𝑎𝑘 |𝜎𝑘|. (7.9)

Figure 7.6 displays the predictions of this regression model compared to the
simulation results. The left plot (Figure 7.6a), using linear axes, shows that
the predictions align closely with the simulation results. The alignment
becomes even clearer when plotted on a log-log scale (Figure 7.6b). Using
this regression model, we achieve an impressive 𝑟2 value of 0.993, a signifi-
cant improvement over the already high 𝑟2 value of 0.95 obtained with the
regression using only von Mises stress.

In the second step of building the surrogate model, we use a fitted smooth
ReLU (rectified linear unit) to approximate the hazard density at load cycle
𝑁𝑖 for a given stress state. The smooth ReLU function is defined as follows:

sReLU(𝑥) = ln(1 + 𝑒𝑥). (7.10)

ReLU functions are often used as activation functions for neural networks.
The simple ReLU is defined as zero for negative inputs and the identity for
positive values. The smooth ReLU is a differentiable approximation of the
ReLU function.
As the smooth ReLU function approaches zero for large negative values and
behaves almost linearly for large positive values, we can achieve a good fit
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7.3 Surrogate Model for the local cumulative Hazard rate

to hazard densities using just three parameters. The actual function we use
for the surrogate model is as follows

𝑓(𝑥) = 𝑎1
(︁
ln(1 + 𝑒𝑎2 𝑥−𝑎3)

)︁
. (7.11)

With the assumption that the local cumulative hazard rate 𝐻(𝑁𝑖, 𝜎) is
almost zero for the minimal crack initiation cycle 𝑁 𝑓

𝑖 we eliminate one
parameter. We use 𝐻(𝑁 𝑓

𝑖 , 𝜎) = 10−4 as a threshold, with 𝑎1 > 0 we obtain

0.0001 = 𝑎1

(︂
ln(1 + 𝑒𝑎2 𝑁𝑓

𝑖 −𝑎3)
)︂

⇒ 0.0001𝑎−1
1 = ln(1 + 𝑒𝑎2𝑁𝑓

𝑖 −𝑎3)

⇒ 𝑒0.0001𝑎−1
1 = 1 + 𝑒𝑎2𝑁𝑓

𝑖 −𝑎3

⇒ 𝑒0.0001𝑎−1
1 − 1 = 𝑒𝑎2𝑁𝑓

𝑖 −𝑎3

⇒ ln(𝑒0.0001𝑎−1
1 − 1) = 𝑎2𝑁

𝑓
𝑖 − 𝑎3

⇒ 𝑎3 = 𝑎2𝑁
𝑓
𝑖 − ln(𝑒0.0001𝑎−1

1 − 1).

(7.12)

The two remaining parameters are fitted to the simulation results using the
following procedure:
For a given stress state 𝜎, we first determine the support points for the fit.
We utilize 101 equidistant load cycles (𝑁𝑖(𝜎))𝑗 ∈ [𝑁 𝑓

𝑖 (𝜎), 3𝑁 𝑓
𝑖 (𝜎)]:

(𝑁𝑖(𝜎))𝑗 = (1 + 𝑗

50) · 𝑁 𝑓
𝑖 (𝜎), 𝑗 = 0, . . . , 100 (7.13)

We then collect the corresponding local cumulative hazard rate 𝐻((𝑁𝑖(𝜎))𝑗, 𝜎)
from the percolation simulations. To ensure the hazard rate increases with
respect to the load cycle 𝑁𝑖 (accounting for potential scatter), we modify
the data for fitting purposes:

𝐻𝜎
0 = 𝐻((𝑁𝑖(𝜎))0),

𝐻𝜎
𝑗 = max

(︁
𝐻((𝑁𝑖(𝜎))𝑗), 𝐻𝜎

𝑗−1

)︁
, 𝑗 = 1, . . . , 100

(7.14)

With these support points, we fit the two remaining parameters 𝑎1(𝜎) and
𝑎2(𝜎) in the function (7.11). We employ the Nelder-Mead optimization
algorithm, available through the R library nloptr [42].
The fitted functions for two different stress tensors are displayed in Fig-
ure 7.7. These fitted functions closely match the results from the percolation
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7 Application to a Turbine Blade

(a) Local cumulative haz-
ard rate for stress input
with 𝜎𝑣𝑀 = 420 and 𝜅𝜎 =
0.85.

(b) local cumulative haz-
ard rate for stress input
with 𝜎𝑣𝑀 = 380 and 𝜅𝜎 =
0.33.

Figure 7.7: Fitted smooth ReLU functions (yellow) for the hazard
density obtained from the percolation (green).

model in both cases. Even for slightly noisy simulation results, such as
those with 𝜎𝑣𝑀 = 380, 𝜅𝜎 = 0.33 (Figure 7.7b), the smooth ReLU function
fits well with the data points.

Now, as a final step, we want to get the parameters for local cumu-
lative hazard rate directly from the stress tensor, rather than from the
percolation simulations. We therefore use a neural network that predicts
the two parameters 𝑎1(𝜎) and 𝑎2(𝜎) directly from a given stress tensor 𝜎.
Additionally to the entries of the stress tensor 𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧, 𝜎𝑦𝑧 and 𝜎𝑧𝑥, we
use the von Mises equivalent stress 𝜎𝑣𝑀 and 𝑁̄𝑖(𝜎) as input features for the
network.

The architecture of the neural network consists of an input layer with 7
neurons, 3 hidden layers with 20, 25 and 10 neurons and an output layer
with 2 neurons and a linear activation function. For the loss function we
use the mean squared error. The implementation is done with Keras and
Tensorflow as the backend which are provided in the R [58] libraries keras [1]
and tensorflow [2].

For the training of the neural network we split the database into train-
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7.4 FEM Postprocessor

(a) Both smooth ReLU
functions for von Mises
stress 350 and 𝜅𝜎 = 0.5.

(b) Both smooth ReLU
functions for von Mises
stress 460 and 𝜅𝜎 = 0.85.

Figure 7.8: Comparison of the fitted (green) and the smooth ReLU
gained from the neural network (yellow). The local cumulative hazard
rate from the percolation model is visualized with the green dots.

and test data. Two hazard densities resulting from the test dataset with
parameters gained from the trained network are depicted in Figure 7.8. In
both cases the predicted hazard density and the hazard densities gained
from the percolation simulation match well.

7.4 FEM Postprocessor

We now use the surrogate model from the previous section to build an FEM
postprocess. Let now 𝜎(𝑇𝐾(𝐹 )(𝑥̂𝐹𝑙)) be the stress tensors obtained from the
FEM simulation in the quadrature points with 𝐹 ∈ 𝒩ℎ and 𝑙 ∈ 1, . . . , 𝑞𝐹 .
We rotate the stress and subtract the hydrostatic part with the same proce-
dure as introduced in Section 7.2 to obtain the input 𝜎̂′

𝐹𝑙
for the surrogate

model.

We use the linear regression from the previous section to approximate the
first load cycle where the Hazard is larger than zero 𝑁̄𝑖(𝜎̂′

𝐹𝑙
). With the

trained gradient boosting tree, we can now determine the parameters for the
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7 Application to a Turbine Blade

(a) Front of the blade. (b) Back of the blade.

Figure 7.9: Turbine blade with Hazard after 1000 load cycles, intensity
from dark blue to yellow.

sReLU functions that approximate the local cumulative hazard functions

𝐻(𝑡, 𝜎(𝑇𝐾(𝐹 )(𝑥̂𝐹𝑙))) ≈ 𝐻̄(𝑡, 𝜎(𝑇𝐾(𝐹 )(𝑥̂𝐹𝑙)))
= 𝑎1(𝜎̂′

𝐹𝑙
)
(︁
ln
(︁
1 + 𝑒

𝑎2(𝜎̂′
𝐹𝑙

)𝑡−𝑎3(𝜎̂′
𝐹𝑙

))︁)︁ (7.15)

at each quadrature point.

With equation (3.102) we can directly apply the local cumulative hazards
to a FEM geometry. As an example we use here the blisk geometry under
centrifugal load (Section 7.2). In Figure 7.9 the Hazard on the surface after
1000 load cycles is displayed.
On the back side of the blade (Figure 7.9b) there is no damage on the whole
surface. If we look at the front side of the turbine blade (Figure 7.9a) at
the right edge of the base there is already a hazard above 0.
After 5000 load cycles (Figure 7.10), the hazards on the right edge of the
base have grown (Figure 7.10a). The hazard intensity increases. On the
back side (Figure 7.10b) there is an area at the transition of the blade to
the base which now is also damaged. With increasing load cycles these
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7.4 FEM Postprocessor

(a) Front of the blade. (b) Back of the blade.

Figure 7.10: Turbine blade with Hazard after 5000 load cycles, intensity
from dark blue to yellow.

(a) Front of the blade. (b) Back of the blade.

Figure 7.11: Turbine blade with Hazard after 10000 load cycles,
intensity from dark blue to yellow.
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Figure 7.12: Probability of failure over load cycle for the turbine blade

areas become larger and the intensity of the hazards grows. At the front of
the blade, after 10 000 load cycles (Figure 7.11) the transition area between
base and blade is now damaged as well (Figure 7.11a).

The areas on the surface of the blade which have high hazards correlate
with the areas with high von Mises stress (Figure 7.3).

With equation (3.103) we now can determine the LCF-failure probability of
the whole blisk blade, which is depicted in Figure 7.12. Up to about 1200
start-stop operations, the blade operates in the safe-life regime. Here, the
probability of failure is approximately zero. After about 13000 start-stop
operations, the probability of failure exceeds 10% and increases fast.

The resulting failure probability is of a realistic order magnitude. Purely
statistical failure models, such as Weibull-based approaches, have the prob-
lem when transferring to realistic large components that even with a few
load cycles, there is a risk of failure. With our local physical based approach
and the approach via local hazard rates, we are able to predict a realistic
safe-life regime.
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7.4 FEM Postprocessor

Another advantage of the chosen approach is its flexibility in utilizing various
microstructural models to determine local hazard rates. The transfer to the
component is independent of the details of the microstructural model.
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8 Conclusion and Outlook

8. Conclusion and Outlook

In this thesis, we developed a probabilistic model for low cycle fatigue lifetime
prediction of nickel-bases alloys. This physics based approach is derived
from the random orientations of the individual grains in the microstructure
and the anisotropic characteristic of the material. We combined the single
grain failure times with an infection mechanism. To this end, we used FEM
simulations to calculate the local excess in shear stress that is induced due to
a crack in an adjacent grain. As the FEM simulations are time-consuming,
we built a gradient boosting based surrogate model for the infection function.
In Section 4 we fitted the model, using failure time data obtained from
LCF experiments under uniaxial loading conditions. We could observe, that
the infection model reduce the scatter band of the predicted probability
of failure in comparison to the model without the infection. The resulting
failure times are in the correct order of magnitude.
Within Section 6 we utilized the linearity of the elastic equation and the
linearity of the Schmid factors to extend the infection model to multiaxial
stress states. Additionally, the multiaxial version of the infection model takes
the orientation of the grain boundary into account. The model was fitted
to experimental results with uniaxial loading conditions. The validation
with multiaxial experiments showed that our model is not able to predict
the failure times correctly for these loading conditions. In the experiments
an increase in multiaxiality leads to an overall longer LCF lifetime of the
specimens, in the percolation model we observe the opposite effect. This is
due to an increase in Schmid factors under uniaxial loading conditions. To
correct the predictions a linear shift of the Coffin-Manson-Basquin equation
was introduced.
We found that an increase in multiaxiality leads not only to an increase
in Schmid factors but also to a reduction in stress intensity. The crack
initiation in a single grain is not only driven by the dislocation movements
along the slip systems but also by a cyclic crack opening. A promising
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approach to predict the failure times under multiaxial load purely from
the microstructure, even without an additional linear shift, would therefore
be to use the stress intensity factors for crack initiation in addition to the
Schmid factors.

In Section 5.1 we presented an approach to model orientation distributions,
which differ from the isotropic distribution, with a small dataset via neural
networks. In combination with the percolation model, we were able to show
in Section 6.5 that the directional solidification of the nickel-based alloy
leads to longer lifetimes and larger scatter of the failure times.
In Section 5.2 we have presented a modeling approach for the integration of
transcrystalline crack initiation into the percolation model. Here we used
two different attempts to determine the crack initiation times of the grain
boundary. On the one hand, the crack initiation times were determined
purely via the shear stress at the grain boundary, which leads to very high
crack initiation cycles, such that the grain boundaries have no influence on
the percolation model. On the other hand, in the second approach, we used
a combination of shear stress and normal stress for the crack initiation. It
turns out that this leads to a much too early crack initiation, with many
grain boundaries forming cracks before the first grain is cracked. Here,
a more detailed investigation of the mechanism of transcrystalline crack
initiation is necessary for accurate modeling.
In combination with the percolation model it turns out, that for forming
clusters that lead to an overall failure, intercrystalline crack growth is nec-
essary.

Within Section 7, a method was presented to transfer probabilistic mi-
crostructural failure models to large engineering components. An advantage
of this method is that it works independently of the microstructural model
and thus other microstructural failure models are also usable.
As the calculation of the local cumulative hazard rates requires a lot of
computing time, we have used a neural network as a surrogate model. This
means that most of the computing time is required offline, which results in
a fast FEM post-processor.
As an example we transferred the local cumulative hazard rates to a turbine
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8 Conclusion and Outlook

blade in Section 7.4. The regions with high von Mises stress correlate here
with the regions that have a high probability of crack initiation.
When considering the overall probability of the turbine blade, we found
that we get a realistic safe-live regime of about 1000 load cycles. This
is an advantage of our modeling compared to classical purely statistical
approaches with, for example, Weibull models, which for large components
predict spontaneous failure at only a few load cycles due to the size effect.
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